RECEIVING TUBE SUBSTITUTION GUIDE BOOK

BY
H. A. MIDDLETON

FIRST EDITION

JOHN F. RIDER PUBLISHER, INC. 480 CANAL STREET NEW YORK 13, N. Y.

Copyright 1950 by
JOHN F. RIDER

First Printing, December, 1950
Second Printing, December, 1950

All rights reserved. This book or parts thereof may not be reproduced in any form or in any language. without permission of the publisher.

Printed in the United States of America

FOREWORD

Recciving Tube Substitution Guide Book is a greatly enlarged and revised edition of the book Wartime Radio Service published in 1944. This new book lists about 750 receiving tube types and their bases, including all of the following series:
$4,5,6,7$, and 7 L old-style base series
Octal base series
Loctal base series
7-pin miniature series
9-pin•noval series
Subminiature series.
During the past eight years we have made many tube substitutions. Most of them were easy to make and all resulted in from excellent to reasonable performance. The majority of substitutions shown here have actually been tried. We are passing this information on to you in the belief that it will save you many hours and enable you to make necessary repairs to electronic equipment in spite of shortages. Also, when shortages no longer exist, you will again save time in restoring equipment to its original condition after substitutions have been made.

All substitutions listed here describe in detail the necessary data for changing or rewiring the sockets. It is recommended that in making the circuit changes listed you follow the sequence exactly as indicated in order to avoid any errors in rewiring.

You will note that a few types have no substitutes listed. We do not presume to be infallible. We may have omitted some tube substitutions. If you know of tube substitutions which have been omitted we would like to hear from you about them.

Besides a tube substitution listing we have included other important information that will make this book
even more useful as a substitution guide. In Section 3 we offer a compilation of television receiver filament circuit arrangements including various filament diagrams. These were compiled by John F. Rider Publisher, Inc., to whom we owe thanks for their contribution. The information was taken from the five presently existing Rider TV Manuals. It is hoped that this information will not only aid tube substitution operations, but will prove helpful in connection with TV servicing in the home. A group of servicing suggestions are also included to help in repairing the filaments of burned-out tubes, making adapters, and for the change over of battery-operated radios to electric operation.

Most significant is the last section of this book which covers different charts and tables. A complete listing of the characteristics of receiving tubes and bases and cathode-ray tubes and bases are included in this section. Thus this book, besides serving as a tube substitution guide, also functions as a tube handbook.

We wish to express our appreciation to the American Radio Relay League for their cooperation in permitting us to reprint their receiving tube characteristics charts from their ARRL handbook. In our estimation these are the most complete charts available at this time. To Tung-Sol Lamp Works, Inc., for supplying us with the data on tube classifications, ballast tube and resistor numbering codes, and RTMA resistor, capacitor, and transformer color codes our thanks; also to Sylvania Electric Products; Inc., for supplying us with the data on cathode-ray-tube characteristics; to Federal Telephone and Radio Corp. and Radio Receptor Corp. for their kind cooperation.

November, 1950
H. A. Middleton

TABLE OF CONTENTS

PAGE
SECTION 1 - THE BACKGROUND OF TUBE SUBSTITUTIONS 1
SECTION 2 - RECEIVING TUBE SUBSTITUTION GUIDE 30
SECTION 3 - TELEVISION RECEIVER FILAMENT CIRCUIT ARRANGEMENTS 145
SECTION 4 - SERVICING SUGGESTIONS 170
SECTION 5 - CHARTS AND TABLES 173
RTMA Receiving Tube Ratings 173
Receiving Tube Bases 175
Receiving Tube Characteristics 181
Cathode-Ray-Tube Bases 202
Cathode-Ray Tube Characteristics 204
Cross Index of Army VT Numbers and
Commercial Numbers 211
Ballast Tube and Resistor Numbering Codes 213
RTMA Capacitor, Resistor, and Transformer Color Codes. 214
Pilot Lamp Table 215
Germanium Crystal Diode Characteristics 215

SECTION

THE BACKGROUND OF TUBE SUBSTITUTIONS

Were it not for the fact that tube development is a never-ending activity, there would be no purpose in describing the background of tube substitution. The substitution lists contained herein would suffice, for they include practically every tube which is used for receiving purposes serving many different electronic applications. These applications consist of radio receivers of all varieties ($\mathrm{a}-\mathrm{m}, \mathrm{f}-\mathrm{m}$, and TV), radar, facsimile (commercial and military), public address amplifiers, record changer amplifiers, test equipment, electronic computers - in fact every kind of equipment with the exception of transmitters, although even there, receiving tubes make their appearance in the speech amplifiers.

The basis of tube substitution is similarity or equivalence between the original and the substitute. The choice of these two words with different connotation is deliberate; similarity may mean equivalence in some respects but not in all. Thus if two tubes are similar (or identical) in electrical characteristics, one is the equivalent of the other. The use of two tubes, however, to replace one single tube which affords certain facilities, creates a state of equivalence rather than a state of similarity.

This is not intended as a play on words but deals with a very important situation that is developing fast in television receivers. Unwelcome as it may be, it means constructional modifications and even more important, a careful analysis of what suits the purpose. Any attempt to list all the substitutes within the meaning of equivalent as we have described it, would be a monumental task and would more than likely, never see the light of day. We hope, therefore, that the general details of the background of tube substitution given in this section combined with the tube substitution lists and the knowledge possessed by the technician who makes the change (and selects the substitutes) will result in satisfactory substitutions.

An examination of the tube substitution lists will disclose that the substitution of one type for another is not too frequently accomplished by a simple replacement of tubes. Differences in tube characteristics may demand some modifications in the circuit within the apparatus. Sometimes, only a change of socket is needed because of differences in the basing of the substitute tube. In other instances, definite restrictions
are imposed relative to the heater circuits; some substitute tubes may be used only in parallel-wired heaters without any circuit changes, whereas in other instances, a tube substitution is applicable only to series-wired heaters. In some cases, a tube substitution may demand modifications in the cathode, control grid, plate, or screen circuits, or possibly in the power supply, so as to satisfy the needs of the substitute and accomplish the best possible performance. These circuit changes are not listed because they are peculiar to each system.

All of this means that although the lists in this Guide Book give the substitute or substitutes as the case may he, the final selection cannot be made without considering the conditions existing in the equipment which will receive the substitute. Where changes in heater or filament wiring are required, they are described. Changes necessary in the signal electrode circuits such as those of the control grid, screen grid, cathode, and plate so as to attain best possible performance become the function of the technician and are determined by the constants of the specific circuit in which the substitution is made.

As shown in the three series of Rider's Manuals (AM-FM, TV, and PA), many tens of thousands of models of receivers and amplifiers comprise the hundred odd million units which may require substitute tubes.

Fortunately, a certain amount of standardization does exist in receivers and other equipment designed to work with the tubes listed herein. This situation, together with the circuit and operating voltage details given in the above-mentioned manuals and manufacturers' literature affords the technician the opportunity of determining the operating conditions thereby enabling him to establish the correct voltages at the different signal electrodes. A familiarity with these techniques is not difficult to acquire, although we hasten to add that too many differences exist to permit cirćuit modifications based on guesswork or memory. Schematic wiring diagrams, operating voltage cables, and the tube characteristic charts demand attention if longest tube and component life are desired, and also, if best circuit performance is to be attained with the substitute tube.

Design engineers have their own ways of accomplishing performance with the standard run of tubes. Many substitutes are possible but all will not afford like performance. In listing the substitutions, only those sub-
stitutions considered practical, that is, which do not demand redesigning of circuits, were included. Many substitutes possess sufficient similarity to the original as to require no changes in either heater wiring or sockets. These are listed with the note "No changes." This does not mean, however, that the signal electrode operating conditions are identical for the original and the substitute. This should be checked in the tube characteristics chart contained in this Guide Book. It only requires a few minutes of time to do this and its results can be very gratifying.

If upon examination, the differences in electrical characteristics between the recommended substitute and the original are more than moderate, changes in the signal electrode operating circuits may be required. Since the plate voltage requirements for tubes in similar categories do not differ greatly, changes are not too frequent in the plate circuits. It is only when battery type and a-c operated tubes are being compared that one finds radical differences in plate and screen voltages. More critical points are the control grid and cathode bias - especially the latter. Small numerical differences in bias voltages (which are related to the plate current) produce great performance differences. For example, a change in bias from - 2 volts to - 4 volts is only 2 volts, but it represents a change of 190 per cent, and can very materially influence performance. A situation of this kind would demand a change in the value of the bias resistance.

A bias tube may be listed as the substitute for a zero bias tube. Reference to the electrical characteristics will disclose that the grid resistor must be changed; sometimes from 10 megohms to as low as 0.25 megohm. In addition, a cathode resistor of such ohmic value as will develop the bias shown in the tube characteristic chart must be added. Thus, the statement "No changes," does not refer to signal electrode operating conditions, rather to the fact that neither heater wiring nor socket changes are required.

Each substitution is an individual case requiring individual consideration, unless it is definitely known that the original and the substitute are identical in all respects other than heater voltage. Even then, if the substitution is made in a system which involves a state of resonance, realignment will be required. Similar tubes, even identical ones, do not possess identical values of interelectrode capacitance. This difference affects the final value of tuning capacitance. It is very important to bear this in mind when substitutions are made in wideband amplifiers particularly, since here, the interelectrode capacitance (direct and reflected) plays a paramount role in the peaking action. Examples are the video amplifiers in television receivers and the amplifiers in oscilloscopes and the like. In making substitutions it is often necessary to consider the function of the tube and its circuit so as to insure best performance in the circuit. The various types of circuits and functions will now be discussed.

Oscillator Systems

These may be heterodyning arrangements which involve tracking with other tuned circuits, such as in converter systems and separate oscillator and mixer circuits, or nontracking arrangements, such as beatfrequency oscillators. Also, there are the various kinds of multivibrator systems in television receivers. Each of these demands individual consideration.

Combination oscillators and mixers (converters) require substitutes which contain not only the identical number of electrodes as the original, but in addition, the functions of these electrodes must be the same. This immediately limits the number of possible substitutes. The list of tubes, classified by function found at the end of this section, is an aid in this respect. If the required substitutes can not be procured, it does not make sense to redesign the circuit so as to replace a single tube with two individual tubes. That is a design engineer's job. If the oscillator and mixer functions are performed by individual tubes in separate envelopes, then the latitude of substitution is greater, provided that the selection of the substitute tube is made carefully.

The higher the frequency of operation, the more critical is the choice. That is why new tubes are born as operating frequencies increase. Tubes designed for the broadcast band are frequently unsuited for use in the vhf band and most certainly not in the uhf band. Thus, in addition to recognizing the oscillator function, it is also imperative to pay heed to the frequency of operation. If a choice is available, the tube intended for a higher frequency is suitable for a lower frequency, but not vice versa with complete freedom.

