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PREFACE

The second edition differs from the first in the following major
respects:

1. The rational mks system of units is used throughout.

2. Many problems have been added, particularly at the introductory
level.

3. Much new material has been added, including an entirely new
chapter on microwave networks; more simple examples in the chapters
on static fields; the useful Smith chart in the simple transmission line
treatment; several new aspects of propagating waves such as the
principle of duality and slow-wave circuits; and new features in the
chapter on radiation, such as discussions of horns, slot antennas,
receiving antennas, and more on arrays.

4. Some of the material which seemed less useful has been elimi-
nated, and nearly all has been revised for additional clarity.

Because the first edition found its place as a useful text of inter-
mediate level, we have tried to maintain that level, and, although
certain of the changes add more advanced material, others are con-
cerned with additional examples in the beginning stages which will
make the material easier to grasp. The general plan of the book has
been changed little except for the added material, though there is some
reorganization, and nearly every section has appreciable revision in
the attempt to make the presentation clearer.

The need was obvious for additional problems and for the change
of units in the one chapter of the first edition whieh used the classical
systems. (We have retained definitions and conversion tables for
these systems because the classical literature must still be consulted.)
The question of added material was harder, for with the rapid develop-
ment of microwave engineering additional important examples could
be added without limit. The additions were consequently limited to
those that introduced some new principle or point of view. For
example, the helix as a guiding system was chosen because it illus-
trates the behavior of waves with phase velocities less than the velocity
of light, the sectoral horn guide because it illustrates the phenomenon
of a gradual cut-off, and the wedge guide because it illustrates the
principle of duality. Some deletions were required to keep the book

v



vi PREFACE

within reasonable length, and we hope that we have not eliminated
material useful to people whose needs we do not know.

The book has been used continuously since its first appearance by
both of us in teaching senior and first-year graduate courses on Electro-
magnetic Fields and Waves. The changes have been based primarily
on this experience, on suggestions given us by our colleagues who are
practicing engineers in organizations with which we have been affili-
ated, and on comments sent to us by many engineers and faculty
members throughout the country. We wish to thank all persons who
have taken the trouble to make comments and send suggestions. We
also express our appreciation to the students, colleagues, and secretarial
assistants who have helped with the labors of preparing and checking
the manuscript and proof.

SmoN Ramo

JouN R. WHINNERY
May, 1953
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1 OSCILLATION AND
WAVE FUNDAMENTALS

1:01 INTRODUCTION

This text is concerned with electromagnetics, particularly that
underlying oscillations and waves. Before introducing the laws of
electricity and magnetism for serious study, it will be necessary to dis-
cuss some ideas and mathematics that have to do with oscillations and
waves generally.  This will be done by using simple circuits and con-
ventional uniform transmission lines as examples. When this is done,
the objective is not to present the theory of circuits and lines as such.
Indeed the theory underlying both comprises a good part of the text.
The purpose of this chapter is to illustrate (and for some readers to
review) a point of view toward oscillations and waves needed for the
rest of the text. Specifically the objectives are:

1. To present a clear picture of the energy relations in oscillating
systems.

2. To point out criteria relating energy properties of a system to
band width, impedance, etc., for later comparison purposes with cavity
resonators.

3. To clarify the concepts of waves, particularly in regard to such
properties as phase velocity, reflection, and characteristic impedance.

4. To point out common properties of transmission lines according to
the conventional distributed constant approach for later comparison
with properties of waves in space and in wave guides.

5. To present or review some fundamental mathematics necessary
for the study of oscillations and waves throughout the book.

6. To develop approximate methods of analysis based upon the
physical picture of the phenomena, so that these may be used in the
later, more difficult problems.

