## Radio

 Engineering HANDBOOKHenney

MCGRAW = HILL BOOK COMPANZ

## TIIE

# RADIO ENGINEERING IIANDBOOK 

PREPARED BY A STAFF OF
TWENTY-TWO SPECIALISTS

KEITH HENNEY, Editor-in-Chief<br>Member, The Institute of Radio Engineers; Author, "Principles of Radio"; Associate Editor, "Electronics"

First Edition

McGRAW-HILL BOOK COMPANY, Inc.
NEW YORK AND LONDON
1933

Copyright, 1933, by the
McGraw-Hill Book Company, Inc.

PRINTED IN THE UNITED BTATES OF AMERICA
All rights reserved. This book, or parts thereof, may not be reproduced in any form without permission of the publishers.

## PREFACE

For several years the need for a handhook for radio engineers has been xpparent. Although many of the fundamental principles of electrical zngineering apply as well to radio, the whole task of designing, manuaeturing, and operating equipment for radio communieation is vastly different from that for electrical-power apparatus.

Radio engineering moves forward rapidly. New cireuits, new tubes, new portions of the frequency spectrum, new applications of existing apparatus are explored annually. In fact, the developments are so extensive that a texthook ean searcely cover both theory and practice adequately without hecoming hopelessly large. A handbook dealing more with practice than with theory is therefore essential.

In addition to the practical material, much of which appears in tables representing many man-hours of effort, there is an essential amount of fundamental discussion. The circuits described quantitatively are those in use today, or soon to be widely used, while deseription of the past art has been limited.

The twenty-odd engineers and physieists who contributed to this handbook were chosen because of their expert knowledge of a particular phase of the subject matter. In many cases the authors are daily engaged in the design, manufacture, or operation of the apparatus they describe here.

The editor's contribution is largely that of coordination and of the neeessary, though laborious, work incidental to publishing. He wishes to express his gratitude to the authors for kecping the subject inatter an up-to-date record of the rapidly changing art. Although his name does not appear among the list of authors, Mr. IIoward E. Rhodes has been of assistance in originally laying out the contents and in mueh later consultation.

Keith Henney.

[^0] $F$

## CONTENTS

Page
SECTION 1
Mathematical and Electrical Tables ..... 1
Greek alphahet-Trigonometric functions-Table of wave lengths and $L C$ products-Copper-wire tables-Decihel chart- Graphic symbols-International communication bands.
SECTION 2
Electric and Magnetic Circuits, by E. A. Uehling ..... 20
Fundamentals of electric circuits-Ohm's law-Continuous and alternating currents-Direct-current circuits-Alternating-cur- rent circuits-Magnetic circuits-Radiation.
SECTION 3
Resistance, by Jesse Marsten. ..... 40
General concepts-Properties of materials as conductors- Resistance as a function of frequency-Types of resistors- Composition of resistors.
SECTION 4
Inductance, by Gomer L. Davies. ..... 51
Magnetic flux-Measurement of inductance-Inductors at radio frequencies-Types of inductors-Design of inductance coils- Calculation of inductance-Inductance standards-Mutual inductance.
SECTION 5
Capacity, by E. L. Hall ..... 79
Units of capacity-Dielectric materials-Power factor of insulating materials-Calculation of capacity-Types of con- densers-Design of variable air condensers-Methods of measuring capacity.
SECTION 6
Combined Circuits of $L$, C, and $R$, by W. F. Lanterman ..... 104
General impedances-Equivalent impedance-Resonance- Coupled circuits-Recurrent networks-Artificial lines-Wave filters.
SECTION 7
Measuring Instruments, by R. F. Field ..... 145Current measuring instruments-Moving diaphragm meters-Hot-wire meters-Thermocouple meters-Rectifier meters-
Page
Voltage measuring instruments-Cathode-ray meters-Measurement of frequency, capacity, resistance-Standards-Comparison ineasurement-Direct-current bridge measurements-Alternating-current bridge measurements.

## SECTION 8

Vacuum Tubes, by J. M. Stinchfield.
Electrons-Space charge-Thermionic emission-Filament cal-
culations-Two-electrode tubes-Three-elertrode tubes-Calculation of space current-Calculation of amplification factor-Screen-grid tetrode-Power-output pentode-Radio-frequency pentode-Interelectrode capacity-Multi-element, varied-purpose tubes.

## SECTION 9

| Hartley circuit-Oscillator circuit design-Oscillator calcula-tions-Parasitic oscillations-Short-wave circuits-Use of tubes in parallel and push pull-Magnetron oscillator-Dynatron |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |


SECTION 12
Radio-Frequency Amplifiers, by R. S. Glasgow amplifier-Trans-
Class A amplification-Impedanec-coupled amplers-Cascade amplifiers-Band-pass fil-
forner-coupled amplifier-Cins
ters-Neutralizing circuits-Class
amplifiers-Frequency multipliers.

## SECTION 13

[^1]Broadcasting, by C. W. Iorn ..... 354
Volume range-Microphones-Spech-input amplifiers-Wire lines-Harmonics in transmitters-Power supply.
SECTION 15
Rectifiers and Power-supply Systems, by R. C. IItchcock ..... 374
Power-supply design-Voltage divider-Voltage regulation- Filters-Filter choke design-Rectifiers-Small transformer design.
SECTION 16
Loud-speakers and Acoustics, by Irving Wolff. ..... 403
Sound waves in air-Aconstieal impedance-Acoustics of rooms-Absorption coefficients-Chararteristics of the ear- Loud-speakers-Calculation of loud-speaker efficieney-Loud- speaker motor-Loud-speaker radiator-Horns-Acoustic measurements.
SECTION ..... 17
High-frequency Transmission and Reception, by A. Hoyt Taylor. ..... 433Peculiarities of high frequencies-Kennelly-Heaviside layer-Farling-Theory of high-frequency wave propagation- C'ltra-high frequencies-Skip-distance and range tables- Band-widthrequired-Allocation of frequencics-Magnetron oscillator-Barkhansen oscillator.
SECTION 18
Code Transmission and Reception, by John B. Moore. ..... 453
Codes-Frequency range required-Speeds attainahle-Radio- telegraphic services-Transmitting systems and equipment- Are transmitters-Antenua systems-Short-wave technique- Receiving systems and equipnent-Control methods and equipment-Transcribing methods and equipment.
SECTION 19
Television, by C. H. W. Nason ..... 477
The television problem-Scanning systems-Transmission methods-Propagation phenomena-Light valves-Synchro- nism.
SECTION 20
Facsimile Transmission, by R. M. Ranger. ..... 489
(ieneral requirements-Scamning-Photocell amplifiers-Dot- dash system-Carrier systems-Light valves-Recording methods-Synchronizing methods-Systems in use.
SECTION 21
Aircraft Radio, by Harky Diamond ..... 511
Government weather service-Giround-station equipment- Airplane equipment-Power requirements-Aircraft powerequipment-Airplane receiving and transmitting antennas- Radio shielding and bonding-Course navigation-Position determination-Beacon systems-Radio aids to blind landingLanding beam-Absolute altimeters.

## SECTION 22

Photocells, b!/ H. C. Rentschler548Photoelectricity-Color sensitivity-Vacuum and gas photo-tubes-Photo-conductivity-Selenium cells-Photovoltaiceffect.SECTION ..... 23
Sound Motion Pictures, by Franklin S. Irby. ..... 554
Methods of recording-Microphones-Amplifiers-RCA Photo- phone system-Western Electric system- (ilowlamp recorder- Portable sound equipment-Motor systems-Sound-film proc- essing-Disk recording--Sound-film standards-Theater re- producing equipment.
Index ..... 575

# THE RAI)I( ENGINEERING HANDB()OK 

## SECTION 1

## MATHEMATICAL AND ELECTRICAL TABLES

1. Greek Alphabet.

| Name | L.etters |  | Gommonly used to designate |
| :---: | :---: | :---: | :---: |
|  | Cap. | Small |  |
| Alpha | A | $\alpha$ | Angles. Cuefficients. Area |
| Beta | I | $\beta$ | Angles. Cuefficients |
| Gamma | $\Gamma$ | $\gamma$ | Specific gravity. Conductivity |
| Delta | $\Delta$ | $\delta$ | Decrements. Variation. Density |
| Epsilon | E | E | E.in.f. Base of hyperbolic logarithms |
| Zeta. | Z | $\zeta$ | Impedance. Coordinates |
| Eta | H | 7 | Hysteresis coefficient. Efficiency |
| Theta | $\Theta$ | $\theta 8$ | Angular phase displacement. Time constant |
| [ota. | 1 | $\checkmark$ | Current in smperes |
| Kappa | K | $\star$ | Dielectric constant. Susceptibility. Kilo. Visibility |
| Lambda | $\Lambda$ | $\lambda$ | (small) Wave length |
| Mu | M | $\mu$ | Perneability, Amplification factor. Prefix micro- |
| Nu | N | $\nu$ | Reluctivity |
| Xi | $\Xi$ | $\xi$ |  |
| Omicron | ) | 0 |  |
| Pi . | 11 | $\pi$ | Circumference divided by diameter 3.1416 |
| Rho. | $P$ | $\rho$ | Resistivity |
| 3igma | 2 | as | (Cap) Sign of summation |
| Tau. | T | $\tau$ | Time constant. Time-phase displacement |
| Upsilon | $Y$ | $v$ |  |
| Phi | ¢ | ¢" | Flux, Angle of lag or lead |
| Chi | X | ${ }_{4}^{\chi}$ | Reactance velocity in time. Phase difference. |
| P81.... | $\Psi$ | $\psi$ | Angular velocity in time. Phase difference. Dielectric flux |
| Omega | 82 | $\omega$ | Resistance in ohms. Resistance in megohms. $2 \pi F$. Angular velocity |

2. Decimal Equivalents of Parts of One Inch.

| 164 | 0.015625 | 1764 | 0.285625 | ${ }^{3} 174$ | 0.515625 | 4 m 4 | 0.765625 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 / 32$ | 0.031250 | 952 | 0.281250 | $17 \times 2$ | 0.531250 | 25.12 | 0.781250 |
| 364 | 0.046875 | 1964 | 0.296875 | 8.684 | 0.546875 | 51.64 | 0.796875 |
| 116 | 0.082500 | 916 | 0.312500 | 816 | 0.562500 | 1316 | 0.812500 |
| $5 \% 4$ | 0.078125 | $21 \% 4$ | 0.328125 | 3764 | 0.578125 | 596 | 0.828125 |
| $3{ }^{3}$ | 0.093750 | 1332 | 0.343750 | 13 | 0.593750 | 23.32 | 0.843750 |
| 7,64 | 0.109375 | 2364 | 0.359375 | 34.6 | 0.609375 | 55.64 | 0.859375 |
| 1,8 | 0.125000 | 38 | 0.375000 | Es | 0.625000 | 7\% | 0.875000 |
| 94 | 0.140825 | $25 \% 4$ | 0.390625 | 4.64 | 0.640625 | 5364 | 0.890625 |
| 532 | 0.156250 | $13 \% 2$ | 0.406250 | $2 \mathrm{~L} \mathrm{~S}_{3}$ | 0.6582 .50 | $29 / 32$ | 0.906250 |
| 118 | 0.171875 | 2764 | 0.421875 | 4.64 | 0.671875 | 59\%4 | 0.921875 |
| 316 | 0.187500 | 716 | 0.437500 | 116 | 0.687500 | 1516 | 0.937500 |
| 1364 | 0.203125 | 2964 | 0.4 .3125 | 45.6 | 0.703125 | 6164 | 0.953125 |
| $3{ }^{3} 2$ | 0.218750 | $15{ }^{3}$ | 0.468750 | 23.32 | 0.718750 | $31 / 32$ | 0.968750 |
| 156 | 0.234375 | $81 / 6$ | 0.484375 | $4{ }^{4} 4$ | 0.734375 | 6364 | 0.984375 |
| 14. | 0.250000 | 攻 | 0.500000 | 8 | 0.750000 | 1 | 1 |

3. Trigonometric Functions.

| $\bigcirc$, | sin | tan | cot | cos |  | , | si | tan | cot | cos |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.0000 | 0.0000 | infinit. | 1.0000 | 090 | 80 | 0.1392 | 0.1405 | 7.1154 | . 9903 | 082 |
| 10 | 0.0029 | 0.0029 | 343.7737 | 1.0000 | 50 | 10 | 0.1421 | 0.1435 | 6.9682 | 0.9899 | 50 |
| 20 | 0.0058 | 0.0058 | 171.8854 | 1.0000 | 40 | 20 | 0.1449 | 0.1465 | 6.8269 | 0.9894 | 40 |
| 30 | 0.0087 | 0.0087 | 114.5887 | 1.0000 | 30 | 30 | 0.1478 | 0.1495 | 6.6912 | 0.9890 | 30 |
| 40 | 0.0116 | 0.0116 | 85.9398 | 0.9999 | 20 | 40 | 0.1507 | 0.1524 | 6.5606 | 0.9886 | 20 |
| 50 | 0.0145 | 0.0145 | 68.7501 | 0.9999 | 10 | 50 | 0.1536 | 0.1554 | 6.4348 | 0.9881 | 10 |
| 10 | 0.0175 | 0.0175 | 57.2900 | 0.9998 | 089 | 90 | 0.1564 | 0. 1584 | 6.3138 | 0.9877 | 081 |
| 10 | 0.0204 | 0.0204 | 49.1039 | 0.9998 | 50 | 10 | 0.1593 | O. 1614 | 6.1970 | 0.9872 | 50 |
| 20 | 0.02333 | 0.02:33 | 42.9641 | 0.9997 | 40 | 20 | $0.162: 2$ | 0.1644 | 6.0844 | 0.9868 | 40 |
| 30 | 0.0262 | 0.0262 | 38. 1885 | 0.9997 | 30 | 30 | 0.1650 | 0.1673 | 5.9758 | 0.988:3 | 30 |
| 40 | 0.0291 | 0.0291 | 34.3678 | 0.9996 | 20 | 40 | 0.1679 | 0.1703 | 5.8708 | 0.9858 | 20 |
| 50 | 0.0320 | 0.0 .320 | 31.2416 | 0.9995 | 10 | 50 | 0.1708 | 0.1733 | 5.7694 | 0.9853 | 10 |
| 20 | 0. | 0.0 | 28.636:3 | 0.9994 | 088 | 100 | 0.1736 | 0.1763 | 5.6713 | 0.9848 | 080 |
| 10 | 0.0378 | 0.0 | 26.4316 | 0.9993 | 50 | 10 | 0.1765 | 0.1793 | 5.5764 | 0.984: | 50 |
| 20 | 0.0407 | 0.0407 | 24.5418 | 0.9992 | 40 | 20 | 0.1794 | 0.1823 | 5.4845 | 0.9838 | 40 |
| 30 | 0.0436 | 0.0437 | 22.9038 | 0.9990 | 30 | 30 | 0.182\% | 0.1853 | 5. 3955 | 0.9833 | 30 |
| 40 | 0.0465 | 0.0466 | 21.4704 | 0.9989 | 20 | 40 | 0.1851 | 0.188:3 | 5. 3093:3 | 0.9827 | 20 |
| 50 | 0.0494 | 0.0495 | 20.2056 | 0.9988 | 10 | 50 | 0.1880 | 0.1914 | 5.2257 | 0.9822 | 10 |
| 30 | 0.0 | 0.0524 | 19 | 0. | 087 | 110 | 0.1908 | 0.1944 | 5. 1446 | 0.9816 | 079 |
| 10 | 0.0552 | 0.0553 | 18.0750 | 0.9985 | 50 | 10 | 0.1937 | 0.1974 | 5.0658 | 0.9811 | 50 |
| 20 | 0.0581 | 0.0582 | 17.1693 | 0.998:3 | 40 | 20 | 0.1965 | 0.2004 | 4.9894 | 0.9805 | 40 |
| 30 | 0.0810 | 0.0612 | 16.3499 | 0.9981 | 30 | 30 | 0.1994 | 0.2035 | 4.9152 | 0.9799 | 30 |
| 40 | 0.0640 | 0.0641 | 15.6048 | 0.9980 | 20 | 40 | 0.2028 | 0.2065 | 4.8430 | 0.979.3 | 20 |
| 50 | 0.0669 | 0.0670 | 14.9244 | 0.9978 | 10 | 50 | $0.20 \% 1$ | 0.2095. | 4.7729 | 0.9787 | 10 |
| 40 | 0.0 |  | 14.3007 | 0.9976 | 086 | 120 | 0.2079 | 0.2126 | 4.7046 | 0.9781 | 078 |
| 10 | 0.0727 |  | 13.7267 | 0.9974 | 50 | 10 | 0.2108 | 0.2156 | 4.6382 | 0.9775 | 50 |
| 20 | 0.0756 | 0.0758 | 13.1969 | 0.9971 | 40 | 20 | 0.2136 | 0. 2186 | $4.57: 36$ | 0.9769 | 40 |
| 30 | 0.0785 | 0.0787 | 12.7062 | 0.9969 | 30 | 30 | 0.2164 | 0.2:17 | 4.5107 | 0.9763 | 30 |
| 40 | 0.0814 | 0.0816 | 12.2505 | 0.9967 | 20 | 40 | 0.2193 | 0.2247 | 4.4494 | 0.9757 | 20 |
| 50 | 0.084:3 | 0.0846 | 11.8262 | 0.9964 | 10 | 50 | 0.2221 | 0.2278 | 4.3897 | 0.9750 | 10 |
| 50 | 0.0 | 0.08 | 11.4301 | 0.9 | 085 | 130 | 0.2250 | 0.2309 | 4.3315 | 0.9744 | 077 |
| 10 | 0.0901 | 0.0904 | 11.0594 | 0.9959 | 50 | 10 | 0. 2278 | 0.23:39 | 4.2747 | $0.97: 37$ | 50 |
| 20 | 0.0929 | 0.0934 | 10.7119 | 0.9957 | 40 | 20 | 0.2306 | 0.2:370 | 4.2193 | 0.9730 | 40 |
| 30 | 0.0958 | 0.0963 | 10.3854 | 0.9954 | 30 | 30 | 0.2334 | 0.2401 | 4.165 .3 | 0.9724 | 30 |
| 40 | 0.0987 | 0.0992 | 10.0780 | 0.9951 | 20 | 40 | 0.236:3 | 0.2432 | 4.1126 | 0.9717 | 20 |
|  | 0.1016 | 0.1022 | 9.7882 | 0.9948 | 10 | 50 | 0.2391 | 0.2462 | 4.0611 | 0.9710 | 10 |
| 60 | 0.104 .5 | 0.1051 | 9.5144 | 0.994 | 084 | 140 | 0.2419 | 0.2493 | 4.0108 | 0.9703 | 076 |
| 10 | 0. 1074 | 0. 1080 | $9.255 \%$ | 0.9942 | 50 | 10 | 0.2447 | 0.2524 | 3.9617 | 0.9696 | 50 |
| 20 | 0.1103 | 0.1110 | 9.0098 | 0.99:39 | 40 | 20 | 0.2476 | 0.2555 | 3.9136 | 0.9689 | 40 |
| 3040 | 0.1132 | 0.1139 | 8.7769 | 0.9936 | 30 | 30 | 0.2504 | 0.2586 | 3.8667 | 0.9681 | 30 |
|  | 0.1161 | 0.1169 | $8.55 \%$ | 0.9932 | 20 | 40 | 0. 25is | 0.2617 | 3.8208 | 0.9674 | 20 |
| 40 50 | 0.1190 | 0.1198 | 8.3450 | 0.9929 | 10 | 50 | 0.2560 | 0.2648 | 3.7760 | 0.9667 | 10 |
| 70 | 0.1219 | 0.1228 | 8.144:3 | 0.9925 | 088 | 150 | 0.2588 | 0.2679 | 3.7321 | 0.9659 | 075 |
| 10 | 0.1248 | 0.1257 | 7.9530 | 0.9922 | 50 | 10 | 0.2616 | 0.2711 | 3.6891 | 0.9652 | 50 |
| 20 | 0.1276 | 0.1287 | 7.7704 | 0.9918 | 40 | 20 | 0.2644 | 0.2742 | 3.6470 | 0.9644 | 40 |
| 3040 | 0.1305 | 0.1317 | 7.5958 | 0.9914 | 30 | 30 | 0.2672 | 0.2773 | 3.6059 | 0.96:36 | 30 |
|  | 0.1334 | 0.1346 | 7.4287 | 0.9911 | 20 | 40 | 0.2700 | 0.2805 | 3.58 .56 | 0.9828 | 20 |
| 50 | 0.1383 | 0.1376 | 7.2687 | 0.9907 | 10 | 50 | 0.2728 | 0.28:36 | 3.5261 | 0.9621 | 10 |
| 80 | 0.1392 | 0.1405 | 7.1154 | 0.9903 | 082 | 160 | 0.2756 | 0.2867 | 3.4874 | 0.9613 | 074 |
|  | con | $t$ | tan | $\sin$ |  |  | COS | cot | $\tan$ | sin | , - |




## 4. Inductance of Various Windings.



## 5. Table of Circuit Constants.

Values of $\omega, 1 / \omega$, inductive and capacitive reactance, wave length, and $L C$ products for frequencies from 10 cycles to 100 me,

The following table, in conjunction with the multiplying factors piven below, gives the values of frequently used circuit constanta, for any frequency between 10 cyches and 100 mc :

## Multiplying Factors

| For frequencies between | Mult. <br> $\omega$ by | Mult. <br> $1 / \omega$ by | Mult. $\lambda$ <br> (wave <br> length) <br> by |
| :--- | :---: | :---: | :---: | | Mult. |
| :---: |
| $L C$ by |

Inductive Reactance. To obtain the inductive reactance of an inductance of $L$ henrys at any frequency:
a. Apply the proper multiplying factor to column 2.
b. Multiply by $L$, the number of henrys.

Capacitive Reactance. To obtain the capacitive reactance of a condenser of $C$ C $\mu$ at any frequency:
a. Apply the proper multiplying factor to column 3.
b. Divide the result by $C$, the number of microfarads.
c. Multiply by $10^{8}$.

If $C$ is in micromicrofarads instead of microfarads, multiply by $10^{12}$ instead of $10^{6}$.

| Frequency | $\begin{gathered} \omega=2 \pi f \\ \text { or } X_{L}=\omega L \end{gathered}$ | $\begin{gathered} 1 / \omega=1 / 2 \pi f \\ \text { or } X_{c}=1 / \omega c \end{gathered}$ | Wave length | $L C$ |
| :---: | :---: | :---: | :---: | :---: |
| 105 | 65.974 | 151.57 | 285.71 | 229.75 |
| 110 | 69.115 | 144.79 | 272.73 | 209.34 |
| 115 | 72.257 | 138.49 | 260.87 | 191.52 |
| 120 | 75.398 | 132.63 | 250.00 | 175.90 |
| 125 | 78.540 | 127.33 | 240.00 | 162.18 |
| 130 | 81.682 | 122.43 | 230.77 | 149.88 |
| 135 | 84.823 | 117.89 | 222.22 | 138.99 |
| 140 | 87.965 | 113.68 | 214.28 | 129.23 |
| 145 | 91.106 | 109.76 | 206.90 | 120.48 |
| 150 | 94.248 | 106.10 | 200.00 | 112.58 |
| 155 | 97.389 | 102.60 | 193.55 | 105.44 |
| 160 | 100.53 | 99.472 | 187.50 | 98.945 |
| 165 | 103.67 | 96.459 | 181.82 | 93.040 |
| 170 | 106.81 | 93.624 | 176.47 | 87.646 |
| 175 | 109.96 | 90.983 | 171.43 | 82.708 |
| 180 | 113.10 | 88.418 | 166.67 | 78.179 |
| 185 | 116.24 | 86.030 | 162.16 | 74.011 |
| 190 | 119.38 | 83.766 | 157.90 | 70.167 |
| 195 | 122.52 | 81.618 | 153.85 | 66.615 |
| 200 | 125.66 | 79.562 | 150.00 | 63.325 |
| 205 | 128.81 | 77.633 | 146.35 | 60.274 |
| 210 | 131.95 | 75.785 | 142.85 | 57.637 |
| 215 | 135.09 | 74.024 | 139.54 | 54.796 |
| 220 | 138.23 | 72.395 | 136.36 | 52.335 |
| 225 | 141.37 | 70.736 | 133.33 | 50.035 |
| 230 | 144.51 | 69.245 | 130.43 | 47.880 |
| 235 | 147.65 | 67.727 | 127.66 | 45.866 |
| 240 | 150.80 | 66.315 | 125.00 | 43.975 |
| 245 | 153.94 | 64.959 | 122.45 | 42.198 |
| 250 | 157.08 | 63.665 | 120.00 | 40.545 |
| 255 | 160.22 | 62.415 | 117.65 | 38.954 |
| 260 | 183.36 | 61.215 | 115.38 | 37.470 |
| 265 | 166.50 | 60.060 | 113.20 | 36.068 |
| 270 | 169.65 | 58.995 | 111.11 | 34.747 |
| 275 | 172.89 | 57.841 | 109.09 | 33.494 |
| 280 | 175.93 | 56.840 | 107.14 | 32.307 |
| 285 | 179.07 | 55.844 | 105.26 | 31.185 |
| 290 | 182.21 | 54.880 | 103.45 | 30.120 |
| 295 | 185.35 | 53.952 | 101.70 | 29.107 |
| 300 | 188.47 | 53.050 | 100.00 | 28.145 |
| 305 | 191.64 | 52.181 | 98.36 | 27.229 |
| 310 | 194.78 | 51.300 | 96.77 | 26.360 |
| 315 | 197.92 | 50.525 | 95.238 | 25.528 |
| 320 | 201.06 | 49.736 | 93.700 | 24.736 |
| 325 | 204.20 | 48.977 | 92.308 | 23.981 |
| 330 | 207.35 | 48.229 | 90.910 | 23.260 |
| 335 | 210.49 | 47.508 | 89.559 | 22.571 |
| 340 | 213.63 | 46.812 | 88.245 | 21.911 |
| 345 | 216.77 | 46.132 | 86.956 | 21.281 |
| 350 | 219.91 | 45.491 | 85.715 | 20.677 |
| 355 | 223.05 | 44.833 | 84.390 | 20.099 |
| 360 | 225.20 | 44.209 | 83.335 | 19.565 |
| 365 | 229.34 | 43.602 | 82.192 | 19.013 |
| 370 | 232.48 | 43.015 | 81.080 | 18.503 |
| 375 | 235.62 | 42.440 | 80.000 | 18.013 |


| Frequency | $\begin{gathered} \omega=2 \pi f \\ \text { or } X_{L}=\omega L \end{gathered}$ | $\begin{aligned} & 1 / \omega=1 / 2 \pi f \\ & \operatorname{or} X_{c}=1 / \omega c \end{aligned}$ | Wave length | $L C$ |
| :---: | :---: | :---: | :---: | :---: |
| 380 | 238.76 | 41.883 | 78.950 | 17.542 |
| 385 | 241.90 | 41.339 | 77.922 | 17.089 |
| 390 | 245.04 | 40.809 | 76.975 | 16.654 |
| 395 | 248.19 | 40.293 | 75.948 | 16.234 |
| 400 | 251.33 | 39.781 | 75.000 | 15.831 |
| 405 | 254.47 | 39.298 | 74.073 | 15.442 |
| 410 | 257.61 | 38.816 | 73.175 | 15.068 |
| 415 | 260.75 | 38.355 | 72.288 | 14.707 |
| 420 | 263.89 | 37.892 | 71.425 | 14.409 |
| 425 | 267.04 | 37.448 | 70.588 | 14.023 |
| 430 | 270.18 | 37.012 | 69.770 | 13.699 |
| 435 | 273.32 | 36.587 | 68.965 | 13.386 |
| 440 | 276.46 | 36.197 | 68.180 | 13.084 |
| 445 | 279.60 | 35.764 | 67.416 | 12.788 |
| 450 | 282.74 | 35.368 | 66.666 | 12.509 |
| 455 | 285.89 | 34.980 | 65.934 | 12.238 |
| 460 | 288.03 | 34.622 | 65.215 | 11.970 |
| 465 | 292.17 | 34.227 | 64.516 | 11.715 |
| 470 | 295.31 | 33.863 | 63.830 | 11.466 |
| 475 | 298.45 | 33.505 | 63.161 | 11.227 |
| 480 | 301.59 | 33.157 | 62.500 | 10.994 |
| 485 | 304.74 | 32.815 | 61.856 | 10.768 |
| 490 | 307.88 | 32.479 | 61.225 | 10.549 |
| 495 | 311.02 | 32.152 | 60.604 | 10.337 |
| 500 | 314.16 | 31.832 | 60.000 | 10.136 |
| 505 | 317.30 | 31.516 | 59.406 | 9.9322 |
| 510 | 320.44 | 31207 | 58.825 | 9.7380 |
| 515 | 323.59 | 30903 | 58.251 | 9.5524 |
| 520 | 326.73 | 30.607 | 57.690 | 9.3675 |
| 525 | 329.87 | 30.317 | 57.142 | 9.1898 |
| 530 | 333.01 | 30.030 | 56.600 | 9.0170 |
| 535 | 336.15 | 29.748 | 56.075 | 8.8498 |
| 540 | 339.29 | 29.497 | 55.555 | 8.6867 |
| 545 | 342.43 | 29.203 | 55.045 | 8.5276 |
| 550 | 345.58 | 28.920 | 54.545 | 8.3735 |
| 555 | 348.72 | 28.676 | 54.054 | 8.2234 |
| 560 | 350.86 | 28.420 | 53.570 | 8.0767 |
| 565 | 355.00 | 28.169 | 53.097 | 7.9348 |
| 570 | 358.14 | 27.922 27.679 | 52.630 | 7.7962 7.6610 |
| 575 | 361.28 | 27.679 | 52.174 | 7.6610 |
| 580 | 364.43 | 27.440 | 51.725 | 7.5296 |
| 585 | 367.57 | 27.207 | 51.280 | 7.4013 |
| 590 | 370.71 | 26.976 | 50.850 | 7.2767 |
| 59.5 | 373.85 | 26.749 | 50.420 | 7.1547 |
| 600 | 376.99 | 26.525 | 50.000 | 7.0362 |
| 605 | 380.13 | 26.308 | 49.586 | 6. 9200 |
| 610 | 383.28 | 26.090 | 49.180 | 6.8072 |
| 615 | 386.42 | 25.878 | 48.780 | 6.6968 |
| 620 | 389.56 | 25.650 | 48.385 | 6.5900 |
| 62.5 | 392.70 | 25.468 | 48.000 | 6.4844 |
| 630 | 395.84 | 25.262 | 47.619 | 6.3820 |
| 635 | 398.98 | 25.063 | 47.244 | 6.2819 |
| 640 | 402.12 | 24.868 | 46.850 | 6. 1840 |
| 645 | 405.27 | 24.674 | 46.511 | 6.0885 |
| 650 | 408.41 | 24.488 | 46.154 | 5.9952 |


| Frequency | $\begin{gathered} \omega=2 \pi f \\ \text { or } X_{L}=\omega L \end{gathered}$ | $\begin{aligned} & 1 / \omega=1 / 2 \pi f \\ & \text { or } X_{e}=1 / \omega c \end{aligned}$ | Wave length | $L C$ |
| :---: | :---: | :---: | :---: | :---: |
| 655 | 411.55 | 24.298 | 45.801 | 5.9040 |
| 680 | 413.69 | 24.114 | 45.455 | 5.8150 |
| 865 | 417.83 | 23.933 | 45.113 | 5.7279 |
| 670 | 420.97 | 23.754 | 44.779 | 5.6425 |
| 675 | 424.12 | 23.578 | 44.445 | 5.5466 |
| 680 | 427.26 | 23.408 | 44.122 | 5.4777 |
| 685 | 430.39 | 23.238 | 43.796 | 5.3982 |
| 690 | 433.54 | 23.068 | 43. 478 | 5.3202 |
| 895 | 4.36 .68 | 22.900 | 43.166 | 5.2441 |
| 700 | 439.82 | 22.745 | 42.857 | 5.1492 |
| 705 | 442.97 | 22.575 | 42.553 | 5.0962 |
| 710 | 446.11 | 22.416 | 42.195 | 5.0247 |
| 715 | 449.25 | 22.259 | 41.957 | 4.9546 |
| 720 | 4.52 .39 | 22.104 | 41.687 | 4.8912 |
| 725 | 455.53 | 21.953 | 41.379 | 4.8189 |
| 730 | 458.67 | 21.801 | 41.096 | 4.7532 |
| 735 | 461.82 | $21.65 \%$ | 40.817 | 4.6887 |
| 740 | 464.96 | 21.507 | 40.540 | 4.6257 |
| 745 | 488.10 | 21.363 | 40.268 | 4.5636 |
| 750 | 471.24 | 21.220 | 40.000 | 4.5032 |
| 755 | 474.38 | 21.080 | 39.735 | 4.4436 |
| 760 | 476.52 | 20.941 | 39.475 | 4.3855 |
| 765 | 480.67 | 20.804 | 39.215 | 4.3282 |
| 770 | 483.81 | 20.669 | 38.961 | 4.2722 |
| 775 | 486.95 | 20.536 | 38.710 | 4.2173 |
| 780 | 490.09 | 20.404 | 38.487 | 4.1635 |
| 785 | 493.23 | 20.275 | 38.216 | 4.1105 |
| 790 | 496.37 | 20.146 | 37.974 | 4.0585 |
| 895 | 499.51 | 20.019 | 37.735 | 4.0076 |
| 800 | 502.66 | 19.891 | 37.500 | 3.9577 |
| 805 | 505.80 | 19.770 | 37.267 | 3.9087 |
| 810 | 508.94 | 19.649 | 37.036 | 3.8605 |
| 815 | 512.08 | 19.528 | 36.810 | 3.8134 |
| 820 | 515.22 | 19.408 | 36.587 | 3.7670 |
| 825 | 518.36 | 19.292 | 36.364 | 3.7216 |
| 830 | 521.51 |  | 36.144 |  |
| 835 | 524.65 | 19.060 | 35.927 | 3.6337 |
| 840 | 527.79 | 18.946 | 35.712 | 3.6022 |
| 845 | 530.93 | 18.835 | 35.502 | 3.5474 |
| 850 | 534.07 | 18.724 | 35.294 | 3.5062 |
| 855 | 537.21 | 18.614 | 35.087 | 3.4657 |
| 860 | 539.36 | 18.506 | 34.885 | 3.4242 |
| 865 | 543.50 | 18.399 | 34.682 | 3.3852 |
| 870 | 546.64 | 18.293 | 34.487 | 3.3465 |
| 875 | 549.78 | 18.189 | 34.285 | 3.3082 |
| 880 | 552.92 | 18.098 | 34.090 | 3.2710 |
| 885 | 556.06 | 17.988 | 33.898 | 3.2341 |
| 890 | 558.92 | 17.882 | 33.708 | 3.1970 |
| 895 | 562.35 | 17.783 | 33.520 | 3.1622 |
| 900 | 565.49 | 17.689 | 33.333 | 3.1272 |
| 905 | 568.63 | 17.586 | 33.150 | 3.0926 |
| 910 | 571.77 | 17.490 | 32.967 | 3.0595 |
| 915 | 574.91 578.05 | 17.378 | 32.787 | 3.0254 |
| 920 925 | 578.05 581.20 | 17.311 17.206 | 32.607 32.432 | 2.9925 |
| 925 | 581.20 | 17.206 | 32.432 | 2.9604 |


| Frequency | $\begin{gathered} \omega=2 \pi f \\ \text { or }^{\omega} X_{L}=\omega L \end{gathered}$ | $\begin{aligned} & 1 / \omega=1 / 2 \pi f \\ & \text { or } X_{c}=1 / \omega c \end{aligned}$ | Wave length | $L C$ |
| :---: | :---: | :---: | :---: | :---: |
| 930 | 584.34 | 17.113 | 32.258 | 2.9287 |
| 935 | 587.48 | 17.022 | 32.086 | 2.8974 |
| 940 | 590.62 | 16.931 | 31.915 | 2.8665 |
| 945 | 593.76 | 16.842 | 31.746 | 2.8364 |
| 950 | 596.90 | 16.752 | 31.580 | 2.8067 |
| 955 | 600.05 | 16.665 | 31.414 | 2.7774 |
| 960 | 602.19 | 16.578 | 31.250 | 2. 7485 |
| 965 | 606.33 | 16.492 | 31.088 | 2.7200 |
| 970 | 609.47 | 16.407 | 30.928 | 2.6920 |
| 975 | 612.61 | 16.324 | 30.770 | 2.6646 |
| 980 | 615.75 | 16.239 | 30.617 | 2.6372 |
| 985 | 618.90 | 16.158 | 30.456 | 2.6106 |
| 990 | 622.04 | 16.071 | 30.302 | 2.5842 |
| 995 | 625.18 | 15.995 | 30.150 | 2.5586 |
| 1000 | 628.32 | 15.916 | 30.000 | 2.5330 |

## 6. Dimensions, Weights, and Resistances of Pure, Solid, Bare Copper

 Wire.Copper-wire Tables, Circular 31, Bur. Standards.

| $\text { B. \& } \begin{aligned} & \text { S. or American } \\ & \text { wire gage } \end{aligned}$ |  | $\begin{gathered} \text { Cross-sectional area } \\ \text { at } 20^{\circ} \mathrm{C} . \\ \left(68^{\circ} \mathrm{F} .\right) \end{gathered}$ |  | Carrying capacities | Weight |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { Circular } \\ \text { mils }\left(d^{2}\right) \\ \operatorname{lm}=0.001 \\ \text { inn. } \end{gathered}$ | Square inches |  | Pounds per $1,000 \mathrm{ft}$. | Pounds per mile |
| 0000 | 460.0 | 211.600 .0 | 0.166.2 | $2251270 \mid 325$ | 640.5 | 13.381.840 |
| 000 | 409.6 | 167.800.0 | 0.131.8 | 175 | 507.9 | 2,681.712 |
|  | 364.8 | 133.100.0 | 0.104 .5 | $\begin{array}{llll}1.0 & 180 & 225\end{array}$ | 402.8 | 2.126 .784 |
|  | 324.9 | 105.500.0 | 0.082 .89 | 125150200 | 319.5 | 1.686.960 |
|  | 289.3 | 83,690.0 | 0.065, 73 | $100 \quad 120 \quad 150$ | 25.3 .3 | 1.337.424 |
|  | 257.6 | 66,370.0 | $0.052,13$ | $(10) 110 \quad 125$ | 200.9 | 1,060.752 |
|  | 229.4 | 52,640.0 | 0.041. 34 | $80 \quad 95 \quad 100$ | 159.3 | 841.104 |
|  | 204.3 | 41,740.0 | 0.032.78 | $70 \quad 85 \quad 90$ | 126.4 | 687.392 |
|  | 181.9 | 33,100.0 | 0.026,00 | (i) 6580 | 100.2 | 529.056 |
|  | 162.0 | 26,250.0 | 0.020 .62 | 5060 | 79.46 | 419.548 .8 |
|  | 144.3 | 20,820.0 | 0.016 .35 | 38 ... 54 | 63. 02 | 3332.745 .6 |
|  | 128.5 | 16.510.0 | 0.012,97 | 35 40 | 49.98 | 263.894 .4 |
|  | 114.4 | 13.090.0 | 0.010.28 | 28 ... 38 | 39.63 | 209.246 .1 |
|  | 101.9 | 10,380.0 | 0008.155 | $25 \quad 30 \quad 30$ | 31.43 | 165.950 .4 |
| 11 | 00.74 | 8.234 .0 | 0.006 .467 | 20 ... 27 | 24.02 | 131.577,6 |
| 12 | 80.81 | 6,530.0 | 0.005.129 | 20 25 25 | 19.77 | 104.385, 6 |
| 1:3 | 71.96 | 5.178 .0 | 0.004,067 | 17 | 15.08 | 82.790 .4 |
| 14 | 64.08 | 4. 107.0 | 0.003.225 | $1518 \quad 20$ | 12.43 | 65.630 .4 |
| 15 | 57.07 | 3,257.0 | 0.002 .558 |  | 9.858 | 52.050 .24 |
| 16 | 50.82 | 2.583 .0 | 0.002.028 | $6 \ldots 10$ | 7.818 | 41.279.04 |
| 17 | 45. 26 | 2,048.0 | 0.001 .609 |  | 6.200 | 32.736 .00 |
| 18 | 40. 30 | 1.624 .0 | 0.001 .276 | 3 ... 6 | 4.917 | $25.961,76$ |
| 19 | 35.89 | 1.288.0 | 0.001 .012 |  | 3.809 | 20.586 .72 |
| 20 | 31.96 | 1,022.0 | 0.000 .802 .3 | l'he above values are | 3.092 | 16.325.70 |
| 21 | 28.46 | 810.1 | 0.000.6:36.3 | those sperified | 2.452 | 12.946.56 |
| 22 | 25.35 | 642.4 | $0.000,504.6$ | in the 1931 | 1.945 | 10.269 .60 |
| 23 | 22.57 | 509.5 | 0.000.400.2 | National | 1.542 | 8.141 .76 |
| 24 | 20.10 | 404.0 | 0.000.317.3 | Electrical | 1.223 | 6.457 .44 |
| 25 | 17.00 | 320.4 | 0.000 .251 .7 | Crole. In lighting work. | 0.969 .9 | $5.121,072$ |
| 26 | 15. 54 | 254.1 | 0.000.109.6 | no wire smaller | 0.769 .2 | 4.061 .376 |
| 27 | 14.20 | 201.5 | 0.000 .158 .3 | than No. 14 is | 0.610 .0 | 3.220 .800 |
| 28 | 12.64 | 159.8 | $0.000,125.5$ | used, except | 0483.7 | 2.553, 936 |
| 29 | 11.26 | 126.7 | 0.000, 0.090 .53 | in fixtures | 0.383.6 | 2.025.408 |
| 30. | 10.03 | 100.5 | 0.000 .078 .04 |  | (0.304,2 | 1,608,176 |
| 31 | 8.928 | 79.70 | 0.000.062.60 |  | 0241.3 | 1.274.060 |
| 32 | 7.950 | 63.20 | 0.000 .049 .64 |  | 0 191.3 | 1.010 .064 |
| 3:3 | 7.080 | 50.13 | 0.000.039.37 |  | 0151.7 | 0.800 .976 |
| 34 | 6.305 | 39.75 | 0.000, 031, 22 |  | 0120.3 | 0.635 .184 |
| [35 | 5.615 | 31.52 | 0.000 .024 .76 |  | 0. 095.42 | $0.513 .717,6$ |
| :36 | 5.000 | 25.00 | 0.000 .019 .64 |  | 0.075 .68 | 0.399 .800 .4 |
| 37 | 4.45\% | 19.83 | 0.000.015.57 |  | 0.060 .01 | 0.316 .852 .8 |
| 38 | 3.965 | 15.72 | 0.000.012.35 |  | 0.047 .59 | $0.251,275,2$ |
| 39 | 3. 531 | 12.47 | 0.000 .009 .793 |  | 0.037 .74 | 0.199 .267 .2 |
| 40 | 3.145 | 9.888 | 0.000.007.766 |  | 0.029 .03 | $0.158,030.4$ |


| Length, $25^{\circ} \mathrm{C},\left(77^{\circ} \mathrm{F}\right.$.) |  | Resisiance at $25^{\circ} \mathrm{C},\left(77^{\circ} \mathrm{F}.\right)$ |  |  | B. \& S. or American wire gage |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Feet per pound | Feet per ohm | $R$ ohms per $1,000 \mathrm{ft}$. | Ohms per mile | Ohms per pound |  |
| 1.561 | 20.010 .0 | 0.049.98 | 80.263 .894 .4 | 0.000 .078 .03 | 0000 |
| 1.968 | 15.870 .0 | 0.063 .02 | 20.332 .745 .6 | $0.000,124,1$ | 000 |
| 2.482 | 12.580 .0 | 0.079 .47 | $7 \quad 0.419,501.6$ | 0.000 .197 .3 | 00 |
| 3.130 | 9.980 .0 | 0.100 .2 | 0.529,056 | $0.000,313.7$ | 0 |
| 3.947 | 7.914 .0 | $0.126,4$ | 0.667.392 | 0.000.498.8 | 1 |
| 4.977 | 6.270 .0 | 0.159 .3 | 0.841 .104 | 0.000 .793 .1 | 2 |
| 6.276 | 4.977 .0 | 0.200 .9 | 1.060.752 | $0.001 .261{ }^{\text {0 }}$ | 3 |
| 7.914 | 3.947 .0 | 0.253 .3 | 1.337.424 | 0.002,005 | 4 |
| 9.980 | 3,130.0 | 0.319 .5 | 1.686 .960 | 0.003,188 | 5 |
| 12.58 | 2.482 .0 | 0.402 .8 | 2.126 .784 | 0.005,069 | 6 |
| 15.87 | 1.969 .0 | 0.508 .0 | 2.682,240 | 0.008.061 | 7 |
| 20.01 | 1,561.0 | 0.640 .5 | 3.381 .840 | 0.012 .82 | 8 |
| 25.23 | 1.238 .0 | 0.807 .7 | 4.264 .656 | 0.020.38 | 9 |
| 31.82 | 981.8 | 1.018 | $5.375,04$ | 0.032 .41 | 10 |
| 40.12 | 778.7 | 1. 284 | 6. 779.52 | 0.051 .53 | 11 |
| 50.59 | 617.5 | 1.619 | 8.548 .32 | 0.081 .93 | 12 |
| 63.80 | 489.7 | 2.042 | 10.781.76 | 0.130,3 | 13 |
| 80.44 | 388.3 | 2.575 | 13.596 .00 | 0.207 .1 | 14 |
| 101.4 | 308.0 | 3.247 | 17.144,16 | 0.329 .4 | 1.5 |
| 127.9 | 244.2 | 4.094 | 21.616 .32 | 0.523 .7 | 16 |
| 161.3 | 193.7 | 5.163 | 27.260 .64 | 0.832 .8 | 17 |
| 203.4 | 153.6 | 6.510 | 34.372,80 | 1.324 | 18 |
| 256.5 | 121.8 | 8.210 | 43.348,80 | 2.105 | 19 |
| 323.4 | 96.80 | 10.35 | 54.648 .0 | 3.348 | 20 |
| 407.8 | 76.61 | 13.05 | $88.904,0$ | 5.32:3 | 21 |
| 514.2 | 60.75 | 16.46 | 86.908 .8 | 8.464 | 22 |
| 648.4 | 48.18 | 20.76 | 109.612,8 | 13.46 | 23 |
| $\begin{array}{r}817.7 \\ \hline 0310\end{array}$ | 38.21 | 26.17 | 138.177,6 | 21.40 | 24 |
| 1.031 .0 | 30.30 | 33.00 | 174.240 .0 | 3403 | 25 |
| 1,300.0 | 24.03 | 41.62 | 219.753 .6 | 54.11 | 26 |
| 1.639.0 | 19.06 | 52.48 | 277.094 .4 | 86.03 | 27 |
| 2.067 .0 | 15.11 | 66.17 | 349.377,6 | 136.8 | 28 |
| 2.607 .0 3.287 .0 | 11.98 | 83.44 | 440.563 .2 | 217.5 | 29 |
| 3.287 .0 | 9.504 | 105.2 | 555).456 | 345.9 | 30 |
| 4.145 .0 | 7.537 | 132.7 | 700.656 | 549.9 | 31 |
| 5.227 .0 | 5. 977 | 167.3 | 883.344 | 874.4 | 32 |
| 6.591 .0 8.310 .0 | 4.740 | 211.0 | 1,114.080 | 1,390.0 | 33 |
| $8,310.0$ 10.480 .0 | 3. 759 | 266.0 | 1. 494.480 | 2.211 .0 | 34 |
| 10,480.0 | 2.981 | 335.5 | 1.771.440 | 3.515 .0 | 35 |
| 13,210.0 | 2.364 | 423.0 | 2, 233.440 | 5.590 .0 | 36 |
| 16.600 .0 | 1.875 | 533.4 | 2.816.352 | 8.888 .0 | 37 |
| 21.010 .0 26.500 .0 | 1.487 | 672.6 | 3,5.11.328 14 | 14.130.0 | 3 K |
| 26.500 .0 33.410 .0 | 1.179 0.935 | 848.1 1.069 .0 | 4.477.968 | 22.470 .0 | 319 |
| 33.410.0 | 0.93i) | 1.069 .0 | 5.644.32 | 35.730 .0 | 40 |

7．Tensile Strength of Pure Copper Wire in Pounds．

| Size， <br> B．\＆S． <br> gage | Hard drawn |  | Annealed |  |  | Hard drawn |  | Annealed |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ® U ＜ |  | J． 岕 |  |  | 麖 |  | 焄 |  |
| 0000 | 8，260 | 49，700 | 5，320 | 32，000 | 7 | 1050．0 | 64，200 | 556.0 | 34，000 |
| 000 | 6．550 | 49，700 | 4，220 | 32，000 | 8 | 843.0 | 65，000 | 441.0 | 34.000 |
| 00 | 5，440 | 52，000 | 3，340 | 32，000 | 9 | 678.0 | 66，000 | 350.0 | 34,000 |
| 0 | 4，530 | 54，600 | 2，650 | 32，000 | 10 | 546.0 | 67，000 | 277.0 | 34,000 |
| 1 | 3.680 | 56，000 | 2，100 | 32，000 | 12 | 343.0 | 67，000 | 174.0 | 34，000 |
| 2 | 2，970 | 57．000 | 1，670 | 32，000 | 14 | 219.0 | 68，000 | 110.0 | 34，000 |
| 3 | 2，380 | 57．600 | 1，323 | 32，000 | 16 | 138.0 | 68，000 | 68.9 | 34，000 |
| 4 | 1，900 | 58，000 | 1，050 | 32，000 | 18 | 86.7 | 68，000 | 43.4 | 34，000 |
| 5 | 1，580 | 60.800 | 884 | 34．000 | 19 | 68.8 | 68，000 | 34.4 | 34，000 |
| 6 | 1，300 | 63，000 | 700 | 34，000 | 20 | 54.7 | 68．000 | 27.3 | 34，000 |

## 8．Insulated Copper Wire．

| Size， 13．\＆S． gage | Enamel wire |  |  | Single－silk covered |  |  | Double－silk covered |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Outside diam－ eter， mils | Turns per linear inch | Pounds per 1，000 ft． | Outside diam－ eter， mils | Turns per linear inch | Pounds per 1，000 ft． | Outside diam－ eter， mils | Turns per linear inch | $\begin{aligned} & \text { Pounds } \\ & \text { per } \\ & 1,000 \\ & \text { ft. } \end{aligned}$ |
| 8 | 130.6 | 7.7 | 50.6 |  |  |  |  |  |  |
| 9 | 116.5 | 8.6 | 40.2 |  |  |  |  |  |  |
| 10 | 104.0 | 9.6 | 31.8 |  |  |  |  |  |  |
| 11 | 92.7 | 10.8 | 25.3 |  |  |  |  |  |  |
| 12 | 82.8 | 12.1 | 20.1 |  |  |  |  |  |  |
| 13 | 74.0 | 13.5 | 15.90 |  |  |  |  |  |  |
| 14 | 66.1 | 15.1 | 12.60 |  |  |  |  |  |  |
| 15 | 59.1 | 16.9 | 10.00 |  |  |  |  |  |  |
| 16 | 52.8 | 18.9 | 7.930 | 52.8 | 18.9 | 7.89 | 54.6 | 18.3 | 8.00 |
| 17 | 47.0 | 21.3 | 6.275 | 47.3 | 21.1 | 6.26 | 49.1 | 20.4 | 8． 32 |
| 18 | 42.1 | 23.8 | 4.980 | 42.4 | 23.6 | 4.97 | 44.1 | 22.7 | 5.02 |
| 19 | 37.7 | 26.5 | 3.955 | 37.9 | 26.4 | 3.94 | 39.7 | 25.2 | 3.99 |
| 20 | 33.7 | 29.7 | 3.135 | 34.0 | 29.4 | 3.13 | 35.8 | 28.0 | 3.17 |
| 22 | 26.9 | 37.2 | 1.970 | 27.3 | 36.6 | 1.98 | 29.1 | 34.4 | 2.01 |
| 24 | 21.5 | 46.5 | 1.245 | 22.1 | 45.3 | 1.25 | 23.9 | 41.8 | 1.27 |
| 26 | 17.1 | 58.5 | 0.785 | 17.9 | 55.9 | 0.791 | 19.7 | 50.8 | 0.810 |
| 28 | 13.6 | 73.5 | 0.494 | 14.6 | 68.5 | 0.498 | 16.4 | 61.0 | 0.514 |
| 30 | 10.9 | 91.7 | 0.311 | 12.0 | 83.3 | 0.316 | 13.8 | 72.5 | 0.3333 |
| 32 | 8.7 | 115 | 0.196 | 9.9 | 101 | 0.210 | 11.8 | 84.8 | 0.217 |
| 34 | 6.9 | 145 | 0.123 | 8.3 | 121 | 0.129 | 10.1 | 99.0 | 0.141 |
| 36 | 5.5 | 180 | 0.078 | 7.0 | 143 | 0.082 | 8.8 | 114 | 0.092 |
| 38 | 4.4 | 227 | 0.049 | 6.0 | 167 | 0.053 | 7.8 | 128 | 0．062 |
| 40 | 3.5 | 286 | 0.031 | 5.1 | 196 | 0.035 | 6.9 | 145 | 0.043 |

9. Insulated Copper Wire.

| Size, <br> 13. \& S . <br> gage | $\begin{aligned} & \text { Ohms per } \\ & 1,000 \mathrm{ft} \text {. } \end{aligned}$ | Single-cotton covered |  |  | Wouble-cotton covered |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Outside diameter, mils | Turns per linear inch | $\begin{gathered} \text { 1'ounds } \\ \text { per } 1,000 \\ \mathrm{ft} . \end{gathered}$ | Outside diameter, mils | Turns per linear inch | $\begin{gathered} \text { Pounds } \\ \text { per } 1,000 \\ \mathrm{ft} . \end{gathered}$ |
| 0000 | 0.0500 | 467 | 2.14 |  | 477 | 2.10 |  |
| 000 | 0.0630 | 418 | 2.39 |  | 428 | 2.34 |  |
| 00 | 0.0795 | 37.3 | 2.68 | . . . . | 382 | 2.62 |  |
| 0 | 0.100 | 334 | 3.00 |  | 343 | 3.00 |  |
| 1 | 0.126 | 300 | 3.33 | . $\quad .$. | 308 | 3.25 |  |
| 2 | 0.159 | 267 | 3.75 |  | 275 | 3.64 |  |
| 3 | 0.201 | 239 | 4.18 |  | 248 | 4.03 |  |
| 4 | $0.25 \%$ | 214 | 4.67 |  | 222 | 4.51 |  |
| 5 | 0.319 | 192 | 5.21 |  | 200 | 5.00 |  |
| 6 | 0.403 | 170 | 5.88 | . . . . . | 175 | 5.62 |  |
| 7 | 0.508 | 153 | 6.54 |  | 160 | 6.25 |  |
| 8 | 0.641 | 136 | 7.35 | 50.6 | 142 | 7.05 | 51.2 |
| 9 | 0.808 | 121 | 8.26 | 40.2 | 127 | 7.87 | 40.6 |
| 10 | 1.02 | 108 | 9.25 | 31.9 | $11: 3$ | 8.85 | 32.2 |
| 11 | 1.28 | 97 | 10.3 | 25.3 | 102 | 9.80 | 25.6 |
| 12 | 1.62 | 87 | 11.5 | 20.1 | 92 | 10.9 | 20.4 |
| 13 | 2.04 | 78 | 12.8 | 16.0 | 82 | 12.2 | 16.2 |
| 14 | 2.58 | 70 | 14.3 | 12.7 | 74 | 13.5 | 12.9 |
| 16 | 4.1 | 58 | 17.9 | 8.03 | 60 | 16.7 | 8.21 |
| 18 | 6.3 | 45 | 22.2 | 5.08 | 49 | 20.4 | 5.24 |
| 20 | 10.4 | $: 37$ | 27 | 3.22 | 41. | 24.4 | 3.37 |
| 22 | 16.6 | 29.5 | 33.9 | 2.05 | 33.3 | 30.0 | 2.17 |
| 24 | 26.2 | 24.1 | 41.5 | 1.3 | 28.1 | 35.6 | 1.4 |
| 26 | 41.6 | 19.9 | 50.2 | 0.834 | 23.9 | 41.8 | 0.914 |
| 28 | 66.2 | 16.6 | 60.2 | 0.533 | 20.6 | 48.6 | 0.608 |
| 30 | 105 | 14 | 71.4 | 0.340 | 18.0 | 5.5 .6 | 0.400 |
| 32 | 167 | 12 | 83.4 | 0.223 | 16.0 | 62.9 | 0. 270 |
| 34 | 266 | 10.3 | 97.1 | 0.148 | 14.3 | 70.0 | 0.193 |
| :36 | 423 | 9.0 | 111 | 0.099 | 13.0 | 77.0 | 0.136 |
| 38 | 673 | 8.0 | 125 | 0.070 | 12.0 | 83.3 | 0.105 |
| 40 | 1.070 | 7.1 | 141 | 0.052 | 11.1 | 90.9 | 0.084 |

10. Approximate Wave Lengths of 4 -ft. Coil Antennae with Various Values of Condenser Capacity Across the Coil Terminals.

| Number of turns | Condenser capacity. microfarads |  |  |  |  |  | 1)istribution in slots 1/2 in. apart. turns per slot |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.00005 | 0.0001 | 0.0005 | 0.001 | 0.002 | 0.003 |  |
| 1 |  | 65 | 128 | 178 | 250 | 310 | 1 |
| 3 | 130 | $15 \%$ | 290 | 400 | 550 | 675 | 1 |
| 6 | $2: 30$ | 280 | 500 | 710 | 1.000 | 1.200 | 1 |
| 12 | 430 | 490 | 920 | 1.250 | 1.700 | 2.050 | 1 |
| 24 | 760 | 880 | 1,600 | 2.100 | 3,000 | 3.600 | 1 |
| 48 | 1,550 | 1.77i | 3.150 | 4,300 | 6.000 | 7,000 | 2 |
| 72 | 2,200 | 2,650 | 4.800 | 6.400 | 8,800 | 11,000 | 3 |
| 120 | 3.930 | 4.500 | 7.900 | 10,000 | 14.700 | 17.700 | 5 |
| 240 | 7,600 | 9.000 | 15.650 | 20,500 | 27,200 | 32,900 | 10 |

11. Number of Volts Required to Produce a Spark between Balls in Air.

| Length of spark gap in |  | Diameter of balls, volts |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Centimeters | Inches | $\begin{gathered} 1 \mathrm{cmn} \\ =0.39 .37 \mathrm{in} . \end{gathered}$ | $=\stackrel{2}{0.787} \mathrm{in} .$ | $\begin{aligned} & 6 \mathrm{~cm} \\ = & 2.36 \mathrm{in} . \end{aligned}$ |
| 0. 02 | 0.0079 | 1,560 | 1,530 |  |
| 0.04 | 0.01 .37 | 2,460 | 2,430 |  |
| 0.06 | 0.0236 | 3.300 | 3. 3.240 |  |
| 0.08 | 0.0315 | 4,050 | 3.990 |  |
| 0. 10 | 0.0394 | 4.800 | 4.800 | 4,500 |
| O. 20 | 0.0787 | 8.400 | 8,400 | 7.800 |
| 0.30 | 0.1181 | 11.400 | 11.400 | 10,800 |
| 0.40 0.50 | 0.1575 0.1969 | 14,400 | 14.400 | 13,500 |
| 0.60 0.60 | 0.1969 0.2362 | 17,100 | 17.100 19.800 | 16,500 19,500 |
| 0.70 | 0.2750 | 12, 21,600 | 19.800 22.500 | 19,500 |
| 0. 80 | 0.3150 | 23.400 | 24,900 | 26.100 |
| 0.90 | 0.354.3 | 24.600 | 27,300 | 29,000 |
| 1.00) | 0. $39: 37$ | 25.500 | 29.100 | 32,700 |

12. Chart for Converting Loss or Gain into Decibels.


## 13. Standard Graphic Symbols Used in Radio Communication.

1. Aerial (antenna)
2. Ammeter
3. Are
4. Battery (the porifive electrode is indicated by the long line)
5. Coil antenna
6. Condenser fixed
7. Condenser, fixed, shielded
8. Condenser, variable
9. Condenser, variable (with moveing plate indicrated)
10. Condenser, variable shielded
11. Counterpoise
12. Crystal detector
13. Frequency meter (wave meter)
14. Galvanometer
15. Glow lamp
16. Ground
17. Inductor
18. Inductor, adjustable

19. Inductor, iron core
20. Inductor, variable
21. Jack
22. Key
23. Lightning arrester
24. Loud-speaker
25. Microphone (talephone
mither $) ~ t r a n s-~$
26. Photoelectric cell
27. Piezoelectric plate
28. Resistor
29. Resistor, adjustable
30. Resistor, variable
31. Spark gap, rotary
32. Spark gap, plain
33. S $\underset{\text { quenched }}{\text { q }} \mathrm{r}$ a p ,
34. Telephone receiver
35. Thermoelement
36. Transformer, air core


16


## $\rightarrow 0$


37. Transformer, iron core
38. Transformer with variable coupling
39. Transformer, with variable coupling (with moveing coil indicated
40. Voltmeter
41. Wires, joined
42. Wires, crossed, not joined
43. Diode (or halfwave rectifier)

$\rightarrow+1$
44. Triode (with di-

45. Triode (with indirectly heated cathode)

46. Screen-grid tube (with directly heated cathode)

47. Screen-grid tube (with indirectly heated cathode)

48. Rectifier tube, full wave (filamentless)

49. Rectifier tube, full wave (with directly heated cathode)

50. Rectifier tube, half wave (filamentless)


## 14. L, C, $\lambda$ Chart.


15. Width of Authorized Communication Band.

Federal Ladio Commission, General Order 119, Sept. 3, 1931.

| Type of emission | Frequency range, kilocyckes | Normal width of communication band, kilocycler |
| :---: | :---: | :---: |
| A1: C. W. Morse telegraphy; printer and slow-speed facsimile. | 10 to 100 | 0.100 |
|  | 100 to 5.50 | 0.250 |
|  | 1,500 to 6,000 | 0.500 |
|  | 6,000 to 12,000 | 1.000 |
|  | 12,000 to 28,000 | 2.000 |
|  | 10 to 100 | (To be sperified in instru ment of authorization) |
|  | 100 to 5.50 | 1.500 |
| A2: I, C. W | 1.500 to 6,000 | 2.000 |
|  | 6.000 to 12,000 | 3.000 |
|  | 12,000 to 28,000 | 4.000 |
| A3: Commercial telephony: |  |  |
| Single side band. . . . . . . |  | 3.000 |
| A3: Broadcasting: 0.000 |  |  |
|  |  |  |
| special: <br> High-speed facsimile; picture transmission; high-quality telephony; television, etc. . | 550 to 1.500 | 10.000 |
|  | 1,500 to $28,5.500$ | The authorized width of thi communication band fo, special types of transmis sion shall be specified is the instrument of authori zation |

## 16. Tolerance Table.

Every station shall be required to maintain frequency within the tolerance as provided by the following table:

Frequency range, kilocycles
A. 10 to $550:$
a. Fixed stations
b. Land stations
c. Mobile stations except those using damped waves or simple oscillator transmitters
d. Nobile stations using damped wave or simple oscillator transmitters.
B. 550 to 1,500 :
a. Broadcasting stations.
C. 1,500 to 6,000 :
a. Fixed stations
b. Land stations $\qquad$
Frequency tolerance, per cent
c. Mobile stations
D. 6,000 to 23,000 :
a. Fixed stations
b. Land stations $\qquad$
$\qquad$
b. Land atations.
ons using frequencies assigned to land stations or those in bands shared between mobile and fixed servires.
d. Mobile stations using frequencies other than those specified under $c$
e. Broadrasting stations $\qquad$

| Frequency tolerance, per cent. |  |
| :---: | :---: |
| Applicable to stations licensed and authorized by construction permits prior to effective date of this order | 13 <br> Applicable to all equipment authorized subsequent to effertive date of this order |
| Plus or minus $\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$ | Plus or minus $0.1$ |
| 0.5 | 0.5 |
| 1.0 | 0.5 |
| See General Order 110 |  |
| 0.05 | 0.03 |
| 0.05 | 0.04 |
| 0.1 | 0.1 |
| 0.05 | 0.02 |
| 0.05 | 0.04 |
| 0.05 | 0.04 |
| 0.1 | 0.1 |
| 0.0 .3 | 0.01 |

## 17. Separation between Assigned Frequencies.

| Frequency range, | Frequency separation, |
| :---: | :---: |
| kilocycles | kilocyclea |
| 10 to 15 | 0.15 |
| 15 to 20 | 0.2 |
| 20 to 25 | 0.25 |
| 25 to 30 | 0.3 |
| 30 to 40 | 0.4 |
| 40 to 50 | 0.5 |
| 50 to 60 | 0.6 |
| 60 to 100 | 0.8 |
| 100 to 390 | 1 |
| 390 to 550 | 2 |
| 550 to 1.500 | 10 |
| 1.500 to 3.000 | 4 |
| 3.000 to 6.000 | 5 |
| 6.000 to 11.000 | 10 |
| 11.000 to 16.400 | 1.5 |
| 16.400 to 21.550 | 20 |
| 21,550 to 28,000 | 25 |

Note. The separation between assignments may be greater than those indicated where this is required by the type of emission authorized.

## SECTION 2

## ELECTRIC AND MAGNETIC CIRCUITS

## By E. A. Uehling ${ }^{1}$ <br> FUNDAMENTALS OF ELECTRIC CIRCUITS

1. Nature of Electric Charge. According to modern views all natura phenomena may be explained on the basis of fundamental postulates regarding the nature of electric charge. In the neighborhood of an electric charge is postulated the existence of an eleetric field to explair such phenomena as repulsion and attraction. The force which act: between eleetric charges by virtue of the electric fields surrounding then is expressed by Coulomb's law which states that

$$
F=\frac{q_{1} \varphi_{2}}{r^{2}}
$$

The value of the unit charge in the electrostatic system is based on this law and is defined, therefore, as that value of electric charge which wher placed at 1 cm distance from an equal charge repels it with a force ot 1 dyne.
2. Electrons and Protons. There are two types of electricity: positive and negative. The electron is representative of the latter and the proton of the former. All matter is made up simply of electrons anc protons. Exhaustive experiment has proved that all electrons, ne matter how derived, are identical in nature. They are easily isolatec and as a consequence have been thoroughly studied. Anong the mos important results of this study are the following facts: ${ }^{2}$


The proton has not been so thoroughly studied. It is not so easily isolated, and the effects of electric and magnetic fields on its motion ar considerably smaller than similar effects obtained when electrons are studied. The proton apparently has a mass of about 1,838 times tha of the electron and a considerably smaller radius.

The mass of electrons and protons is purely inertial in character. In other words these fundamental units of eleetric charge consist simply of pure electricity. For the sake of completeness it should be addec that this mass is not independent of veloeity and that the values giver for both the electron and proton assume velocities which are smal in comparison with that of light.

[^2]3. Atomic Structure. The atoms of matter consist of a central positive nucleus surrounded by such a number of electrons as will neutralize the nuclear charge. The central positive nucleus eonsists of both electrons and protons with an excess of the latter. This exeess determines the chemical characteristics of the atom by determining the number of elections outside the nuelens, while the total number of protons determines the atomic weight of the element. Aceording to one view the electrons outside the nucleus move in planetary elliptic orbits about it. The radius of the different orbits varies within a single atom, and as a consequence the strength of the bond existing between the muelens and the different electrons varies.
4. Ionization. The outer electrons are in general loosely bound to the nucleus and under favorable conditions may be completely dissociated from the remainder of the atom. This process of the removal of an electron is known as ionization. It is the process by which clectrons are removed from a heated filament in a vacum tube, from an alkali metal surface in the photoclectric cell, and from the plate and grid of vacuum tubes when bombarded by the filament electrons giving rise to the secondary emission so commonly experieneed.
b. The Nature of Current. The modern view of electricity regards a murrent as a flow of negative charge in one direction plus a flow of positive sharge in the opposite direction. In electrolytic conduction the unit of negative charge is an atom with one or more additional electrons calted a negative ion, and the unit of positive charge is an atom with one or more electrons less than its normal number known as the positive ion.

In conduction through gases, as, for example, through the electric are, the negative ion is usually a single electron, whereas the positive ion is as before an atom with one or more electrons removed.

In conduction through solids, however, the current is strietly electronic and is not made up of two parts as in the previous cases. The electrons zonstituting the current are the outer orbital electrons of the atoms. Since these electrons are less tightly bound to the atom than the other slectrons they are comparatively free and are often spoken of as free zlectrons. These electrons move through the solid under the influence of an electrie field eolliding with the atoms as they move and continuously osing energy gained from the field. As a consequence the motion of the zlectrons in the direction of the field is of a comparatively small velocity ${ }^{1}$ 'of the order of 1 cm per second), whereas the velocity of thermal agita:ion of the free electrons is high (about $10^{7} \mathrm{~cm}$ per second). According :o this view of the electric current in solids, conductors and insulators liffer only in the relative number of free electrons possessed by the substanee.

Sinee current consists of a motion of electric charges, it may be defined is a given amount of charge passing a point in a conductor per unit time. In the electrostatie system the unit of current is defined to be a current zuch that an electrostatic unit of electricity crosses any selected cross section of a conductor in unit time. In the practical system the unit of surrent is the ampere which is approximately equal to $3 \times 10^{9}$ elec;rostatic units of eurrent and is defined on the basis of material constants 13 that current which will deposit 0.00111800 g of silver from a solution of silver nitrate in 1 sec.

[^3]6. The Nature of Potential. An electric charge that is resident in an electrie field experiences a force of repulsion or attraction depending on the nature of the charge. Its position in the field may be considered as representing a certain quantity of potential energy which may be taken as the amount of work which is capable of being done when the electric charge moves from the point in question to an infinite distance. If the convention of considering at unit positive charge as the test charge is adopted, the potential energy at a point may be taken as characteristic of the field and conseduently will be regarded simply as the potential.

In a similar manner the difference of potential of two points may be described as the amount of work required to move a unit positive test charge from one point to another. More specifieally a difference of potential in a conductor may be spoken of as equal to the energy dissipated when an electron moves through the conductor from the point of low potential to the point of high potential. This energy is dissipated in the form of heat caused by the hombardment of the molecules of the conductor by the electrons as they proceed from one point to another.
7. Concept of E.M.F. The idea of potential leads directly to a conception of an electromotive forec. If a difference of potential between two points of a conductor is maintained by some means or other, electrons will contimue to flow, giving rise to a contimuous current. A difference in potential maintained in this way while the current is flowing is known as an electromotive force. Only two important methods of maintaining a constant e.m.f. exist: the battery and the generator. Other methods, as, for example, the thermocouple, are not primarily intended for the purpose of maintaining a current.

The unit of em.f. in the practical system is the volt. It is defined as $10^{8}$ e.s.u. of potential or as $1.0000 / 1.0183$ of the voltage generated by a standard Weston cell.
8. Ohm's Law and Resistance. The free elegtrons which contribute to the electric eurrent have a low drift veloeity in the negative direction of the field within the conductor. In moving through the metal in a common general direction they enter into frequent collisions with the molecules of the metal, and as a consequence they are contimually retarded in their forward motion and are not able to attain a velocity greater than a certain terminal velocity $u$, which depends on the value of the field and the nature of the substance. The collisions which tend to reduec the drift velocity of the electrons act as a retarding force. When a current is flowing, this retarding foree must be exactly equal to the aceelerating foree of the field. The retarding foree is proportional to $N$, the number of free eleetrons per unit length of conductor, and to $u$, their drift velocity. It may be designated as $k$ Now. The aceclerating forec is proportional to the field $E$ per unit length of conductor, to the numbel $N$ of eleetrons per unit length, and to the electronic charge $e$ and may be represented as $N E e$. Then $N E e=k N^{\prime} u$. Since the current $i$ has been given as

$$
\begin{aligned}
i & =N e u \\
N E e & =k \frac{i}{e} \\
E & =\frac{k}{N \rho^{2}} i=R i
\end{aligned}
$$

where

$$
R=\frac{k}{N c^{2}}
$$

The statement $E=R i$ is known as Ohm's law. $R$ is here defined as the resistance per unit length. The unit of resistance is the ohm. It may be obtained from Ohm's law when the e.m.f. is expressed in volts and the current in amperes.
9. Inductance. Circuits possess inductance by virtue of the electromagnetic field which surrounds a conductor carrying a current. The coefficient of self-inductance is defined as the total number of lines of force passing through a circuit and due entirely to one e.g.s. unit of current traversing the circuit. If $N$ is the number of lines of fore linked with any circuit of inductance $L$ and conveying $C$ c.g.s. units of current, $N=L \dot{C}$.

The practical unit of inductance is the henry. It is equal to $10^{9}$ c.g.s. units of inductance. If the number of limes of foree $V$ through a cireuit is changed, an e.m.f. due to this change of flux is induced in the circuit. This e.m.f. is given by the equation

$$
e=-\frac{d N}{d t}=-I \frac{d C}{d t}
$$

The inductance of a circuit is equal to 1 henry if an opposing e.m.f. of 1 volt is set up when the current in the circuit varies at the rate of 1 amp. per second.
10. Mutual Inductance. The coefficient of mutual inductance is defined in the same way as that of self-induetance and is given in e.g.s. units as the total magnetic flux whieh passes through one circuit when the other is trayersed by one e.g.s. unit of current, or

$$
\begin{aligned}
N & =M C \\
e & =-\frac{d N}{d t}=-M \frac{d C}{d t}
\end{aligned}
$$

The practical unit is the henry as in self-inductance.
11. Energy in Magnetic Field. Energy is stored in the electromagnetie field surrounding a circuit representing the energy aceumulated during the time when the frec electrons were initially set in motion and the current established. This energy is given by the equation, $W^{\prime}=1 / 2 L I^{2}$, where, if $I$ is in henrys and $I$ in amperes, the energy is in joules.
12. Capacitance. The ratio of the quamtity of charge on a conductor to the potential of the conductor represents its rapacity. If one conductor is at zero potential and another at the potential $V$, the caparity is given as the ratio of the charge stored to the potential difference of the conductors

$$
C=\frac{Q}{V}
$$

If $Q$ is in coulombs (the quantity of charge carried by 1 amp. flowing for 1 see.) and $V$ is in volts, $C$ is known as the farad.

The energy stored in a condenser is given by the equation, $W^{\prime}=1 / 2 \mathrm{Cl}^{\prime 2}$, where, if $V$ is in volts and $C$ is in farats, $W$ is in joules.

The foree acting per unit area on the conductors of the condenser tending to draw them together is

$$
F=\frac{E^{2}}{8 \pi}=\frac{V^{2}}{8 \pi d^{3}}
$$

where $d$ is the distance separating the eondenser plates, and $V$ is the potential difference.

Other expressions relating charge or current to eapacity and potential difference are

$$
V=\frac{\int i d t}{C}
$$

and

$$
i=C \frac{d v}{d t}
$$

13. Units. The practical units that have been deseribed are related to the electrostatic units as shown by the following table. A third set of units, known as the electromagnetie, is also related to the practical units, the ratios of which are given in this table.

| Quantity | Name of unit | Measure in electromagnetic units | Measure in electrostatic units |
| :---: | :---: | :---: | :---: |
| Charge of electricity | Coulomb | $10^{-1}$ | $3 \times 10^{9}$ |
| Potential. |  | $10^{8}$ | 1/300 |
| Capacity. | Farad | $10^{-9}$ | $9 \times 10^{11}$ |
| Current. | Ampere | $10^{-1}$ | $3 \times 10^{0}$ |
| Resiatance. | Ohm | $10^{9}$ | $1 / 9 \times 10^{-11}$ |
| Inductance. | Henry | $10^{*}$ |  |

14. Continuous and Alternating Currents. If the free electrons of a conductor move with a constant drift velocity under the impelling force of an invariant electric field, the electric eurrent in the conductor is spoken of as being continuous, or direct. If, however, the impressed electric field is varying in both direction and magnitude, the drift velocity of the electrons will vary in both direction and magnitude, since electrons always flow in a direction opposite to that of the eleetric field. A current of this kind which varies periodically with the time is known as an alternating current.
15. Wave Form. The current or the e.m.f. may be represented graphically as a function of the time by assigning to successive values of the latter variable the value of the former. There is an infinite variety of functional relationships between current and time, but of all the laws by which these two variables may be eonneted there is one that can be differentiated from all others. This law is that of the sine or cosine function. All other relationships can be resolved into a linear combination of functions of this simple type.

The form of the sine function is shown in Fig. 1a. It is represented analytically by the following type of equations

$$
\begin{aligned}
i & =I_{0} \sin \omega t \\
e & =E_{0} \sin \omega t
\end{aligned}
$$

where $i$ and $e$ are the instantaneous values of the current and voltage, $I_{0}$ and $E_{0}$ are the maximum values, and $\omega$ is $2 \pi$ times the frequency with
which the current or voltage alternates. The sine wave is the ideal toward which practical types approach more or less closely. Since it cannot be resolved into other types, it is the pure wave form.
16. Harmonics. Current and voltage waves, in practice, are not pure and may therefore be resolved into a series of sine or cosine functions. One of the functions into which the origimal wave is resolved will have a frequency term equal to that of the original wave. All of the other functions will have frequency terms of higher value, which will in general be designated as harmonics of the lowest or fundamental frequency. A few types of complex waves which may be resolved into two or more pure sine waves are shown in Fig. $1 b$ and $c$. The resolution of a complex wave into its component parts may be accomplished physically as well as mathematieally. This may be demonstrated by means of high- and low-pass filters in the output circuit of an ordinary vacuum-tube oscillator.


Fig. 1.-Sine wave and complex waves.
17. Effective and Average Values. The effective value of an a-e wave is the value of continuous current which gives the same power dissipation as the a.c. in a resistance. For a sine wave this value of continuous eurrent is equal to the maximum value divided by $\sqrt{ } 2$. The average value of an alternating current is cqual to the integral of the current over the time for one-half period divided by the elapsed time. For a sine wave the average value is equal to the maximum value of the current divided $\mathrm{by} \pi / 2$. The ratio of the effective value of the current to the average value is often taken as the form factor of the wave. Thus all types of waves may be simply characterized by means of this ratio.

Direct-current meters read average values of currents over a complete period. Such meters therefore read zero in an a-c cireuit. Thermocouple and hot-wire-type meters read effective values. Such meters are therefore used for making a-c measurements at radio- as well as at audiofrequencies.
18. Phase. The current in a circuit may have its maximum and zero values at the same time as those of the e.m.f. wave, or these values may occur earlier or later than those of the latter. These three cases are illustrated in Fig. 2. When the rorresponding values of the current and e.m.f. occur at the same time they are salid to be in phase. If the current values oceur before the eorresponding values of the voltage wave, the current is said to be in leading phase, and if these values oceur after the corresponding values of the voltage wave, it is saicl to be in lagging phase.
19. Power. The power consumed in a continuous-current circuit is $W=E I=I^{2} R$, where $R$ is the effertive resistance of the circuit. The power consumed in an a-e circuit having nogligible inductance and
capacitance is given by the same equation with the necessary restrictions on $I$ so that it represents the effective value of the current and not the average value. The power consumed in an inductive or capacitative eireuit is $W=E I \cos \varphi$, where $\varphi$ is the phase angle, that is, the angle of lag or lead of current. The term " $\cos \varphi$ " is commonly referred to as the power factor of the circuit.


Fig. 2,-Phase in a-c circuits.

## DIRECT-CURRENT CIRCUITS

20. Direction of Current Flow. An eleetric current is a flow of electric eharges. Electrie eharges will move through a medium of finite resistance if a difference of eleetric potential exists between two points of that medium. In metallic conductors there is but one type of charge which is free to move, the negative charge or the free electrons of the eonductor. The current in a metallic conductor then consists solely of an electron current. The convention arose historically of speaking of an electric current as flowing from the high potential (positive) to the low potential (negative) point, while, as a matter of fact, the electrons of the eonductor actually move in the opposite direction. It is necessary to distinguish, therefore, between the direction of current flow in the historical sense and the dircction of flow of electrons.
21. Constant Positive Resistance, Negative Resistance, and Infinite Resistance. In a d-c circuit the relationship between voltage and current is governed solely by the resistance of the circuit and all equivalent resistances such as counter e.m.fs. Some knowledge regarding the nature of this resistance is needed. Three eases present themselves. In the first case are those circuits in which

$$
\frac{d e}{d i}=R
$$

where $R$ is positive and is constant in value over a rather large range. Conduction in solids and electrolytes is of this type. In the second class are those circuits in which de/di has a value which is negative and is usually not constant. Conduction in ares and glow discharges is generally of this type. In the third class are those circuits in which

$$
\frac{d e}{d i}=\infty
$$

Conduction in the plate circuit of a vacuum tube under saturation conditions is of this type.

Circuits of the first class, in whieh the differential coefficient de/di has a positive value, may be subdivided into two other classes. If the
ralue of $d e / d i$ is constant over the entire range of voltage and current rom zero to the maximum value, and if this value is designated by the fuantity $R$, then Ohm's law may be used and $e=i R$. In this case, $R$ s both the d-e and a-e resistance. If, however, $R$ is not constant over his range of values, the value of $R$ given at a particular value of $e$ and given by the equation

$$
R=\frac{d e}{d i}
$$

s only the a-c resistance of the eircuit at the particular value of $e$ and $i$ hosen. The a-e resistance given ly this equation may be quite different rom the d-e value as given by the equation

$$
R=\frac{e}{i}
$$

In a vacuum-tube plate circuit the d-e value of the resistance is frequently about twice as high as the a-e value.


Fig. 3.-Vector representation of a-e circuits.

## ALTERNATING-CURRENT CIRCUITS

22. Impedance. The resistance to the flow of an eleetric current having the value $i=I_{0} \sin \omega l$ depends on the circuit element through which the eurrent is passing. In a pure resistance the potential fall would be $E_{1}=I_{0} R \sin \omega t$, which is seen to be in phase with the current passing through it. In an inductance the potential fall would be

$$
E_{2}=L_{d t}^{d i}=\omega L I_{0} \cos \omega t=j \omega L I_{0} \sin \omega t=j \omega L i
$$

and therefore leads the current by a phase angle of 90 deg . In a capaeitance the potential fall would be

$$
\begin{aligned}
E_{3} & =\frac{1}{r^{r}} \int i d t=-\frac{I_{0}}{\omega C} \cos \omega t=-\frac{j I_{0}}{\omega C} \sin \omega t \\
& =-\frac{j i}{\omega C} \\
& =\frac{i}{j \omega C}
\end{aligned}
$$

and is therefore led by the current by a phase angle of 90 deg . Th potential fall through all three clements taken together is equal to

$$
E=\left(R+j \omega L+\frac{1}{j \omega C}\right) i
$$

The eoeffieient of $i$ is termed the imperlance of the cireuit. It is written in general, as

$$
z=R+j \omega L+\frac{1}{j \omega C}=R+j\left(\omega L-\frac{1}{\omega C}\right)
$$

where $R$ is the total series resistanee of the circuit, $L$ is the total serie: induetance, and $C$ is the effective series capaeitanee. The term involv ing $j$ is of special importance, for it is this term which gives to the curren its leading or lagging characteristies depending on whether $\omega L$ is smalle or larger than $1 / \omega C$. This quantity is known as the cireuit reactanct


Fig. 4.-Reactance and impedance of parallel circuit.
and is designated by the letter $X$. The impedanee may be written, therefore,

$$
z=R+j Y
$$

Oceasionally the absolute value of the eireuit impedance is repuired. It is then written in the following form
where

$$
\begin{aligned}
z & =Z^{i \phi} \\
Z & =\sqrt{R^{2}+X^{2}} \\
\phi & =\operatorname{are} \tan \frac{X}{R}
\end{aligned}
$$

n this expression $Z$ represents the absolute value of the impedance, $z$ he complex value, and $\phi$ the phase angle.

The impedanec of a single cireuit will be given to illustrate the method f obtaining this quantity for any circuit. For a parallel combination f circuit elements, such as illustrated in Fig. $4 a$, it would be obtained s follows:

$$
z=\frac{1}{\frac{1}{1 / j \omega C}+\frac{1}{j \omega L}}=\frac{j \omega L}{1-\omega^{2} L C}
$$

.his equation shows that when $\omega^{2}=1 / L C$ the impedance is infinite. $t$ may be represented graphically as a function of $\omega$ as shown in Fig. b. The figure and the equation illustrate the case of parallel resonanee. the case of series resonance is illustrated in Fig. 4c, and the equation is $=j\left(\omega L-\frac{1}{\omega C}\right)$, which holds for a cireuit having only an inductanec $L$ nd capacitance $C$ in series with the e.m.f. In the series case, the npedance is zero at resonamer; that is, when $\omega^{2}=1 / L C$ and in the arallel case the impedance is infinite at resonance.
23. Circuit Parameters. Every clectric circuit, no matter how comlicated, is made up of a particular combination of induetances, capaciances, and resistances. These parameters and the manner in which ney are combined with one another completely govern the performance f a circuit and determine the value of the current at any point of the reuit at any time for any given value of the impressed e.m.f. or combinaon of e.m.fs.
Inductances, capacitaneres, and resistanees may be lumped or distribted in nature. They are regarded as of the former type if their values re more or less concentrated at one or a finite number of points in a renit. For example, the inductanee of a circuit would be considered shmped if a definite number of places in the cirenit is found where iductance exists, and at all other points a comparative non-existence of iductance. On the other hand the inductance of a uniform telephone ne is considered as distributed sinee it exists along the entire line and tay, at no point in the line, be neglected.
24. Circuit Equations. Every circuit may be completely expressed y a system of simultancous equations. Having expressed a particular reuit in this manner, a solution may be obtained frequently without ifficulty. Since the equations are of primary importance, nethods of staining them will be given.
There are two distinct cases. When a simusoidal voltage or conalinaon of sinusoidal voltages is impressed on a circuit, a.e. flows in every ranch of the circuit as a consequence of the impressed e.m.f. This arrent may be divided into two parts. One part is known as the ansient current, and the other as the current of the stendy state. The ansient current disappears very shortly after the voltage has been pressed. The steady state continues as long as the e.m.f. continues
its initial state of voltage, frequeney, and waye form. Ofton only te stealy state is of interest. Examples of this are to be found in udies of r-f transformer performanee and in studies of electrie filters 'the low-pass, high-pass, or hand-pass types and in the studies of the arious characteristics of different antematroupling methods. At ot her
times the transient condition may be of primary interest; as, for example in the study of the fidelity of reproduction with regard to wave form o an electronagnetic or electrodynamic loud-speaker motor.

If interest ecnters only in the steady state the following method i to be used: Apply Kirchhoff's second law which states that the sum c all the e.m.fs. around any circuit is zero, writing one equation for eac branch of the circuit, and using as the potential falls the values $j \omega L I$ fo each induetance, $I / j \omega L$ for each capacitance, and $I R$ for each resistance If inductances, caparitances, and resistances oceur that are commo to two or more branches, they will be used once for cach of the commo branehes paying due regard to the sign of the term.


Fig. 5.-Circuits illustrating use of Kirchhoff's laws.
This method may be illustrated by the examples of Fig. 5 and the followin equations:
For circuit $a$ :

$$
\begin{aligned}
E & =I R+j \omega L I+\frac{I}{j \omega C}=I\left[R+j\left(\omega L-\frac{1}{\omega C}\right)\right] \\
& =I(R+j X) \\
I & =\frac{E}{R+j X}
\end{aligned}
$$

For circuit $b$ :

$$
\begin{aligned}
E & =I_{1} R_{1}+j \omega L_{1} I_{1}+\frac{I_{1}}{j \omega C_{1}}-j \omega M I_{2}=I_{\mathrm{t}} z_{1}-j \omega . M I_{2} \\
0 & =I_{2} R_{2}+j \omega L_{2} I_{2}+\frac{I_{2}}{j \omega L_{2}}-j \omega, M I_{2}=I_{2} z_{2}-j \omega_{1} M I_{1}
\end{aligned}
$$

where $z_{1}$ is the total complex impedance of circuit 1 , and $z_{2}$ is the total con plex impedance of circuit 2 .

For circuit $c$ :

$$
\begin{aligned}
E & =I_{1} R_{1}+j \omega L_{1} I_{1}+j \omega L_{0} I_{1}-j \omega . V I_{2}-j \omega L_{0} I_{2} \\
& =I_{1} z_{1}-j \omega I_{2}\left(M+L_{0}\right) \\
0 & =I_{2} R_{2}+j \omega L_{2}^{\prime} I_{2}+j \omega L_{0} I_{2}+j \omega L_{2} I_{2}-j \omega . M I_{1}-j \omega L_{0} I_{1} \\
& =I_{2} z_{2}-j \omega I_{1}\left(M+L_{0}\right)
\end{aligned}
$$

In these equations $I$ is the maximum value of the sinusoidal current, an $E$ is the maximum value of the sinusoidal e.m.f. These equations may 1 solved for any of the currents by the method of simultaneous equation

In the transient values of the various currents, Kirchhoff's second law ma be used as before, but instead of using the values of potential fall as give in the preceding equations, use the instantaneons values. The equation fo cireuit $a$ of lig. 5 is then written

$$
e=i R+L_{d i}^{d i}+\frac{1}{C} \int i d t
$$

$$
\frac{d e}{d t}=L \frac{d^{2} i}{d t^{2}}+R_{d i}^{d i}+\frac{i}{C}
$$

here $e$ and $i$ are the instantaneous values of the impressed e.m.f. and curent respectively. For circuit $b$,

$$
\begin{aligned}
& c=i_{1} R_{1}+L_{1} \frac{d i_{1}}{d t}+\frac{1}{C_{1}} \int i_{1} d t-M \frac{d i_{2}}{d t} \\
& 0=i_{2} R_{2}+L_{2} \frac{d i_{2}}{d t}+\frac{1}{C_{2}} \int i_{2} d t-M \frac{d i_{1}}{d t}
\end{aligned}
$$

o ohtain the transient solution, $c$ and $d c / d t$ are replaced by zero and the Iuation solved by the methorls used for linear, homogeneous equations of ce first degree.
25. General Characteristics of A-c Circuits. The general equations plied to a number of the more imortant radio eircuits yield the llowing results.
Current Flow in an Inductive Circuit:

$$
i=\frac{E}{R}\left(1-\epsilon^{-\frac{R t}{L}}\right)
$$

here $E$ is the constant impressed e.m.f.
Time Constant of an Inductive C'ircuit: The time required for a eurrent to se to $\left(1-\frac{1}{\epsilon}\right)$ or to about 63 per cent of its final value. This time is equal $L / R$.
Current Flow in a Capacitative Circuit:

$$
i=\frac{E}{R} \epsilon^{-\frac{t}{R C}}
$$

aere $E$ is the constant impressed e.m.f.
Time Constant of a Capacitative Circuit. The time required for the current fall from its initial value to $1 / \epsilon$ or about 0.37 of this value. This time is ual to $R C$.
Current Flow in an Inductive-capacitative C'ircuit:

$$
\begin{aligned}
& i=\frac{E}{\omega L} \epsilon^{-\frac{R t}{2 L}} \sin \omega t . \text { if } R^{2}<\frac{4 L}{C} \\
& i=\frac{E}{\omega L} \epsilon^{-\frac{R t}{2 L}} \quad \text {.if } R^{2}=\frac{4 L}{C}
\end{aligned}
$$

fere $\omega$ is $2 \pi$ times the natural frequency of the circuit which is given by the uation

$$
f=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{R^{2}}{4 L^{2}}}
$$

Logarithmic Jecrement. Ratio of sucreasive maxima of the current in ant
cillatory discharge is equal to cillatory discharge is equal to

$$
\epsilon^{\frac{k T}{2 L}}=\epsilon^{\frac{k}{2 L f}}
$$

ere $R / 2 L f$ is called the log. dec, of the circuit, $T$ is the natural period, and he natural frequeney of the circuit.

Currents in Two Circuits Coupled by a Mutual Impedance, M, when Sinusoidal E.M.F., E, Exists in Circuit 1:

$$
\begin{aligned}
& I_{1}=\frac{E}{z_{1}+\frac{\omega^{2} M^{2}}{z_{2}}} \\
& I_{2}=\frac{j \omega M I_{1}}{z_{2}}=\frac{j \omega M E^{\prime}}{z_{1} z_{2}+\omega^{2} M^{2}}
\end{aligned}
$$

where $z_{1}$ and $z_{2}$ are the complex impedances of circuits 1 and 2 respective
Effective Reactance of One Circuit Coupled to a Second Circuit:

$$
X^{\prime}=X_{1}-\frac{\omega^{2} M^{2}}{Z_{2}^{2}} X_{2}
$$

where $X_{1}$ and $X_{2}$ are the actual reactances of circuits 1 and 2 respective and $Z_{2}$ is the absolute value of the complex inpedance of circuit 2.

Effective Resistance of One Circuit Coupled to a Second Circuit:

$$
R^{\prime}=R_{1}+\frac{\omega^{2} M^{2}}{Z_{2}^{2}} R_{2}
$$

where $R_{1}$ and $R_{2}$ are the actual resistances of circuits 1 and 2 respective
Effective Total Impedance of One Circuit Coupled to a Second Circuit:

$$
\begin{aligned}
2^{\prime} & =z_{1}+\frac{\omega^{2} M^{2}}{z_{2}}=R_{\mathrm{t}}+j X_{1}+\frac{\omega^{2} M M^{2}}{R_{2}+j X_{2}} \\
& =R_{\mathrm{t}}+\frac{\omega^{2} M^{2}}{Z_{2}^{2}} R_{2}+j\left\{X_{1}-\frac{\omega^{2} M^{2}}{Z_{2}^{2}} X_{2}\right\}
\end{aligned}
$$

Partial Resonance Relation Obtained When Only the Reactance of Circu Is Variable: ${ }^{1}$

$$
X_{1}=\frac{\omega^{2} M^{2}}{Z_{2}^{2}} X_{2}
$$

Partial Resonance Relation Obtained when only the Reactance of Circu: Is Variable: ${ }^{1}$

$$
X_{2}=\frac{\omega^{2} M^{2}}{Z_{1}^{2}} X_{1}
$$

Total Optimum Resonance Relation when the Reactance of Both Circ 1 and 2 Are Variable: ${ }^{1}$

Case I: If $\omega^{2} \mathrm{M}^{2}<R_{1} R_{2}$
Resonance relation $X_{1}=0$ and $X_{2}=0$
Case II: If $\omega^{2} M^{2}>R_{1} R_{2}$

$$
\text { Resonance relation } \frac{R_{2}}{R_{1}}=\frac{\omega^{2} \cdot M^{2}}{Z_{1}{ }^{2}}=\frac{X_{2}}{X_{1}}
$$

Case III: If $\omega^{2}{ }^{1 / 2}=R_{1} R_{2}$

$$
\text { Resonance relation } \begin{aligned}
X_{1} & =0, X_{2}=0 \\
R_{2} & =\frac{\omega^{2} M^{2}}{Z_{1}^{2}}
\end{aligned}
$$

Total Sicondary Current at Total Optimum Resonance Relation, the E.A E, Being Impressed in Circuit 1.

Case 1: If $\omega^{2} M^{2}<R_{1} R_{2}$

$$
I_{2}=\frac{\omega . M E}{R_{1} R z+\omega^{2} M^{2}}
$$

[^4]Cases $I I$ and III: If $\omega^{2} M^{2} \geq R_{1} R$ 。

$$
I_{2}=\frac{E}{2 \sqrt{R_{1} R_{2}}}
$$

for cases $I I$ and $I I I$ is seen to be greater than for case $I$ and is independent $\omega .1 /$.

## MAGNETIC CIRCUITS

26. The Fundamental Quantities of Magnetic Circuits. The first ndamental quantity is the magnetic flux or induction. The unit of x is known as the maxwell and is defined by the statement that from a it magnetie pole, $4 \pi$ maxwells, or lines of forer, radiate.
The second fundamental quantity is the reluctance. It is analogous the resistance of electric circuits, as the flux is analogous to the current. re unit of reluctance is the oersted and is defined as the roluctance fered by 1 cm cube of air.
The third fundamental quantity is the magnetomotive force (m.m.f.). is analogous to the e.m.f. of electrical cireuits. The unit of m.m.f. is e gilbert and is defined as the m,m,f. reguired to forer a flux of 1 maxwell rough a reluctance of 1 oersted. Thus the fundamental equation in aich these three quantities are related to one another is:

$$
M=\phi R
$$

Other important quantitios of magnetic currents may be defined as llows: the magnetic field strength is represented by the quantity $I I$ and is bual to the number of maxwells per unit of area when the medium rough which the flux is passing is air. This unit is known as the gauss the unit of area is the square centimeter.
In any medinn other than air the lines of fore are known as lines of duction and the symbol $B$ is used instead of $I I$ to represent them. In r the induction $B$ and the field strength $I I$ are equal to one another, but other mediums this is not true.
The permeability $\mu$ is the ratio between the magnetic induction $B$ and e field strength $I I$. In air this ratio is unity. In paranagnetic mateals the permeability is greater than unity, in ferromagnetic materials may have a value of several thousand, and in diamagnetic materials it is a value of less than unity.
The intensity of magnetization $I$ is the magnetic moment per unit sume or the pole strength per unit area. The unit of magnetic pole rength is a magnetic pole of such a value that when phaced 1 cm from a ze pole, a foree of repulsion of 1 dyne will exist, between them. The agnetic pole strength per unit area of any pole is measured in terms of tis unit. The magnetie moment of a magnet is the product of the pole rength and the distance between the poles.
The susceptitility $K$ of a material is equal to the ratio of the magnetizaon $I$ produced in the material to the field strength $I$ producing it. All these quantities are connected by the following equations

$$
\begin{aligned}
B & =\mu I I \\
I & =K I I \\
B & =4 \pi I+I I \\
\mu & =4 \pi K+1
\end{aligned}
$$

Magnetization eurves are of great importance in the design of magnetic ruetures and should be immediately avaikable for all materials with hich one intends to work. These curves may give either the values of
$B$ as a function of $I$ for the material, or the values of $I$ as a function II. A typieal B-II curve is shown in Fig. (6. The ratio of the coordinat of a $B-I I$ curve gives the v:


Fig, 6,-Typical B- $I I$ curve, ue of $\mu$ for the material at t particular value of $/ /$ chose The ratio of the coordinat in an $I-I I$ curve similar gives the value of the su ecptibility $K$.

Magnetic saturation is phenomenon oceurring large values of $I /$ when tl induction $B$ increases at much lower rate with i erease of $I$ than is the ca for small values of $H$.

The retentivity of a su stance is the value of $B$ in th material when the field II redued to zero after havis first been raised to above its saturation value. It is given by the point of the $13-1 /$ curve of Fig. 6 .

The coercivity of a material is the minimum negative value of required to just reduce the induction to zero after the field strength has first been raised to a positive value sufficiently large to saturate tl material. It is given by the point $C$ of the $B-I I$ curve of Fig. 6 .
27. Magnetic Properties of Iron and Steel.

| Material | Coercivity | Retentivity | $\underset{\text { permeability }}{\text { Maximum }}$ | $\begin{aligned} & 4 \pi I \text { at } \\ & \text { saturatior } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| Electrolyticiron | 2.83 | 11,400 | 1.850 | 21.620 |
| Annealed............ | 0.36 | 10.800 | 14.400 | 21,630 |
| Annealed electrical iron in sheets. | 1.30 | 9.400 | 3.270 | 20,500 |
| Cast steel | 1.51 | 10,600 | 3, 5550 | 21,420 |
| Annealed. | 0.37 | 11.000 | 14,800 | 21,420 |
| Steel hardened | 52.4 | 7.500 | 110 | 18.000 |
| Castiron. | 11.4 | 5, 100 | 240 | 16.400 |
| Annealed | 4.6 | 5,350 | 600 | 16.800 |
| Tungaten magnet steel | 64.0 | 9.600 | 105 | 13.600 |
| Chrome magnet steel.... | 64.0 | 9,000 | 94 | 12.600 |
| Cobalt steel (15 per cent).. | 192.0 | 8.000 |  |  |

28. Electromagnetic Structures. In this type of structure the mas netic material is usually very soft; its coercivity is very low; and as consequence the in.m.f. must be supplied hy a continuous electric curren The m.m.f., $M$, due to an electric current, is given by the equatic $M=0.4 \pi N I$, where $I$ is the current in amperes, and $N$ is the number turns on the electromagnet.
liy our most fundamental relation for magnetie circuits

$$
\begin{aligned}
M & =\phi R \\
0.4 \pi N & =R \phi \\
N I & =\frac{R \phi}{0.4 \pi}
\end{aligned}
$$

The design of a magnetie structure is usually begun by a consideration the flux requirements in a particular air gap. The size and shape of e air gap are generally given, and the Hux density desired in the air $p$ is known. From these data one can compute $R$ and $\phi$. For the lantity $\phi, \phi=B .4$, where $A$ is the area of the air gap and $B$ is the flux nsity desired. This equation assumes no leakage flux, and since this a condition never realized in practice and from which there may be a f from ncgligible departure, one must add to the value of $\phi$ given by is equation a correction the value of which is dietated by experience. or the quantity $R, R=L / A$, where $L$ is the length of the air gap and is the area. This equation neglects the reluctance of the magnet elf and of all other iron parts of the magnetic circuit. Since all uctances but that resicling in the air gap are very small in comparison, is procedure is usually justified, although there are cases in which ditional reluctance must be taken into account. In suel cases the uetance of the other parts of the circuit is computed in the same manner that of the air gap, except that an estimate of the permeability of e part in the circuit in question must be made and its equivalent air-gap uetance computed by dividing by this permeability. Finally,

$$
N I=\frac{R \phi}{0.4 \pi}=\frac{L B A}{0.4 \pi A}=\frac{L B}{0.4 \pi}
$$

is equation then completely determines the value of the ampererns $N I$ from the original data. This is the important quantity in the sign of the electromagnet. The separate values of $N$ and $I$ are unde--mined by this equation, other considerations such as the nature of a current supply, the size of the coil, the heat dissipation that can be rmitted and the cost being of paranount importance.
29. Permanent-magnet Type of Magnetic Structure. ${ }^{1}$ One begins 3 consideration of this type of structure with the dimensions of the - gap and the flux density in the air gap as fixed quantities. As a st choice select the material of the magnet and its desired length and iss section. These choices are based principally on considerations of it, on the amount of available space, and, to a large extent, on previous Jerience. Calculate the quantity $\tan \theta$ in the equation

$$
\tan \theta=\frac{A_{m} L_{a}}{A_{a} L_{m}}
$$

ere $A_{m}$ and $A_{a}$ arc the cross-sectional areas of the magnct and the air ?, and $L_{m}$ and $L_{a}$ the lengths of the magnet and air gap, respectively. is value of $\tan \theta$ defines the quantity $\theta$ shown above and therefore gives 3 magnetic flux density $B$ in the magnet. In this way various values $\tan \theta$ and $\theta$ should be obtained by selecting various values of $A_{m}$ $\pm L_{m}$ keeping, however, the product $A_{m} L_{m}$ and thus the quantity of $:$ magnet material constant. A certain value of $\Lambda_{m}$ and $L_{m}$ will be and to yield a maximum value of $B A_{m}$, the total flux delivered by the gnet. This particular value of $A_{m}$ and $L_{m}$ gives the most economical gnet yielding the total flux $B A_{m}$ to the air gap. The flux density the air gap is then $B A_{m} / A_{s}$.
Radio Broadcast, March, 1930, p. 265.

If this flux density is less than desired, a larger magnet or a magnet different material is required. If it is too large, a smaller magnet mi he used. Again there is negleeted leakage flux, a by no means negligil quantity. However, these equations constitute only a guide, and will be necessary to depend upon experience with magnetic circui when taking into account factors negleeted in the use of these equatior

## RADIATION

30. Nature of Radiation. Electromagnetic energy may arise fro continuously varying electronic currents in a conduetor, displaceme currents, or oscillating dipoles. In order that this energy may appreciable it is necessary that the system of conductors be of such form that the electromanetic field will not be confined in any way an that the frequency of oscillation of the current or charges be high. T various forms of antennas and the employment of radio frequenci satisfy these requirements.

The nature of radiation may be understood only after a comple examination of Maxwell's equations and the various transformatio of the wave equation. Any attempt to give a simple yet aceurate pietu of the phenomenon of radiation must be fruitless, though such pictur may aid in an understanding of the subject. Such descriptions m: be found in any text on radio. An exact analysis of Maxwell's equatio shows that whenever an electric wave moves through space an associat magnetic wave having its vectors at right angles to that of the elects wave must accompany it. Both vectors, furthermore, are at rig angles to the direction of propagation. This analysis also shows th an eleetromagnetic field due to an oscillating dipole or to an oscillatis current in a conductor has two components. One of these varies inversc as the first power of the distance from the source and is, furthermon directly proportional to the frequency, and the other varies inverse as the second power of the distance. The former is known as $t$ radiation field and the latter as the induction field. Though ind tinguishalle physically, the induction and radiation fields have a separa mathematical existence accounting completely for the phemomenon energy radiation. The energy of the induction field returns to the co ductor with the completion of each cycle. Its existence is confined, one might expect, to the neighborhood of the condurtor, whereas $t$ radiation field may be thought of as a detached field traveling outwa into space with the velocity of light and varying much more slowly intensity with distance from the eonductor than the other.
31. Vertical Antenna. The most simple form of antenna is the vertis wire. The electromagnetic radiation field depends on the strength the current in the wire, and as a consequence its intensity is increas if the current throughout the vertical wire is uniform. It is for th reason that a counterpoise is usually attached to the lower end of $t$ antenna and a horizontal aerial to the upper end. The capacity the counterpoise and acrial may be made so high that the eurrent throug out the vertical portion of the wire is practically uniform.

Under these conditions the magnetic ficld at any distant point is given the equation

$$
H=-\frac{\omega h I_{0}}{\overline{1} \bar{c} l} \cos \omega\left(t-\frac{l}{c}\right) \text { gauss }
$$

hare $\omega=2 \pi f$
$f=$ frequency of oscillation
$I_{0}=$ maximum value of the current in the antenna
$c=$ velority of light in centimeters per second in vacuum
$l=$ distance from the source in rentimeters
$h=$ height of antenna or length of vertienl wire in rentimeters
id

$$
E=-\frac{300 \omega h I_{0}}{10 c l} \cos \omega\left(t-\frac{l}{c}\right) \text { volts }
$$

hese equations ${ }^{1}$ are derived by considering the antenna as an oscillating ertzian doublet of separation $h$. The effective values of the magnetic and artric fields are

$$
\begin{aligned}
& H_{e}=-\frac{\omega h I_{e}}{10 c l}=-\frac{2 \pi h I_{e}}{10 \lambda l} \\
& E_{e}=-\frac{300 \omega h I_{e}}{10 \mathrm{cl}}=-\frac{600 \pi h I_{e}}{10 \lambda l}
\end{aligned}
$$

here $I_{e}$ is the effective value of the antember current, and $\lambda$ is the wave length the electromagnetic wave.
32. Loop Antenna. The field due to a loop antenna is given by the |uations

$$
\begin{aligned}
& H_{e}=\frac{4 \pi h I_{e}}{10 \lambda l} \sin \frac{\pi s}{\lambda} \\
& E_{e}=\frac{1,200 \pi h I_{e}}{10 \lambda l} \sin \stackrel{\pi s}{\lambda}
\end{aligned}
$$

here $s$ is the distance of separation of the vertical portions of the loop in ntimeters.
33. Coil Antenna. For a coil of iv turns having negligible caparity stween turns at the frequency considered so that the current in all turns sulstantially the same, the field is given by the equations

$$
\begin{aligned}
I_{e} & =\frac{4 \pi \lambda h I_{e}}{10 \lambda l} \sin \frac{\pi s}{\lambda} \\
E_{e} & =\frac{1,200 \pi N h I_{e}}{10 \lambda l} \sin \frac{\pi s}{\lambda}
\end{aligned}
$$

34. The fundamental and harmonic frequencies of oseillation in an itenna may be caleulated in many cases. If the inductanee and pacity of the vertical wire of the antenina are neglected, the low frequeney pacity and inductance are given be the equations ${ }^{2}$

$$
\begin{aligned}
C & =l C_{i} \\
L & =\frac{l}{3} L_{i}
\end{aligned}
$$

here $C_{i}$ and $L_{i}$ are the eapacity and inductance per unit length of conactor, and $l$ is the length of conductor. These equations may be leulated by means of aceurate formulas which are available. ${ }^{3}$
Then the low-frequency reartance of the antenna is

$$
X_{t}=\frac{\omega / L_{i}}{3}-\frac{1}{\omega / C_{i}}
$$

${ }^{1}$ Berg, "Electrical Engineering," Advanced Course, pp. 278 ff.; Morecroft, " Princiis of Radio Communication," p. 706.
Bur. Standards ('irc. 74, pp. 72 ff.
${ }^{3}$ Bur. Standards ('irc. 74, pp. 237-243.

The high-frequency reactance of the antenna ia given by the equati

$$
X_{h}=-\sqrt{\frac{L_{i}}{r_{i}}} \cot \omega l \sqrt{L_{i} C_{i i}}
$$

The reactance of the antenna becomes zoro when

$$
\omega / \sqrt{ } \overline{C_{i}} L_{1}=n_{2}^{\pi}(n=1,3,5 \cdots)
$$

that is, when

$$
f=\frac{\omega}{2 \pi}=\frac{n}{4 l \sqrt{ } C_{i} L_{i}}
$$

The reactance beeomes infinite when

$$
\omega l \sqrt{C_{i} L_{i}}=m \frac{\pi}{2}(m=0,2,4 \cdots)
$$

that is, when

$$
f=\frac{\omega}{2 \pi}=\frac{m}{4 l \sqrt{ } C_{i} L_{i}}
$$

If the inductance of the vertical wire is to be considered, or if a aeries ind tance is used with the antenna

$$
\mathbf{X}=\omega L_{s}-\sqrt{\frac{L_{i}}{C_{i}^{\prime}}} \cot \omega / V^{\prime} C_{i} L_{i}
$$

where $L s$ is the total inductance of the vertical wire and any cails in sel with the antenna.

The harmonir frequencies of the antenna at which the reactance is $z$ do not differ by multiples of $\pi$ as before. The natural frequeney of osci tion is given, however, quite generally by the equation

$$
\begin{aligned}
\omega L_{s i}-\sqrt{\frac{L_{i i}}{C_{i}^{\prime}}} \cot \omega l \sqrt{ } C_{i}^{\top} L_{i i} & =0 \\
\frac{\cot \omega l \sqrt{ } C_{i} L_{i i}}{\omega V^{\prime} C_{i} L_{i i}} & =\frac{L_{s z}}{L_{i}}
\end{aligned}
$$

35. Antenna Resistance. The resistance of an antenna may be divic into three parts in which the power dissipation is of the following kin
36. Radiation.
37. Joule heat.
38. Dielectric absorption.

The power radiated depends on the form of the antenna. It is prop tional to the square of the frequeney of osoillation and to the square the eurrent flowing in the antema. Bue to the latter consideration may write $P=A I^{2}$, where $A$ is a constant factor depending on the fo of the antenna and the frequency. It may be called the radiat resistance. For a given antenna the radiation resistance varies invers as the square of the wave length. The ohmie resistance to whieh joule heat is due is approximately constant, the skin effect and of faetors being eomparatively small. The resistance due to dielect absorption is directly proportional to the wave length. When these th components of resistance are added to ohtain the total resistance, finds that for every antenna there is a wave length for which the to resistance is a minimum.
36. Energy in the Field. The energy of an electromagnetic field at ny point is given by the equation ${ }^{1}$

$$
U=\frac{1}{8 \pi}\left(\epsilon E^{2}+\mu H^{2}\right)
$$

There $E$ is in electrostatic units instead of volts as in the previous equaions, $\epsilon$ is the dielectric constant, and $\mu$ the permeability of the medium. n frec space

$$
U=\frac{1}{8 \pi}\left(E^{2}+I^{2}\right)
$$

3ut, in general,

$$
\begin{aligned}
H & =\sqrt{\frac{\epsilon}{\mu}} E \\
U & =\frac{\epsilon}{4 \pi} E^{2}=\frac{\mu}{4 \pi} I^{2} \\
& =\frac{E^{2}}{4 \pi}=\frac{H^{2}}{4 \pi} \text { in free space. }
\end{aligned}
$$

The energy flux through 1 sq cm of surface, perpendicular to the irection of propagation, is given by the equation

$$
\left.\begin{array}{rl}
S & =v U=\frac{c}{\sqrt{\epsilon \mu}} U=\frac{c}{4 \pi} \sqrt{\frac{\epsilon}{\epsilon}} E_{e}^{2}=\frac{c}{4 \pi} \sqrt{\frac{\mu}{\epsilon}} H_{\varphi}^{2} \\
& =\frac{c}{4 \pi} E_{c}^{2}=\frac{c}{4 \pi} H_{e}^{2} \\
& =\frac{c}{8 \pi} E_{m}^{2}=\frac{c}{8 \pi} H_{m}^{2}
\end{array}\right\} \text { in free space. }
$$

there $E_{e}$ and $H_{e}$ represent effective values, and $E_{m}$ and $H_{m}$ the maximum alues of the electrie and magnetic fields respectively. Therefore, for he effective values of the electric and magnetic fields due to a vertical ire antenna,

$$
\begin{aligned}
E_{e} & =-\frac{2 \pi h I_{e}}{10 \lambda l} \text { e.s.u. } \\
H_{e} & =-\frac{2 \pi h I_{e}}{10 \lambda l} \\
S & =\frac{c}{4 \pi}\left(\frac{2 \pi h I_{e}}{10 \lambda l}\right)^{2}=\frac{c \pi h^{2} I_{e}{ }^{2}}{10^{2} \lambda^{2} l^{2}}
\end{aligned}
$$

'hen the total radiation from a vertical antenna, assuming that $H$ has $s$ maximum value in the equatorial plane of the antenna and that its ariation in a vertical plane at a distance $l$ from the antenna follows a ne law, is given by the expression

$$
\begin{gathered}
2 \pi l^{2}\left(\frac{c \pi h^{2} I_{e}{ }^{2}}{10^{2} \lambda^{2} l^{2}}\right) \text { ergs per second } \\
\frac{60 \pi^{2} h^{2} I_{e}{ }^{2}}{\lambda^{2}} \text { watts }
\end{gathered}
$$

' Jeans, J. H., "Mathematical Theory of Electricity and Magnetism," p. 518.

## SECTION 3

## RESISTANCE

## By Jesse Marsten, B.S. ${ }^{1}$

1. General Concepts. In any elcctrical conductor or system in whic there is a flow of current there is a cortain amount of energy continual being lost or converted into forms not readily available for use. As fi as is known at present this dissipation of energy may take one of tw forms: there may be an evolution of heat, and there may be radiatic of energy into space. Such energy dissipation is attributed to a propert of electric conductors or systems termod resistance.

When dealing with contimous currents, the resistance of a conduct or network, $R$, is adequately defined by Ohm's law,

$$
E=i R
$$

where $E$ is the voltage drop across the eonductor or network and $i$ the current through it. This assumes no back e.m.f. due to polarizatic or other causes. In this ease the dissipation of energy takes place entire in the form of heat generation, and the rate at which electrial energ is thus converted into heat is given by Joule's law,

$$
P=i^{2} R
$$

where $P$ is the power or rate at which electrical energy is being dissipate in the form of heat, $i$ is the continuous current in the circuit, and $R$ tl resistance of the circuit.

Ohm's law is insufficient to define resistance in a-c circuits. It found experimentally that the rate at which heat is evolved in a circu exceeds that which would he necessitated by the resistance of the circu as determined by Ohm's law. This is due to the fact that the cleetr magnetic and electrostatie fields around the circuit vary with time ar introduce effects which increase the losses in the circuit. An.ong the: effects may be enumerated the following major ones:

1. Eddy-current losses in conductors and other masses of metals in and ne. the circuit.
2. Hysteresis losses in magnetic materials.
3. Dielectric losses in the insulating mediums.
4. Absorption of energy by neighboring conductors or circuits by inductio
5. Radiation of electromagnetic energy into space.
6. Skin Effect. Increase of conductor resistance due to non-unifor current density.
[^5]All these effects result in an increase in energy loss in the cirenit over and above that given by Ohm's law. It therefore beeomes necessary to introduce the concept of a-c resistance or effective resistance, which is defined by the more general joulean relationship,

$$
\begin{equation*}
P=i^{2} R \text { effective } \tag{3}
\end{equation*}
$$

Where $P$ is the power loss in the circuit due to all canses and $i$ is the effecsive current in the cirenit. Ohm's law for continuous currents follows lirectly from this more general definition.
2. Units of Resistance. The practical unit of resistance is the ohm and is defined by Ohm's law when the voltage and current are unity in he practical system. It has, however, been arbitrarily defined as the esistance at $0^{\circ} \mathrm{C}$. of a column of mercury having a uniform cross section, $t$ height of 106.3 cm , and weighing 14.4521 g . Owing to the increasing ase of resistors having resistances of the order of millions of ohms, the negohm unit is employed. The megohm is equal to $10^{6}$ ohms.
3. Specific Resistance. It is found experimentally that the resistanee of an electric conductor is directly proportional to its length and inversely 0 its eross section:

$$
\begin{equation*}
R=\rho \frac{l}{A} \tag{4}
\end{equation*}
$$

Che proportionality factor $\rho$ is called the specific resistance of the conluetor and is a function of the material of the conductor.

From this definition of specifie resistance it is apparent that any tumber of units may be derived for specifie resistanee, depending upon he units chosen for $l$ and $A$. The unit generally employed in practical ngincering is the ohms per circular mil foot, anil is the resistance of a
ft. length of the conductor having a section of 1 cir. mil (diameter mil for a circular conductor).
4. Volume Resistivity. If, in the above definition, $l$ and $A$ are both nity, in the same system of units, then $\rho$ is the resistance of a unit cubo $f$ the material and may be defined as the volume resistiont! of the material. $t$ should be noted that volume resistivity is not the resistance of any nit volume of the material but is sperifically the resistance of unit olume measured across faces whose areas are carch unity.
With a knowledge of the dimensions of a conduetor and its speeific asistance the resistance of the conductor to d.e. may be computed from iq. (4). Consistent units must be enployed. The resistance thus omputed will be correct at the tomperature for whieh the speeific asistance applies. To obtain the resistance of the conductor at any ther temperature a correction will have to be applied.
5. Temperature Coefficient. The resistanee of a conductor is a metion not only of the material and dimensions of the eonduetor but Iso of its temperature. Within the temperature limits gencrally acountered in prative the change in resistance due to temperature varition is directly proportional to the change in temperature:

$$
\begin{equation*}
R_{t_{2}}=R_{t_{1}}\left[1+\alpha\left(t_{2}-t_{1}\right)\right] \tag{5}
\end{equation*}
$$

$R_{t_{1}}$ and $R_{t_{2}}$ are the conductor resistaners at temperature $t_{1}$ and $t_{2}$ sspectively.

The proportionality factor $\alpha$ is defined as the temperature coefficient resistance of the material and is the change in resistance of any materit per ohm per degree rise in temperature.

All conductors do not react alike to changes in temperature. Metals for example, have a positive temperature coefficient. Some alloy: such as manganin and constantan, have practically zero temperatur eoefficient and are therefore used primarily for resistance standards.

A knowledge of the temperature conficiont of conductor materisl enables one at times to make more aceurate determinations of tem perature change than is possible by thermometer measurements, especiall in cases where parts to be measured are not readily accessible. Resist ance determinations of the conduetor are made at both temperature and the temperature change computed from Eq. (5).
6. Properties of Materials as Conductors.

| Material | Specific resistance at $0^{\circ} \mathrm{C}$., ohms per cir. mil ft | Teniperature coeflicient per ${ }^{\circ} \mathrm{C}$. between 20 to 104$)^{\circ} \mathrm{C}$, ohme yer ${ }^{\circ} \mathrm{C}$. |
| :---: | :---: | :---: |
| Silver | 9.75 | 0.004 |
| Copper | 10.55 | 1.004 |
| Aluminum. | 17.3 | 11.0039 |
| Nickel (pure) | 58.0 | 0.0041 |
| Iron (pure) | 61.1 | 0.0062 |
| Phosphor bronze | 70.0 | 0.004 |
| Lead | 114.7 | 0.0041 |
| Nickel silver, 18 per cent ( ${ }^{\text {derman silver) }}$ | 180 to 190 | 0.00027 |
| Manganin (copper, 82 per cent; manganese, 14 per cent; nickel, 4 per cent). | 290 | 0.00002 |
| Constantan (Advance, Cupron, Ideal, la-la) (copper, 55 per cent; nirkel, 45 per cent). | 294 | 0.00002 |
| Nichrome (nickel, 60 per cent; chromium, 15 per cent; iron, balance). | 650 to 675 | 0.0001 to 0.0001 |

7. Resistors in Series and Parallel. Simple and complex notworks c resistors may be represented by an equivalent resistor which may b expressed in terms of the individual resistanes making up the network


Fin, 1.-Simple series circuit.


Fica. 2.-Parallel rir cuit.

The equivalent resistaner of a number of resistors eonmeeted in serie is equal to the sum of the individual resistances. Referring to Fig. 1:

$$
\begin{aligned}
= & i R_{\text {equiv. }}=e_{1}+e_{2}+\cdots+e_{n}=R_{1} i+R_{2} i+\cdots+R_{n}+R_{n} i= \\
= & R_{\text {equiv. }}=\left(R_{1}+R_{2}+\cdots+R_{n}\right) \\
& R_{\text {equiv. }}=\sum_{1}^{n} R
\end{aligned}
$$

The reciprocal of the equivalent resistance of a number of resistors innected in parallel is equal to the sum of the reeprocals of the indidual resistances. Referring to Fig. 2:

$$
\begin{aligned}
i & =i_{1}+i_{2}+\cdots+i_{n}=\frac{E}{R_{1}}+\frac{E}{R_{2}}+\cdots+\frac{E}{R_{n}} \\
\frac{i}{E} & =\frac{1}{R_{\text {equiv. }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{n}} \\
\frac{1}{R_{\text {equiv. }}} & =\sum_{1}^{n} \frac{1}{\bar{R}}
\end{aligned}
$$

## RESISTANCE AS FUNCTION OF FREQUENCY

8. Skin Effect. It may be shown that the resistance of a conductor a minimum when the current density is uniformly distributed over the oss section of the conductor. This condition obtains for d.c. The sistance increases for non-uniform distribution of current density over 1e cross section of the conductor. This latter condition ohtains in mductors carrving a.c. This is a result of the distribution of magneticux lines, outside and inside the conductor. If the conductor is assumed , be made up of a number of conductirg elements in parallel, then the iterior elements, being surrounded by more flux lines than the exterior, ill have greater reactance and, therefore, the current in the interior ements will be less than that in the exterior clements. As a result the arrent crowds toward the surface of the conductor, giving a nonniform eurrent density. This imperfert penctration of current in a onductor, resulting in an increase in resistanee, is termed skin effect. Skin effect in a conductor is a function of the following factors:

$$
\begin{equation*}
\sqrt{\frac{\mu f}{\rho}} \tag{6}
\end{equation*}
$$

here $t=$ thickness of the conductor
$f=$ frequence of eurrent
$\mu=$ permeability of the conductor
$\rho=$ specific resistance of the condurtor.
It is possible to compute aceurately the h-f resistane of simple round Hindrical conductors from involved functions of the ahove factor. To teilitate these computations tables have been prepared from which de ratio of h-f resistanee $R_{f}$ to d-e resistane $R_{0}$ maty be quickly detertined. From this factor and the easily measured d-e resistance the h-f esistance may be computed.

The table below gives the values of $R_{f} / R_{\mathrm{u}}$ for different values of t factor

$$
x=\pi l \sqrt{\frac{2 \mu f}{\rho}}
$$

where $d$ is the diameter of the wire in eentimeters, $x$ may be cornputed $f$, any particular case, and $R_{0}$ may be measured at d.e. or sompute Knowing $x$ and $R_{n}, R_{f}$ may be determined.
9. Ratio of H-f Resistance to the D-c Resistance for Different Valu of $x=\pi l l \sqrt{2 \mu f / \rho}$.

| $x$ | $R_{f} / R_{0}$ | $x$ | $R_{\text {/ }} / R_{0}$ | $x$ | $R_{f} / R_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1.0000 | 5.2 | 2.114 | 14.0 | 5.209 |
| 0.5 | 1.0003 | 5.4 | 2. 184 | 14.5 | 5. 386 |
| 0.6 | 1.0007 | 5.6 | 2.254 | 15.0 | 5.562 |
| 0.7 | 1.0012 | 5.8 | 2.324 |  | 5.502 |
| 0.8 | 1.0021 | 6.0 | 2.394 | 16.0 | 5.915 |
| 0.9 | $1.00: 34$ | 6.2 | 2.463 | 17.0 | 6.268 |
|  |  |  |  | 18.0 | 6.621 |
| 1.0 | 1000 | 6.4 | 2.533 | 19.0 | 6.974 |
| 1.1 | 1.008 | 6.6 | 2.603 | 20.0 | 7.328 |
| 1.2 | 1.011 | 6.8 | 2.673 |  |  |
| 1.3 | 1.015 | 7.0 | 2.743 | 21.0 | 7.681 |
| 1.4 | 1.020 | 7.2 | 2.813 | 22.0 | 8.034 |
| 1.5 | 1.026 | 7.4 | 2.884 | 23.0 | 8.387 |
|  |  |  |  | 24.0 | 8.741 |
| 16 | 1.033 | 7.6 | 2.954 | 25.0 | 9.094 |
| 17 | 1.042 | 7.8 | 3.024 |  |  |
| 1.8 | 10.3 | 8.0 | 3.094 | 26.0 | 9.447 |
| 1.9 | 1. 064 | 8.2 | 3.165 | 28.0 | 10.15 |
| 2.0 | 1.078 | 8.4 | 3.235 | 30.0 | 10.86 |
|  |  |  |  | 32.0 | 11.57 |
| 2.2 | 1.111 | 8.6 | 3.306 | 34.0 | 12.27 |
| 2.4 | 1.152 | 8.8 | 3.376 | 3. | 12.27 |
| 2.6 | 1. 201 | 9.0 | 3.446 | 36.0 | 12.98 |
| 2.8 | 1. 256 | 9.2 | 3.517 | 38.0 | 13.69 |
| 3.0 | 1. 318 | 9.4 | 3.587 | 40.0 | 14.40 |
|  |  |  |  | 42.0 | 15.10 |
| 3.2 | 1.385 | 9.6 | 3.658 | 44.0 | 15.81 |
| 3.4 | 1. 4.56 | 9.8 | 3.728 |  |  |
| 3.6 | 1. 529 | 10.0 | 3.799 | 46.0 | 16.52 |
| 3.8 | 1. 603 | 10.5 | 3.975 | 48.0 | 17.22 |
| 4.0 | 1.678 | 11.0 | 4.151 | 50.0 | 17.93 |
|  |  |  |  | 60.0 | 21.47 |
| 4.2 | 1. 752 | 11.5 | 4.327 | 70.0 | 25.00 |
| 4.4 | 1826 | 12.0 | 4.504 |  |  |
| 4.6 | 1889 | 12.5 | 4.680 | 80.0 | 28.54 |
| 4.8 | 1.971 | 13.0 | 4.856 | 90.0 | 32.07 |
| 5.0 | 2.043 | 133.5 | 5.0833 | 100.0 | 35.61 |

It is frequently useful to know the largest diameter of wire of differen materials which will give a ratio of $R_{s} / R_{0}$ of 1.01 for different trequencie: For a ratio of $R_{f} / R_{c}$ equal to 1.001 , the diameters given below shoul be multiplied hy 0.55 ; and for $R_{f} / R_{v}$ equal to 1.1 , the diameters should $b$ multiplied by 1.78 .
1 U.


## 11. Reduction of Skin Effect.

In view of the tendency of the murrent to erowd to the surface of the conductor at high frequencies, the remedies which have been found practical in offerting an improvement in the resistancer rat io $R_{f} / R_{0}$ have been those in whirh the conductor has been designed so that it presents a skin to the current flow. These are:

1. I'se of Flat Copper Strip. While skin effert is mresent, for the same cross-sectional area a flat strip gives a lower resistance ratio than do round conductors.
2. T'se of T'ubular Conductors. Here the extermal magnetic field is much greater than the internal field, and therefore all parts of the conductor are affeeted alike hy the field, thus redueing the skin effeet.
3. T'se of Litzendraht. Acrording to E(1. (6) the smaller the diameter of the wire the less the skin effect. Litzendraht is a braided cable made up of a large number of fine strands of wire. When certain precautions are 1aken this braid shows a very much lower resistance ratio than does a solide eopuer wire of equal sertion. These precautions are:
a. biach strand must be thoroughly insulated from every othor strand to avoid rontaet resistance.
b. J3raiding must be such that ench strand passes from the renter to the outside of the condurtor at regular intervals-a sort of transposition. This insures that all strands are affected alike by the magnetic flux.
c. Dach strand must be continuous.
4. Types of Resistors. Rosistors gomerally used in radio and allied applieations may be broadly classified as:
5. Fixed resistors.
6. Variable resistors.

Each of these groups may be further classified on the basis of the natur of the conducting material of the resistor, as:

> 1. Wire wound.
> 2. Composition (employing earbon).
13. Fixed Wire-wound Resistors. As commonly employed, thes are wound on strips of fiber or bakelite, and on ceramic forms. Th former are used where the power-dissipation requirements are generall: negligible, for example, as center-tapped resistors aeross vacuum-tub) filaments for hum balaneing. Resistors wound on ceramie forms ar generally used where the power requirements exceed 2 or 3 watts. Sue! resistors are made with a protective coat of enamel or cement baked ove the winding, thus affording a measure of protection against mechaniea injury and penctration of moisture. The characteristics of the wire wound resistor are those of the particular wire employed and generall: show a negligible or slight temperature coefficient and no voltage coeffi eient, that is, the resistance is independent of the applied voltage.
14. Variable Wire-wound Resistors. These are usually of the con tinuously variable type, made by winding resistance wire on a fla strip of fiber, bakelite, or other insulating material. This strip may b formed into an are and placed in a protecting container. A metalli sliding arm is arranged to travel over the winding, thus making contac with each turn as it is rotated. The choice of wire and size is determine, by the range and space requirements.

In general, wire-wound continuously variable resistors are wound s that the resistance changes uniformly with the motion of the slidin contact. For certain uses, as, for example, antenna-type volume con trols, it is desirable that the resistance change be non-uniform. I this case the form on which the wire is wound is sometimes tapered s that the resistance per degree rotation is not constant. Other methods c tapering employed are winding with yariable pitch, winding sections c the control with different sizes of wire, and copper plating start an finish of the winding.

Some of the factors to be considered in design are:

1. Contact between slider and resistor element should be positive.
2. Winding should not hecome loose on the form.
3. Sliding contart should not wear away resistance wire.
4. Resistance change per turn should be as small as possible.
5. Slider material should be such that it will not oxidize.
6. Composition-type (Radio) Resistors. The term composition-typ resistor is employed to cover that group of resistors in which a conductc is mixed with binder in definite proportions and suitably treated $t$ produce a resistor material. This type of resistor has attained a wid popularity because of the following advantages: (1) Flexibility in rangeit may be made in any valuc up to several megohms; (2) compaetnessits physical dimensions are small for any range; they may be made i sizes down to $3 / 16$ by $1 / 2 \mathrm{in}$. or smaller.

Numerous types of these resistors have been produced, but they tak two general forms:

1. Solid-body Resistor. In this type the resistor material is extrudec pressed or molded into its final physical form, which generally is a solid roc after which it may be subjected to some form of heat treatment. so-called carbon resistors are examples of this type.
2. Filament-coated Resistors. In this type a conducting coat is baked $n$ the surface of a continuous glass filament or other form. In the case of he glass filament this is completely enclosed in an insulating tube. The o-called metallized-filament resistors are examples of this type.
3. Characteristics of Composition-type Resistors. Compositionype (commercially known as radio) resistors possess properties differing


1a. 3a.-Voltage characteristic of various resistors. Curve $\mathbf{d}$ is metallizedfilament type; others are carbon type.
ery markedly from those of metallic resistors. The most important nes are as follows, and are possessed by all these types in varying degree:

iag. 3b.-Voltage coefficient of 1.0 megohm units. Curve $A$ is metallizedfilament type; others are carbon type.
a. Voltage Characteristics. The resistance is not independent of the applied oltage and generally falls with increasing voltage. Typical curves showing


Fig. 4.-Load characteristic of 100,000 ohm-1.0 watt resistors.
he manner in which the resistance varies with voltage (heating effect due to oad not present or corrected for) are shown in Fifs. $3 a$ and $b$.
b. Load Characteristics. The chararteristics shown in Fig. 4 show how the esistance varies with load, the load being applied for about fifteen minutes
to permit steady state to be reached. No specific trend is present, sos types showing a negative change, some a positive one, and others chan from a negative to a positive coefficient.
c. IIumidity Characteristics. The effect of humidity in general is to cat a rise of resistance. This effect may sometimes be reduced by suital treatment.
d. Noise. These types of resistors all show, in varying degree, the preser of microphonic noise. The degree of noise is a function of the load.
17. Variable Carbon-type Resistors. In numerous radio applicatio high variable resistors are required, for example, for controlling t sensitivity of a recelver by varying the C-bias on the r-f tubes a variat resistor up to 50,000 ohns maximum is commonly enployed. F adjusting the andio-signal level in automatie volume-control sets variable resistor up to 0.5 meg hm is not uneommon. From the poi of view of cost, wire-wound resistors of this order of magnitude a prohibitive. Furthermore it is desirable to have a non-unform rate change of resistance with respect to angular rotation, which is ve difficult to secure with wire-wound resistors. Carbon or graphitic typ of variable resistors which are capable of being made to moet the requirements at reasonable eost are therefore widely used. Su resistors generally consist of a resistive solution applied to some fl form, such as paper or ceramic, and baked on. A rotating slider or son other form of contact travels over this resistive element producing contimuons variation of resistance. Sinee the resistor is essential painted on the form, its geometrical form may be varied by desig Also different concentrations of the resistor ink or paint may be employe at different positions of the resistor element. By the use of these ty expedients the resistor may be designed to give any variation of resistan desired.
18. Rating Wire-wound Resistors. In view of the low temperatu coefficient of the resistance wires generally employed in radio wire-wom resistors, the resistance change with loads normatly encountered is sma The rating is, therefore, primarily determined by the power the resist can dissipate contimonsly for an unlimited time without excessive ten perature rise or deterioration of the resistor. Some mamafactarers ra resistors on the basis of the power that will prodace a temperature rise $250^{\circ} \mathrm{C}$. in an ambient temperature of $40^{\circ} \mathrm{C}$, when the resistor is monnte in free air. Such perfect ventilation conditions are seldom encountere As a result, it is gencrally recommended that such resistors be used: one-fourt h to one-half the nominal rating, which results in a temperatu rise of $100^{\circ} \mathrm{C}$, to $150^{\circ} \mathrm{C}$. In practice even these temperature rises ma be excessive owing to sach factors as poor ventilation, proximity , resistors to parts which may not be suhjeeted to clevated temperature and Fire Inderwriter's approval. The specifie applieation therefos limits the practical use of a resistor rather than any nominal rating.
19. Rating Composition-type Resistors. The rating of composition type resistors is a more complicated matter. The temperature coofficiet of this type of resistor being larger, it is possible for a resistance change $t$ become quite approbible, bofore a temperature limitation is exeecolo Furthernore, with the higher ranges, such as 0.25 mogohm and over, i which the power dissipation may he very low, the voltage characteristic may be a dotermining factor instead of the load-carrying characteristic It is therefore customary to rate this type of unit on the basis of the max mum load it can earry, or the maximum voltage which can be applied $t$ it, without exeecding prescribed resistance changes. No definite stanc

Is have been set as yet, but designs are such that power dissipations of out 0.5 to 1 watt per square inch of radiating surface are employed. 20. Composition of Resistors. Radio resistors of the earhon and unent types generally employ a conducting material of high speefifie sistance mixed with a filler and binder. The most widely used conduct$\frac{5}{5}$ material is some form of carbon or graphite. The fillers or binders iployed vary with the type of resistor. Examples of these are clay, bber, and bakelite. The filler and conductor are mixed in various prortions to obtain resistors with different ranges. The method of making e resistor varies also with its type. The solid-body types are generatly her molded or extruded. The filament resistor is made by baking the sistance material on a glass rod wheh is sealed in a ceramic container. 21. R.M.A. Color Code. The use of resistors has inereased to such an tent and so many are employed in adio set that it has become desirable identify each resistor for range in a ick and simple manner. Sueh entification simplifies assembly of ese units in radio sets and helps in
 rvicing. A color code has therefore en adopted by the Radio Manufacturers' Association as follows:
Ten eolors shall be assigned to the figures as shown in the table:
Cable designations indicate the

| igure | Color | Color to be equivalent to |
| :---: | :---: | :---: |
| 0 | 3lark |  |
| $\frac{1}{2}$ | ${ }^{\text {Rrown }}$ Hed | Cable 60113 Cable 60149 |
| 3 | Oranke | Cable 60041 |
| 4 | Collow | Cable 60187 |
| 8 | Creen | Cabbe 60105 |
| 7 | Yiolet | Cable 60010 |
| ${ }_{9}^{8}$ | Gray | Cable 60034 | color shades as shown on the Standard Color Card of America, 8th ed., 1928, issued by the Textile Color Card Association of the Enited States.

The body $A$ of the resistor shall be colored to represent the first figure of the resistance value. One end $B$ of the resistor shall be colored to represent the second figure. A band, or dot, $C$, of color, representing the number of ciphers following the first two sures, shall he located within the booly color. Two diagrams below illustrate oo interpretations of this standard, both of which are deemed to be in accordtee with the standard.
Examples illustrating the standard are as follows:

| Ohms | A | 13 | (' |
| :---: | :---: | :---: | :---: |
| 10 | Brown | $\begin{gathered} \text { Black } \\ 0 \end{gathered}$ | 131ark, no ciphers |
| 200 | led | Black | Brown, one cipher |
| 3,000 | Orange | $\begin{aligned} & \text { 13lack } \\ & 0 \end{aligned}$ | Red, two ciphers |
| 3,400 | Orange | Yellow | lied, two ciphers |
| 40,000 | Yellow | Black | Orange, three ciphers |
| 44.000 | Yellow | Yellow | Orange, three ciphers |
| 4:3,000 | $\underset{4}{4}$ | $\begin{gathered} 4 \\ \text { Orange } \\ 3 \end{gathered}$ | Orange, three ciphers |

22. Test Specifications. Up to the present time there has been agreement on a standard specification acceptable to all radio mat facturers. An illustration of specifications sometimes called for is giv here.
23. Matcrial. The resistance material shall be carlon, graphite, metal, any other substance which will give resistors which meet the reguireme of the specifications.
24. Rating Wattage. Unless otherwise sperified the ratings of radio re: tors shall be assumed to correspond with those in the following table:

| Assumed rating, watts | $\begin{gathered} \text { Over-all } \\ \text { length } \\ \text { ( } \pm 1 / 16 \text { in.), } \\ \text { inches } \end{gathered}$ | $\begin{gathered} \text { Diameter } \\ ( \pm .5 \text { in.) } \\ \text { (naches } \end{gathered}$ | 1,eads |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Length, $\pm 1 / 8 \mathrm{in} ;$; diameter, $\pm 0.005$ ir spacing, $\pm 1 / 8 \mathrm{in}$. |  |  |
|  |  |  | Tinned, inches | Copper, inches | Wire, inches |
| 0.25 | 11/16 |  | 11/2 | 0.032 |  |
| 0.50 1.00 | 13 | 14 | 15 | 0.049 | $13 / 16$ |
| 1.00 | $13 / 4$ | \% | 13 | 0.040 | 1\%2 |
| 2.00 | 2 | 716 | $11 \%$ | 0.040 | 15 |

3. Rexistance. The resistance of the resistor shall, when measured by approved method, fall within the limits sperified. There shall be no grea variation than one per cent between the resistance of a resistor obtained measuring with the current flowing through it in one direction and tl obtained with the direction of current reversed.
4. Life Test. The permanence of the resistors shall be such that wh tested as here specified, the permanent change shall not be greater thar per cent when measured by the bridge method at $77^{\circ} \mathrm{F} .\left(25^{\circ} \mathrm{C}\right.$.). The t shall eonsist of intermittent operation at the rated wattage or voltage of resistor, for $1,000 \mathrm{hr}$., each cycle consisting of a load period of 2 hr . anc no-load period of 30 min .
5. Humidity. Resistors shall be capable of passing Tests 3 and 4 af conditioning for 100 hr . in a humidifier operating at $38^{\circ} \mathrm{C}$. and a relat humidity of 90 per cent. Free moisture shall be removed from the surf: of the resistor.
6. Finish. The finish shall consist of a smooth uniform coating of enar or lacquer in colors in accordance with the color code specified by the R.M standards. The surface shall be reasonably free from stains, blisters, crac dirt, or other blemishes.
7. Representative Values of Resistors Employed in Radio Se The range of resistors usually employed in radio sets extends from 1 ol up to 10 megohms. These resistors are used for various purposes, su as providing grid bias to radio, audio, and detector tubes; plate couplir voltage dividers, and filters. Typical values employed for these vario applications are enumerated below:


## References

Bur. Standards Circ. 74.
Driver-Harris Company: Bull. R-28.
Gilby Wire Company: "Resistance Handbook."
Kennelly, Laws, and Pierce: Experimental Research in Skin Effect in Conductc Trans. A.I.E.E., 1915.
Morecroft: "Principles of Radio Communication."
Pender: "Handbook for Electrical Engineers."

## SECTION 4

## INDUCTANCE

## By Gomer L. Davies, B.S. ${ }^{1}$

1. Magnetic Flux. The property of electrical circuits called inductance spends upon the magnetic effects associated with a flow of clectric curant. In a magnetic system the magnitude of the foree of magnetic itraction or repulsion is proportional to the product of the strengths the poles and inversely proportional to the square of the distance atween them. A unit magnetic pole is defined as that pole which repels similar pole at a distance of 1 cm with a foree of 1 dyne. The foree stween two poles acts along the line joining the polas. Consequently unit north pole in the vicinity of a magnet is acted upon by two forecs: re of repulsion, due to the north pole of the magnet; and one of attracon, due to the south pole. The resultant is the total force expred by re magnet upon the unit pole. Thus the magnet is surrounded by a shl of force or magnetic field whose direction and magnitude at any point ee defined as the direction and magnitude of the foree acting upon a unit orth pole at that point.
If a unit north pole is allowed to move freely in a magnetic field, it will ove in the direction of the field at each point and will trace out a path hich is called a line of force. The total field is considered to be made up $\because$ a large number of such lines. In any region of space the total of ath re lines of force in that region is called the magnetic flux in that region, ad the number of lines of foree passing through a unit area of a surface arpendicular to the direction of the field is the fux density and is detertined by the strength of the field.
2. Magnetic Effects of Current-carrying Conductors. Magnetic fects are exhibited not only by magnets but also by wires carrying entric currents. The magnetic field near a straight currenterarrying onductor consists of eireular lines of foree surrounding the conductor; re flux density at any point outside the wire is proportional to the curent and inverscly proportional to the distaner of the point from the xis of the eonductor. If the wire carrying the eurrent is wound in one : more layers on a cylindrical form, the field inside of this coil is parallel , the axis of the eylinder and is proportional to the product of the curent and the number of turns on the coil. This product of eurrent (in mperes) and number of turns is called the ampere-turns of the coil. The ux density along the axis of the coil may be expressed as the product of te ampere-turns by a constant. If the winding is of infinite length, this onstant is $4 \pi$.

[^6]3. Inductance-Definition and Units. ${ }^{1}$ When the current in a cireu varies Ohm's law in the form in which it is stated for constant-eurren circuits, no longer serves to define the eurrent.

The magnetie flux associated with the circuit varios with the current an induces a voltage in the cirruit which is given by the equation

$$
e=-\frac{d \phi}{d l}
$$

where $e$ is the indured voltage, $\phi$ the flux. and $t$ the time. As the flux proportional to the rurrent, it may be written

$$
\phi=L i
$$

where $L$ is a constant and i the current. Then

$$
e=-\frac{d}{d t}(L i)=-L L_{d t}^{d i}
$$

If the current is increasing, the indured em.f. opposes the current, an work nust be done to overcome this e.m.f. If the work is $W^{\circ}$,

$$
\frac{d W}{d t}=c i=-L i \frac{d i}{d t}
$$

and

$$
\mathbb{W}=-\int_{0}^{i_{0}} L i d i=-\frac{L i_{0}{ }^{2}}{2}
$$

$i_{0}$ being the final value of the current, the initial value being taken as zero.
The quantity $L$ in these equations is the coefficient of self-induction self-inductance, or simply inductone of the "ircuit. It may be defined $;$ three ways: from Eq. (2), as the flux associated with the circuit when un current is flowing in it; from Eq. (3), as the back e.m.f. in the circuit cause ong unit rate of change of rurrent; and from En. (5), as twice the work don in establishing the magnetic flux assoctuted with unit current in the circm These three definitions give identieal and constant values of $L$ provide there is no material of variable permeability near the circuit, and pre vided the current does not change sol rapidly that its distribution i the conductors differs materially from that of a constant current. these eonditions do not hold, $L$ is not constant and the values obtaine from the three definitions will in general be different.

The units used for inductance must conform to the units used for th other quantities used in the defining equations. The practical unit the henry, which is the inductance of a circuit when a back e.m.f. of volt is indued in the circuit by a current changing at the rate of 1 am per second. The relations between units are as follows:

$$
\begin{aligned}
1 \text { henry } & =10^{9} \text { c.m.u. } \\
& =1.1124 \times 10^{-12} \text { c.s.u. }
\end{aligned}
$$

The henry is subdivided into two smaller units, the millihenry and th mierohenry. The millihenry is one-thousandth of a henry, and th mierohenry is one-millionth of a henry, The millihenry and mierohent are abbreviated mhand $\mu$ hespectively. Thus

$$
1 \text { henry }=1,000 \mathrm{mh}=1,000,000 \mu \mathrm{~h}
$$

[^7]The term "inductance" refers to a property of an electrical circuit or ece of apparatus but not to any materal object. A piece of apparatus sed to introduce inductance into a circuit is properly ealled an induchor coil.
4. Current in Circuits Containing Inductance. If a circuit containing source of constant e.m.f. and pure resistance only is closed, the current ses instantly to its full value as determined hy Ohm's law. If the eireuit intains inductance, a back e.m.f. of the value $L \frac{d i}{d t}$ acts during the time te current is changing, so that, if the em.f. of the souree is $E$, the actual m.f. available to foree current through the resistance is $E-L \frac{d i}{d t}$. The cquation for the current in the circuit is

$$
\begin{align*}
& E-L \frac{d i}{d t}=R i  \tag{6}\\
& L \frac{d i}{d t}+R i=E \tag{7}
\end{align*}
$$

The solution of this equation is

$$
\begin{equation*}
i=\frac{E}{R}\left(1-\epsilon^{-\frac{R t}{L}}\right) \tag{8}
\end{equation*}
$$

he time $t$ is reckoned from the instant at which the switch is closed, and $\epsilon$ the base of natural logarithms.
At a time $t=L / R$ after the circuit is closed, the current has a value equal - $I_{0}\left(1-\frac{1}{4}\right)$, or about 63 per cent of its finall value. The quantity $L / R$ aalled the time constant of the circuit. The time constant, or the time xuired for the current to rise to a value of $1-\frac{1}{6}$ times its final value, does st depend upon the actual values of inductance and resistance but only on their ratio.
The current in such a circuit is shown in Fig. 1 for several values of ${ }^{\prime} R$. Theoretically the current does not reach its maximum value $I_{0}$


Fig. 1.-Rise of current in inductive circuit.
acept at an infinite time after the circuit is closed, but practically the ifference between the aetual current and the value $I_{0}$ becomes negligible Ster a relatively short time.

If, after the steady murment $I_{"}$ has been establishod in the eireuit, th souree of the e.m.f. is short-cireuited, the current does not fall to zer instantly but decreases acororling to the equation

$$
i=E_{i} \epsilon^{-\frac{R t}{L}}
$$

This equation is plotted in Fig. 2 for the same values of the eiren constants as were used in Fig. I. In this ease the time constant $L /$,


Fig, 2,-Fall of current in inductive cireuit.
represents the timo required for the current to fall to $1 / \epsilon$ or about 37 pc cont of its initial value.

If, instead of the soure of e.m.f. being short-rimented, the circuit i opened, the resistance beomes oxtremely large and the curront falls $t$ zero almost instantly. As a result of this rapid change of current, a larg e.m.f. is induced in the eireuit, cousing a spark or are at the point a which the cirenit is opened.


Fice :3.-Siaries rirruit containing resistance and inductance.


Fig. 4.-Phase relations in inductive cirruit.

When the eurront in an inductive cirmit is changing, a back e.m.t other than that due to rosistance aets in the circuit. This back e.m. is proportional to the current and to the quantity wh, which is calle the inductive reactance and usually writton $X_{L}$. Also, the phase of th back e.m.f. is 90 deg. behind that of the current. To force a curren through a pure inductance, therefore, requires an impressed e.m.t 180 deg. out of phase with the back e.m.f., or one leading the curren by 90 deg. (Fig. 4).

Now, if a sinusoidal e.m.f. is impressed on a eireut eontaining resistance id inductance in serics (Fig. 3), the eurrent in the cireuit will also be usoidal, provided the resistance and induetanee are independent of e current. The portion of the impressed e.m.f. required to force reent through the resistanee will be in phase with the eurrent, while the ortion required to foree current through the inductance will lead the rrent by 90 deg. The resultant phase of the impressed e.m.f. with speet to the current will have some value between zero and 90 deg., pending upon the values of resistance and induetance in the cireuit.
To determine mathematieally the behavior of the eirenit deseribed ove, it is necessary to set up and solve the differential equation for e cireuit. This equation will have the same form as Eq. (7) with $E$ placed by $E_{M} \sin \omega$; that is,

$$
\begin{equation*}
I \cdot \frac{d i}{d t}+R i=E_{M} \sin \omega t \tag{10}
\end{equation*}
$$

The solution is

$$
\begin{equation*}
i=\frac{E_{M}}{\sqrt{R^{2}+\omega^{2} L_{2}^{2}}} \sin (\omega t-\phi)+c \epsilon^{-\frac{R t}{L}} \tag{11}
\end{equation*}
$$

ere $\tan \phi=\omega L / R$, and $c$ is a constant to be determined. The first rm is the only one of importance after the current has been flowing r a short time. Thus the eurrent has at peak or maximum amplitude $E_{M} / \sqrt{R^{2}+\omega^{2} L^{2}}$ and lags the impressed e.m.f. hy the phase angle $\phi$ rose tangent is $\omega L / R$. The quantity $\sqrt{R^{2}+\omega^{2} L^{2}}$ is called the impedance the eireuit and is demoted by $Z$. In terms of the effective values of rrent and e.m.f. $I$ and $E$, the equation for the eurrent may be written

$$
\begin{equation*}
I=\frac{E}{Z} \text { or } I_{M}=\frac{E_{M}}{Z} \tag{12}
\end{equation*}
$$

In complex notation this form is

$$
\begin{equation*}
i=\frac{E_{M} \sin \omega t}{R+j \omega L^{\prime}} \tag{13}
\end{equation*}
$$

, in terms of the instantancous e.m.f.,

$$
\begin{equation*}
i=\frac{e}{R+j \omega L}=\frac{e}{z} \tag{14}
\end{equation*}
$$

The quantity $z$ is called the complex or rector impedance. It is a vector tha magnitude $\sqrt{R^{2}+\omega^{2} L^{2}}$ or $Z$, and angle $\phi$ whose tangent is $\omega L / R$. A etor diagram showing these rehations given in Fig. 5. Thus the relation tween current and e.m.f. in an a-c cirit containing resistance and inductce in scries may be expressed in the ne form as Ohm's law for d-e circuits, svided instantaneous values of current d voltage and vector impedance are ed [Eq. (14)]. A similar relation may written using effective values of eurit and voltage and the magnitude of


Fia, 5.--Vector relations of inductive rirmit. a vector impedanee. Both the vector impedanee $z$ and its magnitude $Z$
are generally referred to simply as impedance, the context usually indicat ing which quantity is meant.

The impedance $Z$ increases as the frequency is increased. Cor sequently, for constint values of $E, R$, and $L$, the current $I$ will decreas


Fig. 6.-Impedance of inductive circuit with frequency.
as the frequency increases. Figure 6 shows values of $Z$ plotted again frequency, and Fig. 7 shows how the current in the circuit of Fig. varies with the frequency of the impressed voltage.

Consider Eq. (11). After tl


Fig. 7.-Current vs. frequency in inductive circuit. switch has been closed for som time, the values of current an voltage bear a definite relatic to each other at each instat during a cycle, and this series relations is repeated durir every cycle. The circuit is no said to be in the steady-sta condition, and the first term. the right-hand side of Eq. (1 completely defines the curre in terms of the voltage and in pedance. However, for a sho interval of time after the swite is closed, the second or transies term generally has an appreciable value and must be considered. I comparison with Eq. (9) it is scen that this transient current has th form shown in Fig. 2. It is evident that the duration of th transient current will depend upon the time constant $L / R$. The initi value of the current, which is equal to the constant $c$, must, however, determined. Now the current must be zero at the instant the switch closed (since it cannot rise to sonce finite value instantaneously becau: of the inductance in the circuit) and, therefore, if $t$ is taken as zero : the instant of closing the switch, the value of $c$ may be found math matically to be defined by the equation

$$
c=\frac{E_{M}}{Z} \sin \phi=I_{M} \sin \phi
$$

The physieal signifieance of this equation is most readily seen by erence to Fig. 8. ${ }^{1}$ In a of this figure, the curve $c$ represents the voltage, pressed upon the circuit and the curve marked "Steady state current" lieates the value the current would have if the switch had been closed a time much earlier than the time represented in the figure. Accord-

a. 8.-Effeet on transient current of chosing circuit at different times in the rycle.
gly, at the instant of elosing the switch, the current should have 3 value given by the intersertion of the steady-state current curve th the vertical axis in the figure. But the actual current must be so at this instant; therefore, the transient current must have the lue $c$, just neutralizing the fictitious steady-state current. This ensient current then decreases cording to the, curve labeled ransient current," and the actual rrent is the sum of the steady-state rent and the transient current. If e switch should be closed at an stant at which the steady-state curit would be zero, as in Fig. $8 b$, the nstant $c$ would be equal to zero and ere would be no transient term. msequently the quantity $\phi$ in Eq. 5) reprements the phase angle of the stant of elosing the switeh with


Fici. 9.-- Power in inductive eircuit. erence to the nearest time at which e steady-state current crosses the zero axis in passing from negative to sitive values. In Fig. 8a, the switeh was assumed to be closed shortly ter the steady-state current passed through such a zoro value; therefore, this case, the so-cealled "phase angle" is a lag angle, and sin $\phi$ is negative, aking c negative as shown.
5. Power in Inductive Circuit. The instantaneons power used in the ceuit of Fig, 3 is the prodact of the instantaneons values of current and Itage. Figure $9^{2}$ shows this power at times to be negative because ${ }^{1}$ Morecroft, J. H., "Principles of Radio Communication," 2d ed., 1927.
${ }^{2}$ Ibid.
the current and voltage have opposite signs. Such negative pow represents a restoration to the source of some of the energy stored in th magnetie field. In a cireuit containing inductance only, the eurres and voltage are 90 deg . ont of phase and the negative loops of the instan tancous-power curve are exactly equal to the positive loops, so that th average power taken by the inductanee is zero.

In general, the instantaneous jower is given by

$$
\begin{align*}
p & =E_{M} \sin \omega t \times I_{M} \sin (\omega t-\phi) \\
& =E_{M} I_{M}\left(\sin ^{2} \omega t \cos \phi-\sin \omega t(0) \omega t \sin \phi\right) \\
& =\frac{E_{M} I_{M}}{2}(\cos \phi-\cos 2 \omega t \cos \phi-\sin 2 \omega t \sin \phi)
\end{align*}
$$

The average value of the second and third terms in the last parenthesis zero, so that the average power taken by the circuit is that expressed by th first term, or

$$
\begin{equation*}
I^{2}=\frac{E_{y} I_{s}}{2} \cos \phi=E I \cos \phi \tag{l}
\end{equation*}
$$

where, as before. $E$ and $I_{v}$ are maximum values, and $E$, and $I$ are effecti values of the voltage and current. Since

$$
E=I Z
$$

and

$$
\begin{gather*}
\cos \phi=\frac{K}{Z} \\
P=I Z \times I \times \frac{R}{Z}=I^{2} R
\end{gather*}
$$

This last equation is often used to define the effective resistance of an a circuit.

As a consequence of Eq. (17), the power in an a-e rireuit containin inductaner and resistance cannot be determined by measuring the curres and voltage unless the value of the phase angle $\phi$ can also be measure As this is usually ditlicult, the power must generally be measured wit a wattmeter.

The quantity $\cos \phi$ is called the power factor of the circuit. In a rireu containing only resistance, the power factor is unity; in a circuit col taining only inductance, the power factor would be zero, As applied, a coil used as an inductor, the power factor at a given frequeney gives th ratio of the resistance of the coil to its impedance and may be used as figure of merit for the coil. As the ideal inductor would have zero pow factor, a good eoil should have a very small power factor.
6. Measurements of Inductance at Low Frequencies. The measur ment of the inductance of arreore eoils at low frequeneies is relativel simple, as the inductance is sensibly constant with change in frecuene and eurrent. Iron-core inductors, for reasons which witl be examined detail later, do not have a fixed inductance under all conditions, an measurements on them must be made under conditions whieh dupliea as nearly as possible the conditions under which the inductor is use

IIbid.

A simple method of approximate measurement uses the circuit of Fig. J. An a-c voltage of known frequeney is applied at $E$, and the current ad voltage read on the meters. The voltmeter reading divided by the nmeter reading gives the impedance and, if the resistance is measured y a d-c-bridge or voltmeter-ammeter method, the inductance may be alculated from the equation

$$
\begin{equation*}
L=\frac{Z^{2}-R^{2}}{4 \pi^{2} f^{2}}=0.02 .5 \frac{Z^{2}-R^{2}}{f^{2}} \tag{19}
\end{equation*}
$$

he method is usable for iron-core coils that carry a.c. only, provided te measuring current is adjusted to the value that the coil earries in use. measurements are made at a number of current values, the eurve of ductance against current may be plotted. The results ohtained by is method are generally slightly larger than the true values of inducnce because the a-e resistance, particularly in iron-core coils, is cater than the d-c resistance.


Fig. 10.-Circuit for measurement of inductance.


Fig. 11.- Bridge for comparing inductances.

There are several bridge methods for the measurement of inductance id a-c resistance at low frequencies; they give very accurate results, but e generally satisfactory only for air-core coils. For the comparison of oo inductances, or the determination of the value of an unknown induence in terms of a standard, the circuit shown in Fig. 11 is used. $L_{s}$ id $R_{s}$ are the inductance and resistance of the standard and $L_{x}$ and $R_{x}$ present the unknown coil values. A galvanometer may be used as an dicator and a hattery connected at $E$; or a telephone receiver or vibram galvanometer may be used with an a-e souree conneeted at $E$. If e galvanometer and battery are used, the bridge is first balanced for c. and then for intermittent current (produced by a switch or contutator in the battery cireuit).
For the steady-current balance,

$$
\begin{equation*}
\frac{R_{1}}{R_{3}}=\frac{R_{n}+R_{3}}{R_{s}} \tag{20}
\end{equation*}
$$

is assumed here that the resistance of the standard is less than that of e coil to be measured; if the reverse is true, $R_{3}$ must be connected in
the arm containing the coil being measured. For the intermitten current balance,

$$
\begin{equation*}
\frac{R_{1}}{R_{2}}=\frac{L_{*}}{L_{x}} \tag{2}
\end{equation*}
$$

$R_{x}$ and $L_{x}$ are determined from these equations. If the telephone ( vibration galvanometer and a.c. are used, adjustment of the bridg for minimum signal in the indicator satisfies Eqs. (20) and (21) simu taneously. The wave form of the voltage impressed upon the bridge immaterial unless, with a telephone receiver as indicator, the inductane being measured is a function of the frequency of the current through i in such a case, balance for the fundamental would not oceur under tl same conditions as for the harmonics. The use of the vibration ga vanometer as indicator removes this limitation, as the response of th galvanometer to the harmonics of the impressed voltage is negligible comparison with the response to the fundamental. 'I he sensitivity the vibration galvanometer, however, is inversely proportional to th frequency, so that it is useful only at comparatively low frequencic This method of inductance measurement has one serious disadval tage: the steady-current and intermittent-current halances are nu independent, so that final balance must be approached by a series approximations.

A number of bridge methods for comparing an inductance with capacity have been developed. Several are described in the Section c measurements.
7. Measurement of Inductance of Iron-core Coils. When an irol core coil must carry relatively large d.e. upon which is superimposed


Fig. 12.-Measurement of iron core carrying a.c. and d.c.
small value of a.c., its inductance is dependent upon the magnitudes the two currents flowing through it, and the methods already given a not directly applicable to measurements under such conditions.

The impedance of an iron-core coil carrying d.c. and a.c. may 1 measured by the circuit of Fig. 12. The d.c. through the circuit adjusted to the value carried by the coil during operation, and the a source adjusted to impress a voltage across the coil (measured by t) thermionic voltmeter) equal to the a-e voltage across it under operatir conditions. The resistance $R_{0}$ is then varied until the alternating volta
ross it is equal to that aeross the eoil, as measured by the thermionic ilmeter. Then the impedance of the coil at the measuring frequency equal to $R_{0}$. Readjustments of the impressed direet and alternating iltages may be necessary as $R_{0}$ is changed. The condenser $C$ prevents e direet voltages across the coil and resistor from affeeting the thermiie voltmeter. From the impedance and the resistance of the coil, e inductance under the conditions of measurement may be ealeulated . Eq. (19).
8. Turner Constant-impedance Method.-For measurements involvg a.e. only, the constant-impedance method (of Turner ${ }^{1}$ ), shown in g. 13, is used. The method is hased upon the et that, when $1-\omega^{2} L C=0$, the impedance of e parallel cireuit is equal to $\omega C$ and is independ$t$ of the resistance in the inductive branch. msequently the line current will have the same agnitude with the switch open or elosed. To easure any value of induetance, then, it is only cessary to adjust the capacity so that the ready of the ammeter $A$ is the same for both posiins of the switeh, when the induetance may be leulated by the equation

$$
\begin{equation*}
L=\frac{1}{2 \omega^{2} C} \tag{22}
\end{equation*}
$$



Fig. 13.-Turner constant-impedance method of measuring inductance.

When the eoil must earry d.e. as well as a.e., the cireuit of Fig. 14 may used for the inductanee measurement. Two similar inductors are ed, the d.e. through them being adjusted to the proper value by means the resistor $R_{1}$ and measured by means of the d-e ammeter $M$. The iteh $S^{\prime}$ is then thrown to the right and the resistor $R_{2}$ adjusted to make


Fig. 14.-Measuring (ircuit for coils carrying a.c. and d.c.
2. constant-potential differenee between the points $A$ and $B$ zero. en, with $S^{\prime \prime}$ thrown to the left, the induetance measurement may be rried out in the manner already deseribed. The result is the induetanee the two eoils in parallel, whieh is one-half the inductance of one eoil. 9. Measurements of Inductance at High Frequencies. Very often the $v$-frequency inductance of a eoil, determined by one of the methods eady given, may also be used as the high-frequency inductanee. In

[^8]some instances it is desirable to determine the inductance at the operat frequeney. l3ridge methods are not suitable for measurements at $h$ frequencies. Two other methods are commonly used: comparison the coil with a standard, and measurement of the capacity required tune the coil to resonance with a known frequency, from which induetance may be calculated. Joth methods give the appar inductance.

In the comparison method, a standard inductor, having an appar inductance $L_{s}$ at the moasuring frequency, is connected in parallel wit calibrated variable condenser, coupled to an oscillator and the e condenser circuit tuned to resonance, the capacity $C_{s}$ of the conden being noted at the resonance setting. The coil to be measured, wh inductance is denoted by $L_{x}$, is them substituted for $L_{s}$, the circuit retun and the condenser capacity $C_{x}$ again observed. Since the frequency the same in both cases,

$$
L_{L_{x}} C_{x}^{\prime}=L_{x x} C_{x}
$$

If the low-frequency inductanere $L_{0}$ and internal rapacity $C_{0}$ of standard coil are known,

$$
L_{x} C_{x}=L_{0}\left(C_{s}+C_{0}\right)
$$

In the second method, it is necessary to determine accurately frequency of the source. The coil to be measured is connected to ealibrated variable condenser, coupled loosely to the generator \& tuned to resonance. If $f$ is the frequency of the source, $L_{x}$ the appar inductanee of the coil, and $C_{x}$ the condenser capacity at resonar

$$
L_{x}=\frac{1}{39.48 f^{2} C_{x}}=\frac{0.02533}{f^{2} C_{x}}
$$

In this equation, $L_{x}$ is expressed in henrys and $C_{x}$ in farads. For in $\mu \mathrm{h}$ and $C_{x}$ in $\mu \mu \mathrm{f}$, the equation becomes

$$
L_{x}=\frac{25.33 \times 10^{15}}{f^{2} C_{x}^{x}}
$$

If the eaparity neressary to tume the coil to resonance at a number different frequencios is determined, a graph of the squares of the w: lengths corresponding to


Fig. 15.-Method of determining inductance and distributed eaparity of a roil. several measuring frequent against the measured values capacity will be a straight 1 whose slope is the pure ind tance and whose intercept w the negative-capacity axis is internal capacity of the $c$ This is illustrated in Fig. 15.
10. Inductance of Iron-c Coils. Iron-core coils mainly usoful at relatively 1 fregueneries, and their use is $\mathbf{g}$ erally confined to circuits car ing currents within the a-f range.

The inductance of a circuit is not constant if any material of varia permeability is within the magnetic field of the rireuit. Consequent
hen a coil is wound on an iron core, its inductance is dependent upon e circumstances under which it is used. Aceordingly, to use iron-eore ils most advantageously, it is necessary to study their characteristics der varying conditions." Three important cases must be distinguished: e current through the coil is a.e of single frequener ; the current consists a d-e component upon which is superimposed a single-frequency ate mponent; the current is comprised of two a-c mponents of different frequencies.
The average inductance of an iron-core coil rrying a.e. of single frequency is dependent son the magnitude of the eurrent. Also, the c resistance of such a coil is higher than that an air core coil with an identical winding. acrefore all inductance measurements of ironre coils should be made with the measuring rrent equal to the current which will flow rough the coil in operation, or the inductance ay be measured for a number of different rrents and a curve of inductance against rrent plotted.
In many radio applications a coil carries a latively large d.e. with a small a-c component perimposed. The inductance of an iron-


Fig. 16.- Characteristic of coil carrying large value of d.e. and small value of a.c. re coil under such conditions is a function of e magnitudes of the dee and a-c components of the eurrent. This is ustrated by Fig. 16. The constant magnetizing fore (dhue to the d.e.) ay be such as to cause the core to be magnetized to the point $A$. The alternating component of the mag-

G. 17.- Eiffect of d.e. on inductance of coil. netizing force (due to the ace.) will then carry the iron through the small hysteresis loop C $B$ whose slope is not the same as the slope of the magnetization curve. The permeability represented by the slope of this small hysteresis loop is called the incremental permeability. As the constant romponent of the magnetizing forer or current is increased, the point $A$ moves farther up the magnetization curve and the incremental permenbility decreases, as indicated by the smaill loops at $l$ ) and $E$. As saturation of the core is approached, the ineremental permeability, and hener the inductance, beromes very small. As the magnitude of the a-e component is increased, the slope of the 'steresis loop, and aceordingly the ineremental permeahility, increases, us inereasing the induetane. Consequently the inductane of an ironre coil under these conditions derreases with inerease of the dee comment of the current, and inereases with increase of the a-e component. gure 17 shows the decrease in inductance with increase in constant agnetizing fore.

If an air gap is introduced in the magnetic circuit of an iron-core co the inductance of the coil is generally diminished. If, however, the ec is carrying both d.c. and a.c., the air gap may so decrease the constal flux that the incremental permeability is actually increased, so that $t \mathrm{l}$ effective inductance for the a-e component is increased. The effectiresistance of the inductor is also decreased by the introduction of an a gap. These effects are illustrated in Fig. 18.1 As a consequence these characteristies, iron-eore inductors that are intended for use circuits where they must carry (l.c. as well as a.c. are usually made wi an air gap in the magnetic circuit of the core.

When theinduetor carries twoalterna


Fig. 18.-Wffect of air gap on coil characteristics. ing currents of different frequencies, $t$ efferets of the variable permenbility of $t$ iron are somewhat more complicated an of relatively less practical importan than in the cases already treated. ${ }^{2}$
11. Inductors at Radio Frequencis When inductors are used at radio fi quencies, many factors affecting thi performance come into prominens The h-f resistance of a coil is mu larger than its d-e resistance because a number of losses which come in existence with the operation of the $c$ in h-f circuits. The factors causing t increase are skin effect, eddy curren dielectric losses, and internal capacity

When the wire is wound into a ec the effect of the magnetic field of $t$ coil is such as to concentrate $t$ current on the inner surfaces of $t$ turns. Figure 19 illustrates this effe the depth of shading indicating the et rent density. This concentration current causes a further increase in $t$ effective resistance of the coil, and also causes a decrease in the ind tance as the frequency increases. However, the variation of inductar with frequency is generally small in comparison with the variation caus by internal capacity.

Eddy currents in the conductors composing the coil constitute serious source of loss at frequencies over 3,000 ke. These losses are minimized by the use of wire as small as possible without unduly increasing the conductor resistance, or by the use of tubing instead of wire. Because of these losses at frequencies higher than 3,000 ke there is an optimum wire size giving a minimum resistance in inductance coils.

Any dielectric in the field of the coil also


Fir. 19.-Concentrati of rirrent at surface high frequencies. introduces losses which become important at

[^9]ese frequeneies, so that the type and amount of dielectrie within the field the eoil must be carefully regulated. The dielectric should be of the st quality and its volume nust be kept at a minimum. The eonduetors the eoil should, in general, come in contact with the dielectrie as little possible. Coils are often wound upon skeleton or ribbed winding forms that cach turn touches the supporting insulating material at only a few ints and is surrounded for the greater part of its longth solely by air. 12. Effect of Coil Capacity. Every inductor bohaves not as a pure ductance and resistance in series but as an inductance and resistance unted by a small capacity. This behavior is caused by the self- or ternal capacity of the coil. The resistance and inductance of the uivalent parallel eireuit at any fropuency are eallod the apparent sistance and apparent inductance of the coil at that frequency. The parent resistance is given approximately ${ }^{1}$ by the equation
\[

$$
\begin{equation*}
R_{A}=\frac{R}{\left(1-\omega^{2} L C_{0}\right)^{2}} \tag{27}
\end{equation*}
$$

\]

d the apparent inductance by

$$
\begin{equation*}
L_{A}=\frac{L}{1-\omega^{2} L C_{0}^{0}} \tag{28}
\end{equation*}
$$

ere $R$ and $L$ are the resistance and inductance the coil would have the frequency $\omega / 2 \pi$ if the internal capacity $C_{0}$ were absent. These uations do not hold for frequencies near the natural frequency of the il; that is, the frequeney for which $1-\omega^{2} L C_{0}=0$. These equations ederived on the assumption that the e.m.f. in the circuit is introduecd some nanner other than by induction in the coil itself. If the e.m.f. induced in the coil, the internal capacity is merely added to any other pacity which may be connected in parallel with the coil. Since a il is pratically always used at frequencies for which $1-\omega^{2} L C_{0}$ is sitive, the apparent resistance and inductance of the coil will increase the frequency increases, the apparent resistance becoming very large $1-\omega^{2} L C_{0}$ approaches zero. The percentage change in resistance $r$ a given change in frequency is about twice as great as the change inductance. At frequencies for which $1-\omega^{2} L C_{0}$ is negative, the coil thaves as a capacity rather than an induetance.
It has been found ${ }^{2}$ that the internal capacity of a single-layer coil is ughly proportional to the radius and practically independent of the unber of turns and the length. For a closely wound solenoid, the ternal capacity in $\mu \mu \mathrm{f}$ is very approximately equal to six-tenths of e radius in centimeters.
13. Types of Inductors. A straight wire has a certain amount of ductance, but to make inductors small enough to be convenient it is cessary to wind the wire in the form of a coil thus utilizing a great ngth of wire in a small space and also increasing the interlinkages of ix and wire.
The simplest inductor consists of a single square turn of wire. The ductance of this arrangement may be calculated arcurately, hut it has

[^10]few other advantages. This type is sometimes used as a fundament standard.

