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PREFACE

ELECTRON TUBES, Volume 11, is the tenth volume in the RCA
Technical Book Series and the second on the general subject of vacuum
tubes, thermionics and related subjects. This volume contains material
written by RCA authors and originally published during the years
1942-1948; the companion book, ELECTRON TUBES, Volume I, covers
the period 1935-1941.

The papers in this volume are presented in four sections: general;
transmitting; receiving; and special. The appendices include an elec-
tron tube bibliography for the years 1942-1948 and, as an additional
source of reference, a list of Application Notes. The bibliography
lists all papers concerning tubes even though they relate to specific
applications and are covered in other volumes of the Technical Book
Series on television, facsimile, UHF, and frequency modulation. This
has been done to insure that all applicable material on tubes would be
available in this volume—at least in reference form.

* * *

RCA Review gratefully acknowledges the courtesy of the Institute
of Radio Engineers (Proc. I.R.E.), the American Institute of Physics
(Jour. Appl. Phys., Jour. Opt. Soc. Amer., and Phys. Rev.), the Frank-
lin Institute (Jour. Frank. Inst.), the Society of Motion Picture En-
gineers (Jour. Soc. Mot. Pic. Eng.), and Radio Magazines, Inc. (Audio
Eng.) in granting to RCA Review permission to republish material by
RCA authors which has appeared in their publications. The apprecia-
tion of RCA Review is also extended to all authors whose papers appear
herein.

* * *

As outstanding as were electron tube developments from their
invention until the start of the recent war, the progress in tube design
and application technique during and since the war has been even
more remarkable, particularly in power and miniature tubes. Still

—vij—



newer work has already produced components which lend promise of
replacing electron tubes for certain uses, but for the great majority
of applications, electron tubes will continue to serve as the framework
around which radio-electronic progress will be fashioned.

ELECTRON TUBES, Volume II, like its predecessor is being
published, therefore, in the sincere hope that it will serve as a useful
reference text and source of basic information to advance radio and
electronics in all of its many facets.

The Manager, RCA Review
RCA Laboratories,
Princeton, New Jersey
March 19, 1949
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ANALYSIS OF RECTIFIER OPERATION*f}
By

O. H. SCHADE

Tube Department, RCA Victor Division,
Harrison, N. J.

Summary—An analysis of rectifier operation in principal circuits is
made. The introduction of linear equivalent diode resistance values permits
a simplified and accurate treatment of circuits containing high-vacuum
diodes and series resistance. The evaluation of these equivalent resistance
values and a discussion of emission characteristics of oxide-coated cathodes
precede the circuit analysis.

Generalized curve families for three principal condenser-input circuits
are given to permit the rapid solution of rectifier problems in practical
circuits without inaccuracies due to idealizing assumptions.

The data presented in this paper have been derived on the basis of a
sinusoidal voltage source. It is apparent that the graphic analysis may
be applied to circuits with nomsinusoidal voltage sources or intermittent
pulse waves. i

It 18 also permissible to consider only the wave section during conduc-
tion time and alter the remaining wave form at will. Complicated wave
shapes may thus be replaced in many cases by a substantially sinusoidal
voltage of higher frequemcy and intermittent occurrence as indicated by
shape and duration of the highest voltage peak.

The applications of these principles have often explained large dis-
crepancies from expected results as being caused by series or diode resist-
ance and excessive peak-current demands.

Practical experience over many years has proved the correctness and
accuracy of the genmeralized characteristics of condenser-input circuits.

INTRODUCTION

ECTIFIER circuits, especially of the condenser-input type, are
extensively used in radio and television circuits to produce
- unidirectional current and voltages. The design of power sup-
plies, grid-current bias circuits, peak voltmeters, detectors and many
other circuits in practical equipment is often based on the assumption
that rectifier- and power-source resistance are zero, this assumption
resulting in serious errors. The rectifier element or diode, further-
more has certain peak-current and power ratings which should not be
exceeded. These values vary considerably with the series resistance
of the circuit.
General operating characteristics of practical rectifier circuits have
been evaluated and used by the writer for design purposes and informa-

+ Reprinted from Proc. I.R.E., July, 1943.
* Decimal Classification: R337 X R356.3.
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2 ELECTRON TUBES, Volume 11

tion since early 1934, but circumstances have delayed publication.
Several papers'™ have appeared in the meantime treating one or
another part of the subject on the assumption of zero series resistance.
Practical circuits have resistance and may even require insertion of
additional resistance to protect the diode and input condenser against
destructive currents. The equivalent diode resistance and the emission
from oxide-coated cathodes are, therefore, discussed preceding the
general circuit analysis. This analysis is illustrated on graphic con-
structions establishing a direct link with oscillograph observations on
practical circuits. A detailed mathematical discussion requires much
space and is dispensed with in favor of graphic solutions, supplemented
by generalized operating characteristics.

I. PRINCIPLES OF RECTIFICATION

General

Rectificaiton is a process of synchronized switching. The basic
rectifier circuit consists of one synchronized switch in series with a
single-phase source of single frequency and a resistance load. The
switch connection between load terminals and source is closed when
source and load terminals have the same polarity, and is open during
the time of opposite polarity. The load current consists of half-wave
pulses. This simple circuit is unsuitable for most practical purposes,
because it does not furnish a smooth load current.

The current may be smoothed by two methods: (a) by increasing
the number of phases, and (b) by inserting reactive elements into the
circuit. The phase number is limited to two for radio receivers. The
circuit analysis which follows later on will treat single- and double-
phase rectifier circuits with reactive circuit elements.

Switching in reactive circuits gives rise to ‘“transients.” Currenti
and voltage cannot, therefore, be computed according to steady-state
methods. ,

The diode functions as a self-timing electronic switch. It closes
the circuit when the plate becomes positive with respect to the cathode

1 M. B. Stout, “Analysis of rectifier filter circuits,” Elec. Eng. Trans.
A.IE.E. (Elec. Eng., September, 1936), vol. 54, pp. 977-984; September,
1935.

2N. H. Roberts, “The diode as half-wave, full-wave and voltage-
doubling rectifier,” Wireless Eng., vol. 13, pp. 351-362; July, 1936; and
pp. 423-470; August, 1936.

3J. C. Frommer, “The determination of operating data and allowable
ratings of vacuum-tube rectifiers,” Proc. I.R.E., vol. 29, pp. 481-485; Sep-
tember, 1941.

4D. L. Waidelich, “The full-wave voltage-doubling rectifier circuit,”
Proc. I. R. E., vol. 29, pp. 554-558; October, 1941.
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and opens the circuit at the instant when the plate current becomes zero.

The diode has an internal resistance which is a function of current.
When analyzing rectifier circuits, it is convenient to treat the internal
resistance of the diode rectifier as an element, separated from the
“switch action” of the diode. Fig. 1 illustrates the three circuit ele-
ments so obtained and their respective voltage-current characteristics
(see Section II). The diode characteristic is the sum of these char-
acteristics. The resistance r, is effective only when the switch is
closed, i.e., during the conduction period of the diode. The effective
diode resistance must, therefore, be measured or evaluated within
conduction-time limits. Consider a switch in series with a fixed resist-
ance and any number of other circuit elements connected to a battery
of fixed voltage. The direct current and root-mean-square current

.
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Fig. 1—Characteristics and equiva- Fig. 2 -— Graphic evaluation of
lent circuit for high-vacuum diodes. equivalent diode resistance values.

which flow in this circuit will depend on the time intervals during
which the switch is closed and open; the resistance value is not ob-
tainable from these current values and the battery voltage. The correct
value is obtained only when the current and voltage drop in the re-
sistance are measured during the time angle ¢ (Fig. 2) when the
switeh is closed.

The method of analysis of rectifier circuits to be discussed in this
paper is based on the principle that the nonlinear effective resistance
of the diode may be replaced analytically by an equivalent fixed re-
sistance which will give a diode current equal to that obtained with
the actual nonlinear diode resistance. The correct value to be used
for the equivalent fixed resistance depends upon whether we are
analyzing for peak diode current, average diode current, or root-mean-
square diode current,

At the outset of an analysis amplitude and wave shape of the diode
current are not known and the diode resistance must, therefore, be
determined by successive approximations.



4 ELECTRON TUBES, Volume 11

WCAL (C IN FARADS,RL IN OHMS)

Fig. 3—Relation of applied alternating peak voltage to direct output voltage
in half-wave, condenser-input circuits.

The complexity of repeated calculations, especially on condenser-
input circuits, requires that the operating characteristics of the circuit
be plotted generally as functions of the circuit constants including
series resistance in the diode circuit as a parameter.

Data for these plots (such as Figs. 3 to 7) are to be obtained by
general analysis of circuits with linear resistances.
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The solution of a practical condenser-input-circuit problem requires
the use of three different equivalent linear circuits and diode resistance
values.

The resistance values are obtainable from the peak current alone
because wave shape can be eliminated as a factor by means of a
general relation given by (6). The practical analysis of condenser
input circuits thus simplified, is carried out as follows:

WERY (C N FARKDS, R N OWMS)

Fig. 4—Relation of applied alternating peak voltage to direct output voltage
in full-wave, condenser-input circuits.

The average diode current is estimated roughly and the diode peak
current is assumed to be four times the average value. The diode
characteristic (Fig. 8) furnishes an initial peak-resistance value and
(6) furnishes the other diode resistance values (see R, values in Fig.
9). Direct output voltage and average current are now obtained with
the equivalent average value R, from the respective plot (Figs. 3 to 5)
as a first approximation. Another chart (Fig. 6) furnishes the peak-
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Fig. 5—Relation of applied alternating peak voltage to direct output voltage
in condenser-input, voltage-doubling circuits.

to-average-diode-current ratio with the peak value R, and thus the
peak current and diode peak resistance in close approximation.

A second approximation gives usually good agreement between
initial and obtained resistance values, which are then used to obtain
other operating data.

A theoretical treatment of the method just described will be
omitted in favor of an analysis of operating characteristics of the
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rectifier tube itself. The user of tubes may welcome information on
the subject of peak emission which is of vital importance in the rating
and trouble-free operation of any tube with an oxide-coated cathode.

II. ANODE AND CATHODE CHARACTERISTICS OF RECTIFIER TUBES

Anode Characteristics

1. Definitions of Resistance Values

The instantaneous resistance (r;) of a diode is the ratio of the
instantaneous plate voltage ¢, to the instantaneous plate current i,

Awun,

Ulpl . Bug PLATE CURRENT (o.¢ b, arg
l' .T 0-C PLATE CURRENT

(owe PLATE)

PCAR PLATE CURRENT
©-C PLATE CURREWT

':
’

Pt

Fig. 6—Relation of peak, average, and root-mean-square diode current in
condenser-input circuits.

at any point on the characteristic measured from the operating point
(see Fig. 1). It is expressed by

€s
Tg=—. (1)

i
The operating point (0) of a diode is a fixed point on the character-
istic, marked by beginning and end of the conduction time. It is,
therefore, the cutoff point I; =0 and E;=0, as shown in Fig. 1.
The operating point is independent of the wave form and of the con-
duction time ¢ (see Fig. 2).
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The peak resistance® (7;) is a specific value of the instantaneous
resistance and is defined as
éq
£, =— (see Fig. 2). (2)
i’

Peak voltage é; and peak current ip are measured from the oper-
ating point 0.

RIPPLE_VOLT:
[

»

WCRy (C IN FARADS, Ry IN OHMS)

Fig. 7—Root-mean-square ripple voltage of condenser-input circuits.

The equivalent average resistance (r,) is defined on the basis of
circuit performance as a resistance value determining the magnitude
of the average current in the circuit. The value 7, is, therefore, the
ratio of the average voltage drop €4(¢) in the diode during conduction
time to the average current %,(¢) during conduction time, or

€a(¢)

. (3)

~)
a
I

1)

5 For system of symbols, see Appendix.
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The curved diode characteristic is thus replaced by an equivalent
linear characteristic having the slope 7, and intersecting the average
point A, as shown in Fig. 2. The co-ordinates &, and 7,4 of the
average point depend on the shape of voltage and current within the
time angle ¢. The analysis of rectifier circuits shows that the shape
of the current pulse in actual circuits varies considerably between
different circuit types.
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Fig. 8—Average anode characteristics of some RCA rectifier tubes.

The equivalent root-mean-square vesistance (|ry|) is defined as
the resistance in which the power loss P; is equal to the plate dissipa-
tion of the diode when the same value of root-mean-square current
|I;] flows in the resistance as in the diode circuit. It is expressed by

Py

(4)

Jral= .
| 14 ]2



10 ELECTRON TUBES, Volume 11
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Il‘d|=EQUIVALENT RMS DIODE RESISTANCE

Fig. 9—Equivalent circuits and resistance values for condenser-input
rectifier circuits.

2. Measurement of Equivalent Diode Resistances

‘The equivalent resistance values of diodes can be measured by
direct substitution under actual operating conditions. The circuit
arrangement is shown in Fig. 10. Because the diode under test must
be replaced as a whole by an adjustable resistance of known value, a
second switch (a mercury-vapor diode identified in the figure as the
ideal diode) with negligible resistance must be inserted in order to
preserve the switch-action in the circuit.

When a measurement is being made, the resistor R, is varied until
the particular voltage or current under observation remains unchanged
for both positions of the switch S. We observe (1) that it is impossible
to find one single value of R; which will duplicate conditions of the
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aetual tube circuit, i.e., give the same values of peak, average, and
root-mean-square current in the circuit; (2) that the ratio of these
three “equivalent’” resistance values of the diode varies for different
combinations of circuit elements; and (3) that the resistance values
are functions of the current amplitude and wave shape.

3. Wave Forms and Equivalent Resistance Ratios for Practical Circuit
Calculations
The form of the current pulse in practical rectifier circuits is deter-
mined by the power factor of the load circuit and the phase number.
Practical circuits may be divided into two main groups: (a) circuits
with choke-input filter; and (b) circuits with condenser-input filter.
The diode current pulse 1in '
choke-input circuits has a rectangu- 1DeAy oi00e ]J;;;J
lar form on which is superimposed b b € 1]
one cycle of the lowest ripple fre-
quency. In most practical circuits,
this fluctuation is small as com-

f OSCILLOGRAPH

pared with the average amplitude
of the wave and may be neglected
when determining the equivalent
diode resistances. It is apparent
then that the equivalent diode re-

10 MEASURE T,

RMS CURRENT -

I"'—ﬁ OR AV. CURRENT
j LOAD l

Fig. 10 — Circuit for measuring
equivalent diode resistance values.

sistance values are all equal and
independent of the type of diode characteristics for square-wave forms.
Hence, for choke-input circuits, we have

Fa=Tg=|14]. (6)

The diode current pulse in condenser-input circuits is the summa-
tion of a sine-wave section and a current having an exponential decay.
It varies from a triangular form for ¢ < 20 degrees to a full half
cycle (¢ =180 degrees) as the other extreme. In Table I are given
the ratios of voltages, currents, and resistance values during conduc-
tion time for two principal types of rectifier characteristics: the 3/2-
power-law characteristic of high-vacuum diodes, and the idealized
rectangular characteristic of hot-cathode, mercury-vapor diodes. In
this table, the designation [,|;, represents the root-mean-square value
of the current during the conduction time.

It follows that the relation

3 =0.887,=0.93 | 74 | (6)
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Table I
3/2-Power
C‘i?g;’c' Rectifier Rectangular
Time Wave Characteristic Characteristic
Angl Shape = = = = = =
l;g e 210} Ilp[(» €aw g [rd| Cawr | Ty |rd]
i, iy é; Fq Fq é,4 fa fa

Condenser-Input Circuits

D .
cBrees! A | 0500| 0577 | 0503 | 1.185| 1.120 | 1.0 | 2.00| 1500
=20 |

90 and Uj\' 0.637 | 0.707 | 0.715 | 1.120 | 1.057 [ 1.0 | 1.57(1.272

180
SN
130 77 | 0.725| 0.780 | 0.787 | 1.085 | 1.030 | 1.0 | 1.38{1.190
Choke-Input Circuits
180 S |10 (10 |10 |10 [10 | 1.0{10 | 10

is representative for the group of condenser-input circuits containing
high-vacuum diodes, and holds within =5 per cent over the entire
range of variation in wave shape. The actual error in circuit calcula-
tions is smaller as the diode resistance is only part of the total series
resistance in the circuit.

CATHODE CHARACTERISTICS

Peak-Emission and Saturation of Ozide-Coated Cathodes

The normal operating range of diodes (including instantaneous
peak values) is below the saturation potential because the plate dis-
sipation rises rapidly to dangerous values if this potential is exceeded.
Saturation is definitely recognized in diodes with tungsten or thoriated-
tungsten cathodes as it does not depend on the time of measurement,
provided the plate dissipation is not excessive. The characteristics of
such diodes are single-valued even in the saturated range, i.e., the
range in which the same value of current is obtained at a given voltage
whether the voltage has been increased or decreased to the particular
value.

Diodes with oxide-coated cathodes may have double-valued char-
acteristics because of the coating characteristic. The cathode coating
has resistance and capacitance, both of which are a function of temper-
ature, current, and the degree of “activation.”
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A highly emitting monatomic layer of barium on oxygen is formed
on the surface of the coating, which, when heated, supplies the electron
cloud forming the space charge above the coating surface (see Fig. 11).
The emission from this surface may have values as high as 100 amperes
per square centimeter. The flow of such enormous currents is, how-
ever, dependent on the internal-coating impedance, and is possible only
under certain conditions. Special apparatus is required to permit
observation of high current values which, to prevent harm to the tube,
can be maintained only over very short time intervals determined by
the thermal capacity of the plate and coating. For example, an in-
stantaneous power of 15 kilowatts must be dissipated in the close-
spaced diode type 83-v at a current of 25 amperes from its cathode
surface of only 1 square centimeter.

Equipment for such observations was built in June, 1937, by the
author after data obtained in 1935 on a low-powered curve tracer®
indicated the need for equipment having a power source of very low
internal impedance for measurements on even relatively small diodes.

$SPACE CHARGL Kgggggr’
P ATOMIC oot
MON: i
\-O(Lﬂzﬁ OF D._dﬂ lvg&'?ﬂ:gﬁ
\ BARIUM ARRANGE MENT
BARIUM 2 . v

3
OXIDES =
] VERY DENSE o) owooe
Q1N o~ A YET
N oxio€s
" aour

a e R
- BASE METAL T . R,
1
Sy
¥

Fig. 11—Representation of cathode
coating. Fig. 12—Peak emission test circuit.

