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PREFACE 

The second edition differs from the first in the following major 
respects: 

1. The rational mks system of units is used throughout. 
2. Many problems have been added, particularly at the introductory 

level. 
3. Much new material has been added, including an entirely new 

chapter on microwave networks; more simple examples in the chapters 
on static fields; the useful Smith chart in the simple transmission line 
treatment; several new aspects of propagating waves such as the 
principle of duality and slow-wave circuits; and new features in the 
chapter on radiation, such as discussions of horns, slot antennas, 
receiving antennas, and more on arrays. 

4. Some of the material which seemed less useful has been elimi¬ 
nated, and nearly all has been revised for additional clarity. 

Because the first edition found its place as a useful text of inter¬ 
mediate level, we have tried to maintain that level, and, although 
certain of the changes add more advanced material, others are con¬ 
cerned with additional examples in the beginning stages which will 
make the material easier to grasp. The general plan of the book has 
been changed little except for the added material, though there is some 
reorganization, and nearly every section has appreciable revision in 
the attempt to make the presentation clearer. 

The need was obvious for additional problems and for the change 
of units in the one chapter of the first edition which used the classical 
systems. (We have retained definitions and conversion tables for 
these systems because the classical literature must still be consulted.) 
The question of added material was harder, for with the rapid develop¬ 
ment of microwave engineering additional important examples could 
be added without limit. The additions were consequently limited to 
those that introduced some new principle or point of view. For 
example, the helix as a guiding system was chosen because it illus¬ 
trates the behavior of waves with phase velocities less than the velocity 
of light, the sectoral horn guide because it illustrates the phenomenon 
of a gradual cut-off, and the wedge guide because it illustrates the 
principle of duality. Some deletions were required to keep the book 
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within reasonable length, and we hope that we have not eliminated 
material useful to people whose needs we do not know. 

1 he book has been used continuously since its first appearance by 
both of us in teaching senior and first-year graduate courses on Electro¬ 
magnetic Fields and \\ aves. The changes have been based primarily 
on this experience, on suggestions given us by our colleagues who are 
practicing engineers in organizations with which we have been affili¬ 
ated, and on comments sent to us by many engineers and faculty 
members throughout the country. We wish to thank all persons who 
have taken the trouble to make comments and send suggestions. We 
also express our appreciation to the students, colleagues, and secretarial 
assistants who have helped with the labors of preparing and checking 
the manuscript and proof. 

Simon Ramo 
John R. Whinnery 

May, 1953 
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1 OSCILLATION AND 

WAVE FUNDAMENTALS 

1-01 INTRODUCTION 

1 his text is concerned with electromagnetics, particularly that 
underlying oscillations and waves. Before introducing the laws of 
electricity and magnetism for serious study, it will be necessary to dis¬ 
cuss some ideas and mathematics that have to do with oscillations and 
waves generally. This will be done by using simple circuits and con¬ 
ventional uniform transmission lines as examples. When this is done, 
the objective is not to present the theory of circuits and lines as such. 
Indeed the theory underlying both comprises a good part of the text. 
The purpose of this chapter is to illustrate (and for some readers to 
review) a point of view toward oscillations and waves needed for the 
rest of the text. Specifically the objectives are: 

1. To present a clear picture of the energy relations in oscillating 
systems. 

2. To point out criteria relating energy properties of a system to 
band width, impedance, etc., for later comparison purposes with cavity 
resonators. 

3. To clarify the concepts of waves, particularly in regard to such 
properties as phase velocity, reflection, and characteristic impedance. 

4. To point out common properties of transmission lines according to 
the conventional distributed constant approach for later comparison 
with properties of waves in space and in wave guides. 

5. To present or review some fundamental mathematics necessary 
for the study of oscillations and waves throughout the book. 

6. To develop approximate methods of analysis based upon the 
physical picture of the phenomena, so that these may be used in the 
later, more difficult problems. 
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Simple Circuits as Examples of Oscillating Systems 

1-02 FREE OSCILLATIONS IN AN IDEAL SIMPLE CIRCUIT 

Let us start with the simplest possible circuit for electrical oscilla¬ 
tions, an ideal condenser connected across an ideal inductance. Con¬ 
sider first free oscillations, assuming that an amount of energy was 
supplied to the combination at some instant (for example, by placing a 
charge on the condenser) and that from that time on there is no con¬ 

nection to the outside. Energy may be stored 
in the system in two forms: 

1. Magnetic energy in the inductance. This 
c may be considered analogous to kinetic energy 

in mechanics and has the value 

UL = (1) 

where I is the current flowing through the in¬ 
ductance L. 

2. Electric energy in the capacitance. This may be considered 
analogous to potential energy in mechanics and has the value 

Uc = iCV2 (2) 

where V is the voltage across the condenser C. 
The presence of energy in the condenser implies a voltage across the 

condenser, and a consequent rate of change of current and stored mag¬ 
netic energy in the inductance. Similarly, the presence of magnetic 
energy requires a current flowing in the inductance, and a consequent 
rate of change of voltage and stored electric energy in the condenser. 
We are led then to expect oscillations, since the presence of energy in 
one form requires a rate of change of energy in the other. It is also 
necessary that the total energy in the system be a constant, the same 
at all instants, since there is no connection to the outside and ideal 
dissipationless conditions are assumed. 

Before going further with purely physical reasoning, let us write an 
equation for the instantaneous current in the circuit. By Kirchhoff’s 
laws, the sum of the induction voltage L di/dt and the condenser 
voltage q/C must be zero: 

L ^ + ^ Idt = ° (3) dt G J 

If this equation is differentiated with respect to time, it becomes a true 
differential equation. 
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or 

d2I I 
dt2 + C 

d2i ;

dt2 " LC 
(4) 

The differential equation (4) is called the simple harmonic motion 
equation. This is probably the simplest and most common of all 
differential equations. It will probably be so familiar that the reader 
will wonder why we do not immediately write down the answer to 
the equation. The objectives here, however, are not to obtain answers 
to these simple and well-known problems, but rather to freshen up old 
techniques and to develop new ones for the much more interesting 
problems that lie ahead. 

1-03 SOLUTION OF THE DIFFERENTIAL EQUATION BY ASSUMED SERIES 

The differential equation to be solved is 102(4): 

The method to be shown first for solution of this simple differential 
equation is one which will be necessary for later less familiar equations, 
such as the Bessel equation. The method merely recognizes that the 
solution to a given differential equation can often be expanded in a 
power series. Conversely, we may assume a general power series at 
the beginning, and determine what form its coefficients must have if 
the series is to be a solution for the equation. The required form may 
be recognizable as the expansion for a known function. At any rate 
the entire series, if convergent, may always be used as the solution. 

Let us then assume that the solution to (1) will be some series of the 
form 

I = üq + ad + ait2 H* ad3 + ad4 d~ ' ' ' (2) 

Differentiating, 

—— = di d- Qait d- 3ad2 d- ̂ad3 d* ■ ' ■ 
dt 

—ñ = 2 • 1q2 d- 3 • 2ad d* 4 • 3ad~ d* ' ' ' 
dt 

These series forms may be substituted in (1) to determine the 
requirements on the coefficients in order that the series may satisfy 
that equation: 
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2 • 1 et 2 H- 3 * 2ci3¿ -F 4 • 304Z“ + 5 * 4- 6 * õa^ -F * * * 

= — + a'^ + + * * * ) Lj\y 

It may not be obvious at once, but a little study shows that, if the 
above equation is to be true for all values of t, coefficients of like powers 
of t must be equal on the two sides of the equation. That is, 

a0 a* =-
2 ■ \LC 

«i 

ai ~ 3 • 2LC 

_ _ az_Oo_ 
“4 ” 4 -3LC “ 4! (LC)2

_ _ 03_ai_ 

“5 ~ 5 • ALC “ 5! (LC? 

and, generalizing, 

_ fl2n-2_ (~ l) n«o 

°2" - (2n)(2n - V)LC “ (2n)l (LC)n

_ O2n-1_ (~l) n«l 

a2n+1 - (2n + l)(2n)LC “ (2n +1)1 (LC)n

Notice that the requirements placed upon the constants of the series 
by substituting in the differential equation have related all constants 
either to Oq or to oi, but there is nothing relating these two to each other 
or to anything else. This seems promising, for two independent solu¬ 
tions and two arbitrary constànts are required for a second degree 
differential equation. Let us write now the assumed series (2), 
using these constants: 

r i2 i4 i6
“ a° l “ 2ÏLC +  4! (LC)2 “ G! (LC) 3 + ' ' 

/ - /~x r 1 t3 t t5 t1 , i 
+ LC^ [(LC)h ” 3! (LC^ +  5! (LC)* “ 7! (LC)” +  ’ ’ J 

Comparison with any tables of series shows that the first quantity in 
brackets has the form of the series expansion for a cosine function and 
the second for a sine. That is, 
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COS « = 1 - - + - - (4) 

/J.3 T  5 

sin x = x — — + • (5) 
3 ! 5 ! 

So (3) may be written 

I = a0 cos (—+ ai VLC sin (—7= ) 
WLC7 WLC7 

Since ai is arbitrary, the entire quantity ai \ LC may be replaced by 
C2 to stress the point that it is an arbitrary constant. Let us at the 
same time replace ao by Ci and define 

"° = “Ttt; \'LC 

Then I = Ci cos uot + C2 sin aiot (7) 

This expression is a solution to the differential equation. It has two 
independent functions and two arbitrary constants. All is now known 
except the values of these constants. These cannot be determined 
until more information is given about the manner of starting oscilla¬ 
tions in the circuit. 

PROBLEMS 

l-03a Obtain a series solution for the equation 

dx X dx 

l-03b Repeat a for the equation 

d2y 1 dy 
dx2 X dx 

= 0 

1-04 SOLUTION OF THE DIFFERENTIAL EQUATION BY ASSUMED 
SINUSOIDS 

The simple harmonic motion differential equation has been solved by 
assuming a series solution, determining the form required of that series 
by the differential equation, and identifying the resulting series as a 
sinusoidal function. Now, we might have guessed at the beginning 
that the solution would have been of a sinusoidal form. Although the 
frequency was not known, we might have assumed a solution of the 
form of Eq. 103(7), substituting in the differential equation 1-03(1) to 
determine the value of o>0. H I is given by Eq. 103(7), 



6 FIELDS AND WAVES IN MODERN RADIO 1-05 

dt 
— woiCi sin uot — C2 cos uot) 

d2I _ 
dt2 " 

— o>o2(Ci cos wq/ -T C2 sin (¿qI) 
(1) 

Substituting in the differential equation, 

— wo2(Ci cos uut + C2 sin woO = — — (Ci cos uot + C2 sin o)0i) 

If 1 

“ LC (2) 

the equation is satisfied. This value of a>02 is exactly that defined in 
Eq. 103(6). 

Thus it is demonstrated that, if we can guess the form of a solution to 
a differential equation, substitution of this form into the equation will 
determine whether or not it is a solution and will give values for any 
non-arbitrary constants, such as o>0 above. This method is one of the 
most useful for solution of differential equations in engineering. 

PROBLEM 

1-04 The equations for a loss-free coupled circuit with input values Li, Ci 
output values L2 and C2, and mutual inductance M are 

2
dt dt 

T dl2 ,, dli 1 r . 
"37 + -V — + —- I II dt = 0 dt dt C2 v 

Assuming sinusoidal forms for Ii and 12, find values for the natural frequency wo. 

1-05 SOLUTION OF THE DIFFERENTIAL EQUATION BY ASSUMED 
EXPONENTIALS 

As a final attack on the differential equation for simple harmonic 
motion we shall attempt a solution in terms of exponentials. The wis¬ 
dom of this will shortly be demonstrated. Suppose we try 

I = A iepl + A2e~pt (1) 

d2I 
then = p2ÇAiept + A^) 

Substitute these in Eq. T03(l): 

p2(.4 ie”i + A2e-pl) = - (A iepl + A 2e~pl) 
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, 1 
°r P = " LC 

where j = v — 1-
This substitution indicates that (1) is a solution of the simple har¬ 

monic motion equation, provided that p = ju0: 

I = + Aze-^1 (2) 

Next let us remind ourselves of the identities 

e’x = cos X + j sin x (3) 

e~ix = cos x — j sin x (4) 

These are most conveniently verified by considering the series expan¬ 
sion for an exponential: 

y 2 y3
^ = 1 + 1/ + !! + ^+ • ■ ■ 

0 9 X . X 6 
so e,x = 1 + jx - - - j — + • • • 

/ x~ x4 \ . ( x3 x5 \ 
= V " 2! +  4! + ‘ / + J V 3! +  5! + ' / 

By comparing with Eq. 103(4) and Eq. 103(5) the latter series are 
quickly identified as those for cosine and sine respectively, thus verify¬ 
ing (3). The corresponding demonstration for (4) is identical to this. 

If identities (3) and (4) are substituted in (2), 

/ = (.41 -j- X 2) cos oiqÍ + j(.4i — .4») sin 

Since Ai and A2 are both arbitrary, this may be written exactly in the 
previous forms: 

I = Ci cos wot + C2 sin œot (5) 

For many purposes it will be convenient to use the solution in the 
form of (2) instead of changing to (5). This use of exponentials to 
replace sinusoids will be the subject of later discussion. 

PROBLEMS 

l-06a Show that an alternative expression equivalent to Eq. 105(2) or Eq. 
1-05(5) is 

I = A cos (woí 4“ 0) 
Relate A and 0 to Ci and C2. 
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1-05& Solve the equations for the coupled circuit, Prob. 104, using assumed 

1-06 NATURAL OSCILLATIONS WITH LOSSES—APPROXIMATE METHOD 

1 he circuit analyzed previously was ideal. Suppose we now wish to 
consider the effect of the finite losses which must of necessity be present 
in the circuit. As will be shown in the next section, it is a simple 
matter to include these in the circuit equations rigorously; yet let us 
irst use physical knowledge to develop an approximate method which 
W give the first order effect of the losses, provided that losses are 
small, the point of view will be extremely useful in later analyses of 
cavity resonators and wave guides. 

If losses are small, physical intuition tells us that the natural period 
of oscillation will be changed little, and over a short period of time the 
solution will be very nearly that for the ideal circuit. The major 
correction will be a long-time decrease in the amplitude of oscillation 
due to the energy lost. 

It is common experience to find exponential changes for a physical 
quantity which decreases (or increases) at a rate proportional to the 
amount of that quantity present. The power loss, or rate of energy 
decrease, for this example, is proportional to the amount of energy in 
the system. It would consequently be reasonable to expect an expo¬ 
nential damping factor to appear in the expressions for currents and 
voltages. As a first order correction, the expression for current 
obtained previously (Prob. l-05a) might be assumed to be multiplied 
by some negative exponential: 

I ~ Ac cos -I- 0) (1) 

The energy in the circuit may be calculated at an instant when it is 
all in the inductance: 

r a 2 
(2) 

Within the limits of the assumption of relatively small losses, the nega¬ 
tive rate of change of this stored energy over several cycles is merely the 
average power loss: 

V /ox dU LA2From (2), — = _ 2a — e-2ai = _2aU (4)
at 2 K 7
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So, by combining (3) and (4), 

(5) a 

Define the quality factor or Q of the circuit as the quantity 

(6) Q = if 

(7) Q = 

Then (5) may be written 

(8) 

wo(energy stored in circuit) 
average power loss 

tt (energy stored in circuit) 
energy lost per half cycle 

WL
2U 

wq 

“ " 2Q 

The exponential decay is thus expressible in terms of the quantity Q. 
The damping is also described sometimes as a logarithmic decrement, 
which is the relative amount by which the amplitude of oscillation 
decreases in one period. 

Ae~al - Ae-a(l+T)
S = -—— - = 1 —e a = al 

Ae~at

provided aT is small compared with unity, or 

Wn „ 2irfn 1 ir 
5 = — T = —— X - = - (9) 

2Q 2Q /o Q 

Finally, let us interpret these results for a 
circuit with losses distributed as in Fig. 1-06. The current flow through 
the series combination of R and L is expressed by 

I = A cos (woi + </>) 

(neglecting any exponential damping for a few cycles). The energy 
stored in the circuit is the maximum energy in the inductance, 

and the average power loss in resistance R is 

1Fr = |ß(/max)2
ß.l2
2 
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So Q, defined by (6), is 

= a>o(LA2) = u0L 
Ql RA2 R (10)

This is the familiar expression for Q used to describe the excellence of an 
inductance, uL/R, calculated at resonance. It is to be used in (8) 
or (9) to give attenuation constant or logarithmic decrement. 

PROBLEMS 

l-06a If losses are present owing to a conductance G = l/Rx shunted across 
the condenser instead of a series resistance in the inductance, show that the Q to 
use in the general expressions Eq. 106(8) and Eq. 106(9) is 

_ upC Ri 

)C ~ G ~ U0L 

1*066 If losses arise from both series resistance in L and shunt conductance 
across C, demonstrate that the Q to use in the general expressions may be found 
from the individual Q’s defined previously. 

£ _ 1 1 
Q Ql Qc 

1*07 EXACT SOLUTION OF CIRCUIT EQUATION WITH LOSSES 

The exact solution to the circuit of Fig. 106 will now be obtained to 
check the approximate results of the previous article. 

~ + RI + 7; P I dt = 0 at C J 

is the exact equation of the circuit. Differentiating, 

Following the method of Art. 1*05, assume a solution of exponential 
form, 

I = Ae pl (2) 

If this is substituted in (1) and the resulting equation is solved for p, 
it is found that 
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Since for low-loss circuits (R/2L)~ will be less than \/LC, it will be 
convenient to write (3) as 

Q denotes w$L/R as in Eq. 1-06(10), and o;u is \/X^LC. 
The two possible values of p from (4) supply the two independent 

solutions needed for the second degree differential equation. Substi¬ 
tute these in (2) : 

1 = Aie(— + A2e(—

= + A2e_J "«''] 

By substitutions similar to those of Art. 105, an alternative expres¬ 
sion is 

I = e “'[Ci cos u0't + C2 sin (7) 

A comparison with the approximate analysis of Art. 1-06 shows that 
the same damping coefficient (5) is obtained. The natural frequency 
is different from o>0 by (6), but this difference is small for low-loss 
(high-Q) circuits. 

PROBLEM 

1-07 Obtain exact results for the cases solved approximately in Probs. 106a 
and 106b, showing for these also that Q may be used as an indication of the use¬ 
fulness of the approximate results. 

1-08 FORCED OSCILLATIONS IN AN IDEAL L-C CIRCUIT 

In previous examples, it was assumed that oscillations in the simple 
resonant circuit were free oscillations caused only by an initial deposit 
of energy in the circuit. In most practical cases, however, the circuit is 
continuously excited by a source of sinusoidal voltage. As the first 
example of such forced oscillations, consider the loss-free parallel L-C 
circuit excited by a sinusoidal voltage of constant magnitude (Fig. 
T08). The total current flow from the source is the sum of currents 
in the two impedances. The equations for these two currents are 
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dli 
L —- = V sin hit (1) 

at 

l2dt = V sin hit (2) 

Current may be obtained from (1) by integrating directly and from (2) 
by differentiating: 

LI i = — — cos hit T Ci (3) 
hi 

i, 
Iï — = uV COS hit (4) 

The constant term in (3) merely 
represents a possible constant d-c 

term flowing through the inductance, which is of no interest to the a-c 
problem so long as constant elements (linear systems) are assumed. 
Thus the total current 

I = Ii + 12 = V (œC - y) cos hit (5) 
X hlLJ 

The above relations, of course, check the well-known behavior of 
simple circuits. The current in the inductance has a phase lag of 90° 
with respect to its voltage, whereas the current in the capacitance has a 
90° phase lead with respect to the voltage. The total current is leading 
(the total circuit acts as a capacitance) if hid > X/aiL, and is lagging 
(total circuit acts as an inductance) if \/hiL > hiC. If wC = \/hiL, 
there is no current to be supplied by the source; under this condition 
the current flow to the inductance is at every instant exactly equal and 
opposite to the current flow to the capacitance. The frequency for 
which this condition occurs is the natural frequency found previously, 

hiC = —- Or hl =  7= = hin (6) 
^L y/LC 

At this natural frequency the energy inside the system is a constant 
and merely passes back and forth from inductance to capacitance, and 
no energy need be supplied by the source at any instant of time. For a 
frequency lower than this resonant frequency, the maximum energy 
stored in the inductance is greater than the maximum energy stored in 
the capacitance, so that this excess energy must be supplied from the 
source during one part of the cycle, but will be delivered back to it 
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unharmed during another part. This excess reactive energy from the 
inductance makes the circuit appear as an inductive load to the source. 
Similarly, for frequencies greater than the resonant frequency, the 
maximum energy in the capacitance is greater than the maximum 
energy in the inductance, and the excess reactive energy that must be 
supplied to the capacitance causes the circuit to appear as a capacitive 
load to the source. 

At the resonant frequency the energy stored in the circuit is the 
maximum energy of the capacitance, or the maximum energy stored in 
the inductance, since both are equal: 

1-09 APPROXIMATE INPUT IMPEDANCE AT RESONANCE 

If the parallel circuit has losses in the coil or condenser, these may be 
taken into account from physical consideration of the energy relations, 
before attempting an exact analysis by the circuit equations. 

At resonance the energy stored in the tuned circuit is given by 
Eq. 108(7). From the definition of Q given in Eq. 106(6), the power 
loss at resonance is 

_ 12 l£ 
Q ~ 2Q (1) 

The source must supply to the circuit this amount of power. The 
circuit then looks like a high-resistance Ä, of value such that 

V2
2R 

By comparing with (1), 

(3) 

The approximations of reasonably low losses will be recognized in the 
above reasoning, for we have taken the expression for energy stored as 
that developed from the loss-free case. In this picture, the major part 
of the energy is stored in the circuit and passes back and forth from the 
inductance to the capacitance. Only the small amount of power lost 
in the process need be supplied by the source. The resulting current 
flow to supply this loss component causes the circuit to have a high but 
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finite input impedance in place of the infinite input impedance found 
previously. 

PROBLEMS 

l-09a Write alternative forms for Eq. 1-09(3) in terms of circuit reactances at 
resonance. 

1-09& Write Eq. 109(3) in terms of: a series resistance in L, a shunt resistance 
across C, both series and shunt losses. For the first two cases, show that the 
resonant circuit can be considered an ideal transformer between the input terminals 
and the resistance R, and give the turns ratio n of the transformer for the two cases. 

1-10 APPROXIMATE INPUT IMPEDANCE NEAR RESONANCE 

The physical reasoning may be extended to give the approximate 
behavior of the circuit for a small departure from resonance. First it 
may be concluded that the major change will appear as a reactive com¬ 
ponent added to the admittance as frequency is changed to a value such 
that the capacitive and inductive reactive currents no longer cancel. 
To a first approximation, the input power supplied will be constant, so 
that the conductive portion of the admittance may be considered con¬ 
stant and equal to that calculated at resonance in Art. 1-09. We 
justify this by recognizing that any loss entering from a parallel con¬ 
ductance will not change at all with frequency, and, although that 
arising from a resistance in series with inductance will change with 
frequency, this is a uniform change, not comparable with the change 
in the differences of large quantities which affects the reactive current. 
The susceptance portion of the admittance is approximately that 
calculated without losses. The admittance may then be written 

y = G + + (D W w Lj \ (¿L/ 

Let w = o>o(l + 5), and make use of the approximation for small 5, 

(1 + Ô)“1 « 1 - 5 
Then (1) becomes 

„ /ë F 1 . 1 
y-VzLe +,2i J (2)

From (2), the frequency shift for which susceptance becomes equal 
to conductance, a common measure of circuit “sharpness,” is 
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The Q of the circuit is consequently identified with the band width or 
sharpness of the circuit. For a frequency shift corresponding to (3), 

|n|- õ^Ki+j)!- wM (4> w Li ’ Li 

In terms of impedance, the impedance at this frequency is 1/V2 its 
magnitude at resonance. 

Use of Complex Exponentials 

1-11 SOLUTION OF THE CIRCUIT DIFFERENTIAL EQUATION IN TERMS OF 
COMPLEX EXPONENTIALS 

The approximate results of the previous articles for the circuit rela¬ 
tions when dissipation is included will now be verified by direct solution 
of the differential equation of the circuit. If a voltage F cos wt is 
applied to a circuit containing R, L, and C in series, the equation to be 
solved is 

di 1 i 
L —- T RI + - I I dt = I cos 
dt C J (1) 

But [see Eqs. 1-05(3), (4)] 

(2) 
e>“‘ 4-

cos wi = --— 

If we assume that the current has the steady state solution, 

I = Ae^ + Be- (3) 

the result of substituting in (1) is 

juL(Aeiut - + R(Ae’“‘ + Be"^') + —- (Aeiut -
JO>C 

= + e->"‘] (4) 

Following previous reasoning, this equation can be true for all values 
of time only if coefficients of e]ut are the same on both sides of the 
equation, and similarly for e-J "'. 

A R + j ( — 
j_y F 

2 (5a) 

B R — j I wL 
F 
2 

(56) 
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The complex quantity in the bracket of (5a) may be called Z and 
written in its equivalent form 

(A and B are conjugates: they have the same real parts and equal and 
opposite imaginary parts.) Substituting in (3), 

y ' _|_ e—>(“<—♦)’ 

By comparing with (2), 

Z = cos (wi - (9) 

This final result gives the desired magnitude and phase angle of the 
current with respect to the applied voltage. That information is 
contained in either constant A or constant B, and no information is 
given in one which is not in the other. B is of necessity the conjugate 
of A, since this is the only way in which the two may add up to a real 
current, and the final exact answer for current must be real. It fol¬ 
lows that half of the work was unnecessary. We could have started 
only with Ve^1 in place of the two-term expression which is exactly 
equivalent to V cos wt. For current, there would then be only 

V j =_ 
\z\ 

(10) 
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Although this cannot actually be the expression for current, since it 
is a complex and not a real quantity, it contains all the information 
we wish to know: magnitude of current, 7/| Z |, and its phase with 
respect to applied voltage, 0. This procedure may be made exact by 
writing 

7(0 = Re (ID 

Z(0 = Re r—r e i(ut— (12) 

where Re denotes “the real part of.” Because of the inconvenience 
of this notation, it is not commonly used, but it is useful to remember 
it when the instantaneous value of a quantity expressed in complex 
form is desired; that is, if any single frequency sinusoid f(t) is expressed 
by its magnitude and phase, Me^, or by its real (in-phase) and imaginary 
(out-of-phase) parts A + jB, the instantaneous expression may be found 
by multiplying by e^1 and taking the real part: 

f(t) = Re = Re [(.4 + jB)e’ut] (13) 

PROBLEM 

1-11 Utilizing the exact solution of this article, determine conditions for which 
the approximate solution of Art. 110 is a good approximation. 

1-12 USE OF COMPLEX EXPONENTIALS IN POWER CALCULATIONS 

The preceding article demonstrated the basis for the use of complex 
exponentials in the solution of problems involving steady state sinu¬ 
soids. The consequent simplification of all linear problems in the 
steady state will be apparent throughout the book. More care must 
be exercised for non-linear expressions, the most common of which 
arises in the calculation of instantaneous power, requiring a product 
of terms. 

Given a sinusoidal voltage across an impedance, 

7(0 = 7m cos (ut + 0i) (1) 

and a sinusoidal current flow through the impedance, 

Z(0 = Im cos (ait + 02) (2) 

the expression for instantaneous power is certainly given by multiply¬ 
ing (1) and (2): 

17(0 = VmIm cos (ait + 0i) cos (ait + 02) 

But cos A cos B = |[cos (A — B) + cos (A + B)] 
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so II (i) — —— cos (</>i — <£2) 4--— cos (2o>< + </>i + </>•’) (3) 

This has an average part given by one-half the product of the peak 
amplitudes and the cosine of the difference in phase angles, and it has 
a double-frequency sinusoidal a-c part given by the last term in (3). 

An expression identical with (3) is of course obtained if one.utilizes 
the complex notation in the complete form of Eq. 111(13), since 
these are exact equivalents: 

IT(t) = ¡Re {Re [W(“i+^]| (4) 

However, after using the complex notation without the real part 
designated explicitly for a time, one may be tempted to form power in 
the same way. Let us ask if this will lead to the correct result. 

JE(Í) X Vmei(at+*¿ImeHul+*¿ = (5) 

Even if one agrees to take the real part of the final answer in (5), it is 
clear that the power is not given correctly, for the average part is 
missing and the a-c part is twice the correct value. 

The exact expression for instantaneous power may be written in com¬ 
plex notation. For the following demonstration, let us denote complex 
quantities by a wavy line above the symbol, and conjugates by an 
asterisk. 

If Ë = Vme^ 

and E* = 

then VT* = 

and V*I = 

Then the exact equivalent of (3) in complex notation is 

IF = I Re {Vl* + (6) 

and the average power, or constant component of this, is 

!Fav = I Re [È7*] = i Re [W] (7) 

PROBLEM 

1-12 An a-c voltage of 100 volts at frequency 1 mc/sec is applied across a 
parallel connection of 10 ohms resistance and a capacitance of 0.01 microfarad. 
Find the instantaneous power, utilizing (6), and check by first finding instan¬ 
taneous expressions for voltage and current. Take phase of voltage as zero. 
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Fourier Series 

1-13 FOURIER COEFFICIENTS FOR PERIODIC FUNCTIONS 

All forced oscillations studied so far have consisted of sinusoids. 
Consider a more general oscillation which is periodic, returning once 
each cycle to any selected reference, or, stated mathematically, 

/«) = f(t - T) 

This might be of any arbitrary form, such as is indicated by Fig. 1-13. 
Such a wave shape of voltage, if applied to a circuit, will act to that 
circuit as a superposition of a group of pure sinusoidal voltages. The 

Fig. 113 Periodic wave of arbitrary shape. 
« 

wave may be replaced by a fundamental and its harmonics. The 
method of finding the amplitudes of these is the classic method of 
Fourier analysis, and the theorem that proves the truth of the foregoing 
statements is the Fourier theorem, which it is assumed the reader has 
agreed with in another study. What follows here is not a proof of the 
validity of a Fourier series expansion for a general periodic function, 
but merely a demonstration which shows the manner of obtaining the 
coefficients. This will be extremely useful when we later add up series 
to represent known functions along boundaries in field problems. 

We shall write the periodic function /(Í) as a series of sinusoids con¬ 
sisting of a fundamental and its harmonics: 

f(t) = a0 + «i cos bit + Ö2 cos + a3 cos 3a>i + • • • 
+ bi sin bit 4- b2 sin 2bit + b3 sin 3o>i • ■ • (1) 

At the moment, the coefficients have not been determined. The 
manner of finding them is based upon the so-called orthogonality prop¬ 
erty of sinusoids. This property indicates that the integral of the 
product of any two sinusoids of different frequencies, over an interval 
in which they are commensurate (for example, from — ir to tt, or 0 to 2r) 
shall be zero. That is, 

J cos mx cos nx dx = 0 0 m 

J sin mx sin nx dx = 0 (2) 
0 m^n 

J sin mx cos nx dx = 0 0 m^n or m = n 
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However, Ç cos2 mx dx = j° sin2 mx dx = n (3) 

Thus, if each term in (1) is multiplied by cos nwi, and integrated 
from 0 to 2tt, every term on the right will be zero except that term 
containing an. That is, 

Jq2T f (J) cos naît d(uf) = jQ an cos2 nut d(ad) 

By (3), the integral on the right has the value an7r, or 

1 f2’ 
an = - I fit) cos nibit) dibit) 

IT JO 
(4) 

Similarly, to obtain bn, each term in (1) is multiplied by sin nut and 
integrated from 0 tQ 2ir. Then, 

bn sin nibit) dibit) (5) 

Finally, to obtain the constant term a0, every term is integrated 
directly over a period, and all terms on the right disappear, except that 
containing a0: 

or 

C2r p2jr 

fit) dibit) = I a0 dibit) = 27ra0 
o Jo 

1 
a ° “ J7T 

fit) dibit) (6) 

This merely states that a0 is the average of the function fit). 

PROBLEM 

1-13 Simplify the general expressions for Fourier coefficients found in Art. 113 
for: 

(a) Even functions of t. 
(b) Odd functions of t. 
(c) Functions of a variable x, in terms of a period I. 

1-14 FOURIER ANALYSIS OF A SQUARE WAVE VOLTAGE 

Let us find by Fourier analysis the coefficients of the frequency com¬ 
ponents in the square wave shape of Fig. 1T4. Voltage is V over half 
the period T, and zero over the remaining half. The origin will be 
selected arbitrarily in the center of the constant portion as shown, in 
order to make the function even. Voltage then drops to zero at 
t = T/4, or bit = tt/2. 
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The integral 1-13(6) shows that the constant term, a0, is 

1 f+’ 1 f+'/2 V 
«o = - fifí dM = - V d(œt) = - (1) 2tt J -T 2ir J -t/2 2 

This is clearly the average value of the wave. The integral T13(5) 
gives the coefficient bn: 

1 f+’ . 1 f+’/2
bn = _ I /(f) sin nÇoit) d(ut) = - I V sin zi(wi) d(wt) = 0 (2) 

TT J - r IT J - n/2 

Thus all coefficients of the sine terms are zero, as would be expected 
since sines are odd functions, and we have selected the origin to make 
/(f) even. 

Fig. 144 Periodic wave of rectangular shape. 

Finally, the an terms, by Eq. 1-13(4), are 

V cos nut d(ut) 

- +,r/2 

sin n(wi) 
J-r/2 

(3) 

The value of (3) is zero if n is even, is +(2V/nir) if n is 1, 5, 9, etc., 
and is — (27/nTr) if n is 3, 7, 11, etc. Thus the series expansion in 
sinusoids of the square wave voltage of Fig. 1-14 may be written 

2 
cos 3o>i cos but cos 7a>f 

3 + 7~ 
z/.x v , 27 ' J (t) = — d-cos ut — (4) 

1 he current which flows when such a voltage is applied to a circuit is 
found by determining the currents due to the individual terms of (4) 
and superposing these. 1 here will be, in general, a component of cur¬ 
rent of a frequency corresponding to each frequency component of the 
Fourier expansion. These, when added, give the wave shape of 
current. Such a procedure is straightforward and will not be carried 
further here. 

Notice that it requires an infinite number of terms to represent truly 
the square wave shape of voltage. Often a high degree of approxima-
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tion to the desired wave shape is obtained when only a finite number of 
terms is used. However, for functions with sharp discontinuities, 
many terms may be required near the sharp corners, and the theory of 
Fourier series shows that the series may not converge to the function 
in the neighborhood of the discontinuity (Gibbs phenomenon). The 
derivative of the series may not always converge to the derivative of 
the function, but the integral of the series does always converge to 
that of the function. 

PROBLEM 

1-14 Obtain Fourier series for the following periodic functions: 
(a) A triangular wave defined by f(t) = Poll — (2t/T)] from 0 to 7/2, and 

Volßf/T) - 1] from T/2 to T. 
(b) A saw-tooth wave defined by/(/) = Vot/T for 0 < Í < T. 
(c) A sinusoidal pulse given by /(Í) = (Vm cos wi — Vo) for —a < at < a, 

f(l) = 0 for —ir < at < —a and also for a < at < r. 

1-15 FOURIER SERIES TO REPRESENT A FUNCTION OVER AN INTERVAL 

If a function f(x) is defined over a finite interval 0 < x < I, a Fourier 
series may be written for this even though it is not periodic. The 
point of view is that the interval of length I may be considered a period 
(or more commonly a half-period), and a periodic function defined 
to agree with the given function over the given interval, repeating 
itself outside of that interval. A Fourier series may then be written 
for this periodic function which will give desired values in the interval, 
and, although it also gives values outside of the interval, that is of no 
consequence since the original function is not defined there. 

The interval is most commonly selected as a half-period since the 
function extended outside the interval may then be made either even 
or odd, and the corresponding Fourier series will then have respectively 
either cosine terms alone or sine terms alone. Thus a cosine series 
written to represent a function f{x) over the interval 0 < x < lis 

00 

f(x) = «0 + an 

n — 1 

mrx 
cos —-

nirx _ 
cos — ax 

0 < x < I (1) 

(2) 

(3) 
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Or a sine series written to represent/(x) over the interval 0 < x < Z is 

2 . mrx n , 
bn sin — 0 < X < I 

n = l 1

, 2 f ‘ n x • nvX j bn = 7 f(x) sin — dx 
I Jo I 

(4) 

(5) 

As an example, to represent the simple function /(x) = C over the 
interval 0 < x < Z in a series of sines, (5) yields 

b n 
„ . nirx _ 2C 
C sin —— dx = — 

I mr 
nirx 

cos —— 
I Jo (6) 

/(*) 
2C . Tix 2 . 3ttx 2 . 5irx 
— 2 sin — + - sin — + 7 sin — + 
ir L la la I 

0 < x <1 (7) 

The series (7) actually represents a repeating square wave much like 
that in Fig. 114 (except for the constant term and the choice of 
origin), but properly agrees with the given function over the required 
interval. 

PROBLEM 

1-15 Suppose; that a function is given over the interval 0 to Z as f(x) = sin rx/l. 
What do the cosine and sine representations yield? Explain how this single sine 
term can be represented in terms of cosines. 

Uniform Transmission Lines as Examples of Wave Systems 

1-16 THE IDEAL TRANSMISSION LINE 

To illustrate waves, we shall consider the uniform transmission line. 
The results developed are of importance themselves, since transmission 
lines are used in all modern high-frequency applications. Results will 
also be used for later comparison with more general electromagnetic 
wave phenomena. The approach used in this chapter is the conven¬ 
tional one, starting from distributed inductance and capacitance along 
the line. It is true that this in a sense is jumping ahead of the story, 
for in a later chapter on guided waves the transmission line differential 
equations will be derived from rigorous considerations of electro¬ 
magnetic theory. Nevertheless, the approach to be used here is easy 
to visualize and is satisfactory for the present purpose. 

A transmission line may be made up of parallel wires, of parallel 
plates, of coaxial conductors, or in general of any two conductors sepa-



24 FIELDS AND WAVES IN MODERN RADIO 1-16 

rated by a dielectric material. In conventional analyses, we think in 
terms of a current flowing in the conductors, equal and opposite in the 
two conductors if measured at any given transverse plane, and a volt¬ 
age difference existing between the conductors. The current flow is 
affected by a distributed series inductance representing the back 
induced voltage effects of magnetic flux surrounding the conductors; 
the voltage between conductors acts across a distributed shunt capaci¬ 
tance. There are also loss terms which will be neglected for this first 
analysis of the ideal case. Incidentally, this does not relegate the 

results to a position of only academic 
interest, for many high-frequency 
transmission line problems have loss 

_ terms which are truly negligible. 
Consider a differential length of 

line, dz, including only the distributed 
inductance, L per unit length, and the 
distributed capacitance, C per unit 
length. The length dz then has in¬ 

Fig. 1-16. ductance L dz and capacitance C dz 
(Fig. T16). The voltage drop or neg¬ 

ative change in voltage across this length is then equal to the product 
of this inductance and the time rate of change of current. For such 
a differential length the voltage change along it at any instant may 
be written as the length multiplied by the rate of change of voltage 
with respect to length. Then 

i 

V ±=Cdz 

I Ldz 

d I dl 
voltage change = — dz = — (L dz) — 

dz dt (1) 

Note that time and space derivatives are written as partial deriva¬ 
tives, since the reference point may be changed in space or time, in 
completely independent fashion. 

Similarly, the decrease in current across the element at any instant is 
merely that current which is shunted across the distributed capacity. 
This is given by the capacity multiplied by time rate of change of 
voltage. Partial derivatives are again called for: 

(2) 
dl d V 

current change = — dz = — (Cdz)—~ 
dz St 

The length dz may be canceled in (1) and (2): 

dV  az 
dz dt 

(3) 
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- = -C — 
dz dt (4) 

Equations (3) and (4) are the fundamental differential equations for 
the analysis of the ideal transmission line. They may be combined to 
give equations containing voltage alone or current alone. To accom¬ 
plish this, differentiate (3) partially with respect to distance, (4) with 
respect to time: 

d2V_ 
dz2 ” dzdt (5) 

d2i _ c d2V 
dtdz~ ° dt2

(6) 

Since partial derivatives are the same taken in either order, (6) may 
be substituted directly in (5) : 

d2V 
dz2 dt2

(7) 

This differential equation is known as the wave equation. An exactly 
similar equation may be obtained in terms of current by differentiating 
(4) with respect to z, (3) with respect to t, and combining: 

d2I 
dz2

(8) 

1-17 SOLUTIONS OF THE WAVE EQUATION 

The differential equation to be solved, Eq. V16(7), may be written 

where 

d2V 1 d2V 
dz2 V2 dt2

1 
V — -: 

^LC 

(1) 

(2) 

Unlike the differential equations met previously in this chapter, this is a 
partial differential equation. A direct attack on the equation to yield 
a general solution is not easy, but a simple check shows that any func¬ 
tion whatever in the variable I — (z/v) is a solution. That is, 

V = F 
z\ 

Í - - I 
V/ 

(3) 
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is a solution to (1). This may be verified by differentiating: 

dt \ v) 
and 

and 

öl’ 1 ™ / A — =- F ( t - - ) 
dz V \ V ) 

â27 1 / z\ 
—; = - F" It - - ] 
dz V \ v) 

(4) 

In the above, the primes denote derivatives with respect to the entire 
variable, t — (z/v). By comparing the two equations (4), (1) is 
verified. 

It is necessary to show next what is meant by the statement that 
solution (3) represents a wave. This may be done by recognizing that 
we may stay on a particular reference value of the function (i.e., keep 
V constant) by keeping the argument, t — (z/v), a constant. This 
is accomplished by moving in the positive z direction with velocity v 
as time increases. That is, 

if z = vt — Kv (5) 

Only one solution of the second degree differential equation has been 
given. A second solution may be written as any function of t + (z/v) 
and checked by methods exactly similar to those used for the first solu¬ 
tion. This is identified as a wave traveling in the negative z direction 
with velocity v. A complete solution to (1) is then 

/ z\ / z\ 
V —Fill — - — ) (6) 

\ vj \ v/ 
where v is given by (2). 

PROBLEMS 

l-17a Differentiate the functions cos œ[Z — (z/v)], and [Í + (z/v)]3 to 
show that each satisfies (1). 

1-17Ö Sketch the function cos — (z/v)] versus wz/v for values of ul = 0, 
ir/4, t/2, 3t/4, r. Note how this demonstrates the interpretation as a propagating 
wave. Repeat for cos w[i + (z/v)]. 

1-18 RELATION BETWEEN VOLTAGE AND CURRENT IN THE IDEAL LINE 

If the expression for voltage developed above, Eq. T17(6), is sub¬ 
stituted in the transmission line equation, 1-16(3), 
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This expression may be integrated partially with respect to /: 

. F n / A / ZV 
“ ¿i; \ \ + ë)] + /(2) (2) 

If this result were substituted in the other transmission line equation, 
116(4), it would be found that the function of integration,/(z), could 
only be a constant. But we are not interested in possible superposed 
d-c solutions m studying the wave solution, so this will be ignored. 
Equation (2) may then be written 

where 

1 he constant Zo as defined by (4) is called the characteristic imped¬ 
ance of the line, and is seen from (3) to be the ratio of voltage to current 
for a single one of the traveling waves at any given point and given 
instant. I he negative sign for the negatively traveling wave would 
of course be expected since the wave propagates to the left, and by our 
convention current is positive if flowing to the right. 

1-19 REFLECTION AND TRANSMISSION AT A DISCONTINUITY 

Most transmission line problems are concerned with junctions 
between a given uniform line and a line of different characteristic 
impedance, a load impedance or some other element that introduces a 
discontinuity. By Kirchhoff’s laws, total voltage and current must 
be continuous across the discontinuity. The total voltage in the line 
may be regarded as the sum of voltage in a positively traveling wave, 
equal to I i at the point of discontinuity, and a voltage in a reflected 
or negatively traveling wave, equal to F/ at the discontinuity. The 
sum of I : and I / must be V L, the voltage appearing across the load 
impedance Zt: 

Vi + Ff = VL (J) 

Similarly, the sum of currents in the positively and negatively traveling 
waves of the line, at the point of discontinuity, must be equal to the 
current flowing into ZL: 

11 + 11= Il (2) 
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By utilizing the relations between voltage and current for the two 
traveling waves as found in the preceding article, (2) becomes 

Vi 
Zo 

Vi' 
Z o 

(3) 

By eliminating between (1) and (3), the ratio of voltage in the reflected 
wave to that in the incident wave (reflection coefficient') and the ratio of 
the voltage in the load to that in the incident wave (transmission 
coefficient) may be found: 

1 i' _ ~ /o 
Ii ZL + Zo

(4) 

VL 2Zl

Ii ZL + Zo
(5) 

The most interesting, and perhaps the most obvious, conclusion 
from the above relations is this: there is no reflected wave if the termi¬ 
nating impedance is exactly equal to the characteristic impedance of 
the line. All energy of the incident wave is then transferred to the 
load impedance, which cannot be distinguished from a line of infinite 
length and characteristic impedance Zo = ZL. 

Note that for arbitrary time functions the “impedance” used above 
should be a pure resistance in order for the ratio of instantaneous load 
voltage to instantaneous load current to be given by ZL, as used above. 
The impedance form has, however, been utilized so that the equation 
will apply immediately to steady-state sinusoidal waves expressed in 
the complex form for later use. 

PROBLEMS 

l-19a For arbitrary time functions, assuming Zt a pure resistance, find the 
fraction of the incident power reflected, and the fraction of the incident power 
transmitted to Z^. 

l-19b Calculate the reflection coefficient, transmission coefficient, and the 
power quantities of Prob, a for Zi. = 0, Zo, 2Zq, and °°. 

1-20 SOME SIMPLE PROBLEMS ON TRAVELING WAVES 

A. D-C Voltage Applied to an Infinite Line. Consider the case of a 
d-c voltage V, suddenly applied to an ideal line of infinite length 
(Fig. l-20a). The line starts to charge to voltage F, the wave front 
traveling with the velocity v = 1/ X' LC. Since there is never any dis¬ 
continuity, there is never any reflected wave, and the only current is 
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that flowing in the positive wave, V/Zo. This then is a d-c current 
flowing to the charges which appear on the line as voltage moves along. 
At any time t after the voltage is impressed, there is voltage V and 
current V/Zo in the line up to the point z = vt, and no voltage or cur¬ 
rent beyond. 

Fig. l-20a Direct-current voltage suddenly applied to an infinite line. 

B. D-C Voltage Applied to a Shorted Line. Suppose that the d-c 
voltage is applied to a line which is not infinite in length, but is shorted 
at some point, z = I (Fig. 1-206). We know that finally infinite cur¬ 
rent will flow if V is maintained. However, the mechanism of current 
build-up is interesting. After voltage is applied to the line, every¬ 
thing proceeds as in A until the time that the wave reaches the short 

Fig. 1 -20& Direct-current voltage suddenly applied to a shorted line. 

circuit. At the time the incident wave with voltage V appears across 
the short circuit, which demands zero voltage, a reflected or negatively 
traveling wave of voltage — V is sent back so that the sum of voltages 
in the two waves is indeed zero. Since current in the negative travel¬ 
ing wave is the negative of voltage divided by Zo, this is — ( — F/Zo) 
or + V/Zo and so adds directly to the current in the positive traveling 
wave. This reflected wave then moves to the left, leaving a wake of 
zero voltage and a current equal to 2V/Z0 behind it. As soon as the 
reflected wave has traveled back to the source, it brings the zero volt¬ 
age condition back to this point so that the d-c voltage must send 
out a new wave of voltage V down the line, with associated current 
V/Zo, making a total current in the line 3V/Z0 at this time. Current 
then builds up to infinity in the step manner indicated by Fig. 1-206. 
T is the time l/v required for a wave to travel one way down the line. 

C. Charged Line Connected to a Resistor. Consider an ideal line of 
length I initially charged to a d-c potential F, with a resistance R con¬ 
nected across the input at time t = 0. 
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The voltage across the resistance is the sum of the d-c voltage of the 
line and the voltage in the wave, V i : 

V„ = V + Vi (1) 

The current flowing into the resistor is merely the negative of current 
for the positively traveling wave: 

IR = -h 

or (2) 

By combining (1) and (2), 

For example, if R = Zo, the voltage appearing across the resistance 
at the first instant is half the d-c voltage of the line, as is the voltage 
appearing in the traveling wave. When this wave reaches the open 

Fig. 1 -20c Charged line of length I suddenly connected to a resistor. 

end, there must then be started a reflected wave such that total cur¬ 
rent is zero, so current in the reflected wave must be — /i or V/2R. 
Because current in the reflected wave is the negative of voltage divided 
by Zo, this will require a voltage — V/2 for the reflected wave. Thus 
in the case of R = Zo, the original wave wipes out half the voltage, 
and the corresponding current, — V/2Z0, is that which flows through 
R. The reflected wave wipes out the remaining half of the voltage 
and, of course, reduces current to zero. When this wave reaches 
R = Zo there is no further reflection, so all is still. Current wave 
shape is shown in Fig. l-20c. Also shown are currents for R > Zo 
and R < Zo. 

PROBLEMS 

l-20a An ideal line of length I is charged to d-c voltage V and shorted at its 
input at time t = 0. Sketch the current wave shape through the short as a func¬ 
tion of time. 
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l'20b An ideal open-circuited line of length I, initially uncharged, has a d-c 
voltage V suddenly applied at its input at time I = 0. Sketch the current flow 
through the input source as a function of time. 

1-21 IDEAL LINE WITH APPLIED SINUSOIDAL VOLTAGES 

Much of the preceding discussion has involved little restriction on 
the type of variation with time of the voltages applied to the trans¬ 
mission lines. Most practical problems are concerned entirely or at 
least partially with sinusoidal time variations. If a voltage which is 
sinusoidal in time is applied at z = 0, it may be represented by the 
exponential (see Art. 1-11): 

V| 2=o = F(t) = Vie3“1 (1) 

Then the corresponding positively traveling wave is written: 

y («/»)] 

Similarly, a negatively traveling wave is written : 

Or the total solution, made up of positive and negative traveling 
waves, is 

V = eiut[V + V/e3̂ '”1] (2) 

The corresponding current, from Art. 1-18, is 

e3“1
I = — [Vie-3̂ ) - Vi'e31"^] (3) 

"0 

For problems in which we shall be concerned throughout with sinu¬ 
soidal quantities, it is not necessary to write the factor e3“* explicitly 
each time, since it will always be understood that all terms are multi¬ 
plied by this factor; we rewrite (2) and (3), omitting it: 

V = + Vi'e*' (4) 

I = ~{Vxe-3̂ - V,'e3̂ (5) 
zo 

where ß = - (6) 

The quantity ß is called the phase constant of the line since ßz measures 
the instantaneous phase at a point z with respect to z = 0. Moreover, 
if voltage and current are observed at any point z, they will be found 
exactly the same at points such that ßz differs from that of the first 
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point by multiples of 2ir. The distance between points of like current 
and voltage is called a wavelength X. By the above reasoning, 

ßX = 2ir 

or (7) 

The transformation of impedances by the ideal line is easily found 
from (4) and (5). Let us assume that the line is of length I and that 
the load impedance is ZL. For convenience we take the origin z = 0 
at the load, and the input then lies at z = — I. The ratio of (4) to 
(5) at z = 0 may be set equal to ZL, and solved for the ratio Vi'/Vi. 
The result is in agreement with that already given in Eq. 1-19(4): 

V/ = ZL - Zt 
Fi ZL + Z* (8) 

The input impedance may be found by dividing (4) by (5) for z = — I: 

Zi = Zo
'eipl + pe-»1' 
.e^1 — pe~W. 

(9) 

Or, substituting the result of (8), 

ZL cos ßl + jZo sin ßl 
-Zo cos ßl + jZL sin ßl. (10) 

By defining admittances Y¿ = l/Z,, YL = 1/ZL and Fo = 1/ZO, we 
can find an exactly similar expression, 

Y = y F Yl cos ßl + jY0 sin . . 
° .To cos ßl + jY ¿sin ßl. 

PROBLEMS 

l-21a Find the special cases of (10) for a shorted line; an open line; a half-wave 
line with impedance Z^; a quarter-wave line with impedance Zl-

1-21& When two transmission lines are to be connected in cascade, a reflection 
of the wave to be transmitted from one to the other will occur if they do not have 

h 
-*■ Z01 Zq2 ->- Zqs 

Fig. 1-21. 

the same characteristic impedances. Show that a quarter-wave line matching 
transformer (Fig. 1-21) will cause the first line to see its characteristic impedance 
Zoi as a termination and thus eliminate reflection in transfer if ßlz = ar/2 and 
^02 = X^ZtllZoz. 
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1-22 STANDING-WAVE RATIO 

Of the two traveling-wave terms in the voltage equation, 1-21(4), 
the first becomes more negative in phase as z increases, and the second 
becomes more positive. There must consequently be some value 
of z for which the two terms are of the same phase. Their amplitudes 
will then add directly, and this point will give a maximum amplitude 
of voltage. 

7max = I Fl I + I Kl' I (1) 

A quarter wavelength from the position just discussed (say in a posi¬ 
tive z direction), the first term will have decreased in phase by ir/2, 
and the second will have increased by ir/2, so that the two are then tt 
apart in phase; they subtract and give a minimum amplitude of 
voltage : 

7min = I Vi I - I 7/ I (2) 

The standing-wave ratio is then defined as the ratio of the maximum 
voltage amplitude to the minimum voltage amplitude, 

7min 

By substituting (1), (2), and the definition of reflection coefficient 
Eq. 1-21(8), 

s - _ ptM (4)
7i I — 7i I 1 — I p I 

It is seen that standing-wave ratio is directly related to the magnitude 
of reflection coefficient p, giving the same information as this quan¬ 
tity. The inverse relation is 

Because of the negative sign appearing in the current equation, 
1-21(5), it is evident that, at the position where the two traveling¬ 
wave terms add in the voltage relation, they subtract in the current 
relation, and vice versa. The maximum voltage position is then a 
minimum current position: 

T J rj-I 7i'| 
* min r/ 

At this position impedance is purely resistive and has the maximum 
value it will have at any point along the line: 
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Z " max (6) 

At the position of the voltage minimum, current is a maximum, and 
impedance is a minimum and real: 

max 

1 
= Zo (8) ^min V 

L| F 
By comparing (6) and (8) with (4), the minimum and maximum values 
of impedance may be written in terms of the standing-wave ratio and 
the characteristic impedance of the line: 

max = sz0

min 
z „ 
s 

(9) 

(10) 

PROBLEMS 

l-22o An impedance of 100 4- J100 ohms is placed as a load on a transmission 
line of characteristic impedance 50 ohms. Find the reflection coefficient in mag¬ 
nitude and phase and the standing-wave ratio for the line. 

1-22& Suppose that reflection coefficient is given in magnitude and phase as 
|p|e’* at the load z = 0. Find the value of (negative) z for which voltage is a 
maximum. Show that current is in phase with voltage at this position, so that 
impedance there is real, as stated. Calculate the position of maximum voltage 
for the numerical values of Prob. a. 

1-23 THE SMITH TRANSMISSION LINE CHART 

Many graphical aids for transmission line computations have been 
devised. Of these, the most generally useful has been one presented by 
P. H. Smith,1 which consists of loci of constant resistance and reactance 
plotted on a polar diagram in which radius corresponds to magnitude 
of reflection coefficient, and angle corresponds to phase of reflection 
coefficient referred to a general point along the line. The chart enables 
one to find simply how impedances are transformed along the line, 
or to relate impedance to reflection coefficient or to standing-wave 
ratio and position of a voltage minimum. By combinations of oper-

’P. H. Smith, “Transmission-Line Calculator,” Electronics, 12, 29-31 (Jan. 
1939); “An Improved Transmission-Line Calculator,” Electronics, 17, 130 (Jan 
1944). 
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ations, it enables one to understand the behavior of complex imped¬ 
ance-matching techniques and to devise new ones. 

The discussion of the chart will begin with Eq. 1-21(9), which gives 
impedance in terms of reflection coefficient. If we define a per-unit 
impedance 

= (r + jx) = (1) 

(2) 

Equation 1-21(9) may then be written 

(3) 

or (4) 

and a complex variable w equal to the reflection coefficient at the end 
of the line, shifted in phase to correspond to the input position I, 

w = u + jv = pe 2̂ 1

W = 1 — w 

1 + (w + jv) 
r + jx =--— 

1 - (u + jv) 

This equation may be separated into real and imaginary parts as 
follows: 

or 

1 — (u2 + V2) 
(1 — w)2 V2

2v 
(1 - u)2 + V2

(u — I)2 + (v — 
X X/ 

1 
(1 + r)2

1 

(5) 

(6) 

(7) 

(8) 

If we then wish to plot the loci of constant resistance r on the w 
plane (u and v serving as rectangular coordinates), (7) shows that they 
are circles with centers on the u axis at [r/(l + r), 0] and with radii 
1/(1 + r). The curves for r = 0, 1, 2, oo are sketched on Fig. l-23a. 
From (8), the curves of constant x plotted on the w plane are also 
circles with centers at (1,1 /x) and with radii 1/| x |. Circles for x = 0, 
±/£, ±1, ±2, » are sketched on Fig. l-23a. Any point on a given 
transmission line will have some impedance with positive resistance 
part, and will then correspond to some particular point on the inside 
of the unit circle of the w plane. Several uses of the chart will follow. 
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Many extensions and combinations of the ones to be cited will be 
obvious to the student. A chart with more divisions is given in 
Fig. 1-236. 

A. To Find Reflection Coefficient Given Impedance, and Conversely. 
The point within the unit circle of the Smith chart corresponding to a 
particular position on a transmission line may of course be located at 

Fig. l-23a Polar transmission line chart. 

once if the per-unit impedance corresponding to that position is known. 
This is done within a reasonable degree of accuracy by utilizing the 
orthogonal families of circles giving resistance and reactance as 
described above. Thus the point A of Fig. l-23a is the intersection 
of the circles r = 1 and x = 1, and corresponds to a position with per-
unit impedance 1 +jl- The magnitude of reflection coefficient is 
the radius of that point from the origin, by the definition of the w 
variable in (2). The phase of reflection coefficient referred to that 
particular position (that is, the phase of the reflected wave voltage 
with respect to the incident wave voltage at that position) is the angle 
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measured counterclockwise from the right-hand u axis, by the defi¬ 
nition of w. Thus, for a per-unit load impedance of 1 + JI, the 
reflection coefficient in magnitude and phase referred to that position 
is found from the polar coordinates of A to be 0.45eJ111. Of course, 
the reversal of this procedure to give impedance if p is known is obvious. 

B. To Transfer Impedances along the Line. If one moves along an 
ideal line between points of discontinuity, the magnitude of reflection 
coefficient must remain constant since incident and reflected waves 
shift in phase but do not change amplitude. On the chart, one then 
follows a circle with center at the origin of the w plane. The angle 
through which one moves is proportional to the length of the line, and 
by (2) is just twice the electrical length of the line ßl. (Most charts 
have a scale around the outside calibrated in fractions of a wavelength, 
so that the angle need not be computed explicitly.) Finally, the 
direction in which one moves is also defined by (2). If one moves 
toward the generator (increasing I), the angle of w becomes increas¬ 
ingly negative, which corresponds to clockwise motion about the 
chart. Motion toward the load corresponds to decreasing I in (2) 
and thus corresponds to counterclockwise motion about the chart. 
These directions are denoted by arrows on the chart. 

As an example, if we are given a load impedance of 1 + jl per unit, 
we have seen that this corresponds to point A of Fig. l-23a. If the 
line is a quarter-wave long (90 electrical degrees), we move through 
an angle of 180° at constant radius on the chart toward the generator 
(clockwise) to point B. The per-unit input impedance is then read 
as 0.5 — j0.5 for point B. If input impedance is given and load 
impedance desired, the reverse of this procedure is obvious. 

C. To Find Standing-Wave Ratio and Position of Voltage Maximum 
from a Given Impedance, and Conversely. If we wish the standing¬ 
wave ratio of an ideal transmission line terminated in a known load 
impedance, we make use of the information found in the last article 
(that the maximum impedance point along the line—which is also the 
voltage maximum and current minimum—is a pure resistance point, 
and this resistance is the standing-wave ratio times the characteristic 
impedance). That is, the per-unit resistance of this point is exactly 
the standing-wave ratio. Thus, in following about the circle on the 
chart determined by the given impedance, we note its crossing of the 
right-hand u axis of the w plane. The value of the per-unit resistance 
of this point is then the standing-wave ratio; the angle moved through 
to this position from the known impedance fixes the position of the 
voltage maximum. 

As an example, for the given load impedance 1 + J1 indicated by 
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point A of Fig. l-23a, one moves to the pure resistance point C by 
going 0.088 wavelength (31.7 electrical degrees) toward the generator 
from the load. The value of maximum per-unit resistance, which is 
the standing-wave ratio, is read as 2.6. The reversal of this procedure 
to determine the load impedance, if standing-wave ratio and position 
of a voltage maximum are given, is straightforward, as is the extension 
to finding position of voltage minimum, or finding input impedance 
in place of load impedance. 

D. Use as an Admittance Diagram. Since admittance transforms 
along the ideal line in exactly the same manner as impedance, Eq. 
1-21(11), it is evident that exactly the same chart may be used for 
transformation of admittances with the same procedure as for imped¬ 
ances described in (B) above. /Xdmittance is read for impedance, 
conductance for resistance, and susceptance for reactance. The differ¬ 
ences to remember are: the right-hand u axis now represents an admit¬ 
tance maximum, and therefore a current maximum instead of a voltage 
maximum; the phase of reflection coefficient read directly correspond¬ 
ing to a given per-unit admittance is that for current in the reflected 
wave compared with current in the incident wave and is therefore 
different by ir from that based on voltages. 

PROBLEMS 

l’23a A 50-ohm line is terminated in a load impedance of 75 — J69 ohms. The 
line is 3.5 meters long and is excited by a source of energy at 50 mc/sec. Velocity 
of propagation along the line is 3 X 108 meters/sec. Find the input impedance, 
the reflection coefficient in magnitude and phase, the value of standing-wave ratio, 
and the position of a voltage minimum. 

l-23b The standing-wave ratio on an ideal 70-ohm line is measured as 3.2, 
and a voltage minimum is observed 0.23 wavelength in front of the load. Find 
the load impedance. 

l’23c Repeat Prob, b, using the chart to determine load admittance. Check 
to see if the result is consistent with the impedance found in b. 

l-23d A 70-ohm line is terminated in an impedance of 50 + J10 ohms. Find 
the position and value of a reactance that might be added in series with the line 
at some point to produce a perfect match for waves incident from the left. 

l-23e Repeat Prob, d to determine the position and value of a shunt sus¬ 
ceptance to be placed on the line for matching. 

1-24 TRANSMISSION LINES WITH LOSSES 

If series resistance and shunt conductance are of importance in the 
transmission lines, the voltage drop along the line must include the 
resistance drop as well as the inductance drop of Eq. 1-16(3). Simi-
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larly, the leakage current must include the conductance as well as 
capacitance current shunted across the line. Instead of Eqs. 1 16(3) 
and 1-16(4) we then have 

dV 

dz (1) 

a/ 
dz dl (2) 

If steady-state sinusoidal conditions, of the form e7“*. with respect 
to time are considered, time derivatives may be replaced by ju, and 
total derivatives written for distance since there are then no other 
derivatives: 

dV 
— = -(R+juL)! (3) 

dZ 
- — (G + juC) V (4) 

Differentiate (3) with respect to z and substitute (4) : 

d-V di 
= - (ß + — = (ß + ;^)(G + juC) V 

d2V , 
or = yV (5) 

where t2 = (« + j^ÇG + juC) (6) 

The solution to (5) is in terms of exponentials, 

V = Ae-11 + Be”1 (7) 

as can be verified by substituting (7) in (5). 
An examination of (6) shows that y must be complex in the general 

case. Let us write the real part as a, the imaginary part as 0. By (6), 

y = a + jß = V(ß + juL)(G + juC) (8) 

If (7) is rewritten using a and ß, 

V = Ae-“^-3̂  + Beateiiz (9) 

This expression for voltage is quite similar to that of Eq. 1-21(4) 
for sinusoidal waves in ideal lines, except that there is now an attenua¬ 
tion term on both the forward and backward traveling waves, a is 
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called the attenuation constant, ß the phase constant, and 7 the propa¬ 
gation constant. 

As for current, solve by substituting (7) in (3): 

[Ae-^ - ße^] 
R + juL 

I = ~ [Ae-a‘e-iBl - BealeiBz \ 
¿0 

where 
R + juL 
G + juC 

(10) 

(ID 

Zo may again be thought of as the characteristic or surge impedance 
of the line, since it relates voltage and current in a single wave and is 
the impedance of a line of infinite length. However, it is now complex. 

The formulas for reflection and transmission coefficients derived 
in Eqs. 1-19(4) and (5) apply to this case also, remembering of course 
that Zo is complex. To find the input impedance at z = — I in terms 
of a given reflection coefficient p = B/A at z = 0, division of (7) by 
(10) yields 

. Aeyl + Be-7'] Fl + Pe~-yr 
0 Lie7' - Be-7'J “ '° Ll - pe~ 2yl . 

(12) 

This may be put in terms of load impedance by substituting Eq. 
1-19(4): 

z - z z13x 
’ " _Zo cosh yl + ZL sinh 7Z. 

The Smith transmission line chart may be utilized for lines with losses, 
with the same procedure as described in Art. 1-23 except that, in mov¬ 
ing along the line toward the generator, one moves not along a circle 
but along a spiral of radius decreasing according to the exponential 
e~2“'. The justification for this is provided by (12). 

For low-loss lines, R/wB « 1 and G/&C « 1, it is interesting to note 
approximate values of attenuation constant, phase constant, and char¬ 
acteristic impedance. The following results are obtained by retaining 
up to second order terms in the binomial expansions of (8) and (11): 

R , G0VL/C 
a ~ -7= d---

2 ^L/C 2

/T^r RG G- R2
4ü)2¿C + 8a)2C 2 + 

(14) 

(15) 
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Quantity 

Propagation constant 
y = a + jß 

Phase constant ß 

Attenuation constant a 

Characteristic imped¬ 
ance Zo 

Input impedance Zt 

Impedance of shorted 
line 

Impedance of open line 

Impedance of quarter¬ 
wave line 

Impedance of half-wave 
line 

Voltage along line V(z) 

Current along line Uz)' 

Reflection coefficient Kr 

Standing wave ratio 

Z0

z. 
z0

I 

General Line 

V(R +juL)(G +jwC) 

ImM 

Re(y) 

lR + jaL 
\G +juC 

~Z¡. cosh yl + Zo sinh yl~ 

Ideal Line 

ju y/LC 

uVlc = “ = ^ 
V X 

0 

VZL cos ßl + jZ« sin ßZ-] 
_Z0 cosh yl + ZL sinh yl_ 

Zu tanh yl 

Zo coth yl 

~Zi, sinh al + Zo cosh al~ 

” L/o cos ßl +jZL sin 3U 

jZa tan ßl 

~jZo cot ßl 
r/1 ^0 
Zl 

ZL

cos ßz — jl¡Zo sin ßz 
Vi It cos ßz — j -TT sin ßz 
Zo 

ZL - Zu 
Zl + Zo 
1 + |A'b| 
1 — \Rr 

_Zo sinh al + Zl cosh al_ 
~Zl cosh al + Zo sinh al~ 
_Zo cosh al + Zl sinh al_ 
\ cosh yz — I.Zo sinh yz 

li cosh yz — TT sinh yz 
Zo 

ZL - Zo 
Zl + Zu 
1 + |ÄH| 
1 - |KS| 

Approximate Results for Low-Loss Lines 

(See a and ß below) 
/,E, RG , (P , IP -i “ V LC 1 — _ 4- - 4-I VirLC owl o<v-L-_j 

R_.GZ^ 
2Z0 2 

R, L, G, C Distributed resistance, inductance, conductance, 
capacitance per unit length. 

I Length of line. 
Subscript i denotes input end quantities. 
Subscript L denotes load end quantities. 

z Distance along line from input end. 
X Wavelength measured along line. 
d Phase velocity of line equals velocity of light in dielectric of 

line for an ideal line. 
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In using the above approximate formulas, it is often sufficient to retain 
only first order correction terms, in which case ß reduces to its ideal 
value of 2tt/X and a is computed from (14). It must then be remem¬ 
bered that Zo has a first order imaginary part, given by the'last part 
of (16), which cannot in general be ignored. 

Several of the important formulas for loss-free, low-loss, and general 
lines are summarized in Table 1-24. 

1-25 PURELY STANDING WAVE ON AN IDEAL LINE 

Suppose that a transmission line, shorted at one end, is excited by 
sinusoidal voltage at the other. Let us select the position of the short 
as the reference, z = 0. The short imposes the condition that, at 
z = 0, voltage must always be zero. From Eq. 1-21(4), 

I |z=0 — 11+1/ 

For this to be zero, Vi must be the negative of Fr This result could 
be obtained as well from the general results for reflections at a dis¬ 
continuity by setting ZL = 0 in Eq. 1-19(4), or merely by physical 
reasoning which shows that no energy is absorbed by the short circuit, 
so all energy brought by the incident wave must appear in the reflected 
wave. The two waves of equal energy in the same line must have 
equal voltages. I hese must be in opposite directions at the short to 
add to the required zero voltage. 

If E/ = —Ex is substituted in Eqs. 1-21(4) and 1-21(5), 

V = V^e-^ - e^] = -2jVi sin ßz (1) 

I = “ + e^] = 2 cos ßz (2) 
zo Zo

These results, typical for standing waves, show the following. 
1. Voltage is always zero not only at the short, but also at multiples 

of X/2 to the left. That is, 

V = 0 at — ßz = mr or z = — n -
— 

2. Voltage is a maximum at all points for which ßz is an odd multiple 
of ?r/2. These are at distances odd multiples of a quarter wavelength 
from the short circuit (Fig. 1-25). 
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3. Current is a maximum at the short circuit and at all points where 
voltage is zero; it is zero at all points where voltage is a maximum. 

4. Current and voltage are not only displaced in their space patterns, 
but also are 90° out of time phase, as indicated by the j appearing 
in (1). 

5. The ratio between the maximum current on the line and the maxi¬ 
mum voltage is Za, the characteristic impedance of the line. 

6. The total energy in any length of line a multiple of a quarter 
wavelength long is constant, merely interchanging between energy in 

Fig. 1-25 Standing waves of voltage and current along shorted line. 

the electric field of the voltages and energy in the magnetic field of the 
currents. 

To check the energy relation stated above, calculate the magnetic 
energy of the currents at a time when the current pattern is a maximum 
and voltage is zero everywhere along the line. Current is given by (2). 
The energy is calculated for a quarter wavelength of the line. 

Since d = 2ir/X by 1-21(7), the above is simply 

UM
V^LX 
4Z02

(3) 

The maximum energy stored in the distributed capacity effect of the 
line is calculated for the quarter wavelength when the voltage pattern 
is a maximum and current is everywhere zero. Voltage is given by (1). 

C C° C 
UE = — I I 7 I 2 dz = — I 4V12 sin2 ßz dz 

2 J-X/4 2 J-X/4 

= 2W^-lsin2J° = (4) L2 4/3 J—x/4 4 k 7
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By the definition of Zo, (3) may also be written 

UM
V^Lk Vi2CX 
^L/C ~ 4 (5) 

Thus the maximum energy stored in magnetic fields is exactly equal 
to that stored in electric fields 90° later in time. It could actually be 
shown that the sum of electric and magnetic energy at any other part 
of the cycle is equal to this same value. 

PROBLEM 

1-25 Write the instantaneous expressions for voltage and current represented 
by the complex values (1) and (2). For a general instant of time, make the inte¬ 
gration of total energy, electric plus magnetic, for a quarter wavelength of the 
line and show that it is constant. 

1-26 PHYSICAL APPROXIMATIONS FOR LOW-LOSS LINES 

In Art. 1-06 we saw that, by certain physical approximations 
amounting to a small perturbation of the ideal solution, we could 
arrive at the approximate behavior of a resonant circuit with small 
but finite losses. We now wish to do the corresponding thing for 
transmission lines in order to arrive at approximate formulas for 
attenuation in a traveling wave, and impedance and quality factor of a 
standing wave. These techniques will be applied later in the book 
to the study of wave guides and cavity resonators. 

If we take the formula for a traveling wave and assume that it is 
known that the major effect of small but finite losses in the line will be 
to produce an attenuating exponential multiplier, 

V = (1) 

1 = (2) 

The average power transfer at any position is then 

(3) 

The factor in the above comes from the time average of a sin2 term 
[or, if preferred, use Eq. 1-12(7)]. The rate of decrease of this average 
power with distance along the line must correspond to the average 
power loss in the line per unit length. 

dWT /1 „ \ 
-- = -WL = —2a -EJie“2“2 = -2aWT 
dz \2 / 

B’l ... 
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This is a very important approximate formula which, by the nature of 
the arguments used above, applies to the attenuation of a traveling 
wave along any uniform system. 

To apply (4) to a transmission line with series resistance R and 
shunt conductance G, we first calculate the average power loss per unit 
length, part of which comes from the current flow through the resist¬ 
ance and another part from voltage appearing across the shunt 
conductance. 

h2R V^G 
r» r» (5) 

The average power transferred by the wave is 

(6) 

So (4) gives the result 

a 
1 
GZ0 + y 

¿oJ 
nepers/meter (7) 

which agrees with the value obtained by a mathematical approxima¬ 
tion in Eq. 1-24(14). 

We next want to ask about the effect of small losses on a quarter 
wavelength of the shorted line with standing waves, which was shown 
in Art. 1-25 to have the character of a resonant system. For the ideal 
line, the current a quarter wave in front of the short would be zero 
and voltage would be a maximum, so impedance would be infinite. 
When losses are present, there must be a high but finite resistance 
present representing energy dissipated in the losses of the line. To 
find these losses approximately, we shall use the expressions for voltage 
and current derived for the ideal line, Eqs. 1-25(1) and (2), assum¬ 
ing that they are not greatly changed by the small losses; The average 
power dissipated in the shunt conductance is then 

px/4 Q 4 V. 2G X 
Wo = I (2Vi sin 0z) 2 - dz = —-— X - (8) 
Jo 2 4 4 

and the average power dissipated in the series resistance is 

The input resistance must be such that the voltage appearing across 
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this resistance will produce losses equal to the sum of (8) and (9). 
The magnitude of voltage at z = — X/4 is 27^ Thus 

or 

i (271)2 = t^x/ M 
2 Ri 4 \ ' Zo7 

\{GZÜ + (R/Zo)] (10) 

The approximate Q of the device describing its excellence as an 
energy storage device may be found by using the definition stated in 
Eq. T06(6). The stored energy is taken as that for the ideal line, 
Eq. 1-25(5|, and the power loss is given by the sum of (8) and (9). 
The result is 

a>of 4woC 1 1 X «oC Zo 
47x2X [G + (ß/Z02)] " GZ0 + (ß/Z0) (11) 

PROBLEMS 

l-26a Find the input resistance and Q of a half wavelength of the shorted line 
having small but finite R and G. 

1-26Ö Use the formula for input impedance of a transmission line with losses 
to check (10), making approximations consistent with R/uL« 1 and G/uC<i. 1 

l-26c Suppose that frequency is varied by a small amount from the value 
giving resonance for the quarter-wave shorted line studied above. For a line with 
R/mL«. 1 and G/wC<¿- 1, find the frequency shift for which impedance has 
decreased in magnitude to 1/y 2 its resonant value. How is this related to the 
Q defined by (11)? 

1-27 VELOCITIES OF WAVE PROPAGATION 

The velocity vp = u>/ß for a single-frequency sinusoid has been 
shown to represent the velocity with which one must travel to keep 
instantaneous phase constant, for in the factor 

e;(ut—0z) _ (z/vp)] 

the instantaneous phase (ut — ßz) does remain constant if one travels 
with velocity vp so that z = vpt + C. This velocity is thus known 
as the phase velocity. 

A function of time with arbitrary wave shape may be expressed as 
a sum of sinusoidal waves by Fourier analysis. If it happens that 
vp is the same for each frequency component and there is no attenu¬ 
ation, the component waves will add in proper phase at each point 
along the line to reproduce the original wave shape exactly, but delayed 
by the time of propagation z/vp. The velocity vp in this case describes 
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the rate at which the wave moves down the line and could be said to 
be the velocity of propagation. This case occurs, for example, in the 
ideal loss-free transmission line already studied for which 

For transmission lines with losses and for general electromagnetic 
wave guides, phase velocity will vary with frequency. In this case 
the individual sinusoidal components acting to make up a complex 
wave will shift in phase as they move down the line, the “faster” waves 
speeding ahead and the “slower” waves falling back. In this phe¬ 
nomenon, known as dispersion, the waves at some point down the line 
may add to produce a wave shape quite different in appearance from 
that which went in. It may then be very difficult to define any 
significant single velocity for this signal. However, when there is 
relatively little dispersion over the frequency band of interest, the 
group velocity, to be defined in the following paragraph, is useful for 
this purpose. 

The group velocity is most easily approached by considering the two-
term combination: 

sin (a>o — du)t -J- sin (cjq -f- du)t (1) 

If the above represents the transmitted voltage, the voltage every¬ 
where along the path (assuming no amplitude change) is 

sin [(a>o — d^'t — (/30 — dß)x] + sin [(w0 + d^t — (fo + dß)x] (2) 

in which ß is to be regarded as a function of frequency as indicated by 
the use of dß to go with du. 

Expression (2) may be changed to 

2 cos (dut — dßx) sin (wí — ßx) 

which shows that the resultant voltage on the line at any point may be 
pictured as a high-frequency wave whose amplitude varies at a low-
frequency rate. The envelope of the wave, in other words, is 

cos (dut — dßx) (3) 

It varies sinusoidally with both time and distance and thus may be 
regarded as a traveling wave. It is readily seen that the velocity of an 
imaginary observer who stays on the same point of the envelope is 
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This is called the group velocity. Since the phase velocity, Eq. 
1-21(6), is 

(5) 

the group velocity is seen to be 

_ 
a) dvp 
vp du 

(6) 

Similarly for a signal made up of many sinusoidal components, so 
long as there is relatively small dispersion over the frequency band 
necessary to describe the signal, it may be shown that the group 
velocity vg defined above expresses approximately the velocity of the 
composite envelope, and may thus be used as a “signal” velocity. 
For large dispersions, this is not a good approximation, but it is then 
usually impossible to give any single velocity describing the propa¬ 
gation of the wave since it changes shape so definitely as it goes. The 
group velocity is also not useful as a signal velocity in cases for which 
dvp/dw is positive (called anomalous dispersion), for then from (6) 
group velocity may become infinite or negative. An excellent dis¬ 
cussion of the several velocities of propagation is made by Stratton.2

PROBLEMS 

1-27a Is phase or group velocity the larger for normal dispersion (dvp/dw < 0)? 
For anomalous dispersion (dvp/doi >0)? 

1-27& Find the phase and group velocities for a transmission line with small 
but finite losses. 

l-27c Consider a transmission line with very high leakage conductance G per 
unit length so that series resistance R and shunt capacitance C are negligible. 
Find phase and group velocities. 

1-28 ANALYSIS OF TRANSMISSION LINE IN TERMS OF NATURAL MODES 

In this article we shall demonstrate a technique which will be one of 
the most widely useful methods for solution of field and wave problems 
to come later. The method makes use of a summation or series of har¬ 
monic solutions to a wave problem to fit imposed boundary or initial 
conditions, just as in Art. 1-13 a series of sinusoids was used to fit any 
arbitrary periodic functions. 

As the example, let us consider a problem quite similar to those 
solved by consideration of the traveling waves in Art. 1-20. For this 

2 J. A. Stratton, Electromagnetic Theory, McGraw-Hill, 1941, pp. 330-340. 
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problem, imagine the open-circuited transmission line, first charged to 
a d-c voltage Fo, and then shorted at both ends simultaneously at a 
specified instant of time. The voltage distribution at the instant of 
shorting is then known (zero at each end and a constant equal to To 
at all other points). It is desired to find the current and voltage 
behavior at all later times. 

In Art. 1-25 it was noted that natural sinusoidal oscillations for a fine 
of length I, shorted at both ends, occur at all frequencies for which the 
line is a multiple of a half-wave long. From the results of that article 
one of these natural sinusoidal modes of oscillation may be written. 
For voltage, 

Vm = Ame3“"3 sin (1) 

, , mirv mir 
where um = 2irfm = — = — (2) Í T 
T is the time of travel of a wave down the line, l/v. The results of 
Art. 1-25 also reveal that the corresponding current for each natural 
frequency is 90° out of time and space phase with voltage and has the 
magnitude of voltage divided by Z^. That is, 

r jAm ju t rmrz 
Im = e’ m cos —— (3) 

Zo I 

Now, let us form a solution to the transmission line equations from the 
sum of all solutions of the form of (1). The basis for this step may be 
traced to the fact that the sum of solutions to a linear differential equa¬ 
tion is also a solution. The transmission line differential equations are 
linear, and (1) is a solution. Adding, 

V = Aie3 11 sin — + Aze3 2* sin - - -J- A 3cJ“3< sin —-—(- • • • (4) 
Lb t 

and the corresponding sum of (3) for current, 

(5) 

The amplitudes Ai, A 2, • • • , Am are still arbitrary. They may be 
determined from the known initial condition by expanding the known 
initial voltage distribution with distance as a Fourier series. 

At i = 0, the voltage is known to be a constant Fq over the interval 
0 < z < I. Such a function has been expanded in a Fourier series 
of sines in Eq. 1-15(7). 

~ Aie3“1* cos — + A2e;"s< cos — + A3e,“3< cos + • 
Zo L ¿ * * 
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4Vo . irz 1 . 3irz 1 . 5tz 
V = •—- sin — + - sm - sin — + • • ■ 
I — 0 7T I O I O I 

(6) 

But, at t = 0, the series (4) reduces to 
. irz 2nrz 3ttz 

V = Ai sin — + A 2 sin ——F A 3 sin —— 
t=o III 

(7) 

By a term-by-term comparison of (6) and (7) it is seen that all the even 
coefficients, Ao, A4, etc., must be zero; for the odd coefficients, 

4 Vo 4 Vo 4V0
.li - — .1 3 = — — • ■ • .l n -

ir öir nir 

Now that the coefficients are determined, the complete series expres¬ 
sions for voltage and current at any time may be written 

3?rz ottz 
sm sm 

I 3 
(8) 

J(5xi/r) 4 JVo TTZ 
e-

3 

eJ(3»t/r) 

e;(5«l/r) 

3irZ 
cos-

sin + 4 r o V = — 

oirZ 
COS —--F • • 

(9) 
It must be remembered that, to find instantaneous values, we must 

take the real part of the above expressions (Art. 1-11), and voltage or 
current could then be calculated approximately at any point along 
the line for any time by retaining a number of terms from the above 
infinite series. It is especially interesting to note the current through 
the short circuit by letting z = 0. 

Re 

— 4 Vo . irt 1 . 3irt 1 . 5irt 
- . sin-F - sin-F - sin-F • • • 
¿ot L t 3 r 5 t 

This can be shown to be the Fourier series of a step function which 

Fig. 1 28. 

changes from Vq/Zo to — Vo/Zo at intervals of t, as sketched in Fig. 
1-28. The same result would have been found by a traveling-wave 
analysis as in Art. 1-20. 



2 THE EQUATIONS OF 

STATIONARY ELECTRIC 

AND MAGNETIC FIELDS 

2-01 INTRODUCTION 

The discussion of field concepts will begin in this book with the 
study of static electric and magnetic fields. The main reason for this 
is that the laws and physical pictures for such fields are probably some¬ 
what more familiar to the student than the more general laws of time¬ 
varying electricity and magnetism, so that the mathematical tools 
required for a discussion of all fields and the physical pictures required 
for the acceptance of field concepts may be more easily introduced 
at this stage. In other words, the material of static fields is used here 
primarily as a training ground for the important tools and concepts to 
be used throughout the book, with the belief that this will make the 
all-important general laws (Maxwell’s equations) more meaningful for 
the student when they are introduced in a later chapter. 

It is true that the present approach involves some risk. By concen¬ 
trating on the special case of statics first, there is danger that the 
student will become too strongly imbued with certain laws and con¬ 
cepts which are not complete when the currents and charges are 
functions of time. For example, the use of a voltage defined along a 
path as synonymous with a difference in potential of the end points 
of that path is valid for static electric fields, but not for time-varying 
fields when any significant part of the electric field is generated by a 
changing magnetic field. Yet the incorrect use of the potential 
concept for a-c fields is fairly common among engineers. To minimize 
the risk, the student must remind himself from time to time that the 
discussion of this and the following chapter is for statics only, and 
that additions necessary when the electric and magnetic quantities 
change with time will follow. In fact, it is this opportunity to contrast 
the time-varying laws with the more simple ones of statics that can 

51 
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make the discussion of the general laws more meaningful, especially 
since the mathematical tools and the philosophjr behind the use of 
field concepts will be somewhat familiar by that time. 

If we begin the study of fields from some observed law which may be 
regarded as fundamental, the statement of the law should be made as 
general as possible so that it will be useful to describe a variety of con¬ 
ditions. We should always be critical of this procedure, since these 
“laws” represent generalizations from several experiments, all of which 
are special in nature; there is nothing to assure us, in extending them 
from the range of magnitudes and conditions in which they were deter¬ 
mined to an entirely new set of magnitudes and conditions, that the 
phenomena predicted will actually ever be observed until these too are 
checked by special experiment. Once checked, the derived form of the 
relation might just as well have been the fundamental law. In fact, we 
might have started from that point had we thought of it first. In 
applied physics it is particularly necessary to find a large number of 
these derived relations, since it is seldom convenient to use the law in 
its original form for all design or analysis. There are often so many 
of these forms that the engineer in using a dozen different relations for 
as many separate problems may be quite unaware that many of these 
relations are in reality equivalent. 

To study static fields some experimental “laws” will be taken as 
fundamental. By transformations, definitions, and generalizations, 
other forms of the law will be obtained, which may be more general or 
more convenient to use for certain problems. We shall extend the laws 
developed from macroscopic systems to the infinitesimal, and so obtain 
differential equations with which we may study continuous variations 
from point to point, as well as discrete systems. Once this extension 
has been justified, the differential equation will be the most valuable 
tool for the study of fields. 

As the discussion proceeds, it will be noticed that directions appear as 
frequently as magnitudes in the statement of the laws, so that quite 
naturallj' it will be necessary to use a short-cut vector notation to save 
time, space, and many words. It will soon be discovered that this 
notation permits many short cuts in manipulation and, most important 
of all, leads to a very superior way of thinking about electric and 
magnetic effects. 

Static Electric Fields 

2-02 THE PROBLEM OF STATIC ELECTRIC FIELDS 

The problem which must be solved in static electric field theory is 
that of obtaining relations which involve the geometrical configurations 
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of conductors and dielectrics, the distribution of charges on the con¬ 
ductors and in the dielectric medium separating them, the potential 
differences between conductors, and the field distribution in the dielec¬ 
tric. Several or all of these factors will enter into the determination of 
capacitance between conductors, the maximum gradient in insulation, 
the amount of field between deflecting plates in an oscilloscope, the 
amount of shielding which a grid provides in a vacuum tube, or the 
accelerating force on an electron in an electron gun. 

Essentially, the problem is one of equilibrium. We require a knowl¬ 
edge of the forces that act on charges, thus making them move to even¬ 
tual equilibrium positions, and we must know the manner in which 
conductors and dielectrics affect the charge distribution and the field 
distribution. 

2-03 FORCE BETWEEN ELECTRIC CHARGES 

We shall take as the starting point for electrostatics the experimental 
law of Coulomb, which gives the force between two electric charges. 
The law includes the following information: 

1. Like charges repel, opposites attract. 
2. Force is proportional to the product of charge magnitudes. 
3. Force is inversely proportional to the square of the distances 

between charges. 
4. Force is dependent upon the medium in which the charges are 

placed. 
5. Force acts along the line joining the charges. 
This information may be written as an equation: 

In this equation, f is defined as the force of attraction acting on the 
line between charges, qq and represent the charges in magnitude and 
sign, r is the distance between charges, e is a property of the medium 
which may be called the dielectric constant, and fc is a constant of pro¬ 
portionality which must be included for the present, since we have not 
as yet defined units. 

The equation may be written so that the direction of the force is 
included: 

f = k —=- ar (2) 
er 

The bar above / denotes that force is a directed quantity, or vector; 
that is, it has both magnitude and direction. The direction of J is 
given by ãr, a vector of unit length pointing from one charge directly 
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away from the other, and the sign of q\q2. Thus, if q\ and Ç2 have 
opposite signs, q\q2 is negative and the force has the opposite direction 
to ãr, or is from one charge toward the other. If qi and q2 have the 
same signs, J has the same direction as ãr and is hence from one charge 
directly away from the other. This is merely the statement of oppo¬ 
site charges attracting, like charges repelling. Vectors such as ãr are 
known as unit vectors and will be useful throughout the study of 
fields, since they serve to indicate direction without interfering with 
magnitudes. 

2-04 THE ELECTROSTATIC SYSTEM OF UNITS 

Equation 2 03(1) may be used to define systems of units. Origi¬ 
nally, the most common system of units used for electric quantities in 
discussing the physical laws was a centimeter-gram-second system of 
units known as the electrostatic system of units (esu). Although it is 
not the system to be used throughout the remainder of the book, it will 
be defined briefly in this article. Since it is a cgs system, the unit of 
force appearing in Eq. 2 03(1) is the dyne, and the unit of distance is 
the centimeter. A unit charge is defined as that charge which repels 
an exactly similar charge with a force of 1 dyne when the two are 
placed 1 centimeter apart in vacuum, so that k/e = 1. In this system 
of units the dielectric constant of vacuum is further defined as unity, 
so that k is also unity. The unit of charge defined in this system is 
known as the statcoulomb, and it is very nearly X 10~9 of the 
practical unit of charge, the coulomb. 

The dielectric constant of a material based upon vacuum as unity 
is known as the relative dielectric constant, or specific inductive capac¬ 
ity. In this text the relative dielectric constant will be denoted by 
i to distinguish it from the dielectric constant in the mks system of 
units, to be described below, which will be denoted simply as e. 

2-05 THE RATIONAL MKS SYSTEM OF UNITS 

The system of units that has come to be used almost universally in 
applied electromagnetic theory is the system of units introduced by 
Giorgi1 in 1901. It is an mks system, so that lengths are in meters, 
mass in kilograms, and time in seconds, but the significant advantage 
so far as its use in electricity and magnetism is concerned lies in the 
fact that the units of all primary electric quantities are those actually 
measured. Thus, current is in amperes, potential in volts, an imped¬ 
ance derived at any stage of the discussion is in ohms, power is in 

1 Giorgi, Elettricità (Milan), 20, 787-788 (Dec. 1901). 
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watts, etc. These and other advantages will become clearer as the 
various laws are introduced and studied. 

The unit of force in any meter-kilogram-second system of units, 
defined as the product of mass and acceleration, has the units of kilo¬ 
gram-meters per (second)2 and is known as a newton: 

1 newton = 1 kilogram-meter (second)-2 = 105 dynes (1) 

The unit of energy, the product of force and distance, is in newton¬ 
meters, and is the well-known unit of physics and engineering called 
the joule: 

1 joule = 1 newton-meter = 107 ergs (2) 

For later purposes, it is also well to note that, from elementary circuit 
theory for a simple condenser, the energy in joules can be written in 
terms of charge in coulombs and capacitance in farads: 

. . , à (charge in coulombs) 2 
energy in joules = ----—-— (3) 

(capacitance in farads) 

The unit of charge appearing in Eq. 2 03(1) is selected as the prac¬ 
tical unit, the coulomb. All dimensions in the basic force equation 
have now been selected except for the constant k and the dielectric 
constant e. In this system the dielectric constant is allowed to absorb 
the conversion factors between units so that it has a value other than 
unity for free space, and definite dimensions. The remaining dimen¬ 
sionless factor k is selected either as 1/4tt or as unity, depending upon 
whether a “rational” or an “irrational” system of units is desired. 
The relative advantages of these choices cannot be discussed intelli¬ 
gently until the entire set of electromagnetic equations has been pre¬ 
sented, but, since the choice in the literature has been predominantly 
in favor of the rational system, that system will be used in this text. 
The constant k is therefore chosen as l/4ir, and the force equation in 
rational mks units reads 

/ = ;—2 (ar) Air er ¿ (4) 

The units of e may now be found from (4) in conjunction with (2) and 
(3): 

(coulombs)2 (coulombs)2 farads 
newtons (meter) 2 joules-meter meter 

To find the value of e for free space, which will be denoted eo, we may 
refer to the known result from the force equation in esu: two charges 
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of 1 statcoulomb each placed 1 centimeter apart in vacuum yield a 
force of 1 dyne. If these data are converted to the mks system and 
substituted in (4), the result is 

«o = 
£19^ 
4vr2f 

Æ X W~9)2 
4ir(10—2)210—6

=-X 10 9 farads/meter 
36ir 

(5) 

The use of the approximate conversion between statcoulombs and 
coulombs, as in the above, results in the easily remembered value 
shown. A more accurate value is 8.854 X 10—12 farads per meter. 
The dielectric constant of other materials may then be written as the 
product of e0 and the relative dielectric constant e' defined in the 
previous article: 

e = e'eo (6) 

t' is the quantity commonly listed in tables for dielectric materials. 

PROBLEMS 

2-06a Compute the force between two charges of 1 coulomb each placed 1 meter 
apart in vacuum. Use Coulomb’s force law in both esu and mks units, and show 
that the results are equivalent. 

2-05b Calculate the ratio of the electrostatic force of repulsion between two 
electrons to the gravitational force of attraction, assuming that Newton’s law of 
gravitation holds. The electron’s charge is 1.602 X 10-19 coulombs, its mass is 
9.11 X 10-28 grams, and the gravitational constant K is 6.66 X 10-8 dyne cm2 g~2

2-06 ELECTRIC FIELD INTENSITY 

Coulomb’s force law gives the force that will be exerted on a charge 
when placed in the vicinity of another point charge. In the more 
general case, any charge placed in the vicinity of a system of charges 
experiences a force whose magnitude and direction are functions of the 
amounts and positions of all charges of the system. A region so 
influenced by charges is called a region of electric field. The force 
per unit charge on a positive test charge at a point is defined as the 
strength of electric field or electric intensity at the point, provided 
that the test charge is so small that it does not disturb the original 
charge distribution of the system. Since the force on the test charge 
has direction as well as magnitude, the electric intensity is a vector. 
The electric intensity or electric field vector is then defined by 

where J is the force acting upon the infinitesimal test charge àq. 
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The electric field arising from a point charge q in a homogeneous 
dielectric is then given by the force law, Eq. 205(4): 

£ = (a,) 4irer¿ (2) 

Since ãr is the unit vector directed from the point in a direction away 
from the charge, the electric field vector is seen to point away from 
positive charges and toward negative charges. The units of electric 
field in the mks system are in volts per meter, as may be found by sub¬ 
stituting units in (2) : 

coulombs meter volts 
farads (meter)2 meter 

For a system of point charges, the total electric field may be found 
by adding vectorially the forces from the individual charges, as is 
illustrated at point P of Fig. 2 06 for the charges q and — q separated 
by distance d. In this manner the 
electric field vector could be found for 
any point in the vicinity of the two 
charges. An electric field line is de¬ 
fined as a line drawn tangent to the 
electric field vector at each point in 
space. If the vector is constructed for 
enough points of the region, the electric 
field lines can be drawn in roughly by 
following the direction of the vectors 
as illustrated in the figure. Easier 

Fig. 2 06 Construction of field 
lines about point charges. 

methods of constructing the electric field will be studied in later arti¬ 
cles, but the present method, although laborious, demonstrates clearly 
the meaning of the electric field lines. 

PROBLEMS 

2-06a Construct the electric field vector for several points in the x-y plane for 
like charges q at (d/2,0,0) and (—d/2,0,0), and draw in roughly a few electric 
field lines. 

2'06b Repeat Prob, a for charges of 2q and — q at (d/2,0,0) and (—d/2,0,0), 
respectively. 

2-07 ELECTRIC FLUX DENSITY 

Equation 2 06(2) shows that the electric intensity is dependent upon 
the medium in which the charge is placed. Suppose that a new vector 
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quantity independent of the medium is defined. Define the quantity 
öby 

b = ib (i) 

This quantity for a point charge then becomes [Eq. 2-06(2)] 

ß - W (2) 

The vector D at any point is thus a function of charge and position 
only, and is called an electric flux density. It is true that the justifi¬ 
cation for this name and the use of the concept of flux in connection 
with it cannot be appreciated fully at this stage but must gradually 
be built up over the next few articles. The name implies that each 
charge may be considered a source of flux or lines of flow in the medium, 
each charge giving rise to a certain amount of that flux. For example, 
if an imaginary spherical surface of radius r is chosen with center at 
the point charge of strength q, Eq. (2) shows that at each point on 
the surface of this sphere the vector which we have called electric flux 
density points radially outward and has strength ?/(4irr2). If this is 
multiplied by the surface of the sphere, 4irr2, to obtain the total electric 
flux passing through the surface, it is found to be exactly equal to the 
charge q, and is independent of the radius of the sphere chosen for the 
calculation. It will be demonstrated that this same result is obtained 
for any surface surrounding the charge, leading to the very important 
statement of Gauss’s law. 

For reasons which are largely historical, the vector b is also some¬ 
times called the “displacement vector,” and the flux associated with 
it is called “displacement flux.” The terms electric flux density and 
electric flux give a better physical picture at this stage of the discussion. 
In (2), q has the dimensions of coulombs and r has the dimensions of 
meters, so D has the dimensions of coulombs per square meter in the 
mks system. 

PROBLEM 

2-07 If (1) were used to define dielectric constant, with D in coulombs per 
meter2 and E in volts per meter, show that « has the units stated: farads per meter. 

2-08 GAUSS’S LAW 

In Art. 2 07 it was shown that the electric flux passing through a 
spherical surface centered about a point charge q is exactly equal to 
the charge q. It is now desirable to generalize the demonstration to a 
surface of arbitrary shape containing any number of charges. If one 
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of these point charges, q, is considered first (Fig. 2 08), the field inten¬ 
sity and electric flux density can be calculated for any point on the 
surface by equations of previous 
g/(4îrr2). (When a quantity nor¬ 
mally a vector appears without 
the bar, it signifies that magni¬ 
tude alone is being considered.) 
If we continue the interpretation 
of D as a flux or flow density 
vector, analogous to the flow vec¬ 
tor for a fluid passing through a 
surface, it is the component of the 
vector normal to the surface at 
each point which determines the 
flow through the surface. Thus, 
if 9 is the angle between D and the normal to the surface at P, the 
amount of flux passing through an elemental surface dS is 

Fig. 2 08 Charge q and arbitrary sur¬ 
rounding surface. 

articles. Thus, at point P, D is 

di/- = — dS cos 9 
4tit 

dS cos 9 is the area dS', the component of dS normal to D. But in 
solid geometry the element of solid angle dfi is defined as the ratio of 
the surface subtended to the square of the radius: 

». dS' dü = -y 
dS cos 9 

Hence the amount of flux flowing through the elemental surface can be 
written as çdn/drr. To obtain the total electric flux, this expression is 
integrated over all the surface, which amounts to integrating dû. 
Since the total solid angle subtended by a closed surface is 4tt stera¬ 
dians, the result is again simply q-. 

(£s D cos 9 dS = q (1) 

D is the magnitude of the electric flux density at any point on the sur¬ 
face, dS is an-elemental area at that point, and 9 is the angle between 

ï) and the normal to the surface. is used to denote the integral 
over a general surface, and the circle through the integral signifies that 
the surface is a closed one. 

If there are a number of point charges inside the region considered, 
there will be an integration similar to the above for each of the charges 
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and the flux will add linearly, since the total force on a test charge 
at any point will be the vector sum of the forces from the individual 
charges considered separately. Hence the q on the right side of Eq. 
(1) may be considered the total charge inside the surface under 
consideration. 

The above is a statement of Gauss’s law. In words, it is 

flux out of a surface = charge enclosed 

It has been derived from Coulomb’s force law by the introduction of 
new definitions and concepts, but without any further experimental 
information. It is more useful than the original law for much general 
thinking, and also for a variety of simple problems, some of which will 
be demonstrated in the next articles. 

2-09 EXAMPLES OF THE USE OF GAUSS’S LAW 

The simple but important examples to be discussed below demon¬ 
strate that Gauss’s law enables one to obtain the field strength imme¬ 
diately in problems with certain kinds of symmetry. This symmetry 
allows one to tell the direction of the electric field by physical reason¬ 
ing, and then allows one to write the flux as the product of area and 
flux density, since the flux density does not vary over the surface. 

A. Field about a Line Charge or between Coaxial Cylinders. A line 
charge is defined as one for which the charge per unit length, qi, is 
given along an axis, and its radial extent is assumed to be very small 
but is not otherwise specified. Unless stated, it is assumed to extend 
to infinity in each direction along the axis with uniform strength, and 
is hence the two-dimensional equivalent of the point charge. Prac¬ 
tically, a long thin charged wire is a good approximation. The sym¬ 
metry of this problem reveals that the force on a test charge, and 
hence the electric field, can only be radial. Moreover, this electric 
field will not vary with angle about the line charge, or with distance 
along it. If the strength of the radial electric field is desired at dis¬ 
tance r from the line charge, Gauss’s law may be applied to an imagi¬ 
nary cylindrical surface of radius r and any length I (Fig. 2 09a). Since 
the electric field (and hence the electric flux density ï)') is radial, there 
is no normal component at the ends of the cylinder and hence no flux 
flow through them. However, D is exactly normal to the cylindrical 
part of the surface, and does not vary with either angle or distance 
along the axis, so that the flux out is the surface 2irrl multiplied by 
the electric flux density Dr. The charge enclosed is the length I 
multiplied by the charge per unit length, q¡. By Gauss’s law, flux out 
equals the charge enclosed: 
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2vrlDr = Iqi 

If the dielectric surrounding the wire has constant e, Dr is eEr, and 

E r = ^ 
2w 

(1) 

Hence the electric field about the line charge has been obtained by the 
use of Gauss’s law and the special symmetry of the problem. 

The same symmetry applies to the coaxial transmission line formed 
of two coaxial conducting cylinders of radii a and b with dielectric « 
between them (Fig. 2 096). Hence the result (1) applies for radius r 
between a and b. As a static problem, it is probably better to think 
of this as a cylindrical condenser. 

(a) (6) («) 

Fig. 2 09 Line charge, coaxial cylinders, and concentric spheres. 

B. Field inside an Electron Beam. Next imagine a long cylindrical 
beam of electrons moving with velocity v0 carrying a direct current Io 
in vacuum. Since the charges are in motion, it might appear that this 
is not a static problem, but, although the individual charges move 
through the beam, there is always the same total amount of charge 
(except for statistical fluctuations) in a given part of the beam. Again, 
because of the cylindrical symmetry, the imaginary surface for the 
application of Gauss’s law is selected as a cylinder of length I and 
radius r. The electric field is radial, independent of angle and axial 
distance, and the flux out is again 2irrltEr. The charge per unit length 
to produce the current Ia is Iq/v0 coulombs per meter. If it is assumed 
here that this charge is distributed uniformly over the cross section, 
the total charge inside the cylinder of radius r and length I may be 
found and set equal to the outgoing flux by Gauss’s law. For r taken 
inside the beam radius, a, 

r2 In 
2irrleEr = I — — 

a~ v0

or 
rio E, Õ r < a ¿ma Vo 

(2) 
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If the field is desired outside the beam, the Gaussian surface is selected 
with radius greater than a, and the total charge per unit length for the 
beam is used: 

(3) 

(4) 

C. Field in a Spherical Condenser with Two Dielectrics. Figure 209c 
shows a condenser formed of two conducting spheres of radii a and c, 
with one dielectric ei extending from r = a to r = b, and a second, 
<2, from r = b to r = c. This problem has spherical symmetry about 
the center, which reveals that the electric field will be radial, and inde¬ 
pendent of the angular direction about the sphere. If the charge on 
the inner sphere is Q and that on the outer sphere is — Q, the charge 
enclosed by an imaginary spherical surface of radius r selected any¬ 
where between the two conductors is only that charge Q on the inner 
sphere. The flux passing through it is the surface 4irr2 multiplied by 
the radial component of flux density, Dr. Hence, using Gauss’s law, 

Dr = Â 4irr~ 

2irrlcEr = — 
Vo 

Er = —~ 
2irervo 

The form of the equation for the flux density is the same for either 
dielectric, since the flux passes from the positive charge on the center 
conductor continuously to the negative charge on the outer conductor. 
However, the electric field has a different form in the two regions, since 
in each dielectric D and E are related by the corresponding dielectric 
constant: 

The radial flux density is continuous at the dielectric discontinuity 
at r = b, but the radial electric field is discontinuous there. 

PROBLEMS 

2-09a A coaxial transmission line has an inner conducting cylinder of radius a, 
and an outer conducting cylinder of radius c. Charge qi per unit length is uni¬ 
formly distributed over the inner conductor and —qi over the outer. If dielectric 
n extends from r = a to r = b and dielectric «2 from r = b to r = c, find the 
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electric field for r < a, for a < r < 6, for b < r < c, and for r > c. Take the 
conducting cylinders as infinitesimally thin. 

2 09b In the electron beam example, find electric field for r < a and for r > a 
if the velocity as a function of radius is v¡ = vo[l — (r2/a2)] and the charge density 
is p = po[l + (r2/a2)] coulombs/meter3. 

2-09c Imagine that a sphere of charge of radius a and uniform density po 
coulombs/meter3 can be considered static over a certain time interval. Find the 
electric field for r < a and for r > a. 

2-10 SURFACE AND VOLUME INTEGRALS; GAUSS’S LAW IN VECTOR 
NOTATION 

The general notation for a surface integral used in the statement of 
Gauss’s law in Eq. 2 08(1) is very useful, but frequently confusing to 
students on first introduction. Once the integral sign is sighted, it is 
felt that the process of integration should be performed as the next step. 
However, the actual evaluation of the integral cannot take place until 
the particular surface and the particular way in which the flux density 
2) varies over that surface are specified. Nevertheless, the general 
notation is of great usefulness in writing a general law such as Gauss’s 
which says that, no matter what surface is selected, and no matter how 
the flux density varies over that surface, the net result of the inte¬ 
gration, when performed, will always yield the charge enclosed. The 
actual evaluation of the surface integral will require a double inte¬ 
gration in the general case. 

The surface integral can also be written in a still more compact form 
if vector notation is employed. Define the unit vector normal to the 
surface under consideration, for any given point on the surface, as ãn. 
Then replace D cos 0 by D • ãn dS. This particular product of the 
two vectors L) and ãn denoted by the dot between the two is known 
as the dot product of two vectors, or the scalar product, since it results 
by definition in a scalar quantity equal to the product of the two vector 
magnitudes and the cosine of the angle between them. Also the com¬ 
bination ãn dS is frequently abbreviated further by writing it dS. 
Thus the elemental vector dS, representing the element of surface in 
magnitude and orientation, has a magnitude equal to the magnitude 
of the element dS under consideration, and the direction of the outward 
normal to the surface at that point. The surface integral in Eq. 
2 08(1) may then be written in any of the equivalent forms, 

j>sD cos OdS = (f>gD-ãndS = (1) 

All of these say that the normal component of the vector D is to be 
integrated over the general closed surface S. 
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If the charge inside the region is given as a density of charge per 
unit volume in coulombs per cubic meter for each point of the region, 
the total charge inside the region must be obtained by integrating this 
density over the volume of the region. This is of course exactly 
analogous to the process of finding the total mass inside a region when 
the variable mass density is given for each point of a region. This 

process may also be denoted by a general integral. The symbol is 
used to denote this, and, as with the surface integral, the particular 
volume and the variation of density over that volume must be specified 
before the integration may be performed. Then, in the general case, 
it will have to be performed as a triple integral. 

Gauss’s law may then be written in this notation: 

<f)sü-ds = fvpdV (2) 

The notation is cryptic enough so that it may at first appear to conceal 
the physical meaning of the law rather completely, yet, after a bit of 
practice, the contrary will be found to be true. The left-hand side 
will reveal at once that the normal component of a vector D is to be 
integrated over a closed surface, yielding the flux out of the region, 
and the right side will show that the volume density p is to be inte¬ 
grated over the volume surrounded by that surface, yielding the total 
charge inside the region. 

PROBLEM 

2-10 A point charge q is located at the origin of coordinates. Express the 
electric field vector in its rectangular coordinate components, and evaluate the 
surface integral for S chosen as the surface of a cube of sides 2a centered on the 
charge. 

2-11 SCALAR OR DOT PRODUCT OF VECTORS 

The vector operation defined in the last article is important since 
there is often occasion to multiply one vector by the projection of the 
other upon it. That is, if Ã and B are vectors (of magnitudes A and 
B) with an angle of 9 between them, AB cos 0 is of interest. This has 
been written as Ã ■ B. (Read A dot B.) This product may now be 
expressed in terms of the components of A and B along the coordinate 
axes, not only for the calculation of flux flow through a surface, as in 
preceding articles, but also in the computation of the work done by a 
vector force moving through a vector distance. 

A unit vector has already been defined in the statement of Eq. 
2-03(2). If ãz, ãv, ãz are three such unit vectors having the directions 
of the three axes in rectangular coordinates, and if Ax, Au, and Az
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are the magnitudes of the components of Ã along these axes, A may 
be written 

Ã = Axãx + Auãy + Azãz

The addition of the three component vectors to obtain Ã is per¬ 
formed according to the definition of vector addition, which states 
that the beginning of one vector is placed in coincidence with the 

Fig. 211 Vector A and its rectangular components. 

terminus of another, and the resultant drawn from the starting point 
to the final point (Fig. 211). The dot product is 

A * B — (Axãx T Ayãy 4- Azãz} * (Bxãx T Byõy T B^^ 

If the multiplication is carried through term by term, with the dot 
product between component vectors retained, 

A ' B ~ AxBxax * dx 4~ AxBydx ■ dy, etc. 

The terms ãz ■ ãx, ãu • ãu, ãz ■ ãz are unity by definition of the unit 
vectors and the dot product. The terms ãx ■ ãy, ãu ■ ãz, etc., are zero 
since the angle between any of these unit vectors and either of the other 
two is 90°. The scalar product then reduces to 

Ã • B = AXBX + AyBy + (1) 

PROBLEMS 

2-lla If A, B, and C are vectors, show 
B•A = A-B 

(A 4- B) + C = A + (B + C) 

A ■ (B + C) - AB +ÃC 

2-llb Vector A makes angles ai, 0i, 71 with the x, y, and z axes respectively, 
and B makes angles «2, ßz, 72 with the axes. If Ö is the angle between the vectors, 
make use of the scalar product A • B to show that 

cos B = cos ai cos az + cos ßi cos ßz + cos 71 cos 72 



66 FIELDS AND WAVES IN MODERN RADIO 2-12 

2-12 TUBES OF FLUX 

The concept of flux passing through an area does not have to be 
limited to electric phenomena. If D is any vector function of space, 
the product of the magnitude of D at any point by an element of area 
perpendicular to D at that point may be called the flux of D passing 
through that area. The total flux flowing through a surface is given 
by the surface integral 

* = fsñ-ds (i) 

Consider a surface (Fig. 2-12a), bounded by two planes, »Si and 82, 
perpendicular to the field vector at two points, and a surface S3 always 
parallel to the direction of the field vector. If there is no charge 
enclosed, Gauss’s law gives 

i* D ■ dS + f b • dS + fq b ■ dS = 0 (2) Joi */oj 

Since S3 is always parallel to D, there is no flux flowing out through S3. 
So 

Çb dS=- f D • dS (3) 

This equation states that the flux passing through the plane Si is 
that which comes out of the plane S2, so that total flux across any cross 
section of the tube is a constant. Such a tubular region may be called 
a tube of flux. To study the field intensity distribution, it is sometimes 
helpful to draw out many of these tubes, the size of area being so 
selected that the flux through the area is one unit. Lines are often 
used to represent the tubes, and the tubes loosely called lines. Thus, 
the closer the spacing of these lines, the stronger is the flux density at 
that point. 

The electrostatic tubes of flux emanate from positive charges, are 
continuous in regions without charge, and end on negative charges. 
The boundaries of the flux tubes, as have been shown, follow the direc¬ 
tion of the flux density vector b and therefore the direction of the 
electric field Ë. This fact is sometimes useful in drawing the electric 
field lines about charges. For example, consider two line charges, 
qi at x = — 1 and — qt at x = 1 (Fig. 212b). If the flux is to be com¬ 
puted passing through a surface between a general point P and the 
line BC, it may be broken up into the part from the charge at A and 
that from the charge at B, since the effects are superposable. The flux 
due to the charge at A alone would come out radially from its center, 
so that the amount (per unit length) between P and BC would be 
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qiai/2ir. That from the charge at B alone would pass radially inward 
toward the negative line charge at x = 1, and would therefore cause 
flux — qia2/2ir to pass through the portion of the surface under con-

Fig. 212 (a) Tube of flux; (6) electric field lines about line charges found from 
flux function; (c) same for point charges. 

sideration. Thus the net flux between P and the reference is 

(4) 

To trace out a boundary of a flux tube, and therefore a field line, the 
locus of «i versus a2 is found to keep the total flux a constant. Thus, 
from (4), this is a locus of (ai — a constant, which turns out to 
be a circle passing through the points ± 1 and with center on the y axis. 
The circular field lines shown were plotted by choosing the flux per 
tube to be qi/8. 

Similarly, the field lines about two equal and opposite point charges 
may be obtained. If q is located at x = —1, and — q at x = 1, the 
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flux from each of these point charges passes radially in or out from the 
charges in a spherical sense. The flux from the charge at A passing 
through a spherical cap bounded by a circle through P is ç9i/4tt, where 
9i is the solid angle subtended by the cap at the charge, and the flux 
due to the negative charge at B is — q92/4it. The relation between 
solid angle subtended by a spherical cap centered about the axis and 
the angle 0 measured from the axis is 

9 = 2tt(1 — cos O') (5) 

Hence the total flux for this problem may be written 

1A = 7- (9i — 92) = (cos 02 — cos 0i) (G) 
Irr 2 

To plot field lines, the flux function may again be maintained constant 
as the angles 0i and 02 are varied. Figure 2-12c shows the results when 
lhe flux per tube is selected as q/V In comparing Figs. 2126 and c, 
it should be remembered that the flux tubes in c are figures of revolu¬ 
tion, whereas those in 6 are cylinders. 

PROBLEMS 

2-12a Plot the field from like charges q distance d apart (Prob. 206a) by 
making use of the flux function. 

2-120 Plot the field of charges 2q and — q distance d apart (Prob. 2 060) by 
this method. 

2-13 THE DIVERGENCE OF AN ELECTROSTATIC FIELD 

Gauss’s law was derived from Coulomb’s law, which was determined 
by experiment on systems of finite size. Let us extend it to an infini¬ 
tesimally small system. Equation 210(2) may be divided by the 
volume element AV, and the limit taken: 

(f) D • dS I PdV 
lim —- = hm —- U) 
AV-.0 AV av_o A F 

The right side is, by inspection, merely p. The left side is the 
amount of electric flux per unit volume flowing out of an infinitesimal 
volume. This will be defined as the divergence of flux density, abbre¬ 
viated div D. Then 

div ï) — p (2) 

To make the picture clearer, consider the infinitesimal volume as a 
rectangular parallelepiped of dimensions Ax, Ay, Az as shown in Fig. 
2-13a. To compute the amount of flux leaving such a volume element 
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as compared with that entering it, note that the flux passing through 
any face of the parallelepiped can differ from that which passes through 
the opposite face only if the flux density perpendicular to those faces 
varies from one face to the other. If the distance between the two 
faces is small, then to a first approximation the difference in any vector 
function on the two faces will simply be the rate of change of the 
function with distance times the distance between faces. According 
to the basis of calculus, this is exactly correct when we pass to the 
limit, since the higher order differentials are then zero. 

If the vector at the center has components Dx, Dy, Dz, 

Dx
x + (Ax/2) 

Ax dDx
2 dx 

d = DX-—^ 
x-(Az/2) “ dx 

(3) 

The flux flowing out the front face is Ay Az . and that ° \z+(Sz/2Y 
flowing in the back face is Ay Az Dx _ (Ar/2) > leaving a net flow out 

d 1) 
of Ax Ay Az —-> and similarly for the y and z directions, so that net flux 

dx 
flow out of all the parallelepiped is 

dDx dDy dDz
Ax Ay Az-F Ax Ay Az-F Ax Ay Az--

dx dy dz 

By Gauss’s law, this must be p Ax Ay Az. So, in the limit, 

dDx dDu dDx
—- d - d  
dx dy dz 

(4) 

An expression for div D in rectangular coordinates is obtained by com¬ 
paring (2) and (4): 

(5) 
dDx dD„ dDx

div D = —- d-- d--
dx dy dz 

It will be convenient to define a vector operator V (pronounced del) 
in rectangular coordinates as 

d d d 

dy dz 
V = ãx — 

dx 

Consider the expansion for the dot or scalar product, Eq. 211(1), and 
the definition of V above. Then (5) indicates that div L) can correctly 
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be written as V • Õ. It should be remembered that V is not a true 
vector but rather a vector operator. We need not worry about its 
meaning except when it is operating on another quantity in a defined 
manner. The divergence represents the first of several of these opera¬ 
tions to be defined: 

Finally 
dx dy dz 

V • D = div D = p (8) 

The divergence is made up of space derivatives of the field, so (8) is 
evidently a differential equation derived by generalizing from the previ¬ 
ous laws for comparatively large systems. It will be so important that 
we should become accustomed to looking at it as an expression for 

Fig. 213a. Fig. 2136. 

Gauss’s law generalized to a point in space. The physical significance 
of the divergence must be clear. It is, as defined, a description of the 
manner in which a field varies at a point. It is the amount of flux per 
unit volume emerging from an infinitesimal volume at a point. With 
this picture in mind, (8) seems a logical extension of Gauss’s law. 

As an example of the way in which this equation shows the relation 
between the charge density at a point and the way in which the field 
varies about that point, consider the cylindrical electron beam, example 
B of Art. 2-09. Since we have for the present an expression for 
divergence only in rectangular coordinates, let us convert the radial 
electric field inside the beam, Eq. 2 09(2), into rectangular coordinate 
components. Referring to the coordinate system of Fig. 2-136, 

Dx = eEr cos </> = t 
X 
r 

Dy = tEr sin 0 = e 
o. 
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If the divergence of D is taken according to Eq. (7), the result is 

. Õ = dDz + dDv = /o
dx dy 7ra2Vo 

This is exactly the charge density p, as it should be by (8). Similarly, 
the field components outside the beam may be found and the diver¬ 
gence computed. Here the result is zero, as it should be since the 
charge density is zero for each point outside the beam. 

PROBLEMS 

2-13a Evaluate the divergence of D in the remaining examples of Art. 2 09, 
and in the results of Probs. 2 09a, b, and c, comparing results with the known 
charge densities for those problems. 

2-13& Evaluate V • Ë, where Ë = ãzx3 + ã„xyz + ã/yz3. 

2-14 DIVERGENCE THEOREM 

If Eq. 2-13(2) is integrated over any volume, 

fyAwDdV frpdV (1) 

Replace the last term by its equivalent from Gauss’s law, Eq. 210(2): 

fv div D dV = fs D ■ dS (2) 

Although this relation has been derived from a consideration of D, a 
little thought will show that it is a direct consequence of the definition 
of divergence and so must hold for any vector field. For, if divergence 
of any vector is considered a density of outward flux flow from a point 
for that vector, then it seems that the total outward flux flow from a 
closed region must be obtained by integrating the divergence through¬ 
out the volume. If F is any vector, 

frdlvPdV-frVFdV-fsFdS (3) 

This relation is known as the divergence theorem or Gauss’s theorem 
(as distinguished from Gauss’s law of Ari. 2 08) and will be usefullater 
in manipulating vector equations in order to arrive at their most useful 
forms. Note that the theorem is true for any continuous vector func¬ 
tion of space, regardless of the physical significance of that vector. 

PROBLEM 

2-14 Given a vector F = ãxx. Evaluate ¿ ̂F • dS for S taken as the surface 
of a cube of sides 2a centered about the origin. Then evaluate the volume integral 
of V • F for this cube and show that the two results are equivalent, as they should 
be by the divergence theorem. 
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2-15 CONSERVATIVE PROPERTY OF ELECTRIC FIELDS 

Before proceeding very far in attempts to build up pictures and 
quantitative relations for electrostatic fields, we should pause to look 
into the very important matter of energy. The field may be checked 
with ideas of conservation of energy, to determine, for example, 
whether the energy of the electrostatic field is a function merely of its 

state at any given time, or whether it depends 
y upon the manner in which that state occurred. 