Sometimes tubes specifically intended for use as oscillators will not perform properly in that position, it is difficult to account for this, but it is a fact nevertheless. This does not condemn the tube as a tube it can still perform other functions - nor does it mean that another tube of like brand and type will behave in similar fashion. There is no remedy for such failure to function properly - it is simply a statement of fact.

What should be examined when comparing tubes intended for oscillators? Neglecting heater or filament ratings for the moment, these being assumed to be suitable and assuming that the number of circuit electrodes of the substitute original are the same, such details as the grid bias, the plate (and screen) voltages, the plate (and screen) currents, and the transconductance are paramount factors. If the exact duplicate is not available, the substitute tube which requires lower plate and screen voltages (differing only moderately from the original) is preferable to the substitute tube which requires higher plate (and screen) voltages than the original. The tube with the higher transconductance is preferable to the tube with the lower transconductance, everything else being equal. These preferences are more apt to furnish heterodyning voltage

RECEIVING TUBE SUBSTITUTION GUIDE

over the entire band embraced by the receiver, especially if the bias resistor is modified to suit the specifications of the substitute.

R-F and I-F Amplifiers

The general run of r-f and i-f amplifiers utilize tetrodes and pentodes. Since pentodes used as triodes (in a-f amplifiers) are substitutes for triodes, it is important when selecting a substitute to know the manner in which the tube is used in the r-f or i-f amplifier. A triode is a poor substitute for a pentode; if a pentode is used, the substitute should be a pentode. However, if a tetrode is used, the substitute may be either a tetrode or a pentode. Care should be exercised to note if a shield is a part of the tube. An unshielded tube may be substituted for a shielded tube provided that an external shield is used and is grounded properly. Single-ended tubes may be substituted for doubleended tubes, but the reverse may be troublesome. Care must be exercised relative to the control-grid lead dress so as to minimize regeneration.

Sharp cutoff tubes should be replaced by similar tubes; similarly with remote cutoff tubes. However, sharp cutoff tubes may be replaced by remote cutoff types without too much trouble. The avc may be affected somewhat, but this does not interfere with the effectiveness of the receiver. When sharp cutoff tubes replace remote cutoff types, however, some minor problems may arise. Their best location would be in places where the signal level is lowest, for example, in the first stage in either an r-f or i-f amplifier. If distortion is severe on loud signals (due to rectification in the sharp cutoff stage), a divider network may be required so as to reduce the avc bias being applied to the sharp cutoff tube. This is best accomplished at the source of the avc, and might call for a separate avc line to the sharp cutoff tube. It might even be satisfactory to operate the sharp cutoff tube (if it is located at the point of lowest signal level in the amplifier) without any avc, using a low fixed bias.

Where there is a high input signal, sharp cutoff tubes must be used in place of remote cutoff tubes, an auxiliary volume control (or divider) at the front end of the receiver (perhaps in the antenna circuit) may be required. This would be operated only on those channels which cause trouble. A panel switch would control the operation of this signal control element.

Transconductance is the important electrical characteristic to consider in r-f and i-f amplifier substitutions. The higher the mutual conductance is relative to an r-f or i-f transformer the better, assuming that the plate and screen voltage conditions are satisfied or approached. Inability to equal the original tube in transconductance means reduced gain in the stage, but this seldom is a problem in a-m or $f-m$ receivers because the average receiver has excess gain for the reception of chain or local broadcasts. The same can be
said about television receivers, provided that the receiver is located in a primary service area. When such a receiver is relatively close to a station, the problem is too much rather than insufficient signal, so that a reduction in r-f or i-f amplification (unless it is too severe) usually can be tolerated. In fringe areas, the situation is different, especially when the received signal levels already border on the inadequate. There it becomes necessary to approach the original, and if this cannot be attained, then it is preferable to select tubes with higher than the original transconductance and to adjust the operating voltages accordingly. General instructions of this kind are given elsewhere in this section.

Where r-f and i-f systems are subject to tube substitutions, realignment of the coupling transformers associated with the input and output circuits of the substitute stage are imperative. Sometimes it may appear that proper performance is being secured without realignment. This should not be accepted as fact without a test to establish if the circuits are peaked properly.

Whether the shift in frequency peaking is upward or downward depends upon the direction of the capacitance change. A reduction in distributed capacitance, which includes the plate-to-cathode (or control grid-to-cathode) capacitance tends to cause peaking at a higher frequency, whereas an increase in distributed capacitance tends to cause peaking at a lower frequency.

Many i-f transformers and some r-f transformers are permeability tuned, utilizing the related distributed capacitance including the tube capacitance to provide the C for the tuned circuit. Because of this, changes in distributed capacitance, due to different tube electrode capacitances, can cause major variations in operating conditions. Whenever possible, substitute tubes should approximate the input-output capacitance of the original tube. This data is found in the tube specification charts of Section 5.

Exception to the need for realignment of r-f and i-f coupling systems is found in those equipments which employ $R-C$ coupling between tubes. While not a common practice, it is to be found in receivers. Sometimes the coupling element consists of a resistive plate load and a tuned grid load for the succeeding tube. The resistive plate load on a substitute tube requires no readjustment, but if the substitution is made in that stage which has a tuned grid load, realignment will be required. Examples of such arrangements are listed elsewhere in this section in connection with r-f and i-f transformer replacement.

Audio Amplifiers

All types of tubes are found in audio amplifiers: triodes, tetrodes, pentodes, pentodes used as triodes, and various kinds of output-stage power amplifiers. Voltage amplifiers are, in the main, resistance-coupled
systems, whereas power amplifiers are transformercoupled. The difference between these two general categories is the plate circuit load, that is, load inpedance, and the grid bias.

There are some differences between the signal electrode operating conditions in resistance-coupled amplifiers, their operating voltage or load resistance may differ, but many substitutions are possible without changes. A fair degree of similarity exists between the fundamental designs of these circuits so that it is possible to generalize concerning substitutions. Pentodes can be used in place of triodes and, in turn, triodes may replace pentodes or tetrodes. The load resistances are pretty much the same for all of these tubes since the limitation is set by the plate voltage supply, and this does not differ too greatly in like categories of equipment. Naturally, the ideal condition is when the substitute is used exactly as the original, or the substitute type is the same as the original type.

In the case of triode-type tubes used in audio amplifiers, with the exception of the output stage, the amplification constant of the tulse is the pertinent factor. The higher the amplification constant, the higher the stage gain, provided that the internal plate resistance is not too high relative to the load resistance. The higher the internal plate resistance of the tube, relative to the load resistance, the less the amount of signal taken out of the tube will be. The portion of the available signal taken out of the tube is expressed as

$$
\frac{R_{1}}{R_{p}+R_{1}}
$$

where R_{1} is the load resistance in ohms and R_{p} is the internal plate resistance expressed in ohms.

Another matter of concern to keep in mind is that relating to grid bias. Quite a few tubes used in $R-C$ coupled amplifiers as well as in $L-C$ coupled systems are of the zero-bias type. When adequate substitutes are not available and a self-bias tube is used in place of a zero-bias one, provision for the bias must be made in the circuit. This can be in the form of a bypassed cathode resistor. In addition, the grid resistor (grid leak) of the substituted stage will require reduction to perhaps one-thirtieth or one-fortieth of its original value. Zero-bias tubes utilize grid resistors of from 5 to 10 megohms. Self-bias amplifier tubes utilize grid resistors of from 0.1 to perhaps 0.3 megohms. These bias- and grid-resistor references will be found to apply to pentodes and tetrodes as well as triodes. When a zero-bias tube is used in place of a self-bias tube, the above-required changes in circuits are reversed.

In the output stages, for that matter, also in driver stages in audio amplifiers, attention must be paid to the recommended load impedance represented by the output transformer. Not only does it determine output power, which may or may not be important, but it also determines the quality of reproduction. The latter is important.

To begin with, the recommended load impedance for substitute tubes should be the same or less than that for the original. By being less than the original a fair semblance of the original quality will be retained because the tubes are working into a higher impedance, that represented by the output transformer already in the device. Power output will be reduced somewhat but quality of reproduction will be retained. If it is impossible to find substitutes which require the same, or a lower load impedance than the original, then a higher rating will have to be accepted, but it should be the closest approximation to the original.

A receiver installation can afford to sacrifice some power for quality. In public address systems, it is a question of how the system is used. If its full-rated power output is seldom used, then it can sacrifice some output for quality. If it is used for the reproduction of speech only, it can afford a greater mismatch than systems which reproduce music and speech. In the last analysis it is a compromise and each individual requirement determines the choice.

In view of the power-handling requirements of the output stage, only those substitutes, both triodes and pentodes, are usable which can handle power. These are interchangeable but only on that basis.

When two individual tubes are used in a push-pull output stage and a substitution is being contemplated for one tube, it should be carried out for both. If the characteristics of the original and the substitute differ markedly, parasitic suppressors nay be required in grid and plate leads (if they ar not already in the circuit). Fifty-ohm resistors capable of handling the currents involved are adequate. If two individual tubes replace two tubes in a single envelope, such resistors may prove very important because the changes in wiring and lengthening of the leads may cause oscillation.

Negative feedback is used in many audio systems between the output power stage and a preceding stage. Tube substitutions can upset the feedback conditions, especially if the electrical characteristics of the substitute are unlike the original. If audio quality or power over-all gain seems to have suffered too much, the feedback circuit should be checked.

When tube substitutions in a-f driver stages are contemplated, the range of substitutes is more limited than in the case of voltage amplifiers. While tubes designed for the driver stages of a-f amplifiers may be used in other capacities, tubes designed for other functions very often are not usable in a driver stage. Because the tube grid in the driver stage is driven into the positive region during certain portions of the signal cycle, the tube which feeds the driver-stage input transformer must be of the correct type for operation with the driver-stage input transformer. In like manner, the driver stage is impedance-matched to the transformer which feeds the succeeding stage. This is another requirement that must be satisfied when the substitute tube is selected from a number of types which possess
the required over-all similarity in electrical characteristics.

Phase-Inverter Stages

Phase-inverter stages present no serious problems in substitution except for the fact that differences between the original and the substitute may demand readjustment of the load resistor so as to arrange that the signals from the phase-inverter stage to the control grids of the succeeding push-pull stage are of like magnitude. If the phase-inverter stage serves just one function, inverting the signal to one of the succeeding push-pull stage tubes, and it is of the same type as its related amplifier tube which feeds the other succeeding push-pull tube, then it may be convenient to substitute like tubes for the phase inverter and its related amplifier.