1. Measurement of Diode Characteristics and Peak Emission

The circuit principle is shown in Fig. 12. The secondary voltage
of a 2-kilovolt-ampere transformer T, is adjustable from zero to
2 kilovolts by means of an autotransformer 7',. Transformer and line
reactances are eliminated for short-time surge currents by a large con-
denser load (C = 20 to 80 microfarads). The large reactive current is
“tuned out” by a choke L of considerable size. The voltage is applied
through a large mercury diode and a synchronous contact arrangement
m to the tube under test in series with a resistance box E, and a con-
denser input load C, and R,. This load permits adjustment of the
peak-to-average current ratio. Variation of R; changes the average
current. Variation of C, and phasing of the synchronous contact m
with respect to the 60-cycle line voltage permit regulation, within wide
limits, of the rate of change and duration of the current pulses.

The dynamic voltage-current characteristic of the tube under test

8 Demonstrated, Rochester Fall Meeting, Rochester, N. Y., November
18, 1936.
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is observed on a cathode-ray oscillograph connected in the conventional
manner. Calibration deflections are inserted (not shown) by other
synchronous contacts to provide accurate and simultaneously visible
substitution co-ordinates which may be moved to any point in the
characteristic.

The motor-driven synchronous contactor closes the circuit at a
desired instant of the line-voltage cycle. The circuit may then be
maintained closed for approximately 30 cycles to allow decay of the
starting transient (see Fig. 13). It is then opened for approximately
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Fig. 13—Starting conditions in a full-wave, condenser-input circuit with
large series resistance.

70 cycles to allow time for the discharge of condenser C,. This cycle
repeats continuously. The diode Dy in series with the tube under test
protects it against damage in case it breaks down or arcs, because the
diode takes up the inverse voltage if a given small reversed current
determined by R, is exceeded. This condition is indicated by a small
glow tube in shunt with Dy. .

2. Coating Characteristics

A theory of electron movement and conditions in oxide coatings
has been formulated after careful analysis of saturation characteristics
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observed on the curve tracer. As saturated coatings produce closed
reactive Joops in the characteristic, it .is found necessary to assume the
existence of a capacitance in the diode itself. Because of its large value
(see Fig. 14(c)), this capacitance requires a dielectric thickness ap-
proaching crystal spacing and, hence, must be located inside the coat-
ing. It is beyond the scope of this paper to report the many investiga-
tions which led to this particular conception.

The oxide coating is an insulator at room temperature. At in-
creased temperatures, it becomes conductive (normal operating tem-
peratures are between 1000 and 1100 degrees Kelvin). Electronic
conduction may be thought of as

occurring by relay movement of S 3\ .
electrons under the influence of | 2 : "
electrostatic potentials in the coat- ° 0} Meevours 0 ﬁ”“‘l’
ing, which is a layer containing in- gt R | e -
sulating oxide crystals (shaded g "P00R COATING CONDUCTANCE

areas in Fig. 11) interposed with
metal atoms and ions (circles).
These have been produced during
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Fig. 14—Double-valued character-
The conduction is high, when istics of actual and artificial diodes
’

showing coating saturation.
a sufficient number of relay paths
not broken by oxides have been formed and when electron movement
is facilitated by the loosening of the atomic structure which takes
place at increased temperatures.

The coating is not necessarily a homogeneous conductor as it may
consist of many sections operating in parallel but having different con-
ductance values with individual temperature parameters. At increased
plate potentials, poorly conducting sections tend to saturate, the sec-
tion potential becoming more positive towards the surface. Negative-
grid action of neighboring sections with higher conductivity may tend
to limit emission from the surface over the poor section but the
increased positive gradient towards the saturating section causes it to
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draw electrons from the surrounding coating towards its surface.
Further increase in current demand may then saturate the better con-
ducting paths and may even fuse them, thus forcing current through
poorer sections. Forced electron flow results in local power dissipation
and temperature increases and may cause ionization and electrolysis
accompanied by liberation of gas (oxygen) and formation of barium
metal; i.e., it causes an accelerated activation process.

These conditions in the diode coating, therefore, should furnish a
voltage-current characteristic of purely ohmic character as long as
activation-gas liberation is substan-

tially absent. Characteristics of 0 '
. . . '
this type are single valued. Single- TpeO
. . . . «
valued characteristics indicate, &2 ",
w w
however, unsaturated ohmic coating 2 . &
. L) - 2
conductance and limiting surface 32 g
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Fig. 15—Single-valued diode char- alent circuit for hot-cathode, mer-
acteristics. cury-vapor diodes.

emission when moderate-current densities are involved as will be ap-
parent from the following discussion. As cathode and coating tem-
peratures are relatively slowly varying parameters, characteristics
such as shown in Fig. 15 are observed on the cathode-ray curve tracer.
The characteristic of diodes containing larger amounts of gas exhibits
a discontinuity or “gas loop” (compare Fig. 16(b)) which is recog-
nized by the fact that corresponding current values after ionization
require less diode potential than before “breakdown.” The character-
istic, hence, is steeper than normal.
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3. Transient E'mission

Let us now consider the action of insulating oxides in the coating.
They block many possible electron paths to sections of the surface layer
which, therefore, cannot emit steady electron currents. However, elec-
trons can be moved to the oxide surfaces and a displacement current
can flow in these coating sections allowing transient-emission currents
to be drawn from the corresponding surface sections.

The displacement current in the coating and the corresponding
transient surface emission represent a certain fraction of the total
diode current, which may permit a total emission current of short
duration much in excess of the possible steady-state conduction cur-
rent. The “transient-emission” current depends on the effective capaci-
tance value of the blocking oxides, their series and shunt conductance
in the coating, the emission and area of corresponding surface elements

° °

= PLATE ¢ 3 PLATE
«— VACUUM «— VACUUM
~—SURFACE — ~— SURFACE

Te 2 COATING

COATING

’ MBEA‘I’SEL
LK LK

Fig. 17— Circuit network repre- Fig. 18—Same as Fig. 17 with re-
senting the coating impedance in sistances replaced by special diodes.
high-vacuum diodes.

to the plate as well as on the external plate-circuit impedance, and the
wave form of the applied plate voltage.

For the purpose of analysis, therefore, we may draw representative
networks such as shown in Figs. 17 or 18 and show the temperature-
controlled coating conductances r, as a network of “close-spaced diodes”
which may conduct in two directions, each one having a single-valued
characteristic which may be unsaturated or saturated depending on
the assumed conditions in the coating; the conductance values of these
“diodes” depend on -the number of parallel or series paths they
represent.

The diode contains, therefore, in its coating, a type of condenser-
input load circuit, which is analyzed later on in this paper; its action
explains double-valued voltage-current characteristics obtainable from
the diode alone.
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Consider a high plate voltage suddenly applied by means of a switch
to a diode as in the circuit of Fig. 19. If the coating is not limiting,
the current obtained is that at a point P on the corresponding diode
characteristic. Hence, the current wave form in the circuit is as shown
in Fig. 19(a). If the surface emission is assumed to be unchanged,
but the coating conductance is limited, due to an insufficient number of
“coating diodes” and too many nonconducting oxide groups, the wave
form of Fig. 19(b) is obtained. At the instant when the switch is
closed the current value i is demanded by E,; from the surface layer;
the conduction current in the coating is limited to the value I, by
saturation of the “coating diodes.” Because of the oxide capacitance,
a displacement current can flow and charge up the oxides, but their
charge may be limited by hypothetical series diodes.

The coating resistance is extremely low’ below saturation, but be-
comes infinite when the conduction current is saturated; the charging
current must then flow in the plate circuit (external) of the diode.
The total plate current is, therefore,
the sum of the conduction current

SwiTcH

| . " Neeteot, I. and a ‘“transient-emission” cur-

A A R l li }\[y‘ rent. The “coating transient” de-
A % el - e " cays to zero the same as normal
transients at a rate depending on

Fig. 19—Circuit for observation of
& peak emission transients. the actual shunt-conductance value

and the total series resistance in
the circuit (Fig. 19(b)). The decay can be changed by adding external
resistance in the plate circuit. When the surface emission is good, i.e.,
as long as the total vacuum-space plate current is space-charge-limited,
the current will rise initially to the value (point P) determined by the
applied potential, but will then decay to the saturation value deter-
mined by the coating conductance.

The condition of oxide-coated cathodes can, therefore, not be judged
alone by their capability of furnishing high peak currents, but the
time of current flow and the current wave form must also be carefully
considered, because the diode characteristic may not be single-valued.
Fig. 14 shows characteristics which are not single-valued. It should
be noted that the characteristic loops are formed in the opposite sense
as gas loops. Their extent depends on the time interval involved and
the current value exceeding the unsaturated conductance current. An
artificially produced characteristic of this type is also shown in Fig.
14 (c). The loop size can be varied by adjusting the cathode temperature
of the shunting diode. Both diodes had single-valued characteristics.

7 Its magnitude depends on the number of series diodes and, hence on
the barium content and thickness of the coating.
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4. Current Overload and Sputter

The degree of activation is not stable during the life of the cathode.
Coating conductance and surface emission change. Factors affecting
the change are the coating substances, the evaporation rate of barium
which depends on the base material, and the operating conditions to
which the cathode is subjected. This life history of the cathode is the
basis on which current ratings are established. Rectifier tubes espe-
cially are subject to severe operating conditions. If a diode is operated
with too high a current in a rectifier circuit and its surface emission
is decreased to the saturation value, then the tube-voltage drop will
increase rapidly and cause excessive plate dissipation and destruction
of the tube. Should the coating conductance in this diode decrease to
a value which limits the demanded current, power is dissipated in the
now-saturated coating with the result that the coating-voltage drop
and coating temperature are raised. The votage and temperature rise
in the coating may cause reactivation but also may become cumulative
and melt the coating material. We may consider that good conducting
paths are fused or that a dielectric breakdown of oxide capacitance
oceurs; in any event vapor or gas discharges result from saturated
coatings. In most cases breakdown occurs during one of the following
inverse voltage cycles as observed on the curve tracer. A saturation
loop is first formed as shown in Fig. 14 and a certain time must be
allowed for diffusion of the gas into the vacuum space. Fusion of coat-
ing material may also occur during the conduction period. These break-
downs are known as “sputter,” and in usual circuits destroy the cathode.

A second type of sputter is caused by the intense electrostatic field
to which projecting “high spots” on the plate or cathode are subjected.
The resulting current concentration causes these spots to vaporize with
the result than an arc may be started. Hundreds of scintillating small
spots can be observed at first at very high applied surge potentials,
but may be cleared after a relatively short time.

Transient peak currents of 25 amperes per square centimeter have
been observed from well-activated oxide-coated cathodes. The stable
peak emission over an extended period is usually less than one-third
of this value.

5. Hot-Cathode Mercury-Vapor Diodes

The breakdown voltage E; of mercury vapor for cumulative ioniza-
tion is a function of the gas pressure and temperature. It is approxi-
mately 10 volts in the RCA-83 and similar tubes. A small electron
current begins to flow at £, =0 (see Fig. 16), and causes ionization
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of the mercury vapor. This action decreases the variational diode re-
sistance 7, to a very low value. The ionization becomes cumulative at
a certain current value (7, =0 at 40 milliamperes in Fig. 16(a)), and
causes a discontinuity in the characteristic. Hence, it is not single-
valued within a certain voltage range. Beyond this range (see Fig.
16(b)), the slope (r,) of the characteristic becomes again positive
until saturation of the emitter is reached.

For circuit analysis, the mercury-vapor diode may be replaced by
a bucking battery having the voltage E; and a fixed resistance as shown
in Fig. 16 (c) ; or the diode characteristic may be replaced by an ideal
rectangular characteristic and its equivalent resistance values and the
series resistance r,;, as shown.

The first representation is adequate for most practical calculations.
The value 7,4, is in the order of 4 ohms for small rectifier tubes. The
low series resistance and the small constant-voltage drop E; are distinct
advantages for choke-input filters, as they cause very good regulation;
the low resistance, however, will give rise to enormously high starting
transients in condenser-input circuits, in case all other series re-
sistances are also small. The destruction of the coating in mercury-
vapor diodes is caused by concentration of current to small sections of
the coating surface and not by heat dissipation in the coating. Mer-
cury-vapor diodes as well as high-perveance (close-spaced), high-
vacuum diodes having oxide cathodes should, therefore, be protected
against transient-current overloads when they are started in low-
resistance circuits to prevent destruction of the cathode coating.

6. Protective Resistance Values

Very high instantaneous peak currents may occur in noninductive
condenser-input circuits when the circuit is opened long enough to dis-
charge the condenser, but reclosed before the cathode temperature of
the diode has decreased substantially. The maximum peak current
Tnax occurs when closing the circuit at peak line voltage. At the in-
stant of switching, C is a short circuit and the current . is limited
only by the series resistance (including diode) of the circuit,

For a given maximum diode current f,,,, and the corresponding diode
peak voltage E;..,, the minimum effective series resistance R, in the
circuit must hence be
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€rmax — Eomax

R=————,

fdmax

This limiting resistance must be inserted in series with low-impedance
sources (power line in transformerless sets). Commercial power trans-
formers for radio receivers have often sufficient resistance besides
some leakage reactance to limit starting currents to safe values.

I1I. CIRCUIT ANALYSIS
General

The rectifier diode is a switch operated in synchronism with the
applied alternating-current frequency. Switching in reactive circuits
causes transients. The total current in the circuit may be regarded
as the sum of all steady-state currents and transient currents within
the time between two switching operations. Steady-state voltages (e,)
and currents (Z,) in the particular circuit before and after switching
are determined without difficulty. It is very helpful to draw them
approximately to scale and with proper phase relation.

The switching time of the diode is then located on the graph. Cur-
rents change at switching time t, from 4, to i, =i,(,, + 7, and voltages
from e, to e; = €,5) + ¢, The transients i, or ¢, are zero, when the
current change does not occur in an inductive circuit or when a voltage
change is not required on a capacitance at the time of switching. A
sudden change Ai;, or Ae, demanded at t, causes transients. They
initially cancel the change A, or Ae, because an inductance offers
infinite impedance to an instantaneous change in total current and a
capacitance offers zero impedance to an instantaneous voltage change.

The initial transient values are, therefore,

i‘(o) in L=— AiL
and
e'(o) on C = Aec-

The transients decay exponentially from their initial value.

According to the decay time of the transients, fundamental rectifier
circuits may be classified into two principal groups: (1) circuits with
repeating transients in which the energy stored in reactive elements
decreases to zero between conduction periods of the diode; and  (2)
circuits with chain transients in which (a) the magnetic energy
stored in the inductance of the circuit remains above zero value, and
(b) the electric energy stored in the capacitance of the circuit remains
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above zero value. The much used ‘“choke-input” and ‘“condenser-input’
circuits fall under the second group.

We shall analyze the operation in important circuits, i.e., the full-
wave choke-input circuit and condenser-input circuits.

1. The Full-Wave Choke-Input Circuit
a) Operation of circuits with L and R, in the common branch circuit

Circuit and operation are shown in Fig. 20. The analysis is made
by considering first one of the diodes short-circuited to obtain the phase
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Fig. 20—Starting and operating conditions of an aperiodic full-wave, choke-
input rectifier circuit.

relation of the alternating voltage &, and the steady-state current 7,,
as shown. If we assume that the diode D, closes the circuit I at the
time € =0, a transient 7, with the initial value 7,y = — 7,(, will flow
in the circuit. The total current ¢ is the sum of the currents 7,; + .
1t starts, therefore, at zero and rises as shown until the second switch-
ing operation occurs at the commutation time ¢t =7 when the second
diode D, receives a positive plate voltage. The total current ¢ in cir-
cuit II ‘after t == is again the sum of currents 7,, + 7, (i,, has re-
versed polarity with respect to 7,; and is not shown in Fig. 20) but
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and similar to (7) except for an increase of the transient term due
to the battery current I, =E,/R,.

Equation (7b) is valid only over a range of load or battery voltage
(£p) in which switching time and conduction period of the diodes
are constant (¢ ==). This range is shown by the solid part of curve
F in Fig. 22 and ends at a particular current and voltage of the cir-
cuit characteristic marked the “critical point.”

The critical point is the opérating condition at which the instan-
taneous current ¢ in the common branch circuit has zero value at
one instant. An analysis shows that in the range Ep = é,,, to Bz =E5’
each diode circuit operates independently as a half-wave rectifier cir-
cuit (battery-charger operation, curve H in Fig. 22). Current com-
mutation begins at Ey"; the diode circuits begin to interact, but the
conduction angle is still ¢ < m.

50014e-Eyax.
BEGINNING OF CURRENT
o COMMUTATION —
» 4004 *
5 €l CRITICAL POINT
] 8 BEGINNING OF TOTAL VOLTAGE o
N CHAIN CURRENTS — E=Ea+T xRy € =495 sin at
> E ‘Z_ w= 2377
& Rg = 110 OHMS
- -t ——23i5v s
£ 300 7 L =14 5 HENRIES
% F FULL WAVE 0 = 88.9°
a L— \\,21 OF HALF-WAVE (CHAIN-CURRENT
OPERATION FORMULA)
RANGE WIIH%UT \\
COMMUTATION
2001 ~
] 20 40 60 80 100

AVERAGE CURRENT T — MA.

Fig. 22—Operating characteristic of a full-wave, choke-input rectifier cir-
cuit with battery load Es or resistance load R.— E»s/I shunted by a large
capacitance.

The conduction angle increases from ¢ =0 at Eg =¢€,,, to ¢ =7
at the critical point £;” which marks the beginning of chain current
operation.

The critical operating condition is obtained by solving for ¢=20
with ¢ == or by equating the direct current to the negative peak
value of the total alternating current in L. The critical point is hence
specified by a certain current or by a certain ratio K of direct-current
resistance to alternating-current impedance in the circuit. With refer-
ence to the equivalent circuit treated in the following section, a rela-
tion to the fundamental alternating-current component of the rectified
current (see (10)), i.e.,, to the impedance Zp,, at double line fre-
quency is more useful. We set, therefore,
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(R, + By)
— =K ®)

Z(2F)

and determine significant values of K for particular circuit impedance
conditions.

If we neglect harmonics higher than 2F, which contribute little
to the peak value because of phase shift and increasing attenuation
in L, the peak ripple current (equation (10)) becomes

imln = 4/37" (émnx/z(2i‘))

and setting it equal to the average current
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Fig. 24—Same as Fig. 23 but with
large series resistance.

I= 2/7" (émax/ (Ra + RL))

we obtain K = 1.5 for the ratio as shown in (8).