We no doubt already feel certain that the 
energy of an electrostatic field depends only 

/ / upon the amounts and positions of the charges, 
p !r ,Q, and not upon how they grew; the inverse 

/ °’ square law tells us that this must be so. 
/ The force on a small charge Aq moved from 
Qi Qi infinity to a point P in the vicinity of a system 
Fi 2.15 of charges: qt at Qltq2 at Q2, q3 at Q3, etc., may 

be calculated at any point along its path. 
Consider, for example, the work integral arising from qi. The work 
is the integral of force component in the direction of the path, multi¬ 
plied by differential path length (Fig. 2-15): 

t/i = -
Aqqi cos 9 dl 

4irer2

But dl cos 9 is dr, so the integral is simply 

Aqqi dr 
4irtr2

and similarly for contributions from other charges, so that the total 
work integral is 

△W2 , 
;—i dr 4irer --2 dr ' ' Alter* 

Integrating, 

(A?)gi ^g)g2 (Ag)g3 , 
4rePQi + AirePQ2 + 4rePQs +

Equation (1) shows that the work done is only a function of final 
positions and not of the path of the charge. This conclusion leads to 
another: if a charge is taken around any closed path, no net work is 
done. Mathematically this is written 

Ë ■ dl = 0 (2) 
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This general integral signifies that the component of electric field in 
the direction of the path is to be multiplied by the element of distance 
along the path, and the sum taken by integration as one moves about 
the path. The circle through the integral sign signifies that a closed 
path is to be considered. As with the designation for a general surface 
or volume integral, the actual integration cannot be performed until 
there is a specification of a particular path and of the variation of Ë 
about that path. 

In the study of magnetic fields and time-varying electric fields, we 
shall find corresponding line integrals which are not zero. 

PROBLEM 

2-15 A point charge q is located at the origin of a system of rectangular coordi¬ 
nates. Evaluate J Ê • 2? in the x-y plane first along the x axis from x = 1 to 
X = 2, and next along a rectangular path as follows: along a straight line from the 
point (1,0) on the x axis to the point (1,J0; along a straight line from (1,10 to 
(2,J0; along a straight line from (2,10 to (2,0). 

2-16 ELECTROSTATIC POTENTIAL 

To solve the differential field equations, it is often convenient to 
introduce mathematical tools known as potential functions, which may 
aid materially during the solution but which need not appear in the 
final result. It is never necessary to give these mathematical tools 
physical significance, though it often may be desirable. We are 
already quite familiar with the potential function of electrostatics, 
and in this case it may easily have more significance for us than the 
fields, which were themselves only defined concepts to describe the 
situation in a region containing charges. 

The common potential function in electrostatics is a scalar quantity 
defined so that the difference in this function between two points P 
and Q is given by the integral 

‘bp — $0 = — f Ë ■ dl (1) 

The physical significance that may be attached to it is now apparent, 
for (1) is an expression for the work done on a unit charge in moving it 
from P to Q. The conclusion of the preceding article that the work in 
moving around any closed path is zero shows that the potential func¬ 
tion defined is single valued; that is, corresponding to each point of 
the field there is only one value of potential, though the potential may, 
of course, vary from point to point. 

Only a difference of potential has been defined. The potential of any 
point can be arbitrarily fixed, and then the potentials of all other points 
in the field found by application of the definition to give potential 
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differences between all points and the base. This base is quite arbi¬ 
trary since the potential differences alone have significance. For 
example, in certain cases it may be convenient to define the potential 
at infinity as zero and then find the corresponding potentials of all 
points in the field; for the determination of the field between two con¬ 
ductors, it will be more convenient to select the potential of one of 
these as zero. 

If the potential at infinity is taken as zero, it is evident that the 
potential at the point P in the system of charges, Art. 2-15, is given by 
U of Eq. 215(1) divided by Sq, so 

$ = ■ 4-~r 4-—-1- ■ ■ ■ = —- (2) 4rePQi 4irePQ2 4irePQ3 iirer. 

Generalizing to the case of continuously varying charge density, 

p is the charge density, and the integral signifies that a summation 
should be made similar to that of (2) but continuous over all space. 
There are, of course, arbitrary added constants if the potential at 
infinity is not taken as zero. 

At once there is evidence of the usefulness of the potential tool, for 
F is obtained by simple scalar addition ; it would have been necessary 
to perform corresponding vector additions to obtain fields directly. 
Since the fields can be obtained simply from the potential, the work of 
obtaining electric fields from charges is simplified. We shall show 
in the next article how this may be done. 

As an example of the relations between potential and electric field, 
consider first the problem of the line charge used as an example in Art. 
2 09, with electric field given by Eq. 2 09(1). By (1) we integrate this 
from some radius ro chosen as the reference of zero potential to radius r: 

(4) 
Jro Jrt Zirer zire Vo/ 

Or this expression for potential about a line charge may be written 

<!>=- — In r + C (5) 
2tTí 

Note that it is not desirable to select infinity as the reference of zero 
potential for the line charge, for then by (4) the potential at any finite 
point would be infinite. 
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In a similar manner, the potential difference between the coaxial 
cylinders of Fig. 209b may be found: 

- *6 = 
qi dr 
‘liver 

The electrostatic capacitance of a two-conductor capacitor is defined as 
the charge on one conductor divided by the potential difference. So 
the capacitance per unit length for the coaxial cylindrical example is 

C = ——— = ,—** ■ farads/meter 
E. - d>0 In (b/a) 

(6) 

PROBLEMS 

2-16a Derive the expression for electrostatic capacitance of a spherical con¬ 
denser formed of concentric spherical conductors of radii a and b (a < b), with 
dielectric e between the spheres. 

2-16b Find the expression for electrostatic capacitance of the spherical con¬ 
denser with two dielectrics used as an example in Art. 2 09. 

2-16c A circular insulating disk of radius a is charged with a uniform surface 
density of charge p, coulombs/meter2. Find an expression for electrostatic 
potential 4> at a point on the axis distance z from the disk. 

2-16d A charge of surface density pt is spread uniformly over the surface of a 
sphere of radius a. Find the potential for r < a and for r > a by integrating con¬ 
tributions from the differential elements of charge. Check the results by making 
use of Gauss’s law and the symmetry of the problem. 

2-16e Check the result of (4) or (5) for the potential about a line charge by 
integrating contributions from the differential elements of charge. Note that the 
problem is one of handling properly the infinite limits. 

2-17 GRADIENT 

If the definition of potential difference is applied to two points a 
distance dl apart, 

d^=-Ë-dl (1) 

dl may be written in terms of its components and the defined unit 
vectors (Art. 2-11): 

dl = dx ãz 4- dy ãu + dz ãt (2) 

Expand the dot product according to Eq. 2-11(1) 

d^ = — (Ex dx + Eydy + Ez dz) 

Since T is a function of x, y,- and z, the total derivative may also be 
written 
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dd> di di 
di = — dx 4- du 4- dz 

dx dy dz 

From a comparison of the two expressions, 

/ di di di\ 
E = - I Sx — 4- ãy —- 4- ã, — I (4) 

\ dx dy dz / 

or Ë = —grad i (5) 

where grad i, an abbreviation of the gradient of i, is a vector showing 
the direction and magnitude of the maximum space variation in the 
scalar function i, at any point in space. It is the maximum variation 
that is represented because the gradient is the vector sum of the varia¬ 
tions in all three directions. That is, substituting back in (1), 

d^ = (grad 4>) • dl 

Thus the change in $ is given by the scalar product of the gradient 
and the vector dl, so that, for a given element of length dl, the maxi¬ 
mum value of d^ will be obtained when that element is oriented to 
coincide with the direction of the gradient vector. 

The vector operator V was defined by Eq. 2-13(6). Then grad T 
may be written as VT if the operation is interpreted 

d'h d'h dT 
VT = -H Sy-h Sx — (6) 

dx " dy dz 

and Ë = —grad <I> = — Vi (7) 

PROBLEMS 

2-17a Given a scalar function .1/ = sin ai cos dy sinh yz\ find the gradient of M. 

2-17& For two point charges q and —q at (d/2,0,0) and (—d/2,0,0), respec¬ 
tively, find the potential for any point (T,y,z) and from this derive the electric 
field. Check the result by adding vectorially the electric field from the individual 
charges. 

2-17c For two line charges q, and — q¡ at (d/2,0) and ( — d/2,0), respectively, 
find the potential for any point (x,y) and from this derive the electric field. 

2-17d Find the electric field along the axis for Prob. 216c. 

2-17e Utilize the rectangular coordinate form to prove the vector equivalences 

= V'V* + <t>V/ 

V • (fÃ) = fV ■ Ä + Ã - Vf 

where and -t are any scalar functions, Ã any vector function of space. 



2-19 STATIONARY ELECTRIC AND MAGNETIC FIELDS 77 

2-18 EQUIPOTENTIALS 

All points of a field having the same potential may be thought of as 
< onnected by equipotential surfaces. 1 he distribution and spacing of 
these equipotential surfaces can be used to describe the field. The 
electric field vector must be perpendicular to these surfaces at every 
point, for if there were the slightest component tangential to the sur¬ 
face, say Et, then two points d^ apart would have a potential difference 
Et d^ which would violate the condition for an equipotential surface. 
Since the flux tubes were shown in Art. 2-12 to have the same direction 
as the field lines, these also are at right angles to the equipotential 
surfaces. 

If the potential were to vary in one direction only, say x, as in a 
potential difference applied between two infinite parallel conducting 
planes perpendicular to the x axis, the electric field, or negative 
gradient of potential, would be entirely in the x direction. The equi¬ 
potential surfaces would be perpendicular to the x axis, or parallel to 
the conducting planes, as would be expected from symmetry. The 
equipotential surfaces about a point charge would Im? spheres centered 
on the charge, and the equipotentials about a line charge or between 
coaxial cylinders would be cylindrical surfaces of constant radius from 
the axis. In the general case, potential may be a function of all 
coordinates, the gradient will have components in all three component 
directions, and the equipotential surfaces will be more complex than 
those of the above simple examples. 

PROBLEM 

2-18 Show that the equipotential surfaces for the two line charges of Prob. 
217c are cylinders whose traces in the x-y plane are circles. 

2-19 CONDUCTING BOUNDARIES IN ELECTROSTATICS 

If expressions for the field in differential equation form are to be 
obtained, it is important that boundary conditions for application to 
their solutions be well understood. Conducting metal surfaces will 
often form these boundaries. 

Conductors are defined as those materials which readily permit a 
current flow, or motion of charges. So, if charges are placed on or in 
conductors, they will move about as long as there is the slightest elec¬ 
tric field producing a force upon them. After they have reached 
equilibrium, the necessary condition for a static field to exist, all the 
electric field inside the conductor or tangential to its surface must have 
disappeared. If there were charges in the body, Gauss’s law would 
require an electric field in the vicinity of these charges, so that this is 
an impossible condition for the static case. All the charge in electro-
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statics must then reside on the surface and must be distributed so that 
the component of electric field intensity tangential to the surface and 
the total electric field intensity inside the material surface of the con¬ 
ductor are zero. 

Since the tangential component of electric field is zero along the 
conducting surface, it follows that the conducting surface must be an 
equipotential surface. Moreover, since the field is zero inside the 
conductor, the entire conducting body will be at a constant potential 
in electrostatics. 

To obtain the charge induced on the conducting surface by the field 
ending on it, we may make use of Gauss’s law. For, since all the 
electric flux lines must end on the surface of the conductor, they must 
end on a surface distribution of charge there, with the charge per unit 
area equal to the flux per unit area at each point of the surface.. To 
make this more convincing, consider an imaginary infinitesimal pillbox 
located at the boundary, as sketched in Fig. 2-19. There can be no 
flux through the bottom surface embedded in the conductor, since 
field is zero there. There will also be zero flux flow through the sides 
marked h, since there is no component of electric field tangential to 
the conducting surface. This leaves the total flux to pass through 
the surface dS just outside the conductor, -so that this flux is Dn dS, 
where Dn represents the component of electric flux density normal to 
the conducting surface. By Gauss’s law this flux must be equal to 
the charge enclosed, which may be written ps dS, where ps is defined 
as the charge per unit area in coulombs per square meter: 

p, dS = Dn dS 

or Dn = tEn = p, (1) 

As a simple example showing the relation between the field ending on 
a conductor and the charge which it induces there, let us find the 
charge induced on the anode of an idealized parallel-plane space¬ 
charge-limited diode if we take as given the fact that the potential 
varies as the M power of distance across the diode: 

In the above, x is the distance from the cathode, d is the anode-cathode 
spacing, and Fo is the anode potential with respect to the cathode. 
To find the electric field, we must take the gradient of $, which has an 
x component only: 

Ex
4 X* 

Tx = ~ 3 ° J* 
(3) 
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The (outward) normal electric field at the anode is — Ex evaluated 
at X = d, so the charge per unit area there is 

p* — ~*oEx
x =d 

~ coulombs/meter2
3 d 

The dielectric constant has been written «o, since the dielectric in the 
ideal diode is assumed to be vacuum. 

Fig. 219 Cross section showing sur¬ 
face separating a dielectric and a con¬ 

ductor. 

Fig. 2-20 Cross section showing sur¬ 
face separating two dielectrics. 

2-20 DIELECTRIC BOUNDARIES IN ELECTROSTATICS 

The charge-free boundary between two dielectrics may first be 
investigated by Gauss’s law, as was done for the conducting boundary 
in Art. 2-19. An imaginary pillbox as indicated in Fig. 2-20 contains 
no charge, so the flux flowing in on one side must equal that flowing 
out on the other. If subscript n denotes components normal to the 
element of surface AS, 

Dni AS = Dn2 AS 

or Dm = 0„2 (1) 

A second relation may be found by taking a line integral about a 
closed path of length Al on one side of the boundary, returning on the 
other side. By Eq. 2-15(2), any closed line integral of electric field 
must be zero: 

E • dl — En — Ei2 Al = 0 

or En = E i2 (2) 

The subscript t denotes components tangential to the surface. 
Thus normal components of electric flux density and tangential com¬ 

ponents of electric field are continuous across a charge-free boundary 
between two dielectrics. It is also true that the electrostatic potential 
is continuous across such a boundary: 

$1 = #2 (3) 
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However, condition (3) is not independent of (2), but may be derived 
from (2) by integrating tangential electric field along the boundary, for 
the two sides of the boundary. Conditions (1) and either (2) or (3) 
are then the required continuity conditions to be applied to problems 
with dielectric discontinuities. Note that, as a consequence of (1) 
and (2), the electric field or flux lines will change direction in crossing 
the boundary between dielectrics of different dielectric constant. 

PROBLEM 

2'20 If the field vector makes an angle 0 with the normal in region 1 of the 
above example, what angle does it have in region 2? 

2-21 THE USE OF IMAGES 

A. Point Image in a Plane. The method of images is useful when 
it is desired to find the field arising from point charges or line charges 

Fig. 2-210. 

in the vicinity of conductors of certain simple shapes. The most 
simple case is that of a point charge near a grounded conducting plane 
(Fig. 2-21a). Boundary conditions require that the potential along 
the plane be zero. The requirement is met if in place of the conducting 
plane an equal and opposite image charge is placed at x = — d. 
Potential at any point P is then given by 

, 1 ((i 
= 7“ \-J 4ire \r r / 

= {[(x - d)2 + j/2 + zT* - K* + d)2 + y2 + Z2]’*! (D 
4tT€ 

This reduces to the required zero potential along the plane x = 0, so 
that (1) gives the potential for any point to the right of the plane. 
The expression of course does not apply for x < 0, for inside the con¬ 
ductor the potential must be everywhere zero. 

If the plane is at a potential other than zero, the value of this con-
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stant potential is simply added to (1) to give the expression for poten¬ 
tial at any point for x > 0. 

B. Image of a Line Charge in a Plane. If there is a line charge of 
strength q¡ conlombs per meter parallel to a conducting plane and dis¬ 
tance d from it, one proceeds as above, placing an image line charge of 
strength — q¡ at x = — d. The potential at any point x > 0 is then 

Qi j /A = di. (x + d)2 + y2 + z 2 

2tt€ " V7 4« L(x - d)2 + y2 + z2 (2) 

C. Image of a Line Charge in a Cylinder. For a line charge of 
strength qt parallel to the axis of a conducting circular cylinder, and at 
radius r from the axis, the image line charge of strength — q¡ is placed 

Fig. 2-21c Image of a point charge 
in a conducting sphere. 

Fig. 2 2Id Multiple images in inter¬ 
secting planes. 

at radius r' = a2/r, where a is the radius of the cylinder (Fig. 2-21Ò). 
The combination of the two line charges can be shown to produce a 
constant potential along the given cylinder of radius a. Thus the 
potential for any point outside the cylinder may be computed from 
the original line charge and its image. If the original line charge is 
within a hollow cylinder of radius a, the rule for finding the image is 
the same, and potential for any point inside may be computed from 
the two line charges. 

D. Image of a Point Charge in a Sphere. For a point charge q 
placed distance r from the center of a conducting sphere of radius a, 
the image is a point charge of value ( — qa/r) placed at a distance 
{a~/r) from the center (Fig. 2-21c). This combination gives the 
required zero potential along the spherical surface of radius a, and may 
be used to compute potential at any point P outside of radius a. (Or, 
if the original charge is inside, the image is outside, and the pair may 
be used to compute potential inside.) 

E. Multiple Imagings. For a charge in the vicinity of the inter¬ 
section of two conducting planes, as q in the region of AOB of Fig. 
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2-2 Id, there might be a temptation to use only one image in each plane, 
as 1 and 2 of Fig. 2-21d. Although +q at Q and — q at 1 alone would 
give constant potential as required along OA, and +q at Q and — q at 
2 alone would give constant potential along OB, the three charges 
together would give constant potential along neither OA nor OB. It 
is necessary to image these images in turn, repeating until further 
images coincide, or until all further images are too far distant from 
the region to influence potential. It is possible to satisfy exactly the 
required conditions with a finite number of images only if the angle 
AOB is an exact submultiple of 3C>0°, as in the 45° case illustrated by 
Fig. 2-21d. 

PROBLEMS 

2-21a Prove that the line charge and its image as described for a conducting 
cylinder of radius a will give constant potential along the cylinder of radius a. 

2-21& Prove that the point charge and its image as described for the spherical 
conductor gives zero potential along the sphere of radius a. 

2-21c A circularly cylindrical electron beam of radius a and uniform charge 
density p passes near a conducting plane which is parallel to the axis of the beam 
and distance s from it. Find the electric field acting to disperse the beam for the 
edge near the plane and for the edge farthest from the plane. 

2-21d For a point charge q lying in a dielectric ei distance x = d from the plane 
boundary between «i and a second dielectric «2, an image charge q(n — «2) / (e 1 + «2) 
placed at x = — d in a homogeneous dielectric of constant ei may be used to com¬ 
pute the potential for any point x > 0. To find the potential for a point x < 0, a 
single charge of value 2ç«2/(ei + «2) is placed at the position of q in a homogeneous 
dielectric of constant «2- Show that these images satisfy the required continuity 
relations at a dielectric boundary. 

2-21e Find and plot the surface charge density induced on the conducting plane 
as a function of y when the point charge q is at x = d. Repeat for a line charge 
at x = d. 

2-22 LAPLACE'S AND POISSON'S EQUATIONS 

For many problems that do not have the simple geometrical con¬ 
figurations of the examples used up to now, it is most convenient to 
begin the solution from differential equations. In Art. 213 a differ¬ 
ential equation relating the electric flux density D to charge density p 
was derived. It will often be more convenient to work directly with 
potentials instead of fields, since the specified boundary conditions on 
the problem will be more often given in terms of potentials. If the 
dielectric constant « is constant throughout the region, the substitution 
of Ê from Eq. 2-17(7) in Eq. 2-13(2) yields 
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div (grad 4>) = V ■ = — -
e 

But, from the equations for divergence and gradient in rectangular 
coordinates [Eqs. 2-13(7) and 2-17(6)], 

so 

V • V4> 
d2<I> d2<> ô2<ï> 
dx2 dy2 dz2

ö2<h d2̂  

dx2 + dy2 dz2

(1) 

(2) 

1 his is a differential equation relating potential variation at any point 
to the charge density at that point. It is known as Poisson’s equation 
and is often written 

V2$ = - ^ (3) 

where V24> (del-squared of i>) is known as the Laplacian of i. 

Ví = V • Vi = div (grad i) (4) 

In the special case of a charge-free region, Poisson’s equation reduces 
to 

d24> ô24> ô24> 

dx2 dy2 + dz2 ° 

or V24> = 0 (5) 

which is known as Laplace’s equation. 
Any number of possible configurations of potential surfaces will 

satisfy the requirements of (3) and (5). All are called solutions to 
these equations. It is necessary to know the conditions existing 
around the boundary of the region in order to select the particular 
solution which applies to a given problem. It can be shown mathe¬ 
matically that, once p is given at every point in a region and $ is given 
at every point on the surface surrounding the region, only one poten¬ 
tial distribution is possible. 

Equations exactly similar in form to (3) and (5) are found in many 
branches of physics. In fact, we shall discover later that they are true 
not only when the function is a static potential; for example, the func¬ 
tion may be the static field strength vectors or certain of their com¬ 
ponents. Laplace s and Poisson’s equations are of first importance in 
getting answers to all problems in which static electric and magnetic 



84 FIELDS AND WAVES IN MODERN RADIO 2-23 

effects are involved. The ability to choose solutions of these equations 
is fundamental in arriving at the final solutions to the common prob¬ 
lems discussed in Art. 2 02. For that reason the next chapter will be 
devoted almost entirely to a discussion of the techniques of building up 
solutions to these equations to fit boundary conditions that are likely to 
occur in practical problems. 

PROBLEMS 

2-22a Find the gradient and Laplacian of a scalar field varying as 1/r in two 
dimensions and in three dimensions. 

2-22b Find the electric field and charge density as functions of x, y, and z 
if potential is expressed as 

<t> = C sin ax sin ßy e7* 7 = "v a2 + ß2

2-22c Find the electric field and charge density as a function of x for a space¬ 
charge-limited, parallel-plane diode with potential variation given by Eq. 2.19(2). 

2-23 ENERGY OF AN ELECTROSTATIC SYSTEM 

The work required to move a charge in the vicinity of a system of 
charges was discussed in the study of the electrostatic potential. The 
work done must appear as energy stored in the system, and conse¬ 
quently the potential energy of a system of charges may be computed 
from the amount and position of the charges. If a charge q' is brought 
from infinity to a point at distance r from charge q, the work done was 
shown to be 

Then, for a large number of charges, 

'S'S 2 47rernm
m n 

The factor appears since n and m are each summed over all the par¬ 
ticles, and by this convention each contribution of energy is included 
twice. 

In (1) it is apparent that the term for which qn = qm will cause diffi¬ 
culty. It is the energy of an isolated point charge, and the value of 
rnm is zero. This says that the energy required to locate any finite 
amount of charge at a point is infinite. Such a conclusion is not incor¬ 
rect ; rather, it is an expected result since to build up charge at a point 
involves infinite repelling forces between the additional charge being 
introduced and the amount already there. Actually (and, in fact, 
almost for this very reason) we do not have charges concentrated at 
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points; instead, there always is a certain amount of space distribution. 
Recognition of this suggests that an expression for energy more useful 
than (1) may be obtained. 

If it is noted from Eq. 2-16(2) that the potential at the with charge is 

■“ 4irernm

then (1) may be written 

Ue = I 2 (2) 
n 

Or, extending to a system with continuously varying charge density p 
per unit volume, 

U^ = ifv P^dV (3) 

The charge density p may be replaced by the divergence of b by Eq 
213(8): 

UE = - f (V ■ D^dV 
- JV 

Using the vector equivalence of Prob. 2-17e (and Art. 2-39), 

Ue = ~ f V • (^b) dV - f b • (V4>) dV 
¿ Jv ¿ Jv 

The first volume integral may be replaced by the surface integral of 
over the closed surface surrounding the region, by the divergence 
theorem (Art. 2-14). But, if the region is to contain all fields, the 
surface should be taken at infinity. Since P dies off as 1/r at infinity, 
D as 1/r2, and area only increases as r2, this surface integral approaches 
zero as the surface approaches infinity. 

fv V • dV = *b -dS = 0 

Then there remains 

If- 1 C - -
tTE = - - U- (V<b) dV = - b • E dV (4) 

¿Jv ¿Jv 

This result seems to say that the energy is actually in the electric 
field, each element of volume dV appearing to contain the amount of 
energy 

dUE = \b-ÊdV (5) 
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The right answer is obtained if this “energy density” picture is used. 
Actually, we know only that the total energy stored in the system will 
be correctly computed by the total integral of (4). 

It is interesting to check these results against a case with which we 
are already familiar. Consider a parallel plate condenser of capacity C 
and a voltage between plates of V. The energy is known to be ", 
which is commonly obtained by integrating the product of instan¬ 
taneous current and instantaneous voltage over the time of charging. 
The result may also be obtained by integrating the energy distribution 
in the field throughout the volume between plates according to (4). 
For plates of area A closely spaced so that the end effects may be 
neglected, the magnitude of field at every point in the dielectric is 
E = V/d (d = distance between plates). 
Hence 

Stored energy 

1 

2 
(6) 

PROBLEMS 
2-23a For a given potential difference Vo between conductors of a coaxial 

condenser, evaluate the stored energy in the electrostatic field per unit length. By 
equating this to J^CV2, evaluate the capacitance per unit length. 

2-236 Evaluate the total energy stored in the space-charge-limited, parallel¬ 
plane diode of Prob. 2.22c when there is potential Vo between the plates. Is there 
any meaning in equating this to J^CV2? 

Static Magnetic Fields 

2-24 THE CONCEPT OF A MAGNETIC FIELD 

In the first part of this chapter the concept of the electric field has 
been developed starting from the experimental observation that a 
charge brought into the vicinity of other charges experiences a force. 
It can also be experimentally determined that a current element (e.g., 
a small loop carrying current) will be acted on by a force if it is brought 
in the vicinity of another current or system of currents. The region 
in which such forces exist is spoken of as a region of magnetic field. 
This concept may appear to exclude the well-known magnetic effects 
arising from permanent magnets, but these effects may be included 
conceptually if we think of them as arising from groups of atomic cur-
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rents in the ferromagnetic material. Although it may not be con¬ 
venient to make specific calculations for permanent magnets from the 
laws developed for current paths of finite size, there will be a real 
advantage in developing the theory of magnetic fields from the concept 
that it is an effect due to current flow. 

The force arising from two current elements depends upon the mag¬ 
nitude of the currents, the medium, and the distance between currents 
in a similar manner to the force between electric charges already 
studied. However, current has direction and so is a vector. The force 
between the two currents will be more complex than that for charges. 
It is consequently convenient to proceed by first defining the quantity 
which we will call the magnetic field, and then give in another section 
the law (Ampère’s) which describes how currents contribute to that 
magnetic field. A vector field quantity B, usually known as the mag¬ 
netic flux density, is defined in terms of the force df produced on a 
small current element of length dl carrying current I, such that 

df = I dl B sin 9 (1) 

9 is the angle between dl and B. The direction relations of the vectors 
are so defined that the vector force df is along a perpendicular to the 
plane containing dl and B, and has the sense determined by the 
advance of a right-hand screw if dl is rotated into B through the smaller 
angle. It is convenient to define a vector product which expresses 
this information in a more compact manner, and which will be useful 
in a manner similar to the dot or scalar product defined early in the 
chapter. If we define the vector product of two vectors (denoted by 
a cross) as a vector having a magnitude equal to the product of the 
magnitudes of the two vectors and the sine of the angle between them, 
a direction perpendicular to the plane containing the two vectors, and 
a sense given by the advance of a right-hand screw if the first is rotated 
into the second through the smaller angle, (1) may be written 

df = I dl X B (2) 

The quantity which is known as the magnetic field vector or mag¬ 
netic field intensity is denoted H and is related to the vector B defined 
by the force law (2) through a constant of the medium known as the 
permeability, g. 

H = - (3) 

The units in the equations of this article will be discussed later (Art. 
2-27). 
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2-25 VECTOR OR CROSS PRODUCT OF VECTORS 

The relation between vectors met in the definition of the force law 
of the last article will be met in many other types of situations, and 
has consequently been denoted by the convenient notation of the cross 
product. In terms of two vectors Ã and B (Fig. 2’25(1), the vector 
product or cross product C = -4 X B is defined as a vector having a 
magnitude equal to the product of one by the normal component of 
the other, 

C = AB sin 0 (1) 

The direction of C lies along the perpendicular to the plane containing 
Ã and B, and the sense is that of a right-hand screw’s sense of advance 

Fig. 2-25a Demonstration of cross Fig. 2-25b. 
product, C = Ã X B. 

if Ã is rotated into B through the smaller angle. From the sense 
definition, it is clear that 

B X Ã = -Ã X B (2) 

This vector product may be expressed in terms of the rectangular 
coordinate components as was the scalar product of Art. 211. For, 
if Ã and B are given in terms of the unit vectors and the components 
along the three coordinate axes, 

Ã X B = (Axãx + Auãy + Azãz) X (Bxãx + Buãy + Bzãz) (3) 

From the definition of the vector product and a consideration of the 
coordinate system, Fig. 2-255, it should be evident that 

ãx X ãy — ãz — ãy X ãx

ãy X Õz = ãX = ãz X ãy 

ãz X ãx — ãy ãx X ãz

ãx X Uz “ 0 = ãy X dy dz X ãz 

Notice that coordinates were purposely selected so that the sign of 
the unit vectors resulting from the product of one unit vector and the 
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succeeding unit vector, in the order xyz, is positive. Such coordinate 
systems, known as right-handed systems, should always be selected to 
prevent confusion in signs. To check for a right-handed system, 
rotate one axis into the succeeding axis in order of writing; a right¬ 
hand screw given that motion should then progress in the positive 
direction along the third axis. Then 

Ã X B = &x{AyBz - AtBv) + ãu(AxBx - AXBZ) + ã^AxBu - AUBX) 
(4) 

Note that this quantity may also be written as the determinant: 

Ã X B = 
ãx 
Ax 

Bx

Üy 
Ay 
By 

ã2 
Az 
Bz 

PROBLEMS 

2-26a rite the torque about an axis in terms of vector notation (suitably 
defining a vector to represent torque) when a force F acts at distance r from the 
axis. 

2-25Ò Show the following: 

Ã X (B + C) = Ã X B + 4 X C 

Ã X (B X C) = B(Ã ■ C) - C(Ã • B) 

Ã ■ (B X C) = B • (C X 4) = C • (4 X B, 

2-26 AMPERE’S LAW; FIELD ON THE AXIS OF A CIRCULAR LOOP 

Ampère’s law, deduced experimentally from a series of ingenious 
experiments,2 describes how the magnetic field vector defined in 
Art. 2-24 is calculated from a system of direct currents. The con¬ 
tribution to magnitude of magnetic field from a small element dl' of 
the current path carrying current I' is 

I' dl' sin <t> 
dB =- e— Irr* 

where r is the distance from the current element to the point P at which 
field is to be computed (Fig. 2-2Ga), and </> is the angle between dF and 
the radius vector from dl’ to P. The direction of dll is perpendicular 
to the plane containing dl’ and the radius vector, and the sense is 
determined by the sense of advance of a right-hand screw if dF is 
rotated into the radius vector. It is immediately recognized that the 

2 See Maxwell, Electricity and Magnetism, Oxford, 3rd ed., 1892, Part II, Chap¬ 
ter 2. 
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cross product defined in the last article may be used for writing this 
law: 

dH I' dl' X ãr 
4irr2 (1) 

ãr is a unit vector pointing in the direction of the radius from dT to P. 
To obtain the total magnetic field, expression (1) is integrated over 
all the current path: 

P dl' X ar
(2) 

As an example of the application of the law, the magnetic field will 
be computed for a point on the axis of a circular loop of wire carrying 

element of a circular current loop. 

d-c current Io (Fig- 2-26Ò). The element dl' has magnitude adj/ 
and is always perpendicular to the radius f. Hence the contribution 
to dH from an element is 

Ioad<t>' 
“ Ma2 + z2) (3) 

As one integrates about the loop, the direction of ãr changes, and so 
the direction of dH changes, generating a conical surface as one moves 
about the loop. The radial components of the various contributions 
all cancel, and the axial components add directly: 
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dH, = dH sin d = —X——5^ 
(a- + z')” 

I a~ 
So H. = (4) 

Note that for a point at the center of the loop, z = 0, 

Although the matter of units has not been mentioned in this article, 
the forms used are suitable for the rational mks system, which will be 
discussed in detail for magnetic quantities in the next article. 

PROBLEMS 

2-26a Find from Ampere’s law the magnetic field at a point distance r from 
an infinite straight wire carrying d-c current To-

2-26b D-c current To flows in a square loop of wire having sides 2a. Find the 
magnetic field on the axis at a point z from the plane of the loop. 

2-27 UNITS FOR MAGNETIC FIELD QUANTITIES 

In the rational mks system of units, current is chosen in the practical 
units of amperes, and distance is of course in meters. Hence mag¬ 
netic field, which by Eq. 2-26(2) [or more clearly from the example, 
Eq. 2-26(5)] is seen to have the dimensions of a current divided by 
length, has dimensions of amperes per meter in this system. 

The magnetic flux density B defined in Art. 2-24 is chosen in the 
mks system to have units of webcrs per square meter, where a mag¬ 
netic flux of one weber is 10s maxwells or “lines.” This choice is 
made for convenience in the study of time-varying fields, for a rate 
of change of magnetic flux of one weber per second will generate an 
emf of one volt. That is, a weber may also be written as a volt-
second, and B could be said to have dimensions of volt-seconds per 
square meter. 

With the units of B and II chosen by separate considerations, the 
permeability g, defined as the ratio of B to II, will have definite units 
and a value other than unity for free space. As for the units, 

B volt sec meter-2 volt sec henry 
II amp meter-1 amp meter meter 

The above equivalence utilized between a henry and a volt-second per 
ampere may be checked from the well-known circuit equation for an 
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inductance, V = L dl/dt. The value of g for free space, denoted 
go, may be shown to be 

go = 4ir X 10-7 henry/mcter (1) 

Then, if g' is a relative permeability (the value of permeability com¬ 
monly given in tables), the value of g for any material may be written 

g = m'mo (2) 

The above system may be compared with the electromagnetic sys¬ 
tem of units (emu), which was the most common system used for the 
discussion of the physical laws concerning magnetic quantities until 
a few years ago. This is a cgs system, and is an irrational system, 
so that the factor of 4ir is absent from the denominator of Ampère’s 
law, Eq. 2-26(2). Unit magnetic field and unit current are then 
defined so that unit current (1 abampere) flowing in a loop of radius 
1 centimeter produces a magnetic field of 2% oersteds at the center. 
Permeability of space is defined as unity, so that the numerical value 
of B is equal to that of II in vacuum. The units of B are maxwells 
per square centimeter, or gauss. Values of current in abamperes and 
flux density in gauss substituted in the force equation, 2-24(2), give 
force in dynes. One ampere is equal to 0.1 abampere, and a magnetic 
field of 1 ampere per meter is equal to 4ir X 10—3 oersteds. 

PROBLEM 

2-27 Utilizing the above conversion factors, and the fact that B/H is unity 
for vacuum in the emu system, show that go is 4tt X 10~7 in the rational mks 
system as given in (1) above. 

2-28 THE LINE INTEGRAL OF MAGNETIC FIELD 

Although Ampère’s law describes the way in which magnetic field 
may be computed from a given system of currents, other derived 
forms of the law may be more easily applied to certain types of prob¬ 
lems. In this and the following articles, certain of these forms will be 
presented, with examples of their application. The sketch of the 
derivations of these forms, because they are more complex than for 
the corresponding electrostatic forms, will be postponed to a later 
article. 

One of the most useful of the forms of the magnetic field laws is that 
sometimes known as the law of Biot and Savart, this states that a 
line integral of static magnetic field taken about any given closed path 
must equal the current enclosed by that path. In the vector notation, 
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H ■ dl = I (1) 

Obviously this law cannot be independent of Ampere’s law, for, since 
the latter gives the magnetic field in the vicinity of the currents pro¬ 
ducing it, a line integral of that field could be taken about a closed 
path giving a result related to current in some way. That it actually 
does lead to the result (1) will be shown later. 

Although line integrals were met previously in the study of electric 
fields, a few additional comments may make the notation more mean¬ 
ingful. As with the general notations for surface and volume integrals, 
the actual integration cannot be performed until the path of inte¬ 
gration is specified, and the variation of the vector over that path. 
Then, for each element of that path, the length of element dl is multi¬ 
plied by the component of the vector in the direction of that element 
(as denoted by the dot product), and the results added by integration 
as one moves about the path. As a very simple example, consider 
the integral $) F ■ dï, where F = ã^y, taken about a rectangular path 
from (0,1) to (1,1) to (1,2) to (0,2) back to (0,1). Along the vertical 
sides, F is perpendicular to dl, so that there is no contribution to the 
dot product. Along the lower side, F and dl are in the same direction, 
so that a positive contribution will result, and along the upper side, 
in moving from (1,2) to (0,2), the direction of F and dl are opposite 
so that a negative contribution will result. Note that this negative 
relation may be taken care of by putting in the sign explicitly and 
integrating from the lower limit in x to the upper, or by letting the 
sign take care of itself by putting in limits in the order of moving about 
the path, but the two methods must not be confused. Then for this 
example 

F • dl = F^x,^ dx + Fx(x,2) dx 

= Jo' dx “ fo dx

= x dx — 2x dx = —I 

Note that the result of the line integration may give either a posi¬ 
tive or a negative result. The sign convention for current on the 
right side of (1) is taken so that it is positive if it has the sense of 
advance of a right-hand screw rotated in the direction of circulation 
chosen for the line integration. This is simply a statement of the 
well-known right-hand rule relating direction of current and magnetic 
field. 
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PROBLEMS 

2-28a Evaluate F ■ dl for a vector F = ãxx + for a path as described 

in the example above. Also evaluate the integral for a triangular path from (0,0) 
to (0,1) to (1,1) back to (0,0). 

2-28b If F is derivable as the gradient of some scalar function F = — VU, 

show that F ■ dl is always zero. 

2-29 FIELD ABOUT A LINE CURRENT OR BETWEEN COAXIAL CYLINDERS 

The form of the law given in the preceding article is especially useful 
in problems with a symmetry such that the line integral may be 
written as a product of path length and magnetic field strength. An 
important example is that of a long line conductor carrying current I. 
If an integration is made about a circular path of radius r centered 
on the axis of the wire, the symmetry reveals that magnetic field will 
be circumferential and will not vary with angle as one moves about 
the path. Hence the line integral is just the product of circumference 
and the value of H*. This must equal the current enclosed: 

$ H -dl = 27rrZ/# = I 

Ha - —amp/meter 
2?rr (1) 

The sense relations are shown in Fig. 2-29a, agreeing with the sense 
convention described in the preceding article. 

Fig. 2-29 Magnetic field about line current and between coaxial cylinders. 

A coaxial line (Fig. 2-296) carrying current I on the inner conductor, 
and —I on the outer (the return current), has the same type of sym¬ 
metry, and a path taken between the two conductors encloses just 
current I, so that the result (1) applies directly for the region between 
conductors: 
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= -— a < r < b (2) 
¿irr 

Outside the outer conductor, a circular path encloses both the going 
and return current, or a net current of zero. Hence the magnetic field 
outside is zero. 

PROBLEMS 

2'29a For the coaxial line of Fig. 2-29b, find the magnetic field for r < a, and 
for & < r < c, assuming that current is distributed uniformly over the cross section 
of both conductors. 

2-29b Express the magnetic field about a long line current in rectangular 

coordinate components, taking the wire axis as the z axis, and evaluate (£) H ■ ãl 
about a square path from (-1,-1) to (1, —1) to (1,1) to ( — 1,1) back to ( — 1,-1). 
Also evaluate the integral about the path from ( — 1,1) to (1,1) to (1,2) to ( — 1,2) 
back to ( — 1,1). Comment on the two results. 

2-29c An infinitely long solenoid has n turns/meter and carries current I. 
Given that the magnetic field is zero outside the solenoid and does not vary with 
distance along the axis, show that the magnetic field for any point inside the 
solenoid has a value 

Hz = nl 

2-30 THE CURL OF A VECTOR FIELD 

In order to write differential equation forms for laws having to do 
with line integrals, it will be necessary to define a new vector operation. 
This operation, called the curl, is defined in terms of a line integral 
taken around an infinitesimal path, divided by the area enclosed by 
that path. It is seen to have some similarities to the operation of 
divergence of Art. 2-13, which was defined as the surface integral 
taken about an infinitesimal surface divided by the volume enclosed 
by that surface. However, unlike the divergence, the curl operation 
results in a vector because the orientation of the surface element about 
which the integral is taken must be described in some way. This is the 
only additional complication in the curl over the divergence, but it 
seems to be just enough to make it enormously more difficult for the 
beginning student to grasp. The student should attempt to obtain 
as much physical significance as possible from the definitions to be 
given, but at the same time should recognize that full appreciation 
of the operation will come only with practice in its use. 

The curl of a vector field is defined as a vector function whose 
component at a point in a particular direction is found by orienting 
an infinitesimal area normal to the desired direction at that point, and 
finding the line integral per unit area: 
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[Curl F]i = lim (1) 

where i denotes a particular direction, áS¡ is normal to that direction, 
and the line integral is taken in the right-hand sense with respect to 
the positive i direction. In rectangular coordinates for example, to 
compute the z component of the curl the infinitesimal area is selected 
in the x-y plane in order to be normal to the z direction (Fig. 2-30). 

The right-hand sense of integration about the path with respect to the 
positive z direction is as shown by the arrows of the figure. 1 he line 
integral is then 

jp-31-dur,Lw , - dxr,^.-dyF^ + dzF^ 

We have implied the limit of infinitesimals by writing the elements of 
length as dx and dy. Then 

F = F 
lÿ + dy 

, ,7 + dy , 
u dy Iv 

u 
\x+dx 

dF 
dx 

and 
r . _ [dby di x\ 
d) F • dl = ( -- ) dx dy 
J \dx dy / 

Then, using the definition (1), 

d)F ■ dl dpu dFx
[Curl F]2 = ——— = — — 

dx dy dx dy 
(2) 

Similarly, by taking the elements of area in the y-z plane and x-z plane, 
respectively, we would find 
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[Curl F]x dF. 

dy 
di u 
dz 

dFr
[Curl F], = 

dz 

dFz 

dx 

(3) 

(4) 

These components may be multiplied by the corresponding unit vectors 
and added to form the vector representing the curl: 

Curl F = ãx
. dy 

dF y 

dz + au 
dFx 

dz 

dFz 

dx 
+ ãz

dFy 

dx 

dFr 

dy . 
(5) 

If this form is compared with the form of the cross product, Eq. 2-25(4) 
or (5), and the definition of the vector operator V, Eq. 2-13(6), it is 
noted that the above can logically be written as “del cross F”: 

Curl F = V X F = 

ãx 
d 

dx 
Fx

ãy 
d 

dy 
Fu

az 
ã 

dz 
Fz 

(6) 

This way of writing in terms of the del operator may be thought of as 
defining a new notation for the curl operation, and no other significance 
need be read into it. The name “curl” (or “rotation” as it has been 
called in the German literature) has some physical significance in the 
sense that a finite value for the line integral taken in the vicinity of a 
point is obtained if the curl is finite. However, the name should not 
be associated with the curvature of the field lines, for a field consisting 
of closed circles may have zero curl nearly everywhere, and a straight 
line field varying in certain ways may have a finite curl. 

Finally, we want to write the line integral for magnetic field for a 
differential path, using this curl operation. It is clear that, if the line 
integral is made about an infinitesimal rectangle in the x-y plane, it 
should be equal to the current enclosed by Art. 2-28. But this is just 
the current density (current per unit area) in the z direction, multiplied 
by the area dx dy. So 

[Curl H]z 
iz dx dy . 

■- = - = 2 
dx dy dx dy 

and similarly for the x and y components. If these component equa¬ 
tions are multiplied by the corresponding unit vectors and added, we 
get the vector equation 

Curl H = V X II = ï 



FIELDS AND WAVES IN MODERN RADIO 2-31 

This is simply the equivalent of Eq. 2-28(1) for a differential path 
taken in the vicinity of a point. As a very simple example, if we wish 
to know the current distribution required to produce a magnetic field 
H = ã2x2, from (7) and (5) the current density should be 

ï - V X H = — ay —2 = — 2xãy (8) 

PROBLEMS 

2-30a Find the curl of a vector field F = ã^z2 + â„ÿ2z2 + ã.x2y2. 

2-306 For the coaxial line of Fig. 2-296, express the magnetic field found in 
Art. 2-29 and Prob. 2 29a in rectangular coordinates and find the curl in the four 
regions, r < a, a < r < b, b < r < c, r > c. Comment on the results. 

2-30c By using the rectangular coordinate forms show that 

V X (/F) = /V X F - F XV/ 

where F is any vector function and / any scalar function. 

2-30d Show that V X V/ s 0. 

2-31 STOKES’S THEOREM 

Just as the divergence should be thought of as a flux flow per unit 
volume, the curl should be thought of as a line integral per unit area, at 
a point in space. Just as the divergence theorem (Art. 2-14) states 

that the total flux flow out of any volume may 
be obtained by integration of the divergence 
throughout that volume, there is another theo-
rem which states that the line integral around 
any surface may bc obtained by integrating the 

Pig 2-31. normal components of the curl over that sur¬ 
face. If the surface is broken up into a large 

number of infinitesimal areas as shown in Fig. 2-31, it is known from 
the definition of curl that for each of these infinitesimal areas 

F • dl = curl F • dS (1) 

If contributions from infinitesimal areas are summed over all the 
surface, the line integral must disappear for all internal areas, since a 
boundary is first traversed in one direction and then later in the oppo¬ 
site direction in determining the contribution from an adjacent area. 
The only places where these contributions do not disappear are along 
the outer boundary, so that the result of the summation is then the 
line integral of the vector around the boundary: 

= fs curl F dS = X F dS (2) 
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This relation is known as Stokes’s theorem, and, as with the divergence 
theorem, it holds for any continuous vector field. 

This theorem may be used, for example, in going back from the 
differential form of the law, Eq. 2-30(7), to the integral form from 
which it was derived. Writing Stokes’s theorem for magnetic field, 

H dl = fs (y X B)-ds 

But, by Eq. 2-30(7), the curl may be replaced by the current density: 

H dl = fs i -dS (3) 

The right side represents the current flow through the surface of which 
the path for the line integration on the left is a boundary. Hence (3) 
is exactly equivalent to Eq. 2-28(1). 

PROBLEM 

2-31 Prove the result of Problem 230d by integrating over an arbitrary surface 
and applying Stoke’s theorem. 

2-32 VECTOR MAGNETIC POTENTIAL; FIELD OF A PARALLEL-WIRE LINE 

It will be shown in Art. 2-35 that Ampère’s law of Art. 2-26 may be 
broken into two steps by making use of certain vector equivalences. 
The result gives 

B = V X Ã (1) 

, 7 C dl' where A = I - (2) 
J 4irr 

Or, if the current is given as a vector density ï in current per unit area 
spread over a volume, V, the equivalent to (2) is 

In both (2) and (3), r is the distance from a current element of the 
integration to the point at which Ã is to be computed. 

Equations (1) and (2) together are equivalent to Eq. 2-26(2). The 
function Ã, introduced as an intermediate step, is computed as an 
integral over the given currents from (2) or (3) and then differentiated 
in the manner defined by (1) to yield the magnetic field. Ã may be 
thought of as a potential function in an analogous but different way 
to the potential function of electrostatics which is found in terms of an 
integral over the charges and then differentiated in a certain way to 
yield the electric field. Unlike the potential of electrostatics, the 
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vector magnetic potential does not have any very simple physical 
significance beyond that given by the definitions above. Some 
physical pictures ca,n be developed, but the student should not worry 
about these until more familiarity with the function has been devel¬ 
oped through certain examples. 

The example to be given in this article will be that of a parallel-wire 
transmission line of infinite length carrying current I in one conductor 
and its return in the other distance 2a away. The coordinate system 
is set up as in Fig. 2-32. Since the field quantities will not vary with 

Fig. 2-32 Parallel-wire line. 

z, it will be convenient to calculate them in the plane z = 0. The line 
will first be taken as extending from z = — L to z = L to avoid inde-
terminacies in the integrals. Since current is only in the z direction, 
Ã by (2) will be in the z direction also. The contribution to Az from 
both wires is 

p gZ dz'_ P _ dz" 

'2 J-£ 4r V (x - a)2 + y2 + z'2 J-l 4r V (x + a)2 + y2 + z"2

2g T CL I dz'_ 

4tt _Jo V(x — a)2 + y2 + z'2
1 dz" 

V (x + a)2 + y2 + z"2. 

The integrals may be evaluated (e.g., Dwight, 200.01) 

Az = {In [z' + V(x — a)2 + y2 + z'~\ 
2tt _ 

— In [z" + V (x + a)2 + y" + z"'])o 

Now, as L is allowed to approach infinity, the upper limits of the two 
terms cancel. Hence 

In. [(» + a)2 + y2
Az — j In I / \ 2 i 2 4?r L(x — a) + y 

(4) 
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If (1) is then applied, using the expression for curl in rectangular 
coordinates, 

w = 1 dAz = 7 F y_ y 1 
n dy 2?r L(x + a)2 + y2 (x - a)2 + y2

1 dAz / I (x - a) (x + a) 
" n dx 2r (x — a)2 4- y2 (x + a)2 + y2

PROBLEMS 

2-32a Check the results (5) and (6) by adding vectorially the magnetic field 
from the individual wires, using the result of Art. 2-29. 

2-32b A square loop of thin wire lies in the x-y plane extending from ( — a, —a) 
to (a,—a) to (a,a) to (—a,a) back to (—a,—a) and carries current I in that sense 
of circulation. Find Ã and H for any point (x,y,z). 

2-32c A circular loop of thin wire carries current I. Find Ä for a point dis¬ 
tance z from the plane of the loop, and radius r from the axis, for rlz^i 1. Use 
this to find the expression for magnetic field on the axis. 

2-32d For a current-free region, show that it would be possible to derive the 
magnetic field as the gradient of some scalar magnetic potential, 

H = V4>m

Why would this not be possible within a region carrying currents? 

2-32e Show that B would also be given by V X Ã', where Ã' is obtained by 
adding to A the gradient of any scalar function, 

Ã' = Ã + V/ 

2-33 DIVERGENCE OF MAGNETIC FIELD 

Magnetic flux density has been written as the curl of a vector, Ã. 
Its divergence is then 

V • B = V ■ V X Ã (1) 

The result, in rectangular coordinates, is 

d2A, d2Au d2Ax d2A, d2A„ d2Ax
N — — -j- - — - -— - l¿) 

dx dy dx dz dy dz dy dx dz dx dz dy 

since partials may be taken in either order, 

V • B = 0 (3) 

Notice that the evaluation of the divergence of the curl of Ã was inde¬ 
pendent of the value of Ã, so then the divergence of the curl of any 
vector is identically zero. 
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A major difference between electric and magnetic fields is here appar¬ 
ent, for, unlike the electric field, the magnetic field must have zero 
divergence everywhere. That is, when the magnetic field is due to 
currents, there are no sources of magnetic flux which correspond to the 
electric charges as sources of electric flux. Fields with zero divergence 
such as these are consequently often called source-free fields. 

Magnetic field concepts are often developed from an exact parallel 
with electric fields by considering the concept of isolated magnetic 
poles as sources of magnetic flux, corresponding to the charges of 
electrostatics. The result of zero divergence still seems entirely 
applicable, since such poles have never been isolated, but seem to 
appear in nature as equal and opposite pairs. 

PROBLEM 

2-33 Express the magnetic field in rectangular coordinates for the coaxial line 
of Fig. 2 29Ò, and differentiate to form the divergence both for r < a and for 
a < r < b. 

2-34 DIFFERENTIAL EQUATION FOR VECTOR MAGNETIC POTENTIAL 

The differential equation for magnetic field in terms of current 
density was developed in Art. 2-30: 

V X H = ï 

If the relation for B as the curl of vector potential Ä is substituted, 

V X V X Ã = Mi (1) 

This may be considered a differential equation relating Ä to current 
density. It is more common to write it in a different form utilizing 
the Laplacian of a vector function defined in rectangular coordinates 
as the vector sum of the Laplacians of the three scalar components : 

V2Ã = ãx V2AX + ãu V2Av + ãz V2X (2) 

It may then be verified that, for rectangular coordinates, 

V X V X Ã = -V2Ã + V(V • Ã) (3) 

For other than rectangular coordinate systems, (3) may be taken as 
the definition of V2 of a vector. 

If Ã is defined .by Eq. 2-32(3), it may be shown that its divergence 
is zero (Art. 2-35). Hence (1) may be written 

V2Ã = -mi (4) 

This is a vector equivalent of the Poisson type of equation first met in 
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Art. 2-22. It inchides three component scalar equations which are 
exactly of the Poisson form. 

For an example, take a case in which Ã has only a z component 
given by 

A, = 

From (4) and (2), 

iz = - - V2A, = 

^0 / 2 i 2\ —r (* + y ) 

1/ôM. a2A,\ 
~ l TT + VF I = *o g \ ox oy / 

(5) 

(6) 

Going backwards, we can see that (5) is the appropriate form for 
vector potential in a cylindrical conductor carrying a current of con¬ 
stant density i0. The corresponding magnetic field is 

É = V X A = (ãxy — äux) (7) 

lhe differential equation (4) is more useful in determining the vector 
potential Ã when the current density ï is given. This requires solution 
of the differential equation; this phase of the subject will be reserved 
for the following chapter. 

PROBLEMS 

2-34a Deduce the appropriate form for vector potential outside a long straight 
wire carrying current /, and show that V2Ã is equal to zero there. 

2-34b Use the rectangular coordinate forms to prove (3). 

2-34c Show that the magnetic field given by (7) is circumferential and can be 
written 

- 2

Obtain this result also by the methods of Art. 2 29. 

2-35 SKETCH OF THE DERIVATION OF MAGNETIC FIELD LAWS 

In presenting various forms for the laws of static magnetic fields, 
many of the less obvious steps have been left out, and the order has 
been chosen as that most convenient for presentation of the laws rather 
than that of the logical development. It is the purpose of this article 
to sketch the omitted steps. 

We wish to start from Ampere’s law, Eq. 2 26(2), which may be 
written 

H = /' dl' X r 
4rr3 (1) 
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1' is the current in a contributing element dl' at point (x', y’, z'), and f 
is the vector running from dl' to point (x,?/,z) at which // is to be 
computed. 

f = ãx(x — x') + ãy{y — y') + ãx(z — z') 

r = V(x - x')2 + (y - y'Ÿ + (z - z')2

It may be shown that 
dl' X f 

X dl' (2) 

And also, using the vector identity of Prob. 2-30c, 

(3) 

But V represents derivatives with respect to x, y, and z, which are not 
involved in dl', so the last term is zero. Therefore 

B = g f V X ( — ) = V X Ã (4) 
J 4ir \ r / 

where A = g I — “ (5) J 4?rr 

The curl operation in (4) could be taken outside of the integral since it 
is with respect to x,y,z, and the integration is with respect to x',y’,z'. 
Thus the vector potential forms of Art. 2-32 have been derived from 
Ampère’s law. 

For the next step, let us note the x component of (5): 

Ix dx' f ixdV 
—;  = a I —;— 4?rr J V 4trr 

(6) 

This may be compared with Poisson’s equation and the integral expres¬ 
sion for electrostatic potential: 

V2$ = P * Ç pdV 
4’ = I ~-e Jv 4irer (7) 

Although these equations were obtained from a consideration of the 
properties of electrostatic fields, the second of the two equations (7) 
may be considered a solution in integral form for the first, for any 
continuous scalar functions 4> and p/t. Consequently, by direct 
analogy between (6) and (7), we write 

V2AX = -pix (8) 

V2Ã = -pl (9) 
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This was the differential equation relating Â to current density dis¬ 
cussed in Art. 2-34. By reversing the steps of that article, the differ¬ 
ential equation for magnetic field may be derived from it: 

V X II = ï (10) 

And as was shown in Art. 2-31, the integral form may be derived from 
this by use of Stoke’s theorem: 

II -dl = I (11) 

There remains the argument for V • Ã =0 used in Art. 2-34. In 
this it is necessary to make use of the del operator both with respect 
to the variables x,y,z and with respect to the variables x',y',z'. The 
former will be denoted V, and the latter V'. Recall that the integration 
is with respect to the primed variables. Then 

1 
- V 

ï' dV 
A = V ■ 

V 4irr 
(12) 

Use the vector equivalence of Prob. 217e: 

V • r 

The first term is zero since i' is not a function of the x,y,z coordinates. 
In the latter term, from the definition of r, we can write 

In the last step we have again used the vector equivalence referred to 
above. The first term is zero, but this time because we are concerned 
with direct currents which have as much flow out as in any volume by 
continuity, or V' • (U) = 0. The second term is transformable to a 
surface integral by the divergence theorem: 

- V • Ã (13) 

But, if the surface encloses all the current, as it must, there can be no 
current flow through the surface and the result in (13) is seen to be 
zero. 
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Thus all the major laws given have been shown to follow from the 
original experimental law of Ampère. It should be noted that the 
argument given is for a homogeneous medium (permeability not a 
function of position). For an inhomogeneous medium, equations (10) 
and 2-33(3) aré found to form the fundamental starting point: 

V X # = ï V ■ B = 0 (14) 

For an inhomogeneous medium, certain of the other forms given are 
then found not to apply. 

PROBLEMS 

2 35a Supply the proof of V(l/r) X 2? = (dl' X r)/r3 used above. 

2-35b If M is a function of position and V • 5 =0, show that in general V • H 
will not be zero. 

2-36 ENERGY OF A STATIC MAGNETIC FIELD 

An expression similar to that of Art. 2-23 for an electrostatic system 
may be derived to give the energy in a magnetostatic system. This is 

The derivation will not be given for static magnetic fields, but will be 
given in a later chapter for magnetic fields with arbitrary time vari¬ 
ations. As in the corresponding expression for electric fields, an 
interpretation of this is that the energy of the system is stored in the 
field, with an energy density of joules per cubic meter for all 
parts of the volume for which fields are significant. This is not the 
only possible interpretation, but it is a convenient one from a field 
theory point of view. 

PROBLEM 

2-36 Find the energy stored per unit length between the conductors of a 
coaxial line carrying current I in the inner conductor and return current in the 
outer. 

Coordinate Systems and Vector Relations 

2-37 THE RECTANGULAR, CYLINDRICAL, AND SPHERICAL COORDINATE 
SYSTEMS 

When it was necessary to refer to a coordinate system in the pre¬ 
ceding articles, rectangular coordinates were used exclusively. There 
was actually no loss in generality in the results obtained, since, if it 
had been necessary to transfer to a new coordinate system at any 
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point, it could have been done by an ordinary transformation of 
variables. However, it is evident that the physical boundaries of 
many problems will often make it more convenient to begin with a 
different coordinate system. The three systems to be utilized in this 
text are rectangular coordinates, circular cylindrical coordinates, and 
spherical coordinates. These three will be defined briefly here. 

The intersection of two surfaces is a line; the intersection of three 
surfaces is a point; thus the coordinates of a point may be given by 
stating three parameters, each of which defines a coordinate surface. 

Fig. 2-37a System of 
circular cylindrical coor¬ 

dinates. 

Fig. 2-376 System of spherical 
coordinates. 

In rectangular coordinates, the three planes x = xi, y = y it z = zi 
intersect at a point which is designated by the coordinates Xi, yi, Zj. 
The elements of length in the three coordinate directions are dx, dy, 
and dz, the elements of area are dx dy, dy dz, and dz dx, and the element 
of volume is dx dy dz. 

In the circular cylindrical coordinate system, the coordinate surfaces 
are (a) a set of circular cylinders (r = constant), (6) a set of planes 
all passing through the axis (</> = constant), (c) a set of planes normal 
to the axis (z = constant). Coordinates of a particular point may 
then be given as n, </>i, Zi (Fig. 2-37a). The r, </>, and z coordinates 
are known respectively as the radius, the azimuthal angle, and the 
distance along the axis. Elements of length are dr, r d<t>, dz, and the 
element of volume is r dr d<f> dz. The system shown is a right-hand 
system in the order of writing r, </>, z. 

In spherical coordinates the surfaces are (a) a set of spheres (radius r 
from the origin = constant), (6) a set of cones about the axis (0 = 
constant), (c) a set of planes passing through the polar axis (<£ = 
constant). The intersection of sphere r = n, cone 0 = 0b and plane 
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^> = </>1 gives a point whose coordinates are said to be ri, Si, </>i (Fig. 
2-37b). r is the radius, 6 the polar angle or co-latitude, and d> is the 
azimuth angle or longitude. Elements of distance are dr, r dd, and 
r sin 9 d<t>, elements of area are r dr dd, r2 sin 9 dd d<t>, and r sin 9 dd> dr, 
and the element of volume is r2 sin 9 dr dd d<t>. 

In forming the various operations such as divergence and curl in the 
curvilinear coordinate systems, the fundamental definitions are uti¬ 
lized, but one must recognize that the elements of area or length may 

Fig. 2-37c Element of volume in spherical coordinates. 

vary as one changes a coordinate as well as the value of the vector 
components. As an example, let us find the expression for divergence 
of D in the spherical coordinate system. Consider the radial direc¬ 
tion first. Both the radial component Dr and the element of area 
r2 dd sin 9 dd> change as one moves from r to r + dr (Fig. 2-37c). 
Thus the net flux flow out the top over that in at the bottom is 

(
di) \ 

Dr -|—— dr) — r~ sin 9 dd d<b Dr

To first order differentials, this leaves 

() / 
= r2 sin 9 dd d<t> —- dr + 2r dr sin 9 dd d<l> D r 

dr 

= sin 9 dr dd d<f> — (r~Dr) 
dr 

Note that the same result may be obtained more directly by first 
forming the product of flux density by area and then taking the rate 
of change of this product with r: 
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Mr = dr — (Dr r2 sin 9 d9 dp) = sin 0 dr d9 dp — (r2 Dr) 
dr dr 

Similarly for the 9 and 4> directions: 

d d 
dd/» = dd — (De r sin 0 dp dr) = r dr d9 dp — (sin 0 Do) 
d9 99 

dp# = dp — (D^, r d9 dr) = r dr d9 dp — (Dó) 
dtp dtp 

The divergence is then the total dp divided by the element of volume 

- dpr + dips + dp* 
V ' D = —n—-

r2 sin 9 dr d9 dtp 

V • D = (r2 Dr) 4-(sin 9 De) n-(1) 
r2 dr r sin 9 99 r sin 9 dp 

Corresponding forms for the other operations in this and other 
coordinate systems will be given in the last of the chapter. 

PROBLEMS 
2-37a Derive the expression for divergence in the circular cylindrical coordinate 

system. 

2-37b Derive the expression for curl in the spherical coordinate system. 

2-38 GENERAL CURVILINEAR COORDINATES 

Each of the three systems of the last article, and many others 
utilized in mathematical physics, are orthogonal coordinate systems 
in that the lines of intersection of the coordinate surfaces are at right 
angles to one another at any given 
point. It is possible to develop gen¬ 
eral expressions for divergence, curl, 
and other vector operations for such 
systems which make it unnecessary to 
begin at the beginning each time a 
new system is met. 

Suppose that a point in space is 
thus defined in any orthogonal system 
by the coordinate surfaces qi, q^, q3. 

Fig. 2-38a Element in arbitrary 
orthogonal curvilinear coordinates. 

These then intersect at right angles and a set of three unit vectors, 
0b Ü2, ã3, may be placed at this point. These should point in the 
direction of increasing coordinates. (See Fig. 2-38a.) The three 
coordinates need not necessarily express directly a distance (consider, 
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for example, the angles of spherical coordinates) so that the differential 
elements of distance must be expressed : 

dli = hi dqi dli = hi dqi, dis — h3 dq3 (1) 

where hi, hi, h3 in the most general case may each be functions of all 
three coordinates, qi, q2, q3. 

Scalar and Vector Products. A reference to the fundamental defini¬ 
tions of the two vector multiplications will show that these do not 
change in form in orthogonal curvilinear coordinates. Thus, for 
scalar or dot product, 

A ■ B = AiBi + A 2B2 + A3B3 (2) 

and, for the vector or cross product, 

Ã X B = 
Û1 

Ai 

Bi 

«2 

A 2 

Bi 

ãs 
A3 

lh\ 
(3) 

When one of these vectors is replaced by the operator V, the above 
expressions do not hold, as will be shown below. 

Gradient. According to previous definitions, the gradient of any 
scalar <i> will be a vector whose component in any direction is given by 
the change of $ for a change in distance along that direction. Thus 

â<ï> di di ... 
Vi = ãi -—— + ãi - - F Õ3 — (4) 

hi dqi hi dq2 h3 dq3

Divergence. In forming the divergence, it is necessary to account 
for the variations in surface elements as well as the vector components 
when one changes a coordinate, as was noted in the last article. If the 
product of surface element by the appropriate component is first 
formed and then differentiated, both of these changes are taken into 
account: 

V • D = —-—-—— dqi — (Dih2h3 dq2 dqb 
hih2h3 dqi dq2 dq3 [ dqi 

+ dq2 — (D2hih3 dqi dq3) + dq3 (b3h2hi dq2 dqi) 
dq2 oq3

1 
V • D = 

d d d 
-— (h2h3 Di) + — (hih3 Di) + — (h2hi b3) 

hihih3 L^gi dq2 dq3

Note that for the spherical coordinate system dli = dr, dl2 = r d6, 
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and dl3 = r sin 9 d<t>, so that A. - 1 A , , 

su“' r ' these “ ® ‘ A

about an elemental oath Tl ■ b 3 ln coordinates as one integrates 

product of le„Ä S nT ̂ “i d“e by f°™"S th» 

O1 
I h2h3

V X H = I d 

! 

! 

Laplacian. 1 he Laplacian of a 
divergence of the gradient of that s< 
(4) and (5): 

a 2 ã3 I 
h3hi hihi I 

-1 — (G) 
<3^2 dq3 1

^2^2 h3H3 : 

scalar, which is defined as the 
alar, may be found by combining 

V2$ = V . 

Laplacian of Vectors. 
coordinates other than 
identity, Eq. 2-34(3): 

For the Laplacian of a vector in a system of 
rectangular, it is convenient to use the vector 

(8) 

(9) 

^õi dã2
dt +  ” ã + 

may change in direction 

dã3

v-v = ■ F) - V X V X F 

Each of the operations on the right has been defined above 
Differentiation of Vectors. The derivative of o ? 

required as in Newton’s law for the motioni off par^ “ 

p _ dv d . 
m dt ~ m dt +  “ 2l’2 + 53f3) 

If this is expanded, we have 

— — Æ V̂l i - ^2 dv 3 
» - d< +  “= ï + 
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one moves along the coordinate system. Consider for example the 
fourth term: 

dãi 
Vl ~dt V1 

~dãi dqi dai dq2 dãi dq^ 
dqi dl dq2 dt dq2 dt 

Partials of the form dai/dqi, etc., may not be zero. As an example, 
consider the term dão/dB in spherical coordinates. From Fig. 2-386 

the vector dB dãe/dB is seen to have magnitude dB and has direction 
given by — ãr. Thus dão/dB = — ãr. Other partials of unit vectors 
in this and the cylindrical coordinate system are listed in the next 
article. 

PROBLEMS 

2-38a Find in the spherical coordinate system, drawing a sketch to show 
its components. 

2-38b Utilize the partials of unit vectors from the next article to write Newton’s 
law (9) in terms of its components for cylindrical coordinates. 

2-38c Repeat Prob, b for spherical coordinates. 

2-39 SUMMARY OF USEFUL VECTOR RELATIONS 

From the general equations for all orthogonal systems, the forms of 
the vector operations in these three most common systems are found to 
be as follows. 

Rectangular Coordinates 

qi = X q2 = y qz = z 

hi = 1 h2 = 1 63 = 1 

di di di 
Vi = ãz — + ãv —- + ãt — 

dx dy âz 
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- dDz dDu dDx
V ■ D = —- 4-- 4--

dx dy dz 

V X H = 

All partials of unit vectors etc. are zero. 

Cylindrical Coordinates 

Qz = <t> 

hi = r 

qs = z 

hi = 1 

/dHx
ãx A-

\ dy 

d2i d2i 

dx2 dy2 dz 

qi = r 

h\ — 1 

dH„ 
dx 

dHv\ 

dz ) ’ 

d2i 

/dH 
J a; \ dz 

dH. 
dx 

dãz daz 

dx dy 

dHx\ 

dy / 

_ di 1 di di 
Vi = aT - F a* - — 4- õ2 — 

dr r d<t> dz 

r dr r d<)> dz 

V X H = ãr
IdH, 

r d</> 

dH* 

dz 

\dH¡ 
d> 

dz 

dHz 

dr 

* r dr r d<f> 

, 1 d / di\ 1 d2i d2i 

r dr \ dr / r2 d<j>2 dz2

All partials of unit vectors are zero except 

dãr da^ 
— = ãó — 
d<t> di 

Spherical Coordinates 

di 1 di a* di 
Vi = ãr- F ã0-1-r-

dr r d9 r sm 0 d</> 

-ãr

V • D = A A 
r2 dr 

1_£ 

r sin 0 d0 
(sin dDb + -

r 

1 dl)^ 

sin 0 d<t> 

V X H = " °r . (Ho sin 0) r sin 0 d0 
dHf 

d<j> 

ÖJ 1 1 dHr d 
— - V (rHb r Lsin 0 d<t> dr r 

r d 
y ̂rI1^ dr 

dHr-

d0 
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, i 9 i , as\ i a / . as\ , i a2í> 
r2 9r\ dr J r2 sin 6 96 \ 96 ) r2 sin2 0 9<t>2

All partials of unit vectors are zero except 

9ãr _ 9ãg
(Iß — ““ Cl r 

96 96 

9ãr . 9ãe „ dû* . 
— = à* sm 0 — = a* cos 0 — = — (ar sm 0 + a0 cos 0) 
9<j> 9<p 9(j> 

Vector Identities. Most of the following vector identities have 
appeared in previous discussions. They will be useful throughout the 
book. S and represent any scalar quantities, Ã and B any vector 
quantities. 

V(S + = VS + V^ 

V-(Ä + B)=V-Ä+V-ß 

VX(Ä + 5)=VXÄ + VXß 

v(s^) = s v<A + vs 

V ■ (M) = Ã • v^ + V • Ã 

V • (Ã X B) = B • V X Ã - Ã • V X B 

V X (SÃ) = VS X Ã + S V X Ã 

V X (Ã X B) = Ã V • B - B V ■ Ã + (B • V)Ã - (Ã • V)B 

V ■ VS = V2S 

V • V X Ã = 0 

V X VS = 0 

V X V X Ã = v(v • Ã) - V2Ã 

À X (B X C) = BCÃ • C) - C(Ä ■ B) 



3 SOLUTIONS TO 

STATIC FIELD PROBLEMS 

Basic Considerations in Solving Field Problems by Differential 
Equations 

3-01 INTRODUCTION 

Chapter 2 presented the laws of electricity and magnetism for sys¬ 
tems with no time variations, and the concepts of such static systems. 
It was noted at the beginning of that chapter that it is often necessary 
to solve problems involving the laws of static systems, not alone for 
cases involving d-c potentials and direct currents but also for the cases 
to be discussed later when the results of static solutions may be applied 
directly to the high-frequency problems of more interest to radio 
engineers. 

If the problem is the solution of a static system, the desired result 
may be the actual distribution of fields or potentials, as for instance 
when the maximum gradient is desired for purposes of calculating 
breakdown voltage between a given set of electrodes. If the static 
solution is to be used in studying motion of electrons, it will be desired 
to find the field strength at a given point in space so that forces exerted 
on the electrons may be calculated at that point. If it is desired to use 
static solutions for the calculation of inductances and capacitances, 
or the impedance of a transmission line, it is often necessary to find 
the field distribution around the desired configuration as a first step. 
Thus the calculation of the field or potential distribution in the vicinity 
of an electrode system, a transmission line, or a circuit element is 
usually the first step in the analysis of each system. This will be 
the major goal of the present chapter. 

The distribution of fields may be desired in regions containing 
charges, in regions containing currents, or in regions free from both 
charges and currents. If charges are present in free space, they cannot 
be in equilibrium, but must be in motion; consequently this part of the 

115 
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problem would require a study of the motion of charges in fields. The 
solution for a current-carrying region is of greatest interest when it is 
desired to calculate the impedance of a circuit element for alternating 
current. This aspect of the problem will be reserved until we may 
include the effect of frequency on the distribution of current through 
the conductors. There remain the cases involving distributions in 
charge-free and current-free regions. All field distributions may then 
be obtained by a solution of the one differential equation, Laplace’s 
equation. 

Laplace’s equation has universal application throughout applied 
physics, and the mathematics of its solution has received a great 
amount of attention. Consequently there are available many special 
methods for its solution. Despite the importance of this problem to 
radio engineers, it would be impossible to attempt completeness here 
in considering these methods. We shall study here solutions appli¬ 
cable to certain simple and very useful geometrical configurations, 
stressing the physical pictures which follow from the above results, 
and those methods of solution which will best provide background for 
similar types of solutions in wave problems to follow. 

3-02 DISTRIBUTION PROBLEMS GOVERNED BY LAPLACE’S EQUATION 

In the previous chapter, Laplace’s equation appeared first to relate 
the derivatives of the electrostatic scalar potential <I> at any point in 
charge-free space: 

V2«> = 0 (1) 

A solution to this equation which satisfies the boundary conditions of 
the specified electrode configurations and applied potentials will be an 
equation giving the potential as a function of the space coordinates. 

In electrostatics, the potential is not the only quantity which satisfies 
Laplace’s equation. Certain components of the electric field vector E 
also are distributed in space in accordance with this relation. This is 
easily shown by recalling a few basic relations from the previous 
chapter. The work integral for electric fields led to the expression 

V X Ë = 0 

If the curl of this equation is taken, 

V X V X £ = o 

or, by a vector equivalence (See Art. 2-39), 

V(V • Ë) - V2£ = 0 
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For a charge-free, homogeneous dielectric, Eq. 213(8) becomes 

V • Ë = 0 

so that V~È = 0 (2) 

The last expression is a vector equation which in general may not be 
simple in form. (See Art. 2-38.) However, in rectangular coordinates, 

V2Ê = ãJ2Ex + ãu V-Ey + ãzV2EZ (3) 

so that V2EX = 0 V2EU = 0 V2EZ = 0 (4) 

Thus, for a charge-free region, each of the three components of electric 
field intensity in rectangular coordinates satisfies Laplace’s equation. 
Expansion of V2Ê in cylindrical coordinates shows that the axial com¬ 
ponent of E also satisfies Laplace’s equation. That is, in cylindrical 
coordinates 

2̂EZ = 0 (5) 

(but this is not true of Er and E^. It may often be more convenient to 
use these components of field directly in Laplace’s equation than to use 
the potential, as will be illustrated later by example. 

Similar arguments show that the magnetic field H or the magnetic 
vector potential A or a possible magnetic scalar potential 4>m (see 
Prob. 2-32d) satisfies Laplace’s equation for a current-free region, and 
the d-c current density ï satisfies it in a homogeneous conducting 
region. All this is summarized in Table 3 02. 

TABLE 3 02 
Application of Laplace’s Equation 

Condition 

Charge-free region 
(static case) 

Current-free region 
(static case) 

Static currents 

Quantity Rectangular Cylindrical Spherical 
Coordinates Coordinates Coordinates 

Electrostatic scalar 
potential '!> -I> <|. 

Electric field 
intensity Ex,Ey,E, Ez

Vector magnetic 
potential Ax,Ay,A, A, 

Magnetic field 
intensity Hx,Hy,H, H, 

Magnetic scalar 
potential 

Current density ix,iv ú ix

PROBLEMS 

3-02c Find the form of differential equation satisfied by Er in cylindrical 
coordinates for a charge-free, homogeneous dielectric region. Repeat for E^,. 
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3-02& Derive Laplace’s equation for H, A and im in a current-free region, and 
for d-c current density ï in a homogeneous conductor. 

3-03 UNIQUENESS OF A SOLUTION 

Many possible means of obtaining solutions to Laplace’s equation 
will be presented in following sections. It is important to realize that, 

UdX rJol’AAyhen a solution to the equation within a region is obtained, it is the 
only possible solution if it satisfies the boundary conditions about 
that region. To show that this is so, imagine that there are on the 
contrary two such possible solutions, 'Iq and 4>2. Since they must 
both reduce to the given potential along the boundary, 

$1 - $2 = 0 (1) 

along the boundary surface. Since they are both solutions to Laplace’s 
equation, 

V24>i = 0 and V24>2 = 0 

or V2(4q - $2) = 0 (2) 

throughout the entire region. 
In the divergence theorem, Eq. 2-14(3), F may be any continuous 

vector quantity. In particular, let it be the quantity 

($, _ _ <j>2) 

Then 

V . [($! _ <p 2)v(4> 1 _ $2)] dV = £ [(<h - 4>2)V(<I’i - $2)] • dS 

From the vector identity (Art. 2-39) 

div (^Ã) = div Ã + Ã • grad / 

the equation may be expanded to 

($1 - - <h 2) dV + fy - d>2)] 2 dV 

= fs ($1 - 4>2)V(^i - $2) • dS 

The first integral must be zero by (2) ; the last integral must be zero, 
since (1) holds over the boundary surface. There remains 

fv [V^! - 4>2)]2 dV = 0 (3) 

The gradient of a scalar is a real quantity. Thus its square can only be 
positive or zero. If its integral is to be zero, it can only be zero: 

V(4q - i>2) = 0 (4) 

or (4>i — d>2) = constant (5) 
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This constant miist apply even to the boundary, where we know that 
(1) is true. The constant is then zero, and <I>i — is everywhere 
zero, which means that 4q and <ï>2 are identical potential distributions. 
Hence the proof of uniqueness: Laplace’s equation can have only one 
solution which satisfies the boundary conditions of the given region. 
If by any sort of conniving we find a solution to a field problem that fits 
all boundary conditions and satisfies Laplace’s equation, we may be 
sure it is the only one. 

PROBLEM 

3-03 Prove that, if charge density p is given throughout a volume, any solution 
of Poisson’s equation 2-22(3), must be the only possible solution provided that it 
satisfies the boundary conditions around the region. 

3-04 SIMPLE EXAMPLE: FIELD BETWEEN COAXIAL CYLINDERS WITH TWO 
DIELECTRICS 

As the first step in the study of problems in which Laplace’s equa¬ 
tion is used to obtain field and potential distributions, we will take an 
example with simple boundaries. The prob¬ 
lem is one of finding the potential distribu¬ 
tion between two coaxial conducting cylinders 
of radii a and c (Fig. 3 04), with a dielectric 
of constant «i filling the region between a 
and b, and a second dielectric of constant 
filling the region between b and c. The inner 
conductor is at potential zero, and the outer 
at potential Vo. Because of the symmetry of 
the problem, the solution could be obtained 
readily by using Gauss’s law as in the exam¬ 
ple of Art. 2-09, but the primary purpose here 

Fig. 3 04 Coaxial cylin¬ 
ders with two dielectrics. 

is to demonstrate several processes in the solution by means of dif¬ 
ferential equations. 

The geometrical form suggests that the Laplacian, V^, be expressed 
in cylindrical coordinates (Art. 2-39), giving for Laplace’s equation 

, 1 d f d^ 
V2̂  = -I r -

r dr \ dr. 

1 â24> d2<I> 
? d 2̂ + d? 

(1) 

It will be assumed that there is no variation in the axial (z) direction, 
and the cylindrical symmetry eliminates variations with angle <p. 
Equation (1) then reduces to 

1 

r dr 
r — 
. dr. 

= 0 (2) 
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Note that, in the above, the derivative is written as a total derivative, 
since there is now only one variable remaining in the problem. Equa¬ 
tion (2) may be integrated directly: 

rTr~ C' (3) 

Integrating again, 
4>i = Ci In r + C2 (4) 

This has been labeled $1 because we will consider that the result of 
(4) is applicable to the first dielectric region (a < r < b). The same 
differential equation with the same symmetry applies to the second 
dielectric region, so the same form of solution applies there also, but 
the arbitrary constants may be different. So, for the potential in 
region 2 (b < r < c), let us write 

$2 — C3 In r + C4 (5) 

The boundary conditions at the two conductors are: 

(a) 4>i = 0 at r = a 

(b) 4>2 = Vo at r = c 

In addition, there are continuity conditions at the boundary between 
the two dielectric media. The potential and the normal component of 
electric flux density must be continuous across this charge-free bound¬ 
ary (Art. 2-20): 

(c) <I>i = 4’2 at r = b 

ebb i 
(d) Dr = Dr at r = b, or «i —— = e2 -7- there 

12 dr dr 

The application of condition (a) to (4) yields 

C2 = —Ci In a (6) 

The application of (b) to (5) yields 

C4 = Vo - C3 In c (7) 

Condition (c), applied to (4) and (5), gives 

Ci In b + C2 = C3 In b + C4 (8) 

And condition (d), applied to (4) and (5), gives 

eiCi — €3C3 (9) 
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Any one of the constants, as Ci, may be obtained by eliminating 
between the four equations, (6) to (9): 

(10) 

The remaining constants, C2, C3, and Ct, may be obtained from (G), 
(9), and (7), respectively. The results are substituted in (4) and (5) 
to give the potential distribution in the two dielectric regions: 

a < r < b 

b < r < c 

(ID 

(12) 

It can be checked that the above distributions do satisfy Laplace’s 
equation and the boundary and continuity conditions of the problem. 
Only in such simple problems as this will it be possible to obtain 
solutions of the differential equation by direct integration, but the 
method of applying boundary and continuity conditions to the solu¬ 
tions, however obtained, is well demonstrated by the example. 

PROBLEMS 

3-04a Obtain by means of Laplace’s equation the potential distribution between 
two concentric spherical conductors separated by a single dielectric. The inner 
conductor of radius a is at potential Vo, and the outer conductor of radius b is at 
potential zero. 

3 04h Obtain by means of Laplace’s equation the potential distribution between 
two concentric spherical conductors with two dielectrics filling the region. The 
inner conductor of radius a is at potential zero, and the outer conductor of radius c 
is at potential Vo- Dielectric of constant ei extends from a to b, and one of con¬ 
stant «2 extends from b to c. 

3-04c Two coaxial cylindrical conductors of radii a and b are at potentials zero 
and Vo, respectively. There are two dielectrics between the conductors, but this 
time the plane through the axis is the dividing surface. That is, dielectric ei 
extends from ^> = 0 to </> = r, and e2 extends from </> = ?r to 0 = 2t. Obtain the 
potential distribution from Laplace’s equation. 

3'04d Obtain the electrostatic capacitances for the two conductor systems 
described in the example of Art. 3 04, and in Probs, a, b, and c. 
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Graphical Field Mapping 

3-05 PRINCIPLES OF GRAPHICAL FIELD MAPPING 

By a two-dimensional problem, we mean here one in which the fields 
do not vary in one linear direction, so that the field distribution need 
be given in only one cross-sectional plane since it is the same in all 
cross-sectional planes. We wish to describe first a graphical method 
for obtaining the potential and field distribution for such two-dimen¬ 
sional problems. It may seem that such a discussion is out of place 
now that we have set down the principles for the mathematical solu¬ 
tion of Laplace’s equation, but, since the method offers one of the best 

Fig. 3 056 Map of fields between co¬ 
axial conducting cylinders. 

aids for visualizing the distribution problem, the physical pictures 
which it gives will be invaluable as we go on to the next subject, the 
method of conformal transformations. This graphical method is also 
a very useful engineering tool, since the configurations of electrodes 
in vacuum tubes, electron guns, transmission lines, and other prac¬ 
tical problems are often not simple mathematical surfaces, so that 
purely mathematical solutions of the problem may be impractical. 

In the method, the known potential difference between electrodes of 
the boundary is divided into a number of smaller potential divisions, 
and the equipotential lines (traces of the equipotential surfaces in the 
cross-sectional plane) are sketched by guess throughout the plot. 
The electric field lines are also sketched by guess, and these guesses 
are improved by means of certain properties of the field already 
studied in Chapter 2. As it was shown there that equipotentials and 
electric field lines intersect at right angles, a correct field map must 
show this property. Moreover, if the difference of potential between 
adjacent equipotentials, and the amount of electric flux between 
adjacent field lines, are made to be constant throughout the plot, the 
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side ratios for all the little “curvilinear rectangles” formed by the 
intersection of the equipotentials and the orthogonal field lines must 
be the same throughout the plot, as will be shown in the following. 
For convenience in estimating by eye how well this property is satis¬ 
fied, the side ratio is usually chosen as unity, so that the plot is 
divided into small “curvilinear squares.” This property is demon¬ 
strated by the simple plot of the field between coaxial cylinders (Fig. 
3-05&). In this, the field lines are radial and the equipotentials are 
circles with the spacing between adjacent equipotentials proportional 
to radius. 

To demonstrate the side ratio property, consider one of the curvi¬ 
linear rectangles from a general plot, as in Fig. 3 05a. If An is the dis¬ 
tance between two adjacent equipotentials, ami As the distance 
between two adjacent field lines, the magnitude of electric field, 
assuming a small square, is approximately A^/An. The electric flux 
flowing along a flux tube bounded by the two adjacent field lines, for 
a unit length, is then 

or 

• „ i «A4» As 
A^ = e Ä As = —-

An 

As _ 
An e A<I> (1) 

So, if the flux per tube A^, the potential difference per division A4>, 
and the dielectric constant e are constant throughout the plot, the 
side ratio As/An must also be constant throughout the plot as stated 
above. 

3-06 THE TECHNIQUE OF GRAPHICAL FIELD MAPPING 

In applying the principles of the last article to the sketching of 
fields, each person will soon develop his own rules of procedure. In 
beginning the process, some schedule such as the following will be 
helpful. 

(1) Plan on making a number of rough sketches, taking only a 
minute or so apiece, before starting any plot to be made with care. 

(2) Divide the known potential difference between electrodes into 
an equal number of divisions, say four or eight to begin with. 

(3) Begin the sketch of equipotentials in the region where the field 
is known best, as for example in some region where it approaches a 
uniform field. Extend the equipotentials according to your best 
guess throughout the plot. Note that they should tend to hug acute 
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angles of the conducting boundary, and be spread out in the vicinity 
of obtuse angles of the boundary. 

(4) Draw in the orthogonal set of field lines. As these are started, 
they should form curvilinear squares, but, as they are extended, the 
condition of orthogonality should be kept paramount, even though 
this will result in some rectangles with ratios other than unity. 

(5) Look at the regions with poor side ratios, and try to see what 
was wrong with the first guess of equipotentials. Correct them and 
repeat the procedure until reasonable curvilinear squares exist through¬ 
out the plot. 

(6) In regions of low field intensity, there will be large figures, often 
of five or six sides. In order to judge the correctness of the plot in 

*-Vo-

3 Vo 

4 

Vo 
2 

Vo 
4 

i =0 

Fig. 306a Map of fields between a plane and stepped conductor. 

this region, these large units should be subdivided. The subdivisions 
should be started back a way, and, each time a flux tube is divided in 
half, the potential divisions in this region must be divided by the same 
factor. 

There is little more that can be said in words except that the tech¬ 
nique can be learned only by the study of some given plots, and by 
trying the technique on some examples. Some plots are given in 
Figs. 3 06a and 3-06&. Figure 3 06a shows the field between a plane 
conductor at potential zero, and a stepped plane at potential To, with 
a step ratio of Figure 3-06& shows a plot that was made to show 
the field about a particular two-conductor transmission line whose 
conductors were so shaped as to make difficult an exact mathematical 
solution. Many of the calculated maps from the method of conformal 
transformations to follow, especially those for the regions near con¬ 
ducting corners, will also help in forming the physical pictures neces¬ 
sary for this method. 

The technique can be extended to some more complicated situations, 
but it should be pointed out that it becomes enormously more difficult 
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Fig. 3 00& Map of fields between transmission line conductors of special shape, 

to apply for some of these, and that it is impractical except for very 
important problems. Some of these extensions are: 

(1) to a region with more than one dielectric; 
(2) to the magnetic fields within a current-carrying region; 
(3) to axially symmetric regions having variations in r and z. Some 

of these techniques are discussed in the references.1

PROBLEMS 

306a Map fields between an infinite plane conductor at potential zero and a 
second stepped conductor at potential Fo, as in Fig. 3 06a. but for step ratios 
a/6 of Ji and Ji. 

3-065 Map fields between an infinite flat plane and a cylindrical conductor 
parallel to the plane. The conductor has diameter d, and its axis is at height Ä 
above the plane. Take d/h = 1, Ji. 

3-06c The outer conductor of a two-conductor transmission line is a rectangular 
tube of sides 3a and 5a. The inner conductor is a circular cylinder of radius a, 
with axis coincident with the central axis of the rectangular cylinder. Sketch 
equipotentials and field lines for the region between conductors, assuming a poten¬ 
tial difference Fo between conductors. 

1 H. Poritsky, “Graphical Field Mapping Methods in Engineering,” Trans. 
A.I.E.E., 57, 727-732 (1938). See also S. S. Attwood, Electric and Magnetic 
Fields, Wiley, 3rd ed., 1949; and L. V. Bewley, Two-Dimensional Fields in Electrical 
Engineering, Macmillan, 1948. 
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3-06d Two infinite parallel conducting planes defined by y = a and y = —a 
are at potential zero. A semi-infinite conducting plane lying halfway between 
(y = 0) and extending from x = 0 to x = «> is at potential Vo- Sketch a graphical 
field map for the region between conductors. 

3-07 INFORMATION OBTAINED FROM FIELD MAPS 

Field maps are made to give not only a general idea of the field dis¬ 
tribution for a given problem, but also more specific quantitative 
information. For example, the magnitude of electric field may be 
desired in a problem in which dielectric breakdown is in question. For 
a problem in which the motion of an electron through a field is to be 
computed, both magnitude and direction of field at each point of the 
path are required. The direction of the field is given by the direction 
of the electric field lines at each point, by definition. The magnitude 
is approximately the value Ai/An, where Ai is the difference of 
potential per division, and An the distance between equipotentials. 

The electrostatic capacitance per unit length can also be computed 
readily from a field plot. By Gauss’s law, the charge induced on a 
conductor is equal to the flux ending there. This is the number of 
flux tubes Nf multiplied by the flux per tube. The potential difference 
between conductors is the number of potential divisions Np multiplied 
by the potential difference per division. So, for a two-conductor 
system, the capacitance per unit length is 

c = = N ' 
$2 — Np AF 

The ratio A^/A5> can be obtained from Eq. 3-05(1): 

And, for a small squares plot with As/An equal to unity, 

C = e ~ - farads/meter (2) 
Np 

For example, in the transmission line plot of Fig. 3-066, there are 16 
potential divisions and 66 flux tubes, so the capacitance, assuming air 
dielectric, is 

C — ——■ X — = 36.5 X 10-12 farads/meter (3) 
36ir 16 
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PROBLEMS 

3-07a Assume that Fig. 3 06a is full scale, and that Vo is 1000 volts. Find the 
approximate direction of the minimum and maximum electric field strengths in 
the figure. Plot a curve of electric field magnitude along the bottom plane as a 
function of distance along this plane, and a curve showing surface charge density 
induced on this plane as a function of distance. 

3-07b Calculate the capacitance per unit length from your plots for Probs. 
3 06b and 3 06c. 

Method of Conformal Transformations 

3-08 INTRODUCTION TO COMPLEX FUNCTION THEORY 

A very general mathematical attack for the two-dimensional field 
distribution problem utilizes the theory of functions of a complex 

Fig. 3 08. 

variable. The method is in principle the most general for two-dimen¬ 
sional problems, and the work can be carried out to yield actual solu¬ 
tions for a wide variety of practical problems. For these reasons, 
the general method with some examples will be presented in this 
and the following articles. 

In the theory of complex variables, the complex notation introduced 
in Chapter 1 is retained, the imaginary number V —1 being denoted 
by j. Thus any pure imaginary V — b1 may be written as jb, where b 
is a pure real. The sum of a pure real and a pure imaginary, as 
a + jb, is called a complex number. The variable Z — x + jy, where 
both x and y are real variables, is known as a complex variable. Since 
Z is defined by a pair of quantities x and y, it is convenient to associate 
any given value of Z with a point in the x-y plane (Fig. 3 08a), and to 
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call this plane the complex Z plane. Of course the coordinates may 
also be expressed in the polar form in terms of r and 9: 

r = \7x2 + y2 9 = tan-1

Then Z = x + jy = r (cos 9 + j sin 0) 

The combination in the parentheses is recognized [Eq. 1-05(3)] as e”. 
So the polar form of a complex number, showing the magnitude and 
phase angle, is most conveniently written 

Z = re” (1) 

Suppose that there is now a different complex variable W, where 

IF = u + jv = pcJ* 

such that H is some function of Z. This means that, for each assigned 
value of Z, there is a rule specifying a corresponding value of IF. The 
functional relationship is written 

JF = /(Z) (2) 

If Z is made to vary continuously, the corresponding point in the 
complex Z plane moves about, tracing out some curve C. The values 
of IF vary correspondingly, tracing out a curve C. To avoid con¬ 
fusion, the values of IF are usually shown on a separate sketch, called 
the complex IF plane (Fig. 3 086). 

Next consider a small change in Z, AZ, and the corresponding change 
in H , AH . The derivative of the function will be defined as the usual 
limit of the ratio A1F/AZ as the element AZ becomes infinitesimal: 

dW 
dZ 

AJF /(Z + AZ) - /(Z) 
hm —— = hm -—-
az—»o AZ az—*o AZ (3) 

A complex function is said to be analytic or regular whenever the 
above defined derivative exists and is unique. The derivative may 
fail to exist at certain isolated (singular) points where it may be 
infinite or undetermined, somewhat as in real function theory. But 
it would appear that there is another ambiguity in respect to complex 
variables, since AZ may be taken in any arbitrary direction in the 
Z plane from the original point. It would be expected that AIF would 
correspondingly lie in different directions, and it is not obvious that 
the limit of the ratio AIF/AZ would turn out to be independent of this 
direction or phase of AZ. The definition requires that this inde-
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pendence be satisfied for analytic functions, since (3) is required to 
give a unique result for the point of interest. 

If this independence of direction is to result, a necessary condition at 
least is that we obtain the same result if Z is changed in the x direction 
alone, or in the y direction alone. For SZ = Ax, 

dW dW d . du .dv 

dZ dx dx dx dx (4) 

For a change in the y direction, SZ = j Sy, 

dW dW Id dv du 

Two complex quantities are equal if and only if their real and imagin¬ 
ary parts are separately equal. Hence (4) and (5) yield the same 
result if 

du dv 

dx dy (6) 

dv du 

dx dy (7) 

The above conditions, known as the Cauchy-Riemann equations, are 
then necessary conditions for dW/dZ to be unique at a point, and the 
function/(Z) analytic there. It can be shown that, if they are satis¬ 
fied, the same result for dW/dZ is obtained for any arbitrary direction 
of the change AZ, so they are also sufficient conditions. 

As an example, from the function 

W = Z2

u + jv = (x + jy)2 = (x2 - y2) + j2xy 

u = x2 — y2

v = 2xy 

A check of the Cauchy-Riemann equations yields 

(8) 

du dv 

dx dy 

du dv 

dy dx 

So they are satisfied everywhere in the finite Z plane, and the function 
is analytic everywhere there. 
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Actually, it is not necessary to apply the check when the functional 
relation is expressed explicitly between Z and IF in terms of functions 
which possess a power series expansion about the origin, as ez, sin Z, 
etc. The reason is that each term in the series, CnZn, can be shown to 
satisfy the Cauchy-Riemann conditions, and consequently a series 
of such terms also satisfies them. 

PROBLEMS 

3-08a Check by the Cauchy-Riemann equations the analyticity of the general 
power term W = CnZn, and a series of such terms, 

00 

IF = X CnZn 
n = 1 

3 08b Check the following functions by the Cauchy-Riemann equations to 
determine if they are analytic: 

W = sin Z 

W = ez

IF = Z* = X - jy 

IF = ZZ* 

3 08c Check the analyticity of the following, noting isolated points where the 
derivatives may not remain finite: 

IF = In Z 

(D 

IF = tan Z 

3-08d Take the change t^Z in any general direction Ax + j'Aÿ. Show that, 
if the Cauchy-Riemann conditions are satisfied, Eq. (3) yields the same result for 
the derivative as when the change is in the x direction or the y direction alone. 

3-09 PROPERTIES OF ANALYTIC FUNCTIONS OF COMPLEX VARIABLES 

If Eq. 3-08(6) is differentiated with respect to x, Eq. 3-08(7) differ¬ 
entiated with respect to y, and the resulting equations added, there 
results 

d2u d2u 

â? + “ ° 
Similarly, if the order of differentiation is reversed, there results 

d2v d2v 

dx2 dy2
(2) 

These are recognized as the Laplace equations in two dimensions. 
Thus both the real and the imaginary parts of an analytic function of a 
complex variable satisfy Laplace’s equation, and would thus be suitable 
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for use as the potential functions for two-dimensional electrostatic 
problems. The manner in which these are used in specific prob¬ 
lems, and the limitations on this usefulness, will be demonstrated by 
examples in following articles. 

For a problem in which one of the two parts, u or v, is chosen as 
the potential function, the other becomes proportional to the flux 
function. To show this, let us suppose that u is the potential function 
in volts for a particular problem. The electric field, obtained as the 
negative gradient of u, yields 

E. 
du 

dx Ey 
du 

dy 
(3) 

By the equation for the total differential, the change in v corresponding 
to changes in the x and y coordinates of dx and dy is 

, dv , dv 
dv = — dx H- dy 

dx dy 

But, from Cauchy-Riemann conditions, Eqs. 3 08(6; and 3 08(7), 

, du , du , „ 
— av = — dx — — dy = — Eu dx + Ex dy 

dy dx 

or —e dv = — Dv dx + Dx dy (4) 

By inspection of Fig. 3 09a, this is recognized to be just the electric 
flux d/ between the curves v and v + dv, with the positive direction as 
shown by the arrow. Then 

—d/ = tdv (5) 

And, except for a constant which can be set equal to zero by choosing 
the reference for flux at v = 0, 

— / = ev coulombs/meter (6) 

Similarly, if v is chosen as the potential function in volts for some 
problem, eu is the flux function in coulombs per meter, with proper 
choice of the direction for positive flux. 

A somewhat different point of view toward the above follows if we 
refer to the Z and IF planes introduced in the preceding article. Since 
the functional relationship fixes a value of IF corresponding to a given 
value of Z, for a given function 

JF = /(Z) 

any point (x,y) in the Z plane yields some point {u,v} in the IF plane. 
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As this point moves along some curve x = F(y) in the Z plane, the 
corresponding point in the W plane traces out a curve u — F\(v). If 
it should move throughout a region in the Z plane, the corresponding 
17 point would move throughout some region in the W plane. Thus, 
in general, a point in the Z plane transforms to a point in the W plane, 
a curve transforms to a curve, and a region to a region, and the func¬ 
tion which accomplishes this is frequently spoken of as a particular 
transformation between the Z and W planes. 

W plane 
(b) 

Fig. 3 09. 

When the function f(Z~) is analytic, as we have seen, the derivative 
d 17fdZ at a point is independent of the direction of the change dZ from 
the point. The derivative may be written in terms of magnitude and 
phase: 

dW 
— = Me,a 
ClZj 

(7) 

or dW = dZ (8) 

By the rule for the product of complex quantities, the magnitude of 
dW is M times the magnitude of dZ, and the angle of dW is a plus the 
angle of dZ. So the entire infinitesimal region in the vicinity of the 
point 17 is similar to the infinitesimal region in the vicinity of the point 
Z. It is magnified by a scale factor M and rotated by an angle a. It 
is then evident that, if two curves intersect at a given angle in the 
Z plane, their transformed curves in the 17 plane intersect at the same 
angle, since both are rotated through the angle a. A transformation 
with these properties is called a conformal transformation. 

In particular, the lines u = constant and the lines v = constant in 
the 17 plane intersect at right angles, so their transformed curves in the 
Z plane must also be orthogonal (Fig. 3 096). We already know that 
this should be so, since the constant v lines have been shown to repre-
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sent flux lines when the constant u lines are equipotentials, and vice 
versa. From this point of view, the conformal transformation may 
be thought of as one which takes a uniform field in the IF plane (repre¬ 
sented by the equispaced constant u and constant v lines) and trans¬ 
forms it so that it fits within the boundaries of some electrode structure 
in the Z plane, always keeping the required properties of an electro¬ 
static field. 

3-10 THE POWER FUNCTION; FIELD NEAR A CONDUCTING CORNER 

As a first example, consider W expressed as Z raised to some power: 

IF = Zp (1) 

It is convenient to use the polar form for Z [Eq. 3-08(1)] : 

W = (re*9)” = rpeJ'p9

or u = rp cos pd (2) 

v = rp sin pd (3) 

If v is chosen as the potential function, the form of one curve of con¬ 
stant v (equipotential) is evident by inspection, for v is zero at 0 = 0, 
and also at 0 = ^/p. Thus, if two semi-infinite conducting planes at 
potential zero intersect at angle a, where 

P = - (4) a 

they coincide with this equipotential, and boundary conditions are 
satisfied. The form of the curves of constant u and of constant v 
within the angle then give the field configuration near a conducting 
corner, the sources presumably being far enough away so as not to 
disturb the field. 

The equipotentials in the vicinity of the corner can be plotted by 
choosing given values of v, and plotting the polar equation of r versus 0 
from (3) with p given by (4). Similarly, the flux or field lines can be 
plotted by selecting several values of u and plotting the curves from 
(2). The form of the field, plotted in this manner, for corners with 
a = r/4, ir/2, and 3tt/2 are shown in Figs. 3-10a, b, and c, respectively. 
These plots are of considerable help in judging the correct form of 
the field in a graphical field map having one or more conducting 
boundaries. 

This is one of the few examples in which the proper form of function 
to use for the problem might conceivably be arrived at if the boundaries 
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were given as the starting point. For, if Z is raised to the power ir/a, 
all angles are multiplied by this factor, and the conducting boundary is 
spread out to a straight line, v = 0 in the II plane. Thus v satisfies 
Laplace’s equation in x and y (Art. 3-09) and the condition of potential 

Fig. 310 Field near conducting corners of 45°, 90°, 270°. 

on the boundary, so is the unique solution for potential inside by 
Art. 3-03. 

PROBLEM 
3-10 Plot a few equipotentials and flux lines in the vicinity of conducting 

corners of angles a = ir/3 and 3tt/4. 

3-11 THE LOGARITHMIC TRANSFORMATION 

Consider next the logarithmic function, 

W = Ci In Z + C2 (1) 

The logarithm of a complex number is readily found if the number is 
written in the polar form: 

In Z = In (re’’) = In r + J0 (2) 

So IT = Ci(ln r+;0) + C2

Take the constants Ci and C2 as real. Then 

u = Ci In r + C2 (3) 

V = Cid (4) 

If u is to be chosen as the potential function, we recognize the loga¬ 
rithmic potential forms found previously for potential about a line 
charge, a charged cylinder, or between coaxial cylinders. 1 he flux 
function, = tv, is then proportional to angle 8, as it should be for a 
problem with radial electric field lines. 
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To evaluate the constants for a particular problem, take a coaxial 
line with an inner conductor or radius a at potential zero, and an outer 
conductor of radius b at potential To- Substituting in (3), 

0 — Ci In a (?2 

lo = Ci In b + Ci 

Solving, 

_Fo 
In (b/d) 

To In a 
In (b/d) 

So that (1) can be written 

or 

'In (Z/d) 
. In (ò/a) . 

4> = u = I 
In (r/d) 
.In {b/d). 

volts 

(5) 

(6) 

= ev = -—- - - coulombs/meter 
In (b/d) 

In the above, the reference for the flux function came out auto¬ 
matically at 0 = 0. If it is desired to use some other reference, the 
constant C2 is taken as complex, and its imaginary part serves to fix 
the reference = 0. 

PROBLEMS 

3-lla Evaluate the constants Ci and C2 in the logarithmic transformation so 
that u represents the potential function in volts about a line charge of strength q 
coulombs/meter. Take potential zero at r = a. 

3-lid Show that, if v is taken as the potential function in the logarithmic trans¬ 
formation, it is applicable to the region between two semi-infinite conducting 
planes intersecting at an angle a, but separated by an infinitesimal gap at the 
origin so that the plane at 9 = 0 may be placed at potential zero, and the plane 
at 9 = a at potential Vo- Evaluate the constants Ci and C2, taking the reference 
for zero flux at r = a. Write the flux function in coulombs per meter. 

3-llc In the example of Prob. 31 lb, take the gradient of potential v to give 
the electric field. From this, find the electric flux density vector. Integrate this 
from radius a to r to give the total flux function, and compare with the result of 
the above problem. 

3-12 THE INVERSE COSINE TRANSFORMATION 

Consider the function 

IF = cos 1 Z (1) 
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or X + jy = cos (u + jv) = cos u cosh v — j sin u sinh v 

X = cos u cosh v 

y = — sin u sinh v 

It then follows that 

2 • 2 cos u sin u 

Equation (2) for constant v represents a set of confocal ellipses with 
foci at +1, and (3) for constant w represents a set of confocal hyper¬ 
bolas orthogonal to the ellipses. These are plotted in Fig. 3-12a. 
With a proper choice of the region, and the function (either u or v) to 
serve as the potential function, the above transformation could be 
made to give the solution to the following problems: 

1. Field around a charged elliptic cylinder, including the limiting 
case of a flat strip. 

2. Field between two confocal elliptic cylinders, or between an 
elliptic cylinder and a flat strip conductor extending between the foci. 

3. Field between two confocal hyperbolic cylinders, or between a 
hyperbolic cylinder and a plane conductor extending from the focus 
to infinity. 

4. Field between two semi-infinite conducting plates, coplanar and 
with a gap separating them. (This is a limiting case of 3.) 

5. Field between an infinite conducting plane and a perpendicular 
semi-infinite plane separated from it by a gap. 

To demonstrate how the result is obtained for a particular one of 
these, consider example 5, illustrated by Fig. 3-126. The infinite plane 
is taken at potential zero, and the perpendicular semi-infinite plane at 
potential To- In using the results of the above general transforma¬ 
tion, we must now put in scale factors. To avoid confusion with the 
preceding, let us denote the variables for this specific problem by 
primes: 

W  = Ci cos“1 kZ' + C2 (4) 

The constant Ci is put in to fix the proper scale of potential, the con¬ 
stant k to fix the scale of size, and the additive constant C2 to fix the 
reference for the potential. By comparing with (1), 

Z = kZ' 

JF = CiW + C2
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u'-0 

Fig. 3-126 Field between perpendicular planes with a finite gap. 

The constants Ci and C2 may be taken as real for this problem. Then 

u’ = Ciu d- C2 (5) 

By comparing Figs. 3-12a and b, we want Z' to be a when Z is unity, so 
k = 1/a. Also, when u = 0, we want u' = Toi and, when u = ir/2, 
u' = 0. Substitution of these values in (5) yields 
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7T 
C2 = Vo 

So the transformation with proper scale factors for this problem is 

IF = u' + jv' = Vo (6) 

u' is the potential function in volts, and tv' is the flux function in 
coulombs per meter. A few of .the equipotential and flux lines with 
these scale factors applied are shown on Fig. 3-126. 

PROBLEMS 

3-12a Find the form of the curves of constant u and constant v for the functions 
sin-1 Z, cosh-1 Z, and sinh-1 Z. Do these permit one to solve problems in 
addition to those from the function cos-1 Z of this article? 

3-12& Apply the results of the cos-1 transformation to example 4 of Art. 312. 
Take the right-hand semi-infinite plane extending from x = a to x = « at poten¬ 
tial Vo. Take the left-hand semi-infinite plane extending from x = —a to 
x = — « at potential zero. Evaluate the scale factors and additive constant. 

3-12c Apply the results of the transformation to example 2 of Art. 312. Take 
the elliptic cylindrical conductor of semi-major axis a and semi-minor axis b at 
potential To- The inner conductor is a strip conductor extending between the 
foci, x = ±c, where 

c = a1 — b~ 

Evaluate all required scale factors and constants. Find the total charge per unit 
length induced upon the outer cylinder, and the electrostatic capacitance of this 
two-conductor system. 

3-13 PARALLEL CONDUCTING CYLINDERS 

Consider next the function 

IF = C In (D 

This may be written in the form 

IF = C[ln (Z - a) - In (Z + a)] 

By comparing with the logarithmic transformation of Art. 3-11 which, 
among other things, could represent the field about a single line 
charge, it follows that the above can represent the field about two line 
charges, one at Z = a, and the other of equal strength but opposite sign 
at Z = —a. However, it is more interesting to show that this form 
can also yield the field about parallel cylinders of any radius. 
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' Taking C as real, 

u £i p - «)2 + 
2 “ [(x + a)2 + r (2) 

V = C tan 1- —- — tan  --
(x — a) (x + a) (3) 

Thus lines of constant u can be obtained from (2) by setting the argu¬ 
ment of the logarithm equal to a constant: 

(x - a)2 + y2 =
(X + a)2 + ?/2 V

As this may be put in the form 

the curves of constant u are circles with centers at 

a(l + K) 
X = 1 - tT 

and radii (2a v K)/(l — K). If u is taken as the potential function, 
any one of the circles of constant u may be replaced by an equipotential 

Fig. 3-13 Two parallel conducting cylinders. 

conducting cylinder. Thus, if R is the radius of such a conductor with 
center at x = d (Fig. 313), the values of a and the particular value 
of K (denoted A'o) may be obtained by setting 

a(l + Ko) 2a 
kT - d " « 

Solving, 
a = d~ — R2 (5) 

(6) 
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The constant C in the transformation depends upon the potential of 
the conducting cylinder. Let this be Vo/2. Then, by the definition 
of K, 

y = C In VK0 = C In - 1 

Substituting in (2), the potential at any point (x,y) is 

<I> = u 
~(x — a)2 + V2' 
(a; + a)2 + y2_ 

And the flux function, ev, is 

e Vo = ev tan 1 ---
(x - d) 

_ tan-i _ 
(x + a) 

(8) 

(9) 

Although we have not put in the left-hand conducting cylinder 
explicitly, the odd symmetry of the potential from (8) will cause this 
boundary condition to be satisfied also if the left-hand cylinder of 
radius ß with center at x — — d is at potential — Vo/2. 

If we wish to use the result to obtain the capacitance per unit length 
of a parallel wire line, we obtain the charge on the right-hand con¬ 
ductor from Gauss’s law by finding the total flux ending on it. In 
passing once around the conductor, the first term of (9) changes by 2r, 
and the second by zero. So 

eV 0

q = 2?r 
2 cosh 1

coulombs/meter 

or farads/meter (10) 

PROBLEMS 

3-13a Modify the above to apply to the problem of parallel cylinders of unequal 
radius. Take the left-hand cylinder of radius R\ with center at i = — di, the 
right-hand cylinder of radius Ri with center at x = di, and a total difference of 
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potential Vo between cylinders. Find the electrostatic capacitance per unit 
length in terms of Ri, R^, and (di + d2). 

3T3b Show that the lines of constant v in the transformation of Art. 313 do 
represent a family of circles. 

3-13c The important bilinear transformation is of the form 

_ a%' + b 
cZ’ + d 

Take a, b, c, and d as real constants, and show that any circle in the Z’ plane is 
transformed to a circle in the Z plane by this transformation. (Straight lines are 
considered circles of infinite radius.) 

343d Consider the special case of Prob, c with a = R, b = —R, c = 1, and 
d = 1. Show that the imaginary axis of the Z’ plane transforms to a circle of 
radius R, center at the origin, in the Z plane. Show that a line charge at x' = d 
and its image at x' = — d in the Z' plane transform to points in the Z plane at 
radii ri and r2 with 

rir2 = R2

Compare with the result for imaging line charges in a cylinder (Art. 2-21). 

3-14 THE SCHWARZ TRANSFORMATION FOR GENERAL POLYGONS 

In all the preceding examples, specific functions have been set down, 
and’the electrostatic problems solvable by these deduced from a study 
of their properties. In a practical problem, the reverse procedure is 
usually required, for the specific equipotential conducting boundaries 
will be given and it will be desired to find the complex function useful 
in solving the problem. For some of the preceding examples, it is 
true that the function might have been arrived at if one were given 
the problem first, and used a good physical picture combined with a 
bit of ingenuity. However, the greatest limitation on this method of 
conformal transformations is that, for general shaped boundaries, 
there is no straightforward procedure by which one can always arrive 
at the desired transformation if the two-dimensional physical problem 
is given. There is such a procedure, however, when the boundaries 
consist of straight line sides with angle intersections. We wish to 
describe it briefly. 

Suppose that a polygon is given in the Z plane (Fig. 314a) with 
vertices at Pi, P2, • • • , Pn and with corresponding interior angles 
«i, «2, • ’ • , «n- Suppose that it is desired to transform this bound¬ 
ary into the straight line y' = 0 in some other Z' plane, with Pi going 
into the point Z' = x\ , P^ into x2', etc. The Schwarz transformation 
states that the proper function may be found by integrating the 
derivative: 
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= Kçz' - - xyy^-1 ■ ■ ■ (Z' - xn')^-1
dZ 

(1) 
We do not wish to attempt to prove this, but each factor in the above 
may be thought of as straightening out the boundary at one of the 
vertices, as the transformation of Art. 3-10 did for the single corner. 
That is, if dZ' is changed always in the same direction along the line 
y' = 0, dZ remains of the same direction (phase) except when we pass 
through a point corresponding to one of the vertices, say xm'. Here 
the factor (Z' — xm') changes phase by a factor tt, and the factor 

(Z' — 1 changes phase by a factor am — tt, so the direction 
of dZ is changed by am — r, and passes along the next side of the 
polygon. 

Although we have spoken of the figure to be transformed as a poly¬ 
gon, in the practical application of the method, one or more of the 
vertices are often at infinity, and part of the boundary may be at a 
different potential from the remaining part. Then the line y' = 0 
in the Z' plane consists of two parts at different potentials. If this 
latter electrostatic problem is solved, it may be considered a trans¬ 
formation from the Z to the W plane, and thus the transformation 
from the Z to the 17 plane is given with the Z' plane only as an inter¬ 
mediate step. Another sort of problem in which the method is useful 
is that in which a thin charged wire lies on the interior of a conducting 
polygon, parallel to the elements of the polygon. By the Schwarz 
transformation, the polygon boundary is transformed to the line 
y' = 0, and the wire will then correspond to some point in the upper 
half of the Z' plane. This electrostatic problem can be solved by the 
method of images, and so the original problem can be solved in this 
case also. 
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To clarify some of these general statements, let us consider one of 
the most simple standard examples for the Schwarz transformation. 
This is the problem of the edge effect for a parallel plate condenser, 
and is one of the first type described in the preceding paragraph. The 
problem is idealized by taking the infinite plane y = 0 at potential 
Vo, and a zero-potential parallel semi-infinite plane extending from 
X = 0, y = h to x = «> , y = h (Fig. 3-146). In this example, the 
vertices (two of which are at infinity) have angles ai = 0, «2 = 2tt, 
aj = it. We choose to transform the first vertex to the origin of the 
Z' plane, with the gap separating the two conductors becoming an 
infinitesimal gap at the origin. The second vertex is transformed to 

/ -, / y £ ^4_B C D_E 

A_[_ 

X Z' plane 
Fig. 3-14b. 

x-i = 1, and the third vertex to x¿ = oo. The factor of Eq. (1) 
corresponding to a vertex transformed to infinity in the Z' plane is 
not included in the equation (Prob. 3-14a). Then 

= K^Z' - G^~\Z' - i)(2^)-i = K ~ 1} (2) 
dZ Z 

or Z = K J (1 - dZ' = K^Z' - In Z') + C (3) 

To evaluate the constants K and C, note first that Z = 0 + jh when 
Z' = 1. 

jh = K + C 

Z = K[Z' — 1 — In Z'] + jh (4) 

A second, less direct, condition may be imposed by integrating between 
B and C, approaching infinity in the Z plane and zero in the Z' plane: 

But, from (2) for Z' —> 0, 
dZ _ K 
dZ' Z' 
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If the right side of (5) is integrated about a circle of radius r', 

dZ' — d(r'^9') = jr'e^6' d9' = jZ' d9' 

And the transformation is 

Z = - [Z' - 1 - In Z’ + j*] (6) 
7T 

It can be shown (compare with Prob. 3116) that the transformed 
problem in the Z' plane, which consists of the left half plane at potential 

TABLE 3 14 
Z = X + jy; IE = u + jv, where u = Flux Function, v = Potential 

Vo and the right half at potential zero, may be solved by the function 

W = u + jv = — In Z' 
IT 

or Z' = ew,v* 

In the above, v represents the potential function, and the reference for 
zero flux is taken at the point D (r' = 1). Substituting in (6), 

(7) 
„ h r /v ttw . 
z = - e z ° - 1 - — + jtt 

7T L Vo 
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Equation (7) is the solution to the problem in that it gives the 
potential and flux functions as implicit functions of the coordinates 
x and y. Results for some other important problems which have been 
solved by the Schwarz technique are given in Table 3-14. 

PROBLEMS 

3-lia Explain why a factor in the Schwarz transformation is left out when it 
corresponds to a point transformed to infinity in the Z’ plane, as for the third 
vertex in the above example. 

3-14b In the example of the above article, separate Z into real and imaginary 
parts. Show that the boundary condition for potential is satisfied along the two 
conductors. Obtain the asymptotic equations for large positive u and for large 
negative u, and interpret the results in terms of the type of field approached in 
these limits. 

3-14c Work the example of Prob. 312b by the Schwarz technique and show 
that the same result is obtained. This is the problem of two coplanar semi-infinite 
plane conductors separated by a gap 2a, with the right-hand conductor at potential 
zero, and the left-hand conductor at potential Vq. 

3-lid For the first example of Table 314, find the electrostatic capacitance in 
excess of that which would be obtained if a uniform field existed in both of the 
parallel-plane regions. 

The Separation of Variables Technique and Product Solutions in 
Rectangular, Cylindrical, and Spherical Coordinates 

3-15 THE PRODUCT SOLUTION METHOD 

In spite of the great generality in principle of the transformation 
method for solving two-dimensional Laplace equation problems, we 
have seen that there are practical difficulties in using it to yield the 
solution for all two-dimensional problems. Moreover, there is no 
direct extension of the method to three-dimensional problems. We 
wish now to describe one of the standard methods for the solution of 
partial differential equations in any number of variables. In this 
method, the solution is expressed as a product of functions, each of 
which contains only one of the variables of the coordinate system 
used. For example, in a cylindrical coordinate system, the solution 
for potential may be expressed as a product of three functions, one in 
terms of radius r, one in terms of azimuthal angle <b, and one in terms 
of the axial distance z. Substitution in the partial differential equa¬ 
tion allows one to separate it into ordinary differential equations in 
each of the variables, and these may be solved separately. The 
technique is known as the method of product solutions or of separation 
of variables. 
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It may seem that elimination at the outset of all solutions not of 
the product form represents a severe limitation, but it is not so severe, 
since a series of such solutions may be used when one alone will not 
permit a matching of boundary conditions. This is permissible since 
the sum of separate solutions to a linear differential equation is also 
a solution of the equation. The amounts of the individual solutions 
to be added are determined by the boundary conditions in a manner 
somewhat analogous to that used to determine the amounts of the 
individual harmonics to add up to a complex wave shape in a Fourier 
analysis. (See Arts. 1-13 and 1-28.) 

In the following articles, we shall apply the product solutions tech¬ 
nique to Laplace’s equation in rectangular, cylindrical, and spherical 
coordinates. Since a solution of Laplace’s equation continuous 
through the second derivative is called a harmonic function, the corre¬ 
sponding product solutions for the above cases are often called rectangu¬ 
lar harmonics, cylindrical harmonics, and spherical harmonics. Various 
series of these will be combined to fit, exactly or approximately, the 
boundary conditions for many shapes of electrodes. In addition to 
the importance of the method for these specific problems, it is of 
greatest importance to us since the same technique (and some of the 
same functions) will be used to obtain solutions of the wave equation 
for various time-varying problems in later chapters. 

