THE DECIBEL NOTATION

 V. V.L. RAO

 V. V.L. RAO}

CHEMICAL PUBLISHING COMPANY

THE DECIBEL NOTATION

Its Application to Radio and Acoustics

V. V. L. RAO

This pioneering book is the first volume in the English language which explains in sufficient detail the origin, development and a wide range of applications of decibel notation, with special reference to radio engineering and acoustics.

The subject has been developed from its principles assuming no high standard of mathematics on the part of the reader; the average student of electrical engineering will not encounter any difficulty in understanding and applying the information given in the book. Many solved problems will prove most helpful to the radio and acoustics engineer and students.

The book is a masterly survey of the development of the logarithmic unit, zero levels and level signs, decibel meter and decibel graphs, sound levels and phon calculations, etc., which will be welcome to technical workers of the radio and acoustics field.

THE DECIBEL NOTATION

Its Application to Radio and Acoustics

by
V. V. L. RAO
Radio Engineer

1946

Copyright
1946
CHEMICAL PUBLISHING CO., INC.
Brooklyn New York

FOREWORD

For The First American Edition

This up-to-date and critical compilation of widely-scattered data on decibal notation should prove valuable to radio, telephone, and acoustical engineers as well as engineering students, and to all who work with high-frequency electronics and circuits.

The subject is well covered and many examples are given which will facilitate the solution of special problems.

The book was originally published in Madras, India and the American edition corresponds entirely to the original publication. This will account for the use of some British terms, such as aerial for antenna, valve for tube, gramo-pickup for phono--pickup, etc. We assume that the reader is familiar with these terms and will have no difficulty in interpreting the information compiled in this handy volume.

The Editor

FOREWORD

Though the decibel notation has been widely used for a number of years and is becoming increasingly important in the field of Wire and Radio Communication, it has not yet been treated with the thoroughness it deserves in all its essential aspects.

Mr. Lakshmana Rao has made a masterly survey of the development of the logarithmic unit, the associated formulae used in everyday calculation, the idea of "zero levels" and "level signs", the decibel meter and the decibel graphs as well as the various applications of the notation in Radio and Acoustics Engineering. The range of usefulness of the work has been extended by the inclusion of a separate section relating to "phon", sound levels and phon calculations. The modest work is packed with much useful and worthwhile information presented with clarity and economy of words.

Mr. Rao's pioneer effort is very timely and he deserves the thanks alike of students of electrical communication engineering and engineers of Telecommunications and Broadcasting administrations.

S. P. Chakravarti,
Radio Controller, Department of Industries and Civil Supplies, Government of India.

AUTHOR'S PREFACE

> *The growth in popularity of the decibel, since 1929, has been so great that it is now almost a household word throughout all branches of Electrical Engineering and Acoustics' (The Admiralty Hand book of Wireless Telegraphy, Vol. II, 1938.)

1. The present work has been undertaken as, that so far as the author is aware, no book on this subject has been published in the English language, barring a booklet of 57 pages by Morris*. Usually, only a page or two are devoted to this topic in several general text-books on Communication Engineering or Acoustics, and such treatment consequently has been very elementary and scanty. It is the object of this book to explain the origin, development, and a wide range of applications of this notation, with special reference to Radio Engineering and Acoustics, illustrated by a number of worked out examples, and also to give a succinct picture and justification of the notation.
2. The book does not use very high standard of mathematics. It can be followed by an average student of Electrical Engineering as the subject has been developed from the first principles wherever possible. The monograph is so written as to serve as a valuable reference book to any student or engineer in telecommunications. It is divided for convenience into four parts. Part I solely deals with every aspect of the origin and development of the decibel notation; Part II deals with the derivation of the Phon notation, which is being increasingly used in acoustic engineering; Part III deals with a very wide range of applications of the decibel notation; Part IV contains four valuable appendices relating to the importance of log-linear graphs, limitations of a logarithmic unit, the standard cable, and the log-tables.
3. Both dectrel and phon are really of an abstract nature, and it is very difficult to obtain a physical conception of them, which is responsible for the hazy notions regarding these two units. The confusion is aggravated by the lack of a standard zero level (of power, voltage or current) and a

[^0]standard impedance, and the common, though defective, practice of mentioning as so many db, without mentioning with what zero level the result has been obtained. The author thinks that, unless a standard reference level is internationally agreed upon, it is always worthwhile to specify the zero level.
4. The author is indebted for valuable information to the books listed in the bibliography, and therefore acknowledges his grateful thanks to the authors and publishers of those books. In particular, the author records his grateful acknowledgement to the following, from whose publications several diagrams are reproduced: General Radio Coy., Mass., USA; The Wireless World, London; Philips' Electrical Coy. (India) Ltd., Calcutta; Messrs. Chapman \& Hall Ltd., London; Thordarson Elec. Mfg. Coy., Chicago, USA; Weston Elec. Inst. Corporation, Newark, N. J., USA.
5. The author has great pleasure in thanking Messrs. T. N. Seshadri, m.A., J. K. Murty, m.A., and Dr. I. Ramakrishna Rao, Ph.D. (Calcutta), D.Sc. (Lond.), for going through several portions of the manuscript critically and offering constructive criticism, and also reading through the proofs in parts; Mr. S. Sambasivarao, Grad. r.e.e., for assisting the author in scriptural work in preparing the final manuscript. Last but not least, the author is much indebted to Prof. S. P. Chakravarti for readily consenting to write a foreword and for giving several helpful suggestions.
6. Any constructive criticism from the readers is most welcome, and the suggestions will be considered carefully for incorporating in the future editions of this monograph.

V. V. L. R.

NOTATION USED IN THE TEXT

$\mathrm{P}_{\mathrm{o}}=$ Output power
$\mathrm{P}_{\mathrm{i}}=$ Input
"
$\mathrm{V}_{0}=$ Output voltage
$\mathrm{V}_{\mathrm{i}}=$ Input
39
$\mathrm{I}_{\mathrm{o}}=$ Output current
$\mathrm{I}_{\mathbf{i}}=$ lnput
98
$A_{0}=$ Output amplitude (of voltage, current, pressure or velocity)
$\mathrm{A}_{\mathrm{i}}=$ Input
29
95
95
59
3939
$Z_{0}=$ Output impedance
$Z_{i}=$ Input
"
$\mathrm{C}_{\text {os }} \phi_{0}=$ Output-side power factor
Cos $\boldsymbol{\phi}_{\mathrm{i}}=$ Input-side
N for nepers
B ," bels
D , decibels (db)
m.s.c. for miles of standard cable

Abbreviations of Electrical and Physical Quantities as used in the Text.

1.	Direct current	\ldots	d-c, DC
2.	Alternating current	\ldots	a-c, AC
3.	Frequency	\ldots	\ldots	f
4.	Audio frequency	\ldots	AF
5.	Radio frequency	\ldots	\ldots	RF
6.	Low frequency	\ldots	LF
7.	High frequency	\ldots	\ldots	HF
8.	Cycles per second	\ldots	cps
9.	Kilocycles per second	\ldots	kcs
10.	Megacycles per second		Mcs
11.	Automatic volume co	trol	avc, AVC
12.	Electromotive force	\ldots	emf
13.	Root mean square	rms
14.	Metre	\ldots	m
15.	Kilometre	\ldots	\ldots	km
16.	Centimetre	cm
17.	Volt	\ldots	V
18.	Millivolt	mV
19.	Microvolt	\ldots	$\mu \mathrm{V}$
20.	Millivolt per metre	\ldots	mV / m
21.	Microvolt per metre	\ldots	$\mu \mathrm{V} / \mathrm{m}$
22.	Milliamp	\ldots	\ldots	mA
23.	Watt	\ldots	W
24.	Kilowatt	\ldots	kW
25.	Milliwatt	mW
26.	Microwatt	$\mu \mathrm{W}$
27.	Micromicrofarad	...'	...	$\mu \mu \mathrm{F}$

CONTENTS

Page
Foreword v
Author's Preface vii
Notation used in the Text ix
Abbreviations of Electrical \& Physical Quantities used in the Text \mathbf{x}
Part I. THE DECIBEL

1. Introduction 1
2. Difference of Power Level 3
3. Logarithmic Unit__Its Advantages 4
4. The Development of the Logarithmic Units: Neper, Bel \& Decibel 5
5. Conversion of Nepers to Decibels and vice versa 8
6. Relation between Nepers, Decibels and Miles of Standard Cable 9
7. Simple Decibel Formulae 10
8. General Expressions for the Power Gain or Loss in Nepers and Dectbels 11
9. (a) Zero Level 13
(b) Zero Power Level 13
(c) Zero Voltage Level 14
(d) Zero Current Level 15
(e) Conversion from one Zero Level to ANOTHER 15
10. Standard Impedance Terminations 16
11. The Sign of a Level 17
12. Decibel Meter 18
13. Reflection Loss 20
Page.
14. Expressions for the Gain of a Four Termi- nal Network in db notation 22
Case (a) A Symmetrical Amplifier Work- ing between Matched Imped- ANCES 23
(b) An Unsymmetrical Amplifier Working between Matched Im- pedances 23
(c) An Unsymmetrical Amplifier Working into a Mismatched Impedance 24
15. Decibel Graph 29
16. Decibel Tables and Their Use: 29
(i) Scope of Tables 29
(ii) Range of Tables 38
(iii) Decibels to Voltage and Power Ratios 39
(iv) Voltage Ratios to Decibels 42
(v) Power Ratios to Decibels 43
Part II. THE PHON
17. Introduction 47
18. Definitions: 51
(a) Intensity Level 51
(b) Pressure 51
(c) Loudness 51
(d) Reference Tone 51
(c) Threshold of Audibility 52
(f) " " Febling 52
(g) Equivalent Loudness Level 52
19. The Phon: 52
(a) Definition of Phon 52
(b) Phon as adopted in different countries 53
20. Sound Levels and Phon Calculations: 55
(i) Zero Phon Loudness Level 56
(ii) Loudness Level in Phons of the Thres- hold of Hearing 56
Page
(iii) Loudness Level in Phons of the Thres- hold of Feeling 56
(iv) Loudness Level in Phons of the Thres- hold of Pain 56
Table of Noise Levels in Buildings 57
A Table of Phons 58
Part III
Applications of the Decibel Notation to Radio Engincering and Acoustics
21. Power Level Diagrams 61
22. Output Power Meter: 63
(1) The Meter
63
63
(2) Use
63
63
(3) Design
(3) Design
64
64
(4) The Meter and its Dial Calibration 65
(5) Maximum Power Reading 67
23. Audio Amplifiers:
68
68
(a) Power Output
68
68
(b) Frequency Response 69 Measurement of Amplification in dbthroughout the Range of Frequen-cies:
Method I 70
Method II
71
71
(c) Gain or Amplification of a Channel 73
(d) Internal Noise Level or Hum 75
24. Sigial to Noise Ratio 77
25. Radio Receivers. 79
Application :
(a) Selectivity Test
79
79
(b) Image Ratio
80
80
(c) AVC Characteristic 81
(d) Overall Electric Fidelity of a Re- Ceiver
83
83
26. Audio Transformers 85
Page
27. Gramophone Record Cutters and Pick-ups 86
(i) Record Cutters:
(a) Requirements of Frequency Res- ponse 86.
(b) Operating Level 86
(c) Measurement of Frequency Res- PONSE 86
(ii) Pick-UpS:
(a) Response Curve 87
(b) Output of the Pick-up 87
28. Output Valves 89.
29. Microphones 92
(1) Sensitivity Rating:
Case (i) Moving Coll Microphone 92
Case (ii) Ribbon Microphone 93
Case (iii) Crystal Microphone 94
(2) The Rating of Sensitivities (of five different Microphones relative to different Zero Levels) 95
(3) Response Curves of Microphones 95
(4) High-Level and Low-Level Mixing 97
30. Loudspeakers: 99
(1) Response-Frequency Characteristic 99
(2) Directional Characteristic 100
31. Transmitters: 103
(1) Strength or Intensity of a Signal at a Point due to a Transmitter 103
(2) Overall Frequency Response 103
(3) Carrier Noise 104 104
32. Transmission Lines and Feeders: 107
(1) Application 107
(2) Characteristic Impedance:
(a) Overhead Lines 107
(b) Underground Feeders or Concen- tric Cables 108
(3) Losses in Feeders 109
33. Aerials 114
Page
34. Acoustics 115
Studio Acoustics: 115
(i) Reverberation Time 115
(ii) Degree of Sllence in Broadcast Studios. 115
(iii) Sound Intensity in Broadcast Studios. 115
(iv) Sound Intensity Levels in Speech and Music 116
(v) Sound Insulation of Studios 116
35. Attenuators: 118
(1) Application 118
(2) Methods of Attenuation: 118
(a) The potential Divider 118
(b) The Attenuator Box 120
(3) Types of Attenuator Networks: 120
(a) Simple T-Attenuator 122
(b) Simple H-Attenuator 122
(c) The Ladder Attenuator 124
36. Hqualizers and Filters: 129
(1) Application 129
(2) Equalizers 129
(3) Filters 130
(4) Kinds of Filters 131
(5) Methods of Obtaining Attenuattont Curves of a Filter: 133
(i) The Composite Filter 133
(ii) Method I: Theoretically Calcu- lated Values 135
Method II: Experimental Method of Measuring the Total Insertion Loss of a Filter in db 142
Part IV
Appendices
I Types of Graphs in Radio and Acoustic Engineering: 149
(1) Graph Papers 149
(2) Cartesian Co-ordinates Graph Paper 149
Page
(3) Logarithmic Scale: 150
(i) Description 150
(ii) Advantages 151
(iii) Dtsadvantages 153
(4) Comparison of Graphs with Linear and Logarithmic Scales 153
II Logarithmic Unit_Its Limitations 157
III The Standard Cable 159
IV Logarithms and Log-Tables: 160
(1) Bases of Logarithms 160
(2) Laws of Logarithms 161
(3) Tables of Logarithms and Antr- Logarithms 161
Bibliography 173
Index 177

PART I
 THE DECIBEL

PART I

THE DECIBEL

1. Introduction.

(1) Of all the units used in telecommunication engineering and electro-acoustics, perhaps the most widely used one is the 'Decibel'. It has come to be more often used than even volts, amperes and ohms. The 'Decibel notation' was first used in about 1924 in telephone engineering. The unit was then called a 'Transmission Unit' (TU), a name which has since been superseded. Strictly, it would be more rational to use the term: 'Decibel notation', rather than 'Decibel Unit'. The decibel notation is a logical consequence of certain natural phenomena, for example, the response of certain human senses to stimuli, but it must be remembered that it is also a mathematical artifice introduced to simplify calculations. As it will be seen later, it has no dimensions, being the logarithm of certain ratios.
(2) There are five human senses: (i) sight, (ii) hearing, (iii) touch, (iv) taste, and (v) smell. Of these, while the first three are more physical than chemical, the last two are predominantly chemical. Each sensation is the result of a stimulus, and according to the 'Weber-Fechner Law' in psychology ${ }^{2}$, "the minimum change in stimulus necessary to produce a perceptible change in response is proportional to the stimulus already existing".

Suppose that an initial stimulus produces a sensation, then, increasing the stimulus results naturally in an increased sensation. How far this increase is measurable is a different question with which we are not concerned at the moment, but suffice it to say that the perceived increase in sensation depends on the original stimulus and its sensation. A certain increase in the perceived sensation, depending as it does on the original stimulus, must depend upon the ratio of the change in stimulus, rather than the
actual addition to the stimulus. Doubling the stimulus must give rise to an increase in sensation depending upon the intensity of the original stimulus. As the stimulus increases in a geometrical progression, sensation rises in an arithmetical progression. Hence, mathematically, we can take the sensation as proportional to the logarithm of the stimulus. Thus, if (Se) represents sensation and (St) represents stimulus, then $(\mathrm{Se})=\mathrm{k} \log (\mathrm{St})$. This law holds good between stimulus and sensation in the following 5 well-known cases:-

Stimulus

1. Pressure
2. Temperature
3. Sound Intensity
4. Frequency change
5. Intensity of Illumination

Sensation

1. Feeling
2. Heat
3. Loudness
4. Pitch
5. Brightness

At this stage, it must be remarked that all sensations are comparative and therefore it is usual among psychologists to take the threshold value of stimulus as the datum of reference. It is very difficult to measure sensation, while it is not so with stimulus, which can be measured objectively and with great precision, with the recent advances in the technique of electrical measurements. Both the engineer-physicist and the biologist would be eager to cite exact figures based on readings from the measuring instruments, but it is the physical interpretation of these readings which is most difficult and unsatisfactory. The dealer who sells you a radio set may assure you that it has a uniform response over the entire audio-frequency range, but you are at liberty to ask him with what instruments the tests were made, the significance and the representative character of the overall electrical fidelity curve that he might show. Perhaps, the only apparatus with which one should really judge the fidelity of a radio receiver is one's own ear, but science has not progressed so far as to render the human brain act like a meter-needle kicking over a calibrated scale.
(3) All measurements are necessarily relative to a particular unit of the same nature as the quantity measured. While it is possible to choose any unit for measurement, it is advisable to choose a unit comparable to the quantity measured. Though there can be no objection strictly in expressing the distance between Madras and Calcutta in inches or millimetres, it is preferable to express in miles, a unit, which is comparable to the distance measured. It is a common artifice, therefore, to find a suitable unit, which will reduce the number denoting the measure of a quantity to a reasonable value. The logarithm of any large or small number (or ratio), is naturally a small and convenient value in handling for calculation purposes. This, coupled with the fact that the human ear itself behaves logarithmically, has given special interest in this new and versatile unit for extensive use in radio and acoustic engineering. Several aspects of this unit are dealt with in this monograph.

2. Difference of Power Level.

In any electric circuit power losses occur. In a circuit composed of several individual components, the usual method of evaluating the overall efficiency is by multiplying the individual efficiencies. In certain communication circuits (consisting of amplifiers) power gain also occurs, and, therefore, must be taken into account. Though the final useful power is naturally less than the total power put in, the power of the output signal is greater than the power of the input signal, so that, using the conventional definition of efficiency, values exceeding 100% may be obtained. This apparent discrepancy is not difficult to explain.

Consider the following transmission network :-

Fig. 1. 1 Block Schematic of a Communication System.

Defining the difference of power level as ratio of two powers ${ }^{3}$,
the power level at B, relative to $A=\frac{P_{1}}{P_{1}}$;

But, $\frac{P_{6}}{P_{1}}=\frac{P_{0}}{P_{6}} \times \frac{P_{b}}{P_{6}} \times \frac{P_{4}}{P_{3}} \times \frac{P_{5}}{P_{2}} \times \frac{P_{2}}{P_{1}} ;$ (i.e.), (Level of F referred to A) $=$ (Level of F referred to E$) \times($ Level of E referred to D$) \times($ Level of D referred to C$) \times($ Level of C referred to B$) \times($ Level of B referred to A).

Thus, the total difference in level of the entire system, from the start to the finish, is equal to the product of the difference in level of the individual units of the system. In order to avoid the multiplication of the individual efficiencies, recourse can be had to the logarithms of the efficiencies, because such a system would involve the simple processes of addition and subtraction only. Then, $\log \frac{P_{6}}{P_{1}}=\log \frac{P_{6}}{P_{b}}+\log \frac{P_{b}}{P_{6}}+\log \frac{P_{6}}{P_{s}}+\log \frac{P_{8}}{P_{3}}+\log \frac{P_{8}}{P_{2}}$ i.e., the total difference in power level of any system on the logarithmic basis will now be obtained by adding up the individual differences in level of the various parts of the system.

3. Logarithmic Unit-Its Advantages.

A logarithmic method of measuring power is both convenient and advantageous for the following reasons:
(i) The human ear responds to sound intensities according to a logarithmic law ; hence the comparison of two audio-frequency outputs on a logarithmic basis gives a more natural picture of the relative effects on the ear than a mere statement of the ratio of powers. This may be explained as follows. The human senses of sight and sound, as stated already, do not detect the differences of light and sound in direct proportion to the arithmetical differences. If the intensity of a sound is doubled, the ear does not detect the 100% increase, but only records the impression of a much smaller increase. Consequently, the sound output from a loudspeaker driven by 2 watts is not heard twice as loud as that of another driven by 1 watt, and actually we have to increase the intensity of sound by 10 times, so that it may sound twice as loud as before. If we increase 10 -fold again, it would only lead to an apparent increase in loudness similar to the former increase, though the actual intensity of sound has now been increased a 100 fold. Therefore, our realization of loudness of sound varies as the logarithm of the actual sound intensity. So, by using a logarithmic unit we are able to assess the differences in sound level better.
(ii) Attenuation in a line (infinitely long or terminated by its characteristic impedance) carrying power is logarithmic, so that the total attenuation of a composite line is given by the direct addition of the attenuations of its different sections.

4. The Development of the Logarithmic Units : Neper, Bel and Decibel.

At the moment, there are two logarithmic units in general use in the USA and Europe, one based on the Naperian system of logarithms and the other based on the Briggsian or decimal system of logarithms. The Naperian system of logarithms is due to John Napier, Baron of Merchiston in Scotland, who was the inventor of logarithms to the base ' e ' ($=2.7183$), in 1614. The Briggsian or common logarithms we use, are the invention of Henry Briggs, an Englishman.

If $10^{x}=\mathrm{N}$, then x is called the logarithm of N in this system. This logarithm is said to refer to the base 10 .
The International Advisory Committee on Long Distance Telephony (of Europe), has recommended that the two logarithmic units based on the Naperian and Briggsian systems, be standardised. These two units are called the Neper and the Bel and they are defined as follows:-
(i) The Neper:

Two powers P_{0} and P_{i} are said to differ by N nepers, where $N=1 / 3 \log e\left(\frac{P_{o}}{P_{i}}\right)$. When the output and input impedances are the same, this expression becomes: $\log _{\mathrm{e}}\left(\frac{V_{0}}{V_{i}}\right)$ or $\log _{\mathrm{e}}\left(\frac{\bar{I}_{0}}{\bar{I}_{\mathrm{i}}}\right)$.

The unit 'Neper' is named after John Napier.
(ii) The Bel:

The Bel is the logarithm to base 10 of the ratio between two powers or intensities, and it is also equal to twice the logarithm of the ratio between the corresponding amplitudes of voltages, currents, pressures or velocities, when the output and input impedances are the same.

$$
\log _{10}\left(\frac{P_{0}}{P_{i}}\right)=2 \log _{10}\left(\frac{V_{0}}{V_{i}}\right)=2 \log _{10}\left(\frac{I_{0}}{I_{i}}\right) \text { bels. }
$$

The unit 'Bel' is named after Alexander Graham Bell, the inventor of the telephone.
(iii) The Decibel :

The 'Bel' being inconveniently large for ordinary practical purposes, a smaller unit, 'Decibel', is in general use in all countries now. This is known as the 'Transmission Unit' in the USA. It is also equivalent to the sensation unit used in acoustic work.

The decibel gets its name from the Latin word, 'decimus', which means 'one tenth', together with 'bel' and therefore a decibel is the tenth part of a bel.

Some of the abbreviated symbols used to denote the decibel or its plural form, decibels, are :

$$
\mathrm{DB}, \mathrm{Db}, \mathrm{~dB}, \mathrm{db} .
$$

Amongst these, the last one, db , is the one most widely used. A decibel is defined by the following simple relation :

Power level $=10 \log _{10}\binom{\mathrm{Po}}{\mathrm{PB}}$ decibels.
In the USA the following abbreviations ${ }^{4}$ are widely used :
$\beta 1$ unit for the 'Neper';
TU for the 'Transmission Unit';
SU for the 'Sensation Unit';
and db for the 'Decibel'.
(iv) Definitions in general terms :

With the usual notation, the bel, decibel and neper will be defined in general terms.
(a) Bel:

The difference in level between the output and input is B bels, where $B=\log _{10}\left(\frac{P_{0}}{P_{i}}\right)$

$$
\therefore\left(\frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{P}_{\mathrm{i}}}\right) \quad=10^{\mathrm{B}}
$$

(b) Decibel :

The same difference in level is D decibels, where $\mathrm{D}=10 \log _{10}\left(\frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{Pi}_{\mathrm{i}}}\right) \quad \therefore\left(\frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{P}_{\mathrm{i}}}\right)=10^{(\mathrm{D} / 10)}$
(c) Neper:

The same difference in level is N nepers, where $\mathrm{N}=\frac{1}{2} \log _{\mathrm{e}}\left(\frac{\mathrm{Po}_{\mathrm{o}}}{\mathrm{Pi}_{\mathrm{i}}}\right) \quad \therefore\left(\frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{Pi}_{\mathrm{i}}}\right)=\mathrm{e}^{2 \mathrm{~N}}$
5. Conversion of Nepers to Decibels and vice versa.

Considering an amplifier, whose input and output powers are P_{i} and P_{o} respectively, its power gain in nepers $=\frac{1}{2} \log _{\mathrm{e}}\left(\frac{\mathrm{P}_{0}}{\mathrm{P}_{\mathrm{i}}}\right)$

$$
\begin{aligned}
& =2.3026 \times \frac{1}{1} \log _{10}\left(\frac{\mathrm{Po}}{\mathrm{P}_{\mathrm{i}}}\right) \\
& \quad\left(\because \log \mathrm{e}^{\prime} x=2.3026 \times \log _{10}{ }^{x}\right) \\
& =1.1513 \times \log _{10}\left(\frac{\mathrm{Po}}{\mathrm{P}_{\mathrm{i}}}\right) \\
& =0.11513 \times 10 \log _{10}\left(\frac{\mathrm{Po}_{\mathrm{P}}}{\mathrm{P}_{\mathrm{i}}}\right) \\
& =\mathrm{N}, \text { say } .
\end{aligned}
$$

The same power gain, expressed in decibels, $=10$ $\log _{10}\left(\frac{P_{0}}{P_{i}}\right)=D$, say.
\therefore The power gain of the amplifier $=\mathrm{D}$ decibels $=\mathrm{N}$ nepers. Hence, 1 decibel $=\frac{\mathrm{N}}{\mathrm{D}}$ nepers $=0.11513$ neper, as $N=0.11513 \times 10 \log _{10}\left(\frac{P_{0}}{P_{i}}\right)$ and

$$
D=10 \cdot \log _{10}\left(\frac{P_{0}}{P_{i}}\right)
$$

$\therefore 1$ neper $=\frac{1}{0.11513}=8.686 \mathrm{db}$.
Results:-

$$
\begin{aligned}
1 \text { neper } & =8.686 \mathrm{db} ; \\
\text { and } 1 \text { decibel } & =0.11513 \text { neper. }
\end{aligned}
$$

It is obvious that the neper is a larger unit than the decibel.

The next three tables below give the bels, decibels, and nepers for various power ratios, ranging from 1.0 to 10°

Table 1.

Power ratio	1.0	1.023	1.047	1.072	1.096	1.122	1.148	1.175	1.202	1.23
Bels	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
db	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Nepers	0	0.0115	0.023	0.0345	0.046	0.0575	0.069	0.0805	0.092	0.1035

Table 2.

Power ratio	1.259	1.585	1.995	2.512	3.162	3.981	5.012	6.310	7.943
Bels	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
db	1	2	3	4	5	6	7	8	9
Nepers	0.115	0.23	0.345	0.46	0.575	0.69	0.805	0.920	1.035

Table 3.

Power ratio	10^{1}	10^{2}	10^{8}	10^{4}	10^{6}	10^{6}	10^{7}	10^{8}	10^{9}
Bels	1	2	3	4	5	6	7	8	9
db	10	20	30	40	50	60	70	80	90
Nepers	1.15	2.30	3.45	4.60	5.75	6.90	8.05	9.20	10.35

6. Relation between Miles of Standard Cable, Decibels and Nepers.

Sometimes, in communication engineering one comes across "miles of standard cable" (abbreviated: m.s.c.), a
transmission unit used formerly. Before 1923, the British Post Office used the m.s.c. as a standard unit to express the ratios in telephone engineering.
A mile of standard cable is defined as that power ratio at 800 cps , that is obtained between the ends. of a mile of cable, whose constants ${ }^{3}$ per loop mile are :

W, weight	$=20 \mathrm{lbs} .$,
R, resistance	$=88$ ohms,
L, inductance	$=1.0$ millihenry,
C, capacitance	$=1.054$ microfarad,
G, leakance	$=1.0$ Micro-mho.

The m.s.c. depends on frequency and therefore is not a desirable or absolute unit. It has therefore given place to the unit, decibel, which is not dependent upon frequency. Whenever a new unit is chosen to supersede an old one, it is always preferable that it should numerically have the same value (approximately) as the old one. The decibel satisfies this requirement, being only about 8% higher than the " 800 cycle m.s.c."

The conversion constants between nepers, decibels and m.s.c. are tabulated below for ready reference.

Table 4.

Multiply	By	To get
(1) Nepers	8.686	Decibels
(2) ""	9.420	m. s. c.
(3) Decibels	0.11513	Nepers
(4)	$1 \cdot 084$	m. s. c.
(5) m. s. c.	0.10616	Nepers
(6) \quad "	0.9221	Decibels

7. Simple Decibel Formulae.

Since power $=I^{3} R=\left(\frac{V^{3}}{\mathrm{R}}\right)$, in the simplest case
when the voltages across, or currents in, equal impedances are measured, the following simple formulx for the number of decibels, for current and voltage ratios, can be deduced:

$$
\text { If } P_{i}=I_{i}^{2} R_{i} \text { or }\left(\frac{V^{2}}{R_{i}}\right) \text {, and } P_{o}=I_{o}^{2} R_{o} \text { or }\left(\frac{V_{0}^{2}}{R_{o}}\right)
$$

and, further, if $R_{i}=R_{o}$,
then, $10 \log \left(\frac{P_{0}}{P_{i}}\right)=10 \log \left(\frac{I_{0}}{I_{i}}\right)^{2}=20 \log \left(\frac{I_{0}}{I_{i}}\right)$
(when currents alone are considered),
and $10 \log \left(\frac{P_{0}}{P_{i}}\right)=10 \log \left(\frac{V_{0}}{V_{i}}\right)^{2}=20 \log \left(\frac{V_{0}}{V_{i}}\right)$
(when voltages alone are considered).
From the above formulæ, $\left(\frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{P}_{\mathrm{i}}}\right)=\left(\frac{\mathrm{V}_{0}}{\overline{\mathrm{~V}}_{\mathrm{i}}}\right)^{2}$, or $\left(\frac{\mathrm{V}_{0}}{\overline{\mathrm{~V}}_{\mathrm{i}}}\right)=\sqrt{\frac{\overline{\mathrm{P}}_{0}}{\mathrm{P}_{\mathrm{i}}}}$.
From Table 2, it is seen that two powers differ by 1 db when their ratio is 1.259 .

$$
\therefore \text { If }\left(\frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{P}_{\mathrm{i}}}\right)=1.259 \text {, then }\left(\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{i}}}\right)=\sqrt{1.259}=1.122 .
$$

Thus, two voltages differ by 1 db when their ratio is 1.122.

Power in electricity corresponds to intensity in acoustics, and voltage corresponds to pressure in acoustics. ${ }^{6}$
In the case of intensities of sustained sounds, a change of the order of 1 db is the smallest change in intensity appreciable to the average ear, while in practice a change of $2 . \mathrm{db}$ is usually considered the maximum limit of variations that would pass undetected by any human ear.
8. General Expressions for the Power Gain or Loss in Nepers and Decibels.
Power at any point in a single phase arc circuit is:

$$
\mathrm{P}=\mathrm{VI} \cos \phi=\mathrm{I}^{1} \mathrm{Z} \cos \phi=\frac{\mathrm{V}^{2}}{\mathrm{Z}} \cos \phi
$$

When V_{0}, V_{i}, I_{0}, and I_{i} operate in unequal impedances,
$\mathrm{P}_{\mathrm{o}}=\frac{\mathrm{V}^{2}}{\mathrm{Z}_{\mathrm{o}}} \cos \phi_{\mathrm{o}}=\mathrm{I}_{\mathrm{o}}{ }^{2} \mathrm{Z}_{\mathrm{o}} \cos \phi_{\mathrm{o}}$ and,
$\mathrm{P}_{\mathrm{i}}=\frac{\mathrm{V}_{\mathrm{i}}{ }^{2}}{\mathrm{Z}_{\mathrm{i}}} \cos \phi_{\mathrm{i}}=\mathrm{I}_{\mathrm{i}} \mathrm{Z}_{\mathrm{i}} \cos \phi_{\mathrm{i}}$.
(a) in Nepers :-

Since, gain or loss, N nepers, is $=\frac{1}{2} \log _{e}\left(\frac{\mathrm{P}_{0}}{\mathrm{P}_{\mathrm{i}}}\right)$,
$\therefore N=\log _{e}\left(\frac{V_{0}}{V_{i}}\right)+\frac{1}{2} \log _{e}\left(\frac{Z_{1}}{Z_{0}}\right)+\frac{1}{2} \log _{e}\left(\frac{\cos \phi_{0}}{\cos \phi_{i}}\right)$ nepers, and also
$=\log _{\mathrm{e}}\left(\frac{I_{\mathrm{I}}}{I_{\mathrm{i}}}\right)+\frac{1}{2} \log _{\mathrm{e}}\left(\frac{Z_{\mathrm{o}}}{Z_{\mathrm{i}}}\right)+\frac{1}{2} \log \mathrm{e}\left\{\frac{\cos \phi_{\mathrm{o}}}{\cos \phi_{\mathrm{i}}}\right\}$ nepers.
This, when converted to decibels $=\mathrm{N} \times 8.686 \mathrm{db}$.
A separate expression for the gain or loss directly in db will be derived now :
(b) in Decibels:-
$\mathrm{D}=10 \log \left(\frac{\mathrm{P}_{0}}{\mathrm{P}_{\mathrm{i}}}\right)$,
$=10 \log \left(\frac{V_{0}}{V_{\mathrm{i}}}\right)^{2}+10 \log \left(\frac{Z_{\mathrm{Z}_{1}}}{Z_{\mathrm{o}}}\right)+10 \log \left(\frac{\cos \phi_{\mathrm{o}}}{\cos \phi_{\mathrm{i}}}\right) \mathrm{db}$,

If the impedances are pure resistances and are denoted by R_{i} and R_{o} respectively,
i.e., if $\cos \phi_{i}=\cos \phi_{0}=1$, then, $10 \log \frac{\cos \phi_{0}}{\cos \phi_{i}}=0$.