1



2 FIELDS AND WAVES IN MODERN RADIO 1-02

Simple Circuits as Examples of Oscillating Systems

102 FREE OSCILLATIONS IN AN IDEAL SIMPLE CIRCUIT

Let us start with the simplest possible circuit for electrical oscilla-
tions, an ideal condenser connected across an ideal inductance. Con-
sider first free oscillations, assuming that an amount of energy was
supplied to the combination at some instant (for example, by placing a
charge on the condenser) and that from that time on there is no con-
nection to the outside. Energy may be stored
in the system in two forms:

1. Magnetic energy in the inductance. This

Lg \D L. may be considered analogous to kinetic energy
in mechanics and has the value

U, = iLI? 1

Fig. 102, where I is the current flowing through the in-
ductance L.
2. Electric energy in the capacitance. This may be considered
analogous to potential energy in mechanics and has the value

U, = 3012 @)

where 17 is the voltage across the condenser C.

The presence of energy in the condenser implies a voltage across the
condenser, and a consequent rate of change of current and stored mag-
netic energy in the inductance. Similarly, the presence of magnetic
energy requires a current flowing in the inductance, and a consequent
rate of change of voltage and stored electric energy in the condenser.
We are led then to expect oscillations, since the presence of energy in
one form requires a rate of change of energy in the other. It is also
necessary that the total energy in the system be a constant, the same
at all instants, since there is no connection to the outside and ideal
dissipationless conditions are assumed.

Before going further with purely physical reasoning, let us write an
equation for the instantaneous current in the circuit. By Kirchhoff’s
laws, the sum of the induction voltage L dI/dt and the condenser
voltage ¢/C must be zero:

dl 1
L&7+E'f1dt_0 (3)

If this equation is differentiated with respect to time, it becomes a true
differential equation.
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a1
LYl 42 =0
dt® + C
a2l I
or ar - T LC (4)

The differential equation (4) is called the simple harmonic motion
equation. This is probably the simplest and most common of all
differential equations. It will probably be so familiar that the reader
will wonder why we do not immediately write down the answer to
the equation. The objectives here, however, are not to obtain answers
to these simple and well-known problems, but rather to freshen up old
techniques and to develop new ones for the much more interesting
problems that lie ahead.

1.03 SOLUTION OF THE DIFFERENTIAL EQUATION BY ASSUMED SERIES
The differential equation to be solved is 1-02(4):

d*I I

> LC W

The method to be shown first for solution of this simple differential
equation is one which will be necessary for later less familiar equations,
such as the Bessel equation. The method merely recognizes that the
solution to a given differential equation can often be expanded in a
power series. Conversely, we may assume a general power series at
the beginning, and determine what form its coefficients must have if
the series is to be a solution for the equation. The required form may
be recognizable as the expansion for a known function. At any rate
the entire series, if convergent, may always be used as the solution.

Let us then assume that the solution to (1) will be some series of the
form

I =ag+ ait + ast® + agt® + agt* + - - - )
Differentiating,

dl . s

E = a; + 2ast + 3azt® + 4aqt® + - - -

d?I )

d7=2-1a2+3-2a3t+4~3a4t 9P 9 9 ¢

These series forms may be substituted in (1) to determine the
requirements on the coefficients in order that the series may satisfy
that equation:
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2-lag + 3-2a3t + 4-3a®> + 5-4ast® + 6 - Sagtt + - - -

1
]C(ao+alt+a2t2+a3t3+a4¢4+ cee)

It may not be obvious at once, but a little study shows that, if the
above equation is to be true for all values of ¢, coefficients of like powers
of t must be equal on the two sides of the equation. That is,

Qo
Ao = —
- 2 N lIJC
_ Wi
= T3 aLe
e s G0
YT 3L 4 Loy
ay a)
a5 = - =

5-1LC 31 (LC)?

and, generalizing,

G = — Ay _ (=1"ay
n @2n)(2n — DLC — (20)! (LC)"
Aon—1 (—=D"ay
Gzn41 = o y

T@n+ DELC T @+ DI LO)"

Notice that the requirements placed upon the constants of the series
by substituting in the differential equation have related all constants
either to ag or to a;, but there is nothing relating these two to each other
or to anything else. This seems promising, for two independent solu-
tions and two arbitrary constants are required for a second degree
differential equation. Let us write now the assumed series (2),
using these constants:

£ ¢! t°
= “"[1 Taretwaer ot ]
F@VIO) [ P P L -l @
“ [(LC)*i staey* Tsr@e e T ] §

Comparison with any tables of series shows that the first quantity in
brackets has the form of the series expansion for a cosine function and
the second for a sine. That is,
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z z

cosx=1—§—!+ﬁ—--- 4)
x3 5

3 J— —_ e =4

sinz =z 3!+_' )

S0 (3) may be written

t == ¢
I = ag cos (—:) + a; VLC sin ( __>
VLC VLC
Since a; is arbitrary, the entire quantity a; V C may be replaced by
C to stress the point that it is an arbitrary constant. Let us at the
same time replace ag by C; and define

1
oy = 6
* T VILC ©
Then I = (4 cos wot + Cg sin wel )

This expression is a solution to the differential equation. It has two
independent functions and two arbitrary constants. All is now known
except the values of these constants. These cannot be determined
until more information is given about the manner of starting oscilla-
tions in the circuit.

PROBLEMS
1:03a Obtain a series solution for the equation
dy 1 dy .
dz' zdzx +6y=0

1:03b Repeat a for the equation

d? 1d
y y+(ﬂ2 —)y—o
T zdz

1-04 SOLUTION OF THE DIFFERENTIAL EQUATION BY ASSUMED
SINUSOIDS

The simple harmonic motion differential equation has been solved by
assuming a series solution, determining the form required of that series
by the differential equation, and identifying the resulting secries as a
sinusoidal function. Now, we might have guessed at the beginning
that the solution would have been of a sinusoidal form. Although the
frequency was not known, we might have assumed a solution of the
form of Eq. 1-03(7), substituting in the differential equation 1-03(1) to
determine the value of wg. If I'is given by Eq. 1-03(7),
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dl

a = _wO(Cl sin wot — C2 Cos wot)

21 (1
i —wo?(Cy cos wot + C sin wel)

Substituting in the differential equation,

1 .
—wo*(C} cos wet + Ca sin wol) = — o (Cy cos wyt + C2 sin wot)

1
If 0)02 = IJ_CY (2)

the equation is satisfied. This value of w,? is exactly that defined in
Eq. 1-03(6).

Thus it is demonstrated that, if we can guess the form of a solution to
a differential equation, substitution of this form into the equation will
determine whether or not it is a solution and will give values for any
non-arbitrary constants, such as wg above. This method is one of the
most useful for solution of differential equations in engineering.

PROBLEM

1-04 The equations for a loss-free coupled circuit with input values L,, C,
output values Ly and C2, and mutual inductance M are

dI dI
L1—1+M-—2+ flldt—O
de—;t—’ Mﬂ+ flzdt—o

Assuming sinusoidal forms for I; and I, find values for the natural frequency wo.

1:05 SOLUTION OF THE DIFFERENTIAL EQUATION BY ASSUMED
EXPONENTIALS

As a final attack on the differential equation for simple harmonic
motion we shall attempt a solution in terms of exponentials. The wis-
dom of this will shortly be demonstrated. Suppose we try

I = Ae?* + Age? (1)
2
I

then Zﬁ = p2(A 1e”‘ + A 28—‘”)

Substitute these in Eq. 1-03(1):

1
p2(A 16” + Age—"‘) = — L—C (A 18’” + A4 26_‘”)
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7 1
or p- = -j—C
1

14 =.7\/LC = Jwo
where j = 1/ —1.

This substitution indicates that (1) is a solution of the simple har-
monic motion equation, provided that p = jwg:

I = Aot + Age oot 2)

Next let us remind ourselves of the identities
¢’* =cosz + jsinzx 3)
e =cosxr —jsinzx 4)

These are most conveniently verified by considering the series expan-
sion for an exponential:

2 3
_ vLor, ..
¢ =14y+ o gt

o R
LRI TR Y

z> oz . 3 xb .
ST TR AR TR TR

By comparing with Eq. 1-03(4) and Eq. 1-03(5) the latter series are
quickly identified as those for cosine and sine respectively, thus verify-
ing (3). The corresponding demonstration for (4} is identical to this.