Diode Rectifiers (Signal)

Too much need not be said about signal-rectifying diodes. One significant detail is that power rectifiers are not substitutes for signal rectifiers. (They are not shown as substitutes on the list, but the comment is still required.) There is very little to choose from between signal-rectifying diodes for virtually anyone will perform the functions of the others, except perhaps in connection with frequency of operation. The transit time (time taken for the electrons to advance from cathode to plate relative to the period of a cycle of the signal) limits the application of the tube in ternis of frequency. Uhf diodes are suitable for operation at lower frequencies. On the other hand, the low or conventional frequency diodes are not suitable for the rectification of uhf and sometimes even vhf signals, unless so specified.

It is interesting to note that the equivalent of conventional signal-rectifying diodes may be formed out of conventional triodes by tying the grid and plate together thus forming one element, or by tying the plate to the cathode and using the control grid as the second element. Such equivalence is not indicated in the list of substitutions, but it should be kept in mind.

Sometimes multipurpose tubes used in receivers do not employ all of the electrodes. Quite frequently a duo-diode may have its two plates tied together forming a single diode to be used for a single purpose. It is well to try to disconnect one of the plates and to see if the operation is impaired; if not, then the other diode plate may, in conjunction with the common cathode, be used as the substitution diode. Whether or not such is possible depends upon the manner in which the common cathode is being used.

New advances in the design of germanium crystal diodes facilitate the use of these components as replacements for conventional diode tubes in signal-rectifying and detecting circuits. An important consideration in
this connection is the fact that they require no heater supply and have an average life of over 10,000 hours.

Germanium crystal diodes are usable in vhf and even uhf circuits since their maximum operating frequency is about 500 Mc . They are rated for voltages of from 25 to 200 volts, with peak anode currents up to 200 ma . These components are particularly suitable for detector circuits where their low shunt capacities (of the order of 1 mmf) are advantageous.
The substitution of a crystal diode for a conven-tional-type tube is particularly simple because there is no need for a heater supply circuit. A typical use of a 1N34-type crystal diode is illustrated in Fig. 1-1.

Courtesy Sylvania Electric Products Inc.
Fig. 1-1. The use of a 1 N34 type germanium crystal diode in the video detector circuit of a television receiver. Notice that the value of the circuit parameters are similar to those found in most video detector stages.

Here the component is shown being used in a videodetector circuit of the type common in most television receivers. The performance of the circuit with the 1N34-type crystal diode depends upon the proper choice of circuit parameters. In most circuits, however, it will be found that there need be no component modifications for good performance. Conventional-type tubes for which germanium crystal diodes are successful replacements are the $6 \mathrm{AL} 5,6 \mathrm{H} 6,6 \mathrm{~T} 8$, and 12 AL 5 . In the replacement of duo-diodes not only must the detector function be taken care of, but the sync limiter or other use must also be replaced. This is possible by using a $1 \mathrm{~N} 35-\mathrm{type}$ matched duo-diode crystal component. See the table of geranium crystal diodes in Section 5.

For further information as to the use of germanium crystal diodes in video and $\mathrm{f}-\mathrm{m}$ detector circuits as well as in other signal rectifiers, see 40 Uses for Germanium Diodes, a booklet obtainable from Sylvania Electric Products, Inc.

Diode Rectifiers (Power)

Power rectifiers are of two types, high-vacuum and gaseous. Normally, high-vacuum rectifiers are interchangeable as are gaseous ones, within the limitations set by the current and voltage ratings of the device.

RECEIVING TUBE SUBSTITUTION GUIDE

Gaseous-type rectifiers frequently may replace vacuumtype rectifiers provided that the electrical characteristics are the same and the related circuit requirements are satisfied. Replacement of high-vacuum rectifiers by the gaseous kind is not recommended except when high currents are involved and when a constant voltage drop in the rectifier is reguired: the need for high voltage alone is not sufficient.
To take a typical case, the mercury-vapor rectifier requires choke input instead of capacitor input in the filter system. The high current surges which occur with capacitor input would destroy the gaseous tule. Also. gaseous tules are suitable for the rectification of medium voltages and higher (500 volts output and up) and they are intended for systems wherein high current loads exist and where the variations in current load are large. In the case of a-c-d-c receivers, there are no gaseous equivalents for the high-vacuum types used. Gaseous rectifiers, moreover, are a source of r-f "hash" and, therefore, are not suitable for use in close proximity to circuits susceptille to such radiations.
High-vacuum tubes, on the other hand, are suitable replacements for mercury-vapor rectifiers if the rectifier system can stand the increased voltage drop which occurs in the high-racuum tube and if the electrical requirements are satisfied. As a rule, the heater current for high-vacuum rectifiers is less than that required for gaseous rectifiers of comparable d-c voltage and current output. Other important electrical requirements to consider are the a-c input voltage, output current, and inverse peak voltage. The last-named term expresses the aliility of the tube to withstand the peak voltage between the anode and the cathode during the nonconducting portion of the cycle.

Assuming the lack of recommended substitutes, high-vacuum tubes are suitable for substitution in systems which operate at lower d-c output voltages and currents than the high-vacuum tubes are rated for, provided that the heater requirements are satisfied. Such sulstitution should be made only in extreme cases when no other means are possible and a system must be restored to operation. For that matter, in such an event, the mercury-vapor kind also can be used provided that there is a choke input in the filter system. This is a MUST condition.

The substitution of a filament-type rectifier for a cathode-type one introduces certain complications, especially when the remainder of the tules in the system are of the cathode-heater variety. The difference in heating time would result in the very rapid build-up of the voltage output from the rectifier before the tubes receiving the plate and other voltages were in a conducting state. Thus, the rectifier would be operating for a period of time with practically no load. This results in a high output voltage - much higher than when the load is applied - and could very easily break down the filter capacitors and also some of the bypass capacitors in the equipment receiving its voltage from
the rectifier. Replacing a filament-type rectifier with a heater type causes no complications of this sort:

From a practical viewpoint it seems worthwhile to go to no end of trouble to find a suitable filament-type sulbstitute for a filament-type original. This seems easier than changing the voltage rating of all of the filter capacitors and the bypass capacitors for high working voltage units. Of course, if examination of the capacitor voltage ratings and measurement of the rectifier output voltage shows that the momentary peak is within the operating voltage rating of the capacitors, the change can be made without endangering the filter and bypass units. If this is not the case and replacement of the filter and bypass capacitors is not feasible, then the only alternative is to use an increased bleeder load and thus reduce the over-all output voltage from the power supply.
For medium- and low-voltage requirements, selenium rectifiers are far more suitable sulstitutes for highvacuum rectifier tubes than are gaseous tubes. Miniature selenium rectifiers are available in various sizes rated from 50 to 500 ma . The $50-, 65-$, $75-$, and $100-$ ma sizes will, in most cases, best serve as replacements for half-wave rectifiers in a-c-rl-c equipment.

Generally speaking, to replace the vacuum-tube rectifier in a phonograph oscillator, use the selenium rectifier rated for 50 ma , for three-tule amplifiers use the 65 -ma size, for five- or six-tule receivers without a push-pull output, use the $75-$ ma rectifier, and for sixtube sets and up use the 100 -ma rated one. To replace the $25 \mathrm{Z} 5,25 Z 6,35 \mathrm{~W} 4,35 \mathrm{Y} 4,35 \mathrm{Z3}, 35 \mathrm{Z} 4,35 Z 5,45 \mathrm{Z5}$, 50 Y 6 , and 50Z7, use a 403D2625A type selenium rectifier with a rating of 100 ma .

When a rectifier tube is replaced by a selenium rectifier, a compensating resistor must be inserted into the filament circuit to make up for the resistance drop due to the elimination of the rectifier tube if its filament was in series with other filaments. The value of this compensating resistor depends upon the rectifying tube that has been replaced. The following table lists the resistance to be used for the tubes mentioned above.

TUBE	RESISTOR (ohms)	WATTS
$25 Z 5$	85	15
$25 Z 6$	85	15
$35 W 4$	230	10
$35 Y 4$	230	10
$35 Z 3$	230	10
$35 Z 4$	230	10
$35 Z 5$	230	10
$45 Z 5$	300	10
50 Y 6	330	15
$50 Z 7$	330	15
$117 Z 3$	none required	
$117 Z 6$	none required	

In some sets, the pilot light may be connected across a low-voltage tap on the rectifier tube filament. If this

RECEIVING TUBE SUBSTITUTION GUIDE

is so in the set in which the rectifier tube is being replaced, connect the pilot light across a tapped-down portion of the compensating resistor (about 10 to 25 ohms will do depending upon the current in the filament circuit). A No. 47 pilot light can be used in this case.
When replacing vacuum-tule rectifiers by selenium rectifiers in a-c-d-c portalles using battery-type tubes that obtain filament voltages from B plus through a dropping resistor, reduce the value of the shunt resistor connected from the low end of the filament dropping resistor to the negative point. This will compensate for the increase in filament voltage.
In most cases, a protective resistor should be inserted in series with the selenium rectifier to protect the rectifier and filter capacitors from excessive current peaks during operation. The value of this resistor will vary from 5 to 50 ohms depending upon the current load of the rectifier; the higher the load, the smaller the protective resistor needed.
Manufactured adapters will probably be available for use with miniature selenium rectifiers in the future, in the meantime, they can be made fairly easily by using discarded tule bases. Following are instructions for making adapters for a few of the most popular rectifier tubes used in a-c-d-c equipment.
To make an adapter for the $35 Z 5$ used in series circuits:
a) connect a 230 -ohm, 10 -w resistor from No. 2 to No. 7 on an octal base
b) connect a $20-$ ohm, $1 / 2-\mathrm{w}$ resistor from No. 2 to No. 3
c) connect 25 -ohm, $1 / 2$-w resistor from No. 8 to positive side of rectifier
d) connect No. 5 to negative side of rectifier.

To make an adapter for a 35 Z 5 used by itself, follow the above steps but (lelete steps a) and b).
For the $25 \mathrm{Z} 6,25 \mathrm{X} 6,35 \mathrm{Z} 6,50 \mathrm{AX} 6,50 \mathrm{Y} 6$, and the $117 Z 6$ when these tubes are used by themselves as halfwave rectifiers, make an adapter as follows:
a). connect a 25 -ohm, $1 / 2-\mathrm{w}$ resistor from Nos. 4 and 8 on octal base to the positive side of the rectifier
b) connect Nos. 3 and 5 to negative side of the rectifier.
If the filaments of these tubes are in a series circuit, then naturally a compensating resistor must be added with the selenium rectifier. This resistor, whose value may be obtained from the table given previously, will be connected between pins No. 2 and No. 7. No resistor is needed when the $117 Z 6$ is replaced.

Wideband Amplifiers (Video and Others)

Although referred to earlier in this section, these systems are singled out for elaboration because of their seemingly peculiar conditions of operation. Ex-
amination will show that very low values of plate-load resistance are used and also that the applied plate voltage is very low, much lower than that shown in tule characteristic charts.

This is so because it is necessary to have wide frequency response. Gain in each stage is sacrificed for the attainment of low reflected capacitance and also the creation of suitable resonance. ${ }^{1}$ By means of shunt or series peaking, or both, a wide band of frequencies can be amplified. (This is explained in detail in the book referred to in the footnote.)