Then, gain $D=20 \log \left(\frac{V_{0}}{V_{i}}\right)+10 \log \left(\frac{R_{i}}{R_{0}}\right)$.
In the formula: $D=10 \log \left(\frac{\mathrm{P}_{0}}{\mathrm{P}_{\mathrm{i}}}\right)$, if the ratio $\left(\frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{P}_{\mathrm{i}}}\right)$ is $<\mathrm{I}, \mathrm{D}$ becomes negative and denotes a loss.
(c) A simple use of the decibel unit is indicated below :-

If two circuits of ratio of power output to power input of $\left(\frac{\mathrm{Po}_{1}}{\mathrm{P}_{1}}\right)$ and $\left(\frac{\mathrm{Po}_{2}}{\mathrm{Pi}_{2}}\right)$ respectively are connected in cascade the power ratio of the combination is:
$\left(\frac{\mathrm{P}_{0}}{\mathrm{P}_{\mathrm{i}}}\right)=\left(\frac{\mathrm{Po}_{1}}{\mathrm{P}_{1}}\right) \times\left(\frac{\mathrm{Po}_{2}}{\mathrm{P}_{\mathrm{i}_{2}}}\right)=10^{\left(\mathrm{D}_{1} / 10\right)} \times 10^{\left(\mathrm{D}_{2} / 10\right)}=10^{\left(\mathrm{D}_{1}+\mathrm{D}_{2}\right)} / 10$
where D_{1} and D_{2} are the transmission equivalents in decibels of the first and second elements respectively.

Taking logarithms of both sides and multiplying throughout by 10 , we get $10 \log \left(\frac{P_{0}}{P_{1}}\right)=D_{1}+D_{2}$.
Thus, it is seen that any number of transmission equivalents can be added or subtracted to obtain the transmission equivalent of the complete circuit.
9. (a) Zero Level.

It should be noted that the decibel is fundamentally a unit of power ratio and not of power, but it can be used as a unit of power itself, if we define a standard power level and express other power levels in terms of that standard. This standard power level is also called the 'zero level'. If a power level is expressed as D decibels, it is meant that it is D db above the 'zero level'.

(b) Zero Power Level.

In England, for communication testing purposes, 1 mW is often taken as the 'zero power level'. The other 'zero power levels' in vogue are the 6 mW and 12.5 mW : the former is in general use in the USA, barring the RCA Manufacturing Co., Inc., which expresses the gain or loss of its products with respect to a zero power of 12.5 mW only.

If the power in a circuit is P milliwatts, then :
(i) taking 1 mW zero level, the power level

$$
\left(D_{1} d b\right)=10 \log \frac{P}{1} ;
$$

(ii) taking 6 mW zero level, the power level

$$
(\mathrm{D}, \mathrm{db})=10 \log \frac{\mathrm{P}}{6} ;
$$

(iii) taking 12.5 mW zero level, the power level

$$
\left(D_{s} d b\right)=10 \log \cdot \frac{P}{12.5} .
$$

Since using decibels to indicate the power ratios as well as the absolute values of powers, leads to some confusion, a new unit for expressing the absolute power, called the "Volume Unit" (abbreviated : VU), is slowly coming into use.

(c) Zero Voltage Level.

This is defined as that voltage across a 600 ohm resistance, which dissipates the 'zero power'. The zero voltage levels corresponding to three zero power levels in vogue are tabulated below :

Table 5.

Zero Power Levels	Zero Voltage Levels
(1)	(2)
1 mW. 6 mW. 12.5 mW.	0.775 volts. 0.775 $0.775 \times \sqrt{6}=1.898$ volts.

Values in column (2) in the above table are obtained by using the formula :

$$
\mathrm{P}^{\dot{r}}=\frac{\mathrm{V}^{2}}{\mathrm{R}} \quad \text { or, } \mathrm{V}=\sqrt{\overline{\mathrm{P} \times R}}
$$

(d) Zero Current Level.

This is defined as that current flowing in a 600 ohm resistance, which dissipates the zero power. The follow ing table gives the zero current levels corresponding to the three zero power levels in vogue.

Table 6.

Zero Power Levels (1)	Zero Current Levels (2)
1 mW. 6 mW.	1.291 mA. 12.5 mW.

The values in column 2 are obtained by using the formula :

$$
\mathrm{P}=\mathrm{I}^{\mathrm{I}} \mathrm{R} \text { or, } \mathrm{I}=\sqrt{\frac{\mathrm{P}}{\mathrm{R}}}
$$

(e) Conversion from One Zero Level to Another.

One may be required to convert the power (or voltage or current) level from one zero to another.

If P is a power level, which is $D_{1} d b$ above a power level P_{1}, and $D_{2} d b$ above a power level P_{2}, we have the equations:

$$
\begin{aligned}
& D_{1}=10 \log \left(\frac{P}{P_{1}}\right) \text { and } D_{2}=10 \log \left(\frac{P}{P_{2}}\right), \\
& \begin{aligned}
\text { Now, } D_{2} & =10 \log \left(\frac{P}{P_{2}}\right)=10 \log \left(\frac{P}{P_{1}} \times \frac{P_{1}}{P_{2}}\right) \\
& =10 \log \left(\frac{P}{P_{1}}\right)+10 \log \left(\frac{P}{P_{2}}\right), \\
& \left.=D_{1}+D^{\prime}, \quad \text { (say }\right),
\end{aligned}
\end{aligned}
$$

where, $\mathrm{D}^{\prime}=10 \log \left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{\mathrm{z}}}\right)$.

This general formula can be used for converting any power in db referred to one " zero power level" to "any other zero power level ". It will be seen that this conversion involves merely an addition of D^{\prime} to D_{1} to get D_{2}. The following table gives the db values of absolute powers of $1 \mathrm{~mW}, 6 \mathrm{~mW}, 12.5 \mathrm{~mW}$, and 1 watt referred to the three zero power levels in vogue :-

Table 7.

Absolute Power in Watts	db-value		
	$\begin{aligned} & \text { "Zero } \\ & \text { db." } \\ &= 1 \mathrm{~mW} . \end{aligned}$	$\begin{aligned} & \text { "Zero } \\ & \text { db." } \\ &= 6 \mathrm{~mW} . \end{aligned}$	$\begin{aligned} & \text { Zero } \\ & \text { db." } \\ &= 12.5 \mathrm{~mW} \end{aligned}$
0.001	0	- 7.782	-10.969
0.006	7.782	0	- 3.19
0.0125	10.969	3.19	-
1.0	30	'22.218	19.031

When the zero power level is changed from 1 mW to 6 mW , the db value is lowered by a constant 7.782 , since $10 \log _{10}\left(\frac{1}{6}\right)=-7.782$. When the zero power level is changed from 1 mW to 12.5 mW , the db value is lowered by a constant 10.969 , since $10 \log 10$ $\left(\frac{1}{12.5}\right)=-10.969$. Similarly, when the zero power level is changed from 6 mW to 12.5 mW , the db value is lowered by a constant 3.19 , since $10 \log _{10}$ $\left(\frac{6}{12.5}\right)=-3.19$. The conversion constants for voltage and current values are left for the reader to work out.

10. Standard Impedance Terminations.

Voltages and currents expressed in db notation refer to the corresponding standard or zero levels, which have
already been defined as those across a 600 -ohm resistance dissipating the standard power level. This $600 \cdot \mathrm{ohm}$ value is called the standard impedance termination in communication engineering. It must be stated that other standard impedance terminations are also in vogue. 500 and 550 ohm impedance values are commonly used in the USA and the continent of Europe, these values being the common surge or characteristic impedances of trans mission lines, filters, attenuators etc.

Still other values of impedance terminations we come across in communication (power transmission) lines carrying power are : 200, 74, 50 and 37 ohms. Of these, 74 and 37 ohm-impedance transmission lines are used only for radio frequency power transmission from transmitter to ærial, and seldom for powers less than 25 watts, while the 50 ohm-impedance transmission line is seldom used for power levels exceeding 6 watts, and even then, mainly for audio applications. 600, 500, and 200 -ohm-impedance lines, are used both for RF and AF lines of both high, and low power transmission and with overhead lines. Their practical applications will be discussed in Part III of this monograph.

11. The Sign of a Level.

Every decibel rating (or level) has a sign, either positive or negative, unless it is zero db , for the level corres ponding to zero watts or volts is minus infinity, since, $\log _{10} 0=-\infty$, i.e., $\quad 10^{-\infty}=\frac{1}{10 \infty}=\frac{1}{\infty} \longrightarrow 0$

Sometimes, the expressions: so many " db up", or " db down", are also used. Let us examine the significance of these two expressions. When the number of decibels is positive, the result is called "db up", and when the number of decibels is negative, the result is called "db down", with reference to the chosen zero level.

When the number of decibels is positive, we can at once infer that the corresponding ratio (of powers or voltages or currents) is greater than unity, while when the number of decibels is negative, we can at once infer that the corres-
ponding ratio (of powers or voltages or currents) is less than unity. When the ratio is exactly unity, the number of decibels is zero, and it has no sign, for both $\log _{10} 1.0$ and $10 \log _{10} 1.0$, as well as $20 \log _{10} 1.0$, are all zero.

12. Decibel Meter.

If the reader has closely followed the text so far, a doubt will arise in his mind whether decibels can be read on a calibrated meter just as volts are read on a voltmeter, amperes on an ammeter, and watts on a wattmeter. The reader may at once be assured that there are direct reading decibel meters already in the market.

The db-meters are usually employed to indicate the rapidly varying power levels, e.g., those corresponding to speech or music, while monitoring broadcast programmes. The meters are, however, calibrated only for steady power levels and the reading refers to 1 mW zero power level and 600 ohm termination. The Brbadcasting industry in the USA has adopted this standard, and the unit is called "Volume Unit", but this is the same as the db referred to already. The readings on such a meter, when power levels are rapidly varying, may not give the true values as they must necessarily depend, in addition, upon the time constants of the meter circuit.

Note that the scale divisions on this power level meter are logarithmic in spacing, and are therefore unequal. This is because the voltage which the meter reads and equivalent db value are logarithmic in character.

Fig. 1.2 Decibel Meter. (By courtesy of the Weston Electrical tnstrument Corporation, Newark, N. J., U.S.A.)

A power level (db) meter ${ }^{{ }^{1}}$ manufactured by the Weston Corprn. of USA (Fig. 1.2), is described below.

The direct reading db -meter is nothing but a $\mathrm{d}-\mathrm{c}$ voltmeter used in conjunction with a copper-oxide rectifier. It is made to measure $\mathrm{a} \cdot \mathrm{c}$ voltages, but the dial is calibrated in decibels instead of volts. For the purpose of this meter a zero power level of 6 mW in a 500 ohm impedance is assumed. Then, $6 \mathrm{~mW}=\left(\frac{\mathrm{V}^{2}}{500}\right)$ or, $\mathrm{V}=1.73$ volts, and, the zero voltage reference level is, therefore, 1.73 volts. This point is marked on the scale (vide Fig. 1.2) as O. A-C voltages greater than 1.73 volts are marked on the dial as so many decibels above the zero level, and are marked $+x \mathrm{db}$. The exact number of decibels above the zero level is determined by the ratio of the higher voltage to 1.73 volts. For example, consider a voltage of 17.3 volts. Then, $20 \log \left(\frac{17.30}{1.73}\right)=20 \mathrm{db}$.

This voltage of 17.3 is considered as having been applied across a 500 ohm load, which must remain constant.

Voltages less than the reference level of 1.73 volts are marked as - db . Consider a voltage of 0.173 . Then, $20 \log \left(\frac{0.173}{1.73}\right)=-20 \mathrm{db}$

Therefore, in a db-meter whose db range is: +20 db to - 20 db , the range of $\mathrm{a} \cdot \mathrm{c}$ voltages across a $500 \cdot \mathrm{ohm}$ load is 0.173 to 17.3 volts.

In some meters, as stated earlier, the zero level may be different, and instead of 500 ohms, 600 ohm impedance may be chosen; but whatever may be the reference level, what the meter actually reads always is the a-c voltage.
The logarithmic relationship between the db -values and the corresponding voltages, explains the spacing of the divisions on the dial-like the divisions on a slide rule or a logarithmic graph paper.

13. Reflection Loss.

Let Z_{1} be the impedance of a generator and Z_{2} the impedance of the load connected to it. The power consumed by the load, i.e., the power that flows from the generator to the load is a maximum when $Z_{2}=Z_{1}$. When $Z_{8} \mathcal{F}_{1}$, the power that flows from the generator to the load is not the maximum value, the difference being supposed to be reflected by the load back to the source, at the junction of the two. This loss, by reflection, will be larger, the greater the degree of mismatch between the source and the load, and can be expressed by the ratio :
power flowing when matched (i.e., $Z_{3}=Z_{1}$) power flowing when mismatched (i.e., $\mathrm{Z}_{2}=\mathrm{Z}_{2}$)

This ratio, expressed in db , is taken as the reflection loss in communication engineering.

An expression for this loss is derived as follows :-
Case (i). Let the source

Fig. 1.3 An. ac- Source of Impedance Z_{1}, feeding a load Z_{2}. impedance be Z, and load impedance Z_{s}.
First, let us assume $Z_{1}=Z_{s}$ i.e., the load is matched to the source.
Then the current in the circuit $=\frac{e}{Z_{1}+Z_{3}}=\frac{e}{\left(2 Z_{2}\right)}$, , where ' e ' is the emf of the source.
P_{1}, power in the load when $Z_{1}=Z_{2}$, $=\left(\frac{\mathrm{e}^{2}}{4 \mathrm{Z}_{1}^{2}}\right) \times \mathrm{Z}_{1}=\left(\frac{\mathrm{e}^{2}}{4 \mathrm{Z}_{1}}\right)$

Case ($i i^{\prime}$). Let $Z_{1} \neq Z_{k}$, i.e., the load is mismatched to the source impedance.

Then, current in the circuit $=\left(\frac{E}{Z_{1}+Z_{2}}\right)$
P_{3}, power in the load, $=\left(\frac{E}{Z_{\tau}+Z_{2}}\right)^{2} \times Z_{2}$.
$\therefore\left(\frac{P_{1}}{P_{2}}\right)=\left(\frac{E^{2}}{4 Z_{1}}\right) \times \frac{\left(Z_{1}+Z_{2}\right)^{2}}{Z_{2}} \times\left(\frac{1}{e^{2}}\right)=\left\{\frac{\left(Z_{1}+Z_{2}\right)^{2}}{4 Z_{1} Z_{2}}\right\}$,
and the power loss $=10 \log \left\{\frac{\left(Z_{1}+Z_{2}\right)^{2}}{\left(4 Z_{1} Z_{2}\right)}\right\} \mathrm{db}$ or,

$$
20 \log \left\{\frac{Z_{1}+Z_{2}}{2 \sqrt{Z_{1}} \bar{Z}_{2}}\right\} d \mathrm{db} .
$$

This expression gives the power reflection loss as used in communication engineering.

It must be remembered that Z_{1} and Z_{2} in the above expression are vector impedances, and two cases need consideration.
(i) If $Z_{1}=Z_{2}$, both in magnitude and phase, the above expression vanishes, i.e., the impedances are perfectly matched and no reflection loss occurs.
(ii) It can be proved that, when the phase angles are opposite in sign, the reflection loss may sometimes be negative, which only means a reflection gain. The necessary condition for maximum negative reflection loss, i.e.;; maximum reflection gain, is that, when the two impedances are conjugate: their moduli are equal in magnitude and phase angles are again equal in value but opposite in sign :

In other words, when $Z_{i}=R_{1}+j x_{1}$,

$$
\text { and } Z_{2}=R_{1}-j x_{1} \text {. }
$$

If the impedances are assumed to be pure resistances, i.e., $Z_{1}=R_{1}$ and $Z_{2}=R_{2}$, the condition for zero reflection loss is that $R_{1}=R_{2}$ in magnitude. The reflection loss, when the above condition is not satisfied, is given by the following expression:
Power reflection loss $=10 \log \left\{\frac{\left(R_{1}+R_{2}\right)^{2}}{4 R_{1} R_{2}}\right\}$ or,

$$
20 \log \frac{\left(R_{1}+R_{2}\right)}{2 \sqrt{R_{1} R_{2}}}
$$

The voltage reflection loss is defined by the ratio:
Voltage across the load when matched (i.e., $\mathrm{R}_{2}=\mathrm{R}_{1}$)
Voltage across the load when mismatched (i.e., $\mathrm{R}_{2}=\mathrm{R}_{2}$)
Then, the voltage reflection loss can be shown to be $=20 \log \frac{\left(R_{1}+R_{2}\right)}{2 R_{2}}$, as proved below :

On substituting R_{1} for Z_{1}, and R_{2} for Z_{2} in Fig. 1•3, we get V_{L} the voltage across the load, to be $\left(\frac{R_{2} \times e}{R_{1}+R_{2}}\right) \quad$ When $R_{1}=R_{2}$ (matched condition), V_{L} becomes $=\frac{e}{2}$. Then, the voltage reflection loss, by definition,

$$
\begin{aligned}
& =20 \log \left\{\frac{\frac{\mathrm{e}}{2}}{\mathrm{e} \cdot\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}\right)}\right\} \\
& =20 \log \left\{\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{2 \mathrm{R}_{2}}\right\} .
\end{aligned}
$$

(i) If $\mathrm{R}_{2}<\mathrm{R}_{1}$, the above expression becomes positive denoting a voltage loss, and (ii) if $R_{2}>R_{1}$, the above expression becomes negative denoting a voltage gain.

In order to obtain the true working gain of an amplifier, unless the load is matched to the output impedance, the gain of the amplifier must be corrected for the reflection loss.
14. Expressions. for the Gain of Amplifiers in db-notation.

From the point of view of the equality or inequality of the input and output impedances of an amplifier, amplifiers can be classified as symmetrical and unsymmetrical amplifiers.

Three typical cases are considered for evaluating the db gain of amplifiers.
(a) A symmetrical amplifier working between matched impedances (Fig. 1.4);
(b) An unsymmetrical amplifier working between matched impedances (Fig. 1.5);
(c) An unsymmetrical amplifier working into a mismatched impedance (Figs. 1.6 and 1.7).
In what follows the following assumption is made in order to simplify the working :

Impedances are treated as pure resistances, and therefore power factors are ignored.
Case (a). The Decibel Gain of a Symmetrical Amplifier Working between Matched Impedances.
Let the input impedance $=$ output impedance $=\mathbf{R}$

Fig. 1.4 A Symmetrical Amplifier Working between Matched Impedances.

Then, gain in $\mathrm{db}=10 \log \left(\frac{\text { Output }}{\text { Input }}\right)=10 \log \left(\frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{P}_{\mathrm{i}}}\right)$

$$
=10 \log \left(\frac{\mathrm{~V}_{0}}{\mathrm{~V}_{\mathrm{i}}}\right)^{2}=20 \log \left(\frac{\mathrm{~V}_{0}}{\mathrm{~V}_{\mathrm{i}}}\right)
$$

Case (b). The Decibel Gain of an Unsymmetrical Amplifier Working between Matched Impedances.

- Fig. 1.5 An Unsymmetrical Amplifier Working between Matched Impedances.

$$
\begin{aligned}
\text { Then, gain in } \mathrm{db}= & 10 \log \left(\frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{P}_{\mathrm{i}}}\right)=10 \log \left(\frac{\mathrm{~V}_{0}^{2} \mathrm{R}_{\mathrm{i}}}{\mathrm{~V}_{\mathrm{i}}^{2} \mathrm{R}_{\mathrm{o}}}\right) \\
= & 10 \log \left(\frac{\mathrm{~V}_{0}}{\mathrm{Vi}_{0}}\right)^{2}+10 \log \left(\frac{\mathrm{R}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{o}}}\right) \\
= & 20 \log \left(\frac{\mathrm{~V}_{0}}{\mathrm{~V}_{\mathrm{i}}}\right)+10 \log \left(\frac{\mathrm{R}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{o}}}\right) \\
= & \text { Voltage gain }+ \text { correction due } \\
& \text { to the unsymmetry of the } \\
& \text { amplifier. }
\end{aligned}
$$

Case (c). The Decibel Gain of an Unsymmetrical Amplifier Working into a Mismatched Impedance.
Fir:t, consider the output circuit of the amplifier. Because of mismatched impedance there will be reflection loss. Expressions for the output power and voltage levels are derived below, using the notation of Fig. 1.6.

Fig. 1.6

Let $P_{1}=$ Power consumed by the load when $\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{O}}$, and P_{L} $=$ actual power consumed when $R_{L}=R_{L}$.
Power level in $\left.\mathrm{R}_{\mathrm{L}}\right)=10 \log \left(\frac{\mathrm{P}_{\mathrm{L}}}{1}\right)$
(assuming 1 mW
zero level)

$$
\}=10 \log \left(\frac{\mathrm{P}_{\mathrm{o}}}{1}\right)-10 \log \left\{\frac{\left(\mathrm{RO}+\mathrm{RL}_{\mathrm{L}}\right)^{x}}{4 \mathrm{Ro}_{\mathrm{L}}}\right\}
$$

= sending power level into a matched impedance minus power reflection loss.
$\left.\begin{array}{c}\text { Voltage level in } R_{L} \\ (\text { assuming } O .775- \\ \text { volt zero level) }\end{array}\right\}=20 \log \left(\frac{\mathrm{~V}_{\mathrm{L}}}{O^{\circ} 775}\right)$

$$
=20 \log \left(\frac{\mathrm{~V}_{\mathrm{O}}}{0.775}\right)-20 \log \left\{\frac{\mathrm{R}_{\mathrm{O}}+\mathrm{R}_{\mathrm{L}}}{2 \mathrm{R}_{\mathrm{L}}}\right\}
$$

- Sending voltage level into a matched impedance minus voltage reflection loss.

Note:-
If $R_{L}>R_{o}$, voltage reflection loss will be negative, i.e., a reflection gain, and therefore must be numerically added instead of substracted.

Next, considering the case of an unsymmetrical amplifier working into a mismatched impedance, the following expressions for its gain are derived :

Fig. 1.7 An Unsymmetrical Amplifier Working into a Mismatched Impedance;
$\underset{\text { (from powers) }}{\text { Working gain in } \mathrm{db}}\}=10 \log \binom{\mathrm{P}_{\mathrm{o}}}{\mathrm{P}_{\mathrm{i}}}$

$$
-10 \log \left\{\frac{\left(\mathrm{R}_{\mathrm{O}}+\mathrm{R}_{\mathrm{L}}\right)^{2}}{\left(4 \mathrm{R}_{\mathrm{O}} \mathrm{R}_{\mathrm{L}}\right)}\right\}
$$

the second term being due to the reflection loss as a result of mismatch. The gain can also be expressed as :

$=$ Gain of amplifier for the matched impedance condition (Case (b)) minus output power reflection loss.
$\left.\begin{array}{c}\text { Working gain is also } \\ \text { (from voltages) }\end{array}\right\}=20 \log \left(\frac{V_{\mathrm{L}}}{\mathrm{V}_{\mathrm{i}}}\right)+10 \log \left(\frac{\mathrm{R}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{L}}}\right)$, where V_{L} is the actual voltage across the load.
$=$ Voltage gain for the actual working conditions plus load impedance correction.

From the last two equations, we get :
$20 \log \left(\frac{V_{L}}{V_{i}}\right)+10 \log \left(\frac{R_{i}}{R_{i}}\right)$
$=20 \log \left(\frac{V_{o}}{\bar{V}_{i}}\right)+10 \log \left(\frac{R_{i}}{R_{o}}\right)-10 \log \left\{\frac{\left(R_{L}+R_{O}\right)^{2}}{4 R_{L} R_{O}}\right\}$,

$$
\begin{aligned}
=20 \log \left(\frac{\mathrm{~V}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{i}}}\right)+10 \log & \left(\frac{\mathrm{R}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{L}}} \times \frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{O}}}\right) \\
& -10 \log \left\{\frac{\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{O}}\right)^{2}}{4 \mathrm{R}_{\mathrm{L}} \mathrm{R}_{\mathrm{O}}}\right\}
\end{aligned}
$$

$=20 \log \left(\frac{V_{0}}{V_{i}}\right)+.10 \log \left(\frac{R_{i}}{R_{L}}\right)+10 \log \left(\frac{R_{L}}{R_{0}}\right)$ $-10 \log \left\{\frac{\left(\mathrm{R}_{\mathrm{L}}+\mathrm{Ro}_{\mathrm{O}}\right)^{2}}{4 \mathrm{RL}_{\mathrm{L}} \mathrm{Ro}^{2}}\right\}$,
i.e., $20 \log \left(\frac{V_{\mathrm{L}}}{\mathrm{V}_{\mathrm{i}}}\right)=20 \log \cdot\left(\frac{\mathrm{~V}_{\mathrm{o}}}{\mathrm{V}_{\mathrm{i}}}\right)+10 \log \left(\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{O}}}\right)$

$$
-10 \log \left\{\frac{\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{O}}\right)^{2}}{4 \mathrm{R}_{\mathrm{L}} \mathrm{RO}_{\mathrm{o}}}\right\},
$$

$=20 \log \left(\frac{\mathrm{~V}_{\mathrm{O}}}{\overline{\mathrm{V}}_{\mathrm{i}}}\right)-10 \log \left\{\frac{\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{O}}\right)^{2}}{4 \mathrm{R}_{\mathrm{L}} \mathrm{R}_{\mathrm{O}}} \times \frac{\mathrm{R}_{\mathrm{O}}}{\mathrm{R}_{\mathrm{L}}}\right\}$,
$=20 \log \left(\frac{\mathrm{~V}_{\mathrm{o}}}{\mathrm{V}_{\mathrm{i}}}\right)-10 \log \left\{\frac{\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{Q}}\right)^{2}}{4 \mathrm{R}_{\mathrm{L}}^{2}}\right\}$,
$=20 \log \left(\frac{\mathrm{~V}_{0}}{\mathrm{~V}_{\mathrm{i}}}\right)-10 \log \left(\frac{\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{o}}}{2 \mathrm{R}_{\mathrm{L}}}\right)^{2}$,
$=20 \log \left(\frac{V_{0}}{V_{i}}\right)-20 \log \left(\frac{R_{L}+R_{0}}{2 R_{L}}\right)$.
$\therefore 20 \log \left(\frac{\mathrm{~V}_{\mathrm{L}}}{\mathrm{V}_{\mathrm{i}}}\right)=20 \log \left(\frac{\mathrm{~V}_{\mathrm{o}}}{\mathrm{V}_{\mathrm{i}}}\right)-20 \log \left(\frac{\mathrm{R}_{\mathrm{O}}+\mathrm{R}_{\mathrm{L}}}{2 \mathrm{R}_{\mathrm{L}}}\right)$.
Voltage gain for working conditions $=$ Voltage gain for matched impedance conditions minus output voltage reflection loss.

Thus, gain in db (from voltages) $=$

$$
20 \log \left(\frac{\mathrm{~V}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{i}}}\right)+10 \log \left(\frac{\mathrm{R}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{L}}}\right)-20 \log \left(\frac{\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{o}}}{2 \mathrm{R}_{\mathrm{L}}}\right)
$$

NUMERICAL EXAMPLE: Consider the following numerical example to illustrate the application of the above derived formulæ in case (c), which may seem a little confusing at first sight.

Problem: An amplifier, working from a 500 ohm line with an input of 6 mW , has an output impedance of 10 ohms. When worked into a matched load, the output is 6 watts, giving a gain of 30 db . What is the gain, when the amplifier works into a 20 ohm load?

Solution : Using the notation in Fig. 1.7, we have the following data:

$$
\begin{array}{l|l}
\mathrm{P}_{\mathrm{i}}=6 \times 10^{-3} \text { watts } ; & \begin{array}{l}
\mathrm{R}_{\mathrm{i}}=500 \text { ohms } \\
\mathrm{P}_{\mathrm{o}}=6 \text { watts } ;
\end{array} \\
\mathrm{R}_{\mathrm{L}}=20 \quad \#, \\
\mathrm{R}_{\mathrm{o}}=10 \quad,
\end{array} .
$$

From this data, we have:

$$
\begin{aligned}
& V_{i}=\sqrt{P_{i} \times R_{i}}=\sqrt{6 \times 10^{-3} \times 500}=\sqrt{3} \text { volt } ; \\
& V_{o}=\sqrt{P_{O} \times R_{o}}=\sqrt{6 \times 10}=\sqrt{60} \text { volts } ; \\
& V_{L}=V_{o} \times \frac{2 R_{L}}{R_{L}+R_{o}}=\sqrt{60} \times \frac{2 \times 20}{20+10}=\frac{4}{3} \sqrt{60} \\
& \text { and } P_{L}=\frac{V_{L}}{R_{L}}=\frac{16}{9} \times \frac{60}{20}=\frac{16}{3} \text { watts. }
\end{aligned}
$$

Gain into the matched load

$$
\}=\left(10 \log \frac{P_{o}}{P_{i}}\right)
$$

$$
=\left(10 \log \frac{6}{6 \times 10^{-3}}\right)=10 \log 10^{x}=30 \mathrm{db} .
$$

Gain into the matched load (from voltages)

$$
\begin{aligned}
\}= & \left\{20 \log \frac{V_{o}}{V_{i}}\right. \\
& \left.+10 \log \frac{R_{i}}{R_{o}}\right\} \\
\}= & \left\{20 \log \sqrt{\frac{60}{3}}\right. \\
& \left.+10 \log \frac{500}{10}\right\}, \\
\}= & \{20 \log \sqrt{20} \\
& +10 \log 50\}
\end{aligned}
$$

Gain into the matched load (from voltages)

$$
\begin{aligned}
& \}=(13+17) \mathrm{db} \\
& \}=30 \cdot 0 \mathrm{db}
\end{aligned}
$$

$\left.\begin{array}{l}\text { Gain when working into a mis- } \\ \text { matched load (from powers) }\end{array}\right\}=\left\{10 \log \frac{\mathrm{P}_{0}}{\mathrm{P}_{\mathrm{i}}}\right.$

$$
\left.-10 \log \frac{\left(R_{L}+R_{0}\right)^{2}}{4 R_{L} R_{0}}\right\}
$$

$\left.\begin{array}{c}\text { Gain when working into a mis- } \\ \text { matched load (from powers) }\end{array}\right\}=\{30-$

$$
\begin{aligned}
& \left.10 \log \frac{900}{800}\right\}, \\
& \}=(30-0.5) \mathrm{db}, \\
& \}=29.5 \mathrm{db} .
\end{aligned}
$$

The loss due to mismatch

$$
=0.5 \mathrm{db} .
$$

$\left.\begin{array}{l}\text { Gain when working into a mis- } \\ \text { matched load (from voltages) }\end{array}\right\}=\left\{20 \log \frac{V_{0}}{V_{i}}\right.$

$$
\left.+10 \log \frac{\mathrm{R}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{L}}}-20 \log \frac{\mathrm{R}_{\mathrm{L}}}{}+\frac{\mathrm{R}_{0}}{\mathrm{R}_{\mathrm{L}}}\right\}
$$

$\left.\begin{array}{c}\text { Gain when working into a mis- } \\ \text { matched load (from voltages) }\end{array}\right\}=\left\{20 \log \sqrt{\frac{60}{3}}\right.$

$$
\left.+10 \log 25-20 \log \frac{30}{40}\right\}
$$

$\left.\begin{array}{c}\text { Gain when working into a mis- } \\ \text { matched load (from voltages) }\end{array}\right\}=(13+14+2 \cdot 5) \mathrm{db}$.
$\therefore \underset{\text { Gain when working into a mis- }}{\text { matched load (from voltages) }}\}=29.5 \mathrm{db}$.
Thus, we see the overall gain is the same whether we work from a consideration of powers or voltages.

From straightforward working also, we get:
$\left.\begin{array}{c}\text { Gain when working into a mis- } \\ \text { matched load (from powers) }\end{array}\right)=\left(10 \log \frac{\mathrm{P}_{\mathrm{L}}}{\mathrm{P}_{\mathrm{i}}}\right)$.
$\left.\begin{array}{c}\text { Gain when working into a mis- } \\ \text { matched load (from powers) }\end{array}\right\}=\left\{10 \log \left(\frac{16}{3}\right.\right.$ $\left.\left.x_{6} \frac{1}{\times 1} 10-3\right)\right\}=29.5 \mathrm{db}$,
$\underset{\text { matched load (from voltages) }}{\text { Gain when working into a mis- }}\}=\left\{20 \log \frac{V_{\mathrm{L}}}{\bar{V}_{i}}\right.$

$$
\left.+10 \log \frac{\mathrm{R}_{1}}{\mathrm{R}_{\mathrm{L}}}\right\}
$$

$\left.\begin{array}{r}\text { Gain when working into a mis- } \\ \text { matched load (from voltages) }\end{array}\right\}=\left\{20 \log \frac{4 \sqrt{60}}{3 \sqrt{3}}\right.$

$$
\left.+10 \log \frac{500}{20}\right\}
$$

$\left.\begin{array}{c}\text { Gain when working into a mis-1 } \\ \text { matched load (from voltages) }\end{array}\right\}=(15.5+14) \mathrm{db}$, $18 \sin t-$

$$
=29 \cdot 5 \mathrm{db} .
$$

15. Decibel Graph.

With the aid of the chart (vide frontispiece), the number of decibels, corresponding to power or voltage or current ratios, can be readily read out; the two graphs in the chart are based on the following simple relations for matched impedance only:-
$\mathrm{D}=10 \log \left(\frac{\mathrm{P}_{0}}{\mathrm{P}_{\mathrm{i}}}\right)=20 \log \left(\frac{\mathrm{~V}_{0}}{\mathrm{~V}_{\mathrm{i}}}\right)=20 \log \left(\frac{\mathrm{I}_{0}}{\mathrm{I}_{\mathrm{i}}}\right)$.
The graphs are drawn upto 40 db corresponding to a power ratio of 10,000 (or 10^{4}), and upto 60 db corresponding to a voltage or current ratio of 1,000 (or 10^{3}).

The graph sheet is a log-linear paper, with linear scale on the X -axis for db , and the ratios of power or voltage or current on the Y -axis (log-scale). The use of the chart should need no further explanation.

16. Decibel Tables.

Like tables of logarithms and antilogarithms, two very useful tables are reproduced here from the catalogue of Messrs. General Radio Company, ${ }^{8}$ USA.
The scope of these tables is as follows:
Tables 8 (a) and (b): These tables enable us to find (the unknown) power and voltage or current ratios corresponding to the known number of decibels.

Table 8 (a).
Given : $(+)$ Decibels ; to find: $\left\{\begin{array}{c}\text { Voltage } \\ \text { or } \\ \text { Current }\end{array}\right\}$ and Power Ratios.
Table for positive decibels only.