3-16 RECTANGULAR HARMONICS 

As the simplest example of the method of separation of variables, 
let us first consider two-dimensional problems in the rectangular coordi¬ 
nates X and y, as we have in the transformation method of the past 
section. Laplace’s equation in these coordinates is 

We wish to study product solutions of the form 

$ = XY (2) 

where X denotes a function of x alone, and Y a function of y alone. 
Substituting in (1), 

X"Y + XY" = 0 

Here X" denotes the second total derivative of X with respect to x, 
and Y" similarly denotes d^Y/dy2. To separate variables in this 
example, divide by AT: 
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Next follows the key argument for this method. Equation (3) is to 
apply for all values of the variables x and y. Since the right side does 
not contain x and so cannot vary with x, the left side cannot vary 
with x either. A function of x which does not vary with x is a con¬ 
stant. Similarly, the left side does not vary with y, so the right side 
cannot, and therefore must also be equal to a constant—the same 
constant. Let this constant be denoted a2. Then 

(4) 

(5) 

Equation (4) is recognized (Art. 1-05) as the standard form having 
solutions in exponentials or hyperbolic functions. Let us write them 
here in the hyperbolic form: 

X = A cosh ax + B sinh ax (6) 

Equation (5) is recognized (Art. 104) as the form having solutions in 
sinusoids: 

Y = C cos ay + D sin ay (7) 

So, substituting (6) and (7) in (2), 

4> = [A cosh ax + B sinh ax][C cos ay + D sin «2/] (8) 

The separation constant in the above could have been taken negative 
as well as positive. Let it be — ß2 in place of a2. Then 

and the solution for the x equation is in sinusoids, the solution for the 
y equation in hyperbolics or exponentials: 

= [A' cos ßx + B' sin ßx][C" cosh ßy + D' sinh ßy] (9) 

The form (8) actually includes the form (9) if a is allowed to take on 
imaginary values, a = jß. 

For the three-dimensional case in rectangular coordinates, the pro¬ 
cedure is simply extended. Laplace’s equation is 

Ó2<I> d24> â24> _ 
dx2 + dy2 "t” âz2

(10) 
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Consider solutions of the form 

<I> = XYZ 

where X is a function of x alone, Y of y alone, and Z of z alone. Sub¬ 
stituting in (10), 

X"YZ + XY"Z + XYZ" = 0 

The left side does not vary with z, and so the right side cannot, so 
must be a constant. Denote this by y2: 

T = '7
and Z = E cos yz + F sin yz (12) 

Substituting in (11) and repeating the argument for x and y, 

X = A cosh ax + B sinh ax (13) 

and finally for y, 

Y = C cosh ßy + D sinh ßy (14) 

Combining (12), (13), and (14), 

4> = [A cosh ax + B sinh ax][C cosh ßy + D sinh ßy] 
[F cos yz + F sin yz] (15) 

where a2 + ß2 = y2

Other forms for the three-dimensional case can be obtained by 
assigning imaginary values to any or all of the constants a, ß, y in 
the above. 

PROBLEMS 

3-16a Check by differentiation to show that (15) does satisfy (10). 

3-165 Find the basic forms [in the sense that (9) is a different form from (8)] 
of (15) obtained by allowing a, 0, y, and various combinations to become imaginary. 
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/3-16c The so-called circular harmonics are the product solutions to Laplace’s 
eqtration in the two circular cylindrical coordinates r and <>. Apply the basic 
separation of variables technique to Laplace’s equation in these coordinates to 
yield two ordinary differential equations. Show that the r and 0 equations are 
satisfied respectively by the functions It and F^, where 

R = Cir" + C2r~n

F# = C¡ cos n<t> 4- Ct sin n<j> 

3-17 FIELD DESCRIBED BY A SINGLE RECTANGULAR HARMONIC 

Let us see what boundaries would be required in order to have some 
one of the forms of Art. 3-16 as a solution. Take the special case of 
Eq. 3-16(8) with A = 0, C = 0. The product of remaining constants, 
BD, may be denoted as a single constant Cc 

= Ci sinh ax sin ay (1) 

It is evident from (1) that potential is zero at x = 0 for all y. Hence 
one boundary can be a zero-potential conducting plane at x = 0. 
Similarly, potential is zero along the plane y = 0, and also at other 
parallel planes defined by ay = nir. Let us confine attention to the 
region 0 < ay < tt and 0 < x < co. The intersecting zero-potential 
planes of interest then form a rectangular conducting trough. Let its 
depth in the y direction be 6. Then ab = ir or 

(2) 

If there is to be a finite field in the region, there must be some elec¬ 
trode at a potential other than zero. Without knowing its shape for 
the moment, let us take the value of x at which it crosses the midplane 
y = b/2 as x = a, and the potential of the electrode as To. Then, 
from (1), 

To = Ci sinh sin - = Ci sinh — 
b 2 b 

or, substituting in (1), 

To sinh frx/b) . 
* = ——77T“ s,n ̂y/b̂ sinh (ra/b) (3) 

The potential at any point x,y may be computed from (3). In 
particular, the form that the electrode at potential To must take, can 
be found from (3) by setting $ = To, yielding 

7TX 
sinh —-

b 
sinh (ira/b) 
sin (iry/b) (4) 
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Equation (4) can be plotted to show the form of the electrode. This 
is done for a value a/b = y2 in Fig. 3-17. Actually, the electrodes 
should extend to infinity, but if they are extended a large but finite 
distance, the solution studied here will represent the potential very 
well everywhere except near edges. 

PROBLEMS 
347a Plot the form of equipotcntials for <I> = /^Fo, and o for 

Fig. 317. 
3-17b Describe the electrode structure for which the single rectangular har¬ 

monic Ci cosh ax sin ay is a solution for potential. Take electrodes at potential 
Vo passing through | x | = a when y = a/2. 

347c Describe the electrode structure and exciting potentials for which the 
single circular harmonic (Prob. 316c) Cr" cos 2</> is a solution. 

3-18 FIELD DESCRIBED BY A SERIES OF RECTANGULAR HARMONICS 

As an example of a problem which cannot be solved by using a single 
one of the solutions of Art. 3-16, but can be by means of a series of 
these solutions, consider the two-dimensional region of Fig. 3 18 
bounded by a zero-potential plane at x = 0, a zero-potential plane at 
y = o, a parallel zero-potential plane at y = b, and a plane conducting 
lid of potential Vo at x = a. In the ideal problem, the lid is separated 
from the remainder of the rectangular box by infinitesimal gaps. In 
a practical problem, it would only be expected that these gaps should 
be small compared with the rest of the box. • 

In selecting the proper forms from Art. 316, we will choose the form 
having sinusoidal solutions in y, since potential is zero at y = 0 and 
also at y = b, and sinusoids have repeated zeros. So the form of 
Eq. 3-16(8) is suitable. Moreover, T = 0 at x = 0 for all y of interest, 
so the function of x must go to zero at x = 0, showing that A = 0. 
Similarly, since 4> = 0 at y = 0 for all x of interest, C = 0. $ is again 
zero at y = b, so ab = zwr, or 
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1Í7T 

T 

Denoting the product of the remaining constants BD as Cn, 

, „ . , nirx . wiry 
9 = Cn sinh sin —— 

b b 

This form satisfies Laplace’s equation and the boundary conditions 
at X = 0, at y = 0, and at y = b, but a single term of this form cannot 
satisfy the boundary condition along the plane lid at x = a, as a 
study like that of the preceding article would show. But a series of 
such solutions also satisfies Laplace’s equation and the boundary 
conditions at x = 0, at y = 0, and at y = b: 

X? c • i ■ n*y T = / Cn sinh —— sin-
b b n “ 1 

In order for the sum (1) to give the required constant potential Vo 
along the plane x = a over the interval 0 < y < b, we require 

Vo = 
. nira , niry 

Cn sinh —— sin-
b b 

0 < y < b (2) 

But this is recognized as a Fourier expansion in sines of the constant 
function Vo over the interval 0 < y < b. This expansion was carried 
out in Art. 115 to yield 

,, ' T7 x? • ^y f(y) = 1 0 = > an sin — 
TH b 

' ’ll o 
-) 
mr 

■ o, 

n odd 

n 'even 

(3) 

(4) 

Comparing (3) with (2) shows that 

(5) 
„ . . nira Cn sinh —— = an 

b 

Substitution of the results of (5) and (4) in (1) gives 

4Fo sinh (n7Tx/6) . mry 
-—--— sin-
mr sinh (nira/b) b (6) 
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This series is rapidly convergent except for values of x approaching 
a, so it can be used for reasonably convenient calculation of potential 
at any interior point x,y. 

PROBLEMS 

^•ISa Obtain a series solution for the two-dimensional box problem in which 
sides at y = Oandy = b are at potential zero, and end planes at x = aandz = —a 
are at potential Vo. Hint: Utilize the symmetry of the problem in the evaluation 
of constants. 

3T8b In a two-dimensional problem, parallel planes at y = 0 and y = b extend 
from x = 0 to x = =o, and are at zero potential. The one end plane at' x =0 is 
at potential Vo- Obtain a series solution. Hint: Use the exponential form for the 
solutipfiin x, and consider the condition at infinity. 

^/3T8c Using the circular harmonics of Prob. 316c, form a series for solution of 
potential inside a long thin split cylinder of radius a whose lower half (— r < </> < 0) 
is at potential —Vo, and whose upper half (0 < 0 < r) is at potential Vo. Simi¬ 
larly, write a series solution valid for r > a. 

3-19 CYLINDRICAL HARMONICS 

A large class of problems of major interest is that in which field 
distribution is desired throughout a region having cylindrical sym¬ 
metry about an axis, such as the familiar electrostatic electron lenses 
found in many cathode-ray tubes, or in certain coaxial transmission 
line problems for which static solutions are useful. 

The cylindrical shapes indicate the use of cylindrical coordinates. 
We shall first consider the symmetrical case in which there are no 
variations with </>. Thus Laplace’s equation becomes (Art. 2-39) 

To solve this equation let us try to find solutions of the product form. 
That is, try 

$ = RZ (2) 

where R is a function of r alone, Z of z alone. Substitute in the differ¬ 
ential equation (1) 

R"Z -J- — R' Z -|- RZ" = 0 

R" denotes d^R/dr2, Z" denotes d'Z/dz1, etc. Separate variables by 
dividing by RZ : 

Z" 
Z 

R" 1 R^ 
R + r R 
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By the standard argument for the method of separation of variables, 
the left side, which is a function of z alone, and the right side, which 
is a function of r alone, must be equal to each other for all values of the 
variables r and z. Both sides must then be equal to a constant. Let 
this constant be T2. Two ordinary differential equations then result 
as follows: 

4T? + ^T = -r2 (3)

The second equation is the familiar differential equation of simple 
harmonic motion studied in Chapter 1. The solution is then in sinus¬ 
oids if T2 is negative, in hyperbolic functions (or exponentials) if 
T2 is positive. 

(a) First consider T2 positive so that the solution to (4) is in terms 
of hyperbolic functions. Equation (3) is then 

d2R 
dr2

IdR 
r dr 

(5) 

In Chapter 1, the familiar equation resulting in sinusoids [as (4) 
above] was solved by assuming a solution in the form of a power series. 
Substitution in the differential equation told the form this series must 
have to be truly a solution of the equation. Similarly, to solve (5), the 
function R may also be assumed to be some series of powers of r: 

R = a0 + air + a2r2 + a3r3 + • • • 

or 
oo 

R = X avrP p = 0 
(6) 

Substitution of this function in (5) shows that it is a solution if the 
constants are as follows: 

ßp — @2m — C1( 1) (W 
(m!)2

(Ci is any arbitrary constant.) That is, 

R 
(m!)2

m = 0 ' 

= C1 
/Tr\2 (Tr/2)i
V2/ + (2!)2 (7) 

is a solution to the differential equation (5). 
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The series is not recognized as the series for a simple function, as were 
the series for sines and cosines in Chapter 1, but it is easy to check and 
find that it is convergent, so that values may be calculated for any 
argument (Tr). Such calculations have been made over a wide range 
of values for the argument, the results tabulated, and the function 
defined by the series denoted by Jo(Tr) and called a Bessel function 
(of first kind, zero order; the reason for such specific designation will be 
apparent later). Thus defined, 

JoW = 1 2 (v/2)4

(2!)2

(-l)m(r/2) 2m 

(m!) 2 m = 0 x z

(8) 

The particular solution (7) may then be written simply as 

R = CtJ^Tr) 

The differential equation (5) is of the second order and so must have 
a second solution with a second arbitrary constant. (The sine and 
cosine constitute the two solutions for the simple harmonic motion 
equation.) This solution cannot be obtained by the power series 
method outlined above, since a general study of differential equations 
would show that at least one of the two independent solutions of (5) 
must have a singularity at r = 0. There are several methods for 
obtaining this second solution, all too detailed to be included here, 
and several different forms for the solution. One form for the second 
solution (any of which may be called Bessel functions of second kind, 
order zero) easily found in tables is 

2 xç (-ir^)2" r i i _i 

tt ■*—I (m!)2 2 3 m m = 1 ' z

The constant In y = 0.5772 • • • is Euler’s constant. In general, 
then, 

R = + C2N^Tt) (10) 

is the solution to (5), with Mo (rÙ 

Z = C3 sinh (7z) + C4 cosh (7'z) (11) 

as the corresponding form for the solution to (4). It should be noted 
from (9) that No(Tr), the second solution to R, becomes infinite at 
r = 0, so it cannot be present in any problem for which r = 0 is 
included in the region over which the solut'on applies. 
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(b) If T2 is negative, let T2 = —r2 or T = jr, where r is real, and 
(5) may be written 

t2R = 0 
d2R IdR 
dr2 r dr (12) 

The series (7) is still a solution, and T in (7) may be replaced by jr. 
Since all powers of the series are even, imaginarles disappear, and a new 
series is obtained which is real and also convergent. That is, 

, , /A2 , (v/2)4 , (v/2)6
JM = i + y + 72!7 +W • • ' < 13> 

Values of Jo(jv') may be calculated for various values of v from such a 
series; these are also tabulated in the references. The defined function 
is denoted /»(v) in many of the references. Thus a solution to (12) is 

R = Cr'J^jrr) s C/Zoirr) (14) 

There must also be a second solution in this case, and, since it is usually 
not taken simply as Noijrr), the choice of this will be discussed in a later 
article (3-23). One of the forms for the second solution in this case 
is denoted KoÇrr'), so that the general solution to (12) may be written 

R = 4- CiKo^r) (15) 

The second solution Ko becomes infinite at r = 0 just as does No, 
and so will not be required in the simple examples immediately follow¬ 
ing which include the axis r = 0 in the range over which the solution 
is to apply. The solution to the z equation (4) when T2 = — r2 is 

Z = Co sin tz + Ci cos tz (16) 

Summarizing, either of the following forms satisfies Laplace’s equa¬ 
tion in the two cylindrical coordinates r and z: 

T = [CiJo(Tr) + C2-Vo(Tr)][C3 sinh Tz + C4 cosh Tz] (17) 

4> = (Ci'Zo(rr) + C2 Kotrry^C3 sin tz + Ci cos tz] (18) 

As was the case with the rectangular harmonics, the two forms are not 
really different since (17) includes (18) if T is allowed to become 
imaginary, but the two separate ways of writing the solution are useful, 
as will be demonstrated in following examples. 

PROBLEM 

3-19 Demonstrate that the series (7) does satisfy the differential equation (5). 
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3-20 FIELDS DESCRIBED BY CYLINDRICAL HARMONICS 

Let us write a particular one of the cylindrical harmonics of the 
preceding article as follows: 

sin (irz/l) . 
4- = 01^ sin rz = V o 

Boundaries appropriate to this solution are found as in Art. 3 17 for 
the rectangular harmonic, and are sketched in Fig. 320a for r0/l = %. 

Fig. 3 20b The cylindrical region with 
given potentials. 

Fig. 3-20c The potential plots at the 
boundary and along the axis. 

For more general problems, a series of the cylindrical harmonics may 
be required. Consider a region bounded by a circular cylinder at 
potential Vo and two planes perpendicular to the axis at zero potential 
(Fig. 3-20b) ; cylindrical symmetry exists and product solutions must 
be obtainable from Art. 3-19. The necessary gaps between electrodes 
are assumed negligibly small compared to all other dimensions. 
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Potential must be zero at z = 0 and z = I for all values of r; this 
helps us to select the proper form of the product solution as follows: 

1. Sinusoidal solutions for z are desired rather than hyperbolic, since 
the latter do not have repeated zeros and such a characteristic of the 
solution is necessary. The form of Eq. 3-19(18) is then utilized. 

2. Coefficient of the cosine term must be zero since d> is to be zero at 
z = 0. 

3. Periodicity, r, is given by m^/l, where m may be any integer from 
zero to infinity, if 4> is to be zero at z = I. 

4. The second solution, Ko, is not present since potential must 
remain finite on the axis. 

Thus all solutions to Laplace’s equation of the product form which 
satisfy the symmetry of the problem and the boundary conditions so 
far imposed must be of the form 

and a series of these harmonics, having amplitudes Am yet to be deter¬ 
mined, will give the potential distribution $ desired: 

oo 

d> = AmIo 
m = 0 

(2) 

An additional boundary condition remains that, at r = a, 4> is zero at 
z = 0 and z = I, but equal to To for all other values of z. A plot of this 
distribution of $ against z at r = a (Fig. 3-20c) results in a square wave 
shape such as was expanded in a Fourier series in Chapter 1. From 
Eq. 115(6), this function is representable over the range 0 < z < Z by 
the series $ 

4Fo X? 1 . mrz t —- > _ sin —— 
’r -“t. m I r = a m odd 

But (2) gives 4> | r=o as 

Since these values of 4> | r = a must be equal to each other for all values 
of z, they must be equal term by term. That is, corresponding coeffi¬ 
cients of sin (mirz/l) may be equated: 
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AmIo 
41%, 
mir 
0, 

m odd 

m even 

Thus every coefficient is determined and the potential at any point 
in the region is given by substituting these determined coefficients in 
the series (2) : 

$ = 4F0
A h^a/l) 

sin (mxz/l) (3) 

A plot of potential distribution along the axis, ^/Vo versus z at r = 0, 
is given in Fig. 3-20c for a case with a/1 = 0.25. 

PROBLEMS 

320a Find the scries for potential inside the cylindrical region with end plates 
z = 0 and z = Z at potential zero, and the cylinder of radius a in two parts. From 
z = 0 to z = Z/2, it is at potential Vo', from z = Z/2 to z = I, it is at potential — Vo-

3-20b The problem is as in Prob. 3 20a except that the cylinder is divided in 
three parts with potential zero from z = 0 to z = b and also from z = I — b to 

3-21 BESSEL FUNCTIONS OF ZERO ORDER: REAL ARGUMENTS 

z = /-/Potential is Fo from z = btoz = l—b. 

l'Z-lüc Write the general formula for obtaining potential inside a cylindrical 
region of radius a, with two zero-potential end plates at z = 0 and z = I, provided 
potential is given as 4> = /(z) at r = a. 

In the solution of Laplace’s equation in cylindrical coordinates, a 
differential equation appeared of the form 

1 dR 
dr2 r dr (1) 

This equation, known as Bessel’s equation, is common throughout 
applied physics, and in particular arises in many field problems involv¬ 
ing cylindrical and spherical configurations. Since a large number of 
the structures of radio engineering, for example, vacuum tube elec¬ 
trodes, circular wave guides, and ordinary round wires, have such 
forms, the equation and its solutions will occur frequently throughout 
the book. Although we have already made use of its solutions in the 
preceding examples, we shall now devote some time to a special study 
of the properties of its solutions. These solutions to Bessel’s equation 
are called Bessel functions. 

Equation (1) is quite similar to the equation of simple harmonic 
motion. This familiar differential equation, 
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d-z 
dz-

+ K^Z = 0 (2) 

was studied in Chapter 1 and found to have solutions in sines and 
cosines: 

Z — A cos Kz + B sin Kz (3) 

One solution to the Bessel equation, (1), was obtained in Art. 3-19 
by a method also used for solving the simple harmonic motion equa¬ 
tion—the method of assuming a power series and determining coeffi¬ 
cients so that the differential equation is satisfied. The two inde-

Fig. 3-21 Plot of zero order Bessel functions Jo(r) and NoW. 

pendent solutions defined by Eqs. 3-19(8) and 3-19(9) were denoted 
by J^Tr) and 2Vo(Tr), so that a complete solution to (1) is written 

R = CJ<m + DN^Tr) (4) 

Since the differential equations (1) and (2) are similar, it may be 
expected that the above solutions are similar to sinusoids, but revised 
somewhat by the presence of the term \/r{dR/dr). This is true, for 
a plot of the two solutions Jn(y) and N 0(v) as functions of v (Fig. 3-21) 
shows that both are reminiscent of damped sinusoids. Jo(v) is unity 
at v = 0 and then alternates in sign, actually approaching a modified 
sinusoidal form as v becomes very large: 

(5) 
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NoW is infinite at v = 0, but eventually alternates in sign, and for 
large arguments approaches 

(6) 

Both the functions Jo(v) and Noty), called Bessel functions of zero 
order, first and second kinds respectively, are tabulated extensively in 
references. Some care should be observed in using these references, 
for there is a wide variation in notation for the second solution, and 
not all the functions used are equivalent, since they differ in the values 
of arbitrary constants selected for the series. The No(y) is chosen here 
because it is the form most common in current mathematical physics, 
and also the form most commonly tabulated. It is equivalent to the 
Ko(v) used by Watson and by McLachlan, and to the ŸoÇv), but not 
the ToM» of Gray, Matthews, and MacRobert. Of course, it is quite 
proper to use any one of the second solutions throughout a given 
problem, since all the differences will be absorbed in the arbitrary 
constants of the problem, and the same final numerical result will 
always be obtained; but it is necessary to be consistent in the use of 
only one of these throughout any given analysis. 

3-22 LINEAR COMBINATIONS OF Jo AND No: THE HANKEL FUNCTIONS 

It was found in Chapter 1 that it is sometimes convenient to express 
the solution to the simple harmonic motion equation in terms of 
complex exponentials, which are linear combinations of sines and 
cosines. Thus it is proper to write the solution to 3-21(2) as 

Z = A^kz + B ie~jkz (1) 

since e’kz = cos kz + j sin kz (2) 

and e~ikz = cos kz — j sin kz 

This form is of particular value in the study of traveling waves if e7“1 
is to be used to represent sinusoidal time variations, for then 

Ze7“' = ̂ ^A^1 + B ie-jkz ) 

= Aieî t+kz'> + 

The first of these terms represents a wave traveling in the negative z 
direction; the second represents a wave traveling in the positive z 
direction. 

Similarly, for the study of wave propagation in cylindrical coordi-
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nates, it is convenient to form linear combinations of the Bessel func¬ 
tions Jo Jr) and No Jr): 

H0™Jr) = J0Jr) + jN0 Jr) (3) 

HOw Jr) = J0Jr) - jN0Jr) (4) 

The meaning of these combinations is similar to that of the exponen¬ 
tials. This is shown by substituting the expressions for JD and A’o at 
large arguments [Eqs. 3-21(5) and 3-21(6)] in (3) and (4): 

The solution to Eq. 3-21(1) may be written in terms of the linear 
combinations defined above: 

R = CiHo^Jr) + DiHow Jr) (7) 

If this solution is associated with a time function e?“1, 

Jr) + DJIo™ Jr)] 

For large values of Tr, 

I 2 
-[Cie_-’ (r/4)eJ(“(+rr) + Z>iey(T/4)e7(u'<“rr) ] ' nTr 

so that the first term represents a wave traveling radially inward and 
the second term represents a wave traveling radially outward. This 
interpretation of the functions Hq*1’ and Hom  will be particularly 
useful in later chapters concerned with wave solutions. 

The functions H^ty) and How (y) are called Hankel functions of 
the first and second kinds, respectively. However, it should be 
emphasized that these are not new functions, but merely linear combi¬ 
nations of Jo(y) and N0(y) and so are also solutions of Bessel’s equation. 
Other complete solutions to the Bessel equation might be written 

R = CJoJr) + D3H0̂ Jr) 

R = CtN0Jr) + DiH^Jr), etc. 
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3-23 BESSEL FUNCTIONS OF ZERO ORDER: IMAGINARY ARGUMENTS 

If the constant K of the simple harmonic motion equation is imagi¬ 
nary, K = jk or K2 = — k2 where k is real, the solution, in terms of 
exponentials, is 

Z = + Büß“*2

Similarly, the constant T of Bessel’s equation is often imaginary: 
T = jr or T2 = — t2 where r is real. The first solution for this case 
has been studied in Art. 3-19. The series representing Jo^r) is real 
and convergent [see Eq. 319(13)] and, as noted in that article, is often 
denoted Zo(rr), or 

/o(v) = JoW 

Similarly, for a second solution, N o(jrr) could be used, but this is 
complex and so not convenient to tabulate. One of the linear com¬ 
binations of Jo and No studied in Art. 3-22, yields a purely 
imaginary result for imaginary arguments, and also goes to zero at 
infinity, so that it is useful as a solution in regions extending to infinity. 
That is, from Eq. 3-22(5) for v = jv', and large v', 

= -j 
ire V) 

This does go to zero at v' = ». Thus a complete solution to the 
equation 

may always be written 

R = C2J0(jrr) + D2H0̂ (jrr) (2) 

How (jv') is always a purely imaginary number (if v' is real), so 
is real. JuUv') andjlZo^C/v') are tabulated in some of the 

references as functions of v', and curves of these functions are given 
in Fig. 3-23. As may be expected, the former is reminiscent of the 
hyperbolic cosine, the latter of a negative exponential. 

The second solution introduced above is related to the second solu¬ 
tion, Ko, mentioned in Art. 3-19 by the following: 

K0(v') = (3) 

Ko is used, in, among other places, Watson, McLachlan, and Gray, 
Matthews, and MacRobert. Io and Ko are known as modified Bessel 
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functions of zero order, first and second kinds, respectively. An 
alternative complete solution to (1) may then be written as in Art. 319, 

R — Ci'I^Tr) + D^'K^rr) (4) 

No X’ 

3-24 BESSEL FUNCTIONS OF HIGHER ORDER 

Fig. 3-23 Plot of zero order Bessel functions of imaginary arguments. 

The simple Bessel equation, 3-21(1), was derived by assuming that a 
product solution would satisfy Laplace’s equation, first eliminating any 
variations with angle 0. For certain problems, as, for example, the 
solution for field between the two halves of a longitudinally split cylin¬ 
der, it may be necessary to retain the variations in the equation. 
The solution may be assumed in product form again, RZF^, where R 
is a function of r alone, Z of z alone, and of </> alone. Z has solutions 
in exponentials or sinusoids as before, and F* may also be satisfied 
by sinusoids: 

Z = CeTl + De~ T2 (1) 

F^, = E cos v<t> + F sin (2) 

The differential equation for R is then slightly different from the zero 
order Bessel equation obtained previously: 

d-R 1 dR 
h *■ dr r dr 

T2 (3) 
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It is apparent at once that Eq. 3-21(1) is a special case of this more 
general equation, i.e., v = 0. A series solution to the general equation 
carried through as in Art. 3-19 shows that the function defined by the 
series 

( — V)m(Tr/2Y+2m 
mlrfv + m + 1) 

(4) 

is a solution to the equation. 
r(i< + m + 1) is the gamma function of (v + m + 1) and, for v 

integral, is equivalent to the factorial of (? + m); for v non-integral, 
values of this gamma function are tabulated. If v is an integer n, 

, X V (-l)m (Tr/2)"4 

" m!(n + m)! 
m = 0 

(5) 

Similarly, a second independent solution f to the equation is 

A^Tr) 
cos virJ^Tr} — J_v(Tr) 

sin vit (6) 

So that a complete solution to (3) may be written 

7^' [ß = AJ^Tr) + BN,(Tr) (7) 

The constant v is known as the order of the equation. J, is then 
called a Bessel function of first kind, order v; N„ is a Bessel function of 
second kind, order v. Of most interest for this chapter are cases in 
which V = n, an integer. 

The solution to (3) may also be written in terms of linear combina¬ 
tions of J, and N,: 

R = + BiH^XTr) (8) 

where H^Tr) = J ATr) + jN,(Tr) (9) 

and H«\Tr) = J^Tr) -jN,(Tr) (10) 

and H,w  are called Hankel functions of order v, first and second 
kinds, respectively. 

If T is imaginary, T = jr, (3) becomes 

d2R IdR 
dr2 r dr (ID 

t If V is non-integral, J-, is not linearly related to J„, and it is then proper to use 
either or N, as the second solution; for » integral, N, must be used. Equation 
(6) is indeterminate for v integral but is subject to evaluation by usual methods. 



3-25 SOLUTIONS TO STATIC FIELD PROBLEMS 165 

If T = jr is substituted in the series definitions for J,(Tr) and 
the resulting quantities are found to be either pure reals or 

pure imaginaries if v is an integer, n. Specifically, the quantities 
[j~nJn(jv)] and are always pure real numbers and are 
tabulated as functions of v in the references. A complete solution to 
(11) may be written 

R = A2J^jrr) + BsH™(jrr) (12) 

Again it is quite common practice to denote the above solutions as 
follows: 

InW = rnJnW (13) 

(14) 

The solution to (11) may then also be written A ■ ' • 

\ Æ = AJArr) + BZK,M \ (15) 

However, note that I and K as defined by (13) and (14) require 
different recurrence formulas from the ordinary Bessel functions. 
These formulas will be given in following articles. 

3-25 VALUES FOR BESSEL FUNCTIONS OF LARGE ARGUMENTS 

As the arguments of the Bessel functions become very large, all these 
functions approach more and more closely sinusoidal or exponential 
forms, as in the zero order functions of Arts. 3-21-3-23. These forms 
are called the asymptotic expressions for the Bessel functions. They 
are as follows: 

-> J-
v—» « * 7ry 

= AW e” 
V—» co V—♦ ao * ZttV 

= I KM -► e 
V—» 00 TT y » 00 V 2TV 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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3-26 DIFFERENTIATION OF BESSEL FUNCTIONS 

If it is desired to obtain the derivative of the Hessel function Jo(v), 
the series definition 3-19(8) may be differentiated term by term: 

y [W] = -dv 
(r/2)3 (W 
1 -2! + 2! 3! 

(v/2) 7 

3! 4! 

Comparison with the definition for Jn(y), Eq. 3-24(5), shows that the 
result is exactly — J\(v). That is, 

y [JoM] = -JM dv 

Similarly, it may be shown from the differential equation that the 
following derivative expressions are true for any of the Bessel functions 
J^v), N,(y), Z/P(1) (v), or Let 7?,(v) denote any one of these, 
and R,' denote (d/dv)[ñ,(v)]. 

R^v) = -Ri(y) (1) 

Ri'ty) = Rq{v) - - R^v) (2) 
V 

vR/(v) = vR,(v) — vR,+i(y) (3) 

vR,'(v) = —vR^v) + vR,_i(v) (4) 

d 
— [v 'ñ^w)] = —v ’R,+i{v) (5) 
dv 

d 
— [w’ßXv)] = v’Ry^v) (6) 
dv 

Note that 

= i T (7) dll r) 1 dr 

For the I and K functions different forms for the above differentials 
must be used. They may be obtained from the above by substituting 
Eqs. 3-24(13) and 3-24(14) in the preceding expressions. Some of these 
are 

vl/ty) = + vl,+ï (v) 
(8) 

vl,'(v) = — + vl^ty) 

vK/(v) = vK^v) — vKy+i(v) 
(9) 

vK, (y) = — — VKy_l{v) 
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3-27 RECURRENCE FORMULAS FOR BESSEL FUNCTIONS 

By recurrence formulas, it is possible to obtain the value for Bessel 
functions of any order, when the values of functions for any two other 
orders, differing from the first by integers, are known. For example, 
subtract Eq. 3-26(4) from Eq. 3-20(3). The result may be written 

- R,(p) = ß,+1 (v) + R,_^v) (1) 

By this equation, if any two of ßF_i, R„, and R,+\ are known, the third 
may be found. For instance, if do(v) and Ji(v) are known, the equa¬ 
tion may be used to find J2(f); repeating the process with J^v) and 
J2(1’), JM may be determined and so on to any order desired. As 
before, R, maydenote J„ N„ Z// 2) ,but not I, or K„ For these, 
the recurrence formulas are 

2r 
— AW = Z,_i(v) - A+i(v) (2) 

2p 
— K,(v) = K,+i(y) - (3) 

3-28 INTEGRALS OF BESSEL FUNCTIONS 

Equation 3-26(1) may be integrated directly: 

/ Ri(y) dv = -R0(y) (1) 

Others of the integrals that will be useful in solving later problems are 
given below. R, denotes J„ N„ or H,w : 

J* v~'R^ify) dv = —v~’R,(v) (2) 

J* v’R^^v) dv = v’R,(y) (3) 

J vRy^av^R^ßv) dv 

V 
= -2-72 [ßRt,(av')R„-i(ßv') — aR^^av^R^ßv)} ß (4) a — p 

J v2
vR^Çav) dv = — [R 2(av) — Ä,_i(aw)ß,+i(av)] 

o / 9 \ V / V“ \ 
= - {R,’\av) + ( 1 - —2 ) (5) 

¿ \ a V / 
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3-29 EXPANSION OF A FUNCTION AS A SERIES OF BESSEL FUNCTIONS 

In Chapter 1 a study was made of the familiar method of Fourier 
series by which a function may be expressed over a given region as a 
series of sines or cosines. It is possible to evaluate the coefficients 
in such a case because of the orthogonality property of sinusoids, 
expressed in Art. 1-13. A study of the integrals, Eqs. 3 28(4) and 
3-28(5), shows that there are similar orthogonality expressions for 
Bessel functions. For example, these integrals may be written for 
zero order Bessel functions, and, if a and ß are taken as pm/a and 
Pul a, where pm and pq are the with and çth roots of JoM = 0, that is, 
Jo(Pm) = 0 and Jo(Pg) = 0, pm pq, then Eq. 3-28(4) gives 

So, if a function/(r) may be expressed as an infinite sum of zero order 
Bessel functions, 

The coefficients bm may be evaluated in a manner similar to that used 
for Fourier coefficients by multiplying each term of (2) by rJ0(pmr/a) 
and integrating from 0 to a. Then by (1) all terms on the right dis¬ 
appear except the with term : 

or 

Thus a formula for the coefficients of the series (2) is derived. A 
mathematical study of the subject would be concerned with showing 
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that the series thus formally derived actually does converge to the 
desired function over the range of interest. Such a discussion is out¬ 
side the range of this text, but the results of such studies show that 
completeness and convergence requirements are met, so that such a 
series may be used to represent any piecewise continuous function over 
the range 0 < r < a. 

PROBLEMS 
3.29a Write a function f(r) in terms of nth order Bessel functions over the 

range 0 to a and determine the coefficients. 

3-29b Determine coefficients for a function /(r) expressed over the range 0 to 
a as a series of zero order Bessel functions as follows: 

, ( P^T\ 
= Zi CmJ ° ( ~ J 
m = 1 ' 

where pm' denotes the mth root of Jo'W = 0 [i.e., Ji(v) — 0]. 

3-30 CYLINDRICAL HARMONIC SERIES FOR RADIAL MATCHING 

If it is desired to find potential distribution in the interior of a region 
bounded by a circular cylinder and its base at potential zero, and a 
plane perpendicular to the axis at potential I o (Fig- 3-30a), the use 
of series is similar to that of the example in Art. 3’20, although now a 
series of Bessel functions is required. The gaps are again assumed 
negligibly small compared with all other dimensions. In selecting the 
proper form for the solution from Art. 319, the boundary condition 
that $ = 0 at r = a for all values of z indicates that the R function 
must become zero at r = a. Thus we select the Jp functions since 
the Iq’s do not ever become zero. (The corresponding second solution, 
Ap, does not appear since potential must remain finite on the axis.) 
The value of T in Eq. 349(17) is determined from the condition that 
$ = 0 at r = a for all values of z. Thus, if pm is the with root of 
J0(v) = o, T must be pm/a. The corresponding solution for Z is in 
hyperbolic functions, Eq. 349(17), but the coefficient of the hyperbolic 
cosine term must be zero since $ is zero at z = 0 for all values of r. 
Thus a sum of all cylindrical harmonics with arbitrary amplitudes 
which satisfy the symmetry of the problem and the boundary con¬ 
ditions so far imposed may be written 

(1) 

The remaining condition is that, at z = Z, 4 — 0 at r — a, and 
$ = 7p for all other r’s. To use this condition it seems advisable 
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Fig.3-30a Cylindrical region (l/a = 1). Fig. 3-306 Plot of potential vs. z at 
r = 0 (l/a = 1). 

to expand such a function over this plane in terms of Bessel functions 
as in Eq. 3-29(2). For the coefficients, Eq. 3-29(4) is used with 
/(r) = 0 at r = a and /(r) = Fo for 0 < r < a. Then 

, 2 P tz r Vmr\ , 2F0
= 2 r ir—; rK0./ u I — dr = ———-

Rr) = 4>| 

But (1) at z = Z is 

Bm sinh 

The above integral was evaluated by Eq. 3-28(3). So 

21 o 
Pm'I l(Pm) 

(2) 

(3) 
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Equations (2) and (3) must be equivalent for all values of r. Conse¬ 
quently, coefficients of corresponding terms of JoC/w/a) must be equal. 
The constant Bm is now completely determined, and the potential at 
any point inside the region is 

(4) 

Potential distribution along the axis is plotted in Fig. 3-306 for a 
case with a/t = 1. 

PROBLEMS 

2 3-30a Suppose that the end plate at z = I of Fig. 3-30a is divided into insulated 
rings and connected to sources in such a way that the potential approximates a 
single Jo function of radius. That is, 

Write the solution for 4>(r,z) at any point inside the cylindrical region. 

3-30b Write the general formula for obtaining potential inside a cylinder of 
radius a which, with its plane base at z =0, is at potential zero, provided that the 
potential is given across some plane surface at z = Z, as 

*^,1) = 

3-30c For the axially symmetric region sketched in Fig. 3-30c, write a series 
solution of the appropriate form with unknown coefficients ai, az, • • • an. For 
a particular case with ro/l = h/l = 0.3, assume that a sufficiently good approxi¬ 
mation may be had by retaining only four of the terms of the series. Evaluate 
the four coefficients of these terms by putting on the known potential Fo at four 
points of the central electrode. Take these points, Qit Qi, Q3, Q, with (r,z) coordi¬ 
nates respectively (O,ro), (6,ro), (h,2ro), and (Zi,3ro). Calculate the potential at 
a few points on the axis from the resulting series, and plot 4>/Vo as a function 
of z/Z. 

3-31 SPHERICAL HARMONICS 

Consider next Laplace’s equation in spherical coordinates for regions 
with symmetry about the axis so that variations with azimuthal 
angle p may be neglected. Laplace’s equation in the two remaining 
spherical coordinates r and 9 then becomes (Art. 2-39) 

or 

^2 i 

dr2
Id/ d<F 

—:-I sin 0 — 
r sin 9 99 \ 99 

= 0 

d2̂ 1 d2<I> 1 d<I> 
—o 4- 2 — 4-T 4~-
dr2 dr r 96~ r tan 9 99 

(1) 

(2) 
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Assume a product solution, 
<I> = ño 

where ñ is a function of r alone, 0 of 0 alone, 

rñ"0 +2 ñ'O + - ñO" H-—- ñ0' = 0 
r r tan 0 

r^R" 2rR' _ _ 0^ _ 0’ 

an R + R “ 0 0 tan 0 
(3) 

Following previous logic, if the two sides of the equations are to be 
equal to each other for all values of r and 0, both sides can be equal only 
to a constant. Since the constant may be expressed in any nõn-
restrictive way, let it be m(m + 1). The two resulting ordinary 
differential equations are then 

r2 + 2r — m(m + l)ñ = 0 (4) 
dr¿ dr 

+ r1i To + m m̂ +1)0 = 0d9 tan 0 d9 

The first of these has a solution which is easily verified to be 

ft = Cir”1 + (6) 

A solution to Eq. (5) in terms of simple functions is not obvious, so, 
as with the Bessel equation, a series solution may be assumed. The 
coefficients of this series must be determined so that the differential 
equation (5) is satisfied and the resulting series made to define a new 
function. There is one departure here from an exact analogue with the 
Bessel functions, for it turns out that a proper selection of the arbitrary 
constants will make the series for the new function terminate in a finite 
number of terms if m is an integer. Thus, for any integer m, the poly¬ 
nomial defined by 

i r d T” 
Pm(cos 0) = —- —-ZT (cos2 0 - l)m (7) 

2mm! [a (cos 0) _ 

is a solution to the differential equation (5). The equation is known as 
Legendre’s equation; the solutions are called Legendre polynomials of 
order m. Their forms for the first few values of m are tabulated below. 
It is evident that, since they are polynomials and not infinite series, 
their values can be calculated exactly if desired, but values of the 
polynomials are also tabulated in many references. 
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Po(cos 0) = 1 

Pi (cos 0) = cos 0 

Ps(cos 0) = i(3 cos2 0—1) (8) 

Ps(cos 0) = i(5 cos3 0 — 3 cos 0) 

P4(cos 0) = k(35 cos4 0 — 30 cos2 0 + 3) 

P6(cos 0) = |(63 cos5 0 — 70 cos3 0+15 cos 0) 

It is recognized that 0 = CiPm(cos 0) is only one solution to the 
second order differential equation (5).~ There must be a second inde¬ 
pendent solution, which may be obtained in a similar manner, but it 
turns out that this solution becomes infinite for 0 = 0. Consequently 
it will never be present for any case in which the axis of spherical coor¬ 
dinates is included in the region over which the solution applies. How¬ 
ever, several important situations require their use; when this occurs 
certain of the references should be consulted. 

PROBLEM 

3'31 Apply the separation of variables technique to Laplace’s equation in the 
three spherical coordinates r, 0, and 4>, obtaining the three resulting ordinary 
differential equations. Write solutions to the r equation and the <t> equation. 
(Solutions to the 6 equation will be discussed in Chapter 10.) 

3-32 EXAMPLE OF USE OF SPHERICAL HARMONICS WHEN POTENTIAL IS 
SPECIFIED ON A SPHERICAL BOUNDARY 

As an example of the application of spherical harmonics when poten¬ 
tial is given over a spherical shell, consider the problem sketched in 
Fig. 3-32 in which the two thin hemispherical shells 
at different potentials are separated by a gap neg¬ 
ligibly small compared with the radius. As the 
problem is axially symmetric, the solutions dis¬ 
cussed in Art. 3-31 are applicable. If the solution 
is first desired for the region inside the shell, the 
constant C2 of Eq. 3-31(6) must be zero, since po¬ 
tential cannot become infinite at r = 0. If a solu¬ 
tion outside the shell is desired, Ci must be zero 
since potential cannot become infinite at r = ». 
Only the first type of Legendre solution discussed in 
Art. 3-31 is required since both regions include the 
axis. Thus all spherical harmonics which satisfy 
the symmetry of the problem and the boundary 
imposed may be written 

Fig. 3-32 Two 
hemispheres separ¬ 

ated by a gap. 

conditions so far 
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oo 
^inside = £ '4 mrmPm (COS 0) (1) 

m = 0 

00 

Outside = £ Pmr^m+^Pm^oS 0) (2) 
m = 0 

The additional boundary condition remains that, nt r — a, = Vo 
for 0 < 0 < ir/2; d’ = 0 for ir/2 < 0 < tt for all values of <t>. This 
/(0) has been expanded in a Fourier series over the region 0 < 0 < tt, 
but it is desirable to express this square wave in terms of Legendre 
polynomials directly. An orthogonality relation for these poly¬ 
nomials is quite similar to those for sinusoids and Bessel functions 
which led to the Fourier series and expansion in Bessel functions 
respectively. 

f Pm(cos 8) Pn(cos 0) sin 0 dd = 0, m n (3) 
Jo 

f [Pm(cos 0)]2 sin 0 dd = - 2 (4) 
Jo 2m + 1 

It follows that, if a function/(0) defined between the limits of 0 to 
tt is written as a series of Legendre polynomials, 

fW = £ amPm (cos 0), 0 < 0 < (5) 
m = 0 

the coefficients must be given by the formula 

/(0) P,n(cos 0) sin 0 dd 
o 

2m + 1 
- 2 (6) 

For the present problems, f(8) is given as a constant Vo over the 
range 0 to ir/2, and is zero over the range r/2 < 0 < tt. Evaluation 
of am from (6) requires the following integral of Legendre functions: 

/ b 
( 0 m = 0 

f*/2 , , . / m-i m even 
Pm(cos 0) sin 0d0 = 1 (_!)— i -3 - (m -2) 

•'° ( —;—— • -— -; ' m odd 
' m + 1 2•4 • • ■ (m — 1) 

(7) 

The results for am, substituted in the series, yield 

fW = $(a,0) 
fl 

= Vo 

(8) 

Õ + 7 Fi(cos 0) - I ■ P3(cos 0) + P5(cos0) + 
2 4 o 2 12 2 * 4 
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But (1) gives 

^¡nsidejr = a = + Ai«/T(cos 0) + A2a2P2(cos 0) + • • • (9) 

These two expressions must be identical for all values of 9; conse¬ 
quently, they may be equated term by term and all Am’s evaluated. 
The potential at any point inside the shell is then given by the series 

^inside ^0 

-1 q r 7 1 r3

2 +  4; P1(c0S - r'2^ P3(C°S 0) + ’ ■ 2 4 fl o Zi a 
(10) 

Similarly, the series giving potential at any point outside the shell is 
found to be 

^outside 1 0 
a 3 a2 , . 7 1 a* z
— + - -2 Pi (cos 0) ----- P3(cos 9) + 
2r 4 r 8 2 r (11) 

PROBLEM 

3'32 Write the general formula for obtaining potential for r < a, and for r > a, 
when potential is given as a general function /(9) over a thin spherical shell at 
r = a. 

3-33 EXPANSION IN SPHERICAL HARMONICS WHEN FIELD IS GIVEN 
ALONG AN AXIS 

It is often relatively simple to obtain the field or potential along an 
axis of symmetry by direct application of fundamental laws, yet diffi¬ 
cult to obtain it at any point off this axis by the same technique. Once 
field is found along an axis of symmetry, expansions in spherical har¬ 
monics give its value at any other point. Thus, if potential, or any 
component of field which satisfies Laplace’s equation, is given for 
every point along an axis in such a form that it may be expanded in a 
power series in z, the distance along this axis, 

00 

* laxis = X bmZm 0 < z < a (1) 
m = 0 

If this axis is taken as the axis of spherical coordinates, 9 = 0, the 
potential off the axis may be written 

oo 
^,9) = X bmrmPm(cos 0) (2) 

m = 0 

This is true since it is a solution of Laplace’s equation (Art. 3 31) and 
does reduce to the given potential (1) for 0 = 0 where all Pm (cos 0) are 
unity. 

If potential is desired outside of this region, the potential along the 
axis must be expanded in a power series good for a < z < co. 
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00 

d> I — ’S5 r 

m = 1 

z > a (3) 

Then $ at any point outside is given by comparison with Eq. 3-32(2): 
oo 

$ = X ̂ í’mícos 0)r-(m+1) r > a 
m — 0 

(4) 

For example, the magnetic field Hz was found along the axis of a 
circular loop of wire carrying current I in Art. 2-26 as 

H *_ I z5)

* " 2(a2 + z2)’4 2a[l + (z2̂ 2)]’4 ( ’ 

The binomial expansion 

(1 + u)-54 = 1 - fu + ̂ -u2 - W«3 + • • • 

is good for 0 < I u | <1. Applied to (5), 

Since Hz, axial component of magnetic field, satisfies Laplace’s equation 
(Art. 3-02), Hz at any point r, B with r < a is given by 

= — 2a 
3 ir2\ 15 /r4\ 

1 - Õ (“i) p2(c°s 0) + — ( —) P4(cos 0) + • ■ ■ 2 \a / 8 \a7 

PROBLEMS 

¿3^330 For the above example, write the series for H. at any point r, 6 with 
r > a. 

3-33Ò A Helmholtz coil is used to obtain very nearly uniform magnetic field 
over a region through the use of coils of large radius compared with coil cross 
sections. Consider two such coaxial coils, each of radius a, one lying in the plane 
z = d, and the other in the plane z = — d. Take the current for each coil (con¬ 
sidered as a single turn) as I. Obtain the series for H, applicable to a region con¬ 
taining the origin, writing specific forms for the first three coefficients. Show that, 
if a = 2d, the first non-zero coefficient (other than the constant term) is the coeffi¬ 
cient of ri. 



4 MAXWELL’S EQUATIONS 

AND HIGH-FREQUENCY 

POTENTIAL CONCEPTS 

The Laws of Time-Variable Electrical Phenomena 
4-01 INTRODUCTION 

When the subject material of Chapter 2 was introduced, the objec¬ 
tive was stated to be the derivation of a group of equations which would 
contain a description of fields due to static charges and static currents. 
It was claimed that in the solution of problems it would be well to have 
several forms for the statement of fundamental laws so that the most 
convenient might be chosen for the problem at hand. A number of the 
techniques involved in this process of selection of equations and their 
subsequent solution were discussed in Chapters 2 and 3. 

In a similar way, an attempt will now be made to present the more 
complex theory that underlies electric and magnetic effects that vary 
with time. Of course, some of this theory is only an extension of the 
static theory. But the additional effects brought in by the varying of 
charges and currents very frequently complicate the solution of prob¬ 
lems. Instead of presenting the different laws in equation form and 
giving methods of solution in one or two chapters, we shall require the 
rest of the book for the analysis of time-varying systems. In this 
chapter, a consistent set of equations describing varying electric and 
magnetic effects will be obtained. This material will serve as a basis 
for several subsequent chapters in which the equations will be applied 
to the field and wave problems of modern radio. 

4-02 VOLTAGES INDUCED BY CHANGING MAGNETIC FIELDS 

Faraday discovered experimentally that, when the magnetic flux 
linking a closed circuit is altered, a voltage is induced in that circuit 
proportional to the rate of change of flux linking the circuit. This law 

177 
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is an experimental law of electricity and magnetism that requires little 
generalization to be widely useful. In the consideration of most cir¬ 
cuits and electrical machinery it is necessary only to write 

where V is the voltage induced in a coil having n turns, and / is the 
flux linking the coil. The equation may be used directly to find the 
voltage induced by a generator coil moving in a magnetic field that 
varies with space, or to calculate the impedance presented by a coil 
to an alternating voltage. In ordinary circuit and machine problems, 
Faraday’s law is ordinarily applied to circuits taken along conductors. 
One important generalization is to an electromotive force about any 
closed path in space. This is indicated by the fact that the resistance 
of the path does not enter into the law, so that it seems logical that 
the law could be extended to an infinite resistance path. Perhaps the 
most graphic illustration of this fact comes from the betatron,1 which 
accelerates charged particles in vacuum by means of an electric field 
induced by a changing magnetic field, as predicted by Faraday’s law. 

If the electromotive force about any closed path, whether in space, 
in dielectrics, along conductors, or any combination of these, is defined 
as the line integral of electric field about that path, 

emf = <£ Ë • dl 

it is equal by Faraday’s law to the (negative) time rate of change of 
magnetic flux flowing through that path. The magnetic flux may be 
evaluated by taking the integral of the normal component of magnetic 
flux density B over any surface which has the desired path as a bound¬ 
ary. Then 

(£ Ë • dl = - - f B • dS (2) 
J di JS

The negative sign is introduced so that the law is correct when the 
line integral is taken in the usual positive sense of circulation about the 
path with respect to the positive direction of flow through the surface. 
This is obtainable by the usual right-hand rule, and is indicated in Fig. 
4-02. The partial derivative with time is used to distinguish it from 
variations in space, indicating that the law as written refers to a fixed 
region in space. 

1 D. W. Kerst and R. Serber, “Electronic Orbits in the Induction Accelerator,” 
Phys. Rev. 60, 53 (1941). 
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To transform to 
theorem, Art. 2-31. 

the differential equation form, refer to Stokes’s 
Applied to (2), 

$ Ë dl (V X Ë) ■ dS 

If this equation is to be true for any surface, the integrands of the sur¬ 
face integrals must be equal, and we have the differential equation 
form of Faraday’s law: 

V X Ë = 
dB 

dt (3) 

Since the line integral of electric field about a closed path need not 
be zero for a time-varying field, work may be done in taking a charge 

Fig. 4 02 Right-hand sense relation. 

about a closed path in such a field. The principle of energy conserva¬ 
tion is of course not violated, for the energy comes from that in the 
changing magnetic fields. 

PROBLEM 

4-02 The betatron makes use of the electric field produced by a time-varying 
magnetic field in space to accelerate charged particles. Suppose that the magnetic 
field of a betatron has an axial component in cylindrical coordinates which is a 
function of r but not of 0: 

Hz = 

Find the induced electric field in magnitude and direction at radius r. Find the 
specific form for electric field when Br,t) is given over an interval of time by 

= Ctr~n

4-03 CONTINUITY OF CHARGE 

I araday’s law is but one of the fundamental laws for changing fields. 
Let us assume for the moment that certain of the laws derived for static 
fields in C hapter 2 can be extended simply to time-varying fields. We 
will write the divergence of electric and magnetic fields in exactly the 
same form as in statics. For the curl of electric field we will take the 
result of Faraday’s law, Eq. 4-02(3). For the curl of magnetic field, 
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we will take for the time being the result corresponding to Biot’s law, 
Eq. 2-30(7). 

ç vb = P 

\ V ß = o 

) V X Ë = -

V X H = ï 

(1) 

(2) 

(3) 

(4) 

An elimination between the above equations can be made to give an 
equation relating charge and current. We would expect this to show 
that, however p may vary with space or time, total charge should be 
conserved. If current flows out of any volume, the amount of charge 
inside must decrease, and, if current flows in, charge inside increases. 
Considering a smaller and smaller volume, in the limit the outward 
flow of current per unit time and per unit volume (which is recognized 
as the divergence of current density) must give the negative of the 
time rate of change of charge per unit volume at that point: 

V • ï = dp 

at 
(5) 

However, if we take the divergence of i from (4), 

V- ï = V • (V X H) = 0 

which does not agree with the continuity argument and equation (5). 
Maxwell, by reasoning similar to this, recognized that (4), borrowed 
from statics, was not complete for time-varying fields. He postulated 
an added term dD/dt: 

X H =1 + ^ (6) ot 

Continuity is now satisfied, as may be shown by taking the divergence 
of (6) and substituting from (1): 

V • i = - — (V ■ b) = - — 
at at 

4-04 THE CONCEPT OF DISPLACEMENT CURRENT 

The term added to form Eq. 4 03 (6) contributes to the curl of mag¬ 
netic field in the same way as an actual conduction current density 
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(motion of charges in conductors), or convection current density 
(motion of charges in space). Because it arises from the displacement 
vector D, it has been named the displacement current term. Thus 
Eq. 4 03(6) could be written 

V X H = ïe + id (1) 

where ic = conduction or convection current density in amperes per 
square meter; id — displacement current density = dD/dt amperes 
per square meter. 

The displacement current term disappears in the static case, but 
there is no violation of the continuity equation since, for this special 
case, 

dp V . ï =-- = 0 
dt 

The displacement current term is not of great importance in many low-
frequency problems, because it is much smaller than common current 
densities in conductors. For example, a field of 104 volts per meter 
would yield a displacement current density of 0.555 ampere per square 
meter if varying sinusoidally at a frequency of 106 cycles per second in 
air. Of course the term may be of importance even for low fre¬ 
quencies in such places as the region between condenser plates, as will 
be explained in more detail in the next article. However, it becomes 
important in more and more situations as the frequency is raised to 
the range of higher radio frequencies. As will be seen in following 
chapters, it is this term combined with the Faraday’s law term for 
electric field induced by changing magnetic fields that permits the 
prediction of the phenomena of wave propagation, resonance, and 
radiation. 

4-05 DISPLACEMENT CURRENT IN A CONDENSER 

The displacement current term enables one to explain certain things 
that would have proved inconsistent had only conduction current been 
included in the law of Biot and Savart. Consider, for example, the 
circuit including the a-c generator and the condenser of Fig. 4-05. 
Suppose that it is required to evaluate the line integral of magnetic 
field around the loop a-b-c-d-a. The law from statics states that the 
result obtained should be the current enclosed, that is, the current 
through any surface of which the loop is a boundary. Then it is true 
that, if we take as the arbitrary surface through which current is to be 
evaluated one which cuts the wire A, as Si, a finite value is obtained for 
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the line integral. But suppose that the surface selected is one which 
does not cut the wire, but instead passes between the plates of the con¬ 
denser, as S2. If conduction current alone were included, the compu¬ 
tation would have indicated no current passing through this surface 
and the result would be zero. The path around which the integral 
is evaluated is the same in each case, and it would be quite annoying 
to possess two different results. It is the displacement current term 
which appears at this point to preserve the continuity of current 
between the plates of the condenser, giving the same answer in either 
case. 

To show how this continuity is preserved, consider a parallel-plate 
condenser of capacity C, spacing d, area of plates A, and applied voltage 
Vo sin ut. From circuit theory the charging current 

Ic = C — = uCV0 cos wZ 

The field inside the condenser has a magnitude E = V/d, so the dis¬ 
placement current density is 

dE V 0 
i¿ = e — = œe —- cos tai 

dt d 

Total displacement current flowing between the plates is the area of 
the plate multiplied by the density of displacement current: 

V0 cos ut Id = Aid — “ 

The factor in parentheses is recognized as the electrostatic capacitance 
for the ideal parallel-plate condenser in mks units, so 

Id = wC Vo cos <oZ 

This value for total displacement current flowing between the con¬ 
denser plates is then exactly the same as the value of charging current 
flowing in the leads, calculated by the usual circuit methods above, so 
the displacement current does act to complete the circuit, and the same 
result would be obtained by the use of either Si or S2 of Fig. 4 05, as 
required. 

PROBLEMS 

4-06a For a coaxial cylindrical condenser of radii a and b and length I, evaluate 
the total displacement current flowing across any cylindrical surface of radius 
r (a < r < b), taking the voltage variation as sinusoidal in time, and the variation 
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of electric field with radius the same as in statics. Show that the result is inde¬ 
pendent of radius and equal to the charging current for the condenser. 

4 06b Repeat Prob, a for the spherical surface of radius r lying between the 
concentric conductors of radii a and b of a spherical condenser. 

Fig. 4 05 Evaluation of (pH • dl for 
an a-c circuit with a condenser. 

Fig. 4-06 Evaluation of (pH ■ 31 for 
charge q moving toward loop A. 

4-06 DISPLACEMENT CURRENT DUE TO A MOVING CHARGE 

Inclusion of displacement current is necessary for a valid discussion 
of another example in which a charge region q (Fig. 4 06) moves with 
velocity ë. If the line integral of magnetic field is to be evaluated 
about some loop A at a given instant, it should be possible to set it 
equal to the current flow for that instant through any surface of which 
A is a boundary. If the displacement current term were ignored, we 
could use any one of the infinite number of possible surfaces, as Si, 
having no charge passing through it, and obtain the result zero. How¬ 
ever, if one of the surfaces is selected, as S2, through which charge is 
passing at that instant, there is a contribution from convection current, 
and a non-zero result. The apparent inconsistency is resolved when 
one notes that the electric field arising from the moving charge will be 
varying with time, and thus will actually give rise to a displacement 
current term through both of the surfaces Si and S2. The sum of dis¬ 
placement and convection currents for the two surfaces is the same at 
the given instant. 

PROBLEM 

4'06 Starting from Eq. 4 04(1), prove that for a closed surface 

(^s & + id) • dS = 0 

From this, show that the sum of convection and displacement currents is the 
same for both of the surfaces Si and Sa in Fig. 4 0G. 
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4-07 MAXWELL'S EQUATIONS IN DIFFERENTIAL EQUATION FORM 

Rewriting the group of equations of Art. 4-03 with the displacement 
current term added, we have 

V B - 0 

(1) 

(2) 

(3) 

(4) 

This set of equations, together with certain auxiliary relations and 
definitions, is the basic set of equations of classical electricity and 
magnetism, governing all electromagnetic phenomena in the range of 
frequencies from zero through the highest-frequency radio waves (and 
many phenomena at light frequencies), and in the range of sizes above 
atomic size. The equations were first written (not in the above nota¬ 
tion) by Maxwell in 18G3, and are known as Maxwell’s equations. The 
material in the sections preceding this should not be considered a 
derivation of the laws, for they cannot in any real sense be derived 
from less fundamental laws. Their ultimate justification comes, as 
with all experimental laws, in that they have predicted correctly, and 
continue to predict, all phenomena in the range over which they were 
intended to apply. 

The set of equations written above is a set of differential equations, 
relating the time and space rates of change of the various field quan¬ 
tities at a point in space. The use of these will be demonstrated in 
many following chapters. Equivalent large-scale equations will be 
given in the following article. 

The major definitions and auxiliary relations that must be added to 
complete the information are: 

1. The Force Law. This is from one point of view merely the defi¬ 
nition of the electric and magnetic fields. For a charge q moving with 
velocity V through an electric field Ë and a magnetic field of flux 
density B, the force is 

J = q\È + V X B] newtons (5) 

2. The Definition of Conduction Current (Ohm’s Law). For a con¬ 
ductor, 

ï = a Ë amp/meter2 (6) 

where a = conductivity in mhos per meter. 
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3. The Definition of Convection Current. For a charge density p 
moving with velocity vp, the current density is 

ï = pv„ amp/meter2 (7) 

4. Definition of Dielectric Constant. 

, D 
« = e «0 = (8) 

Vj 

where t = relative dielectric constant (specific inductive capacity); 
«o = dielectric constant of space « (1/3Gtt) X 10-9 farads per meter. 

5. Definition of Permeability. 

, B 
U = U Uo = (9) 

where y = relative permeability; mo = permeability of space = 4ir X 
10—7 henrys per meter. 

In addition, the major quantities appearing in Maxwell’s equations 
have definitions and units as given below. 

Quantity 

77 electric flux density vector 
p charge density 
B magnetic flux density vector 
Ë electric field vector 
H magnetic field vector 
ï conduction or convection current density 

Units 

coulombs/meter 2 

coulombs/meter 3 

webers/meter2 = volt sec/meter 2 

volts/meter 
amp/meter 
amp/meter2

PROBLEMS 

4-07a Check the dimensional consistency of equations (1) through (9) of this 
article. 

4-07& Show that, in a charge-free, current-free dielectric, the two divergence 
equations, (1) and (2), may be derived from the two curl equations, (3) and (4), 
so far as time-varying parts of the field are concerned. 

4-07c Show that, if the equation for continuity of charge is assumed, the two 
divergence equations, (1) and (2), may be derived from the curl equations, (3) 
and (4), so far as a-c components of the field are concerned, for regions with finite 
p and ï. This fact has made it quite common to refer to the two curl equations 
alone as Maxwell’s equations. 

4-08 MAXWELL’S EQUATIONS IN LARGE-SCALE FORM 

It is also convenient to have the information of Maxwell’s equations 
in large-scale form applicable to over-all regions of space, to paths 
surrounding conductors, etc. This is of course the type of relation 
that we started with in the discussion of Faraday’s law, Art. 4-02, 
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when we derived the differential expression from it. The large-scale 
equivalents for Eqs. 4-07(l)-407(4) are 

<£>^b-dS = J p dV (1) 
Va** B • dS = 0 (2) 
MtMÍcuclÍA _ _ p 

. (bE-dl = - - BdS (3) 
J dl J s 
<£ H • dl = P ï • 33 4-I D • dS (4) J Js dt Js 

Equations (1) and (2) are obtained by integrating respectively Eqs. 
4 07(1) and 4 07(2) over a volume and applying the divergence 
theorem. Equations (3) and (4) are obtained by integrating respec¬ 
tively Eqs. 4 07(3) and 4 07(4) over a surface and applying Stokes’s 
theorem. For example, integrating Eq. 407(1), 

f^^dV-f^dV 
and applying the divergence theorem, 

= iv p dV

Equation (1) is seen to be the familiar form of Gauss’s law utilized 
so much in Chapter 2. Now that we are concerned with fields which 
are a function of time, the interpretation is that the electric flux 
flowing out of any closed surface at a given in^iaut is equal to the 
charge enclosed by the surface at that instant. 

Equation (2) states that the surface integral of magnetic field or 
total magnetic flux flowing out of a closed surface is zero for all values 
of time, expressing the fact that magnetic charges have never been 
found in nature. Of course the law does not prove that such charges 
will never be found; if they are, a term on the right similar to the 
electric charge term in (1) will simply be added, and a corresponding 
magnetic current term will be added to (3). 

Equation (3) is Faraday’s law of induction, stating that the line 
integral of electric field about a closed path (electromotive force) is the 
negative of the time rate of change of magnetic flux flowing through the 
path. The law was discussed in some detail in Art. 4 02. 

Equation (4) is the generalized Ampère’s law including Maxwell’s 
displacement current term, and it states that the line integral of mag-
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netic field about a closed path (magnetomotive force) is equal to the 
current (conduction, convection, or displacement) flowing through the 
path. The physical significance of this complete law has been dis¬ 
cussed in Arts. 4-04-4-06. 

PROBLEMS 

4 08a A conducting spherical balloon is charged with a constant charge Q, 
and its radius made to vary sinusoidally in some manner from a minimum value, 
rmm, to a maximum value, rmax. It might be supposed that this would produce a 
spherically symmetric, radially outward propagating electromagnetic wave. Show 
that this does not happen by finding the electric field at some radius r > rmax . 

4 08b A condenser formed by two circular parallel plates has an essentially 
uniform axial electric field produced by a voltage Vo sin wt across the plates. 
Utilize the symmetry to find the magnetic field at radius r between the plates. 
Show that the axial electric field could not be exactly uniform under this time¬ 
varying condition. 

4-09 MAXWELL'S EQUATIONS FOR THE TIME-PERIODIC CASE 

By far the most important time-varying case is that involving steady 
state a-c fields varying sinusoidally in time. The reasons for this are 
that the majority of radio engineering applications utilize such fields 
(at least approximately), and also that transients or time variations 
of other forms, by the method of Fourier analysis, may be. considered 
a superposition of such steady state sinusoids of different frequency. 
The advantages of the use of the complex exponential form (e,“t) 
described in Chapter 1 for circuit problems are perhaps even more 
important for the more intricate field problems. Formally, the set 
of equations 407(l)-4-07(4) are easily changed over by replacing 
d/dt by jw: 

VD = p (1) 

V • B = 0 (2) 

V X Ë = -juB (3) 

V X H = i + jaD (4) 

And the auxiliary relations, Eqs. 4-07(6)-4-07(9), remain 

ï = aE for conductors (5) 

D, Mt 
« = f = ' «0 (6) 
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Equations 4-07(5) and 4-07(7) should be used with instantaneous 
values because of the non-linear terms in the equations. 

It must be recognized that the symbols in the equations of this 
article have a different meaning from the same symbols used in Art. 
4-07. There they represented the instantaneous values of the indi¬ 
cated vector and scalar quantities. Here they represent the complex 
multipliers of e3“1, giving the in-phase and out-of-phase parts with 
respect to the chosen reference. It might seem less confusing to use a 
different notation for the two kinds of quantities, but it is not cus¬ 
tomary to do this because the difference is always clear from the 
context, and the two notations required become very unwieldy. 

If it is desired to obtain the instantaneous values of a given quantity 
from the complex value, as in Chapter 1, the e3“1 is inserted and the 
real part taken. For example, for the scalar p suppose that the 
complex value of p is 

P = I P \ej°P (8) 

where pr and pi are real scalars. The instantaneous value of p is then 

Pinst. = Re [(pr + jp^e3“1] = pr cos mt — Pi sin mt (9) 

Or, alternatively, if p is given in magnitude and phase, 

P = P (10) 

where I P I = vPr2 + p 2

0P = tan-1 — 
Pr 

the instantaneous value is 

Pinst. = Re [| P = I p I COS (mt + 0,) (11) 

For a vector quantity, such as Ë, the complex value may be written 

Ë = Ër + jËi (12) 

where Ër and Ëi are real vectors. Then 

^inst. = Re [(Ër + jË^e3“1] = Ër cos mt — Ë, sin mt (13) 

Note that Ër and Ëi do not in general have the same direction in space. 
(This aspect of the subject is discussed more in Art. 7-06 under the 
heading of polarization.) For the vector quantity, the information 
cannot in general be given by single values of magnitude and phase 
angle. Of course the magnitude and phase can be given for each of 
the three scalar components of the vector Ë to define the complete 
complex vector. 
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PROBLEMS 

4.09a Under what conditions can a complex vector quantity Ë be represented 
by a vector magnitude and phase angle, 

Ë - Ëoe’e‘ 

where Èo is a real vector and 0E a real scalar? 

4-09Ö Consider a case in which the complex field vectors can be represented 
by single values of magnitude and phase, 

Ë = È^x,y,z)e’ ê z'v̂  

H = 

ï = io(x,y,z)ei6'^z-v‘^ 

p = potx.y^e'^'^'’'-^ 

Substitute in Maxwell’s equations for the complex form, and separate real and 
imaginary parts to obtain the set of differential equations relating Ëo, Ho, • • • , 
®4- Check the result by using the corresponding instantaneous expressions, 

¿’mat. = RefÉoe' 91«’"'] = £’o(z,y,z) cos [«í + O^x, y,z)], etc. 

substituting in Maxwell’s equations for general time variations, eliminating the 
time variations, and again getting the set of equations relating Eo, • • • , #4. 

4-10 OTHER SYSTEMS OF UNITS FOR ELECTROMAGNETIC QUANTITIES 

Although the rational mks system of practical units is now uni¬ 
formly used in the discussion of electromagnetic problems in engineer¬ 
ing, the valuable literature still existing in the other systems of units 
requires some knowledge of these. Conversion factors are given in 
Table 4-10. 

The Gaussian system of units, used most commonly before about 
1930, utilized esu units for all electric quantities, and the emu system 
for all magnetic quantities. A conversion factor c (which turns out to 
be equal to the velocity of light) is then required in the electromag¬ 
netic equations relating the two kinds of quantities. Maxwell’s 
equations in Gaussian units are then as follows: 

V • D = Airp 

V • 5 = 0 

- 1 dB 
V X E =-

C dt 

4tt / dD 
XH = ~(l+ — 

C \ dt 

(D 

(2) 

(3) 

(4) 
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In the above, p is charge density in statcoulombs per cubic centimeter, 
E is electric field in statvolts per centimeter, B is magnetic flux density 
in gauss, H is magnetic field in oersteds, and i is the current density in 
statamps per square centimeter. 

TABLE 410 
Multiply To Obtain 

1. Coulombs 
Coulombs 

Coulombs 

2. Amperes 
Amperes 

Am|x>res 

3. Volts 
Volts 

Volts 

4. Ohms 
Ohms 

Ohms 

5. Farads 
6. Henrys 
7. Watts (joules/second) 
8. Volts/meter 
9. Webers 
10. Webers/meter2

TH abcoulombs 
3 X 10» statcoulombs 
3 X 109
^z— = 8.46 X 108 hlucoulombs 

to abamperes 
3 X 109 statamperes 
3 X 109

= 8.46 X 108 hluatnperes 

108 abvolts 
statvolts 

—— = 0.0118 hluvolts 
300 
109 abohms 
1 X 10-n statohm 

— X 10 11 hluohms 

9 X 10u statfarads 
109 abhenrys 
107 ergs/second 
3 X IO-4 statvolt/centirneter 
108 maxwells 
104 gauss 

The Heaviside-Lorentz system of rational units is the same as the 
Gaussian system except that the units of charge, current, and electric 
field have been modified by a factor of V 4ir to eliminate the factors of 
4?r from Maxwell’s equations. Note that this is a somewhat different 
way of eliminating the 4ir from that employed in the rational mks 
system. Maxwell’s equations in Heaviside-Lorentz units are then 

V ■ D = P (5) 

V • B = 0 (6) 

- 1 dB 
vxE= ~ 777 V C dt 

- 1 / <W\ 
VX W = -h + —) (8) 

C \ dt / 
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A rational system of cgs practical units utilizing volts, amperes, 
coulombs, ohms, and watts for the electromagnetic quantities, as in 
the mks system, but centimeters, grams, and seconds for the units of 
length, mass, and time, has also been used to some extent in the engi¬ 
neering literature. The form of the equations appears exactly as in 
that given for the mks system (Arts. 4 07 4 09), but p is in coulombs 
per cubic centimeter, D in coulombs per square centimeter, E in volts 
per centimeter, B in webers per square centimeter, 11 in amperes per 
centimeter, and i in amperes per square centimeter. The following 
values of permeability and dielectric constant for space apply: 

Mo = X 10-9 henrys/cm (9) 

e0 = —— X 10—11 farads/cm (10) 
36tt 

In addition, the force equation, Eq. 4 07(5), gives a force in joules per 
centimeter, so that a factor of 10' must be introduced in Newton’s 
laws in studying the motion of charged particles, if mass is to be 
measured in grams. 

m —- = 10' q(Ë + v X B) (11) 
dt 

Boundary Conditions for Time-Varying Systems 

4-11 CONTINUITY CONDITIONS FOR TANGENTIAL COMPONENTS OF 
FIELDS AT A BOUNDARY 

In Chapter 2, certain boundary and continuity conditions were 
stated for static fields. For the remainder of the text we shall be 
interested in the corresponding boundary and continuity conditions 
to be applied to the solutions of Maxwell’s equations. These con¬ 
ditions may be deduced by referring to Maxwell’s equations. Con¬ 
sider first Faraday’s law in large-scale form, Eq. 4-08(3), applied to a 
path formed by moving distance AZ along one side of the boundary 
between any two materials, and returning on the other side, an infini¬ 
tesimal distance into the second medium (Fig. 411). The line 
integral of electric field is 

Ë • dl = (Ea - E^ AZ (1) 

Since the path is an infinitesimal distance on either side of the bound¬ 
ary, its area is zero, and therefore the contribution from changing 
magnetic flux is zero so long as rate of change of magnetic flux density 
is finite. Consequently, 

(Eti — Etf) M = 0 or Eti = Et2 (2) 
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Similarly, the generalized Ampère law in large-scale form, Eq. 
4 08(4),-may be applied to a like path with its two sides on the two 
sides of the boundary. Again there is zero area enclosed by the 
path, and, so long as current density and rate of change of electric 
flux density are finite, the integral is zero, and in like manner to the 
above 

Hn — Ht2 (3) 

Thus tangential components of electric and magnetic field must be 
equal on the two sides of any boundary between physically real media. 
The condition (3) may be modified for an idealized case such as the 
perfect conductor where the current densities are allowed to become 
infinite. This case will be discussed separately in Art. 4-13. 

Fig. 4 11. Fig. 4-12 Surface charge p, on a 
boundary between two media. 

4-12 CONTINUITY CONDITIONS FOR NORMAL COMPONENTS OF FIELD 
AT A BOUNDARY 

The integral form of Gauss’s law is Eq. 4 08(1). If two very small 
elements of area AS are considered (Fig. 412), one on either side of 
the boundary between any two materials, with a surface charge density 
Ps existing on the boundary, the application of Gauss’s law to this 
elemental volume gives 

AS(Z)ni — D n2) = p, AS 

Or ^nl — Dn2 = P, (1) 

For a charge-free boundary, 

D m = ßn2 or tlEnl = e2En2 (2) 

1 hat is, for a charge-free boundary, normal components of electric 
flux density are continuous; for a boundary with charges, they are 
discontinuous by the amount of the surface charge density. 

With no magnetic charge term on the right of Eq. 4 08(2), a corre¬ 
sponding development to the above shows that always the magnetic 
flux density is continuous: 

Bnl = Bni or PlHnl = PlHn2 (3) 
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For the time-periodic case, which is of greatest importance to our 
study, the above conditions on normal components are not independent 
of those given for the tangential components in Art. 4-11. The reason 
is that the above are derived from the two divergence equations (or 
their equivalent in large-scale form), and these may be obtained from 
the two curl equations in the time-varying case (Probs. 107/» ami c). 
The conditions on tangential components in Art. 411 were derived 
from the large-scale equivalents of the curl equations. Hence, for the 
a-c solutions, it is necessary only to apply the continuity conditions on 
tangential components of electric and magnetic fields at a boundary 
between two media, and the above conditions on normal components 
used as a check; or, if the normal components of D turn out to be dis¬ 
continuous, (1) tells the amount of surface charge that is induced on 
the boundary. 

4-13 BOUNDARY CONDITIONS AT A PERFECT CONDUCTOR 

For a general conductor, the conduction current density is given by 
Ohm’s law, Eq. 4-07(6): 

ï — aÈ (1) 

No conductor is perfect, but in many practical problems with good 
conductors it is desirable in some stages of the analysis to neglect the 
small but finite electric field along the conductor required to produce 
the current flow through it. This can be done by assuming the con¬ 
ductor perfect (<z = « ) for these parts of the analysis. Since the 
current must remain finite, it follows that electric field in the con¬ 
ductor, and the tangential component of electric field at the surface of 
the conductor, must be zero by (1). Thus the basic boundary con¬ 
dition for the idealized case of the perfect conductor is that the 
tangential component of electric field at the surface of the conductor 
shall be zero: 

Et = 0 at conductor surface (2) 

It will be shown in the skin effect studies of Chapter 6 that for a 
perfect conductor all a-c fields must go to zero inside the conductor. 
Since the normal component of magnetic flux density must always be 
continuous, it follows that this component must always go to zero at 
the surface in the time-varying solution: 

Bn = 0 at conductor surface (3) 

However, as pointed out in the last article, the continuity condition on 
normal B is not independent of the condition on tangential Ë in the 
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time-varying case. Thus, in the a-c solution, (3) follows from (2), 
but may sometimes be useful as a check, or as an alternative boundary 
condition. 

The normal component of electric flux density is zero inside the 
perfect conductor, as are all field components, but it is not in general 
zero just outside the conductor. By Eq. 4-12(1), the surface charge 
density induced by this discontinuity in electric flux density is 

ps = Dn at conductor surface (4) 

The tangential component of magnetic field is likewise zero inside 
the perfect conductor but is not in general zero just outside. This dis¬ 
continuity would appear to violate the condition of Eq. 4-11(3), but 
it will be recalled that a condition for that proof was that current 
density must remain finite. For the perfect conductor, the finite 
current J per unit width is assumed to flow as a current sheet of zero 
thickness, so that current density is infinite. The discontinuity in 
tangential magnetic field is found by a construction similar to that 
of Fig. 411. The current enclosed by the path is the current per unit 
width J flowing on the surface of the conductor perpendicular to the 
direction of the tangential magnetic field at the surface. Then 

H • dl = Ht dl = J dl 

or J = Ht (5) 

The direction and sense relations for (5) are given most conveniently 
by the vector form of the law below. 

To write the relations of (2) to (5) in vector notation, a unit vector 
ñ, normal to the conductor at any given point and pointing from the 
conductor into the region where fields exist, is defined (Fig. 4-13). 
Then conditions (2) to (5) become, respectively, (6) to (9) below: 

ñ XÊ = 0 (G) 

ñ • B = 0 (7) 

Ps = ñ • D (8) 

J = ñ X H (9) 

For an a-c problem, (6) represents the only required boundary con¬ 
dition at a perfect conductor. Equation (7) serves as a check or 
sometimes as an alternative to (6). Equations (8) and (9) are used to 
give the charge and current induced on the conductor by the presence 
of the electromagnetic fields. 
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Fig. 413. Fig. 414 Region containing two di¬ 
electrics partially enclosed by a con¬ 

ductor. 

4-14 USE OF THE BOUNDARY RELATIONS FOR TIME-VARYING 
PROBLEMS 

The previously discussed boundary relations are of the highest prac¬ 
tical importance in the solution of high-frequency problems. They 
may enter into the problems in a number of ways. For example, the 
fields may be known on one side of a boundary, and the fields on the 
other side may be desired. Or the fields at the surface of a perfect 
conductor may be known, the current and charges on the conductor 
then being given by the boundary relations. But more important 
than these two examples is that the boundary relations are tied up 
basically with the whole technique of finding the distribution of electro¬ 
magnetic effects by solving Maxwell’s equations. In general, the 
problem is always one of writing down solutions to these equations 
and selecting or fitting them to the particular problem by making 
certain that they satisfy the boundary conditions of the space being 
studied. Hence the boundary relations appear directly or indirectly 
every time a high-frequency problem is solved. 

The way in which these relations enter into the solution of a problem 
will be clarified by the discussion of a more or less general example. 
Figure 414 shows a space bounded everywhere except at the input 
surface III by a perfect conductor I, and filled with two dielectrics 
A and B which are separated by a surface II. It is assumed that 
electromagnetic fields in the region are excited by impressed fields at 
the boundary III, with tangential components given. Only the time¬ 
varying parts of the fields are of interest. 

To obtain the distribution of fields, currents, and charges, various 
solutions of Maxwell’s equations are now considered, and the process 
of selection of appropriate types and amounts of these solutions is 
ready to begin. In both regions A and B, we reject first of all those 
which fail to give zero tangential electric field on the boundary of the 
perfect conductor I. Of all the possible solutions that satisfy this 
boundary’ condition at the perfect conductor, those are retained which 
have continuity between the tangential electric and magnetic fields 
between regions A and B along the boundary’ II (Art. 411). Finally, 
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of all the solutions which satisfy the boundary conditions on the perfect 
conductor and have continuity of tangential field components across 
the boundary II, one of these, or a sum, is retained to give continuity 
with the tangential components of the impressed fields at III. Then 
the charges and currents on the conductor can be found, if desired, 
by the normal component of D at the conductor and the tangential 
component of H, respectively. 

Potentials Used with Varying Charges and Currents 

4-15 A POSSIBLE SET OF POTENTIALS FOR TIME-VARYING FIELDS 

The set of differential equations known as Maxwell’s equations, with 
certain auxiliary relations, gives the complete information for obtain¬ 
ing electric and magnetic effects due to currents and charges. It will 
sometimes be convenient to put the information in a different form by 
the introduction of new variables. In the study of static fields, it was 
found that new functions known as potentials helped in the solution 
of static problems. We might then look for similar potential functions 
which will help in the solution of more general problems. The poten¬ 
tial functions of static fields were given in terms of integral expressions 
of charges and currents. They could be differentiated in certain 
specified ways to give the fields. We will then look for more general 
potential functions as integrals of the time-varying charges and cur¬ 
rents, which potentials may be differentiated to give the time-varying 
fields. 

In speculating on the form which the potential function for electric 
field might take, we could hope to have one of the simple forms found 
useful in Chapter 2, such as gradient of a scalar or the curl of a vector. 
However, we are faced with this problem: the electric field for time¬ 
varying conditions cannot be derived alone as the gradient of scalar 
potential since this would require that it have zero curl, and it may 
actually have a finite curl of value —dB/dt', it cannot be derived alone 
as the curl of a vector potential since this would require that it have 
zero divergence, and it may have a finite divergence of value p/e. 

Since the divergence of magnetic field is zero in the general case as it 
was in the static, it seems that B may still be set equal to the curl of 
some magnetic vector potential, Ã. Suppose that the substitution of 
B = V X A is made in Maxwell’s equations and an attempt is then 
made to obtain a value for the potential function of electric fields 
which vary with time. Equation 4 07 (3) can be written 

V X E + — = 0 (1) 
ot _ 
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This equation states that the curl of a certain vector quantity is zero. 
But this is the condition that permits a vector to be derived as the 
gradient of a scalar, say <I>. That is, 

dÃ 
E H-= -V<h 

dt 

- dÃ 
or E = -V<f>-- (2) 

dt 

The electric field, È, has consequently been obtained in terms of both 
a scalar and a vector potential. 

To continue the substitutions in Maxwell’s equations: in Eq. 407(1), 
- Q/é 

-V2* - (V • Ã) = P- (3) 
dt e 

in Eq. 4-07(4) 

V X V X 4 = mH 
d2Ã 

dt2 . 

The vector identity (Art. 2 39) 

H) so 

However, it is 

(5) 

(3) and (4) then simplify to 

realized that A is not unique until it is further specified. That is, 
there are any number of vector functions whose curl is the same. It 
may be shown that it is necessary only to specify the divergence of Ã 
to make it unique, and this may be done according to convenience. 
If the divergence of Ã is chosen as 

V X V X Ã = V(V • A) - V2Ã 

/ I d^ 
V^/A) - V2A = /ñ -

The equations (3) and (4) scarcely seem simple. 

a* 
V • A = — m« —-

dt 

d2Ä — MÍ -5T 
dt2

(6) 

(7) 



198 FIELDS AND WAVES IN MODERN RADIO 4-15 

And, repeating from the above, 

B = V X Ã 

- ÕÃ 
E = -

dt 

(8) 

(9) 

Thus the potentials Ã and T, defined in terms of the sources ï and p 
by the differential equations (6) and (7), may be used to derive the 
electric and magnetic fields by (8) and (9). It is easy to see that they 
do reduce to the corresponding expressions of statics, for, if time deriva¬ 
tives are allowed to go to zero, the set of equations (6)-(9) becomes 

V2$ = P 
e 

V2Ã = -pï 

E = — V<ï> 

B = V X Ã 

(10) 

(H) 

which are recognized as the appropriate expressions from Chapter 2. 

PRO&LEMS 

¿X’16a. A potential function commonly used in electromagnetic theory is the 
Hertz vector potential n, so defined that electric and magnetic fields are derived 
from it as follows, for a homogeneous medium : 

where 

1 di 

= -V X ï 

- + P — e dt 

d _ 
H = e-(V Xn) ut 

^-"-dp 

- pt

and P, the “polarization vector” associated with sources, is so defined that 

dP 
ï = — p = -V P 

dt 

Show that Ë and H derived in this manner are consistent with Maxwell’s equations. 

4 b. Show that Ë and H satisfy the following differential equations in a 
homogeneous medium containing charges and currents: 

„ , -, a2n Ë =V(V II) -

ã-n P 
v 11 dl e 
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4-16 THE RETARDED POTENTIALS AS INTEGRALS OVER CHARGES AND 
CURRENTS 

Although the potential functions Ã and 4> for time-varying fields 
are defined in terms of the currents and charges by the differential 
equations 4-15(6) and (7), it is also desirable to have expressions giving 
the potentials as integrals over the charges and currents as in the static 
case. The following discussion applies to the very important case of 
a single homogeneous dielectric region extending to infinity. 

From Chapter 2, the integrals for the static potentials, which may 
be considered the solutions of Eqs. 4-15(10) and (11), are 

f pdV 
$ = 

J V 4?rer 

- C ï dV 
A = g —— 

Jv 4irr 

(1) 

(2) 

A mathematical development to yield the corresponding integral 
solutions of the inhomogeneous wave equations, 4-15(6) and (7), is 
moderately difficult, so only a qualitative discussion is given here. It 
can be shown that the solutions are 

where 

■---

V 4irer (3) 

(4) 

(5) 

(For free space, v = c ~ 3 X 108 meters per second.) 
In the above, the bracket with subscript t — (r/v) denotes that, for 

an evaluation of A at time t, the value of charge density p at time 
I — (r/v) should be used. That is, for each element of charge pdV, 
the equation says that the contribution to potential is of the same 
form as in statics, Eq. (1), except that we must recognize a finite time 
of propagating the effect from the charge element to the point P at 
which potential is being computed, distance r away. The effect 
travels with velocity v = l/\ pe, which, as we shall see, is just the 
velocity of a simple plane wave through the medium as predicted 
from the corresponding homogeneous wave equations [Eqs. 4-15(6) 
and (7) with p and ï zero]. 



200 FIELDS AND WAVES IN MODERN RADIO 4-16 

V24> - pe —V = 0 
dt2

, - d2Ã 
V2A - ge —r = 0 

dt2

(6) 

(7) 

A special case of the wave equation for one-dimensional flow has 
already been studied in Chapter 1, revealing the general phenomenon 
of wave propagation with a given velocity governed by this type of 
equation. Thus, in computing the total contribution to potential 4> 

at a point P at a given instant t, we 
must use the values of charge density 
from points distancer away at an earlier 
time, t — (r/c), since for a given element 
it is that effect which just reaches P 
at time t. The integral (3) states this. 
A similar interpretation applied to the 
computation of A from currents in (4). 
Because of this “retardation” effect, the 
potentials 4> and Ã are called the retarded 
potentials. Once the phenomenon of 
wave propagation predicted from 
Maxwell’s equations is known, this is 

about the simplest revision of the static formulas (1) and (2) that 
could possibly be expected. 

One of the simplest examples illustrating the meaning of this retarda¬ 
tion, and one which will be met again in the study of radiating systems, 
is that of a very short current element carrying an a-c current varying 
sinusoidally in time between two small spheres on which charges 
accumulate (Fig. 4-16). For a filamentary current in a small wire, the 
difference in distance from P to any point of a given cross section of 
the wire is unimportant, so that two of the integrations of the volume 
integral may be made by integrating current density over the cross 
section to yield the total current in the wire. Thus, for any fila¬ 
mentary current, 

Fig. 4-16 Retarded potential 
from small current element. 

J dl 
(8) 

For the particular case of Fig. 416, current is in the z direction only, 
so, by the above, A is also. If h is so small compared with r that it 
may be taken as infinitesimal, the remaining integration of (8) is per¬ 
formed by multiplying the current by h: 
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•U — 7 (r/w) (9) 
4?rr 

Finally, if the current in the small element has the form 

Iz = Id COS (al 

substitution in (9) gives Az as 

uhlo / A 
•4Z = —— cos co ( i-) (10) 

4irr \ V/ 

From this value of A the magnetic field may be derived, and in fact the 
electric field also, but this part of the problem will be left for the 
chapter on radiation. 

PROBLEMS 

4-16a By analogy with the integral solutions for Â and 4>, write the integral 
for the Hertz rector II in terms of the polarization P. (See Prob. 415.) 

4-16b Repeat the example of the small current element worked out above 
(Fig. 416), but in complex notation, Iz = Iÿdut, finding the vector potential Ã. 

4A7 THE RETARDED POTENTIALS FOR THE TIME-PERIODIC CASE 

If all electromagnetic quantities of interest are varying sinusoidally 
in time, in the complex notation with e^1 understood, the set of equa¬ 
tions 4-15(8) and (9), 4-16(3) and (4), and 4-15(5) becomes 

ß = V X Ã 

Ë = -74» - jwÃ 

C pe-ikT dV 4=1 
j y 4rrer 

- _ f dV

J y 47rr 

V • A = —juptA' 

(1) 

(2) 

(3) 

(4) 

(5) 

where k = u/v = ta Vm«- Note that the retardation in this case is 
taken care of by the factor e~ikr and amounts to a shift in phase of 
each contribution to potential according to the distance r from the con¬ 
tributing element to the point P at which potential is to be computed. 

It is evident in this case of steady state sinusoids that the relation 
between Ã and $ [Eq. (5)] fixes $ uniquely once Ã is determined. 
Thus, it is not necessary to compute the scalar potential F separately. 
Both È and B may be written in terms of Ã alone: 
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B = V X A 

B = - V(V • A) - juA 

- f le-jkr dV 
A = M —r 

J V 4irr 

(6) 

(7) 

(8) 

It is then necessary only to specify the current distribution over the 
system, to compute the vector potential Ã from it by (8), and then 
find the electric and magnetic fields by (6) and (7). It may appear 
that the effects of the charges of the system are being left out, but of 
course the continuity equation 

V • ï = -jœp (9) 

relates the charges to the currents, and in fact, in this steady state 
sinusoidal case, fixes p uniquely once the distribution of ï is given. So 
an equivalent but lengthier procedure would be that of computing the 
charge distribution from the specified current distribution by means 
of the continuity equation (9), then using the complete set of equations 
(1) to (4). 

PROBLEMS 

4T7a Continuing Prob. 416b, find the charges that must exist on the ends of 
the current element to be consistent with continuity. From these, find the 
retarded potential * at point P distance r away, making use of the inequalities 
/i/r « 1 and kh <K 1. Show that the same result is obtained for 4> by employing 
Eq. (5) and the result for Ã from Prob. 416b. 

4-17b For a particular solution (the so-called TM m mode) to be studied inside 
a rectangular cavity resonator of sides a, b, and d, the fields may be derived from 
a vector potential which has only a z component, 

. irX . Try irZ 
Az = C sin — sin — cos — 

a b d 

Find the corresponding electric and magnetic fields. (Time variations are as e,",.) 

4T7c As in Prob, b, but for the so-called TEoi mode in a circular cylindrical 
wave guide where the vector potential has only a <t> component, 

A¿ = CJ i(kcr)e~’P‘ 

find electric and magnetic fields. 

4-17d Find the relation between the Hertz potential 0 of Prob. 4-15 and the 
vector potential A when time variations are taken of the form e’“1. 
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4-18 COMPARISON OF VOLTAGE AND POTENTIAL DIFFERENCE 

The voltage between two points, 1 and 2, may be defined as the 
negative line integral of electric field taken along a path from 1 to 2: 

(1) 

If we utilize the expression for electric field in terms of the potential 
functions, Eq. 4-15(9), we have 

V2i = -
dA 

-VF -
dt 

dl 

In evaluating the first term, it is recalled that the component of the 
gradient of a scalar in any direction gives the rate of change of the 
scalar with respect to that direction: 

f 2 M> d f 2 _ 
V2i = I ■—? dl d- — I A ■ dl 

Ji dl dt J, 

or E2i = (4>2 — $1) + — I A • dl (2) 
Ui J 1 

For static fields, the last term is zero and the voltage defined by (1) is 
exactly the difference in the scalar potential function F between the 
two points and so is independent of the path taken between 1 and 2. 
For time-varying fields we see by (2) that there is a term in addition 
to the difference in scalar potential, and this term will in general 
depend on the path taken between 1 and 2. Thus voltage in time¬ 
varying systems in general depends upon the path taken between two 
specified points, and is usually not equal to a difference in scalar 
potential between these points. There are important cases for which 
the last term is exactly or approximately zero, and the identification 
between voltage and potential difference is correct and useful, but the 
justification must be supplied for each specific case if the fields are 
time-varying. 

A slightly different approach which stresses this same point comes 
by evaluating the voltage along two paths C and C bet ween points 
1 and 2 (Fig. 4-18). For, if the emf is evaluated about a closed path 
formed by integrating along C and returning on C, the result is just 
the difference in the voltages found along the two paths: 

j É ’ = Xc Ë ’ - /c' Ë ' M = F21' - 721
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But by Faraday’s law [Eq. 4-02(2)] this is just the negative rate of 
change of magnetic flux through the surface bounded by these paths: 

I 21' ~ I 21 = (3) 

So we see that the voltages defined along the two paths will be different 
whenever there is any time-varying magnetic flux enclosed between 
the two paths. In such cases, voltage cannot be synonymous with 
potential difference. 

Fig. 4-18. 

The example of Fig. 4-18 might be considered a coaxial transmission 
line for which, as will be shown, there is magnetic field in the circum¬ 
ferential direction only. Hence, for all paths between the two con¬ 
ductors lying in a given transverse plane, the same result for voltage 
will be obtained since there is no changing magnetic flux included 
between any two of them. The voltage for such paths can then be 
interpreted as difference in potential between conductors at a specified 
cross-sectional plane. But, if voltage is desired between the two con¬ 
ductors for points 1 and 2 not in the same transverse plane, two paths 
C and C will yield different results in general, since the circumferential 
magnetic field threads between the two paths and will in general yield 
a finite result for (3). The voltage between such points cannot then 
be defined until the path is specified, and it is not equal to the differ¬ 
ence of potential between points 1 and 2. 

4-19 MAXWELL'S EQUATIONS IN SEVERAL COORDINATE SYSTEMS 

Rectangular Coordinates. 

i dD* ^y . dD̂ _ 

dx dy dz P

9 i ^^y i _ n 

dx dy dz 
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dEz dEy

dy dz dl 

dEx dEz _ dB y 

dz dx dl 

dEy dEx _ <3/^ 

dx dy dt 

dH, _ dHy . dDx 

dy dz ~ 1z dt 

dH, _ dH, _ . dl)y 

dz dx " dt 

dll y dllx _ . dl), 

dx dy 1 dt 

Cylindrical Coordinates. 

1 d 1 dl)„ dl), 
1. + = p r dr r o</> dz 

dz r d<f> 

1 d 1 dB. dB, 
2. --(rBr)+-—? + ~‘ = 0 
r dr r d<t> dz 

ldEz_dE^_ dB, 

r d<l> dz dt 

dEr dE, dBà

dz dr dt 

1 _ £ dEr = _ dB, 

r dr * r d<t> dt 

1 dHz _ dH* = . dl) r 

r d<l> dz r dt 

dHr dH z . dl)^ 

dz dr dl 

1 d 

r dr 

1 dH, 
r d<¡> 

dl)z 

+ "XT 

Spherical Coordinates. 
1 dD^, 

1. \ + 
r dr 

. — (Ds sin 0) 4-;—- —-— = p 
r sin d de r sin 6 50 
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2. À — (r2Br) H-T-  — (Be sin 6) 4-r~- —— = 0 
r2 dr r sin 9 99 r sin 9 9<t> 

1 9 . 9Ee~\ 9Br
- — (Ea sin 9)-=-— 
r sin 9 ^dd ' 9<t> J 91 

1 r 1 9Er 9 .1 9Be 
- "7—7 TT “ T (rE^ = “ "77 r sin 9 9<t> 9r J 91 

ip, dE^ - (rEe) - — 
r 9r 99 

91^ 
91 

1 • T 3 9Hf] . 9Dr
4. —;- — (H0 sin 9) -— = ir + ~ 
r sin 9 9<t> 91 

1 r 1 9Hr 9 1 . , 9De 
- -—. — - — (rH¿ = 79 + “77 r sin 9 9<t> 9r J 9t 

1 
r 
T (rHe) 

9Ur-
99 

91), 
9t 

Forms for Steady State Sinusoids (eiu ‘). 

Differential Equation Form 

V D = p 

V ■ B = 0 

V X Ë = -jupH 

V X H = ï + juiË 

Retarded Potential Form 

B = V X Ã 

E 

Ã = y 4irr 

k = œ V Me

-ju Ã+^(V-Ã) 



5 CIRCUIT CONCEPTS 

AND THEIR DERIVATION 

FROM THE FIELD EQUATIONS 

5-01 INTRODUCTION 

From the preceding chapter we have a set of laws (Maxwell’s equa¬ 
tions) that contains the core of the classical theory of electricity and 
magnetism. The applications of these to most problems is not diffi¬ 
cult, speaking of concepts alone. There are plenty of mathematical 
difficulties—inability to integrate certain forms or to solve certain 
differential equations—but the ideas behind everything in modern 
radio, in so far as they depend on classical electricity and magnetism, 
should always be clarified by proper reference to Maxwell’s equations. 
Our purpose for the remainder of the book is to study the systems and 
phenomena important to radio by means of these laws. They will 
be made to give quantitative design results, exact or approximate, 
whenever this is possible, but more important, we shall always use 
them to understand the concepts and physical pictures underlying 
the phenomena in question. 

Of the many types of problems to be studied, many involve circuits, 
a term that covers a huge percentage of all phenomena with which the 
radio engineer is concerned and with which he associates many of the 
important concepts in electromagnetics. In a circuit problem there is 
often an applied voltage, and there are currents in the conductors of the 
circuit, charges on condensers in the circuit, ohmic losses, and power 
losses by radiation. These effects include almost everything that can 
happen when electric currents, charges, and conductors are let loose. 
The circuit problem is also one of the commonest problems illustrating 
the idea of cause and effect relationships. For these reasons, and, 
most important of all, because the circuit technique is one of the most 
familiar and useful to engineers, this will be the first problem to be 
investigated from the starting point of the fundamental laws. 

207 
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In this chapter only the concepts and the general techniques of 
circuits are to be studied ; quantitative analysis is reserved for the next 
chapter. From the rigorous starting point of the fundamental laws, 
it will be found that for circuits which are small compared with wave¬ 
length, this exact approach leads directly to the familiar circuit ideas 
based upon Kirchhoff’s laws, and the concepts of lumped inductances 
and capacitances are sufficient for analysis. For such circuits there 
would then be little need for going beyond Kirchhoff’s laws. Although 
many of the circuits the average radio engineer encounters may be of 
this type, two reasons make it necessary to go beyond this stage in the 
understanding of circuit concepts. First, the increasing use of high 
frequencies increases the uncertainties in the engineering and develop¬ 
ment of systems which are thought up, designed, and experimented 
upon without sufficiently broad tools. For instance, most notions of 
circuits came out of studies of systems in which the current flows in 
relatively small cross-section filaments or wires (and in which the 
matter of distribution of current over this confined path is a secondary 
effect easily added on separately). But at ultra-high frequencies we 
would like to be able to use convenient circuit concepts, without going 
astray, on circuits which have the total current flow distributed over a 
wider or larger region than the physical confines of the circuit mate¬ 
rials themselves. Secondly, when the radiation of electromagnetic 
energy is considered at any frequency, the radiating system must 
eventually be understood both as to the mechanism of the release of 
energy and the feeding of the antenna by the applied electromagnetic 
forces. The desire to utilize the convenient concepts of applied 
voltage, impedance, etc., in the latter case leads to a combination 
field-circuit problem, which, with no background in the electromag¬ 
netics of circuit notions, would be unnecessarily difficult even in 
qualitative thinking. 

The Formulation of a Circuit Concept Consistent with Maxwell’s 
Equations 

5-02 KIRCHHOFF'S FIRST LAW 

In classical circuit theory, Kirchhoff’s first law states that the alge¬ 
braic sum of all currents flowing out of a junction must be zero. Thus, 
referring to Fig. 5-02, 

V 
(1) 

n = 1 

It is evident that the idea behind this law is that of continuity of cur-
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rent, so we should refer to the continuity equation implicit in Maxwell’s 
equations, Eq. 4 03(5), or its large-scale equivalent, 

ï • dS = — —• f p dV 
J * dtjv 

(2) 

If we apply this to a surface S surrounding the junction, the only 
conduction current flowing out of the surface is that in the wires, so 
the left side of (2) becomes just the algebraic sum of the currents 
flowing out in the wires, as in (1). The right side is the negative time 
rate of change of charge Q, if any, accumulating at the junction. So 
(2) may be written 

In
dQ 
dt 

(3) 

Comparison of (1) and (3) indicates an apparent difference. How¬ 
ever, we know that, in the application of Kirchhoff’s first law, we add 
a new branch, calling it a capacitance 
current of dQ/dt if there is charge 
accumulating at the junction, so in 
the practical application of the law it 
is entirely consistent with (3). That 
is, in interpreting (3), the current 
terms on the left are to be taken only 
as convection or conduction currents, 
whereas in (1) displacement or ca¬ 
pacitance currents must be included. 
The explicit statement of the capaci¬ 
tance currents as in (3) makes it more 

Fig. 502 Current flow from a 
junction. 

obvious that the law is just a statement of the continuity equation 
for circuit junctions, but the form (1) is in other respects neater and 
is more common. 

PROBLEM 

5-02 Show that the term on the right of (3) is just the displacement current 
flow out of the surface S. 

5-03 APPLIED FIELD AND RESULTANT CURRENT DENSITY 

Perhaps the most important single relation that appears in classical 
circuit theory is Ohm’s law, which relates current flow to voltage drop 
in a conductor. This law may be generalized so that it applies to an 
infinitesimal conducting cube and is then written [Eq. 4-07(6)]: 

ï = aË (1) 
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Equation (1) relates the current density at a point in a conductor to 
the electric field intensity at that point through the constant a, known 
as the conductivity of the material. The electric intensity Ë is the 
total electric intensity at the point, not just a portion. The use of 
total field is emphasized because partial fields are superposed in the 
circuit approach. That is, in a circuit to which an external voltage 
has been applied, the notions of circuit theory have us subtract from 
this applied voltage the back voltages or voltage drops due to the 
varying currents of the system and the varying charges of the system, 
leaving a certain net voltage available for the ohmic drop. To set 
the background for an approach to circuit ideas from the field equa¬ 
tions, such a division will be followed in the electric fields and the 
notions of voltages will be arrived at by way of the fields.1

Thus, Ë may be made up of one part Ëq applied from another system 
(the external generator) and another part Ë' arising from charges and 
currents in the circuit or system considered: 

Ë = Ëo + Ë' (2) 

Recall that in Maxwell’s equations, Art. 4 07, if all charges and currents 
are included in the equations, the electric intensity Ë appearing in the 
equations must be total electric intensity. If a system is considered 
which we have decided to call a circuit, and if this is influenced by 
another system which is the generator or source of applied voltage or 
applied field for the circuit, Maxwell’s equations might, of course, be 
applied to the totality of the two systems, including all charges and cur¬ 
rents for the circuit and its generator. Such an approach would be 
unnecessarily complicated if the generating system is, for all practical 
purposes, independent of the driven circuit. This is the case, for 
example, if the circuit obtains its applied field from an influencing 
system which is a distant antenna, a battery, a source of thermal emf, 
or a well-shielded signal generator. It is then easier to divide total 
field into two parts. There is the applied field which does not depend 
upon the charges and currents in the circuit, and there is an induced 
field which arises directly from these charges and currents. The basic 
laws applied only to the charges and currents of the circuit give only 
the amount of the induced field. 

Total field, to be used in Ohm’s law, is the sum of applied and 
induced components: 

- = £o + Ë' (3) 
a 

1 This follows closely the procedure of Carson, Bell Sys. Tech. J., 6, 1-17 (Jan. 
1927). 
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The component Ë' due to charges and currents in the circuit may be 
stated conveniently in terms of the potentials (Art. 4-15): 

where 4? is the scalar potential calculated from charges of the system, 
and A is the vector potential calculated from currents of the system 
as explained in Art. 4-16. Substituting these in (3), 

i - A4 
- = Ao — -
a dt 

- ï dÃ 
or Ao = “ + V4> + —- (4) 

a dt 

Equation (4) is the type of cause and effect relationship desired, since 
an applied field Eq results in an ohmic term and terms due to the 
charges and currents of the system. It is the first step in obtaining a 
circuit equation that relates voltages to currents and is based upon 
rigorous field theory. We must now define exactly what is meant bj’’ a 
circuit so that (4), which holds at a point in a conductor, may be 
extended to some proper integral relation that is true for a loop or 
circuit. 

5-04 APPLIED VOLTAGE AND THE CIRCUIT RELATIONS: KIRCHHOFF'S 
SECOND LAW 

A circuit between points 1 and 2 (Fig. 5 04) will be defined merely 
as any line path between the two points. If there is 
to be any advantage in looking at the system as a 2 ° \ 
circuit, this path will almost always lie along a con- 'v 
ductor. For any point on the path, the relation be- ) 
tween cause and effect may be taken as that derived /

from Maxwell’s equations, Eq. 5-03(4). To obtain a Fig. 5 04. 
circuit equation it is necessary only to integrate this 
differential expression along the path chosen as the circuit: 

Jo • dl = ÕÃ T, — - dl -(-
2 dt 

The first term of the equation is defined as the applied voltage of 
the circuit. (The sense is defined in such a way that the applied 
voltage is said to be positive at terminal 2 with respect to 1 when it 
produces a current flow into the circuit from terminal 2 for a pure 
resistance load.) 

(Fq)21 = f2 Ëo • dl 
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The defined applied voltage of a circuit brings us to the first of 
several concepts which call for careful handling to avoid confusion. 
First let us look at the easy case of direct current. Suppose it is 
made to flow in a conducting loop connected across the terminals of a 
battery. The battery voltage causes the current flow, and it is the 
only thing causing such a flow, since there is no electric field due to 
alternating currents, and there is no electric field in the conducting 
loop due to charges. (The capacitances of the battery plates and the 
conductor are neglected as being immaterial even if they are not small, 
since these capacitances, once charged, do not enter into current flow 
considerations.) Usual circuit theory would say that the battery 
applies a voltage between the two ends of the loop. Field theory says 
first that the battery must be applying an electric field in the con¬ 
ductor, otherwise there would be no current flow there. The two 
theories harmonize when applied voltage between two points is defined 
as the integral of applied electric field between those points. The 
circuit equations and concepts do not concern themselves with how the 
battery caused the voltage; neither do the field equations concern 
themselves with how it produced the applied field. 

Consider next a closed loop of wire, the wire being of infinitesimally 
small cross-sectional area. Let magnetic flux through this loop be pro¬ 
duced by some independent system which causes this flux to increase 
uniformly with time. The effect of this constant rate of change is to 
yield an applied d-c voltage, and, by Ohm’s law, this yields a certain 
d-c flow. If the field in the loop is oscillating in time, as in a receiving 
antenna excited by the field of a distant transmitting antenna, it is 
again clear that the applied voltage is the integral around the loop of 
the electric field due to the distant transmitter. 

For the applied voltage produced by the battery, we did not know or 
care exactly how it was produced; it was known only that this voltage 
was of a certain amount and was independent of the path chosen for its 
circuit. However, when the applied voltage arises from the field of a 
distant antenna, the amount of this voltage depends very definitely 
upon the path of the circuit. It may be different for different sizes, 
orientations, and- positions of the circuit. So, in general, the applied 
voltage around any loop to which the circuit concept is applied may 
vary radically in magnitude as different loops are selected, even when 
voltage is due to the same source. 

With the first term of (1) defined as an applied voltage, the equation 
is of the same general form as Kirchhoff’s second law which may be 
stated: 

applied voltage = sum of voltage drops about the circuit (2) 
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If the voltage drops about a circuit are defined by the three terms on 
the right of (1), the equation then becomes identical with Kirchhoff’s 
second law. However, as we shall see, in the practical application of 
circuit theory to conventional circuits, the terms normally taken as 
the voltage drops are only approximately equal to the terms on the 
right of (1). The approximations are good at lower frequencies, but 
may become poor for high frequencies (circuits large compared with 
wavelength). For high frequencies it becomes very difficult to 
attempt to extend the circuit concepts so that the terms become 
identical with the terms of (1). 

For convenience in the following discussions, the terms in (1) will 
be given the following designations, although the names have real 
significance only for the low-frequency approximations. 

pi 
I Êo • dl = applied voltage (2 taken as + terminal) (3) J2 
J - • dl = “internal-impedance” voltage drop (4) 
f dÃ _ . — • dl = inductive” voltage drop (5) 
J 2 dt 

• dl = “capacitive” voltage drop (6) 
D-C and Low-Frequency Circuit Concepts 

5-05 KIRCHHOFF'S SECOND LAW FOR A D-C CIRCUIT 

For simplicity, let us consider first the case of a single d-c circuit 
for the interpretation of Eq. 5 04(1). For this case the time vari¬ 
ations are zero, so the inductive term, Eq. 504(5), becomes zero. 
Moreover, no current will flow in the d-c circuit unless the path is 
completely dosed by conductors, so the circuit may be taken as a 
closed path. In this case the capacitive term, Eq. 5 04(G), becomes 
just the integral of the gradient of a scalar about a closed path and is 
therefore zero: 

^^dl = 0 
In the internal-impedance term, Eq. 5-04(4), it is seen that, since the 

d-c current is distributed uniformly over the cross section, the current 
density is 

/ 
1 “ J 
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where A is the cross-sectional area of the conductor, not necessarily 
constant about the path. So the term becomes 

Current I has been taken outside the integral since by continuity the 
d-c current must be constant about the path. A study of the integral 
multiplying I reveals that it is just the total d-c resistance of the path, 

so that the term is just IR, and Eq. 504(1) assumes the common form 

Vo = IR (2) 

5-06 THE INTERNAL-IMPEDANCE TERM AT LOW FREQUENCIES 

By “low frequencies” in the following discussion, we mean only 
that the circuits under discussion are small compared with wavelength 
(wavelength = velocity of light/frequency). The approximate forms 
to be developed may apply for certain circuits up to frequencies of 
thousands of megacycles per second. The two basic assumptions to 
be made in this and the two following articles which are a consequence 
of the above condition are: 

1. Current is to be taken the same about the entire path. 
2. Retardation is to be neglected in computing the potentials Ã 

and 4>. 
We are concerned in this article with the “internal-impedance” 

term, Eq. 5 04(4). In the following chapter, in the study of skin 
effect, we shall see that for a-c effects the current does not distribute 
itself uniformly over the cross,section of the conductor, so the current 
density cannot be found simply as it was for direct currents in the pre¬ 
ceding article. However, if we choose as our circuit for the integration 
a path lying on the surface of the conductor, the term ls/a gives the 
electric field at the surface of the conductor, Es. If we define the 
internal impedance per unit length for the conductor as the ratio of 
this surface electric field (voltage per unit length) to the total current 
in the conductor, 

Zf = y (1) 

then the term under consideration becomes the product of current and 
a total internal impedance Zs: 
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(2) 
2 

(1) 

The current density i may be written as the product of total current I 
and some vector function of the cross-sectional coordinates of the con¬ 
ductor, say /(aq,^), so that Ã is proportional to the total current I, 
assumed constant about the circuit: 

2 I 

By the above, the total internal impedance is equal to the integral of 
the internal impedance per unit length over the circuit. The steady 
state form (e*“‘) has been implicitly assumed in all of the above. 

The internal impedance has an imaginary part as well as a real part 
since the surface field is not in phase with the total current in the con¬ 
ductor for a-c circuits because of the rate of change of magnetic flux 
within the conductor. The real part gives the a-c resistance of the 
wire, and the imaginary part gives the internal reactance (that part 
of the reactance arising from magnetic flux within the wire) for simple 
geometrical configurations where the magnetic flux can be divided 
in that manner. The complete internal-impedance term will be 
treated in considerable detail for several simple shapes of conductor 
in the part of Chapter 6 concerned with skin effect. 

Finally, we should note that the choice of a path for the circuit 
along the surface of the wire was arbitrary, and could be made in other 
ways, say along the center of the conductor, or halfway in. The point 
is that it must be taken in the same place for the treatment of each of 
the terms of the circuit equation. The choice along the surface is con¬ 
venient because it does give the separation between “internal induc¬ 
tance” and “external inductance” for many simple shapes. 

5-07 THE INDUCTIVE TERM OF LOW FREQUENCIES 

Let us next considêr the inductive term in the circuit equation, 
Eq. 504(5), for the case of circuits small compared with wavelength. 
For such circuits, the time necessary to propagate electromagnetic 
effects over the extent of the circuit is a negligible part of a period of 
the a-c effects, since by definition a wavelength is the distance over 
which effects are propagated in a complete period. Retardation effects 
may then be neglected in computing the potentials in the vicinity of 
the circuit, as stated in one of the basic assumptions at the beginning 
of Art. 5 06. The vector potential Ã, Eq. 41G(4), may then be 
written 

Hi dV 
V 4îrr 



216 FIELDS AND WAVES IN MODERN RADIO 5-07 

J’ ^(xi,^) dV v 4jrr 

The integral multiplier of I is a function of the geometrical configura¬ 
tion and the relative distribution of current density. Then a coefficient 
L, a function of the circuit configuration, permeability, and the relative 
current distribution but not of total current, will be defined as follows: 

With this coefficient defined, the term of Eq. 5 04(5) becomes 

C —-S = 1 Pã -dl = j(L/) = L~ (3) 
J2 dt dt J2 dt dt 

The partial derivative has been changed to a total derivative since we 
are concerned here with stationary circuits. The term under con¬ 
sideration is seen to be of the form of the usual inductance drop of 
classical circuit theory, with the coefficient L simply the inductance 
of the circuit. Equation (2) then becomes a definition for inductance, 
and, although a useful form for many purposes, it is not the most 
common form. To identify it with more common forms, consider a 
closed circuit. From Stoke’s theorem, 

Ã ■ dl = fsV X ÃdS 

But B = V X Ã 

fsBdS 
so L = JS 7 (4) 

Since B ■ dS is the amount of magnetic flux passing through the 

circuit, (4) is the exact equivalent of the usual low-frequency definition, 
which defines inductance as the flux linkage per unit current, L = ^/Z, 
and a complete identification with the classical inductance drop term 
has been shown for the assumptions of this article. 

At this stage some clarification of this term in relation to the internal 
inductance of the preceding article is in order. Consider the wire 
circuit sketched in Fig. 5 07a. If the path of integration is taken 
along the inside surface of the wire, the magnetic flux to be used in 
computing inductance from (4) may be taken as flux flowing through 
the interior of the loop, not entering the conductor, for the surface S 
may be any bounded by the path. In this case, the inductance so 
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calculated would be called “external inductance” since it arises from 
flux external to the wire. The remaining inductive term in the internal 
impedance of Art. 5 06 would then be associated with flux inside the 
wire and is called the “internal inductance.” For other choices of 
the path the division between the two terms will be different, and the 
above names may not apply. The sum of all terms in the circuit equa¬ 
tion will, however, be the same for all paths of integration. 

Fig. 507a Arbitrary circuit formed of 
a conductor of circular cross section. 

Fig. 5 076 Parallel-wire conductors. 

PROBLEM 

5-07 For a parallel-wire transmission line, the current density and surface 
electric field are greatest on the inside surfaces of the wires and least on the outside 
surfaces. If a path of integration is made along the inside surface ABCD of Fig. 
5 076 and internal impedance is defined as in Art. 5 06, a different result is obtained 
from that given by taking the path along the outer surface, as A'B'C’D'. Discuss 
the choice qualitatively, specifically answering the question: If the two paths are 
to be equally valid alternatives, how is the difference in the “internal impedance” 
obtained by the two paths accounted for? 

5-08 THE CAPACITIVE TERM AT LOW FREQUENCIES 

The circuit of the preceding derivation was continuous. Let us now 
break the circuit at some point. There is then the possibility of the 
accumulation of charge. The break we shall spec¬ 
ify as rather small compared with other dimensions 
of the circuit, but plates may be placed at the 
discontinuity, if desired, to increase the possibility 
of accumulating charge. Thus, in spite of the 
camouflage of careful specification, a lumped capac¬ 
itance has been inserted in an otherwise completely 
conducting filamentary path. 

In Fig. 5 08 is shown the circuit with disconti¬ 
nuity. It might at first seem that the exact dif¬ 
ferential relation, 5-04(1), could again be integrated 

Fig. 5 08 Circuit 
containing a 
lumped capaci¬ 

tance. 

around a closed 
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path, the discontinuity ignored, and the term in V4> eliminated as 
before. However, if this is done, there is no way of knowing what 
happens to the term i/o over the gap, for, although current i is zero 
in the gap, so also is a. This term is thus indeterminate. That it 
need not be zero becomes evident when it is recalled that this term 
is the difference between applied and induced electric fields, and this 
difference can be made to have any value. In particular, consider the 
special case of all gap, that is, just an imaginary line in free space. 
Here, no matter what the applied field may be, there are no charges 
and no currents along the path, and so no induced field E' at all. 

If a circuit equation is tb be written for a discontinuous conducting 
path, it is then to be obtained by integrating only over the conductor, 
from 1 to 2, where we know all terms of the equation. Considering 
the “capacitive” term, Eq. 504(6), 

d4> 
— dl = — $2
oL (1) 

Retardation may be neglected for the circuits small compared with 
wavelength, so the definition for 4>, Eq. 4-16(3), becomes 

pdV 

V 4?rer 

If stray capacitances are negligible so that all significant charge is con¬ 
centrated at the discontinuity, Q on one plate and — Q on the other, 
the value of 4> will be proportional to Q, and hence iq — iq will be 
also. Let 1/C be the constant of proportionality: 

_ a Q 4q - 4>2 = - (3) 

The charge at the discontinuity may be related to the current flowing 
toward the discontinuity by the continuity equation 

Q = $ Idt 

so that the term under consideration may be written finally 

1 _ 1 
• dl = -

2 C 
Idt 

This is the usual capacitance term in classical circuit theory, and 
(3) is the definition for electrostatic capacitance used in such circuit 
calculations. 

To summarize, we have found in this and the two preceding sections 
all the types of terms included in the classical calculation of a single-
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loop a-c circuit, the skin effect resistance, the internal-inductance term, 
the external-inductance term, and the capacitance term. In steady 
state notation (e7“'), the Kirchhoff second law then reads 

Vo = I (R + + —— (5) 

where Li and Le are internal and external inductances respectively. 

5-09 EXTENSION TO MULTI-LOOP CIRCUITS AND DISTRIBUTED 
CONSTANT CIRCUITS 

For simplicity, the case of a single-loop circuit with current constant 
about the path and no mutual effects was considered in the preceding 
articles relating classical circuit theory to field theory. It is now in 
order to see how some important extensions of classical circuit theory 
are related to the exact formulation based upon Maxwell’s equations. 