The single-layer solenoid ronsists of one layer of wire on a cylindrical for: the turns either adjacent to one another or spaced. Sometimes the coil made self-supporting by means of a binder, such as collodion, and the fol removed after winding.

Multilayer coils must be used when a single-layer coil of the required indt tance would be inconveniently large. The multilayer coil may take one three forms: layer wound, bank wound, and honelycomb or duolateral.

The laycr-wound coil is useful only at low frequencies because of its hi internal capacity caused by the proximity of turns of greatly differing pote tials. The wire is wound on the coil in laye each layer being completed before another begun. Iron-core coils are usually wound in th manner. If a very large number of turns mt be used, it is better for the whole coil to be ma up of a number of "pies," each pie being a shu layer-wound coil. The pies are assembled side side to form the complete coil. Insulation greatly facilitated by this type of construction, and the internal capacity somewhat reduced.

Bank winding is one result of the attempt to devise a multilayer coil wi relatively low internal caparity. The turns are wound in the order shov by the cross-sectional view in Fig. 20.

Honcycomb and duolateral windings are further results of the same effo: The wire zigzags back and forth from one side of the winding space to $t$ other, adjacent turns of the same layer being spaced from each other several times the wire diameter. The effect of this type of winding is eause turns of adjacent layers to cross each other at an angle and to separa parallel turns by at least the diameter of the wire. A coil of this type is se supporting and quite compact.

Basket-weave and spider-web windings were developed also to minimize $t$ internal capacity. In the basket-weave coil the wire is wound in and out a number of pegs set in a circle. Adjarent turns cross at an angle. T pegs are usually removed after the winding is completed and the coil is se supporting. This is essentially a single-layer coil. The spider web, the other hand, is primarily a multilayer coil of one turn per layer. 'T wire is wound back and forth between a series of pegs fastened radially a circular form. This coil may also be self-supporting.

The toroidal coil is wound around a doughnut-shaped form. Its field almost entirely internal, so that it may be placed close to other coils a apparatus.

The flat spiral type of coil is self-explanatory-the wire being wound in the form of a spiral, each turn having a greater radius than the preeeding one.
14. Variable Inductors. Any of the previous types of coils may be tapped and the number of turns in cirenit varied with a tap switch or elip. This methor gives only a step-by-step variation, and considerable loss may be introduced by the unused portions of the coil.

A continuously variable inductor may be made by connecting in series or parallel two coils having a variable mutual inductance. The coils may be single-layer or nultilayer


Fig. 2 Variab inductor solenoids and their mutual induetance may be varied by changing the distance between the coils or by rotating one with respect to $t$ other. The most common form of variable induetor, however, is $t$ arrangement commonly called a veriometer, a cross section of which
wn in Fig. 21. The inner coil is rotatable about the axis $A$, whieh is pendicular to the plane of the figure. The two coils may be conneeted either series or parallel, thus inercasing the range of the instrument siderably. The mutual inductance bet ween the coils may be increased winding the onter eoil npon the interior of a spherical surface, instead sing the eylindrical form shown.
f a slight increase of resistanee of a coil is not objectionable, and the ired range of inductance variation is small, a copper disk slightly aller than the inside of the coil form may be mounted on a shaft pendicular to the axis of the coil. The induetance of the coil will be reeiably decreased when the plane of the disk is perpondienlar the coil axis, the deerease of inductance becoming less as the disk is tted away from this position.
6. Design of Inductance Coils. It is desirable that the inductance uld be as large as possible, while the resistanee is kept at a minimum. are are some cases in which a relatively high resistance is permissible sven desirable. Choke eoils for use at high frequencies must have a $h$ impedanee with a mininum internal capacity.
So determine a basis for comparison between coils of different ehareristics, a factor of merit for an inductor must be defined. ('oils use at frequeneies above 300 or 400 ke are usually small in size, so t volume is relatively unimportant and the desirable characteristics high inductance (and, therefore, high reactance) and low resistance. 3 ratio of inductance (or reactance) to resistance may then be taken l factor of merit, the ideal coil having a large ratio. Sometimes the rer factor of the coil, which is equal to the ratio of resistance to edance, is taken as a factor of merit, an ideal coil having zero power cor. The ratio of reactance to resistance $(L \omega / R)$ is sometimes called $Q$ of the coil. (See Table I, Sce. 6.)
coil to be used at frequencies below 300 ke is likely to he somewhat ;e if wound in a manner that would be entirely appropriate at higher fuencies. Consequently the factor of merit for coils designed for use he lower radio frequencies should include the volume of the inductor may be defined as the inductance-resistance ratio divided by the ime of the coil.
'or a given length of wire, maximum inductance is obtained when the ? is wound as compactly as possible; that is, in a bank-wound coil 1 a winding eross section as nearly square as possible. The bankand type is mentioned because the simple multilayer coil is practically ess at radio frequencies because of its high internal capacity. A ely wound single-layer coil made up of the same length of wire has a siderably lower inductance than the bank-wound coil. However, at o frequencies, the resistance of the single-layer coil is so much lower 1 that of the multilayer coil that the $L / R$ ratio of the former is much er than that of the latter. In view of its simplicity of construction, single-layer solenoid wound with solid wire would appear to he the t desirable coil type at medium and high radio frequencies, even igh within certain ranges of frequency some other types have certain antages. At high frequencies (ahove $3,000 \mathrm{ke}$ ), the single-layer noid, either closely wound or spaced, is used almost exclusively. or a given wire length, this type of coil has a maximum inductance n the ratio of diameter to length of coil is $2.46,{ }^{1}$ although this value iadio Instruments and Measurements, Bur. Standards ('irc. 7

World Redio History
is not critical. The inductance decreases somewhat rapidly as this rat becomes mueh smaller than 2.46 , while the decrease is only slight 1 larger values of the ratio. Since the internal eapacity of the coil approximately proportional to the diameter, it is advantageous to 2 a ratio of diameter to length somewhat smaller than 2.46, provid that the coil is to he used under such conditions that the decrease internal capacity effected in this way more than compensates for $t$ slightly lower inductance-resistance ratio.

A multihyer eoil has a maximum induetanee when the cross secti of the winding is a square. It has also been shown ${ }^{1}$ that, with a sque cross section given, the inductance of this type of coil is maximum wh the mean dianceter is 3.02 times the depth of the winding.

Below 300 ke the volume of the coil must be included in the fae of merit. In these circumstances, the honeycomb and bank-wound ec outstrip all others, the honeycoml, type being somewhat superior to 1 bank wound. Table I gives the characteristics of honeycomb coils.

Table I.-Honeycomb-coil Data

| Turns on coil | Size of wire, 13. \& S. gage | Inductance, mh | Distributed capacity. $\mu \mu \mathrm{f}$ | Natural wave length, nieters | Wave lengths with the following shunt-condense capacities, $\mu \mathrm{f}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 0.001 | 0.0005 | 0.00025 | 0.0 |
| 25 | 24 | 0.038 | 26.8 | 60 | 372 | 267 | 193 |  |
| 35 | 24 | 0.076 | 30.8 | 91 | 528 | 378 | 277 |  |
| 50 | 24 | 0.150 | 36.4 | 139 | 743 | 534 | 391 |  |
| 75 | 24 | 0.315 | 28.6 | 179 | 1,007 | 770 | 560 |  |
| 100 | 24 | 0.585 | 36.1 | 274 | 1,470 | 1,055 | 771 |  |
| 150 | 24 | 1.29 | 21.3 | 313 | 2,160 | 1,546 | 1,110 |  |
| 200 | 25 | 2.27 | 18.9 | 391 | 2,870 | 2,050 | 1,470 |  |
| 250 | 25 | 4.20 | 22.9 | 58.5 | 3,910 | 2,800 | 2,020 | 1, |
| 300 | 25 | 6.60 | 19.0 | 669 | 4,900 | 3,490 | 2,510 | 1. |
| 400 | 25 | 10.5 | 17.4 | 806 | 6,160 | 4,400 | 3,160 | 2, |
| 500 | 25 | 18.0 | 17.3 | 1,052 | 8.070 | 5, 750 | 4,140 | 2 , |
| 600 | 28 | 37.5 | 19.2 | 1,600 | 11,600 | 8,300 | 5,980 | 3 , |
| 750 | 28 | 49.0 | 18.3 | 1,785 | 13,300 | 9,500 | 6, 830 | 4. |
| 1,000 | 28 | 85.3 | 16.8 | 2,260 | 17,600 | 12,500 | 9,000 | 5 |
| 1,2.50 | 28 | 112.0 | 15.5 | 2,490 | 20.100 | 14,300 | 10.250 | 6 |
| 1,500 | 28 | 161.5 | 15.8 | 3.000 | 24,200 | 17,200 | 12,350 | 8 |

16. Coils for Various Frequency Ranges. A study of the characte ties of various types of inductors in the frequency range of 300 to 1,500 has been ntade by Ilund and De Groot. ${ }^{2}$. Their results show that in 1 frequency band the single-layer solenoid and the loose basket-we: eoils have the highest inductance-resistance ratios of the coils wot with solid wire, with the radial basket weave or spider web a close th Coils wound with $32-38$ Litz wire were found to be somewhat better in respects than solid-wire coils. Contrary to a somewhat generally accep belief, a few broken strands in the Litz wire made only a slight differe in the r-f resistance of a coil.

[^11][n solid-wire eoils, little is gained by using a wire size larger than No. AWG, although No. 16 gives a slightly lower resistance between 300 $11,200 \mathrm{ke}$. Spacing the turns does not deerease the resistanee appre-by-not enough to compensate for the extra length neecessary. A mber of binders were tried on single-layer coils, atl of them causing a tht increase in the r-f resistance of the coil. Collodion appeared to the best of these binders.
At frequencies ahove 3,000 ke, diolectric losses, eddy eurrents, and crnal caparity are important. The first two cause relatively large reases in the coil resistance. The third increases both the resistanee l inductance of the coil if the voltage in the circuit is not induced in :coil itself. If the cireuit e.m.f. is introduced by induction in the l, the internal capacity, acting as a parallel condenser, determines the ;hest fregueney to which the coil can be tuned. As the upper limit of fallel tuning capacity is not very large (in order that the $L / C$ ratio not too small), a large internal eapacity seriously restricts the range or which the coil may be tuned efliciontly. It is for these reasons that single-layer solenoid is used almost exelusively at such frequencies. [Diclectrie losses are so important that it is generally essential to use her a self-supported coil or a skeleton or ribbed winding form. It is ;hly desirable that the wire touch the solid dielectric in as few points possible. The loss in the insulation between turns is readily elimited by the use of bare wire, the turns being spaced to prevent short cuits.
Fareing of the turns is also efficacious in reducing the internal eapaeity. eoil whose turns are spaced by the diameter of the wire has approxitely half the internal capacity of a closely wound coil.
17. Calculation of Inductance of Air-core Coils. The inductance of ny types of air-core coils may be calculated by means of formulas oolving the dimensions of the coil and the number of turns. ${ }^{1}$ Several mulas from Circular 74 of the Bureau of Standards are given here. w of the available corrections to induetance formulas are included, ce they apply only to the calculation of the l-f inductance. The h-f luctanee of a coil cannot be calculated with a high degree of aceuracy rause of the skin effert and coil capacity.
[n the following formulas all dimensions are expressed in centimeters and indurtance is in microhenrys.
18. Straight Round Wire. If $I$ is the length of the wire, $d$ is the diameter the cross section, and $\mu$ is the permeability of the material of the wire,
\[

$$
\begin{align*}
L_{0} & =0.002 l\left[\log _{\epsilon} \frac{4 l}{d}-1+\frac{\mu}{4}\right]  \tag{29}\\
& =0.002 l\left[2.303 \log _{10} \frac{4 l}{d}-1+\frac{\mu}{4}\right] \tag{30}
\end{align*}
$$
\]

$u=1$ (for all materials except iron).

$$
\begin{equation*}
L_{0}=0.002 l\left[2.303 \log _{10} \frac{4 l}{d}-0.75\right] \tag{31}
\end{equation*}
$$

e return conductor is assumed to he remote. These formulas give the inductance.

Rosa, F. B., and F. W Crover, Bur. Standards Sci. Paper 169; Grover, F. W., r. Standards Sci. I'apers 320, 1917; 455, 1922; 468, 1923.

As the frequency in reases, the inductance dereases, its value at infin frequency being

$$
L_{\infty}=0.0012 l\left[2.30 .3 \log _{10} \frac{4 l}{d}-1\right]
$$

A general expression for the inductance at any frefuency is

$$
L_{\mu}=0.002 l\left[2.303 \log _{\mathrm{ic}} \frac{4 l}{d}-1+\mu \delta\right]
$$

The quantity $\delta$ is obtained from the table below, as a function of $t$ argument $r$, where

$$
\begin{equation*}
x=0.1405 d \sqrt{\frac{\mu f}{\rho}} \tag{3}
\end{equation*}
$$

and $f$ is the freguency and $\rho$ is the volume resistivity of the wire in microh centimeters. For copper at $20^{\circ} \mathrm{C}$.,

$$
x_{r}=0.1071 \mathrm{~d} \sqrt{ } f
$$

This quantity $\delta$ will be used in several of the following formulas witho further definition.

Value of $\delta$ in Inductance Formulas

| $x$ | $\delta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.250 | 2.5 | 0.228 | 6.0 | 0.116 | 12.0 | 0.059 | 25.0 | 0.028 | 70.0 | 0.1 |
| 0.5 | 0.250 | 3.0 | 0.211 | 7.0 | 0.100 | 14.0 | 0.050 | 30.0 | 0.024 | 80.0 | 0.1 |
| 1.0 | 0.249 | 3.5 | 0.191 | 8.0 | 0.088 | 16.0 | 0.044 | 40.0 | 0.0175 | 90.0 | 0.1 |
| 1.5 | 0.247 | 4.0 | 0.1715 | 9.0 | 0.078 | 18.0 | 0.039 | 50.0 | 0.014 | 100.0 | 0.1 |
| 2.0 | 0.240 | 5.0 | 0.139 | 10.0 | 0.070 | 20.0 | 0.035 | 60.0 | 0.012 | $\infty$ | 0.6 |

19. Two Parallel Round Wires-Return Circuit. The current is assum to flow in opposite directions in two parallel wires of length / and diameter the distance between centers of wires being 1 . Then

$$
L=0.004 l\left[2.30: 3 \log _{10} \frac{2 D}{d}-\frac{D}{l}+\mu \delta\right]
$$

This neglects the inductance of the wires connecting the two main wir If these wires are long, their inductance may be caleulated by Eq. (3:3) a added to the result from Eirn, (35), or the whole system may be treated as rectangle and the inductance calculated by Eq, (37).
20. Square of Round Wire. The length of one side of the square is denot by $a$; other letters have already been defined.

$$
\begin{equation*}
L=0.008 a\left[2.303 \log _{10} \frac{2 a}{d}+\frac{d}{2 a}-0.774+\mu \delta\right] \tag{3}
\end{equation*}
$$

21. Rectangle of Round Wire. The sides of the rectangle are $a$ and and the diagonal $g=\sqrt{ } a^{2}+a_{1}{ }^{2}$. Then

$$
\begin{gather*}
L=0.00921\left[\left(a+a a_{1}\right) \log _{10} \frac{4 a a_{1}}{d}-a \log _{10}(a+g)-a_{1} \log _{10}\left(a_{1}+g\right)\right] \\
\\
+0.004\left[\mu \delta\left(a+a_{1}\right)+2\left(a+\frac{d}{2}\right)-2\left(a+a_{1}\right)\right]
\end{gather*}
$$

22. Grounded Horizontal Wire. The wire is assumed to be parallel to te earth which acts as the return circuit. In addition to symbols already ed, $h$ denotes the height of the wire above ground. Then

$$
\left.\begin{array}{l}
L=\left(0.0040,05 l!\log _{10} \frac{4 h}{d}+\log _{11}\left\{\begin{array}{l}
l+\sqrt{l^{2}+l^{2}} \\
l+\sqrt{l^{2}}+4 h^{2}
\end{array}\right\}\right] \\
+0.002\left[\sqrt{l^{2}}+4 h^{2}-\sqrt{l^{2}+\frac{d^{2}}{4}}+\mu / \delta-2 h+\frac{d}{2}\right. \tag{38}
\end{array}\right]
$$

23. Circular Ring of Circular Section. If $a$ is the mean radius of the ring,

$$
\begin{equation*}
L=0.01257 a\left[2.303 \log _{10} 16 a-2+\mu \delta\right] \tag{39}
\end{equation*}
$$

ovided that $d / 2 a \leq 0.2$.


Connect three known va ses as per key, and read fourth at pont of intersection
Example. If $L=170 \mathrm{mh}, \mathrm{d}=3$, and $n=19.6$ then $l=3^{\prime \prime}$

CHART I
Connect two known values and read thurd at po nt of intersection
Example if $\lambda=550 \mathrm{~m}$ and $\mathrm{C}-0.0005 \mathrm{mfd}$ then $L=170 \mathrm{mh}$

Fig. 22.-Inductance design chart.

## 24. Single-layer Coil or Solenoid.

$$
\begin{equation*}
L=\frac{0.0395 a^{2} n^{2}}{b} K \tag{40}
\end{equation*}
$$

zere $n$ is the number of turns, $a$ is the radins of the coil measured from the is to the center of the wire, $b$ is the length of the coil, and $K$ is a function of th, the value of which may be determined by means of the table below. re chart given in Fig. 22 may also be used for the ralculation of the inducnee of a given poil, or for the design of a coil to have a given inductance. is figure also includes a chart for the determination of the resonant freency of any combination of inductance and caparity in the range of the art.

Value of $K$ in Fobmela 40

| Diameter to length | $K$ | 1)ifference | I)iameter to leugth | $K$ | 1 ifference | Diameter to length | $K$ | Differ ence |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 1.0000 | -0.020\% | 2.00 | 0.52.5 | -0.0118 | 7.00 | 0.2584 | $-0.00$ |
| . 05 | . 9791 | 20:3 | 2.10 | . 5133 | 112 | 7.20 | . 2.337 |  |
| . 10 | 9588 | 197 | 2. 20 | . 5025 | 107 | 7.40 | 2491 |  |
| . 15 | 9:391 | 190 | 2.30 | 4918 | 102 | 7.60 | . 2448 |  |
| 20 | 9201 | 185 | 2.40 | . 4816 | 97 | 7.80 | .2406 |  |
| 0.25 | 0.9016 | -0.0178 | 2.50 | 0.4719 | -0.0093 | 8.00 | 0.2366 | $-0.00$ |
| . 30 | . 88.38 | - 17.3 | 2.60 | . 4626 | 89 | 8.80 | - $2.27^{\circ}$ | . |
| . 35 | . 8865 | 167 | 2.70 | 45:37 | 85 | 9.00 | 2185 |  |
| . 40 | 8499 | 162 | 2.80 | 4452 | 82 | 9.50 | 2106 |  |
| .45 | 8337 | 156 | 2.90 | 4370 | 78 | 10.00 | $20: 33$ |  |
| 0. 50 | 0.8181 | $-0.0150$ | :3.00) | 0.4292 | -0.0075 | 10.0 | 0. 3083 | -0.01 |
| . 5.50 | . 80.181 | 146 | 3.10 | . 4217 | 7\% | 11.0 | . 190.3 |  |
| . 60 | . $788{ }^{\circ}$ | 1401 | 3. 20 | . 4145 | 70 | 12.0 | - 1700 |  |
| . 65 | 7745 | 1:36. | 3.30 | . 4075 | 67 | 13.0 | . 1692 |  |
| . 70 | . 7609 | 131 | 3. 40 | . 4008 | 64 | 14.0 | .1605 |  |
| 0.75 | 0.7478 | -0.0127 | 3.50 | 0. 3944 | -0.0062 | 15.0 | 0.1527 | $-0.00$ |
| . 80 | . 7351 | 123 | 3.60 | . 3888 | 60 | 16.0 | . 1457 | . |
| . 85 | . 7228 | 118 | 3.70 | . 3822 | . 58 | 170 | . 1394 |  |
| . 90 | . 7110 | 115 | 3.80 | . 3764 | 56 | 18.0 | . 13336 |  |
| .95 | . 6995 | 111 | 3.90 | . 3708 | 54 | 19.0 | . 1284 |  |
| 1.00 | 0.6884 | $-0.0107$ | 4.00 | 0. 36.4 | -0.0052 | 20.0 | 0.1236 | -0.0c |
| 1.05 | . 6777 | 104 | 4.10 | . 3602 | - ${ }^{1}$ | 22.0 | . 11.5 i | 0.0C |
| 1.10 | . 687 \% | 100 | 4.20 | . 3551 | 49 | 24.0 | . 1078 |  |
| 1.15 | . 6573 | 98 | 4.30 | . 3502 | 47. | 26.0 | . 101.5 |  |
| 1.20 | . 6475 | 94 | 4.40 | . 3455 | 46. | 28.0 | .0959 |  |
| 1.25 | 0.6381 | -0.0091 | 4.50 | 0.3409 | -0.004 5 | 30.0 | 0.0910 | $-0.01$ |
| 1.30 | . 6290 | 89 | 4.60 | . 33364 | $4: 3$ | 35.0 | . 0808 |  |
| 1.35 | . 6201 | 86 | 4.70 | . 33321 | 42 | 40.0 | . $07: 8$ |  |
| 1.40 | . 6115 | 84 | 4.80 | . 3279 | 41 | 45.0 | .0604 |  |
| 1.45 | . $60: 31$ | 81. | 4.90 | . 3238 | 40 | 50.0 | .0611 |  |
| 1.50 | 0.5950 | -0.0079 | 5.00 | 0.3198 | $-0.0076$ | 60.0 | 0.0528 | $-0.06$ |
| 1.55 | . 5871 | 76 | 5.20 | . 3122 | 72 | 70.0 | . 0467 |  |
| 1.60 | . 5795 | 74 | 5.40 | 3050 | 69 | 80.0 | . 0419 |  |
| 1.65 | . 5721 | 72 | 5.60 | 2981 | 6.5 | 90.0 | .0381 |  |
| 1.70 | . 5649 | 70 | 5.80 | 2916 | 62 | 100.0 | . 0350 |  |
| 1.75 | 0.8579 | -0.0068 | 6.00 | 0.2854 | $-0.0059$ |  |  |  |
| 1.80 | . 5511 | 67 | 6.20 | . 2795 | $56$ |  |  |  |
| 1.85 | . 3444 | 65. | 6.40 | . 2739 | $54$ |  |  |  |
| 1.90 | . 5379 | 63 | 6.60 | . 2685 | 52 |  |  |  |
| 1.95 | . .3316 | 61 | 6.80 | . 26333 | $49$ |  |  |  |

25. Multilayer Coils: Circular Coils of Rectangular Cross Section. F long coils of a few layers, the following formula may be used:

$$
L=L_{s}-\frac{0.0126 n^{2} a c}{b}\left(0.693+B_{s}\right)
$$

where $L_{s}$ is the inductance calculated by Eq. (40), $n$ and $b$ are the same as Eq. (40), $a$ is the radius of coil measured from axis to center of winding cre section, $c$ is the radial depth of winding, and $B_{a}$ is the correction given on p. 7

Value of $B_{s}$ in Formula 43

| $c$ | $B s$ | $b / c$ | $B_{s}$ | $\mid b / c$ | $B_{s}$ | $b / c$ | $B s$ | $b / c$ | $B s$ | $b / c$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

For short multilayer coils, the dimensions shown in Fig. 23 are used. Two rmulas are required, one for use when $b>c$, and the other for use when $b<$ In the first case:

$$
\begin{align*}
L= & 0.01257 a n^{2}\left[\left(1+\frac{b^{2}}{32 a^{2}}+\frac{c^{2}}{96 a^{2}}\right)\right. \\
& \left.\log _{\epsilon} \frac{8 a}{d}-y_{1}+\frac{b^{2}}{16 a^{2}} y_{2}\right] \\
= & 0.01257 a n^{2}\left[2.303\left(1+\frac{b^{2}}{32 a^{2}}+\frac{c^{2}}{9\left(6 a^{2}\right.}\right)\right. \\
& \left.\log _{10} \frac{8 a}{d}-y_{1}+\frac{b^{2}}{16 a^{2}} y_{2}\right] \tag{42}
\end{align*}
$$

hen $b<c$ :

$$
\begin{align*}
L= & 0.01257 a n^{2}\left[\left(1+\frac{b^{2}}{32 a^{2}}+\frac{c^{2}}{96 a^{2}}\right)\right. \\
& \left.\log _{\varepsilon} \frac{8 a}{d}-y_{1}+\frac{c^{2}}{16 a^{2} y^{2}}\right] \\
= & 0.01257 a n^{2}\left[2.303\left(1+\frac{b^{2}}{32 a^{2}}+\frac{c^{2}}{96 a^{2}}\right)\right. \\
& \log 10 \frac{8 a}{d}-y_{1}+\frac{c^{2}}{\left.16 a^{2} y_{3}\right]} \tag{43}
\end{align*}
$$



Fig. 23.-Multilayer coil.
. $y_{2}$, and $y_{3}$ may be obtained from the table shown on page 78. These forulas are quite accurate as long as the diagonal of the eross section ( 12 Vig. 23) tes not exceed the mean radius. The accuracy decreases considerably as $b$ comes large in comparison with $a$.
For very accurate results. a correction must be added if the insulation of e wire ocrupies a considerable percentage of the winding spare. This rrection is given by

$$
\begin{equation*}
\Delta L=0.01257 a n\left[2.303 \log _{10} \frac{D}{d}+0.155\right] \tag{44}
\end{equation*}
$$

here $D$ is the distance between the centers of adjacent wires, and $d$ is the ameter of the bare wire.
26. Multilayer Square Coil. If $n$ is the number of turns and $a$ is the side the square measured to the center of the rectangular cross sertion whieh se length $b$ and depth $c$, then

$$
\begin{equation*}
L=0.008 a n^{2}\left[2.303 \log _{10} \frac{a}{b+c}+0.2235 \frac{b+c}{a}+0.726\right] \tag{45}
\end{equation*}
$$

the cross section is square $(b=c)$, this becomes

$$
\begin{equation*}
L=0.008 a n^{2}\left[2.303 \log _{10} \frac{a}{b}+0.447_{\frac{b}{a}}^{b}+0.033\right] \tag{46}
\end{equation*}
$$

## Valie of Constants in Formulas 42 and 43

| $b / c$ or $c / b$ | $y$ | $c / b$ | $y 2$ | $b / c$ | y3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.5000 | 0 | 0.125 | 0 | 0. 597 |
| 0.025 | 0.525i3 |  |  |  |  |
| 0.05 | 0.546 | 0.05 | 0.127 | 0.05 | 0.599 |
| 0.10 | 0.5924 | 0.10 | 0.132 | 0.10 | 0.602 |
| 0.15 | 0.6310 | 0.15 | 0. 142 | 0.15 | 0.608 |
| 0.20 | 0.6652 | 0.20 | 0. 15.5 | 0.20 | 0.615 |
| 0.25 | 0.6983 | 0.25 | 0.171 | 0.25 | 0.624 |
| 0.30 | 0.7217 | 0.30 | 0.192 | 0.30 | 0.633 |
| 0.35 | 0.3447 | 0.35 | 0.215 | 0.35 | 0.643 |
| 0.40 | 0.7645 | 0.40 | 0.249 | 0.40 | 0. 6.54 |
| 0.45 | 0.7816 | 0.4 .5 | 0.273 | 0.45 | 0.665 |
| 0.50 | 0.7960 | 0.50 | 0.307 | 0.50 | 0.677 |
| 0.55 | 0.8081 | 0.55 | 0. 344 | 0.55 | 0.690 |
| 0.60 | 0.8182 | 0. 60 | 0.384 | 0.60 | 0.702 |
| 0.65 | 0.8265 | 0.65 | 0.427 | (0.65) | 0.715 |
| 0.70 | 0.83331 | 0.70 | 0.474 | 0.70 | 0.729 |
| 0.75 | 0.88383 | 0.75 | 0.523 | 0.75 | 0.742 |
| 0.80 | 0.84203 | 0.80 | 0. 576 | 0.80 | 0.756 |
| 0.85 | 0.8451 | 0.85 | 0.632 | 0.85 | 0.771 |
| 0.90 | 0.8470 | 0.90 | 0.690 | 0.90 | 0.786 |
| 0.95 | 0.8480 | 0.95 | 0.752 | 0.95 | 0.801 |
| 1.00 | 0. 8488 | 1.00 | 0.816 | 1.00 | 0.816 |

Formula (43) may be used to correct for insulation by replacing the fact 0.01257 by 0.008 .

For a single-layer square roil.

$$
L=0.008 a n^{2}\left[2.303 \log _{21}{ }^{a} b+0.2231 \frac{b}{b}+0.726\right]-0.008 a n(A+13)
$$

$A$ and $B$ are given below, where $d$ is the diameter of the bare wire and $D$ the distance between turns, measured to the centers of the wires.

Value of $A$ in lonmula 47

| $d, D$ | $A$ | $d / D$ | 4 | d 1$)$ | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1.00 | 0.557 | 0.40 | -0.359 | 0.15 | -1.340 |
| 0.95 | O. 506 | 0.38 | -0.411 | 0.14 | -1.409 |
| 0.90 | 0.452 | 0.36 | -0.465 | 0.13 | $-1.483$ |
| 0.85 | 0.394 | 0.34 | -0.522 | 0.12 | $-1.563$ |
| 0.80 | 0.334 | 0.32 | -0.58:3 | 0.11 | - 1.650 |
| 0.75 | 0.269 | 0.30 | $-0.647$ | 0.10 | $-1.746$ |
| 0.70 | 0.200 | 0.28 | $-0.716$ | 0.09 | -1.851 |
| 0.65 | 0.126 | 0.26 | $-0.790$ | (1.08 | -1.969 |
| 0.60 | 0.046 | 0.24 | $-0.870$ | 0.07 | -2.102 |
| 0.5.5 | -0.0.041 | 0.22 | -0.95.7 | 0.06 | -2.256 |
| 0.50 | -0.1:36 | 0.20 | $-1.053$ | 0.05 | $-2.439$ |
| 0.48 | -0.177 | 0.19 | -1.104 | 0.04 | -2.662 |
| 0.46 | -0 220 | 0.18 | $-1.158$ | 0.03 | -2.950 |
| 0.44 | -0.264 | 0.17 | $-1.21 \bar{i}$ | 0.02 | -3.35\% |
| 0.42 | -0.311 | 0.16 | -1.276 | 0.01 | -4.048 |

Value of $B$ in Folimula 47

| $\begin{aligned} & \text { Number of } \\ & \text { turns, } n \end{aligned}$ | B | Number of turns, " | B |
| :---: | :---: | :---: | :---: |
| , | 0.000 | 40 | 0.315 |
| 2 | 0.114 | $4{ }^{5}$ | 0.317 |
| ${ }_{4}^{3}$ | 0.166 | 50 | 0.319 |
| 5 | 0.197 0.218 | 60 | 0. 322 |
|  |  |  |  |
| ${ }^{6}$ | 0.2333 | 80 | 0.326 |
| 8 | 0.244 0.253 | 90 100 | 0. 327 |
| 9 | -. 260 | 1100 | - $\begin{aligned} & 0.328 \\ & 0.331\end{aligned}$ |
| 10 | 0.266 | 200 | 0.333 |
| 1.5 | 0.286 |  |  |
| 20 | 0.297 | 400 | 0.3345 |
| 25 | 0. 304 | 500 | 0.336 |
|  | 0.308 0.312 | ${ }^{700}$ | 0.336 |
| . 5 | 0.312 | 1.000 | 0.336 |

27. Inductance Standards. Like all other standards, inductance andards must be rugged, permanent, and constant. The simplest ndamental standard is a single square furn of round wire. The inducnce of such a standard can be calculated with great aceuraey.
When a standard having a large value of inductance is desired, the ugle square turn becomes too large for use, and it is necessary to design me more compaet form. The resistance and internal capaeity must, kept to a minimum. Furthermore the furns must be held rigidly in are so they eannot change their relative positions. The dielectric the field of the coil must have a minimum volume and be of such aterial that the losses in it are as small as possible.
These requirements are best met by a single-layer solenoid with a aced winding. For a minimum conduetor resistance, the ratio of ameter to length should be 2.46, but a somewhat smaller value of this tio is desirable to reduce the internal capacity, this being proportional the radius.
One exeellent form of standard induetor is made hy winding silkvered Litz wire in slots in the edges of strips of hard rubber, the ends which are supported by hard-rubber rings. With this skeleton type winding form, the cross section of the coil is polygonal rather than cular. In order that the proper ratios of diamoter to length may be intained, the coils fmust be of large size, their diameters ranging from 1040 cm . for indurtamee values that are necessary in the frequency age from 15 to $1,500 \mathrm{ke}$. Such a coil mast be given relatively carefuil nilling, however, sinee jolts might ealuse some of the wires to ehange air positions. A more rugged coil consists of hare wire wound upon a readed eylindrical fom, the turns being cemented in place with a very the erment, preferably collodion. The form should be as thin as is asistent with adequate strength. Cilass forms may also be used, hough it is then neerssary to cement the tarns more thoroughly than the case of at threaded form.
With recent advances in the precision of frequency determination and provement in standard condensers, the temperature coefficiont of a
standard inductance may become an important factor. It is possib) in this case, to reduce the temperature coefficient by a special desig of the winding form.
28. Mutual Inductance. As the changing magnetic field due to varying current in a cireuit induces an e.m.f. in the cireuit itself, so ma it indue an c.m.f. in any neighboring cireuit. The e.m.f. induced in $t$ first circuit depends upon the self-inductance of that eireuit, and, in $t$ same way, the c.m.f. induced in the sceond circuit depends up the mutual inductance between the two circuits. Mutual induetan is defined in three ways exactly analogous to the three ways of dofini self-induetance: (1) as the magnetic flux linking the second cireuit wh. unit carrent flows in the first cireuit; (2) as the e.m.f. induced in ciren 2 when the current in cireuit 1 changes at the rate of one unit per secon (3) as twice the work done in establishing the magnetie flux, linki circuit 2, associated with unit current in cireuit 1. These three definitio give constant and equal values for the mutual induetance if there is material of variable permcability near the cireuits and if the curre does not vary so rapidly that its distribution in the cross section of $t$ conductors differs greatly from a uniform one. The change in eurre distribution at high frequencies, however, has a very slight effect upon t mutual induetance.

The units of mutual inductanee are the same as those of self-induetane in the practical system they are the henry and its subdivisions, the mil henry (mh) and inierohenry ( $\mu \mathrm{h}$ ).
29. Measurement of Mutual Inductance. When two indueto having a mutual inductance, are connected in series so that their ma netic fields aid cach other, the total induetance of the eombination is

$$
\begin{equation*}
L^{\prime}=L_{1}+L_{2}+2 M \tag{4}
\end{equation*}
$$

where $L^{\prime}$ is the inductance of the combination, $L_{1}$ and $L_{2}$ arre the ind tanees of the coils, and $M$ is their mutual induetanee. If the comneetio to one of the coils are reversed, the total inductane beeomes

$$
\begin{equation*}
L^{\prime \prime}=L_{1}+L_{2}-2 M \tag{4}
\end{equation*}
$$

Then, from these two equations,


Fig. 24.-Circuit for measuring mutual inductance.

$$
M=\frac{L^{\prime}-L^{\prime \prime}}{4}
$$

These relations furnish a convenient meth for the measurement of mutual indurtance. 'I inductance of the two coils comnected in series measured by any suitable method, the connectic to one coil reversed, and the inductance ag: measured. The larger of the wo measured vali is then denoted by $L^{\prime}$ and the smaller by $L^{\prime \prime}$, a .$V$ is calculated by means of Ha. (50), T method is applicable at any freduency, provic the inductance-measurement method is approp ate at that frequency. It is not very ancur: when $M$ is small in comparison with the inductan of the larger of the two coils.

A method applicable for all values of.$I T$ is illustrated in lig. 24. ${ }^{1}$ represents a voltage-measuring device of high impedance, preferably thermionic voltmeter. A voltage source of frequency $\omega / 2 \pi$ is connected ${ }^{1}$ Moullin, E. 13., " Radio Frequency Measurements," p. 383, 1932.

Values of $F$ for Fohmula 56

| $\mathrm{r}_{2} / \mathrm{r}_{1}$ | $F$ | Difference | $\mathrm{r}_{2} / \mathrm{r}_{1}$ | $F$ | Difference | $r_{2} / r_{1}$ | $F$ | Difference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\infty$ |  |  |  |  |  |  |  |
| 1.010 | 0.03016 | $-0.00120$ | 0.30 | 0.008844 | -0.000341 | 0.80 | 0.0007345 | -0.0000604 |
| . 011 | 4897 | 109 | . 31 | 8503 | 328 | . 81 | 6741 | 579 |
| . 012 | 4787 | 100 | 32 | 8175 | 314 | . 82 | 6162 | 555 |
|  |  |  | 33 | 7861 | 302 | . 83 | 5607 | 531 |
| ). 013 | 4687 | -0.00093 | 34 | 7559 | 290 | . 84 | 5076 | 507 |
| . 014 | 4594 | 87 |  |  |  |  |  |  |
| .015 | 4507 | 81 | 0.35 | 0.007269 | -0.000280 | 0.85 | 0.0004569 | -0.0000484 |
| . 016 | 4426 | 148 | . 36 | 6989 | 270 | . 86 | 4085 | 460 |
| . 018 | 4278 | 132 | . 37 | 6720 | 260 | . 87 | 3625 | 437 |
|  |  |  | . 38 | 6460 | 249 | . 88 | $318 \%$ | 413 |
| 1.020 | 0.04146 | -0.00119 | 39 | 6211 | 241 | . 89 | 2775 | 389 |
| . 022 | 4027 | 109 |  |  |  |  |  |  |
| . 024 | 3918 | 100 | 0.40 | 0.005970 | -0.000232 | 0.90 | 0.0002386 | -0.0000365 |
| . 026 | 3818 | 93 | . 41 | 5738 | 225 | 91 | 2021 | 341 |
| . 028 | 3725 | 86 | . 42 | 5514 | 217 | 92 | 1680 | 316 |
|  |  |  | . 43 | 5297 | 210 | 93 | 1364 | 290 |
| 1.030 | 3639 | -0.00081 | 44 | 5087 | 202 | 94 | 1074 | 263 |
| . 032 | 35.58 | 76 |  |  |  |  |  |  |
| . 034 | 3482 | 71 | 0.45 | 0.004885 | -0.000195 | 095 | 000008107 | -0.00002351 |
| . 036 | 3411 | 68 | . 46 | 4690 | 189 | . 96 | 5756 | 2046 |
| . 038 | $3: 343$ | 64 | . 47 | 4.501 | 183 | . 97 | 3710 | 1706 |
|  |  |  | 48 | 4318 | 178 | 98 | 2004 | 1301 |
| ). 040 | 0.03279 | -0.00061 | .49 | 4140 | 171 | . 99 | 703 | 703 |
| . 042 | 3218 | 58 |  |  |  | 1.00 | 0 |  |
| . 044 | 3160 | 55 | 0.50 | 0.003969 | -0.000166 |  |  |  |
| . 046 | 310.5 | 53 | . 51 | 3803 | 160 | 0.950 | 0.00008170 | -0.00000494 |
| . 048 | 3052 | 51 | . 52 | 3643 | 156 | 952 | 7613 | 482 |
|  |  |  | . 53 | 3487 | 150 | 954 | 7131 | 470 |
| 1.050 | 0.03001 | -0.00226 | . 54 | 3337 | 146 | . 950 | 6661 | 458 |
| . 060 | 2775 | 191 |  |  |  | . 958 | 6202 | 446 |
| . 070 | 2584 | 164 | 0.55 | 0.003191 | -0.000141 |  |  |  |
| . 080 | 2420 | 144 | . 56 | 3050 | 137 | 0.960 | 0.00005756 | $-0.00000436$ |
| 090 | 2276 | 128 | 57 | 2913 | 133 | . 962 | 5320 | 421 |
|  |  |  | 58 | 2780 | 128 | 964 | 4899 | 409 |
| 1.100 | 0.02148 | -0.00116 | . 59 | 2652 | 125 | 966 | 4490 | 397 |
| . 11 | 2032 | 10.4 |  |  |  | . 968 | 4093 | 383 |
| . 12 | 1928 | 96 | 060 | 0.002527 | -0.000120 |  |  |  |
| . 13 | 1832 | 89 | . 61 | 2407 | 117 | 0.970 | 0.00003710 | $-0.00000370$ |
| 14 | 1743 | 82 | 62 | 2290 | 113 | . 972 | 3340 | 356 |
|  |  |  | 63 | 2177 | 109 | 974 | 2984 | 341 |
| ) 15 | 0.01661 | -0.000-5 | . 64 | 2069 | 106 | . 976 | 2643 | 327 |
| . 16 | 1586 | 71 |  |  |  | . 978 | 2316 | 312 |
| 17 | 1515 | 66 | 0.65 | 0.001962 | -0.000103 |  |  |  |
| 18 | 1449 | 62 | . 66 | 1859 | 99 | 0.980 | 0.00002004 | $-0.00000296$ |
| . 19 | 1387 | 59 | . 67 | 1760 | 96 | . 982 | 1708 | 278 |
|  |  |  | . 68 | 1664 | 93 | 084 | 1430 | 262 |
| 120 | 0.01328 | -0.00055 | 69 | 1571 | 90 | 188 | 1168 | 242 |
| . 21 | 1273 | 52 |  |  |  | 988 | 926 | 223 |
| . 22 | 1221 | 50 | 0.70 | 0.001481 | -0.000087 |  |  |  |
| .23 | 1171 | 47 | . 71 | 1394 | 84 | 0.990 | 0.00000703 | -0.00000201 |
| 24 | 1124 | 45 | . 72 | 1310 | 81 | . 992 | 502 | 177 |
|  |  |  | 73 | 1228 | 78 | . 994 | 326 | 148 |
| 135 | 0.010792 | -0.000425 | 74 | 1150 | 76 | . 996 | 177 | 115 |
| . 26 | 10366 | 408 |  |  |  | . 998 | 062 | 62 |
| 27 | 0.009958 | 388 | 0.75 | 0.0010741 | $-0.0000731$ |  |  |  |
| -8 | 9570 | 371 | . 76 | 10010 | 704 |  |  |  |
| .9 | 9199 | 355 | . 77 | 9306 | $6 \times 0$ |  |  |  |
|  |  |  | . 78 | 8526 | 653 |  |  |  |
|  |  |  | . 79 | 7973 | 628 |  |  |  |

the terminals $A$ and $B$, the current being denoted by $i$. When the swite is eomerted to point 1 , the woltage measured is

$$
\epsilon_{1}=\frac{i}{\omega C^{\prime}}
$$

With the switch on point 2 , the measured voltage
Then

$$
e_{v}=\omega \cdot M i=\omega^{2} \cdot M C^{\prime} e_{1}
$$

$$
M=\frac{r_{2}}{e_{1}} \cdot \frac{1}{\omega^{2} C^{\prime}}
$$

The raparity ( ${ }^{\prime}$ may be replaced by a resistance $k$. Then

$$
M=\frac{c_{2} R}{c_{1} \omega}
$$

If a variable standard of mutual inductance is available, any other mutua indurtanee whose value ialls within the range of the standard may be readil: measured. The primaries are romerted in series to a voltage source, th serondaries in opposition to a telephone receiver or other indicating deviec and the standard is varied until a null indication is obtained. The unknow mutual indurtance then has the value indicated by the standard.
30. Calculation of Mutual Inductance. ${ }^{1}$ The mutual indurtance of tw parallel coaxial circles may be caldulated by the following method: first calculate

$$
r_{2}=\sqrt{\frac{\left(1-\frac{a}{A}\right)^{2}+\frac{D^{2}}{A^{2}}}{\left(1+\frac{a}{A}\right)^{2}+\frac{I^{2}}{A^{2}}}}
$$

where $a$ is the radius of the smaller eirelo. A the radius of the larger circle and 1) the distance between the plathes of the two circles. Fron the tabl shown on page $i t$ the value of $F$ corresponding to the calculated value of $r_{2} /$, is obtained. Then

$$
M=F \sqrt{\Lambda a}
$$

The units are the same as in the formulas for self-indurtance already giver
For two parallel coaxial multilayer coils of square or nearly square croe section, a good approxination is given by

$$
M=u_{1} n_{2} M_{0}
$$

where $n$, and $n:$ are tho numbers of turns on the two coils, and $M_{n}$ is th matual inductance of two circles located at the wenters of the cross sertion of the two coils.

The same formula may be used as a rourh approximation for the mutue inductance of two coaxial single-layer solenoids.

## References

Butterworth, s: The High-frequency Copper Losses in Inductance Cuils, Exx Wireless, 2, 613, 1925.

Covasey, P. R1: Calculation and Design of Inductancea, Eleftrician, 75, 841, 1915.
(impltas, W. II. F.: Notea on standard Inductanees for Wave Metera and ()the


Maxwell: "Plectricity and Magnetism," Vol. II.
Persot, F. E:: Formulae and T'ables for besign of Air-Core Inductatice C'oils. Unir ('alif. P'uh., Emg., 1, 117, 1916.

Whitemore, L. F., and G. 13nerp: Inductance, Copacity, and Resintance of Coils a Radio Frequency, lhyys. Rev., 14, 170, 19193.
 Wireless, 2, 451 and 477. 1925.
 Bur. Nitandards sci. P'spers 320 and 498.

## SLC'TION 5

## CAPACITY

By E. L. Hall, ${ }^{1}$ F.E.

1. Capacity. Capacity is one of the three electrical quantities present all radio circuits. The radio cngineer endeavors to concentrate pacity in definite well-known forms at definite points in the eircuits, it capacity exists between different conductors in the circuits and tween the various conductors and the ground. Such eapacities, mally small, are ordinarily of no importance in the case of low or adio-frequency currents hut may be of great consequence in radioequency circuits.
A condenser is an electrical deviec in which capacity plays the main le. While some inductance and some resistane may be present, these antities are usually of such minor importane that they are negligible. A condenser has three exsential parts, two of which are usually metal ates separated or insulated by the third part called the dielectric.
The amount of electricity which the condenser will hold depends on te voltage applied to the condenser. This may be expressed as $Q=$
$\times V$. The capucity of the condenser is the ratio of the quantity of ectricity and the potential difference or voltage, or $C=(Q / V$ where is given in coulombs, $C$ in farads, and 1 in volts. The capacity of a mondenser is dependent on the size and spacing of the plates and the ind of dieleetrie between the plates.
2. Units of Capacity. The unit of capacity is the farad. A condmenser as a capacity of one farad when one coulomb of eleetricity can he ded to it by an applied voltage of one volt. This unit is too large or pratetical use so that a smaller unit, the microfarad, abbreviated i , or one-millionth of a farad, is used. A condenser having a capacity ? one microfarad is much larger than is used in radio circuits. Conensers for such cirenits usually have capacities between a few thonandths and a few millionths of a microfarad. Another unit, the aieromierofarad, is often used. It is abbreviated $\mu \mu \mathrm{f}$.
Another unit of capacity sometimes used is the centimeter. The enntireter is equal to 1.1124 mieromicrofarads.
3. Electrical Energy of Charged Condenser. Work is done in charging rondenser beeanse the dieleet rie opposes the setting up of the elect rie train or displacement of the elecetric fiedd in the diedectrie. The energy $f$ the charging souree is stored up as eleetrostatie energy in the dieleetric.
The work done in plaring a charge in the condenser is

$$
W^{\circ}=\frac{1}{2} Q \times V^{\prime}={ }_{2}^{1} C^{\prime} V^{2}=\frac{Q^{2}}{2 C}
$$

[^12]where $W$ is expressed in joules
$Q$ is expressed in coulombs
$V$ is expressed in volts.
The work done in charging the condenser is independent of the time taken charge it.
4. Power Required to Charge Condenser. The average power requir to charge a condenser is given by the equation
$$
P=\frac{1 C V^{2}}{2} t^{2}
$$
where $P$ is expressed in watts
$C$ is expressed in microfarads
$V$ is expressed in volts
$t$ is expressed in seconds.
If the condenser is charged and discharged $N$ times per second the abc equation becomes
$$
P=y_{2}^{1} C V^{r}, V
$$

If an alternating e.m.f. of frequency $f$ is used in charging the condenser, equation may be written

$$
P=C E_{0}{ }^{\circ} \delta
$$

where $P=$ power in watts
$C^{\prime}=$ caparity in farads
$E_{0}=$ maximum value of voltage
$f=$ frequency in cycles per second.
5. Dielectric Materials. The dielectric of a condenser is one of three essential parts. It may be found in solid, liquid, or gaseous fo or in combinations of these forms in a given condenser.

The simplest form of condenser consists of two electrodes or pla separated by air. This represents a condenser having a gaseous diel tric. If this imaginary condensor has the air between the plates replat by a non-conducting liquid, such as transformer oil, and if the dista: hetween the plates is the same as in the first case, it would be for that the capacity was increased several times because the oil has a hig value of dicloctrie constant than air which is usually taken as 1 ,

If the space between the plates is occupied by a solid insulator condenser would resulf, which would be practical, is far as the possibit of constructing it is concerned. It would be found, in this case a that the eapacity of the condenser was several times larger than w air was the dielectric.

The mechanical construction of cither air or liquid dielect ric condens requires the use of a certain amount of solid dielectric for holding two sets of plates.

There are a great many dielectric or insulating materials available the engineer to choose from. It often is found that a material whie very good from the electrical standpoint is poor mechanically, or versa.

Air is the only gas generally used as a dielectric. Compressed air been used in some high-voltage condensers.

Several kinds of oil have been used in condensers, such as castor cottonsced oil, and transformer oil. More recently electrolytie c densers have come into use in radio equipment for use as filters and byy
ndensers where a large capacity is required and either a direet eurrent pulsating direct eurrent is applied.
Among the solids used as the eondenser dieleetric are miea, glass, and per. Nolid insulators used as noebhmical supports in condensers -lude quartz, glass, lsolantite, poreclain, bakelite, miea, amber, hard bber, Vietron, ete.
6. Dielectric Properties of Insulating Materials. Such properties surface and volume resistivity, dieleetrie strength or puncture voltage, sectric constant, and absorption, are often eonsidered in directrrent and commercial-frequency applications. Such data are of little lue if the insulating material is to be used at radio frequencies. For e latter applieation r-f measuroments of various properties of the aterial are essential. A material which may be a satisfactory insulator - low frequeneios may be worthless as an insulator at radio frequencies. One of the most important properties of an insulator for radio froencies is its power loss. This ineludes several factors which are fieult to separate, but together indicate its suitability for radio purses. The general idea of the imperfection of a eondenser is brought t.in seroral names such as "powrer loss," "power fartor," and "phase ferenee," but they are not identienl terms.
Dieleetric eonstant is another important property of a material whieh s a definite bearing upon its use at radio frequeneios.
Neithor power loss nor dielectrie eonstant alone can be used in selecting a best insulator for a partieular applieation at radio frequeneies. Some restigators have published results in which a produet of the power is and dielectric constant appears. This factor has no recognized name yet hut has certain merits in use for indicating more completely the itability of an insulating material for radio uses.
7. Dielectric Constant. The dielectric constant $K$ of an insulating aterial is the ratio of the eapacity $C_{z}$ of a condenser using the material the dielectric, to the capacity $C_{a}$ of the eondenser using air as the lectric, or $K=C_{z} / C_{a}$. This property of the material is sometimes lled indurtivity or specific indurtive caprecity.
The dielectric constant of a material is not a constant in the true sense the word, but varies with the frequeney, moisture content, temperare, voltage applied, and manner of applying it.

## 8. Values of Dielectric Constant for Electrical Insulating Materials Radio Frequencies.



| Saterial | Frequency, kiloryctes | Dielertric. constant, | Sour |
| :---: | :---: | :---: | :---: |
| cobalt. | 500 | 7.31 |  |
| flint. | 15 | 7.0 | 2 |
| heat resisting | 1 890 | 5.0 |  |
| photosraphir, with gelatin coo | A | 78 | 1 |
| without gelatin coating | $A$ | 7.5 | 1 |
| plate, imerican... | $A$ | 7.6 |  |
| plate. | 500 | 6.8 | 2 |
| pyrex. | 30 | 4.8 | 3 |
|  | 500 | 4.9 | 2 |
| window. |  | 8.0 | 1 |
| Hard rubber | 12210 | 3.0 i |  |
| Hard rubber. | 11.126 | 3.01 |  |
| Isolantite | * | 6.1 | 5 |
| Marble | 1 ) 1.400 | 8.4 | ? |
| white | ( 1,400 | 9.3 |  |
| gray. |  | 11.6 |  |
| blue. |  | 9.4 , | 1 |
| Mica, clear, India. | A |  |  |
| built-up, shellar binder | A | 3.6 |  |
| I'henolic insulation, laminated (H) | 190 | 5. 4 to 5.8 1 |  |
|  | 1.000 | 5) 1 tor.6 |  |
|  | \{ $A$ | 30.0 | 1 |
| Slate, electrical. | $\left\{\begin{array}{r}44 \\ \square \\ \hline 650\end{array}\right.$ | $\left.\begin{array}{c}20.5 \\ 8.0 .5\end{array}\right\}$ | 4 |
|  | ${ }^{1}$ | $5.5)$ |  |
| insulating. | A | 4.8 |  |
| Wax, beeswax.ceresin.....parafin. . | 4 | 3.2 |  |
|  | A | 2.5 |  |
|  | A | 2.6 |  |
| Wood, basswood, quite |  | 2.0 | 1 |
| baywood, quite dry. |  | 2.4 |  |
| cypress, quite diry. | A | 20 |  |
| fir, quite dry. |  | 3.1 |  |
| maple, quite dry |  | 2.6 |  |
| oak, quite dry |  | 3.1 |  |
| birch. | 500 | 5. ${ }^{3}$ |  |
| maple. | 500 | 4.4 |  |
|  | ( 300 | 3.31 |  |
| oak | ) 425 | 3.3 ( | 2 |
| oak | $\left(\begin{array}{l}6: 35 \\ 1,060\end{array}\right.$ | 3.3  <br> 3 3 |  |

${ }^{a}$ range of nine samplea of various chemical rompositions reported.
A measurements made between 80 and $1,875 \mathrm{kc}$.
Haverage of a number of values betwen 1 ke and $3,130 \mathrm{kc}$.
${ }^{1}$ P'reston, J. L., and E. I. Mall, Ratio-frequency Iroperties of Insulating Materis Qء7, 9, 26-28, February, 1925.
${ }^{2}$ Hocu, I. T., Power Losses in Insulating Materials, Bell System Treh. Jour. November, 1922.
${ }^{3}$ Decker, Willism C., Power Losses in Commercial (ilasses, Elec. World, 89, 601 6 Mar. 19, 1927.
4 Hanssto, G. F., Conductivity and Dielectric Constant of Dielectrics for Mi, frequency Oscillations, Proc. Roy. Soc. (London) A, 96, 36:3-382. January, 1920.
${ }^{5}$ Isolantite circ.
9. Power Loss, Phase Difference, and Power Factor. Electrical sulating materials are not perfect in their insulating qualitios and there a certain amount of power athorbed in them when used in an a-e reuit. A metsurement of the power loss is the best single property lat gives an indication of the suitability of an insulating material for ie in radio cireuits. Power loss can be cexpressed by a number of quanties, the most commonly used being resistance, power factor, phase fference, and phase angle.
When ace flows in a condenser, the voltage aeross econdenserlags somewhat less than 90 deg. behind te eurrent as shown hy the angle $\theta$ (Fig, 1), cathed ie phase angle. The complement $\psi$ of the phase Igle, is called the phase difference. The cosine of te phase angle is eatled the power factor. The wer loss in the insulating material is

$$
\begin{aligned}
& P=E I \cos \theta \\
& P=E I \sin \psi
\end{aligned}
$$



Pina. 1.-Phase in a capacitive circuit.
here $E=$ voltage across the condenser
$I=$ current in amperes through the condenser
plus $\psi=90$ deg. as shown in Fig. 1. From the above, $\sin \psi=\cos \theta$, - the sine of the phase difference is eftat to the power factor.

When considering at condenser having dielectric

(G. 2.-Condenser th dielertric losses. losses, such as enrrent leakage, brush diseharge or corona, dielectric absorption or resistanee in the phates, joints, contacts, heads, cote, it is customary to think of it as a perfere condenser $C$ with a resistance $R$ in series ats shown in Fig. 2.
The voltage vectors may he shown as in Fig. 3, where the resultant voltage flowing in the circuit is obtained by completing the vector diagram. The wle $\psi$ is quite small for materials suitable for radio-frepuency insulators. or smadl angles the angle $\psi=\tan \psi$. In lig. 3

$$
\tan \psi=\frac{R I}{I / \omega C}=R \omega C=2 \pi f R C^{\prime} .
$$

the resistance, caparity, and frequency ram be easured, the phase difference can be calculated from

$$
\psi=2 \pi f R C^{\prime},
$$

here $\psi=$ phase difference in radians
$f=$ frequency in eycles per serond
$k=$ resistance in ohms
$C^{\prime}=$ capacity in farads.
The following equation is sometimes convenient hen wave length in meters is given

$$
\psi=0.1079 \frac{R C^{\prime}}{\lambda},
$$



Fig. 3.-Vertor relations in a rondenser with dielertrie losses.
here $\psi=$ phase difference in degrees
$R=$ resistance in ohms
$C^{\prime}=$ caparity in micromicrofarads
$\lambda=$ wave length in metors.
or small angles, phase difference in radians is equal to power factor (nearly).

Power factor in per cent is 1.745 times phase difference in degrees. Pow factor in per cent is givelt by the following equation:

$$
\cos \theta=2 \pi f R r^{\times} \times 10^{-7}
$$

where $\cos \theta=$ power factor in per rent
$f=$ fregueney in kiloryrles
$h=$ resistanre in ohms
(" = caparity in micromicrofarads.
The leakage of electriaity by conduction through the dielectric or along $i$ surface contributes to the phase difference but is generally negligible at his frequencies. A condenser having leakage may be represented by a perfe condenser with a resistance in parallel as shown in Fig. 4. The curre


Fig. 4.-Fquivalent of condenser with leakage.


Fig. 5.-Vectors in eondenser with leakage.
divides betwen the eapacity and the resistance, $I_{K}$ through the resistan being in phase with the applied voltage $E$, and $I e^{\circ}$ through the capacity leadi $E$ by 90 deg. as shown in Fig. 5. The resultant current $I$ leads $E$ by (! deg. $-\psi$ ), where $\psi$ is the phase difference. In lig. 5

$$
\tan \psi=\frac{E^{\prime} / R}{\omega C^{\prime} E^{\prime}}=\frac{1}{\omega / R C}
$$

or

$$
\psi=\frac{1}{\omega K C}
$$

Power factor is a term that involves all the power losses in a condenst If the total power loss in a condenser is W watts. the voltage applied to it $V$ volts ( $r-m-s$ ), and the current flowing through it is $I$ amperes (r-mthe power factor, of the condenser is W/VI. The relation between $I$ (ampere and $V$ (volts) for a condenser of capacity C' (microfarads) operating at frequency $f$ is

$$
I=\frac{2 \pi f C^{\circ} V^{\circ}}{10^{\circ}}=\frac{\omega C^{\prime} V}{10^{\circ}}
$$

The power factor of a condenser in per cent may be written

$$
\cos \theta=\frac{\mathbb{V}^{\circ} \times 10^{6}}{2 \pi f C^{\prime} V^{-2}}=\frac{\mathbb{I}^{\circ} \times 10^{\dagger}}{\omega C V^{\dagger^{2}}}
$$

Referring again to Fig. 2 showing the perfert condenser $C$ and resistance replacing the actual condenser, the value of $R$ can be calculated from $t$ equation $W^{\prime \prime}=I^{2} R$, The quantity $R$ is known as the equivalent resistance the condenser at the given frequeney.

The expression $W^{\prime} \times 10^{6} / \omega C V^{2}$ for power factor can be changed into $t$. expression involving resistance, capacity and $\omega$ by substituting $I^{2} R$ for and then substituting $\omega C V^{r} / 10^{6}$ for $I$, giving power factor equal to $R C^{\prime} \omega$ $10^{-6}$.
10. Values of Power Factor for Electrical Insulatıng Materials at adio Frequencies.


| Maturind | Frequenry, kilocycles | f'ower factor. per cent | Surim |
| :---: | :---: | :---: | :---: |
| Phenolir insulation, laminatod (Pakrlite)....... | 190 1,000 | 3.85 to 7.35 4.20 to 6.65 | 2 |
| Nlate, electrical. | $A$ | 6:3. |  |
| Varnish, spar. | $A$ | 3. 1.5 |  |
|  | , |  | 5 |
| Wax, beeswax. | 4 | 1.63 |  |
| reresin | 4 | 0.04 |  |
|  | ${ }_{14}$ |  |  |
| paraffin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 14 100 | $\left.\begin{array}{l}0.042 \\ 0.0 .31\end{array}\right\}$ | 3 |
| ( | 500 | 0.026 |  |
| Wood, basswood, quite dry | $A$ | 1.92 |  |
| baywood, quite dry..... | 1 | 2.45 |  |
| cyprese, quite dry. | $A$ | 2.1 | 5 |
| fir, quite dry....... . . . . . . . . . . . . . . . . . . . . | 4 | 3.5 | 5 |
| maple, quite dry . . . . . . . . . . . . . . . . . . . . . | 1 | 2.45 |  |
| oak, quite dry.. | A 500 | $2.07$ |  |
| birch. <br> maple | 500 | $6.48$ |  |
| maple. . . . . . . . . . . . . . . . . . . . . . . . . . | 500 300 | 3.363 |  |
| ogk ) | 425 | 3.68 3.50 | 2 |
| oak | 63:3 | 3.85 |  |
|  | 1.1060 | 4.20 |  |

a laange of nine sumples of various rhemical compositions reported.
${ }^{b}$ Range of 27 samples of various chemical compositions reported.
$A$ Measurements made botween 80 and $1,87.7 \mathrm{ke}$.
${ }^{B}$ Hetween 250 ke and $1,500 \mathrm{kr}$.
${ }^{1}$ Schotт, Jumf, "Hochfrequenzverluste von Gläsern und eingen anderen I Diele tricis," Jahr. Darhtlosen Tele. Trle., 18, 82-122, Iugust, 1921.
${ }^{2}$ Hoch, F. T., Power Losses in Insulating Materials, Brll Systom Tirh. Jour. Sovember, 1922.
${ }^{3}$ Maclemod, H. J., Power Losses in Dielectrics, Phys. Rer., 21, 5:3-73, 1923.
4 IJecker, William C., Power Losses in Cominercial Glasses, Elec. World, 89, 601-6C Mar. 19, 1927.
${ }^{5}$ Prenton, J. L. and E. L. IIall, "Radio-frequeney Properties of Insulating Mat rials, QS'T, 9, 26-28, February, 1925.

- Isolantite circ.
wer Factor of Variots Inselating Materiala at 1,000,000 Cycles
( (ioneral Electric Company)


1. Dielectric Strength. The dielectric strength of an insulating erial is the minimum value of electric field intensity required to ture it. Dieloctric strongth is usually expressed in kilovolts per timeter of dielectrie thickness. The fall in insulation resistance with in temperature is a factor of great importane in comnection with breakdown of a dielectric under the applied voltage, Insulating erials are not striotly honogeneous. The current leak through an lating matcrial may porhaps be concentrated in a fow small paths sugh the material, and the energy loss due to the leakage, while small, be large compared with the area through which it is flowing. The as of the current flowing through the dielectric become heated with a lting lowering of the resistance of the path and an increase in the ent leakage. The heating of the dieleetric may lead to rapid deteriion, particularly if moisture is present, and ultimate breakelown. length of time of the applieation of the voltage has a definite bearing n the breakdown voltage. Most dielectries will withstand for a
very brief period a much higher voltage than they ean when the vol is applied for a longer period.

These effects have dictated two tests for condensers, a high flashvoltage of very brief duration, and the application of a much $k$ voltage for a longer period.

The dielectric strength of a material is usually found to be lowe r-f voltages than for a-f or d-e voltages. The rupturing voltage at ir frequencies depends on the rapidity with which the voltage is raised is not nearly so definite a phenomenon as low-frequeney puncture volt Dielectric strength of solid insulators is difficult to measure because ot complexity of the experimental offects. As the r-f currents flow in material, heating, corona, flash-over, and possible deterioration, hli ing, or charring may result with consequent changing of voltage current as the time of application elapses.

If high r-f yoltages are applied to an air condenser, a corona discharge be set up which appears as a visible plow around high potential metal $p$ points and sharp edges, and is usually distinctly audible. These co effects represent a power loss in the condenser. Hence, the constructic air condensers for high voltages requires the rounding of all edges and co and the avoiding of sharp points which encourage the formation of co and flash-over.
12. Dielectric Absorption. When a condenser is connected to a souree of e.m.f. the instantaneous charge is followed by the flow of a s and steadily decreasing current into the condenser. The additional ch is absorbed by the dielectric. Similarly, the instantancous diseb of a condenser is followed by a continuously decreasing current. condenser does not become fully charged immediately, nor does it a pletely diseharge immediately when its terminals are shorted, but se diseharges may be secured when the condenser possesses dieleet ric abs tion. The maximum charge in a condenser cyctically charged discharged varies with the frequency of charge.

If a condenser evidencing dielectric absorption is used at radio quencies, a power loss oecurs which appears as heat in the conde The existence of power loss indicates a component of e.m.f. in phase the current as though a resistance were in series with the condens shown in Fig. 2. The effect of dieleetric absorption can be meas along with other losses in the condenser, although dielectric absorl represents the chief power loss in solid dielectries.
13. Calculation of Capacity. Formulas are available for us calculating the capacity for a large number of geometrical shap conducting surfaces such as spheres, and cylinders, either separate coneentric, and flat surfaces of various shapes. The usual type of denser calculations are concerned with two or more flat conductors.

When two conducting plates are parallel, close together and of large the capacity of the condenser is given by

$$
C=0.0885 \times \frac{K S}{t}
$$

where $C=$ capacity in micromicrofarads
$K=$ dielectric constant (which is 1 for air)
$S=$ area of one plate in square centimeters
$t=$ distance between plates in centimeters.
aen more than two plates are used in the condenser, the formula beeomes

$$
C=0.0885 \times \frac{K N(N-1)}{t}
$$

ere $N=$ number of plates
The artual capacity of a parallel plate condenser is slightly larger than the tue as calculated from the above formula, because of the fringing of the etric lines of force beyond the space between the plates. A correction 1 be made for this fringing ly slightly increasing the dimensions of the tes. A narrow strip of width $w$ 'an be added to the actual plate dimenas. In the case of circular plates $w=0.4413 t$ and for plates with straight ges $w=0.110 t$, where $t$ is the distance between the plates in eentimeters.
14. Combinations of Condensers. Combinations of two or more densers in a cireuit are often arranged in either series or parallel. ndensers connected in parallel give a total capacity equal to the sum the capacities of the individual condensers, ('ondensers conneeted series give a resulting capacity which may be calculated from the lowing:

$$
C=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\cdots}
$$

is formula gives the following expression in the case of two condensers series

$$
C=\frac{C_{1} \times C_{2}}{C_{1}+C_{2}}
$$

The various clements such as tubes, sockets, momntings, wiring, ete., radio apparatus eontain many smadl capacities by virtue of the differ:e of potential cxisting betwern the momeroms conductors insulated m one another. These small capaceities are known as stray capacities. sile they are unimportant in some kinds of work, in other types of rk, such as in anplifier design they must be taken into aceount. the case of resistanee-coupled amplifiers, for example, these capacities uce the amplifieation at the higher andio frequencies and make a flat racteristic with high overall gain impossible.
The effect of stray capacities is eliminated in the case of condensers d as capacity standards by shielding the insulated plates and ground-
the shicld. In this maner a definite capacity is always assured a given seale sotting.
.6. Effect of Frequency on Condenser Capacity. One of the most ortant considerations is the effect of frequency upon the eapacity ue of a condonser. In the best condensers this effeet is nil. In fact, - of the eriterions of a suitable condenser for a capacity standard is $t$ its capacity shall be the same for two different sets of charging and tharging conditions. A variahle air condenser, such is the l3ureau Ftandards type discribed on page 120 of the Bureau's ("irc. 74, gives same eaparity at 100 and at 1,000 charges and diselarges per second. condenser having considerable solid dichectric in its make-up will wa difference in eapacity with frequeney. The quantity of electricity ish flows into a condenser during a finite charging poriod is greater a would flow in during an infinitely short charging period. Conse-
quently, the measured or apparent capacity with a.c, of any finite $f$ : quency is greater than the capacity on infinite frequency, the lat being called the geometric capacity. The capacity of a condens decreases as the frequency increases.

The length of the interial leads of a condenser should be kept as she and direct as possible to minimize the inductance of the leads whi acts to give an apparent change of raparity with frequency. The amou of this change can be calculated from $\left.C_{a}=(1]+\omega^{2} C L \times 10^{-12}\right]$ whe $C_{a}$ is the apparent or measured capacity, $C^{C}$ is in $\mu$ f, and $L$ in $\mu \mathrm{h}$.
16. Types of Condensers. There are many ways in which condens might be classified, having to do with their comstruction, size, volta rating, use, dielectrie, or whether the eapacity is fixed or variab The condensers used in various radio applications are found in inmum able sizes, shapes, and uses. The two simplest divisions into whi condensers may be classified have to do with their capacity; i.e., whet it is fixed or variable.
17. Types of Fixed Condensers.-Fixed condensers are available all capacity ranges from a few $\mu \mu \mathrm{f}$ to several $\mu \mathrm{f}$, for any voltage rati up to 45,000 volts or ligher, and in immumerable shapes and sizes, depending upon the use for which the eondenser is intemded.

Paper formerly was used as the dielectric for condensers for use lower voltages, while mica was used in condensers for higher voltag More recently as the art of condenser manufacture has progressed, oil-impregnated paper dieleetric is used in condensers for the high voltages, the whole condenser being mounted within an oil-filled contain

For paper dielectric, 100 per eent pure linen paper is used, which mu meet severe requirements as to thickness, porosity, miformity, wid frecdom from conducting particles, alkalinity, and acidity. Two more layers of paper are used between the metal foil plates, dependi upon the voltage for which the condenser is designed. Paper condens are impregnated with special high molting point waxes and sealed witl metal containers, thus being protected from moisture.

Paper condensers are formed by winding two metal foil electrodes ribbons in conjunction with the paper riblons. There are two types winding, inductior and non-inductior. The latter type is recommended $r-f$ and for the higher a-f work. The induetive type is satisfactory for work.

In winding the inductive type of condenser, the foil used is narrower th: the paper and the contact is made with the foils by timed copper str inserted in the winding. The non-indurtive type of winding is made w the foils about the same width as the paper. The foil is stagered so, that condenser plates projert over the ends of the paper. The terminals: soldered to the extending foil at the oposite ends and thus make cont: with every turn of the foil. The latter type of construction makes minimum plate resistance and minimum power loss.

Miea has been used very extensively for condensers for use at radio f quencies. India mica has been used almost exclusively as it has been gen ally considered as of superior quality for radio use.

Selected mica is split into sheets of definite thickness, gauged and test for punctures or other deferts. A comdenser is built up of alternating $m$ and metal foil sheots, the sets of plates of opposite polarity being broug out at opposite conds where they are soldered together, forming the $t$ terminals. The whole stack of phates is rigidly clamper together in sucl way as to firmly grip the plates in the center and expel all diele tric other th mica. The condenser may be monnted in a suitable container.

If a condenser is to be used with higher voltages, the practice is to construct ie condenser with two or nore condenser sertions in series. rather than to crease the thickness of the mieti. The former method is more flexible than se latter, permitting the construction of condensers for 45.000 volts or gher.

It is customary to mount the large high voltage condensers in sterl nks which are filled with a high flash-point insulating oil which sorves to event aceess of dirt and moisture, prevents flash-dver along the cont enser sections, insulates the condenser from the tank ind conduets at away from the comdenser clements.
18. Electrolytic Condensers. Another type of fixed eondenser of gh caparity for use on voltages not excereding about boo volts has cently eome into use known as the electrolytic combenser. The chief vantage of the electrolytie rondenser is its low cost and its small size $r$ its large capacity as eompared to other older types of fixed eondensers. or example, an $8-\mu \mathrm{f}$ ) 00 -volt condenser is about 138 in . in diameter d $41 / 2 \mathrm{in}$. long.
These condensers, however, are not always interchangeable with ndensers using paper or mica diolectric, beatise they ean bo used only direet or pulsating direet eurrent circuits, and must be correctly Enected with respert to polarity. Electrolytic rondensers can be obtained for operation in low-voltage ment cireuits, for use as filtor condensers in " 15 " power supply units d "A" eliminators. The eapacities available run as high as 4,000 $\mu \mathrm{f}$ the low-voltane types. Other electrolytie condensers are available voltages of 100 and 180 volts with capacities from 10 to $100 \mu \mathrm{f}$, while : condensers for 350 to 400 volts have caparities of from 1 to $32 \mu \mathrm{f}$. Electrolytic condonsers have small leakage curronts which incroase h the operating temperature of the condenser and with the voltage blied. This leakage is less than 0.2 milliannp per mierofarad at 400 500 volts.
9. Electrolytic Condenser Characteristics. The dertrolytic coniser has found general use in the filter circuits of radio rooevers and : made possible the design of compant but offoctive filtor systems. addition to the advantages mentioned above, the electrolytic is also -healing, momentary overloads of voltage simply calusing a temporary ture of the dielectric, the rupture healing itself ats soon as the voltage edued to normal.
elentrolytic condensors in general use today are frequently divided , three classes although the divisions are not clearly marked

Liquid electrolytic rondensers in whieh the elertrolyte is a liquid genercontaining a fairly large peremtage of water.
Stmidry coloctrolvice condensers in which the electrolyte is a liquid a a viscosity usually between about 3 to 4.5 .
Dry electrolytie condensers in which the electrolyte is in the form of a e.

Thile the liguid comelenser eontains a considerable quatitity of water e of the condensers is contirely without moisture. he electrolytic condenser consists of four essential parts: the anode, cathode, the electrolyte, and the dioleetric film formed electrochemi? usually on the surface of the anode (Fig. 6). The anode is almost
invariably made of aluminum, the athode of cither copper or aluminur and the electrolyte composition depends upon the type of condens and the serviee to which it is to be put; in one tye of semidry condens the electrolyte is composed of boric acid, glyerrin, and ammonia dith gaseous or as ammoniat water. The proportions al


Fig. 6.- Electrolytic condenser construction. $1,000 \mathrm{~g}$ of glyeerin, 620 g of borice acid, and about : re of 26 per cont ammonia water or the equivales amonnt of ammonia gas.
20. Characteristics of Dielectric Film. The pros erties of the elect rolytie condenser are due to the fil formed on the anode, the composition of which is m aceurately known. The extreme thinness of the fil makes it possible to obtain high capacities per un area and its dielocetrie strength (emables it to withastan high voltages. The unit functions as a couldens only so long as a positive potential is appliod to t $\}$ anode. Ordinary electrolytio condensers ban ther fore be used only on d.e. or on pulsating d.e. Th charaberistic does not limit the application of the condenser to radio audio circuits since most of the currents in such systems are pulsating d.

Commercial electrolytio condensers for radio applications have bed made in ratings up to $(0)$ volts poak; by a scrios arrangement of two more condensors the voltage rating may be inereased in direct proportic to the mumber of units commerted in series. Experiments with sever 500 -volt condensers have indieated that when using a series arrangeme of electrolytie condensers, shmoting rosistors to equalize the voltages are not required as is the case when sevoral paper condensers are connected in series.

The eapacity per unit area depends upon the thiekness of the film on the anode which in turn is an inverse function of the voltage to which the film is formed in mambacture. For a constant anode area the raparity is therofore inversely proportional to the forming voltage. If the anorle area is such as


Frg. 7.-Electrolytic condens characteristic. to give $8 \mu$ if the forming voltage is 500 volts d.e. then the same anode area formed to any lower voltage will gi a capacity as indicated by the curve of Fig. 7.
21. Leakage Current. If an unformed clectrolytic unit is conmert, across a d-c circuit the initial current is limited only by the resistance the electrolyte. An anode film rapidly forms howevor and the eurre drops, finally reaching values in the order of 0.2 por $\mu \mathrm{f}$ in the case of co densers such as are genorally used in the filter rircuits of radion reerive If the rondensers are left on a d-a voltage for a lone period (sevel hundred hours) the d-e eurrent through the unit will drop to but a fo microamperes per mierofarad.
('ondensers which have not beron in use for some time will give a hi leakage current; when voltage is again applient, this earrent rapid decreases.
2. Effect of Temperature. Figure 8 shows how the capacity of a ical eleetrolytie condenser varies with temperature; all electrolytic densers show a similar dependence of eapacity upon temperature. jeeting such condensers to temperatures below $0^{\circ} \mathrm{F}$. causes a temary change in characteristics, but the condensers regain the normal racteristies after the return to room teniperature.


Fig. 8.-Temperature coefficient, electrolytic condenser.


Fig. 9.-Production testing circuit for electrolytic rondenser.
:3. Testing. The cireuit of Fig. 9 is generally used to test electrolyties in aduction. $E_{d o}$ supplies a polarizing voltage so that the voltage across the idenser will be pulsating d. c. The isolating condenser prevents shortsuiting the polarizing voltage. If $E_{a}$ is maintained at a constant value the
milliammeter may be calibrated in terms of the caparity of the condenser fer test. Ide reads the d-c leakage current through the condenser.
Sor the accurate measurement of capacity and power fartor bridge systems h as those shown in Fig. 10 or 11 should be used. They are essentially

16. 10.-Circuit for measuring sectrolytic condenser capacity.


Fig. 11.-Capacity and power factor measurement.
undard bridge systems rearranged to permit the application of a polarizing ltage.
24. Types of Variable Condensers. The most common type of riable condenser consists of a series of parallel motal plates fastened a shaft eapable of rotation so that the moving plates intermesh with a t of fixed plates. Aireis the main dieleetric in such condensers, although me solid insulating material is required to insure that the two sets of ates are correctly located with respect to each other. Many ways of ore pieces of plates from each other have heen devised, using one or
lite, hard rubber, Pyrex, poredain, fused quartz, and Isolantite some of the matrerials used for such insulators.

The most common use of a variable condenser is in association wit coil, the combination forming a cireuit resomant to a band of re frequencies depending upon the eobl eonstants and the capacity rat of the condenser. For a mumber of applioations it is more conveni to have the capacity change in a differont way than proportional to angle of rotation of the plates. This first resulted in the "docremet phate and the straight-line wave-lengeth plate As the use of freque rather than wave length beotme common, the strajght-line freque plate came into lase and later the "mid-line" plate. There are ot possibilities such as st raght-line prorontage wave length and straig line perentage frequener, the battor being of advantage in freque measurements. In any of the above shatpes or elassifieations, movable plates formorly were so shaped as to give the desired freques or wave-length curve. 'This resulted in an ill-shaped phate diffoult balance or to hold to a desired setting. In some eases semierire rotating plates were used with the fixed plates cut away so as to oht the desired curve. In any of the sperial forms of plates, the pl shape may vary. The minimum and maximmen eapaceitios of the e denser play a large part in determining the omtine of the plate.
brass or alumimum plates and sterel shafts are ordinarily used. the condenser is intembed for use on high voltages, the spateing betwe opposite plates must be sufficient to avoid a flash-over or areing betw plates. It is contomary to round off all sharp edges and corners in st condensers to aroid flashaver.

Condensers of the air type are often filled with oil, which inerea the voltage that they ran stand and inereases the capacity from two five times depending on the dieleetrie ronstant of the oil used.

Compressed-air condensers wore formerly used in some radio tra mitting stations. The voltare which such a condenser will stand incroased without changing the cenpacity.
25. Gang Condensers. The single-dial control radio receiver broup problems to the dosignor in how to thme two to five rireuits acourat using a corresponding momber of similar coils and variable condens operating on the same shaft. As it is praterally impossible eonvenien to mamutacture two comdensers examtly alike, to say nothing of threr four alike, so that their rapacities shatl be cxatelly the same throughe the complete rotation of the condenser plates and arourately tume $t$ condensers with the same number of similar coils which differe slightly value, it has bern customary to balance or enualize these tuned corea by the addition of small paralleling condensers sometimes called trimmi eondensers. Such comdensers ean be obtained mate hed to one-half 1 per cent. It is possible to obtain two to four condensers ealled ga condensers for radio reopivers arranged with thoir shafts in lime a: operated hy one dial, matehed to ome-half of 1 per erent. The individe condensers mat he separated from one another by motal shiolds if desire
26. Design Equations for Variable Air Condensers. The capari of a condenser mathe uep of three plates as indicated in Fig. 12 can obtained hy determining the area of the overlapping plates, the distan betwern the adjacent plates, and substitution of these values in $t$ general equation given above. The area of the shaded portion of Fi 12 is $1 / 2 \pi\left(r_{1}{ }^{2}-r_{2}{ }^{2}\right)$. The distane between the plates is $1 / 2(s-$
abstituting these values in the general equation, the capacity of the ndenser is given by

$$
C^{\prime}=\frac{0.0885 \frac{1}{2} \pi\left(r_{1}{ }^{2}-r_{2}{ }^{2}\right) \times(3-1)}{1 / 2(.+t)}
$$

The maximum capacity of a condenser with $N$ plates eam be ohtained tusing a similar eguation which may be written

$$
C=\frac{0.278\left(r_{1}^{2}-r_{2}^{2}\right)(N-1)}{(N-t)}
$$

I the above equations $C$ is in mieromiofarads and the dimensions $r_{1}, r_{3}, s$, id $t$ in contimeters. These equations aglect the capacity through the solid sulation which is used in the conenser and the fringing effeet, the correcon for which is on page 89. Many mdensers are made to haye as small :1 inimum capacity as possible, giving a rge ratio of maximum to minimum aparity, but this is of doubtful advanige, as'slight changes of capacity due , warping of plates or wear in bearings ill cause a rclatively large error at the


Fig, 12.-Dimensions useful in determining condenser caparity. wer end of the seale but practically no noticeable effect at the maximum zpacity end of the scale.
A semicircular plate condenser gives a capacity calibration curve milar to C shown in Fig. 13. With the exception of the portions near the ends of the curve, it is practically

(w. 13.-Semicircular plate rondenser charateristic. a straightline. In pratetiee, the lower ten and upper five or ten degrees of a 180 -deg. seale are not used, so as to avoid the curvature in the calibration carve in these regions. Zaro setting does not give zero capacity.

The frequency curve for surh a condrnser is shown at $F$ in Fig. 1:3. The frequency changes very rapidy on the lower part of the seale, A slight capacity change would make a latge frequency change. Therefore, when using frequeney moters having somicrecular phate condensers which constitute the main caparity of the circuit, the coils should be so designed as to give overlaps withont resort to the low-espacity end of the sate.

As the wave longth $\lambda$ of a wavemeter cireuit isproportional to $\sqrt{L C^{\prime}}$, \& $L$ is assumed to be constant, $\lambda \propto \sqrt{C^{2}}$ and $\sqrt{r}$ is proportional to the quare root of the setting $\theta$. For a uniform wave-longth condenser it is recessary to have $C$ vary as the square of the setting $\theta$, or $C \propto \theta^{2}$.

| Straight-line wave length | Straight-line frequency | Straight-line percentace wave leugth or frequency |
| :---: | :---: | :---: |
|  |  |  |
| $\begin{aligned} & C_{2}=\left(a_{2} \theta+b_{2}\right)^{2} \\ & \left.A_{2}=K_{1}\left(a_{2} \theta+b_{2}\right)^{2}-\text { resid. cap. }\right\}+K \theta \end{aligned}$ | $\begin{aligned} C_{3} & =\frac{1}{\left(a_{3} \theta+b_{3}\right)^{2}} \\ A_{3} & =k\left\{\frac{1}{\left(a_{3} \theta+b_{3}\right)^{2}}-\text { resid. cap. }\right\}+ \end{aligned}$ | $\begin{aligned} & C_{4}=a_{4} b_{4} \theta \\ & A_{4}=K\left\{a_{4} \varepsilon_{4}^{b}-\text { resid.cap. }\right\}+K^{\prime} \theta \end{aligned}$ |
| $R_{2}=\left[114.6\left\{2 k_{2}\left(a_{2} \theta+b_{2}\right)+K\right\}\right]^{1_{2}}$ <br> Constants: $\begin{aligned} & a_{2}=\frac{\sqrt{\text { max. rap. }}-\sqrt{\text { resid. cap. }}}{180} \\ & b_{2}=\sqrt{\text { resid. cap. }} \end{aligned}$ | $I_{3}=\left[1 1 4 . 6 \left\{\frac{2 h n_{3}}{\left.\left(I_{3} \theta\right)+b_{3}\right)^{3}}+K(180-\theta)\right.\right.$ <br> Constants: $\begin{aligned} & a_{3}=\frac{1}{180}\left\{\frac{1}{\sqrt{\text { resid. cap. }}}-b_{3}\right\} \\ & b_{3}=\frac{1}{\sqrt{\text { nax. cap. }}} \end{aligned}$ | $R_{t}=\left[114.6\left\{k a+b_{t E^{n} A}+k\right\}\right]^{1 / 2}$ <br> Constants: $\begin{aligned} & a_{4}=\text { resid. cap. } \\ & b_{4}=\frac{\log (\text { max. cap })-1 \text { og (resid cap. })}{78.171} \end{aligned}$ |

$$
\begin{aligned}
\text { Common constants } k & =\frac{\text { total plate area }-180 K}{\text { max. cap. }- \text { resid. cap. }} \\
K & =\frac{r^{2}}{114.6}
\end{aligned}
$$

Again, it may be desirable that the pereentage change in capacity - a given angle of rotation of the plates be the same for all parts of the ine is in the Folster deremeter. ${ }^{1}$ The polan equation for the boundary rve is

$$
r=\sqrt{2 C_{0}{ }^{\prime l} \epsilon^{\prime \prime} \theta}+r_{2}^{2}
$$

aere $C_{0}=$ capacity when angle $\theta=0$
$a=$ constant $=$ percentage change of caparity per seate division
$\epsilon=2.71828$
$r_{2}=$ radius of cut-out portion to chear washers soparating variable plates.
The foregoing equations and tahles have been compiled bẹ (iriffiths. ${ }^{2}$ e four types of plates given are for equivalent condensers having a pacity at zoro setting of $36 \mu \mu \mathrm{f}$ and a maximum of $500 \mu \mu \mathrm{f}$, with a ate area of 20 sq . cm .
The paper mentioned above gives the following data for the radii at fferent angles for the condensers mentioned in the table of equations , page 96 .

| ө, degrees | Radius, centimeters |  |  |
| :---: | :---: | :---: | :---: |
|  | $R_{2}$ | $k_{3}$ | $R_{1}$ |
| 0 | 2.49 | 8.25 | 1.93 |
| 5 10 | 2.56 | 6.70 | 2.02 |
| 20 | 2.76 | 5.62 | 2. 13 |
| 30 40 | 2.89 | 4.80 4.17 | 2.24 2.36 |
| 60 | 3.18 | 332 | 3.64 |
| ${ }_{90}$ | 3.56 | 2.8 | 9 |
| 100 |  | 2.37 | 3.38 |
| 120 140 | 3.86 | - 3.10 | 3.85 4.40 |
| 140 150 150 | 4.12 |  | 4.71 |
| 160 170 |  | 1.76 | 5. 54 |
| 180 | 4.38 | 1.85 | 5.80 |

27. Effect of Putting Odd-shaped Plate Condensers in Series or afallel. If any of the above condensers are placed in parallel or in ries with another condenser, the straight-line calihration will he altered. paralleling condensers are used, the plate shape would require reealention, after whith the plate would hecome more nearly semicircular. a condenser is added in series, the calculation of the plate shape is more ficult. Griffiths ${ }^{3}$ gives complete equations for at number of series

[^13]eombinations, the following table applying to the cases indicated whe maximum capacity of variable condenser $=\tilde{500} \mu \mu \mathrm{f}$, minimum capari of variable condenser $=36 \mu \mu$ f, series fixed eapacity $=500 \mu \mu$ f, tot plate areat $=20$ sy. em., $r=$ radins of inactive semicircular area moving phato $=1.2 \mathrm{~cm}$.

| A, degrees | Radius, centimeters |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $R_{s}$ | $R_{6}$ | $R_{7}$ | $R$ |
| 10 | 2.74 2.80 | 2.16 | 9.25 | 1.82 |
| 20 |  | 2.35 | 6.95 |  |
| 30 | 292 | 2.3i) | 4.85 | 1.96 |
| 40 50 | 306 | 2.86 |  | 2.15 |
| 60 |  | 2.78 | 3.32 | 2.38 |
| 70 90 | 3.22 3.40 |  | 2.82 | 2.38 |
| 100 | 3.40 <br> $\cdots$ | 3.37 | 2.42 | 2.85 |
| 110 120 | 3.66 |  |  |  |
| 1:30 | 3.88 | $\cdots$ | 2.02 | 3.57 |
| 140 150 |  | 4.25 |  |  |
| 160 | 4.18 | 4.85 | 1.78 | 4.74 |
| 170 | 4.62 | 4.85 |  |  |
| 180 | 4.73 | ¢. 66 | 1.62 | 7. 16 |

$R_{5}$, straight-line capacity with serips fixed -apancity.
$R_{6}$, corrected square law of caparity with scries fixed capacity.
$R_{7}$, inverse square law of capacity with series fixed capacity.
Rs, exponential law of "apacity with series fixed eaparity.
28. Important Considerations in Design. It is not difficult to find large number of condensers on the market which will answer the nee of any condenser application in radio receivers. The manufacture condensers for such use has been brought to a high stage of developmen both electrically and mechanically. The design problems here al simpler in that low power and low voltage are to be handled.

When condensers for radio tramsmitters are considered, high pow and high voltage are to be provided for. More recently the use of ver high radio froquencies was added to the problem by requiring bette insulating materials. Insulators which were satisfactory at low radi frequencies have been found to heat up and be unsuited for frequencic such as $30,000 \mathrm{kc}$.

The following classification shows how condensers for transmitting set could be divided with respert to the voltages to which they are subjected:

Those subjected to steady d-c woltares only.
Those subjected to low-freguency voltages only.
Those subjerted to ditmped r-f voltares only (obsobete).
Those subjeerted to steadiy CW r-f roltares only.
Those subjected to modulated CW r-f voltages only.
Those sulbered to d-e roltares with superimposed r-f voltage.
Those subjected to low-frequency voltage and superimposed r-f yoltage. The last four of the above divisions rould be further suldivided into, thos for use on frequencies up to about $3,000 \mathrm{kc}$, those for use on frequencies fror

0 to about $25,000 \mathrm{ke}$, and those for use on frequencies of $30,000 \mathrm{ke}$ and ve. The $t$ wo latter classes require sperial construetion.
i sperifying the rating of rondensers for use in ralio tramsmitters, following data should be given: capacity, current, frequeney, nature oltage to be appliod. A knowledge of the maximmm radio-frequenoy age and maximum current permissible is important. A rondenser ald never be operated at more tham half the breakdown voltage the case of radio-frequenery voltages, this fratetion should be much Hor.
9. Standards of Capacity. Fixed eondensers using the best grade of a or fixed air condensers are used as caparity standards for radio nencies. For some work a variahle air eomdenser is essential as a dard.
n important requirement of a standard condenser is that the capacity ain constant, the prerequisite of which is rigidity of construction, which nore diflicult to seaure in a variable than in a fixed condenser. re should be no relative motion possible between the movable plates and pointer. There should be no stops against which the pointer or movable es may strike and thas destroy the eatibration. The mamer of insu19 the two sets of phates is of great importance not only in fulfilling the lity requirement but in minimizing the power loss. An insulating matehaving a low temperature coefficiont of expansion should be used, so that capacity will not change perceptibly with temperature. As small an ount of solid insulating material as possible should be employed, keeping ell out of the electric field. This field is quite intense near the high--ntial post. All insulation should be avoided in the vicinity of that ninal if power factor is to be kept low.
he condenser should be provided with a metal shield, which mas he inded during measurements, if the caparity is to remain constant. The $s$ inside the condenser should be as short and dirent as possible. The stance of leads, patos and rontarts should be kept to the minimum. tible eomection to the moving blates should not be used in a standard.
Liea condensers fan be employed as standards after calibration as to wity and power factor over the range of frequencies at which they are to ised.
O. Methods of Measuring Capacity. There are two general methods 'apacity measurement: (1) absolute moasuremonts in torms of other trical or physical units; (2) comparison mothods, where a condenser anknown eapacity is compared with a known ralibrated condenser. absolute mothods are not rarried out at radio freourneides. Approxite calibrations of condensers for r-f use ath he ohtained using some n of bridge operating at 1,000 eyreles. A very convenient instrument. rapid cherking work is found in the direet-rading mierofarad meter ch operates on 60-cycle eurrent.
sondenser calibrations at radio frequencios are conveniontly made by dostitution method in a resonanee cirenit. "The standard used must, one which is constructed for use as a standard at radio frequencies. ihould give the same calibration at two widely different eharge and harge rates, such as 100 and 1,000 (rharges and diseharges per sorond. $t$ fills this requiroment, it may be assumed to give the same calibration :adio frerfuencies.
a simple tuned circuit consisting of a roil and the condenser under : is arranged with a doublo-throw switeh so that the standard conser may be readily substituted. Resomance may be indicated by a
sensitive meter compled to the main coil by a few turns of wire. arystal detector and 1-ma d-e meter makes a very convenient indieat deviere. Power is stpplied electromagnotieally by amall vacum t oscillator. The mestisurment circuit is shown in Fig. 14. The shich side of the condenser should be gromuded. It is essential that the If comereting the switch points to eath condenser be of the same lengtl


Fig. 14.-Measurement of condenser capacity. each case as otherwise the ruits will not have the st amoment of induetance w one condenser is substitu for the other, which will re: in an error in the eabibrat The eompling betweon the circuit and theoscillatorshe be kept quito loose, which be nevessary if a semsitiver nance indieating instrumer used.
If in the circuit shown in Fig. 14 a fixed inductor is used, the calibrat will be made at varions frequencies depending upon the capateity the different condenser settings. A variable air condenser of suit: size could be connected arross the eoil at XX and used to keep resonance frequency the same for any setting of $C_{x}$. If such a cir, is carefully set up, no errors will result if the two circuits comene ted te and $C_{s}$ are similar. The frequency at which the measurements are m can be measured with a frequency meter. The frefuency or freque range over which a calibration is made should always be stated.

For rougher ealibation work, the circuit shown in Fig. fis may be used where $C_{s}$ is funed both with and without $C_{x}$ in the cirenit. It should be noted that the leads and switeh commerting $C_{x}$ to the circuit will introduce errors in


Fig. 15.-Simple scheme for meinsu capacity. the ealibration.
31. Precautions in Measurement of Very Small Capacities. I difficult to get agrement between different laboratories in the meas ment of capacities of the order of 1.5 or $20 \mu \mu \mathrm{f}$ or less. The realsons this are several and include differenees in methods of measurem different lengeths of leads used, different sizes and sparing of les stray caparities to neighboring objerets, and differences of a few mi microfarads in the eapacity standards of the various laboratories. He it is not umsual to find a disagreement as much as 30 per cent or n in the measurement of a capacity of the order of $10 \mu \mu \mathrm{f}$.

For measurements of small capacities it is essential to keep all connec leads of minimum length, and have them oceupy definite positions, so 1 corrections for their induetance and capacity ran be applied if desi Apparatus not artually needed should be kept away from the measu: circuit. A standard having a finely praduated scale is essential for $s$ measurements. It should be capable of repeating its capacity value for given setting. Its capacity curve should preferably be a straight line with.
$y$ crooks in it, so that interpolations can be accurately made from calibrated nts.
32. Methods of Measuring Condenser Resistance and Power Factor d Dielectric Constant of Insulating Materials at Radio Frequencies. asurements of condenser resistance and power faetor of insulating terials are made in practieally the same manner, as the sample of ulating material is prepared so as to form a condenser. Methods of asuring condenser resistance ${ }^{1}$ and power factor of insulating materials ${ }^{2}$ ve been given in publications of the Burean of Ntandards. The verican Society for Testing Materials has one or more standard met hods testing electrieal insulating materials for power factor and dieleetric 1stant. ${ }^{3}$
lhe cireuit shown in Fig. 16 may be used for measurements of resistse, power factor and dielectric constant. Assuming that the power tor of a sample of insulating material is to be measured, the sample sheet form is made into it condenser sapacity het ween 100 and $1,000 \mu \mu \mathrm{f}$, as resented by $C_{x}$ (Fig. 16). The reinder of the eireuit eonsists of the eoil thermoelement $T$, and double-pole able-throw switch $s$, in which radioqueney resistors $R$ may be inserted. e galvanometer $G$ gives deflections ieh are proportional to the sepuare of - current flowing in the circuit $L T C_{x} R$, electromagnetically indued from the lio-frequency oscillator $O$.

The deflections of galvanometer $G$ are ed for several valnes of inserted resiste $R$ and for the rase when $R$ is a link practically zero resistance. Cising the


Fig. 16.-Circuit for measuring properties of insulators. Pro resistance" deflection and the deflec1 for a known value $r$ of resistance inserted in switch $S$, the resistance $R_{r}$ of total circhit $L T C_{x} R$ is given by

$$
R_{T}=\frac{r}{\sqrt{\frac{d_{0}}{d_{1}}-1}}
$$

a average of the values of $R_{T}$ calculated for various values of $r$ should taken as the resistance of the complete circuit. The resistance $k s$ of rircuit when ('s is substituted for C'x should be obtained in the same nner. The resistance $R_{x}$ of the condenser $C_{x}^{x}$ is then given by $R_{x}=$ - Rs. It is essential for this measurement that the two parts of the wit which are interchanged should be as nearly identical as possible.
Ifter the resistance $R_{x}$ of the insulating material eondenser is obtained, power factor or phase difference can be calculated from the equations en above. The dielectrie constant $K$ can be calculated from the
equation $K=$ Ct $/ 0,0885.9$, where $C^{\prime}=$ capacity of sample in micromic farads, $t=$ thickness of sample in centimeters, and $\delta \cdot=$ area of smaller pl: in square centimeters. The caparity is known, as given by Cis, and the as of one phate and the thickness of the sample can easily be measured.

The method deseribed above operates sat isfactorily at frequenedes from ] to $1.5(1) \mathrm{kc}$.

A bridge method is sometimes used for these measurements although 1 apparatus is considerably more complicated that that described above.

A comparative method for testing insulating materials at very hi radio frequencios has been used by rertain laboratories. In this meth the insulating matorial sample is placol in an intense elertric fiold p duced by a 30 -mequaycle transmitter, and the temperature rise in $t$ sample monsured for a definite dime interval. While such results hat not as yot heon definitely tiod up with power factor, dirleotric eonsta ete., yet they represent in a very practical mannor a means for doterm ing the suitability of different types of materials for use at very hi radio frecumencios. An insulator which is entiroly satisfactory at low radio frequencios such as 1,000 or $2,000 \mathrm{ke}$ may prove to be umasable 20 or 30 megacteres. Hence data on power factor and dielectrie er stant are meaningless without a statement of the frequency at whi the data were olitained.
33. Life Tests on Paper Condensers (Dubilior). Acerlerated lifo te of paper condensers ean be made with d-e voltages only. Exeress alternating voltages produce heating, which in turn so alters the char: teristies of the dielectric of the eondensers that mo definite relationsl between these voltages and lifo has yet been obtained. So that wh tests with alternating voltages of higher than rated value have so produed results that amot be eoordinated, high dece voltages hat given fairly consistont results-so much so, that it has been possible express the life of eondensers in terms of impressed voltage.

Fingineers of the Dubilier haboratories have taken samples of kinds of paper eondonsers and suhjeeted them to voltages ranging fra that rated to four times rated voltage, keepieng them on until the ce densers broke down. A reeord of the kind of eondenser, voltage, a life at the partieular voltage was kept. When enough data were aed mulated-which represented the test results of thousands of eondense with dielectrie thicknesses of from 0.8 to 6.0 mils, and voltages of 200 2,000 - it was fomed that the life could be expressed conservatively terms of the fifth power of voltage. In other words, the life of pat condensers on d, e. was found to vary inversely as the fifth power of $t$ impressed voltage.

Expressed mathemationally:

$$
L=K\left\{\frac{V_{1}}{J_{2}^{r}}\right\}^{\boxed{b}}
$$

where $L=$ lifo in hours
$K=a$ constant depending upon the design of the conden (usually 10,000)
$V_{1}=$ rated voltage
$V_{2}=a_{\text {pplied }}$ voltage
It is therofore clear that if a proper sample is taken from a lot of ex densers and is subjected to al higher voltage to haston its breakdown, is
$y$ short time the sample will reveal the quality of the entire lot. an example, twier the rated voltage will reduce the life to only about er cont, and hence, instead of waiting about $10,000 \mathrm{hr}$. to find the life a condenser, only about 300 hre are reopuired at the areolerated life of twier rated voltage.
n this as in any other test, a suffienently large sample must be taken orally representative of the entire lot. This is governed by the I known prohability laws of sampling.
the fifth power relationship is a conservative one, and in well eonacted condensers, as high as a seventh power relation between life voltage holds. At no time, even with the poorest of condensers has wer than fifth power been obtained.

## SECTI()N 6

# COMBINED CIRCUITS OF L, C, AND R 

## By W. F. Lanterman ${ }^{1}$

## GENERAL IMPEDANCES

1. Impedances in A-c Circuits. The impedance of a circuit carry alternating current is the ratio of the voltage impressed across its minals to the current flowing through it. If the eirenit consists of res ance only, the current is in phase with the impressed yoltage and impedance is resistive. If the circuit consists solely of inductance, current ligs one-fourth cycle


Fig, 1.-Vector diagrams of typical circuits. phase behind the volt:1ge, or if circuit is made up of pure cap tance, the current leads the volt by one-fourth eycle. In the la two cases, the impedance is sair be reactive.
2. Vector Diagrams. Vee diagrams are graphical represes tions showing both magnitudes phase angles of currents and $v$ ages with respect to some kne voltageorcurrentealled the refer rector (Fig. 1). Leading vectore displaced from the reference vee by counterclockwise angles eque the time phaseangle; lagging ver are similarly displaced in the ele wise direction.

The two projections of a ve upon lines parallel to and perl dicular to the referene vector respectively, the in-phase (resist and the quadrature (reactive) e ponents of the projected vec The algebraicsum of any two vee is the resultant of the algeh sum of the in-phasecomponents the sum of the quadrature components, added vectorially, as show, Fig. 1.
3. Complex Notation. Algehraic vector notation requires the use vector operator $j$ as a factor in each expression for a quadrature vec

- National Broadeasting Co.
distinguish such quantities from in-phase vectors. Thus, a vector is tten

$$
\dot{I}=I_{R}+j I_{X}
$$

ere $I_{R}$ and $I_{X}$ are the magnitudes of the in-phase and quadrature aponents, respectively. The operator $j$ significs that $I_{X}$, the reactive nponent, is leading the reference vector (and the in-phase component, by 90 electrical degress, or one-fourth cycle. If the reactive comnent is lagging, the expression is written with a negative operator j):

$$
\dot{I}=I_{R}-j I_{X}
$$

A vector operated on twice by the operator $j$-a double operation tten $j \times j$, or $j^{2}$-is rotated twice through 90 deg, or 180 deg . This ounts merely to reversing the original direction of the vector, which is .oted by $j^{2} \dot{I}=-\dot{I}$ : hence $j \times j$ or $j^{2}=-1$ and $j$ is sometimes conared equivalent to $\sqrt{-1}$. In vector notation, however, the radical -1 is real and signifies an operation, which, if performed twiee, reverses direction of a vector; this usage is in contradistinction to the purely ebraic conception of the radieal $\sqrt{-1}$, wherein it is an imaginary neric.
Impedance in Form of a Vector. Instead of writing the magnitude arrent due to each resistance and reactance, it is often convenient to te the resistanees and reactances themselves in the form of a vector th expressions are not true veetors; they are a form of vertor operator). is a resistance $R$ in series with a reactance $X$ may be expressed as $=R+j X$. The eurrent when a voltage $\dot{E}$ is impressed is

$$
\begin{equation*}
\dot{I}=\frac{\dot{\dot{L}}}{\bar{Z}}=\frac{\dot{E}}{R+j X^{2}} \tag{1}
\end{equation*}
$$

m this it follows that $\dot{I} R+j \dot{I} X=\dot{E}, \quad \dot{I} R$ is the voltage arross the stor and is in phase with $\dot{E}$ while $j l N$ is the voltage across the reart$e$ and is leading $\dot{E}$ by 90 deg.
© eonvert (1) into an expression of the form $\dot{I}=I_{R}+j I_{X}$, both arator and denominator are multiplied by $\left(R-j X^{\prime}\right)$. Since $j^{2}$ is ivalent to -1 ,

$$
\begin{equation*}
\dot{I}=\frac{\dot{E}(R-j X)}{(R+j X)(R-j X)}=\frac{\dot{E} R}{R^{2}+X^{2}}-j \frac{\dot{E} X}{R^{2}+X^{2}} \tag{2}
\end{equation*}
$$

Values of the Reactance $X$ of Coils and Condensers. In the above ressions, reactances have been symbolized by $X$. If the reatance is il having in inductanee of $L$ henrys, $X=\omega L$ ohms, where $\omega=2 \pi f$; is a condenser having a capacitanere of $C$ fartads, $X=-\frac{1}{\omega C}$ ohms; is composed of both $L$ and $C, X=\left(\omega L-\frac{1}{\omega C}\right)$ ohms. ('apacitance tys has negative reactance, and inductance always has positive tance.
6. Equivalent Impedance. The equivalent impedance of a notwork impedaners is the ratio of voltage to eurrent at the terminals of network.
7. Equivalent Impedance of Impedances in Series. If two impedar $Z_{i}$ and $Z_{2}$ are in series, the resistaneo component of their equivalent imp, ance is the sum of their resistancos, and the reactance romponent is the s of their reartances:
$Z_{0}=Z_{1}+Z_{2}=\left(R_{1}+j N_{1}\right)+\left(R_{2}+j N_{2}\right)=\left(R_{1}+R_{2}\right)+j\left(\mathbf{N}_{1}+X_{2}\right)$


Equivalent impedances of series combinations of $L, C$, and $R$.
8. Equivalent Impedance of Impedances in Parallel. If two impedan $Z_{1}$ and $Z_{Z_{0}}$, are in parallel, their equivalent impedance is
$Z_{0}=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}=\frac{\left(R_{1}+j X_{1}\right)\left(R_{2}+j X_{2}\right)}{\left(R_{1}+j X_{1}\right)+\left(R_{2}+j X_{2}\right)}$

$$
\begin{align*}
& =\frac{\left[\left(R_{1}+R_{2}\right)\left(R_{1} R_{2}-X_{1} X_{2}\right)-\left(X_{1}+X_{2}\right)\left(X_{1} R_{2}-R_{1} X_{2}\right)\right]}{\left(R_{1}+R_{2}\right)^{2}+\left(X_{1}+X_{2}\right)^{2}} \\
& \quad+j \frac{\left(\left(R_{1}+R_{2}\right)\left(X_{1} R_{2}+X_{2} R_{1}\right)+\left(X_{1}+X_{2}\right)\left(R_{1} R_{2}-X_{1} X_{2}\right)\right]}{\left(R_{1}+R_{2}\right)^{2}+\left(X_{1}+X_{2}\right)^{2}} \tag{4}
\end{align*}
$$

his expression, while somewhat involved, is seen still to be of the form

$$
Z_{0}=R_{0}+j V_{0}
$$

| $\begin{aligned} & Z_{0}= \frac{Z_{1} Z_{z}}{Z_{l}+Z_{2}} \\ &=\left(R_{1} R_{2}-X_{l} X_{2}\right. \\ &+j\left[\left(R_{1} X_{2}\right.\right. \\ & \hline \end{aligned}$ | $\begin{aligned} & \left(R_{1}+R_{2}\right)+\left(R_{1} X_{2}+R_{2} X_{1}\right) \\ & \left.R_{2} X_{1}\right)\left(R_{1}+R_{2}\right)-\left(R_{1} R_{2}\right. \\ & \left(R_{1}+R_{2}\right)^{2}+\left(X_{1}+X_{2}\right. \end{aligned}$ | $\begin{aligned} & \left.x_{1}+X_{2}\right) \\ & \left.\left.-X_{1} X_{2}\right)\left(X_{1}+X_{2}\right)\right] \\ & 2 \end{aligned}$ | $X_{L}=2 \pi$ If ohms when $L$ is in henrles <br> $X_{C}=\frac{10^{6}}{2 \pi f C}$ ohms when C/s |
| :---: | :---: | :---: | :---: |
| Curcuit $\left(R_{1}+R_{2}\right)^{2}+\left(X_{1}+X_{2}\right)^{2}$ |  |  | Algebraic Formulae |
| (a) <br> Inductance and Resistance in Parallel |  |  | $\begin{aligned} & Z_{0}=\frac{R X_{L}\left(X_{L}+j R\right)}{R^{2}+X_{L}^{2}} \\ & / Z_{0} /=\frac{R X_{L}}{\sqrt{R^{2}+X_{L}^{2}}} \\ & \phi=\tan ^{-1}+\frac{R}{X_{L}} \end{aligned}$ |
| (b) <br> Resistance and Capacitance in Parallel |  |  | $\begin{aligned} & Z_{0}=\frac{R X_{C}\left(X_{c}-j R\right)}{R^{2}+X_{c}^{2}} \\ & \left\|Z_{0}\right\|=\frac{R X_{c}}{\sqrt{R^{2}+X_{c}^{2}}} \\ & \phi=\tan ^{-1}-\frac{R}{X_{c}} \end{aligned}$ |
| (c) <br> Inductance and Capacitance in Parallel |  |  |  |
| (d) <br> Resistance, Capacitance ant Inductance in Parallel |  |  | $\begin{aligned} Z_{o} & =\frac{R X_{L} X_{C} / X_{L} X_{C}-\rho\left(R X_{L}-R X_{C}\right)}{\left(R X_{L}-R X_{C}\right)^{2}+X_{L}^{2} X_{C}^{2}} \\ / Z_{0} / & =\frac{R X_{L} X_{C}}{\sqrt{\left(R X_{L}-R X_{C}\right)^{2}+X_{L}^{2} X_{C}^{2}}} \\ & =R w h e n X_{L}=X_{C} \\ \phi= & \tan ^{-1}-\frac{R X_{L}-R X_{C}}{X_{L} X_{C}} \\ & =0 \text { when } X_{L} \cdot X_{C} \end{aligned}$ |

Equivalent impedance of parallel rombinations of $L, C$, and $K$.

- Equivalent Impedance of Networks Having More than Two Impedes. By applying the foregoing principles as many tinnes as necessary in
a step-by-step process, it is possible to reduce any network to a single equi alent impedance. Thus in Fig. 2,


$$
\begin{aligned}
Z_{34} & =\frac{Z_{3} Z_{4}}{Z_{3}+Z_{4}} \\
Z_{234} & =Z_{2}+Z_{34}
\end{aligned}
$$

Fig. 2.-Net- and finally, work with branch imperandes.

$$
Z_{0}=\frac{Z_{1}\left(Z_{2}+Z_{34}\right)}{Z_{1}+Z_{2}+Z_{34}} .
$$



Equivalent impedance of parallel combinations of $L . C$. and $R$.

L0. Absolute Values of an Impedance. In many cases the magnitude an impedance is all that it is required to know; this is given by

$$
\begin{equation*}
\left|Z_{0}\right|=\sqrt{R_{0}^{2}+X_{v}{ }^{2}} \tag{5}
\end{equation*}
$$

L1. Dissipation Factor $Q$. The ratio $Q$ of reactance to resistance has nificance as a figure of merit of a coil or condenser and is called the sipation constanl. For a coil,

$$
\begin{equation*}
Q=\frac{\omega L}{R} \tag{6}
\end{equation*}
$$

For a condenser,

$$
\begin{equation*}
Q=\frac{1}{\omega R C} \tag{7}
\end{equation*}
$$

Since both reactance and resistance vary with frequency, it is usually ssible by proper design and choice of materials to arrive at some timum value of $Q$ for a coil or condenser at any particular frequency. Values of $Q$ representative of those which are attainable in practice 3 shown in Table 1.
able 1.-Replesentative Values of $Q$ for Vabious Coils and

| Frequency, cycles | Coils with powdered iron pores | Air-cored coils | Condensers with paper dielectric | Condensers with nica dielertric |
| :---: | :---: | :---: | :---: | :---: |
| 100 | 25 to 50 | 3 to 10 | 1.000 |  |
| 1.000 | 50 to 75 | 25 to 50 | 500 | 3.000 |
| 10.000 | 100 to 150 | 200 to 350 | 100 to 200 | 500 |
| 100.000 | 150 to 200 | 1,000 to 2.000 | 50 to 100 | 200 to 300 |
| I, 000.000 |  | 50.000 |  | 100 to 200 |

12. Loss Due to Inserting Series or Shunt Impedance in Audio rcuits. In audio circuits, attenuation-frequeney characteristics are

a. 3.-Shunt and series impedanees inserted in audio-frequency circuits. ten purposely modified by the insertion of corrective innpedances. xamples of this practice are the use of equalizers, "tone controls," ad serateh filters. It is desirable to be able to prediet the effect on the
frequency response of the insertion of such deviecs either in series or shunt with the original circuit. The following formulac give the amon of loss in decibels for cach case:
a. Shunt Impedance. The loss due to inserting a shunt impedance (Fig. $3 a$ and $b$ ) is

$$
L=20 \log _{10}\left(1+\frac{Z_{1} Z_{2}}{Z_{2}\left(Z_{1}+Z_{n 2}\right)}\right) \mathrm{dt}
$$

The shunting impedance can usually be located at a point in the cire where the impedanes $Z_{1}$ and $Z$ zare matehed, and where earh is substantia a pure resistance through the range of freguencies involved. Then, letti $Z_{1}=Z_{2}=R_{0}$, the loss is

$$
\begin{aligned}
L & =20 \log _{10}\left|\frac{2 Z_{0}+R_{0}}{2 Z_{0}}\right| \mathrm{db} \\
& =20 \log _{10} \sqrt{1+\frac{\cos \phi}{K}+\frac{1}{4 K^{-1}}} \mathrm{db},
\end{aligned}
$$

where $K=\left|Z_{x}\right| / R_{0}$ and $\phi$ is the shase angle of $Z_{n}$. For variots values $K$ and $\phi$, the loss can be read from the curve (Fig. 4).


Frg. 4.-Transmission lass due to insertion of shunt or series impedane
b. Series Imperdener. The loss in deribels due to inserting a series impe ance $Z_{s}(\mathrm{Fig}, \pm a$ and $c)$ is

$$
L=20 \log _{10}\left(\frac{Z_{1}+Z_{2}+Z_{2}}{Z_{1}+Z_{2}}\right)
$$

he series impedance can usually be inserted at a point in the circuit where re impedances $Z_{1}$ and $Z_{2}$ are matehed, and where cach is substantially a pure sistance through the range of frequencies involved. Then, letting $Z_{1}+$ ${ }_{2}=R_{0}$, the loss is

$$
\begin{align*}
L & =20 \log _{10}\left|\frac{R_{0}+Z_{0}}{R_{0}}\right| \mathrm{db} \\
& =20 \log _{10} \sqrt{ } 1+2 K^{-} \cos \phi+K^{2} \mathrm{db} \tag{11}
\end{align*}
$$

here $K=|\%:| / R_{0}$ and $\phi$ is the phase angle of $Z_{\mathrm{a}}$. The loss can be read om Fig. 4 for various values of $K$ and $\phi$.

## RESONANCE

13. Definition. In cireuits eontaining both inductive and capacitive zaetanees, the eurrent drawn from the sourec may be in phase with the m.f., under which condition the reartance component of the equivatent mpedance beromes equal to zero. At sueh frequencies the circuit is in hase resomance, or merely in resomance.
Physieally, resonanee depends upon the periodie shift of stored energy om the magnetie fied of the coil to the electrostatic field of the conenser, in the form of a eireulating current. If the coil and condenser re in series the phenomenon is called series resonme and the eireulating urrent $I_{0}$ flows through the soure and lime. The impedane of this rrangement is low at resonatere and the line current is large. If the eoil nd condenser are in shant the phenomenon is called parallel resonance or anti-resonance). The impedanee at resonanere is large in this ease, "he value of the circulating current in the case of parallel resonance epends inversely on the $L / C$ ratio, and the resistance and is usually arge eompared to the eurrent flowing in the external supply circuit. because of its ahility to store energy a parallel resonant circuit is often ferred to as a tonk circuit.
14. Series Resonance. The imperdatue of at eoil is

$$
Z_{L}=R_{L}+j X_{L}
$$

here $R_{L}$ is the resistanes and $X_{L}$ the reartanere of the coil. If the coil a carrying a current $\dot{I}$, the eountervoltage due to the impedane of the oil is $I Z_{L}$ or

$$
\dot{E}_{L}=\dot{I} Z_{L}=\dot{I} R_{L}+j \dot{I} X_{L}
$$

his is shown graphially by the vector diagram (Fig. Bat).
In many condensers the resistance is negligible eompared to $X_{C}$, so hat the impedanee of a condenser is very nearly equal to the reactance, or

$$
Z_{C} \fallingdotseq-j Y_{C} \fallingdotseq-j \frac{1}{2 \pi f C}
$$

f the value of the current is $I$ amperes, the countervoltage across the ondenser is

$$
\dot{E}_{C}=\dot{I} Z_{C} \fallingdotseq-j \dot{I} X_{C} \fallingdotseq-j \frac{\dot{I}}{2 \pi f C}
$$

Chis is shown graphically be the vector diagram (Fig. $\mathrm{o}_{1}$ ).

If the coil and condenser are connected in series, the same curren flows through both. The voltage across the system is $\dot{E}_{0}=\dot{E}_{L}+\dot{E}_{C}=$ $\dot{I}\left[R+j\left(X_{L}-X_{C}\right)\right]$ and the countervoltages developed by the reactanec are in phase opposition to cach other (Fig. 5e), If $X_{L}=X_{C}$, the reaet ance term becomes zero and $\dot{E}_{0}=\dot{I} R$. This occurs when $2 \pi f L=$ $1 / 2 \pi f C$ or when the frequeney is

$$
f_{r}=\frac{1}{2 \pi \sqrt{ } L \bar{C}}
$$


(b) - Vector Diagram for Capacitance Alone

(c) - Vector Diagram for Condenser and Coil in Series

Fitg. 5.-Vertors in series circuits.
Under these conditions, the circuit is in series resonance. The resonane frequency $f_{r}$ depends only upon the product of $L$ and $C$. The vecto diagram for this condition is shown by Fig. 5c.
15. Impedance of Series Resonant Circuit at Frequencies Other tha Resonant Frequency. At frequencies other than $f_{r}$ the impedanee the eircuit is greater than the resistanee, due to the reactive component which at any frequency $f_{i}$ is

$$
X_{1}=2 \pi L\left(\frac{f_{1}^{2}-f_{t^{2}}^{2}}{f_{1}}\right)
$$

With $X_{1}$ and $R$ known, the absolute value of impedance is

$$
\begin{equation*}
\left|Z_{1 \mid}\right|=\sqrt{R^{2}+{X_{1}}^{2}} \tag{14}
\end{equation*}
$$

16. Design of Series Resonant Circuits. The magnitude of $Z_{0}$ (looking to a series circuit) is $\left|Z_{0}\right|=\sqrt{K^{2}}+\left(X_{L}-X_{c}\right)^{2}$ which ran be written

$$
\begin{equation*}
\frac{\left|Z_{0}\right|}{\omega_{r} L}=\sqrt{\frac{1}{Q^{2}}+n^{2}+\frac{1}{n^{2}}-2} \tag{15}
\end{equation*}
$$

here $\omega_{r}=2 \pi \times$ resonamed frequency
$\omega_{1}=2 \pi \times$ any frequency $f_{1}$

$$
n=\frac{\omega_{1}}{\omega_{r}}
$$

$$
Q=\frac{\omega_{r} L}{R}
$$

The phase angle of $Z_{0}$ is given by $\phi=\tan ^{-1} \frac{X_{0}}{R_{0}}$

$$
\begin{equation*}
=\tan ^{-1} Q\left(n-\frac{1}{n}\right) \tag{16}
\end{equation*}
$$

Values of $\left|Z_{0}\right| / \omega_{r} L$ and $\phi$ for varions vilues of $Q$ and $n$ may be read from te eurves (Figs. 6 and 7). Sinee (15) is symmetrical with regard to $n$ and


Fici. 6. $\frac{\left|Z_{0}\right|}{\omega_{r L}}$ vs. $n$ for series circuits.
/n. and (16) is also symmetrical except for a reversal of sign, the same curves Figs. 6 and 7) may be used when $n=f_{1} / f_{r}$ or when $n=f_{r} / f_{1}$. Thus the ssonance curve may be ploted for frequencios above and below resonanee.

Example of Design of Series Resonant Circuit. Assume that a seric resonant circuit is to be designed to have an impedance, $Z 0$, of 100 ohms at resonant frequency of 1.000 ceveles, and of 500 ohms at 0.9 resonance fro gueney. At resonane, the imperanee is the resistamere so $R=100$ ohms.

At $n=0.0$, the impedame is to be five times the imperame at $n=1$. From Fig. (i we find that io serure the desired $5 / 1$ ratio betwoen $Z_{0} \mid / \omega_{r}$
 $\mid Z_{0} \|_{1} / \omega_{r} I_{0}=0.215$.

Then

$$
\omega_{r} L_{2}=(Q R=2,300
$$

For

$$
\begin{aligned}
& f_{\gamma}=1,000 \\
& \omega_{r}=0,280
\end{aligned}
$$

and

$$
L_{\sim}=\frac{\omega_{r} L_{s}}{\omega_{r}}=0.36 \mathrm{ff} \text { herury }
$$



Fiti. 7.- Phase angles in terms of $n$ and $Q$, series circuits.

$$
\phi=\tan ^{-1}\left[Q\left(n-\frac{1}{n}\right)\right] .
$$

From the table in Sertion 1.

$$
I . C^{\prime}=25.33 \times 10^{8}
$$

$$
C=\frac{L C}{L}=0.692 \times 105 \text { farad }
$$

an we have $R=100$ ohms, $L=0.366$ herary, and $r^{\prime}=0.692 \times 10^{-0}$ ad ats the constants of the rirenit.
Che impedance of the eireuit at other fremencies wan low found from the io $\left|Z_{0}\right| / \omega_{r} L_{\text {a }}$ reat from Fig. 6 along the curve $(\ell=23$, and the phase angles be read from the eorresponding curve of Fig. 7.

## .7. Table of Circuit Constants and Impedances at Various Frequencies.

e table in shertion 1 gives froguently d constants in impedance and resoare calculations, for frequencies from 10 les to 100 megarevoles.

## 18. Properties of Series Resonant Cir-

 ts. A series resomant circuit has the owing properties at resomance: (1) The rent flowing is in phase with the imssed voltage; (2) the current is limited $y$ by the resistanee of the coil; (3) the intervoltage aross the mol is always ater than the impressed voltage, if the istance of the eroil is the only resistanere

Fig. 8.-Sories circuit reitctance. he eireuit ; (4) the eomentervoltage across : rondonser may or may not be greater than the impressed voltage, rending upen the ratio betwern $X_{C}$ and $R$; (5) the reactance and impedof of the cireuit vary in magnitude and sernse with the fredueney shown in Fig. 8.
[tems 3 and 4 are of importanee in cases where $I Z_{L}$ and $\dot{I} X_{C}$ are several bes higher than the impressed voltages, under which conditions sumh in voltages may oeme across $L$ and ('as to condanger their insulation. 19. Amplifier Using Series Resonant Circuits. The fact that the countorvoltages may be mado to exered the impressed voltage is useful as a voltage amplification scheme in varumm tube cireuits, sum as that shown in Fig. 9. If ( ${ }^{\prime}$ and $k$ are smatl and $L$ is large, the voltage $E_{g}$ applied to the grid of the tube at resonancemay beseveral times the impressed voltage $E_{0}$ If ('and $L$ are calibrated and one or both are mate variable, the plate current is proportional to $E_{L}$, the eircuit can be used as a frequency moter. The phase relation of $E_{L}$ and
'o
ut

Fui. 9.- Lise of suries ontace rireuit ats tage amplifier.
is determined by the values of $L, R$, and $C$, so that the cireuit is a useful as a phase ehanging deviere. At resomanere the input imperdanere the eirenit viewed from the sourer is equal to $R$, and sinere a small value $R$ must be used to secure voltage amplifieation and sharpnoss of resonere, the cireuit is "ssentially "current operated" and works effieiontly ly out of low impedanere soures.
20. Use of Series Resonant Circuit for Frequency Regulation. Aner appliation of a sories resonant eirenit is shown in Fig. 10. At monance, the excitation voltages applied to the grids are the reactance ops $I X_{C}$ and $I \mathscr{S}_{B}$. The tubes are hiased to the cut-off point so that trification takes plare. As long as the fregueney of the applied voltage is $f=1 / 2 \pi \sqrt{L C}$, the excitation voltages and therofore the plate eur-
rents of the two tubes will be equal, but if the frequency varies, the vi age drop across one reaetance will increase and that across the ot will decrease, causing the plate current of one tube to exceed the oth This difference in plate currents may he read on a meter to indicate frequency of applied voltage, or may be utilized through a differen relay to operate an automatic frequen ey conts


Fig. 10.-Use of series resonance circuit for frequency regulation. ling device.
21. Series Resonant Circuits as Equaliz Scries resonant cireuits are often used asequaliz where it is required to eliminate or attenuat certain frequency or a small band of frequene The resonant eirenit with a variable resistance series is comected in shunt across the line or ${ }^{\dagger}$ minals of the circuit to be equalized, and more less readily hy-passes currents of the resonant a adjacent frequencies, depending upon the adju ment of $R$.
22. Scratch Filters. Resonant circuits are also used as filters reducing needle serateh in clectrical phonograph reproducers and reducing earhon hiss in microphone circuits. In this case the resona frequency is usually about 4,500 rycles; $L$ may be 140 mh ( $1,500-\mathrm{t}$ honeycomb coil) and $C=0.0075 \mu$. The value of $R$ may be adjusted to give the desired attenuation of the high frequency. The lossfrequeney characteristic of such a filter is shown in Fig. 12.
23. Tone Control. A series-resonant cireuit tuned to 5,000 or 6,000 cyeles is also applied as a "tone control" in audio systems, where it is desired to acerntuate the lowfrequeney reproduction at the expense of


Fig, 11.-Series reson equaliser. the higher frequencies. For this purpose, a smaller $L / C$ ratio than that used in scrateh filters is clesirable; $L$ may about $20 \mathrm{mh}, C=0.5 \mu \mathrm{f}$ and $R$ variable to obtain the desired effeet.


Fig. 12.-Transmission characteristic of scratch filter used with magnetic phonograph pick-up.


Fig. 13.-Parallel onance.
24. General Parallel Circuits. The parallel circuit shown in Fig. is widely used in audio and radio circuits. The resistanee $R_{L}$ is p1 cipally that of the coil; the resistance $R_{C}$ of the condenser is usu small.
equivalent impedance is

$$
\begin{gather*}
=\frac{Z_{L} Z_{C}}{Z_{L}+Z_{C}}=\left(R_{L}+R_{C}\right)\left(R_{L} R_{C}+X_{L} X_{C}\right)+\left(R_{C} X_{L}-R_{L} X_{C}\right)\left(X_{L}-X_{C}\right) \\
\frac{\left.+j \|\left(R_{L}+R_{C}\right)\left(R_{c} X_{L}-R_{L} X_{C}\right)-\left(X_{L}-X_{C}\right)\left(R_{L} R_{C}+X_{L} X_{C}\right)\right]}{\left(R_{L}+R_{C}\right)^{2}+\left(X_{L}-X_{C}\right)^{2}} \tag{17}
\end{gather*}
$$

5. Resonance Relations in Parallel Circuits. The ractive coment of the equivalent impedance is

$$
\begin{equation*}
=\frac{\left(R_{L}+R_{C}\right)\left(R_{C} X_{h}-R_{L} X_{C}\right)-\left(X_{L}-X_{C}\right)\left(R_{L} R_{C}+X_{L} X_{C}\right)}{\left(R_{L}+R_{C}\right)^{2}+\left(X_{L}-X_{C}\right)^{2}} \tag{18}
\end{equation*}
$$

$\therefore X_{0}$ is equal to zero, $Z_{0}$ becomes pure resistance, $I_{0}$ is in phase with and the eirenit is in resonamee.
scondition exists if

$$
\begin{align*}
\omega_{r} & =\frac{1}{\sqrt{L_{C} C}} \sqrt{\frac{L_{L}-R_{L}^{2} C}{L-R_{C}^{2} C}} \\
f_{r} & =\frac{1}{2 \pi \sqrt{L C}} \sqrt{\frac{L-R_{L}^{2} C}{L-R_{C}^{2} C}} \tag{19}
\end{align*}
$$

en, also, $R_{L}=R_{c}$,

$$
\begin{equation*}
f_{r}=\frac{1}{2 \pi \sqrt{L C}} \tag{19a}
\end{equation*}
$$

ceasing the ratio of $R_{L} / R_{C}$ in (19) tends to decrease the frequeney of nance.
iquation (19a) gives the condition under which the frequency of allel resonanee exaetly equals that of a series circuit of the same ad $C$-that is, when the resistances of the branehes are equal.
6. Special Case Where $R_{L}=R_{c}$ and $X_{L}=X_{C}$.

$$
\begin{gather*}
R_{L}=R_{C}=R \text { and } X_{L}=X_{C}=X \\
Z_{0}=\frac{R^{2}+X^{2}}{2 R} \tag{20}
\end{gather*}
$$

if $\boldsymbol{X}_{L}=X_{C}\left(\omega L=\frac{1}{\omega C}\right), \omega_{r}=\frac{1}{\sqrt{L C}}$ or $f_{r}=\frac{1}{2 \pi \sqrt{L C}}$.
n $X^{2}=(\omega L)=L / C$, and (20) becomes

$$
\begin{equation*}
Z_{0}=\frac{R=+\frac{L}{C}}{2 R} \tag{21}
\end{equation*}
$$

in the resistances of the two parallel branches are equal, the equivalent edance is a pure resistance at the frequency $f=1 / 2 \pi \sqrt{L} C$ and has the e shown in (20). If also $R^{2}=L J / C^{\prime}$, (20) reduces to

$$
\begin{equation*}
Z_{0}=R \tag{22}
\end{equation*}
$$

Thus if $R_{L}=R_{c}=R$ and $R=\sqrt{L / C}$, the circuit is resonan: at all quencies (i.e., the current and voltage are in phase), and the impedane equal to $K$.
27. Approximate Value of Resonance Frequency When $R_{C}$ and $R_{L}$ Small. In many actual circuits the resistance lic is negugihle, $R_{L}$ consists principally of the resistano of the roil, in which rase becomes

$$
f_{r} \fallingdotseq \frac{1}{2 \pi \sqrt{L C}} \sqrt{1-\frac{K_{L}^{2} V_{i}}{L_{L}}}
$$

If, also the quantity $R_{L}{ }^{2} C / L$ is small rompared with 1 , then

$$
f_{r} \fallingdotseq \frac{1}{2 \pi \sqrt{ } L C}
$$

The latter relation is identical with the Eq. (12) for series resont and is sufficiently accurate for most circuit caleulations.
28. Properties of Parallel Resonant Circuits. At its resonant quency, a parallel circuit has the following propertios: (1) The cur in the external cireuit is in phase with the impressed voltage; (2) current circulating in the parallel cireuit itself is generally much la than the current flowing in the external circuit; (3) as far as the exte rireuit is concomed, the parallel cireuit behaves as a resistance appa mately equal to $L / R C$, which is usually large.
29. Absolute Value of Impedance at Resonance in Parallel Reso Circuit. Letting $\omega=1 / \sqrt{ } L C$ in (17) pives for the impedance of a par circuit at resontme

$$
Z_{\mathrm{a}} \fallingdotseq \frac{\left(R_{L} R_{c}+X_{L} X_{c}\right)+j\left(R_{c} X_{L}-R_{L} X_{c}\right)}{R_{L}+R_{c}}
$$

The absolute value of this impedance is

$$
\left|Z_{0}\right| \fallingdotseq \sqrt{\frac{\left(R_{L} R_{c}+\omega^{2} L^{2}\right)^{2}+\omega^{2} L^{2}\left(R_{c} R_{L}\right)^{2}}{\left(R_{L}+R_{c}\right)^{2}}}
$$

30. Absolute Value of Impedance in General Parallel Circuit, with N, gible Resistance in Capacity Branch. In this case $R_{r} \fallingdotseq 0$ ), and from (1

$$
Z_{0} \fallingdotseq X_{C}\left[\frac{R_{L} X_{C}-j\left[R_{L}^{2}+X_{L}^{2}-X_{L} X_{C}\right]}{R_{L}^{2}+\left(X_{L}-X_{C}\right)^{2}}\right]
$$

The absolute magnitude of $Z_{0}$ is

$$
\left|Z_{0}\right|^{\mid}=\frac{X C \sqrt{R_{L}^{2}}+X \bar{L}^{2}}{\sqrt{ } R_{L}^{2}+\left(X_{L}^{2}-X_{C}\right)^{2}}
$$

If $R_{L}$ is small compared with $X_{L \text {, }}$,

$$
\left|Z_{0}\right|=\frac{X_{L} X_{C}}{\sqrt{R_{L}^{2}}+\left(X_{L}-X_{C}\right)^{2}} \fallingdotseq \frac{L}{\bar{C}} \frac{1}{\sqrt{R_{L}{ }^{2}+\left(X_{L}-X_{c}\right)^{2}}}
$$

At resonance, $X_{L}=X_{c}$ ( $R_{l}$, and $R_{c}$ being assumed negligible), and

$$
\left|Z_{0}\right| \fallingdotseq \frac{L}{R C}
$$

he equivalent impedance of a low-resistance parallel circuit is therefore ry nearly a pure resistance at the resonant frequency and has the value RC.
31. Design of Parallel Resonant Circuits. The magnitude of $Z_{0}$ is

$$
\begin{equation*}
Z_{0}=X_{C} \frac{\sqrt{K_{L}^{2}+X_{L}^{2}}}{\sqrt{K_{L}^{2}}+\left(X_{L}-X_{C}\right)^{2}} \tag{27}
\end{equation*}
$$

hich can be written

$$
\begin{equation*}
\frac{|Z, 0|}{\omega_{r} I_{2}}=\left[\frac{1+Q^{2}}{n Q^{2}}\right] \frac{\sqrt{1} \sqrt{Q^{2}+n^{2}}}{\sqrt{\frac{1}{Q^{2}}+\left(n-\frac{1+Q^{2}}{n\left(Q^{2}\right.}\right)^{2}}} \tag{30}
\end{equation*}
$$

here $Q=\frac{\omega_{r} L_{\sim}}{R}$ and $n=\frac{f_{1}}{f_{r}}$.
or values of $Q=10$ or larger, this reduces to

$$
\begin{equation*}
\frac{\left|Z_{0}\right|}{\omega_{r} L_{0}} \fallingdotseq \frac{\sqrt{\frac{1}{Q^{2}}+n^{2}}}{n \sqrt{\frac{1}{Q^{2}}+n^{2}+\frac{1}{n^{2}}-2}} \tag{30a}
\end{equation*}
$$

-om the latter expression, it can be shown that $\left|Z_{0}\right|=1.414 \sqrt{L / C}$ at $=0.707 \mathrm{fr}$. Hence the $L / C$ ratio of a parallel resonant circuit is expressible a function of its impedance at 70.7 per cent of resonance frequency, or ze versa.
sonance is The ratio of $\left|Z_{0}\right|$ at 70.7 per cent resonance frequency to $\left|Z_{o}\right|$ at sonance is

$$
\begin{equation*}
\frac{\left|Z_{0}\right| \text { at } 70.7 \% f_{r}}{\left|Z_{0}\right| \text { at } f_{r}}=\frac{1.414}{Q} \tag{31}
\end{equation*}
$$

The phase angle of $Z_{0}$ is given by

$$
\begin{align*}
\phi & =\tan \left[-\left(\frac{R_{L}^{2} \times X_{L} L^{2}-X_{L} X_{c}}{R X_{c}}\right)\right] \\
& =\tan ^{-1}\left[-n Q\left(\frac{1 i}{Q^{2}}+n^{2}-1\right)\right] \\
& \ddots \tan ^{-1}\left[-n Q\left(n^{2}-1\right)\right] \tag{32}
\end{align*}
$$

len $Q \geqq 10$, say.
Yalues of $\mid Z_{0}{ }^{\circ} / \omega_{r} L$ and $\phi$ for various values of $n$ and $Q$ can be read from the rves (ligs. 14 and 15).
As an example, assume that a parallel circuit similar to that in Fig, 13 is be designed to be resonant at 5,000 rycles, with in impedance of 4,000 ms at resonance ( $n=1$ ) and an impedance of 100 ohnis at 3,000 cycles $=0.6$ ). From lig. 14, $\left|Z_{0}\right| / \omega_{r} L=0.9$ for all values of $Q$ when $n=0.6$. resonance $\left|Z_{0}\right| / \omega_{r} L$ is to be $\frac{4,000}{100} \times 0.9=36$. From the curves it found that $Q=36$ gives $\left|Z_{0}\right| / \omega_{r} L_{L}=36$ at $n=1$ where $\omega_{r}=31.416$.
ten for $n=1$,

$$
Z_{n}=36 \omega_{r} L=4,000, \text { or } L=\frac{4,000}{36 \times 31,416}=0.003354 \text { henry }
$$



Fig. 14.-Parallel resonance curves.


Fig. 15. -Phase angle of parallel $L C$ circuit in terms of $n$ and $Q$.
$\because$ for 5,000 cycles $=10.136 \times 10^{-11}$, Then $C=L C / L=0.286 \times 10^{-8}$ rad , and $R=\omega_{\mathrm{r}} L / Q=3.08 \mathrm{ohms}$.
As a second example, suppose that a parallel circuit resonant at $1,000 \mathrm{ks}$ to have an impedance of 10,000 ohms at that frequency, and 100 ohms 707 kc ( 70.7 per cent resonance frequenry). By (32),

$$
\begin{gathered}
\frac{\left|Z_{0}\right| \text { at } 70.7^{0} ; f_{r}}{\left|Z_{0}\right| \text { at } f_{r}}=\frac{1.414}{Q}=0.01 \\
Q=141.4
\end{gathered}
$$

From Fig. 14, $\mid Z_{0} / \omega_{r} L=141.4$ when $Q=141.4$ and $n=1$; and

$$
\begin{aligned}
\omega_{,} L & =\frac{\left|Z Z_{0}\right|}{141.4} \\
& =70.7 \mathrm{ohns}
\end{aligned}
$$

aen

$$
\begin{aligned}
& L=\frac{\omega_{r} L_{2}}{\omega_{r}}=0,0112 \times 10^{-3} \text { henry } \\
& C=\frac{L C^{\prime}}{L}=2,260 \times 10^{-12} \text { farad }
\end{aligned}
$$

$d$

$$
R=\frac{\omega_{r} L}{Q}=0.5 \mathrm{ohn}
$$

The impedances at other frequencies ran be computed from $\left|Z_{0}\right| / \omega_{r} L$ lues read from Fig. 14, and the phase angles can be read from Fig. 15.
32. Split-tank Circuits. Parallel resonant circuits are high-imperdance scuits; this property makes them peruliarly suitable for use with whum tubes, where the latively high impedance gricl d phate circuits necessary to gh amplification are easily alized. In other instanees, swever, the reverse is true id the high impedane of a sonant circuit is a disadyange, as for instaner, at the end a transmission line, where ( fermination circuit must fer a low impedance equal to that of the line (about 500 ohms). In ch cases an impedance adjustment may be made by the insertion of a ansformer, or by using a "split" form of the resonant circuit itself. e latter is equivalent to "tapping" off at a midpoint of the tank circuit, al may be done in either the induetane or eapacitanee branch, as ustrated in Fig. 16. The result is a coupled cercuit, that part of the actance betwern points $B$ and $C$ 'in cach case being the mutual impedance.
a. ('apacity split. In Fig. liba, the impedance at $B-C$ ' is

If $R_{2}$ is small,

$$
\left|Z_{B C}\right| \fallingdotseq \frac{L_{2} C_{2}}{R_{2} C_{1}\left(C_{1}+C_{2}\right)}
$$

and its ratio to the impedance $Z_{A C}$ is

$$
\frac{\left|Z_{B C}\right|}{\left|Z_{A C}\right|}=\frac{C_{2}^{2}}{\left(C_{1}+C_{2}\right)^{2}}
$$

The resonant frequency is

$$
f_{\mathrm{r}}=\frac{1}{2 \pi \sqrt{L \frac{C_{1} C_{2}}{C_{1}+C_{2}}}}
$$

and the impedances $Z_{A C}$ and $Z_{B C}$ are both purely resistive at resonance.
The ratio of $C_{1}$ to $C_{2}$ for a given ratio between $Z_{A C}$ and $Z_{B C}$ is

$$
\begin{align*}
& C_{1} \\
& C_{2}
\end{align*}=\left[\sqrt{\frac{Z_{A C}}{Z_{H C}}}-1\right]
$$

In terms of the resonant frequency, inductance, and the impedauce rat

$$
\begin{align*}
& C_{1}=\frac{1}{4 \pi^{2} f_{\mathrm{r}}^{2} L} \sqrt{\frac{Z_{A C}}{Z_{B C}}} \\
& C_{2}=\frac{1}{4_{\pi^{2} f_{r}^{2} L}\left(1-\sqrt{\frac{Z_{B C}}{Z_{A C}}}\right)}
\end{align*}
$$

b. Inductance split. In Fig. $16 b$ the indurtance is split, and the impedan at $B$ - $C$ is (assuming no mutual inductance between $L_{1}$ and $L_{2}$ )

$$
\left.\left|Z_{B C}\right|=\frac{\sqrt{\left(R_{1} R_{2}-\frac{L_{1} L_{2}}{\left(L_{1}-L_{2}\right) C_{2}}+\frac{L_{2}}{C_{2}}\right)^{2}+\left(\frac{R_{2} L_{1}}{\sqrt{\left(L_{1}\right.}+\overline{\left.L_{2}\right) C_{2}}}+\right.}}{R_{1}+R_{2}}\right)
$$

If $R_{1}$ and $R_{2}$ are small,

$$
\left|Z_{B C}\right| \fallingdotseq \frac{L_{2}}{C_{2}\left(R_{1}+R_{2}\right)} \cdot \frac{L_{2}}{\left(L_{1}+L_{2}\right)}
$$

and its ratio to the total impedance $Z_{A C}$ is

$$
\frac{\left|Z_{B C}\right|}{\left|Z_{A C}\right|}=\frac{L_{2^{2}}}{\left(L_{1}+L_{2}\right)^{2}}
$$

The resonant frequency is

$$
f_{r}=\frac{1}{2 \pi \sqrt{ }\left(L_{1}\right.}+\overline{\left.L_{2}\right) C_{2}}
$$

and the impedances $Z_{A C}$ and $Z_{B C}$ are both resistive at resonance.
The ratio of $L_{1}$ to $L_{2}$ for a given ratio between $Z A C$ and $Z B C$ is

$$
\frac{L_{1}}{L_{2}}=\sqrt{\frac{Z A C}{Z_{B C}}-1}
$$

in terms of the frequency, capacity, and the impedance ratio,

$$
\begin{align*}
& L_{1}=\frac{1}{4 \pi^{2} f_{r}^{2} C_{2}^{\prime}}\left(1-\sqrt{\frac{Z_{B C}}{Z_{A C}}}\right)  \tag{45}\\
& L_{2}=\frac{1}{4 \pi^{2} f_{r}^{2} C_{2}} \sqrt{\frac{Z_{B C}}{Z_{A C}}} \tag{46}
\end{align*}
$$

13. Measurement of Parallel Resonance Impedance. A convenient thod of experimentally determining the resonance impedance of a allel circuit is shown in Fig. 17. LC is the circuit to be measured. is method is based on the fact that the cireuit just commences to illate when the "negative resistance" of the tuhe characteristie is nerically equal to the impedance of the $L C$ plate circuit. In practice, pe -22 or -24 tube is satisfactory, in which case $B$ should be about ' volts and $C$ about 25 volts. The potentiometers $G$ and $P$ control grid bias and plate voltages, respectively. The latter should be ween 60 and 80 volts for the $B$ voltage itioned. A receiver is loosely coupled to to detect the point where oseillation ts. To make a measurement, $G$ and $P$ adjusted until the eireuit is on the yerge of liation. The $L C$ is short-circuited by ing the key $S$, and $P$ is varied a few volts ve and below the setting at which oscillat oecurred and the values of plate current ad. The values of $G$ and $B$ are of course hanged during this latter adjustment. : slope of the $e_{p}-i_{p}$ eurve through the le of $e_{p}$ where oscillation occurred is the ative resistanee and is numerically equal he impedance $\left|Z_{0}\right|$. If $L$ and $C$ are known,


Fig. 17.-Circuit for neasuring resonant impedance of parallel circuit. an be computed from Eq. (29):

$$
\begin{align*}
\left|Z_{0}\right| & =\frac{L}{R C}  \tag{29}\\
R & =\frac{L}{\left|Z_{0}\right| C}
\end{align*}
$$

; also suggests the use of the above eircuit for measuring r-f resistanee, nserting an unknown resistance in series in the $L C$ circuit and measg its impedance hefore and after the insertion is made. By a similar ess, eapacity or induetance may also be measured. The method as ined is limited by tube characteristics to impedances of about 10,000 $s$ and over.

## COUPLED CIRCUITS

:- Coupling. If two circuits have one or more common impedances, are said to be electrically coupled. A common impedance is any dance so situated that it causes the current in one cireuit to influence surrent in the other. The impedance may be resistive, reactive, or
35. Coefficient of Coupling. The coefficient of coupling is

$$
K=\frac{X_{m}}{\sqrt{\overline{X_{1} X_{2}}}}
$$

where $X_{m}$ is any one component of the mutual impedance (resistat capacitive reactance or inductive reactance) and $X_{1}$ and $X_{2}$ are the to impedance components of the same kind in the respective circu $K$ varies in value between zero and 1 ; if it is nearly 1 , the couplin; close or light; if near zero, the coupling is loose.

## Coupled Circuits: Direct Capacitive

Impedance:

$$
Z_{0}=j \frac{\frac{1}{\omega C_{m}}\left(\omega L_{1}-\frac{1}{\omega C_{1}^{\prime}}\right)-\left(\omega L_{1}-\frac{1}{\omega C_{1}^{\prime}}\right)\left(\omega L_{22}-\frac{1}{\omega C_{1}^{\prime}}\right)-\frac{1}{\omega C_{m}^{\prime}}\left(\omega L_{2}-\frac{1}{\omega C_{2}^{\prime}}\right)}{\frac{1}{\omega C_{m}^{\prime}}-\omega L_{2}+\frac{1}{\omega C_{2}}}
$$



Circuit


Resorance Curve

General case: $L_{1}, L_{2}, C_{1}, C_{2}$ and $C_{m}$ unrestri

$$
\text { where } f_{a}=\frac{1}{2 \pi \sqrt{L_{1} \frac{C_{1} C_{m}^{\prime} C_{1}}{C_{1}+C_{m}^{\prime}}}} \quad f_{b}=\frac{1}{2 \pi \sqrt{L_{2} \frac{C_{2} C_{m}}{C_{2}+C_{m}}}}
$$

Coefficient of coupling:

$$
k=\sqrt{\frac{C_{1} C_{2}}{\left(C_{1}+C_{m}\right)\left(C_{2}+C_{m}\right)}}
$$

Special cases:
a Both circuits tuned to same frequency $\left(f_{a}=f_{b}\right)$

$$
f_{1}=f_{a} \sqrt{1-k} \quad f_{2}=f_{b} \sqrt{1+k}
$$

$b$ Loose coupling ( $f_{a}=f_{b}$ and $C_{m} \gg C_{1}$ and $C_{2} ; k \neq 0$ ).

$$
f_{1} \not \neq f_{2} \nRightarrow f_{a} \neq \frac{1}{2 \pi \sqrt{L_{1} C_{1}^{\prime}}} \neq \frac{1}{2 \pi \sqrt{L_{2} C_{3}}}
$$

c Close coupling ( $f_{a}=f_{b}$ and $C_{m} \ll C_{1}$ and $C_{2} ; k \neq 1$ ).

$$
f_{1} \neq 0 \text { and } f_{2} \neq \sqrt{2} f_{a} \nRightarrow \frac{\sqrt{2}}{2 \pi \sqrt{L_{1} C_{m}}} \neq \frac{\sqrt{2}}{2 \pi \sqrt{\overline{L_{2} C_{m a}}}}
$$

d Both circuits identical

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left\{\begin{array}{l}
f_{b} \\
L_{1}=L_{2}
\end{array}\right. \\
C_{1}=C_{2}
\end{array}\right. \\
& f_{1}=\frac{1}{2 \pi \sqrt{L_{1} C_{1}}}
\end{aligned}
$$

$$
f_{2}=\frac{1}{2 \pi} \sqrt{\sqrt{L_{1} \frac{C_{1} C_{m}}{2 C_{1}+C_{m i}}}}
$$

## Coupled Circuits: Indirect Capacitive

uivalent impedance

$$
Z_{0}=j\left[\omega L_{1}-\frac{1}{\omega C^{\prime}} \frac{\left(\omega L_{2}-\frac{1}{\omega C_{d}}\right)_{\omega C^{\prime \prime}}^{1}+\frac{L_{2}}{C_{d}}}{\left.\left(\omega L_{2}-\frac{1}{\omega C_{d}}\right)_{\omega 1}^{1}+\frac{L_{2}}{C^{\prime \prime}}\right]}\right]
$$

ere

$$
\begin{aligned}
& C^{\prime}=\frac{C_{a C b}}{C_{a}+C_{b}^{\prime \prime}} \\
& C^{\prime \prime}=\frac{C_{a} C_{b} C_{c}}{C_{a} C_{b}+C_{a} C_{c}+C_{b} C_{c}^{-}} \\
& \text {neral case: } L_{1}, L_{2}, C_{a}, C_{b}, C_{0} \text { and ("d }
\end{aligned}
$$



Circuit


Resonance Curve

$$
\begin{aligned}
& f_{1}=\sqrt{\frac{f_{a^{2}}+f_{b}{ }^{2}-\sqrt{\left(f_{a^{2}}-f_{b}\right)^{2}+4 h^{2} f_{a^{2}} f_{b} b^{2}}}{2}} \\
& f_{2}=\sqrt{\frac{f_{a^{2}}+f_{b} b^{2}+\sqrt{\left(f_{a^{2}}-f_{b}\right)^{2}+4}}{2} \cdot \overline{k^{2} f_{a^{2}} f_{b^{2}}^{2}}}
\end{aligned}
$$

ere $\quad f_{a}=\frac{1}{2 \pi \sqrt{L_{1}\left(C_{0}+\frac{C_{d} C^{\prime \prime}}{C_{d}+C^{\prime \prime}}\right)}} \quad f_{b}=\frac{1}{2 \pi \sqrt{L_{2}\left(C_{d}+\frac{C_{d} C^{\prime}}{C_{b}+C^{\prime}}\right)}}$
efficient of coupling:

$$
k=\frac{\left(^{\prime \prime}\right.}{\sqrt{\left(C_{c}+C^{\prime \prime}\right)\left(C_{d}+C^{\prime \prime}\right)}}
$$

ecial cases:
a Both circuits tuned to same frequency ( $f_{a}=f_{b}$ ).

$$
f_{1}=f_{0} \sqrt{1-k} \quad f_{2}=f_{a} \sqrt{1+k}
$$

b Loose coupling $\left(C_{a}^{\prime}+C_{b}\right) \ll C_{c}$ and $\left.C_{d}\right) k \neq 0\left(f_{a}=f_{b}\right)$.

$$
f_{1} \neq f_{2} \neq f_{0} \neq \frac{1}{2 \pi \sqrt{L_{1} C_{c}^{\prime}}} \neq \frac{1}{2 \pi \sqrt{L_{2} C_{d}}}
$$

c Cloae coupling $\left.\underset{f_{1} \neq 0}{\left(f_{a}\right.}=f_{b}\right)\left(C_{a}^{\prime}+C_{b}\right) \gg C_{c}$ and $C_{d} ; k=1$.

$$
f_{2} \neq \sqrt{2} f_{4} \neq \frac{1}{\pi \sqrt{2 L_{1}\left(C_{c}+C_{d}\right)}} \neq \frac{1}{\pi \sqrt{2 L_{2}\left(C_{e}+C_{d}\right)}}
$$

d Both circuits identical.

$$
\left\{\begin{aligned}
&\left\{\begin{aligned}
f_{a} & =f_{b} \\
L_{1} & =I_{02} \\
C_{1} & =C_{2}
\end{aligned}\right. \\
& f_{1} \neq \frac{1}{2 \pi \sqrt{L_{1}\left(C_{c}+2 C_{c}^{\prime}\right)}} \\
& f_{2} \neq \frac{1}{2 \pi \sqrt{L_{1} C_{e}^{\prime}}} \\
& k=\frac{C^{\prime}}{C_{c}^{c}+C^{\prime \prime}}
\end{aligned}\right.
$$

## Coupled Circuits: Direct Inductive

Equivalent impedance:

$$
Z_{0}=j \frac{\omega L_{m 1}\left(\omega L_{1}-\frac{1}{\omega C_{1}}\right)+\left(\omega L_{1}-\frac{1}{\omega C_{1}}\right)\left(\omega L_{2}-\frac{1}{\omega C_{2}^{\prime}}\right)+\omega L_{2 n}\left(\omega L_{2}-\frac{1}{\omega C_{2}^{\prime}}\right)}{\omega L_{m}+\omega L_{2}-\frac{1}{\omega C_{2}^{\prime}}}
$$



General case: $L_{1}, L_{2}, L_{m}, C_{1}$ and $C_{2}$ unrestricte

$$
\begin{aligned}
& f_{1}=\sqrt{\frac{f_{a^{2}}+f_{b}{ }^{2}-\sqrt{\left(f a^{2}-f b^{2}\right)^{2}+4 k^{2} f f_{i}}}{2\left(1-k^{2}\right)}} \\
& f_{2}=\sqrt{\frac{f_{a^{2}}+f_{b}{ }^{2}+\sqrt{\left(f a^{2}-f b^{2}\right)^{2}+4 k^{2} f_{a^{2} f l}}}{2\left(1-k^{2}\right)}}
\end{aligned}
$$

where

$$
f_{u}=\frac{1}{2_{\pi} \sqrt{\left(L_{1}+L_{m}\right) C_{1}}}
$$

$$
f_{b}=\frac{1}{2 \pi \sqrt{\left(L_{2}+L_{m}\right) C_{2}}}
$$

Coefficient of coupling $\quad k=\frac{L_{m}}{\sqrt{\left(L_{1}+L_{m}\right)\left(L_{2}+L_{m}\right)}}$
Special cases:
a Both circuits tuned to same frequency ( $f_{a}=f_{b}$ ).

$$
1=\frac{f_{a}}{\sqrt{1+k}} \quad f_{2}=\frac{f_{a}}{\sqrt{1-k}}
$$

$b$ Loose coupling ( $f_{a}=f_{b}$ and $L_{m i} \ll L_{1}$ and $L_{2}$ ) $k \neq 0$.

$$
f_{1} \neq f_{2} \neq f_{0} \neq \frac{1}{2 \pi \sqrt{L_{1} C_{1}}} \neq \frac{1}{2 \pi \sqrt{L_{2} C_{2}^{+}}}
$$

c Close coupling ( $f_{a}=f_{b}$ and $L_{\text {an }} \gg L_{1}$ and $L_{2} ; k \neq 1$ ).

$$
\begin{aligned}
& f_{1} \neq \frac{f_{a}}{\sqrt{2}} \neq \frac{1}{2 \pi \sqrt{2 L_{m} C_{1}}} \\
& f_{2} \neq \infty
\end{aligned}
$$

$d$ Both circuits identical.

$$
\begin{aligned}
\left\{\begin{aligned}
f_{a}=f_{b} \\
L_{1}=L_{2} \\
C_{1}=C_{2}
\end{aligned}\right. & \\
f_{1} & =\frac{1}{2 \pi \sqrt{\left(L_{1}+2 L_{m}\right) C_{1}}} \\
f_{2} & =\frac{1}{2 \pi \sqrt{L_{1} C_{1}^{\prime}}} \\
k & =\frac{L_{m}}{L_{1}+L_{m}}
\end{aligned}
$$

36. Direct and Indirect Coupling. If the common impedance is resistance, inductance or cupacitance ronneeted direetly between tl


I'IG. 18,-I Direct resistive coupling.
Fig. 19.-I Direct inductive coupli two circuits, the coupling is direct. Such circuits are shown in Fig 18,19 , and 20 . If the common impedance is a transformer, the couplir

## Coupled Circuits: Indirect Inductive

ivalent impedance:

$$
Z_{0}=j\left[\left(\omega L_{1}^{\prime}-\frac{1}{\omega C_{1}^{\prime}}\right)-\frac{(\omega M)^{2}}{\left(\omega L_{2}^{\prime}-\frac{1}{\omega C_{2}}\right)}\right.
$$

ivalent direct-coupled circuit: Indirect induccoupling is equivalent to direct inductive ling if

$$
\begin{aligned}
& L_{1}=L_{1}^{\prime}-M \\
& L_{2}=L_{2}^{\prime}-M \\
& L_{m}=M
\end{aligned}
$$

- e $L_{1}{ }^{\prime}$ and $L_{2}{ }^{\prime}$ are the self-inductances of the


Circuit


Resonance Curve

$$
\begin{array}{ll}
f_{1}=\sqrt{\frac{f a_{a}^{2}+f_{b}^{2}-\sqrt{\left(f_{a^{2}}-f_{k}\right)^{2}+4 k^{2} f_{a}^{2} f_{b}{ }^{2}}}{2\left(1-k^{2}\right)}} & f_{0}=\frac{1}{2 \pi \sqrt{L_{1}{ }^{\prime} \overline{C_{1}}}} \\
f_{2}=\sqrt{\frac{f_{0}^{2}+f_{0}^{2}+\sqrt{\left(f_{a}^{2}-f_{b}\right)^{2}+4 k^{2} f_{a}=f_{b}{ }^{2}}}{2\left(1-k^{2}\right)}} & f_{b}=\frac{1}{2 \pi \sqrt{\overline{L_{2}^{\prime} C_{2}}}} \\
k=\frac{M}{\sqrt{L_{1}^{\prime} L_{2}^{\prime}}} &
\end{array}
$$

ial cases:
Both circuits tuned to the same frequency $\left(f_{a}=f_{b}\right)$

$$
f_{1}=\frac{f_{0}}{\sqrt{1+k}} \quad f_{2}=\frac{f_{0}}{\sqrt{1-k}}
$$

Lonse coupling ( $f_{a}=f_{b}$ and $M \ll L_{1}{ }^{\prime}$ and $L_{2}{ }^{\prime} ; k \neq 0$ ).

$$
f_{1} \not \neq f_{2} \neq f_{0} \neq \frac{1}{2 \pi \sqrt{l_{1} C^{\prime} C_{1}^{\prime}}} \not \neq \frac{1}{2 \pi \sqrt{L_{2}^{\prime} C_{2}^{\prime}}}
$$

Close coupling ( $f_{a}=f_{b}$ and $M \gg L_{1^{\prime}}$ and $L_{2^{\prime}} ; k-1$ ).

$$
\begin{aligned}
& f_{1} \neq \frac{f_{1}}{\sqrt{2}} \neq \frac{1}{2 \pi \sqrt{2 M C_{1}}} \\
& f_{2} \neq \infty
\end{aligned}
$$

Both circuits identical

$$
\begin{aligned}
& f_{a}=f_{b} \\
& \left\{L_{1}^{\prime}=L_{2^{\prime}}\right. \\
& C_{1}^{\prime}=C_{2}^{\prime} \\
& f_{1}=\frac{1}{2 \pi \sqrt{\left(L_{1}^{\prime}+M\right) C_{1}}} \\
& f_{2}=\frac{1}{2 \pi \sqrt{\left(L_{1}^{\prime}-M\right) C_{1}}} \\
& k=\frac{M}{L_{1}^{\prime}}
\end{aligned}
$$

adircet, and is usually ealled merely inductive coupling. This type soupling is illustrated in lrig. 21 . Indireet capacitive coupling is itrated in Fig. 29.
rom Figs. 18 to 20 it is apparent that direct-couplod eirenits may be sidered as networks of impedanees in serios and parallel, as in Pig. 23. "notion of "equivalent impedance" (paragraph 6) is a useful eoneopt he treatinent of sueh cirenits. In the present treatment of coupled
circuits the equivalent impedance is determined by combining the vari impedance elements of the circuits according to the laws of part and series combination as diseussed in articles 7 and 8.

The equivalent impedance of the network of Fig. 23 is

$$
\begin{aligned}
Z_{0} & =Z_{1}+\frac{Z_{m} Z_{2}}{Z_{m}+Z_{2}} \\
& =\frac{Z_{1} Z_{m}+Z_{1} Z_{2}+Z_{m} Z_{2}}{Z_{m}+Z_{2}}
\end{aligned}
$$

Coupled Circuits: Inductive or Transformer with Resistance
Equivalent Impedance:

$$
\begin{aligned}
& \%_{0}=R_{0}+j X_{0}=\left(R_{1}+\frac{\omega^{2} M / 2 R_{2}}{\left|Z 2_{2}^{3}\right|}\right) \\
& +j\left(X_{1}-\frac{\omega^{2} M^{2} X_{2}}{\left|M_{2}^{2}\right|}\right) \\
& \text { where } \\
& \left|Z_{2}{ }^{2}\right|=R_{2}{ }^{2}+X{ }^{2}{ }^{2} \\
& X_{1}=\omega L_{1^{\prime}}-\frac{1}{\omega C_{1}^{\prime}} \\
& X_{2}=\omega L_{2}{ }^{\prime}-\frac{1}{\omega C^{\prime}}{ }_{3} \\
& \text { Current Cur }
\end{aligned}
$$

Special ease:
If If is variable, and both circuits tuned to the same frequency, the current in secondary varies with $M$ as shown in the figure.
The maximum secondary eurrent occurs at

$$
\omega, M=\sqrt{R_{1} R_{2}}
$$



Fig. 20.-1 irect raparitive ronpling.


Fig. 21.-Indirect or ductive roupling.


Fid. 22.-Indirect mparition roupling.

 lont impedance of direct-toupled circuits.
37. Use of Resistanceless Circuits in Calculations. Eacl! impeda in (48) is in general of the form $K_{0}+j X_{0}$, so that the expression becol somewhat involved if an exact solution is made. In many act applications, however, coupled circuits are also sharply tuned, whic) tantamount to saying that their resistances are small compared to tl
:tances. For such cases, computations are much simplified without ue sacrifice of accuracy if the cirenits are assumed to be resistanceless.
3. Combined Inductive and Capacitive Coupling in Radio-frequency actor Circuits. A combination of inductive and capacitive coupling been utilized in a radio-frequency "presolector" pirenit designed by 1. Tehling. ${ }^{1}$ The circuit functions as a hand-pass filter and has, as name implies, especial application as the coupling link between antema and first tube of a broadeast receiver. For this purpose it equired to transmit a band of frequemeres about 10 ke wide and to w this band to be shifted over the broadeast range ( 500 to 1,500 hy tuning, without substantial change in its width.
he band-pass characteristic is obtained by use of the double resonance nomenon in coupled cireuits, the difference between the two freneies determining the width of the transmission band. If the two oled eireuits are identieal these resonant frequeneies are functions of ${ }^{2}{ }^{2}-R^{2}$ where $X_{m}$ is the mutual impedance and $R$ the resistance ach circuit. The band width is approximately

$$
\begin{equation*}
f_{s}=f_{1}-f_{2} \fallingdotseq \frac{\sqrt{X_{m}^{2}-R^{2}}}{2 \pi L} \tag{49}
\end{equation*}
$$



Fig. 24.-Coupled cirruits as band-pass filters.
e both $X_{m}$ and $R$ vary with frequeney, the hand width will in general vary with frequency, as shown in Fig. 24. However, the variation 1 inductive coupling is opposite in effect to that with capacitive oling, as shown by the figure, so that a combination of both can btained which will give a practically constant band width.
ehling has shown that this condition obtains when

$$
\begin{equation*}
X_{m_{n}}= \pm \sqrt{R_{n}^{2}+4 \pi^{2} L^{2} f_{0}^{2}} \tag{50}
\end{equation*}
$$

rre $R_{n}$ is the resistance and $L$, the total inductance of each branch and $f_{\text {, }}$ le band width. With $X_{m}$ computed for the two boundary frequencies ad $f_{0}$ of the tuning range, the values of $W$ and $C_{m}$ required are given by Iectronics, p. 279, September, 1930.

$$
\begin{aligned}
\boldsymbol{M} & =\frac{\boldsymbol{X}_{n_{b}} f_{b}-\boldsymbol{X}_{m_{a}} f_{a}}{2 \pi\left(f_{a}^{2}-f_{b}^{2}\right)} \\
\boldsymbol{C}_{n k} & \left.=\frac{f_{a}^{2}-f_{b}^{2}}{2 \pi f_{a} f_{b}\left(\lambda_{w_{a}} f_{b}\right.}-X_{w_{b}} f_{a}\right)
\end{aligned}
$$

Representative values of. I and $\mathrm{C}_{\mathrm{m}}$ for $f_{a}=1,500 \mathrm{kc}, f_{b}=550 \mathrm{ke}, R_{a}=$ ohms, $R_{b}=10$ ohms, $L=200 \times 10^{-6}$ henrys, and $f_{b}=10 \mathrm{kc}$ whict typical (oonstants of broadeast circuits, are

$$
M=3.2 \times 10^{-8} \text { henry }
$$

and

$$
C_{m}=0.06 \mathrm{mfd}
$$

The inductive coupling $M$ must be neqative so that its effect will be a tive to that of $C_{m}$. This may be contained by winding the coils II 24) of two wires side by side, and ronnerting the "start" ends of the coi $C_{1}$ and $C_{2}$ and the "finish" ends to $C_{m}$.
39. Stray Coupling. Because of the apparent increase in resist: of a circuit when another circuit is compled to it, spurious and unin tional coupling due to stray fields and the proximity of other appar; may appreciably affect the resistance of $r$-f circuits and introduce un essary losses unless precautions are taken to avoid it. Stray effeets due prineipally to capacity coupling and stray inductive coupling. former varies with the areas of eonductors and a-e voltages invol and inversely with the distances between the conductors, while the la varies with ampere turns, the diameter of the heavy current path in circuit and inversely with the distance between the circuit and o conductors in which induced currents flow.

## RECURRENT NETWORKS

40. General Types. Recurrent networks are iterative combinat of $L, C$, and $R$, such as those shown in Fig. 25.


Fic. 25.- Types of infinite recurrent network structures.
The transmission characteristies of such structures vary with quency in a singular manner and introduce both useful and detrime effects in radio- and audio-froquency circuits. Examples of recur networks are transmission lines (actual and artificial) and wave filt,
41. Terminating Conditions for No Reflection and Maximum Po Transfer. If a recurrent network is terminated at the $n$th seetion it impedance equal to its image impedance, there is no reflection at termination, and the network behaves as though it had an infinite num of sections, in so far as its input terminals are coneerned.