The exact solution for the critical current can be obtained from
a graphic analysis by simple reasoning for the case R, = 0. The gen-
eral solution will only be indicated. It is obtained by drawing the
complementary curve (1—4,) of the total transient beginning at the
time =0 (see Figs. 23 and 24) and shifting it upward until it
touches the current 7,, thus solving for i =0 at the point of contact.
Note that ¢, is the same at ¢, and = in both cases shown.
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For R, =0, the transient section becomes a straight line having
the slope 2/7 and running parallel to the peak-to-peak connecting line
of 7,, The sine-wave slope 2/m = — cos £ gives the point of contact
at X = 50.4 degrees (Fig. 23), and the peak ripple current is obtained
from

50.4
Tmin = Tomax | SiN 50.4° — —— | = 0.2117,5,,,
90

emax

oL

=0.211

Equating this value to the average current given by (10), we obtain
the value K =1/0.211 = 1.51 for circuits with R, =0. The graphic
analysis of circuits with larger resistance (see Fig. 24) furnishes K
values sufficiently close to 1.5 to justify the use of this constant for
all practical purposes. For practical circuits with 2oL » 1/20C we
may further write Z,p) == 2oL and obtain the critical inductance®

Ly= (R,=R,)/20K = (R, + R;) /6nF. 9)

¢) Equivalent circuit for the chain current operating range (¢ == or

(R, 4+ Rp) < 1.5Zp))

Inspection of (7b) shows that average and commutation current
are directly proportional to the sum of the battery current I, and a
term having a constant current value “Ic” for a given circuit and
constant line voltage. Equation (7b) can be changed into the form

I=(gR)/(R,+ R,

indicating that the secondary circuit may be replaced by an equivalent
circuit without switches and energized by a voltage which contains
a constant direct-current component £ = I RE,. The equivalent voltage
in the circuit is the commutated sine wave resulting from the sequence
of positive half cycles + €, and + €, in the range ¢ = w. The equivalent
circuit is shown in Fig. 25(a). The single generator may be replaced
by a battery and a series of sine-wave generators (Fig. 25(b)) having
amplitudes and frequencies as given by the following equation of the

8 The relation Lo— R./1000 was given on an empirical basis for
w =377 by F. S. Dellenbaugh, Jr., and R. S. Quinby, “The important first
choke in high-voltage rectifier circuits,” QST, vol. 16; pp. 14-19; February,
1932.
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commutated sine wave:

1-3 3-5 5-7

e =
™

28 nax 2cos2F 2cos4F 2cos 6F
<1— _ (10)

All current components in the circuit may now be computed separately
by steady-state methods; the direct-current component is the total
average voltage E in the circuit.

Some useful relations of voltage components are: Line voltage in-
duced in one half of the secondary winding (root-mean-square)

|E|=11F

Total average voltage M g -
5 (@)
090 | E
E = { [ l cow. UTATED e L. |
|’ -

m~o oy

~

SNCwave & NERATOR

0.637¢par

Voltage of frequency 2F (root-

mean-square) CTS:E
CORE

{0.424 | £ | an A

0.471F Fig. 25—Components of equiva-
lent and practical full-wave, choke-
input circuits.

RESISTANCE
OF CHORE

IE~|2F=

Voltage of frequency 4F (root-mean-square)

) 0.085 | £ |
RAWES { _
0.0945E

Total choke voltage (root-mean-square)

1E|L={ T

0.482E

The current components in the common circuit branch are calculated
from the above voltages divided by the impedance of one branch cir-
cuit at the particular frequency. Because the current is commutated
every half cycle of the line frequency from one to the other branch
circuit, the average current in each diode circuit is one half of the total
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average current; and root-mean-square values of currents or current
components in each branch circuit are obtained by multiplying the
root-mean-square current values in the common circuit branch by
1/V2. The peak current in each diode circuit has the same value as
in the common circuit branch.

Average load current
B
J=—
Rn + RL

Average plate current (per diode)
I,=0.51 (12a)

Double-frequency current (root-mean-square) in common circuit
branch

| E |or

REPES

(2F)

Total current (root-mean-square) in common circuit branch

lI'L: VI2+11122F

Root-mean-square diode current or root-mean-square current per trans-
former winding

H L

[1],= (12b)

V2

Peak diode current

i, =1+ (|I~|2,,><\/2—

The total power dissipated in diode and load circuits of the practical
secondary circuit shown in Fig. 25(c) is the sum of the power losses
in the circuit resistances. In equation form, it is

Total power = series-resistance loss
+ choke-core loss

+ direct-current power in load.

The plate dissipation per diode is given by
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P,=05]1]2,%X]|7qg]. (13)

With reference to (5), we have

€a
P4=0.5|I|L2><—T (14)

where ¢, is the diode voltage taken from the static diode characteristic
at the output-current value I.

d) Regulation

The regulation of choke-input circuits is determined by the total
series resistance Kg, since the voltage E in the circuit is constant in
the useful chain current range for an energizing alternating voltage
of constant value. Thus, the regulation curve has the slope 1?5 (see
Fig. 26), which includes the diode resistance. The regulation curve

EFFECTIVE

AVERAGE VOLTAGE
E=0.9IE| \J/SLOPE:rz

0-C OUTPUT VOLTAGE ——E(n‘_)
mi
1]
]

CHARAGTER
- HARA I1STIC
2= 2. OF DIOD

- - 3
Tary 'N

2!
4 REGULATION CURVE

Rg=Tyer,
R=Rg+R_

yali

CENTER-TAPPED
o — A-C VOLTAGE SOURCE
O~C LOAD CURRENT —»= |

Fig. 26—Regulation characteristic of a full-wave, choke-circuit with high-
vacuum diode.

for a circuit with high-vacuum diodes is the sum of the 3/2-power-law
diode characteristic and the ohmic series resistance r, of one branch
circuit as shown in Fig. 26. The curve is correct for constant voltage é
and beyond the critical current value. In practical circuits, the voltage
source & has a certain equivalent resistance, which must be added to 7,.
The regulation curve Fig. 26 is invalid below the critical current value
and must be replaced by a curve following the laws discussed for
Fig. 22. '

The equivalent internal resistance of the rectifier circuit as a
direct-current supply source is the slope of the regulation curve at
the current value under consideration. This value should be used for
steady-output conditions only, since the reactances in the load circuit
cause transients at the instant of sudden load changes.
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2. The Condenser-Input Circuit

In rectifier circuits with shunt-condenser-input loads, the condenser
is alternately charged and discharged. In the final state of operation,
charge and discharge are balanced. The graphic analysis of such
circuits is comparatively simple and readily followed. Formulas for the
calculation of specific circuit conditions are easily derived from the
constructions.

a) Circuits without series resistance
The graphic analysis of a half-wave rectifier circuit without series
resistance (Rg) is illustrated in Fig. 27. Steady-state voltage é and

»

Ry

C=4 uf
R_=1500 OHMS

Rs=0
c €=150 sin 377¢
- 0

Fig. 27—Graphic solu-
. tion of operation for a
-1004 ° half-wave, condenser-
4 input circuit without
series resistance.

e-VOLTS
@
K
=
6
i
%

t=MILLIAMPERES
o
| e— 1 _____
N

current I, are constructed on the assumption that the diode is short-
circuited. The steady-state condenser voltage €, coincides with é be-
cause Rg=0.

The diode timing is as follows:

The diode opens the circuit at point 0 when the diode current
becomes zero.

Since the condenser-discharge circuit consists of C and R;, the
condenser voltage decaﬁs exponentially as shown. At point C it has
become equal to the energizing voltage €. The diode becomes conduct-
ing and closes the circuit. Because there is no potential difference

between the steady-stage voltages é and é, the condenser does not
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receive a transient charge. The current, therefore, rises instantly to
the steady-state value of the 7, curve and follows it until zero at point 0.

The timing of the full-wave circuit in Fig. 28 is quite similar. The
time for the condenser discharge through R;, is reduced since e, meets
the positive half cycle &, and thus closes the circuit through D,. Point
C in Fig. 28 is located at a higher value of & than in Fig. 27. The
conduction angle ¢ is consequently reduced although C, E,, and ©
have the same values in both circuits. The average current in the full-
wave circuit is, therefore, smaller than twice that of the half-wave

circuit.

C=4uf

R_= 1500 OHMS
Rg=0

€,28,=150 sin 3774

Fig. 28—Graphic solution

of operation for a full-

wave, condenser-input cir-

cuit without series resist-
ance.

Some of the relations obtainable directly from Figs. 27 and 28 are
i. the conduction angle ¢ =180° — @ — . (16)

The intersection of & with the decaying voltage e, furnishes for
half-wave operation (n=1) and full-wave operation (n =2)

ii. sinB=s8in® ¢ (7+6+P)/wCR,  for n=1
(16)

and sin B =s8in @ e~ (6+8)/uC R/, for n=2

where =, ®, and 8 in the exponents are in radius. This equation may
be solved graphically or by trial and error, varying . ’
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iii. The average current during conduction time is

Igy=1,(1—cose)/¢.

It is the area under a sine-wave section divided by its base. Hence, the
average plate current is as shown in (iv).

, %
iv. IL=%4—=—(1—cos¢). amn
 2n 27

v. Average current I and voltage E in the load resistor-are

I=1, for n=1
=21, for n=2}. (18)
E=IR,

vi. The diode peak current i, is, obviously

i,=1, for ¢>90°} (
. 19)

and i,=1%,8in¢ for ¢ <90°

The performance of these circuits, hence, is determined by their
power factor «CR; and the phase number n. It will be evident from
the following that the series resistance R, of practical circuits appears
as an additional parameter which cannot be neglected.

b) Circuits with series resistance )

In circuits with series resistance, the steady-state condenser volt-
age €, does not coincide with the supply voltage €, as illustrated in
Figs. 29 and 30. Phase displacement and magnitudes of current and
voltage under steady-state conditions are required for analysis of the
circuit and are computed in the conventional manner. The parallel
circuit C | | Ry is converted into an equivalent series circuit to de-
termine the angles ® and ®’ by which 7, is leading €, and ¢, respectively.
The steady-state condenser voltage €, in the parallel circuit equals the
voltage across the equivalent circuit as shown by the vector diagram
in Fig. 30.

The diode opens the circuit at the instant ¢; = 0. For circuit con-
stants as in Fig. 30, the diode current i; substantially equals 7, at the
time of circuit interruption because the transient component i, of
the current, as shown later, has decayed to a negligible value. Point 0
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is thus easily located. In circuits with large series resistance, however,
1, = 0 does not coincide with Z, =0 due to slow decay of the transient
i/. In both cases the condenser voltage e, equals the voltage &,
at the time 0, because i; =0 and consequently there is no potential
difference on Ry and transients do not occur at 0. The condenser
voltage decays exponentially on R, from its initial value at 0, as dis-
cussed for circuits with Ry = 0, and meets the supply voltage é again
at point C. At this instant (¢,), the diode closes the circuit. Current
and voltage, however, do not rise to their steady-state values as in

200 i d o]
0
1004 RL
.‘2 ec
S & &
35 , N B
27 Rg=220 OHMS  Epax = I50V.
20 RL=1500 OHMS @ = 377
3 C=4auf
= <1004
A A
-200 L a77sur
Fig. 29 (above)—Graphic solution 4 1500
of operation for a half-wave, con- MF OHMS 246
denser-input circuit with series OHMS
resistance. B B
PARALLEL EQUIV. SERIES
LOAD CIRCUIT! CIRCUIT AT
w=2377
Fig. 30 (right)—Equivalent series |
circuit for the analysis of half- =oC (SERIES)
wave, condenser-input circuits with
R.>0.
Q=66.15°
Rs : R_(SERIES)

circuits with Ry = 0, because the steady-state voltage é,,, differs from
the line voltage €, by the amount Ae, =7, Rs. A transient voltage
of initial value e,g) = — (%,(0)Rg) occurs on C. It drives transient cur-
rents i/ and i,” determined by Ohm’s law through the resistances Ry
and R, respectively. (See Fig. 30).

The transients e, and 7,” prevent voltage and current from follow-
ing the steady-state wave forms, as

'id= i‘ + it, = is - ic(o)c—t/(nnllkb)c (20)
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tion for the final condition &) = 306 volts. If desired this value can
be checked and corrected by exact calculation.

The final construction in Fig. 32(b) was made with this value. The
shaded areas include the amplitude values i; and e, during ¢ which
are given by (20) and (21).

The average current during ¢ is the area under the sine-wave sec-
tion minus the area under the exponential curve 7,, both divided by
the base. This furnishes

1—,“4,; = ismnx [ (COS ,B,_' cos (d’ + ,B,))

— oCR” (1 — ¢~ #/«CR") gin (@ + B)]1/¢ (22)
2]
1.0}500 3 N 1o}500
g ¢ N e, €, '3 c //‘\'(3’
+4c0e 8 s\ O [ 2 |7 \
P A; N - 8 : e Ecl/
|&; L 300 N T 380 —‘—L:-’A\
w to N\
Q.5 AN A 5 /
3" oo B N .
< to A Cc, / leJ.—Cz
100 1 —J 2 100 \/\ 1
ta g + ..-17.. —
0 ya
30 g #
<ok RCEE 7
A o /
100 P
-—
-200 (e,’ R
-5 EQUIVALENT 3i
® -300 et CIRCO }ZL
T
1 -400 €15 _ o3l onvS XL
1ot Z.=165.14164.8
PR
L Rg =500 OHMS I}
250 300 350 o S , 4 v
6=17.9 = 86. HMS
0)C2 e 2
(o) (b)

Fig. 32—Graphic solution of final operating conditions for circuit in Fig 13.

with R’ = Rg||R, and ¢, B and B’ determined graphically from the
construction or by trial of values. The average plate current per diode
is again

I, =1,.4)/$°/360°
and the direct load current in this full-wave circuit is I =2I,. In case

of large time constants, as in the example, the average condenser
voltage E, is quite accurately obtained from

Ec=0.5(ec(o, + ec(¢)) (23)
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and the load current by Ohm’s law I = E /R,

The root-mean-square values of ripple voltage and diode current
‘are needed for many calculations. They may be obtained for all cases
from

‘ E l(rlpple) =0.321 (ecmax - ec(min)) (24)

360°
[I,| =1.11, . (25)
¢0

Equation (24) holds within 10 percent for wave shapes varying from
a sine-wave to a saw-tooth and (25) gives better than 5 per cent
accuracy for all wave shapes occurring in condenser-input circuits.

and

¢) Generalized operation characteristic (steady-state operation)

It has been shown that the conduction angle is a function of the
circuit constants in condenser-input circuits. The section of the ener-
gizing voltage é utilized during conduction time has, therefore, no
fixed value as in choke-input circuits where ¢ — 180 degrees and where
the voltage € during ¢ is a half sine wave, It is, therefore, not possible
to derive a general equivalent circuit for condenser-input circuits
which contains a voltage source of fixed wave shape and magnitude.®

Steady-state conditions as well as transients are controlled by the
circuit constants, which are contained in the product oCR;. The angle
¢ depends further on the relative magnitudes of R, and Ry and is,
therefore, described in general if also the ratio Rg/R; is known. Gen-
eral curve families may thus be evaluated which show the dependent
variables E, i, and I in terms of ratio versus the independent variable
«CR;, for various parameter values Rg/R;. The series resistance Rj
includes the equivalent diode resistance which is evaluated by means
of (6), because the current wave is periodic in the final operating state.
The reasoning leading to (6) is not applicable to a single transient,
as obtained for starting conditions of rectifier circuits.

Generalized characteristics have been evaluated for the three types
of circuits shown in Fig. 9. The characteristics in Figs. 3, 4, and 5
show the average voltage E across the load resistance R, as a function
of wCR; and Rg for half-wave, full-wave, and voltage-doubling cir-
cuits. They permit the solution of the reversed problem to determine
the magnitude of the applied voltage necessary to give a certain

.9 The equivalent voltage may be expressed by a Fourier series for each
individual case as shown for the simplest case R, =0 by M. B. Stout in

footnote reference 1; the method, however, is hardly suitable for practical
circuit analysis.
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average voltage output for a given load. The series-resistance value Eg
includes the equivalent average resistance r; of one diode and the
power-transformer resistances as reflected into one secondary winding.
As their complete calculation required too much time, the characteris-
tics were plotted from accurately measured values. The measurements
were made on circuits of negligible inductive reactance. Series-
resistance values in these circuits were determined accurately by the
method shown in Fig. 10. Table II gives a number of calculated values
which show the accuracy of the curves to be approximately 5 per cent
or better.

Table 11
Type of = _ .

Condenser-|  ~p RN 0 ¢ E e L"

Input “| %WR. |degrees|degrees| “g_. 1, I,

Circuit

0.5 0 26.5 153.6 0.335 3.33 1.69
1. 0 45.0 134.0 0.384 3.68 1.81
2. 0 63.4 111.6 0.486 4.61 2.00
2.26 0 66.15 106.4 0.503 491 2.02
4. 0 75.9 87.1 0.623 6.60 2.24
8. 0 82.9 66.1 0.742 9.86 2.60
Half-Wave | 16. 0 86.4 48.6 0.862 13.92 3.00
n=1 32. 0 88.2 35.3 0.930 19.90 3.51
64. 0 89.1 25.1 0.996 217.5? 4.16

2. 0.10 — 121. 0.434 4.48 1.9
2.26 0.147 | 50. 123. 0.428 4.42 1.88

4. 0.06 65.1 99.3 0.632 5.28 2.1

4. 0.10 56. 108.4 0.537 5.14 2.0
1. 0 26.5 142.5 0.644 3.47 1.76
2. 0 46.0 121.0 0.678 4.17 1.90
4, 0 63.4 92.6 0.740 6.06 2.17
4.52 0 66.15 86.8 0.744 6.55 2.24
Full-Wave 8. 0 75.9 67.0 0.816 9.30 2.65
n=2 16. 0 83.0 49.0 0.885 13.74 3.00
32. 0 86.4 35.6 0.945 19.70 3.60
64. 0 88.2 26.4 0.999 27.1? 4.15
4. 0.05 — 104. 0.671 5.43 2.05
4.52 0.0735| 50. 105. 0.636 5.35 2.04
8. 0.06 56. 90. 0.710 6.20 2.20
30.2 0.10 17.9 100.6 0.646 5.39 2.08

In compiling the data for the current-ratio characteristics in
Fig. 6, it was found that the three rectifier-circuit types could be
shown by a single family after a “charge factor” n was added to the
product of the circuit constants «CR;, and to Rg as shown in Table II,
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The factor n is unity for the half-wave circuit. For the full-wave cir-
cuit, n is 2 because the condenser C is charged twice during one cycle.
For the voltage-doubling circuit, n is { because the two condensers
require together twice the charge to deliver the same average current
at double voltage. The values in the table indicate that the factor n
is actually not a constant. The mean value of the current ratios does,
however, not depart more than 5 per cent from the true value, the
error being a maximum in the steep portion of the curves and de-
creasing to zero at both ends. The upper section of Fig. 6 shows the
ratio of root-mean-square current to average current per diode plate.
This family is of special interest in the design of power transformers
and for computation of diode plate dissipation.

Fig. 7 shows the root-mean-square value of the ripple voltage
across R, in per cent of the average voltage.