If identities (3) and (4) are substituted in (2),

I = (A; 4+ Aj) cos wot + j(A1 — Ao} sin wet

so ¢'°

+...

Since A and A, are both arbitrary, this may be written exactly in the
previous forms:
I = () cos wyt + Cy sin wel B)

For many purposes it will be convenient to use the solution in the
form of (2) instead of changing to (5). This use of exponentials to
replace sinusoids will be the subject of later discussion.

PROBLEMS

1.06a Show that an alternative expression equivalent to Eq. 1.05(2) or Eq.
1-05(5) is
I = A cos (wot + ¢)
Relate A and ¢ to C; and Cs.
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1-06b Solve the equations for the coupled circuit, Prob. 1-04, using assumed
exponentials.

1:06 NATURAL OSCILLATIONS WITH LOSSES—APPROXIMATE METHOD

The circuit analyzed previously was ideal. Suppose we now wish to
consider the effect of the finite losses which must of necessity be present
in the circuit. As will be shown in the next section, it is a simple
matter to include these in the circuit equations rigorously; yet let us
first use physical knowledge to develop an approximate method which
will give the first order effect of the losses, provided that losses are
small. The point of view will be extremely useful in later analyses of
cavity resonators and wave guides.

If losses are small, physical intuition tells us that the natural period
of oscillation will be changed little, and over a short period of time the
solution will be very nearly that for the ideal circuit. The major
correction will be a long-time decrease in the amplitude of oscillation
due to the energy lost.

It is common experience to find exponential changes for a physical
quantity which decreases (or increases) at a rate proportional to the
amount of that quantity present. The power loss, or rate of energy
decrease, for this example, is proportional to the amount of energy in
the system. It would consequently be reasonable to expect an expo-
nential damping factor to appear in the expressions for currents and
voltages. As a first order correction, the expression for current
obtained previously (Prob. 1-05a) might be assumed to be multiplied
by some negative exponential:

I = Ae™ cos (wot + ¢) ¢))

The energy in the circuit may be calculated at an instant when it is
all in the inductance:

L 2
U = $llu)? = L e @

Within the limits of the assumption of relatively small losses, the nega-
tive rate of change of this stored energy over several cycles is merely the
average power loss:

— T = IVL (3)

From (2), — = —2qa N €%t = —2qU 4)
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So, by combining (3) and (4),

W,
= — 5
5T (5
Define the quality factor or Q of the circuit as the quantity
Q- wo(energy stored in c_1riunvt). _ wolU (6)

average power loss 183

w(energy stored in circuit)
Q- sorec 0 Qe @)
energy lost per half cycle

Then (5) may be written

=20
*=30 ®)

The exponential decay is thus expressible in terms of the quantity Q.
The damping is also described sometimes as a logarithmic decrement,
which is the relative amount by which the amplitude of oscillation
decreases in one period.

Ae—o — Ae—a(!+T)

P T e =1—-e¢*"=al L L
E=C
provided a7 is small compared with unity, or
R
wp 21rf0 T
6=—T-= X - = — 9)
2Q fo Q (

Fig. 1.06.
Finally, let us interpret these results for a

circuit with losses distributed as in Fig. 1-06. The current flow through

the series combination of R and L is expressed by

I = A cos (wel + ¢)
(neglecting any exponential damping for a few cycles). The energy
stored in the circuit is the maxinium energy in the inductance,

L o
U—2A

and the average power loss in resistance R is

RA?

IV}Z = %R(Imax)2 = 2
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So @, defined by (6), is

Q _ wo(LAz) wOL
L= " pai2 = 4

RA* T R 2

This is the familiar expression for Q used to describe the excellence of an
inductance, wL/R, calculated at resonance. It is to be used in (8)
or (9) to give attenuation constant or logarithmic decrement.