A long line so isolates its terminating impedances (the souree and! impedances) that the apparent value of each as measured from the of site end of the line is very nearly equal to the line impedance and $p$
ally independent of the terminations. Consequently, to obtain a ximum transfer of power froms source to line and from line to load, the iree and load impedances must equal the characteristie impedance of : line, or be matched to the line by transformers whose turns ratios equal to the square root of the ratio of termination and line impedses. A line terminated in its characteristic impodance at both ends , has a minimum reflection from its terminals, and in general a line is operated has the lowest total transmission loss.
in a structure having lumped constants, and terminated at one of its ies elements the series impedance in earh end section is one-half the ue of the series impedance in the internal sections (Fig. 25). If the mination is at a shunt element, the shunt impedance at each end is de twice the shunt impedance in the internal sections.
2. Transmission Lines. Transmission lines are recurrent structures ring continuously distributed impedances. 'Two wires in space e, besides their ohmic resistance, nt eapaeity and series inductance l are thus equivalent to the reeurt structure of Fig. 26, where L, C, $R$ are the constants of a very short th ( $\Delta l$ ) of the line and $G$ is the contance due to leakage between the is in the same length.
3. General Properties of a Transsion Line. The characteristic edance is


Fig. 26.

$$
\begin{align*}
Z_{0} & =\sqrt{\frac{R+j \omega L}{G+j \omega C}} \text { ohms }  \tag{53}\\
\left|Z_{0}\right| & =\sqrt[4]{\frac{\left(R^{2}+\omega^{2} L^{2}\right)}{\left(G^{2}+\omega^{2} C^{2}\right)}} \text { ohms }  \tag{54}\\
Z_{0} & =\sqrt{Z_{v c} Z_{s e} \text { ohnis }} \tag{55}
\end{align*}
$$

re $Z_{o c}$ and $Z_{\text {se }}$ are the input impedanees with the far end open- and shortlited, respertively.
he propagation constant is

$$
\begin{equation*}
P=\sqrt{(R+j \omega L)\left(G+j \omega\left({ }^{n}\right)\right.}=A+j B \tag{56}
\end{equation*}
$$

., $G$, and $C$ being the resistance, inductance, leakance, and eapacitance unit length of the line.
tenuation Constant. The real part (A) of $P$ is the attenuation constant is

$$
\begin{equation*}
6.141 \sqrt{\sqrt{\left(R^{2}+\omega^{2} L^{2}\right)\left(G^{2}+\omega^{2} C^{\prime 2}\right)}+R\left(f-\omega^{2} L C\right.} \text { db per unit length } \tag{57}
\end{equation*}
$$

ave-lenoth Constant. The quadrature part ( $B$ ) of $P$ is the wave-length tant and is
$0.707 \sqrt{\sqrt{ }\left(R^{2}+\omega^{2} L^{2}\right)\left(G^{2}+\omega^{2} C^{2}\right)-R G+\omega^{2} L C}$ radians per unit length

The velocity of propagation is

$$
V={ }_{B}^{\omega}={ }_{\beta}^{2-f} \text { unit lengths per second }
$$

The uare longth is

$$
\lambda=\frac{2 \pi}{B^{-}} \text {unit lengths }
$$

The retardation time is

$$
t=\frac{B}{\omega}={ }_{2_{\pi} f}^{B} \text { ser. per unit lengeth }
$$

Input Impedanco of a Line Terminated at Its Far End by an Impedanes
Let $Z_{i}=$ input impedance of the line
$Z_{0}=$ characteristic impedance of the line
$Z_{a}=$ terminating impedance at the far end
$\theta=$ propagation factor.
The input impedance of a line so terminated is

$$
Z_{i}=Z_{0}\left[\begin{array}{c}
Z_{a} \cosh \theta+Z_{0} \sinh \theta \\
Z_{0} \cosh \theta+Z_{a} \sinh \theta
\end{array}\right]
$$

The propagation factor is

$$
\theta=I I^{\prime}
$$

where $l=$ length
$P=$ propagation constant per unit length
In the communication field, transmission lines may be elassified accord to the frequencies they are used to transmit, as audio- or radio-frequency lis Simplified forms of the qeneral transmission line formulae result from introduction of approximations appropriate to earh case.
44. Audio-frequency Lines. In open-wire lines and large-gage cab $G$ is negligible, so that

$$
A \fallingdotseq 6.14 \sqrt{\omega C^{\prime} \sqrt{R^{2}}+\omega^{2} / s^{2}-\omega^{2} / C^{4}} \text { db) per unit lengt h }
$$



Fig. 27.-Attenuation-frequency characteristirs of various audio-freque circuits.
and

$$
B \fallingdotseq 0.707 \sqrt{\omega C} \sqrt{R^{2}+\omega^{2} L^{2}}+\omega^{2} / L_{C} \text { radians per unit length }
$$

small-gage (ablles, both $L$ and $(i$ me negligibly small, and
$\fallingdotseq 15.39 \sqrt{\text { f/R' }}$ dh per unit length
$\fallingdotseq 1.752 \sqrt{f R C}$ radians per unit length
both eases, the attenuation is seen rywith frequency. Theattenuationweney characteristies of various kinds f eircuits are shown in Fig. 27, and $r$ characteristies of typical audio lines hown in Table II.
i. Equalization of Attenuationrency Characteristic. From the es in Fig. 27 it is evident that if a I of frequencies is transmitted over a the higher frequencies will suffor more nation then the low frequencies, ting in distortion. The prevention nis condition neressitates the use of mation equalizers in high quality its. A typieal 5,000-cyele equalizer his purpose and itsattemuation curves lhostrated in Fig. 28 and the eurves he bare line, equalizer alone, and the lized line are shown in Fig. 29, The lizer is usually eonneeted in shunt is the receiving end of the line, ding other apparatus.
. Artificial Lines. An artificial line compaet network of lumperl impeds to simulate the alectrical charaecies of an actual line. Such a network ag approximately the characteristies 1 unloaded eable may be eronstrueded hown in Fig. 30 and is useful laboratory measurements and itigations,
re ronstants $R_{1}$ and $C_{2}$ are the loop rance and capacity of the full length e line to be represented. For standable, $R_{1}=88$ ohms and $C_{2}=0.054$ r loop mile; values for various other are given in Table II. As the arity between the artificial and the al line increases with the number of ons in the former, it is preferable to it least ten sections, and not more
'Tabie II.-Characteristics of Non-loaded Audio-frequency Circtits

| Type of circuit | $\stackrel{R}{R}$ |  | $\underset{\mu \mathrm{mhos}}{G}$ | $\underset{\text { farads }}{C}$ | $\underset{0 \mathrm{hms}}{Z}$ | $\underset{\text { Miles }}{X}$ | $\begin{gathered} V \\ \text { Miles per } \\ \text { second } \end{gathered}$ | $\underset{\text { per mile }}{\mathrm{db}}$ | $\begin{gathered} B \\ \text { ladians } \\ \text { per second } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. 10 open-wire NI. | 10.4 | 0.00394 | 0.8 | 0.0078 | 739 | 177 | 176,600 | 0.6 .5 | 0.03.76 |
| No. 16 rable NI. | 42.2 | 0.001 | 0.87 | 0.062 | 3331 | 64.5 | 64.500 | 0.73 | 0.0975 |
| No. 19 cable NT. | 83.2 | 0.001 | 0.87 | 0.062 | 462 | 47.5 | 47.500 | 1.065 | 0.1322 |
| No. 22 cable NI. | 171 | 0.001 | 1.75 | 0.073 | 610 | 31.7 | 31.700 | 1.72 | 0.198 |

than one mile of cable or ten miles of open wire should be represel


Fig. 28.-Attemation-frequency pharacteristic of equalizer shmited a. a 500 -ohm circuit.


Fig. 29.-Attenuation equalizer for short ablale circuits.
by one section. The endsections should be "mid-sories"terminated-


Fig. 30. Artificial non-loaded cable.
their series impodanees should be one-half of the internal sertions.
47. Characteristic Impedance of R-f Line. high frequencios $R$ and fiusually hecome neglig as compared with $\omega /$ and $\omega$ ( respectively, characteristie imperdance of a line at radio queneies is then

$$
Z_{0}=\sqrt{\frac{L}{C}} \text { ohms }
$$

where $L$ and C are in henrys and farads per unit length.
2. Special Case: Line of Two I'arallel W"ires. In terms of the dimensions the line

$$
\begin{equation*}
Z_{0}=277 \log _{14} \frac{2}{d} \text { ohms } \tag{69}
\end{equation*}
$$

parallel wire wheres is the spacing from center to center of the wires, $l d$ the diameter, both being measured in the sume units. Equation ) is based on the assumption that $s$ is at loast ten times $d$ and that the ght of the line above the ground is at least ten timess. The characist ie impedances of radio-frequency lines of commonly used dimensions shown in Fig. 31.
B. Special C'ase: Line of T'uo Conxial Conductors. Radio-froqueney 's are often constructed with one eonduetor in the form of a metal e, and the other a coaxially placed wire or tube of smaller diameter. e advantage of such const ruetion lies primeipally in the effective shieldwhich ean be obtained by grounding the outer tube.


Fig, 31.-Characteristic impedance of r-f transmission line.
The characteristic impedance of a line having such coaxial eonductors is

$$
\begin{equation*}
Z_{0}=138.5 \log _{10} \frac{r_{0}}{r_{1}} \text { ohms } \tag{70}
\end{equation*}
$$

are $r_{0}$ is the inside radins of the outer tube, and $r_{i}$ is the outside radius he inner eonductor. For a line whose outer and inner conductors are sectively $3 / 4$ and $1 / 4 \mathrm{in}$. in diameter, $Z=65$ ohms.

## 8. Other Properties of R-f Lines.

'elocity of propagation is

$$
\begin{equation*}
V \fallingdotseq \frac{1}{\sqrt{L_{1} C_{2}}} \fallingdotseq 186,000 \text { miles per second } \tag{71}
\end{equation*}
$$

speed of light)
Vave-lenoth constant is

$$
\begin{align*}
B & =\omega \sqrt{ } L_{1} C_{2} \text { radians per unit length }  \tag{72}\\
& =\frac{\omega}{186,000} \text { radians per mile } \tag{73}
\end{align*}
$$

Wave length is

$$
\begin{aligned}
\lambda & =\frac{2 \pi}{\omega \sqrt{L_{1} C^{\prime} / 2}}=\frac{1}{f \sqrt{L_{i} C_{2}^{\prime}}} \text { unit lengths } \\
& =\frac{186,000}{f} \text { miles } \\
& =\frac{3,000,000,000}{f} \mathrm{~m}
\end{aligned}
$$

Retardation time is

$$
\begin{aligned}
t & =V^{\prime} L_{1} \bar{C}_{2} \text { sec. per unit length } \\
& =5.39 \times 10^{-6} \text { sec. per mite }
\end{aligned}
$$

Attenuation constant is

$$
A=4.346 R \sqrt{\frac{C}{L}} \text { db per unit length }
$$

For parallel uires this becomes

$$
A=\frac{0,0157 l}{\log _{10} \frac{2 s}{d}} \mathrm{~d} b \text { per anit length }
$$

where $R=$ loop resistance per unit length
$s=$ spacing of wires, conter to center.
$d=$ diameter of each wire, $s$ and $d$ being measured in the same uni
For conxial conductors, the attenuation is

$$
A=\frac{0.0314 R}{\log _{10} \frac{r_{0}}{r_{i}}} \text { dh per unit length }
$$

where $h=$ loop resistance (sum of the resistance of the two conductors)
$r_{0}=$ radius of outer tube
$r_{i}=$ radius of inner conductor, $r_{0}$ and $r_{i}$ being measured in the sa units.
49. Input Impedance of Line Terminated in Impedance $Z_{a}$ at Far End. Special Cases for Radio Frequencies. At high frequencies, attenuation constant $A$ of a line approaches zero and the propagat constant is noarly equal to the wave-longth constant 13 :

$$
I^{\prime} \fallingdotseq j B \fallingdotseq j \omega \sqrt{L C}
$$

and from (63)

$$
\theta=l l^{\prime}=j l B=j \omega l \sqrt{ } \overline{L C}
$$

Then Eq. (62) beromes:

$$
Z_{i}=Z_{0}\left[\frac{Z_{a} \cos l B+j Z_{0} \sin l B}{Z_{0} \cos l B+j Z_{a} \sin l B}\right] \text { ohms }
$$

This input impedance has cortain interesting and useful vaiues when length of the line is a multiple of a quarter cor half wave length.
a. Lines Quarter Wave Length Long. In this casc,

$$
l=\frac{\lambda}{4}, B=\frac{2 \pi}{\lambda}, \text { and } l B=\frac{\pi}{2} .
$$

Then (84) reduces to

$$
Z_{i}=\frac{Z_{0}^{2}}{Z_{u}} \text { ohms }
$$

1e to this property, quarter wave lines are made use of as impedancettching transformers. If, for instance, a line whose characteristic pedance is $Z_{1}$ is to be connected to an antenna system whose input pedance is $Z_{2}$, a quarter wave line having characteristie impedance
$=\sqrt{Z_{1} Z_{2}}$ is inserted. Since $Z_{2}=Z_{a}$ the impedance facing the line is
$=Z_{1} Z_{2} / Z_{2}=Z_{1}$ ohms, and the impedance facing the antenma is
$=Z_{1} Z_{2} / Z_{1}=Z_{2}$ ohms, which results in a perfect impedance match at sh junction.
Quarter-uave Line Short-circuited at Far End. In this case $Z_{a}=0$ d $Z_{i}=\infty$. Such a line is thus anti-resonant at the radio frequency responding to four times its length and is often used in antenna stems to by-pass low-frequency current around large radio-frequency pedances, for melting sleet. Such a use is illustrated in Fig. 32.
Quarter-utave Line Open-circuited at the Far d. In this case, $Z_{a}=\infty$ and $Z_{i}=0$. ch a line thus has practically no impedance the radio frequency which corresponds to or times its length.
Half-wave line T'erminated in Impedance $/ /$ Far End. Here, $l=\lambda / 2$ and. $l B=\pi$. nsequently, (84) becomes

$$
\begin{equation*}
Z_{i}=Z_{a} \tag{86}
\end{equation*}
$$

us the input impedance of a half-wave line aqual to the termination impedance at its end and is independent of the charact eristie pedance of the line.
fines Whose Lengths Are Integral Multiples Quarter- or IIalf-wave Lines. Such linescan shown to have the same properties as arter of half-wave lines, due to the riodicity of the sine and cosine functions


Fig. 32.-I'se of quar-ter-wave short-circuited line to by-pass low-frequency currents for slect melting without disturbing the $r$-f impedance of the system.
50. Termination Impedances at Radio Frequencies. At radio freencios, proper termination of lines is even more important than at dio frequencies, since reflection resulting from mismatched impedances the junctions produces standing waves which in turn cause radiation mg the line and a decrease in efficioncy. Impedance irregularitios a line also tend to set up reflections, and bends in the line should there* be gradual, with a minimum radius of about one-fourth wave length. $r$ the same reason, the line should be kept free (at least one-fourth ve length) from large masses of conducting or diclectric matorials.
61. Efficiency of Lines at Radio Frequencies. In a properly conucted and torminated line the power losses are practically all due to z inherent ohmie resistance of the line, and the efficiency may be rly high. For ordinary designs, the efficiency is approximately

$$
\begin{equation*}
(100-2 l) \text { per cent } \tag{87}
\end{equation*}
$$

rere $l$ is the length of the line in wave lengths.
52 Tapered Lines as Impedance Transformers. A gradual smooth ange with length in the inductance and capacity of a line causos the aracteristic impedance to vary along the line, and can be shown to
introduce no reflections. Consequently, a seetion of line with varial spacing or diameter of the wires is, like the quarter wave-length line useful impedance matching transformer, the dimensions being so chos that the end impedances of the line equal their respective terminati impedances.

## WAVE FILTERS

53. Wave filters are forms of recurrent metworks, such as those Fig. $25 b$ and $c$, purposely designed to transmit efficiently currents is desired band of frequencies and more or less completely to suppress other frequencies.

A wave-filter design may be hased on the assumption that its clemen are pure reactances. The impedances out of which and into which t filter works should he pure resistanees of such value that the series a shunt impedane elements of the filter are of approximately the sat order of magnitude and the $Q[=\omega L / R]$ ratio of the coils lies witl limits of the following order:

$$
\begin{aligned}
& 25 \text { to } 50 \text { at } 110 \text { eycles } \\
& 100 \text { to } 160 \text { at } 10,000 \text { cycles } \\
& 150 \text { to } 200 \text { above } 50,000 \text { eycles }
\end{aligned}
$$

At low frequencies, the $Q$ ratio $[=1 / \omega R C]$ of the eondenser is usua so large that the condenser resistance may be neglected. At rat frequencies, however, the ratio is often 100 to 300 and approaches the of the coils.

When the Q ratios of the elements of any filter have reasonable valu such as those suggested above, the effere of dissipation on the eharact istic of a filter may ordinarily be negleeted.
54. Wave-filter Design. In filter designs, non-dissipative structu terminated in pure resistanes equal to their image impedances : assumed. Let $R$ represent the terminating resisfanere.


Fici, 3:3.-Tramsmission curves for combosite low-pass tilter.
The basis of filter design is the sertion, which represents an elemen length or anit in a recurent structure.

A uriform filler consists of identical seetions and approximates transmission characteristies of a uniform smooth line. Both the sha ness of rut-off and the attemuation of frequencies beyond cut-off va directly with the number of sertions. However, a composite filter usually give the same results with fewer seetions.

A composite fulter consists of sertions whose sections are dissimilar a are chosen to combine desirable effects of several types of sections. J
mple, in Fig. 33, I represents the curve of a section having a steep cutwhich is desired, but also having ohjectionably low attenuation for


Fig. 34. - Effect of varying resistance at termination of filter.
uencies to the right of the cut-off; II, a second section having a lual cut-off but with the desired high attenuation for the higher


(d)-Symmetrical Section, Mid-Shunt Terminatión

(e) Symmetrical Section, Divided into Two Half-Sections with Mid-Shurtt Terminations by Replacing $\mathbf{Z}_{1}$ whth Two lmpedances Each of Whae $Z i / 2$. This is similar to (c) except that the Terminations are Reversed inOrder

(f) - Composite Wove - Fither of Two Half-Sections and C.ie Full Section, with Terminating Resistonces Impedonces are Matched at Terminations ond at the Junctions of the Half-Sections with the Full Section

Fig. 35.-Wave-filter structures.
uencies; III, the characteristic of the composite filter made up of combined sections, which retains both the sharp cut-off and the 1 attenuation beyond cut-off. In general, a sharp cut-off as in 1 in
an $m$-derived type filter is obtained by choosing a small value of $m$ ( as $m=0.4$ ), while a gradual cut-off as in II results when $m$ approa. 1 (sce Art. 55, Fig. 36).

The end sections of a multi-section filter should, in general, be seetions, to present the correct image impedance for matching the f to the termination. A half section is an " 1 " structure whose series impedance is one-half that of the L-section series arm and whose sh arm impedance is twice that of the $\mathrm{I}_{\text {-section shunt arm. Such }}$ sections are shown in Fig. $35 c$ and $e$ and the method of connecting internal sections at $f$.

A single L-type or full-series section is a simple and easily constru filter for many purposes w


Fig. 3f.-Fffect of $m$ upon sharpness of cutoff in a low-pass filter structure. sharp cut-off and extr selectivity are not requi 'Thetransmissioncharacter approximates that of a $s$ metrical section, but the off is flattened somewhat.

The transmission prope of a given filter can be alt considerably by adjusting value of the terminating re ance. Quantitative resul1 this are demonstrated in 34. In general, values c larger than normal tenc increase the transmissior frequencies near the cut resulting in sharper cut-of
65. Filter-design Formı

The basis of filter-design formulae is the L-type or full-seriessection ( 35). From the relations shown in Fig. 35, symmetrical sections, half tions, and composite groups are readily derived from the basie Iconstants.

The prototype filter section is the so-called constant- $K$ strue which derives its name from the fact that the geometric mean of its si and shunt impedances is a constant at all frequencies which, for fi design purposes, is equal to the resistance of the termination. structure corresponds to a natural line and has a transmission chara istic which falls off gradually beyond eut-off and has infinite attentua at no finite value of frequency.

A form of filter called the $m$-type has been derived from the constar structure by Otto J. Zobel. ${ }^{1}$ The method consists of introducing ope factors in the series and shunt impedances to give infinite attenua at some finite frequency, which produces a sharper cut-off. The e: of $m$ upon the transmission charactoristic of a filter is illustrated in 36. It is seen that the constant- $K$ structure is a special case $w$ $m=1$. Figure 36 is useful in selecting diverse values of $m$ for sect of a composite filter such as that referred to in Art. 54 (Fig. 33). general, unless otherwise restricted, $m$ is usually chosen between 0.4 0.6 .

Formulae for L-type sections of the most commonly used filters given on page 141.
${ }^{1}$ Bell Tech. Jour., January, 1923.

## Filter-design Formulae

## Formulae for full $L$ sections <br> $R=$ ternination impedance <br> $m=0.6$ usually

Tor simple filter, use one-half series impedance and twice shunt impedance shown, in f-type half-section.

## I. LOW PASS FILTERS

(a)-Constant $\boldsymbol{K}$ Type


$$
C_{2}=\frac{1}{\pi f_{2} R}
$$

(b) $m$-Derived Type


II- HIGH PASS FILTERS
(a)-Constant $K$ Type

$C_{l}=\frac{1}{4 \pi f_{l} R}$


$L_{2}=\frac{R}{4 \pi f_{1}}$
(b)- $m$-Derived Types


Series


Shunt
$C_{f}=\frac{1}{4 \pi f_{f} \pi R}$
$L_{r}=\frac{m k}{\left(1-m^{2}\right) \tilde{m}_{j}}$
$L_{2}=\frac{R}{4 \pi f_{t} m}$
$C_{f}=\frac{l}{\pi \pi T_{f} m k}$
$m=\sqrt{1-\frac{f_{f \infty}^{2}}{f_{f}^{2}}}$
$C_{2}=\frac{m}{\left(l-m^{2}\right) \pi f_{1} R}$
$L_{L_{2}}=\frac{R}{4 \pi f_{t} m}$
III-BAND ELIMINATION FILTERS
(a)-Constant $K$ Type




$$
L_{2}=\frac{R}{4 \pi\left(f_{0}-f_{1}\right)} \quad C_{2}=\frac{f_{1}-f_{0}}{\pi R f_{0} f_{1}}
$$



## II- BAND ElIMINATION FILTERS (continued)

(b)-m-Derived Types

Series



$L_{t}=\frac{m R\left(f_{t}-f_{0}\right)}{\bar{H} f_{0} f_{t}}$
$L_{1}=\frac{\left(f_{1}-f_{0}\right) R}{\pi f_{0} f_{1} b}$
$C_{2}=\frac{1}{4 \pi\left(f_{3}-f_{0}\right) m k}$
$C_{i}=\frac{a}{4 \pi\left(f_{1}-f_{0}\right) R}$
$L_{2}=\frac{a R}{4 \pi\left(f_{1}-f_{0}\right)}$
$I_{i}^{\prime}=\frac{\left(f_{1}-f_{0}\right) R}{\pi f_{0} f_{1} a}$
$C_{2}=\frac{\left(f_{1}-f_{0}\right)}{\pi t_{0} f_{1} b R}$
$C_{f}^{\prime}=\frac{b}{4 \pi\left(f_{1}-f_{0}\right) R}$
$m=\sqrt{\frac{\left(1-\frac{f_{0}^{2}}{f_{l \infty}^{2}}\right)\left(1-\frac{f_{i a y}^{c}}{f_{i}^{2}}\right)}{1-\frac{f_{0}}{f_{1}}}}$
$\begin{array}{ll}L_{2}^{\prime}=\frac{6 R}{4 \pi\left(f_{0}-f_{0}\right)} & L_{2}=\frac{R}{4 \pi\left(f_{f}-f_{0}\right) m} \\ C_{2}^{\prime}=\frac{\left(f_{1}-f_{0}\right)}{\pi f_{0} f_{1} a R} & C_{2}=\frac{m\left(f_{-}-f_{0}\right)}{\pi f_{0} f_{1} R}\end{array}$
$a=\frac{1}{m}\left(1+\frac{f_{0} f_{i}}{f_{i \infty}^{2}}\right)$
$b=\frac{1}{m}\left(1+\frac{f_{1 \infty}^{2}}{f_{0} f_{i}}\right)$
$f_{t \infty}^{\prime}=\frac{f_{0} f_{t}}{f_{1 \infty}}$
IV. BAND PASS FILTERS




$$
\begin{array}{ll}
L_{1}=\frac{R}{\pi\left(f_{2}-f_{l}\right)} & L_{2}=\frac{\left(f_{2}-f_{1}\right) R}{4 \pi f_{2} f_{l}} \\
C_{1}=\frac{\left(f_{2}-f_{1}\right)}{4 \pi f_{2} f_{1} R} & C_{2}=\frac{1}{\pi\left(f_{2}-f_{1}\right) R}
\end{array}
$$

IV. BAND PASS FILTERS (continued)
(b) - $m$-Derived Types


## SECTION 7

## MEASURING INSTRUMENTS

By R. F. Field ${ }^{1}$

nstruments for the measurement of electrical quantities, such as rent, voltage, and power, are usually indicating instruments, in which torque fleveloped by the current acting in a magnetic field or by the tage acting in an electrostatic field moves a coil or vane against the ntertorgue of a spring or other mechanical device. The electrical intity is compared with a non-electrical quantity, usually merchanical sometimes physical or chemical. By the application of Ohm's law, uit elements such as resistance and reactance may be measured by ieating instruments. The accuracy of indicating instruments is ted by their scale length. It rarely exceeds 0.1 per cent of fullte reading, with an average of about 1 per cent of full-scale reading. ater accuracy is obtained by the use of comparison instruments, in eh the electrical quantity or circuit element is compared with a adard which has been calibrated to a suffieiont aecuracy. This adard may be of the same kind as the unknown quantity or of a crent kind.

## CURRENT MEASURING INSTRUMENTS

Moving-coil or D'Arsonval Galvanometers consist of a coil, usually and on a motal frame, which can rotate between the poles of a pernent magnet, as shown in Fig. 1.
the current $I$ flowing through the turns If the coil rearts with the magnetic field b the air gap to produce a force $F$ arting sach conductor proportional to the product of the current, magnetic: field, and length onduct or in the field. If the coil is pivoted ts center, a torque will be exerted, tendto rotate the coil about an axis parallel to


Fig. 1.-Moving-coil galvanometer. sides of the coil and perpendicular to the gnetic field. Some kind of restoring torque is provided which is proporal to the angle $\theta$ through which the coil rotates. Expressing the sensitivity f the instrument as the angular defleetion per unit current, it is given by

$$
\begin{equation*}
s=\frac{\theta}{I}=\frac{H N l b}{\tau} \tag{1}
\end{equation*}
$$

are $b$ is the diameter of the coil and $\tau$ is the restoring torque per unit fuiar displacement. For maximum sensitivity the permanent magnet uld be very strong and the restoring force very weak. The magnetic 1 obtained from the permanent magnet must be constant so that the Engineer, General laadio Company, Ine.
electrical characteristics of the instrument may remain unchanged. usable residual magnetism is betwen 10 and 30 per rent of the maxim ohtainable. Tungsten steel is commonly used. Cohalt steel is availa for instruments requiring the greatest sensitivity. The flux density in air gap is botween 500 and 2,500 gatuss. A core of soft iron is usually pla inside of the coil to dererase the length of the air gap and to make the magn flux uniform and radial.

The deflection of any sensitive galvanometer is indieated by the ang rotation of a beam of light, the so-called optical lever, which is reflee from a mirror, either plane or convex, mounted above the moving a The older form of telescope and seale is now being replaced by a spot light containing cross hairs which moves along a scale. The use o spot of light is much loss fatiguing than ohservation through a trese, and a wider range of view is ohtained. The usual seale length is 50 , with zoro in the center. The standard distanere from mirror to seal, 1 m . The maximum angular deflection is about 14 deg. Practica all pivot instruments use pointers. Full-scale doffection corresponds approximately 90 deg. 'This is inereased to 120 deg. in some (ent station meters hy eareful shaping of the pole pieces. It may le increa to 270 deg. by a radical change in design.

The moving element of every deflection instrument provided with a res ing torque proportional to the angular deflection is in effect a torsic pendulum. As surh it has a moment of inertia $P$, a period $T$ ', and a damI factor. The relation between these quantities is given by

$$
T=2 \pi \sqrt{\frac{P}{\tau}}=\pi b \sqrt{\frac{}{m l}} \frac{1}{\tau} \text { (approx.) }
$$

where $\tau$ is the restoring torque per unit angular displacement and $m$ is mass of the coil per unit length. The period of a galvanometer is import berause the time neerssary for any deflertion instrument to attain a position when its deflecting foree is altered canot be less than its peri For sensitive galvanometors it is between 6 and 12 seconds.

Combining Eqs. (1) and (2) by the elimination of the restoring torqu the sensitivity becomes

$$
S=\frac{H N l b T_{2}}{4 \pi^{2} I^{2}}=\frac{H N T_{2}}{\pi^{2} m b}
$$

which shows that the coil should be as light per unit length and as narrov possible. Its length does not affert the sensitivity; the longer the coil greater may be the restoring forfe for a given poriod. But sine the hea: roil produces greater friction at the pivots, freedom from sticking and stabi of zero reading are not much increased by lengtheming the coil.

The frietion of the suspension and the surrounding air is not suffici to prevent the moving coil oseillating back and forth about its equitibri position when a doflecting foree is applied. The amount of damping measured by the rate at which the amplitude of the oseillations dererea: The ratio of any two successive swings is constant. The Napierian hyperbolic logarithm of this ratio is called the logarithmic decrement of instrument. The smallest amount of damping which will rause the coi rome to rest with no oscillation whatcver is catled the critical dampa and the coil is sald to be eritically damped. Increasing the damp beyond this point increases the time neressary for the coil fo come to 1 and produees overdamping. The shortest time in which the coil,
me within a given small distance of its position of rest occurs when the sil is slightly underdamped. It has a value of about 1.5 times the rriod of the coil. The extra damping neressary to eritically damp a sil is usually obtamed magnetioally from the motion of the eoil in the eld of the permanent magnet, which sets up counter electromotive rees. 'The amount of damping produced by the eurrent in the coil apends upon the total resistance of the roil and connected circuit. hat resistance which proluces critical damping is called the critical amping resistance. A galvanometer is usually so designed that its itical damping resistance is at least five times its eoil resistanee so that may be shunted for critical damping without losing much sensitivity. 11 but the most sensitive pivot instruments are clitically damped on pen cireuit by the current set up in the motal winding form and resistace of the connected cireuit has little efferet on the damping.
The current sensitivity of any galvanometer varies directly as the numer of turns on its moving eoil and as the square of its period (Eq. 3 ). or a given winding space on the eoil, its resistance varies as the square the number of turns, assuming that the portion of the winding space seupied by insulation remains eonstant. The deflection is proportional , the current and to the square root of the resistance, $i, e^{\text {a }}$, to the square sot of the power dissipated in the coil.

Table I.-Characteristics of D-c (advanometels

| Make | 'Type | $E, \mu v$ | $I, \mu \mathrm{a}$ | $T$ sec. | $\underset{\sim}{R}$ | $R_{\Omega}\left(C_{1},\right.$ | H*, $\mu \mu \mathrm{w}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \& N | $\left(\begin{array}{l}2285 \mathrm{a} \\ 228.5 \mathrm{~b} \\ 2285 \mathrm{f} \\ 22800 \\ 2500 \mathrm{~b}\end{array}\right.$ | Suspended coil type with mirror |  |  |  |  |  |
|  |  | $0.03: 0.0027$ |  | 7.5 | 12 | 37 | 0.00009 |
|  |  | 0.0460 .0038 |  | 5 | 12 | 71,000 | 0.00017 |
|  |  | 0.03280 .00004 |  | 20 | 800 800 |  | 0.0000013 |
|  |  | 0.25 | 0.0005 | 6 | 800 500 | 101,000 | 0.00012 |
|  | 2500e | 1.5 | 0.003 | 3 | 500 | 2,500 | 0.0045 |
|  | -500f | 0.050 .0001 |  | 14 | 560 | 14,500 | 0.000005 |
|  | 2.239a | 1.7 0.014 |  | 8 | 115 | 10,000 | 0.022 |
|  | (2239b | 1.0 | 0.001 | 14 | 1,0008,000 | 10,000 | 0.0010.00032 |
|  | (22398 | 1.6 | 0.0002 |  |  |  |  |
| $\& \mathrm{~N}$ | 2270 | 0.0080 .0002 \| 5 |  |  | $\begin{aligned} & \text { with mirror } \\ & 40 \text {..... } \end{aligned}$ |  | $\begin{aligned} & 0.0000016 \\ & \text { scale } \end{aligned}$ |
|  |  | $10 \quad 0.01 \mid$ |  |  | with self-contained scale |  |  |
|  | $\left\{\begin{array}{l}2400 \mathrm{c} \\ 2420 \mathrm{c} \\ 2310 \mathrm{~d}\end{array}\right.$ |  |  |  | 1.000 | 16.000 |  |
| dN |  |  | 0.025 | 3 | 1,000 | 16,000 | 062 |
|  |  | 125 | 0.125 |  | 1,000 | 11,000 | 15.6 |
| ${ }^{7}$ eaton | $\left\{\begin{array}{l}440 \\ 322\end{array}\right.$ | 1 Ouble-pivot type with pointer and scale |  |  |  |  |  |
|  |  | 38 | 0.20 |  | 190 | 1,850 | 7.6 |

Yalues of voltage $E$, current $I$, and power $W$ are for a scale deflection of 1 mm at a ale distance of 1 m for the galvanometers having mirrors: for those having selfintained scalcs the values given are for a deflection of the smallest division, usually mrn. The voltage drop in the external critical damping resistance is not ineluded in the oltage given.

Electrical characteristics of representative commercial galvanometers re shown in Table I. Galvanometers with a single suspension have the reatest sensitivity, those with a taut suspension less, and those with ouble pivots least. For the most sensitive type of galvanometer, rereasing the period from 5 to 40 sec. allows the power to be decreased
from 11 to $0.005 \mu \mu \mathrm{w}$. The minimum current sensitivity is $10^{-11} \mathrm{am}$ per millimeter. The smallest current sensitivity for a taut suspensio is $10^{-8} \mathrm{amp}$. per millimeter, and for a double-pivot, pointer instrumen $2 \times 10^{-7} \mathrm{amp}$, per seale division.

Galvanometers of the suspended type are used mainly as null ind cators for d-e bridges and potentiometers and as deflection instrument in comparison methods. In the latter case a differential galvanometer sometimes used. This is a galvanometer having two separate insulate


Fig. 2.-Ayrton-Mather universal shunt. windings on the suspended coil. The have equal numbers of turns and are $s$ conneeted that, when equal currents flo through the two eoils, no defleetion produced. The sensitivity of a galvanon eter is most easily reduced by shmentim When it is desirable to keep the galvanon eter critically damped, the Ayrtor Mather universal shunt shown in Fig. 2 most convenient. The total resistance of the shunt is made approx mately equal to the critical damping resistance of the galvanomete

Meters of the pivot type are used as ammeters and voltmeters of a ranges and as the indicating meters of thermoeonple and rectificr meter: Electrical characteristics of representative commercial ammeters an shown in Table II. The full-seale range of the ammeters extends fror $25 \mu$ a to 20 ka . Above 15 to 30 ma the meters are shonted. The ful seale range of the voltmeters extends from 1 mv to 25 kv . The resistane in series with the moving coil is self-rontained up to 150 to 750 volts Above these values external multipliers are used. The usual resistane used is 100 ohms per volt, i.e., a current of 10 ma . Some voltmeters ar now built taking a current of 1 ma , and having a resistance of 1000 ohm per volt. Vollammeters are combinations of a voltmeter and ammetc using the same moving element with suitable multipliers and shunts fc the ranges desired.

Table II.-Characteristics of I)-c Ammeters

| Make | Type | $E, \mathrm{mv}$ | I, $\mu$ a | $R, \Omega$ | W, $\mu \mathrm{W}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Weston | $\left(\begin{array}{r}1 \\ 1 \\ 45 \\ 267 \\ 269 \\ 280 \\ 301 \\ 301 \\ 322 \\ 385 \\ 470 \\ 400\end{array}\right.$ | 170 220 540 42 100 40 27 11 4.7 30 2.2 27.2 | 300 1,500 1,500 1,500 1,500 1,500 1,000 200 25 1,320 1.5 1,000 | $\begin{array}{r} 570 \\ 145 \\ 360 \\ 288 \\ 67 \\ 27 \\ 27 \\ 55 \\ 190 \\ 23 \\ 100 \\ 27 \end{array}$ | $\begin{gathered} 51 \\ 330 \\ 810 \\ 63 \\ 150 \\ 61 \\ 27 \\ 2 \\ 0.12 \\ 0.12 \\ 40 \\ 0.034 \\ 27 \end{gathered}$ |

Values of voltage $E$, current $I$, and power $W$ arc for full-scale deflection.
2. Moving-coil Vibration Galvanometers. When an alternatin voltage is applied to the coil of a permanent magnet galvanometer, th eoil will follow the alternations of the current if the frequency is of th same order as that defined hy its period. Maximum amplitude of vibre
in will occur at the natural frequeney of the coil. The relation between pplitude and frequency is similar to a resonance curve of an clectrical cuit. The ratio of the maximum plitude at its natural frequency to e amplitude for an equal dee voltage between 25 and 150. 'The period of e ordinary d-e galvanometer is never $s$ than 1 see., while the frequencies at nich measurements are made are rely less than 30 cyrdes. The upper it for a taut single suspension is sund 300 cycles. This limit may be sed to $1,0(0)$ by the use of a taut ilar suspension. Electrical characistics of commercial vibration galnometers are given in Table 111, At cycles their sensitivity is equal to at of a good $d-\mathrm{c}$ galvanometer.


Fig. 3.-Resonance curve of vibration gal vanometer. resonance curve whern tuned to frequency of 100 eycles is shown in Fig. 3.

Table III-Characteristics of A-c Galyanometers

| Make | Type | f. cycles | E, $\mu \mathrm{v}$ | I, $\mu \mathrm{a}$ | $R, \Omega$ | W, $\mu \mu \mathrm{w}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| nbridge | (Campbell bifilar | Vibrating-coil type |  |  |  | $\begin{array}{r} 0.14 \\ 0.88 \\ 17 \\ 200 \\ 800 \end{array}$ |
|  |  | ( 50 | 8.5 | 0.017 | 500 |  |
|  |  | $\left\{\begin{array}{l}100 \\ 3.50\end{array}\right.$ | $\frac{17.3}{3.3}$ | 0.0 .7 0.33 | 350 160 |  |
|  |  | - 750 | 104 | 20 | 5 |  |
|  |  | (1,000 | 175 | 5.0 | 35 |  |
|  | Camptell unifiar |  | 1.5 | 0.05 | 30 |  |
|  |  | ) 50 | 1.2 | 0.04 | 50 | 0.080 |
|  |  | ) 100 | 3.0 | 0.025 | $1: 0$ | 0.075 |
|  |  | - 200 |  | 0.10 | 70 | 0.70 |
| $\& \mathrm{~N}$ | 2350 a | 60 | 17.5 | 0.025 | 700 | 0.44 |
| nbridge | Duddell oscillograph | $\left\{\begin{array}{r}100 \\ 1,000\end{array}\right.$ | ${ }_{50}^{50}$ | ${ }_{0}^{0.02}$ | 250 2.00 | ${ }_{10}^{0.10}$ |
|  |  | $\left\{\begin{array}{l}1,000 \\ 2,000\end{array}\right.$ | 100 | $0 \cdot 4$ | - |  |
| nbridge | Einthoven | l libr | ${ }^{\text {ating-8t }}$ |  | 4.000 |  |
|  |  | 1300 | 800 | 0.2 | 4.000 | 160 |
| R. Co | 338-I. |  |  | $\stackrel{2}{13}$ | 4.5 | 280 |
|  |  | $\{2.50$ | 300 | 13 | 45 | 7,600 |
|  |  | $\left\{\begin{array}{l}.0001 \\ 1,000\end{array}\right.$ | . 350 |  |  | 40,000 |
| $\begin{aligned} & \mathrm{N} \ldots \ldots \\ & \mathrm{~N} \ldots \ldots \end{aligned}$ | 2570 Suspende | d coil typ | with | ertroma | amet |  |
|  |  | 600061 |  | 0.0151 | 12 | 0.0003 |
|  |  |  | 16 | et type |  | 800.000 |
|  | 2440 Vibratin | g-diaphra | gni typ | (telepho | orte) |  |
| E. Co |  | 800 | 400 | 0.02 | 6.000 | 2.4 |

slues of voltage $E$, current $I$, and power $W$ are for a scale deflection of 1 mm at a e distance of 1 m for all galvanometers except the telephone, for which the threshold sudibility is used. The moving system is tuned to the frequencies given for all puments except the suspended coil galvanometer with electronagnet.

The natural frequency may be raised still further by eliminating $\dagger$ coil entirely and using the single-turn loop formed by the bifilar su pension. The mirror is then placed at the eenter of the taut wires. Th general method of construction is shown in Fig. 4. By this means natural frequeney of 12 ke may be ohtained. The sensitivity deereas inversely as the first power of the frequency. On this accomet it is sensitive at 10 kc as the bifilareroil galvamometer was at 1 ke . comparison with other null detectors at these frequencies, its sensitivi is so low that it is not much used in this form.
3. The Einthoven string galvanometer uses the simplest possil moving system for a galvanometer. A single conducting string noves the narrow air gap of the manetio system, which may be a permane magned or an electromagnet depending on the sensitivity desired. J motion is observed through a midroscope or be its shadow thrown on sereen from a point light source. Electrical charactoristios of $t$ Finthoven string galvanometer built, by the Cambrid


Fig. 4.- Bifilar suspension. Instrument. Company are given in Table III, usi a sibvered glass string and a manification of $s$ hundred times. The string galvanometer may al be used as an oscillograph. The shadow of the st ring obserwed on a translueent serem as refleeted from revolving mirror. The motion of the string may also photographed on film or bromide paper. The ust paper speed is 10 in , per serond, hut this may increased to a maximum of 100 in . per secoud. At th lat ter speed, phemomena lasting a millisecond appear in. long. Electrical charactoristicy of atring oscil graph built by the Gomeral Ratio Company, using a (0,0004tunesten string, are also shown in Table III. It may be equipped wi a motor-driven camera and as syehronous shatter for producing $0 .(0)-\mathrm{s}$ timing lines.
4. Moving-coil A-c Galvanometers. If a steady defleetion is desir with a.c., the magnetic field must change in direction with the curre in the coil and must have the same phase. The field of laminat iron is excited at, the same frecuenery, usually for cyeles, as the movi coil. When used as a null indicator in a bridge network, the fidel comented acress the same supply as the bridge while the moving is conneeted to the detertor terminals. Since the current through $t$ field and the flux prochued will be nearly 90 deg. out of phase with 1 voltage applied to the bridge, the galvanometer will be most sensit to the reatance balane and will be lithe affeeted by the resistat batance. These conditions may be equalized or reversed by the int duedion of resistance in series with the field or readenere in series with 1 bridge to make the field current and bridee current differ in phase 45 der. or be in phase. The phase selectivity of the a-e gatyanome may be of advantage in erertain sperial cases, hat in general it is a of siderable disadvantage. The clectrostatie field of the main field wind exerts a considerable fore on the moving coil so that it must be carefu shiedded. Its sensitivity is very high, as shown in Table III. It eo pares favorably with the best d-e galvanometers.
5. Electrodynamometer. When the iron core is omitted from field winding, the moving coil and field coil may be comected in ser The deflection is then proportional to the square of the current flow
the windings, and the instrument, is called an electrodynamometer. truments of this type read the same on both ace and d.e. and are table as transfer instruments, provided ertain preautions are taken. dection from external magnetie fields is most important. This is tally accomplished in pivottrpe instruments hy shichding with soft a. It may also be efferted by making the instrument astatie. When is used, an error is introduced if the distribution of current in coils is affected by eddy currents in the eonductors themselves-so-ealled shin effect or by capacitance betwern the windings. The mer effect is minimized by the use of conduetors with insulated ands-so-called litzendraht- the latter by careful spacing and by -trostatic shiclding.

Table IV.-Charactehistice of A-c Ammeters

| Make | 'Type | $E^{\prime}$, v | I, amp. | $R, \Omega$ | IH, w |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ston. |  | Filertrodymanometer type |  |  |  |
|  | $1 \begin{aligned} & 396 \\ & \\ & 341\end{aligned}$ | 26 | 1.0 | 2. 6 | 2.6 |
|  | 1 370 | 21. | 0.015 | 1,400.0 | 0.5 0.31 |
|  |  | Moving-iron type |  |  |  |
| ston | $\left(\begin{array}{l}155 \\ 433\end{array}\right.$ | 31 | 0.02 | 1. 540 | 0.62 |
|  | $\left\{\begin{array}{l}4.3 .3 \\ 476\end{array}\right.$ | 14 30 | 0.03 0.015 | 460 2.000 | 0.41 |
|  | \{ $51 \%$ | 30 | 0.015 | 2.000 | 0.45 0.45 |
|  | ( 528 | 30 | 0.015 | 2.000 | 0.45 |
| tmann \& Braun. |  | 0.6 | lot-wire type |  | 0.06 |
|  | 127 | $\left\{\begin{array}{l}2.3 \\ 0.3 \\ 0 \\ 0\end{array}\right.$ | 0.11010 | $\stackrel{23}{0.9}$ | 0.23 |
| R. Co. |  |  |  |  | 0.90 |
|  |  |  |  | Thermosouple typ | 5.2 |
| R. Co. | 493 | 10.8 | 0.008 | 100 | 0. 0064 |
|  |  |  |  | 2 | 0.020 |
| nbridge |  | $\left\{\begin{array}{lll}0 & 2 & 4 \\ 0 & 12\end{array}\right.$ | 0. 008 | 30 | 0.0019 |
|  |  | $\left\{\begin{array}{l}0.12 \\ 0.12 \\ 0.08\end{array}\right.$ | 0. 0.70 | ${ }_{0}^{1} .12$ | 0.014 0.059 |
|  | 412 | 0.25 | 0.01 | 25 | 0.0025 |
| 3ton |  | $\left\{\begin{array}{l}0.13 \\ 0.62 \\ 0.59\end{array}\right.$ | 0.10 | 1.35 | 0.0133 |
|  | 425 |  | 0.12 | 5.2 | 0.075 |
|  |  |  | 0.50 | 1.18 | 0.205 |
| nbridge. | 1)uddell | $1 \begin{aligned} & 15 \\ & 15\end{aligned}$ | $\begin{gathered} 0.01 \\ 0.10 \\ \text { Rectifier type } \\ 0.001 \end{gathered}$ | 150 | 0.01 .5 |
|  |  |  |  | 1.5 | 0.015 |
| ston | 301 | 1 |  | 1,000 | 0.001 |
| R. Co. | 488 | $\left\{\begin{array}{l}3 \\ 2 \\ 2 \\ \frac{2}{2}\end{array}\right.$ | 0.00075 | 4.000 | 0.00225 |
|  |  |  | 0.0005 | 4.000 | 0.001 |
|  |  |  | 0.00025 0.0001 | 8.000 90.000 | 0.0005 |
|  |  |  | 0.0001 | 20,000 | 0.0002 |

alues of voltage $B$. current $I$. and power $I$ ' are for full-scrale deflection.
Electrodynamometors may be used as galvanometers, ammeters, tmeters, and wattmeters. Their sensitivity as galvanometors is so compared with vibration galvanometers and other moters that they
are now rarely used. As ammeters, voltmeters, and wattmeters, th are the standard instruments for use at commereial frequencies. El trieal charartoristies of eleetrodynamometer-type ammeters are gis in Table IV. Their sensitivitios are onc-hundred timess less than 1 least sensitive d-e meters. Their current range is from 15 mat 1050 ath The upper limit is set by the difficulty of Jeading large currents into 1 moving eoil through the torsion springs. Currents up to 5,000 amp. : measured by the use of eurrent transformers. Frequencies up to 1, cycles may be used, the normal limit heing 133. The voltmeters requ a suffieient series resistanee to give them both a negligible temperata coefficient and a nergligible frecpuency corfficient due to the inductance the windings. Their resistance varies from 2 to 33 ohms per volt. Th voltage range is from 1 to 850 volts. Voltages up to 14 kv arr measun hy the use of potential transformers. Frequencies up to fiol cycles m be used, the normal limit being 133. The power seate is linear. Th power range is from 25 watts at 50 volts to 75 kw at 750 vol Frequencies up to 1,200 eyeles may be used, the normal limit heing 1
6. Moving Iron Meters. Galvanometers are also construded witl stationary eoil and a moving magnet. The moving system consists small permanent magnets placel at the center of the coil at right, ang to the axis of suspension. To avoid the effert of outside magnetic fiel the system is duplieated with the magnets pointing in the oppos direction to make it astatie and the whole galvanometer is surrounded multiple soft iron shields. Its sensitivity (see Table I) is nearly equal by the best moving-coil galvanometers so that it is very little used.
7. Soft-iron Meters. Soft iron may also be used in the moving ( ment, rither alone or in conjunction with a fixed piece of soft iron, bu of which are magnetized by the fixed coil.

Soft-iron moters are much used as ate ammoters and voltmotors it wide variety of ranges and sizes. They may also be used on d.e. El trical characteristics are given in Tahle IV. The range of the ammet is from 20 ma to 500 amp . The upper limit is ten times that of dy: mometer-type meters, because the carrent roil is fixed. Currents up 5,000 amp. are measured by the use of current transformers. Frequent to 500 eycles may be used. The range of the voltmeters is from 1 to : volts. Their resistances are sueh as to give from 3 to 167 ohms volt, the values increasing with the voltage. Higher voltages


Fig. 5.-Construction of telephone. measured by the use of either multipli or potential transformers. Frequen up to 500 eveles may be used, the nori limit being 133.

## MOVING DIAPHRAGM METERS

8. The telephone is a very sensit galvanoneter, in which the indication motion is acoustic. It is essentially moving iron vibration galvanome polarized with a permanent magnet. Its construction is she in Fig. 5. The amplitude of vibration is proportional to product of the steady flux in the air gap produced by the perman magnet and the alternating flux produced by the coils carrying alternating eurrent. The latter flux is much increased by plaing coils on laminated soft-iron pole pieces. The reluctance of the harde
eel magnet to the alternating flux is so great that most of the a-c flux sses across the gap at the base of the pole pieces. This gap is made the oper length to make the product of the two fluxes at the diaphragm air p a maximum. The diaphragm is a thin steel disk clamped at its outer ge. Its natural frequeney of vibration is determined by its mass and finess. For silieon stecl 0.01 in. in diameter, this frequency is about 0 eycles. By plugging the orifice in the earpiece, the natural frequency y he increased by as much as 50 per cont. The damping of the phragm is very small, being mainly due to the eddy-current losses the iron. The variation of amplitude th frequency is a sharp resonance rve. Figure 6 shows such a curve - a Western Electrie telephone. The mping is little affected by changes in ffiess and natural frequeney. The pedance of a telephone winding reases with frequency in a regular way, sept around the resonamee frequencios. e resistance and reactance are generally the same order of magnitude, so that its ; angle is about 45 lleg . At a frequency 1,000 eycles they are about 10 times d-e resistance of the winding. Near onance the motion of the diaphragm roduces a eounter e.m.f. into the circuit ich is usually interpreted as additional istance and reactance. These terms


Fig. 6.-Resonance curve of Western Electric telephone.
referred to as motional values. In telephones of low damping, y may be as much as 70 per cent of the normal values. The actual merical value of the resistance and reactanee depends on the number of 'ns with which the magnets are wound. The d-e resistance varies from to 1,000 ohms. The sensitivity of telephones is somewhat indefinite sause it depends on the acuteness of hearing of the observer. It is al to express it as the current necessary to produce a just audible ponse. Because of the existence of a threshold of hearing, this imum eurrent is reasonably definite and reproducible, at least for any person. Values of this minimum current, together with the correanding voltage, resistance, and power are given in Table III for a stern Electrie receiver. It is much more sensitive than any vibration vanometer and at its resonant frequeney is not far behind a good d-e vanometer.

1. Mica-diaphragm Telephone. It is possible to use non-magnetic terials for the diaphragm by providing a separate steel armature so ped and clamped that its natural frequency is higher than that of the phragm, to which it is attached by a stiff rod. The Balduin telephone s a miea diaphragm very similar to that of a phonograph piekup. ih its sonsitivity and solectivity are very high. Other modifications the use of eorrugated diaphragms to broaden the resonamee curve and use of a balaneed armature in which the polarity of the permanent met is so arranged that the armature is not under tension due to them is attracted only by the alternating flux.
2. Dynamic Telephone. The present type of dynamic speaker is a ring eoil galvanometer, in which a light papor cone attached to the
moving coil acts as a diaphragm. There is no single natural frecuenc so that over a wide frequency range the sensitivity is essentially constan A head telephone has been developed by the Bell Telephone Laborato with a moving coil and very light conical diaphragm. Its sonsitivity reasomably constant over a wide range of fropuencies and holds 1 remarkably at froqueneios as low as 100 eyceles.
3. Thermophones. When a fine wire is heated by the passage of a. sound waves are produced in the surrounding air if the heat eaparity the wire is so small that the temperature of the surface of the wi follows the eyclie variations of the marent. Instruments of this sc have beon constructed, using gold foil as the heator. They are call thermophones. Their sensitivity in terms of sound energy is low. IS they ean be made small enough to be phaed in the ear, so that their ove all sensitivity is quite satisfactory. Their response deareases slowly the frepuency is increased. The theory of this instrument has be studied in considerabhe detail, because of its use as a stamdard in $t$ production of sound.

## HOT-WIRE METERS

12. The expansion of a fine wire when heated by the passage of a rent is utilized in hot-wire meters to operate a pointer.

The details of construction of a hot-wire ammeter as built by Hartma and Braum are shown in Fig. 7. The sag


Fis. 7.-llartmann and Braun hot-wire meter. the platinum wire $A / 3$, which carries the heat rurrent, is taken up by the wire Cll, whose is in turn taken up) by the rord $E\left(A^{\prime}\right.$ held taut the spring $s$. The cord passes around a pivo drum $F$ which carries a pointer. The me must be eompensated for temperature so th the base on which the various parts are moun has about the same effertive roeffirient expansion as the hot wire. It is slow in tak up) its equilibrium mosition due to the ratativ large heat eapacity of the hot wire and as ciated parts. Although the wire itsolf , attain approximate equilibrium in a few seron the final reading takes many minutes as the whole meter heats.

Its readings are proportional to the power dissipated in the wire, that is the square of the current. so that a d-e calibration will hold for an alternat current of any frequency up) to that at which skin effect beeones apprecial Since the wire is fine and of fairly high sperific resistance, this limit usu: oerurs between 100 and $1,000 \mathrm{kc}$. It may therefore be used as a trans instrument.

The electrical eharateristies of hot-wire meters are given in Table The range of the ammetors is from 100 mato 10 amp. Larger curre may be moasured by shanting or by subdividing the hot wire. Neit of these methods is available at radio frequencies. Their sensitivit: somewhat higher than that of either dymamometer or moving i netors. But their low areureney has been sumferent to prevent their at low frequencies. They have been used extonsively at radio fremuen in spite of their deferets, becalase there was nothing better. They now eompletely displaced by thermoeouple meters.

## THERMOCOUPLE METERS

13. A thermocouple meter consists of a thermorouple and at galvanometer or millivoltmeter. The thermocomple usually consists
ating element and a thormojunction composed of two dissimilar metals ving a high thermoelectric power, as shown in g. 8 .

The metals most frequently used are copper and nstantan (advance). Their thermoelectric power is sh-about $45 \mu$ s per degreo centigrade-and is linear er the temperature range used. The heater is usually high-resistance alloy, either constantan or chromol, the proper dianeter and length to give the desired sistance. Carbon or graphitized wire is used for the shest resistance heaters. The maximum temperature which the heater may be operated is determined by


Fig. \&.-Thermorouple meter. 3 constaney of emerated e.m.f. over a long period time, Temperatures much over $240^{\circ} \mathrm{C}$. noticeably shorten the useful B of a copper-constantan couple. Metals having higher melting points. Th as platinum and rhodium, may of course be operated at higher mperatures.

All sensitive thermocouples are evacuated. The clectrical charac--istics of various types of thermocouples are shown in Table IV, leulated on the basis of a temperature difference of $215^{\circ} \mathrm{C}$.
Contact-type vacuum couples, having high-resistance heaters, are st sensitive. Yacuum couples are rarely built for currents larger an 1 amp. Air couples range from 100 mat to $1,0 \% 0$ amp., the sizes above imp. taking 0.15 volt per ampere. In the sizes between 100 and 500 1, the Wiston Electrical Instrumont Company use a combination of four air couples, arranged in the form of a

$\Longrightarrow$ Constontan
-Copper
i, 9.-Air-rouple bridge. (Weston.)
tage of about 10 my constantan couple produces an open-circuit refor its resistance is aloout 10 ohms. It can refore maintain 5 my across a 10 -ohm load or $2 . \overline{5} \mu \mathrm{w}$. This is emost pewser to produee full-seale deflection on a good pivot meter.
e mot moters e most sensitive pavot moters (see Table lI) require only 2.5 mv for l-scale deflection. (Breater sonsitivity may, of course, be obtained by ng suspended coil galvanometers.
The ratio of the power avaibable to operate the indicating metor that put into the heater is about 1 to 2,0 o(0) for the most efficient conples. e sensitivity of a thermocouple moter must therofore be less than of of its d-e indieating meter by at loast that amomint. The eharacisties of various thermocouple meters are given in Table lV. In the detell meters, buily by the Cambridge Instrument Company, the mocouple is carried at the lower end of the moving coil, immediately
above the separate heater. They are not so sensitive as similar $d$ meters using varoum thermocouples.

Thermocouple voltmeters are constructed by using one of the mo sensitive couples with sufficient series resistance to give the desir voltage range. Their range is from (0.3 to 1.50 volts with resistances 125 ohms per volt above 1 volt, and $\overline{500}$ ohms per volt ahove 10 vol if desired. Their frequency range is determined by that of the seri resistance. The small resistance spools which must be used in mete with self-eontained resistors change their resistance rapidly with fo quency so that their frequency limit is 3 kc . Frequencies of imegary may lie attained with an error of 1 per cent with special high-frequen resistors.
Since the e.m.f. produced by the thermocouple is proportional to $t$ power input and hence to the square of the eurrent, this meter will re correctly on both d.c. and a.e. and may therefore be used as a transi instrument. It is necessary, however, to take the average of the readin for both directions when using direct current.

## RECTIFIER METERS

14. An alternating current may be changed to a pulsating curre having a stady component hy the process of reatification. If it current-voltage characteristic is as shown in Fig. 10 , the effect is call half-wave rectification. The nogative half cycles are eliminated a

(a)- Ha, f Wave

(b)-Full Wave

Fig. 10.- Rectifier characteristies.
the positive half ercles reproduced undistorted. The value of the stera component is half the average value of a half sime wave. The ratio of $t$ d.e. to the effective value of an are current having a sine wavefon which would flow if the rectifier were replaced by a pure resistar: of the same value as that of the rectifier is $\sqrt{2} / \pi$, or 0.450 . By combination of rectifiers, it is possible to obtain the eharacteristic sho in lig. $10 b$, which gives full-wave rectification. The d.e. is then 0.9 of the a.e. Actual rectifiers have a curved characteristic as shown the doted line in Fig. 10a. For nogative voltages the resistance is infinite. The ratio of the positive and nogative half-eycle resistanees sometimes as low ass. Beramse of the curvature of the characteristie, 1 ratio of d.c. to a.c. is a function both of the magnitude of the eurrent a of waveform.

The erystal rectifiers used with early radio reereivers may be used with sensitive d-c meter for rectifying an alternating current. Carborundu galena, silicon, and nathy other "rystals may be used. The crystal is cast
sw melting-point alloy and the top contact made with a fine copper wire. tification occurs at the points of contact of copper and crystal.
.5. Copper-oxide Rectifier Meters. Alternate disks of copper or other $t$ metal and copper oxide, held together under considerable pressure, e proved reasonably satisfactory. Their minimum positive half-cyele stance is about 20 ohms per square inch apparent contacet area, I their corresponding nogative half-cyele resistance fifty times as re. Their breakdown voltage, the point where rectifieation rapidly inishes, is low, so that a number of contact surfaces are usually nected in series.
'he rectifiers used with small d-c meters have plates about 8 in in. square, ger rectifiers having disks 1 in . in diameter are used for battery charging, sse may be used with low-resistance meters and relays. These rectifiers sist of four separate rectifiers connected in a (losed loop as shown in Fig.

This combination puts two rectifiers in series I gives full-wave rectification. When used h a d-e meter as an a-e miero- or milliamjer, its current sensitivity is determined ost entirely by the d-c meter used. Its ctive resistance, although much larger than corresponding d-c meter, is much smaller than - other a-c meter. When used as a volimeter, icient resistance must be put in series with rectifier, as indicated by $R$ in Fig. 11, so that over-all temperature coefficient of resistance y not be too large. For this reason the lower tage limit is 1 volt. On a multiple-range tmeter, the minimum series resistance must


Fit. 11.-Copmer-oxide rectifier loop. larger in order that a single scale may suffice all ranges. Six volts is the lower limit for an accuracy of 2 per cent. econd scale must be added for the lowest range.

The electrical eharacteristies of these meters are given in Table IV. e range of the ammeters is from $100 \mu \mathrm{a}$ to 5 ma, of the voltmeters from 3300 volts. The resistances of the latter range from 1,000 to 10,000 ns per volt. The latter figure is highor than any attained hy eommer-Id-e voltmeters. Their frequency range is limited by the capacitance the rectifier to 10 ke . The decrease in reading is about 0.5 per cent kilocyele up to 35 ke. These meters may also be used on d.e. in ieh case they read about 11 per cent high.
I two-eleotrode vacuum tube may be used as a rectifier. Its negative f-crele resistance is infinite and it has no frequeney error. Its positive f-eycle resistance is large, being at minimum hetween 5 and 20 kilohms ending on the type of tube. This resistance is too high for its use as ammeter, and as a voltmeter the three-electrode vacuum tube is used.

## VOLTAGE-MEASURING INSTRUMENTS

.6. Moving-vane Meters. Electrostatic voltmeters depend on the ractive foree which exists between two condurting plates botwoen ich a difference of potential exists. In their simplest form, the foree attraction between a stationary and a movable disk is balanced by alibrated spring. The Kelin absolute electrometer is constructed in s manner. The force of attraction is proportional to the square of difference of potential between the plates. Such meters give the
same indication on stearly and alternating voltages and have neit waveform nor frequency error.

One type of construction, used in suspended vane meters, is shown Fig. 12. The stationary plates are sections of two concentrie cylind into whieh the eglindrieal rotor turns. With the opposite poles c


Fig. 12.-Simpend-ed-vane meter. magnet placed outside the stator plates, satis? tory damping is ohtained from the curre induced in the loop. This type of construetio that used in the Ayrtom-Mather electrost roltmeter built hy the Cambridge Instrum Company.

Electrostatic voltmeters are very useful berat of their hish resistance and low power consump 1 at low frequencies. They rannot be used on 1 voltage at fromucneses much above a megary berause of the rapid inerease of the power los the neressary insulation. This loss increases dire as the first power of the frequency and the syuar the voltage. A hard-rubber insulator with a po factor of 0.004 and caparitance of $10 \mu \mu$ will he at a frequency of 10 megacyeles and voltage of 2.5 kv . a charging curren 1.5 amp . and a power loss of 15 watts, both of which values are excessio
17. Spark-gap Meters. The voltage at which air ionizes and all a spark to pass between two clectrodes is a function of its temperat and pressure, the shape of the electrodes and the length of time dur which the voltage is applied. The spark is initiated at the point wh the potential gradient is highest, i.e., where the radius of curvature of elect role is least. It has been found that large spheres give more reliahle results than neede points and need not be renewed after each measurement. The distanee between the spheres at their closest approach should not be greater than their radins. The voltage range for spheres 50 em in diameter is from 10 to 400 kv, with the spacing varying from 0.4 to 25 enn. For a-e voltages the spark is determined hy the peak voltage. A given ealibration is independent of frequency for the lower andio frepuencies. The


Fiti. 13. V uum-tube vo meter. method is also used at high radio frequencies with enclosed clectrodes and neon or other inert gas at low pressure.
18. Vacuum-tube Voltmeters. The three-electrode vacuum th is used as the basis of a mumber of different types of meters. It is $u$ as a reetifier in the manner diseussed ahove. Its great advantage o the two-eleetrocle tube lies in the fart that its input resistance is pt tically infinite so that it is essentially a potential-operated deviee. simplest type of comnections is shown in Fig. 13. 'The gricl hias is so chosen that maximum plate recetifeation ocenrs, the relation betw plate current and grid voltage being ass show in trig. 11. When alternating voltage e is applied betweren grid and filament, the aver plate current increases from $I_{P}$, to $I_{P}{ }^{\prime}$. 'This change in plate curr is the quantity in terms of which the instrument is calibrated. upper limit of applied voltage $e$ is that for which the peak voltage erp the grid bias.

The zero of the plate-current meter may be suppressed mechanically so the zero of the voltage sale may coincide with its electrical zero. "This pression may also be attained electrically as shown in Fig. 1\%. Part of filament voltage taken from the potentiometer $l^{\prime}{ }_{p}$ sends a current through resistance $R$ and the ammeter embal amd opposite to the zero plate current, ts sucess depends upon the fact that the rectifying property of a threetrode tube is nearly independent of pate voltage, provided that the grid age is simultanmously adjusted so as to keep the plate current constant. h the suppressor switch $k$ open, the grid bias is adjusted by the grid


Fif. 14.-Vacumb-tube voltmeter characteristir.


Fig. 15.-Circuit for bucking-out plate current.
zutiometer $I_{g}$ to give the value of plate merent for which the calibration made, the filament voltage having been prevously adjusted. This armines the corred grid bias for the plate coltage then existing. Switeh s then closed and the zero suppressed oloctrically. With mechanical pression this procedure reduces to setting the meter to zero by the potenaeter $I_{y}$.


Fiti. 16 .- Single-battery type of voltmeter.


Fig. 17.-Girid bias from plate circuit.

The use of three separate batteries is a great disadvantage. A method 3reby a single $22 . i$-volt battery supplies all three voltages was sugted by Hoare! and is shown in lig. 16. The zero of the meter is pressed electrically by the batane of the bridge formed by the three stanees $A, B$, and $R$ and the plate resistance of the tube. The grid is obtained from the potential drop in the resistance $R_{u}$ due to the ment current.
HoAne, Jour A. I. E. F., 46, 541-545, 1927.

The grid bias for the voltmeters shown in Figs. 13 and 15 may alsc oltained by connecting the grid return to a resistance $R_{b}$ in the p circuit as shown in Fig. 17. This method of obtaining the grid hias cal the hias to increase with the applied voltage. The relation result between moter defleetion and signal voltage, while nearly a squarerelation for small voltages, beromes nearly linear for large voltagos from 20 to 100 volts. For a large grid bias plate current flows only dur the positive peak so that the error due to waveform may become seric Waveform error is not serious for low voltages and vanishes if the followed by the meter is strictly the square.

The sensitivity obtainable with a vacum-tube voltmeter depe mainly upon that of the indieating meter. The detection coefficie of the various tubes available are not widdy different and are not mo affected by the value of plate voltage. A full-seale reading of 3 volt usual with a d-c meter showing full-seale deflection on 200 a a. A 20 meter would show a full-scale deflection on 1 volt. Wall galvanomet may be used to oltain inereased sensitivity but the difficulty in maint ing the zero setting increases greatly.

The input resistance of a varum-tube voltmeter is high, being eit the insulation resistance of the input terminals or the resistance, $R_{6}$ Fig. 15 shunted between grid and filament to maintain the grid b This may be as high as 10 mogohms. The plate load of the tube sufficiently low so that it does not affeet the input resistance. The in capacitanee is essentially that of the terminals, socket, and grid-filam capacitance. By careful design this may be made as low as

The calibration of a vacuum-tube voltmeter is usually independ of frequency over a wide range, At low frequencies an error appe when the reactance of the plate by-pass condenser, connerted betwe plate and filament to provide a low-impedance path for the alternat eomponent of the plate current, becomes comparable with the plate lo. If this condenser is omitted, in order that the meter may be calibra and used at commercial frequencies, errors may appear at frequenc below 100 ke due to natural frequencies in the meter and resistar of the plate eireuit. Finally natural frequencies in the grid cire either in the resistance $R_{g}$ of lig. 15 or in the combination of resista $R_{g}$ of Fig. 16 and the grid-filament capacitance of the tube, set a dt nite upper limit below 10 megaceceles.

The sensitivity of the varuum-tube voltmeter may he increased by method suggested hy Turner ${ }^{1}$ in which two voltages are impressed on $t$ balanced tubes connected as shown in lig.


Fige. 18.- IBalancod vacuum-tube voltmeter. Rqual voltages $e$ are applied to the two grids opposite phase across resistances $R$ and a separ. voltage $e_{1}$ of the same frequency and the sa phase as either is introduced into the comir grid lead across the resistance $R_{c}$. With the g hias adjusted for plate rertification, the differ, ial current through the meter connee betwen the two phates is proportional to t product 'ies of the two voltages. The voltage applied to eath grid is usually the small volta to be measured and voltage $e$ it a high volt: which gives increased sensitivity. I speeial phase shifting net work is genera neressary for the adjustment of voltage $\boldsymbol{f}_{1}$. An effective amplification of 1 may be obtained.

1 Turner and McNamara, Prer. I. R. A., 18, No. 10, 174:3-1747, October, 193u.
f the two voltages are not in phase, the current through the ammeter is portional to $e_{1} e_{2} \cos \theta$, where $\theta$ is the phase angle between $e_{1}$ and $e_{2}$. This he form for the expression for power in an a-r circuit. Hence if $e_{1}$ is protional to the voltage arross any load. and $r_{2}$ is proportional to the current ough that load, obtained as the fall of potential due to the flow of this curt through resistances $R$, the ammeter leflection is proportional to the power ipated in the load. Full-seale deflection may be obtained with powers as ill as $20 \mu \mathrm{w}$. The frequency limits are those of the regular varum-tube imeter.
9. Amplifier-detector Voltmeter, The sensitivity of any a-e voltter may be increased by the use of a calibrated amplifier. This should resistance coupled so as to give a constant voltage amplification over ite frequency range. The clectrieal comections for sueh an amplifier namufactured by the Ceneral Radio Company are shown in Fig. 19.


Fig. 19.-Amplifier-detector (irruit. (Gencral Radio.)
oltage amplification of 100 may be obtained with a voltmeter having seistance of $\overline{5} \mathrm{k} \Omega, 200$ for one of $20 \mathrm{k} \Omega$, over a frequency range from cycles to 50 kc . By suitahly changing coupling rondensers and grid stances, inereasing them for lower frequencies and deereasing them higher resistances, this range may bo extended to 1 cps and to 200

With a voltmeter giving a full-scale deflection on 2 volts, an inpat tage of 20 mv will produce a full-seale deflection and 2 mv may be ected.
'he amplifier may be calibrated by means of an attenuator or potentister, adjusted to decrease the voltage applied to it in the ratio of 100 to 1 . - attenuator is connected direetly to the voltmeter and its deflection set to e convenient value. It is then comected to the input terminals of the , lifier. and the volume control adjusted to give the same voltmeter deflec-

The effect of the attenutor on the voltage of the source may be alised for the two observations hy eonnerting arross the input terminals sistance equal to that of the volmeter.
0. Electron-stream Meters. A stram of moving electrons is used in cuthode-ray tube to indieate and measure an electric or magnetie field.


Fia. 20.- Filectron-stream meter.
ctrons emitted from a hot eathode are accelerated by a positive ential applied to the anode as shown in Fig. 20. Most of the eleetrons ke the anode and form the anode or plate current. The remainder $s$ through a small hole in the center of the anode and continue at conit velocity to a fluorescont sereen which is usually the enlarged end
of the glass tube in which the various parts are mounted. The coat of the sereen is willemite or zine sulphide. Four deflecting pla are symmetrically disposed around the dectron st ream near the ano When a differene of potential is applied to cither pair of opposite para plates, the deetric field deflects the stram toward the positive pl through an angle proportional to the strength of the eleetrie field.
bright spot on the fluoreseent sereen, which marks where the eleetr strike the sereen, then moves proportionally. A voltage applied hetw the ot her pair of plates produces a deflection of the spot in a direction right angles to the first deflection.

When an altermating voltage is applied to a pair of plates. the electric $f$ set up between the pates is continually varying in magnitude and directi The stream of electrons is deflerted bark and forth between the plates, and spot of light is drawn out into a line symmetrivally disposed about the un flected spoot, provided the pair of phates is gromuded at a point midway potential between then. An alternating voltage applied to the other pai plates will produce a line at right angles to the first. If the two voltages applied to the two pairs of plates simultancously the electron stream foll the instantaneous resultant force exerted by both fields and traces on screen a pattern which is closed, and therefore appears statiomary, when freguencies used bear a simple relation to one another. These patterns ralled Lissajou figures. For two equal fretuencies the patern is an elli of varying eceentrieity which at the extremes becomes a straight line circle. The exact figure is determined thy the phase difference of the voltages. For other ratios of the two frequenries the patterns become ri trant. lor the general case the ratio of the number of loops formed adjacent sides of the pattern is that of the two frequencirs.
21. Timing Axis. Since the electron stream can follow accurately variations in applied voltage, it is only necessary to spread out the lina light which it produces on the sereen into a two-dimensional piet to make visible its exact wave form. The serond voltage of the sa frequeney giving the elliptival pattern just described does this but in s a manner that the whole pattern must be redrawn to be casily interpret The time axis, which the serond voltage must provide, should be lim not sinusoidal and its return to zero value should be instantancous.

A very convenient cireuit for this purpose employs a neon tube as show Fig. 21. The potential across the condenser C' huilds up acrording to exponential law determined by the time constant


Fıg. 2l.- Piminur circuit for cathoderay tube. of the circuit, which over the first part of its rans nearly linear. At some potential between 100 and volts, dependent on the shape of the clectrodes the pressure of the gas, the neon tube breaks ald and the condenser discharges very rapidly. At bi lower voltage the neon tube goes out and the chi ing process is resumed. If the resistance $h$ replaced by a two-electrode vacuum tube, the chit ture of the exponential law of charging may he parti compensated for by the changing resistance of the varum tube as the volt acrossit is varied. The frequenry at which the condenser charges and charges depends on the time eonstant (' $R$ of the ehargingeircuit, and iscontro by varving these quantities. Frequencies covering the range from 1 to 20 , cycles are attainable. The waveform thus spread out on the screen will $d$ along the time axis unless the two frequencies are exactly equal or are sin

[^14]tiples. It is very convenient to have the pattern stationary. The two wencies may be symbronized by using a thyratron or three-electrong gasd tube in plare of the two-elentrode neon tuber Some voltage from the *e of the waveform muder observation is apmied to the urid of the thyra1. When the control rircuit is adjusted to pronace approximately tho ert frequenry, this added voltake is suffirient to trigger off the discharge maintain exact symehronism.
time axis may also be obtained by viewing the screen on at revolping ror. The pattern will be stationary when the speed of revolution of the tor is an exact multiple of the frequency of the given wave.
2. Transient phenomena may be studied by photographing the single ee of the clectron st ream as spreal out hy any of the above methods btaining a time axis. The time axis may also be obtained by moving photographic film itself.
"he eathode is usually of the oxide-coated type which, aside from its a efficioney in producing electrons, operates at a temperature suffiatly low so that light from it does not illuminate the sereon.
3. The voltmeter-ammeter mothod of moasuring resistanco consists neasuring the voltage and current with deflection instruments and ing their ratio, whence, from n's law,
\[

$$
\begin{equation*}
R=\frac{E}{I} \tag{4}
\end{equation*}
$$

\]


lisi. 22.-- Voltmeter-ammeter connertions for resistance measurement.
: two mothorls of connecting the ers are shown in liig. 22a and b. e all doflection instruments orb power, there is a small voltage drop across the ammeter and nall current flow in the voltmeter. The connection of l"ig. 22a is 1 for high resistances and that of Fig. $22 b$ for low resistaneres.
'he simplest direct-reading ohmmeter ronsists of an ammoter and

23.-- I irert-reading shmmeter rircuit. battery as shown in Fig. 2:3. Two radings are made, one with the terminals shorted, the other with the unknown resistance $R$ eonnerted. The fixed resistaner $\delta$ limits the eurrent to about full-scale reading of the ammeter. The deflection is made exactly full scale by adjustment. of the ammeter shunt $B$. The range of this typer of moter is usually taken as that resistanee which gives a deflection which is 5 per rent of sealle. On this hasis the usual ranges are $1,000,10,000$, and (14O) ohme.
he readings of an ohmmeter may be mate independent of the applied age by dispensing with the controlling springs and obtaining the controltorque from a separate coil connected across the supply voltage, Figure hows the eireuit used by Everslied and vignole in their ohmmeters of type.
his construction was first used by Evershed for an ohmmeter designed to sure high resistances up to 100 megohms. The souree of voltage was a contained high-voltage magneto penerator, giving voltages up to 500 s. It was called a mogoer. The same primiple has now been applied to meters of lower range using battery voltages. The resistance range nds from 1 ohm to 5,000 megohms.
24. Measurement of Impedance. When the voltmeter-amm method is used with a souree of alternating voltage, the ratio of voltag current gives the impedance of the load

$$
Z=\frac{E}{I}
$$

With the usual a-c instruments the corrections for the instruments larger and more difficult to make because of their reactance.


Fig. 24.-Ohmmeter of Evershed and Vignole.
high-resistance rectifier voltmeter and vacum-tube voltmeter elimit this difficulty.

The separation of impedame into its components requires the use wattmeter. The connections of Fig. $2 \overline{2} a$ are usually used when no correc for instrument errors is to be made, while those of Fig. 25b allow the correc


Fig. 25.-Measurement of impedance.
to be made quite easily. For this distinction the current coil of the wattm is grouped with the ammeter and its potential coil with the voltmeter. hefore, the impedance of the load is given by Eq. (5). Its power fartr the ratio of the wattmeter readings to the product of voltage and current

$$
\mathrm{P}_{\mathrm{f}}=\cos \theta=\frac{W}{E I}
$$

where $\theta$ is the phase angle between voltage and current. The resistance of load is

$$
R=\frac{W}{I^{2}}
$$

and the reactance

$$
X=\sqrt{11^{2}-R^{2}}
$$

With the knowledge as to whether the load is inductive or capacitive inductance or capacitance may be ralculated from

$$
X=\omega L=-\frac{1}{\omega C}
$$

where $\omega=2 \pi f$.
;. Measurement of Capacitance. Since the power factor of the usual lenser is small, its reactance is approximately equal to its impedance. a may be measured directly by the voltmeter-ammeter method and caparitance ralculated from
(9). At a given voltage and bency, a single ammetor readis sufficiont and the ammoter
be calibrated to read capacie directly.
apacitance may also be meason a single indicating meter se readings are independent of applied voltage. The moving ent consists of two coils set right angles to each other. re are no eontrolling springs. connections used in the high-


Fif. 2t $\%$-High-frequency mierofarad meter. (W'ston.) dency Weston mierofarad meter are shown in lig. 26.
ne $C_{1}$ and $C_{2}$ are conmected across the supply voltage, one in series with ed capacitance $S$, the other in sories with the unknown ('. The stationfield coils $F$ are directly commerted arross the line voltage. With no enser connerted in rircuit with roil $C_{2}$, the coil $C_{1}$ sets itself in the plane e field coils $F$ and determines the zero of the scale. The introduction of ows current to flow in the coil $C_{1}$ and provides an opposing torque which oportional to the rapacitance added. The resulting deflection is of ve just as dependent on frequeney as on capacitance, so that any parar instrument must be used on the exact freguency for which it was calibrated. The low-frequency Wes-

27.-Power-factor (IV'eston.) ton microfarad meter has the moving coils connected in series instead of in parallel with the field coils.

The capacitance range of the Weston Miarofarad Meters extends from (0.(0) to $10 \mu$ at 60 (eveles , 0,001 to $0.05 \mu \mathrm{f}$ at j 00 , and 0,000$)^{5} \mu \mathrm{f}$ at 1,000 ryeles. The applied voltage must be large enough to provide sufficiont torque to give a definite reading.
26. Measurement of Power Factor. Instruments for measuring ?r factor are very similar to tho moving coil capacitance meters ribed above. The connections used in the Weston power-factor are shown in lig. 27.
Measurement of Frequency. Frequency may be measured with dicating instrument similar to the caparitane meter shown in $F^{*}$ ig, which the capacitance $C$ is fixed and the capacitance $S$ is replaced resistance. The scale is, of course, calibrated in terms of frequency.
efunctions of the moving and fixed coils may be transposed, the stary part now consisting of two coils set at right angles to each other. The the part is simply a vane of sof iron, since its sole function is to indicate irection of the resultant magnetic field set up by the two stationary coils. connections of such a frefuency meter are shown in Fig. 28a. The
tendency of the vane toward rotation is overome in the Weston freque meter by derreasing the phase difference between the currents in the two as shown in Fig. $28 h$. The rotation of the magnetie field is no longer unift The vate, being long and marrow, takes up a definite position, its ine preventing it from following the irregular rotation of the mane tio field. frequeney range of the instrument is about 30 per rent of the mid-s reading. These meters aro usually built for the commercial frequencie: and (io roveles. The General Eled

(a)

Fia, 2s.--Fresuchey meter. (IIrston.) Company has built them for his frequencies, up to 2,000 eycles.

Fropueney moters are also , strueted, which make use of ribra reeds. A series of reeds, whose nat frequencies of vibration differ by reg intervals, are arranged in a line or circular are in the order of ascent frequeners. They are mounted a suitably shaped electromagnet, wi winding is connerted arross the sul voltage of unkiown freguener. reed, having a natural frequencey ne to the supply frequenery, will vi. with an casily visible ampliturle, and the frequency intervals bet adjacent reeds are sufficiently small, compared to their damping, so * at least one will always vibrate.

## STANDARDS

28. Standards of Current. Current is measured alisolutely in term the fore of attraction or repnlsion hetween two coils conneeted in s. and earrying that current, and the various dimensions of the This eurrent is then used to deposit silver in the siler roltammeter to de mine the chectrochemieal equivalent of silver. The silver voltamm is thus the standard of current. Its use is tedious and time-eonsunt. There is no simple and conveniont secondary standard of curr
29. Standard of Resistance. Resistance is measured ahsolt. by a number of methods in terms of a spered of revolution of a disk or and its various dimensions. The resistanee is then compared wi meroury column of uniform cross sertion by a suitable hridge met Such a column of meroury of stated length and mass and kopt at at perature of $0^{\circ} \mathrm{C}$. is the standard of resistance. Practieal seeone standards are coils of manganin wire immersed in oil and sealed in m containers. The sealed standards huilt hy Leeds and Northrup Comp to the sperifications of the Burean of Standards are adjusted to aemoracy of 0.01 per eent. They may he relied upon to hold their eati tion to 1 part in 100,000 for considerable periods of time.
30. Standards of Voltage. Voltage camot be measured absolu with an aceuracy suflecient to make the measurement desirable on ace of the smallness of the elertrostatie foreres involved. The serome standard of voltage is the saturated cadmium or Weston cell.

These cells, as built by Weston and by the Eppley Laboratory, are rob to 0.01 per cent. They may be depended upon to hold their voltage to 1 in 100,000 when proper correction for temperature is made. The unsatur cadmium cell must be compared with the saturated type for its initial call
tion. Its temperature roefficient is negligible. Its voltage is ronstant to 1 part in $10,000$.
31. Standards of Reactance. The self and mutual inductance of single-layer air-core coils and the capacitane of two-plate air condensers having guard rings may be calculated from their dimensions, with ath arcuracy of better than 1 part in 10,000.
32. Standards of Frequency. The ahsolute standard of frequeney is the mean solar day, as measured by astronomical observations. Piezoelect ric quartz erystals provide standards of frequeney, when permamently connered into suitable vacum-tube eirenits and allowed to oscillate contimuonsly at constant temperature. Over long periods of time their frequeney is constant to better than one part in $1,000,000$. The fregueney of the erystal with which such aceuracy may be attained is restricted to a fairly narrow hand in the neighborhood of 100 ke . By means of suitable frequency multipliers and dividers ath other frequencies from 1 (eycle to 100 ) megaryeles may be ohtained with the same aceuracy.

Quariz erystals whose frequencies remain constant to 1 part in 100,000 may be made for the fregueney range 20 ke to 10 mogaryoles. Metals, such as nickel atud certain iron alloys, having the property of maguetostriction, may be used as oseilators in suitable varumm-tube direnits. Their frequeney range extends from 5 to 100 ke . Their stability is about 1 part in 10,000 . For the lower frequencies tuming forks and metal bars are used. Their frequency range is 2.5 to 1,000 eycles, and their stability 5 parts in 10,000.

## COMPARISON MEASUREMENTS

33. Comparison of Voltages. A steatly voltage may be compared with the differeme of potential across a resistance carrying eurent by the use of the simple potentiometer shown in Fig. 29a.

A battery $E_{1}$ causes a rurrent $I$ to flow in a resistane $R$. The unknown voltage $E$ is comected to this resistane through a galvanometer ( $i$, and the resistance is adjusted to give no deflection of the gal vanometer. The voltage $F^{\prime}$ ' is then equal to the potential drop, IR. A second voltage $E^{\prime}$ may then be made equal to a different potential drop IR'. The two currents in the two cases are the same berause at balance no current flows in the galvanometer circuit. The two voltages are thus proportional to the two resistances. The potentiometer may be made directreading in voltage by using a standard cell for one of the comparison voltages and connecting it across such a portion of the resistance that the current must


Fig. 29.-Potentiometer types. (a) simple; (b) with standard cell resistance. be adjusted to a predetermined decimal value in order to obtain balanes. The unknown voltage is then connected through the galvanometer and balance is restored by adjustment of resistance $h$, which may now be calibrated directly in volts. Connections for this type of measurement are shown in Fig. 29b.

Two alternating voltages may be compared by the potentiometer principle only when they have the same frequence and the same phase. They must at every instant be equal and opposite in order that the galva-
nometer in series with them shall show no deflection. Hence the potentiometer eurrent must be taken from the same source as the voltage to be measured and some form of phase-shifting device must be provided for which the output eurrent is independent of its phase.

Hrysdale used a two-phase induction regulator, feeding one phase through a resistance and the other through a capacitance in order to obtain the two eurrents in quadrature. Such a devire $P$ ' is shown in F'ig. 29 commeeted to a


Fig. 29(c).-Drysdale potentiometer.
d-c potentiometer. The malvanometer $\boldsymbol{B}_{A}$ is an an galvanometer having a sensitivity comparable to that of the d-r galvanometer (in, Since there is no standard of a-e voltage, a standard cell is used to adjust the potentiometer eurrent to its proper value. This value is read on a transfer ammeter $I$, which may be either of the electrodynamometer or insulated heater thermocouple type. Its zero may be suppressed mechanirally to pive the effect of a longer scale and hence a greater accuracy of reading. Switches $K$ and $K_{1}$ are then thrown to conneet the potentiometer to the a-c voltages and the a-c current adjusted to produce the same deflection in ammeter 1 . Vacuum-tube voltmeters and rectifier volt meters whose resistances are large compared with the resistanee of the potentiometer may be calibrated directly without using the phase shifter, by eonnecting thom directly to the terminals $L$. The voltage applied to them may be calculated from the settings of the contacts $b$ and $c$.
34. Comparison of Impedances. An unknown resistance may be compared with a known resistance in a momber of different ways. When the known resistance is variable, a substitution method may he employed.

The unknown resistance $X$ is connected in series with a battery and shunted galvanometer $a$, the shunt resistance $M$ having been adjusted to allow a fullgeale deflection. The known variable resistance $S$ is then substituted for $X$ and the same current allowed to flow. Its value as thus determined is that of the resistance $k$. When the known rosistance is not continuously variable, the value of the unknown resistance may be interpolated from the two readings of the meter. This method is frequently used for the measurement of very high resistances, such as insulation resistances from a meqohm up. The known resistance is rarely larger than 1 megohm so that under these conditions different values of the shunt $I /$ are used for the two measurements. The method is not applicable to measurements with alternating current because the phase angles of the source and load are indeterminate.

Two resistances may be compared by conneeting them in series and measuring the voltage drops across them by means of a high-resistance voltmeter.

Since the same current flows in both resistances, the value of the unknown resistance is

$$
\begin{equation*}
R=S_{E_{s}^{\prime}}^{E_{R}} \tag{10}
\end{equation*}
$$

where $E_{r}^{\prime}$ and $E_{s}$ are the voltages across the unknown and known resistances respectively. Except for the case of equal resistances, the resistance of the galvanometer must be either very large compared with the resistances being measured or a correction must he made for the current taken by the galvanometer. This method may be used with alternating current to compare all kinds of impedances, Either a varuum-tube voltmeter or a high-resistance rectifier voltmeter must be used, since correction for the current taken by the voltmeter is difficult. The poliarity of the voltmeter should be maintained as in d-e measurements in order to eliminate the errors of these yoltmeters due to even harmonics. The upper limit for freguency is that imposed by the frequency characteristics of the known standard and by the caparitances to ground of the voltmeter in its two positions.

The power factor of an unknown impedanee may be determined by the three-voltmeter method, in which the voltages across the unknown and known impedathees and that applied to the two in series are read. The same precautions eoncerning polarity and capacitances to ground apply as in the two-voltheter method. The vectorial relations between the three voltmeter readings together with the


Fig. 30.-Vectorial relations in three-voltmeter rircuit. voltage components of the unknown impedance are shown in Fig. 30.

The expressions giving the unknown impedance $Z$, its resistance $R$, reactance $X$, and power factor cos $\theta$ are

$$
\begin{align*}
& Z=N_{E_{s}}^{N_{z}} \\
& R=s{\frac{L^{2}}{}-\frac{E_{z}{ }^{2}}{2 E_{s}{ }^{2}}-E^{2}{ }^{2}}^{2} \\
& X=\sqrt{Z^{2}-R^{2}} \\
& \cos \theta=\frac{R}{Z}=\frac{E^{2}-E_{z^{2}}^{2}-E_{s}^{2}}{-E_{z}^{\prime} \bar{E}_{s}^{\prime}} \tag{11}
\end{align*}
$$

The total resistance of a circuit may be measured by the added resistance method. Since with a constant applied voltage, the current flowing in the eireuit is inversely proportional to the total resistance, the circuit resistanee
is given lyy

$$
\begin{equation*}
R=s_{I} \frac{I^{\prime}}{-I^{\prime}} \tag{12}
\end{equation*}
$$

where $I$ is the initial current and $I^{\prime}$ the current which flows when the resistance $S$ is added. A plot of the reciprocal of the current flowing for different values of the added resistance against that resistance gives a straight. line whose negative intercept on the resistance axis is the circuit resistance. The added rasistance necessary to halve the eurrent is also the circuit resistance. This method is sometimes used to measure the resistance of a sensitive galvanometer.

The added-resistance method may be used with alternating current provided the cireuit is tuned to resonamee. The necessary commections are shown in Fig. 31. By reducing the reactance of the cirenit to zero the same equations and procedure may be used as for direct current. The ammeter used is usually of the thermocouple type. Italving the current on such a meter quarters the deflection, so that this type of measurement is sometimes called the quarter-deflection method. The ammeter may be replaced by a vacum-tube


Fia. 31.-Added-resistance method. voltmeter connected across the condenser. This arrangement is much more sensitive than the thermocouple ammeter, so that the soure of alternating current may be of lower power. The upper limit for frequeney is set by the fregueney characteristic of the known resistance and the capacitanes to ground of the different parts of the circuit. This method is the one usually adopted for the measurement of the resistance of inductors at high frequencies.

The total resistance of the tunced cireuit may also be moasured by detuning the eireuit. The added reactance necessary to halve the squared current (deflection of a thermocouple moter) is equal to the resistance of the circuit. This method is sometimes called the addedreactance method.

Two reactances may be eompared in a tuned cireuit by a substitution method. The eirenit is tuned to resonane both when the unknown reatance is connected in cireuit and when it is diseomeceded. The ehange in reactance of the variable standard, with which the circuit is tuned, is equal to the unknown reactance. When the unknown and known reactances are hoth inductive or both caparitive, the value of the unknown inductance or capacitance is obtained directly, independent of frefueney, the two reatanes being conneeted in series if inductive, and in paraliel if caparitive. For these pairs of measurements it is unnecessary that the currents be kept of the same value.

The resistance of the unknown reatance may be determined by noting the current at resoname when it is connered in circuit and then by adjusting the current to this same value by adding sufficient resistance when it is diseonnected. This added resistanee, corrected for the change in resistance of the standard reactane with setting, is the resistance of the unknown reactance. The resistance of variable roactors must in general he measured by the added resistance method described above or hy one of the bridge methods. The resistance of a variable air condenser follows a dofinite law and this fact may be used in this type of resistance measurements. The formula is given hy Eq, 29 of Art. 37.
35. Comparison of Frequencies. Two nearly equal frequencies may be compared by measuring in a suitable mamer their difference in fregueney. When the two frequeneies are in the audible range, this difference will appar as an audible beat-a waxing and waning in intensitywhich may be counted if it is less than 10 beats per second. If the beats are faster than this or if the beating frequencies are above audibility, the beat must be rectified and a beat frequeney produced. This beat frequeney may then be measured by a suitable frequeney meter. The aceuracy of the comparison depends both on the accuracy of measurement of the beat frequency and on the ratios of this frequeney to the original
frequencies. The beat frequency is usuatly kept in the audible range.

If the two frequencies to he compared are not nearly equal, so that their frequency difference is large and above audibility, audible beats may usually be obtained betreen some of their harmonires, for a beat frequency $b$ between the $m$ th harmonic of a known frequency $f$ and the $n$th harmonic of an unknown frequency $f^{\prime}$, the expression giving $f$ ' is

$$
\begin{equation*}
f^{\prime}=\frac{m f \pm b}{n} \tag{1:3}
\end{equation*}
$$

the sign of $b$ being determined by considering which harmonic, $m f$ or $n f^{\prime}$ is the larger. Sufficient harmonics are usually present in most frequency sources for the purpose of this comparison, esperially when emphasized and isolated by the use of tuned circuits. They can always be produced by the use of a rectifier tube.

In the most procise measurements the known frequency is a multiple or submultiple of a standard crystal frequency, obtaned from the various multivibrators driven ly the standard. For less precise work a variable standard may be used. The beat frequeney is then made zero. Such a variable frequency uscillator, callecl a hefirodyne oscillator, will have a limited frequency range, even though provided with multiple coils. P'roperly chosen for range, it may be used to measure a super-audio beat frequency, such as might be obtained when comparing two very high freguencies.

Fropurney is measured in terms of inductaner and caparitance by means of a tumederencuit freguency meter consisting of a variable eapacitance and a set of fixed inductances. The fregueney range allotted to each coil determines the acouracy of setting, which ranges from 0.1 per cent to 0.001 per cent. Resonanee is indieated in a variety of ways; thermorouple ammeter, heterodyne zero beat, or reaction on an oseillator, these being arranged in the order of their accuracy. In the third method the frequency meter is coupled closely enough to the oscillator whose frequency is being moasured so that cit her the amplit ude of its oscillations is affected or its frequency is altered. The frequency alteration is the more preeise mothod, but demands for greatest accuracy a seromd oscillator set at zere beat with the first. When the frepuency meter is in exact resonance, the zero beat note of the two oscillators wilt be unaffected. In the serond method a vacuun-tube oseillator is connerted to the wavemeter so that it really becomes a heterodyne oscillator. A screen-grid tube, operating as a dyatron oscillator, may be connerterd to a frequency meter without the addition of extra coils or taps and converts it into a heterodyne-freguency meter.

## DIRECT-CURRENT BRIDGE MEASUREMENTS

36. Whenever two resistances or impedances are compared by matching or comparing the defleetions of any deflecting instrument, the atecuracy of the measurement is determined hy the aecuracy of reading of the deflections themselves. This ateruraey may he greatly inereased by adopting a null method, in which a certain relation of the resistances heing rompared is indicated by a zero doffection. As this condition is apprearhed, the sensitivity of the indicating instrument may be incrensed.
37. Four-resistance Network. The simple four-resistance network invented by Christie in 1833 and exploited by Wheatstone ten years
later is shown in lig. 32 .

Two paths are provided for the current, one through the ratio arms $A$ and B, the other through the unknown and known resistances $\ell^{\prime}$ and $S$. The galvanometer $G$ is connected between the junctions of these pairs of resistances. The condition for a null deflection of the galvanometer is that these two junctions are at the same potential. Equating the


Fig, 32.-Wheatstone bridge. voltage drops

$$
\begin{equation*}
A I_{A}=V I_{U} \text { and } B I_{B}=S / s \tag{14}
\end{equation*}
$$

or, since no current flows in the galvanometer,

$$
\begin{equation*}
\frac{A}{B}=\frac{U}{S} \text { or } U=\frac{A}{B} S \tag{15}
\end{equation*}
$$

The ratio arms are usually only variable in steps of ten so that the bridge is balanced by varying the known resistance $S$.

In commercial bridges the accuracy ranges from 0.1 to 0.02 per cent. In the complete bridges of highest acouracy all switching is by taper plugs and the ratio arms are reversible. There are five decades in the known resistanee, tenths to thousands, and nine ratios, 0.000) to 10,000. Comparisons of resistanees on the best bridges may be made to a part in a million, which is beyond the accuracy with which the prinary standard of resistance is known.

When the known resistance is fixed, the bridge must be balaneed by varying one or both of the ratio arms. In the slide-wire bridge shown in Fig. $33 a$ the ratio arms $A$ and $B$ are parts of a single uniform resistance along which the contact of the lead from the galvanometer may slide.

(a)

(b)

(c)

Fiti. 33.- (a) Slide-wire bridge; (b) bridge with extension arms; (c) Carey Foster bridge.

The position of the contart is real as a distance measured from one chd, the whole length of the seale heing $L$, divisions. The value of the unknown resistance in terms of these distances is

$$
\begin{equation*}
U=\frac{l}{L-l} S \tag{15a}
\end{equation*}
$$

When the known and unknown resistances are nearly equal the accuracy of measurement may be increased by plaeing extension coils in series with the slide wire as shown in lig. $33 b$.

Two nearly equal resistances may also be compared by means of the Carey Foster bridge shown in lig. 33 c . This is a slide-wire bridge in which the slide wire is placed between the two resistances being eompared. Two settings of the slide wire $l$ and $l^{\prime}$ are made with the resistances $U$ and $S$ as shown in Fig. 34 and transposed.

The value of the unknown resistance is

$$
\begin{equation*}
U=S-\left(l-l^{\prime}\right) \rho \tag{16}
\end{equation*}
$$

where $\rho$ is the resistance per unit length of the slide wire.
In the measurement of a low resistance, a tenth ohm or less, the variation in contact resistance at its terminals and the consequent variation in the lines of current flow near the terminals may produce appreciable errors. To overcome this difficulty, low-resistance standards are always built as four-terminal resistances. All ammeter shunts are so constructed. The two potential terminals are placed between the eurrent terminals and the resistance proper. The value of the resistance is that between the potential terminals.

Such four-terminal resistances emmot be compared on the ordinary Wheatstone bridge. They may be measured on the Kelvin double bridge shown in Fig. 34. The two four-terminal conductors $U$ and stare conneeted in series, leaving an unknown resistance $M$ between their adjacent potential terminals. The bridge is balanced by adjustment of the standard


Fia. 34.-Kelvin double bridge. resistance $S$. The value of the unknown resistance $U$ is given by

$$
\begin{equation*}
U=\frac{A}{B} S \tag{17}
\end{equation*}
$$

when the double ratio arms are proportional, satisfying the condition $A / B=a / b$.

## A-C BRIDGE MEASUREMENTS

38. Four-terminal Network. When an alternating voltage is applied to the simple Wheatstone bridge of lig. 32, the conditions for balance of the bridge involve the impedances of the four arms.

For a null deflection of the a-e galvanometer or telephones the two junctions, across which it is comnected, must be at the same potential at all instants of the a-c cyrle. Equating the voltage drops along the two parallel paths offered to the flow of the alternating current

$$
\begin{equation*}
Z_{A} I_{A}=Z_{V} I_{V} \text { and } Z_{B} I_{K}=Z_{S} I_{H} \tag{18}
\end{equation*}
$$

where $Z_{A}, Z_{B}$, ete., replace $A, B$, ete., in Fig. 33.
The four impedances are vectors of the form

$$
\begin{equation*}
Z=R+j X \tag{19}
\end{equation*}
$$

Hence, since no current flows in the galvanometer,

$$
\begin{equation*}
\frac{Z_{A}}{Z_{B}}=\frac{Z_{6}}{Z_{s}} \tag{20}
\end{equation*}
$$

Expanding these vectors into their rectangular components the two conditions of balanee are

$$
\begin{equation*}
\frac{A}{B}=\frac{C}{S}+\frac{X_{A} X_{s}-X_{B} X_{C}}{B S}=\frac{X_{V}}{X_{S}}+\frac{C X_{B}-N X_{A}}{B S} \tag{21}
\end{equation*}
$$

where the resistance components of the four arms are represented by the four letters $A, B, l^{\prime}, S$ without subscripts. If the ratio arms have no reactance, so that $X_{A}=X_{B}=0$. these conditions recluce to

$$
\begin{equation*}
\frac{A}{B}=\frac{I^{T}}{s}=\frac{X_{U}}{X_{B}} \tag{22}
\end{equation*}
$$

The two reareances must have the same ratio as their resistances and as the ratio arms. Considering the reartances as both indurtive or both caparitive. Eq. (2.2) beromes

$$
\begin{equation*}
\frac{A}{B}=\frac{V}{N}=\frac{L_{A}}{L_{A B}} \text { and } \frac{A}{B}=\frac{V^{\prime}}{N}=C_{V M}^{\prime \prime} \tag{23}
\end{equation*}
$$

respectively. These equations cover all the types of bridge measurements in which similar impedances are compared.

All parts of an a-c bridge notwork, power souree, arms of the bridge, and null detecor have capacitances to ground, whirh


Fig. Bi5.-Wagner ground. in various combinations are thas in parallel with the bridge arms. At whaterer point the bridge is groumdrd, the caparitance of that point to ground is shorted and all the othor capareitances are comereded to that point. The effere of a small eapacitanere in parallel with a low resistanere is negligible exeept at high frecuconeios, while its effert when placed arross a high ractance will introduce sorious crror. Direet grounding of the bridge is permissibleonly when the grounded point is the junction of low impedances or when extra bridge balames are made to eliminate the effert of these eapacitanees. This offeret may bo minimized by the use of a W"ogner ground, as shown in lig. 3\%. All of the ground caparitanes are equivalont to two capacitances $O_{1}$ and $C_{2}$ betwoen the input leads to the bridge and groumd. Their power losses may be represented by parallel resistances $R_{1}$ aud $R_{2}$. The junction of the ratio arms $A$ and $B$ may be brought to ground potential without actual grounding by babancing the bridge formed by these capacitances and the two ratio arms by means of the added rosistance $W^{\prime}$ and eqpacitance ( w , which together comprise a complete Wagner ground.
The greatest caparitances to ground gencrally orour in the power supply to the bridge and the comberting wiring. F'requently one side of the supply is grounded, eithor diredly or through a large capacitance. The effect of these unequal capacitances may be greatly reduced by the use of a shielded input transformer. The shield is placed between primary and socondary in such a manner as to reduce the direot caparitance botween the two windings to a negligible amount. A reduction from 100 to $5 \mu \mu$ may be easily obtained. There remains, however, the capacitance hefween the secondary of this
transformer and the grounded shield which may amount to $200 \mu \mu \mathrm{f}$ in an iron-core audio-frequency transformer. This capacitance is not in general divided between the terminals of the bridge and ground in the same ratio as the ratio arms so that the equalizing effect of the Wagner ground is still needed.

In the wiring diagrams of the various a-c bridges given below the arrangement of different impedenees and the position of the shieded side of any condensers have been so chosen as to minimize the effere of eapacitances to ground when that terminal of the telephones is grounded which is nearest to the condenser shields.

The power source at audio and radio frequeneies is usually a vac ummtube oscillator, capable of supplying soveral hundred milliwat ts of power at varying potentials up, to 100 volts. At the low audio froqueneies, a-e generators with rotating parts may be used, as well as the commercial power supplies at 60 and 25 ryeles. The null detector used throughout, the audio-frequency range is almost always the head telephone. For the lower frequencies, vibration galvanometers and a-c moving-coil galvanometers are frequently used. Recotifier voltmeters are used for frequencios up to 20 ke , vacium-tube voltmeters at all frequencies.

Vacumm-tube amplifiers are used with all types of mull deteetors to give increased sensitivity. The amount of amplification neressary to give any desired aceuracy of balane may be determined from the following considerations. For a four-arm bridge, all of whose arms are equal pure resistances $A$, the ratio of the output voltage $e$ to the input voltage $E$ is given by

$$
\begin{equation*}
\frac{e}{E}=\frac{1}{4} \frac{D / A}{1+\frac{D}{d}} d \tag{24}
\end{equation*}
$$

where $D$ is the resistance of the null detector and $d$ is the fractional accuracy of balance demanded. This ratio lies between $1 / 8 d$ and $1 / 4 d$ for ratios of detector and bridge-arm resistance between one and infinity. The minimum voltage detertable on a reetifior voltmeter is 0.2 volt, on a high-grade head telephone at its resonant frequency 0.001 volt. In 'Table $V$ are given the values of the input voltage $E$ needed to obtain

Table V.-Inbit Vohtage on an Equal-abm Remistance Bringe

| [ )etector | $E$, volts, for |  |  |
| :---: | :---: | :---: | :---: |
|  | $f, \mathrm{kr}$ | $d=1$ per cent | $d=0.1$ per cent |
| Telephone.. | $\left(\begin{array}{r}0.1 \\ 0.2 \\ 0.2 \\ 0.8 \\ 1.0 \\ 2.0 \\ 5\end{array}\right)$ | $\begin{gathered} 80 \\ 8 \\ 1.0 \\ 0.4 \\ 0.8 \\ 12 \\ 80 \end{gathered}$ | $\begin{array}{r} 800 \\ 80 \\ 10 \\ 4 \\ 8 \\ 120 \\ 800 \end{array}$ |
| Voltmeter.... . . . | Any | 80 | 800 |

an aceuraey of halanee $d$ of 1 and 0.1 per cent with the telephone at various chosen frequencies and with the voltmeter at any frequency, on the assumption that both are comnected to the bridge through an amplifier so that the resistance presented to the bridge is infinite. The ratio of the input voltage given to the voltage available is the amplification needed.

At radio frequencies, a heterodyne oscillator and detector may be used to produce an audio-frequeney beat note which can then be amplified to any desired degree. In another method the oscillator supplying the bridge may be modulated at an audio frequency. A deteetor connected to the output rectifies this modulated carrier frequency and reproduces the audio modulation which may then be amplified.

When two reactances are compared on a four-arm bridge, the conditions of halance [E4. (23)] demands that an added non-reactive resistance be connected in series with one of the reactances, to attain the resistance balance. It would be most unisual for two reactors to have proportional power factors. It must also be possible to connere this resistance in series with either reactance. Figure 36 shows the connections needed for the added resistance. ronbined with a switch which allows the bridge telephones to be used for the balance of the Wagner ground. The resistance of the standard reactor must be known. When the known reartance is variable, the ratio arms may be


Fig. 36.-liridge for comparing reactances. fixed or variable in steps, as is the practice in d-c bridges. When the known reatance is fixed whe of the ratio arms at least must be continuously variable.
39. Bridge-measurement Errors. Errors introduced into hridge measurements by the presence of reactance in the ratio arms, occurring cither in the resistances themselves or in the bridge wiring, and whose magnitudes are indicated by Ey. (21) may be minimized by the use of a substitution mothod. The effert of capacitances to ground, when a Wagner ground is not used, and the effect of the reactance of the leads to the known and unknown reactances may also be thus greatly reduced. Both reactances are connected in the same arm of the bridge, a similar reactance being placed in the ot her arm. Two bridge balances are ohtained, one with the unknown reactance in circuit, the second with it disconnected and its impedance replaced by the known variable reactance and the added resistance. Inductances are connected in series, placing them far enough apart to reduce their mutual inductance to a negligible amount, and the monkown is removed by shorting. Capacitances are connected in parallel and the unknown is removed by disconnecting its high-potential terminal. Both condensers must be completely shicdded and their grounded terminals connected together.

Distinguishing the values for the serond balance, when the unknown reartance has been removed, by primes, the values of the unknown reartances are given by the change in reactance of the variable standards.

$$
\begin{align*}
L U & =L_{s^{\prime}}-L s \mathrm{~s} & C_{v}^{\prime} & =r_{\prime}^{\prime} s_{\prime}^{\prime}-C^{\prime} \mathrm{s} \\
& =\Delta L_{s s} & & =\Delta C_{' s} \tag{25}
\end{align*}
$$

The corresponding expressions for the resistances are

$$
\begin{array}{rlrl}
U & =S^{\prime}-S+R^{\prime}-R & U & =\left(R^{\prime}-R\right)\binom{C s^{\prime}}{C_{U^{\prime}}^{\prime}}^{2}  \tag{26}\\
& =د \dot{S}+د R & & =\Delta R\binom{C_{s}^{\prime}}{C_{U^{\prime}}^{\prime}}^{2}
\end{array}
$$

The sfuared terms appearing in the expression for the condenser resistance result from the law by which the series resistance of condensers connected in parallel is found.

$$
\begin{equation*}
K=\frac{R_{1} C_{1}^{2}+R_{2} C_{2}^{2}+\cdots \cdot}{\left(C_{1}+C_{2}+\cdots\right)^{2}}=\frac{\sum_{1}^{n} R_{m} C_{m}-}{\left(\sum_{1}^{n} C_{m}\right)^{2}} \tag{2才}
\end{equation*}
$$

The terms containing the resistance of the standard condenser have disappeared because the quantity $R\left({ }^{\prime 2}\right.$ for an air condenser is a constant, independent of the setting of the rondenser. This follows from the more general law that. for an air condenser, in which the losses occurring in the solid dielectric are independent of the setting of the plate and for which the power factor of the solid dielertrie is independent of frequency, the quantity $R \omega^{C^{2}}$ is constant. This law holds with


Fili. 37.-Grover method. inereasing frequency until the losses due to skin effert in the plates and supports and to ionization of the air between the plates become appreciable.
40. The resistance balance in a four-impedanco bridge may be obtained by introducing suitable induetanes in series with the ratio arms, provided that the power factors of the two reactances being compared are small. This method was first suggested by Grover and is shown in Fig. 37.

The balance equations are

$$
C_{V}^{\prime}=\frac{B}{A} C_{s}(a p, r o x .) \text { and } V^{\circ}=\frac{A}{B} S+\frac{1}{B}\left(\begin{array}{l}
L_{A}  \tag{28}\\
C_{s}
\end{array}-\frac{L_{A}}{C_{v}}\right)
$$

The resistance balance may equally well be obtained by paralleling the ratio arms with small rondensers shown in Fig. 37 in dotted lines. The balance equations for this case are

lini, 3S.-sichering bridge. ( ${ }^{\prime} v_{U}=\frac{B}{A}\left({ }^{\prime} s\right.$ (apmrox.) and

$$
V=\frac{A}{B} S^{M}+A\left(\begin{array}{l}
C_{B}  \tag{29}\\
C_{S}^{C}
\end{array}-\frac{C_{A}}{C_{U}}\right)
$$

In any particular case the reactane needs to be placed in only one arm in order to obtain the resistance balanere. Sehering's bridge is such a modification of Fig. 37 in which the parallel condenser is placed only across one ratio arm. This bridge is used for measuring the power factor of caliles and other small condensers at high voltages. The connections are shown in Fig 38. The input and output terminals are transposed so that the high voltage may be placed across the two condensers in parallel, while kerping the two resistors and the null
dotector at practically ground potential. Tho standard condenser ('s has a small eaparitanoe and is somounted that its losses are redueed to a minimum.

The batance equations are

$$
\begin{equation*}
C_{r}={ }_{A}^{B} C_{s} \text { and } l^{\circ}={ }_{C_{s}}^{C_{B}} A \tag{30}
\end{equation*}
$$

whence

$$
(p f)_{v}=U_{\omega} C_{U}=J B_{\omega} C_{B}
$$

41. Comparison of Inductances and Capacitances. An inductance and a capacitanee may be eompared directly by suitahly plating them in the four-imperdaner network. The ronnertions
 for Maxwoll's hrialge are shown in lig. 39.

The balance ortuations are

$$
\begin{equation*}
L_{v}=A N_{B} \text { and } l^{\circ}=\frac{A}{B} S^{\prime} \tag{31}
\end{equation*}
$$

whence

$$
Q_{U}=\frac{\omega L_{U} U}{l}=\| \zeta_{\omega} C_{B}
$$

Losses in the condenser $C_{b}$ enter only into the resistance balance and nay be made negligible by suitable choice of resistanco $A$. The resistance and reactance balanees are not independont unless condenser ('s is continuously variable.
In Owen's bridge in inductance is compared with a capacitance in the manner shown in Fig. 40.


Fia.
40.-()wen bridge.


Fiti. +1.- Hay bridge.

The balance equations are

$$
\begin{equation*}
L_{v} y=A S C_{B} \text { and } l^{V}={ }_{C A}^{C_{B}} S \tag{32}
\end{equation*}
$$

whence

$$
Q_{U}=\frac{\omega L_{0} \|}{U}=\Delta \omega C_{A}
$$

The resistance balance is made cither by having coudenser CA continuously variable or by adding resistance in series with the unknown inductor.

Hay's bridge is similar to Owen's bridge with ome of the condensers omitted. On this areount, however, it is not imberendent of freguency. The eonnertions are shown in Fig. 41. The eonditions of halane are

$$
\begin{equation*}
L_{U}=\frac{A N C_{B}}{1+B \cdot \omega^{\prime \prime} C_{B}^{\prime}} \text { and } V^{Y}=\frac{A B S \omega^{\prime \prime} C^{\prime} B^{\prime \prime}}{1+B B^{2} \omega^{2}\left(C_{B^{\prime}}^{\prime 2}\right.} \tag{33}
\end{equation*}
$$

whence

$$
\left(\mathrm{p}, \mathrm{f}_{\mathrm{o}}\right)_{v}=\frac{V}{\omega / L_{U}}=B \omega C_{B}
$$

The two bridge balances are not independent.
42. The resonance bridge shown in Fig. 42 is the simplest bridgre in which inductance, rapacitancer, and frequeney enter. At balane the arm contaning the


Fisi. 42.-Resonance bridge. reactances is resomated to the applied frequenes and becomos a pure resistaner. The bridge is then an all-resistance equal-arm bridge, to which the Wagnereground may be appliod. For this reason it may be used at high frequencies to measure the resistance and inductance of a reactor.

The balance erfuations are

$$
\begin{equation*}
\omega^{2}=\frac{1}{L_{C} C_{U}} \text { and } U=\frac{A}{B} S \tag{34}
\end{equation*}
$$

This bridge is frequently used to monsure frequency, usually in the audiofrequency range. A variable induetor is used and the condenser may he varied in steps. A range from 200 ereles to 4 ke may be covered in three ranges. The frequency scale is irregular, che to the characteristies of variable inductors and the varions ranges ramot be male multiples of one another. Due to the large stray field of the variable indurtor, its mapuetie pickup is considerable. A resistane balame must he provided to allow for the variation of the resistance of the tuned arm with frequeney.
43. Wien's Bridge. Caparitanoes may be measured in forms of resistane and frequeney with Wien's bridge, shown
 in Fig 4:\%. The balance equations expressed in their simplest form are

$$
\begin{equation*}
\omega^{2}=\frac{1}{U S C^{\prime} C^{\prime} S} \text { and } \frac{C^{\prime} U}{C_{S}}=\frac{I B}{A}-\frac{N}{U} \tag{35}
\end{equation*}
$$

Nolving for the two capacitances,

$$
\begin{equation*}
C_{U^{2}}=\frac{B U-A C}{A C^{2} S^{2} \omega^{2}} \text { and } C_{S^{2}}=\frac{A}{\left(B U^{Y}-A S\right) A \omega^{2}} \tag{36}
\end{equation*}
$$

Fio. 4:3-Wien bridge.

The bridge is valuable because the standards of frequency and resistance are known to a greater aceurace than the standard of eapacitance. Ferguson and Bartlett have developed this method to its greatest pro-

[^15]cision. Their estimated accuracy for the determination of capacitance by this method, is 0.003 per cent.

The Wien bridge also furnishes a very convenient means for measuring frequency in the audio-frequency range. The two capacitances are made equal, while the two ratio arms are made sueh that $B$ is twice $A$, '1'he two resistances $U$ and $\underset{N}{ }$ are made variable ovor a suitable range but


Fig. 44.-Anderson bridge. are also kept equal. Thus the resistance balance is always satisfied and the reactance balance reduces to

$$
\begin{equation*}
f=\frac{1}{2 \pi U C_{U}} \tag{37}
\end{equation*}
$$

In the frequency meter built by the Cieneral Radio Company the resistances $U$ and $S$ are wound on tapered cards so shaped that the frequeney sealo is logarithmic. This gives a constant fractional accuracy of reading. There are three frequency ranges, olntained from throe different pairs of eondensers, cach covering a range of 10 to 1 in frequeney. The same ualibration serves for all ranges. The fredueney limits attained are 20 cycles and 20 kc .
44. Six-impedance Network. The six-impelance network was developed by Anderson to provide a modification of Maxwell's bridge which would render the two balane conditions independent oven with a fixed eapacitance. The comections are shown in Fig. 44.

The general balance condition for the six-impedance network is

$$
\begin{equation*}
Z_{Q}\left(Z_{B} Z_{U}-Z_{A} Z_{B}\right)=Z_{P}\left[Z_{P}\left(Z_{A}+Z_{B}\right)+Z_{A} Z_{B}\right] \tag{38}
\end{equation*}
$$

For Anderson's bridge this reduces to

$$
\begin{equation*}
L u=S C_{0}\left[P^{P}\left(1+\frac{A}{B}\right)+A\right] \text { and } U^{v}=\frac{A}{B} S \tag{39}
\end{equation*}
$$

The effect of losses in the condenser $C Q$ is usually small.
45. Mutual-inductance Balances. Two mutual inductanees may be compared by means of Felici's mutual-inductonce balance shown in Fig. 45. The known mutual inductance must be variable. For the usual condition of balance, zero voltage across the null detector, the two mutual inductances are equal.

$$
\begin{equation*}
M_{U}=M_{S} \tag{40}
\end{equation*}
$$

They must be so conneeted that their induced secondary voltages are in opposition. Mutual inductance between them should be avoided.
46. Four-impedance Network with Mutual Inductances. A mutual inductance may be com-


Fig. 45.-Felici mutunl-inductance balance. pared with a self-inductance on a four-impedance bridge by placing it between one arm and either an input or output lead of the bridge, as shown in Fig. 46.

The general balance equation for this network is

$$
\begin{equation*}
Z_{A} Z_{s}-Z_{B} Z_{U}-j_{\omega} M\left(Z_{A}+Z_{B}\right)=0 \tag{41}
\end{equation*}
$$

For Camphell's arrangement of this bridge the two ronditions of balance hecome

$$
L_{C}=\frac{A}{B} L s-\left(1+\frac{A}{B}\right) M
$$

and

$$
\begin{equation*}
U=\frac{A}{B} S \tag{42}
\end{equation*}
$$

A substitution method is usually adopted so that the inductance and resistance of that portion of the mutual inductance connected in the $\mathcal{S}$ arm need not be known. When the ratio arms are equal the extra halancing inductance represented by $L_{d}$ of Fig. 46 may be eliminated by providing a center tap in


Fig. 46.-Comparison of mutual with self-indurtance.


Fig. 47.-Carey
Foster mutual-inductance bridge.
one branch of the nutual inductance. This connection is usually referred to as Heaviside's equal arm bridge.

A mutual inductance may be compared with a caparitance hy means of Carey Foster's bridge', shown in Fig, 47. 'The conditions of balance are

$$
\begin{equation*}
C_{U}=\frac{M}{A S} \text { and } I^{r}=S\left(\frac{L_{A}}{M}-1\right) \tag{43}
\end{equation*}
$$

The impedance of the $B$ arm is made zero in order to make the balance independent of frequency. The method suffers berause the resistance and self-inductance of the mutual indurtance enter into the expressions for the unknown caparitance and its resistance respectively. Capacitance between the two windings of the mutual inductance causes the voltage induced in its secondary to have a phase angle with reference to the primary current different from 90 deg. This reduces the calculated resistance of the condenser and frequently yields negative values, especially for large mica condensers. The method is perhaps better suited for the measurement of a mutual inductance in terms of a known condenser.

## References

Bolton, E. I': "Electrical Measuring Instruments," Dutton \& Co., New York, 1923. Canbridge lnstrument Company, Catalogue.
General Radio Company, Catalogue.
Hague: "Alternating-current Bridges."
JAnskr: " Electrical Meters."
Kennelly: "Vibration Instrumente."
leeds \& Northrup Cornpany, Catalogue.
laws: "Llectrical Measurements."
Sterling: "Electricity and Magnetism."
Weaton Electrical Irstrument Corporation, Catalogue.

## SECTION 8

## VACUUM TUBES

## By J. M. Stinchfield, B.S. ${ }^{1}$

1. Electrons. The electron is a negatively charged particle of electricity. In $1897 \mathrm{~J} . \mathrm{J}$. Thomson diseovered that the eathode rays passing from the cathode to the anode in a gaseous discharge, were moving, negatively charged, particles. He measured the ratio of the charge $e$ to the mass im of these particles and termed them corpuseles. Thomson's corpuseles are now commonly known as electrons. The cathode rays or streams of electrons are deflected by either magnetic or electrostatie fields. They exert meehanical force sufficient to turn a vane in a vacuum or to heat the object they strike.
2. Electrons in an Electrostatic Field. An clectrostatic field exerts a force upon an electron. If the field intensity is $X$ and the charge on the electron $e$, the fore $f$ aeting on the electron is

$$
\begin{equation*}
f=. \mathcal{C} e \tag{1}
\end{equation*}
$$

If the mass of the electron is $m$, the acecleration $a$ will be

$$
\begin{equation*}
a=\frac{X e}{m} \tag{2}
\end{equation*}
$$

The force and acceleration on the clectron will change if the field intensity changes. The foree is in the direction of the field at the point considered, the electron tending to move toward the positive.

In a uniform field the work If done on an electron in moving between two points distance $s$ apart will be

$$
\begin{align*}
W & =f s \\
& =\mathcal{X e}^{8} e s \tag{3}
\end{align*}
$$

Since $X s$ is also the potential difference between the two points, calling this potential difference $V$, the work done on the electron is

$$
W=V e
$$

If the field is not uniform the line integral of the foree and distane regardless of the path between the two points will give the work done. The work done on a unit charge moved between two points defines the potential differenee between the two points. The work done on an electron moved between two points of potential difference $V$ will be

$$
\begin{equation*}
W^{\prime}=V_{e} \tag{4}
\end{equation*}
$$

${ }^{1}$ Engineering Departinent, E. T. Cunningham, Inc.

If the velocity of an clectron is changed by an amount $v$ in passing between two points, the change in kinetie enorgy will be

$$
\begin{equation*}
\frac{m m^{2}}{2} \tag{5}
\end{equation*}
$$

The change in potential energy or work done in passing between the two points will be

$$
V e
$$

The change it kinetic encrgy is equal to the change in potential energy, and

$$
\begin{equation*}
V c=\frac{m v^{2}}{2} \tag{6}
\end{equation*}
$$

The velocity acquired by an electron in passing between two points of potential difference $V$ is

$$
\begin{equation*}
v=\sqrt{\frac{2 V e}{m}} \tag{7}
\end{equation*}
$$

The potential $V$ is in absolute es.a. in the relations above. The potential differeme in volts divided by 300 is the potential difference in absolute e.s.u.

The ratio of the charge $e$ to the mass $m$ of the eloetron is

$$
\frac{e}{m}=\frac{4.774 \times 10^{-10}}{8.999 \times 10^{-28}}=5.305 \times 10^{17} \text { e.s.1t. per } \mathrm{gm}
$$

'The electrons' velocity corresponding to various potential differences are shown in the table. When the velocity beromes greater than about one-tent h the velocity of light, the apparent mass of the elect ron increases enough to cause a small error. The error in using $\mathbf{E}$ ( . ( 7 ) is less than one-half of 1 per cent for potential differences less than 300 volts.

Volts | Velocity, Centimeters |
| :---: |
| per sercond |
| 1 |

| Volts | Velocity, Centimeters |
| :---: | :---: |
| per Second |  |
| 10.000 | $0.586 \times 10^{10}$ |
| 100.000 | 1.64 |
| 1.000 .000 | 2.82 |

3. Electrons in an Electromagnetic Field. An elcetron moving with a veloeity $v$ in an electromagnetic field of intensity $I I$ is aeted on by a foree

$$
\begin{equation*}
f=H \cdot v \tag{8}
\end{equation*}
$$

The dirertion of the forer is at right angles to both the dircetion of the field $I I$ and the direction of motion of the electron.

The force $f$ is cffective in producing an acceleration:

$$
\begin{equation*}
a=\frac{H I c v}{m} \tag{9}
\end{equation*}
$$

The acceleration is at right angles to the direction of motion. If the electron moves unimpeded and the ficld $I I$ is uniform, the path will be circular and oi radius

$$
\begin{equation*}
r=\frac{v^{2}}{a}=\frac{m v}{e I I} \tag{10}
\end{equation*}
$$

4. Current Due to a Stream of Electrons. $\Lambda$ current $i$ is defined by the quantity of electricity $q$ flowing per unit of time. If there are $n$ electrons per unit of volume in a certain space, the quantity of electricity $q$ in this space is ne per unit of yolume. If these electrons are moved with a velocity $v$, the quantity flowing por unit of time is the current

$$
\begin{equation*}
i=n e v \tag{11}
\end{equation*}
$$

This is the current per unit of area at right angles to the direction of flow.
5. Space Charge Due to a Cloud of Electrons. If in a given space there are $n$ electrons per unit of volume, the volume density of electrifieation is

$$
\begin{equation*}
\rho=n c \tag{12}
\end{equation*}
$$

The potential distribution in the given space due to the electrons is given by

$$
\begin{equation*}
\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=-4 \pi \rho \tag{13}
\end{equation*}
$$

For the case of large parallel plates, only the distance $x$ between plates need be considered. Equation (13) simplifies to

$$
\begin{equation*}
\frac{\partial^{2} V}{\partial x^{2}}=-4 \pi \rho \tag{14}
\end{equation*}
$$

If a current $i$ is flowing and the electrons move with uniform velocity $v$ the space charge or volume density of electrification is

$$
\begin{equation*}
\rho=\binom{i}{v} \tag{15}
\end{equation*}
$$

6. Emission of Electrons. Certain internal forees existing at the surfaces of substanees prevent the espape of the free electrons unless a
certain amount of energy is supplied to the surface. In the usual type of radio tube, the electron-emitting filament material is supplied with the heat energy of an electrical current sufficient to cause the desired electron emission. Emission excited by heat energy is known as thermionic emission.

Electron emission may be produeed by eleetrons impinging upon substances with suffieient velocity. For example the electrons emitted by the hot filament of a radio tube nay be aceclerated toward the plate by a positive voltage. If a great enough velocity is reached each eleetron will have sufficient energy to release one or more electrons from the plate. This is known as secondary emission.

The energy supplied by light is suffieient to eause emission from some substanees. This is the type of emission employed in photoelectrie cells and is known as photoelectric emission.

Ntrong electrie ficleds acting on gases or vapors may cause the gas particles to collide with suffieient energy to release elcetrons from the gas, This process is known as ionization. In this case both the eleetron and the remaining positively charged gas ion are nobile, so that the electron moves toward the positive and the gas ion toward the negative electrodes from whieh the field originates.
7. Thermionic Emission. The emission of electrons from metals heated to a certain temperature is a characteristic property of the metal. From consideration of thermodynamies and the kinetic theory of gases Richardson obtained an equation for thermionic emission.

$$
\begin{equation*}
I_{s}=A_{1} T^{1,2 / 2}{ }_{\epsilon}-\frac{b_{1}}{T} \tag{16}
\end{equation*}
$$

where $I$, emission eurrent in amperes per square centimeter
$A_{1}=a$ constant for the emitting substance
$T=$ absolute temperature in degrees Kelvin
e base of Napierian logarithms
$b_{1}=$ a constant depending upon the nature of the emitting surface
A similar equation giving equivalent results was derived by Dushman:

$$
\begin{equation*}
I_{t}=A_{\varepsilon} T_{\varepsilon}^{-\frac{b_{2}}{T}} \tag{17}
\end{equation*}
$$

where $I_{\mathrm{A}}=$ electron emission in amperes per square centimeter
$T=$ absolute temperature of the emitter in degrees Kelvin ( $C+$ 273)
$t=$ base of Napierian logarithms (2.718)
$b_{2}=a$ constant for the material
The constants $A_{2}$ and $b_{2}$ of $\mathrm{E}_{1}$ : (17) can he determined for a given material in the following manner:


Fig. 1.-Determination of ronstants in enission equation.

$$
\begin{aligned}
\log _{\epsilon}\left[I_{s} \mid\right. & =\log _{\epsilon}\left[A_{2} T^{2} e-\frac{b_{2}}{T}\right] \\
{\left[\log _{\epsilon} I_{t}-2 \log _{\epsilon} T\right] } & =\left[\log _{\epsilon} A_{2}-\frac{b_{2}}{T}\right]
\end{aligned}
$$

Readings of the emission current from the sulstanee at different temperatures are obtained. Values of $\left[\log I_{s}-2\right.$ loge $\left.T\right]$ are plotted against [1/T]. The result should be a straight line. The intercept of this line with the vertical axis gives the value of $\log _{\varepsilon} A 2$, the slope gives the value of $(-b y)$.

Equations (16) and (17) are experimentally indistinguishable within the usual range of temperatures. When the constants are known for liq. (16) the constants for Eq. (17) may be calculated from the following approximate relations.

$$
\begin{align*}
& b_{2}=\left[b_{1}-1.5 \frac{T_{1}+T_{2}}{2}\right]  \tag{18}\\
& A_{2}=\left\{0.223 A_{1} T^{-1.5}\right\} \tag{19}
\end{align*}
$$

Constants for Equ. (16) año (17)

| Substance | $A_{2}$ | $t_{2}$ | $\phi$ : | 'Temperature, degrees kirlvin | Milliampere per square centincter |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Carbon | 60.2 | 46.500 | 4.00 | 2000 | 20. |
| Calejum | 60.2 | 26.000 | 2.24 | 1100 | 2. $5 \times 10$ |
| Caesium | 162. | 21,000 | 1.81 | 500 | $2.5 \times 10$ |
| Caesium on. Oxygen on. | 0.003 | 8,300 | 0.72 | 1000 | 350. |
| Tungsten (monatomic layer). <br> Molybdenum |  |  | 4.44 | 2000 | 1.59 |
| Nioybodenum. | 60.2 26.8 | 51.500 32.100 | 2.74 | 2000 | 1.6 |
| Platinum | 80.2 | 59.000 | 5. 08 | 1600 | $1.6 \times 10^{-5}$ |
| Tantalum. | 60.2 | 47.200 | 4. 51 | 2000 | 138 |
| Thorium. | 60.2 | 38,700 | 3.35 | 1600 | 4.35 |
| Thorium on tungsten (monatomin layer). | 63.0 | 30.500 52,400 | 2.63 | 1800 2000 | 40. 1.00 |
| Tungsten......... . . . | 60.2 | 52,400 | 4.52 | 2000 | 1.00 |


| (oating of oxides on platinum |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Nl}_{2} \mathrm{O}_{3}$. | 16.2 | 46.300 | 3.90 | 2200 | 59. |
| $13 a_{2}()_{3}$ | 13.2 | 52, 300 | 4.51 | 2200 | 3.1 |
| 13a0.. | 2.88 | 19,500 | 1.68 | 1200 | 355. |
| Cal | 129. | 29.200 | 2. 32 | 1400 | 219. |
| ( ${ }^{\text {a }}$ ) | $1.50 .5 \times 10^{-8}$ | 20.500 | 1.76 | 1673 | $2.2 \times 10^{-4}$ |
| $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | 0.0116 | 44.400 | 3.82 | 1723 | $2.3 \times 10^{-4}$ |
| MgO | 1,020. | 38.400 | 3. 31 | 1600 | 102. |
| M' ${ }^{\text {a }}$ | 0.091 | 48.70) | 4.19 | 172:3 | I. $5 \times 10^{-4}$ |
| $\stackrel{\mathrm{Sr}}{ } \mathrm{O}$ | 4.07 | 21.800 | 1.86 | 1200 | 8 B. |
| ${ }^{\text {The }} \mathrm{S}_{2}$. | 0.57 | 36,900 | 3.18 | 2000 | 23. |

A filament roated with a mixture of the oxides of barium and strontium on a core of 95 per cent platinum and 5 per cent nickel has the following chararteristirs:

## Electrical resistivity of the core

$$
\begin{aligned}
& =0.000022\left(1+0.00208 L-0.000,000,46 t^{2}\right) 6 \mathrm{hm} \mathrm{~cm} \\
t & =\text { temperature in degrees centigrade }
\end{aligned}
$$

Thermal emissivity (ratio to black body)

$$
=[0.4+0.000125 T]
$$

where $T=$ degrees Kelvin lies between $800^{\circ}$ and $1200^{\circ} \mathrm{K}$.

The electron emission in zero field is given by the equation

$$
\begin{aligned}
& -\frac{11600}{T} \\
& I_{z}=0.01 T^{2} \epsilon \\
& T=\text { degrees Kelvin } \\
& I_{6}=\text { emission current in amperes per square centimeter }
\end{aligned}
$$

For an anode potential of 150 volts and a current limited loy space charge to 0.010 amp . per square centimeter the average life is

$$
=0.000015 \epsilon^{\frac{22000}{T}} \mathrm{hr} .
$$

The following values are those most probatble when the anode potential equals 150 volts and the electric field is zero:

| $T$ | $I_{s}$ | $\eta_{e}$ | $p_{e}$ | Life |
| :---: | :---: | :---: | :---: | :---: |
| 900 | 20 | 2.3 | 0.02 | 730.000 |
| 9.50 | 45 | 3.0 | 0.045 | 170.000 |
| 1,000 | 90 | 3.7 | 0.09 | 55.000 |
| 1,050 | 170 | 4.6 | 0.17 | 20.000 |
| 1,100 | 310 | 5.6 | 0.31 | 7,400 |

$T=$ temperature in degrees Kelvin
$I_{\Delta}=$ emission current in milliamperes per square centimeter
$p_{v}=$ power thermally radiated in watts per square centimeter
$p_{*}=$ power absorbed by electron emission in watts per square centimeter
Life $=$ most probable average life in hours
8. Contact Potential. 'The rate of emission of electrons from different substanees and the contact differences of potential are closely related.

The contact potential depends only upon the materials of the clectrodes and their temperature, hut not upon size, shape, or position of the electrodes.

For example, an electron in eseaping from the inner to the outer surface of substance $A$ will do work equal to 11 a so that its potential is changed to $V_{A .}$. Similarly the work for an electron to ascape from the surface $B$ is $\|_{B}$ and the potential ehange $V_{B}$. Hence in moving an electron from subtatance $A$ across a space to substance $B$ the work done will be

$$
\begin{equation*}
\left[U_{A}+\left(V_{A}-V_{B}\right) e-W_{B}\right] \tag{அ}
\end{equation*}
$$

This is the algebraie summation of the work done and would he equat to zero, exeept for the work done at the junction of the two substanes in the return connection. This later potential difference is known as the I'eltier effect and is negligible in comparison with the other efferts

$$
\begin{align*}
\|_{A} & =\phi_{A^{\rho}}  \tag{21}\\
W_{B} & =\phi_{B^{\prime}}  \tag{22}\\
\left(V_{A}-V_{B}\right){ }^{\prime} & =\left\|_{B}-\right\|_{A}=\left(\phi_{B}-\phi_{A}\right)  \tag{2:3}\\
\left(V_{A}-V_{B}^{\prime}\right) & =\left(\phi_{B}-\phi_{A}\right) \tag{24}
\end{align*}
$$

$\left(V_{A}-V_{B}\right)$ is eafled the contacl pofrolial difference betwern the two suhstanees, and by Eq. (24) it is equal to the difference in the work function, or electron affinity $\phi$ of the two substances.
9. Work Function. When a quantity of electricity $q$ is moved through a potential difference $V$ the work done equals $q V$. Work must be done when an electron is removed from a surface. If the work done per electron is $W_{1}$, the electron charge $\boldsymbol{r}$, and the potential difference $\phi$ is required to supply an amount of energy equal to $W_{1}$, then,

$$
\begin{align*}
W_{1} & =\phi e  \tag{25}\\
\phi & =\frac{W_{1}}{e}=\frac{k_{0} b}{e}=\left(8.62 \times 10^{-5} b\right) \text { volts } \tag{26}
\end{align*}
$$

$\phi$ is called the electron affinity of the substance and is equal to the work function ( $W_{1} / e$ ). The smaller the quantity $\phi$ the easier it will be for an electron to escape from the cathode. A low value of $\phi$ indieates a large electron emission for a given temperature.

The following table gives the electron affinity or work function of several substances expressed in volts:

| Substance | ${ }^{\phi}$ |
| :---: | :---: |
| Tungsten. | 4.52 |
| Platinum. | 4.4 |
| Tantalum | 4.3 |
| Molybdenum | 4.3 |
| Carbon..... | 4.1 |
| Silver |  |
| Copper | 4.0 |
| 1ismuth | 3.7 |
| Tin. |  |
|  |  |
| Zine. | 3.4 |
| T'horiumı. | 3.4 |
| Aluminum | 3.0 |
| Magnesium. |  |
| Nickel... | 2.8 |
| Titanium. |  |
| I ithium . | 2.35 |
| Sodium. | 1.82 |
| Mercury |  |
| Calcium.. |  |

10. Filament Calculations. The dimensions of filaments designed to operate at a given voltage and temperature, and to furnish a certain total emission current are related to the physical properties of the material.
Suppose that the required total emission current is $I_{B} \mathrm{ma}$. From the power-emission chart for the type of filament material being used, find $I_{s}$ the emission eurrent in milliamperes per square centimeter for a given power input $p$ watts per square centimeter corresponding to good life performance, or to temperature 'T.

The total surface area of the required filament: $A=\left(I_{B} / I_{G}\right)$.
The total jower input to the filament: $A_{p}=F_{f} I_{f}=P_{f}$ watts.
At a voltage $E_{f}$ the filament current $I_{f}=\left(A_{p} / E_{f}\right)$.
Filament resistance at the operating temperature: $R_{f}=\left(E_{f} / I_{f}\right)$.
The resistance of a circular filament: $R=\left[\rho \frac{A}{2 \pi^{2} r^{3}}\right]$
where $A=$ area of the filament surface
$r=$ radius of the filament
$\rho=$ specific resistance of the filament material. $\rho$ must be known as a function of the temperature.
The resistance of a rectangular filament is given by

$$
R=\left[\rho \frac{A}{2 S_{1} S_{2}\left(S_{1}+S_{2}\right)}\right]
$$

where $A=$ area of the filament surface
$S_{1}=$ thickness of the filament
$S_{2}=$ width of the filament
$\rho=$ specific resistance of the filament material at temperature $T$
11. Filament-current Filament-radius Relation. For a given type of filament material operating at a specified temperature and filament voltage, the radius or filament cross section is uniquely related to the filament current.

For a circular filament: $I_{f}=\left[(2 p / \rho)^{1,5} \pi r^{3 / 2}\right]$
For a rectangular filament: $I_{f}=(2 p / \rho)^{\frac{16}{2}} \cdot\left[S_{1} S_{2}\left(S_{1}+S_{2}\right)\right]^{1 / 2}$.
For a square filament: $I_{f}=(2 p / \rho)^{1 / 2} \cdot 2^{1 / 2} \cdot S_{1}^{32}$.
12. Filament-voltage Filament-dimensions for a Constant Temperature. For a given filament material to be operated at a given temperature, the filament voltage is related to the filament length and sectional dimensions as follows:

Circular filament: $E_{f}=\left(2 p_{\rho}\right)^{3 / 2} \frac{l}{r^{3 / 2}}$
Rectangular filament: $E_{\prime}=(2 p \rho)^{1 / 2}\left(\frac{1}{S_{1}^{-}}+\frac{1}{S_{2}}\right)^{1 / 2} \cdot l$
13. Lead-loss Correction. The cooling effect of the leads eonnected to a filament decreases the emission from the parts near the junction. 'lhe voltage drop in these parts of the filament is also less.
langmuir and Dushman give the following correction formulas for a V-shaped filament cooled hy large leads. The decrease in voltage due to the cooling effeet of the two end leads is

$$
\Delta V=0.00026(T-400) \text { volts }
$$

$T=$ degree Kelvin of the central portion of the filament
The correction for the effect on the electron emission is given in terms of the voltage of a length of uncouled filament which would give the same effect as the decrease caused by the cooling of the leads. The correction for the two leads is $\Delta V_{H}=2(0.00017 T \phi-0.05)$ volts. $\phi$ is a number which depends upon the temperature coefficient of the quantity $H$, which may represent any property of the metal, such as candlepower, electron emissivity, ete. For the case of electron emission the exponent of the temperature cooffieient is $N=\left(2+\frac{b_{0}}{T}\right)$
Dushman's coefficient for the material $b_{0}$ and the temperature $T$ in degrees Kelvin being known, $N$ is calculated.

$N$ is related to $\phi$ as shown by the data above which may be plotted as a curve knowing $\phi$ the correction $\Delta V_{I I}$ is determined.

The electron emission per unit area after taking into account the leadloss correction is

$$
I=\binom{i}{s}
$$

where $i=$ ohserved total emission from any given filament
$S=$ total filament area
The correction factor $f$ is given by

$$
f=\left[\frac{V+\Delta V^{\prime}}{V+\Delta V-د V_{H}^{\prime}}\right]
$$

Dushman gives rurves of $\Delta V$ and $\Delta V_{I f}$ plotted against temperature for different values of $b_{0}$.
$V+\Delta V$ corresponds to the eorreceted voltage drop along the filament.
14. Effect of Space Charge. The equations of IRichardson and Dushman for thermionic amission give the total electron current, with


Fig. 2.-Spare-charge effect in limiting emission.


Fis. 3.-Situration at constant temperatures.
zero fiold strongth at the surface of the cathode. If the electrons are allowed to aterumalate just ontside the surface they form a negative cloud. If the electrons are drawn to a positive electrode both the nega-


Fic: 4.-llistribution of potential in cathorde-plate spatere. tive cloud and to a less degree the cathode surfare ficlds are changed.
langmuir found that if the voltage applied to the anode was not suffieiontly high a temperature incrase of the cathorle did not ineroase the current indefinitely. This effert is shown in Fig. 2. It is due to the repelling effert of the negative eloud of electrons surrounding the rathode and is known as the space-charge effect, or volume Imensity of chertrifination. Figure 3 shows this effect with constant-cathorle temperatures and variableanode voltage.
'The theory of these coferts is as follows: 'The distribution of the potential hetween two large parallel plates is direetly proportional to the distance starting from the low and ineroasing to the high potential plate. If plate $A$ ernits low-velocity electrons (assumed zero) spontaneously, and if plate $B$ is positive with respeet to $A$, electrons will be drawn over
to $B$. Starting with a low temperature $T$, the distribution of potential between $A$ and $B$ will be uniform as shown by the straight line 1 in Fig. 4. Increasing the temperature of $A$ will cause an clectron current of $/$ amp. per square centimetor to flow to $B$. Laplace's equation conneeting the potential distribution with the volume density of electrification $\rho$ is

$$
\begin{equation*}
د V=\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} \zeta}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=-4 \pi \rho \tag{27}
\end{equation*}
$$

For large parallel planes Eq. (27) may be simplified to

$$
\begin{equation*}
\frac{d^{2} V}{d x^{2}}=-4 \pi \rho \tag{28}
\end{equation*}
$$

If $\rho$ is eonstant and negative, the potential distribution will be a parabolie curve as shown by curve 2 in Fig. 4. A further increase in the temperature of $A$ will cause the parabolat to take the form of curve 3 having a horizontal tangent at $A$. In this rase the potential gradient at the eathode is zero ( $d V / d x=0$ ), and a further increase of temperature will not increase the electron current to $B$. 'This aceounts for the effeet shown in Fig. 2.

In the above disenssion the aleetrons were assumed to be amitted with no initial velority. [sually small initial velocitios exist, so that a slightly nogative gratient is necessary at $A$ in order to provent an increase in current. Curve 4 of Fig. 4 shows the efferot of the initial velocitios of emission on the potential distrilution at the tomperature for which a further increase in temperature will not inerease the anode current.
15. Schottky Effect. Richardson's and Dushman's equations for the thermionic emission from a substamee at a givon temperature assumes that the oloetrie field strengt h is zoro at the cathode. In aetual practioce a definite potential is used. This effoct of the potential gradient at the eathode on the observed emission current is called the schollky effect.
I)ushman gives the corrertion for the Shot thy effert as follows:

$$
\begin{aligned}
& I_{0}=\text { electron emission in zero field } \\
& I_{v}=\text { observed emission at an anode voltage } V
\end{aligned}
$$

Then

$$
I_{v}=I_{0 \epsilon}^{4.3!} \frac{\sqrt{ } \mathrm{hl}^{V}}{T}
$$

where $k=$ a constant whose value depends upon the relative geometrial arrangement of anode and rathode
$T=$ temperature in degrees Kelvin
$\epsilon=$ base of Napierian logarithms
16. Electron Carrent between Parallel Plates. When the rathode is a large fat surface $A$ and the plate, or anome, $B$ is a parallel surface, the plate current per square contimetor of surface not too near the edges of the plates is given by the equation

$$
\begin{equation*}
i=2.34 \times 10^{-6} \frac{V^{3}}{x^{2}} \tag{29}
\end{equation*}
$$

where $i=$ maximum current density in amperes per square eontimeter
$x=$ distance botweon plates in eentimeters
$V=$ potential difforence botween $A$ and $B$ in volts

This equation assumes that the initial velocities of the electrons leaving $A$ are zero. If the potential of $B$ is large relative to one or two volts, the initial velocities of the electrons can he neglected.

Equation (29) assumes that the anode potential is positive with respeet to A so that some current is flowing but that the anode potential is below the value neeessary to give the full current emitted at $A$. When the anode potential is great enough to draw over all of the electrons emitted at $A$, the current (saturation current) $I_{s}$ is given by the IRichardsonDushman equation.
17. Electron Current between Concentric Cylinders. Civen two coneentric cylinders $A$ and $B$ (Fig. (i) having radii of $a$ and $r c m$ and of infinite length. Langmuir's equation for the electron eurrent to the plate $B$ is given by the relation

$$
i=14.7 \times 10^{-\frac{1}{1-3 / 2}} \frac{r \beta^{2}}{}
$$

where $i=$ eurrent in amperes per centimeter length
$V=$ potential between $A$ and $B$ in volts
$r=$ radius of the anode in centimeter
$a=$ radius of the cathode in centimeter
$\beta=\mathbf{a}$ factor which varies with the ratio of (r/a)

| $r / a$ | $\beta^{2}$ | $r / a$ | $\beta^{2}$ |
| :---: | :---: | :---: | :---: |
| 1.00 | 0.000 | 20 | 1.072 |
| 2.00 | 0.279 | 50 | 1.094 |
| 3.00 | 0.17 | 100 | 1.078 |
| 4.00 | 0.667 | 200 | 1.056 |
| 5.00 | 0.67 | 500 | 1.031 |
| 10.00 | 0.978 | 1.000 | 1.017 |
|  |  | $\infty$ | 1.000 |

When the inner eylinder is a small wire of less than one-tenth the diameter of the plate, the error is small if $\beta$ is neglected, and the approximate equation is

$$
i=\left[14.7 \times 10^{-8} \frac{V^{336}}{r}\right]
$$

18. Electron Current with Any Shape Electrodes. Langmuir has demonstrated that under the assumption on which the above equations were derived the eurrent will vary as the three-halves power of the potential difference $V$ regardless of the shape of the electrodes. The derivation of the equations neglerets the initial velocities of the eleetrons and the potential gradient at the cathode.
19. Two-electrode Vacuum Tubes. The three-halves power equation for the plate current of a two-eler trode tube is quite accurate when the voltage between (rathode and plate is large with respect to the effects of (1) initial velocities of emission; (2) voltage drop in the filament or cathode; (3) contart potential betweren cathode and plate and the emission of electrons from the eathode is large and the plate voltage well below the value for saturation current. The eleetrodes are assumed to be in good vacuum, so that the effects of gas are negligible.

In the case of thoriated-tungsten or oxide-coated filaments only a fraction of the total cathode surface is active so that the saturation current may be reached at a plate voltage below the theoretical.

The current is calculated from the formula

$$
i=k V^{r i 36}
$$

where $k$ is the space-charge constant of the tube for a given type of tube structure and depends only upon the geometrical configuration without regard to the dimensions of the tube. The value of $k$ for infinite parallel plates is $\left(2.34 \times 10-\frac{e^{2}}{x^{2}}\right)$
where $A=$ the area of the plate in square


Fig. 5--Electron current between parallel plates. centimeters
$x=$ the distance from the cathode plate to the anode plate in centimeters.

For concentric cylinders, $k=\left(14.7 \times 10^{-8} \underset{r \beta^{2}}{l}\right)$
$l=$ length of the cylinders
$r=$ radius of the outer rylinder or anode
$\beta=$ a function of ( $r / a$ ) (see table on page 192)
20. Effect of Initial Velocities-Parallel Plates. If the effert of the initial velocity of the electrons is included and they have a Maxwellian distribution,

where $i=$ total plate current in amperes
$A=$ area of one surface of the anode in square centimeters
$T=$ temperature of the cathode in degrees Kelvin $V_{a}=$ potential of the anode above that of the cathode volts
$V_{m}=$ minimum potential of the space between cathode and anode with respert to the cathode
$x_{a}=$ distanee from cathode to anode in centimeters
$x_{m}=$ distance from cathode to $V_{m}$ in centimeters
Fig. 6.-Cylindrical structure.
21. Effect of Magnetic Field. Initial velocities $=0$ For coaxial cylinders,

$$
\begin{gathered}
i=k V_{a}^{1.5 s,} \text { if } V_{a}^{a} \geqslant V^{\prime} \\
i=0, \\
k=\text { same as above } \\
V^{1}=\left[0.0221 H H^{\left.2 r_{0}{ }^{2}+0.0188 I^{2}\left(\log 10 \frac{r_{0}}{r_{i}}\right)^{2}\right]}\right.
\end{gathered}
$$

$H=$ strength of magnetic field externally applied parallel to axis of cylindrical electrodes
$I=$ current flowing through the inner cylindrical electrode parallel to its axis
$r_{0}=$ radius of the outer cylinder
$r_{i}=$ radius of the inter cylinder
22. Characteristics of Typical Commercial Diodes.

| 'Yyp' | if | Fif | $E_{\text {m }}$ | im | 1 'n | $k$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ThW | 3.2.) | 7 \% | 5.00 | O. (M.) ${ }^{\text {a }}$ | 0.0075 |  |
| 'rhw | 3.25 | $10^{\circ}$ | 1.500 | 0.20 | 0.0 .50 | 1.7 |
| ThW | 3.8. | 11 | \%.500 | 0.2i | 0.290 | 1.1 |
| PW | 14.7 -44 | 111 | 16.000 | $0.16 t 5$ | 100 | 0.5 |
| ${ }^{\prime} \mathbf{W}$ | -34.3 | 22 | 17.800 | ${ }_{0} 8 \times 3$ | 万 (0) | 1.0 |
| PW | 10 | 10 | 18.000 20.000 | 3.3 0 0 | 29.00 | 1.1 |
| PW | 10 | 10 | 20,00) 8.000 | $\begin{array}{ll}0.10 \\ 0 & 10\end{array}$ | . . . . . . | 0.10 |
| PW | 32 | 9 | \%-0, 000 | ${ }^{0} 12.5$ |  | 0.11 |
| PW | 10 | 10 | 1.50.000) | (100 |  | 0.25 0.11 |
| PW | 32 | 12.5 | 1.50.000 | 0.25 |  | 0.11 |

if, $W^{\prime} f=$ filament current, voltage (amperes and volts)
$E_{m}=$ maximum effective a-c input voltage (voles)
$i_{m}=$ maxintum rectified tube current (amperes)
$P_{n}=$ nominal power rating (kilowatts)
ThW, PW = thoriated tungsten, and pure tungsten, filament
$k=0.0001$ amp. per volti.s

## THREE-ELECTRODE TUBES

23. Effect of the Grid. When a wire mosh or similar electrode having openings through which clectrons may pass is placed between the eathode and the plate of a two-electrode tube it exerts a large controlling effect on the flow of electrons to the plate. The meshlike eleotrode between cathode and plate is termed a grid. The tube is then known as a triode, or three-electrode tube.

When the grid is commected to a battery or other sourer of voltage the eleretrons are attracted if the grid is positive with respert to the cathoole and repolled if it is negative. The close proximity of the grid to the space charge surrounding the cathode increasers its offeretiveness in controlling the eloctron flow.

In most useful applications the tubes are operated with suffecient electron emission and with phate and grid voltages low (nough so that the space charge surfombing the eathodo is amplo to permit large momentary increases in the clectron flow to the plato.
'The effert of a large positive plate voltage in drawing the olecetrons to the plate can be redueed by a relatively small negative voltage applied to the grid. The electrons boing negative will avoid the negative grid so that no current will flow in the grid rireuit. If the negative grid voltage is not too large with respect to the plate voltage, electrons will be drawn through the openings in the grid mesh to the positive plate.

The resulting plate current is controlled by the grid although no current flows in the grid cirenit. The power is equal to the product of the eurrent times the voltage. Zero power in the gride eireuit can thus control a considerable amount of power in the plate cirenit. Voltage variations of the grid produce corresponding variations of the plate ceurrent. The extent to which the plate-rurrent variations are faithful reproductions of the grid-voltage variations chepends upon the steady polarizing voltages ( $A, B$, and $C$ voltages) applied to the tube and the range of the voltage variations.

## CHARACTERISTICS OF THE THREE-ELECTRODE TUBE

24. Static Characteristics. The effects of constant d-e voltages applied to the eloetrodes of a tube are shown by curves rabled the static characteristices of the tube. The vertical sable of these rurves usually shows the plate current, grid current, total mission current, or filament eurrent of the tube. The horizontal scale shows a range of voltages


Fig. 7.-Circuit for measuring statid characteristics.


Fig. 8.-Typical gridvoltage plate-current charitcteristic.
effective on one electrode. The voltage on the other electrodes are held constant at some value sperified on the curve.

The eireuit for obtaining the static characteristio curve data is shown in Fig. 7 . The meters marked $I_{p}, I_{a}$, and $I_{f}$ read the plate current, grid current, and filamont current resperotively. Potentiometers connerted across batterios permit adjusting the phate and grid voltages.
25. Mutual or Transfer Characteristic. The mutual chararteristio, or transfer characteristie of the tube, shows the effect of the grid voltage upon the plate curront. The term mutual or transfer indicates that the


Fig. 9.-Plate characteristies of trpical tube.
voltage in one rireuit controls the current in another circuit. Figure 8 shows this characteristic for a type ( -327 tube. The plate voltage is held constant at 90 volts and the filament voltage at the rated value of 2.5 volts. When the grid is connereted to the cathode without any applied grid voltage, we rad at zomogrid voltage on the curve, a plate
eurrent of 9.0 ma . As the grid voltage is made negative the plat current decreases until it is zero at -12.0 volts. The plate current is zero for all grid voltages more than 12.0 volts negative unless the plati voltage is incereased.
26. Plate Characteristic. The plate characteristic represents the relation betwern plate current and plate voltage. These curves for a type ( -327 tube are shown in Fig. 9. Each curve is for a specified voltage. The plate eurrent increases as the phate voltage is increased.
27. Grid Characteristic. The grid charactoristic shows the grid current-grid voltage relation. Electron flow to the grid starts in the region of zero gricl voltage. The exact point at which grid current starts is determined by the initial velocities of emission, and the eontact potential of the grid to eathode. The net effere is equivalent to a small positive or negative bias usually not greater than one volt.


Fiti. 10.—Grid-rolirrent grid-voltage rharacteristic.


Fig. II.--Typical filament characteristics.

The grid characteristice of a $\mathrm{C}-327$ tube is shown in Fig. 10. The inherent hias in the tube is nearly 0.9 volt positive so that the grid must be biased negative by 0.9 volt to secure an effertive zero grid voltage. In filament-type tubes the point of comnection to the filament alters


Fig. 12. the effective bias voltage. The negative filament terminal is usually considered the zero of potential. This conncetion gives the greatest negative bias on the grid.
28. Filament, or Heater, Characteristic. The filament-veltage filament-current curve obtained with plate and grid terminals discomected is termed the filament characteristic. The characteristic refers to the heater filament when the tube is of the indirectly heated cathode type. Figure 11 shows the filament characteristic of a filament-type CX-301A tube and an indirectly heated cathode-type C-327 tube.
29. Emission Characteristic. The emission characteristic shows the total electron cmission from the cathode for a range of filament voltages or filament power. The emission-current filament-voltage characteristie of a CX-301A tuthe is shown in Fig. 12. The cireuit for obtaining the data for this curve is shown in Fig. 13. The grid and plate terminals
are connected together through a suitable meter to +50 volts $B$ supply. The filament voltage is gradually increased. The corresponding total current to grid and plate is read on meter I.

In taking the emission-current readings it is assumed that the $B$ voltage is large enough to eliminate all space-charge effect so that the current is limited only by the temperature of the filament. If the $B$ voltage is too high, the power dissipation at the grid and plate will increase the temperature of the filament. 'Traces of gas also affect the results more at higher voltages. To reduce these effects the $B$ voltage should only be connected long enough to obtain the emission reading. The emission reading imposes a severe load on the tube. The emission current may be great enough to damage the tube, In tubes employing oxide-coated filaments with $0.25-\mathrm{amp}$, filament eurrent or less the


Fic, 13, Measurement of emission characteristic.


Fige 14.
emission current is a considerable portion of the filament eurrent. Accurate results ean le obtained by means of a rotating contact which eloses the eireuit for only an instant. The current must be read with an oseillograph or peak-current voltmeter arrangement.

The cmission current per watt of filament heating power is fundamentally related to the filament material and the design of the filament. The filament power should be determined from the filament characteristie obtained with grid and plate terminals open. The data can be plotted on a special coordinate paper devised by C. J. Davisson, If the emission follows Richardson's temperature equation and the power is radiated according to the Stefan Boltzman law of radiation, the filament-power emission-current curve will be a straight line. Figure 14 shows such a curve for a type CN-301A tube.

Departure from a straight line may indicate:

1. Cooling hy conduction of gas or support leads.
2. Space-charge effect due to too low 13 voltage.

## CALCULATION OF THE SPACE CURRENT OF THE THREEELECTRODE TUBE

30. The space current $I$ of a three-eleetrode tube is equal to the sum of the plate current $I_{p}$ and the grid current $I_{q} ; I=\left(I_{p}+I_{q}\right)$. The three-electrode tube is calculated as an equivalent diode $I=k\left(E_{p}+\right.$
$\left.\mu E_{0}\right)^{3 / 2}$. The grid voltage $E_{0}$ is equivalent to a plate voltage $\mu E_{g} . \quad \mu$ is the amplification factor of the tube.
31. Plane-parallel Elements. For a structure with plane-parallel eloments with the filament simmetrically placed between grids and plates:

$$
\begin{aligned}
& k=2.3 .4 \times 10^{-6} \times \frac{A}{(\alpha+\beta)^{\frac{12}{2}}[\alpha+\beta(\mu+1)]^{3 / 2}} \\
& \mu=\frac{2 \pi \alpha n}{\log _{\epsilon} \frac{1}{2 \pi r n}} \\
& I=2.34 \times 10^{-6} \frac{A}{(\alpha+\beta)^{3 / 2}}\left[\frac{E_{p}+\mu+E_{0}}{\alpha+\beta(\mu+1)}\right]^{36}
\end{aligned}
$$

where $I=$ total space current in amperes
$\alpha=$ distance from plate to grid in centimeters
$\beta=$ distance from grid to filament in centimeters
$n=$ number of grid wires per centimeter length of the structure
$r=$ radius of the grid wires
$A=$ effective plate area
32. Concentric Elements. For a structure with a eylindrical anode and grid and a coaxial strand of filament,

$$
\begin{aligned}
& k=14.7 \times 10 \frac{L R_{p}^{1 / q}}{\left\lfloor\left(R_{p}-R_{\theta}\right)+R_{q}(\mu+1)\right]^{3 / 2}} \\
& \mu=\frac{2 \pi n R_{0}^{2}\left(\frac{1}{R_{v}}-\frac{1}{R_{p}}\right)}{\log _{q} \frac{1}{2 \pi r n}} \\
& I=14.7 \times 10^{-6} \frac{L}{R_{p}}\left[\frac{\left(R_{p}-R_{f}\right)\left(E_{p}+\mu E_{a}\right)}{\left(R_{p}-R_{f}\right)+\left(R_{o}-R_{f}\right)(\mu+1)}\right]^{3,}
\end{aligned}
$$

If $R$, is very much smaller than $R_{p}$ and $R_{p}$ the equation can be written approximately

$$
I=14.7 \times 10^{-6} L_{2} R_{p}{ }^{16[ }\left[\frac{E_{p}+\mu E_{o}}{\left(R_{p}-R_{o}\right)+K_{v}(\mu+1)}\right]^{3!}
$$

where $L=$ length of the structure in centimeters
$R_{s}=$ radius of the filament in centimeters
$R_{p}=$ radius of the plate in centimeters
$R_{\sigma}=$ radius of the grid in centimeters
The above relations are useful in the design of the structures. The $k$ should be determined for the type of tube structure. The $\mu$ and the current-voltage characteristios remain the same if all dimensions are changed proportionately. The plate current equals the space current when the grid current is zero.
33. Amplification Factor. The amplification factor is a measure of the effectiveness of the grid voltage relative to that of the plate voltage upon the plate eurrent. It is the ratio of the change in plate voltage to a change in grid voltage in the opposite polarity, under the eondition that the plate current remains unchanged. As most precisely used,
the term refers to infinitesimal changes as indicated by the defining equation:

$$
\mu=-\frac{\partial c_{p}}{\partial \varphi_{\theta}} ; i_{p}=\text { constant }
$$

The amplification fater is indieated by the horizontal spacing of the plate characteristie or mutual chatacteristic curves of the tube. Since horizontal lines represent constant plate current the plate voltage spacing divided tay the grid voltage suateing of the eurve is the amplifeation factor. The amplification factor of threce-clectrode tubes is noarly constant for a constant plate current. In the region near zero plate current or near the full emission current of the filament, the amplification factor changes greatly with voltage. It is necessary to use smaller increments in regions where the amplifieation factor changes rapidly.
34. Measurement of Amplification Factor. The amplification factor is measured conveniently with an alternating-eurrent hridge cireuit shown sehematically in Fig, 15. 'The resistance $R_{1}$ is adjusted for zero sound in the phones. The amplification factor is given by

$$
=\frac{R_{2}}{R_{1}}
$$

Due to tuhe capacities or other reactanees in the circuit it is usually neerssary to provide a means for adjusting the phase of the grid and plate a-e voltages for complete balancing out of the sound in the phones. This phase batance is secured with condenser $C$ in Fig. 15. The d-e voltage drop in $R_{2}$ should be allowed for when setting the plate voltage. The adjustable ground cometion is convenient in eliminating the unbalancing effects of capacity to ground. The a-c


Fig. 15.-Measurement of amplification factor. tone voltage should be as small as practical. The phones can be preceded by a suitable amplifier.

## CALCULATION OF THE AMPLIFICATION FACTOR

35. Plane-parallel Electrodes. When the diameter of the grid wires is large compared to their spacing the formula


Fic. 16.-Tube with plane-parallel electrodes. derived hy Vodges and Elder is most aceurate. Figure 16 shows a cross section of the electrodes. The amplification factor is

$$
\mu=\left[\frac{2 \pi n s-\log _{\epsilon} 3 \underline{1}\left(\epsilon^{2 \pi n r}+\epsilon^{-2 \pi n r}\right)}{\log _{\epsilon}\left(\epsilon^{2 \pi n r}+\epsilon^{-i \pi n r}\right)-\log _{\epsilon}\left(\epsilon^{2 \pi n r}-\epsilon^{-2 \pi n r}\right)}\right]
$$

where $r=$ radius of the grid wire in centimeters
$n=$ number of grid wires per rentimeter length of structure
$x=$ distance from plate to grid in centimeters
When the diameter of the grid wires is small rompared to their spacing the equation above simplifies to

$$
\mu=\frac{2 \pi n s}{\log _{\epsilon}(1 / 2 \pi n r)}
$$

36. Concentric Cylindrical Electrodes. The amplification factor of the cylindrical structure shown in lig. 17 is given by


Fig. 17.

$$
\mu=\frac{2 \pi n R_{g} \log _{\epsilon}\left(R_{p} / R_{g}\right)-\log _{\epsilon} 36\left(\epsilon^{2 \pi n r}+\epsilon^{-2 \pi n r}\right)}{\log _{\epsilon}\left(\epsilon^{: \pi n r}+\epsilon 2 \pi n r\right)-\log _{\epsilon}\left(\epsilon^{2 \pi n r}-\epsilon^{-2 \pi n r}\right)}
$$

where $h_{p}=$ radins of the anode in contimeters
$R_{g}=$ radius of the grid in centimeters
$r=$ radius of the grid wires in centimeters
$n=$ number of grid wires (turns) per centimeter length of structure.

When the diameter of the grid wires is small compared with their sparing the equation simplifies to

$$
\mu=\frac{2 n R g \log _{\varepsilon}\left(R_{p} / R_{g}\right)}{\log _{\varepsilon}\left(\frac{1}{2 \pi n r}\right)}
$$

37. Plate Resistance and Plate Conductance. 'The plate resistance $r_{p}$ is defined by the equation,

$$
r_{p}=\frac{1}{\aleph_{p}}=\frac{\partial r_{p}}{\partial i_{p}}
$$

It is the reciprocal of the plate conductance $S_{p}$.
The plate conductance is the ratio of the change in plate current to the change in plate voltage producing it, all other electrode voltages being maintamed eonstant. As most precisoly used, the term refers to infinitesimal changes as indicated by the defining equation

$$
S_{p}=\frac{\partial i_{p}}{\partial e_{p}}
$$

The plate conductance is given by the slope of the plate-characteristic curves of the tube. When readings are taken on the eharacteristic enrves the current and voltage ineremonts should be made as small as convenient. The plate resistane is the reciprocal slope of the platecharacteristic curve. For example, at the point on the plate characteristics corresponding to the d-c operating voltages, the plate current rises 1.0 ma when the plate voltage increases 10 volis. The conductance is then
$S_{p}=$

$$
\frac{0.001}{10}=0.0001 \mathrm{mho}=100 \text { micromhos }
$$

The plate resistance is

$$
r_{p}=\frac{10 .}{0.001}=10,000, o \mathrm{hms}
$$



Fig. 18.-Measurement of plate resistance.

The numerical value of the plate resistance changes with the applied d-e operating voltages.
38. Measurement of the Plate Resistance. The plate resistance or plate conductance can be measured directly with the aid of a bridge
type of cireuit. Figure 18 illustrates a circuit suitable for this purpose. When the bridge is balanced for minimum sound in the phones the plate resistance of the tube is

$$
r_{p}=\frac{R_{2} R_{3}}{R_{1}}
$$

The alternating voltage (tone) applied to the bridge should be as small as praetical. The use of an amplifier preceding the phones increases the sensitivity and accuracy of these measurements. The effects of small capacities are sometimes troublesome in eireuits of this type. The electrode capacity of the tube causes some phase shift resulting in a poor balance. The phase balance variometer balances the small out-of-phase component permitting a closer adjustment to the null point. The capacity to ground can be balanced by suitable shielding or by means of a Wagner carth connection.
39. Calculation of the Plate Resistance. The plate resistance of a tube depends upon the operating yoltages as well as the structural parameters. It is within certain limits inversely proportional to the area of the anote and also to the area of the rathode. Decreasing the distance between filament and plate decreases the plate resistance. Since it is desirable to make ( $\mu / r_{p}$ ) large, the grid to plate distance controlling $\mu$ shoukd not be deereased too much. This requires that the grid be placed near the filament to lower the plate resistanee. When the grid is too near to the filament it will be heated. small amounts of grid emission current resulting from too high grid temperature have an objectionable effect on the operation of the tube.

The plate resistance of a tube may be calculated from the plate-current plate-voltage relation. For a structure with plane-parallel elements in which the filament is symmetrically placed between grids and plates the plate resistance is,

$$
r_{p}=\frac{(\alpha+\beta)^{3 / 2}[\alpha+\beta(\mu+1)]^{3 / 2}}{A\left(E_{p}+\mu E_{\psi}\right)^{1 / 2}} \times 10^{6}
$$

where $r_{p}=$ plate resistance in ohns
$\alpha=$ distance from plate to grid in centimeters
$\beta=$ distance from grid to filament in centimeters
$\mu=$ amplification fartor
$E_{p}=$ plate voltage
$E_{u}=$ grid voltage
$A=$ a constant depending on the eathode area, or anode area, and type of structure. For typical filament-type tubes $A=1.8 L$, where $L$ is the length of the filament in eentimeters.

The grid voltage $E_{o}$ is conveniently made zero and the plate voltage taken equal to the value giving normal plate current.
40. Mutual Conductance. The mutual conductance (or grid-plate transconductance) of a tube is defined by the relation

$$
S_{m}=S_{g p}=\frac{\partial i_{p}}{\partial e_{o}}
$$

It is the ratio of the change in plate current to the change in grid voltage, under the condition that all other voltages remain constant. It is also
equal to the ratio of the amplifieation factor $\mu$ to the plate resistance $r_{p}$ of the tube:

$$
S_{m}=\frac{\mu}{r_{p}}
$$

The mutual conductance determines the plate current change per volt applied to the grid. It is evident that this is the most important characteristic of a tube. It is a figure of merit of the tube and enters into the ealeulations of the performance of the tube. It is a direct measure of the amplifying properties of the tube operating into a load impedance which is small with respeet to the plate resistanee.

With high impedanee loads the amplifieation factor and plate resistance are eonsidered separately in dotemming the tube performanec. The


Fig. 19.-Measurement of mutual conductanre. mutual conductane mat be determined graphieally from the slope of the mutual charactoristic curve of the tuble. Direet measurements are usually most convenient when many readings are required. The bridge circuit desmibed in the following seetion balanees readily with either three-eleotrode or sereen-grid tubes.
41. Measurement of Mutual Conductance. The mutual conductance can he measured direetly in the circuat shown in ligg. 19. The resistaneo $R_{1}$ and the phase halanee Care adjusted until the sound in the phomes is balaneod out. The mutual condurtance is given by

$$
s_{n_{2}}=\frac{R_{1}}{R_{2} R_{3}}\left(1+\frac{R_{3}}{r_{n}}\right)=\frac{R_{1}}{R_{2} R_{3}} \text { (approx.) }
$$

42. Calculation of the Mutual Conductance. The nutual eonduetance $S_{m}$ is equal to the ratio of the amplifieation factor $\mu$ to the plate resistance $r_{p}$. Each of these factors can be calculated with a fair degree of accurater for certain typos of structures. The amplifation factor depends almost entirely upon the structure of the grid and the grid-phate distance. The plate resistance depenels upon the amplifieation faretor, the surface areas of the cathode and anode, the grid-filament distanere, and the appliod d-c oproting voltages, The mutual conductanee depends upon all of these factors.
43. Grid-current Coefficients. When the grid of a tube is not biased with sufficient negative voltage and the tube operation extends into the positive range of grid volage, an aleetron current will flow to the grid. Inder these conditions the current in the grid cireuit may change the effective grid voltage. When it is desirable to inchude these offerts in determining the performane of the tube the eoffiecients relative to the grid current are useful.
'The grid comductrace $N_{0}$, or its reoiprocal the grid resistance $r_{a}$, is defined by the equation

$$
\begin{aligned}
\aleph_{v v} \equiv \aleph_{\theta} & =\frac{\partial i_{0}}{\partial \varphi_{0}} \\
r_{v} & =1 \\
心_{0} & =\frac{\partial c_{v}}{\partial i_{0}}
\end{aligned}
$$

The grid conductance $S_{g}$ is the ratio of the clange in the grid current to the ehange in grid voltage producing it, other electrode potentials being maintained constant. As most precisely used the term refers to infinitesimal changes, as indicated by the defining equation.
The coefficient showing the relative effectiveness of grid and plate voltages on the grid eurrent has been variously termed reflex factor, inverse amplifieation factor, and inverse factor. Recent I.R.E. standards term this coofficient the plate-grid mu factor. It is the ratio of the change in grid voltage to the elange in plate voltage required to maintain a constant value of grid current. As most precisely used the term refers to infinitesimal changes as indieated hy the ilofining equation

$$
\mu_{g a p} \equiv \mu_{n}=-\frac{\partial \rho_{n}}{\partial \epsilon_{p}} ; i_{g}=\mathrm{constant}
$$

The coefficient showing the effect of plate voltage on the grid current has been termed inverse mutual comductance, or the plate-grid transemiductance (note that this is not the grid-plate transconductance which is the mutnal conductance. The difference in these terms can be easily remembered, since the words grid and plate appear in the same order as the direction of action in the tube). It is the ratio of the change in grid current to the change in phate voltage producing it, all other clect trode voltages being maintained constant. As most precisely used the term refers to infinitesimal changes, as indicated by the defining equation

$$
S_{g_{p}} \equiv S_{n}=\frac{\partial i_{g}}{\partial r_{p}}
$$

The grid-eurrent coefficients of the tube may he determined graphically from the static characteristic curves or measured direetly in bridge circuits similar to those employed for the plate current coefficients.
44. Higher-order Coefficients. The tube coefficients in most common use are the amplification factor, plate resistance or conductance, and mutual conductance. These are the first-order plate-current coefficients of a triode. They determine the amplifying properties of the tube and enter into nearly all applicetions of the tube.

When the tube is operated so that detertion, modulation, distortion, eross modulation, frequeney conversion, and such effects are of importance, it is necessary to use second-order, third-order, and higher-order coefficients in acdition to the first-orler conffieients to determine the performance of the tube. For example, in the case of plate circuit detertion the tube eoffieient determining this cffeet is the second derivative of the plate current with respect to the grid voltage. The first derivative, or first-order coefficient, is the mutual conductance which is

$$
\frac{\partial i_{p}}{\partial e_{g}}=s_{m}
$$

The second derivative, or second-order coefficient, is

$$
\frac{\partial^{2} i_{p}}{\partial e_{g}^{2}}=\frac{\partial S_{m}}{\partial e_{\sigma}}
$$

The d-c plate-cu-rent change with signal voltage and second-harmonic distortion are also determined by the second-order coefficient.