The voltage-doubling circuit shown with the other two condenser-
input circuits in Fig. 9 may be regarded in principle as a series
connection of two half-wave rectifier circuits. Each condenser is
charged separately during conduction time of one diode, but is dis-
charged in series with the other condenser during the time of noncon-
duction of its associated diode. The analysis of operation is made
according to the method discussed but will not be treated. The average
anode characteristics of RCA rectifiers are shown in Fig. 8. The
method of carrying out a practical analysis by use of these curve
families has been outlined in the first section of this paper.

APPENDIX
System of Symbols
The number of special symbols and multiple indexing have been
greatly reduced by introducing four special signs for use with any
symbol.

1) The symbols in gerieral are of standard notation, lower case letters
t, r, indicate instantaneous, sectional, or variable values and
capital letters I and R indicate steady values.

2) Special values
a) Sinusoidal voltages or curremts are indicated by a sine-wave
sign above the symbol &, 7, E. Their maximum values are indi-
cated by index, €,,,5, Emnax.
b) Peak values are indicated by circumflex; é, %, 75, maximum
peak values are written 7,,,, etc.
¢) Average values are indicated by a horizontal bar; E, I E.



3)

ANALYSIS OF RECTIFIER OPERATION 39

d) Root-mean-square values are indicated by vertical bars |E|,
1], [R,].

An index in parenthesis specifies the time at which the symbol is
valid, i.e., its numerical value. Hence, 7,.,, is the steady-state alter-
nating-current value at the time = and 7,(,, is the transient current
at the time 0. When used with an average or root-mean-square
value, the time index specifies the period over which average or
root-mean-square values are taken, such as I, |,](s). A conduc-
tion time index (¢) on resistance values such as 7, E, is unneces-
sary. (See definition.)



SPACE-CURRENT FLOW IN VACUUM-TUBE
STRUCTURES#*%
By

B. J. THOMPSON

RCA Laboratories,
Princeton, N. J.

Summary—From well-known formulas for apace-current in diodes and
for amplification factor in triodes, interelectrode capacitance, plate current,
and potential distribution in triodes and multi-grid tubes are determined
through use of the concept of planes of equivalent potential. By the same
means, amplification factor in multigrid tubes is derived.

INTRODUCTION

workers, largely, one may suspect, because it has presented
- many possibilities for ingenious methods of analysis. The re-
sulting knowledge of the design factors which determine the various
performance characteristics of tubes is quite complete and is expressed
in terms which can readily be applied to practical tube-design problems.
In spite of this state of the art, the general tendency is to make use
of the more “scientific” phases of tube design to aid qualitative under-
standing rather than to supply specific design information. In this
paper, the writer presents some of the concepts of vacuum-tube analysis
which he has found informative and useful.

First, space-current flow in diodes will be discussed. Then, methods
will be presented for reducing triodes and multigrid tubes to equivalent
diodes. Amplification factor, interelectrode capacitance (cold), and
electron transit time will be covered. The writer claims little origi-
nality and no novelty in this material. Some effort has been made to
give credit to the proper sources.

VACUUM-TUBE design is a subject which has intrigued many

A. DiopE THEORY

Ideal Case
The simplest vacuum tube is the diode. The behavior of multi-
electrode tubes may be described most readily in terms of the behavior
of a diode. For these reasons our treatment will start with the diode.
In the ideal diode, electrons are emitted from the cathode in un-

* Decimal Classification: R131.
t Reprinted from Proc. I.R.E., September, 1943.
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limited numbers at zero velocity and a part of these are drawn over to
the anode under the influence of the positive field established by its
potential. :

In Figure 1, K represents the infinite plane cathode at zero potential
and A the plane anode at a positive potential E, spaced a distance d,,
from the cathode. Let us suppose first that no electrons are emitted
from the cathode. The potential distributjon will then be as repre-
sented by the line a, the gradient at all points being E,/d;,. If now
the cathode begins to emit a limited supply of electrons, all of these
electrons will be drawn to the anode. The electrons move at a finite
velocity and, therefore, there is a certain number of them in the space
at all times. The field set up by the negative ‘“space charge” of these
electrons acts to depress the potential in the space below that of the
first condition, increasing the field near the anode and decreasing it
near the cathode. This condition is shown by line b.

If the rate of emission of elec-
trons is continually increased, all of
ey the emitted electrons will be drawn
r to the anode and the gradient at
E a the cathode continually reduced un-
til the gradient reaches zero. Since
the electrons are assumed to be
emitted with zero velocity, they can
not move against a retarding field;

) ] o therefore, there will be no increase
(Ii“izg('i’eltvﬁ(}’ltetg?;iﬂgtr;ﬁlg;o&smo?f in anode‘ curre‘nt with further in-
space charge. crease in emission beyond this
point. The condition of zero gradi-

ent at the cathode is represented by the line ¢ in Figure 1.

The mathematical analysis of the ideal parallel-plane case is quite
simple. It will be presented here as an example of this type of analysis.

Poisson’s equation in rectangular co-ordinates is

K A

—d

02E /0x2 + 02K /oy? + 02K /022 = — 4xp. (1)

Since there is no gradient in directions parallel to the cathode and
anode, the equation becomes simply

O2E /0x2 = — 4mp. ' (2)
We may also write that

I=pv (3)
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and v= (2eE/m)1/2 (4)

where p is the space-charge density, £ the potential at any point a
distance z from the cathode, v the velocity of the electrons at «, I the
current per unit area, and e and m the charge and mass of the electron.
On combining the last three equations, we obtain
d2E I .
=47 (5)
dr2 (2eE/m)1/2

If we multiply both sides by dE/dz and integrate once, we obtain

1 /dE\ 2 8wl
—(— ) =——————E12 4 Fy (6)
2\ dx (2e/m)1/2

where F is the field at the cathode. If we let F, equal zero, a second
integration gives us

E» m \1/4 | e
g | = 3(anyis <_> . @
0 2e 0
1 /2 \1!/2 E,3/2
or I=—|(—
9w\ m dkp2
=2.33 X 10-¢ (E,3/2/d,,2). (8)

This is the well-known Langmuir-Child! equation for space-charge-
limited current flow per unit area between parallel-plane electrodes.
It means that for each square centimeter of cathode or anode area
2.33 microampers of current will flow with 1 volt difference in potential
and a distance of 1 centimeter between cathode and anode, and that
a current of 233 microamperes per square centimeter will flow if
the potential be raised to a little over 30 volts or the distance reduced
to 1 millimeter.

The foregoing analysis 'is for parallel-plane electrodes. The case
of concentric cylinders, of much practical interest, is very much less
simple to analyze and, therefore, only the result will be presented here.
Excellent analyses are available in the literature?

11, Langmuir and K. T. Compton, “Electrical discharges in gases—
Part II,” Rev. Mod. Phys., Vol. 3, pp. 238-239; April, 1931.
2 See pp. 245-249 of footnote reference 1.
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The current in amperes per centimeter length of the concentric
cylinders is given by the well-known Langmuir equation

=14.66 X 10—6 (E,3/2/r,0,2) (9)

where 7, is the radius of the anode and 8,2 is a function depending on
the ratio of anode radius to cathode radius. Tables and curves of S
have been published3. It will be noted that the current again depends
on the 3/2 power of the anode voltage; otherwise, the expressions at
first glance do not appear very similar. Part of this difference is
due to the fact that one expression is for current per unit area, while
the other expression is for current per unit length.

It will be interesting to put the two expressions in similar form.
Let us divide equation (9) by 2#r,. Equation (9) then becomes
identical with equation (8) except for the presence of the term g,2
~in the denominator and the fact that the distance 7, is measured from
the axis of the cylindrical system. When the ratio of anode diameter
to cathode diameter becomes very large, 3,2 approaches unity and,
of course, the distance between cathode and anode approaches r,
as a limit, At this limit, then equations (8) and (9) become identical,
and we observe the interesting fact that the anode current flow per
unit area is the same in a cylindrical system with fine-wire filament
as it would be in a parallel-plane system with the same distance be-
tween cathode and anode. This statement, of course, neglects the
effect of initial velocity of emission.

At the other limit where the cathode and anode diameters ap-
proach each other the system is obviously essentially a parallel-plane
one. The value of B,2 then changes rapidly and maintains such a
value that r,28,2 is equal to d;,2.

The fact that the two expressions give identical results at the two
limits of ratio of anode-to-cathode diameter should not lead one to
suppose that the expressions are approximately identical for inter-
mediate ratios. Where the anode diameter is from 4 to 20 times the
cathode diameter, the current calculated from (8) is in excess of that
indicated by (9) by very nearly 20 per cent. This is the maximum
error that would result from the use of expression (8) for cylindrical
structures.

The potential distribution between cathode and anode may be cal-
culated most usefully from the expressions for current. From (8)
we may write

3 See pp. 247-248 of footnote reference 1.
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E3/2/dy,? = E3/2/a?
or E =E,(x/d,,) /3.

In other words, the potential between parallel planes varies as the
four-thirds power of the distance from the cathode in the case of
space-charge-limited currents.

The potential distribution between concentric cylinders is less
simple. We may write from (9)

E3/2/7,8,2 = E3/2/rB2
or E =E,(rB2/r,B,2)2/3

where (32 is taken for the ratio r/r,. This expression is not analytical,
the values of 8 and B, being obtained from curves or tables.

Effects of Velocities of Emission

Electrons are emitted from a heated surface with a random dis-
tribution of velocities in all directions. The velocities which concern
us in the present analysis are those normal to the surface of the
cathode. This velocity distribution may be expressed most simply as
follows: n/ny = e—E¢/kT where n is the number of electrons out of the
total number n, which has a sufficient velocity to reach a plane electrode
paralle]l to the cathode at a negative potential of E, T is the tempera-
ture of the cathode, and & is Boltzmann’s constant. Expressed in terms
of current this becomes I =1, Ee/kT where'l is the current reaching
the negative electrode and I, is the total emission current from the
cathode. To carry this out experimentally, it is necessary that the
collector electrode be placed so close to the cathode that space-charge
effects do not cause a potential minimum in space.

We initially assumed that all electrons were emitted with zero
velocity and that, therefore, the field at the cathode would not be
negative. In the practical case where all electrons have finite velocities
normal to the cathode, all of the emitted electrons must reach a posi-
tive anode parallel to the cathode unless at some point between
cathode and anode a negative potential exists.

Fig. 2 shows the potential distribution between parallel-plane
cathode and anode for successively higher values of emission. Line a
represents the case where there is no emission, and, therefore, no
space charge, with resulting constant potential gradient between
cathode and anode. Line b shows the case where there is sufficient
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emission to reduce the gradient at the cathode just to zero. This is
similar to the condition represented by ¢ in Fig. 1 with the important
difference that now all electrons pass over to the anode because of their
finite velocities of emission.

Any further increase in cathode emission, however, will cause the
potential near the cathode to become slightly negative as shown in
line ¢. In this case all electrons having velocities less than E,, are
turned back to the cathode, while those electrons having greater veloci-
ties of emission pass on to the anode. Further increases in cathode
emission cause the potential minimum to become more negative with
the result that a larger fraction of the emitted electrons return to the
cathode. For continued increase in cathode emission, however, there
will always be some slight increase in anode current.

The results obtained from the

simple analysis based on zero ve-

rEb locity of emission are obviously not
I applicable to this practical case if

b precision is desired. Since a greater
+ (3 maximum potential difference (E,

0 + E,,) is acting over a shorter effec-
Em”” —d tive distance (d,, — d,,,) and since
h the average velocity of electrons is
Fig. 2—Potential distribution in a higher because of their initial ve-
diode, showing the effect of initial locities and hence the sapce-charge

velocity of electron emission. effect of the electrons is less, it is

obvious that the space-charge-
limited current flow for a given anode potential is greater in the actual
case than in the ideal.

Langmuir? has presented a complete analysis of the space-charge-
limited current flow with initial velocities of emission. He has shown
that a good approximation may be made by the use of (8) with a
correction for the reduced effective distance and the increased effective
potential. His equation is as follows:

(E,—E,)3? 0.0247T1/2
1,=233x10- 00— 14—~ (10)
(dro — dim) 2 (E,—E,)1? ‘

where T is the cathode temperature in degrees Kelvin. I, is in am-
peres per unit area. E,, is negative in sense. The value of d,,, in centi-
meters may be calculated from the approximate expression

4 See pp. 239-244 of footnote reference 1.
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dim ~ 0.0156 (1/10001,)1/2 (T/1000)8/4,
The value of E,, is given by E, =— (T/5040) log,, (1,/1,).

More complete results of Langmuir’s analysis are too cumbersome
to be presented here. The use of (10) should lead to errors not greatly
in excess of 2 per cent even under extreme conditions.

It is interesting to observe from Langmuir’s calculation in a prac-
tical case where the cathode temperature is 1000 degrees Kelvin, the
emission density greatly in excess of the anode current, and the anode
current density 1 milliampere per square centimeter, that the distance
from cathode to virtual cathode is approximately 0.016 centimeter
(0.006 inch). Thus, in modern close-spaced vacuum tubes the position
of the virtual cathode cannot be neglected.

The error involved in using (9) as compared with the exact solu-
tion for cylindrical structures is less than in the corresponding case
of parallel planes. For a discussion of the effect of initial velocities
in this case, the reader is referred to Langmuir and Compton5,

The potential distribution between parallel planes, taking into
account initial velocities, may best be determined by the use of a plot
presented by Langmuir and Compton®.

B. TRIODE THEORY

Triode Mu Formulas

The earliest analysis of the electric field existing between parallel
planes with a parallel-wire screen interposed is that of Maxwell’. In
this it is assumed that the spacings between the planes and the screen
are large compared with the spacings between wires and that these
in turn are large compared with the wire diameter. The result ex-
pressed in vacuum-tube terminology is

2wd,y

alog, (2sin nr/a)

27nd,,

or (where =r/a is small).

p=—
alog, (a/2nr)

5 See pp. 252-255 of footnote reference 1.

8 See Fig. 42, p. 243 of footnote reference 1.

7J. C. Maxwell, “Electricity and Magnetism,” third edition, 1904, Vol.
1, section £03.
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In these expressions, d,, is the distance from the center of the grid
wires to the plate, a the spacing between grid wires (¢ = 1/n, where n
is the number of wires per unit length), and 7 is the radius of the grid -
wires. It will be noted that the distance between grid and cathode
does not appear.

This formula is in serious error when the spacing between grid
wires is not large compared with the wire diameter, as is frequently
the case. Because of this, van der Bijl developed empirically the for-
mula u=Cd,, rn*+ 1, where C is equal to 160 for parallel planes.
An obvious defect of this expression is that u can never be less than
unity.

The most generally useful and accurate formula for amplification
constant which has been published is that developed by Vogdes and
Elder®, This analysis assumes that the spacing between grid wires
is small compared with the distances between the grid and the other
electrodes. The development is as follows.

Fig. 3 represents the geometry of the vacuum tube. By means of
a conformal transformation, this same geometry may be represented
in different co-ordinates. In such a transformation, equipotential sur-
faces and flux lines still cross at right angles and all laws of electricity
still apply. '

Suppose the geometry represented in the w plane in Fig. 8 be trans-
formed to the z plane by the transformation z = e27nw,

Since 2=z +jy
and w=1u+jv
then X -+ Jy = e X ei2mnv — peif,

This transformation is represented in Fig. 4. The cathode is a point
at the origin. The grid wires become a single figure intersecting the
x axis as e—2m and e27*, The center of the grid wires is at z = 1.
The anode is a circle about the origin of radius equal to e27ndes,

The figure representing the grid wires is not a circle. If r is less
than a/2w, however, it can be shown readily that the figure is essen-
- tially circular and it will be assumed, therefore, that such is the case.
If the figure is a circle, its radius is

e2nnr — g—2mnr

= sinh 2mnr
2

3B. F. Vogdes and F. R. Elder, “Formulas for the amplification con-
stant for three-element tubes,” Phys. Rev., Vol. 24, p. 683; December, 1924.
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and its center is located at

627‘"" + e—2mwnr
£ =-—————=cosh 2mnr.
2

In Fig. 3, if the anode were removed to infinity and a potential
applied to the grid, the successive equipotential surfaces at greater
distances from the grid would become more and more nearly planes
until, at distances several times a, the surface could be regarded as
essentially a plane. Therefore, under the limitations of our assump-
tions concerning relative spacings, the anode plane may be considered
to be the equipotential surface due to the field of the grid alone. This

CATHODE GRID ANODE
@
w 9 dgp

"

©)
“w”PLANE T
Fig. 3—Cross section of a triode in “2” PLANE
normal co-ordinates. Fig. 4—Cross section of the triode of Fig.
3 transformed from the w plane to the
z plane.

is equivalent to saying that a circle of radius e27"4» — cosh 2xnr drawn
about the “center” of the grid wire in Fig. 4 does not differ materially
from a circle of radius e27#4%» drawn about the origin. The justification
for this assumption may be checked by considering the rather extreme
case where nd,;, =0:50 and nr = 0.03. Then €277 equals 23.1 and
cosh 27nr eQuals 1.02.

The convenient result of these assumptions is that a line charge
placed at the ‘“center” of the circular grid wire, Fig. 4, produces
equipotential surfaces at the surface of the grid wires and at the anode,
since the charge on the cathode located at minus infinity must be zero.

Let us place a charge — @ at the “center” of the grid wire. The
potentials E,, E, and E, of the cathode, grid, and anode become

E, = C+ 2Q log cosh 27nr
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E,=C + 2Q log sinh 2mnr
E,=C+2Q2mnd,,.

If the cathode potential be taken as zero,
E, = 2Q log sinh 2znr — 2Q log cosh 2xnr

= 2Q log tanh 2xnr |
and E, =2Q 2wnd,, — 2Q log cosh 2nnr.

Under these circumstances, the amplification constant may be defined
aspu=—E,/E,

log cosh 2znr — 27nd,,
whence . p= .

log tanh 2mnr

The assumptions made in this derivation invalidate the expres-
sion for use with relatively very close spacings between electrodes.
The same type of analysis as that presented by Vogdes and Elder may
be made to give more rigorous results. Salzberg® has carried out such
an analysis. It differs from that just presented chiefly in that an
additional line charge is placed on the x axis, Fig. 4, outside the anode
at such a position as to make the true anode cylinder an equipotential
surface. Therefore, the anode may be allowed to approach much more
closely to the grid. This leads to an expression accurate for cases where
the spacing between the anode and grid is small compared with the
wire spacing, though not when the wire spacing is small compared
with the wire diameter. Salzberg’s expression is

log cosh 2xnr — 2znd,,

- log tanh 2znr — log (1 — e—47"do» X cosh2 2mnr) '

There is no obviously useful definition of amplification factor in
the purely electrostatic case (no space charge) when the charge density
induced on the cathode is not uniform. It is possible by extension of
the analysis described above, however; to arrive at an expression for
the charge distribution on the cathode when the spacing between
cathode and grid is finite. Salzberg has carried out such an analysis!®.
It departs from that of the cathode at infinity by considering the poten-

9 Bernard Salzberg, “Formulas for the amplification factor of triodes,”
Proc. I.R.E., Vol. 30, pp. 134-138; March, 1942,
10 Not published.
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tials in space produced by a line charge at the cathode in addition to
the others.