$+d b$	Voltage Ratio	Power Ratio	$+d b$	Voltage Ratio	Power Ratio	$+d b$	Voltage Ratio	Power Ratio	$+d b$	Voltage Ratio	Power Ratio
0	1.000	1.000	5.0	1.778	3.162	10.0	3.162	10.000	15.0	5.623	31.62
. 1	1.012	1.023	5.1	1.799	3.236	10.1	3.199	10.23	15.1	5.689	32.36
. 2	1.023	1.047	5.2	1.820	3.311	10.2	3.236	10.47	15.2	5.754	33.11
. 3	1.035	1.072	5.3	1.841	3.388	10.3	3.273	10.72	15.3	5.821	33.88
. 4	1.047	1.096	5.4	1.862	3.467	10.4	3.311	10.96	15.4	5.888	34.67
. 5	1.059	1.122	5.5	1.884	3.548	10.5	3.350	11.22	15.5	5.957	35.48
. 6	1.072	1.148	5.6	1.905	3.631	10.6	3.388	11.48	15.6	6.026	36.31
. 7	1.084	1.175	5.7	1.928	3.715	10.7	3.428	11.75	15.7	6.095	37.15
. 8	1.096	1.262	5.8	1.950	3.802	10.8	3.467	12.02	15.8	6.166	38.02
. 9	1.109	1.230	5.9	1.972	3.890	- 10.9	3.508	12.30	15.9	6.237	38.90
1.0	1.122	1.259	6.0	1.995	3.981	11.0	3.548	12.58	16.0	6.310	39.81
1.1	1.135	. 1.288	6.1	2.018	4.074	11.1	3.589	12.88	16.1	6.383	40.74
1.2	1.148	1.318	6.2	2.042	4.169	11.2	3.631	13.18	16.2	6.457	41.69
1.3	1.161	1.349	6.3	2.065	4.286	11.3	3.673	13.49	16.3	6.531	42.66
1.4	1.175	1.380	6.4	2.089	4.365	11.4	3.715	13.80	16.4	6.607	43.65
1.5	1.189	1.413	6.5	2.113	4.467	11.5	3.758	14.13	16.5	6.683	44.67
1.6	1.202	1.445	6.6	2.138	4.571	11.6	3.802	14.45	16.6	6.761	45.71
1.7	1.216	1.479	6.7	2.163	4.677	11.7	3.846	14.79	16.7	6.839	46.77
1.8	1.230	1.514	6.8	2.188	4.786	11.8	3.890	15.14	16.8	6.918	47.86
1.9	1.245	1.549	6.9	2.213	4.898	11.9	3.936	15.49	16.9	6.998	48.98

Table 8 (b)
Given : (-) Decibels; To find: $\left\{\begin{array}{c}\text { Voltage } \\ \text { or } \\ \text { current }\end{array}\right\}$ and Power Ratios.
Table for negative decibels only.

$-d b$.	Voltage Ratio	Power Ratio	-db.	Voltage Ratio	Power Ratio	$-d b$	Voltage Ratio	Power Ratio	$-d b$.	Voltage Ratio	Power Ratio
0	1.0000	1.0000	-5.0	. 5623	. 3162	-10.0	. 3168	. 1000	-15.0	-1778	. 03162
-. 1	. 9886	. 9772	5.1	. 5559	. 3090	10.1	. 3126	. 09772	15.1	. 1758	. 03090
. 2	. 9772	. 9550	5.2	. 5495	. 3020	10.2	. 3090	. 09550	15.2	. 1738	. 03020
. 3	. 9661	. 9333	5.3	. 5433	. 2951	10.3	. 3055	. 09333	15.3	. 1718	. 02951
. 4	. 9550	. 9120	5.4	. 5370	. 2884	10.4	. 3020	. 09120	15.4	. 1698	. 02884
. 5	. 9441	. 8913	5.5	. 5309	. 2818	10.5	. 2985	. 08913	15.5	. 1679	. 02818
. 6	. 9333	. 8710	5.6	. 5248	. 2754	10.6	. 2951	. 08710	15.6	. 1660	. 02754
. 7	. 9226	. 8511	5.7	. 5188	. 2692	10.7	. 2917	. 08511	15.7	. 1641	. 02692
. 8	. 9120	. 8318	5.8	. 5129	. 2630	10.8	. 2884	. 08318	15.8	. 1622	. 02630
. 9	. 9016	. 8128	5.9	. 5070	. 2570	10.9	. 2851	. 08128	15.9	. 1603	. 02570
1.0	. 8913	. 7948	6.0	. 6012	. 2512	11.0	. 2818	. 07943	18.0	. 1588	. 02812
1.1	. 8810	. 7762	6.	. 4955	. 2455	11.1	. 2786	. 07762	16.1	. 1567	. 02455
1.2	. 8710	. 7586	ง..	. 4898	. 2399	11.2	. 2754	. 07586	16.2	. 1549	. 02399
1.3	. 8610	. 7413	6.3	$\therefore 342$. 2344	11.3	. 2723	. 07413	16.3	. 1531	. 02344
1.4	. 8511	. 7244	6.4	. 4786	. 2291	11.4	. 2692	. 07244	16.4	. 1514	. 02291
1.5	. 8414	. 7079	6.5	. 4732	. 2239	11.5	. 2661	. 07079	16.5	.1496	. 02239
1.6	. 8318	. 6918	6.6	. 4677	. 2188	11.6	. 2630	. 06918	16.6	. 1479	. 02188
1.7	. 8222	. 6761	6.7	. 4624	. 2138	11.7	. 2600	. 06761	16.7	. 1462	. 02138
1.8	. 8128	. 6607	6.8	. 4571	. 2089	11.8	. 2570	. 06607	16.8	. 1445	. 02089
1.8	. 8035	. 6457	6.9	. 4518	. 2042	11.9	. 2541	. 06457	16.9	. 1429	. 02042

[^1]Table 9.
GIVEN : $\left\{\begin{array}{c}\text { Voltage } \\ \text { or } \\ \text { Current }\end{array}\right\}$ Ratio TO FIND : Decibels

Voltage Ratio	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
1.0	. 000	. 086	. 172	. 257	. 341	. 424	. 506	. 588	. 668	. 749
1.1	. 828	. 906	. 984	1.062	-1.138	1.214	1.289	1.364	1.438	1.511
1.2	1.584	1.656	1.727	1.798	1.868	1.938	2.007	2.076	2.144	2.212
1.3	2.279	2.345	2.411	2.477	2.542	2.607	2.671	2.734	2.798	2.860
1.4	2.923	2.984	3.046	3.107	3.167	3.227	3.287	3.346	3.405	3.464
1.5	3.522	3.580	3.637	3.694	3.750	3.807	3.862	3.918	3.973	4.028
1.6	4.082	4.137	4.190	4.244	4.297	$4.350)$	4.402	4.454	4.506	4.558
1.7	4.609	4.660	4.711	4.761	4.811	4.861	4.910	4.959	5.008	5.057
1.8	5.105	5.154	5.201	5.249	5.296	5.343	5.390	5.437	5.483	5.529
1.9	5.575	5.621	5.666	5.711	5.756	5.801	5.845	5.889	5.933	5.977
2.0	6.021	6.064	6.107	6.150	6.193	6.235	6.277	6.819	8.361	6.408
2.1	6.444	6.486	6.527	6.568	6.608	6.649	6.689	6.729	6.769	6.809
2.2	6.848	6.888	6.927	6.966	7.008	7.044	7.082	7.121	7.159	7.197
2.3	7.235	7.272	7.310	7.347	7.384	7.421	7.458	7.495	7.532	7.568
2.4	7.604	7.640	7.676	7.712	7.748	7.783	7.819	7.854	7.889	7.924
2.5	7.959	7.993	8.028	8.062	8.097	8.131	8.165	8.199	8.232	8.266
2.6	8.299	8.333	8.366	8.399	8.432	8.465	8.498	8.530	8.563	8.595
2.7	8.627	8.659	8.691	8.723	8.755	8.787	8.818	8.850	8.881	8.912
2.8	8.943	8.974	9.005	9.036	9.066	9.097	9.127.	9.158	9.188	9.218
2.9	9.248	9.278	9.308	9.337	9.367	9.396	9.426	9.455	9.484	9.513

Table 9-(continued.)

Vollage Ratio	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
6.0	15.563	15.577	15.598	15.608	18.621	15.635	15.649	15.664	15.678	15.692
6.1	15.707	15.721	15.735	15.749	15.763	15.778	15.792	15.806	15.820	15.834
6.2	15.848	15.862	15.876	15.890	15.904	15.918	15.931	15.945	15.959	15.973
6.3	15.987	16.001	16.014	16.028	16.042	16.055	16.069	16.083	16.096	16.110
6.4	16.124	16.137	16.151	16.164	16.178	16.191	16.205	16.218	16.232	16.245
6.5	16.258	16.272	16.285	16.298	16.312	16.325	16.338	16.351	16.365	16.378
6.6	16.391	16.404	16.417	16.430	16.443	16.456	16.469	16.483	16.496	16.509
6.7	16.521	16.534	16.547	16.560	16.573	16.586	16.599	16.612	16.625	16.637
6.8	16.650	16.663	16.676	16.688	16.701	16.714	16.726	16.739	16.752	16.764
6.9	16.777	16.790	16.802	16.815	16.827	16.840	16.852	16.865	16.877	16.890
7.0	16.902	16.914	16.927	16.939	16.951	16.984	16.976	16.988	17.001	17.018
7.1	17.025	17.037	17.050	17.062	17.074	17.086	17.098	17.110	17.122	17.135
7.2	17.147	17.159	17.171	17.183	17.195	17.207	17.219	17.231	17.243	17.255
7.3	17.266	17.278	17.290	17.302	17.314	17.326	17.338	17.349	17.361	17.373
7.4	17.385	17.396	17.408	17.420	17.431	17.443	17.455	17.466	17.478	17.490
7.5	17.501	17.513	17.524	17.536	17.547	17.559	17.570	17.582	17.593	17.605
7.6	17.616	17.628	17.639	17.650	17.662	17.673	17.685	17.696	17.707	17.719
7.7	17.730	17.741	17.752	17.764	17.775	17.786	17.797	17.808	17.820	17.831
7.8	17.842	17.853	17.864	17.875	17.886	17.897	17.908	17.919	17.931	17.942
7.9	17.953	17.964	17.975	17.985	17.996	18.007	18.018	18.029	18.040	18.051
8.0	18.062	18.073	18.083	18.095	18.105	18.116	18.127	18.137	18.148	18.159
8.1	18.170	18.180	18.191	18.202	18.212	18.223	18.234	18.244	18.255	18.266
8.2	18.276	18.287	18.297	18.308	18.319	18.329	18.340	18.350	18.361	18.371
8.3	18.382	18.392	18.402	18.413	18.423	18.434	18.444	18.455	18.465	18.475
8.4	18.486	18.496	18.506	18.517	18.527	18.537	18.547	18.558	18.568	18.578

8.5	18.588	18.599	18.609	18.619						
8.6	18.690	18.700	18.710	18.619	18.629 18.730	18.639 18.740	18.649	18.660	18.670	18.680
8.7	18.790	18.800	18.810	18.820	18.730 18.830	18.740 18.840	18.750 18.850	18.760 18.860	18.770	18.780
8.8	18.890	18.900	18.909	18.919	18.830	18.840	18.850 18.949	18.860 18.958	18.870 18.968	18.880
8.9	18.988	18.998	19.007	19.017	18.929 19.027	18.939 19.036	18.949 19.046	18.958 19.056	18.968 19.066	$\begin{aligned} & 18.978 \\ & 19.075 \end{aligned}$
9.0	19.085	19.094	19.104	19.114	19.123	19.133	19.143	19.152	19.162	19.171
9.1	19.181	19.190	19.200	19.209	19.219	19.228	19.238	19.247	19.257	19.171 19.266
9.2	19.276	19.285	19.295	19.304	19.313	19.323	19.332	19.342	19.257 19.351	19.266 19.360
9.3	19.370	-19.379	19.388	19.398	19.407	19.416	19.426	19.435	19.444	19.360 19.453
9.4	19.463	19.472	19.481	19.490	19499	19.509	19.518	19.527	19.444 19.536	$\begin{aligned} & 19.453 \\ & 19.545 \end{aligned}$
9.5	19.554	19.564	19.573	19.582	19.591	19.600	19.609	19.618	19.627	
9.6	19.645	19.654	19.664	19.673	19.682	19.691	19.700	19.618	19.627 19.718	19.636 19.726
9.7	19.735	19.744	19.753	19.762	19.771	19.691 19.780	19.700 19.789	19.709 19.798	19.718 19.807	19.726 19.816
9.8	19.825	19.833	19.842	19.851	19.860	19.869	19.878 1988	19.798 19.886	19.807 19.895	19.816 19.904
9.9	19.913	19.921	19.930	19.939	19.948	19.956	19.878 19.965	19.886 19.974	19.895 19.983	$\begin{aligned} & 19.904 \\ & 19.991 \end{aligned}$
Voltage Ratio	0	1	2	3	4	5	6	7	8	9
10	20.000	20.828	21.584	22.279	22.923					
20	26.021	26.444	26.848	27.235	27.604	23.828 27.959	24.082 28.299	24.609 28.627	25.105 28.943	25.575 29.248
30	29.542	29.827	30.103	30.370	30.630	30.881	31.126	31.364	31.596	29.248 31.821
40	32.041	32.256	32.465	32.669	32.869	33.064	33.255	31.364 33.442	31.596 33.625	$\begin{aligned} & 31.821 \\ & 33.804 \end{aligned}$
50	33.979	34.151	34.320	34.486	34.648					
60	35.563	35.707	35.848	35.987	36.124	34.807 36.258	34.964 36.391	35.117 36.521	35.269 $\mathbf{3 6 . 6 5 0}$	35.417
70	36.902	37.025	37.147	37.266	37.385	37.501	36.3916 37.61	36.521 $\mathbf{3 7 . 7 3 0}$	36.650 37.842	36.777 37.953
80	38.062	38.170	38.276	38.382	38.486	37.501 $\mathbf{3 8 . 5 8 8}$	37.616 38.690	37.730 38.790	37.842 $\mathbf{3 8 . 8 9 0}$	37.953 $\mathbf{3 8 . 9 8 8}$
90	39.085	39.181	39.276	39.370	39.463	39.554	39.645	38.790 39.735	38.890 39.825	$\begin{aligned} & 38.988 \\ & 39.913 \end{aligned}$
100	40.000	-	-	-	-	-	-	-		

To find ratios outside the range of this table, see pages 39 to 44

Table 9 : This table enables us to find (the unknown) number of decibels corresponding to the known voltage or current ratio directly, and the power ratio indirectly. The indirect method of finding out the number of decibels corresponding to a given power ratio is explained later.

It will be seen that these two tables are independent of arbitrarily chosen "zero or reference levels".
(ii) Range of the Tables:-

For ready reference the following table, which covers 10 to 100 db in steps of 10 db , is also specially reproduced below.

Table 10.

-db	Voltage ratio	Power ratio	$+\mathrm{db}$	Voltage ratio	Power ratio
-10	3.162×10^{-1}	10^{-1}	10	3.162	10
-20	10^{-1}	10^{-2}	20	10	10^{2} or 100
-30	3.162×10^{-2}	10^{-3}	30	3162×10	$\mathbf{1 0}^{3}$ or 1,000
-40	10^{-2}	10^{-4}	40	100	10^{4} or 10,000
-50	3.162×10^{-3}	10^{-5}	50	3.162×10^{2}	10^{5} or 100,000
-60	10^{-3}	10^{-6}	60	1,000	$10^{6} \text { or } 1,000,000$
-70	3.162×10^{-4}	${ }_{10}{ }^{-7}$	70	3.162×10^{3}	$10^{7} \text { or } 10,000,000$
-80	10^{-4}	10^{-8}	80	10.000	$\begin{aligned} & 8 \\ & 10^{8} \text { or } \\ & 100,000,000 \end{aligned}$
-90	3.162×10^{-5}	10^{-9}	90	3.162×10^{4}	$\begin{aligned} & 9 \\ & 10_{1,000,000,000}^{\text {or }} \end{aligned}$
-100	10^{-5}	10^{-10}	100	100,000	$\begin{aligned} & 10 \\ & 10 \\ & 10.000 .000,000 \end{aligned}$

Table 8 (a) covers a voltage (or current) ratio of 1.0 to 10.0 or power ratio of 1.0 to 100.0 , i.e., O to +20 db , in steps of 0.1 db .

Table 8 (b) covers a voltage (or current) ratio of 0.1 to 1.0 or power ratio of 0.01 to 1.0 , i.e., -20 db to O db , in steps of 0.1 db .

Table 9 covers a voltage or current ratio of 1.0 to 9.9 in steps of 0.01 , and the corresponding decibel range of 0 to 19.991 db . There is a further table below the main table, covering a voltage ratio range of 10 to 100 in steps of 1 , corresponding to the db range of 20 to 40 db .

At this stage one may wonder whether these two tables could be used for decibel values outside the range of the values listed in Tables 8 (a) and (b), and for ratios outside the range of the values listed in Table 9. Fortunately, these two tables can be used for any decibel value and any power, voltage or current ratio. The following rules are given to find the values outside the range of conversion tables:-
(iii) Use of Tables 8 (a) and (b) : Decibels to Voltage and Power Ratios.
(a) For ratios >1, i.e., when the number of decibels is positive.

Subtract +20 db repeatedly from the given number of decibels until the remainder for the first time comes within the range of Table 8 (a).
To find the voltage ratio :
Multiply the value listed in the voltage-ratio column by 10 for each 20 db subtracted.

To find the power ratio :

Multiply the value listed in the power-ratio columm by 100 for each 20 db subtracted.

The application of the above rules will be clear from the following two examples:
Example :-Given: +56.7 db .
To find: (1) Voltage ratio;
(2) Power ratio.

Solution :-

$56.7-20-20=16.7 \mathrm{db}$. After two subtractions of 20 db each time, the result is 16.7 db , which is found to be within the range of Table 8 (a).
(1) To find the voltage ratio :
$16.7 \mathrm{db} \longrightarrow 6.839$ (from Table $8(\mathrm{a})$).
$\therefore 56.7 \mathrm{db}=20+20+16.7 \rightarrow 10 \times 10 \times 6.839$
\therefore The answer is 683.9
This can be verified by the direct logarithmic method :
Log $683.9=2.8350$ (from log'tables).
$20 \log 683.9=20 \times 2.8350$ $=56.70 \mathrm{db}$.
(2) To find the power ratio :
$16.7 \mathrm{db} \longrightarrow 46.77$ (from Table (8) (a)).
$\therefore 56.7 \mathrm{db}^{\prime}=20+20+16.7 \longrightarrow 100 \times 100 \times 46.77$
\therefore The answer is 467700 or 46.77×10^{4}.
This can be verified by the direct logarithmic method:
Log $467700=5.670$
$10 \log 467700=10 \times 5.670=56.7 \mathrm{db}$.
(b) For ratios <1, i.e., when the number of decibels is negative :

Add 20 db repeatedly to the given number of db until the total sum for the first time comes within the range of Table 8 (b).
(1) To find the voltage ratio :

Divide the value listed in the left-hand voltageratio column by 10 for each addition of +20 db .
(2) To find the power ratio :

Divide the value listed in the left-hand power-ratio column by 100 for each addition of +20 db .

The application of the above rules will be clear from the following two examples:
Example :-Given: - 56.7 db .

$$
\begin{aligned}
& \text { To find:-(1) Voltage ratio; } \\
& \text { (2) Power ratio. }
\end{aligned}
$$

Solution:-

$$
-56.7+20+20=-16.7 \mathrm{db}
$$

(1) To find the voltage ratio:

$$
\begin{array}{r}
-16.7 \mathrm{db} \longrightarrow 0.1462 \quad \text { (from Table } \\
8(\mathrm{~b})), \\
-56.7 \mathrm{db} \longrightarrow 0.1462 \times \frac{1}{10} \times \frac{1}{10} \\
=0.001462 .
\end{array}
$$

(2) To find the power ratio:

$$
\begin{aligned}
&-16.7 \mathrm{db} \longrightarrow 0.02138 \\
&-56.7 \mathrm{db} \longrightarrow 0.02138 \times \frac{1}{100} \times \frac{1}{100}, \\
& \quad=0.000002138
\end{aligned}
$$

Alternative Method :-
A rule for an alternative method of obtaining the voltage or power ratio corresponding to a given number of negative db is as follows:-

Add 20 db repeatedly till an excess (+ value) is left over the given number of negative db .

Then obtain from Table 8 (a) the ratio for the excess (+) value of db and divide it by 10 for voltage ratios, and by 100 for power ratios, for each 20 db added.

This is illustrated by the following example:
Take again, - 56.7 db .
Solution :-

$$
20+20+20-56.7=3.3 \mathrm{db} \text {. }
$$

(1) To find the voltage ratio:

$$
\begin{aligned}
& \quad+3.3 \mathrm{db} \longrightarrow 1.462 \text { (from Table } 8(\mathrm{a})) \\
& \therefore-56.7 \mathrm{db} \longrightarrow 1.462 \times \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} \\
& \quad=0.001462
\end{aligned}
$$

(2) To find the power ratio :

$$
\begin{aligned}
+3.3 \mathrm{db} \longrightarrow & 2.138 \\
-56.7 \mathrm{db} \longrightarrow & 2.138 \times \frac{1}{100} \times \frac{1}{100} \times \frac{1}{100} \\
& =0.000002138
\end{aligned}
$$

(iv) Use of Table 9 : Voltage Ratios to Decibels.
(a) Rule for ratios smaller than those in Table 9, i.e.,. for ratios < 1 :

Multiply the given ratio by 10 repeatedly until the product for the first time can be found in the table. From the number of decibels thus found, subtract +20 db for each multiplication by 10 .

Example :-Given: Voltage ratio $=0.0123$
To find : the db value.

Solution :-

(1) $0.0123 \times 10=0.123$, which is not found in Table 9.
(2) $0.123 \times 10=1.23$, which is found in Table 9. From Table (9), $1.23 \longrightarrow 1.798 \mathrm{db}$.
$\therefore 0.0123 \longrightarrow 1.798-20-20$ or, $-40+1.798$.
\therefore The answer is -38.202 db .
(b) Rule for ratios greater than those in Table 9, i.e., for ratios >1 :

Divide the ratio by 10 repeatedly until the result can be found in the table. To the number of decibels thus found, add 20 db for each division by 10 .

Example :-Given : Voltage ratio $=345$.
To find : the db value.
Solution:- $\frac{345}{10}=34.5$, which is not found in Table 9,
and $\frac{34.5}{10}=3.45$, which is found in Table 9.
From Table (9), $3.45 \longrightarrow 10.756 \mathrm{db}$.
$\therefore 345 \longrightarrow 10.756+20+20$ or 50.756 db .
\therefore The answer is 50.756 db .

(v) Use of Table 9: Power Ratios to Decibels.

Rule: Assuming the given power ratio to be a voltage (or current) ratio, find out the corresponding number of decibels from the table. Then, the required result is exactly one half of the number of decibels found previously from the table.

The rule is illustrated by two examples, first when the power ratio is greater than 1 , and the second when the power ratio is less than 1.
(a) Rule for ratios >1, i.e., when the number of decibels is positive :
Example:-Given : a power ratio of 3.45
To find : the corresponding db value.
Solution :-From Table 9, the number of decibels corres ponding to a voltage ratio of 3.45 is 10.756 .
From the above rule, $\frac{10.756}{2}=5.378 \mathrm{db}$ is the required answer.
(b) Rule for ratios <1, i.e., when the number of decibels is negative :

Example :-Given : a power ratio of 0.0123
To find : the corresponding db value.
Solution :-
It has already been found in a previous example the number of decibels corresponding to a voltage ratio of 0.0123 is -38.202 db .
\therefore The required answer $=\frac{-38.202}{2}=-19.101 \mathrm{db}$.

PART II

THE PHON

PART II

THE PHON

(1) Introduction.

The decibel notation and its formulx, involving electrical quantities like power, voltage, and current, have been explained in Part I. Under the head: 'advantages of the db notation', it has been mentioned that it is applicable to the case of sound, because the ear obeys a logarithmic law in its response to the loudness of sound. The decibel is, therefore, used to compare intensities of sounds, and it would be better to understand the equivalents of power, voltage, and current in the field of acoustics.

Sound is produced by the vibration of a body and is propagated as wave motion. The body in motion exerts a force on the particles of the medium, and this force corresponds to emf. The particles of the medium move under this force, and this particle velocity (to be disting, uished from the velocity of sound in the medium, which is quite different), corresponds to current in an electrical circuit.

The sound disturbance proceeds from the source as a spherical wave. Where the radius of this sphere is large, it is equivalent to a plane wave. If we now consider a sq. cm . of the wave front, the pressure exerted by it is similar to voltage, and is measured in dynes sq. cm . ; the particle velocity corresponds to current, and is measured in $\mathrm{cms} . \mathrm{sec}$. The sound power associated with this $\mathrm{sq} . \mathrm{cm}$. of the wave front is the sound intensity, and is expressed in watts sq. cm . ($1 \mathrm{watt}=10^{7} \mathrm{ergs} / \mathrm{sec}$.)

On this analogy, we could state Ohm's law for sound ${ }^{9}$ thus: "The ratio between the sound pressure and the particle velocity thus produced, is constant for a given medium". This constant is known as the acoustic or
mechanical impedance, which is expressed in mechanical ohms.

$$
\begin{aligned}
& \text { Sound Pressure }=\text { Velocity of Particle } \times \text { Acoustic } \\
& \text { Impedance } \\
& \left.\left(\mathrm{P}_{\mathrm{s}}\right)=\left(\mathrm{V}_{\mathrm{p}} \times \mathrm{Z}_{\mathrm{a}}\right) \quad \text { (c.f. } \mathrm{E}=\mathrm{I} \times \mathrm{Z}\right)
\end{aligned}
$$

The modifications of this law can be easily derived, and are similar to their electrical analogues. The acoustic impedance of air is nearly equal to 40 mechanical ohms.

Just as the electrical power is the product of voltage and current, the sound intensity is the product of pressure and particle velocity:

$$
\text { i.e., } I_{0}=P_{0} \times V_{p}(\text { c.f. } P=V \times I) \text {. The other }
$$ modifications of this equation can be easily derived.

From the foregoing, it is seen that two sounds can be compared, and their differences in level computed in db , using the same laws as have been used in electrical circuits, i.e., from intensities or pressures, or particle velocities.

The ultimate judge of the loudness of sound is the ear, and any measurements made or inferences drawn from experimental data regarding sound, would be incorrect unless the peculiarities of the ear are taken into consideration. Thus, for example, though the ear is logarithmic in its response to loudness of a particular frequency, two sounds of equal power but of different frequencies, do not sound equally loud to the ear. As an example, a sound intensity of 10^{-16} watts sq. cm . at $1,000 \mathrm{cps}$ is just audible to the ear ; the same sound intensity at 30 cps is inaudible, and to make 30 cps just audible we have to increase the intensity by over 60 db , i.e., to 10^{-10} watts sq. cm . Had this at least been a constant difference, matters would not be so difficult. Sound intensities of 10^{-4} watts $\mathrm{sq} . \mathrm{cm}$. would appear equally loud approximately at 30 cps and $1,000 \mathrm{cps}$. These peculiarities are clearly depicted in the curves given in Fig. 2.1.

Fig. 2.1. Aural Response Curves.
Curves originally obtained by H. Fletcher and W. A. Munson (Jour. Acoust. Soc. Amer., 5, 82, 1933)
Reproduced from: Philips' Tech. Review 1937 by Courtesy of Philips Elec. Coy. (India) Ltd.

In Fig. 2.1, the intensity level at constant loudness is plotted as a function of frequency. These are the wellknown curves obtained by Harvey Fletcher and Munson. It is seen that a much higher sound intensity corresponds to an equivalent loudness at low frequencies than at medium frequencies. The difference may be as great as 60 db , i.e., a ratio of 1 million. The frequency response of the ear at the threshold of audibility and threshold of pain are shown (approximately) by the bottom and fop curves respectively. The bottom curve shows that, though at $1,000 \mathrm{cps}$ the sound is audible at zero level, at 400 cps an increase of about 10 db , and at 50 cps an increase of about 53 db , are required in order to render the sound audible. The top curve shows that the ear is
nearly as sensitive to the low frequency notes as to the 1,000 -cycle note. Therefore, if we intend expressing loudness by a unit at various frequencies, this unit must necessarily take care of the peculiarities of the response of the ear to (1) the different frequencies, and to (2) the different intensities of sound.

In Fig. 2.1, a number of curves called loudness contours, all passing through 1,000 cycles at intensity levels rising by 10 db , are shown. On any curve, at any point, the sound will be heard as though of the same loudness as the corresponding 1,000 -cycle note, e.g., at 10,000 cycles, an actual intensity of, say 30 db above zero, will sound just as loud as a note of 1,000 cycles at 20 db above zero. In expressing loudness at any frequency in terms of the equivalent loudness at 1,000 cycles, we can specify the degree of loudness for any sound at any particular level and frequency. The Phon is the name of this unit. A sound of loudness of, say 50 phons, is such that it sounds as loud as a 1,000 cycle note of intensity level 50 db above a zero of 10^{-16} watts sq. cm . The actual intensity at any particular frequency can be determined from the curves, as each curve corresponds to equal loudness over the frequency range represented. It is clear from these curves, how the low-frequency notes in music are missed, when the volume control is turned down, as a result of the lownote sensitivity of the ear at low sound pressures, i.e.: greater pressures are required with low-frequency notes than with high, or middle-frequency notes before the ear can detect the note at all.

Thus, the Phon is a unit used for the measurement of sensation of loudness and purely a subjective quantity. Expressing loudness of sounds of two different frequencies in db is not quite appropriate. It is to avoid this difficulty that the Phon or the loudness unit has been introduced.

Before we proceed to understand thoroughly what a phon is, it is worth while to consider the definitions of some important terms in acoustics.

2. Definitions.

The following seven terms are defined, based on American Engineering and Industrial Standards' standard for Noise Measurement ${ }^{10}$, or IRE Standards ${ }^{11}$ on "Electroacoustics", or BSS (661 1936). ${ }^{12}$
(a) Intensity Level :

The intensity level of a sound is the number of decibels above the zero reference level. The reference intensity for intensity level comparisons is 10^{-16} watts sq. cm. While in England and America, an intensity level of 10^{-16} watts sq . cm . (corresponding approximately to the intensity of sound at the threshold of audibility of the ear), is the zero intensity level of reference, in Germany, a sound intensity of 2.5×10^{-16} watts/sq. cm ., is taken as the zero intensity level of reference.

In a plane or spherical progressive sound wave in air, the intensity level of sound corresponds to an rms pressure P given by, $P=P_{0} \times \sqrt{\frac{H}{76} \sqrt{\frac{273}{T}}}$, where $P_{0}=0.000207$. \mathbf{P} is expressed in dynes $\mathrm{sq} . \mathrm{cm} ., \mathrm{H}$ is the barometric pressure in cms., and T, the absolute temperature. At a temperature of $20^{\circ} \mathrm{C}$ and a pressure of 76 cms ., P is equal to 0.000204 dynes $\mathrm{sq} . \mathrm{cm}$. For sound pressure measurements, 0.0002 dynes sq. cm . is taken as reference pressure.
(b) Pressure Level:

The pressure level of a sound is $20 \log \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right)$.
The unit of pressure level is the decibel, and $\mathrm{P}_{0}=0.0002$ dynes sq. cm.
(c) Loudness Level :

The loudness level of a sound is the intensity of an equally loud reference tone at the position where the listener's head is situated.
(d) Reference Tone:

A plane or spherical sound wave, having only a single frequency of $1,000 \mathrm{cps}$, is used as reference tone for loudness comparisons.

(e) Threshold of Audibility :

The threshold of audibility at any specified frequency is the minimum value of sound pressure of a pure tone of that frequency which is just audible. This term is often used to denote the minimum value of sound pressure of any specified complex wave (such as speech or music), which gives the ear a sensation of sound. The point at which the pressure is measured must be specified in every case. It is expressed in dynes sq. cm . It can also be expressed in terms of intensity. Its value then is 10^{-16} watts sq. cm .
(f) Threshold of Feeling :

The threshold of feeling at any specified frequency is the minimum value of the sound pressure of a sinusoidal wave of that frequency, which will stimulate the ear to a point at which there is the sensation of feeling. The point at which there is the sensation of feeling, and the point at which the pressure is measured, must be specified in every case. It is expressed in dynes sq. cm., and canalso be expressed in watts $\mathrm{sq} . \mathrm{cm}$.
(g) Equivalent Loudness Level:

The IRE standards on 'Electroacoustics' define 'Equivalent Loudness, Loudness Level, or Equivalent Loudness Level', as follows :-
"The equivalent loudness of a sound is the intensity level, relative to an arbitrary reference intensity of the 1,000 -cycle pure tone, which is judged by the listener tobe equally loud. The unit is the decibel.

Note :
The term 'Phon' is used by some writers as the: equivalent of the db in specifying equivalent loudness."

3. The Phon:

(a) Definition of Phon :

Decibel is a relative measure. Two sounds having intensities I_{1} and I_{2} are said to have a difference in level 'denoted by $10 \log \left(\frac{I_{1}}{I_{2}}\right) \mathrm{db}$. From this definition, which is used only for sound intensity, we have to distinguish
clearly 'Phon', the loudness unit, standardised some years ago at an International Acoustic Conference in Paris.

According to BSS No. 661 of 1936, phon is defined thus :-A unit of equivalent loudness : the standard tone shall be a plane sinusoidal sound wave commenced from a position directly in front of the observer and having a frequency of $1,000 \mathrm{cps}$. The listening shall be done with both ears, the standard tone and the sound under measurement being heard alternately, and the standard tone being adjusted until it is judged by a normal observer to be as loud as the sound under measurement. The zero intensity level of the standard tone shall be taken to be an rms pressure of 0.0002 dynes sq. cm . More accurately, an intensity level of 10^{-16} watts sq. cm. corresponds to a sound pressure of 0.000204 dynes sq. cm . at $20^{\circ} \mathrm{C}$ and 76 cms. of mercury. These values approximate to the 1,000 -cycle threshold pressure for a normal observer.

When, under the above conditions, the intensity level of the standard tone is N db above the stated reference intensity, the sound under measurement is said to have an equivalent loudness of N phons (B.S.).

Decibel is used not only for expressing the intensity of sound, but also its loudness in terms of intensity of an equally loud sound of standard pitch.
(b) Phon as adopted in different countries :

The 'Phon' was originated in Germany. The British Phon agrees with that adopted as the unit of equivalent loudness in the USA, but the German Phon differs from the British Phon.

The latter embodies listening with one ear and a reference intensity level of 2.5×10^{-16} watts/sq. cm. This reference level will work out to 0.000316 dynes sq. cm ., if we take 10^{-16} watts sq. cm. as equivalent to a pressure of 0.0002 dynes sq. cm., as cited by the BSS. But, the Philips Tech. Review ${ }^{13}$ assumes 0.0002034 dynes sq. cm ., as equivalent to 10^{-16} watts sq. cm . Then the German reference pressure level will work out to 0.00032 dynes sq. cm.

Table 1 gives the comparative values for a plane progressive wave: the intensity level (decibels above 10^{-16} watts sq. cm.), phons, the intensity as well as the corresponding effective value of pressure fluctuations, and the: sound particle velocity.