Cross-modulation and modulation distortion in the r-f stages of a receiver are determined by the thirl-order coefficient

$$
\frac{\partial^{3} i_{p}}{\partial e_{0}^{3}}=\frac{\partial^{2} S_{m}}{\partial e_{0}^{2}}
$$

The third-harmonic distortion in a tube is also determined by the third-


Fig. order coofficient. The fifth-harmonic distortion would be determined by the fifth-order coefficient,

$$
\left(\frac{\partial^{5} i_{p}}{\partial e_{0}^{5}}\right)
$$

Higher-order coeffieients are usually obtained graphically from the current-voltage characteristics of the tube. When the analytical expression for the current is known the coefficients may be obtained by differentiation. The measurement of an effect depending principally on one coefficient may be usid as a measure of the coefficient.
45. Mechanism of the Three-electrode Amplifier. Figure 20 represents a triode connected to a suitable souree of $A, B$, and $C$ voltage. A meter $I_{p}$ is connected in the plate cireuit of the tube for reading the plate current. A potentiometer is eonnected across the $C$ voltage. The grid voltage $E_{0}$ will be changed as the slider is changed on the potentiometer. If the slide moves foward the positive, the plate current increases; if toward the negative, the plate current decreases. The plate eurrents corresponding to different grid voltages are plotted as in curve 1 in Fig. 21. This is a mutual characteristie curve of the tube.
suppose that the slide is variod in some definite manner. For example, start to count time from zoro on curve 2 in Fig. 21. With the slider initially at 5 volts the plate current is 3 ma. Move the slider steadily in the negative direction, until say, in three seconds the grid voltage is 9 volts. The plate current will be 0.5 ma . Now start the slider in the positive direction, moving at the same steady rate. At the end of 6 see. the slider has returned to its original position. Continuing the mo-


Fin. 21. - Merhanism of amplifiration. tion of the slider in the positive direction at the end of 9 sec. the grid voltage is -1.0 volt and the plate current is 6.5 ma . If the slider is started in the negative direction at the same rate, the grid voltage will be -5 volts at the end of 12 see., thus completing the cyele.

Curve 3 shows the plate-current change corresponding to the gridvoltage change with time. If the slider is connected to a mechanism arranged to continue this motion, the plate current would contain an alternating current of 1 eyele in 12 seconds or 5 eycles per minute. The waveform of the a.c. will he as shown in curve 3 . It is superimposed upon the d-e plate current.

The positive and negative peaks of the plate current as measured from the initial 3 -ma point are not equal although the grid-voltage peaks are
equal. In this case the plate current is not a faithful reproduction of the input voltage.

If a resistance is connected in the plate circuit, the cffective plate voltage is redued as the plate emrent incrases. The plate current at $E_{0}$ equals -5 volts ean be brought to the initial 3 -ma point by a suitable inerease in the $B$ voltage to compensate for the voltage lost in the resistance. Starting with the same initial 3-ma point, the resulting characteristic with a resistance load is shown by the curve 4 in Fig. 21. The same alternating grid-voltage curve 2 produces the plate current curve 5. The positive and negative plate current poaks of curve 5 as measured from the initial point are almost identical. The distortion has been eliminated and the voltage developed across the resistance can be used to operate a suceeding stage of amplification or other device.

The potentiometer and slider of Fig, 20 can be replaced with a fixed grid-hias voltage and an a-e voltage. The tube will operate as deseribed above exeept that a-c cyeles usually oceur so rapidly that the plate current (d.e.) meter cannot follow them. A meter showing the effective value ( $\mathrm{r}-\mathrm{m}-\mathrm{s}$ ) of the a.ce, can be used to measure the current. The alternating enrent ean be heard when eonneeted to a loud-speaker, if it is within the audible range of frequencies. The waveform of the are. can be seen when connected to an oseilhograph.
46. Four-electrode Tubes. The four-electrode tube is known as a tetrode. A tube having a cathode, two grids, and a phate such as the sereen-grid tetrode is of this type. Tubes having two grids may be classified aceording to their use as sereen grid, space-eharge grid, or double-function tubes.
47. Screen-grid Tetrode. The sereen-grid tetrode is designed especially for use ats an r-f amplificr. The grid-plate eapacitance is extremely small in this tube so that feedback through the tube is redured to al low value eliminating the neressity for nentralizing. The unusual characteristies of this tube give higher voltage amplification than can be obtained with three-eleetrode tubers.

The construction of this tube is shown in


Flti. 22.-Nitructure of screen-grid tube. Fig. 22. When connected in as sereen-grid cireuit the inner grid (No. 1 grid) is the control electrode. The sereen grid (No. 2 grid) is between the inner grid and plate. The screen grid is also extended to shield the inner grid from the outer surface of the plate.

When the screen grid is effectively grounded the resultant shielding reduces the eapacitance between control grid and plate to a small fraction of the value in a three-electrode tube. For example the grid-plate capacitance in a type $\mathrm{C}-327$ triode is $3.3 \mu \mu \mathrm{f}$. The eorresponding control grid-phate capacitance in a type ( -324 totrode is less than $0.01 \mu \mu$. The sereen-grid tube should be surrounded with a grounded metal shield to avoid stray coupling around the outside of the electrodes. The control-grid eireuit should be shieded from the plate cirenit to climinate hoth electrostatic and electromagnetic coupling between coils, condensers, connecting leads, etc.

The fundamental eireuit arrangement for a sereen-grid tube is shown in Fig. 23.

The screen-grid olectrode is connered directly to a positive voltage

l'19, 23.-C'ircuit for screcu-grid tube. which may be a tap on the plate-voltage supply. The plate voltage should at all times be greater than the soren-grid voltage. The imput eireuit is connerted to the inner or control grid, and the output circuit is connereted to the plate in the usual way. The soreengrid is effertively at ground potential for the alternating signal currents.

The intermal action in a sereon-grid tube may be illustrated by comparison with a triode. In the triode the plate current. depends upon the grid and plate voltages, the grid voltage having a greater effeet than the plate voltage.

In the sermen-grid tube the plate current depends prineipally upon the voltages of the two grids. The influenee of the plate voltage oin the plate current is extremely small due to the presence of the two intervening grids. 'The screen grid has nearly the same cffere on the current as the plate of the three-electrode tube. The clectrons are attracted by the screen grid. About 75 por cent of electrons pass through the screeng grid and are drawn by the higher plate potential to the plate. The plate acts as a collector of the eloctrons which have passed the sereen.
since the plate voltage has an extremoly small affert on the phate carrent, the plate resistance of the tube is large. In triodes large plate resistance is aceompanied by low mutual conductanere. In the sereengrid tube the mutual comductance is determined mainly by the voltages of the two grids. The mutual condurtane remains nearly the same ans a triogle having the same filament and control grid.

Since the phate resistance of the serem-grit tube emb be made extremely high without reduring the mutual conductance the amplifieation factor Which is equal to the product of mutual conductane and plate resistance is also high.

The equivalent cirenit of the sereen-grid tube is similar to that for a triode. The sereen grid appliess a fixed polarizing voltage to the tube, but does not take part in the a-c operation.

The voltage amplifieation is highor with a sereen-grid tuhe than with a triodo having the same mutual conductance. The triode has a low plate resistance. Connecting a load in plate cirenit reduees the current flow. The sereen-grid tuhe has a high plate resistanere. The sane load connected to the plate cireuit will have little effeet on the current. The output voltage is equal to the product of current and load impedance and is thus higher for the sereon-grid tube. For example, eonsider a triode with mutual conduetance 1,000 micromhos, amplifieation factor 10 , and plate resistaner 10,(0)00 ohms. The voltage amplification ohtained with a 50,000 -ohm load would he

$$
A v=\frac{\mu R_{p}}{r_{p}+R_{p}}=\left(\frac{10 \times 50,000}{10,000}+50,0000\right)=8.3
$$

A corresponding sereen-grid tube having a mutual conductance of 1,000 mieromhos has an amplification factor of 400 and a plate resistance of

400,000 ohms. The voltage amplifieation obtained with the same load would be

$$
A v=\left(\frac{400 \times 50,000}{400,000)+50,(000}\right)=44.4
$$

48. Characteristics of the Screengrid Tube. Figure 24 shows the mutual charaptoristics of a C-324 tube. The plate eurrent changes with control-grid voltage in a manner similar to the three-electrode tule. The plate voltage effect on these curves is, however, small compared to this effect in a triode. ligure 25 shows the plate characteristics of a C-324 tube. Operation is normally in the region where the curves are inarly parallel to the voltage axis. If the eurves were perfertly parallel to the voltage axis the plate resistance would be infinite. As the plate voltage is decreased below the sereen-grid voltage the curves dip due to secondary enission from the plate.


Fic. 24.- Mutual characteristic of sereen-grid tube. This part of the curves is not used in the normal operation.

The dynamic characteristics of the sereen-grid tube of most importance when the screen grid is cffertively grounded are the amplification factor $\mu$, the plate resistance $r_{p}$, and the mutual condurtance $\mathrm{sm}_{m}$.


F゙w. 25.-Skreen-grid! tube phate characteristic.
Figure 26 shows the amplifieation fartor, plate resistaner, amol mutual conductance of a C- 324 tube ploted against control-grid negative-has voltage and in Fig. 27 plotted against plate voltage.
49. Low-distortion r-f Tetrode. A type of sereen-grid r-f amplifier tube especially designed to permit eontrol of the amplification by varying the voltage on the control grid is commonly known as the "variable-mn" or "super-control" type. Tubes of this type, such as the types 551,

C-335, and RCA-235, are used in r-f, i-f amplifier stages and in the first detector or modulator stage of superheterodynes.

Tubes of this type differ from the type 24 sereen-grid tube in the way in which the plate current is decreased as the control-grid negative-hias voltage is increased. The plate current of a type 24 sereen-grid tube approaches cut-off when approximately -9.0 volts bias is applied.


Fig. 26.-Characteristics of a-c screon-grid tube.
With the same plate voltage (250) and screen-grid voltage (90) the type 35 requires -40 volts bias to approximate plate current cut-off. At full gain both types operate with -3.0 volts hias and have a mutual conductance of 1,050 micromhos. The performance of the two types is similar at these voltages. To control volume by means of changing


F'as. 27. Characteristics vs. plate voltage.
the r-f amplification a tube of the type 35 is rectuired if a large range of control is desired without distortion of the signal.

If the peaks of the signal swing beyond cut-off or the eurvature of the mutual conductance characteristic is great the signal modalation will be distorted. Interfering signals effective on the grid of the first tube may also produce cross-modulation on the carrier of the desired signal when the curvature of the mutual characteristic is great. To eliminate these

Operating Voltages and Approximate Characteristics of Resistance-coupled Amplifier Circlits

Type C-324

| Connection | Filament, volts | Plate supply, volts | Series plateluad resistor | Inner grid, volts | Outer grid, volts | Plate current, milliamperes | $G_{m}$ | Plate resistance, megohms | Alu | Voltage anplification |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Screen grid | 2.5 | 180 | 100,000 | $-1.0$ | $+25$ | 0.5 | 500 | 2.0 | 1,000 | 47 |
| Screen prid | 2.5 | 250 | 200,000 | $-1.0$ | +25 | 0.5 | 500 | 2.0 | 1,000 | 91 |
| Screen-grid. | 2.5 | 300 | 100,000 | $-1.5$ | +45 | 1.3 | 750 | 1.5 | 1,100 | 68 |
| Space-charge grid | 2.5 | 180 | 100,000 | $+15$ | $-0.75$ | 0.3 | 800 | 0.3 | 230 | 57 |
| Space-charge grid | 2.5 | 180 | 250,000 | $+15$ | $-0.73$ | 0.2 | 700 | 0.3 | 230 | 104 |
| Space-charge grid. | 2.5 | 250 | 250,000 | $+15$ | $-0.75$ | 0.4 | 1,000 | 0.2 | 230 | 128 |

The grid-circuit d-c resistance should he kept as small as practicahle to avoid loss of bias when a small gas current fows in the grid circuit. Such an effect is usually cumulative when the bias voltage is fixed but will be partially compensated if the tube is bissed by the plate current through a resistor.

The use of a $0.2 \bar{j}-\mathrm{meg}$ ohm grid resistor and a $0.1-\mu \mathrm{f}$ coupling condenser should be astiafactory.
The space-charge grid current is 12.0 ma .
effeets which are most troublesome at low values of mutual conductance or near plate current cut－off the characteristics of the 35 －type tube have no abrupt curvature and the approach to cutoff is gradual．The mutual ronductance varies from 1,050 to 15 mieromhos as the control grid bias is variod between－3．0 and -40 volts．A signal of 10 volts peak will not swing beyond eut－off at the 15 －micromho condition．The


Fita．2x．Sorace－ rharge grid aomec－ tion． range of control is 70 to 1 per stage．In two stages the range is 4,900 to 1 ．＇The use of the type 35 tube in one r－f，one i－f and a small control in the first detector of a superheterodyne recoiver permits a range of control greater than 10,000 to 1.

The trpe 24 tube has a usoful ramge of rontrol of about 5 to 1 ．A greator range causos distor－ tion．This thabe is superior to the type 3.5 as a detector．＇The sharply rising characteristio of the 24 tube is essential to good doteretor sonsitivity and firlelitw．

50．Space－charge Grid Tetrode．A tuhe with two grids connorterl an a space－charge－grid tubo，has the inner grid commeeted to a small positive voltage to roduce the spaco charge surrounding the cathode ＇The outer grid is used as the control eleetrode．The tulbe porforms exactly as a triode exerept that the muthal conductanere is higher due to the reduction in space wharge．The space－eharge grid is affective in increasing the mutual condurtane from three to four tines the value


Fiti．29．－Characteristirs of space－charge－grid tube．
ohtained in the same tube without the space－charge grid．Figure 28 shows the schematic cireuit of a space－charge grid totrode．When a sereen－grid tuhe is used for this purpose the sereen－grid electrode becomes the control electrode．Figure 29 shows the plate current－plate voltage earves of the CX－322 tube eonnected as a spare－charge－grial tube． Figure 30 shows the plate eurrent and spare－charge－grid current versus space－charge－grid voltage for the（ご－322 tube．

51．Five－electrode Tubes．The five－electrode tube is known as a pentode．＇Tubes of this type have a filament or cathode，an inner or first grid，a serond grid，and an outer or third grid．The plate or anode surrounds the outer grid．

The five-electrode tube like the tetrode is usually connected either as a sereen-grid amplifier or ans a space-charge-grid amplifier. The space-charge-grid amplifier is a sereen-gride cirenit with a space-charge grid.

Power output pentodes sueh as ( -347 and ('-3333 are designed to operate as sereen-grid tubes. In these tubes the control grid (No. I grid)


Fig. 30.-Characteristics of space-charge-grid tube as function of grid voltage.
surrounds the filament. A negative bias voltage and the signal input voltage are connected to the control grid. The serem grid (No. 2 grid) surrounds the control grid. A positive voltage, which for a pentode may equal the plate voltage, is comerted to the sereen grid. The sereen grid is cffectively grounded to the cathode for a.e. (irid 3 which is known as the suppressor grid is leeated between the sereengrid and the plate. It is connected to the filament inside of the tube. The purpose of this grid is to suppress secondary emission efferts.

Secondary emission clectrons oreur at the plate of a tube due to the impact of the prinary electrons from the cathode. 'The secondary eleetrons are accelerated toward the point of highest positive potential. In a triole they are returned to the plate. In a tetrode the secondary electrons are drawn to the sereen grid when the plate voltage is below the sereen-grid voltage. This is the reason for the "dynatron kink" in the plate eurrent-plate voltage curves of a tetrode screcn-grid tube.

To operate a scren-grid type tube as a power amplifier requires a moderately high sereen-grid voltage. The use of a third grid between the plate and sereengrid is effective in preventing the secondary emission of the plate from being attracted to the sereen grid. The secondary electrons are returned to the plate at all plate voltages. For this reason a relatively low plate voltage, usually equal to the sereen-grid voltage, can be used. Almost the entire range of the pate voltage-plate current characteristies of the tube can be utilized to produce power output.

The space-charge grid pentode hats the immer grid (No. 1 grid) connected to a small positive voltage to reduce the negative space charge surrounding the cathode. 'The No. 2 grid is the control gricl. It is connerted to a negative bias voltage and to the signal imput voltage. 'lhe third grid is the sereen grid located between control grid and phate. The sereen grid is connected to a positive voltage and is effectively groumded to the eathode for a.e. The plate is next to the sereen grid. When the tube is
used as an r-f amplifier, the screen grid is extended over the outside of the plate to reduce the capacity between control grid and plate.
62. Power-output Pentode. The output pentode is a type of sereengrid tube designed for relatively large power


Fig. 31.-Connections of pentode for power-output tube. output. The schematic eirenit for this tube is shown in Fig. 31. The control grid is ncarest the filament, the screen grid next, and the suppressor grid is between sereen grid and plate. For maximum output the sereen grid and plate are operated at the maximum rated voltage, the same voltage being applied to screen grid and plate. The control grid is biased with a nogative voltage and operated similar to other types of amplifier tubes. The suppressor grid does not enter into the external circuit. It is connected to the center of the filament inside the tube. The socket connections are shown in Fig. 32.

The plate-characteristic curves of a type C-347 pentocle power-output tube are shown in Fig. 33. The curves are similar to those ohtained with other types of screen-grid tubes, except for the elimination of the kink at low plate voltages. This tube is rated at 250 volts maximum on the plate and screen grid, 16.5 volts negative hias on the control grid, and 2.5 volts a.e. on the filament. When d.c. is used on the filament and the bias voltage is eonnected to the negative filament terminal the rated bias voltage should be decreased


Fig. 32.-Socket connections of pentode. by one-half, the filament voltage making it 15.25 volts. The curves of Fig. 33 were obtained with d-e filament voltage. The intersection of the curve for 15.25 volts bias with 250 plate volts represents the operating point. A signal on the control grid


Fig. 33.-Load characteristic of C-347 pentode.
with a 15.25 -volts peak would swing the control from zero to -30.5 volts. The plate eurrent would increase to 75 . ma and decrease to 3.0 ma, the effective voltage on the plate remaining constant if the load
impedance in the plate cireuit is zero. Minimum distortion occurs with a load impedance of 7,000 ohms. Drawing a line through the operating point representing a voltage-to-current ratio of 7,000 ohms shows that the plate current will swing from 58.5 ma to 5.2 ma and the effective plate voltage will swing from 65 volts to 434 volts.

Calculation of l'over Output and Distortion. 'To cealculate the power output and distortion draw a line on the $I_{p}-E_{p}$ characteristie curves representing the load resistance. The line is drawn through the operating point with the reciprocal slope (voltage to eurrent ratio) equal to the resistance of the load.

A pure sine wave (or cosine wave) signal voltage is assumed to be effective on the grid. At certain values of bias voltage $E_{c}$ corresponding to selected points on the signal voltage wave, the plate current is noted. With these values of plate current the power output and distortion are ealeulated as shown by the following example for the type C-347 tube.

$$
\begin{array}{ll}
E_{c}=0 & I_{\text {max. }}=.0585 \\
E_{c}=.293 L^{2}=-4.47 & I_{x}=.527 \\
E_{c}=-15.25 & I_{p o}=.0320 \\
E_{c}=1.707 E=-26.03 & I_{y}=.007 \\
E_{c}=2 E & =-30.50
\end{array}
$$

Statie operating point is $E_{B}=E_{c \Omega}=250$ volts, $E_{c 1}=-15.25$ volts, $E_{f}=2.5$ volts d.e., $I_{p o}=32.0 \mathrm{ma}$. Load resistance $=\mathbf{7}, 000$ ohms. The plate eurrent eorresponding to values of hias voltage not shown on the $I_{p}-E_{p}$ curves can be obtained by plotting a curve of the known values of $I_{p}$ vs. $E_{\mathrm{r}}$ from which intermediate points may be read.

$$
\begin{aligned}
& e_{g}=E \cos \omega t \\
& i_{p}=I_{0}+I_{1} \cos \omega t+I_{2} \cos 2 \omega t+I_{3} \cos 3 \omega t \\
& I_{0}=+1 / 8\left[I_{\max .}+I_{\text {min. }}+2\left(I_{x}+I_{p o}+I_{y}\right)\right] \\
& I_{1}=+1 / \sqrt{4}\left[I_{\text {max. }}-I_{\text {min. }}+\sqrt{2}\left(I_{x}-I_{y}\right)\right] \\
& =1 / 4[.0585-.0052+1.414(.0527-.0107)]=.0282 \\
& I_{2}=+1 / 4\left[I_{\max .}+I_{\min .}-2 I_{p u}\right] \\
& =1 / 4[.0585+.0052-2 \times .0320]=-.00007 \\
& I_{3}=+1 / 4\left[I_{\text {max. }}-I_{\text {min. }}-\sqrt{ } 2\left(I_{x}-I_{p}\right)\right] \\
& =1 / 4[.0585-.0052-1.414(.0527-.0107)]=-.0015
\end{aligned}
$$

Power output $\quad=1 / 2 I_{1}{ }^{2} R=1 / 2(.0282)^{2} \times 7,000=2.77$
watts
Pereentage serond harmonic $=\frac{I_{2}}{I_{1}} \times 100$ per cent $=\frac{.00007}{.0282} \times 100$
pereent $=0.25$ per cent
Pereentage third harmonic $=\frac{I_{3}}{I_{1}} \times 100$ per eent $=\frac{.0015}{.0282} \times 100$

$$
\text { per cent }=5.3 \text { per cent }
$$

The power output and distortion with various load impedances are shown in Fig. 34. The second harmonic distortion is a minimum near the rated $7,000-\mathrm{ohm}$. load. The harmonie distortion increases with the load. The total distortion is the veetor sum of the seeond and third harmonies, since the magnitude of the higher-frequency components is small. The power output for minimum distortion is near the maximum obtainable.
53. Pentode Compared to Triode as Power-output Tube. Some of the advantages and disadvantages of the pentode power-ontput tube eompared to the triode power-output


Load Resistance, ohms
Fus. 34. fube are:

1. Higher effieiency is ohtaned with a pentode. A larger percentage of the $B$ power can be converted into undistorted output.
2. Power sensitivity. The amplifieation is much higher than it is with equivalent trionles.
3. The pentode requires less $B$ voltage for a given pownor output.
4. The load impelanee must be maintained eonstant, with the perntode for good quality. Iny load imperamer above twice the fabe resistance gives good quality with the triode.
5. The high-frequency power output is greater with the pentode tube.
6. Better filtaring is required with the pentorle due to the higher amplification.

## 54. Suppressor R-f Pentode.

 Advantages of the pentode trepe of tube, in which secondary cmission is prevented be a suppressor grid connered inside the tube to the eathote, have been applied to the sereen-grid type of tube. The tube is designed for amplifiers working at radio frequencies, intermediate frequencies, or first detectors in superheterodynes.The tuthe is effertive in roduring eross modulation and modulation distortion over the range of received signals. The suppressor grid, situated between plate and screen grid, climinates secondary emission which otherwise limits the voltage swing permissible in sereen-grid tubes particularly if operated with low plate voitages, $i, e^{\prime}$, at a plate voltage nearly equal to the sereen grid.

Characteristics of RCA-239

| lleater voltage, d.c |  |  | 6.3 |
| :---: | :---: | :---: | :---: |
| lleater current, amperas |  |  | 0.3 |
| Plate voltager, maximam. | 90 | 135 | 180 |
| Soreen voltage, maximum | 90 | 90 | 90 |
| (irid voltage, variable, minimum | -3 | $-3$ | $-3$ |
| Plate curreut, milliamperes. | 44 | 4.4 |  |
| screen current, milliamperes | 13 | 1.2 |  |
| Ilate resistance, ahms. | 37.).000 | 540,000 | 0.100 |
| Amplifieation factor | 360 | 5:30 | 750 |
| Mutual conductance, micromhos | 960 | 980 | 1,000 |
| ( -30 volts bias | 10 | 10 | 10 |
| Nutual conductance, micrommos, at, -40 volts bias | Very small but not zero |  |  |
| Interelectrode capacitances, microfarada | 0.007 |  |  |
| Effective grid-plate capacitance, maximum |  |  |  |
| Input caparitance, maximum. |  |  |  |
| Output caparitance, maximum. | 10 |  |  |

## INTERELECTRODE CAPACITANCE

55. Tube-equivalent Network. 'The capacitanees between the grid, plate, and filament of a triode are illustrated in Frig. 35 and also the equivalent mosh network. These are the direct intereleedrode rapacitances of the tube. In general, an $n$-electrode tube has $N$ direct interclertrode capareitanees, where

$$
\therefore=\frac{n}{2}(n-1)
$$

The direet interelectrode capaneitance is the standard method of sperifying the tube capacitances. It is preforred to the older methods of measure-


Fiti. 35.-Interelectrode caparity network.
ment with one clectrode floating or, between one electrode and the other cleetrodes conneeted together. luithor of these mothods leads to results Which are not indepondent of the particular arrangoment of apparatus. The direct interelectrode capacitanee is the same regardless of the type of measuring circuit. The eapacitance of the sorket and socket connertions is not inchuded. The tube is usually measured with the cathode cold. When the cathode is heated and voltages applied the eapacitane may change a small amount.

The three direct capacitances of a triode are grid-plate capacitance $\left(C_{o p}\right)$, grid-cathode capacitance $\left(C_{o f}\right)$, and plato-rathode eapacitane


Fisi. 31.-Tetrode network
( $C_{p f}$ ). The grid-plate capacitance allows enorgy fredback from the plate to the grid circuit having an important offere on the stability and input impedance. The gribleathode caparitanere and the plate-e athode caparitance shunt the input and output load impedanees having some effeet on the tuming or frequency charabeteristies.

The direct intereloctrode capacitancos of a totrode are represented in Fig. 36. 'lhe six direct capareitaners form a threo-mesh network. When the tetrode is comereted as a screm-grid tube the sereen grid $G_{2}$ is offectively grounded. The three-mesh network is redued to an equivalent single-mesh triode network. The sereen-grid cathode capmeitance ( $C_{g 2 f}$ ) is cffectively short-circuited by a large by-pass condensor. The control-grid to sercen-grid eapacitance ( $C_{0102}$ ) is in parallel with the
eontrol-grid to cathode eapacitance $\left(C_{g 1 f}\right)$. The screen-grid to plate capacitance ( $C_{02 p}$ ) is in parallel with the


Fig, 37.-Equivalent network of sureen-gric tube. plate-to-rathode capacitance ( $C_{p f}$ ). The equivalent network is shown in lig. 37.

The capacitances of a sereren-grid tube are usually stated as the maximum grid-plate capacitance ( ( ${ }_{\sigma 1 p}$ ), the average input capacitance ( $\left.C_{01 f}+C_{g 102}\right)$, and the average output capacitance ( $C_{p f}+$ $C_{62 p}$ ).
56. Measurement of Interelectrode Capacitance. The direct interelectrode eapacitance can be measured with the bridge cireuit of Fig. 38. The electrodes to be measured are connected to terminals $A B$. The remaining electrodes and any shields are comected to the ground terminal $G$.

When the bridge is balanced the capacitance is

$$
C_{A B} \equiv C_{g p}=\frac{R_{1} C}{R_{2}}
$$

The resistance $R$ corrects the phase and balances the effect of the capacitance across $R_{2}$.

Any leakage resistance $R_{A B}$ arross $C_{A B}$ will eause an error. If the leakage resistance $R_{A B}$ is known, the eapacitance ('AB is given by the relation

$$
C_{A B}=\frac{R_{1} C}{R_{2}} \cdot \sqrt{1-\frac{1}{\omega^{2}\left(\frac{R_{1} C}{R_{2}}\right)^{2} R_{A B}^{2}}}
$$

For example if $\left(R_{1} C / R_{2}\right)=5.0 \mu \mu \mathrm{f}$, the frequency is 1,000 cycles, and $R_{A B}$ is 100 megohms, the enrrection factor is approximately 0.95 and $C_{A B}=4.75 \mu \mu$.
57. Radio-frequency Method. An r-f method of measuring the direct interelectrode


Fig. 38,-Measurement of tube capacities. capacitances is shown schematically in Fig. 39. The r-f oscillator supplies sufficient voltage to cause a current through $C_{2}$ which can be measured with the ther-


Ftg. 39.-Method of measuring tube rapacities. mocouple TC. The capacitance $C_{1}$ does not affeet the measured current if the voltage $E$ is held constant. The reactance of eaparitane $C_{3}$ is high with respect to the low-resistance thermocouple. The indiesting microamneter $I$ has one side grounded. An r-f choke Land bypass condenser $C$ keep r-f currents out of the meter $I$. When the voltage $E$ and current $I$ are known the capacitance $C_{2}$ is given by

$$
C_{2}=\frac{I}{\omega \bar{E}}
$$

If a standard variable eapacitance of slightly greater range than $C_{2}$ is available, a substitution method can be used. The standard eapacitance is conneeted across $C_{2}$. It should be enclosed in a grounded shield. The small capacitanee to the shicld is in parallel with $C_{1}$ and $C_{3}$.

In use the meter reading $I$ is noted with the tube in place. The tube is then removed and the standard capacitance is increased until the same meter reading $I$ is obtained. The difference in the two readings of the standard capacitance is the value of the tube capacitance $C_{2}$. The r-f voltage $E$ should be constant. The absolute value of the voltage and current need not be known. A thernocouple with a filter and meter connected in series with a small capacitaner across the oscillator terminals can be used as the voltage indicator.
58. Direct Interelectrode Capacitances.

| Tube type |  | Average value, micromicrofarads |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Grid plate | Grid cathode | Plate cathode |
| C-11 | W1)-11 | 3.3 | 2.5 | 2.5 |
| $C X-12$ | WX-12 | 3.3 | 2.5 | $2.5$ |
| C-209 | IT-199 | 3.3 | 2.5 | $2.5$ |
| CX-299 | CX-199 | 3.3 | 2.2 | 2.5 |
| CX- 322 | UX-2.22 | 0.025 (max.) | 3.2 (input) | 12.0 (output) |
| C. -220 | $1 \mathrm{x}-120$ | 4.1 | 2.0 | 2.3 (output |
| CX-301A | UX-201. | 8.1 | 3.1 | 2.2 |
| C. -300 A | UX-200A | 8.5 | 3.2 | 2.0 |
| $C X-340$ | U.1-240 | 8.8 | 3.4 | $1.5$ |
| $\mathrm{CX}-112 \mathrm{~A}$ | $\mathrm{CX}-112 \mathrm{~A}$ | 8.1 | 4.2 | 2.1 |
| $\mathrm{CX}-371 \mathrm{~A}$ | $\mathrm{C}-171 \mathrm{~A}$ | 7.4 | 3.7 | 2.1 |
| CX-326 | LX-226 | 8.1 | 3.5 | 2.2 |
| C. 327 | U-227 | 3.3 | 3.5 | 3.0 |
| C-324 | T)-224 | 0.010 (max.) | 5.0 (input) | 10.0 (output) |
| $\mathrm{C}-33 .$ | 1RCA-235 | 0.010 (max.) | 5.0 (input) | 10.0 (output) |
| CX-345 | CX-245 | 8.0 | 5.0 | $3.0$ |
| CX-310 | UX-210 | 8.0 | 5.0 | 4.0 |
| C $\mathrm{C}-3.50$ | UX-250 | 9.0 | 5.0 | 3.0 |
| C-3.36 | 1RCA-236 | 0.010 (max.) | 4.0 (input) | 9.0 (output) |
| $C-337$ | RCA-237 | $2.0$ | $3.3$ | $2.3$ |
| C-338 | 1RCA-238 | (). 25 | 4.0 (input) | 8.1 (output) |
| CX-330 | RCA-230 | 6.4 | 3.7 | $2.1$ |
| $C \times-331$ | $\text { RCA- } 231$ | 5. 6 | 3.5 | 2.1 |
| CX-332 | RCA-232 | 0.020 (max.) | 5.8 (input) | 11.4 (output) |

59. Grid-plate Capacitance of Screen-grid Tubes. The direet gridplate capacitance of sereen-grid tubes is a small fraction of a mirromicrofarad. Bridge measurements are not generally satisfactory. The radio-frequency substitution method is convenient for this purpose. Figure 40 is the schematic circuit. C is a standard capacitance having a range equal to the range of capacitances to he measured. Coaxial eylinder capacitors ean be constructed aceurately covering an extremely small eapacitance range. The thermocouple current indicator should be replaced with a sensitive indientor such as a tube rectifier or carborundum crystal. The plate of the tube should be shiolded from the grid. A halaneing tube $T_{2}$ ' of the same type as the tube $T_{1}$ being measured serves to maintain the tube input capacitance load on the oscillator. The low-eapacity switch $S$ ' is first thrown to the tube $T_{1}$ under test, and the
reading of the meter noted. The switeh is then thrown to the balanee tube $T_{2}$ and the standard condenser $C$ "adjusted to give the same reading on the meter. The grid-phate capacitaner is egual to the change in the standard capacitance.


Fig. 40.-Measurement of screen-grid plate-prid caparitance.

## MULTI-ELEMENT, VARIED-PURPOSE TUBES

60. Detector Automatic-control Tubes. Tubes especially designed to perform one or nore of the functions of deteretion, automatic volume control, atomatic andio-frequency cut-off control, or automatic chammelwidth control belong to this gencral class. Ty]e 55 is a 2.5 volt a-e heater-athode tuhe of this class. lype 85 is similar with a 6.3 volt d-c heater.

The trpe 55 and 85 tubes consist of a triode and two diodes in a single bulb. 'They serve as a combined detector, amplifier, and a.vece tube.

The two diodes and the trionle are independent of one another exeept for the common wathode sleeve, which has one emitting surface for the diodes and another for the triode. The diodes ean perform the fumetions of detection and atutomatie volume control; sensitivity control and time-delay antion being confined to the a.v.e. circuit. At the same time the triode operates as an amplifier under its own optimum conditions.
61. Triple-grid Tubes. Triple-grid tubes have, in addition to the cathode and plate clectrode, three grid electrodes with separate external comentions. Tyjes 57 and 58 are intended for use in amplifier and detectorstages of a-c operated receivers. Type 89 is a triple-grid poweramplifier tube for ase in motor-car reverers. Type 59 is a similar tabe for a-c service,

Type 57 is esperially reommended for use as a biased detector or as an a.ver. tube of the biased-dotertor tyene. It is also sultable for use as a sereen-grid amplifier for r-f or a-f signals of small amplitude.

The physical characteristios of partioular interest are its small over-all size, the dome-top bulls, the internal shied in the dome, the rigidity of cleetrode assembly, and the suppressor grid with its own hase terminal.

Its significant ileotrical charactoristies are the relatively low power required by the beater-only 2.5 watts at 2.5 volts-the high value of mutual eonduetame and phite resistance, the sharp entoff of the plate courent wibla resperet to the grid voltage, the satisfactory operation at 5 -meters wave longth, and the adaptability of clectrode combinations to varions cireuit applications.

The pentode type of $I_{p}-E_{p}$ curves are obtained with the type 57 tube whon grid 1 (imner) is used as a eontrol grid. Cride 2 is used as a screen grid, and grid 3 (noxt to plate) is used as a suppressor (ronnected to eathode) grid. With this type of connection, secondary emission
from the plate is eliminated and the plate may be operated at any voltage within its rated maximum regardless of the sereen-grid voltage.

When the suppressor grid is not connerted directly to the eathode, it may be utilized in a number of ways, for obtaining modified tube characteristies or for applying the tube fo sperial eirenits. The internal shield in this tube is placed in the hullo dome above the eleetrode assembly and is connected within the tube diredty to the eathode.

The dome-top bulb makes possible close proximity of the external and internal shields. The close spacing of the two shields produces at low effective grid-plate eapacitance.

Type 58 is a triple-grid super-control amplifier recommended especially for use in the r-f and i-f stages of a-e receivers. As an amplifier it is capable of amplifying and eont rolling relatively large input signals with it minimum modulation distortion and eross modulation. It may be used as a frequency converter or superheterodyne first detertor. Ünder the proper conditions of grid and local oscillator it is capable of voltageproducing gain in the first detector stage of ahout one-third that which can be obtained in an i-f amplifier stage. In addition, this gain can be controlled as in the case of the r-f or i-f amplifier by varying the dec grid bias.

The physical fratures of types 57 and 58 are similar. The electrical features are similar exerpt for the remote plate-eurent cut-off characteristic, which allows an extended mutual-conductance operating range.

The suppressor grid in this tube may be used as a quality control, since a negative bias voltage on this grid reduces the plate resistane of the tube. The change in plate resistance is effective in changing the frequency band width passed by a selective i-f or r-f amplifier.

The types 59 and 89 are triple-grid power-amplifier tubes of the beater-eathode type. The triple-grid construction of these tubes, with external connections for each grid, makes possible their application as (1) a class A power-amplificr triode; (2) a class A power-output pentode; and (3) a class B power-output triode.

A single type 89 eonnected as a class A triode is capable of driving two type 89 tubes connected as class $B$ power-output tubes. A pair of type 89 tubes so connected in al class B output stage is capable of supplying a large amount of power with relatively low plate voltage and with unusual over-all conomy of class 13 power consumption. Connected as a class A power-output pentode it is eapable of giving a large power output with relatively small signal voltage input.

## References

Cabson, J. R.: A Theoretical Study of the Three-element Vacuum 'Tube, I'roc. I. R'. E., April, 1919.
Deshman, st: Gen. Elec. Rev., 18, 15f, 1915. -: 'Thermionic limission, Ren. Mofrrn Phys., 2, October, 1930.
Thand J. W. Ewald: Graphs for Calculation of Electron Fimission from Tungsten, Thoriated Tungaten, Molybdenum, and Tantalum, Gon. Eler. Rom., 26, Nu, 3, March, 192:3.

- H. N. Rowe, J. FWald, and C. A. Kidner: Ph/!s. Ré., 25, 34:3.

Fry T. C,: Potential Distribution hetween l'arallel Plune lilfetrudes, Phys. Rer., 17, 441, 1921; 22, 445, 102:3.
froszrowski, J.: "Les lampes á plusieurs electrodes," Fiticnne Chiron, liditeur, Paris, 1927.
"International Critical Tables," Mc(iraw-Hill Book Company, Inc.
King. R. W.: Calculation of the Constants of the Three-electrode Vacuum Tube, Phys. Ker., 15, No. 4, p. 2.56, 1920.

Kusunose, Y.: Calculation of Characteristics and the Design of Triodes, Proc. I. R. E., October, 1929.
Lanamuir, I.: Emission from Thoriated 'Iungsten Filaments, i'hys. Rev., 22, 357, 1923. -_: Phys. Rev., 7, 154, 302, 1916.
——: Phys, Rev., 34, 401, 1912.
——: The Fiffect of space Charge and Residual Gases on Thermionic Currents in High Vacuum, Phys, Rer., 2, No. 6, 1913.
-and Kabl T. Compron. 1:lectrical Discharges in Guses, Rev. Modern Phyz., 3, April, 1931.
Lleweley, F. B.: Operation of Thermionic Vacuum Tube Circuits, Bell System Tech. Jour., 5, July, 1926.
Peterson, If., and HI. P. Fivans: Modulation in Vacuum Tubes I'sed as Amplifiers, Bell System T'ech Jour., 6, Juls, 1927.
Richardson, O. W.: "The Emission of lilectricity from Hot Bodies," Longmans, Green \& Co., 1921.
"Smithsonian Physical Tables," 1927, p. 403.
Thomson, J. J.: "Conduction of lilectricity through Gases," Bd Id., Cambridge University Press, 192x.
Van der Ihish, H. J.: "The Thermionic Vactum Tube," McGraw-Hill lhook Company, Inc., 1920.
Vodges, F. B., and F. R. Fiden: Forinulas for the Amplification Constant for Threeelectrode Tubes in Which the Diameter of Grid Wires Is Large Compared to the Spacing, Phys. Ref., 24, December, 1924.
Warner, J. C.: Nome Characteristics and Applications of Four-electrode Tubes, Proc. I. R. E., April, 1928.

## SECTION 9

## OSCILLATING CIRCUITS

## By D. C. Prince ${ }^{1}$

1. Hartley Circuit. The simplest triode oscillating circuit to explain is the Hartley circuit shown in Fig. 1. A direct current is fed from the generator $G$ through the line choke or inductance $L_{c}$ to the anode of the triode through which it passes back through ground to the generator negative terminal. The line choke $L_{c}$ kecps all oscillations out of this circuit. The blocking condenser $C_{b}$ keeps all direct current out of the


Fig. 1.-Hartley oserillator eircuit.


Fig. 2.-Triode characteristic.
oscillating cirenit so that only alternating currents need be considered in the latter, which is showi with full lines. The oseillating circuit consists of the plate and grid inductanees $L_{p}$ and $L_{g}$ tuned by condenser $C$ and the load resistance $r$. At the resonant frequency the oscillating cireuit is equivalent to a resistance $R$ in series with the plate. The walue of $R$ may readily be determined from $L_{L_{r}} L_{L_{d} C}$ and $r$ by the well-known circuit laws. The triode characteristic is usually available in the form of Fig. 2. In the circuit the grisd voltage is related to the plate voltage by the ratio of $L_{p}$ to $L_{\rho}$ so that $e_{\rho}=e_{p} \frac{L_{\nu}}{L_{p}}$. For any given value of this ratio a combined tube and circuit characteristic can be drawn from Fig. 2. such a characteristic is shown in Fig. 3. The values $e_{g}$ and $e_{p}$ are instantancous voltages,


Fig. 3-Characteristic of tube and circuit combined. $\ell^{\prime}$ being measured from zero at the start of oscillations and from the average bias potential for steady-state oseillations and $e_{p}$ measured from the average impressed direct voltage.

[^16]The instantaneous current value $i_{p}$ is measured from the average plate current. That is, since the d.e. is prevented from entering the oscillating rireuit it is disregarded also in the tube. It appears that positive valuess of $i_{p}$ are accompanied by negative values of $\ell_{p}$ and vice versa, whereas for loss in a resistamer, positive or negative values of voltage and current always appear together. Dividing, $-e_{p} / i_{p}=-R_{1}$. That is, the tube is equisalent to a negative resistaner of $R_{1}$ ohms, at the axis. If the equivalent load resistance is more than this, the circuit will oscillate. With any altermating voltage across the circuit higher load resistance corresponds to lower loss, that is, energy consumed is $\mathrm{If}^{\prime}=E^{2} / R$. If, with a given alternating voltage across the circuit the energy from the tube is greater than that consumed, the circuit will ossillate. The negative resistance curve of the tube may be reversed in sign and superimposed on the output resistance characteristic. The points of intersection then determine the amplitude of oseillation.
2. Efficiency. By the foregoing process it is possible to tell whether oscillations will take place at all or not.


Fig. 4.-Conditions when circuit oscillates. In the limiting case where oscillations begin the efficiency of the eirenit apmoathes zero becatuse the encrgy in the oscillations is small, whoreas the awrage direct rurrent through the tube protures a large loss. As the amplitude of oscillations increases but with current still passing at all times through the tube the efficiency apmonehes 50 per cent, as shown in Fig. t. The minimum spare-charge loss is here assumed zero, the limiting case, so that for maximum current there is no drop in the tube. For simplicity the current is assumed sinusoidal.

$$
\begin{aligned}
& E_{p}^{\prime}=E^{\prime}(1+\cos 0) \\
& i_{p}=I(1-\cos \theta) \\
& \text { Input }=I \times E \\
& \text { Loss }=r_{p} i_{p}=E I\left[1-r_{0 S}{ }^{2} \theta\right]
\end{aligned}
$$

which is shown dotted in Fig. 4. This curve is symmetrical about a line halfway botwern $E I$ and zero, so that the loss appears from inspection to be half the input. The output is the other half and the efficiency is 50 per cent.
3. Oscillator Circuit Design. In practical oscillating eirenits designed for efficient output the current does not flow all the time, the grid being so biased that current only flows when the anode voltage is relatiyely low. The curves of instantancous current and volage then appear as in Fig. 5. The eurrents through a triode do not follow any simple mathematieal laws even when current flows all of the time in the anode circuit. The reason for this is that the three-halves power space-charge law assumes no cmission limit, the division of current botwen anode and grid is uncertain, depending on secondary emission and other irregular factors. For diseontinuous currents surh as shown in lig. 5 a mathematioal treatmont giving efficioney als a function of cireutit factors would be cyen more difficult and has not bern attempted. For any given tube it is possible hy the process of step-by-step integration to prediet the tube and circuit behavior under varying conditions and then seleet the most suitable values to be incorporated in cireuit design.

Practical problems usually arise in such a way that definite voltages, currents, and power are required; but it will be found impossible to tell directly what should be done with a triode to produce these results. The answer to the practical questions is obtained hy first calculating all the desirable operating conditions for a tube, and then picking from eurves ploted from the results of the calculations the conditions required for any partieular application. This appears a rather formidable task, but several factors operate to make it casy. Comparatively few types of tubes are used in practice, and a good set of calculations on one tube will cover amultitude of applications. Moreover, for reasons of ceonomy, a tube is always operated somewhere near the maximum voltage and current of which it is capable. Many sets of conditions are scen upon inspection to be undesirable. Of the desirable ones, it is casy to pick out those which will give substantially the hest possible operation, for small changes in the operating conditions cause surprisingly small loss in efficiency. Many workers get excellent tube performance by merely arranging a circuit of material at hand and making adjustments by a little experimenting. This works very well for the smaller circuits; but it is an expensive procedure with high-powered sets, because extra condenser capacity costs heavily, and taps and end thrns on


Fic. 5.-Current and voltage in highly biased oscillator. inductance coils are apt to be quite a detriment to the apparatus.
4. Assumption of Operating Conditions. In picking sets of assumed operating conditions, the nature of the assumptions to be made is determined by the character of oseilhating circuits. As long as such circuits have large amounts of encrgy stored in them, the voltages and currents are simusoidal; and, even for the minimum amount of energy which they can contain and still give satisfactory operation, it will be found that the wave forms suffor comparatively little distortion. The source of energy is of constant potential, and other stearly voltages ran be obtained, if desired, either by batteries or by so arranging a condenser that it contains a constant charge. Current waves of any shape may be drawn from condensers. In general, inductances will be found useful only as chokes to pass steady currents while holding back the high frequency or as parts of the main oscillating circuit.

In applying these ideas more spereifually, it is seen that the function of the plate-filament eireuit through the tube is to commert a simusoidal and a steady voltage somre together at a time when the voltages are substantially equal. Absolute requality, howevor, will not answer the purpose, for there would then be nothing left to overeome the spacecharge drop in the tube. At at time in the revele of events 180 deg . removed from the passage of curvent, the voltage across the tube will consist of the direet voltage plus the peak value of the atternating voltage. This is shown in Fig. 5. Here the voltages are expressed with respect to the filament. "lhe potential of the phate ap, therefore, consists
of a sine wave of amplitude $A$ about the line representing the potential $X$ of the supply source as an axis. During the period when the alternating voltage is not quite equal to the direct, i.e., at a time


Fig. 6.-Osrillator with tuned plate circuit.
is induced in circuit and is coil by coupling with the man oscillating a A sumall current will flow to the grid, and it is assumed that the coupling to the main circuit is such that this current will meot no impedanee there. The high-frequency components of the eurrent will pass through the condenser without causing any appreciable voltage drop. However, as the eurrent is not sinusoidal, but pulsating in one direction, it will have an average value which may be considered as d.e., and this will be foreed to pass through the resistanee bridging the condenser, thus creating a steady voltage across its terminals. Of eourse, the condenser must first charge itself up to this voltage, but this is a phenomenon which is very rarely of any interest. Figure 5 indicates the manner in which this grid voltage $e_{i}$ will be related to the plate


Fig. 7.-Method of exciting and biasing oscillator tube. potential. The alternating voltage of peak value $G$ is sinusoidal about an axis representing the drop $B$ in the bias resistance. It will be ohserved that the altermating voltages applied to the plate and grid are 180 deg. out of phase. In order that large currents may flow in the plate circuit, it is necessary that the grid become positive during that part of the cyele in which current flows in the plate. 'lhe bias voltage allows cont rol over the interval during whieh current may flow. If it were not for this voltage, curront would have to flow in the plate circuit for a time corresponding to an angle of over 180 deg., or more than an entire half cycle, a condition which will lead to low efficierney.

Knowing the plate and grid voltages, the corresponding currents through the tube are ohtained from the characteristic curves. In gencral, these curves will have somewhat the shapes shown in Fig. 5 ( $i_{p}$ and $i_{y}$ ). "The plate current will flow for a slightly longer period than that during which the grid is positive, for the positive plate potential can cause a current to flow, even though the grid be slightly negative, until the two potentials are in the ratio of the amplification constant. The depression in the center of the grid-current pulse is due to secondary
emission from the grid and is not always present in the degree shown but usually is present at least as a slight flattening of a curve which would otherwise be more like the plate-current pulse.
5. Output and Efficiency of Operation. In calculating the performance of a tube, the energy delivered to the oscillating cireuit is its output. In gencral, this circuit will have two effeetive resistances, one representing useful energy, and the other representing losses. The first resistance is used in calculating the output of the entire apparatus, but the second should also be included when calculating the tube performance; for it is not right to charge any device with losses dependent on another part of the apparatus.

The energy delivered to the oscillating cireuit by the tube may be calculated directly by integrating the instantancous product of plate current and oscillating cirenit voltage for a complete eyele. As in many other deviees of good efficieney, however, it is found desirable to calculate the input to the tube and losses connected with it and take the difference between the two for the output.

The input is obtained by multiplying the average plate current by the potential of the dee sonree of energy. The losses are of two kinds: those inside the tube and those dependent upon the tube's grid requirements. The losses in the tube are obtained by integration of the products of instantancous values of the plate and grid voltages and the corresponding currents. The only other loss to be charged against the tube is that occurring in the grid-leak resistance. This is obtained hy multiplying the average grid current by the bias voltage.

Figure 8 shows the plate and grid voltages with the nomenclature to be used in caleulating tube performance: $X$ is the direct potential of the supply souree (often termed direct plate voltage) and $Z$ is the minimum instantancous plate voltage. This gives for the instantaneous plate voltage

$$
c_{p}=Z+(X-Z)(1-\cos \theta)
$$

in which angular displacement $\theta$ is measured from the point of minimum voltage.

The maximum amplitude of the alternating component of the grid potential is $G$ and it is superimposed on the


Fic. S.-Curves for calculating tube performance. bias voltage $B$. The maximum positive value of the grid voltage is $Y$ and its instantaneous value is

$$
e_{\theta}=Y-(i(1-\cos \theta)
$$

In making ealculations of tube performane it is convenient to assume a given angle for plate-current flow and, likewise, given values for minimum plate and maximum grid voltages and then to calculate from these assumed values the required grid excitation. Figure $\&$ shows how the grid excitation, operating angle, and plate and grid voltages are related. When the grid voltage is equal to $-\kappa_{p}{ }^{\prime} \mu$ the tube is at the point of cut-off. Letting $\theta_{1}$ be the corresponding phase angle gives

$$
G\left(1-\cos \theta_{1}\right)=Y+\frac{\rho_{p}}{\mu}
$$

or

$$
G=\frac{Y+\frac{1}{\mu}\left\{Z+(X-Z)\left(1-\cos \theta_{1}\right)\right\}}{1-\cos \theta_{1}}
$$

and, of course,

$$
B=G-Y
$$

6. Relation of Grid and Plate Voltages. The connection between the minimum plate and maximum grid voltages, which oceur simultaneously in the middle of the current pulses, is obtained by studying the tube characteristics. The plate-voltage drop fixes the instantaneous efficieney, and at this point in the ryele the input should not be allowed to suffer any decrease for this should be the time of maximum efficieney and, therefore, of the greatest importance. For a given instantancous plate voltage, the maximum plate current is usually obtained with a grid voltage about 90 per cent as large. For this reason, $Y$ is usually taken about 80 per cent of $Z$. This relationship is due to the secondary emission phenomena. If the plate is at a higher potential than the grid, it will te the gainer hy virtue of secondary emission from the grid, while if the grid has a potential high enough to colleet the secondary electrons emitted by the plate, the eurrent to the latter will suffer heavily. In different tubes the relation between maximum grid and minimum plate voltages will vary slightly, making somewhat indefinite the point at which best advantage may be taken of this characteristic; but the ratio is usually in the neighhorhood of 80 per cent.

The means by which this ratio can be determined exactly may be inquired. This could be aecomplished by assuming different ratios and using that which trial caleulations showed to be the best. It will be found, however, that a quite appreciable change in the ratio of voltages produces very little difference in performance; in other words, since the objective is the peak of a very flat-topped curve, a good guess at the probable location of the peak instead of the actual calculation of it will give the desired results and save an amount of work which would make calculations of performanee laborious almost beyond reason.

Having removed the ratio of minimum plate and maximum grid voltages from the list of variables, there remain to be assumed a series of absolute values for these voltages and, for each pair of values, a series of operating angles. This involves the calculation of about twenty-five or thirty sets of conditions. As the results of these calculations are to be assembled and displayed graphieally, it is essential that they be more or less regular; for this reason, the caleulations should be made according to some seheme as illustrated in Fig. 9.
7. Oscillator Calculations. In starting upon the ealculations there will be found available the tube designation (eatalogue number, etc.), its anplification constant, the direct plate potential, and characteristie curves giving the plate and grid currents for a wide range of impressed voltages. After studying the eharacteristics, it should be possible to pick a series of pairs of values for $Y$ and $Z$, the maximum grid and minimum plate voltages, and for each of these a series of values of operating angles will be assumed, usually running up to $\theta_{1}=90 \mathrm{deg}$. For each of these cases, the grid excitations will be calculated and the plate and grid currents ohtained from the characteristic curves at intervals of about 10 deg. Multiplying the corresponding instantaneous currents and voltages
together will give the instantaneous plate and grid losses and these will be averaged for the whole rycle. At the same time the average values of the currents slould be obtained. The average value of the plate eurrent gives the input when multiplied by the direet plate voltages and the average value of the grid entrent in ronneetion with the bias voltage gives the grid-leak resistance loss and the ohms resistanere required. This


Fic, 9.- Chart for calculating oscillator cirenit.
complotes the data neecsary to compute output, losses and effieiency. The filament heating current is not ineluded in these figures because it is supplied from a separate source and at a much cheaper rate than the high direct-voltage power. The results of these calculations are arranged in a systematic mamer so as to indicate the best possible operating conditions for any given output and these values are ploted as the eorrect operating conditions to be used in cirouit dosign. An cxample illust rating the mothod employed will indieate some of the points more clearly.
8. Calculation on Basis of One-kilowatt Tube. Figure 10 shows the characteristics of a one-kilowatt tube. This tube is to be operated at


Fig. 10.-Characteristies of $1-\mathrm{kw}$ tube.



Fig. 11.-Curves of loss and efficiency.

15,000 volts. The allowable heat dissipation due to the plate and grid losses is 350 watts. The amplification constant is 250 . The assumed maximum grid and minimum plate voltages with the corresponding operating angles are:

| $Y$, volts | Z, volte | $\theta_{1, \text { degrees }}$ |
| :---: | ---: | :---: |
| 800 | 1,000 | $30,40,50,60,70,80$ <br> 800 |
| 650 <br> 500 | 813 | 305 |
| 350 | 438 | $30,40,50,60,70,80$ |

The ealculations based on these assumptions have been indicated on page 230, etc. Table I shows a form arranged for quickly and systematically attacking the work, and trable II shows some sample calculations.

The corresponding curves of tube loss and efficiency are shown in Fig. 11. The efficiency curves do not necessarily: intersect at the same output values as the loss curves because the former include grid-leak loss, while the latter


Fiti. 12.-Results of oscillator calculations. do not. If an envelope to the loss curves were to be drawn in, the points where any curve touched this envelope would indicate the output for which the eorresponding values of maxinum grid and minimum plate volts give better operation than any other value. It is quite easy to estimate the eorresponding operating angle hy noting the location on the curve of the points calculated for the assumed angles. Kinowing this angle the remainder of the operating conditions may be computed or estimated by inspection of the original calculated data. By this method there result the data included in 'lable III, which are shown plotted as curves in Fig. 12.

It will be seen that the results might have been varied quite appreciably by the least irregularity in the figures. As the figures contain the results of step-by-step integrations, it is certain that these irregularities are present. It might appear, then, that the curves of Fig. 12 in particular are meaningless. This is far from the case, however, for those factors which are subject to the greatest error are those allowing wide variation without affecting performance and the factors requiring close adjustment are given quite accurately.
9. Value of Grid-leak Resistance. The grid-leak resistance is an example of a factor in which large variations are permissible. All that is desired here is the approximate value. If the resistance be too low, the tube will adjust itself by drawing more grid current, which it can do without any appreciable effect on the other operating conditions. Gridleak resistances which are too large are often trouble makers, but a slight error in this direction will usually cause no difficulty. In faet, different tubes are likely to vary widely from the grid-leak resistance required in theory because its value deperids upon the grid current which is quite apt

Table I.-Key for Oscillator Calcelations

Tube
Amplification constant $\mu$. .....
Characteristics......

D-c plate volts $X$
Maximum grid volts $Y$
Minimum plate volta $Z \ldots$

| $\theta$ |  | $a$ | $b$ | $c$ | d | $e$ | $f$ | $g$ | $h$ | $i$ | $j$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Plate voltage |  |  |  |  |  |  |  |  |  |
|  |  | $0^{\circ}$ | $10^{\circ}$ | $20^{\circ}$ | $30^{\circ}$ | $40^{\circ}$ | $50^{\circ}$ | $60^{\circ}$ | $70^{\circ}$ | $80^{\circ}$ | $90^{\circ}$ |
| A | $1-\cos \theta$ | 0 | 0.0152 | 0.0603 | 0.1340 | 0.2340 | 0.3572 | 0.5000 | 0.6580 | 0.8264 | 1.0000 |
| B | $(X-Z)(1-\cos \theta)$ | $[(x-2) \times$ line $A]$ |  |  |  |  |  |  |  |  |  |
| (' | $e_{p}$ | $(\mathrm{Z}+$ line $B$ ) |  |  |  |  |  |  |  |  |  |
| I) | $e_{p} / \mu$ | (Line C $\div \mu$ ) |  |  |  |  |  |  |  |  |  |
|  |  | Cirid voltage |  |  |  |  |  |  |  |  |  |
|  | Operating angle $\theta_{1}$ | (lnsert only the values required) |  |  |  |  |  |  |  |  |  |
| $F$ | $Y+\varepsilon_{p} / \mu$ | ( $Y+$ line $D$ ) |  |  |  |  |  |  |  |  |  |
| $G$ | $1-\cos \theta$ | 0 | 0.0152 | 0.0603 | 0.1340 | 0.23401 | 0.3572 | 0.5000 | 0.6580 | 0.8264 | 1.0000 |
| H | Max. swing of $e_{g}(G)$ | (line $F \div$ line ( ${ }^{\text {a }}$ ) |  |  |  |  |  |  |  |  |  |
| $J$ | A-c component of $E_{0}$ | (line $H \div \sqrt{2}$ ) |  |  |  |  |  |  |  |  |  |
| K | Lias | (Line $/ /$ - ${ }^{\circ}$ ) <br> Calculation of an operating point |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\theta_{1}=$ | (l'ick one of the values required) |  |  |  |  |  |  |  |  |  |
|  | $\theta=$ | $0^{\circ}$ | $10^{\circ}$ | $20^{\circ}$ | $30^{\circ}$ | $40^{\circ}$ | $50^{\circ}$ | $60^{\circ}$ | $70^{\circ}$ | $80^{\circ}$ | $90^{\circ}$ |
| $L$ | $1-\cos \theta$ | 0 | 0.0152 | 0.0603 | 0.1340 | 0.2340 | $0.355^{2}$ | 0.5000 | 0.6580 | 0.8264 | 1.0000 |
| . 11 | $\boldsymbol{G}(1-\cos \theta)$ | (Take value of $G$ rorresponding to $\theta_{1}$ ) |  |  |  |  |  |  |  |  |  |
| $N$ | $e_{0}$ | ( ${ }^{\prime}$ - line . M ) |  |  |  |  |  |  |  |  |  |
| I' | $i_{p}$ | (From eharacteristic curvea) |  |  |  |  |  |  |  |  |  |
| $Q$ | $i_{0}$ | (From characteristic curves) |  |  |  |  |  |  |  |  |  |
| $R$ | Plate loss | (line $P \times$ line (') |  |  |  |  |  |  |  |  |  |
| s | (irid Insa | (line $Q \times$ line ${ }^{\text {N }}$ ) |  |  |  |  |  |  |  |  |  |

Eq. (1): av. plate current $=\frac{P_{u}+2 P_{b}+2 P_{c}+2 P_{d} \text {, etr. }}{36}$
Eq. (2) : av. grid current $=\frac{Q_{a}+2 Q_{b}+2 Q_{c}}{36}+2 Q_{d}$, etc.
Eq. (3): av. plate loss

$$
=\frac{R_{a}+2 R_{b}+2 R_{c}+2 R_{d_{+}} \text {etc. }}{36}
$$

$=\frac{S_{a}+2 S_{b}+2 S_{e}+2 S_{d}, \text { etc. }}{36}$

Elertron loss $=$ sum of last two losses
Grid-leak $\operatorname{loss}=$ bias $\times$ av. grid current
Total loss (not including filament) $=$ sum of last two
Input (not including filament) $=\boldsymbol{X} \times$ av. plate current
Output $=$ input - total loss
Efficiency (not including flament) $=\frac{\text { output }}{\text { input }}$

## Table II.-Sample Oscillator Caicclations

Tube, 1 kw
$\mu=250$
I)-c plate volts, 15,000
$\stackrel{\mu}{\text { Characteristics (Fig. 10) }}$
Max. grid volts, 500
Min. plate volts, 625

Plate Voltage

|  | $0^{\circ}$ | $10^{\circ}$ | $20^{\circ}$ | $30^{\circ}$ | $40^{\circ}$ | $50^{\circ}$ | $60^{\circ}$ | $70^{\circ}$ | $80^{\circ}$ | $90^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1-cose $\theta$ ). | 0 | 0.0152 | 0.0603 | 0. 1340 | 0.2340 | 0.3572 | 0.5000 | 0.65880 | 0.8264 | 1.000 |
| $(X-Z)(1-\cos \theta)$ | 0 | 219 | . 867 | 1,926 | 3,364 | 5.135 | 7,188 | 9.459 | 11.880 | 14.375 |
|  | 625 | 844 | 1,492 | 2,551 | 3,989 | 5,760 | 7,813 | 10,084 | 12.505 | 15.000 |
| $e_{p} / \mu$ | 3 | 3 | 6 |  | 16 | 23 | 31 | 40 | 50 | 60 |

Girid Voltage

| $\theta_{1}$. | $0^{\circ}$ | $10^{\circ}$ | $20^{\circ}$ | $30^{\circ}$ | $40^{\circ}$ | $50^{\circ}$ | $60^{\circ}$ | $70^{\circ}$ | $80^{\circ}$ | $90^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Y+e_{p} / \mu$. |  |  |  | . 510 | . 516 | - 523 | . 531 |  |  |  |
| $\underline{1}-\cos \theta_{1}$. | 0 | 0.0152 | 0.0603 | 0.1340 3.806 | 0.2340 | 0.3572 1,464 1 | 0.5000 | 0.6580 821 | 0.8264 | 1.000 |
|  |  |  |  | 3,806 | 2,205 | 1,464 | 1.062 | $821$ |  |  |
| A-c component of $E_{g}$ |  |  |  | 2.691 3.306 | 1.559 1.705 | 1,035 | 751 562 | $\begin{aligned} & 581 \\ & 3: 1 \end{aligned}$ |  |  |

1st operating point: $\theta_{1}=30^{\circ}$

| $\theta$. | $0^{\circ}$ | $10^{\circ}$ | $20^{\circ}$ | $30^{\circ}$ | Sum of values from <br> $-30^{\circ}$ to $+30^{\circ}$ | Average for entire rycle or $360^{\circ}$ | $\begin{gathered} \text { Wetermined } \\ \text { from } \\ \text { Table I } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1-\cos \theta$. | 0 | 0.0152 | 0.0603 | 0.1340 |  |  |  |
| $G(1-\cos \theta)$ | 0 | 58 | 230 | 510 |  |  |  |
| $e_{0} \ldots \ldots . .$. | \% 500 | 442 0.642 | - 270 | -10 |  | 0.0762 | Eq. (1) |
| ${ }^{1} \mathbf{p}$ | 0.683 | 0.615 0.152 | 0.400 0.070 | 0 | 0.727 | 0.0202 | Eq. (2) |
| Plate loss. | 375 | 567 | 597 | 0 | 2,703 | 75.1 | Eq. (3) |
| Grid loss.. | 142 | 67 | 28 | 0 | 332 | 9.2 | Eq. (4) |

Input (not including filament) $=15,000 \times 0.0762=1,143$ watts Output $=991.9$ watts (not including filament)
Efficiency $=86.8$ per cent
Electron loss $=84.3$ watts
Grid-leak loss $=66.8$ watts
Total lose (not including filament) $=151.1$ watts
to vary from tube to tube, as it usually involves secondary emission phenomena.

Table III--Calculated Optimum Operating Conditions

| Gutput, watts | Tube loss, watts | $\xrightarrow{Y} \mathrm{y}$ vits | $\underset{\underset{Z}{\text { volts }}}{ }$ | $\begin{gathered} \theta_{1,} \\ \text { de- } \\ \text { grees } \end{gathered}$ | A-r grid volts. r.m.s. | $\begin{aligned} & \text { I)-r } \\ & \text { prid } \\ & \text { volts } \end{aligned}$ | ia, av. | (iridleak resistance, ohms | A-c plate volts, r.m.s. | $\begin{gathered} \text { Ratio } \\ \text { A.C.G.V. } \\ \hline \text { A.C.P.V. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 84.3 | 500 | 625 | 30 | 2,691 | 3,306 | 0.0202 | 164.000 | 10,170 | 0.265 |
| 1.720 | 192. | 650 | 813 | 35 | 2,610 | 3,046 | 0.026 .5 | 115.000 | 10,040 | 0.260 |
| 2.440 | 3333. | 800 | 1,000 | 38 | 2,720 | 3,050 | 0.0332 | 92,000 | 9.910 | 0.275 |

On the other hand, the ratio of the altermating components of the grid and plate voltages will not permit of much variation withont a sacrifice in performance. Fortumately, the irregularities in the calculations have very little effect on this factor.
10. Design of the Simpler Vacuum-tube Circuits. It has been shown that a vacuum-tube oscillating cireuit must contain a certain amount of stored energy to maintain oscillations. The encrgy leaves the circuit as output at a different instantaneous rate than it enters as inpurt and, consequently, some flywheel effect is necessary.

Consider a circuit having an inductance $L$, a capacity $C^{\prime}$, and oscillating at a freguency $f$ and voltage $V$ with $I V$ watts loss. At a point in the ryele when the current is zero, the instantaneous voltage will be $~ \overline{2} V^{\prime}$; all the energy is stored in the condenser; and its anount is $C^{\prime} l^{\circ}$. . The $r-m-s$ current in this cireuit is $2 \pi f C^{\prime} V^{\prime}$, and the joules lost per eycle are $\mathrm{W} / \mathrm{f}$. Dividing encrgy stored by joules lost per cecle gives

$$
\frac{\text { Encrgy stored }}{\text { Encrgy lost per eycle }}=\frac{\mathrm{CV}^{2}}{W / j}=\frac{f C V^{2}}{W}=\frac{2 \pi f C V^{2}}{2 \pi W^{\prime}}=\frac{V I}{2 \pi W}
$$

which shows that the ratio of energy stored to energy dissipated per cyele is $1 / 2 \pi$ times the ratio of reactive power to watts. ('ircuits having less than twiee as much energy stored in then as they dissipate per cycle have been found by actual test to bave a tendency to erratic operation. ('ircuits having a greater relative amount of stored energy give execellent operation but require more condenser caparity and more expensive inductance coils, and the useless power losses in the oseillating cireuit are higher. Inless, therefore, there is sorae other determining factor, circulating volt-amperes should approximate $4 \pi$ times the total power output in watts as a desirable minimum value. Another way of saying this is that the power factor should not be over 8 per cent or, in the older radio nomenclature, that the decrement should not execed 0.25 . This circulating energy has the same effect as the flywheel of a single-acting engine and must be coupled closely to the plate; i.e., the circuit must he so arranged that the sinusoidal voltage waye of the oscillating circuit is available at the tube terminals without distortion due to the current passing between the two. As a mechanical analogue, consider the value of a flywheel driven through a spring-an oscillating circuit connected to a vacuun tube through a loose coupling of any sort would be equally ineffective.

After assurance is obtained that the circulating energy is adequate, the design of an oscillating circuit becomes a matter of obtaining the proper voltages and phase relations for the leads to the tube. Two general types of circuit are in common use and in either of these the produetion of the desired values is quite simple.
11. Design of a Hartley Circuit. Figure 13 shows a form of the Hartley cirenit. The oscillating current is made to flow through two inductances or one induetance with a tap. The voltage drops across the two windings are used as the alternating components of the plate and grid voltages. Energy is supplied at constant potential from the blocking condenser $C_{2}$. This condenser supplics the pulses of current drawn through the tube at the frequency of the oscillating circuit. The charge is replaced at a more uniform rate from the direct-eurrent source $G$ through the choke $L_{c}$. The oscillating circuit consists of the plate inductance $L_{p}$, the grid inductance $L_{2 j}$, the condenser $C_{i}$, and the load resistance $r_{L}$. It will be noticed that the triode, the oseillating circuit and the immetiate source of nergy (" 2 are con-


Fig. 13.-Form of Hartley cirruit. nected in series in a manner similar to that already deseribed. The impedance of the load resistance will be quite small compared with the other impedanees in the oscillating circuit, and its effect on the voltage distribution may be negleted in an approximate calculation. The function of the grid-leak resistance $r_{B}$ and bias condenser $C^{\prime}$ 's is to maintain a bias for the grid voltage. The condenser has suflicient capacity to pass the current pulses through to the grid without distorting the voltage wave, but the average eurrent thus passed is discharged at a uniform rate through the resistance, thereby providing a steady bias voltage.

The first step in design is to determine the volt-amperes in the oseillating circuit, which value should be at least $4 \pi$ times the watts output. The voltages across $L_{p}$ and $L_{0}$ are ohtained from the curves giving optimum operating eonditions for the tube and this fixes the current and impedanee of the various parts of the oscillating circuit. The value of the grid-leak resistance is also obtained from the optimum operating conditions curves. This leaves only the plate choke $L_{r}$, blocking condenser $C_{2}$ and grid-leak condenser $\dot{C}_{s}$ to be determined. In gencral, if the ehoke has enough inductunce so that it passes only a very small current and the condensers have sufficient capacity to present no appreciable impedance to the currents which they carry, the cireuit will operate satisfartorily. There are certain refinements to be eonsidered if the best design practice is to be followed, but consideration of these will be deferred.
12. Design of Colpitts Oscillator. Figure 14 shows a form of the Colpitts circuit which differs from the Ilartley circuit in that the plate and grid altemating voltages are obtained by taking the voltage drop across two eondensers instead of across two inductances. The oseillating circuit, therefore, consists of the plate condenser $C_{p}$, the grid condenser
$C_{0}$, the inductance $L_{L_{1}}$, and effective resistance $r_{L .}$. A plate choke $L_{c}$ and blocking condenser $C_{B}$ are used as in the Hartley circuit. The eapacity ( $C_{0}$ serves also as the rrid-leak


Fig, 14.-Colpitts oscillator. condenser. In order to prevent a loss in the grid-leak resistance $r_{o}$, due to the alternating voltage across the condenser, the former has in series with it a substantial choke coil $L_{2}$. The Colpitts rireuit offers practically the same design problems as the Hartley circuit and will therefore not be considered separately.
13. Design Calculations. An example will serve to illustrate the methods of calculation just described. Assume a Hartley circuit, as in Fig. 13, driven by a onc-kilowatt triode operating at 15,000 Fi. 12 The optimum operating conditions are given in Fig, 12. The output is to he one kilowatt at $10^{6}$ ceycles.

For an output of one kilowatt, the cirenlating volt-anmeres immediately available in the oscillating circuit will he $4 \pi$, or about 12.5 kva,

From Fig. 12 the minimm instantancous plate volts should be 630. Deducting this from 15,000 volts leaves 14,370 for the peak value of the plate altermating voltage, which corresponds to 10,160 volts $\mathrm{r}-\mathrm{m}-\mathrm{s}$. Figure 12 gives also the grid alternating voltage, which is 2,690 volts in this case. Adding the plate and grid voltages together gives 12,850 volts as the total a-e drop across the oscillating circuit.

Table IV

| Element of circuit | Volta | Amperes | Impedance | Value at $10^{8}$ cyrles |
| :---: | :---: | :---: | :---: | :---: |
| Plate cril L p | 10.160 | 1.23 | 8.270 | 1.32 mh |
| Grid coill lo. | - 2.690 | 1.23 | 2.18.5 | 0.348 mh |
| Tuning condenser | 12,850 | 1.23 | 10,450 | 0.000.152 $\mu \mathrm{f}$ |

To be conservative, it will be assumed that only that part of the energy stored in the oscillating circuit which corresponds to the volt-amperes in the plate coil is coupled closely enough with the vacuum tube to be useful as flywher effect. This means that the plate coil must carry a current eorresponding to the 12,500 volh-amp, at 10,160 volts, or 1.23 amp., and this is the circulating current of the oseillating circuit. Hence, there results the accumulation of the data in Table IV.

The grid-leak resistance should be about $\mathbf{1 6 5 , 0 0 0}$ ohms, from Fig. 12, and a condenser of a fee thonsandths of a microfarad capacity representing an impedance of less than a hundred ohms should operate nicely as a grid-leak condenser $C_{3}$. A condenser of similar capacity, but insulated for a higher voltage, should be satisfactory as a plate-blocking condenser $C_{2}$. It is very desirable to kecp the high-frequency current out of the supply source becanse of the damage it can do there. As far as the r. f. is conecrned, the choke coil $L_{C}$ is in parallel with the plate
coil $L_{p}$, for there will be enough eapacity in the leads and windings of the generator $G$ to make sure that it will present very little impedanee to high frequeney. Hence, if the whoke coil has an inductance of several hundred or a thousand times that of the plate coil the operation will probably be altogether satisfactory. As a practical precaution, however, it is advisable to shunt $G$ with a condenser to by-pass any highfrequency eurrent roaching its terminals.
14. Effect of Load Resistance. A point of the groatest innportance, which is sometimes overlooked, is the fact that the offeretive resistance of the oscillating rireuit is absolutely fixed. Nince the voltages in the circuit permit only slight variation without greatly disturbing the efficiency, it is neeessary that the load absorb the eorrect power at the eurrent fixed by this condition. In the case in hand, the current is 1.23 amp. and the output I kw, which means the effective resistance of the oscillating circuit must be 660 ohms. If the load itself does not have


F1 (i. 15.— Grid-circuit oscillator.


Fis. 16.
Plate-rircuit oscillator.
this actual resistance, it must bo coupled into the oscillating eireuit in such a way that it presents that effective resistance. (onsiderations which follow, dealing with more complicated cireuits, will illust rate some of the ways in which this can bereomplished.
'The two simple circuits of Figs, 15 and 16 are calculated as in the formoing cases but require the caleulation of mutual inductance in determining the anode voltage in Fig. 15 and the grid voltage in Fig. 16.
15. Grid Phase-angle Corrections. In dealing with the design of oscillating circuits the effects of the load resistance, the plate ehoke, and the blocking condenser were deseribed as though only their primary functions were fulfilled and, this accomplished, they exerted no other influence on the circuit, All three parts of the eircuit can, however, affeet its operation; and, though the changes produced are usually small, it is satisfying to know just what may be expected. In general, the effects consist of the introduction of small voltages or currents into the simple seheme of things first cleseribed. This results in a small change in magnitude of practieally all of the various quantities, combined winh a slight change in the phase relations.

To simplify the diseussion, only the fumdanental frefueney component of the current suppliod to the oscillating cireulit through the blocking eondenser will be considered. The harmonies are relatively mueh less important, and their onission will entail no serious error. The value of the fundamental component can be obtained by dividing the watts input to the oseilating circuit by the voltage between the leads to the plate and filament of the tube.

Figure 17 illustrates the effect of the load resistance in a Hartley circuit. The oscillating circuit itself $A O B C$ is drawn in such a way that the angles between various parts of the circuit correspond to the eleetrical phase differences of the voltages across them. Thus the grid coil OB and the condenser $A C$ are in geonetrieally parallel sections of circuit, for they earry the same current, and hoth are pure reactances. The load resistance is drawn at right angles to them for similar reasons. Part of the load resistance might be located in the plate coil section $A O$, but this


Fig. 17.-Wffect of load resistance in Hartley circuit.
would not affect the diagram, so far as the ohject in hand is concerned, which is to show the relation between plate and grd voltages. It will be ohserved that the grid current has been neglected. This is not the case with the phate current, which may be represented by a simusodal eurrent flowing between the leads to the cireuit at $A$ and 0 . For this reason the plate coil in Fig. 17 is not drawn parallel with the grid coil, but instead there is a phase difference between their voltages. For the

present it will be assumed that there is no drop areoss the blocking condenser and no current passed by the plate choke. Henee, $O A$ will be the alternating eomponent of the plate voltage.

The grid voltage will he represented by the doted line O(' in lig. 17 and the plate current will be in phase with it. Thus, in the vector diagram the plate current $i_{p}$ is drawn parallel with $O C^{\prime}$. The currents through the eondenser and plate eoil are 90 deg. out of phase with the corresponding voltages and are represented by $i_{c}$ and $i_{c}$ perpendicular to $A C$ and $0 . A$ respectively. Adfling the two vertorially results in $i_{p}{ }^{\prime}$
which must be equal and opposite to the alternating component of the plate current $i_{p}$. It will be seen that $i_{p}{ }^{\prime}$ must always lag behind $c_{p}$, or, in other words, the oscillating circuit absorbs power not as a perfect resistance but as a resistance in connection with an inductance. The circuit itself produees this effect by running slightly below the resonant frequency, thus drawing the lagging component of current by increasing the eurrent through the inductance and decreasing the current through the capacity. The deviation of the frequency from that corresponding to the natural frequency of oscillation can be calculated by applying numerical values to the vectors.

The corresponding phenomena in a Colpitts circuit are shown in Fig. 18. In this ease $i_{p}{ }^{\prime}$ leads ' ${ }_{p}$ by an angle which requires that the oscillating circuit operate slightly above its natural frequency in order to produce



Fit. 19.-Effect of plate choke and blocking condenser on Hartley circuit.
this power factor. This self-adjustment of the simpler types of eireuit is a very valuable property under many conditions, as it automatioally insures against serious losses due to the gride excitation being out of phase.
16. Effect of Imperfect Chokes and Condensers. Figure 19 indicates the effert of the plate choke and the blocking condensor upon the operation of the circrit. This is the same Hartley eircuit as shown in Fig. 17, but the blocking eondenser and plate choke are no longer considered to be perfect in operation. The alternating component of the plate voltage is, therefore, no longer represented by ()$_{1} 1$ but by a veetor $O I$ ) displaced from () A by the addition of $A D$, the drop in the blorking condenser. "The plate ehoke may be considered to be grounded on the side next to the high voltage generator as far as the high frequency is concerned, so this choke appears as an inductance conmected between 0 and $D$.

By choosing a blorking condenser of the eorrect impedaner, it is possible to bring the plate voltage OD exactly 180 deg. out of phase with the grid voltage, the conditions to the desired for efficient operation. This will result in the oscillating circuit plus the blocking condenser drawing a load with a leading current component. This component may then be neutralized by arranging the choke so that it will clraw a lagging current of equal magnitude. In the vector diagram of Fig. 19 the current through $A C$ is represented by $i_{c}$ and that through $A O$ by $i_{l}$. These combine to
form a short vertical current vector to which is added the choke current $i_{n}$ to form a total current equal and opposite to $i_{p}$ supplied by the tube. The voltage across $O A$ has been taken to be vertical and, if the sum of $i_{c}$ and $i_{L}$ is vertical, the drop which this current causes in the blorking condenser must be represented by a horizontal line. This, when added to that representing the voltage across 0.1 , results in the alternating component of the plate voltage ${ }_{p}$. This voltage can, by this means, be made opposite to $i_{p}$ and $r_{a}, i, e$. by control of the drop in the blocking condenser.

To make a complete calculation of a cireuit including the points just diseussed, the circuit OBC $A$ is treated as though the choke and blocking condenser were not present. This circuit may be equivalent cither to a pure resistance betwern 4 and 0 ) (as shown in the vector diagram) or the equivalent load may contain some reactance. Lat it be so proportioned that it will be equivalent to a resistance. The angle COA and its supplement $A O D$, can then be calculated. The equivatent resistance botween 4 and 0 is known since it represents a given load at a given voltage. The caparity reactance $A D$ (ean, therefore, be selected so that $A D / O A=\tan \left(180^{\circ}-A O C^{\circ}\right)$.
The alternating voltage is impressed at $D$ ) and the circuit $D A($ ) will draw some leading current, the amount heing casily ascertainable. It is then only necessary to choose the choke $D()$ of such a value that it will draw the same amount of lagging current.
17. Absolute Values of Choke and Condensers. The procedure in arriving at the proper values of hloeking eondenser and lime choke will be clearer if the solution of a numerical example is carried through. The first item to be determined is the ratio of the inductances on which the alternating components of the plate and grid voltage depend. In Fig. 19 the plate voltage is represented by $O D$ and the drop across the indurtance by OA, and it will be noticed that the two may be considered equal in magnitude unless the cireuit is far from normal in design. The effert. of the resistance in the grid inductance on the magnitude of the grid voltage can also be neglected. The two inductances will then the in the same ration as the alternating components of plate and grid potentials $F_{p}$ and $E_{0}$ respectively, as determined from the data on optimum operating conditions.

Assume that this gives

$$
\frac{E_{p}}{E_{g}}=\frac{O A}{O C^{C}}=4
$$

Let $O A=100$ ohms inductance with 5 ohms resistance
$O B=25$ ohms inductive reactume
$B C=2.5$ ohms resistance
CA $=125$ ohms capacity reartance
Then angle $O A C=\sin ^{-1} \frac{2.5}{1(0)}=1$ deg. 27 min .
If 100 volts be inupressed arross ( 14 ,

$$
\begin{array}{r}
i_{L}=1, \text { watts in } 01=\left(i_{L}\right)^{2} \times 5=5.0 \\
i_{c}=1, \text { watts in } B C^{*}=\left(i_{c}\right)^{2} \times 2.5=2.5 \\
\text { Total watts }=\overline{7.5}
\end{array}
$$

Equivalent resistance $=\frac{E^{2}}{W^{1}}=\frac{100^{2}}{7.5}=1,333$ ohms. It will be arranged to have this circuit operate at the resonant points so that its reactance between $O$ and $A$ is zero.

In the triangle $A O C$

$$
\begin{aligned}
& \frac{O A}{\sin A(O)}=\frac{O C}{\sin (A C}=\frac{A C}{\sin A O C} \\
& \frac{100}{\sin A C O}=\frac{25}{0.025}, \sin A C O=0.1
\end{aligned}
$$

Angle $A C^{\prime} O=5^{\circ} 45 \mathrm{~min}$.
Angle $A(O D=$ angle $(A C+$ angle $A C O=7$ deg. 12 min .
$A D=$ inpedance between $A$ and () $\times$ tan $A(0)$
$=1,333 \times 0.1 \pm 6=168$ ohms capacitance.
The total impedance between ( and $D$ ) through $A$ is 1,343 ohms, so that the ratio bet ween the phate and grid voltages suffers no appreciable change due to the presence of the pate-blocking condenser. If 100 volts are impressed between $D$ and ( $\%$, the current is

$$
\frac{100}{1.343}=0.0745 \mathrm{amp}
$$

and the wattless volt-ampere component is, then,

$$
0.0745^{2} \times 168=0.933 \text { volt amp. }
$$

In order to correct for these leading volt amperes, the choke should draw the same amount lageing, thus giving

$$
D O=\frac{100^{2}}{0.933}=10,700 \text { ohnos }
$$

If the inpedanee of the plate-blocking condenser had heen high, the desired ratio betwern grid and plate voltages would not have been obtained. It would then have boen meersary to assume an initial value somewhat larger than desired for the final result, proceding by a series of approximations. However, for other reasons, it is not likely that a high-impedance blocking eondenser would be desirable. A high impedane blocking eondenser corresponds to a low impodane e ehoke Whieh would allow radio frequency currents to flow in cirenits with high effective resistance and thus, possibly damage power generating apparatus.
18. To Secure Proper Phase Relations. Proportioning the plateblocking condenser and lino choke is not the only mothod of bringing plate voltage and current into the 180 -tleg. phase relation. The angle OAC may be compensated for hy do-phasing the grid in such a way as to cause the ose:llations to occur at the natural resonant frequency and the plate current and voltage to be properly related.

In Fig, 20 diagrams of two mothods are shown by which a Itartley circuit may be restored to operation at the natural resonant frequency of the eirenit with proper phase relations, while at the right are two equivalent methods for the Colpitts cirenit. In the first diagram the phasing is acemplished by eomeroting resistaner ( $G$ and induetance $G()$ in sorios. The grid is attached at C. The same result is areomplisherd in the second drawing by a resistane from () to $G$ and a eondenser from $G$ to $C^{?}$. The clements are reversed in the third and fourth to produce lag instead of lead.

Although grid phasing may correct the various angles, it is probable that adjustments of the choke and the blocking condenser are to be preferred since these devices are normally present and so do not constitute added romplication.
19. Grid-bias Condenser. It will be noted that no criteria have yet been developed governing the choice of a grid-blocking condenser. Since the function of this eondenser is to pass the alternating current romponent of grid excitation without the orcasion of scrious yoltage drop while forcing the direct component to flow through the grid leak or biasing resistance, its value is not critieal. Its value should be large enough to make the grid-plate caparity small by comparison. The


Flg. 20.-Hartley (left) and Colphitts (right) cireuits.
values of tube capacity are normally so small that this recquirement causes no coneern. The individual pulse of direct current should cause no considerable change in the bias, but this requirement also causes small concern. Too large a value of condenser will produce intermittani oscillations because of the time recuired to charge and discharge.
20. Parasitic Oscillations. Where oscellating cireuits are intended for moderate or low frequency it often happens that oscillations may occur at some higher frequeney corresponding to the natural period of some inductance in the circuit. Such parasitic oscillations are usually incefficiont and canse excessive heating of the plate at high voltages. The circuit must then be rearanged as by putting loading capacities in the grid circuit or inserting resistance at some critical point.
21. Short-wave Circuits. As frequoney is increased indefinitely, a point is reached for which the capacity between grid and plate becomes large compared with the rapacity, say in a Ifartley circuit, and all external eapacity may then be omitted. At such frequencios the various leads may possess sufficiont inductance for that part of the circuit. Further increases in frequency ean then only be made with sperial tubes. The operating principles remain unchanged but the quantities berome very hard to identify.
22. Use of Tubes in Parallel and Push Pull. In case more power is desired than one tube can furnish, it is possible to paratlel two tubes. However, it is often more desirable to conneet the two tubes at opposite ends of the oseillating circuit in what is called the push-pull arrangement.

The oscillator efficiencios determined in the foregoing paragraphs are all on the assumption that substantially sine waves of voltage are employed. By modifying the voltage wave in such a way as to maintain
the potential drop across the tube at a minimum for a considerable time, it is possible to secure considerably increased outputs from a given pair of tubes while still maintaining high efficiency.

In Fig. 21 is shown a circuit of the push-pull type in whieh, he proper design, it is possible to have approximately square current waves drawn through each tube for a half cycle. While the calculations are somewhat more involved, they are not too difficult and here, as before, comparison of practice with theory has shown that performance can be estimated with a high degree of aceuracy.
23. Stability. A selfexcited oscillator with a battery hias is not stable for the reason that any decrease in amplitude of oscillations produces a decrease in gridexcitation and therfore a derrease in power output from the oscillator tube. For this reason, if the oscillations start to


Fig. 21.-Push-pull oscillator with square current waves through each tube per half eycle.
derrease, they will continue to decrease until they stop altogether. Where the usual grid leak and condenser bias is cmployed, oscillations tend to be stable because in the event of a derrease in amplitude, the grid will draw less current until the condenser has discharged, thus reducing the bias and allowing more power to he drawn from the tube. If the condenser is made too large, the influences toward stability will operate too slowly and a condition of intermittent oscillations will be obtained. The eircuit will oseillate violently until the condenser is charged; the oscillations will then be cut off until there has been an opportunity for discharge. Such an arrangement will give the equivalent of morlulated output.
24. Magnetron Oscillating Circuits. The characteristic equation of the magnetron is

$$
e^{\prime}=K i^{2}
$$

$r^{\prime}=$ voltage required to cause electrons to reach the plate
$i=$ a current flowing to make magnetic ficld
$K=$ proportionality constant including number of turns and geometry of the oseillating coil

If the potential difference between the electrodes is larger than given by the formula, eurrent will flow in accordance with the three-halves power space-cha"ge law with very little modification due to the presence of the magnetic field. In order to permit current to flow once per cycle, a steady field is set up hy means of polarizing coils. This field is opposed by current in the oscillating coil $L$ which is adjusted so that at its maximum, the total field will be reduced to substantially zero during that
part of the cycle that it is desired to have current flow. Let the current

$$
I \cos \theta
$$

The magnetic effect $K l^{2}(1-\cos \theta)^{2}$ That is,

$$
f^{\prime}=K l^{2}(11 / 2-2 \cos \theta+1 / 2 \cos 2 \theta)
$$



Fig. 22.-Magnetron oscillator.
The voltage required to just make current flow therefore contains a direct-current eomponent, (the impressed anode voltage), a fundamental component, and a double-frequency romponent.


Fig. 23.-Dynatron oscillator.
The shape of the anode voltage wave $e$ and the shape of the voltage which would be required to make current flow at each point in the cycle $e^{\prime}$ are given in Fig. 22. Where $e^{\prime}$ is greater than e, no current will flow; where e is greater than e', the current which flows is substantially that determined by the space-charge relations. Since the desired current
is in phase with the voltage, the simple circuit is series tuned to give the equivalent of a non-inductive load with current in phase with the anode voltage.
25. Dynatrons. There is no acepted quantitative law for the behavior of a dynatron. Its characteristie will be of the type shown in Fig. 23 and will contain a region where inereasing voltage is aceompanied by decreasing current. This condition corresponds to negative resistance and should therefore be a possible somree of power for oseillations. In the circuit shown, the dynode is commected by means of a potentiometer to a point substantially the midelle of the negative resistance portion of the characteristic through a parallel tuned circoit. Oscillations will result at the natural frequency of the tuned cireuit provided the equivalent resistance of this cirenit is equal to or greater than the negative resistance represented by the slope of the characteristic curve at the point of bias potential. If the equivalent resistance represented by the oscillating circuit is greater than the negative resistance represented by the maximum slope of the characteristic curve, the oscillations will inerease in amplitude until the losses are equal to the power obtained from the tube, that is, until the product of eurrent squared times the negative resistance is equal to the product of eurrent squared times the resistance represented by the circuit.

Referring to the characteristic curve, the line $a b$ may represent the current-voltage relations through the load which have been reversed in order to find the points at which tube out put will no longer be greater than eirenit losses. If the resistanee is lower than the negative resistance represented by the characteristic curve, the load resistane characteristic will be represented by the line $a^{\prime} b^{\prime}$ which crosses the tube characteristic at but one point. The crossing point is therefore stable, and no oscillations will result.

## SECTION 10

## DETECTION AND MODULATION

By Kenneth W. Jarvis?<br>DETECTION

1. Demodulation, usually called detcciou, is the process necessary to obtain from the incoming signal the initial modulation frequency. The instantancous signal voltage for the detection proeessea discussed in this chapter, unless otherwise noted, is as follows:

Instantaneous signal voltage $=$

$$
\begin{equation*}
c=E_{A}(1+m \cos B t) \cos A t \tag{1}
\end{equation*}
$$

This may also be written as

$$
\begin{equation*}
e=E_{A} \cos A t+m E_{A} \cos A t \cos B t \tag{2}
\end{equation*}
$$

or as

$$
\begin{equation*}
e=E_{A} \cos A t+\frac{m R_{A}}{2} \cos (A+B) t+\frac{m E_{A}}{2} \operatorname{ros}(A-B) t \tag{3}
\end{equation*}
$$

where $E_{A}=$ peak value of the carrier-frequency voltage
$m=$ modulation fartor
$B=2 \pi f_{b}$, where $f_{B}$ is the low-modulation frequency
$A=2 \pi f_{A}$, where $f_{A}$ is the carriar frequeney
(1) is the expression derived as the standard type of modulation signal by customary modulation processes.
(2) represents the normal carrier voltage plus a voltage of the carrier frequency which varies at the modulation frequency.
(3) represents the sum of three individual frequencies termed the carrier and the side bands respectively, which adds to give (at least mathematirally) the standard signal.

In the analysis of detection (or demodulation) all three types of equations are oceasionally used. For simplicity of expression and ease and aceuracy of calculation (3) is customarily employed. The problem of detection is to obtain, from the standard-type signal, currents and voltages of frequency $f_{B}$.
2. Detection Characteristic. An asymmetrical current voltage characteristic is necessary for detection. Figure 1 snows a standard-type signal applied to such a characteristic and the resulting current wave form. For iilustration some of the more important frequency components of the current are shown in approximately correct amplitude. The subscripts refer to corresponding frequencies. Such asymmetrical charaeteristies may be obtained in certain mineral crystals, both natural

[^17] to Marvin Ilobbs for considerable mathematical work is gratefully acknowledged.
and artificial. Electronie devices, such as vacuun tubes, are more commonly used due to greater stability and sensitivity. Figure 2 shows


Fig. 1.-Standard detection characteristie.
such a eharacteristic of a erystal detector, and Figure 3 that of a vacuum tube. In the use of crystals much depends on the pressure of the metallic contact. Galena (P'las) requires a fine contaet with light pressure and a sensitive operating point. Under these conditions it is a very sensitive deteetor, Silicon erystals require


Fig. 2.-"Perikon" Crystal detector characteristie.


Fig. 3.-Chararteristic suitable for detection.
greater contact pressure but are somewhat less sensitive. Carborundum, requiring a high-pressure contact, is less sensitive than silicon but is very stable in operation. The maximum sensitivity is obtained at the point
of greatest change in curvature. With some erystals, such as marborundum, a biasing potential is neressary to bring the operating point to this maximum sensitivity.

Coppor oxide rectifiers exhihit such a curve as Fig, 1 but as yot have not been used as deteetors owing to the aetion of the rectifier rapacity at, high carrier frequencies.
3. Detector Equations. The equations relatiug to the asymmetrical characteristic of Fig. 1 are developed as follows:

$$
\begin{gather*}
I=f\left(E^{!}\right)  \tag{4}\\
I=I_{0}+i=I_{0}+I_{1} e+\frac{P_{2 f^{2}}}{2!}+\frac{P_{3} 3^{33}}{3!}+ \tag{5}
\end{gather*}
$$

where $P_{1}, P_{2}$, etc., are the first, second, etr., derivatives of $I$ with respect to $E$ evaluated under the circuit operating conditions and at the chosen operating point. Substituting Eig. (1) into (5) and reduring to first-order terms to determine the amplitude of the various frequency components resulting gives a series of terms representing d-ce fondamental, second, third, ete., harmonics of both carrier and modulation frequencies as well as combinations of carrier and side band of the form of

$$
\begin{align*}
& I=P_{0}+\left(\frac{I_{2} E_{A}^{2}{ }^{2}}{4}+\frac{I_{4}^{3} E_{A}^{\prime} A^{4}}{\| 4}+\cdots\right) \\
& +\left(\frac{P^{2} m^{2} E_{A^{2}}}{8}+\frac{3 P_{4} m^{2} E_{A}{ }^{4}}{64}+\frac{3 P_{4}{ }_{4} m^{4} E_{A^{4}}}{512} \cdots\right) \\
& +\left(I_{1} E_{A}+\frac{P_{3} E_{A^{3}}}{8}+\frac{3 P_{3} m^{2} E_{A}^{3}}{16}+\cdots\right) \cos A t \\
& +\left(\frac{P_{0} m E_{A^{2}}}{2}+\frac{P_{4} m E_{A^{4}}}{16}+\frac{3 P_{4} m^{3} P_{A^{4}}}{(i 4}+\cdots\right) \cos B t \\
& +(\text { terms }) \cos 2: 1 t+(t e r m s) \cos 2 B t \\
& + \text { (terms) } \cos 3 A t+\text { (terms) } \cos 3 B t+\cdots \cdot \\
& +(\text { terms })[\cos (A+B) t+\cos (A-B) t ; \tag{6}
\end{align*}
$$

The coefficient of any term in (6) may be found from the double summation indicated below:

$$
\begin{aligned}
& i(p A \pm q B)=\sum_{s=0}^{\infty} \sum_{r=0}^{r=\frac{p-q+2 s}{2}} \frac{(p+2 s)!P_{p+2 s} m^{2+4 r} E_{1} p+2 s}{2 p+2 q+q+2 r-n)}(p+2 s-q-2 r)!(p+s)!(q+r)!s!r! \\
& \cos (p A \pm q B) t \quad(7)
\end{aligned}
$$

When $p=q=0, n=0$. For all other values of $p$ or $q, n=1$. The expression (7) holds for all values of $p$ and $q$ including zero. The only restrietion is in the term $\frac{p-q+2 s}{2}$. In case


Fig. 4.-Deteretion rircuit. the values of $p, q$. and the chosen $s$ make this term a fraction, the next intrger helow the fraction is used to terminate the $r$ summation.
4. Detector Derivative. The serios in Art. 3 is given in terms of $P_{n}$, the derivative of $I$ with respeet to $E$, for the entire cireuit. This is often difficult to evahuate, especially when a romplex wave sueh as
the standard radio signal is applicd. The derivative of the detector alone can usually be determined satisfactorily. Determining $P$ and using the eircuit constants enable the detector operation to be calculated. Figure 4 shows the circuit where $e$ is the voltage of $E(1$. (3) and $Z$ is the ceireuit impedance to any frequency as indicated by the subseript.

Only two ternas of the power series

$$
\begin{equation*}
i=a_{1} c_{0}+a_{2 r_{0}}+ \tag{8}
\end{equation*}
$$

will be retained. For simplicity the total current $i$ is given as the sum of the individual frequency components.
$i=i_{0}=1 / 2\left\{\frac{P_{2}}{1+P_{1} Z_{0}}\left[1-\frac{Z_{A} P_{2}}{1+P_{1}^{\prime} Z_{A}}-\frac{\bar{Z}_{A} P_{2}}{\left(1+P_{1} \bar{Z}_{A}\right.}\right.\right.$

$$
\begin{aligned}
& \left.\left.+\frac{Y_{A} \bar{Z}_{A} P_{2}^{2}}{\left(1+P_{1} Z_{A}\right)\left(1+P_{1} \bar{Z}_{A}\right)}\right]\right\} E_{A}^{\prime} \\
& +1 / 2\left\{\frac { P _ { 2 } } { 1 + P _ { 1 } ^ { \prime } Z _ { 0 } } \left[1-\frac{Z_{A+B} P_{3}}{1+P_{1}^{\prime} Z_{A+B}}-\frac{\bar{Z}_{A+B} P_{2}}{1+P_{1} \bar{Z}_{A+B}}\right.\right.
\end{aligned}
$$

$$
\left.\left.+\frac{Z_{A+B} \bar{Z}_{A+B} P_{2}^{2}}{\left(1+P_{1} Z_{A+B}\right)\left(1+I_{1}^{\prime} Z_{A+B}\right)}\right]\right\} E_{A+B}^{2}
$$

$$
+1 / 2\left\{\frac { P _ { 2 } } { 1 + P _ { 1 } Z _ { 0 } } \left[1-\frac{Z_{A-B} P_{2}}{1+P_{1} Z_{A-B}}-\frac{\bar{Z}_{A-B} P_{2}}{1+P_{1}^{\prime} \bar{Z}_{A-B}}\right.\right.
$$

$$
\left.+\frac{Z_{A-B} \bar{Z}_{A-B} P_{2}^{2}}{\left(1+P_{1}^{\prime} Z_{A-B}\right)\left(1+P_{1} \bar{Z}_{A-B}\right)}\right]_{i}^{!} E_{A-B}^{2}
$$

$$
+i_{A}=\left(\frac{I_{2}}{1+I_{1}^{\prime} Z_{A}}\right) E_{A} \cos A t
$$

$$
+i_{2 A}=1 / 2\left\{\frac { P _ { 2 } } { 1 + P _ { 1 } ^ { \prime } Z _ { 2 A } } \left[1-\frac{2 Z_{2 A} \prime_{2}}{1+P_{1}^{\prime} Z_{2 A}}\right.\right.
$$

$$
\left.\left.+\frac{Z_{2 A}^{2} P^{2}}{\left(1+P_{1}^{\prime} Z_{2 A}\right)^{2}}\right]\right\} E_{A}{ }^{2} \cos 2 A t
$$

$$
+i_{B}=\left\{\frac { P _ { 2 } } { 1 + P _ { 1 } Z _ { B } } \left[1-\frac{Z_{A} P_{2}}{1+P_{2} \bar{Z}_{A}}-\frac{\mathscr{Z}_{A-B} \bar{P}_{2}}{1+P_{1} \bar{Z}_{A-A}}\right.\right.
$$

$$
\left.\left.+\frac{Z_{A} \bar{Z}_{A-B} P_{2}^{2}}{\left(1+P_{1}^{\prime} Z_{A}\right)\left(1+P_{1}^{\prime} Z_{A-B}\right)}\right]\right\} E_{A} E_{A-B} \cos B t
$$

$$
+\left\{\frac { I _ { 2 } } { 1 + P _ { 1 } ^ { \prime } Z _ { B } } \left[1-\frac{Z_{A+B} I_{2}}{1+I_{1}^{\prime} Z_{A}+B}-\frac{\bar{Z}_{A} I_{2}^{\prime}}{1+I_{1}^{\prime} \bar{Z}_{A}}\right.\right.
$$

$$
\left.\left.+\frac{Z_{A+B} \bar{Z}_{A} P_{2}^{\prime}{ }^{2}}{\left(1+I_{1}^{\prime} \bar{Z}_{A+B}\right)\left(1+I^{\prime} \bar{Z}_{A}\right)}\right]\right\} E_{A} E_{A+B} \cos B t
$$

$$
+i_{2 B}=\left\{\frac { P _ { 2 } } { 1 + P _ { 1 } ^ { \prime } Z _ { 2 B } } \left[1-\frac{Z_{A+B} P_{2}}{1+P_{1} Z_{A+B}}-\frac{Z_{A-B} P_{2}}{1+P_{1}^{\prime} Z_{A-B}}\right.\right.
$$

$$
\begin{equation*}
\left.\left.+\frac{Z_{A+B} \bar{Z}_{A-B} P_{2}^{2}}{\left(1+I_{1}^{\prime} Z_{A+B}\right)\left(1+P_{1}^{\prime} \bar{Z}_{A-B}\right)}\right]\right\} E_{A+B}^{\prime} E_{A-B} \cos 2 B t \tag{9}
\end{equation*}
$$

If the circuit conditions ahcad of the detector imput do not change the initial side-band ratio (due to asymmetrical amplification or side-band cutting),

$$
\begin{equation*}
E_{A+B}=E_{A-B}={ }_{2}^{m} E_{A} \tag{10}
\end{equation*}
$$

and if the radio frequency is by-passed so that

$$
Z_{A}=Z_{A+B}=Z_{A-B}=0
$$

the audio currents and resulting voltages $/ Z$ are

$$
\left.\begin{array}{l}
i_{H}=\frac{P_{2}}{1+P_{1} Z_{B}} m K_{A}^{2} ; c B=\frac{P_{1} Z_{B}}{1+P_{1} Z_{B}} m E_{A}{ }^{2}  \tag{11}\\
i_{2 B}=\frac{P_{2}}{1+P_{1} Z_{2 B}} \frac{m^{2}}{4} E_{A}^{2} ; c_{2 B}=\frac{P_{2} Z_{2 B}}{1+\Gamma_{1} Z_{2 H}} \frac{m^{2}}{4} E_{A} A^{2}
\end{array}\right\}
$$

If good fidelity is required so that $Z_{B}=Z_{2 B}$, the ratio between second harmonic and fundamental is


Fig. 5.-Triode as detector.

Percentage distortion $=\frac{m}{4}$

$$
\begin{align*}
Z_{A} & =R+j X_{A}  \tag{12}\\
\bar{Z}_{A} & =R-j X_{A} \\
P_{1} & =d I \overline{E^{\prime}}=\frac{1}{R_{p}} \\
P_{2} & =\frac{d^{2} I}{d E^{\prime 2}}=\frac{d R_{p}}{d E^{\prime}}=R_{p}^{\prime}
\end{align*}
$$

$R_{p}=$ detector resistance while detecting
5. Triode as Detector, The three-element tube also may serve as a detector, and its performance in terms of the tube parameters and circuit constants developed cxactly as in the previous paragraph. More complicated expressions result, for grid current and grid impedances affect the plate current as well as plate impedances. 'The plate voltage affects the grid eurrent; the grid voltage affects the plate current. Figure 5 shows the rircuit conditions. The plate current at any frequency may be determined by substituting the $a$ and $b$ coefficients given by (14) and (15) into (13).

$$
\begin{aligned}
& \left(i_{0}=1 / 2\left[\left(1-b_{:(A)}, Q_{A}\right)\left(1-\bar{b}_{1(A)}\left(\bar{Q}_{A}\right), a_{2(0 A)}-a_{1(0,1)} Q_{0} b_{2(0 A)}\right] E_{A}^{2}\right.\right. \\
& +y_{2}\left\{( 1 - b _ { 1 ( A + H ) } Q _ { A + B ) } ) \left(1-\bar{b}_{1(A+B)} \bar{Q}_{A+B)} a_{2(O(A+B))}-a_{1(O(A+B))} Q_{0}\right.\right. \\
& h_{2(0(A+B))} E^{2_{A+B}} \\
& +y_{2}\left[\left(1-b_{1(A-B)} Q_{A-B)}\right)\left(1-\bar{b}_{2(A-B)} \bar{Q}_{A-B}\right) a_{2(O(A-B))}-a_{1(O(A-B) ;} Q_{0}\right. \\
& \left.b_{2(0)(A-B)}\right) E^{2} A-B
\end{aligned}
$$

$$
\begin{align*}
& E_{A} E_{A+B} \cos B t \\
& +\left[\left(1-b_{1: A-B)}()_{A-B}\right)\left(1-\bar{b}_{1(A-B)} \bar{Q}_{A-B}\right) a_{2(-B)}-a_{1(A-B)} Q_{(A-B)} h_{2(A-B)}\right] \\
& E_{A} E_{A-B} \cos B t \\
& \begin{array}{r}
i_{2 B}=\left[( 1 - b _ { 1 ( A + B ) } Q _ { A + B } ) \left(1-\bar{b}_{(A-H)} \bar{O}_{A-B)} a_{2(2 B)}-a_{1(2 B)} Q_{2 B} b_{2(2 B)},\right.\right. \\
E_{A+B} E_{A-B} \cos 2 B t
\end{array}  \tag{13}\\
& \boldsymbol{a}_{1(A)}=\frac{\mu}{R_{p}+Z_{A}} ; a_{1(A-B)}=\frac{\mu}{R_{p}+Z_{A-B}} ; a_{1(A+B)}=\frac{\mu}{R_{\beta}+Z_{A+B}}
\end{align*}
$$

$$
\begin{aligned}
& a_{2(B)}=\frac{\frac{1}{2}\left[-\mu^{2} R_{p} R_{p}^{\prime}+\mu \frac{\partial \mu}{\partial \bar{K}_{p}}\left(R_{p}^{2}-Z_{A} \bar{Z}_{A-B}\right)+\frac{\partial \mu}{\partial E_{\theta}}\left(R_{p}+Z_{A}\right)\left(R_{p}+\bar{Z}_{A-B}\right)\right]}{\left(R_{p}+Z_{A}\right)\left(R_{p}+\bar{Z}_{A-B}\right)\left(R_{p}+Z_{B}\right)} \\
& a_{2(2 B)}=\frac{\frac{1}{2}\left[-\mu^{2} R_{p} R_{D}^{\prime}+\mu \frac{\partial \mu}{\partial E_{p}}\left(R_{p}{ }^{2}-Z_{A+B} \bar{Z}_{A-B}\right)+\frac{\partial \mu}{\partial E_{\theta}}\left(R_{p}+Z_{A+B}\right)\left(R_{p}+Z_{A-B}\right)\right]}{\left(R_{p}+Z_{A+B}\right)\left(R_{p}+\bar{Z}_{A-B}\right)\left(R_{p}+Z_{2 B}\right)}
\end{aligned}
$$

$$
b_{1(A)}=\frac{1-\frac{\mu}{\nu} \frac{Z_{A}}{R_{p}+Z_{A}}}{R_{g}+\left(1-\frac{\mu}{\nu} \frac{Z_{A}}{R_{p}+Z_{A}}\right) Q_{A}}
$$

$$
\left(\frac { 1 } { 2 } \left[-R_{\theta} R_{g}{ }^{\prime}\left(1-\frac{\mu}{\nu} \frac{Z_{A}}{R_{D}+Z_{A}}\right)\left(1-\frac{\mu}{\nu} \frac{\bar{Z}_{A-B}}{R_{P}+\bar{Z}_{A-B}}\right)-2 a_{2(B)} \frac{R_{\theta}{ }^{2}}{\nu} Z_{B}\right.\right.
$$

$$
-\frac{\partial}{\partial \bar{E}_{6}}\left(\frac{1}{\nu}\right)\left(\frac{\mu Z_{A} R_{g}^{2}}{R_{p}+Z_{A}}+\frac{\mu \bar{Z}_{A-B} R_{g}^{2}}{R_{p}+\bar{Z}_{A-B}}-\frac{\mu^{2} Z_{A} \bar{Z}_{A-B} R_{g}^{2}}{\left(R_{p}+Z_{A}\right)\left(R_{D}+\bar{Z}_{A-B}\right)}\right)
$$

$$
\left.+\frac{\partial}{\partial \dot{E}_{p}}\binom{1}{\nu}\left(\frac{\mu^{2} Z_{A} \bar{Z}_{A-B} R_{\theta}^{2}}{\left(R_{p}+Z_{A}\right)\left(R_{p}+\bar{Z}_{A-B}\right)}\right)\right]
$$

$$
\left[R_{\sigma}+\left(1-\frac{\mu}{\nu} \frac{Z_{A}}{R_{p}+Z_{A}}\right) Q_{A}\right]\left[R_{0}+\left(1-\frac{\mu}{\nu} \frac{\bar{Z}_{A-B}}{R_{p}+\bar{Z}_{A-B}}\right) \bar{Q}_{A-B}\right]
$$

$$
\left[R_{\theta}+\left(1-\frac{\mu}{\nu} \frac{Z_{B}}{R_{p}+Z_{B}}\right) Q_{B}\right]
$$

$$
\left(\frac { 1 } { 2 } \left[-R_{0} R_{v}{ }^{\prime}\left(1-\frac{\mu}{\nu} \frac{Z_{A+B}}{R_{p}+Z_{A+B}}\right)\left(1-\frac{\mu}{\nu} \frac{Z_{A-B}}{R_{D}+\bar{Z}_{A-B}}\right)-2 a_{2(2 B)} \frac{R_{Q}^{2}}{\nu} Z_{2 B}\right.\right.
$$

$$
-\frac{\partial}{\partial \bar{E}_{g}}\left(\frac{1}{\nu}\right)\left(\frac{\mu Z_{A+B} R_{g}^{2}}{R_{p}+Z_{A+B}}+\frac{\mu \bar{Z}_{A-B} R_{g}^{2}}{R_{D}+\bar{Z}_{A-B}}-\frac{\mu 2 Z_{A+B} \bar{Z}_{A-B} R_{g}^{2}}{\left(R_{p}+Z_{A+B}\right)\left(R_{D}+\bar{Z}_{A-B}\right)}\right)
$$

$$
\left.+\frac{\partial}{\partial E_{p}^{\prime}}\left(\frac{1}{v}\right)\left(\frac{\mu^{2} Z_{A+B} \bar{Z}_{A-B} R_{v}^{2}}{\left(R_{p}+Z_{A+B}\right)\left(R_{p}+\bar{Z}_{A-B)}\right.}\right)\right]
$$

$$
b_{2(2 B)}=\left\{\begin{array}{c}
\left.+\overline{\partial E_{p}}(\bar{\nu})\left(\overline{\left(R_{p}+Z_{A+B}\right)\left(R_{D}+\bar{Z}_{A-B}\right.}\right)\right] \\
{\left[R_{\sigma}+\left(1-\frac{\mu}{\nu} \frac{Z_{A+B}}{R_{p}+Z / Z_{A+B}}\right) Q_{A+B}\right]\left[R_{B}+\left(1-\frac{\mu}{\nu} \frac{\bar{Z}_{A-B}}{R_{D}+\bar{Z}_{A-B}}\right) \bar{Q}_{A-B}\right]}
\end{array}\right.
$$

$$
\left[R_{v}+\left(1-\frac{\mu}{\nu} \frac{Z_{2 B}}{R_{p}+Z_{2 B}}\right) Q_{2 B}\right]
$$

$$
b_{2(2 A)}=\left\{\begin{array}{c}
\frac{1}{2}\left[-R_{\theta} R_{\theta}{ }^{\prime}\left(1-\frac{\mu}{\nu} \frac{Z A}{R_{D}+Z_{A}}\right)^{2}-2 a_{2(2 A)} \frac{R_{\theta}^{2}}{\nu} Z_{2 A}\right.  \tag{15}\\
-\frac{\partial}{\partial E_{\theta}}\left(\frac{1}{\nu}\right)\left(\frac{2 \mu Z_{A} R_{\theta}{ }^{2}}{\left.\left.R_{p}+\frac{\mu^{2} Z_{A} A^{2} R_{\theta}^{2}}{\left(R_{P}+Z_{A}\right)^{2}}\right)+\frac{\partial}{\partial E_{D}}\left(\frac{1}{\nu}\right) \frac{\mu^{2} Z_{A}{ }^{2} R_{\theta}^{2}}{\left(R_{D}+Z_{A}\right)^{2}}\right]}\right. \\
{\left[R_{\theta}+\left(1-\frac{\mu}{\nu} \frac{Z_{A}}{R_{p}+Z_{A}}\right) Q_{A}\right]^{2}\left[R_{\theta}+\left(1-\frac{\mu}{\nu} \frac{Z_{2 A}}{R_{p}+Z_{2 A}}\right) Q_{2 A}\right]}
\end{array}\right.
$$

The barred symbol is the conjugate of the unbarred symbot.
$\mu=\frac{\Delta E_{p}}{\Delta E_{q}}$ for equal inerements oi plate current.
$y=\frac{\Delta E_{p}}{\Delta E_{g}}$ for equal incrments of pride forrent.
$\mu$ is inherently positive; $v$ is inherently nexative.
6. Plate Detection. The modulation frequency qR romponents of (1:3) are derived from both grid and plate-ourvent curvature. To simplify the case for plate detection assume $\mu$ constant and that the grid is maintained negative with resperet to the cathode.

Then

$$
\begin{align*}
& i_{H}=\frac{-1 / \mu_{2}^{2} R_{p} R_{p}^{\prime}}{\left(R_{p}+Z_{A} i\left(R_{p}+Z_{A-H}\right)\left(R_{p}+Z_{H}\right)\right.} E_{A} E_{A+B}^{\prime} \\
& -\frac{\nu_{2} \mu^{2} R_{p} R_{p}^{\prime}}{\left(h_{p}{ }^{\prime}+Z_{A+B}\right)\left(R_{D}+\bar{Z}_{A}\right)\left(R_{D}+Z_{B}\right)} \boldsymbol{E}_{A} E_{A-B} \tag{16}
\end{align*}
$$

When the plate is by-passed. the usual case, $Z_{A+A}=Z_{A}=Z_{A-b}=0$ )
With a standaral signal, $E_{A \cdot H}=E_{A-B}=\frac{m}{2} E_{A}$
Substituting (17) in (16) gives

$$
\begin{equation*}
i_{H}=-\frac{S_{i} \mu^{2} R_{p}^{\prime}}{R_{p}\left(R_{p}+Z_{H}\right)} m L_{A}^{2} \tag{18}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
i_{2 H}=-\frac{1_{2} \mu^{2} R_{p}^{\prime}}{R_{p}\left(R_{p}+Z_{2 A}\right)} 4^{-L_{A}^{2}} \tag{19}
\end{equation*}
$$

The similarity of (18) and (19) is apparent. Is in (11),

$$
\begin{equation*}
\text { Perrent distortion }=\frac{m}{4} \tag{11}
\end{equation*}
$$

In the foregoing analysis $h_{p}$ and $R_{p}{ }^{\prime}$ must be measured undor the operating conditions of hias voltage, plate voltage, $E_{A}$, ete, When the signal $E_{A}$ is introdueod a change in phate enurent iotakes place, and if an impedance $Z_{0}$ is present, the plate voltage at the inbe terminals will decrease, incroasing $h_{p}^{\prime}$, and prohably dererasing $R_{p^{\prime}}$. 'This decreases the andio output as based on measumements of $R_{p}$ and $R_{p}^{\prime}$ with $E_{A}^{\prime}=0$. For calculation purposes it is neeressary to have a sermes of eurves of $K_{p}$ and $R_{p}^{\prime}$ with $E_{p}$ and $E_{A}^{\prime}$ as variables. $E_{p}$ and the expression for $i_{0}$ being known,

$$
\begin{equation*}
i_{0}=\frac{1}{2} a_{2(, A)} E_{A}^{\prime 2}+\underbrace{\frac{1}{2} I_{2}[n(A+B)] \frac{m^{2}}{4} E_{A}^{2}+\frac{1}{2} a_{n}[n(A-B)] \frac{m^{2}}{4} E_{A}^{2}}_{\text {usually neglectad }} \tag{20}
\end{equation*}
$$

the plate voltage drop $i_{0} Z_{0}$ may be calculated, assuming $h_{p}$ and $R_{p}{ }^{\prime}$. 'The determined plate voltage in this way will give wrong values of $k_{p}$ and $K_{p}{ }^{\prime}$, but obseryation of the $h_{p}^{2}$ and $h_{p}{ }^{\prime}$ curves will show the probable correetion. 'Ihis proeess of trial and error may be repeated, two ehereks usually giving the current within 5 or 10 per erent of the eorrect value. $K_{p}$ maty be conveniently determined hy direet measurement of the plate resistane with a Wheatstone bridge using a 1,000 -reve tone sourer, while the
earrier voltage $E_{A}$ is applied to the grid of the tube. Correet bias and plate potentials must be applied. $R_{p}{ }^{\prime}$ (an be most aceurately determined graphically by drawing tangents to the curve of $R_{p} v s . E_{p}$.

The fidelity curve can be calculated when the characteristies of $Z_{B}$ are known. With the most sensitive operating point, $R_{p}$ usually decreases with increase in $E_{\text {d }}$, giving better fidelity for high input signal voltages. Figure 6 shows a fidelity curve of a radio receiver with three values of input, using a reactive load.


Fig. 6.- Fidelity as function of input voltage.
7. Grid-current detection is more eomplex. Assume a plate impedane of $Z_{p}$ which is resistanee only, and $\mu$ and $\nu$ as constants. The grid eirenit, contains a resistance $Q_{\|}$shunted by a condenser of negligible impedance to r.f. and infinite impedance to a.f. The plate eurrent then is

$$
\begin{equation*}
i_{B}=\frac{\frac{1}{2} \mu Q_{v}\left[R_{q} R_{v}^{\prime}-\frac{\mu^{2} R_{p} R_{p}^{\prime}}{\left(R_{p}+Z_{p}\right)^{3}}\left(\frac{R_{v}{ }^{2} Z_{p}}{\nu}\right)\right]}{\left(R_{p}+Z_{p} R_{\theta}{ }^{2}\left(R_{0}+\left(Q_{v}\right)\right.\right.} m K_{A^{2}} \tag{21}
\end{equation*}
$$

As in the case of phate deteetion, $R_{g}$ and $R_{v}{ }^{\prime}$ must be evaluated under the operating conditions with all voltages, including signal, applied. The second term of the numerator shows that the change in phate current curvature, as expressed by $R_{p}{ }^{\prime}$ affects the sensitivity. As $\nu$ is inherently negative, this second term aids the detection. As the plate battery is varied the value of the second term changes, reaching a maximum with a rather low plate voltage. This detection action is in addition to that due to plate curvature. As the sign of $i_{B}$ in (18) is negative, the eurrents of (18) and (21) are in opposition and the modulation frepucney current is less as a result.

Since $\nu$ is usually mumerically large, torms with $\nu$ in the denominator may be dropped. Considering the antual impedance of the grid circuit network, with this simplifieation the plate current is

$$
\begin{align*}
& i_{B}=\frac{\mu Q_{B}}{R_{p}+Z_{B}}\left\{\begin{array}{l}
{ }^{2} R_{\eta} R_{\theta}^{\prime} \\
\left(R_{\sigma}+\left(Q_{A}\right)\left(R_{\theta}+\left(Q_{A-B}\right)\left(R_{G}+\left(Q_{B}\right)\right.\right.\right.
\end{array}\right. \\
& \left.+\frac{b_{2} R_{0} R_{\theta \prime}^{\prime}}{\left(R_{u}+Q_{A+B}\right)\left(R_{i l}+Q_{A}\right)\left(R_{v}+Q_{B}\right)}\right\} m E_{A}{ }^{2} \tag{22}
\end{align*}
$$

Substituting the $P$ terms of (12) in (10) gives an $i_{B}$ of the form in the brackets of (22), which is the a-f current of a two-element detector. Multiplying this current by the a-f grid impedance $Q_{B}$ gives the audio voltage impressed on the grid of the tube, which as an amplifier produces a plate current $\mu / R_{p}+Z_{B}$ times the grid voltage. Grid-leak and condenser detectors are more sensitive than the plate curvature detectors because $d^{2} I_{g} / d E_{g}{ }^{2}$ is greater than $d^{2} I_{p} / d E_{a}{ }^{2}$, and because of the additional audio amplification. Several disadvantages are evident. The finite value of $R_{0}$ forms an undesired load on the circuit ahead. The additional audio amplification adds to microphonie and filter problems. To gain sensitivity a low plate voltage is used, with a resulting high value of $R_{p}$ and poor ficlolity if using reactive loads.
Substituting the impedance of the leak-condenser combination $Q_{B}, Q_{A}$, $Q_{A+B}, Q_{A-B}$ in (22) enables the a-f


Fig. 7.-Hyperbolic detector characteristic. current to be calculated for any value of $A$ and $B$. If $R_{q}$ is the leak resistance and $C_{q}$ the shunt capacity, the maximum current $i_{B}$ is approximately obtained when

$$
\begin{equation*}
C_{q}{ }^{2}=\frac{\sqrt{2}\left(R_{q}+R_{q}\right)}{A B R_{q} R_{q}{ }^{2}} \tag{23}
\end{equation*}
$$

If $R_{q}=10^{6}, R_{g}=5 \times 10^{4}, A=$ $2 \pi \times 10^{6}, B=2 \pi \times 10^{3}$, then $C_{q}=$ $125 \mu \mu \mathrm{f}$. Decrease of $R_{q}$ (as due to greater signal or lower plate voltage) means a larger condenser is desirable. lncreasing the a.f. means decreasing $C_{q}$ for maximum $i_{B}$. Occasionally the equivalent grid impedance due to tube capacities and circuit elements is more important than $R_{n}$. In this case other tube input impedance equations will give an approximate value to use for $R_{o}$.
8. High-amplitude Detectors. The conclusions reached in Arts. 6 and 7 above are valid only for small signals. For higher amplitude signals inore than two terms of Eq. (6) must be used. The complete serics may be reduced to terms containing the tube and circuit parameters, but the computation is laborious and without value for inspection purposes. In many cases the equation suiting the $E-I$ curve may be obtained under operating conditions. Consider Fig. 7. The solid curve is the $I_{p}, E_{\theta}$ of a 224 -type tube under the conditions stated. The dashed line is the equation of the hyperbola

$$
\begin{equation*}
I_{p}=\frac{b}{a} \sqrt{a^{2}+\left(E_{a}+c\right)^{2}}+\frac{b}{a}\left(E_{\vartheta}+c\right) \tag{24}
\end{equation*}
$$

where $a=2.69, b=1.41, c=6.35$.
The two curves coincide within reasonable limits. Using Eq. (24) and successively differentiating to determine $P_{2}, P_{4}, P_{6}$, ete., gives values
to be substituted into Eq. (6) to determine $i_{B}$ and $i_{2 B}$, Determining the maximum value of $i_{B}$ as a function of $E_{0}$ gives

$$
\begin{equation*}
I_{B(\max ),}, E_{0}=-c \tag{25}
\end{equation*}
$$

To determine the minimum second-harmonie distortion, the coeffirient of $i_{2 B}$ is divided by the coefficient of $i_{B}$, and the minimum value determined.

$$
\begin{equation*}
\frac{i_{2 B}}{i_{B}}(\min ), E_{0}=-c \tag{26}
\end{equation*}
$$

The maximum sensitivity and minimum distortion are obtained with the same hias condition, a fortunate circumstance. In case the cut-off of the tube does not match the assumed hyperbola as in Fig. 7 (hyperbola above tube eharacteristic) the best operating point is with a slightly greater negative bias. If the straight-line portion of the curve be extended, as shown by the light line of Fig. 7, the intercept on the $E_{a}$ axis provides approximately the correct operating point. In this case $E_{o}=-c=6.35$ yolts, while the intereept gives $E_{a}=-7.0$ volts. Experimentally this tule gave a maximum sensitivity with $E_{a}=-6.5$ volts, the values not being eritieal to $\pm 1$ volt.

The straight-line extension method has been used in various comparisons and gives a uniformly satisfactory means of determining the best bias voltage. It should be noted that Fig. 7 is determined under the operating conditions. The value of $E_{A}$ will affect the shape of the characteristic eurve, giving an intercept indicating a required higher bias for targe values of $E_{A}$. It can be shown that the distortion decreases for increasing values of $E_{A}$. As this case is merely intermediate between the restricted input squarelaw detector and the linear detector,


Fig. 8.-Linear detection characteristic. no discussion is necessary.
9. The linear detector characteristic shown in Fig. 8 is ideal for detector operation. This exact eharacteristic has never been produced, yet a study of its detertion operation teads to helpful conclusions. The curve itself may be expressed by a Fourier series.
$i_{p}=K\left[\frac{c}{4}+\frac{\theta}{2}-\frac{2 c}{\pi^{2}} \cos \frac{\pi \theta}{c}-\frac{2 c}{3^{2} \pi^{2}} \cos \frac{3 \pi \theta}{c} \cdots \frac{2 c}{(2 n-1)^{2} \pi^{2}} \cos (2 n-1) \frac{\pi \theta}{c}\right]$
where

$$
\begin{equation*}
\theta=c_{0}=E_{A}(1+m \cos B t) \cos A t \tag{1}
\end{equation*}
$$

Substituting (1) in (27) gives a scries involving Bessel functions. For detection purposes the $i_{s}, i_{B}$, and $i_{z B}$ components of $i$ only need be considered. Tabulating the Bessel functions for these freguencies shows that for all values of $E_{A}$ and $n$

$$
\begin{align*}
i_{.} & =\frac{K E_{A}}{\pi} \sqrt{1+m^{2}}  \tag{28}\\
i_{B} & =\frac{K m E_{A}}{\pi} \cos B t  \tag{29}\\
i_{2 B} & =0 \tag{30}
\end{align*}
$$

Equation (29) shows the linear detector to be truly linear in output, both with respect to $m$ and with respect to $E A$. Equation (30) shows the entire lack of distortion. (Calculations for $i_{3 B} i_{4 B}$, etc.s, slow all harmonic terms to be zero.) In the current is of (29) is the short-rireuit audio-frequency plate current of the tube. The equivalent plate-rireuit audio-frequenry generator voltage is $i_{s} R_{p}$, and therofore the voltage across an external impedance $Z_{B}$, assuming $Z_{A}=Z_{A+H}=0$, is

$$
\begin{equation*}
c_{H}=\frac{K m E_{4}}{\pi} \frac{R_{p} Z_{A}}{R_{p}+Z \mathrm{Z}} \cos B t \tag{31}
\end{equation*}
$$

Assuming $\mu$ holds constant over the entire oferating range,

$$
\begin{equation*}
R_{p}=\frac{2 \mu}{K^{\prime}} \tag{32}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
c_{B}=\frac{2 \mu K m E_{A}}{\pi} \cdot \frac{Z_{B}}{2 \mu+\kappa Z_{B}} \cos I t \tag{33}
\end{equation*}
$$

In case the operating point is not at the cut-off point but is biased below rut-off, these equations may be written

$$
\begin{align*}
& i_{B}=\left[\frac{K m E_{A}}{\pi} \sin \alpha\right] \cos I t  \tag{34}\\
& e_{H}=\left[\begin{array}{c}
\frac{K m E_{A} Z_{B \mu}}{\mu \pi+K Z} \frac{1}{H \alpha} \\
\sin \alpha
\end{array}\right] \cos B t \tag{35}
\end{align*}
$$

where $\alpha$ is one-half the angle during which eurrent flows. If lia, 31 is used, $h_{p}$ must be measured, as previously, with $E$, , or the equivalent, on the grid and with other operating conditions normal.
'The theoretial advantages of linear detection have led to many attempts to make such a deviore. The simplest expediont is to operate at the point indicated in Fig, 7 and apply such a large value of $E$ a that the device is operating on the straight-line portions the major part of the eyele, Jinare deteretion morlads need not be confined to the plate eirenit, as the input to a grid rurrent curvature deteretor may be sufficient to approximato limear grid reetifieation.
10. The heterodyne detector is more proporly a modulation devior, although in this, as in other similar units, the distinction is a mater of viewpoint. A signal of the type of Lif. (1) is impressed simultaneously with a heterolyne voltage $E_{h}$ of a frequenry $/ I / 2 \pi$ upon an asymmetrical devior. Now frequoncies are produced, atoh of which may be considered as a new earrier frequency. 'These new earrior frequencies are all possible sum and difference combinations of integer multiples of $A$ and $I$. With eateh of these earriers are assoriated other frequencies differing therefrom by the modnlation frequeney $B$ (and for higher-order curvature, $\pm 2 B, \pm 3 B$, ate.). Thas the heterolyne voltage en is of the form

$$
\begin{equation*}
c \prime=I^{\prime}-\frac{E_{i}}{4} \frac{E_{n}}{4}(1+m \cos B t) \cos (A+H \cdot t \tag{36}
\end{equation*}
$$

The voltage $E(A-m$ is the one rommonly used. In general the external impedanme of the heterodyne detector is zero to both frequeneies $A$ and $/ /$ and finite at the fremeney $A-I /$. Is in (10) the heterodyne voltage may dirertly be written, For a square-law characteristir, $i=K \neq \mathscr{E}^{2}$, and operationt above cut-off,

$$
\begin{equation*}
\left.c_{H}=\left[\frac{\mu K Z(A-H)}{\mu+2 K Z(A-H) E_{v}}\right] E_{A} E_{H} H+m \operatorname{rns} B t \right\rvert\, \cos (A-H) t \tag{37}
\end{equation*}
$$

where $E_{0}$ is the intial hias voltage moasured above the current rut-off, In case the magnitude of $E=$ swings the instantaneous voltage off the squarelaw curve and below cut-off
$\ell^{\prime} H=\frac{\mu K Z_{A-H)}^{\prime}\left(\alpha-\frac{1}{2} \sin \mathscr{U}_{\alpha}\right)}{\mu+2 K Z_{(A-H)} E^{\prime} \frac{1}{\pi}(\sin \alpha-\alpha \cos \alpha)} H_{A} F_{i} H[1+m \cos B t \mid \cos (A 1-H) t$ (38)
where $\alpha$ is as defined for (35) and is one-half the angle during which current flows.

For a linear detector waractoristic $i=K E$ and operation entirely above cut-off, no detection or heterodyne voltage resuits. The action is as if several frequencios be simultaneously applied to a linear amplifier. Amplification of each frequency results, hut no modulation is produced, henee no new frequencios.

When, in the linear detertor, the voltage E゙n swings the operation below cut-off, a heterodyne voltage results:

$$
\begin{equation*}
\left.\left.\iota^{\prime} H=\frac{\mu K Z(\Delta-H) \frac{1}{\pi} \sin \alpha}{\mu+K Z Z_{(A-H)=}^{\pi} \alpha} E_{A} \right\rvert\, 1+m \cos B t\right] \cos (A-\mid I) t \tag{39}
\end{equation*}
$$

Notice that $E_{H}$ does not appear in (39). Its only effect is to determine $\alpha$. Equations (37), (38) and (39) assume that $\mathrm{lim}_{\mathrm{A}}$ is very small compared with $E H$, quite generally the case.
11. Two modulated signals of the type given by $E q$. (1) are often impressed simultaneously upon a detertor. The response ratio of the desired and undesired stations and the magnitude of the spurious new frepuencies depend upon the type of detector used, rebative eirrier

| l'requenty | Amplitudesquare law | Amplitude linear characteristic, first terms |
| :---: | :---: | :---: |
| ${ }_{2 B}^{B}$ | $E_{A_{A}^{2}}^{E_{A} \cdot V^{2}}$ | $E_{0} \operatorname{sA}_{1 / 1 /}$ |
| $b$. | $E_{\mathrm{a}^{2} m}{ }^{\text {m }}$ | $m E_{a}-E_{\Delta} k\left(a_{0} m-\frac{a_{1} m}{2}-\frac{m E_{a} k}{b^{\prime}}\right)-\frac{3 E_{a}^{2} k^{3} b_{n} h}{2 b_{j}}$ |
| $2 b$. | $\frac{E_{a^{2}}{ }^{2} m^{2}}{4}$ | $\frac{m^{2} \boldsymbol{E}^{\prime} k^{2} k^{2}}{2 E^{\prime}}-\frac{b_{4} E_{a^{2}} k^{3} k_{m^{2}}}{4 E^{\prime}}$ |
| $1)$ | $E_{A} E^{\prime}$ |  |
| 21) | 0 | $b_{0} L_{4}{ }^{2} k^{3} / 4 E$ |
| $\beta \pm 1)$ | $\frac{E_{A} E_{1}^{\prime}, I}{2}$ | $E_{\Delta} k\left(\frac{a_{0} M}{2}-\frac{a_{1}}{2}+\frac{a_{2} . M}{4}-\frac{m^{2}, M E_{\alpha} k}{4 E^{\prime}}\right)$ |
| b + b | $\begin{gathered} E_{A} B_{1}=1 \\ -= \end{gathered}$ | $E_{u} k\left(\frac{a_{0} m}{2}-\frac{a_{1} V m}{4}-\frac{m B_{u} k}{2 L^{2}}\right)+\frac{m_{0} E_{a}^{2} k^{3} m}{b_{k}}$ |
| $B+b+1)$ | Fister $1 / \ldots$ | 11 |

amplitudes and degrees of modulation. The mathematical computation may be made by the use of a sum of infinite series, or with the somewhat more rapidly convergent Bessel series. The relative amplitude terms
indieated in the preceding table were obtained from the infinite-series solution.

The voltage $e$ impressed on the detector is of the form

$$
\begin{equation*}
e=E_{A}(1+M \cos B t) \cos A t+E a(1+m \cos b t) \cos a t \tag{40}
\end{equation*}
$$

where $A, B, M$ refer to the desired station signal and $a, b, m$ refer to the interfering station signal. For simplicity of representation let $A-a=D$. The various important frequency components and their amplitudes are noted in the table on page 255 . The first terms of the infinite series given may be considered as representing almost completely the amplitude of the frequency components under the following restrictions:

$$
E_{a} \equiv 0.1 E_{A}^{\prime}, 0.1<m<0.5,0.1<M<0.5
$$

The constants in the table are

$$
\begin{array}{ll}
a_{0}=1+\frac{. M^{2} K^{2}}{2}+\frac{3 . M^{4} K^{4}}{8} & b_{0}=1+3 . M^{2} K^{2} \\
a_{1}=M K+\frac{3 M^{3} K^{3}}{4}+\frac{5 M^{5} K^{5}}{8} & \\
a_{2}=\frac{M^{2} K^{2}}{2}+\frac{M^{4} K^{4}}{2} & K=\frac{E_{A}}{E_{A}+E_{a}}
\end{array}
$$

12. Demodulation of One Signal by Another. The audio component $b$ of the undesired signal is reduced due to the presence of $E_{A}$. This is an important and interesting phenomenon. The linear detector in the presence of more than one signal discriminates against the weaker signal. This ratio has been investigated by means of Bessel functions. Assuming a low and equal percentage of modulation, for convenience in calculation, this gives the following ratio of the audio components of $b$ and $B$.

| Carrier ratio | Acoustic ratio | Carrier ratio | Acoustic ratio |
| :---: | :---: | :---: | :---: |
| 1.0 | 1.0 | 0.5 | 0.137 |
| 0.9 | 0.830 | 0.4 | 0.0935 |
| 0.8 | 0.430 | 0.308 | 0.0470 |
| 0.7 | 0.309 | 0.2 | 0.0202 |
| 0.6 | 0.209 | 0.1 | 0.0052 |

13. Rectification diagrams are experimentally determined eurves very useful in deriving detector characteristics. For a two-element detector ${ }^{\prime \prime}$ (ineluding such devices as grid-leak and eondenser detector in a sereen-grid tube or in a neutralized triode) the only variables considered are direct current, direct voltage, and alternating voltage, and the resulting series of curves is called a rectification diagram. For triodes, ete., where the signal is applied to the grid circuit of a plate-current curvature detector, the series of curves is known as a transrectification diagram. Figure 9 is a transrectification diagram for a 201-A tube. The plate current is shown as a function of plate voltage for various r-f voltages ( $\mathrm{r}-\mathrm{m}-\mathrm{s}$ values) on the grid. Two load-resistance lines for 100,000 and 200,000 ohms are shown. The d-e voltage change across the load resistanee for values of r-f voltage is shown in Fig. 10. These curves are derived from Fig. 9.

Considering the standard signal of Eq. (1) to be a voltage $E_{A}$ varicd in magnitude $\pm m E_{A}$, the output voltage change aeross the load innpedance may be calculated. This voltage change, divided by two, gives the peak value of audio output. Thus in ligg. 10, an r-f voltage of 5


Fig. 9.-Transrectification diagram of 201-A. A tube for various applied r-f voltages.
volts r-m-s, modulated 30 per cent gives 9.3 and 10.4 volts peak, across the 100,000 - and 200,000 -ohnin loads, respertively.

Rectification diagrams need not be taken at radio frequencies. A voltage source such as the 60-cyele supply is satisfactory. The plate impedance to the frequencics $E_{A}$, $E_{A-B}, E_{A+B}$ must be approximately zero.

The rectification diagrams may also be used with reactive loads. The slope of the load line through the operating point must correspond to the impedance of the reactance at the audio frequency under consideration. The actual current-voltage relations form an ellipse about this load line, the extremities of which approximate the peak-voltage swings. Complete fidelity curves may be plotted in this manner. In this case, as with the resistance load, the external impedance to $E_{A}, E_{A-B}$, and $E_{A+B}$ must be approximately zero. An r-f voltage of $10, \mathrm{r}-\mathrm{m}-\mathrm{s}$, modulated 30 per cent to a 227 tube properly biased gives 29 audio


Fig. 10.-Curves derived from characteristic of Fig. 9. peak volts across 200,000 olims.
14. Other Detection Characteristics. For simplicity in reference, all voltages given on the eurves as $E_{A}^{\prime}$ are given in r-m-s values. Figure 11 shows detection charaeteristies of a 227 used as a two-clement detector. Figure 12 shows the equivalent detection resistance for the same tube.

In using various tubes for grid-leak and condenser detectors several factors are evident. The grid-leak resistance should be high to increase the tube initial hias, reducing the tube grid conductance and so the loss on the r-f eircuit. A high leak resistance also increases the sensitivity. It has a major disadvantage in that in combination with the correct caparity for detection, considerable loss in high modulation frequencies results. Figure 13 shows a serics of fidelity curves using different grid-


Fig. 11.-Diagram for 227-type tube as a two-element detector.
leak resistances. It has become ahnost standard pratetice to use a grid rondenser of $250 \mu \mu$ li and a leak resistance of one megohm for all tubes used as grid-leak detectors. Bettor individual compromises for specific uses are often helpful. Figure 14 shows the r-f input a-f output of a 227 tube used as a grid-leak and condenser detector.


Fig. 12.- Equivalent resistance of 227 as two-element detector.
The plate resistance $R_{p}$ while detecting, and the change in plate resistance $h_{p}{ }^{\prime}$, have been repeatedly used in detertion equations. Figure 15 gives values of $R_{p}$ and Fig. 16 gives values of $R_{p}{ }^{\prime}$ for various conditions of a 227 tube.
15. Screen-grid Tube as Detector. The 224-type tube is of great importance as a detector. Figure 17 gives a series of curves, plotting
a-f output against r-f input for rarious bias conditions. The total harmonie distortion introduced by this detector is also shown. With a


Fig. 13.- Fidelity of grid-leak detector as function of leak resistance.
low battery bias ( 7 volts) the distortion is initially $m / 4$ and decreases with increase in voltage, increasing when grid current begins to flow. With suceessively increasing bias voltages $b, c, d$ the distortion per-


Fig. 14.-Grid-leak and condenser detestor.


Fig. 15.-Value of $R_{p}$, plate resistance while deterting, for various input voltages.
centage increases rapidly from the $m / 4$ condition, and the sensitivity decreases. Ifigher outputs are possible, however. With sufficient
r-f input, the second harmonie for these extreme hias voltages will decrease as shown by the descending curves of $b, c$, and $d$.


Fig. 16.-Values of change in plate resistance.
Two conditions of self-bias resistance for detection are shown at $e$ and $f$. At low signal inputs the plate current is low, the bias is of the order of 6 volts, the distortion is low, and the sensitivity high. Increasing


Fig. 17.-Screen-grid detector characteristirs.
the signal input increases the current, hias voltage and distortion. Instead of decreasing, as would be normal in a tube having a characteristie as in Fig. 7, the distortion inereases with input.

The slope of the input-output curve is often considered as a means of estimating if the letector action is square law, lincar or intermediate, and guessing the corresponding harmonie distortion. In such a self-hias arrangement the increasing bias voltage with increasing r-f input may modify the output-input curve to indicate a linear detector characteristic without the distortion conforming. In a sense the output-input curves as shown are static; distortion is due to a dynamic characteristic. It is significant to note that the $e, f$ output curves cross the $c, d$ output curves at the same r-f input as the corresponding distortion eurves, indicating that a given r-f input and bias voltage produce a definite output and distortion regardless of how obtained.

Figure 18 shows another series of curves giving output and distortion as a function of bias conditions. These bias resistances range from values


Fig. 18.-Output and distortion as function of bias resistance.
too low to those too high. a with 36,000 ohms gives an input-output curve of high initial sensitivity and almost linear characteristic. In spite of this apparent linear characteristic, the distortion, except for the initial $m / 4$ value, is high. Decreasing the hias resistance below the optimum value results in an initial increase in distortion, a later decrease in distortion but only after grid current starts, making this decrease of doubtful value. Third harmonic distortion becomes serious only after grid current starts and when feeding from a high-impedance circuit so it is not shown in Figs. 17 and 18.

Other factors greatly influence the sensitivity and distortion of the 224. The output circuit for the curves of Figs. 17 and 18 is an extremely high reactance shunted by a $500,000-\mathrm{ohm}$ resistance. For resistance coupling, higher supply voltages must be used to make up for the $I R$ drop, or other compromises, such as lower plate resistance, be utilized. With signal voltages applied, the plate current increases and the net
voltage on the tube plate electrode decreases. When the instantaneous plate potential reaches a value as low as the screen potential serious distortion results. Actual design must insure high plate voltage in addition to correct hias conditions as portrayed in Figs. 17 and 18.
16. Superheterodyne Translation Ratio. The sensitivity of the first detector, or heterodyne detector, of a superheterodyne system is expressed


Fig. 19.--Superheterodyne oscillator characteristic.
as the translation ratio. This is the ratio of the intermediate frequency voltage across the i-f impedance in the plate circuit of the detector, and the r-f voltage applied to the grid of the detector. Figure 19 gives typical translation ratio characteristics for a 235 tube under various oscillator



Fig. 20.-I-f output versus r-f Fig. 21.-Combined detector-oscilla-
input.
tor circuit.
voltages. The sudden drops are due to grid current load on the r-f tuned circuit.

The 235-type tubes were not designed as detectors, or modulators; but as large voltages from a local oscillator can be applied to the grid, this type may be used as first detectors.

With a constant oseillator voltage, the i-f output is linear with respect to the r-f input voltage within operating limits. This condition for a 224 is shown in Fig. 20.
17. Combination Detector and Oscillator. The functions of lst detector and oseillator of a superheterodyne may be simultaneonsly earried on in a single tube. The grid circuit is tuned to the applied signal $E_{A}$, and a phate cirenit is made resonant to the resultant intermediate frequeney. In addition, the phate cirenit is compled batek to the grid eircuit by means of a third cireuit rewoman at the frecumeng of the applied signal phas the intermediate frequency. The result is that an oscillator voltage $E_{n}$ (at the frequency $/ I 2 \pi$ ) is simultaneously applied on the grid with the signal $E_{A}$, and a heterolyne voltage $E_{1} /-A$ will be developed arross the resonant plate cireuit. A typieal cireuit is shown in Fig. 21. Several limitations are neessary in practice. 'The heterodyne voltage Ein applied to the grid should not be high enough to draw grid curent, or distortion will result. This calls for low oseillat tion voltages. Most satisfactory operation to date has resulted from use of a 224 -type tube. 'The actual voltage conditions vary with design. Bias voltages may range from 5 to 10 volts with the r-m-s heterodyne voltages on the grid about one half of this bias voltage. Translation ratios from 15 to 50 may be obtained.
18. Values of C Bias for Various Tubes as Detectors.

$E c_{1}$, control-grid valtage: $E_{r_{2}}$, soreen-grid voltage.
These hias yalues are all slightly higher than those required for optimum sensitivity. (ireater output can be obtained using these values, however.

## MODULATION

19. Modulation is the proeess or result of modifying an energy earrier, the changes conforming to the modulating sigmal. The simptest form of modulation consists in the intermittent tramsmission of energy, producing an instantaneous change in energy fom zero to maximum amplitude. Such a modulation process is customarily produced by keying and breaks the power supply, diseonnects the earrier medium, or diverts the energy carricr into a power-disipipating unit when transmission is undesired. 'The energy earrier might be direct current in the case of a telegraph wire link, medium or high frequency currents in the cases of carrier current or radio telegraphy transmission. Suitable deviees responsive to the modulation are assumed to be at the recoiving and of the sustrm.
20. Absorption modulation is typieal of modulation processes. With a given impressed voltage in a cireuit the current is determined by the
resistance of the circuit. In an absorption modulation circuit the resistance comprises the load impedance $R_{L}$ and a resistance $R_{0}$ which varies in amplitude at the modulation frequency and to a degree represented by $m$ and determined hy circuit conditions.

The frequency of the impressed voltage is $.1 / 2 \pi$ and that of the modulation frequency $B / 2 \pi$. The voltage across the load impedance $R_{L}$ is

$$
\begin{equation*}
c_{L}=\frac{E_{0} R_{L} \sin A t}{R_{L}+R_{0}(1+m \sin B t)} \tag{41}
\end{equation*}
$$

Expanded, this gives

$$
\begin{equation*}
c \iota=E_{0}\left\{\sin A t-\frac{R_{0}}{R_{L}}(1+m \sin B t) \sin A t+\cdots\right\} \tag{42}
\end{equation*}
$$

The successive terms dropped from this expansion represent harmonic or distortion terms and nay be neglected for this analysis. Combining,

$$
\begin{equation*}
e_{L}=E_{0}\left\{\left(1-\frac{R_{0}}{R_{L}}\right) \sin A t-\frac{R_{0}}{R_{L}} m \sin A t \sin B t\right\} \tag{43}
\end{equation*}
$$

Equation (43) represents a voltage $K_{0}\left(1-\frac{R_{0}}{R_{L}}\right) \sin .1 t$ at the impressed frequency, and a second voltage $E_{0} \frac{R_{0}}{R_{L}} m \sin A t \sin B t$ at the frequency $\frac{A}{2 \pi}$
but modulated by the frepuency $R / 2 \pi$. The amplitude of the modulated component is proportional to the variation in resistance $R o$ as expressed by $m$ and the ratio $R_{0} / R_{L}$.
21. Circuits for Absorption Modulation. The absorption-modulation circuits of Fig. 22a, b, c are illustrative of common methods. $a$ is a telephone transmitter modulating a current of zero (d-c) frequency; $b$ and $c$ are methods applied to low-power r-f transmitters for voicefrequency modulation. The coupling ratios used are such as to provide the maximum modulation within the power capacity of the microphone.
22. The power rating of the device used to produce the resistance variation largely determines the modulated output. The greater $R_{0}$ with respect to $R_{L}$ the greater will be the modulated output component,


Fig. 22.-Absorption circuits.

modulation but a smaller pereentage of total power supplied will be transmitted. The current of carrier frequency flowing through the modulating unit causes power loss and resultant heat, In the case of a carbongrain transmitter as shown in Fig. 22, sticking and poor operation will result. The correct relationship between $R_{0}$ and $R_{L}$ is rather a compromise between opposing factors of decreased modulation and increased transmission. Maximum modulated output (maximum signal response) will generally be obtained between the values $R_{0}$ equals $R_{L}$ and $R_{0}$ equals $1 / 2 R_{L}$ depending somewhat on $m$. The power rating of well designed carbongrain type microphones is approximately 5 watts, giving reasonable modulation control of from 5 to 20 watts. Special water-eooled micro-
phones have been used multiplying the above power values by about five times.
23. Analysis of Modulation. The mathematical expression for an energy carrier of a frequency $A / 2 \pi$ modulated by a signal of frequency $B / 2 \pi$ is shown to be a product, as $(1+m \sin B t) \sin A 1$. This means that the per cyele amplitude of the carrier voltage yaries as the amplitude of the modulation signal, being greatest when $\sin B t$ is +1 and least when $\sin B l$ is -1 . Such a variation can be obtained by impressing simultaneously voltages of frequencies $A / 2 \pi$ and $B / 2 \pi$ upon a device

whose response is not proportional to the voltage applied. Figure 23 shows how this result is ohtained; $x$ is the applicd voltage and $y$ the corresponding response. An initial operating point $o$ is indicated. Time is measured along the dashed lines through o and parallel to the $x$ and $y$ axes. On the vertieal time axis is shown the instantancous sum of the applied voltages. On the horizontal time axis is shown the instantaneous response. Due to the changing slope of the asymmetrical $x, y$ characteristic the per cycle amplitude of the response at the frequency $A / 2 \pi$ varies as the value of sin $B!$ varies. 'This is the desired relation for a modulated signal, and so indicates that such an asymmetrical characteristie does produce a modulated response.

The response $y$ to an input $x$ can be expressed as a general function

$$
\begin{equation*}
y=f(x) \tag{44}
\end{equation*}
$$

Expanding by Mac!aurin's theorem

$$
\begin{equation*}
y=a x+\frac{b x^{2}}{2!}+\frac{c x^{3}}{3!}+\frac{d x^{4}}{4!} \tag{45}
\end{equation*}
$$

Let

$$
\begin{equation*}
x=E_{A} \sin A t+E_{H} \sin B t \tag{46}
\end{equation*}
$$

where $E_{A}$ is the peak voltage of the earrier frequency imput ( $f=A / 2 \pi$ ) and $E_{B}$ is the peak voltage of the modulation signal input ( $f=B / 2 \pi$ ). Substituting (46) in (45) and talulating vertically, with equivalent firstorder trigonometric functions,

| $\begin{aligned} & a\left(E_{A} \sin A t+E_{B} \sin B t\right)+ \\ & \frac{b}{2}\left(E_{A} \sin A t+E_{B} \sin B t\right)^{2}+ \\ & \frac{c}{6}\left(E_{A} \sin A t+E_{B} \sin A t\right)^{3}+ \end{aligned}$ $\begin{equation*} \frac{d}{24}\left(E_{A} \sin A t+E_{B} \sin I B t\right)^{4}+ \tag{47} \end{equation*}$ |  |
| :---: | :---: |

The values of $a, b, c, d$, ete., represent successive differentials of the function $y$ with respect to $x$, evaluated at the operating point $x$. It is to be noted that the functional relationship between $x$ and $y$ is based on the complete operating circuit and not merely the asymmetrical characteristic of the modulating device. I we to load impedances straightening ont the curve between $x$ and $y$ of the modulating device itself, the differentials indicated will in general be smaller in magnitude than those based upon the $x, y$ characteristic of the modulating device. If the actual value of this function is known, the values of these differentials may be obtained. Two typical curves of $y=f(x)$ are expressed below and the differentials evaluated:

$$
\begin{aligned}
y & =\left(_{1}+K_{1} x_{0}^{2}\right. & y & =C_{2}+K_{2} X_{0}^{3 / 2} \\
& =2 K_{1} X_{0} & & =\frac{3}{2} K_{2} X_{0}^{1 / 2} \\
& =2 K_{1} & & =\frac{3}{4} K_{2} X_{0}^{-\frac{1,2}{2}}
\end{aligned}
$$

$$
\begin{array}{lll}
c=\frac{d^{3} y}{d x^{3}} & =0 & -\frac{3}{8} K_{2} X_{0}-3 / 2 \\
d=\frac{d^{+} y}{d x^{4}} & =0 & =\frac{9}{16} K_{2} X_{0}-5,2
\end{array}
$$

In the exuations the product of two trigonometric values such as $\sin r A t \sin s B t$ represents a carrier of frequency $r .1 / 2 \pi$ modulated by a signal of $s B / 2 \pi$. If $s$ is not unity, higher frequeneins than the desired modulation signal frequency are transmitted and in general distortion results. If $r$ is not unity, the modulation signal is also transmitted as a modulated carrier of higher frequency than that desired. The magnitudes of such undesired components may be reduced by keeping $E_{A}$ and $E_{B}$ small (in eomparison with the operating characteristic of the $x, y$ function) or hy using such a function as indicated above where all differentials beyond the second have a value of zoro.

For analytical purposes, the instantaneous amplitude of $\mu$ may be expressed as an equation and written as follows:

$$
\begin{array}{r}
y=a E_{A} \sin A t+a E_{B} \sin B t+\frac{b E_{A}^{2}}{4}+\frac{b E_{B}^{2}}{4}-\frac{b H_{A}^{2}}{4} \cos 2 A t-\frac{b E_{B}^{2}}{4} \cos 2 B t \\
 \tag{48}\\
+b E_{A} E_{B}^{\prime} \sin A t \sin B t \quad(48)
\end{array}
$$

The desired transn:ission is at a frequency $A / 2 \pi$. Iropping other terms,

$$
\begin{equation*}
y=a E_{A}^{\prime} \sin A t+b E_{A} E_{B} \sin A t \sin A t \tag{49}
\end{equation*}
$$

The seond component of $\mathrm{E}(\mathrm{f}$. (49) represents a variable amplitude carrier at the frequency $A / 2_{\pi}$ and varying in amplitude at the frequency $B / 2_{\pi}$. This variable amplitude adds to and subtracts from the first term of Eq. (49), giving an avorage peak value of $a E_{A}$. The percentage of modulation may be expressed as a pereentage change in value of this average peak, due to the second term of $\mathrm{Li}(\mathrm{f}$. (49).

$$
\begin{equation*}
m=\frac{b H_{B}}{a} \tag{50}
\end{equation*}
$$

where $m$ is the morlulation factor. The percentage of modulation is usually the value discussed, which is 100 m . The factor b/a represents the ability of the device to produce modulation and is termed its modulation efferiency. The percentage of modulation varies directly as the modulation voltage $E^{\prime}$. Substituting (50) in (49) gives

$$
\begin{equation*}
y=a L_{A}\left[\sin .1 t+\frac{m}{2} \cos (A-B) t-\frac{m}{2} \cos (A+B) t\right] \tag{51}
\end{equation*}
$$

Equation (51) indirates that the desired result of modulation is equivalent to three components, having frequency characteristics of $\frac{A}{2 \pi}, \frac{A-B}{2 \pi}, \frac{A+B}{2 \pi}$ and having corresponding amplitudes of $1 . m / 2, m / 2$ and initial rorresponding phases of $0,+90,-90$ deg. respectively. 'The fredueney $A / 2 \pi$ is referred to as the rarrier fremuency and the frequencies $\frac{A-B}{2_{\pi}}$ and $\frac{A+B}{2_{n}}$ as the lower and upper side bands.
24. Carrier and Side Band Physical Picture. Throe viewpoints may be taken of the rehtions between the earrier and the side lands. "The
first is illustrated in Fig. 24, where $a, b$, and $c$ respectively represent instantaneous amplitudes of the carrier, lower and upper side-band components plotted against time; $d$ gives the instantaneous sum of $a, b$, and $c$ and represents exactly the form of the morlulated output. The modulation factor is indicated.

A second viewpoint is shown in Fig. 25, which represents the peak (or effective) voltage amplitude of the carrier and side bands plotted


Fig. 24.-Relations between (arrier and side bands.
against their corresponding frequencies. The modulation factor is indicated. Its value is obtained by noting that the maximum and minimum amplitudes oecur when the sum of the side-hand amplitudes adds to and subtracts from the carrier.


Fig. 25.-Carrier and side bands on a frequency scale.


Fig. 26.-Veetor diagram of carrier and side bands.

A third viewpoint is shown in Fig. 26, where the vectors indieate peak (or effective) voltage amplitudes of the carrier and side bands and their respective initial phase conditions. With respect to the carrier vector the lower side hand rotates clockwise while the upper side band rotates counterclockwise, the relative angular velocities being $+B$ and $-B$. The maximum and minimum amplitudes occur when the side-band vectors are in phase or exactly out of phase with the carrier. The modulation factor is indicated.
25. Modulation Due to Iron Saturation. An asymmetrical characteristic occurs near the saturation point of an iron core reactor. If such a
reactor, so operated, be used as a transmission element in a carrier frequency system and if a modulating signal be impressed through an auxiliary winding, modulation will result. Such a system was used for modulating are-type radio transmitters or those of the Alexanderson or (ioldschmidt type. Due to nonpenetration of the flux into the iron such schemes are effective only at frefuencies up to 100,000 cycles.
26. Plate-circuit Modulation. The plato-eurrent characteristic of a three-element vaculum tube with respect to its grid and plate voltages may be approximately expressed as

$$
\begin{equation*}
I_{p}=\left(E_{v}+\frac{E_{p}}{\mu}+e\right)^{x} \tag{52}
\end{equation*}
$$

$x$, in the range in which the tube is effective as a modulation device, is approximately 3/2. The voltages at the earrier frequency and at the modulation frequency may be independently impressed in the grid or plate circuits of the vacuum tube with resultant modulation. If both voltages are impressed in the grid circuit, smaller amplitudes are necessary to produre an equivalent plate eireuit output than if one or both are impressed in the plate circuit. Here $\mu$ represents the amplification factor of the tube. It is not constant but varies as $I_{p}$ cut-off is approached at ligh negative grid voltages. The result is that in obtaining high percentages of modulation, a greater amount of distortion will be produced when the carrier and modulation voltages are impressed in the grid cirenit than when impressed in the phate circuit. lest results may be obtained when the earrier voltage is impressed in the gride cireuit and the modulation voltage in the plate circuit. Tubes operating in the manner outlined above are called modulated amplificrs.
27. Modulation Quantities. Certain quantitative values are often needed in the solution of modulacion problems. 'These are indicated as follows:

In terms of the grid and plate ineremental voltages the power series for the three-element vacuum tube is

$$
\begin{align*}
& i_{p}=F_{1 e_{g}}+F_{2} e_{p}+1_{2} F_{3^{\prime} q_{q}^{2}}+F_{s_{q} e_{p} e_{p}}+1_{2} F_{s e_{p}{ }^{2} \cdots}  \tag{53}\\
& F_{1}=\frac{\mu}{R_{p}} ; \quad F_{2}=\frac{1}{R_{p}} ; \quad F_{3}=\frac{1}{R_{p}} \frac{d \mu}{d E_{0}}+\frac{\mu}{R_{p}} \frac{d \mu}{d E_{p}^{\prime}}-\mu_{2} \frac{R_{p}^{\prime}}{R_{p}^{2}} ; \quad F_{4}=\quad \text { \} }  \tag{54}\\
& \frac{1}{R_{p}} d \mu E_{p}^{d}-{ }_{\mu}^{R_{p}{ }^{\prime}} R_{p_{p}}{ }^{2} ; F_{\mathrm{s}}=-\frac{R_{p}{ }^{\prime}}{R_{p^{2}}} \boldsymbol{d} \\
& \left.\mu=-\frac{d E_{p}}{d E_{0}^{\prime}} ; \frac{1}{R_{p}}=\frac{d I_{p}}{d F_{p}^{\prime}} ; R_{p}{ }^{\prime}=\frac{d R_{p}}{d E_{p}}\right\}  \tag{55}\\
& \text { where }
\end{align*}
$$

With a resistance $R_{L}$ in the plate circuit the series of (53) may be expressed as

$$
\begin{align*}
& i_{p}=\frac{\mu e_{\theta}}{R_{p}+R_{L}}-\frac{1}{2^{e_{0} v^{2}}}\left[\frac{\mu^{2} R_{p} R_{p}^{\prime}}{\left(R_{p}+R_{L}\right)^{3}}-\frac{2 R_{p} \frac{d \mu}{d E_{g}^{2}}}{\left(R_{p}+R_{L}\right)^{2}}\right]+  \tag{56i}\\
& r_{p}=-i_{p} R_{L} \tag{57}
\end{align*}
$$

Maximum modulated voltage across $R_{L}$ is obtained when

$$
\begin{align*}
R_{L} \text { (approx.) }= & \frac{\mu}{2} \frac{1}{d \mu / d E_{0}^{\prime}}\left[R_{p}^{\prime}+\sqrt{\left(\mu R_{p}^{\prime}\right)^{2}-2 R_{p} R_{p}^{\prime}} \frac{d \mu}{d F_{g}}\right]  \tag{58}\\
& R_{L}=\frac{R_{p}}{2}\left(\text { when } \frac{d \mu}{d F_{g}}=0\right) \tag{59}
\end{align*}
$$

Maximum modulated power in $R_{L}$ is obtained when

$$
\begin{equation*}
R_{L}=\frac{R_{p}}{5}\left(\text { when } \frac{d \mu}{d E_{g}}=0\right) \tag{60}
\end{equation*}
$$

Effective voltage $E$, of modulared carrier is

$$
\begin{equation*}
E_{f}=1_{2} H_{A} \sqrt{m^{2}}+2 \tag{61}
\end{equation*}
$$

where $b$, is the peak voltage of the ummodulated carrier and $m$ is the modulation fartor.
Maximum peak voltage of modulated carriar is

$$
\begin{equation*}
L_{p \max }=E_{A}^{\prime}(1+m) \tag{62}
\end{equation*}
$$

Minimum peak voltage of modulated carrier is

$$
\begin{equation*}
E_{p \min .}=E_{A}(1-m) \tag{63}
\end{equation*}
$$

Maximum peak voltage of modulated carrior is

$$
\begin{equation*}
E_{p \max }=F_{j} \frac{2(m+1)}{\sqrt{m+2}} \tag{64}
\end{equation*}
$$

28. Heising modulation, named after its inventor, is based on the relationship between the amplitule of the carrier frequency voltage from an oseillator and the voltage of the plate power supply to that oscillator. Figure 27 shows the relationship betweon the voltage across the tuned eircuit in a low-power oscillator with respocet to the supply voltage applied to the pate. The output is practiontly linear with resperet to the supply voltage. In operation the modulating voltago is added to and subtracted from the plate supply voltage. If the peak


Fici. 27.-Voltage arross tuned rircuit as function of escillator blate voltage. of the modulating voltage is equal to the plate supply voltage the oscillator carrior voltage varies between zero and twiee the average value, which is onuivalent to 100 por cent modulation. The tramsmitted power from the oscillator varios as the square of the voltage and, therefore, during this maximum voltage period is four times its mormal value. At the minimum voltage period no power is radiated. The inereased power supply to the oscillator tube must, come from the modulation signal source. The modulation supply is generally from a vatounm tube used as a morlulation-fromuencey amplifier. For 100 per cont modulation the undistorted powor output of this modulation amplifier must be twice the normal power rating of the oscillator.
29. Oscillator-modulator System, Figure 28 shows a complete oscil-lator-modulator system comprised of a Hartley oscillator and a Heising modulator. The plate power supply for the oseillator and modulator
tubes is from a common souree, the plates being fed through the choke $L$. The modulation-frequener voltage developed across this choke is added to and subtracted from the supply voltage impressed on the plate of the oscillator tube, giving the resultant modulation as previously indicated. The radio-frequeney choke $K$ prevents the effective grounding of the plate of the oscilator tube and prevents radio-frepueney energy from being fed back into the modulator tube. To maintain fidelity at low frequencies, the choke $L$ must be of high inductance. About 95 per cent of the 400-cycle voltage amplitude across this choke will be maintained at 60 eycles, if the choke inductane in henress is $0.008 R_{p}$, where $R_{\mathrm{p}}$ is the plate resistance of the modulator tube. To maintain fidelity


Fli; 2s.-Hartley oscillator-Heising modulator.
at high frequencies the feed-back condenser $C$ (plus any equivalent capacity due to wiring) must be kept small. At 5,000 eycles 95 per eent transmission will be maintained if this capacity in microfarads is not greater than $10 / R_{p}$.
30. Oscillation Control. The amplitute of oscillation in a carricrfrequency ascillator may be controlled by varying the grid voltage in a manner similar to the Hesing medulator, One efferetive way of areomplishing this is to eontrol the value of the grid leak used. With proper adjustment the amplitude of oscillation is proportional to the impedance of the grid lak. the current through which is used to provide bias for the oscillator tube. If the plate-filament cireuit of a vacum tube be


Fug 29.-Modulated balamed amolifier.
used in place of the customary grid leak, this modulation tube will Iraw current whenever its plate is positive, therehy giving an equivatent grid-leak resistaner. The magnitude of this resistane is determined by the trpe of tube used, ote., and by the potential impressed upon its grid. If this applied grid potential is in the nature of a modulation signal, the leak resistance and consequently the carrier-frequeney output will vary in accordance with this signal.

31．Power Tubes as Modulators．

| General information |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 퓽 | $\begin{aligned} & \text { 若 } \\ & \text { 들 } \\ & \text { 를 } \end{aligned}$ |  |  |  |  | $\underbrace{\text { Fila }}$ | ｜${ }_{1}^{\text {lament }}$ | 哭 总 景 |  |
| UX－171A | Power amplifier | UX | Air | 458 | 1136 | Thoriated | 5.0 | 00 |  |
| UX－210． | General purpose | UX | Air | 55\％ | 2316 |  |  |  |  |
| UV－211． | General purpose | UT－541 | Air |  |  |  | 10.0 | ${ }^{1} 1.25$ |  |
| UX－245． | Power anplifier | UX | Air | 53／8 | 2310 | Thoriated | 10.0 2.5 | ［ 3.25 |  |
| UX－250． | A－f power amplifier | UX | Air | 53\％ | 2310 | Thoriated | 2.5 | 51.75 | 3.5 |
| UX－841 | or modulator only | UX | Air | 634 | $2^{13} 10$ | Coated | 75 | 51.25 | 3.8 |
| UX－841 | Voltage amplifier only | UX | Air | 55\％ | 2316 | Thoriated |  | 1.25 | 30 |
| UX－842． | A－f power amplifier | UX | Air | 55\％ | 23／16 | Thoriated |  | 1.25 | 3 |
| UV－845． | or modulator only A－f puwer amplifier |  | Air | 5\％8 | 2\％16 | Thoriated | 7.5 | 1.25 | 3 |
| UV－848 | or modulator only | UT－541 | Air | 73\％ | 25，0 | Thoriated | 10.0 | 3.25 | 5 |
| UV－848 | General purpose | Water jacket | Water | 2014 | 414 | Tungsten |  | 52.0 |  |
| CV－849 | General purpose | UT－501 \＆ | Air | 1438 | 4116 | Thoriated | 11.0 | 5．00 | 8 |
| UV－851 | General purpose | ［TT－502 |  | 1756 | 616 | Thoriated | 11.0 | 5.00 | 19 |
|  | Ceneral purpose | ${ }_{\text {ITT－502 }}$ | Air | 1758 | 61／8 | Thoriated | 11.0 | 15.50 | 20 |
| D | Morlulator | Water | Water | 16 | 444 | Tungsten | 22.0 | 30.0 | 10 |
| WE－205D | General purpose | jacket | Air | 436 |  |  |  |  |  |
| Wr－21ID | General purpose | 112A |  | 71.50 | $\begin{aligned} & 298 \\ & 21 / 16 \end{aligned}$ | Coated | 4.5 10.0 | 1.60 3.00 | 7.3 12.0 |
| WE－212D．． | Oscillator or morlua－ for | 113A | Air | 1358 | 358 | Coated | 14.0 | 6.001 | 16.0 |

32．Modulated Balanced Amplifier．Figure 29 shows the circuit commonly known as a modulated balanced amplifier．Both the carrier voltage and the modulating signal are impressed on the grids of the amplifier tubes．The voltage on the upper tube is $\left[E_{A} \sin A \iota+E_{B}\right.$ $\sin B t]$ ，and the voltage on the lower tube is $\left[E_{A} \sin A t-E_{B} \sin B t\right]$ ．The currents in the plate circuit are transferred to a third circuit，the sign of the mutual inductance being positive for one plate circuit and negative for the other．The net result is to cause a cancellation of the carrier frequency in the third circuit，while the side－hand components add， giving two components $E_{A} m \cos (A-B) t$ and $E_{A} m \cos (A+B) t$ ．

The radiated energy is concentrated in the side hands and for this reason is often called the carrier－suppression method．When $E_{B}$ is zero；that is，no modulation signal impressed；there is no radiation． This method of operation presupposes the addition of an equivalent carrier frequency voltage at the receiving end．Its principal advantages

| Oscillater or r-f power amplifier |  |  |  |  | A-f prwer amplifier or moklulator |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 135 | 180 | 180 | 5 |  | 180 | 3.5 | 180 | - 40.5 | 0.020 | 0.7 | 2,000 | 1.500 |
| 350 | 450 | 450 | 15 | 5 | 425 | 12 | 425 | - 39 | 0.018 | 1.7 | 5,000 | 1,000 |
| 1,000 | 1,250 | 1,500 | 100 | 7.5 | 1,250 | 75 | 1.000 | 55 | 0.072 | 10.0 | 3,400 | 3,530 |
| 200 | 250 | 250 | 10 |  | 250 | 5 | 250 | - 50 | 0.030 | 1.7 | 2.000 | 1,750 |
|  |  |  |  |  | 450 | 30 | 450 | 84 | 0.055 | 4:5 | 1,800 | 2.100 |
|  |  |  |  |  | 425 | 12 | 425 | 8 | 0.0075 |  | 21,500 | 1,400 |
|  |  |  |  |  | 425 | 12 | 425 | - 100 | 0.028 | 3.0 | 2,500 | 1,200 |
|  |  |  |  |  | 1,250 | 75 | 1.000 | 147 | 0.075 | 20.0 | 1,800 | 3,000 |
| 12.000 | 15,000 | 15,000 | 10,000 | 30 | 12,000 | 7,500 | 10.000 | $-1,000$ | 0.750 |  | 2,400 | 3,300 |
| 2,000 | 2.500 | 2,500 | 400 | 10 | 3,000 | 300 | $\left\{{ }^{3,000}\right.$ | - 132 | 0.100 | 100 | 3.200 | 6.000 |
| 2,000 | 2,500 | 2,500 | 750 | 10 | 2,500 | 600 | ${ }_{2,000}+$ | - 65 | 0.300 | 100 | 1.400 | 6,800 15,000 |
| 8,000 | 10,000 | 10,000 | 5,000 | 20.0 | 10,000 | 5,000 | 8,000 | - 500 | 0.65 |  |  |  |
| 275 |  |  | 20 |  | 350 | 15 | 350 | - 22.5 | 0.033 | 1.0 | 3,500 | 2.000 |
| 750 | 1,000 | 1,000 | 6.5 |  | 1,000 | 65 | 750 | 30 | 0.0665 |  | 3,200 | 3,900 |
| 1,300 |  |  | 520 |  | 2,000 | 250 | 1,500 | - 60 | 0.015 |  | 2,150 | 7,500 |

* These voltages are maximum values for usual broadcast transmitting uses.
$\dagger$ Measured from mid-point of filament.
$\ddagger$ At 2,000 volts modulator output is greater than that from L'V-204A at 2,000 volts.
lie in the efficiency of operation and in the fact that the service area of the transmitter and its interference area practically coincide. For perfect halance the effective $m$ is infinite.