The amplification-factor formulas here given may be applied to
cylindrical tubes if 7, log (7,/r,) is substituted for d,, where r, and r,
are the radii of the grid and anode, provided r/7, is small.

Equivalent Potentials in Triodes

For most practical purposes in calculating the electric fields at
cathode, anode, and the space between, except very near the grid, a
potential may be assigned to the plane of the grid. In other words, it
is assumed that an equipotential plane may be substituted for the grid
without altering the electric fields. This would be true only when the
grid wires are small and closely spaced in comparison with the spac-
ings between grid and cathode and anode.

K q A
i,/c q
o}
d d
qk 4’ P Cqc
@)
i
Q
i G
s A Ny
|
.o K Ckc A
Fig. 5—Triode with equivalent  Fig. 6—Star network of the capaci-
plane G at grid. tances of the triode of Fig. 5.

The equivalent potential of the plane of the grid E; may be derived
in several ways. The most simple with which the writer is familiar is
the following. The capacitance between anode and the equivalent plane
G at the grid, Fig. 5, is Cpg = 1/4=d,;, and the capacitance from cath-
ode to G, Cyg = 1/4wd,, while, by definition C, = uCyq.

In the star network of capacitances, Fig. 6,

ECy+ ECpa + EiCie

EG = .
Cye + Cixa + Cpa

Let us make E, equal to zero. Then,

I"-Ec'*'Eb
pt1 +dap/dak
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Ec + Eb/ll'
or EG:
1+ 1/p + dyy/dyn

The physical basis for this analysis is that the anode can influence
the field at the cathode only by acting through the grid plane. By
definition, the grid has p time the influence of the anode. It is obvious
that this reasoning implicitly assumes that amplification factor is
proportional to grid-anode spacing, for we might just as well have
called the cathode the anode. The quantity d,,/d,u is simply the re-
ciprocal of the amplification factor of the grid with respect to the
cathode.

We shall find it convenient to determine another equivalent-poten-
tial plane. The equivalent potential of the grid plane depends on grid

and anode potentials and on grid-

h Q A

g 1 ' cathode and grid-anode spacings.
o : Is there an equivalent plane the
o, | potential of which depends only on
o34 grid and anode potentials and grid-

f o | anode spacing?
£ Eeo—t" In Fig. 7, Eg; is the equivalent
Ec | potential of the grid. If the con-
° stant potential gradient between
0 ° - J grid and cathode extended past the

grid, the potential E at any point

Fig. 7— Determination of equiva- . 4;0. 000 o from the grid would be

lent potential Eo of the @ plane.

E=Eg (1+ z/d,)

(B, + Ey/1)
= ¢ (1 + x/dgk)n
1+1/pn+ dﬂp/dgkf"'

We wish to find a potential E = E, at a distance z = d,, from the grid
which is independent of d,. At such a point the ratio

14+ z/dy,

1+ 1/p + dgp/dyp
must be independent of d .. Obviously this means that
z dyo/ Ao

dp 14 1/n
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or z=d,/(u+1) =d,.

The potential E, is given by
B E,+ E,/u
o141/
Applications of this equivalent-potential plane will be given

Interelectrode Capacitances in Triodes without Space Charge

The direct capacitance between grid and anode, C,, may be cal-
culated readily from the expression for E, the equivalent potential
of the plane of the grid.

The capacitance per unit area from anode to the equivalent plane
of the grid is Cpo =1/4nd,,.

dEg 1 1
Then Copp=Cpg—= < .

dE, A4nd,,\ 1+ 1/p+dy/dup
1 . 1
Similarly Co= > .
drdy, \14 1/p + d,,/dpn
Cp 1 1
By definition C,; =—= .
n dndy \ n+14d,,/dy,

These derivations are for the parallel-plane case. The case of cylin-
drical electrodes may be treated in a similar fashion.

Amplification Factor in Multigrid Tubes

The analysis of multigrid tubes may be readily carried out by use
of the second expression for equivalent potential E,.

In Fig. 8, the @ plane is to be substituted for g, and 4. Its potential
is
Ex+ Ey/ 1oy
Ef=——v-—

1+ 1/pgop

and its distance from g, is dy;, = dj1g2 + dy2p/ (1 + py2,). We now have
a triode and can calculate its p. The simplest expression is pu,,=
(Wo192/8g192) g1 Where 'y, is the amplification factor of g, with
respect to a plane at g,.
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Now K192 = Hg1q (dEcz/qu)
= l"'glq(l + 1/1"'029)
= 1192 (@1¢/dg1g2 (1 + 1/py5,) .

On substituting the expression for d,, in this equation, one may re-
duce it to the following form by simple manipulation: g, = /550 +
W1/ 1tg2p Where 1/ is the value p,,, would have if g, were removed.

Of course pg1p = py1goigay Whence™ gy, = p'j1ooi,0p + 151 The
direct capacitance between g, and g, may also be determined readily,
since C,y,0 =C,,(dE,/dE ;). Also, the capacitances between grids
and anode or cathode may be determined in the same manner.

By an obvious extension of the method, amplification factors and
capacitances may be determined in structures containing any number
of grids.

K A
K q, q, Q A q
o o { |
o ° |
[} e} | |
o o | |
(0] (o] | |
o o | E l
o o i
(o] (o] | Es
(o] (o] l l
° ° | |
Fig. 8—Determination of amplifi- I
cation factor and inter-electrode o h —d
capacitance in multigrid structures Fig. 9—Apparent location k of the
by use of the @ plane. cathode as seen from the grid.

Effects of Space Charge on Potential Distribution in Triodes

In the case where space charge between grid and anode may be
neglected (as is usually the case in receiving tubes with negative
control grids), a quite precise equivalent diode may be constructed by
the use of the first expression for equivalent potential with a space-
charge correction. Fig. 9 shows the potential distribution in a triode
with space-charge-limited current. It is obvious that the field at the
grid is the same as would exist without space charge if the cathode
were at point h, determined by drawing a tangent to the potential
curve at the grid. If it be assumed that the potential between cathode

11 For an alternative derivation see S. Koizumi, “On the amplification
constants of multi-electrode vacuum tubes,” Jour. I.LE.E. (Japan), pp. 505,
857; 1930.
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and grid varies as the four-thirds power of distance, d,, is three
fourths of d,. Hence, we must modify the expression for E; as
follows:12

Ec+Eb/i"

EG = .
1+1/p + (4/3) (d,p/dgrr)

The analysis of the current-voltage relationship of a triode may be
made directly from the diode case by the use of this equivalent-diode
expression. If in the equivalent diode the space current Iy = f(Eq)
the cathode current (equal to the plate current with negative grid) is
given directly. The transconductance g, is found by taking the de-
rivative of f(Es) with respect to E,. The plate conductance 1/7, is’
found by taking the derivative!® of f(Eg) with respect to E,.

Electron Transit Time in Negative-Grid Triodes

The electron transit time in any electrode structure may be cal-
culated readily if the potential distribution is known. In general

dx m \1/2 dx
t = - = — .
/ v < Ze> / E/z2

The calculation of transit time in the absence of space charge is
obvious. In a parallel-plane diode with space-charge-limited current,
the transit time from cathode to anode may be calculated if it be
assumed that

E =FE,(x/d;,) 43

m \V2 4,23 [
whence t=— x 23y
2e EN2 ],

12 B, D. H. Tellegen, “The calculation of the emitted current in a triode,”
Physica, Vol. 5e, pp. 301-315; 1925.

13 Note added April 6, 1943: Fremlin!4 discusses several old expressions
for equivalent diode potential, none of which is similar to that given above,
and then derives an expression for anode current of a triode starting from
the known condition of grid and anode at such potentials as to maintain the
space-potential distribution of a diode undisturbed to the anode (grid at
“space potential”). Unfortunately, no simple analysis of this sort is valid
when there is appreciable space charge in the grid-anode space as is implicit
under Fremlin’s assumptions. In the case of negligible grid-anode space
charge, Tellegen’s expression seems satisfactory.

14 J, H. Fremlin, “Calculations of triode constants,” Elec. Communica-
tions, July, 1939.
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m \V? 3d,
- _2: E,\/2

=5.05 X 108 (dy,/E,'/?)

where ¢ is in seconds, d,, in centimeters, and £, in volts. In other
words, the electron take three times as long to pass from cathode to
anode as if it had traveled at the final velocity the entire distance, and
half again as long as if it had been uniformly accelerated.

The cylindrical analysis is not so simple but may be carried out as
presented by W. R. Ferris.!

In the case of electron transits between grid and anode, the in-
tegration is carried out with the initial velocity of the electron cor-
responding to the equivalent potential of the grid.

15 W. R. Ferris, “Input resistance of vacuum tubes as ultra-high-fre-
quency amplifiers,” Proc. I.R.E., Vol. 24, pp. 82-108; January, 1936.
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Summary—The radial and axial motions of clectrons in the betatron
are described by means of a potential function of forces. Previously reported
conditions of equilibrium, stability and damping of oscillations are derived
for the region of parabolic variation of the potential. Extension of the
analysis to non-parabolic regions gives an account of the injection in con-
ventional instruments in better agreement with experiment, particularly in
regard to higher voltages of injection. Space charge limitations are dis-
cussed with the help of the Laplacian of the potential of forces. By means
of an additional radial electric field electrons can be introduced as in the
magnetron, without any asymmetry inherent in the conventional betatron
circumferential injector. The analysis of the conditions of equilibrium and
stability, greatly facilitated in this case by the motion of potential, shows
that mo substantial improvement in space charge limitations can be expected
and that the required variations between the flux linking the electron orbits
and the magnetic and electric fields at the orbits are difficult to realize on
account of their complexity and narrow tolerances. The X-ray output of a
small experimental double yoke instrument was measured by a phototube
multiplier viewing an irradiated fluorescent screem and gave evidence of
multiple group electron capture.

PART I

INTRODUCTION

erator of high energy electrons and gamma rays has created

need for a comparatively detailed knowledge of the electron
dynamics of induction acceleration, both for the sake of engineering
design and for possible future modifications and improvements. New
points of view worked out for this purpose are applicable to other
electronic devices such as the magnetron, or various electron optical
lens systems of rotational symmetry. It is interesting to note that in
the betatron are the longest, longest lived, and most stable, closed
electron orbits known outside of the atoms themselves.

The idea of accelerating electrons by the solenoidal electric field of
magnetic induction has been considered by many investigators (1, 2, 3,

THE current widespread development of the betatron as a gen-

* Decimal Classification: R138.
+ Reprinted from Jour. Frank. Inst., April, May, 1947.
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6, 31).* In order for large energies to be gained in this manner, the
acceleration must take place over very long electron paths, and while
the magnetic field producing the electric field may simultaneously be
used to bend the paths back on themselves, the elements of stability
of these paths is of primary importance to successful operation. The
basic principles concerning this stability were recognized by Steen-
beck (17, 32), who published a design embodying most of the essential
features of present apparatus. These and other properties of the orbits,
especially the mechanisms of electron injection, were discussed by
Kerst and Serber (10), and the successful operation of a small betatron
was reported by Kerst in 1940 (8).

The betatron or induction accelerator consists in its essentials of
an alternating current magnet, generally with a laminated iron core!
and an air gap, and within the gap an evacuated chamber containing
an electron injector and a target. The injector, an electron gun, directs
a beam of electrons circumferentially at a phase of the cycle of the
magnet when the magnetic field is weak but increasing. The electrons,
momentarily of moderate energies, are turned by the weak magnetic
field into an approximately circular path while an electric field is in-
duced along that path by the increasing flux of the magnet, a field
which in ordinary transformers is responsible for the electromotive
force induced in the windings. Therefore, as the electrons revolve in
their orbits, they gain energy according to the number of turns they
make. Meanwhile, the magnetic field increases too, so that in spite of
the increased energy of the particles, they are held close to their
original paths. Evidently, since the energy gain is determined by the
average field intensity inside the circular path, while the field just at
the circle keeps the electrons there, some definite relation between the
two must exist. It turns out that a satisfactory relation is for the
average field to be just twice the orbital field. Finally when the elec-
trons have gained an energy corresponding to a change of flux of
almost a quarter cycle, this two-to-one condition is artificially upset and
the orbit moves toward the target. This is bombarded by the electrons
and high energy gamma rays are produced. The gamma rays leave the
chamber in the forward direction in a fairly well defined beam, but while
some high speed electrons scattered by the target are capable of leav-
ing the chamber, there is at present no published description (38) of
a method for extracting the bulk of the electrons in a well defined beam.

* All such references will be found under heading “References” on
page 103.

! Higher frequency air core systems may have desirable characteristics
but have not yet been developed successfully (1, 22).
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It is intended here to develop the equations of electron motion as
they are applied to induction acceleration, and with the aid of an arti-
ficial potential function to encompass the earlier work on the electron
trajectories and the conditions for stability, which constitute first order
calculations for the most part, considerations on wider departures from
equilibrium, particularly during injection, and the general influence of
space charge. The application of an auxiliary electric field of rotational
symmetry is discussed in detail without materially complicating the
equations. Some experimental work complementing the theory is re-
ported.

EQUATIONS OF MOTION
The pertinent equation for electron motion in an electromagnetic

field is given by
®

d ., . - -
a2 Ml = — e (E+7 x By, (1)
wherein

m= 2 .
N1 — /e and m. = 1.76 X 10" coulombs per kilogram (2)

Here it is presumed at once that effects peculiar to quantum mechan-
ical calculations are of no significance to the motion. Also, it is
assumed that the acceleration of the electron is sufficiently small that
associated force terms which appear in the general equation of motion
are quite negligible. This assumption is substantially correct for all
but the highest attainable accelerations for very high energy particles,
a case which will be commented upon separately. The component equa-
tions of motion from (1), expressed in the conventional coordinates
of the circular cylinder, are

‘%[mf] — mrtt = — [E, + 6B, — iBy], (3-7)
‘%[mr’éj — — er[Es + iB, ~ #B.], (3-0)
%[m] = — e[E. + By — 14B,]. (3-2)

The electric and magnetic field components expressed in these equations
are of course related by the Maxwell electromagnetic field equations,
and even though the sources of the field, i.e.,, charges and currents,
may be of arbitrary distribution, two restrictive equations must be
obeyed, namely:
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—

cME+%=OaM(M§=Q @)

In the ideal betatron, the electric field is assumed to be generated
solely by induction from the changing magnetic field, and it is without
sources such as charge or polarized materials. To the lines of the
magnetic field are ascribed the symmetries of an axis of revolution
and a plane of reflection. With the coordinate axis and the plane of
the origin coinciding with these two respectively, it is also assumed
that the angular component of the magnetic field, By, and the angular
variation of the axial component, 9B,/06, are everywhere zero. From
these hypotheses, it can be shown through equations (4) that of the
field components only three remain, B, which is a function of 7, z,
and t, and B, and E, which are related to B, by the equations

r 3B r 0B,
B, = — f : = —
r R rE, o (5)
In vacuum, the remaining Maxwell field equation requires of B, that
1 8 B, 1 9'B, B
r ———+——f r=0. (6

In the construction of an actual accelerator, the symmetry of the
magnetic field is unavoidably imperfect and dielectrics and conductors
associated with the vacuum chamber disturb the induced electric field.
The error made in the forthcoming analysis by neglecting the small
forces arising from the angular dissymmetries which may be present,
depends upon whether the principal forces are in unstable equilibrium
and upon whether the small effects are likely to be cumulative. Some
tentative judgment on these questions will become possible as a result
of the analysis of the ideal case.

With the assumption of complete symmetry in the fields as stated,
equations (3) reduce, with the aid of equations (5), to a comparatively
simpler set.

- [mr] mré? — erbB,, (7-7)

d . - f 4B,
i [mi] = — eb M dr, (7-2)

g‘; [mr] = [ a f ] | |




60 ELECTRON TUBES, Volume 11

d 4
= e?d—tj; r Bdr. (7-0)

Recalling the functional dependence of B,, it is noted that

2x f 'rB,(r, z, t)dr
[

is the magnetic flux passing through the circle , z. The integration of
equation (7-8) calls for a constant, C, which describes some of the
initial circumstances upon injection of the electron into the field.

m? r
€ =" vt ~ [ vBulr, 50 1001, ®
0

wherein the superscript and subscripts 0 denote the initial values of
the quantities. Thus the integral of equation (7-6) is
[

f'rB,dr + C
== .
m r

9)

If this result is placed in equations (7-r) and (7-2), it is found that

[ r Te
Bdr + C
d - - _ et 9 .{,:'
alml= — el |- (10-7)
J e,a”'rB,dr+c’
— [mzj = e e ]. (10-3)
dt 2maz L r )

Were it not for the variance of the mass, m, the form of equations
(10) would be strongly suggestive of two-dimensional potential motion.
However, the mass, or the total energy of the particle, can change only
through motion along the one existing component of the electric field,
E,. Thus from equations (5) and (9), the mass-energy equivalence
gives for the total variation of mass:

r 2
Bdr + C
S o _ - C’QLL____'
dtl:mc]— erdE, = 3 31 . (11)

and the value of m is given directly by combining equation (9) with
the formula for the mass, (2),
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[rBar+ |
e |l + meic?

mc? = lr P . - (12)

c!

the particle’s kinetic energy is thus: .

JrBar+cf

(4
_(m = mo)c®  my? Mol r -
V= e T e moc’[l__i"+z'*] +1-10-(13)
e ct

In virtually all operable betatrons, the number of “volts per turn”
is very small in comparison to the total energy of the electron, starting
at V, = .512 Mev rest energy, so that in the course of a few revolutions
the proportional change in m as it appears in equations (10) is very
small. The dependence of this change on the radial and axial trajec-
tory as in equation (11) is an order of magnitude smaller still and
may be neglected altogether.

The differentiation on the left of equations (10) leads to the terms
r(dm/dt) and z(dm/dt) having the character of viscous damping
terms, because the increasing mass of the accelerated electron tends to
bring about a reduction in the radial and axial velocities of its motion.
Again for conventional instruments having a small number of “volts
per turn,” and this includes practically all low frequency magnets,
these terms are very small and for most purposes may be neglected.
During the early, low energy stages of the acceleration, where damping
effects are of particular interest, there are other very much larger ones
to be discussed, which arise through the changing of the magnetic field.
Although the initially larger terms tend to vanish at relativistic speeds
and leave the mass variation terms as the only damping, the latter will
be ignored in most of this discussion. .

Under the above provisions, equations (10) can be written exactly
as if describing two-dimensional potential motion.