For the case of a multi-loop circuit, as indicated in Fig. 5 09a, the 
integral may be taken about any closed loop, as 1-2-3-4, but is broken 
into the four parts or branches, 1-2, 2-3, 3-4, and 4-1. For any one of 
these parts, the current is taken as constant, and the internal-imped¬ 
ance terms, external-inductance terms, and capacitance terms for that 
branch are calculated in terms of the current in that branch by the 
concepts of the preceding sections. That is, it is most often assumed 
that the induced fields along a given branch are related only to the 
current in that particular branch, and not to currents in other parts 
of the circuit. When this assumption is not justified, coupling effects 
from other branches are taken into account by mutual terms of the 
type to be described in the next article. The Kirchhoff first law 
(Art. 5 02) applied at each of the junctions, together with the circuit 
integration for each of the branches, gives the complete information 
necessary for solution by classical circuit theory. 

For a distributed constant circuit as in Fig. 5 095, circuit theory 
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proceeds by approximating the distributed constants by a series of 
lumped constants, reducing this to a multi-loop circuit of the type 
described above. This approximation may be carried to the limit of 
infinitesimals, and may become exact for some systems such as certain 
ideal transmission lines, as will be shown in a following chapter. For 
more general shapes of circuits, the approximation may become poorer 
as one goes to higher frequencies. In any event, for such general 
circuits, it becomes very difficult to decide how the distributed con¬ 
stants should be calculated, and field theory must eventually be 
resorted to for an opinion. 

5-10 MUTUAL COUPLINGS IN LOW-FREQUENCY CIRCUITS 

By a mutual inductive coupling we mean that current in one branch 
of the circuit produces a significant induced field in some other branch. 
For example, in the two closed filamentary circuits of Fig. 5-10a, the 
induced electric field at point Pi in circuit 1 may have one part related 
to the current 11 of circuit 1, and another part related to the current I2 
of circuit 2. To compute the latter part, we consider the inductive 
term, Eq. 504(5), 

r dÃ2 - d i 

where Ã2 denotes the vector potential associated with the current I2. 
For a filamentary current, neglecting retardation, it may be written 
[see Eq. 4-16(8)] 

The current /2 has been taken as constant about the path. So Ã2 is 
proportional to I2 through a constant which is a function of the circuit 
configuration, and therefore Ã2 • dh is also. Define 

-Un = y ̂ Ci Ã2 ’ dh (3) 

Then the term expressing the induced voltage in circuit 1 due to the 
changing current in circuit 2 may be written 

W W J C1 at dt dt 

This is the usual mutual inductance term of classical circuit theory 
with (3) constituting the definition of mutual inductance. A more 
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common form for the mutual inductance may be had by applying 
Stokes’s theorem to (3) : 

J/ 12 = A (V X Ã 2) ■ dSi = 
/ 2 J Si 

X, h ' 

^2 

(5) 

In this form the mutual inductance is written as the magnetic flux 
linking circuit 1 from the current of circuit 2, per unit of current in 2. 
Still another form is obtained if (2) is substituted in (3) : 

3/ 12 JU Í 
47t J Cij Ci r

(6) 

This is a classical form for mutual inductance of filamentary circuits 
and is known as the Neumann form. F rom the symmetry of this 
form one can immediately conclude the reciprocal relation, 

M2i = M12 (7) 

That is, the voltage induced in circuit 2 by a unit rate of change of 
current in circuit 1 is the same as the voltage induced in circuit 1 
by a unit rate of change of current in circuit 2. 

Fig. 510a Two circuits coupled 
through inductive effects. 

Fig. 5-10b Two circuits coupled 
through capacitive effects. 

Finally, by a mutual capacitance coupling we mean that the charge 
of one branch of the circuit produces a significant induced field in some 
other branch. For example, in the two circuits of big. 5-106, the 
induced electric field at Pi from charges may have one part propor¬ 
tional to the charge qi of circuit 1, and another part proportional to 
the charge q2 of circuit 2. The mutual capacitance term arising from 
the term, Eq. 504(6), and representing the induced voltage in 1 due 
to charges in 2 might then be written 

«2 
V4>2 ' dh = $20 — ®2b — ^7 

C 12 
(8) 

Actually, the situation is more complicated than this because the 
charges at the two plates of circuit 1 may not be equal and opposite 
when influenced by fields from the charges of 2, and vice versa. 1 he 
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more complete discussion will be reserved for the section on self- and 
mutual capacitances in Chapter 6. 

PROBLEM 

5-10 Modify the form (3) for mutual inductance so that it applies when the 
circuits 1 and 2 are not closed (for example, as in Fig. 5-10b). Similarly, modify 
the Neumann form (6). Can the common form (5) in terms of flux linkages be 
modified to apply to this case? 

High-Frequency or Large-Dimension Circuit Concepts 

5-11 EXTENSION OF THE CIRCUIT INDUCTANCE CONCEPT 

Of the approximations necessary to obtain the usual low-frequency 
definition of inductance, the assumptions of infinite velocities of propa-

A gation and negligible distributed ca-
-\ pacities are most directly related to 

( ) frequency. At the higher frequencies, 
V the time required to propagate the 

ß effect of a change in charge or current 
Pi„ 5,u over the dimensions of the circuit may 

be appreciable compared with a period 
of the changing effects. We shall next consider the circuit at such fre¬ 
quencies, concentrating on the modifications introduced by considering 
the retardation effects which were neglected in the preceding section. 

Consider the circuit of Fig. 5-11. With assumed infinite velocities 
of propagation, the effect of a change in current in the element dl at A 
would bereit instantaneously at all other points of the circuit (as at the 
element dl' at B), and, for steady state sinusoidal time changes, only 
induced voltage drops in time quadrature with the current would be 
obtained at any point of the circuit. However, when finite velocities 
are considered, the time necessary to propagate the effect of a change in 
current at A to any other point B may be great enough so that this 
exact 90° relationship is destroyed. There may then result from the 
changing magnetic effects a component of induced field in phase with 
the current as well as an alteration in the magnitude of the 90° out-of¬ 
phase component. These corrections might be calculated relatively 
simply if the current were assumed to be all of the same phase and 
magnitude around the circuit; but it must be recognized that this need 
not always be true when retardation is of importance. Retardation 
enters because the time necessary to propagate an effect of changing 
current at one point of a circuit to another point through space is 
appreciable compared with the period of changing current; phase differ¬ 
ences between currents at different points about the circuit enter 
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because the time necessary to propagate changing currents about the 
conductor of the circuit is appreciable compared with a period of 
changing current. The two effects are closely allied. And, if current, 
at any one instant in time, varies around the loop, there must be a 
temporary piling up, or a decreasing, of charge at various points around 
the loop. Nevertheless, in the following, current will be assumed 
constant in magnitude and phase about the circuit even though 
retardation is to be considered. There are actually some circuits 
large compared with wavelength where the constant current approxi¬ 
mation is good, so that these results would be directly applicable. 
However, the main point of the discussion is to show generally the 
types of modifications found when retardation effects become impor¬ 
tant, and to demonstrate the difficulty in extending circuit concepts 
to high frequencies. 

For simplicity, we shall take the circuit as a stationary, closed, fila¬ 
mentary path excited with steady-state a-c effects of the form e7"4. 
We shall concentrate in this article on the modification of the inductive 
term, Eq. 5-04(5), 

Vi = ~ • dl = jv $ Ã • dl (1) 

As is explained in Art. 4-17, retardation is accounted for in the time-
periodic case by a shift in phase by amount kr, where k is w/v and v is 
the velocity of propagation. Specializing Eq. 4-17(8) to filamentary 
currents, we get 

(2) 
J 4irr 

Substitution in (1) gives 

V, = jußl dl' • dl (3) 

By expanding e~’kr into its real and imaginary parts, cos kr + j sin kr, 
we obtain 

47rr 
Vi = 

sin kr —, _ 
dl' • dl 

cos kr —, — 
—- dl' -dl- J 
4 irr 

(4) 

The term may then be written 

F. = I[Rr + j^L] 

1 r Ji Ji A C0S dl' y, , where L = <j)(p ——--• dl henrys 

(5) 

(6) 
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j n J J M« sin krdl'-dl and Rr = (p(p ——- ohms (7) 

Analogy between (5) and the familiar low-frequency circuit equation 
using complex notation identifies L as inductance, but, from (6), L is 
seen now to be a function of frequency.! Its connection with low-
frequency inductance, which is taken as a constant of geometry inde¬ 
pendent of frequency, becomes apparent if the cosine term in (6) is 
written in series form: 

r JiJi ( 1 , kiri Xdl'dl 

At low frequencies (hr very small compared with unity) all terms 
but the first are negligible in the series, so that 

T J J ndl' ■ dl 
Llf — 00 —-- (9) 

J J 4irr 

By comparison with Eq. 5-10(6), this may be considered as Neumann’s 
form for low-frequency inductance as a function of circuit geometry, 
and is, of course, independent of frequency.! At higher frequencies, 
other terms of the series appear as correction terms to this low-fre¬ 
quency value of inductance. 

5-12 CIRCUIT RADIATION RESISTANCE 

Let us investigate the additional term lRr, which appears in the 
circuit equation when the frequency is high. This term is in phase 
with the current, just as is the ohmic term IR, and so represents an 
actual departure of energy from the source. The ohmic term repre¬ 
sents energy transfer from the source to heat in the conductors. The 
new in-phase term does not represent any such dissipation of electro¬ 
magnetic energy into heat energy, but it does represent an actual 
energy which leaves the circuit and can accordingly be labeled radiated 
electromagnetic energy. In Chapter 12 several ways of looking at this 
radiation term and of calculating its magnitude will be studied. For 
the present, we are most interested in the term as a correction term to 

t This is not to be confused with the change of inductance with frequency due 
to skin effect phenomena, which is another matter and will be studied in the next 
chapter. 

t Actually, Neumann’s formula is of practical use only in calculating mutual 
inductance, since it has in it the assumption of filamentary currents, and this leads 
to bothersome infinities in evaluation of the self-inductance. All this will be dis¬ 
cussed in detail in the next chapter, when the objective will be the computation 
of circuit impedance. 



5-13 CIRCUIT CONCEPTS FROM FIELD EQUATIONS 225 

the circuit equations at high frequencies. From this point of view, it is 
convenient to expand Eq. 511(7) in its series form, as was done pre¬ 
viously for Eq. 5-11 (6): 

„ rr nai / k3r3 k5r5 \ — — 
R'- n ~-3! + V ' 7 ," ‘“ "> 

But, since dl' = 0, the first term (which contains no r) disappears 
entirely and there remains only 

Rr, because of its similarity to the ohmic term, may be called a radi¬ 
ation resistance. 

This radiation resistance, representing an in-phase component of 
the induced voltage due to varying magnetic effects, and the correc¬ 
tion to inductance or out-of-phase component of induced voltage 
found in the previous article were direct consequences of retardation. 
As pointed out earlier, this form for radiation resistance applies only 
to circuits in which current is constant about the path, and this is 
not often the case at high frequencies. In spite of this incompleteness, 
the analysis does demonstrate the important effects that may arise 
when retardation is considered. An extension of this particular 
approach toward radiation will be given in Chapter 12 (Art. 1212). 

5-13 EXAMPLE OF USE OF CIRCUIT CONCEPTS IN AN INDUCTIVE CIRCUIT 
OF LARGE DIMENSIONS 

One example in which symmetry makes it possible to realize the 
assumption of constant current about the loop is that of a circular 
loop of wire. Of course, excitation must also be symmetrical, as for 
example from an electric field induced by a time-varying uniform mag¬ 
netic field through the loop. Let the loop have radius a, ana neglect 
the finite size of the wire (Fig. 5-13). The magni¬ 
tude of dl' is a d<f>. From the definition of the 
scalar product, I dl 

dl' ■ dl = a d<p dl cos </> \ / 

The distance between the elements dl and dl' is 
Fig. 5-13 Circu-

<p lar current-carry-
r — 2a sin — ¡ng [OOp 

Thus, neglecting all but the first term in the expression for radiation 
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resistance, Eq. 5-12(2), 

R, </> d<t> 
wak3
24tt 

r2* 
I sin' 
o 

2 
Õ C0S — 

2 TT) Hi wna3k3 r al • al =-
6tt 

ohms 

For free space surrounding the wire, VmoAo = 120tt ohms, and 

Rr = 20ir2(ka)i ohms (1) 

As a numerical example, consider a loop with circumference one 
quarter of a wavelength (ka = 

Rr = 20tt2(t)4 = 0.773 ohms 

PROBLEM 

6-13 Obtain in terms of (ka) the first correction term to inductance by Eq. 
511(8) for the above circular loop of wire. 

5-14 MODIFICATION OF OTHER CIRCUIT TERMS AT HIGH FREQUENCIES 

Not only the inductive term but also other terms of the circuit 
equation require modification at frequencies high enough so that 
retardation effects are important. For a qualitative study of the 
capacitive term under these circumstances consider the circuit of 
Fig. 5 08. Charges are again considered concentrated at the dis¬ 
continuity. That is, we are still neglecting any stray capacity effects 
from distributed charges resting on the surface of the wire. At low 
frequencies, the electric field at any point, such as point P, from these 
two lumped charges, is always 90° out of time phase with the current, 
so that this component represents no average power flow. The energy 
in the electric field simply oscillates between the source and the sur¬ 
rounding space. If the frequency becomes very high, the length of 
time necessary to propagate the effect of charges + ç and — q, at 
2 and 1, to P, any other point on the circuit, may destroy the previous 
90° phase relationship. It is quite apparent that there may now be a 
component of the electric field due to charges which is in phase with 
the current at any point of the circuit because of this retardation, also 
representing a radiation of energy. 

Similarly, the mutual inductance and capacitance terms discussed in 
Art. 5-10 will be modified by retardation effects, and this modification 
will not only change the amounts of the mutual inductance or capaci¬ 
tance coefficients, but may also add new radiation terms arising from 



5-15 CIRCUIT CONCEPTS FROM FIELD EQUATIONS 227 

the component of field associated with currents and charges of circuit 
2,.in phase with the current of circuit 1 for points about circuit 1. 

5-15 CONSIDERATIONS INVOLVED IN AN EXACT APPROACH TO 
CIRCUITS OF LARGE DIMENSIONS 

At the higher frequencies, stray capacities become of increasing 
importance, and the assumptions of uniform current distributions and 
no charges on the surfaces of wires may require revision if useful 
answers are to be predicted. The exact circuit equation is always 
that derived in Art. 5 04: 

• dl (1) 

A with (2) 

(3) 

i| dV 
4?rr 

Alter 

where the square brackets denote retardation. Difficulties in apply¬ 
ing these equations arise since the current and charge distributions 
are not known, but are determined by the field distributions which 
are calculated from the retarded potentials which depend upon current 
and charge distribution—a vicious circle! The exact solution of this 
problem is usually of prohibitive difficulty. However, it is often 
possible to assume a reasonable current distribution, calculating from 
it the retarded potentials and hence the fields; from these the first 
assumption of current distribution may be corrected, and the process 
repeated until the desired accuracy is reached. This is not often done, 
however, since it is obviously a laborious method, and, as soon as fre¬ 
quencies become so high that these distributed capacities are impor¬ 
tant, field theory usually offers a superior way of looking at the 
problem. So we shall talk more about what might be called circuits of 
large dimensions later under the various headings of transmission lines, 
wave guides, resonant cavities, and antennas. 

In calculating the radiation of energy by the use of circuit equations, 
it may be necessary only to consider one step of the above outlined 
procedure; that is, reasonable current distributions are assumed and 
radiated energy is calculated from these. If the concept of radiation 
resistance is used, it must be defined properly, and used with care, for 
it is the total energy radiated from the system which has meaning. If 
it is desired to express this radiation by multiplying some radiation 
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resistance by the square of a current, it must be remembered that 
current may no longer be the same at all points around the circuit. 
Thus the value of radiation resistance for a given system will depend 
upon the particular current which is selected for this purpose. 

5-16 SELF-ENCLOSING A CIRCUIT TO PREVENT RADIATION 

When retardation is neglected in the analysis of a circuit, the result 
will inevitably contain no possibility for radiation of energy. When 
retardation is included, the possibility exists that the answer may 
disclose loss of energy by electromagnetic field leakage (or radiation) 
into the surrounding space. This does not mean that retardation of 
itself, no matter how great, always leads to radiation. 

The emphasis should rather be on the fact that retardation means 
that the electric fields arising from any current element will, in the 
surrounding space, not be 90° out of phase with that current element. 
There is accordingly a possibility always that the total induced electric 
field at any point in the circuit may have a component in phase with 
the current at that point. This possibility changes to actuality in 
many of the most common types of wire circuits. Useful and well-nigh 
universal though they may be at low frequencies, it is apparent 
that this loss characteristic, radiation, that rises rapidly with fre¬ 
quency, will limit their application. For antennas, devices that are 
chosen because they do indeed “leak” electromagnetic energy to the 
surrounding space, these circuits are candidates. For narrow-band 
filters, resonant circuit impedances, and a host of other conventional 
circuit applications, it is much preferred to have a non-radiating 
circuit. 

Now there are ways to minimize radiation, even to make it zero for 
all practical purposes. We mention two of them here, not to complete 
the discussion of circuits (because to appreciate these new things fully 
will require techniques of electromagnetic waves that will be discussed 
in following chapters) but rather to make it evident that the story on 
circuits is not complete in this chapter, although its purpose was to 
examine circuit concepts. One way to prevent radiation is to enclose 
completely the circuit and source by a very good conductor. Such a 
shield, as we shall see in detail later, will stop the electromagnetic 
energy leaving the circuit, reflect it, and cause additional electric field 
in the circuit that will buck out that undesired induced electric field 
component in phase with the current at each point of the circuit. 
Practically, the conductivity of the shield cannot be infinite, and so 
some small amount of energy will get through, and the reflected electric 
field will fall short of exactly neutralizing the in-phase component of 
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induced electric field. We cannot discuss this problem completely 
until we have learned more about handling the electromagnetic energy 
as a wave phenomenon. 

Another way to build a circuit so as to minimize radiation is exempli¬ 
fied in Fig. 5-16. Here we deal with cavities, such that for any cross 
section which includes the axis of symmetry we have a circuit of the 

i 

Fig. 516 A self-enclosed 
circuit. 

distribution is not uniform but rather such that all net induced 

parallel resonant L-C type, consisting of 
the condenser plates A and B closed by the 
one turn inductance which encloses itself 
and the condenser. Because of the fact 
(which emerges easily from electro-magnetic 
wave studies) that all electromagnetic 
effects, practically speaking, fail to pene¬ 
trate metals at very high frequencies, the 
leakage by radiation from such a circuit 
will be negligible. This means that current 

electric field at every point in the conductor is essentially 90° out of 
phase with the current at that point even at very high frequencies 
when retardation must be and is included. Such a circuit is best 
analyzed as a resonant cavity by the use of electromagnetic wave pic¬ 
tures and equations, so we shall leave the discussion at this point. 
We add only that certain concepts which can properly be called 
“ circuit concepts” will be helpful in studying these resonant cavities, 
and the fundamental concepts discussed in this chapter should not be 
forgotten when we pass over to the wave method. 



6 SKIN EFFECT 

AND CIRCUIT IMPEDANCE 

ELEMENTS 

6-01 INTRODUCTION 

I he discussion of the previous chapter justified circuit concepts, like 
inductive and capacitive reactances, as they are universally used and 
understood in conventional circuit analysis. To be sure, it was found 
that the well-known definitions of all these quantities involve approxi¬ 
mations; but, on the whole, for circuits physically small compared with 
wavelength, rigorous approach by Maxwell’s equations shows that the 
ordinary methods of circuit analysis stem from correct formulations 
and are accurate. Even at higher frequencies, where the approxima¬ 
tions become poorer, these circuit concepts are still practical for part 
if not all of the problem, although correction terms may have to be 
used. 

Chapter 5 also discussed the various factors which enter into a rigor¬ 
ous analysis of all the effects which may take place in the neighborhood 
of a simple loop of conductor. We shall be satisfied in the present 
chapter to make simplifying assumptions, particularly those approxi¬ 
mations which permit us to think in terms of an applied voltage around 
a circuit being taken up in impedance drops: ohmic resistance, induc¬ 
tive reactance, and capacitive reactance. There is a tremendous 
range of practical problems for which these assumptions are justified, 
and, when the approximate quantities called resistance, capacitance, 
and inductance have been computed, the electromagnetics of these 
circuits may be said to have been completely worked out. The obtain¬ 
ing of these impedance elements will occupy us throughout this chapter. 

Of course, a huge store of knowledge exists on the handling of circuit 
problems once all the equations are set up and the circuit parameters 
computed. This special subject of circuit analysis and synthesis is not, 
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however, within the scope of interest of this text, and the reader is left 
to consult the numerous sources dealing primarily with such material. 

Skin Effect and the Internal Impedance of a Conductor 

6-02 THE IMPORTANCE OF SKIN EFFECT IN IMPEDANCE CALCULATIONS 

Many aspects of a phenomenon called skin effect will be important 
throughout the book. This chapter will be concerned mainly with 
applications to impedance calculations for wires and other conductors, 
\ et it is important to start with a much broader picture of the subject. 
Skin effect is most often introduced through the example of high-

frequency current flow in a solid round conductor, in which it can be 
demonstrated that current flow at very high frequencies is essentially 
concentrated in a thin layer or skin near the surface. Students often 
leave such first introductions to the subject with the impression that 
this is the most important aspect of skin effect and, worse, believe 
erroneously that the above phenomenon is caused by some sort of 
mutual repulsion between small filamentary current elements in the 
wire. With such a picture, they expect always to find current seeking 
the outside of any conducting system, an impression that would be 
unfortunate indeed as a preliminary to the study of resonant cavities, 
wave guides, shields, etc., in which currents may be concentrated on 
the inner, not outer, walls of the conductors. 

A broad picture of skin effect shows that it is a phenomenon which 
tends to concentrate currents on the surfaces of conductors that are 
nearest to the field sources producing them. Thus in Fig. G-02a, if 
there is an exciting source A of extremely high frequency near a con¬ 
ducting sheet, current may be essentially concentrated on the side a of 
the sheet; if there is a source B, as in Fig. G 02i>, current may be con-
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centrated on the side 6; if there are both sources, A and B, Fig. 602c, 
there may be currents on the two sides, a due to A and b due to B, for 
all practical purposes completely independent. At such frequencies 
the conducting wall has acted as a complete shield between the sources 
A and B. The reservations “essentially” and “for all practical pur¬ 
poses” will be clearer when we next study the equations of skin effect. 
It will then be seen that penetration of current into the conductor 
decreases gradually, so that current is not actually concentrated in a 
small layer at the surface with no current beneath. In any real con¬ 
ductor, current will not actually decrease to zero no matter how thick 
the conductor. This statement should not mask the fact that at the 
highest radio frequencies current density may decrease to one millionth 

Fig. G02</. Fig. 6 02c. 

its surface value in a distance of only a few thousandths of an inch, so 
that any practical thickness of any conductor becomes the “practically 
perfect” shield referred to above. 

The general reason for skin effect behavior can be visualized in terms 
of applied and induced voltages. Imagine a high-frequency source as 
in Fig. 6-02d, producing an applied electric field Eg in the neighborhood 
of the conductor. This must cause current flow in the conductor, 
producing a magnetic field at right angles to Eg. This changing 
magnetic field produces an induced electric field E' opposite to Eg. 
If a study is made of the two closed line integrals, 1-2-3-4-1 and 
l-2'-3'—1-1, it is found that more magnetic flux is enclosed in the latter, 
so that induced voltage around this path is the greater, and it may 
be deduced that the induced field along 2'-3' is greater than that 
along 2-3. It follows that there is less net field, Eg + E', left to pro¬ 
duce current flow as one progresses farther into the conductor. 

Another physical picture of skin effect phenomena will follow from 
the wave concepts of Chapter 7. From such a viewpoint, one can 
consider the source as a source of waves which impinge upon the 
conductor. Some wave energy is, of course, reflected as a result of 
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impedance mismatch at the discontinuities between air and conductor. 
Those waves which pass into the conductor attenuate at a rate deter¬ 
mined by the conductivity of the conductor, just as transmission line 
waves attenuate in a line with high leakage conductance. 

The classical example of current flow in a solid round conductor is 
now seen to be a special case of this general viewpoint; certainly, if the 
conductor is solid, the exciting sources must be on the outside, so 
current will concentrate near the outside. However, if exciting sources 
are on the inside of a hollow conductor, as they are for the outer con¬ 
ductor of a coaxial line, current will concentrate on the inner wall of 
that conductor. Finally, we might imagine a double coaxial line, 
as in Fig. 6.02e, formed of good conductors and operated at very high 
frequencies. Currents due to the source A are concentrated on the 
walls a and a'; currents due to B are concentrated on the walls b and 
b1. For all practical purposes shielding between the two coaxial 
regions may be considered perfect, and phenomena of the two regions 
completely independent. 

The general concentration of current into thin layers, as found in 
skin effect phenomena, should have a marked effect on impedances, 
causing them to change with frequency. If current is concentrated 
over a smaller part of the cross section of a conductor than at low 
frequencies, the effective conductor cross section is decreased and 
resistance should increase. Also, if penetration of fields into the 
conductor becomes less as frequency increases, there should not be as 
much magnetic flux inside the conductor and internal inductance 
should decrease. All these phenomena will be studied quantitatively 
in articles to follow. 

6-03 SPECIALIZATION OF MAXWELL’S EQUATIONS TO GOOD 
CONDUCTORS 

We wish to study the current distribution problem from Maxwell’s 
equations, but there are certain simplifications that can be made when 
we are concerned with good conductors. Maxwell’s equations are 
given in Art. 4 07. In addition, there is Ohm’s law, which may be 
taken as defining a conductor: 

ï = a Ë (1) 

The constant a is the conductivity of the conductor. Substitution 
of Ohm’s law in Eq. 4 07(4) gives 

V X H = aË -I-
dt (2) 
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We now take the divergence of both sides of (2) and recall that the 
divergence of the curl of any vector is zero: 

n „ a - 5(V • D) 
VVX// = 0= -VD + —--

e dt 

Divergence of D is equal to charge density p by Eq. 407(1). Thus 

a dp 
- P + 77 = 0 (3) 
e dt 

Equation (3) is a differential equation in p alone. Its solution, 

p = Poe~^ (4) 

shows that any charge density which may exist in a conductor obeying 
Ohm’s law must decay exponentially with time, and at an extremely 
rapid rate since the time constant tja is found to be very small for 
typical conductors. This means that any charges, if ever placed in 
the interior of such a conductor, would flow at once to the surface, 
and in the steady state the free charge term in Gauss’s law would be 
zero. 

This fact may be shown in a slightly different way by taking the 
steady state equivalent of (2) in complex notation, 

V X H = (a + jue)E (5) 

If the divergence is taken, it must again be zero: 

(a + • Ë = V • V X H s 0 

or V • D = 0 (6) 

Some comment on the above result is in order. We know first that 
not all currents are of this type, since the space-charge type of current 
flow found in a vacuum tube comes about from a motion of free 
charges, so that p would not there be zero. We might expect the 
current caused by a motion of charges in a conductor to be much the 
same, but we remember that the simple picture here is one of mobile 
electrons moving through the bound positive charges, so that on the 
average the net charge in any volume element is zero, even though 
some of the charges are moving through the element and producing 
the current. However, we need onljr note here that (6) is a conclusion 
drawn from Ohm’s law and Maxwell’s equations. We shall leave to 
experts in the modern theory of solids the mechanism which goes on 
in the conductor making ï proportional to Ë. 
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The equations may be further simplified, since the displacement cur¬ 
rent will never be appreciable in any reasonably good conductor, even 
at the highest radio frequencies. Consider again variations which are 
sinusoidal with time (of the form e^1). The terms to be compared in 
(5) are a and we. The precise values of e for conductors are not known, 
yet most indications show that the range of dielectric constants is 
much the same for conductors as for dielectrics. For platinum, a 
relatively poor conductor, the term we becomes equal to a at about 
1.5 X 10 15 cps, if the dielectric constant is taken as ten times that 
of free space. This frequency is in the range of ultraviolet light. 
Consequently, for all but the poorest conductors (such as earth) the 
displacement current term is completely negligible compared with 
conduction current at any radio frequency. 

Thus, to summarize, the following specializations are appropriate 
to Maxwell’s equations applied to good conductors, and may in fact 
be taken as a definition of a good conductor: . V A G VVji 

1. The free-charge term is zero, p = 0. ~ 
2. Conduction current is given by Ohm’s law, ï = aE. 
3. Displacement current is negligible in comparison with conduction 

current, we « a. 

PROBLEM 

6 03 The conductivity of graphite is about 0.12 mhos/meter. Take its 
dielectric constant as 5eo, and find the approximate frequency range over which 
it might be classed as a good conductor. 

6-04 EQUATION DETERMINING CURRENT DISTRIBUTION IN A 
CONDUCTOR 

With displacement current taken as negligible for a good conductor, 
Eq. 003(2) becomes 

V X H = aE (1) 

The curl of both sides may be taken and the left side expanded by a 
vector identity of Art. 2-39: 

V X V X II = V(V ■ H) - = aV X E 

Values for V • H and V X E are obtained from Maxwell’s equations, 
4-07(2) and 4-07(3), leaving 

dHV~H = ap — 
dt 

(2) 

This equation for the variation of H in a conductor is in the form of a 
standard differential equation similar to Laplace’s equation, or the 
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wave equation. The equation is often called the skin effect or dis¬ 
tribution equation and may also be derived in terms of Ê, taking first 
the curl of Eq. 4-07(3) instead of 4-07(4), and expanding as before 
to yield 

V2Ë = an (3) 
ot 

Since ï = aE, the same equation may be written in terms of current 
density: 

, dï 
(4) 

ol 

When all quantities can be regarded as varying as e;“‘, the above 
equations may be written 

V2/? = jua^H (5) 

= jua^Ê (6) 

V2Ï = jüiap.ï (7) 

These equations give the relation between space and time derivatives 
of magnetic field, electric field, or current density at any point in a con¬ 
ductor. It remains to solve these differential equations subject to the 
boundary conditions imposed by certain physical shapes of interest for 
practical conductors. 

6-05 CURRENT DISTRIBUTION IN A FLAT OR PLANE CONDUCTOR; DEPTH 
OF PENETRATION 

The simplest case to solve, though possibly not the simplest to 
visualize, is that of a plane conductor of infinite depth, and with no 
field variations along the width or length dimension. This case is fre¬ 
quently taken as that of a conductor filling the lower half of space 
X < 0 in a rectangular coordinate system with the y-z plane coinciding 
with the conductor surface, and is then spoken of as a “semi-infinite 
solid.” Actually, quantities are calculated for a finite width and 
finite length, so that the infinite dimensions in the y and z directions 
are not necessary to the discussion. The analysis of this case is of 
the greatest practical importance, though it would not seem to be 
because of the infinite depth requirement. It is important to many 
conductors of finite extent, and with curved surfaces, because at high 
frequencies the depth over which significant current is concentrated 
is very small, so that radii of curvature and conductor depth may be 
taken as infinite in comparison. Moreover, any field variations along 
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the length or width dimension due to curvature, edge effects, or 
variations along a wavelength are ordinarily so small compared with 
the variations into the conductor that they may be neglected. 

For the case of a plane conductor with current flow in the z direc¬ 
tion, x normal to the surface, and no variations in the y and z directions 

(Fig. 605a), the current distribution equation, Eq. 6-04(7), becomes 
simply 

d2fz 2. m—= Juyaz2 = t t, (1) 
dx 

where r2 = juya (2) 

Since Vj = (1 + J)/\/2 (taking the root with positive sign), 

r = (1 + j) (3) 
0 

where 5 = —-meters (4) 
\ zrfya 

A complete solution to (1) is in terms of exponentials: 

i, = + C2e" (5) 

Current density will increase to the impossible value of infinity at 
X = » unless C2 is zero. Ci may be written as the current density 
at the surface if we let it = io when x = 0. Then 

(6) zt = Zoe 

(7) 

Or, in terms of the quantity 8 defined by (3) and (4), 

i. = ioe-x/ie~’^ 
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In this form it is apparent that magnitude of current decreases expo¬ 
nentially with penetration into the conductor, and ¿ has the significance 
as the depth at which current density has decreased to 1/e (about 36.9 
per cent) of its value at the surface. The quantity 5 is accordingly 
called depth of penetration or skin depth. The phase of current density 
is also seen to lag from its surface value by x/ ó radians at depth x into 
the conductor. 

It is important to develop a familiarity for values of depth of pene¬ 
tration for different materials at different frequencies, and a study of 

the chart, Fig. 605&, is helpful for this. The student should also 
retain these facts: 

1. Depth of penetration is smaller the higher the conductivity, the 
higher the permeability, and the higher the frequency, since it is 
inversely proportional to the square root of each of these. 

2. Current does not fail to penetrate below the depth ô; this is merely 
the point at which current densities and fields have decreased to 1/e 
their value at the surface. Later another important significance of this 
quantity will appear. 

3. The concept as stated here applies strictly only to plane solids. 
However, it may be extended to conductors of other shapes so long as 
the value of ó calculated is much smaller than any curvatures of the 
surfaces. 

4. In addition to its special significance for the plane solid, 8 as 
defined by (4) may be considered simply a constant of a given material 
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at frequency/, and it is useful as a parameter in exact analyses of other 
geometrical configurations, as will appear. 

PROBLEMS 

6 05a Make a polar plot of | i. | versus the phase of i,, with x/o taken as the 
parameter. 

6-05b Show that S as defined by (4) does have the dimensions of meters, as 
indicated. 

6 05c Defining wavelength X as v/f = (f \/ m0-1> show that, for a good con¬ 
ductor as defined in Art. 6 03, depth of penetration is always a very small quantity 
compared with wavelength, ä« X. 

6-0Ó INTERNAL IMPEDANCE OF A PLANE CONDUCTOR 

The internal impedance term, which includes the resistance and 
internal reactance as discussed in Art. 5-06, may now be found for the 
plane solid example of the last article. We shall compute the term 
for a unit length and unit width. As defined in Art. 5-OG, the internal 
impedance term per unit length is the quotient of electric field at the 
surface and total current. The total current flowing in the plane 
conductor is found by integrating the current density, Eq. G 05(7), 
from the surface to the infinite depth. For a unit width, 

Jz = f i,dx = f dx = — (1) 
Jo Jo (1+j) 

The electric field at the surface is given by the current density at the 
surface, 

,, to 
Ezo = - (2) 

a 

Internal impedance for a unit length and unit width is then 

<3) 
J Z (JÒ 

Define Zs = Rs + juLi (4) 

Then Rs = = -J— (5) 
aö 'a 

“Li = — = R, (G) 
ao 
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The resistance and internal reactance of such a plane conductor are 
equal at any frequency. The internal impedance Zs thus has a phase 
angle of 45°. Equation (5) gives another interpretation of depth of 
penetration ó, for this equation shows that the skin effect resistance of 
the semi-infinite plane conductor is exactly the same as the d-c resist¬ 
ance of a plane conductor of depth á. That is, resistance of this 
conductor with exponential decrease in current density is exactly the 
same as though current were uniformly distributed over a depth S. 
Rs, the_resistance of the plane conductor for a unit length and unit 

width, is called the surface resistivity. For a finite area of conductor, 
the resistance is obtained by multiplying Rs by length, and dividing by 
width since the width elements are essentially in parallel. Thus the 
dimension of Rs is ohms or, as it is sometimes called, ohms per square. 
Like the depth of penetration 5, Rs as defined by (5) may also be a 
useful parameter in the analyses of conductors of other than plane 
shape, and may be thought of as a constant of the material at fre¬ 
quency f. Curves of Rs versus frequency are given on Fig. 6-05b for 
several materials. The values are also summarized in the table below. 

Depth op Surface 
Conductivity Permeability Penetration Resistivity 
mhob/meter henrys/meter meters Ohms 
a H & Rf 
, , 0.0642 

Silver 6.17 X 10 4% X 1U 2.52 X 10 'V/ 

. 0.0660 
Copper 5.80 X 1U X 1U 2.61 X 10 'V/ 

, , 0.0826 Æ

Aluminum 3.72 X 107 4w X 10~ 3.26 X 10~7Vj 

, , 0.127 _ 
Brass 1.57 X 107 4r X IO’7 S.OlXlO-’Vf 

, , 0.185 
Solder 0.706 X 10 4ir X 10 7.73 X 10 'V/ 

PROBLEM 

6-06 Show that R, as defined by R, = \/irfii/a does have the dimensions of 
ohms. 

6-07 POWER LOSS IN A PLANE CONDUCTOR 

The average power loss for a unit area of the plane conductor may 
be found by multiplying the surface resistivity Rs by the square of the 
magnitude of current per unit width, Jz. A factor of is also required 



6-07 SKIN EFFECT AND CIRCUIT IMPEDANCE ELEMENTS 241 

since the convention of this text is to use peak instead of rms values 
for sinusoids. Then 

= ïf?s| J z | 2 watts/meter2 (1) 

This is the usual formula based upon resistance multiplied by square 
of current magnitude. It is true that we have not justified it for this 
case of non-uniform current distribution, but it can be justified in at 
least two ways. One is to find the power loss per unit volume at each 
point from the conductivity and the known current density for that 
point, and integrate over the infinite depth. (See Prob. 607a.) 
Another method of justification is through the Poynting theorem, 
which will be introduced in the next chapter. (See Prob. 7 03b.) 

Equation (1) will be found of the greatest usefulness throughout this 
text for the computation of power loss in the walls of wave guides, 
cavity resonators, and other electromagnetic structures. Although 
the walls of these structures are not plane solids of infinite depth, the 
results of this section may be applied for all practical purposes when¬ 
ever the conductor thickness and radii of curvature are much greater 
than ô, depth of penetration. This includes most important cases at 
high frequencies. In these cases the quantities which are ordinarily 
known are the fields at the surface of the conductor. The current per 
unit width can be readily obtained from the surface value of magnetic 
field, as can be seen by taking the line integral of magnetic field about 
some path ABCD of Fig. 6-05a (C and D at infinity). Since magnetic 
field will be in the y direction for this simple case, there is no con¬ 
tribution to H ■ dl along the sides BC and DA ; there is no contribution 
along CD since field is zero at infinity. Hence, for a width w, 

(2) 

This line integral of magnetic field must be equal to the conduction 
current enclosed, since displacement current has been shown to be 
negligible in a good conductor. The current is just the width w times 
the current per unit width, Jz. A negative sign must be introduced 
since the right-hand sense associated with the direction of circulation 
ABCD is the negative z direction. Then, utilizing (2), 

u>Ht\,.Q = -wJ, or Jz=-Hu\x=0 (3) 

1 his may be written in a vector form which includes the magnitude 
and sense information of (3), and the fact that J and H are mutually 
perpendicular: 

J = n X H (4) 
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where ñ is a unit vector perpendicular to the conductor surface, point¬ 
ing iiitp the adjoining dielectric region. H is the magnetic field at the 
surface. It is the form (4) in conjunction with (1) which is especially 
useful in applying the results of this section to wave guides, resonators, 
etc. 

PROBLEMS 
6-07a The average power loss per unit volume at any point in the conductor is 

I i, |2/2<r. Show that (1) is correct by integrating over the conductor depth to 
obtain the total power loss per unit area. 

6-07Ò Find the magnetic field 11 for any point x in the plane conductor in 
terms of io by first finding the electric field, and then utilizing the appropriate one 
of Maxwell’s equations to give 11. Check the equation (3) by means of this result. 

6-08 CURRENT DISTRIBUTION IN A WIRE OF CIRCULAR CROSS SECTION 

Most common of the conductors used in electrical circuits are round 
wires, wires of circular cross section. If the round wire forms a con¬ 
ducting path with no very sharp curvatures, as in many circuit appli¬ 
cations, any small portion may be treated as a straight circular 
cylinder. It will be assumed that external conditions are applied so 
that current is in the axial direction only, and that any variations in 
the axial direction or circumferentially are negligible compared with 
the variations into the wire (radially). The current distribution equa¬ 
tion, G 04(7), written in cylindrical coordinates with no <t> or z vari¬ 
ations is then (Art. 2-39) 

dr2 

d2iz 
dr2

where 

or T = j~ 1/2 = j~ i/2 V^/S (2) 

A direct comparison of (1) with Eq. 3-21(1) shows that both have 
exactly the form of the zero order Bessel equation, although T is com¬ 
plex. A complete solution may be written, as in Eq. 3-22(8): 

i, = AJ^Tr-) + BH^(Tr) (3) 

For a solid wire, r = 0 is included in the solution, and then it is neces¬ 
sary that B = 0 since a study of II ^{Tr) shows that this would 
become infinite at r = 0, even though T is complex. Therefore, 

i, = AJ0(Tr) (4) 

. 1 di, 
+ - — = jwtiaiz 

r dr 

+ ~ + T2iz=d (1) 
r dr 

T2 = — ioiua 
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The arbitrary constant A may be evaluated in terms of current density 
at the surface. Let 

Then, from (4), 

and 
JoU r0; 

T is complex, and it may seem troublesome to find a Bessel function of 
a complex quantity. However, as in cases where we are confronted 
with sines, cosines, and exponentials of complex quantities, we can 
resort to the power series definition for the proper function. Referring 
to the power series for Jo, it is seen that the function will have both 
real and imaginary parts if the argument is complex. These may be 
calculated separately. Define 

Ber (v) s Real part of J p(j~ l/2v) 

Bei (v) = Imaginary part of JoO-172^) 

That is, J 0(J~ 1/2v) = Ber (v) + jBei (v) (6) 

Ber (v) and Bei (v) are tabulated in many references. 1 Using these 
definitions and (2), (5) may be written 

Plots of current densities as functions of radius in a round wire are 
shown in Fig. 6 08a. Actually the magnitude of the ratio of current 
density to that at the outside of the wire is plotted as a function of the 
ratio of radius to outer radius of wiré, for different values of the 
parameter (ro/ S). Also, for purposes of the physical picture, these are 
interpreted in terms of current distribution for a l-millimeter copper 
wire at different frequencies by the figure in parentheses. 

As an example of the applicability of the plane analysis for curved 
conductors at high frequencies where ô is small compared with radii, 
we can take the present case of the round wire. If we are to neglect 
the curvature and apply the plane analysis, the coordinate x, distance 

'Dwight, Tables of Integrals, Macmillan, rev. ed., 1947; Mclachlan, Bessel 
Functions for Engineers, Oxford, 1934. 

ii = io 

A 

i0J0(Tr) 
ii 

at r = ro 

ip 
Jo{Tro) 
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below the surface, is (ro — r) for a round wire. Then Eq. 6-05(7) gives 

to 
= e-(r0-r)/« (8) 

In Fig. 6-08Ò are plotted curves of | i¡/i01 by using this formula, and 
comparisons are made with curves obtained from the exact formula (7). 
This is done for two cases, ro/5 = 2.39 and ro/8 = 7.55, In the 
latter, the approximate distribution agrees well with the exact; in the 
former it does not. Thus, if ratio of wire radius to 5 is large, it seems 
that there should be little error in analyzing the wire from the results 

Fig. 6 08a Current distribution in cylin¬ 
drical wire for different frequencies. 

Fig. 6 086 Actual and approximate 
(parallel plane formula) distribution 

in cylindrical wire. 

developed for plane solids. This point will be pursued later in 
impedance calculations. 

PROBLEMS 

6-08a Utilizing tables of the Ber and Bei functions, plot the phase of i¡/io 
versus r/ro for ro/S = 2.39. 

6-08& Derive Eq. (8) for m/S » 1 by utilizing the asymptotic formulas for 
Bessel functions of large arguments in Eq. (5). 

6-09 IMPEDANCE OF A ROUND WIRE AT VERY HIGH OR VERY LOW 
FREQUENCIES 

Very High Frequency. To show the usefulness of impedance for¬ 
mulas for a semi-infinite plane solid, we shall obtain from them the 
internal impedance of a round wire at very high frequencies. It has 
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already been shown that, if the frequency is high enough, the curvature 
of the wire is unimportant. It may then be considered a plane solid of 
practically infinite depth, and width equal to its circumference. Thus, 
if Zs, Eq. 606(3), is the internal impedance of the plane solid per unit 
square, Zs/2irr0 is the impedance for a width 2irr0 (the circumference). 
So, for a round wire of radius r0 at very high frequencies, 

Z = (1+» = + » 
ht ' 27rro<rä 2irr0

or ßh.f. = (wí'í)h.f. = ohms/meter (1) 
Z7rro 

where ß, is as defined in Eq. 606(5). 
Very Low Frequency. For very low frequencies the current has 

essentially a uniform distribution over the cross section, Fig. 6-08(a), 
and so the d-c resistance formula applies: 

= —y ohms/meter (2) 
irr^a 

Internal inductance will be shown in Art. 614 to be 

{Li)0 = — henrys/meter (3) 

The first correction term to resistance at moderately low frequencies 
may be obtained from series expansions of the exact results of the next 
article. This leads to 

ßo 48 \ ô / (4) 

The above equation is good for small values of r0/ô and has an error of 
about 6 per cent at r0/S = 2 (that is, for a radius twice the depth of 
penetration). 

PROBLEMS 

6-09a Show that the ratio of very high-frequency resistance to d-c resistance 
of a round conductor of radius ro and material with depth of penetration 8 can be 
written 

Rh.t. _ r0
Ko “ 28 

6'09b By using the approximate formula 6.09(4), find the value of ro/8 below 
which R differs from d-c resistance Ro by less than 2 per cent. To what size wire 
does this correspond for copper at 10 kc/sec? For copper at 1 mc/sec? For 
brass at 1 mc/sec? 
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6-10 IMPEDANCE OF ROUND WIRES GENERALLY 

The internal impedance of the round wire at any frequency is found 
from total current in the wire and the electric intensity at the surface, 
according to the ideas of Art. 5 06. Total current may be obtained 
from an integration of current density, as for the plane conductor in 
Art. 6 06; however, it may also be found from the magnetic field at the 
surface, since the line integral of magnetic field around the outside of 
the wire must be equal to the total current in the wire: 

H -dl = I 

or 2irro^0 |r-r» = (1) 

Magnetic field is obtained from the electric field by Maxwell’s equa¬ 
tions: 

V X Ë = (2) 

For the round wire with the assumptions made in Art. 6-08, Ez and H. 
alone are present, and only r derivatives remain, so (2) is simply 

If. 
juin dr 

(3) 

An expression for current density has already been obtained in Eq. 
6-08(5). Electric field is related to this through the conductivity a: 

= = (4) a a Jo(7 To) 

By substituting in (3) and recalling that 7’2 = —juina, 

_ t0T Jo'(Tr) = _ fo J0'(Tr) 
* junaJo(Tro) TJ^Tro) 

J0'(Tr) denotes Jo(Tr). From (1), 
d{l r) 

>_ _ 2rro£o Jo(Tro) 
T J0(Tr0) 

The internal impedance per unit length is 

7 _ k-™ = _ ^o(^ro) /ß\ 
* I 2irroaJ o'{Tro) 
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Zi will be complex since T is complex [Eq. 6-08(2)]. To separate 
into real and imaginary parts, use Eq. 0-08(6): 

Ber V + jBei v = Jofj-17^) 

Also let Ber' v + jBei' v = — {Ber v + jBei v) 
dv 

Then (6) may be written 

Z, - R + 
V 2 7rr0 LBer' q + jBei' çj 

where r0

or 
R, Ber q Bei' q — Bei q Ber' q 

V2 - {Ber' q)2 + {Bei' q)2
ohms/meter 

Rs Ber q Ber' q + Bei q Bei' q 
V 2 *ro - {Ber' q)2 + {Bei' q)2

ohms/meter 

(7) 

These are the expressions for resistance and internal reactance of a 
round wire at any frequency in terms of the parameter q, which is V 2 
times the ratio of wire radius to depth of penetration. Curves giving 
the ratios of these quantities to the d-c and to the high-frequency 
values as functions of r0/8 are plotted in Figs. 6-10a and 6-106. A 
careful study of these will reveal the ranges of ro/8 over which it is 
permissible to use the approximate formulas for resistance and react¬ 
ance. For example, if a 10 per cent error can be tolerated, the high-
frequency approximation for resistance, Eq. 6 09(1), may be used for 
ro/8 > 5.5; the high-frequency approximation for reactance, Eq. 
6-09(1), may be used for ro/8 > 2.2. The d-c resistance formula, 
Eq. 6-09(2), may be used for ro/8 < 1.5, and the d-c inductance 
formula, Eq. 6-09(3), may be used for ro/8 < 1.9. 

PROBLEMS 

6-10a For small values of Tro (low frequencies) the Bessel functions may be 
approximated by only a few terms of the series, Eq. 319(8) and Art. 3-26. Using 
three terms of the series for Jo and Jo', show that these values, substituted in 
Eq. 610(6), lead to the expressions for low-frequency resistance and inductance 
stated in Eq. 609(3) and Eq. 6 09(4). 



248 FIELDS AND WAVES IN MODERN RADIO 6-10 

6-10b For large values of Tr^ (high frequencies) the Bessel functions may be 
approximated by the asymptotic forms of Art. 3-25. Show that these, substituted 
in Eq. 610(6), lead to the expressions for resistance and internal inductance at 
high frequencies obtained in Eq. 6 09(1). 

6-lOc From Figs. 610a and 610h, investigate the ranges of r^/i over which 
it is permissible to use the approximate formulas of Eqs. 6 09(1), 6 09(2), and 
6 09(3) if the error must be less than 5 per cent. 

■y ' Ratio of Radius to Depth of Penetration 

Fig. 610a Solid wire skin effect quantities compared with d-c values. 

Fig. 610Ò Solid wire skin effect quantities compared with values from high-
frequency formulas. 

6-10d For two geometrically similar systems of good conductors of the same 
material, show that current distributions will be similar, and current densities 
equal in magnitude at similar points, if the applied voltage to the small system is 
1/K in magnitude and K2 in frequency that of the large system. Also show that 
the impedance of the small system will be K times that of the large system under 
these conditions. Check these conclusions for the case of two round wires of 
different radii. K is the ratio of linear dimensions. 
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6-11 IMPEDANCE OF A COATED CONDUCTOR 

Coated conductors appear in radio applications in the form of tinned 
copper wires, copper-plated iron or iron alloys in vacuum tube leads, 
silver-plated brass in resonant cavities, etc. Most often the problem is 
one of the following. 

1. The coating material may be very thick compared with depth of 
penetration in that material. This requires no analysis since fields and 
currents in the coated metal are then negligible, and the impedance is 
governed only by the metal of the coating; the conductor is as good or 
as bad as a solid conductor of the coating material. 

2. The coating may not be thick enough to prevent currents from 
flowing in the coated material, but penetration in both materials may 
be small compared with surface curvature so that the surfaces may be 
considered as planes, the coated material also being effectively infinite 
in depth. An analysis of this second case will follow. 

In Fig. 61 la is shown a plane solid material (conductivity a2, per¬ 
meability M2) of effectively infi¬ 
nite depth coated with another 
material (conductivity ou, per¬ 
meability mi) of thickness d. 
Solutions for the distribution 
equations must be found for 
both media and matched at the 
boundary between the two. The 

Fig. 61 la Conductor coated with an¬ 
other conductor. 

solution in either material is of the form of Eq. 6 05(5), but there can 
be no positive exponential term for the lower material since current 
density must become zero at infinite depth. 

U + j) /, , -X 
—■ — = (1 + J) V'irfM2a2 

02 
(1) 

In the coating material both exponentials must be present, but it is 
convenient to write the solution in terms of hyperbolic functions 
instead of the equivalent exponentials: 

iz = A sinh Tix + ß cosh rix 

(' + j) . -, . f 
ri = —- = (1 + j) \ tt/mioi (2) 

01 

For both materials, 

a 
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and, from Maxwell’s equations, 

1 dEz a dEz 

dx T2 dx 

Electric and magnetic fields in the two materials are then 

E; 

C 
-e 

72 

c 
= — e 
a2

Ez = — [A sinh Tix + B cosh nz] 
1 a i 

Hy = — [A cosh r ix + B sinh nr] 
1 71 

(3) 

The constants may be evaluated since tangential electric and mag¬ 
netic fields are continuous across the boundary (Art. 4-11): 

Then 
Ezi Eg 2 II // y2 at x — d 

B sinh T\d + (72<ri/ri<72) cosh rid 
A Lcosh T\d + (t2<7i/ti<72) sinh rid. (4) 

Total current in the two materials is obtainable from Eq. 6-07(4): 

J = ñ X H or Jz = —Hy |_o 

The impedance per square (per unit width and unit length) is 

7 — i*~° _ _ I _ _ a U 
•Iz IIy |X_Q A <7 1 

From (4) with 7i and r2 substituted, 

R,i 
(1 + J) 

sinh rid + (ßs2/Äsi) cosh r^d 
.cosh T¡d + (ßs2/ßsi) sinh r^d. (6) 

Curves of ratio of resistance and reactance of the composite con¬ 
ductor to resistance of a conductor made entirely of the coating mate¬ 
rial are plotted in Fig. 6-116 for RS2/Ii,i = 0.34, which corresponds 
roughly to solder on copper. Similar curves are given in Fig. 6-11c 
for a ratio of 1.6, which corresponds roughly to silver on brass. It is 
seen that in both cases the composite conductor becomes about as 
good, or as bad, as though the coating were of infinite depth when the 
coating thickness is greater than 3i, depth of penetration for the 
material of the coating. 

PROBLEMS 

6-lla For the case of R,<z/R,\ = 1.6, find the ratio of the power loss in the 
coating material to that in the base when d/&i = 1. 
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Skin effect quantities for coated conductors. 

6-llb For the conditions of Prob, a, find the ratio of energy stored in magnetic 
fields for the coating material to that in the base. 

6-12 IMPEDANCE OF THIN-WALLED TUBULAR CONDUCTORS 

A study of the current distribution in a solid round wire shows that at 
the higher frequencies the inner part of the conducting material plays 
little part in the conduction. There should consequently be little 
difference in impedance under such skin effect conditions between a 
solid round wire and a hollow tubular conductor of the same outer 
diameter. Certainly this is true when the wall thickness is very large 
compared with the depth of penetration of the conducting material, 
and we would use the same high-frequency equation, Eq. 6-09(1), that 
was developed for a round wire. If this criterion is not satisfied, the 
finite wall thickness must be taken into account. An exact solution 
may be carried through in terms of Bessel functions, but many times 
the wall thickness is small enough compared with wire radius so that 
the analysis of a flat plane conductor of finite thickness may be applied 
well enough. The result for this problem may be lazily found by 
setting conductivity of the lower material equal to zero in the result 
for the composite conductor of Art. 6-11. That is, in Eq. 611(6), set 
Rsi = co. Then, the surface impedance per square 

z -Ä+Ä -(i +i)B.^ (1) 
Sinh rd 

id 
= (1 + j)Rs coth - (1 + j) 

_ o (2) 

R sinh (2d/5) + sin (2d/5) 
R, cosh (2d/ô) — cos (2d/ô) (3) 
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For a tubular conductor satisfying the conditions of wall thickness 
small compared with radius of tube these results may be used directly 
to give impedance per unit length by dividing by the circumference: 

~ Rs sinh (2d/g) + sin (2d/8) 
2irr .cosh (2d/8) — cos (2d/8). 

~ R, sinh (2d/8) - sin (2d/8) 
U * 2rr .cosh (2d/5) — cos Qd/ti). 

where r = outer radius if fields are applied along outside of tube; 
r = inner radius if fields are applied along inside of tube. 

Fig. 612a Thin-walled tubular conductor. Skin effect quantities compared 
with d-c values. 

The high-frequency resistance of the tubular conductor is merely 

ßh.f. =  (“¿Jh.f. = 2irr 

Curves of resistance and internal reactance ratios to high-frequency 
resistance are given in Fig. 6 126, and to d-c resistance in Fig. 642a. 

PROBLEMS 

6-12a Explain qualitatively why the ratio of a-c resistance for a tubular con¬ 
ductor to the a-c resistance of a solid conductor of the same outer radius is always 
less than the ratio of d-c resistances for the two conductors. Explain why the a-c 
resistance of the tubular conductor is always somewhat greater than the a-c 
resistance of the solid conductor. 
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6-12 b The analysis of this article is equivalent to solving for the case of a slab 
conductor of finite depth d, with the boundary condition that tangential magnetic 
field is zero at x = d. Explain why this boundary condition is appropriate for the 
problem. 

6T2c Show that for a tubular conductor of outer radius ro, inner radius r,- with 
voltage applied from the outside, the exact expressions for skin effect resistance 
and reactance are 

r1/2 \ 2/?, r Jo(Tro)Ho^'(Tn) - J o'(Tri) (Trp) 
2rro [jo'(Tro)How '(Trt) - Jo'(Tn)How '(Tro) 

T as in Eq. 6 08(2). 

Fig. 6126 Thin-walled tubular conductor. Skin effect quantities compared with 
values from high-frequency formulas. 

6T2d For a case with ro/8 = 1.25 and ri/S = 1.0, calculate the skin effect 
resistance from the result of the preceding problem and compare with that calcu¬ 
lated from the approximate expression, Eq. 6-12(4). 

6T2e Show that the result of Prob. 612c may be used for a tubular conductor 
with voltage applied at the inner radius, if ro and r, are interchanged. 

Calculation of Inductance 

6-13 INDUCTANCE FROM FLUX LINKAGES; SELF-INDUCTANCE OF 
COAXIAL LINE 

It is the purpose of this section of the chapter to demonstrate by 
example the several methods for finding the self- and mutual induc¬ 
tance coefficients of classical circuit theory discussed in Chapter 5. 
The examples to be chosen will be those for which results are of great 
interest in themselves. The first example will be the important one 
of a coaxial transmission line, and the method to be used will be the 
most familiar one of finding inductance from the flux linkages per 
unit current. 
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From Eq. 5-07(4), the inductance of a closed circuit is 

<» 

or, in words, it is the magnetic flux linking current I, per unit of cur¬ 
rent I. For a coaxial line as pictured in Fig. 613 with axial current I 
flowing in the inner conductor and returning in the outer, the magnetic 

Fig. 613 Coaxial transmission line. 

field is circumferential and for a < r < b is (Art. 2-29) 

For a unit length the magnetic flux between radii a and b is 

» 75 P ( 1 \ j , ò n • do = I M I ”— I dr = — In -
J a \2irr/ 2tt a 

So, from (1), the inductance per unit length is 

L = — In - henrys/meter (3) 
2ir a 

The value obtained in (3) is of course the external inductance of the 
line, giving the contribution to inductance from flux external to con¬ 
ductors (in this case, between the two conductors). If total induc¬ 
tance is desired, the internal inductance of the solid inner conductor 
and of the tubular outer conductor (Arts. 6-10 and 612) must be 
added. 

PROBLEMS 

6-13a A coaxial transmission line has a solid copper inner conductor of radius 
0.20 cm and a tubular copper outer conductor of inner radius 1 cm, wall thickness 
0.1 cm. Find the total impedance per unit length of line for a frequency of 10 
kc/sec, including the internal impedance of both conductors. Accuracy obtainable 
from curves given in the text will be acceptable. 
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6-13b For a coaxial transmission line as described in Prob, a, find the ratio of 
internal inductance from both conductors to the external inductance of the line 
for a frequency of 3000 mc/sec. 

6-14 INDUCTANCE FROM ENERGY STORAGE; INTERNAL INDUCTANCE OF 
ROUND WIRE 

An alternative method for computing inductance which is more 
convenient for many cases arises from a consideration of energy stored 
in the magnetic fields. From a circuit point of view, this is known 
to be where / is the instantaneous current flow through the 
inductance. From field theory, it will be shown in the next chapter 
that the magnetic energy may be found by integrating an energy 
density of Hull2 throughout the volume of significant fields. Equat¬ 
ing these two forms gives 

[l.r- ^H‘dV (1) 
The form of (1) is especially convenient for problems that would 

require consideration of partial linkages if done by the method of flux 
linkages of the preceding article. As an example, consider the calcu¬ 
lation of internal inductance of a round wire of radius r0 at frequencies 
low enough so that current distribution may be considered uniform. 
The magnetic field (Prob. 2-29« and Prob. 2-34c) is 

Zr 
r <r0 (2) 

For a unit length, substituting in (1), 

p. 
or L = — henrys/meter (3) 
This is the result cited as Eq. 6-09(3), and is also obtainable as a limit¬ 
ing case from the a-c analysis of Art. 610. 

PROBLEMS 

6-14a Derive the formula for external inductance of the coaxial line by the 
energy method. 

6-14b Derive the expression for internal inductance of the tubular outer con¬ 
ductor of Fig. 013 for low frequencies. 

6-14c Derive the formula for internal inductance of the plane conductor of 
infinite deptha(Art. 6 05) by the energy method. Suggestion: Use average values 
of stored energy. 
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6-15 MUTUAL INDUCTANCE FROM VECTOR POTENTIAL 

The mutual inductance between two circuits 1 and 2 expresses the 
voltage induced in circuit 1 by unit rate of change of current in circuit 
2, and vice versa. 

M = JÍ12 = d/21 (1) 

This coefficient was discussed in Art. 5-10, and several equations were 
given which might be used for its calculation. We wish to stress 
here the method making use of vector potential Ã. From Eq. 510(3), 

(2) 

where A 2 is the vector potential arising from the current Z2 of circuit 2, 
and the integration is taken about circuit 1. 

Fig. 615a Two square coupling loops. Fig.6156 Parallel current elements 
displaced from one another. 

The use of vector potentials directly is especially helpful in the 
calculation or estimate of mutual inductances for current paths having 
straight line portions. Consider, for instance, the rectangular circuits 
of Fig. 6-15a. We know that for a straight current element the 
potential Ã arising from that element must have just the direction of 
that element, and may be computed from Eq. 5-10(2) when circuit 2 
may be considered a filamentary path. The induced field from chang¬ 
ing magnetic effects, 

- ÔÃ 
E = (3) 01 

has the direction of Ã. Consequently in the system of Fig. 6-15a there 
can be no contribution to voltage in the sides 02 and ò2 from current in 
the sides ci and di, nor any contribution in the sides C2 and di from cur¬ 
rent in the sides ai and bi. The picture obtained from visualizing 
these directive relations is frequently valuable where the circuit con¬ 
figuration is quite complex. Often a quick estimate of coupling may 
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be obtained by replacing portions of current paths by straight line 
sections, estimating the coupling from these. 

PROBLEMS 

6-15a By integration of Eq. 6-15(2), show that the contribution to mutual 
inductance from two parallel line segments displaced as shown in Fig. 6-155 is 

j I (A + 
° |(C + c)'(D + d/J 

+ (C + 71) - (A + 77) 

6155 Apply the above result to the calculation of mutual inductance between 
two square loops used for coupling between open-wire transmission lines as shown 
in Fig. 615a. The length of each side is 0.03 meter; the separation x is 0.01 meter. 
Assume that the gaps at which the lines enter are small enough to be ignored. 

6-15c For the coaxial line of Fig. 613, find vector potential for each of three 
regions by solving the Poisson equation as in Eq. 2-34(4) with proper continuity 
conditions between the regions. With Ã known, apply formula 5-07(2) to find 
self-inductance of the coaxial line (external) in terms of the vector potential. 

6-16 NEUMANN’S FORM; MUTUAL INDUCTANCE BETWEEN COAXIAL 
CIRCULAR LOOPS 

A second derived form for mutual inductance was the Neumann form 
of Eq. 5-10(6): 

,. ß 11 dli • dli , , 

The integrations are performed about the two circuits 1 and 2, with 
Id i and dli representing differential elements of 
length about 1 and 2 respectively. This form is 
in reality exactly the same as that of the pre¬ 
ceding article when one assumes that A 2 in 
the vicinity of circuit 1 may be calculated 
by taking the current of circuit 2 as flowing 
in a filament, as in Eq. 510(2). That is, (1) is 
just a combination of Eqs. 5-10(3) and (2) in a 
single step. 

To demonstrate the application of this form, 
we shall find the mutual inductance between 
the two coaxial circular loops pictured in Fig. 
6-16. If dli is any element of circuit 1, and dli 
circuit 2, 

Fig. 6-16 Two co¬ 
axial circular loops. 

is any element of 

dli • dli = dli a dO cos (I 

r = Vd2 + (a sin B)2 + (a cos 0 — b)2
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By substituting 0 = ir — 2</> and 
4ab 

d2 + (a + b)2

the integral then will be found to become 

M - n 
(2 sin2 </> — 1) d<t> 
V1 — k2 sin2 <> 

This can be broken into two integrals: 

k2 sin2 d> d<t> 

where 

dd> 
V1 — k2 sin2 4> 

(2) 

(3) 

The definite integrals (2) and (3) are tabulated in tables2 as func¬ 
tions of k and are called complete elliptic integrals of the first and 
second kinds respectively. Thus 

A'(fc) - E{k) M (4) 

where k = 2 ab 
d2 + (a + b}2

PROBLEMS 

6-16a From tables of the complete elliptic integrals given in the references, 
plot the form of mutual inductance against d/a for b/a = 1. 

6-16b Investigate the properties of the complete elliptic integrals from the 
references for k « 1 and for k « 1, and obtain approximate expressions for mutual 
inductance for these two cases. 

6-17 MUTUAL INDUCTANCE FROM FLUX LINKAGES 

The third and most common form of mutual inductance is that 
giving M as the flux linking circuit 1 from current in circuit 2, per 

! Dwight, Tables of Integrals, Macmillan, 1947. 
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unit of current in circuit 2, or vice versa. From Eq. 5-10(5), 

(1) 

If inductance is to be calculated from flux enclosed, any of the appro¬ 
priate methods studied in Chapters 2 and 3 may be used for calculating 
fields in the region of circuit 2. For instance, suppose this method 
were to be applied to the two coaxial circular conductors of Fig. 6-16. 
Magnetic field has been given in spherical coordinates as a series of 
spherical harmonics, Eq. 3-33(6): 

2b 
P2 (cos 0) + • • 1 - (2) 

This expression may then be integrated over the region of circuit 1. 
If d/b is much greater than a/b, or if a/b is much less than unity with 
any value of d, a study of the series of (2) shows that H, does not 
vary much over the region of 1, and a good approximation may be 
had by assuming that Hz is substantially constant at its axial value 
over the area of the first loop. Then 

b*I2
2(d2 + b^ 

and 
gira2ò2

2(d2 + b2̂  
henrys (3) 

PROBLEMS 

6-17a Set up the integral for determining flux through circuit 1 when the com¬ 
plete series (2) is to be used. 

6-17& A coaxial line has the radius of the inner conductor as a and inside radius 
of outer conductor as b, and is closed by a conducting plane at z = 0. A square 
loop is introduced for coupling, lying in a longitudinal plane and extending from 
z = 0 to z = d in length and from r = ri to r = rj in radius (a < ri < rj < b). 
Find the mutual between loop and line. 

6-18 SELF-INDUCTANCE BY SELECTED MUTUAL INDUCTANCE; 
INDUCTANCE OF A CIRCULAR LOOP 

In order to discuss the external inductance of an arbitrary closed 
circuit formed by a conductor of circular cross section, let us refer 
to Fig. 5-07a. The induced voltage about a path taken along the 
surface of the conductor following the inner contour of the loop (which 
is appropriate to the external inductance as discussed in Art. 5-07) is 
obtained from the flux enclosed by that path. To compute the flux 
we need the magnetic field, but we note that, for a point P some dis-
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tance from the wire, the field is much the same for a given current in 
the conductor no matter how that current may be distributed over 
the conductor’s cross section. For such a point it is nearly correct 
to calculate field intensity by assuming all current concentrated at 
the center of the conductor. Similarly, at point Q near the wire the 
field is Z/2îrr, where I is the total current in the conductor, provided 
other portions of the conducting path are not near enough to disturb the 
circular symmetry. Field near the wire is then also very nearly the 
same as though current were concentrated at the axis. We conclude 
that field at any point inside the loop may be calculated approximately 
by assuming a current concentrated along the axis of the wire so long 
as the proximity effect from other portions of the conducting path is 
not great enough to disturb the current distribution in the conductor. 
Then the problem of finding the contribution to self-inductance from 
the external flux is very nearly that of finding the mutual inductance 
between a line current along the axis of the wire and a line circuit 
selected along the inner surface of the wire. Any of the methods of 
the past three articles may be used for the calculation. 

As an example of this method, which might be called the selected 
mutual inductance method, let us find the inductance of a circular loop 
of wire. The wire radius is a, and the loop radius is r. The con¬ 
tribution to inductance from external flux, given by the mutual induc¬ 
tance between two concentric circles of radii r and (r — a) may be 
obtained from Eq. 6-16(4): 

Lo = g(2r - a) K(k) - E(k) (1) 

2 _ 4r(r_- a) 
(2r - a)2

K(k) and E(fc) are complete elliptic integrals of first and second kinds as 
defined by Eqs. 616(2) and 616(3). If a/r is very small, k is nearly 
unity, and K and E may be approximated by 

so henrys (2) 

To find total L, values of internal inductance, as listed in Arts. 6 09 
or 6-10, must be added. 
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6-19 INDUCTANCE OF PRACTICAL COILS 

A study of the inductance of coils at low frequencies involves no 
new concepts but only new troubles because of the complications in 
geometry. Certain special cases are simple enough for calculation by 
a straightforward application of previously outlined methods. For 
example, for a circular coil of N turns formed into a circular cross 
section (Fig. 6-19a) we may modify the formula for a circular loop of 
one turn, Eq. (5-18(2), provided the cross section is small compared with 
the coil radius. Magnetic field must be computed on the basis of a 
current NI; in addition, to compute the total induced voltage about 

Fig.619a Cross section of a coil. Fig. 6196 Longitudinal section of long 
solenoid. 

the coil, N integrations must be made about the loop. Equation 
6-18(2) is thus modified by a factor A2. The external inductance for 
this coil is then 

¿o = N2Rn henrys (1) 

For the ot her extreme, the inductance of a very long solenoid (Fig. 
6-196) may be computed. If the solenoid is ong enough, the magnetic 
field on the inside is essentially constant, as for the infinite solenoid 
(Prob. 2-29c): 

where N is the total number of turns and I the length. The flux 
linkages for N turns is then Nir R2 fill 2, and the inductance is 

7TMÄ2A2
Lo =-j ’ henrys (2) 

For coils of intermediate length to radius ratio, empirical or semi-
empirical formulas frequently have to be used.3-4 The famous 
3 Circular 74, “Radio Instruments and Measurements,” National Bureau of 

Standards, 1918. 
4 F. W. Grover, Inductance Calculations, Van Nostrand, 1946. 
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Nagaoka formula6 applies a correction factor K to the formula for the 
long solenoid, (2). The factor K or its equivalent is tabulated in the 
references cited and in many standard handbooks.6 Another simple 
approximate form useful for I > 0.8Ä is7

Lo = henryS (3)

At higher frequencies the problem becomes more complex. When 
tu rns are relatively close together, the assumption made previously in 
calculating internal impedance (other portions of the circuit so far 
away that circular symmetry of current in the wire is not disturbed) 
certainly does not apply. Current elements in neighboring turns will 
be near enough to produce nearly as much effect upon current dis¬ 
tribution in a given turn as the current in that turn itself. Values of 
skin effect resistance and internal inductance are then not as previously 
calculated. External inductance may also be different since changes 
in external fields result when current loses its symmetrical distribution 
with respect to the wire axis. In fact, the strict separation of internal 
and external inductance may not be possible for these coils, for a given 
field line may be sometimes inside and sometimes outside of the 
conductor. 

Self- and Mutual Capacitances 

6-20 THE COEFFICIENTS OF POTENTIAL, CAPACITANCE, AND INDUCTION 

The capacitance term of circuit theory was discussed in terms of 
field theory in Art. 5-08. Under the assumptions applicable to classical 
circuit theory, the term for a two-conductor capacitor assumed its 
common form with capacitance defined as the charge on one con¬ 
ductor divided by the difference of scalar potential between the two. 
This definition is so well known that it has been used for many electro¬ 
static examples in Chapters 2 and 3, and no additional examples need 
be given here. However, the case of several conductors with capaci¬ 
tance coupling between them is also of interest, and will be discussed 
in this section. 

In engineering practice, a problem of capacitance coupling between 
several conductors, as in Fig. 6-20a, is commonly handled by drawing 
an equivalent circuit with a capacitance between each pair of con¬ 
ductors, and from each conductor to ground if the latter coupling is 

‘ Nagaoka, J. Coll. Sei. Tokyo, 27, Art. 6 (1909). 
6 For example, F. E. Terman, Rgdio Engineers’ Handbook, McGraw-Hill, 1943. 
’ H. A. Wheeler, Proc. I.R.E., 16, 1398-1400 (Oct. 1928). 
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of importance. This is illustrated for the problem of Fig. 6-20a in 
Fig. 6-20&. The classical discussion of the several-conductor problem 
is that of Maxwell8 in terms of defined coefficients of potential, capaci¬ 
tance, and induction. Since both points of view have usefulness, it is 
desirable to discuss the relation between the two. The present 
article will define the coefficients of Maxwell, and give certain of their 
properties. 

From the basic equation for scalar potential 4>, Eq. 4-16(3), it is 
evident that, for a system with charge Qi, Q2, • ■ ■ , Qn on n conductors, 

1 

Fig. 6-20 (a) Three bodies in the presence of ground; (b) the equivalent circuit, 

the potential at any point will be linearly related to the several charges. 
Thus, for the potentials $1, $2, • • • , $„ on the n conductors, we 
may write the set of linear equations 

$1 = PllQl + P21Q2 + • • • + PnlQn 

$2 = P12Q1 + P22Q2 + ' - + PniQn (1) 

= PlnQl + PlnQl + ' ' ' + PnnQn 

The coefficients prs are the coefficients of potential, and are all real if 
retardation may be neglected in the computation of T. 

The linear set of equations (1) may be solved for the charges, leading 
to another linear set relating charges to potentials: 

Ql = CnÍ! + C21<ï>2 + ' ' ' + Cnl^n 

Q2 = C12$l + C22^2 + ’ ’ ‘ + Cn2^n (2) 

Qn = Cln'ï’l + C2n^2 + ‘ + Cnn^n 

where crs = ( —l)*+r (3) 
A(p) 

8 James Clerk Maxwell, A Treatise on Electricity and Magnetism, Oxford, 3rd ed., 
1892, Vol. I, pp. 107-118. 
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A(p) is the determinant of the coefficients pr.„ and .l/sr (p) is the minor 
of the rth row and sth column. Above coefficients of the form crr are 
called coefficients of self-capacitance since such a term represents the 
ratio of charge on the rth body to potential on that body, all other 
conductors being grounded. A term of the form crs (r s) represents 
the ratio of charge on s to potential on r when all conductors but r 
are grounded. Coefficients of the latter form are called coefficients 
of induction and are related to the mutual capacitances of the equiva¬ 
lent circuit, as will be shown in the following article. 

important properties of the coefficients of potential, capacitance, 
and induction are: 

1. Reciprocity: crs — csr and prs = psr . 
2. All p’s are positive or zero. 
3. crr is positive or zero. 
4. CrS (r s) is negative or zero. 
5. The sum cri + cr2 + ■ • + crn is positive or zero. 

6-21 CAPACITANCE ELEMENTS IN THE EQUIVALENT CIRCUIT 

To study the relation between the coefficients of potential, capaci¬ 
tance, and induction, and the capacitances appearing in an equivalent 
circuit such as Fig. 6-20&, the first step is that of writing the charge 
equation for the various nodes of the equivalent circuit in terms of 
the potentials. Let us write them for the three-conductor problem 
of Figs. 6-20a, b: 

Qi = Cio^i + —  4> 3) + Ci2(4>i — 4*2) 

Qí = 020^2 + C12(^2 ~ 4>i) + C23(4>2 —  $3) 

Qs = Cso^s + ^23(4*3 — 4> 2) + Ci3(4>3 — 4>i) 

By comparison with the set of equations 6-20(2), 

Cil = Cio + C12 + C13 C12 = “^12 

C22 = C20 + C12 + C23 C13 = -C13 

C33 — Cío + C13 + C23 C23 = —C23 

or 
C10 = Cu + C12 + C13 C12 = —C12 

C 2o = C22 + C12 + C23 ^13 = — C13 

C30 = C33 + C13 + C23 C*23 = — C23 
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Generalizing, the capacitance from the rth conductor to ground is 
just the sum of the coefficient of self-capacitance and all the coefficients 
of induction for that conductor: 

n 

GrO Crs
«=1 

(D 

By the property 5 of Art. 6-20, each of these capacitances to ground is 
positive or zero. The mutual capacitance between element r and s 
is just the negative of the corresponding coefficient of induction: 

^rs — crs (2) 

6-22 ELECTROSTATIC SHIELDING 

In electrostatic shielding between two bodies, as 1 and 3 of Fig. 6-22a, 
it is desired to decrease the capacity coupling between these bodies 
to as small a value as possible. Of course, if a new conductor 2 is intro-

Fig. 6-22a Electrostatic shielding by a 
grounded sphere. 

Fig. 6-226 Partial shielding by a 
grounded conducting plane. 

duced into the field and made to surround either body 1 or 3 com¬ 
pletely, as in Fig. 6-22a, it is evident that a change in potential of 3 can 
in no way influence the charge on 1 and the mutual capacitance 
C13 = 0. Also, for the case pictured Cio = 0, and from Eq. 6-21(1) 

Cu = —C12 = 012 

These characteristics are typical of cases of perfect shielding. 
More often the added conductor may not completely enclose any 

body, so that the capacitance coupling may not be made zero, but 
may only be reduced from its original value. It can be shown that 
any finite conductor as 2 introduced into the field acts to decrease the 
mutual capacitance C13 from its value prior to the introduction of 2, 
and hence provides some decrease in the capacity coupling between 
1 and 3 provided 2 is grounded. However, if 2 is insulated and C2o 
negligible, the effective capacitance between 1 and 3 is seen from the 
equivalent circuit of Fig. 6-206 to be given by C13 in parallel with C12 
and C23 in series: 

(C^eff = C13 + —— 
u 12 ~r C23 
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This value is generally greater than the value of C13 prior to the intro¬ 
duction of 2 (though it need not be if 2 lies along an equipotential 
surface of the original field) ; so, if insulated, the additional conductor 
may act to increase the effective capacitive coupling between 1 and 
3. It often happens that electrodes, although grounded for direct 
current, may be effectively insulated or floating at radio frequencies 
because of impedance in the grounding leads. In such cases the new 
electrodes do not accomplish their shielding purposes but may in fact 
increase capacity coupling. 

PROBLEMS 

6-22a Discuss qualitatively the case of Fig. 6 226 in which two bodies, 1 and 3, 
which are relatively far apart have a conducting plane brought in their vicinity. 
How can you prove that C13 is decreased when the plane is added? What happens 
to the effective capacity between 1 and 3 if the plane is insulated? 

6-226 Suppose that the bodies 1 and 3 of Fig. 6-226 are spheres of radii a 
separated by a distance d with a/d « 1. If the added plane is parallel to the 
line joining their centers and distance 6 from it (a/6<< 1), find C13 before and 
after introduction of the plane, and the effective C13 with the plane present and 
insulated. 

6-23 EXAMPLE: INTERELECTRODE CAPACITANCES OF TRIODE 

Consider the idealized triode with plane cathode, plane anode, and 
a grid of parallel wires as sketched in Fig. 6-23a. With the coordinates 

(a) 
Fig. 6-23 Planar triode with parallel-wire grids and its transformed figure in the 

Z' plane. 

and dimensions as shown on the figure, this two-dimensional problem 
may be transformed to that of Fig. 6-236 by the complex function 

Z' =  g-2^/S e—2TX,'se—j(2ry/s) (D 
In the transformed figure, the anode and cathode have become coaxial 
cylinders of radii ra' and rk, respectively, and each of the grid wires has 
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transformed to a single nearly-circular cylindrical figure centered at 
Z' = 1. It will be assumed that r0/s is less than about 0.2, in which 
case the transformed grid figure may be approximated well enough 
by a circle of radius b. Then, from (1), 

rk = e2»<W* (2) 

ra' = e_2r</»“/s (3) 

6 = 2 sin (—(4) 
X 8 / 

The value of 6 in (4) is found by making the points A and B in the 
Z plane correspond to A' and B' in the Z' plane. 

The problem in the Z' plane may be solved by utilizing a series of 
line images. Actually, for typical triode dimensions, rk as given by 
(2) is very large and ra’ from (3) is very small, so that the transformed 
anode may be considered a line charge and a single imaging of this 
in the transformed grid cylinder may be sufficient. The image is at 
distance 62/l from the center of the grid wire (Art. 2-21) so that the 
three line charges consist of qi at the origin, — qi at Z' = 1 — b2, and 
7i + 72 at Z' = 1. (The choice of the last value is made so that the 
net charge strength on the grid is $2-) Potential is then (Art. 2-16) 

4> = — — [gi hi ri - qi In r2 + (71 + 72) hi r3] + C (5) 
2?re 

Since rk is large, the potential on the cathode may be found by con¬ 
centrating all charges at the axis. Since ra' is small, potential on 
the anode may be found by considering only the charge qi on the axis. 
To find potential on the grid, some point such as Z' = 1 — 6 on the 
grid wire is chosen: 

$k = ~ ~ (71 + 72) hi rk + C (6) 
—7Té 

4>u = — — 71 hi rp' + C (7) 
¿7T€ 

4>a = — — [gt In (1 — 6) — çi In b (1 — 6) + (?i + q2) In 6] + C 
2 ire 

= - In b + C (8) 
2tT€ 
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Although this is a three-conductor problem, one of the conductors may 
be taken as the ground provided coupling to any external ground is 
negligible. Let this be the cathode so that of (6) is set equal to 
zero. The value of C thus determined may be substituted in (7) 
and (8): 

$i = 4>a
1 

2tTC 
Qi In q2 In rk' 

$2 = &g = — 1 
2ire 

— qi In In 

(9) 

(10) 

By comparing (9) and (10) with the set of equations 6-20(1), the 
coefficients of potential for this problem may be written 

dka 
(H) 

es s 

d kg 
(12) P12 = P21 

es 

(13) In 
2ire 8 

2ird 

1 1 Í o ■ — In I 2 sin — 

= In rk
¿ire 

P22 =

1 2irdicg 
2tT€ L 8 

1 
P11 =

In I — 
Vp 

Then by Eq. 6-20(3) the coefficients of capacity and induction are 

1 . io* i --In I 2 sin — J P22 es 2?T€ \ s / 
C“ A(Prs) MPr.) 

_ Pl 2 _ dkg 
12 A(prs) es A(p„) 

_ Pu_ dka 
22 A(prs) es A(pr,) 

where 

(14) 

(15) 

(10) 

dkg 
_ eS 

* z X 2 &(Prs) = PIIP22 - P12 = -
es 

(17) 

Finally, the interelectrode capacitances of the equivalent circuit 
(recalling that the cathode is taken as the ground) are obtainable from 
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Eqs. 6-21(1) and (2): 

Cka = Cio = Cn + C12 = 
2?re 

i ''kg — C20 — C22 + C12 = -77-r 
«S △(Prs) 

r — C ,• k̂g- I 12 = —C12 = ——-7 es A(pr„) 

(18) 

(19) 

(20) 

It is also of interest to note the electrostatic amplification factor of 
the triode (an approximation to the amplification factor defined from 
tube characteristics) defined as the ratio Ckg/Cka' 

Ckg 2ndga

(21) 

This equation is a useful approximation for reasonably large values 
of s/rg, 2nd kg/s, and 2ndga/s. 

PROBLEMS 

6-23a Suppose that 2irdkg/s is not large enough to justify the approximation 
used in computing for Eq. (6). Describe the additional image charges that 
should be added for a next approximation. Describe the image charges that 
should be added if 2ndga/s is not large enough to justify the approximation used in 
computing d’à for (7). 

6'23b Repeat the problem of this article, using the transformation Z' = e2rZ/’ 
so that the cathode transforms to the inner cylinder, the anode to the outer. 



7 PROPAGATION AND 

REFLECTION OF 

ELECTROMAGNETIC WAVES 

7-01 INTRODUCTION 

As soon as Maxwell’s equations are applied to physical systems, as in 
the circuits of Chapter 5, it is observed that, in general, effects from all 
currents and charges are characterized by a retardation or phase delay. 
The ideas of conventional circuit theory, which assume that the effects 
of currents and charges are felt instantaneously over all the circuit, are 
practically exact if we confine ourselves to circuits or regions small 
compared with wavelength. In a large portion of the problems of 
modern radio engineering, the discussion cannot be restricted to such 
small regions. A study of the fields in the region between a trans¬ 
mitting antenna and a receiving antenna, to mention one example, 
must involve a region extremely large compared with wavelength. 
Efficient antenna systems themselves must be at least comparable 
with wavelength in size. At frequencies of the order of billions 
of cycles per second, almost any circuit element large enough 
to be of practical use must have dimensions comparable with 
wavelength. 

The retardation effect leads directly to the regarding of electromag¬ 
netic effects as a wave phenomenon. For, when currents and charges 
change with time, the fields which they cause also change, but with a 
time delay that depends upon the choice of the distances between the 
point at which fields are being determined and the points at which the 
various charges and currents are located. Thus the effect of this 
change travels outward from the charges or currents with a finite 
velocity, depending upon the configuration of the conductors and the 
dielectric constant and permeability of the surrounding medium. This 
is much the same situation as that in the transmission lines studied in 

270 
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Chapter 1, for a change in current or voltage at one point of a line is 
not felt instantaneously over all the line. Instead, it causes an effect 
which travels away from the point of change with a finite velocity, 
depending upon the distributed inductance and capacitance of the 
transmission line. 

Waves propagate along a transmission line, according to the simple 
concepts described in Chapter 1, because a change in current in the line 
produces a voltage drop through the distributed inductance of the line, 
and a change in voltage produces a current through the distributed 
capac itance ot the line. Similarly, now that displacement currents are 
inc hided in the equations, it is apparent that a change in electric field 
produces a magnetic field in any dielectric medium; through Faraday’s 
law we know that a change in magnetic field produces an electric field 
in anj medium with finite permeability. By this analogy, such a wave 
propagation of electric and magnetic fields through any medium with 
finite permeability and dielectric constant should be expected. This 
analogy between transmission line waves and waves in space will be 
seen to be a very complete one, and it allows us to apply directly many 
of the concepts of energy transmission and reflection developed for 
transmission lines to the study of waves in general. 

1 he leader may well ask at this point how we can bring legitimately 
into a discussion of retardation electromagnetics the transmission line 
theory outlined in Chapter 1, when that whole study was based on 
circuit analysis of the conventional type. It is a good question and 
one that will be answered when Maxwell’s equations are applied to 
transmission lines; but first skill must be developed in the use of wave 
ideas to solve electromagnetic field problems. 

This first chapter on wave study will be devoted to the ideas of wave 
propagation in unbounded media and reflection of this wave energy at 
discontinuities. This theory applies directly to the propagation of 
radio waves in space, and their reflection from dielectric, conducting, 
and semi-conducting objects such as the earth. It will, in addition,’ 
form the foundation for later study of waves guided or enclosed by all 
forms of conducting and dielectric boundaries, for it will develop pic¬ 
tures of all boundary condition problems. The wave concepts of this 
and the two following chapters, quite apart from the electromagnetics, 
are largely applications and extensions of those built up in the first 
chapter on oscillations and waves. The mathematics of these chapters 
consists of the solution of a single differential equation, the wave equa¬ 
tion, subject to the initial conditions describing the manner in which 
the wave was originated, and the boundary conditions imposed upon 
it by the dielectric and conducting media. 
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Waves in Unbounded Regions 

7-02 THE WAVE EQUATION 

It has been stated that electromagnetic phenomena in free space may 
frequently best be regarded as wave phenomena. Now Maxwell’s 
equations must be applied to a free dielectric to see the quantitative 
nature of these effects. Consider a dielectric containing no charges 
and with zero conductivity so that there are no conduction currents in 
the dielectric. The field equations are then (Art. 4 07) 

V • D = 0 (1) 

V • B = 0 (2) 

dB 
V XE = - — (3) 

at 

dD 
VXH = — (4) ot 

B = (5) 

D = tË (6) 

Notice that for completeness Eqs. (1) and (2) have been included, 
showing zero divergence of the fields, although they are not required if 
the interest is in steady state a-c components (Prob. 4 076). If the 
dielectric is homogeneous, isotropic, and linear, e and g are constants 
and do not have space or time derivatives. 

To attempt a solution of a group of simultaneous equations, it 
is usually a good plan to separate the various functions of space, 
such as D and B, to arrive at equations that give the distributions 
of each. 

First let us take the curl of (3) 

dH 
V XV X E = -MV X — 

dt 

Then, expanding, 

V(V • Ë) - V2Ë = -gV X 
p/A 
\dt/ 

By remembering that V • È = 0 from (1) and that time and space 
partial derivatives may be taken in any order, and, obtaining V X H 
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from (4), we find 

or 

-^Ë 

V-Ê 
d-Ë 

1 his is the general form of the wave equation. This form applies as 
well to the magnetic field, as is readily shown by taking first the curl 
of (4) and then substituting (2) and (3) : 

d2H 

V H = (8) ot 

I' rom the simple special case of space variation in one dimension 
only, many oí the characteristics of electromagnetic waves can be 
found that will aid in studying more complex cases. If we take the 
X component of (7) and have space variations only in the z direction, 
the equation becomes simply 

This is exactly the form of the one-dimensional wave equation studied 
in Chapter 1. It was shown there that the equation has a general 
solution of the form 

where v = —=
V Me

The first term of (10) represents the wave or function fi traveling with 
velocity V and unchanging form in the positive z direction; the second 
term represents the wave or function /2 traveling with velocity v and 
unchanging form in the negative z direction. It will be helpful to 
anticipate following discussions by pointing out that the commonest 
radio waves at some distance from the antenna and the ground are 
approximately of this simple form with space variations in one direc¬ 
tion only. 

I* or more general cases involving variations in more than one direc¬ 
tion, the solution of the wave equation is not quite so simple, yet the 
general idea of waves propagating with definite velocities can always be 
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obtained from it. Many of these more complicated cases will be 
treated later. 

PROBLEMS 

7-02a Show that the wave equation of the form of Eq. 7 02(7) or 7 02(8), 
applies to scalar potential <h and vector potential Ã in a charge-free dielectric. 

7-02b Show that the wave equation may be written directly in terms of any 
of the components of H, E, or A in rectangular coordinates, or to the axial com¬ 
ponent of H, Ê, or Ã in any coordinate system, bqt not to other components, such 
as radial and tangential components in cylindrical coordinates, or any component 
in spherical coordinates. That is, 

^2 (-j2 
but V^Er ßt -J- # ge-T-> etc. 

at2 at2

7-03 POYNTING'S THEOREM FOR ENERGY RELATIONS IN AN 
ELECTROMAGNETIC FIELD 

The simple transmission line waves studied in Chapter 1 were pri¬ 
marily of interest because of their ability to transfer energy from one 
point to another. Energy transfer may also be accomplished through 
more general types of electromagnetic waves, the amount of the energy 
depending upon the magnitudes, distribution, and phases of the 
electric and magnetic fields of the wave. This dependence will now be 
investigated. 

Let us take a region in which dielectric constant and permeability 
may be functions of position but not of time. Maxwell’s equations, 
written in terms of the total fields, currents, and charges of a region, 
describe the electromagnetic behavior of the region. The two curl 
equations are: 

V X H = ï + — (2) 
dl 

An equivalence of vector operations, Art. 2-39, shows that 

H • (V X Ë) - Ë ■ (V X H) = V • (Ë X H) (3) 

If products in (1) and (2) are taken as indicated by this equivalence 
and added, 

-H ~ - Ë - Ë ï = V ■ {Ë X H) (4) 
dl dl 
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Note that, if e is constant, 

1 d(D • Ë) _ 1 . db 
2 dt ~ 2 dt dt 

Similarly, 1 d(Ë • H) _ - dB 
2 dt dt 

These may be substituted in (4) and 
volume enclosed: 

all terms integrated over the 

V ■ (Ë X H) dV 

From the divergence theorem, Art. 214, the volume integral of 
div (Ë X H) must be the same as the surface integral of Ë X H over 
the surrounding surface: 

f r d (b • h\ d (b • 
dV = - I (È X H) • dS 

s 

(5) 

The term t^2/2 was shown (Art. 2-23) to represent the energy 
storage per unit volume for an electrostatic field. If this interpre¬ 
tation is extended by definition to any electric field,' the second term 
of (5) represents the time rate of increase of the stored energy in the 
electric fields of the region. Similarly, if p//2/2 is defined as the 
density of energy storage for any magnetic field, the first term repre¬ 
sents the time rate of increase of the stored energy in the magnetic 
fields of the region. The third term is the usual ohmic term and so 
represents energy dissipated in heat per unit time. (Or, if ï is made 
up of a motion of free charges, pv„, Ë ■ pêp represents the energy of 
acceleration given these charges; and, if there are sources,. È • ï for 
these sources is of opposite sign and will represent energy added by 
them.) All the net energy term must have been supplied externally. 
Thus the term on the right represents the energy flow into the volume 
per unit time. Changing sign, the rate of energy flow out through the 
enclosing surface is 

W = fsPdS (6) 

where P = Ë X H (7) 
1 For an excellent discussion of the arbitrariness of these definitions, refer to 

J. A. Stratton, Electromagnetic Theory, McGraw-Hill, 1941, p. 133. 
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Although it is known from the proof only that total energy flow out 
of a region per unit time is given by the total surface integral (6), it is 
often convenient to think of the vector P defined by (7) as the vector 
giving direction and magnitude of energy flow at any point in space. 
Though this step does not follow strictly, it will not lead us into pitfalls 
for present applications. 

To demonstrate the interpretation of the theorem, let us take the 
simple example of a round wire carrying direct current Iz (Fig. 7 03). 

Fig. 7 03. 

If R is the resistance per unit length, the electric field in the wire is 
known from Ohm’s law to be 

E, = ItR (8) 

The magnetic field at the surface, or at any radius r outside the wire, is 

The Poynting vector P = Ë X H is everywhere radial, directed 
toward the axis: 

RI 2
Pr = -E JI. = - (10) 

2irr 

If we then make an integration over a cylindrical surface of unit length 
and radius equal to that of the wire, there is no flow through the ends of 
the cylinder since P has no component normal to the ends. All the 
flow is through the cylindrical surface, giving a power flow inward of 
amount 

17 = 2wr(—Pr) = I JR (11) 

We know that this result does represent the correct power flow into 
the conductor, being dissipated in heat. If we accept the Poynting 
vector as giving the correct density of power flow at each point, we must 
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then picture the battery or other source of energy as setting up the 
electric and magnetic fields, so that the energy flows through the field 
and into the wire through its surface. If one happens to like this 
interpretation, it is fine, but the Poynting theorem cannot be con¬ 
sidered a proof of its correctness, for it says only that the total power 
balance for a given region will be computed correctly in this manner. 

It is also instructive to consider the cases for which there will be 
no power flow through the electromagnetic field. Accepting the above 
interpretation of the Poynting vector, we see that it will be zero when 
either E or H is zero, or when the two vectors are mutually parallel. 
Thus, for example, there is no power flow in the vicinity of a system of 
static charges which has electric field but no magnetic field. Another 
very important case is that of a perfect conductor which by definition 
must have a zero tangential component of electric field at its surface. 
Then P can have no component normal to the conductor and there can 
be no power flow through the perfect conductor. 

Finally, we shall give a useful form for the average power in steady 
state a-c problems using the complex notation. If Ë and H are the 
complex vectors representing the electric and magnetic fields in the 
time-periodic ease, the average Poynting vector is 

Pav = i Re (£ X IP) (12) 

The construction of this is exactly similar to that for voltage and cur¬ 
rent in Art. 1T2. 

PROBLEMS 

7-03a Describe the Poynting vector and discuss its interpretation for the case 
of a static point charge Q located at the center of a small loop of wire carrying 
direct current I. 

7 03t> Utilize the solution for electric and magnetic fields for a semi-infinite 
solid as given in Chapter 6 to determine the instantaneous Poynting vector at the 
surface. What does its average value represent? Check the average value by 
using the complex form (12). 

7-03c Show that, if Ë and 11 are the complex multipliers of e’“1, the instan¬ 
taneous Poynting vector may be found as follows: 

P = JRe|(£xH‘) + (Èe’^) X (f7c'"')| 

7-04 UNIFORM PLANE WAVES IN A PERFECT DIELECTRIC 

Consider now the simple case in which there are no variations except 
in one direction, which we shall take as the z direction. Let us expand 
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the curl equations of Maxwell in rectangular coordinates with x and y 
variations set equal to zero: 

V X Ë = -g — 
at 

dEu dHx
—— = u 
dz dt 

dEx dH y 
- = —u —— 
dz dt 

(1) 

(2) 

(3) 

dHy dEx- = — e-
dz dt 

dHx dEy 
- = t-
dz dt 

0-Æ 
dt 

(4) 

(5) 

(6) 

We see first from (3) and (6) that Ez and Hz must both be zero, except 
possibly for constant (static) parts which are not of interest to us in 
the wave solution. That is, the electric and magnetic fields of this 
simple wave are both transverse to the direction of propagation. 

Next, if (2) is differentiated with respect to z, (4) with respect to 
t, and the two results combined, we obtain the one-dimensional form 
of the wave equation in Ex as written in Eq. 7-02(9). This is to be 
expected, for the specializations leading to Eq. 7 02(9) are exactly the 
same as in this article, though the steps of the derivation are somewhat 
different. Then the solution is as in Eq. 7 02(10) and represents a 
wave traveling with velocity v in the positive z direction and another 
traveling with the same velocity in the negative z direction. 

v = - — meters/sec 
V nt 

For free space, 

1 Vo = —= ~ 3 X 10 meters/sec 
V M0«0 

(7) 

(8) 

which is the approximate value of the velocity of light. 
Let us concentrate for the moment on the positively traveling com¬ 

ponent of Ex: 

Ex+ =f1(t- -) (9) 
\ v/ 

From (2) we may find a relation for H^.in the positive wave: 

dHy+ 
dt 

1 dEx+
H dz 
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Integrating, and again ignoring static constants of integration, 

= J-A (t - = Ez- (10) 
’M' V/ 7? 

where = J- (U) 

The quantity y is thus seen to be the ratio of Ex to Hv in a single 
traveling wave of this simple type, and as defined by (11) it may also 
be considered a constant of the medium, and will be a useful parameter 
in the analysis of more complicated waves. It has dimensions of ohms 
and is known as the intrinsic impedance of the medium. For free 
space, 

Vo = 
no 
— ~ 120tt ~ 377 ohms 
«0 

(12) 

If we start with the one-dimensional wave equation in Eu and 
utilize (1), we find that II x for the positive wave is just — EJy. Com¬ 
bining this result with (10), we may write 

Ex+ E + 

Similarly, repeating the steps for a negatively traveling wave, 

These results show a number of things. First, relations (13) and (14) 
are sufficient to require that Ë and H shall be perpendicular to one 
another in each of the traveling waves. They also require that the 
value of E at any instant must be y times the value of II at that instant, 
for each wave. Finally we note that, if Ê X H is formed, it points 
in the positive z direction from (13), and in the negative z direction 
from (14), or in the direction of travel for each wave. These relations 
are indicated for a positively traveling wave in Fig. 7 04. 

The energy relations are also of interest. The stored energy in 
electric fields per unit volume is 

eE2 e 
Uz = — = - (Ex2 + Ev2) (15) 

and that in magnetic fields is 

Uh = = % (H 2 + Hv2) (16) 
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By (13) or (14), UE and UH are equal, so the energy density at each 
point at each instant is equally divided between electric and magnetic 
energy. The Poynting vector for the positive traveling wave is 

P+ = EX+IIU+ - E+l{ + = - ÇE+2 + E/2) (17) 
y 

and is always in the positive z direction except at particular planes 
where it may be zero for a given instant. 

Fig. 7 04 Relations between E 

and H for a wave propagating in 
positive Z direction (out of paper). 

Similarly, the Poynting 
vector for the negatively traveling 
wave is always in the negative z 
direction except where it is zero. 
The time-average value of the 
Poynting vector must be the same 
for all planes along the wave since 
no energy can be dissipated in the 
perfect dielectric, but the instan¬ 
taneous values may be different at 
two different planes, depending upon 
whether or not there is a net 
instantaneous rate of increase or 

decrease in the stored energy between those planes. 
To summarize the properties for a single wave of this simple type, 

which may be described as a uniform plane wave, 
1. Velocity of propagation, v = l/V/ze. 
2. No electric or magnetic field in direction of propagation. 
3. Electric field normal to magnetic field. 
4. Value of electric field y times that of magnetic field at each 

instant. 
5. Direction of propagation given by direction of Ê X H. 
6. Energy stored in electric field per unit volume at any instant 

and any point is equal to energy stored in magnetic field per unit 
volume at that instant and that point. 

7. Instantaneous value of Poynting vector given by E2/^ = yH2, 
where E and 7/ are the instantaneous values of total electric and 
magnetic field strengths. 

PROBLEMS 

7'04a Draw a sketch similar to Fig. 7 04 demonstrating the relations in a 
negatively traveling wave. 

7-04& A step-function uniform plane wave is generated by suddenly impressing 
a constant electric field Ex = C at z = 0 at time t = 0 and maintaining it there¬ 
after. A perfectly conducting plane is placed normal to the z direction at z = 600 
meters. Sketch total Ex and r¡Hy versus z at t = 1 microsec and at Í = 3 microsec. 
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7-05 UNIFORM PLANE WAVES OF SINUSOIDAL FORM 

Although it is of interest to know the characteristics of uniform 
plane waves having arbitrary functions of time as in the last article, the 
most important cases in radio engineering are those having to do with 
steady state sinusoids of a single frequency. If the function of time is 
represented in the complex notation by e’“*, the form for positively 
and negatively traveling wave may be written 

i^(l — jw ft + 'l 
Ex = Ee- vJ + E'e k 17 (1) 

or, with the factor eJ“( understood, 

Ez = Ee~jkl + E'e’kz (2) 

where k = - = w V nt meters 1 (3) 

This constant is the phase constant for the uniform plane wave, since 
by (2) it gives the change in phase per unit length for each wave com¬ 
ponent. It may also be considered a constant of the medium at a 
particular frequency defined by (3), known as the wave number, and 
will be found useful in the analysis of all waves, as will be seen. 

The value of Hv may be found from (2) and the relations of the pre¬ 
ceding article: 

vHv = Ee-jkz - E'eik‘ (4) 

Similar expressions may be written for Ey and qll,. If the instan¬ 
taneous value of Ex is desired, the real part of (1) is taken (Art. 4 09), 
and if the instantaneous value of Hy is desired, e^1 must be put back 
in (4) and the real part taken. Most often these instantaneous 
values are not required. 
The wavelength is defined as the distance the wave propagates in one 

period. It is then the value of z which causes the phase factor to 
change by 2t: 

2ir V 
or X = -= = - (6) 

u V J 

This is the common relation between wavelength, phase velocity, and 
frequency. The free-space wavelength is obtained by using the velocity 
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of light in free space in (6) and is frequently used at the higher fre¬ 
quencies as an alternative to giving the frequency. 

It is also of interest to note the average value of the Poynting vector 
in this case. From Eq. 7 03(12), 

(Pz)av = J Re (EXHU* - EVH*) =- (¿7 + E J) = 1 | E |2 (7 
¿ ¿7] ¿r) 

where | E | is the peak magnitude of the sinusoidal electric field vector. 
Relation (7) could also be deduced directly from the facts that E and 
H are everywhere at right angles and in time phase and that the 
average value of a sin2 term is 

7-06 POLARIZATION 

Since the wave equation is a linear equation any solution to it may 
be built up as the sum of other solutions. Many complex electro¬ 
magnetic wave distributions might, if desired, be considered as made 
up of a large number of the simple plane waves with different magni¬ 
tudes, phases, and directions of propagation. For most purposes this 
viewpoint is of little value except as a concept, and other methods to 
be given later will serve better for actual analysis. However, if we 
are studying the important practical case where a combination of plane 
waves exists such that all have the same direction of propagation, 
there is a definite advantage in considering these as a superposition 
of the individual plane waves and analyzing by obtaining the behavior 
of each individual wave. The orientations of the field vectors in these 
waves are often described by the polarization of the wave. In this 
discussion we are primarily concerned with sinusoidal waves of the 
same frequency. 

For a single uniform plane wave, it has been seen that electric and 
magnetic field vectors are always at right angles and always maintain 
their respective orientations at every point along the wave. A com¬ 
bination of plane waves all propagating in the same direction, with 
arbitrary orientations of the field vectors, arbitrary magnitudes, and 
random phases is called an unpolarized wave (Fig. 7 06a). 

If the electric field vector of the wave lies always in a given direc¬ 
tion, the wave is said to be plane polarized (op, sometimes, linearly 
polarized). This condition results when all the superposed waves 
have electric field in the same direction, or if they are in different direc¬ 
tions but of exactly the same phase (Fig. 7 04). In radio engineering, 
it is common to describe the polarization by the plane of the electric 
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vector, so that a case as described in Figs. 7 066,c would be described 
as vertical and horizontal polarization, respectively. In optics the con¬ 
vention utilizes the magnetic field to define the plane of polarization, 
but in either case it is best to avoid ambiguity by specifying explicitly, 
as “polarized with electric field in the vertical plane.” 

If there is a combination of two uniform plane waves of the same 
frequency, but of different phases, magnitudes, and orientations of the 
field vectors, the (resultant combinãlíõA is said to be an elliptically 
polarized wave. To see the reason for this, we may first break each 
wave into its two separate component waves, one with electric vector 
in the x direction, the other with electric vector in the y direction. 
The two x components add to produce a wave of given magnitude and 

(b) (0 
Vertically Horizontally 
Polarized Polarized 

Elliptically 
Polarized 

(e) 
Circularly Polarized 

Fig. 7 0C>a-e. 

phase angle. This will be written for this study directly in terms of 
cosines rather than in the exponential or complex form: 

Ex — Ei cos 01 (1) 

The two y components add to produce a wave of different magnitude 
and phase angle. 

(2) 

In any given plane, say z = 0, these reduce to equations of the form 

Ex = Ei cos wt 

Eu = Ei cos (ut + 
(3) 

These are the parametric equations for an ellipse. The terminus of the 
electric field vector then traces an elliptic path in a plane normal to the 
direction of propagation. This is the reason for the name elliptic 
polarization (Fig. 7 06d). 

If the two waves above combine so that total x and y components are 
equal and 90° out of time phase, the ellipse reduces to a circle, and the 
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wave is said to be circularly polarized. Thus, if 

7T 
^ = + - and Ei = E2 

Ex2 + Eu2 = El2 (4) 

which is the equation of a circle (Fig. 7-06e). The instantaneous 
angle a between the electric vector and $he x axis can be found simply 

Fig. 7 06/. 

(Fig. 7-06/): 

= +wt (5) 
+ Ei sin ut 

. Ei cos ut . 
_. Ey 

a = tan — = tan 

Thus the vector is seen to rotate at a uniform 
rate with angular velocity equal to 2tt/. It 
rotates in a clockwise sense, looking in the 
direction of propagation, if is — tt/2, and in a 
counterclockwise sense if is +ir/2. The former 
is said to be right-hand circular polarization, and 

the latter is called left-hand circular polarization. 

PROBLEMS 

-- 7-06a Show that any arbitrary elliptically polarized wave may be broken up 
into right-hand and left-hand circularly polarized components instead of the two 
plane-polarized components. 

7-06b Write the expressions corresponding to (1) and (2) in complex notation. 
Show that the general representation for an elliptically polarized wave in complex 
notation may then be written 

È = (Eo +jËb)e-’k‘ 

where Ea and Êb are two real vectors, not in general mutually perpendicular. 
Relate Ëa and Ëb to Ei, Ei, and 

7-06c Starting with the general complex representation for E of Prob, b, use 
Maxwell’s equations to obtain the corresponding form for H. 

T-OM Sketch the locus of the vector for E\ = 1, Ei = and — t/2; also 
for Ei = Ei = 1 and = tt/4. 

Reflection of Waves from Conductors and Dielectrics 

7-07 REFLECTION OF NORMALLY INCIDENT PLANE WAVES FROM 
PERFECT CONDUCTORS 

If a single-frequency uniform plane wave is normally incident on a 
plane perfect conductor located at z = 0, we know that there must be 
some reflected wave in addition to the incident wave. One reason for 
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this is that the boundary conditions cannot be satisfied by a single one 
of the traveling wave solutions, but will require just enough of the two 
so that the resultant electric field at the conductor surface will be 
zero for all time. From another point of view, we would expect the 
reflected wave since we know that energy cannot pass the perfect 
conductor from the Poynting theorem. Hence all energy brought 
by the incident wave must be returned in a reflected wave. In this 
simple case the incident and reflected waves-are of equal amplitudes, 
and together form a standing wave pattern whose properties will now 
be studied. 

For a single plane wave, select the orientation of axes so that total 
electric field lies in the x direction and include waves traveling in both 

Fig. 7 07 Reflection of a uniform plane wave from a perfect conductor. 

the positive and negative z directions (Fig. 7 07): 

If Ex = 0 at z = 0 for all values of time, E' = — E. 

Ex = E(e~ißz - e^e’“1

but eix = cos X + j sin x 

So Ex = -2jE sin ßz e’ul (1) 

The relation of the magnetic field to the electric field fbr the incident 
and reflected waves is given by Eqs. 7 04(13) and (14). Hence, 

IE E' \ jj _ I_fc)_j 
“ M V / 

= - (e~iBz + 
V 

2E 
= — cos ßz e1“1 (2) 
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Equations (1) and (2) state that, although total electric and mag¬ 
netic fields for the combination of incident and reflected waves are still 
mutually perpendicular in space and related in magnitude by they 
are now in time quadrature. The pattern is a standing wave pattern 
since a zero of electric field is always at the conductor surface, and also 
always at ßz = — nit or z = —nX/2. Magnetic field has a maximum 
at the conductor surface, and there are other maxima each time there 
are zeros of electric field. Similarly, zeros of magnetic field and max¬ 
ima of electric field are at ßz = (2n + l)r/2, or z = -(2n + l)X/4. 
1 his situation is sketched in Fig. 7.07, which shows a typical standing 
" av e pattern such as was found for the shorted transmission line in 
Chaptei 1. At an instant in time, occurring twice each cycle, all 
the energy oi the line is in the magnetic field; 90° later the energy is 
stored entirely in the electric field. The average value of Poynting 
vector is zero at every cross-sectional plane; this emphasizes the fact 
that on the average as much energy is carried away by the reflected 
wave as is brought by the incident wave. 

PROBLEM 

7 07 Write expressions for the instantaneous values of Ex, Hu, and the Poynting 
vector P„ Evaluate the instantaneous stored energy in electric fields and in mag¬ 
netic fields for a region extending from z = -X/4 to z = 0. Note that the sum 
of these two energies is constant. 

7-08 TRANSMISSION LINE ANALOGY OF WAVE PROPAGATION - THE 
IMPEDANCE CONCEPT 

In the above problem of wave reflections from a perfect conductor, 
we found all the properties previously studied for standing waves on 
an ideal transmission line. The analogy between the plane tvave 
solutions and the waves along an ideal line is in fact an exact and com-
plete one. It is desirable to make use ot this whether one starts with 
a study of classic transmission line theory and then undertakes the 
solution of wave problems, or proceeds in the reverse order. In either 
case the algebraic steps worked out for the solution of one system need 
not be repeated in analyzing the other; any graphical aids (such as 
the Smith transmission line chart) developed for one may be used for 
the other, any experimental techniques applicable to one system will 
in general have their counterparts in the other system. We wish now 
to show the basis for this analogy. 

Let us write side by side the equations for the field components in 
positively and negatively traveling uniform plane waves and the corre¬ 
sponding expressions found in Chapter 1 for an ideal transmission line. 
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that the wave has Ex and so axes 

(5) (1) 

(6) (2) 

(7) ß — u V LC (3) 

(8) Zo = (4) 

(9) 

'L 
C 

We see that, if in the field equations we replace Ex by voltage V, II v 
by current I, permeability g by inductance per unit length L, and 
dielectric constant e by capacitance per unit length C, we get exactly 
the transmission line equations (5) to (8). To complete the analogy, 
we must consider the continuity conditions at a discontinuity between 
two regions. For the boundary between two dielectrics, we know 
that total tangential electric and magnetic field components must be 
continuous across this boundary. For the case of normal incidence 
(other cases will be considered separately later), Ex and Hv are the 
tangential components, so these continuity conditions are in direct 
correspondence to those of transmission lines which require that total 
voltage and current be continuous at the junction between two trans¬ 
mission lines. 

In order to exploit this analogy fully, it is desirable to consider the 
ratio of electric to magnetic fields in the wave analysis, analogous to 
the ratio of voltage to current which is called impedance and used so 
extensively in the transmission line analysis. It is of course a good 
idea to use ratios such as this in the analysis, quite apart from the 
transmission line analogy or the name given these ratios, but in this 
case it will be especially useful to make the identification with imped¬ 
ance because of the large body of technique existing under the heading 
of “impedance matching” in transmission lines, most of which may be 
applied to problems in plane wave reflections. Credit for properly 
evaluating the importance of the wave impedance concept to engineers 
and making its use clear belongs to S. A. Schelkunoff.2

At any plane z, we shall define the field or wave impedance as the 
ratio of total electric field to total magnetic field at that plane: 

Uy For simplicity we orient the 
components only: 

E^z) = Ee-^ + E'e*1

II¿z} = - [Ee~jkl - E'e’kz ] 
v 

k = ai \ yi 

- ff H v(z) 

2 See, for instance, Bell Sys. Tech. J., 17, 17-48 (Jan. 1938). 

M 
v = V-’ e 

V(z) = Ve-’^ + V'e^ 

I(z) = - V'ejßz ] 
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For a single positively traveling wave this ratio is v at all planes, so 
that 77,'which has been called the intrinsic impedance of the medium, 
might also be thought of as a characteristic wave impedance for uniform 
plane waves. For a single negatively traveling wave the ratio (9) is 
— ij for all z. For combinations of positively and negatively traveling 
waves, it will vary with z. The input value Z,- distance I in front of a 
plane at which the load” value of this ratio is given as ZL may be 
found from the corresponding transmission line formula, Eq. 1-21(10), 
taking advantage of the exact analogy. The intervening dielectric 
has intrinsic impedance 77: 

\ZL cos kl + jn sin kl' 
zi = V -n L -7 • ,7 (io) 77 cos kl + jZL sin kl] 

It may be argued that in wave problems one is primarily concerned 
with reflections and not with impedances directly. This is true, but 
as in the transmission line case there is a one-to-one correspondence 
between reflection coefficient and impedance mismatch ratio. The 
analogy may again be invoked to adapt Eqs. 119(4) and (5) to give 
the reflection and transmission coefficients for a dielectric medium of 
intrinsic impedance 77 when it is terminated with some known load 
value of field impedance ZL: 

Ex2 2Zl

T = p“+ = FTT- 12Exi ZL + 77 

We see from this that there is no reflection when ZL = 77 (i.e., when 
impedances are matched). There is complete reflection, | P | = 1, 
when Z,. is zero, infinity, or is purely imaginary (reactive). Other 
important uses of formulas (10) and (11) will follow in succeeding 
articles. 

PROBLEMS 

7-08<z Obtain the expression for the field impedance for any point z to the left 
of the conducting plane in Art. 7 07. 

7-08t> Write the formulas for a uniform plane wave with Eu and Hx only, and 
give the correspondence to voltage and current in the transmission line equations. 

7-09 NORMAL INCIDENCE ON A PERFECT DIELECTRIC 

If a uniform plane wave is normally incident on a single dielectric 
boundary from a medium with V pi/ti = 771 to one with a/M2A2 = ’72, 
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the wave reflection and transmission may be found from the concepts 
and equations of the last article. Select the direction of the electric 
field as the x axis, and the direction of propagation of the incident 
wave as the positive z direction, with the boundary at z = 0 (Fig. 
7 09a). The medium to the right is assumed to be effectively infinite 
in extent, so that there is no reflected wave in that region. The field 
impedance there is then just the intrinsic impedance 172 for all planes, 
and in particuiar this becomes the known load impedance at the plane 

Fig. 7-09a Reflection anil 
transmission at a plane 
boundary between two 

media. 

Æ=Standing Wave of Electric field 
T= Traveling Wave 

Fig. 7 096. 

z = 0. Applying Eq. 7-08(11) 
medium 1 referred to z = 0, 

to give the reflection coefficient for 

Hyl _ >12 — ’ll 
Hyl V2 + ’ll (D 

The transmission coefficient giving the amplitude of transmitted wave 
into the second dielectric, from Eq. 7-08(12), is’ 

EX1 vi Hvi 
-V2 

V2 + ’ll (2) 

From (1), we see that there is no reflection if there is a match of 
impedances, th = 172- This would of course occur for the trivial case 
of identical dielectrics, but also for the case of different dielectrics if 
they could be made with the same ratio of g to e. This latter case is 
not of practical importance since we do not commonly find high-
frequency dielectric materials with permeability different from that 
of free space, but it is interesting since we might not intuitively expect 
a reflectionless transmission in going from free space to a dielectric 
with both dielectric constant and permeability increased by, say, 
ten times. 
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In the general case there will be a finite value of reflection in the first 
region, and from (1) we can show that the magnitude of p is always 
less than unity. (It approaches unity as vz/vi approaches zero or 
infinity.) The reflected wave could then be combined with a part of 
the incident wave of equal amplitude to form a standing wave pattern 
as in the case of complete reflection studied in Art. 7 07. The remain¬ 
ing part of the incident wave could then be thought of as a traveling 
wave carrying the energy that passes on into the second medium. 
The combination of the traveling and standing wave parts then pro¬ 
duces a space pattern with maxima and minima, but with the minima 
not zero in general. As in the corresponding transmission line case, 
it is convenient to express the ratio of a-c amplitude at the electric 
field maximum to the minimum a-c amplitude (occurring a quarter¬ 
wavelength away) as a standing wave ratio S: 

_ I Ex̂  max 

I E x(z) min 

By utilizing (1), it may be shown for this case that 

{
’I2A1 if 5)2 > Vl 
I 7 (4)

Since 771 and 772 are both real for perfect dielectrics, p is real and the 
plane z = 0 must be a position of a maximum or minimum. It is a 
maximum of electric field if p is positive, since reflected and incident 
waves then add, so it is a maximum of electric field and minimum of 
magnetic field if 772 > 71. The plane z = 0 is a minimum of electric 
field and a maximum of magnetic field if rn > t¡2. These two cases 
are sketched in Fig. 7 096. 

PROBLEMS 

7 09a Write the total electric field and total magnetic field for z < 0 and for 
z > 0 for the case of reflection from a single dielectric boundary as studied above. 

7-09b For a certain dielectric material of effectively infinite depth, reflections 
of an incident plane wave from free space are observed to produce a standing wave 
ratio of 2.7 in the free space. The face is an electric field minimum. Find the 
dielectric constant. 

7-10 REFLECTION PROBLEMS WITH SEVERAL DIELECTRICS 

We shall next be interested in considering the case of several parallel 
dielectric discontinuities with a uniform plane wave incident in some 
material to the left, as pictured in the case for three dielectric materials 
in Fig. 7-10. One might at first be tempted to treat the problem by 

(3) 
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considering a. series of wave reflections, the incident wave breaking 
into one part reflected and one part transmitted at the first plane; of 
the part transmitted into region 2 some is transmitted at the second 
plane and some is reflected back toward the first plane; of the latter 
part some is transmitted and some reflected, and so on through an 
infinite series of wave reflections. This lengthy procedure can be 
avoided by considering total quantities at each stage of the discussion, 
and again the impedance formula¬ 
tion is useful in writing down the 
solution. 

If the region to the right has 
only a single outwardly propagating 
wave, the wave or field impedance 
at any plane in this medium is 
which then becomes the load im¬ 
pedance to place at z = I. The 
input impedance for region 2 is then 
given at once by Eq. 7-08(10), and, 
since this is the impedance at z = 0, it may also be considered the load 
impedance for region 1 : 

t)3 cos kjl + jv2 sin j. 
ZL1 Z.2 V2 cos gjn

The reflection coefficient in region 1, referred to z - 0, is given by 
Eq. 7-08(11): 

= ~J1 (2) 
Zl\ + ’ll 

In such problems we are often most interested in the ratio of power in 
the reflected wave to that in the incident wave, and this ratio is given 
by the square of the magnitude of (2), as can be shown by considering 
the Poynting vectors: 

If there are more than the two parallel dielectric boundaries, the 
process is simply repeated, the input impedance for one region becom¬ 
ing the load value for the next, until one arrives at the region in which 
reflection is to be computed. It is of course desirable in many cases 
to utilize the Smith chart described in Art. 1-23 in place of (1) to 
transform load to input impedances, and to compute reflection coeifi-
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cient or standing wave ratio once the impedance mismatch ratio is 
known, just as the chart is used in transmission line calculations. 

e now wish to consider several special cases which are of impor¬ 
tance. 