The amplitude ' a ' is calculated from the effective sound particle velocity ' v ' for a specific frequency ' f ', using: the expression: $a=\frac{\mathrm{v} \cdot \sqrt{2}}{2 \pi \mathrm{f}}$. The amplitudes of the particles. are also given in the last column of the table for a frequency of $1,000 \mathrm{cps}$, which is the reference tone. As an example, if $v=8 \times 10^{-3} \mathrm{~cm}$. $/ \mathrm{sec}$. and $\mathrm{f}=1.000 \mathrm{cps}$., then $\mathrm{a}=$ 1.8×10^{-6}

Table 1.
Relationships between Different Acoustic Magnitudes forPlane Progressive Waves in Air. ${ }^{13}$

Dr	Phons	Intensity	Sound pressure	Sound particle veloctty IN AIR	AMPlitude OF VIBRA- TIONS IN AIR
Above 10^{-16} watts/sq. cm. (in USA.)	db above 2.5×10^{-16} watts/sq. cm. (in Germany)	10^{-3} watts per sq. cm.	Dynes per sq. cm .	$10^{-3} \mathrm{Cm}$. per second	$\begin{gathered} \text { (at } 1.000 \\ \text { cycles, } 10^{-6} \\ \text { cm.) } \end{gathered}$
(1)	(2)	(8)	(4)	(5)	(6)
64	60	0.25	0.32	8	1.8
65	61	0.32	0.36	9	$2 \cdot 0$
66	82	$0 \cdot 40$	0.40	10	$2-2$
67	63	0.50	0.45	11	$2 \cdot 5$
68	64	0.63	0.50	12	$2 \cdot 8$
69	65	$0 \cdot 8$	0.56	14	32
70	66	1.0	0.63	16	3.6
71	67	1.25	0.71 0.80	18	4.0
72	68 69	1.6 2.0	0.80 0.89	20	4.5 5.0
73	69 70	2.0	0.89 100	22	5.6
75	71	$3 \cdot 2$	$1 \cdot 1$	28	$6 \cdot 3$
76	72	$4 \cdot 0$	$1-25$	32	7
77	73	5.0	1.4	36	8
78	74	$6 \cdot 3$	16	40	9
79	75	8	1.8	45	10
80	76	10	2.0	50	11
81	77	$12 \cdot 5$	2.2	${ }_{63}$	12
82	78	16	2.5 2.8	63 71	14
83 84	79 80	20 25	2.8 3.2	71 80	16 18

4. Sound Levels and Phon Calculations.

Greenlees ${ }^{14}$ gives the following sound levels on p. 238 of his book : Amplification and Distribution of Sound.

Table 2.

Intensity level in db above 10^{-16} watts/sq. cm.	Dynes/sq. cm.	Watts/sq. cm.	Effect of sound
(1)	(2)	(3)	(4)
0	-000204 or	10^{-16}	Threshold of hearing at 1,000 cps.
130	645	10^{-3}	Threshold of feeling or pain

Morris ${ }^{15}$ gives the following sound levels.
Table 3.

Intensity level in db above 10^{-16} watts/sq. cm.	Dynes/sq. cm.	Effect of sound		
0	2×10^{-4}	Sound inaudible to the average human ear at 1,000 cps.		
7	4.47×10^{-4}	Threshold of hearing at 1,000 cps.		
140	2×10^{3}	3.55×10^{3}		Threshold of feeling
:---				
145				

Thus, there is a discrepancy between the levels described by Greenlees and Morris for the threshold of hearing and threshold of feeling. Taking Morris' figures the following phon levels can be calculated:-
(i) Zero phon loudness level.

The pressure of 2×10^{-4} dynes/sq. cm. corresponds to $20 \log \left[\frac{2 \times 10^{-4}}{1}\right]$ or -74 db relative to 1 dyne/sq. cm.

This level will be o db when referred to a reference level of -74 db , because- $74-(-74)=0$.

The sound corresponding to 2×10^{-4} dynes sq. cm . is. therefore, defined as zero phon loudness level.
(ii) Loudness level in phons of the threshold of hearing.
The pressure for the threshold of feeling is $4.47 \times$ 10^{-4} dyne/sq. cm., which corresponds to $20 \log$ $\left[\frac{4.47 \times 10^{-4}}{1}\right]$ or -67 db relative to r dyne/sq. cm . and this is $=-67-(-74)$ or +7 db relative to -74 db (relative to 1 dyne/sq. cm.).
\therefore The loudness level of the threshold of hearing is expressed as 7 phons.
(iii) Loudness level in phons of the threshold of feeling.
The pressure for the threshold of feeling is $2 \times$ 10^{3} dynes/sq. cm. This corresponds to 20 log $\left[\frac{2 \times 10^{2}}{1}\right]$ or +66 db relative to 1 dyne/sq. cm., which is $+66-(-74)$ or 140 db relative to -74 db (relative to 1 dyne/sq. cm.).
\therefore The loudness level of the threshold of feeling is expressed as 140 phons.
(iv) Loudness level in phons of the threshold of pain.

The pressure for the threshold of pain is $3.55 \times$ 10^{3} dynes/sq. cm., which corresponds to $20 \log$
$\left[\frac{3.55 \times 10^{2}}{1}\right]$ or +71 db relative to 1 dyne/sq. cm. or, $+71-(-74)=+145 \mathrm{db}$. relative to -74 db (relative to 1 dyne/sq. cm.).
\therefore The loudness level of the threshold of pain is 145 phons.

The above results are tabulated below.

$$
\text { Table } 4 .
$$

Table 5.
Table of Tolerable Noise Levels in Buildings.
Phons

1. Studios for recording sound or broadcasting. 15 to 20
2. Hospitals 15 to 20
3. Music studios 20 to 25
4. Apartments, Hotels and Homes .. 20 to 30
5. Auditoriums, (including theatres, cinemas, churches, class rooms and libraries)

20 to 35
Phons
6. Private offices 30 to 40
7. Public offices, banking rooms .. 35 to 50
Table 6.
A Table of Phons
Threshold of audibility 0.
Quiet whisper 20
suburban garden 30
Clock ticking briskly 40
Soft radio music 50
Moderate conversation 60
Loud radio speech 70
Loud radio music 80
Near pneumatic drill 100
unsilenced æroplane engine 110
Tickling in the ear 130

PART III

APPLICATIONS OF THE DECIBEL NOTATION TO RADIO ENGINEERING AND ACOUSTICS

PART III

Applications of the Decibel Notation to Radio Engineering and Acoustics.

1. POWER LEVEL DIAGRAMS (HYPSOGRAMS).

In the case of heavy electrical engineering the efficiencies of power generators, motors, and transformers, are usually expressed as ratios or percentages of output to input. This is a simple matter since each machine is considered individually, but in telecommunication engineering, calculations involve the combined performance of a whole chain of equipment, e.g., microphone, amplifiers, matching transformers, mixers, cables, lines and feeders, loudspeakers etc., some of which contribute to gains, while others to losses. The overall efficiency of the entire chain can be obtained by multiplying together the efficiency ratios of the individual members. But, the same overall gain is obtained more easily by a simple algebraic addition of the individual gains, when such gains (both for the members of the chain and for the whole chain) are expressed in decibels. If the input power is expressed in decibels above an agreed zero level, the output power can be worked out in decibels above the same zero level. The following example illustrates the method of calculations. Let the communication network consist of the following:
(1) A microphone, whose output level is -45 db (with reference to a zero level of 6 mW).
(2) Preamplifier whose gain is 20 db .
(3) One mixer which introduces a loss of 6 db .
(4) Power amplifier which contributes a gain of 70 db .
(5) Transmission line which introduces a loss of 2 db .

Required to find the output level of the loudspeaker.

Solution :

The overall gain of the system from the microphone to the loudspeaker is obtained merely by adding the decibel
gains, and subtracting the decibel losses or, in other words, an algebraic addition of the decibel values given above. The output level of the system $=-45+20-6+$ $70-2=+37 \mathrm{db}$. Therefore, the reproduction level for the loudspeaker is +37 db .

Fig. 3.1 Power Level Diagram.
Fig. 3.1 shows the power level diagram of the above example, which is self explanatory. Similar power level diagrams can be drawn for a transmitting chain from the studio microphone to the transmitter aerial.

2. THE OUTPUT-POWER METER.

An output-power meter is one which measures directly the amount of absolute power (in milliwatts or decibels, with reference to a chosen zero level) delivered by an audio-frequency system into a variable external load, which is also incorporated in the meter.
(2) Use:-This instrument is used in finding (1) the audio power delivered to a load of a known impedance; (2) the effect of load impedance on the output power; (3) the characteristic impedance of telephone lines, gramo-

Fig. 3.2. Schematic Diagram of an Output-Power Meter.

Fig. 3.3. G. R. Coy's Output-Power Meter. (By Courtesy of Messrs. General Radio Company, USA.)
pick-ups, oscillators, etc., by noting the impedance which gives the maximum reading on the instrument; (4) as an
output indicator (read in db) for conducting the standard tests on radio receivers (like sensitivity, selectivity, bandwidth and fidelity, (vide Part III Sec. 5), amplifiers, filters, transformers, vacuum tubes etc.
(3) Design :-Fig. 3.2 shows the schematic diagram of the instrument. Fig. 3.3 shows the actual photograph of the front panel of the instrument. The instrument is an adjustable-load impedance connected across which is a constant-impedance, rectifiertype voltmeter, calibrated to read directly the watts dissipated in the load.

There are two standard instruments on the market:-
(1) G. R. Company's ${ }^{18}$ (USA) output-power meter: Type 583-A (vide Fig. 3.3)
\mathcal{E}^{\prime} (2) Marconi-Ekco's ${ }^{19}$ (British) output-power meter: Type TF. 340.

The general design and purpose of both these instruments is the same. The specification of the former instrument is given below (taken from the G. R. Company's catalogue).
(i) Power range $:=0.1$ to 5,000 milliwatts in four ranges :
(a) $0-5$; (b) $0-50$; (c) $0-500$; (d) $0-5,000$ milliwatts for full scale, i.e., the power range covered by the meter is $\frac{50,000}{1}$.

The copper-oxide rectifier voltmeter is calibrated 1 to 50 mW , with an auxiliary scale, reading from 0 to 17 db . (aboive a zero reference level of 1 mW), besides -10 db , +10 db , or 20 db , as required.
(ii) Error in decibel-scale :-The maximum error in full-scale power reading does not exceed:
(1) 0.5 db between 150 and 2,500 cycles,
or (2) $1.5 \mathrm{db} \quad, \quad 20$ and 10,000 ,
The average error is 0.3 db at 30 and $5,000 \mathrm{cps}$, and 0.6 db at 20 and 10,000 .
(iii) Input-mpedance range : -2.5 to 20,000 ohms, i.e., a range of $\frac{20,000}{2 \cdot 5}$ or $8,000: 1$. Forty impedance steps, each step being only about 25% increase, are pro vided. Thus, logarithmically distributed impedances are obtained, chosen by a 10 -step ohms-dial, and a fourstep multiplier.

The markings on the impedance dial are:$25,30,40,50,60,80,100,125,150$ and 200 ohms. Impedance Multiplier settings are: $0.1,1,10$, and 100 . (4) The meter and its dial calibration :-From the above description, it is seen that the output-power meter is nothing but an acc voltmeter, calibrated in db with reference to the power passed into a load of known impedance, contained within the instrument itself, and substituted for the normal one, e.g., as a substitute for the loudspeaker speech coil impedance in conducting tests on radio receivers.
If impedance of the load $=1,000$ ohms, and zero level is 1 mW , then the voltage $=\sqrt{0.001 \times 1,000}=1$ volt (rms).

For the purpose of tests on receivers, a standard output has been chosen-.(Vide Sec. 5, Part III). 50 mW is considered as the lowest, useful-power output from a receiver to be of any practical value to the listener. Hence, 50 mW is calibrated as 17 db , and powers less than 1 mW are given negative readings in db , as will be explained presently.

On the multiplierscale dial the following two sets of readings are found:-

Table 1. Multiplier Dial.

Multiply meter reading in milliwatts by	Add to the meter aux. scale reading in db.
$\times 0.1$	-10 db
\times	1.0
\times	10.0
\times	100

It will be seen that the figures in column (2) of the above table are merely $10 \times \log$ of the values in column (1), since multiplying the value in milliwatts is equivalent to adding algebraically the corresponding number of decibels.

If the multiplying factor is <1, the number of $d b$ to be added is negative;
if the multiplying factor is $=1.0$, the number of db to be added is 0 ; and
if the multiplying factor is >1.0 the number of db to be added is positive,

The dial of the meter is calibrated thus:Table 2.

Reading in $\mathbf{m W}$.	Reading in db (approx.)
1	0
4	6
5	7
6.5	8
10	10
12.5	11
15.5	12
25	14
31.5	15
40	16
50	17

It will be seen that the db scale is calibrated by evaluating $10 \log \frac{\mathrm{~mW}(\mathrm{rdg} .)}{1 \mathrm{~mW}}$, i.e., with reference to a zero level of 1 mW .

Hence, when the multiplier setting is against 1.0 , no more decibels need be added to, or subtracted from, the reading on the auxiliary decibel-scale, on the meter face itself. Further, it is seen that 0 db is marked against 1 mW , since $10 \log \frac{1 \mathrm{~mW}}{1 \mathrm{~mW}}=0$; and no value in db is marked
against 0 mW , since the corresponding value in db would be $10 \log 0=-\infty$, which is not easy to determine. That explains why any readings on db scale below 0 db , or corresponding to 1 mW , are not marked.

5. Maximum Power Reading.

For the maximum output-power reading of 5 watts or 5,000 milliwatts, the multiplierswitch should be against 100 , since $100 \times 50=5,000$ and the main meter dial is calibrated 0.50 mW only, corresponding to +17 db .
Hence $100 \times 50 \mathrm{~mW}$ correspond to: $+20+17$ or 37 db , which can be verified by evaluating the formula.

3. AUDIO AMPLIFIERS.

The specification for a typical amplifier is given below:
(a) Power output:-with 8% distortion +31.25 db (reference level: 6 mW).
(b) Frequency response:-Within $\pm 1 \mathrm{db}$ from 45 cps to $6,000 \mathrm{cps}$; tone control in treble position.
(c) Gain:- Microphone input: 111 db based on 100,000 ohms.

Phono input: 66 db (0.1 megohm) in put impedance.
(d) Hum:-61.5 db below maximum output.

The meanings of these statements are to be understood as follows:

(a) Power Output:

The power output of an amplifier is specified as so many db , at a rated percentage distortion with reference to a specified zeropower level. The tolerable distortion is anything from 5 to 10%, and 8% may be taken as a representative figure for the so'called "undistorted output".

In the example the undistorted output of the amplifier should be 8 watts (with 8% distortion) for, only then the output in db relative to 6 mW zero $=10 \log$ $\frac{8}{0.006}=+31.25 \mathrm{db}$.

The set up of apparatus, as in Fig. 3.4, is used for the measurement of power. If R is a load that matches the amplifier, and V_{o} the voltage across it (measured with a suitable arc voltmeter), then $\mathrm{V}_{0}{ }^{2} \mathrm{R}$ gives the poweroutput.

Fig. 8.4. Set-up for Obtaining the Power Output of an Amplifier.

(b) Frequency Response:

The frequency response of an amplifier is illustrated by a 3 cycle, log-linear graph (Fig. 3.5), of which the logarithmic X -axis is the frequency scale, and linear Yoxis is used for representing the frequency response in decibels.

The function of an amplifier is to amplify all frequen cies between, say, 30 cps to $10,000 \mathrm{cps}$ or more, and it is the variation in amplification of the different frequencies that is specified in decibels with respect to an arbitrarily chosen zero, i.e., the amplification at 400 or 1,000 cycles|per second. It is usual to specify that an amplifier should have a frequency response within $\pm 3 \mathrm{db}$ from 40 to 10,000 cps. Fig. 3.5 satisfies this specification, though at 40 cps as well as at $10,000 \mathrm{cps}$, the response falls 6 db below the level at 1,000 cycles. In this connection, Greenlees ${ }^{20}$ rightly remarks that a better specification would be to define the departures as so many db from the level at 1,000 cycles, where the response is generally maximum and constant over a fairly wide range.

Fig. 3.5. Frequency Response of an Amplifier.
Measurement of amplification in decibels throughout the range of frequencies :-

The set-up of the apparatus is the same as in Fig. 3.4. A non-inductive load R, to match to the output impedance
of the amplifier, is connected. V_{i} measures the input voltage of the amplifier, and V_{\circ} the output voltage from the amplifier to the load. If valve voltmeters are not available, at least high-impedance, rectifiertype acc voltmeters should be used. Inputs of various frequencies are applied to the amplifier at a constant voltage, and the varying output voltages for the different frequencies fed in, are measured and converted to decibels, relative to the output at some arbitrarily chosen level, usually 400 or $1,000 \mathrm{cps}$. The following example will make this clear:
Amplifier Data:-Input impedance $=0.5$ megohm.
" volts $=0.75$ volt.
Output Impedance $=10$ ohms.
Rated undistorted output (5\% distortion) $=10$ watts.

The load resistance should be 10 ohms and at least of 10 watts rating. If a voltmeter (V_{o}) of 0 to 25 volts range having a sensitivity of $1,000 \%$ ohms per volt is connected, making a total internal resistance of 25,000 ohms, it will have negligible effect on the output circuit conditions. With this meter, the high-impedance input cannot be measured. Experimental details of two methods will be described.

Method I:-

(1) Set volume control on the amplifier at the maximum position;
(2) Adjust frequency of the oscillator to 1,000 cycles;
(3) Set the volume control on the oscillator so that V_{i} reads 0.75 volt;
(4) Read V_{0}; it should read: $\sqrt{10} \times 10=10.0$. volts;
(5) Keeping input V_{1} constant at 0.75 volt, read V_{\circ} for the different frequencies.
From this data, the decibel gain for each frequency, can be calculated and plotted with decibel gain at 1,000 cycles taken as zero reference db level. A method of calculation, say for 1,000 cycles, is shown below:
Input volts $=0.75$ volts; Input impedance $=$ 500,000 ohms.
\therefore Input power, $\mathrm{P}_{\mathrm{i}}=\mathrm{V}_{\mathrm{Z}_{\mathrm{i}}{ }^{2}}=\begin{gathered}(0.75)^{2} \\ 5 \times \overline{10} \\ 0^{5}\end{gathered}=0.112 \times 10^{-5}$ watts. Output power, $\mathrm{P}_{\mathrm{o}}=10.0$ watts (given).
\therefore Amplification at 1,000 -cycles $=\frac{P_{0}}{P_{i}}=\frac{10.0}{0.111^{-} \times 10^{-\overline{5}}}$ $=8.93 \times 10^{6}$.

$$
\begin{aligned}
\therefore \text { Db gain }=10 \log \frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{P}_{1}} & =10 \log 8.93 \times 10^{6} \\
& =69.508 \mathrm{db} \text { or, say, } 70 \mathrm{db} .
\end{aligned}
$$

Method II:-

In order to avoid overloading of the valves (even at some frequencies), which will make the response curve appear better than the actual response curve, it is safe to measure the frequency response curve at about one half the full, rated-output of the amplifier. The volume control should be turned, so that V_{0} reads $\sqrt{50} \times 10 \times 7.07$ volts, which correspond to 5.0 watts output $=1 / 2$ the maximum output. Keeping this output voltage constant, the oscillator may be swept over the frequency range of 50 to 10,000 cycles, and the input volts read at each fre quency. A typical test data is furnished in the table below. The input, and output-impedances used in the calculation are, of course, 0.5 megohms and 10 ohms respectively.

Table 3.
Output V_{0} constant at 7.07 volts.

Cps. (f)	Input volts. $\left(\mathrm{V}_{\mathrm{i}}\right)$	$\frac{\mathrm{V}_{\mathrm{i}} \text { at } 1,000 \mathrm{cps} .}{\mathrm{V}_{\mathrm{i}} \text { at } \mathrm{f}}$	db relative to
$1,000 \mathrm{cps}$.			

Fig. 3.6. Frequency Response Curve of an Amplifier.
Fig. 3,6. shows the frequency response curve of the amplifier in question.

(c) Gain or Amplification of a Channel:

The overall gain or power amplification of an amplifier is expressed in decibels, but a mere statement that an amplifier has a gain of 40 db is no indication of the actual power output of the amplifier, unless some additional information is also furnished. By saying that a power amplifier has a gain of 40 db , all that we can infer is that its output audio power is 10,000 times its input audiopower, since $40=10 \log \frac{P_{o}}{P_{i}}$, or $\frac{P_{o}}{P_{i}}=10^{4}$.
This is true irrespective of the actual magnitude of the input power, and it may so happen that the output may still be too small to be audible. If, for instance, we are given, that the amplifier delivers its full output with an input of 1 volt across its input impedance of 1 megohm, and has a gain of 80 db , then the output power can immediately be calculated as follows:

Solution :-

80 db corresponds to a power amplification of $10^{8}=\frac{\mathrm{P}_{0}}{\mathrm{P}_{\mathrm{i}}} . \quad \mathrm{P}_{\mathrm{i}}=\frac{\mathrm{V}_{\mathrm{i}}{ }^{2}}{\mathrm{Z}_{\mathrm{i}}}=\frac{1 \times 1}{10^{6}}$ watts,
$\therefore \mathrm{P}_{\mathrm{o}}$, actual output power $=$ Input power \times amplification $=\frac{1}{10^{6}} \times 10^{8}=10^{8}=100$ watts.

Decibel gains or losses cannot be calculated directly from the input and output voltages only, unless input and output impedances are identical, which seldom happens in the case of audio amplifiers used in public address systems. Otherwise, the corrections mentioned in Sec. 8 of Part I of this monograph, must be applied for the mismatch.

Consider the following example:-
An amplifier has an input impedance $R_{1}=1$ Megohm, and an output impedance of 1,000 ohms- (generally, the output impedance of an audio amplifier is much less than the input impedance). If V_{i} and V_{o} be the input and
output voltages of the amplifier, then the real gain of the amplifier is not merely $20 \log _{10}\left(\frac{V_{0}}{V_{i}}\right)$, but $20 \log _{10}\left(\frac{V_{0}}{V_{i}}\right)$ $+10 \log _{10}\left(\frac{R_{i}}{R_{0}}\right)$. The extra factor of $10 \log _{10}\left(\frac{R_{i}}{R_{0}}\right)$ in the present example is responsible for the extra $30 \mathrm{db}=$ $\left\{10 \log _{10} \frac{1,000,000}{1,000}\right\}$.

No rating is more abused than the decibel gain of an audio amplifier, because of the nature of the measurements involved. Decibel being a unit of power measurement, the impedances across which voltage measurements are made will vitiate the mathematical result, as has been illustrated in the preceding example.

To assess the overall gain of a.channel, a carefully measured input voltage is applied to the input terminal of the amplifier (channel), aff the output voltage measured. Such measurements are made with the aid of a valve voltmeter (because of its high, input-impedance). The decibel gain is given by $10 \log _{10}\left(\frac{\mathrm{P}_{0}}{\mathrm{P}_{\mathrm{i}}}\right)$.

Hence, P_{o} and P_{i} have to be calculated from V_{0} and V_{i}, and Z_{0} and Z_{i}. V_{0}, the output voltage, is read across the load resistor, substituted for the impedance that would normally be connected to the secondary of the output transformer. The input voltage is fed into the normal input terminals of the amplifier across which will be found a high resistance, for example, a 5 megohm resistor, in the case of the well-known range of Thordar son 21 amplifiers of the USA. It is this input resistor, that is the real trouble in the gain measurements. Though its value is 5 megohms (a large value to prevent over loading of the microphone), in practice, such a value is never met with. 5 megohms, when shunted by the microphone, or other source of input, the resultant impedance is less than the lower of the two parallel impedances. Therefore, the secondary impedance of the usual microphone transformer

RADIOENGINEERINGANDACOUSTICS 75

(say, 100,000 ohms), the generally accepted figure, is used in the amplifier gain calculations. An input impedance of 5 megohms would spoil the high-frequency response of the stage involved. The db gain calculated with 100,000 ohms, will be less than that with 5 megohms, but the former result will be more representative of the usable gain. In Thordarson catalogue of their amplifiers, it will be found that $100,000 \% \mathrm{ohms}$ has been used as input impedance in specifying the gain of the microphone and phono-input channels.

For example, a typical specification is as follows:-
Gain: Microphone input: 111 db ; phono-input: 66 db , (based on 100,000 ohms input impedance):

It is therefore apparent that one should never express the db gain without specifying the constants used.

It is seen from the above specification that the gain for the different input channels in a public address amplifier is different: more gain (due to more stages) being provided for microphone channels, and less gain for the gramophoneinput channels. This difference is due to the fact that the level of output from any microphone is always considerably less than that from a gramophone pickup. For specific information on the exact levels of the various gramo pick ups and microphones, the reader is referred to Sections 7 and 9 of the present Part.
(d) Internal Noise Level or Hum :

Fig. 3.7. Set-up for Measuring Internal Noise Level of Amplifiers.
An amplifier will deliver a small noise output even when no signal is applied. It is usual to specify this hum output
as so many db below the rated output, e.g., as 60 db below the rated or maximum output.

Fig. 3.7 shows the set-up required for measuring the internal noise level or hum of the amplifier. The ratio of the noise volts to the full output.volts is expressed in db , and the noise level is then expressed as so many db below the full output rating.

The following example will illustrate the meaning further :

$\left.\begin{array}{l}\text { Amplifier output } \\ \text { Output impedance } \\ \text { Output volts on } \\ \text { Oon }\end{array}\right\}$	$=500$ watts.
noise test.	

Calculation of noise level :-

$$
20 \text { watts }=\frac{\mathrm{V}_{0}{ }^{2}}{\mathrm{Z}_{0}} ;
$$

$\therefore \mathrm{V}_{\mathrm{o}}=\sqrt{20 \times 500}=100$.
Noise level in $\mathrm{db}=20 \log _{10} \frac{(\text { Noise volts) }}{(\text { Output volts). }}$

$$
=20 \log _{10} \frac{(0.03)}{(100)}=-70.5 \mathrm{db}
$$

\therefore Noise level is 70.5 db below the maximum output.
A noise level of 50 or more db below rated output is considered satisfactory for most purposes, although 60 db would be essential in installations where general noise level is very low. -70 db is considered to be very good.

4. SIGNAL TO NOISE RATIO.

In any communication system, the degree of freedom from interference will depend upon the relative strength of the desired signal and the undesired signal, otherwise called the noise or disturbance. The ratio of these two quantities is called the "Signal|noise ratio" and is of fundamental importance in all communication systems. It is expressed in the db notation by $x \mathrm{db}$, where $x=10$ $\log _{10} \cdot \frac{\mathrm{p}_{\mathrm{a}}}{\mathrm{p}_{\mathrm{n}}}$, where p_{5} and p_{n} represent the signal and noise powers respectively. Alternatively, if V_{s} and V_{n} represent the signal and noise voltages respectively, then $x=10 \log _{10}\left(\frac{V_{\mathrm{g}}}{\bar{V}_{\mathrm{n}}}\right)^{2}=20 \log _{10} \frac{\mathrm{~V}_{\mathrm{g}}}{\mathrm{V}_{\mathrm{n}}}$.

Atmospherics and man-made noises are invariably heard as background noises while listening to a radio receiver. In order that a radio programme may be of value to a listener, the IEE, ${ }^{22}$ London, specified that the signal noise ratio should not be less than 40 db .

The following four examples will illustrate the above formule :
(i) for a signal/noise ratio of 60 db and a signal power of 2.5 mW , the noise power is:

$$
60=10 \log \frac{2.5}{n_{p}}, \text { i.e., } n_{p}=\frac{2.5}{\text { antilog of } 6}=2.5 \times 10^{-6} \mathrm{~mW}
$$

(ii) for a signal/noise ratio of 60 db and a signal voltage of 1.25 volts, the noise voltage is: $60=20 \log \frac{1.25}{V_{n}}$ i.e., $V_{n}=\frac{1 \cdot 25}{10^{3}}=1.25 \mathrm{mV}$.
(iii) for a signal/noise ratio of 40 db and a signal field strength of $1 \mathrm{mV} / \mathrm{m}$ the noise field strength is :
$40=20 \log \frac{1}{V_{n}}$ i.e., $V_{n}=\frac{1}{\text { antilog of } 2}=10^{-2}$ $=0.01 \mathrm{mV} / \mathrm{m}$.
(iv) for a radio listener, there are two kinds of noises, which are to be considered: (1) the atmospheric (noise) field strength, and (2) the man made static (noise) field strength. It is usual to express the intensity of the field strength of the signal at the listening point due to a broadcasting station relative to the total noise strength, in the decibel notation, by the formula :

$$
20 \log \frac{\text { radio signal field strength }}{\text { total noise field strength }}
$$

This is best illustrated by the following numerical example :-

When a refrigerator is working at a distance of 50 ft . from a radio receiver, the signal strength of a medium wave station, the listener is listening to, is 120 mV m , while at the same place the atmospheric and man-made static noise field strengths are 3 and 16.2 mV m respectively.

Then, the total noise field strength equals $\sqrt{(3)^{2}+(16.2)^{2}}=$ 16.48 mV m (assuming both are vertically polarised) and the signal total noise ratio equals : $20 \log \frac{120}{16.46}=17.27 \mathrm{db}$.

5. RADIO RECEIVERS.

Application: Decibel notation is used with radio receivers in expressing the results of the following tests :-
(a) Selectivity,
(b) Image ratio,
(c) AVC characteristics,
(d) Overall electric fidelity characteristic (popularly styled the frequency response).
(a) Selectivity Test:

The radio receiver is accurately tuned to the test fre-

Fig. 3.8. Selectivity curve 1,000 kcs , modulated $400 \mathrm{cps}, 30 \%$, AVC paralysed. quency (usually $1,000 \mathrm{kcs}$). The RF signal generator is then detuned each side of the resonance, and the RF input voltage required for the normal test output* noted. Such observations are to be made for every few kcs upto either of the following limits, whichever requires the least departure from resonance.
(1) The ratio of input at x kcs off resonance exceeds 10,000 or $80 \mathrm{db}(=20 \mathrm{log}$ 10,000), or (2) input exceeds 1 volt.

A typical selectivity curve of a receiver is shown in Fig. 3.8 (reproduced from Fig. 5 of the author's paper ${ }^{25}$

[^2]"Standard Tests on Broadcast Receivers"). The figure is drawn on a loglinear graph paper.
In the curve, the x axis is used for kilocycles off the resonant frequency (positive and negative, 0 being the resonance frequency or the desired station frequency, viz., $1,000 \mathrm{kcs}$ in the test), the y-axis is log-scale representing $\mathrm{db}=20 \log \left(\frac{\text { Input at } x \text { kcs off resonance }}{\text { Input at resonance }}\right)$ for a constant output.

From the curve it will be seen that, at $\pm 5 \mathrm{kcs}$ off resonant frequency the selectivity is $20 \log 20=20 \times$ $1.3010=26 \mathrm{db}$, and at $\pm 10 \mathrm{kcs}$ off resonant frequency the selectivity is $20 \log 300=20 \times 2.4771=49.542$ or, say 49.5 db . The significance of these results is as. follows :-
(1) That a station working on 1,005 or 995 kcs should induce a voltage 20 times that of the station working on $1,000 \mathrm{kcs}$, in order that the stations on 1,005 or 995 kcs give same output from the radio receiver under test, as it gives when tuned to a station on $1,000 \mathrm{kcs}$.

A standard specification is that the selectivity of the receiver should be at least 40 db down at 20 kcs , and at least 6 db down at 8 kcs off resonance. It is seen that the receiver under test does satisfy these specifications, since even at about 8 kcs off resonance it is about 40 db down. (The significance of db "down" and "up" have already been explained in Part I).
(b) Image Ratio:

In a superheterodyne receiver the local oscillator frequency, f_{10}, is normally designed to exceed the desired signal frequency, f_{s}, by the intermediate frequency, $\mathrm{f}_{\mathrm{i} \text {, }}$ i.e., $\mathrm{f}_{\mathrm{lo}}-\mathrm{f}_{\mathrm{g}}=\mathrm{f}_{\mathrm{if}}$-(1). But, even when a station working at a frequency: $f_{b}+f_{i f}$, is present then also the ${ }_{\text {is. }}$ amplifier responds.

In other words, if f_{i} is the interfering station $\mathrm{f}_{\mathrm{i}}-\mathrm{f}_{\mathrm{lo}}=\mathrm{f}_{\mathrm{if}}$
\therefore By adding (1) and (2) $\mathrm{f}_{\mathrm{t}}-\mathrm{f}_{\mathrm{a}}=2 \mathrm{f}_{\mathrm{u}}$.

Therefore, the interfering station and the desired station are separated by twice the intermediate frequency. So, in a superhet unless the response to the interfering station is much lower than that to the desired station, the desired programme is marred by the undesired one, and this is known as the image (or second channel) interference.

The image or second channel ratio is measured and expressed in db thus :-

Suppose the receiver is tuned to $1,000 \mathrm{kcs}$, and its sensitivity is $15 \mu \mathrm{~V}$. If the IF is 110 kcs , the image frequency is $1,220 \mathrm{kcs}(=1,000+2 \times 110)$. The RF signal generator is then tuned to this frequency, and the input to the radio is increased, until 'Standard output' is once more obtained from the receiver. Suppose the signal is now $27,000 \mu \mathrm{~V}$ or 27 mV , then the ratio of this to the first channel sensitivity is $\frac{27,000}{15}=1,800$.
The best way of expressing this result is in db form: $20 \log 1,800=20 \times 3.2553=65 \mathrm{db}$ nearly.
If the IF is in the neighbourhood of 465 kcs (as is common in those sets incorporating short-wave bands), the image frequencies (which exceed the desired frequencies by $2 \times 465 \mathrm{kcs}$) fall largely outside the broadcast band, and the ratio is so high that interference even from a local station is absolutely unlikely in the medium-wave band, but the ratio should be measured on the long-wave band, as there is a possibility of interference from a very powerful station of $1,100-1,200 \mathrm{kcs}$. Whatever the IF may be, the image ratio should be measured and expressed in db or all short-wave bands. With a low IF (say, about 100) and a badly aligned receiver, the ratio may be less than unity!
(c) AVC characteristic :

AVC or, more accurately, the automatic gain control of a radio receiver, is intended to keep the output of the receiver constant within narrow limits over a wide range of input of RF signal.

Usually, the avc characteristic is conducted at $1,000 \mathrm{kcs}$, the signal being modulated at 400 cps to a depth of 30%. The test is performed as follows:

The receiver is tuned to the desired RF (say $1,000 \mathrm{kcs}$). The input to the receiver is adjusted to a value of 1 volt, and the volume control so adjusted, that the receiver delivers $1 / 4$ of its nominal undistorted output. The input is then reduced in suitable steps to, say, $10 \mu \mathrm{~V}$, and the output read in mW or db at each step.