3 { ems J;rB,dr+C

Mot = — €— -
or L 2m: r

d
= - l’; V,u, (14’")
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' Bdr 4 C :
. d 4 em, j;r b
= —p— | =0y = — p— 14-
M o3 ¢ o | 5 - s Vy, (14-2)

wherein the symbol V,, the “potential of magnetic and inertial forces,”
is introduced for brevity. Also for convenience let the symbol Vy,
replace (m2/my2) V. With this notation, an approximation to equation
(13), useful for electrons whose tangential component of velocity is
the principal one, is

Ve V[\EET -1 ] (15)

the limiting forms of which are, for low energies, Vy, and for very
high energies, V2V, Vyo.

If, in addition to the magnetic and induction fields, an electrostatic
potential field V; having the same symmetries as the magnetic field is
applied to the region of the electron motion, and thus superposed on
the fields which have already been considered, the angular motion
equations (7-) and (9) remain unaltered, while to the right sides of
equations (10) for the radial and axial motions are added the appro-
priate forces obtained from the gradient of Vg, namely, e(o Vg/or)
and e (2 Vy/9z). In this case, however, the change in mass does not
occur only through motion in the tangential or angular direction, so
that in order to achieve the same simplicity as in equations (14), the
new equations must be restricted to the non-relativistic region. For
most purposes, this is not a severe restriction, since electrostatic poten-
tials large enough to materially influence the motion of the higher speed
electrons are hard to apply. In conventional accelerators, the additional
electric field is due primarily to the space charge of the electrons in
the chamber and is of importance only in the early stages of accelera-
tion. The equations of motion corresponding to equations (14) now
have the form:

a i)
MoF = — ea—r [(Vu - Vi met = — e-a—z [V.w - Vi) (16)

THE Two DIMENSIONAL MOTION

The approximate equivalence of the radial and axial electron motion
to two-dimensional classical motion in a potential field slowly changing
with time offers important advantages, both for the analytical and the
intuitive understanding of the processes involved. As has already been
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stated, the total electron path is very long, and while it is turned back
upon itself, the region in r and z which it may occupy, must of course
be within the vacuum chamber. To thus confine the electron, there
must be, in this region, a minimum in the potential surface V,, or
Vy — Vg if the additional electric field is present, and the two-dimen-
sional analog of the particle’s kinetic energy must be insufficient to
carry it beyond the potential barrier surrounding this minimum which
corresponds to a stable circular orbit. With the particle kept in this
bowl, the necessary properties of the trajectory are obtained. For
purposes of discussion, these properties may be subdivided according
to whether they depend on the momentary existence and shape of the
bowl or whether they pertain to the effects of the change of this
shape with time.

The elementary conditions for the existence of an instantaneous
stable circular orbit, an ‘“instantaneous equilibrium orbit” of radius
7, may be found directly by applying the conventional relations of
analytic geometry to the function [V, — V].

@) 5[V — Vsl =
(b) S [Vw = Vi]>0

© ;’—[VM — Ve]>0

.

) a% (Va — Vel =

@ PLVa = VeloVu Vel [M 'S0, {17
ar? Jz? aroz

On account of the symmetry which the electric and magnetic fields
possess with respect to the plane of z =0, the fourth condition is satis-
fied everywhere on this “equilibrium orbit plane.” It then follows that
on this plane the last condition is satisfied if the second and third are,
so that only the discussions of the first three conditions, called the
radial equilibrium, the radial and the axial focusing, conditions, re-
spectively, are not trivial. If Vjy is taken to be absent, the radial
equilibrium condition applied to V) gives the alternative relations



64 ELECTRON TUBES, Volume I1

frrB,dr + C 4
/R (18)
r
1”313x17-+-(7
B, —S———=0. (19

The first of these refers to a condition for the electron at rest, see
equation (9), and is of no interest here. The second alternative is the
appropriate condition for equilibrium in the radial direction. If it is
included in the formulas when the radial and the axial focusing condi-
tions are applied to V,, the following two inequalities are obtained,
respectively (32):

r 4B,
EE— > -1, (20)
(. 9°B.

B, j; r 32 dr > 0, (21)

wherein 9B,/9z is zero for 2= 0. Taking into account the quasi-static
nature of the magnetic fields with which one must deal in practice,
the time derivative term in equation (6) may be neglected and the
result used for substitution in relation (21) which may be written with
the same functional expression as (20). Combining the two:

1>[—iali’]>0., (22)

This means simply that the lines of the magnetic field must be convex
outward and that the field intensity diminishes with increasing radius,
while the corresponding diminishing in centripetal magnetic force must
occur more slowly than the decrease in centrifugal force at constant
electron velocity. The quantity in brackets is a more general form of
the “n” of Kerst and Serber who assumed that the magnetic field was
proportional to r—". During the acceleration cycle the importance of
the constant C becomes less and less relative to the time increasing

r
/rB, dr. Equation (19) approaches the condition,
0

| L "vB.dr

B, = =—

) (23)
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wherein the right side is obviously 4 the average value of B, within the
circle. To have a stable orbit, condition (23), together with condition
(22), must be satisfied for some value of ». In conventional instru-
ments, the magnetic field intensities at all points vary synchronously
throughout the greater portion of the acceleration cycle, and so this
value of 7, called the principal equilibrium orbit, is a constant, r,.
Then, as may be noted by applying the present conditions to the
formula from (5), this position is also the minimum for E, or the
equivalent, volts per turn divided by radius. Kerst and others have
used this fact for measuring the position of the equilibrium orbit.

Induction accelerators are usually built so that condition (21) is
satisfied for all positions within the vacuum chamber, and since the
equilibrium orbit plane z = 0 is one of symmetry, the axial sections of
the potential surfaces V, have substantially similar characteristics
whatever the other circumstances may be. They are parabola-like in
shape, symmetrical and increasing outward monotonically on either
side of z=0. The rate of the increase depends on how negative is

r OB, '

, and the adjustment of this parameter determines whether

thz walls of the potential bowl, in the axial direction, are sufficient to
keep the electrons from the corresponding material walls or other
obstructions of the vacuum chamber. While the radial sections of the
potential surfaces are of no greater intrinsic importance than the axial
ones, the appearance of the constant C in the formula for V, makes
their characteristics critically dependent on the initial conditions. For
each value of C, the radial sections are, for the most part, of the same
general shape for different values of 2. A representative set of such
radial sections of V,, for different values of C for the plane 2 =0, and
which thus includes the equilibrium orbit position, is given in Figure 2.
The instantaneous magnetic field distribution from which these curves
were computed is shown in Figure 1, which includes an outline of the
pole pieces generating this field.

A large variety of injection phenomena can be understood by con-
sideration of the V, radial section curves only, since usually the axial
sections may be taken for granted. While the curves of Figure 2 are
entirely representative of all values of C, the particular ones drawn
were chosen with the position 7 = 18 in mind as the initial location of
the electrons. In such an instance, these particular values of C corre-
spond to tangential velocities of injection (neglecting relativity correc-
tions) differing by a simple factor, one plus the coefficient of P,g4, from
the velocity of the “normal” electrons, whose C value is zero and hence
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whose equilibrium orbit radius is unchanged during the acceleration.
With reference to the concept of two-dimensional conservative motion,
it is a matter of inspection of Figure 2, to see that for electrons injected
at r =18, even for those without radial and axial velocities, only those
with tangential velocities corresponding to C values within the interval
—.020 P,5 to + .125 Pyg, approximately, can be captured initially within
the potential bowls. For those with small radial velocities in addition,
the range is evidently more restricted and can be found immediately by
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recognizing the additional barrier necessary to contain the additional
“two-dimensional kinetic energy.” While the potential minimum for
which V,, is zero has been excluded from consideration on the conven-
tional betatron because the associated acceleration is small, it repre-
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sents the situation of zero tangential velocity obtained when electrons
are emitted directly into the chamber from a hot cathode located at
the zero position, such as » =18 for C = 1.0 P,;. With the addition of
the electrostatic field Vz from a concentric anode, this case describes
a static magnetron with a non-uniform magnetlc field and is considered
in detail below.

If an electron in a conventional betatron is confined near to a stable
circular orbit in accordance with the existence of a minimum in the
appropriate surface V,, there are associated with its motion three
frequencies or periods which arc more or less unique, depending on
whether the radial and axial oscillations are of small or large amplitude.
In the limit of very small such amplitudes the periods of rotation and
radial, and axial oscillation are, respectively:

. -
Ty =2x ;;B,] , atr =r; (24)

T, = 2x i'B ]_'[1+

RPN 9 ol .

Provided the particle remains within the potential bowl for large am-
plitudes, only the formula for T, needs major correction: to be multi-
plied by a factor much greater than unity because the particle ap-
proaches the rounded crests of the surrounding potential barrier. In

r 9B,
any event, since —

-4
Er&f,] , atr =ry; (25)
r dB

] - atr=vr; (26)

obeys condition (22), the periods T,
z or r:ri .
and T, are always greater than T,

Very small angular dissymmetries of magnetic and induced electric
field strengths may be present in an accelerator. If it is presumed that
the electron motions are very nearly those of the ideally symmetrical
case, the potential notion may still be applied, and the small dissym-
metries can be accounted for by small, additional radial and axial forces,
which recur with a period of Ty. Since T, and T, are greater than Ty,
it follows that no direct resonance effect is likely to occur and that the
disturbances on the ideal motion are not likely to accumulate beyond
what are produced in the first few revolutions after injection. Thus,
if the electron is well contained in the potential bowl in the first place,
the motion will be in accordance with the formulas developed for sym-
metrical fields.
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SPACE CHARGE

Whether an electrostatic field is applied from electrodes or not, a
large space charge will contribute to V, and should be taken into ac-
count. Since the charge distribution is not known and in general will
depend on the manner of injection, the stability conditions (17), which
still must be satisfied, are not capable of direct verification. They lead,
however, to a definite limitation on the supportable space charge dens-
ity, for by summing the first three of conditions (17), [(17a) being
multiplied by 1/7], one finds that the Laplacian of [V, — V] must
exceed zero. Since V itself must obey Poisson’s equation, it follows
that:

r 2
frBzdr +C
L <y VN_—_-_f_’fz_i’ B, -
€0 m

2 ,2

fr B:d +C 2 f’raB;dr 2

7 r

I PR I PR b Y6 7)
r? r _

The limiting charge density given by this relation may be found in
charge distributions in complete axial and radial equilibrium, wherein
the repulsive forces between particles are just compensated by the
retaining forces of the applied fields. Consideration of an optimum of
such distributions will establish the upper limit of charge supporable
in the betatron, whatever the injection mechanism. The magnetic
forces of the space charge current are assumed negligible at the time
of injection.

Supposing at first that all electrons present have a common value
for the integration constant C, the surface of [V,,— V] which origi-
nally possessed a minimum before the electrons were inserted and space
charge forces contributed to Vj; now has the shape of a bowl whose
bottom is flat over the region of the charge distribution. Here the
charge density is given by the right side of relation (27) and as more
charge is added, this value is not exceeded but the distribution extends
itself over a larger space. Eventually, with additional charge, the re-
pulsive forces can no longer be counterbalanced. This is shown in the
surrounding potential barrier, where, at least at one point on the edge
of the flat bottom, the barrier is pressed down, as the surface curvature
changes from concave upward to concave downward. Then no further
charge can be supported for it spills out by this route. With the usual
field shapes, this “leak” will occur in a radial direction in the z=20
plane provided the vacuum chamber walls and other obstructions have
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not interfered beforehand, because the potential surface goes to rela-
tively greater height in the axial direction. It seems fairly certain that
in this case of equilibrium, there is supported the greatest possible
number of electrons with the chosen value of C. The configuration is
one of minimum total energy as compared to non-equilibrium dis-
tributions of the same amount of charge, and these distributions in
sufficient time must surely rearrange themselves so that some of the
particles will surmount the surrounding barrier by virtue of their extra
energy, even if, as is unlikely, the initial arrangements succeed in re-
ducing the space charge repulsions relative to the retaining forces.

If groups of electrons of different values of the integration constant
C are present and in complete equilibrium (without orbital oscillations),
they cannot mingle in the same spatial region because these values
appear explicitly in the radial equilibrium condition (17a) which can-
not be satisfied for the same space coordinates but different C’s. It
follows from the continuous dependence of the equilibrium relations on
C that although one group may be space charge limited with its poten-
tial bowl depressed at some point, in general another group may be
found of slightly higher or lower C whose potential surface [V — V]
still has a minimum and can receive more charge. Assuming the in-
jector is able to provide it, the additional space charge will cause some
of the previous group to be lost, but the equilibrium position of the
new group, as given by (17a) with the new value of C, is necessarily
well removed from the position of the “leak” in the old grbup. Then
on members of the old group at this position, the proportional repulsion,
or force per unit charge, of the new group is less by virtue of greater
distance than was that of the displaced charge, and there is a net gain
in the total charge supported. If the injection mechanism is able to
meet the demand, this displacement of groups may go on over a con-
tinuous range of C values until that group is reached which simul-
taneously depresses its potential barrier in two places of different radii,
both radially outward and inward for conventional instruments. Now
no further group of slightly different C can have a minimum in its
potential surface and the space charge limited condition of the last
named group, in equilibrium and standing alone, is the final con-
figuration.

For the above reasons, it is thought that the optimum space charge
saturated condition of the betatron, which can be obtained at the time
of injection, consists of the support in radial and axial equilibrium of
the-full complement of one group of electrons of a single value of C,
or in most cases of a single tangential velocity and time of injection.
Since the influence of the space charge field depends not only on the
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charge distribution but also on the electrostatic boundary conditions
which must be satisfied, the exact computation of the value of the
integration constant C which applies to the select electron group is
difficult, if not impossible. Fortunately, there is a wide latitude in the
choice of this C which will lead to substantially the same total for the
supported space charge, so that one may assume a value corresponding
in the case of a conventional betatron to the radial profile curve of V,,
whose two maxima are of the same height, on the grounds that there
will be a rough symmetry about the minimum position. In Figure 2,
this value is about C = — .008 P,g. It should be emphasized, however,
that the injection mechanism may be quite unable to establish this
optimum electron group and it may be necessary to consider another
group of very different value of C, which can support much less charge.

To find the upper limit of the capturable charge itself, the space
charge density given by equation (27) with a proper choice of C, must
be integrated within the limits of the charge distribution. In estimat-
ing these limits, electrostatic boundary conditions must be taken into
account. If the induced space charge image fields are assumed to be
negligible, the radial curvature of the negative space charge field alone
will be negative throughout the distribution. Thus, by radial focusing
condition (17b), the charge distribution cannot extend beyond the
points of inflection of the radial profile curve of V, and probably not
quite as far. A fair guess of the limits can be made by taking the lower
inflection point for one limit and its horizontal projection to the other
side of the bowl of V, for the other. In Figure 2, these limits are, for
C =.008 Pyg, v, =16 and r;, =9, and for C =+ .1 P, r, =16.5 and
r; = 15.5. The relative axial to radial extents of the charge distribu-
tion is determined to a first approximation by the square root of the
inverse ratio of curvatures of V,. Evaluated at the instantaneous
equilibrium orbit » = r;, these values are

02 VM emo aB,

r
= —-"0BsL =7, .
pe B, atr = r; (28-2)
?Vu _ emo r 0B, _
r " m [1 5 B
r 9B,

The experimental adjustment of the parameter — to from — %

or
to — 1 in accordance with condition (22) so as to have the electron
configuration roughly conform with the shape of the vacuum chamber
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leads in present instruments to an axial extent from } to 1 times the
radial extent for values of r; close to the main equilibrium orbit, but
very much smaller ratios for other electron groups. The radial-axial
distribution having an approximately elliptical boundary, one finds the
total charge, @, supported in this toroidal ring is the product of the
volume and the average charge density of (27) which is roughly given
by its value at r,.

: r B,
n 1 + z]
Q = e [r: — 7!]'[ B.

e

emy {: rBdr + C (
2m? r r=ri (2))

For low energies of injection, the second quantity in braces is by
equation (15), the voltage of injection. The first braced quantity is
a geometrical factor which depends both on the field shape of the
betatron and the choice of C. From Figures 1 and 2, the value of this
factor for the optimum C of — .008 P, is approximately 1 but for a
C of + .1 P,5 it is about 1/100. Excepting for the geometrlcal factor,
equation (29) is the same as that of Kerst (9).

The maximum supportable charge, and hence the maximum space
charge limited output of the betatron, is, other things being equal,
directly proportional to the injection voltage. It has been quite gen-
erally observed that the output increases with injection voltage, but
the total output has been of the order of ten per cent, or less, of that
computed by the old formula or what is practically the same thing,
formula (29) with the optimum geometrical factor. The injection
voltages currently in use seem too high for electron scattering by re-
sidual gas to enter into this effect.

The implication of these experimental results appears to be that
while the betatron may at injection approach a space charge limited
condition, the injected electron groups which can be captured in stable
orbits are those of tangential velocities or C values departing consider-
ably from the optimum.

MOTION IN THE POTENTIAL OF FORCES

The increase of the magnetic field with time brings about the ac-
celeration of the electrons and the change in magnitude and shape of
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the appropriate potential of force [Vy — Vg]. While the energy given
by equation (15) in combination with (19) increases at first with the
square of r B, at the equilibrium orbit, and for relativistic velocities
directly with r B,, the radial and axial oscillations about the orbit
are altered by the change in the potential surface. The existence of a
minimum determines the possibility of stable electron orbits, but dur-
ing the acceleration period the limits and velocities of the oscillations
are changed. On this account, the electrons might alternatively strike
the walls of the vacuum chamber and injection apparatus or be focused
into a narrow beam.

The radial and axial motion constitutes two-dimensional motion in
a potential field changing with time, but most of the essential char-
acteristics can be found in a corresponding one-dimensional motion.
This is particularly true in the conventional betatron because it can be
shown by a Taylor expansion of the potential V, near the main equi-
librium orbit that the motions in the » and z directions are independent
up to fourth order terms. The potential surface changes but little in
the period of one oscillation of the particle. An approximation in the
analysis will be made based on the smallness of the change in energy
per oscillation as compared to the energy itself, namely, an adiabatic
approximation.