33. Single Side-band Transmission. If suitable filters be arranged to prevent the transmission of all frequencies below the earrier frequeney, the upper side band only will be transmitted. Its principal advantage over the carrier-suppression method is that at the receiving end the supplied carrier frequeney does not have to be so nearly identical in frequency with the original earrier frequency for the same degree of distortion. With single side-hand transmission the signal may be completely lost due to solective frequency fading, while in the carrier-suppression method at least one of the two side bands may get through, providing half-amplitude response.
34. Frequency Inversion; Scrambling. To insure seereey of transmission, frequeney inversion or frequency scrambling methods are used.

The morlulation signal molulates an oscillator of approximately 50,000 rycles. If the modulation frepuencies range hetween 100 and 3,000 cyeles, filters are arranged in the output of the modulated oseilator to pass only those freguencies between 47,000 and 49,900 cyeles. The frequencies in this selected range are made to heterodyne with an oseillator at a frequency of 42,000 cyeles. A second filter swstem is arranged to pass only those frequencies between 5,000 and 7,900 (eycles, which are the resulting beat frequencies. It may be observed that the original 3,000-cycle modulation signal frequency now has a corresponding amplitude at 5,000 eycles. The original 100 -eycle modulation frequency signal now has a corresponding amplitude at a frequency of 7,000 cyeles. The frequency scale of the original modulation signal has been inverted by the process. These frequeneies may, if desired, be further lowered by a second heterodyning step against a 4,900 -eyele oseillator which would produce the inverted seale of frequencies ranging from 100 to 3,000 cyeles. This inverted modulation frequency is then impressed as the normal modulation upon a carrier-frequeney oseillator. 'To obtain an intelligithe signal at the receiving end, it is necessary to again invert the modulation frequencies by the reverse proress. To anyone not having at hand the proper equipment, and not knowing the correct frequency at which the inverting was done the transmission would be intlecipherable.

## METHODS OF MEASURING MODULATION

35. Inferential Methods. Percentage of modulation is a most important factor in modulation problems. Its value may be determined in two general ways, the first hased on the process of producing the modulation, and the second on measurements of the modulated carrior itself.

The factor of modulation is given in $\mathbf{E}_{q}$. (50). Determining the values of $a$ and $b$ under the operating conditions and measuring $E_{B}$ enables $m$ to he calculated.

Another inferential method is based on the oseillator amplitude characteristic as shown in lig. 27 . If the plate supply voltage increased 10) per cent, the output voltage will also inerease 10 per cent. This simple relation indicates that

$$
\begin{equation*}
m=\frac{E_{B}}{E_{p}^{\prime}} \tag{65}
\end{equation*}
$$

where $E_{B}$ represents the peak value of the modulation signal voltage and $E_{p}$ represents the applied plate voltage. Oceasionally the function shown in Fig. 27 will be a straight line, but its intereept on the $E_{p}$ axis will not he at the point (0,0. In this case the value of $E_{p}^{\prime}$ in $\mathrm{Eq} .{ }_{q}$. (65), will not be the actual plate voltage but the indieated voltage along the $E_{p}$ axis, between the straight-line interept and the applied plate voltage.

Another inferential methor is to produce an equivalent modulated signal, not by the actual process of modulation, but by the simultaneous transmission of two or more frequencies differing by the desired modulation signal frequency. The factor of modulation is equal to the amplitude of the transenited frequency component corresponding to the side band divided hy the amplitude of the frequener chosen as the carrier. Independent measurement of the voltage amplitudes of these components enables $m$ to be ealculated.
36. Methods Based on Shape of Modulated Output. The first method hased on the shape of the modulated output as indicated in d (Fig. 24). Before modulation, the peak voltage of the carrior-fredueney eomponent is measured with a peak voltmeter. After modulation, the positive peak voltage is again measured. "The incroase in peak voltage divided by the earrier peak voltage gives the pereontage of modulation. "The prineipal disadvantage in this mothod is that, due to improper adjustment, in the oscillator-modulator system, the effective arrior may change in


Fig. 30.-Circuit for measuring modulation.
amplitude from its ummodulated value when molulated. This crror may be avoided by measuring the amplitude of the maximum and minimum peaks. The factor of modulation is then given by

$$
\begin{equation*}
m=\frac{E_{\max .}-E_{\mathrm{min}}}{E_{\max .}^{\prime}+E_{\text {tain. }}^{\prime}} \tag{66}
\end{equation*}
$$

A cireuit diagram for such a measuring arrampement is shown in Fig. 30. The rectifier is linear, giving a voltage (d.r. and at the modulation frequency) across the lond corresponding (in proportion) to the carrier phas and minus the modulation romponent. The positive peak is first measured with the peak voltmeter, and then by reversing, the negative peak is measured, hoth with reference to zero load voltage. Substituting in (66) gives $m$.
37. Use of Detector to Measure Modulation. A simple way of measuring the percentage of modulation is to apply the modulated signal to the grid of aldetertor tube, and observing the d-e change in phate current and the alternating component at the modulation frequency. The ehange in d.e. may be read with a d-e moter while the altermating eomponent may be caleulated by measuring the modulationfrequeney voltage across a known resistance in the plate circuit. Figure 31 shows a curve betwern pereentage of modulation and the ratio between the


Pis. 31.-I'se of change in detector plate current as measure of modulation. effective value of the a.e. and change in the d-c plate eirenit.
38. Use of Cathode-ray Oscilloscope. 'The modulated signal is applied to one pair of eontrol plates while the modulation frequency obtained by rectifying a portion of the modulated carrier frequency is
applied to the other pair of eontrol plates. The resulting figure, with proper adjustment of phase, will be an isosecles trapezoid. The greater of the parallel lines is the peak amplitude, while the lesser of the two corresponds to the minimum amplitude of the applied voltage.

$$
\begin{equation*}
m=\frac{l_{1}-l_{2}}{l_{1}+l_{2}} \tag{67}
\end{equation*}
$$

where $l_{1}, l_{2}$ are the lengths of the parallel sides referred to above. Another method of using an oscilloseope or oscillograph to ohtain the value of $m$ is as follows: As in the positive and negative peak measurement method, a linear rectifier is necessary to supply the oscillograph. Instead of measuring prak values of the rectified signal, the curves are aetually obscrved in the image glass or measured from a photograph and calculated as in (6i6). Customarily a second line image, initially coineiding with the zero input line of the vibrating element, is used to indicate the zero eondition. If the negative peaks reach this zero line, 100 per cent modulation is being obtained.
39. Change of Modulation Due to Resonance Characteristic. When a modulated carricr is impressed on a circuit having resonance characteristics the percentage of modulation is changed. The action may be considered from cither the frecuency amplitude response characteristie of the resonant cireuit or from the energy storing and decement properties of the cireuit. If the circuit resonance frequency is mate to coincide with the carrier frequeney the new factor of modulation is

$$
\begin{equation*}
m^{\prime}=m\left(\frac{R}{\sqrt{R^{2}+\frac{4 L}{C!}\left(\frac{f_{m}}{f_{c}}\right)^{2}}}\right) \tag{68}
\end{equation*}
$$

where $L$, $R$, and $C$ are the inductance, serics resistance, and capacity of the cireuit at resonance to the carrier freguency $f_{c}$, and $f_{m}$ is the modilation frequency. In $\mathrm{E}_{1}$. (68) the effect of $R$ is to decrease the change in perecntage of modulation. In transmitters resistance is often added to the resonance circuits to prevent change in modulation percentage at high modulation frequencies.
40. Frequency Multipliers. It is often desired to produce frequency multiplication by an asymmetrical chararteristie such as illustrated in Fig. 23. A further expansion of (47) shows various components having freguencies $2 A / 2 \pi, 3.1 / 2 \pi, 4.1 / 2 \pi$, ete. If double carrier freguency is desired, there are four components having the frequency $2.1 / 2 \pi$ in the expansion indicated. Two of these may be considered as the new earrier. The second is a term involving $\cos 2.1 i \sin B t$, indicating side bands with respect to the new carrior at a frequeney differenee corresponding to the desired modulation frequency. The fourth component involving cos 2 At $\cos 2 B t$ indicates double-frequeney modulation and is undesired. The desired modulation frequency is due to third-order curvature, while the undesired double frequency is due to fourth-order eurvature. If two identical tubes are used, the third-order components may be inereased by push-pull connection in the grid cireuits and by connceting the plate circuits in parallel. This method of comnection also tends to cancel the fourth-order effeet and so produres a substantially undistorted modulated carrier of twice the initial carrier frequency.
41. Change in Percentage Modulation. If a modulated signal such as given in Liq. (51) be applied as $x$ in the function of Fig .23 and the components at a frequency corresponding to the carrier frequency only be considered the response will be

$$
\begin{equation*}
y=a \cdot r+\frac{1}{8} c x^{3}+\frac{1}{19 y^{2}} x^{3}++ \tag{69}
\end{equation*}
$$

where $a, c, r$, etc., are the first, third, fifth. etr.. rlifferentials of $y$ with respect . to $x$. In case of a triode,

$$
\left.\begin{array}{ll}
a=\frac{d i_{p}}{d r_{q}}  \tag{70}\\
b=\frac{d i_{p}}{d \rho_{0}^{3}} & y=i_{p} \\
c=\frac{d l_{p}}{d \rho_{p}{ }^{5}} & x=E_{A}(1+m \sin \quad B t) \sin A t
\end{array}\right\}
$$

Equation (70) shows that the percentage of modulation has been increased so that

$$
\begin{equation*}
m^{\prime}=m\left(1+\frac{1}{8} x^{2} \frac{c}{a}++\right) \tag{71}
\end{equation*}
$$

This change in modulation is undesired, as it destroys a linear input-output relation and introduces 2nd and higher harmoniss of the modulation frequeney and consequent distortion. It may be reduced by dereasing the value of $c$. Vacuum tubes having a value of $c$ small under any voltage conditions are used for variable gain control amplifier tubes. The 235 type is such a tube.
42. Cross modulation results when two modulated signals are impressed simultancously upon an asymmetrical amplifier. This means that the modulation of hoth sigmals may be obtained when tuned on either carrier. The effective perecntage of modulation for the interfering signal with respert to the desired carrier is

$$
\begin{equation*}
m^{\prime}=m_{i} \frac{E_{i}{ }^{2} c}{2} \frac{c}{a} \tag{72}
\end{equation*}
$$

where. $m^{\prime}$ is the effective modulation of the desired earrier $E_{c}$, by the undesired modulation frecueney, $m_{i}$ is the morlulation factor of the interfering carrier $E_{i,}$ c and a are the third and first differentials of the $x, y$ function (see Fig. 23) respertively, evaluated under operating eonditions. In the ease both signals are impressed on the grid of a triode,

$$
a=\frac{d i_{p}}{d e_{\sigma}}, \quad c=\frac{d d^{3} i_{p}}{d e_{0}^{3}}
$$

43. Band Width Necessary. The transmission of intelligenee by modulated carrier frecuencies requires a definite portion of the frequeney speotrum and implies a limit to the number of such carrier channelis available. In the case of wire lines the total number of channels is given by the available frequeney speetrum divided by the band width, times the number of pairs of wires, times the multiplexing factor. In the ease of a radiated wave the number of chamels avalable is the available frequeney spectrum (at present, frequencies between $10^{4}$ and $10^{8}$ eycles per second) divided by the band width.

The total band widths neressary for various types of modulation intelligence symbols are indicated on page 278 .

| Modulation intelligence symbol | Character or rate | Total band width cycles |  |
| :---: | :---: | :---: | :---: |
|  |  | Necessary by best known methods | Hesirable for high quality |
| Telegraph. | English, Continental code, 200 words per minute | 40 | 100 |
| Telephony | Sperch | 2,500 | 6. 500 |
| Telephony | Music | 4.500 | 15.000 |
| licture... | $1 \mathrm{sq} . \mathrm{in} .60$ lines per inch, per serond | 1.800 | 6,000 |
| Television | $18 q$. in, 50 lines per inch, 16 pictures per second | 15,000 | 40,000 |

These band widths are single side-band widths except for pirture and television modulation, where both side bands give a more acceptable response.
44. Frequency modulation is the term applied to that type of molulation where the earrier is varied in frequency rather than in amplitude by the modulation signal. If the carrior is wobbled plas and minus $B / 2 \pi$ times a second, and a device proportionally responsive to the frequency be used at the receiver, an offoctive rosponse at the frequency $B / 2 \pi$ will be obtained as a demodulated signal. The response amplitude is supposed to be directly proportional to the carrier-frequency variation, a wobble of 500 ceres giving ten times the response of a 50 -cycle wobble. Mathematioal considerations for sinewave frequeney modulation give an equation for the various frequency components having Bessel function coefficients as follows:
where

$$
\left.\begin{array}{rl}
q & =J_{0} n \cos A l  \tag{73}\\
& -J_{1} n[\cos (A-B) t-\cos (A+B) t] \\
& +J_{2} n[\cos (1-2 B) t-\cos (A+2 B) t] \\
& \left.+J_{3} n \mid \cos (1-3 B) t-\cos (1+3 B) l\right] \\
& +\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots
\end{array}\right\}
$$

With $n$ having the following values, the respective side-band amplitudes are:

| $n$ | $\begin{aligned} & \text { Unmodulated } \\ & \text { carrier } \\ & \text { amplitude } \end{aligned}$ | Modulated carrier amplitude | $\frac{B}{2 \pi}$ | $\frac{23}{2 \pi}$ | $3 / 3$ $2 \pi$ | $\frac{4 B}{2 \pi}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.1 1.0 | 1 | 0.098 0.763 | 0.058 0.440 | 0.115 | 0.020 | 0.00:3 |

This analysis shows that froquency modulation ocrupies not less but more of the frequency spectrum.
45. Square-top Waves. For intermittent frequeney modulation by keying, the coefficients of the Fourier sories aro those resulting from the square-top wave. For this case the equation similar to (73) is

$$
\begin{align*}
q & =\frac{2}{\pi}\left[\frac{n}{n^{2}} \sin \left(\frac{\pi}{2} n\right) \cos A t\right. \\
& +\frac{n}{n^{2}-1^{2}} \cos \left(\frac{\pi}{2} n\right)\{\cos (A-B) t-\cos (A+B) t\} \\
& -\frac{n}{n^{2}-2^{2}} \sin \left(\frac{\pi}{2} n\right)\{\cos (A-2 B) t-\cos (A+2 B) t\}  \tag{74}\\
& -\frac{n}{n^{2}-3^{3}} \cos \left(\frac{\pi}{2} n\right)\{\cos (A-3 B) t-\cos (A+3 B) t\} \\
& +\ldots \ldots \ldots
\end{align*}
$$

## Bibliography on Detection

Aiken, C. I3.: Detection of Two Modulated Waves Which Differ Slightly in Carrier Frequency, I'roc. I.R.E., January, 1931.
Balley, Aubtin, and T. A. McCana: Application of I'rinting Telegraph to Long Wave Radio Circuits, Bell System Tech. Jour., October, 1931.
Ballantine, Stuabt: Detection at High Signal Voltages-I'late Rectification with the High-vacuum T'riode, Proc. I.R.E., July, 1929.
: Detection by Grid Rectification with the High-vacuum Triode, Iroc. I.R.E., May, 1928.
Barclay, W. A.: The Numerical Estimation of Grid Rectification for Small Signal Amplitudes, Exper. Wireless and Wireless E'nf., Novenber, 1929.
13rown, H. A., and C. T. Knipr: Behavior of Alkali Vapor Detector Tubes, Proc. I.R.E., January, 1927.
Butterworth, S. : Note on the Apparent Demodulation of a Weak Station by a Stronger One, Exper. Wireless and W'ireless Eng., November, 1929.
Chaffee, E. L.: Voltage Detection Coefficient, I'roc. I.R.E., November, 1927.
tiond G. H. Howning: A Theoretical and Fxperimental Investigation of Detection for Small Signals, Proc. I. R. E., February, 1927.
Colesrook, F. M.: The Theory of the Straight-line Amplifier, Exper. Hireless and W'ireless Eng., November, 1930.
1)onle, H. P.: New Applications of the Sodion Detector, Proc. I.R.E., April, 1924.

Freeman, H. M.: Detecting Characteristics of Electron Tubes, Proc. I.R.E., Oetober, 1925.

Harbis, Sylvan: Notes on the Detection of Large Signals, Proc. I.R.E., October, 1929. Nelson, J. IR.: Detection with the Four-electrode Tube, Proc. $I . R . E$., June, 1928.
-: Grid Circuit Power lRectification, P'roc. I.R.E'., March, 1931.
Roberts, Notes on Grid Circuit Detertion, Proc. I. R.E., March, 1929.
Roberts, W. Van 13.: Note on Detection by Grid Condenser and L.eak, Proc. I.R.E., September, 1927.
Robinson, G. I).: Test I'rocedure for Detectors with Resistance Coupled Output, Proc. I.R.E., May, 1931.

Roder, MANs: Amplitude, Phase, and Frequency Modulation, Proc. I.R.E., December, 1931.

Smith, I.. P.: Theory of Detection in a High-vacuum Thermionic Tube, Proc. I.R.E'., October, 1926.
Terman, F. F.: Some Principlea of Grid-leak (irid-condenser betection, Proc. I.R.E., October, 1928. , and Breney Drsart: Detection Characteristics of Screen-grid and Space-charge-grid Tubes, Proc. I.R.E., May, 1929.
charge-grid and Thomas A1. Googin: Detection Characteristics of Three-element Vacuum Tubes, Proc. I.R.E., January, 1920.
Wheeler, H. A.: Discussion on W. A. MacDonald I'aper, Proc. I.R.E., A pril, 1927.

## Bibliography on Modulation

Affel, H. A., C. S. Iemarest, and C. W. Gheen: Carrier Syatems on Long-distance Telephone Lines, Bell System Tech. Jour., July, 1928.
Arnold, H. D., and Lloyd Espenschied: Transatlantic Radio Telephony, Bell System Tech. Jour., Oetober, 192:3.
Ballantine and Snow: Variable Mu Tetrodes, Contribution 22 from the Radiofrequency Laboratories.
Bown, Ralph, De Loss K. Martin, and R. K. Potter: Some Studies in Radio Broadcast Transmission, Proc. I.R.E., February, 1926.

Byrneb, I. F.: Recent Developments in Low Power and Broadcasting Transmitters. I'roc, I, $/$, E., May, 1928.
Carson, J. R.: /'roc. I.R.E., F'ebruary, 1922.
Clokey, A. A.: Automatic Printing Equipment for Long Loaded Submarine Telegraph Cables, Beld System Tech. Jour., July, 1927.
Culver, C. A.: An Improved Systenı of Nodulation in ladio Telephony, Iroc. I.R.E., Uctober, 1923.
Curtis: The Application of Vacuum-tube Amplifiers to Submarine Cable, Bell Sustem Tech, Jour., July, 1927.
Farnham, P. O., and A. W. Ibarber: Problems Involved in the Design and Cese of Apparatus for 'Testing Radio Receivers, Proc. I.R.E., August, 1930.
Gray Frank, J. W. Hohton, and R. C. Mathes: 'The Production and C'tilization of Television Signals, Bell s'ystem Tech. Jour., October, 1927.
Harbib, Sylvan: Cross Modulation in R-f Amplifiers, I'roc. I.R.E, February, 1930.
Habtley, K. V. L.: Relations of Carrier and Side Bands in Radio Transinission, Iroc. I.R.E., February, 1923.
——: Transmission of Information, Rell System Tech. Jour., July, 1928.
Heraing, IR. A.: Production of Single Side Band for Transatlantic Radio Telephony, I'roc. I.R.E., June, 1925.
Henney, Keith: "Principles of Radio," John Wiley \& Sons, Inc.
Hombald, N. F.: Frequency Modulation, Exper. Wireless and Wireless Eng., May and August, 1929.
Honton, J. W.: Vacuum-tube Oscillator, A Graphical Method of Analysis, Bell System Tech. Jour., July, 1924.
Iveg, Horton, Parker, and Clark: Transmission of Pictures over Telephone Lines, Bell System Tech. Jour., April, 1925.
Jarvib, K. W.: Radio Rereiver Testing Equipment, Proc. I.R.E.. April, 1929.
Jollifre, C. 13.: The I'ses of the Flectron-tube leak Voltmeter for the Measurement of Modulation, I'roc. I.R.E., April, 1929.
Jones, W. C.: Condenser and Carbon Microphones, Their Construction and Use, Bell System Terh. Jour.,January, 1931.
King, R. W.: Thermionic Vacuuns Tubes and Their Applications, Bell System Tech. Jour., October, 1923.
Iauer, H.: Exper. Wireless and Wireless Eng., August, 1929.
LLEWELLYN, F. B.: Operation of Thermionic Vacuum-tube Circuita, Bell System Tech. Jour., July, 1926.
Makey: Exper. W'ireless and W'ireless Eng., July, 1929.
Martin, W. II., and W. F', Davidson: The Trend in Mesign of Telephone Transmitters and lleceivers, Bell System Tech. Jour., October, 1930.
Measurement of yercentage Modulation, R.C.A. Broadcast Bull. 3; G. R. Experimentor, March, 1931.
Milnor: Submarine Cable Telegraphy, Trans. A.I.E.E., p. 20, 1922.
Monecrort, J, H.: "Irinciples of Radio Communication," John Wiley de Sons, Inc.
Movllin: "IIgh-frequency Measurements," J. B. Lippincott Company.
Nelson, F. I.:: Kadio Broadcasting Transmitters and Related Transmission Phenomena, Bell System Tech. Jour., January, 1930 .

- : Radio Transmission System for Television, Bell System Tech. Jour., October, 1927.

Petehson, Eugene, and Clyde IR. Keith: Grid-current Modulation, Bell System Terh. Jour., January, 1928.

- and Herbert P. Evans: Modulation in Vacuum Tubes used as Amplifiers, Bell System Tech. Jour., July, 1927.
——and F. IB. ILewellys: The Operation of Modulators from a Physieal Standpoint, I'roc. I.R.E., January, 1930.
Raven-HaRt, R.:lliscussion of F . K. Vreeland's " On the I istortionless Reception of a Modulated Wave and Its Ielation to Selectivity," Pror. I.R.E., October, 1928.
Shackelton, W. J., and J. G. Ferguson: Flectrical Measurenent of Communication Apparatus, Bell System Tech. Jour., January, 1928.
Terman, F. F.: Discussion on Some Possibilities of Intelligence Transmission when Using a Limited IBand of J'requencies, I'roc. I.R.E., July, 19:30.
- Some Possibilities of Intelligence Transmission When U'sing a Limited Band of Frequencies, Proc. I.R.E., January, 1930.
Van dek Jinc, H. J.: "The Thermionic Vacuum Tube and Its Applications," McGraw-Hill Book Company, Inc.
Van der Pol, 13.: Frequency Modulation, Proc. I.R.E., July, 1930.
Wrigift, S. B., H. C. Silent: The New York-London Telephone Cireuit, Rell System Tech. Jour., Netober, 1927.


## SECTION 11

## AUDIO-FREQUENCY AMPLIFIERS

By Julius G. Aceves, E.E. ${ }^{1}$

1. Methods of Coupling Amplifier Tubes. The a-f amplifier consists of several vacuum tubes connected together in eoncatenation in such manner that frequencies ranging from about fifty to ten thousand "ycles are amplified successively from one stage to another following a predetermined frequency-gain law.

In the majority of cases, this law is a straight line, but in some cases it is desirable to depart from it.

There are three general methods of coupling the vacuum tubes with each other in concatenation: (a) inductively: (b) capacitatively: and (c) galvanically.

An example of ( $a$ ) is the transforner coupling; of (b), the resistancecapacity coupling; and of (c), a direet-coupled system. Combinations of these three methods will constitute a fourth class, by far the most extensive. 'There are ways in whieh tube cireuts are coupled undesirably and they may inchude any of the types mentioned above. These effects will either reinfore certain frequencies evon to the point of oscillations, or will reduce the gain at some others. This subject will he treated under the heading of distortion.
2. General Requirements of Audio-frequency Amplifiers. The conditions imposed upon the design of an a-f amplifier are as follows:

1. The gain must conform to a certain given pattern of frequency-amplification eharacteristic.
2. The output c.m.f. across the load must be a sine wave when at the input the impressed e.m.f. is a sine wave.
3. Ability to fulfill the first two requirements within a certain given maximum amplitude of applied e.m.f. and delivered power level.
4. Should not generate any e.m.f. of itself, such as "hum" from the power supply mains, or from tube noises.
5. The total gain should remain substantially constant regardless of operating eonditions such as line voltage or temperature of the filaments, ete.

The choice of coupling depends, as a rule, upon the way in which the different parts of the frecpueney spectrum are to be amplified.
3. Elements of an Audio-frequency Amplifier. Each stage of an a-f amplifier consists of a vacuum tube, an input coupling device, an output coupling device, and a suitable source of power to aletuate the vacuum tulo.

The input and output coupling deviees may be common to two consecutive stages, as well as the sources of power. By the latter may be
' Engineer in Charge of Research Laboratory, Amy, Aceves, and King. Inc.
understood more specifically the resistors, condensers, and inductors which hring in the desired $A, B$, and $C$ voltages and keep out the amplified currents from other parts of the amplifier and the interfering currents proceeding from the power source, which is usually a commercial $110-220$ volt a-c or d-c supply except when batteries are used.
4. Stage Gain. In the greater majority of cases a triode is used in each stage of amplification. Pentodes are becoming fashionable for the last, or "power" stage, and tubes of from four to eight electrodes have been introduced in specially designed amplifiers.

The essential properties of the triodes are the amplification factor $\mu$; the mutual conductance $G_{m}$; the internal resistance of the anode circuit $r_{p}$; the eapacity and conductance of the input or grid cireuit $c$ and $g$; the power-handling ability of the tube with a given limit of distortion $I_{\text {max. }}$; and the power sensitivity $\mathbb{W}$. The vacuum tube acts as a source of alternating e.m.f. when conneeted according to the schematic diagram of Fig. 1, having an internal resistance $r_{p}$ equal to $\mu / G_{m}$. If an em.f. $e_{1}=E_{1} \sin \omega t$ is impressed upon the grid input cireuit of the tube (Fig. I) an e.m.f. $c_{2}=E_{2} \sin \omega t$ will be developed across the output circuit impedance $\dot{Z}=R+j X$ whenever we operate in the linear portion of the tube characteristic. The ratio between output and input e.m.fs is called the gain and is given by the expression

$$
\begin{equation*}
\gamma=\frac{e_{2}}{e_{1}}=\mu \frac{\dot{Z}}{\dot{Z}+r_{p}} \tag{1}
\end{equation*}
$$

and in terms of $G_{m}$ :

$$
\begin{equation*}
\gamma=G_{m} \frac{r_{p} \dot{Z}}{\dot{Z}+r_{p}} \tag{2}
\end{equation*}
$$

It is convenient to express the gain logarithmically, in which case the unit is the decibel which is equal to twenty times the common logarithm of $\gamma$. Decibels are usually logarithmic power ratios, because they do not


Fig. 1.-Simple amplifier rircuit.
involve impedance changes. To express voltage ratios in decibels, it is assumed that these quantities are taken across the same impedances. With this proviso in mind, it is very easy to calculate the total gain of an amplifier by adding the gains of the various stages when expressed in decibels.
5. Input Impedance. In Fig. 1 the d-e potential supply sources $A, B$, and $C$ are shown separated from the a-c components by means of ehokes $L_{1}$ and $L_{2}$ of infinite impedance and condensers $K_{1}$ and $K_{2}$ of vanishingly small reactance. Now the question will arise: what is the input impedance of the tube under these conditions? It is casier to consider the
reciprocal of the impedanee, namely, the admittanee $\dot{Y}=G+j B$. These quantities vary considerably depending upon the plate impedane $\dot{Z}=R+j X$ and whether $X$ is positive or negative. The capacity $c$ between grid and filament is equal to $(\gamma+1)$ times the geometrieal capacity of the tube elements (such as would be obtained by measurement with the filament not lightel). The sign of the conductance $G$ may be either positive or negative depending mostly upon the sign of $X$ and its magnitude. When the plate circuit contains induetive reactance with relatively low resistance, $G$ may become nerative, and the tube may break into oseillations, particularly at very high froquencies. This may explain certain cases where a very bad distortion takes place in an a-f amplifier even when other conditions seem to be right. In some other cases, the sign of $G$ may be positive and will show as a low resistance input cireuit, therehy loading down the souree of e.m.f. applied to the grid and reducing the gain. It is of considerable importance to determine the input impedance of a tube under actual conditions, because this factor alone may eompletely upset the results of earefully designed coupling circuits between stages, and in practice it resolves itself in a limitation of gain per stage. The design of the following examples of inductive, capacitative, and galvanie couplings will show how the input impedance of a triode affeets the maximum possible gain per stage without departure from the frequener-amplitude law to which the amplifier must conform.
6. Properties of the Power Tube. The power-handling ability and the power sensitivity relate to the final stage of amplification. The first refers to the rating of the tube for the amplifieation of a sinusoidal wave without distortion. Obviously this is never possible, as there is no triode with a perfeetly linear characteristic. Modern tube design, however, has made great progress in this direction and in order to determine the rating of a tube from the standpoint of clistortion, the Institute of Radio Engineers has recommended 5 per cent as the maximum voltage distortion permissible. Consequently, if a tube is placed as an a-f amplifier supplying a non-inductive load of the proper value, and a simusoidal e.m.f. is applied between grid and filament (or eathode), the harmonie components of the total altornating em.f. across the load must not exceed 5 per cent of the fundamental. The power sensitivity is the wats output per volt input impressed upon the grid and filament. The output should be measured using a non-reactive load of optimum value, which, it has been shown, for distortionless amplification should be equal to twice the value of $r_{p}$ or anode a-e resistance. The power sensitivity is ordinarily considered only in connection with the final stage and the modern pentodes have an abnormally high power sensitivity, henee their popularity.

## INTERSTAGE COUPLING CIRCUITS

7. Inductively Coupled Stages. The simplest form of this kind of coupling is the transformer. Any transformer may be regarded as at simple eircuit having an effective resistance and an effeetive reactance, given by the expressions

$$
\begin{align*}
& R^{\prime}=R_{1}+\frac{\omega^{2} M M^{2} R_{2}}{\omega^{2} L_{2}^{2}+R_{2}{ }^{2}}  \tag{3}\\
& X^{\prime}=\omega\left(L_{1}-\frac{\omega^{2} M M^{2} L_{2}}{\omega^{2} L_{2}{ }^{2}+R_{2}^{2}}\right) \tag{4}
\end{align*}
$$

where $R_{1}$ is the effective primary resistance, $R_{2}$ that of the secondary, $M$ the mutual inductance, $L_{1}$ and $L_{2}$ the effective inductances of the primary and secondary windings respectively.
In transformers of modern design, $M^{2}=L_{1} L_{2}$ may be assumed without serious error, and if the ratio of transformation is $n$, then the circuit of Fig. 2 can be simplified as per lig. 3. Further simplification may be obtained if we ignore the resistance of the primary winding $R_{1}$, and we eonsider $R_{2}$ as made of both the winding resistance and the load. The effective inductance $L_{2}$ accounts for the capacities across the secondary, such as exists between grid and anode of the following tube, between terminals of the tube socket, leads, etc., as well as the distributed capacity of the transformer windings. Another capacity is that betwern the primary and sceondary windings; there is no simple circuit that can accurately represent it; it acts more in the fashion of a so-called "wave conductor" such as those in use at radio frequencies for the purpose of shifting the phases of received signals from two antennas in


Fig. 2,-Transformer circuit.


Fig. 3.-Equivalent of
statie-balancing sehemes. The effects at the lower audio frequencies of such distributed capacity are negligible, but toward the upper end of the audio spectrum there is a tendency to introduce a rise of potential due to the combination of this capacity and other distributed capacitios in the transformer as well as in the attached apparatus with the leakage inductance of the transformer forming a resonant circuit of comparatively high damping. Many frequency-gain curves taken with commercial a-f transformers have a "peak" toward five or six ke, sometimes a little higher. The latter case is far from being objectionable, since in the case of radio reception the extreme ends of the side bands are poorly amplified and the combined result of the two effects is to approach a better fidelity curve all around.
8. Eddy Current and Hysteresis. The eddy-current losses in the laminations of the transformer have been taken into account as part of the resistance $R_{2}$; they may be considered as an extra resistance in parallel with the load. The effect of the eddy-current resistance alone upon the primary effective resistance is proportional to the square of the frepueney. The hysteresis has an effeet of appearing as an added primary resistance proportional to the frequency and to the 1.6 power of the flux density (in transformer-iron laminations); but as a-f transformers are not operated beyond the first knee of the magnetization cyele, hysteresis losses are negligible in all cases exeept perhaps in the power-stage output transformer. Even then, the secondary circuit being closed on a connparatively low resistance load, the power lost in hysteresis and eddy currents is small compared with the power delivered to the load.
9. Effects of Transformer Impedance at Various Frequencies. It has been seen that the general expression for the gain per stage is

$$
\begin{equation*}
\gamma=\mu \frac{\dot{Z}}{\dot{Z}+r_{p}} \tag{5}
\end{equation*}
$$

By substituting the value of $\dot{Z}=R^{\prime}+j X^{\prime}$ in the above equation, the variation of amplification with frequency for a given combination of tube and transformer can be predetermined. Equations 3 and 4 give us the values of $R^{\prime}$ and $X^{\prime}$ in general.

If the secondary circuit of a transformer has a very close coupling ( $M^{2}=$ $L_{1} L_{2}$ ), and assuming for simplicity that the ratio of transformation is unity, it will be seen that the transformer will act as a resistance of constant valne and equal to the secondary load, with an inductance in parallel with it, as shown


Fig. 4.-Transformer with unity ratio and close roupling.


Transformer with external and internal capacities.
in Fig. 4. If the stray capacities either internal or external to the transformer are taken into account, and the total capacity as it would appear across the secondary called $C_{2}$, then the circuit would behave as in the schematic diagram of Fig. 5. To transform the parallel circhits of Figs. 4 and 5 into equivalent series circuits so that the values of $R^{\prime}$ and $X^{\prime}$ may be obtained to be substituted in the above formula for the gain per stage (Eq. 1), the parallel circuits can be expressed in terms of a conductance and susceptance in parallel. The condnctance ( $i^{\prime}$ is $1 / R_{1}$ (or $1 / n^{2} R_{2}$ ) and the susceptance $B^{\prime}$ is

$$
\frac{1}{\omega L_{1}-\frac{n^{2}}{\omega C_{2}}}
$$

Then,

$$
\begin{equation*}
R^{\prime}=\frac{G^{\prime}}{i^{\prime 2}+B^{\prime 2}} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
X^{\prime}=\frac{B^{\prime}}{G^{\prime 2}+B^{\prime 2}} \tag{8}
\end{equation*}
$$

If both $\omega L_{1}$ and $n^{2} / \omega C_{2}$ are large in comparison with $n^{2} R_{2}\left(=R_{1}\right)$ for any value of $\omega$ within the a-f range, then the transformer will act as a pure resistance, since $B^{\prime 2}$ would be very small in comparison with ( $j^{\prime 2}$ and Eq. (7) will become $R^{\prime}=1 / G^{\prime}=n^{2} R_{2}=R_{1}$ and Eq. (8) will make $X^{\prime}$ vanishingly small. Hence, to make a transformer-coupled amplifier of uniform gain and without phase distortion, all that is necessary is to have transformers with very little leakage with a high open-circuit primary indurtance and very low distributed rapacity and to comert a resistance across either the primary or the serondary of surch magnitude that the parallel equivalent reactances $\omega L_{1}$ and $n^{2} / \omega C_{2}$ of Fig. 5 will be large compared with the resistance at any frequency which is desired to be transmitted. Some very good transformers used in telephone work have a third winding short-circuited in itself of a comparatively high resistance. This has the same effect as connecting an external resistance across the secondary or primary windings. The eddy-current losses in many commercial types of audio transformers have an equivalent effect.

It should be noted that if in Eq. 1 we make $\dot{Z}$ large in comparison with $r_{p}$ for any frequency to be amplified uniformly, the gain will be praetically equal to $\mu$ and chiefly to this fact is due the very flat characteristie that most modern dudio-frequency transformer amplifiers show, even when no resistance is connected across either winding of the transformer. To illustrate this, let an actual case be considered of a choke-coil amplifier (which is nothing more than a transformer in which the ratio is unity and the coupling between windings perfect). Let the inductance of the coil be 100 henrys and the total distributed capacity of $0.001013 \mu \mathrm{f}$.

At 50 eycles, $\omega L=314,200$ ohms and $1 / \omega C=3,142,000$ ohms.
At $5,000 \mathrm{cyc}$ les, $\omega L^{2}=3,142,000$ and $1 / \omega C=31,420 \mathrm{ohms}$.
At 500 eycles both reactances will be of 314,200 ohms, and the impedance of the circuit practically infinite. At this frequency, which is the geometric mean of the audio broadcast range, the amplification will be the mu of the tube, which in the illustration will be assumed to be 8 , and the plate resistance $\mathbf{6}, 000$ ohms.

At any of the two extreme frequencies the reactances of the circuit will be $\pm \frac{(3,142,000 \times 31,420)}{3,142,000-31,420}= \pm 31,700$ ohms. Rationalizing Eq. (1),

$$
\gamma=\mu \frac{31,700}{\sqrt{(31,700)^{2}+(6,0(00))^{2}}}=0.982 \times 8
$$

which means that the amplification will go down by 2 per cent at the extreme ends of the frequency band with respect to the value that assumes at the geometric mean frequency.
10. Compensating Circuits with Transformer-coupling Stages. The ideal performance of reproduced speech and music is approaehed when the original air-pressure variations at the transmitting end are reproduced at the receiving end with the same instantancous value, or, at least, with proportionally varying amplitudes. As there are many causes of distortion, to obtain as faithful a reproduction as is possible in prartice, a distortion equal and opposite should be superimposed, so that the net result shall be corrected from the excess or defeet of certain frequencies or frequency bands.

In general, there is a tendency to underamplify the extreme ends of the musical seale and to overamplify certain partieular frequencies below the middle, such as originate from acoustic resonance. For this purpose, there are a multitude of eireuits which have been proposed or put in operation in the audio-frequency amplifiers.
11. Parallel-feed, Series-resonance Circuit. Figure 6 shows diagrammatically the simplest form of parallel plate-feed, series-resonant circuit coupling. The inductance $L_{0}$ may have any value such that its reactance is large in comparison with that of the primary of the transformer $L_{1}$ with the condenser $C$ in series, at any frequency.

It will be noted that the impedance of the primary of the transformer at very low audio frequencies is practically $\omega L_{1}$. The voltage across the secondary will be $n^{2} \omega L$, times the current.

By substituting the values of the impedance in Eq. (1) the gain per stage may be obtained. To see more clearly how the gain varies with frequency, let $\omega_{0}$ be the frequency (in radians) for which $\omega L_{1}-\frac{1}{\omega C}=0$ and the ratio
of any frequency $\omega$ to $\omega_{0}$ will be designated by $N$; so that $\omega=N \omega_{0}$. Let $Q$ be the ratio $\omega_{0} L_{1} / r_{p}$ and assume that the resistance of the primary is small in comparison with $r_{p}$; then Eq. (4) in terms of these quantities will berome:

$$
\begin{equation*}
\gamma=\mu-\frac{n N Q}{\sqrt{1+\left(Q^{2}\left(N-\frac{1}{N}\right)^{2}\right.}} \tag{9}
\end{equation*}
$$

Analyzing this equation, it will be apparent that if $Q$ is large, say over 4 , and $A$ is nore than 3 or


Fla, (i.-Series-resomant coupling circuit. 4 , the amplification or pain $\gamma$ is practionally equal to $\mu n$. For frequencies near $\omega_{0}$ the gain will be greater, and at $\omega_{0}$ the gain will be $\gamma=n Q$. Hence, the maximum amplification takes place at $\omega_{0}$ and is $Q$ times as large as it is at all other frequencies far removed from $\omega_{0}$, say two or more octaves. Figure 7 shows the variation of $\gamma$ with frequency for different values of $Q$ and $\omega_{0}$. Graph a shows the gain at various frequencies for ()$=10$ and $\omega_{0}=314$ radians ( 50 (eycles). It is altogether too sharp for good low-frequency compensation. With $Q=5$ eurves $B$ and ( were calrulated for $\omega_{0}=314$ and 377 radians respectively ( 50 and 60 cycles). If one of the stages is tuned to 50 revcles and the next to 60 , the combined amplification will be represented by curve $D$. By shunting the primary of the transformer with a variable resistance, the rise will be control-


F'u. $\mathbf{7}$.-Variation of gain ( $\gamma$ ) with frequency. lable even to a point of actually depressing the amplification curve at the frequencies around or below wo. and the amplifier will offer the ehararteristics of a resistance-coupled circuit.
12. Increasing Amplification at High Frequencies. There are cases when it is desirable to inerease the amplifieation at the higher frequencies-for example, in ult rasolective superheterodynes, in phonograph reproduction, or in sound moving pictures with film recording where the audio amplifier is far away from the light cell. Among the various schemes used in this connection, two of the simplest expedients will be mentioned. One method consists of utilizing the capacity coupling between windings of the audiofrequency transformers which, combined with the leakage reactance and the capacity of the tube input circuit, form a network similar to the schematic diagrain of Fig. 8 . It is rather difficult to ealeulate the gain at various frequencies evon if the values of $\left(_{0}, C_{2}, L_{2}\right.$, and $L_{0}$ wore known. It is better to commert the audio-frequency thansformer windings with such "polarity" that the capacity coupling ( $C_{0}$ will have an additive effere with the mutual induction between windings, and to choose a suitable type of audio transformer with the required leakage reactance. There are many such transformers on the market, particularly of old design.

A second method lends itself to predetermination of the gain and consists of a combination of choke and resistance in the feed eircuit of the anode as shown in Fig. 9. The resistance $R_{2}$ may be replaced by a choke or by the primary of an audio-freguency transformer.

If, for simplicity, this resistance or impedance is assumed to be large in comparison with the impedance $Z_{1}=R_{1}+j \omega L_{1}$ it will be noted that the gain per stage will be given by substituting the value of $Z_{1}$ in the furdamental Eq. (1):

$$
\gamma=\mu_{R_{1}+r_{p}+j \omega L_{1}}^{R_{1}+j \omega L_{2}}
$$

or rationalizing.

$$
\begin{equation*}
\gamma=\mu \sqrt{\frac{R_{1}^{2}+\omega^{2} L_{1}{ }^{2}}{\left(R-r_{p}\right)^{2}+\omega^{2} L_{1}{ }^{2}}} \tag{10}
\end{equation*}
$$

It will be noted that as $\omega$ increases, $\left(\omega L_{1}\right)^{2}$ will be large in comparison with $R^{2}$ and $\left(R+r_{p}\right)^{2}$ and the fraction inside the radical will approach unity.


Fig. 8.-Utilizing capacity between windings to raise gain at high frequencies.


Fig. 9.-Choke and resistance frequency control circuit

For low frequencies, however, $\left(\omega L_{\mathrm{i}}\right)^{2}$ will be snall compared to $R^{2}$ and to $\left(R+r_{p}\right)^{2}$ and the gain will tend to the value of

$$
\gamma=\mu \frac{R_{1}}{R_{1}+r_{p}}
$$

which would be the gain had there been no choke in the circuit. If we make $R_{1}=r_{p}$, the gain at low frequencies will be nearly one-half the corresponding value at high frequencies, and the effeet of duplicating this circuit in two of the stages will make the net ratio between low- and high-frequency gain nearly four, or 12 db . The value of the inductance $L_{1}$ should be such that $\omega L_{1}$ will be serisibly equal to $R_{1}+r_{p}$ at the frequency at which it is desired to begin the boosting, for example, 700 cycles.

There is nothing to prevent the combination of both low- and highfrequency boosting in each stage; all that is neecssary is to substitute the resistance $R_{2}$ of Fig .9 f ) r an inductance of the proper value according to previous discussion and Eq. (9).
13. Frequency-band Suppression. There are cases where it is desirable to amplify the low frequencies, the high frequencies, or some intermediate frequeney band to a smaller extent than the rest or even to eliminate them altogether. Low-, high-, and band-elimination filters can be employed, but in the majority of cases a simple device is quite suitable, and it may be secured at hand from standard parts. A combination of a variable resistance of about 100 to 100,000 ohms, a fixed condenser, and a multi-tap inductance, such as commercial variableratio transformers, will be quite effective in reducing a frequency band,

The resistance with the eondenser only will reduee high frequencies; and the resistance with the inductance alone, the low. The place to connect these clements may be either the grid or the anode circuit of any of the stages, ancording to the values of the resistance, inductance and capacity of these parts and the impedance of the cirenit to which they are to be atrached. They may be commeted in series or in shunt


Fig. 11.--Shuntconnected equalizing circuits.
as per Figs. 10 and 11 . If the output impedance $Z_{2}$ is infinite, as when conneeting the circuit to the grid of a tube, the calculation for the voltage reduction at various frequencies is very simple. IRepresenting by (Q, as in previous sections, the ratio of the reactance to the resistance of the souree (vacuum tube or phonograph piek-ip, ete.) and $q$ the ratio of the reactance of the coil to the total resistance of the shunt eircuit $r, l, c$ (Fig. 10):

$$
Q=\frac{\omega_{0} L_{\mu}}{R} \text { and } q=\frac{\omega_{0} L}{r}
$$

where

$$
\omega_{0}=\frac{1}{\sqrt{L c}} \text { and } \frac{\omega}{\omega_{0}}=N
$$



Fiti, 12,-Filter cut-off eharacteristics.
The gain will be

$$
\begin{equation*}
\gamma=\mu \sqrt{\frac{\left(Q^{-2}+\left(N-N^{-1}\right)^{2}\right.}{\left(Q^{-1}+q^{-1}\right)^{2}+\left(N-N^{-1}\right)^{2}}} \tag{11}
\end{equation*}
$$

Figure 12 gives some graphs calculated for various values of $Q$ and $q$, for $\mu=1$. It will be noted that the sharpness of the peak is mostly controlled by the selection of $Q$, while the reduetion is governed by the choice of $q$.

If the impedanee $Z_{2}$ is not large in comparison with the impedanee of the shunt, the results will be only approximate but sufficiently so to enable the designer to make a good choiee of parts for an experimental trial from which the final cireuit constants can easily be selected. The similarity of the circuits containing inductance or capacity only with resistance (Fig. 10) to the cerenit of Fig. 9 will beapmarent, and the ealeulations will be almost identical. In Fig. 11 the circuits in series with the line are quite well known, and only the fact need be pointed out that they are not suitable for operation in eomnection with a high-impedance load sueh as the gricl circuit of a tube except perhaps in one instance-when the capacity reactance of the grid to filament is low. An induetance with a resistance in shunt with it, such as $L_{2} R_{2}$ (Fig. 11), may work very well in surface-noise elimination in phonograph-record reproduction. The induetance together with the chectrode eapacity of the tube will aet as a single stage of low-pass filter that should be designed to cut of just below 3,500 reyeles, as the "seratch" predominent frequency seems to be around 3,700 cycles. The shunt resistance will permit the control of the sharpness and the extent of the cutting off of the upper frequency band so as not to interfere unnecessarily with the reproduction of the overtones and at the same time sufficiently to reduee the obnoxious needle serateh.
14. Capacity-coupled Audio Stages. By this is usually desigmated the resistance-capacity type of coupling, although we have already discussed some types of coupling involving a condenser in series between the anode of one tube and the grid of the following. There, however, the condenser has been put on mostly for the purpose of obtaining a certain frequency-gain charactoristie, while in the resistance-capacity coupling it serves merely to blork the steady component of the plate voltage, transnitting only the variable part.

In connection with this type of coupling there are two considerations to examine. First, the value of the coupling condenser for a given value of the grid-leak resistance so as to pass with eonstant gain all the frequencies above a certain lower limit. Second, the curious instability characteristic of this type of coupling


Fig, 13.-Capacity-roupled amplifier. when the $B$ voltage is not of the constantpotential type, eommonly called "motor boating" on account of the noise that the loud-speaker makes when this disturhance oceurs. This effeet has a tendency to limit the caparity of the coupling condenser for a given grid leak. Resistance-capacity amplifiers are coming into use again in ronnection with television where frequencies of from 20 to 100,000 eycles have to he amplified with equal gain and without phase distortion. Figure 13 shows diagrammatieally the actual and cffective capacities and resistances in a stage of capacity-roupled amplifier.

At very low frequencies, ('. $C^{\prime}, C^{\prime \prime}$, and ('i may be ignored in the calculations and the gain will be given approximately by the expression

$$
\begin{equation*}
\gamma=\mu_{r+r_{p}}^{r+} \sqrt{\frac{r_{p}}{r_{1}^{\prime 2}+\frac{1}{\omega^{2} Y_{1}^{\prime 2}}}} \tag{12}
\end{equation*}
$$

This formula holds good when $r_{1}$＇is large in comparison with the anode resistance load $r$ ，but it will give the point at which the gain begins to diminish rapidly with decreasing frequency．When $1 / \omega$＇o eçuals $r_{1}$＇，the gatin is about 70 per cent of what it will bo at much higher frequencies．Hence，if 20 ＇ycles is the lowest frequency to be amplified，and $1 / \omega C_{0}^{\prime}=r_{1}$ at $\omega=62.8$ radians（ 10 （yycles），at 20 （cycles the reduction will be of $\sqrt{\frac{1}{1+32^{2}}}=\frac{1}{\sqrt{1.25}}$ $=89.4$ per rent of the gain at，say， 1.000 rycles or more．

The upper cud may suffer more than the lower end of the frequency band on account of the parasitic capacities（＇＂，C＂＇，and $C_{1}$ ．The effect of $C^{\prime \prime}$ is easy to compute，but the efferts of the two others are quite complicated．As a first approximation，we may put for the thres caparities a single condenser of a value equal to the grid－to－ground eapacity of the tube and comnertions multiplied by $(\mu+1) \frac{r_{p}}{r_{p}+r_{2}}$ and calculate the parallel circuit $r_{1}^{\prime} C$（where $C$ is the resultant caparity calculated as shown）．
lnspection of the equations given for the corrections at the low end as well as the high end of the frequener band shows that the best results，so far as uniform gain with frequence is conerorned，are obtained by using a large mamber of stages with eomparatively small gain per stage．When very low frequencies such as are met with in submarine cable work，are to be amplified，the compling apacities will have to be quite large ［see Eq．（12）］．In such cases，unless batteries are used to supply the $B$ voltage，motor boating will ocour．This form of instability may give rise to audible frequencies of very low period，or just to violent oscillations which may be seen in a d－e instrument in the plate cirenit of any one of the tubes of the system．

16．Stabilizing Network．To stop these disturbances，a voltage－ stabilizing arrangement will have to the connereded to the source，such as a glow tube（ $\mathbb{\top} \mathbf{X}-874$ ）across the $B$ voltage condensers of the filter or a comparatively low resistance across the same place．In many amplifiers each stage is fed from a different point of the filter condenser units in such manner that the first tube will get more filtering effect than the second， and so on to the last，which may be fed to a line with one or even without a filter section．Motor boating is very likely to oreur in these cases beause the time elements of both the amplifier circuits and those of the filter sections may result in a feed－back action which，for some frequeney， may result in positive regeneration．Even some transformer compled units without＂bass boosting＂have been found to suffer from this ailment．It is better to do all the filtering before the voltage is delivered to the amplifier and then to roturn all the plate cireuits to a common point，or to a voltage divider of comparatively low resistance if difforent plate voltages are required for the various tubes．The＂power stage＂ may be exempt from this rule in many cases．

16．Galvanic－coupled Stages．Under this heading may be classed all forms of d－e amplifiers and direct－coupled a－c and d－c amplifiers．

Figure 14 represents a direet－coupled amplifier with two tubes．The gain，if no stray capacities and mutual paths for the various currents existed，should be strietly independent of the frequeney，and this is its most important characteristie．In practice，however，the capacities between elements of the tubes，which in most cases resolve themselves into an input capacity between grid and ground，limit the upper range of the frequency spectrum．This limitation is quite severe，because tubes
of very high mu should be used in this type of coupling to obtain a high gain eompatible with great simplicity in the circuit. Tubes with a high mu have input effertive caparities of large magnitude, as we have seen in previous sections, since there is ahwys a high plate resistance accompanying high-mu tubes, the capacity reactance coming parallel with the plate resistance will make it difficult to extend the frequency range of uniform amplifieation very much above one kilocvele exeept at the expense of over-all gain. However, when great simplicity of the cireuit is required, suffieiently good results may be ohtained with this type of coupling to justify its adoption. In conneetion with the resistance network shown in Fig. 14 for the proper supply of dee potentials to the tubes, it should be noted that unless the paths of the a-e eomponents of the anode current of


Fig. 14.-Two-tube direct-coupled amplifiers.
the various tubes are returned directly to their proper tube mements by means of large capacities, or by filter sections containing condensers and resistances, positive or megative regeneration will take place, and of a varying intensity at various frequencies, which will defeat the very purpose of the directecoupled system, namely, to amplify uniformly all the frequencies in the audio hand.

Figure 14 shows how a from a phonograph pick-up. The proper voltages, and resistances to obtain them by $I R$ drop from a filtered high voltage souree, are given together with a very simple power pack. The filter ehoke may be substituted in many instaness by the high-resistance magnetizing winding of a standard electrodynamie reproducer.
17. Power Stage. The last stage in the chain of an amplifier has to deliver not only an e.m.f, but also power to the devire which is to convert cleetrieal into sound inergy, and honee the name power stage.

In general, to obtain the maximum power output from a given souree, the external resistance should be equal to the internal resistance of the source itself. 'This is also true when it is a question of ohtaining power from a vacuum tube regardloss of wave form, but when the wave shape, is to be faithfully preserved, then the so-ealled "matching of impedances" is not so simple as it looks.

With ordinary triodes, it has been shown that if the load resistance is twice the value of the internal plate resistance of the tube, maximum
power with minimum distortion may be obtained. However, this power does not vary rapidly with the load resistance so that even if the value of this resistance which we shall eall $r$ divided by the plate resistance $r_{p}=\left(\delta i_{p} / \delta e_{p}\right)$ varies between 0.5 and 4 , the maximum power for a given anount of distortion varies only hy a few decibels. It is very fortunate that it happens to be so because the effective impedance of loud-speakers is not independent of the frepuener.
18. Determination and Measure of Distortion. When a simusoidal e.m.f. is impressed on any devier, the output of which does not vary linearly with the input, the wave shape is altered and it can be expressed in the form of a Fourier series with the impressed frequency as a fundamental.

Such is the case with vacuum tubes. If the impressed grid voltage is $e=E^{\prime} \sin \omega t$ or, more completely, $e=E_{c}+E \sin \omega t$ where $E_{r}$ is a steady potential, the e.m.f. aeross the phate impedance eamot be of the form $f_{2}=E^{\prime} \sin \omega t$ unless the tube characteristie is linetr, which is never the case, although it may be approached sufficiently for practical purposes. Actually the output voltage across the load will be of the form
$r_{2}=E^{\prime} \sin \omega t+E^{\prime \prime} \sin \left(2 \omega t+\phi^{\prime \prime}\right) E^{\prime \prime \prime \prime} \sin \left(3 \omega t+\phi^{\prime \prime \prime}\right)$

$$
+E_{4} \sin \left(\omega t+\phi_{4}\right)+
$$

Usually all harmonies above the third are weak in comparison with the first two.

If we measure the fundamental component, and then take the r-m-s value of all the harmonies, we ran express distortion in more preerise terms. Hence, the distortion is defined as the pereentage of harmonie currents (or voltages) contained in the total current (or voltage) sup-


Fifi. 15.-Cirouit for distortion measurmment. plied to the load, when a simusoidal e.m.f. is impressed between grid and cathorle. Obviously the steady plate current is excluded.
19. Experimental Determination. Figure 15 shows a simple layout that will permit the measurement of


Fig. I6.- Measurement of harmonie content. distortion of a vacuum tube. An e.m.f. from a source $G$ which has a good sinusoidal wave shape is impressed upon a potontiometor $l^{\prime}$ through a hand-pass filtor $1 \mathrm{l}^{\prime} Z \mathrm{Z}$ complotely to purify it of larmonics. By sliding the contact arm in the potentiometor, the magnitude of the impressed e.m.f. may be adjusted. In the plate cireuit, the steady current is separated from the variable romponents by means of a choke $C h$ and a condenser"C, to which the load resistance voltmeter $E_{v}$ may be suceessively comnected to the points $A$ and $B$. When at $A$, it will measure the r-in-s voltage across the load $r$, including fundamental plus harmonies. When connected to $B$, it will indicate r-m-s voltages of the fundamental alone hy means of the filter $F^{\prime} F^{\prime}$, which should have very large effective reactance for all the harmonies and also a very
large effective resistance for the fundamental. When the vacuum-tube voltmeter is connected to $B$, the error introduced by the filter is negligible if the resistances of the coils that form it are very small compared to their reactanees at the fundanental frequency.

T'o minimize this error and in order to measure the harmonie r-m-s voltage rather than the fundamental, a cireuit shown in Fig. 16 will furnish more aceurate results and it is very simple to construet. A lowresistance Wheatstone bridge made of two non-reactive arms of, say, 100 ohms each and two tuned arms having an effective resistance of 100 ohms at the fundamental frequency, are connected in series with the load resistance $r$. Across the bridge is a resistance of 100 ohms in the place of the conventional galvanometer. This resistance is in the form of a potentiometer well calibrated. A vacuum-tube voltmeter is supplied from the contact arm of the potentiometer and need not be ealibrated. It may be made of any "all-purpose" tube with a mieroammeter $M$ balaneed for zero by means of a resistance $R^{\prime}$ when no alternating e.m.f. is impressed between grid and cathode.

It is very convenient to interpose a transformer of good frequeney characteristies between the 100 -ohm potentiometer and the tube voltmeter input, to inerease very much the sensitivity of the voltmeter which is really aeting as an anmeter of 100 -ohm resistance. Now, with the switches $S S^{\prime \prime}$ open, the loal current will pass through the two non-reactive resistances of the bridge and the 100 -ohm potentiometer, all of them in series with each other and with $r$, and by adjusting the arm of the potentiometer, a good indication will be obtained in the mieroammeter the absolute value of which is immaterial. It will be a measure of the r-m-s value of the load current. By closing $\mathrm{SN}^{\prime \prime}$, the bridge, which has been previously balanced for the fundamental, will exclude completely this frequency from the potentiometer and hence from the vacuum-tube meter. If the coils $L$ and condensers $C$ have a " $Q$ " over 10, the bridge will act for all the harmonies as if switches $S S^{\prime}$ were open, sinee the reactance of the tuned arms will he large compared to 100 ohns. Consequently, there will be across the potentiometer an e.m.f. made up exclusively of harmonics. By adjusting the potentiometer to a new value such that the same deflection is obtained as when the fundamental was present, the percentage of harmonic contents in the voltage across or current through the load resistance will be determined by dividing the value of the setting over the first. For very accurate determinations, 300 ohms should he added to $r$ in figuring out the load resistance. When the bridge switches are elosed, this resistance is 200 ohms less for the fundamental, and additional resistance may be added to $r$ to make up for the reduetion although in most cases this is not necessary hecause $r$ is several thousand ohms. When lower plate resistance tulies are to be tested, a 10 -ohm bridge may be used instead of the 100 -ohm bridge shown in Fig. 16 with a transformer between the potentiometer and the grid. A commercial mierophone step-up transformer may be used very suceessfully in connection with a 10 - to 100 -ohm bridge.

It has been found that when most commereial tubes of average power rating are tested aceording to the methods discussed ahove, the harmonies amount to about 5 per cent of the total current through a non-reactive load of optimum value. The method used for this determination lends itself for further useful determination, sueh as the optimum value of load resistance for a given limit of harmonic "distortion." All that is needed
is to vary $r$ (Figs. 15 and 16) while measurements are made of total voltage or current and its harmonic content and plot a graph showing percentage of harmonics as abseissas and values of $r$ as ordinates. The optimum values of steady grid voltage for all the other given conditions, such as phate voltage and load resistanee, may be determined likewise. Care should be exercised to introduce a suitable input "ircuit simulating the actual conditions of the circuit when the tube is to be placed so as not to eliminate, during the test, the possibility of grid distortion. The gain per stage and also $\mu$ and $r_{p}$ can be obtained in a similar manner.
20. Pentode in a Power Stage. This five-clectrode tube has many advantages over the ordinary triode as a "power" amplifier (all tubes are power amplifiers) in spite of some distortion that exists in sets that use it.

It delivers about 30 mw por volt squared applied to the grid, while most tubes of the '71, '45, and '50 type deliver only about 2 mw per


Fig. 17.-Pentode power tube with tone compensating network.
volt squared. A gain of about 15 may be obtained on a load resistance of approximately 7,500 ohms. The plate resistance is very high, about, 50,000 ohms, and the dymanic charicteristies of the pentode are such that the optimum load resistance for least harmonie development is about 7,500 ohms. Thus the pentode is more like a constant current device than like a constant, voltage souree, just the inverse case of ordinary "power" triodes. For this reason, and beause loud-speakers have a rising frequency-impedance characteristic, high frequencies serm over-emphasized. Corrective networks have been devised but the simplest form eonsists of a $0.005-\mu \mathrm{f}$ eondenser with a $10^{4}$-ohm resistance in series, both across the primary of the speaker transformer.

The hass tones seem to be very weak in pentode radio sets, but a great deal of this is clue to insufficiont baffe in the spoaker cabinet. A bass compensating circuit and a better treble compensating network are shown in Fig. 17. The high frequencies are more gradually equalized by two sucessive steps at different starting points of frequency-amplitude reduction. The reactances of condenser ( toget her with the effeetive inductance of the speaker transformer, combined in parallel with the inductive ractance of the choke $L$, will form a circuit which hass a rising impedance at a given low frequency depending upon the constants of these elements. This frequency should be made of about 50 eycles.

The pentode has the advantage of runing on moderate plate voltages and currents, while the power output is much larger than triodes working under the same conditions. For greater power output, the use of two pentodes of the ' 47 type in parallel offers the advantage of a lower-plate matehing impedance, about 3,500 ohms, which is the value offered by most dynamic speakers equipped with commercial transformers suitable for operation from power triodes.

By choosing different values of plate impedance than those given for minimum distortion, the third harmonic may be redueed, but the second
will increase. Push pulling will neutralize all even harmonics to some extent, and it is on this principle that push-pull transformers with pentodes are designed.
21. Power Tubes with Positive Grids. It is possible to obtain a considerably greater power from a triode for a given limit of harmonie distortion, and a given plate voltage limit by permitting the grid to become positive during a part of the eycle, provided that, in so doing, the impressed em.f. will not lose its shape by the fact that the grid is no longer a voltage controlled device but requires appreciable power to operate it. If we take a triode and connect its input or grid-cathode circuit to a low resistance source of sinusoidal e.m.f. and measure the input power and its harmonic contents as previously shown (see Figs. 15 and 16) and then do the same when the source has an internal resistance of a value elose to the plate resistance of amplifying triodes with their coupling device, entirely different results will be obtained.

With optimum values of grid bias and plate resistance chosen after several tests, it is possible to get over five times the power in the first case with respect to the second for a given percentage of harmonies and plate voltage.

There are, in development, tubes that will operate with positive grids during a part of the cycle and will deliver about one watt at $E_{B}=110$ volts and four watts at $E_{B}=250$. Auxiliary elements in the tube furnish the power required to operate the grid while the input inpedance is made of the usual grid-to-cathode capacity with negligible losses.
22. Push-pull Amplifiers. Any symmetrical system of impressed e.m.fs. or of impedances, if subject to non-linear laws of variation, will give rise to odd harmonics exclusively. As the second harmonic is preponderant in vachum-tube distortion, by connecting two tubes in push pull this harmonie is balanced out. Much has been writ ten pro and con regarding the merits of push-pull amplifiers. The net result seems to be boiled down to the following considerations:

Two triodes in push pull deliver almost the same power as three in parallel when best conditions of voltages and impedances are fulfilled for a given tolerance of distortion.

The output transformer has its iron core free of d-e saturation; hence, less iron will be required and a closer


Fig. 18.-Push-pull amplifier. coupling available between windings as no gap is necessary.

The disturbances coming from the power pack, being introduced in phase on both tubes cancel each other in the output transformer. This is particularly true of hum. There is ordinarily eliminated one filter section in the power pack when a push-pull output stage is used. An addlitional filter section carrying considerably less power must be inserted between the supply line and the rest of the tubes outside the power stage.

Regeneration due to coupling through grid and plate return circuits is positive for one of the push-pull tubes and negative for the other, thereby cancelling itself. Care should be exercised, however, lest the
powerful output currents develop appreciable modulation of the input e.m.f. as follows:

Strong even harmonic currents will cancel each other in the output transformer $T_{2}$ (Fig. 18), but they do not cancel each other in the circuit completing the plate-to-cathode return, comprising the filter condenser $C$, and the biasing resistor $R$. Now, if the grid-to-tathode return circuit is common in part to this circuit, as when the "biasing" resistor is not by-passed by large condensers between eathodes (filament) $F$ and $B$, or ground, these harmonie currents will modulate the ineoming e.m.f. if their amplitude is not sufficiently reduced by suitable filtering and separation of grid and plate circuits.
23. Class B Amplifiers. ${ }^{1}$ - se of two tubes in a class $B$ circuit, often ealled "push-push," for audio amplification offers the advantages over class $A$ operation of marked economy of power supply, greater operating efficiency, and, from equivalent power supply, greater undistorted power output. In practice either the tubes are over-hiased so that very little plate current flows, or tubes with a fairly high amplification factor are employed, operated at zero grid bias.

Design of class $B$ circuits is somewhat more complicated than design of class $A$ circuits. The characteristics of plate load, input transformer, and $B$ supply are all interrelated. Since the grids of the tubes which are fed from an input push-pull transformer draw current, the stage feeding the class $B$ tubes must furnish appreciable power. Again, because the griul takes eurrent, the input circuit must have a resistaner low in eonlparison with the grid-eathode resistane of the tubes. With the '4fi-type tube, especially designed for class $B$ operation in radio receivers, this resistance is of the order of 1,000 ohms. The input transformer, therefore, steps down the voltage from the feeder stage, which may be a single ' 46 tube or other amplifier tube.

For a limited grid voltage to the two tubes, the gratest power output will be secured when the plate load is sueh that the product of the plate voltage and phate current swing is greatest. Distortion from such a cireuit is greatest at low power output because of the curvature of the characteristic at low grid voltages. For an overall distortion of 5 per cent total harmonies, not more than 2 per cent second harmonic can be tolerated from the driver tube. The power output avalable from a typical cireuit is shown in Fig. 19. Some radio-set manufacturers in 1932 were using step-down transformers, working into rass $A$ tubes, the idea being the ability to drive the grids of the tubes positive without the distortion ordinarily encountered and without the danger of inereased distortion at low input signal yoltages when using class $B$ circuits.

Class $B$ operation is especially valuable in a mplifiers which must be fed from a high-cost souree of power-batteries, for example, where the cost of supplying power is $\$ 10$ per kilowatt hour. Since the plate current taken by the tubes is low at zero (or low) signal level and is only high on high modulation peaks, the user pays for only what he gets.
24. Power Supply to Tubes of an Amplifier. The power required is in the form of filament or heater current and $B$ and (? unidirectional, non-fluctuating voltages. The former is alnost universally supplied at low voltage a.e., by means of twisted leads of very low resistance to nentralize the magnetic field which may otherwise induce hum. The $B$ and $C$ voltages are derived by taking the drop across a resistance
${ }^{1}$ By the Editor.
network through which rectified current passes after it has been filtered. It is of utmost importance that the internal impedance of the $B$ and $C$ sources, for even the lowest audio frequency, shall be negligibly small compared to the impordances of the tubes and of the apparatus attached


Fig. 19.-Class $B$ circuit and characteristics.
to them. Thercfore, by-pass condensers should be provided across the resistances the drop across which is to be utilized for $B$ and $C$ potentials. It is better to have individual resistors in series between cathode and


Fti, 20.-Methods of supplying voltages to amplifier tubes.
ground for each tube with a shunted condenser, so in such ease, there will be no undesirable intercoupling hetween stages. Figure 20 shows diagrammatically an example of the right and the wrong way of feeding amplifiers with $B$ and $C$ potentials.

The simple filters when consisting of condensers and resistances in the grid and condensers and chokes in the plate serve admirably not only to stop intercoupling and regeneration, but also to permit considerable economy in the construction of the $B$ voltage supply filter. There is only one caution, and it relates to the "time constant" of these circuits. If too small, the fiters may be ineffective at low audio frequencies, and if too large, may give rise to motor boating. 1t is not easy to predict what values are the best, but a little experimentation will solve the prohlem much more easily. Start with plenty of capacity hy-passing and resistanee separation of circuits and cut down on the values or even eliminate some few filter sections here and there until a happy medium is reached. The maximum filtration will be required in amplifiers for "talkies" operated from photo cells, and the least is required in "midget" radio sets that have no audio stages.

## SECTION 12

## RADIO-FREQUENCY AMPLIFIERS

By R. S. (alasgow ${ }^{2}$

1. Class A Amplifier. Amplificrs are divided into three genoral classes, $A, B$, and $C$, depending on the type of service in which they are to be used.

A elass $A$ amplifier is one which operates so that the plate output wave shapes of current are practically the same as those of the exciting grid voltage.

This is arcomplished by operating the tube with sufficient negative grid bias sueh that some plate current flows at all times, and by applying an alternating excitation voltage to the grid of such value that the dynamic operating characteristic is essentially linear. The grid must not go positive on exitation peaks and the plate current must not fall low enough at its minimum to cause distortion due to curvature of the chararteristic.

The characteristics of class $A$ operation are freedom from distortion and relatively low power output, Practioally all a-f amplifiers are operated in this manner. Radio-frequency amplifiers of the type used in receiving sets to amplify the signal voltage prior to detection are also of this rlass.

Class $B$ and (" amplifiers will he discussed under Power Amplifiers.
2. Radio-frequency amplifiers for receiving sets are usually classifiod as to the type of coupling employed between


Fio. 1,-Resistance- exerept for the lower radio frequencies.
coopled amplitier. 3. Resistance-coupled Amplifier. This type of amplifier is occasionally used where uniform amplifieation is desired over a moderate band in the lowest range of radio frequencies. In Fig. 1 the output voltage $E_{2}$ is given by

$$
\begin{equation*}
E_{2}^{\prime}=\frac{\mu R_{b}}{r_{p}+K_{b}} E_{1} \tag{1}
\end{equation*}
$$

[^18]where $\mu$ and $r_{p}$ are respectively the amplification factor and plate resistance of the tube used. Defining the voltage amplification per stage $G$ as the ratio of the output voltage to the input voltage, we have
\[

$$
\begin{equation*}
G=\frac{E_{2}}{E_{1}}=\frac{\mu R_{b}}{r_{p}+R_{b}} \tag{2}
\end{equation*}
$$

\]

As $R_{b}$ is made very large compared to $r_{p}$ the value $G$ approthes $\mu$ as a limit so that tubes having a large value of $\mu$ are necessary if reasonably high gain per stage is desired. Equation (2) presumes that the input impedance of the next stage which is shonted across $R_{b}$ is comomonsly large, so that $R_{n}$ is not appreciably reduced as a result of being shunted by this input impedance.

In a typiral cascade amplifier as shown in Fig. 2, $M_{b}$ is in effect shunted by the grid leak $R_{c}$ in parallel with $C_{p}$, the input capacity of the tuhe. The reactance of the hocking condenser C in serics with them is negligibly sinall in com-


Fic, 2.-Cascade amplifier. parison. For frequencies lower than 500 ke with a pure resistance in its plate cirenit $C_{0}$ may be regarded as constant and independent of the frequency, and is given by

$$
\begin{equation*}
C_{u}=C_{g f}+C_{p p}\left(1+\frac{\mu R_{b}}{r_{p}+R_{b}}\right) \tag{3}
\end{equation*}
$$

where $C_{a s}=$ capacity between grid and filament
$C_{p p}=$ capacity between grid and plate
These interelectrode caparitios will be from 4 to $7 \mu \mu \mathrm{f}$ depending on the type of tube and socket used so that ( ${ }^{\prime \prime}$ may lie


Fit, 3.-Impel-ance-coupled amplifier. inywhere from 40 to $80 \mu \mu$ f. 'Thus at 1,000 eyeles the input impedance of the tube alone will be about 3 megohms while at 100 ke it has dropped to about 30,000 ohms. As a result the gain per stage diminishes as the frequency increases due to the reduction of the affective value of $R_{b}$ by the shortcircuiting effect of $C_{p}$. In addition to these limitations, a-f disturbances and tube noises are readily amplified so that resistance-coupled amplifiers are usually not very satisfactory for radio frequencies.
4. Impedance-coupled Amplifier. The simplest amplifier of this type merely emplovs a choke coil in the plate circuit as shown in Fig. 3. The voltage amplifieation per stage is given by

$$
\begin{equation*}
G=\frac{E_{2}}{E_{1}}=\frac{\mu \sqrt{R_{b^{2}}^{2}+\omega^{2} / \overline{b_{b}^{2}}}}{\sqrt{\left(r_{p}+R_{b}\right)^{2}+\omega^{2} L L_{b}^{2}}} \tag{4}
\end{equation*}
$$

where $R_{b}$ and $L_{t \rightarrow}$ are reweetively the resistane and inductanee (in henrys) of the choke coil and $\omega=2 \pi \dot{\times}$ frequency. If the resistance of the coil is small compared to its reactance, $\omega L_{\text {ab }}$, and to the plate resistance $r_{p}$ of the tube, the expression for the amplification becomes

$$
\begin{equation*}
G=\frac{\mu \omega L_{b}}{\sqrt{r_{p}^{2}+\omega^{2} L_{b}^{2}}} \tag{5}
\end{equation*}
$$

If $\omega L_{b}$ is very large compared to $r_{p,}, G$ approaches $\mu$ of the tube as a limiting value, as was the case with the resistance-coupled amplifier. By choosing $L_{b}$ large enough so that the reactance of the coil is large compared to the plate resistance of the tube at the lowest frequency we are interested in, the gain will be constant for all higher values of frequeney. ()wing to distributed capacity effects and the shunting of the coil hy the input eapacity of the next tube it is not possible to olbtain uniform amplification as predicted above exerpt at low frequencies. For high frequencies such as the present hroudeast band the effert of this capacity is to produce a parallel resonamt circuit whose impedance is high at the resonant frequeney, but which drops off rapidly for frequencies higher than resonance. This results in a reduction of the gain for frequencies above resonance. To avoid this, it becomes necessary to use a value of choke-


Fiti. 4.-Amplifiration of a choke-ooupled amplifier tube.
coil inductance such that resonaner oceurs somewhat below the highest frequency to be amplified. This value of inductance is governed chiofly by the input capacity of the next tube which may be of the order of 10 to $20 \mu \mu \mathrm{f}$, depending on the type of tube used and the nature of the load in its plate circuit. For this reason there is little to be gained hy redueing the distributed capacity of the coil if it is already small compared to the tube input caparity. At broadeast frequencies the value of inductance thus obtained results in too low a reactance to give good amplifieation for frequencies much below resonance.

This is illustrated in Fig. 4. The coil used was a single layer solenoid closely wound with 173 turns of No. 28 wire having an inductance of $1.63 \times 10^{-3}$ henry and about 10 ohms de resistance. The distributed capacity of the coil was $3.5 \mu \mu \mathrm{f}$. The curve shows the measured amplification ${ }^{1}$ using a Western Electric 215-A "peanut" tube which had an amplification factor of 6.1 and a plate resistance of 22,000 ohms. The input capacity of the ramum-tube voltmeter which used a tabe of the same type was $18 \mu \mu$ f, ineluding leads, which lowered the natural period of the ehoke coil to 850 kc . The lower curve shows the theoretieal amplification that would be obtatined if these shunting capacities were absent.

If $C$ represents the total maparity shunting the woil in Fig. 3, the expression for the amplification beromes

$$
\begin{equation*}
c^{\prime}=\frac{\mu Z}{\sqrt{ }\left(r_{p}+h\right)^{2}+X^{2}} \tag{6}
\end{equation*}
$$

[^19]where
\[

$$
\begin{align*}
R & =\frac{R_{b}}{\omega^{2} C^{2} R_{b}{ }^{2}+\left(\omega^{2} L_{b} C-1\right)^{2}}  \tag{7}\\
X & =\frac{L_{b}-C\left(R_{b}^{2}+\omega^{2} L_{b}{ }^{2}\right)}{\omega^{2} C^{2} L_{b}^{2}+\left(\omega^{2} L_{b} C-1\right)^{2}}  \tag{8}\\
Z & =\sqrt{\bar{R}^{2}+X^{2}} \tag{9}
\end{align*}
$$
\]

The above expression for $Z$ is the resultant impedance of the coil in the plate rircuit when shunted by the caparity ( under the assumption that this capacity has no appreciable resistance associated with it. The voltage amplification will be a maximum when $Z$ is a maximum, which will oceur at resonance. When $Z$ is a maximum the apparent reactance as given by (8) hecomes zero, and

$$
\begin{equation*}
Z_{\max .}=\frac{R_{b}^{2}+\omega^{2} L_{b}^{2}}{R_{b}} \tag{10}
\end{equation*}
$$

the expression for maximum gain thus beeomes

$$
\begin{equation*}
G_{\text {mux }}=\frac{\mu}{1+\frac{r_{p} R_{b}}{K_{b}^{2}+\omega^{2} L_{b}^{2}}} \tag{11}
\end{equation*}
$$

If the shunting capacity $C$ has an effective resistance $R_{c}$ in series with it, the expressions for $R$ and $X$ in (7) and (8) become

$$
\begin{align*}
& R=\frac{\omega^{2} C R_{c}\left(R_{b}\left(R_{b}+R_{c}\right)+\omega^{2} L_{b}{ }^{2}\right]+R_{b}}{\omega^{2} C^{2}\left(R_{b}+R_{c}\right)^{2}+\left(\omega^{2} L_{b} C-1\right)^{2}}  \tag{12}\\
& X=\frac{L_{b}-C\left[R_{b}^{2}+\omega^{2} L_{b}\left(I_{b}-C^{2} R_{c}^{2}\right)\right]}{\omega^{2} C^{2}\left(R_{b}+R_{c}\right)^{2}+\left(\omega^{2} L_{b} C-1\right)^{2}} \tag{13}
\end{align*}
$$

5. Use at Low Frequencies. At frequencies in the vicinity of 50 ke much higher values of inductance ean be secured and while the distributed eapacities of such coils will be greater, the total caparity shunted aeross


Fig. 5.-Amplification as a function of turn ratio.
the eoil will not be more than lwo or three times the value that would obtain at broadeast frequencies. Since the voltage amplifeation will be approximately constant and equal to the $\mu$ of the tube as long as the impedanee of the coil in the plate circuit is large compared to $r_{p}$, uniform
amplification ean be readily obtained for a wide band at the lower radio frequencies. This is shown by eurve 1 in Fig. 5. In order to secure the high inductance needed at the lower frequencies without unduly increasing the distributed capacity a multilayer winding of "honeyeomb" type is often used. Another method is to subdivide the coil into a number of thin, closely adjacent, random-wound pancake sections by using a coil form with a number of narrow grooves turned in it. Siuch coils can be made astatic by reversing the direction of the winding in each alternate section so that their magnetic fields are in opposition. This form of construction requires a greater number of turns to secure a given inductanee, but it possesses the advantage of being immune from stray magnetic eouplings with the other coils in the amplifier.

At the lower radio frequencies suitable iron cores can be profitably employed, enabling high values of inductance to be obtained with a nominal number of turns on the coil. The iron must be very well laminated to reduce the eddy currents, or an objectionable inerease in the resistance of the coil will result. The iron commonly used for this purpose has a thickness of only one to two mils. Dust cores of iron and its magnetic alloys ${ }^{1}$ are very satisfactory for this purpose. However, as the frequency increases the advantages of an iron core diminish. The resistance of the coil rapidly increases while the apparent permeability of the iron becomes less, so that at high frequencies the iron contributes comparatively little to the inductance. This results in a ratio of $\omega L / R$, which is lower than would be obtained with a suitable air core inductance. For this reason iron cores are seldom used for frequencies above 500 ke .

In 1931, Polydoroff developed a method for tuning a circuit hy variations in the inductance liy inserting a core of finely powdered iron. Because of the high specific resistance of the core material, the losses in the tuned circuit were kept low, and sufficient change in permeability of the inductance core was secured to tune a eireuit over a 3 to 1 variation in frequency.
6. Transformer-coupled Amplifiers. The problens in an untuned transformer-coupled amplifier are much the same as those just discussed. The primary of the transformer is merely a choke coil in the plate cireuit of the tube so that the scoondary voltage may be obtained by multiplying the primary voltage by the ratio of transformation. The expression for the voltage amplification can then be obtained by multiplying (4) or (i) by this ratio.

If the impedance into which the transformer is working is enormonsly large so that the secondary may be assumed to be on open circuit the ratio of transformation is given by

$$
\begin{equation*}
a=\frac{M}{L_{p}}=K \sqrt{\frac{L_{s}}{L_{p}}} \tag{14}
\end{equation*}
$$

where $M=$ mutual inductance
$L_{p}=$ primary inductance
$L_{\mathrm{s}}=$ secondary inductance
$K=$ coeflicient of coupling $=M / \sqrt{L_{p} L_{s}}$
From (14) it is seen that the ratio of transformation is only equal to the turns ratio if the coupling between primary and secondary is unity and if

[^20]the induetanees are proportional to the square of the number of turns. These conditions are usually obtained only if an iron core is used.

The assumption that the secondary of the transformer is working into an open circuit is seldom valid due to the input capacity of the following tube. The effect of this capacity becomes more pronounced as the step-up ratio of the transformer is increased. At low ratios of transformation the response curve is relatively flat, hut as the ratio is increased the tuning effect of the tube capacity arross the secondary becomes quite pronounced resnlting in a sharply defined resonance curve. This is illustrated in Fig. 5. The transformer used was a coil of 2,400 turns wound on an iron dust core which had an inductance of 0.33 henry. Taps were brought out so that the coil could be used as an auto transformer of adjustable ratio by connecting the plate of the amplifier tube across any portion of the total induetance. The same tube was used as in Fig. 4. Curve 1 was for a $1: 1$ ratio, the coil being used as an impedance-coupled amplifier. ('urves 2, 3, and 4 are for step-up ratios of $1: 4,1: 16$ and $1: 48$ respectively.

The general vector expressions for the currents in the primary and secondary of a transformer-conpled amplifier are given by

$$
\begin{align*}
i_{p} & =\frac{\mu \rho_{u}\left(Z_{s}+Z_{2}\right)}{\left(r_{p}+Z_{p}\right)\left(Z_{s}+Z_{2}\right)-Z_{m}^{2}}-  \tag{15}\\
i_{s} & \left.=\frac{-\mu C_{0} Z_{m}}{\left(r_{p}+Z_{p}\right)\left(Z_{z}\right.}+Z_{v}\right)-Z_{m}^{2} \tag{16}
\end{align*}
$$

The circuit is shown in Fig, $6, a$ being the actual conncetion and $b$, the electrical equivalent. The negative sign in (16) indicates that the secondary

(a)

(b)

Fig. 6.-Transformer-coupled amplifier.
current is flowing in a direction opposite to that in the primary and can be disregarded if we are interested only in the nagnitude of the current. Substituting the following vector expressions for the varions innpedances and assuming that $Z_{2}$ is a condenser having a capacity, $C_{2}$, we have

$$
\begin{aligned}
Z_{p} & =R_{p}+j \omega L_{p} \\
Z_{s}+Z_{2} & =R_{s}+j\left(\omega L_{s}-\frac{1}{\omega} \bar{C}_{2}\right) \\
Z_{m} & =j \omega_{2} M
\end{aligned}
$$

where $R_{s}$ is the resistance of the transformer secondary and includes any resistance that may be associated with $C_{2}$. The vector expression for the secondary current is then

$$
\begin{align*}
& i_{s}= \\
& {\left[\left(r_{p}+R_{p}\right) R_{s}+\frac{L_{p}}{C_{2}}-\omega^{2}\left(L_{p} L_{s}-M^{2}\right)\right]+j\left[r_{p}\left(\omega L_{s}-\frac{1}{\omega C_{2}}\right)+\omega L_{p} R_{s}\right]}
\end{align*}
$$

and the voltage amplification at any frequency is given by
$\left(i=\frac{i_{n} Z_{2}}{c_{v}}=\right.$

$$
\frac{\mu \frac{. \prime \prime}{\left({ }^{\prime \prime}\right.}}{\sqrt{\left[\left(r_{p}+R_{p}\right) / R_{x}+\frac{L_{2}}{C_{2}}-\omega^{2}\left(L_{-p} L_{s}-I / 2\right)\right]^{2}+\left[r_{p}\left(\omega L_{s}-\frac{1}{\omega C_{g}}\right)+\omega L_{p} R_{s}\right]^{2}}}
$$

Fiquations (17) and (18) neglect the effects of distributed canacity of the primary and possible raparity coupling between primary and serondary. These items, if appreciable, will modify the expression for the gain as given by (18). ${ }^{1}$

The voltage amplification will be a maximum at resonance, or when the $j$ term in (17) is zero. This will oreur when

$$
\begin{equation*}
\leftrightarrow=\frac{1}{\sqrt{C_{n}\left(L_{s}+L_{p_{r_{p}}}+R_{p}\right)}} \tag{19}
\end{equation*}
$$

and the gain will be given by

$$
\begin{equation*}
G_{\text {max }}=\frac{\frac{\mu}{C_{2}}}{\left(r_{p}+R_{p}\right) R_{s}+\omega^{2}\left(M^{2}+L_{1} \frac{2}{r_{p}+R_{p}}\right)} \tag{20}
\end{equation*}
$$

At high froquencies the tube input caparity is a complex function of the frequency and of the constants in the output circuit. By using a coil


Fisi, 7.-Typical tuned r-f transformer. in the output circuit whose natural period is slightly lower than the lowest froquency to br amplified, the input caparity of that tube can be made to increase as the fropueney is loworod. Since ${ }^{2}{ }_{2}$ in the above equations is composed largely of tube input capacity it is possible hy proper design to have ( ${ }_{2}$ incroase automatically as the frequeney of the incoming signal decreases, and at the proper rate so as to tune the transformer secondary to approximate resonanee for a reasonable range of froquencies. This automatic tuning effect results in a much broador and more uniform response curve than would be obtained if $C^{\prime}$ ' wore fixed in value.
7. Tuned Amplifiers. "lhe cireuits discussed in the preeoding seotions are employed when it is desired to amplify a fixed band of frequencies. 'Tho width of this band and the uniformity of the amplification therein are governed by design limitations. The majority of recoiving sets must be capable of amplifying a selected narrow hand of frequencies and excluding all others. The selectivity of the reecoiving set is dependent upon how thoroughly this latter item is carried out. In receivers designed for entertainment purposes, the fillelity is also of importance and depends upon the uniformity of the amplifiation within the solerted band. The type of detector used and the characteristies of the a-f amplifier also affeet the fidelity.
${ }^{1}$ Diamond and Atowell, Note on Ladio-frequency Transfornier Theory, Proc, I.R.E., 16, 1104, September, 1928.

A typieal tuned r-f transformer connection is shown in Fig. 7. The (urrent in the secondary and the voltuge amplification per stage at any frequeney with $C$ fixed in value are given hy (17) and (18) respeetively.

At resoname,

$$
\begin{equation*}
\omega\left(L_{s}+L_{1} \frac{R_{x}}{r_{p}+R_{p}}\right)=\frac{1}{\omega C_{2}^{\prime}} \tag{21}
\end{equation*}
$$

and the gain will be a maximum and is given by (20). The resistance of the primary is usually negligible in comparison with $r_{p}$, and since $\frac{L_{p} R_{s}}{r_{p}+R_{p}}$ is also small, (21) becomes

$$
\begin{equation*}
\omega L_{s}=\frac{1}{\omega C_{2}} \tag{22}
\end{equation*}
$$

and the expression for the gain at resonance to a sufficiently close degrec of approximation becomes

$$
\begin{equation*}
C_{\text {max. }}=\frac{\mu \omega M}{r_{p} R_{s}+\omega^{2} M^{2}} \omega L_{s}=\frac{\mu \overline{C_{2}}}{r_{p} R_{s}+\omega^{2} \cdot M^{2}} \tag{2;3}
\end{equation*}
$$

If the mutual inductance $M$ in (23) is adjusied to satisfy the condition

$$
\begin{equation*}
\omega . M=\sqrt{r_{p}} \overline{R_{s}} \tag{24}
\end{equation*}
$$

the optimum value of voltage amplification will be obtained, and (23) reduces to

$$
\begin{equation*}
\mathrm{i}_{\mathrm{opt}}=\frac{\mu \omega L_{s}}{2 \sqrt{r_{p} R_{\mathrm{s}}}} \tag{25}
\end{equation*}
$$

Equation ( 25 ) gives the maximum amplification it is possible to obtain with a given tube and coil.

When $M$ is adjusted to its optimum value it will be noted that the figure of merit of the tube is $\mu / \sqrt{r_{p}}$. Therefore if two tubes have equal values of mutual conductance the one having the highest amplification faetor will give the greatest gain. For this reason tetrodes, or sereengrid tubes, are capable of giving very high amplification. With $M$ less than optimum the gain becomes more nearly proportiona! to the mutual conduetance. When optimum eoupling is employed the amplification is directly proportional to the ratio of the eoil reactance to the square root of its resistamee. Consequently, seeondary coils using relatively small wire of comparatively high resistance can be used without seriously redueing the amplification. In this rospect the r-f transformer differs from a coil aerial as in the latter the gain falls off directly with the coil resistance. For values of $M$ considerably below optimum the gain will fall off at a rate more nearly proportional to the first power of the eoil resistance. It is interesting to note that the turn ratio bet ween primary and secondary does not enter into the expression for the amplifieation, the mutual induetanee between them being the criterion. When optimum amplification is obtained the impedance looking into the primary of the transformer is equal to the plate resistance of the tube. This condition differs from the impedance-coupled amplifier in that in the latter optimum amplifieation is obtained only when the impedance in
the plate circuit is enormous compared to $r_{p}$ of the tube. The impedance looking into the primary of the circuit in Fig. 7 is

$$
\begin{equation*}
Z_{p}^{\prime}=R_{p}+j \omega L_{p}+\frac{\omega^{2} M^{2}}{R_{s}+j\left(\omega L_{s}-\frac{1}{\omega\left(^{\prime}{ }_{2}\right.}\right)} \tag{26}
\end{equation*}
$$

8. Effect of Mutual Inductance. The effect of the magnitude of $M$ on the resonant amplification for four different frequencies is shown in Fig. 8. ${ }^{1}$ The secondary cireuit resistance varied from 4 ohms at 500 ke to 25 ohms at $1,500 \mathrm{ke}$. It will be observed that a fixed value of mutual inductance of about $45 \mu \mathrm{~h}$ would give approximately optimum amplification for the entire range of frequencies included in the curves. There is


Fig. 8.-Importance of $1 /$ on resonant amplification.
therefore little to be gained in sensitivity by adjusting the coupling in this type of amplifier for various frequencies providing sufficient coupling has been initially employed. There is, however, considerable advantage to be obtained by increasing $M$ as the frequency is lowered in order to secure more uniform selectivity and better fidelity. The mechanical complications involved in automatically varying the amount of coupling with tuning have prevented its use in commercial receiving sets up to the present.

The effect of the value of $M$ on selectivity is shown in Fig. 9, using the same tube and transformer as in Fig. 8. It will be noted that these curves have the same characteristics as those in Fig. 5, curve 3 of that figure having the proper turn ratio to produce the optimum value of $M$. If the ordinates of Fig. 9 are reduced to a percentage basis as in Fig. 10 the increased broadening of tuning with increased $M$ is clearly apparent. As $M$ approaches zero the response curve approaches the resonance curve of the secondary circuit. Therefore if good selectivity is desired $M$ must be fairly small-usually well under its optimum value-so that some sacrifice must be made in sensitivity. A further difficulty presents itself
${ }^{1}$ Glaggow, IR. S., Tuned IZadio-frequency Amplifiers, Jour. A.I.E.E., p. 327, May, 1928.
when the selectivity at various frequencies is investigated, as illustrated in Fig. 11. At the lowest frequency the response eurve is so sharp that the gain for side-band frequencies 5 kc off resonance is only 36 per cent of the resonant amplification. The fidelity is therefore impaired. At


Fig. 9.-Effect of varying $M$ on seleetivity.
the highest frequency the fidelity is good but the selectivity is very poor. Reducing the value of $M$ would sharpen the tuning at high frequencies but would cause it to become still sharper at the low frequencies with


Fig. 10 .
further impairment of fidelity in this region. This reduction in $M$ would also cause a serious loss in sensitivity at the lower frequencies. Consequently the design of a tuned r-f receiving set for entertainment purposes
represents a compromise between good fidelity and sensitivity at the long waves, and fair selectivity at the short waves. Any attempt to improve the performance at one end of the tuning range results in impaired performance at the other. This has resulted in the introduction of various modifications in the circuit of Fig. 7. These will be diseussed later.


Fig. 11.-Selectivity as a function of frequency.
9. Cascade Amplifiers. If two or more identical stages of amplification are connected in caseale the over-all voltage amplification is given by

$$
\begin{equation*}
G=G^{n} \tag{27}
\end{equation*}
$$

where $n=$ number of stages
$G=$ amplification per stage


Fig. 12.-Increase in selectivity with cascading.
This expression presumes that the various stages do not react on each other, which is not always the ease in practice due to small unavoidable couplings between input and output circuits. If the various stages are not all identical the over-all amplification will be the product of the individual values of $G$ per stage. The response curve of a multi-stage amplifier composed of identical stages is readily obtained from the curve
of an individual stage by raising its ordinates to the $n$th power, where $n$ is the number of stages.

The use of several stages of cascade tuned r-f amplification enables both the selectivity and fidelity of the amplifior to be increased, provided the tuning of each stage is made broader as the number of stages are inereased. This is illustrated in Fig. 12 where $A$ is the response curve of a four-stage amplifier, each stage having the constants of the top eurve of Fig. 10. Curve $B$ is a single stage and is the bottom eurve of this same figure. The necessity for broader tuning per stage in multi-stage amplifiers in order to avoid too great a sacrifice in fidelity permits the use of coils of rather compact dimensions wound with relatively small wire. The increased coil resistanee thus produced will reduce the gain per stage but this can be offset if neerssary by increasing the mutual inductance to more nearly the optimum value. At frequencies sufficiently remote from resonance sueh that the gain per stage becomes less than unity a cascade amplifier acts as an allenuator of the signal. An increase in the number of stages will therefore actually decroase the strength of interfering signals whose frequencies are above or below the band where the gain per stage is equal to or greater than one. All signals whose frequencies lie within this hand will be strengthened by an ineroase in the number of stages. For this reason two types of seloetivity may be recognized; the adjacent-channel selectivity, and the dislant-channel selectinity. It is therefore possible in a romparative test of two amplifiers of equal sensitivity to find that the first will produce loss interference from interforing signal of, say, 30 kc away from resonance than the scoond; while for a signal of, say, 60 kc away there may be more interference present than in the second amplifier.

The attenuation of signals remote from the resonant frequeney requires that the amplifier be well shiolded in order to prevent short portions of the lead wires and cireuits of the output stage from acting as acrials and picking up energy. 'lhus a few inches of exposed wire running to the grid of the detector tube might have a voltage induced in it from an interfering powerful local station which is much greater in magnitude than these same signals after passing through the amplifier.
10. Band-pass Filters. A rectangular response eurve would be ideal for the radio-frequency amplifier of a receiving set designed for entertainment purposes. The use of a pair of tuned cireuits as a coupling means between stages results in a flatter response eurve with sterper sides than ran be obtained with a single tumed cirenit. Such an arrangement is shown in Fig. 13 and the general appearance of the resultant response eurves is given in Fig. 14. Due to the more uniform amplification obtained


Fig. 13.--Transformer with primary and secondary tuhned. over a wider band of frequencies, these cireuits are often referred to as hamel-pass filters.

If the primary and secondary are both tuned to the same frequency, the width of the band depends on the magnitude of the coupling between them. A double-humped response curve results if w. $M$ is made greater than $\sqrt{ } R_{1} / R_{2}$ and as wil is increased, the two peaks move farther apart and the hollow between them becomes deeper. The expression for the voltage amplification per stage is rather complicated and is given by

$$
\begin{equation*}
f_{i}=\frac{\mu M}{C_{2} \sqrt{A^{2}+B^{2}}} \tag{28}
\end{equation*}
$$

where

$$
\begin{aligned}
& A=R_{2}\left[R_{1}+R_{p}\left(1-\omega^{2} L_{1} C_{1}\right)\right]-\omega\left(L_{1}+r_{p} R_{1} C_{1}\right)\left(\omega L_{2}-\frac{1}{\omega C_{2}}\right)+\omega^{2} M^{2} \\
& B=\omega R_{2}\left(L_{1}+r_{p} R_{1} C_{3}\right)+\left[R_{1}+r_{p}\left(1-\omega^{2} L_{1} C_{1}\right)\right]\left(\omega L_{2}-\frac{1}{\omega C_{2}}\right)+\omega^{2} M^{2} C_{1} r_{p}
\end{aligned}
$$



Fig. 14.-Resjonse curves of doubly-tuned r-f stage.
If the primary is tuned so that $\omega^{2} L_{1} C_{1}=1$, the gain will be a maximum when A becomes zero, which will oecur when

$$
\begin{equation*}
\frac{1}{\omega C_{2}}=\omega L_{2}-\frac{\omega^{2} M^{2}+R_{1} R_{2}}{\omega^{2} L_{1}^{2}+r_{p} R_{1}} \tag{29}
\end{equation*}
$$

When these conditions are fulfilled (28) reduces to

$$
\begin{equation*}
G=\frac{E \frac{M}{C_{2}}}{\left(R_{1} R_{2}+\omega^{2} M^{2}\right)\left(\frac{r_{p}}{\omega L_{3}}+\frac{R_{1} L_{1}}{\omega^{2} L_{1}{ }^{2}+r_{p} R_{1}}\right)+\omega_{1} L_{1} R_{2}} \tag{30}
\end{equation*}
$$

With $\omega M$ greater than $\sqrt{R_{1} R_{2}}$, the amplification will be a maximum for two different values of frequency. If $R_{1}$ and $R_{2}$ are both small and $L_{1} C_{1}=L_{2} C_{2}$ $=L C$, the approximate values of these frequencies are given by

$$
\left.\begin{array}{rl}
f_{1} & =\frac{f}{1+K} \\
f_{2} & =\frac{f}{1-K} \tag{31}
\end{array}\right\}
$$

where

$$
\begin{aligned}
f & =\frac{1}{2 \pi \sqrt{L C}} \\
K & =\frac{M}{\sqrt{L_{1} L_{2}}}
\end{aligned}
$$

With fixed coupling between primary and secondary the width of the hand becomes greater as the frequency increases, causing a progressive reduction in selectivity in much the same manner as with a single tuned circuit. Although the selectivity becomes poorer at the higher frequencies it is still superior to that which ean be obtained with an equal number of single tuned stages. Tuned coupled eircuits are admirably suited for the intermediate frequency amplifier of a superheterodyne receiver. Here the frequency of the band to be amplified is fixed so that problem of varying selectivity is not encountered.
11. Coupled Circuits with Fixed Primary Tuning. It is possible to reduce the characteristic decrease in selectivity in the higher frequency range of a tuned amplifier by the use of a primary which is resonant to a frequency lower than the lowest frequeney to which the amplifier will tune. This is aceomplished by using a high-inductance primary having a large number of turns. The distributed eapaeity of the primary


Fig. 15.-Variation in selectivity in t-r-f amplifier having high-inductance primary.
together with the plate-filament capacity of the tube results in a natural period below the lowest working frequency. Some form of honeycomb winding is usually employed. With this type of construction the effective secondary resistance is inereased at the lower frequencies, tending to broaden out the tuning in this region where it is normally too sharp for good fidelity. At the higher freguencies the effective secondary resistance tends to become less. This would merely transpose the tuning characteristics and cause the response curve to become broader as the frequency diminished. However, the resistance of the secondary coil increases rapidly with frequency so that the ehange in the total effective resistance is much less than with the conventional primary coil of comparatively few turns. Figure 15 shows the response curves for frequencies of 600 and $1,400 \mathrm{ke}$. The selectivity ratio is approximately 2.5 to 1 whereas a ratio of 6 to 1 is about as good as can be obtained using lowinductance primary coils.

The conventional tuned r-f transformer usually has insufficient coupling at low frequencies so as to prevent broad tuning at the higher
frequencies. This results in a reduction of amplification as the frequency is lowered. With the high-inductance primary, nearly uniform gain can be obtained throughout the entire frequency range. The amplification curves can be calculated from (28).

If this type of circuit is used with a three-element tube, means must be employed to counteract the effect of feed-back through the grid-toplate capacity. Ordinarily this feed-baek tends to produce oscillation but in this case the primary is operated at a frequency above its natural period so that the reactance in the plate eireuit is capacitive. This results in a feed-back which tends to reduce the voltage applied to the grid of the tube so that the amplification will be reduced to a fraction of the value predieted by (28) unless this reaction is properly balanced out. Any of the neutralizing circuits described in the following section may be employed for this purpose.
12. Regeneration in Amplifiers. The threc-electrode vacuum tube is not a perfect unilateral device but permits the amplified output energy to react upon the input cireuit. The grid-to-plate capacity of the tube serves to electrostatically couple the


Fig. 16.-Interelectrode capacity network. input and output circuits as shown in Fig. 16. If some of the output voltage is fed back into the input cireuit so as to be in phase with $e_{a}$ the total, or regenerative amplification, may be expressed by

$$
\begin{equation*}
G_{r}=G \frac{1-S}{1-G S} \tag{32}
\end{equation*}
$$

where $S$ is the fraction of the output which is fed back into the input cirenit and $G$ is the gain of the amplifier if feed-back were absent. If the quantity $G S$ is unity, the total amplification becomes infinite and a contimuous oseillation will result. In addition to fecd-back due to $C_{\rho p}$ which almost always has to be balanced out to secure stability, feed-back due to coupling resulting from the use of a common $B$ or $C$ hattery may be sufficient to cause instability. Small electrostatic or electromagnetic couplings between the input and output cireuits of the amplifier can also give rise to oscillation even if each stage has been perfectly neutralized. For example, a four-stage amplifier having a gain of 10 per stage will oscillate if as mueh as 0.01 per cent of the output voltage succeeds in getting into the input cireuit in the proper phase. Consequently multi-stage amplifiers of high over-all gain must be carefully shielded to avoid instability, particularly at the higher frequencies.

The oscillation of a single stage amplifier can occur only if the plate circuit is sufficiently inductive. If the impedance in the plate circuit is pure resistance or a condensive reactance, no oscillations can take place, although in the latter case anti-regenerative feed-bark may occur of sufficient magnitude to greatly redure the resultant gain. The effect of feed-back may he looked upon as being due to the input impedance $Z_{g}$ of the prid-filament terminals of the tube. This impedance is of the form

$$
\begin{equation*}
Z_{u}= \pm r_{u}-j_{\omega \prime_{u}}^{1} \tag{33}
\end{equation*}
$$

When the plate circuit is inductive the sign of $r_{p}$ is negative so that the tube is then capable of ammilling part or all of the positive resistance of the asso-
ciated input circuit. In the latter event, oscillations occur. The effect of the various circuit elements of Fig. 16 on $Z_{g}$ is given by
$Z_{0}=$

$$
\begin{align*}
& C^{\prime \prime}{ }_{n p}+{ }^{\prime}{ }_{p j}-j_{\omega}^{1}\left(\frac{1}{R_{b} \pm j \aleph_{b}}+\frac{1}{r_{p}}\right) \\
& \overline{\mu C_{a p}} r_{p}+\left(C_{a f}+C_{p p}\right)\left(\frac{1}{R_{b} \pm j N_{b}}+\frac{1}{r_{p}}\right)+j+\left(C _ { u f } \left(C_{n p}+C_{u p}\left(C_{p l}+C_{p,} C_{p f}\right)\right.\right. \tag{34}
\end{align*}
$$

When $Z_{o}$ is capacitive and has sufficient resistance associated with $\mathrm{it}, r_{g}$ is positive and the tube may introduce rather large losses into the input cireuit. even though the grid is biased sufficiently negative so that no conductive grid current flows.
13. Methods of Avoiding Oscillation. Circuits lesigned to combat the effects of regeneration are of two general types. Either suffieient resistance is introluced into the input cirenit to offset the negative resistance introduced hy the tube, or else a suitable network of eirenit elements is employed so as to electrically isolate the input and output eireuits by making then two pairs of opposite points of an a-e bridge. The most common method of the first mentioned group is to insert a

(a)

Fis. 17.-Riee neutralized amplifier.
resistane of several hundred ohms in serios with the grid of the tube. In a tuned amplifier designed to cover a range of frequeneies this resistance must he suffieiently large to secure stability at the highest frequeney, which means that it is much larger than neeassary at the lower frequencies. This results in loss of amplification at these frequencies. In a number of instances where this method was used in commereial receiving sets, only a part of the stability was secured in this fashionthe balance was ohtained by utilizing some stray coupling betweon the parts so that a bridge cireuit in cffeet was produced. Another, although rather inefficient method, applies an adjustablo positive bias to the grid of the tube by connerting the grid return load to the arm of a potentiometer eomected across the filament-heating battory.
14. Neutralizing Circuits. One form of bridge cireuit due to ( $\%$ W. Rice is shown in Fig. 17 where are given the artabl circuit and the oleetrieal equivalent with the tube clectrodes omitted. The filament terminal of the tube, instead of heing eomeneted to the lower and of the
input circuit, is connected to an intermediate point which divides the inductance into two parts, $L_{a}$ and $L_{b}$. The lower terminal $n$ of the input eircuit is connected to the plate through a small balancing condenser $C_{n}$. The terminals $g$ and $n$ of the input circuit and $f$ and $p$ of the output eircuit constitute two pairs of opposite points of a bridge. An inspection of the latter figure indicates that no voltage can exist across the input terminals $g n$ due to a voltage between $f p$ if the arms are balanced.


Fig. 18.-Hazeltine neutralized amplifier.
Hence the energy which is fed back through $C_{o p}$ is opposed in phase by that which flows through $C_{n}$. The conditions for a balance are

$$
\begin{equation*}
\frac{L_{a}}{L_{b}}=\frac{C_{n}}{C_{o p}} \tag{35}
\end{equation*}
$$

This balance is not entirely independent of frequency as (35) would indicate unless the coupling between $L_{a}$ and $L_{b}$ is substantially unity. This is because $L_{a}$ is shunted by the input capacity of the tube. With certain arrangements a high-frequency parasitic oscillation may take place which will impair the performance of the amplifier at the frequencies for which it was designed. A small capacity of ahout the size of $C_{n}$ shunted across $L_{2}$ will often prevent such parasites in receiving circuits.


Fig. 19.-Capacity bridge-type neutralization of grid-plate capacity.
The Riee circuit is commonly used in neutralizing r-f power amplifier circuits in transmitting sets.

Another form of balancing eircuit due to I., A. Hazeltine known as the Neutrodyne is shown in Fig. 18. This type of circuit applies the same principle to the output eircuit as the previous method did to the input. The conditions for balance are the same as (35). The coupling between $L_{a}$ and $L_{b b}$ should again be approximately unity if the cireuit is to remain balanced for a wide range of frequencies with a fixed adjustment of $C_{n}$, as $L_{a}$ is shunted by the output impedance of the tube. This circuit has the advantage over the Rice cireuit for receiving sets in that one set of plates of the tuning condenser is at filament or ground potential. This
enables the rotors of the condensers to be mounted directly on a common shaft without requiring insulating bushings or couplings. A modification of this circuit has the neutralizing condenser $C_{n}$ connected to a tap at some intermediate point in $L_{2}$ thus dispensing with the coil $L_{b}$. lack of tight coupling between $L_{a \alpha}$ and $L_{22}$ with this arrangement makes it more difficult to secure complete neutralization for a wide range of frequencies.

A circuit wherein all four of the bridge arms are condensers is shown in Fig. 19. The grid-plate capacity as well as the grid-filament capaeity of the tube is involved, these two capacities serving as a pair of ratio arms. The conditions for a balanee are

$$
\begin{equation*}
\frac{C_{n}}{C_{a}}=\frac{C_{g p}}{C_{0 f}} \tag{36}
\end{equation*}
$$

The value of $C_{a}$ is usually about $100 \mu \mu \mathrm{f}$, which requires a value of $C_{n}$ somewhat larger in size than the neutralizing condensers of the preceding circuits. In order to avoid the accumulation of a charge on the grid which may cause the tube to "block," $C_{a}$ is usually shunted by a $250,000-$ ohm grid leak. The distributed capacity of a suitable choke coil whose natural frequency is below the frequeney to be amplified can also be substituted for the condenser $C_{n}$.

Another form of cireuit involving the principle of a nutual inductance bridge is illustrated in Fig. 20. The conditions for a balance are

$$
\begin{equation*}
\frac{M}{L_{2}}=\frac{C_{g p}}{C_{g p}+C_{n}} \tag{37}
\end{equation*}
$$

Sinee $C_{n}$ is in parallel with the grid-filament


Fig. 20.-Mutual inductance bridge circuit. capacity of the tube it is possible to utilize $C_{o f}$ in place of an actual neutralizing condenser, $C_{n}$, and balance by proper adjustment of the mutual induetane between $L_{n}$ and $L_{2}$.
15. Neutralizing Adjustments. The most convenient method of neutralizing the above circuits is to tune the amplifier to a signal in the high-frequeney range of the receiving set. The tube filament of the stage to be neutralized is then opened, usually by slipping a piece of paper between the filament pin and the filament terminal in the tube socket. This destroys the repeater action of the tube and converts that portion of the circuit into its equivalent electrical network. The neutralizing condenser is then adjusted until the signal disappears. The filament is then lighted and the procedure is repeated with the next stage.

When stray couplings are present the value of balancing capacity required may vary with the frequency so that when exact neutralization is obtained at one frequeney the stage may be sufficiently unbalaneed at some other frequency so that oscillations oceur. In this case a compromise adjustment of $C_{n}$ must be found which will hold the stage out of oscillation for the entire tuning range. This may not he possible if considerable stray coupling is present together with high gain per stage.
16. Neutralizing Power Amplifiers. Ladio-frequency power amplifiers such as are used in transmitting sets where suffieient power is available can be neutralized by means of a suitable r-f ammeter in the output tank
cireuit. In these eircuits provision is usually made to remove the plate voltage from the tube to be neutralized rather than to switeh off the filament.

Figure 21 shows the last two stages of power amplification of a typical $1-\mathrm{kw}$ broadcast transmitter. The first stage consists of two 75 -watt screengrid tubes in parallel which require no neutralization. The second stage is neutralized by means of the condenser $C_{n}$ which connects to the input tank circuit $L_{1} C_{1}$ at the point shown. The principle is the same as that of Fig. 17. The turns to which the various taps on $L_{1}$ are connected are indicated by the numbers. A 36 -ohm resistance $R_{2}$ is connected in series with $C_{n}$ to secure a more exact phase balance, since $C_{a p}$ of the tube will have some losses associated with it and will therefore have a phase angle of less than 90 degrees.
The neutralizing adjustment is made as follows: The switch $S_{1}$ is thrown to the top position inserting a low-ranke thermocouple $T h_{1}$ in the output tank circuit $L_{2} C_{2}$. At the same time the galvanometer $A_{4}$ is connected to the thermocouple and the plate circuit is opened by $S_{2}$ which is mechanically conneeted with $S_{1}$. With excitation applied to the grid the balancing


Fir. 21.-Broadcast transmitter power amplifier.
condenser $C_{n}$ is then adjusted until $A_{4}$ reads zero. The switeh $S_{1}$ is then thrown to the lower position, closing the plate circuit and inserting a high range thermocouple $T_{2}$ in the tank circuit, and at the same time transferring $A_{4}$.
17. Screen-grid Tubes. Sereen-grid tubes or tetrodes, are rapidly replaeing three-element tubes in r-f amplifiers. The shielding effect of the seeond grid results in a reduction of $C_{g p}$ to something of the order of $0.05 \mu \mu \mathrm{f}$ as compared with a value of about 4 to $6 \mu \mu \mathrm{f}$ in the conventional receiving tube. This reduetion of the tube coupling eapacity responsible for the instability of amplifiers enables high gain per stage to be obtained without the use of neutralizing circuits. Voltage amplifications of 30 to 50 per stage at 1,000 ke can be obtained without particular difficulty. Much higher gains than this are theoretically possible since the amplification factor of the 24-type tube commonly used in receiving sets is ahout 400 with a plate resistance in the vicinity of 400,000 ohns. For example, at 1,000 ke using as a secondary a coil of $200 \mu \mathrm{~h}$ having a resistance of 10 ohms, a voltage amplification of 125 per stage is given by (25). The required value of $M$ would be $320 \mu \mathrm{~h}$. In practice, a primary sufficiently large to obtain this required value of $M$ would have considerable distributed capacity which would reduce the
gain below that predicted by (25). Furthermore, this high a value of gain per stage would he sufficient in all probability to cause the tube to oseillate in spite of the small value of $C_{g p}$.

The foregoing equations for voltage amplification are all applicable to tetrodes as well as triodes. The higher values of plate resistance present in the former require larger values of $M$ than are needed in triodes having the same value of mutual. Sensitivity hy conductance control in sets using ordinary tetrodes in the r-f amplifier presents a difficulty not present to quite the same degree in amplifiers employing triodes. This is due to intermodulation or cross-talk effects from interfering stations produced by the curvature of the tube characteristic when the value of mutual conductance is lowered by increasing the negative bias or reducing the scrent-grid potential-the usual method of volume control employed with these tubes. Distortion is also present when the volume control is turned down to obtain the desired output level from local stations. This necessitates the use of a "local-distance" switch which reduces the sensitivity of the amplifier for local reception by means other than inereased negative hias or reduced sereen-grid potential. Tetrodes having a variable value of $\mu$ have been designed, and are now used, which overeome these difficulties. ${ }^{1}$

Tetrodes are also employed for power amplification in transmitting circuits. Their ehief advantage is that they do not require any neutrali-

zation. The power amplifieation obtained is no better than can be secured with neutralized triodes.
18. Power Amplifiers. Class A amplifiers have a maximum possible plate efficiency of 50 per cent and a relatively low power out put compared with the tube rating. For this reason they are hardly ever used as r-f power amplifiers. Much greater output and higher effieiency are obtainable under Class 13 or Class C operation.
19. Class B Amplifiers. A Class 13 amplifier is one which operates so that the power output is proportional to the square of the excitation
i Ballantine and Snow, Redurtion of Distortion and Cross-talk in Radio leceivers by Means of Variable-mu Tetrodes, 'ror. I.R.E.', 18, 2102, December, 1930.
grid voltage. This is accomplished by operating the tube with a negative grid bias such that the plate current is almost zero with no grid excitation. A grid excitation voltage of such magnitude is applied that essentially half-sine waves of plate current are produced on the least negative halfcycles of grid voltage. The grid usually swings positive on excitation peaks and therefore introduces harmonics into the output waves which have to be filtered from the output by suitable means.
The characteristics of Class B operation are medium efficiency and output, with a relatively low ratio of power amplification. A general idea of the characteristics of Class B operation will be obtained from Fig. 22. The impedance of the output circuit is adjusted so that the dynamic characteristie of the tube is essentially linear. For this reason, a Class B amplifier is frecuently called a linear amplifier. The instantaneous peak output of the tube with 100 per cent modulation will be four times the power output when the grid excitation voltage is unmodulated. The continuous power output with 100 per cent modulation is 1.5 times the output at zero modulation. These power requirements must be taken into consideration by providing adequate tube capacity to take care of modulation peaks.

During the positive grid swings grid current will flow which will increase the load on the source of excitation during this portion of the cycle. For this reason, the preceding tank circuit is usually loaded with sufficient resistance so that the energy taken by the grid is reasonably small compared to the normal power being dissipated. This is the purpose of $R_{1}$ in Fig. 21. The amount of grid bias required for Class $B$ operation is approxinately the plate voltage of the tube divided by the amplification factor. "The plate current wave shapes are distorted but due to the "flywheel" effect of the output tank circuit the oscillatory current in the tank is practically sinusoidal. A single impulse of varying magnitude is being received by the tank

Fig. 23.-Class C operation,
 circuit during each cycle, which causes the tank current to rise and fall according to the modulation swings. Two tubes may be arranged in push pull in which case their output circuit will receive two impulses per cycle. Push-pull operation of Class 13 amplifiers is apt to be troublesome due to the production of parasitic oscillations unless considerable care is taken in the design and layout of the circuit. These parasites have the habit of disapparing when the grid exeitation is removed, making it difficult to eliminate them.
A plate efficiency of about 70 per cent may he secured from a Class B amplifier with 100 per cent modulation and about 33 per cent when unmodulated.
20. Class C Amplifiers. A (lass C amplifier is one in which high output is the primary vonsideration. The output varies as the square of the plate voltage within lintits. This is arcomplished by operating the tube with a negative grid bias of more than a sufficient value to reduce the plate eurrent to zero with no grid excitation. An alternating grid excitation voltage is applied such that large amplitudes of plate
current flow during a fraction of the least negative half-cyele of the grid excitation voltage. The grid usually swings sufficiently positive to cause saturation plate current to flow through the tube, and therefore causes harmonies to be present in the plate output waves. Means are usually provided to remove these harmonies from the output.

The characteristies of Class Coperation are high efficiency and output, with a relatively low ratio of power amplification. Ilate efficiencies of 85 per cent can be obtained. Since the power output varies as the square of the plate voltage this class of amplifier is frequently used as a modulated amplifier. When used in this capacity, the grid bias should be approximately twice the value required to rednee the plate current to zero. Class (C amplifiers can also be used to amplify the output of a modulated amplifier. When used in this manner, a somewhat lower value of negative grid hias must be employed or over-modulation may take place. This class of amplifier is sometimes used to increase the pereentage modulation. For example, if the maximum modulation present in the grid excitation voltage is less than 100 per eent it ean ho stepped up to 100 per cent in the output of the Class (\% amplifier hy using a hias such that the plate current just falls to zero on mininum values of grid excitation.
21. Frequency Multipliers. Since the plate current wave shapes contain a relatively high pereentage of harmonies, a power anpplifier of this type may be readily employed to double or triple the excitation frequency. Crystal control of frequency is especially important at very high frequencies. Quartz erystals become inereasingly fragile as their natural frequeney is increased so that the problem can be solved by using an amplifier of this type as a frequency multiplier and using a lower frequency erystal. The coupling means employed in frequency multipliers is the same as illustrated in Fig. 21. The output circuit is merely tuned to the frequency of the harmonic it is desired to amplify. Several frequency multiplying stages can be used in cascade enabling very high frequencies to be thus obtained. Fither tetrodes or triodes can be used. The efficiency of a frequeney multiplier is somewhat lower than if input and output frequencies were the same. A Class C amplifier having an efficiency of 80 per cent would show an efficiency of about 70 per cent when used as a frequency doubler. The efficiency falls off as the multiplication becomes greater.

## SECTION 13

## RECEIVING SYSTEMS

By G. L. Beers, B.S. ${ }^{1}$

1. Classification. The following is a classification of radio receivers according to their operating principle.
2. Tuned-radio-frequency.
3. Superheterodync.
4. Regenerative.
5. Superregenerative.
6. Tuned-radio-frequency Receivers. Tuned-radio-frequency (t-r-f) receivers are those which obtain their selectivity and r-f amplification through the use of circuits which function at the frequency of the incoming signal.

Modern t-r-f receivers use from three to six circuits which are tuned simultancously by means of a single tuning control. A gang condenser which consists of several variable condensers assembled in a single unit is used to vary the frequency of the tuned circuits. The series resistance of a conventional tuned circuit, whose frequency is varied by means of a variable condenser, increases with frequency. The selectivity of t-r-f broadeast receivers varies in a ratio of abont three to one from one end of the broadeast range to the other. One or two of the tuned circuits in a t-r-f receiver are generally used in the antenna-input system and the remainder are used to provide the coupling between the stages of the radio-frequency amplifier. Sereen-grid tubes are used almost universatly in the r-f amplifier. A grid-leak and condenser detector or negatively biased detector and one or two stages of audio-frequency amplification are used in the audio portion of the receiver. Tuned r-f receivers are best suited for use where the selectivity requirements are not extreme.
3. Superheterodyne Receivers. In the superheterodyne receiver the received voltage is combined with a voltage from a local oseillator and converted into a voltage of a lower or intermediate frequency which is then amplified and detected to reproduce the original signal wave.

The superheterodyne receiver utilizes the essential components of a t-r-f receiver, and in addition, a frequency converter and intermediatefrequency (i-f) amplifier. The frequency converter consists of a vari-able-frequency oscillator and a detector. The function of the frequency converter is to change the frequency of the received signal to the intermediate frequency. The oscillator and t-r-f circuits in superheterodyne receivers are usually tuned simultancously by means of a gang con-

[^21]denser. Through the use of a combination of fixed shunt and series condensers the oscillator is made to maintain a constant-frepuency difference from the r-f circuits although the variable condensers for tuning pach of these circuits are identical in capacity. The i-f amplifier uses two or three transformers, which usually contain two coupled eirenits with the eoupling adjusted to provide the so-called band-pass filter characteristics. The i-f amplifier provides the major portion of the amplification and selectivity. Since the characteristies of this amplifier are independent of the frequency to which the receiver is tuned, the sensitivity and selectivity of a superheterodyne receiyer are usually very uniform throughont its tuning range. The t-r-f circuits are used primarily for eliminating certain types of interference which are common to this type of receiver. The performance of the superheterodyne receiver is in general superior to that of any other type of receiver in use today.
4. Regenerative Receivers. In a regenerative recoiver the following action takes place: The received voltage is impressed on the grid of a vacuum tube. A portion of the resultant voltage which appears in the phate circuit of the tube is fed back to the grid circuit in the proper phase relation to increase the applied grid voltage. The effeet of this action is to reduce the effective resistance of the resonant circuit to which the signal is applied and, thereby, provide considerable amplification of the recoived signal.

Regenerative receivers are usually provided with two controls, one for tuning the receiver and the other for controlling the amount of feedback energy. If the feed-back is increased beyond a certain value, sustained oscillations are produced. It is common practice to tune regenerative receivers while sustained oscillations are being produced, as the beat frequency produced between the carrier wave of the transmitting station and the locally produced oscillations indicates when the receiver is properly tumed. This method of tuming is called the "zero-beat" method as the tuning of the recciver is adjusted so that the best note decreases in frequeney till it is no longer audible. When a conventional regenerative receiver is tuned in this way interference is produced in nearly receivers which are tuned to the same station. A stage of tuned r-f amplification is sometimes used between the antenna and the regenerative circuit to reduce the possibility of producing this type of interference. The regenerative receiver is quite sensitive considering the number of tubers which are used. It is not very selective since only a single tuned circuit is generally used. They are now practically obsolete as broadeast receivers, although they are still used to a limited extent in short-wave work.
b. Superregenerative Receivers. A superragenerative receiver is a regenerative receiver in which sustained oscillations are prevented by the periodie variation of the effective resistance of the resonant circuit to which the received signal is applied.

In the superregenerative receiver oscillations are permitted to build up at a periodic rate in a resonant circuit tuned to the frequency of the received signal wave. Sustained oscillations in this circuit are prevented by the application of a quenching frequency potential to the grid of the superregenerative tube which periodically affects the tube characteristics in such a way as to stop the oscillations. The quenching frequency may he supplied either by a separate oscillator or by the super-
regenerative tube itself. The audio system of this type of receiver is usually provided with an a-f filter to remove the quenching frequeney from the audio output. This type of receiver is used on short waves as it is quite sensitive for very high frequencies. The chief objection to this type of receiver is the difficulty of preventing radiation from the superregenerative circuit.
6. Method of Rating. Receiving sets are generally rated on the basis of the following characteristics:

1. Sensitivity.
2. Selectivity.
3. Fidelity.
4. Overload level.
5. Power consumed.
6. The sensitivity is that characteristic which determines to how weak a signal it is capable of responding. It is measured quantitatively in terms of the input voltage required to give a standard output.
2 . The selcctivity is the degree to which the receiver is capable of differentiating between the desired sigual and signals of other carrier frequencies. This characteristic is not expressible by a single numerical value but requires one or more graphs for its expression.
7. The fidelity of a radio receiver is the degree to which it accurately reproduces at its output terminals the signal which is impressed upon it. As applied to a radio receiver, fidelity is measured by the accuracy of reproduction at the output terminals of the modulation of the received wave.
8. The overload level of a receiver is the maximum power output which can be obtained from it when the output voltage does not contain more than ten per cent of total harmonics.
9. Method of Testing. A standardized method of testing radio receivers has been estallished by the Institute of Radio Engineers and is described in detail in the Year Book of the Institute. The following is a brief summary of the procedure.
10. Definition of Terms.
a. Sensitivity, selectivity, fidelity and maximum undistorted output (see Method of Rating).
b. Normal test output: An a-f power output of 0.05 watt in a non-inductive resistor connected across the output terminals of the receiver is the normal test output for a broadeast radio receiver. The output resistor should have the value recommended by the tube manufacturer to obtain maximum undistorted output power for the type of output tube used.
c. Normal radio-input voltage: This term represents the r-m-s r-f voltage modulated 30 per cent at 400 cycles which results in normal test output at resonance.
d. Standard test frequencies: In the testing of a broadcast radio receiver, the five standard carricr frequencies are $6000,800,1,000,1,200$, and $1,400 \mathrm{kc}$. When tests at only three carrier frequencies are required, the earrier frequencies of $600,1,000$, and $1,400 \mathrm{kc}$ are used.
11. Equipment Required.
a. A signal generator: This consists of a shielded vacuum-tube oscillator whose frequency can be varied from 500 to $1,500 \mathrm{kc}$. An a-f oscillator is provided to modulate the r-f oscillator by a known amount at any frecuency from 40 to 10,000 cycles. A calibrated resistance-type attenuator is used to impress a known potential on the standard antenna connected to the receiver. The attenuator system should be such as to allow a range of voltage impressed on the standard antenna unit from $1 \mu \mathrm{v}$ to $200,000 \mu \mathrm{v}$.
b. Standard antenna: The standard antenna for a broadcast radio receiver not having a self-contained antenna is an antenna having in series a capacity of $200 \mu \mu \mathrm{f}$ and a self-inductance of $20 \mu \mathrm{~h}$ and a resistance of 25 ohnis .
c. Output-measuring circuit: This consists of a load resistor, output filter and vacuum-tube voltmeter. The output resistor should be adjustable to any desired value between 1 and 20,000 ohms and capable of dissipating 10 watts. An output filter is provided for preventing the flow of d.e. through the load resistor when testing sets which normally have d.c. in their output cireuit. A vacuum-tube voltmeter or equivalent device is used for determining aceurately the $\mathrm{r}-\mathrm{m}$-s voltage across the load resistor.
d. Harmonic-measuring circuit: For this purpose the instrument deseribed in The Alternating-current Bridge as a Harmonie Analyzer is recommended. This artiele appeared in the Journal of the Optical Society of America and Review of Scientific Instruments, September, 1927.
12. Tests.
a. Sensitivity: The sensitivity is determined by impressing an r-f voltage, with 400 cycles, 30 per cent modulation, in series with a standard antenna and adjusting the intensity of the input voltage until normal test output is obtained for earrier frequencies between 550 and 1.500 ke.
$b_{\text {r }}$ Selectivity: The selectivity of a receiver is determined by tuning it to each test frequency in succession with the receiver in the same condition as in the sensitivity test and measuring the r-f input necessary to give normal test output at steps not greater than 10 ke at least up to 100 ke on either side of resonance or until the radio-input voltage has increased to ten thousand times or more if the measuring equipment permits.
d. Fidelity: This is determined by tuning the radio receiver to each standard test frequency in succession with the receiver in the same condition as in the sensitivity and selectivity tests, adjusting the impressed voltage to the normal radio-input voltage and then varying the modulation frepuency from 40 to 10,000 cycles at 30 per cent modulation and constant r-f input voltage throughout, taking readings of relative output voltage at eonvenient modulation frequencies.
13. Additional Tests.
a. Determination of the overload level: This is determined by increasing in successive steps the $r$-f input to the receiver (with modulation adjusted to 30 per cent at 400 cycles) and measuring both the power output and the pereentage harmonics. The overload level of the receiver is the maximum power output obtained from it when the output voltage does not contain more than 10 per cent of total harmonies.
$b$. Volume-control tests: This test is a determination of the effect of the volume control on the sensitivity, selectivity, and fidelity.
c. Test for hum: For determining the hum voltage, a filter is connected between the output of the reeeiver and the voltmeter. This filter has a characteristic which evaluates the various hum components aceording to their quantitative effect on the human ear.
14. Design of Receiving Systems. The majority of receiving sets in use today are broadcast receivers designed to cover the frequency range of from 550 to $1,500 \mathrm{kc}$. The essential electrical elements of a modern brondeast receiver may he classified as follows:
15. Radio-frequeney system.
16. Audio-frequency system.
17. Volume-eontrol system.
18. Power-supply system.
19. Loud-speaker.
20. Radio-frequency System. Antenna-input Systems. The antennainput system transfers the signal wave intercepted hy the antenna to the grid of the first tube in the receiver. The antenna-input system also contributes to the over-all performance as follows:
21. One or more t-r-f circuits in the antenna-input system provide selectivity for the separation of stations as well as the prevention of cross modulation.
22. A reduction in tube noise for a given sensitivity is obtained through the step-up in voltage provided by the use of tumed cireuits in antenna-input systems.

A typieal antomatinput system is illustrated in Fig. 1. Since there is


Fig, 1.-Antenna-input system. eonsiderable variation in the characteristies of recoiving antennats used the value of the antennacoupling inductance is chosen so that the antenna system is always tumed to a frequency below the tuning range of the recoiver. If the antenna eireuit becomes resonant in the tuning range of the receiver the first tuned circuit in a uniontrolled receiver will be thrown out of aligmment with the remainder of the reediver and the over-all performance will be seriously afferted. Figure 2 shows the voltage step-up between the antemna and the grid of the first tube which is ohtained from such an arrangement. Two coupled tuned eircuits are sometimes used betweon the antemmand the grid of the first tube. This roduces the voltage gain to approximately half that obtained with the single tumed cercuit but inereases the solectivity and


FIg. 2.-Amplification of input system of Fig. 1.
therefore reduces the possibility of cross modulation in the first tube of the receiver.

An antenna-input system is shown in Fig. 3 , which provides eonsiderably greater coupling lotwen the antenna and the first tuned cireuit. This arrangement, however, reguires an adjustment to compensate for differenees in antenna eharaeteristies. The voltage gain obtained from this arrangement is approximately twice that obtained with the system shown in Fig. 1.
10. Radio-frequency Amplifiers. The types of r-f amplifiers in use in broadcast recoivers may bo dassified as tuned, fixed tuned, and untunerl.

Tuned r-f amplifiers are those which amplify a narrow band of frequencies and are provided with a control by which the position of this band of frequencies may be moved over a wide frequeney range.
('ntuned r-f amplifiers are not provided with a tuning


Fig. 3.-Closely coupled antenna-input system. control and are designed to amplify it wide band of frequencies.

Fixed-tuned r-f amplifiers are those which pass a narrow hand of frequencies and whose resonant frequency is not varied with the tuning of the receiver. The intermediate-frequency amplifier of a superheterodyne receiver is an amplifier of this type.
11. Single-tuned Circuit T-R-F Amplifiers. The seleetivity and amplification which can be obtained from a conventional t-r-f amplifier
stage is a function of the effective resistance of the tuned circuit used in the interstage transformer. Since the selectivity provided by a t-r-f amplifier camot be inereased bevond a certain limit without serious attenuation of the high-modulation frequencies, the useful amplification which can be obtained from an amplifier stage is theretore limited. The solectivity and amplification which a $t-r-1$ amplifior will provide can be calculated. From a practieal standpoint of receiver design, however, it usually requires less time and is more acrurate to determine the eharacteristies of a partieular transformer experimentally by laboratory measurements since a determination of the effective resistance of the tuned circuit is necessary even if the characteristies of the transformer are to be calculated. It is likewise difficult to take into consideration the effects of regencration and the proximity of shielding, ete., in a mathematical consideration of r-f transformer characteristics. The ratio of reactance to effective resistance or $\omega L / h$ of the tuned circuits used in r-f transformers for broadeast receivers is usuatly botween 100 and $1: 50$ throughout the broadeast frequency range. The dianeter of the coils used in the t-r-f circuits of broadeast receivers is usually from 1 to 2 in. and the size of the copper wire used for winding the coils is usually between Nos. 28 and 32 B, \& S.
12. Neutralization. One of the major problems in the design of r-f amplifiers is the prevention of oscillations due to the offects of coupling between the grid and plate cireuits of an amplifier. One of the principal sources of such coupling in t-r-f amplifiers using triodes is due to the

grid-plate capacity of the tubes themsolves. The grid-plate caparity of the conventional triode is of the order of $6 \mu \mu \mathrm{f}$. The coupling due to this capacity in a well designed amplifier is sufficient to produce sustained oscillations unless some means of stabilization is provided. Figures 4 and 5 show two of the most common met hods of neut ralizing the coupling due to the grid-plate capacity. Both methods use a bridge arrangement in which a small adjustable condenser is used to provide coupling equal and opposite to that of the tube capacity. The method shown in Fig. 4 requires that both the rotor and stator of the tuning condenser be insulated from ground. With the arrangement in Fig. 5 the rotors of the tuning condensers may be grounded, thus permitting the use of a gang condenser with the rotors on a common shaft.
13. Screen-grid Tubes. Practieally all modern hroadeast receivers employ sereen-grid tubes in the r-f amplifiers and the following advantages are gained through their use:

1. No neutralization of grid-plate capacity is required, since the grid-plate eapacity of the screen-grid tube is usually less than $0.01 \mu \mu \mathrm{f}$.
2. The high plate impedance ( 500,000 ohms) of this type of tube produces a negligible effect on the selectivity of the tuned cireuits used in t-r-f amplifiers.
3. Higher amplification per stage can be


Fis. 6.-T-r-f interstage transformer. obtained due to the high inpedance and high mutual conductance of this type of tube.

Considerable shichling is required in screengrid r-f amplifiers to prevent coupling between circuit elements and wiring which may likewise cause oscillations. It is common practice to locate the grid circuits and plate circuits associated with each tube in separate metal compartments to prevent coupling between them.

Figure 6 illustrates the type of t-r-f transformer which is used in the majority of broadcast receivers. The prinary of the transformer is a small "universal-wound" coil which is either wound on a form of small diameter so that it can be mounted inside the secondary or is wound directly on the end of the same form as the secondary. The secondary is wound on a piece of tuhing made of Bakelite or some similar material.


Fig. 7.-Characteristics of transformer in Fig. 6,

Kilocycles Off Resonance


Fig. 8.-Selectivity comparison of single and coupled tuned circuits.

The primary is coupled electromagnetically to the secondary. The amplification and selectivity characteristics obtained with this transformer when used with a U Y-224 tuhe are shown in Fig. 7.
14. Coupled Tuned-circuit T-R-F Amplifiers. A number of broadeast receivers use one or more transformers in which two tuned circuits are used. The two circuits are coupled near the point of critical coupling. The advantage ohtained through the use of this type of transformer is that a considerable improvement is obtained in the shape of the
selectivity characteristic. Figure 8 illustrates this improvement. Curve $a$ shows the characteristic obtained with two coupled tuned circuits, and curve $b$ shows the characteristic obtained with two similar tuned circuits in cascade. The width at the top of the resonance curve of a coupled tuned-circuit transformer depends on the coupling between the two circuits. The flatness of the top of the eurve depends on the effective resistance of the tuned circuits. By using slightly greater than critical coupling at the low-frequency end of the broadeast range and less at the high-frequency end of the range, the selectivity of this type of transformer ean he made more uniform over the broadeast range than one using a single tuned cireuit. Figure 9 shows the selectivity characteristic obtained from a transformer of this type. The voltage gain provided by a coupled tuned-circuit t-r-f transformer is approximately one-half that which can be obtained from a transformer using a single tuned eircuit.


Fig. 9.-Selectivity characteristics of coupled tuned-circuit t-r-f transformer.
15. Untuned R-F Amplifiers. A stage of fixed-tuned r-f amplifieation is sometimes used in receivers where additional gain is desired without the need for the additional selectivity which would be provided by a stage of $t-r-f$ amplification. A transformer of this type is frequently used to provile a reeciver with a more uniform over-all sensitivity characteristic throughout its tuning range.

Figure 10 shows a fixed-tuned r-f transformer which provides a fair degree of amplification over the broadcast band. The transformer


Fig. 10.-Untuned transformer. consists of a primary of 160 turns and secomlary of 130 turns of No. 40 E.C. wire. Both windings aro wound on a separate piece of $1 / 2-\mathrm{in}$. papor tubing. Each winding is assembled on an L-shaped core built up of 120 three-mil silicon-steel laminations. The air gap between the two sections of the core shown in Tig. 10 is $1 / 16 \mathrm{in}$. The secondary of the transformer is tuned by a capacity of $25 \mu \mu f$. The voltage gain provided by a stage of fixed-tuned radio-frequener amplification using this transformer and a UY-224 tube is shown in Fig. 11.
16. Intermediate-frequency (I-F) Amplifiers. The i-f amplifier in a superheterodyne is the major factor in determining the receiver's sensitivity and solectivity.

The intermediate frequeney used in the majority of modern superheterodye recoivers is between 150 and 200 ke . The usual i-f amplifior consists of two or three transformers and one or two tubes of the UY-224 type. Three transformers are used in the higher-priced sets and two are used in all the sets of the midget type. A typieal i-f transformer consists of two universal-wound coils assembled on an insulating support
such as a wooden rod or piece of Bakelite tubing. These two coils constitute the induetive elements of two-tuned coupled eireuits. One of the tuned cireuits is conneeted in the plate circuit of the amplifier tube and the other in the grid circuit of the succeeding tube. The electromagnetie coupling hetween these cireuits is determined by the spacing between the eoils. In some eases a copper ring is placed between the


Fig. 11.-Amplification characteristic of untuned r-f transformer.
two coils so that the spacing between them may be reduced without producing exeessive coupling between the two circuits. The tubing on which the coils are wound is mounted on a plate of insulating material, such as porcelain or isolantite. On this plate are also mounted the two small adjustable condensers which tume the two coupled tuned cireuits. Care must be exereised in the design of these condensers to insure that the capacity of the condensers remains

lig. 12.-Intermediate-frequency selectivity charabteristies: Curve $A$, one stage; rurve $B$, three stages. constant after they have been adjusted to their proper value. The entire transformer assembly is enelosed in a metal container which serves both to proteet the unit and shield it electrieally. The two adjustable condensers are so loeated that the screws for adjusting their capacity are accessible through holes in the top of the container.

Since i-f transformers make use of coupled tuned circuits the selectivity characteristie provided by sueh a transformer approaches the flat-topped handpass filter charaeteristic. The gain obtained from an amplifier stage using a transformer of this type is determined by the mutual conduetance of the tube, the tube impedanee, the resonant impedance of the tuned cireuits and the coupling between them. The band of frequencies whieh such a transformer will pass is determined by the coupling between the two tuned circuits and the flatness of the top of the eurve is determined by the effective resistance of the tuned eirenits. Since the frequency to which the i-f amplifier is adjusted is not varied with the tuning of the receiver, it is the usual practice in the design of i-f transformers to use cireuits with a comparatively high $L$ to $C$ ratio. The limit in this direction is determined hy the point at which variations in
the inter-electrode capacity of the amplifier tuhes produce a serious effect on the aligmment of the cirenits.

Sereen-grid tubes are used ahmost exclusively in i-f amplifiers, since with this type of tube, arrangements to neutralize the effect of the gridplate capacity are not required. Since high-impedance cirenits can readily be obtained in i-f transformers, it is possible to realize the comparatively high degree of voltage amplifieation whieh is inherent in this type of tube.

The selectivity characteristic provided by a typieal i-f transformer is shown in curve $A$ (Fig. 12). A voltage amplification of 100 can readily he ohtained with a single i-f transformer and UY-22t tube. Curve $B$ shows the selectivity provided by a three-transformer amplifier. The voltage gain for the usual i-f amplifier, consisting of three transformers and two amplifier tubes, when measured from the grid of the first deteetor to the grid of the seeond detector is usually from $15,0(0)$ to 30,000 . The voltage gain in the amplifiers using two transformers and one amplifier tube is usually about 5,000 . The amplifieation in the threetransformer amplifier is usually held considerahly below the optimum value to prevent instability.
17. Frequency Converters. The change in frequency by which the received signal wave in the superheterodyne recoivers is ehanged to a signal wave of an intermodiate frequency is areomplished through the medium of a frequency converter, which eonsists of a detector and variable-frequeney oscillator. The detcetor is generally called the first detcetor due to its position in the cireuit. This detector is usually a negatively hiased UY-224 and operates due to the curvature of the $E_{g} I_{p}$ characteristic. The received signal voltage and a voltage from the local oscellator are both impressed on the grid of the detector. The beat-frequeney potential produced by the rectification of these two currents is impressed on a tumed i-f cireuit comerted in the plate cirenit. of the detector.

The major problems in the design of the frequency converter for a unieontrolled superheterodyne receiver are:

1. To maintain a constant-frequency difference betwern the oseillator and radio-frequency circuits.
2. To minimize variations in the oscillator frequeney with variations in the supply voltage and variations in tubes, etc.
3. To maintain a constant oscillator voltage on the detector grid thromghout the tuning range of the receiver.
4. To minimize radiation from the oseillator in order to prevent interference in nearby receivers.
5. Methods of Maintaining Constant-frequency Difference. Three mothods have been used to maintain a constant-frequency difference between the oscillator and first detector in unicontrolled superheterodyne receivers.

The first method makes use of straight-line-frequency condensers and requires that the oscillator rotor be displaced with respert to the radio-frequency eireuit rotors by an amount sufficient to give the proper frequency difference. This arrangement has the disadvantage that the useful tuming range of the condensers is redured by the amount that the rotors are displaced. For this reason this method cannot be used where the intermediate frequency is high.

The second method uses a gang condenser in which the oscillator condenser plates have a special shape. The problem of test and alignment for condensers of this type is somewhat complicated and nore costly than condensers in which all the elements are alike.

The third method which is the one in general use makes use of condensers of equal eapacity for both the t-r-f and oscillator circuits. The eonstant-frequency difference between the t-r-f and oscillator circuits is obtained through the use of a combination of shunt and series condensers in the oscillator circuit. The oscillator in superheterodyne receivers is generally tumed to a higher frequency than the t-r-f eireuits, sinee a smaller percentage change in


Fro. 13.-Typical superheterodyne oscillator circuit. frequency is required and a smaller change in capacity is therefore neressary to produce the desired variation in the oscillator frequency. The oscillator thming inductance is therefore smaller than that of the r-f circuits and its value is such that the correct frequency difference between the oscillator and $t-r-f$ is obtained at the middle of the tuning range with equal rapacity in earh rircuit. The combination of shunt and series condensers used in the tuned oscillator circuit maintains the frequency difference constant throughout the tuning range of the receiver.

These condensers are shown in Fig. 13. Condenser $A$ is the main tuning condenser. Condenser $B$ is the fixed-sories capacity. Condenser $C$ is a small adjustable condenser for acourately adjusting the total series capacity. Condenser $D$ is the small adjustable shunt condenser.


Fig. 14.-Fffect of shunt and series condensers in oseillator circuit.
The values used in a commercial superheterodyne recoiver are:

| ain tuning capacity | $15 \mu$ |
| :---: | :---: |
| T-r-f tuning inductanc | $270 \mu \mathrm{~h}$ |
| Oscillator tuning induc | $21.5 \mu \mathrm{~h}$ |
| Fixed series capacity $B$ | $750 \mu \mu \mathrm{f}$ |
| Adjustable series caparity | 15 m $\mu \mathrm{f}$ |
| Adjustable shunt capacity 1 ) | $5 \mu \mu \mathrm{f}$ to $40 \mu \mu \mathrm{f}$ |

The effect of these condensers is shown in lig. 14. Curve A shows the relation between frequency and dial reading for the r-f circuits.

Curve $B$ shows the same relations for the oscillator circuit without the shunt and series condensers. Curve $C$ shows the effect of the shunt condenser and eurve (I) shows the effect of both shunt and series condensers. Similar treatment ean be applied to gang condensers of the straight-line-frequeney, mid-line or straight-line-capacity types.

Figure 13 shows a typieal oseillator circuit used in superheterodyne receivers. It will be noted that the tube is connected across only a portion of the tuned circuit so as to minimize the effect of tube variations on the oseillator frequency.

The oscillator is frequently coupled to the first detector through electromagnetic coupling between the inductive elements of the two-t uned circuits. A small amount of capacity coupling is sometimes used to oppose the electromagnetie coupling at the high-frequency end of the tuning range in order to maintain a constant oseilator voltage of approximately five volts on the first detector grid. The first detector is biased negatively so that its normal plate current is 0.5 ma. The oseillator voltages on the first detector grid cause an increase of approximately 1 ma in the average value of the first detector plate eurrent. Sufficient bias, plate and screen potentials should be used on the first detector so that a signal voltage of three or four volts in addition to the oseillator potential is required on the grid of the first deteetor before the tube starts to draw grid current.
19. Audio-frequency Systems. Two functions are performed by the a-f portion of a broadeast receiver. The first function is the demodulation of the received carrier wave. This result is accomplished by means of a detector. The second function of the a-f system is the amplification of the a-f output of the detector until it is of a sufficient magnitude to actuate a loud-speaker. One or more stages of a-f amplification are used for this purpose.
20. Detectors. The detectors which are in use in the a-f systems of broadeast receivers may be classified as to their operating principle as follows:

1. Grid-leak and condenser or grid-circuit detectors.
2. Negatively hiased or plate-circuit detertors.
3. Diode or Fleming valve detectors.

The grid-leak and condenser detector functions by virtue of the gridvoltage grid-current characteristic of the tube, and the a-f potential developed across the grid leak is then amplified by the tube.
The negatively biased detector depends on the curvature of the gridvoltage plate-current characteristic of a tube for its action.
The fleming valve or two-element detector functions due to the fact that such a tube offers a very high impedance to the flow of current in one direction, while its impedance to the flow of current in the opposite direction is comparatively low.
21. Power Detectors. Detectors capable of providing sufficient audio output to feed a power-output tube without an intervening stage of a-f :amplification have been called power detectors. A UY-227 tube used as a negatively hiased detertor with a plate voltage of 250 volts and a corresponding high-negative hias has heen used most extensively as this type of detector. The general advantages secured from such a detector are as follows:

1. The amount of filtering required in an a-c operated receiver is reduced, due to the reduction in a-f amplification.
2. Distortion is reduced as the detector operates on a more linear characteristic and the distortion of one audio stage is eliminated.
3. Microphonic feed-backs produced by detector tubes are reduced by the reduction of the a-f amplification.
4. Problem of equipping a receiver with automatic volume control is simplified since larger r-f potentials are available to operate such a control.
5. Detector Characteristics. The charnetcristies of detcetors which must be considered in the design of a radio receiving set are:
6. Sensitivity: Audio output for a given modulated r-f input.
7. Fidelity: Absence of frequency discrimination and wave-form distortion.
8. Output characteristic: Maximum audio output which the detector will supply.
9. Input impedance: Effect on associated radio-frequency circuits.

Considerable information on the sensitivity, output characteristios, and wave-form distortion of detectors


FIf. 15.-Input- o 11 t p 1 t curves of negatively biased UY-227 detector. can be obtained from curves such as shown in Fig. 15. These eurves show the relation between the change in voltage across the external plate impedance and a-c input for a UY -227 tube used as a negatively biased detector with various load resistances. From a set of curves of this type the output of a detector for a given modulated r-f input can be determined. The change in voltage across the external plate resistance is determined for the change in carrier amplitude corresponding to the per cent modulation, and the audio output of the detector in r-m-s volts is then equal to this voltage divided by $2 \sqrt{2}$. The divergence of these curves from a straight line is an indication of the distortion introduced by the detector. If sufficient input is applied to the detector, the curves will indicate the maximum output which the detector will supply. The relation between the output of a detcetor and the'frequency of the modulation, as well as the effect of the detector on associated r-f circuits, can best be determined experimentally.
23. Performance Characteristics of the Three Types of Detectors. The grid-leak and condenser detector is the most sensitive of the three types for weak signal inputs. For small signal inputs, the relation between modulated r-f input and a-f output for this type of detector follows the square law. When a detector is used which operates on the square law a second hamonic of the modulation frequency is present in the output of the detector which is cqual to $1 / 4 m^{2}$ where $m$ is the per cent modulation of the received carrier. A detector in which the relation
between modulated r-f input and andio output is linear does not introduce this distortion. The negatively hiased detector is eomparatively insensitive for small signal inputs and likewise operates on the square law. If high plate and hias voltages are used with such a detector it becomes reasonably sensitive to large signal imputs, and the relation between modulated $r$-f input and audio output then becomes approximately linear.

The Fleming valve detector is the least sensitive of the three types. The relation between modulated r-f input and a-f output for this detcetor is praetically linear except for very small input voltages. If high values of resistance and capacity are used in the leak and condenser combination, considerable attenuation of the high-molulation frequencies will occur. Both the grid-leak and eondenser and Fleming valve deteetors have a comparatively low input impedance and produce a considerable broadening effeet on the selectivity characteristic of a tumed circuit connected to such a dotector. This effect can bo minimized by connecting the detector across only a portion of the thmed cireuit so as to provide a proper impedance match. The grid-leak and eondensor detector is used where high gain is desired in the system. It is usually used in eonjunction with a two-stage transformer coupled amplifier. The negatively biased detector is used most gencrally where a power detertor is desired. The UY'-227 type tube is usually used as a powor detector and, as such, operates with a plate potential of 250 volts and a negative bias sufficient to reduce the normal plate current to $0,5 \mathrm{ma}$. This biasing potential is frequently obtained through a self-hiasing resistor of approximately 50,000 ohms in the cathode lead. The output imperlance of this type of detector is eomparatively high, being approximately 50,000 ohms and therefore requires a transformer, having a primary induetance of several hundred henrys, in order to realize the full output of the detector and maintain a flat frequeney-response charactoristie. If some of the detertor output can be saerificed, an a-f transformer with a lower primary induetance may he used, provided tho primary is shunted with a resistor to maintain a flat frequene v-response chararteristic. A UY-224 tube is sometimes used as a negatively biased detector. On account of the high plate imperlance of this type of detector, an inductance of 1,000 henrys is required as an impedance-coupling element to realize the maximum ontput which such a dotector will provide. Fleming valve detectors have been used to a limited extent in broadeast receivers. One receiver in which this type of detertor is used employs two stages of a-f amplification in addition to a push-pull power-output stage to complete the a-f system.

## AUDIO-FREQUENCY AMPLIFIERS

24. Transformer Coupled A-F Amplifiers. This type of amplifier makes use of an a-f transformer designed to provide uniform amplifiation over the a-f range. A comventional a-f transformor consists of a primary of approximately 5,000 turns and a sceondary of 15,000 turns of No. fo enameled copper wire assembled on a closed core of 14 mil silicon sterel laminations. To realize maximum gain from an a-f stage, the reatanee of the transformer primary should be at least twice the tube impedaner for the frequency range over which the transformer is to operate. The step-up ratio usually used in intorstage a-f transformor is from is to 6 .

Transformer coupling is used in the majority of broadeast receivers. One of its chief advantages is that this type of coupling can be utilized readily in push-pull circuits.

The limiting factors in determining the maximum step-up ratio which can be used in an a-f transformer to provide a given characteristic are:

1. Primary inductance must be of sulficient value to provide satisfactory low-freguency amplification.
2. Nistributed capacity of windings must not exceed a certain value to maintain satisfartory high-frequency response.
3. Size of wire is usually limited by its physical properties.
4. Saturation of the core.
5. Impedance Coupling. An impedance coupled a-f amplifier stage consists of a resistance or reactance in the plate circuit of the amplifier


Fig. 16.-Relation between load resistance, power output, and distortion for single tube and push-pull a-f amplifiers.
tube, and the a-f voltage drop across this impedance is conveyed to the grid of the succeeding tube by means of a suitable coupling condenser. Resistance coupling is the form of impedance coupling which is most frequently used. This type of coupling provides a very uniform fre-quency-response characteristic over a wide frequency range. One of the disadvantages of this type of coupling is the additional voltage which must be provided hy the plate potential source in order to take eare of the d-c drop through the coupling resistor.
26. Power Amplifiers. The power-sutput stage in a broadeast receiver usually consists of two power-output tubes connected in a push-pull arrangement.

The advantages of the push-pull output stage as compared to the single output arrangement are:

1. Reduction in the amount of distortion, since the even harmonies which appear in the plate circuits of the tubes balance out in the output transformer.
2. Reduction in the amount of filtering and a-f by-passing required, since the load on the plate supply system remains practically constant as the current in one tube increases as the other tube deoreases.
3. Smaller output transformer required due to the balancing of the d-c flux produced by the two halves of the winding.

The single output tube is used in a few receivers where space is limited and high-power output is not required. The relative distortion produced by the two types of output stages and the effect of load impedinee on distortion and output are shown in lig. 16 which appeared in the May, 1930, issue of Electronics.

The output rating of power-output tubes is usually given by the tube manufacturers as the maximum power output which can be obtained with normal voltages on the tube without exceeding a distortion of five per cent second harmonie. The approximate power output which can be obtained from an output tube for a given gridswing ean be determined from the following equation:

$$
l^{\prime}=\frac{\mu^{2} E_{o}^{2}}{9 R_{p}}
$$

where $l^{\prime}=$ power output in watts
$\mu=$ amplifieation eonstant of the tube
$E_{g}=$ peak a-c voltage on the grid of the tube
$R_{p}=$ tube impedance
The external load impedance is assumed as equal to $2 R_{p}$. If a highimpedance circuit is used to feed the grid of the output tubes, the peak a-c voltage on the grid cannot exceed the bias voltage without the introduction of considerable distortion.

The power-output stage is connceted to the loud-speaker through an output transformer in order to provide the proper impedance match. The electrodynamic type of loud-speaker, which is used in the majority of broadeast receivers, has a very low impedance and the output transformer, which feeds this type of speaker, usually has a step-down ratio of about 25 to 1.
27. Pentode Output Tubes. This type of tube has recently been used as the output tube in a number of hroadeast receivers. The pentode-power output tube has considerably greater power sensitivity than the triode and therefore requires less grid swing for a given powir output. Since the plate impedance of this tuhe is high compared with the load impedance which is normally used with the tube the current through the loud impedance remains substantially constant, even though the load impedance may vary over a wide range with frequency. With the triode-power output tube the load impedance is high compared with the tube impedance and the voltage across the load impedance therefore remains substantially constant with variations in the load impedance. When a pentode output tube is used with the conventional electrodynamic type of loud-speaker the increase in impedance of this type of load-speaker at the high-frequeney end of the range and the impedance peak due to resonance at the low-frequeney end of the range are likely to eause serious peaks in the load-speaker output untess some means is used to prevent them.

In 1932 the use of elass B output tubes became common where large amounts of power output were desired (see Sec. 11, Art. 23).
28. Tone Control. A considerable number of broadeast reccivers are equipped with a tone control, which is a deviec which enables the user of a receiver to vary the over-all fidelity characteristice of the receiver. The usual tone control operates on some portion of the a-f system in such a manner as to vary the high-frequeney response, figure 17 shows


Fis, 17.-Tone control rircuit. the most general method of accomplishing this result.

The advantages of a tone control are:

1. Noise encountered when receiving distant stations can be reduced considerably by decreasing the high-frequency response of a receiver through the use of a tone control.
2. All broarleast transmitters do not have the same ficlelity characteristic's and a tone control permits the user to compensate for some of these variations.
3. The frequency-response characteristic of the ear varies with the intensity of the sound. A tone control compensates for this characteristic.

Acoustically Compensated Volume Control. A volume-rontrol arrangemont has been used in a number of broadeast receivers in which the


Fig. 17a.-Variation of low-frequency response with volume.
over-all frequeney-response characteristic of the receiver varies with the audio output level. This type of volume control has been ealled an feoustically compensated volume control and is intended to compensate for the variation in the frequeney-response charactoristic of the car with amplitude. Redueing the audio output of a receriver to a low value with a typiral volume-control system gives the listener the impression that the very low and high frequencies have been attenuated and the middle frequeney range has leen eorespondingly aeeontuated. The acoustically
compensated volume control was devised to correct this effect. Figure 176 shows one of the arrangements which has been used to accomplish this result. This volume-rontrol system makes use of a resonant circuit, whieh attemuates the middle freguency range more than the high and low frequencies when the audio output is redueed. The effeet of this type of control is illustrated by the curves in Fig. 17a, which show the relation between the audio ontput and frequeney-response characteristic of the receiver. The low-frequeney eompensation shown by these eurves was used not only to compensate for the variation in the frequencyresponse characteristie of the ear with amplitude, but also to correct for the acoustic deficiencies of the cabinet in which the receiver was installed. Since a definite relation should exist between the audio output level and the frecuency-response characteristic of a receiver equipped with an acoustically compensated


Fig. 17b.-Cireuit for varying tone with volume. volume control, it is necessary that the audio output for a given setting of the volume control be independent of the strength of the received signal. Some form of a.v.e. is necessary to meet this requirement.
29. Volume-control System. The two types of volume control which are used in broadeast receivers are manual and automatic.

The two methods by which volume control is accomplished are:

1. Variation in the mutual conductanee of the amplifier tubes by varying the control-grid or screen-grid bias, etc.
2. Variation of the coupling between two circuits.

The advantages of the first method over the second are:
$a$. Volume control can be applied to a number of tubes simultaneously from a single potentiometer or variable resistor and therehy obtain a wide range of control.
b. When the eontrol-grid potential is varied the volume-control system does not have to supply power which is a prerequisite of any practical automatic volume-control system.
c. Minimum hiss and tube noise is secured, since the gain after the grid of the first tube is varied.

The only serious disadvantage of system 1 as compared to system 2 is the distortion and cross modulation encountered under certain vol-ume-control conditions. This distortion usually oreurs when local stations are being recoived and the amplifier tubes are biased near the point of plate-current cut-off. The wave form of the receiver output is distorted to such an extent under some conditions as to be unintelligible. This distortion and cross modulation are functions of the third and higher derivatives of the $E_{q} I_{p}$ characteristic of the tube. A local-distance switch has been provided on a number of receivers which permits the reduction of the coupling between the antenna and the receiver when local stations are being reecived. This makes it unnecessary to use the portion of the tube characteristic whieh introduces the distortion.

The recently developed "variable-mu" or "exponential-type" sereengrid tube reduces the amount of distortion due to the control-grid bias type of volume control. A comparison of the $E_{g} I_{p}$ characteristics of this type of tube and the standard UY-224 is shown in Fig. 18. It will
be seen that the shape of the curve of the "variable-mu" tube near the cut-off point is considerably different from that of the standard tube.


Fig. 18.- $E_{0} I_{p}$ characteristies of screen-grid and exponential tubes.


Fig. 19.-Volume-control circuits.

This ehange in characteristic has been produced by ehanging the controlgrid and sereen-grid structure for the purpose of reducing eross modulation and volume-eontrol distortion.


Fig. 20.-Automatic volume-control circuit.

The disadvantages of the tube from the standpoint of receiver design are:

1. A greater variation in control-grid hias is required to produce a given range of volume control. This characteristic reduces the effectiveness of an automatic volume-control system, since the volume-control bias is determined entirely by the type of autonatic volume-control system which is being used and the strength of the received signal.
2. An additional type of tube is required, as the variable-mu or exponential tube is not universal in its application, since it cannot be used efficiently as a detector.

The control-grid hias method of volume eontrol is the type of volume control used in the majority of reecivers. The hias potential for the manual type of control is usually obtained from a potentiometer conneeted in the negative end of the plate potential source. A variable
resistor in the cathode circuits of the amplifier tubes is also frequently used. A fixed current must be passed through this resistor from a bleeder resistor or other constant load; otherwise, it will be impossible to bias the tubes to the cut-off point. These two volume-eontrol arrangements are shown in lig. 19.
30. Automatic Volume Control. Automatic volume control (a.v.c.) is used in a number of modern receiving sets. It has the advantage that practically the same audio output is ohtained from the receiver irrespective of the input. This is an advantage in tuning from one station to another where a considerable difference exists in the relative field strength of the stations. It also has the advantage of compensating for some of the more serious effects of fading. Automatie volume control also makes the actual control of volume in a receiving set less critical since the entire range of the mamual control is used only to vary the actual audio output. With the manual type of volume control only a small fraction of the total variations of the control may be required to vary the sound output for a given sta-


Fig. 21.-Combination de-tector-volume-control tube circuit. tion from minimum to maximum. The manual type of control is therefore likely to be very critical to adjust.

Figures 20 and 21 show two a.v.c. arrangentents. In each arrangement the d-c component of the rectified output of a detector is used as additional control-grid bias on the r-f amplifier tubes. In the first arrangement a separate volume-control tube functions as a rectifier to provide the additional bias voltage. In the seeond arrangement a single tube


Fig. 22.-Automatic volume-control characteristic.
performs the dual function of providing the cont rol-grid bias and demodulating the received signal. In the first arrangement the output level is controlled by varying the hias on the control tube. In the second arrangement the output level is controlled by varying the audio amplification. A typieal control characteristic for an automatic volume control is shown in Fig. 22.

Noise Suppressor or Tuning Silencer. Two of the objectionable characteristies of a receiver equipped with a conventional a.v.e. system are
the aecentuation of noise when tuning between stations and the seeming lack of selectivity when a station is being tuned in. Several arrangements have been devised to overcome these objections. One of the systems is illustrated in Fig. 23. This a.v.c. system makes use of a noise-suppressor tube A, the bias of which is controlled by the detector and a.v.c. tube $B$. The d-c drop across a resistor in the plate circuit of tube $A$ is used to control the bias on the a-f amplifer tube $C$. When the receiver is tuned between stations, the bias on tube $A$ is such that, sufficient plate current flows through the resistor in its plate cireuit to increase the negative bias on tube $C$ to the point where the amplifier is inoperative. When a signal of a predetermined strength is tuned in, tube $B$ inereases the negative bias on tube $A$ so that its plate current is greatly reduced and the bias on the audio amplifier tube $C$ is restored to


Fig. 23.-Circuit for keeping between-carrier noise out of a receiver.
its normal value and the amplifier then functions in the conventional manner. The signal level at which the receiver will respond is controlled by varying the screen-grid voltage on the noise-suppressor tube. Another scheme of this type makes use of a very selective circuit which controls the noise-suppressor tube. This selective circuit is tuned to the center of the frequency band passed by the intermediate frequency amplifier. A separate control tube that causes the noise-suppressor tube to operate is connected to the i-f amplifier through this selective circuit. Through the use of the additional tube and selective circuit the receiver is made to respond to received signals only when tuned to almost exact resonance. This type of arrangement, therefore, makes it inıpossible to tune a receiver so as to give the disagrecable distortion which is obtained when the carrier wave of a station is being received on the side of the receiver resonance curve.

## POWER-SUPPLY SYSTEMS

31. Alternating-current Operated Receiver Power Supply. A schematic diagram of a typical power-supply system for an a-e operated receiver is shown in See. 15 , lig. 1.

The essential elements of the systent are:

1. A power transformer: This is used to supply the filament voltages for all the tubes and the proper potential to the rectifier tube. The Inwer transformer follows the conventional design for small transformers, the main requirements from the standpoint of radio-reeeiver design being freedom frons vibration of parts.
2. A rectifier tube: The UX- 280 and type- 82 full-wave rectifier tubes are used alnost universally in broadeast receivers. The maxinum ratings of the UX-280 are:

$$
\begin{aligned}
& \text { a. A-c voltage per plate (volts } \mathrm{r}-\mathrm{m}-\mathrm{s} \text { ) .................................. . . } 350 \\
& \text { D-c output current (maximum ma) } \\
& 125 \\
& \text { b. A-c voltage per plate (maximum volts r-m-s) ....................... . . . } 400 \\
& \text { D)-c output current (maximum ma) } \\
& 110 \\
& \text { c. A-c voltage per plate (maximum volts r-m-s) ....................... } 550 \\
& \text { This rating is permissible only with filter circuits having an input } \\
& \text { choke of at least } 20 \mathrm{~h} \text {. If desired a condenser of not more than } \\
& 0.1 \mu \mathrm{f} \text { may be used across the input of the filter. }
\end{aligned}
$$

The type-82 mercury-vapor rectifier is used where good voltage regulation is of prinie importance. The voltage drop in this tube is approximately 15 volts and is practically independent of the current within the emission limits of the filament.
3. f filter for smoothing the pulsating d-c output of the rectifier tube: The filter which is used in the majority of receivers is usually a two-section filter of the "brute-force" type. The field coil of the electrodynamic loud-speaker is frequently used as one of the choke coils. The inductance of the other choke eoil is usually 20 henrys. The recent development of electrolytic condensers of hoth the dry and wet types which ean be obtained for a few cents a mierofarad have made it more economical to use a higher-caparity and lowerinductance filter. This type of filter minimizes the voltage drop in the filter and reduces the likelinood of audio feed-backs, flutters, ete.
4. A vollage divider: A resistance network is used to provide the proper plate and bias potentials to the tube. The trend in the design of voltagesupply circuits is to have as many of the tubes as possible supply their own bias through resistors in their eathode circuits. Bleeder resistors are used to by-pass a certain amount of eurrent from the plate supply source through a resistor which provides the bias for volume-control purposes. In the ease of autonatic volume control it is desirable to have the fixed bias for the amplifier tubes whieh are controlled to be as independent of their eathode current as possible, as any degree of self-biasing for these tubes reduces the effectiveness of the automatic volume control. The voltage-divider arrangements vary considerably between different receivers, due to the number and type of tubes which are used.
32. Direct-current Operated Receivers. Figure 24 shows a typical schematic arrangement for operating a broadcast radio receiver from a d-c power source. The heaters of all the tubes are connected in series and supplied through a resistor directly from the line. The plate and bias potentials are supplied directly from the line through a single-section filter to remove variations due to commutator ripple, ete. The output tubes are frequently two UX-245's in push pull, and their plate potential is obtained directly from the line ahead of the filter.
33. Complete Receiving System. The usual broadeast radio receiver consists of the following elements, which may be assemblad in either separate or combination units:

1. The receiver chassix: This contains all the r-f ciruits, dotertor and a-f circuits except the power-ontput tubes.
2. The socket-pouer unit: The power-output stage is usually mounted on this unit in addition to the rectifier and filter.
3. The loud-speaker.
4. The cabinet.


Fig. 24.-Circuit for obtaining receiver supply from d-e lines.
There are a number of receivers, particularly those of the midget type in which the receiver chassis and socket-power unit are combined in a single unit. The chief advantage of this arrangement is the simplification in wiring due to the dimination of a cable and terminal board. This advantage is offset to a considerable extent in the larger receivers by the difficulty of handling the larger and heavier units in the factory. The receiver chassis in the majority of console sets is mount ed above the loudspeaker in order to place the tuning controls in a convenient location.

The receiver chassis of broadeast radio receivers which are eapatble of producing considerable power output are usually flexibly mounted to prevent acoustic feed-bucks. Sound vibrations, produred by the loudspeaker, are transmitted through the cabinet to the receiver chassis and are likely to cause the tuning condenser plates or detector tube to vibrate and thus produce a ford-hack which will eause the receiver to howl. Flanges on the base of the recciver chassis are sometimes insorted in blocks of sponge rubber to provide a suitable flexible mounting to prevent this type of feed-back.
34. Single-dial Tuning Problem. One of the major problems in the design of a unicontrolled hroadeast receiver is the mantemance of the proper alignment of the tuned cireuits throughout the brondrast frequeney range. To maintain such aligmment mormally requires that the inductances and variable condensers be made very uniform. It is common practice in a number of factories to sort the coils in groups so that the variation in inductance betwern eoils is less than 0.5 per cent. Receivers are likewise equipped with gang condonsers in which an outside plate on each rotor is slotted into a number of segments. In the process of the aligmment of the circuits, these scoments are bent so as to com-
pensate for variations in both the coils and variable condensers. One type of receiver, which has been produced commercially, made usc of a cam arrangement by which the position of one element of the tuning capacitor could be adjusted with relation to the other element at a number of points in the tuning range of the receiver. Such an arrangement provides greater compensation for variations in the inductance of the coils and capacity of the variable condensers than can be obtained with the slotted-end plate condensers.
35. Tuned-radio-frequency Receivers. The gencral performance characteristics of a t-r-f receiver can be determined readily from the characteristics of the various components. Figure 25 shows the voltage gain between the antenna and the grid of each tube in a t-r-f recciver. The gain in the detector is determined for a carrier modulated 30 per eent of sufficient amplitude to produce a receiver output of 0.05 watt aeross the normal output impedance. Figure 26 shows the circuit diagram of the receiver. It utilizes four t-r-f eircuits.
36. Over-all Selectivity. Figure 27 illustrates a graphic method of determining the over-all sclectivity of the receiver from the selectivity characteristics of the individual tuned circuits. The curves in this figure show the sclectivity contributed by the tuned circuits in the recciver from the antenna to the grid of each tube. To obtain these curves the sclectivity curves of the individual circuits are plotted to the same scale on logarithmic coordinates. The over-all selcc-tivity-characteristic curves are then oltained by laying off for each frequency a distance which is equal to the sum of the distances which represent the ordinates of the individual selcetivity characteristics for the same frequency, This procedure may he reversed and the selectivity eharacteristies which a given number of individual eireuits must have to give a particular over-all selectivity characteristic


Fig. 25.-Sensitivity curves of voltage gain in t-r-f receiver. can be determined. Such a determination is made by dividing the distance which represents the ordinate for a given frequency on the over-all selectivity characteristio by the number of tuncd cireuits. The distances obtained in this way then determine the ordinates of the individual selectivity-characteristic curve. In this case it is assumed that the selectivity eharaeteristics of all the tuned circuits are alike.

The attenuation of the r-f system for the high-frequency side bands at $1,000 \mathrm{ke}$ is shown in lig. 28 A . This is simply one-half of the top


Fig. 26.-Typical t-r-f receiver.
of the selectivity-characteristic curve of the reciver plotted on an enlarged seale. The frequeney-response charaeteristic of the detector and a-f system is shown in lig.


Fig. 27.-Ower-all selectivity of $t-r-f$ receiver. $28 B$. The ordinates for each frequency in the over-all fidelity characteristic curve of the receiver is oltained by multiplying the corresponding ordinates of these two eurves. The over-all fidelity characteristic of the recciver is shown in Fig. 28C. Compensation for the attenuation of the higher modulation frequencies in the r-f system by a corresponding aceentuation of the high-frequency response of the audio system is ocerasionally used. This method of obtaining a flat over-all fidelity characteristie in a $t$-r-f receiver is not centirely satisfactory due to the difference in the high-frequency side-band attenuation at the highfrequency and low-frequency ends of the broadeast range.
37. Superheterodyne Receivers. The case of obtaining high amplification and a high degrec of selectivity with a minimum of shiclding allows considerable flexibility in the design of a superheterodyne receiver. Sufficient amplification can be obtamed in the r-f and i-f circuits so that a
power detector and single stage of a-f amplifieation are sufficient to provide the desired sensitivity. The general tendency in the design


Fig. 28.- $A$, Side-band attenuation due to r-f circuits; $B$, frequencyresponse characteristic of detector and a-f amplifier; $C$, over-all frequencyresponse characteristic.
of superheterodyne receivers has been to take advantage of the high degree of selectivity whieh this type of receiver can provide at a corresponding sacrifice in fidelity. The superheterodyne receiver, however, lends itself just as well to the design of a highfidelity receiver since the advantages of coupled tuned circuits can readily be realized in this type of reeeiver.
38. Superheterodyne Characteristics. The adjacentchannel selectivity, and fidelity of a superheterodyne receiver can be determined readily from the characteristics of the individual components of the receiver.