Fig. 39. AVC Characteristic of a Receiver.
Fig. 3.9 is a reprodu tio of Fig. 7 in the author's paper. ${ }^{26}$ From it the following information is gathered.

Table 4.

Actual variation in input	Change in input ratio	Change in input in db	Change in output in db
10^{3} to $10^{6} \mu \mathrm{~V}$	10^{3}	60	10
10^{4} to $10^{6} \mu \mathrm{~V}$	10^{2}	40	7

A standard specification for the constancy in output is, that the change in output corresponding to a 40 db change in input (between $10^{4} \mu \mathrm{~V}$ to $10^{8} \mu \mathrm{~V}$), should not exceed 7 db .

(d) Overall Electric Fidelity of a Receiver :

The capacity of the receiver (excluding the loudspeaker) to reproduce the different modulation frequencies (usually 50 cps to 10 kcs) without frequency distortion is represented by the overall electric fidelity curve. The curve is plotted on a log-linear graph paper-x-axis is of logarithmic type, while the y-axis is of linear scale to represent response in db .

The value of the test lies in the ease and accuracy with which it can be performed, and its usefulness for comparative purposes. It is usual to conduct this test at $1,000 \mathrm{kcs}$ with audio frequencies (50 to $10,000 \mathrm{cps}$) modulated to a depth of 30%. Usually, this test is also performed for at least two different positions of the 'tone control'. The procedure of the test is as follows :

The receiver is tuned to the desired RF signal (say 1,000 kcs) modulated 30% at 400 cps , so that a reasonable

Fig. 8.10. Overall Electric Fidelity Curves of a Receiver.
output, say, $1 / 4$ of the full, rated output is delivered. The volume control is at maximum, and the tone control at a
chosen position, e.g., 'treble maximum' or 'bass maximum.' Then, the AF generator is made to deliver the same strength of signal to the RF generator at various frequencies (50 to $10,000 \mathrm{cps}$), and the output in db obtained for each of these audiofrequencies.
Fig. 3.10 is a reproduction of Fig. 6 in the author's paper. ${ }^{27}$ Curve 1 is for 'treble maximum' position, and curve 2 for 'bass maximum position' of the tone control. Best fidelity is, of course, when the curve is as flat as possible. The drooping of the curve at both ends is inevitable.

6. AUDIO TRANSFORMERS

As stated already, the decibel, being directly related to the effect of sound on the ear, is useful in expressing the fidelityrating of a transmission chain, or any of its com-ponents-e.g., the fidelity of reproduction of audio transformers. Consider the following example: In a certain ($1: 1$ ratio) audio transformer, 1 volt across the primary winding produces the following voltages in the secondary at the stated frequencies.

Table 5.

Cps	Voltage
30	0.2
50	0.6
100 to 8,000	1.0
10,000	0.85

The above information does not mean much unless converted into decibels. Hence, giving the arbitrary value of 0 db to 1 volt, the following results are obtained:

This can be written as:
at 30 cps the db - response $=20 \log \frac{0.2}{1}=20 \log 0.2$

$$
\begin{aligned}
& =20 \times \overline{1} .3010 \\
& =20 \times-0.6990 \\
& =-13.98 \mathrm{db} \text { or, say, }-14 \mathrm{db}
\end{aligned}
$$

At 50 cps , loss is $4.4 \mathrm{db}(-4.4)$.
At $10,000 \mathrm{cps}$, loss is $1.41 \mathrm{db}(-1.41)$.
A fidelity curve can be plotted on a 3 -cycle, log-linear graph paper with the above data.

7. GRAMOPHONE RECORD CUTTERS AND PICK-UPS

The db-notation is used in connection with gramophone record cutters and pick-ups for recording their frequency response characteristics, and to denote the operating levels.

(i) RECORD CUTTERS :

(a) Requirements of Frequency Response :-

For high fidelity, all frequencies between 30 and 10,000 cps should be reproduced uniformly. A cuttinghead converts electrical energy into mechanical energy with a poor conversion efficiency. An examination of the frequency characteristics of an average cutter reveals the deficiencies at the low, and high-frequency ends. The LF loss is deliberately introduced. The comparative hardness of the coated disc relative to wax, is partly responsible for the HF loss, but the main reason is the design of the cutter itself-the amount of play between the cutting needle and needle holder.

By using an audio equalizer (vide Sec. 16, Part III), the loss at the HF-end can be compensated. When using an equalizer, a high gain amplifier is to be used, as the equalizer introduces an appreciable loss in gain.

(b) Operating Level:-

A good cutter operates at a level of 16 db , equal to 0.24 watt, if referred to 6 mW zero. At this level the surface noise is 40 db below the level of the recorded sound, and is about 10 db better than the surface noise of a shellac pressing, and approximately the same as that of the best acetate disc. A level of +16 db is considered low, and any recording amplifier, with an output of at least 2 watts, can handle the recording head easily.

(c) Measurement of Frequency Response:-

The frequency response of a cutting head can be obtained by two well-known methods:
(i) Deflection method.
(ii) Calibrated pick-up method, for which the reader is referred to Sterling's Radio Manual. ${ }^{28}$
(ii) PICK-UPS :
(a) Response Curve:-

The response curves of pick-ups are plotted on a 3cycle, log-linear, graph paper, with response on the Y-axis (linear scale) and frequencies on the Xaxis (logarithmic scale).

Nilson and Hornung ${ }^{29}$ give the following data regarding the output levels and frequency ranges of four common types of gramophone pick-ups:

Table 6.

Type	Output in db (relative to 6 mW zero)	Frequency Range cps.
Standard magnetic	-35	$80-3,000 / 5,000$
Oil-damped	-35	$60-5,000$
Astatic (crystal)	-78	$30-8,000$

Fig. 3.11 shows the response curve of a good pick-up of modern design. ${ }^{30}$ The curve shows that the response approximates very closely to the ideal-a positive response between 60 and 1,000 -cycles (relative to response at 1,000 cps as zero), and falling after about $4,000 \mathrm{cps}$, the loss at $7,000 \mathrm{cps}$ being - 15 db .

As most pick-ups have a rapidly falling characteristic after about $5,000 \mathrm{cps}$, the response above that frequency is cut out by means of a low-pass filter (cut-off at $5,000 \mathrm{cps}$): Further, this also serves to cut down the noise due to needle scratch, which becomes noticeable when frequencies beyond $5,000 \mathrm{cps}$ are attempted to be reproduced.
(b) Output of the Pick-up :

The output of a good pick-up should be well over 1 volt rms, in order to get ample input for even the smallest

Fig. 3.11. Response curie of a Modern Pick-up. (By Courtesy of PHILIPS Electrical Co. (India) Itd.
amplifier. The volts (rms) and the corresponding db scale, are also indicated in the Fig. 3.11.
$\because \frac{\mathrm{V}^{2}}{\mathrm{Z}}=\mathrm{P}$, if $\mathrm{V}=0.53$ volts and $\mathrm{P}=0.006$ watts, then, $Z=\frac{(0.53)^{2}}{.006}=46.8$ ohms, which is about the value of an average dynamic pick-up.

8. OUTPUT VALVES

The decibel can be conveniently used for expressing the output of the power valves relative to 6 mW zero. It will now be possible to get a truer comparison of the relative usefulness of output valves regarding their merit as acoustic-power producers.

This is a better method than merely giving the power output of the valve in milliwatts or watts with corresponding percentage distortion. The following table classifies the power output of three well-known pentode output valves, working under class A conditions.

Table 7. Output Valves.
Single-Tube (Pentode) Class A operation.

Valve	Volts $\left(\mathrm{V}_{\mathrm{a}}\right)$	Distortion $(\%)$	Power Watts (W)	Power db 6 mW zero $)$
6 F 6	250	8	3.2	+27.27
6 L 6	250	10	6.5	+30.35
6 V 6	250	8	4.5	+28.75

Considering the case of two 6L6 valves in pushpull in class A.1, for the same anode voltage, the pushpull connection delivers 14.5 watts with a distortion of $2 \% ; 14.5$ watts correspond to $10 \log _{10}(14.5 \mid 0.006)=33.832 \mathrm{db}$. A single 6L6 valve can give 6.5 watts with 10% distortion, but when two of these are connected in parallel they give only 13 watts or 33.357 db with 10% distortion. Thus by connecting in pushpull the distortion is reduced from 10% to 2%. Next, consider two 6L6 valves operating in class AB 2 with anode voltage of 360 . Then the output of

Table 8.

Push-Pull (Pentodes)-(Two valves). Values of Power Output.

Valve	Class A 1				Class A B 1				Class A B 2			
	V_{3}	\% distortion	POWER		V	$\%$ distortion	POWER		V.	\% distortion	POWER	
			Watts	db			Watts	db			Watts	db
6 F 6	315	4	11	+32.63					375	3.5	18.5	+34.89
6 L 6	250	2	14.5	+33.83	360	2	26.5	+36.45	360	2	47	+38.94
6 V6					250	5	10					

two valves in pushpull is 47 watts with 2% distortion. 47 watts correspond to 38.94 db . That is, by increasing the anode voltage from 250 to 360 volts, we have been able to increase the power output from 14.5 to 47 watts, or an increase of about 5 db for the same percentage distor tion. The increase is due not only to the difference in anode voltage but also to the method of operation. Also, we may compare the increase to 47 watts, obtained from two 6L6 valves in pushpull working in class AB 2 , with a single 6L6 valve operating in class A 1, giving only 6.5 watts. The difference in db between these two outputs is only 8.6 db , which gives a better idea as far as the appreciation of the ear is concerned as a result of increasing the power, though the figures in watts: 6.5 and 47, look really a vast jump. Thus, though the increase in output may appear very large, yet when expressed in db , it is onlysmall. The increase may not make much difference to the loudness sensation.

9. MICROPHONES

The db notation is used in connection with microphones for two purposes :
(1) Sensitivity rating,
and (2) Response curves
(1) Sensitivity Rating :

The output of any microphone is less than 1 volt, and therefore it is conveniently specified as so many decibels below an arbitrarily chosen zero level. The sensitivity of a certain microphone is given as follows :-
"- 62 db relative to 1 volt per dyne sq. cm., measured on open circuit, across the secondary of the matching transformer, and with sound introduced along its axis, at a frequency of $1,000 \mathrm{cps}{ }^{\prime \prime}$. This, besides the impedance of the microphone and the step-up ratio of the matching transformer, provides the information required for determining the required amplification. To evaluate the 'open circuit voltage' specified above, the impedance of the microphone and the load to which it is connected must be considered. Let us consider the sensitivity calculations in the case of some common microphones.

Case I. Moving Coil Microphone :

Consider a moving coil microphone of 50 ohms impedance connected to a 500 ohm line via a line-matching transformer.

If the sensitivity of the microphone on open circuit is -62 db relative to 1 volt|dyne|sq. cm ., the voltage generated is calculated thus :
$20 \log \frac{x}{1}=-62$, or $x=0.0008$ nearly.
$x=0.0008 \mathrm{volt} / \mathrm{dyne} / \mathrm{sq} . \mathrm{cm}$. ; and the ratio of the

$$
\text { matching transformer }=\sqrt{\frac{500}{50}}=3.162
$$

The transformer must present an impedance of 50 ohms towards the microphone (source impedance $=$ load impedance). Since a generator giving 0.0008 volt feeds two impedances of 50 ohms each, the voltage across the microphone is equal to the voltage across the primary. terminals of the matching transformer, i.e., equal to $\frac{: 0008}{2}=0.0004 \mathrm{volt}$.
If the transformer step-up ratio is $1: 3.162$, then the voltage in the line $=3.162 \times 0.0004=0.001265$ volt $/$ dyne $\mid \mathrm{sq} . \mathrm{cm}$. Actually, the line voltage will be less than this value (due to the load reflected by the current in the moving coil); the line voltage will, therefore, be of the order of 1 mV .

Case II. Ribbon Microphone :

Next, consider a ribbon microphone. The sensitivity of a certain ribbon microphone is given as -76 db for a sound pressure of 1 dyne $\mid \mathrm{sq} . \mathrm{cm}$. Let us examine the above statement in detail in order to understand its significance.
The power W of the source of sound is given by

$$
\begin{aligned}
\mathrm{W} & =\frac{4 \pi \mathrm{r}^{2} \mathrm{p}^{2}}{\rho \mathrm{c}} \text { ergs } / \text { second } \\
& =\frac{4 \pi}{\rho_{\mathrm{c}}} \times, \mathrm{r}^{2} \mathrm{p}^{2} \times 10^{-7} \text { watts }
\end{aligned}
$$

where,
$\mathrm{p}=$ sound pressure in dynes/sq. cm;
$r=$ distance between the microphone and the speaker in cms,
$P=$ density of air $=0.001225 \mathrm{grams} / \mathrm{cu} . \mathrm{cm}$. at $15^{\circ} \mathrm{C}$ and 76 cm ,
$\mathrm{c}=$ velocity of sound in air at $15^{\circ} \mathrm{C}=34140$ cms. $/ \mathrm{sec}$.
At a distance of $r=100 \mathrm{~cm}, \mathrm{p}$, the sound pressure $=1.8$ dynes $/ \mathrm{sq}$. cm ., for the maxima of the spoken word. Let $r=100, p=1.8$, and $\rho \times c=41.8$ or, say, 42.

Then, $\mathrm{W}=\frac{4 \pi}{42} \times 10^{4} \times(1.8)^{2} \times 10^{-7}=10^{-3}$ watt or, 1 mW , i.e., the maximum energy of the spoken word is about 1 mW .

A ribbon (velocity) microphone gives 0.28 mV at the secondary terminals of a matching transformer. Its sensitivity at a distance of 3 feet along its axis, is -76 db with zero level of 12.5 mW ; the adapting impedance in the microphone is given as 250 ohms.

Calculations :
$10 \log _{10} \frac{P_{1}}{P_{2}}=-76 \mathrm{db}$, or $\frac{P_{1}}{P_{2}}=10^{-7.6}$
If $\mathrm{P}_{2}=12.5 \mathrm{~mW}$ (zero level),
then, $\mathrm{P}_{1}=12.5 \times 10^{-7.6}$, or 0.0003139 mW .
$\mathrm{V}=0.28 \times 10^{-3}$ volts, but $\mathrm{P}_{1}=\frac{\mathrm{V}^{2}}{\mathrm{Z}}$.
$\therefore \mathrm{Z}=\frac{0.0784 \times 10^{-6}}{0.0003139 \times 10^{-6}}=250$ ohms, which agrees with the adapting impedance of the microphone, already stated. 12.5 mW and 250 ohms, correspond to 1.77 volts (for $\mathrm{V}^{2}=250 \times 12.5 \times 10^{-3}$).
$D \mathrm{db}=20 \log _{10} \frac{V_{1}}{V_{2}}$, where $V_{1}=0.28 \times 10^{-3}$ volts,
and $V_{2}=1.77$.
$\therefore \mathrm{D}=20 \log _{10} \frac{0.28 \times 10^{-3}}{1.77}=-76 \mathrm{db}$.
Case III. Crystal Microphone :
Loss in level due to capacity in leads may be computed from the formulx ${ }^{31}$:
$20 \log _{10}\left\{1+\frac{c_{1}}{c_{2}}\right\}$, where C_{1} represents the capacity of the lead, and C_{2} the capacity of the microphone.

The capacity of a good, special microphone cable is about $30 \mu \mu \mathrm{f}$ per foot. The internal capacity of an average crystal microphone will be about $0.01 \mu \mathrm{f}$, the load impedance 1 to 3 Megohms, and the output level about - 66 db relative to 12.5 mW zero.

(2) The Rating of Sensitivities:

In rating the sensitivities of microphones, unfortunately there is no standard zero level. Actually, both ' 6 milliwatt' and ' 12.5 milliwatt' zero levels are used. The comparative sensitivities of some common microphones, as given by Greenlees ${ }^{32}$ are shown in the table below.

Table 9.

No. Type of microphone	Impedance at 1,000 Cycles (Ohms)			
1. Carbon ...	2,000	-38	-45	-48
2. Condenser ...	500,000	-50	-90	-93
.3. Moving coil...	20	-68	-60	-63
4. Ribbon ...	$\underset{\text { (with tranaformer) }}{200}$	-78	-80	-83
:5. Crystal ...	50,000	-72	-103	-106

(3) Response Curves of Microphones :

A 3 -cycle, log-linear, graph paper is used to represent the response curves. The X -axis is used for representing the frequency, usually from 50 to $10,000 \mathrm{cps}$, and the

Y-axis for the response in db. Fig. 3.12 shows the output - of microphones corresponding to various frequencies of sound waves at a fixed intensity for the following types of microphones :
A. carbon,
B. condenser,
C. moving coil,
D. ribbon,
E. crystal.

Fig. 3.12. Response curves of Five Difierent Types of Microphones (By courtesy of Messrs. Chapman \& Hall Lid., London.)

For any microphone, response curves can be drawn for sounds arriving at angles off the axis, vide Fig. 3.13, which gives response for sounds arriving at angles: $0,30,60$ and 90 , with the axis for a certain microphone.

Fig. 3.13. Directional Response Curves.
(By courtesy of Messrs. Chapman \& Hall Ltd., London.)
It is seen from the different curves in this graph, that the frequency response to sound waves arriving at an angle to the axis of the microphone, differs from that for sound waves coming along the axis, and that the high-frequency response falls rapidly as the angle with the axis increases (c.f. curve for $\theta=90$, with that for $\theta=0$, where θ is the angle which the arriving sound wave makes with the axis).

(4) High-Level, and Low-Level Mixing.

It will be seen from Table 9 that the output of any microphone is several tens of db below the zero level. Hence, before the output of a microphone is fed to a lineamplifier, usually there will be the amplification by preamplifiers as well as a 'mixer', for mixing the outputs of several microphones.

There are two methods of mixing the outputs of several microphones, called (1) the high-level mixing, and (2) the low-level mixing. These two methods are illustrated in the Fig. 3.14 below :

(1) High Level Mixing

(2) Low Level Mixing

Fig. 3.14.
In the case of low-impedance microphones, e.g., ribbon or velocity microphone, and moving coil or dynamic microphones, whose output level is between - 60 and - 85 db , low-level mixing is resorted to, and in the other types, high-level mixing.

The fundamental difference between the two methods of mixing is that, in the high-level mixing, the mixing is done at a level of - 30 db (approx.), subsequent to the amplification by pre-amplifiers, while in the case of lowlevel mixing, the mixing is done first and then amplified by the pre-amplifier. High-level mixing is advantageous from the point of view of the higher signal|noise ratio. In general, it may be expected that the total noise level at the first valve of an amplifier using a low-level mixing system to be about 10 db higher than in a high-level mixing system.

10. LOUDSPEAKERS.

According to the IRE Standards on Electroacoustics, ${ }^{33}$ decibels appear in describing the following characteristics of a loudspeaker :
(1) Response-Frequency characteristic,
and (2) Directional characteristic.

(1) Response-Frequency Characteristic.

The response of a loudspeaker is a measure of the sound produced at a designated position in the medium with the electrical input, frequency, and acoustic conditions, specified.
The absolute pressure $=p \frac{\sqrt{ } Z}{V}$,
where, $\mathrm{p}=$ measured sound pressure in dynes sq. cm.,
$\mathrm{V}=$ effective voltage applied to the voice coil in volts,
and $\mathrm{Z}=$ absolute value of the impedance of the voice coil- $(\mathrm{Z}$ is a function of the frequency).
It is usual to express the response in decibels, relative to an arbitrary value of response corresponding to one volt, one ohm, and one dyne|sq. cm .
Then, response in $d b=20 \log _{10} \frac{\frac{p}{V / \sqrt{Z}}}{\frac{1}{1 / \sqrt{1}}}$.

$$
\begin{aligned}
& =20 \log _{10} \frac{\mathrm{P}}{(\mathrm{~V} / \sqrt{\bar{Z}})} \\
& =20 \log _{10} \frac{\mathrm{p} \sqrt{\bar{Z}}}{\mathrm{~V}}
\end{aligned}
$$

It is not proposed to describe here the actual method of measuring the sound pressure (p), Z, etc.,' as Part III of the IRE standards ${ }^{33}$ headed: 'Methods of testing loudspeakers', gives detailed information on the subject, and the reader interested in the actual method of obtaining the response-frequency characteristic of a loudspeaker either
by automatic, semirautomatic, or point-topoint methods, can readily obtain information from there.

Response curves of loudspeakers can be drawn for (1) response along the axis of the speaker, or (2) for any angle off the axis of the speaker (c.f. corresponding curves for microphones).

(2) Directional Characteristic.

The directional characteristic of a loudspeaker is the response as a function of the angle with respect to the normal axis of the system, and the characteristic may be plotted as a system of polar curves for various frequencies, or as response-frequency curves for various angles with respect to the axis. Fig. 3.15 (A 8 B) shows two frequency-response curves of a projector type of loudspeaker. ${ }^{\text {34 }}$ In it, curve A relates to the response along the axis of the loudspeaker, while curve B relates to the response 45° off the axis.

Fig. 3.15. Frequency Response Curves of a Projector Type of Loudspeaker. (By courtesy of Messrs. Chapman \& Hall Ltd., London.)

From Fig. 3.15, it is seen that the response at 45° off the axis is -25 db for $6,000 \mathrm{cps}$, and only -8 db at $1,000 \mathrm{cps}$. The result is that a relative difference of $25-8=17 \mathrm{db}$ exists between 6,000 , and 1,000 cycle response at 45°, compared with the response along the axis.

The quality of reproduced sound from a loudspeaker varies with the angle of distribution. The higheraudio
frequencies, more than the lower-audio frequencies, concentrate around the axis, leading to sound at the limiting edge of the cone of the reproduced sound being woolly and indistinct.

db. $0 \begin{array}{lllllllll} & -2 \cdot 5 & -6 & -12 & -12 & -6 & -2 \cdot 5 & 0 & d b\end{array}$
Fig. 3.16. Polar Response Curves of a Loudspeaker. (By courtesy of Messrs. Chapman \& Hall Ltd., London.)
Consider Fig. 3.16, which shows the polar curves of a loudspeaker ${ }^{34}$ for four different frequencies. A polar curve can be obtained from a series of frequency response (linear) curves similar to those in Fig. 3.15 taken at a number of angles off the axis. The frequency response at any angle from the axis can be read off directly from the polar curve.
The method of converting the percentage response to db -loss is best illustrated by the following table:

Table 10.

$\begin{gathered} \% \\ \text { response } \end{gathered}$	Response (in decimals)	log of value in col. (2)	$\begin{array}{l\|l} \text { Column } 3 & \mathrm{db} \text { loss }= \\ \text { evaluated } & 20 \log \text { of } \\ \text { Column } 4 \end{array}$	
(1)	(2)	(3)	(4)	(5)
25	$0 \cdot 25$	İ. 3979	-0.6021	-12.0
50	0.50	1.6990	-0.3010	- 6.0
75	$0 \cdot 75$	1.8751	-0.1249	- 2.5
100	1.00	0.0000	0.0000	- 2.5

The values in column 5 of the above table explain the db values in Fig. 3.16.
From Fig. 3.16, it is seen that, at $6,000 \mathrm{cps}$ for 30°, the response is only 25%, i.e., has fallen by 75%. In db , this response will be -12 db relative to the axial response for the same 30°.

For the same 30°, the responses of the three other frequencies shown in the Fig. 3.16 are as follows :-
at $200 \mathrm{cps} 88 \%$ i.e., fallen by 12% from the response at 0° 400 „ 70% 30\%
" "
" "•" " 1,000 , 50% " 50% " "
Thus, the effect of angle of distribution on response is well brought out by the polar response curves.

11. TRANSMITTERS.

In connection with transmitters, the db-notation is used in expressing the performance or specification of the following items :
(1) Strength or intensity of a signal at a point,
(2) Overall-frequency response,
and (3) Carrier noise.
These items will be examined in detail below.
(1) Strength or Intensity of a Signal at a Point due to a Transmitter.
The power or strength of a transmitter can be judged by the AF power delivered by a distant radio receiver, when tuned to the transmitter in question. Let us suppose that the power of a broadcast transmitter is 1 kW and a certain receiver, when tuned to this transmitter, gives an audio output of 10 db (reference level of 6 mW). Then, let us increase the power of the transmitter to 10 kW . What is the audio output from the radio receiver with increased power of the transmitter?

Solution :-

Assuming (for simplicity) that the audiopower output from the receiver varies directly as the power rating of the transmitter, if P_{r} and P_{t} be the two powers in question, then for the same percentage modulation, $\mathrm{P}_{\mathrm{r}}=\mathrm{k} \mathrm{P}_{\mathrm{t}}$, where k is a constant.
The increase in signal strength at the receiver in db due to the increase in transmitter power from

$$
\begin{aligned}
\mathrm{P}_{\mathrm{r} 1} \text { to } \mathrm{P}_{\mathrm{rr}} . & =10 \log \left(\frac{\mathrm{P}_{\mathrm{rg}}}{\mathrm{P}_{\mathrm{r}}}\right) \\
& =10 \log \left(\frac{10}{1}\right) \\
& =10 \mathrm{db}
\end{aligned}
$$

If the receiver output was originally only 10 db , the new output from the receiver will be $10+10=20 \mathrm{db}$.
(2) Overall Frequency Response.

It is usual practice to specify the departure in db level, at chosen frequencies in the frequencyresponse curve, which is similar to that of an AF amplifier. The response
curve is drawn on a 3 cycle, loglinear graph paper. In broadcasting, the range of frequencies we are interested in is 30 to $10,000 \mathrm{cps}$.
A typical specification is as follows :-
With a constant voltage at the input terminals of the pre-amplifier, the LF components of the rectified aerial currents should not exceed, at 80% modulation, the following deviations with regard to the reference frequency of $1,000 \mathrm{cps}$:

(i)	$100-5,000 \mathrm{cps}$	1.5 db
(ii)	$50-8,000 \mathrm{cps}$	2.0
(iii)	$30-10,000 \mathrm{cps}$	3.0

Fig. 3.17. Modulation characteristics of a Broadcast Transmitter.
Fig. 3.17 shows the actual response curves of a shortwave transmitter at two different carrier frequencies, with the specified limits indicated hatched.

(3) Carrier Noise.

The carrier of a transmitter has always some inherent noise associated with it. In order that such noise may not effectively drown the signal (in non-suppressed carrier systems, as in ordinary broadcasting), the carrier noise is
often specified to be as so many db below the level of power at 100% modulation-(c.f. the rating of hum level in AF amplifiers, as so may db below the full, rated output of the amplifier).

A typical specification for a transmitter is as follows:(a) Unweighted: The noise level on the carrier should be at least 60 db below the level of the 100% modulation,
(b) Weighted: The figure will be below 60 db as indicated for the 100% modulation.
The significance of the words: 'unweighted' and " weighted,' is explained as follows.

It has already been pointed out that loudness response of the human ear is different for different frequencies. Therefore, to take into account this peculiarity of the sar in interpreting the audio-frequency response of electrical systems, a weighted network, consisting of a filter designed to attenuate each audio frequency in proportion to the sensitivity of the ear at that frequency, is employed.

FREQUENCY IN CPS.
Fig. 3.18. Average characteristics of the Human Ear. (By courtesy of the Wireless World, Messrs. Iliffe \& Sons, Ltd., London.)

Fig. 3.18 shows the average characteristics of the human ear. 'Curves of Equal Loudness' (Phons) are quite different from the horizontal straight lines corresponding to equal intensities of sound. Consider the $20-$ phon loudness curve. Its slope is about 12 db per octave up to 800 cps . Noise of 20 phon loudness is considered objectionable. An increase of about 6 db per octave is obtained by taking the voltages developed across an inductance in the anode circuit of a constant current device (a pentode), whose internal impedance is much higher than the maximum-load impedance.

Fig. 3.19. Circuit of a weighted Amplifier to compensate for the characteristics of the Average Ear, as shown in Fig. 3.18. (By courtesy of Messrs. Iliffe \& Sons Ltd., London.)

The circuit of an amplifier described by Scroggie ${ }^{34}$, to reduce the $20 \cdot \mathrm{phon}$ loudness curve to that shown in the dotted line in the Fig. 3.18, is shown in Fig. 3.19. For details of design the reader is referred to "weighting of an amplifier" in Scroggie's 'Radio Laboratory Hand book'. ${ }^{35}$

Thus, by using the weighted amplifier the 20 phon line is raised up to the level of the dotted line, thereby enabling an ordinary meter to deflect in proportion to loudness.

RADIO ENGINEERINGANDACOUSTICS 107

12. TRANSMISSION LINES \& FEEDERS.

(1) Application.

The db -notation is used in connection with transmission lines and feeders of different characteristic impedances, for expressing the power transmitted as well as evaluating the power losses in such lines and feeders.
It is common practice to install transmitters or special receivers in a building remote from the ærial systems. Hence feeders or transmission lines are required to convey the high-frequency output of the transmitters to the corresponding aerial, or to convey the energy intercepted by the aerial to the corresponding receiver, as for example, in the case of diversity-reception centres. The energy in each case is transferred by means of a feeder system. These high-frequency feeders may be either of overhead parallel wires or two concentric tubular conductors, laid a few inches over the earth or buried in the earth itself. In audiofrequency power transmission also transmission lines, as overhead or underground cables, (as is common in telephone engineering), are used. The characteristic impedances of the various transmission lines and feeders will be first discussed before considering the various losses which occur in them.

(2) Characteristic Impedance.

(a) Overhead Lines.

Fig. 3.20.

For twin parallel wire feeders (Fig. 3.20), the characteristic impedance $Z_{o}=276 \log _{10}\left(\frac{d}{r}\right)$ ohms, where, $\mathrm{d}=$ spacing between wires, and $r=$ radius of the wire.
This formula is accurate down to a ratio of $\left(\frac{d}{r}\right)=\left(\frac{4}{1}\right)$. The following table gives values of Z_{0} corresponding to various $\left(\frac{d}{r}\right)$ values. It is seen that over
a wide range of practical value for $\frac{d}{r}(5 / 1$ to $500 / 1)$, Table No. 11. the characteristic impedance varies between 200 and 750 -ohms. In fact, we are mostly interested in $Z_{o}=200$, 500 and 600 -ohms only. An example will illustrate how this table is constructed with the above formula.
Example:-A telephone line is constructed with a pair of 14 SWG copper conductors ($\mathrm{r}=0.04^{\prime \prime}$) spaced 6.0 inches apart. Find out Z_{0}.

$$
\begin{aligned}
\text { Solution : }-\mathrm{d}=6^{\prime \prime}, & \mathrm{r}=0.04^{\prime \prime} \\
& \therefore \frac{\mathrm{d}}{\mathrm{r}}=\frac{6}{04}=\frac{150}{1}
\end{aligned}
$$

$$
Z_{o}=276 \log _{10} 150=600 \text {-ohms. }
$$

In Table 13 (on pages 110 and 111), power in watts and the corresponding power levels in db relative to (a) 1 mW zero, (b) 6 mW zero, and (c) 12.5 mW zero level, for $\mathrm{Z}_{\mathrm{o}}=200,500$ and 600 ohms, are evaluated over a power range of 6×10^{-9} watts to 100 kW .

(b) Underground Feeders or Concentric Cables.

For short waves, concentric tubular feeders can be used. These feeders are such that one conductor is fitted inside another (bigger tube), with suitable insulators acting as spacers between the two conductors. (Fig. 3.21).

Characteristic Impedance (Z_{o}) for such a feeder $=138 \log _{10}\left(\frac{d_{2}}{d_{1}}\right)$,
Fig. 3.21.
where, $\mathrm{d}_{\mathbf{2}}=$ Inner diameter of the outer tube, and $d_{1}=$ Outer diameter of the inner tube.
The following table gives some ($\mathrm{d}_{2} / \mathrm{d}_{1}$) ratios and the corresponding values of $Z_{\text {o }}$.

Table No. 12. The characteristic impedance most

d_{2}	Z_{o} d_{1}
ahms $)$	
approx.	

$$
\begin{align*}
& \text { Solution :- } \\
& \frac{d_{2}}{d_{1}}=\frac{3.5}{1}=3.5 \\
& Z_{0}=138 \log _{10} \frac{d_{2}}{d_{1}}=138 \log _{10}
\end{align*}
$$

The accompanying Table 13 gives power in watts and the corresponding db-levels with (a) 1 mW zero, (b) 6 mW zero, and (c) 12.5 mW zero level, for $\mathrm{Z}_{0}=37,50$ and 74 ohms.
(i) As 37-, and 740hm-impedance feeders are used for the transmission of RF power greater than 25 watts, the power range evaluated is : 25 watts to 100 kW only.
(ii) As the 50 -ohm-impedance-line feeder is used for the transmission of AF power below 6 watts, the power range evaluated is : 6×10^{-9} to 6 watts only.

(3) Losses in Feeders.

The losses in feeders comprise the following:

1. Attenuation, as energy flows along the line, due to
(i) conductor losses,
(ii) dielectric
and (iii) radiation
(i) Conductor losses can be calculated accurately and easily.
(ii) It is not very easy to calculate dielectric losses.
(iii) Radiation loss is of importance in the case of overhead parallel feeders and may be ignored in the case of concentric feeders.

Table of Power and Power Levels in db (relative to Three Different Zero Levels) and RMS Voltage Levels (for Six Different Impedances).