PROBLEMS

1-06a If losses are present owing to a conductance G = 1/R; shunted across
the condenser instead of a series resistance in the inductance, show that the Q to
use in the general expressions Eq. 1-06(8) and Eq. 1.06(9) is

oy 88 L

G woll

1-06b If losses arise from both series resistance in L and shunt conductance
across C, demonstrate that the @ to use in the general expressions may be found
from the individual @’s defined previously.

11,1
Q Q. Qc
1:07 EXACT SOLUTION OF CIRCUIT EQUATION WITH LOSSES

The exact solution to the circuit of Fig. 1-06 will now be obtained to
check the approximate results of the previous article.

dl 1
L— I —f]dt=0
dt+R +C

is the exact equation of the circuit. Differentiating,

d*l dI

Loy +Ro+

I
: T¢=° W

Following the method of Art. 1-05, assume a solution of exponential
form,

I = Ae? 2

If this is substituted in (1) and the resulting equation is solved for P,

it is found that
R  J<R>2‘ 1
= — — + —) -
. o, “ V\ar) T Lc¢ 3)
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Since for low-loss circuits (R/2L)? will be less than 1/LC, it will be
convenient to write (3) as

R J 1 R*C

= - =+ —— — =2 = —a % ju 4
P oL T Vo AL a t juwg 4)
R
where a = ﬁ = ;—‘Z? (5)

TR N E O I

Q denotes wol./R as in Eq. 1-06(10), and wg is 1/\/LC.

The two possible values of p from (4) supply the two independent
solutions needed for the second degree differential equation. Substi-
tute these in (2):

I = Ale(’_a+]"-’o’)‘ + 4426(—"—]'”0')!
— e—at[‘4lejuo'l+ Aze—jwo'l]

By substitutions similar to those of Art. 105, an alternative expres-
sion is
I = e7C} cos wy't + C2 sin wg't] )

A comparison with the approximate analysis of Art. 1-06 shows that
the same damping coefficient (5) is obtained. The natural frequency
is different from wo by (6), but this difference is small for low-loss
(high-Q) circuits.

PROBLEM

1-:07 Obtain exact results for the cases solved approximately in Probs. 1-06a
and 1-06b, showing for these also that Q may be used as an indication of the use-
fulness of the approximate results.

1-08 FORCED OSCILLATIONS IN AN IDEAL L-C CIRCUIT

In previous examples, it was assumed that oscillations in the simple
resonant circuit were free oscillations caused only by an initial deposit
of energy in the circuit. In most practical cases, however, the circuit is
continuously excited by a source of sinusoidal voltage. As the first
example of such forced oscillations, consider the loss-free parallel L-C
circuit excited by a sinusoidal voltage of constant magnitude (Fig.
1-08). The total current flow from the source is the sum of currents
in the two impedances. The equations for these two currents are
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dI

Ld—tl=Vsinwt (1)
—1f1 dt = V sin ot (2)
C odt = V sin w

Current may be obtained from (1) by integrating directly and from (2)

I,+1, by differentiating:
] 14
c__l LIl=—:,003wt+Cl 3)
V sin wt 1 l rla
" T2 _ oV cos wt 4)
o~ “Veose

The constant term in (3) merely
represents a possible constant d-c
term flowing through the inductance, which is of no interest to the a-c
problem so long as constant elements (linear systems) are assumed.
Thus the total current

Fig. 1-08.

I=Il+Ig=V<wC—L>coswt 5)
wL
The above relations, of course, check the well-known behavior of
simple circuits. The current in the inductance has a phase lag of 90°
with respect to its voltage, whereas the current in the capacitance has a
90° phase lead with respect to the voltage. The total current is leading
(the total circuit acts as a capacitance) if wC > 1/wL, and is lagging
(total circuit acts as an inductance) if 1/wL > wC. If wC = 1/wL,
there is no current to be supplied by the source; under this condition
the current flow to the inductance is at every instant exactly equal and
opposite to the current flow to the capacitance. The frequency for
which this condition occurs is the natural frequency found previously,
1 1
wC = w3 or w = T = wp (6)
At this natural frequency the energy inside the system is a constant
and merely passes back and forth from inductance to capacitance, and
no energy need be supplied by the source at any instant of time. Fora
frequency lower than this resonant frequency, the maximum energy
stored in the inductance is greater than the maximum energy stored in
the capacitance, so that this excess energy must be supplied from the
source during one part of the cycle, but will be delivered back to it
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unharmed during another part. This excess reactive energy from the
inductance makes the circuit appear as an inductive load to the source.
Similarly, for frequencies greater than the resonant frequency, the
maximum energy in the capacitance is greater than the maximum
energy in the inductance, and the excess reactive energy that must be
supplied to the capacitance causes the circuit to appear as a capacitive
load to the source.