Figure 29 illustrates a method of determining the sensitivity and shows the gain from the antenna to the grid of each tube. Figure 30 shows similar eurves giving the total selectivity contributed by the tuned eircuits between the antenna and the grid of each tuhe. These curves are determined in the same manner as that described under the design of $t-r-f$ receivers. From these two sets of eurves it is possible to determine the voltage on the gricl of each


Fra. 29.-Voltage gain in superheterodyne receiver. tube from a local station when the receiver is tuned to a distant station on andacent channel. Such a determination is frequently desirable in this type of receiver where the
selectivity contributed by the circuits between each tube is not uniform, This relation between gain and selectivity between each tube must be properly proportioned; otherwise, the


Fic. 30.-Superheterodyne selectivity characteristics. signal from a local station may be sufficient to draw grid current on one of the tubes even if the over-all selectivity of the receiver is suffieient to separate the signals from the local and distant stations before they reach the second detector. Figure 31 shows ( $A$ ) the side-band attenation in the radio-frequency circuits of the receiver and (13) the over-all fidelity characteristic.
39. Superheterodyne Interference Problems. The selertivity of a superheterolyne receiver as determined in Fig. 30) is not a true indication of the actual selectivity of the receiver under all conditions, as this type of receiver is susceptible to certain types of interference which are not eneountered with a t-r-f receiver. The susceptibility to these interferences is a result of eonverting the received signal to an intermediate frequeney. The following classification gives the more important possible sources of interference common to a superheterodyne receiver in which the intermediate frequency is lower than any frequency in the tuning range of the receiver.


Fige :31.-A, Side-band attenuation due to r-f cireuits of superhetorodyne; B, over-all fidelity characteristic.

1. Image-frequency interference: If $f$ is the oscilator frequency in a superheterodyne and $I F$ the internediate frequency, signals impressed on the first detector, having freguencies of either $f+I F$ or $f-I F$, will be heterodyned to the intermediate frequency and pass throngh the receiver. It is therefore
necessary to prevent one of these signals from reaching the first detector; otherwise. what has been called "image-frequency interference" will be the result. R-f circuits, tuned to the signal which it is desired to receive, are the usual arrangement for preventing image-frequency interference. Since the oscillator in superheterodyne receivers is usually tumed to a higher frequency than the radio-frequency circuits, a signal which can produce image-frequency interference must have a frequency of $f_{1}+2 I F$ where $f_{1}$ is the frequency of the desired station.
2. Interfercnce due to harmonics of the oscillator heterodyning undesired stations: If a signal having a frequency of $2 f \pm I F$ is impressed on the first detector, it will cause interference with the signal being heterodyned by the fundamental oscillator frequency $f$. Tuned r-f circuits ahead of the first detector likewise reduce the possibility of this type of interference.
3. Interfercnce due to stations which arc separated by the intermediate frequency: Combinations of signals are sometimes encountered which are separated by the intermediate frequency and if such signals are permitted to reach the first detector, interference will result. Tuned r-f circuits ahead of the first detector are also used to mrevent this type of interference.
4. Interfercnce due to harmonics of the intermediate frequency produced by the second detector: When the intermediate frequency is lower than any frequency in the tuning range of the receiver, certain harmonies of the intermediate frequency fall in the broadcast frequency band. If these harmonics, which are produced by the second detector, are of sufficient amplitude and are fed back to the input system of the receiver, they will cause interference when a station is received whose frequency is equal to a particular harmonic of the intermediate frequency. With an intermediate frequency of 175 ke this type of interference is likely to be encountered at $700,875,1,050,1,225$, and $1,400 \mathrm{kc}$. This type of interference is eliminated by careful shielding of the second-detector circuits.
5. Choice of the Intermediate Frequency. The choice of the intermediate frequency for a suporhoterodyne receiver is a compromise between the following faetors:
6. With a given $t-r$-f system ahead of the first detector, the possibility of encountering image-frequency interference is reduced as the intermediate frequency is increased.
7. Under the above conditions, the possibility of interference due to two stations separated by the intermediate frequency is also reduced as the intermediate frequency is raised.
8. The possibility of interference due to harmonies of the intermediate frequency being fed back from the second detector to the input of the receiver increases as the intermediate frequency is raised, since lower harmonies appear in the broadcast band and the amplitude of the harmonics which can cause interference is therefore increased.
9. The difficulty of obtaining a high degree of selectivity and amplification in an i-f amplifier is increased as the intermediate frequency is raised.

The intermediate frequency whieh is used at the present time in the majority of broadeast receivers is 175 kc . With this frequency three t-r-f cireuits ahead of the first detector are sufficient to eliminate imagefrequeney interference, except under the most extreme receiving conditions. With an intermediate fyequency of 175 ke , the fourth harmonic is the first to appear in the broadeast range.
41. Tuned-radio-frequency Circuits. The t-r-f rircuits ahead of the first detector in a suporheterolyne receiver are used primarily for eliminating certain types of interference common to the superheterodyne type of receiver. Figure 32 shows the attenuation of one, two, and three $t-r-f$ eireuits for frequencies up to 800 ke off resonanee when tuned to ( 000
kc. From curves of this type it is possible to obtain the image-frequency ratio for any given r-f system which may be used ahead of the first detector. Image-frequency ratio has been termed the ratio between the field strength necessary to produce standard output from a super-


Fig. 32.-Attenuation of one, two, and three t-r-f circuits.
heterodyne at the image frequeney and that necessary to produce standard output at the frequency to which the receiver is tuned. An imagefrequency ratio of $100,000: 1$ is considered satisfactory for all except the



Fic. 34.-Reqenerative rireuit with resistance rontrol.
most extreme receiving conditions. Care must be exercised in the design of a superheterodyne receiver to use sufficient shielding so that the actual selectivity of the t-r-f eircuits is realized. If a reasonable amount of shielding is not used, signals which will cause image-frequency inter-
ference may be picked up directly on the first detector circuits and the benefit of the t-r-f circuits between the antenna and this detector will be lost.
42. Regenerative Receivers. Two typical regenerative-receiver circuits are shown in Figs. 33 and 34. In the first arrangement the regenera-


Fig. 35.-Single-tube superregenerator.


Fig. 36.-Superregenerative circuit with separate quenching tube.
tion is controlled by varying the coupling between the "tickler" coil, which is comected in the plate circuit of the regenerated tube, and the inductance of the tuned grid circuit. A variable resistance is used in the plate circuit of the regenerated tube in the second receiver. This variable resistance is used to vary the plate potential on the tube and thereby control the regeneration. The coupling between the tickler coil and the inductance of the tuned circuit in the second receiver is fixed. This arrangement is generally used in receivers which make use of plug-in coils to cover a wide frequency range since the tickler coil can then be wound on the same form as the tuned circuit inductance.
43. Superregenerative Receivers. Two typical superregenerative circuits are shown in Figs. 35 and 36. Figure 35 shows a single-tube arrangement in which the quenching frequeney is produced by the same tube which provides the superregencration. In the circuit shown in Fig. 36 a separate tube is used to provide the quenching frequency which is usually between
 5,000 and 20,000 cycles. A filter is generally used in the output circuit of the superregenerative tube to eliminate the quenching frequency so that it does not appear in the receiver output.

## SPECIAL RECEIVERS

44. Commercial Receivers. The principles underlying the design of comnercial receivers are the same as those employed in the dosign of broadeast receivers.

Ruggedness and reliahility are among the chief considerations in the design of commercial receivers, since such receivers must usually remain in continuous operation for long periods of time. Simplicity of tuming is not so important in this type of receiver as in broadeast radio receivers, since commercial receivers are generally used by skilled operators. Commercial radio receivers are generally designed to use battery-operated tuhes. The plate potential for such receivers is supplied from either batteries or a motor generator. In some transatlantic receiving systems, three complete receiver and antenna combinations are used to overcome the effects of fading. In an installation of this type the antennas are separated by several wave lengths. An automatic volume-control arrangement is provided so that only the output of the receiver which is reeciving the strongest signal is used.
45. Direction Finders. The directional property of a loop antenna is utilized in direction finders to determine the plane in which the radio transmitter and the direction finder are located. The circuit diagram of a typical finder is shown in Fig. 37. The loop antenna in this receiver is enclosed in an electrostatic shield. The center tap on the loop is grounded. These precautions are taken to eliminate the electrostatie effect of the loop antenna. If this effect is present, a broad minimum is obtained as the loop anterna is rotated and it is impossible to oltain an accurate bearing. The diagram shows an arrangement for compensating for the effect of a nearby metal object which might distort the field around the loop. A small antenna having characteristics as similar to the metal objeet as possible is erected and connected through a resistor to the variometer shown in the diagram. By proper adjustment of the variometer the signats introduced by the nearlby metal ohject and the compensating antenna and variometer arrangement are made to balance so that they produce no effect on the inherent directional properties of the loop antenna. The superheterodyne circuit is usually employed in direction finders. Both the loop antenna and oscillator circuits are tuned through the use of a single control. Bearings can be determined to within about 1 deg.
46. Television Receivers. The major difference between television receivers and standard broadeast receivers for providing aural entertainment is in the relative width of the frequency bands which the two receivers must amplify. A flat frequency-response characteristic from 30 to 5,000 cycles is generally considered satisfactory for an a-f amplifier. A pict ure-frequency amplifier must amplify a band of frequencies several times this width. The highest frequency which the picture-frequency amplifier in a television receiver must amplify is equal to

$$
\frac{l e n}{2}
$$

where $l=$ number of lines in each picture
$e=$ number of elements in earh line
$n=$ number of pietures per second.
To reproduce a fio-line picture having a 5 hy 6 ratio of height to width and 20 pirtures per second, the picture-frequency amplifier in a television receiver should provide uniform amplification for all frequenties from 20 to 43,200 cycles. The r-f circuits in the receiver should pass a hand of frequencies approximately ! 0 ke wide. Resistance foupling and sereen-
grid tubes are used in the pieture-frequency amplifiers. Coupled tuned circuits are generally used in the r-f system to amplify the desired hund of frequencios and still provide a reasonahle degree of selectivity. The flathess of the top of the eharacteristic of such tumed cirenits is controlled by varying the resistance of the tumed cireuits. The television receivers


Fig. 38.-Typical television receiver circuit.
on the market at the present time are designed to cover a tuming range of 2,000 to 3,000 ke per second. The two soures of light which are used with television reeoivers are neon tubes and cathole-ray tubes. Noon tubes are usually operated diredty in the plate cireuit of a power-output, tube. The variation in light intensity with the cathole-ray tube is


Fig. 39.-Characteristie suitable for 60 -line, 20 -picture television receiver.
obtained by varying the grid potential of the tube, and a power tube is, therefore, not necessary to operate this deviee. The circuit diagram of a typical telcvision recoiver is shown in Fig. 3.3. The fregucney-response characteristie of a pieture-frequency amplifier designod for a 60 -line, 20 -pirture per sceond telcvision image is shown in l'ig. 39 ,

## SECYION 14

## BROADCASTING

## By C. W. Horn ${ }^{1}$

Definition. Radio broadeasting is a form of radio transmission intended for general reception; in its usual form it must be a prearranged schedule service on a daily basis.

1. Essential Elements in Broadcasting. Broadcasting of speech or music involves the following essential steps:
2. The produetion of the original sound.
3. Conversion of the acoustical energy into electrical energy by means of a mierophone.
4. Amplification of the audio-frequency output of the mierophone by means of vacuum-tube amplifiers, generally termed "speech-input anmplifiers."
5. Transmission by wire of the amplified audio-frequency energy to the radio transmitter.
6. Amplification of the audio-frequency currents at the radio transmitter to the point where they may be impressed upon the modulator tubes.
7. Modulation at audio frequency of the radio-frequency carrier current.
8. The radiation of the modulated radio-frequeney eurrents into space by means of an antenna.
9. Audio Frequencies Involved in Broadcasting. Although it is generally agreed that a wider range is desirable, most broadeasting stations transmit at present audio frequencies between about 80 and 6,000 cyeles with good fidelity; the restriction of the upper frequencies is due largely to the characteristies of the wire lines rather than the transmitting equipment itself. The charts (Figs. 1 and 2) show what frequency ranges are required for various degrees of fidelity; it will be noted that for very high quality the range should extend from 30 up to about 10,000 or 11,000 eveles.
10. Volume Range. Table I below gives the peak power of various musical instruments playing triple forte. A violin playing very softly has an output of about $4 \mu \mathrm{~W}$ so the power ranges from 7 ) watts (full orchestra) down to $4 \mu \mathrm{w}$, an intensity range of about 73 db . Due to limitations of the broadeasting circuits, this volume range must be compressed within the limits which can be handled by the wire lines and associated equipment.
11. Microphones. A microphone is an electroacoustie transducer actuated by power in an acoustie system and delivering power to an electrie system, the wave form in the electrie system corresponding to the wave form in the acoustic system. Two types of microphones are used in broadcasting. the double-button earbon type, and the eondenser type. Also a new type known as the dynamie mierophone is being experimented with.

[^22]

Notes of the "Gamut" $\quad$ C I) F : F (i A IB (:

Note: Nearest note is indicated. Scale based on Niddle ('i (Physical Pitch) = 256 cycles.

Fig. 1.-Frequencies to be transmitted on high-(quality system.

## Table I--Peak Power of Musical Instuuments (Fortissimo Playing)


5. Condenser Microphones. A condenser microphone involves a variation in clectrostatic capacity produced by a sound wave. It eonsists cssentially of a thin metal diaphragm under tension, separated by a small distance from a metal plate, the plate and the diaphragm forming the two clectrodes of an air condenser. Figure 3 gives a crosssectional view of the RCA UZ408.3A, also called 4AA, condensor microphone. The diaphragm is usually two or three indes in diameter and


Fig. 2.-Frequency range of musical sounds.
has a capacity of alout $200 \mu \mu$. When affected by sound waves, the vibration of the diaphragm alters the electrostatie eapacity by an amount in the order of 0.01 per cent and the slight variation in voltage thereby produced can be impressed on the grid of a vacuum tube and amplified.

Because of the low sensitivity of the condenser microphone, it did not assume a position of importance among aconstical instruments until suitahle amplifiers had been developed. In 1917, E. C. Wente published an account of the work he had done on an improved condenser mierophone having a stretehed diaphragm and a back plate so located that in addition to serving as one plate of the condenser, it added sufficient air damping greatly to reduce the effect of diaphragm resonanee. Most of the condenser mierophones in use today embody the essential features of the Wente mierophone.

Early types of eondenser microphones utilized thin sheets of steel for the diaphragm, but its relatively large mass and the high stiffeess it required to serure the desired resomant frequenes has caused it to be rephaced be ahminum allors. The mierophone illustrated has a diaphragm of ahuminum alloy 0.001 in. in thickness. The edges are clamped between threaded rings, the requisite stiffness being oftained by advancing the stretching ring until the desired resonant frequeney, usually about 5,000 ryyles, is obtained.

In determining the response characteristies of a condenser mierophone use has frequently been made of the thermophone method, the thermophone consisting of two strips of gold foil mounted on a plate and fitted into the recess in the front of the microphone, the recess boing en-


Fig. 3.-Condenser microphone tircly enclosed and filled with hedrogen. A direct current on which is superimposed an alternating current is passel through the foil and causes fluetuations in the temperature of the foil and in the gas immediately surrounding it. These fluctuations in temperature rause changes in


Fig. 4.-Pressure calibration of microphone.
the pressure on the microphone diaphragm and the magnitude of the pressure developed on the diaphragm ean be computed from the constants of the system. A thermophone calibration is often reforred to as a "pressure" calibration, since it depends entirely upon the actual pres-


Fig. 5.-Microphone response for sounds normal to diaphragm.
sure developed on the diaphragm and hence does not take into account any effects which may occur when the mierophone is used for actual pickup purposes. The response obtained be placing the instrument in a sound fiek of constant pressure is termed a "field" (alil)ration. Figure

4 shows a thermophone or "pressure" calibration of a representativetype microphone. Jigure 5 shows ficld calibrations for sounds approaching normal to the diaphragm.

The effect of the diffusion of the sound field and the tendency for most, acoustic materials to be more alsorbant at high frequency appears to


Fiti. fi--Studio characteristics of microphone.
cause the response of such a microphone under studio conditions to conform closely to the characteristics shown in fig. 6. This perhaps accounts in part at least for the instances in which a corrective network designed to compensate for the field calibration normal to the diaphragm failed to effect a noteworthy improvement in quality.


FIti. 7.-Amplifier for rondenser mirrophone.
Since the condenser microphone is inherently a high-impedance device, it is usual to incorporate an amplifier in the microphone housing so as to reduce to a minimum the length of lead between the microphone and the grid of the first amplifier tulve. Sometimes a compact amplifier is placed on the floor alongside of the microphone, the two being connected with a length of low-capacity cable. The condenser transinitter operates
with a constant d.-c. polarizing voltage which may be as high as 500 volts but which is more commonly set at ahout 180 volts. Figure 7 gives the rircuit of an amplifier designed for use with a condenser microphone.
6. Carbon Microphones. A carbon microphone is one utilizing the variation resistance of carbon gramules. A typical example of the presont day "double-hutton" carbon microphone is shown in Fig. s; this


Fig. 8.-Carbon microphone.
gives a cross-sectional view of the type-387 Western Electric carbon microphone. The diaphragm of this mierophone is made from duralumin 0.0017 in . in thickness and is chmped securely around its outer edge. The stretehing of the diaphragm to give the desired resonant frequency, usually about $\overline{5}, 700$ eyeles, is done in two steps by means of two stretehing rings. In order to insure uniformly low contact resistance, the portions


Fig. 9.-Response of air-damped duralumin diaphragm.
of the diaphragm which are in contact with the granular carbon are covered with a thin film of gold deposited by mathode sputtering. The size of the carbon granules is such that they will pass through a sereen having ( 60 meshes per inch hut will be retained on a screen having so meshes per inch. Each button contains about 0.06 ce of carton corresponding to about 3,000 gramules.

Reforring to liig. 9, it will be noted that the use of an air-damped stretehed duralumin diaphragm has resulted in a carbon microphone having a substantial uniform response over a wide range of frequencies.

The operation of a carbon microphone may be effected by cohering (sometimes called "caking") of the granules. Severe cohering causes a


Fig. 10.-Carbon microphone connections. large reluction in resistance and sensitivity which persists for an extended period unless the instrument is tapped so as to agitate mechanically the granules. One of the common causes of cohering is breaking the circuit when current is flowing through the microphone. Expericnce has shown that the use of a simple filter consisting of two $0.02 \mu \mathrm{fd}$ condensers and three coupled coils, each having a self-inductance of 0.0014 henry, will effeetively proteet the microphone button without introducing an appreciable transmission loss; a potentiometer switch also serves to prevent caking.


Fig. 11.-Directional characteristic of microphone.
The quality of transmission obtained with a double-button earbon microphone compares favorably with that secured with a condenser microphone; the carbon microphone has the disadvantage however
of a high noise level or "microphone hiss." Figure 10 shows the manner in which the carbon microphone is connected to its associated amplifier.
The jacks are used to measure the current flowing through each button, these currents usually being in the order of 10 or 20 ma .
7. Microphone Technique. During the first vears of broadcasting it was the rule rather than exception to use more than one microphone to piek up a program. This arrangement had the disadvantage that the outputs from the several microphones were not in the proper phase relation, and distortion resulted therefore when the outputs were combined and fed into a common amplifier. These difficulties were especially apparent when using carbon microphones becanse their high background noise made it necessary to place the microphone close to the source of sound.
Considerable improvement was possible when using the condenser microphone due to its very low background noise which permitted its placement at a greater distance from the source of sound and made it possible to ohtain reasonably good acoustical halances with a single microphone. However, as the distance from the source of sound to the microphone is increased, the acoustical characteristies of the studio or auditorium become more apparent.

The characteristics of any diaphragm type of microphone depend upon the relative positions of the mierophone and the source of sound. When


Fir. 12.-Set-up of large s.mmphony orchestra. the sounds approach at right angles to the plane of the microphone diaphragm a flat response over the desired frequency range might he obtained. But if the sounds approach from any other point, it will he found in general that the response will fall off with frequency. This characteristic is illustrated by Fig. 11 which indicates how response varies with the angular displacement of the soure of sound from the axis of the microphone. It will be noted that there is a serious loss at the high frequencies for high angular displacements. Since the majority of musical instruments depend for their quality or timbre upon the presence of overtones, it is ohvious that if these overtones are discriminated against the quality will be changed materially. If, in considering this loss in high frequencies with angular displacement, we apply the limitation that the loss at 5,000 cyrles shall not be more than 2 db , then Fig. 11 indicates that using a single microphone all of the instruments should be kept within an angle of 30 deg. either side of the microphone axis.

A trpical set-up of a large symphony orchestra is shown in Fig. 12. It will be noted that the instruments are so placed not only to ohtain the desired balanee for theater work but also to ohtain the proper harmonie balance allowing for the microphoness directional characteristies on the higher fregmenciss. The mierophone is aroustivally shieded to prevent reverberation from the studio or autitorium behimd the microphone.

In field work it is frequently neecessary to deviate from the general practice of using but one microphone since the conditions are far from
ideal. For example, in picking up the operatic performances from the old Chicago Opera House in 1926 eighteen carbon microphones were used, and during most of the performance at least nine microphones were connected in the eircuit. Mierophones had to be switched in and out, of the circuit as the performance moved from one part of the stage to another.
8. Parabolic Reflector or Directional Microphone. These problems were simplified by the development during 1030 of a more sensitive microphone with pronounced direetional characteristics, the former characteristic making it possible to place it sufficiently far from the source of sound to obtain the proper balance and the directional characteristic making it possible to swing the microphone and its reflector as one would a search light to follow the action on the stage. Curve $B$ (Fig. 13) shows the directional characteristic at 1,000 eveles of an ordinary camera-type condenser microphone, while curve $A$ shows the


Fig. 13.-Parabolic microphone characteristic.


Fig. 14.-Frequency characteristic of microphone of $8-\mathrm{in}$. focal length.
response of a condenser microphone with a parabolic reflector. It will be noted that there is an increase in sensitivity along the line of axis of about four to one due to the use of the parabolie reflector.

Since the reflector increases the sensitivity and makes it possible to locate the microphone at a greater distance from the souree of sound, it is desirable that the output of the microphone fall off rapidly if the sound originates at a point displaced by more than about 30 deg. from the axis of the microphone; if this characteristic is ohtained, reverberation and reflections in the studio or auditorium will have very little effeet. Figure 14 shows the frequeney characteristic with the microphone placed on an 8 -in. foeal length. It will be seen that uniform response is obtained over a range of about 30 deg. either side of the
microphone axis. Figure 15 shows how the frequency response at the high-frequency end can be altered by changing the position of the microphone in the reflector. By this arrangement the response can be made sensibly flat up to 7,000 cycles or if, desired, the high-frequency response may be increased by as much as 15 db over the response at low frequencies. In certain instances where the high-frequency absorption is considerable, the ability to accentuate the highs by refocusing proves very helpful. The directional microphone can be placed at a point sufficiently far from an orchestra so that it is essentially equidistant from all the instruments, and the problems of balance and volume control are thereby greatly reduced.


Fig. 15.-Variation of high-frequency response by changing microphone in reflector.

Another distinct advantage of the directional microphone is its ability largely to disregard the acoustics of the room as it responds only to the sounds upon which it is directly focused. In some instances this effect may be so marked as to make it necessary to use another microphone without any reflector to pick up some of the reverberation and make the reproduction more realistic.
9. Speech-input Amplifiers. Speech-input amplifiers, somotimos termed microphone amplifiers, are here considered to comprise the neeessary apparatus to convert the microphone output into electrical energy of a kind and amount suitable to impress on the input system of a broadcast radio transmitter. Figure 16 is a block diagram showing the usual arrangement of microphones and speech-input amplifier equipment. The speech-input amplifier equipment comprises microphone controls, amplifiers, volume indicators, monitoring amplifiers, and relay systems.

Speech-input equipment is designed usually to have a uniform frequency characteristic from about 30 to 10,000 cyeles. The frequency characteristic of a speech input amplifier is given in Fig. 17, and Fig. 18 gives the circuit diagram of a typical three-stage amplifier. The gain of the amplifier is usually adjusted to give an output of about 12.5 ma which corresponds to zero level. The maximum gain from input to output is usually about 70 dh , and the maximum output without overloading about plus 16 db above 12.5 ma .
lor convcying general information intcreommunicating telephones are generally used to connect the control room with the studios. A Morse telcgraph circuit generally conncets the control room with the transmitter station; if the distance is short, this circuit may be phantomed onto the program line. The necessary switching of circuits is usually


Fis. 16.-Arrangement of microphones and amplifier equipment.
done by the control-room operator and the announcer through interlocking relays. These relays control lamp signals and continuously indieate the circuit setup.

In the control room a monitoring amplifier and loud-speaker keep the operator in touch with the program. Sometimes a second monitoring amplifier supplies loud-speakers at other points.


Fig. 17.-Speceh-input amplifier characteristic.
Since the telephone lines are limited in the amount of energy they can hande and since transmitter equipment is dowigned generally to operato at an input power level of 12.5 ma , it is necessary to employ volume indicators at the control room to control the level delivered to the line and at the transmitter to indieate the level supplied to the transmitter. These units, which are vacuum-tube voltmeters, give visual indication
of the signal level, especially the peak voltages, and allow the operator to adjust the gains of the amplifiers to the proper values.
10. Wire Lines. Wire telephone systems are employed almost, exclusively for the national distribution of programs to the various stations connected on a network. As of June, 1932, programs were

lig. 18.-Typical speech amplifier.
distributed over five basic networks to which ten additional groups of stations are added as occasion demands. These networks involve some 179 stations which are connected together hy approximately 35,000 miles of wire or twice this number of wire miles for programs alone. Telegraph çireuits for interstation connections involve other thousands of miles of wire circuits. One of groups involves a radio link to the Hawaiian Islands for re-broadcasting American programs.

The frequency band which is transmitted over long-distance program circuits extends from about 100 eycles to about 5,000 eycles; to transmit music with improved fidelity is wider band than the above is desirable. A few circuits are at present available which extend the band down to 30 or 50 eyeles and extend the higher range by 2,000 or 3,000 cycles. Program transmission circuits must be designed to handle wide ranges of volurne. At present the volume range is limited to some 25 or 30 db , from ahout plus 2 or 4 db down to about minus


Fti. 19.-Compression of dynamic range in broadcasting systen. 25 db . Ohviously, since the dynamic range of a symphony orchestra is about 60 dh , the wire lime eircuit necessitates some compression of the dynamic range. The ehart of lig. 19 indieates the mamer in which the dyamic range of a symphony orehestra is compressed within the range that can be handled by the line.

It should be pointed out, however, that the listener may obtain an impression of greater dynamic range than is indicated by the above figures due to the fact that the harmonic content of the notes produced by various musical instruments varies with the loudness of the tone and since these harmonic frequencies are transmitted, the listener gets the impression of volume from the character of the sound as well as from the actual volune. Figures 20 and 21 show respectively the frequency


Fiti 20.-Transcontinental line as of 1929.


Fig. 21.-New York to Chicago circuit characteristic.
characteristics of the transcontinental line and the New York to Chicago circuit.
11. Broadcast Transmitter. The broadeast transmitter comprises the following essential components: the audio-frequency amplifiers, the modulators, the crystal-controlled r-f oscillator and r-f amplifiers, antenna system, and power-supply systens.


The audio amplifier at the transmitter eomprises the circuits between the point where the signal is picked off the wire line and the grids of the modulator tubes. The gain of the amplifier is sufficient, in modern transmitter cireuits, so that with an input signal of about 0 (ll), the output voltage will be large enough to impress the maximum permissible voltage on the grids of the modulators.

Practically all broadeast transmitters use the Heising or constant current system of modulation. In the carly types of transmitters, the output
of the modulators was impressed upon the oscillator which fed energy directly into the antenna, or upon the final stage of r-f amplification. ${ }^{1}$

The power amplifier tubes in the transmitter may be operated as class 13 amplifiers; i.e., the grid bias is such that with no signal on the grid, the plate current is reduced practically to the cut-off point. The operation of a class 13 amplifier is indicated by Fig. 22 which shows that the plate current drawn by the tube is very closely a linear function of the extent of the grid swing. The associated circuits are designed so that the tube operates under conditions which give maximum plate-circuit efficiency. Some curves showing how the plate-circuit efficiency varies with the plate-cireuit resistance are given in Fig. 23.

The position of the crest of these curves depends upon the characteristies of the tube and upon the power factor of the circuit to which it is connected. The curves shown are for typical circuits at broadeast frequencies.

The output of such a tube is proportional to the square of the grid swing and hence the peak output under conditions of complete modulation is four times the output when the modulation is zero. The steady output under complete modulation is 1.5 times the output at zero moxlulation. An important consideration, then, is that the tubes in the transmitter must be capable of supplying peak powers four times greater than the nominal rating of the transmitter, assuming that the transmitter is designed for 100 per cent modulation.
12. Advantage of Complete Modulation. During recent years it has been demonstrated that a considerable reduction in background noise can be brought about by completely modulating the transmitter carrier; actually the stray-noise level is not reduced but its ratio to the received signal is decreased. Also interstation interference due to heterodyning carriers may be a serious cause of interference over much greater areas than that covered by the modulation components of an incompletely modulated carrier. The figure of merit for a transmitter may be defined as the ratio of the area over which it produces a satisfaetory signal to the area over which it is capable of causing interference. The interferenee area remains constant for a given carrier amplitude whereas the signal carrier is proportional to some power of the modulation. Therefore the signal area of a completely modulated carrier more closely approaches that of the interferme area. Furthermore if a transmitter is capable of being modulated 100 per cent the resulting side bands will have twice the amplitude of those produced by a transmitter capable of only 50 per


Fig. 24.-Peak voltmeter for checking modulation. cent modulation. To produce equivalent side bands with only 50 per eent modulation requires that the carrier amplitude be doubled or the carrier power multiplied hy four.

The percentage modulation of a carricr can be checked by several means. A method which checks for distortion as well as pereentage modulation involves the use of a linear rectifier feeding into an oscillo-

[^23]graph elenient, the input to the reetifier being supplied with the modulated r-f eurrents.

Modulation pereentage can also be ehecked by means of a peakreading voltmeter of the type shown in Fig. 24. If the peak values of the modulated and ummodulated currents are determined, then the percentage modulation is

$$
\frac{\left(I_{m}-I_{r}\right) \times 100}{I_{r}}
$$

where $I_{m}=$ peak value of the modulated current.

$$
I_{r}=\text { peak value of the unmodulated current. }
$$

Such a method can also be used to give a continuous indication of modulation pereentage, if the tube voltages are adjusted so that the plate current just falls to zero with the nnmodulated signal applied to the imput. The meter reading then would increase with the pereentage of modulation and the meter could be calibrated in terms of this quantity.


Fig. 25. - Circuit diagram of modern 50-kw transmitter.
The circuit of Fig. 25 gives the simplified circuit of a 50 -kw transmitter of modern design; transmitters of lower power rating are essentially the same except, of course, for the lower ratings of the tubes and associated equipment. In this transmitter low-level modulation is used, the modulating amplifier being a 350 -watt tube operating at 1,500 volts through a voltage reducer from 3,000 volts and supplied with audiofrequency modulating power from the final audio-power stage which employs two 350 -watt tubes operating at 3,000 volts. This ratio of audio to r-f power permits complete modulation (100 per cent) without distortion.

The last two stages of r-f power amplification are push-pull stages with cross neutralization; the final stage employs a push-pull arrangement
of two tubes feeding into an r-f transmission line. To reduce harmonie radiation, two shunt eireuits adjusted to the frequency of the second harmonic are connected between ground and each side of the input to the transmission line. During "warming up" periohls and for transmitter tests which do not require actual radiation into the antema, the output of the final stage can be switched from the real antenna circuit to an artificial antenna circuit which consists of coils and condensers and a resistor capable of dissipating 75 kw of r-f energy.

The transmitter is crystal controlled, and with proper maintenance the frequency can be kept contimuously constant within 50 cycles. The quartz plates are ground to approximately the proper frequeney and then final frequency adjustments are made by varying the temperature; the temperature coefficient of the quartz plate varies from 30 to 100 parts in a million per degree Centigrade.

Considerable progress has been made in the method of transferring power to the antenna accomplished by means of high-frequency transmission lines which permit the building of the transmitter enclosure at a considerable distance from the antenna itself; thereby enabling the transmitter buildings to be loeated well out of the immediate field of the antenna. The transmission line behaves exactly like a low-frequency transmission line. A radio-frequency transmission line $1,000 \mathrm{ft}$. long operating at 790 kc exhibits all the phenomena of a 60 -eycle power transmission line 2,500 miles long, except for the fact that the efficiency of the radio-frequency line is about 99 per cent, whereas it is certain that there would be very little power left at the end of the $2,500-\mathrm{mile}$ line operated at 60 eycles.
13. Harmonics in Broadcast Transmitters. Since broadeast transmitters are necessarily expensive, good engineering economy lies in the direction of overloading rather than in underloading the tubes. When this is done, the tubes generate a considerable amount of energy at harmonic frefuencies, and means must therefore be used to suppress radiation of this harmonic energy which would cause interference on some broadcast channel. For example a station broadeasting on 600 ke would, if second-harmonic radiation were permitted, produce interference with other stations operating on $1,200 \mathrm{kc}$. It is therefore necessary to use some scheme for hy-passing and suppressing these harmonies whose production the engineer cannot economically prevent. The extent to which harmonics are climinated is a matter of compromise between their practically complete elimination and the cost of equipment which can be justified. Figure 26 shows circuit arrangements used in a typical 50 -kw transmitter to suppress harmonies. Although the instantaneous peak power in the antenna circuit of such a transmitter may be as high as 200 kw , the harmonic radiation ean be reduced to less than 0.005 watt.

The Committee on Broadcasting in the January, 1930, Proceedings of the Institute of Radio Engineers recommends (see vol. 18, No. 1) that all transmitters be so designed as to limit the field intensities at one mile, of all components which they produce outside of the licensed frequency band, to not less than 0.05 per eent of the fundamental or 500 $\mu \mathrm{v}$ per meter.

A complete discussion of the problem of harmonic suppression and circuit arrangenent for its aceomplishment will be found in an artiele entitled The Suppression of Radio-frequency Harmonics in Transmitters
by J. W. Labus and Hans Roder (Proceedings of the Institute of Radio Engineers, vol. 19, No. 6, June, 1931).
14. Water-cooled Tubes. For tubes of low power artificial cooling during operation is usually not necessary, radiation into the air being sufficient. For the larger tubes, however, artificial cooling is usually accomplished by means of a circulating water system which eauses a sheet of water to pass over the anode surface at very high velocity.


Fig. 26.-Harmonic suppression circuit.
To restriet leakage of current from the anodes to the grounded pipes of the water system, comnection is made between the arodes and the water system through a long length of coiled hose. This interposes between the anode and ground eolumns of water long enough to make the electrieal resistance to ground very high; as much of several hundred feet of eoiled hose may he used giving resistances to ground in the order of 0.5 up to several megohms.


Fig. 27.-Water-cooling and circulation system.
In many eases distilled water is used, the water being maintained at a satisfactory temperature by an artificial cooler since for economical reasons it is desirable that the same water be used indefinitely.
The water cooling and eirculating system is automatically started when the transmitter is turned on and the transmitter is automatically turned off in the event of any failure in the water-cooling system. One method of doing this is shown in Fig. 27, where the water system contains
a Venturi tube whose inlet and output orifices are connected to a device containing two opposed metallic bellows operated by the difference in pressure established between the two orifices by the flow of water. If the flow is interrupted or falls below its normal value, the bellows at once open a contactor and, through additional relays, cause the power supply to be disconnected.

Sometimes a milliammeter is provided on the transmitter panel which indicates the magnitude of the current leaking through one of the closed coils, the amount of current serving to indicate the relative purity of the water, and indicating when it is advisable to change the water supply.

Table II below indicates the ehemical contents of cooling water used at four different radio stations for cooling tubes. The first three samples are unsatisfactory and would form seale. Tube prices heing what they are, it is best to use a closed circulatory system with distilled water. Figure 28 is a diagram of a water-cooled tube.


Fig. 28.-Watercooled tube.

Table II

| Substance | Grains per gallon |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 |
| Calcium carbonate | 4.73 | 0.26 | 3.85 | None |
| Calcium sulphate. | None | 2.76 | Trace | 0.45 |
| Sodium carbonate | 3.91 | None | None | None |
| Sodium sulphate. | 3.09 | 0.28 | 0.24 | None |
| Sodium chloride. | 1.02 | 1.02 | 0.85 | 0.67 |
| Sodiurn and potassium nitrates | 0.41 | None | None | None |
| Magnesium carbonate. | 1.37 | 0.13 | 1.68 | None |
| Magnesium sulphate. | None | 0.76 | 0.19 | 0.47 |
| Aluminum and iron oxides | 0.36 | Trace | Trace | Trace |
| Silica. | 1.22 | 0.17 | 0.81 | 0.15 |
| Total | 16.11 | 5.38 | 7.62 | 1.74 |

15. Power Supply. Plate-voltage supply for transmitters may be obtained from d-c generators, high-vacuum tube rectifiers, mereuryare rectifiers, or hot-cathode mercury-vapor rectifiers. Direct-current generators are generally used for moderate voltages, but hot-cathode mercury-vapor tubes for rectification of high voltages have found rapidly increasing favor because of their reliability of operation and performance.

The hot-cathode mercury-vapor rectifier is one of the newest and evidently the best method of supplying high voltages to transmitter plate eircuits. The operation of the hot-cathode mercury-vapor rectifier is similar in several respects to that of a mercury-vapor rectifier.

The most striking difference between mercury-vapor tubes and highvacuum tubes is the internal-voltage drop between plate and cathode. In the high-vacuum tube, the voltage drop may vary from a few volts to
several thousand volts, depending upon the current, element spacing, etc. In the mercury-vapor tube, the space charge is limited by the aredrop of the vapor which is practically constant at values between 12 and 17 volts regardless of the current.

Table III below gives a direct comparison of the relative efficiency of a high-vacuum tube and two mercury-vapor tubes. Note that the mercury-vapor tubes give very low internal-voltage drop and have considerably higher efficiencies.

Table II.-Comparison of High-vacuum and Mercury-vapor Tube Rectifiers*

| $\begin{gathered} \text { No. } \\ \text { of } \\ \text { tubes } \end{gathered}$ | Radiotron | Circuit | D-c output |  |  | Tube-drop |  | Losses, kilowatts |  | Efficiency, per cent |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Volts | Amperes | Kilowatts | Volts | At am- peres | Filament | Tubedrop |  |
| 6 | UV-214 | 3pdouble Y | 15,000 | 12 | 180 | 1,560 | 6 | 6.9 | 18.7 | 87.5 |
| 6 | U V-8.57 | 3ofull wave | 15,000 | 12 | 180 | 15 | 12 | 1.8 | 0.36 | 98.8 |
| $\dagger 6$ | UV-857 | $3 ¢$ full wave | 19,100 | 20 | 382 | 15 | 20 | 1.8 | 0.6 | 99.4 |

[^24]

Fig. 29.-Hot-cathode mercury-vapor power circuits.
There are two fundamental limits which determine the power output that can be obtained from any number of tubes operated in any type of circuit. These ratings are (a) the maximum peak inverse voltage at which the tube can operate without flashing back and (b) the maximum
peak plate eurrent which the cathode can supply with a reasonably long life.

The maximum poak inverse voltage which ean exist across a tube in any of the usual typers of circuits is mual to the line-to-line peak or crest voltage of the power transformer less the voltage drop of the conducting tube.

The peak plate eurrent depends upon the type of eircuit, tube, filter, and load. In a single-phase full-wave eirenit, emeh tube must carry the full load current for half the time. In the three-phase half- and fullwave circuit, cach tube carries the load current for one third of the time. If the rectifier feeds into an inductanee, square blocks of eurrent are drawn from the rectifier and the peak plate current approaches the d-e value. If the rectifier feeds into a eapacity load plate, current is drawn for only a part of each half eycle and the prak current may reach values of from three to five times that of the d-e load current.

Table IV below gives data on several typical hot-cathode mereuryvapor tubes designed for radio-power supply purposes. The circuits most commonly used with these types of tubes are shown in Fig. 29. The single-phase full-wave and the three-phase half-wave circuits are quite generally used. The three-phase full-wave cireuit was suggested by D. (. Prince as being particularly applieable to the half-wave mereuryvapor tube, since it gives a peak inverse voltage whose magnitude is only 4.5 per cent greater than the average output voltage; the wave form is that of a six-phase rectifier.

Table IV.-Hot-cathone Mercuby-vapor Tube Ratings

| ladiotron | Filament |  | Peak inverse voltage | Peak anode current, auperes |
| :---: | :---: | :---: | :---: | :---: |
|  | Volts | Amperes |  |  |
| UX-866 | 2.5 | 5 | 5,000 | 0.6 |
| UV-872 | 5 | 10 | 5,000 | 2.5 |
| UV-869 | 5 | 20 | 20.000 | 5.0 |
| UV-857 | 5 | 60 | 20.1000 | 20.0 |

## SECTION 15

## RECTIFIERS AND POWER-SUPPLY SYSTEMS

By R. C. Hitchсоск, M.A. ${ }^{1}$

1. Power-supply Design. The main elements in a unit whose input is a.c. and whose output is d.c., in the order of current flow are: (1) transformer, (2) rectifier, (3) filter, and (4) voltage divider. The filter and voltage divider are also used in $B$ and $C$ supply units from


Fic. 1.-Tylical a-c powered unit for furnishing $B$ and $C^{\prime}$ voltages.
d-e supply lines, in which case the rectifier and transformer are not needed. Although the main application of the design of the above items 1 to 4 is for $B$ and $C$ power supply, they may also be applied to filament $A$ supply systems.

It is usually advisable to start the design with the tubes (or with the d-e load requirement), to determine what plate and grid voltages are needed, and then to take up the design of the filter, its rectifier and transformer. It is also possible to start the solution by begimning with the reetifier, thereby determining the maximum output voltages which are reasonable with good filtering and regulation. If any one particular item ( 1 to 4 above) must he used, the other three can be designed to work with that item.

Beginning with the load is quite logical, because the filter-choke design requires the knowledge of the load current, and the ratio of choke inductanee to the filter capacity depends on the load resistance, If, in starting with the desired voltages, it is found when the rectifier is reached that no standard tube will supply a sufficiently high voltage or current, it may be advisable to make the neesssary percentage cut in voltage or current, and to use a standard rectifier, thus reducing the

[^25]output by the percentage mentioned. It is usually easy to design a suitable power transformer, the rating locing inereased by using a thieker stack of standard punthings, the spool size being inereased areordingly.

A voltage divider usually is designed for a definite load on each of several voltage taps. If the load is increased on a certain tap, that voltage decreases and all the other voltages, too, are decreased, the amonnt depending on the amount of the inerease in hoad, and the fraction of total voltage supplied to that certain tap.
2. Parallel Voltage Divider. The simplest form of parallel voltage divider is shown in Fig. 2. To start with, the resistance of the compling devies between the tube plates and the $B$ supply will be neglected. In the series voltage divider these will be taken up in detail.

The woltage applied from $B+$ to $C$ - comprises the total $B$. phas $C$, voltage that needs to be supplied to the load. For example, a UX-245 with a $B$


Fig. 2.-Parallel voltage divider.
voltage of 250 means that the plate is 250 volts positive with respect to the filament. The corresponding grid voltage is 50 , meaning that the grid is 50 volts nemative with respect to the filament. 'l'hus, the filament can be considered as at an intermediate potential botween $13+$ and ${ }^{*}-$. On the voltage divider as shown in Fig, $2, B+$ will he on the upper part of the resistor, $B$ - lower down, and $C$ - still lower down than $B-$.

The tube plates take current from the voltage divider, and the use of Ohm's law gives the resistor values. The grids take no appreciable current, so from $B-$ to $C$ - no allowane need be made for currents entering or leaving, the total current passing through the voltage divider from $B-$ to the lowest $C$ - used. The filament roturns are schematic, without showing the potentiometers which adjust for minimum hum. As shown there are three $B$ voltages, noted at the extreme right of the figure, $\beta_{1}$ for the detertor. $\beta_{2}$ for the radio and audio amplifiers, and $/ B_{\text {a }}$ for the last audio tube. The subscripts on the $C$ foltages correspond with those on the $l s$ voltages. For instance, ( ${ }_{3}$ is the grid voltape for the power tube using $B_{3}$ plate volts.

The power detertor takes $1 B_{1}$ plate volts and ('ı grid volts. If the gridleak type of detector is used there is no grid voltage required, and $\left(C_{1}=0\right.$. The plate currents are $I_{1}, I_{2}$, and $I_{3}$. If, as in the case of $I_{2}$, there are several tubes being supplied with the same voltage, the individual plate eurrents are multiplied by the sumber of tubes. For example, $I_{2}$ in Fig. 's is made up of three equal parts, one part supplying each of threc identical tubes. The
current $I_{0}$, flowing in parallel with $I_{1}$, is known as the circulating or waste current.

The resistance of the voltage divider has been divided into six sections denoted by the letter $R$, with subscripts $A$ to $F$, to avoid confusion by using the same numencal subscripts on $B$ and $C$ voltages. Thus, the voltage drops from $B_{3}$ to $B_{z}$ through the resistor $R p$, from $B_{3}$ to $B_{1}$ through $R_{k}$, etc.

The currents and their directions are shown by arrows, the amounts being indicated by the letter / with appropriate subseripts.

In calculating the resistors of lig. 2 , the equations are:

$$
\begin{align*}
& R_{P}=\frac{B_{3}-I_{2}}{I_{0}+I_{1}+I_{2}}  \tag{1}\\
& R E=\frac{B_{2}-B_{1}}{I_{0}+I_{1}}  \tag{2}\\
& R_{D}=\frac{B_{1}}{\tilde{I}_{0}^{-}}  \tag{3}\\
& R C=\frac{C_{1}}{I_{0}+I_{1}+I_{2}+I_{3}}  \tag{4}\\
& R_{B}=\frac{C_{2}-C_{1}^{2}}{I_{0}+I_{1}+I_{2}+I_{3}}  \tag{5}\\
& R_{A}=\frac{C_{3}-C_{2}}{I_{0}+I_{1}+I_{2}+I_{3}} \tag{6}
\end{align*}
$$

The equivalent resistance of the voltage divider and tube load is used in falculating the firter, and for fig. 2 the equivalent resistance is equal to the total voltage divided by the total eurrent:

$$
\begin{equation*}
R_{\text {cquiv. }}=\frac{B_{3}+C_{3}}{I_{0}+I_{1}+I_{2}+I_{3}} \tag{7}
\end{equation*}
$$

In this equation. as in Eqs. (1) to (6) the absolute values of the $B$ and $C$ voltages are used.
3. Voltage Regulation. The parallel voltage divider has good voltage regulation when the cireulating current $I_{0}$ is large compared to the other currents. For reasons of comomy, however, it is inadvisable to make $I_{0}$ very large. First, the increase in $I_{0}$ causes the equivalent load resistance to go down, which requires (see Fig. 6) larger filter condensers. The extra $I_{0}$, in the second place, canses extra heat in the voltage divider which in turn means that the power transformer must be supplied a heavy current and the operating eost is increased.

The formula for determining the $B+C$ voltage is, to a good approximation:

$$
\begin{equation*}
B+C=E-\left(I_{0}+I_{1}+\cdots\right) R_{t} \tag{8}
\end{equation*}
$$

where $B+C$ are the voltages across the load and voltage divider, $E$ the $\mathrm{r}-\mathrm{m}-\mathrm{s}$ voltage of one high-voltage winding of the transformer, and $R_{t}$ the combined resistance of the chokes, transformer winding and tube resistance.

From Eq. (8) it will be seen that, if any of the individual I's increase, the total $B+C$ voltage decreases, and from Eigs, (1) to (7), written in the form

$$
\begin{equation*}
R_{F}\left(I_{0}+I_{1}+I_{2}\right)=B_{3}-B_{2} \text { rewriting (1) } \tag{9}
\end{equation*}
$$

it is seen that the voltage drop between taps is greater; for example, less voltage is supplied at $B_{2}$ if $H_{1}$ is increased. For good regulation it is essential that the $R_{t}$ of Ec. ( $\delta$ ) be snall compared to the load resistance, and that the circulating current $I_{0}$ le large. For reasons of economy in manufacture as well as operating cost $I_{0}$ should be small so that the filter can be cheaper.
4. Series-parallel Voltage Divider. By putting $I_{0}=0$ ( $R_{D}=$ open cirenit) in Fig. 2 a scries-parallel voltage divider is made. The $C$
voltages are, as hefore, taken from resistors $R_{A}, R_{B}$, and $R_{C}$. The equations of (1) to (8) still hold by putting $I_{0}=0$ wherever it appears.
5. Series Voltage Divider. Figure 3 shows the serics voltage divider, the currents and their direetions being shown by arrows. The currents for the tubes are the same as for Fig. 2, $I_{1}$ being the power-detector plate current, $B_{1}$ and $C_{1}$ the plate and grid voltages for the powerdetector tube, etc.

The scries voltage divider is simpler to figure than the parallel, because there is no circulating current, each $B$ voltage has only one set of tube currents flowing through it, and the grid-hias resistors are separate for each group of tubes. A further simplification results in the calculation of the plate resistors, as the resistance of the coupling device is easily


Fig. 3.-Series voltage divider.
inchuded in the plate-resistor caleulation. That is, the resistance of the transformer-coil choke or coupling resistor between $B+$ and a particular tube plate is considered as incorporated in the resistor incorporated in the plate circuifs of Fig. 3. The last andio stage requires the most voltage and therefore the $B$ and $C$ voltage which it requires is the main faetor in detormining the maximum $B$ and $C$ voltages needed. The total voltage from the filter is not applied to the plate directly but through a coupling device, as indicated by the resistor Rc. This resistor is not a mesns of decreasing the voltage to a proper value but represents the coupling device only.

The total voltage supplied at the left of Fig. 3 is larger than the $B_{3}$ plus Ca used by the last andio tube by amomont equal to the drop in the compling deviere, The voltage at the end of the filter is

$$
\begin{equation*}
E=I_{3} R c+B_{3}+c_{3} \tag{10}
\end{equation*}
$$

Re determines the supply voltage; if $R_{e}$ is large, the reduired $E$ is large, and vice nerisa, The equations for the other resistors are:

$$
\begin{equation*}
R_{A}=\frac{E-B_{1}-C_{1}}{I_{1}} \tag{11}
\end{equation*}
$$

$$
\begin{align*}
& R_{D}=\frac{C_{1}}{I_{1}}  \tag{12}\\
& R_{B}=\frac{E-B_{2}-C_{2}}{I_{2}}  \tag{13}\\
& R_{E}=\frac{C_{2}}{I_{2}}  \tag{14}\\
& R_{F}=\frac{C_{3}}{I_{3}} \tag{15}
\end{align*}
$$

In the power defector and radio and audio amplifiers the $R_{A}$ and $R_{B}$ include the resistance values of the ronpling devices. For example, if a rhoke coil of 1,000 ohms feeds the plate of the power detector then the actual resistance to use will be $\left(h_{A}-1,000\right.$ ohms).
6. Voltage Divider with Graded Filter. A voltage divider of a graded form is shown in Fig. 4. The output stage eomprises two similar tubes


Icia. 4.-Voltage divider with graded filter.
in push pull, an arrangement which requires a minimum of filtering. The $B_{3}$ comes directly from the positive side of the rectifier. Note the filter condenser across from $B_{3}$ to the negative terminal. Siomotimes, as in Fig. 1, the first condenser shown dotted is omitted. When taking the $B$ voltage for a push-pull stage directly from the receiver it is necessary that this first condenser be retained.

The "grading' of this arrangement is apparent; the output stage receives the least filtering, push pull requiring practically no filter when the tubes are matched; the radio amplifiers have one stage of filtering in their $B$ supply; and the power detertor has two stages of filtering for its $B$. This grading is eronomical; the heavy output-tube currents do not flow through any of the filter chokes. This reduees heat losses and allows the design of a smaller choke, or a better one of the same physieal size. The voltage drop of the choke is climinated, thus the powertransformer voltage ean be lower. Many of the feed-back difficulties are also avoided. When common resistors supply several tubes which are in caseade, it is often found that a smatl variation in the output-tube current will change the grid voltage of a preceding tube, which hy virtue of its amplificaticn and coupling, canses a larger variation in theontputtube circuit, This process may be cumulative and continue to build up and "howl" or "motor boat." This feed-back is avoided by soparate resistors, and is especially well eliminated by having a full stage of filtering between the output tube, radio amplifiers, and detextor, as in Fig. 4.

It should again be noted that only with a push-pull output stage is it possible to supply $B+$ directly from a filter. If a single output tube is used, the plate voltage must have at least one stage of filtering (i.e., a series choke and its aceompanying condenser).

Figure 4 gives the coupling units as $R_{1}$ for the detector, $R_{2}$ for each radio amplifier, and $R_{3}$ for each half of the push-pull output choke. The voltage for the sereern grid of the detector tube is furnished by a parallel connection across the $B$ resistor after the serond stage of the filter. The sereen-grid current is small and may be neglected if $I_{0}$, the circulating current, is, say, 10 to 20 ma.

The chokes of Fig. 4 may have a very high resistance, over 1,500 ohms each for $R_{F}$ and $R_{f}$, beratese no very heasy currents flow through them, In fact, it may be desirable to have some high series resistance in the circuit to recluee the voltage from that required by the last audio stage to that needed by the radio amplifiers and deteetor. For this reason, it should be horene in mind that the values of $R_{F}$ and $R_{G}$ for the chokes and $R_{1}$ and $R_{2}$, the plate-coupling units for detector and radio tubes, should be considered as including any voltage-reducing resistor which is needed.

As before, $I_{1}$ is the detertor plate rurrent. $I_{2}$ includes three-tube plate currents, and $I_{3}$ now has two plate currents, the equations for Fig. 4 being:

$$
\begin{align*}
& R_{A}=\frac{B_{1}-I_{s G}}{I_{0}}  \tag{16}\\
& R_{B}=\frac{I_{s G}}{I_{0}}  \tag{17}\\
& R_{c}=\frac{C_{1}}{I_{0}+-I_{1}}  \tag{18}\\
& R_{B}=\frac{I_{2}}{I_{2}}  \tag{19}\\
& R_{B}=I_{3}  \tag{20}\\
& I_{3}
\end{align*}
$$

The equations determining the choke and coupling resistors are:

$$
\begin{align*}
& I_{1}+\left(I_{1}=R-R_{r}\left(I_{2}+I_{1}+I_{0}\right)-R_{1}\left(I_{0}+I_{1}\right)-I_{1} R_{1}\right.  \tag{21}\\
& I_{2}+C_{3}=I_{2}-R_{r}\left(I_{2}+I_{1}+I_{0}\right)-\frac{I_{2} R_{2}}{3}  \tag{22}\\
& B_{3}+C_{3}=I_{3}-\frac{I_{3} R_{3}}{2} \tag{23}
\end{align*}
$$

By sulstituting values cither for the choke resistances or for the roupling coils, Eis. (21) to (2:3) simplify into useful working formulas.

If sereen-grid radio tubes are used, their sereen-grid voltages may be obtained from the same supply as shown in lig. 4 for the detector.

The equivalent resistances of the first and second filter load are not the same, due to the different load currents. For the first filter section the equivalent load is:

$$
\begin{equation*}
R_{\text {enniv. }}=\frac{I_{i}}{I_{:}+}-R_{1} \tag{24}
\end{equation*}
$$

and that for the serond is:

$$
\begin{equation*}
R_{\text {Requiv. }}=\frac{I_{1}}{I_{1}+I_{0}}-R_{r} \frac{\left(I_{z}+I_{1}+I_{0}\right)}{I_{1}+I_{1}}-R_{a} \tag{25}
\end{equation*}
$$

7. Filters. Th.e filters used to give d.c. from rectified a.c. are known as low-pass filters. ${ }^{1}$ Low-pass filters are divided into two classes, tuned and untuned filters. The tuned filter offers a maximum impedance or attenuation to the frequency of the supply, but the impedance at nearby higher or lower frequencies, is not quite so great (see Fig. 5b), although the general trenc of the curve is a rising attenuation as the frequency increases.


Fig. 5.- (a) Low-pass filter, (b) Tuned low-pass filter.
The usual forry of untuned low-pass filter is that of Figs. 1 and 4, using three condensers and two chokes. This filter (Fig. 5a) has a continuously risiag curve of impedance as the frequency increases. To obtain good filtering with this filter it is desirable to choose $f_{c}$, the frequency at which attenuation begins, as low as possible. The equations for determining the proper inductance and capacity for this filter are:

$$
\begin{align*}
& C=\frac{1}{\pi f_{c} R}=\frac{0.3183}{f_{c} R} \text { farads }  \tag{26}\\
& L=\frac{R}{\pi f_{c}}=\frac{0.3183 R}{f_{c}} \text { henrys } . \tag{27}
\end{align*}
$$

where $f_{c}=$ frequency at whieh attenuation begins
$C=$ eapacty in farads
$R=$ resistance in ohms
$L=$ induetance in henrys
As this is an often-used type of filter, Fig, 6 is devised to give the data of Eqs. (26) and (27) in a convenient chart form. The four columns from left to right are $f_{c}$ in eyeles per second; $L$ in henrys; $R$ in load ohns; and C in microfarads. 'Thes with any two of the factors fixed, the corresponding two are deter nined from this chart by a straightedge across the two known factors. For use on 60 cycles half-wave rectification, it is necessary that $f_{c}$ be below 60, and for the double-wave rectificr $f_{c}$ should be below 120 eycles, and the lower the $f_{c}$ the betore will be the filtering at the desired frequeney, as shown by the rising attentation curve of lig. $5 a$.

The third rolu nn $R$ is the usual starting place for finding the filter values, when the voltage divider and tube load have been caleulated

[^26]first. When the point on the $R$ column is fixed, and $f_{c}$, say, 50 cyeles per second, the values of $L$ and $C$ are quickly determined. It is seen



Fig. 6.-Low-pass filter design chart, Pi section.
from Fig. 6 that, for a given cut-off frequency $f_{c}$, as the load resistance increases the $L$ inereases, while the $C$ value goes down. Very high load resistances require chokes of large induetance values, but as highresistance loads mean small currents, the use of large inductances is feasible.

By assuming that the load resistance, $R$, does not affeet the values of $L$ or $C$, a useful approximation ${ }^{1}$ can be secured, concerning the amount of filtering needed in each stage for the circuit shown in Fig. 4. Suppose the output stage is supplied with plate power which is filtered $x$ per cent, so that its hum is reduced to $x$ per cent of its unfiltered value, and at this value it gives no noticeable hum in the loud-speaker. Suppose further that the amplifiention between the plate of this last tube, and the preceding tube plate is $A$. Then the preeeding stage must have its power supply filtered $x / A$ per cent. This means that the ripple in the plate supply of the next to the output stage must be $1 / A$ as much


Firi. 7.-Smoothing effereded by various products of inductance (henrys) and capacity (microfarads). as the output stage, beeause of its amplification. Figure 7 gives this relation in useful graphic form. If a stage of amplification has a gain of 25 , it is essential that the

[^27]preceding tube be supplied with plate power with one twenty-fifth the ripple, or 4 per cent. An $L C$ product of 56 will give this degree of filtering at 100 cycles, aecording to Fig. 7, and this means a 28 -henry ehoke and a $2-\mu \mathrm{f}$ condenser which are close to standard values.

A similar circuit to Fig. 4, using resistors instead of chokes, is frequently used to provide an extra degree of filtering for stages preceding a power


Fre. 8.-Circuit which minimizes ferd bark. stage (see Fig. 8). This is especially useful when the output stage requires a high voltage, and the voltage for the other stages must be materially reduced. The reason chokes are used is that they have high impedance to the mivanted reetified a.c., but low resistance to the desired d.e. Now if the amount of d.e. is no great object, a resistance of as great a value as the innedance can lo employed, and this is quite useful in some cases where the voltage is to be reduced. If, as in Fig. 8, two stages of choke and condenser filtering are used, the additional resistance and condenser filter stages


1\% m. 9.-Filtering efferted by resistance (ohms)-capar-ity (microfarads) circuit. simply increase the amount of filtering, without the extra cost of chokes which are more expensive than resistors. The $R C$ values and the degree of filtering are given in Fig. 9 and the use is the same as that of Fig. 7. The eireuit of Fig. 8 is quite similar to Fig. 4, in eliminating the undesired feed-baek effects.

The use of the chart (Fig. 6), based on Eqs. (26) and (27), gives very satisfactory


1ina. 10.-Effert of $c_{1}$ on voltage atvailable.
results, but the experimental "urves' showing the efferets of lomed, and

[^28]different condenser values are quite interesting, and will give a clearer idea of the validity of the chart. ${ }^{1}$
8. First Filter Condenser. The offert of the first filter condenser, shown dotted in Fig. I, is to ratise the available output voltage, Figure 10 gives the output voltage available as the first condenser $C_{t}$ is changed, as a function of the load current.

Figure 11 gives the per eent ripplo in output as the capacity of $C_{1}$ is varied. This curve shows that the use of a single condenser $C_{1}$ can never reduce the ripple much bolow 10 per cont with a reasomable value of capacity. Much loss than ono-half of 1 por cont is neoded in a good filter, and as at least two condonsers must be used to provide a single filter section, Fig. 11 agrees with the theory.
9. Second and Third Filter Condensers. Figure 12 gives the per cont ripple as a function of $C_{2}$ and ('3 for a given emrrent drain. It will be seen that when $C_{2}=C_{3}$ the most eronomieal


Fig. 11.- liffert of $r_{1}$ on ripmle in output.


Fiti. 12.-Percentage ripple as a function of ('o and C's.
filter results. For example, supppose the ripple permissible to be 0.1 per cent. This can be supplied with $C_{2}=0$ if $C_{3}=5 \mu \mathrm{f}$, a total of $5 \mu \mathrm{f}$. But this can also be met with $C_{2}=2 \mu \mathrm{f}$, and $\mathrm{C}_{3}=2 \mu \mathrm{f}$, a total of only $4 \mu \mathrm{f}$. The dothed line gives the ripple value where ('2 and C $C_{3}$ are equal. The per cont ripple figures of course apply only to a specific filter, but the relations between the condenser values hold for similar filter cireuits.

Figure 13 gives the pereentage hum as a function of the corrent drain. This shows that the higher the values of $C_{2}$ and $C_{3}$ the lower the percentage hum. It should be remombered that inereasing current means a derreasing load resistather. From lig. 6 , assuming $f_{c}$ is constant, the ropareity should inereaseand the induetaneroderease as the load resistanee decreases. Thus, as Fig. 13 was taken using the same imhutane eooils throughout, larger values for $C_{2}$ and $C_{3}$ are nexded as the current

[^29]drain increases. It is almost certain that the inductance values of the chokes decreased as the current through them increased. To a ecrtain extent this inductance decrease does not interfere with the filtering, especially if the eapaty is increased, as, referring again to Fig. 6, when the resistance decreases to half a certain value, the capacity should be doubled, while the inductance need he only half its formor value, if $f_{c}$ be kept the same. Thus in Fig. 13, as in the other figures, the experimental facts agree with the theoretical chart (Fig. 6) and Eqs. (26) and (27) for this type of filter.

10. Tuned Low-pass Filter. Two tuned low-pass filter circuits are given in Fig. 14, $b$ and $c$, whose attenuation chararteristies were given in Fig. 5b. For comparison, Fig. $14 a$ gives the ordinary low-pass filter.

For the tuned filter of Fig. 14b, having the series (hokes shunted by small condensers, the equations are

$$
\begin{align*}
C_{1} & =\frac{1}{4 \pi f_{c} R a \sqrt{ } a^{2}-1}=\frac{0.07858}{f_{c} R^{2} a \sqrt{ } a^{2}-1} \text { farads }  \tag{28}\\
C_{z} & =4 C_{1}\left(a^{2}-1\right) f a r a d s  \tag{29}\\
L & =R^{2} C \text { henrys }  \tag{30}\\
a & =\frac{f_{k}}{f_{c}} \tag{31}
\end{align*}
$$

For the tuned filter of lig. 14c having suatll chokes in series with the condensers, the equations are

$$
\begin{align*}
& C_{3}=\frac{V_{a}{ }^{2}-1}{f_{c} R a}=\frac{0.318: 33^{\prime} a^{\prime}-1}{f_{C} R a} \text { farads }  \tag{32}\\
& L_{:}=R^{n} C_{3} \text { henrys } \tag{33}
\end{align*}
$$

$$
\begin{align*}
& L_{3}=\frac{L_{2}}{4\left(a^{2}-1\right)} \text { farads }  \tag{34}\\
& a=f_{l a}  \tag{35}\\
& f_{c}
\end{align*}
$$

If wide variations in the supply frequency were likely to occur, this type of filter would not be advisable. As a rule, the frequency of most power companies is now kept constant enough to run symehronous electrie clocks, and this is quite good enough for this trpe of tuned circuit. However, the values of $C_{1}, L_{11}$, and $C_{3}$, $L_{3}$ have to be aceurately maintained in order fully to secure the advantages of the tured filter. Due to these closer manufacturing limits, the use of the tumed filter is not so wide


Fig. 15.-Tapped choke-filter circuit. in large production as its advantages would seem to warrant. A combination of tuned low-pass filter and the regular-type filter is sometimes used with very good results.
11. Filter Chokes Having Mutual Inductance. An interesting type of filter is one in which the first and second choke are magnetically


Fig. 16.-Tapped choke. Percentage of total turns (Fig. 15) used in $h_{1}$.


Fig. 17.-Condenser values for tapped choke filter (Fig.15).
coupled. ${ }^{1}$ Figure 15 shows a tap on the first choke ${ }^{2}$ to which the positive rectifier lead and a filter condenser are commected. The a-c component,

[^30]flowing through the $L_{1}$ section of the choke, neutralizes to a large degrees the a-e component of $L_{2}$ so that the output ripple is roluced. Figure 16 shows the relative a-e output ripple with a variable $C_{2}$ as the tap on the choke is changed so that $L_{1}$ uses from 10 to 40 per cent of the total turns of the choke.

Figure 17 shows how the values of $C_{1}$ and $C_{3}$ affere the relative a-c, ripple as a function of $C_{2}$. These curves indicate that the best $C_{2}$ value is fairly independent of $C_{1}$ and $C_{s}$.
12. Design of Filter Chokes. It is important the the filter choke be designed to earry the desired direet current and at the same time to offer the necessary reatance to the a-c component. A direct method of design ${ }^{1}$ has been derived using both the normal and incremental permeability curves for the core material.

The derivation gives two working equations:

$$
\begin{align*}
& \frac{L I^{2}}{V}=\frac{B^{2}\left(\frac{1}{\mu}+\frac{a}{l}\right)^{2} \times 10^{-8}}{0.4\left(\begin{array}{c}
1 \\
\mu د
\end{array}+\frac{a}{l}\right)}  \tag{3i}\\
& \frac{N I}{l}=\frac{B}{0.4 \bar{\pi}\left(\frac{1}{\mu}+\frac{a}{l}\right)} \tag{37}
\end{align*}
$$

where $L$ = henrys
$I=$ d-e amperes
$V^{r}=$ eore volume in cubie contimeters (em")
$N=$ turns
$l=$ magnetic path in centimeters
$a=$ air gap in centimeters
$B=$ steady flux density on iron and air gap in gausses
$\mu=$ normal permeability $B / I I$
$\mu \Delta=$ incremental permeability $\Delta / \beta / \Delta / /$ for a minor hysteresis loop
The original curves were plotted with $a / l$ as a parameter, $L I^{2} / V$ being the ordinate, and $\mathcal{W} / / /$ as the abscissa for both 4 per cent silicon steel and hipernik. Figures 18 and 19 are alignment charts which include the data of the oriminal curves. $L I^{2 / V}$ is the left column, and $X I / l$ and $a^{\prime} l$ are on the right column. A straightedge passing through a given $L I \pi / V$ and tangent to the curve in the eentral part of the chart will cut the right column at the corresponding value of $N I / l$ and $a / l$. The reverse procedure, beginning with $N / / l$, is also possible.

Figure 19 gives typical permeability curves for three grades of magnetic material which is commerciatly available. ${ }^{2}$ A chart for calculating chokes, using Armeo Radio 4 is Fig. $19 b$, the values of $L I^{2} / I^{2}$ and $N I / l$ being the same as for Figs. 18 and 19. In Fig. 196 cither the desired value of $L I^{2} / V$ is followed over the curve and then down to $N / / l$ or the reverse procedure can be followed. The gap ratio a/l shown opposite the curve has exactly the same signifieanee as before.
13. Designing a Choke to Carry D-c. A small choke to carry 80 ma and have 14 henrys is desired. The left column of lig. 18 is $L I^{2} / \mathrm{V}$, and this is raleulated first. $L$ is 14 henrys, $I$ is 0.08 amp. $I^{2}$ is $64 \times 10^{-4}$ amp. ${ }^{2} V^{\prime}$ is the volume of the core, which was calculated to be $83.6 \mathrm{jcm} .^{3}$

[^31]$$
\frac{L I^{2}}{\bar{V}}=\frac{14 \times 64 \times 10^{-4}}{83.6}=107 \times 10^{-4}=0.00107
$$

Lining up this value with a straightedge which is tangent to the central curve (Fig. 18) the value of $N 1 / l$ is found to be 18 . The core used has $/=14 \mathrm{~cm}$ so $N=18 \times 1 / I=18 \times 14 / 0.08=3,150$ turns. Thus to get 14 henrys, 3,150 turns are wound on the eore given. To have this inductance at 80 mat an air gap is needed, as shown in Fig. 18, the $a / l$ (gap ratio) being (0.0021. As $l$ is $14 \mathrm{~cm}, a=l \times 0.0021$ or $14 \times 0.0021=0.029 \mathrm{~cm}$ (equivalent to $0.029 / 2.54=0.011 \mathrm{in}$.$) . This required air gap is made by inserting paper$ sheets of the proper thickness between the punchings, and then clamping them firmly in position.

ig. 18.-Choke design; 4 per rent Fui. 19.-Choke design; hipernik core. silicon rore.

The inductance of a choke depends to some degree on the frequency. For use with low frequencies in a filter circuit the inductance remains practically constant. Both the hysteresis loss and eddy-current loss are of importance in choosing a core material for chokes and transformers. The hysteresis loss is dirertly proportional to the frequeucy if the maximum flux density remains constant; and to the 1.6 power of the maximum flux density if the frequency remains constant.

The eddy-current loss can be kept low by using thin sheets of core material. A usual standard thickness is 0.014 in., and this is quite satisfactory for filter choke and transformers for 60 rycles. The insulation hetween laminations does not need to be very thick, the usual oxide layer on the sheet being sufficient.
14. Filter-condenser Ratings. Some rectifiers begin supplying rectified voltage before the tubes in the load heat up sufficiently to take
their rated currents. (This is especially true of the slow indirect-heated tubes.) For this reason it is often desirable, especially from a factor of safety viewpoint, to use peak voltages in calculating all condenser ratings.


Fig. 19a.-Typical permeability curves of radio grades of Armco iron.
The first condenser should, then, be able to stand the peak voltage of the power-transformer secondary. For a 400 -volt secondary the peak is 564 volts. For reliable continuous use, the rating of the first filter condenser should be 564 volts. If no current flows, the voltage




Fig. 19b.-Choke design; Armco Radio 4. Fig. 19c.-Typical reactor desigr curve; $V$ in cubic centimeter anc $l$ in centimeter. Armco Radio 4.
on hoth the second and third condensers will also be within a few per cent of the peak value 564 volts.

Assuming that an appreciable percentage of the total load current flows in the voltage divider as a "waste" or "circulating" current
( $I_{0}$ in Figs. 2 and 4) the sceond and third condenser ratings do not have to be as high as that of the first condenser, by the amount of the voltage drop in the chokes. This drop is figured by the usual $E=I R$ formula, where the circulating current is $I$ and the resistance is that of the resperetive chokes.

If an appreciable load of resistors, or fast-heating tubes is always in the circuit, the IR drop through the chokes can be subtracted from the voltage applied to the first condenser. For instance, if a current of 60 ma flows through the first choke having $R=400$ ohms, the voltage drop is $0.06 \times 400=24$ volts. Assuming the r-m-s voltage (neglecting the tube drop), the first condenser is 400 volts, the steady voltage eomponent at the seeond condenser is $400-24=376$ volts.


Fig. 20.-Half-wave rectifier, different load circuits.
To this should be added 10 per cent to allow for the ripple, so that $376 \times$ $1.1=413.6$ volts should be the d-e rating for the second condenser.

It is true that a good filter condenser will stand, for a time, voltages greater than its d-e rating, but the practice of applying these higher voltages is seldom advisable.
15. Rectifiers. The general types of rectifiers are:

Varuum-tube rectifier with filament cathode.
Gas-filled tube with filment cathode.
Glow rectifier, gas filled.
1)ry-disk metal rectifier.

Electrolytic rectifier.
Any of these can be used as either half- or full-wave rectificrs, although some of the units are half-wave deviecs, two being required to give full-wave rectification.
16. Vacuum-tube Rectifier with Filament Cathode. This type of rectifier is used in nearly all a-e powered radio receivers, and has numerous
applications in higher powered units. Some oscillograms ${ }^{1}$ showing the effect of different load eireuits are given in Figs. 20 and 21. In both figures, the letters $a$ to $e$ refer to similar load cireuits, $a$ being a simple resistor load, $b$ a $4-\mu$ fondenser across the resistance, $c$ a 20 -henry ehoke in series with the resistor, $d$ a standard threc-eondenser, two-choke filter with load resistance, $e$ the same as $d$ with the first condenser omitted.

For each load three factors are shown, the $V$ letters denoting the oseillograph vibrators, the transformer secondary voltage being $V_{3}$, the tube current $V_{2}$, and the load eurrent $V_{1}$. The curves of special interest are those of $d$ and $e$ in Figs. 20 and 21. In both figures $d$ shows a severe load current being drawn from the rectifier tube, the peak current from the half-wave tube being 540 ma, and the output


Fig. 21.-Full-wave reetifier, different load circuits.
eurrent 102 ma , a ratio of $5.3: 1$. The full-wave tube peak eurrent is 290 ma, while the output eurrent is 118 ma , a ratio of $2.5: 1$. For the $e$ section of these two figures, the half-wave tube peak current is 130 ma and the load 45 ma , a ratio of $2.9: 1$ while the full-wave peak current is 110 ma , and the load 96 ma , a ratio of $1.5: 1$. In all these curves the power transformer was the same, and an idea of the relative output voltages and currents can be secured by comparing the desired cireuits of Figs. 20 and 21.

From the standpoint of the rectifier tube, these figures show that the omission of the first filter condenser will decrease the high periodic loads whieh are required by the standard filter having an input condenser. By referring to Fig. 10 it will be seen that the omission of $C_{1}$ decreases the available voltage, and this is verified by the curves in Figs. 20 and

[^32]21, as the same transformer supplied the voltages to both dand $e$ eireuits in turn.

Figure $22^{21}$ gives the load current, through several eyeles, for several forms of filter. The letters are made the same as for Figs. 21 and 20 wherever possible for convenient reference. Curve $B$ of Fig. 22 corresponds to the $b$ curve of the full-wave rectifier of Fig. 21 while $1 B^{\prime}$ is the same as $b$ with the condenser caparity approximately six times as large. $B^{\prime \prime}$ is the same as $B^{\prime}$, for a half-waye rectifier, and $B^{\prime \prime \prime}$ hats about six times as much eapacity as $B^{\prime \prime}$ but is otherwise the same. Curve C corresponds to the regulare of the former figures, and (" is the same as $c$ with a 2.13 mid condenser across the reetifior side of the choke. Curve $C^{\prime \prime}$ is like (" with the condenser incerased to nearly six times its original value. Curve (D resembles the d of the former figures, exeret that it comprises only one filter section instead of two as in Fig. 21.
17. Characteristics of Rectifiers for Receivers. The UX-280 full-wave reetifier and IXX-281 halfwave rectifier are largely used in reecivers, and in


Fig. 22.-Load currents for several forms of filter. addition to their characteristies as given in Table I, the curves of Figs. 23 to 25 give their arailable voltage output as a function of the r-m-s transformer secondary voltage and load current.

Table I.-Vacuum-type Rectifiers, Filament Catiode

| Type | Filament |  | Maximum a-c supply, r-m-s voltage | Maximum d-c land current, milliamperes | Cooling |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Volts | Ainperes |  |  |  |
| UX-280. | 5.0 | 2.0 | $33^{3} 0^{2}$ | $125^{3}$ | A ir |
| UX-281. | 7. 5 | 1.25 | 7004 | 8.75 | Air |
| UV-217. | 10.0 | 3.25 | 1,500 | 200 | Air |
| [V-217C | 10.0 | 3.25 | 3,000 | 1.50 | Air |
| UV-1651. | 11.0 | 14.75 | 4,000 | $250$ | Air |
|  |  |  | Maximumpeak inverne voltage | 1)C: amperes |  |
| UX-218. | 11.0 | 14.75 | 50,0\%) | 0.75 | Air |
| UV-8036. | 11.0 | 16.75 | 50, 0100 | 0.85 | Air |
| UX-219. | 22.0 | 24.5 | 50,000 | 2.5 | Air |
| UV-855 | 14.5 | 52 | 50,000 | 5.0 | Water |
| UV-214 | 22.0 | 52.0 | 50.000 | 7.5 | Water |

${ }^{1}$ UX-280 is the only full-wave rectifier in this table.
${ }^{2} 350$ volts $\mathrm{r}-\mathrm{m}-\mathrm{s}$ maximum per plate.
3 Both plates.
4650 volts is recommended.
${ }^{5} 65$ nia is recominended.
18. Hot-cathode Mercury-vapor Rectifier. The hot-rathode mercuryyapor rectifier ${ }^{2}$ differs from the mercury-are tube in two respects. First, it operates at a relatively low temperature, so that the vapor pressure

[^33]is low. This low mereury pressure gives it useful characteristic, a high breakdown voltage in the inverse direction. Second, the electrons are emitted from the filament and not from th pool of mereury. In the second respect this tube resembles the vacumm-tube reetifier, but the


Fis. 23.-Output characteristics. LX-280.
difference lies in the much lower potential drop due to the nentralizing of the filament space charge by the positively charged mercury ions.

The filament-to-plate drop of the mereury-vapor tube is about 15 volts, and is practically independent of the load eurrent. This low drop


Fig. 24.-Output of UX-281.


Fus. 25.-Full-wave rectifier (two UX-281).
helps regulation as well as inereasing the available d-e output. This tube is self-igniting, and does not require the starting mechanism of the mereury-are rectifier. Tahle II gives tube characteristics.

Table II.-IIot-cathone Mehcury-vapor Rectifiela

| Type | Pilament |  | Maximumperk inverse, wolts | Maximumpeak plate current. amperes | Approximate volts drop, in tube |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Volts | Amperes |  |  |  |
| RCA-82. | 2.5 | 3.0 |  |  |  |
| RCA-8:3, | 5.0 | 3.0 | 1.400 | 0.8 | 15 |
| RCA-871 | 2, 2 | 2.0 5.0 | 5.000 7.600 | ${ }_{0} 0.3$ | 1.5 |
| T1-872.. | 5 | 10.0 | 5.000 | 0.6 | 15 |
| [15-869 | 50 | 20.0 | 20.000 | 5. 0 | 1.5 |
| ['T-8.7 | 5. 0 | 20.0 | 20,000 | 20.0 | 15 |

19. Rectigon Bulbs. Although this section is primarily devoted to the supplying of high woltages and low currents, there is a definite field for a low-voltage high-eurrent rectifier. The argon-filled, tungstenfilament Rectigon bulbs fill this need. The use is largely that of charging storage batteries and no filter is needed for this application.

Editor's Note. The Tungar rectifier is a similar tube made hy the General Electric Company.

Filters have bern designed for use with these reetifiers, so that the output can be fed directly to the filaments of (l-e radio tules. To design a proper low-pass filter for dee tube filament currents, Eqs. (26) and (27) should be used, as the chart of Fig. fi does not cover this range. The condenser has to have a large rapacity, and the low voltage "dry" eleetrolytic condensers are often used. In using these condensers it is important to connect the corree polarity to the reetifier.

Table III.-Recthon-bulab Ciaracteristics

| Number | Filament |  | Ionad, amperes | Approximate drop in tube, volts | $\begin{aligned} & \text { d-e load, } \\ & \text { voits } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Volts | Amperes |  |  |  |
| $\underset{289416 \dagger^{28}}{28915 *}$ | 2.8.7. | 17 | $\stackrel{2}{6}$ | 10 10 | $\frac{75}{85 \dagger}$ |

* Style number of Westinghomse Vlectric and Manufarturing Company.
$\dagger$ Often used up to 100 wolts.

20. Mercury-arc Rectifiers. Formerly, mercurv-are rectifiers were most used ${ }^{1}$ in the fiold lying betwon the Roctigon and the filamentvacuum reetifier. With the introduction of the mereury-vapor tubes, however, many of the advantages of the mereury-are rectifior-low voltage drop, high effieieney-were duplientod. The voltage drop of a typical moreury-are rectifier tube is about 12 volts, as combared with 15 for the mercury-are reetifier. 'The mereury-are' tube reguires a starting electrode, and usually a mochanioal tilting devier for starting.
${ }^{1}$ Prince and Vognes "IPrinciples of Mercury Are Rectifiers and Their Circuits," p. 23, MeGraw-1Iill Book Company, Inc.
21. Glow Rectifier. The Raytheon tube uses a cold cathode, with two rod-shaped anodes, giving full-wave rectifieation. Helium gas at low pressure fills the bulb. With both electrodes cold, a small current flows in the reverse direction in Raytheon tubes. Another characteristic is the abrupt current rise of the output of this type of tube. No current

flows until the glow discharge takes phaere, and this requires a voltage of several hundred volts, the actual value depending on the electrode shape, spacing, material, gas, and pressure. When the eurrent starts, it does so abruptly until the steady-glow voltage is reached (see Fig. 26). Filter circuits using the Raytheon tube have a buffer condenser from each anode to cathode (see Fig. 27).

> Table IV.-Paytheon Rectifier Tubes

| Tyue | Rated output, volts | Rated output d-c milliamperes | Maximum rated r-m1-s volts per plate |
| :---: | :---: | :---: | :---: |
| 13 H | 300 | 12.5 | 350 |
| 13A | 200 | (370) | 350 |

These tubes are more sensitive to voltage overload than to current overload, ${ }^{1}$ the high voltages causing insulation troubles. The guaranteed life at full load is 1,000 hours, but this is frequently more than doubled in practice. The maximum efficiency of the tube iteclf is ahout 55 per eent. ${ }^{1}$

It is usually desirahle to use filter condensers with a large safety factor of voltage rating, as the glow rectifier supplies $B$ and $C$ voltages before tube filaments can heat up suffieiently to take their rated plate currents.
22. Dry-contact Rectifiers. The crystal detector is a familiar example of a dry-contact rectifier. The most important dry-contact rectifier for power supply is the copper-cuprous oxide Rectox type. The theory of these rectifiers is not completely understood, and the assembly of a unit which has long life and good properties requires special engineering information. Cooling is especially important in these rectifiers, the rating being increased by the use of cooling fins, or by drafts of air directed on the unit. The proper current densities are important in sceuring a desirable ratio of forward to inverse resistance.
: KRyster, QST, May, 1929, p, 33.

The usual rating of a $11 / 2$-inch diameter Rectox disk is $1 / 4$ amp. and 3 volts, but in some cases where the operating conditions are favorable, the current and voltage can be nearly doubled.

These rectifiers allow an appreciable reverse current to pass, this current inereasing with temperature rise. The operating temperature should be preferably below $100^{\circ} \mathrm{F}$. The leakage eurrent is usually of the order of milliamperes, when the load current is amperes. A typical eurrent-voltage curve is Fig. 28. ${ }^{1}$
23. Circuits for Dry-contact Rectifiers. One large use of dry rectifiers is battery chargers. Even for this low voltage several disks in series have to be used. With this in mind, a simplification of the transformer can be made; i.e., no center tap need be supplied. Figure 29 shows the cirenit, a bridge form. This eireuit is not used with tube reetifiers, as it requires four rectifying arms, which would mean four half-wave tube reetifiers. With the Rectox this is no disadvantage,


Fig. 28.-Typical Rectox cur-rent-voltage eurve. as the series disks are simply grouped in four seetions.

In Fig. 29 when $A$ is positive, the path of the current is $A D B C$; and when $C$ is positive, the current path is CDBA. During the time that $A$ is positive, nearly the entire transformer voltage is applied arross the bridge arm $D C$ and across $A B$. It is this voltage which is the limiting factor-the 3 volts per disk, as mentioned previously.


Fig. 29.-Bridge circuit for Rectox rectifier.


Fig. 30.-Wlectrolytic rectifier connections.
24. Electrolytic Rectifiers. Eleetrolytic (or chemical) rectifiers are bulky and, due to their liquid, are likely to be messy. (A layer of oil on top of the liquid will prevent evaporation and crecping of the solution.) These rectifiers are eronomical and especially well suited to amateur use. The circuit for electrolytic rectifiers can be a brilge connection like that of Fig. 30 where the arrows representing the direction of current indieate several cells in series. Another circuit for electrolytic rectifiers is given in Fig. 30.

[^34]The theory of electrolytic rectification" is as follows: "On the anode a solid oxide film is formed which increases in thickness with the passage of the current; at the same time a thin film of gas is formed on the solid film which further increases the resistance of the cell. The action of rectification is attributed, therefore, to the ease with whieh free electrons, which are present on the surface of the anode, can penetrate the oxide and gas layer owing to the high potential gradient, and traverse the electrolyte to the cathode; whereas the heavier cations are more or less completely held up by the film on account of their greater mass. This results in the production of a high counter e.m.f. or e.m.f. of polarization, which opposes the passage of a reverse current."

The (pure) aluminum-lead rectifier, in a dilute sodium bicarbonate, baking soda, solution, is an economical rectifier ${ }^{2}$ for fairly low currents, as for instance as a $B$ supply for power tubes.

The tantalum-lead rectifier in a sulfuric aeid solution is better adapted to heavier load currents, especially for battery chargers.

Duriron and duralumin ${ }^{3}$ also can be made into a good electrolytic rectifier.

The current flow in the usual sense, opposite to the electron flow, for these three rectifiers, is given in Fig. 31.
25. Current Density, Aluminum Lead. The usual current density allowed for an aluminum-lead rectifier is 40 ma per square inch of aluminum sheet, and a safe voltage to use is 40 volts per edl. As these rectifiers are especially used on high voltages, several cells are used in series, as shown in Fig. 30.

When newly assembled, the cells will not stand full voltage, and a forming process is necessary. During this forming, the cells should not be allowed to pass more than their rated current. To do this, less than the final rated voltage must be applied, and it is usual to use a lamp bank or other resistance in series with the power transformer primary. As the aluminum plates beeome dull white, the current will decrease, and the lamp bank can he progressively reduced in resistance, until the cells are being supplied full operating voltage at the rated current.
26. Duriron-duralumin Rectifiers. The duralumin anode has the composition 94.66 per cent ahminum, 3.93 per cent copper, 0.56 per cent manganese, 0.50 per cent magnesium, 0.33 per eent silicon, and 0.02 per cent carbon, and when it has become formed it offers a more stable rectifying film than pure aluminum. Another advantage is that the electrolyte of this cell has a lower resistance than the soda solution of the aluminum-lead cell. The duriron-duralumin eell uses as electrolyte a solution of 93 parts by volume of a 20 per cent solution of diammonium hydrogen phosphate, 3 parts of a 10 per cent solution of potassium dichromate, and 4 parts of an 8 per cent solution of oxalic acid. Potassium dichromate is here used as a depolarizer to decrease the internal resistance of the cell. The duriron electrode is a brittle iron-silieon alloy containing about 13 per cent silicon, which resists the electrolytic corrosion.

[^35]In the reference given, a $3 / 16$-in, duralumin rod is enclosed in a hard rubber tube, so that only $3 / 8$ irr. of the rod protrudes. The exposed area, $0.01 \mathrm{st}, \mathrm{in}$. can rectify 30 to 40 ma , and at this load the temperature of the eells never rises above $40^{\circ} \mathrm{C}$.
27. Transformers. The design of a reliable power transformer having high efficiency, requires fairly claborate calculations, ${ }^{1}$ and to take into account the die. which flows in a transformer sccondary when a half-wave rectifier is used, some interesting equations have been derived. ${ }^{2}$

A simple approximate-lesign method will be given here, for the construction of single-phase low-powered transformers up to 180 voltamp., or 180 watts for approximately unity power factors. This design is especially suited to transformers which supply a full-wave rectifier and filament cnergy to an a-c powered radio receiver, threc factors making it possible to secure a satisfactory transformer without complicated design methods, these factors being:

1. There is no urgent need for high efficiency. An 80 per cent efficient transformer which takes 60 watts to supply 48 output watts is fairly satisfactory, if it can radiate the heat which it generates.
2. These transformers are operated at a fairly constant load. This improves the maintenance of the various output voltages as each secondary winding will have a constant $/ R$ drop.
3. The load on the transformer secondary is nearly of unity power factor. The filament power boad is essentially a resistance load, with unity power factor. The current supplied to the filter has slightly Ioss than unity power factor, but this ean be disregarded in low-powered transformers. The indirect heated receiving tubes, U Y'-227 and UJ Y-224, require less than half as much dee power in their plate and grid cireuits, as that which is needed to heat their cathodes. This would mean a unity power-factor heater supply and (assuming a series voltage divider) less than half as many additional watts for plate and grid supply, at a lower power factor. It is true that a power tube, such as [ $\mathrm{XX}-250$ at its maximum rating, uses slightly over three times the wattage in its $B+C$ cirenit than in its filament. It is rare, however, to have more than two power tubes in a receiver, and the assumption that the power factor of the secondary is unity is usually not over 20 per eent off. This means that the wire of the high-voltage secondary and of the primary should be inereased to allow for this added current.
4. Small Transformer Details. Economy in a transformer is secured when the winding encloses a maximum of core area with a minimum of wire, and the magnetic path should be as short as possible.

The core form of a small transformer can be of several shapes, hut it is usual to use standard punchings shaped like eapital letter E's. As a rule, two punchings are used, one having longer legs than the other so that the magnetie circuit "breaks joints" in stacking the iron. Another convention usually followed in small transfomers is the use of a singlewinding form, all secondaries and primary being on the middle leg of the E core.

The spool form is usually an insulating tube, and side pieces may be fitted on which terminals are placed, or, if the coil is to be machine wound

[^36]with interwoven cotton, the side pieccs can be omitted, and flexible leads provided.
29. Ten Steps in Designing a Small Power Transformer. 1. Determine the Volts and Amperes Needed for Each Secondary.
a. Find the total maximum secondary watts $=\Pi_{s}=E_{1} I_{1}+E_{2} I_{2}+\cdots$
$b$. Find the total watts needed for primary $=\boldsymbol{w}_{p}$
$$
\text { Assuming } 90 \text { per cent efficiency } W_{p}=W_{s} / 0.9
$$
c. Find primary amperes assuming 90 per cent power factor
$$
I_{p}=\frac{W_{p}}{E_{p} \times 0.9}=\frac{W_{s}}{0.81 E_{p}}
$$
and for $E_{p}=110$ volts, $I_{p}=W_{s} / 89.1 \mathrm{amp}$.
2. Size of Wirc. Knowing the eurrent for each winding, the wire size is determined by the circular mils per ampere which it is desired to use. A safe rule is to use 1,000 cir. mils per ampere for transformers under 50 watts, and 1,500 cir. mils per ampere for higher powers.
3. Core Considerations. A curve showing core areas for different powers is Fig. 32 which shows the area for 40 watts to be $1 \mathrm{sq} . \mathrm{in}$., 70 watts 1.5 sq . in.,


Fig. 32.-S mall power transformer core area as a function of watts.


Fin: 33.- Core-loss curves Armeo Radio grades ( 60 w ).

2 sq . in. for 120 watts. The area of the core is the same as the inside dimensions of the spool, making a 10 per cent allowance for stacking; for example, ai spool 1 by 2 in . inside would enclose 2 si . in., but, allowing for a 10 per cent loss, only 90 per cent or $0.9 \times 2=1.8 \mathrm{sq}$, in. is the net eore area. The core area is needed to determine the turns per volt.
4. Core Loss and Induction. The flux density at which the core is to be worked determines the iron (core) loss. lyigure 33 gives several curves of different core materials, watts per pound being nlotted against flux densities in kilolines per square inch. Sixty-five kilolines per square inch is an average value of the induction. The making of a curve such as Fig. 33 depends largely on experimental data, not directly on a theoretical basis. For this reason, no definite value of the core loss can be given; it depends on the quality of core material which is available. It shoulal be noted that better and better core material is constantly being made, having lower loss per pound, so that the use of higher flux densities is becoming possible. Up to 14 kilolines is not uncommon, but unusual for this application. The core loss increases with frequency, a typical curve being Fig. 34.
5. Induced-voltage Equation, Turns per Volt. The elementary definition, that $10^{4}$ magnetic lines cut, per second, will induce one volt pressure, is the basis of the equation

$$
E=\frac{B A N f}{10^{8}} \times 4.44
$$

where $E$ is the voltage, $A$ the area of the core, $B$ the flux density in the same units as $A, f$ the cycles per second, and $N$ the number of turns. A more useful working equation for small power transformers is obtained by solving for $N / E$ in turns per volt:

$$
\frac{N}{E^{\prime}}=\frac{10^{8}}{B .1 f 4.44}
$$


ligure 35 is an alignment chart of this equation. The left column is $B$ the flux

Fig. 34.-Core loss vs, frequency $B=10,000$. density, in both kilolines per square inch and kilogausses. (kilolines per square centimeter), the center column in the net core area in both square inches and square centimeters, the right column giving the turns per volt for both 25 and 60 cycles per second.


Fia. 35.-Trinsformer design chart based on $E=\frac{B A N f \times 4.44}{10^{8}}$.
Using a flux density of 65 kilolines per square inch and the net core area mentioned in step 3 ( 1.8 s(1, in.), the turns per volt for 60 cycles are found to
be 3.1 turns per volt. Thus for each volt on the transformer, there must be 3.1 turns. It is customary to change the turns per volt to an even number so that the proper center taps can be made. In this case, by using 4 turns per volt, with the same core area, the induction will be lower, with a corresponding lower core loss. It is also quite possible, and sometimes advisable, to change the core area so that an even number of turns per volt is given. For example, by increasing the core area to 2.8 sin . in. 2 turns per volt could be used, or deereased to 1.4 sq . in. so that 4 turns per volt would be used. The reason for desiring the even numbers of turns per volt is to supply the $1 / 2$-volt steps for receiving tubes, such as 7 he volts, which would require an integral number of turns when the turns per volt are used.

The voltage drop in the transformer winding should be mentioned here, and it will be again taken up in detail in the example. For instance, the load voltage at a tube filament is lower than the no-load voltage by the amount of $I R$ drop in the winding and the connerting wires to the tuibe. Thus, it may be that to secure $7: \frac{1}{2}$ volts at the tube filament, the transforner no-load voltage will have to be 8 . In this case, any integral number of turns per volt, either odd or even, will suit the design.
6. Turns for Fach Winding. In step 1 the desired voltages were given, $E_{1}, E_{2}$, etc. Using the value of turns per volt in step 5 , the total turns for each winding are found. For example, with 4 turns per volt, a 110 -volt winding should have $4 \times 110=440$ turns.
7. Winding ssace Required. From the total turns for each winding, and the wire size, the total area of winding space is calculated. Different wires and insulations have definite turns per square inch. The method of insulation, however, may have these values vary by factors of as much as three to one. That is, a mo-turn coil wound in layers with enamel wire may take up one square inch of cross-sertion area. By interleaving thin insulating paper between layers, only 600 turns can be wound in a square-inch area; and by using a certain size of cotton interwoven between turns, only 400 turns can he wound in a square inch. Thus, the space of winding depends to a large degree on the kind and thickness of insulation. Double fotton-covered wire takes up considerably more space than enatmeled wire. Yet, if the extraneeded insulating space for the interlayer protection is considered, the space ratio may not be so great.

After adding up the winding space of all the windings the area should be compared with that of the core. If the winding will go in the core space, this part of the design is finished.

If the wires will not go in the available spare, the winding may be redesigned, or the core area increased. Using thinner coverings for wire, fewer secondaries or fewer cireular mils per ampere will derrease the space needed for the wire. A larger iron size or a thit-ker stark of the same sized iron will increase the core area and allow a smaller number of turns per volt, thus decreasing the cross section of the winding.
8. Coppor Loss. a. lind the length of the mean (avernge) turn in feet.
b. Find the length of each winding in feet by multinlying the number of turns by the mean turn length.
$c$. From wire tables find the ohms per $1,000 \mathrm{ft}$. for the size wire used, and then from 8 -b the actual ohms for this length.
d. Multiply the current squared for each winding by the ohms for that winding.
$\varepsilon$. Add the $I^{2} R$ 's for earh winding to get the copper loss $L_{1}$.
9. Core Looss. The corr loss in watts $L_{2}$ is found from the weight of the eore and the flux density and kind of core used in step 4. A useful factor is that 4 per cent silieon sted weighs 0.27 lb . per cubic inch.
10. The approximate percontage efficirncy is $\frac{W_{s} \times 100}{W_{s}+L_{1}+L_{2}}$, W': being the secondary watts (see step 1).

Note. If step 10 shows ahout 90 per rent efficiency. the design is complete. If much less than 90 per cent, step $1 a$ must he modified, an new larger value
of $I_{p}$ being used in finding a larger primary wire. This will not change the efficiency, but will prevent overloading the primary winding due to its carrying a greater current than that for which it was designed.

It is desirable, as a rule, to keep the efficiency above 90 per cont, and this can be done by reducing $L_{a}$ and $L_{2}$, by using larger wires, or larger wores.
30. Typical Small Transformer Design, This transformer gives a fullwave reetifier suphly, filament supply for rectifier and receiver, and works on a primary voltage of 110 , at a frequency of 60 (eycles.

1. The desired secondary voltages and culrents are:

| $L_{1}$ volts | $J$, amperes | U'se | Watts $=1: 1$ |
| :---: | :---: | :---: | :---: |
| 3:30 | 0.0 .5 | 13 and C. supply | 16.5 |
| 3:30 | 0.05 | 13 and C supply | 16.5 |
| 5. 0 | 2.0 | Rectifier filament | 10.0 |
| $\because 5$ | 2.5 | Filament | 6.25 |
| 2.5 | 3.0 | rilament | 7.5 |

a. Total secundary watts Ws......................................... . . . . . 55.75
b. Primary watts $W_{p}=W^{0} 0.9=\overline{3} .750 .9=61.9$
c. Primary amperes $J_{p}=W_{s} / 89.1=55.75 / 89.1=0.69$
2. This transformer is over 50 watts, so 1,500 cire. mils per ampere is the current density to use in finding the proper-sized wire. The wire sizes, with the identifying current and voltages, are listed in table on p. 401. The use of larger wires of even numbers keeps the IR drop lower than when using a smatler wire. However, if the use of these larger wires makes too large a winding cross section. smaller wires must be used.
3. The core area avalable is $13 / 3 \times 2$ inches, the net area being 13 . $\times$ $2.0 \times 0.9=2.48 \mathrm{in}$. This is larger than necessary as shown by Fig. 35 , but allows the design, in this ease, of a transformer with good efficiency and good regulation.

| Volts | Amperes | Size wire |
| :---: | :---: | :---: |
| 110 | 0.69 | 20 |
| 330 | 0.0. | 30 |
| 330 | 0.0. | 30 |
| 5 | 2.0 | 14 |
| 2.5 | 2.5 | 14 |
| 1.5 | 3.0 | 12 |

4. The fux density used is 65 kilolines per square inch, and 4 per eent silicon iron with a loss of 0.6 watt per pound.
5. The turns per volt for 65 kilolines per square inch and eore area of 2.48 sq, in. give three turns per volt.
6. The turns for each winding are:

| Volts | Turns |
| :--- | :--- |
| 110 | 330 |
| 330 | 990 |
| 330 | 990 |
| 5 | 1.5 |
| 2.5 | $7.5(8)^{*}$ |
| 1.5 | $4.5(5)$ |

[^37]7. Winding space, in square inches, using enamel wire:

| "1'urns | Nize wire | Turns per <br> square inch | Actual space, <br> square inch |
| :---: | :---: | :---: | :---: |
| 330 | 20 | 590 | 0.56 |
| 990 | 30 | 4.000 | 0.25 |
| 990 | 30 | 4.000 | 0.25 |
| 15 | 14 | 190 | 0.08 |
| 8 | 14 | 190 | 0.04 |
| 5 | 12 | $\ldots .05$ | 0.04 |
| Total......... | $\ldots$ | $\ldots .22$ |  |

a. The mean turn is $11 \mathrm{in} .=11 / 12 \mathrm{ft}$.
b. The space needed is 1.2 eq . in. and the space available is $1 \times 2=2 \mathrm{sq}$. in., 80 the extra space can be used for the sponl and for insulation between windings and layers.
$c$.

| Turns | Feet | Ohmes per $1,000 \mathrm{ft}$. | Actual ohms | $I R$ volts drop | $I^{2} R$, watts |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 330 | 320 | 10 | 3.02 |  | 0.14 |
| 990 | 906 | 105 | 0.5 |  | 0.25 |
| 990 | 906 | 105 | 45 |  | 0.25 |
| 15 | 13.7 | 2.6 | 0.035 | 0.07 | 0.14 |
| 8 | 7.3 | 2.6 | 0.019 | 0.05 | 0.12 |
| 5 | 4.6 | 1.8 | 0.008 | 0.024 | 0.07 |
| Total. |  |  |  |  | 0.97 |

d. The copper luss $L_{1}$ is 0.97 watt.
8. The core weighs approximately 5 lb ., which at 0.6 watt per pound gives $5 \times 0.6=3.0$ watts $=L_{2 .}$.
9. Watts output $=55.75=W^{\prime}$ s

$$
\begin{aligned}
& \text { Losses }=L_{1}+L_{2}=3.0+0.07=3.97 \text { watts } \\
& \text { Per cent efficieney }=\frac{55.75 \times 100}{55.75+3.97}=\frac{5.575}{59.72}=93 \text { per cent }
\end{aligned}
$$

Note. It is seen that the copper losses are about one-third the iron loss; this means that a smaller core could be used. A higher efficiency could be obtained, if there were enough winding space, by using higher induction with more turns per volt, thus decreasing the core loss, without increasing the copper loss very much.
10. Volts Drop. It is seen by the $I R$ column that the drop in the winding is not serious.

## SECTION 16

## LOUD-SPEAKERS AND ACOUSTICS

By Irving Wolff, B.S., Ph.I). ${ }^{1}$

## 1. Symbols.

[^38]In charge of General Physics and Acoustics Section, Resparch Division, R CA Victor Company, Inc.
2. Sound Waves in Air. A sound wave in air is a compressional wave which is characterized by a to-and-fro motion of the air particles and an increase and decrease of sound pressure above and below atmospheric in the path of the wave. In the interest of conciseness when the term "pressure of a sound wave" is used, the difference in pressure between atmospheric and the pressure which oecurs when the sound wave is present is what is referred to.

The following equations give the relations between amplitude of motion of the air particles, velocity of motion of the particles, and pressure in a plane sound wave, where $u$ represents the instantancous velocity of an air particle, $l^{\prime}$ is the maximum velocity, $\lambda$ is the wave length of the sound wave in air, $c$ is the velocity of propagation of the sound wave, $x$ is a coordinate taken in the direction of propagation of the plane sound wave, $a$ is the displacement of the air particles, $p$ is the pressure of the sound wave, and $\rho_{0}$ is the density of air. If the wave is simple harmonic,

$$
\begin{align*}
& u=l^{\prime} \cos \frac{2 \pi}{\lambda}(c t-x)  \tag{1}\\
& a=\frac{\lambda U}{2 \pi c} \sin \frac{2 \pi}{\lambda}(c t-x)  \tag{2}\\
& p=c \rho_{0} U \cos \frac{2 \pi}{\lambda}(c t-x) \tag{3}
\end{align*}
$$

The next equations give the same relations for a spherical sound wave where all symbols are the same as above; $A$ represents the strength of a small source considered to be at the center of the sphere as represented by the maximum rate of enission of air, and $r$ is the distance from the center of the spliere.

$$
\begin{align*}
u & =\frac{A}{2 \lambda r} \cos \frac{2 \pi}{\lambda}(c t-r) \\
& +\frac{A}{4 \pi r^{2}} \sin \frac{2 \pi}{\lambda}(c t-r)  \tag{4}\\
a & =\frac{A}{4 \pi r c} \sin \frac{2 \pi}{\lambda}(c t-r)-\frac{\lambda A}{8 \pi^{2} r^{2} c} \cos \frac{2 \pi}{\lambda}(c t-r)  \tag{5}\\
p & =\frac{c \rho o A}{2} \frac{A}{r} \cos \frac{2 \pi}{\lambda}(c t-r) \tag{6}
\end{align*}
$$

In a plane sound wave of simple harmonic type the maximum of pressure takes place at the same time that the velocity of the particles (air molecules) is a maximum in the direction of propagation of the wave. That is, suppose we are observing at a certain position in space a sound due to a souree which is vibrating with simple harmonie motion at some distance from us so that the wave front is almost a plane. If we were just able to observe pressure at this position in space where we are stationed, we would note that the pressure varies in a simple harmonie fashion about atmospheric pressure. If we were just ahle to follow velocity, we would see the air molecules moving back and forth. If,
however, both factors can be olserved at the same time, we shall note that as the air particles move forware the pressure beeomes greatest at the time that the air particles are moving fastest. In analytieal terms, the pressure and velocity are in phase.

On the other hand, the equations show, that in a spherieal somed waye, the pressure and veloeity are no longer in phase exerpt when the radius of the sphere is very groat and the wave approximates to a plane wave. When the radias of the sphere is very small, the pressure and velocity are almost 90 deg, out of phase. It will also be noted that although the pressure dies down at a rate inversely proportional to the distance away from the soure or center of the splerical wave, the velocity redures at a much greater rate when a point is taken close to the contor of the spherieal wave. It is only in plane waves that the pressure and velocity are in phase and always proportional to each onther in magnitude. In the plane wave, the pressure is always equal to por times the welocity. In the spherical wave it is equal to $\rho_{0} c \sqrt{1+\frac{\lambda^{2}}{4 \pi^{2} r^{2}}}$ times the velority in absolute magnitude. In other shapes of waves still different relations hold which will not be considered here.

Imagine a large plane shect vihrating and sending out a sound wave. Work has to be dome to move this sheet back and forth against the air resistance. This work generatos a sound wave which gives a means for transferring the energy from the shect to some distant point. The encrgy transfer through any small area in space is detcrmined by taking the product of the root-mean-square force and the velocity. In addition to the transfor of energy due to the sound wave (the value of this transfor through a square centimeter of surface is called the energy flux density) there also exists, due to presence of the sound wave, a certain amount of kinetic and potential energy in any small region in the path of the wave. This energy is known as the energy densily in the wave. By means of the relations connerting pressure and velodity in the sound wave given in the previous equations the energy density and flux can be expressed in terms of the pressure alone. The equations comnerting energy flux and density and sound pressure, and which hold for both plane and spherical sound waves, are:

$$
\begin{align*}
J & =\frac{p^{2}}{\rho_{0} c}  \tag{7}\\
\text { and } E & =\frac{p^{2}}{\rho_{0} c^{2}} \tag{8}
\end{align*}
$$

where $J$ is the energy flux and $E$ is the energy density.
3. Velocity of Sound in Some Common Materials. (From International Critical Tables) Velocity of sound in air at different temperatures is given by means of the equation:

$$
\left.C=330.6 \sqrt{ } 1+0.003707 \theta-1.256 \theta^{2} 10\right)^{7}
$$

where $\theta$ is expressed in degrees centigrade and the velowity is in meters per second. The density of air is $0.00129 \mathrm{~g} / \mathrm{ec}$ at $10^{\circ} \mathrm{C}$. and 760 mm mereary pressure. The velority of sound in some other materials is given in the table shown on page 406 .

Velocity of Sound in Some Materials

| Material | Temperature, degrees centigrade | $\begin{aligned} & \text { Meters per } \\ & \text { second! } \end{aligned}$ | Aaterial | Temperature, degrecs centigrade | Meters per second |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Aluminum |  | 5,105 | Rubber (vulcan- |  |  |
| Argon. |  | 308 | ized, black)... | 0 | 54 |
| 13 eeswax | 16 | 86:3 | Rubber (vulcan- |  |  |
| 13rass |  | 3,47! | ized, black)... | 50 | 30.7 |
| l3rick.... |  | 3,652 | Silver. . . . . . | 20 | 2.678 |
| Cromine. |  | 135 | Slate |  | 4.510 |
| Cadmium |  | 2,307 | Steel. |  | 4.990 |
| Chlorine |  | 208 | Tin. | 13 | 2,490 |
| Cobalt |  | 4,724 | Woods: |  |  |
| Copper | 20 | 3,560 | Ash (paralle! |  |  |
| Jbonite | 15 | 1,573 ${ }^{\text {4,30 }}$ | Ash ${ }^{\text {tograin }}$ (across | . | 4.670 |
| Gelatin. |  | 1,5364 | grain). |  | 1.260 |
| Gold. | 20 | 1,743 | 1 heech. |  | 3.340 |
| Glass. | 16 | 5,202 | Cedar |  | -3.975 |
| Granite | . . | 3,950 | Cherry....... |  | 4.410 |
| Helium. | $\cdots$ | -971 | Slm (paralled |  | 4.4 |
| Iodine. | . | 108 | to grain)... | *. | 4.120 |
| Iron. |  | 5,130 | Fim (acruss |  |  |
| Lead. | 18 | 1.229 | grain) |  | 1,013 |
| Magnesium | . | 4,602 | Fir $\ldots$. |  | 5, 256 |
| Marble . |  | 3,810 | Mahogany |  | 4,135 |
| Nickel. |  | 4,973 | Maple. |  | 4.110 |
| Nitrogen | , | 338 | Oak. |  | 3.381 |
| Oxygen. |  | 316 | Pine |  | 3.320 |
| Jalladium | 10 | 3.074 | Poplar |  | 4.280 |
| Paraffin. | 6 | 1,522 | Sycamore |  | 4.460 |
| I'araffin | 33 | 250 | Walnut |  | 4.781 |
| l'latinum. | 20 | 2.690 | Zinc. | 1:3 | 2.681 |

4. Electrical, Mechanical, and Acoustical Impedance. In clectrical enginecring, the concept of electrical impedance is very useful. The impedance of any part of an electrical circuit is the complex quantity obtained by taking the complex quotient of the voltage in the circuit to the current flowing through it. In acoustical and mechanical work, analogous concepts are equally useful. The Institute of Radio Engineers has defined the mechanical impedance of a mechanical system as follows: "The mechanical impedance of a mechanical system is the complex quotient of the alternating force applied to the system by the resulting alternating linear velocity in the direction of the force at its point of application." Furthermore, in amalogy to the electrical quantitios, the mechanical resistance has been defined as the real component of the mechanical impedance and the mechanical reaclance as the imaginary component of the mechanical impedanee.

Another useful coneept is the acoustic impealance of a sound medium. The definition given by the Institute of Radio Engineers for this quantity is as follows: "The acoustic impedance of a sound medium on a given surface is the complex quotient of the pressure (fore per unit area) on the surface by the flux (volume velocity or linear velocity multiplied by the area) through that surface. The acoustie impedance may be expressed in terms of mechanical impedance, acoustic impedance being equal to the mechanieal impedance divided by the square of the area of the surface eonsidered." The acouslic resistance has heen defined
as the real component of the acoustic impedance and the acoustic reactance as the imaginary eomponent.

The apparently conflicting definitions for mechanical and acoustic impedanee may at first seem needlessly confusing, but practiee has found the definitions which are given to be the most practical. In mechanical systems, we deal with the motion under the influence of certain fores and, therefore, the force and motion have been taken as the quantities in terms of which the impedance is to be defined. In elcetrical systems, we deal with voltage and current. The acoustie systems are quite analogons to electrical systems. The analogous quantities are pressure and total flow, and it is found that the consideration of complex aeoustic eireuits is simplified by the use of these quantities.
b. Acoustics of Rooms. When a source of sound is in a room or auditorium the sound waves leaving the souree are reflected many times by the walls before they are absorbed. "lhese suceessive reflections of the sound are known as reverberation. Architects and designers of theatres and auditoriums have found the reverberation eharacteristics of the room of great importance in reference to its effect on the quality of musie and intclligibility of speech.

To have a quantitative measure of this reverberation, Wallace Sabine defined the reverberation time of a room as the time necessary for the average sound energy in the room to drop to one-millionth of its original value after all sources of sound are shut off. He also determined by numerous psyehological experiments the values of the reverberation time


Fig. 1.-Optimal reverberation tines as a function of room size and type of sound as given by V.O. Kinudsen. which observers found most pleasant. This time was found to depend on the size of the auditorium, a longer time being permissible in a larger room. A curve giving the relation between optimum reverberation time and room size is shown in Fig. 1.

The factors which influence the reverberation time ean be determined both theoretically and experimentally. A very good cherk has been found between experiment and theory. The fundamental equation governing the building up of the average sound energy density in a roon due to a source having a power emission $W$ 'started at time $t=\sigma$, where $\alpha$ is the average absorption of surfares and objects in the room obtained by summing all the produets of absorption coefficients and areas and where the absorption of the air itself is neglected is:

$$
\bar{\alpha}=\frac{S_{1} \alpha_{1}+S_{2} \alpha_{2} S_{3} \alpha_{3}+\cdots}{S_{1}+s_{2}+s_{3}+\cdots}
$$

$S$ is the total absorbing area.

| Material | coefficients for frequency |  |  |  |  |  |  | Auth. | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 64 | 128 | 256 | 512 | 1,024 | 2,048 | 4,096 |  |  |
| Open window, Theoretical | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |  |  |
| Masonry, Plasters, and Tiles: | 0.031 | 0.034 | 0025 | 0.081 | 0.042 | 0.049 | 0.070 | WS | 06 |
| Brick wall, 18 in., unpainted 18 in., painted......... | 0.021 0.011 | 0.024 0.012 | 0.025 0.013 | 0.0817 | 0.042 0.020 | 0.023 | 0.025 , | WS | 06 |
| Concrete, porous breeze, 2 -in, blocks, set in 1:3 cementsand mortar. |  | 0.15 | 0.21 | 0.43 | 0.37 | 0.39 | 0.51 | BR | 26 |
| Plaster, Akoustolith, 36 in , on $3^{4} \mathrm{i}$ - in . thick lime water |  | 0.21 | 0.24 | 0.29 | 0.33 | 0.37 | 0.12 | CS | 23 |
|  |  | 0.03 | 0.06 | 0.14 | 0.17 | 0.19 | 0.11 | FW | 28 |
| Calacoustic, $1 / 4 \mathrm{in}$. |  | 0.12 | 0.13 | 0.16 | 0.21 | 0.35 |  | VK | 27 |
| Gypsum, on hollow til | 0.012 | 0.013 | 0.015 | 0.020 | 0.028 | 0.040 | 0.050 | WS | 14 |
| lime, on wood lath. | 0.048 | 0.020 | 0.024 | 0.034 | 0.030 | 0.028 | 0.043 | WS | 14 |
| Lime, on wood lath with finishing coat | 0.036 | 0.012 | 0.013 | 0.018 | 0.045 | 0.028 | 0.055 | WS | 14 |
| Sabinite, ${ }^{\text {3/ }}$ in., acoustical plaster |  |  | 0.166 | 0.214 | 0.29 | 0.34 |  | PS | 27 |
| Sabine, 74 in., fixed as tiles...... |  | 0.07 | 0.07 | 0.23 | 0.43 | 0.27 | 0.41 | BR | 26 |
| 1 in . (as nodified by Blas), trowel applied |  | 0.11 | 0.11 | 0.29 | 0.47 | 0.29 | 0.38 | RR | 26 |
| Tile, Akoustolith, 1 in ....................... |  | 0.06 | 0.12 | 0.36 | 0. 5.2 | 0.52 | 0.36 | WS | 14? |
| Kumford, 1 in.. |  | 0.09 | 0.18 | 0.29 | 0.34 | 0.34 | 0.30 | WS | 14? |
| Sabine, acoustical. | 0.064 | 0.068 | 0.12 | 0.19 | 0.25 | 0.26 | 0.22 | WS | 14 |
| Sabine, West Point (ceramic tile) | 0.012 | 0.013 | 0.018 | 0.029 | 0.040 | 0.048 | 0.053 | Ws | 14 |
| Building boards and panel: |  |  |  |  |  |  |  |  |  |
| Acoustex, 1 in.......... |  | 0.10 | 0.25 | 0.55 | 0.73 | 0.64 | 0.56 | PS |  |
| 13,2 in. |  | 0.14 | 0.34 | 0.68 | 0.82 | 0.63 | 0.52 | Ps |  |
| Armstrong corkboard, 1 in., 0.875 lb . per sq. ft |  |  | 0.08 | 0.30 | 0.31 | 0. 28 |  | FW | 27 |
| 1 in., sprayed with cold-water paint |  |  | 0.07 | 0.30 | 0.28 | 0.29 |  | FW | 27 |
|  |  |  | 0.17 | 0.35 | 0.27 | 0.34 |  | FW | 27 |
| Acoustic Zenitherm, 1.14 in., cork granules cemented into a porous, stiff title. |  | 0.03 | 0.13 | 0.33 | 0.42 | 0.42 | 0.15 | FW | 26 |
| Acousti-Celntex, Type A, $13 / 6 \mathrm{in} ., 1.11 \mathrm{lb}$. per sq. ft., perforated with 441 small holes per sq . ft . on back of material |  | 0.13 | 0.28 | 0.25 | 0.23 | 0.23 | 0.23 | CEL | 29 |
| Type 13, as above, with perforations exposed on front, painted or unpainted |  | 0.22 | 0.28 | 0.47 | 0.53 | 0.62 | 0.62 | CEL | 29 |
| Type 1313, $11 / 4 \mathrm{in.}$,1.67 lb . per sq. ft., perforated on front as above, painted or unpainted |  | 0.28 | 0.42 | 0.70 | 0.74 | 0.77 | 0.77 | CEL | 29 |

Type C，${ }^{\text {sin in．，} 0.48} \mathrm{lb}$ ．per sq．ft．，completely perforated， painted or unpainted．
Celotex， 32 in．，standard building board
Cork（coarse）， 1 in．，slab $31 \frac{1}{4} \mathrm{ft}$ ．by $1 \mathrm{ft} ., 7 \frac{1}{2} \mathrm{in}$ ．， 1 in ．from wall，framed in wood．．

Insulite， $1 / 2 \mathrm{in}$ ．，standard building board
A coustile，single layer．．．．．．．．．．．．．．．．．．．．．．．．
A coustile，double layer，
A coustile，double layer， $3 / 4$－in．air sp
Masuinite，7íc in．，buildiuk bur
$7 / 16$ in．，on 2 by 1 －in．furring．
$3 / 16 \mathrm{in}$ ．，on 2 by $4-\mathrm{in}$ ．studding．
Wood，sheathing， 0.8 －in．pine
$3-\mathrm{ply}$ teak panels， 3 ft．by 2 ft． 2 in．， 1 in．from wall， framed in wood

Felts and membranes：
Asbestos felt， 3 in．， 33 per cent of volume is solid material $3 / 8$ in．felted to asbestos cloth．

Balsam wool， $3 / 2$ in．，paper and cloth covering，weight 0.20

1 in ．，paper and cloth covering， 0.265 lb ．per sq． ft ．．．．．．．
1 in．，loosely felted quilt of wool fiber， 0.26 ib ．per sq． ft ．
1 in．covered with steel tile perforated with 641／16－in． holes per sq．in．， 0.93 lb ．per sq． ft
Cabot quilt， 3 ply， 2 layers $1 \frac{1}{2} \mathrm{in}$ ．from wall plus canvas cover 1 in．distant
Flax－li－num， 96 in
l－in．felted flax fibers， 1.17 lb ，per sq．ft．，bare．．．．．．．．．．．
1 in．，with unpainted decorative membrane（ 0.1 lb ．per sq．ft．，mesh 10 per in．）mounted $3 / \frac{1}{4} \mathrm{in}$ ．distant
Hair and asbestos felt， $19 \%$ volume solid
Hair felt， $12 \%$ volume is solid 1 in．thick
Sane covered with burlap attached with silicate of aide
same with light membrane（ 0.87 oz ．per sq．ft．）stretched near surface

|  | 0.14 | 0.16 | 0.30 | 0.45 | 0.57 | 0.55 | CEL | 29 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.17 | 0.18 | 0.20 | 0.20 | 0.19 | 0.19 | CEL | 29 |
|  | 0.14 | 0.25 | 0.40 | 0.25 | 0.34 | 0.21 | 13R | 26 |
|  | 0.23 | 0.26 | 0.28 | 0.29 | 0.32 |  | けん | 28？ |
|  | 0.24 | 0.26 | 0.30 | 0.36 | 0.38 |  | VK | 27？ |
|  | 0.30 | 0.31 | 0.34 | 0.37 | 0.40 |  | V＇ | 27 ？ |
|  | 0.19 | 0.2 .5 | 0.32 | 0.36 | 0.36 |  | V゙に | 28 |
|  | 0.17 | 0.24 | 0.28 | 0.295 | 0.30 | 0.28 | Ps | 27 |
|  | 0.18 | 0.245 | 0.31 | 0.34 | 0.30 | 0.24 | Ps | 27 |
| 0.064 | 0.098 | 0.11 | 0.10 | 0.081 | 0.082 | 0.11 | WS | 06 |
|  | 0.09 | 0.17 | 0.17 | 0.15 | 0.15 | 0.15 | H12 | 26 |
| 0.06 | 0.06 | 0.14 | 0.32 | 0.25 | 0.19 | 0.18 | W＇s | 12 |
| 0.07 | 0.08 | 0.17 | 0.35 | 0.30 | 0.23 | 0.20 | Ws | 12 |
|  | 0.05 | 0.22 | 0.41 | 0.58 | 0.52 | 0.39 | PS | 24 |
| ． | 0.06 | 0.30 | 0.56 | 0.70 | 0.58 | 0.46 | Ps | 24 |
| ． | 0.09 | 0.24 | 0.45 | 0.64 | 0.55 | 0.42 | ［s | 24 |
|  |  | 0.18 | 0.44 | 0.62 | 0.62 |  | FW | 27 |
|  |  | 0.19 | 0.47 | 0.64 | 0.66 |  | FW | 27 |
|  | 0.22 | 0.42 | 0.74 | 0.77 | 0.69 | 0.44 | P13 | 26 |
|  | 0.08 | 0.14 | 0.31 | 0.54 | 0.51 | 0.45 | Ps | 27 |
|  |  | 0.49 | 0.61 | 0.67 | 0.66 |  | FW | 27 |
|  |  | 0.30 | 0.61 | 0.60 | 0.55 |  | FW | 27 |
| 0.04 | 0.05 | 0.11 | 0.38 | 0.55 | 0.46 | 0.39 | WS | 12 |
| 0.09 | 0.10 | 0.20 | 0.52 | 0.71 | 0.66 | 0.44 | WS | 12 |
| 0.13 | 0.13 | 0.33 | 0.74 | 0.76 | 0.49 | 0.18 | WS | 12 |
| 0.17 | 0.20 | 0.40 | 0.65 | 0.27 | 0.14 | 0.11 | WS | 12 |


| Material | Absorption coefficients for frequency |  |  |  |  |  |  | Auth． | Date |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 64 | 128 | 256 | 512 | 1，024 | 2，048 | 4，096 |  |  |
| Same with heavy membrane（ 2.58 oz ．per sq．ft．）stretched near surface | 0.25 | 0.29 | 0.41 | 0.32 | 0.19 | 0.11 | 0.08 | Ws | 12 |
| 1 in．，in contact with wall ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． | 0.09 | 0.10 | 0.23 | 0.58 | 0.72 | 0.66 | 0.46 | Ws | 12 |
| 1 in ．，spaced 2 in．from wall | 0.10 | 0.11 | 0.26 | 0.62 | 0.73 | 0.66 | 0.45 | WS | 12 |
| 1 in．，spaced 4 in ．from wall． | 0.11 | 0.13 | 0.30 | 0.66 | 0.74 | 0.66 | 0.45 | W゙ | 12 |
| 1 in．，spaced 6 in ．from wall．．．． | 0.12 | 0.15 | 0.35 | 0.68 | 0.75 | 0.66 | 0.45 | W゙s | 12 |
| 1 in．，located at center of room with barrel ceiling． | 0.14 | 0.15 | 0.32 | 0.96 | 1．27 | 1.02 | 0.62 | W5 | 12 |
| 1 in．，located at sides of room with barrel ceiling．．．．．．．． | 0.11 | 0.20 | 0.25 | 0.54 | 0.43 | 0.48 | 0.20 | W＇s | 12 |
| Jute felt， 3 \％in． | 0.038 | 0.049 | 0.076 | 0.17 | 0.48 | 0.52 | 0.51 | WS | 06 |
| 1 in．．．．．．．．． | 0.12 | 0.15 | 0.22 | 0.54 | 0.63 | 0.57 | 0.52 | Ws | 06 |
| $11 / 2$ in | 0.19 | 0.24 | 0.38 | 0.63 | 0.65 | 0.57 | 0.52 | W゙， | 06 |
| 2 in | 0.27 | 0.34 | 0.50 | 0.69 | 0.67 | 0．58 | 0.52 | W゙s | 06 |
| $\frac{3}{3}$ in | 0.34 0.40 | 0.43 0.50 | 0.89 0.66 | 0.89 0.77 | 0.67 0.68 | 0.58 0.58 | 0.52 0.52 | W＇s | 06 06 |
| J－M asbestos akoustikos［elt，任 in．bare |  | 0.07 | 0.14 | 0.31 | 0.51 | 0.51 | 0.43 | Ps | 28 |
| 3／4 in bare．．．．．．．．．．．．．． |  | 0.08 | 0.23 | 0.45 | 0.65 | 0.56 | 0.46 | PS | 28 |
| 1 in bare． |  | 0.11 | 0.31 | 0.59 | 0.68 | 0.58 | 0.46 | Ps | 28 |
| 11／2 in．bare |  | 0.13 | 0.41 | 0.73 | 0.73 | 0.58 | 0.46 | Ps | 28 |
| 2 in．bare． |  | 0.21 | 0.46 | 0.79 | 0.75 | 0.58 | 0.46 | Ps | 28 |
| 3 in．bare |  | 0.33 | 0.56 | 0.79 | 0.77 | 0.58 | 046 | Ps | 28 |
| J－M Naslikote，Type AX，＇la in．（J－M asbestus Akoustikos felt with batiste membrane cemented to felt，surface painted with one coat of No． 3000 paint）．．．．．．．．．．．．．． |  | 0.10 | 0.22 | 0.34 | 0.41 | 0.32 | 0.17 | Ps | 28 |
| Type AX 34 in |  | 0.13 | 0.24 | 0.38 | 0.45 | 0.35 | 0.17 | Ps | 28 |
| 1 in ．．．．．．．．． |  | 0.15 | 0.38 | 0.43 | 0.40 | 0.29 | 0.18 | PS | 28 |
| 14.2 in |  | 0.22 | 0.38 | 0.41 | 0.39 | 0.29 | 0.20 | Ps | 28 |
| 2 in．． |  | 0.34 | 0.38 | 0.44 | 0.4 | 0.30 | 0.23 | Ps | 28 |
| 3 in ． |  | 0.40 | 0.47 | 0.48 | 0.45 | 0.31 | 0.24 | Ps | 28 |
| Menbrane，light， 0.87 uz．per sq．［l | 0.01 | 0.01 | 0.04 | 0.10 | 0.07 | 0.02 | 0.01 | WS | 12 |
| Heavy， 2.58 oz per sq．ft ．．．．．． | 0.05 | 0.06 | 0.16 | 0.16 | 0.10 | 0.07 | 0.06 | Ws | 12 |
| Canras， 6 in．from wall． |  | 0.10 | 0.12 | 0.25 | 0.33 | 0.15 | 0.35 | BR | 26 |

Rock wool, banner, 1 in.
2 in............................. 4 inulated back losed 4 in., 16 in o.c.

1 in., 2 layers separated by $13 / 4$-in. air space
Rock wool, Gimeo, $11 / 4$ in., silicate fibers felted between metal lath, 1.44 lb . per sq. ft

$$
\mathrm{ft} . . .
$$

Nagbestos, 1 次-in. slabs. 3 in from wall.
132 in ., plus canvas 1 in. distant
Floor coverings:
Carpet, $0.4-\mathrm{in}$. pile, on concrete
$0.4-\mathrm{in}$. pile, on felt, $1 / \frac{\mathrm{in}}{\mathrm{in} \text {. on concrete }}$
0.4 -in. pile, on felt, on $3 / 4 \mathrm{in}$. polished cork on concrete 0.4 -in. pile, on felt, on $3 / 4 \mathrm{in}$. pitch pine blocks on concrete Amritza, 0.43 in , on concrete.
Cardinal l3atala, 0.43 in . on concrete
$3 / 1$ in., rubber on concrete..
34́ in., rubber on polished cork on conerete
Cork, 3 - $4-\mathrm{in}$. flooring slabs, glued down
3/4-in. fiooring slabs, waxed and polished
Wood, 3i-in. pine blocks, laid in mastic.
3.-in. Gurjan, laid in mastic.

Individual objects:
Audience, per person.
Cushions, cotton, $23 / 4$ sq. ft., under canvas and short nap plush.
Hair, 23 sq. ft., under canvas and plush
Hair, under canvas and thin leatherette
Vegetable fiber, under canvas and damask
Chairs, bent ash

|  | 0.35 | 0.49 0.59 | 0.63 0.68 | 0.80 | 0.83 |  | VK | 28 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.44 | 0.59 | 0.68 | 0.82 | 0.84 |  | VK | 28 |
|  | 0.43 | 0.52 | 0.57 | 0.65 | 0.64 |  | VK | 28 |
|  | 0.53 | 0.64 | 0.71 | 0.87 | 0.90 |  | VK | 28 |
|  |  | 0.46 | 0.57 | 0.56 | 0.72 |  | FW | 27 |
|  | 0.32 | 0.38 | 0.65 | 0.73 | 0.30 | 0.29 | RR | 26 |
|  | 0.42 | 0.49 | 0.80 | 0.78 | 0.47 | 0.42 | 13 R | 26 |
|  | 0.09 | 0.08 | 0.21 | 0.26 | 0.27 | 0.37 | BR | 26 |
|  | 0.11 | 0.14 | 0.37 | 0.43 | 0.27 | 0.25 | 1312 | 26 |
|  | 0.17 | 0.14 | 0.35 | 0.42 | 0.23 | 0.34 | 1312 | 26 |
|  | 0.11 | 0.13 | 0.38 | 0.45 | 0.29 | 0.29 | 13 R | 26 |
|  | 0.09 | 0.06 | 0.24 | 0.28 | 0.11 | 0.21 | 13 I | 26 |
|  | 0.12 | 0.10 | 0.28 | 0.42 | 0.21 | 0.33 | 13 R | 26 |
|  | 0.04 | 0.04 | 0.08 | 0.12 | 0.03 | 0.10 | 13 R | 26 |
|  | 0.09 | 0.04 | 0.15 | 0.11 | 0.10 | 0.04 | BR | 26 |
|  | 0.08 | 0.02 | 0.08 | 0.18 | 0.21 | 0.22 | BR | 26 |
|  | 0.04 | 0.03 | 0.05 | 0.11 | 0.07 | 0.02 | 13R | 26 |
|  | 0.05 | 0.03 | 0.06 | 0.09 | 0.10 | 0.22 | BR | 26 |
|  | 0.03 | 0.04 | 0.07 | 0.14 | 0.09 | 0.15 | BR | 26 |
| 1.7 | 3.6 | 4.3 | 4.7 | 4.7 | 5.0 | 5.0 | WS | 06 |
| 0.99 | 1.7 | 1.9 | 2.0 | 2.8 | 2.0 | 1.3 | WS | 06 |
| 0.86 | 0.99 | 1.1 | 1.8 | 1.7 | 1.4 | 0.91 | WS | 06 |
| 0.67 | 1.1 | 1.3 | 1.9 | 1.3 | 0.73 | 0.43 | W's | 06 |
| 0.64 | 0.75 | 1.0 | 1.5 | 1.6 | 1.4 | 1.2 | Ws | 06 |
| 0.15 | 0.15 | 0.16 | 0.17 | 0.18 | 0.20 | 0.23 | WS | 06 |

The abbreviations employed are: Auth., authority; W.S., W.C. Sabine; P.s., P.E. Sabine; F.W., F.R. Watson; V.K., V.O. Knudsen; B.R., Building Research Station, England; CEL, average of results by P.S., F.W. and V.K.
$V$ is the volume of the room and $c$ is the velocity of sound:

$$
\begin{equation*}
E=\frac{4 H^{-}}{c \cdot \sin \alpha}\left(1-\epsilon \frac{c S \log _{\epsilon}(1-\bar{\alpha}) f}{4 V}\right) \tag{9}
\end{equation*}
$$

Inspection of the above equation shows that for large $t$ its value approaches $4 W^{\prime} / c S_{\alpha}$, which is the steady-state sound energy.

For the decay of the sound enersy after the source has been shut off,

$$
\begin{equation*}
E=\frac{4 W}{c \cdot \overline{\bar{\alpha}}} \epsilon \frac{c S \log \epsilon(1-\bar{\alpha}) t}{4 V} \tag{10}
\end{equation*}
$$

From the latter equation the reverberation time as defined by Sabine may be calculated. Evaluating all constants,

$$
\begin{equation*}
T=\frac{0.16 V}{-S \log _{\epsilon}(1-\bar{\alpha})} \text { if all dimensions are in meters } \tag{11}
\end{equation*}
$$

It has been customary to express absorption coefficients of objects in square feet of perfect absorption in this country, and a great many measurements of rooms are given in Finglish units. The following equation gives the reverberation time when feet are ined for all measurements:

$$
\begin{equation*}
T=\frac{0.05 V}{-S \log _{\xi}(1-\bar{\alpha})} \tag{12}
\end{equation*}
$$

If the average absorption is less than 0.5 Eqs. (11) and (12) may be simplified approximately to:

$$
\begin{equation*}
T=\frac{0.16 V}{\sqrt[S \alpha]{ }} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
T=\frac{0.05 V}{S \bar{\alpha}} \tag{14}
\end{equation*}
$$

Using Eq. (12), (14) (14a) or (14b) and the tables (pp. 408-411) giving absorption coefficients of some common materials and ohjects, the reverberation time of a room can be calculated.

Equations (9) to (14) assume that the energy density in the room averaged over regions large compared to the wave leng th is uniform during the decay and that all directions of sound energy flux at each point in the space are equally prohable. In most rooms of regular shape these conditions are fulfilled. Certain rooms, however, are of such shape as to cause peruliar concentrations and directions of sound, and the equations will not apply. ${ }^{1}$

At the higher frequencies the absorption of the air itself in rather reverberant rooms may be important, particularly in dry atmosphere. An experimental determination of the absorption to be expected has been made by Kmudsen.? The general reverberation time eguation corrected for the ahsorption of the air is:

$$
\begin{equation*}
T=\frac{0.16 V}{-S \log _{\epsilon}(1-\bar{\alpha})+4 K V} \text { in moters } \tag{a}
\end{equation*}
$$

[^39]\[

$$
\begin{equation*}
T=\frac{0.05 V}{-S \log _{\epsilon}(1-\alpha)+4 K V} \text { in feet } \tag{b}
\end{equation*}
$$

\]

A table showing the experimentally determined values of $K$ at $21^{\circ} \mathrm{C}$. for use in these equations follows:

| Relative <br> humidity, <br> $\%$ | $K$ per foot |  |  | $K$ per meter |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $2,000 \sim$ | $3,000 \sim$ | $4,000 \sim$ | $6,000 \sim$ | $2,000 \sim$ | $3,000 \sim$ |

## CHARACTERISTICS OF THE EAR

7. Frequency and Intensity Limits. The normal car recognizes tonal qualities in sounds varying in frequeney from 16 to 20,000 eycles and with pressures from 0.0004 to 3,000 bars. These limits are of course approximate and vary from ear to car. Above this pressure a sensation of feeling sets in. The minimum value of the sound pressure whieh gives a sensation of tone is ealled the threshold of audibility, the minimum value which will stimulate a sensation of feeling is ealled the threshold


Fig. 2.-Sound pressure applied to a single ear corresponding to thresholds of audibility and feeling at different frequencies as given by H . lletcher.
of feeling. Both thresholds vary with the frequeney. "The values of these thresholds as funetions of frequeney are shown in Fig. 2.
8. Relation between Loudness and Intensity. The loudness of a sound is measured by the psychological effect of the somed on the car, while the intensity is measured in physieal units. Experiments have been performed with pure tones which show that equal adelitions of physical intensity do not inerease the loudness by the same amount at all intensities, but that the minimum change in intensity which is noticeable is
roughly proportional to the intensity. For this reason a logarithmic scale for expressing the physical quantities which affect the ear has been found


Fig. 3.-Relation between decibels above approximate threshold of audibility at 1,000 cycles, pressure energy density and energy flux density in sound wave.

A zero level of 0.0005 bar has been used in a great many measurements of noise and other aural quantities and is therefore given as reference level for these curves. This zero level corresponds closely to the threshold at 1,000 cycles for direct pressure on a single car. The threshold for listening in a free progressive sound wave coming direct to the observer is closer to 0,0002 bar. Tsing this zero level, all decibel readings should be increased $8 \mathrm{~d} h$. It is probable that the latter scale will be in more prominent use in the future.
convenient, and the sensation level of a sound has been definod as the logarithm of the ratio of the physical intensity of the sound to the intensity of sound at the throshold of audibility. It is usually exprossed in
deeibels. The relations between sensation level at 1,000 eycles, pressure, energy flux, and energy density for a free sound wave are shown in Fig. 3 .
9. Relation between Loudness and Frequency. As has been noted above the threshold of audibility varies with the frequency. The physieal intensity which will cause the same loudness effect on the car varies in an analogous manner. The effective loudness of a pure tone of any frequeney has been determined by comparing it with a 1,000 -eyele tone on a throw-over test. The results of these experiments are shown in Fig. 4. The low tones require a much smaller increase in intensity for an equivalent inerease in loudness than do the tones of higher frequencies.

## LOUD-SPEAKERS

10. Desirable Characteristics.


Fig. 4.-Sound pressures corresponding to equal loudness at different frefuencies for 10 db steps above threshold of audibility at 1,000 cycles as given by B. A. Kingsbury. The loud-speaker should, when used in conjunction with an ideal microphone and transfer system (whieh may contain electrieal lines and a number of stages of recording), reproduce the sound wave which would have reached the ear of the listener if he had been present in the place where the original music or speech was produced. There is a certain amount of argument as to just how much allowance should be made in the psyehology of listening for the acoustics of the place where the original shoukd be imagined to take place and the room in whieh the olserver listened to the reproduction. No definite evidence has been brought forward to give a definite decision as to just what weight shouk be given to these factors, although the preponderance of opinion among broadeasters and those connceted with the recording of motion pietures is that the attempt should be made in the reproduction to reproduce as arenrately as possible the acoustic characteristics of the plare in which the sound was pieked up, and the loud-speaker shouhd be designed to fit the location in whieh it will be placed, so that it will balance whatever acoustie peculiarities there are in the reproducing room.

On this basis, the loud-speaker should give a constant sound pressure output at the position of the listener in the room in which the loud-speaker is to be used for a sound wave having the same pressure at the microphone at all frequencies. Assuming that the remainder of the system does its work properly, the loud-speaker should reproduce constant pressure under the conditions specified above for constant voltage input to the last tube of the audio amplifier.

Loud-speakers can be designed so as to radiate sound in a heam similar to that sent out by a headlight of an antomohile or to radiate sound uniformly in all directions. Whether the uniform radiation or the beam radiation is desired will depend on the condition of use. The loudspeaker which is used in the radio set or phonograph at home should not be too sharply directional, as the listeners would normally be seattered over a wide angle in front of the loud-speaker, and those not directly
in front will suffer under conditions of directional radiation. Radiation in the form of a hemisphere in front of the radio set is most desirable for this use. When loud-speakers are used in theaters, the reverberation characteristics of the theater are usually injurious to the best intelligibility and various devices have been resorted to, such as eutting off the low frequencies to improve the results. The best effects have been obtained by making the loud-speaker radiation directionat and pointing it toward the audience, so that the maximum radiation will strike them directly before reflections from any other surfaces.

The loud-speaker must handle whatever energy it is required to reproduce without distortion. Distortion noticeahle in loud-speaker reproduction is probably most often due to overloading in the electrical system but can be due to non-linear effects in the loud-speaker or more often to rattles and buzzes due to parts which are set into vibration when the loudspeaker is subjeet to violent motion. The buzz due to loud-speaker rattle is so similar to that noticed due to amplifier overloading that the listener should always be careful to make sure that no distortion is taking place in the electrical or recording system before blaming the loud-speaker.
11. Calculation of Loud-speaker Efficiency. At first sight it might seem most useful to define loud-speaker efficiency in the same mamer as the efficiency of other generators is defined, viz., in terms of the ratio of the power delivered to the power which is supplied to it. Due to the conditions under which a loud-speaker is used, however, another definition of efficiency which has been called the absolute efficiency has been found of more value.

In practice, a loud-speaker is supplied from either a vacuum tube or a transformer attached to a vacuum tube. The impedance of this vacuum tube or the effective impedanee of the transformer when placed in the circuit is very nearly a pure resistance independent of the frequency. If the loud-speaker motor has a large reactive component of impedance, or if its impedance varics greatly as the frequency is changed, it will be impossible to supply electrical power to the loud-speaker whieh is equal to that which could be delivered to a resistance having the same resistance as the supply source (the condition for maximum power transfer from a supply source to an external unit). Even though the loud-speaker might, therefore, have a high efficiency in the usual sense, under the conditions of use, it wouk not be possible to deliver a large amount of power to it and it would, therefore, from a practical standpoint, not be an efficient loud-speaker.

The definition of loud-speaker efficiency which has been adopted by the Institute of Radio Engineers has been worded so as to allow for the ability of the loud-speaker to absorb energy from the supply source as well as the ability of the loud-speaker to convert that electrical energy into acoustic output.

The general definition which the Institute of Radio Engineers has given for the absolute efficienoy of electro-acoustio apparatus when applied to loul-speakers can be interproted as follows:

The absolute efficiency of a loud-speaker for a given circuit condition is the ratio of the acoustic nutput of the loul-spanker to the maximum power which can be drawn from the supply source.

Based on this definition, the absolute efficiency of a loud-speaker not of the relay type is given by the following formula:

$$
\begin{equation*}
\text { Eff. }=\frac{\frac{4 z_{r}}{\left|z^{2}\right|}\left|M^{2}\right| R_{s}}{\left|\frac{M^{2}}{z}+Z+R_{s}\right|^{2}} \tag{15}
\end{equation*}
$$

where $z_{r}$ is the merhanical resistane duc to aroustic radiation, $z$ is the total mechanical impedance, including reactance due to air reaction and masses and stiffnesses in the drive system; also resistance due to radiation and any other energy losses, $h$ is the vector force factor, i.e., complex quotient of fore developed in the merhmanal system per unit eurrent in the electrical system, $Z$ is the impedame of the electrical system excluding the impedance due to the motion of the merhanical system which is included in the $M^{2} / z$ term, $h_{s}$ is the elertrical impedane of the supply sourec, and the bars indicate absolute values. When using the formula in the form in which it stands, all mechanical quantities must be expressed in c.g.s. absolute units; and electrical quantities in absolute elertromagnetic units when the foree action is eleatromagnetic and in absolute electrostatic units when the force action is electrostatic.
12. Sample Calculation of Efficiency of a Dynamic Loud-speaker on a Large Baffle. In the next sueceeding paragraphs an illustration showing how formula (15) can be used to cakulate the efficiency of a loud-speaker is given. The determination of a mumber of the quantities which are required for the ealeulation is diseussed in the suceeding sections, and reference will be made to these seetions as required.

It is usually not possible to calpulate the efliciency of a loud-speaker with mathomatical precision, but information may be ohtained by making approximations, which allow an analysis to be made of the factors that are important in determining its efficient operation, and which permit the engineor to determine the most economical manner in which he can improve the design.
'l'o simplify the illustration, a dynamic cone loud-speaker will be chosen having the following characteristies:

An 8 -in. diameter paper cone, with $\frac{12}{2}-\mathrm{in}$, suspension. Mass of cone plus coil 14.7 g . Mechanieal system, due to the stiffness of the suspension and the centering means, resonant at 100 cycles. Diameter of the air gap 4 cm . Number of turns in the coil 120. Flux in the gap 9,000 gauss. The transformer feeding the loud-speaker is so designed that it reflects the output tube impedance into the secondary as 11 ohms.

To simplify the caleulation, the assumption can be made that the radiation from the front and real is equal and the same as that from a vibrating disk in an infinite baffle.

Referring to Eq. (15) we must first caleulate the mochanical impedance due to radiation $z_{r}$ and the total impedance $z, z_{r}$ is obtatined directly from curve $8 a$ by multiplying the values given on that curve by the area of the disk. The diameter of the disk plus the vibrating part of the suspension is approximately 22 cm, giving an area of 380 sq cm. The values of $z_{r}$ for a sories of frequeneies are shown in column 3 of the table ( 1,420 ). The frequenciesare given in columm 1 , and values of $d / \lambda$ corresponcling to each freefueney, where $d$ is the diameter of the disk and $\lambda$ is the wave length of sound at that frequency, are shown in column 2. The total mechanical reactance is made up of a mass component due to the mass of the cone plus drive coil, a stiffness component due to the stiffness of suspension and centering device, and an additional
mass component due to reaction of the air, the value of which is obtained lyy referring to curve $8 b$ and multiplying by the area of the disk. "lhe values of the latter at a series of frequencies are shown in column 4 , while the component due to the mass of the cone itself, which is equal to $\omega$ times the mass, is shown in eohmm 5.

Since the system is resonant at 100 eyeles the total mass component must be equal to the total stiffness component at that frequency and the stiffness componont therefore equals $13.4 \times 10^{3}$ mechanical ohms at 100 eycles, and has vatues inversely proportional to the frequency, as shown in column $f$ for the other frequencies. The total reactive component of the mechanical impedance, which is obtained by subtracting the total stiffuess eomponont from the total mass eomponent, is shown in column 7. It will be noted that any frictional or heat losses in the vibrating system lave not been induded as they are negligibly small compared to the other quantities. Columns 3 and 7 determine the total vector mechanical impedance.

We next require the fore factor $M$. A discussion of the determination of the force factor for a dynamic loud-speaker is given in paragraph 16 under the diseussion of Moving Conductor Motor, and it is equal to the produet of the length of conduetor in the gap times the magnetie field strength. In the ease of the loud-speaker under diseussion, this is equal to $\pi \times 4 \times 120 \times 0,000$ and is the same at all frequencies. Its value is shown in column 8 .

The supply impedanee must be expressed in electromagnetic absolute units and is equal to $11 \times 10^{9}$ abohms, as shown in column 9 . The clectrieal impedances of the system, as measured with the mechanical system clamped so that it cannot vibrate, and expressed in abohms are shown in columms 10 and 11 ; 10 gives the resistive component and 11 the reactive component. The efforiencios caleulated by means of formula 15 and the vahues whioh have been given in the preceding eolumns of the table are shown in column 12. Catre must he taken in using formula 15 to use absolute values and components in the proper place as indicated by the double bars.

The calculation of the efficioncy has been carried to only 1,600 cycles, as the simple assumptions which have been made no longer hold for frequencies above this value. The fact that the vibrating body is a cone rather than a disk affects the radiation at frequeneies where the depth of the cone beeomes comparathle with the wave length. The eone also fails to vibrate as if it were moving all in phase at the higher frequencies so that the assumption of a vibrating piston is no longer valid. The calculation of the efliciency where the more eomplicated phenoment take place is beyond the seope of this simple example and roference can be made to an article hy M. J. O. Strutt ${ }^{1}$ for additional information. The effect of the use of a finite baffle has also been excluded as this caleulation usually involves a consideration of the cabinct whieh is used to surround the loud-speaker and must be considered as a separate problem.

The response of the lourl-speaker in any direction may also be obtained by means of the efficiency values which have just been calculated and the directional radiation curves shown in Fig. 10. The response of a

[^40]loud-speaker as defined by the Institute of IRadio Engineers ${ }^{1}$ is expressed in terms of the quantity $\frac{p}{v / \sqrt{ } R}$, where $p$ is the resultant sound pressure in the medium expressed in bars, $R$ is a resistance equal to that of the source to which the loud-speaker is designed to be connected expressed in ohms, and $v$ is the voltage supplied to the loud-speaker in series with a resistance $R$. The calculation of the response as thus defined hy means of the efficiency values and the directional curves is made in the following manner:

The absolute efficiency has been defined in the paragraph preceding Eq. (15) of this section. The acoustic output of the lout-speaker expressed in ergs per sccond may be obtained by integrating the soundenergy flux density over a sphere with the loud-speaker as center. The energy flux density through any small area $d S$ is equal to $J d S$, where $J$ is the energy flux density through that area. Expressed in terms of solid angle, this is $J r^{2} d \Omega$, where $r$ is the radius of the sphere with the loud-speaker as center and $d \Omega$ is the solid angle subtended by the area $d S$. Referring to Eq. (7), the energy flux density may be expressed in terms of the pressure produced by the loud-speaker." The product of the density of air by the velocity of sound in air in the denominator of this equation is approximately equal to 40 , and the energy flux density through the area $d S$ is therefore equal to $\frac{p^{2} r^{2}}{40} d \Omega$. The total energy flux is obtained by integrating this over the surface of the sphere. If $p_{0}$ equals the sound pressure directly in front of the loud-speaker, the sound pressure at any other point at the same distance from the lourlspeaker is equal to $p_{n} \phi$, where $\phi$ is the relative pressure, as shown on Fig. 11. The total sound energy flux is thus equal to $\frac{p_{0}{ }^{2} r^{2}}{40} \int \phi^{2} d \Omega$. The maximum power which can be drawn from the supply source is $v^{2} / 4 R \times$ $10^{7}$ expressed in ergs per second.
The efficiency is therefore

$$
\frac{\frac{p_{0}{ }^{2} r^{2}}{40} \int \phi^{2} d \Omega}{v^{2} / 4 R \times 10^{7}}=\frac{p_{0}^{2}}{r^{2} / R} \times 10^{-8} \times r^{2} \int \phi^{2} d \Omega
$$

and

$$
\frac{p_{0}}{v / \sqrt{R}}=\frac{10^{4}}{r} \sqrt{\frac{\text { efficiency }}{\int \phi^{2} d \Omega}}
$$

An expression is thus given for the response directly in front of the loudspeaker in terms of the efficiency and the integral of $\phi^{2}$ taken over the whole sphere. The values of this integral, as determined from Fig. 10, integrating by quadrature, are given in column 13, and the values of the response directly in front of the loud-speaker, caleulated by means of the

[^41]Calculation of Loud-speaker Efficiency

| (1) <br> Frequency | $\stackrel{(2)}{d / \lambda}$ | $\begin{gathered} (3) \\ z_{r} \end{gathered}$ | Reactive component of mechanical impedance |  |  |  | (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (4) <br> Air loading | Mass of cone | (6) <br> Stiffness of suspension | (7) <br> Total |  |
| 50 | 0.032 | $0.16 \times 10^{3}$ | $2.0 \times 10^{3}$ | $4.6 \times 10^{3}$ | $-26.8 \times 10^{3}$ | $-20.2 \times 10^{3}$ | $13.6 \times 10^{6}$ |
| 75 | 0.049 | $0.35 \times 10^{3}$ | $3.0 \times 10^{3}$ | $7.0 \times 10^{3}$ | $-17.9 \times 10^{3}$ | $-7.9 \times 10^{3}$ | $13.6 \times 10^{6}$ |
| 100 | 0.065 | $0.62 \times 10^{3}$ | $4.1 \times 10^{3}$ | $9.3 \times 10^{3}$ | $-13.4 \times 10^{3}$ | 0 | $13.6 \times 10^{6}$ |
| 200 | 0.13 | $2.5 \times 10^{3}$ | $8.2 \times 10^{3}$ | $18.5 \times 10^{3}$ | $-6.7 \times 10^{3}$ | $20 . \times 10^{3}$ | $13.6 \times 10^{8}$ |
| 400 | 0.26 | $9.5 \times 10^{3}$ | $16.4 \times 10^{3}$ | $37.0 \times 10^{3}$ | $-3.3 \times 10^{3}$ | $50.1 \times 10^{3}$ | $13.6 \times 10^{6}$ |
| 800 | 0.52 | $26.8 \times 10^{3}$ | $23.0 \times 10^{3}$ | $74.0 \times 10^{3}$ | $-1.6 \times 10^{3}$ | $95.4 \times 10^{3}$ | $13.6 \times 10^{6}$ |
| 1,600 | 1.04 | $32.6 \times 10^{3}$ | $4.6 \times 10^{3}$ | $148.0 \times 10^{3}$ | $-0.8 \times 10^{3}$ | $152 . \times 10^{3}$ | $13.6 \times 10^{6}$ |


| Frequency | $\stackrel{(9)}{R_{i}} \underset{\text { abohms }}{ }$ | Electrical impedance $X+j V$ |  | (12) <br> Absolute efficiency, per cent | $\int_{\phi^{2} d \Omega}^{(13)}$ | (14) <br> Response directly in front $\frac{p_{0}}{r / \sqrt{R}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | (10) <br> I. abohnis | $Y \stackrel{(11)}{\text { abohms }}$ |  |  |  |
| 50 | $11 \times 10^{9}$ | $10.7 \times 10^{9}$ | $1.0 \times 10^{9}$ | 0.6 | 12.5 | $220 \times 1 / r$ |
| 75 | $11 \times 10^{9}$ | $10.7 \times 10^{9}$ | $1.5 \times 10^{9}$ | 4.7 | 12.5 | $610 \times 1 / r$ |
| 100 | $11 \times 10^{9}$ | $10.8 \times 10^{9}$ | $2.0 \times 10^{9}$ | 12.7 | 12.5 | $1.010 \times 1 / r$ |
| 200 | $11 \times 10^{\circ}$ | $11.0 \times 10^{9}$ | $3.6 \times 10^{9}$ | 9.9 | 12.3 | $900 \times 1 / r$ |
| 400 | $11 \times 10^{9}$ | $12.0 \times 10^{9}$ | $7.0 \times 10^{2}$ | 5.6 | 11.4 | $700 \times 1 / r$ |
| 800 | $11 \times 10^{9}$ | $13.9 \times 10^{9}$ | $12.6 \times 10^{9}$ | 2.9 | 7.8 | $610 \times 1 / r$ |
| 1,600 | $11 \times 10^{9}$ | $17.6 \times 10^{9}$ | $22.0 \times 10^{9}$ | 0.9 | 2.5 | $600 \times 1 / r$ |

[^42]last equation, are given in column 14. It will be noted that the response is more uniform as a funetion of frequeney than the efficiency due to the fact that the radiation is encompassed in a smaller solid angle as the frequeney is increased. The response in any other direction may bo determined by reference to Fig. 11 and the values in column 14 of the table.

This diseussion illustrates some of the methods which can be employed to evaluate theoretically, with a fair degree of acrurace, the results which can be experted from a loud-speaker. As in the ease which was ehosen for illustration, it is usually neepssary to make simplifying assumptions in order to limit the complexity of the problem and reduce the variables which affect the response and the efficiency to the simplest terms. Even though an exact solution is not ohtained, methods similar to the above will be found very useful in efficient design of !oud-speakers.

The caleulations which are shown above have bern cheeked experimentally in a number of instanere, showing that the dymanie eone is not a very efficient loud-speaker. The efficieney of a dymamie driving mechanism may be considerably improved by the use of a directional baffle or a horn and air chamber. By these means the efficiency can be increased to 30 per eent or more. ${ }^{1}$

## THE LOUD-SPEAKER MOTOR

13. Determination of Force Factors. Three types of loud-speaker motors have been in eommon use for ohtaining the motion recquired to produce a sound wave from an electrical wave. 'The first loud-speakers


Fig. 5.-Types of magnetic-armature loud-speaker motors: (a) Bipolar; (b) balanced; (c) fringing flux.
which were built were of the magnetic armature type. More recently these have practically been superseded by the moving conductor drive (principally electrodynamic) and the larger portion of all loud-speakers in use today are of this type. The condenser loud-speaker is one of the oldest forms, having been proposed when singing condensers were first noticed and has a number of ardent exponents at this time but has never reached the popular favor that the magnetie trpes have assumed. Other types of drive, such as magneth-striction and piezo-electric have heen proposed, hut have never had wide usage.

[^43]14. Magnetic Armature Motor. Magnetic armature motors are characterized by a ferromagnetic armature or diaphragm in a polarizing magnetie field and some moans for superposing an alternating field on the fixed field. The polarizing field is always required if non-linear distortion is to be avoided, since the fore due to a magnetic field is proportional to the seluare of the field strength with the result that the use of an alternating field alone would lead to total absence of fundamental reproduction.

Several types of unit are shown in Fig. 5. Type a was quite common in older lond-spakers and in telephone recoivers, due to its simplicity and low cost. Type $b$ is called a balanced unit, since the magnetic eirenit is such as to balance the magnotie flux in the armature when in its rest position. This driver has been very popular, as it permits the use of a very light armature and efficient nagnetic circuit in which the variable magnetie flux does not have to pass through the higher-reluetanere fixed magnetie field circuit. Type $c$ is a fringing flux type and has the advantage of having the armature motion parallel to the pole pieere faces, thus eliminating the possibility of the armature striking the pole faces on high amplitude of motion. It has the disadvantage of being wasteful of magnetic flux.

The foree developed by a magnetic field on a portion of a ferromagnetic armature in air in which the magnetism is indueed is

$$
\begin{equation*}
\frac{I I^{2}}{8 \pi}\left(1-\frac{1}{\mu}\right) d S \tag{16}
\end{equation*}
$$

where $H$ is the component of field strength in the air perpendicular to the armature surface, $\mu$ is the pernmability of the armature material and $d S$ is the surface element. This formila assumes that the iron is not saturating so that the permeability can be taken as constant throughout the armature. In all practical loud-speakers, $\mu$ is so large compared to 1 that $1 / \mu$ can be neglected.

In types $a$ and $b$ the total magnetie flux entering the armature can be considered withont much error as paralled to the direction of motion and therefore useful in developing forec. In type considerable flux exerts foree eomponents on the armature which are not in the direction of motion.
15. Necessity for Polarizing Field. A consideration of the formulat given for the foree on the armature shows the necessity for polarizing field. Calling the polarizing fiold strength $I_{0}$ and the instantaneous value of the alternating field $I I$ sin $\omega t$, the fore on a small armature section moving a negligible distanee in the air gap is

$$
\begin{equation*}
\frac{1}{8 \pi}\left(I_{0}{ }^{2}+2 I_{0} I I \sin \omega t+I^{2} \sin ^{2} \omega t\right) d S \tag{17}
\end{equation*}
$$

The first term exerts a steady pull which, it will be seen, tends to attraet the armature to the pole piece, the second term leads to a foree proportional to the product of fixed field and alternating field, and the third term leads to second harmonie production. 'To make the second harmonic distortion negligible, II must always be kept small compared to $I_{0}$ particularly in units of type a where the tendency to balance the second harmonic distertion as in types $b$ and $c$ is not present. The
second term in the above expression is the one which determines the alternating fore and therefore the fore fartor. Sinee $/ I$ is proportional to the eurvent through the voicrooil winding, the compatation of the rolation between /I and the current, as explained in the chapter on magoete circuits, is all that is required for the forec-factor determination.

Due to the change in air-gap longth as the armature vibrates, with resultant change in reluctance of the magnetie eirecuit, an additional altermating fore e in phase with the displaterment is set up which for small displacements is proportional to the displacement of the armature from its equilibrim position and in the direction to inerease the disphacement. This foree has the general charactoristios of a stiffines but is opposite in sign and is therefore called a megative stifforss. In magnitude it is equal to $\frac{1}{4 \pi} H_{0}{ }^{2} d s$ times the relative change in reluetance. It is subtracted from the mechanical stiffuess in determining the merhanical imperdane of the unit. Contrary to popular belief, the balanced units types $b$ and $c$

(a)

Fig: 6.-Ty yes of ductor lond-speaker Ribbon; (b) dynamic. do not reduce this negative stiffmess. As a matter of fact, it is twice as large due to the reduction of force on one side while that on the other side is inereased.
16. Moving Conductor Motor. In the moving conductor motor a non-magnetie conductor is plated in a magnetie field whose lines of foree are transverse to the direetion in which motion is desired. In the dynamie type shown in Fig. if the conductor takes the form of a coil of one or more turns of cylindrical shape to which a diaphragm is attached in a ring-shaped air gap. In the riblom type shown in Fig. 6


Frg. 7.-Condenser loud-speakers. (a) Unilateral; (b) bilateral.
the conductor is usually a thin strip of almminum which acts at the same time as diaphragm. Numerous other modifications have heen proposed, all of which operate by the force developed in a conductor through which a current is flowing in a transverse field.

The fore in drnes developed on the conductor when current flows through it is $/ l / I_{0}$ where $I$ is the current in absolute clectromagnetio units, $l$ is the total length of conductor and $I_{0}$ is the polarizing field.

The force factor for the moving conductor type of unit is thus $l I I_{0}$. If the field is not perpendicular to the conductor in the air gap, the component of magnetie fied perpendicular to the conductor shonld be taken for $I I_{0}$. If the ficld is non-minform, the integral of $I I_{0}$ over the length of the conductor is taken.
17. Condenser Loud-speaker. In the condenser loud-speaker the force on the diaphragm is developed by direct electrostatie attraction. It has the theoretical advantage of the possibility of driving the diaphragm with a uniform foree at all points on the surface. Both unidiréetional and balanced electrostatic fields have been proposed and tried on the condenser loud-speaker as is shown diagrammatically in Fig. 7.

The attractive foree in dynes per square centimeter of diaphragm pulling the diaphragm toward the fixed electrode is $I I^{2} / 8 \pi$ with air as dielectrie, where $I I$ is the electric field strength in electrostatic units. In constructing electrostatic loud-speakers, a polarizing electric field is required similar to the polarizing magnetie field which is used in the magnetic armature type. Without the presence of this polarizing field, no fundamental reproduction is obtained. Calling the strength of the polarizing field $I_{0}$ and the variable field which is superposed on this $I I \sin \omega t$, the total attractive force per square centimeter becomes

$$
\begin{equation*}
\frac{1}{8 \pi}\left(H_{0}^{2}+2 I_{0} I I \sin \omega t+I I^{2} \sin ^{2} \omega t\right) \tag{18}
\end{equation*}
$$

By making the polarizing field strong compared to the alternating field, the second harmonie distortion which is included in the last term ean be made negligible compared with the fundamental reproduction due to the sceond term, which is

$$
\begin{equation*}
\frac{I I_{0} I I \sin \omega t}{4 \pi} \tag{19}
\end{equation*}
$$

The force factor is determined by obtaining the ratio of electric field strength to current through the loud-speaker and then by the use of the last equation determining the ratio of force to current. Sinee the force on the diaphragna, electric fiedd, and voltage are all in phase and in quadrature with the current, the force factor will, in general, be multiplied ly $j$, and $M^{2}$ in Eq. (15) will be negative.

Similarly to the magnetic armature type, the electrostatic loutspeaker has a negative stiffness component due to the tendency of the diaphragm to be attracted more strongly towards the fixed electrode as it approaches it. It is equal to $H_{0}{ }^{2} / 4 \pi$ times the relative change in air-gap length, per square centimeter of surface. In the balanced unit, although the static forces due to the polarizing field are balanced out approximately, the negative stiffness force which arises due to motion away from the equilibrium position is double as large as for the singlesided type, due to the decrease in attractive force on one side corresponding to the increase in attractive foree on the other.
18. Mechanical Impedance of Loud-speaker Elements. The mechanieal impedance of loud-speakers is due to the masses and stiffnesses in the loud-speaker armatures, coils, connecting links, and diaphragms and the loading due to air. The loading due to the air will be considered below. Assuming that a force is applied to a simple system consisting
of a mass attached to a spring and that the mass is in some viscous material, such as oil, which damps its motion, the mechanical impedance due to the mass is $j m \omega$, where $m$ is the mass in grams, $\omega$ is $2 \pi$ times the frequency and $j$ is the square root of -1 ; that due to the stiffness is equal to $s / j \omega$, where $s$ is the stiffness in dynes per centimeter of displacement. The total impedance of the system is $j n \omega+\frac{s}{j \omega}+z_{r}$, where $z_{r}$ is the mechanical resistance. These impedanees are all in series since all parts of the system are moving with the same velocity which corresponds to having the same eurrent in electrical circuits. When the same force is applied to a number of mechanical impedanes which move with velocities determined by the foree, then the same equations hold as if they were impedances in parallel in electrical circuits.

In the common forms of loud-speakers, the impedaneas of the motor, diaphragm, and air loading are usually in series when the frequeney of agitation is low enough so that the flexing of the members may be neglected. At the higher frequencies, where the flexing must be taken into account, the relations become more complicated and nust be worked out for each individual case.

## LOUD-SPEAKER RADIATOR

19. One Single Diaphragm. The simplest type of loud-speaker radiator to consider, and one which is closely approximated in inany


Fig. 8.-Load on a vibrating rircular diaphragm set in an infinite baffle.
loud-speakers, is a piston vibrating back and forth in an infinite wall. The sound radiation from a souree of this kind has bern considered by lord Rayleigh and completely solved in mathematieal terms. At the lower frequencies, where the wave length is eomparable with the size of the piston, it is not a very cfficiont radiator of sound waves. A courve showing the foree developed per unit area of a piston per unit velocity (mechanical impedance per unit area) as a function of the ratio of piston size to wave length is given in Fig. 8. The fore developed may be divided into two components, one of which is in phase with the velocity,
and the other one in quadrature with the velocity and of such sign as to act as if the mass of the piston were inereased. At the higher frequencies, the guadrature component beeomes negligible compared to the component in phase with the velocity which approaches a value of approximately 41 dynes per square centimeter per centimeter per second of velocity.
20. A System of Diaphragms. By making the diaphragm larger, the efficiency of low-frepuency radiation can be inereased but other defeets. arise which make this proedure impractieal for most purposes. As the diaphragm is made larger, it becomes neecssary to make it thicker to obtain sufficient rigidity. The added mass which is thes introduced makes reproduction of high frequencies difficult, It has, therefore, been found most practical to use a number of snath diaphragme placed adjacent to each other when good reproduction of low frequencies is desired. 13y means of this procedure, cach vibrating diaphragm reaces


Fia. O.-Radiation from a system of vibrating diaphragms all vibrating in phase, compared with that from a single diaphragm, as a function of diaphragm size and wave length.
on the others to increase the resistive low-freguency loading with consequent inerease in radiation. A curve showing the relative radiation from a system of one, two, three and four diaphragms placed adjacent to each other and in line is shown in Fig. 9. It will be noted that at low enough frequencies the radiation is proportional to the number of diaphragms which are used, while at high frequencios the increase in the number of diaphragms does not improve the efficiency of radiation. For a more detailed consideration of the radiation from a combination of diaphragms reference can be made to the original articles.
21. Horns. A segond mothod which has been widely used for many centuries for obtaining inereased low-frequency radiation is the device known as a horn. Tp to reerent times a conical horn and some type of flaring horn have been employed.

At present, the expenential-type horn is used almost exchusively, that is, one whose cross-sectional area is given by a formula of tha type:

$$
S=S_{1} \epsilon^{\prime, x}
$$

where $S_{1}$ is the eross-sectional area of the throat, $\epsilon$ is the Napierian base and
$b$ is a constant which determines the rate of flare. By means of a horn having a certain length and flare, it is theoretically possible, excluding frictional losses, to load a diaphragm so that a resistance loading of 41 mechanical units per square rentimeter can be obtained at any frequeney. The formula for the resistive force per sfuare centimeter on a diaphragm for unit velocity (resistive impedance per suluare centimeter) for an exponential horn of infinite length is given in Eiq, (20).

$$
\begin{equation*}
z_{r}=\rho_{o c} \sqrt{1-\frac{b^{2} c^{2}}{4 \omega^{2}}} \tag{20}
\end{equation*}
$$

When $b c / \sum_{\omega}$ is greater than $z_{r}$, that is, for frequencies less than $b c / 4 \pi$, the expression above beromes imaginary and no energy is radiated (the impedance is entirely reactive).
22. Effect of Flare and Length. It will be noted that the flare of the horn, as determined by the constant $b$, is the factor which determines to how low a frecuency the loading on the diaphragm caused by the horn becomes effective. From a practical standpoint, there is a limit to the use of a very small flare, sinere it is found neressary to make the mouth opening of the horn of the same ordor of magnitude as the wave length of sound being radiated in order to sceure efficient radiation. To ohtain the large mouth opening with a very small flare, the horn tength becomes excessive and impractical. It is this factor of size which places a practical limit on the low-frequency radiation possible from horns.

When the horn is finite in length, it is necessary to make a correction for the refleetion from the open end in order to ohtain the radiation characteristic. The formula for the loading per unit area due to a finite horn is as follows:

$$
\begin{equation*}
z_{1}=\rho o c\left[\frac{z_{2} \cdot \cos (q l-\phi)+j \rho_{v c} \sin (q l)}{\rho_{u c} \cos (\eta l+\phi)+z_{2} \sin (q l)}\right] \tag{21}
\end{equation*}
$$

where $z_{1}$ is the impedance per stuare centimeter due to the horn. $z_{2}$ is the impedance per sifuare rentimetar at the month of the horn, $l$ is the length of the horn,

$$
4 \operatorname{ins}_{2}^{1} \sqrt{\frac{1\left(\bar{\pi} \pi^{2}\right.}{\lambda^{2}}}-b^{2}
$$

$b$ is the flare constant, and

$$
\phi=\tan ^{-1}\left[\frac{-1}{\frac{16 \pi^{2}}{\lambda^{2} / 6^{2}}-1}\right]
$$

In choosing the impedane at the open end, a value sufficiently accurate for most purposes is obtaned by assuming that the loading at the open end is the same as for a pistom of size equal to the mouth opening of the horn (see Fig. 8).
23. Increasing Loading to Obtain Greater Efficiency. In the preceding paragraph, the assumption has been made that the hom throat opening is the same size ats the diaphragm. As has been stated, under these conditions the maximum loading of the diaphragm by the air is apperimately 41 dynes per square centimeter per centinneter per second velenity. It is very often desirable to increase this loading to ohtain more effie inint loud-speaker action. See $\mathrm{E}_{\mathrm{q}}$. (15) for loud-speaker efficiency. This
inereased loading can be obtained by using a so-ealled air chamber adjacent to the diaphragm and using a horn mouth opening which is smaller than the diaphragm size. Assuming that the ehamber is small enough so that the compression of the air can be neglected, the impedance per unit area on the diaphragm for any fixed velocity is increased by the ratio of the area of the diaphragm to the area of the mouth opening of the horn. Further details for the case where the eompression of the air in the chamber cannot be negleeted can be found in original articles.
24. Directional Characteristics of Loud-speakers. The directional characteristics of loud-speakers are very important in determining their performance. For loud-speakers to be used in small rooms (home entertaimment), a non-directional characteristic is to be desired. For


Fig. 10.-Directional radiation characteristics of vibrating disk in infinite baffle.
loud-speakers to be used in auditoriums, a rather sharply defined direetional characteristie, such that the loud-speaker sprays sound over the audience and nowhere else, is most desirable for maximum intelligibility. For loud-speakers to be used out of doors, a directional eharacteristic in which the loud-speaker directs the sound toward the places where it is to be heard and nowhere else is of great importance in order to obtain maximum efficiency.