A. ave Dielectric Window. If the input and output dielec¬ 
trics are the same in Fig. 7-10, -q\ = 773, and the intervening dielectric 
window is some multiple of a half-wavelength referred to medium 2, 
kïl = mir, (1) gives 

ZlI =  Vs — Vl 
and from (2) 

P = 0 (4) 

Hence, there is no reflection from such a window since the impedance 
seen at the input face is the same as that at the output. 

B. Electrically Thin H indow. If 771 = 773 and kJ is so small com¬ 
pared with unity that all powers higher than the first may be neglected, 
(1) becomes to this approximation 

Zia ~ V2 
V\ + jvikj 

V2 + jvikj. 
~ VI 

Substituting in (2), 

P ~ 
. kil 
J 2 (5) 

The magnitude of reflection coefficient is thus proportional to the elec¬ 
trical length of the dielectric window for small values of kJ; and the 
fraction of incident power reflected is then proportional to the square 
of this length. 

C. Quarter-Wave Coating for Eliminating Reflections. Another 
important case is that of a quarter-wave coating placed between two 
different dielectrics. If its intrinsic impedance is the geometric mean 
of those on the two sides, it will eliminate all wave reflections for 
energy passing from the first medium into the third. To show this, 
let 

From (1), 
V2 - s/viVz 

V2 ViVi 
¿i = — = — = vi 

Ví Ví 

(6) 

and from (2) 
P = 0 (7) 
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This technique is used, for example, in coating optical lenses to decrease 
the amount of reflected light, and is exactly analogous to the technique 
of matching transmission lines of different characteristic impedances 
by introducing a quarter-wave section having characteristic impedance 
the geometric mean of those on the two sides. In all cases the match¬ 
ing is perfect only at specific frequencies for which the length is an 
odd multiple of a quarter wave, but is approximately correct for 
bands of frequencies about these values. 

PROBLEMS 

7-10a Calculate the reflection coefficient and per cent of incident energy 
reflected-when a uniform plane wave is normally incident on a Plexiglas radome 
(dielectric window) of thickness % in., dielectric constant t' = 2.8, with free space 
on both sides. Frequency corresponds to free-space wavelengt h of 20 cm. Repeat 
for 10 cm ; for 3 cm. 

7-10b For a sandwich-type radome consisting of two identical thin sheets 
(thickness 1.5 mm, dielectric constant e' = 4) on either side of a thicker foam-type 
dielectric (thickness 1.81 cm, dielectric constant «' = 1.1), calculate the reflection 
coefficient for waves striking at normal incidence. Take frequency 3 X 109 cps; 
repeat for 6 X 109 cps. Suggestion: Use the Smith chart of Art. 1-23. 

7-10c A quarter-wave matching coating is designed to eliminate reflections for 
waves of frequency 3000 mc/sec passing normally from space into the body of a 
material with relative dielectric constant lö. Find the thickness of the coating 
and its dielectric constant. Plot a curve showing percentage of incident energy 
reflected as a function of frequency for normally incident waves of frequencies in 
the range 1000 mc/sec to 0000 mc/sec. 

7-11 INCIDENCE AT ANY ANGLE ON PERFECT CONDUCTORS 

We now wish to remove the restriction to normal incidence which 
has been assumed in all the preceding examples. It is possible and 
desirable to extend the impedance concept to apply to this case also, 
but before doing this we shall consider the reflection of uniform plane 
waves at arbitrary incidence from a perfect conductor in order to 
develop certain ideas of the behavior at oblique incidence. It is also 
convenient to separate the discussion into two cases, polarization with 
electric field in the plane of incidence, and normal to the plane of 
incidence. Other cases may be considered a superposition of these 
two. The plane of incidence is defined by a normal to the surface on 
which the wave impinges, and a ray following the direction of propa¬ 
gation of the incident wave. That is, it is the plane of the paper as 
we have drawn sketches in this chapter. 

A. Polarization with Electric Field in the Plane of Incidence. In 
Fig. 71 la the ray drawn normal to the incident wave front makes an 
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angle 6 with the normal to the conductor. We know that, since energy 
cannot pass the perfect conductor, there must be some reflected wave, 
and we draw its direction of propagation at some unknown angle 6'. 
he electric and magnetic fields of both incident and reflected wave 

must he perpendicular to their respective directions of propagation by 
the properties of uniform plane waves (Art. 7 04), so the electric fields 
may be drawn as shown by Ë and Ë'. The corresponding magnetic 
helds H and H' are then both normally out of the paper, so that 
h X //will give the direction of propagation for each wave. More¬ 
over, with the senses as shown, 

E E' 
Tl = TV = V œ 

If we draw a f direction in the actual direction of propagation for 
the incident wave as shown, and a f' direction so that the reflected 

wave is traveling in the negative f' direction, we know that the phase 
factors for the two waves may be written as e~ik  ̂and e]kt', respectively 
1 he sum of incident and reflected waves at any point x,z(z < 0) could 
be written 

E(x,z) = Èe~ikí 4- È'e’k{' (2) 

where Ë and Ë' are reference values at the origin. We wish, however, 
to express all coordinates in terms of the rectangular system aligned 
with the conductor surface. The conversion of f and f' from the dia¬ 
gram is 

= X sin d + z cos e (3) 

f' = — a: sin 6' + z cos e' (4) 
so that, if these are substituted in the phase factors of (2), and the two 
waves broken into their x and z components, we have 
E^x^ 

Et{x,z) 

= E COS de~ik cos» _ E, cos 8in »>+l co8»') 
= E sin öe-f*^3in«+Bcos«) + £.z sin ̂-gjtí-xsiní'+Bcosí') 



7-11 PROPAGATION AND REFLECTION OF WAVES 295 

The magnetic field in the two waves is 

II (x z) = He~ sin cos + H'e^—x sin 6 +z cos 9 ) (7) 

The next step is the application of the boundary condition of the 
perfect conductor, which is that, at z = 0, Ex must be zero for all x. 
From (5), 

E/z,0) = E cos 0e-^ sin ’ - E' cos 0'e-^’’ = 0 (8) 

This equation can be satisfied for all x only if the phase factors in the 
two terms are equal, and this in turn requires that 

d = e' (9) 

That is, the angle of reflection is equal to the angle of incidence. With 
this result in (8), it follows that the two amplitudes must be equal: 

E = E' (10) 

If the results (9) and (10) are substituted in (5), (6)> and (7), we have 
the final expressions for field components at any point z < 0: 

E^x^ = — 2jE cos d sin (kz cos 6 (11) 

E^z) = 2E sin 9 cos (kz cos (12) 

nll^x^ = 2E cos (kz cos 9)e-ikxAn, (13) 

The above field has the character of a traveling wave with respect 
to the x direction, but that of a standing wave with respect to the z 
direction. That is, Ex is zero for all time at the conducting plane, and 
also in parallel planes distance nd in front of the conductor, where 

2 cos 9 2f Vue cos 3 

The a-c amplitude of Ex is a maximum in planes an odd multiple of 
d/2 in front of the conductor. Hu and Ex are maximum where Ex 

is zero, are zero where Ex is maximum, and are everywhere 90° out 
of time phase with respect to Ex. Perhaps the most interesting 
result from this analysis is that the distance between successive maxima 
and minima, measured normal to the plane, becomes greater as the 
incidence becomes more oblique. A superficial survey of the situ¬ 
ation might lead one to believe that they would be at projections of the 
wavelength in this direction, which would become smaller with 
increasing 6. This point will be pursued more in the following article. 
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B. Polarization with Electric Field Normal to the Plane of Incidence. 
Tii This case (Fig. 7- 11b) E and Ë' are normal to the plane of the paper, 
and H and H' are then as shown. Proceeding exactly as above, we 
can write the components of the two waves in the x,z system of coordi¬ 
nates as 

Eyix^) = Ee~ikix*in,+,co>,) + E'ejkl-~x sin e'+z cos9 ') (15) 

T]IIx(x,z) = —E COS «“*+*««•) _|_ cos ̂ ytí-ZBÍní'+zcos»') 

(16) 

riHt(x,z) = E sin öe-^^sin«+icoS 9) E , sin ^(-«sinO'+zcos»') (p) 

The boundary condition at the perfectly conducting plane is that Ey 

is zero at z = 0 for all x, which by the same reasoning as above leads 
to the conclusion that 0 = O' and E = —E'. The field components, 
(15) to (17), then become 

E y = —2jE sin (kz cos O'je- 1̂“"’ (18) 

VHX = -2E cos 6 cos (kz cos (19) 

nil ¡ = — 2jE sin 0 sin (kz cos ö)c— • (20) 

This set again shows the behavior of a traveling wave in the x direc¬ 
tion and a standing wave pattern in the z direction with zeros of Ey 

and II x and maxima of II x at the conducting plane and at parallel 
planes distance nd away, with d given by (14). 

PROBLEMS 

Write the instantaneous values of the field components corresponding to 
(lljto (13) above. Write the average and instantaneous component of Poynting 
vector in the x direction; in the z direction. 
7-llb Repeat Prob, a for the other polarization, (18) to (20). 

7-12 PHASE VELOCITY AND IMPEDANCE FOR WAVES AT OBLIQUE 
INCIDENCE 

A. Phase Velocity. Let us consider an incident wave, such as that 
of the last article, traveling with velocity v = 1/Vge in a positive 
direction, which makes angle 0 with a desired z direction aligned nor¬ 
mally to some reflecting surface. We saw that it was possible to 
express the phase factor in terms of the x and z coordinates: 

Ë(x,z) = Ëe~jki = Ëe~jk(xsiDe+z cos 9) (1) 

For many purposes it is desirable to concentrate on the change in phase 
as one moves in the x direction, or in the z direction. We may then 
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define the two phase constants for these directions: 

ßx = k sin 8 (2) 

ßz = k cos 8 (3) 

Wave (1) may then be written (putting in e;“t explicitly) 

Ë(x,z,t) = (4) 

If we wish to keep the instantaneous phase constant as we move in 
the x direction, we keep wt — ßxX constant (the last term does not 
change if we move only in the x direction), and the velocity required 
for this is defined as the phase velocity referred to the x direction: 

V 
dx 
dl I (wt — ßtx) = const ßx 

W 1 V 
or vpi = —— = —-

k sin 8 \ ge sin 6 sin 0 

Similarly for the z direction, 

o> V 
ßx cos 8 

where v is the velocity normal to its wave front, 1/V nt. 
We see that in both cases the phase velocity is greater than the 

velocity measured normal to the wave front, and will in fact be so for 
any oblique direction. There is 
no violation of relativistic prin¬ 
ciples by this result, since no 
material object moves at this 
velocity. It is the velocity of a 
fictitious point of intersection of 
the wave front and a line drawn in 
the selected direction. Thus in 
Fig. 7-12, if a plane of constant 
phase aa moves to a'a' in a given 
interval of time, the distance 
moved normal to the wave front is 
XX', but the distance moved by this 
z direction BO is the 

Fig. 712 Uniform plane wave moving 
at angle e toward a plane. 

constant phase reference along the 
Since greater distance YY'. 

YY' = XX' sec 8 

this picture would again lead to the result (6) for phase velocity in the 
z direction. 
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The concept of a phase velocity, and the understanding of why it 
may be greater than the velocity of light, is very necessary to the dis¬ 
cussion of guided waves in later chapters, as well as to the remainder 
of this chapter. 

B. Wave Impedance. In the problems of oblique incidence on a 
plane boundary between different media, it is also useful to define the 
wave or field impedance as the ratio of electric to magnetic field com¬ 
ponents in planes parallel to the boundary. The reason for this is 
the continuity of the tangential components of electric and magnetic 
fields at a boundary, and the consequent equality of the above defined 
ratio on the two sides of the boundary. That is, if the value of this 
ratio is computed as an input impedance for a region to the right in 
some manner, it is also the value of load impedance at that plane for 
the region to the left, just as in the examples of normal incidence. 

Thus, for incident and reflected waves making angle 0 with the 
normal as in Art. 7-11, we may define a characteristic wave impedance 
referred to the z direction in terms of the components in planes trans¬ 
verse to that direction. From Eqs. 711(5) and (7) for waves polarized 
with electric field in the plane of incidence, 

Superscripts + and — refer, respectively, to incident and reflected 
wave; the sign of the ratio is chosen for each wave to yield a positive 
result. From Eqs. 711(15) and (16) for waves polarized with electric 
field normal to the plane of incidence, 

E + E “ 
= - ^ = n sec 0 (8) 

We see that, for the first type of polarization, the characteristic wave 
impedance is always less than y, as we would expect since only a com¬ 
ponent of total electric field lies in the transverse x-y plane, whereas 
the total magnetic field lies in that plane. In the latter polarization, 
the reverse is true and Z¡ is always greater than y. 

The interpretation of the example of the last article from the above 
point of view is then that the perfect conductor amounts to a zero 
impedance or short to the transverse field component Ex. We would 
then expect a standing wave pattern in the z direction with other zeros 
at multiples of a half-wavelength away, this wavelength being com¬ 
puted from phase velocity in the z direction. This leads again to the 
result Eq. 7-11(14). 
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7-13 INCIDENCE AT ANY ANGLE ON PERFECT DIELECTRICS 

A. Law of Reflection. For a uniform plane wave incident at angle 9 
with the normal to the plane boundary between two dielectrics «i and 
e2, Fig. 713, there will be a reflected wave at some angle 9' with the 
normal, and a transmitted (or refracted) wave into the second medium 
which is drawn at some angle 9" with the normal. For cither type of 
polarization, the continuity condition on tangential components of 
electric and magnetic field at the boundary z = 0 must be satisfied for 
all values of x. As in the argument applied to the problem of reflec¬ 
tion from the perfect conductor, this is possible for ail x only if inci¬ 
dent, reflected, and refracted waves all have the same phase factor 
with respect to the x direction, 
and hence the same phase veloci¬ 
ty in the x direction. Using the 
result of Eq. 712(5), we con-
?lude that 

vi = »i_ V2 , . 
sin 9 sin 9' sin 9" 

Fhe first pair in (1) gives the 
•esult 

9' = 9 (2) 

ar the angle of reflection is equal 
;o the angle of incidence. 
B. Snell’s Law of Refraction. 

•elation between the angle of refraction 9" and the angle of incidence 9: 

Fig. 713 Oblique incidence on boundary 
between two dielectrics. 

From the last pair of (1) we find a 

sin 9” 
sin 9 

^2 

V1 

Ml«l 

M2«2 
(3) 

Ihis relation is a familiar one in geometrical optics and is known as 
Snell’s law. It is especially interesting to note that electromagnetic 
heory provides a proof of this and the well-known law of reflection. 
'Jote that for all common dielectric materials the permeability is not 
lifferent from that of space, M! = M2 = mo-
C. Reflection and Transmission for Polarization with E in Plane of 

ncidence. To compute the amount of the wave reflected and the 
.mount transmitted, we may use the impedance concept as extended 
or oblique incidence in the last article. To show the validity of this 
»rocedure, we write the continuity conditions for total Ex and Hy, 
ncluding both incident (unprimed) and reflected (primed) com-
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ponents in region 1 : 
Exi + Exi = EX2 (4) 

H y\ + Hyl = Hy2 (5) 

Following Art. 7-12, if we define wave impedances in terms of the 
tangential components, 

y _ Exl — Exl
Hyl ' Hyl' 

Zl = ^ (7) 

Equation (5) may be written 

An elimination between (4) and (8) results in equations for reflection 
and transmission coefficients: 

P = 
Exi 
Exl

E^ 
Exi 

Zl ~ 

Zl + Zzi 

2ZL
ZL + Zxl

(9) 

(10) 

For the present case, since there is no returning wave in medium 2, the 
load impedance ZL is just the characteristic wave impedance for the 
refracted wave referred to the z direction, obtainable from Eq. 7-12(7) : 

1 -Zl = *72 COS 0" = 7/2 (ID 

And the characteristic wave impedance for medium 1 referred to the 
z direction is 

Zxi = rçi cos 9 (12) 

The second form of (11) is obtained by substituting the Snell’s law 
relation (3) between 9" and 0, and is applicable even when the result 
for Zh is imaginary. Note that, for dielectrics with mi = M2, 

7/9 V2 

7/1 »i 
(13) 

The total fields in region 1 may then be written as the sum of inci¬ 
dent and reflected waves, utilizing (9) and the basic properties of 
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uniform plane waves. We shall use Hu (denoted H) of the incident 
wave as the reference component since it is parallel to the boundary. 

Ex = r¡iH cos 9e ^[e ia-* + peia‘z] n . ■ (14) 

Hv = - pcia^] (15) 

E2 = mH sin 9e~ia‘x[\-e~ia‘l + peja^] (16) 

= Aq sin e ß2 = Aq cos 0 (17) 

This field again has the character of a traveling wave field in the x 
direction and a standing wave field in the z direction, but here the 
minima in the z direction do not in general reach zero. The ratio of 
maxima to minima could be expressed as a standing wave ratio and 
would be related to the magnitude of reflection coefficient by the 
usual expression, Eq. 7-09(3). 

D. Reflection and Transmission for Polarization with E Normal to 
Plane of Incidence. For this polarization also, the basic relations (9) 
and (10) between impedances and reflection or transmission may be 
shown to apply. Note that they were first introduced in connection 
with transmission line waves in Chapter 1, but have now found useful¬ 
ness for many wave problems through the impedance concept applied 
to wave phenomena. 

P 

For this polarization, the 
Eq. 7-12(8): 

ZL = >72 sec 

ZL - Z2l
(18) 

(19) 

proper wave impedances are obtained from 

-M 
9" = 1 - (20) 

Z — 771 sec 9 

=

Eul

_ E y 2 _ 
" Eui ~ 

• 2 a — I sin' 9 

The total fields in region 1 are (E denotes the value of Eu in the 
incident wave) 

E u = Ee-^z[e~ja‘z + Peja^] (22) 
' ' If p\ 

Hx= - e^e-^ - Pe^] (23) 
\ n / 

Hz = /£smj\ + (24) 
\ 7) / 

ßz = ki sin 9 ßz = ki cos 9 (25) 
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PROBLEMS 

7-13a Write the expressions for field components in region 2 for both types of 
polarization. 

(7-13b) For the first type of polarization, evaluate the average Poynting vector 
in both regions, and show the power balance. 

7-13c For both polarizations, give the conditions for which the standing wave 
pattern in z shows a minimum of tangential electric field at the boundary surface; 
repeat for a maximum of tangential E at the surface. 

713d Derive formulas (18) and (19) for polarization with electric field normal 
to the plane of incidence. 

7-14 TOTAL REFLECTION 

A study of the general results from the preceding article shows that 
there are several particular conditions of incidence of special interest. 
The first of these is one which leads to a condition of total reflection. 
From the basic formula for reflection coefficient, Eq. 7-13(9) or (18), 
we know that there is complete reflection (| p | = 1) if the load imped¬ 
ance ZL is zero, infinity, or purely imaginary. To show the last con¬ 
dition, let ZL = jXL and note that Zzi is real: 

jX,. - Zzï 

jXL + Z zl
(1) 

The value of ZL for polarization with electric field in the plane of inci¬ 
dence, given by Eq. 713(11), is seen to become zero for some critical 
angle 6 = 0C such that 

sin 0c = — (2) 
1’2 

The value of ZL for polarization with electric field normal to the plane 
of incidence, given by Eq. 713(20), becomes infinite for this same 
condition. For both polarizations, ZL would be imaginary for angles 
of incidence greater than 0C, so there would be total reflection for such 
angles of incidence. 

For common dielectrics having pi = p2, (2) reduces to 

sin 0c = a/— (3) 
' «i 

It is seen that there are real solutions for the critical angle in this case 
only when «i > e2, or when the wave passes from an optically dense to 
an optically rarer medium. From Snell’s law, Eq. 7-13(3), we would 
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find that the angle of refraction would be tt/2 for 0 = 0c, and would 
become imaginary for greater angles of incidence. So from this point 
of view also we would expect no transfer of energy into the second 
medium. Although there is no energy transfer, there are finite values 
of field in the second region as required by the continuity conditions 
at the boundary. 1 hese die off exponentially with distance from the 
boundary as the phase constant becomes imaginary. 

Although the reflected wave has the same amplitude as the incident 
wave for angles of incidence greater than the critical, it does not in 
general have the same phase. The phase relation between Exi and 
Ez\ for the first type of polarization is also different from that between 
E^' and Ev\ for the second type of polarization incident at the same 
angle. Thus, if the incident wave has both types of polarization 
components, the reflected wave under these conditions will be ellip-
tically polarized (Art. 7 06). 

PROBLEMS 

for an electromagnetic wave passing from 744a Calculate the critical angle 
the following dielectrics into air. 

Material 
Distilled water 
Ethyl alcohol 
Glass (high-density) 
Glass (low-density) 
Mica 
Quartz 
Petroleum oil 

«/«o (ratio of dielectric constant 
to that of air) 

81.1 
25.8 
9 
6 
G 
5 
2.1 

. 744b' Defining < as the phase of E^'/E^ and as the phase of Evi’/Evl, find 
expressions for and f under conditions of total reflection. Show that the phase 
difference between these two polarization components, S = is given by 

744c Find, in such form as to disclose the exponential decay of fields with 
penetration into the second dielectric, the expressions for the fields in the second 
dielectric when the incident angle is such as to yield imaginary K. 

7-15 POLARIZING ANGLE 

Let us next ask under what conditions there might be no reflected 
wave when the uniform plane wave is incident at angle 6 on the 
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dielectric boundary. We know that this occurs for a matching of 
impedances between the two media, ZL = For the wave polar¬ 
ized with electric field in the plane of incidence, and for a medium with 
Ml = go, Eqs. 713(11) and (12) become 

(3) 

This equation has a solution: 

(4) tan I 

COS öp 

ep = sin 

sin2 9P

These two quantities may be made equal for a particular angle 6 - dp 
such that , 

Note that (4) yields real values of Bp for either ei > e2 or e2 > ei, and 
so, for polarization with electric field in the plane of incidence, there is 
always some angle for which there is no reflection; all energy incident 
at this angle passes into the second medium. 

For polarization with electric field normal to the plane of incidence, 
a study of Eqs. 7-13(20) and (21) would show that there is no angle 
yielding an equality of impedances for materials with different dielec¬ 
tric constants but like permeabilities. Hence, a wave incident at 
angle 6P with both polarization components present has some of the 
second polarization component but none of the first reflected. The 
reflected wave at this angle is thus plane polarized with electric field 
normal to the plane of incidence, and the angle Bp is correspondingly 
known as the polarizing angle. It is also alternatively known as the 
Brewster angle. 

PROBLEMS 
7.16a For the dielectrics listed in Prob. 714a, determine the polarizing angle 

for waves passing from each of the dielectrics into air, and also for waves passing 
from air into the dielectrics. 

(745b Imagine a material with ei = «2, but mi M2- " hwh polarization com-
pohéfíí would then yield a solution for incident angle giving no reflections? Give 
the angle. 
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7-15c For the wave with E polarized in the plane of incidence, note the change 
of phase between Ex in reflected and incident waves for angles in the vicinity of 0p 
What effect does this have on the standing wave pattern in the z direction in the 
first dielectric? 

7-16 MULTIPLE DIELECTRIC BOUNDARIES WITH OBLIQUE INCIDENCE 

If there are several dielectric regions with parallel boundaries, the 
problem may be solved by successively transforming impedances 
through the several regions, using the standard transmission line 
formula, Eq. 1-21(10), or a graphical aid such as the Smith chart. 
For each region the phase constant and characteristic wave imped¬ 
ance must include the function of angle from the normal as well as the 
properties of the dielectric material. Thus for the tth region, from 
the concepts of Art. 712, the phase constant is 

ßxi = ki cos 8i (1) 

and the characteristic wave impedance is 

Zxi = rn cos O, for E in plane of incidence (2) 

= Vi sec 8{ for E normal to plane of incidence (3) 

When the impedance is finally transformed to the surface at which 
it is desired to find reflection, the reflection coefficient is calculated 
from the basic reflection formula, Eq. 7-13(9), and the fraction of the 
incident power reflected is just the square of its magnitude. The 
angles in the several regions are found by successively applying Snell’s 
law, starting from the first given angle of incidence. 

PROBLEMS 

7-16a A uniform plane wave of free-space wavelength 3 cm is incident from 
space on a window of dielectric constant 3, and thickness equal to a half-wavelength 
referred to the dielectric material so that it gives no reflections for normal inci¬ 
dence. For general angles of incidence, plot the fraction of incident energy 
reflected versus 6 for polarization with E in the plane of incidence, and also for 
polarization normal to the plane of incidence. 

7-16& An incident wave in medium 1 of dielectric constant «i makes angle 0\ 
with the normal. Find the proper length and dielectric constant of a medium 2 
to form a “quarter-wave matching section” to a medium of dielectric constant e3. 

Waves in Imperfect Conductors and Dielectrics 

717 WAVES IN CONDUCTING MATERIALS 

From Poynting’s theorem it is known that no energy can be trans¬ 
mitted into a perfect conductor, and so no wave can exist inside such a 
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conductor. Furthermore, no fields of any kind, waves or otherwise, 
can be in such a conductor. If the conductivity is not perfect, electric 
and magnetic fields may exist inside the conductor, as was shown in the 
past chapter, and under certain conditions it may be desirable to con¬ 
sider these as waves. 

For a conductor, the equations corresponding to Eq. 7 02(3) and 
Eq. 7-02(4), assuming sinusoidal time variations, are 

V X Ë = —j&p-H 

V X H = (a + jue)Ë = jue 1 + -— Ë 
L Jœt . 

It is apparent from these equations that all mathematical manipula¬ 
tions of previous sections are valid if 

(1) 

is substituted in place of e for solutions applying inside the conducting 
material. In other words, as far as the use of previously derived 
mathematical relations are concerned, a conductor is simply another 
dielectric with a complex dielectric constant ec and with its conduc¬ 
tivity never appearing explicitly. Of course, we are interested in more 
than the mathematical relations, so we shall return soon to see what 
this means physically. 

Thus, taking y again as the propagation constant for a uniform plane 
wave, Eq. 7 05(3), 

Since ee is complex, y will have real and imaginary parts. Thus 

There is thus attenuation as the wave progresses into the conductor: 
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1 his is as would be expected since energy is lost by currents flowing in 
the imperfect conductor. 

The intrinsic impedance, or ratio of electric to magnetic field for 
a uniform plane wave, becomes 

Vc 
tc 

_A _ 

e(l + a/jut) (5) 

Since r¡c is complex, it follows that electric and magnetic fields are out 
of phase in a conducting material. Moreover, if we wish to compute 
the reflection coefficient (ratio of tangential electric field in the reflected 
wave to that in the incident wave) for a wave normally incident from a 
perfect dielectric of intrinsic impedance r¡ onto a conducting material 
of intrinsic impedance ijc, the basic wave reflection formula, Eq. 
7 08(11), becomes 

Vc ~ V 

Vc + V 
(6) 

And, since p is complex, there will be a phase shift between incident and 
reflected waves on reflection. 

The special cases of greatest interest are those in which the material 
is either a reasonably good dielectric, or a reasonably good conductor, 
and of these more detailed analysis will follow. 

7-18 WAVES IN IMPERFECT CONDUCTORS 

A good conductor will be regarded as a conductor in which dis¬ 
placement currents are negligibly small compared with conduction 
currents for the frequency of interest but in which the resistivity can¬ 
not be neglected. That is, 

a 
- » 1 

Then Eq. 7-17(2) reduces to 

(1) V = Jü) 

ò is the depth of penetration used extensively in Chapter 6 and defined 
by Eq. 6-05(4). The propagation function for the wave, 

e—i* = e—2/ie—
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shows that the wave decreases in magnitude exponentially, and has 
decreased to 1/e of its original value after propagating a distance equal 
to depth of penetration of the material. The phase factor corresponds 
to a very small phase velocity, 

0) 2ttS 
v = — = = c-
d Xo 

(2) 

where c = velocity of light in free space; Xo = free-space wavelength. 
Since ô/Xo is usually very small (see Art. 6 05), this phase velocity is 
usually much less than the velocity of light. 

Equation 7-17(5) gives, for a good conductor, 

- d + - d + ' cr 'a (3) 

Rs is the surface resistivity or high-frequency skin effect resistance per 
square of a plane conductor of great depth. Equation (3) shows that 
electric and magnetic fields are 45° out of time phase for the wave 
propagating in a good conductor. Also, since R„ is very small (see 
Art. 6 06), the ratio of electric field to magnetic field in the wave is 
small. 

Since Rs is much less than unity for ordinary conducting materials 
(0.014 ohm for copper at 3000 mc/sec) and since the intrinsic imped¬ 
ance of most dielectrics is much greater than unity (377 ohms for air), 
the reflection coefficient as computed from Eq. 7-17(6) is very nearly 
unity and for many purposes accurate enough results are obtained by 
considering the conductor as perfect. However, there is a small frac¬ 
tion of the incident energy transmitted to the conductor, and therefore 
a small departure of the magnitude of reflection coefficient from unity. 
There is also a small phase shift on reflection from the 180° value 
applying to the perfect conductor. For some purposes it is necessary 
to take these quantities into consideration. 

The results of this article are identical with those derived in the 
discussion of skin effect for the plane solid (Art. 6 05), as they should 
be since Maxwell’s equations are utilized in both analyses with the 
same simplifying assumptions. The point of view taken at the outset 
is somewhat different, for here we picture the decrease in current 
density and field strengths as one progresses into the conductor as the 
attenuation of a wave propagating into the conductor. The trans¬ 
mission line analogy for a wave in this good conductor would require a 
line with distributed inductance and conductance, but not series 
resistance or shunt capacitance. 
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PROBLEMS 

(Y18o Derive a formula for the fraction of incident energy passing into a con-
ductorof conductivity a-, permeability when a uniform plane wave is normally 
incident from a dielectric with intrinsic impedance Make approximations based 
on >| » R,. Compute the values for incidence from air to copper at 30 mc/sec 
and 3000 mc/sec. 

7-18& Check the formula derived in Prob, a by assuming that the magnetic 
field at the surface is the same as for reflection from a perfect conductor, and com¬ 
puting the conductor losses due to currents compatible with this magnetic field. 

718c Derive an approximate formula for the ratio of quadrature component 
in the reflected wave to the real component for a wave normally incident from a 
perfect dielectric onto a good conductor. Compute the ratios for incidence from 
air to copper at 30 and 3000 mc/sec. 

7-18c? Derive the expression for group velocity of a uniform plane wave propa¬ 
gating in a good conductor. 

7-19 IMPERFECT DIELECTRICS 

In a dielectric material with finite conductivity, it is not possible to 
neglect displacement currents as was done for good conductors, since 
displacement currents will usually be much greater than conduction 
currents if the material is to be useful as a dielectric. Neither can we 
completely neglect conductive currents if any information is to be 
obtained on the effect of losses. It seems necessary to give both the 
conductivity a and the dielectric constant e to determine the complex 
dielectric constant defined in Eq. 717(1). However, for reasons 
having to do with measurement and variation of properties with fre¬ 
quency, it is more common to express the properties of a dielectric in 
terms of two quantities, e' and e", such that 

ec = e0[e' - je”] (1) 

eu is the dielectric constant of free space in inks units, e' is the familiar 
value of dielectric constant for the material, based on air or space as 
unity, and t” is called the loss factor. By comparing (1) and Eq. 
717(1) we see that 

n a 3Gira 
aieo « X 10 J

where a is in mhos per meter. 
The ratio t"/t' is also a common constant for dielectrics, since it is a 

direct measure of the ratio of conduction current to displacement cur¬ 
rent in the dielectric: 

e" a a 
- = -7 = - (3) e weoe coe 
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This ratio is tabulated in certain tables as tan 5. The properties of a 
lossy dielectric are also sometimes given by the power factor, which is 
defined as sin S. For small values, it is very nearly equal to t". 

It should be emphasized that any of the properties used to describe 
a lossy dielectric, e', e", a, or power factor, may vary with frequency, 
and a typical curve of dielectric constant and loss factor might be as 

Fig. 719 Form of dielectric constant and loss factor variations with frequency 
typical of some dielectrics. The peaks of loss and steps of dielectric constant occur 

at resonances of the material. 

shown in Fig. 719. Values of e' and e"/e' for several materials at 
three different frequencies are given in Table 7-19. 

TABLE 719 

Material 

Relative Dielectric 
Constant Loss Tangent, 104e"/«' 

/ = 106 / = 108 f = 10 10 f = 10« f = 10® / = 10 10

Glass, Corning 707. 
Fused quartz. 
Ruby Mica. 
Ceramic Alsimag 393. . 
Titania. 
Polystyrene. 
Neoprene. 

4 00 
3 78 
5.4 
4.95 

100 
2.56 
5.7 

4.00 
3.78 
5.4 
4.95 

100 
2.55 
3.4 

4.00 
3.78 

4.95 

2.54 

8 
2 
3 
10 
3 
0.7 

950 

12 
1 
2 
10 
2.5 
1 

1600 

21 
1 

9.7 

4.3 

7-20 WAVES IN IMPERFECT DIELECTRICS 

It will be assumed here that the dielectric is good enough so that 
conduction currents are small compared with displacement currents, 
e"/e' « 1. With this assumption, the attenuation and phase con¬ 
stants for a uniform plane wave, Eqs. 7-17(3) and (4), reduce to 

X 1 

(1) 

(2) 
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It is seen from the attenuation constant that the wave would decrease 
to 1/e of its initial value in a distance Xí'/tt«". If -nt" ¡g small 
compared with unity, this distance is large compared with wave¬ 
length. From (2) we see that the phase constant is increased by a 
small but finite amount due to the losses, so the phase velocity would 
be decreased by losses. The intrinsic impedance of the medium is 
given by Eq. 7-17(5): 

(3) 

In utilizing the impedance concept for reflection calculations, the 
impedance through a lossy dielectric region would be computed from 
the transmission line formula which includes losses, Eq. 1-24(13), 
using r¡c for the characteristic impedance, and propagation constant 
7 = « + j0. 

_ ZL cosh y/ + r¡c sinh yl' 
cosh yl + ZL sinh y I 

Thus, for a lossy dielectric window of thickness I, having free space on 
both sides, the impedance ZL would be that of free space, tj0. Input 
impedance is computed from (4), and the reflection coefficient from the 
front face would be 

= Zj — Vo 
Z, + »/o 

PROBLEMS 

7-20a For a uniform plane wave of frequency 10 lu cps propagating in 
polystyrene, calculate the attenuation constant, phase velocity, and intrinsic 
impedance. 

7-206 A dielectric window of polystyrene is made a half-wavelength thick 
(referred to the dielectric) at 108 cps, so that there would be no reflections for 
normally incident uniform plane waves from space, neglecting losses in the dielec¬ 
tric. Considering the finite losses, compute the reflection coefficient and fraction 
of incident energy reflected from the front face Also determine the fraction of 
the incident energy lost in the dielectric window. 

7-20c A slab of dielectric of length I, constants e' and e", is backed by a con¬ 
ducting plane at z = I which may be considered perfect. Determine the expres¬ 
sion for field impedance at the front face, z = 0. Calculate the value for e' = 4, 
«" = 0.01,/ = 3 X 109 cps, I = 1.25 cm. 

7-20d Determine the group velocity for uniform plane waves in a lossy dielec¬ 
tric, assuming o and t' independent of frequency; assuming t"/t' independent of 
frequency. 
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7-21 PROPERTIES AND CLASSIFICATION OF POOR CONDUCTORS 

There are certain materials with properties in between those we have 
called good conductors on the one hand, and good dielectrics on the 
other. For many of these poor conductors, the displacement currents 
may be negligible at low frequencies so that the analysis of Art. 7-18 
would be applicable; whereas at very high frequencies the conduction 
currents might be considerably less than the displacement currents so 
that the analysis of Art. 7 20 would be applicable. For intermediate 
frequencies, the two terms might be comparable, and both .would have 
to be taken into account as in Art. 717. In the table below, some of 
the materials of this type which are of special importance to radio 
engineering are listed with approximate values of conductivity, dielec¬ 
tric constant, and frequency at which conduction and displacement 
currents are comparable. For much lower frequencies they may be 
analyzed as good conductors; for much higher frequencies they may be 
analyzed as imperfect dielectrics; for intermediate frequencies both 
terms must be taken into account. 

Material 
Sea water 
Fresh water 
Wet earth 
Dry earth 

Conductivity a, 
mhos/meter e' 
4 81 
10"3 81 
10-3 10 
IO"5 5 

Frequency at Which 
a = cet 

8.9 X 108
2.2 X 105
1.8 X 106
3.6 X 104

PROBLEM 
7-21 Plot a curve showing attenuation constant in sea water from 101 cps to 

109 cps, assuming that the constants given do not vary over this range. Comment 
on the implications of the results to the problem of communicating by radio waves 
through sea water. 

7-22 ELIMINATION OF WAVE REFLECTIONS FROM GOOD CONDUCTORS 

For high-frequency applications it is often desirable to reduce or 
eliminate spurious reflections from metallic objects placed in the 
vicinity of radiating systems. AX e shall show3 that a thin conducting 
film may be utilized for this purpose if removed a quarter- wavelength 
from the metallic surface. This example will again serve to illustrate 
the usefulness of the transmission line analogy and impedance concepts. 

The uniform plane wave normally incident upon a good conductor, 
(4) of Fig. 7-22a, will be considered. It has been shown (Art. 7-07) 
that a standing wave pattern is set up which is due to the combination 

3 S. A. Schelkunoff, “The Electromagnetic Theory of Coaxial Transmission Lines 
and Cylindrical Shields,” Bell Sys. Tech. J., 13, 532 (Oct. 1934). 
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of reflected and incident waves, so that a quarter-wavelength in front 
of the conductor there is a minimum of magnetic field and a maximum 
of electric field. This represents a point of very high impedance, E/H. 
Suppose that a given thickness, d, of any material is placed at that 
point. The impedance viewed from the front surface of the material, 
where the wave strikes, may be expressed in terms of the terminating 
impedance, the thickness, and the propagation constant through that 
material, Eq. 7-20(4). If the back surface of the film is placed exactly 
at the node of magnetic field, the terminating impedance is practically 

Fig. 7 22a Impedance sheet for termi¬ 
nation of a wave region. 

Fig. 7-226 Transmission line equiv¬ 
alent of Fig. 7-22a. 

infinite. (It is of course exactly infinite if the conductor 4 is perfect.) 
The impedance at the front surface is then 

7/2 
Zi = 772 coth 72 d « — 

y 2d (1) 

The last approximation is valid for thin films with | yod | « 1. Let us 
take the material of the film as one in which displacement currents are 
negligible and use Eqs. 7-18(1) and (3) for y2 and jj2. 

(1 + J) 
’_1_' 

-d(l + j) y/irfwi-

1 
cr2d 

For a perfect match to the wave coming from medium 1, this input 
impedance should be equal to rn. Hence, the film should be designed 
so that 

a2d 7,1
(2) 

This corresponds to a thin film of resistive material whose resistance 
per square is equal to the intrinsic impedance 771. This is analogous in 



314 FIELDS AND WAVES IN MODERN RADIO 7-22 

transmission line terms to the characteristic impedance of a trans¬ 
mission line placed a quarter-wavelength in front of a short-circuited 
end (I’ig. 7-226). Since the short-circuited quarter-wave line has 
infinite impedance, this represents perfect matching for a wave 
approaching from the left. 

Note that the conductivity a2 must be quite small if d is not to be 
unreasonably small in thickness. Thus, if material 1 is air or space 
(j, = 12Ott ohms), a2 must be 2(5.5 mhos per meter to make d = 0.1 mm. 
This corresponds to a conductivity about 0.5 X 10-6 times that of 
copper. Note also that the spacing I between film and conductor is a 
quarter-wavelength in the dielectric material of 3, so that this spacing 
may be decreased if a material of higher dielectric constant is used. 

_ ^3 _ _1 

4 if Vg3e3 

The perfect matching was possible because the film, which must 
absorb the incident wave, was placed a quarter-wavelength from the 
conductor where the electric field was high. Matching is not possible 
with a film of simple electrical properties if it is attempted to place the 
film on the surface of the conductor itself, since this is a region of low 
electric field. The dielectric and conductivity properties of the film 
would then be unimportant. 

PROBLEMS 

7-22a A conducting film of impedance 377 ohms per square is placed a quarter¬ 
wave in air from a plane conductor to eliminate wave reflections for a 9000 mc/sec 
wave as described in the above article. Plot a curve showing the fraction of inci¬ 
dent power reflected versus frequency for frequencies from 6000 to 18,000 mc/sec. 

7-22b For the design described in Prob, a, plot a curve showing fraction of 
incident power reflected versus angle of incidence for 9000 mc/sec waves at oblique 
incidence and polarized with electric field in the plane of incidence. Repeat for 
electric field normal to plane of incidence. 

7-22c The common materials used for the conducting films in the application 
of this article may not have a negligible dielectric constant. Study the effect of 
finite dielectric constant on a design that would otherwise produce no reflection. 

7-22d By use of the transmission line analogies, determine the spacing between 
a film and a good conductor, and the conductivity properties of that film if reflec¬ 
tions are to be perfectly eliminated for a wave incident at an angle 0 from the 
normal for the two types of polarization. 



8 GUIDED ELECTROMAGNETIC WAVES 

/ 

8-o/ INTRODUCTION 

In the preceding chapter we were interested primarily in electro¬ 
magnetic waves in boundless dielectrics except in so far as reflecting 
discontinuities were concerned. Actually, no wave is ever truly free 
from the effect of conductors and dielectrics, but one may be to a good 
approximation, as in the example of a radio wave at a great distance 
from the ground in the region between transmitter and receiver. How¬ 
ever, we now wish to study specifically the behavior of electromagnetic 
waves in the immediate vicinity of conducting and dielectric bound¬ 
aries when the configurations of these boundaries have the effect of 
guiding the waves along their surfaces. 

By a guided wave, we mean first that the direction of energy flow 
must be primarily along the direction of the guiding system, although 
there must of course be some energy flow from the wave into the 
imperfectly conducting metal and dielectric boundaries for any real 
system. But, more important, if the wave is said to be guided by the 
boundaries, we infer that a change in the direction of these boundaries, 
within reasonable limits, will cause the wave to follow the new direc¬ 
tion of the guide. We know, for example, that this is true for the 
transmission line used to transfer energy between the transmitter and 
an antenna, where the wave energy follows the path of the line, at 
least for paths with only reasonable discontinuities. This guiding of 
the wave is accomplished in all such systems by an intimate connection 
between the fields of the wave and the currents and charges of the 
boundary, or by some condition of special reflection at the boundary. 

In the field picture, we imagine the energy as being transmitted 
through the electromagnetic fields of the wave in the dielectric region 
between boundaries, those boundaries being of primary importance in 
forming the characteristics of a particular wave. In the mathematical 
analysis, we wish to find solutions of the wave equation which fit the 
boundary conditions imposed by the conducting and dielectric bound¬ 
aries of the guides, concentrating on those solutions which represent 

315 
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energy transfer along the direction of the guide and which are inti¬ 
mately tied to the guide through some condition of current flow, charge 
induction, or special reflection at the boundary of the guide. Analysis 
will be confined here to guides which are straight and uniform, with the 
recognition that the waves will follow these with little change in char¬ 
acteristics if there are only reasonable changes in direction of the guides. 

In the two articles following this, we shall write the relations from 
Maxwell’s equations in the special form suitable for studying guided 
waves, and consider the classification of basic wave types. We shall 
then try to develop many of the important physical pictures and tech¬ 
niques of analysis for guided waves by considering the simple boundary 
conditions imposed by parallel conducting planes. We shall devote 
the remainder of the chapter to the discussion of some of the general 
properties of the basic wave types applicable to any shape of a guiding 
boundary before going on in the next chapter to the most commonly 
used shapes of guides for electromagnetic energy. 

¿02 BASIC EQUATIONS FOR WAVES ALONG UNIFORM SYSTEMS 

In view of the concept of guided waves discussed in Art. 8-01, we 
would like to describe the waves propagating along a uniform guiding 
system in terms of a propagation factor e^“l~y,i\ such as was found for 
transmission line waves in Chapter 1. The character of the propa¬ 
gation constant 7 tells much about the properties of the wave, such 
as the degree of attenuation, the phase velocity, and the group veloc¬ 
ity. We shall begin by writing Maxwell’s equations for the dielectric 
region in rectangular coordinates (without inferring here any limita¬ 
tion to rectangular shapes of boundaries), with the factor 
substituted. Then by solution subject to the boundary conditions of 
particular guides we may find what waves, if any, exist in this propa¬ 
gating form, and the character of 7 as well as the distributions of 
electric and magnetic fields in the wave. 

The curl equations with the assumed functions e(̂‘~ŷ  are written 
below for fields in the dielectric of the system. 

V X Ë = -junH 

dE 
+ yEu = -j^Hx (1) 

dy 

-yEx - = -junHv (2) 
dx 

dEy dEx . 
--—- = -janHz (3) 
dx dy 

-yH dHt ■ „ 

dHx . „ 
—— = JueEz 
dy 

V X H = jweÈ 

dH, TT . „ 
—-F yHy - JueE 
dy 

dHy 
dx 

(4) 

(5) 

(6) 
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It must be remembered, in all analysis to follow, that these coefficients, 
Ex, Hx, Ey, etc., are functions of x and y only, by our agreement to take 
care of the z and time functions in the assumed 

From the above equations, it is possible to solve for Ex, Ev, Hx, or 
Hy in terms of Ez and Hz. For example, Hx is found by eliminating 
Ey from (1) and (5), and a similar procedure gives the other com¬ 
ponents. 

1 
= — .,2 i 

dHx 

dx 

'. dEz dH z
2 7-r T — 
2 dx dy 

„ _ j_r. se, 
1 “ 72 + *2 P“ê dy 

(7) 

(8) 

i r a#. . dHx~ 
7-72 Tl- r W 4- k L dx dy 

1 T dEz . dH A 
y = 2 , ~ï~2 -

7 + fc L dy dx J 

(9) 

(10) 

where k2 = u2ye. 
If the dielectric has finite conductivity, a, it is merely necessary to 

substitute e(l + v/jwt) for e in the above expressions (Art. 717). 
All waves propagating in the positive z direction according to the 

factor r») must have components related by these equations, since 
nothing has been assumed but this factor and Maxwell’s equations. 
[For a wave traveling in the negative z direction, substitute —7 for y 
in (1) to (6) or (7) to (10).] The total electric and magnetic intensities 
in the charge-free regions between the conducting boundaries must also 
satisfy the wave equation (Art. 7 02): 

V2È = -k2Ê V2H = -k2H 

The three-dimensional V2 may be broken into two parts: 

2̂E = VX 2E + 
d^Ê 

dz2

The last term is the contribution to V2 from derivatives in the axial 
direction. The first term is the two-dimensional Laplacian in the 
transverse plane, representing contributions to V" from derivatives in 
this plane. By the assumed propagation function, e—7Z, in the axial 
direction, 
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The above wave equations may then be written 

VIU2É = -^ +  k2)É (11) 

Vxv2H = -(y2 + k2)H (12) 

Equations ( 11) and (12) are the differential equations that must he 
Satisfied in the dielectric region bounded by the conductors of the trans¬ 
mission lines nr guides. The boundary conditions imposed on these 
differential equations follow from the configuration and the electrical 
properties of the conducting guides. Equations (1) to (6) or (7) to 
(10) then give the relations between any desired components in the 
wave. 

1/Í03 BASIC WAVE TYPES 

In studying guided waves along uniform systems, it is common to 
classify the wave solutions into the following types: 

1. Waves that contain neither electric nor magnetic field in the 
direction of propagation. Since electric and magnetic field lines both 
lie entirely in the transverse plane, these may be called transverse 
electromagnetic waves (abbreviated TEM). They are the usual trans¬ 
mission line waves along a multi-conductor guide, and are also known 
as principal waves. 

2. Waves that contain electric field but no magnetic field in the 
direction of propagation. Since the magnetic field lies in transverse 
planes, they are known as transverse magnetic (TM) waves. They have 
also been referred to in the literature as E waves, or waves of electric 
type. 

3. Waves that contain magnetic field but no electric field in the 
direction of propagation. These are known as transverse electric (TE) 
waves, and have also been referred to as II waves or waves of magnetic 
type. 

The above is not the only way in which the possible wave solutions 
may be broken into types, but it is a useful one in that any general 
field distribution excited in an ideal guide may be broken up into a 
number (possibly an infinite number) of the above types with suitable 
amplitudes and phases. The propagation constants of these tell how 
the individual waves change phase and amplitude as they travel down 
the guide, so that they may be superposed at any later position and 
time to give the total resultant field there. Of course, only one oLthe 
possible infinite number may propagate along the guiding system if it 
alone is excited and it Gonditians_arc_favQrable for its propagation. 
This is in fact the condition we try tn approximate in most practical 
uses of wave guiding systems. 
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Simple Waves Guided by Parallel Planes 

8^04 TEM WAVES GUIDED BY IDEAL PARALLEL PLANE CONDUCTORS 

We wish to develop our physical pictures and techniques for analysis 
of guided waves by considering the simplest of all guiding systems, that 
of two infinite parallel conducting planes separated by a dielectric. 
Although this is an idealization, there are physical systems for which 
it is a good approximation. One of these is represented by the region 
between two coaxial conducting cylinders with only slightly different 
radii. Following the division of Art. 8 03, we shall begin with a study 

Fig. 8 04 Infinite parallel plane guide. 

of those waves which have both electric and magnetic fields confined 
to the transverse plane. 

Without explicitly solving the equations of Art. 8 02, it is evident 
that, if the planes are perfectly conducting, there is a solution of the 
transverse electromagnetic type (TEM) for the region between planes, 
for we may introduce a portion of a uniform plane wave as studied in 
Chapter 7, propagating in the z direction and polarized with its electric 
field in the x direction (Fig. 8 04). This is known to be a solution of 
the wave equation, and it obviously fulfills the requirements for a TEM 
wave. We know also that it must propagate with the velocity of light 
in the dielectric and that it has a ratio of electric field to magnetic field 
given by the intrinsic impedance y of the dielectric. We may then 
write the expressions for the fields (e’ut understood) : 

Ex(z) = Eœ^ (1) 

MIu(z) = (2) 

where 77 = Vg/e = (3) 

The upper signs in the above equations apply to a wave propagating 
in the positive z direction, and the lower signs to one propagating in the 
negative z direction. 

The electric field Ex passing normally between planes induces equal 
and opposite charge densities on the two planes at a given value of 2; 
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the uniform magnetic field Hy corresponds to equal and opposite 
currents flowing in the z direction in the two planes. These are 
properties we commonly associate with a two-conductor transmission 
line, so the wave studied here is recognized as the ordinary transmis¬ 
sion line wave for this two-conductor system. The identification may 
be completed by deriving voltage and current from the field solution, 
comparing with the results from a classical transmission line solution. 
The voltage of the upper plate with respect to the lower may be found 
by integrating the electric field, • 

V(z) = - fg° E¿z) dx = -aE^^ (4) 

Note that this result is independent of the path of integration for all 
paths confined to the transverse plane, since there is no H z (Art. 418). 
The current per unit width in the upper plane is found from the rule 
J = ñ X H developed in Art. 6 07, 

Thus, if a width b is taken in the y direction, the current in the upper 
plane is 

/(z) = -bHy = + (5) 
y 

A direct solution of the transmission line equations (Art. 1-21) yields 

V(z) = Vœ™2 (6) 

Z(z) = (±pV^ (7) 
\ ¿0/ 

Zo = Vl/C ß = « Vlc (8) 
But, for the parallel planes, the capacitance and inductance per unit 
length, for a width b, are 

C = — farads/meter (9) 
a 

L = ^— henrys/meter (10) 
b 

So, from (8) 

- JO  ? ohms (11) 
(12) 
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With these values and Vo = — aEo, (6) and (7) become identical with 
the results of the field solution, (4) and (5). 

The power transferred by the wave may be calculated from the fields 
or from the classical transmission line solution. From the field view¬ 
point, the Poynting vector is found and integrated over the dielectric 
region between planes. Here it has a z component only, so that the 
average power transmitted by a single positive traveling wave is 

WT = b f - Re (EXH*) dx = — — 
Jo 2 2 17 

watts (13) 

From the voltage-current viewpoint, the average power transmitted by 
a single positively traveling wave is 

IVT = J Re (VZ*) 
V 2 
__L 
2Z0

E^ab 

2»? 
(14) 

so that the expressions for power computed from these two points of 
view are also identical. 

PROBLEM 

8-04 Starting from the equations of Art. 8 02, obtain the TEM wave solutions 
for this parallel-plane system and compare with (1) and (2) above. Show that 
there can be no TEM solution for this case with finite Ev. 

8-05 TEM WAVES BETWEEN LOSSY PARALLEL PLANES; PHYSICAL 
5b APPROXIMATIONS 

In the analysis of the preceding article, the conductor and dielectric 
were taken as ideal. For any actual guide, conductor and dielectric 
must have finite conductivities, and the resulting loss effects, which 
may be negligible for some applications, may not be for others. An 
exact solution will be set up in the following article. We are most 
often interested in guides for which the losses are small, so that approxi¬ 
mations may be made which greatly simplify the solution and which 
provide good physical pictures for the effects of losses. The approxi¬ 
mate techniques to be applied will be of great importance in the analy¬ 
sis of all guides to follow. 

If the dielectric region between planes has a conductivity a, as well 
as dielectric constant e, we may proceed as in Art. 7-17, replacing jwe 
by (a + jut) in the loss-free solution. The propagation constant and 
wave impedance EJE^ are then 

T = a + jß = VjWM(<r + jut) (1) 

Z 1 Jw 
<J + jut 

(2) 
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For low-loss dielectrics, a/ua = t" « 1, these become 

If the conductor has a finite conductivity, the main effect will be 
an attenuation caused by the power loss in the conducting boundaries. 
The value of this attenuation may be estimated by the method of 
Art. 1-26, if the ratio of power loss per unit length to the average power 
transferred by the wave can be found. For a good conductor, it is 
reasonable to assume that the expression for power transfer derived 
for the ideal guide in Art. 8-04 applies well enough to the actual guide, 
and that power loss may be computed by taking the current flow of 
the ideal guide as flowing in the walls of the actual guide with known 
conductivity. 

Let us assume that the conducting plates are thick compared with 
depth of penetration in the conducting material, and that the surface 
resistivity Rs is known. The average power loss per unit area would 
be %RS\ Jz | 2, so for a unit length and width b, counting both plates, 

The average power transfer is given by Eq. 8-04(13). Attenuation 
constant is then 

Za 
2 IF,. (7) 

Note that the wave we are considering in the presence of finite con¬ 
ducting boundaries is not strictly a transverse electromagnetic wave 
since a small but finite axial electric field E¿ is required to force the 
axial current flow along the conductors. The designation TEM is 
still ordinarily retained, since the fields are so nearly the same as those 
for the TEM wave of the ideal guide. The ratio of longitudinal to 
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transverse electric field can be estimated. At the surface of the upper 
conductor, 

R SEo 
E, = JzZ, = + j) = -(1 + j) 

V 

This ratio is around 4 X 10-5 for copper conductor and air dielectric 
at 3000 megacycles per second and is thus exceedingly small for most 
practical systems. 

If losses are present in both conductor and dielectric, attenuation 
may be found by adding (3) and (8) so long as both are small. The 
result is the same as would be obtained from the approximate trans¬ 
mission line formula, Eq. 1-24(14): 

(10)

The proof of this will be left for a problem. 

PROBLEMS 

8-05a Show that the transmission line formula for attenuation constant (10) 
gives precisely the same result as the approximate wave analysis of this article for 
the wave under consideration. 

8-05& Derive the approximate formula for attenuation constant due to dielec¬ 
tric losses by using Eq. (7). 

8-05c Since Ez is equal and opposite at top and bottom conductors, it is reason¬ 
able to assume a linear variation between the two values, 

Find the modification in the distribution for Ez to satisfy the divergence equation 
for Ê. Find the corresponding modification in Hv from Maxwell's equations. 
Describe qualitatively the average Poynting vector as a function of position in 
the guide. 

8-06 TEM WAVES BETWEEN LOSSY PARALLEL PLANES; MATHEMATICAL 
' APPROXIMATIONS 

The physical approximations for low-loss guides utilized in the pre¬ 
ceding article are of first importance since they will be applied to nearly 
all the types of wave guiding systems to be studied in this book. It is 
consequently well to compare it with a rigorous solution for this simple 
case where one can be performed. The model is that of Fig. 8-06, in 
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which the upper and lower conductors are infinite in depth, and the 
origin of X has been moved to the middle of the guide in order to take 
advantage of the symmetry. Variations of all quantities in the y 
direction are neglected. Dielectric constant, permeability, and con¬ 
ductivity for the two regions are «i, gi, ai, and «2, g2, f2, respectively. 

For the dielectric region 1, let us solve Equation 802(11) for Et: 

Vx2Et == -K^EX (1) 
ax 

AV = 72 — jwmÇai + jœei) (2) 

Note that (ai + juei) has been substituted for juei in Eq. 8 02(11). 
The solution may be written in sinusoids. We shall look for a solution 

£_______ 

Fig. 8 06 Model for mathematical solution of waves between imperfectly con¬ 
ducting planes. 

with Ez odd in x and so retain only the sine term: 

E2i = Ci sin K\X (3) 

Ex and may be found from Eqs. 8 02(9) and (8), respectively: 

Exl = — -7- Ci cos K\X (4) 
Ai 

„ -(<ri+>«i) Hyi = ---- Ci cos Aix (5) 
A i 

For the conducting region 2, we also write Eq. 8 02(11), using the 
same 7 as in region 1, since continuity relations between the fields of 
the two regions must be satisfied at the boundary for all values of z: 

^E 
= -K22Ex (6) 

ax 

K2~ = y — + 70)62) (7) 

Let us write the solution for (6) in terms of exponentials, retaining 
only the negative exponential terms so that fields will die off properly 
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as X approaches infinity. [ 1 his means that we select the square root 
of (7) so that jE2 has a positive real part.] 

^2 = C2e~jK^ (8) 

The fields Ex and Hu from Eqs. 802(8) and (9) are then 

Ex2 = A C2e~^ (9) 
A2 v ' 

H„ - (10)
A 2 

At the boundary between conductor and dielectric, x = a/2, the 
tangential fields Ez and Hu must be continuous. For the continuity 
of E¡, (3) and (8) give 

~ . /Kia\ 
Ci sm (-T-) = C2e—; 2“/2 (11) 

For the continuity of Hy, (5) and (10) give 

(<7 1 + juty) 
Ei 

Ci cos - (12)

A 2

Substituting the value of C2 from (11), we have 

tan =
\2/ 2̂+j^Ki 

Since in (13) all quantities are known but 7, the equation in principle 
determines the value of propagation constant. However, since the 
equation is a transcendental containing complex quantities, it is not 
easy to solve in the general case. We shall then go to the special low-
loss case which is of greatest interest to us. Let us take the con¬ 
ductivity of the dielectric as negligible, and the displacement currents 
in the conductor as negligible, so that we may neglect a 1 and e2. Since 
we know from the preceding articles that 72 should turn out to be of 
the same order as it is also consistent to neglect 72 in (7) com¬ 
pared with jwn2v2 (i.e., this means that a>ei/a2 « 1). K2 may then 
be written in terms of the depth of penetration Ò defined in Art. 0 05: 

From (2), 

jE2 = Oju^)** = -1 j~ (14) 
o2

El2 = 72 + W2M1«1 = 72 + &12 (15) 
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Since from the approximate analysis we expect y2 to be near the 
value ( — ki2) found for the ideal case, Ki should be very small, and it 
is reasonable for first order analysis to approximate the tangent by the 
angle in (13). (This point can be checked when final results are 
obtained.) 

K^a /juei\ 
~X~ = (-2 \ a2 / 

/ 2 I 7 2\ 2jwei(l + j) 2/(1 + j)weißS2 
(7 + fci ) = —T-n— = -0(0’202) a 

2 i 2 F1 2j(l + 
y = —Ki 1-—-— 

kiayi 

It can be checked that the last term is small so long as frequency is 
high enough so that kja is not less than, say, 10—3, so the square root 
may be approximated by two terms of the binomial expansion. 

7 ~ jki J(1 + j)ß82 
kioyi 

. ß«2 
a + ~ — + jkr 

ay i 
1 + 

ßs2 
kiayi. 

(16) 

The expression for a is the same as that of the last article where 
approximations were made on a physical basis. By the analysis of 
this article we can see that these approximations are justified whenever 

a 1 a>€9 
— « 1 —2 « 1 (17) 
Wil 0-2 

That is, conduction current should be small compared with displace¬ 
ment current in the dielectric, but displacement current should be 
small compared with conduction current in the conductor. A study 
of the field expressions shows that electric field is very nearly trans¬ 
verse in the dielectric (Ezi « Exl) and very nearly longitudinal in the 
conductor (Exi « Ex2)-

PROBLEMS 

8-06a Find the ratios Ez\/Ezi and E^/Ezi for the low-loss case at x = a/2. 
What type of polarization is represented in each case? 

8-06& For the low-loss case show that the fields in the dielectric have nearly 
the form assumed in Prob. 8 05c. 
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3-07 TRANSVERSE MAGNETIC WAVES BETWEEN PARALLEL PLANES 

In the second classification given in Art. 8 03, the waves are to have 
an electric field component but no magnetic field in the direction of 
propagation. We can find many of the important properties for these 
TM waves by studying them in the simple guiding system formed by 
parallel-plane conductors, as we did for the TEM waves in preceding 
articles. We shall first give a fairly straightforward solution of the 
equations subject to the boundary conditions of the planes, and then 
give a physical picture for arriving at the same results by considering 
the waves as made up of a superposition of uniform plane waves. 

Since the TM wave is to have a non-zero Ez, let us write Eq. 8-02(11) 
in terms of Ez. We are assuming no variations with y. 

VjE, = = -K2EZ (1) 
ax-

K2 = y2 + F = T2 + œ2Me (2) 

The solution to (1) may be written in terms of either sinusoids or 
exponentials, but, since the perfectly conducting planes require that 
E, be zero at x = 0 and x = a, we shall select the sinusoidal form 
because of its repeated zeros. The cosine terms may also be eliminated 
if the bottom plate is taken as x = 0. /'' ° 

Ez = A sin Kx (3) 

But Ez must also be zero at the upper plate, x = a. There must then 
be a half-period of the sine wave or a multiple thereof between the 
planes. 

Ka = nit (4) 

The remaining field components may be found from Eqs. 8-02(7) to 
(10), remembering that Hz — 0 and d/dy = 0. 

Maye 
_ . . / nirx\ 
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The above set of fields satisfies Maxwell’s equations for the dielectric 
region, and for n an integer fulfills the boundary condition that electric 
field tangential to the planes shall be zero. Hence, there are many 
“modes” of this TM type, one for each integer n. A particular one 
with n half-sine variations between the plates may be designated as 
TMno (the zero to denote that there are no variations with y). 

The propagation constant for the nth mode may now be found from 
(2) and (4): 

7 = VK2 - fc2 = (6) 

A study of this form reveals a very important characteristic which we 
will find for TM and TE waves in all closed guides. For a particular 
spacing, a and mode number n, (wr/a)2 is a real number. For fre¬ 
quencies low enough so that k < wr/a, 7 will have a real result repre¬ 
senting attenuation only. As frequency is increased, we come to a 
condition (called the cut-off of the mode) where k = mr/a and 7 = 0, 
so that there is neither phase shift nor attenuation along the guide. 
As frequency is increased more, k > nit/a and (6) yields a purely 
imaginary result so that the mode propagates without attenuation. 
From the above, the cut-off condition may be written 

■ „ . /— 2tt mr 
kc = ^fc V = — = — (7) 

Ac CL 

where Xc is the wavelength of a uniform plane wave in the dielectric at 
the cut-off frequency. We can then write (6) in terms of the cut-off 
frequency for the particular mode of interest. 

7 = « = - V1 - (///„) 2 f < fc (8a) 
a 

y jk V1 - (A//)2 f > fc (8b) 

For the propagating range (/ > fc), phase and group velocities are 
(Art. 1-27) 

vP = “ = - (/c//)2 (9) 

”« = 7; = ’ ^1 " (fc/f)2 (10) 

The wavelength measured along the guide in the z direction is the dis¬ 
tance represented by a phase shift of 2ir, and is denoted XB: 

X 
XB

- Uc/i? 
(11) 
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The wave or field impedance is another useful concept (Art. 7-12) and 
is here defined as the ratio of transverse electric to magnetic field com¬ 
ponents: 

V 

jut aut 

7, = V V1 - (/c//)2

f < fc (12a) 

f > fc (126) 

Note that it is real in the propagating range and imaginary 
attenuating range, so that there is average power transferred 
forrher case but not in the latter. 

PHYSICAL DISCUSSION OF TRANSVERSE MAGNETIC WAVE 

in the 
in the 

Let us study the field distribution in a single positively traveling TM 
mode having one half-sine variation in x (i.e., n = 1). It will be con¬ 
venient to write the field expressions in true instantaneous form by 
taking the real part of the complex expressions of Art. 8 07 (see Art. 
4 09): 

Ez(x,z,t) = 

Ex(x,z,t) = 

Hv(x,z,t) = 

Re A sin — 
a = A sin — cos (o>i — ßz) 

a 

Re 

Re 

jßa irx ßa Â irx . , 
—■ A cos — ej( 3 = — A cos — sin (ut — ßz) 
t a J ir a 

jueaA irx . 
--cos — 

a 
uta irx . 
— A cos — sm (ait — ßz) 

ir a 

Let us consider the distribution at a particular instant of time, say 
t = 0: 

Ez(x,z,0) = A sin — cos ßz (1) 
a 

Ex(x,z,0) =-- cos — sin ßz (2) 
ir a 

„ z „x — ueaA irx . 
IIy(x,z,0) = -cos — sm ßz (3) 

ir a 

The slope of the electric field lines in the x-z plane are 

dx Ex ßa irx 
— = — =-cot — tan ßz (4) 
dz hz ir a 

The lines may be sketched either by drawing in the direction of the 
tangents at a number of points throughout the field, or by integrating 
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(4) to give the equation of the family of electric field lines (Prob. 
8 08a). A few of these field lines are shown in Fig. 8-08a. 

Note that in this mode electric field lines start from charges on the 
guide walls, and pass to charges of opposite sign, not on the opposite 
plane as in the TEM mode, but on the same plane a half guide wave¬ 
length along in the z direction. The axial displacement currents are 
surrounded by magnetic field lines (considering the magnetic field 
lines as closing at y = ± œ). Note that displacement current and 
II u are maximum, not at ßz = 0 where Ez is a maximum, but at 
ßz = + ir/2 where its rate of change is a maximum. 

A somewhat different physical picture in terms of wave reflections 
may be developed for the TM modes between parallel planes by 
reference to Art. 7-11. That article was concerned with the reflection 
of a uniform plane wave from a perfectly conducting plane when inci¬ 
dent at any angle 6 from the normal. It was found that the tangential 
component of electric field was zero at the conductor, and also at 
planes parallel to the conductor and distance nX/2 cos 0 away. Hence, 
a second perfectly conducting plane could be placed at any of the 
positions characterized by a given value of n without disturbing the 
fields. The field solution found in that article, Eqs. (11) to (13), 
should then apply directly to the parallel-plane guide. (The x and z 
coordinates must be interchanged to correspond to the coordinate 
system set up for the present analysis.) 

Thus, if the spacing between plates is a, 

nX 
a = —-

2 cos 0 

nX . . 
or cos 0 = — (o) 

2a 

For the n = 1 mode, for example, 0 will be zero if the spacing between 
plates is just a half-wavelength; the wave will bounce back and forth 
between the plates with nodes at x = 0 and x = a; and there will be no 
tendency for propagation in the z direction. This is the condition we 
have called cut-off. As frequency is raised (X decreased), X/2a will be 
less than unity and 0 will take on a finite value representing some com¬ 
ponent of propagation in the z direction as pictured in Figs. 8 086, c. 
That is, since the spacing a is greater than a half-wavelength measured 
normal to a wave front, the wave must tip somewhat to make the dis¬ 
tance between zeros of Ez still correspond to a. This is accomplished 
since the phase velocity measured in the x direction is v¡cos 0 and is 
consequently greater than v (where a = l/Vge). If frequency is 
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direction may be obtained from this 

= v/ V 1 — cos2 0 (G) 

But 

(A//)2SO 

(t) (c) (d) 

8-080 Sketch the form of electric and magnetic field lines, showing sense, for a 
single positively traveling TNI mode between planes with n = 2. 

raised so that X/2a is very small, cos 0 must also be small and the plane 
wave components propagate nearly in the axial direction of the guide 
(Fig. 8-08d). 

the propagating range could be similarly derived from this analysis of 
the TM wave into component uniform plane waves propagating and 
reflecting at an angle from the boundary. 

Therefore this result is the same as that obtained by the detailed 
analysis of Art. 8-07. In fact, all the properties of the TM mode in 

Vpz 

PROBLEMS 

8-08a Show that the curve of an electric field line corresponding to (1) and 
(2) is expressed by 

Fig. 8 08 (a) Electric field lines of TAT jo wave between plane conductors. (bed) 
Waves guided by two parallel conducting planes. 

The phase velocity in the z 
picture: 

cos (irX^/a) 
cos ßz = ---COS (irx/a) 

Plot a few lines for selected values of xo/a. (xo is the value of x for a particular 
curve at z = 0.) 

nX X 
cos 0 = —- = — 

2a X, 

v 
Vpz = ~ ã sin 0 
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8-08c By suitably changing coordinates and notation, show that the field dis¬ 
tributions of Art. 8 07 for the TM wave and of Eqs. 711(11) to (13) for uniform 
plane waves reflected at oblique incidence are identical. 

8'08d Obtain the expressions for wave impedance, using the picture of uniform 
plane waves reflecting at an angle. 

8-09 EFFECT OF LOSSES ON TM WAVES BETWEEN PLANES 

It will be assumed that dielectric and conductor are reasonably good 
so that attenuation may be calculated in the approximate manner 
demonstrated previously for the TEM wave (Art. 8 05). 

Losses in the dielectric may be taken into account by substituting 
(a + jue) for jue in the loss-free analysis. The expression for propa¬ 
gation constant, Eq. 8 07(6), becomes 

The above approximation retains only two terms of the binomial 
expansion and is valid for 

— cj2pe (2) 

Utilizing the cut-off frequency defined in Eq. 8 07(7), 

= 2tt/c A Mt 

7 = 
2«, V^e Vi - (/c//)2

+ ju Vue V 1 — (JJJ )" (3) 

The phase constant (imaginary part of 7) is the same as that obtained 
in the loss-free case to the extent of this approximation. The attenu¬ 
ation constant (real part of 7) is 

ad = -
2 \ 1 - (A//)2

fee" 
nepers/meter 

2*' V1 - (/c//)2
(4) 

where V = Vn/e e" = a/ojeo k = u \ ne 

Note that a apparently approaches infinity as the frequency approaches 
cutoff, but this does not actually happen since condition (2) breaks 
down for any finite a as the cut-off frequency is approached. 
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To compute the attenuation caused by conductor losses, the power 
transfer for the loss-free case will be found, and also t he power loss per 
unit length, taking the currents flowing in the actual conductors the 
same as in the ideal conductors. The average power transfer for a 
width b is found by a Poynting integration: 

IFr = i(ExHy*) dx 

b wtßa2 A ~ Ç" - WKX /bweßtrA 2\ a 
ñ —I cos‘ - A = I , I (5) 2 n~ir Jo a y 2ir2n2 / 2 

1 he current flow in upper and lower planes has the same magnitude. 
For the lower plane the current per unit width is 

! A | = \Hy I utaA 
nir 

1 he total power loss lor a unit length and width h, counting both 
planes, is 

... _ 26/?s| ./z 12 bRsu2e2a2A2

The attenuation arising from conductor losses is then approximately 

Hi 2Rawe a, = - = -2JFr ßa 

= _ 2RS<^_ 2R, 
°“ (7) 

where, in terms of ^2 and a2 of the conductor, 

Äs = 

The expression for attenuation caused by conductor losses also 
approaches infinity at cut-off, but again the approximations entering 
into its derivation break down in that region so that the expression 
does not apply there. The attenuation will, however, be high at 
cut-off and decrease with frequency until a frequency of Vã fc is 
reached beyond which the surface resistivity in the numerator takes 
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over and attenuation again increases with frequency. The form of 
the curve is shown in Fig. 8 09. 

f/f. 

Fig. 8 09 Attenuation curves of waves between imperfectly conducting planes. 

PROBLEM 

8-09 Prove that the frequency of minimum attenuation due to conductor 
losses for the TM mode is at/ = \/3 fc, and find the expression for this minimum 
attenuation. Calculate its value for copper conductors 5 cm apart with air dielec¬ 
tric for the n = 1,2, and 3 modes. 

8-10 TRANSVERSE ELECTRIC WAVES BETWEEN PARALLEL PLANES 

Since the analysis and characteristics of the transverse electric 
waves are very similar to those for the transverse magnetic waves, they 
will be treated more briefly. Equation 8 02(12) may be written in 
terms of the non-zero Hz: 

VXU2HZ = d = -K2Ht (1) 
dx 

K2 = 72 + fc2 (2) 

The solution will again be written in terms of sinusoids, but this time 
only the cosine term is retained since Ey, proportional to the derivative 
of Hz with x, must become zero at the perfectly conducting plane 
X = 0: 

H, = B cos Kx (3) 
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From Eqs. 8 0’2(7) to (10), remembering that Ez is zero, 

jun dHt juu . 
k«”"''« I») 

Ez = 0 (6) 

U V = 0 (7) 

Ev must be zero at the conducting plane x = a also, so K is determined 
from (4) as some multiple of ir/a. As with the TM wave, this is 
identified from (2) as the value of k at cut-off. 

K = 2trfc V ne = mr/a (8) 

Propagation constant from (2) may then be written 

7 = a = (w/a) V ï - (///c)2 f <fe (9) 

7 = jß = jk VI - (A//)2 / > fc (10) 

The forms for attenuation constant in the cut-off range and phase 
constant in the propagating range are thus exactly the same as for the 
TM waves, and by (8) conditions for cut-off are the same for TE modes 
as for TM modes of the same order. The expressions for phase 
velocity, group velocity, and guide wavelength in the propagating 
range follow from (10) and are exactly the same as Eqs. 8 07(9) to 
(11). 

Wave or field impedance for the TE wave is 

„ _ _ _ jjW__ 
IIz 7 ju X nt I — (/„//)2

Z, = (fc/f)2 (11) 

For frequencies below cut-off this wave impedance is imaginary, but 
for frequencies above cut-off it is real and always greater than as 
contrasted to the wave impedance for TM waves, which is always less 
than i;. 

The form of the field lines for the first order TE mode is indicated 
in Fig. 8-10. Here the magnetic field lines form closed curves sur¬ 
rounding the ^/-direction displacement current. There is no charge 
induced on the conducting plates and only a y component of current 
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corresponding to the finite II z tangential to the plates. The TE 
waves may also be considered as made up of uniform plane waves 
propagating and reflecting from the planes at an angle Õ from the 
normal, as pictured in Figs. 8 08b-d, but here the component plane 
waves are polarized with the electric field normal to the plane of 
incidence so that Eqs. 711(18) to (20) apply. The relation between 
angle 0 and fc/f is, as for the TM waves, Eq. 8-08(5). 

If the dielectric is lossy, the approximate expression for attenuation 
constant is the same as for TM waves, Eq. 8 09(4), since this was 
derived from the formula for propagation constant which is common 
to both types of waves. 

Fig. 810 Magnetic field lines of TE^ wave between plane conductors. 

If the conductor has finite conductivity, the attenuation constant 
may be computed in terms of power loss and power transfer as before. 
The power loss per unit length, for a width b of both planes, is 

= 2bR, = bR,B2 (12) 

The average power transferred by the wave is 

WT
b 
2 

{-EvHx*)dx 
b a ßa ufia z

2 2 TT 7T 
(13) 

So the attenuation constant arising from conductor losses is 

JFL 4tt~Es ARs<¿c2¡ji v t 
2 IF? ~ 2Mua3 “ 2w2m« vÇ a V1 - (/c//)2

Vaf2 V1 - (/r//)2
Note that, unlike that for TM waves, this expression shows a con¬ 
tinually decreasing attenuation with increasing frequency (Fig. 8 09). 

PROBLEMS 
8-10a Derive the expression for the curves in the x-z plane corresponding to 

the magnetic field lines. Sketch a few for a single positively traveling n = 2 TE 
mode. Show sense and indicate position and sense of electric field. 
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8T0b By suitably changing coordinates and notation, show that the expres¬ 
sions 711(18) to (20) for plane waves reflecting from a plane at an oblique angle 
give exactly the fields of the TE modes of this article. 

810c In the curve showing the attenuation caused by conductor losses as a 
function of ///, (Fig. 8 09), explain qualitatively the reason for the decrease of 
attenuation with increasing frequency. 

General Analysis of Guided Waves 

s-t/ transverse electromagnetic or transmission line waves 
Now that certain points of view toward guided waves have been 

developed through the study of the special case of parallel-plane con¬ 
ductors, it is desirable to study those properties of TEM, TM, and 
TE waves which can be found independently of the shape of the 
cylindrical guiding conductor. The general analysis follows quite 
closely that given by Schelkunoff.' 

The first of the basic wave types to be studied is that with neither 
electric nor magnetic field in the direction of propagation. This has 
been termed a transverse electromagnetic wave. In the simple case of 
propagation between perfectly conducting parallel planes, such a wave 
was identified exactly with the ordinary wave expected from transmis¬ 
sion line theory. It will now be shown that this must be true for any 
general cross section of a uniform guiding line with perfect conductors 
along which this wave type may exist. (The types of guides on which 
it may not exist will be apparent once its characteristics are found.) 

The general relations between wave components as expressed by 
Eq. 8-02(7) to Eq. 8 02(10) show that, with Ez and Hz zero, all other 
components must of necessity also be zero, unless y2 + k2 is at the 
same time zero. Thus, a transverse electromagnetic wave must 
satisfy the condition 

y2 + fc2 = 0 

or 7 = +jk = ±ju/v = ±ju \/nt (1) 

For a perfect dielectric, the propagation constant 7 is thus a purely 
imaginary quantity, signifying that any completely transverse electro¬ 
magnetic wave must propagate unattenuated, and with velocity v, the 
velocity of light in the dielectric bounded by the guide. 

With (1) satisfied, the wave equations, as written in the form of Eqs. 
8 02(11) and 8 02(12), reduce to 

VX2È = 0 VX2H = 0 (2) 

1 S. A. Schelkunoff, “Transmission Theory of Plane Electromagnetic Waves,” 
Proc. I.R.E., 25, 1457-1492 (Nov. 1937). 
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These are exactly the form of the two-dimensional Laplace’s equation 
written for Ë and H in the transverse plane. Since Ez and Hz are zero, 
Ë and H lie entirely in the transverse plane. In Art. 3-02 it was found 
that electric and magnetic fields both satisfy Laplace’s equation under 
static conditions. Consequently it may be concluded that the field 
distribution in the transverse plane is exactly a static distribution, if it 
can be shown that boundary conditions to be applied to the differential 
equations (2) are the same as those for a static field distribution. The 
boundary condition for the TEM wave on a perfect conducting guide 
is that electric field at the surface of the conductor can have a normal 
component only, which is the same as the condition at a conducting 
boundary in statics. The line integral of the electric field between 
conductors is the same for all paths lying in a given transverse plane, 

and may be thought of as corresponding to a 
potential difference between the conductors 
for that value of z. 

To study the character of the magnetic field, 
note Eqs. 802(1) and 8-02(4) with zero Ez 

and Hz. 

H y = — Ez = (3) 
7 7) 

and II z = - ~’ Ey = (4) 
JùV V 

[The signs of (3) and (4) are for a positively 
traveling wave; for a negatively traveling 
wave they are opposite.] Study shows that (3) 

and (4) are conditions which require that electric and magnetic field 
be everywhere normal to each other. In particular, magnetic field 
must be tangential to the conducting surfaces since electric field is 
normal to them. The magnetic field pattern in the transverse plane 
then corresponds exactly to that arising from static currents flowing 
entirely on the surfaces of the perfect conductors. 

The above characteristics show that a transverse electromagnetic 
wave may be guided by two or more conductors, or outside a single con¬ 
ductor, but not inside a closed conducting region, since it can have only 
the distributions of the corresponding two-dimensional static problem, 
and no electrostatic field can exist inside a source-free region com¬ 
pletely closed by a conductor. (See Problem 8Tlb.) 

In addition to the above general properties of TEM waves along per¬ 
fectly conducting guides for which this type may exist, we may show an 

Fig. 811 Two-conduc¬ 
tor transmission line with 

integration paths. 
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exact identity with the ordinary transmission line equations for such 
cases. In order that a definite example may be referred to, consider a 
line consisting of two conductors A and B of any general shape, Fig. 
8-11. We shall, for the demonstration, be quite general regarding time 
and z functions, merely requiring that Ez and Hz be zero. The voltage 
between the two lines may be found by integrating electric field over 
any path between lines, such as that shown, 1-0-2. It will have the 
same value no matter which path is chosen, since Ë does satisfy 
Laplace’s equation in the transverse plane and so may be considered 
the gradient of a scalar potential in so far as variations in the transverse 
plane are concerned. 

(Ex dx + E,, dy) 

Differentiate the above equation with respect to z. 

But the curl relation, 

dV 
dz 

V X Ë = 
dB 
~dt 

shows that, if Ez is zero, 

dEu dBx , dEx dB. 
dz dt dz dt 

By substituting these in the above equation, 

d F d C2 , 
= - 77 ( — Bvdx + Bxdy) 

dZ dt j i 

A study of Fig. 811 reveals that the quantity inside the integral is 
the magnetic flux flowing across the path 1-0-2, per unit length in the z 
direction. According to the usual definition of inductance, this may 
be written as the product of inductance L per unit length and the 
current I : 

3F 

dz 
= - (LI) = -L — 
dr ' dt (5) 

The above is one of the differential equations used as a starting point 
for conventional transmission line analysis (Art. 1-16). The other may 
be developed by starting with current in line A as the integral of mag-
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netic field about a path a-b-c-d-a. (There is no contribution from 
displacement current since there is no E2.) 

I = <f) fí -dl = <f) (Hxdx + Hvdy) 

Differentiate with respect to z. 

di r (dHx , , dllu \ 
— = 01 dx + dy / dz J \ dz dz / 

From the curl equation, 

it follows that, if H 2 = 0, 

dH y dDx - dH x dDv
dz dt dz dt 

Substituting, 

- lÓ(Dxdy - Dydx) 
dz dt J 

Inspection of the figure shows that this must be the electric displace¬ 
ment flux per unit length of line crossing from one conductor to the 
other. Since it corresponds to the charge per unit length on the con¬ 
ductors, it may be written as the product of capacity per unit length 
and the voltage between lines: 

W) 
dz dt 

Equations (5) and (G) are exactly the equations used as a beginning 
for transmission line analysis, neglecting losses (Art. 116). It is 
seen that they may be derived exactly from Maxwell s equations pro¬ 
vided the conductors are perfect, and, since fields in the transverse 
plane satisfy Laplace’s equation, the inductance and capacitance 
appearing in the equations are the same as those computed in statics. 
So, in this very important case of guiding of electromagnetic eneigy 
(transmission lines with negligible imperfections in conductivity of 
conductors), the well-known method of analysis based upon low-
frequency circuit notions gives the correct answer, since it is actually 
equivalent to an analysis starting from Maxwell’s equations, this 
despite the use of static L’s and C’s for a problem certainly not static. 
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As we shall see, this situation will not be true for other more general 
types of waves. 

PROBLEMS 

8-lla Demonstrate that, although in a TEM wave Ë does satisfy Laplace’s 
equation in the transverse plane and so may be considered a gradient of a scalar 
in so far as variations in the transverse plane are concerned, E is not the gradient 
of a scalar when variations in all directions (z, y, and z) are included. 

8-llb Demonstrate that electrostatic field will be zero inside any source-free 
region closed by a conductor at constant potential C. Hint. Make use of the 
uniqueness theorem, Art. 3 03. 

TRANSMISSION LINE WAVES ALONG IMPERFECT LINES 

We have found that the classical analysis for a transmission line 
wave (TEM), made in terms of voltage and current along the line 
and the distributed inductance and capacitance calculated for direct 
current, is equivalent to one made directly from Maxwell’s equations 
provided the conductor and dielectric are perfect. 

This conclusion might not have been expected, for, if one had wished 
to be skeptical, it would have been easy to question the validity of the 
transmission line equations on at least two counts. 

1. A voltage drop due to current flow through the distributed 
inductance of the line is calculated, but none is included because of 
mutual effects from any other part of the line; similarly, no mutual 
charging effects are considered. 

2. Inductance and capacitance used in the equations are those calcu¬ 
lated for direct current. It might seem doubtful that such constants 
could be of any use for extremely high frequencies; certainly we found 
that it is not permissible to neglect frequency effects when considering 
lumped inductances and capacitances at the highest frequencies in 
circuit equations (Chapter 5). 

The first objection is answered once it is found from the field equa¬ 
tions that there are no axial field components in the wave, and conse¬ 
quently no mutual effects. The second objection is answered by the 
discovery that the field distribution for the wave in the transverse 
plane is actually one corresponding to the static field pattern for that 
configuration, no matter what the frequency may be. The necessary 
condition is that the propagation be with light velocity in the dielectric 
of the line, a condition the conventional approach to t ransmission lines 
is very happy to grant. 

If the transmission line is not ideal, but has resistance and conduc¬ 
tance of finite amount, classical transmission line theory would have us 
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take account of these by setting the voltage change along the line equal 
to a resistance plus an inductance drop, and the current change equal 
to a capacitance plus a conductance leakage current (Art. 1-24): 

dV 
= -(>LZ + RI) 

dz 

= -{jœCV + GV) 
dz 

It is usually assumed that inductance and capacitance calculated 
on the basis of d-c distributions are still used in these equations. 
Although it is true that a contribution to inductance from the flux 
inside the conductors (the internal inductance of Chapter C>) may now 
be included, that part of the inductance arising from flux in the space 
between conductors is still calculated from the d-c distributions. 

It will now be shown that such an analysis is equivalent to one made 
from Maxwell’s equations if a line has uniform conductance but no 
resistance; it will also be shown that, if resistance of the conductors is 
important, the two analyses cannot be exactly equivalent. However, 
we should not undermine our confidence in the usual transmission line 
expressions too quickly, for the error will be infinitesimal for efficient 
transmission lines. 

If the transmission line has a dielectric with uniform conductivity 
a, occupying all the space between conductors,’previous field analyses 
can be corrected by replacing jut by (a + jwe) in all results (Art. 717). 
However, this is exactly what is done in a conventional analysis, 
where juC for the ideal line is replaced by (G + juC) for the line with 
conductance. For a line with uniform dielectric, G has the same form 
as C, with conductivity in place of dielectric constant: 

(G + juC) = (a + jut) X function of configuration 

It follows that the two analyses have then actually considered the 
effect of conductivity of the dielectric in the same manner. 

If the current-carrying conductors of the transmission line have finite 
conductivity, one trouble is immediately apparent. There must be at 
least some small component of electric field in the direction of propaga¬ 
tion to force the current through the conductors. By referring again to 
Eqs. 8-02(7) to 8 02(10), it is seen that with Ez finite, y2 + k2 must 
then also be finite. The quantity on the right of the wave equation 
cannot then be exactly zero, but must be some small but finite amount. 

Vxv2Ê = finite quantity 
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This indicates that the field distributions are disturbed from the 
Laplace distributions somewhat by the axial field required to produce 
current flow. It is then no longer correct to calculate values of capaci¬ 
tance and inductance from the static distributions. 

Although the nature of an exact analysis from Maxwell’s equations is 
apparent, it is difficult to apply to practical lines. One must first 
obtain the wave solutions which apply inside the dielectric and those 
which apply inside the conductor, matching the two at the boundary. 
The difficulties with most geometrical configurations are obvious. 
Schelkunoff has carried through this attack for coaxial lines,2 deter¬ 
mining the extent of the approximations which must be made to 
reduce the problem to the classical analysis. We have carried through 
the similar procedure for the parallel-plane transmission line in Art. 
8 06. Studies of more general configurations might be made by the 
method of successive perturbations. That is, the first correction to 
the perfect conductor case is the required axial electric field, which 
may be estimated simply from the resistivity times the approximate 
current flow. An idea is thus obtained of E/s distribution and mag¬ 
nitude and consequently of V-Ez. A next approximation is then 
obtained for the distribution of Ex, Hv, etc.', as well as y. From 
the new H’s thus computed, a new current is computed and the whole 
process is again repeated. From the results of such studies it becomes 
apparent that an exact analysis from Maxwell’s equations is for¬ 
tunately unnecessary for lines which are at all efficient for energy trans¬ 
fer. The difference in results between such an exact analysis and the 
usual classical analysis including distributed resistance is extremely 
small.3

The classical transmission line analysis for imperfectly conducting 
boundaries is similar to methods previously introduced in this book, in 
which the first correction arising from the resistance is applied, but the 
major field distributions are assumed essentially unchanged. When 
this type of approximation was used for a wave analysis in Art. 8 06, 
the two criteria for its use were 

1. Displacement currents in the conductor negligible compared to 
conduction currents. 

2. The intrinsic impedance of the dielectric much greater than the 
skin effect surface resistivity of the conductor. 

These are also a measure of the excellence of the conventional trans-

2 S. A. Schelkunoff, “The Electromagnetic Theory of Coaxial Transmission 
Lines and Cylindrical Shields,” Bell Sys. Tech. J., 13, 532-579 (Oct. 1934). 
3 J. R. Carson, “The Guided and Radiated Energy in Wire Transmission,” 

J.A.I.E.E., 43, 906-913 (Oct. 1924). 
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mission line analysis including distributed resistance. Stated in 
another way, such an analysis assumes that transverse electric field 
components in the conductor are negligible compared with the axial, 
and that axial electric field components in the dielectric are small com¬ 
pared with the transverse. These are equivalent to the above. Thus 

<7 9 R. 
— » 1 — « 1 
we 2 rj 

Rs is surface impedance of the conductor, and intrinsic impedance of 
the dielectric. These inequalities are nearly always satisfied by the 
materials of common transmission lines, but, if they are not, one must 
examine critically any results predicted by the usual transmission line 
equations. 

PROBLEMS 

8-12a Two perfectly conducting cylinders of arbitrary cross-sectional shape 
are parallel and separated by a dielectric of conductivity a and dielectric constant 
e. Show that the ratio of electrostatic capacitance per unit length to d-c conduc¬ 
tance per unit length is i/a. 

8-12& If conductors are perfect but dielectric has conductivity a as well as 
dielectric constant e, show that y must have the following value in order for a TEM 
wave to exist (Ez = 0, Hz = 0) : 

7 = ±[j«M(<r + 

Explain why the distribution of fields may be a static distribution as in the loss-
free line, unlike the case for a lossy conducting boundary. 

8-13 TRANSVERSE MAGNETIC WAVES 

As the next possibility, let us consider generally those waves that 
may exist with electric field but no magnetic field in the direction of 
propagation. These have been named transverse magnetic (TM) 
waves, and examples have been given for the parallel-plane guide 
(Arts. 8 07 to 8 09). 

The Differential Equation. With the assumed propagation constant 
the axiaj component of electric field for the TM waves 

must satisfy the wave equation in the form of Eq. 802(11): 

= -k^ (1) 

V = (72 + = 72 + (2) 

The value of kc, which should be a constant for a particular mode, is 
determined by the boundary condition to be applied to (1). 
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Boundary Condition for a Perfectly Conducting Guide. As in the 
examples, the first step in the solution of a practical wave guide prob¬ 
lem is to assume that ’the wave guide boundaries are perfectly con¬ 
ducting. Ez must then certainly be zero at the conducting boundary 
of the guide: 

Ez = 0 at boundary (3) 

There are transverse components of electric field in the waves which 
must enter the conducting boundaries normally, but this need not be 
put on as a separate condition since it turns out to follow from (3). 
To show this, let us write all field components from the general rela¬ 
tions of Art. 8 02 with Hz set equal to zero. Upper and lower signs 
are for positively and negatively traveling waves, respectively. 

„ = 7 dEz ? dEz

1 k 2 dx v + k 2 dy 

II _ dE* IT dEz 
H * ~ 1 2 s H V —  Í 2 1 kc dy kc dx 

Relation (4) may be written in the vector form: 

Ët = + 7^ ̂ iEz 
Kc

where Ët is the transverse part of the electric field vector, and Vt repre¬ 
sents the transverse part of the gradient. By the nature of the 
gradient, the transverse electric vector Êt is normal to any line of 
constant Ez. It is then normal to the conducting boundary, as 
required, once the boundary is made a curve of constant Ez = 0. 
Thus (3) is the only required boundary condition for solutions of (1). 

Cut-Off Properties of TM Waves. Solution of the homogeneous 
differential equation (1) subject to the boundary condition (3) at a 
given boundary is possible only for discrete values of the constant kc. 
These are the characteristic values, allowed values, or eigenvalues of the 
problem, any one of which determines a particular TM mode for the 
given guide. In the example of the plane conductors (Art. 8 07), the 
allowed values of ke were defined by nir/a, and a particular mode was 
described by the appropriate integer n. It will be shown below that, 
for any dielectric region which is completely closed by perfect con¬ 
ductors, the allowed values, ke, must always be real. Hence the 
propagation constant from (2), 

7 = VV - k2 (7) 

(4) 

(5) 
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always exhibits cut-off properties. That is, for a particular mode y is 
real for the range of frequencies such that k < kc, y is zero for k = kc, 
and y is imaginary for k > kc The cut-off frequency of a given mode 
is then given by 

2ir/c Vge = — = ke (8) 
Ac 

and (7) may be written in terms of frequency f and cut-off frequency 
fc- _ 

V = a = kc V1 - (f/tf f < fc (9) 

y = = jk Vi - (/c//)2 f > fe (10) 

The phase velocity for all TM modes in an ideal guide then has the 
form 

= ^ = r[l - (H) 

The group velocity is 

= r[l - (íM* (12) 

Universal curves for attenuation constant, phase velocity, and group 
velocity as functions of f/fc are shown in Fig. 8-13a. Phase velocity is 
infinite at cut-off frequency and is always greater than the velocity of 
light in the dielectric ; group velocity is zero at cut-off and is always 
less than the velocity of light in the dielectric. As the frequency 
increases far beyond cut-off, phase and group velocities both approach 
the velocity of light in the dielectric. 

It remains to be shown that kc is real for all TM modes in a dielectric 
region completely enclosed by perfect conductors. To do this, let us 
write the divergence theorem (Art. 214) in a form applicable to the 
two-dimensional case by applying the original theorem to a cylindrical 
region of unit length: 

(V( • F) dS = $ Fn dl (13) 

In the above, the integral on the left is taken over the cross-sectional 
area of the cylindrical region, and the integral on the right is the line 
integral of the component of F normal to the boundary, taken about 
the boundary of the region. All vector operations are confined to 
the transverse plane, and F may be any vector which does not vary 
in the axial direction. In particular, let it be the vector Ez
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Fig. 8-13a Frequency characteristics of all TE and TM wave types. 

(Recall that Ez is the multiplier of e^"'“72’ and so does not vary 
with z.) 

I V, • (E, VtEJ dS = Ó E,— dl = 0 Jc.s. J dn 

The right-hand integral is zero since Ez is zero on the perfectly con¬ 
ducting boundary. The left side may be transformed (Art. 2-39): 

f l(ytE^ + E'VSEJdS = 0 •/C.8. 
The value of V(2 Et is supplied by (1). 

f ^tE^2 dS = k 2 f Ef2 dS (14) */c.s. Jc.s. 
For plane waves which are of the same phase in any given transverse 
section, E 2 and (ytE^2 are real and positive, so k2 must also be real 
and positive. Hence, kc is real under the conditions stated. 

Magnetic Fields of the Waves. Önce the distribution of Ez is found 
by solution of the differential equation (1) subject to the boundary 
condition (3), the transverse electric field of a given mode may be 
found from relation (6), or (4). The transverse magnetic field may 
be found from relations (5). By comparing (4) and (5), it is seen that 

Ex _ _ Ey _ + y_ 
Hy Hx ~ joe (15) 
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These relations show that transverse electric and magnetic fields are 
at right angles, and that their magnitudes are related by the quantity 
y/jut, which may be thought of as the wave impedance or field imped¬ 
ance of the mode. The usefulness of this type of quantity has already 
been demonstrated, and will appear in additional discussions. 

ZTU = ^ = v V1 - (/c//)2 (16) 
Jue 

v = Vm/« 
The latter form is found by substitution of relation (10). 

The wave impedance is imaginary (reactive) for frequencies less than 
the cut-off frequency, and purely real for frequencies above cut-off, 
approaching the intrinsic impedance of the dielectric at infinite fre¬ 
quency. This type of behavior is also found in the study of lumped-
element filters, and again emphasizes that the wave can produce no 
average power transfer for frequencies below cut-off where the imped¬ 
ance is imaginary. 

The relations between electric and magnetic fields may also be 
expressed in the following vector form, which expresses the properties 
described above: 

«2 is the unit vector in the z direction. The upper sign is for positively 
traveling waves, the lower sign for negatively traveling waves. 

Power Transfer in the Waves. The power transfer down the guide 
has been shown to be zero below cut-off if the conductor of the guide 
is perfect. Above cut-off it may be obtained in terms of the field 
components by integrating the axial component of the Poynting 
vector over the cross-sectional area. Since it has been shown that 
transverse components of electric and magnetic fields are in phase and 
normal to each other, the axial component of the average Poynting 
vector is one half the product of the transverse field magnitudes. For 
a positively traveling wave, 

lVr = I I Re [Ë X H*], dS = J i I Et H H t | dS 
v'C.S. 2 2 Jc.B. 

= ^f |//r| 2d<S (18) 
2 Jc.S. 

By (5), this may be written 

I»«. I’« 
JC.B. 
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By substitution of (^4), this is 

349 

(19) 

It is often as easy to use the transverse field distributions of a mode 
in the Poynting integration (18) as to use the form (19). However, 
the latter form does emphasize that, for a given power transfer in the 
mode, the axial component of field Ez must decrease as f/fc approaches 
infinity. 

Attenuation due to Imperfectly Conducting Boundaries. When the 
conducting boundaries are imperfect, an exact solution would require 
solution of Maxwell’s equations in both the dielectric and conducting 
regions as was done for the parallel-plane guide in Art. 8 06. As this 
procedure is impractical for most geometrical configurations, we take 
advantage of the fact that most practical conductors are good enough 
to cause only a slight modification of the ideal solution, and the 
approximate formula 8 05(7) may be used. To compute the average 
power loss per unit length, we require the current flow in the guide 
walls, which is taken the same as that in the ideal guide. By the 
ñ X H rule, the current in the boundary is equal to the transverse 
magnetic field at the boundary, and flows in the axial direction since 
magnetic field is entirely transverse: 

WL = (f) A — I J z\2 dl = — £ \/It\2dl (20) 
h J bound 2 2 J bound 1 ‘ 1 ' 

The attenuation constant is then approximately 

117 _ 
2»'r 2Z„,£|H,p<iS 

(21) 

If desired, the power loss and hence the attenuation constant may 
be written in terms of the distribution of Ez only. By (5), 

Wl 9 1- 4 j bound n c
I VEz\2dl (22) 

Since Ez is zero at all points along the boundary, there is no tangential 
derivative of Ez there; Ez consists merely of the derivative normal to 
the conductor: 

HT 2/c/ /bound [ Qn 2l¡2k2 \fc/ ? L dn . (23) 



350 FIELDS AND WAVES IN MODERN RADIO 8-13 

An alternative form for the attenuation constant is then 

(24) 

Attenuation due to Imperfect Dielectric. It is noted that the general 
form for propagation constant (7) is exactly the same as that for the 
special case of the parallel-plane guide, Eq. 8 07(6). Hence, the 
modification caused by an imperfect dielectric, taken into account by 
replacing jaie by a + jut, yields the same form for attenuation as Eq. 
809(4): 

kt" /t' 

2 V1 - (/e//)2
an_ 

2 V 1 - (/c//)2
nepers/meter (25) 

It is especially interesting to note that the form of the attenuation due 
to an imperfect dielectric is the same for all modes and all shapes of 
guides, though of course the amount of attenuation is a function of 
the cut-off frequency, which does depend upon the guide and the mode. 
Summary. For TM modes, the differential equation (1) is solved 

subject to the boundary condition (3). This determines certain 
allowed distributions of Ez (modes) and corresponding allowed values 
of the constant kc. The latter' determine cut-off frequencies for the 
various modes, which, placed in (9), (11), (12), (16), (24), and (25), 
determine attenuation below cut-off, phase and group velocities above 
cut-off, wave impedance, attenuation due to conductors, and attenu¬ 
ation due to dielectric, respectively. All this may be done without 
explicitly finding the transverse fields. However, it is usually desir¬ 
able to study the form of the transverse components of field, which 
may be done by means of (6) and (17). These may in turn be used 
to compute power transfer, power loss, and attenuation due to con-

Fig. 8-13b Equivalent circuit for 
the transverse magnetic wave. 

ductors by (18), (20), and (21), as 
alternatives to (19), (22), and (24). 

PROBLEMS 

8-13a Show that the circuit of Fig. 813b 
may be used to represent the propagation 
characteristics of the transverse magnetic 
wave, if the characteristic wave impedance 

and propagation constant are written by analogy with transmission line results 
in terms of an impedance Zi, and an admittance Y i per unit length. 

Ztm = y/ZJY. y = VZlY, 
Note the similarity between this and the circuits of conventional filter sections, 

remembering of course that all constants in this circuit are in reality distributed 
constants. 
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8-13& Show that all field components for a TM wave may be derived from the 
axial component of the vector potential A. Obtain the expressions relating Ex, 
Hx, etc., to A2, the differential equation for Az, and the boundary conditions to be 
applied at a perfect conductor. 

8-13c Repeat Prob, b, using the axial component of the Hertz potential as 
defined in Prob. 415. 

8-13d Show that the magnetic field distribution in the transverse plane can be 
derived from a scalar flux function, and relate this to Ez. With transverse electric 
field derivable from a scalar potential function and transverse magnetic field 
derivable from a scalar flux function, does it follow that both are static type dis¬ 
tributions as in the TEM wave? Explain. 

8-13e Note that we have essentially used E. as a potential function for deriva¬ 
tion of other components in the preceding article. How is this related to the A, 
of Prob, b and the n. of Prob, c? 

8-14 TRANSVERSE ELECTRIC WAVES 

Finally, we consider those waves which have magnetic field but no 
electric field in the axial direction. Because of the similarity of treat¬ 
ment to that of TM waves in the preceding article, it will be given more 
briefly. 

The Differential Equation. The finite Hx of the waves must satisfy 
the wave equation in the form of Eq. 8 02(12): 

= -k 2Hx 

kt2 = y2 + k2

(1) 

(2) 

Boundary Conditions for a Perfectly Conducting Guide. Allowable 
solutions to (1) are determined by the single boundary condition that 
at perfect conductors the normal derivative of Hz jnust be zero: 

■—- = 0 at boundary 
dn 

(3) 

To show that this is the required boundary condition, write the trans¬ 
verse fields of the wave from Eqs. 8 02(7) to (10). 

(4) E 

(5) II x = + 

Relation (5) may be written in the vector form, 

(6) 

dH, 

dz 

Ht = + —2 VtH 
Kc

H y = + 

E 
dll 

k2 dy 

7 dH. 
k2 dz 

7 dH. 
k2 dy 
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If Hz has no normal derivative at the boundary, its transverse gradient 
has only a component tangential to the boundary, so, by (6), Ht does 
also. Comparison of (4) and (5) shows that transverse electric and 
magnetic field components are normal to one another, so electric field 
is normal to the conducting boundary as required. 

Cut-Off Properties of T E Waves. If in the two-dimensional diver¬ 
gence theorem, Eq. 813(13), the general vector F is set equal to 

the following relation may be derived for a cylindrical region 
closed by a perfectly conducting boundary: 

f dS = ke2 f H 2 dS (7) 

For plane waves, Hz and are real, so k2 must be real and positive. 
By (2), y then shows cut-off properties exactly the same as for TM 
waves: 

7 = y/k 2 - k2 (8) 

Formulas for attenuation constant below cut-off, phase constant, phase 
and group velocities above cut-off then follow exactly as in Eqs. 8-13(9) 
to (12). 

7 = a = ke V1 - {f/fc)2 f <fe (9) 

7 = jß = jk V1 - (fc/D2 f>fc (10) 

vP = Hl - (11) 

= ^[1 - (fc/f)T (12) 
where 

2ir/c = kc = 2ir/Xc (13) 

The universal curves of Fig. 8-13a then apply directly. 
Electric Field of the Wave. The electric field is everywhere trans¬ 

verse, and everywhere normal to the transverse magnetic field com¬ 
ponents. Transverse components of electric and magnetic field may 
again be related through a field or wave impedance: 

where, from (4) and (5), 
ib)U F / 

ZrB = — = ^ 1 - V (15) 
7 L \f / J 

This impedance is imaginary for frequencies below cut-off, infinite at 
cut-off, and purely real for frequencies above cut-off, approaching the 
intrinsic impedance 17 as f/fc becomes large. 
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(16) 

Electric field may also be written in the vector form, 

Ë = + ZTlfãz X Ht) 

where ãz is the unit vector in the z direction, and the upper and lower 
signs apply respectively to positively and negatively traveling waves. 

Power Transfer in TE Waves. Average power transfer in the propa¬ 
gating range is, as usual, obtained from the Poynting vector: 

IFr = i Re [Ë X H*] dS = 1 I ET l| HT | dS 

— J 

(17) 

By (6) and (7), this may be transformed to 

1FT = f H 2 dS (18) 
Jc.s. 

Attenuation due to Imperfectly Conducting Boundaries. As with the 
TEM mode, there cannot be a true transverse electric wave in most 
guides with imperfect conductors, since most (but not all) of the TE 
modes have axial currents which require a certain finite axial electric 
field when conductivity is finite. However, this axial field is very 
small compared with the transverse field, so that one does not bother 
to rename the waves. 

The axial component of current arises from the transverse com¬ 
ponent of magnetic field at the boundary: 

(19) 

The last form follows since it has been shown that the transverse 
gradient of II z has only a tangential component (d/dh at the boundary. 
There is in addition a transverse current arising from the axial mag¬ 
netic field: 

I Jt I = I Hz I (20) 

The power loss per unit length is then 

WL = ^[\lIz\2 + \Ht\2] dl (21) 

A211 - (A02]pMJl 
fc) k 2 L ol J J dl (22) 
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Attenuation due to the loss is 

p 7 i + i/fce2[i - (A//)2] [^11 dl 
^S^TE J ' L W J J 

f II 2 dS 
Jc.B. 

If the transverse field components have been calculated explicitly, it is 
usually as easy to use forms (17) and (21) as the derived forms (18) 
and (22). 

Attenuation due to Imperfect Dielectrics. Since propagation constant 
of the TE waves has the same form as for the TM waves, it follows 
that the form for attenuation due to an imperfect dielectric does also. 
For a reasonably good dielectric, the approximate form, Eq. 8-13(25), 
may be used: 

2 V1 - (A//)2 2 V1 - (/c//)2

PROBLEMS 

8-14a As in Prob. 813a, show that the equivalent circuit for transverse electric 
waves in terms of distributed constants is as pictured in Fig. 8-14. 

8-14& Show that fields satisfying Maxwell’s equations in a homogeneous, 

Fig. 8-14 Equivalent circuit for the 
transverse electric wave. 

charge-free, current-free dielectric may 
be derived from a vector potential F, 

Ë = — - V X F 
e 

1 
II = -- V(V ■ F) - juF 

Jane 

(V2 + k^F = 0 

Obtain expressions for all field components of a TE wave from the axial component 
F, of the above potential function, and give the differential equation and boundary 
conditions for F„ 

8-14c Show that, if one utilizes the potential function Ã instead of the F of 
Prob, b for derivation of a TE wave, more than one component is required. 

8-14d Show that transverse distribution of electric field can be derived from a 
scalar flux function. How is this related to HZ1 

8-15 GENERAL WAVE TYPES IN RECTANGULAR COORDINATES 

The general solutions for guided waves may be written in rectangular 
coordinates for application to waves between parallel planes, parallel 
bar transmission lines, wave guides of rectangular section, etc. 
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For transverse magnetic waves, Eq. 813(1) in rectangular coordi¬ 
nates is 

(1) dx* dy 

This is a partial differential equation which may be solved by the 
method used in Chapter 3. Assume that the solution may be written 
as a product of two terms, one a function of x only, the other a function 
of y only: 

Ez = A y 

where A' is a function of x only and Y is a function of y only. Sub¬ 
stitute in (1): 

X"Y + XY" = -VXF 

or (2) 

The primes indicate derivatives. If this equation is to hold for all 
values of x and y, since x and y may be changed independently of each 
other, each of the ratios X"/X and Y"/Y can be only a constant. 
There are then several forms for the solutions, depending upon whether 
these ratios are both taken as negative constants, both positive, or one 
negative and one positive. If both are taken as negative, say and 
k2 respectively, then 

The solutions to the above ordinary differential equations are sinusoids, 
and by (2) the sum of kx2 and ku2 is k2. 

Thus three forms of the wave solution for rectangular coordinates in 
the transverse plane are listed below, with understood. They 
apply as well to H, in transverse electric or II waves, since Hz satisfies 
an equation identical to (1). 

Ez for TM waves I _ yy 
II z for TE waves j - 1 J

where X = A cos kxx + B sin kxx 
(4) 

Y = C cos kvy + D sin kvy 

k2 + k 2 = k 2
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or X = Ai cos kxx + Bi sin kxx 
(5) 

Y = Ci cosh Kyy + Di sinh Kyy 

k2 - K 2 = k 2

or X = A 2 cosh Kxx + B2 sinh Kxx 
(6) 

Y = C2 cosh Kyy + D2 sinh Kyy 

- (Kx2 + Ky2) = k 2

Note that solutions in the form of (6) have a negative value of kc2, 
which does not violate previous proofs that k2 must be positive for 
solutions applying within a closed region, since (6) would not be 
applicable inside a region closed by a perfect conductor. 

All other components, Hx, Hy, Ex, and Ey, are obtained from the 
above and Eqs. 8 02(7) to (10). For a negatively traveling wave, 
reverse the sign of all terms containing y in those equations. 

PROBLEM 

8-16 Discuss the types of geometrical configurations to which each of the forms 
of Eqs. 8-15(4) to (6) might be applied. 

8-16 GENERAL WAVE TYPES IN CYLINDRICAL COORDINATES 

In cylindrical structures, such as coaxial lines or wave guides of circu¬ 
lar sections, the wave components will be most conveniently expressed 
in terms of cylindrical coordinates. The two-dimensional Laplacian 
Yxy2 in Eq. 8-13(1) should be written in cylindrical coordinates: 

„ in d2Ez 1 dE. 
Vxy~EZ = Yr^2Ez = d-— dr r dr 

1 d2Ez 

r2W 

So that 
â2Ez 1 dEz J- d2Ez _ 
dr2 + r dr r2 d</>2 (1) 

For this partial differential equation, we shall again substitute an 
assumed product solution and attempt to separate variables in order to 
obtain two ordinary differential equations. 
Assume 

Ez = RF# 

where R is a function of r alone and F0 is a function of </> alone. 

R"F, + — + = -k 2RFt
r r 
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Separating variables, 

R" rR' 2 2 -F*" 

The left side of the equation is a function of r alone; the right of alone. 
If both sides are to be equal for all values of r and <£, both sides must 
equal a constant. Let this constant be p2. There are then the two 
ordinary differential equations 

and 

or R" + - R' 
r 

R = 0 

(2) 

(3) 

The solution to (2) is in sinusoids. By comparing with Eq. 3-24(3), 
it is seen that solutions to (3) may be written in terms of Bessel func¬ 
tions of order v. Since Hz for transverse electric or H waves satisfies 
the same equation as (1), solutions to Hz will also be in the same form 
Thus, with understood, 

Ez (for TM waves) 1 _ „ ... 
Hz (for Tß waves) j * W

where R = AJ ,(kcr) + BN,(kcr) 
(5) 

= C cos v<t> + D sin p</> 

or ß = dr/F'^V) + FiH/ 2) (V) 
(6) 

Pç = C cos p0 + D sin v<j> 

or R = A2J,(ker) + B2H^l\kcr) 
(7) 

= C cos v<l> + D sin p</> 

The Hankel function form of (6) is useful when it is desired to look at 
waves as though propagation were in the radial direction, as will be seen 
in the study of radial transmission lines. The form of (7) is useful for 
problems in which the constant kc may be imaginary, since J, and 
of imaginary quantities are tabulated.4

4 See Jahnke-Emde, Tables of Functions, Dover Publications, reprint, 1943. 
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Other components, Er, E^, Hr, and are obtainable from the above 
solutions by the following equations, which are the cylindrical coordi¬ 
nate equivalents of Eqs. 8 02(7) to (10). 

Er
1 

V 

dEz jup dll z 

dr r dtp . 
(8) 

y dEz dllz

“ — + 3<W ~ r dtp dr J 

Hr
1 

kc2
jaie dEz dll z

. r dtp dr . 

O) 

(10) 

II 1 . dEz ydHz

Ti -IT kc L dr r dtp J (11) 

For a negatively traveling wave, reverse the sign of all terms contain¬ 
ing y in the above. 

PROBLEM 

8-16 Demonstrate, making use of the form of Eq. 8-16(7), that a solution with 
kc imaginary cannot apply inside a closed region. 

8-17 COMPARISONS OF GENERAL WAVE BEHAVIOR AND PHYSICAL 
EXPLANATIONS OF WAVE TYPES 

Many characteristics have been found in the past articles for waves 
along uniform guiding systems by mathematical analyses starting from 
Maxwell’s equations. It has been found, for instance, that transverse 
electromagnetic waves (waves with no field components in the direction 
of propagation) may propagate along an ideal guide with the velocity 
of light for the dielectric of the guide. In the transverse plane, these 
may have any field distributions which correspond to static field dis¬ 
tributions. Thus such waves may propagate along a system of two or 
more conductors, or outside a single conductor, but not inside any 
hollow pipe, since a static field distribution cannot exist inside an 
infinitely long, hollow, closed conductor. Moreover, it has been 
verified that the usual transmission line equations written with dis¬ 
tributed inductance and capacitance calculated for direct current 
are exact for ideal lines, and the usual equations with distributed 
inductance, capacitance, resistance, and conductance are excellent 
approximations for any practical transmission line efficient for energy 
transfer. 

So much for these principal or transmission line waves we have 
known of, if without assurance, from the conventional line equations, 
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which Maxwell’s equations actually verified. In addition, waves have 
been found which could not have been predicted from the classical 
transmission line equations based on circuit notions. These waves 
have either electric or magnetic field components in the direction of 
propagation. They may propagate inside closed hollow conductors, 
but only above certain critical or cut-off frequencies for which cross-
sectional dimensions between conductors are of the order of a half¬ 
wavelength. Below these cut-off frequencies the waves, even if 
started, attenuate extremely rapidly, so that, for ordinary transmission 
lines where spacing between conductors is much smaller than a half 
wavelength, these waves should not enter into energy propagation. 
They may be important at discontinuities, end effects, or in the radi¬ 
ation field at a long distance from the line. However, above the cut-off 
frequency, these waves may be quite satisfactory for energy transfer 
in any system, and are the only waves which may exist inside closed 
hollow conductors. 

These and other characteristics were obtained by mathematical 
analysis. It will be profitable to pause now, attempting to understand 
physically the basis for this behavior and the comparisons between the 
several types of waves. 

It should first be recalled that at the frequencies of interest—at 
least for the profitable use of hollow pipe wave guides—current flow 
in the conducting walls will be completely governed by skin effect. 
For many purposes the conductors may be considered perfect, so that 
there is no penetration whatever into the conductors, but all currents 
and charges reside on the surface. Even when actual conductivities of 
practical conducting materials are taken into account, it is found that 
at such frequencies depth of penetration is of the order of 10-4 inch, 
and the outside of the pipe is perfectly shielded from the fields which 
are being retained on the interior. 

For the dielectric space inside the pipe, it should be recalled that: 
1. Electric field lines may begin and end on charges. If an electric 

field ends on a conductor, it must represent a charge induced on that 
conductor. 

2. Magnetic field lines can never end since magnetic charges are not 
known physically. Magnetic fields must always form continuous 
closed paths, surrounding either a conduction current or a changing 
electric field (displacement current). 

3. Electric field lines may form continuous closed paths, surrounding 
a changing magnetic field. 

In a transverse electromagnetic field, by definition, there are no axial 
field components; both electric and magnetic fields must lie in the 
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transverse plane. Since electric field is transverse, it would be impos¬ 
sible for magnetic field to surround it without having a component in 
the axial direction. Consequently all magnetic fields must surround 
axial conduction currents and not displacement currents. This is the 
result checked by the analysis for these waves and explains physically 
why the magnetic fields satisfy a Laplacian equation in the transverse 
plane outside of the current-carrying region. Similarly, since mag¬ 
netic fields are transverse, electric fields could not enclose them without 

Fig. 817 Field distributions for some waves in a hollow circular cylinder. 

having an axial component of electric field. Consequently, in a given 
transverse plane, all electric field lines must begin on a certain number 
of positive charges and end on the same number of negative charges. 
So electric field also must satisfy Laplace’s equation in the transverse 
plane for the region between conductors. 

We can also see quite easily that there can be no transverse electro¬ 
magnetic waves inside hollow closed conductors. Consider, for a 
specific case, the round hollow pipe of Fig. 8-17a. If the conductor of 
the pipe is perfect, magnetic field must be tangential to the conductor. 
Since magnetic field must also form closed lines, any magnetic field 
line just inside the pipe would have to be a closed circle tangential to 
the pipe. It could cut no part of the conductor, and so could surround 
no conduction current. For a wave with no axial electric field, it 
cannot surround displacement current (or changing electric field). 
Consequently, it cannot exist at all. 
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It is evident as an extension of the above reasoning that there may 
be a value of magnetic field inside the pipe if there is an axial electric 
field, since the axial displacement current could then account for mag¬ 
netic field. The electric field might start from positive charges at one 
section of the guide, turn and go down the guide axially, and finally 
end on negative charges farther down the guide (Fig. 8-176). It is 
recognized that such a wave is a transverse magnetic wave analyzed in 
Art. 813. (The subscript notation will be defined in Chapter 9.) 
Note particularly that, since the line integral of magnetic field is pro¬ 
portional to rate of change of electric flux enclosed, magnetic field for a 
single traveling wave is a maximum, not in the plane where axial 
electric field is a maximum, but rather in the plane where rate of change 
of axial electric field is a maximum as the entire pattern moves down 
the guide. If this wave is symmetrical, there must be only axial 
current flow, produced by the transverse magnetic field at the con¬ 
ductor surface. This is also evident by the current which must flow 
to account for the lumps of induced charge. From still another point 
of view, we have agreed that the conducting wall acts as a perfect 
shield so that no magnetic field due to influences on the inside can 
exist outside it. Thus, at any section, there must flow a current in 
the conductor exactly equal and opposite to the total axial displace¬ 
ment current inside the guide at that section. 

Let us now consider the field distribution for waves with axial mag¬ 
netic field and transverse electric field. First, as in Fig. 8-17c, notice 
that, if electric field lines start from positive charges on one side of the 
hollow pipe and go directly across to negative charges on the opposite 
side, magnetic field lines may exist inside the hollow pipe if they sur¬ 
round these electric field lines. In this type of wave there must exist 
currents flowing circumferentially between the positive and negative 
charges at any given section in addition to those which flow axially. 
The former are accounted for by the axial magnetic field at the surface 
of the conductor; the latter are accounted for by the transverse com¬ 
ponent of magnetic field at the surface' of the conductor. 