$\longleftarrow--\quad-$ POWER $-\rightarrow$				$\leftarrow--\quad-\quad$ VOLTAGE $-\quad-\quad-\longrightarrow$					
In watts \longleftrightarrow In db				RMS Volts across Surge Impedance $\mathbf{Z o}_{0}$$-\quad-\quad-\quad \text { ohms }-\quad-\quad-\longrightarrow$					
Absolute Power	1 mW Zero	6mW Zero	12.5 mW Zero	600	500	200	24	50	87
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
6×10^{-9}	-52.22	-60			0.0017	0.0011		0.00055	
6×10^{-8}	-42.22	-50	-53.19	0.006	0.0055	0.0034		0.00173	
8×10^{-7}	-32.22	- 40	-43.19	0.019	0.0173	0.0109		0.0055	
6×10^{-6}	-22.22	-30	- 33.19	. 0.06	0.0548	0.0346		0.0173	
6×10^{-7}	- 12.22	-20	-23.19	0.19	0.1732 0.5478	${ }_{0}^{0.1095}$		0.0548	
${ }^{6 \times 10} 0^{-1}$	- 2.22	10 -9	-13.19 -12.19	0.60 0.673	${ }_{0}^{0.5478}$	0.346 0.386		0.173 0.194	
. 0000755	-1.22 -0.22	- -8	-12.19 -11.19	0.673 0.755	0.614 0.689	0.386 0.433		0.194 0.218	
. 0001197	-0.782	-7	- 10.19	0.848	0.774	0.487		0.244	
. 001507	1.782	- 8	- 9.19	0.952	0.868	0.546		0.275	
. 001897	2.782 3782	-5 -4	- 8.19 $-\quad 719$	1.07 1.19	0.974 1.09	0.613 0.687		0.308 0.344	
. 0023888	3.782 4782	-4 -3	- 7.19 $-\quad 6.19$	1.19 1.35	1.09 1.23	0.687 0.775		0.344 0.389	
.003007 .003786	4.782 5.78	-3 -2	- 6.19 -5.19	1.35 1.51	1.23	0.870		0.436	
.003786 $.00+766$	6.78	-1	- 4.19	1.69	1.54	0.971		0.487	

2．Copper Losses in Feeders．

The power efficiency of a kilometre length of a concent－ ric tubular feeder taking into account copper losses only and neglecting the other two，is given by the formula ${ }^{36}$ ：

$$
\log _{10} \eta=-1.30 \times 10^{-5} \frac{\sqrt{5}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)}{\log _{10}\left(\frac{r_{2}}{r_{1}}\right)},
$$

while the loss itself per km in db is ：

$$
1.30 \times 10^{-4} \sqrt{\overline{\mathrm{f}}}\left\{\frac{1}{\mathrm{r}_{1}}+\frac{1}{\mathrm{r}_{2}}\right\},
$$

where，$\eta=$ efficiency，
$\mathrm{f}=\mathrm{frequency}$（ cps ），
$\mathrm{r}_{1}=$ radius of inner tube in cms．
and $r_{2}=$ radius of outer tube in cms．
The efficiencies per km length，and loss in db per km of some typical concentric tubular feeders，calculated from the above formulae，are given in Table 14 （reproduced from Ladner and Stoner）${ }^{35}$

Table 14.
Losses in Feeders at $f=20$ Mcs．（ 15 metres）．

Type SWG			Ratio $\left(\frac{r_{2}}{r_{1}}\right)$		Attenu－ ation per km in db ．	$\begin{gathered} \mathrm{Z}_{0} \\ \text { (ohms). } \end{gathered}$
No． 0	3.30	13.0	4	81.3	0.95	83
， 1	1.11	4.4	4	77.8	1.09	83
＂ 2	0.875	3.17	3.6	70.5	1.52	77
＂ 3	0.238	0.795	3.34	24.8	6.05	72.2

RADIOENGINEERINGANDACOUSTICS 113
Corresponding table of losses for parallel-wire feeders is given in Table 15 shown below, (also reproduced from Ladner and Stoner). ${ }^{36}$ The calculation ignores the losses due to earth currents as well as the effect due to the presence of other wires on the distribution of currents.

Table 15.
Losses in Feeders at $f=20$ Mcs (15 metres).

The attenuation at any other frequency f_{1} may be found, as equation shows, by multiplying the results given for 20 Mcs by the factor: $\sqrt{\frac{f_{1}}{20 \times 10^{6}}}$. For further information on the testing of HF cables and measurement of losses, the reader is referred to an interesting paper on this subject by Smith and O'Neill. ${ }^{37}$

13. AERIALS

In the case of aerials, the decibel notation is used to express the gain of a directional aerial array. As the decibel is a relative unit, a standard for comparison is required. In expressing the gain of a directive array, generally the reference standard chosen is the $\left(\frac{\lambda}{2}\right)$ half-wave vertical aerial having the same input power as the directive aerial under consideration.

Thus, if $P_{r}=$ power radiated by a certain aerial in the desired direction,
$P_{s}=$ power radiated by a $\left(\frac{\lambda}{2}\right)$ vertical aerial (standard), and if $p=$ input power to each of the two aerials, then the gain in db , of the aerial radiating Pr watts in the desired direction, is : $10 \log _{10}\left(\frac{P_{r}}{P_{8}}\right)$, and we need not have to know p.

Example:-

Let us, therefore, examine what is meant by saying: "The gain of a directive antenna or aerial system is 6 db ". It means $10 \log \left(\frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{P}_{\mathrm{t}}}\right)=6 \mathrm{db} ; \therefore\left(\frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{P}_{\mathrm{s}}}\right)=4$.
The directive aerial, therefore, radiates 4 times the power a half wave vertical reference aerial radiates, under the condition that the input powers to both these aerials are equal.

For an interesting discussion on the application of the db-notation to aerials, the reader is referred to the Admiralty Hand-book, Vol. II.s

14. ACOUSTICS

The decibel notation is used in the science of acoustics in connection with the following:-
(1) Studio acoustics;
(2) Architectural acoustics;
(3) Noise abatement ;
and (4) Sound films.
Out of the four topics listed above, in radio engineering we are interested only in studio acoustics and so treatment is confined to this aspect only in this monograph.

STUDIO ACOUSTICS

(i) Reverberation Time.

The reverberation time of an enclosure, for sound of a given frequency, is the period of time required for the average sound energy density in the enclosure, initially in a steady state, to decrease, after the source is stopped, to one millionth of its initial value, $i e .$, by 60 db . It is to be noted that the sound energy density corresponds to electrical power; hence the formula : $10 \log \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}$, is used.

(ii) Degree of Silence in Broadcast Studios.

The degree of silence necessary for good broadcasting is 10 db above the threshold of hearing. It is difficult to appreciate how quiet such a noise level is, without having firsthand experience in the measurement of sound intensity. An idea of this degree of silence (+10 db) is obtained by imagining the sound of rustling leaves caused by a gentle breeze, in a very quiet spot, at night, on a nonrainy day!
(iii) Sound Intensity in Broadcast Studios.

The average sound intensity in most of the BBC studios was said to be only between 10 and 20 db . The sound intensities were specified by the BBC as follows :
"That all sound intensities referred to in db are measured on the 'Fletcher scale'. This scale divides the range of
intensities of a pure note having a frequency of 700 -cycles per second, between the threshold of audition and feeling into 120 parts, while the db value corresponding to any intensity E_{1} is given by the following formula :

Decibels $=10 \log \frac{E_{1}}{E_{0}}$, in which $E_{1}=$ sound energy per unit volume, $i e$., intensity at the point of observation, and $E_{0}=$ sound energy per unit volume (i.e., intensity corresponding to threshold of audition.) The intensity of sound, due to a pure tone of any other frequency or mixture of frequencies or noises, is to be taken to be equal to that of a pure note having a frequency of 700 -cycles per second, which is judged by the normal ear to be equally loud. This is to be interpreted in practice (and has been confirmed by experiment), as meaning that the above formula may be for any pure note when E_{1} and E_{0} are intensities corresponding to the actual sound and threshold of audition at that particular frequency." ${ }^{39}$
(iv) Sound Intensity Levels in Speech and Music.

The upper limit for speech in studios is about 60 db , and that for music about 90 db , above noise level. It is necessary to maintain the strength of a programme within certain limits. The maximum to minimum ratio of the volume of sound due to an orchestra in a studio, when expressed in db , is about 60 db , whereas for satisfactory broadcast transmission and reception the maximum to minimum signal intensity should be within 30 db . Therefore, it is obvious that some form of control for reducing the strength of the strong passage and strengthening the very weak one, is necessary. This is often done by the operator by frequent adjustment of the main potentiometer in the control room.

(v) Sound Insulation of Studios.

Sound is transmitted through rigid partitions by forced vibrations in walls." These partitions are used to insulate sound from one studio or room to another, and the sound insulation is expressed in decibels.

The following table gives data on the insulation of rigid partitions. ${ }^{40}$ It is based on the formula :

Insulation in $\mathrm{db}=14.3 \log _{10} \mathrm{wt}$./sq. ft. +22.7 db .
Table 16.

Mass/sq. ft. in lbs.	Insulation in db (at $512 \mathrm{cps})$.	Remarks.
10	37	The transmission loss in (he
20	41	db is the arithmetical
40	45	mean of the tränsmis
60	48	sion losses at the frequ- 100
400	50	encies of 128, 256, 512,
1024 and 2048 cps.		

From the above equation which is of the form: $y=$ $k \log _{10} x+\mathrm{c}$, it is seen that the relation between the sound transmission loss in db and the logarithm of the weight sq. ft . of the rigid partition is linear so that, if on a log-linear graph paper insulation in db along the Y axis is plotted against the weight sq. ft. on the X-axis, the graph is a straight line, from which any other desired data can be interpolated or extrapolated.

The two basic design principles in sound insulation are:
(1) losses due to absorption of sound by porous, flexible acoustic materials; and (2) losses due to inertia (mass) in rigid partitions. While a concrete wall, nearly 4 ft . thick, can give a sound insulation of $60 \mathrm{db}, 2$ or 3 rigid but thin partitions, separated from each other by felt, etc., can give the same sound insulation. Again, consider the case of thin brick-wall partitions separated by air space between them. While a single $9^{\prime \prime}$ brick-wall gives an insulation of 50 db , two separate $41 / 2^{\prime \prime}$ brick-walls with airspace between, give a joint sound insulation of nearly 90 db . Hence the latter construction is much more effective and cheaper than the former type, and is consequently widely used in studio design practice.

15. ATTENUATORS

(1) Application.

An attenuator is a type of resistance pad providing predetermined diminution in power or voltage, i.e., the output power or voltage from an attenuator is a known fraction of the input power or voltage. It may, therefore, be viewed somewhat as the converse of an amplifier. Decibel serves well as a unit of attenuation or loss. If the output voltage is V_{0} and input voltage V_{i}, then the attenuation or loss expressed in decibels, due to the "attenuator network", is given by :

$$
20 \log \left(\frac{V_{0}}{V_{i}}\right) .
$$

(2) Methods of Attenuation.

There are two methods of obtaining an output signal, which is a known fraction of the input signal : with the aid of (a) the potential divider; and (b) the attenuator.
(a) Fig. 3.22 shows a simple potential divider. This is of use when its output is connected to the grid circuit of

(By courtesy of General Radio Coy., USA)
Fig. 3.22
a valve, which is a voltage-operated device. The output impedance is assumed to be infinite. Then the voltage attenuation per tap in db , can be calculated by the formula:
$20 \log _{10}\left(\frac{R_{i}}{R_{0}}\right)$, where R_{i} is the input resistance between the terminals 1 and 2 , and R_{0} is the output resistance between the terminals 3 and 4 . The following table gives data for the design of a potentiometer giving variable
attenuation from 0 to 50 db in steps of 1 db , with an input impedance $R_{i}=100,000$ ohms.

Table 17.

db.	Output Resistance tap R_{o} in ohms.	db.	Output Resistance tap R_{o} in ohms.
0	100,000	26	5,012
1	89,130	27	4,467
2	79,430	28	3,981
3	70,790	29	3,548
4	63,100	30	3,162
5	56,230	31	2,818
6	50,120	32	2,512
7	44,670	33	2,239
8	39,810	34	$1,, 995$
9	35,480	35	1,778
10	31,620	36	1,585
11	28,180	37	1,413
12	25,120	38	1,259
13	22,390	39	1,122
14	19,950	40	1,000
15	17,780	41	891
16	15,850	42	794
17	14,130	43	708
18	12,590	44	631
19	11,220	45	562
20	10,000	46	501
21	8,913	47	447
22	7,943	48	398
23	7,079	49	355
24	6,310	50	316
25	5,623		

This type of attenuator, called a potentiometer, has two. defects. When the impedance into which it works is finite and small, (1) the actual attenuation differs from the value calculated by the formula: $20 \log \left(\frac{R_{i}}{R_{o}}\right)$, and (2) the input impedance itself is altered.

These defects are counteracted by a network of resistances, mounted in a box called the attenuator box and provided with a pair of input and a pair of output terminals.

(b) Attenuator Box.

Three essential requirements of this type of attenuator are :
(i) that the effective resistance of the whole network is always constant or nearly so,
(ii) that the calibration is constant even at high frequencies. (From the point of view of frequency of operation, attenuators are classified into two classes :-

1. Special RF attenuators suitable for a frequency range of 10 Mcs to 150 Mcs .
2. Ordinary attenuators suitable up to a frequendy' of 100 kcs . In a good attenuator of this type even at 100 kcs , the error normally should not exceed 10% of the reading.)
(iii) that the input impedance of the attenuator is sensibly constant since the frequency of the oscillator (to the output of which the input terminals of the attenuator are usually connected), depends to a certain extent on the resistance, which is connected across the output coupling coil of the oscillator, and consequently, if the input impedance of the attenuator varies widely, then the oscillator frequency will also drift considerably. Special care in design is needed to meet the requirements in designing a good attenuator, especially at high frequencies.

An attenuator widely used, is a special form of a filter nefwork, terminated in a load resistance equal in value to the characteristic impedance.

(3) Types of Attenuator Networks.

McElroy, ${ }^{41}$ in an exhaustive paper in the IRE gives

RADIO ENGINEERINGANDACOUSTICS 121
design data for the following types of attenuator networks :-
(1) Ttype
(2) π type
(3) H-type
(4) Balanced H-type
(5) Otype
(6) Balanced Otype
(7) Ltype
(8) U-type
(9) Balanced U-type
(10) Bridged T-type
(11) " H-type
(12) Bridged-balanced H-type.

From the point of terminating impedances, they are of two types:
(1) unequal; and (2) equal.

Attenuators can also be classified as :
(1) fixed pads; and (2) adjustable pads.

Continuously variable type of attenuators are widely used in the communication testing equipment.

Balanced-H-section networks are used when impedances must be matched in both directions and balanced to ground. T-type sections maintain constant impedance in both directions, but they are not balanced to ground. L-type section maintains constant impedance at the $3-4$ terminals.
(By courtesy of General Radio Coy., USA)
Fig. 3.23
In the present section, design of the following three common types of attenuators, to give a prescribed attenuation in db , is dealt with in detail:
(a) T-Type;
(b) H-type; and
(c) Ladder type.
(a) Simple T-type Attenuator.

Fig. 3.24 shows a simple T-type attenuator.

Ri

If $V_{i}=$ input voltage, and $V_{0}=$ output voltage, then, $k=\frac{V_{1}}{V_{0}}=\frac{R_{0}+x}{R_{0}-x}$, and $R_{0}=\sqrt{[x(x+2 y)]}$,
. whence, $x=R_{0}\left(\frac{k-1}{k+1}\right)$, and $y=R_{0}\left(\frac{2 k}{k^{2}-1}\right)$.
Example:-Design a single T-section attenuator to give a loss of 20 db . Given $\mathrm{R}_{\mathrm{o}}=600$ ohms.

Solution :-

$20 \log \frac{V_{i}}{V_{0}}=20 \mathrm{db} . \quad \therefore \frac{V_{i}}{V_{0}}=10$.
$\therefore \mathrm{k}=10 ; \mathrm{R}_{\mathrm{o}}=600$-ohms.
Then, $x=600\left\{\frac{10-1}{10+1}\right\}=600\left(\frac{9}{11}\right)=490.9$-ohms, and $y=600\left\{\frac{2 \times 10}{100-1}\right\}=\frac{12000}{99}=121.2-\mathrm{oh} \cdot \mathrm{ns}$.
(b) Simple H-type Attenuator.

Fig. 3.25 shows a simple H type attenuator.

RADIO ENGINEERINGANDACOUSTICS 123

$$
\text { If } \mathbf{k}=\frac{\text { initial voltage or current }}{\text { attenuated voltage or current }}
$$

then, $x=\frac{R_{0}}{2}\left\{\frac{k-1}{k+1}\right\} ;$ and

$$
\mathrm{y}=\mathrm{R}_{\mathrm{o}}\left\{\frac{2 \mathrm{k}}{\mathrm{k}^{2}-1}\right\} .
$$

Example :-Design a single H-type attenuator to give a loss of 20 db . Given $\mathrm{R}_{\mathrm{o}}=600$ ohms.

Solution :-

$$
\begin{aligned}
& 20 \log \frac{V_{i}}{V_{0}}=20 \therefore k=10\left(\because k=\frac{V_{1}}{V_{0}}\right) \\
& \therefore x=\frac{600}{2}\left\{\frac{10-1}{10+1}\right\}=300 \times \frac{9}{11}=245 \text {-ohms, } \\
& \text { and } y=600 \times \frac{20}{99}=121 \text {-ohms. }
\end{aligned}
$$

The following table gives data for designing either of the above two types with the notation in Figs. 3.26 (a) and (b), having $R_{o}=200,500$, or 600 ohms and for a db -loss ranging from 1 to 165 db , in steps of 1 db .

(a) Ttype attenuator
(b) H-type attenuator

Fig. 3.26

Table 18.

Attenu- ation in d b	200 -ohm line		500 -ohm line		600 -ohm line	
	Z_{1}	Z_{2}	Z_{1}	Z_{2}	Z_{1}	Z_{2}
1	22.6	1760.0	56.5	4400.0	67.95	5280.0
2	46.0	858.0	115.0	2145.0	138.0	2575.0
3	68.0	571.0	170.0	1427.5	204.0	1714.0
4	89.9	422.0	224.75	1055.0	269.7	1266.0
5	112.0	328.0	280.0	820.0	336.5	986.0
10	207.5	140.6	518.75	351.5	624.0	421.0
20	327.0	40.4	817.5	101.0	982.0	121.4
30	380.0	13.5	950.0	38.75	1140.0	40.5
40	396.0	2.0	990.0	5.0	1180.0	6.0
50	400.0	1.274	1000.0	3.185	1200.0	3.822

To determine the values of Z_{1} and Z_{2} for a line of any other impedance, we have to multiply the values given for a 200 ohm line by the ratio of the desired impedance of the new line to the 200 ohm impedance, e.g., 500 -ohm line values are only $\frac{500}{200}(=2.5)$ times the 200 -ohm-line values.

In actual design, values of resistance to the nearest ohm, or 5 - or 10 -ohms only are used, for the sake of convenience in construction.

(c) The Ladder Attenuator.

For both AF-, and RF- testing gear, an attenuator, simple in design but quick and easy in operation, and cheap in production, is required, even if it does not maintain perfectly constant resistance when the rotating switch arm is near one of its ends. Such an attenuator is called the 'ladder attenuator', which is made up of a series of inverted' L ' sections (Γ) or their reflections (7), so designed as to
offer a constant resistance to one end only. Its chief field: of use is in the output circuit of the standard signal generators, where perfect matching is not important. Its great advantage is the cheapness in manufacture.

Consider Fig. 3.27, which represents a typical ladder attenuator widely used in radio work. It consists of a series of inverted-L sections.

On the following assumptions, its design will be considered :-
that (1) the source impedance $=$ load impedance,
and (2) viewed from the input terminals, the impedance is constant.

Fig. 3.27
If the source and load resistances (R_{s} and R_{L}) are equal and denoted by R, and $k=\frac{V_{i}}{V_{0}}$,

$$
\left.\begin{array}{rl}
\text { then, } x & =R(k-1) \\
\text { and, } y & =R\left(\frac{k}{k-1}\right.
\end{array}\right\} .
$$

$\mathbf{R}_{\mathbf{i}}$ is called the surge, characteristic, or iterative resistance, since it is equivalent to having an infinite number of sections towards the left.

$$
\mathbf{R}_{\mathrm{i}}=\mathbf{k} \mathrm{R}
$$

Consider the following typical example taken from Scroggie. ${ }^{*}$

Assume: (1) $\mathrm{R}_{\mathrm{s}}=\mathrm{R}_{\mathrm{L}}=\mathrm{R}=10$-ohms, and (2) each step is to give 5 db attenuation.

Then, $20 \log \frac{V_{i}}{V_{0}}=5 ;$ or, $\log \frac{V_{i}}{V_{0}}=0.25$
$\therefore \frac{V_{1}}{V_{0}}=$ antilog of 0.25

$$
\begin{aligned}
& \text { i.e., } \frac{V_{i}}{V_{0}}=10^{0.25}=1.778 \quad \therefore \mathrm{k}=1.778 \\
& x=10(1.778-1)=7.78 \text {-ohms; } \\
& y=10 \frac{(1.778)}{(0.778)}=23 \text {-ohms; } \\
& R_{i}=1.778 \times 10=17.78 \text {-ohms. }
\end{aligned}
$$

R_{i} and y are in parallel and their effective resistance:
$\left\{\frac{17.78 \times 23}{\{17.78+23}\right\}=10$-ohms, is in series with x , making a total resistance of $10+7.78=17.78$, which is the value of R_{i}. Thus, R_{i} and the first stage (Γ) consisting of y and x have the same value as R_{i}, and can be proved to hold good for any number of (Γ) stages.

Consider the effective resistance between terminals 1 and 5. $\mathrm{R}_{\mathrm{L}}=10$ and this, in series with x (between terminals 1 and 2) $=7.78$, comes to 17.78 . This value is in parallel with a resistance of 23 -ohms between studs 2 and 5 , giving again an effective resistance of 10 ohms $\left(=\frac{17.78 \times 23}{17.78+23}\right)$.

Thus, the resistance through all the paths from any stud to which the source may be connected is 17.78 ohms in parallel with either 10 or 6.4 ohms, which, though not equal to 10 , is at least constant for all positions of the switch.

By working from the loadend, it can be easily verified that the attenuation per stage is 5 db .

The output resistances on the various studs are :-
 17.78 ohms at an infinite number of studs away.

Fig. 3.28 shows the elements and complete circuit of a common ladder attenuator-the G. R. Company's (USA) Standard Signal Generator Model No. 605-B.

(By courtesy of General Radio Coy., USA)
Fig. 3.28
Table 19.
List of values of the elements in the network:-
(1) $\mathrm{R}_{6}=450$-ohms.
(5) $\mathrm{R}_{11}=\mathrm{R}_{13}=\mathrm{R}_{15}=99$-ohms.
(2) $R_{7}=50$
(6) $\mathrm{R}_{12}=\mathrm{R}_{14}=12.2$
(3) $\mathrm{R}_{8}=\mathrm{R}_{9}=95$ "
(7) $\mathrm{R}_{15}=11$
"
, $\quad(8) \mathrm{R}_{4}=500$
(4) $R_{10} \equiv 11.7 \quad$,
"

This is a four-section ladder network designed to attenuate in 4 steps, with a ratio of 10 to 1 between steps.

The output impedance of the signal generator is independent' of the microvolts dial setting and constant at 10 ohms, (with the exception of the last step), from 10,000 to $100,000 \mu \vee$ (position of the multiplier $=\times 1$), where
the impedance is 50 ohms. This information is summarised in the table below :

Table 20.

Position of the stud	Multiplier value	Range	Internal output Impedance in ohms
1	1	$0-10 \mu \mathrm{~V}$	10
2	10	$10-100 \mu \mathrm{~V}$	10
3	100	$100-1,000 \mu \mathrm{~V}$	10
4	1,000	$1,000-10,000 \mu \mathrm{~V}$	10
5	10,000	$10,000-100,000 \mu \mathrm{~V}$	50
1volt output (Jack B)			500

RADIOENGINEERINGANDACOUSTICS 129

16. EQUALIZERS AND FILTERS.

(1) Application. The decibel notation is used in connection with equalizers and filters in plotting the attenuation versus frequency curves. The unit of attenuation is the decibel.
(2) Equalizers. Certain types of filters, called equalizers, are used to compensate for the non-linearity in a transmission line, e.g., the HF response of a programme line or a similar circuit-(vide Fig. 3.29).

Lime Equalizer

Fig. 1

Fig. 2

Fig. 3
Fig. 3.29. (By courtesy of the Thordarson Elec. Mfg. Coy. USA)
Figs. 1, 2 and 3 in Fig. 3.29 show (1) the response of a transmission line, (2) the response of a line equalizer, and (3) the combined response of the line with the equalizer. By comparing the top and bottom curves, the effect of the equalizer in flattening the response between 100 and $2,000 \mathrm{cps}$, and raising substantially the drooping characteristic of the top curve between 2,000 and 10,000 cps , is evident.
(3) Filters. An electric wave filter is a corrective device to alter the transmission characteristic of a communication system. Wave filters, by virtue of their superiority over tuned circuits, have, of recent years, been widely used in all branches of communication engineering for separating electric waves characterized by a difference in frequency. An ideal, dissipationless filter, when connected in a circuit, should introduce zero attenuation in the pass-band and very high attenuation in the stop-band.

The total transmission loss, when a filter is introduced in a circuit, is composed of the following :-
(I) $\mathrm{L}_{\mathrm{t}}=$ transfer loss;
(?) $\mathrm{I}_{2}, \mathrm{~L}_{\mathrm{b}}=$ terminal losses;
(ii) $L_{r}=$ the interaction loss.

Thus, if L_{T} denotes the total transmission loss, then,
$L_{T}=L_{t}+L_{a}+L_{b}+L_{r}$; and the relative importance of these losses is in the order given.

Zobel ${ }^{13}$ remarks thus on these losses :
'As a first approximation the transmission loss of a composite filter is given by the transfer loss $\mathrm{L}_{\mathbf{t}}$, but the error due to the omission of the other losses is often considerable. A second approximation is obtained by including the terminal losses L_{a} and L_{b}, and for many purposes this is sufficiently accurate. The final step for accuracy is the further addition of the interaction $\operatorname{loss} L_{r}$, whose effect on the total transmission loss is usually appreciable in the transmission band of a wave filter near the cut-off frequencies'.

Thus, of these three losses, transfer loss is by far the biggest, while items (2) and (3) may be even "gain" (negative losses), at certain frequencies, but it is usual practice to neglect (2) and (3) in comparison with (1), except at the cut-off frequencies. In the portion of the transmitting range where the terminating impedances match or nearly match the impedance of the filter terminal and interaction effects may be neglected. In the attenuating range of the filter, the interaction factor drops out quickly
as the attenuation increases. As remarked already, the reflection effect may be a transmission gain, but this gain never exceeds a maximum of 3 db at each end of the filter. At those frequencies where the image impedances of the filter are either small or large as compared with the terminating impedances, the reflection effect does provide an extra loss. Calculation of terminal and interaction losses, is very laborious.
(4) Kinds of Filters. Filters are of 4 kinds and are defined as follows :
(i) Low-pass filter, which introduces negligible attenuation at all frequencies below a certain frequency, called the cut-off frequency, and relatively large attenuation at all higher frequencies.
(ii) High-pass filter, which introduces negligible attenuation at all frequencies above a certain frequency, -called the cut-off frequency, and relatively large attenuation at all lower frequencies.
(iii) Band-pass filter, which introduces negligible attenuation at all frequencies within the range between two frequencies, and relatively large attenuation at all other frequencies.
(iv) Band-rejection filter, which introduces negligible âttenuation at all frequencies outside a certain range; and relatively large attenuation at all frequencies inside that range.

The normal filter characteristics are obtained only when the filter is properly terminated in its characteristic impedance.

Fig. 3.30 (a) : is the attenuation curve of a 400 cps LP. filter for maximum attenuation of 75 db at 800 cps (2nd harmonic), for use on a 500 ohm line.

Fig. 3.30 (b) : is the attenuation curve of a 80 cps HP . filter for maximum attenuation of 40 db at 60 cps , for use on a 500 ohm line.

Fig. 3.30 (c) : is the attenuation curve of a $1,020 \mathrm{cps}$ band rejection filter (for aircraft or other applications where it is desired to eliminate a $1,020 \mathrm{cps}$ signal and still allow speech passage), for use on a 500 ohm line.

Fig. 3.30
(The above graphs are reproduced in a modified form from Thordarson Elec. Mig. Coy,'s Catalogue.)
(5) Methods of Obtaining Attenuation Curves of a Filter. There are two standard methods of obtaining data for the attenuation frequency curve of a filter: calculated, and experimental. These will be described presently.

Philips' Technical Review ${ }^{41}$ gives complete formulae and graphs for evaluating the data for the attenuation curves of the low, high', and band-pass filters. The reader will find detailed information on the subject in Terman ${ }^{45}$, Starr ${ }^{46}$, Guillemin ${ }^{47}$, Shea ${ }^{48}$, and Johnson ${ }^{49}$.

(i) The Composite Filter.

Detailed treatment for evaluating theoretically and obtaining practically, the attenuation (in db) versus frequency curve of a composite, band-pass filter, which the author designed, constructed and tested, is given below as a typical example ${ }^{50}$.

The composite band pass filter is composed of a single constant- k, m_{π} derived section divided into two endhalves (Fig. 3.32 (a)), with one mid-shunt derived half section (Fig. 3.32 (b)). The complete filter is shown in Fig. 3.31 and the values of the elements are given below this figure.

Fig. 3.31. A Composite Band-Pass filter.
Calculated values of the filter elements shown in Fig. 3.31 for $f_{1}=30 \mathrm{kcs} ; f_{2}=40 \mathrm{kcs}$; and $\mathrm{R}=1,000$ ohms, are tabulated below.

Table 21.

No. on diagram	Inductanc Valu	es (L)	No. on diagram	Condensers (C) Value	
1.	0.5115	mH	(1)	0.0288	$\mu \mathrm{F}$
2.		"	(2.)		"
3.	0.733	\%	(3.)	0.04124	"
4.		"	(4.)		"
5.	0.8287	"	(5.)	0.02546	"
6.			(6.)		"
7.	31.83	"	(7.)	0.0006631	"

Fig. 3.32 (b)
Two methods of obtaining the data for attenuationfrequency curve are described below.
(ii) Method I: Theoretically calculated values.

Calculations were confined to transfer loss only, though this is to a first approximation, leaving aside the other two losses (terminal losses and interaction losses). The transfer loss is given by the attenuation function (α), the real part of the propagation function ; $\lambda=\alpha+j \beta$, where α. β and λ, are the attenuation, phase shitt, and propagation constants respectively.

The overall attenuation of the composite filter is the sum of the attenuations of the individual sections: $\alpha=\sum \alpha_{1}$, where α is the overall attenuation and $\alpha_{1}, \alpha_{2}, \alpha_{3}$, etc.; are the attenuations of the individual sections. If $\lambda_{u_{k}}$ denotes the attenuation of a constant- k section, and $\lambda_{1 \mathrm{~km}}$ denotes the attenuation of the constant k, m-derived section, then the attenuation function of the composite filter is $\left(\lambda_{1 \mathrm{k}}+\lambda_{1 \mathrm{~km}}\right)$. Figs. (a) and (b) in Fig. 3.33 repre: sent the two sections of the filter.

The method of calculating the attenuation function of these two filter sections is as follows :-
(i) Constant k type BP filter :-

If Z_{1} and Z_{2} are inverse networks with respect to any value of resistance R, then $Z_{1} Z_{2}=R^{2}$, and it follows that :

$$
\frac{\mathrm{L}_{1}}{\mathrm{C}_{2}}=\frac{\mathrm{L}_{2}}{\mathrm{C}_{1}}=\mathrm{R}^{2}
$$

Following the standard notation in filtertheory, we get :

$$
\frac{Z_{1}}{4 Z_{2}}=-\frac{\left(\frac{f}{f_{m}}-\frac{f_{m}}{f}\right)^{2}}{\left\{\left(\frac{f_{2}}{f_{m}}\right)-\binom{f_{m}}{f_{2}}\right\}^{2}}, \text { for the non-dissipative }
$$

and $\frac{Z_{1}}{4 Z_{2}}=\frac{\left[d_{L} \frac{f}{f_{m}}+j\left(\frac{f}{f_{m}}-\frac{f_{m}}{f}\right)\right]^{2}}{\left(1-j d_{L}\right)\left(\frac{f_{2}}{f_{m}}-\frac{f_{m}}{f_{2}}\right)^{2}}$, for the case with $\begin{aligned} & \text { dissipation in coils } \\ & \text { alone. }\end{aligned}$
(ii) Constant \mathbf{k}, double $m \pi$ transformation :-

This is of the configuration shown below.

Fig. 3.34
But the attenuation function for this is the sum of the attenuation functions of the following two simpler sections.
(i) Type IV.s

Fig. 3.35

$$
x_{1}=\frac{f_{1}}{f_{m}} ; x_{2}=\frac{f_{2}}{f_{m}} ;
$$

(ii) Type IV.4

Fig. 3.36
$X_{1 \infty \infty}=\frac{f_{1 \infty 0}}{f_{m}} ; X_{2 \infty}=\frac{f_{2 \infty \infty}}{f_{m}}$.

RADIOENGINEERINGANDACOUSTICS 137
(i) for type IV. 3
(without dissipation in filter elements),

$$
\begin{equation*}
Z_{1} / 4 Z_{2}=\frac{\left[\left\{\left(\frac{\mathfrak{f}_{2}}{f_{m}}\right)^{2}-\left(\frac{\mathfrak{f}_{2}}{f_{m}}\right)^{2}\right\}\left\{\left(\frac{f_{1}}{f_{m}}\right)^{2}-\left(\frac{\mathfrak{f}_{1}}{f_{m}}\right)^{2}\right\}\right]}{\left[\left\{\left(\frac{f_{2}}{f_{m}}\right)^{2}-\left(\frac{f_{1}}{f_{m}}\right)^{2}\right\}\left\{\left(\frac{f_{2 \infty}}{f_{m}}\right)^{2}-\left(\frac{f_{m}}{f_{m}}\right)^{2}\right\}\right]} ; \tag{3}
\end{equation*}
$$

and with dissipation in coils alone,
(ii) for type IV4
(without dissipation in filter elements),

$$
\begin{equation*}
\frac{Z_{1}}{4 Z_{z}}=\frac{\left\{\left(\frac{f_{1}}{f_{m}}\right)^{2}-\left(\frac{f_{1 \infty}}{f_{m}}\right)^{2}\right\}\left\{\left(\frac{f_{1}}{f_{m}}\right)^{2}-\left(\frac{f_{2}}{f_{m}}\right)^{2}\right\}}{\left\{\left(\frac{f_{m}}{f_{m}}\right)^{2}-\left(\frac{f_{2}}{f_{m}}\right)^{2}\right\}\left\{\left(\frac{f_{1 \infty}}{f_{m}}\right)^{2}-\left(\frac{f_{m}}{f_{m}}\right)^{2}\right\}} ; \tag{5}
\end{equation*}
$$

and with dissipation in coils alone,

$$
\begin{equation*}
\frac{Z_{1}}{4 Z_{2}}=\frac{\left\{\left(\frac{f_{1}}{f_{m}}\right)^{2}-\left(\frac{f_{1 \infty}}{f_{m}}\right)^{2}\right\}\left[\left\{\left(\frac{f}{f_{m}}\right)^{2}\left(1-j d_{L}\right)\right\}-\left(\frac{f_{2}}{f_{m}}\right)^{2}\right]}{\left\{\left(\frac{f_{1}}{f_{\mathrm{m}}}\right)^{2}-\left(\frac{f_{2}}{f_{\mathrm{m}}}\right)^{2}\right\}\left[\left\{\left(\frac{f_{10 \infty}}{f_{m}}\right)^{2}-\left(\frac{f}{f_{\mathrm{m}}}\right)^{2}\left(1-j d_{\mathrm{L}}\right)\right\}\right]} . \tag{6}
\end{equation*}
$$

Each one of these expressions: (1) to (6) above, have been evaluated and the modulus and argument of $Z_{1} / 4 Z_{2}$ have been found in the form $\mathrm{A} /$ 旦 for different frequencies. The value of the attenuation constant α, in nepers, corresponding to $\mathrm{A} / \underline{\theta}$, was taken from the curves given by Shea ${ }^{48}$, and α, corresponding to equations 1,3 and 5 added up, gives the total attenuation in nepers for the dissipationless case-vide Table 22. Again, α, corresponding to equations 2, 4 and 6 added up, gives the total attenuation in nepers for the filter with coil dissipation case--vide Tables 23 (a) and (b). Then this total attenuation is converted into db by multiplying nepers by the constant 8.686 .