At the resonant frequency the energy stored in the circuit is the
maximum energy of the capacitance, or the maximum energy stored in
the inductance, since both are equal:

v: e

Ve = —
2(.00 L

1
U=3 @)

1:09 APPROXIMATE INPUT IMPEDANCE AT RESONANCE

If the parallel circuit has losses in the coil or condenser, these may be
taken into account from physical consideration of the energy relations,
before attempting an exact analysis by the circuit equations.

At resonance the energy stored in the tuned circuit is given by
Eq. 1-08(7). From the definition of Q given in Eq. 1-:06(6), the power
loss at resonance is

Wy =20 = 7 )

The source must supply to the circuit this amount of power. The
circuit then looks like a high-resistance R; of value such that

V2
By comparing with (1),
L
-0
QNG ®)

The approximations of reasonably low losses will be recognized in the
above reasoning, for we have taken the expression for energy stored as
that developed from the loss-free case. 1In this picture, the major part
of the energy is stored in the circuit and passes back and forth from the
inductance to the capacitance. Only the small amount of power lost
in the process need be supplied by the source. The resulting current
flow to supply this loss component causes the circuit to have a high but
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finite input impedance in place of the infinite input impedance found
previously.

PROBLEMS

1-09a Write alternative forms for Eq. 1-09(3) in terms of circuit reactances at
resonance.

1-09b Write Eq. 1-09(3) in terms of : a series resistance in L, a shunt resistance
across C, both series and shunt losses. For the first two cases, show that the
resonant circuit can be considered an ideal transformer between the input terminals
and the resistance R, and give the turns ratio n of the transformer for the two cases.

1-10 APPROXIMATE INPUT IMPEDANCE NEAR RESONANCE

The physical reasoning may be extended to give the approximate
behavior of the circuit for a small departure from resonance. First it
may be concluded that the major change will appear as a reactive com-
ponent added to the admittance as frequency is changed to a value such
that the capacitive and inductive reactive currents no longer cancel.
To a first approximation, the input power supplied will be constant, so
that the conductive portion of the admittance may be considered con-
stant and equal to that calculated at resonance in Art. 1-09. We
justify this by recognizing that any loss entering from a parallel con-
ductance will not change at all with frequency, and, although that
arising from a resistance in series with inductance will change with
frequency, this is a uniform change, not comparable with the change
in the differences of large quantities which affects the reactive current.
The susceptance portion of the admittance is approximately that
calculated without losses. The admittance may then be written

_ 1 \/E < 1 )
Y—G+]B~Q 7t wC = (1)
Let w = wo(l + 8), and make use of the approximation for small 5,

A+81=~1-2s

Y = \/g [é 35 j26] 2)

From (2), the frequency shift for which susceptance becomes equal
to conductance, a common measure of circuit “sharpness,” is
1

é; = % 3)

Then (1) becomes
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The Q of the circuit is consequently identified with the band width or
sharpness of the circuit. For a frequency shift corresponding to (3),

|Y11=61\/g|(1+1)|——\/0 4)

In terms of impedance, the impedance at this frequency is 1/V 2 its
magnitude at resonance.