Tube substitutions in wideband amplifiers, therefore, require very serious consideration. The substitute tube characteristics should approximate most closely the complete conditions existing in the original. Interelectrode capacitance is very important. Plate-current, grid-bias, and grid-circuit resistance ratings should be the same. Lead dress must be maintained as much as possible because changes in the position of leads will affect the frequency of resonance and thereby the overall bandwidth of the system. This is very important if socket changes are required.

If possible, all stages should be replaced by like sul)stitutes even if only one stage requires replacement. This is expensive but advantageous. If the facility to check frequency bandwidth exists, then it is possible to confine the replacement to only one stage, the one in which the original tule is bad. Make the frequency run, and if the response is satisfactory after the replacement in that stage, the other stages need not be changed. Such tests can be made by means of a squarewave generator or a sine-wave generator. Usually the limits of response are expressed by the lowest and highest frequency signals which are down not more than 3 db from the top. In some instances, the amplifier design is more critical and the over-all response is expressed in terms of only 1 db down from the top.

Utilization of Sections of Multifunction Tubes

A number of tubes found in television and other equipments combine three and four sets of electrodes in a single envelope, thus performing three or four different functions. Direct substitutions for these tubes may not be available. In that event it is necessary to utilize two individual tubes containing such electrodes as will furnish the facilities originally contained in the single tube which is being replaced. For example, a triple diode-triode such as the 6 T 8 may require replacement. If the original is not available, pairs of sulstitutes must be used, for example, a 6AL5 and a 12AV6 or a 6AL5 and 6AQ6. These are the recommended combinations, other combinations of a doublediode with a double-diode triode, or single diode-triode

[^0]
RECEIVING TUBE SUBSTITUTION GUIDE

will function satisfactorily. One of these tubes takes over the function of two diorles in the 6 T 8 and the other tube takes over the function of the remaining diode-triode.

Substitution of two tubes for one is not easy; it means adding sockets and perhaps even changing sockets on crowded chassis where space is at a premitum. This requires planning of the socket location and the location of shunt and series resistors, so as to keep connecting leads short. But it can be done, and it is a vivid example of how tubes with more electrodes (and capable of more functions) than the original may be used in replacements so long as only the necessary number of electrodes are utilized. Also it is an example of how it may be necessary to utilize several substitute tubes to perform the function of one original. Incidentally, pairs of tubes which can be used in place of other multifunction tubes are listed in an addendum to the tube sulbstitution list. Which combination of substitute tulses fills the replacement of a single original is a matter of individual circuit design. Very many possible substitutions of this kincl exist, especially in so far as signal diodes are concerned.

Tube Substitution Techniques

Heater circuits are very significant in connection with tube substitutions because tube types are organized in terms of heater voltage. Therefore, it is quite in order to show the techniques involved in arranging tube heater circuits so as to accommodate substitute tubes. Before discussing the methods, however, in fact even before speaking about heater ratings, it might be well to emphasis one very important point, all heater ratings are interpretable in terms of resistance. The ohmic value of a heater is the same when it is operated on clirect current or alternating current. Any reference to heater voltage considers the d-c value and rms or effective a-c value as the same. Thus a tube heater rating of 6.3 volts means 6.3 volts d.c. or 6.3 volts rms a.c. The same applies to any other numerical rating. Note: Many battery-operated tubes zeill not function properly on a.c.

Heater current is treated in like fashion. A reference to 0.15 ampere or 150 ma means d.c. or a.c., the latter being the rms value. The rms value is used because it is responsible for the heating effect in filaments and to get equivalent heating in d.c. and a.c., the d-c value must equal the rms a-c value.

While the above statement is true in all conditions associated with resistance, it should not be assumed to apply to all a-c systems regardless of circumstances. For example, the d-c value of voltage is related to the peak value of an a-c voltage when insulation resistance is involved. This is important in the operation of capacitors and in connection with the insulation breakdown of rectifier tubes during the nonconducting portion of the cycle.

Heater Ratings versus Heater Circuits

It is common practice among electronic equipment manufacturers to use certain kinds of tubes for certain kinds of equipment. For example, in most a-c-d-c equipment, the tube heaters are connected in series across the line. The same is true when such equipment is intended for battery-operated portable use (the threeway portables). Other equipments are designed for operation from the a-c power lines only and the heaters are arranged in parallel chains. Still other equipments use a combination of series-parallel systems, as for example, a-c-cl-c television receivers.

Sometimes the series chain is singular; sometimes there are a number of chains connected in seriesparallel between different points as shown in the schematics at the end of Section 3. In the parallel systems, several independent parallel chains are used. Usually the rectifiers are wired individually and, in the true sense, are series circuits. The remainder of the tubes are, however, in parallel, all being on one chain or divided among a number of chains fed from individual voltage sources. These too are illustrated in Section 3. Incidentally, the receivers included in that section represent practically every one produced and sold in the years 1938 through October, 1950 as contained in Rider's TV Manuals Volumes 1 through 5.

Parallel Circuits

Parallel chains will accommodate tubes which require equal heater voltage ; they will also accommodate tubes with heater voltage ratings with are lower than that being supplied to the remainder of the tubes. This is shown in Fig. 1-2. The current rating of the heater is a matter of secondary concern in parallel chains.

Fig. 1-2. Parallel connection of vacuum-tube heaters. The voltage drops across the heaters so connected are equal to the voltage across the secondary of the power transformer as shown.

If the supply voltage source (the heater transformer) is capable of supplying the required current at its rated output voltage, then any reasonable heater current requirement set by the substitute can be satisfied. The only limitation which exists relative to parallel connected heaters is that the output voltage rating of the heater transformer cannot be exceeded. The current through the parallel heater is determined by the resistance of the heater so that, if the voltage is correct, the current will be correct. If the current drain of the substitute heater added to the total current drain of the other tubes in the parallel chain exceeds the current output capabilities of the heater transformer, the
voltage will fall on all the heaters. It is possible to operate all receiving tubes at perhaps ten per cent below the normal voltage and current ratings. In special cases this reduction can be exceeded but it is not recommended.

Tube sul)stitutes which bear heater voltage ratings lower than that of the original tube can be applied readily to parallel circuits. All that is needed is to drop the supply voltage to the level demanded by the substitute. The correction must be applied directly in the circuit which feeds the substitute tube. This is shown by the location of R in Fig. $1-3$. The amount of volt-

Fig. 1-3. When substituting a tube with lower voltage requirements than the original, a series resistor is added in the branch of the parallel feed in which the tube is placed. The resistor may be a single one as in (A), or two smaller ones as in (B).

age to be dropped is the difference between the supply voltage E and the tube heater requirement E_{1}. Suppose we wish to substitute a 2 B 7 with a 2.5 -volt heater for a 6B7 whose 6.3 -volt heater drew its supply from a filament transformer with an output of 6.3 volts. The difference $E-E_{1}$ is 3.8 volts and this must be dropped at the heater current rating of the substitute tube, namely, 0.8 ampere. The value of the voltage-dropping resistor then is

$$
R=\frac{E-E_{1}}{I}=\frac{3.8}{0.8}
$$

or

$$
R=4.75 \text { ohms or roughly } 5 \text { ohms. }
$$

The power rating of R is

$$
P=I^{2} R=0.8^{2} \times 4.75=3.204 \text { watts }
$$

In the examples cited, the substitute imposes a load that is somewhat greater than the original ; the power consumption of the 6B7 heater is 1.89 watts whereas that of the 2 B 7 is 2.0 watts. To this must be added the power dissipated across the voltagedropping resistor R, for, after all, it is a part of the newly created load. Roughly, this amounts to 3 watts. So, the substitution of a 2B7 for a 6 B 7 means the imposition of a 5 -watt load in place of the original 1.89 watts, or an increase in load of 150 per cent.

Normally, the addition of such a load will cause no trouble, but in the event that several tubes require sub-
stitution, the load may be increased to the extent that the voltage drop in the transformer secondary becomes excessive, and the voltage across all of the heaters will be lowered.

Some television receivers utilize a heater voltage supply which is the equivalent of two 6.3-volt windings in series, with the centertap grounded and acting as a common return path for two parallel chains of 6.3 -volt heaters. This is shown in Fig. 1-4. Each winding furnishes 6.3 volts for its respective chain, but by virtue of a common center connection, the difference of potential between the extremes of the two windings is twice that of each, or 12.6 volts. Consequently, a $12.6-$ volt heater can be used by connecting it across the extremes of the windings.

Fig. 1-4. Filament circuit of the type found in many television receivers. The center tap between the two windings is grounded to serve as a return for the filaments in parallel, each of which receives 6.3 volts from its part of the secondary.

If necessary, more than one tube substitution can be handled in this way. The voltage between the extremes of the two windings is a maximum which cannot be exceeded, therefore, even such an arrangement does not permit the use of a tube which requires more than 12.6 volts (or whatever the voltage happens to be between the two extremes of the windings).

The number of 12.6 -volt tubes which can be handled in the manner shown in Fig. 1-4 is not without limit. The power-handling capability of the two windings is the controlling factor. The substitution of $a \cdot$ single 12.6 -volt tube in place of a 6.3 -volt tube is no problem especially when the power consumption is the same for both heaters; more than likely it will not cause any concern even if an increased load is created by the selection of some special type of 12.6 -volt tube.

Series Circuits

The substitution of tubes in series-wired heater arrangements hinges upon the following fundamentals of Ohm's law relating to series circuits:

1. In a series circuit there is only one path for the current.
2. The current in a series circuit is equal to the applied voltage divided by the total resistance.
3. The sum of the individual voltage drops in a series circuit equals the applied voltage.
Illustrated in Fig. 1-5 (A) are four tube heaters connected in series across a voltage supply source E. Only one path exists for the flow of current I, therefore, the current must be the same in all parts of the circuit,
that is, in each heater. This immediately establishes the requirement that all heaters connected in series must have similar current ratings. A variation of 10 per cent in heater rating is permissible so long as the heater has a higher rating than the current required by the other heaters in the circuit.

Fig. 1-5. Filaments connected in series (A) may be represented as individual resistances (B), each of which passes the same current determined by the applied voltage divided by the total resistance.

The numerical value of the current is dependent upon the applied voltage E and the total resistance R of all of the heaters, as stated in statement 2. above Since resistances connected in series are additive, the total heater resistance R, is equal to $R_{1}+R_{2}+R_{3}$ $+R_{4}$, as indicated in Fig. 1-5(B). If, for the moment, we assume that each heater is rated at 12.6 volts and 0.15 ampere (150 ma), then the resistance of each is 12.6 divided by 0.15 or 84 ohms. The four heaters in series, therefore, represent a total resistance of 336 ohms. Knowing the total R and the required current, the supply voltage necessary to limit the current to the required value is

$$
E=I R
$$

or

$$
E=0.15 \times 336=50.4 \text { volts }
$$

If the voltage drops across each heater (or the voltage required across each heater) are aggregated, it is seen that the sum of the voltage drops equals the applied voltage. Thus are illustrated statements $1 ., 2$., and 3.