It is more for theoretical interest than practical utility that the attenuation in the dissipationless case was considered. The total loss in db for the dissipationless case (values in column (9)) are obtained by adding the values in columns (4), (6), and (8) of Table 22.

It was considered unnecessary to include here all the steps involved in evaluating functions (1) to (6) but a sample calculation is given below.
Data :-
f_{1} and f_{2} are the band-pass frequencies,

$$
\mathrm{f}_{\mathrm{m}}=\text { mid-frequency }=\sqrt{\mathrm{f}_{1} \mathrm{f}_{\mathrm{g}}} ; \mathrm{d}=\frac{1}{\bar{Q}}=\frac{\mathrm{R}}{\mathrm{wL}} .
$$

The average Q for the 7 coils in the filter designed was found to be 40 .

$$
\therefore \quad \mathrm{d}=\frac{1}{40}=0.025
$$

$$
\mathrm{f}_{1}=30 \mathrm{kcs}, \quad \mathrm{f}_{2}=40 \mathrm{kcs}, \quad \mathrm{f}_{\mathrm{m}}=34.64 \mathrm{kcs}
$$

$$
\mathrm{f}_{1} \infty=28.96 \mathrm{kcs} \text {, and } \mathrm{f}_{2 \infty}=41.45 \mathrm{kcs} .
$$

$$
\frac{\mathrm{f}_{1}}{\mathrm{f}_{\mathrm{m}}}=\frac{30}{34.64}=0.866 ; \frac{\mathrm{f}_{2}}{\mathrm{f}_{\mathrm{m}}}=\frac{40}{34.64}=1.154
$$

$$
\therefore \quad\binom{\mathfrak{f}_{1}}{f_{m}}^{2}=x_{1}{ }^{2}=0.7499 ;\binom{f_{2}}{f_{m}}^{2}=x_{2}{ }^{2}=1.332 .
$$

$$
\left(\mathrm{x}_{1 \infty}\right)^{2}=\left(\frac{\mathrm{f}_{1 \infty}}{\mathrm{f}_{\mathrm{m}}}\right)^{2}=(0.836)^{2}=0.6988 ;
$$

$$
\left(x_{2 \infty 0}\right)^{2}=\left(\frac{f_{2}}{f_{2}}\right)^{2}=(1.201)^{2}=1.432
$$

$$
(1-\mathrm{jd})\left(\frac{f_{2}}{f_{m}}-\frac{f_{m}}{f_{m}}\right)^{2}=(1-\mathrm{j} 0.025)(1.154-0.866)^{2}
$$

$$
=(0.08294-\mathrm{j} 0.0020735)=0.08316 \backslash 1^{0} 26^{r}
$$

$$
\frac{\left\{\left(\frac{f_{1}}{f_{m}}\right)^{2}-\left(\frac{f_{1 \infty}}{f_{m}}\right)^{2}\right\}}{\left\{\left(\frac{f_{1}}{f_{m}}\right)^{2}-\left(\frac{f_{2}}{f_{m}}\right)^{2}\right\}}=\frac{0.7499-0.6988}{0.7499-1.332}=-0.08778
$$

(a) Attenuation constant in db for a filter with elements. of no losses. Table 22 below gives the required data.

RADIOENGINEERINGANDACOUSTICS 139

Table 22.

No.	$\left(\begin{array}{l} f \\ (\mathbf{k c s}) \end{array}\right.$	Equation (1)		Equation (3)		Equation (5)		$\frac{\text { Total attonuation }}{\text { in db }}$
		$\mathrm{Z}_{1} / 4 \mathrm{Z}_{3}$	db	$Z_{1} / 4 Z_{1}$	db	$\mathrm{Z}_{1} / 4 \mathrm{Z}_{2}$	db	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	20	-16.07	35.79	+0.0651	4.43	0.2397	8.164	
2	28	- 2.26	16.50	+0.02119	2.519	1.311	17.02	36.04
3	28.96			+0.0219		-	\cdots	${ }^{\infty} \times$
4	29	-1.544	11.9	0.01149	1.911	-27.69	40.83	54.64
5	30	-1.0	0	0	0	-1.00	0	0.0
7	31 32	-0.5998 -0.3692	"	T	"	\square	"	"
8	33.	-0.1144	"	d	"	∞	"	"
9	34	-0.01694	"	\bigcirc	"	∞	"	"
10	35	+0.00497	"	-	"	-	"	"
11	36	+0.07278	"	$\stackrel{\square}{0}$	"	${ }_{0}$	"	"
12	37	+0.2091	"	0	"		"	"
13	38	+ 0.4145	"	\%	",	\%	"	"
14	39	+0.6817	"	.	"	0	"	"
15	40	+1.0	10"̈	-1				
17	41.45	+1.387	10.25	-3.493	23.89	. 008547	1.65	35.78
18	42	+1.816	14.07	${ }^{\mathbf{C}} \mathbf{0} \mathbf{8 5 3}$	$\stackrel{\infty}{23.45}$. 01569	2.301	$\begin{gathered} \infty \\ 39.82 \end{gathered}$

We see in the above table the fundamental relationship in elementary filter theory, viz.,

$$
-1<\frac{Z_{1}}{4 Z_{2}}<0
$$

Fig. $\mathbf{3 . 8 6}$

Fig, 3.97
Attenuation characteristic of the composite filter (Fig. 3.37) $=$ sum of the characteristics of (a), (b) and (c) of Fig. 3.36 above for a dissipationless filter.
(b) Attenuation constant in db for the filter with dissipation in coils only. Tables 23 (a) \& (b) below give the required data.

Table 23 (a).
Values of $Z_{1} / 4 Z_{2}$

$\underset{\text { kcs }}{f}$	Constant-k part		$\begin{gathered} \text { Double } \mathrm{m} \pi \\ \hline \text { Type IV } 3 \\ \hline \end{gathered}$		$\begin{gathered} \text { Transformation } \\ \text { Type IV } \end{gathered}$	
	A	10	A	1θ	A	10
(1)	(2)	(3)	(4)	(5)	(6)	(7)
20	16.05	-1800	0.06469	$0^{\circ} 34^{\prime}$	0.2397	- 0050'
28	2.215	$-173^{\circ} 10^{\prime}$	0.0215	$8^{\circ} 25^{\prime}$	1.234	- 18025
29	1.545	-1710 54'	0.0122	$18^{\circ} 22^{\prime}$	$3 \cdot 142$	- 95°
30	1.003	-1680 46'	0.00472	$88^{\circ} 34^{\prime}$	0.9388	-1580
31	$0 \cdot 604$	-1670 10^{\prime}	0.01496	$157{ }^{\circ} 5{ }^{\prime}$	0.4482	-1660 ${ }^{44^{\prime}}$
32	0.3745	-1630 40^{\prime}	0.028	$164{ }^{\circ} 4^{\prime}$	0.3052	$-169^{\circ} 5^{\prime}$
33	$0 \cdot 121$	-1520 24^{\prime}	0.05215	$168^{\circ} 24^{\prime}$	$0 \cdot 1777$	$-170^{\circ} 45^{\prime}$
34	0.02415	-1120 10^{\prime}	0.0787	$170^{\circ} 43^{\prime}$	0.1219	$-171{ }^{\circ} 6^{\prime}$
35	0.01261	$78^{\circ}{ }^{\circ} 52^{\prime}$	0.1138	$171^{\circ} 5^{\prime}$	0.08469	-1700 59^{\prime}
36	0.08072	$144{ }^{\circ} 26^{\prime}$	$0 \cdot 1614$	$170^{\circ} 57{ }^{\prime}$	0.05817	-1690 50
37	0.2173	$158^{\circ} 31^{\prime}$	0.2305	$170^{\circ} 14^{\prime}$	0.0381	$-167^{\circ} 48^{\prime}$
38	0.4225	$164{ }^{\circ} 34^{\prime}$	0.3376	$168{ }^{\circ} 44^{\prime}$	0.02317	$-163^{\circ} 31{ }^{\frac{1}{\prime}}$
39	0.6895	$167^{\circ} 56^{\prime}$	$0 \cdot 5274$	$165{ }^{\circ} 37^{\prime}$	0.01003	$-147^{\circ} 43 \mathrm{t}^{\prime}$
40	1.007	$169^{\circ} 59^{\prime}$	09510	$158{ }^{\circ} 18^{\prime}$	0.004609	- $88{ }^{\circ} 6^{\prime}$
41	1.895	$171^{\circ} 26^{\prime}$	2.394	$128{ }^{\circ} 18^{\prime}$	0.00959	- $24^{\circ}{ }^{\circ} 161^{\prime}{ }^{\prime}$
42	1.822	$172^{*} 26^{\prime}$	$2 \cdot 344$	$41^{\circ} 8^{\prime}$	0.01622	- $11^{\circ} 73^{\prime}$

Table 23 (b).

$\underset{\mathbf{k c s}}{\mathbf{f}}$	Attenuation in nepers			Total attenuation in nepers	Totalattenuationindb
	Constant k	Type IVs	Type IV4		
(1)	(2)	(8)	(4)	$(5)^{*}$	(6) \dagger
20	4.12	0.50			
28	1.9	0.28	0.94 1.88	5.57 4.06	${ }_{35.39}$
29	1.4	0.22	2.5	4.06 4.12	35.265 $\mathbf{3 5 . 7 9}$
30	0.61	0.10	0.76	1.47	35.79 12.76
31 32	${ }_{0.23}^{0.275}$	0.05	0.38	0.705	$\underline{6.124}$
32 33	0.23 0.185	${ }_{0}^{0.05}$	0.12	0.40	3.474
34	0.18	0.045 0.055	0.08 0.07	0.31	2.693
35	0.16	${ }_{0}^{0.065}$	0.07 0.06	0.305 0.28	2.65
36	0.18	0.078	0.05	0.28 0.308	${ }_{2.675}^{2.43}$
37	0.20	0.11	0.04	0.35	3.04
38 39	0.24	0.14	0.045	0.425	3.692
39 40	0.28 0.57	0.27 0.76	0.05	0.60	5.212
41	1.24	0.76 2.18	0.10 0.20	1.43 3.62	12.42
42	1.64	2.37 .	0.24	3.25	31.45 36.92

$*$ Col. (5) $=$ columns $(2)+(3)+(4)$.
\dagger Col. $(6)=8.686 \times$ col. (5).
(c) Remarks on curves (1) \& (2).

The calculated curves for the dissipationless filter (curve No. 1), and for the filter with dissipation in coils alone (curve No. 2), are plotted on the same sheet-vide Fig. 3.38.

Curve No. 1: This is the ideal filter curve, and the following facts are noticed from it :

1. it is seen that the attenuation in the pass-band is zero (as it should be), and also the attenuation is infinite at the two frequencies, $\mathrm{f}_{1 \infty}$ and $\mathrm{f}_{2 \infty}(=28.96$ and 41.45 kcs , respectively).
2. it is also seen that, to the left of $f_{1 \infty}$ and to the right of f_{∞}, the curve has a ' U ' shape, $i . e$. ., from zero to $\mathrm{f}_{1 \infty}$. the attenuation, starting with a high value falls to a minimum (though high relative to the attenuation in the pass-band) at $f=28 \mathrm{kcs}$, and then rises to infinity at $f_{1 \infty 0}$. Similar variation in the attenuation for the curve beyond $\mathrm{f}_{2 \infty}$ can be traced.

Curve No. 2.

This is also from the calculated values.

1. The first point to be remarked about this curve is that the attenuation in the pass-band is a few db as compared with 0 db in the same region for curve (1).
2. Also, due to dissipation in the coils at the cutoff points, the curve is rounded off, unlike the sharp corners of curve (1). Further it is seen that the sides of the curve around the cut-off frequencies are less steep than those of curve (1); i.e., the fall (or rise) in attenuation on the approach of (or departure from) the pass-band is more gradual.
(3) In the attenuating band, it is noticed that the attenuation is less than that for the dissipationless filter, though there is the general resemblance in the shape of the two curves in this band.
3. Another important consequence of the coil dissipation is that at $f_{1 \infty}$ and $f_{2 \infty}$, the value of attenuation instead of being infinite, is finite, though high (about 50 db).
(iii) Method II: Experimental Method of Measuring the total Insertion Loss of a Filter in db .

(a) Set-up.

The Standard Signal generator could be put to good use by reading the filter attenuation directly on its decibelcalibration dial by using a circuit as shown below. This naturally does away with the decibel-attenuator, which might introduce two sources of error, viz., (i) due to the change in its calibration, and (ii) that it may not be quite accurate for the frequencies in question.

The circuit used is shown below.

Fig. 3.39
(b) Method of Measurement.

In position 1 of the switch, the filter is connected to the signal generator on the input side, and to the amplifier and valve voltmeter on the output side. In position 2 of the switch the signal generator was directly connected to the voltmeter through the amplifier. Thus, if we choose a definite reading on the voltmeter and then note the readings on the signal generator for the two positions of the switch, when the valve voltmeter reads the same value, this provides a method of finding the insertion loss.

Actually, both the db -scale and the voltage-scale on the attenuator can be read for each frequency for the two positions of the 4 -pole, double throw switch. Thus, the following two sets of readings were obtained in an experiment. These should be identical, if the db -scale calibration could be correctly interpolated and read. But, actually, the divisions on the db -scale were rather too far apart and considerable judgment had to be used to read the db correctly by interpolation. The measurement covered a range from 20 to 42 kcs . This was considered sufficient, as the pass-band was 30 to 40 kcs only.

Table 24.

	Method ' A '				Method ' B '			
$\underset{\mathbf{k c s}}{\text { f }}$	$\begin{gathered} \text { Input } \\ \substack{\text { nv } \\ \mathrm{V}_{1}} \end{gathered}$	Output mv V	$\binom{20 \log }{\left(\frac{\mathrm{~V}_{1}}{\mathrm{v}_{2}}\right.}$	$\frac{V_{2}}{V_{1}}$	Zero rdg. (db)	Rdg. (db)	$\begin{aligned} & \text { Loss } \\ & \text { in } \\ & \mathrm{db} . \end{aligned}$	$\begin{aligned} & V_{2} \\ & \bar{V}_{1}^{1} \end{aligned}$
20	520	8.2	36.04	. 01577	78.4	114.2	35.8	. 01622
22	610	8.85	36.77	. 01451	78.8	115.5	36.7	. 01462
24	345	9.1	31.58	. 02637	79.2	110.8	31.6	. 0263
26	225	9.0	27.96	. 03999	79.0	106.5	27.5	. 04217
28	222	9.48	27.42	. 04256	79.5	106.4	26.9	. 04519
29	530	9.8	34.662	. 01686	79.8	114.5	34.7	. 01841
30	38	10.0	11.6	. 2631	80.0	91.6	11.6	. 2630
31	25.5	10.0	8.13	. 3922	80.0	88.2	8.2	. 389
32	15.7	10.1	3.83	. 6433	80.2	83.9	3.7	. 653
33	14.6	10.3	3.03	. 7053	80.3	83.4	3.1	. 6998
34	13.9	10.25	2.65	.7374	80.2	83.0	2.8	. 7244
35	14.2	10.7	2.46	. 7536	80.4	83.1	2.7	. 7328
36	15.7	10.8	3.25	. 6879	80.6	84.0	3.4	. 6761
37	17.2	12.9	2.5	. 7501	82.2	84.7	2.5	. 7499
38	16.8	11.1	3.6	. 6607	80.9	84.6	3.7	. 6531
39	21.8	11.3	5.7	. 5183	81.0	86.7	5.7	. 5188
40	73.0	11.5	15.9	. 1575	81.2	97.4	16.2	. 1549
41	365.0	11.6	29.96	. 03178	81.2	111.2	30.0	. 03162
42	661.0	11.65	35.1	. 01763	81.2.	116.4	35.2	. 01738

The two methods ' A ' and ' B ', are essentially the same, the only difference being the greater accuracy to which the voltage scale on the signal generator can be read in method ' A ' as compared with that of the db-scale in method B. Curve No. 3 in the graph (Fig. 3.38), shows curve obtained with method ' A ' in the usual practice-attenuation in db vs. frequency. This gives a good idea of the steep cutoff at 30 and 40 kcs and we see that the minimum attenuation in the pass-range occurs at about $35 \mathrm{kcs}(=2.46 \mathrm{db})$, which is, as it should be.
(c) Remarks on Curve No. 3.

The attenuation curve No. (3) consists of three distinct sections.

The very sharp rise in attenuation at the cut-off points is remarkable.
at $\mathrm{f}=29 \mathrm{kcs}, \alpha=34.66 \mathrm{db}$; at $\mathrm{f}=30 \mathrm{kcs}, \alpha=11.6 \mathrm{db}$; , $\mathrm{f}=41 \mathrm{kcs}, \alpha=29.96 \mathrm{db} ;, \mathrm{f}=40 \mathrm{kcs}, \alpha=15.9 \mathrm{db}$.

1. This is the experimental curve and it agrees very closely with the curve (2), which means that the assumption, of the average value of " Q " of the coils $=40$, made in calculating curve (2), is nearly correct.
2. It should be remarked here that there is this fundamental difference between curves (2) and (3)-the curve (2) is merely the attenuation constant vs. frequency, while the curve (3) gives the total insertion loss due to the filter. The latter actually includes the attenuation constant, and the reflection and interaction losses.
3. The close agreement between these two curves justifies our considering the reflection and interaction losses, as being of no moment in comparison with the attenuationconstant loss.
4. In curve (3), the shape of the curve between frequencies 20 and 22 kcs is peculiar, and the nature of the curve one would expect to get in this region is shown in dotted line.
5. The close similarity between the experimental curve (No. 3) and its corresponding theoretical curve (No. 2) is quite satisfactory. In particular, it is interesting to note that the minimum attenuation in the pass-band in these two curves is 2.46 db and 2.43 db respectively, both occurring at the same frequency ($f=35 \mathrm{kcs}$) which is as one would expect, since $f_{m}=34.64 \mathrm{kcs}$.

PART IV
 APPENDICES

1. Types of Graphs in Radio \& Acoustic Engineering.
2. Logarithmic Unit-Its Limitations.
3. The Standard Cable.
4. Logarithms and Log.Tables.

APPENDIX•I

Types of Graphs in Radio and Acoustic Engineering.

(1) Graph Papers.

All graph papers can be classified under two heads:-
(1) Using cartesian co-ordinates: (a) X-axis or abscissa, (b) Y-axis or ordinate;
(2) Using polar co-ordinates: (a) molulus (r), and (b) angle θ - (vide Secs. $9 \& 10$ of Part III).
Both these types of graph paper are ed in radio and acoustic engineering, (as the reader will \cdot ve noticed in the preceding pages), the former type being much more widely used than the latter.

(2) Cartesian Co-ordinates Graph Paper.

Type (1) can again be broadly classified into the following groups from the point of view of the type of scale divisions on the two axes:

Table 1.

X-axis (abscissa).	Y-axis (ordinate)	Common nomenclature	
(1)	Linear	Linear	Ordinary.
(2)	Linear	Logarithmic	Linear-log.
(3)	Logarithmic	Linear	Log-linear.
(4) Logarithmic	Logarithmic	Double-log.	

There is not much difference between types 2 and 3; if the graph sheet is rotated through 90°, the X -axis becomes the Y -axis and vice-versa. While in general engineering and mathematics type (1) is extensively used, types 2 and 3 are widely used in radio engineering and acoustics-i.e., one axis is logarithmic, and the other axis linear. Usually, the X -axis will be the logarithmic, where a range of frequencies covering from, say, 10 to $10,000 \mathrm{cps}$ (audio range) will be marked, and on the Y -axis, db-response to a linear scale will be plotted.

This is the well-known, 3 -cycle, log-linear graph paper. 3 cycles referred to are the 3 octaves which the frequency scale covers: viz.,

Octave	Ratio	
10 to $100 \mathrm{cps} ;-$	$100 \mid 10$ or $10: 1 ;$	
100 to $1,000 \mathrm{cps} ;$	$1,000 \mid 100 \quad$ " $10: 1 ;$	
1,000 to $10,000 \mathrm{cps} ;$	$10,000 \mid 1,000 \ldots$	

Therefore, the 3 cycles occupy equal spaces, for they denote the same (or equal) ratio of $10: 1$.
Since $\log _{10} O=-\infty, O$ cannot be represented on the abscissa, the frequency scale, while it is still possible to denote zero on the ordinate scale.
(3) Logarithmic Scale.
(i) Description:

Logarithmic scale used for the abscissa to represent 3 cycles of frequency ($10-100,100-1,000$, and $1,000-10,000$ cps) in the usual response curves is calibrated thus (Fig. 4.1):

Fig. 4.1. Marking of Divisions on a Log-scale.
The logarithmic scale is made by taking some convenient length, as a unit of length, to represent one octave such as 10 to 100 cps . The space for each of the other two octaves, 100 to 1,000 and 1,000 to $10,000 \mathrm{cps}$, will also be equal to that for the first octave. Then, on the convenient unit length chosen, the following fractional lengths commencing from the left-end are marked off:

Table 2.

$$
\begin{aligned}
& \log 1=0 \\
& \log 2=0.3010 \\
& \log 3=0.4771 \\
& \log 4=0.6021 \\
& \log 5=0.6990
\end{aligned}
$$

$$
\log 6=0.7782
$$

$$
\log 7=0.8451
$$

$$
\log 8=0.9031^{\circ}
$$

$$
\log 9=0.9542
$$

$$
\log 10=1.0
$$

Since the mantissa parts of:

$$
\begin{array}{lll}
\text { (1) } 10, & 100, & 1,000 \text { are the same, } \\
\text { (2) } 20, & 200, & 2,000 \%
\end{array}
$$

(3)	30,	300,	3,000		the	same,
(4)	40,	400, -	4,000			
(5)	50,	500,	5,000		N	
(6)	60,	600 ,	6,000	"	"	
(7)	70,	700,	7,000		"	
(8)	80,	800,	8,000		"	
(9)	90 ,	900,	9,000			
(10)	100,	1,000	10,000			

that explains why the spaces marked as $10,20, \ldots .100$ on one band, correspond to those marked $100,200, \ldots .1,000$, and $1,000,2,000, \ldots .10,000$, on the other two bands.

The number designating any one of these fractions is designated with the number having this particular fraction as its logarithm. Thus, after finding the length represented by $\log _{10} 2=0.3010$, the mark made on the X -axis at this point is designated 2 (and not $\log 2$), and so on for other divisions. Fig. 4.1 shows such a scale with the logarithms of all integers from 1 to 10 properly marked off on it. In a 3-cycle, log-scale abscissa, the end-point of the first cycle, becomes the starting-point of the second cycle, and the end-point of the second cycle becomes the starting-point of the third cycle. With this explanation the several, 3 -cycle, log-linear response curves shown in this monograph will be clearly understood.
(ii) Advantages:-

A logarithmic scale has the following four advantages:-
(a) A very wide range of values (e.g., 10 to 10,000 cps), which would normally require a very large space or necessitates the jointing of several linear graph papers, can be compressed into a very small space.
(b) By plotting data on.a log-scale, we can easily note the peaks and troughs of the graph to enable drawing conclusions from data covering large ranges or periods of time for statistical purposes.
(c) In graphs like the selectivity curve of a radio receiver (Fig. 3.8 of Part III), the curve will be symmetrical, which will not be the case, were the results plotted on a linear scale.
(d) Certain curves which observe a logarithmic law, e.g., given by the equation $y=\log _{10} x$, will be a straight line, which is easy to plot and extrapolate for obtaining further values, instead of drawing a complicated curve of varying curvature, which cannot be safely extrapolated. Adjoining Figs. 4.2 and 4.3 show the curve of the function $y=\log _{10} x$, when plotted on (a) log-linear and (b) plain graph papers.

Fig. 4.2

Fig. 4.3

The process of predicting the values of a function beyond the range of observation or available experimental data is called extrapolation. This process may be used cautiously for a short range beyond the known data but beyond that, extrapolation may lead to false inferences. This fear is entirely removed, if the graph is known to be a straight line, which will be the case when a logarithmic function is plotted on a log-linear graph paper.

(iii) Disadvantages:-

(a) Zero of the logarithmic scale is not accessible and hence negative values cannot be plotted.
(b) Graph is compressed into a very small space and hence not of much use when only a small range of values is involved, e.g., in the immediate vicinity of the resonance frequency, in a resonance curve. Hence a log-scale can be used only when a very large range of values is to be plotted on a graph sheet of reasonable dimension-(c.f. Figs. 4.2 and 4.3).
(c) Crests are reduced in size as compared with troughs.
(d) With a linear scale the numerical value of the intensity of a complex sound wave, equals the sum of the numerical values of its components. With a log-scale it is not so, though on this scale the total gain or attenuation can be computed directly by expressing the corresponding components in decibels and then adding them algebraically. In several cases in electroacoustics and communication engineering, this latter fact alone is so significant as to justify the choice of decibels or nepers (logarithmic units) plotted to a linear scale.
(4) Comparison of Graphs with Linear and Logarithmic Scales:
In order to bring out clearly the differences between the linear and logarithmic scales used for graphical representa-

(By courtesy of Philips Elec. Coy. (India) Ltd.)
tion, The Philips' Technical Reviewe ${ }^{\text {st }}$ gives the same characteristic, viz., the variation of sound intensity of a loudspeaker, plotted in five different ways, as a function of frequency (X -axis). Details of these five graphs are given in Table 3.

Table 3.

$\begin{gathered} \hline \text { Ref. } \\ \text { tio } \\ \text { Fig. } \\ \text { 4.4. } \\ \hline \end{gathered}$	X and Y axes scales	Nomenclature
	X-axis: \log scale ; Y-axis : linear scale.	Log-linear.
(b)	X-axis: linear scale ; Y-axis: linear scale.	Ordinary.
(c)	X-axis: \log scale ; Y - axis : db on linear scale.	Log-linear.
(d)	Same as for (c) but reduced scale on the Y -axis (db scale).	"
(e)	Same as for (a) but reduced scale on the Y-axis.	"

These five graphs are reproduced in Fig. 4.4. They also show the effect on the graph by reducing the scale on the linear axis (db scale). The following amplified inferences, mainly taken from the source cited above, can be drawn by comparing these graphs critically:-
(i) c.f. (a) and (b): On the X -axis, the log-scale, all octaves occupy equal spaces, while on the corresponding axis of (b), the band of frequencies below $1,000 \mathrm{cps}$, (the most important from the point of view of audibility), has been so much compressed as to obscure the results of this band, which now occupies an insignificant width. Again, the band between 5,000 to $15,000 \mathrm{cps}$ ($11 / 2$ octaves), occupies a disproportionately large part of the graph.
(ii) c.f. (a) and (b): The widths of the crests and troughs of the curves are equal on the \log-scale of (a), where they are the same percentage fractions of the frequency. This gives a better idea of the damping of the different resonant frequencies which, under certain conditions, contribute to abnormalities.
(iii) c.f. (a) and (c): The linear intensity scale of (a) brings out the crest at 60 cps more prominently than the trough at $1,000 \mathrm{cps}$, while the amplitudes of the response on the logarithmic scale of (c), are of the same size.
(iv) c.f. (b) and (c): In (b) the curve beyond $5,000 \mathrm{cps}$ is nearly flat on the absolutely linear scale, while the logscale of curve (c) still shows very marked crests and troughs that will certainly influence the quality of the loudspeaker output.
(v) If the power input to the loudspeaker is reduced to, say, $1 / 4$ of the former power, then the response also reduces. This reduction will not influence the shape of the curve if a logarithmic scale is used, the only effect being an overall displacement of the curve downwards by $6 \mathrm{db}(=10 \log 0.25)$. With a linear-intensity scale as in (a) and (e), the latter, with lower output, appears less distorted as compared with that of the former; and (e) also appears to be much smoother.
(vi) c.f. (a) and (c): In (c), by plotting log-response in db on the linear Y -axis, we find that the peaks appear less, and troughs more, than those in (a), where the linear Y-axis represents linear response. But, from the acoustic considerations (c) is to be preferred to (a), as the former represents in true proportion to the appreciation of the ear. The exact magnitude by which the crest (or trough) in (c) falls below (or goes beyond) that in (a), is governed entirely by the choice of unit of the scale: c.f. (c) and (e), where the log-scale of (c) shows greater irregularities; and c.f. (a) and (d), where, by plotting the log-response in db on the Y-axis, the crests seem to have become much smaller than in (a).
(vii) c.f. (c) and (d): Both these are log-linear graphs, with log-response plotted in db along the ordinate, but with the difference that the ordinate scale for (d) is $1 / 2$ of that in (c), resulting in the marked irregularities brought out in (c) being fairly smoothened or shown considerably suppressed in (d).
(viii) From a general survey of the above curves, it is seen that the frequency and intensity range which can be covered conveniently in a single graph is practically unlimited when using a log-scale, while with a linear-scale one has to be limited to a ratio of 1:10 (approximately)-vide Fig. 4.3.
(ix) Though it has been cited already under the disadvantages of a log-scale, (1) that zero is not available and (2) that negative values cannot be plotted, these are not serious defects since the ear itself, as stated in Part II of the text, has a definite threshold value. Hence a log-scale is eminently suitable for acoustic work.

In conclusion, for a response curve in communication and acoustic work, a log-linear graph paper, with frequencies 10 to $10,000 \mathrm{cps}$ plotted on the logarithmic X-axis and response in db along the linear Y -axis, is the most suitable. The justification for using logarithmic scale for the abscissa is that it covers in a small space the frequencies 10 to 10,000 cps , and the fact that zero cannot be represented is no disadvantage, since practically the lowest audible frequency is between 20 and 50 cps and in most response curves, data below 30 or 50 cps will not be available (vide Fig. 2.1). As for the ordinate, because db is itself a logarithmic unit, we can plot it on a linear scale resulting in the graph being either a straight line or symmetrical curve, both of which are easy to plot. This also gives the following advantages: (1) that both + and - db (vide graph (c)) can be plotted; (2) that zero is available; and (3) the best representation of the crests and troughs is obtained. The position of 0 db solely depends on the arbitrarily chosen 'zero level' for the purpose in question. This explains the choice of this type of graph paper for the several response curves shown in this monograph.

APPENDIX II

Logarithmic Unit-Its Limitations.

It must be clearly understood that the logarithmic notation is not suitable for all classes of work in communication systems. Its limitations are as follows:
(1) It is of use only in calculating the gain or loss of a system whose noise level does not vary between very wide limits.

The meaning of this statement can be best understood by considering the following three cases:-
(a) An amplifier circuit may pick up considerable amount of noise, whereby the latter drowns the desired signal itself. Then, though the amplifier shows a large output apparently, it is not entirely due to the signal but largely due to the noise and, hence, the gain of the amplifier computed in db by the use of the usual formulæ, does not give the gain of the signal in which we are interested. In fact, due to overloading, the output of the amplifier may fall considerably. Whatever may be the result in db in such cases, whether an apparently high gain, moderate gain, or even loss, is of no interest.
(b) Actually, when an amplifier is overloaded, not only. does its output drop but it leads to distortion also. Distortion can be best expressed as the rms value of the amplitudes of the voltages of the undesired frequencies, and it is usual to express this as a percentage of the amplitude of the fundamental frequency. Distortion cannot be adequately expressed in db ; nor the loss expressed in db , after the overload point is passed, can have any significance.
(c) In the case of short waves, owing to fading the signal strength varies considerably from instant to instant. In such a case, it is not worthwhile to express, e.g., the strength in db at any one moment, as this information is of no practical value, owing to the frequent variation of the input to the system and hence its lack of representative character.
(2) It is not convenient when dealing with electrical apparatus or machinery handling large amounts of power, as in heavy electrical engineering. For example, consider an electrical system, which receives 100 kW but delivers only 75 kW . Then, its efficiency $=\frac{\text { output }}{\text { input }}=75 \%$, the loss being $1 / 4$ of the input. If we express this in db notation, we get $10 \log \frac{75}{100}=-1.25 \mathrm{db}$, which gives an impression of a very small loss while, actually, considerable amount of power (25 kW), $1 / 4$ of the input power, is being wasted away!
(3) As most communication circuits (e.g., a wireless transmitting circuit, from the microphone to the ærial) are a combination of both high and low power apparatus, having variable noise level, the logarithmic notation should be used with great discretion and rejected as unsuitable whenever it is likely to give false ideas.

The db-notation is useful only for judging those facts or results which are judged by our senses, since these senses respond to a logarithmic (The Weber-Fechner) law. But, all the other results, which are judged only by direct mental processes, will have to be expressed in the direct-proportion law instead of the logarithmic law, as it is a fact that we are mentally accustomed to compare directly, viewing arithmetical differences instead of ratios, in our daily calculations of several physical quantities like: length, mass, time, etc. Therefore, all comparisons by mind, if expressed in the db notation, will generally lead to wrong appreciation or incorrect conclusions.

APPENDIX III

The Standard Cable.

The standard cable is defined by the British Standards Institution ${ }^{52}$ thus:
"An arbitrary uniform line in terms of which the attenuation of a line or network at a particular frequency may be specified."

The standard cable formerly used in Great Britain has been defined on page 10, Part I of this monograph, and the conversion constants of the British m.s.c. and other modern transmission units, like neper and decibel, have been given already in Table 4, Part I.

The standard cable formerly used for telephone measurements in America, had the following constants per loop mile.

Resistance: 88 ohms
Capacitance: 0.054 microfarad
Inductance: Nil
Leakance: Nil

It will be seen that the only difference between the British m.s.c. and the American m.s.c. is that in the latter both inductance and leakance are ignored, while in the former these two constants are 1 millihenry and 1 micromho respectively. The conversion constants of the American m.s.c. and other modern transmission units are tabulated below for reference (c.f. Table 4, Part I).

Table 4.

Multiply	By	To get
(1) Decibels	1.056	m.s.c.
(2) m.s.c.	0.947	Decibels
(3) Nepers	9.175.	m.s.c.
(4) m.s.c.	0.109	Nepers

In general, the decibel is the modern unit widely used in Great Britain and America, superseding both the British and American standard cables. Neper is used in certain countries on the continent of Europe and by the C.C.I.T. (Comité Consultatif International Téléphonique) only. There is also a unit, one tenth of a neper, called the decineper (abbreviated: dn), which is very rarely used.