Use of Complex Exponentials

1-11  SOLUTION OF THE CIRCUIT DIFFERENTIAL EQUATION IN TERMS OF
COMPLEX EXPONENTIALS

The approximate results of the previous articles for the circuit rela-
tions when dissipation is included will now be verified by direct solution
of the differential equation of the circuit. If a voltage V cos wt is
applied to a circuit containing R, L, and C in series, the equation to be
solved is

dl 1
L—+RI+— | Id=1Vc¢c 1
dt+ +Cf dt cos wt 1)
But [see Egs. 1:05(3), (4)]
le —juwi
cos wl = ——z ¢ 2)

If we assume that the current has the steady state solution,
I = A’ + Be™ 7t 3)
the result of substituting in (1) is

JoL(AG = BE) + R(Ae™ + Be) 4 5 (A6 — Bemi)

- ‘5 @+ e W)

Following previous reasoning, this equation can be true for all values

of time only if coefficients of _ej“‘ are the same on both sides of the
equation, and similarly for ¢77*¢,

T
:
2

ale-ile-5)]-

(5b)
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The complex quantity in the bracket of (5a) may be called Z and
written in its equivalent form

1 .
Z—R+j(wL——>= Z el
wC
______ =
where | Z| = A/R* + (wL — —s (6)
wC
(-
and ¢ = tan™! P = (7)
.. . 1 ]
Similarly, R—3j (wL — —) = | Z e
wC
Vv ”
— —7
Then A 2| 7 I e
| A
—_— iV
B 2l 7 | e

(A and B are conjugates: they have the same real parts and equal and
opposite imaginary parts.) Substituting in (3),

vV [efet—» 4 e—j(wt—w]
I= —}—MMMMM
(7] [ 2 ®
By comparing with (2),
14
I= i—Z—" cos (wt — ¢) 9

This final result gives the desired magnitude and phase angle of the
current with respect to the applied voltage. That information is
contained in either constant A or constant B, and no information is
given in one which is not in the other. B is of necessity the conjugate
of A, since this is the only way in which the two may add up to a real
current, and the final exact answer for current must be real. It fol-
lows that half of the work was unnecessary. We could have started
only with Ve’ in place of the two-term expression which is exactly
equivalent to V cos wt. For current, there would then be only

1= l%leﬂ”‘-*) (10)
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Although this cannot actually be the expression for current, since it
is a complex and not a real quantity, it contains all the information
we wish to know: magnitude of current, V/I Z |, and its phase with
respect to applied voltage, ¢. This procedure may be made exact by
writing

V(t) = Re[Ve* (11)

I(1) Rc[ 14 ej(“““)] (12)
| Z]

where Re denotes “the real part of.” Because of the inconvenience
of this notation, it is not commonly used, but it is useful to remember
it when the instantaneous value of a quantity expressed in complex
form is desired; that is, if any single frequency sinusoid f(t) is expressed
by its magnitude and phase, Me’’, or by its real (in-phase) and imaginary
(out-of-phase) parts A + jB, the instantaneous expression may be found
by multiplying by ¢’** and taking the real part:

f() = Re [Me? @] = Re [(A + jB)e™Y (13)
PROBLEM

1-11  Ctilizing the exact solution of this article, determine conditions for which
the approximate solution of Art. 1-10 is a good approximation.

1:12  USE OF COMPLEX EXPONENTIALS IN POWER CALCULATIONS

The preceding article demonstrated the basis for the use of complex
exponentials in the solution of problems involving steady state sinu-
soids. The consequent simplification of all linear problems in the
steady state will be apparent throughout the book. More care must
be exercised for non-lincar expressions, the most common of which
arises in the calculation of instantancous power, requiring a product
of terms.

Given a sinusoidal voltage across an impedance,

V() = Vin cos (wf + ¢1) (1)
and a sinusoidal current flow through the impedance,
I(t) = I, cos (wt + ¢3) (2)

the expression for instantaneous power is certainly given by multiply-
ing (1) and {2):

W(t)

But cos A cos B

Vinlm cos (wt + ¢1) cos (wt + ¢2)
zlcos (A — B) + cos (4 4+ B)]
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Vil m
2

,
S0 W) = T cos (g — 62) + U cos Qul + 1+ 4 ()
This has an average part given by one-half the product of the peak
amplitudes and the cosine of the difference in phase angles, and it has
a double-frequency sinusoidal a-c part given by the last term in (3).