In view of what follows it might be well to devote a little more time to the matter of voltage drops and applied voltage, or the possibilities of statement 3. Current flowing through a resistance will cause a voltage drop across that resistance. If the current flow is the rated value, then the voltage drop numerically is the same as the voltage rating of the resistance. If the resistance is the heater (or filament) of a tube, and the current through it is the rated value, then the voltage drop is equal to the voltage rating of the heater.

We have simplified the problem by deliberately making the applied voltage (which we also can identify as the line voltage) equal to the total of the voltage drops in the load. As a rule, this is not found in practice; the line voltage always exceeds the total of the voltage drops across the tube heaters. This excess voltage is dropped by means of a line voltage-dropping resistor across which there is a voltage drop equal to the difference between the sum of the tube heater voltage drops and the line voltage. For example, if the line
voltage is 117 volts and the total of the tube heater voltage drops is 50.4 volts as in the above case, the line voltage-dropping resistor will drop 117 - 50.4 or 66.6 volts at the value of current which is flowing through the series chain.

Statement 3 still holds, except that now the series line voltage-dropping resistor has been added to the elements (heaters) which comprise the load. This action of the line voltage-dropping resistor may be considered from a different viewpoint. It is the means whereby the line voltage is dropped to that value which equals the sum of the voltage drops across the heater elements. This is not a play on words; it simply presents the relationship between the line voltage and the total heater drops from two angles relative to the purpose of the line voltage-dropping resistor. In one case, the line voltage-dropping resistor is considered a part of the load and, in the other, only the tube heaters are considered to comprise the load. Personally, we prefer the former and shall hold to it in these explanations.

Fig. 1-6. A series chain of four filaments or heaters with a line voltage-dropping resistor. The voltage drop across the line voltage-dropping resistor makes up for the differences between the line voltage and the voltage required by the four heaters.

An example of the above is shown in Fig. 1-6. Here the elements of the load are shown to the right of the vertical dotted line and the applied voltage source is shown to the left. The series system indicates a total heater voltage drop of 50.4 volts at 0.15 ampere and a line voltage of 117 volts.' The difference in voltage is dropped across the resistor R. Since the line voltagedropping resistor is in series with the heater chain, the same current will flow through R as through the heaters. The voltage drop across this resistor is, therefore, a function of the current through it and its resistance. Since this voltage drop represents a dissipation of energy, the line voltage-dropping resistor bears a wattage rating in addition to its resistance rating. The power dissipation is a very important factor and must be taken into account in the event of any changes; in fact, it determines the type of resistor element which suits this purpose. The power dissipation in watts is expressed by either $I E, I^{2} R$, or by E^{2} / R, where I is the current in amperes, R is the resistance in ohms, and E is the voltage in volts, exactly the same units as are used for the other Ohm's law calculations.

RECEIVING TUBE SUBSTITUTION GUIDE

The ohmic value of R is

$$
\begin{aligned}
R & =\frac{117-50.4}{0.15} \\
& =\frac{66.6}{0.15} \\
& =444 \text { ohms }
\end{aligned}
$$

Its power dissipation is

$$
\begin{aligned}
P & =E \times I \\
& =66.6 \times 0.15 \\
& =9.99 \text { watts (approx. } 10 \text { watts })
\end{aligned}
$$

or

$$
\begin{aligned}
P & =I^{2} R \\
& =0.0225 \times 444 \\
& =9.99 \text { watts (approx. } 10 \text { watts })
\end{aligned}
$$

To prove these figures, the total resistance of the four heaters is 4×84 or 336 ohms; adding this to the 444 ohms resistance of the line voltage-dropping resistor results in a total circuit resistance of 780 ohms. With a current of 0.15 ampere flowing in the system, the applied voltage is $E=0.15 \times(336+444)=117$ volts.

Let us now examine the possible variables in a simple series chain of the kind shown in Fig. 1-6. Statement 3. of Ohm's law relates to an equality between the line voltage (applied voltage) and the total of the voltage drops in the load. No restriction is evident concerning the number of elements (tube heaters) which may comprise the load and across which the total of the heater drops will occur. In the system shown in Fig. 1-6, four elements comprise the heater load. These could be any number provided that the total voltage drop did not exceed the line voltage ; if it equaled the line voltage, then the line voltage-dropping resistor (R in Fig. $1-6$) would not be required in the circuit and the system would become the equivalent of Fig. 1-5(A), with more heaters than are shown there.

As a matter of fact, no matter what the total of the rated voltage drops across the heaters in the load is, this value can never exceed the applied (line) voltage, for statement 2. establishes that the current will adjust itself automatically in accordance with the total resistance and the total applied voltage. For example, if fourteen 12.6 -volt, 0.15 -ampere tubes were used in series across a 117 -volt line, the total resistance would be 1,176 ohms. The current, therefore, would be

$$
\frac{117}{1,176}
$$

or 0.099 ampere, and the voltage drop across each heater would be 0.099×84 or 8.3 volts. It is obvious that the voltage across these heaters would be insufficient for proper operation of the tubes. Correction of this state would demand a revision of the circuit or an increase in the line voltage; the latter is impractical, so the former is the only solution. It will be treated later.

On the other hand, the need may arise to substitute a lower voltage rated heater for a higher rated one,
such as a 6.3 -volt tube for a 12.6 -volt one. If the rated voltage drop across the series heaters is at least ten times the rated voltage drop across the substitute heater, the latter may be inserted into the string without requiring any correction. Thus, if the total rated voltage drop across the series heaters is 75 volts, and a 6.3 -volt tube is a replacement for a 12.6 -volt heater in the string, the replacement will be subject to a slightly higher voltage (and current) but it will do no harm.

For example, if the original series string consists of a 25 -volt, 0.15 -ampere tulee and four 12.6 -volt, 0.15 ampere tubes, the total resistance of these heaters is 502 ohms. Operation from a 117 -volt line demands a dropping resistor of 227 ohms, making a total load resistance of 779 ohms. Substituting a 6.3 -volt tube for the 12.6 -volt one reduces the heater resistance to 460 ohms, and the total load to 737 ohms. This results in a circuit current of 0.158 ampere, and as a result, the 12.6 -volt tubes are subjected to a voltage of 13.27 volts, the 6.3 -volt tube to 6.6 volts, and the 25 -volt tube to 26.4 volts. None of these voltages are so extreme as to endanger the tubes.

Battery tubes, however, should be treated with more care and every effort should be made to keep the voltage as close to the rated voltages as possible, especially when operation is intended on a-c lines.

Circuit conditions encountered in practice seldom are such that the total voltage drop across the heaters or filaments equals the applied or line voltage. The use of a line voltage-dropping resistor is very common, consequently, any change in the total voltage drop across the load caused by a substitution demands that the drop across the line voltage-dropping resistor be changed, and this means a change in its ohmic value. Whether the latter is done by shunting another resistor across it, by physically changing its length (as happens with line cords), or by substituting a new one of proper ohmic value for the original is determined by whichever is most convenient. If the total voltage drop across the heaters is increased, the drop across the line resistor must be decreased, and vice versa. A typical example follows.

Seven 6.3-volt heaters are in series with a 35 -volt heater. All are rated at 0.3 ampere. The total voltage drop across the heaters is 79.1 volts and the total resistance of the heater load is 264 ohms as shown in Fig. 1-7(A). With a supply of 117 volts, 37.9 volts must be dropped across the line dropping resistor R. At 0.3 -ampere current flow, the ohmic value of R must be 126 ohms and its power dissipation, therefore, is 11.3 watts.

Two 12.6 -volt, 0.3 -ampere tubes must be substituted for two of the 6.3 -volt tubes. The modified circuit is shown in Fig. 1-7(B). Simple calculation of the total voltage drop across the heaters shows an increase of 12.6 volts, therefore, it is obvious that the value of R will have to be decreased. Its value may be determined
in a number of ways, but a simple procedure is the following

$$
\begin{aligned}
R_{\text {new }} & =\frac{\begin{array}{c}
\text { Original value of } E_{R}-\text { Increased voltage } \\
\text { drop across heaters }
\end{array}}{\text { Current through the system }} \\
& =\frac{37.9-12.6}{0.3} \\
& =84 \text { ohms. }
\end{aligned}
$$

The power dissipation in the new R is

$$
\begin{aligned}
P & =I^{2} R \\
& =0.09 \times 84=7.5 \text { watts. }
\end{aligned}
$$

Fig. 1-7. In (A), a series chain of seven 6.3 -volt heaters and one 35 -volt heater requires a line voltage-dropping resistor R of 126 ohms to bring the applied voltage of 117 volts down to the value required by the heaters. When the total voltage drop across the heater is increased by 12.6 volts as in (B), the value of R must be decreased to 84 ohms.

Substituting Low-Current Rated Heaters for Higher-Current Heaters

Suppose that in the circuit of Fig. 1-7(A) two 12.6volt heaters rated at 0.15 ampere must replace two of the 6.3 -volt 0.3 -ampere heaters. Let us select H_{3} and H_{6} as the specific heaters. How would this be accomplished? Two methods are practical, one being simpler than the other. Suppose we treat the more difficult one first.

Since the circuit current is 0.3 ampere and each substitute heater draws only 0.15 ampere, it stands to reason that they just cannot be connected into the circuit as is, otherwise each would be subject to a 100 per cent current overload. However, two such heaters connected in parallel would require 0.3 ampere, and because of the division of currents in a parallel circuit in accordance with the resistance of each branch, connecting these two tubes in parallel would result in 0.15 ampere flowing through each heater. Moreover, the voltage drop across two elements in parallel is the same as that across a single element and, since the total drop across the two 6.3 -volt heaters which are being replaced equals 12.6 volts, the two 12.6 -volt heaters in parallel can replace the two individual 6.3 -volt heaters without changing the total voltage drop across the
string of heaters. This is shown in Fig. 1-8(A). Note that the total drop across the string of 6.3 -volt heaters originally [Fig. 1-7(A)] was 79.1 volts, and that the total drop across the heaters with the two parallel 12.6volt substitutes is 79.1 volts. This means that the line dropping resistor R need not be changed since it is called upon to drop 37.9 volts at 0.3 ampere, the same as in the original circuit.