The wave described above is, of course, a transverse electric or II 
wave. However, another wave of this same type may appear if the 
electric field lines in the transverse plane do not end on any charges, but 
always close upon themselves. In this wave (Fig. 817d) the electric 
field lines and the magnetic field lines surround each other. There are 
then no charges induced on the conductors and no axial currents. 
There are circulating currents arising from the axial component of 
magnetic field. Since we have found that this axial component 
becomes very small for frequencies far above cut-off, so will the circu-
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lating current become small, and under this condition there will be but 
slight losses in the guide even though conductors are imperfect. Of 
course, such a situation indicates that the type of wave described is 
not so intimately tied to the guide. If it is attempted to make a 
bend in such a guide, current must flow at the discontinuity, and the 
new wave generated at the bend may be of an entirely different type. 
Because of this reason it is often pointed out that the type of wave is 
unstable. This is the TEq wave of circular guide which will be studied 
in more detail later. 

We might next.ask if it is possible to have a transverse magnetic or 
E wave with no charges induced on the guide, but with electric and 
magnetic fields surrounding each other. A little study of this shows 
that, although it may be possible for the fields to surround each other 
on the interior of the guide for the higher order TM waves, the field 
nearest the conductor must turn to enter the conductor normally, thus 
inducing charges as described previously. 

All the above general characteristics will be further clarified in later 
study of the specific waves which may propagate inside guides of circu¬ 
lar and rectangular shapes. However, the preceding general study is 
particularly important in showing that similar types of waves should 
be found in guides of different cross sections, since the above discus¬ 
sions did not require the specification of the shape of guide. 



9 CHARACTERISTICS 

OF COMMON WAVE GUIDES 

AND TRANSMISSION LINES 

Common Transmission Lines 

9-01 COAXIAL LINES, PARALLEL-WIRE LINES, AND SHIELDED PAIRS 

From the conclusions of Arts. 8'11 and 812 the analysis for ordinary 
transmission line waves along practical transmission systems may be 
correctly made from the distributed circuit constant concepts of Chap¬ 
ter 1. h or use of the formulas of Chapter 1, it is necessary to calculate 
values for the inductance, capacitance, resistance, and conductance per 
unit length. The calculation of such constants was studied in Chapter 
6. However, for convenience, some results for the commonly used 
transmission lines will be listed. 

Coaxial lines are among the most commonly used of all transmission 
lines, particularly at the higher frequencies. This is largely because of 
the convenient construction and the practically perfect shielding 
between fields inside and outside of the line. The range of imped¬ 
ances that may be obtained most conveniently by coaxial lines (see 
Table 9 01) is about 30 to 100 ohms. 

Somewhat higher impedances may be obtained conveniently with 
parallel-wire lines, and these find wide application, although the shield¬ 
ing and radiation problems make them undesirable at the highest 
frequencies. It is also difficult to attain the lowest impedances 
conveniently with them. Unlike the coaxial line, the parallel-wire 
line is a balanced line, which is sometimes desirable. 

If the parallel-wire line is placed inside a conducting pipe as shield, 
the radiation and shielding difficulties are eliminated. The imped¬ 
ance of the line with shield is in general somewhat lower than the same 
line without the shield. I he resulting shielded pair is also a balanced 
line, assuming symmetrical location of the lines in the shield. 

363 
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The parallel-bar transmission line is sometimes used when balanced 
lines of low impedance are desired. Like the parallel-wire line, it is 
not perfectly shielded. 

In Table 9 01 are listed some of the constants for the above lines. 
Many of these formulas are approximate, applying at the highest fre¬ 
quencies. For lower frequencies, values of resistance and internal 
inductance should be calculated by the methods of Chapter 6 and sub¬ 
stituted in the formulas of Chapter 1. 

7 = a + jß = + juL) (G + juC) 

(R + j^L) 
(G + juC) 

ohms 

9-02 COAXIAL LINES- HIGHER ORDER WAVES 

In addition to the ordinary transmission line wave in a coaxial line, 
there may exist under certain conditions higher order waves with elec¬ 
tric or magnetic field in the direction of the line axis. Such waves 

would be expected from the study of the simple case 
of parallel planes, and by the general study of waves 
along uniform systems in Chapter 8, where TM and 
TE waves were found in addition to the principal or 
transmission line waves. The general forms for the 
TM and TE waves in cylindrical coordinates are listed 

Fig. 9 • 0 2 a 
Cross section of 
a coaxial line. 

in Art. 8-16. The boundary conditions require that 
Ez for the TM waves be zero at the inner radius and, 
at the outer radius, assuming perfect conductors. 

(These, of course, refer to radii measured at the boundary between 
conductors and dielectric, as in Fig. 9 02a.) 

TM waves 
AnJn(kcrù + BnNnM = 0 

d nJn(&</()) + BnNn{kcro) — 0 

or 
Nnikc^i) ^nÇkc^o) 
J n(kcTj) J n(kcTo) 

(1) 

For TE waves, the derivative of Hz normal to the two conductors 
must be zero at the inner and outer radii. Then, in place of (1), 

An (^c^*t) d n 
Jn Jn (^c^o) 

(2) 

Solutions to the transcendental equations (1) and (2) determine the 
values of kc and hence cut-off frequency, for any wave type and any 





TABLI 

0 

Capacitance C, 
farads/meter 

2 re xe 

cosh“1 ( 

External inductance L, 
henrys/meter 

cosh 1

Conductance G, 
mhos/meter 

2ir<r ^(T 

cosh-1 1 

Resistance R, ohms/meter +
 

e? Ich 

2R, 
■Kii IS 

Internal inductance Li, 
henrys/meter (for high 
frequency) 

-4-— — 

Characteristic impedance at 
high frequency Zq, ohms 

n - cosh“1

Zq for air dielectric 120 cosh“ ■G)’ 

Attenuation «lue to conduc¬ 
tor ac

•4--

Attenuation due to dielec¬ 
tric a.i 

Total attenuation db/meter 

4-
— — 

Phase constant for low-loss 
lines 8 _ 

— 

All units above are mks. 
t — t'ta — dielectric constant, farads/meter | 
M = permeability, henrys/meter ¡ for the dielectric 

11 = \ ‘ n /t ohms 
Formulas for shielded pair obtained 

Tech. Jaum., 15, pp. 248-284 (April, 193 



01 

t" = loss factor of dielectric = v/uio 
R, = skin effect surface resistivity of conductor, ohms 
X = wavelength in dielectric = Xo \ /u’ 

Green, Leibe, and Curtis, Bell System 
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particular values of r.and r0- Solution of the transcendental equations 
is accomplished by graphical methods or by consulting published tables. 
By analogy with the parallel-plane guide, we would expect to find cer¬ 
tain modes with a cut-off such that the spacing between conductors is 
of the order of p half-wavelengths. Figure 9 026 shows that this is so 
for the TM modes so long as radii of curvature are large. 

2 
~ - (r0 - p = 1, 2, 3, • • • (3) 

P 

This is verified by Fig. 9 026 for values of ro/r, near unity. 
Probably more important is the lowest order TE wave with circum¬ 

ferential variations. This is analogous to the TEm wave of a rectangu-

Fig. 9 026 Cut-off wavelength for some higher order TM waves in coaxial lines, 

lar wave guide, and physical reasoning from the analogy leads one to 
expect cut-off for this wave type when the average circumference is 
about equal to wavelength. (The later discussion of Art. 9 04 will 
indicate this more clearly.) Solution of (2) reveals this simple rule to 
be within about 4 per cent accuracy for r0/rt up to 5. In general, for 
the nth order TE wave with circumferential variations, 

There are, -of course, other TE waves with further radial variations, 
and the lowest order of these has a cut-off about the same as the lowest 
order TM wave. 

Once cut-off is found by solution of (1) and (2) or the above approxi¬ 
mations, propagation characteristics are determined by the expressions 
of Arts. 813, 814. Of course, for the majority of coaxial fine applica-
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tions, dimensions are small enough compared with wavelength so that 
the waves are far below cut-off. They then do not propagate energy, 
but attenuate rapidly so that they are important only at end effects, 
discontinuities, or in the radiation field. For microwave applications, 
however, the line size may sometimes be large enough to propagate the 
circumferential mode determined by n = 1 in (4). Care must then 
be taken to avoid its excitation or its interference with the desired 
mode. 

Common Wove Guides 

9-03 RECTANGULAR WAVE GUIDES 

Hollow conducting pipes of rectangular cross section are the most 
commonly used of the hollow-pipe wave guides. It has been pointed 
out in Chapter 8 that for such hollow pipes the dielectric interior can 

Fig. 903a Coordinate system for rectangular guide. 

support TM and TE waves, but not TEM waves. With the coordi¬ 
nate system chosen as in Fig. 9 03a, the wave equation may be solved 
in rectangular coordinates as in Art. 815. For TM waves the bound¬ 
ary conditions require zero Ez at x = 0 and at y = 0, so only sine 
terms can be present. Other components are derived by the relations 
8-02(7) to (10). 

Transverse Magnetic Waves 
Ez = A sin kxx sin kyy 

j. y 
Hz = j —— A sin kzx cos kyy 

kcnfc 
kzf 

Hu = —j -,—7 -4 cos kzx sin kyy (1) 
^cVj c 

Ex = ZtmHu

Ey = —ZtmHx

Transverse Electric Haves 
Hz = B cos kxx cos kyy 

H. 

H 

. Vkyf n 1'1 = j- B cos kzx sin kyy 

Ey = 
. nkxf . —j -B sin kzx cos kyy 
kcfc 

Zte 
Ex
Z te 

(2) 
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In the above, the propagation factor Tz) is understood, and 

Ztm = n[l - (fM* ZTE = ¿1 - (M)2]-w (3) 

(4) 

If the wave is negatively traveling, e^3“^^ is understood and the signs 
of terms in ZTM or ZTE should be reversed. 

In addition to the boundary conditions utilized above, there remain 
the conditions at x = a and y = b. For the TM waves, Ez must be 
zero here also, requiring that kxa and kJ) be multiples of t. 

m-K mr 
kx = ky = — 
a b 

The requirement of dH^dx = 0 at x = a and dH J fry = 0 at y = b 
leads to the same values of kx and ku for TE waves. From Eq. 8-15(4) 
for either TM or TE waves, 

(kc)m,n = vëTv = ^^y + (y)2
Then cut-off wavelength and frequency may be written 

_ 2r_2_ 2ab 

V (m/a)2 + (n/b)2 V (mb)2 + (na)2

There are then a doubly infinite number of possible waves of each type, 
corresponding to all the combinations of the integers m and n. An 
E or transverse magnetic wave with m half-sine variations in the x 
direction and n half-sine variations in the y direction is denoted as an 
Emn or TMmn wave. An H or transverse electric wave with m half¬ 
sine variations in x, n in y, is denoted by Hmn or TEmn. Note that by 
(1) and (2) TE waves may exist with either m or n (but not both) 
zero, whereas in a TM wave neither m nor n can be zero or the entire 
wave disappears. The lowest order TE wave, TEi0, is of enough 
special engineering interest to be studied in more detail in a following 
article. For the moment, however, we see from (6) that the cut-off 
(free space) wavelength of such a wave is 

= 2a (8) 

(5) 

(6) 

(7) 
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That is, the cut-off frequency is that frequency for which the width 
of the guide is a half-wavelength. It does not depend at all on the 
õthèF dimensions. This TE^o mode is frequently referred to as the 
dominant mode of the rectangular guide. 

Figure 9 03b shows a line diagram indicating the cut-off frequencies 
of several of the lowest order modes for a square guide, a = b, referred 
to the cut-off frequency of the dominant 7'Eio mode, and for a guide 
of ratio b/a = 

The phase and group velocities, attenuation below cut-off, and atten¬ 
uation due to imperfect dielectrics above cut-off for any wave type 
are given in terms of the cut-off frequency of that wave type by the 

TExa 

TEn 

V 
I 
1 

TEi2

TEm  TE2l 

TMn TEm TMlt 

TEU  ¿ ™ 51

I I 
2 

f^ TEl0

b/aa l 

TE}Q

I_ 
1 

TEoi 
TE^o 

I 
2 

TE„ 

/«/(A) TE¡0

b/a=% 

Fig. 903b Relative cut-off frequencies of waves in rectangular guides. 

general expressions of Art. 813. For attenuation above cut-off due 
to imperfect conductivity, we evaluate the integrals of Eqs. 813(19) 
to (24) in a straightforward manner. The results are 

2RS [m2(b/o)3 + n2] 

” br> VI - (/„//)2 [m2(b/a)2 + n2] 

Curves of attenuation in decibels per meter (8.686 times the values 
of a in nepers per meter given in the equations above) are plotted for a 
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few modes and b/a ratios in Fig. 9 03c. Note that all curves show a 
minimum value of attenuation, after which attenuation increases with 

Frequency, megacycles /second 

Fig. 9 03c Attenuation due to copper losses in rectangular wave guides of fixed 
width. 

Table 9-03. It will be useful to become familiar with this table, and 
especially to make comparisons with the similar table to be given in 
Art. 9 05 for circular guides. 

PROBLEMS 

9 03a Derive in detail the expressions for attenuation due to imperfect con¬ 
ductors, Eqs. 9 03(9) to (11). 

9-03& Recalling that surface resistivity li, is a function of frequency, find the 
frequency of minimum attenuation for a TMmn mode. Show that the expression 
for attenuation of a TEmn mode must also have a minimum. 

9-03c Of the wave types studied so far, those transverse magnetic to the axial 
direction were obtained by setting Hz = 0; those transverse electric to the axial 
direction were obtained by setting Ez — 0. For the rectangular wave guide, 
obtain the lowest order mode with Hz = 0 but all other components present. This 
may be called a wave transverse magnetic to the x direction. Show that it may 
also be obtained by superposing the TM and TE waves given previously of just 
sufficient amounts so that Hx from the two waves exactly cancel. Repeat for a 
wave transverse electric to the x direction. The above wave types are also called 
longitudinal section waves. 
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9-04 THE TEjo WAVE IN A RECTANGULAR GUIDE 

One of the simplest of all the waves which may exist inside hollow 
pipe wave guides is the dominant TE i0 wave in the rectangular guide. 
It is also of great engineering importance, partly for the following 
reasons. 

1. Cut-off frequency is independent of one of the dimensions of the 
cross section. Consequently for a given frequency this dimension may 
be made small enough so that the TEio wave is the only wave which 
will propagate, and there is no difficulty with higher order waves which 
end effects or discontinuities may cause to be excited. 

Fig. 9 04a Current flow in walls of rectangular guide with TEio mode. 

2. The polarization of the field is definitely fixed, electric field pass¬ 
ing from top to bottom of the guide. This fixed polarization may be 
required for certain applications. 

3. For a given frequency the attenuation due to copper losses is not 
excessive compared with other wave types in guides of comparable size. 

Let us now rewrite the expressions from the previous article for 
general TE waves in rectangular guides, Fig. 9 04a, setting m = 1, 
n = 0, and substituting the value of cut-off for this-combination. 

(1) 

(2) 

(3) 

(4) 
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_2_ 
VI - (X/2a)2

_1 
Vge V 1 — (X/2a) 2

(5) 

(6) 

(7) 

Xc = 2a 

I 
2a Vge

Attenuation due to imperfect dielectric, 

__ kt"/d 
2 1 - (/e//)2 " 2 V 1 - (/c//)2

Attenuation due to imperfect conductor, 

vi - (/c//)2 L « u/J 

(8) 

(9) 

(10) 

(11) 

In the above, vp is phase velocity, vg is group velocity, p, e, and y are 
permeability, dielectric constant, and intrinsic impedance respectively 
for the dielectric filling the guide. Rs is the skin effect surface resis¬ 
tivity of the conducting walls, and «"/e' is the ratio of loss factor to 
relative dielectric constant of the dielectric. 

A study of the field distributions (1) to (3) shows the field patterns 
for this wave sketched in Table 9 03. First it is note’d that no field 
components vary in the vertical or y direction. The only electric field 
component is that vertical one Ey passing between top and bottom of 
the guide. This is a maximum at the center and zero at the conducting 
walls, varying as a half-sine curve. The corresponding charges 
induced by the electric field lines ending on conductors are: 

(a) Charges zero on side walls. 
(6) A charge distribution on top and bottom corresponding to Ev. 

Pa = —tEv coulombs/meter2 on top 

= eEy coulombs/meter2 on bottom 

The magnetic field forms closed paths surrounding the vertical electric 
displacement currents arising from Ey, so that there are components 
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Hx and Hz. Hx is zero at the two side walls and a maximum in the 
center, following the distribution of Ey. Hz is a maximum at the side 
walls and zero at the center. Hx corresponds to a longitudinal current 
flow down the guide in the top, and opposite in the bottom; II z corre¬ 
sponds to a current from top to bottom around the periphery of the 
guide. These current distributions are sketched in Fig. 9 04a. 

(a) Longitudinal current flow: 

On top J z = Hx amperes per meter. 

On bottom J z = —Hx amperes per meter. 

(6) Transverse current flow from top to bottom: 

On walls J y = — Hz\x=0 amperes per meter. 

On top Jx = —Hz amperes per meter. 

On bottom J x = II z amperes per meter. 

This simple wave type is a convenient one to study in order to 
strengthen some of our physical pictures of wave propagation. First 
note that this is one of the types predicted by physical reasoning in 
Art. 8-17. Electric field is confined to the transverse plane and so 
passes between equal and opposite charge densities lying on different 
parts of the walls in the same transverse plane. Currents flow around 
the periphery of the guide between these opposite charges; currents 
also flow longitudinally down the guide between a given charge and 
that of opposite sign, a half-wave farther down the guide. The mag¬ 
netic fields surround the electric displacement currents inside the guide 
and so must have an axial as well as a transverse component. 

Fig. 9 046. 

As a fairly crude way of looking at the 
problem, one might also think of this mode 
being formed by starting with a parallel-plate 
transmission line of width w to carry the 
longitudinal current in the center of the 
guide, and then adding shorted troughs B of 
depth I on the two sides to close the region, 
as pictured in Fig. 9-046. Since one would 

expect the lengths I to be around a quarter-wavelength to provide a 
high impedance at the center, the over-all width should be something 
over a half-wavelength, which we know to be true for propagation. 
The picture is only a rough one because the fields in the two regions 
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are not separated, and propagation is not purely longitudinal in the 
center portion or transverse in the side portions. 

A third viewpoint follows from that used in studying the higher order 
waves between parallel planes. Here it was pointed out that- one could 
visualize the TM and TE waves in terms of plane waves bouncing 
between the two planes at such an angle that the interference pattern 
maintains a zero of electric field tangential to the two planes. Simi¬ 
larly, the TEiq wave in the rectangular guide may be thought of as 
arising from the interference between incident and reflected plane 
waves, polarized so that the electric vector is vertical, and bouncing 
between the two sides of the guide at such an angle with the sides 
that the zero electric field is maintained at the two sides. One such 
component uniform plane wave is indicated in Fig. 9 04c. As in the 

(Top view) 
Fig. 9 04c Path of uniform plane wave component of TEio wave in rectangular 

guide. 

result of Art. 8 08, when the width a is exactly X/2, the waves travel 
exactly back and forth across the guide with no component of propa¬ 
gation in the axial direction. At slightly higher frequencies there is a 
small angle 9 such that a = X/2 cos 9, and there is a small propa¬ 
gation in the axial direction, a very small group velocity in the axial 
direction v sin 9, and a very large phase velocity v/sin 9. At fre¬ 
quencies approaching infinity, 9 approaches 90°, so that the wave 
travels down the guide practically as a plane wave in space propagating 
in the axial direction. 

All the above points of view explain why the dimension b should not 
enter into the determination of cut-off frequency. Since the electric 
field is always normal to top and bottom, the placing of these planes 
plays no part in the boundary condition. However, this dimension b 
will be important from two other points of view. 

(a) The smaller b is (all other parameters constant), the greater is 
the electric field across the guide for a given power transfer, and so the 
danger of voltage breakdown is greater. 

(b) The smaller b is (all other parameters constant), the greater is 
the attenuation due to conductor losses. 
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The first point is easily seen since it was shown that the power trans¬ 
fer can be written as the integral over the cross-sectional area of 
E2/Zr£ . Zte does not change with b, so, as cross-sectional area 
decreases, E must increase, if power is to be constant. 

The second point follows from an approximate picture in which the 
attenuation is roughly proportional to the ratio of perimeter to cross-
sectional area. This picture is a logical one as the conductor losses 
occur on the perimeter, and the power transfer occurs through the 
cross-sectional area. Of course, field distributions enter, and we can 
look at this case more rigorously by noting that, if the strength of 
magnetic field is maintained constant as b is decreased, the magnitude 
of currents in the walls is maintained constant. A large part of the 
losses occur along the top and bottom, and this part is consequently 
unchanged as b decreases, but power transfer for this constant II 
decreases directly with b. Therefore the ratio of power loss to power 
transfer increases as b decreases. 

PROBLEMS 

/ 9-04a For X = 10 cm, design a rectangular wave guide with copper conductor 
and air dielectric so that the TEio wave will propagate with a 30 per cent safety 
factor (/ = 1.30/c) but also so that the wave type with next higher cut-off will be 
30 per cent below its cut-off frequency. Calculate the attenuation due to copper 
losses in decibels per meter. 

9-04& Repeat the above for X = 5 cm. 

¿ z9-04c Design a guide for use at 3000 mc/sec with the same requirements as in a 
except that the guide is to be filled with a dielectric having a dielectric constant 
4 times that of air. Calculate the increase in attenuation due to copper losses 
alone, assuming that the dielectric is perfect. Calculate the additional attenuation 
due to this dielectric, if t" It' = 0.01. 

9-05 WAVE GUIDES OF CIRCULAR CROSS SECTION 

For a circular guide, cylindrical coordinates will be selected so that 
the appropriate solutions for the waves may be taken directly from 
Art. 8-16. There can be no term in lVn(M since the solution must in 
this case apply at the origin, r = 0 and An(0) = oo. For TM waves, 
Ez is then given by Eqs. 816(4) and 816(5) with B = 0. For TE 
waves, Hz is given by a like expression. Other field components for 
the two types of waves follow from Eqs. 816(8) to 816(11) respec¬ 
tively. General solutions for the two types of waves are then as 
follows. 
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Transverse Magnetic H'ares 

E, = 

Hr = 

//* = 

AJ„(ker) 
cos n</> 
sin n<t> 

sin 
— cos 

AJ„(kcr) 
cos n<t> 
sin n<p (1) 

E* = -HrZTM

Er = H^Ztm 

Transverse Electric H’avcs 

E^ — jn EJ n {kcr) 

(
cos nd> 

* sin n<j> 

tv r urn x J sinEr - J . . E J n(kzr) I 
kcrfc I —cos n<l> 

cos n<b 
. I ™ sin n<f> 

Er 
Zte 

Eq 

Zte 

In all the above expressions e’“‘ 72 is understood, and y, ZTM, and 
ZTE are: 

y = >(«/»)[! - ÇfMü 

ZTM = ^[i -

Zte = ^[1 - Uc/fYT* 

For a negatively traveling wave understood), the signs of 
terms in (1) and (2) containing ZTU or ZTE should be reversed. 

For transverse magnetic waves, the boundary condition of zero 
electric field tangential to the conducting boundary, Ez = 0 at r = a, 
must require that 

JnM = 0 (3) 

Since the Bessel function Jn(x) has an infinite number of values of x 
for which it becomes zero, (3) may be satisfied by any one of these. 
That is, if pni is the Zth root of Jn(x) = 0, (3) is satisfied if 

(fcc)nl = Y (4) 

Equation (4) defines a doubly infinite set of possible values for kc, one 
for each combination of the integers n and I. Each of these combina¬ 
tions defines a particular wave type by Eqs. (1), in general differing 
from all others in field distributions, cut-off frequencies, and propa¬ 
gation properties. A particular E or transverse magnetic wave corre¬ 
sponding to two integers n and I is denoted by Ent or TM nl. The 
integer n describes the number of variations circumferentially; the 
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integer I describes the number of variations radially. The cut-off 
wavelength or frequency for a particular wave type follows from (4). 

2ir 2ira 
<Ac)™ nl = 77 = — 

Pnl 

, r x Pnl 
(Jc)tm. — _ /- —  „ /-2tt V ge 2ira v ge 

(5) 

(0) 

The lowest value of pni is the first root of the zero order Bessel func¬ 
tion, poi = 2.405, so that this TMOi "ave has the lowest cut-off fre¬ 
quency of all transverse magnetic waves in a given circular pipe. From 
(5), this cut-off wavelength is 2.61a. Note that this wavelength is 
measured at velocity of light in the dielectric filling the guide, 1/ VpZ 

For transverse electric or H waves the required boundary condition 
is that normal derivative of Hz be zero at all conducting surfaces. This 
requires 

Jn'(kca) = 0 (7) 

So that, if pni' is the ¿th root of Jn'(x) = 0, (7) is satisfied by 

(l. \ \Kc)nl — 
a 

(8) 

Equation (8) again defines a doubly infinite number of possible TE 
wave types corresponding to all the possible combinations of the inte¬ 
gers n and I, n describing the number of circumferential variations, I the 
number of radial variations. A particular H or transverse electric 
wave type is labeled Hn¡ or TEn¡. Cut-off wavelength and frequency 
are 

(Xc)te . = ; a (9) 
Pm 

Pnl' 

2ira pe 
(10) 

The lowest value of pni is pn', which is 1.84, so that the TEu wave 
has the lowest cut-off frequency of all transverse electric waves in a 
given diameter of pipe. From (9) this corresponds to a cut-off wave¬ 
length of 8-41a. This is also a lower frequency of cut-off than that 
found for the lowest order TM wave in a given size of pipe. Stated 
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in another way, the TEu wave of a given frequency will propagate 
in a pipe only 76.6 per cent as big as that required to support a 1 
wave of the same frequency. 

A line diagram showing positions of the cut-off frequencies of some 
of the lower order modes as compared with the dominant TEu mode 
is given for a circular guide in Fig. 9 05a. Field distributions for 
several of the modes with other important data are shown in Table 
9-05. In comparing this with the similar table for rectangular guides, 
note that analogous modes in the two shapes of guides do not have 
corresponding subscripts. Thus, a TEu circular mode is analogous 
to the TEio rectangular, a TA/qi circular is analogous to a TMu 

TEu TEn  TMm

ÍJ TE

Fig. 905a Relative cut-off frequencies of waves in a circular guide. 

rectangular, the TMu circular is analogous to the TMu rectangular, 
etc. 

To demonstrate the calculation of the attenuation arising from 
imperfect conductors, we will carry through the steps for a TMn¡ 
mode. To compute power transfer, the expression for Ez in (1) may 
be substituted in Eq. 813(19). 

(///c)2 VI - (/c//)2 p p 
---- I A Jn (kcr) cos r dr d<f> 

2y Jo Jo 

The integral of the cos2 term gives a value of ir. The integral of the 
Bessel function is evaluated by Eq. 3 ’28(5). 

•/n2U’cr)r dr = — J n~(kcd) -|- . , w I r 2/1 X 
• V > 2 2 ) nkc a / 

The second term in this integral is zero because of (3). So 

ITr
ÄV1 - (/c//)2a2

—-- A ./n(k,,a) (11) 
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The power loss per unit length due to the conductors, by Eq. 8-13(23), 

2 P2r 

A-c2A 2Jn,2(M0 I COS2 (n</>) a d<t> 
Jo 

= ^(t\ 02) 
2v \fc/ 

R. ( f\ 
2¿fcc2 \fj 

The attenuation is then 

R» 1 aTu = - =-== nepers/meter (13) 
21Fr a,vl-(/e//)!

A similar use of the equations gives the attenuation for a TE ni wave, 

1 M + <“> av V 1 _ Çfc//y L V/ Pnl - n2

Some representative curves of attenuation versus diameter are 
plotted in Fig. 9 05b for different wave types at a fixed frequency; and, 

Wavelength 
Fig. 9 05b Attenuation due to copper losses in circular wave guides at 3000 

mc/sec. 

in Fig. 9-05c, for different wave types in a guide of fixed diameter, 
attenuation is plotted versus frequency. The TEOi wave is inter¬ 
esting because it shows an attenuation which decreases indefinitely 
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with increasing frequency. This is logical, since equations (2) show 
that the only magnetic field component tangential to the conductors is 
7 n( " °’ As increases, H, decreases for a constant 

\alue of transmitted energy and approaches zero at infinite fre 
quency. Currents in the guide walls therefore approach zero and 
losses approach zero. As was pointed out in Art. 8-17, this merely 
means that under such conditions the wave is not tied intimately to 

Fig. 905c Attenuation due to copper losses in circular wave guides; diameter = 
2 in. 

the conducting walls. Any asymmetry or bending of the guide will 
of course, produce currents in the walls and a corresponding increase 

“Y the wave into a type other than the 
oi. Although the TE01 wave was used as an example, all TEol 

waves behave similarly. 

PROBLEMS 

X*** 9 05(,4) ,or °' 
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Study the dependence of the value of attenuation at this frequency on fc. (Recall 
that R, is a function of frequency.) 

/9-05c For X = 7 cm, select a pipe size to propagate with a reasonable safety 
/actor the 7’En wave, but no other wave type. Compare the dissipative attenu¬ 
ation in this TEn wave (copper guide) with the reactive attenuation in the next 
highest order wave. 

9 06 EXCITATION AND RECEPTION OF WAVES IN GUIDES 

The problems of exciting waves in wave guides and of absorbing their 
energy in a receiver are extremely difficult to analyze if exact quanti¬ 
tative analysis is desired. Some aspects of the quantitative problem 
will be given in the discussion of microwave networks in Chapter 11. 
Some qualitative ideas will be given here. In order to excite any par¬ 
ticular desired wave, one should study the wave pattern, and then 
use any of the following methods. 

1. Introduce the excitation in a probe or antenna oriented in the 
direction of electric field, and most often placed near a maximum of the 
field. (The exact placing as well as the length and size of the probe is 
a matter of impedance matching.) 

2. Introduce the excitation through a loop oriented in a plane 
normal to the magnetic field, and near a maximum of magnetic field. 

3. Couple to the desired exciting fields by a hole, slit, or iris in the 
guide wall, chosen so that there is some common field component 
between the desired mode and the exciting source. 

4. Introduce currents from transmission lines or other sources in 
such a manner that the desired current directions in the guide walls 
are forcibly excited. (Or course it is true that, since currents and 
fields are directly related, any scheme based on exciting currents in 
the walls may, if preferred, be looked upon as a scheme of exciting 
fields in the space, but the viewpoint from currents is often more 
direct.) 

5. For higher order waves combine as many of the exciting sources as 
are required, with proper phasings. 

Since any of the above exciting methods are in the nature of concen¬ 
trated sources, they will not in general excite purely one wave, but all 
waves which have field components in a favorable direction for the 
particular exciting source. From another point of view, we see that 
one wave alone will not suffice to satisfy the boundary conditions of the 
guide complicated by the exciting source, so that many higher order 
waves must be added for this purpose. If the guide is large enough, 
several of these waves will then proceed to propagate. Most often, 
however, only one of the excited waves is above cut-off. This will 
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Circular Guide Section 

Coaxial^’----
Line 

Fig. 906a Antenna in end of cir¬ 
cular guide for excitation of 7'A/oi 

wave. 

Fig. 9 066 Antenna in bot¬ 
tom of rectangular guide for 
excitation of the TEio wave. 

Rectangular Guide (longitudinal 
section through center) 

Line 

Fig. 9 06c Loop in end of 
rectangular guide for excitation 

of TEio wave. wave in circular guide. 

Fig. 906/ Excitation of the 
TE™ wave in rectangular guide 
by two oppositely phased an¬ 

tennas. 

Fig. 906e Junction between 
circular guide (TtVoi wave) and 
rectangular guide (T^io wave). 
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propagate down the guide, and (if absorbed somewhere) will represent 
a resistive load on the source, comparable to the radiation resistance 
of antennas which we shall encounter further in Chapter 12. The 
higher order waves which are excited, if all below cut-off, will be 
localized in the neighborhood of the source and will represent purely 
reactive loads on the source. For practical application, it is then 
necessary to add, in the line which feeds the probe or loop or other 
exciting means, an arrangement for matching to the load which has a 
real part representing the propagating wave and an imaginary part 
representing the localized reactive waves. 

The receiving problem is the reverse of the exciting problem, and in 
general any method which works well for exciting will also work well for 
receiving. 

Some examples of the several excitation methods listed in 1 to 4 are 
shown in Figs. 9 06a to 9 06/. In Fig. 9 06a an antenna is used to 
excite a TMqi wave in a circular guide. In Fig. 9 06h a similar antenna 
is used to excite a TE 10 wave in a rectangular guide. Note that one 
end of the guide is closed to obtain transmission in one direction only. 
The position of this closed end may be utilized as one variable in the 
matching process. In Fig. 9-06c, a TE-^ wave in a rectangular guide is 
excited by a loop. In Fig. 9-06d, a TEn wave in a circular guide is 
excited by the currents of a two-wire transmission line. Similarly, in 
Fig. 9 06e, the TWqi wave in the circular guide is excited by a TE i0 

wave in a rectangular guide, and a study of the patterns and reflections 
at the closed end shows that currents in the walls are proper here for 
excitation. From another point of view this example may be con¬ 
sidered hole or iris coupling. Other examples of this type will be given 
in Art. 10T2. Finally in Fig. 9-06/, a TEiQ wave in a rectangular 
guide is excited by two antennas, properly phased. Further discus¬ 
sion, with experimental verification, is presented by Sou th worth.1

PROBLEM 

9'06 Draw the field and current patterns in the lines and guides of Figs. 9 06a 
to 9-06/, and explain the coupling mechanism in each of these figures. 

9-07 SIMPLE TRANSMISSION LINE TECHNIQUES APPLIED TO GUIDES 

Equivalent networks for general junctions such as those of the last 
article are very important in general impedance-matching problems, 
and will be discussed in Chapter 11. However, certain simple prob¬ 
lems may be handled in terms of the wave impedance, defined as the 
ratio of transverse electric field to transverse magnetic field, and given 

1 G. C. Southworth, Proc. I.R.E., 25, 807-822 (July 1937). 
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for various wave types in preceding articles. These problems are 
characterized by the fact that any discontinuity should be the same 
over an entire transverse section of the guide, so that matching of E 
and H for one point of the transverse plane produces a match for all 
points of that plane. This is of course similar to the study of plane 
wave reflection problems by impedance techniques in Chapter 7. 
Several examples will follow. Guide wavelength X0 and wave imped¬ 
ances to be used are 

X 1 
X„ = — ■ = --=-_-

V 1 - (A//)2 / V V 1 - (A//)2

Transverse electromagnetic waves ZTt:„ = q = x'u'e 

Transverse magnetic (E) waves Zrw = q _ (fc/f)2

Transverse electric (//) waves ZTE = 
1 - (A//)2

(1) 

(2) 

(3) 

(4) 

.1. Short-Circuited Guide. A wave guide may be considered as truly 
short-circuited if a conducting plate is placed across the entire section 

Fig. 907a Standing waves of 
transverse field components in 

shorted guide. 

Fig. 9 076 Guide 
with dielectric discon¬ 

tinuity. 

of the guide so that the transverse component of electric field is reduced 
to zero over all that section. This corresponds to a shorted trans¬ 
mission line, so that at once we may draw the forms of the resulting 
standing wave pattern (Fig. 9 07a). Transverse electric field is zero 
at the conducting plate and at multiples of XB/2 in front of it. It is a 
maximum at odd multiples of XB/4 in front of the plate. Transverse 
magnetic field is a maximum at the plate and has other maxima at 
nX„/2; minima, at (2n + l)XB/4 before the plate. Other phase rela¬ 
tions show that Ez for TM waves has the same axial distribution 
pattern as the magnetic field, and II z for TE waves has the same axial 
distribution pattern as the electric field. 

B. Guide with Dielectric Discontinuity. If there is a discontinuity 
from one dielectric to another in a guide (Fig. 9 076), the amount of 
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reflection into the first region and the transmission to the second region 
may be determined from the mismatch in impedances Z\ and Z2. The 
expressions in terms of transverse field components are 

E,' = Z2 - Zj = _ H, / 
Et Z2 + Z i II 

(5) 
Et2 2Z2 Z2Hi 2

Eh Z2 + Zi Z.Hn 

Region (1) then has both a standing wave and a traveling wave. 
The other standard expressions for input impedance, and voltage and 
current along the line, from Chapter 1, may be applied to calculation 
of input impedance on a field basis and of values of electric and mag¬ 
netic fields along the guide. 

C. Quarter-Wave Matching Sections. It is of course possible to 
match between one section of a guide and another section with differ¬ 
ent dielectric constant for any of the wave types at any single fre¬ 
quency. This is accomplished by the technique of quarter-wave 
matching sections developed for transmission lines in Prob. 1-21(b) and 
for plane waves in Art. 7-10. Thus in Fig. 9 07c it is possible to 
match between the regions 1 and 3, if a region 2 is introduced, a 
quarter wavelength long (measured at the phase velocity in that 
region) and having an impedance the geometric mean of those on the 
two sides. Note that, in calculating these impedances, the different 
cut-off frequencies for the three sections must be taken into account 
in (3) or (4). 

This matching may be used, for instance, in a case where it is desired 
to absorb power in the third section, which may be filled with water or 
some other material with a small but finite conductivity. A quarter¬ 
wave section of a proper material (certain special glasses, for example) 
may then be used to match this section to the portion of the guide with 
air dielectric. 

D. Elimination of Reflections from Dielectric Slabs. If dielectric 
slabs must be placed in an otherwise uniform guide (for example, 
because a section must be evacuated), these may be designed in certain 
ways so that they cause no reflections, just as may insulators in trans¬ 
mission lines. The simplest arrangement is to make the dielectric 
slabs a half-wavelength in thickness (Xa/2 for the material of the slab). 
The impedance at the front is then exactly the impedance of the guide 
following the slab. From another point of view, the reflections from 
the front and back surfaces exactly cancel under these conditions. 

The above method of eliminating reflections requires that the dielec-
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trie slab be a half-wavelength in thickness, measured in the material of 
that slab. For certain applications it may be undesirable to use slabs 
of that thickness. For slabs of any thickness, reflections may be elimi¬ 
nated by cancelling the reflected wave from one slab by that from 
another placed a proper distance from it. For slabs of thickness small 
compared with wavelength, or of a material with properties not too 
greatly different from that of region 1, this spacing is such that the total 
phase angle corresponding to the length of guide between insulators and 
one insulator is very nearly 90°. 

E. Termination of Wave Guides. Another important technique of 
transmission lines is the termination of a line by means of a proper 
resistor to eliminate the reflected wave. All energy is completely 
absorbed according to the simple line theory if this resistor is equal to 

Fig. 9 07c Insertion of matching sec- Fig. 907d Conducting film for termi-
tion in a guide. nating a guide. 

the characteristic wave impedance of the line. If the line must be 
closed at the end, the terminating resistor may be placed a quarter¬ 
wavelength from the shorted end, since for perfect conductors the 
shorted quarter-wave line represents an infinite impedance in parallel 
with the resistance. Similarly, a wave guide may be terminated by a 
conducting sheet having a resistance per unit square equal to the 
characteristic wave impedance of the wave type to be matched. This 
sheet is placed a quarter-wavelength from the shorted end (Fig. 9 07d). 

Notice that the conducting film must be made of some material of 
relatively low conductivity if its thickness is not to be absurdly small. 
That is, for a material like copper, d2 would be only of the order of 
10“10 meter. 

PROBLEMS 

9-07a Show, for a TM wave in any shape of guide passing from one dielectric 
material to another, that at one frequency the change in cut-off factor may cancel 



386 FIELDS AND WAVES IN MODERN RADIO 9-08 

the change in i¡, and the wave may pass between the two media without reflection, 
even though no intervening matching section is present. Identify this condition 
with the case of incidence at polarizing angle in Art. 715. Determine the require¬ 
ment for a similar situation with TE waves, and show why it is not practical to 
obtain this. 

9-07& A rectangular wave guide of inside dimensions 4 cm by 2 cm is to propa¬ 
gate a TE 10 mode of frequency 5000 inc/sec. A dielectric of constant «' = 4 fills 
the guide for z > 0, with an air dielectric for z < 0. Assuming the dielectric-
filled part to be matched, find the reflection coefficient at z = 0 and the standing 
wave ratio in the air-filled part. 

9-07c l ind the length and dielectric constant of a quarter-wave matching sec¬ 
tion to be placed between the air and given dielectric of Prob. 9-075. 

2 

a = k. (1) 

(2) 

As / is decreased below/c, a increases from a value of 0 approaching the 
constant value 

2rr 

9-08 WAVES BELOW AND NEAR CUT-OFF 

The higher order waves which may exist in coaxial lines and all 
waves which may exist in hollow pipe wave guides are characterized 
by cut-off frequencies. If the waves are to be used for propagating 
energy, we are of course interested only in the behavior above cut-off. 
However, the behavior of these reactive or local waves below cut-off 
is important in at least two practical cases: 

1. Application to wave guide attenuators. 
2. Effects at discontinuities in transmission systems. 
The attenuation properties of these waves below cut-off have been 

developed in the previous analyses. It has been found that below the 
cut-off frequency there is an attenuation only and no phase shift in an 
ideal guide. The characteristic wave impedance is a purely imaginary ' 
quantity a re-emphasis of the fact that no energy can propagate down 
the guide. This is not a dissipative attenuation as is that due to 
resistance and conductance in transmission systems with propagating 
waves. It is a purely reactive attenuation, analogous to that in a filter 
section made of reactive elements, when this is in the cut-off region. 
'I he energy is not lost but is reflected back to the source so that the 
guide acts as a pure reactance to the source. 

The expression for attenuation below cut-off in an ideal guide; Eq. 
813(9), may be written 
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when (J/fJ2 « 1. This is an important point in the use of wave guide 
attenuators, since it shows that the amount of this attenuation is sub¬ 
stantially independent of frequency if the operating frequency is very 
far below the cut-off frequency. In addition, the amount of this 
attenuation is determined only by the cut-off wavelength of the guide, 
which is in general proportional to the transverse size of the guide, 
so that the value of a may be made almost as large as one pleases by 
selecting a low cut-off wavelength (small pipe size). Since (1) holds 
for any wave in any shape of guide, it follows that choices of wave 
type and guide shape cannot influence the attenuation constant except 
in so far as they fix the cut-off wavelength Xc. 

Note that, if a wave guide attenuator is designed with (f/fc) « 1 so 
that attenuation is independent of frequency, attenuation must neces¬ 
sarily be very great in a wavelength since a will be much greater than 
the free space phase constant, 

“ = = A » J 
k 2ir/X Xc

Now let us look for a moment at the relations among the fields of 
both transverse magnetic and transverse electric waves below cut-off. 
If 7 = a as given by (1) is substituted in the expressions for field 
components of transverse magnetic waves, Eqs. 8-13(4)-(5), 

J /A 2 
V xfj fcc dy 

_ j /A £ 
y \fc' dx 

A _ (A21 
Xi \fj kc dy 

(3) 

For a given distribution of Ez across the guide section, which is deter¬ 
mined once the guide shape and size and the wave type are determined, 
it is evident from relations (3) that, as frequency decreases, J/fc —► 0, 
the components of magnetic field approach zero whereas the transverse 
components of electric field approach a constant value. We draw the 
conclusion that only electric fields are of importance in transverse mag¬ 
netic or E waves far below cut-off. Similarly, only magnetic fields are 
of importance in transverse electric or H waves far below cut-off. 

Suppose that a TM wave is excited by some source in a wave guide, 
extending down the guide a certain distance to a suitable receiver. If 
the frequency is far enough below cut-off so that (J/fc)2 is negligible 
compared with unity, the entire problem may be looked upon as one of 
electric coupling between the source and the receiver, calculated by d-c 
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or low-frequency methods (of course, taking into account the presence 
of the guide as a shield). Similarly, a TE wave between a source and 
receiver in a guide far below cut-off may be looked upon as a problem of 
ordinary magnetic coupling between the source and receiver (of course, 
taking into account the presence of the guide as a shield). If the 
waves are far below cut-off, the dimensions of the guide must be small 
compared with wavelength. For any such region small compared with 
wavelength, the wave equation will reduce to Laplace’s equation so 
that low-frequency analyses neglecting any tendency toward wave 

Fig. 9 08 Modification of propa¬ 
gation characteristics due to losses. 

off, for with losses there is no 

propagation are applicable. Only 
when (f/fcf is comparable to unity 
must the effects of magnetic fields 
be considered in TM waves, and 
the effects of electric fields in TE 
waves. 

The presence of losses in the guide 
below cut-off causes the phase 
constant to change from the zero 
value for an ideal guide to a small 
but finite value, and modifies slightly 
the formula for attenuation. These 
modifications are most important 
in the immediate vicinity of cut-

longer a sharp transition but a more 
gradual change from one region to another, as indicated by the dotted 
curves in Fig. 9 08. It should be emphasized again that the approxi¬ 
mate formulas developed in previous articles may become extremely 
inaccurate in this region. For example, the approximate formulas 
for attenuation caused by conductor or dielectric losses would yield an 
infinite value at f = fc. The actual value is large compared with the 
minimum attenuation in the pass range since it is approaching the 
relatively larger magnitude of attenuation in the cut-off regime, but 
it is nevertheless finite. Previous formulas have also shown an infinite 
value of phase velocity at cut-off, and with losses it too will be finite. 

Miscellaneous Wave-Guiding Systems 

9 09 DIELECTRIC ROD OR SLAB GUIDES 

The study of waves in the rectangular guide from the point of view 
of plane waves reflected between top and bottom (Art. 9 04) suggests 
that under certain conditions a wave may be guided without loss of 
energy by a slab of perfect dielectric having no metal boundaries. 
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This follows from the concept of total reflection of Art. 714, where it 
was found that, if a wave traveling in a dense dielectric strikes the 
boundary of a less dense dielectric at an angle of incidence greater than 
a certain critical angle, all energy is reflected. This critical angle, 
Eq. 714(2), where 1 refers to the dense medium and 2 to the less dense 
medium, is 

ec = sin-1 (!) 

Thus in a dielectric slab as in Fig. 909a, which is assumed infinite in 
the direction normal to the paper, suppose that plane waves are excited 
inside the dielectric in some manner so that they travel as shown, 

Fig. 9 09a Paths of uniform plane wave 
components in a dielectric slab guide. 

Fig. 9 09& Dielectric rod wave guide. 

striking the surface at an angle of incidence, 0. If 0 > 0,,, all energy 
will be reflected at each reflection and all will be retained in the slab. 
There is, for a slab of given thickness, a certain minimum frequency 
at which such a condition can exist. For frequencies lower than this 
critical frequency, the angle 0 will be less than 0C and a certain amount 
of energy will be transmitted into the dielectric medium 2 at each 
reflection, so that the dielectric does not act as a perfect guide. At 
frequencies higher than the critical, the angle becomes greater than 
0C, and the only fields in medium 2 are reactive fields that decay expo¬ 
nentially from the boundary in the transverse direction. As the fre¬ 
quency approaches infinity, 0 —> ir/2 and the exponentially decaying 
fields in medium 2 approach zero. The critical frequency is that for 
which 0 = 0C. A study of the incident and reflected waves at this 
critical angle shows that there is a phase angle of 180° between incident 
and reflected components of magnetic fields parallel to the surface. 
It follows (maybe not obviously) that the slab should be exactly a half¬ 
wave thick, measured at a phase velocity transverse to the slab. 

X. =__ 
2 cos 0 2/Vgiei cos 0 

(2) 

Substitute the value of 0 = 0C from (1): 

cos 0C = Vl — sin2 0C = V1 — («2M2/mi«i) 
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So fc = 
1 1 

2(1 \ \ 1 — -d \ Miei — M2*2 
(3) 

Note that, if M2«2, the requirement for cut-off is that the slab 
be a half-wave thick, measured for the dielectric material of the slab, so 
that such a slab will have exactly the same cut-off frequency as though 
it had conducting walls. If g2«2 is not negligible compared with mici, 
the guide must be somewhat thicker than a similar slab with conduct¬ 
ing boundaries in order to have the same cut-off frequency. 

For exact behavior of the guided wave below and above this critical 
frequency it would be possible to utilize further the results of reflections 
at boundaries between dielectrics, but probably it would be as easy 
to go directly to Maxwell’s equations and match solutions on the two 
sides of the boundary. For variety, let us do this, not for the above 
example but for a round dielectric rod in a medium of lesser dielectric 
constant. 

Let us investigate the possibilities of propagating a TM wave with 
circular symmetry in a dielectric rod (medium 1 of Fig. 9 09Ò) sur¬ 
rounded by the dielectric medium 2 with no intervening conductors. 
The proper wave solutions may be found from Art. 8-16. If </> vari¬ 
ations are eliminated, v = 0. Since medium 1 includes the origin, 
only the Jo term can be present in this region; otherwise fields would 
become infinite at r = 0. Since medium 2 extends to infinity, only 
the term can be present in this solution; otherwise fields would 
become infinite at r = oo. The factor Tz) is, of course, under¬ 
stood in all terms. Then, 

= A\J o(kc\r) 

Ez2 = (4) 

Other components follow from the relations of Eqs. 816(8) to 
8-16(11): 

E^\ — f/02 — 0 Uri = II r2 = 0 

Eri = ^Ji(kelr) Er2 = H^\kc2r) 
“cl Kc2 

jwtlAi ji»(2A2 
= —-JAkcir) 11^,2 = —.-

^cl Kc2 

where 
i 2 2 i 2 
Kci — J Miei 

7. 2 2 I 2 Kc2 = T i W /X2«2 

(5) 

(6) 

(7) 
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At the boundary between the two dielectrics, r = a, E. and //0 must be 
continuous. If this requirement is placed in (4) and (5), 

_ tifce2 II (fcçpa) .g. 

“ e2kcl H^\ke2a) 

We now reason as follows. If the condition under which all energy 
is retained in the rod is sought, and no average energy is to be trans¬ 
mitted into the second medium, it is desired to have a solution corre¬ 
sponding to an exponential decay in the outer medium, and from 
Chapter 3 we find that this is obtained if kc2 is imaginary,, since 
of an imaginary quantity is analogous to a negative exponential. The 
requirement is then 

kc22 < 0 

and the critical limiting condition is 

kc2 = 0 (9) 

From (7), the propagation constant under this critical condition is 

72 = — uifi2e2

7 = jß = jw ^2 (10) 

Therefore there is propagation with no attenuation and, under this 
critical condition, at a phase velocity equal to the velocity of light in 
the outer medium. 

If (8) is observed for kc2 = 0, it is seen that for this critical condition 

•7o(^cin) = 0 

Denote the Zth root of J0(x) = 0 by pOn Then 

kcid = Poi 
But, from (ß) and (10), 

kci = u V^Miei — M2«2 

SO fc = -z P°l (11) 
2ttö V piei — M2«2 

The lowest root, poi, is 2.405. For giti » n2t2, the cut-off frequency 
approaches that of a TMqi mode in a guide with the dielectric material 
bounded by a perfect conductor. 

If the above analysis were followed through in detail, it would be 
discovered that large negative values of kc22 correspond to very high 
frequencies, and for these the phase velocity approaches l/Vgiei, or 



392 FIELDS AND WAVES IN MODERN RADIO 9-09 

th? velocity of light for the medium of the rod. The large imaginary 
values of kr2 require that fields attenuate rapides one progresses 
transversely into the outer dielectric, and most of the energy is eon-
fined in the rod. Conversely, for the small values of fcr, near the 
~^tlcal frequency, the fields extend a long distance into medium 2 
These changes in energy distribution check with results from physical 
reasoning; this would lead us to believe that velocity of propagation 
would be determined largely by region 2 near cut-off, and by region 
1 as frequency approaches infinity. 

The most important practical use of dielectric rod guides has been 
for radiation- where a continuous leakage of energy along the rod is 
permitted in order to form an end-fire array. The mode most often 
used in such dielectric rod antennas is a bit different from those studied 
above. It is one with a sinusoidal variation of fields about the cir¬ 
cumference, and it turns out that all such modes in the dielectric 
rod require both Ez and H,. Most interesting is the fact that for 
n - 1 the cut-off frequency is zero. To analyze the problem of first 
order circumferential mode in a circular rod of radius a, begin with 
solutions for Et and Hz for both regions. (See Art. 816.) 

r < a 
^z 1 = A J i (ar) cos </> 

r > a 
Ez2 = CK\(ßr) cos </> 

“«1 — II.I ¡(ar) sin </> 
„2 2 i i 2 
« = 7 + k¡2

Ilzi = DK\(3r) sin </> 

= ~(72 + k2̂  

Other field components (Er, Hr, E., H.) may be obtained by applica¬ 
tion of Eqs. 816(8) to (11). Continuity of Ez, Hz, E., H. is required 
at r = a, and there results the following equation which in principle 
determines 7. H

miqJ/2 (aa) + («1M2 + mK^a) 
a~J¡2(aa) a0J ¡(aa) K ¡(ßa) ß2Ki2lßä)~ 

(13) 

If cut-off is defined as in the simple modes studied above to be the 
condition for which there are no transverse variations in the outer 
dielectric, 0 = 0, (13) requires for this condition that J ¡(aa) be zero. 
1 he lowest root of this is aa = 0, and, if Mlil P2i2( this requires 

M *• A ». 
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that y = 0 and w = 0; Hence the conclusion stated above that cut-off 
frequency is zero for this particular mode. 

PROBLEMS 

9 09a For a circular dielectric rod with small but finite losses, a, « an, study 
equation (8) by means of Taylor series methods from the point of view of attenu¬ 
ation of the 7Woi mode caused by dielectric losses. 

9-09& Consider the propagation of waves between two infinite parallel con¬ 
ducting planes separated by two regions of different dielectric constant, ei extend¬ 
ing from z = 0 (bottom plate) to x = d, es extending from x = d to x = a (top 
plate). Show that, even for perfectly conducting planes, an E- component must 
be present in the principal wave and indicate the extent to which the conventional 
transmission line equations might be in error in predicting the characteristics of 
the principal wave. Assume spacings small compared with wavelength. 

9-09c Obtain the equations for all field components of the n = 1 mode dis¬ 
cussed above in a circular dielectric rod. 

9-10 WAVES GUIDED BY A SINGLE CYLINDRICAL CONDUCTOR 

If a circular conducting cylinder is surrounded by a dielectric which 
extends to infinity, the plane wave solutions in cylindrical coordinates 
for the dielectric region may be obtained from Art. 8-16. The second 
Hankel function is used since the region extends to infinity. For a 
transverse magnetic mode, 

Et = AJI ̂^¿r) cos n<j> 

Er = ~T~ Hn^'QtcT) COS r¡<> (1) 
J“« Kc

Hr = 2 " Hnw (ker) sin n</> 
kc r 

kc" = T" + 

If the conducting cylinder of radius a is perfect, the boundary con¬ 
dition is that Ez and E^ shall be zero at r = a. As the principal branch 
of the Hankel function has no zeros,3 there are apparently no solutions. 
However, as ke > 0, it can be shown that the ratio E J approaches 
zero by using the following approximate values for small arguments. 

^o (2)W In (1.572x) ~ 1)! (2) 

3 Riemann-Weber, Differentialgleichungen der Physik, Vieweg, Braunschweig 
7th ed., 1927, Vol. II, p. 461. 
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For the symmetrical mode, n = 0, by redefining the constant, the 
solution then approaches 

Er = ±r,Ht = (3) 
r 

All other field components approach zero. Solution (3) is recognized 
as the principal or TEM wave having a transverse distribution like the 
static field about a charged cylinder. The wave propagates unattenu¬ 
ated with the velocity of light in the surrounding dielectric, and might 
be thought of as the principal mode in a coaxial line with the outer 
conductor removed to infinity. The mode would not appear to be 
very useful for energy transmission as it would have infinite energy 
storage, and in practice the radial electric field would not extend to 
infinity but would end on the nearest available conductor. The sys¬ 
tem would be the opposite of a well-shielded system. 

With higher values of n and kc —> 0, equations (1), with (2) utilized, 
reduce to the static “circular harmonics” (Prob. 3-16c). These do 
not, however, meet the boundary condition of zero E# when Er is 
finite, and so do not represent actual TM modes for the perfectly 
conducting cylinder. A study of TE modes shows that neither the 
zero order nor any higher order one of these satisfies the ideal boundary 
conditions. Hence, for the perfectly conducting cylinder we conclude 
that the only plane wave solution is the TEM wave represented by (3). 

When the conducting cylinder is imperfect, wave solutions can be 
set up inside the conductor with tangential field components matched 
to those in the external dielectric. A very complete treatment by 
Stratton4 shows the following: 

1. For good conductors and normal wire sizes, the principal wave 
discussed above may propagate with reasonable attenuation. For 
very poor conductors or very small conductor radii, the attenuation 
in this wave may be large and the phase velocity may depart markedly 
from the velocity of light in the surrounding dielectric. 

2. Symmetrical TM and TE waves and mixed waves with circum¬ 
ferential variations may exist, but all have a very rapid attenuation 
and are important only near junctions at which they may be excited. 

3. As the conductivity of the wire becomes poorer, the fields pene¬ 
trate farther into the conductor. When the conductivity has become 
very small, the wire takes on more the characteristics of a lossy dielec¬ 
tric and the solution approaches the solution for waves guided by a 
dielectric rod (Art. 9 09). 

4 J. A. Stratton, Electromagnetic Theory, McGraw-Hill, 1941, pp. 524-537. 
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4. The analysis of this case reminds one that there is a transverse 
electromagnetic or principal wave possible for the parallel-wire line in 
addition to that already studied. This wave corresponds to like 
charges on the two wires and equal currents in the same direction in 
the two lines, with fields extending outward toward infinity. This is 
the zero-phase-sequence wave of power transmission line experience. 

In addition to the above, one should note the work by Goubau6 in 
showing that addition of a dielectric coating on the outside of the 
conductor causes localization of the fields in the vicinity of the wire. 
The most impressive point is that only a thin layer of dielectric is 
necessary to produce a pronounced localization; attenuation of the 
wave is then small, so that the system is practical for energy trans¬ 
mission. The addition of corrugations or other surface perturbations 
has been shown6,6 to produce similar concentration of energy near 
the surface, and with the above lead to an important branch of wave 
phenomena known as surface guiding. 

PROBLEM 

9-10 Show that, as kc —» 0, the transverse distributions (1) approach the form 
of static fields that may be derived from the “circular harmonic” potential, 
4“ = Br~n cos n<t>. Obtain the form of transmission line boundaries that might 
support the n = 1 mode of this type. 

9-11 RADIAL TRANSMISSION LINES 

Another guide of practical importance consists of two circular, 
parallel, conducting plates, separated by a dielectric and used for 
guiding electromagnetic energy radially (Figs. 91 la and b). The 
simplest wave that may be guided by these plates is one with no field 
variations circumferentially or axially. There are then no field com¬ 
ponents in the radial direction, but field components Ez and only. 
The component Ez, having no variations in the z direction, corre¬ 
sponds to a total voltage Ezd between plates. The component 
corresponds to a total radial current 2rrH^, outward in one plate and 
inward in the other. This wave is then exactly analogous to an ordi¬ 
nary transmission line wave and thus derives its name, radial trans¬ 
mission line. 

For the simple wave described above, since there are no radial field 
components, it is possible to base the analysis on the transmission line 
equations, except that L and C now vary with radius. However, we 

6 G. Goubau, Proc. I.R.E., 39, 619-624 (1951); J. Appl. Phys., 21, 1119-1128 
(1950). 

• W. Rotman, Proc. I.R.E., 39, 952-959 (Aug. 1951). 
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already have the wave solutions for fields if results of Art. 8-16 are 
properly interpreted. Since there are no ç> variations, v is set equal to 
zero. Since- there are no z variations, 7 is also set equal to zero. In 
order to identify terms as waves traveling radially inward or radially 
outward, the form of Eq. 816(6) is used. We shall see the reasons for 

Fig. 911a,b (a) Radial transmission line with input at outer radius. (6) Radial 
transmission line with input at inner radius. 

this below. The constant ke, by Eq. 8-13(2) reduces to k = w V^e, 
since 7 = 0. 

E, = AHow (kr) + BH^Ukr) (1) 

With 7 and p = 0, the only other remaining field component in Eqs. 

8-16(8) to 816(11) is Ht. 

H = 
* àr 

[AH^(kr) + BII^ (kr)] (2) 
v 

The two terms may be identified definitely as waves traveling inward 
and outward by employing the asymptotic expressions of the Bessel 
functions for large arguments (Art. 3-25). Then 

with a similar expression for When the above are multiplied by 
the first term will involve et("i+*r) and the second kr\ so that 

these are identified respectively as waves propagating in the negative r 
and positive r directions. 

The wave impedance of an outward traveling wave may be found by 
taking the ratio of Ez to in (1) and (2) with A = 0. 

Zr - j H^kr) 
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This is a function of r. For the inward traveling wave, B = 0, 

r j H^kr) (4)

1 he signs of (3) and (4) are chosen in accordance with the convention 
discussed in Art. 712. 

With these definitions of impedance it is possible to evaluate the con¬ 
stants A and B and so find fields at any point along the line if any two 
field quantities are given, such as a terminating impedance and an elec¬ 
tric field, two values of magnetic field, two values of electric field, or one 
value of electric field and one of magnetic field. Before giving these 
formulas, let us define magnitudes and phase angles for the complex 
Ilankel functions as follows. 

= J0(x) + jN0(x) = G^x)e^ 

H^\x) = J0(x) - jWo(x) = G0{x)e-^ 

= -N^x) + jJi(x) = G^e’^ 

jGi (2) (x) = -[-^i(x) -j'Ji(x)] = -G^e^^ 
so that 

G$(x) = \/Jü-(x) -j- A02(x) 0(x) = tan-1

G\{x) = V J i 2(x) + Ai2(r) = tan-1

Expressions (1) and (2) then become 

E, = G0(fcr)[Aey,«* r) + Be~i9^] (5) 

[Ae>* (4r) - Be-^ <ir)] (6) 
V 

Expressions (3) and (4) become 

ZT+ = Zo^ed*«*1-)-"^] (7) 

Zr~ = Z^kr-)e~^^-^^] (8)

, „ ,, , G^kr) where zü{kr} = rn—— 9) 
G^kr) 

The magnitudes Go and Gi, the phase angles 0 and and the impedance 
Zo are plotted in Figs. 911c and d. 

-Vo(x) 

.-Ndx). 



398 FIELDS AND WAVES IN MODERN RADIO 9-11 

The constants A and B will now be determined for several different 
cases. The resulting formulas are quite similar to the familiar for¬ 
mulas of transmission line theory giving voltages, currents, and imped¬ 
ances in terms of input end or loading end values. In the following, 
the subscript of a quantity indicates the quantity is to be evaluated 
at the value of r denoted by the subscript. 

1. Given electric field Ea at r„, magnetic field lit at rb; for any 
radius r, 

„ „ Go cos (d - ^(,) Go sin (0 - 0„) 
E = Ea —-—-— + jZobHb y Ya 7 x 

Goa cos (0„ — ^b) Gob COS (0„ — ^b) 

_ „ G1 cos — 0q) . Ea Gi sin — /b) 

b G\b COS (0O — ^b) J ZoaGla COS (0a — ^b) 

Fig. 9.11c Radial transmission line quantities. 
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2. Given electric fields Ea at ra, Eb at rb; for any radius r, 

Go sin (ßb — Ô) ïi = £ja-
Goa Sin (ßb — 0a) 

Go sin (e — 0a) 
Gob sin (ßb — 0a) 

jj _ Eb Gi cos - Og) _ EaG\ cos ßb — ^) 
jZob Gib sin (ßb — 9a) jZoaGia sin (ßb — 9^ 

3. Given magnetic fields Ha at ra, Hb at rb, 

ZoaHa Go cos (0 — th) ZobHb Go cos (0 — ^a) Zi =-—-
j Goa sin (^a - tb) j Gob sin (\pa - ^b) 

(H) 

(12) 

Fig. 9-1 Id Radial transmission line quantities. 
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4. Input impedance Zt
E, 

when load impedance Zh

is given, 
' ZL cos {dj - + jZ0L sin (e,- - ej 

01 LZol cos Wq - 0t) + jZL sin Wq — 

l 

E, 

(13) 

5. Input impedance Z, -I ^0 |i 
when output is shorted (ZL = 0). 

„ _ sin - eL) 
°‘ cos (^q — 

(14) 

6. Input impedance Z, 

(ZL = co). 

E, when output is open-circuited 

cos 
• / . f \ sin Wq — \pL) (15) 

Usually total current and voltage are desired before the problem is 
regarded as completely solved. They can be obtained from the field 
expressions. Total voltage and current, defining a higher voltage in 
the upper plate and outward current in the upper plate as positive, are 

V = -Ezd I = (16) 

The relation between total impedance and the field impedance utilized 
above is then 

^total - d

+ 2rr \hJ (17) 

The upper sign is for the input radius less than that of the load, 
rz < rL, and the lower sign for the reverse, r, > rL, since then the con¬ 
vention for positive current should be opposite to that of (16). 

PROBLEMS 

9'lla For a TMoi wave in a circular wave guide it is desired to insert a blocking 
impedance for a given frequency. To do this, a section of shorted radial line 
(Fig. 91 le) is inserted in the guide, its outer radius a chosen so that with the 
guide radius b given, the impedance looking into the radial line is infinite at the 
given frequency. Suppose that the radius b is 1.25 times greater than cut-off 
radius at this frequency for the TMn wave and find the radius a. 

9Tlb It is sometimes required to break the outer conductor of a coaxial line 
for insulation purposes, without interrupting the r-f current flow. This may be 
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accomplished by the radial line as shown (Fig. 911/) in which a is chosen so that 
with b and the operating wavelength specified, the radial line has zero input 
impedance seen from the line. Find the value of a, assuming that end effects are 
negligible, and that 

2irb 
- = 1 
X 

9'llc Find the voltage at the radius a in terms of the coaxial line’s current 
flowing into the radial line at radius b (Fig. 911/). 

Fig. 91 le Circular wave guide with Fig. 911/ Coaxial line with open 
shorted radial line in series with cylinder radial line in series with outer con-

wall. ductor. 

9-lld Taking the classical transmission line equations with distributed induct¬ 
ance and capacitance varying with radius as appropriate to the radial line, 

show that the equation for voltage as a function of radius is a Bessel equation, 
and that the solutions for voltage and current obtained in this manner are con¬ 
sistent with (1) and (2). 

9-12 CIRCUMFERENTIAL MODES IN RADIAL UNES; SECTORAL HORNS 

There are many higher order modes in the radial transmission lines 
studied in the last article. All those with z variations require a 
spacing between plates greater than a half-wavelength for radial 
propagation of energy. More interesting are those modes having 
circumferential variations but no z variations. The field components 
may be written 

Ez = A,Z,(kr) sin r</> (1) 

- A,Z,'{kr) sin r</> (2) 
V 

Hr = -—- Z,(kr) cos v<t> (3) 
KTjr 
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In the above, Z, denotes any solution of the ordinary rth order Bessel 
equation. For example, to stress the concept of radially propagating 
waves it may again be convenient to utilize Hankel functions. 

Z^r) = + cj/? 2) (fcr) (4) 

These circumferential modes may be important as disturbing effects 
excited by asymmetries in radial lines intended for use with the sym¬ 
metrical mode studied in the preceding article, Figs. 911a, b. In this 
case V must be an integer, n. Waves of the same form may also be 
supported in a wedge-shaped guide with conducting planes at 0 = 0 

Fig. 912a Wedge-shaped guide or sectoral horn. 

and 0 = 0O as well as at z = 0, d (Fig. 912a). The latter case is 
important as a sectoral electromagnetic horn7 used for radiation In 
this case, since Ez must be zero at 0 = 0, 0O, 

mir 
V = — 

0o 
(5) 

The waves discussed here are interesting in one respect especially. 
If we think of the lowest order mode (m = 1) propagating radially 
inward in the pie-shaped guide of Fig. 9-12a, it would be quite similar 
to the TEio mode of the rectangular guide, although modified by the 
convergence of the sides. We would consequently expect a cut-off 
phenomenon at such a radius rc that the width rc0o becomes a half¬ 
wavelength. Similarly, for the nth order circumferential mode in 
the radial line of Figs. 91 la, b, we would expect a cut-off at such a 
radius that circumference is n wavelengths. 

27rrc = nX for radial line 0orc = X/2 for sectoral horn (6) 

’ W. L. Barrow and L. J. Chu, “Sectoral Electromagnetic Horns,” Proc. I.R.E., 
27, 51-64 (Jan. 1939). 
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A casual inspection of Eqs. (1) to (3) would not reveal this cut-off 
since there is no sudden change of mathematical form as there was in 
the rectangular guide at cut-off. However, a more detailed study 
would reveal that there is a very effective cut-off phenomenon at about 
the radius predicted by (6) in that the reactive energy for a given 
power transfer becomes very great for radii less than this. For 
example, the radial field impedances, 

Zt 3V H^\kr) (7)

H,w (kr) 

= (8)

become predominantly reactive at a value of kr « v, which is com¬ 
patible with (6). Figure 9-126 shows real and imaginary parts of 

Fig. 9126 Wave resistance and reactance for circumferential mode in radial line. 

Zr+ and Z~ for v = 1. Particular caution must then be taken to 
guard against circumferential modes for radial lines greater than a 
wavelength in maximum circumference. 
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PROBLEMS 

912a Sketch lines of current flow for a circumferential mode with p = 1 in a 
radial line. (Take Zn — Jn for this purpose.) Suggest methods of suppressing 
this mode by judicious cuts without disturbing the symmetrical mode. 

9T2b A section of the wedge-shaped guide as in Fig. 912a may be used to 
join two wave guides of the same height but different width, both propagating the 
TEio mode, and a good degree of match is obtained by the process so long as the 
transition is gradual. Discuss qualitatively the transition between the fields of 
the wave guide and those of the sectoral guide. 

9-13 DUALITY; PROPAGATION BETWEEN INCLINED PLANES 

Given certain solutions of Maxwell’s equations, other useful ones 
may be obtained by making use of the simple but important principle 

Fig. 913 Inclined-plane guide. 

of duality. This principle follows from the symmetry of the field 
equations for charge-free regions, 

V X Ë = —jw^H (1) 

V X H = junË (2) 

It is evident that, if Ë is replaced by H, H by — Ë,n by e, and e by p, 
the original equations are again obtained. It follows that, if we are 
given any solution for such a dielectric, another may be obtained by 
interchanging components as above. It may be difficult to supply 
appropriate boundary conditions for the new solution since the mag¬ 
netic equivalent of the perfect conductor is not known at high fre¬ 
quencies, so the new solution is not always of practical importance. 

One example in which the principle of duality may be utilized to save 
work in a practical problem is that of the principal mode in the wedge-
shaped dielectric region between inclined plane conductors (Fig. 913). 
This mode has electric field E* representing a radial flow of current in 
the planes and magnetic field Hz. If there are no variations with 0 
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or z, it is evident that the field distributions can be obtained from those 
of the radial transmission line mode, Art. 9-11, through the above 
principle of duality. Replacing Ë by H, H by — Ë, m by «. and e by g 
in Eqs. 9 11(1) to (2), 

II z = AH^\kr) + BII^\kr) (3) 

E. = -jJ-[AH^\kr) + BH^(kr)] (4) 
* € 

The real advantage is that all the derived expressions 9 11(10)—(15) 
may be used without rederivation, as well as the curves of Fig. 9 11c 
and d, with the interchange of quantities as above. Admittance 
should be read in place of impedance, and the numerical scale of 
Zo Yt in ohms (Figs. 9-11c and d) should be divided by (377)2 to give 
the characteristic admittance Y^^t in mhos. Total admittance is 
obtained from the field admittance as follows: 

where the upper sign is for rt < rL, the lower for r, > rL. 
One application of the above line might be in impedance matching 

between parallel-plate transmission lines of different spacings, d\ and 
di (Fig. 913). It is known from practical experience that such 
transitions, if gradual enough, supply a good impedance match over a 
wide band of frequencies (unlike schemes studied in Art. 1-21, which 
depend upon quarter-wavelengths of line). It is seen from Fig. 941c 
that for both kr, and krL large (say greater than 5) the characteristic 
admittance Fo is nearly l/r¡ and 9 and are nearly equal (i.e., 9, » 
9L ~ /l)- If the parallel-plane line to the right is matched, its char¬ 
acteristic wave admittance is that of a plane wave, 1/v- Equation 
9 11(13) then shows that with the above approximations the input 
wave admittance is also approximately l/v, so that the parallel-plane 
line to the left is also nearly matched. This gives some quantitative 
support to the matching phenomenon' mentioned above. 

PROBLEMS 

9-13a In the use of the inclined plane line for matching as discussed in the last 
paragraph, suppose that f = 3000 mc/sec, di = 1 cm, di = 2 cm, kr\ = 2.5, and 
the dielectric is air. If the line to the right is perfectly matched, obtain the 
approximate standing wave ratio in the line to the left. Compare with that which 
would exist with a sudden transition, considering only the impedance discontinuity. 

9-13& Discuss the approximation in the above procedure at the junctions in 
view of the curved wave fronts in the tapered line and the plane wave fronts in the 
parallel-plane line. 
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9-13c Apply the principle of duality to the TEn, TEoi, and TWoi modes in 
circular cylindrical wave guides to obtain qualitatively the fields of the “dual” 
modes. For which of these might boundary conditions be supplied, allowing 
changes in the conductor position or shape from those of the original mode? 

9-13d A wedge-shaped dielectric region is bounded by conducting planes at 
0=0 and 0o, z = 0 and d. Find the field components of the lowest order mode 
with E^, Hr, and Is this the dual of the mode discussed for sectoral horns in 
Art. 912? 

9-13e Discuss the application of the mode of Prob. 9- 13d to the matching 
between rectangular wave guides of different height, both propagating the TEio 
mode. 

9-14 WAVES GUIDED BY CONICAL SYSTEMS 

The problem of waves guided by conical systems (Fig. 9-14) is 
important to a basic understanding of waves along dipole antennas and 

Fig. 914 Biconical guide. 

in certain classes of cavity resonators. In particular, one very impor¬ 
tant wave propagates along the cones with the velocity of light and 
has no field components in the radial direction, and so is analogous 
to the transmission line wave on cylindrical systems. This basic 
wave is symmetric about the axis of the guiding cones, so that, if the 
two curl relations of Maxwell’s equations are written in spherical 
coordinates with all 0 variation eliminated, it is seen that there is one 
independent set containing Ee and and Er only: 

1 d(rEs) 
r dr 

1 dEr . „ 
(1) 

1 
r sin 8 

¿ (sin 8 HJ — jutEr = 0 (2) 

1 WHJ 
r dr 

— jueEg = 0 (3) 
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Although we might proceed to a direct attack on these equations, it 
can be checked by substitution that the following solution does satisfy 
the three equations. 

= 0 (4) 

rEt = -A- + BcA"«+*r)i (5) 
sin 6 ' ' 

rH^ = - Be’ (ut+kr)] (6) 
sin 0 ' ' 

These equations show the now familiar propagation behavior, the 
first term representing a wave traveling radially outward with the 
velocity of light in the dielectric material surrounding the cones, the 
second term representing a radially inward traveling wave of the same 
velocity. The ratio of electric to magnetic field is given by -H for the 
positively traveling wave, by — r¡ for the negatively traveling wave. 
There is no field component in the radial direction, which is the direc¬ 
tion of propagation. 

The above wave looks much like the ordinary transmission line 
waves of uniform cylindrical systems. This resemblance is stressed 
if we note that the Ee corresponds to a voltage difference between the 
two cones, 

f— ». p-«, dg 
V = — Eerde = —-\Aejiut~kr^') + BeÄut+kr) ] 

JoQ sin 0 J

= In cot [.4e'w -*r) ß e i^t+kr) ( 

where the case treated is that of equal angle cones (Fig. 9-14). This 
is a voltage which is independent of r, except through the propagation 
term, e±jkr. Similarly the azimuthal magnetic field corresponds to a 
current flow in the cones, 

I = 2irrH^ sin 0 

= 2T[Aey("‘-*r) - Be;("i+*r)] (8) 

This current is also independent of radius, except through the propaga¬ 
tion term. A study of the sign relations shows that it is in opposite 
directions in the two cones at any given radius. 

The ratio of voltage to current in a single outward-traveling wave, a 
quantity which we call characteristic impedance in an ordinary trans-
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mission line, is obtained by setting B = 0 in (7) and (8) : 

Z. - (9) 
7T 

For a negatively traveling wave, the ratio of voltage to current is the 
negative of this quantity. This value of impedance is a constant, inde¬ 
pendent of radius, unlike those defined for a radial transmission line in 
Art. 911. We might have guessed this had we started from the 
familiar concept of Zo as V L/C, since inductance and capacitance 
between cones per unit radial length are independent of radius. This 
comes about since surface area increases proportionally to radius, and 
distance separating the cone, along the path of the electric field, also 
increases proportionally to radius. 

So far as this wave is concerned, the system arising from two ideal 
coaxial conical conductors can be considered a uniform transmission 
line. All the familiar formulas for input impedances and voltage and 
current along the line hold directly with Zu given by (9) and phase con¬ 
stant corresponding to velocity of light in the dielectric. 

ß = — = u \'/t (10) 
À 

If the conducting cones have resistance, there is a departure from uni¬ 
formity due to this resistance term, but this is usually not serious in 
any practical cases where such conical systems are used. 

Of course a large number of higher order waves may exist in this 
conical system and in similar systems. These will in general have field 
components in the radial direction and will not propagate at the 
velocity of light. We shall consider such general wave types for 
spherical coordinates later. 

PROBLEMS 

9-14a It has been seen that along cones, cylinders, planes, etc., a principal 
wave can exist in which, at least for perfect conductors, it is possible to analyze 
the problem correctly by dealing with distributed L’s and C’s per unit length, 
these distributed constants being computed from static field distributions. It is 
not always true that the electric and magnetic field lines over the cross section of 
the wave, for the principal wave, will be as in the static case. This does not 
mean that the distributed constant technique fails for such lines, but it does mean 
that it is no longer exact to use L and C as computed from the static field equa¬ 
tions. Illustrate the above statement by considering waves propagating sym¬ 
metrically between concentric spheres in the 0 direction = 0). Show that 
no wave can exist containing only Er and Eg must also be present. Show also 
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that, if the distance between spheres is small compared with wavelength, the pres¬ 
ence of Es has a negligible effect on the wave distribution and distributed L and C 
(computed from statics) may be used for good approximate results. 

9-14& Derive the basic characteristics of the principal waves on a transmission 
line consisting of two coaxial, common-apex cones of unequal angles. 

9-14c Write the dual of the mode studied in this article. Can it be supported 
by physical boundaries using perfect conductors? 

9-15 RIDGE WAVE GUIDE 

Of the miscellaneous shapes of cylindrical guides that have been 
utilized, one rather important one is the ridge wave guide, which has 
a central ridge added either to the top or bottom or both of a rectangu¬ 
lar section, Fig. 915a. It is interesting from an electromagnetic 

Fig. 915a Cross section of ridge 
wave guide and approximate 
equivalent circuit for cut-off cal¬ 

culation. 

Fig. 9156 Curves giving cut-off wavelength 
for a ridge wave guide as in Fig. 915a. Data 

from Cohn. 

point of view since the cut-off frequency is lowered because of the 
capacitive effect at the center, and could in principle be made as low 
as desired by decreasing the gap width g sufficiently. Of course, the 
effective impedance of the guide also decreases as g is made smaller. 
One of the important applications is as a non-uniform transmission 
system for matching purposes (see Art. 9-13) obtained by varying the 
depth of ridge as one progresses along the guide. 
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The calculation of cut-off frequency, which has been found to be 
one of the very important parameters for any shape of guide, also 
illustrates an interesting approach that may be applied to many 
guide shapes which cannot be solved exactly. At cut-off, there is no 
variation in the z direction (7 = 0), so one may think of this as the 
condition for waves propagating only transversely in the given cross 
section, according to the desired mode. For example, theTgio wave 
in a rectangular guide has a cut-off frequency equal to the resonant 
frequency for a plane wave propagating only in the x direction across 
the guide, thus corresponding to a half-wavelength in the x direction. 
A very approximate calculation of cut-off frequency for the ridge 
guide might then be made as in Fig. 915a by considering the gap a 
capacitance and the side sections inductances, and writing the con¬ 
dition for resonance. 

_ £ ( M~!4 = ,1 pdA"« = J_ / g Y 4 

fc “ 2ir \ " 2 / 2tt \ g / \ 2 / 2tt \ndhdJ 

A better equivalent circuit for calculation of the transverse resonance 
is one in which the two sections A and B are considered parallel-plane 
transmission lines with a discontinuity capacitance Cd placed at the 
junction between them. (This junction effect will be discussed in 
Chapter 11.) Curves of cut-off frequency and a total impedance for 
the guide have been calculated in this manner by Cohn.8 Some 
results are shown in Fig. 9156. Definitions of total impedance of 
wave guides will also be discussed in Chapter 11. 

PROBLEMS 

915a Demonstrate that the cut-off frequency of a TM oi mode in circular 
guide may be found by considering transverse resonance of a radial line mode. 

915b Calculate by the approximate formula (1) the cut-off frequency of some 
of the ridge wave guides for which better results may be obtained from Fig. 9-155, 
and make comparisons. Choose at least one with a small gap and at least one 
with a wide one. 

9-16 THE IDEALIZED HELIX AND OTHER SLOW-WAVE STRUCTURES 

A wire wound in the form of a helix (Fig. 9-16a) makes a type of 
guide that has been found useful for antennas9 and as slow-wave 
structures in traveling-wave tubes. 10 It is interesting as an example 

8 S. B. Cohn, Proc. I.R.E., 35, 783-788 (Aug. 1947). 
9 J. D. Kraus, Antennas, McGraw-Hill, 1950, Chapter 7. 
10 J. R. Pierce, Traveling-Wave Tubes, Van Nostrand, 1950, Chapter III and 

Appendix II. 
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of a general class of structures which possess waves with a phase 
velocity along the axis much less than the velocity of light, as con¬ 
trasted to most of the waves so far studied, which have phase velocities 
greater than the velocity of light. A rough picture would convince 
one that the wave should follow the wire with about the velocity of 

light, so that its rate of progress along the axis should correspond to a 
phase velocity 

vp « c sin (1) 

where is the pitch angle. It is rather surprising that this represents 
a good approximation over a wide range of parameters. It is also 
interesting to find that a useful analysis can be made by considering an 
idealization of the actual helix. 

The idealization commonly analyzed, 10 referred to as the helical 
sheet, is a cylindrical surface in which the component of electric field 
along the direction of is assumed to be zero at all points of the sheet 
(Fig. 916Ò). Moreover, the component of electric field lying in the 
cylindrical surface normal to the direction of is assumed to be con¬ 
tinuous through the surface, as is the component of magnetic field 
along (the latter because there is to be no current flow normal to the 
direction of ^). Since the idealization takes these conditions to be the 
same over all the sheet, it would be expected to give best results for 
fine-wire helices of small pitch angle or for multifilar helices with fine 
wires close together. 

The solutions inside and outside the surface are taken with no <t> 
variations. They require both TM and TE modes and may be 
written 

r < a 
E2i = AiZo(rr) 

ja 
Eri =-â 1Z1(rr) 

T 

H9i = J— Aili(rr) 
T 

r > a 
E ¡2 = A^Koirr') (2) 

Er2 = A 2K^ (3) 
T 

H 92 = — — A 2K (4) 
T 
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Hd = BJ^rr) 

jß 
Hri = BJ^rr) 

Ed = T 

Ht2 = B2K0(rr) 

jß 
Ht2 =- B2K\(rr) 

T 

Et2 = B2Kx(rr) 
T 

(5) 

(6) 

(7) 

where all variations have been taken as e^"' and 

T2 = - (72 + k2) = ß2-k2 (8) 

Fig. 9166 Idealized conducting sheet and Fig. 9-16c Section of disk-loaded 
curve giving propagation constant. From wave guide. 

Pierce. 10

The idealized boundary conditions described above are 

Ed sin + Ed cos = 0 (9) 

Ez2 sin + Ed cos = 0 (10) 

Ed cos — Ed sin = Ez2 cos ~ E*2 sin (11) 

Hd sin + Hd cos = Hz2 sin + H^ cos (12) 

Application of (9)-(12) to (2)-(7) yields the equation 

(ra)i/j(,a)K,e.)_ (t<|cot
/i(rfl)Ai(ra) 

A solution of this taken from Pierce 10 is shown in Fig. 9166. It is 
seen that, for ka cot > 4, the approximation (1) gives good results. 

Some general comments about slow-wave structures are in order. 
In these we will neglect attenuation, assuming y = jß. If it is desired 
to produce an electric field along the axis propagating with a phase 
velocity less than that of light (as in a traveling-wave tube where the 
phase velocity should be of the order of the beam velocity for efficient 
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interaction with the electrons), we see that the combination 7 2 + k2, 
which we have called kc2 in Chapter 8, will be negative, since 0 > k. 

r2 = -k 2 = 02 -k2 (14) 

7 = 0(1 - v2/^ (15) 

It is consequently necessary in a cylindrically symmetric system that 
the Bessel function solutions (Art. 8-16) have imaginary arguments, 
and they may therefore be written as modified Bessel functions. For 
a TAI wave, 

E, = AI0{rr) (16) 

we Joje 
11 * = 1 = — Zi(Tr) 0 7 (17) 

If we ask about the boundary conditions that might be supplied at a 
cylindrical surface r = a in order to support such waves, we see that, 
if uniform, it should be of the nature of a reactive sheet with 

. 7 Io(,ra) 
~ k hira) 

y - II 
3

(18) 

The helical sheet studied above may be considered as supplying this 
required reactance through the interaction with the TE waves and 
external fields caused by the helical cuts. The short-circuited sections 
of radial lines of a disk-loaded wave guide (Fig. 916c) may also be 
considered as supplying an approximation to the above required 
uniform reactance at r = a, and will therefore support a slow wave 
also. The approximate reactance supplied by this structure is 

X = V 
Jo(ka)No(kb) - J0(kb)N0(kay 
.Jl(ka)N0(kb') - JoWNoUm). (19) 

Note that, if (fp/c)2 « 1, r is substantially equal to 0. By the 
nature of the Io functions (Fig. 3-23), the field on the axis of such 
slow-wave structures is much less than that on the boundary when 
0a is large. This is of course undesirable when it is the field on the 
axis that is to act on electrons as in a traveling-wave tube. Of course 
the presence of electron space charge will modify the forms of solution 
somewhat. 

PROBLEMS 

9.16a Imagine a parallel-plane transmission line of spacing 2a in which both 
upper and lower planes are cut with many fine cuts at angle from the y direction 
(coordinate system as in Fig. 8'04). Assume no variations with y, and apply 
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approximations as utilized in the helical sheet analysis, obtaining the field com¬ 
ponents for propagation in the z direction, the complete equation determining 0, 
and the approximate solution of this for ka cot » 1. 

9.16b Assuming (vp/c)2 « 1, plot kaX/n versus 0a for a slow-wave structure. 
State the requirements on the reactance in order that there may be any slow-wave 
solution of this type. What should X/y be for 0a large? 

9.16c Show that a reactance sheet might be used as the boundary condition on 
fast waves of the TMoi type studied in Art. 9 05. Plot the required value of kaX /n 
as a function of kca. Under what conditions might there be a slow wave and a 
series of fast waves in a given guide of this type? 



1 0 RESONANT CAVITIES 

10-01 INTRODUCTION 

At extremely high frequencies (wavelengths, say, below 1 meter) 
ordinary himped-circuit elements are hardly suitable for practical use. 
As was seen in Chapter 5, a conventional circuit with dimensions com¬ 
parable to wavelength may lose energy by radiation. In Chapter 6 it 
was found that resistance of ordinary wire circuits may become high 
because of skin effect behavior. Both of these phenomena give rise to 
definite modifications in elements that are to serve as efficient circuits 
for ultra-high frequencies. It is immediately suggested that the circuit 
region should be shielded, completely surrounded by a good conductor, 
to prevent radiation. It is also suggested that the current paths be 
made with as large area as possible. The result was a hollow con¬ 
ducting box with the electromagnetic energy confined on the inside. 1 

The conducting walls act effectively as perfect shields, so that this 
inner region is perfectly shielded from the outside, and no radiation is 
possible. Since the inner walls of the box serve as current paths, the 
desired large area for current flow is provided and losses are extremely 
small. The resulting element is known as a cavity resonator. 

In this chapter we shall study electromagnetic waves in regions 
closed by conductors, with particular application to such cavity 
resonators. It will first be observed that such high-frequency elements 
might be arrived at by extension of conventional transmission line and 
circuit ideas. Exact analyses will be made of certain of the simpler 
shapes of cavity resonators, and at least approximate analyses will be 
made of some of the more complex shapes of such resonators. All 
mathematical analyses will be based on the solution of Maxwell’s 
equations subject to the boundary conditions, and in general will 
follow directly from the results of the last several chapters on propa¬ 
gating waves, since the waves inside the conducting boxes may be 
considered standing wave patterns arising from reflections of the 

1 W. W. Hansen, J. Appl. Phys., 9, G54-663 (Oct. 1938). 
415 
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appropriate traveling waves from the walls of the enclosure. Certain 
circuit ideas useful in the discussion of cavity resonators, especially 
that of Q, will be treated in this chapter, but the more detailed circuit 
analysis for such resonators will be left for the following chapter. 

Elemental Concepts of Cavity Resonators 

10-02 THE RESONANT TRANSMISSION LINE AS A CAVITY RESONATOR 

Before the solution of the wave equation inside regions closed by 
conductors is attempted, there are several physical analogies that 
should make the concept of such wave regions more meaningful, par¬ 
ticularly in their function as “circuits” at ultra-high frequencies. 

For the first analogy, let us consider 
something which is not ordinarily 
thought of as a cavity resonator, but 
which certainly may be. This is a sec¬ 
tion of coaxial transmission line shorted 
at both ends. From the transmission 
line analysis of Chapter 1, it is known 
that such a shorted line may support a 
standing wave of frequency such that 
the length of line is exactly a half-wave. 
The line may be thought of as resonant 
at that frequency, since the standing 
wave pattern set up has constant total 
energy in that section of line, that energy 

oscillating between the electric and magnetic fields of the line. Thus, 
as in Fig. 10-02, the standing wave of voltage has a zero at each end and 
a maximum at the center. The standing wave of current is 90° out 
of time phase with the voltage wave, and has maxima at the two ends, 
a zero at the center. These waves may exist inside this completely 
enclosed region without interference from, or radiation to, the outside. 
The shielding is complete if conductors are perfect, and practically so 
for any practical conductors at ultra-high frequencies. This viewpoint 
is verified by the previous analyses (Chapter 6) of skin effect phe¬ 
nomena, where it was found that depth of penetration at high fre¬ 
quencies is so small (of the order of 10-4 inch for copper at 3000 
megacycles per second) that almost any practical thickness acts 
essentially as an infinite thickness. Fields applied on the inside of a 
conducting wall die out to a completely negligible value at the outside 
of the conductor. 

Fig. 10 02 Resonant coaxial sys¬ 
tem and standing waves of volt¬ 

age and current. 
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Since the inside of the region is completely shielded from the outside, 
it will be necessary to excite the waves by some source, such as the 
small loop .4 (Fig. 10-02), designed to excite the magnetic field of the 
line at its maximum value, or the small probe H introduced at the 
maximum of electric field. If one of these means is used to stimulate 
the line exactly at its resonant frequency, the oscillations may build 
up to a large value. In the steady state limit, the exciting source need 
supply only the relatively small amount of energy lost to the finite 
conductivity of the walls, the relatively large stored energy being 
essentially constant and passing back and forth between electric and 
magnetic fields. If the source excites the line at a frequency some¬ 
what off resonance, the energies in electric and magnetic fields do not 
balance. Some extra energy must be supplied over one part of the 
cycle which is given back to the source over another part of the cycle, 
and the line acts as a reactive load on the exciting source in addition 
to its small loss component. The similarity to ordinary tuned circuit 
operation is evident, and it seems likely that many of the same con¬ 
siderations concerning effect of losses on band width, expressed in 
terms of a Q, will hold, at least qualitatively. 

The above simple example requires essentially only a knowledge of 
transmission line theory, yet it holds all the fundamental character¬ 
istics of cavity resonators, and differs from others only in the types of 
waves that are utilized. 

10-03 CAVITY RESONATORS AS EXTENSIONS OF LUMPED RESONANT 
CIRCUITS 

Since closed resonant cavities take the place of lumped L-C circuits 
at high frequencies, we shall see as a next example how a closed cavity 
might be considered the logical evolution of such a circuit as it is 
extended to these frequencies. If a parallel resonant circuit with 
lumped L and C, such as that of Fig. 10-03, is to be extended to high 

Fig. 10 03 Evolution from resonant circuit with lumped elements to a closed 
cavity. 

frequencies, a decrease must be made in the magnitudes of C and L. 
Capacitance may be decreased simply by moving the plates of the con¬ 
denser farther apart. To decrease inductance, fewer and fewer turns 
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might be used in the inductance until this has degenerated to a single 
straight wire. Next, to eliminate stray lead inductances, this might 
be moved to the condenser plates and connected directly between them 
at the edges. The final step suggested is the paralleling of many of 
these single-wire inductances about the outside of the plates, until in 
the limit the two plates are connected by a solid conducting wall. We 
are now left with a hollow cylindrical conducting box, completely 
enclosed, or in other words, another example of a cavity resonator. 

The above example is, of course, not exactly rigorous. It is signifi¬ 
cant in demonstrating a logical evolution from lumped-circuit ideas to 
the concept of cavity resonators, but if only a knowledge of lumped 
circuits without any background in wave phenomena were available, 
there would be reason to doubt that the system arrived at in the limit 
would even work. Certainly there is a point in the evolution where 
one realizes that the fields of the capacity and the inductances are 
becoming intimately related, and at best it is a problem with dis¬ 
tributed rather than lumped constants with perhaps mutual imped¬ 
ances also present. It would appear safe to conclude that the con¬ 
denser plates have actually been shorted in the limit, so that, if any 
voltage can exist between them, it can only exist at the center and 
must form a standing wave pattern inside the box, falling to zero at 
the shorting walls, and so requiring that the box have a diameter at 
least comparable to wavelength. Here it may be protested that the 
side walls have been imagined to act as an inductance. How can there 
be always zero voltage across these walls then, since there is a voltage 
drop across an inductance whose current is changing? The answer 
involves recognizing that we are speaking of total voltage, and that 
total voltage across any inductance made of a perfect conductor must 
be zero, the applied voltage being exactly balanced by that induced 
from the changing magnetic fields of the inductance. But these are all 
tentative and preliminary pictures. We will not try to press further 
conclusions from the present analogy, since it is realized that the wave 
picture is in reality the correct one and will determine whether any 
particular result or physical picture is legitimate. However, it will 
prove useful to recall this analogy from time to time in seeking circuit 
ideas that may be employed in discussing resonator behavior. 

10-04 CAVITY RESONATORS FROM THE POINT OF VIEW OF WAVE 
REFLECTIONS 

A picture which is in fact an exact one and one which we will utilize 
in following sections, considers the resonant standing wave pattern of 
electromagnetic fields in the resonator as the interference pattern pro-
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duced by the superposition of various waves reflected from the walls 
of the resonator. Thus, for cylindrical resonators of any section, one 
may consider the standing wave produced by any of the wave guide 
modes appropriate to that cross section as resonant if the length 
between conducting end plates (shorts) is a multiple of a half guide 
wavelength for that mode. An example is given in Fig. 10 04a, in 
which fields are indicated for a circular cylindrical resonator which is 
one half guide wavelength for the TMoi mode. It is evident from this 
picture that a particular cavity of fixed shape and size will have many 
different modes (actually an infinite number) corresponding to all the 

Fig. 1004a Cylindrical cavity and Fig. 10 046 Paths of component uni¬ 
electric field pattern on a longitudinal form, plane waves in a closed resonant 

section plane. box. 

wave types that may exist in the corresponding wave guide, and to 
different numbers of half-waves between shorting ends. This picture 
will be pursued in detail for cylindrical resonators of circular and 
square section in the following articles. 

One may go farther, analyzing the standing wave pattern in a 
resonator into component plane waves reflected from the walls of the 
enclosure. It is evident that in the general case these will be reflected 
continuously from the walls of the box. Certain conditions of dimen¬ 
sions proper compared with wavelength may exist such that standing 
wave patterns may be set up inside the box with constant total energy, 
this energy passing naturally between the electric and magnetic fields 
of the box. The simplest example of this may be found in a rectangu¬ 
lar box with a plane wave bouncing between only four of the walls, as 
pictured in Fig. 10 04&. For the simplest case, this wave may be 
polarized with electric vector in the vertical or y direction and with no 
variations in that direction. If the path of the plane wave makes an 
angle 6 with the normal to side 1, as shown, some general conclusions 
may be drawn at once from the concepts of Chapter 7 without a 
detailed study of the wave paths. It would be expected, for example, 
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that since the vertical electric field should be zero at the conducting 
sides 1 and 2, the dimension d should be a half-wavelength measured at 
the phase velocity in the z direction. 

d =-yi- (1) 
2/ V ge cos 9 

where y and e are the constants for the dielectric filling the guide. 
Similarly, the dimension a should be a half-wavelength measured at the 
phase velocity in the x direction, so that the vertical electric field may 
be zero at the two conducting sides 3 and 4. 

a =- 2- (2) 
2/ V nt sin 9 

The top and bottom raise no problem, since the only electric field com¬ 
ponent is vertical and so ends on top and bottom normally as required, 
no matter how far apart these are placed. The two conditions (1) and 
(2) might be combined to eliminate 9, giving 

This expression shows that the natural frequency necessary to set up 
the assumed standing wave pattern is fixed by the dimensions a and d, 
and by the dielectric material filling the box. This expression will be 
derived in other ways in later articles, where it will be studied more 
completely. For the moment, it should be noted that (3) has been 
derived from wave solutions to Maxwell’s equations and is therefore 
completely correct. 

A final analogy that should not be overlooked comes from another 
branch of science. In the study of sound, one finds resonators for the 
sound waves which are quite similar to the cavity resonators for electro¬ 
magnetic waves. This analogy may be appreciated from the pictures 
of the standing waves arising because of reflections of waves from the 
box walls. The phenomena of reflections and standing wave patterns 
obviously occur also for sound waves. The analogy is exact for cer¬ 
tain modes so far as resonant frequency is concerned, and may be 
practically useful for predicting resonant frequencies by model studies. 
However, the velocity and pressure fields of a sound wave may be 
derived from a scalar potential, and we have seen that a general elec¬ 
tromagnetic field requires a vector potential also (Chapter 4), so the 
analogy is not always complete. 
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Each of the several analogies discussed supplies background for 
understanding electromagnetic energy storage inside a hollow closed 
conducting box of practically any shape and for appreciating the use¬ 
fulness of this arrangement in place of the usual tuned circuit of low 
frequencies. It should be recognized that, except for extraneous holes 
or leaks that may be added in constructing the cavity practically, the 
region is perfectly shielded from the outside, so that there is no radi¬ 
ation to or interference from the outside. The behavior of the cavity 
for frequencies on and near resonance will be similar to that of lumped 
circuits with, as we shall see later, extremely high values of Q. A given 
cavity should have many possible modes (actually an infinite number), 
and for each mode the resonant frequency is determined by the mode, 
the cavity dimensions, and the constants of the dielectric filling the 
cavity. Coupling to the cavity may be either to the electric or the 
magnetic fields of the mode it is desired to excite, or to both. 

Resonators of Simple Shape 

10-05 FIELDS OF SIMPLE RECTANGULAR RESONATOR 

For the first mode to be studied in some detail, we shall choose that 
mode in a rectangular conducting box which may be considered the 
standing wave pattern corresponding to the TEi0 mode in rectangular 
guide. As was done in the study of wave guides, the conducting walls 
will be taken as perfect, and losses in an actual resonator will be com¬ 
puted approximately by taking the current flow of the ideal mode as 
flowing in the walls of known conductivity. 

In the rectangular conducting box of Fig. 10 05a, imagine a TEio 
wave guide mode oriented with its electric field in the y direction and 
propagating in the z direction. The condition that Ev shall be zero 
at z = 0 and d, as required by the perfect conductors, is satisfied if 
the dimension d is a half guide wavelength. Using Eq. 9-04(6), 

or 

2 2 V1 — (X/2a)2

2ad 

Va2 + d2
(1) 

By recalling that = (2tt/X) 2, condition (1) may be shown to be 
equivalent to Eq. 10-04(3), which was derived by considering plane 
wave reflections. 

To obtain the field distributions in the dielectric interior, we add pos¬ 
itive and negative propagating waves of the form of Eqs. 9-04(1)-(3). 
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Ey = [E0+e-^ + Eq^] sin - (2) 

7T J' 

II x  -— [En+e-^ - Eo'e^] sin — (3) 
ZTE a 

Hz = 3-(—} [E0+e~^ + E0-eĵ] cos — U) 
r¡ \2a/ a 

Since Eu must be zero at z = 0, Eo~ = — Eo+, as we would expect, 
since the reflected wave from the perfectly conducting wall should 

Fig. 10 05a Rectangular cavity. Fig. 1005b Electric and magnetic 
fields in rectangular resonator with 

TEioi mode. 

be equal to the incident wave. Ev must also be zero at z = d, so 
that ß = tr/d, which may be shown to yield again the condition (1) 
or Eq. 10 04(3). Then (2)-(4) may be simplified, letting £0 = 2jE0+ : 

. irx . irz 
Eo sin — sin — 

a d 

Hx
. Eq X . 1TX 7TZ 

—j — — sin — cos — 
V 2d a d 

.. . Eq X « . irz 
Ez = J — — cos — sill — 

V ¿a a d 

(6) 

(7) 



10-06 RESONANT CAVITIES 423 

In studying the expressions above, we find that electric field passes 
vertically from top to bottom, entering top and bottom normally and 
becoming zero at the side walls as required by the perfect conductors. 
The magnetic field lines lie in horizontal (x-z) planes and surround the 
vertical displacement current resulting from the time rate of change 
of Ey. Fields are sketched roughly in Fig. 10 05b. There are equal 
and opposite charges on top and bottom because of the normal electric 
field ending there. A current flows between top and bottom, becom¬ 
ing vertical in the side walls. Here we are reminded of a conventional 
resonant circuit with the top and bottom acting as capacitor plates 
and the side walls as the current path between them, as in the ele¬ 
mental analogy of Art. 10 03. 

Because the mode studied here has one half-sine variation in the 
x direction, none in the y direction, and one in the z direction, it is 
sometimes known as a TEioi mode. The coordinate system is of 
course arbitrary, but some choice must be made before the mode can 
be described in this manner. 

PROBLEMS 

10 05a Show that the mode described above (resonant condition and field 
expressions) would be obtained if one started with the point of view that it was a 
T’/fio mode propagating in the x direction; similarly for considering it a TMh 
mode propagating in the y direction exactly at cut-off. 

10 05b Find the total charge on top plate and bottom plate. Determine an 
equivalent capacitance that would give this charge with a voltage equal to that 
between top and bottom at the center of the box. 

^£r05c Find the total current in the side walls. Determine an equivalent 
inductance in terms of this current and the magnetic flux linking a vertical path 
at the center of the box. What resonant frequency would be given by this induc¬ 
tance and the equivalent capacitance of Prob, b? Why is it different from the 
actual resonant frequency of the resonator? 

10-06 ENERGY STORAGE, LOSSES, AND Q OF SIMPLE RESONATOR 

The energy storage and energy loss in the rectangular resonator of 
the preceding article are of fundamental interest and will be calculated. 
Since the total energy passes between electric and magnetic fields, we 
may calculate it by finding the energy storage in electric fields at the 
instant when these are a maximum, for magnetic fields are then zero 
in the standing wave pattern of the resonator. 

rd rb ra 

t (b r)max ¡T I I I j Ay | ” dx dy dz ¿i 0 0 0 
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Utilizing Eq. 1005(5), 

(1) 

To obtain an approximation for power loss in the walls, we utilize 
the current flow in the ideal conductors as obtained from the tangential 
magnetic field at the surface. Referring to Fig. 10 05a, 

Front: J y = -Hx\x_d 

Left side: Jy = —//2|I= o 

Top: Jx = -II t, J, = II x

Hack. fJ y 77^| 2= q 
Right side: J y = Hz|I=a 

Bottom: Jx = Hz, Jz = — Hx

If the conducting walls have surface resistivity Rs, the above currents 

In the above, the first term comes from the front and back, the second 
from left and right sides, and the third from top and bottom. Sub¬ 
stituting from Eqs. 10 05(5) and (6) and evaluating the integrals, 

A Q of the resonator may 
Eq. 106(6), 

be defined from the basic definition of 

Q = (3) 
n L 

Substituting (1) and (2), 

2b(a- + 1 ,4)
_ad(a2 + d2) + 2ò(a3 + d3)J 

Q = — 
47? 

Note that for a cube, a = b = d, this reduces to the expression 

QeUbe=^^= 0.742^- (5) 
6 l(s Its 
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For an air dielectric, y « 377 ohms, and a copper conductor at 10,000 
mc/sec, Rs « 0.0261 ohm, the Q is about 10,730. Thus we see the 
very large values of Q for such resonators as compared with those for 
lumped circuits (order of a few hundred) or even with resonant lines 
(order of a few thousand). In practice, some care must be used if 
Q’s of the order of that calculated are to be obtained, since disturb¬ 
ances caused by the coupling system, surface irregularities, and other 
perturbations will act to increase the losses. Dielectric losses and 
radiation from small holes, when present, may be especially serious 
in lowering the Q. 

Although the justification will not be given until the following 
chapter, it is worth noting here that the Q as calculated above is useful 
for estimating band width of a resonant cavity, as it was for a lumped 
circuit (Art. 1-10). If A/is the distance between points on the response 
curve for which amplitude response is down to 1/ V 2 of its maximum 
value, 

A///o « 1/Q (6) 
Thus, for the example above, a Q of 10,000 in a cavity resonant at 
10,000 megacycles per second will yield a bandwidth between “half¬ 
power” points of 1 megacycle per second. 
An equivalent series resistance for the cavity may be computed by 

utilizing the power loss and the total vertical current in the resonator 
walls, or an equivalent shunt conductance may be found from the 
loss and the voltage between top and bottom at the center. Although 
these are of limited usefulness, the latter will be found. Utilizing (2), 

= 2Wl _ Ä. T2b(a3 + d3) + adtf + d2) 1 “ 
(Fob)2 ¿ L 2b2(a2 + d2) J ( )

PROBLEMS 
^A0 06a Show that for resonance the same expression (1) for energy stored 
is obtained by calculating it from the magnetic fields when they are at their 
maximum. 

Note the value of this for a very good glass with e' = 4, e" = 0.004. 

10 06b For the mode of this article, plot the Q versus b/a for a square prism 
with d = a. Take air dielectric and copper conductor at 10,000 mc/sec. Why 
does Q decrease as b decreases? 

10 06c Plot the equivalent conductance defined by (7) as a function of b/a 
under the same conditions as in Prob. b. 
ÍOO6d Show that, for any mode in any shape of resonator, the Q due to an 

•imperfect dielectric filling the resonator is 

Qd = -
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10 06e Suppose that a perfect dielectric were available with t' = 5. How 
would the Q of a dielectric-filled cube compare with that of an air-filled one for 
the simple mode studied? Why are they different? 

10-07 OTHER MODES IN THE RECTANGULAR RESONATOR 

As has been noted, the particular mode studied for the rectangular 
box is only one of an infinite number of possible modes. If we adopt 
the point of view that a resonant mode is the standing wave pattern 
for incident and reflected wave guide modes, any one of the infinite 
number of possible wave guide waves might be used, with any integral 
number of half waves between shorting ends. It is recognized that 
this description of a particular field pattern is not unique, for it 
depends upon the axis chosen to be the “direction of propagation” 
for the wave guide modes. Thus (see Prob. 10 05a) the simple mode 
studied in past articles would be a TEmi mode if the z axis or x axis 
were considered the direction of propagation, but it would be a TM^o 
mode if the vertical (y) axis were taken as the propagation direction. 
In the following, a coordinate system will be chosen as in Fig. 10 05a, 
and field patterns will be obtained by superposing incident and 
reflected waves for various wave guide modes propagating in the z 
direction. 

1 I'. mnp Mode. If we select the TEmn mode of a rectangular 
wave guide (see Art. 9-03), addition of positively and negatively 
traveling waves for II z gives 

II, = [Ae-^ + Be*} cos cos 
a b 

Since the normal component of magnetic field, II z, must be zero at 
z = 0 and z = d, B = — A and ßd = pir with p an integer. Let 
C = -2jA. 

Hl = A[e-*-e*] cos cos 
a b 

mirx niry . pirz 
= C cos-cos —— sin -— 

a b d (1) 

1 hen, substituting in Eqs. 8-02(7) to (10), remembering that for the 
negatively traveling waves all terms mult iplied by y change sign, 

II.- IA.-«- - (- üí) sin cos S 
K c \ a / a b 

woA . mirx niry pirz 
I sin cos —— cos (2) a / a J
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Similarly combining terms for the other components, 

B. The TMmnp Mode. In a similar manner, positively and nega¬ 
tively traveling TMmn modes in a rectangular wave guide may be 
combined to yield 

n ta • . niry pirz = 1) sm - sin —— cos —-
a b d 

D ( pir\ / mir\ mirx . niry pirz 
= — —5 I —- I I — I cos-sin —— sin 

ke \d/ \ a / a b d 

jweD /nr\ . mirx niry pirz 
nx = w I r J sin - - cos —— cos — 

kc \ b / a b d 

rr jueD /mir\ mirx niry pirz 
Hy = - ( ) cos-sin , cos ~ 

kc \ a / a b d 

(8) 

(9) 

(10) 

(H) 

(12) 

The quantity k^ and resonant wavelength X are as in (6) and (7) . 
C. General Comments. We note first that TM and TE modes of the 

same order m,n,p have identical frequencies. Such modes with 
different field patterns but the same resonant frequency are known 
as degenerate modes. Other cases of degeneracy may exist as in a 
cube, a = b = d, where orders 112, 121, and 211 of both TM and TE 
types have the same resonant frequency. 
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It is also apparent from (7) that, as the order of a mode becomes 
higher, the wavelength decreases or resonant frequency increases. Put 
differently, it means that to be resonant at a given frequency, the box 
must be made bigger as the order increases. This is to be expected, 
since more half-sine waves are to fit in each dimension. Although we 
will not derive the general expression for Q, it turns out that Q increases 
at a given frequency as one goes to higher mode orders. This too is 
logical, since the larger box has a greater volume-to-surface ratio, and 
energy is stored in the volume, whereas it is lost on the imperfectly 
conducting surface. The high order modes are consequently useful 
in “echo boxes” where a high Q is desired so that the energy will decay 
at a very slow rate after being excited by a pulse. Because modes 
become very close together in frequency as the order increases, it may 
be difficult to excite one mode only in such applications. 

PROBLEMS 

10-07a Derive the expression for Q of a TEmmm mode in a cube, a = b = d, 
and show that it increases as m increases, for a given dielectric and resonant 
frequency. 

10-076 Repeat Prob, a for a TMmmm mode. 

Current 

a 

-Electric Field 
-Magnetic Field 

Fig. 10 08 Sections through 
cylindrical cavity. 

inward and outward radially propagating waves of the radial trans¬ 
mission line type, Art. 9-11. From either point of view we obtain 

10-08 CIRCULAR CYLINDRICAL RESONATOR 

For a circular cylindrical resonator, Fig. 10 08, there is a simple 
mode analogous to that first studied for the rectangular box, Art. 

10 05. The vertical electric field which 
exists has a maximum at the center and 
dies off to zero at the conducting side 
walls. A circumferential magnetic field 
surrounds the displacement current 
represented by the time-varying electric 
field. Neither component varies in the 
axial or circumferential direction. Equal 
and opposite charges exist on the two 
end plates, and a vertical current flows 
in the side walls between them. The 
mode may be considered a TAfoi mode 
in a circular wave guide operating at 
cut-off (to give the constancy with 
respect to z), or it may be thought of as 
the standing wave pattern produced by 
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the field components 

T Z.4 OS' 

Ez = EoJo&r) 

V 

Poi 2.405 
k — — — — 
a a 

Then the resonant wavelength is 

2?r 
X = — = 2.61a 

K 

(1) 

(2) 

(3) 

(4) 

The energy stored in the cavity at resonance may be found from 
the energy in the electric fields at the instant these have their maxi¬ 
mum value. Take a and d, respectively, as radius and length of the 
cavity. 

pa él F 12 Ca
U = d I -—— 2irr dr = ire dE0~ I rJo\kr) dr 

Jo 2 Jo 

This may be integrated by Eq. 3-28(5). 
2 

U =.nedE02?- J^ka) (5) 

If the walls are of imperfect conductors, the power loss may be 
calculated approximately. 

p Ca p 
JTL = 2nad I Jz 12 + 2 —î I Jr 12 2nr dr 

2 

The first term represents losses on the side wall, the second on top 
and bottom. The current per unit width Jr on top and bottom is 
±11*, and Jz on the side wall is the value of //0 at r = a. Substi¬ 
tuting from (2), 

WL = irR, 
F 2 pa E 2

ad —V J^Çka) + 2 I —y rJ ^(kr) dr 
V Jo TJ 

This may also be integrated by Eq. 3-28(5), recalling that J0(ka) = 0 
is the condition for resonance. 

ITT rraE 8E Q n.. -- . 

W L =-2— J i (ka)[d + a] (6) 
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The Q of the mode may then be obtained as usual from power losses 
and energy stored. An equivalent conductance may also be defined 
in terms of power losses and voltage at the center, or an equivalent 
resistance may be defined in terms of losses and the total current in 
the~side walls. 

where 

0 = — Po1
/?s2[a/d+l] (7)

211 L I{„ 2ira „ 
G = wp = 7 “T [1 + W 
„ 2W\ d 
~ \ n u ( 7Ï2 = H + a/d] (9) I 2iraH^a) p 2ira 

21-a 
1 (10) 2 

An infinite number of additional modes may be obtained for the 
cylindrical resonator by considering others of the possible wave guide 
modes for circular cylindrical guides as propagating in the axial direc¬ 
tion with an integral number of half guide wavelengths between end 
plates. In this manner the standing wave pattern formed by the 
superposition of incident and reflected waves fulfills the boundary 
conditions of the conducting ends. Table 10 08 shows a TEn mode, 
a TM^ mode, and a TEqi mode, each with one half guide wavelength 
between endg . The resonant wavelengths shown are obtained _by 

2 

The integer p is unity for the above, and cut-off wavelength Xc is 
obtained from Art. 9 05. Note that in the designations TEm, TMOn, 
TEOn, the order of subscripts is not in the cyclic order of coordinates, 
r, </>, z, since it is common in circular waveguides to designate the 0 
variation by the first subscript. 

Of the above modes, the TEon is perhaps the most interesting since 
it has only circumferential cyrrents in both- the cylindrical wall and 
the end plates. Thus, if a resonator for such a wave is tuned by 
moving the end plate, one does not need a good contact between the 
ends and the cylindrical wall, since no current flows between them. 
For both ofthe other modes shown (and in fact all except those of 
type TÈom^) a finite current does flow between the cylinder and its 
ends so that any sliding contact must be good to prevent serious loss. 
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Cross Section 
Through A-A 

Cross Section 
Through A-A 

Cross Section 
Through A-A 

As with the rectangular resonator, it would be found that higher 
wave orders. (those having more variations with any or all coordinates 
G z) would require larger resonators to be resonant at a given wave¬ 
length . The Q would become higher because of the increaxcd vnlume-
to-suriace ratio., but the modes would become (-lose toget her in fre¬ 
quency so that.it might, be difficult to excítenme mode only 

PROBLEMS 

10-08a Give the field components and obtain expressions for energy storage 
power loss, and Q for the TMou cylindrical mode. 
10 08b Repeat a for the TEqii mode. 

10 08c An air-filled circular wave guide of radius 1 cm is to be made into a 
resonator for the TM 021 mode at 30,000 mc/sec by placing end plates in the guide. 
Find the distance between end plates. 

,10-08d A circular cylindrical cavity of radius a and length d has a dielectric 
post of radius b and dielectric constant e2 extending from top to bottom. Obtain 
the solution for field components and the equation determining resonance, taking 
the simple mode analogous to that of Fig. 10 08. 

IC-09 WAVE SOLUTIONS IN SPHERICAL COORDINATES 

Before considering the specific problem of a spherical cavity reson¬ 
ator, we shall look at the solutions of Maxwell’s equations in spherical 
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coordinates. We shall sketch here only those solutions with axial 
symmetry, d/d<f> = 0. The solutions with general </> variations are 
more involved, but have been given completely by Schelkunoff2 and 
Stratton.3 It is found that with axial symmetry the solutions sepa¬ 
rate into waves with components Er, Ee, and those with com¬ 
ponents Hr, Ho, E#. These are called TM and TE types, respec¬ 
tively, the spherical surface r constant serving here as the transverse 
surface. 

Consider then TM spherical modes with axial symmetry by setting 
3/Ö0 = 0 in Maxwell’s equations in spherical coordinates. The three 
curl equations containing Er, Ee, H* are 

T ^rE^ ~ i1) dr dO 

1 d 
— sin = w r sin 9 dO 

- r = J^E.) (3) 

Equations (2) and (3) may be differentiated and substituted in (1), 
leading to an equation in II alone. 

^2 15 
^2 + p (rW.) = 0 (4) 

15 
, .—- — (d/i sin 0) + k2
r2 d9 sin 0 dO * 

To solve this partial differential equation, we follow the product 
solution technique. Assume 

(rHJ = RQ (5) 

R is a function of r alone, 0 is a function of 0 alone. If this is substi¬ 
tuted in (4), the functions of r maybe separated from the functions of 0, 
and these must then be separately equal to a constant if they are to 
equal each other for all values of r and 0. For a definitely ulterior 
motive, we label this constant n(n + 1). 

r2R" 
— + kV - Id Id 

0 dd .sin 0 dO 
(0 sin 0) = n(n + 1) (6) 

Thus there are two ordinary differential equations, one in r only, one 
in 0 only. Let us consider that in 0 first, making the substitution 

2 S. A. Schelkunoff, “Transmission Theory of Spherical Waves,” Trans. A.I.-
E.E., 57, 744-750 (1938). 
3 J. A. Stratton, Electromagnetic Theory, McGraw-Hill, 1941, Chapter VII. 
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Then 

2 u = cos 9 = sin 9 

1 
0 = 0 

„ de 
— 2u — 

du 

d . d 
— = - sin 9 — 
d9 du 

,, 2x d2e 
(1 - u > du 

The differential equation (7) is reminiscent of Legendre’s equation 
(Art. 3-31) and is in fact a standard form. This form is 

m2
1 — X (1 ~ “ 2z 3" + n(w + “ dx dx L y = o (8) 

One of the solutions is written 

y = PnmW 

and the function defined by the above solution is called an associated 
Legendre function of the first kind, order n, degree m. These are 
actually related to the ordinary Legendre functions by the equation 

Pnm(x) = (1 - x2)m/2 —^1 (9) 

As a matter of fact, (8) could be derived from the ordinary Legendre 
equation by this substitution. A solution to (7) may then be written 

And, from (9), 
0 = Pn*(w) = P^ (cos 9) 

P^ (cos 0) = — Pn (cos 9) 

(10) 

(11) 

Thus for integral values of n these associated Legendre functions are 
also polynomials consisting of a finite number of terms. By differenti¬ 
ations according to (9) in Eq. 3-31(8), the polynomials of the first few 
orders are found to be 

Po1 (cos 9) = 0 

Pi1 (cos 9) = sin 9 

P21 (cos 9) = 3 sin 9 cos 9 (12) 

P31 (cos 0) = I sin 9 (5 cos2 0—1) 

Pi1 (cos 0) = I sin 9 (7 cos3 0 — 3 cos 0) 
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Other properties of these functions that will be useful to us, and 
which may be found from a study of the above, are 

1. All Pnl (cos 0) are zero at 0 = 0 and 0 — tt. 

2. Pn1 (cos 0) are zero at 0 = ir/2 if n is even. 
3. Pn1 (cos 0) are a maximum at 0 = t/2 if n is odd, and the value 

of this maximum is given by 

(13) 

4. The associated Legendre functions have orthogonality properties 
similar to those of sinusoids and Bessel functions studied previously. 

Pi1 (cos 6)Pnx (cos 0) sin 0d0 = 0 1/n 
o 

I [Pn1 (cos 0)]2 sin 0 dd = 1
Jo 2n + 1 

(H) 

(15) 

5. The differentiation formula is 

[^n1 (eos 0)] = [nPn+i1 (cos 0) - (n + 1) cos 0 P^ (cos 0)] de sin 0 
(16) 

Note that only one solution for this second order differential equa¬ 
tion (7) has been considered. The other solution becomes infinite on 
the axis, and so will not be required in problems such as those to be 
considered in this text, where the region of the axis is included in the 
solution. 