An expression identical with (3) is of course obtained if one.utilizes
the complex notation in the complete form of Eq. 1:11(13), since
these are exact equivalents:

W) = {Re [Vme 0]} {Re [[e7“T42]) (4)

However, after using the complex notation without the real part
designated explicitly for a time, one may be tempted to form power in
the same way. Let us ask if this will lead to the correct result.

W () 2 Vg TN [ piwitey) — Vol me? (2ot terted (5)

Even if one agrees to take the real part of the final answer in (5), it is
clear that the power is not given correctly, for the average part is
missing and the a-c part is twice the correct value.

The exact expression for instantaneous power may be written in com-
plex notation. For the following demonstration, let us denote complex
quantities by a wavy line above the symbol, and conjugates by an
asterisk.

If 17 = I’mcjd’l
and P* = 17,07/
then FI* = V@

and *1

I.’m Imc- -F(é1—d5)

Then the exact equivalent of (3) in complex notation is

W =} Re {VI* 4 [Ve/“Y[Te/*Y)} (6)
and the average power, or constant component of this, is

Waw = % Re [V]*] = § Re [V*]] Q)

PROBLEM

112 An a-c voltage of 100 volts at frequency 1 me/sec is applied across a
parallel connection of 10 ohms resistance and a capacitance of 0.01 microfarad.
Find the instantaneous power, utilizing (6), and check by first finding instan-
taneous expressions for voltage and current. Take phase of voltage as zero.
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Fourier Series

1-13  FOURIER COEFFICIENTS FOR PERIODIC FUNCTIONS

All forced oscillations studied so far have consisted of sinusoids.
Consider a more general oscillation which is periodic, returning once
each cycle to any selected reference, or, stated mathematically,

J) =it —-1)

This might be of any arbitrary form, such as is indicated by Fig. 1-13.
Such a wave shape of voltage, if applied to a circuit, will act to that
circuit as a superposition of a group of pure sinusoidal voltages. The

AN A\
\/_I N

T

Fig. 1-13 Periodic wave of arbitrary shape.

wave may be replaced by a fundamental and its harmonics. The
method of finding the amplitudes of these is the classic method of
Fourier analysis, and the theorem that proves the truth of the foregoing
statements is the Fourier theorem, which it is assumed the reader has
agreed with in another study. What follows here is not a proof of the
validity of a Fourier series expansion for a general periodic function,
but merely a demonstration which shows the manner of obtaining the
coefficients. This will be extremely useful when we later add up series
to represent known functions along boundaries in field problems.

We shall write the periodic function f({) as a series of sinusoids con-
sisting of a fundamental and its harmonics:

f(©) = ag + a; cos wt + ay cos 2wt + a3 cos 3wt + - - -
+ by sin wé 4+ bs sin 2wt + b3 sin 3wt - - - (1)

At the moment, the coefficients have not been determined. The
manner of finding them is based upon the so-called orthogonality prop-
erty of sinusoids. This property indicates that the integral of the
product of any two sinusoids of different frequencies, over an interval
in which they are commensurate (for example, from —x to, or O to 2)
shall be zero. That is,

2x
f cos mr cosnxdx = 0
Omn

_];2' sin mx sin nx dr = 0 2)

m#n

2% .
f sin mx cos nxdxr = 0
Om#norm=n
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2% 13
However, j; cos® mx dxr = j; T sin2 mrdr = = 3)

Thus, if each term in (1) is multiplied by cos nwt, and integrated
from 0 to 2, every term on the right will be zero except that term
containing a,. That is,

J:, @) cos nwt d(wt) = j; u a, cos? nwt d(wt)

By (3), the integral on the right has the value a,r, or

2x
a, = 7—1"\]; J (&) cos n(wt) d(wt) (4)

Similarly, to obtain b,, each term in (1) is multiplied by sin nwt and
integrated from 0 tq 2r. Then,

2x
bn = 1-1-r . f(@) sin n(wt) d(wt) 5)

Finally, to obtain the constant term a,, every term is <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>