Consider at first the equation of a constant mass point in a poten-
tial of forces W, of the form W(x,t) =G (x)F (t) where G(x) is a
non-negative function of space only and F (¢) a slowly varying func-
tion of time only:

. oW
T T (30)

Without ultimate loss in generality, it may be assumed for simplicity
that G(0) = 0. An energy integral can be obtained by integrating
both sides of equation (30) multiplied by %:

3 — ) = — W4 Wixa to) + f 2L G

where ¢ =z, and & =%, at t =t,. The value of the integral in this
equation can be estimated by the law of the mean since G > 0.

j:.‘aavtv fG“d‘ [jlo(fj—] fW(x Hdt,

where £, < £, < . (32)
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By substituting W from equation (31) into the last integral, "?_I_/V dt

t, Ot
can be written:
aw _ 1dF f‘[ ]
—dt (1 + C)I:—ﬁ"? ]l. " W(xo, to) + 2 dt (33)
where
1dF Wz
Wo+7-t—toﬁoé—dt
1 dF
The value of — —d— (t —ty) is the proportional change of energy of
F dt

oscillations per period and is assumed very small in the adiabatic ap-
proximation. Therefore, the value of ¢ is also small since the ratio of
the maximum value of the potential in the interval to the difference
between the initial energy and the average kinetic energy is of the
order of unity. In the application of this idealized problem to the pres-
ent day betatrons, € is less than one per cent and will be neglected. By
substituting into equation (31) the value from equation (33) where

1 dF

— —— at ¢, is assumed equal to its value at ¢, again according to the
F dt

adiabatic approximation, the total energy of oscillation E of the mass

point becomes:

-2 :b!
E=W+'3‘2—=W(x.,,¢o)+—2°—

+F(1t—o)-%:[(‘W(xo, to) +f‘2—) (t — to) —j::—"“;dt] (35)

Let us assume an oscillatory motion such that at t=¢, =0 and
z =@ and again £ =0 when t =t, + T at which time £ = a + Aa. The
increase of energy AE during the period T is:

AE = F(lt)Zf[W(xo, )T — fwfdt]

=AW —
AE = AW — §E =

ft.,+r
W(VOr tO) T
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Average kinetic energy in one period) (36)
Maximum kinetic energy in period

(-

where AW is the increase of W at the point 2 = a and 8E is what may
be called the energy increment deficiency because it is the difference
between the most energy which the mass point would gain were it
immobilized at x = a and its actual gain of energy while oscillating in
the increasing potential trough.

The change of amplitude of oscillation, Aa, is evidently related to
the energy increment deficiency by the approximate relation:

Ag = E - Average kinetic energy AW (37)
oW Maximum kinetic energy dW|
0% | zea 0% |z

showing that it is proportional to the rate of change of the potential,
the ration of the average to maximum kinetic energy and inversely pro-
portional to the gradient of the potential at the turning point of zero
kinetic energy.

In the case of harmonic motion in a parabolic potential, the average
kinetic energy is half of the maximum and the gradient at the extre-
mum is twice the average gradient from the minimum to the extremum,
so that: :

Aa AW
a

These considerations can be applied to the actual case of the elec-
tron in the V, potential surface by writing:

e
= [Vu(r, t) = Vulre, )] (39)
0
Relation (38) can then be written, for the normal electrons, C = 0, as:
Aa 1 AVy 1 AB
a  *Vu ~*B (40)

relations derived by Kerst and Serber (10). These relations are valid
even when the terms involving dm/dt which were omitted in deriving
equation (14) are taken into account. This relation (40) shows that
the amplitude of oscillation is proportional to B—1,

In the case of .the parabolic potential, the integrated equation of
motion itself of the mass point can be obtained and a closer estimate
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can be made of the error due to the adiabatic approximation than was
possible in the general derivation. Equation (30) takes the form
T =—x(02W/222) where 92W /ox2 is a function of time only, and can
be solved approximately by the substitution x = u e* which leads to:

x=A(‘:$’ (f dt+a) 41)

where the amplitude of oscillation is seen to vary as found before and

2w
the instantaneous angular frequency of oscillation is — . A (dif-
ox?
ferential equation can now be written which is exactly satisfied by

2w

equation (41) whose form is ¥+« (1+¢ )=0. The propor-
ox2

tional error ¢; with respect to equation (30) can be computed:

] =(azw —2[1§(ﬂ/ 5 (oW 93w
P\ o 40\ ax2 ] 16\ ax at ax? ](42)

For the case of non-relativistic speeds of the corresponding electron

e -

motion, if v =— B, is the instantaneous Larmor frequency correspond-
m '

ing to the field B, this error is less than:

w? B2,

7 B 1 1 4+ Lcostwt),: (43)

€

assuming the magnetic field to vary sinusoidally as B,= B,, sin ot.
The error is most at injection time but is extremely small, of the order
of 10—10 to 10-8 for practical instruments, since it depends on the
square of the ratio of the magnet and electron Larmor frequencies as
mentioned by Kerst and Serber (10).

In general, the potential function V, or [V, — V] cannot be
represented as a product of separate space and time functions, par-
ticularly because C appears in V. The position of the minimum
changes with time but the oscillations of the electrons will take place
around the instantaneous position in a reference system moving with
it, just as if the minimum position were stationary. This is because
the rate of acceleration of that position is negligible in all practical
cases. Since equation (19) implicitly expresses the radial position of
this minimum, »;, for the conventional betatron, it may be used to
give r; through differentiation.
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r 0B,
RarnC ANy
;o= r _ ot . —_
'_Bz faB; . dtf—-f,'. (44)
7[3_, ar t 1]

Assuming the magnetic flux and field to increase synchronously, this
equation may be approximated for very small values of the difference
7, —7,=x; and written for a small time increment Af.

Axa' AB,
% "B, |.. (45)

For non-relativistic energies, this is equivalent by equation (15) to a
relation obtained by Kerst and Serber (10).

Ax,- IAV
a2 (16)

Thus the instantaneous equilibrium orbit shifts asymptotically toward
the main equilibrium orbit so that the separation is at first inversely
proportional to the magnetic field. This shift is in contrast to the
damping of the amplitude of oscillation which is inversely proportional
to the square root of the magnetic field.

An important departure of the electron motion from what has
already been described may take place during the latter part of the
acceleration period from force terms which have hitherto been neg-
lected in the equations of motion. Iwanenko and Pomeranchuk (19)
have pointed out that in consequence of the high centripetal accelera-
tion of the electron in its orbit, the charged particle will radiate energy
at a rate which for large values of its own kinetic energy (of the order
of 100 Mev) may be a considerable proportion of the rate of energy
gain from the induction field. The results of this will be first a change
in the position of the equilibrium orbit and ultimately a limit on the
attainable kinetic energy. This limitation can be offset, in principle,
by building high energy accelerators with relatively smaller centripetal
accelerations, that is, with smaller field strengths and larger orbital
radii, or with shorter acceleration periods, that is, higher frequency
(12). If the amount of energy radiated were known, the effects on the
electron path could be computed from present formulas with the aid of
equation (15) by introducing an artificial time variation to the constant
C. However, it is at present not clear whether the radiation formulas
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for a single electron are immediately applicable to the case of the
multitude of circulating electrons in the betatron. References have
been made in the literature to a paper by J. S. Schwinger (39) which is
shortly to appear and which presumably will give a definitive treatment
of the radiation problem. See also ref. 28.

INJECTION IN A PURELY MAGNETIC BETATRON

The betatron has been discussed thus far under the assumption of
perfect symmetry of mechanical arrangement, and electrons were con-
sidered present with appropriate energies without regard to any actual
injection mechanism. In the conventional magnetic betatron electrons
are injected circumferentially from a gun of finite dimensions, which is
necessarily located in the region of acceleration of the particles. The
gun presents, therefore, a possible obstruction to their manifeld revolu-
tions. In fact, it is found experimentally that the output of the beta-
tron is very much less than the upper limit imposed by space charge.

Upon injection, the electrons oscillate, as has been shown, around
instantaneous equilibrium orbits shifting radially in the plane z=0,
with axial and radial amplitudes which are damped as the energy
increases. Since the extremum positions of oscillations recede in the
radial direction on account of both the change in amplitude and the
shift of equilibrium orbit, while axially only the change in amplitude is
effective, it is more favorable to locate the center of the gun at some
radial distance z, from the main equilibrium orbit, , rather than away
from the plane z = 0. An electron will return to the gun, or to a region
nearby where the electrostatic leakage field may cause it to strike the
gun, at some time T after emission. This time depends on the relation
between the period of revolution T, and the period of radial oscillation
T,, in connection with the angular and radial extents of the gun. For
an exactly tangential direction of injection, a particular electron will
succeed in missing the gun if the total Tecession of the path 8r, in the
times T of the first or any other subsequent passage very near the gun,
is greater than the distance d between the point of injection and the
edge of the region near the gun where collision can occur. If, at in-
jection, the electron has a small radial velocity in addition, the situation
is less favorable but still depends on the magnitude of the recession.
This total recession 3r is evidently the sum of the decrements (Ar;+ Aa)
occurring in time 7T, and is obtained from equations (37) and (45)
where AV, the energy gain in this time, is approximately the product
of the number of revolutions N and the energy gain per revolution,
w “volts per turn.”
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If the radial section of the potential trough is approximated by a
parabola, which is a consideration essentially the same as the first order
treatment of Kerst and Serber (10), the total recession §r immediately
after injection is given by equations (38) and (46).

o = ~ }(xi0 + 400 EVE 47)

Since the sum of the initial instantaneous orbit position z;, and the
initial amplitude a, is the total initial distance 2, from the main equi-
librium orbit, the condition for avoiding the gun requires at least that

Nwxo > Vid. (48)

The value of N can be estimated from the sinusoidal nature of the
trajectory by considering the ratio T,/T, from equations (24) and
(25) in relation to the mechanical dimensions of the gun. For an
experimental arrangement used by the present authors, the value of N
varied from 2 to 6, depending on the injection constant C but always
within the approximation that the potential functions are merely first
order departures from the main equilibrium radius. In general prac-
tice it is found experimentally that much higher values of the product
V.d than those of the above inequality (48) can be used. Indeed, the
output of the betatron apparently increases with the voltage of injection
V;. It may be expected, however, that the actual non-parabolic nature
of the potentials for some injection parameters will materially alter the
factors contributing to the recession 8r, these factors being the damp-
ing of the amplitude of oscillation Ag, the equilibrium orbit shift Ax;,
and the period T of consecutive passages very near the gun.

As has already been pointed out, the range of C values of electrons
which can be captured in stable orbits depends first on the existence of
a minimum in the potential function and second, that the walls of the
bowl are everywhere as high as at the point of injection. In conven-
tional practice, all electrons are injected at the same voltage throughout
an interval of time, so that the range of C values comes about through
differences in the time of injection, and hence in the value of the mag-
netic field integral appearing in C, equation (8).

For values of C toward the ends of this range of capturable elec-
trons, the radial sections of the potential surfaces depart significantly
from the parabolic approximation. When the gun is located further
from the main equilibrium orbit than the extrema of the locus of ex-
trema (7, < 8.5 and 7, > 17.5 for the example of Figure 2), there is a
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value C,; of C for which the potential V, has a maximum at the gun.
The rate of change of the amplitude of oscillations of electrons injected
at times just following that corresponding to C; (when 7y > 17.5, or
just preceding when ry < 8.5), is very large since it is inversely pro-
portional to the value of © V,/0r at the injection point in accordance
with equation (37). Since this rate becomes very large for injection
times corresponding to C,, the gun clearance may be improved by a
large factor of the order of a hundred over that of the parabolic case,
provided of course that the gun is so located that the electrons are not
lost in their first swing across the equilibrium orbit on the side opposite
to the gun. (7 <7y < 8.5 or 17.5 < ry < 22.5, in the example of Figure
2.) The recession will depend on the product of the rate of change of
amplitude by the time T of consecutive passages near the gun, and
therefore on the number N of revolutions between dangerously close
approaches. The number N varies with C and passes through small
and large values depending on the ratio of T,/T;. Hence there is the
possibility of capturing electrons in several distinct groups correspond-
ing to the large values of N. The capture of electrons through the large
damping of amplitude will occur in a range of C values close to C,
(smaller than C; for an external gun, greater for an internal one),
which is a comparatively small part of the total range corresponding
to potentials with a minimum and in general the potential trough will
be shallower than the normal curve (C =0) with hence less space
charge capacity.

Consider the gun located at or near the limit at which the potential
can have a maximum, that is, at or near one of the extrema of the
locus of extrema of the potential function (ry = 8.5 and 7, = 17.5 in
Figure 2). At these points there will be a value C, of C for which the
potential V, will have an inflection point. Near such a point the rate
of shifting of the instantaneous equilibrium orbit, which is inversely

( r oB,
proportional to [ 1+ —

B, or
very large. Since it approaches infinite values at the point itself, here
again the position of the electrons may recede in the time T, which is at
least equal to Ty, an amount 8r greater than d even if the amplitude
damping were not taken into account. The range of C values for which
the rate of equilibrium orbit shift is sufficient is only a small part of the
range for which equilibrium orbits exist. Furthermore, the potential
troughs are very shallow and it is probable that the number of electrons
captured in them approaches being space charge limited, even for small

injecting currents.

> as shown by equation (44), becomes
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Finally, consider the case of an injector located at a position such
that for some value C; of C the initial potential curve has a maximum
whose value is equal to that at the injector position but which is located
on the opposite side of the potential minimum. It is apparent that for
C values approaching Cj, greater for an external gun and smaller for an
internal one, the period of oscillation T, around the equilibrium orbit
tends to infinity since the radial velocity of the electron near the maxi-
mum of V is very small. Consequently the time T becomes very large
and for a finite rate of shifting of the equilibrium orbit given by equa-
tion (44), the recession 87 of the electrons may be sufficient for clearing
the gun, provided the shift of the orbit is away and not toward the gun.
This occurs only for particular gun positions and C values (for example
ro =8, C =—.004) which are small compared to the total range hav-
ing minima in the potential.

These considerations show that for high injection voltages the
principal mechanism of capture is the damping of amplitude of oscilla-
tion when the potential function has a maximum near the gun. The
cases of rapid shift of the equilibrium orbit and of long periods of
radial oscillation may account for similar capture but are less probable
mechanisms.

To estimate the interval of time over which electrons can be cap-
tured, consider a synchronously varying magnetic field, or one which
can be expressed as the product of separate functions of space and time:

B(r, 2, t) = b(r, 2)-f(¢). (49)

The potential V can then be written as:

[t
emy fbrdr—{—f(t)

2m2 !

V,w =

(50)

where t, is the injection time and D = C/f(t,). This relation shows
explicitly as has been implicitly assumed so far, that the scale factor
of the potential surface after emission time increases in the ratio
f2(t) /f2(t,) while the shape of the surface changes with respect to one
derivable from an unchanging magnetic field just as if the constant C
decreased in ratio f(t,)/f(t). The interval of time ¢, to ¢, in which
the C values correspond to potentials with a minimum is therefore, for
the case illustrated in Figure 2:

f(t2) - PIS + Cmax
f(tl) PIB + Cmin

= 1.1, (51)
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corresponding approximately to 15 per cent. of the phase angle of the
injection period characteristic of a sinusoidally varying magnetic field,
an angle proportional to the square root of the injection voltage. The
range of C values corresponding to initial functions having the special
properties necessary for capture is a small part of the total range of C
values characterizing a minimum of the potentials V, and can be esti-
mated on the basis of the size and location of the gun and is unlikely
to exceed 10 per cent. in practical cases. The effective phase in which
electrons can be captured is therefore only a small percentage, about
1 per cent., of the injection phase itself, and the corresponding effective
time of capture is quite short (about 10—7 second for 4,000 volts in-
jection voltage and other parameters used in the example of this paper).
In spite of this, it is found that in present day betatrons the current
emission capabilities of conventional guns are ample to provide a charge
equal to the limit given by space charge, equation (29).

The mechanism of gun clearing was accounted for by ignoring the
effects of space charge, while the upper limit of capturable charge was
estimated in a preceding section by ignoring the obstruction of the gun.
The actual effects are only partially described by these two limiting,
idealized cases. However, it is probable that even if the capturing
potential troughs were space charge limited, this fact would not alter
the existence of limiting requirements on values for the damping of the
amplitude of oscillation, the rate of equilibrium orbit shift or the period
T of consecutive passages near the gun, which are primarily responsible
for the gun clearing mechanism. It is even possible that space charge
has an enhancing effect in damping oscillations for if one supposes
formula (87) to be entended to such a case, the principal alteration
would be a reduction in 9V, /or, with a consequent considerable in-
crease in Aa. On the other hand, it is very likely that the particularities
required from the potential function to avoid the gun obstruction are
inconsistent with large capturable charges and are responsible for the
low percentages of the upper space charge limit which are usually
observed in actual experiments.

PART 11
BETATRON WITH AN ADDITIONAL ELECTRIC FIELD

The injection of electrons from a cylindrical cathode coaxial with
the magnetic field with the help of an additional radial electric field has
tempted many investigators. A priori, it seems that large space charge
could be captured by this means since electrons are injected in initially
intense fields, a condition which is known to yield large rotating charges
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in magnetrons. In addition, the problems of an asymmetrically located
gun are eliminated. The following analysis shows the requirements in
the variations of the fields necessary to obtain equilibrium and stability.
These turn out to be more complex and to have narrower tolerances
than in the case of a purely magnetic betatron. It is shown also that
no substantial gain in space charge can actually be realized.

The analysis is restricted to a toroidal region whose radial and
axial limits are small compared to the average radius and also, to non-
relativistic speeds. It is convenient to use a power expansion of the
total potential of forces V,= Vy,— Vg around a position 2 =0 and
r=7r, or x =0 when r — 7, is abbreviated by z, where r, is the asymp-
totic equilibrium orbit of the purely magnetic instrument with syn-
chronous field variation defined by equation (23).

The expansion, limited to cubic terms:

Vom Vi0,00 + x5 4 g 2T 4 OV
*Vv *V
o s+ bt (52)

where the derivatives are understood to be for = 2z = 0, has no terms
with odd powers of 2z because of the assumed symmetry about the z =0
plane. It is convenient also to break up this expansion into separate
ones for Vy, and V. and to introduce for the former two new symbols,
B, and B,, defined as follows:

B, = B,(r., 0, ), (53)
1
B, = ;[ ‘B, 0rdr - B rdr + —r.,’é.,]

L=y
=1 f "3 C
- re2Jo .B:-f;)df + ;“2‘ (54)

1t is seen that B, is the magnetic field at the main equilibrium orbit
and B, is proportional to the angular momentum of the electrons at the
position » =, and 2z == 0 and is also equal to 1=72 times the flux linking
the circle » =, z = 0, at any time, plus a constant which depends on
the initial configuration of the magnetic field within the initial circle
r =17, 2 =2, as well as the initial position and angular momentum of
the electron.