A non-directional characteristie is obtained from a source of sound (single radiator) which is small compared to the wave length. When the source is a double radiator, such as a loud-speaker on a baffe, a maximum of radiation is obtained directly in front and in back with zero intensity in the plane of the baffe where the sound wave from the front and rear interferes.

The directional radiation characteristic due to a circular disk is shown in Fig. 10. Along the ordinate axis is plotted the ratio of the pressure at any point in space to the pressure at a point the same distance away from the eenter of the disk but on the axis. Along the axis of abscissas is a function $\beta$ defined by

$$
B=\left(\frac{\pi d}{\lambda}\right) \sin \gamma
$$

where $d$ is the diameter of the disk, $\lambda$ is the wave length of sound being
radiated, and $\gamma$ is the angle between the perpendicular to the disk at its center and the direction under consideration.

This directional characteristic will be found useful in making approximate estimates of the directivity of namerous loud-speakers. When the loud-speaker is of the cone type, the diameter of the base of the cone can he taken as the diameter of the disk up to frequencies where the wave length of radiated sound becomes smatler than the hase diameter. Above that frequency, the cone shape must he taken into account as well as the fact that most cones no longer vibrate with their whole surface in phase at the high frequencies. Experiment has shown that the directional characteristic is more accurately represented by taking that of a disk with diameter three-fourths to one-half that of the cone base at the higher frequencios.

When the loud-speaker is of the horn or directional baffle type, the mouth opening of the horn can be taken as the diameter of the disk. In the case of these loud-speakers, the direntional characteristic as thus determined will usually be somewhat too sharp, particularly at the higher frepuencies, due to the fact that the sound intensity over the mouth of the horn is not uniform and the wave which leaves the month is more spherical than plane. A somewhat more accurate picture is ohtained by taking the value approximately three-fourths the diameter of the nouth opening with further reducel size as the frequency is increased.

## ACOUSTIC MEASUREMENTS

25. Loud-speaker Measurements. To determine the performance of a loud-speaker, the following quantities should be known:
26. The frequency response and directional characteristics of the loudspeaker.
27. The power-handling capacity of the loud-speaker.
28. The efficiency of the loud-speaker.

The frequeney response and directional characteristics of the londspeaker are usually measured by actuating the loud-speaker with a simple-harmonic current and measuring the sound output by means of some form of calibrated mierophone-amplifier system. The measurements must be earefully made, and attention must be paid to all details so that the results may not be in error or influenced by surroundings which are not comected with the loud-speaker. For details of methods which have been found most suitahle for making these measurements, reference should be made to the 1931 report of the Institute of Radio Engineers Standardization Committee in the chapter on "Performance Indexes and Tests on Electro-acoustic Devices" and to the references which are given at the end of this chapter.

The response of the loud-speaker is measured in terms of a quantity $\frac{p}{v / \sqrt{h}}$, where $p$ is the resultant sound pressure in the melium (at the sperefiod frequency) at a specified point or the average of the resultant pressure at specified points relative to the lond-speaker, $R$ is a resistance equal to that of the souree to which the loud-speaker is designed to be connected, and $v$ is the voltage (at the specified frecpuency) supplied to the loud-speaker in series with the resistance $R$. 'This quantity gives a measure of the pressure developed at the specified point in space by
the loul-speaker, taking into account its ability to draw mergy from the electric circuit as well as its ability to convert such conergy into sound waves.

When the lond-speaker is to be used in the home, a fair approximation to the performance to be expected rean be obtained by taking a frequenev-response characteristic with the mierophone placed almost directly in front of the loud-speaker, and another one with the mirrophone at an angle 45 deg. to the axis of the loud-speaker. When it is to be used in auditoriums or outdoors, it is important that the direetional as well as the frequeney response chatacteristie be obtained, and the response should be measured at a number of positions around the loudspeaker.
26. The determination of the power-handling capacity is somewhat diffieult due to the psychologieal factors involved in determining when the overload point has been reached. The most important factors in determining overload are the produetion of extrameons tones which were not present in the original input. The annoyance of such tomes will be a function of the frequence. It is known that the higher-pitehed tones are much more unpleasant and a greater soures of annovane than those of lower pit ch having the same physical intensity or even the same loudness.

The most common soure of overloating is rat thes in the loul-speaker, due to vibation of loose parts, or very often the so-called "oil-man" refferet, an unstahle impulsive vibration duc to exessive amplitudes. It may also happen that the lond-speaker diaphragm motion is not a linear function of the impressed voltage, leading to production of harmonies, sum tones, and differenee tones in the sound output similar to the distortion present in an overloaded vacuum tube.

Whether the loud-speaker is able to handle suffieient onorgy is best cietermined by a listening test. Prectutions must be taken to be sure that the electrie wave which is impressed on the loud-speaker is undistorted, as it is very difficult to distinguish between rattles in the loudspeaker and non-lincar distortion in at vacuum tube. $\Lambda$ variety of musical selections should be used for test purposes. Rattles are particularly likely to show up on impulse tones such as are gencrated in a piano or on compleated waves like those produced by an orehestrat having a large mumber of instruments. After it has been determined that rattless are present in the loud-speaker, the output from a continuously variable oscillator having sufficient power shombld be impressed on the voice coil, while a listening test is made to determine at what frequeney the buzz is the most promiment. This will usually diselose the reason for the rattle and steps can be taken to attempt to climinate it.
27. The effective efficiency of a loud-speaker atso depends on psychologieal factors. So two lond-speakers of different design have the same freguency response, and without a definite weighting system to be applied to the individual freçuemeres an estimate of the relative effie iencies of the two loul-speakers is not posibile. In practiere, a listoming towt in which the loudness of the loud-speakers is compared when listened to by an observer in a position relatively the same with resperet to the loud-speakers gives a good indieation of their relative efficiencies. The louder-speaker should have its output attemated unt the apparent volunie of the two is the same. The amount of the attemation int roduced gives a measure of the increased efficiency of the more intense loud-speaker over the less sensitive one.

## References

## General:

Atgner: " Unterwasserschalltechnik."
Crandale: "Theory of Vibrating systems and sound."
Geiger, li., and Fakl wherl: " Handbuch der llysik," (8, Akustik), 1927.
LAMB: "I y yamic theory of sound."
Rayleigh, J. W. A. Lobd: "Theory of tound."
lRichardson, E. (i.: "sound."
"tewaht and Linpary: "Acousties."
Wagser, $K$. W.: "Die Wissenseliaftichen (irundlagen des Rondfunkempfangs." Chaps. 1-4.

## Acoustics of Rooms.

Articles on Nound Transmission and Measurement of Sound-transmission Coveficienta, Jour. Aconstical Soc. America, 1, Jamary, 1930.
I)avis and Kaye: "The theoustics of Buildinge:"

Firnag, (ARLF: Reverberation Time in "Dead" Rooms, Jour. Acoustiral Soc. America, 1, 217, 19:30.
Knuden, V'. U.: Acoustics of Music Romens, Jour. Acoustical Soc. Americt, 2, 435, 1931.
-_"Architectural Acoustics."
Schunter, K. and li. Waetzmasi: Reverheration in an linclused space, Ann. Physik, 1, 5, 671, 1929.
Watson, F. R.: "Acoustice of Buildings."
Characteristics of the Ear:
Bell System Tech. Jour., 3, 375, 1925.
Fletcher, H:: "apeerh and hearing."
Kingarimy, B. A.: I hirect Comparison of the Loudness of Pure Tones, Phys. Rert., 29, 588, 1927.

## Loud-speakers:

Monch, W.: "Mikrophon und Telephon.". Alsu certain chapters in references stewart and Lindsay, Crandall, Wagner, (ieiger and scheel.
Rice and liellogi: i) ynamic loud-speaker Jour. A.I.E.E., 44, 982, 1925.
Ribbon Lond-speaker:
Gerlach, F.: Phosik. Zeits., 25: 675, 1924.
Sснотткч, W.: Phlysik. Zcits., 25: 672, 1924.
Condenser Joud-speakers:
Fdelmax, P. F.: Condenser Loud-speakera with Flexible Filectrodes, I'roc, I.R.E., 19, 2:56, 1931.
Gheaven, V. F., L. W. Kranz, and W. 1). Kboznit:The Kyle Comtenser Loud-speaker, Proc. I.R.E., 17: 1142, 1029.
HANNA, (C. K.: Theory of the l:lectrostatic Lond-speaker, Jour. Acoustical Soc. Amerien, 2, 14:3, 19:30.
Vogt l:lentrostatic Loud-speaker, W'ireltss W'orld, 24, 5.3.3, 1929.
Loud-speaker (hararteristics:
Wolpw, Ihving: sound Measurements and Loud-speaker Characteristics, I'roc. I.K.E'., 16, 172!, 1928.
13osтwiek, L. G.: Jour. Acoustion Soc. Amerier, 2, 242, 1930.
Hansa, (1. R.: Jour, Acoustical Soc. America, 2, 150, 1930.
Hharn Iaoul-speakers:
HaNNA and Slepian, Trans, A.I.E.E., 43, 393, 1924.
sound Radiation from a System of Vibrating Diaphragms:
Wolfy and Malter: Phys. Rer., 33, 1061, 1929.
Directional Chararteristics of Loud-speakers:
Stenzei, H.: Elrktrixche Juchr. Tech., June, 1927, May, 1929.
Wolff and ilalter: Jour. Acousticul suc. Americu, 2, 201, 19:30.
Lenul-speaker Measurements:
Kexsendy: " Electrical Vibration Instruments."
"Repurt of the Committee on standardization of the I.R.E." sections on Definition of Filectro-aennstic Devices and 'lests of Filectro-acoustic I)
land-speaker Testing:
Bostwick, L. (i.: Bell System Tech. Jour., 8, 135, 1029.
Kellont, $1 \%$ W. Jour. Aroustical Soe. America, 2,1 ह77, 1930.
Meyer, liwin: Elektrisehe Nach. Tech., 3, 290, 1926; 4, 86, 20:3, 1927; Z.it. Th, Physik., 10, 309, 1929.

Olney, Benjamin: Proc. I.R.E., 19, 1113, 1931.
Wolfy and A. Ilingel: Proc. I.R.E., 15, 363, 1927.
Calibration of Microphones for Loud-speaker Measurements:
Ballantine, Stuart: Effect of Diffraction around the Mierophone on Sound Measurements, Phys. Ref., 32, 988, 1928; Pror. I.L.E., December, 1928.
: Theoretical and Experimental Determination of the Corrcction Due to the Resonance in the Microphone Cavity and Obstaele Effect to be Made in Comparing Free Wave and Pressure Calibrations of a Condenser Mierophone, ('metributions from Radio-ftequency Laboratorips, No. 18.
Barnes, F. J., and Weat: Calibration and Performance of Rayleigh Disk, Jour. I.E.E., 65, 871.

Oliver, D. A.: An Improved Condenser Microphone for Sound Pressure Measurements, Jour. Sci. Instruments, 7: 11:3, 1930.

## SECTION 17

## HIGH-FREQUENCY TRANSMISSION AND RECEPTION

By Albert Hoyt Taylor, Ph.D. ${ }^{1}$

1. Historical. High-frequency transmission may be said to have begun with the laboratory work of Ineinrich Hertz in 1886. He was dealing with damped waves of the order of 1 to 3 m in wave length produced by spark discharge and detected by similar means, namely, micrometer spark set. Naturally with such crucle methods of detection the range of the transmissions was not beyond the limits of the laboratory in Berlin. Nevertheless, the essential nature of the phenomena as an electromagnetic wave motion was demonstrated and the facility with which these very short waves permitted themsolves to be refleeted, focussed by parabolic mirrors, etc., was clearly proved. In spite of the later introduction of thermocouples in receiving gear, little progress had been made with short-wave transmission and reepption ontside of laboratory experiments at still a much later date. It was very natural, after the discoveries of Lodge and Mareoni as to the action of elevated antennae, that the size of the radiating structure should be increased, which meant a corresponding increase in wave length. This was all the more certain to happen because in the seareh for means of producing energy at higher levels, the physical dimensions of the eircuits had to be inereased, which also tended to raise the wave length or lower the frequencies with which experiments were undertaken. so, in the early part of this century, we witnessed the steady progress toward longer and longer waves with ligher and higher power levels. It was not until after the advent of vaeumm-transmitting tubes of considerable power that it was possible to produce such high frequencies as, say 100,000 -ke or $3-\mathrm{m}$ waves, with any great amount of energy and even yet at this date extremely high energies have not been produced on those frequencies.

By the year 1920 there were long-wave stations in existence with frequencies as low as 12 kc and powers running into many hundreds of kilowatts. Nevertheless, it is worthy of note that some of Marconi's experiments in 1899 showed the transmission of intelligible signals through space over a distance of $13 / 4$ miles using a dircetive system for waves of 1 m in length. In 1916 Marconi and Franklin demonstrated the feasibility of using high-frequency waves between 2 and 15 m in length ( $150,-$ 000 to $20,000 \mathrm{kc}$ ) up to distances of about 100 miles. Again here the great utility of reflectors or other devices for concentrating the energy was proven. The same two investigators in 1923 carried out similar experiments for irequencies in the neighborhood of $3,000 \mathrm{ke}$ with a power of 12 kw in the acrial, giving a daylight range of 1,250 miles. In the
${ }^{1}$ Commander, U. S. Naval Reserve; superintendent, Radio Division, Naval Research Laboratory; past president, Institute of Radio Engineers.
meantime other investigators, too numerous to mention individualls by name, had entered into the pieture in this and other countries. The noteworthy contributions of Ameriean amateurs to the field of highfrequency transmission and reception cannot, however, be passed hy without notice, beanse these anateurs brought about results which had been generally believed to be impossible without the nse of extraordinary equipment, and yet they did the work with the simple means a yailabio to amateur experimenters of very limited financial resources. Naturally, the govermment ageneies (particularly the f'nited states Navy) took an important part in this program and developed the first high power, crystal-controlled set in the high-freguency band in 1924. Since 1923 there has bern a steady increase in the practically useable portions of the radio-frequency spectrum. J'rior to 1923 there were very few stations making any practical use of frequencies higher than 3 ,(א) ke. Now there are hundreds of stations using frequencies above $3,000 \mathrm{ke}$, and practieal uses are being fomend for frequencies as high as 100,000 ) ke and in 1931 sucesesful telephone conversations wore carried on across the English Channel in a wave length of $18 \mathrm{~cm}(1,670,000 \mathrm{ke})$.
2. Peculiarities of High Frequencies. It may seem strange that so many years elapsed after the introduction of vacum tubes for transmitters and receivers before much practical use was made of the upper frequencies. One reason for this was the fact that very extensive investigation had been carried out on the attemuations of various radio froquencies in transmissions of considerable distane and it was known to be the general rule that atternation increased rapidly as the frequency was raised, especeally for daylight communieation. It was recognized that freak transmissions could occur during the dark hours when aboormatly high level signals were received. They were, however, crratic and unreliable. The work of Marconi in 1916, working over distances of the order of 100 miles, had apparently created little impression upon other engineers, probably for the reason that the suceess of these experiments (as far as they went) was aseribed to the use of conerentrating (reflecting) devices at the transmitting and reereiving end. Certainly it was not recognized by anyone at that time that frequencies above 3,000 ke showed propertios radially different from these at the lower frequencies. Some use of the higher frequencies between 3,000 and $7,000 \mathrm{ke}$ was made during the world war in conncetion with simple types of spark transmitters of yory low power with crude crystal deteetors in corresponding rereivers. These sets were used either for trench work over very limited distances or for airplane spotting, When Westinghouse eommenced their experiments in the 3,000-ke band and when, a little later, amateurs on low power working between 2,700 and 3,000 ke succeeded in spanning the Atlantic to some degree of regularity, engineers everywhere began to realize that the higher frequencies followed an entirely different attenuation latw from the lower frequencies.

From 1923, progress was very rapid, but it brought with it some noteworthy perplexities, the most important of these being the fact that signals above $6,000 \mathrm{ke}$ in frequency would frequently dwindle away to an extremely low leyel a few miles away from the transmitting station, skip a zone of territory, and come in again later on receivers located hundreds of miles distant. Investigation of this phenomenon by Reinart\% and other amateurs, and by the Naval Research Latboratory, resulted in the determination of skip distances for many frequencies, for both night-
and daytime conditions, and with some regard to seasonal variations which were even then recognized to be of importance. The most striking peculiarity of the high frequencies is their extraordinary carrying power compared with the energy of the transmitter. The second most important peculiarity is the ship-disfance offect just roferred to. The fact that the skip distance was much greator at night than in the daytime at first led to erronoous conclusions that some of the higher frequencies traveled better in the daytime than they did at night; that is, were less attenuated. This, however, is not the case. Skip distance is merely increased during the dark hours. Correlated with this effect is a third and equally important one whieh is known as the limiling-frequency effect. For a given atmospheric condition, which will vary with the time of vear and time of day, there is a limiting frequency beyond which reception over long distances is no longer possible.
3. Status of Facts and Theory in 1925. About the year 1925 or 1926, the known facts were about as follows:

Frequencies belween 10 kc and about $2,300 \mathrm{kc}$ followed, during the daytime at least, a very regular law of attennation especially in transmission over water, with the attenuation a function of the wave length such that the extrapolation of the formula to still higher frequencies indieated that it was hopeless to expect these frequencies to be useful in long-haul communication.

Frequencies above $3,000 \mathrm{kc}$ showed a value in long-haul communieation (especially in the daytime) which rapidly increased with the frequency instead of decreasing, and which gave observed values of received signal thousands of times greater than that which could be caleulated from extrapolation of the long-wave formula.

Frequencies above $6,000 \mathrm{kc}$ or thereabouts showed a skip-distance effeet which was greater at night than it was in the daytime and greater in the winter than it was in the summer time.

The limiting frequency, or highest frequency, useful for long-haul communcation, was distinctly lower at night than it was in the daytime and in general (with certain exceptions which will be noted later on) lower in the winter time than it was in the summer time. It was therefore apparent that: (1) the attenuation theory was all wrong, or (2) it was applicable only to the lower frequencies, or (3) the higher frequencies did not follow the ordinary law of radio communication at all.
r'his aspect of affairs eaused a great many investigators in the fiek of pure science to become interested in wave-propagation phenomena and led to a development which showed that the second of these possibilitios was more nearly correct. As shown by publications of A. Hoyt Taylor and E. O. Hulburt in Ihysical Review, February, 1926, the fong-wave theory could be amended in such a way as not to damage its usefulness in the long-wave field and vet could take account in a fairly reasonable way of the properties of the higher frequencies.
4. Theoretical Considerations-Kennelly-Heaviside Layer. Sinee radio waves are known to be eicetromagnetic in eharacter and are of the same general properties as the waves of radiant heat and light, there is no reason why they should not travel in a straight line with no more than the eustomary deviations due to diffraction, reflection, and refraction, One of the earliest problems in radio theory after the success of Marconi's first transoceanie signal in 1901-1902 was to aceount for the manner in which the waves emanating from Clifden, Irelamd, progressed to Glace

Bay, Nova Scotia, where Marconi picked them up. One had three choices here:

1. To assume that the wave penetrated through the earth's crust.
2. To assume that the diffraction effeets caused them to bend around the surface and follow the curvature of the globe.
3. To assume that something happened in the upper hayers of the earth's atmosphere to refract the waves back to the earth's surface. A ray of energy sent out tangentially from Clifden, for instance, would otherwise pierce the sky in a straight line and be lost as far as further usefulness was concerned.

The first of these possibilities was easily thrown out. The electrical constants of average carth and sea water were well known. The ahsorption of a wave which would be obliged to travel through the earth's crust would be so enormous that there would be no possihility of getting across the Atlantic. Calculations nade on the pure diffraction effect indicated that this also is not sufficient to account for the bending of the waves around the contour of the globe. Kennelly, in this country, had suggested a reflecting medium in the upper layers of the earth's atmosphere, and simultaneously Heaviside, in England, had made the same suggestion with the additional idea that the reflecting medium was ionized, that is, contained positive and negative ions. The theoretical possibilities of such a layer were analyzed by a great number of different investigators and a satisfactory explanation for the return of the rays to the earth was arrived at when it was found that the properties of such a layer could easily be such as to cause an advance in the phase of velocity of that portion of the wave front which extended up into the upper regions of the earth's surface. This caused a change in direction of this advancing wave, which continually bent it hack again towards the earth. In case the hending is more than sufficient to equal the earth's curvature, the ray will return to the earth at some point at a distance from the transmitter which will depend upon the frequency. The higher the frequeney, the more difficult it will he for the ionized layer to bend the ray, and therefore the farther it will travel before coming down to the earth. After eoming down to earth the ray is no doubt reflected again and proceeds upward where it encounters the Kennelly-Ifeaviside layer at a certain time and is returned to the earth at a point approximately twice as far away from the transmitter as the point of its first return.

Considering any single ray then, we would have possible points of reception at regular distances at recurring intervals, from the transmitter outward, assuming for the purposes of argument a similar condition in the Kennelly-Heaviside layer over a considerable streteh of territory. Actually, however, we do not have points of reception but rather zones of reception, which we familiarly refer to as first, second, third, ete., zones of reception, corresponding to the first, second, third, ete., regions where the rays are returned from the layer. Excepting at the limiting frequency, there is always a cone of rays available for communication purposes. The ray which is most nearly horizontal will strike the KennellyHeaviside layer at the flattest angle and will therefore be most eertain to he turned down, but it will (from the nature of its path) travel long distances before coming down again. A ray which more nearly approaehes the vertical will, if returned at all, come hark mueh eloser to the transmitter, but if the frequency is high enough it will have such penetrating power and so little deviation that it will never be returned at all.

For any given frequeney then, there is, under ideal conditions, a limiting angle of uptake from the transmitting antenna above which radiation is no longer useful becanse it penetrates the layer and does not return to the earth. Now, as the frequeney is incrased and the rays become more penetrating and less easily deviated, they have to strike the layer at flatter and fatter angles in order to have any chance of returning to earth at all, and therefore as the frequency is increased the rays which angle sharply upward are eliminated as far as useful communication is coneerned and only the very low-angle rays are of any use to us, until finally, the usoful cone of radiation, which is included between the horizontal ray and the ray proceeding upwards to the critical angle with the horizontal, has become a very small angle indeed and with still further increase of frequeney this angle vanishes altogether. Thus, for a given condition of the layer there is a eritical frequency above which it is not possible to get long-distance commonieation. Immediately below this critical frequency we get a very narrow cone of rays available, perhaps up to 3 or 4 deg. ahove the horizontal ray, and naturally when these are turned back down to earth they come back a long distance away from the transmitter, thus showing very large skip-distance effect and after they rehound again from the carth and are turned back a second time there is a seeond zone of reception, but betweon the two zones there is a wide region over whieh reception is not feasible and this region (the existence of which was experimentally verified in the spring and summer of 1926 by the Naval Researeh Laboratory) has been called the secondary skip-distance region. Oeeasional instances of tertiary skip distanees have also been found.
5. Changes in Layer Height. If' the effective height or density of the Kennolly-Heaviside layer is altered, the whole picturechanges. If the layer is higher or less dense in electrons, the picture will be essentially the same except that all frequencies will be somewhat lower than when dealing with the low layer or a very dense layer. Thus, even at fairly molerate frequencies secondary skip zones may open up at night and, as is well known, critiral frequencies are much lower at night in general than they are in the daytime. Obviously the frequencios nost suitable for general communication purposes are those for which at fairly wide cone of rays is available, so that the first zone of reception is wide enough to overlap with the second zone and the second with the third zone, ete., in order that there may be no missing regions intervening other than the first skip-distance zone.

It is far more necessary to understand the properties of wave propagation when attacking practical communication problems with the aid of high frequencies than it is even in the case of low frequencies. There are marked soasonal variations, as far as optimum frequencies are eoncerned, in those circuits which pass through the regions of the carth's surface subjeet to wide differences in elinate from summer to winter. This is particularly true in such cireuits as pass close to the polar regions, During summer the polar regions are exposed to long periods of sunlight, and the presumption is that the production of electrons is at a high rate. The equivalent height of the layer is low, and suecessful communication is best obtained with relatively high frequencies. This has been more or less substantiated by work with polar and Alaskan expeditions. During the long polar night, however, the situation is reversed and the effeetive height of the layer is very high, making it neressary to use much
lower frequencies than can be used in the summer time. On the other hand, the low frequencies thus used in the winter time are not satisfactory also in the summertime because of the high absorption at that period. Aside from what may be called geographical variations and scasonal variations, there is a possibility that there is a connection between general radio eonditions, especially in the very high frequency band, and sun-spot activities. If that be true, we may expect a long period of variation in perhaps an eleven-year cycle corresponding somewhat to the rise and fall of sun-spot activities. This idea has some foundation in fact, but observations have not yet been continued long enough to make the matter certain. Theoretically, it seems very plausible that sun spots should eertainly be the source of very intense ultra-violet radiation. It is well known that on the upper frequencies, particularly above $12,000 \mathrm{ke}$ the effect of magnetic disturbances is extremely violent.

Magnetic disturbances in general have a very disastrous effect upon east and west communication and a somewhat less disastrous effect upon north and south communication. In general, it seems necessary that the circuit in question must be exposed to the magnetic storm during the daylight hours; otherwise it will not be seriously affected.
6. Multiple Reflections. One curious result of the ability of highfrequency waves to reach a distant point by a series of alternate reflections from the earth's surface and refractions from the Kennelly-Heaviside layer is that a given receiver at a distance may be affected simultaneously by several different waves originating at the same transmitter but arriving over entirely different paths. For instance, in getting across the north Atlantie, one wave at a low angle may make the trip in three hops, touching the surface of the Atlantic only twice on the way over, whereas another one from the same transmitter at a higher angle (provided it does not exceed the critical angle) may make a much larger number of hops and still arrive with sufficient energy. Eekersley, in England, has shown six possible signals from telephone transmitters on the American side which may arrive at the English recciving stations over six different paths of different lengths. A splendid chance for interference results from this condition, and a certain dragging out of the signal even in moderate speed-code work is often noticeable from this cause. In telephony it might be quite disastrous, especially as the Kennelly-Heaviside layer is known not to be at rest but usually in the grip of uneasy movement which can quite rapidly alter the path conditions of the rays and shift their relative phases on arriving at the receiver.
7. Fading. Fading at frequencies high enough to produce audible modulation has frequently been observed. With the aid of highly directive receiving gear and by confining its attention (so to speak) only to a limiting cone of arriving rays, this effect can naturally be somewhat reduced, but it is still at times exceedingly troublesome. Another form of high-frequency interference which has an interesting theoretical bearing and which does not occur on the lower frequencies, is the round-the-world signal; and under certain conditions, depending upon the time of year, time of day, and geographical location of the station in question, a station A may communicate with station $B$ either by the direct great-circle path or reversed one, although the reversed one may be much longer than the direct path.
8. Theory of High-frequency Wave Propagation. For purposes of reducing the problem to a more elementary form, the refractions in the
upper layer of the earth's atmosphere may be theoretieally replaced by reffections at a height whieh may be designated as the equivalent height, of the Kiennelly-Ifeaviside layer. Thus the problem may be treated ats a reflection problem with a fair degree of aecuraey, always keeping in mind, however, that the real process is not an abrupt reflection but a more gradual turning down brought about by refraction. Still, it often simplifies matters to think of things in this way.

Figure 1 shows how matters would be represented on a basis of the reflection theory, The transmitter is at $T$ and the ease represented is for an effertive layer height of 500 miles. We see that the tangent ray comes back to earth at $R_{2}$ and that rays of higher clevation than the tangent ray are turned down closer in, nitil finally we reach the limiting ray, whirh is the last one turned down, and it reaches the earth again at $R_{1}$. The first zone of reception is therefore a region bet ween $R_{1}$ and $R_{2}$, the skip distanee is the region between $T$ and $R_{1}$ (negleeting the short ground-wave range out from $T$ ), and the cone of rays aetually useful to communiontion purposes is contained between the tangent ray, (which is ultimately reflected to $R_{2}$ ) and that other ray which is ultimately refleeted to $R_{1}$. It is interesting to note that even the tangent ray, although


Fig. 1.-Reflection of a wave from ionized layer.
making a zero angle at the transmitter with the earth's surface, euts the Kennolly-Heaviside layer at an appreciableangle and that even this angle may be too great or may exceed the critidal angle if the frequency is sufficiontly high. In that ease the ray penetrates the layer and is not reflected down from it.

Figure '2 shows the difference in behavior of two radiations starting at $W$, one at 30 m or $10,000 \mathrm{kc}$, and the other at 15 m or $20,000 \mathrm{kc}$. At 30 m the eritical angle may he much larger and therefore a relat ively large cone of rays is available. This cone of rays first reaches the earth at 500 miles from the transmitter $W$, this 500 miles being the skip distance. The tangent ray reaches the earth at 2,000 miles for this particular case, where the Kennelly-Heaviside layer equivalent height is assumed to be 150 miles, a winter daytime average. The first zone of reception therefore lies between 500 and 2,000 miles for this frequency. After a second reflection from the layer a new zone is begun at 1,000 miles which extends from 1,000 to 2,500 miles. Again a third zone, after a third reflection from the layer, is begun at 1,500 so that betwern 0 and 500 miles we have no waves except a fechle ground wave which only goes a few miles out, from the transmitter; between 500 and 1,000 miles we have rays which have suffered a single reflection, Between 1,000 and 1,500 miles we have rays of two sorts, some of whieh have suffered one reflection and some two. Betwern 1,500 and 2,000 miles we have rays which have suffered one, two, and three reflections. Thus, we see that the different zones of reception


Fig. 2.-Successive reflections of a $15-\mathrm{m}$ and a $30-\mathrm{m}$ wave.
overlap. Also, it is evident that there is ample chance for interference patterns to develop in zones at a moderate distance. At great distances, however, so many zones overlap that likelihood of a complete fade-out due to interference is not so great. Now, if we eonsider the $15-\mathrm{m}$ or $20,000-\mathrm{ke}$ wave, we see that the first zone of reception due to the narrower cone of rays available (the critical angle being mueh smaller) will be between 1,500 and 2,000 milos, with a skip distance of 1,500 miles. This region is marked $R_{1}$ '. Now, after a second reflection this wave comes down again between 3,000 and 4,000 iniles giving a second zone of reception marked $R_{2}{ }^{\prime}$ but these two zones do not overlap, there being a gap between 2,000 and 3,000 miles. The third zone marked $R_{3}{ }^{\prime}$ also shows a gap between it and the second zone of 500 miles, but after the third zone there are no more gaps, the fourth zone marked $K_{4}$ ' ineeting the third zone, and all the zones thereafter (not shown in the diagram) overlapping. If now we considered a still higher frequency with a still smaller critical angle we would find a first zone of reception similar to that marked $K_{1}{ }^{\prime \prime}$. The corresponding second zone is marked $R_{2}{ }^{\prime \prime}$, the third zone $R_{3}{ }^{\prime \prime}$, the fourth $R_{4}{ }^{\prime \prime}$, the fifth $R_{5}{ }^{\prime \prime}$, and the sixth $R_{6}{ }^{\prime \prime}$. So that we see, even if the waves have traveled halfway around the carth, there are still missing skip distances of a higher order than the first. They are, however, gradually closing up. It is easy to see that if the frequeney is increased further, the zones of reecption rapidly diminish to the vanishing point. Of eourse, this pieture does not fit the actual case but is for the ideal ease of a porfectly uniform layer distribution together with perfectly uniform reflections from the surface of the earth. It does, however, give us a general guide to what we may expect.
9. Use of Ultra-high Frequencies. The ranges of different high frequencies and their serviceability for different purposes are given in Table


Fig. 3.-Neeessary altitude above earth to receive direct ray from ground station.

1, which also gives approximate or average skip-distance offects based on data of various sorts accummated over a poriod of years. Frequencios too high to be useful for long-distane communication may nevertheless be extremely valuable for certain other types of work where the points between which communication is to be established are of perhaps some altitude or are close enough together so that the curvature of the carth does not intervene and cut off the direet ravs. This type of eommunica-

Table I.-Skip-distance and Range Table ${ }^{1}$
(For frequencies between 1500 and $30,000 \mathrm{ke}$.)

| Frequency, kilocyeles | Approximate wave length, meters | $\begin{gathered} \text { Range } \\ \text { of } \\ \text { ground } \\ \text { wave } \end{gathered}$ | Skip distance |  |  |  | Maximum reliable range |  |  |  | Services International Radiotelegraph Convention) | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Summer |  | Winter |  | Surnmer |  | Winter |  |  |  |
|  |  |  | Day | Night | Day | Night | Day | Night | Day | Night |  |  |
| 1,500-1.575 | 200-175 | 100 |  |  |  |  | 100 | 100 | 150 | 300 | Mobile | Police television, aviation, etc. |
| 1,715-2.000 | 175-150 | 90 |  |  |  |  | 120 | 175 | 170 | 600 | Mobile-F | U. |
| 2,000-2,250 | 150-133 | 85 |  |  |  |  | 130 | 250 | 200 | 730 | Mobile-Fixed | U. S. 2002 to 2300 Experimental visual broadcast. |
| 2.250-2.7.0 | 133-109 | 80 |  |  |  |  | 1.50 | 330 | 220 | 1,500 | Mobile | 2398 Experimental. |
| 2,750-2,850 | 109-10.) | 70 |  |  |  |  | 170 | 300 | 300 | 2,500 | Fixed | 2750 to 28.50 Experimental visual broadcast. |
| 2,850-3.500 | 105-85 | 63 |  |  |  |  | 200 | 900 | 350 | 3,000 | Mobile-Fixed | Aviation, government, ete. |
| $3,500-4,000$ | 85-75 | 60 |  |  |  |  | 250 | 1,500 | 400 | 4,500 | Mobile-FixedAmateur | Amateurs and government. |
| 4,000-5.3(M) | 75-54 | 55 |  |  |  |  | 300 | 4,000) | 500 | 7,000 | Mobile-Fixed | Point-to-point, ete. |
| 5,500-5.700 | \%4.0-52.7 | 50 |  |  |  |  | 400 | 4,000 | 600 | 8,000 | Mobile. |  |
| 5,7(0)-6.090 | $52.7-50.0$ | 50 | 50 | 50 | 50 | 60 | 450 | 5,000 | 650 | 8,000 | Fixed. |  |
| 6,000-6.130 | $50.0-488$ | 50 | 60 | 70 | 60 | 90 | 500 | 5,500 | 700 | 8,000 | Broadcas | Notes |
| 6.150-6.655 | 43.8-45.0 | 45 | 70 | 115 | 80 | 175 | 5050 | 6.500 | 750 890 | 8,000 8,000 | Nixed. | Mohile: Ships and coastal stations, |
| 6.13\%-7,000 | 45. $0-42.8$ | 45 | 80 | 185 | 100 | 290 | 6.0 | $\therefore$-000 | 820 | 8.000 | Fixed. |  |
| 7,000- $\% 300$ | +28-41.0 | 45 | 90 | 220 | 11.5 | 360 | 700 | -,500 | $\begin{array}{r}1,100 \\ \hline\end{array}$ | 8,000 8,000 | Amateurs. <br> rixed. | aircrait, rairomanent stations handling |
| 7.300-8.300 | +1.0-36.6 | 40 | $1+0$ 160 | 290 <br> 370 | 17.5 | 45.7 <br> 570 | 880 | 8,000 8,000 | 1,100 | 8,000 8,000 | Fixed. <br> Mohile. | point-to-point traffic. |
| $8.200-8.550$ $8.5 .50-8.900$ | $\begin{array}{lll}36.6 & -35.1 \\ 35 . & 1-33.7\end{array}$ | 40 40 | 160 170 | 370 420 | 2012 | 370 630 | 800 900 | 8.000 8,000 | 1,360 | 8,000 | Mobile-Fixed. | Slip Distance: Shortest distance be- |
| $8.5 .50-8,900$ $8.900-9,500$ | $\begin{array}{lll}35 . & 1-33.7 \\ 33.7 & -31.6\end{array}$ | 40 | 200 | 485 | 270 | 710 | 9.0 | 8,000 | 1,680 | 8,000 | Fixed. | yond the ground wave at which commu- |
| $9.500-9,600$ | $31.6-31.2$ | 40 | 220 | 530 | 280 | 740 | 1,000 | 8,000 | 1,820 | 8,000 | Broadcast. | ky we |
| 6. $17000-11,000$ | 31.2-27.3 | 35 | 260 | 625 | 32.5 | 860 | 1,100 | 8,000 | 2,140 | 8,000 | Fixed. | in frequencies and at certain season |
| 11,000-11,400 | $27.3-26.3$ | 35 | 300 | 750 | 3.80 | 1,000 | 1.200 | 8,000 | $\cdots$ | 8,000 | Mobile. | -quencies and at certain seasons |
| 11, 410-11,760 | $26.3-2.6$ | 35 | 315 | 800 | 400 | 1,080 | 1,300 | 8,000 | 2, 700 |  | Broadcast. | mmunication is possibe within the |
| 11,700-11,900 | $25.6-25.2$ | 35 | 3:5 | 83.5 | 420 | 1,120 | 1,500 | 8. 000 | 2.800 |  | Fixed. Fixed. | skip distance due to echoes and around-the-worl, signals. |
| 11.900-12,300 | $25.2-24.4$ | 30 | 3.50 | 880 | 430 | 1,170 | 1,550 | 8,000 | 3,000 |  | rixed. | the-worli signas. |

tion would be called communication by the direct ray. It has some marked advantages and naturally some disadvantages also. Figure 3 shows the altitude at which an airplane would have to fly in order to get direct-ray communication with a ground station. Especially this figure shows that a plane at an altitude of $2,000 \mathrm{ft}$. could expect direct-ray communication up to about 60 miles, and at $10,000 \mathrm{ft}$. up to about 125 miles, the range increasing to 175 miles at $20,000-\mathrm{ft}$. altitude.
Among the advantages of these very high frequencies, say from 40 megacycles up, may be mentioned the following:

1. They can be confined into concentrated beams like a searchlight, since the necessary antenna or radiating structures, being commensurate with the wave length, are relatively small and therefore not too costly. These radiating structures are of many different forms, but they all depend more or less on what might be called, roughly, the diffraction-grating theory. In other words, they depend upon simultaneous in-phase radiation from a large number of properly spaced conductors. Such beams on various frequencies, from 3,000 to $75,000 \mathrm{kc}$, are finding much use for both telegraphy and telephony. Usually a network similar to the radiating network is placed onefourth wave length behind it, that network acting as a tuned reflector, thus more or less effectively cutting out the radiation to the rear of the beam in question.
2. Waves are possible in the upper-frequency bands where no ground waves exist on arcount of high absorption and no sky waves on account of critical angle. The direct ray is free from fading, which is a very great advantage indeed.
3. These upper frequencies are practically free from atmospheric disturbances.
4. Where it is desired to modulate the carrier wave with a very wide band of frequencies, in television for instance, the ultra-high frequencies lend themselves very well to the solution of the problem, since the pereentage variation from the carrier is, even with 200 - or 300 -ke modulation frequency, not very great.

The disadvantages of these upper frequencies are as follows:

1. It is difficult to build transmitters of high power and receivers with a high degree of sensitivity due to limitations within the vacuum tubes used for these purposes. These difficulties will he rapidly overcome. Certainly much progress has been made even in the last two years along these lines, and frequencies as high as 1,500 me have actually been produced in the laboratory, although to date not in any great amount of energy. Suitable receivers for such frequencies are as yet undeveloped. Practically satisfactory transmitters are available, however, up to 100 mc (perhaps higher), and fairly satisfactory receivers up to about the same point.
2. Man-made radio disturbances, particularly from ignition systems on automohiles and airplane engines, as well as induction from transmission lines, telephone lines, X-ray machines, trolleys, etc., are very annoying on these upper frequencies. They do not, however, up to at least $100,000 \mathrm{kc}$ constitute an insuperable barrier to progress.
3. These higher frequencies are very easily reflected from buildings and other objects near or on the path of transmission, resulting sometimes in complicating interference patterns or standing waves (shadows). Experiments, particularly with television in our larger cities,are showing peculiarities of this nature.
4. Band Width Required. For any frequency to be useful for practical communicrtion purposes, the agency operating it must be allowed a certain channel or band within which to operate. The width of this channel depends upon the type of service in question. Television, for instance, requires a very wide band; high-grade program broadcasting,
a fairly wide band; satisfactory speech, a somewhat narrower band; while high-speed telegraphy is notably narrower than speech telephony, and low-speed telegraphy a very narrow band indeed. Facsimile transmission requires a band, depending upon the speed of transmission, which generally lies somewhere between high-speed telagraphy and telephony. In addition to the band of frequencies which the station must actually transmit to accomplish its mission, a certain tolerance for the frequency stability must be allowed. 'This is an extremely important matter. The eloser a group of stations can stay on their assigned frequencies the more likely they are to operate without mutual interference. It has been proved possible to operate a station day after day within a few parts in a million of its assigned frequeney, but it is naturally difficult for many stations in the word, on account of financial and patent limitations, to come up to the same standard. Moreover, the same standard cannot very well be required of an airplane as would be required for a first-elass fixed station where initial eosts are not so important.

As the art stands today (1932), a station which holds its frequency to better than one part in 10,000 of its assigned frequency is doing very well indeed. One which does not hold its frequeney to better than 10 parts in 10,000 is doing very poor work. There is every indication that the tolerance permitted on frequency stahility will be rapidly tightened up by international agrement. In addition, then, to the actuat band of froquencies necessary for service, we must add a small tolerance band and then a small guard hand to be sure that the neighboring assignments do not result in interference. These, then, are the basic prineiples underlying allocations of frequeney by practically all civilized nations.
11. Attainment of Frequency Stability. The wonderful development in piezo-electrically controlled cireuits has set a standard for frequency stability of a very high order and is still indicating further possibilitios of refinements. It is not to be overlooked, however, that there are many promising self-oscillating eireuits of a very fair degree of stability, which, when handled with exactly the proper precaution, are capable of giving a very high order of stability.
12. Allocation of Frequencies. The national aspect of frequeney allocation in this country is handled by the leederal Radio Commission. Internationally it is handled by such conferences as the Washington Conference of 1927 and the Madrid conference held late in 1932, assisted by the work of the International 'lechnieal Consulting Committee (C.C.I.R.) which has had one meeting at the Hague and another meeting at Copenhagen.

The present international allocation of frequencies for various serviees is herewith appended as Table II. No doubt some slight rearrangements of this table will be made in the near future. At the present time, it being not considered safe to allocate frequencies generally closer together than one-tenth of 1 per cent, it can be seen that in spite of the tremendous spread of frequencies opened up for public use by the exploitation of the high bands of frequencies, there are after all only a limited number of frequencies for the use of the air. Fortunately many of these frequencies can be duplicated in different parts of the world for simultaneous operation, if due aecount is taken of the time of day and geographieal location of the stations. There is no harm for instanee, in operating a station in the 6,000 -ke band in this country on a frequency used in Europe provided that operation is not carried on later in the day than within an
hour or two of the time when total darkness covers the path between here and Europe. During the dark hours, of course, interference will result, but during the hours of full daylight this frequency will not cross the Atlantic with sufficient intensity to cause interference. The superfrequencies, or limited-range frequencies, of course, can even be duplicated within our own country from city to city. Such duplications as these, however, have generally to be worked out through regional agreements such as we have with Canada at the present time, as Canada is close enough so that interference might result if the frequencies were not properly divided between the two countries. Any scheme that will permit a greater exploitation of the given channels or bands assigned to a station is worth developing. A good many such schemes have been tried out, and some of them have had a considerable degree of success. Most of them depend either upon the operation of a number of frequencies within a very narrow band all very aceurately held in place, or on the multiple modulation at audio frequencies of a single carrier.

Table II


## TECHNICAL ITEMS PECULIAR TO HIGH-FREQUENCY DEVELOPMENTS

13. Transmitters. In the ease of transmitters for telegraphic purposes, especially montinuous wave telegraphy involving beat-tone reeeption, it is necessary for the transmitter frequency to have a very high degree of stability that there shall not be too mued variation in tones of recelved signal. If, for instance, beat-tone reception is employed on a frequency of $20,000 \mathrm{ke}$ and this tone is not allowed to vary more than 100 cyc cos ,
it will require that the transmitters be held at a frequency constant to within one part in 200,000 ．It is，of course，extraordinarily difficult to do this without the use of master－oscillator circuits which are followed by suitable amplifiers to bring the power up to the required level．In case piezo－clectric control is used，it is highly desirable to kerep the controlling erystal at a constant temperature，generally chosen at $50^{\circ} \mathrm{C}$ ．， and sinee it is not economical to grind crystals aceurately for frequeneies higher than 6,000 ke it is neressary to follow the erystal master with amplifiers which act as frequency multipliers．

It is，for instance，common practice to design a $1-k w$ set with a tube line－up somewhat as follows：

1．Master oscillator $7 \frac{1}{2}$ watt，worked at low power in order not to overheat the erystal．

2．Buffer stage on same fregueney as master，also $7 ⿻ 丷 木 / 2$ watt sereen grid， worked at approxinately full power．

3．75－watt screen－grid stage which also acts as a multiplier，doubling or trebling the frequeney．

4．A pair of 75 －watt sereen－grid tubes which may single，double，or treble the frequency as the ease may be，and which in turn feed into：

5．A pair of 500 －watt sereer－grid tubes which always aet as amplifiers without frequeney multiplication in the best type of design．

It is always desirable to avoid froquency multiplication in the last stage in order to prevent emission on sub－harmonies and to reduce as far as possible harmonie emission，since the singling operation dan be carried out without the use of the excessive negative C which is necessary for frequency multiplication．The tube is thus worked more nearly on the linear portion of the characteristic，giving less harmonic develop－ ment．Uuless such transmitters have their individual stages earefully shielded，the stages prior to the final amplifior are extromely liablo to have sufficiont coupling to the antemathrough the set to give off strong sub－ harmonies which may caluse objoctionable interforence．In fact，in spite of the most eareful shielding a certain amount of this emission always does seom to take place so that it is somotimes neeressary to add at tunable tank eireuit or some kind of filtering system betwern the last stage and the radiating structure．Moreover，to reduer the negative bias in the last stage too far would result in an abormally low efficiener of the final power amplifier，so that a compromise has to be effeeted betwern offi－ piency and the tendency to produee harmonies．In some cases it is better to work the tubes with a somewhat highor negative bias and at higher efficiency and add the tank eirenit．

14．Telephone Transmitters．In the ease of transmitters intended for telephony the situation is far more complicated．It is not possible to work at very high effieiency．Otherwise distortion will result．IIere the same goneral rules apply as for any high－grade broadeast transmitter， except that it is extremely inadvisable to modulate in the earlier stages subject to frequency multiplication beranse here we will cortainly have distortion oceurring．While the nerossity for froqueney rontrol would not appear to be so great for telephonic communication，yet in reality it is of the same order of magnitude，since it has been found that wobling in frequener gives rise to aboomal fading offerts which have a very disastrous effect in distorting the reoroved signal．Where the master oscillator is not piezo－elentrieally eontrolled or controlled by some medanical or magneto－striction oseillator of similar precision，a self－
oscillating master circuit may be used provided suitable precautions are complied with. ${ }^{1}$ Circuits must be chosen which are inherently stable and which show the smallest variation in frequency with changes in filament and plate voltage. Such master oscillators must have their supply voltages for filament, plate, and negative $C$ (if such be used) very carefully filtered to avoid frequency modulation by such effects. Moreover, special precautions must be taken to hold all these voltages very constant. However, when these things are rigidly complied with it is possible to get excellent results almost comparable with those obtained from piezo-electric control. Such circuits, however, generally require much more carcful attention and more supervision and checking than piezo-electrically controlled master cirenits.
15. Peculiarities of High-frequency Transmitters. For very high frequencies, operation of amplifiers in the push-pull arrangement is very effective. This is indeed absolutely imperative at the present time for the last stage of a high-power transmitter since it is neenssary to have this amplifier work on the same frequency as the preceding stage. It must be halanced or neutralized against the preceding stages. Such balance or neutralization at very high frequencies is extremely unsatisfactory unless a symmetrical push-pull arrangenent is used. Automatically neutralized (sereen-grid) tubes are now commoreially available up to 500 watts in this country, and some experimental sereengrid tubes in the water-cooled class have been made but are not yet commercially available.

Another peculiarity of $h$-f transmitters is the faet that it is much casier to design such transmitters with high-impedance tubes which have relatively low grid capacity than it is to design them for low voltage, low impedance tubes with high inter-element capacity. It is casier to get excitation and efficieney with a high-impedance tube and is mueh easier to carry out balancing operations. Such tube layouts as are commonly used, for instance in many broadeast transmitters, would be almost impossible to work with at very high frequencies.

In the case of transmitters having to cover a wide range of frequencies another difficulty is encountered; namely, dead-end effeets in variablecoil systems. These must be earefully taken care of by short-circuiting certain turns or cutting them out. These dead-end effects may even he troublesome when the coil in question is disconnected entirely from the transmitter but is in the immediate vicinity of the particular coil that happens to be used for the transmission at that time.

Another peculiarity of the h-f transmitter is the fact that it is required to work into radiating systems of very unusual impedances. In the ease of transmitters working on one or two fixed frequencies and into a transmission line, this difficulty is not so important since a transmission line of fixed characteristic impedance of, say, 600 to 800 ohms, ean be generally adopted and adhered to, but in cases where they work more directly into an antenna (especially if that antema be fixed for a wide range of frequencies), the impedance of the radiating system may vary from a few ohms up to several thousand. Thorefore, it is often necessary to provide for an extremely wide range in coupling between the last stage of the transmitter and its radiating system. Tlhis does not hold where the transmitter is designed for one frequency and operating into a stand-

[^44]ard transmission line, feeding a radiating structure. For frequencies above $2,000 \mathrm{kc}$ it is not only unnecessary to use Litzendraht for coils but is a disadvantage, hence the almost universal use of either solid ronductor or water-cooled hollow conductor for coil windings. It is also neecsary to avoid many forms of insulation that are perfeetly adequate at lower frequencies, such as those used in the broadeast band. Many insulators which give excellent service at low frequencies show rapid development of heat and broaklowns within a few seconds when used in high-power h-f transmitters. Fortunately there have been developed within the last frw years a number of types of insulators, some of which seem to be suitable even for frequencies as high as 100,000 ke and perhaps higher. Among them are Pyrex, Isolantite, Mycalex, Victron, and Silimanite.

The perfect insulator for these frequencies, namely, an insulator which has the requisite elect ric properties combined with strength and machineability, has not yet been discovered.
16. Receivers. Many h-f receivers are more or less of the same general type as those of low frequencies. They may have one or two stages of screen-grid amplification followed hy a detector which can regenerate or oseillate, as needs be, and then by suitable audio amplification. The difficulty with this type of receiver is that the gain in r-f amplification per tube is very small as the frequency gots very high, until in many cases the gain is actually negative. The use of new insulating bases for tubes and botter tube design is gradually extending the frequency range of such receivers. In the case of a receiver for continuous wave reception it is necessary to have a beat oscillator which may be a separate heterodyne or the detector itself may oscillate. The pushpull arrangement for both r-f amplification and oscillating detection has here some marked advantages. The amplification per stage will hold up hetter at higher frequencies with push pull than without it, and the detector will oscillate at much higher frequencies in the push-pull arrangement than in the single-tube arrangement.

Receivers for very high frequencies often have considerable trouble from tube noises and differ radically from ordinary receivers in one particular, namely, suscoptibility to microphonic disturbances. The receiver box must have absolutely no loose contaets between bits of metal anywhere, and the tubes themselyes must be non-mierophonic if possible. Many a receiver which is sufficiently sensitive for its purpose fails utterly because of its microphonie properties. This is particularly true for receivers designed for shipboard work and still more so for aircraft reccivers. It is also extremely good practice to put r-f filters in all supply leads, telephone cords, ete., to such receivers to keep signals from coming in by the wrong channel. When such receivers are provided with automatic volume control, they have a marked advantage in the presence of fading signals. Fading is, of course, one of the greatest drawhacks to h-f work.
17. High-frequency Superheterodynes. Another well-known type of receiver is the superheterodyne. It differs from the ordinary superheterodyne familiar to the broadcast listener in two respects: First, transfer frequency is usually much higher than that of the broadeast receiver. It may be anywhere from 100 to 1,500 ke depending on the frequency range to be covered. Second, the h-f superheterodyne seldom has high sensitivity, unless the first or $h$-f detector tube is regenerative.

One very sensitive type of receiver which is used to a considerable extent at the present time is a combination of these first two types. It uses two or three stages of r-f amplification preceding the first detector which is usually made regenerative. The rest of the receiver is of the superheterodyne type. The use of ganged controls is possible at fairly high frequencies but naturally more difficult. It is highly desirable, especially in aviation work where simplicity of operation is essential. For extremely high frequencies, say ahove $60,000 \mathrm{ke}$, the first type of reeeiver, namely, r-f, detector, and audio, is of very little use and the superheterodyne is far less effective than at somewhat lower frequencies. The fact that it is impossible to get adequate r-f amplification ahead of the detector is no doubt the reason for the ineffectiveness of both receivers. Nevertheless, with specially constructed tubes some progress is being made in this field with superheterodynes. The most sensitive receiver for these very high frequencies would seem to be the superregenerative receiver, but it has the great drawbark that it is not relatively as effective for continuous wave signals as for modulated signals. For modulated signals, however, it is extremely sensitive but unfortunately not any too selective. It is, however, largely used for work in these very high bands. For still much higher frequencies, that is, well above $100,000 \mathrm{ke}$, there is no known receiver that has at the present time any great amount of sensitivity. In fact, for experimental work we see the investigators turning back to the old erystal detector followed by audio amplification.
18. Magnetron Oscillator. On the whole it is elear that the transmitting art is (barring the fact that much still has to be done on the suppression of harmonies and sub-harmonies), very much in advance of the receiver art. By the use of magnetron tubes, frequencies have been produced corresponding to waves only a few centimeters in length. When we remember that 10 cm correspond to a frequency of three million $(3,000,000)$, ke it can be appreciated that there is a tremendous range of frequencies available for exploration and exploitation. Of course, the magnetron oscillations are not very accurately controlled in frequency, but there is so much room in this portion of the spectrum, that if suitable receivers can be developed for these upper ranges, these frequeneies will no doubt come into useful serviee to mankind, especially for limited-range communication.
19. Television and High Frequencies. It may be well to say a few words about the relation of h-f transmission to television. On aceount of the fact that television transmission requires the transmission of a very wide band of frequencies for clarity of results, the high and superfrequencies seem to he peculiarly fitted for this work. To put television in the lower band would wastefully consume for a single chamnel a large number of frequencies that could be adequately used for long-haul communication, but there is plenty of room for loeal work in the very high bands. For television reception the recciver has of course a special amplification system following the detector, which is capable of going to very high frequencies in order to speed up the response. It would seem, however, that in anything but the very high bands fading at both audible and sub-audible frequencies would seriously distort the pictures. Indeed, this is known to be the case. Just how far automatie volume eontrol and diversity reception may go towards remedying the situation is still a matter of conjecture, but there seems little doubt that very
interesting local work will bofore long be aceomplished in the superfrequency band where the principal difficulty will be interference patterns, or shadows produced by local reflections from meighboring buildings and other structures.
20. Super-short-wave Oscillators. Within the last few years interest has been revived in the so-called larkhausen-Kurz and (iill-Morrell oscillations. These oscillations are of wery high frequencies corresponding to wave lengths often materially less than one $m$. They are characterized by the fact that the oscillation frequency is not uniquely determined by the electrical constants of tube and circuit, but is quite largely dependent upon plate and filament voltage, particularly plate voltage. They are also characterized by the fact that when the vacmum tube is used for the production of such oscillations, the grid is used with a high positive voltage, whereas the plate is either at ground potential or somewhat negative.

The periodicity of these oseillations is direetly associated with the time required by the electrons to move from filament to grid. In other words, we are dealing with such very high frequencies and such short time intervals that the actaal speed of motion of electrons within the tube is largely a determining factor in deeiding the frequency of the oseillation. The oscillation will be self-sustained if the circuit losses are low enough. some of these electrons will work through the grid and travel on toward the plate, but will be decelerated after passing the grid and will return toward the grid, esperially if the plate voltage is negative. During this oscillation charges are produced on the grid or the plate with resultant development of the power at this very high frequency. If the phase relations are correct and this power is sufficiont to overcome the cireuit losses, this action will sustain itself. Naturally, an oseillation of this type is not suseeptible to very accurate frequency control or capable of maintaining an extremely pure wave form. Furthermore, the efficiency of a tube thus used is naturally not high, nor can it be heavily loaded, otherwise the grid will be destroyed. IIowerer, in spite of the limited power thus available some very practical and interesting uses have been made of these oscillations.

Antennas of such small dimensions as corresponding to these frequencies can readily be provided with large paraholie metallie reftectors and a very high degree of directivity can be obtained in the resulting heam.


Fig. 4.-Barkhausen oscillator.


F'J. 5.-Characteristics of tube for very short waves IRCA-846.
21. Immediate Problems of High-frequency Work. The following are the most urgent problems to be overcome in advancing the development of the upper frequencies:

1. Reduction of harmonics and sub-harmonics in transmitters.
2. Further precision of frequency control. (Note. This is well under way.)
3. The development of receivers of higher-frequency range.
4. Further development of diversity reepption for reduction of fading.

With the solution of some of these problems the way will open for adding a vast number of new frequencies to the radio spectrum.

The recent experiments across the English Channel on wave lengths of approximately 18 cm , which are reported to have given duplex telephonie communication, were carried out ly the aid of concentration by reflectors in both receiver and transmitter. The receiver circuits are quite similar to the transmitter circuits, except that the super-regenerative principle may be employed for extra sensitivity. Naturally, radiation of this kind must be handled as a searehlight is handled. There is very little bending around structures and very little tendency to follow the curvature of the earth.

For certain special cases of limited-range eommunication these applications may hope to be quite successful, since the very low power in the oscillations is apparently more than offset, by virtue of the fact that they may be concentrated in a very narrow pencil of radiation. On account of the difficulty of exact control of frequency, most of the work so far done has dealt with modulated waves.

## SECTION 18

## CODE TRANSMISSION AND RECEPTION

By John 13. Moore, B.S. ${ }^{1}$

1. Radio communication, as distinguished from radio broadcasting of cducational and entertainment programs, is carried on chiefly by means of some one of the recognized telegraph codos. Radiotelegraph sigmals are, therefore, made up of short and long periods of constant signal strength separated by idle periods of proper duration to correspond to the combinations of dots, dashes, and spaces comprising the characters of the code being used. The design of the entire system must be sueh that the lengths of the dots, dashes, and spaces in the signall supplied to the receiving operator are substantially the same as they were made by the transmitting operator. In a simple system operated at slow speeds no special difficulties are encountered in meeting this requirement. Present day commercial systems, however, which utilize remote cont rol from a central traffie office, and which are operated at high keying speeds, impose severe requirements on all of the equipment used.
2. Standard Codes. In international communication the Intermational Morse Code is used. Speciadly marked and aceented letters such as are used in German, French, and the Heandinavian languages have special characters which are used when working a station in the same country or its possessions. When communieating with a foreign station these letters are either replaced by a combination of unaceented letters or in some cases the unaceented letter is transmitted alone. Some countries such as Japan and Egypt having alphabets differing radieally from the Latin alphabet use special codes for working within the country or to ships. Nationals of such eountries desiring to transmit a message in their own language to a foreign country must spell out the sounds of their words in one of the languages using the Latin alphabet.
3. Business Codes. Business concerns that have a large volume of telegraph communication use so-called five-letter or ten-letter eodes. Standard codes for such use are available and consist of groups of letters arranged alphabetically; each group standing for a complete sentenee or part of a sentence. Special and private eodes are also used, and large eoneerns often have a department for the coding and decoding of coded telegraphie messages.
4. Printing telegraph equipment has found a very limited use in the radio eommunication systems of the world. On short-distanee cireuits where the received signals are strong and steady, and where atmospheric disturbances are well below the signal level, such equipment ean be operated satisfactorily.

[^45]

Fig. 1.-The Continental code.

One type of printer equipment operates from the regular telegraph code; atape being perforated by a machine which is actuated from the incoming signal, and this tape then being fed into the actual printer. This types the letters on a paper tape which is cut and pasted on message blanks.

Another type of atomatic printer equipment utilizes a special code in which six impulses comprise the total number of ellments in any one character. A different number or combination of impulses, up to the maximum of six consecutive ones, is used for each character.
5. Character Formation. The unit used in code characters, and in figuring speeds of transmission, is the dot. Present practice, based on automatie transmitting equipment, is to speak of dots per seeond. On this basis the time required to transmit one dot includes the duration of the space soparating the dot from the next element of the eharacter. As the duration of the dot itself and of the following space are equal, they constitute a cycle. Keying speeds are, therefore, commonly stated in dots, or (square) cycles, per second. The equivalent time required for the transmission of the other elements of the code are: a dash, two dots; space between letters, one dot; space between words, three dots. For traffic purposes speeds are generally stated in words per minute. The ratio of words per mimute to dots or eycles per second is generally accepted as being 2.5:1 for usual commercial traffic, 100 words per minute being equivalent to 40 eycles keying frequency.

In the Baudot code ased for printing telegraphequipment, the duration of the character is divided into five equal periods. For any one of these periods either a marking, or a spacing (no current or reverse current) impulse may be transmitted. One impulse is repuired between letters, and in the non-synchronous type of equipment an additional impulse is required at the start of each character to set the receiving mechanism in motion. The total number of elements per chatacter is, then, either

six or seven depending on the type of equipment used. The space between words is a full-length character. The code consists of a different combination of marking and spacing impulses for each character, there being at total of 32 possible combinations for the five periods utilized? For calculation of keving fregueney the single period or element, which is the shortest impulse required to be transmitted, corresponds to the marking portion of a dot in the Morse Code. This is one half eycle. For the non-synchromous printer equipment each lettor requires, for its transmission, seven half cycles or three and one-half full cycles. (On the basis of five letters per word, and a space between words, the ratio of words per minute to keying eveles per second is 2.86 to 1 . This is the figure realizable with automatic tape transmission. Where the impulses go directly from the keyboard-operated machine to the line, the dot speed will remain unchanged, hut the number of words per mimute that can be transmitted will be reduced on aceount of the unavoidable irregularities in the speed of the typist.
6. Required Frequency Range. A square wave shape such as a suceession of dots, where the value of the current or voltage rises instantly
to a steady value at which it remains for one half cycle and then instantly drops to zero, can be analyzed into the fundamental and all of its odd harmonics. The equation of the voltage wave is:

$$
\begin{equation*}
e=\frac{4 E}{\pi}\left(\sin x+\frac{1}{3} \sin 3 x+\frac{1}{5} \sin 5 x+\cdots\right) \tag{1}
\end{equation*}
$$

which holds for values of $x$ between $-\pi$ and $+\pi$. For most practical telegraphic purposes it is only necessary for the system to pass the fundamental, third, and fifth in their proper intensity and phase, as terms of higher order do not add sufficiently to the fidelity to warrant building the equipment to handle them. The frequency range required by a sufficient number of higher order harmonies to give appreciable improvement can often be used to better advantage for additional channels.

For any service where the received signal strength rises to the same maximum value on every dot and dash it is not neeressary to pass eyen the third harmonic of the keying frecfuency. A system which will pass the seeond harmonic of the fundamental keying frequency is satisfactory. The receiving equipment can be adjusted to operate at a fairly definite level on the building up and decaying of the current or voltage wave so as to give characters which are neither too heavy (long) nor too light (short) as compared to the spaces. However, in a system where the received signal may vary by $2: 1$ or more in intensity at fairly short and frequent intervals it is neecssary to have quite a steep rise and fall of the reccived signal at make and break in order to ohtain a constant "weight" of keving. This applies particularly to automatic rereption, where the signal operates a recording device either directly from amplifiers or through a relay of either the merhanical or vacuum-tube types. For aural reccption it is desirable to retain the harmonics of the keving frequency as the signal then sounds cleaner cut, and more definite, making it easier to read.

Cases of interference, in both the radio and the land-line portions of a system, are sometimes encountered where it is neerssary slightly to round off the sharp, square envelopes of the dots, in order to reduce or eliminate the interference or eross talk caused by the too sudden rise and fall of current.

Where the exact effeet of a given cireuit on the shape of a square input wave is desired, the range of frequencies passed by the system must be considered as a continuous band rather than dealing with only odd harmonics of the keying frequency.

The usual modulation and sideband theory of radio telephony is applied to code transmission by considering the fundamental keying frequency, and such of its harmonies as are passed, to modulate the carrier 100 per cent. The total band width required to he passed by the entire system is equal to twice the frequency of the highest harmonic of the keying speed that it is desired to retain. (See Arts. 30 to 33 for actual values.)
7. Speeds Attainable. Speeds of transmission range from about 15 up to 300 words per minute; the corresponding keying frequencies being 6 to 120 square cyeles per second. Work with ships, and with aireraft, is earried on mainly at speeds up to about 35 words per minute. Transmission is by means of a manually operated telegraph key. Reception is by ear. In point-to-point service, such as transoceanic, traffic specds
normally range from 30 up to 250 words per minute depending upon the type of equipment used, transmission conditions and the amount of traffic to be handled. Keying is done by mathine almost entirely, handoperated keys being used only for minor service communications. Reception is generally by means of an ink recorder, the telegraphic eharacters on the tape being transcribed on a typewriter by the operator. Aural reception is resorted to only under adverse conditions.
8. Fidelity of the mark-to-space ratio, while important at all speeds, requires speeial attention when automatic operation at speeds in excess of 100 words per minute is to be maintained. Where the duration of the mark portion of a dot is only onc-cightieth of a second, or less, factors that are disregarded at slow speeds become of primary importanec. Automatic transmitters, relays, and electrical circuits should be fast enough so that the signal supplied to the reeording equipment will not be heavier than $60 / 40$ or lighter than $40 / 60$ in mark-to-space ratio at the highest speed used. At 200 words per minute, which is not exeeptional in present-day short-wave work, this means a variation of not more than 1.25 millisee, in the duration of a dot. While it is sometimes possible to compensate for heavy or light keving eharacteristies hy means of relay adjustments in another portion of the system, this should not be depended upon for obtaining the desired over-all fidelity. Each unit of the system should be capable of giving the required fidelity at a speed in excess of the maximum operating speed, the margin required depending on the number of elements in the over-all system and the fidelity of each.
9. Checking the keying characteristics of portions of, and of the entire, system is done hy means of keying wheels which send out cither a single word over and over, or a succession of dots of $50 / 50$ mark-tospace ratio. For speeds up to about 100 words per minute the usual high-speed ink recorder can be used for ehecking eharacter formation quite satisfactorily. For aceurate information, especially at higher speeds, some form of oscilloscope or oscillograph must be used. The low-voltage type of cathode-ray oscilloscope is admirably suited to this work where photographic records are often not required. Associated amplifiers must have a fidelity considerably better than that of the equipment being tested.
10. Requirements for Facsimile. Facsimile service requires control and radio equipment capable of handling keying frequeneies up to about $50 \%$ stuare dots per sceond. This speed is possible only on short-wave equipment and requires a band width of about 5,000 cycles.

## RADIOTELEGRAPHIC SERVICES

11. Services. Code-communieation chamels and equipment can be elassified, according to the type of service rendered by them, under the gencral headings of transoceanic, shorter distance point-to-point, ship-to-shore, aireraft, special mobile serviers, and military.
12. Transoceanic, or long-distance point-to-point, traffic and hroadeasts were, prior to 1928, handled almost exelusively on frequencies ranging from about 14 to about 30 ke . (ireat-circle distances covered on such commercial circuits range from 2,000 to 5,000 miles, roughly. To eover distances greater than this with commercial reliability requires so much power to be radiated from the transmitter that it becomes unceonomical.

Approximate values of signal strength to be expected are calculated from the Austin-Cohen transmission formula
where

$$
\begin{align*}
E & =12\left(1 \pi \frac{H I}{\lambda I} \sqrt{\frac{\theta}{\sin \theta}} \times e^{-u}\right.  \tag{2}\\
u & =\frac{0.0014 I}{\lambda^{0.6}}
\end{align*}
$$

$H I=$ effective height times current for transmitting antenna in meter amperes
$\lambda=$ wave length in kilometers
I) = great-circle distance in kilometers
$\theta=$ are of preat eircle between transmitter and receiver
$E^{\prime}=$ received field strength in microvolts per meter
or the slightly different expression

$$
\begin{equation*}
E \text { in } \frac{\mu V}{m}=\frac{377 H I}{\lambda D} e^{-u} \tag{3}
\end{equation*}
$$

where

$$
u=\frac{0.005 I)}{\lambda 1 \cdot: 25}
$$

which is derived from data taken on the New York to London circuits at frequencies ranging from 17 to 60 kc .
13. Field Strength Required. For successful operation of a circuit the received field strength must be sufficiently above the level of atmospheric disturbances and other local sourees of noise: to give fully readable signals. Automatice recording requires a sigmal to noise ratio of at least two to one. This is based on the general, or average, noise level. Moderately severe atmospherie disturbances such as "crashes" and "clieks" will be from several to perhaps ten times as strong as a normally satisfactory signal. Field strengths obtained on transoceanic circuits range from io or less up to $250 \mu \mathrm{v}$ per meter. A value of 20 is about the minimum for satisfactory communiontion under average conditions. Modern high-powered transmitting stations have an antenna infut power of from 40 to 500 kw with output ratings up to some $130,(000$ meter amp.
14. Short Wave. During the last few years "short wave" have assumed inereasing importane in long-distance radio communication of all types. Frequencies nsed range from about 7,500 to $23,000 \mathrm{ke}$, depending upon distance, season of year, time of day, and path traversed. Proper choice of frequency allows of reliable communication betwern any two points on the carth with transmitters of nodern design. Power output of the equipment ranges from 1 to 40 kw . Due to the extreme variations in transmission conditions encountered at these frequencios it is necessary to have available at loast 10 kw output from the transmitters, for high-speed atomatio operation over the longer distances. Even with the maximum output of present transmitters, and with directive antemmas for both transmission and recoption, communication is slowed down or even stopped, at times, by severe disturbanes in transmission conditions. Normal field strengths obtained at the recoiving antenats range from 0.1 up to 100 or more $\mu v / \mathrm{m}$, depending on transmitter radiation, path, and transmission conditions. The minimum signal required for reliahle, commereial operation depends partly on the
noise level at the receiving point. Atmospheric disturbances (static), while troublesome at times, are not so serious a in the case of long waves. Fading requires the use of a greater signal-to-noise ratio on short waves. [ tilization of either space, frequency, polarization, or time diversity of fading will overcome, to a great extent, the bad effeets of this phenomenon and permit successful operation on a much weaker signal than would otherwise be usable. A very rough estimate of the minimum field strength ordinarily required for code communication, with automatie recording, is $5 \mu \mathrm{v}$ per meter. Slow-speed aural reception can be carried on with field strengths of as low as $0.1 \mu v$ per meter.
15. Short Waves versus Long Waves. Advantages of short waves for transoceanic code communication are: (1) lower first cost of equipment and antenmas, (2) smaller power consumption, (3) highor keving speds of which the equipment is capable, (4) less trouble from statie, (5) directive transmission, (6) greater distances can be eovered with a reasomable and practicable transmitter powor. Disadvantages are: (1) interruption of service due to severe magnetic disturbances, (2) effects of fading, (3) necessity of having sovera! froquencios, a separate antenna being required for each, for "24-hr. service the year round.

Alvantages of long-wave operation are: (1) freelom from interruption of serviee by magnetic disturbances, (2) comparative roliability and steadiness of sigmal strengt hs.

Types of transmitting equipment used for long-wave work are: timed spark (nearly obsolete), are, alternator, tube sots. Tube transmitters, only, are used for short-wave operation.
16. Point-to-point communication for distances up to some 2,000 miles is earried on at frequencies ranging from approximately 30 ke up to 100 ke . These stations are used for domestic service and also for the shorter international eircuits. Certain bands in the fi,000-ke to 23,000 -ke portion of the spectrum are also used for these shorter circuits.

Types of equipment used for 30 - to 100 -ke work include: spark (obsolete), are, frequeney multipliers, and tube transmitters. For short-wave operation tube transmitters are used exclusively.
17. Ship-to-shore and ship-to-ship communication is an entirely different class of service, in all respects, from point to point. Except at the larger coastal stations, and on a very few ships, transmission is entirely by hand and copving is by ear. This is beeause of the nature of the serviee; a coast station usually having not more than ten to twenty messages for one ship at a time, and vice versa. Antomatie transmission and reception are userl only when traffic on hand amonnts to some forty messages or more. The same operator generally handles both transmission and recention, which is not the ease in point-to-point work. Due, to the great mumber of ships, and to the intermittent mature of their traffie, the marine frequeney bands must be shared by all ships. This reates interference and traffie handling problems that are not encountered in point-to-point work. A marine operator must be loonted at the receiving equipnent. Remote control is used only on the transmitters of coastal stations, the transmitting and receiving stations being separated hy distances of up to 50 miles to permit of simultaneous transmission and reception.

Frequencies utilized lie within the 100 - to 550 -ke band; those around 150 ke being used for long-distance work to the larger ships, while those from 400 ke to 550 ke are for shorter-distanee work mainly to the smaller
ships, and for distress ealls ( 500 kc ). Coastal stations using efficient 5- to 10 -kw transmitters and directive reception can normally work ships about 1,500 miles and up to 3,000 miles under favorable conditions, at the lower frequencies. Operation in the 400 - to 550 -ke band is more variable, a 5 -kw transmitter having a normal daytime range of around 500 miles and a night range of several thousand under favorable conditions.

Spark (obsclete), are, and tube transmitters are used at the lower frequeneies. On the higher frequencies tube sets are replacing the old spark equipment. These operate cither ew or iew as desired.

Short waves are coming into some use for the handling of ship-to-shore traffic and for speeial brokerage service to some of the larger ships. Short-wave equipment in the present state of the art is not so well adapted for general marine use as is the 100 - to $550-\mathrm{kc}$ equipment. For small craft, where space for equipment and antennas is limited, such equipment has the advantage of being able to work over long distances with comparatively small power.

## TRANSMITTING SYSTEMS AND EQUIPMENT

18. The high-frequency alternator is one of the most used types of transmitter for long-wave transoecanic-code communication. The Alexanderson alternator used in this country is a high-speed inductor-type machine having a large number of poles so that frequencies up to 30 ke and higher may be obtained directly. These machines have an output of 200 kw and are driven by a $600-\mathrm{hp}$. two-phase induction motor through a set of gears to give the desired alternator speed. The stator is built in sections to facilitate dismantling for repairs and maintenance and has 64 separate windings which are connected to separate windings on the antenna-input transformer, One winding is used to supply a tuned eireuit the output of which is rectified and used for antomatic speed control. Forced lubrication and water cooling are used on account of the high speed and relatively high losses as compared with commercial power-frequency machinery. Such an alternator intended for operation at 27,200 eycles is driven at a speed of 2,675 r.p.m., has 1,220 poles and requires a field eurrent of 2 amp . at about 120 volts.

To maintain the frequency constant to approximately 0.1 per cent and to have it the same under conditions of full load and practically no load, elaborate compensating means are provided as shown on the schematic diagram. Primary rompensation saturation transformers each have an a-c and a d-c winding so connected that the voltage at the motor depends upon the impedance of these transformers which, in turn, depends upon the value of current in the d-e winding. Connected to the slip rings of the wound rotor are two banks of liquid rheostats, the "running" bank being connected at all times and the compensation bank being thrown on or off by the contactors. These contactors, and the contactor in the primary compensation der control circuit, are operated from a master relay which is controlled from the eentral traffie office. Compensation adjustments are made to maintain the machine at the same sperd with the control key open or closed.
19. Method of Keying. Keving the output is arcomplished by means of a magnetic modulator which is a special transformer having an a-e winding and a differentially connected d-e saturation winding. When the control key is open, a relay closes this d-e circuit, and the resulting drop
in impedance of the a-e winding detunes the anterna and reduces the alternator output voltage so that practically no current circulates in the antenna circuit. For key closed the d-e winding is decnergized and the antenna circuit now becomes resonant to the alternator frequency so that normal antenna current is obtained. Due to the low frequeney

of the system and the low resistance of the antema circuit, also on account of the large contactors required in the compensation circuits, keying speeds are limited to about 120 words per minute on long-wave transmitters.
20. Goldschmidt Alternator. Another type of high-frequence marhine that has been used to some extent is the Goldschmidt alternator. The
fundamental frequency generated is usually one-fourth of that desired. This is then changed suceessively to the serond, third, and fourth multiples by utilizing the e.m.f. gencrated in one winding by the rotating field due to current of the next lower order frequeney whish is flowing in the other winding. The heavy circulating eurrents are obtained by tuning the respective windings, the output circuit being arranged to deliver emergy to the antemat at the desired multiple frequeney. The object of this mothow of obtaining radio frequencies is to use a comparatively low-speed mathine rather than to attempt direct gencration at the desired frequency, which requires the use of a high-speed machine having a large number of polas.
21. Static Frequency Multipliers. Present practiee favors the use of statie frequency multipliers where it is desied to use an alternator of comparatively low Erequency. Two gencral methods, both of which depend upon the use of special transformers having dee saturation windings, are employed. The first utilizes either two or three transformers eonnereded in such a manner that the serond or the third harmonic of the fundamental is in phase in the several output windings. The seeond may utilize but a single transformer, with a dee saturation winding. The output winding is tuned to the desired harmonic freguency and receives its energy try "shoek excitation." This is acomplished by so adjusting the d-e and a-e supply currents that voltage is induced in the secondary winding for only a small portion of a cyele of the supply frequoncy. In this manner harmonies of the filth, and higher, orders may be obtained.
22. Are transmitters are used, to some extent, for long-wave transoceanic work. There have been two main objections, however, to the


Fif. 3.-Are tramsmitter.
use of such equipment. Dlost are tramsmitters emit two frequencies, one for mark and the other for space. As there must be a suffieiont frequency difference between these to allow of their being separated in the rereiving equipment, one such transmitter reably requires two communication chaneels for its operation. The other objection has been that most are sets emitted strong harmonics. These can, however, be prevented from radiating strongly by proper shiobling and the use of properly arranged circuits for feeding the antemna. Elimination of the space wave or "back wave" is rather diffieult in transmitters of this type, especially when the output may be as high as $1,000 \mathrm{kw}$ in harge installations. The artual power output of the are can not be keyed as the are, to be stable, must draw a fairly constant current while in opera-
tion. Keying is generally aceomplished by changing the inductance of the resonant circuit associated with the are, thereby changing the frequency of the emitted wave. This is done by short-circuiting a few turns that are coupled to the main tuning inductance.

Methods have been proposed for shifting the output of the are to a dummy antenna, or absorbing eireuit for keying the actual power radiated on but one frequency. Such methods have not eome into general use.

The are is operated from a direct-eurrent sourec, usually motor generators, at a voltage of from 300 to 3,500 volts depending upon the power rating of the unit. It burns in an atmosphere rich in hydrogen, which is supplied by gas or by the vaporization of some such liquid as aleohol which is fed into the are chamber. For the effiecient production of undamped oscillations the are must burn in a transverse magnetic field. This is supplied by a large electromagnet the poles of which are respeetively above and bolow the are chamber and the coils of which are encrgized by passing the are current through them. The intensity of magnetic field required for optimum results is inversely proportional to wave length and also depends upon the material used to furnish the hydrogenous atmosphere in the are chamber. Values normally range from about 2 to 20 kilo-gausses. A water-eooled copper anode is used with a carbon cathode which is slowly rotated by means of a motor while the are is in operation. A current-limiting resistor, normally used while striking the are, is shorted out when the are is running.
23. Tube transmitters have been used but little at frequencies between 14 and 30 ke for long-distance communication. Tubes to handle the power required have not been available until quite recently. This meant that a number of tubes had to be operated in parallel in the poweramplifier stage. Such transmitters have rated outputs of from 40 to 500 kw and are of the usual master-oscillator, power-amplifier type.
24. Long-wave antennas of the various familiar typers such as the T, inverted $\mathrm{L}_{\text {, }}$ and umbrella have been used. Masts for these structures have, in some cases, been as high as $1,000 \mathrm{ft}$. Ordinarily they range from 400 to 800 ft . high. The technical prohlem is to get as many amperes in an antenna of as great an effertive height as possible with a given power input. Voltages from antemas to ground may easily be 100 kv or more so that corona and insulation considerations place a limitation on the design. Of the total power supplied to the antenna the useful portion is that radiated. The remainder is accounted for by conductor losses, eoil losses, leakage and corona (if present), and by loss in the resistance of the ground-return path. In a structure where most of the eapacity is from the flat top to "arth, and where the dimensions are considerably less than a wave length, the radiation resistance is given approximately by the rolation $R=1600 \frac{I I^{2}}{\lambda^{2}}$ where $H$ is the effective height of the antenna and $\lambda$ the length of the radiated wave. Approximate calculation of $H$ is possible in simple cases by summing up the produets $/ / /$ for all seetions of the structure and dividing ly the total current. This is done by calculating the capacities to cart th of the various sections, and hy measurement of the total value. Fxperimental methods of determining the eapacity from small-size models are deseribed by Lindenblad and Brown.'
${ }^{\text {I Lindenibab, N., and W. W. Khown, Main Consideration in Antenna Design, Proc. }}$ I. R. E., June, 1926.
25. The multiple-tuned antenna, consists of a long, flat top supported by towers and laving downleads at a number of points which pass through tuning inductances to earth. The total antenna current is the sum of all the currents moasured at the base of the tuning coils. A system of buried wires, and overhead eonductors connected to them through current-equalizing coils is lad out to give a uniform distribution of eurrent in the earth under the antenna. 'This is approximatoly the condition for mininum earth resistance. "This uniform distribution is sometimes altered, by experiment, to still further reduce the losses. Such antenna and ground systoms often have a t total rosistance of less than $1 / 2$ ohm. Total antenna currents of 700 amp . and more areobtained, by this means, from a transmitter output of 200 kw . For $N$ tuning points the inductance of each downlead and coil is approximately $N$ times that whieh would resonate with the total antenna capacity at the desired

Flat Top Supported by Six Towers


Fig. 4.- Multiple-tuned antenna.
frequency. The physical length of such an anterna for operation at 17 ke, or thereabouts, may be a mile or mile and a half, with as many as six tuning points.
26. Removal of Ice. In climates where sleet is experieneed the tutenna wires should be counterweighted, rather than solidly anchored, in order to lessen the ehanees of breakage. A heavy coating of slect on the wires, with the attendant inerease in sag, throws the antenma out of tune as well as endangering it mechanically. When this heromes serious it is neressary to melt the sleet from the wires in orfor to get normal antenna current, For this purpose break insulators and br-pass condensers are so arranged in the antemna wires that a series circuit of all (or part) of the wires is obtaned at the low power-supply frequency. Special transformers supply power at ahout 2,000 volts for the purpose. This is sent through the antema conductors just long enough to heat them sufficiently to melt off the sleet or iee.
27. Marine Transmitters. For marine work tube transmitters are replacing the older spark and are equipment. "The radiated energy is confined more to a single frequency, whish is essential for reduring interferenee, and systems for simultaneous tramsmission and reerption, for break-in operation, and for remote control are mbeh more easily built. up by the use of tube transmitters. With a well-filtered plate supply the beat note obtaimed by use of a hoterodyne or autodyne receiver is fairly pure, and its pitch can be changed at will by the reeroiving oporator to suit conditions. For attracting the attention of ships standing by on a adling wave, or for working ships not equipped for heterodyne reception, the radiated energy can be interrupted at an a-f rate.


Fig. 5.-Marine coastal transmitter.

Transmitters for coastal stations usually have an output of from 5 to 10 kw . An air-cooled l-kw tube functions as master oscillator and drives the l0-kw power-amplifier tube, which is of the water-cooled type. Phate supply is ohtained from a full-wave kenotron rectifier, the output of which is filtered to some extent. Bias voltages are normally obtained from a small roctifier, to eliminate as


Fig. G--Fssential rireuit of iow marine transmitter with a-c plate supply. much rotating machinery as possible. Filament supply is alternating courrent from step-down transiormers. Beraluse of the mature of the serviee, interruptions due to aquipment trouble must be reduerd to a minimum. For this reason two poweramplifier tubes are mounted so that wither one can be used. Cooling water systems are provided in duplicato and equippod with pressure- or flow-operated relays which will shut down the transmitter in rase of water failure. In some enses it is advisable to locate the antemma at a distance from the transmiter proper. A two-wire transmission line is used for this purpose, being matched to the power-amplifier and antenm-cirenit impedances at its ends by means of air-core transformers.
'To make the transmitter instantly available the tube filaments are operated at reduced voltage, with plate supply off, when not in aetual use. The "starting" relay operates contactors which apply full voltage to the filaments and close the lowvoltage cirenit to the plate-supply transformers. For temote control, the starting and keying relays can be operated from a single line by using double-current keying with a polar "keying" relay and a neutral line rolay with weighted armature for "starting." The chopper, for procluction of iow, may also be relay operated. Wave change can be arranged by rolay-operated contactors which change taps on the tuning inductances, these contartors being operated by a polar relay controlled from the sperator's table.
28. Transmitters for shipboard use


Fif: 7.-Tube keyer for transmitter. are genorally of smaller power output than aro those for roastal stations. C'ost and space requirement are also important faetors which must be kept down. 'The usual equipment is, therefore, more simple and rompact than that treated above.

The master-oseillator power-amplifier arrangement with direet-eurrent plate supply, or alternating current at a frequency of 350 cyeles, meets the requirements very well in the intermediate frequeney bands. The master oscillator holds the frequency steady regardless of changes in antenna capacity due to rolling of the ship, and the elimination of a separate reetifier saves space. Where space permits, a high-voltage direct-eurrent generator is used for plate supply. Medium power tubes require about a 2,000-volt supply. Change of wave is aceomplished by changing taps on the tuning inductances. Choiee of several frequencies in the band is provided by means of a multi-point switeh operated from the front of the panel. The normal power-supply mains being direet current, a motor generator is required to furnish the plate-supply voltage. Another machine may furnish alternating eurrent for the fitaments. On small transmitters satisfactory keying can be effected in the lowpoltage alternating-current plate supply by means of a relay controlled from the operator's key.
29. Short-wave Technique. In the 6,000- to 23,000 -ke band the demand for ehannels, and the comparatively narrow band required for a eommunieation chamel, has necessitated the use of transmitting equipment which will maintain its assigned frequeney within very small limits. Chanmel spacing of one-tenth of 1 per cent requires a maximum tolerance of only 0.025 per eent or 1 part in 4,000 under all operating eonditions of temprature and power supply. To do this requires the use of either a carofully stabilized and compensated tube oseillator or some control device, sueh as a guartz erystal, which, when kept at a constant temperature, will maintain the desired frequency within small limits. ('rystal control has found most favor in this country, to date.

Commercial short-wave code transmitters used for long-distance communieation have an output of from 20 to 40 kw . The ervstal is kept at a constant temperature, and operates at one-cighth or one-fourth of the final frequency desired. The oscillator stago is followed by a sereen-grid "buffer" stage, to isolate it from feed-back and detuning effects, then by two or three frequency-doubling stages bofore the first amplifier stage operating at the signal frequency. Fereon-grid tubes used in these stages, with proper shiclding of tubes and cireuits, and filtering of supply leads, eliminate troublesome feed-bark effects without the use of neutralization. Watererooled triones used in the final power amplifier must be employed in a balaneed stage with proper noutratization of feed-hack through the tube eapacities. The tank cirouit of the power amplifier is coupled either directly, or through a transmission line, to the antenna.

For high-speed telegraphic operation the voltage regulation of all plate and bias supplies must be small. If poor regulation exists the envelope shape of the charactors will be triangular or irregular, instead of reetangular. (A small amount of lag may be int roduced intentionally, in some cases, to round off the eorners in order to climinate tronble from keying clicks in nearby recoivers.) For this reason hot-eathode mer-cury-vapor rectifiers are used for supplying the high direct-current potentials required. These tubes, together with the high-voltage transformers, have very good voltage regulation at high values of output voltage.

For continued operation at keving speeds up to 250 words per minute ( 100 cyrles per second) it is inadvisable to ase a system of keving which
employs clectromechanical relays. A vacuum-tube keying stage is therefore used to key one of the low-power stages of the transmitter.

Where a plate supply having good regulation is not available the load on it can be held constant by using two power amplifiers one of which supplies the antenma and the other a resistance load. Keying is accomplished by shifting the load from the main amplifier to the absorbing tube by biasing the amplifier grids below cut-off and bringing the absorbing tube grid bias up to such a value that the load drawn from the plate supply is the same as when the amplifier is supplying energy to the antenna.

For receiving systems which rely partly upon frequeney diversity of fading it is desirable to modulate the wave radiated from the transmitter at an audio frequency of something under 1,000 eycles per sccond.

## RECEIVING SYSTEMS AND EQUIPMENT

30. Long-wave Receivers. Long-wave reeeiving equipment must be designed to reduce trouble from static to a minimum, and to separate transmitters differing in frequency hy only about 200 cycles, which is the approximate spacing of assigned chanmels. The use of four efficient tuned circuits provides the required selectivity together with moderate case of handling. For commercial work it has been the practice to obtain the h-f selechivity ahead of an aperiodic amplifier, then to go to a heterodyne detectar of cither the single-tube or balanced-modulator type which is followed by as much a-f amplification as is required. The final selectivity may, if necessary, be obtained by the use of narrow a-f band-pass filters. For complete separation of signals on adjacent channels this is often necessary. Due to the difficulty of obtaining eomplete shiclding, at these comparatively low radio frequencies it is generally advisable to use astatic pairs of coils in all tuned circuits, couplers, oscillators, etc., in addition to the use of a reasonable amount of shielding. Transformers and couplers are built with electrostatic shields to prevent capacity coupling, where this is undesirable.

In a multiplex receiving station, where it may be necessary to receive from ten to twenty signals from approximately the same direction, a single aperiodic antenna system is the most economical and practical. The individual receivers are fed by means of "coupling tubes" operated from a common, or from individual, antenna-output transformers. All tuning is done beyond these coupling tubes so that operation of the individual receivers is entirely independent of all others.
31. Directional Antennas. Reduction of static is accomplished by the use of directive-antenna systems. Arrays of large loops, or of loop and vertical combinations, are one means of obtaining directivity. Where the nature of the soil is such as to produce a considerable tilt of the wave front, the Beverage wave antenna is used to advantage. This antenna consists of one or two wires strung on poles at a height of about 20 ft . and extending in the direction of the desired signal for a distance of approximately one wave length. The antenna is highly directional, and small signal voltages obtained from stations to the rear can be compensated for by feeding into the signal circuit a small voltage of proper amplitude and phase obtained from the damping resistanee connected between antenna and ground, or by setting up reflections in the antenna itself.

As keying speeds on long-waye transoceanie circuits seldom exceed 100 words per minute ( 40 cycles/per second), and signal strengths are steady, such a channel requires only a total band width of about 160 eycles. Frequency variations of the transmitters can be kept within


Frg. 8.-Wave antenna and output circuits.
about 0.1 per cent or 20 cycles in 20,000 , and heterodyne oscillators used for recoption should have as good stability.
32. Ship-to-shore Receivers. Receiving equipment for ship-to-shore service must cover the frequency range of 500 down to 14 ke in order to operate in the regular marine bands and also to receive broadcasts and time signals from high-powered long-wave stations. Receivers for shipbotrol use are of the autodyne type embodying a tumed antema circuit coupled to the oscillating detertor, which latter has a "tickler coil" for regoneration control, and generally two stages of audiofrequency amplification. By means of tapped inductances the receiver may tune from about 1,000 down to 60 kc . For the lower frequencies a set of loading inductances is used. One of the chief reguirements is ease of operation and rapidity of tuning. Regencration cont rol allows the receiver to he operated oscillating for ew reception or nonoscillating for reception of spark, iew or modulated signals. Provision is made for disconnecting the receiver from the antenna when transmitting.

Important coastal stations have separate receivers to cover the lower and higher frequency marine bands of approximately 115 to 171 ke and 375 to 500 ke respectively. Such receivers should have but a single tuning control and, to oltain the required selectivity, should be of the superheterodyne type. An intermediate frequency oscillator, which can be used at will by the operator, must be provided for ew reception.

The over-all selectivity should be such that a total band width of not more than 1 ke is passed at 80 per cent peak response.

As in long-wave reception, reduction of static and interference is acemplished by the use of dimetive antennas. For the lower frequency band the Boverage wave antoma has the advantage of relatively large piek-up, good directivity with compensation, and the ability to supply a number of receivers operating at the same or different frequencies. Where reception from all dieections is required, and for the higherfrequency bands where the wave antema is unsuitable for night reception, antemas of the flat top, inverted L, 'T, yertial, or loop typos are cmployed. The hoop and verdical eombination, grving a cardioid directive diagram, can be arranged with crossed loops and a goniometer so that the operator can rotate his antema-reception diagram at will.
33. Short-wave receiving equipment ior code reception comprises two general classes, namely, (a) long distance point-to-point and (b) marine or mohile.

For point-to-point service the rocoiving equipment must deliver a signal which is as nearly perfert as is possible. 'This requires a high degree of freguency stability, very sharp over-all selectivity, and means for reducing the efierets of fading to a minimum. With chamels spaced


Fini. 10.-Tone keyer for receivers.
0.1 per cent the roeriver should have at total band width such that, at the lowest frequency it will be roquired to operate at, the response at a total width of 0.1 per cent of this frequency will be at least 30 (l) below the response at mid band. At the highest frequency worked, the selectivity must not be so great that an undue amount of attention is required to keep the signal fairly woll centred in the band of the receiver. With well stabilized transmittor and revecing oseillator frequencies, present-day operation up to some 23,000 ke requires uniform response over a 3 -ke band. This selectivity ean be ohtained by means of audio-frequency filters or hy the use of multiple detertion eniploying one or more sucersively lower intermediate freduencies. In the latter the "image" signal, differing in frequeney from that of the desired signal hy twiee the intermediate frefuener, must be attemuted at least 40 d . Wigher ratios than this are to be desired, a figure of 50 being quite a safe compromise. The multiple-detertion rereiver, with funt rectification at a redatively low intermediate frequeney, is to be preferred to the a-f filter type of equipmant. The former utilizes the entire band passed; whereas the latter is only utilizing that half of its total band lying on one side of zero beat, at a given time.

In equipment used for high-sperd automatio operation the signal is amplified, beat down to a lower frequeney, and then reetified. The
rectified output, consisting of short and long pulses of direet eurrent, is used to operate a relay of either the electromechanieal or vacuumtube type. The former operates into a simplex, duplexed, or quadruplexed direct-murent telegraph line to the eentral traffie office. The tube relay, or "keyer," controls the signal fed to the tone line from a local a-f source. The receiving operator is thus supplied with an audio signal of constant frequener and intensity regardless of any changes in the actual radio signal which are not great enough to make it drop out of the receiver. By means of a-f filters six or more keyed tones of this sort may be handled over a single two-wire tone line.

To minimize the effects of fading, receiving equipment is arranged to take advantage of the diversity of fading existing, at a given instant, either on slightly different frequencies at the same loration or on the same frequeney at points separated 10 wave lengths or more apart. Frequency diversity, in practice, is most economically obtained ly modulating the carrier with an audio frequency of not higher than 1,000 eveles. This results in radiation on the carrier and on an upper and a lower frequency. If the band width of the receiver is suffieient to pass these three frequencies, and if the normal signal strength on any one of these frequencies is sufficient to operate the keying device, considerable diverse fading on the several frequencies received can be tolerated. In spite of the fact that a lesser peak voltage can be obtained from a modulated signal than from a pure ew signal considerable improvement is obtained, under practical conditions of fading, by its use. Where space diversity is utilized a pure, unmodulated signal is to be preforred. In this case two or three separate recoivers are fed from separate directive antennas spaced ten wave lengths or more apart. The reetified outputs from these receivers are combined and made to operate the keying device. Confining the radiated energy to a single frequency means greater signal strength for a given transmitter power, and combination after reetification eliminates the consideration of instantaneous phase rolations which might be such as to cancel rather than add.

Short-wave receivers for marine and mobile use generally consist of but one or two stages of tuned r-f amplifieation followed by an autodyne detector and one or two stages of a-f amplification.
34. Use of Limiting Circuits. Under conditions of high signal-to-noise ratio and violent fading, the use of considerable limiting in the receiving equipment is desirable. This should be done following the final selectivity, and must be in a system having small enough time eonstants so that the decaying transients oceurring after each overload do not occupy an appreciable portion of the interval between eharacters. In order to use such limiting successfully it is essential, as stated before, to pass up to about the fifth harmonie of the keving frequency. If this is not done, wide variations in mark-to-space ratio of the final signal will oceur as the degree of limiting varies with the signal strength.

Charaeter formation can be maintained, in some eases of overloaded systems, by the use of a so-ralled "sliding bias" on the reetifier. The signal may be amplified up to some 30 or 40 volts maximum value and applied to the grid cirenit of a reetifier tube which begins to take grid current at a relatively low applied signal voltage. By proper choice of griel- and plate-circuit resistors, and the use of a condenser across the grid-circuit, resistor to give a relatively large time constant, only the tops of the eharacter envelopes will be rffective. In using such a system,
however, reliance must be placed upon some form of diversity reception to prevent splitting of characters, and drop-outs, due to rapid fading.
35. Transmission Lines for Receivers. In a large radiotelcgraph receiving station for long-distance communication there may be from 10 to 100 individual receivers installed and intended for simultaneous operation. To do this requires that each unit be effectively shielded and that all battery-supply leads be well filtered for the frecuencies at, which the respective units operate. High-frequency equipment must also be protected from low-frequency voltages which might be present on the battery supply busses, as such voltages may cause undesirable modulation of signals if allowed to get to the tube circuits. Transmission lines, where used, must be of a type which has negligible stray piek-up and radiation. Satisfactory types of line, depending upon the equipment with which it is to be used, are (a) the balanced four-wire line, (b) the two-wire transposed line, and (c) the concentrie-pipe line. The first eonsists of four wires arranged at the corners of an inaginary square, diagonally opposite wires being connected together at both ends of the line. The four-wire and two-wire types are used where the system is to be kept balaneed with respect to earth. Antenna systems which operate against earth gencrally use the concentric-pipe line in which the outer pipe is grounded.

To obtain the full benefits of good shielding stray feed-lack through the battery-supply lads must be eliminated by means of properly proportioned, and located, filter circuits. This is of especial importance in short-wave equipment, and in medium-wave equipment for marine eoastal station use.
36. Power supply for commercial receiving equipment must be absolutely reliable and not subject to interruption. Storage batteries operated cither on a floating, or on a charge and discharge, basis are used for this service.

Charging equipment eonsists of motor-generator sets for filament. batteries, where relatively heavy eurrents are required, and either motor generators or rectifiers for batteries of smaller rating such as used for plate and bias supply. Where receiving antennas may be located fairly close to the buiding that houses the eharging equipment, this must be loeated in a specially shielded room to prevent direct radiation into the antennas. Equipment used for floating batteries that are in service must be provided with effective filtering between it and the battery and load bus.

## CONTROL METHODS AND EQUIPMENT

37. Central Office. In eommereial radiotelegraphic systems the transmitters are controlled from a central traffic office, and received signals are conveyed to this central office from the receiving station, by land lines. Transmitting and receiving stations are, in some cases, as much as 500 miles distant from the central office. The tendeney, however, is to keep this distance below 100 miles to reduce initial and maintenance costs, or rentals, of land lines. Long control and tone lines are justified only if a distant location of the transmitter will effect a considerable saving in the power required to oltain satisfactory service, or if the distant receiving site is eonsiderably superior to nearby ones in signal-to-noise ratio. In long-wave transoceanic and medium-wave
marine work the use of long land lines is often well worth while. In short-wave work the over-all results are not so dependent upon geographical location. Suitable sites are generally available within 100 miles of the city to be served.
38. Automatic Transmitters. In "automatic" operation of code eircuits a tough paper tape is perforated by means of a machine which has a kerboard similar to that of standard, typewriters. This tape is then fel through the "automatic transmitter" in which two cam-operated stecl rods come up against the tape at every point where a perforation might exist. Where one is, the rod goes on through, and a contact operated by a lever on the lower end of the rod is closed. These two rods controlling the "make" and "hreak" contacts alternate in coming against the tape and are sufficiently offset in the direction of travel of the tape so that perforations in the upper (make) and lower (hreak) rows, when opposite the same center hole, give a dot and when opposite adjacent center holes give a dash.

The two contacts supply current, in opposite directions, to a polar relay which, in turn, keys the control circuit going to the transmitting station. lior speeds much above 100 words per minute it is desirable to have as few mechanical relays as possible between this main polar relay and the keying circuit of the radio transmitter. The time required for a relay armature to travel from one contact to the other, while short, becomes important when the duration of a dot is less than 0.010 sec.
39. Zone-control Circuits. Where only a few transmitters are to be controlled from one point, direct-current double-current keying is the most economical and satisfactory. A complete metallic circuit is to be preferred to a single wire with ground return, although the latter is entirely satisfactory in many cases.

In a large central-office system the number of control lines required can be greatly reduced ly the use of multiplex tone, or "voice-frequeney carrier," control. By the use of a number of different frequencies, and band-pass filters at both ends of the circuit, as many as ten channels can be obtained on a two-wire line which will pass frequencies from about 400 cycles up to 2,500 eycles with approximately equal attemuation. In one such type of equipment the audio-frequency supply is a multifrequency inductor-type alternator having a separate winding and rotor for each frequency. Energy from this machine is keyed by means of either electromerhanical or vacuum-tuhe relays which are controlled by the automatic tape transmitter and supply current to the control line. Band-pass filters in the individual control chamels reduce the harmonic content of the signal supplied to the line to a low value and also round off the corners of the square keying envelopes.

The hand width required in filters for tone-control work depends (1) upon the maxinum keying speed which must he handled and (2) upon the fidelity of envolope shape required for the particular application. Where great fillelity is not required, or where the over-all transmission gain of line and associated equipment does not vary more than about, 20 per cent, it is sufficient to pass the second harmonic of the keying frequency. This means a total band width of four times the keying frequency. To obtain fairly square envelope shape, with a mark-tospace ratio of about $60 / 40$, it is neressary to pass up to the third harmonie or a total band of six times the keying frequency, at least.

For the lengths of line normally used between central offices and outlying stations, and present-day code keying speeds, the matter of phase distortion due to the line is of relatively small importance.
40. Control equipment used at transmitting stations may be of either the d-e or tone-operated type, deproting upon the system used at the central office. In a doublo-current d-r system, the conventional polarized telegraph relay is used as a main-line rolay for speeds up to some hundred words per minute. Where normal operating speeds run much above


Fir, 11.-I ouble current-control circuits.
one hundred words per minute special high-speed rolays of the polarized type must be used. Large keying and compensation relays and contactors used in long-wave transmitters are controlled by the line relay or a heavier intermediate relay. In tube sets-especially short-wave equipment-higher keying speects are possible and require the use of a minimum number of merhanical relays. For dee control the main line relay may operate directly into a tube keyer incorporated in the transmitter.


Fig. 12.-Spark absorber and disk filter.

In tone-eontrol systems the equipmont at the transmitting station comprises band-pass filters and amplifier-rectifier units. 'Two stages of transformer eoupled amplification, with manual volume control, suffice. The rectified output may be used to operate either electromechanical relays or tube kevers. Where such equipment is used at a large, highpowered transmitting station it must be thoroughly protected from the stray fields of the transmitters, transmission lines, and antennas. It is generally neeessary to locato it in a well-shielded room and effectively to filter all control lines and power-supply cables that enter or leave the room.

Tube keyers, while more claborate than the usual mechanical relays, are capable of operating at practicalis any speed desired. They also eliminate relay maintenance and adjustment. In the simpler arrangements the control tone is amplified, reetified by either a two-element or a three-element tube reetifier, then passed through a smoothing eireuit or
low pass filter. The d-e pulses thus obtained are applied to the control elements of the keying-stage tube or tubes. Grid-glow tubes have found some favor in such work due to the fact that, once triggered off, the plate eurrent remains at a constant value until the plate voltage is removerl, or redued to at low value. This permits the squaring up of hadly distorted envelope shapes without resorting again to mechanical relays.
41. Received Signal Transfer. Sistoms for transforring signals from the receiving station to the central offie are similar to the transmittercontrol systems. In short-wave work the actual radio sigmal, after heterodyne detcetion, is amplified and rectified and applied to a tube keycr. This may be arranged to supply direct current, or tone, for transfer to the traffic office. Audio-frequency filters, of the same type used for tone control, allow a number of chamels to he handed over one line.

Where tone lines are long enough to require the use of one or more repeaters, care must be taken that the sum of the voltages of all channels is not high enough to cause any overtoading of the repeaters. If this takes place, intermodulation betwern ehamels will be callosed, which results in mutilated signals at the central office. With repeatered lines, and the usual bam-pass filters, it is essential that all chamels be kept at approximately the same signal level. A maximum difference of $2 / 1$ betwern any two ehamels should not be exeeeded. Large differenees in chamel levels are apt to canse interference on the weaker ones.

In medimm-wave and short-wave receiving stations the contacts of all telegraph keys and relays must be prevented from sparking, and the wires to and from the contacts must be properly filtered. If these precautions are not taken serious elick interference will be experienced in the receiving equipment. The same applies to commutator-type electric motors. Circuit breakers should preferably be loeated in a shiedded room.

## TRANSCRIBING METHODS AND EQUIPMENT

42. High-speed Reception. As the average operator eopies at a rate of only ahout 40 words per mimute, aural reception must he replaced by some methed in which a record is made of the signal, on the high-speeil circuits, the recorted signal then being copied off at a slower speed by one or more operators. The older dietaphone and photographic met hods of recording were not entirely satisfactory. Most systems now use some form of "ink recorder" in which the movement of a pen is controlled by the incoming signal and makes short and long characters on a moving paper tape.

Reception by tape has the double advantage of speed and of there being a record to which the operator may refer or which may be looked up later in ease any culustion arises.
43. Ink Recorder. One commonly used type of ink recorder consists of a smadl coil smspended in a strong unidirectional magnetie field supplied by an eleetromagnet. The signal is amplified and rectified and the d-e pulses sent through the recorder eoil which, in turn, moves the pen arm up against an upere stop. With no signal current fowing the pen is held against the lower stop by the spring of the pen arm and eoil suspension. To improve the action of the device at high speeds the coil is suspended midway between the stops and double current used, in
place of pulsating direct current, to operate the coil. This is obtained from a pole-changing relay operated by the rectified signal, or from a


Fig. 13.-Ink recorder. Paper tape and tape guide not shown.
special amplifier-rectifier unit which gives an output direct current in opposite directions for "mark" and "spare."


## References

Austin, L. W.: Proc. $I$. R. E., June, 1926.
Beverage, Rice, and Kellogg: The Wave Antenna, a New Type of Highly Directive Antenna, Proc. A. I. E. E., March, 1928.
13yrnes and Coleman: 20- to $40-\mathrm{kw}$ High-frequency 'I'ransmitters, Proc. I. R. E., March, 1930.
Carson, John R.: "Electric Circuit Theory and the Operational Calculus," Mc(irawHill Book Company, Inc., New York.
Pbpenhchied, Anderson, and Bailey: Trahsatlantic Radio Teleplone Transmisbion, Proc. I. R. E., February, 1026.
Fuller, L. F.: The Design of Poulsen Arc Converters for Itadio Telegraphy, I'ror. I. R. E., October, 1919.

Shea, T. F: :" Transmission Networks and Wave Filters," I). Van Nostrand Company, New York.
Dteiner and Maser: Hot-cathode Mercury-vapor Rectifier T'nbes, Pror. I. R. E'., January, 1930.

## SECTION 19

## TELEVISION

By C. H. W. Nason ${ }^{1}$

1. Statement of the Problem. By looking at an ordinary newspaper half tone it may be perceived that were the mesh of the structure refined there would be a definite point at which the improvement in detail with increasing number of elements per unit area would cease. A study of the interrelation between physiological and practieal aspects of television, earried out by a mmber of investigators, has set upon a degree of definition such as might be obtained by the use of three hundred elements along the side of a reproduced image as being the minimum for a satisfactory reproduction. In order completely to remove the grain of the image structure this number must, be set by the size of the image desired.

To transmit an image over an electric circuit, some means for transferring light values into electrical impulses of relative amplitude must he devised. Conversely the re-formation of the image requires a similar change from electrical impulses to light, and such a means of distribution as will reconstruct the transmitted scene at the receiving point. The photorlectrie effect serves to convert the variations in light intensity into time variations of an electric current which may readily be amplified and transmitted over a wire or radio chamel. The conversion of the eleetric current back into light variations may be obtained through the use of a high-intensity light source which passes a beam through some form of light valve or by the modulation of the light souree itself.

The process of breaking the seene up into elemental units is termed scanning, and its effect is that of breaking up the image into a contimuous strip which is passed before a sensitive photoclectric device so that an electric wave train is generated which eorresponds to the light variations along the strip. In order that no effect of "flicker" may be observed it is necessary that this complete process be repeated at least fiftern times per second (in 1932 general practice was to use 20 frames per second). This process may be summed up as a rapid form of picture transmission. Although many ideas have been advanced eoncerning the possibilities of direct vision it is at present outside the limitations of the engineering art to devise an instantancous process which will do away with the necessity for semning the sene in some manner which is the equivalent of that deseribed.
2. Scanning or Exploration Methods. The major proportion of the systems now in use employ the seanning disk of Nipkow, patented in Germany in 18\$4, or some similar mechanieal or optical equivalent. By this system a series of spirally arranged apertures in a rotating disk

[^46]serves to break up the image into a scries of strips which provide a continuous scanning of the seene. This may be done by illuminating the object and forming an image on the disk through whirh the light falls on


Fic. 1.-Scanning ar: illuminated objeet.
a single phototube as is shown in Fig. 1 or by scanning the scene with a pencil of light ("flying spot") from an intense source and picking up the reflected light with several phototubes as in Fig. 2. The theoretical


Fig. 2.-"Flying spot" method of scanning.
considerations are alike, although the first case presents serions practieal difficulties owing to the extremely small amount of light available at the phototube.


Fta, 3.-Spiral scaming by offset prisms.
Zworykin has used a pair of offset prisms rotating at differing spoeds and ground so as to effect a spiral scanning of the subjecet as shown in Fig. 3. A difficulty encountered here which calls for a great deal of study is the fare that the speed of scanning at the periphery of the scamed
area is much greater than that at the origin of the spiral. This may be corrected by careful study of the optical problems.

Many workers-Zworykin ${ }^{1}$ among them-look to the eathode ray as the answer to the problem. Farnsworth ${ }^{2}$ has developed an extremely interesting tube for the transmitting end, which epitomizes the work done along these lines. This device appears in cross section in lig. 4. An optical image of the secne is projeeted through a window at the end of the tube and is formed on the photo-sensitive surface of the deviee


Fig, 4.-Farnsworth rathode-ray tube.
at the eathode $B$. Over this cathode but a short distanee removed from it is a grid of very fine wires $C$ corresponding to the desired structure of the image-a 200 -line image requiring a grid of 200 wires. This grid is given a relatively high positive potent:al so as to accelerate the electrons given off by the eathode under the influence of the image. We now have a beam of electrons the size of the image direeted back toward the window. The cross section of this bam provides an "electron" image of the seene. Two sets of coils are now brought to bear on this beam eausing it to move bodily in such a manner that it seans a minute target $D$. Scanning of this target is accomplished hy the use of two independent oscillations having a saw-tooth wave form as shown in Fig. 5. The one oseillation provides vertical scamning at a rate of twelve times per second, the other provides the horizontal


Fig. 5.-Saw-tooth wave form for scanning. component at a frequency of 2,400 ceves. The target is carefully shielded except for one minute opening. In some of the Farnsworth tubes the target is made from an electron emitting material so that the photoclectric eurrent is enhaneed by a secondary effect. The recoiving tube used is termed the "oseillite."

Exploration of the serne may be aceomplished in many ways which are wither optically or merhanically the equivalent of the Nipkow disk. It will he noted in Fig. 2 that the light available at any instant is relatively small, being the amount passed through one seanning aperture. Jenkins

[^47]has evolved a lens disk which allows the entire illumination available at the souree to be brought to bear in the seanning operation. This is done by inserting a number of lenses in the disk which focus the light at the image. Horizontal seanning is provided by the rotation of the


Fig. 6.-Scanning by rotating prism.
disk, while the vertical component may be achieved by giving each lens the proper offset from the horizontal or by placing a rotating prism between the lens disk and the seene as shown in Fig. 6.

In the Weiller wheel, which has been employed
 to some extent in Germany, the light from the souree is foeused on a rotating mirror of polygonal form. The various planes of the wheel are offset in sum a manner as to provide the vertical component of the scanning motion while the horizontal component is provided by the rotational motion of the wheel. A simple explanatory sketch appears in rig. 7.
3. Scanning Element. While the general effect Fig. 7.-Weiller is not the same, the detail of a television image may wheel. be described as the equivalent of a newspaper halftone of a certain "screen." The fact that the seanning lines are not definitely broken up into dots gives a softening effeet that serves to give an impression of still greater detail.

A 60 -line image having an aspeet ratio of 1.2 , would be 60 by 72 clements, and would have a total number of elements equal to the product, or 4,320 elements. Although it would seem that the full detail implied would he available with a square aperture one-sixtieth the image height on a side, eertain effeets render this untrue. We assume a square aperture for eronomy of light, as the round aperture passes but 0.7854 the light admitted by a square aperture of equivalent dimension.

We have already assumed the conversion of light into a time variation of an clectrieal current hy means of the scanning system and the photoelectrie effeet. Should the scanning element pass over a section in the scene corresponding to a sharp variation in light density we wonld expect a resulting wave form in the electrical circuit similar to that shown in Fig. $8 a$. In practice this is not so, as the form is altered to that shown in Fig. $8 b$ by the use of a finite aperture or seanning clement., Here $T$ represents the time represented by the change in density, and $T^{\prime \prime}$ the time
required hy the seanning element in passing completely over the line of demarcation at the origin of the change in light intensity, A Fourier analysis of the a-e wave form in Fig. $8 c$ gives

$$
e=\frac{E}{\pi} \int_{0}^{\infty} 1 / \omega\left(\frac{\sin \omega T^{\prime} / 2}{\omega T^{\prime} / 2}\right) \sin \omega t d \omega
$$

This differs from the instantaneous value of the rectangular wave form by the factor within the parenthesis. This corresponds to a distortion from the ifleal of amplitude versus frequency. It is neeessary to correct for the expression

$$
\frac{\sin \omega T^{\prime \prime} / 2}{\omega T^{\prime \prime} / 2}
$$

A more detailed diseussion has been given by Itorton, (iray, and Mathes ${ }^{1}$ and later by Horton ${ }^{2}$ alone. In the latter reference it is stated that no noticeable distortion will take plare if the value $T^{\prime}$ is not more than onethird the time required to traverse the smallest complete-eyelie variation in light density involved. This points to the fact that the correction may be arhieved either mechanically, through the use of a slender seanning element, or through the employment of correcting networks in the amplifier circuits. In figuring the distortion imvolved it is necessary that we take account of the scanning-element distortion at the receiving end of the cireuit as well as at the transmitting point. In other words the effect is twofold in any cirenit.
4. Transmission Methods. The television signal may be considered as traversing an electric wave channel without consideration of whether that chanmel be radio or wire line. The amplification and transmission prohlems differ from those of speech and music in magnitude only.

The frequency band required is dependent upon the number of pieture elements and the frequency of repetition. This last must be greater than fifteen times per second if flicker is to be avoided. The calculation for the frequeney band required is

$$
f=\frac{N}{2} \times n
$$

where $N$ is the number of picture clements, and $n$ the frequency of repetition. For a 60- by 72 -clement imige employing a scanning speed of $1,200 \mathrm{r} . \mathrm{p} . \mathrm{m}$. the culculation is

$$
f=\frac{4,320}{2} \times 20=43,200 \text { cycles }
$$

The factor 2 enters the equation through the fact that a complete eyclic variation in light value is required for the production of a single a-e rycle.

It is essential that the low-frequency limit of the channel be not higher than the frequeney of repetition. Thus we may assume the band required for fidelity in the image to be from 20 to 43,200 cyeles. It has been found ${ }^{3}$ that the excellence of the image does not deteriorate

[^48]when the over-all response does not vary over a range of plus or minus 2 d o over the range. Correction for phase disphacement must be carriod out over the entire range so that the slope of the phase-shift chatracteristie, does not vary over a range of more than phas or minus 10 to 20 mieroseconds over the range except at the extreme low-frequency ond where the phase shift may vary from the linear by a considerat)le amount without afferting the excellener of the image. A figure such as that used in judging the excellence, visually, of a given channel is shown in Fig. 9. The degree obtained through the chamel is evidenced by the relative sharpmess of the angles formed by the black and white portions near the tip of the figure. Blarring of these angles is the equivalent of a loss in the higher frequeneies. Deviation from a linear phase disparement is also evidenered hy distortion of this figure; a twist of the whole figure at some point in its altitude being evidence of a sharp difference in the propagation time for the particular frequency or band of frequencies represented. Phase displacement or "envelope dolay" may be corrected by means of specialized networks having an equal and


Fig. 9.-Figure for judging television fidelity. opposite effect to that found in the channel proper.

If hoth side bands are transmitted, the width of a television channel calculated to handle a 60-line image at 20 pictures per second is upward of 85 ke . 'This necessitates a striet attention to all portions of the tramsmission chanmel subsequent to the modulator. It is usual to employ eoupled-circuit systems exhibiting a double-peaked response characteristic in all tuned eircuits where the decrement is not naturally suffieient to result in the transmission of the side frequencies.

It is usual to transmit a "positive image"-which is to say that the maximum amplitude of the earrion wave corresponds to a maximum light value in the subject seanned. Technically speaking this is tantamont to a statement that the lowfrequency signal on the grid of the modulator tube (Ifoising or "constant eurrent" modulation being assumed) has its maximum negative value coinodent with maximum light at the photoclowtric eoll. since the signal experimes a phase shift of 180 deg. through cach lowfrequency stage the number of stages preceding the modulator tube must be chosen so as to meet this requirement. The actual number of stages depends upon the character of the input circuit, $i . e$, whether the grid of the first tube goes more positive or more negative with increased light intensity.
5. Propagation Phenomena. In the reeeption of the television signal certain defects are evidened from time to time which require explanation. Foremost among these is the effect of double images. Where the receiving point is quite close, reflection efferts cause a second and often a third image to be seen-an image which is slightly displaced in azimuth and of ten in phase.

The radio signal has a plethora of components. The ground wave assumes a direct path betwern the transmitter and the receiver; a sky wave may either assume a direet path or a devious one depending upon the frequeney of the signal and the effective height of the KemnellyHeaviside or "reflecting" layor. The optioal efferts, evidenced when at light beam is coused to pasis from one medium into another which is more or less dense, are well known. Since light and radio waves are
both electromagnetic manifestations an analogy is not difficult of deduction. 'The components of the transmited wave moet an ionized layer in the upper atmosphere which reflects or rofatets them in a manner amalogons to the optical effect noted above and in a degree dependent upon their frequencey.

Froho signals make themselves apparent in the viowing field of a television rereder in a manmer shown in leig. 10. Vinowing the rotational speed of the disk and the lincar difference in the spacing of the two images and of a third image, should one be strong enough to be apparent, at time factor representing the dolay may be owolvod. Knowing that the sperd of propagation is 300 km or 186 miles por milliserond we may readily ohtain a relation between the distance travedled by the ground component and that travelled by the refloeted waves. This is shown quite plainly in Fig. 11. Since we are not concorned with the scientifie aspects of wave propagation we need go no further into the efferts of the reflecting layer. Whether the serondary image appears in a positive or a nogative sense is dotermined by the relative phasing of the two carrior components as has beon demonstrated by E. L. Nelsom in an explanation of the phenomena. ${ }^{1}$

Efferts as noted above may be cured by the use of antenms having corrected propagation as to the relative strength of the ground wave and the sky wave. In reapption close to the transmitter the reflected wave is not in evidence at some frequencies and reception of the ground component alone is obtained. At ant intermediate distance both may be received in such a manner as to render a perfect image impossible, whereas at long distanees the ground wave dropsout ent irely and only the reflected wave is recoived. Experiments in Cormany using shiclded antemmas to eliminate the


FI G . 10. Erho signals caused by multi-ple-path transmission. reflected component entirely have resulted in good rereption within a sperified service area where no distant reception is desired. Conmoreial climination of the offort will nocessitate a correlated choice of frequency and type of radiator


Fig. 11.-Paths traversed by radio wave. amployed.

Observations on metropolitan transmittors show that considerable diffeulty will be experienced in commereial efforts in large cities berause of reflection effects due to large masses of metallie strueture (ontimued study of antennas and choice of location should sooner or later render these afferts imnoeuons.
6. Receiving Systems. Exerpt in quantitative degree, the requirements of receriving systoms do not differ greatly from those of sound receivers. Leaving sensitivity considerations hehind, the sperifications for a television receiver morely require that the relative phasing between detector input and power output be such that maximam carrier amplitude corresponds to maximum light intensity at the viewing point, that the ficlelity be such that the response be flat within 2 ilh from about 15

[^49]eyeles out to some high frequency, and that the phase displacement be linear with respect to signal frequency. The first consideration is met by employing an even number of l-f stages where plate circuit detection is used and an odd number of stages with grid-current detection. The fidelity considerations may be met by the use of coupled-cireuit systems together with earefully designed l-f amplifiers. The last demand is satisfied by avoiding resonant conditions in the l-f system. While transformers have been developed for use in apparatus covering so wide a range of frequencies, they are of such character as to be outside the abilities of all but the most capable designers.

Leaving aside "trick" systems where synchronizing signals are superposed upon the inage variations or where attempts are made to convey sound and scene over the sane channel, there are just two possible receiving systems. In the first place we have the system employing detection and l-f amplification as commonly employed in the reception of sound and in which a.e. corresponding to the image variations is applied to the light-producing device. In the second type receiver no detector is employed and r.f. is applied to the light-producing deviec, the variations in carrier amplitude being evidenced by increasing or deereasing brilliancy of the light source. Use of the second system demands a separate channel for the reception of sound from the television transmitter or a means for rectification of the signal during announcement periods.

Trouble has been expericnced in many commercial television receivers through the use of untuned input stages or lack of selectivity prior to the first r-f stage. Although the harmonics of the broadeasters appear in the television band they are not of sufficient amplitude to swamp out the television signal. Use of untuned input stages results in a strong component of carrier frequeney being produced across the grid of the first r-f stage by strong local broadeasters. Operation of the first r-f tube on an unfavorable portion of its characteristic curve, through this type of overloading, results in a strong harmonic of the broadcast signal in the plate eireuit of the first tube-a harmonic that is amplified in the successive stages when close to the frequency of the television signal and causes added trouble. This is aside from the direct, modulation of the television signal which occurs. Except for the fact that harmonic production in the plate circuit of the first tube may result in amplifieation of the broadeast harmonics, the selectivity considerations do not differ from those of a broadeast receiver.
7. Transducers and Light Valves. The transducers employed in television for the most part are gaseous discharge tubes employing a rectangular plate of the image size upon which the discharge glow forms. The other eleetrode or element of the tube consists of a wire ring or loop? placed optically behind the plate. In most eases these elements are of nickel, although well-cleaned siliron steel has been found to give an even discharge. One make of discharge tube for television purposes employs two rectangular plates so that the discharge will appear on a flat surface without regard for the polarity of the d-e energizing potential.

The rectangular surface is the cathode element and the wire ring constitutes the anode. In the vacuum-tube circuit the tube acts as a resistance of rather high value as determined by its current and voltage characteristics. Its a-e characteristies are something quite different, however, the impedance of the tube being obtained from the slope of its
characteristic curve. In Fig. 12 appears the characteristic of a neon tube of the type available for television experiment. The slope of the curve corresponds to an impedance of about 6,500 ohms, while the d-e resistance of the tube is alrout 26,000 ohms at 10 ma. The particular tube has excellent characteristics as far as its operation as the load for a vactumtube amplifier is concerned. The tubes now obtainable for use in experimental work have a d-e resistance of from 8,000 to 10,000 ohms and an impedance of from 500 to 1,000 ohms-not ideal for use in the output of a vacuum tube. It is necossary, because of the inadvisability of employing a transformer, to operate the output tube considerably under its rated capacity or to use several tubes in parallel the better to match the impedanees.

An approximate match can be obtained by the use of a resistance in series with the neon tube in the plate circuit. This aids in matching the impedance of the load to that of the tube and does not incur a great loss in output power available, since the variations in light intensity are a function of the current through the neon tube.

The tubes mentioned above are for use with the normal type of scaming disk and the largest picture obtainable is therefore determined by the size of the plate upon which the discharge is formed. For optical scamning systems-Jenkins disks, Weiller wheels, and the like-a point soure of light is desirable. The recording lamps common to the motion-picture industry may be used in this connection, although they are not capable of handling a great deal of power. Point sources are similar in their characteristies to the ordinary


Fig. 12,-Characteristic of neon television tube. type of diseharge tube described here. Tube's handling a large amount of power must have adequate cooling, and in some systems this is provided through the use of water jackets similar to those used in large transmitting tubes. The tubes used by the Bell laboratories have also provision for valving-in hydrogen as the tubes age, thus lengthening their uscful life by removing the sluggishmess in response, which develops as the gas remaining in the elements is expelled through heating. Naturally the valving-in of gas


Fig. 13.-Nicol prism-Kerr cell light-valve system.
and water cooling are features beyond the limitations of home television apparatus.

Light valves of a mechanical character such as are employed on certain ilm-recording systems have been found incapable of handling the high
frequencies of variation found in television but those applications of the Kerr effect which are common to the chemical engineering art are found well suited to the purpose. Here a powerful light source is interecpted by a nicol prism-a complex unit of Icelandic spar which has the property of polarizing light. A seeond nicol prism interposed between the first, and an optical seanning system in the manner shown in Fig. 13 will result in total extinction of the light, when the axis of the second prism is at right angles to that of the first. The kerr cell is now interposed between the two prisms. This is an instrument which eonsists of two plates immersed in a diclectric of nitrobenzence, carbon bisulphide or some other transparent dielectric material. The dielectrie has the property of rotating the plate of polarization of light passing through it, when a potential differenee exists between the two plates. The degree of light passing through the system will he found to vary in accordance with the potential applied aross the plates of the liere cell in the manmer shown in the curve in Fig. 14. This, it will be seen, is not linear in form, and a d-e bias surh as to operate the Kerr cell over a lincar portion of its characteristic is necessary. The biasing point is shown in the curve. There are other methods of polariz-


Fici. 14.- Characteristic of Kerr cell. ing light and other mothods of rotating the plane of polarization by electrical means. The hasis of all such systems is expounded above, and no comment on other possibilities is neeter.
8. Analyzers at the Receiving Point. It is necessary to achieve some systom of distribution at the receiving point corresponding to that of scanning at the transmitter. In the simplest apparatus the scaming disk of Nipkow is employed with a rectangular discharge tube placed behind the disk. With the disk rotating in exact synchronism with that at the transmitter, the variations in light intensity will correspond with the variations in illumination density in the seamed scene and an image of recognizable aspect will result-its quality and excellence deponding upon the excellence of the channel as a whole. All of the seaming methods described in the first instance are applicable also in the reconst ruction of the image at the receiver. The optical systems are to be preferred because they concentrate the total light available from the transducer at one point on the viewing sereen, while the seanning disk is capable of no greater illumination than that available through a single aperture at any instant. By proper optical design the light effieiency of an optical seanning system can be advanced to a high degree. In these cases the size of the projected image at the viewing sereon is limited only by the available light and by the degree of apparent definition required. The larger the image obtained the poorer will be the structure of the image.

The methods employed in reception by means of a cathode-ray tule are markedly similar. A tube is used with a fluorescent-viewing sereen at one end and a source of electrons at the other. Elements for the concentration of the beam, for the variation of its intensity, and for varying its direction in two senses must be provided. Where the scanning at the transmitter is aceomplished in the normal mamer by
traversing the seene from left to right and from top to bottom, the seanning of the cathode ray across the fluorescent-viewing screen musi, be in the same manner. This makes necessary the use of a deflecting influence having a wave form such as that shown in Fig. 5. This may be ohtained mechanically by the use of a motor-driven potentiometer or by the use of a neon lamp as an oseillator. The general aspeet of the rathode-ray tube as used in receiving a television image is as shown in


Filg. 15.--Cathode-ray tube for television.
Fig. 15. The systems of Zworykin, Farnsworth, and von Ardenne are similar in character.
9. Synchronization in Television. It is essential that complete synchronization obtain between the moving elements at both terminals of a television chamel. By synchronization we do not mean the mere faet that the motor elements are rotating at a constant and uniform speed, but that they are in exact juxtaposition, element for element. This does not merely require that the frequency of the supply for transmitter and receiver remain identical and constant, but that the phase relations also remain intact. Where the two are fed from the same a-e supply source it is necessary that the relative phase alone be consideredthe frequeney remaining constant. In correcting for phase displacement it is essential that the motor frame or the scanning disk be rotatable to correct for the difference. It is possible to correct for an image out of


Fig. 16.-Thyratron method of phase adjustment for proper framing. frame in the vertical sense by switching the supply current on and off rapidly. Phase displacement evidenced hy the image being out of frame in the horizontal sense may only be remedied by a merhanical means which permits of shifting the relations of the rotor and stator of the driving member while in rotation.

It is also possible to achicve this end electrically by means of a Thyratron circuit of the type shown in Fig. 16, where the phase rotation through the system is variable by adjusting the resistance. Adjustment of the frequency of two remote a-c circuits may also be carried out by means of the Thyratron so that a simple synchronous motor, together with Thyratron eircuits for the adjustment of both frequency and phase, may be used in driving the scanning system. It is also possible to achicve synchronism by the use of a double-drive system in which a series-wound variable-speed motor is used to maintain the system in rotation while a second small synchronous motor maintains the speed constant. This
synchronous motor may be driven by the output of a vacuum-tube amplifier. The characteristic frequency or scanning frequency of the television signal is obtained by multiplying the number of scanned lines by the picture frequency. In the case of the usual 60 -line transmissions this results in a frequency of 1,200 eyeles. A tuned amplifier receiving its input at any point in the l-f system of the television receiver will receive enough of the 1,200 -eycle component to drive a small synchronous motor with sufficient power to maintain the system in synchronization. Such a motor need only consist of a pair of coils and a


Fig. 17. Synchronous motor. gear of magnetic steel-proferably laminated, the number of teeth depending upon the frequency of the supply, the desired speed, and whether d.e. is present in the windings. With d.c. present the number of teeth is half that required when a.c. alone is in the windings. With d.e. present the number is equal to the frequeney divided by the number of revolutions per serend desired. With no dee excitation, twiee this number is requirect. The form of such a motor is shown in Fig. 17.

There is a possible variation of this scheme known as the thermionic brake which has distinet possibilitios. In this system the wheel shown in Fig. 18 operates as a generator and supplies plate voltage to a pair of tubes eonnected in push pull but with no applied grid or plate voltages. When the driving motor approaches the proper speed there will come an instant when the grid potential of one of the tubes and the plate potential will swing positive at the same instant. A degree of plate current dependent upon the magnitude of these voltages, but none the less high, will flow. At the correct speed, i.e., when the plate and grid voltages are in synchronism, a corresponding effect will hold good in the very next


Fig. 18.-Thermionic brake system.
half eycle in the other tube of the sistem. Thus a continuous load will be placed on the driving motor such as to limit it to the desired spend. Shouk it fall below this speed, the liraking effect will be instantly withdrawn and the speed will increase until the cycle described is repeated. A schematic version appears in Fig. 18.

## References

13arthelemy, IR.: Londe Electrique, 10, No. 109, 5-35.
$\mathrm{N}_{\mathrm{A} 日 \text { ( }}, \mathrm{C}$. I. W.: Radio Rroaderast, 16, No. 6, 318.

## SECTION 20

## FACSIMILE TRANSMISSION

By R. H. Irangera ${ }^{1}$

1. General Requirements. Elementary dots in a half-tone pieture, printed in a newspaper, illustrate how a picture must be analyzed in photo units in order to transmit it electrically to a distance. There is no known way that a pieture may be transmitted in its entirety electrically from one point to another; the process consists first in tracing across the original pieture point by point in consecutive lines; seeond in sending a representation of the values of eaph such traced point over the commennieation system; and third in putting down the point representations in the proper places on the recording sheet to build up the pieture at the receiving station.

The finer these pieture elements are taken in the analysis the finer will be the resultant detail in the recorded pieture as compared with the original. The ammber of such photo units to the picture therefore indieates the resolving power of the system.

It takes 50 dots in a line across a picture and 50 lines down a pieture to represent a face in good shape. This means 2,500 dots or photo units total. Photo units to the number of 300,000 are required to get across a scene that would normally be required in newspaper work.

It makes no difference as to the size of the finished pieture, the resolving power is entirely a question of the number of photo units transmitted in good shape. It takes just as many tiny photo units to represent a face well on a postage stamp as it takes to represent a face in larger photo units on a $10-\mathrm{ft}$. enlargement. Naturally it will be neeessary to stand back from the large pictures to get the effeet, but the detail will be equal in earh case.

The maximum possible difference botween two eonsecutive photo units would be that one was white and the next was dark. As the normal representations of this transition would be from a positive value of rurrent for one and a negative or minimum value for the next, a complete eleetrical cycle would be represented by the two suceessive photo units. Therefore, the modulation impressed on the carrior in pieture transmission is anything up to a frequeney one-half the number of photo units being handled.

Photo units may be handled over normal telephone linos at the rate of 800 a second corresponding to a maximum modulation rate of 400 cycles. This will cover a $5-b y-7$ pieture of a serne in 7 min. It must be borne in mind that a band width considerably in exeres of the modulation rate should be allowed for picture tramsmission. The third harmonic: of the

[^50]
modulation rate should be planned for; this means that a single side-band width of 1,200 cycles or a complete hand width of 2,400 is generally necessary for the transmission of a $5-\mathrm{ly}-7$ picture in 7 min . A carrier at least ten times the modulation rate is recommended.

## Table of Tinits in Code and Facsimile

Average Values

$$
(1 \text { word }=i \text { letters }+1 \text { space })
$$

Code Transmission (Continental):
1 word requires 24 rycles modulation. $50 \frac{\text { words }}{\text { minute }}$ require $20 \frac{\text { cycles }}{\text { second }}$ modulation

> and therefore require at least a 200 cycle carrier and 60 -cycle band width. Facsimine Transmision:
> 6 lines typewriting to vertical inch
> 12 letters or 2 words to 1 in. of line
> 12 words per square inch
> I letter requires 60 photo units or 30 cycle modulation
> 1 word requires 360 photo units or 180 cycle modulation. $50 \frac{\text { words }}{\text { minute }}$ require $300 \frac{\text { photo units }}{\text { second }}$ or $150 \frac{\text { cycles }}{\text { second }}$ and thus require a band width of 450 cycles and a carrier of at least 1,500 cycles

Synchronism involves the timing of the tracing or scanning means at the transmitting and reeciving points such that they are tracing corresponding points of the picture at the same time to prevent distortions between adjacent lines. This synchronism should be accurate to one half of a photo unit to prevent notiecable jiggles between lines; and hetwern the start and finish of a pirture it should be aceurate to 1 part in 30,000 . This means, for example, that in the traversing of the $5-h y-7$ pieture, mentioned above, the fracing point will cover 3,500 linear inches in going ower the pieture line at a time, when those lines are 100 to the inch. And at the bottom of the pieture, the areuracy of synchronism should be such that the final dot is no more than $1 / 10 \mathrm{in}$. out. Further inaccurary would objeetionably skew the pieture out of phumb.

As a matter of practice, each end of an independently synchronizod pieture station tries to hold its synchronism to 1 part in 100,000 so that the ower-all synchronism will not be out more than 1 part in 50,000 .
2. Scanning Methods. To piek up these clemental photo units that make up the transmitted picture, it is necessary to have some sort of a tracing pencil which goes over the entire picture. In the very first picture-transmission method of over 90 years ago an actual fine metal brush was suggested. This was fastened to the end of a swinging pendulum which therefore discribed an are across the picture being transmitted. The pieture consisted of a drawing in shellac on a piece of tin foil. At the end of each pendulum swing the table on which the foil was mounted would space down a small amount, corresponding to the mext line of the pioture, and the brush would then swing across again. This is one form of an analyzing head; but by far the most popular mothod has been somes sort of a celinder mounted in the manner of a lathe with the eylindrical drum carrying the pieture to be sent and at point pieking up the picture values, or, as has now berome the method, of a fine point of light illuminating the pieture, a point at a time. As the
cylinder turns, the tracing point travels down the length of the cylinder, so that at the end of a certain time, the entire pieture will have been traced.

All of these motions are relative; either the drum may rotate or the point of light, or one may be rotating and the other moving axially to accomplish the resolution at right angles to the first. In any event, the picture is covered line after line, and these lines may be curved or straight. Earh method has certain values of its own.

Reciprocating motions may be used for the scanning, in which the tracing points move back and forth horizontally by means of a right and left worm, and the paper is advanced forward for each successive line. This means that the tracing is done first from left to right, and then from right to left. It has the advantage of


Fin, 2.-Alexander Bain's original picture apparatus (1843). working for continuous feed of paper, but it has the disadvantage of requiring greater aceuracy in order that the sucessive lines may be very accurately framed so that the right and left scaming registers accurately at each end.
3. Inherent Accuracy. A word on imherent accuracy may here be given. This means that the systern which does not reguire split thousandths for aceuracy but instoad a tendency to cancel out what crrors there may be in the operation will have thorefore by far the greater chance of suceresful operation. It is inherently accurate. At least its operation is such as to minimize inaceuracies in merhanical motion and electric timing, which are fornd to exist in any system.

A way of overoming the inherent, inaccuracy of the reciprocating motion, and still maintain the advantage of continuous motion, is provided in the spiral and har recording erfuipment. The spiral rotates on one side of the paper, and the bar moves to and from the other side of the paper energized by the pieture signals so that the point at which they will contact at successive intervals moves from one side of the sheet to the other, and then starts over again at the original side. It is used in carbon recording and chemical recording.

The lens disk accomplishes the same purpose at the transmitting station by moving a bean of light optically from one side to the other of a picture, and immediately starting again from the original side. It may be realized that it is inherently easier to get optical systems to register moving as a radius, as indicated for the stationary cyinders, than it is to have the beam cross a flat objoret.

In one method of scamning, the analysis is in two directions. First, a line is traced at an angle downward from left to right, and then a line downward from right to loft starting at the same general height.

The net result is a cross-screen analysis of the pieture. The analysis between sucessive lines of a pieture is alway far sharper that the analysis between suecessive points of the same tine, due to the slower
ehanges in value found in progressing from one line to the next. The cross sereen takes advantage of this in that it tackles each photo unit from two different angles and therefore gives a better average definition betwen points. But it docs require far greater machine precision for the actual structure. A simpler method of aceomplishing the same result is to transmit the same picture twiee and place it in the machine first so that the lines are vertieal, and second so that they are horizontal. The pietures are then made into a eomposite print at the receiving point. This method averages out faults and provides pleasing results.


Fil. 3.-Cross-screen analyaing scanner.
4. Photo Analyzers. To pick up each photo clement in terms of current value, so that it may be fransmitted electrically, there must be some electric identification of the element. The first mothod was to construct the original picture in such form that it had in itself different eleetric characteristics. This was done by writing on tin foil with an insulating medium such as shellac. Thon, when a metallic brush swept over the untourdsed part of the pieture, colectric contact was made between the metallie brush and the metal of the foil. When the brush came upon the shellae the circuit would be broken. This then constituted the differentiation between the two parts of the pieture.
6. Photo-engraving Method. Instead of making the picture by drawing with shellae, it is possible to take advantage of the photoengraving art in which a raised metal repliea of the pieture is made in dots which normally would take printer's ink. Instead of this, however, they are made to establish the electrie contact for the tracing point. And instead of the usual dots of the half tone, it was proposed to use line sereens in which the pieture is etched in straight lines of varying width aeross the picture. The tracing point was them made to eut aeross these lines at right angles such that it made contact for greater or shorter duration as it erossed. This line method required much less aceuracy of adjustment between the contact point and the lines of the pieture than if the dots were used. The engraved lines of the pieture were usually filled in with some insulating material so that the tracer rode arross
either the insulation or the live metal. The difficulties with this method were in the contact. Working with larger originals made the problem casier.
6. Potassium Bichromate Method. The engraving art was also adapted to the picture art in the Lse of bichromate prints. Potassium bichromate dissolved in a gelatine has the property of being light sensitive in such manner that where the light strikes the combination, the gelatine will be hardened and made quite impervious to water. Therefore, if a plate covered with sueh prepared gelatine be exposed to strong light through a negative (or positive) of the picture transmitted, the gelatine will be eorrespondingly hardened whore the light passes through to greater or less degree. Subsequent treatment with water will make the parts less struck hy light to rise. The result is that an impression in reliof of the desired pieture is produced. This relief print may then be placed under the scanning point which will rise and fall as it passes over the relief picture and either turn on and off a current for a black-and-white


Fig. 4.-Compensating selenium rell lag. (K゙orn.) pioture, or incroase and decrease the current by a microphone contact for a photograph.

Attempts have bern made to interpret pieture values electrically, by the variation in resistanee of the different amounts of silver suspended in the usual photographic film, but the differenees are not sufficiently regular to work out nicely, cleetrieally.
7. "Pencil-of-light" Method. All of the above merhanical methods have been most carefully worked out and many pictures have been transmitted hy them, but the inability of such means to, piek up the fine detail of photographs has had to give way to the inherent! casier methots of using a light pencil for the scaming deviere. But a pencol of light has limits of definition far beyond the requirements for pioture transmission. This was carly recognized, but the means for interpreting the light changes eleretrieally were not so readily aemomplishert. The first, useful tool in this direction was selenium, which by areident showed its.


change in resistane with change in illumination. This change is really. quite large, but it has the drawhark of not heing immediately self-restoring. some ingenious compensators have been arranged for this sluggishmess
which is a form of polarization. The compensation usually takes the form of two selenium cells working at a different time rate such that the quick one precedes the slow and establishes a new base line for subsequent changes by the fast one. Wonderful technique was established in this direction and exeellent pietures were transmitted.

But agaiu inherent simplification was welcomed in the true photoelectric cell in which the sluggishness is beyond the normal means of detection. Such cells are not so sensitive as selenium cells, so they in turn became of use only when the vacuum-tube art produced the efficient amplifier.
8. Photocell Amplifiers. Unless very excessive light values are used, the change in illumination of a normal photocell is not such as to give more than $1 / 2 \mu$ a change from the black to white parts of the picture. Care must be taken to see that as much light change as possible comes from the picture to the photocell. This means that as great light efficiencies as possible are required. An easy rule is to keep the number of optical elements in the light system to a minimum. A good prism may reflect 95 per cent of the incident light; a metal mirror cannot do much better than 60 per cent; but both these percentages will be completely vitiated by a little dust on the surface. Every lens surface reflects wastefully some of the light supposed to pass through it; so inherently more light is passed by reducing the number of elements in the system.
9. Direct-current Amplification. 'Two general methods of amplification are valuable for photocells: so-called d-c amplification and a-e amplifieation. D-e amplification means that the coupling between the photocell and the suceessive stages of amplification will be such as to pass all changes of any frequency, from zero up. In other words, the average illumination of the pieture will he effective through the amplifier. An a-c amplifier means one in which the eoupling is such as to pass only changes which oceur at a rate exceeding a certain minimum. I)-c amplification is usually accomplished by means of some resistance or reactive and resistance coupling between stages. A-c amplification is accomplished by capacity coupling between stages or by transformer compling. It should be pointed out that dec amplification may still be accomplished as far as the picture is concerned if the original photocell current changes are made to modulate a tone which is then in turn amplified as a.c.
10. Modulated D-c Amplification. The more general way of accomplishing the same result is by means of a chopper wheel interposed somewhere in the optical system. A chopper wheel is a rotating disk with symmetrical holes to break up the light into individual pulses passing through the optical system, and giving rise to a characteristic tone throughout the electric system. The modulation for this tone should be proportional to the changes in density of the picture being transmitted as the sucerssive elements are traced by the amalyzing point of light. The ehanges in intensity of the tone should be lincar with respect to the changes in light density of the picture. There are so many places where the transpositions are apt to follow the square law that care must be exercised to use inherently linear arrangements. It is ohviously very had if the square law happens in the same direction in two parts of the system making the resultant interpretations of the pictare changes follow the fourth power of the original. The result of such distortion is to lose much
of the detail of the picture; the eye is not capable of following many changes in density anyway, ten perhaps at most, so if some of these changes are crowded into cither the light-or dark parts of the picture hy non-linearity in the operation of the system as a whole, the resolving power of the system is materially reducetl.


Fig. 6.-Tube-generated tone is fed into photocell circuit at A to permit a-c amplification of photo currents.
11. Necessary Accuracy. It may seem that such accuracy is only necessary for photograph transmission, and that for the black and whites of printed matter and diagrams such distortions may be tolerated. This is of course true where extreme simplicity may permit it, but generally speaking this is only an expuse, and good lincar response is as advantageous in black and whites as it is on phofographs. It means that truer resolution of the lines of black-and-white matter will be made by a certain density of photo units when the response is limear, than would be made by the same number of photo units per square inch of the paper if the response is not linear. Where the response is not linear, the reprodued picture will take on the built-up brick structure. It is of course likewise possible to reduce the effect of the square law in one part of the system by interposing another square law in the opposite direction somewhere else. But as usual no two wronge can make a complete right. True design eonsists in replacing the sumare law hy inherent linearity.
12. Balanced Circuits. In the same mamer that the push-pull amplifier balances out some non-linearities in ordinary amplification, some of the deferts in photocell amplification may be accomplished by balaneed arrangements. One of these consists in using two photocells, which receive the light alternately from a mirrored chopper whel. This reduces gencral interference from extraneous disturbances. One of its chief advantages lies in the fact that it balances out the actual light rhopping by the pieture elements.

This may seem a curious desideratum, but the reason is that the relative low-frequeney impulses coming from the original pieture will distort the beginning and end of the tone impulses. What is desired is a true modulation of the commmieation system in terms of the density of the pieture. After the carrier has been so modulated it is not necessary to carry through the frequencies which cansed such modulation, and to do so may easily cause distortion due to the fact that the frequeneies are so far apart that they will be handled differently by all parts of the system, in both intensity and rate of response, and the result with all
sueh intermodulations present is to widen out the markings on the picture, making them muddy and even producing shadows and ghost images, which look like echoes.

Take, for example, the 150 -eycle modulations corresponding to 50 -words-a-minute facsimile; assume that, this is put on a 2,500 -eyele earrier. Then the side bands will be 450 eyrles either side of this, allowing for the third harmonic of the modulation frequency. This brings the lower side band down approximately to 2,000 eycles. Now all the essentials for getting the facsimile across are in the band from 2,000 to 3,000 cyeles. If at the same time, the system attempts to handle all the straight modulation around 150 eyeles, it is ohvious that it will repuire special treatment to handle this in exactly the same manner that it does the higher frequencies. "Retlifs" may be used to eorrect phase lags, or filters may be used to pass only the desized upper band, but again the simpler method is inherently to eaneel ont the lower modulation frequeneies before they are formed clectrically. This is done by balanoing the two photocells with their associated amplifier tubes such that they recoive equal response from each half of the chopped light and by then connecting the two amplifier tubes in push pull.


Fig. 7.-Balanced push-pull photocell amplifier.
13. Reproduction of Dark Portions. It is always harder to get good modulation in the darker parts of the picture. The photo currents are so low that the variations are around the threshold values of the eell and amplifier set-up. A convenient method of raising the tone above this noise level is to use a $C$ light. This light acts to move the response to a more effective portion of the curve, just as a $C$ battery does for an
amplifier tube. In this case, it consists of a small light which is always shining through the chopper wheel to produce a tone with the photocells. Its light path must be adjusted so that it will be in phase with light, projected from the pieture. Under these conditions, it is seen that there is a definite minimum value to the tone in the push-pull output of the amplifier, and this tone is added to by the pieture light values. This method is particularly useful if reetification of the tone is to be used later in the system, and the power capacity of the system is such as to handle the full value of the $C$ tone plus the pirture tone, for then the rectified response is moved well up on the square-law curve where it becomes quite linear for the picture changes. Likewise, the output is greatly increased by this process as the pirture change has berome a protuct function with the $C$ light. For example, with a $C$ light tone four times as strong as the average picture tone, the output will be right times the output without the $C$ light tone. The limit to such methods is the power capacity of the last tube in the amplification and rectification.

It may be noted that if the C light is adjusted 180 deg. out of phase with the pieture tone, the output will be 180 deg. out of phase with the input; $i . e$, , stronger light from the picture decreases the tone. This is particularly useful in case the tone is to modulate a radio transmitter directly in which case the dark part gives maximum tones and the light part minimum, and cven no tone for pure white if such adjustment is desired.
14. Use of Triggered Oscillators. A very interesting possihility in photocell amplification is the use of triggerel oscillators. (If course straight modulation of an oscillator may be aecomplished after d-e amplification of the photoccll currents, but likewise a balanced system may be set up with two tubes as two arms of a Wheatstone balance. One of these tubes will be merely an adjustment for the other active one which is operated by the photocell currents. The tone may be introduced as normally in a Wheatstone bridge between the outer ends of the balance, or it may be introduced into the screens of both tubes using the new screen-grid tubes. In passing, it may be noted that suppressed earrier modulation may be obtained by acting on both tubes in the bridge push pull.
15. Electric Retouching. Finally, mention should be made of the use of electric retouching in photocell amplifiers. This consists in overemphasizing the intensity of quick changes. That is, where a sharp change in picture density occurs, the amplifier will overaccontuate the change. This is lone by inserting resistance in a d-e amplifier stage and then shunting that resistance with a capacity. The same thing may be accomplished by redueing the gain in the center of the frequency band of the modulated carrier. The effect on the pieture is to give a decper black line at a quick change from white to black and a cleaner white line next to a change from black to white. This increases the snap to pictures which is especially desired by newspapers.
16. Changing Intensity to Time Values. There are two general methods by means of which the picture densities may be made to change electric values. One is to represent the density changes directly in current intensity changes. If the communication system is such as to maintain such intensity changes proportional throughout from transmitter to receiver, it is by far the best method. But a uniformity corresponding to 0.1 db is found necessary in order that objectionable streaks
do not result in pictures. This is obviously difficult over any but the best lines, and quite impossible over present long-distance radio circuits. Fortunately, another method is possible; this consists in changing the picture density changes into interrupted current of uniform intensity. It is called the telegraphic method. Ohviously a very short dot on the received pieture, although it be printed absolutely black, will appear gray agatinst a white harkground in the finished picture. Therefore the problem consists in changing the pieture densities into dots or dashes of different lengths to make the appropriate imprint on the received pieture. The method in which a tracer point went over a line engraving is one mothod of obtaining this change from intensity to dots and dashes. The half-tone screen has already interpreted intensity valuations into area valuations in the half-tone engraving process. The making of such an engraving before transmitting is expensive and time consuming. A more direct method builds up similar dots by adding some form of pulsating circuit to the elect ric response from the photocell. If a sensitive relay is included somewhere in the intensity-change electrical cireuit, and this relay will turn on and off at well-defined limiting values, it is possible to add to the picture signal in alternating current preferably of a saw-tooth characteristic, and then the relay will trigger at times dependent upon the sum of the voltages from the alternating current and the picture currents.
17. Use of Revolving Commutator. An old method is to make use of a revolving rommutator which revolves once for every photo unit and is raised vertically by the pioture changes. It has been suggest ed that even the relief pieture would be sufficient to accomplish this. As the commutator rotates it will strike an inclined segment such that for raised parts of the pieture the commutator witl be closed around a longer are of the commutator rotation.
18. Marginal-relay Method. Another simple method is the use of several margimal relays, the relays boing set at suceessive values such that one will close at a low value of current from the picture, the next will elose at a slightly higher value, and so on. Then a commutator picks up the relays in succession and will therefore deliver a longer impulse to the line if more of thase relays are closed. Another method eonsists in making several black-and-white engravings of the picture. These engravings are purposely made to be either black or white at different densities of the original picture, by methods well known in the engraving art. Then these engravings are all mounted on a common axis on a cylinder and are rotated under separate tracing points, one for each separate phate. These points act exactly as the marginal relays mentioned ahove, in that a rotating commutator closes through each tracer point in suceession and the more of these points that are in contact with their respective plates, the longer will be the contart on any given
rotation of the commutator. In spite of the seeming complexity of this method, many suceessful pictures have been sent by cable in this manner.
19. Change of Marginal Setting. Another method has been to change the marginal setting of the photo current on earh complete revolution of the drum carrying the single pioture. Then every time the pieture value erosses the inarginal limit, the current is closed to the transmitter. The seanning lines are neeessarily taken much closer together so that the pieture is built up of what look, on enlargement of them, like very long relief sections of the picture.

The very fact that the suecessive lines of the latter method must be made one-fifth as wide in order that the individual lines will be unresolved by the eye and that a smooth series of tone values be given the picture show that it takes much more effort to give half-tone values than it does black and white. If modulation may be used as in the telephone method, it is not neressary to break up the picture into separate photo units, as the intensity changes are maintained over the complete communication system; but if such an intensity ehange has to be registered in time element changes, it is obvious that those time elements must be definite divisions of the photo unit. That is, if five different tone values are to be registered for each successive photo unit, the communication channel must be capable of differentiating to one-fifth the size of the photo unit. This means that the keying rate of the system will have to be able to modulate at five times the rate that it did for black-andwhite alternate photo units. And oaly five different values is rather a limited possible valuation for true pirture work. Ten would be a better figure, so that the modulation rate is anything from five to ten times more severe for pirture work as it is for blark and whites if the variable-size dot method of picture representation is to be used.
20. Dot-dash System. In the face of this dilemma, a new method of telegraphic modulation was devised known as the dot-dash method of building up the picture values synthetieally. It consists of establishing a tie-up between the picture values and the marking and spacing lengths of a vibrating relay. Assume a relay that is oscillating back and forth in marking-to-spacing at around 300 cycles. This condition is to represent the middle value of the pieture in the grays. Then for lighter values of the picture, the relay circuits will be changed such that the contact will stay on spacing for longer and longer periods although it will stay on the marking side for the same quite short period. The net result will be that for lighter parts of the picture, dots will be made farther and farther apart. Now for parts of the picture darker than the middle gray value, the spacing interval will be maintained the same, and the marking interval will be gradually increased in duration. This means that longer and longer dashes will be produced. These changes are accomplished in the electric circuts of the tube relay by the change of the rate of charge of condensers associated with the marking and spacing reactions respectively.
21. Double-modulation Method. Any of the picture-response methods may be improved in their operation by ways known as double modulation. This arises from the fact that none of the methods is very good at the extreme white or extreme black ends of the scale. Therefore, if the setting between the picture values and the current response is altered between suceessive lines, the black end will be brought down nearer the gray values on one traversal of the seanning, and on the next the white
will be brought up into the gray setting where it will be given more faithful interpretation. The net result is a widening of the pieture ranges over which the response will be more linearly faithful. The ways this may be acomplished are legion. One is to change a potentiometer affecting the gain of the photoeell amplifier at the end of each seamning stroke, and then return it to the previous setting for the next after. A contact or commutator on the seanning drum makes this possible. Instead of making it at the end of every stroke it may be done at a rate slower than the modiulation rate, say at 50 eryeles a second, and this will give a definite lineup of the modulation setting at this 50cycle rate.
22. Intermediate Records. Instead of building up the finished pieture direetly from the eurrent values obtained by scanning the original pieture, intermediary processes may be used, for example, separate engraved plates. (Other means are to record the picture variations by the normal punched tape common in telegraph practice. Thetape punchesmaybe made to represent different pieture values.


Fig. 10.-Timed push-pull relay for re-forming telegraphic impulses.

For example, five dots across the tape will represent a darker part of the pieture than one dot would represent. Not only this, but the dots may be used in different sequence so that murh wider range of picture values may be obtained. Likewise, it would be possible to represent the number of times a given pieture value was to be repeated. The more complete the ability of the tape to convey intelligence the more quickly will the transmission be accomplished; but by the same token the more of a thinking machine the tape puncher and tape reproducer have to be to get pietures out of the combination. Therefore there is a practical limit to automatic artists. The punched tape is made by marginal relays setting the proper punches. The perforated tape is then sent over the regular telegraphic systems by land wire, cable, or radio, and a duplicate tape is reperforated at the receiving end. This tape is then placed before a photo-recording drum which rapidly puts down light. controlled through the dots, on sensitive paper. This tape method has the distinct advantape that it may be sandwiched in with regular telegraphic traffic and that it may even be handled in sections.
23. Radio-transmitter Keying. The picture modulations must be put on a communication system. In the case of the telephone method the only requirement is to maintain the gain eonstant throughout the pieture to $0,2 \mathrm{db}$. (Otherwise the pieture will be streaked. The smoothess of the telephone method of intensity recording makes this even more imperative.

For telegraphie modulation, the requirements are less severe. It is essential that the characteristies of the signals be kept as near their original form as possible. As they start as square waves, they should be kept near this form. This recpuirement is met fairly well if the third harmonic of the modulation rate is allowed to pass. These sigmals may be put over a regular telegraph line in what are termed direct-current pulses. This is the best way to do it for short distances over open wires, espeeially up to, say, 50 miles in length. But for greater distances, various
serious distortions in the signals come in, due to the fact that the 150 cyeles, for example, will not travel so fast as the 450 cycles. This is particularly noticeable where long intervals of solid white may be interposed between short sections of black, as in typewriting.

The stearly stationary current is approached for the white, which far exceeds the value received in a normal modulation cycle. This effect may be reduced considerably by the use of the Reading condenser, familiar for years to telegraphic engineers. This consists of nothing more or less than a condenser shunted by a resistance in series with the line. Its position is at the receiving end of the line; but it helps at both ends. It means that short pulses are favored against long ones, as the short pass through the condenser more readily. A vacuum-tube arrangement has been devised which is of very great help in this direction especially where the lines are long and the received currents small. It is called the push-pull relay and consists generally of two tubes arranged in differential balance as regards signals coming over the line. They have Reading condensers in their plate circuits timed to the average rate of the signal pulses, and by this means have a tendency to reshapo the incoming signals to their original square-cut characteristic.
24. Use of Neon Tubes. The introduction of neon tubes in such telegraphic signal circuits has also been of help. They require a certain minimum voltage impressed across them before they give any response. With such tubes inserted either direetly in the line or more usually in the plate circuit of an amplifier of the lime eurrents, (1) they will not respond to small line disturbances under the normal signal level, and (2) they will give a very sharp building up of the incoming waves when they do break down. They do not have this characteristic on the end of a signal; but by the use of two such tubes in differential arrangement, one for the positive current going on, and the other for the negative going off, the squaring action may be accomplished on both ends of the signals.
25. Carrier Systems. For long lines, the time of arrival of the signal components at the receiving end of the line becomes so different that the signals cannot be corrected by any general means. It is usual therefore to resort to tone carrier for the keying. This ineans that a tone preferably ten times the normal modulation rate should be used. If this modulation rate is 150 cycles, this would mean a carrier tone of 1,500 cycles. Now the band width, as previously pointed out, should include the third harmonic of the modulation. This means that a band width of 450 cyeles should be passed either side of this 1,500 cycles. However, it is possible to use only one side band and the carrier. If the line, for example, does not pass signals up to 1,900 eyeles nicely, no difficulty will be noticed if the carrier and perhaps the first harmonic above are passed. The only reason for suggesting that the upper side band also be retained is that some 25 per cent of the energy is in that side band. If it is desired to limit the band width of a carrier system, so that more channels may be crowded into the same total space, it is possible to insert filters after the carrier is modulated by the picture signals and before the tone is put on the line. This filter will pass the carrier and one set of side bands, say the lower.
26. Modulation Circuit. The actual modulation of at carrier by the modulation keying, is best accomplished in a balanced tube circuit. In this circuit, the tone is placed on two tubes in push-pull. The grids of these tubes however, are kept negative below cut-off during non-signal periods and the keying is then made to raise the grids in push-push to
the operating point. This method balances out the objectionable click at the start and finish of such keying, if only one tube were used. The net effect of such elicks is to lengthen out the picture signals and produce muddy eopies. As pointed out in the photocell modulation methots, this push-pull method is inherently better.

Finally, mention should be made of the phase correctors which are used to correct the phase of received signal frequeney components. They consist of series-tuned circuits in the basic form, placed across the terminus of the line, a position in whieh they have the ability to retard the phase of the frequencies approaching the frequency for which the circuit is tuned.

At the end of a land line, if the signals are to be used to key a radio transmitter, care must be taken that lines are kept as free as possible from r-f pick-up as they come into the station, Shielding is of course the answer here. In practically all radio-transmitter keying circuits condensers are used in various portions. They must be kept to a minimum size in order that the transmitter may key quiekly. The keying hecomes quite an engineering problem in class $B$ and class $C$ transmitters especially.
27. Wave Lengths Used in Radio Transmission. Rigorous uniformity is demanded of the entire radio circuit to insure that streaks are not caused on radio pictures. For long waves the only general requirement is that the decrement of the circuit be not so low that the signals do not build up and decrease quickly. The long-wave antemna helps materially in giving directional selectivity to the signals reducing interference from static or other signals as well is giving much more energy on the desired signal. This means that the decrement of the tubing circuits may be worked at a higher value, thus giving faster keying to handle the picture signals.

The first long-wave transmission of pictures was handled on wave lengths of the order of $15,000 \mathrm{~m}$, and 60 -cycle modulation was generally the highest that could be handled well. Short waves opened up tremendous possibilities as to keying speeds. Keying speeds of 300 cycles may be successfully handled now over short waves, and higher speeds are being planned.
28. Necessity for Uniform Signal Strength. The great hughear with short waves is the variation in intensity and actual fading out of the signal. It is obvious that telegraphic inodulation is all that may be used where such fading exists. (For the very short wave lengths and searchlight distances telephonic modulation may well be used, due to the constancy of the signals.) One form of promoting constancy of signal strength is to have the incoming radio signals kev audio oscillators. This keying is so arranged that a rectifier stage works down to cut-off in keying the audio oscillator.

One of the greatest developments is in diversity reception for short waves. In this, three antennas with their respective receivers control a common audio-tone carrier. If one signal fades, the chances are that one of the others will still be giving sufficient energy to key the full tone to the line. Directional set-up of the antennas themselves improves likewise the geographical selectivity of the system. The prevaution to be made is that the time constants of the rectifiers accomplishing the keying of the audio oscillator by the radio signals shall be fast enough to follow the modulation.
29. Recording Methods. The photographic method exposes elementary areas of photographic paper to light in varying amounts corresponding to the modulated signals. It has the great advantage of the wonderful terchnique available coupled to the fact that no mechanieal movements are neressary. Extremely light movements of mirrors or light valves may aceomplish the exposure of the sensitive paper to light. The disadvantage is the requirement of dark room or hox operation with no knowledge of the actual performanee until the exposure and development of the complete pieture are aceomplished.

The hasic principle of many photographie systems is to turn a light on and off. The usual filment light is stow in response but this response may be speeded up by cooling the filament, with at gas in the buth, such as hydrogen, and by plaeing the filament near the wall of the tube. Quieker


Fig. 11.-Photo recording by polarized light.
filament lighting may be acomplished by making it as fine as possible, or by using an auxiliary eurrent which will keep the filament at incipient operation just below the heat value which would record on the paper, (this anxiliary current is better removed after the filament is lighted to speed up the cooling), or hy the use of Reading condmensers in series with the supply to the lamp such that the initial voltage will he higher than the working voltage. Much higher light operation is obtained by the ube of a ribhon galvanometer.
30. Light Valves. A speedy method of light control is accomplished by electrie hi-refringence in the kerr cell, which alters polarized light so that it passes through a nicol prism system with current applied to


Fic: 12,--Photo recording with electro galvanometer.
the cell. The lierr cell requires about 900 volts for good operation with a separation of the order of 1 mm betwern the plates in the nitrotoluol. Magnetie rotation of polarized light has also been tried, but the rather strong magnetic fields necessary, together with the slow reaction of such magnetie systems, has militated against their use. Mirror galvanometers have always been used, of course.
31. Glow Lamps. One of the simplest lights for recording is the gasdischarge tube in which ionization of a gas, such as noon, is quickly accomplished. When this discharge is limited to a crater, a very highly
actinic beam is developed, efficient in power consumption and speed. Various gases have been used, perhaps the more successful being a mixture of helium with just a trace of argon. A pressure of about 15 mm with 0.1 per cent of argon gives an idea of the general values for such a tube. General voltage range for such a lamp is of the order of 200 volts.
32. Corona-discharge Exposure. An interesting method of recording on photographic paper is furnished by the corona discharge from a coil set-up of the Tesla variety in which a great step-up ratio is used. The discharge from a ncedle point to the sensitive paper gives interesting results when the discharge does not spread too much. It is particularly useful on half tones. As the diseharge is virtually entirely in the ultraviolet, a paper especially sensitive to that region may be used. Yellow celluloid will make it possible to screen the operation and work in only a slightly darkened room.
33. Starch-iodine Paper. The oldest form of visible recording consists in utilizing the starch-iodine reaction, known for three-quarters of a century. Paper is moistened with a dilute solution of starch and potassium iodide. The cathode is the recording point, and iodine is liberated when very minute values of current pass from the cathode through the paper to the anode cylinder. Ferrocyanide solutions may likewise be used which have the advantage of greater sensitivity and greater permanence, but they always have the drawback of the poisonous characteristic of the solutions.
34. Mechanical and Liquid Recorders. Mechanical recorders have been in general use throughout the half century of picture development. The aim has always been to make them as light as possible so that they will be sensitive and respond accurately to the necessarily high frequencies.

A very free-flowing and instantly drying fluid is made of heated parafin. It flows very readily when heated along metal, so that a very small stylns made about the size and shape of the bill of a bird may be mounted upon a very sensitive magnetie system. A string wick will carry the heated paraffin to the pen, which is likewise kept warm by being in the proximity of a small electrie resistor. The paraffin is colored by an oil-soluble dye; the reds are particularly offective.

Carbori paper has beon another great recording favorite, A stylus is used to record through the carbon paper into the white paper beneath. Heating the stylus makes it work even faster. One of the most ingenious suggestions in this direction was the thought of making an envelope of two pieces of paper with the carbon tissue inside and sealed before recording. The record was then made on the receiving instrument and the envelope delivered unopened to the addressee; in which case the latter is the first to see the traced message when he opens the envelope and removes the carbon paper.
35. Heat Methods. Heat has been used in many ways for recording. Air may be heated as it passes through an electrically heated tube leading to a fine jet. This heated jet of air is prevented from hitting the heatsensitive paper by means of a very small eleetrically deflected vane. Or a jet of cold air may be used to deflect the hot air away from the paper, and the vane may aet on the cold air. The vane is operated by the incoming sigmals.

Many forms of heat-sensitive paper have been made. Ordinarily, seorehing of the paper requires too high temperatures. An endothermie reaction is generally used, in which two chenicals, non-reactive at normal temperatures, are broken down under the heat and then react with each other to produce a colored compound. lor example, nickel sulphide is produced by the endothermic reaction of sodium hypu-sulphite and nickel sulphate. A thin coating of red mercuric iodide becomes white on the application of heat. One arrangement uses the heat to melt away a thin coating of paraffin laid on paper from a colloidal solution. Very little heat is required for this purpose. Then the paper so recorded may be inked with any color by rolling it up with a roller holding a water ink. By using a paint brush, such a wax record may be colored to correspond to the original.

Straight vapors may likewise be keyed by the vanc. One such vapor is an alcoholic solution of an oil-soluble aniline dye, such as purple. This vapor will record very rapidly at a quarter of an inch distance from the nozzle, so that close operation is not essential. But at greater distance, the recording power falls off rapidly. This is a prime necessity, for otherwise the entire paper might be covered by the vapor. This is the general trouble with any of the gas reactions of, say, ammonia and a mercury salt in the paper. The entire paper at once becomes fogged.
36. Synchronizing Methods. Two general methods of synchronizing are extant: step by step and independent time control. The first consists


Synchronizing Channel
Fig. 1:\%.-Superposition of motor control and picture signals on communieation circuits.
in advancing the seaming at the reeoiver in step with the scamaing at, the transmitter by means of sigmals sent from the transmitter to the receiver. The signals may either be special signals on separate ehannels from the picture signals, or at the end of each line of scanning, or by the actual pieture signals themselves. For the separate channel, it is usual to transmit a low frequeney (40 eycles) either direetly or by modulating a higher frequency, say 400 eveles, which in turn is transmitted over the channel. This frequency is obtained from some part of the transmitting apparatus, or it may he the frequeney which likewise eontrols the transmitters.

Synchronous motors are generally used for the actual driving of the equipment. The motors are themselves synchronous or they are made into synchronous motors by hatwing applied to them additional control energy which is synchronous to their rotation. For example, a directerurent motor may be turned into a synchromons motor, by putting an extra rommutator on its shaft which has two segments and two slip, rimgs on it. This commutator then makes alternate connertions through the ensuing half revolutions of the shaft between the brush which hears against the segments and alternately with each of the slip-ring brushes which correspond to the two segments. By connerting the slip-ring brushes, to the two opposite contarts of a vibrat-
ing tuning fork, current may then be led from the fork prong through the contacts through the segments to the segment brush. This current may then be added to the field of the motor. If the motor is rotating synchronously with the fork, a large value of current will be carried through this hook-up, as the fork will change from one fork contact to the other, at the same time that the commutator segments change. This current will tend to slow down the motor. If the motor is exactly out of phase with the fork, so that its contacts change exactly opposite to the changes in the brushes, then no current will be added to the field of the motor. This will tend to speed up the motor again. The net result is that the motor will come to a position somewhere between these two values, depending upon its load. It is seen that the motor will not operate exartly in phase with the fork, but it will operate in synchronism, holding a position alwaysat constantphase difference with the fork. Such phase difference means that the pircture will be a little to the right or left of the exact correct position, butit will be perfectlyst raight upand down, if the motors remain synchronous. Such phase difference may be compensated by "framing" the picture. With such a


Fig. 14. -Fork control of induction motor speed, a-e supply. device as just described, this is done by providing the brush which makes contact with the segments with a rotatable arm, which may be turned by hand until the pieture is in exactly the proper position.
37. Induction Motor-Tuning Fork System. The same synchroniz-


Fin. 15.-Fork montrol of shunt motor, der supply:
38. Motor-generator Control. Another mothod of eontrol consists in directly connecting a motor and a generator mechanically. Thegenerator has the same frequency as the fork which is to control it. In this case it is usual to use higher frequencies for control, say 500 eycles. The energy
from the generator may be applied to the plates of two vacuum tubes, the grids of which are operated by the energy from an electric pick-up on the fork. If the generator is supplying voltage to the plates of the tubes, synehronous with the grid excitation from the fork, it will have to do more work; if it is exartly out of step it will have to do no work. The system adjusts to a middle position,


Fig. 16.-A-c thermionic brake on motor-generator drive.
39. Use of Thyratron Tubes. The advent of the Thyratron tube has made it possible to oltain alternating current of considerable size controlled by a small tuning fork in very compact form, sufficient to operate small synchronous motors. This reduces materially the special cost of equipment.
40. Accuracy of Synchronism. For permanent installations, the better practice seems to be to set up tuning forks of aecuracies better than 1 part in 100,000 and adjust them with respect to each other from time to time. (The artual results on the pictures themselves furnish an excellent check.) It is then unnecessary to send special signals for synchronizing during the pieture operation. It saves ether space aud renders the entire operation much simpler.