To go back to the r differential equation obtainable from (6), sub¬ 
stitute the variable Pi = R/X^r. 

d-Ri 1 dRi 
. .. + ■ , + A: dr r dr 

By comparing with Eq. 3-24(3) it is seen that this is Bessel’s differ¬ 
ential equation of order (n + ^). A complete solution may then be 
written 

and 

Ri — A nJ n+vitkr) + BnNn+ i/2(kr) 

R = Vr Ri 

(17) 
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If n is an integer, these half-integral order Bessel functions reduce 
simply to algebraic combinations of sinusoids, t For example, the 
first few orders are 

/ 2 ■^1/2(2) = — v— cos x 
’ ttj-

COS X 

X 

(18) 
The linear combination of the J and N functions into Hankel func¬ 

tions (Art. 3-22) represent waves traveling radially inward or outward, 
and boundary conditions will be as found previously for other Bessel 
functions: 

1. If the region of interest includes the origin, ATn+1/2 cannot be 
present since it is infinite at r = 0. 

2. If the region of interest extends to infinity, the linear combination 
of J and N into the second Hankel function, = «/n+1/2 —
/■^n+1/2, must be used to represent a radially outward traveling wave. 

1 he particular combination of Jn+1/2 (kr) and N n+1/2 (kr) required for 
any problem may be denoted as Zn+i/2 (kr), and now by combining 
correctly (17), (10), and (5), H„ is determined. Er and Eg follow from 
(2) and (3) respectively. 

= —^Pn (cos ö)Z„+i/2 (kr) 
V r 

AnPn1 (cos 0) 
— jutr3̂2 ln̂ n+i/2 (kr) — ArZn—i/2 (&r)l (19) 

Er = “ “w’^sin 0^ [C0S 0 Pnl (COS 0) “ P"+11 (cos 0)1
t Special notations for the spherical or half-integral order Bessel functions have 

been introduced and are useful if one has much to do with these functions. Thus 
Stratton, following Morse (Vibration and Sound, McGraw-Hill, 1936, p. 246) uses 
j„(x) to denote (ir/2x)l'2J„+i/2(x'), and similar small letters denote other spherical 
Bessel and Ilankel functions. Schelkunoff follows the definitions of spher-
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The spherically symmetric TE modes may be obtained by the above 
and the principle of duality, Art. 9-13. We then replace Er and Ee 
by Hr and He respectively, and H# by — E^. 

E* = (cos Ö) Zn+ i/2 (kr) 
V r 

rr E n (COS 9) // 11 He = — ; 3/5 [wZn_|_i/2 (At) krZ n̂i/2 (At)] (-20) 

rr BnnZn+i2 (kr) r ,, i , i z 
Hr = —-3^"^-— [COS 0 I„ (COS 0) — P„+\ (COS 0)] 

ju^r ' sin 0 

10-10 SPHERICAL RESONATORS 

The general discussion of spherical waves from the preceding section 
will now be applied to the study of some simple modes in a hollow 
conducting spherical resonator. Since the origin is included within 
the region of the solution, the Bessel functions can only be those of 
first kind, Jn+V2- For the lowest order TM mode, let n = 1 in Eq. 
10 09(19) and utilize the definitions of Eqs. 1009(12) and 10 09(18). 
Letting C = A(tr/2k)^, we then have 

C sin 0 T sin At , 
- cos kr 

kr k 

2ji¡C cos 0 J" sin kr 
~k^ 

cos At 

jr¡C sin 0 T (Ar)2 — 1 
E ° = A2r2 kT 

sin Ar + cos kr 

The mode may be designated TMioi, the subscripts here giving vari¬ 
ations in the order r, </>, and 9. Electric and magnetic field lines are 
sketched in Fig. 10-10a. 

To obtain the resonance condition, we know that Es must be zero 
at the radius of the perfectly conducting shell, r = a. From (2), this 
requires 

A a . . 
tan ka =  -t—-5 (4) 

1 — (ka) 

ical Bessel functions given by Bateman (Partial Differential Equations, p. 386 
Dover reprint, 1944, p. 386), though in a different notation, using Jn(z) to denote 
(kx n+ 1/2(1), and similarly for other Bessel and Hankel functions. Because 
of our limited need for spherical coordinates, we shall retain the original Bessel 
function forms so that standard recurrence formulas may be used. 
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Roots of this transcendental equation may be determined graphically, 
and the first is found at ka « 2.74, giving a resonant wavelength of 

X ~ 2.29a (5) 

The energy stored at resonance may be found from the peak energy 
in magnetic fields. 

Fig. 1010a Field patterns for simple TM ioi mode in spherical resonator. 

Axial Section Equatorial Section 
Fig. 10 10b Field patterns for TEioi mode in spherical resonator. 

The value of is given by (1), and the result of the integration may 
be simplified by the resonance requirement (4). 

1 + (Aa) . 2 
ka---sin ka 

ka 
rr 27TMC2 ■ 

3fc3
(6) 

The approximate dissipation in conductors of finite conductivity is 

WL = f -- 2rra2 sin 0 dO = a^C2 sin2 ka (7) 
Jo 2 3 

So the Q of this mode is 

__V_ ka _ 1 + (ka)2 ~ r¡ 
2R„(ka)2 sin2 ka ka _ R, 
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The “dual” of the above mode is the TE10i mode, and its field com¬ 
ponents may be obtained by substituting in (1) to (3) E* for H#, —H r 

for Er, and — II n for Et. The fields are sketched in Fig. 1010b. 
Note that the resonance condition for this mode, obtained by setting 
E* = 0 at r = a, requires 

tan ka = ka 

Numerical solution of this yields ka ~ 4.50, or 

Ä ~ 1.395a (9) 

PROBLEMS 

10-10a Determine an equivalent conductance for the TAfioi mode in terms of 
the conductor losses and a voltage between poles taken along the axis. 

lO-lOb By utilizing solutions and definitions of Art. 10 09, write expressions 
for the components in a TE mode with n = 2. 

Small-Gap Cavities and Coupling 

10-11 SMALL-GAP CAVITIES 

Because of their shielded nature and high Q possibilities, resonant 
cavities are ideal for use in many high-frequency tubes such as klys-

Fig. 1011a Foreshortened coaxial line Fig. 1011b Approximate equivalent 
resonator. circuit for Fig. 1011a. 

irons, magnetrons, and microwave triodes. When they are used with 
an electron stream, it is essential for efficient energy transfer that the 
electron transit time across the active field region be as small as possible. 
If resonators such as those studied in preceding articles were used, very 
thin cylinders or prisms would be required, so that impedance and Q 
would be low. Certain special shapes are consequently employed 
which have a small gap in the region that is to interact with the elec¬ 
tron stream. Several examples of useful small-gap cavities will follow. 

A. Foreshortened Coaxial Lines. A resonator of the general form of 
Fig. 10-Ila may be considered a coaxial line A terminated in the gap 
capacitance B (leading to the equivalent circuit of Fig. 10-11b) pro¬ 
vided that the region B is small compared with wavelength. The 
method is particularly useful when the region B is not uniform, but 
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contains dielectrics or discontinuities, so long as a reasonable estimate 
of capacitance may be made. 

For resonance, the impedance at any plane should be equal and 
opposite, looking in opposite directions. Selecting the plane of the 
capacitance for this purpose, 

jZ0 tan ßl = — ( — ) 
\jwoC / 

or (1) 

If Co is small (Zo«Co « 1), the line is practically a quarter-wave 
in length. For larger values of Co, the line is foreshortened from 
the quarter-wave value and would approach zero length if ZqwCo 
approached infinity. 

B. Foreshortened Radial Lines. If the proportions of the resonator 
are more as shown in Fig. 1011c, it is preferable to look at the problem 

Fig. 1011c Foreshortened radial line Fig. 101 Id Resonator intermediate 
resonator. between foreshortened coaxial line 

and foreshortened radial line. 

as one of a resonant radial transmission line (Art. 9-11) loaded or 
foreshortened by the capacitance of the post or gap. Then, for 
resonance, the inductive reactance of the shorted radial line looking 
outward from radius ri should be equal in magnitude to the capacitive 
reactance of the central post. Using the results and notation of 
Art. 911, 

1 _ _ h sin (Qi - 02) 
uC 2irri 01 cos (^i — 02) 

Fsin 0i + (2irrx/<j>CZülK) cos ^i] 
or 02 = tan -ñ-, (2) Leos 0i — (2irri/wCZoin) sm J 

Once 02 is found, kr^ is read from Fig. 911c or Fig. 91 Id. 
C. Resonators of Intermediate Shape. In the coaxial line resonator of 

Fig. 10-Ila the electric field lines would be substantially radial in the 
region far from the gap. In the radial line resonator of Fig. 10-11c the 
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electric field lines would be substantially axial in the region far from 
the gap. For a resonator of the same general type, but with inter¬ 
mediate proportions, the field lines may be transitional between these 
extremes as indicated in Fig. 10-lid, and neither of the above approxi¬ 
mations may yield good results. An exact approach will be outlined 
in the following chapter. Some useful design curves have been given 
in the literature.4 Of course, if the capacitive loading at the center is 
great enough, the entire resonator will be relatively small compared 
with wavelength, and the outer portion may be considered a lumped 
inductance of value 

Resonance is computed from this inductance and the known capaci¬ 
tance. 

D. Conical Line Resonator. A somewhat different form of small-gap 
resonator, formed by placing a spherical short at radius a on a conical 

Fig. 101 le Conical line resonator. 

line as studied in Art. 914, is shown in Fig. 101 le. Since this is a 
uniform line, formula (1) applies to this case as well. For the conical 
line, ß = k and 

Zo = - In cot (4) 
TT 2 

In the limit of zero capacitance (the two conical tips separated by 
an infinitesimal gap), the radius a becomes exactly a quarter-wave¬ 
length. The field components in this case, obtained by forming a 
standing wave from Eqs. 9-14(5) and (6), are 

E) — 
C cos kr 

sin Ö r (5) 

H. 
C sin kr 

jy sin 6 r (6) 

4 T. Moreno, Microwave Transmission Design Data, McGraw-Hill, 1948 
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The Q of the resonator in this limiting case may be shown to be 

0 ~ _in cot (0o/2)_ 
4ß, In cot (0q/2) + 0.825 esc 6^ 

PROBLEMS 

10-lla A coaxial line of radii 0.5 and 1.5 cm is loaded by a gap capacitance of 
1 p^f. Find the length I for resonance at 3000 mc/sec. 

10-llb A radial line of spacing h = 1 cm has a central post of radius 0.5 cm 
and capacitance 1 g^f. Find the radius for resonance at 3000 mc/sec. 

10-llc Obtain expressions for the Q and the impedance referred to the gap for 
the resonator of Fig. 10-lla, neglecting losses in region B. Calculate values for a 
copper conductor and the data of Prob. a. 

10-lld Find Q and impedance if in addition to copper losses there are losses 
in region B representable by a shunt resistance Bq- Repeat the numerical calcu¬ 
lation of c, taking Tío = 10,000 ohms. 

10-lle By extension of the concepts of this article, show that the expression 
for resonant frequency for the resonator of Fig. 10’11/, having total gap capacity 
Ci, is 

ßZ = tan"1 ( 1 ) 

10-11/ For a cone angle So of 15° in Fig. 101 le, find radius a for resonance at 
3000 mc/sec if center capacitance is 1 urf. 

10-llg For the conical resonator with no loading capacitance, show that there 
is a value of So which gives maximum Q. Calculate the value of Q for a copper 
resonator designed for X = 15 cm with this optimum angle. 

Fig. 101 lÿ An axially symmetric resonator and approximate equivalent circuit. 

10’llh A radial cavity is loaded at the center by a section as shown in Fig. 
10’113. If rs is relatively small compared with wavelength, it is possible to repre¬ 
sent approximately the region inside rz by a lumped-circuit equivalent, as shown. 
Here Ci is the center post capacitance, Li is an inductance calculated from d-c 
formulas for the coaxial region of height hi between radii ri and n, and C2 is 
approximately the capacitance calculated on the basis of parallel disks spaced hi, 
and of radii rj and rj. If Ci = 1 mmí, hi = 0.5 cm, h% = 1.0 cm, ri = 0.50 cm, 
r¡ = 1.0 cm, find the approximate value of rz for resonance at X = 15 cm. 
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10-12 COUPLING TO CAVITIES 

The types of electromagnetic waves that may exist inside closed 
conducting cavities have been discussed without specifically analyzing 
ways of exciting these oscillations. Obviously they cannot be excited 
if the resonator is completely enclosed by conductors. Some means of 
coupling electromagnetic energy into and out of the resonator must be 
introduced from the outside. Some of these coupling methods have 
been implied in past articles. All are similar to those discussed in 

Fig. 1012a Couplings to the 
cavities of a velocity modulation 

tube amplifier. 

Fig. 10126 Section showing approximate 
form of magnetic field lines in iris coupling 

between a guide and cavity. 

Art. 9-06 for exciting waves in wave guides. The most straightforward 
methods are: 

1. Introduction of a conducting probe or antenna in the direction of 
the electric field lines, driven by an external transmission line. 

2. Introduction of a conducting loop with plane normal to the mag¬ 
netic field lines. 

3. Introduction of a pulsating electron beam passing through a small 
gap in the resonator, in the direction of electric field lines. 

4. Introduction of a hole or iris between the cavity and a driving 
wave guide, the hole being located so that some field component in the 
cavity mode has a common direction to one in the wave mode. 

For example, in a velocity modulation device of the klystron type, 
as pictured in Fig. 10-12a, the input cavity may be excited by a probe, 
the oscillations in this cavity producing a voltage across gap gi and 
causing a velocity modulation of the electron beam. The velocity 
modulation is converted to convection current modulation by a 
drifting action so that the electron beam may then excite electro-
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magnetic oscillations in the second resonator by passing through the 
gap g2. Power may be coupled out of this resonator by a coupling 
loop and a coaxial transmission line. Iris coupling between a Tdioio 
mode in a cylindrical cavity and the TE\q mode in a rectangular wave 
guide is illustrated in Fig. 1012b. Here the of the cavity and the 
Hx of the guide are in the same direction over the hole. 

The rigorous approach to a quantitative analysis of cavity coupling 
will be given in the following chapter. Some comments and an 
approximate approach are, however, in order here. Let us concen¬ 
trate on the loop coupling to a TAfoio cylindrical mode as sketched in 
Fig. 10-12c. If a current is madeMo'ftow in the loop, all wave types 
will be excited which have a magnetic field threading the loop. The 
simple TMoio mode is one of these, and, 
if it is near resonance, certainly it will, 
he excited.most. However, this wave 
is known to fit the boundary conditions 
imposed by the perfectly conducting 
box alone. Other waves will have to be 
superposed to make the electric field 
zero along the perfectly conducting 
loop, but these will in general be far 
from resonance and so will contribute only a reactive effect. In fact, 
they may be thought of as producing the self-inductive reactance of 
the loop, taking into account the presence of the cavity as a shield. 

The total induced voltage in the loop may be written 

Fig. 10-12c Magnetic coupling 
to a cylindrical cavity. 

To = j&nHS + juLI L (1) 

where H is an averaged magnetic field from the TMqio mode over 
the loop, S the area of the loop, IL the loop current, and L the self¬ 
inductance of the loop in the presence of the cavity. If the simple 
mode is at resonance for the unperturbed condition, no reactive energy 
need be supplied to it, but only a power to account for the real losses 
in the cavity. The first term of (1) then represents a voltage in phase 
with current, and the real power input is 

wL = (2) 
If we equate this to the expression for conductor losses, Eq. 10 08(6), 
with H obtained from Eq. 10 08(2) by taking at r = a, we have 

- lijunHS — ■ ■ 2 ° (d + a)Ji~(ka) = — TcaR,U~{d + a) 
2 7) 

or H = _ -j“*8_j 
2ira(d + a) R„ L

(3) 
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This equation enables us to find the level of excitation of the mode for 
a given loop current. Also, by substituting in (1), we may find the 
input impedance. 

To (wm<S)2 . ■- = --- -j-
IL 2ira(d + a)Rs

(4) 

PROBLEMS 
10-12a For the simple mode in a rectangular resonator perform an approximate 

analysis like the above leading to an expression for input impedance of a loop 
introduced at the center of a side wall. 

10-126 For the TM oio cylindrical mode, suppose that the coupling to the line 
is by means of a small probe of length d extending axially from the bottom center. 
Taking voltage induced in the probe as the probe length multiplied by electric 
field of the mode, find an expression for input admittance at resonance of the 
unperturbed mode, utilizing a procedure similar to the above. The probe capaci¬ 
tance is C. 

1012c Discuss the extension of the above approximate approach to other 
frequencies near resonance of the unperturbed mode by utilizing the Q in its rela¬ 
tion to band width. How would this enable one to find a new resonance defined 
as the frequency at which input impedance Z is real? 

10-13 SMALL PERTURBATIONS IN IDEAL CAVITIES 

Certain cavities may approximate the ideal shapes studied earlier 
except for small deviations such as screws, holes, and small regions 

of dielectric. There is a powerful 
approximate method for studying 
such cases which we wish to illus¬ 
trate by an example. Like the 
methods utilized in studying the 
effects of small losses, it is a per¬ 
turbation method in that the solu¬ 
tion is assumed to deviate little 
from the ideal, and energy changes 

Fig. 1013 Small perturbation in hot- from the perturbation are calcu-
tom of cylindrical cavity. lated from the ideal solut¡on . 

The example to be taken is that of a small perturbance in the 
bottom center of a cylindrical cavity with 7’.l/oio mode (Fig. 1013), 
taking out a small volume AV. It is clear that some of the stored 
electric energy is removed by the process, and frequency must shift 
enough so that stored magnetic energy is changed by the same amount 
so that the balance of electric and magnetic energy is maintained. 
Field expressions are taken to be approximately the same as in Eqs. 
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10 08 (1) and (2), and the change in stored electric energy is approxi¬ 
mately that of the volume removed. 

P 2 
¿UE=--^-SV (1) 

The change in stored magnetic energy represented by a change in 
frequency is approximately 

— , dUH 
sUH ~ 2tt Vm« 

dk 

= 2ir \/fit ^fd 
p d r 
o dk* .2r¡2

2irr dr (2) 

Note that the perturbation does not have to be considered here since 
magnetic fields are small in this region. Evaluation of the integral 
gives 

P 2 2 aí 
h = 2ird y/ne— -y kaJ i(ka)J2(ka) 

2 Jo 

When this is equated to (1), an equation for frequency shift from that 
of the unperturbed mode is obtained. 

A/ ~_(Al /I o) ~ — 1 85 —— 
fo (ka)J i(ka)J2(ka) 1 o 

(3) 

Note that frequency is decreased by the perturbance, as would be 
expected since it acts to increase the effective capacitance. 

A similar thing may be done with small dielectric regions introduced 
into the cavity, but here one must decide if the E or thé D is substan¬ 
tially that of the unperturbed mode over the region of the dielectric. 

PROBLEMS 

10-13a Obtain the approximate expression for frequency shift if the small 
volume AV is taken from the side wall of the TMoio mode where magnetic field 
is large and electric field small. 

10-13b Obtain the approximate expression for shift of resonant frequency of 
the TM oio mode if a thin dielectric plate of thickness I and constant «2 covers the 
bottom of the cavity. Calculate the shift for a = 5 cm, d = 1 cm, t = 0.05 cm 
and tí = 5. 

10-13c Obtain the approximate expression for shift of resonant frequency of 
the TM oio mode if the dielectric is a thin cylinder of average radius 6, thickness t, 
and dielectric constant «2 extending from top to bottom of the cavity. Calculate 
the shift for the dimensions of Prob, b with b = 2.5 cm, t = 0.05 cm, and = 5. 



1 1 MICROWAVE NETWORKS 

11-01 INTRODUCTION 

In the last several chapters we have considered wave-propagating 
systems such as transmission lines and wave guides, and resonant wave 
systems of the cavity type. These are important elements in micro¬ 
wave systems, as has been implied in previous discussions, but now we 
want to be more specific about the manner in which they must be 
treated if they are combined into systems or “networks.” A typical 
system of this type may use a cavity as the resonant element in 
coupling power from an electron stream. A coupling system may in 
turn excite the dominant mode of a wave guide which is to carry the 
power to an antenna. On the way it may pass through other cavities 
with associated coupling systems designed to act as filters, and will 
also have to encounter unavoidable bends and discontinuities as well as 
other discontinuities purposely added for matching, power monitering, 
or impedance measurement. 

One approach to the analysis of such a system would be to solve 
the wave equation for each region with proper boundary or continuity 
conditions applied in passing from each region to the next. This 
would, of course, be a hopelessly complex procedure if it had to be 
repeated for each such system, and would be useless for engineering 
design. Moreover, it would reveal the distribution of fields every¬ 
where in the system, which is more information than is wanted. One 
desires only to know the characteristics of each part of the system as a 
transducer or power transfer element over the frequency range of 
interest. Similar problems at low frequencies are handled by circuit 
or network theory, where, instead of giving detailed descriptions of the 
fields about a coil of wire or between conductors, over-all parameters 
such as inductance and capacitance or even more general impedance or 
transfer parameters are defined and utilized. In discussing the elec¬ 
tromagnetic basis of conventional circuit theory in Chapter 5, those 
ideas perhaps seemed unsuitable for wave-type systems, but we shall 

44Ó 
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find that a very complete parallel can be set up, with many of the 
same techniques and theorems applying. The same terms, voltage, 
current, and impedance, are consequently used in order to stress this 
parallel, though they are used to represent field quantities and may not 
appear to be the same as in the definitions of these quantities employed 
in Chapter 5. 

The important thing, however, is that there can be defined certain 
parameters which relate output quantities to input quantities for the 
microwave system just as for conventional networks, and these 
parameters may be found by measurement if they cannot be found by 
solution of the electromagnetic field equations. The parameters 
satisfy certain theorems analogous to classical network theorems so 
that some general things can be said about the behavior of all such 
systems which may be of help even if the specific problem cannot be 
solved. Moreover, the parameters of the over-all system may be 
found by suitable combination of the parameters of its components, 
much as a lumped-element network is formed from individual ele¬ 
ments. The definitions, general theorems, and some examples for 
microwave networks will consequently be given in this chapter, with 
some comments about methods of determining the parameters of the 
system by measurement or by analysis. 

Definitions and Network Theorems 

11-02 DEFINITION OF A MICROWAVE NETWORK 

Consistent with the preceding discussion, we shall mean by a micro¬ 
wave network a dielectric region surrounded by a good conductor of 
arbitrary shape having certain wave guide or transmission line inlets 
and outlets. The wave guides are assumed to support a finite number 
of non-cut-off modes. Examples are the cavity resonator coupled to a 
single transmission line (Fig. 1102a), the rectangular wave guide with 
change of height (Fig. 11 026), the E-plane T in rectangular wave 
guide (Fig. 1102c), and the magic T or bridge (Fig. 1102d). These 
may be said to be microwave networks with, respectively, one, two, 
three, and four wave guide terminals, or more often they are referred 
to as one-, two-, three-, and four-terminal pairs by analogy with 
lumped-element networks. (This assumes only one non-cut-off mode 
per guide.) In considering the defined arrangements as microwave 
networks, it will also be assumed that we are interested only in the 
behaviors of the dominant modes in certain of the guides when various 
load conditions are placed on the remaining guides, and not on the 
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detailed solution of the electromagnetic field in the vicinity of the 
discontinuities. 

Although we may excite only the dominant mode in any of the wave 
guide terminals, it is true that higher order modes will be excited in the 
vicinity of the junctions, and, although these modes may be cut off, 
they will have reactive energy which will affect the transmission 
between the propagating dominant modes of the various guides. But, 
if we are interested only in the manner in which such transmission is 

(a) 

Fig. 11 02 Examples of microwave networks, (a) Coupling from a line to a 
cavity (one-terminal pair), (b) Discontinuity in rectangular guide (two-terminal 
pair), (c) E-plane T (three-terminal pair), (d) Magic T or microwave bridge 

(four-terminal pair). 

affected, it can be expressed in terms of certain coefficients or equiva¬ 
lent circuits, and the details of the higher mode fields need not be 
described. Thus, the microwave two-terminal pair of Fig. 11 02b 
may be represented by a T or tt network just like a lumped-element 
two-terminal pair. It is interesting to note that Carson1 recognized 
the validity of this representation as early as 1924, though it has only 
been fully exploited within the last few years.2

‘J. R. Carson, A.I.E.E., 43, 908-913 (Oct. 1924). 
2 C. G. Montgomery, R. H. Dicke, E. M. Purcell, Principles of Microwave Cir¬ 

cuits, MIT Radiation Laboratory Series, Vol. 8, McGraw-Hill, 1948. 
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Finally, a combination of elements such as those in the example 
above is also a microwave network, fitting the definition of the first 
paragraph. An important part of the study will be concerned with 
the finding of network parameters for an over-all system when they 
are known for the individual components. 

11-03 VOLTAGE, CURRENT, AND IMPEDANCE IN WAVE GUIDES 

In discussing the microwave structure as a network, it is convenient 
to employ the usual terms, voltage, current, and impedance, in order to 
make easy use of the large body of applicable network theory. We 
have alreadj- seen in Art. 9 07 that certain simple problems may be 
solved by using only the field impedance (ratio of transverse E to 
transverse H), but in these there is a uniform discontinuity over an 
entire cross-sectional plane. For a problem such as that of Fig. 11-026, 
where there is a change in height of a rectangular guide propagating 
the TEio mode, a more general approach is required. One might feel 
intuitively that a good definition of voltage for this case would be 
obtained by taking the integral of electric field from top to bottom at 
the center of the guide, with a current defined as the total longitudinal 
current in the top (returning in the bottom). Then we might say 
that for a first approximation these defined voltages and currents 
should be continuous at the change of section. An exact treatment 
(to be discussed later) would show that, although the approximation 
of the last sentence is not too good, an equivalent circuit representing 
the exact transformation between input or output can be obtained 
with the stated definitions, but also other exact equivalent circuits 
could be obtained to fit an infinite number of possible definitions of 
voltage and current. Thus, the attempt to arrive at a proper defi¬ 
nition of voltage and current by physical reasoning does not lead to 
anything wrong, but it is not particularly purposeful because of the 
lack of uniqueness of the definitions. Incidentally, it is clear that in 
a mode such as the TEoi-in a circular guide, it would be difficult to 
apply the physical reasoning to decide upon sensible definitions any¬ 
way, since electric field lines form closed circles and there is no longi¬ 
tudinal current. 

In spite of the lack of uniqueness, it is useful to make certain defi¬ 
nitions and to employ the terms, as will be demonstrated in following 
articles. The following points may be made: 

1. Voltage and current of a particular wave guide mode are always 
defined so that voltage is proportional to the strength of transverse 
electric field of the mode, with current proportional to the strength of 
transverse magnetic field. 
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2. Voltage and current are usually defined so that their product gives 
the power flow of the mode. 

3. Voltage and current are often defined so that the ratio of voltage 
and current of a single traveling wave agrees with some preselected 
characteristic impedance Zq. Thus Schelkunoff in his discussion 3 

makes this impedance equal to the wave impedance, and others have 
defined Zo to be unity, so that all impedances are automatically 
normalized. 

It is recognized that points 2 and 3 above resolve the lack of unique¬ 
ness inherent in 1, but other selections (such as the physical feelings 
mentioned in connection with the TE i0 mode) might be substituted 
for either 2 or 3 or both. For reasons of convenience, we shall adopt 
all the above points in following discussions. From point 1, we then 
write transverse fields: 

É¿x,y,z) = V(z)f(x,y) (1) 

Ht(x,y,z) = I(z)g(x,y) (2) 

For a single traveling wave, for example, 

Ët(x,y,z) = V (3) 

Ht(x,y,z) = Iüe^]̂gÇx,y) (4) 

The arbitrariness shows here by the manner in which any multi¬ 
plicative constant is divided between the voltage V and the function J 
in the first expression, and similarly between I and g in the second. 
The arbitrariness is resolved by writing relations for points 2 and 3. 

1 o^o = 2IKr (5) 

As an example, take the TEi0 mode in rectangular guide. 

7TJ’ 
Ey = Eo sin — = Vof(x) (7) 

Utilizing (5), 

Eo . irx 
—-sin — = 1 ugw 
Z, a 

(8) 

3 S. A. Schelkunoff, “Impedance Concept in Wave Guides,” Quart. Appl. Math., 
2, 1-15 (April 1944). 
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This result, combined with (6), gives current and voltage. 

and, by comparison with (7) and (8), the remaining functions are 

i/U) = (10) 

As noted above, Zo can be made unity in order to normalize auto¬ 
matically all subsequent impedances. 

PROBLEMS 

ll-03a Apply the above points to determine unique definitions of voltage and 
current of a single TEm mode in circular cylindrical guide. 

11-03& Apply the suggested physical definitions discussed in the first part of 
this article for determining voltage and current of the TE¡o rectangular mode, and 
compare with (0). How is the product VI related to power flow in this case? 

ll-03c From the relations of Arts. 8-13 and 8-14, show that the functionsÿand g 
are always related as follows: 

g{x,y) = Çy) ã- x

Show that the results for the rectangular guide satisfy this vector relation. 

11-04 THE NETWORK FORMULATION 

Consider as an example a general microwave network with three 
wave guide terminals as defined in Art. 11-02 and pictured in Fig. 
11-04. It is assumed that each of the wave guides supports one 
propagating mode only, and reference planes are at first chosen far 
enough from junctions so that all higher order (cut-off) modes have 
died out. t The forms of the propagating or dominant modes are 
assumed to be known, so that field- is completely specified at each 
reference plane by giving two amplitudes, such as the voltage and 
current defined in the preceding article. It is clear that it is not 
possible to specify independently all voltages and currents of the 
network. The network formulation will tell us how many of these 
may be specified to determine the problem, and how the remaining 

fThe reference planes can actually be chosen by convenience at any place, but 
transmission line measurements to determine the network should not be made 
in the region where local waves are of importance, nor will the calculations from 
the network give total fields in that region. 
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ones are related to those specified. The following three points will be 
cited in casting the problem in network form. 

A. Uniqueness. It has been shown4 that there is one and only one 
steady state solution of Maxwell’s equations within a region if tan¬ 
gential electric field is specified over the closed boundary surrounding 
that region, or if tangential magnetic field is specified over the closed 
boundary, or if tangential electric field is specified over some of the 
boundary and tangential magnetic field over the remainder. 

B. Linearity. Maxwell’s equations are linear for linear media 
(m, e, and a not functions of field strength) so that relations between 
various field quantities will be linear ones. 

Fig. 11 04 General microwave network with three wave guide terminals. 

C. Reciprocity. An important reciprocity theorem will be given in 
some detail in the following article. This too is of importance to the 
network formulation, as will be noted below. 

Ini ig. 11 04, consider the closed region bounded by the conducting 
surface iS and reference planes 1, 2, 3. If the conductor is first taken 
as perfectly conducting, the tangential electric field is known to be 
zero over the surface S. Then, if voltages are given for each of the 
reference terminals, tangential electric fields are known there, and, 
by the statement of uniqueness given above, one and only one solution 
of Maxwell’s equations is determined. È and H are then determinable 
foi any point inside the region, so II may be computed at the reference 
planes so that the currents (amplitudes of the tangential magnetic 
field distributions) may be found there. By the linearity argument, 
the relations must be linear ones and may therefore be written 

I 111 1 + I 12^2 4" I13I 3 

I2 = K2i7i + ^22^2 + K23F3 (1) 
I3 = ^31^1 + F32V2 + 733^3 

4 J. A. Stratton, Electromagnetic Theory, McGraw-Hill, 1941, pp. 486-488. 
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Similarly, if currents are given for all reference planes, tangential 
magnetic fields are known there, and, with the known zero tangential 
electric field over S, the uniqueness argument again applies so that 
tangential electric fields and hence voltages could be found at the 
reference planes. Relations will again be linear. 

Fl = ZuI I + Z12^2 + 213^3 

F2 = Z21Z1 + Z22Í2 + Z23Z3 (2) 

F3 = Z31/1 + Z32/2 + Z33/3 

Forms (1) and (2) are identical with the forms that would be found 
relating voltages and currents at the terminals of a three-terminal 
pair lumped-element network. Here also the coefficients Ya and 
Zij are functions of frequency and are known as the admittance 
parameters and impedance parameters, respectively. As will be 
shown in the next article, application of the reciprocity theorem to a 
region without sources, and with proper definitions of voltages and 
currents, will require 

Y^ = Yj{ Z{j = Zj{ (3) 

Although the argument has been given for a perfectly conducting 
surface S, the forms above apply to an imperfectly conducting bound¬ 
ary also. A reasonably convincing way of seeing this comes from 
moving the bounding surface several depths of penetration within the 
conductor to S', Fig. 1104. The electric field here is substantially 
zero, so that an imagined perfect conductor could be introduced along 
S' without changing the behavior of the system, and the argument 
would proceed as above. The conducting portion between *S and S 
will contribute to the parameters Yi¡ or Zq since it is now part of the 
interior, and those coefficients will be complex because of the losses. 

PROBLEMS 

1104a Supply the proof of the uniqueness theorem cited above To do this, 
assume that there are two possible solutions, and and apply the 
Poynting theorem to the difference field (£1 — £2, Wi — Hf). Note Art. 3 03 
for a typical uniqueness argument. 

1104b Suppose that an A-terminal pair has a load impedance Zl connected 
to the terminals 1, and voltage generators connected to the other N — 1 terminals. 
Show that the fcdlowing Thévenin equivalent circuits are valid so far as calculations 
of effects in the load are concerned: A. A voltage generator F« connected to Ze 
through a series impedance Zg. Vo is the voltage produced at terminals 1 with 
these terminals open-circuited, and Za is the impedance seen looking into 1 with 
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all voltage generators short-circuited (and any current generators open-circuited). 
B X current generator 10 connected across ZL with internal admittance Y„ in 
parallel. is the current that would flow at terminals 1 if these terminals were 
shorted, and Yo = 1/Z„. 

11-05 RECIPROCITY 

A general form of the electromagnetic reciprocity theorem due to 
Lorentz states that fields Ea, Ha and Êb, Hb from two different sinus¬ 
oidal sources a and b of the same frequency satisfy the condition 

V • (£o XHb- Éb X Ha) = 0 (1) 

The medium should be isotropic but need not be homogeneous. Equa¬ 
tion (1) is readily verified by expanding the indicated vector operations 
and substituting from Maxwell’s equations in complex form. A vol¬ 
ume integral of (1), with application of the divergence theorem, gives 

(Ëa X Hb -EbX Ha) • dS = 0 (2) 

1 he general reciprocity theorem may be applied to show the result 
11 04(3) for a microwave network. Let us consider Fig. 11-04 with all 
reference planes but 1 and 2 closed by perfect conductors (shorted). 
Fields at 1 and 2 may be written [Eqs. 11 -03(1)—(2)] 

Ëti = Li7i(x 1j2/i) Htx = Iigi(xi,yx) (3) 

Êi2 = 1 Ht2 = /oÿ2(X2,2/2) (4) 

We assume also that voltage and current are defined to have the same 
relation to power flow in both guides, which requires that 

is, (fi X gi) ■ dS = (f2 X gf) • dS (5) 

Note that this is certainly satisfied if the second point of Art. 11 03 is 
adopted. 1 he surface integral of (2) is zero along the conducting 
surfaces »S' of I* ig. 11-04 (or »S', if imperfectly conducting), and along 
the shorted planes. For planes 1 and 2, substitution of (3) and (4) 
gives 

(I lallt, — 7uZio) (fi X gi) ■ dS 

+ (J 2a^ 2b — I 2bl 2a) (]2 X ^2) ’ dS = 0 

If (5) is satisfied, this reduces to 

I lai lb Fi6Zlo -f- 1 2a^2b — I 2bl 2a = 0 
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Relations between current and voltage are introduced from Eq. 
11-04(1). 

1 la(l 111 JJ + F12V 2b) —  V i6(y ul la + Enl^a) 

+ y2a(l 211 16 + 1 22I 2b) —  1 26(^21^10 + ^22^ 2a) = 0 

(Vla^i, - FltF2a)(K12 - ^21) = 0 (6) 

In this argument, the sources a and b are arbitrary so that the first 
factor need not be zero. Hence the second is zero. 

F21 = 1 12 (7) 

The argument for the impedance coefficients may be supplied by 
placing “open circuits” at all but two of the terminals. This is done 
in the wave guides by placing a perfect short a quarter-wave in front 
of the reference planes. Moreover, since the numbering system is 
arbitrary, 1 and 2 may represent any two of the guides and the general 
relation 11-04(3) is valid. 

In lumped-element networks, the reciprocity theorem is frequently 
stated: “The positions of an impedanceless generator and an imped¬ 
anceless ammeter may be interchanged without affecting the ammeter 
reading.” This also requires relations like 11-04(3) for the lumped-
element network. The same wording may then be used if desired 
for the microwave network if one makes use of the extended definitions 
of voltage, current, and impedance. 

PROBLEMS 

1106a Verify (1) for the conditions stated. 

11066 Complete the proof to show that Z21 = Z12. 

ll-06c For a lumped-element network, show that the statement of the reci¬ 
procity theorem in the last paragraph requires Z21 = Zi». What similar word 
statement corresponds to Y21 = Fis? 

Wave Guide Junctions and Cavity Coupling 

11-06 EQUIVALENT CIRCUITS FOR A TWO-TERMINAL PAIR 

The microwave network with two wave guide terminals, as pictured 
in Fig. 11-026, is of greatest importance since it includes the cases of 
discontinuities in a single guide or the coupling between two guides. 
Most filters, matching sections, phase-correction units, and many 
other components are of this type. There is a large body of literature 
on the lumped-element equivalents, frequently known as quadripoles, 
fourpoles, or four-terminal networks. The name two-terminal pair is 
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preferred, since it stresses that voltage is meaningful for the input pair 
of terminals and for the output pair, but not for one terminal of the 
output and one of the input side. 

From Art. 11-04, the equations for a two-terminal pair may be 
written in terms of either impedance or admittance coefficients. 

ï i = Zull + Z12I2 

1 2 = Z211 1 + Z22I2 

— FnFi + F12F2
(2) 

^2 = F21F1 + Y22Y2 

Another convenient form expresses output quantities in terms of input 
quantities. 

Vi = gf2 - ®/2
(3) 

h = ev2 - s>i2

The reciprocity relations (Art. 11 05) are expressed 

Z21 = Z12 y2i = F12 G2D — ®C = 1 (4) 

A little algebra shows that the relations between the above forms for 
a network with reciprocity may be written 

Z22 _ 3D 
A(Z) “ ® 

Z12 1 
A(Z) “ ® 

A(Z) — ZUZ22 — Z122

An infinite number of equivalent circuits may be derived which are 
equivalent to the above. Two important ones are the well-known T 
and it forms shown in Figs. ll-06a and b. They may be shown to be 
equivalent to (1) and (2), respectively, by setting down the circuit 
equations. Other interesting ones utilize ideal transformers and sec¬ 
tions of transmission lines, two of which are pictured in Figs. 11 06c 
and d. These are of greatest importance for lossless microwave net¬ 
works since the arbitrary reference planes in the input or output guides 
can be shifted in such a way that only an ideal transformer is left in 
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the representation of Fig. 11-06c or an ideal transformer and shunt 
element in Fig. 1106d. This will be explained in more detail when 

(a) (*) 

Fig. 11 06 (a) T equivalent circuit and (6) r equivalent circuit for a general two-
terminal pair. 

W 
Fig 11-06 (c) Equivalent circuit for a general two-terminal pair in terms of 
sections of transmission line and an ideal transformer, (d) Similar equivalent 
circuit in terms of section of transmission line, transformer, and shunt element, 

the measurement problem is discussed in the next article. The quan¬ 
tités of I'ig. 1 l-Ofic are related to the impedance parameters as follows: 

tan 

tan ß2l2 1 _+ a tan 
b tan ßili — c 

wZqi _ 1 + a tan ßßi 
b + c tan 

where a 
01 

PROBLEM 

f 11 UP the relation between currents and voltages for Fig. 1106J and 
from these determine the impedance parameters in terms of ZOi, ßih, m and’ B. 
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11-07 DETERMINATION OF JUNCTION PARAMETERS BY MEASUREMENT 

In certain cases where the geometrical configuration is relatively 
simple, techniques are available for the calculation of the parameters 
representing a microwave junction, and some of these will be discussed 
in later articles. For many configurations actually used, the bound¬ 
aries are not simple enough for such a calculation, and it is desirable 
to find the pertinent parameters by measurement. The situation is 
not different from that encountered at low frequencies where one finds 
values of inductance, capacitance, and mutuals perhaps more often by 
measurement than by calculation from the known dimensions of the 
elements. We wish to describe here some of the approaches to meas¬ 
urement for microwave elements. There is an infinite number of 

Fig. 11 07a General two-terminal pair. 

possible ways, as there is an infinite number of possible equivalent 
circuits. The few approaches that can be discussed here are useful 
in themselves, and will suggest others. The examples given will be 
for a two-terminal pair, as in the junction represented in Fig. ll-07a. 

Most often the parameters of a junction are desired for determina¬ 
tion of the impedance transfer through it, though the information may 
be expressed alternatively in terms of reflection coefficient or standing 
wave data. If so, it is logical to determine the unknown parameters 
by impedance transformation measurements also. Since there are 
three parameters in a two-terminal pair satisfying reciprocity, it is 
necessary to make three measurements of input impedance correspond¬ 
ing to known load impedances for each frequency of interest. The 
load and input impedances might be measured, for example, by means 
of standing wave data on output and input guides, respectively 
(Chapter 1). A particularly simple way is to place a good short at 
different positions along the output guide to produce the known load 
impedances. These are then reactive (neglecting guide losses), and 
may be computed from a knowledge of the short positions with respect 
to the reference plane so that standing wave equipment on the output 
side is not needed. 

From Eq. 11-06(1), load impedance ZL = — V2//2 produces input 
impedance Zt- = V1/I1 as follows: 

Z{ = Zu — Zi22/(^22 + ZL) (D 
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Algebraic elimination from three equations of the form of (1) shows 
that, if ZL\ produces Zu, ZL2 produces Zi2, and Zl2 produces Z^, the 
impedance parameters are 

~ ^»3)(ZjiZ¿1 — Zi2ZL2) — (Zn — Z^ÇZn ZL1 — 
{Zn - Z^Z^ - ZL2) - (Za - ZÍ2)(ZL1 - ZL¿ 

(2) 

y _ (ZnZL\ — Zj2ZL2) — Zn(Z¿i — Zl2) 

22 (Zi2 - z^ (3)

Z122 = (Zu — Z,p)(Z22 + ZLp) p = 1, 2, 3 (4) 

11 the network is lossless and if purely reactive terminations are used, 
input impedances will also be pure reactances, and Z’s may be replaced 
by A’s everywhere in the above equations. The form of (2) to (4) 
may also be shown to be valid for determination of admittance param¬ 
eters 1 u, 1 12, and 4 22 when pairs of input-output admittances 
1 ¿il u, Yl2 Yí2, Yl^Y are measured. Z’s are then replaced by F’s 
in the above. It is always a good idea to check for numerical errors 
by computing Z 12 from all three pairs of data [p = 1, 2, 3, in (4)], 
though this checks nothing about the correctness of measurements. 
A ote also that the sign of Zi2 cannot be determined from impedance 
transformation measurements alone, since it does not enter into (1). 
I or the same reason, it is of no interest if results are to be used only 
for impedance transformations by the network. For some purposes it 
may be necessary to know this sign, and, if so, an arrangement for 
measuring relative phase between input and output must be added. 
I or simple configurations, the sign may sometimes be deduced by 
physical reasoning. 

For regions that may be considered lossless, the representation of 
Fig. 11-06c is especially useful. This follows because a shift of the 
input reference plane from 1 to 1' (Fig. 1107a) by a distance ßiyo — 
ir — Pili and a shift of output reference plane from 2 to 2' by ß2x0 = 
Ti- — ß2l2 gives as the equivalent circuit an ideal transformer with 
half-wave lines at input and output. But the latter give unity imped¬ 
ance transformation and so may be ignored, leaving only the ideal 
transformer representing the region between 2' and 1'. A load imped¬ 
ance referred to 2’ is multiplied simply by (l/?n)2 to give the input 
impedance referred to 1'. A little thought shows that the parameters 
of this representation may be determined as follows: The output guide 
is perfectly terminated (ZL = Zq2); the position of the minimum 
impedance point on the input guide corresponds to F, and the value 
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of this minimum impedance gives m~, 

(5) 
^min 

Similarly, if the network is reversed, the input guide terminated, and 
like measurements made on the output guide, the reference plane 2' is 
obtained as well as a check on m2. 

An alternative procedure to the above has advantages in some cases. 
Weissfloch5 has shown that for a lossless junction a plot of position of 
voltage minimum on the input guide as a function of position of a 
short on the output guide has the “S curve” form shown in Fig. 11076. 

Fig. 11 07b Typical S curve obtained by measurement on Fig. 11.07a-

ßiy is the electrical distance of the minimum from the originally 
selected reference 1, and ß^x is the electrical distance of the short 
from 2. The form of the equation is 

tan ßi{y — yo) = (Zoi/m'Zoi) tan ßi{x — xo) (®) 

The new reference planes V and 2' are given by the positions Xo,yo of 
the maximum slope of the S curve, point P of Fig. 11-076. The value 
of this maximum slope is Zoi/nrZoi. The turns ratio may also be 
determined in terms of the distance C between the envelope tangents. 

m2Zoi/^o2 = tan2 (ir/4 — V 2

For the measurement, many points of input minimum are then meas¬ 
ured as a short is moved along the output, and the curve determined. 
There is the advantage that the consistency of measurement and 

s A. Weissfloch, Hochfrequenztechnik u. Electroakuslik, 60, 67—73 (Sept. 1942). 
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discrepancies caused by neglected losses may be told more easily than 
in the methods first described where only a few points are measured. 

PROBLEM 

11-07 If one selects the point of minimum slope, P' of Fig. 11-076 to determine 
xo,ÿo and equates this slope to Zo2/v¡2Zob a second correct representation results. 
Show that transformations calculated by the latter are equivalent to those from 
the representation described above. 

11-08 TRANSMISSION PARAMETERS AND CASCADED NETWORKS 

The previous discussions have been given in terms of the voltages, 
currents, and impedances defined for microwave networks. It was 
noted that these definitions are not unique. Moreover, the imped-

Fig. 11 08a Incident and reflected wave convention. 

anees are usually obtained by interpreting measured values of standing 
wave ratio or reflection coefficient. It is then evident that for some 
purposes it will be more convenient and direct to formulate the problem 
directly in terms of waves, so that the two independent quantities 
required for each wave guide terminal are an incident and a reflected 
wave instead of a voltage and a current. Several different formula¬ 
tions are possible here also, and by way of example the one in terms of 
transmission parameters will be described for a two-terminal pair. 

Suppose that incident and reflected waves on the input guide are 
given in magnitude and phase at the chosen reference plane by 7i+ 
and Vi- (Fig. 11 08a). Similarly, incident and reflected waves, look¬ 
ing into the terminals 2 are V2+ and V2- By arguments similar 
to those previously given, we know that linear relations must relate 
input and output quantities. 

I 2 = T’nVi+ + Ti2Fr 
-L. (1) v2+ = T2lV1+ + T22Vr 

The parameters Tn, etc., are the transmission parameters, and are of 
course related to the impedance, admittance, or aœetD parameters 
already described. For example, since 

V, = M + vr and I, = (2)
^01 
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and, similarly for V2, I2, comparison with Eq. 1106(1) reveals 

For a network satisfying reciprocity, it follows that 

TuT22 —  Ti2T2i = 7, (4) 
■¿01 

(5) 

(6) Pi = 

P2 V2~ 

Then in this formulation, if reflection coefficients in input and output 
guides are defined as follows, 

P1 71+ 
the two are related by 

T21 — Ti\P2 

T 22 — Tt2p2
In addition to the fact that wave quantities are here expressed 

directly, the greatest advantage of the present form comes from cas¬ 
caded networks, as indicated in Fig. 11-086. lor, if the input ter¬ 

Fig. 11 08b Two cascaded two-terminal pairs. 

minais of b are connected to the output terminals of a, V2a~ must 
equal 7ii>+ and V2a+ must equal Fib-. By elimination between two 
sets of equations of form (1), it may then be shown that the parameters 
of the composite network representing the combination of the two are 

Tn = T^Tu“ + T 126T21° 

T12 = Tn6T12° + Tl2bT22a

T2i = T2bTna + T2?T21° 

T22 = T2lbT12a + T22bT22a
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e do not have space for discussion of the matrix notation, which is 
the most convenient tool for handling such network relations,6 but it 
is worth noting for those familiar with the notation that (7) expresses 
the fact that the transmission matrix for the over-all network is just 
the product of the matrices for the cascaded components, 

where 

7’h7i2 _ 
t^t^J “ LtVtV. 

' 2 _ 7’n7’i2 

J’2+ J L 7’217’22 

7h"712o 

7’27’22a

IY 
rr 

(8) 

In particular, it m like networks are cascaded, the transmission matrix 
of the over-all combination, 7’n, etc., is just the mth power of the 
matrix of the individual networks, 7’h0, and the important Cayley-
Hamilton theorem in the theory of matrices shows that the parameters 
are as follows, with reciprocity and ZOi = Z 02 . 

7’n = [Mim (M2 - 7’h0) - M2m(mi - 7’1i °)]/(M2 - M1 ) 

7'12 = (M2”‘ - Ml^líVta - Ml) 

7’21 = W - Mim )7’217(M2 - Ml) (9) 

7’22 = [m1’"(M2 - 7’22°) - M2W(mi - 7’22°)]/(m2 ~ Ml) 

where 2mi,2 = [7’n0 + TV] ± V (7’n0 + 7’220)2 - 4 

'1 he transmission matrix parameters for several simple elements are 
given in Table 11 08. Note in particular the simplicity of the trans¬ 
formation along a section of uniform line or guide. 

TABLE 1108 
Transmission Parameters for Simple Elements 

--- nl 1 
/ -►-

Transmission 
Line 

Ideal 
Transformer 

Series 
Element 

Shunt 
Element 

7’n e~yl i(l/n + n) 1 - Z/2 1 - l'/2 

7’n 0 i(l/n — n) Z/2 - y/2 

7’21 0 i(l/n - n) -Z/2 Y/2 

4'22 e^1 i(l /n + n) 1 + Z/2 1 + Y/2 

6 E. A. Guillemin, The Mathematics of Circuit Analysis, Wiley, 1949. 
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PROBLEMS 
ll-08a Show that the a®CD constants (Art. 11-06) of cascaded networks are 

found from those of the individual networks by formulas exactly similar to those 
for the transmission parameters. 

11-08& By a repeated use of (7), find the over-all transmission parameters when 
three networks, a, b, and c, are cascaded. Simplify for the case in which the 
middle one is a uniform transmission line. 

1108c Consider a disk-loaded wave guide in which disks which are equivalent 
to a per unit shunt susceptance B are placed an electrical distance ßl apart in the 
guide. Write the transmission parameters for one section formed by a guide ßl/2, 
the shunt element, and another length of guide ßl/2. Write the parameters for 
N such sections. 

ll-08d For a lossless two-terminal pair considered as a filter, show that the 
pass-band occurs when 

(Tn + T„)2 > 4 

Apply the above to find the filter characteristics in Prob. c. 

ll-08e A dielectric window is formed by two adjacent dielectric slabs, «i of 
length Zi, and e2 of length Z2, placed with air (e0) on each side. Find the transmis¬ 
sion parameters for the over-all unit. (Note that it is convenient to define all 
lines with unity Zo, representing impedance changes by ideal transformers.) If 
there is only an outward propagating wave on the right, determine the conditions 
for no reflections to the left. 

11-09 PROPERTIES OF A ONE-TERMINAL PAIR 

Let us consider a closed region with one wave guide terminal (or, in 
the language of networks, a one-terminal pair), as in the cavity 
sketched in Fig. 11 02a. A reference plane 1 is selected far enough 
from the junction so that only the dominant mode in the guide is of 
importance, and we apply a form of the complex Poynting theorem, 

£ (Ë X 5*) • dS = (jue - a) ^Ë ■ Ë* dV - fyH H* dV (1) 

The surface integral on the left has a contribution only over Si, for 
if the conductor is perfect, tangential Ë is zero over S, and if not, a 
surface S' is selected within the conductor where all fields are sub¬ 
stantially zero, as in Art. 11-04. We select definitions of voltage and 
current so that the product gives power flow. Then 

_ VI* = - a) fr Ë • Ë* dV - dV 

The minus sign enters because we are concerned with power flow into 
the network, and the integral of (1) utilizes an outward normal. 
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Defining voltage as the product of current and an input impedance Z, 

-ZII* = -2WL + 4juUE - 4jwUH

or Z = R + jX =-—-

where WL is the average power loss in the region, UE and UH are 
average stored energies in electric and magnetic fields, respectively. 
Similarly for input admittance Y, 

V c + jr 2Wl + “ Uh)Y -G + jB = -—- (3) 

Certain properties of these impedance and admittance functions will 
be discussed below. Note that the comments apply to the function 
Za(w) of a general microwave network (Art. 11-04), since this would 
be the input impedance of a two-terminal pair formed by shorting all 
but the ¿th terminal. Similarly, the theorems apply to Ya and to 
some other combinations of the impedance or admittance functions. 

A. Simple Properties of the Impedance Function. A study of 
(2) shows several simple results expected from physical reasoning. 
Impedance is purely imaginary (reactive) if power loss is zero. When 
power loss is finite, it must be positive, so the real (resistance) part 
of Z is always positive. If stored electric and magnetic average 
energies are equal, reactance is zero and the network is said to be 
resonant. If average magnetic energy is greater than electric, the 
reactance is positive (inductive), and if electric energy is the greater, 
reactance is negative (capacitive). Similar results can be deduced 
for the admittance function. 

B. Foster’s Reactance Theorem for a Lossless Network. In a lossless 
two-terminal pair where impedance is reactive, jX, the rate of change 
of reactance with angular frequency may be shown to be 

dX 4(UE + UH) 
- Tñ— (4)

This result is derived by means of a variational form of the Poynting 
theorem (see Prob. 1T096). It is evident that the average stored 
energy (UE + UH) is positive, and II* is positive, so the slope of the 
reactance versus frequency curve of a lossless two-terminal pair must 
always be positive. The reactance curve must go through a succession 
of zeros and poles as sketched in Fig. 11 09. Similarly, the susceptance 
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versus frequency curve of a lossless two-terminal pair will be similar 
in form to Fig. 11-09, having always positive slope given by 

dB = 4(UB + U„) 
dw FF* 

(5) 

These important results were first shown by Foster7 for lumped-ele¬ 
ment networks. Some consequences in terms of equivalent circuits 
will be discussed in a later article. 

C. Relations between Real and Imaginary Parts of Impedance Func¬ 
tion. Certain relations between the resistance and reactance functions 
of frequency have been pointed out8 for lumped-element networks. 

Fig. 11 09 Typical form of reactance versus frequency for a lossless one-terminal 
pair. 

They have been derived from functional properties of the complex 
impedance considered a function of a complex “frequency” a + jw, 
and, since it may be shown that these functional properties follow 
also from (2) or (3), the same forms are valid for the more general 
microwave networks. Typical relations are 

RM = 
2 

2 2 ' tt Jo rj — œ“ 

2o> r ” RM dr) 
ir JO r; — oj2+ Y’o(w) 

(6) 

(7) 

Ro is a constant resistance, and Xo(w) denotes the reactance function 
of any lossless two-terminal pair. A study of the complex network 

7 R. M. Foster, Bell Sys. Tech. J., 3, 259-267 (April 1924). 
8 H. W. Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand, 

1945. 
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functions is very similar to the study of potential fields by complex 
functions (Chapter 3), and in fact potential analogues such as elec¬ 
trolytic tanks9 have provided most useful tools for the study of network 
functions. 

PROBLEMS 

1109a Making use of Maxwell’s equations in complex form, derive the form (1) 
of the complex Poynting theorem. 

11-095 Suppose that a small variation in frequency produces variations ôË 
and iH in fields. Starting from Maxwell’s equations, show that 

fs (Ë X SH - ¡Ë X H) • dS = ^H2 - tE2) dV 

ll'09c Apply the result of Prob, b to derive (4) for a lossless network with one 
wave guide input. 

U-09d Consider a simple shunt circuit of R and C. Find resistance as a 
function of frequency, Ä(u), and by substituting in (7) derive X(w) and compare 
with the known reactance function of this simple circuit. 

11-10 EQUIVALENT CIRCUITS FOR A CAVITY WITH SINGLE INPUT 

In most of our discussion concerning the parameters that may be 
used to represent networks, it has been inferred that the frequency 
characteristics would be found by measurement, or perhaps calculated 
for certain simple specific cases. In Art. 11-09, however, we stated 
some things about the frequency characteristics of the one-terminal¬ 
pair class of networks, of which the cavity resonator with single input 
is an important example. We can carry this further, deriving detailed 
equivalent circuits with lumped inductances, capacitances, and 
resistances which will yield the frequency characteristics of the given 
network. This possibility comes from the fact that the frequency 
characteristics of a lossless network are completely specified once the 
poles (infinities of impedance or antiresonances) are stated with certain 
information about energy storage at those frequencies. Thus, if we 
construct lumped-element reactive networks having these same 
resonances and energy storages, we are assured that the response will 
be the same as for the original system at all frequencies. The exten¬ 
sion to lossy networks is approximate, but, as in other cases where we 
have met low-loss (high-Q) networks, the approximations are excellent. 
Here, as elsewhere, we find that there are many possible representa¬ 
tions. We shall study a few of the most common ones. 

9 W. W. Hansen and O. C. Lundstrom, Proc. I.R.E., 33, 528-534 (Aug. 1945). 
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A. Lossless Cavity. Let us begin by consideration of a lossless 
region. The input impedance is then purely reactive, and Eqs. 
11 09(2) and (3) become 

ZM = jX(u) 
4ju{U H — Ue) 

II* 
VV* 

4ju(U b — Un) 
(D 

If average stored energies in electric and magnetic fields are equal, 
X is zero (resonance) provided that current is finite at the input 
terminals, and is infinite (antiresonance) provided that voltage is 
finite at the input terminals. Because of the proof that the slope 
dX/du is positive, it follows that all zeros and poles must be simple 
(first order), resulting in the form of curve shown in Fig. 11-09. It is 
also important to note that the function X(o>), if extended mathe¬ 
matically to negative frequencies by the definition (1), must be an 
odd function of frequency. An important consequence coming from 
the theory of functions of a complex variable states that the function 
X(w) can be expanded in a series of “partial fractions” about the 
poles, provided that the following summation is convergent. 

XM = 2 + -^-1 + -° + /(«) (2) 
Lœ — to — to_nJ (j) n = 1 

ao/u represents the pole at zero frequency, if any is present, and /(w) 
is an arbitrary entire function (one with no singularities in the finite 
plane). Since the function is odd, o>_n = — œn and a„ = a_n- More¬ 
over, /(œ) can have only odd powers of u, and, since it must behave 
at most like a simple pole at infinity, it is known to be proportional 
to the first power of u. With these specializations, (2) becomes 

00 

w = 2 
n = 1 

2œan
2 

co — œn
Ctn . T 
d-F uL, 

O) 
(3) 

In the above, an is known as the residue of the pole un. It may be 
obtained in terms of the slope of the susceptance curve, which can in 
turn be related to energy storage through Eq. 1109(5). For in the 
vicinity of un, the nth term of (3) predominates and 

2 2 U — Un

2uan= - vk A(w) 

Differentiation shows that 

dB 
du 

1 
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Then, utilizing Eq. 11 09(5), 

1 r i 
~ ~ (dB/du)^, “ “ L4(i/£ + U„).L,, (4)

The form of (3) suggests an equivalent circuit consisting of anti-
resonant LC circuits added in series as shown in Fig. ll-10a, for the 
nth component of this circuit yields a reactance 

1 
[toCn — l/a)Ln] 

^/Cn_ 
œ2 - l/LnCn

By comparing with the above, 

or 

This representation, known as the first canonical form of Foster, 10 is 
then applicable to any lossless one-terminal pair for which the series 
in (3) is convergent. To find the circuit, we need to know the anti¬ 
resonances, with energy storage quantities at those frequencies, both 
of which quantities were studied for cavity resonators in the preceding 
chapter. The difficult part comes from the fact that the energy must 
be referred to the voltage in the input guide, see Eq. (4), and this 
requires some specific knowledge of the coupling network. The gen¬ 
eral representation may be useful for interpretation of measurements 
and for forming general conclusions even when this coupling problem 
cannot be solved. 

B. Effect of Losses. The study of losses for practical cavity reso¬ 
nators in the last chapter was concerned with the calculation of a 
quality factor Q which expressed for a given mode the ratio of energy 
stored to energy lost per radian. For low-loss cavities, it might be 
expected that the equivalent circuit of Fig. 11-10a would be modified 
by adding a shunt conductance to each antiresonant element, as 
shown in Fig. 11-106. The value of a given conductance Gn would be 
adjusted so that the Q calculated from the nth antiresonant circuit 
would agree with the known Qn of the mode which it represents. That 
is, 

Gn = (7) 

10 R. M. Foster, Bell Sys. Tech. J., 3, 259-267 (April 1924). 
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Justification for this procedure can be supplied by the theory of func¬ 
tions by making approximations appropriate to poles which are at a 
complex frequency near, but not exactly on, the real frequency axis. 

If one accepts this modification of the lumped-circuit equivalent to 

(a) 

(c) 

(/) (g) 

Fig. 1110 Various equivalent circuits for one-terminal pairs. 

account for losses, it is clear that the Q of a cavity, determined from 
energy calculations, is also useful for interpreting the frequency 
characteristics in the same manner as for a lumped circuit. This fact 
was stated without justification in Art. 10-06. 
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C. Second Foster Form. An expansion of the susceptance function 
about its poles yields a form similar to (3). 

2 + “ + (8)
Where the residues bm are given by 

1 r i 
bm - “ [dX/d m̂ - “ 

When the series is convergent, this has the equivalent circuit of Fig. 
1110c (known as the second Foster canonical form) with 

Lm = - Cm = - Lo = - i (10) 
2b m Olm b0

Figure 11-lOc also shows series resistances added to each resonant 
circuit to account for small losses, and, as in the discussion above, 
these are selected to give the known Q for each mode. 

Rm=^ (11) 
V in 

D. Other Equivalent Circuits. Schelkunoff 11 has shown that other 
equivalent circuits may be derived by adding convergence factors to 
the series (3) or (8). These factors are necessary if the original series 
do not converge, the Mittag-Leffler theorem from the theory of func¬ 
tions telling how they may be formed to insure convergence. They 
may also be desirable in other cases where the original series converge, 
but do so slowly. For example, Schelkunoff has shown that the form 
with one term of the convergence factor is 

Note that, in addition to the convergence factor added in the series, 
the series inductance term has been modified, and inspection of (12) 
shows that Lo is the entire series inductance of the circuit in the limit 
of zero frequency. The physical explanation of the above procedure 
is then that this low-frequency inductance has been taken out as a 
separate term rather than being summed from its contributions from 
the various modes. It is reasonable to expect that this would often 

11 S. A. Schelkunoff, Proc. I.R.E., 32, 83-90 (Feb. 1944). 
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help convergence. A specific example for loop coupling to a caxity 
will be given in a later article. 

The equivalent circuit of Fig. 11 10c? gives the form of reactance 
function (12) (loss elements Gn being neglected at first), provided that 

Mn‘ 2an 1 _ 2 031 —— — 2 p — «n I 

Here one imagines the input guide coupled to the various natural modes 
of the resonator through transformers which gives a very natural way 
of looking at a problem of loop coupling to a cavity. Note, however, 
that one cannot determine the elements of the circuit uniquely since 
there are three elements, Ln, Cn, Mn, to be determined from the two 
basic quantities an and wB for each mode. One of the three may be 
chosen arbitrarily, perhaps by reference to physical feeling, but any 
choice will give a circuit which properly duplicates the behavior with 
respect to impedance at input terminals. Small losses are again 
accounted for by adding conductances Gn, calculated from iorm (7), 
to the circuits as shown in Fig. ll lOd. 

E. Approximations in the Vicinity of a Single Mode. Finally, we 
note that when we are interested in operation in the vicinity of the 
natural frequency for one mode, other resonances being well separated, 
the dominant factor will be the one representing that mode. Other 
terms will vary only slowly with frequency over this range and may 
be lumped together as a constant impedance or admittance (pre¬ 
dominantly reactive). The equivalent circuits of Figs. 11 106, c, d 
then reduce to the simplified representations of Figs. 1110c, f, g, 
respectively. This is an important practical case, enabling one to use 
simplified lumped-element circuit analysis for the study of cavity 
resonator coupling problems. 

PROBLEM 
11-10 Modify the form for BM, Eq- (8), to correspond to the form (12) with 

a convergence factor added, and find an equivalent circuit representation. Hint: 
Change the form of Fig. lllOd by using T networks to replace the transformers, 
and look for the dual of this circuit. 

11-11 EXAMPLES OF CAVITY EQUIVALENT CIRCUITS 

Two examples will be given to clarify the calculation of element 
values in the equivalent circuits of the preceding article. It should 
be stressed again that the difficult part comes in solving enough of the 
coupling problem to refer the energy quantities within the resonator 
to defined voltage or current in the guide. In the first example, a 
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uniform line is considered so that energy can be expressed directly in 
terms of the input current. In the second example, a reasonable 
approximation to the coupling problem can be made. 

A. Open-Circuited Transmission Line. Let us consider a lossless 
open-circuited line of length I, inductance L per unit length, and capaci¬ 
tance C per unit length (Fig. Ill la). We shall derive the second 
Foster form, Fig. 1110c, starting from Eq. 1110(8). For this calcu¬ 
lation we need the natural modes having infinite susceptance at the 

(°) 

Fig. till (a) Open-circuited ideal line and (6) equivalent circuit.. 

input. Current is then a maximum at the input, zero at z = I, and 
length must be an odd multiple of a quarter-wavelength. 

Im(z) = hm COS WmZ VLC (1) 

2tt 2irm 

Xm VlC 41 y/LC 
(m odd) 

The sum of average UE and UH is equal to the total energy stored at 
resonance, which may be computed as maximum energy in magnetic 
fields. 

f e + f n = (t idmax = —~~ cos2 ̂mz >/LC dz = — (3) 

Substitution in Eq. 1110(9) gives the residue for the mth mode, 

, __I om2 _ _1_ 
" " - 4(UE + U„) ~ ~ LI 

Inductance and capacitance for the mth circuit are found from Eq. 
11-10(10). 
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This leads to the equivalent circuit of Fig. 11116, which is valid for all 
frequencies provided the equation for B(a>) obtained from Eq. 11 • 10(8) 
is convergent. The series is convergent in this case, and in fact can 
be shown to be equivalent to the following closed form. 

- - S ta" (e>
m odd 1

The last expression can be recognized as the input susceptance for an 
open-circuited ideal line obtained from simple transmission line theory, 
as it should be. 

B. Loop-Coupled Cavity. For a second example, we shall return to 
the loop-coupled cylindrical cavity discussed in Art. 1012 from an 
energy point of view. In particular, we shall concern ourselves with 
behavior in the vicinity of resonance for the simple TMoio mode, all 
other resonances being well separated, so that one of the approximate 
forms of Fig. ll-10e, f, or g is appropriate. The form of Fig. ll lOgr, 
arising from Eq. 1110(12), is particularly useful because the self¬ 
inductance of the loop is separated out, and the remaining series may 
be thought of as representing more nearly the behavior of the unper¬ 
turbed cavity. From the physical point of view, it is a natural 
equivalent circuit, since we picture the input line as being coupled to 
the cavity mode through a mutual which represents the loop. 

The voltage at the loop terminals (computed with no self-inductance 
drop, as is appropriate for the zero current of antiresonance) is found 
approximately by taking magnetic field of the unperturbed mode 
flowing through the small loop of area S, as in Art. 10-12. 

V = ju ¡¿IIS (7) 

Energy stored in the mode from Eq. 10 08(5) may be written 

(I E + 6 «) = (I w)max =  i^^dH a 

Substitution in Eq. 1110(4) gives the residue for the mode. 
t,v* 2 2c2 

_ _ VV = _ 0 (9) 
1 4(17 e + Uh)w=wi 2ira2d 

Resonant frequency and Q are known from the analysis of Art. 10 08. 

«i = Poi/a V 

„ _ vpoid 
~ 2R,(d + a) 

(10) 

(11) 
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Here we meet the indeterminacy of the form selected, for we have 
three quantities, aj, wi, to determine four quantities, Mi, Li, Ci, 
and Gi. As pointed out before, one of the four may be selected arbi¬ 
trarily and the same input impedance will result. One choice is to 
leave the conductance Gi as computed earlier from power loss and 
voltage across the center. This makes sense, for example, when an 
electron beam is to be shot across the center, in which case a beam 
admittance, calculated on the same basis, can simply be placed in 
parallel with Gi in the equivalent circuit. Taking the value of G from 
Eq. 10-08(8), 

_ ß, 2rra(d + a) 
tn — —$ —35 i (Poi) (12) V a 

Application of Eqs. 1T1O(7) and (13) then yields 

_ QlGi 2 /ira2e\ 
Cu —- = ^ripoi) I -3“) (13) toi \ a / 

«rCi ’rpoiVi2(poi) 

_ 2^1* _ _ pS 
wi2 J Trap oiJi(poi) 

Input impedance, computed at resonance for the unperturbed mode 
(w2LiCi = 1), can then be shown to yield the same result as was found 
in Eq. 1012(4) by energy considerations. 

„ • r , W2-^2 . ^P^ Z = juL0 + ——— . ~ juL0 + -— —- (16) 
jwLi 4- l/(Gi + jwCi) ¿iraR,(d + a) 

PROBLEMS 

11-lla Derive the equivalent circuit of Fig. 11.10a for a shorted length I of 
ideal line. Show that the series form for X(w) converges to the usual expression 
for reactance of a shorted ideal line. 

11-llb Derive the first Foster form for the open line and the second Foster form 
for the shorted line. Show that the series forms converge to proper expressions 
for reactance and susceptance, given that 

1111c Show that the capacitance Ci derived for the loop-coupled cavity is 
that which would be obtained by referring energy stored in electric fields to voltage 
at the center of the cavity. Compare the mutual M i to that which would be 
derived by referring induced voltage in the loop to total vertical current in the 
cavity wall. 
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11-lld Derive an equivalent circuit similar to Fig. 11-1 Id for coupling to the 
TM oio cylindrical mode by a small probe of length s extending axially from the top 
at the center. Assume that induced voltage is probe length times electric field 
of the unperturbed mode. 

11-12 CAVITY WITH TWO OR MORE COUPLED GUIDES 

In the equivalent circuit of Fig. 11-lOd for a cavity coupled to a 
single guide, the input is coupled to each of the normal modes of the 

(*) 
Fig. 11 12 (a) Equivalent circuit for a cavity coupled to two wave guide terminals, 

and (b) approximation in the vicinity of one resonant mode. 

resonator by means of a mutual inductance associated with each 
mode. It seems logical that this picture could be extended simply to 
yield one possible equivalent circuit for two couplings to the cavity 
by considering the two independently, supplying mutuals from each 
guide to the normal modes as in Fig. 11-12a. Element values are 
computed for each as in Art. 11-10. Justification for this procedure 
has been supplied by Schelkunoff 12 from complex function theory, 
and by Slater 13 by consideration of the normal modes. It is evident 

12 S. A. Schelkunoff, Proc. I.R.E., 32, 83-90 (Feb. 1944). 
13 J. C. Slater, Microwave Electronics, Van Nostrand, 1950. 
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that this procedure assumes that direct coupling between input and 
output guides is negligible, though, if not, it might be accounted for by 
adding an additional mutual between input and output in the equiva¬ 
lent circuit. In most cases, the direct coupling is small, since such 
transducers usually have filter applications and coupling through the 
highly resonant cavity mode is the desired one. 

In the vicinity of a resonance, the circuit simplifies to that of Fig. 
11-126. Note that, with an input guide and an output guide, we 
have a two-terminal pair, such as was discussed previously. The treat¬ 
ment here has added more information concerning the frequency 
characteristics of the parameters representing the network. 

Extension of Figs. 11-12a, b to more than two inputs is obvious. 

PROBLEMS 

ll-12a Suppose that two well-separated loops, each of area 0.5 cm2, are 
coupled to the 7'Moio cylindrical mode as for one loop in Art. 11’11. Draw the 
equivalent circuit, and calculate element values (except Lo) for an air-filled cavity 
resonant at 4000 mc/sec with h = 1 cm, Rs = 0.02. 

ll-12b The Q of a cavity mode is sometimes measured by finding the curve of 
transmission versus frequency between two guides coupled to the cavity. Using 
the values of Prob, a, calculate from the equivalent circuit the transmission at 
resonance and at a frequency /o(l + 1/Q), <2 » 1, and compare with the ratio 
\/2:l. Take both lines of 50 ohms impedance and assume self-inductances of 
loops tuned out. 

Simple Discontinuities and Analytical Approaches 

11-13 SIMPLE DISCONTINUITIES IN LINES AND GUIDES 

For certain simple types of wave guide junctions where the types of 
higher order waves excited can be determined, continuity conditions 
can be applied and an exact or approximate equivalent circuit obtained 
by analysis. Among these are certain planar discontinuities such as 
diaphragms or changes of height in parallel-plane transmission lines, 
coaxial lines, and rectangular wave guides. The equivalent circuits 
here are particularly simple, consisting most often of shunt elements at 
the plane of the discontinuity, as will be shown. 

As a first example, we consider the parallel-plane transmission line 
of Fig. 11 13a which changes in height from b to a at z = 0. In an 
approximate transmission line treatment, it is common to consider 
this as two lines of different characteristic impedance joined at z = 0. 
However, such a treatment considers only the TEM or principal 
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transmission-line waves which have Ev and Hx with no variations in y. 
The perfect conductor portion from (2) to (3) requires that Eu = 0 
here. If there were only principal waves, Ev would then have to be 
zero everywhere at z = 0 because of the lack of variations with y in 
the principal wave. There could then be no energy passing into the 
second line A regardless of its termination since the Poynting vector 
would then also be zero across the entire plane, z = 0. Physical 
reasoning shows that the above situation does not occur generally 
but only in such special cases as when line A is shorted a half wave from 
the discontinuity. The difficulty is met by the higher order waves 
which are excited at the discontinuity, so that Eu in the principal wave 
is not zero at z = 0, but total Eu (sum of principal and higher order 
components) is zero from (2) to (3) but not from (1) to (2). For the 
example of Fig. 1113a the higher order waves excited are TM waves, 
since Ev, Ex, and II x alone are required in the fringing fields. For 
spacings between planes not comparable to wave length, these waves 
are far below cut-off, so that their fields are localized in the region of 
the discontinuity. They may consequently be called local waves. 

To show that the effect of the local waves on the transmission of the 
principal waves may be expressed as a lumped admittance placed at 
z = 0 in the transmission line equivalent circuit, as in Fig. 1113a, 
consider that current at any value of z may be expressed as one part 
/0(z) from the principal wave and a contribution I'(z) from all local 
waves. 

/(z) = Z0(z) + (1) 

Now total current must be continuous at the discontinuity z = 0, but 
current in the principal wave need not be, since the difference in prin¬ 
cipal wave currents may be made up by the local wave currents. 

IM + IM = IM + 

or IM - IM = IM - (2) 

However, total voltage in the line as defined from — fÊ • dl between 
planes is only that in the principal wave, since a study of the local 
waves shows that their contribution is zero. 

F(z) = Vo(z) 

Continuity of total voltage across the discontinuity z = 0 then 
requires continuity of voltage in the principal wave. 

Foa(O) = Vob(O) = Fo(O) (3) 
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Fig. 11-13a Step discontinuity in parallel-plane transmission line and exact 
equivalent circuit. 

Fig. 11136 Curve of discontinuity capacitance for Fig. 11 13a. 

.1... 

‘.1. 

Fig. 11 13c Typical disconti¬ 
nuity in coaxial line. 

Fig. 1113d Capaci¬ 
tive diaphragm in rec¬ 

tangular guide. 

Fig. 1113e Induc¬ 
tive diaphragm in rec¬ 

tangular guide. 

Now, if an equivalent circuit is drawn for the principal wave only, its 
continuity of voltage but discontinuity of current may be accounted for 
by a lumped discontinuity admittance at z = 0, the current through this 
admittance being 

^oa(O) — /oa(O) = Id = l7dl o(O) 
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Or, from (2), 

h'W - //(0) 
Vo(O) 

(4) 

The complete analysis 14 reveals that, when local wave values are sub¬ 
stituted in (4), numerical values of Ya may be calculated which are 
independent of terminations so long as these are far enough removed 
from the discontinuity not to couple to the local wave fields. For 
Fig. ll-13a, with dimensions small compared with wavelength, this 
admittance turns out to be a pure capacitance, values of which are 
plotted versus step ratio a/b in Fig. 11136, in micromicrofarads per 
centimeter width of the plane. Analysis of a coaxial line discon¬ 
tinuity 15 such as Fig. ll-13c shows that a good approximation to dis¬ 
continuity capacitance for this problem may be found by multiplying 
values from Fig. 11-136 by outer circumference. (If the step is in 
the outer conductor, values from Fig. 11136 are multiplied by inner 
circumference.) 

A diaphragm in a rectangular wave guide such as Fig. 11 -13d excites 
both TM and TE modes (though with no E^, but as energy is pre¬ 
dominantly electric below cut-off, such a discontinuity is capacitive. 
An approximate value of the per unit susceptance is 

6 
2b 

46 ird 
•— In esc — (5) 

When the diaphragm extends from the sides of the guide, as in Fig. 
11 -13e, the local waves excited are TE waves, energy is predominantly 
magnetic, and the discontinuity is said to be inductive. Approximate 
value of susceptance is 

B 

K 
Ag n ird 

-cot — 
a 2a (6) 

The above results and many others may be found in useful handbooks 
devoted to microwave elements. 16, 17

14 J. R. Whinnery and H. W. Jamieson, “Equivalent Circuits for Discontinuities 
in Transmission Lines,” Proc. I.R.E., 32, 98-114 (Feb. 1944). 

16 Whinnery, Jamieson, and Robbins, “Coaxial Line Discontinuities,” Proc. 
I.R.E., 32, 695-709 (Nov. 1944). 

16 T. Moreno, Microwave Transmission Design Data, McGraw-Hill, 1948. 
17 N. Marcuvitz, Waveguide Handbook, M.I.T. Rad. Lab. Series, Vol. 10 

McGraw-Hill, 1951. 
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PROBLEMS 

ll-13a Determine the form of the proper local waves in the example of Fig. 
1113a. Show that voltage between planes, — ¡Ë ■ H, is zero for each of these. 

11-136 Imagine a parallel-plane transmission line with two steps such as the 
one in Fig. 11 • 13a. The first is from spacing 6 to spacing a; the second is removed 
from the first by a half-wavelength and is from spacing a back to b. The line to 
the right of b is perfectly terminated by its characteristic impedance, Z0B. If it 
were not for the discontinuity capacitances, the line to the left of the first dis¬ 
continuity would also be perfectly terminated. Calculate reflection coefficient in 
this line, taking into account thé discontinuity capacitances from Fig. 11-136. 
Take a = 1 cm, 6 = 2 cm, X = 12 cm. 

ll-13c Using Fig. 11-136, calculate an approximate discontinuity capacitance 
for the coaxial line of Fig. 1113c. Take n = 0.5 cm, r2 = 1 cm, r3 = 1.2 cm. 

ll-13d A rectangular wave guide of dimensions 0.900 by 0.400 inch propa¬ 
gating the TEio mode at 9000 mc/sec feeds a horn. Standing wave ratio in the 
guide is measured as 2.5 with a voltage minimum 0.55 cm in front of the horn 
entrance. Find the dimensions and placing of a capacitive diaphragm in order 
to produce a match for waves approaching from the left. 

llT3e Repeat Prob, d, using an inductive diaphragm. 

11-14 THEORETICAL APPROACHES 

Many of the powerful methods of boundary value problems have 
bèen applied to the analysis of wave guide junctions and discon¬ 
tinuities, resulting in equivalent circuits whose elements may be found 
by calculation. Some brief comments will be given concerning these. 
In principle, the problem is straightforward. Solutions of Maxwell’s 
equations, most often expressed as a series of wave guide modes, are 
to be found for each of the basic regions. Amplitudes are then found 
by applying continuity of tangential electric and magnetic fields over 
surfaces separating the several regions. The obtaining of the equiva¬ 
lent circuit from the solution then proceeds somewhat as was illus¬ 
trated for the simple shunt discontinuity in the preceding article. 

A. Quasi-Static Methods. Often the region of the discontinuity is 
small compared with a wavelength. In such cases, useful approxima¬ 
tions may be obtained by referring to the static field solutions of a 
similarly shaped region. This follows since the retardation terms may 
be neglected if the region is small compared with wavelength, and 
solutions of Laplace’s equation then approximate wave solutions (in 
regard to space variations). As an example, consider the step in the 
parallel-plane line of Fig. ll-13a. The electrostatic solution of this 
problem is known (Art. 3-14), and a “fringing” or “excess” capaci¬ 
tance may be found as the excess of the total capacitance between 
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electrodes over that which would exist if field lines were straight 
across. Letting a = a/b, this is 

farads/meter width (1) 

Since the TEM mode has field lines straight across, it is clear that the 
above result must be consistent with the discontinuity capacitance 
defined in the preceding article when the distance between planes is 
small compared with wavelength. The result plotted in Fig. 11 136, 
although calculated by the series method to be described next, does 
agree with (1). The series method, however, gives results also when 
the discontinuity region is not negligible compared with wavelength. 

For other regions, such as the right-angle bend in a parallel-plane 
line shown in Fig. 11-14a, reasoning leads us to include an inductance 
which may be computed approximately from the static fields, as well as 
an excess capacitance term as in the preceding example. The latter 
may be divided, leading to the approximate tt equivalent circuit 
shown in Fig. 11-146. 

B. Series Methods. The most obvious starting point in the exact 
solution of a problem such as the step in the parallel-plane line of Fig. 
ll-13a is the expression of field as a series of the wave guide modes. 
Thus utilizing previous solutions for the TEM and TM modes (TE 
modes are not excited by this discontinuity) for a parallel-plane line, 
the electric field Ev and the magnetic field II x in the plane of the dis¬ 
continuity may be written 

^x(2/,0) = Ao + Am cos 
a m 

(2) 

Wa(1/,0) = Y0aA0 + 2 YmaAm cos —(3) 

EB(y,0) = Bo + 2 Bn cos U) 
n 

HB(y,0) = YobBo + YnbBn cos ~ , (5) 
" u -

V _ >ía V ^tb
1 ma —-z-. ■ o ï nb — -7^- --n (b) 

mir V1 — (2a/m\)2 mrVl - (26/nX)2
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The first pair expresses fields in terms of the modes of the region to the 
right, and the second pair in terms of modes for the left-hand region. 
Y oa and T of, are the wave admittances for the TEM modes 
in the two regions, and these depend upon the terminations of the 
regions. If we think of (4) as an expression for electric field in the 

Fig. 1114 (a) Corner discontinuity in parallel-plane line, (t) Approximate 
equivalent circuit valid if corner is small compared with wavelength, w is width 

normal to the paper, (c) Diaphragm in parallel-plane transmission line. 

aperture as a Fourier series over the interval b, the usual formulas for 
Fourier coefficients give us 

i r*a a 
ß o = r W,0) dy = - Ao

b Jo b 

Bn = I f cos “F dyb Jo b 

2 mra i nV x? (—l)m.4m
= — sin —— bu d—“V “7?“-:-s-? 

nir b I b~ nr[(na/mb)2 — 1] 

(7) 

(8) 

The interval in the integral is taken only from 0 to a, since electric 
field must be zero in the B region from a to b. The evaluations on the 
right are obtained by substituting (2) for the electric field from 0 to a. 
Similarly, (3) may be considered a Fourier expansion of magnetic 
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field in the aperture over the interval a, and its coefficients may be 
found as follows. 

1 Ca nira x
F 0aA 0 = - J o H{y,O) dy = YobBo + ^4 n7ra } ”bBn sin y 

1 ma Am 

miry , 
H(i/,0) cos —- dy 

a 

2na (-1)”* sin (nira/b) 
5 nbBn M [(na/mb)2 - 1] 

(10) 

The evaluations here were made by substituting the value from (5) in 
the integral. A study of (7) and (9) shows that voltage is continuous 
and current in the TEA! wave discontinuous, as explained in the last 
article. The value of the discontinuity admittance is given as a 
series which contains the wave amplitudes Am. Substitution between 
(8) and (10) yields an infinite number of simultaneous equations in the 
infinite number of amplitudes Am- These are usually solved approxi¬ 
mately by retaining only a finite number, and, by utilizing these 
results, a good value of the discontinuity admittance may be found. 
The method would converge slowly and so would not be of much use 
were it not for certain functions evaluated by Hahn, 18 which amount 
to the evaluation of the slowly converging parts of the summations 
such that the remaining series are rapidly converging. The method 
and tabulated functions given by Hahn are applicable to a wide variety 
of problems, in both rectangular and other coordinate systems. 

C. Integral Equation and Variational Formulations. If the formulas 
for coefficients Bo and Bn from (7) and (8) are substituted back in (4), 
an integral equation in E^yfl) is obtained, since it appears both inside 
and outside of the integral. It is possible to solve this directly in 
some cases. It may also be possible to proceed from the integral 
equation to a variational formulation. Thus, for the diaphragm in a 
parallel-plane line, Fig. 11-14c, the shunt susceptance representing 
the discontinuity can be put in the form 

18 W. C. Hahn, “A New Method for the Calculation of Cavity Resonators,” 
J. Appl. Phys., 12, 62-68 (Jan. 1941). 
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This expression gives the exact value of susceptance if the exact field 
in the aperture is known from a solution of the integral equation, but 
it is even more useful in giving approximate values of susceptance by 
assuming reasonable forms for E(O,y). It is a variational expression 
in that any approximation to the field yields a larger value for sus¬ 
ceptance than the exact one. The assumption of a uniform field in 
(11), for example, gives for the diaphragm 

sin2 (nira/b)_ 

7r3 n3(a/6)2 V1 - (2b/nX)2

The series is rapidly convergent and may be used for calculation, 
though it may also be expressed in terms of the functions tabulated 
by Hahn. 18

Schwinger 19 applied many of the powerful methods of mathematical 
physics to wave guide junctions, and in particular developed in detail 
the integral equation and variational formulations mentioned briefly 
above. 

I). Relaxation Methods. When other analytical methods fail, one 
can always resort to numerical solutions of the differential equations 
subject to the boundary condition of the conductor. These methods 
are very tedious, even when rapid calculators are available, and may 
not be practical if field varies in all three dimensions. So, if the 
method is to be used, it is important to adopt a schedule of calculations 
which converges to the correct answer as quickly as possible. South-
well20 has given the schedules for such rapidly converging calculations, 
called relaxation methods. 

19 N. Marcuvitz and J. Schwinger, J. Appt. Phys., 22, 806-819 (1951), and in 
unpublished work. 

20 R. V. Southwell, Relaxation. Methods in Theoretical Physics, Oxford, 1946; 
Relaxation Methods in Engineering Science, Oxford, 1940. 



1 2 RADIATION 

12-01 THE PROBLEMS OF RADIATION ENGINEERING 

Radiation of electromagnetic energy, to an engineer, is important in 
at least two cases. (1) It may be a desired end result if energy is to be 
transferred from a high-frequency transmitter to electromagnetic 
waves in space by means of some antenna system. (2) It may be a 
leakage phenomenon, adding undesired losses to an imperfectly 
shielded circuit or transmission line or to a cavity resonator with holes. 

In order to perform an intelligent job of engineering in either of the 
above radiation problems, it is first desirable to have a good physical 
picture of radiation. In this picture radiation is not a mysterious and 
unknown link between transmitter and receiver, but a phenomenon 
following naturally from the excellent pictures of wave propagation, 
reflection, and excitation built up from familiarity with transmission 
lines and wave guides. It is desirable that this physical picture be con¬ 
crete enough to give qualitative answers to specific questions that may 
arise in either of the above roles of radiation. It is, of course, also 
necessary to have methods available for obtaining quantitative design 
information about the amount of radiation and the effects on the 
radiating system. If radiation is the desired product, several or all 
of the following problems may arise in design of the radiating system: 

1. The field strength at a known distance and in a known direction 
from the radiator excited by a given voltage may be desired. Often 
the relative field strength versus direction, i.e., the directivity pattern, 
is a sufficient answer for this problem. 

2. The total power radiated from the antenna structure when excited 
by a known voltage or current may be desired. (The answer may 
often be expressed in terms of a radiation resistance.) 

3. The input impedance of the radiator to the exciting voltage or 
current may be desired. 

4. The resonant frequency and band width of the radiator may be • 
486 
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required. Band width questions are often answered if impedance 
versus frequency is known; however, it may be necessary sometimes to 
know the change in the radiation pattern with frequency. 

5. 1 lie power dissipated in ohmic losses in the radiator, as compared 
to the power radiated, may be desired. The result may be expressed 
as a radiation efficiency. 

6. The value of maximum gradient along the antenna may be 
required if corona difficulties are important. 

If radiation is the leakage product, the problems are not essentially 
different, although a knowledge of power lost by radiation is usually 
sufficient. Io assure ourselves that it is only in magnitude of impor¬ 
tance that this differs from radiation as a desired product, it may be 
recalled that it is in the role of a leakage phenomenon that radiation 
was met previously. In Chapter 5, for the rigorous study of circuits, 
an energy loss term appeared which was not accounted for by ohmic 
dissipation, this term being the radiated energy. The term becomes 
more important as the circuit is made large compared with wavelength, 
suggesting the obvious conclusion that a well-designed antenna system 
is simply a circuit made purposely large compared with wavelength 
to increase the importance of radiation. Also, in the study of trans¬ 
mission lines, it was pointed out that the waves excited in space by 
the end effects of a transmission line, required for matching to these 
end effects, may take energy from the guided wave of the line. This 
too is radiation, and to obtain it as a major effect it is necessary onlv 
to accentuate these end effects or to match more closely to the waves 
in space. Ibis latter point of view is excellent, and one that will be 
developed further. 

An exact solution of the problem from Maxwell’s equations would at 
once yield the answer to all the above problems. The approach to 
such an exact solution is straightforward, since it requires a solution 
of Maxwell s equations subject to the boundary conditions of the 
antenna system, which was the approach applied successfully to wave¬ 
guiding systems and cavity resonators in previous chapters. For the 
antenna, the exciting source and the region at infinity must be included 
in the boundary conditions, and sometimes the effect of ground or 
couplings to adjacent antennas cannot be ignored. Because of these 
complications, but mostly because of the geometrical forms of practical 
antennas, the details of the exact solution cannot be carried through 
except in a few simple cases, such as for spherical, spheroidal, and 
conical antennas. Some of these solutions, which are of greatest 
usefulness in shedding light on the problems of input impedance and 
antenna gradients, will be discussed in a later part of the chapter. 
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However, approximate approaches to others of the problems are 
needed as well. 

Fortunately, successful approximations to the problems of direc¬ 
tivity and power radiated, which are two of the most important, hâve 
been available for many years. This comes about because fields at a 
great distance from the antenna are relatively insensitive to small 
changes in current distribution over the radiating system (at least 
for most practical antennas), so with a little experience some good 
approximations to current distribution can be made. Fields at any 
point can then be calculated in terms of these currents, and the 
Poynting theorem enables one to find the power radiated. This 
technique will be one of the first to be demonstrated in this chapter. 
By an extension, we shall find that it is also possible to make similar 
calculations when the field can be assumed over the aperture of an 
antenna. The assumed currents may also be used to compute a power 
loss in the conductors of known conductivity, so that an approxima¬ 
tion to radiation efficiency may be had if desired, though for many 
practical antennas a sufficient answer is that power loss is negligible 
compared with that radiated. 

12-02 SOME TYPES OF PRACTICAL RADIATING SYSTEMS 

In order to give point to comments and analyses which follow, let us 
look for a moment at some of the typical systems that have been used 
as radiators. No attempt will be made to provide complete discussions 
of operation here, since the remainder of the chapter will be devoted 
to more thorough analyses of some of these systems. Nor does the 
list cover all types of radiators. The ones given are chosen as examples 
to make clearer the discussions of principles in sections to follow. 

A. “Dipole” Antennas. Among the most common radiators is the 
dipole, which consists of a straight conductor (often a thin wire or 
circular cylinder of larger diameter) broken at some point where it is 
excited by a voltage derived from a transmission line, wave guide, or 
directly from a generator (Fig. 12-02a). In most cases, the exciting 
source is at the center, yielding a symmetrical dipole, though asym¬ 
metrical dipoles are used as well. If the arms are very short compared 
with wavelength, it is known as an infinitesimal dipole, or Hertzian 
dipole. Resonant dipoles, and especially the half-wave dipole with 
21 approximately equal to a half-wavelength, are more common. 

B- Loop Antennas. Radiation from a loop of wire excited by a 
generator has been discussed in Chapter 5, and such loop antennas are 
useful radiators, though often they have many turns (Fig. 12 026). 
The field from a small loop is much like that from the small dipole 
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Fig. 12 02 Typical antennas, (a) dipole, (b) loop, (c) Beverage, (d) rhombic, 
(e) vee, (/) dielectric rod, (g) slot array, (h) pyramidal horn, (i) biconical horn, 

(j) parabolic reflector, (k) artificial dielectric (Z) metal lens. 
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of A, with electric and magnetic fields interchanged. Such a small 
loop is sometimes known for this reason as a magnetic dipole. 

C. Thin-Wire “Wave” Antennas. In a wave antenna, the idea is 
to produce a traveling wave in one direction with a velocity of propa¬ 
gation about equal to the velocity of light, so that waves in space may 
be excited strongly in this direction as compared with other direc¬ 
tions, yielding a high directivity. The Beverage wave antenna has 
a straight wire over earth, forming a transmission line which is termi¬ 
nated at the far end (Fig. 12-02c), and gives rise to the traveling wave 
as described above. A rhombic antenna is similar, but usually utilizes 
two conductors (Fig. 12-02d), and these are spread out at the center 
to give greater radiation. The V antenna (Fig. 12 02e) is like one 
half of the rhombic, though often it is used as a resonant antenna 
without the terminating resistances and is then more like the resonant 
dipoles of A. 

D. Dielectric Rod Antennas. A length of dielectric rod (Fig. 12-02/) 
may be used as a radiator by exciting in it a propagating wave (Art. 
9-09) of proper form. The dielectric rod wave guide, unlike the 
metal pipe guide, has fields outside the dielectric so that there may be 
radiation. If the rod is made long enough so that most of the energy 
is lost by radiation and dissipation before it reaches the end, the 
forward wave is the important one and there is then “end-fire” action, 
as in the wave antennas described above. 

E. Slot Antennas. Although a wave guide or cavity completely 
closed by a perfect conductor cannot radiate, there will in general be 
radiation if holes or slots are provided in the walls. Fields excited in 
the slot from the interior in turn excite waves in space which may act 
to carry energy away. Such radiation is apt to be small if the holes 
are small compared with wavelength, and in such cases the radiation 
might be important as leakage in decreasing the Q of a cavity, but 
would not be of much use in constructing an antenna. However, if the 
slots are large, or if they arc resonant even though small in some 
dimension, the fields may be built up to such an extent that radiation 
is appreciable and the slot becomes a useful antenna. In fact, as we 
shall see, the resonant half-wave slot has many similarities to a half-
wave dipole, though electric and magnetic fields are interchanged. 
Antennas of the slot type are particularly useful in aircraft ancTsliips 
where flush mounting is required. An example of the use of slots in a 
rectangular wave guide to form a “leaky wave guide” array is shown 
in Fig. 12-02</. 

F. Electromagnetic Horns. The slot radiator is one of a class in 
which fields in an aperture excite waves in space. It is natural to 
attempt to shape the transition between the wave guide and the 
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aperture to get a better match between the waves in the guide and the 
waves in space, particularly if broad band operation is desired because 
then resonant slots are undesirable. The approach is much as in the 
acoustic horns used for sound. Typical examples of resulting electro¬ 
magnetic horns are the pyramidal horn of Fig. 12 02À and the biconical 
horn of Fig. 12-02t. It is easy to achieve large apertures in these 
horns, which, as will be seen, give possibilities of obtaining very direc¬ 
tive radiation patterns. 
G. Arrays of Elements. In a few applications it is desirable to 

radiate as uniformly as possible in all directions. More often there are 
particular directions in which one wishes to concentrate the radiation. 
In these cases radiation in undesired directions at least wastes power, 
and may actually ruin performance, as in the case of returned echoes 
from side lobes in radar applications. One approach to the directing 
of energy in desired directions is that of using a number of elements 
positioned and phased so that energy from the several elements adds 
in the desired directions, but cancels in undesired directions. The 
example of the slot array has been given in Fig. 12 02^, and other 
examples will appear later. 

H. Reflectors. As an alternative to the use of arrays for directing 
energy, shaped reflectors may be used to reflect in desired directions 
the waves from primary sources such as dipoles, slots, or small horns. 
One of the simplest examples is the parabolic reflector with primary 
feed at the focus (Fig. 12-02J). Geometrical optics will predict an 
exactly parallel beam from such a reflector if an infinitesimal source is 
placed at the focus. Physical optics (or an electromagnetic-wave 
analysis) shows that there is always some spreading of the beam, and 
this decreases as aperture size is made greater. To produce a beam 
width of 1 degree, an aperture of about 140 wavelengths is required. 

I. Lens Directors. Another approach to the directing of radiation, 
also suggested by optics, is that of using a lens system with the primary 
feed at the focus. Although straightforward dielectric lenses of some¬ 
thing like polystyrene may be used, they must be many wavelengths 
in diameter, and so are heavy and unwieldy at microwave frequencies. 
Two ingenious variations have consequently been used. In one, 
artificial dielectrics have been constructed by embedding small metal 
disks, balls, or rods in a foam dielectric or other frame (Fig. 12 02fc). 
These are excited by an electromagnetic field and respond much as 
the molecular dipoles of actual dielectrics. Effective dielectric con¬ 
stants of around 225 have been obtained with a usefully light struc¬ 
ture.1 Another variation was arrived at by looking at the lens from 

1 W. E. Kock, “Metallic Delay Lens,” Bell Sys. Tech. J., 27, 58-82 (Jan. 1948). 
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the point of view of physical optics, where it is viewed as a means 
of delaying the various rays by just the right amount so that the 
over-all wave front comes from the lens with the phase of a plane wave. 
In a metal-lens antenna,” instead of delaying various parts of the 
rays by using a dielectric, sections of parallel-plane wave guide are 
used which we know to have a phase velocity greater than that of the 
plane wave. Ihe outer parts of this lens are consequently longer 
than the center parts, giving a contour the opposite of that of a typical 
dielectric lens, as sketched in Fig. 12-02Z. Since whole wavelengths 
contribute nothing from this point of view, these may be cut out, giving 
the typical stepped construction of practical metal-lens antennas2 

indicated by the dotted lines of the figure. 

PROBLEM 

12-02 For a dielectric or artificial dielectric lens of dielectric constant e, set down 
the condition for total phase shift from the focus to a plane in front of the lens 
(Fig. 12-026) to be a constant for all rays, taking the velocity of light in space 
over the path in air, and the velocity of a uniform plane wave in dielectric as apply¬ 
ing to the dielectric part of the path. Similarly, set down the condition for the 
metal-lens antenna of Fig. 12-02/, writing phase velocity in the wave guide portion 
in terms of free-space wavelength and plate spacing d. In comparing the two 
expressions, what could be said to be the effective dielectric constant of the metal¬ 
lens antenna? 

12-03 PHYSICAL PICTURES OF RADIATION 

Radiation was first met in Chapter 5, when we found that a circuit 
large compared with wavelength has the possibility of losing energy 
because induced electric fields from time-varying currents and charges 
of the circuit may shift in phase as a result of the retardation over the 
circuit, and may have components in phase with current. This pic¬ 
ture provides one approach to radiation. It is useful in analyzing 
antennas of the circuit type, such as the loop antenna of Fig. 12-026, 
and it tells us something about why efficient radiators are usually 
large compared with wavelength, but it is unsatisfying in that it says 
nothing directly about the radiated field. 

From a somewhat different point of view, we may think of the fields 
in space produced by currents and charges on the antenna as sources. 
We know that in a complete system there must at any instant be equal 
numbers of positive and negative charges, and, if these were static, 
fields at a great distance from the positive and negative sources would 
practically cancel. For example, the electrostatic field from a small 

2 W. E. Kock, “Metal Lens Antenna,” Proc. I.R.E., 34, 828-836 (Nov. 1946). 
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dipole dies off as the inverse cube of distance. When the distance 
between positive and negative sources becomes comparable with wave¬ 
length, the phase shift or retardation in going the extra distance may 
keep the effects from canceling, and in fact will cause them to add up 
in one direction if distance between plus and minus sources is a half-
wavelength. This picture also suggests why practical antennas are 
comparable with wavelength in size. It tells us something about the 
fields, and is especially useful in qualitative thinking about arrays 
(G of Art. 12 02). 

In a manner somewhat similar to the above, we may think of the 
fields or wave fronts over the aperture of an antenna system as being 
the sources of radiation, and again add up the effects with proper phase 
to find the total field at a great distance. This is recognized as the 
Huygens principle, in which any part of a wave front can be considered 
a source of secondary waves which add up to produce the total field 
at a distance. The principle can be placed on an exact mathematical 
basis, and will be used for analysis of antennas with apertures in later 
articles. 

When we consider the transmitting antenna, the receiving antenna, 
and the intermediate space as a complete system, a useful point of 
view can be borrowed from Chapter 11. That is, we may think of the 
system as a two-terminal pair or transducer with coupling between the 
transmitter and receiver through the time-varying fields or waves 
existing in the space. The displacement current of the space plays 
much the same part that conduction current would in a transducer 
in which mutual couplings existed through lumped elements. This is 
another qualitative picture that can be placed on an exact basis, and 
use will be made of it near the end of the chapter. 

The most satisfying physical picture is also a wave picture, but one 
in which we visualize waves on the wave guide or transmission line 
feed as exciting waves in space through the mechanism of the antenna 
as an intermediate transition or matching mechanism. The design of 
the antenna is then one of exciting- the space waves in the desired 
direction, with an efficient match over the frequency range of interest. 
The picture is the only natural one for horns (Figs. 12-02Ä, i), wave 
antennas (Fig. 12-02c), or dielectric rod antennas (Fig. 12-02/), but it 
is also useful for qualitative thinking and analysis of many other types 
such as the dipole or other circuit type of antennas, where it would 
not at first appear so natural. It is a fairly modern point of view, and 
because of its importance it will be discussed in more detail in the 
following article. 
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12-04 WAVE CONCEPTS OF RADIATION 

In following up the wave picture of radiation, let us use the specific 
example of the biconical antenna pictured in Fig. 12-04a, in which a 
source is applied between the apices A and B of two coaxial cones 
ending at r = I. If the cone angle is large, this will look like the 
biconical horn of Fig. 1202b If the cone angle is small, it will look 
like the dipole antenna in Fig. 12-02a. The fact that both types of 
antennas can be discussed from one model suggests at once that the 
wave picture, obvious for the horn antenna, may also give useful 
results for the dipole type. 

If we were to attempt an exact solution of Fig. 12-04a, we would 
look for a solution of Maxwell’s equations satisfying the boundary 

Fig. 1204a Axial section 
through biconical antenna. 

Fig. 12-046 Disconti¬ 
nuity in conical line. 

Fig. 1204c Equivalent 
circuit of biconical an¬ 

tenna. 

conditions of the conducting cones, the source at the center, and the 
conditions at infinity. It would be natural to divide the problem into 
two regions, r < I and r > I, looking for individual solutions of the 
type we have called waves appropriate to the two regions. Those 
appropriate to the former region would satisfy the boundary conditions 
at the cones, and would allow for the source at the center. Those 
appropriate to the latter region would satisfy the condition at infinity. 
Proper amounts of each would then be added to produce continuity of 
tangential field components over the common boundary, r = I, 
Ÿ < 6 < ir — as well as zero tangential field Ee over the perfectly 
conducting cap r = I, 0 < 0 < 

We have studied the TEM or principal wave of the biconical system 
in Art. 9-14 and found it to be like a transmission Line mode along a 
uniform system. This mode will certainly be excited by the source 
at the center because it is one with a finite voltage between cones, and, 
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if the cones continued to infinity, it would be the only wave excited. 
However, if there were a discontinuity such as the abrupt change in 
cone angle pictured in Fig. 12-046, other higher order modes would be 
excited just as in the changes in section of transmission lines discussed 
in Art. 11-13. From one point of view, the ending of the cones at 
r = I in Fig. 1204a is just a more grandiose discontinuity, and higher 
order modes will be excited on the conical system, as well as some 
waves in the space outside. This all seems very natural, but the 
interesting point, as shown, by Schelkunoff3 in an exact analysis of this 
problem, is that the effect of the higher order modes inside and outside 
may be represented in the principal wave’s equivalent circuit as a 
lumped impedance at the end exactly as in the simple transmission 
line discontinuities discussed in Art. 11 13. This is pictured in 1’ ig. 
12-04c, with the impedance ZL complex, since it includes the effect of 
energy carried away as radiation. Radiation in this picture is then 
regarded as an end effect, with the antenna as a guiding system from 
the exciting system to this end effect. 

If the antenna is a thin-wire dipole (cone angle small), we feel 
intuitively that there will not be a good match between the waves on 
the antenna and those in space, but instead most of the principal wave 
will be reflected at the end, forming a nearly perfect standing wave 
pattern on the antenna. In terms of the equivalent circuit Fig. 12 04c, 
the impedance ZL will be very large compared with the characteristic 
impedance Zo. This is true, and in fact, to obtain a good approxima¬ 
tion to current distribution on a thin antenna, it may be sufficient to 
neglect the termination, in which case the open-circuited transmission 
line gives the perfectly sinusoidal standing wave pattern represented 
by complete reflection of the principal wave. Careful measurements 
on thin-wire antennas have, in fact, revealed current distributions very 
close to this perfect sinusoid. However, it cannot be strictly true, 
for this would mean that there were no waves in the space outside and 
no waves on the antenna except the TEM wave, perfectly reflected 
at the antenna end, giving a maximum of electric field and a zero of 
magnetic field there. But, with no waves outside, there would be a 
discontinuity at r = I between the large tangential electric field of 
the principal wave inside and the zero field outside, so we know there 
must be fields outside, and of course we expect them from other pic¬ 
tures of radiation. When we study the spherical waves appropriate to 
the outer region, we find that they must have radial electric field 

’S. A. Schelkunoff, “Antennas of Arbitrary Size and Shape,” Proc. I.R.E., 29, 
493-521 (Sept. 1941); S. A. Schelkunoff and C. B. Feldman, Proc. I.R.E., 20, 
512-516 (Nov. 1942). 
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components; therefore continuity requires that there be higher order 
modes inside the antenna region to match these, since the TEM mode 
has no radial field. 

An interesting point is raised here, as one of the first methods for 
calculation of radiation from a long thin dipole that we shall meet is 
the classical one of assuming a sinusoidal current distribution on the 
antenna and computing the fields outside by means of the retarded 
potentials. Here we consider the current distribution appropriate to 
the principal wave only; consequently, are we neglecting all higher 
order modes which by the above discussion means the neglect of all 
radiation? The answer is, of course, no, since radiation fields in this 
approach are computed from the current distribution as the source, 
and the total current is well approximated by the principal wave’s 
current. Non-zero fields are computed in the external region, and 
these may be thought of as equal to the totality of all the external 
waves. The approximation can actually be considered the first step 
in a converging step-by-step method of which we shall later go to the 
second step. These steps are: 

1. Assume only principal waves in region I. 
2. Calculate corresponding higher order waves in region II. 
3. Calculate higher order waves in region I to match radial field 

components of the region II higher order waves obtained in step 2. 
4. Correct back and forth through as many succeeding steps as 

required. 
We shall give more details of Schelkunoff’s complete treatment of 

this problem in later articles. Before this, we shall go back to the 
other useful approximate methods of which the first is the calculation 
of radiation fields from assumptions regarding current distribution, 
as referred to above. The above discussion should give some feeling 
about the relation between these points of view. 

Field and Power Calculations with Currents Assumed on the 
Antenna 

12-05 THE SMALL CURRENT ELEMENT OR DIPOLE ANTENNA 

In computing radiated power and the field distributions around an 
antenna when current distribution is assumed over the surface of the 
antenna’s conductors, the simplest example is that of a linear element 
so short that current may be considered uniform over its length. 
Certain more complex antennas can be considered to be made up of a 
large number of such differential antennas with the proper magnitudes 
and phases of their currents. We shall consider only the case in which 
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the current varies sinusoidally with time. Accordingly let it be 
expressed by He’“1 or, better yet, by its peak value /q alone with the 
factor e’“1 understood. 

The direction of the current element will be selected as the z direc¬ 
tion, and at the. origin of a set of spherical coordinates (Fig. 12-05a). 
Its length is h, and it is understood that h is very small compared, with 
wavelength. By continuity, equal and opposite time-varying charges 
must exist on the two ends + à/2, so the element is frequently called a 
small dipole or Hertzian dipole. 

Now one way of finding fields once current is given is through the 
retarded potentials studied in Chapter 4. Article 4 17 gives a form 

Fig. 12 05a Small current element at 
origin of spherical coordinates. 

Fig. 1205b Axial section showing 
electric field lines in first order sym¬ 

metrical TM waves. 

of Ã suitable for present purposes. Since current vector points in 
the z direction, the vector potential can be only in the z direction. 
For any point Q at radius r, Ã of Art. 4-17 becomes simply 

Az = ^e~^ (1) 
4 irr 

Or, in the system of spherical coordinates, 

Ar = Az cos 0 =' p cos 0 
4 irr 

(2) y / 
Ag = — Az sin 0 = — g— 11 e~jkr sin 0 

4irr 

where k = &/v = o> \ pe = 2ir/X. There is no 4> component of A, and 
there are nõT-ãriations^wTtTi <b in any expressions because of the sym¬ 
metry of the structure about the axis. The electric and magnetic 
field components may be found directly from the components of Ã by 
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use of the other equations listed in Art. 4-17. Thus, 

4tt 

jk 2 
I o L r r¿J 

sin 9 

Er

Eg sin 9 

(3) 

For the region very near the element (r small) the most important 
term in II is that varying as 1/r2. The important terms in Er and 
Eg are those varying as 1/r3. Thus, in this region near the element, 
magnetic field is very nearly in phase with current and H# may be 
identified as the usual induction field obtained from Ampère’s law. 
Electric field in this region may be identified with that calculated 
for an electrostatic dipole. (By continuity, I^/ju represents the 
charge on one end of the dipole.) As the important components of 
electric and magnetic field in this region are 90° out of time phase, so 
these components represent no time average energy flow according to 
the Poynting theorem. 

At very great distances from the source, the only terms important in 
the expressions for E and H are those varying as 1 /r. 

„ jkloh . .. 
IE = - sin 9 e~jk

4?rr 

„ jaiul nh . 
E, = sin O e^kr = 

47rr 

V = v- ~ 120ir ohms for space. 

(4) 

At great distances from the source, any portion of a spherical wave 
surface is essentially a plane wave, so the above characteristics typical 
of uniform plane waves might be expected. Eg and E# are in time 
phase, related by y, and at right angles to each other and the direction 
of propagation. The Poynting vector is then completely in the radial 
direction. The time average flow of energy is of interest. The time 
average of the products of any two sinusoids of equal frequency and 
of the same phase is one-half the product of their magnitudes. So 
time average Pr, 

n vk-I^h2 . „ , , 
1 r = 2 2 sin- 9 watts/meter o2iTT“r 
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The total energy flow out must be the total surface integral of the 
Poynting vector over any surrounding surface. For simplicity this 
surface may be taken as a sphere of radius r. From Fig. 12 05a, 

IFav = I P ' dS = I Pr2irr2 sin 9 d9 
Js J. Jr

f 16tt Jo 
... ^Iü2(h\2 „ ... 
nav = —T—(-) =4OWo2l-) watts (o) 

o \A/ \A/ 

A radiation resistance may be defined as the resistance which would 
dissipate the same amount of power with this same constant current 
flowing. 

Rr = 2^ = 80tt2 ^0 ohms (6) 

It is interesting and important to note that the field of the small 
dipole has the same form as the first order TM spherical wave studied 
in Art. 10 09. From Eqs. 10 09(19) with n = 1 and the Bessel func¬ 
tion taken as the second Ilankel form which is appropriate to a region 
extending to infinity, 

= .1 ̂ P^ (cos 9) (At) 

E, = l^ (2) (tr) - krH^kP)] P^ (cos 9) (7) 
Jutr 

Er = — ——a? . ■ [cos 9Pil (cos 9) — Pi1 (cos fl)] 
j&er sin 9 

But, from the relations of Art. 10 09 it may be shown that 

w irlcr \kr / 

Pi1 (cos 0) = sin 9 

With these substitutions and the identification of A i with 

I0hk*/4j V2Í, 

(7) and (3) are identical. The electric field lines for this mode are 
sketched in Fig. 12 055. 
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PROBLEMS 

12 06a An inspection of (3) shows that there are other in-phase parts than 
those considered in forming the power flow above. Taking into account all terms, 
show that the result (5) is correct. Suggestion: Use the form 

IF = JRe (Ë XH*)-SS 

12 06b Study the n = 2 7 M wave and show that it corresponds to a quad¬ 
rupole field, i.e., field from two small current elements at right angles. 

12-06 THE LONG STRAIGHT ANTENNA 

It the antenna length is appreciable compared with wavelength, 
which is true of practical antennas, current may not be considered 

constant over the length. The antenna 
.can, however, be broken into a large 
number of the differential elements of the 
type analyzed in Art. 12-05 and the fields 
from all of these superposed. Although 
fields or potentials, which are proportional 
to current, may be superposed, power, 
which varies as square of current, may not. 
Thus, to use the integration method 
employed in Art. 12-05, which we shall 
call the Poynting method, will require that 
the total È and H be first evaluated at each 

Fig. 12 06 Long straight point of the lar8e enclosing sphere. 
dipole antenna. The long dipole of Fig. 12 06 with 

voltage applied at its midpoint is shown 
with an assumed sinusoidal distribution of current. The stand¬ 
ing wave has zero current at the ends, and is selected with distance 
between zero and a maximum equal to a quarter free-space wavelength. 
A qualitative discussion of this assumption has been given in Art. 
1201. 

j = sin [k(l — z)] z > 0 
\lm sin [k(l + z)] z < 0 

1' rom Eq. 12-05(4) the contributions to //0 and Eg at a great distance 
r" from a differential element dz are 

,,, Jlkl dz ,, . dE) = i]dH9 = ——— e jkr sin 6” 
4rr 

r" is the distance from any element to Q, whereas r is the distance from 
the origin to Q. These may be taken so large that the difference 
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between r and r" is important only as it affects phase, and is com¬ 
pletely insignificant in its effect upon magnitude. Similarly, the 
difference between 3 and 0" will be negligibly small. In the phase 
difference, 

r" = V r2 + z2 — 2rz cos 9 = r — z cos 9 
Otherwise, 

o 
e^ cos » sin + 2) dzjykjm . —jkr sm 9c 1

4irr 

The integral 

eytzco8 ’sin [k{l - z)] dz 

eax sin {bx + c) dx = [a sin {bx + c) — b cos {bx + c)] 

so 

E e = m sin 9e ^kr ! —. -7- [cos {kl cos 0) — cos kl] 
4irr [k sin2 0 

_]kr cos {kl cos 0) — cos kl ' 
2irr sin 0 (2) 

Total Ë and H at long distances from the antenna are also at right 
angles to each other and the direction of propagation, in timephase, 
and related by So, as with the differential antenna of Art. 12-05, the 
time average Poynting vector is half the product of field magnitudes. 

Pr = I E, II I J-
vim2 rCOS {kl COS 0) 
8ir2r2 sin 0 

cos kl 

Total power radiated from the long dipole in free space, 

IT = P -dS = Pr2*r2 sin 0 d9 
Js Jo 
ylm2 C' [cos {kl cos 9) - cos kl]2 In _ /1X
=- I -;- - d9 watts (4) 

4r Ju sin 9 

Since current varies along the antenna, the value of radiation 
resistance depends upon the current used to define it. Suppose for 
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this case that radiation resistance is defined in terms of maximum 
current, wherever it may occur. 

2W 17 f * [cos (kl cos 0) — cos kl]2 dd 
Rr ~ I ---:- (5) Im2 2ir Jo sin 0 

Taking 17 = 120tt, this integral may be shown to have the following 
result. 

Rt = 60 [C + In 2kl - Ci(2kl) + i sin 2kl[Si(4kl) - 2Si(2/cZ)] 
+ I cos 2kl[C + In (kl) + Ci(4kl) - 2Ci(2kl)]} ohms (6) 

where C = 0.5772 • • • and the following functions (sine and cosine 
integrals) are tabulated. 

Si(x) = f*— dx Ci(x) = - f “--dz (7) 
Jo % Jx * 

PROBLEM 

12-06 Perform the integration (5) leading to (6). (Hint: Substitute u = cos e, 
separate denominator by partial fractions, and note lim Ci(x) = C + In x.) 

X—»0 

12-07 THE HALF-WAVE DIPOLE; ANTENNA GAIN 

The most important special case of the long center-fed antenna is 
that of the half-wave dipole in which I = \/4. Field intensity, power 
density, and radiation resistance then become, from Eqs. 12 06(2), (3), 
and (6), respectively, 

I r- I 60/m
II - “7“ 

cos 
volts/meter 

watts/meter2

Rr = 73.09 ohms 

(1) 

(2) 

(3) 

Polar plots of the bracketed parts of the field and power density expres¬ 
sions are shown in Fig. 12 07. The field pattern for the infinitesimal 
dipole of Art. 12 05 is also shown for comparison. The radiation 
resistance given in (3) is also a good approximation to the input 
impedance of practical half-wave dipoles, since these are nearly 
resonant and the maximum of current, to which radiation resistance 
is referred, appears at the central input terminals. 



12-07 RADIATION 503 

In looking at the polar plots in Fig. 12-07, it is evident that radiated 
fields are a maximum in the plane perpendicular to the antenna and 
are zero along the axis of the antenna. We say then that this antenna 
has a certain directivity as compared with an imagined isotropic radi¬ 
ator which radiates equally in all directions. This is, of course, an 
advantage if we desire to have the signal radiated in the plane of the 
maximum, since there is less power required to produce a given field 
in the desired direction than there would be for the isotropic radiator. 

Fig. 12-07 Polar plots of field and power density for a half-wave dipole, and of 
field for an infinitesimal dipole in plane of dipole. 

The amount of the saving is frequently expressed as the gain of the 
antenna, defined as the~ ratio of power required from the isotropic 
radiator to produce the given intensity in the desired direction to that 
required from the actual antenna. 

47rr2P, 

9 ~ W (4) 

As defined, gain may be given for any direction from the antenna, but 
it is most often given as its maximum value. For the half-wave dipole, 
this maximum direction is for 0_=-JrZ2~ 

157 2 2 
- 4«’ X X - 1.64 (5) 
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For the infinitesimal dipole of Art. 12 05, the gain is 

i 3X2 3 
X 8r2X2 X ~ 2 (6) 

It is interesting to note that directivity pattern and gain are not very 
different for the half-wave and infinitesimal dipoles, but of course 
radiation resistances are very different. 

PROBLEMS 

12-07a Considering gain as defined by (4) a function of direction, plot curves 
of gain versus 9 for the half-wave and infinitesimal dipoles. 

12-076 Compare the currents that would be required in a half-wave dipole 
and a small dipole of height 0.05X to produce 100 watts of radiated power from 
each. 

12-08 ANTENNAS ABOVE PERFECT EARTH 

If the earth near an antenna must be taken into account, two very 
difficult problems can result: (1) effect of earth conductivity t (2) effect 
of earth curvature. It is common to assume that the earth is plane and 

Fig. 12 08a Cone above 
plane conducting earth 

and image cone. 

Fig. 1208b Horizontal 
wire above plane con¬ 
ducting earth and image 

wire. 