The other means of accomplishing the substitution is shown in Fig. 1:8(B). Instead of connecting the two

Fig. 1-8. Two methods of substituting 12.6 volt, $0.15-\mathrm{am}-$ pere heaters for 6.3 -volt, 0.3 -ampere ones are shown. In (A), both substitutes are paralleled together, splitting the current and keeping the voltage drop of the system intact; in (B), each heater has its own shunt, thereby drawing its rated current but increasing the total voltage drop of the heaters.
substitute heaters in parallel, they are treated individually and separate current shunts are connected across each one. Since it is desired to split the current equally between the heater and its shunt, the ohmic values of the shunts must equal the resistances which they shunt. This means that $R_{2}=84$ ohms and $R_{3}=84$ ohms, and each dissipates 1.89 watts. [See Fig. 1-8(B)].
However, handling these substitutions in this manner means that the total voltage drop across the string of heaters has been increased by 12.6 volts, since two 12.6 -volt heaters in series total 25.2 volts, and two 6.3volt heaters in series total only 12.6 volts. The increased drop of 12.6 volts must be compensated for by reducing the drop across the line resistor R. Figs. 1-7(A) and 1-8(A) are comparable, as are Figs. 1-7 (B) and 1-8(B). In Figs. 1-8(A) and (B), the total line current of 0.3 ampere flows into the junctions of the parallel systems (the parallel heaters in (A), and the heaters paralleled by the shunt resistors in (B), divides equally between the two paths, and then recombines again to equal the 0.3 -ampere line current. Thus, the 0.3 -ampere, 6.3 -volt heaters receive the proper current and so do the two 12.6 -volt, 0.15 -ampere heaters.

RECEIVING TUBE SUBSTITUTION GUIDE

If four tubes required substitution and they were of like voltage ratings, two pairs of heaters could be paralleled as shown in Fig. 1-8(A). If there were an odd number of substitutions, two heaters could be located in parallel and the odd one would be operated with a shunt as shown in Fig. $1-8(\mathrm{~B})$. As a matter of fact, it is the principle underlying these techniques rather than the actual number of tubes involved which is important. Once the principles are understood, it will be simple to apply them, and in general, the most convenient method should be used depending on the circuit and the components available. For example, the availability of resistors is a determining factor in deciding whether the line dropping resistor will be replaced or if two small resistors will be used for the current shunts. If the substitution demands new sockets, then paralleling of the heaters is no problem, but if the sockets do not require changing to accommodate the substitutes it is more convenient to use the current shunts.

Substituting Higher-Current Heaters for Low-Current Heaters

Suppose the requirement is for the use of higher current heaters in place of lower current heaters in a series circuit. A single 0.3 -ampere heater is to replace one rated at 0.15 ampere in a series string of five 12.6 -volt, 0.15 -ampere heaters and one 25 -volt, 0.15 ampere heater. This substitution is to occur at H_{6} in Fig. 1-9(A). Several solutions are shown in Figs. $1-9$ (B) through (G). The choice is determined by which is most convenient and best fits the need. The one fundamental requirement created by such a substitution is that the total line current must be increased to 0.3 ampere so as to serve the increased current demand of the substitute tube. Whether this means that the line current will be limited to 0.3 ampere or increased above that value is determined by the organization of the heaters which form the load. One circuit system [Fig. 1-9(B) and (C)] needs 0.45-ampere line current, whereas other arrangements can be served by 0.3 ampere; there is no way, however, of satisfying the requirements of the 0.3 -ampere tube with a line current of 0.15 ampere. For comparison, let us keep the constants of the original circuit [Fig. 1-9(A)] in mind. Here we have a total drop of 88 volts across the heaters, and 29 volts across the line dropping resistor at a current flow of 0.15 ampere.

One solution for the substitution is the use of two series paths, one for the 0.15 -ampere heaters and the other serving the 0.3 -ampere heater, as shown in Fig. 1-9(B). In order not to change the total voltage drop in the 0.15 -ampere chain, a resistance (84 ohms) corresponding to that of the heater $\left(H_{6}\right)$ which has been removed is inserted in its stead. This establishes the total voltage drop at the original value of 88 volts and

Fig. 1-9(A). A series chain of heaters each drawing 0.15 ampere in a circuit with a single voltage-dropping resistor.

Fig. 1-9(B). H_{6} of Fig. 1-9(A) has been replaced by a 12.6 -volt, 0.3 -ampere one requiring a separate series circuit and an increase in the current drawn from the line source. Now there are two dropping resistors, one in each branch of the circuit.

Fig. 1-9(C). Same as Fig. 1-9(B) except that the dropping resistor in the longer branch now is a combination of the dropping resistor R and the compensating resistor R_{1} of the previous diagram.
the original line dropping resistor remains intact. Compare Figs. 1-9(A) and (B). Since the drop across the 0.3 -ampere heater is 12.6 volts and the line voltage is 117 volts, a line dropping resistor must be added to this circuit. R_{z} serves this purpose; its ohmic value (348 ohms) is such that it will drop 104.4 volts at 0.3 ampere.

Examination of the two series circuits of Fig. $1-9(\mathrm{~B})$ shows that they are actually in parallel since each goes from the 117 -volt line to ground. This is illustrated in the equivalent diagram in Fig. 1-9(B). The total resistance of each of the parallel branches is such that 0.15 ampere flows in one, whereas 0.3 ampere flows in the other.

The equivalent circuit in Fig. 1-9(B) is an important one to understand because it shows the application of two series circuits connected in parallel. Television receivers intended for use on a-c-d-c lines employ such circuit arrangements quite frequently, see Fig. 1-8 and the schematics at the end of Section 3.

A modification of Fig. 1-9(B) appears in (C). The substitution requirement remains the same, but this time the resistance equivalent of the heater which has been removed is not inserted. Instead, the line dropping resistor is changed in value so as to compensate for the reduced total voltage drop across the heaters. With one 12.6 -volt heater removed, it has fallen to 75.4 volts from the original 88 volts. This necessitates an increase in the line resistor R from the original value of 193 ohms to 277 ohms. (This follows from the fact that the heater removed from the string had a resistance of 84 ohms, and in order to maintain the original amount of current in the circuit, this amount of resistance must be added to the line dropping resistor. The change is essentially the transposition of the resistor R_{i}^{*} in Fig. 1-9(B) from its position at the grounded end of the string to the line dropping resistor.) Now the drop across the line dropping resistor is 41.6 volts, or the original 29.6 volts plus the 12.6 volts representing the displaced heater. The second series leg of the circuit is the same as shown in Fig. 1-9(B), because its demands have not been changed in any way by the modifications applied to the other series circuit.

Several other interesting details may be mentioned about the arrangements in Figs. 1-9(B) and (C). In the latter, the increase in the value of the line dropping resistor means an increase in power dissipation. The power dissipation in the resistor in (B) is 4.34 watts; the power dissipation in the resistor in (C) is 6.23 watts. However, it is necessary to add to the former the amount dissipated in the resistor R_{1} which has replaced the heater. This power is 1.89 watts, which when added to the 4.34 watts, totals the same amount as is dissipated in the higher value of resistance used in Fig. 1-9(C). At first glance there may appear to be no difference between the two systems, yet there is a substantial difference. It is simply that two resistors, one of 4.34 watts and another of 1.89 watts rating (or whatever may be the wattage ratings selected to afford ample safety factor), are definitely more expensive than a single resistor of such wattage rating as will satisfy a power dissipation of 6.23 watts.

For purposes of comparison let us identify the power dissipation in the system shown in Fig. 1-9(C). The power dissipation in the $150-\mathrm{ma}$ leg is 11.34 watts in the heaters and 6.18 watts in the line dropping resistor R, a total of 17.49 watts. The power dissipated in the 300 -ma circuit is 3.78 watts in the heater and 31.32 watts in the line dropping resistor R_{1}, making a branch total of 35.10 watts. The dissipation in both circuits is the sum of the branch wattages or 52.59 watts.

A third possible arrangement for the substitution is shown in Fig. 1-9(D). In a way, this is a more practical way to connect a 12.6 -volt, 0.3 -ampere heater in place of a 0.15 -ampere heater of like voltage rating. Only one series string is arranged, although it contains two parallel circuits. This system operates in a similar manner to that shown in Fig. 1-8. Of course, the ability to assemble such a circuit depends upon the number of heater elements present. The four heaters H_{2}, H_{3}, H_{4}, and H_{5} are of like constants, therefore, two series pairs connected in parallel result in a system requiring 25.2 volts and 0.3 ampere. In order that heater H_{1} draw only 150 ma , it is shunted with a resistance equal to its own resistance. Thus, the original six tubes now are arranged so that they can be assembled into a single series string and supplied with 0.3 ampere of current.

The rearrangement of the 150 -ma tubes reduces the total voltage clrop across the heaters because the paralleled pair of series heaters draws only 25.2 volts compared to its former 50.4 volts. The result is that the total drop across the heaters is reduced to 62.8 volts. This requires a change in the line dropping resistor to that ohmic value (181 ohms) which will draw 54.2 volts and so drop 117 volts to the 62.8 volts at 0.3 ampere required by the heaters. Relative to the power consumption in such a system, the four series-parallel

Fig. 1-9(D), (E), and (F). Various methods are shown here for shunting the heaters of the circuit shown in Fig. $1-9(A)$, after the substitution of a 12.6 -volt 0.3 -ampere heater for H_{6}, so that the voltage and current requirements of each heater are satisfied.

RECEIVING TUBE SUBSTITUTION GUIDE

Fig. 1-9 (G). Part of a television receiver filament circuit showing the isolating chokes used between the heaters in the scrics chain. The shunts shown in dotted lines are unacceptable because they nullify the action of the chokes.

(G)
heaters dissipate 1.89 watts each for a total of 7.56 watts; the 25 -volt heater H_{1} with its shunt consumes 7.5 watts ; the 12.6 -volt 300 -ma heater H_{6} consumes 3.78 watts; and the line dropping resistor consumes 16.26 watts. The total power dissipation of the whole circuit is, therefore, 35.1 watts. A comparison between the total power consumption of the circuit in Fig. 1-9(D) and that in Fig. 1-9(C) illustrates the economy in power consumption possible by a choice of circuits.

A modification of the circuit in Fig. 1-9(D), designed to allow the replacement of a $150-\mathrm{ma}$ heater tube with a 300 -ma one, is shown in Fig. 1-9(E). Here, all the heaters are in a single chain with a current shunt across each 150 -ma tube; the 300 -ma heater H_{6} does not require a shunt. The ohmic value of these shunts is equal to the resistance of each of the shunted heaters. The power consumption of the entire system totals 36 watts made up as follows: each of the shunted 12.6volt heaters with its shunt consumes 3.8 watts, the unshunted 0.3 -ampere tube requires approximately the same amount of power, the $25-$ volt shunted heater with its shunt consumes 7.5 watts, and the line dropping resistor consumes 8.7 watts, a total of 35.2 watts. This is slightly more than the consumption of the circuit of Fig. 1-9(D$)$, but it is much less than that required by circuit 1-9(C). As to the relative ease of installation of circuits $1-9(D)$ or (E), it is a matter of specific circumstances, there being little to choose in terms of power saving.