For temporary installations or for mobile installations sueh as on airplanes, it is not generally possible to have the same eare in set-up which would make such high arcuracies possible. Under these conditions, it is generally wiser to loek the rereiver to the transmitter by synchronizing signals. For example, there may be a characteristic tone of modulation set up by a small tone generator on the shaft of the motor driving the transmitter. This tone may be used for the pisture carrier too, and when received it may be separated out and used to control the speed of the receiving motor. For this latter purpose it is usually better (unless practically perfect signals are a vailable) to interpose some form of inertia between the syeed signals and the motor. A tuning fork driven by the signals forms an excellent flywheel for this purpose, and then the driven fork is used to control the speed of the receiving notor. By this means the signals may cease for several sceonds without the reeeiving motor losing rontrol.

If synchronous dots are used for the transmission, they may be used for a step-by-step speed control, but, generally speaking, such methods have not continued in practice, first, owing to the fact that there is sueh a wide divergenee in the size of the dots making it difficult for any relay system to hold to them and, second, owing to the fact that these dots are by no means always perfeet.
41. Historical. The first reference to electrical picture transmission is but a short time after the original telegraphic developments. Alexander Bain in seotland was working previous to 1841, as his first English patent was taken out in that year. He laid down the basic principle of start-stop synchronizing, scaming, and electrochemical recording.

Pendulums were his scanning arms, and a platen dropped at each terminus to present the next line for seaming at the end of each sweep of the arms. Shellac ink on tin foil constituted the original variable resistance. He also suggested raised-type letters for the transmission. Bakewell, in 1846, proposed now usual evlinders running under scaming points. The names of the workers since are legion. Cutstanding has heen the work of Amstutz, in the lonited States, who sperialized in the use of the engraved line plate; Korn, in Gemany, with the selenium eell; Belin, in France, with his high development of the relief method in the "telestereograph." T. Thorne Baker, in England, has been a leading exponent of devoloping the art for the amateur, using generally the Bakewell form of machine, with the line plate for photographs, and the development of esperially light parts to simplify the general operation. (aptain (). Fulton has added to this same type of equipment the use of a very neat start-stop release magnet equipment. C. Frameis Jenkins applied his motion-pirture development of the lens disk to pieture transmission as a novel means of making the light spot traverse a flat surface, at both the transmitter and receiver.

42, Bell System. Outstanding perfection has been realized by H. E. Ives and his assistants in the Bell telephone system with the perfection of the transmission of pictures over telephone channels. Transparent film is used wrapped into a eytinder of itself, the photocell picks up the light transmitted from the outside of the cylinder to the center as the photorell moves slowly down the axis. The reeeption is in the form of an Einthoven galvanometer in which the moving element is a very thin, flat strip of silver. The sideways motion of this strip, uneovers the light which passes through to a fine spot on the surface of the recording-film eylinder. First this strip was moved at right angles to the scanning motion, which made a variable-width picture in much the form of a single-line engraving. But this method gave pictures which, when supplied to the newspaper engravers for the produetion of an engraved plate, gave rise to an objeetionable "Moret" between the line structure of the telephoto and the engraving sereen. By timing the galvanometer so that the motion of the ribbon is in the same direction as the scanning, and by purposely fusing the edges of the recorded lines by the use of leeland spar to blend the edges of the lines, a much smoother pieture of exeellent fuality is obtained.
43. Bart-Lane System. Corle methods of transmission have been developed by many in which an artist lays out the pieture by squares aecording to a given plan, but it requires an artist and imagination at the recciving end to put life into these blocks. A far better code method is automatie, in which the pieture elements set, up their own code values. Ontstanding in this development have been H . G. Bartholomew and M. L. D. MacFarlane, in England, with the "Bart-Lane" system. Their punched tapes have sent many pietures over the eables between Iondon :nd New York.
44. Radio Systems. In radio transmission of pietures, the Telefunken Company has been leading in Germany, with Dr. Fritz Schröter and P'rofessor A. Karolus giving emphasis to the Kerr-eell development. In England G. W. Wright has led the activities of the Mareoni Company. With the R. C. A., in the United states, the author has been aided in the chemical developments by F. G. Morehouse, in the gas-tube field by
R. M. Williams, and had the advantage of radio-transmission and reeeption developments led by H. H. Beverage.
45. Picture-transmission Networks. There is a wide network of pieture-transmission systems throughout Europe, England, the United States and Japan as well, all over wire lines. Photo-radio eireuits have been operated from London to New York, commereially, sinee May 1, 1926, also between San Franciseo and Honolulu; and by the Telefunken Company between Buenos Aires and Berlin.

## SECTION 21

## AIRCRAFT RADIO

## By Harry Diamond, B.S., M.S. ${ }^{1}$

1. The success of any transportation system depends in a large mensure upon the rigorons maintenanee of safe scheduled operation. Probably nothing has contributed more to the safety and reliahility of transportation systems than the associated communication systems. Radiotelegraph, radiotelephone, and the radio direction finder have been important elements to such safety in both sea and air transportation.

Radio serves as a communication means between airplanes and between airplane and ground, it furnishes the pilot with weather information, it tells him when he is on or off his course, helps him to land under conditions of poor visibility, and may prove to be of value in preventing collision with other planes or with fixed objects.

Either telegraphy or telephony may be used to communicate from the ground to the airphane or vice versa. One-way communication, such as transmission of weather conditions from the ground to the airplane requires the simplest type of equipment, two-way communication between airplanes or between airplane and ground requires heavier and more expensive equipment. The choice of apparatus is a compromise involving weight, expense, and convenience of operation.

Channels available are 235 to 500 ke for the government weatherbroadeast stations and eertain frequencies in the 1,600 to $6,500-\mathrm{kc}$ region are for two-waly communieation.
2. Government Weather-broadcast Service. By October, 1932, there were 67 radio stations broadcasting weather information to pilots in flight and to airports along the route. A teletype system connects the radio stations, weather stations, and operations offices, providing a typewritten record on all machines. Transmission is at the rate of 40 words per minute. There were 60 weather broadcast stations and 13,600 miles of teletype in operation on the above date.

Before departing the pilot is advised as to weather conditions along his route and at his destination. After departure he is kept informed by radiotelephorte broadeasts regarding landing and weather conditions, and if landing at the principal terminal points appears hazardous, he is told of alternate landing fields where a safe landing may be made. Pertincht information, such as eciling heights, harometric pressure, temperature, wind diredion and velocity is given the pilot en route.

In addition to the broadeast of weather information the radiotelephone transmitters provide facilities for the transmission of emergeney messages essential to the safety of aircraft.

[^51]3. Ground-station Equipment. The ground stations employ a transmitter of the master-escollator, intermediate-amplifier, poweramplifier, type supplying 2 kw of radio-frequency power to a single-wire antenna 125 ft . high and 375 ft . long on freguencies from 100 to 550 kc .


Fig. 1.-Useful service area of weather broadeast stations.
Either continuous wave (ew), interrupted continuous wave (iew), or telephone operation is provided. While radiotelephony only is employed for broadeasting to the pilot, radiotelegraphy may be used in emergencies, in ease of failure of the teletype system and other means of communica-


Fic. 2.- Fffeet of nature of terrain on field strength.
tion, and for interehanging the weather information from similar radio stations.

The transmitting eirenit for the 2-kw weather-hroadeast transmitter is conventional. Harmonic radiation is reduced so that the field intensity
on any harmonic is not greater than 0.1 per cent of the fundamental field intensity.

An idea of the useful service area of the weather-broadeast stations may be had from a study of the graphs shown in Fig. 1. The graph of Hadley Field is more typical of average conditions in the l'nited states, the values given in the other graph being umsually high. The measurements were taken on two installations emploving identical transmitting sets and not greatly different transmitting antennas; the great difference in field intensities produced is, in all probability, due to the difference in the nature of the terrain along the transmission paths. Exporience has shown that a field intensity of about 100 NV por meter is reguired to override the static level under the worst conditions occurring in winter, while a field intensity of about $500 \mu \mathrm{v}$ per meter is neeessary in the summer. This indieates a useful distance range of about 130 miles in the winter and 60 to 75 miles in the summer.

The effeet of the nature of the terrain upon the field intensity is shown in Fig. 2. The presence of a mountain range considerably inereases the attenuation.
4. Two-way Communication. The above system provides for the broadeasting of weather information or emergency messages, but does not afford eomplote facilities for contimous contare between the aireraft and ground. This need must be met by the establishment of h-f twoway communication. Transmitting stations on the frequencies assigned to this service are therefore being construeted at the prineipal airports and the airplanes are being equipped with the h-f receivers and transmitters in addition to the medimm-frequency sets required in connection with government-operated radio aids.

Two distinct means for two-way communication are possible. The first requires the installation on the airplane of a low power ( 10 watt) radiotelephone transmitter, operating on $3,105 \mathrm{kr}$. The mediumfrequency set, already on the airplane for receiving weather broadeasts, is sufficient for reccption. Short-range two-way communieation may then be ohtained. The second requires a h-f transmitter of at least 50 -watts power output when using telephony or 20 watts when using code and a h-f receiver in addition to the medium-frequency receiver. With the aeronatical chain stations loeated approximately 200 miles apart, constant contart with the gronnd is then feasible.

In the case of the itinerant flyer, the transmitter carried on the airplane is of about 10 watts power and transmits on the mational calling and distress frequeney, $3,105 \mathrm{kc}$. This transmitter together with the medium-frequency receiver is sufficiont for short-range two-way communication. The pilot can receive on 278 ke from airport transmitters and from intermediate points where the airway keepers are supplied with 1 j-watt transmitters on this frequeney. Since a watch on $3,105 \mathrm{ke}$ is mantained at all radio stations, the flyer carrying a 3,105 ke transmitter of 10 watts is insured that distress or emergency messages will be heard practically at all times along his route.

The pilot of an airplane equipped with a medium-frequency receiving set, a h-f receiving set, and a h-f 50 -watt radiotelephone capable of operation on the national calling wave and the day or night working wave can

1. Receive the weather-broadcast service and the radio range-beacon service.

2: Communicate on the assigned day or night frequency with aeronautical chain stations.
3. In the event of failure of 2 , the pilot may transmit on $3,105 \mathrm{ke}$, being received by either government or aeronautionl ground station. The message may then be relayed over the teletype system and a reply sent on the weatherbroadeast transmitter.
4. Commusicate at short range with airports and airways keepers on 3,105 ke requesting position, reporting serviere, or transmitting emergency messages, and reccive acknowledgment on 278 kc .
5. Radio-wave Phenomena in 1,600 - to $6,500-\mathrm{Kc}$ Band. Figure 3 shows the average strength of daytime signals recoived in atn airplane


Fig. 3.-Average strength of daytime signals reccived in an airplane from 500 -watt station on 1,510 ke. (Airname at altitudes designated on graphs.)


Fic. 4.-Reception from airplane using 50 -watt transmitter on $1,625 \mathrm{kc}$. (Airplane at altitudes designated on graphs.)
as a function of the distance from a 500 -watt radiotelephone ground station on $1,510 \mathrm{kc}$. Figure 4 shows


Fig. 5.-Vffeet of frequency on attennation of 500 -watt cround station. average reception from an airplane using a $50-w a t t$ radiotelephone transmitter of $1,625 \mathrm{kc}$. Figure $\overline{5}$ shows the effect of frequency upon the attenuation characteristic for a $5(0)$-watt ground station. Similar graphs for transmission during night, showing ficld strength as a function of distance are given in Fig. 6. (communication on $1,608,3,452$, and $4,108 \mathrm{ke}$ is gencrally satisfactory, while that on 5,690 keis not satisfactory. The poor results obtained on $5,690 \mathrm{ke}$ are mainly due to excessive fading and accompanying distortion effects.

Summarizing, satisfactory two-way radiotelephone communication hetween airplane and ground may be had in the 1,600 - to $6,500-\mathrm{kc}$ band using 500 watts of power on the ground and 50 watts on the airplane.

In general, the lower frequencies appear to give more satisfactory and reliable operation. However, the higher frequencies offer the advantage


Fig. 6.-Night transmission phenomena.
of more efficient use on the airplane of fixed antennas of relatively small dimensions, thereby avoiding the use of the trailing-wire antenna which,


Fig. 7.-Terminal equipment of typical two-way radiophone system.
while being more satisfactory from an electrical viewpoint, introduces many mechanieal disadvantages.


Fig. 8.-Circuit of receiver covering range 250 to 500 kc .

## 6. Ground Equipment for Two-way High-frequency Communication.

 The equipment at the fixed terminal of a typical two-way radiotelephone system is shown in Fig. 7. The same carrier frequeney may be used both for transmission and for reception. The high-frepueney receiving set may be identical with the high-frequeney set for arplane use. The transmitter consists of a crystal-rontrolled oscillator, a frequeneydoubler, a modulating amplifier, a power amplifier, associated specehinput and speech power-amplifying equipment, and the neeessary power and control circuits. The set ( 400 watts) is capable of complete modula-


Fig, 9.-Performance of receiver of Fig. 8.
tion. It may be adjusted to any frequency in the range of from 1,500 to $6,000 \mathrm{kc}$. By accurate temperature control the frequency of the oscillator in both the ground and airplane sets is held constant to within 0.025 per cent under all temperatures encountered. A total of about 3 kw of 60 -eycle, 220 -volt, three-phase power is required for the operation of the transmitting equipment.

## AIRPLANE EQUIPMENT

7. Aircraft radio equipment must ineet unusually severe requirements. Reliability and simplicity of operation are essential. The equipment
must be constructed to withstand continued vibration and landing shocks without breakage or change in performance, and must operate under all conditions of weather encountered in flight. Space and weight must be kept down to a minimum. However, reductions in space and weight must not be obtained at the expense of reliability or accessibility for inspection and maintenance.
8. Medium-frequency Aircraft Receiving Set. A typical receiver covering the range 250 to 500 kc is shown in Fig. 8, and Fig. 9 gives its performance characteristics. The three tuning condensers are mounted on the same shaft to provide for unicontinuous tuning over the entire range. Heater-type tubes reduce microphonic noises.

Remote volume control is accomplished hy locating the voltage divider, which supplies the screen-grid potential of the radio-frequency amplifier, in a special control unit which may be installed within reach of the pilot. A switeh for turning the set on or off and an output jack for the head telephones are also incorporated in this control unit. Remote tuning is accomplished by a flexible shaft which turns in a casing. The shaft connects the tuning-control unit with the driving head on the receiving set, and operates at a speed 264 times that of the condenser shaft. This high ratio reduces the effect of the lost motion in the flexible shaft to a negligible amount. 'The tuning-eontrol unit is mounted within reach of the pilot and is equipped with a calibrated luminous dial. The receiving set may be located as much as 40 ft . from the tuning-control unit and satisfactory tuning without appreciable backlash seeured.
9. Power Requirements. The set requires for its operation 1.6 amp. d.c. at a voltage of approximately 12 and 25 ma d.c. at a voltage of 200 . In airplanes having standard 12 -volt storage-battery installations with charging generators, the low-voltage supply is obtained directly from the battery and a small dynamotor operating from the battery furnishes the 200 -volt supply. In others, a small constant-speed wind-driven generator may be employed to supply both voltages. The propeller of this generator is of the self-regulating type maintaining constant speed within very close limits for all normal flying speeds of the airplane above $70 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. The only filtering required is to eliminat radio-frequency interference due to sparking at the commutators.

The antenna tuning coil and the interstage tuned r-f transformers are of the plug-in type. Special pins and spring clips are provided tc insure that none of the coils or tubes works out of its socket due tc vibration during flight. Extremely good shielding is necessary in a receiving set of this sensitivity, partieularly since the dimensions of the set are reduced because of the limited space available for aircraftradio equipment.

Tube noises are reduced to a negligible amount, chiefly becausc of the large voltage step-up secured in the tuned antenna circuit. The antenna circuit is arranged so that unituning control is possible with antennas of considerably differing constants. A high $L / C$ ratio is used in the three tuned circuits in order that the necessary degree of seleetivity may be secured. The two-stage audio amplifier provides ample power output for all possible uses of this set, an undistortec power output of 150 mw being available. The fidelity characteristic is extremely good at the low frequencies in order that the set may be used for the reception of signals from the visual-type radio range beacon

Cut-off for frequencies above 2,500 to 3,000 cycles is provided to reduce hissing and singing noises encountered in reception on aireraft.
10. High-frequency Aircraft Receiving Set. The cireuit of a commercial high-frequency receiving sot is given in Fig. 10. I very high degree of selertivity and sonsitivity is obtaned at any frequeney in the


Fig. 10.-High-frequency ( 235 to $8,000 \mathrm{kc}$ ) receiver circuit.
range from 235 to $8,000 \mathrm{kc}$. Five sets of plug-in coils are used, earh set having a range of frequencies slightly greater than'2 to 1. Inusual attention is paid to decoupling of different cirruits by by-pass condensers and series resistors. The need for using the same tuning condensers


Fig. 11.-Airplane transmitter operating in 1.500 to $6,000 \mathrm{ke}$ range and putting out 50 watts.
throughout the frequency range necessitates precise design to seeure unituning control. A low $L / C$ ratio is adopted, the condensers being $150 \mu \mu$ fand shunted by $25 \mu \mu$ air-dielectric trimmers to offset small
differences in stray coupling, ete. The antenna input uses a trimmer of $50 \mu \mu \mathrm{f}$ in series.

An undistorted power output of 100 mw is available when rated plate voltage is applied. The filament circuit requires $1.7^{5}$ amp, at 12 volts. The plate requirements are 7 to 12 ma at $1: 30$ to 145 volts.
11. High-frequency 50 -watt Radiophone Transmitter. The carrier output for the airplane tramsmitter shown in Fig. 11 is 50 watts, and complete modulation is possible. It may be tuned to any frequency hetween 1,500 to $6,000 \mathrm{ke}$. Aceurate temperature control of the quartz erystal enables the frequency to be stable within 0.025 per cent.

The erystal controls a 5 -watt oscillator at one-half the recpuired final frequener. A second twatt tube atts as frepucney doubler. To span the entire frequency band two different out put transformers are required. The final amplifier is modulated by the introduction into its plate-supply cireuit of the speech-frequency output of three $\overline{5}()$-watt tubes connected in parallel. D-e saturation of the modulation transformer is avoided by so arranging the windings that the magnetization due to the plate current of the modulating amplifiers tends to balance that produced by the plate eurrent of the final $r$-f amplifier.

All power supply to the transmitter is fed through a removable plug (provided with a locking ring), and the speech input and the control circuits for starting and stopping the oscillator are comnerted to the transmitter through a three-ronductor telephone plug. The transmitter measures about 9 by 12 by 15 in . and weighs, complete with erystal holder and racuum tubes, 32 lb . The power-supply reguirements for this transmitter are 15 amp . at 12 volts for the filament heating, and 0.4 amp. at 1.000 volts for the plate supply. The airplane storage battery usually serves as the low-voltage source while the high-voltage may be supplied from a dynamotor driven from the storage battery, an engine-lriven generator or some other arrangement. The transmitter is designed for operation on any single frequency within 1,500 to $6,000 \mathrm{kc}$, no provision being made for changing frepuency during flight.
12. Typical Arrangement of Airplane Equipment for Complete Radiotelephone Facilities. A schematie diagram showing the electrical arrangement of the complete equipment reguired on the airphane for fully utilizing the government-operated radio aids and in addition maintaining two-way radiotelephone communication with the highfrequency ground stations is shown in Fig. 12. The weights and dimensions of the component parts of the airplane radio equipment are given in Table I. Note that these figures do not include the primary source of power on the airplane, usually comprising a 6 b-amp., 12 -volt storage battery and a d-e generator driven from the main engine for charging the battery.
13. High-frequency 20 -watt Radiotelegraph Transmitting Set. The useful distance range of communication when a 20 -watt airplane radiotelegraph transmitting set is employed is equivalent to that obtained with a 50 -watt radiotelophone set. The reduction in weight is threefold: lower transmitting-set power rating, no modulating tubes required, and lower power-supply requirements for equivalent transmitter output rating. This reduction in weight is in small part offset by the fact that short-range radiotelephone communication is usually provided as part of the radiotelegraph transmitting equipment.

A 20-watt radiotelegraph transmitting set having also provision for shortrange radiotelephony is commereially available. The weight of this trang-


Fig. 12,-Complete receiver and transmitter for airplane.

## Table I.-Weights for Comilete Rabhotehephone Installation on Alreraft

| Equipment | Over-all approximate dimensions, inches | Approximate weight, pounds |
| :---: | :---: | :---: |
| Medium-frequency receiving set | $11 \times 6 \times 11$ | 18 |
| High-frequency receiving set. | $11 \times 6 \times 11$ | 18 |
| Receiving dynamotor, control units, head telephones, etc. |  | 17 |
| High-frequency $50-$ watt transmitting set . | $9 \times 12 \times 15$ | 33 |
| Transmitting dynamotor, starting relay, antenna-taning unit |  | 43 |
| Wiring cables, antenna wire, terminal blocks, |  | 21 |
| Total |  | 150 |

mitter is 11 lb ., while the dynamotor required for supplying plate power, ete. weighs 13 lb . The total weight of 24 lb . is to be compared with a weight of 76 lb. for the 50 -watt radiotelephone transmitter, together with its dynamotor and dynamotor starting relay. Moreover, the load on the airplane storage battery and charging generator system while the transmitter is in operation is considerably lower, of the order of 20 as compared with 80 amp .
14. High-frequency 10 -watt Radiotelephone Transmitting Set for Itinerant Pilot. The circuit diagram for a 10 -watt radiotelephone transmitting set for use by the itinerant pilot is given in Fig. 13. Since operation on a single frequenery, $3,105 \mathrm{ke}$, is required, a ver simple transmitting circuit may be employed. Provision for radiotelephony rather than radiotelegraphy is here requisite, since its operation involves untrained personnel at both the transmitting and receiving ends.


Fig. 13.-Ten-watt radiotelephone transmitter for itinerant pilot.

## AIRCRAFT POWER EQUIPMENT

15. Five determining factors enter into the choice of the power system to be adopted: (1) reliability, (2) weight, (3) availability when main power plant of airplane is crippled, (4) olectrical performance, and (5) maintenance required during service. Several distinct types of power-supply systems are available. The receiving-set power requirements are from 1 to 3.4 :mmp. d.c. at 12 volts and 10 to 50 ma d.e. at 135 to 200 volts. For 10 -watt radiotelephone sets, approximately 4 amp. d.c. is required from the 12 -volt hattery and 100 ma d.e. from a 400 -volt source. For 50 -watt radiotelephone sets, 15 amp . d.c. at 12 volts and $4(6 \mathrm{ma}$ d.c. at 1,000 volts is required. The general problem of power supply for receiving eguipment has been treated above in connection with descriptions of medium-frequeney and h-f sets.
16. Transmitting-set Power Supply. Dy/uamotor System. With this system the storage battery is used as the source of low-voltage supply and a dynamotor driven from the storage battery as the source of highvoltage supply. A low-voltage dec generator driven from the nain engine of the airplane and provided with a voltage regulator is used for kecping the battory charged during flight. A large and heavy battery ( 65 -amp. hr. capacity) is reguired, since the total drain on the battery is about 80 amp. Approximately 30 min. encrgency operation may be serured under average conditions of battery charge. The weights for a 700 -watt system of this type as well as of other types to be described below are given in Table 1 I .

Wind-driven Double-voltage Generator. The self-regulating propeller does away with the necessity of a voltage regulator. A variahle-piteh propeller is used with a built-in centrifugal mechanism which adjusts the piteh to maintain very nearly constant speed with changes in slipstream velocity, load, etc. The voltage regulation is excellent. The speed of the propeller is of the order of $4,000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. The generator has a low-voltage d-e winding for charging the storage battery and a highvoltage winding for supplying plate voltage to the transmitter. Since power is derived only when a slip stream is provided by the airplane propelker, emergency operation after a forced landing is not usually feasible.

Table II.-Weigits of Power-supply Equipment

|  | Dynamotor system, pounds - | Winddriven doublevoltage generator | Combination wind-driven generator and dynamotor | Main enginedriven double-voltage generator | Auxiliary engine-driven double-voltage generator |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 65 amp.-hr. battery. | 70 |  | 70 |  |  |
| $33 \mathrm{amp} .-\mathrm{hr}$. battery.. |  | 36 |  | 36 | 36 |
| Cables............... | 10 | 6 | 15 | 6 | 5 |
| 50-amp. charging generator and control box |  |  |  |  |  |
| Dynamotor...... | 26.5 |  |  |  |  |
| Double-voltage generator. |  | 28 |  | 50 |  |
| Generator dynamotor |  |  | 36 |  |  |
| Gasoline engine, double-voltage generator unit......... |  |  |  |  | 100 |
| lielay or control box.. | 2 | 2 | 6. | 3 |  |
| Propeller <br> Average fuel. | . | 5.5 | 6.2.0 |  | 7.5 |
| Actual weight | 155.5 | 77.5 | 1333.25 | 95 | 148.5 |
| Equivalent weight | 44.0 | 58.0 | 70.25 | 33.5 | 0.0 |
| Effective weight | 195.5 | 135.5 | 203.8 | 128.5 | 148.5 |

Combination Wind-driven Generator and Dynamotor. Several arrangements are feasible for securing emergency operation from a wind-driven generator. The most obvious arrangement is one in which the winddriven generator is used as the battery-charging generator, a dynamotor driven from the storage battery serving as the source of high-voltage plate supply.

Main Engine-driven Double-voltage Generator. The use of a doublevoltage generator directly coupled to the main engine shaft is the most efficient mothod for obtaining electrical power on aireraft. However, as in the case of the double-voltage wind-lriven unit, no provision is made for emergeney operation in case of failure of the main engime. In the usual application, the gencrator has a low-voltage and a highvoltage d-e winding. Berause of the varying speed of the engine, a vibrating type of voltage regulator is employed. The generator itself is of conventional design, and since it operates at a fairls low speed, usually 2,200 r.p.m., is heavy for its output as compared with the wind-
driven generator. The voltage regulation on the battery-charging winding is fixed by the regulator and is practically perfect when the regulator is operating correctly. The high-tension voltage regulation is usually worse than that of a wind-driven generator, but considerably better than that of a dynamotor. The equipment is probably less reliable than either the d-e wind-driven generator or d-e dynamotor.

Auxiliary Engine-driven Double-voltage Generator. The performance of an anxiliary-engine generator set is very good. A four-cycle engine is used so that the angine speed can be governed elosely. Either a d-e or a-e generator can be used and no voltage regulator is required. The set can be made light-weight by operating at speeds as high as 4,000 r.p.m.

The reliability of this system depends upon that of the engine, which can be made of high order. The maintenance required is obviously very little. The engine will consume about $11 / 2 \mathrm{lb}$. of gasoline per hour for an clectrical output of 700 watts. For a $10-\mathrm{hr}$. flight, the average weight of fuel earried is $7 \frac{1}{2} \mathrm{bb}$.

## AIRPLANE RECEIVING AND TRANSMITTING ANTENNAS

17. An aircraft antenna must have a good effective height, must be of sound aerodynamic design, and must be convenient to use under varying air-transport operation conditions. The trailing wire fulfils the first requirement, but is little used now because of its failure to fulfil the second and third requirements. These disadvantages have led to the use of fixed intemas. A pole extending 4 to 6 ft . vertically above the fuselage has an effective height of about 1 m , sufficient for use with sensitive receivers.

Errors in course indication or bearings taken are introduced unless the receiving antema on the airplane is entirely non-directional. This restriction limits the antema configuration to either the vertical-pole antenna, or to a vertical antenna with flat-top loading, the flat-top elements of which are so arranged that their horizontal effects neutralize each other. The symmetrical longitudinal or transverse ' T -antennas with vertical lead-in are examples of the latter type.

A typical transmitting antenna consists of two single-wire " T " units suspended between the two wing tips and the rudder post. If the lead-in wire were taken from the junction of the two flat-top wires at the rudder post, a "V" antenna would result. To increase the effeetive height, a mast approximately 6 ft . high is often used to raise the flat-top wires above the fuselage.

## RADIO SHIELDING AND BONDING IN AIRCRAFT

18. Airplane-engine Ignition Shielding. Intense electrical disturbances are set up in the radio receiving circuits by the electrical ignition system of the airplane engine or engines unless ignition shielding is provided. To obtain effective shielding, it becomes neecssary to enclose the entire electrical system of the engine ignition in a high-conductivity metallie shield. This requires the provision of suitable metallie covers for the magneto distributing heads, for the booster magneto, for the ignition distributing wires running from the magnetos to the spark plugs, for the spark plugs themselves, for the ignition switch, and for the switch and booster magncto leads.

With the low-power ground stations in present use, it is necessary to utilize field intensities not appreciably greater than the prevailing static level. Hence, very careful ignition shielding is essential.

Since the location of the antenna with respect to the interfering source obviously affects the signal to interference ratio. cases are often encountered where partial shielding of the ignition svstem proves suffieient. In the usual case, exposing even a few inches of high-tension lead or failing to ground the shield at frequent intervals is enough to introduce interference.

## COURSE NAVIGATION AND POSITION DETERMINATION

19. Radio systems for guiding aircraft divide into two parts: (1) aids for aircraft flying the established airways, and (2) aids for aircraft flying over independent routes. The first is the more important in the United States. All commerrial transport airplanes use fixed airways. The government's aids to air navigation are being provided with the primary view of serving aircraft flying these airways.

An ideal system suitable for use by aircraft flying either fixed airways or independent routes, on land or on sea, is such that:

1. The system shall give the pilot information to enable him to continue along a given route between any two points in a given service area when no landmarks or sky are visible. If he leaves the course, it should tell him how far off he is and to which side, should show him the way back to the course, and should inform him when he arrives at his destination.
2. The neressary directional service shall be available at all times and under all conditions, to all airplanes eguipped to receive the service and flying within the area served.
3. The service shall he easily, positively, and quickly available to the pilot, with a minimum of effort on his part.
4. The radio equipment required on the airplane shall be simple, rugged, of light weight, and relatively inexpensive.
5. The ground equipment shall be as simple as possible. The radio frequencies, power, type of emission and location of ground transmitting stations shall be such as to serve the needs with maximum efficiency and conservation of the limited radio channels available.
6. Direction Finder on Airplane. One system employs a fixed-coil antenna the plane of which is perpendicular to the longitudinal axis of


Fig. 14.-Circuitous path followed due to cross winds.
the airplane. Zero signal is ohtained in the reeeiving-set output as long as the airplane is pointing to the ground transmitting station. This
is essentially a "homing" system and is subject to the serious limitation that a circuitous path is followed if heavy cross winds prevail. This is illustrated in Fig. 14. Course corrections may be made periodically by observation of the compass indications; the course followed is stili, however, not the most direct possible. The system also lacks means for giving the pilot the sense of deviation from the course, the signal increasing from zero whether the airplane cleviates to the left or to the right. Moreover, the use of a zero-signal indication is difficult under conditions of severe atmospheric disturbanees or interference from other serviees.

To obviate these difficulties, the Robinson direction-finding system was developed. In this system, two crossed-coil antennas are used, one coil having its plane along the longitudinal axis of the airplane and the second having the plane perpendicular to this axis. The signal due to the second or auxiliary loop antenna is alternately added to and subtracted from the signal due to the first- or main-loop antenna. When on the course, since no voltage


Fig. 15.-Crossed-coil direction-finding system.
is then induced in the anxiliary coil, the two signals are of equal intensities. This may be readily understood by reference to Fig. 15 , where $A$ and $B$ correspond to the recention characteristics of the rain and auxiliary coils, respectively. When off course to the left, assuming the phase relations indicated in Fig. 15, the sum of the two signals is greater than their difference, while when off course to the right their sum is less than their difference. By provirling suitable switching so that the "additive" position precedes the "subtractive" pusition, the pilot knows that he is of course to the left when the first signal is louder than the second, while he is off rourse to the right when the reverse bolds true. When on the course, the two signals are of equal intensity. To secure sharp off-course indications it is usual to make the auxiliary coil of about six times the effective height of the main coil.

The present trend is toward equipment giving visual indication of the position of the airplane relative to the course directed on the ground transmitting station. These are generally modifications of the Robinson direction finder such that the additive and subtractive positions are balaned against each other through an indicating instrument, for example, a zero-center pointer type.

To make full use of the possibilities of a direction finder aboard aireraft, automatic indication of the direction of the station tuned in is required.
21. Direction Finder on the Ground. One system of navigaticnal aids to aircraft is a direction-finding system, but with the direction finder located on the ground. Every airplane utilizing this system carries a radiotelephone (or radiotelegraph) transmitter and receiver. Permanent direction-finding stations are located at ground stations at strategic points. When an airplane desires to learn its positicn, it transmits a request on the airplane transmitting set, whereupon two or more of the ground direction-finding stations each determines the direction by observations upon the radio waves transmitted from the airplane. Triangulation then gives the airplane's position, which information is transmitted to the airplane.

Five minutes is normally required between the time the request for a bearing is transmitted from an airplane and the time the bearing, as computed hy two ground stations, is furnished the airplane. Obviously, the system is best suited to long-distance operation over routes not too heavily congested.

A simple loop antenna may be used in conjunction with the receiving set reguired with this systent, thereby giving the pilot additional directional or "homing" service to supplement the bearings furnished by the ground station network. Even with this additional service, however. the airplane is not kept strictly on a given course at all times and is therefore not practicable where airplanes must fly over rigid airway routes.
22. Rotating Radio-beacon System. A mothod of furnishing navigational aid to a flyer is the rotating radio beacon developed in England. This method employs a transmitter located at an airport, which has a loop antenna rotating at a constant speed of one revolution per minute. A figure-of-eight pattern is thus rotated in space at a constant rate. A special signal indicates when the figure-of-eight minimum passes through north. and also when it passes through east. A pilot listening to the heacon signal in the output of his receiving set can start a stop watch when the north signal is received and stop it when the figure-of-eight minimum reaches him. The number of seconds multiplied by six gives him his true direction in degrees from north. The stop watch may be calibrated directly in degrees, so that the position of the second hand, when the minimum signal is received, gives the bearing directly. The east signal is provided to overcome the difficulty in receiving the north signal when the airplane is north or south of the beacon, as on that bearing the signal strength is a minimum.

The transmitter circuit is shown in Fig. 16. The keying of the circuit is automatically carried out by the rotation of the loop antenna. Since the rotation of the loop antenna is used as a basis of computation of bearings, close control of the speed of the driving motor is mantained. To secure as great a useful transmitting range as possible, the loop-antenna current is of the order of 70 amp . To reduce the losses in the transmitting circuit to a
minimum an air-dielectric transmitting condenser is employed. The power input to the transmitting tube is approximately 2,000 watts.

The receiving antenna is of a non-direetional type. The receiving set may be used in the reception of weather-broadeast messages and other communieations when not employed in direetion determination. The system is capable of giving simultaneous service to any number of airplanes in any direetion. Drift may be checked by determining positions periodieally, and correction may be employed. A number of disadvantages are, however, inherent in this system. The serviee is intermittent and somewhat slow, requiring at least 30 sec. for each bearing. The system is not suitable for guiding an airplane along a given fixed ronte. Since the determination of a minimum signal must be made, this system is particularly subjeet to interference and atmospherie disturbanees. From the point of view of simplicity and reliability,


Fig. 16.-Transmitter for rotating beacon.
however, it is without doubt saperior to the two other systems outlined in the foregoing text.
23. Radio Range-beacon System. The ralio range-beacon transmitting station employs two loop antennas placed at right angles with each other. The antennas are triangular, the base being about 300 ft . long and the height ( 00 to 70 ft . The transmitting eharacteristics of the two antennas as a function of angular position with respect to the beacon station are given in Fig. 17. The intensities of the radio waves from the two antennas are equal along the lines $O A, O B, O C$, and OI) which bisect the angles between the two antennas. Elsewhere, one of the two waves is stronger than the other. An airplane may therefore follow a course along the bisectors referred to if means are provided for distinguishing the two sets of radio waves from one another. A different signal is impressed on each set of waves for this purpose. The two types of radio range beacons developed differ mainly in the means employed for distinguishing the two sets of signals.

In the aural-type beacon two coded letters are used: an $N(-$.) and an $A$ (. -). The r-f power fed to one antenna is supplied at time intervals corre-
sponding to the characteristic $N$ while that to the second antenna is furnished in arcordance with the characteristic $A$. The two characteristics are interlocked, so that when received in equal intensities (i.e., along the lines bisecting the two antennas) they merge into a long dash. Off course to one side of these lines the $N$ predominates, while off course to the other site the $A$ predominates. The interlocked signals are now sent in groups of four with a short coded signal provided between successive groups for identifying the different beacon stations of the airways network. To facilitate use by the pilot, the beacon space pattern is oriented, whenever possible, so that the A signal lies in the northeast and southwest quadrants while the $N$ signal lies in the southeast and northwest quadrants.


Fig. 17.-Transmitting chararteristies of two-loop antenna system.

In the visual-type beacon, two low-frequency notes, usually 65 and 86.7 cycles, are employed. The r-f power in one antenna is modulated to 65 cycles, while that in the other antenna is modulated to 86.7 cyclos. The modulated r-f is on the antennas continuously, instead of throwing from one to the other antenna as in the aural system. This permits the use of a continuously indicating instrument on the airplame. This instrument is connected in the output circuit of the receiving set employed and consists of two vibrating reeds mechanically tuned to the two modulation frequencies used at the beacon station. When the beacon siguals are received the two reeds vibrate and, thus, may serve as a device for indiating relative intensities of the signals received from the two loop antennas. The tips of the reeds are white against a dark background so that when vibrating they appear as vertical white lines. At night, indirect fighting of the reed tips is provided.

The radio range beacon of either aural or visual type requires only a simple radio receiver aboard the airplane for its recention. Since directional transmission is used at the ground station, a non-directional antenna is employed on the airplane. The same receiving equipment is therefore suitable for receiving the government weather broadcasts.

Several methods have been developed for shifting the range-beacon courses from their 90 deg. relationship in order that they may be aligned with the airways. These are applicable to both the aural-type and the vismal-type beacons. One consists of reducing the current in one of the two loop antennas. The effect secured is shown in rig. 18a. A second method utilizes the circular radiation from a vertical antenna extending along the beacon tower, in addition to the normal figure-of-eight radiation due to each loop antenna. The vertical antenna may be excited to radiate one or both characteristic waves of the station. The corre-
sponding effects secured are shown in Fig. $18 b$ and $c$. Combinations of the two methods described are particularly useful. Figure 18,1 shows the results of one such combination in which the currents in the two-loop antennas are reduced while at the same time circular radiation is added to the normal figure-of-eight radiations of hoth antemas. To render the heacon system still more flexible and thus make it suitable for use at eities located at the junction of a large number of airways, a beacon transmitter of the visual true has heen developed eapable of serving 12 courses simultancously. These courses are normally 30 deg. apart, but may be aligned with the airways by methods similar to those just outlined.

Research has resulted in the development of a transmitter for the simultancous transmission of telephone and visual beacon signals on the


Fig. 18.-Methods of aligning beacon courses with airways.
same earrier frequency. The visual beacon modulation is below 150 eycles, while speech frequencies are above 250 cyeles. The transnitting circuit and antenna are designed to set up circular radiation for the speech messages and figure-of-eight radiation for each of the two bearon waves. On the airplane an electrical filter cireuit is employed in the receiving set output so that frequencies above 250 cyeles are applied to the headphones and those below 250 eycles to the vibrating reed indieator.
24. Aural-type Radio Range Beacon. The master oscillator is a 50 -watt tube employing the Colpitts circuit. The output from the master oscillator is amplified thy a set of four 50 -watt tubes operating in a push-pull cross-neutralized circuit. The final power amplifier consists of two $1-\mathrm{kw}$ tubes. The tuned plate cireuit is coupled hy an untuned link circuit to the primaries of a goniometer, the goniometer secondary windings being connected each in series with one of the erossed loop antennas. Keying is accomplished in the link eircuit
by means of the keying cams. The goniometer is used for convenienee in orienting the beacon space pattern and consists of two primary and two secondary windings. The primary windings are crossed at 90 deg., as are also the secondary windings, the two sets of windings being made concentric. One set of windings is fixed and the other set rotatable about the common axis. The angle between the primary and secondary windings may therefore be varied at will. Each primary winding, acting in conjunction with the two crossed secondary windings and the two crossed loop antennas, sets up a system which is electrically equivalent to a single loop antenna. The plane of this phanton antenna is dependent upon the relative coupling of the secondary coils to the primary coil under consideration. Since there are two primary windings, two such phantom antennas exist, the angle between their planes being equal to the angle between the primary windings. The two phantom antonnas may therefore be rotated in space (thus changing the position of the equisignal zones or courses formed by their space patterns) by changing the relative position between the primary and secondary windings. Without the use of the goniometer it would be necessary mechanically to rotate the loop-antenna system to secure the same result. In practice, the rotation of the beacon space pattern is convenient in the first adjustment of the beacon, the goniometer being locked in position after this adjustment.
25. Visual-type Range Beacon. Three types of transmitters have been developed; the double-modulation or 2- and 4-course type, the triple-modulation or 12 -course type, and the simultancous radiotelephone and range-beacon type.
26. Double-modulation Type. The electrical-circuit arrangement for the double-modulation beacon is shown in Fig. 19. A 100-watt


Fig. 19.- Double-modulation beacon.
master oscillator supplies r-f power to two 100 -watt intermediate amplifiers which, in turn, supply power to two 1,000 -watt power amplifiers. One amplifier branch is modulated to 65 cycles and the other amplifier branch to 86.7 cycles. One loop antenna therefore radiates a r-f wave modulated to 65 cycles while the other emits a r-f wave modulated to 86.7 cyeles. Means are provided in the transmitter for adjusting the time-phase displacement between the carrier currents in the two antennas to either 0 or 90 deg . In the first case a 2 -course beacon and in the second case a 4 -course beacon is obtained.
27. Reed Indicator. The instrument employed for securing course indications may be either a reed-indicator or a reed-converter type course indicator. The latter type instrument is described in Art. 30. The reed indicator is very simple and rugged, being mounted on the instrument board in front of the pilot and electrically connected in the receiv-ing-set output in place of, or in parallel with, the telephone receivers. It consists of a set of coils through which passes the audio output current of the receiving set. These coils actuate a pair of short steel strips or reeds which are mechanically tuned to the beacon-modulation frequencies 65 and 86.7 cycles per second. The reed indicator is very sensitive, requiring less than 2 mw for normal deflection of each reed, and weighs approximately 2 lb .
28. Triple-modulation Type. A circuit diagram of the transmitting arrangement for the triple-modulation or 12 -course visual-type radio


Fig. 20.-Triple-modulation range beacon.
range beacon is shown in Fig. 20. The modulation frequencies used are 65, 86.7, and 108.3 eycles respectively. A special goniometer is required for converting the two physical-loop antennas into three phantom-loop antennas crossed at 120 deg .

Since the stator coils are not at right angles to each other it is essential that but one stator be excited at any given time in order that coupling between the stators be avoided. Radio-frequency switching has been provided in the grid circuits of the internediate amplifier tube for accomplishing this purpose. By means of a phase-splitting arrangement, the single-phase master oscillator is converted into a source of balanced three-phase supply.

The carriers in the three phantom antennas being 120 deg, out of phase both in time and in space, a revolving field is set up in space for the resultant carrier. Since the three sets of side bands are of different frequencies and do not conmbine, they set up three figures-of-eight crossed at 120 deg.

With the 12 -course beacon as with the 4 -course, the problem of adjusting the angles between courses arbitrarily to make them coincide with the airways must be solvel. The methods for effecting this shift
in course on the 4 -romase beacom may be amployed in the le-rourse system. In addition the stator windings may be displaced from their 120 deg. space relationship thereby modifying the spare pattern radiated.
29. Simultaneous Radiotelephone-and-visual Type Radio Range Beacon. Simultaneons transmission of telephone broadeast and visual beacon on the same carrier frequeney is possible whefly becallse the beacon-modulation freguencies are all brow 150 erelos, while intelligible speech does not reguire modulation frequencies below 200) eyeles. At the transmitter. it is neressary to filter out frepuencies below 250 (.yeles from the sperech signals and also to suppress any existing harmonies of the beacom-modulation frequencies above 250 (redes which would produce undesiable noise in the head telophones at the reereiving end. On the airplane an eleetrie filter cirenit is neerssary in the output cirenit of the receciving set so that frequencies abowe 2500 ereles are applied to the head tolephones and those below 250 eveles to the vibating reed indicator. Other sperial problems of rereiving-set design are involved.

The transmitting-rirenit design must be so arranged that the normal beaten spare patterm, consisting of two crosed figures-of-eight, is in no way affected by the transmission of spered signals.

The transmitting set employs a common master oscillator which supplics power of the same radio fremeney to the radiotelephone and radio-bearon units. The radiotelephone unit is of conventional design, feeding approximately 2 kw to an open-type antenna, 125 ft . in height and provided with four flat-top elements for cabacitive lowling. The radio-heacon unit consists of two amplifier branches feeding the concentional radio range bearon loopantenna system. Carrier suppression is effected in the radio-bracon unit so that the two loop antemas transmit the beacon side bands only. The open-type antenna is located centrally with respert to the loop-antema system, care being taken that the voltages indured in the dlat-top clements and lead-in wires by the loon antennas (aned out.
The open antema transmits the carrier and the speech side bands, while the loop antematransmits the beacon side bands. Hence the space pattern for the carrier and speech side bands is circular. while the space pattern for each set of bearon side bands is a figure-of-eight hating its axis along the plane of the corresponding loop antenna. At the receiving end, the circular carrier beats with the circular speech side bands to wive speech signals of equal intensity in all direetions, while the circular carrier lo ats with the figure-of-eight beacon side bands to give the conventional beacon polar pattern.

To secure maximum operating efficiency it is neressary to provide a a 9 -deg. time-phase displacement bet ween the carrier purrent in the open-type antenna and that which would be present in the loop antemnas if no carrier suppression took place. This displacement serves to balane the !0-deg. difference in time-phase displacement in the radiation fields from an opentype and loop antenna and thus insures that the carrier and bearon side bands arrive in proper phase at the receiving end.
To provide field intensities for the radiotelephone and radio-lyearon serviees comparable with those set up by existing radiotelephone and range-bearon stations, a ratio of peak-sperech modulation to reed-frepnency modulation of about 5 to 1 is required. The loop-antenna currents are therefore adjusted to values such that the earrier is modulated 15 per cent at each beacon frequency. The radiotelephone unit is designed to permit 75 per cent peakspeech modulation.
30. Reed-converter Type Course Indicator. This type of indieator makes possible seruring the hearon-course indications on a pointer-type instrment instead of through the eomparison of the relative amplitude
vibrations of two reeds. The motion of two vibrating reeds is utilized to induce voltages in two pick-up or generating coils. These voltages are then rectified by means of copper-oxide rectifiers, and the rectified voltages applied in opposition to the terminals of the zero-center instrument. To preclude the possibility of the failure of either the transmitting or receiving set being unnotierd by the pilot, a volume indicator is employed. This may be, in the simplest case, a voltmeter recording the receiving-set output voltage. This indicator also facilitates tuning of the receiving set, controlling the volume, and also securing a sense of approach as the distance from the airplane to the heacon station decreases. Both a 4-course type and a 12 -course type reed eonverter has been developed. With either arrangenent a suitable selector switch is provided which the pilot sets aceording to the course he is to follow, and the direction of flight with respect to the beacon, "to" or "from." The pointer then deflects in the direction of deviation from the course.
31. Deviometer. One of the auxiliary devices developed to farilitate the use of the visual-type beacon is an instrument called a deviometer. l3y its use a pilot can follow any chosen course, within limits, on either side of the equisignal line for which the bearon tramsmitter is adjusted. The deviometer is essentially a device for changing the relative sensitivity of the two reeds of the course indicator, thereby permitting the pilot to fly courses (with equal reed deflections) along a line other than the equisignal line or zone set up by the beacon. It consists of a variable resistor connected to the reed-driving coils. A movement of the pointer to the right or left reduces the shunting resistance across one or another pair of reed-driving coils and thereby reduces the current through that pair of coils and consequently the sensitivity of the reed which they actuate. The seale over which the pointer moves may be calibrated in degrees off the equisignal zone and will be correct for all heacons having similar space characteristies. Tests have indicated that the deviometer may be advantageonsly employed to ohtain new courses up to 15 deg . on either side of the equisignal zone.
32. Automatic Volume Control. An automatic volume-control device has been developed, primarily for use on receiving apparatus for the visual-type beacon, which relieves the pilot of excessive volumecontrol manipulation; in a flight he may experience field strengths in a ratio of 5,000 to 1 .

A diagram of the eirenit arrangement adopted, in one form, is given in Fig. 21. A portion of the receiving-set output voltage which operates the reed indicator is applied to the input terninals of a copper-oxide rectifier. The pulsating output voltage of this rectifier is then filtered and the resultant direct voltage (of negative polarity) applied to the control grid of one or more of the radio-frequency amplifying tubes of the receiving set. The manner of operation of the automatic volume control is, then, as follows. Any increase in the voltage across the reed-indicator terminals, due to an increasing input voltage to the receiving set, is accompanied by an increase in the voltage applied to the copper-oxide rectifier and consequently in an increasing negative direct voltage on the grids of the radio-frequeney amplifying tubes. This results in a decrease of the receiving-set sensitivity, therehy tending to maintain substantially constant output voltage across the reed-indicator terminals. The reed-vibration amplitudes may thus be kept substantially constant regardless of the distance of the airplane from the
radio range-beacon station, without any necessity for manipulation on the part of the pilot.

Referring to Fig. 21, the voltage divider $K$ is provided for adjusting the magnitude of the negative voltage applied to the grids of the r-f tubes and may be used for securing any degree of automatie control. At the maximum setting of $K$, complete automatic control is effected, at the minimum setting manual control obtains. At an intermediate setting, semi-antomatic volume control is secured. The performance graphs A, 13 , and (' of lig. 21 correspond to these three settings of the voltage divider. The automatic volumecontrol device may therefore be used in two ways.


Fig. 21.-Automatie volume-control cireuit and operation.
In the first method, completely automatic control is employed, no manual adjustment of the volume control being required on the part of the pilot. It is then necessary to provide some means wherehy the pilot may be kiven sense of approach to the beacon station, which, when employing manual volume control, he obtains through the gradually increasing reed-vibration amplitudes and through the necessity for frequent volume-control adjustments as the distance between the airplane and the beacon station is decreased. A deflection instrument reading the d-c plate current of the radio-frequency amplifying tubes, on the grids of which the negative control voltage is applied, is used for this purpose.

The deflection of this instrument is an inverse function of the field intensity of the received radio wave and consequently of the distance from the beacon station. This instrument may therefore be calibrated approximately in miles from the station.

In the second method of utilizing the automatic volume-control deviee, the voltage-divider $R$ is adjusted for semi-automatic control. The number of times the pilot needs to operate the manual volume control is then reduced to the order of one-fifth that required with normal manual-control operation.

## RADIO AIDS TO BLIND LANDING OF AIRCRAFT

33. A radio system of blind landing aids developed at the National Bureau of Standards includes three elements to indicate the position of the landing airplane in three dimensions as it approaches and reaches the point of landing. Lateral position given for the purpose of keeping the airplane directed to and over the desired landing-field runway, is secured by a small directive beacon of the same type as the visual radio range beacon but lower in power and using small loop antennas.

Inngitudinal position, to inform the pilot that he has arrived within the boundaries of the landing field, is given by a boundary-marker beacon. Vertical guidance is given ly an inelined ultra-high-frequeney radio beam. This landing beam oporates on a frequency of about 100 megacyeles and is directed at a small anyle above the horizontal. It provides a gliding path for the landing airplane.
34. Method of Field Localization. Figure 22 is a three-dimensional view showing the location of the ground transmitting equipment for orienting a pilot along the desired landing runway, and illustrates the function of the landing beam when used in mnjunction with the other elements of the system. Referring to Fig. 22. $A$ is the 2 -kw directive radiobeacon with large loop antonmas, provided at terminal airports for point-to-point flying on the fixed airways. Utilizing the zero-signal


Fig. 22.-Model of landing runway and down-leading radio signal.
zone directly over the beacon tower, it is possible to locate this beacon to within 100 to $1,000 \mathrm{ft}$. depending upon the altitude of the airplane. Before reaching the beacon tower the pilot has learned the wind direetion at the landing fied either through the government weather broadeast or by two-way communication with the ground. Upon receiving the zero-signal indication over the tower of the main bencon, the pilot retunes his medium-frequency receiving set to the frequency of the low-power ( 200 -watt) runway localizing beacon, loeated at $B$. This beacon, using small loop antennas located at one edge of the field without constituting an obstruction, directs a course along the runway most suitable for landing (under the particular wind conditions then existing). When crossing the looundary of the landing field a signal from the boundary-marker beacon $D$, operating on a radio frequeney of about $10,000 \mathrm{ke}$, is obtained.

The medium-frequeney set on the airplane together with a 2 -tube marker-beaton set of fixed tuning is suffieient for receiving all these indieations. If arcurate indications of the absolute height of the airplane above ground are now secured, the complete information necessary
for the blind landing of aircraft (in addition to that obtained from the flight instruments) beeomes available.
35. Landing Beam. Figure 22 will show how the suitable indieation of absolute height above ground is secured. The vertieal space pattern of the inclined ultra-high-frepuencey landing beant locatod at $C$ is clearty indieated. The polar pattern in the homizontal plane is of the same order of directivity. The airplane is therefore readily directed approximately along the horizontal axis of the beam hy means of the course indications from the runway localizing beacon. It does not, however, fly along the inclined axis of the beam, but on a curved path whose eurvature diminishes as the ground is approached. This path is of the line of equal intensity of received signal below the inclined axis of the beam. The diminution of intensity as the airplane drops below the inelined axis is compensated by the increase of intensity due to approaching the beam transmiter. Thus, by flying the airplane along such a path as to keep constant the recoived signal intensity, as observed on a mieroammeter on the instrument board, the pilot comes down to ground on a curved line suitable for landing. If the airplane rises above this line of equal intensity of received signal, the microammeter deflection increases, while if it irops below this line the micrommeter deflection decre:ses.
36. Equipment Required on the Airplane. The same equipment earried for weather-broadeast and radio-beacon services is used for receiving the signals from the runway localizing beacon. The localizing beacon is of the visual type permitting the use of automatie volume control in its reception. This is quite essential, since the pilot, in making a landing, is concerned with so many things that the burden of elose manual adjustment of receiving-set sensitivity must be eliminated.

The course indiator may be either the red-indicator type or the zerocenter pointer type oprated by a reed converter. In the latter case, the instrment for seruring rumway-course indications may be combined with


Fit. 23.-Course indicator showing: (a) Airplane on proper eourse ; (b) Airplane too high and to the left of runway; (c) Airplane too low and to the right of runway.
the landing-beam indicator into a single instrument, which is much simpler to use than two separate instruments. Two perpendicular reference lines are provided on the face of the combined instrument, the vertical reference line corresponding to the position of the rumway, and the horizontal reference line to the proper landing path. The pointers of the runway-qurse indicator and the landing-path indicator are arramged so that they rooss each other, the former moving to the right or left of the vertisal reference line and the latter above or below the horizontal refereme line. The position of the point
of intersection of the two pointers thus gives, through a single reading, the position of the airplane with respect to the runway and proper landing path. The instrument indications for several arbitrary positions of the airplane are given in Fig. 23. At $b$ the airplane is to the left of the runway course and too high. At a the airplane is on the runway course and on the proper landing path. At $c$, the airplane is to the right of the runway course and too low.
37. Runway Localizing Beacon. This beacon is a 200 -watt doublemodulation beacon, employing small loop antemnas so that it may be placed near the landing field without constituting an obstruction to flying. The two-course connection is employed (the antemna carrier currents heing in time phase) so that, in circling the runway beacon the pilot will not be confused by the presence of courses at right angles to the runway. The modulation frequencies used at the beacon are ( $; \overline{5}$ and 86.7 cereles, respectively. The antemas consist of seven turns of wire wound on frames 6 by 8 ft .
38. Boundary-marker Beacon. The houndary-marker beacon operates on a earrier frequency of ahout $10,000 \mathrm{kc}$. The transmitting antenna consists of a long horizontal wire 3 to 8 ft . above the ground and extending along the edge of the field at right angles to the runway. The signal is received about 100 ft . before the airplane reaches this antennat and is heard for about 100 ft . after the airplane has passed over the antenna. Since a vertical receiving antenna is emploved on the airplane, zero signal is obtained when the airplane is directly over the antenna. This zero-signal zone, therefore, coincides with the landingfield boundary line. The transmitting set employs a 7.5 -watt tube feeding an oscillatory eircuit, coupled inductively to the horizontal antenna. The oscillator is modulated to about 500 cycles by means of an audio-frequency oseillator of about 7.5 watts.
39. Landing Beam. The landing beam consists of a horizontally polarized beam directed at a small angle above the horizontal, this angle and the degree of directivity being so adjusted that a predetermined line of constant field intensity will mark out just the proper gliding path, clearing all obstructions and convenient for landing. In the set-up at College Park, Md., the beam is transmitted on a frequency of 93,700 $\mathrm{kc}(3.2 \mathrm{~m})$ and is oriented in the same horizontal direction as the course of the runway localizing beacon. On the airplane, a horizontal dipole antenna feeding a detector-amplifier-rectifier unit is employed for receiving the landing beam signal. The receiving equipment constitutes a vacuum-tube voltmeter for exploring the field intensity in different portions of the landing beam.
40. Theory of Operation. The glide curve or landing path may be derived from a proper combination of two graphs, one of which shows the inverse variation of field intensity with distance from the beam transmitter, and the other the polar curve showing the beam directivity in the vertical plane. A combination graph is given in Fig. 24 wherein the field intensities (in terms of the deflection of the landing-beans indicator) are ploted as aloscissas and the altitude of the airplane as altitudes at each $1,000 \mathrm{ft}$. of distance from the landing-beam transmitter. A pilot coming in at an altitude of $1,000 \mathrm{ft}$. will ohserve half-seale deflertion of his instrument (say, $250 \mu \mathrm{a}$ ) at a distance of approximately $9,000 \mathrm{ft}$. from the heam transmitter. If he then follows the line of constant field intensity corresponding to half-scale deflection on his instrument, he reaches an altitude of 10 ft . at a distance of $2,0(0) \mathrm{ft}$.
from the beam transmitter. This is actually the point of contact of the airplane with the ground, the receiving antenna being mounted on top of the airplane, 10 ft . from the ground.
41. Directive-transmitting Antenna System. An ultra-high frequency was chosen for the landing-heam transmitting system in order to secure the attendant reduction in size and simplicity of equipment. The


Fig. 24.-Field strength pattern of landing radio beam.
ultra-high-frequenry source ( $93,700 \mathrm{kc}$ ) is coupled to a horizontal doublet (made of $1 / 8-\mathrm{in}$. copper tubing). which serves as the radiating antenna and is aceurately tuned to the frequency of the souree. About 0.8 m behind the radiating antemna is placed a reflecting antenna, also a horizontal doublet, tuned to a frequency somewhat lower than the frequency of the source. At approximately every moter in front of the radiating antenna, horizontaldoublet directing antonnas are placed. These are tuned to a freguency somewhat higher than that of the source. This array of antennas is supported approximately 2.75 m above the ground, and pivoted on a vertical support. To obtain the desired vertical directive characteristic, the structure is tilted approximately 8 deg. above the horizontal. The necessary power output on the high freguency used is secured through the use of a $\%(0)$ watt three-element tube (General


Fig. 25.-High-frequency transmitter for landing beam. Electric ZP-2) in the oseillatory circuit shown in Fig. 25. The small air condenser $E$ is of a capacity about equal to the inter-electrode grid to plate capacity of the tube. The circuit is tuned to the desired frequency within narrow limits hy moving one of the plates of condenser $E$ by means of an insulated adjustment screw.

42, Receiving System. The recoiving circuit arraugement (see lig. 26) uses only two tubes without regeneration and requires no adjustments on the part of the pilot. Even the volume control is dispensed with, since the path followed during the use of the receiving set constitutes a line of constant field intensity of the direrted beam. The detecting portion (within the doted lines) is external to the airplane,
mounted in a streamline weatherproof hox ahout 14 in . above the top wing. The doublet antenna is in the form of two copper rods housed in wooden streamlined supports projecting from the streamlined detector box.
A 224-type tube is employed for the detector, to afford the necessary high amplification without undue mierophonie noises. To obtain good efficiensy the deteetor tube is connected direetly in the renter of the horizontal doublet antemat. The radio-frequency portion of the circuit is confined to the section above the four radio-frequency chokes. The


Fif. 26.-Rereiving circuit for lambing heam.
four leads runing from the lower side of these phokes carry either direct current or the recorived atudiomodulation.

## ABSOLUTE ALTIMETERS

43. Absolute altimeters maty he nsed to replace the landing heam in the above system and may also be emploved during point-to-point flight. Such altimeters fall into three clasuffeations, the somie altimeter, the eapacity altimeter, and the reflection adtimeter. In the somic altimeter the time taken by sound to reath the ground and return to the airplane is moasured. Knowing the voloeity of sound, the height of the airplane above ground may be determined." In a model developed by the (ieneral lelectric Company two homs are employed: one, motor driven, sends down the sound wave, and the other recocives it back again after reflection from the ground. An instrument which is started by the emited wave and stopped by the roflected wave records all heights above 50 ft, while a stethoscope remereded to the receiving horn and adjustahle to the pilot's cars, is used below in fi. At 50 ft . the echo comes batek a tenth of a second after the emitted sound is sent out, at 5 ft . it comes back a hundredth of a second bater. The whistle and the echo blend into one sound at some point above if ft . This indication may be used by the pilot in "leveling-off" for a landing.
44. In the capacity altimeter, the distance from the ground is measured by deterting the change in the clectrical catpaty betwem two platers on the arplane as the airplane appreathes the gmond. In one arrangement, this apacity is made a part of a vesonant cimpoit. coophed to ath extremely stable radio-frequency oscillator. A valeumb-tube veltmeter records the voltage developed arross a portion of the resonant rireuit. The circuit is adjusted so that the voltmeter-indiating instrument
reads zero when the airplane is at any height above 100 ft . The gradual inerease in capacity as the airplane approaches the ground serves to bring the resonant cireuit into closer tune with the oschlator frequency. the voltmeter indication increasing accordingly. The indicating instrument, once calibrated, serves to indicate true height above ground. Since the eapacity between the two plates is practically unchanged at altitudes greater than of the order of 100 ft ., the field of usefulness of the capacity altimeter is limited to landing operations only.
45. The reflection altimeter utilizes the direct reflection of radio waves. Fretuencies of the order of 10 to 30 megacyeles have been found most useful for securing true reflection from the ground. The phase difference loetween the transmitted and refleeted wave varies eycheally as a function of height ahove ground. Alexanderson has shown that this eyelie change of phase difference manifests itself in a corresponding ehange in frepuency of the transmitting oscillator. He therefore employs two oseillators on the airplane, one tuned to. say. 30 megareyeles. and the other to. say, 27 megacyeles, which detere the beat frequency, 3 megacyoles. This beat frequeney changes eyclically as the altitude of the airplane is varied. passing through a maximum when the reflected wave tends to inerease the frequenery of the 30 -megaeycle oscillator at the same time as it decreases the frequeney of the 27 -megarecle oseilator. A little consideration will shew that the maxima oceur at $25 \mathrm{~m}(80 \mathrm{ft}$.), $75 \mathrm{~m}(240 \mathrm{ft}$ ), 125 m ( 400 ft .), etc. Definite indications of true height above ground may therefore be secured at these points. By changing the difference frequeney, different points may be obtained.

## References

Dellinger, J. II., and H. Diamond: Radio Developments Applied to Aircraft, Werh. Eng., 51, 509, Ju:y, 1929.
, - and F.W. Dunmoke: Development of the Visual Type Airway Radiobeacon System, Bur. Stand. Jour. R'es., Res. I'uper 159, March, 1930. J'ruc.I. R. E'., 18, 796, Nay, 19:40.

- and H. Phatr: Development of Radio Aids to Air Navigation, Proc. I. R. K.. $16,890, \mathrm{July}, 1408$.
Diamond, $11 .:$ Applying the Visual Double-modulation "Ype Radio Range to the dirways, froc. I. R. E., 17, 2158, December, 1929; Bur. Nitund. Jour. Rex., Ros. I'tper 148, February, 1930. and (i. L. Davies: Characteristics of Arplane Antenmas for Radio Range Beacon Leception, Bur. Stond. Jour. Res. May, 1931 ; Pror. I. R. F., 20, February, 1932.
——and $F$. W. Drnmoke: A Kndioheacon and Receiving system for Blind Ianding of Aircraft, Bur. Stand. Jour. Res, Res. Paper 23s, (Tetober, 1930.
- and $\mathfrak{F}$. (i. KEan: A locourse Radio Kange for Guiding Aircraft with Tuned-reed Visual Indieation, Bur. Ston'l. Jour. Res., Res. Japer 154, Mareh, 1930.
1)oolitrle, J. H.: F'e Flving, $S$. A. E., preprint (Nt. Jouis meeting), February, 1930.
 17, 306, February, 1929; see also Acro Jiycst, 13, 717, ()ctober, 1928.
- and K. M. Wibatotre: (on the l)aylight Cransmission Characteristics of IIorizontally and Vertically Polarized Waves from Airplanes, Proc. $I, R . F ., 17,2242$, December, 1929.
Junmore, F. Wh: Design of Tuned Reed Course Indicators for Aireraft Radiobeacon, Bur. Stand. Jour. Res., Ros. P'aper 28, November, 1928.
- A Tuned-rend Course Indicator for the 4-and 12-eourse Aireraft Radio Range, Bur. Ntand. Jour. Kos., Res. I'aper 160, April, 1!030; Jror. J. R. R., 18, Iune, 19:30. -: A Course Incicator of Pointer I ype for the Visual Kadio Range-beacon System, Proc. I. R. E., 19, september, 1931.
livarl, F. II and F'W. Dromone: A Directive Type of Radiolieacon aud lta Appliention U Navigat:on, Bur. Strmal. Sri. Puper 840. 1923.
 tion to Direction Finding and Navigation, Jour. I.E.E., 66, March, 1928.

Hrland, L. A.: The Constants of Aircraft Trailing Antennas, Proc, I. R. E., 17, 2230, December, 1929.
Jackson, W, E., and s. I. Halley: Development of a Vibual Type of Radio Range Having Universal Application to the Airways, $I^{2}$ roc. I. K. E., 18: 2059, December, 1930.

Murphy, W. H.: Space Characteristics of Antennae, Jour. Franklin Inst., 201, 411, 1926; 203, 289, 1927.

- and L. M. Wolfe: Stationary and Rotating Fqui-signal Reaoons, Jour. S. A. E. 19, 209, September, 1926.
Nelbon, E. I L., and F', M. IRyan: Proviaion of Radio Facilities for Aircraft Communications, $S$. A. E. preprint (st. I,ouis meeting), February, 1930.
Pratt, H.: Apparent Night Variatione with Croseed-coil Radio Beacons, Pror, I. R. E., 16, 625, Mav, 1928.
Walls, H. J.: The Civil Airways and Their Radio Faeilities, Proc. I. K. E., 47, 2141, December, 1929.


## SECTION 22

## PHOTOCELLS

## By H. C. Rentschler, Ph.D. ${ }^{1}$

1. Photoelectricity. Photoelectricity includes all such phenomena where a change in electrical behavior is produced by the action of light. These phenomena may be divided into three elasses:
2. Photoelectric Emission.
3. Photoconductivity.
4. Photovoltaic Effect.
5. Photoelectric Emission. In 1888 Hallwachsz showed that a negatively eharged zine sphere, which had been freshly polished, was rapidly discharged when iight from an are was allowed to shine upon it; but that a positively charged sphere did not lose its charge unless a negatively charged body near hy was irradiated at the same time. It has since been proved that this effect is due to the emission of electrons from the metal surface due to the light (especially light of short wave length), just as the filament of a thermionic device emits electrons when heated to the proper temperature. This emission of electrons from an illuminated inetal is known as photoelectric emission. This photoelectric emission makes possible the current in an eleetrical circuit between the illuminated metal as cathode and a nearby anode.
6. Photoelectric Cell or Phototube. The photoelectric emission from a metal depends upon the condition of the metal surface (whether clean or covered by an oxide film, ete.). To obtain reproducible emission, the cathode and anode are now always mounted in a glass or quartz container which is either highly evacuated or contains an inert gas at a low pressure. Such devices are commonly known as photoelectric cells or phototubes.
7. Phototube Circuit Insulation. The current that ean be passed through even the most sensitive phototubes is many times smaller than the current through a small thermionic-valve tube. Thus with the best commercial type of vacuum phototube with the cathode exposed to a 60 -watt tungsten lamp at a distance of about 10 in ., the maximum current is of the order of 10 to $20 \mu \mathrm{a}$.

Special care is neeessary to insulate properly the parts of photoelectrie tube cireuits so as to avoid eleetrical leakage. Insulators generally used in electrical circuits even with thermionic devices are often useless for these circuits. For the more sensitive applications it is often necessary to use such insulators as amber, sulphur, or red sealing wax. Where

[^52]phototubes are used for precision measurements or for the detection c very weak light intensities it is desirable to use tubes where the anode an cathode leads are not brought out through the same press.
5. Properties of Photoelectric Emission. The photoelectric emission from a given cathode is practically instantaneous. Lawrence and Beams have shown that the interval botween the incidence of the light and th full emission of clectrons is less than $10^{-8}$ sec.

The photoelectrie cmission from a given cathode is indepondent o the temperature as long as there is no actual change in the cathote sur face and as long as its thermionic emission is negligible.

The photoelertric emission from a given eathode is strictly proportiona to the light intensity, provided the quality (eolor or wave length) of the light is not changed.

For such applications as strietly require one or all of these properties the phototube is superior to light-sensitive devices using either the primeiples of Photo-conductivity or the Photovoltaie effeet, and it is inferior only in the magnitude of the response for a given intensity.
6. Color Sensitivity. All metals with elean surfaces are photoelectrically active when exposed to light of proper eolor or wave length. Therc


Flg. 1.-Color sensitivity for alkali metals.
is for each metal a longest wave length (ealled the threshold wave length) to which the metal responds. Thus the common metals sueh as iron, nickel, copper, ete., require very short ultra-violet radiation, while the alkali metals sodium, potassium, ete., are sensitive to visible light. The curves giving the emission or response of a cathode for equal energy of different wave lengths of radiation is called its color-sensitivity curve. Thus in Fig. 1 are shown the relative color sensitivities of different tubes containing the different alkali metals as measured hy Miss Soiler. ${ }^{2}$ Each

[^53]of the alkali metals has a definite wave length for which the response is a maximum.


Frg. 2.-Color sensitivity for caesiumı on magnesiunt, curve 1. Color sensitivity for cuesiunn on silver oxide specially processed, curve 2.
The color sensitivity of a metal is often dependent upon the thickness of the coating of the active metal deposited upon a second metal as a conducting backing and the treatment given to this coating. Thus in Fig. 2 is shown the relative colorsensitivity curve for a thin layer of caesium on magnesium (curve 1) and the similar response (curve 2) for a thin layer of eaesium on silver oxide with a copper backing and processed so that it shows sensitivity for infra-red radiation. ${ }^{1}$

When photoelectric tubes are to be used for measuring or detecting


Fig. 3.


Fig. 4.

Fig. 3.-Sensitivity for vacuum phototubes in quartz bulbs with eathodes of cerium, thorium, uraniun, and cadnium.
Fig. 4.-Sensitivity for phototubes in Corex I glass with uranium, zirconium, titanium, cadnium, and zine cathodes.
ultra-violet radiation only, the elements cerium, thorium, uranium, and cadmium serve well for tubes having different threshold wave lengths.

[^54]In Fig. 3 are shown the relative response curves for these metals as cathodes in quartz bulhs as vacuum-phototubes. The relative response curves for several metals as cathodes in bulbs of ultra-violet transmitting glass known as Corex D (wall thickness about 1 mm ) are shown in Fig. 4. The peaks of maxinum response for these tubes are not, as was the case with the alkali metals of Fig. 1, an inherent property of the cathode material. The short wave-length response is cut off hy the absorption of the radiation by the glass container. These peaks may be shifted by varying the thickness and quality of glass used.

## VACUUM AND GAS PHOTOTUBES.

7. Vacuum Tubes. The electrons liberated from the cathode under the influence of light come off with different velocities and in different directions. As the difference of potential between anode and cathode is raised, more of the elcctrons liberated from the cathode reach the anode, and saturation current is reached when all that leave the cathode are


Fig. 5.-Characteristic for vacuum (a) and gas-filled (b) tubes. drawn directly to the anode as fast as they are produced. Because of the small emission from the cathode, the effect of space charge is negligible. Curve $a$ (Fig. 5) shows the current-voltage relation for a vacuum tube with the specially processed caesium on silver oxide cathode. The slope of the curve and the potential necessary for saturation depend chiefly upon the spacing and shape of the electrodes.
8. Gas Tubes. Since the current obtainable by photoelectric action is very small, attention has always been given to ways for amplifying these currents. This may be accomplished by the use of devices such as three-electrode thermionic amplifier tubes. Another means often resorted to is the so-caltcd "gas photoelectric tube." Here a small amount of an inert gas, such as argon, is introduced into the tube. The photoelectrons as they pass from the cathode to the anode, ionize the gas, and the ions so produced take part in carrying the current. Curve $b$ of Fig. 5 is typical showing the current-voltage relation for a gas photoelectric tube which gives curve $a$ when evacuated.

Commercial gas tubes usially have a pressure of about $100 \mu$ or less and an amplification due to the gas of about 10 . Higher amplifications are possible but result in greater instability of operation. ${ }^{1}$

The gas tube is not so linear in its response to light of varying intensity as is the vacuum tube. For most practical purposes, except for precision

[^55]measurements requiring high degree of aceurary and wide variations of intensity, its linearity is, however, quite good enough. But gas tubers require greater precautions in their use than do vacum tubes.

For the protection of the tube and the rest of the apparatus in the eireuit it is always well to insert a resistance of from 1,000 to 5,000 ohms in series with the tube. Such a resistance will prevent any damage whieh might result in the use of gas tubes if a glow developed due to too high an impressed voltage, and the danger of the glow breaking over into an are. A glow in a phototube must never be permittel for any length of time. In some eases sueh a glow may result in inereased sensitivity of the tube while in other cases it may result in permanent injury to the tube.
9. Choice of Phototube. It is always well to use vacuum tubes in preference to gas tubes whenever it is possible to do so. Vacuum tubes are simpler to handle and eapable of giving more aceurate and reliable results.

For most general applications, phototules are operated from artificiallight sources. The most convenient source is the ordinary ineandescent lamp. The maximum intensity of radiation from such a source is in the infra-red and falls off rapidly for the visible and ult ra-violet. For surh applications therefore the best tube to use is one that has as great a sensitivity in the visible and infra red as is obtainable. The phototube almost universally used at present for such applications is the one having the color sensitivity shown in curve 2 ( Fig . 2).

Phototubes are now quite extensively used for the photometry of incandeseent lamps. For such applications the tube must be very eonstant, and above all the cathode surface should be uniformly sensitive over the entire surface. The color-sensitivity curve should preferably be similar to that of the average human eve. In practical photometry of incandescent lamps, the general practice is to compare the radiation from the unknown lamp with that from a standard lamp having the same general radiation characteristie and which is operated at approximately the same temperature as the unknown lamp. For such applications the caesium-on-magnesium tube with a special green filter is quite satisfactory.

A similar problem is that of measuring ultra-violet radiation within a definite wave band. There is an ever inereasing interest in the use of ultra-violet radiation for health, for medical treatment of eertain ailments, and for photo-ehemical reactions. Thus it has been fairly well established by the medieal profession that radiations effective in the prevention of rickets extends from wave length of about 2,800 to about $3,200 \AA$. units.

The radiation of about $2,950 \AA$. units is the most powerful, and the beneficial effect falls off to a low value as the wave length of the radiation approaches either the longer limit of about $3,200 \mathrm{~A}$. units or the shorter limit of about $2,800 \AA$. units. Referring to Fig. 4 it is evident that cells eovering this range fairly well are now available. It is evident that the definite problem under investigation determines the cell best suited for the test.
10. Phototube Circuits. The praptical use of phototubes for the various applications eall for eireuits to fit the partieular use. Generally speaking, the amount of eurrent obtainable in the partieular ease largely
controls the choie of eirenit. The simplest phototube cireuit is tha shown in Fig. 6.

Here the baterey 13 semds a current thro.gh the phototube $l$ when light falls on the cathode. This current is deterted or measured by the galvanometer shown as $(B$. If the phototube is relatively sensitive or the intensity of light is sufficiently great, the galvanometer fo may be replaced be a mieroammeter. It is at once evident how variations in light intensity may be followed by changes in reading of the doterting instrument $f$ :

In cases where the light intensity is low so that measurements require extreme sensitivity, an clectrometer $E$ and a high resistanee $R$ as shown in Fig. 7 are substituted for the galvanometer. In prineiple the elee trometer has two highly insulated conduetors A and $c$, and a movable element $V$ which is maintained at a constant potential. As the potential


Fine (i.- Simple cirmit for momsuring photoelectric current.


Fus. 7 .--("ircuit using a high resistance and ant colectrometor for measuring small photoelectric 'urrents.

between 1 and $C$ ehanges, the element $I$ moves with referenere to $A$ and (". Thus the electrometer $E$ of Fig. 7 is used to moasure the potential drop aneross the resistanere $h .^{1}$

The rosistanee $R$ is of the order of 10 to 1,000 megohms depending upon the sensitivity rerpired.

Campled and Ritehiez deseribe commonly known mothods of making these high resistaness. The writer ${ }^{3}$ profers to use the resistane of at sperial carbon deposit on a glase spiral sealed in an evaruated bulh. Such resistanees having any value from a mexohm or lose to several humdred thousand megohms are rasily made. In the use of this cirenit it is essential that the load connereting the phototube to the resistane $R$ and the clement $A$ of the electrometer is very rarefully insulated.

A simple cireuit for measuring very small photocleotrie currents is shown in liig. 8.

Here the hattery $B$ sends a eurrent $i$ throngh the phototube $l$ to charge a conderiser $K$ of capacity ( ${ }^{\prime}$ to a potential I measured by the cloctrometor $E$, in the time $t$. The average current is given by the
equation

$$
i=\frac{r l}{1}
$$

[^56]The phototube used in this method should be of the varuum type, and the battery voltage should be sufficiently high, and the potential to which the condenser is charged in the observed time should be such that the tube operates with saturation current over the entire time. If these conditions do not hold, corrections must be made in the caleulations of the photoelectric current.


Fig. 8.-Measuring the photoelectric current ly noting the rate at which it charges a known condenser.


Fig. 9.-Amplifying the photoelectric current by the use of a thermionic tube.
lnstead of using extra-sensitive instruments for measuring or detecting the small photoelectric currents, these currents may be amplified by the use of the three-electrode thermionie tubes. Thus the potential drop across the resistance $R$ of Fig. 7 may serve as the eontrol of the potential of the grid with reference to the cathode of a thermionic amplifier tube. In Fig. 9 is shown such a circuit using the same $B$ battery in the plate-tofilament circuit and at the same time supplying the voltage to send the current through the phototube. The battery $b$ is used to supply the proper grid bias. A condenser $K$ represents the capacity of the phototube and its connections. This capacity need be considered only for such circuits where rapidly fluctuating light effects are to be recorded in the plate circuit.

It is at once evident how a relay may be used in place of the meter $\dot{G}$, when it is desired to use this circuit


Fig. 10.-Cireuit using photoelectric tube with Grid-Glow tube. for control purposes.

For such applications where a phototube is used for turning on or off a device, a simple gas-discharge tuhe known as the (irid-Gilow tubel may replace the amplifier tube as is shown in Fig. 10. This tube is so designed that when voltage is impressed between the eathode and anode, the grid takes on a negative charge thus preventing a hreakdown. If the grid is permitted to discharge as through a phototube, when light

[^57]falls on the tube, a discharge is started in the anode-to-cathode circuit which is limited only hy the impressed voltage and the load resistanee. A condenser $K$ is generally inserted as shown in Fig. 10 to control the sensitivity of the deviee.
11. Uses of Photoelectric Tubes. The practieal uses of phototubes may be classified under three distinet groups.

1. For measurement of light intensities as:

Photometry of lamps.
Measurements of ultra-violet radiation.
Measurements of light transmission through and reflection from different materials, etc.
For such application, circuits of Fig. 7 to Fig. 10 are suitable.
When a large number of similar measurements or tests are to be made as in photometry, the circuit used is preferably modified to supply the definite need for speed and simplicity of operation. An article hy Dr. C. H. Sharp on Use of Photoclectric Cell in Photometry (Electromics, August, 1930, pp. 243-245) is an excellent illustration deseribing the modification of circuit of Fig. 9 for use in practical photometry.
2. For detection and control as:

For counting objects by interrupting a light beam.
For stopping of machinery when an object intercepts the light falling on a phototube.
For turning on of lights when daylight falls below a certain level.
For operating slave clocks from a master clock by having the pendulum interrupt the light falling on a phototube, ete.
For this class of applications, circuits of Figs. 9 and 10 are best modified to meet the definite requirements. Here a suitable relay replaces the meter of circuit Fig. 9 or the load of circuit Fig. 10.
3. Modulation of current by fluctuations of light intensities. This class includes such applications as:

Facsimile transmission.
Transmission of pictures by wire.
Television.
Conversion of sound films into speech, as talking movies, etc.
For these applications the circuit of Fig. 9 is adapted to meet the definite need. These circuits are discussed in greater detail in the various chapters covering these specific applications.
12. Photo-conductivity. This is a change in the eleetrical resistanec of a material due to the action of light. This effect is particularly noticeable with the element selenium, which becomes a very much better electrical conduetor in sunlight or under artificial illumination than in the dark.
13. Selenium Cell. In the construction of selenium cells (frequently called "selenium bridges"), the resistance of the selenium is so high that it is necessary to arrange the selenium so that the current passes a short distance through the selenium, and a large area is provided so that as much current as possible will pass through it for a given impressed voltage. Since only the exposed portion is affected by the light it is necessary to use a thin layer.

In one form of bridge these requirements are met by painting and heat treating two closely interpenctrating grids of gold or other metal on glass. These serve as the two leads between which the current flows through the selenium bridging between them. The selenium is spread
over the surface in a thin layer and converted to the proper crystalline light-sensitive variety. To protect the active surface, this structure is generally sealed into a bulb which is exhatusted or filled with an inert gas, thereby increasing the stability of the coll.
14. Properties of Selenium Celis. When the intensity of the light falling on a selenium cell is suddenly changed, there is an appreciable time lag before the current assume's is steady value. This time lag may be of the order of several minutes.

The conductivity depends upon the temperature of the cell.
For a fixed applied voltage the current is not strictly proportional to the intensity of the light.

The sensitivity to light of different wave lengths depends upon the erystalline form of the selenium, on the intensity of the light, on the duration of exposure, on the previous illumination, and upon the temperature.

The sensitivity extends well into the infra-red, through the visible into the ultra-violet, with a maximum sensitivity for yellow or red light depending upon the erystalline form of the selenium.

The dark current, that is the current when no light shines on the selenium, for commereial cells varies from a few to several hundred microamperes depending upon the design of the cell. The ratio of light current (that is the current for cell fully illuminated) to dark eurrent is usually about 10 to 1 , hut cells may be made with a ratio as high as 1,000 to 1 or greater. These higher-ratio cells are usually far less reliable, and eommercial cells usually use the smaller ratio. In the use of photoconductive cells it is always desirable that the light be as uniformly spread over the active surface as is possible. For a detail discussion of the photo-conductive properties of selenium the reader is referred to Mellor's ${ }^{1}$ "Inorganic (Chemistry."
15. Thalofide Cell. This is a photo-conductive cell prepared hy T. W. Case, ${ }^{2}$ which uses the compound thallium oxysulphide in place of selenium. This eell has a maximum sensitivity at a wave length of about 10,000 Angström mits.
16. Photovoltaic Effect. The photovoltaic or Beequerel effect consists in reating an e.m.f. in a voltaic cell by illuminating either an electrode or the electrolyte. One commercial type has a cathode of a semi-cylindrical plate of copper eoated with cuprous oxide. A heavy strip of lead serves as the anode, and a dilute solution of lead nitrate is used as the electrolyte. The circuit recommended is that shown in Fig. II. These cells are often sensitive enough to operate small relays direetly without


Fig. 11.-Circuit for use with a photovoltaic cell. the use of amplifiers or glow-diseharge tubes. Like photoeonductive devices these are not so well adapted where accuracy and reliability are essential, as are the less sensitive photoelectric emission tubes.

[^58]17. Calculation of Voltage across Phototube Load. Characteristic curves similar to those used with vacuum tubes can be utilized to determine the voltage output of phototube circuits. For example, in Fig. 12 with a cell operated at 80 volts with a 5 -megohm resistance, 60 volts appears across the cell ( 20 across the load) at a light flux of 0.3 lumen. In motion picture work, with the film out, the flux is about 0.2 lumen,


Fig. 12.- Method of calculating voltage across phototube load.
with the film running past the phototube the light coming through the film varies from 0.01 to 0.04 lumen (H. A. DeV'ry).
18. Commercial Light-sensitive Cells. A commercial selenium cell (FJ-31, General Electric Co.) has the following characteristics:


Its maximum sensitivity is around $7,000 \AA$,, the response falling to 10 per cent at 6,000 and to 40 per cent at $8,000 \AA$. Measurements show that 90 per cent of the total change of resistance to light changes takes place in one-hundredth of a second. At 0.05 lumen per square inch the

relative response of the cell to light interrupted at 7 ke per second is less than one-fifth that at 500 cycles (see Fig. 13).

The Burgess selenium bridge consists of a layer of selenium about $2.5 \times 10^{-3} \mathrm{~cm}$ thick on a thin glass base, on the face of which is a gold grid in the form of two interlocking combs. The surface exposed to light is approximately 25 by 50 mm . The selenium is placed in a glass envelope
which is exhausted and then filled with an inert gas. The standard bridge has a dark resistance of about 4 megohms and will deliver about 100 to $150 \mu \mathrm{a}$ output current. At 10 foot candles the ratio of dark to light resistance is at least 4 to 1 (see Fig. 14).

The Areturus photolytic cell (probably photovoltaic) delivers considerable current at low voltage. Another voltaic cell put on the market in 1931 is the Weston photronic cell. It is a dry type of cell delivering about one microampere per lumen, has a linear output of current against light when worked into a low-resistance meter and has been applied successfully to illumination and density of film measurements.

## References

Allen, H. Stanley: "Photwelectricity," Longmans, Green \& Co., 1925.
Campbelland Ritceie: "Photoelectric Cells," Sir Ibaac Pitman \& Sons, Ltd., 1929.
GUDDEN: "Lichtelek trische Frscheinungen," Julius Springer, Berlin, 1928.
Hughes: " Photoelectricity," Cambridge University Press, 1914.

- -: Report on Photoelectricity, Bull. Nat. Res. Council, 1921.

1932, and Dulbridge: Photoelectric Phenonena, McGraw-Hill Hook Company, Inc.,
Report of the Committee on Standardization, I.R.E., p. 57. 1928.
Zworykin and Wilan: "Photoelectric Cella and Their Applications," John Wiley \& Sons, Ine., 1930.

## SECTION 23

## SOUND MOTION PICTURES

By Franklin S. Irby, M.Sc., Ph.D. ${ }^{1}$

1. Introduction. The data given on the following pages are intended to cover a brief description of the principal apparatus and methods used in recording and reproducing sound motion pictures. The main amplifier equipment used in sound motion-picture work is similar to that used for public-address systems, electrical transcriptions, broadeasting, etc., with modifications to meet special requirements.

The equipment necessary for recording sound for motion pictures is much greater than that for reproducing. This compares with the amount of equipment required for a broadcasting station, as contrasted with a single receiver. Some of the portable sound-recording equipments have, however, been greatly simplified, and require no more units than a small theater reproducing system. The data furnished cover only those sound-recording systems in actual practical use.

While the various systems of recording differ in details, the principal parts of the apparatus are similar in purpose and design up to the recorder proper. Here, depending upon the method of recording (as described later) the recorders are different in construction and operation.
2. Methods of Recording. The principal methods of recording sound on film include: (1) variable-density method (which may be accomplished by using either a light-valve or glowlamp), (2) variable-area method (accomplished by using a galvanometer "vibrator"), and (3) film-engraving method (not used commercially).

The principal method of recording sound on disk involves using an electrical recorder similar to those used in making standard phonograph records.

Other methods of recording sound in synchronism with motion pictures includes the method proposed by Blattner for recording on a magnetic wire, and also a method using a magnetized tape.

1. Variable-density Recording. The light-valve method uses a light of constant intensity; the ribbons of the valve are modulated by the voice current, which causes a sound track of variable density to be recorded on the film. When using a glowlamp to produce a sound track, a light source, whose intensity is varied, is focused on a film through a slit of fixed dimensions. Sound tracks produced by these two methods are similar. A variahle-density sound track is shown in Fig. 1a. The average density of the sound track in this case acts as a "carrier" on which the nodulations of the sound waves are recorded in less or greater density variations than the "nean."

[^59]2. Variable-area Recording. In general, this is accomplished by using a light of fixed intensity, which is modulatel through the operation of a galvanometer, or vibrator, as this unit is called. This produces serrations on the sound-track area of the film, as shown in Fig. $1 b$.
3. Recording with Kerr Cell. In recording sound on film by this method, the light-valve unit or oscillograph unit is replaced by a Kerr cell. A simplified diagram of the lierr-eell system of recording is shown in Fig. 2. The appearance of the sound track using the Kerr cell is similar to the variable-density sound track


Fig. 1.-(a) Variable-density sound track produced by light-valve ribbons or glow lamp; ( $b$ ) variable-area sound track produced by vibrating mirror; ( $c$ ) noiseless recording showing greater density during periods of low modulation.
4. Film-engraning System. In this method of recording sound on film, an electricecutting stylus actuated by a power amplifier is used to engrave the sound record directly on the edge of the film. The position of the sound track may be inside or outside the sprocket boles. The depth and shape of the groove as cut hy this method are similar to those used for cutting disk records (i.e., from 2 to 2.5 mils in depth, and 4 to 6 mils in wilth).
5. Disk Recording. In recording sound on disk in synchronism with the film record, it is the usual procedure to use sof wax records approxi-


Fig. 2.-Kerr-cell recording system of Klangfilm. 3, Polarizer; 4, Kerr cell; 5, analyzer.
mately 17 in . in diameter and from 1 to 2 in . thick. These records are later processed to produce a hard record approximately 16 in . in dianeter and $1 / 4 \mathrm{in}$. thick.
The sound record is cut in the highly polished surface of the wax disk by means of an electromechanical recorder. The technique of cutting the wax records is similar to making standard elect ric phonograph records, exeept that for sound pictures, the procedure is to record from the renter of the disk toward the outer edge, while for common phonograph records, it is the reverse. The standard speed for common phono-
graph reeords is 78 r.p.m., while for sound-pieture records it is $331 / 3$ r.p.m. This speed, with a $16-\mathrm{in}$. disk, gives a playing time from 10 to 12 min.
a. Shape of Groove. The shape of the groove varies somewhat in commercial practice, but it is approximately 0.006 in . wide, and 0.0025 in. deep. The pitch of the groove is generally 0.010 to 0.011 in ., leaving a space between grooves of ahout 0.004 in . With only this space available, the maximum safe amplitude is something less than 0.002 in., if the walls of the groove are not to be cut too thin.
b. Cutting stylus. Aside from the recorder itself, the stylus must be of the correct shape and smoothness to perform properly. Synthetie ruby and similar materials having good wearing qualities are used for the cutting edge.
c. Ilayback Recorl. After the wax recorl has been cut, the sound may be reproduced direetly without any further processing, by using a suitable pick-up. Such reproducers have to be carefully counterbalanced to prevent danage to the grooves in the soft wax records. This record may be played several times without injury. Under actual recording conditions, however, where two records are used for recording, only one is used as a "play-back," the other is used for processing.
3. Recording Apparatus. For recording sound pictures, the amount of apparatus required varies somewhat with the different systems and also whether it is designed for studio recording or portable news-reel work. Equipment for the larger studios is rather elaborate, and furnishes the necessary facilities for multiple-microphone recording when necessary, also additional equipment for play-back purposes, re-recording, ete. Portable equipment is reduced to the barest essentials, to eliminate weight and space required to make a sound film record with one or more cameras. Monitoring equipment in this case is generally accomplished by using a headphone only during recording operations. No play-back facilities, as a rule, are provided for portable use.
4. Microphones. The microphones used in sound-picture studios are similar to those used for brondenst studios, public address and similar uses. Generally more careful selection of units and adjustments is required, than for other than sound-pieture work. Standard types of condenser microphones with a one- or two-stage amplifier assembled in the same case, are most generally used. The condenser transmitter with associated amplifier is furnished with a bail, in order to facilitate suspension in desired locations on the stage. Nicrophone booms, designed especially for this work, are in general use, allowing flexibility of the microphone during recording. A new form of dynamic microphone has been introduced for sound-pieture recording. The principle of operation is somewhat similar to the Western Electric 555 receiver. An extremely light eoil is attached to a thin diaphragm which actuates it in a magnetie field.
5. Ribbon Microphone. This is one of the special types of microphones developed by RCA-photophone for sound-picture work. The microphone consists of two extremely thin aluminum ribbons suspended between two magnets. The sound waves cause sufficiently slight movement to actuate the electrical circuit. Sound pick-up with such a mierophone in the plane of the ribbons results in maximum yolume output, while sounds coming from a position normal to the microphone face, are not pieked up. This gives the microphone desirable directional characteristics.
6. Beam Microphones. These consist of various kinds of parabolic and other forms of reflectors designed for sound-concentration. The


Fig. 3.-Cross-sectional view of dynanic microphone of Bell Telephone Laboratories.
microphone is placed at the focus of such reflectors, with the face of the microphone facing away from the source of sound. These reflectors have been used suceessfully in directional pick-up, especially in certain kinds of outdoor recording.
7. Sound-recording Channel. A schematic of a typical recording channel is shown in Fig. 5a. Reference to this diagram will assist in following the description of the principal amplifiers and recorder units given below. A typical transmission level diagram is shown in Fig. 5b, which indicates the various energy levels of the circuit in decibels from the point of pick-up to the recorder.

## 8. Preliminary or Booster Amplifier.



Fig. 4.- (a) Ribbon microphone in which the structure surrounding the ribbon is small; (b) microphone with baffle surrounding the ribbon. This amplifier is mounted between the mixer panel and the volume-control panel. It is used to amplify the output of the mixer before passing through the volume-control


Fig. 5.- (a) Schematic of Western Electric recording system; (b) transmission-level diagram of system.
panel. Amplification is desired at this point to raise the recording level suffieiently high to prevent undesirable piek-up from stray elcetric currents or other sources entering the voice-transmission circuit. It also eliminates possible noise when operating the volume-control potentiometer. This amplifier differs in detail for various systems. In the Western Electric system, it is a three-stage resistance-coupled amplifier using three 239-A tubes.
9. Volume-control Panel. The outputs from the individual mixer panels are connected in parallel, and leads from them connected to the input of the preliminary or "booster" amplifier. The output from the preliminary amplifier is fed into a control potentiometer, which permits simultaneous adjustment of the total volume without changing the relative adjustments of indivichal mixer values. This panel also mounts an extension volume indicator to give a visible indication of the volume level maintained at the bridging bus.
10. Main Amplifier. This amplifier is so designated that it amplifies the output from the volume-control potentiometer, and delivers the amplified current to the bridging hus eircuit (or in simpler installations, directly to the power-control pancl and recording machine). It is the amplifier furnishing the largest gain in the recording channel. The main amplifier differs in details for the several recording systems. In the Western Electric system it is a three-stage impedance-coupled amplifier with input and output transformers. The first stage uses a Western Electric 102-type tube, and for the second and third stage, 205type tubes. The total gain of this amplifier is approximately 70 dh . The gain control of the amplifier is provided by a potentiometer in the input circuit.

The main amplifier in RCA-photophone system (PA-47), consists of four voltage-amplification resistance-coupled stages, and two push-pull power-output stages in parallel. Non-microphonic tubes are used in the voltage-amplification stages (UX-864). The output stages are UX-171A tubes. Each of the push-pull output stages is independent of the other, and two recorders may therefore be fed by the amplifier. The plate circuit in earh stage has a resistanco-mpacity filter and the filament supply is filtered by a reactor. The input has been designed to operate from a 500 -ohm line. The output may easily be altered to supply loads of 500,250 , or 167 ohms. The frequency characteristic is flat, to within plus or minus one decibel between 100 and 10,000 eyeles, and is unaffected by the volume-control setting. The over-all amplification, with average tubes, is approximately 85 db , and each of the two output stages delivers 800 mw of undistorted power. The frequency characteristic of the two output stages shows a maximum deviation of 0.1 db from each other.
11. Bridging Amplifier. One of these amplifiers is required for each recording machine, its principal function being to prevent variation in individual recording cireuits from introducing any loss or distortion to other circuits. It divides the electrical-eirenit output from the main amplifier, depending upon the number of amplifiers eonnected to the bridging bus. It is essentially a power amplifier, with the input transformer arranged for a high input impedance, making the bridging of several of the amplifiers across the main bus practical.

The bridging amplifier outputs are connected to the film and wax reeording maehines in the recording room. The wax recorder requires
approximately $+8-d b$ volume level, and the film recorder around +0 db .
12. Film Recorders. [ip to the point of the recording machine, all methods of sound pieture recording are essentially the same. The types of recorders differ in detail for different systems, depending upon whether they are designed for variable-area or variable-density recording. Where recording units are separate from the cameras, they are mounted on machines usually located in other parts of thestudio, but comnected to the same electrical motor system for maintaining synheronism with the cameras. In the case of somed-film eameras used in news-reel and similar work, recorders are mounted directly on the cameras.
13. The RCA-photophone recorder used for variable-area recording consists essentially of a sensitive galvanometer or vibrator, with an optical system for focusing the reflected light on the film sound track. The vibrator itself consists of a flat, wire ribhon 0.005 in . wide and 0.0005 in . thick, set in a vertical position over two bridges spaced approxi-


Fig. 6.-Schematie diagram RCA-photophone recorder. L/, exposure lamp; $A_{1}$, spherical lens; $A_{1}$, light stop; $A_{2}$, Ralvanometer lens; 1 , mirror; $S_{2}$, scale; $C L_{4}$, cylindrical lens; $A$, spherical lens; $A s_{\text {, }}$ aperture slit; $O$, microscope objective.
mately $7 / 16$ in, apart. This ribhon loop is placed under tension by means of a small spring attached to an ivory pulley, at the closed end of the loop. The ends of this ribbon, the two parts of which are spaced 0.01 in, apart, are attachod to hinding posts which in turn are connected to the output of the main amplifier.

At a point midway between the bridges, a tiny glass mirror is cemented to the riblon loop. The vibrator is mounted between the poles of a permanent magnet, so that the ribhons are placed across the plane of greatest magnetie flux. The resonance period of this vibrator is approximately 6,000 cycles, its own response not being greater than 5 or 6 db . The whole vibrator unit is immersed in a container filled with a clear mineral oil to provide the necessary damping medium. Approximately 100 ma will give full-scale deflection to the vibrator. The sound track produced with such a recorder is shown in Fig. 16 .
14. The Western Electric light-valve recorder consists essentially of a duralumin ribhon suspented in a phane at right angles to a strong magnetie field. The ribbon is approximately 6 mils wide and $1 / 2$ mil thick. This ribbon is stretehed by means of an adjustable spring over a bridge
having a narrow slit for passage of the light from the recording lamp through the optical system to the film.

Set screws are provided to center accurately the ribbon over the slot, which is approximately 8 mils wide and 250 mils long. The ribbons are spaced 1 mil apart for recording. A microscope is provided for checking this spacing.

The ribbon is tuned after proper spacing on the valve to approximately 8,500 cycles, so that its natural period will be outside the range of ordinary recording frequencies. A diagram of the optical system using a light valve for recording is shown in Fig. 7. The light source is provided by a special lamp having a horizontal filament. The lamp socket mounting is so adjustable that the filament can be focused properly on the light-valve slit. The sound track produced is shown in Fig. $1 a$.


Fig. 7.-Optical system used in light-valve recording.
15. Glowlamp Recorder. This consists of a two-element gaseousdischarge tube which varies its illumination in accordance with the voice currents impressed on its circuit. This produces a variable-density sound track similar to the light-valve method. The Aeolight, used by Fox Films Corporation, is one of the recorders in this class. The lamp is not focused upon the film, but a portion of its illumination is allowed to pass through a quartz slit which is in contact with the film. The glowlamp is mounted in a holder with a base of quartz glass 0.2 in . square and 20 mils thick, having a silver coating. This silver coating is engraved, making a narrow slit approximately 0.01 in . long by 0.0008 in . wide. The base is then covered with a thin quartz glass which is only 1 mil thick at the point opposite the engraved slit. The slit is mounted on a floating metal shoe, which is a part of the lamp holder. The lamp holder is inserted in the camera base in contact with the film, so that the sound record is made at a predetermined distance from the picture aperture, this being a standard distance for all sound-picture recording.

The recording level for the Acolight is approximately +12 db . All lamps have a steady d-c component impressed, which causes them to burn at a predetermined exposure. This exposure is modulated by an a-e component due to the introduction of voice currents from the recording amplifier. The resulting output is a variable-density sound traek similar to that shown in Fig. 1a. The illumination from a glowlamp is approximately proportional to the amount of current flowing through it, within the normal recording range.
16. Portable Sound Cameras. All of the above recorders are adaptable for mounting directly on the camera itself. This method of mounting is used for news-reel and similar work requiring portable equipment. The portable cameras are essentially the same, the sound recorders differing only in details for mounting purposes.

## MOTOR SYSTEMS

17. Synchronous Motor System. When recording sound for motion pictures, it is essential that the cameras and recording machines (if separate, as in studio installations) are run in exact synchronism and at the desired speed. The systems in general use to accomplish this differ considerably in details, but are standard as regards speed of film, which is 90 ft . per minute.
18. Interlocking Motor System. The Western Electric system consists essentially of a system of interlocking synchronous motors. Each piece of apparatus of the recording system, camera, film reeorder, disk recorder, etc., is provided with a separate motor. These are controlled by a distributor which is in turn driven by a constant-speed motor using a vacuum-tube control circuit for maintaining accurate speed. Each motor of the synehronous system has a phase-wound rotor and a phasewound stator. The three terminals of the stator windings of all motors,


Fig. 8.-Interlocking motor system for driving camera and recorders in synchronism.
and also similar terminals of the distributor stator, are connected to a source of 220 -volt, 50 - or 60 -cycle, three-phase power supply. The three terminals of the distributor rotor windings, which are brought out through slip rings, are similarly connected to the rotor windings of all motors in the system. The distributor is direct-coupled to a d-c motor, whose speed is regulated by a special control circuit. A simplified schematic of the interlocking motor system is shown in Fig. 8. Prior to starting the system, a definite synchronizing mark is made on the film by a punch mark in the cameras and recorders.

Alignment of the motors prior to starting is accomplished by closing align switch 1 and 2 in order, which places single-phase exeitation on the system prior to actual starting. This will usually bring all motors in alignment prior to actual starting. Closing of the start switch will apply the other two phases of the stator winding, and also add d-c power to the distributor motor, simultancously. All motors of the system thereafter run interlocked.
19. Non-interlocking System. This system involves the use of synchronous motors connected directly to a source of 110 -volt a-c 50 - or 60 -cyele power supply. Each piece of the apparatus of the recording
system is driven by a separate motor, as in the interlock system. No preliminary alignment, however, is made prior to starting. When ready to record, the main power-supply switch for the particular recording channel is closed, starting all motors together. When up to speed (a few seconds later), a fogging system is operated, to mark a definite synchronizing point upon the film in the cameras and the recording machine. This mark provides a means of matehing the sound record with the pirture at the proper point when they are combined later for printing.
20. Motor System for News-reel Outfits. Motors for this purpose consist of a small d-c motor of conventional design, connected directly to the camera in some cases, or through a flexible shaft. A source of direct current, usually supplied by storage batteries, furnishes the necessary motive power. A rheostat is provided in the motor circuit for speed adjustment, which is usually required due to temperature changes. A tachometer is connected to the motor shaft, to check the speed.
21. Motor System for Location Trucks. Motors for this purpose are usuably of the interlocking type similar to those used in studio installations, though the system is greatly simplified by elimination of motor switching panels and other auxiliary apparatus.

## SOUND-FILM PROCESSING

22. Film-recording Technique. This includes the various steps involved in adjusting the electrical recording circuits, recording lamps, printing machines and processing of film to obtain the desired results in the finished product, the whole object being to recreate the original sounds recorded in the best possible manner. Two distinct methods of processing sound film are in use, one for variable-density recording and the other for variable-area recording.
23. Photographic Analysis, Variable-density Recording. In this method of control the general problem is to obtain a sound-positive print which is proportional to the original negative-film exposure which it represents. This may be best explained in the following analysis: reference is made to the law of proportionality for film emulsions first described by Hurter and Driffield and generally referred to as the $H \& d$ curve of the emulsion. Typieal $1 / \nless D$ curves are shown in Fig. 9, in which the resulting density $D$ is plotted against logarithm of exposure $E$. These curves indicate a curved "toe" in the region of underexposure, and a curved "shoulder" in the region of overexposure. The section between approaches a straight line the slope of which determines the gamma ( $\gamma$ ) or contrast factor for the film. Up to a certain point, gamma increases for the time of development.

The extension of the straight-line portion of the curve intersects the log $E$ axis, and determines the inertia $i$ of the film.
The purpose of the proper photographic control is to obtain the relation between the gamma of the negative and positive film, so that the "over-all" gamma will equal unity.

The straight-line portion of the $H \& D$ curve, for a given gamma, may be represented by the equation
where

$$
\begin{align*}
D_{0} & =\log \frac{1}{T_{0}}=\gamma\left(\log E_{0}-\log i\right)  \tag{1}\\
T_{0} & =\text { transmission } \\
I_{0} & =\text { density }
\end{align*}
$$

$$
\begin{aligned}
\gamma & =\text { slope of the straight-line portion of curve } \\
\log E_{0} & =\log \text { of the exposure at any point } E_{0} \\
\log i & =\log \text { of the inertia point of film. }
\end{aligned}
$$

Equation (1) may be written

$$
\begin{equation*}
T_{0}=K E_{0}-\gamma \tag{2}
\end{equation*}
$$

This relation also holds for both negative and positive film, as (2) may thus be written

$$
\begin{align*}
& T_{n}=K_{n} E_{n}-\delta_{n}  \tag{3}\\
& T_{p}=K_{p} E_{p}-\delta_{p}
\end{align*}
$$

Where the subscripts $n$ and $p$ designate negative and positive film, and $K$ factors are constants.

The process of printing consists in exposing the film to a constant light $P$, modulated by the transparencies of the interposed negative, which is in contact with the film during this operation. The following relation thus holds

$$
\begin{equation*}
E_{p}^{\prime}=P T_{n} \tag{4}
\end{equation*}
$$

Substituting in the above equation we arrive at the expression which determines the over-all relation between the original exposure of the negative and the resulting transmission of the positive.

$$
\begin{equation*}
T_{p}=P E_{n}^{\gamma n \gamma \nu} \tag{5}
\end{equation*}
$$

The exponent $\left(\gamma_{n} \gamma_{p}\right)$, or the product of the negative and positive gamma, should equal unity, if we are to have the required condition of proportionality between negative exposure and positive transmission. Within certain limits the over-all gamma should equal unity, and upon this relation depends the success of the variable-density recording. These limits have been determined in actual practice to lie somewhere between 0.8 and 1.2 ,

The values given below may be taken as averages in using the variabledensity method of recording -

$$
\begin{aligned}
& T_{n}=18-25 \text { per cent } \\
& T_{p}=18-25 \text { per cent } \\
& \gamma_{n}=0.55-0.65 \\
& \gamma_{p}=1.9-2.3
\end{aligned}
$$



Fig. 9.-Typical $H \& D$ curves showing relation of $\log E$ to density to produre "gammas" of different values.
24. Toe Recording. This method of recording represents a variation in normal variable-densitv recording, by using the lower part or "toe"
of the typieal $I / \& D$ eurve for recording. This method has been found applicable where the original positive may be used for processing and later used for reproduction of the sound without making a print from it. Also in re-recording operations where improved quality is claimed due to greater density in the sound positive print, resulting in less ground noise.
25. Photographic Processing of Variable-area Recording. The only factors which may be altered appreciably by improper photographic treatment of variable-area sound films are the high-frequency response and the volume range which can be reproduced.

The volume range which can be reproduced is ehiefly a function of the negative and positive densities. The limiting values of density between which a maximum volume range may be obtained are quite broad. Maximum response at high frequencies is secured by obtaining the maximum resolving power of the film. This depends upon the negative and positive densities, and upon the contrast of the sound track being recorded.

In the variable-area recorder, this later factor is not critical. The image contrast is at least ten. With the various positive-film stocks now in use, which have been chosen for their high resolving power and contrast, all that is neressary to work for is a density of about 1.3 in both negative and print. This value will supply both a sufficiently high resolving power to minimize the high-frequency loss and a density of the opaque side of the track, together with a fog value of the clear side necessary to provide a maximum volume range.

High-frequency losses are a minimum with negative and print densities between 0.8 and 1.6. The high-frequeney response is altered only very slightly in this region. Since a maximum volume range may be obtained with a negative density of 1.0 or higher, and a print density of 1.3, both requirements are therefore satisfied by the same values of density.

In cases where the negative density is not so high, if the print density is correspondingly redured, the volume range lost will not be nore than approximately 4 dh. In no case will variations over even somewhat wider limits than those previonsly deseribed eause non-linear distortion.

Variable-a rea sound track may be developed to practically any gamma as long as sufficient exposure is provided to insure a negative density within the range mentioned, that is, between 0.8 and 1.6. This allows the variable-area method to be employed either in cameras for simultaneously taking pirtures on the same film or in separate film recorders.

The latter procedure is also applicable in variahle-density recording.
26. Kerr-cell Recording. The action of this cell is similar in effect to the light valve, in permitting light to pass through its narrow slit to the film behind, in varying quantities above and below a mean value, aceording to the signal fluctuations impressed upon it. The satisfactory working of the Kerr cell depends chiefly upon the accurate determination of its mean track value. The factors which go toward this, assuming a constant slit, are the d-e voltage across the electrodes, and the recorderlamp brightness. The signal itself is superimposed upon this steady potential. If we assume a voltage of 700 across the eefl, and an anode swing of 200 volts, the result of the complete cycle would be a rise to 900 , back to 700 , a drop to 500 , and back again to 700 volts. This represents approximately the range to prevent overloading.
27. Noiseless Recording. A modification in recording technique provides a means of increasing the density of the sound track for variabledensity recording, and a similar method, applicable to variable-area recording, for blocking off a portion of the sound track producing the same results.

For variable-density recording (using a light-valve), a portion of the voice-current energy is tapped off the system, and sent through a biasing amplifier, which in turn changes the spacing of the light-valve ribbons during the periods of low modulation. The normal spacing of the lightvalve ribbon of 1 mil is thus reduced to approximately 0.3 mil . The average spacing of the ribbons follows the envclope of the modulation. The general density of the print is high during intervals of low modulation


Fic. 10.-(a) Typical variable-area sound
track; (b) and (c) cal variable-area sound
track; (b) and . (c) methods of obtaining methods of obtaining
anti-ground
noise recording by blanking off clear portion of track. and less during intervals of high modulation. This resulting increase in the density of the sound positive print reduces ground noise about 12 db . This method also acts as a means of increasing the volume range of recording by approximately this amount. An example of the effects of noiseless recording is shown in Fig. 1c.

For variable-area recording, a portion of the voice-current energy is diverted and passed through a biasing amplifier which actuates the oscillograph obversely; that is, the serrations which are normally along the center of the sound track are moved over to the edge as shown in Fig. 10. A further modification in this method is made wherehy the serrations always remain in the middle of the track but the clear portions of the print are matted out by an auxiliary light-blocking device.

## DISK RECORDING

28. Necessary Equipment. Equipment necessary for disk recording consists essentially of a machine lathe especially designed to turn the wax record at a uniform speed, which is $331 / 3 \mathrm{r}$.p.m. for motion-picture work. The carriage of the lathe is driven with a lead screw carefully machined to move the recorder holder at a predetermined rate while cutting the wax record. The lead screw is driven through a gear train which regulates the number of grooves cut per inch, usually 86,92 or 98 . A recorder holder provides the neeessary support for the electrical recorder. The proecss of recording programs on wax disks for later modulating a radio transmitter, known as electrical transcription, is essentially the same as the process described here.

A horizontal turntable, driven through a vertical shaft, is provided for supporting the wax record. The vibration of the driving motor is eliminated on different lathes by various methods. The Western Electric lathe uses an oil dashpot placed below the lathe bench, and through which the vertical shaft of the turntable is driven. This dashpot provides the necessary damping to insure smooth recording on the record. The motor driving the turntable is run in synchronism with the camera motors.

A microscope, suitably mounted, is usually provided for observing the grooves of the wax during actual recording operations.
29. Disk Records. The grooves of a disk record are ordinarily spaced about 92 per inch. This allows about 0.011 in . from center to center of the groove, of which 0.006 in . is the width of the groove itself. The maximum lateral motion of the stylus is thus limited to about 0.0025 in. on either side. Generally, 0.002 in . should not be exceeded. Cutters generally used are designed as constant-velocity devices. In practice such cutters have this characteristic only above 200 cyeles. Below this point, the amplitude is independent of frequency. If the maximum amplitude for a 200 -eycle wave is equal to 0.002 in . on either side of the center, then a 1,000 -cycle amplitude for the same electrical input level would be 0.0004 in .
30. Recorder Attenuator. This unit is usually provided for controlling the relative volume level of the voice currents actuating the electrical recorder. It is connected in the circuit between the output of the final amplifier and the terminals of the recorder or recorder-control box, thence to these terminals.

The recording machines on the market differ in details but consist essentially of the above units.
31. Determining the Starting Point. Disk records for sound pictures are cut from the inside out--just the reverse of regular phonograph records. To obtain a definite starting point for the records when in use, the first groove is spaced an apprcciable distance from the rest of the cut. This is oltained by a coarse speed cam actuating the lead screw at the start of recording. As the lead screw makes its first complete revolution, it moves the recorder under the influence of the cam until the recorder is in its normal cutting position.
32. Electrical recorders provided for disk recording are generally designed so that the average linear velocity of the stylus (which may be expressed as the frequency times amplitude) is proportional, over a wide range of frequencies, to the impressed voltage. The method of damping the moving system varies with different records. The Western Electrie recorder uses a rubber tube about $1 / 2 \mathrm{in}$. in diameter and 8 in . long, one end of which is fitted to the armature assembly and the other end free. Oil is sometimes used to damp the armature movement in other types of recorders.
33. Cutting stylus consists of a sapphire or other hard point fastened to the lower end of the stylus arm. One end of the sapphire has a rounded point about 0.002 -in. radius, and a cutting angle between 86 and 88 deg. for the sides.

The advance ball is a small cylindrical sapphire, ground spherically at one end and held in an adjustable mounting attachment to the recorder. This ball supports the weight of the recorder and the arm being adjustable, permits regulation of the depth of the groove on the wax.
34. Play-back reproducer is provided to permit playing back the wax record immediately after it is eut for rehearsal work and test. This usually renders the wax unsuitable for processing, and for this reason, two wax records are usually provided for each recording channel, one of which can thus be used for play-back and the other for processing. The pressure of the needle on the wax is generally adjusted to between 15 and 20 gram.

A needle provided for playback from the soft wax is designed differently from the ordinary needle used for the finished hard record. The Western

Electric type has a point 0.003 -in. radius. The needle is constructed on a mandrel, ground to a smooth finish, and the point given a chromium plate to improve wearing quality.
35. Checking Speed. The periphery of the turntable is usually divided with vertical lines, so that a neon lamp, operating from a 60 -cycle source, may be used as a stroboscope to ohserve the turntable motion. The lines on a standard turntable are usually arranged so that with 60 cycles on the lamp, as the turntable rotates at exactly $331 / 3$ r.p.m., the lines will appear to be stationary. If faster than $331 / 3 \mathrm{r} . \mathrm{p} . \mathrm{m}$. ., the lines will advance slowly, and if slower than $331 / 3$ r.p.m., the reverse will be the case. A check of the speed should be made with the wax record on the turntable.
36. Checking the Damping Action. A method of checking the instantaneous constant speed may also be used to check correct damping of the turntable. With the turntable rotating at normal speed, the oscillator for supplying 60 -cycle source to the neon lamp may be adjusted until the vertical lines appear stationary. If the disk is now touched lightly hy hand, the line or spot observed will appear to shift its position owing to momentary load. As soon as the hand is removed, the line or spot observed should come baek to its original position. Observing the movement will determine whether the turntable has insufficient damping or too much damping.
37. Wax-suction Equipment. This equipment is provided to furnish a means of removing the shavings from the wax record during recording. The suction tube is so placed that the shavings thrown off by the stylus are carried away from the face of the wax. A central suction system is usually provided in studios having several recording channels. This usually consists of a turbine suction pump with pipe lines leading from a central suction point to a separator tank placed in each recording room. In some smaller installations, an individual bell jar, with a small suction motor, is used for each turntable.
38. Wax Preparation. Two types of waxes are generally used in sound recording, those having a working temperature of $75^{\circ} \mathrm{F}$., and those with a working temperature about $90^{\circ} \mathrm{F}$. Matthews type M, $75^{\circ} \mathrm{F}$. working temperature, is perhaps most commonly used. It is considered good practice to maintain the room temperature for the type $M$ wax around $75^{\circ} \mathrm{F}$, when recording.

The procedure for preparing the wax consists briefly of the following steps:

1. At the center of the wax, which is usually indicated by a cross mark, a $9 / 32$-in. hole is drilled to a depth of $1 / 2 \mathrm{in}$.
2. A record cut is made for a depth of about $1 / 8 \mathrm{in}$. on one face of the wax and repeated as necessary to obtain a perfectly flat surface. The wax is later reversed, the first cut surface becoming the base for the finished wax.
3. On reversing the wax, a hole is cut from the other side to meet the hole drilled on the bottom.
4. A course cut is now made on the top surface and repeated where necessary to produce a smooth and flat surface. The wax is now ready for the final shaving or polishing cut, which is done with a sapphire or ruby cutting tool.
5. The face of the shaving knife is usually set at an angle of between 40 and 50 deg. to its line of travel, depending upon the particular design of the knife. Its rounded end is toward the center of the wax. The cutting face of the knife is set at an angle of 90 deg. to the surface of the wax. The turntable revolves in a counterclockwise direction.
6. The suction nozzle is placed close to the cutting knife, about $1 / 8 \mathrm{in}$. from the front face and $1 / 32 \mathrm{in}$. above the cutting edge.
7. The best finishing speed is usually determined by experience, but generally ranges from 150 to 160 r.p.m. The finished cut on the wax should give a perfectly polished surface free from ripples or blemishes of any kind.
8. Record Processing. Briefly, this eonsists of the various steps after obtaining the soft wax record, to produee the final hard record for commercial use. A complete deseription of each step would go beyond the limits of this chapter. The following are the essential steps in this process:
9. The surface of the soft wax is rendered conductive by spreading a very thin, extremely fine conducting powder, such as graphite, over its surface.
10. Electroplating of this record. The negative electroplate obtained is used to hot-press a molding compound, such as shellar, mixed with a finely ground filler. The first electroplate obtained is called a master.
11. Two test pressings are made from the first master, after which it is electroplated with a positive.
12. This positive is referred to sometimes as an original. From this positive a metal mold or stamper record is made.
13. From this record, duplicate originals may be made, and from them duplicate molds or stampers. By thus making a number of duplicates, it is possible to protect the original master from injury, or danger of destroying a valuable record.
14. From each stamper it is possible to obtain as many as 1,000 finished pressings.

## SOUND-FILM STANDARDS

40. S.M.P.E. Standards. The dimensional standards for film adopted by the Society of Motion Picture Fngineers are given complete in the transactions (see Journal of the S.M.P.E., Nay, 1930). The dimensions given below refer in particular to those affecting sound film.


Fig. 11.- (a) Position and dimensions of scamning line; (b) standard dimensions of sound track on $35-\mathrm{mm}$. film.

1. Taking speed for standard $35-\mathrm{mm}$ sound pictures is 24 pictures per second.
2. Projection speed for standard $35-\mathrm{mm}$ sound pictures is 24 pictures per second.
3. Scanning line for combined sound and picture on $35-\mathrm{mm}$ film is located at an average distance of 14.5 in . measured along the film, below the center of the picture gate. The transverse position, relative to the guided edge of the positive film, and dimensions of the scanning line are given in Fig. $11 a$.


## Fig. 12.

Fig. 12.- (a) Standard dimensions for $35-\mathrm{mm}$ positive film; (b) dimensions for $35-\mathrm{mm}$ negative film; variation is in dimensions of sprocket holes.

Fig. 13. -Standard dimensions for $16-\mathrm{mm}$ positive and negative film.
The location and width of the sound track on combined sound and picture positives are shown in Fig. $11 b$.

The dimensional standards for standard negatives and positive $35-\mathrm{mm}$ film are given in Fig. $12 a$ and $b$. The dimensional standards for $16-\mathrm{mm}$ positive or negative film are given in Fig. 13.

## THEATER REPRODUCING EQUIPMENT

41. Sound Head. For reproducing sound in the theater, the projection machine is fitted with a "sound head" for sound-on-film reproduction, and a disk turntable, driven in synchronism with the picture film, when reproducing from the professional $331 / 3-$ r.p.m. phonograph record. Owing to the improvements made recently in film recording, the practice of releasing sound films with accompanying records is rapidly disappearing. It is expected that shortly all sound pictures will be on film only.

The sound head for reproduction from films consists essentially of an exciting lamp to provide a strong light source, an optical system for focusing the lamp filament on the sound traek, an aperture plate and tension pad to hold the film in focus while passing the sound gate, at photoelectric cell to register the light variations, and an associated PEC' amplifier. All of this equipment is suitably housed and mounted just beneath the projector head. Typical sound heads are shown in Figs. 14 and 15.

The sound gate is placed $141 / 2 \mathrm{in}$. from the picture frame and in advance of the picture. This is standard for all types of machines. From the relative


Fig. 14.--Schematic diagram of sound head (Western Electric), showing principal units required for reproducing sound from film.


Fig. 15.-Schematic diagram (RCA-photophone) showing path of film through sound head.
position of the sound gate to the picture aperture, it is not possible to put the sound track opposite the corresponding picture frame. Furthermore, the pieture moves intermittently before the projection lens, but the sound track must move at a constant speed in front of the sound gate. A certain amount. of slack is thus necessary to allow for this sontinuous motion.

To prevent vibration from the projector, the PLC amplifier is usually suspended by springs in a special frame adjacent to the photoelectric eell. To overcome this vibration one sound equipment has a light heam refleeted from the sound gate to the photoelectric cell and associated amplifier removed from the projection machine proper.

With the advent of a new type of caesium photocell having a high output. as well as certain liquid cells having a low impedance, it has been found practical to mount the associated PEC amplifier remote from the projection machine to avoid this vibration.

Identical equipment may be used for reproducing from a variable-area or variable-density sound track. The lamp filament and optical system must be adjusted so that the optical slit projected on the film is at 90 deg. to the motion of the sound track. The dimensions of the light slit focused on the sound track is $0,001 \mathrm{in}$. high by 0.080 in . wide. The sound-track standard width is 0.100 in .; therefore an allowance of 0.010 in . on each side is allowed for variation in the lateral position of the track in passing through the sound gate. This allowance has been found necessary in practice to prevent stray sounds from being picked up by light modulation from the edge and possibly outside the sound track.
42. Uniform speed, in reproduction, is extremely essential, as a variation greater than one-tenth of 1 per cent might be perceptible to the ear. The standard projection speed is 90 ft . per minute for sound film-the same as in recording. To maintain this constant speed, the usual projection motor is replaced by a special projector-drive motor and associated speed control units.
43. D-c Motor Drive. Where d-c motors are used for the projector drive, the speed is maintained constant by changing the resistance of the motor field circuit. For this purpose, some form of centrifugally operated moving contact is employed, which is mounted on the motor shaft. As the motor speeds up, the centrifugally operated weight moves out from the shaft and this allows the moving contart to approach the stationary contact. When the motor reaches the desired speed, the moving contact touches the stationary contact, which short-circuits the resistor in the field circuit. The resulting increase in field-current strength causes the motor to slow down.

When the motor slows a little, the contacts open, and this cuts out resistance in the field circuit. This causes the motor to speed up. This operation, occurring very rapidly, opening and closing the fieldcircuit contact, causes the motor to operate at a practically constant speed.

A more elaborate motor-control system has also been developed by Western Electric, in which a vacuum-tube control circuit is used to control the speed of the projection-drive notor.
44. Synchronous Motors. Various types of synchronous motors are used where a source of a.c. is available. Such motors are very satisfactory for driving sound projectors, because of the extremely uniform speed which they maintain. This is due to the limits maintained in the frequency of the power supply. Where such frequency is subject to a variation of only one cycle on cither side of the standard 50 - or 60 -cycle supply, the change in frequeney usually takes place so
slowly, due to the mass of the generating equipment, that actual change in projection speed is hardly discernible.

To prevent too rapid acceleration of a-c motors when connected directly to the a-e line, an acceleration which would cause an undue strain on the projection equipment, resistor mits are added in each line or in at least two of the lines where three-phase supply is used.

Different classes of symehronous motors are available for projector drives. A 220 -volt, 60 -cycle, three-stage synchronous motor, with a two- or four-pole construction, is one of the standard types used. Also, various types of single-phase motors have been adopted for the projector drive. These may be either the single-phase repulsion-indaction type or the split-phase starting-induction motor type. The starting mechanism for a common type of repalsion-induction trpe consists of two brushes mounted so as to make contact with the commutator, with a resistor to prevent too rapid aceelcration, and some form of centrifugal mechanism for shorting out the commutator after the motor has attained rumning speed.
45. Disk Sound Records. The records used for sound reproduction are played on a turntable, suitably damped to reduce vibrations of the driving mechanism and driven in synchronism with the film pieture. speed of rotation is $3: 31 / 3$ r.p.m., the satme as for recording, and corresponds to 90 ft . per minute of the film speed. Wach disk record is plainly marked with a starting point on the first inside groove, which is placed an appreciable distance from the rest of the cut. Records will play approximately 11 to 12 min ., and the accompanying film reel, made to show with this record, is eut to run the same length of time.

For synchronous reproduction of the sound, the record and picture must coincide at all times. Exeept for mishaps, such as the needle jumping a groove or breaking of the film, sound and picture will remain in synchronism, if started properly.
46. Reproducers used for disk reproduction are of the electromagnetic type, and generally of high quality, to insure good response over the desired frequeney range. Oil-damped piek-ups are extensively used to overcome the effects of resonance. Recent improvements in pirk-ups have tended to reduce the mechanical imperdane at the needlepoint so that the undulations of the groove are followed more closely, without the necessity of heavy pressure at the bearing surface. A high-quality reproducer now available will give a fairly uniform response of 30 to 7,000 eycles.
47. Turntable. The same motor used to drive the projector mechanism is used to drive the disk turntable. This may be done be chain sprockets, belt drive, flexible shafting, or direet-shaft compling. In all eases, some form of damping is necessary to overome sudden and small variations in speed of the driving motor, which causes "wows" when phaying a record. The damping mechanism varies for different systems. In some cases a flywhed is used, which is driven through a set of damping springs. In others, the driving force is communicated to the turntable through an oil dashpot mounted directly underneath the turntable.
48. Input Control Panels. In theater equipment, various pieces of apparatus are required to control the cirenit between projectors and amplifiers. These include a film-disk transfer switch, a potentiometer for exciter-lamp control, control circuit for horns, faders for
changing sound output from one projector to another during a continuous show, amplifier switches, ete. The film-disk transfer switch, which is generally provided on each projector, is for the purpose of changing the output from the film or disk record so that one or the other is always connected to the input of the main amplifiers.
49. Theater Horns. The size, type, and number of horns used for reproduction in the theater varies for different systems. In general, the volume of the auditorium in cubic feet governs the number of units required. Two types of horns have been most commonly used, the exponential type and the electrodynamic-eone directional baffle.

The rereiver unit used with the various exponential horns have a thin diaphragm of the order of 0.002 in . thick to which is mounted a flat eoil of wire or ribhon, wound on edge. The passage of voice currents through this coil interacts with the magnetic field and causes the diaphragm to move in and out. The diaphragm vibrates very much like a plunger. The receiver is attached to an exponential horn which isolates a column of air from the surrounding medium. This air column carries the necessary load of the receiver and also acts as an acousticcoupling medium between the receiver and the mouth of the horn.

The loud-speakers are usually placed behind the pieture screen to obtain the necessary illusion that the sound is coming from the action on the screen. This necessitates using a screen which will have the neeessary acoustic properties for the passage of sound, as well as lightreflecting characteristics for the pieture. Various forms of screens have thus been developed to meet these requirements. In general the screens are of a heavy opaque material covered with a diffusing reflective surface perforated with small holes to approximately 25 per cent of the total area.

As the screen perforations increase, the sound transmission increases, but picture clearness falls off; hence a satisfactory mean is struck between the two. No serious losses are experienced with good screens up from 6,000 to 7,000 eycles.

## INDEX

## A

Absorber, spark, 474
Absorption coefficient for common materials, 408
Acoustic impedance, 406
A coustic messurements, 429
Acoustic reactance, 4*7
Acoustics, 403
Air gap, 64
Aircraft, antennas, 524
blind Isnding, 535
power equipment, $\ddagger 22$
radio, 511
radio systems for muiding, 525
radiotelephone, weights of, 521
receivers, automatic volume control for, 534
shielding and bonding in, 524
Airplane, direction finder, 525
engine ignition shiolding, 524
equipment, 517
radio, power requirements for, 518
Alternating-current circuita, general characteristics, 31
Alternator, Alexanderson, 460
Goldschnidt, 461
Altimeter, absolutt, 540
eapacity, 540
reflection, 541
Ammeters, characteristics of a-c, 151
Ampere turns, 51
Amplification, calculation, 199
d-c, 495
factor, 198
measurement, 199
Amplifier, audio, 281, 291
bridging, 559
cascade, 310
Class A, 300
Class 13, 297, 319
Class C, 320
direct-coupled, 281
d-c, 291
impedance-coupled, 301
intermediate-frequency (i-f), 329
linear, 320
Loftin-White, 292
modulated, 269
neutralized, 316
photocell, 495
power, 295-297, 336

## r-f, 300

regeneration in. 314
resistance-capacity coupled, 281, 300
speech input, 363
stage gain of a-f, 281
three-electrode, 204

Amplifier, transformer-coupled, 281, 335
transfornier-coupled r-f, 304
untuned r-f, 329
Anderson bridge, 180
Antenna, aircraft, 524
leverage wave, 468
directional, 468
directive-transmitting, 539
harmonic frequencies, 37
high-frequency reactance, 38
input systems, 325
long-wave, 463
low-frequency reactance, 37
magnetic field, 36
multiple-tuned, 464
resistance, 38
vertical, 36
Anti-resonsnce, 111
Arc transmitters, 462
Arcturus photolytic cell, 553
Ardenne, 13aron von, 487
Astatic qalvanometer, 151
Attenuation constant, 131, 136
Attenuator, 311
recorder, 567
Audibility, threshold of, 413
Audio-amplifier, stabilizing network, 281, 291
Audio-rircuit, capacity-coupled, 288
inductively coupled, $28: 3$
resonance, 286
time constant, 299
Austin-Cohen transmission formula, 458
Ayrton-Mather electrostatic voltmeter, 158

## 13

B-II curve, 34
Bain, Alexander, 492
Baker, T, Thorne, 509
Balanced circuits for facsimile, 496
Baldwin telephone, $15: 3$
Band-elimination filter, 142
13and-pass filter, 129, 143, 311
13and width, 444
for modulation, 277
Barkhausen-Kurz oscillations, 451
Bart-Lane system of facsimile, 509
I3artholomew, II. G., 509
Leacon, aural-type, 528
boundary-marker, 538
double-modulation, 531
runsway localizing, 538
triple-modulation, 532
visual-type, 529
Keam, landing, 537, 538
lleat frequency, 171

Recquerel effect, 551
ISell System facsimile, 509
ßeverage, H. H., 509
Beverage wave antenna, 468
Boltzman law of radiation, 197
Bonding in aircraft, 524
Brake, thermionic, 508
13 ridge, Anderson, 180
Burgess selenium, 552
Carey Forter, 173, 181
llay, 178
Heaviside equal-arm, 181
Kelvin double, 173
Maxwell, 178
measurement, errors in, 176
Owen, 178
resonance, 179
Schering, 177
Wien, 179
Broadcast transmitters, harmonics in, 369
1 Proadcasting, 354
Burgess selenium bridge, 552
C
C bias for detection, 263
C light, 497
Cables, large-gage, 132
Cameras, portable sound, 561
Capacitance, definition of, 2;3, 81
grid-plate, 217
interelectrode, 215, 301
measurement, 99, 165
Capacity, 79
calculation, 88
chart, 18
specific inductive, 81
Carborundum, 245
Carey Foster bridge, 173, 181
Carrier suppression, 272
Cascade amplifiers, 310
Case, T. W., 551
Cathode-ray tube, 161
oscilloscope, 275
study of transient phenomena by, 163
timing axis for, 162
Cell, Arcturus photolytic, 553
selenium, 550
selenium FJ- 31,552
Thalofide 551
Weston photronic, 553
Centimeter of capacity, 79
Characteristic impedance, r-f line, 134
transmission line, 131
Chokes, imperfect, $2: 37$
Circuit, absorption modulation, 263
audio-resonance, 286
balanced facsimile, 496
characteristics of a-c, 31
compensation, 286
coupled, 123
design, oscillator, 222
equations, 29
harmonic-measuring, 325
magnetic, 33
magnetron oscillating, 241
neutralizing, 315
output-measuring, 325
parallel, 116
parameters, 29
preselector, 129

Circuit, selector, 129
series resonant, 113
short-wave, 240
split-tank, 121
table of constants, 5
time constant of audio, 299
tone-control, 473
Circular mil foot, 41
Class 13 output tubes, 337
Coaxial conductor transmission line, 135
Code, business, 453
Continental, 454
frequency range, 455
reception, 453
standard, 45:3
transmission, 453
Coefficient of coupling, 124
Coercivity, 34
Coil, universal wound, 328
Coil antenna, field, 37
approximate wave lengths, 13
Collodion as binder, 69
Color code, R.M.A., 49
Color-sensitivity curve, 544
Colpitts oscillator, 233, 236
Communication band, authorized width, 18
Commutator, revolving, 499
Comparison measurements, 167
Complex notation, 104
Condenser, design equations, 94
electrolytic, 91
gang, 94
imperfect, 237
inductive and non-inductive, 90
life tests, 102
microphones, 356
resistance measuring, 101
trimming, 94
Conductance, grid, 202 plate, 200
Conductors, materials as, 42
Constant, attenuation, 131, 136
propagation, $1: 31$
wave length, 131, 135
Constantin, 42
Contact potential, 187
Control panels, input, 573
Converter, reed, 533
Copper wire, tensile strength, 12
turns per inch, tables, 12, 13
Coulomb's law, 20
Coupled circuits, 123
Coupling, capacitively, 281
coefficient of, 124
direct, 126
galvanic, 281
indirect, 126
inductive, 127, 281
stray, 130
Course indicator, 533
Critical damping, 146,147
Cross-coil direction-finding system, 526
Cross modulation, 204
Cross-screen analyzing scanner, 493
Crystal control, 369
Crystal detector, 245
Crystal rectifier, 156
Current, circuits for measuring photoelectric, 548
circulating, 388

Current, continuous and alternating, 24
direction of flow, 26
sensitivity, 147
standards, 166
steady-state, 57
stream of electrons, 184
transient, 29
Cutting stylus, 556

## D

D'Arsonval galvanometer, 145
Decibel, 281
chart, 15
Decimal equivalents, 1
Demodulation, 244
of one signal by another, 256
Density, flux, 51
Detection, 244
C bias, 263
characteristic, 244
fidelity curve, 251
grid-current, 251
plate, 250
self-bias resistance for, 260
Detector, 333
biased, 335
crystal, 245
equations, 246
Fleming valve, 335
galena, 245
grid-leak and condenser, 334
heterodyne, 254
high-amplitude, 2.51
linear, 253
to measure modulation, 275
measurements, 250
oscillator, 263
Perikon, 245
power, 333
screen-grid tube as, 258
silicon, 245
triode as, 248
Deviometer, 534
Diamagnetic materials, 33
Dielectrị absorption, 88
Dielectric constant, 81
measuring, 101
Dielectric losses, 40
Dielectric materials, 80
Dielectric strength, 87
Diodes, commercial, 194
Direct-coupled amplifiers, 281
Direct-current motor drive, 572
Direction finder, 353
on airplane, 525
crossed-coil, 526
Directional microphone, 362
Disk, recording sound on, 554
sound records, 573
Dissipation constant, 109
Distortion, measurement of, 293
modulation, 204
percentage, 248
Dot-dash system, 500
Double-button carbon microphone, 359
Double-modulation method, 500
Drysdale potentiometer, 168
Dushman, Saul, 191
Dushman's coefficient, 189
Dynamotor system, 522

Dynatron kink, 211
Dynatron oscillator, 171, 242

## E

Ear, characteristics, 413
Fcho signals, 483
Lickersley, P., 438
Fddy current, 40, 64, 284
Effective resistance, 26, 41
Effective value, 25
Efficiency, lines, 137
Einthoven string galvanometer, 150
Flectric charge, nature, 20
Electric retouching, 498
Electrodyanometer, 150, 151
Electromagnetic field, electrons, 184
energy, 39
structures, 34
Flectrometer, Kelvin absolute, 157
E.m.f., concept of, 22

Electron, 20, 182
affinity, 188
current between concentric cylinders, 192
between parallel plates, 191
in electromagnetic field, 184
in electrostatic field, 182
emission of, 184
Electrostatic voltmeters, 157
Emission, electron, 187
photoelectric, 185
secondary, 185
thermionic, 185
Emission characteristic, 196
Enissivity, thermal, 186
Energy in magnetic field, 23, 39
Energy density, 405
Equalizers, 116
Equations, circuit, 29
Equivalent impedance, 127

## F

Facsimile, balanced circuits for, 496
Bell System, 509
requirements for, 455
scanning in, 480
synchronism in, 489
transmission, 489
use of Neon tubes, 502
Fading, 438
Farad, 79
Farnsworth cathode-ray tube, 479
Feeling, threshold, 413
Felici's mutual inductance, 180
Ferromagnetic materials, 33
Field, coil antenna, 37
energy of electromagnetic, 39
loop antenna, 37
Field localization, 536
Field strength, magnetic, 333
Filament, calculations, 188 design, 189
Filament characteristic, 196
Film, recorders, 560
recording sound on, 554
Filters, 380
band-elimination, 142
band-pass, 129, 143, 311
choke design, 386

Filters, chokes with mutual inductance, 385
composite, 138
condenser ratings, 387
constant-K structure, 140
deaign of wave, 138
graded, 378
high-pass, 142
L-type, 140
low-pass, 141
design chart, 381
tuned, 384
scratch, 116
uniform, 138
waye, 130,138
Fleming valve detector, 335
Flux, magnetic, 33, 51
Flux density, 51
Flying spot, scanning, 477
"Flywheel" effect, 232, 320
Form factor, 25
Four-resistance network, 171
Fourier series, 25:3, 293
Frequencies, allocation of, 445
Frequency, band suppression, 288
converters, 331
intermediate, 349
inversion, 27:3
measurement, 165
meters, 166
modulation, 278
multipliers, 276, 321, 462
peculiarities of high, $4: 34$
regulation, use of resonant circuit, 115
separation, 19
stability, 445
standards of, 167
tolerance table, 19
use of ultra-high, 441
Fulton, Capt. O., 509
G
Galena detector, 245
Galvanometer, characteristic: of a-c, 149 of d-c, 147
D'Arsonval, 145
differential, 148
Einthoven string, 150
moving-coil a-c, 150
vibration, 148
Gause, 33
Generator, engine-driven double-voltage, 523
signal, 324
wind-driven double-voltage, 523
Gilbert, 33
Gill-Morrell oscillations, 451
Glowlamp, 554
Glowlamp recorder of Fox Films Corp., 581
Goldschmidt alternator, 461
Greek alphabet, 1
Grid, 194, 196
conductance, 202
phase-angle corrections, 235
suppressor, 211
Grid-current coefficients, 202
detection, 251
Grid-glow tube, 549
Grid-leak resistance, 229

Groove shape, 556
Ground-station equipment, 512
Grover method, 177

## H

II \& D curves, 563
Harmonic frequencies in antenna, 37
IIarmonic measuring circuit, 325
Harmonics, 25
in broadcast transmitters, 369
Hartley circuit, 221, 233, 236, 270
Hay bridge, 178
Hazeltine neutralized amplifier, 316
Heater charactcristic, 196
Ileaviside equal-arm bridge, 181
Heising modulation, 279
Ifeising oscillator, 271
IIenry, 52
Mertz, Heinrich, 433
II ertzian doublet, 37
Ifeterodyne detector, 254
Heterodyne frequency ineter, 171
IIigh-amplitude detector, 251
High-frequency reception, 433
High-frequency transmisaion, 43:3
High-pass filter, 142
Honeycomb coil data, 68
Horn, 426
flaring, 426
theater, 573
Morton, J. W., 481
Hot-wire meters, 154
Hulburt, E. (1., 435
Hysteresis, 40, 284

## I

Ice, removal, 464
Ignition shielding, airplane engine, 524
Image-frequency ratio, 350
Impedance, acoustical, 406
amplifier, 301, 336
complex or vector, 55
definition, 27, 104
equivalent, 127
input, 132, 136, 281
loss due to series, 110
due to shunt, 110
matching, 292
measurement, 164
of parallel resonance, 123
in parallel, 106
in series, 106
termination, 137
transformers, 137
transinission-line input, 132
Indicator, course, 533
reed, 532
Inductance, 51
bank winding, 66
basket-weave winding, 66
calculation, in air-core coils, 69
chart, 18
coil design, 67
definition, 23
and units, 52
duolateral, 66
Felici's mutual, 180
flat spiral, 66
formula for apparent, 65

Inductance, honeycomb winding, 66, 68 of iron-core coils, 62
layer-wound, 66
Litz wire, 68
measurement at high frequencien, 61
of iron-core, 60
at low frequencies, 58
multilayer, 66,72
toroidal, 66
of various windings, 5
Induction, 33
Induction field, 36
Inductive power in circuit, 57
Inductive reactance, 54
Inductor, definition, 53
types, 65
Ink recorder, 475
Input control panels, 573
Input impedance, 132, 281
Insulators, power factor, 85, 87
Interelectrode capacities, 215, 216, 301
Interference, image-frequency, 348
Interference problems, вuperheterodyne, 348
Intermediate frequency, 349
lon, negative and positive, 21
Iron and steel, magnetic properties of, 34
Ives, H. E., 509

## .

Jénkins, C. Francis, 509
Joule, 23
heat, 38
Joule's law, 40

## k

Karolus, A., 509
Kelvin absolute electrometer, 157
Kelvin double bridge, 173
Kennelly-Heaviside iayer, 435, 436, 439
Kerr light cell, 485, 504, 555, 564
Keying, method of, $460^{\circ}$
Kingsbury, 13. A., 415
Kirchhoff's second law, 30
Knudson, V. O., 412
Korn, Arthur, 509
L
L-type filter, 140
Labus, J. W., 370
Lamps, glow, 504
Landing beam, 537, 538
Lead-loss correction, 189
Leakage current, 92
Light, polarized, 504
Linear amplifier, 320
Linear detector, 253
Lines, artificial, 133
open-wire, 132
Lissajous figures, 162
Litz wire, 68
standarda, 75
litzendraht, 151
"Local distance" switch, 319
Ioodge, Sir Oliver, 433
1.oftin-White amplifiers, 292

Logarithmic decrement, 146
Loop antenna, field, 37

Loud-speaker, 403, 415
calculation of efficiency, 416
condenser, 421, 424
directional characteristics, 428
effect of flare and length, 427
magnetic armature type, 421
magneto-striction, 421
measurements, 429
motor, 421
moving-conductor drive, 421
piezo-electric, 421
radiator, 425
Low-pass filter, 141

## M

MacFarlane, M. I. D., 509
Magnetic armature motor, 422
Magnetic circuits, 33
Magnetic field, energy in, 23 strength, 33
vertical antenna, 36
Magnetic flux, 33, 51
Magnetic moment, 33
Magnetic propertiea of iron and steel, 34
Magnetic saturation, 34
Magnetic structure, design, 35
permanent-magnet type, 35
Magnetomotive force, 33
Magneto-striction, 167
Magnetron oscillator, 450
Manganin, 42
Marconi, Guglielmo, 4:33
Marginal-relay method, 499
Mark-to-space ratio, 455
Maxwell, 33
Maxwell's bridge, 178
Maxwell's equations, 36
Measurenient, acoustic, 429
of amplification factor, 199
of capacitance, 09,165
comparison, 167
of condenser resistance, 101
of dielectric constant, 101
of distortion, 293
frequency, 165
of bigh-frequency inductance. 61
of impedance, 164
of interelectrode capacitance, 216
of iron-core inductances, 60
of loud-speaker, 429
of mudulation, 274
of mutual conductance, 202
of mutual inductance, 78
of parallel resonance impedance, 123
of plate resstance, 200
of power factor, 165
of Turner constant impedance, 61
voltmeter-ammetcr, 163
Wheatetone bridge as detector, 250
Measuring instruments, 145
Megger, 163
Meter, copper-oxide rectifier, 157
frequency, 166
heterodyne-frequency, 171
hot-wire, 154
moving-diaphragm, 152
moving-iron, 152
rectifier, 156
soft-iron, 152
spark-gap, 158

Meter, thermocouple, 154
tuned-circuit frequency, 171
Microphone, 354, 556
beam, 557
condenser, 356
directional, 362
double-button carbon, 359
hiss, 361
pressure calibration, 357
ribbon, 556
technique, 361
Mid-series termination, 134
Modulated amplifiers, 269, 272
Modulation, 244, 263
absorption, 263
analysis, 265
change due to resonance characteristic, 276
in percentage, 277
complete, 367
cross, 204, 277
distortion, 204
factor, 244
Heising, 270
iron saturation, 268
measurement, 274
percentage, 368
plate-circuit, 269
tubes, table, 272
Morehouse, F. G., 509
Motor, synchronous, 572
Motor drive, $\mathrm{d}^{-c}, 572$
"Motor boating," 290, 291
Motor system, interlocking, 562
location trucks, 563
news-reel, 563
non-interlocking, 562
sound recording, 562
Moving-conductor motor, 421
Moving-diaphragm meters, 152
Moving-iron meters, 152
Mu factor, plate grid, 203
Mutual characteristic, 195
Mutual conductance, 201
ralculation, 202
inverse, 20.3
measurement, 202
Mutual inductance, calculation, 78
definition, 23
measurement, 76

## N

Navigation, course, 525
Nelson, E. L. . 483
Neon tubes in facsimile, 502
Network, four-resistance, 171
four-terminal, 173
recurrent, 130
six-impedance, 180
Neutralization, 327
Neutrodyne, 316
Nichrome, 42
Nicol prism, 485
Nipkow, 477
Noise suppressor, 341

Oersted, 33
Ohm, definition of, 41

Ohm's law, 22, 40
Ohmmeter, direct-reading, 163
Oscillation, control, 271
output and efficiency, 225
Oscillations, parasitic, 240
Oscillator, 221
calculations, 226
circuit chart, 227
circuit design, 222
detector, 263
dynatron, 171, 242
efficiency, 222
grid-circuit, 235
Hartley, 221, 270
Heising, 271
magnetron, 241, 450
modulator system, 270
plate-circuit, 235
triggered, 498
Oscilloscope, cathode-ray, 275
Output stage modulated, 367
Overload level, 324
Owen's bridge, 178
P
Parabolic reflector, 362
Paramagnetic materials, 33
Parameters, circuit, 29
Peak power of musical instruments, 355
Peltier effect, 187
"Pencil of light" method, 494
Pentode, 210
compared with triode, 214
power output, 212, 295, 337
suppressor r-f, 214
Perikon detector, 245
Permeability, 33
incremental, 63
Phase, 26
angle, 26, 83
difference, 83
lagging, 26
leading, 26
relations, 239
Phosphor bronze, 42
Photo analyzers, 493
Photocells, 543
Photo-conductivity, 550
Photoelectric current, circuits for measuring, 548
Photoelectric emission, 185
Photoelectric tube, uses, 550
Photoelectricity, 543
Photo-engraving method, 493
Photographic analysis, 563
Photolytic cell, Arcturus, 553
Phototube, amplifiers, 495
choice of, 547
circuits, 547
color sensitivity, 544
gas, 546
vacuum, 546
Photovoltaic effect, 551
Photronic cell, Weston, 553
Plate, characteristic, 196
conductance, 200
detection, 250
grid mu factor, 203
grid transconductance, 203
resistance, 200, 201

1'layback record, 556
Point-to-point communication, 459
Polarizing field, 424
Polydoroff, 304
${ }^{\text {Position }}$ determination, 525
''otassium bichromate inethod, 494
l'otential, contact, 187
nature of, 22
units of, 24
Potentiometer, 167
Power, amplifiers, 336
detectors, 333
output, calculation, 213
distortion, 213
sensitivity, $28: 3$
supply design, 374
supply systems, 343,374
tubes, 296
as modulators, 272
l'ower factor, in capacitive circuit, 83
definition, 26
in inductive circuit, 58
measurement, 165
values for insulators, 85, 87
Preselector circuits, 129
l'rocessing, photographie, 564
record, 569
sound film, 563
Propagation, phemomena, 481
velocity, 132, 135
Propagation constane, 131
Propagation factor, 132
Protons, 20
Push-pull amplifiers, 295, 29t
$Q$
"Q." $L \omega / R, 109$
Quarter-deflertion method, 1 to
Quartz crystaln, 167, 321

## il

Radiation, 40
nature of, 36
Radiation field, 36
ladiator, loud-apeaker, 42.5
ladio-heacon system, rotating, 527
liadio-frequency amplifiers, 300
Radio-frequency lines, efficiency of, $1: 37$
ladio range-beacom avstem, 528
shielding and bonding in aireraft, 524
symbols, 16
systems for guidisre aireraft, 525
ladiotelegraphic services, 457
lange table, 442
liaytheon tubes, 394
Reactance, 28
acoustic, 407
high-frequeney antenna, 38
induetive, 54
dow-frequency antenna, 37
standards, 187
Receivers, automatic volume control for aircraft, 534
d-c operated, $34: 3$
fidelity, 324
high-frequeney, 449
long-wave, 468
medium-frequenry aireraft, 518
overload level, 324

Receivers, regenerative, 323, 351
selertivity, 324
sensitivity, 324
ship-to-shore, 469
superheterodyne, 322,346
superregenerative, 323, 351
television, 352
Recciving systems, 32:
Reception, diversity, 503
Record, playback, 556
Record processing, 569
Recorder, electrical, 567
film, 560
glowlamp, 561
ink, 475
1RCA l'hotophone, 560
Weatern lilectric light-valve, 560
Recorder attenuator, 567
Recording, cutting stylus, 556
disk, 555, 566
film-engraving system, 555
kierr cell, 555, 565
light-valve method, 554
noiscless, 566
sound, 554
motor systems, 562
sound clannel, 557
toe, 564
variable area, 555
variable density, 554
leeords, characteristics of disk, 567
Rectification diagrams, 256
Rectifier, 374,389
copper uxide, 157, 246
crystal, 156
dry-contact, 394
durion-duralumin, 396
electrolytic, 395
glow, 394
hot-cathode mercury-vapor, :391
mercury-are, 303
meters, 156
tungar, 393
Rectigon bulbs, 393
Reed converter, 533
Reed indicator, $5: 32$
leflections, multiple, $4: 38$
Regencration in amplifiers, 314
Regenerative reccivers, 351
Reinartz, John L., 434
Reluctance, 33
Retardation time, 132, 1:36
Richardson, O. W', 185
Richardson's temperature erpation, 197
R.M.A. color eode, 49

Roder, IIans, 370
Reproducer, playback, 56 '
Reproducing equipment, theater, 570
Resistance, 40
antenna, 38
apparent, 65
balance, 177
capapity-coupled amplifiers, 281
critical damping, 147
effect of load, 235
effertive, 26, 41
equivalent, 84
grid-leak, 229
infinite, 26
negative, 26
plate, 200

Resistance, positive, 26
self-bias for detection, 260
specific, 41
standards, 166
temperature coefficient of, 41
Resistivity, volume, 41
Resistors, composition, 46 rating, 48
fixed, 45
series and parallel, 42
variables, 45
wire wound, 46
Resonance, 29, 111
anti-, 111
bridge, 179
characteristic, effect on modulation, 276
circuit, 286
parallel, 111
phase, 111
series, 111
Resonant circuit, design of parallel, 113 of series, 113
measurement of parallel impedance, 12:3
use of, for frequency regulation, 115
Retentivity, 34
Reverberation time, 407

## s

Saturation, magnetic, 34
Saw-tooth wave form, 479
scanning, 477
cross-screen analyzing, 49:3
flying spot, 477
line, 570
Nchering bridge, 177
Schottky effect, 191
Schröter, Ir. Fritz, 509)
Scrambling, 273
Screen-grid tube, 205, 318, 327 detector, 258
Selectivity, 345
adjacent-channel, 311
distant-channel, 311
Selenium bridge, Burgess, 5.52
Nelenium cell, 550 FJJ31, 552
Sensation level, 414
Series, Fourier, 29:3
Service area of transmitter. 27:3
Sharp, C. H, 550
Ship-to-shore communication, 459
Short-wave technique, 43:3, 467
Signal generator, 324
Silicon detector, 245
Ningle-dial tuning, 344
Skin effect, 40, 43, 45, 151
Nkip-distance, 435
and range table, 442
secondary repion, 4:37
Soft-iron meters, 152
Nolenoid, single layer, 66
Sound, on disk, recording, 554
velocity of, in common materials, 405
Sound cameras, portable, 561
Sound film, processing, 563
recording, 554
standards of, 569
sound head, 570
sound motion pictures, 554
Sound recording channel, 5.57

Sound records, disk, 573
Sound wave, plane, 404
spherical, 404
Sound waves in air, 404
Space charge, 184, 190
space current, 197
Spark absorber, 474
Spark-gap meters, 158
Spark length in air, 14
Specific inductive capacity, 81
Spced, projection, 569
taking, 569
Split-tank circuits, 121
Square-top waves, 278
Ntability of oscillators, 241
Stage gain of a-f amplifiers, 281
Static characteristics, 195
static frequency multipliers, 462
steady-state current, 57
Nitylus, cutting, 567
Supercontrol, 207
Superheterodyne, 449
superheterodyne receivers, 346
Superheterodyne translation ratio, 262
suseeptibility, $3: 3$
Synchronizing methods. 506
thyratron tubes in, 50s*

## T

Tapered lines as impedance transformers, $1: 37$
'Telegraph equipment, printing, 453
'relephone, 152
Bald win, 153
dynamic, 15:
'Television, 450, 477
receivers, 352
synchronization, 485
Tetrode, 205
screen-grid, 205
space-charge grid, 210
Thalofide cell, 551
Theater horns, 573
Theater reproducing equipment, 570
Thermal emissivity, 186
Thermionic brake, 488, 508
Thermionic emission, 185
Thermocuuple meters, 154
Thermophones, 154, i:37
Threahold of audibility, 413
of feeling, 413
Threshold wave length, 544
'Thomson, J. J., 182
Thyratron tubes in synchronizing, 50 s
Time constant, inductive-circuit, 53
Tve recording, 564
Tone control, $116,338,473$
'Tone keyer, 470
'1'ransconductance, plate-orid, 203
Transcription, electrical, $5 \mathbf{5 6}$
'Iransfer charaeteristic, 195
Transformer coupled amplifiers, 281 design of small, 397
impedance at various frequencies, 284
winding distributed capacity, 284
Transient currents, 29, 57
Transient phenomena, study of, by cathode-ray, 163
Translation ratio, superheterodyne, 262

Transmission, facsiruile, 489
single side-band, 273
Transmission line, 121, 131, 135
Transmitter, arc, 462
automatic, 473
high-frequency, 448
marine, 464
service area of, 273
Triggered oscillators, 498
Trigonometric functions, 2
Triode, 194
as detector, 248
compared with penterde, 214
Tube, cathode-ray, 161
timing axis for, 162
Class 13 output, 337
coupling amplifier, 281
dome-top, 218
grid-glow, 549
parallel and push-pull, 240
pentode, 210
pentode work with compensating network, 295
power-output pentode, 212, 3337
Raytheon, 394
screen-krid, 318, 327
thyratron in synchronizing, 50 X
three-electrode, 194
triple-grid, 218
use of Neon in farsimile, 50:
uses of photorelectric, 551)
water-cooled, 370,371
Tungar rectifier, 393
Tuning, single-dial, 344
Tuning silencer, 341
Turner constant-impedanee method, 61
Turner voltmeter, 160
Turntables, 573
-
Vacuum tube, 182
as rectifier, 157
two-electrode, 192
voltmeter, 158, 325
Valves, light, 484, 504
Variable area recording, 555
Variable mutube, 207
Variometer, 66
Vector diagrams, 104
Vertical antenna, 36
Vibrating reeds, 168
Voltage divider, parallel, 375 series, 377

Voltage divider, series-parallel, 376
Voltage regulation, 376
Voltage atandards, 166
Voltammeters, 148, 166
Voltmeter-ammeter measurcment of resistance, 163
Voltmeter, amplifier-detector, 161
Ayrton-Mather electrostatic, 158
electrostatic, 157
Turner, 160
vacuum-tube, 158
balanced, 160
calibration, 160
input resistance, 160
sensitivity, 160
Volume control, acoustically compensated, $3: 38$
for aircraft receivers, 534
automatic, ;341
panel, 559
Yolume resistivity, 41
Volume range in broadeasting, 354

## W

Wagner earth conncetion, 174, 201
Wave filters, 130, 138
Wave form, 24
Wave length, 132
chart, 18
constant, 1:31, 1:35
threshold, 544
Waves, square current, 241
square-top, 278
Wax preparation, 568
Wax-suction equipment, 568
Weiller wheel, 480
Wente, E. C., 356
Weston cell, 22, 166
Weston photronic cell, 553
Wheatstone bridge, 171
detector measurements, 250
Wien's bridge, 179
Williams, R. M., 509
Wire lines, 365
Work function, 187
Wright, G. W., 509
Z
" Zero beat," $32: 3$
Zworykin, V. К., 479
$F$


[^0]:    New York. N. Y., October, 1932.

[^1]:    Receiving Systems, by G. L. Beers
    Types of receiving circuits-Methods of testing and ratingDesign of receiving systems-Neutralization-Tuned radiofrequency amplifier-Intermediate-frequency amplifiers-Frequency converters-Power detectors-Audio-frequency ampli-fiers-Tone control-Volume control-Automatic volume con-trol-Power-supply systems-Superheterodyne receiversSuperregenerator receivers-Direction finders-Television receivers.

[^2]:    1 Department of Physics, IVniversity of Michigan.
    "Mrllikan, I. A., "The Electron."

[^3]:    ${ }^{1}$ Jeang, J. H., " Flectricity and Magnetiam," p. 306.

[^4]:    ${ }^{1}$ Pience, G. W., Electric Oscillations and Electric Waves, Chap. XI.

[^5]:    ${ }^{1}$ Member, Institute of Kadio Engineers; associate member, American Institute Electrical Engineers, chief engineer, International Resistance Company.

[^6]:    ${ }^{1}$ Junior physicist, Radio Section, Bureau of Standards.

[^7]:    ${ }^{1}$ Starling. S. G., " Elertricity and Magnetiom," Chap. XI, 1926.

[^8]:    Turner, H. M., Constant Impedance Method for Measuring Inductance of Choke ils, Proc. I.R.E., 16, 1559, 1928.

[^9]:    1 Morecroft, J. H., "Principles of Ladio Communication," 2d ed., 1927.
    ${ }^{2}$ Turner, H. M., Inductance as Affected by Initial Magnetic State, Air Gap, Superposed Currents, Proc. I.R.E., 17, 1822, 1929.

[^10]:    ${ }^{1}$ Radio Instruments and Measuremente, Bur. Standards ("irc. 74.
    ${ }^{2}$ Howe, G. W. O., Jour. I.E.E' (I.ondon), 60, 63, 1922; also Movllin, F. I3., " Radio "equency Measurements," p. 340, 1931.

[^11]:    ${ }^{1}$ Radio Instruments and Measurements, Bur. Standards Circ. 74.
    ${ }^{2}$ Hund, August, and H. 13. De Groot, Radio Frequency Resistance and Inducti of Coils Used in Broadcast Reception, Bur. Standards T'ech. Paper 298, Vol. 19, p. 1925.

[^12]:    I IRadio Section, Bureau of Standards.

[^13]:    ${ }^{1}$ Bur. Standards Circ. 74, p. 117. Bur. Standards. Sci. Paper 235.

    - (intffiths, W. II. F. Notes on the laws of Variable Air Condensers, Exp. W'irfless d Wireless Kinf., 3, 3-14, January, 19:6.
    "Griffitiss, W'. H. F., Further Notes on the Laws of Variable Air Condensers, Exp. ircless and Wircless Enu., 3, 743-755, December, 1926.

[^14]:    ${ }^{1}$ Barton, "Textbook on Sound." pp. 555-5.57.

[^15]:    ${ }^{1}$ Ferguson and Bartlett, Bell System Treh. Jour. 7, No. 3, 420-437.

[^16]:    ${ }^{1}$ Engineer, Switchgear Departnent, General Electric Company; fellow A.I.E.F.; fellow American Physical Soriety.

[^17]:    ${ }^{1}$ Director of Engineering, Zenith Radio Corparation. The author's indebtedness

[^18]:    ${ }^{\prime}$ Associate professor of Electrical Engineering, Washington University, St. Louis.

[^19]:    ${ }^{1}$ Fibin and JnNsen, liell Nustem Tech. Jour., 3, 187.

[^20]:    'Shackelton and Barber, Compressed Powered Pernalloy, Trans, A.I.E.E., pp. 429-436, A pril, 1928.

[^21]:    ${ }^{1}$ Engineering Department, Reaearch Section, RCA Victor Company, Ine.

[^22]:    ${ }^{1}$ General Engineer, National Broadcaating Company.

[^23]:    ${ }^{1}$ Low-power transmitters, such as 100,250 , and 1,000 watt, are what is called outputstage modulated. On transmitters from 5 up to 50 kw , tube economies are such that linear r-f amplifiers are very desirable.

[^24]:    * I. R. E., Vol. 19, No. 1, January, 1930.
    $\dagger$ Maximum rating.

[^25]:    ${ }^{1}$ Electronics Section, Meter Engineering, Westinghouse Electric and Manufacturing Company, Newark, N. J.

[^26]:    1 The theory of filters is admirably covered in the following books: K. N. Johnson and T. S. Shea, "Transmission Circuits for Telephone Circuits"; G. W, Pierce, "Electrio Waves and Oscillations."

[^27]:    ${ }^{1}$ Cocking, W. T., Wireless World, Nov. 19, 1930, pp. 565-568.

[^28]:    ${ }^{1}$ The curves (Figs, 10 to $1: 3$ ) are experimental curves taken fron the Acrovor Kes, Worker, articles by sidney Fishberg, research engineer.

[^29]:    ${ }^{1}$ A theoretical calculation of the effects of $C_{1}, C_{2}$, and $C_{3}$ on the output voltage is given in Gen. Elec. tlev., 19, 177, 1916.

[^30]:    ${ }^{1}$ This type of filter is manufactured under Clough patents and is sold by silver Marshall under the trade name Unichoke.
    ${ }_{2}$ Proc. I.K.E., January, 1930, p. 161, from which ligs. 15 to 17 are taken.

[^31]:    1 Hanna, C. J., Jour. A.I.E.E., 46, p. 128, February, 1927.
    2 These curves were supplied by C. W. Rust, electrical engineer, American Rolling Mill Company, Middletown, Ohio.

[^32]:    ${ }^{1}$ Wise, Roger, Radio Broadcast, April, 1929, pp. 394-395.

[^33]:    ${ }^{1}$ Kuhlman and Barton, Jour. A.I.E.E., Jamuary, 1928, p. 17
    2 Pike and Maser, QST, February, 1929, p. 20.

[^34]:    ${ }^{1}$ Wircless Wurld, Dec. 19, 1928, p. 825.

[^35]:    1 Woldman, QST, October, 1928, p. 45.
    2 "Madio Amateur's Handbook," 4th ed., p. 107.

    - Woldman, loc. cit.

[^36]:    1 "Standard Handbook for Electrical Engineers," McGraw-Hill Book Company, Inc., by Charles l. Fortescue.
    ${ }^{2}$ Hander, F. L., Elec. Jour., October, 1930, p. 601.

[^37]:    * It is usual to add 1,2 turn to flament windings for 2.5 , and 1.5 to allow for the $I R$ drop in the winding and leads to the tube filaments. An even number like 8 also makes taps easier.

[^38]:    a Instantaneous displacement of air particle in sound wave.
    $b$ Flare factor of exponential horn.
    c Velocity of sound in air.
    d Diameter of disk.
    c Napierian base
    $j \quad \sqrt{-1}$
    $l$ Length of conductor; length of horn.
    $m$ Mass.
    $p$ Round pressure.
    $r$ Distance from center of a mphere.
    $s$ Ntiffness.
    $t$ Time
    $u$ Instantancous velocity of particle in sound wave.
    v Voltage.
    $x$ Distance from an axis of coordinates.
    z Mechanical impedance.
    $z_{r}$ Mechanical resistance.
    $z_{1}$ Impedance per unit area at throat of horn.
    $z_{2}$ Impedance per unit area at mouth of horn,
    A Strength of small sound source.
    E Energy' density in somnd field.
    II Magnetic or electric field strength.
    /Io Polarizing magnetic or electric field strength.
    $I$ Current.
    $J$ Fnergy flux density in sound wave.
    $M$ Vector force factor or electromechanical coupling coefficient.
    $h$ Electrical resistance.
    $h_{\text {: }}$ Electrical resistance of supply source.
    $S$ Surface or crosa-sectional area.
    $S_{1}$ Crose-sectional area of thront of horn.
    $S_{2}$ Cross-sectional area of mouth of horn.
    $T$ Reverberation time.
    $U$ Maximum velority of air particles in sound wave.
    $V$ Volunte of an cnclosure.
    W Acoustic power emission of sound somrce.
    $Z$ Flectrical impedance.
    $\bar{\alpha}$ A verage absorpfion coefficient $\bar{\alpha}=\frac{S_{1 \alpha_{1}}+S_{2 \alpha_{2}} \cdots S_{n} \alpha_{n}}{S_{1}+S_{2} \cdots S_{n}}$
    $\gamma$ Angle between line joining point of observation to the center of a sound radiator and line perpendicular to the radiator.
    $d S$ Small surface element.
    $\lambda$ Wave length.
    oo Density of air when undisturbed.
    $\theta$ Temperature, degrees centigrade.
    $\mu$ Marnetic permeability.
    $\omega \quad 2 \pi$ frequency.

[^39]:    ${ }^{1}$ For examples and a discussion of some special cases see $K$. Schusten, and Fi. Waetzmann, Ann. Physik, 1, 5, 671, 1929.

    2 Jour. Acoustical Soc. A merica, 3, 126, 1931.

[^40]:    ${ }^{1}$ Ann. Physik, 11, 129, 1931.

[^41]:    1 See Section 12 on "Acoustic Measurements" in Report of the Committee on Standardization of the I.R.F", sections on Definitions of Flectro-acoustic Devices and Tests of Electro-acoustic Devices, 19:31.

[^42]:    Fote; $r$ expressed in centincters

[^43]:    1 Wente, E. C., and A. I.. Thuras: B,ll System Tech. Jour., 8, p. 140, 1928; II. F. Olson, Jour. Acoustical Suc. Ametica, 2, 485, 1931.

[^44]:    ${ }^{1}$ Gunn, Ross, A New Frequeney-stabilized Oscillator System, Proc, I.K.E., September, 1930 , p. 1560.

[^45]:    ${ }^{1}$ Research receiving engineer, R.C.A. Communications, Inc.

[^46]:    ${ }^{1}$ Consulting engineer.

[^47]:    ${ }^{1}$ Telerision Neu's, 1, No, 1, p. 58.
    ${ }^{2}$ Thlerision News, 1, No. 1, 1,. 48.

[^48]:    1 Horton, Gray, and Mathes, Bell System Terh. Jour., 6, 5.51-652.
    ${ }^{2}$ Honton, J. W., Pror. I.R. '., 17, 9, 1540-1563.
    ${ }^{3}$ Horton, Gray, and Mathes; Bell System Terh. Jour., 6, $\overline{5} 51-652$.

[^49]:    i Horton, Ghay, and Mathen; Bell Sysfem Tech. Jour., 6, is 1-6ī2.

[^50]:    1 Fellow, I. R. Fi., IRoyal socjety of London; Member, A. I. H. K., American Physical Nociety, Optical Society, I'resident, IRangertone; Ine.

[^51]:    1 Senior radio enzineer, Bureau of Ntandards; chief of group on development of radio aids to air navigation.

[^52]:    ${ }_{1}$ Member, Amerfan Physical Society, American Association for the Advancement of Science, American Optical Siociety; direct or of research, Westinghouse Lamp Company. ${ }^{2}$ Hallwache, Amn. Physik, 33, 301, 1888.

[^53]:    ${ }^{1}$ Iawhence, F. ()., and J. W. 13eama, Ph/fs. Req., 29, 90:3, 1927
    2 SEILEA, Astrophys. Jour., 52, 129, 1920.

[^54]:    ${ }^{1}$ Details of the method used in the processing of cathodes to change the relative sensitivity are described by A. R. Olpin, Phys. Rev., 36, 251, 1930.

[^55]:    ${ }^{1}$ For more detailed discussion of the mechanism of amplification by gas ionization, the reader is referred to the excellent discussion by Campbell and Ritchie in their book on "Photoelectric Cells" (Nir Isaac Pitman \& Sons, Letd., 1929, Chaps. V and VI). Also to J. S. Townsend's book on "Electricity in Gases" (Clarendon Press, Oxford, 1915) for the general theory of ionization by collision.

    Curves showing the effect of gas pressure on the maximum sensitivity of a photocell are given by Koller (Jour. Optical Soc. America and Res. Scientific Instruments, 19, 135, 1929).

[^56]:    ${ }^{1}$ Detailed instructions deseribing the uses of electrometars are found in 1 lutherford's "Radioactive substances" (C'ambridge Wniversity Prees, 1912) (ur in any standard treatise on electricity and magnetism.

    2 (Amrath and Ritchie, "Photoelectric C'ells," pp. 126-120.
    

[^57]:    ${ }^{1}$ Knowles, Eler, Jour., 26, 176, 1928.

[^58]:    ${ }^{1}$ Mellor, "A Comprehensive Treatise on Inorganic and Theoretical Chemistry," vol. X, pp. 693-741.
    ${ }^{2}$ Case, Phys. Rev., 15, 289, 1920; also Jour. Optical Soc. America and Rer. Scientifie Instruments, 6, 398, 1922.

[^59]:    ${ }^{1}$ Member, American Physical Society; Society of Motion Picture Engineers, U. S. Naval Institute; lieutenant commander, U. A. Naval Reserve.