APPENDIX IV

Logarithms and Log-Tables

(1) Bases of Logarithms.

As stated in Part I, there are two sets of logarithms im vogue:
(1) The Naperian system with ' e ' as base, where $\mathrm{e}=2.718281828 \ldots$,
and (2) The Briggsian System with 10 as base.
In the Naperian or. 'natural logarithms', the logarithm: of a number N is x, if $e^{x}=N$, while in the Briggsian or 'Common logarithms', the logarithm of a number N is x, if $10^{x}=\mathrm{N}$.

Naperian system logarithmic tables, i.e., $\log _{\mathrm{e}} \mathrm{N}$, will be found useful in calculating Nepers (vide Sec. 4 of Part I)
directly, while the common logarithms will be useful in all decibel calculations directly.

(2) Laws of Logarithms.

Irrespective of the base, it is worthwhile to remember the following simple algebraic results, while doing calculations involving logarithms :

$$
\begin{aligned}
& \log (a \times b)=(\log a+\log b) . \\
& \log \left\{\frac{a}{b}\right\}=(\log a-\log b) \text {. } \\
& \log \left\{a^{n}\right\}=(n \log a) . \\
& \log \left\{\begin{array}{l}
(m / n) \\
a
\end{array}\right\}=\left\{\frac{m}{n}(\log a)\right\} \text {. } \\
& \log \left\{\begin{array}{l}
n / a \\
\sqrt{n}
\end{array}\right\}=\left\{\frac{1}{n}(\log a)\right\} . \\
& \log \left\{\begin{array}{l}
n \\
\sqrt{a^{m}}
\end{array}\right\}=\left\{\frac{m}{n}(\log a)\right\} \text {. } \\
& \log \left\{\begin{array}{l}
\left.\sqrt[n]{\frac{a}{b} \times \frac{c}{d}}\right\}=\frac{1}{n}\{(\log a+\log c)
\end{array}\right. \\
& -(\log b+\log d)\} \text {. }
\end{aligned}
$$

To find the natural logarithm from the common logarithm, it is useful to remember that :

$$
\begin{aligned}
\left(\log _{e} x\right) & =\left(\log _{e}^{10}\right) \times\left(\log _{10} x\right) \\
& =2.3026 \times \log _{10} x\left(\because \log _{e} 10=2.3026\right)
\end{aligned}
$$

(3) Tables of Logarithms and Antilogarithms.

The following tables are included here for ready reference:
(1) Table of Natural Logarithms of Nos. from 1.00 to 10.00 (Table 5).
(2) Table of Common Logarithms (Table 6).
(3) Table of Antilogarithms (Table 7)

Table 5.
Natural Logarithms of Nos. 1 to 10
The base of natural Logarithms is $e=\mathbf{2 . 7 1 8 2 8 1 8 2 8}$

No.	Nat log.	No.	Nat log.	No.	Nat log.	No.	Nat log.	No.	Nat log.
1.00	0.0000	2.25	0.8109	3.50	1.2528	475	1.5581	6.00	1.7918
1.05	0.0488	2.30	0.8329	3.55	1.2669	4.80	1.5686	6.10	1.8083
1.10	0.0953	2.35	0.8544	3.60	1.2809	4.85	1.5790	6.20	1.8245
1.15	0.1398	2.40	0.8755	3.65	1.2947	4.90	1.5892	6.30	1.8405
1.20	0.1823	2.45	0.8961	3.70	1.3083	4.95	1.5994	6.40	1.8563
1.25	0.2231	2.50	0.9163	3.75	1.3218	5.00	1.6094	6.50	1.8718
1.30	0.2624	2.55	0.9361	3.80	1.3350	5.05	1.6194	6.60	1.8871
1.35	0.3001	2.60	0.9555	3.85	1.3481	5.10	1.6292	6.70	1.9021
1.40	0.3365	2.65	0.9746	3.90	1.3610	5.15	1.6390	6.80	1.9169
1.45	0.3716	2.70	0.9933	3.95	1.3737	5.20	1.6487	6.90	1.9315
1.50	0.4055	2.75	1.0116	4.00	1.3863	5.25	1.6582	7.00	1.9459
1.55	0.4383	2.80	1.0296	4.05	1.3987	5.30	1.6677	7.20	1.9741
1.60	0.4700	2.85	1.0473	4.10	1.4110	5.35	1.6771	7.40	2.0015
1.65	0.5008	2.90	1.0647	4.15	1.4231	5.40	1.6864	7.60	2.0281
1.70	0.5306	2.95	1.0818	4.20	1.4351	5.45	1.6956	7,80	2.0541
1.75	0.5596	3.00	1.0986	4.25	1.4469	5.50	1.7047	8.00	2.0794
1.80	0.5878	3.05	1.1151	4.30	1.4586	5.55	1.7138	8.20	2.1041
1.85	0.6152	3.10	1.1314	4.35	1.4701	5.60	1.7228	8.40	2.1282
1.90	0.6419	3.15	1.1474	4.40	1.4816	5.65	1.7317	8.60	2.1518
1.95	0.6678	3.20	1.1632	4.45	1.4929	5.70	1.7405	8.80	2.1748
2.00	0.6931	3.25	1.1787	4.50	1.5041	5.75	1.7492	9.00	2.1972
2.05	0.7178	3.30	1.1939	4.55	1.5151	5.80	1.7579	9.25	2.2246
2.10	0.7419	3.35	1.2090	4.60	1.5261	5.85	1.7664	950	2.2513
2.15	0.7655	3.40	1.2238	4.65	1.5369	5.90	1.7750	9.75	2.2773
2.20	0.7835	3.45	1.2384	4.70	1.5476	5.95	1.7834	10.00	2.3026

Tables of

Common Logarithms
and
Antilogarithms
(Tables 6 \& 7)

Table 6.
Logarithms

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9	
																				H
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	4	8	12	17	21	25	29	33	37	H
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755	4	8	11	15	19	23	26	30	34	(1)
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106	3	7	10	14	17	21	24	28	31	
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	3	6	10	13	16	19	23	26	29	0
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	3	6	9	12	15	18	21	24	27	W
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014		6	8	11	14	17	20	22	25	$\xrightarrow{-1}$
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279	3	5	8	11	13	16	18	21	24	*
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529	2	5	7	10	12	15	17	20	22	H
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	2	5	7	9	12	14	16	19	21	
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	2	4	7	9	11	13	16	18	20	它
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17	19	H
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	2	1	6	8	10	12	14	16	18	-
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	2	4	6	8	10	12	14	15	17	-
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	2	4	6	7	9	11	13	15	17	
24	3802	3820	3858	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9	11	12	14	16	\%
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	2	3	5	7	9	10	12	14	15	
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	2	3	5	7	8	10	11	13	15	
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8	9	11	13	14	
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	2	8	5	6	8	9	11	12	14	
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	8	4	6	7	9	10	12	18	

163
SGIICNTdyv

L	9	9	9	F	8	\％	7	I
4	9	9	9	7	8	8	Z	I
L	4	9	9	7	8	\％	7	I
8	L	9	9	7	8	8	7	I
8	ℓ	9	9	7	8	8	Z	I
8	4	9	9	7	\％	8	\％	I
8	L	9	9	7	$\%$	8	$\boldsymbol{6}$	I
8	L	9	S	9	7	8	\boldsymbol{Z}	I
8	L	L	9	9	\checkmark	6	\boldsymbol{Z}	I
6	8	L	9	9	7	8	\boldsymbol{z}	I
6	8	4	9	9	1	8	Z	I
6	8	4	9	9	\％	8	7	I
6	8	L	9	9	7	8	Z	I
6	8	L	9	9	7	8	7	I
01	6	8	9	9	7	8	\boldsymbol{Z}	I
01	6	8	L	9	\％．	8	\％	I
01	6	8	4	9	9	8	$\overline{7}$	I
01	6	8	L	9	9	8	\boldsymbol{Z}	I
II	01	8	L	9	S	7	$\overline{7}$	I
II	01	6	L	9	g	7	\％	I
【	01	6	8	9	9	\dagger	8	I
\％I	0 I	6	8	9	9	\％	8	I
\％	II	6	8	L	9	＊	8	I
\％I	II	01	8	4	9	\dagger	8	I
81	LI	01	6	L	9	1	8	I

9862
918L
98ZL
791L
L90L
I869
8689
8089
6IL9
8199
z799
9679
9689
$\mathbf{Z 7 6 9}$
LII9
0109
6689
98L9
0299
I999
8779
6089
ZLIS
8809
0067

\＄98L	998L
887L	9LZL
206L	86IL
8ILL	OIIL
8602	\＄60L
9769	L869
4989	8789
$\angle 929$	8969
9699	9999
0899	IL99
1879	Fく＊9
\＄889	9289
5879	FLZ9
0819	0 OL9
SL09	\＄909
9969	9969
9989	8789
0729	66L9
8799	1199
$\mathbf{7 0 9 9}$	0689
8489	9985
0989	L869
6IIS	9019
8867	6967
8887	689\％

878L
L97L
98IL
101L
9102
8769
6889
$67 / 9$
9999
1999
\＄979
9989
8969
0919
8909
＋869
Z889
LIL9
6699
8L79
8989
\％779
Z609
9967
\％ 187

788L	\％78L
ISGL	8サZL
891 L	091过
＋80L	960L
8669	0669
I 169	7069
IZ89	Z189
$08 \angle 9$	I $\mathbf{Z L 9}$
2899	8699
\％ヤ99	\％899
Fbry	9859
$\mathbf{9 8 8 9}$	9889
8779	Z8Z9
8819	8719
I809	IZ09
6769	I 169
6089	86L9
7699	$\mathbf{7 8 9 9}$
9299	8999
8989	It\％9
8789	S169
86［9	9819
S909	I90S
876%	\％ 168
98L\％	1LLF

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7
55	7480	7490	7497	7505	7513	7520	7528	7536	7543	7551	1	2	2	3	4	5	5	6	7
57	7485	7596	7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4	5	5	6	7
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	1	1	2	3	4	4	5	6	7
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	1	1	2	3	4	4	5	6	6
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	1	1	2	3	4	4	5	6	6
62	7924	7931	-7938	7945	7952	7959	7966	7973	7980	7987	,	1	2	3	3	4	5	6	6
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	,	2	3	3	4	5	5	6
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1	1	2	3	3	4	5	5	6
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	1	1	2	3	3	4	5	5	6
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	I	1	2	3	3	4	5	5	6
67	8261	8267	8274	8280	8987	8293	8299	8306	8312	8319	1	,	2	3	3	4	5	5	6
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8389	1	1	2	3	3	4	4	5	6
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	1	1	2.	2	3	4	4	5	6
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	1	2	2	3	4	4	5	6
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	1	1	2	2	3	4	4	5	5
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	1	1	2	2	3	4	4	5	5
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686		1	2	2	3	4	4	5	5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	1	1	2	2	3	4	4	5	5

75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	8	8	4	5	5
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1	1	2	2	3	3	4	5	5
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1	1	2	2	3	3	4	4	8
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	1	1	2	2	3	3	4		5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	1	2	2	3	3	4	4	5
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	1	1	2	2	3	3	4	4	5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	1	2	2	3	3	4	4	5
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1	1	2	2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1	1	2	2	3	3	4	4	5
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1	1	2	2	3	3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3	3	4	4	5
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	0	1	1	2	2	3	3	4	4
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0	1	1	2	2	3	3	4	4
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	2	3	3	4	4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	0	1	1	2	2	3	3	4	4
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	0	1	1	2	2	3	3	4	4
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	0	1	1	2	2	3	3	4	4
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2	8	3	4	4
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	1	1	2	2	3	8	4	4
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	0	1	1	2	2	3	8	4	4
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	0	1	1	2	2	3	3	4	4
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952	0	1	1	2	2	3	3	4	4
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996	0	1	1	2	2	3	3	8	4

Table 7.
Antllogarithms

	APPENDICES				169
－				＋u®0 0	∞－ 0
$\infty \infty$	∞ かos－		W		
かやかめか	かめめのパ	かめがい			
N NNNN	Nかめかか		かかめかか		
ONONNON	MNNNN	NかN世か	かやめめか	cosescos	
－WNCNO	NONNON	NONWN	NOMNO	NNNかや	かめめのか
－ッーロー		（	NONNN	WNWNW	NON世N
00000	00000	$0000-1$	－	ーーーツ－	ーローッ～
		N్			
떵어유Nㅇ			A్		No
		No	に ${ }^{\circ}{ }^{\infty}$ 		必为禺禺可
				Fi్ర	
	๗్య が			గ్ర్దూ గ్ర No	
			W్స్		
송ㅇㅇㅇ O으으N				꾸웅 	
	ㅇop 0	 	骨	N్	
¢ิ＊			¢¢べめが	ずテポがす	¢¢ ¢ ¢ ¢

Antilogarithms-(continued)

70	5012	5023	5035	5047	5058	5070	5082	5093	5105	5117	1	2	4	5	6	7	8	9	11
71	5129	5140	5152	5164	5178	5188	5200	5212	5224	5236	1	2	4	5	6	7	8	10	11
72	5248	5260	5272	5284	5297	5309	5321	5333	5346	5358	1	2	4	5	6	7	9	10	11
73	5370	5383	5395	5408	5420	5433	5445	5458	5470	5483	1	3	4	5	6	8	9	10	11
74	5495	5508	5521	5534	5546	5559	5572	5585	5598	5610	1	3	4	5	6	8	9	10	12
75	5623	5636	5649	5662	5675	5689	5702	5715	5728	5741	1	3	4	5	7	8	9	10	12
76	5754	5768	5781	5794	5808	5821	5834	5848	5861	5875	1	3	4	5	7	8	9	11	12
77	5888	5902	5916	5999	5943	5957	5970	5984	5998	6012	1	3	4	5	7	8	10	11	12
78	6026	6039	6053	6067	6081	6095	6109	6124	6138	6152	1	8	4	6	7	8	10	11	13
79	6166	6180	6194	6209	6223	6237	6252.	6266	6281	6295	1	3	4	6	7	9	10	11	13
80	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	1	3	4	6	7	9	10	12	13
81	6457	6471	6486	6501	6516	6531	6546	6561	6577	6592	2	3	5	6	8	9	11	12	14
82	6607	6622	6637	6653	6668	6683	6699	6714	6730	6745	2	3	5	6	8	9	11	12	14
83	6761	6776	6792	6808	6823	6839	6855	6871	6887	6902	2	3	5	6	8	9	11	13	14
84	6918	6934	6950	6966	6982	6998	7015	7031	7047	7063	2	3	5	6	8	10	11	13	15
85	7079	7096	7112	7129	7145	7161	7178	7194	7211	7228	2	3	5	7	8	10	12	13	15
86	7244	7261	7278	7295	7311	7328	7345	7362	7379	7396	2	3	5	7	8	10	12	13	15
87	7413	7430	7447	7464	7482	7499	7516	7534	7551	7568	2	4	5	7	9	10	12	14	16
88	7586	7603	7621	7638	7656	7674	7691	7709	7727	7745	2	4	b	7	9	11	12	14	16
89	7762	7780	7798	7816	7834	7852	7870	7889	7907	7925	2	4	5	7	9	11	13	14	16
90	7943	7962	7980	7998	8017	8035	8054	8072	8091	8110	2	4	6	7	9	11	13	15	17
91	8128	8147	8166	8185	8204	8222	8241	8260	8279	8299	2	4	6	8	9	11	13	15	17
92	8318	8337	8356	8375	8395	8414	8433	8453	8472	8492	2	4	6	8	10	12	14	15	17
93	8511	8531	8551	8570	8590	8610	8630	8650	8670	8690	2	4	6	8	10	12	14	16	18
84	8710	8731)	8750	8770	8790	8810	8831	8851	8872	8892	2	4	6	8	10	12	14	16	18
95	8913	8933	8954	8974	8995	9016	9036	9057	9078	9099	2	4	6	8	10	12	15	17	19
96	9120	9141	9162	9183	9204	9226	9247	9268	9290	9311	2	4	6	8	11	13	15	17	19
97	9333	9354	9376	9397	9419	9441	9462	9484	9506	9528	2	4	7		11	13	15	17	20
98	9550	9572	9594	9616	9638	9661	9683	9705	9727	9750	2	4	7		11	13	16	18	20
99	9772	9795	9817	9840	9863	9886	9908	9931	9954	9977	2	5	7	9	11	14	16	18	20

BIBLIOGRAPHY

1. Morris, Alfred: The Decibel Notation and its Application to the Technique of Power Transmission, Dorling \& Co., (Epsom) Ltd., Epsom, Surrey, England.
2. Everitt, W. L.: Communication Engineering, McGrawHill Book Coy., Inc., New York-(vide p. 105, 2nd Edn., 11th impression, 1937):
3. Skipper, T. C.: Pozer Level Measurements in Communication Networks, p. 151, Students' Quarterly, I.E.E., London, Vol. 8, No. 32, 1938.
4. Pender, Harold, and McIlwain, Knox: Electrical Engineers' Hand Book-Electrical Communication and Electronics-Vol. V. (Sec. 1-36, 3rd Edn., 1936), Chapman and Hall Ltd., London, or John Wiley and Sons, Inc., New York.
5. Herbert, T. E., and Procter, W. S.: Telephony, Sir Isaac Pitman and Sons Ltd., London-(vide p. 811, Vol. 1, 2nd Edn., 1934).
6. Institute of Radio Engineers, New York: Standards on Electroacoustics, (1938)-(vide p. 3, Def. 1-A. 21 and Table on p. 13).
7. Rider, F.: Meter at Work, (vide p. 131, 3rd printing 1941), John F. Rider Publisher, Inc., New York.
8. General Radio Company, Cambridge, Mass., USA: Catalogue K (1939) pp. 207-211, Decibel Conversion Tables.
9. Stewart, G. W.; and Lindsay, R. B.: Acoustics, (2nd Edn., 1930), D. Van Nostrand Coy., Inc., New York, (vide p. 50).
10. Standards Association, New York: American Tentative Standards for Noise Measurement, -Z. 24.21936.
11. Institute of Radio Engineers, New York: Standards on Electroacoustics, (1938).
12. British Standards Institution, London: British Standard Glossary of Acoustical Terms and Definitions, British Standard No. 661_1936.
13. Vermeulen, R.: "Octaves and Decibels", Philips' Technical Revicw, Eindhoven, Holland, Vol. 2, No. 2, Feb. 1937-(vide pp. 52 and 53).
14. Greenlees, A. E.: The Amplification and Distribution of Sound (1938), Chapman and Hall Ltd., London(vide p. 238).
15. Morris, Alfred: Same as reference No. 1 above, but vide pp .50 and 51.
16. Glover, C. W.: Practical Acoustics for the Constructor, (1st Edn. 1933) Chapman and Hall Ltd., London(vide p. 280, Table of Noise in Buildings by R. S. Tucker, reproduced therein from Jour. Acoustical Society of America).
17. Davis, A. H.: Noise (1937), Watts and Co., London, _(vide Table III on p. 48).
18. Same as reference No. 8 above, but vide p. 119.
19. Marconi-Ekco Instruments Ltd., London: MarconiEkco's Catalogue No. Com. D. 21, Sec. A-2-7.
20. Greenlees, A. E.: Same as reference No. 14 above, but zide p. 67.
21. Thordarson Electric Mfg. Co., Chicago, USA: Tru-Fidelity, Catalogue No. $500-\mathrm{E}$, Broadcast Transformers (pp. 9 and 10).
22. Rust, N.M., Keall, O.E., Ramsay, J.F., and Sturley, K. R.: "Broadcast Receivers: A Review", Jour. of the Inst. of Elec. Enginecrs, London, Vol. 88, Part

23. Institute of Radio Engineers, New York: Standards on Radio Receivers, (1938).
24. The Radio Manufacturers' Association, London: Specification for Testing and Expressing Overall Performance of Radio Broadcast Receivers-Part I. Electrical Tests, (Decr. 1937).
25. Rao, V.V.L.: "Standard Tests on Broadcast Receivers", Electrotechnics, Bangalore, India. Vol. 14, Nov. 1941-vide p. 45.
26. Rao, V. V. L.: Ibid-vide p. 48.
27. Rao, V. V. L.: Ibid-vide p. 47.
28. Sterling, George E.: The Radio Manual, D. Van Nostrand Coy., Inc., New York (pp. 479 and 480, 3rd Edn.-7th printing, 1941).
29. Nilsov, A. R., and Hornung, J. L.: Practical Radio Communication, McGraw-Hill, Book Coy., Inc., New York_(vide p. 343, First Edition, Fifth Impression, 1935).
30. Philips' Sound Equipment Catalogue (1943): issued by the Philips Elec. Coy. (India) Ltd., (vide p. 11).
31. Ibid-zide p. 7.
32. Greenlees, A. E.: Same as reference No. 14 above, but aide p. 124, Table 1.
33. Same as reference No. 11 above, but vide p. 14.
34. Same as reference No. 14 above, but ridc pp. 146 and 149.
35. Scroggie, M. G.: Radio Laboratory Hand Book, The Wireless World, Iliffe and Sons Ltd., London, (p. 290 of 2nd Edn.).
36. Ladner, A. W., and Stoner, C. R.: Short Wazc Wircless Communnication, Chapman and Hall Ltd., London. (4th Edn. 1943-See Chapter on ' 'High Frequency Feeders').
37. Smith. E. W., and O'Neile, R. F.: "Marconi-T. C. M. High Frequency Cables", Marconi Rezieze, No. 70. July-September, 1938.
38. Admiralty ${ }^{\bullet}$ Hand Book of Wireless Telegraphy and Tilcphony, Vol. II, 1938, His Majesty's Stationery Office, London-(vide paragraph 48, Section R. Advantages of Arrays, Array Gain.)
39. The British Broadcasting Corporation, London: A Technical Description of Broadcasting House (1932)-(zide p. 23).
40. Same as reference No. 4, but vide Sec. 9 , pp. 57 and 58.
41. McElrox, P. K.: "Designing Resistive Attenuating Networks", Proc. of the Inst. of Radio Engineers, Nezi York, Vol. 23, No. 3, March 1935, (pp. 213233).
42. Scroggre, M. G.: Same as reference No. 35, but vide p. 184, 2nd Edn.
43. Zobel, O. J.: "Transmission Characteristics of ElectricWave Filters", Bell System Tech. Jour., Vol. 3, p. 567. October 1924.
44. Balth Vander Pol: "Electrical Filters", (article No. IV in a series of 5) in the Philips' Tech. Review, Vol. 1, pp. 332-333, November 1936.
45. Terman, F. E.: Measurements in Radio Engineering, McGraw-Hill Book Company, Inc., New York-(vide pp. 351 to 355 in 1st Edn., 1935).
"Network Theory, Filters and Equal-izers-Parts I and II", in Proc. of the Inst. of Radio Engineers, New York, Vol. 31, 1943, pp. 164-175 and 233-240.
46. Starr, A. T.: Electric Circuits and Wave Filters, Sir Isaac Pitman and Sons, London.
,47. Guillemin, E. A.: Communication Networks, Vois. I and II, John Wiley and Sons, Inc., New York.
47. Shea, T. E.: Transmission Networks and Wave Fi_ ters, D. Van Nostrand Coy., Inc., New York.
48. Johnson, K. S.: Transmission Circuits for Telephone Communication, D. Van Nostrand Coy., Inc., New York.
49. Rao, V.V.L.: Attenuation Curves of a Composite Bandpass Filter, D. I. C. Thesis submitted to the Imperial College of Science and Technology, London, in 1938.
50. Same as reference No. 13, but see pages 54-56.
51. Bratish Standard 204: 1943-Glossary of Terms used in Telecommunication, (British Standards Institution, London. (Vide No. 1128, p. 5, 1943 Edn.). FURTHER REFERENCES
(For Additional Reading)
52. Richardson, E. G:: Chapter X on 'Sensation' in Physical Science in Modern Life (1938), The English Universities Press Ltd., London.
53. Martin,.W. H.: "The Transmission Unit and Telephone Transmission Reference Systems", Bell System Tech. Jour., July, 1924.
54. Martin, W. H.: "Decibel-The name`for the Transmission Unit", Bell System Tech. Jour., January, 1929.

INDEX

A

Acoustics, 11, 115
Acoustics, architectural, 115
Acoustic impedance, 48
A-C voltages, 19
Aerial, 17, 107, 114
Aerial, directive, 114
A-F lines, 17
Alexander Graham Bell, 6
Ampere, 1.
Amplification of a channel, 73
Antilogarithms, 29, 161, 168 to 171
Attenuation, 5, 138
Attenuation, methods of, 118
Attenuator, 118
adjustable pads, 121
box 120
decibel, 142
fixed pad, 121
networks, types oi, 120
Audio amplifiers:
frequency response of, 68,69
gain of, 68
power output of, 68
Audio equalizers, 86
Audio transformer, 85
Automatic gain control, 81
AVC characteristics, 81, 82

B

Bel, 5, 6, 7
Bell, Alexander Graham, 6
Biologist, 2
Briggs, 5
Briggsian system, 5, 6,160
Brightness, 2
British Post Office, 10

C

Carrier noise, 103, 104
Characteristic impedance, 5, 17, 63, 107
of concentric cables, 108
of overhead lines, 107
of underground feeders, 108
Characteristic resistance, 125
Conductor losses, 109
Conjugate impedances, 21
Copper-oxide rectifier, 19
Current ratios, 38
Curves of equal loudness, 105

D

D.C. Voltmeter, 19

Decibel (s), db, 1, 6, 7, 8, 9, 10, 13, 14, 17, 19, 27, 63, 85; 99, 118 . 157, 158, 159, 160
down, 17
graph, 29
tables, 29
meter, 18, 19
notation, 1, 79, 86, 92, 108, 107,
115, 129, 159
unit, 1
up, 17
measurement of amplification in, 69, 70, 71
Decineper, 160
Degree of silence in broadcast studios, 115
Dielectric losses, 109
E
Efficiency, 3, 61
Engineer-Physicist, 2
Equalizer, 129
Equivalent loudness, 50, 52
F
Feeders, 107
copper losses in, 108
losses in, 112
Feeling, 2
Fidelity curve, 83, 85
Field strength :
atmospheric, 78
signal, 77
man-made static, 78
Filters, 130
kinds of, 131
attenuation curves of, 133, 135
band-pass, 131, 133, 136, 138
band-pass, constant -K, basic type, 135, 136, 139 .
band rejection, 131
composite, 133
curves, 141, 142, 144
high-pass, 131
insertion loss in db of, 142, 143, 145
low-pass, 131
m- π transformation, 135, 139
Frequency distortion, 83
Frequency response, 72, 75, 79, 108

G

Gain of a channel, 73
Graph paper:
cartesian co-ordinates, 149
logarithmic; 19, 149

H

Heat, 2 .
Henry Briggs, 5

High-power transmission, 17
H-type attenuator, 122
Hum, 68, 75, 76, 105
Hypsograms, 61

I

Illumination, intensity of, 2
Image impedance, 131
Image ratio, 79, 80
Impedance terminations, standard, 16
Input impedance range, 65
Intensity level, 49, 51
Interaction loss, 130, 145
Intermediate frequency, 80,81
Internal noise level, 75, 76
Iterative resistance, $\mathbf{1 2 5}$

L

Ladder attenuator, 124, 125, 127
Linear scale, 153
Load impedance correction, 25
Logarithms: 29,160, 164 to 167
bases of, 160
laws of, 161
Natural, 162
tables of, 160, 161
I.ogarithmic graph paper, 19, 149

Logarithmic scale, 150, 153
Logarithmic unit, 157
Log-linear paper, 29, 69, 80. 83. 104, 149, 157
Loudness, 2
Loudness contours, 50
Loudness level, 51
Loudspeakers:
directional characteristic, 99, 100
polar curves, 100,101
response curve, 100
response-frequency characteristics, 99, 101
Low-power transmission, 17

M

Matched impedance, 23
Mechanical impedance, 48
Mechanical ohms, 48
Microphones:
crystal, 94, 95, 96
high-level and low-level mixing of, 97
moving coil, $92,95,96,98$
open circuit voltage of, 92
response curves of, 95,96
ribbon, 93, 95, 96, 98
sensitivity rating of, 92,95

Miles of standard cable, 9, 10, 159, 160
Mismatched impedance, 23, 24
Mixer, 97
Multiplier dial, 65

N

Napierian system, 5, 6, 160
Napier, John, 5
Neper, 5, 6, 7, 8, 9, 10, 160
Noise abatement, 115
Non-inductive load, 69

0

Ohm, 1, 48
Output-power meter, 63 design of, 64, 65
Output valves, 89
Overall electric fidelity, 79, 83
Overhead lines, 17, 107

P

Particle velucity, 47, 48
Phon, 47, 50, 52, 53
Phons, tables of, 57, 58
Pick-ups :
dynamic, 87
output of, 87
response curves of, 87
Pitch, 2
Plane progressive wave, 54
Post Office, British, 10
Potential divider, 118
Potentiometer, 119
Power, 11, 110, 158
Power gain, 11
Power level, 3, 14, 15, 16, 111
Power level diagrams, 61, 62
Power level meter, 19
Power loss, 11
Power ratio, 38, 39, 40, 41, 42, 43, 44
Power reflection loss, 21
Pressure, 2
Psychology, 1

Q

' Q ' of coils, 145

R

Radiation losses, 109
Real gain of the amplifier, 74
Record cutters:
operating level of, 86
frequency response measurement of, 86

Reference levels, 38
Reference tone, 51
Reflection gain, 21
Reflection loss, 20, 21, 23, 25, 26, 145
Reflection loss, power, 21
Reflection loss, voltage, 22
Reflection loss, zero, 21
Resonance, 79, 80
Reverberation time, 115
RF lines, 17
RF power transmission, 17
RMS voltage levels, 110, 111

S

Second channel ratio, 81
Selectivity test, 79
Sensation, 1, 2
Sensation unit, 7
Signal field strength, 77, 78
Signal power, 77
Signal to noise ratio, 77
Signal voltage, 77
Slide rule, 19
Sound films, 115
Sound intensity, 2, 47, 48
in broadcast studios, 115
in speech and music, 115
Sound insulation of studios, 116
Sound particle velocity, 64
Sound pressure, 48
Standard cable :
American, 159, 160
British, 10, 159, 160
miles of, $9,10,159,160$
Standard impedance terminations, 16
Standard output, 81
Standard power level, 16
Standard tests on radio receivers, 64, 80
Stimulus, 1, 2
Studio acoustics, 115
Superheterodyne receiver, 80
Surge impedance, 17
Surge resistance, 125
Symmetrical amplifiers, 22, 28

T

Temperature, 2
Terminal loss, 130
Terminating impedances:
equal, 121
unequal, 121

Terminations, standard impedance, 16
Threshold of :
audibility, 49, 52
feeling, 52, 55, 56
hearing, $5 \boldsymbol{f}$
pain, 49, 55, 56
Tolerable noise levels, 57
Tone control, 83
Transfer loss, 130
Transmission chain, fidelity rating
of, 85
Transmission lines, 107
Transmission loss, 117
Transmission unit, 1, 7
Transmitters :
carrier noise, 103, 104
intensity of signal at a point, 103
overall frequency response, 103
True gain of an amplifier, 22
T-type attenuator, 122

U

Unsymmetrical amplifier, 23, 24
Unweighted network, 105

V

Valve voltmeters, 70, 74
Vector impedances, 21
Voltage gain, 26
Voltage ratio, 38, 39, 40, 41, 42
Voltage reflection loss, 22,25
Volume unit, 14, 18

W

Weber-Fechner law, 1
Weighted network, 105
Weighting of an amplifier, 106

Z

Zero current level. 15
Zero $\mathrm{db}, 17$
Zero level, i3, 38
Zero level, conversion from one
Zero level to another, 15
Zero phon loudness level, 56
Zero power level, 13, 15, 16
Zero reflection loss, 21
Zero voltage level, 14
Zero watts, 17

Reference levels, 38
Reference tone, 51
Reflection gain, 21
Reflection loss, 20, 21, 23, 25, 26, 145
Reflection loss, power, 21
Reflection loss, voltage, 22
Reflection loss, zero, 21
Resonance, 79, 80
Reverberation time, 115
RF lines, 17
RF power transmission, 17
RMS voltage levels, 110,111

\mathbf{S}

Second channel ratio, 81
Selectivity test, 79
Sensation, 1, 2
Sensation unit, 7
Signal field strength, 77, 78
Signal power, 77
Signal to noise ratio, 77
Signal voltage, 77
Slide rule, 19
Sound films, 115
Sound intensity, 2, 47, 48
in broadcast studios, 115
in speech and music, 115
Sound insulation of studios, 116
Sound particle velocity, 64
Sound pressure, 48
Standard cable :
American, 159, 160
British, 10, 159, 160
miles of, $9,10,159,160$
Standard impedance terminations. 16
Standard output, 81
Standard power level, 16
Standard tests on radio receivers, 64, 80
Stimulus, 1, 2
Studio acoustics, 115
Superheterodyne receiver, 80
Surge impedance, 17
Surge resistance, 125
Symmetrical amplifiers, 22, 23

T

Temperature, 2
Terminal loss, 130
Terminating impedances:
equal, 121
unequal, 121

Terminations, standard impedance, 16
Threshold of :
audibility, 49, $5 \dot{2}$
feeling, 52, 55, 56
hearing, $5 \boldsymbol{E}$
pain, 49, 55, 56
'Tolerable noise levels, 57
Tone control, 83
Transfer loss, 130
Transmission chain, fidelity rating of, 85
Transmission lines, 107
Transmission loss, 117
Transmission unit, 1,7
Transmitters:
carrier noise, 103, 104
intensity of signal at a point, 103
overall frequency response, 103
True gain of an amplifier, 22
T-type attenuator, 122

U

Unsymmetrical a mplifier, 23, 24
Unweighted network, 105

v

Valve voltmeters, 70, 74
Vector impedances, 21
Voltage gain, 26
Voltage ratio, 38, 39, 40, 41, 42
Voltage reflection loss, 22, 25
Volume unit, 14, 18

W

Weber-Fechner law, 1
Weighted network, 105
Weighting of an amplifier, 106

z

Zero current level. 15
Zero db, 17.
Zero level, i3, 38
Zero level, conversion from one Zero level to another, 15
Zero phon loudness level, 56
Zero power level, 13, 15, 16
Zero reflection loss, 21
Zero voltage level, 14
Zero watts, 17

[^0]: * Vide item 1 in the Bibliography at the end of the text of monograph.

[^1]: ع过 TGIJGは

[^2]: * Foot Note:- 50 milliwatts according to IRE Standardses3, New York (1938), for sets having an undistorted output between O.1 and 1 watt and 500 mW for sets capable of delivering at least 1 watt maximum undistorted output. 50 milliwatts according to the British RM. $\mathbf{I}^{\text {Specifications }}{ }^{24}$ (1986).