The reduction of the line voltage-dropping resistor R, in Fig. 1-9(E) is significant. It means a smaller unit and one with lower power dissipation rating, making it more convenient to install than larger units.

A simplification of the shunted heaters is shown in Fig. 1-9(F). Instead of individual current shunts, a single shunt R_{1} of suitable value (equal to the combined resistance of the shunted heaters) is connected across the $150-\mathrm{ma}$ heaters, H_{1} to H_{5}. As indicated in the diagram, this resistance amounts to 502 ohms, which is the aggregate of four heaters of 84 ohms each, and one heater of 166 ohms. The 300 -ma heater H_{6} requires no shunt, therefore, it is not included by the common shunt R_{1}.

The use of a common shunt across several tube heaters is not generally applicable to television receivers without taking special precautions. The reason for this is that it is common practice in series-wired television
receivers to isolate one heater from the other by means of isolating chokes [see Fig. 1-9(G)]. These are part of the filament circuit, but their $d-c$ resistance is extremely low. Any attempt to shunt current around these heaters must exclude the choke from the shunted circuit otherwise the effectiveness of the choke will be materially reduced, if not completely nullified. This means that the current shunts shown in dotted lines in Fig. 1-9(G) are undesirable, instead, each tube should be shunted separately and care must be exercised to see that the shunt is connected directly across the terminals of the related heater and does not include the associated choke.

Series-Parallel Circuits

Having described the parallel-and the series systems separately, the organization of the series-parallel system should pose no problem. It is doubtful that the occasion will arise which requires the design of a complete new heater system, usually, the substitution involves one or two tubes at the most and these can be treated as illustrated in Figs. 1-9(B) through (G). An example of a series-parallel combination somewhat more complex than the usual is illustrated in Fig. 1-10. To simplify the treatment of this circuit, we will divide the heaters into two strings, and examine each separately.

In string 1 , heaters H_{1} and H_{8} require heater current equal to the total line current entering the string. Heaters H_{2} through $H_{\text {: }}$ are alike in their requirements for they draw the same current and voltage, however, the total current drawn by these heaters is less than I_{1} because of the presence of the current shunt R_{1}. Furthermore, we note a number of voltage drops in string 1 indicated by the letter E with subscripts. Voltage drop E_{i} appears across the extreme limits of the string and is equal to E, the line voltage. The presence of the line dropping resistor R in series with the heaters in string 1 indicates that the total voltage drop in the system E_{11} is less than the applied voltage. The latter is equal to the sum of E_{11} and E_{12}. In turn E_{11} is composed of the sum of the voltage drops E_{a}, E_{b} and E_{c}.

Suppose, for the moment, that heater H_{I} is rated at 25 volts and 0.8 ampere, heater H_{8} is rated at 12.6 volts and 0.8 ampere, and heaters H_{2} through H_{z} are rated at 12.6 volts and 0.15 ampere. This identifies E_{b}

RECEIVING TUBE SUBSTITUTION GUIDE

as being 37.8 volts, and E_{11}, therefore, amounts to $25+12.6+37.8$ or 75.4 volts. The line dropping resistor R, therefore, disposes of 41.6 volts at 0.8 ampere. The series-parallel arrangement of heaters H_{2} through H_{i}, without the shunt R_{1} requires only 0.3 ampere, however, the line current is 0.8 ampere. Therefore, shunt R_{1} must bypass 0.5 ampere. Its value can be determined by $R=E / I$, where E is the voltage across the shunt, in this case E_{b} (37.8 volts), and I is the current to be shunted through the resistor ($0.5 \mathrm{am}-$ pere). R_{1}, therefore, is equal to 75.6 ohms.

Fig. 1-10. In a series-parallel arrangement of tube heaters such as shown here, each string should be considered separately to find the requirements of each heater.

The distribution of voltages and currents in string 2 requires no special comment. What has been said so far will make the organization of this string easy to follow with the possible exception of the shunting of heater H_{13} across the series pair H_{11} and H_{12}. This is made possible by virtue of the relative voltage ratings of these three heaters; heaters H_{11} and H_{12} are rated at one-half of that of $H_{i 3}$, or the total drop across the series pair H_{11} and H_{12} equals the drop across H_{13}. The total current drawn by H_{11}, H_{12}, and H_{13} must equal the current flowing in the line through H_{s} and H_{10}. Further examples of such circuits will be found in Section 3.

Dual-Heater Voltage and Current Tubes

Some tubes contain dual heaters which are connected in series and tapped at the midpoint, offering three points for connection. They bear one voltage rating when the two heaters are used in series and another voltage rating (half the previous value) when they are connected in parallel. Naturally, the parallel connection bears a current rating which is twice that
of the series rating. Circuitwise, the heaters appear as shown in Fig. 1-11, and are listed in a tube characteristic chart as follows:

TUBE TYPE	FILAMENT		
VOLTAGE		OR	HEATER
:---:			
CURRENT			
3E6			
$12 \mathrm{AT7}$			

Fig. 1-11. Dual heaters
 such as appear in dual-heater tubes have their midpoint tapped. This makes it possible to connect the heaters either in series or in parallel with each other.

The use of such tubes in a system affords a more convenient means of substitution than the use of single rated heaters for, by simply arranging the heaters in parallel, they can be made to serve in circuits which require the lower of the two voltages and the higher of the two current ratings. By using the tube with series-connected heaters, it will suit the needs of circuits which require the higher voltage rating and the lower current rating.'

Fig. 1-12. A defective heater in a dual-heater tube may be replaced by an external resistor equal in resistance to the defective element.

Each of these dual heaters is a resistance and, when the heaters are used in parallel, the resultant resistance is half that of either. When they are used in series, the total resistance is equal to twice that of either. In the event of failure of either heater, the remaining heater is capable of causing sufficient electron emission from the cathode and the tube may be treated as if it had but one heater. If it is a matter of maintaining a certain voltage drop in a heater system, the defective heater may be replaced by an external resistance equal in value to that of the original heater. This is tllustrated in Fig. 1-12. It must, of course, be understood that when this external resistance replaces the bad heater it will contribute nothing to the emission.

Resistor Substitution

A number of factors control the substitution of resistors, these are :

RECEIVING TUBE SUBSTITUTION GUIDE

a. Type (wire or processed)
b. Ohmic value
c. Tolerance
d. Wattage rating.

Relative to the type, wire-wound resistors should not be used in frequency-sensitive circuits unless so stated. The reason for this is the winding has inductance and distributed capacitance. If a resonant peaking circuit contains a carbon resistor in series with the peaking coil, replacing that resistor with a wire-wound unit will change the frequency of resonance, and so alter the operation of the device. Such conditions will be found in wideband amplifiers. In general, therefore, replacement resistors should be of the same type as those which were removed. Carbon resistors are preferable in all high-frequency circuits, unless otherwise indicated. In circuits which are not frequency sensitive, the replacement of a processed resistor by a wire-wound one is satisfactory, except when wire resistors appear in both grid and plate circuits of the same tube. This may result in feedback and oscillation in amplifier circuits which handle reasonable amounts of power. Resonance may be created by means of the related distributed capacitance and the inductance of the resistor.

Concerning the ohmic value, it is assumed that the correct substitution will be made with whatever tolerance is indicated in the reference information that describes the constants of the circuit where the replacement is being made. Data concerning tolerance identifications on processed resistors will be found in Section 5.

Sometimes, a single resistor must be replaced by two resistors or a shunt must be added so as to change the ohmic value of a portion of the circuit in order to satisfy the requirements of a tube substitution. The equivalence between a single resistor and other combinations which can produce the same value is shown in Fig. 1-13.

When resistances are in series, the total resistance is equal to the sum of the individual resistances, no matter how many there are [Fig. 1-13(A)]. The re-

Fig. 1-13. The use of a combination of resistors to produce the same total resistance as a single one is shown in (A), (B), and (C). The total resistance of each of the combinations may be found from the formula beneath it and is equal to the single resistance R shown at the left.
sultant resistance of two resistances in parallel is equal to the product divided by the sum, see Fig. 1-13. The number of resistances which may be placed in parallel is limited by practical considerations. If more than two must be shunted in order to arrive at a certain resultant, the following equation should be used
$\frac{1}{R}=\frac{1}{R_{5}}+\frac{1}{R_{6}}+\frac{1}{R_{7}}+\ldots$ [see Fig. 1-13(C)].
For the case of three parallel resistors, the resultant reduces to the fraction shown in Fig. 1-13(C).

Sometimes the situation demands that a certain resistance be shunted by another to produce a certain final value. The ohmic value of the shunt is determined as follows

$$
R_{\text {shunt }}=\frac{\text { desired resistance } \times \text { original resistance }}{\text { original resistance }- \text { desired resistance }}
$$

For example, a 100,000 -ohm load resistance must be reduced to 30,000 ohms in order to suit the new tube used. What shall be the ohmic value of the shunt required for this jols? Using the equation given above

$$
\begin{aligned}
R_{\text {slunt }}= & \frac{30,000 \times 100,000}{100,000-30,000}=\frac{3,000,000,000}{70,000} \\
& =43,000 \text { ohms (approx.) }
\end{aligned}
$$

Tolerance ratings, expressed in percentage, are the amounts by which a rated resistance may differ from the actual resistance of the element. A plus tolerance means that the actual value may be higher than the rated value by some amount not exceeding the tolerance figure; a minus tolerance means that the actual value may be lower than the rated value by some amount not exceeding the tolerance. Thus, a 1 -megohm resistor rated at +5 per cent means that it may be as high as $1,050,000$ ohms ; if the tolerance was - 5 per cent, its value might be as low as 950,000 ohms. Combining a plus tolerance resistor with a minus one is a good way of arriving at a desired resultant when two of like value are not available. There are many resistors that have a plus and minus tolerance rating. Thus, a 1,000 -ohm resistor of ± 10 per cent may be as high as 1,100 ohms, or as low as 900 ohms.

The power dissipation in a resistor carrying current may be expressed by any one of the following methods

$$
P=I^{2} R=\frac{E^{2}}{R}=E I
$$

where I is the current flowing through the resistor; R is its ohmic value, and E is the voltage drop across the resistor. In most cases, the wattage rating of a resistor is an important factor. In certain grid circuits, however, where the current is so small as to be negligible, the resistor's power dissipation value is not important. A half-watt rating will be found suitable for all such circuits. However, in those instances when
grid current exists and is used to develop all or part of the grid bias, the wattage rating must be based upon the calculated power dissipation. In general, a maximum safety factor of 100 per cent should be allowed above the calculated value. This means that the wattage rating of the resistor chosen should be equal to twice the calculated power dissipation. Such a factor of safety is more than ample. For example, if the dissipation is 1.2 watts, use a 2 -watt resistor; if it is 3 watts, use a 5 -watt resistor; if it is 6 watts, use a 10 -watt resistor; and if it is 13 watts, use a 20 -watt resistor. Note that the required wattage is slightly less than double the calculated value in each case. Thus we see why a 100 -per cent factor of safety is considered a maximum.