The expansion of V,,y, expressed in terms of B, and B, with the rela-
tion between the spatial derivatives of B taken into account, takes the
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form:

Vo = %i;r,quz + x ;n"—or,Bq[B. - B,]

+ 1a2 mio [Bl+ 3By — (3 + n)B.B,] + 322 ;:—0 nB.B,

+in s r—l [—(3 + 3n)B2 — 12Bg +(12 + 4n + 1,)B.B,]

+ }xz? ’%o r—l [nB} — (n + n)B.B,], (55)
where the numerical coefficients » and n, are defined as:

_ LaB' _ r? 92B,
B; ar r-n’ e = -Bx ar? rmre

s=0 s=0

n = (56)

If the magnetic field varies synchronously in the region of validity of
the expansion, n and n, are constants and the coefficients of the ex-
pansion are second order polynomials of the two variables B, and B,.
These variables must be particular functions of time for particular
modes of operation. To analyze all possible modes, it is convenient
to assume at first that B, and B, vary independently and later to con-
sider the effect of their actual functional dependence. The assumption
that B, and B, are arbitrary functions of time requires that the flux
linking the circle r =7, and z2=0 and the field at that circle be con-
trolled independently, and implies that the flux exterior to and linking
the toroid is independent of the field within the toroid since some of the
flux linking r, is controlled by B,. A large degree of independent con-
trol was actually obtained in an experimental double yoke magnetic
circuit.

The analysis of the variation of the potential functions V, is greatly
facilitated by a diagram having B, as abscissa, B, as ordinate and
showing curves for which the values of the coefficients of the expan-
sions V,, Vy, or Vi remain constant. Figure 3 is such a diagram for a
particular choice of geometrical parameters. The lines of constant co-
efficients of V, are conic sections and each coeflicient is represented
by a family of concentric and homothetic conics. For example, the
lines of constant 0V ,,/0z are hyperbolas whose asymptotes are the B,
axis and the 45° line B, = B,. The asymptotes themselves are lines
of 0Vy,/0x =0 and they devide the B, — B, plane into positive and
negative regions of 0V, /ox.
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In the expansion of the electrostatic potential Vg, the coefficients
are related by Laplace’s equation, assuming the space charge to be
negligible. Assuming also the spatial distribution of the electrostatic
potential to remain similar to itself as the potential varies in time, that
is, synchronous variation of the electrostatic field, the ratios of 22V /
9x2 and 92V /022 to 0V /0x remain constant, and it is possible to ex-
press them in terms of a numerical factor k:

vV
E _ kaVE and 62Vx= _k+lan (57)

9z e ox dJx? r. Ox

The expansion of V,, limited to cubic terms is therefore:

Vs = Va0, 0) + x a_Vg ~ 1x k+ lan+ kdVs
9x re r. 0x
41 Ve |, ,0VE

o8 o T e (58)

The conditions (17) for stable equilibrium, or the existence of a
minimum of the function V,= [V, — V], can now be conveniently
analyzed. In general, the capture of charge can occur as long as the
minimum is within the toroidal region but we will consider at first only
the case of electrons whose equilibrium orbit is always in the center of
the toroidal region x =0, 2 =0, and later compare other captured
electrons to these “normal” electrons. The first order condition (17a)
requires that at all times:

=—_ = ;"e B,[B, — B,]. (39)

The lines of constant @V,,/ox, identical with 9V /9, on the focusing
diagram show what value of electric field must be applied for a given
magnetic field B,, and a given equivalent change of flux B, in order to
balance the electric, Lorentz and centrifugal forces at every instant.

Consider the location of the representative point on the B,— B,
diagram for the instant of emission. (8, is zero, neglecting the thermal
velocities of emission.) The value of B, can be expressed approximately
in terms of B, by expanding the integrals of equation (54):

B, = sB,

[ G 3G -3 (2) e @
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The constant s is hence approximately equal to — (z,/7,), %, being the
initial value of z. The representative point at the emission time is
therefore on the B, = sB, line shown on the figure for two values of
s ==*1/16. Subsequent to emission, the value of B, will increase in
an actual induction accelerator since the kinetic energy is an increasing
monotonic function of B,. No natter how B, is related to the increase
of B,, eventually the operating point (B, B,) must end on or near the
asymptote B, = B, for otherwise the values of 9V /9z would have to
become unpractically large to balance the magnetic and inertial forces
which increase rapidly with speed. Therefore, the focusing problem
consists essentially in analyzing the conditions at points between the
lines B,=sB, and B, =B, and on the line B,=B, itself. It is
interesting to observe that these limiting lines are representative of the
field conditions in a static magnetron and a purely magnetic betatron
respectively. The electric field at the emission time

Vs

e
% i = o res(1 — 5)B.o?, (61)

where B, is the value of B, at t = ¢, is approximately the value of the
cut-off electric field of the magnetron, while on the line B, =B,, the
electric field is zero, the characteristic of a conventional purely mag-
netic betatron. The betatron with radial injection by an auxiliary
electric field operates toward the end of the acceleration cycle, as a
purely magnetic instrument. Thus, it may be considered as the super-
position on a magnetic betatron with its main sinusoidal power source
and synchronously varying magnetic field of auxiliary means to alter
the field and flux by the incremental values B,. and B,, necessary to
obtain equilibrium in combination with the electric field.

Consider now the conditions imposed on the variations of the mag-
netic and electric fields by the second order conditions (17b and ¢) for
the existence of a potential minimum at * =z = 0. Since the values of
02V g/0ox2 and 02V /022 are proportional to oVp/0x, equations (57),
they can be expressed in terms of B, and B, if it is assumed that the
electric field 9V g/oz is actually adjusted at every instant in accordance
with the first order minimum condition (59). The second derivatives
of V, are thus:

0V,  *Vyo 9V

Jx? ox? ox?

= m—e—o [B. + 3Bz ~ (3 + n)B.B, + (k + 1)B,(B. — B,)],(62)
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v, _ 3V o _ 02V
9z a9z 022

e
= [(nB.B, — kB(B, — B,)]. (63)

The lines of constant curvatures 92V,/0x2 and 92V,/0z2 are conic
sections depending on the parameters n and k characteristics of the
geometrical configurations of the magnetic and electric fields. In order
for these curvatures to be positive as the operating point moves from
the line B, =sB, to and on the line B, = B,, these parameters must
have appropriate values. The value of n must satisfy the relation,
0<n<1, as in condition (22), of the limiting magnetic betatron.
This can be seen by making B, = B, in equations (62) and (63).

The permissible limits of & can be found by considering at first the
lines of constant 92V,/922 which form a family of concentric and homo-
thetic hyperbolas whose asymptotes, or lines of zero value, are the
lines B, = 0 and B, = B,(1 —n/k). Obviously, the operating line must
not cross the asymptotes, so that for the starting point (B, B.) on
the line B, = sB,, B, must be positive or sB,, > 0. This means that
the initial magnetic field must be positive with an internal cathode
(s > 0) and negative for an external cathode (s < 0) as illustrated on
the focusing diagram. In order for the asymptote B, = B,(1 —n/k) to
be outside of the operating angle, it is easy to show that k¥ < (n/1—s)
for s >0 and k> (n/1—s) for s <O.

The lines of constant 22V,/9z2 are ellipses if the discriminant of
the polynomial in B, and B, is negative, a condition occurring when:

n—2Vl—n<k<n+4+2Vl —n. (64)

If k lies outside of the limits of this inequality the equivalue lines
22V,/2z2 are hyperbolas and there are points in the B, B, plane for
which 22V,/222 < 0. It can be shown that, if 0 <7 <1 and the in-
equalities required by 92V,/9z2 > 0 are satisfied, some of these nega-
tive points are necessarily in the operating angle, so that inequalities
(64) must be satisfied.

The focusing conditions in the radial and axial directions within
the operating ranges are therefore:

0<n<1i,

n—2Vl—n<k< I—L for internal cathode s > 0,

" (63)

1 -5

< k< n+2VY1 —n forexternal cathode s < 0.
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The parameters used in drawing the diagram of Figure 3 are those
of an experiment performed by the authors. The magnetic field was so
adjusted that the measured values were r,= 1.6”, n = .565 and n, = 0.
The two cylindrical electrodes both carried electron emissive areas so
that either could be made the cathode. (z,= =* .17, making s = = &.)
See Figure 6. A definite curvature of electric field was obtained by
adjusting the potential of the end shields or “hats.” Measurements
in an electrolytic tank of a scale model showed that when the hats
were connected to the cathode k =— .6 for an internal cathode and
k =1.15 for an external cathode. These values of s, k and n satisfy
the inequalities (65).

With the help of the focusing diagram, feasible modes of operation
can be predicted by considering what variations of magnetic field in-
crement B,, flux increment B, and electric field 9V/92 produce
focusing and among them, which are most easily obtained in practice.
Linear variations of the flux B, and field B, are particularly simple if
the corresponding lines in the diagram are parallel to the asymptotes
of the equivalues of 2V ,/0x because the required variation of oV /ox
is then also linearly related to the field or flux. For short enough phase
angles of a sinusoidal drive, these variations are also linear with respect
to time. Two such operating lines have been shown on the focusing
diagram, one for an internal and the other for an external cathode, and
the corresponding time variations in Figure 4. It can be observed in the
case of an internal cathode, that B, takes two different values for some
values of B, so that B, must necessarily be non-monotonic and conse-
quently both field and flux must be controlled by the increments B,,
and B,. On the other hand, control of the flux alone is sufficient with
an external cathode. In this case, at the emission time, the magnetic
field is negative and therefore defocusing in the axial direction. The
electric field overcompensates that effect and is also responsible for
giving stability to the electron orbits at the instant when there is no
magnetic field at all. This shows, incidentally, that the B, axis illus-
trates the conditions of a purely electrostatic system.

The focusing diagram- showing the conditions for a minimum at
x =2z=0 is convenient for finding further conditions for capturing
the charge. It is evident that a finite range of electron emission times
must be considered, for infinite current densities would be necessary
if all the emission were to occur at one particular instant. For every
emission time there is a different potential function V,, because the
constant C involving the initial flux is different. Since the electro-
static potential V, is necessarily the same for all electrons, the minima
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of V,=Vye— Vg, if existing, will be, in general, at different instan-
taneous positions z; and have different curvatures 92V,/9z2 and 92V,/222
for each electron. The electrons will be captured for such shifts of
instantaneous orbits x; and such changes in the depth of the potential
trough which will effectively prevent them from hitting the bounding
electrodes. It is obvious that the initial position x;, of the instantaneous
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Fig. 4 —Time variation of the magnetic field, magnetic flux and electric field.

equilibrium orbit x;, must be closer to the cathode than the anode;

Xio

0< <y, (66)

Furthermore, if at no time the orbit is closer to the cathode or anode
than it was originally to the cathode, or

[#:] < [%i, (67)

capture will be insured as long as °92V,/0a2 and 22V,/922 remain no
smaller than their initial values.

We shall restrict the analysis to the case, described above, of linear
field variations providing an equilibrium at x = 0 for so-called normal
electrons for which the variables B,=B,,, B, and 9Vp/0z satisfy
equation (59) and B,, is given on the successive segments of the
operating line by:
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Bq,., = B. — (1 - S)BeOru Bqn = constant, Bqn = B,, (68)
while 9V ,/9x can be expressed on the first of these by:

v
-£i=ina-gmuwf-u—gawx (69)

where B,y is the initial value, B,, of B, at the emission time of the
normal electron. The potential V,, of other electrons finding them-
selves in the same magnetic field will depend on B, and a value B,
differing from B,, by a constant amount AB, characteristic of the
emission time. The position of the minimum of the potential V,=
Vuo— Vg will be at a position x; determined for times subsequent to
normal emission and approximately equal to:

_ov,
o= ax _ —y AB,(B.—2B,v)
- oV, ‘B:24+3B,2—(3+n)B.B,+ (k+1)Bv(B.— B,)
dx? (70)

The initial equilibrium orbit position x,, of an electron emitted subse-
quently to the normal electron is seen from equation (70) to have the
same sign as B, therefore opposite to z, in violation of condition
(66), an understandable result since for late electrons the electric field
is stronger than cut-off of an analogous magnetron.

Therefore, only early electrons are capturable. Whether this will
actually occur depends on the electric field, which, prior to the normal
emission, is not specified by the normal equilibrium equations (59) and
(69). It will be assumed to vary linearly with B, at a rate p times
faster than immediately subsequent to normal emission. With this as-
sumption, both V, and Vj are determined for early electrons and it is
possible to compute the instantaneous position of x; of the potential
minimum of V, = Vyo— V5 for each instant ¢ and each emission time
t, in the emission period extending from the instant ¢, at which the
electric field is zero to the instant ¢, of the emission of the normal elec-
tron. It is convenient to introduce the numerical factors ¢=t,/(t,
—t,) characteristic of the emission time and A =t/(¢,—1t,) char-
acteristic of any instant in the period between the emission of any
electron and the normal electron. With these abbreviations, the result
of the computation is:

m=mﬂ—@(l—x+%), (71)
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when terms in (x,/7,)2 are neglected with respect to terms in (z,/7,).
Therefore the initial position z;, of the position minimum (A =0) and
the position z;, at the time of the normal emission (A =1) are:

xio = xo(l — q), _ (72)

xin=xou' (73)
4

Equation (72) shows that the initial equilibrium orbit is at the cathode
for the earliest emission time (¢ = 0) and in the center of the tube at
the latest (¢ =1). The amplitude of oscillation at the'emission time
of any electron is (2y— ;) = |qxo| and becomes slightly smaller at
the normal emission time in virtue of the increase of 22V,/922 in the
interim,

At the instant of emission of the normal electron, there are already
in the tube a series of electrons all oscillating around different equi-
librium orbits with different amplitudes. In order for‘(:vi,,) to be less
than (x;,,) in accordance with relation (67), p must be greater than
one. At the limiting value when the rate of change of the electric field
at the emission period is equal to the rate subsequent to normal emis-
sion time, or p = 1, the instantaneous equilibrium orbit of any electron
does not change from the instant of emission to the normal emission
time, x; = ¢;y = z;,, and the electrons all oscillate so as to come back
to the cathode at each swing.

After the emission of the normal electrons, the position z; of the
equilibrium orbits is given by equation (70). The constants AB, can
be eliminated by comparing the instantaneous equilibrium positions z;,
to those, z,,, the electrons had at the time ¢, of the emission of the
normal electron: :

v,

xi  B.— 2B, 9dx?|,,

x"n - BtON - ZBqONa_;I/( —_fn' (74)
ox? |,

The function f, is determined for every point of the operating line on
the B,—B, diagram. For the lines shown in Figure 3, for an external
cathode f, varies from 1, passes through a maximum of 2 and eventually
tends asymptotically to zero, while for an internal cathode f, varies
from one, passes through zero to a minimum value of — 2.5 and eventu-
ally also tends to zero. '

The position z; of the orbit at any time subsequent to the emission
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period can be compared now to its initial position by combining equa-
tions (72), (73) and (74).

i _Ja

Xo p°'
showing that z;/x;, is independent of the emission time ¢. In order
to satisfy condition (67):

(75)

|f ] max. o (76)

This shows that the rate of increase of the electric field during emission
time must be greater than subsequently by a factor p which depends
on the particular subsequent mode of operation. In our example p > 2
for external cathode and p > 2.5 for internal cathode. Higher rates
than necessary insure more positively that the electrons will miss strik-
ing the bounding electrodes but the emission period is shortened so
that high cathode emission is necessary to inject a given charge. How-
ever, for most practical parameters, as in the examples illustrated, the
emissivity of the cathode is no limiting factor.

The schematic history of the instantaneous equilibrium position and
amplitude of oscillation of Figure 5 summarizes graphically the above
considerations. When the electric field becomes zero, the conditions
are those of a purely magnetic betatron and the instantaneous orbits
tend towards the center while the amplitude of oscillation diminishes,
as explained before.

The analysis of the emission period made above on the basis of the
motion of the electrons in the radial direction only, were based on the
two first terms of the expansion of the potential of forces. Actually,
the two dimensional motion in the -z plane should be considered by
taking into account the effects of the actual boundaries, such as the
cathode, for which the second order terms approximation breaks down.
Such a detailed analysis was made for a specific example by using the
cubic terms for V,, and an actual electrolytic plot for V; and con-
firmed essentially the conclusions of the simpler analysis.

The magnetic field B,, the flux linking the circle r =17, 2=0, as
characterized by B,, and the electrostatic field @V z/2x must be related
through equation (59) at all times. It is significant to cqnsider the
tolerances on the variations of these variables by computing the dif-
ferential changes in the time variables which cause a shift Az in the

(an) azv,, an

x2

equilibrium orbit:
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Fig. 5—Schematic history of oscillations.

vV,

2 .
AB, = — Ax 9x (18)
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vV,
Jx?

AB, = — Ax —— (79)
e
—r.B,
my

The maximum permissible value of Az is the space between the point
of maximum oscillating displacement and the cathode or anode, which
for times subsequent to the emission period is:

=(l-—q)(:i:l—j;;)xo. (80)

It is apparent that there is no tolerance for the normal electron (¢ =1),
and the maximum tolerance for the earliest emitted electron (¢ =0).
If half of the initial emission is sacrificed a reasonable value for Az is
=+ z,/4 for practical values of f, and p.

The tolerances for the operating lines shown on the focusing dia-
gram are as follows: Since 92V,/0z2 remains approximately constant
when oV /ox 0, the absolute tolerance of oV ;/dx remains constant
and tends to a minimum relative error of .6 per cent at maximum
voltage. The tolerance AB, is expressible as

Ax s(1 — )
Xo f,,

so that the least relative tolerance in the control flux B,, AB,/B,
= AB,/B,y is about .5 per cent for the maximum value of f,. Similarly,
the relative tolerance in B, is of the order of .7 per cent, well within
the approximate linearity of a sine function at the phase angles of the
injection period. These tolerances of a few tenths of a per cent on
the variation of the electric field and magnetic flux constitute very
close requirements for electronic circuits controlling appreciable power
at reasonably high frequencies.

ABo = B.ov,

The ejection of the accelerated charge in a betatron with a system
of injection using a radial electric field can of course be obtained by a
non-synchronous change of flux or field as is done in the purely mag-
netic betatron. It could be achieved also, in principle, by applying
an ejecting electric field on the existing injecting electrode structure.
However, the required gradients would be impractically high.

It was shown that space charge determines the ultimate limit to the
charge which can be captured and accelerated. In the purely magnetic
betatron this limit increases with the energy of the electrons so that
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far more charge is potentially supportable near ejection time than can
possibly be introduced at injection time. As mentioned before, the
addition of an electrostatic field might be expected to provide a means
for taking some advantage of this potentiality since the electrons could
be injected into a much stronger initial magnetic field, as is the case
in static magnetrons which are known to have high current densities.
Actually the gain of supportable charge can be only very small, for the
following reasons:

The Laplacian of the magnetic potential was shown to represent
the limiting space charge density of stationary electrons at any point.
This limit p at the minimum of V, can be found by introducing the

. Ve oVy
equilibrium condition = into equation (27).
or or
()
ar 2 V\/
= ¢ - 1
p 0 W + ”r (81)

r| oVg

For a given electric field 9V/0r, p is a minimum when V, = —
2 or

a value which V, must assume necessarily at some time since it passes
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