Fig. 12 08c Inclined wire 
above plane conducting 
earth and image wire. 

perfectly conducting, not alone because it avoids these two difficulties, 
but also because it gives answers which agree well with actual results in 
many practical cases. If earth is so assumed, it is then possible to 
account for it by imaging the antenna in the earth. For example, 
given a single cone with axis vertical above earth (Fig. 12-08a), the 
boundary condition of zero electric field tangential to the earth may be 
satisfied by removing the earth and utilizing a second cone as an image 
of the first. The problem then reduces to that of the biconical antenna 
studied previously. Note that current is in the same vertical direction 
at any instant in the two cones. Given a single wire above earth and 
parallel to it, as in Fig. 12-086, our knowledge of symmetry in the trans-
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mission line problem tells us that the condition of electric field lines 
normal to the earth is met by removing the earth and placing the image 
with current in the opposite horizontal direction. Generalizing from 
these two cases, we guess that current direction in the image will be 
selected so that vertical components are in the same direction, hori¬ 
zontal components in opposite directions at any instant. An example 
is shown in Fig. 12-08c. 

The technique of replacing the earth by the antenna image, of course, 
gives only the proper value of field above the earth plane. The proper 
value below the perfectly conducting earth plane should be zero. For 
example, given a long straight vertical antenna above earth, excited at 
The base, the image reduces the problem to that solved in Art. 12 06. 
Field strength for maximum current Im in the antenna is given exactly 
by Eq. 12-06(2) for all points above the earth (0 < 0 < ir/2), but is 
zero for all points below (ir/2 < 0 < ir). Thus, for power integration, 
the integra l of Eq. 12 06(4) extends only from 0 to tt/2, and radiation 
resistance is just half that for the corresponding complete dipole. 

vhn2 Cw/2 [cos (W cos 0) - cos kl]2
If =-I -—-d0 watts (1) 

4tt Jo sin 0 

Thus, for a quarter-wave vertical antenna above earth, the radiation 
resistance is just half that of the half-wave dipole of Eq. 12-07(3). 

Rr = 36.54 ohms . « (2) 

PROBLEMS AwcAVc 
12-08a Prove by a study of the resulting vector potential the same vertical 

direction, opposite horizontal direction rule for image currents given :n the preceding 
article. 

12-08& Simpson’s rule is useful for evaluation of the radiation integrals. If 
the area to be evaluated is divided into 2m even-numbered portions by (2m + 1) 
lines spaced an equal distance A apart, and values of the function at these lines 
are/o, fi, • • • , fzm+i, then the area under the curve is approximately 

7 = ~ K/o + f im) + 1(/1 + fs + • • ■ + Am-l) + 2 (A + /< + • • ■ + Am—2)] ó 

Evaluate the integral of Eq. 1208(1) for a vertical quarter-wave antenna above 
earth, kl = tt/2, using in = 3 in Simpson’s rule. Calculate the radiation resistance 
and compare with (2). 

12-09 SYSTEMIZATION OF POYNTING CALCULATIONS 

In using the Poynting integration for calculation of radiated power 
from antennas, many of the same mathematical approximations are 
introduced each time the method is employed. Short cuts are soon 
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discovered and are extremely time saving. It will be desirable there¬ 
fore to place these on a systematic basis. Schelkunoff has given this 
systemization in the literature.4

In the Poynting method, field is usually calculated at a great distance 
from the radiator. The following assumptions are then justified. 

1. Differences in radius vector to different points of the radiator are 
absolutely unimportant in their effect on magnitudes. 

2. Differences in direction of the radius vector to different points on 
the radiator are negligible. 

3. All field components decreasing with distance faster than 1/r 
are completely negligible compared with those 
decreasing as 1/r. 

4. Differences in radius vector to different points 
on the radiator for purposes of finding phase 
differences are taken as r' cos of Fig. 12-09, where 
r' is the radius to the radiating element from 
the origin, the angle between r' and r, and r is the 
radius from the origin to the distant point at which 
field is to be calculated. 

Consider the vector potential at point P, distance 
r from the origin of a radiating system made up of 
current elements arranged in any manner what¬ 
soever, the element a shown at radius r' from the 
origin being one of these. 

Fig. 12 09 Coor¬ 
dinates of general 
current element at 
a and distant point 
P with respect to 

origin 0. 

By the assumptions listed above, and e’“‘ understood, 

Ã = u— I iaejkr‘cos * dV 
lier Jv 

(1) 

The function of r is now completely outside the integral; the integral 
itself is only a function of the antenna configuration, current distribu¬ 
tion assumption, and direction in which field is to be calculated. 
Define this integral as the radiation vector Ñ. 

Ñ = \v êikr'C°^ dV' (2) 

Then Ã = g —— Ñ (3) 
4irr 

4 S. A. Schelkunoff, “A General Radiation Formula," Proc. I.R.E., 27, 660-660 
(Oct., 1939). 
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In the most general case, Ã, and hence N, may have components in 
any direction. In spherical coordinates, employing the unit vectors, 

e~ikr
A = n —-— [ãrN r + ãfNe + ã^N^] 

4 irr 

A study of the equation B = V X Ã in spherical coordinates (Art. 
2-39) shows that the only components which do not decrease faster than 
1/r are 

H, = =^e-ikrNt (4) 
gr or 4irr 

nr or wr 
An examination of 

Ë = -§V(V -Ã) - juÃ 

shows that the only components of Ë which do not decrease faster than 
1/r are 

E, = - e~]krNB E.= - J~ e-ikTN. (5) 
4irr 4irr 

The Poynting vector Ë X H has a time average value 

Total time average power radiated is 

W = f Í Prr2 sin 0 d0 d<f> 
Jo Jo 

=¿ £ r n ^i 2+k i2isin °de (7)

The expression is independent of r, as it should be. 
The Poynting vector P gives the actual power density at any point. 

However, to obtain a quantity which gives the information of direction 
only, define K, radiation intensity, as the power radiated in a given 
direction per unit solid angle. This is the average value of P on a 
sphere of unit radius. 

k = ¿[K|2 + K|2] (8) 
OA 

and — JI JI K sin 0 d0 d<t> (9) 
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A plot of K against direction may then define the radiation pattern. 
If should be recognized that this is a power radiation pattern and not a 
field strength radiation pattern. 

Currents All in One Direction. If current in a radiating system 
flows all in one direction, this may be taken as the direction of the axis 
of a set of spherical coordinates. Ã (hence Ã) can have a z com¬ 
ponent only. Then 

A* = 0 N, = -N, sin 0 (10) 

A = ¿ I Sin2 6 ÖA 

Circularly Symmetric Currents. If all current in some radiating sys¬ 
tem is circularly symmetric about an axis, this axis may be taken as the 
axis of a set of spherical coordinates. Ã (hence Ã) can have a </> com¬ 
ponent only. Then 

K-AW ÖA 

and IF = 2t f K sin 9 d9 (H) 

Useful Relations for Spherical Coordinates. It sometimes may be 
desirable to calculate Ne and from the cartesian components Nx, 
Nv, Ntl

N» = (Nx cos <t> + Nv sin </>) cos 6 — Nt sin 9 (12) 

= —Nx sin <t> + Ny cos <t> 

The angle V* appearing in the equation for radiation vector (2) may 
be found as follows, if 9, <p are the angular coordinates of the distant 
point P, and 9', <p are angular coordinates of the variable point a on 

the element, Fig. 12-09. 

cos = cos 0 cos 9' + sin 0.sin 9' cos (<> — <>') (13) 

12-10 PROGRESSIVE WAVE ON A STRAIGHT WIRE 

As an example of the application of the general 
relations derived in the preceding article, let us 
consider a straight wire extending from z = 0 to 
z = I, excited by a single traveling wave of current, 
assumed to be unattenuated and with phase velocity 

equal to l/Vne (Fig. 12-10). As all current is in the z direction, 
the radiation vector of Eq. 12-09(2) will have only a z component. 

Fig. 1210 Thin 
wire of length I sup¬ 
porting a progres¬ 

sive wave. 



12-10 RADIATION 509 

The special forms of Eqs. 12-09(10) then apply. 

Nz = Io e-jk1 ' ejkz'coae dz' 

_ /0[l -
jk(l — cos d) 

i N i 2/0 sin [(A:¿/2)(1 - cos 0)] 
k(l — cos d) (1) 

’ll P ■ 2 « sin2 [(A:Z/2) (1 — cos e)] . , l = — sm“ 0 = —-T-—-;-sin 0 
8X2 2X2 fc2(l — cos O}2 (2) 

Also, since there is symmetry about the axis, 

IF dd o 

If the above integral is evaluated,5

kl 
W = 30/o2 - Ci 2kl + (3) 

sin3 0 sin2 [(W/2)(l — cos 0)] 

IF = 2ir 

(1 — cos 0)2

/c2(l — cos 0)2
K sin 0 dd = 2r 

o 
rr/o2»jsin2 [(/c//2)(l - cos 0)] . 
Io - sm 0 dd 

sin 2kl 
2kl " 

From the general discussion of wave antennas in Art. 12-02, it might 
be expected that this single traveling wave would produce a maximum 
of radiation in the direction of wave propagation. Actually, radi¬ 
ation is zero at 0 = 0 as seen from (2), but only because radiation from 
each element of current is zero in that direction. A study of the form 
of (2) would reveal that lobes near 0 = 0 will be the largest, and those 
near 0 = tt will be small. 

PROBLEMS 

12-lOa Plot the form of radiation intensity as a function of Ö for kl = r, 2tt, 4tt. 
Find the direction and value of maximum gain for kl = ir. 

12-lOb Apply the generalized method of Art. 12 09 to the long antenna with 
sinusoidal current, showing that the same results as in Art. 12 06 are obtained for 
power radiated. Show in particular that the radiation intensity of a half-wave 
dipole is 

15 2 COS2 [(tt/2) COS 0] 
ir sin2 d 

6 Stratton, Electromagnetic Theory, p. 445. 
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12-11 SMALL CIRCULAR LOOP ANTENNA 

We wish now to 

Fig. 1211 Circular 
loop carrying current. 

apply the generalized forms to a circular loop 
antenna, assumed small in circumference com¬ 
pared with a wavelength, and with constant 
current about the circumference. Because of 
the symmetry about the axis (Fig. 12-11), we 
may use the special forms of Eq. 12-09(11), 
and N# may be computed at </> = 0 since it 
is independent of angle. The coordinates of 
the element of the antenna are </>' and O' = ir/2. 

Loop radius is a. Then, from Eq. 12-09(13), 

cos = sin 0 cos </>' 

o ejka 3,n e cos <l>' a d<t>' 

~ I J [1 + jka sin 0 cos </>'] cos </>' a d<t> = jk-irla2 sin 0 (1) 

The radiation intensity, 

K = —, k2ir2I2a4 sin2 0 = — (ka)4 I2 sin2 0 
8X2 32 

The power radiated, 

IF = 2?r Í K sin 0 dO = — (ka)4!2 
Jo 12 

The radiation resistance, 

Rr = -- = — (ka)4 = 20ir2(ka)4 ohms 
6 

(2) 

(3) 

(4) 

This is the same as the result found in Art. 5-13 by a consideration 
of induced fields about the circuit. The relation between the two 
methods of radiation calculation will be discussed in the following 
article. 

PROBLEMS 

12-lla What current is required to radiate 100 watts from a loop of circum¬ 
ference equal to 0.1 wavelength? 

12-llb Compare the form of the radiation intensity from the small loop with 
that from the small dipole. Compare the variation of electric and magnetic fields 
with angle in the radiation field. (Note that these may be derived simply from 
the radiation vector.) On the basis of this comparison, explain why the small 
loop is frequently called a magnetic dipole. 

12-llc Find the maximum gain of the small loop antenna. 
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12-12 THE INDUCED EMF METHOD 

We have seen that a Poynting integration of distant fields gave the 
same result for power radiated from a small loop antenna as was found 
by a consideration of retardation of the induced fields in Chapter 5. 
This verifies that the power loss found there does leave the circuit as 
radiation, but also suggests that the method might be useful in antenna 
calculations. It has been so used, and is called the induced emf 
method. The calculation for the loop in Art. 5-13 may then be con¬ 
sidered one example of the method. Before considering another, 
several things may be said. 

First, it is important to note that, for a given assumption of current, 
one should expect the same result by the two methods. Certainly 
the fields are fixed and are determined by the same equations in the 
two cases. Moreover, in the induced emf method, radiated power is 
computed by integrating over the conductor surface the product of 
surface current density and in-phase component of induced electric 
field, and this actually amounts to finding the average Poynting flow 
through a surface taken along the conductor, since surface current 
density is equal to tangential magnetic field. The average Poynting 
flow should be the same through this surface as through the large 
exterior sphere utilized in the other method, since there are no sources 
between. 

There are some conceptual difficulties in the method, somewhat like 
those discussed earlier (Art. 12 04) for other methods. In the present 
method, the difficulties arise mainly with the applied fiekl. For we 
know that total field, applied and induced, must add to zero along the 
antenna surface if it is taken as perfectly conducting. For various 
forms of applied field, distributed over the antenna as when excited 
by a wave from a distant antenna, or localized near a gap when excited 
from a transmission line, the induced field should then take on corre¬ 
spondingly different forms so that field is properly zero along the con¬ 
ductor. However, we take no account of this, assuming a given 
current distribution (which fixes the distribution of induced field), and 
applying the results to antennas having a variety of excitation with 
practically useful results. Apparently integrated effects come out 
nearly the same for the different forms of applied field. 

There are also practical limitations to the usefulness of the method. 
It is seldom easier to perform the integrations for this method than 
for the Poynting method of previous articles, and yet it tells nothing 
about the form of the distant field. Because it is concerned with 
conditions near the antenna, it seems that it might tell us more about 
antenna impedance, yet it is difficult to carry out for other than 
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filamentary currents, and we have found earlier that reactive calcu¬ 
lations for such filamentary paths yield infinite results. It has, how¬ 
ever, been applied as a step in more powerful methods of finding 
antenna impedance, and has been extended to give mutual effects 
between radiators. It is also of importance in adding to one’s concepts 
of radiation. The form for radiation resistance given in Eq. 511(7) 

___ assumed a constant current. Let us 
consider as another example a form 

zz \ useful for straight wire antennas such 
z I I 1 dz' * as the dipole pictured in Fig. 12-12 

„. with variations in current magnitude 
considered. If current on the antenna 

has a distribution I = I0/(z), where /(z) is assumed real, vector 
potential at any point z is given as 

4 _ r P 
2 “ M “J-i 4^z -z'| dZ (1) 

Radiated power is obtained by integrating the component of electric 
field tangential to the antenna and in phase with current. We are 
interested then in the real part of Ez, which is the negative of applied 
field Eq. 

IF = ¿ J_; I I II ßo \ dz = - I J 11 / I Re {Et) dz (2) 

Referring to Eq. 4-17(7), 

Re (¿\) = -ju Im(Aj + p Im 

And, from (1), 

Im (A J = 
juh f ' f(z’) sin k\ z - z' I, 
- ■ I -i-—;- dz 
4ir J-I z — Z 

(3) 

(4) 

This integral can be evaluated for certain forms of /(z). However, it 
is sometimes easier to proceed by series methods. If the sine term of 
(4) is expressed as a power series, it can be shown that 

Im (A A 
k~ k4

«o —  tv (z~ao + 02) + — (z4ao 4- 6z2«2 + 04) + ■ • • 
o ! 5 ! 

(5) 

= Jo WVt2') dz' (6> 

2fijkl 0 
4ir 
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Substitution in (2) and (3) yields 

3r 

¿2 ^4 
ao2-— a 002 + 777 (ao«4 + 3a225 140 

lr = ' 

We may define a radiation resistance in terms of Iq. 

Iir = V® — SOfc2 ao"-— aoa2 + 777 (a0a4 + 3a22) + 
/o L o 140 

• (8) 

a half-wave dipole I = X/4, and /(z) is taken as cos kz. From For 
(0), 

1 
k 

a2 (z')2 cos kz' dz' 
[(tt/2)2 - 2] ~ 0.407 

k3 - k3

CX/4 , „4 . , , , rW2)4 - 12(t/2)2 + 24] _ 0.479 
«4 = (z ) cos kz dz = - ---5-—7— */ 0 IC K 

Substitution in (8) then gives a radiation resistance of about 73.2 
ohms, which checks the previously derived result. 

Arrays of Elements 

12-13 SUPERPOSITION OF EFFECTS AND MUTUAL INTERACTIONS 

If there are several complete radiators operating together, currents 
might be assumed over the entire group, and a complete calculation 
made for total vector potential Ã (or for the total radiation vector, 
Ñ). However, as a practical thing, the synthesis of special antennas 
is often accomplished by putting together elements for which, as 
isolated antennas, calculations have already been made. Not only 
may some labor be saved in calculating such cases, but it is also possible 
in this way to determine the effects of various changes or additions to a 
structure and thus to attain a desired and special radiation pattern in 
space. The problem then is to know how to superpose the separate 
and known radiation characteristics to yield the over-all radiation 
characteristics of the combination. 

If calculations for the potentials or fields from each of the radiators 
operating separately are already available, the fields may be superposed 
to obtain total fields, and, from these, total power by a Poynting inte¬ 
gration. Suppose that, in a case with two separate radiators, the 
component fields are known as E^, H^, etc., due to radiator 1, and 
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E«2, due to radiator 2. The Poynting theorem as written in 
Eq. 7 03(12) then gives an average value of Pr, 

Pr = } Re [{EnH„* - E^H ei*\ + \E,2H^ - E^Hti *} 
+ [Ee2H^ + EnH^ - E^HS2* - E^H^}\ (1) 

The first term is the power due to the first radiator alone; the second is 
that due to the second radiator alone; the third term is a mutual power 
due to interaction of fields from the two. The mutual term would be 
obtained in the induced emf method from components of induced 
fields from charges and changing magnetic effects of the' first radiator 
in phase with currents of the second radiator, and vice versa. It must 
be emphasized that current distribution assumptions over all radiators 
are still required for either method, and these may be difficult to 
make when it is necessary to consider the mutual interaction of several 
radiators. The induced emf method gives some clue to this mutual 
effect upon cürrent distribution, and Carter6 has by this method calcu¬ 
lated mutual effects of parallel linear radiators, interpreting the prob¬ 
lem of finding relative current distributions between several such 
radiators as a circuit problem. 

Especially important is the problem of identical radiators with 
similar current distributions (though 
magnitudes and phases of currents in 
individual radiators need not be the 
same). The radiation vector for one 
of these alone may be calculated as 
Ñ o- Differences in the distances from 
the radiators to a far removed point 
where field is to be calculated is again 
important only as it affects phase 
differences, and not as it affects 
magnitude or direction. Thus the total 
radiation vector for the system of 

radiators, if these all have the same orientation, may be written 

Ñ = iŸ0(CiC tri'CO8*1 + C2ejtrj’cos * + • • •) (2) 

Ci, C2, etc., are complex numbers giving the relative magnitudes and 
phases of currents in the several individual radiators; rf, r2, etc., are 
radii from the common origin to the reference origin of the individual 
radiators; ^1, ^2, etc., are the angles between r/, r2 and the direction of 
the radius from the common origin to the point at which field is to be 
calculated (Fig. 12-13). It follows that the total radiation intensity 

• P. S. Carter, Proc. I.R.E., 20, 1004-1041 (June 1932). 

Fig. 1213 Coordinate system 
for a general array. 
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may be written in terms of the radiation intensity Ko for one radiator 
alone. 

K = Ko| + C2e;i^' CO8 *’ + • • • |2 (3) 

The use of these forms will be clearer from the examples to follow. 

PROBLEMS 

12-13a A section of parallel-wire transmission line when properly terminated 
may be approximately considered as two wires along which waves are propagating, 
the currents being opposite in phase at any point along the line. Neglect the 
radiation from the termination and the mutual effect between the termination 
and the lines, and compute the radiated power from the line by the method 
described in Art. 1213. Use results for a single wire with traveling wave from 
Art. 1210. 

1213b Given a radiator with horizontal current elements cnly of radiation 
intensity Kg, show that, if this is placed at a height h above earth which may be 
assumed plane and perfectly conducting, 

K = 4Kq sin2 (kh cos 9) 

The vertical direction is taken as the axis, 9=0. 

12T3c How is the result of Prob. 1213b revised if the 9=0 axis is taken 
horizontal and the vertical direction defines 0 = 0? 

12-13J What conclusions similar to those of Prob. 1213b can be derived for 
antennas with vertical current elements only, if placed with their reference origin 
a distance h above earth? 

12-14 EXAMPLE: ARRAY OF TWO HALF-WAVE DIPOLES 

Consider two half-wave dipoles separated by a quarter-wavelength 
and fed by currents equal in magnitude and 90° out of time phase, as in 
Fig. 12-14a. For a single dipole (Prob. 12- 10b), 

Ko
15 2 cos2 [(ir/2) cos 0] 
ir sin 9 

For the two dipoles with the origin as shown in Fig. 1214a, 

A 7T 
ri =0 r2 = - 02 = - 0/ = 0 

4 2 

so cos /í = sin 3 cos 0 

If /2 = /iC-y(r/2)

Then K = Ko\ 1 + |2

4Æo cos2 - (sin 3 cos 0—1) 
_ 4 

A horizontal radiation intensity pattern is plotted in Fig. 12- 14b. 
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Fig. 12-14a Combination of two half-wave dipoles. 

Fig. 12-146 Polar plot of relative power intensity radiation for Fig. 12-14a in the 
plane 9 = jr/2. 

PROBLEM 

12-14 Plot radiation intensity patterns for the following half-wave dipole arrays 
in vertical and horizontal planes. 

(a) Two parallel dipoles fed in phase with equal currents and placed X/2 apart. 
(&) Four parallel dipoles fed in phase with equal currents and spaced X/2 apart 
(c) Two dipoles placed end to end, fed in phase with equal currents. 
(d) Same as (c) but with four dipoles. 
(e) Same as (d) but with a perfectly conducting reflecting plane parallel to the 

dipoles at distance X/4. 
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12-15 THE RHOMBIC ANTENNA 

The rhombic antenna7- 8 has four wire elements which form, the 
boundary of a rhombus in space, as shown in Fig. 12-15. 

The antenna is fed at 0 and terminated at A by the proper resist¬ 
ance; therefore energy travels along the wires only from 0 toward A, 
no reflected waves traveling back from A toward 0. This may be 
analyzed as a system of combined elements, the elements having 
energy traveling along them in only one direction. Since the elements 
do not have the same orientation, addition must be by components. 

The radiation vector for a single wire with encrgj- traveling at the 
velocity of light in only one direction, has only the direction of 
the wire (Art. 12-10). 

HI _ 1— cos r 

n. = = 4 (1)jk(l — cos jk 

The subscript s denotes the direction of the wire, and is the angle 
between the wire and the radius vector to the distant point (r, 0, </>) at 
which field is desired. The angles for the various elements, in terms 
of the coordinates shown in Fig. 12-15, are found to be 

cos ^oc = cos \l/bA = sin 0 cos (</> + a) 
(2) 

cos ^0D = cos ̂ ca = sin 0 cos (0 — a) 

The currents at 0 for OC and OD are 180° out of phase. They may 
be taken as I and — I. The currents at the beginning of CA and DA 

' Donald Foster, Proc. I.R.E., 25, 1327-1353 (Oct. 1937). 
8 Bruce, Beck, Lowry, Proc. I.R.E., 23, 24-46 (Jan. 1935). 
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(at C and D respectively) are then Ie ikl and - Components of 
radiation vector may now be added, taking into account the differences 
in phase with respect to the common origin 0. 

^OC — 1" OD — 0 Tck — Tax — I 

So Nx = cos a[2Vi + N2 + N3eiklcos'l'°c + Nieiklcoa'l'°I>] 

Nv = sin a[-Ni + N2 + N3ejklcos - N4elklcos'l'o‘1] 

N, = 0 

where N{— ftyoc) île 

[e M 
N3 = ‘ T /GAod) 

jk 

and /(^) is defined by (1). 
Define also 

^2 — .. ftyoo) 
jk 

N< = -I; Jk 

S = Sty oct od) = — 
e—jkl(l — cos ^0D)j e—jkl(\—eos ^oc) ][ i 

(1 — COS ^oc)(l — COS too) (3) 

Then Nx
IS COS a 

~r [cos toe 
Jk cos too] 

2IS . 
=-— sin 9 sin t sin a cos a (4) 

jk 
Similarly, 

2IS . 
Nu —-— sin a(l — sin 9 cos </> cos a) (5) 

The components of radiation vector in spherical coordinates may 
be written in terms of the cartesian components Nx and Nu [Eq. 
12-09(12)]. 

2IS 
Ne = (Nx cos </> + Ny sin </>) cos 9 = -;— sin a sin </> cos 9 (6) 

jk 
2IS 

N^ = (—Nx sin t + Ny cos t) =-— sin a [cos t — sin 9 cos a] (7) 
Jk 

The radiation intensity is [Eq. 12-09(8)], 

K =¿[| Ne I2 + I N. I2] OA 

(8) I ä 12 [sin2 t cos2 9 + (cos t — sin 9 cos a)2] sin2 a 
_ 4I2V
- 8X2fc2
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By trigonometric substitutions in the quantity in brackets, 

4/%2
K = ■— I S 12{[ 1 — sin 0 cos (</> + a)][l — sin 0 cos (I — a)]] sin2 a 

4I2n 
= I 'S 12[1 - COS loc][l - cos l o;j] sin2 a (9) 

oA rC 

S, defined by (3), has a magnitude, 

. , i 4 sin [(M/2)(l — cos Id] sin [(H/2)(1 — cos loo)] 
(1 — cos loc)(l — cos loo) 

so 

240/2 . „ sin2 [(A:Z/2)(1 — cos loe)] sin2 [(fcZ/2)(l — cos loo)] 
A =-sin a---——-— -

7T (1 — COS loc)(l — COS loo) 

(10) 

where toe and /on are defined by (2). 
From this expression for radiation intensity, it is seen that, for large 

values of kl/2, K may become zero many times (each time cos lœ, 
cos loo are unity, or when (kl/2)(1 — cos I) = mr). The radiation 
pattern may then have many lobes. By properly proportioning the 
angle a and the length I, these lobes may be changed in relative magni¬ 
tude and the directivity pattern altered greatly. 

If a horizontal rhombic antenna is located at height h above a plane 
earth which may be considered perfectly conducting, the result of Prob. 
1213b may be applied directly to find total radiation intensity. 

K = 4Ao sin2 (kh cos 0) (11) 

Ao is the radiation intensity for a single rhombic by (10). 

PROBLEMS 

12-15a For a rhombic with I = 3.5X, a = 24°, plot a vertical radiation intensity 
pattern (in plane <> = 0) and a horizontal pattern (in plane 0 = ?r/2). 

12-156 How is the vertical pattern revised if the rhombus is placed 2X above 
earth? 

12-16 LINEAR ARRAYS 

An especially important class of arrays is that in which the elements 
are arranged along a straight line, with an equal spacing between 
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elements, as indicated in Fig. 12-16a. Let the line be the z axis, with 
the basic spacing d and coefficients ao, ai, • • • ün— i representing 

the relative currents in elements at 
z = 0, d, • • • , (N - l)d. (Note 

---*-•-• that any of the elements can be 
missing, in which case the coefficient 

Fig. 1216a Coordinate system for a ¡s zero , so elements need only 
linear array. , « . . . 

be ot commensurate spacing instead 
of equal spacing.) If the elements have a radiation vector Ño, 
Eq. 12-13(2) becomes for this case 

N = N0[a0 + a!^ 00” + • • • aN_iei(N-" kd cos ’] = ÑoS(0) (1) 

Where S(0) may be called the space factor of the array, 

v-i 

SW = X aneinkdcose 
n = 0 

(2) 

The radiation intensity from Eq. 1213(3) is then 

K = Ko| S| 2 (3) 

Broadside Array. If all currents in the linear array are equal in 
magnitude and phase, it is evident from physical reasoning that the 
contributions to radiation will add in phase in the plane perpendicular 
to the axis of the array (0 = ir/2). For this reason, the array is called 
a broadside array. Moreover, it is evident that, if the total length I is 
long compared with wavelength, the phase of contributions from 
various elements will change rapidly as angle is changed slightly from 
the maximum, so the maximum in this case would be expected to be 
sharp. To see this from (2), let all an = ao. 

V—1 

S(0) = a0 2 einkdcos6 
n = 0 

I _ gjNkdcosO 
a° J _ ¿kd cm » (4) 

The summation above is effected by the rule for a geometric progres¬ 
sion. Then 

2 sin21 (Nkd cos 0) 
u sin2 î (kd cos 0) (5) 

Relation (4) is plotted as a function of (kd cos 0) in Fig. 12-166 for 
N = 10. Note that the peak of the main lobe occurs at kd cos 0 = 0 
(or 0 = ir/2) as expected. The width of the main lobe may be 
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described by giving the angles at which radiation goes to zero. If we 
set these angles as 0 = ir/2 + A/2, 

Nkd cos 
7T A 

A = 2 sin (6) 

The last approximation is for large N. So we see (hat the beam 
becomes narrow as l/X becomes large, as predicted. 

Fig. 1216b Plot of space factor and approximation with 10 elements. is kd cos 9 
for a broadside array and (1 — kd cos 0) for an end-fire array. 

If N is large, the denominator of (5) remains small over several of 
the lobes near the main lobe. Over this region it is then a good 
approximation to set the sine equal to the angle in the denominator. 

sin21 (Nkd cos 0) 
(i Nkd cos 0)2

This approximation is compared as a dotted curve with the accurate 
curve for N = 10 in Fig. 12- 16b, and is found to agree well over several 
maxima. Thus, for large N, this universal form applies near 0 = ir/2 
and the first secondary maximum is observed to be about 0.045 of the 
absolute maximum, or 13.5 db below. 

The gain of an array is usually expressed as though the elements 
were isotropic radiators. The gain is of course modified if actual 
elements having some directivity are employed, but, for high-gain 
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arrays, the modification is small. (Note that it is not correct to 
multiply gain of the array by gain of a single element.) For the array, 

g = - ^1 - (8) 
2tt Jo | S | 2 sin 9 d9 

The high-gain broadside array gives most of its contribution to the 
integral in the denominator near 9 = ir/2, where the approximate 
expression (7) applies. 

2 sin 9 d9 = 
2Niaoi sin2 ^/2 W 
Nkd Jo (^/2)2 *'"* Nkd 

7F 

? 

From (8), 
-V2««2 , 21

<J ~ *r2 2 x A W = T 1V a o“7T A 
(9) 

End-Fire Arrays. If the elements of the array are progressively 
delayed in phase just enough to make up for the retardation of the 
waves, it would be expected that the radiation from all elements of 
the array could be made to add up in the direction of the array axis. 
Such an array is called an end fire array. To accomplish this, let 

an = aoe->nkd (10) 
Then in (2) 

N-X i _ p—jKkd(l — cos 8) 
C _ „„ p-jnkd(l-cos 8) _ *-*- MM 
° —  “0 e “° j _ g—jkd(l- cos 8) V* 1' 

n =0 

sin2Wd(l-cos_g)] 2 (12)
1 1 sin2 j[M(l - cos 6)] 

By comparison with (5), it is recognized that the plot of Fig. 12-166 
made for a broadside array may be utilized for the end-fire also if the 
abscissa is interpreted as kd(l — cos 0). The pattern as a function 
of 9 of course looks different, but the ratio of secondary to primary 
maxima is the same. It may also be shown to follow that the formula 
for gain (9) applies also to an end-fire array with large l/X. To obtain 
the angular width of the main lobe, let A/2 be the angle at which S 
goes to zero. 

Nkd ( 1 — cos -J = 2tt 

(13) 
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Polynomial Formulation of Arrays. If we let 

(14) ç = _ ejkd cos e 
equation (2) may be written as a polynomial in f. 

N-l 
s = X 

n = 0 
(15) 

Schelkunoff9 has shown that useful results may be obtained by con¬ 
sidering the properties of this complex polynomial relation between 
S and f. The location of the zeros of >S in the f plane are especially 
important. 

Note first that real 0 corresponds to values of f on the unit circle 
with phase angles between — kd and 
kd. All, a part, or none of the 
N — 1 zeros of »S may occur in this 
part of the unit circle. When they 
do so occur, they correspond to true 
zeros of the pattern, or “cones 
of silence.” The broadside array, 
Eq. (5), has its zeros spread out 
uniformly over the entire unit circle 
except for the missing one at = 0 
(Fig. 12-16c), where the very large 
main lobe builds up. One approach 
to the synthesis of arrays is then 
that of positioning zeros on this 

Fig. 1216c Location of zeros of 
polynomial representing a uniform 

broadside array. 

picture so that they are close together where the pattern is to 
be of small amplitude, and farther apart where it is to build up to a 
relatively large value. Potential analogues to the complex function 
are useful in this synthesis procedure. 

PROBLEMS 

12-16a Set up the exact formula for gain of an array of elements which are not 
isotropic radiators. Show that it is not correct to set tne gain equal to the gain 
of the element alone multiplied by the gain of the array. Explain physically why, 
for high-gain array, the over-all gain is nearly that of the array. 

12-166 Derive formula (9) for the approximate gain of an end-fire array with 
large l/X. 

12-16c Show the location of the zeros of S in the f plane for the end-fire array. 

9 S. A. Schelkunoff, “A Mathematical Theory of Linear Arrays,’’ Bell Sys. Tech. 
J., 22, 80-107 (Jan. 1943). 
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12-17 LIMITATIONS ON DIRECTIVITY 

If we limit ourselves to linear arrays with currents in phase, it can 
be shown that the uniform array (one with all currents of equal 
amplitude) gives more gain than arrays with non-uniform excitations. 
However, still greater gains are possible in principle if one goes to 
excitations of other phases. Arrays having more gain than the uni¬ 
form array are known as super-gain arrays. 

In terms of the picture in the f plane, as given in the preceding 
article, we see that for an element spacing less than a half-wavelength 
{kd = tt) the range of real 0 covers only a part of the unit circle. The 
uniform array, however, has its zeros spread over all the unit circle, 
so some are “invisible.” Schelkunoff has shown that arbitrarily high 

Fig. 1217 Positioning of 
zeros of polynomial to produce 

a super-gain array. 

gain for a given antenna size is possible in 
principle by moving the zeros into the 
range of real 9, properly distributed to give 
the desired directivity (Fig. 12-17). The 
trouble here is that a monstrous lobe 
builds up in the “invisible” range from 
which the zeros have been eliminated, 
which might seem to be of no concern, but 
it turns out to represent reactive energy 
and so is of importance. It is surprising to 
find the rapidity with which this limitation 
takes over. For high-gain broadside 
arrays, no significant increase in gain is 
possible over that of the uniform array be¬ 
fore the reactive energy becomes impossibly 

large. 10 For end-fire arrays, a modest increase is possible, and has 
been utilized in practice. 11 Another way of stating the above limita¬ 
tion is that currents of the elements become huge for a given power 
radiated and fluctuate in phase from one element to the next so that 
it would be impossible to feed such an array. 

A more direct physical picture is provided by looking at the problem 
from a wave point of view. Imagine that we are attempting to pro¬ 
duce a high-gain broadside array with a thin pancake pattern near 
the equator. We may imagine the distant fields (770 and E,) of this 
pattern expanded in a series of the spherically symmetrical TM modes 
of the type studied in Art. 10 09. If the pattern is to be sharp, it is 
clear that we shall require waves of very high order to represent this 

10 L. J. Chu, J. Appl. Phys., 19, 1163-1175 (Dec. 1948). 
11 W. W. Hansen and J. R. Woodyard, Proc. I.R.E., 26, 333-345 (March 1938) 
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pattern (order of 2tt/A for a narrow beam of angle A). A study of the 
Hankel functions shows that these change character at a radius such 
that n is of the order kr, becoming rapidly reactive for radii less than 
this value. Hence, the antenna boundary must extend approxi¬ 
mately to this radius if excessive reactive power is to be avoided. 
That is 

X IT A 

which gives a relation between angle and length equivalent to that for 
a uniform broadside array, Eq. 12-16(6). The phenomenon is a cut-off 
of the type found in sectoral horns, Art. 9-12, where it was found that 
reactive effects caused an effective cut-off when the cross section 
became too small to support the required number of half-wave vari¬ 
ations in the pattern. The rapidity with which the limitation takes 
over must again be stressed. For an array 50 wavelengths long, a 
halving in size from that of the uniform array would require reactive 
power 10 59 times the radiated power. 

It should not be inferred from the above discussion that uniform 
arrays are always best. Often the side-lobe level (13.5 db) is higher 
than can be tolerated. These can be reduced at a sacrifice in gain. 
Dolph 12 has given the procedure for finding the array of a given 
number of elements which gives the lowest side lobes for a prescribed 
antenna gain, or highest gain for a prescribed side-lobe level. The 
polynomial S(f) in Eq. 12-16(15) has in this case the form of a Tcheby¬ 
cheff polynomial. 

PROBLEMS 

12-17<z By studying the properties of the spherical-wavè functions, verify the 
statements made above that wave orders up to at least 2tt/a will be required to 
represent thin patterns of angle A and that energy is predominantly reactive for 
radii less than nX/2ir. Demonstrate that at this transition radius, the number of 
sinusoidal variations in the pattern just fits the number of wavelengths about the 
spherical surface. 

12-176 Consider the following polynomials representing five element arrays 
with spacing kd = jr/2. 

Si(f) = (f -
SafD = (r - - e-' 2̂ 6) 

The first is a uniform array and the second a “super-gain” array, since it has all 
zeros in the visible range. Multiply out to display the relative element currents 
and comment on the comparison. Plot | S(0) | versus 0 for both arrays and 
compare. 

« C. L. Dolph, Proc. I.R.E., 34, 335-348 (June 1946). 
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Field and Power Calculations with Fields Assumed over a Surface 

12-18 FORMULATION IN TERMS OF EQUIVALENT CURRENTS 

For wire antennas of the type discussed in previous articles, it is 
fairly natural to assume a current distribution over the antenna. 
When this is done, radiation can be calculated, as has been outlined. 
For others of the examples of Art. 12 02, such as the electromagnetic 
horns, slot antennas, or parabolic reflectors, it would be difficult to 
make good approximations to current over the radiators. For these 
types, however, it is possible to make reasonable approximations to 
field over an aperture, and it turns out that radiation can be calcu¬ 
lated from this starting point as well. This is not unexpected, for 
Huygens’ principle states that any wave front can be considered the 
source of secondary waves which add up to produce distant wave 
fronts. The following formulations can be considered precise state¬ 
ments of this general principle. 

Of the several possible ways of formulating the equations for use 
with assumptions of field distributions near the source, the method 
chosen for the initial study is broken into steps, and it is possible to 
form relatively sound physical pictures for each of these steps. 13 

A neater but less revealing mathematical formulation will be given 
later in the article. The present study takes advantage of the tech¬ 
niques developed in past studies and follows these stages: 

1. Once the fields arising from the source are assumed over some 
known surface, it is possible to replace the currents and charges of the 
real source by imaginary current sheets over the surface where fields 
are assumed, t hese being selected to produce the fields assumed at that 
surface with the actual source removed. (The kinds and amounts of 
currents required are discussed later in this article.) 

2. The problem from this point on is of the same type as that worked 
previously: from some given distribution of currents, fields may be 
found and the radiated energy calculated by Poynting’s theorem. 

Suppose, for an example, that the field to the right of the conducting 
plane, region B of Fig. 12-18a, is desired. If the exact current and 
charge sources in region A to the left of the plane, the sources which 
actually produce the electromagnetic energy, were known, we could 
theoretically solve for the desired field, subject to the boundary con¬ 
ditions of the leaky plane. The mathematics would not be pleasant. 
However, if the field at the surface of the opening arising from those 

*’S. A. Schelkunoff, Bell Sys. Tech. J., 16, 92-112 (1936); Phys. Rev., 66, 308-
316 (1939). 
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sources were known exactly, it would do just as well, as far as region B 
is concerned, to replace the actual currents and charges of region A by 
fictitious currents and charges lying in the surface of the opening, pro¬ 
vided these could be made to produce the same fields at the opening. 
For, with the conditions over the opening unchanged, and all other 
boundaries of region B unchanged, the proper solution to Maxwell’s 
equations in region B would be unchanged. 

In general, the field that must be produced along the selected surface 
may have normal and tangential components of electric field, and nor¬ 
mal and tangential components of magnetic field. However, at any 
boundary it is necessary only to know the tangential magnetic and 

Sources 
Conducting 
y I'¡an« 

B 

Fig. 1218a Conducting plane 
with aperture. 

Fig. 12186. 

electric fields, for then Maxwell’s equations will provide the normal 
components (Art. 412). Let us consider then what fictitious currents 
must be placed over the opening in the absence of the actual sources to 
give the same fields in region B that the true sources in region A were 
causing. The problem is easy and old to us in the case of the tan¬ 
gential magnetic field. For, as. indicated in Fig. 1218b, a surface 
current density J on a given surface will result in a discontinuity of 
magnetic field components tangential to the surface and normal to J. 
That is, the difference between tangential II on one side of the sheet 
and that on the other, 

II tb - II la = J 

Thus, if the current sheet over the opening in the plane is to replace 
completely the effect of the sources in A which are producing a given 
lit tangent to the boundary, there must be a current density J on this 
sheet, given by J = lit in magnitude. The direction will be included 
if we write 

J = ñ X H (1) 
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where ñ is the_ unit vector normal to the surface pointing into the 
region B, and /7 is the total magnetic field. Such a current sheet will 
wipe out the tangential magnetic field on the A side of the surface (just 
as though there were no sources in A) but will leave a tangential field as 
before of magnitude J = II t on the B side. Thus the current sheet is 
exactly as effective as the source, which is now assumed absent, in pro¬ 
ducing tangential magnetic field at the boundary. 

Now, the replacing of the sources in so far as they produce tangential 
electric field would be just as quickly done if only there were such a 
thing as magnetic currents. Phen we could write that the magnetic 
surface current density M is 

M = -ñX Ë (2) 

Also, by analogy with the magnetic vector potential, which for surface 
currents is written 

je—ikr
—-dS 
4?rr (3) 

there could be defined an electric vector potential, say, 

(4) 

Maxwell’s equations, if there were such things as magnetic current im 
and magnetic charge pm, would be 

V • D = p. 

V • B = Pm 

rï . dB 
V X B = lm ~r~ (5) 

ol 

r- db 
V XH = 4-

dt 

and the fields at any distance from the source currents would be 
obtained from the two vector potentials Ã and F. 

- - jüj - 1 
E = -juA - V(V • A) - - V X F (6) 

A € 

- - - 1 -
II = —juF - - V(V • F) + - V X A (7) 

K u, 
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Although the above forms of the augmented Maxwell’s equations 
would be directly applicable if magnetic currents and charges were 
found in nature, that is not the point for the present discussion. We 
are using these names and symbols as equivalents, respectively, for 
tangential electric field and normal magnetic field at a surface. The 
intermediate quantities need not appear, since we could substitute 
— (ñ X È) for M in (4) and (ñ X H) for J in (3), so potentials would 
be given directly in terms of tangential field components. The advan¬ 
tage of the procedure is in the opportunity it gives to build physical 
pictures by analogies between the electric and magnetic sources. 
Stratton and Chu 14 have derived important basic forms in terms of the 
fields on a surface by directly integrating Maxwell’s equations. A 
typical form is 

- 7- f ! X + (ñ X Ë) X VH (ñ • ËM\ dS 
™ Js 

(8) 

H' = — f I-j^ñ X - (ñ X Ä) X - (ñ H)^} dS (9) 
*7r Js 

Ë' and H' are fields at any point inside the surface S, E and II arc the 
fields on the surface, r is the distance from the differential element dS 
to the point at which Ë' and II' are being evaluated, and ú = e~’kr/r. 
The above forms assume fields continuous over a closed surface. As 
we shall see, it is often expedient to assume fields only over an aperture, 
taking fields zero outside and thus introducing a discontinuity which 
Stratton and Chu take into account by adding contributions Ë" and 
H" resulting from charges on the discontinuity. These are given 
by the following integrals taken about the contour of the discontinuity. 

ë" = -4- 6 wh • dl (10) 
47rjw« ' 

11" =-— ¿ ̂ Ë • dl (11) 
4?rja>g / 

Because contour integrals as in (10) and (11) do not appear in the 
earlier formulation in terms of equivalent currents, the two methods 
would not appear to be equivalent. They are, however, as the terms 

“J. A. Stratton and L. J. Chu, Phys. Rev., 56, 99-107 (1939); also Stratton’s 
Electromagnetic Theory. 
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are implicit in that formulation because it is consistent with the con¬ 
tinuity equation. In following examples, we shall use the first formu¬ 
lation because of the advantages in breaking the calculation into steps. 

It should be stressed that the method would be exact if the exact 
fields over a complete closed surface surrounding the distant field point 
(and therefore including infinity) were known exactly. This is seldom 
the case, but we can often make good enough approximations to obtain 
useful results, as will be demonstrated in following articles. 

If we are concerned only with the radiation field, the usual approxi¬ 
mations appropriate to great distances can be employed, and the 
general formulation of Art. 12-09 extended. A magnetic radiation 
vector L may be related to vector potential F as Ñ was to Ã. Thus, 
consistent with the assumptions listed previously, 

p—jkr 
t-—L 

4?rr 
(12) 

L = kr’cos jy where (13) 

(14) 

So the radiation intensity, 

2' 2 
V 

(16) « 8X2 _ V V 

If electric and magnetic field components are now written in the 
usual way in terms of these two vector potentials, the only components 
not decreasing faster than (1/r) are 

e~ikr
= J (~VÑ. + Lt) H e = — — 

V 

Ns

II. = -e~ikr
E, = ~j — Wi + LJ 2Xr 

12-19 ELEMENTAL PLANE WAVE SOURCE 

The radiation vector and radiation intensity may be calculated for a 
differential surface element on a uniform plane wave. Such an element 
might be considered the elemental radiating source in radiation calcu¬ 
lations from field distributions, as was the differential current element 
for radiation calculations from current distributions. 

The plane wave source, that is, one that produces Ê and H of 
constant direction, normal to each other, and in the ratio of magni-
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tudes >7 over the area of interest may be replaced by equivalent electric 
and magnetic current sheets over that area, Fig. 12-19. 

If 

Ë = axEx and H 

the equivalent current sheets are 

Mv = -E x (2) 

If this is a source of infinitesimal area 
dS (actually it need only be small 
compared with wavelength for follow¬ 
ing results to hold), the radiation 
vectors N and L become simply 

Lu = -ExdS 
Fig. 1219 Small plane wave 
source and equivalent current 

sheets. 

The components in spherical coordinates: 

ExdS ExdS . 
;V ( =--—— cos </> cos 6 N* = - sin 

i? 

Lo = —ExdS sin </> cos 0 L* = —ExdS cos </> 

(3) 

According to Eq. 12-18(10) the radiation intensity in this case may be 
given by 

E^^dS)2
K = -—■ [( — cos </> cos 0 — cos </>) 2 + (sin </> + sin </> cos 0)2] 

K = 
Ex\dS) 2 

2i/X2
4 0cos -
2 (4) 

PROBLEM 

12-19 From (2) we see that the plane wave source is equivalent to crossed 
electric and magnetic infinitesimal dipoles. Find the fields for the latter, utilizing 
duality and the known results for the electric dipole in Art. 12-05. By super¬ 
position, find fields for the two crossed dipoles and show that the pattern is con¬ 
sistent with that found above. 

12-20 CIRCULAR APERTURE OR PARABOLIC REFLECTOR 

Consider next a circular aperture illuminated by a uniform plane 
wave polarized with electric and magnetic fields as shown in Fig. 
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12-20a. We assume that field sources outside this circular aperture 
are negligible, so the problem is best represented by transmission 
through a circular hole in an absorbing screen. However, the results 
may also apply approximately to a paraboloid of revolution in which 

Fig. 12-20a Circular aperture illuminated by uniform plane wave. 

Fig. 12-206 Approximate form of radiation pattern from a circular aperture for 
small 9. 

one attempts to obtain a uniform plane wave illumination in the plane 
of the aperture from an approximate point source placed at the focus, 
though in practice this exact uniformity is not obtained. 

We may utilize the results of the last article for radiation intensity 
from any small element of the plane wave, adding up contributions 
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2 
9. hr' sin 0)r' dr' (D 

(2) eos 

(3) 

(4) 

4* 
2nX2 C0S

4 
eos 

The </>' integration was effected by means of the integral 
/•2r 
Jo e’^^d^ = 2*J0(q) 

The remaining integration utilizes Eq. 3-28(3). 

For small 3 the bracketed part of the expression governs the pattern 
and is plotted in Fig. 12-206. Width of main beam between zeros is 
approximately 

from various elements as explained in Art. 12-13. For an element at 
r', <]>', as shown in Fig. 12-20a, the angle / is given by 

cos = sin 3 cos (</> — <£') 

Then utilizing the result from Eq. 12-19(4), 

ejlr'sin 9cos ̂~^r' dr' dd>' 
o 

gp 2 

2^X 2 

gp2

4 0 , Ji(ka sin 3) 2
2 I (ka sin 3) 

A«20O = 2X^ = ^ 
2ira a 

This corresponds to a gain of approximately 

/27T«V 
!7 ~ I —- ) A a » 1 

\ A / 

Note that this can be written in the form 

4/r 
ÿ = —5 X area A “ 

2Eu2Tr2a‘ 
K = --y-

which can be shown to be generally applicable to large apertures of 
any shape with uniform illumination. 

Equations (3) and (4) are useful in the design of paraboloid reflec¬ 
tors, though a practical parabolic reflector may differ from this ideal 
in several respects. The feed system placed at the focus to illuminate 
the paraboloid necessarily disturbs the radiation pattern somewhat. 
Also, the feed is not a point source; therefore it produces variations in 
phase and amplitude over the circular aperture not accounted for 
above. Sometimes the illumination is purposely decreased near the 
edges to diminish the side lobes caused by diffraction at the edges. 
Most often illumination is not uniform in angle about the axis, so 
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that the beam is wider in one plane than in another at right angles. 
Finally, radiation and diffraction effects from the supports may be of 
importance. 

PROBLEMS 

12-20a When a half-wave dipole is used as the feed for a parabolic antenna, the 
radiated pattern from the system is known to be broader in the E plane (parallel 
to the dipole) than in the H plane (perpendicular to the dipole). On the basis of 
what has been given, explain qualitatively why this is expected. What happens 
if the feed system itself is made too directive? 

12-20& Suppose that all radiation was confined to a cone of angle A given by 
(3) and was of constant amplitude over this cone. Give the gain and compare 
with (4). 

12-20c For ka = 10, give beam angle, gain, and plot K versus 0. 

12-20d Assuming that ka is large and that all significant radiation occurs in a 
region of small e, derive the approximate formula for gain (4), starting from (2). 
Given the integral, 

f - Jl2(al) dx = - i [Jo’faz) + Ji2(al)] 
J X 

12-20e Find the expression for radiation intensity for a rectangular aperture 
of dimensions a and b with uniform illumination. By assumptions appropriate to 
large apertures, verify formula (5) for this shape. 

12-21 RESONANT SLOT ANTENNA 

Another important class of radiators in which the emphasis is on 
the field in the aperture is that of the slot antenna mentioned quali¬ 

tatively in Art. 12 02. Let us consider the case of the 
resonant slot antenna (approximately a half-wave long 
in an infinite plane conductor. 15 Referring to Fig. 12-21, 
the electric field Ex across the gap is assumed to be the 

¿-only significant aperture field, and this is assumed to be 
uniform in x and to have a half-sine distribution in z 
tvith” its maximum at the center. By reference to 
Eq. 12-18(2), the magnetic current sheet equivalent to 
this would be found to lie in the z direction and 
to be equal to Ex. 

Mt = Ex = Em cos kz (1) 

However, to account for the infinite plane conductor, the 
above value must be doubled, which amounts to an 

imaging of the magnetic current in the infinite plane. The necessity 
for this is not at first obvious, but it follows after careful study. 

Fig. 12 21 
Reson ant 
half-wave 

slot. 

“ N. Begovich, Proc. I.R.E., 38, 803-806 (July 1950). 
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If gap width g is taken as small, the equation for magnetic radiation 
vector, Eq. 12-18(13), becomes 

L; = f ' 2gEm cos kz' e>kz'QOa » dz' 

The integral is evaluated as in Art. 12-06. 

(2) 

4g E m cos [(tt/2) cos 0] 
k sin2 8 (3) 

Then, utilizing Eq. 1218(15), fields are 

E* = — vH0
je ]krgEm cos [(tt/2) cos 0] 

irr L sin 8 

We should note here that this is of the same form as the expression for 
fields about a half-wave dipole antenna (Art. 12 07) except for the 
interchange in electric and magnetic fields. Another difference arises 
in that expression (4) applies to only one side of the plane. If radi¬ 
ation is allowed in the backward direction, fields must be reversed 
there since normal electric field and tangential magnetic fielcLare-dis-
continuous at the conducting plane because of currents and charges 
there. 

The power radiated corresponding to (4), counting both sides, is 

2ir(ÿ£m)2 P cos2 [(tt/2) cos 0] 
11 = o 2 -“7“ -~ de (5) 2ir i, Jo sin 0 

This may be interpreted in terms of a radiation_conductance defined 
in terms of the maximum gap voltage. 

(f^rlslot 
2 IE 2 f” cos2 [(tt/2) cos 0] 
~ = — - - --- d8 
(gEmy Tn? Jo sin 0 

By comparing with the expression for radiation resistance of the half¬ 
wave dipole, Eq. 12-06(5), we find 

(Gr),lot = « 0.00205 mho 
V 

(7) 

The reciprocity between results for the slot and dipole can also be 
shown to follow from Babinet’s principle, which is an extension of the 
principle of duality discussed in Art. 9-13. 

PROBLEMS 

12-21a Prove that the image of a magnetic current in a perfectly conducting 
plane requires horizontal currents in the same direction for source and image. In 
what sense is the field for this problem the dual of the field for the half-wave 
dipole? 
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12-216 Find the approximate radiation conductance if the slot is fed from a 
wave guide entering from the back so that shielding prevents radiation in the back¬ 
ward direction. 

12-21C For the open end of a coaxial line of radii a and 6, set up the problem of 
determining power radiated, assuming the electric field of the TEM mode as the 
only important field in the aperture. Make approximations appropriate to a line 
small in radius compared with wavelength, and show that the equivalent radiation 
resistance of the open end is 

X2 In (b/d) 
x(b2 - a2). 

Calculate the value for a = 0.3 cm, 6 = 1 cm, X = 30 cm. What standing wave 
ratio would this produce in the line? 

12-21d In Prob, c, assume the magnetic field of the TEM mode at the open 
end of sufficient magnitude to account for the energy calculated above. Show that 
a recalculation of power radiated including effects from this magnetic field leads 
to only a small correction to the first calculation. Take radii small compared with 
wavelength. 

12-22 ELECTROMAGNETIC HORNS 

The electromagnetic horns discussed qualitatively in Art. 12 02 are 
of interest both as directive radiators in themselves, and also as feed 
systems for reflectors or directive lens systems. In the horn, there is 
a gradual flare from the wave guide or transmission line to a larger 
aperture. This large aperture is desired to obtain directivity, and 
also to produce more efficient radiation by providing a better match 
to space. Usually, a fair approximation to aperture field may be made 
by studying the fields in the feeding system and the possible modes in 
the horn structure. This then makes possible approximate radiation 
calculations starting from these fields, by the methods discussed in 
preceding articles. The steps may be difficult because of difficulties 
in evaluating certain integrals, but as there are no new principles the 
details will not be covered here. Much is given in the literature. 16-17 
In utilizing theoretical results for practical horns, it should be remem¬ 
bered that the side-lobe structure especially will be different because 
of higher order modes, edge effects, and radiation from external sur¬ 
faces and supports not accounted for in the assumptions for fields. 
Because of variations across the aperture, the gain will always be 
somewhat less than for the ideal large aperture with uniform illumi-

■« L. J. Chu, J. Appl. Phys., 11, 603-610 (1940). 
>’ W. L. Barrow and L. J. Chu, Proc. I.H.E., 27, 51-64 (1939); Trans. A.I.E.E., 

58, 333-338 (1939). 

' 2^3
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nation, Eq. 12-20(5). 

Itt 
g < -J X area A (1) 

For horns of rectangular apertures and moderate flare angles, the 
following results worked out by Chu 18 for radiation from the open end 
of a rectangular wave guide will be of help in estimating patterns. 
The coordinate system is as in Fig. 12-22. 

Fig. 12 22 Coordinate system for radiation from rectangular guide. 

TMmn Modes. Field components in the radiation field are 

¿9 
mnßmnir3ab 
AX^rk^n2

sin 0 

where 

1 P 
k 

1 — -— cos & 
ßmn > 

’J'mntM) (2) 

(3) 

and p is the complex reflection coefficient in the guide, referred to the 
end. 

TEmn Modes. With the same definition as (3), 

13 Given in S. Silver, Microwave Antenna Theory and Design, McGraw-Hill, 
1949, Chapter 10. 
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n (trab)2 sin 6 sin </> cos </> 
2X3r E. 

„ . ßmn . / ßmn\ - ,, 
COS 0 + —-F P I COS 0-— I bJM) 

K \ K / _ 
(5) 

The important special case of the TEi0 mode is obtained by putting 
m = 1, n = 0 in (4) and (5). 

Antenna Impedance by Approximate Solution of the Boundary-
Value Problem 

12-23 THE SPHERICAL ANTENNA 

As we have seen in past articles, it is possible to tell much about 
the pattern of an antenna, its directivity properties, and the total 
power radiated by making reasonable assumptions concerning the 

Fig. 12-23a Spherical an¬ 
tenna and possible driving 

system. 

currents of the radiator, or the fields over 
a surface surrounding the radiator. The 
methods considered do not tell much about 
the input impedance of the antenna, or 
antenna surface gradients. For these 
quantities it is necessary to go back to the 
field equations, attempting to obtain 
solutions which have greater validity in 
the immediate vicinity of the radiator. 
As we have mentioned, this is straight¬ 
forward in principle but difficult to com¬ 
plete except in cases where the configura¬ 
tion is simple. The most generally useful 

results obtained in this manner are those of Schelkunoff, to be described 
later in the section. We shall start here with the simpler example of 
two hemispherical conductors with a gap at the equator across which a 
voltage is applied uniformly in azimuth, say by the driving system shown 
in Fig. 12-23a. (Perturbing effects of feeding transmission lines will be 
neglected in the analysis.) In this and other analyses using straight¬ 
forward solution of Maxwell’s equations subject to boundary con¬ 
ditions, we shall concentrate on the important problem of antenna 
impedance, but should stress that such solutions actually give answers 
to all of the problems discussed in Art. 12-01. 

Superposition of TM Waves to Match Boundary Conditions. A 
study of the fields of Fig. 12-23a suggests solutions in spherical coordi¬ 
nates, uniform in azimuthal angle </>, and with field components ET, 
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Es, and H^. Such solutions have been given as the spherical TM 
waves of Eq. 10-09(19). No single one of these will satisfy the bound¬ 
ary conditions of the spherical antenna, as the lowest order mode has 
been identified with the small dipole solution (Art. 12-05), and higher 
order modes correspond to higher order multipoles. So, as in similar 
static problems, we attempt a solution formed by a series of the modes 
with coefficients chosen to satisfy the appropriate boundary conditions. 

The boundary conditions to be satisfied on the surface of the spher¬ 
ical antenna (assuming perfect conductivity for the sphere in the first 
approximation) are: 

1. Eo = 0 at r = a, except across gap. 
2. Eg = applied field across gap, 0 = (tt/2) — a to (r/2) + a. 

The distribution of E9 across the gap is not known, but its integral 
across the gap (which is the same as the integral from 0 to tt since Eo 

is elsewhere zero) must be equal to the applied voltage. 

J'(K/2) + a /•» _ 
. ’ Eoade^ Eea dd (1) 
{r/2)—a JO 

Now, if the exact distribution of Es across the gap were known, the 
function Eo at r = a could be expanded in a series. This series would 
be written in associated Legendre polynomials so that it might be com¬ 
pared directly with previous TM wave solutions. Known functions 
may be expanded in terms of these functions in a manner similar to 
that used to expand functions in a Fourier series, a series of Bessel 
functions, Art. 3-30, or a series of ordinary Legendre polynomials, 
Art. 3-32. The formula for the coefficients follows from the orthog¬ 
onality properties of Eqs. 10 09(14) and 10-09(15). 

ao 
fW = X W (COS 0) (2) 

n = 1 

where b" = r, 2/W \ a Í (cos 0) sin 0 de 2n(n + 1) Jo (3) 

The exact form of the /(0) to be expanded, i.e., Ee, is not known 
except that it is zero everywhere but at the gap. If the gap is truly 
small, we may approximate the answer to the integral (3) by assuming 
that Pnl (cos 0) and sin 0 do not vary appreciably across the gap. 
That is, assume that Pj (cos 0) is approximately constant at its 
maximum value given by Eq. 10-09(13) and that sin 0 is constant at 
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its maximum value of unity over the gap. Then 

, 2n + 1 , f«2)+“ 
fen - 9 . , .. ^(O) EedB 2n(n + 1) J(»/2)-« 

The latter integral may be found directly from (1). 

b = (2n+ DPnVO)^ 
2n(n + l)a 

and (4) oo 
Ee\ r=a = X fenPnVcOS 0) 

n = 1 

The above is exactly correct for an infinitesimal gap, but for any gap of 
finite size it will not give correct coefficients for the highest harmonics 
that vary appreciably over the region of the gap. 

For the wave solution in the space surrounding the antenna, we are 
to add an infinite number of the TM waves found in Eq. 10-09(19). 
Following previous reasoning, the Bessel function solution should be 
the Hankel function of the second kind since the region surrounding 
the antenna extends to infinity. Then Ee at r = a from Eq. 10 09(19) 
may be written 

. « 

£s|r=a = 3 .-InPn^cos 0)[kaII n_l/2^ (ka) - nH n+v¿2\ká)] 
n — 1 

(5) 

By comparing (5) with (4), An may be evaluated. 

" jlkaHn_l/2^\ka) - nH n+l^2\ka)] 

In (4) bn is defined, so An, the arbitrary coefficients of the solution, are 
completely determined in terms of applied voltage and the antenna 
dimensions. Field at any point is now expressed in a series of TM 
waves with determined coefficients. Thus, if desired, the field dis¬ 
tribution at any radius could be mapped and thus the radiation pattern 
obtained. However, we shall go directly to the calculation of antenna 
impedance. It is at least evident, though, that Es and in the radia¬ 
tion field at large distances are zero along the axis and a maximum at 
0 = t/2, since all odd Pn1(cos 0) (the only ones excited) are zero at 
0 = 0, maximum at 0 = ir/2. 
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Input Admittance of Antenna. The magnetic field is now deter¬ 
mined since the coefficients An are known by (6) and (4). 

•° J 
H* = 2 <cos (7) 

n= 1 r

Surface current density is given in terms of the magnetic field at the 
conductor surface. 

J = ñ X II 

Or J e = 

Thus total current flow on the antenna at any angle 0 is 

I9 = 2ira sin OJ e = — 2ira sin0 (8) 

The total current flow away from the gap, at 0 = ir/2, from (7) and (8) 

= 2ira 2 (9) 
«1/2

An as defined by (4) and (6) is proportional to Vo, so the ratio of I 
to Vo may be written as an admittance. 

1 1 
-77-( 10 ) 

-ka Hn+V ¿»(ka). 

As usual, n = V m/«. 
The form of (10) is particularly interesting, because it represents 

total admittance as the sum of a number of admittances, one for each 
harmonic solution corresponding to a given n. This is of the form for 
the admittance of a group of circuits in parallel. Each circuit then 
corresponds to a given harmonic solution and has admittance char¬ 
acteristics determined by (4). Pn 1̂ ) is defined by Eq. 10 09(13), 
and the Hn+y2w  functions by Eq. 10 09(18) and the usual definition 
for Hankel functions, //„^’(x) = JnÇx) — jNn(x). Thus this admit¬ 
tance characteristic may be calculated. Its conductance and sus¬ 
ceptance parts are plotted against ka for air dielectric (tj = 120tt) 

n(n + l)n 
where Y 
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in Figs. 12-23& and c. Note that there are no even harmonics since 
Pnx(0) = 0 for n even. This is as would he expected because (cos 0) 
for n even are all odd functions with respect to the equator and should 
not be stimulated by a configuration symmetrical with respect to 

Fig. 12-236 Conductance of individual spherical TM wave orders. 

The higher harmonics may be readily approximated. 

_>(2n + DMO)]2
Yn —-27—rv;— katin\n + 1) 

if ka « n 

A study of this equation will show that, if an infinite number of n’s 
are present, the total Y does not converge since finite contributions to 
susceptance are added by the higher n’s forever. However, this is 
only true for an infinitesimal gap, for which an infinite susceptance 
term might be expected. When the gap is finite a point will be 
reached at which the coefficients bn (and hence Fn) will begin to 
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decrease, approaching zero as n approaches infinity. This occurs for 
harmonic solutions which vary appreciably in the Pn1 (cos 0) function 
over the region of the gap. Consequently, the actual total admittance 
cannot be obtained until the width of the gap is known. However, 

Fig. 12-23c Susceptance of individual spherical TM wave orders. 

the form of the curve and the order of magnitude of admittance will 
be changed little by missing the point by a few n’s above which con¬ 
tributions to F from Yn should cease. Consequently, a representative 
curve for tj = 120tt is plotted in Fig. 12-23d, using up to n = 19. The 
conductance or real part does converge and so the curve for conduc¬ 
tance should be quite accurate. 
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These conclusions from the admittance curves are of importance. 
1. Admittance of any mode, Yn, is zero at zero frequency. 
2. For low frequencies (ka « n) admittance is mainly a susceptance 

proportional to frequency, thus representing a pure capacitance: the 
capacitance between the hemispheres. 

3. Input admittance is capacitive at any frequency; there are no 
resonant points as there are in thin antennas. 

Fig. 12-23d Total admittance, conductance, and susceptance for spherical 
antenna. 

4. Admittance curves have several fairly flat regions, indicating that 
the antenna has broad-band possibilities. 

PROBLEMS 

12-23a Show that admittances in a given mode in air approach these values at 
low and high frequencies. 

Fn —» jkaKn ka « n 

1 n * A n ka n 

where (2» + Dt/WO)!2
120n(n + 1) 

mhos 
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12-23& Calculate voltage required to radiate 100 watts at the first flat point 
on the admittance-frequency curve, Fig. 12-23d. 

12-23c Find the point of maximum gradient Er in the antenna, and calculate 
approximately its value in terms of applied voltage. Take ka in the vicinity of 
unity. (Suggestion: Calculate only that in the predominant wave mode.) 

12-23d Write the complete series for field at any radius r. Make approxi¬ 
mations appropriate to the far-zone field by using asymptotic forms for the Hankel 
functions of kr, and investigate the problem of plotting the antenna pattern from 
the series. 

12-23e Calculate, by taking only a few terms of the series at ka = 1, the 
approximate power lost on the antenna if the conductor has a finite surface resis¬ 
tivity Rs. Compare with the power radiated and note the high efficiency of the 
device in this respect. 

12-24 SPHEROIDAL ANTENNAS 

Stratton and Chu 19 have given solutions not only for spherical 
antennas but also for prolate spheroidal antennas. Such a solution 
includes all spheroidal shapes between the sphere just studied and a 
thin wire (Fig. 12-24a). 

The assumptions of Stratton and Chu are those used in the spherical 
antenna of the previous articles. Axial symmetry is assumed, and 
voltage is applied across a very small gap at the center. Results are 
quite similar in nature but different in magnitude from the results for 
the sphere. Input admittance may again be expressed as the sum of a 
large number of input admittances, one for each harmonic mode of 
oscillation of the antenna. However, for large eccentricities (large 
ratios of length to diameter) the resonances of each of these modes are 
very sharp, as contrasted to the broad resonances of the sphere. At a 
given order of resonance (n = 1, 3, 5, etc.) the other modes are corre¬ 
spondingly less important than in the sphere, so the resonant mode 
practically determines the antenna characteristics in the neighborhood 
of resonance. 

In the limit of an infinitesimally thin wire, the nth mode becomes 
resonant slightly below L = nX/2. These are true resonances in that 
the susceptance component of Yn actually goes through zero and 
becomes inductive for frequencies above resonance, whereas for the 
sphere it is a.ways positive (capacitive). At frequencies much higher 
than resonance, susceptance in the nth mode approaches zero and con¬ 
ductance approaches a small but constant value. This constant value 
is zero in the limiting case of an infinitesimally small wire, the value 

19 J. A. Stratton and L. J. Chu, J. Appl. Phys., 12, 230-248 (March 1941). 
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Fig. 12-24 (a) Transition from sphere to thin spheroidal wire dipole; (&) resist¬ 
ance and (c) reactance of spheroidal antennas fed at the center. From Stratton 

and Chu. 
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found in Prob. 12-23a in the limiting case of a sphere, and something 
between for medium eccentricities. 

These characteristics are shown in the curves for input impedance in 
the vicinity of the first resonance, as plotted by Stratton and Chu, 
Figs. 12-245 and c. Again it must be realized that the harmonics 
cannot be combined exactly until the exact distribution of applied 
field across the gap is known, yet the form of the curves is accurate and 
magnitudes are nearly correct unless the gap is infinitesimal (in which 
case an infinite input capacitance must result). The L/D = 1 curve 
is of course the case of the sphere calculated earlier. 

A study of the curves shows many features associated with past 
antenna knowledge. The radiation resistance for L/X = 0.5 (a half¬ 
wave dipole) is found to be about 72 ohms, near the value calculated 
previously. This varies little for any eccentricity. The condition for 
zero reactance occurs at something less than a half-wavelength for long 
thin wires (about 0.49X or 98 per cent of the antenna length). For 
fatter wires this condition of zero reactance actually may occur for L 
greater than a half-wavelength (or at a higher frequency than before). 
In the limit of the sphere there is no place at which input reactance is 
zero; there is always a capacitive component. 

The increase in broadness of the impedance curve is evident for the 
fatter antennas, thus making available the wide band width required 
for television antennas. 

Finally, Stratton and Chu have plotted the actual current distribu¬ 
tion along the antenna for a thin spheroid (large L/D) and found it to 
vary little from the sinusoidal distribution usually assumed in the 
conventional methods of calculating antennas. 

We will be able to compare some of these results with those obtained 
by Schelkunoff in the later articles. 

12-25 THE BICONICAL ANTENNA 

Another antenna of simple enough shape to make possible an 
approximate wave solution is the biconical antenna (Fig. 12 04a) used 
as an example for qualitative discussion in Art. 12 04. The wave 
solutions required are similar to those utilized for the spherical antenna 
(Art. 12-23) except that a TEM wave is required in the region of the 
antenna, r < I, and the form of the TM waves is modified there, as 
will be noted below. A series of TM modes for the external region is 
then written, and a series of TM modes appropriate to the inner region 
plus the spherical TEM mode is written for r < I. The unknown 
amplitudes of the series are to be evaluated by making tangential 
fields continuous across the common boundary at r = I. The pro-
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cedure has been carried through approximately for cones of any angle 
by Tai 20 and Smith. 21 We shall concentrate, however, on the approxi¬ 
mate solution appropriate to small angles given by Schelkunoff, since 
this is particularly rich in physical pictures. 

Form of Solutions. The form of solutions for the outer region (Fig. 
12 04a) is exactly that for the spherical wave types developed in Art. 
10 09. That is, axial symmetry (ß/d<f> = 0) will be assumed and 
only the TM wave components //«, Er, and Eo will be excited; the 
axis (0 = 0, tt) is included in this region, so only the Pn1 (cos 0) func¬ 
tions are required, and n must be an integer; the region extends out¬ 
ward to infinity, so the second Hankel function will be used for the 
Bessel function solution. Equation 1009(19) may then be used 
directly for the region r > I with Zn+i/2 read as Hn+1/2(-2\ 

For the region between the cones, r < I, there is the principal wave, 
and to this must be added higher order TM waves similar to those in 
the space outside the antenna. The TM waves for this region will, 
however, be somewhat different in form. The Bessel function solution 
in this region can contain only a J„+i/2 term since A„+1/2 becomes 
infinite at r = 0. For future purposes note that all field components in 
these higher order waves then disappear at r = 0 since Jn+i/2(0) = 0. 
Moreover, a second Legendre function solution is required for this 
region to account for the two boundary conditions of the cones at 
d = f and it — ÿ. This second solution is usually denoted Q«1 (cos 0). 
Its value of infinity on the axis does not trouble us because the axis is 
excluded from the dielectric region over which the wave solution is to 
apply by the conducting cones. Thus with the Bessel function read 
as Jn+i/2 and an extra associated Legendre function, the TM waves 
applicable to the region r < I will be similar to Eq. 10 09(19). The 
order n (probably better written r) is in general not an integer because 
of the presence of the cones, f This is in fact determined by the 
boundary conditions Er = 0 at 0 = tt — 

Exact Equivalent Circuit. The total current How in the cones is 
proportional to H*. 

I(r) = 2irr sin (1) 

Since II in the region of the cones is made up of contributions from the 
principal and complementary waves, so is I. 
»C. T. Tai, J. Appt. Phys.. 20, 1076-1084 (Nov. 1949). 
» P. D. P. Smith, J. Appt. Phys., 19, 11-23 (Jan. 1948). 
t It is then possible to use P,m ( — cos 9) as a second independent solution in 

place of Q™ (cos 0), as is done by Schelkunoff; he also gives equations in terms of 
the ordinary Legendre functions rather than the associated, since the two are 
related by the simple derivative. 
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= I0(r) + I'(r) (2) 

/o denotes the current from fields in the principal wave, I' from the 
higher order waves. The latter is zero at r = 0, because the higher 
order wave components disappear at the origin. Total current flow 
into the antenna at r = 0 is then only that in the principal wave. 

7(0) = 7o(O) (3) 

Now define a total voltage between the two conical conductors as the 
integral of Ee over a surface r = constant. 

V(r) = ~rf' * E ed9 

A study of this integral for the higher order wave components of Ef 

would reveal that the net integral is zero for all such waves at any 
radius and has a contribution only for the principal wave. The corre¬ 
sponding situation is readily seen in the higher order waves between 
parallel planes or rectangular wave guides, where the sinusoids repre¬ 
senting transverse electric fields yield just as much negative as positive 
contribution to the integral of electric field, and so give a net integral 
of zero. 

V(r) = 7o(r) (4) 

Finally, if total current is zero at the end of the antenna with r = I, 
(2) then requires 

Z(Z) = 0 or I0(l) = — I'(I) (5) 

Thus, if an equivalent transmission line circuit is drawn to represent 
the behavior of the principal wave, current in this wave at the end must 
have the value given by (5). We can assure that this value will be 
obtained from the equivalent circuit by placing an impedance ZL 

across the line at r = I where 

Thus the behavior of the principal wave is exactly described by the 
equivalent circuit of Fig. 12-04c, where ZL is defined by (6). More¬ 
over, since input current in the principal wave is exactly the total input 
current by (3.), and voltage in the principal wave is total voltage every¬ 
where by (4), the input impedance calculated from this principal wave 
equivalent circuit is the total input impedance. Of course it is not 
necessary that total current be zero at the end of the antenna in order 
for the equivalent circuit to be of use. For a finite 1(1), 1(1) — I'(l) is 
the current to be accounted for by the lumped impedance. 
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Input Impedance of Biconical Antenna. In order to calculate ZL in 
the equivalent circuit of Fig. 12.04c, Schelkunoff has shown two 
methods. In the first method, the complex Poynting flow of power 
from an infinitesimal biconical antenna is computed, and this is inter¬ 
preted in terms of an input impedance. By comparing the result with 

the expression for input impedance in the equivalent circuit with 
Zo —> oo, Zt is identified as 

ZL = -—- (7) 
L G(kl) + jF(kl) 

Characteristic impedance of the TEM wave from Art. 9-14 is 

T) Ÿ 
Zo = - In cot -

ir 2 

G (kl) and F(kl) are functions of the electrical length and are plotted 
in Fig. 12-25a. 
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The second method shown by Schelkunoff follows from a more direct 
study of the higher order waves. The matching operation of the wave 
solutions is carried through approximately, in a manner applicable to 
cones of high characteristic impedance. The steps are as follows. 

1. It is assumed that field at a large distance from the antenna is of 
the same form as that found previously (Art. 12 06) for a dipole 
antenna. This function of 6 is expanded in a series of Legendre poly¬ 
nomials in cos 0 by the rules used in Art. 12-23. 

2. By noting the limiting case of the wave solutions, Eq. 10 09(19), 
for large values of kr, the unknown coefficient of the nth order term 
may be evaluated by comparing with the corresponding term in the 
series from step 1. Coefficients are of course proportional to principal 
wave current or voltage. Thus the field in the region r > I is in reality 
taken as that field found previously from the integration of effects from 
the assumed sinusoidal distribution of current, but now expanded as a 
sum of TM waves. 

3. Now it is next noted that the TM wave solutions inside the cone 
region approach exactly the corresponding waves in the space outside 
as Zo—» oo. Thus, for matching of Er across the boundary, the 
coefficients of corresponding wave orders inside and outside must be 
equal in the limit of Zo = 00 since there is no Er component in the 
principal wave. For large but finite values of Zo, the coefficients inside 
may then be taken as equal to those outside to a first approximation. 
Coefficients of higher order waves inside the antenna region are then 
obtained in terms of the principal wave current or voltage. Thus 
step 3 of the converging step-by-step method sketched in Art 12-04 is 
performed, at least approximately. 

4. Since coefficients for of the higher order waves are now deter¬ 
mined, current in the cones due to these is given by (1). Once this 
current is determined and written in terms of voltage in the principal 
wave at r = I, ZL is given by (6). The method again gives the same 
form as in (7), and 

oo 
(WD = X &mJ2m+ 3/22 W 

m = 0 

00 
F(fcZ) — ~ bmJ2m+3/2 (kl)^ 2m+3/2 (kl) 

m = 0 

where 
+ 3)_ 

(in + l)(2m + 1) (8) 

Curves showing the resistance and reactance components of input 
impedance for biconical antennas as a function of length and character-
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istic impedance are shown in Figs. 12-256 and c. These are calculated 
from ordinary transmission line theory for the equivalent circuit Fig. 
12 04c with ZL defined by the above. These important practical 
points follow. 

1. Input resistance in the neighborhood of the first resonance is close 
to the value 73 ohms for a half-wave dipole (Art. 12 07) regardless of 
the size of the antenna. 

Fig. 12-25Ò Input resistance of biconical antennas. From Schelkunoff. 

2. Resonance occurs for the antenna somewhat shorter than the 
corresponding integral number of half-waves, this shortening being 
greater for the lower characteristic impedances. A curve of shortening 
versus ZQ for the first three resonances is given in Fig. 12-25d. 

3. Resonance is sharper for high characteristic impedances, again 
demonstrating the broad band input impedance properties of the 
fatter antennas. 

4. In the neighborhood of the second resonance (high driving-point¬ 
impedance antennas) input resistance is a definite function of Zq as 
shown by Fig. 12-256. 
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Current Distribution along the Antenna. It is of importance to study 
current distribution from this analysis (as was done by Stratton and 
Chu for the thin spheroids) in order to check the approximations of 
sinusoidal current distribution commonly made on thin-wire antennas. 

Fig. 12-25c Input reactance of biconical antenna. From Schelkunoff. 

Fig. 12-25d' Per unit foreshortening of biconical antenna. From Schelkunoff. 

As has been noted, in the limit of infinitesimal cone angles (infinite Zo), 
the higher order waves in the antenna region become negligible com¬ 
pared with the principal TEM wave, so the sinusoidal distribution 
becomes exact. Schelkunoff has also plotted current distribution for a 
biconical antenna of 1000 ohms characteristic impedance. His curves 
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show that the real part of current is very close to that in the principal 
wave. The imaginary part is noticeably different, but magnitude 
of total current still compares well with that in the principal wave. 
The deviation will, of course, become more marked as the antenna 
impedance decreases. 

PROBLEMS 

12-26a Consider a bieonical antenna with I = X/4. From the approximate 
value of power radiated from a half-wave dipole in Art. 12 07, find the expression 
for the appropriate value of resistance to use for Z/, to account for this radiated 
power, if the reactive part of this is neglected. For a thin antenna = 0.1°, 
and a thick antenna = 5°, find the values of this resistance. Assuming that the 
resistance does not vary appreciably with frequency over a small range, plot input 
impedance of the antenna over a small range about the resonant length I = X/4 for 
the two antennas. What conclusion do you draw on impedance band width of 
thick antennas versus slender ones? 

12-266 For the first antiresonant point, l/X « 0.5, calculate the power radiated 
in terms of maximum current on the antenna by Eq. 12 06(6). From the equiva¬ 
lent circuit for the antenna, considering that this maximum current is that of the 
principal wave, find the voltage at the end in terms of the current and Zo- From 
this, find the terminating impedance in terms of Zo for this case, assuming ZL real. 
Note that, since the line is a half-wave long, this is also the input resistance, and 
compare with the antiresonant peaks given in Fig. 12-256. 

12-26C Expand the field of a dipole antenna calculated approximately in Art. 
12-06 in a series of spherical transverse magnetic waves. 

12-26d If current in the higher order waves approaches zero as Zo—> x, the 
terminating impedance ZL in the equivalent circuit approaches infinity. It seems 
that the possibility of accounting for radiation in the equivalent circuit is then 
excluded. Demonstrate that such reasoning is faulty. 

12-26 THIN DIPOLE ANTENNAS OF GENERAL SHAPE 

Schelkunoff has extended results of the analysis based on the 
bieonical antenna to antennas of other shape. The method is approxi¬ 
mate, but, if antennas are not of too great diameter to length ratio, 

these approximations are easy to 
accept on a physical basis. It is 
assumed that the same equivalent 
circuit applies (Fig. 12 04c), but the 
shape of the antenna is taken into 
account by considering the antenna 

as a non-uniform transmission line. For example, if the antenna 
is cylindrical (Fig. 12-26a), the capacity and inductance per 
unit length may be obtained approximately at any radius by con-

Fig. 12-26a Cylindrical dipole 
interpreted as a non-uniform 

transmission line. 
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TABLE 12-26 

Antenna 
Shape 

1_II_I2“ CZ—2ojLL_^2 k—I— 
Diamond Shaped 

Longitudinal Section 
k*i— /—*4 ' 

Thin Cylinders 
♦ 1-— Z—J 

Thin Spheroids 

Average 
character¬ 
istic 
impedance 

H 1"“-') 
120 In-

a 
21 

120 In -
a 

I’er-unit 
shortening 
at first 
resonance 

27.08 
Zoa 

5040 
(Zoa + 83)2

27.08 
Qa 

I’er-unit 
shortening 
at second 
resonance 

39.92 

Zoa 

25.68 

^0a 

30.82 
Zoa 

sidering the values for a cone that would just pass through this radius. 
For small ratios of a/r (a = antenna radius, r = distance along 
antenna from center), 

u 2 
L - In -

7T y TT d 

7T€ 
In (2r/a) (1) 

Thus L and C, and hence Zo, are functions of r. 
As a first approximation, all previous curves plotted for the biconical 

antennas may be used, with characteristic impedance taken as an aver¬ 
age value over the length defined by 

Zoa = y Z0(r) dr (2) 

Formulas for the average characteristic impedance for cylindrical, 
spheroidal, and diamond-shaped longitudinal-sectioned wires are given 
in Table 12-26. 

A better approximation may be had by utilizing non-uniform trans¬ 
mission line theory to transfer the load impedance, obtained from 
the biconical analysis, to the input. Schelkunoff has supplied par¬ 
ticularly useful equations for this purpose appropriate to lines with 
only slight non-uniformities. Curves of input resistance and reactance 
for the cylindrical antenna, calculated in this manner, are shown in 
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Figs. 12 2Gb and c. Non-uniform transmission line theory shows 
also that there is a correction to resonant length due to the antenna 
shape which may be either in the same direction or the opposite 
direction to the correction from the terminating reactance. Approxi¬ 
mate formulas for net length at first and second resonances are listed 
in Table 12-26. 

For any of the antenna types above plane perfectly conducting earth, 

Fig. 12 266 Input resistance for cylindrical dipole antenna. From Schelkunoff. 

figuration for which the impedance may be found by the above 
methods. Impedance of the actual antenna is then half that calcu¬ 
lated for the antenna and its image, as demonstrated in Fig. 12-26d 
for a cylindrical antenna above earth. 

PROBLEM 

12-26 Plot on a Smith transmission line chart the locus of impedance for a 
cylindrical dipole of 800 ohms characteristic impedance, a biconical antenna of 
700 ohms characteristic impedance, and of the spherical antenna of Art. 12-23, all 
referred to a 70-ohm line. Comment on the comparison. 
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Fig. 12-26c Input reactance for cylindrical dipole antenna. From Schelkunoff. 

Fig. 1226d Use of image for determining impedance of antenna above plane 
conducting earth. 

Receiving Antennas and Reciprocity 

12-27 A TRANSMITTING-RECEIVING SYSTEM 

The discussion in previous articles has generally inferred that the 
radiating system was to be used as a transmitting antenna, exciting 
waves in space from some source of high-frequency energy. The same 
devices useful for transmission are also useful for reception, and it 
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will be seen that the quantities already calculated (such as the pattern, 
antenna gain, and input impedance for transmission) are the useful 
parameters in the design of a receiving system also. This might at 
first seem surprising, since the two problems have some noticeable 
differences. In the transmitting antenna, a generator is generally 
applied at localized terminals, and waves are set up which go out in 
space approximately as spherical wave fronts. In the receiving 
antenna, a wave coming in from a distant transmitter approximates a 
portion of a uniform plane wave, and so sets up an applied electric 
field on the antenna system quite different from that associated with 
the localized sources in the transmitting case. As a consequence, the 
induced fields must be different in order that total field shall meet 
the boundary conditions of the antenna, and the current distribution 
will in general be different for the same antenna on transmission or 
reception. The currents set up on the receiving antenna system by 
the plane wave will convey useful power to the load (probably through 
a transmission line or guide), but will also produce re-radiation or 
scattering of some of the energy back into space. The mechanism of 
this scattering is exactly the same as that discussed in preceding sec¬ 
tions for radiation from a transmitting antenna, but the form may 
be different for a given antenna because of the different current 
distribution. 

Thus, we seem to have somewhat different pictures of the mechanism 
of transmitting and receiving electromagnetic radiation. Reciprocity 
theorems related to those already discussed (ï\.rt. 11 05) provide ties 
between the two phenomena such as the following: 

1. The antenna pattern for reception is identical with that for 
transmission. 

2. The input impedance of the antenna on transmission is the 
internal impedance of the equivalent generator representing a receiving 
system. 

3. An effective area for the receiving antenna can be defined and by 
reciprocity is related to the gain previously defined (Art. 12 07). 
Several of these points will be discussed in this and following articles. 
An excellent treatment in more detail has been given by Silver. 22

We wish to begin the discussion by considering the transmitting and 
receiving antennas with intermediate space (Fig. 12-27a) as a system 
in which energy is to be transferred from the first to the second. We 
select terminals in the feeding guide where voltage and current may be 
defined in the manner explained in Art. 11-03, and similarly select a 

22 S. Silver, Microwave A ntenna Theory and Design, M.I.T. Radiation Laboratory 
Series, Vol. 12, McGraw-Hill, 1949, Chapter 2. 
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reference in the guide from the receiving antenna. The region 
between, including both antennas, the space, and any intermediate 
conductors and dielectric (assumed linear) may be represented as a 
two-terminal pair or transducer as indicated in Fig. 12-276. That is, 

I i = Zuli + Z12I2 (1) 

F 2 = Z21I1 + Z22Í2 (2) 

The systems discussed in Chapter 11, for which proofs of the above 
were given, were assumed to be closed by conducting boundaries, 
whereas the present system extends to infinity. However, the 

Fig. 12-27a A system of transmitting and receiving antennas. 

Fig. 12-276 Equivalent representation Fig. 12-27c Approximate equivalent cir-
for Fig. 12.27a. cuit neglecting reaction of receiver back 

on transmitting system. 

theorems given there can be extended to regions extending to infinity 
because of the manner in which fields die off there. 23

The present system is specialized in another respect in that the 
coupling impedance Z12 in (1) is very small for a large separation 
between transmitter and receiver. It may then be neglected in (1), 
and the impedance coefficient Zu is just the input impedance of the 
transmitting antenna calculated by itself. 

Vi « Znh - Zxh ,(3) 

The coupling term in (2) cannot be neglected, since this coupling is 
the effect being studied. However, (2) can be represented by the 
usual equivalent circuit of Thévenin’s theorem (Prob. 11 04b) in which 
an equivalent voltage generator I1Z21 is connected to the load imped¬ 
ance ZL through an antenna impedance Z22 (which is essentially the 
input impedance of antenna 2 if driven as a transmitter). Thus, 
because of the small coupling, the reaction of the receiving antenna on 

23 W. K. Saunders, Proc. Nai. Acad. Sei., 38, 342-348, April, 1952. 
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the transmitting antenna can be neglected and the equivalent circuit 
separated as in Fig. 12-27c. 

1 he equivalent circuit will be discussed again later. For the 
moment, we shall discuss transmission over the system from another 
point of view. 1* or this purpose, an effective area of the receiving 
antenna is defined so that the usefid power removed by the receiving 
antenna is given by this area multiplied by the average Poynting 
vector (power density) in the oncoming wave. 

= A erPav (4) 

Like antenna gain defined previously, this is in general a function of 
direction about the antenna, and of the condition of match in the 
guide. When not otherwise specified, it will be assumed to be the 
value for a matched load and for the maximum direction. The power 
density at the receiver is the power density of an isotropic radiator 
(II (/4?rr") multiplied by gain of the transmitting antenna in the given 
direction. 

II t is the power transmitted, r is the distance between transmitter and 
receiver, gt is gain of the transmitting antenna, and Aer is the effective 
area of the receiving antenna. As will be noted in the next article, 
the gain of a given antenna is proportional to the above-defined 
effective area for that antenna, 

1 herefore (5) may be written in either of the following forms given 
by 1'riis.- 1 Subscripts r and t refer to receiving and transmitting 
antennas, respectively. 

IEr _ _ A er A et 
IF/ (4irr)2 ^r2

PROBLEM 

12-27 Calculate power received corresponding to a transmitted power of 100 
watts and a distance between transmitter and receiver of 103 meters under the 
following conditions: 

a. Gain of transmitting antenna = 1.5; effective area of receiver = 0.40 meter. 2 

b. Gain of both antennas = 2; wavelength =0.10 meter. 
c. Effective area of both antennas = 1 meter2; wavelength = 0.03 meter. 

24 H. T. Friis, Proc. I.R.E., 34, 254-256 (May 1946). 



12-28 RADIATION 561 

12-28 RECIPROCITY RELATIONS 

From the equivalent circuit of Fig. 12-27c, we can obtain a different 
form for the power delivered to the receiving antenna. For this 
purpose, let us assume that there is a conjugate match, 

= ^22* = Rt2 —  j^r2 (1) 
which is known to be the condition for maximum power transfer from 
the equivalent generator to the load. The power delivered to the 
load under this condition is 

If the transmitting antenna has input resistance Rri, transmitted 
power is 

Wt = i\h\2Rrï (3) 
SO 

= \Z^ 
JF( 4RTlRr2 

By comparing (4) with Eq. 12-27(5), 

I rr |2 Rr\Rr2Q\Ae2 
¿21 - = -S- (°) irr~ 

If we now reverse the roles of transmitting and receiving antennas, we 
find for the transfer impedance in the reverse direction 

|Z 12 |2 (6)
7rr“ 

By the reciprocity argument of Art. 11-05 (modified so that it applies 
to a region extending to infinity), Zj2 and Z2i are equal, so we conclude 

01 /-n 
- = T” <7) 02 Ac2

The antennas in the above argument were arbitrary, so it follows 
from (7) that the defined effective area of any antenna is proportional 
to the gain of that antenna. The constant of proportionality can be 
found by solving the problem for one of the simple shapes, such as 
the small dipole25 or the small loop antenna. The result is as given 
in Eq. 12-27(6). Note that this is the same relation between gain and 
actual area of large apertures with uniform plane wave illumination 

26 D. O. North, RCA Review, 6,332-343 (Jan. 1942). 
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found in Eq. 12-20(5) (and Prob. 12-20e). Thus, for large apertures 
with uniform illumination, the effective area is equal to the actual 
aperture area, as might be expected. For small antennas, this relation 
does not hold. In fact, for an infinitesimal dipole, we found the gain 
to be 1.5, so the effective area is 

X2 3 
(Ae)dipole = ^0 = ^2 (8) 

which is finite and sizable even though antenna size is infinitesimal. 
Another relation following from reciprocity, which is probably more 

important in practice, is that the pattern of a given antenna is the 
same for transmission or reception. This is useful because the pattern 

Antenna 2 
Position b 

\ \ 

(a) 

Antenna 1 Position a (solid) 
Position b (dotted) 

I Antenna 2 
r 

Fig. 12-28 Possible systems for pattern measurement. 

may then be calculated or measured in the easiest way and then be 
used for both transmission or reception designs. To show this, 
imagine, as in Fig. 12-28a, that antenna 2 is moved about the arc of a 
circle to measure the pattern of antenna 1. Let 9 = 0 be the angle 
of maximum response (position a) and angle 9 (position 6) be a general 
position. Also, for simplicity we assume that 1 watt is radiated in 
all the measurements to be described. Then, if 1 is transmitting and 
2 receiving, the power received in position b, as compared with posi¬ 
tion a, by (4) is 

_ I Z21 It 
ir2o - I z21 (I 

If 2 is transmitting and 1 receiving, the power received for the two 
positions is related by 

Because of reciprocity | Zi2 |a = | Z2i |o, and similarly for b, so the 
ratios (9) and (10) are the same. Thus, the same relative power 
pattern will be measured with antenna 1 transmitting or receiving. 



12-29 RADIATION 563 

It is, of course, important to remember that the reciprocity relation 
may be violated if the transmission path contains a medium such as 
the ionosphere, which may not have strictly bilateral properties. It 
is obvious that frequency must be kept constant when receiver and 
transmitter are interchanged. Also, if there are obstacles or other 
secondary radiators in the field, they must keep their same position 
relative to the system when the interchange is made. (See Prob 
12-28c). 

PROBLEMS 

12-28a Calculate the effective area for a half-jvave dipole antenna. Compare 
with that for the infinitesimal dipole. 

12-28b Calculate the effective area for the small loop antenna. 

12-28c If the antennas are in free space, the pattern of 1 may be measured, as 
was described in Fig. 12-28a, by moving antenna 2 about the arc of a circle, or, as 
in Fig. 12-286, by rotating 1 about an axis to give the same relative position. 
Explain why the same results might not be obtained by the two methods if there 
are fixed obstacles in the transmission path. 

12-28d For the data of Prob. 12-276 and the radiation resistance of both 
antennas equal to 50 ohms, calculate | Z12 |. Now, allowing separation r to vary, 
find the separation for which Zj2 becomes comparable to Zu. 

12-29 EQUIVALENT CIRCUIT OF THE RECEIVING ANTENNA 

I'or a study of the circuit problem in matching the antenna to a 
receiver, the second part of the equivalent circuit of Fig. 12-27c is 
useful and is repeated in Fig. 12-29a. In this the internal impedance 
of the generator, Z 22, is essentially the input impedance of the same 
antenna if driven at the same terminals. 

Z22 ~ Zi2 (1) 

This follows by the same argument given for antenna (1) in Art. 12-27, 
meaning that reaction back through Z2j is negligible when the antenna 
is driven. 

The voltage generator in Fig. 12-29a is given from Eq. 12-27(2) as 
71^21, but transmitter current and transfer impedance are not con¬ 
venient parameters for most calculations, so other forms in terms of 
the power density of the oncoming wave are preferable. By substi¬ 
tution from Eq. 12-27(4) and Eq. 12-28(2), we can find this voltage 
in terms of the average Poynting vector or power density of the 
out oming wave, Pav, the radiation resistance of the receiving antenna 
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Rr2, and the effective area Ae2. (This effective area is calculated on 
the assumption of a matched load, but may be a function of the 
orientation of the antenna with respect to the oncoming wave.) 

Va = hZ21 = (8Ä2A„Pav)1/2 (2) 

The equivalent circuit is useful, for example, in computing the trans¬ 
fer of power from the antenna to the useful load through a transmission 
line which may have discontinuities, matching sections, or filter 
elements. All these may be lumped together as a transducer, as 
explained in the preceding chapter (Fig. 12-296), and the problem from 

(a) (W 

in 

W 
Fig. 12-29 (a) Equivalent circuit of receiving antenna for power transfer calcula¬ 
tions. (6) Circuit for receiving antenna coupled to the load through a transducer. 

here on is a standard circuit calculation. It must be emphasized, as in 
any Thévenin equivalent circuit, that the equivalent circuit was derived 
to tell what happens in the load under different load conditions, and 
significance cannot be automatically attached to a calculation of power 
loss in the internal impedance of the equivalent circuit. In the present 
case, it is tempting to interpret this as the power re-radiated or scat¬ 
tered by currents on the receiving antenna, and one would conclude 
that as much power is scattered under a condition of perfect match 
as is absorbed in the load. This conclusion is not true, except in 
special eases where the current distribution may be the same for 
reception as for transmission. 

PROBLEMS 

12-29a To demonstrate that a power calculation in the internal impedance of a 
Thévenin equivalent circuit does not necessarily represent the power lost internally, 
consider a generator of constant voltage 100 volts coupled to a resistance load of 
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2 ohms through the series-parallel resistances shown in Fig. 12.29c. Calculate the 
actual power lost in the generator, and compare with that calculated by taking 
load current flowing through the internal impedance of a Thévenin equivalent 
circuit. 

12-296 An antenna having an input impedance on transmission of 70 +j30 
ohms is used on reception by connecting directly to a 50-ohm transmission line 
which is perfectly matched to a pure resistance load. The effective area is 0.40 
meter.* Find the power transfer to the load if the antenna is in a plane wave field 
of 100 microvolts per meter. Compare this with the power that could be obtained 
with a conjugate match to the antenna impedance. 
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Ampere’s law, 89, 91 

generalized, 186 
Analytic functions, 128, 130 
Angle, Brewster, 304 

polarizing, 303 
of reflection, 295 

Antenna, above perfect earth, 504 
biconical, 547-554 
circular aperture, 531 
current distribution on, 553 
dielectric rod, 490 
dipole, 488, 496 
effective area. 558-560 
examples, 489 
gain, 503, 522, 560 
horn, 490, 536-538 
lens, 489, 491 
long straight, 500 
loop, 488, 510 
parabolic reflector, 531, 533 
pattern, 502, 558 
measurement, 562 

polyrod, 392 
receiving, 557-565 
rhombic, 517-519 
slot, 490, 534 
spherical, 538 545 
spheroidal, 545 
thin, of general shapes, 554-557 
transmission formulas, 560 

Applied field and voltage, 209 -213 
Arrays, 491, 514 

broadside, 520 
end-fire, 522 
linear, 519-523 
of dipoles, 515 
polynomial formulation of, 523 
super-gain, 524 
Tchebycheff, 525 

Associated Legendre function, 433-435 

Attenuation, from conductor losses, 
333, 349, 353 

from dielectric losses, 350, 354 
in wave guides, 368. 378, 379 

Attenuation constant, 44, 322 
in transmission lines, 40, 41 

Attwood, S. S., 125 

Babinet’s principle, 535 
Band width, of antennas, 544, 547, 

552 
of cavity resonator, 425 
of circuits, 14, 15 

Barrow, W. L., 536 
Bateman, 436 
Begovich, N., 534 
Bei functions, 243 
Ber functions, 243 
Bessel functions, 154, 158 
asymptotic forms, 165 
complex arguments, 243 
differentiation, 166 
expansion of function in, 168 
higher order, 163 
imaginary arguments, 162 
integrals, 167 
modified, 162, 165-167 
orthogonality, 168 
recurrence formulas, 167 
spherical, 435 

Betatron, 178 
Bewley, L. V., 125 
Biconical antenna, 547-554 

impedance, 550 
Bilinear transformation, 141 
Biot and Savart law, 92, 180 
Bode, H. W., 466 
Boundary conditions, application, 120, 

195 
at perfect conductor, 193 
for TE waves, 351 
for TM waves, 345 
in electrostatics, 77-79, 120 

569 
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Boundary conditions, in time-varying 
fields, 191-196 

Brewster angle, 304 

Capacitance, coefficients, 264 
electrostatic, 75 
of triode, 268 
stray, 227 

Capacitive voltage drop, 213, 218 
at high frequencies, 226 

Carson, J. R., 210, 343, 448 
Carter, P. S., 514 
Cavity resonator, 415 

as extension of lumped circuit, 417 
as resonant transmission line, 416 
band width, 425 
conical, 440 
coupling, 442, 472-476 
equivalent circuit, 473 
from wave reflections, 418 
loop-coupled, 443, 474 
Q of, 424, 425, 430, 437 
rectangular, 421-428 
series resistance, 425 
shunt conductance, 425 
small-gap, 438 
with two coupled guides, 476 

Cgs practical units, 191 
Characteristic values, 345 
Characteristic wave impedance, 288, 

298, 348, 352 
Charge, line, 60 

surface density, 75, 78, 194 
volume density, 64, 185 

Chu, L. J., 402, 524, 529, 536, 545 
Circuits, band width, 14, 15 

coupled, 6, 220, 226 
forced oscillations, 11 
free oscillations, 2 
high-frequency, 227 
input impedance, 13, 14 
low-frequency, 213 
multi-loop, 219 
mutual couplings, 220 
resonant, 2-10 
self-enclosed, 228, 417 

Circular harmonics, 149, 150, 152, 394 
Circular loop, at high frequencies, 225 

magnetic field of, 89, 176 
Circular loop antenna, 510 

Circular polarization, 284 
Coaxial cylinders, capacitance, 75, 182 

electrostatic field, 60, 135 
inductance, 254 
magnetic field, 94, 95 
with different dielectrics, 62, 119-121 

Coaxial lines, 363 
higher order waves, 364-366 
radiation from, 536 
resonator, 438 

Coefficients of capacitance, induction, 
and potential, 263-268 

Cohn, S. B., 410 
Complex dielectric constant, 306 
Complex exponentials, 15, 17 
Complex function theory, 127-145 
Complex vector, 188 
Conductivity, 184 
Conductors, 233, 235 

in electrostatics, 77 
poor, 312 

Cones of silence, 523 
Conformal transformations, 127, 132 

for triode, 266 
Conical line resonator, 440 
Conjugates, 18 
Conservation of energy, 72, 179 
Continuity conditions at a boundary, 

79, 191, 192 
Continuity equation, 202, 209 
Convection current, 183, 185 
Coordinate systems, 107-109 
Coulomb’s law, 53 
Coupling loops, 256, 442, 443, 474 
Coupling to cavities, 442, 443, 472-476 
Cross product, 87, 88 
Curl of vector field, 95, 97 
Current, convection, 183, 185 

density, 117 
distribution, in conductor, 235 

in plane conductor, 236 
in round wire, 242 
on antenna, 553 

flow on guide walls, 370 
line, 94 
magnetic, 528 
magnetic field of, 94 

Cut-off, for circular guide, 377 
for rectangular guide, 368 
gradual, 403, 524 
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Cut-off, of TE waves, 335, 352 
of TM waves, 328, 345 

Cylindrical coordinates, 107, 113 
wave solutions, 356-358 

Cylindrical harmonics, 146, 152 
series, 156 

for radial matching, 169 
Cylindrical resonator, 428-431 

Decibels, 368 
Decrement, 9 
Degenerate modes, 427 
Del, 69, 76 
Depth of penetration, 238, 240 
Dicke, R. H., 448 
Dielectric boundaries, 79 
Dielectric constant, 54, 185 

complex, 306 
Dielectric lens, 492 
Dielectric rod, antennas, 490 

guides, 388-393 
Differential equation, product solutions, 

145-148 
solution, by assumed functions, 5, 6 

by series, 3, 153 
used for field problems, 119 

Diode, space-charge-limited, 78 
Dipole, half-wave, 502 

Hertzian, 488, 497 
magnetic, 490 

Dipole antenna, 488, 496 
Directivity, 503 

limitations on, 524 
Discontinuities in lines and guides, 27, 

386, 477-485 
Discontinuity admittance, 479 
Disk-loaded wave guide, 412 
Dispersion, 47, 48 
Displacement current, 180-186 

in a condenser, 181 
in a parallel-plate condenser, 182 
in conductors, 235 
due to a moving charge, 183 

Displacement flux, 66, 123, 186 
Distributed constant circuits, 219 
Divergence, 70 

of electric field, 68, 180 
of magnetic field, 101 
theorem, 71 

Dolph, C. L., 525 

Dot product, 63, 64 
Duality, 404 
Dwight, H. B., 100, 243 

Echo boxes, 428 
Effective area, 558, 560 
Eigenvalues, 345 
Electric field, 56, 185 

lines, 57, 68, 122, 131 
of point charge, 57 
of TE wave, 352 
of TM wave, 331, 345 
time-varying, 184 
work integral, 72 

Electric flux, 66, 123, 186 
Electric flux density, 57, 185 
Electromagnetic horns, 490, 536 
Electron, 56 
Electron beam, 61, 63 
Electrostatic capacitance, 75, 121 

from field plot, 126 
Electrostatic energy, 84 
Electrostatic potential, 73, 117 
Electrostatic shielding, 265 
Electrostatic system of units, 54 
Elliptic integrals, 260 
Elliptic polarization, 283 
Emde, F., 357 
Emu units, 92 
Energy, conservation of, 72, 179 

in capacitance, 2, 86 
in electric fields, 84, 275 
in inductance, 2, 255 
in magnetic fields, 106, 275 
in plane wave, 279 
in resonator, 423, 429 

Equipotential surfaces, 77, 122 
Equivalent circuits, of cavity, 470 

of receiving antenna, 563 
of two-terminal pair, 457 
of wave guide discontinuity, 479 

Euler’s constant, 154 
Excitation of waves in guides, 380-381 
Exponentials, complex, 15, 17 

Faraday’s law, 178, 186 
in differential equation form, 179 

Feldman, C. B., 495 
Field impedance, 298, 329, 348 
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Fields, by conformal transformations, 
127-145 

by graphical methods, 122-127 
radiation from, 526-538 

Flux function, 131 
Flux tubes, 66 
Force law, 184 

between charges, 53 
of magnetic field, 87 

Foster, D., 517 
Foster, R. M., 466, 469 
Foster network forms, 469, 471, 475 
Foster reactance theorem, 465 
Fourier series, 19 

for function over an interval, 22 
for saw-tooth wave, 22 
for square wave voltage, 20 
for transmission line analysis, 49 

Frequency, resonant, of cavity, 420 
of circuit, 12 

Friis, H. T., 560 

Gain of antenna, 503, 522, 560 
Gamma function, 164 
Gaussian system of units, 189 
Gauss’s law, 58, 70 

for time-varying fields, 186 
Gauss’s theorem, 71 
Gibbs phenomenon, 22 
Giorgi, 54 
Goubau, G., 395 
Gradient, 75, 110 
Graphical field mapping, 122 

information from, 126 
technique, 123 

Group velocity, 48, 328, 346 
Grover, F. W., 261 
Guided wave, 315 
Guillemin, E. A., 463 

Hahn, W. C., 484 
Half-wave dipole, 502 
Hankel functions, 160, 164, 393, 397, 

435 
Hansen, W. W.. 415 467, 524 
Harmonic function, 146 
Harmonics, circular, 149, 150, 152, 394 

cylindrical, 146, 152, 156, 169 
rectangular, 146-150 
spherical, 146, 171-175 

Heaviside-Lorentz units, 190 
Helix, idealized, 411 
Helmholtz coil, 176 
Hertz potential, 198, 201, 202 
Hertzian dipole, 488, 497 
High-frequency circuit concepts, 222 
Horns, electromagnetic, 490, 536 

sectoral, 401 

Images, 80-81 
in a cylinder, 81, 141 

Impedance, characteristic, 27, 40, 364 
internal, 213, 239 
intrinsic, 279 
of cavity, 444, 475 
of coated conductor, 249-251 
of plane solid, 239 
of resonant circuit, 13 
of round wire, 244-248 
of transmission line, 32, 37, 41 
of tubular conductor, 251-253 
wave, 288 

for lossy dielectric, 311 
for oblique incidence, 296-298 

Impedance concept, 286 
Impedance function properties, 465, 466 
Impedance matching by tapered sec¬ 

tions, 405 
Inclined planes, 404 
Induced emf method, 511-513 
Inductance, 213-217 

at high frequencies, 222 
by selected mutuals, 259 
external, 217 
from energy, 255 
from flux linkages, 253-254 
internal, 216 
of practical coils, 261 

Inhomogeneous wave equations, 197 
Integral equation, 484 
Internal impedance, 213, 239 
Intrinsic impedance, 279 
Iris coupling, 380, 442 

Jahnke, E., 357 
Jamieson, H. W., 480 
Joule, 55 
Junction parameters, measurement, 

458-461 
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Kerst, D. W., 178 
Kirchhoff’s law, 2, 27, 208-213 

relation to Maxwell’s equations, 208 
Klystron, 442 
Kock, W. E., 491, 492 
Kraus, J. D.. 410 

Laplace’s equation 83, 116 
in two dimensions, 130 
problems governed by, 116 

Laplacian, 83 
in general coordinates, 11 I 
of a vector, 111 

Legendre polynomials, 172, 173, 433 
Legendre’s equation, 172 
Lens directors, 491 
Line integral, 92-93 
Linear arrays, 519-523 
Linear polarization, 282 
Logarithmic transformation, 134 
Longitudinal section waves, 369 
Loop coupling, 256, 380, 442, 474 
Loss tangent, 310 
Losses, in cavities, 423 

in simple circuits, 10 
in transmission lines, 38 
in wave guides, 368, 378, 379 

Lossy dielectrics. 309, 332, 350, 354 
Lundstrom, O. C., 467 

Magic T, 447 
Magnetic current, 528 
Magnetic dipole, 490 
Magnetic field, 87. 185 

energy, 106, 275 
force, 87 
of circular loop, 176 
of current, 94 

Magnetic flux density, 185 
Magnetic scalar potential, 117 
Magnetic vector potential, 99, 117, 196 
Magnetomotive force, 187 
Magnitude of complex quantity, 17 
Marcuvitz, N., 480, 485 
Matrix notation, 463 
Maxwell, J. C„ 89, 180, 263 
Maxwell, unit of flux, 91 
Maxwell’s equations, differential equa¬ 

tion form, 184 
for a dielectric, 272 

Maxwell’s equations, for good conduc¬ 
tors, 233 

in various coordinate systems, 204-
206 

large-scale form, 185 
time-periodic case, 187, 206 

McLachlan, 243 
Measurement of junction parameters, 

458-461 
Mittag-Leffler theorem, 471 
Mks system of units, 54, 91 
Modes, 328, 426 
Modified Bessel functions, 162, 165-167 
Montgomery, C. G., 448 
Moreno, T., 440, 480 
Morse, 435 
Mueller, G. E., 392 
Mutual couplings, 220, 226 
Mutual inductance, between circular 

loops, 257 
from flux linkages, 258 
from vector potential, 256 

Nagaoka, 262 
Nepers, 45 
Networks, cascaded, 462 

linearity, 452 
microwave, 447, 451 
one-terminal pair, 464-476 
7T equivalent circuit, 448, 457 
T equivalent circuit, 457 
two-terminal pair, 455 

Neumann form, 221, 224, 257 
Newton, 55 
Non-uniform transmission lines, 395, 

404, 556 
North, D. O., 561 

Oblique incidence, 293-296 
on dielectrics, 299 
on multiple dielectrics, 305 

Ohmic term, 275 
Ohm’s law, 184, 209, 233 
One-terminal pair, 464-476 
Orthogonality property, of associated 

Legendre functions, 434 
of Bessel functions, 168 
of Legendre functions, 174 
of sinusoids, 19 
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Oscillations, forced, 11 
free, 2 
in cavities, 415 
in simple circuits, 2 15 
with losses, 8 

Parallel-bar transmission line, 364 
Parallel-plane guide, 319-337 
Parallel-plate condenser, 86, 182 
Parallel-wire line, 99, 138-140, 217, 363 
Penetration, depth of, 238, 240 
Periodic functions, 19 
Permeability, 87, 92, 185 
Perturbations in cavities, 444 
Phase constant, 31, 40, 41, 332 
Phase of complex quantity, 17 
Phase velocity, 46, 296, 331, 346 
Pierce, J. R., 410 
Plane conductor, 236 
Plane polarization, 282 
Plane wave, energy relations, 279 

in perfect dielectric, 277 
of sinusoidal form, 281 
source of radiation, 530 
transmission line analogy, 286 

Poisson’s equation, 83, 119 
for vector potential, 102 

Polarization of a wave, 282-284 
Polarization vector, 198 
Polarizing angle, 303 
Polyrod antennas, 392 
Poritsky, H., 125 
Potential, electrostatic, 73, 117 

for time-varying fields, 196 
from complex transformations, 131 
Hertz, 198, 201, 202 
retarded, 199, 200, 201 
scalar, 197 
vector, 99 

Power factor, 310 
Power transfer, 321, 348, 353 
Power loss, in plane conductor, 240 
Poynting calculations of radiation, 505-

508 
Poynting vector, 276, 277 
Poynting’s theorem, 274 
Principal waves, 318 
Probe coupling, 380, 442 
Product solutions, 145 

Propagation constant, 40, 41 
Purcell, E. M., 448 

Q (quality factor), 9 
of circuit, 10 
of natural mode, 469 
of resonator, 424, 425, 430, 437 

Quarter-wave matching section, 32, 292, 
384 

Quasi-static methods, 481 

Radial transmission lines, 395-401 
circumferential modes, 401 
resonator, 439 

Radiation, as end effect, 495 
calculated from currents, 496 
calculated from fields, 526-538 
of progressive wave, 490, 508 
induced emf method, 511-513 
physical pictures, 492 
problems of, 486-488 
wave concepts, 494 

Radiation intensity, 507, 530 
Radiation resistance, 224-226, 499, 502 
Radiation vector, 506, 530 
Reciprocity, 452, 454, 456, 558, 561 
Rectangular coordinates, 107, 112 

wave solutions, 354-356 
Rectangular harmonics, 146-150 
Rectangular resonator, 421-428 
Rectangular wave guides, 366-374 
Reflection, 299, 301 

angle of, 295 
elimination of, 292, 312, 384 
from conductors, 284 
from multiple dielectrics, 290 
law, 299 
total, 302, 389 

Reflection coefficient, 28, 34, 41, 288 
Reflectors, 491, 531 
Refraction, 299 
Relaxation methods, 485 
Relaxation time, 234 
Resistivity, surface, 240 
Resonant cavities, 229, 415-445 
Resonant circuits, 2-10 
Resonant transmission lines, 42, 46 
Retarded potentials, 199, 200 

for time-periodic case, 201 
Rhombic antenna, 517-519 
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Ridge wave guide, 409 
Riemann-Weber, 393 
Robbins, T. E., 480 
Rotman, W., 395 
Round wire, 242-248 

8 curve, 460 
Saunders, W. K., 559 
Scalar potential, 197 
Scalar product of vectors, 64, 110 
Schelkunoff, S. A., 287, 312, 343, 432, 

435, 450, 471, 476, 495, 506, 523, 
526, 548 

Schwarz transformation, 141-145 
Schwinger, J., 485 
Sectoral horns, 401 
Separation of variables,. 145 
Serber, R., 178 
Series methods for wave guide discon¬ 

tinuities, 482 
Series solutions of differential equa¬ 

tions, 3, 153 
Shielded pairs, 363 
Silver, S., 537, 558 
Simple harmonic motion equation, 3-6 
Singular points, 128 
Skin depth, 238 
Skin effect, 230-253 

distribution equation, 236 
effect on impedance, 239, 246 
physical picture, 230 
wave concepts, 232 

Slater, J. C., 476 
Slow-wave structures, 410-414 
Smith, P. D. P., 548 
Smith, P. H., 34 
Smith chart, 34-36, 40, 305 
Snell’s law, 299 
Solenoid, 95, 261 
Southwell, R. V., 485 
Space-charge-limited diode, 78 
Spherical antenna, 538-545 
Spherical condenser, 62 
Spherical coordinates, 107, 108, 113 
Spherical harmonics, 146, 171-175 
Spherical resonators, 436 
Spheroidal antennas, 545 
Standing wave, 42, 286, 423 
Standing-wave ratio, 33, 37, 41 
Stokes’s theorem, 98 

Stratton, J. A., 275, 394, 432, 435, 452, 
509, 529, 545 

Surface guiding, 395 
Surface integrals, 63 
Surface resistivity, 240 

TE waves, see Transverse electric waves 
Terman, F. E., 262 
Termination of wave guides, 385 
Thévenin equivalent circuit, 453, 564 
TM waves, see Transverse magnetic 

waves 
Total reflection, 302, 389 
Transformation, complex, 132-138 
Transmission, 299, 301 
Transmission coefficient, 28 
Transmission lines, 363 

analogy of wave propagation, 286 
attenuation constant, 40, 41, 45, 363 
characteristic impedance, 27, 40, 363 
coaxial, 363-366 
discontinuities, 27, 477 
energy stored, 42 
graphical field solution, 125 
impedance transformation, 32, 37, 41 
natural mode analysis, 48-50 
non-uniform, 395, 404, 556 
open, 32, 473 
parallel-bar, 364 
parallel-wire, 99, 363 
phase constant, 31, 40, 41 
propagation constant, 31, 40, 41 
Q, 46 
reflections, 28-29, 34, 36, 41 
shielded pair, 363 
shorted, 42 
Smith chart, 34, 36, 40 
standing wave, 33, 37, 41, 42 
techniques applied to guides, 381-386 
velocities of propagation, 46 

Transmission line waves, 318, 337 
along imperfect lines, 341-343 
from Maxwell’s equations, 340 

Transmission parameters, 461 
Transmitting-receiving system, 557 
Transverse electric waves, 318, 351-354 

between parallel planes, 334-337 
in circular guide, 375 
in rectangular guide, 366 
physical discussion, 361 
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Transverse electromagnetic waves, 318, 
337 

between parallel planes, 319-326 
mathematical solution, 323 
physical discussion, 358 

Transverse magnetic waves, 318, 344-
351 

between parallel planes, 327-334 
in circular guide, 375 
in rectangular guide, 366 
physical discussion, 329, 361 
spherical, 432, 497, 499 

Triode, electrostatic solution, 268 
Two-dimensional problem, 122 
Two-terminal pair, 455 
Tyrrell, W. A., 392 

Uniform plane wave, see Plane wave 
Uniqueness, 118, 452 
Unit vector, 53 
Units, cgs practical, 191 
emu, 92 
esu 54 
Gaussian, 189 
I leaviside-Lorentz, 190 
mks, 54, 91 
rational, 55, 91 

Unpolarized, 282 

Variables, separation of, 145 
Variational formulations, 484 
Vector, 53 

complex, 188 
differentiation of, 111 
identities, 76, 114 
operator del, 69 
polarization, 198 
potential, 99 
Poynting, 276, 277 
product, 87, 110 
radiation, 506, 530 
scalar (dot) product, 64, 110 
summary, 112 
unit, 53 

Velocity, group, 48, 328, 346 
of light, 278 
of plane wave, 199 
phase, 46, 331, 346 
signal, 48 

Voltage, 203 
induced by magnetic fields, 177 
comparison with potential difference, 

204 
Volume integrals, 63 

Wave concepts of radiation, 490-494 
Wave equation, 25, 272, 273 
inhomogeneous, 197 

Wave guides, below cut-off, 386-388 
circular, 374-379 
coupling to, 380-381 
discontinuities, 383, 477 
rectangular, 366-374 
short-circuited, 383 
transmission line technique, 381-386 
voltage, current, and impedance, 449-

451 
Wave impedance, 298, 329, 348 
Wave number, 281 
Wave solutions, cylindrical coordinates, 

356-358 
rectangular coordinates, 354-356 
spherical coordinates, 431, 436 

Wavelength, 32, 381 
guide, 328 

Waves, in conducting materials, 305 
in imperfect conductors, 307 
in imperfect dielectrics, 310 
on conical systems, 406-409 
on cylindrical conductors, 393 
on uniform systems, 26, 316 

Weber, 91 
Weissfloch, A., 460 
Wheeler, II. A., 262 
Whinnery, J. R., 480 
Woodyard, J. R., 524 

Zero-phase-sequence wave, 395 