A consideration of moment is the possible tube damage resulting when a resistor burns out. If damage can result due to an excessive rise in plate current or voltage, in the event that a resistor burns out, it is advisable to use a resistor which has a higher wattage rating than the one being replaced.

If the occasion arises to replace a resistor in one leg of a balanced circtit, for example, in the plate or grid circuit of a push-pull stage, it may be necessary to replace the resistor in the other leg also so as not to disturb the balanced condition of the circuit elements. When a replacement is made in such a case, both resistors should have not only similar ohmic values, but should be of similar construction and have similar tolerances and wattage ratings as well.

Fixed Capacitor Substitution

The cardinal factors associated with fixed capacitors are the capacitance, $\mathrm{d}-\mathrm{e}^{\text {e working voltage, and leakage }}$ resistance. The requirements relative to capacitor values are so obvious as to require no discussion other than to mention the equivalence between several arrangements, as shown in Fig. 1-14. Two like-value capacitors in series produce a resultant which is equal to one-half the capacitance of either one. Two or more unlike capacitors in series are treated the same as resistors in parallel. Capacitors in parallel are additive.

The d-c working voltage corresponds to the peak a-c voltage which may be applied to the capacitor. Practically speaking, d-c working voltage ratings are somewhat lower than can actually be applied to the capacitor

Fig. 14. Combinations of capacitors which give resultant capacitances equal to that of a single capacitor are shown here with the resultant capacitance of each combination listed below it.
because of the safety factor, but common sense dictates that operations should be carried on within the limits set by the rated working voltage. In view of this situation, care must be exercised against interpreting the $\mathrm{d}-\mathrm{c}$ working voltage as being the equivalent of the rms or effective value of a-c voltage; if this is done, the probability exists that the peak a-c voltage in the circuit will puncture the capacitor. The correspondence between these different values of voltage is as follows

D-C Working Voltage $=$ Peak A-C Voltage $=$ $1.414 \times$ RMS Voltage.
If by error the rms voltage in a circuit equals the d-c working voltage rating of the capacitors, the peak a-c voltage in those circuits (exclusive of surges) will be 1.414 times higher. If any question arises concerning the rms voltage and the $\mathrm{d}-\mathrm{c}$ working voltage of a capacitor in a circuit, the rms voltage which is usable may be found from the following equation

RMS Voltage $=\mathrm{D}-\mathrm{C}$ W'orking Voltage $\times 0.707$.
This is an important consideration in rectifier systems and wherever both a-c and d-c voltages are involved. The input capacitors in capacitance input filter systems should have a d-c working voltage rating which is somewhat higher than the peak voltage available from the plate winding of the power transformer. This will take into account possible surges which may occur. It is well to bear in mind that repeated failure of capacitors at one point in a system is proof of an insufficient voltage safety factor in the selection of the voltage rating. This is especiaily true when a substituted rectifier is of the filament type, whereas tubes which receive their voltage from the rectifier are of the heater type. In such cases, high voltages will prevail in the rectifier during the time required for the load tubes to reach the conducting state.

If parallel or series capacitor combinations are used as replacement for a single capacitor, care must be taken that the d-c working voltage across each part of the combination is its rated one. For example, if two capacitors are in series the voltage across each should be inversely proportional to their capacitances and together should equal the total voltage across them. When the combination is a parallel one, the same d-c working voltage will appear across each capacitor.

The d-c leakage in fixed capacitors is an important item in connection with substitution. For example, capacitors which are intended to isolate one point from another relative to d.c. should have low leakage, which means high insulation resistance. High leakage in coupling capacitors can very materially influence the bias on the grid of the tube connected to the resistor and adversely affect the performance of that tube. In this connection, electrolytic capacitors have the highest leakage, paper dielectric capacitors are lower, and mica or ceramic capacitors have the lowest leakage. Vacuum capacitors are, of course, ideal but their use is limited mostly to high-voltage points in transmitters and similar equipment.

When working in high-frequency circuits, the substitution should, if at all possibie, be a duplicate of the capacitor being replaced, which in many cases will be a ceramic capacitor. If it is not available, then a mica is the next best choice.

As a means of conserving space, some ceramic capacitors are dual units, that is, the same housing includes a resistor (possibly more than one) which is associated with the operation of the device. Sometimes two such capacitors and a resistor, forming a complete load assembly, may be in one unit. These should be replaced as a unit, but in an emergency, a substitute may be used for only that part of the assembly which has failed. Note: an examination of a circuit may disclose more components than are present physically; some of these "missing" elements may be included in dual units.

I-F Transformer Substitution

The replacement of i-f transformers is determined by circuit location and circuit constants. The location determines whether it falls within the category of an "input," "interstage," or an "output" transformer. These identifications are found in service notes and parts catalogs. With the exception of receivers which contain only a single stage of i-f amplification, all superheterodynes make use of the aforementioned three general types of transformers. The input and interstage kinds may be interchangable but the output transformer, which feeds a diode demodulator, is of a special design. Therefore, when it is necessary to replace the i-f transformer which feeds the signal to the diode demodulator, every effort should be made to secure a replacement which has been designed to perform that function.

Substantial differences may be found in the numerous varieties of i-f transformers which are employed by receiver manufacturers. Replacement of identical units is possible only by procuring the part from facilities related to the original receiver manufacturer. However, general replacement i-f transformers are suitable substitutes if the proper precautions are exercised when the substitution is made. For example, some i-f transformers used in combination $a-m-f-m$ receivers are of the dual-frequency variety, that is, two different transformers contained in the same can. In other cases, trimmers, or filter elements related to the stage are contained in the same can with the transformers. Examples of these two are shown in Figs. 1-15(A) and (B).

The replacement of such devices by substitutes involves consideration of all of the factors involved. Two individual i-f transformers, an a-m and a separate $\mathrm{f}-\mathrm{m}$ unit, may be connected externally to form the equivalent of the original shown in Fig. 1-15(A). However, if the original contains additional elements
such as resistors and filter capacitors, these must be added in the substitution. The same is true of the replacements for either a-m or f-m transformers which contain special elements. We are referring particularly to units in which the trimmer capacitor is a combination element, part of it being used in the grid filter system of that stage. This may not become evident in a casual inspection of the device or the schematic, for the symbols representing the filter resistors and capacitors are not necessarily shown as a part of the trimmer. This calls for a careful examination of the transformer and the filter circuits. If the transformer is removed and with it all of the filter elements, then a substitution must consist of a corresponding number of units.

Fig. 1-15. (A) An i-f transformer of the dual-frequency variety found in $\mathrm{a}-\mathrm{m}-\mathrm{f}-\mathrm{m}$ receivers. The $\mathrm{a}-\mathrm{m}$ and $\mathrm{f}-\mathrm{m}$ windings of the i-f transformer are in series and are contained in the same can; in (B) is shown a unit which contains, besides the i-f transformer, the filter capacitors and trimmers used in the associated circuit.

Relative to the general requirements of i-f transformers, those designed for use with pentodes will serve with any pentode or tetrode. The specific electrical characteristics of all pentode or tetrode i-f amplifiers are not alike, but the differences in i-f transformer performance due to this variable will not be significant if all other requirements are satisfied.

The intermediate frequency is another controlling factor in the selection of a substitute i-f transformer. Several broad categories exist, those used in a-m receivers, those in $\mathrm{f}-\mathrm{m}$ receivers, and those in television receivers. In each group, the bandwidth requirement is pertinent to the selection of the replacement as is the specific intermediate frequency. Reference to the service data on the receiver is essential ; the intermediate frequency used in a receiver does not dis-
close the specific bandwidth conditions in the i-f transformers. In some cases, all transformers are relatively broadband, being closely coupled. In other instances, the over-all broadbanding is accomplished by staggering the i-f peaks in the individual stages.

Concerning the center frequency, i-f transformers intended for a-m receivers have been standardized to four center frequencies, $130 \mathrm{kc}, 175 \mathrm{kc}, 262 \mathrm{kc}$, and 455 kc . From this point on, different types produced by different manufacturers afford different over-all frequency coverage. These vary from a low of about 5 per cent to a high of 40 per cent of the center frequency. For example, one manufacturer may produce an i-f transformer with a center frequency of 455 kc and an over-all tuning range of 50 kc , which is the equivalent of 25 kc each side of the rated center frequency. Some other manufacturer may design his transformers so that the over-all tuning range may be 200 kc , equal to about 40 per cent of the center frequency.

As a rule, the higher the center frequency, the wider is the over-all tuning range, but all makes of i-f transformers of like center frequency do not afford like frequency coverage. In other words, the selection of a transformer demands recognition of the bandwith requirements of the stage wherein it is to be used. Attention must also be paid to the tuning range of a unit if the intermediate frequency in the receiver is not the same as the center frequency of the transformer.

Concerning dual i-f transformers ($a-m$ and $f-m$), the generally standardized frequencies found in the i-f systems of such receivers preclude any problems other than the one we referred to earlier, that is, to be certain that all of the filter components which exist inside of the original receiver manufacturer's unit appear in the receiver after the replacement has been made.

Up to this point we have neglected the factor of space relative to $\mathrm{i}-\mathrm{f}$ transformer substitution. It can well be a problem. If the substitution is a transformer for a transformer, that is, single band for single band, it is not too difficult even if the substitute is larger than the original (which seldom is the case). If a dual band (single can) transformer must be replaced by two individual transformers, however, we have a problem. It is possible to find i-f transformers which are smaller than the usual variety. It takes effort to select the ones needed because several factors must be taken into account, but it can be done.

Power-Transformer Substitutions

The physical size and the electrical ratings are two dominant factors in such substitutions. The limitations caused by size are so obvious as to require no elaboration. Concerning electrical ratings, the first essential is that the transformer afford the same over-all capabili-
ties as the original, that is, its windings should be equal in number to that of the original so as to duplicate the functions of the original. This statement is subject to some slight qualifications which will appear when we discuss the filament windings, but in general, it can be said that the maximum convenience in substitution is attained if the substitute has at least as many different windings of like electrical rating as the original.

So far as physical characteristics are concerned, if the original transformer is shielded completely, the substitution unit should be likewise. If the original employs vertical shield mounting, so should the substitute; if the original has horizontal shield mounting, the replacement should duplicate it. Such attention to shielding will result in freedom from field troubles. Open-core transformers can cause trouble if located close to grid and plate wiring. If they must be used because the exact replacement is not available, the possibility of hum troubles must be recognized.

Each winding bears a voltage and a current rating with supplementary identification concerning the center tap. Although a center tap can be arranged by means of a center-tapped resistor connected across an untapped winding, it is preferable if the tap is a part of the winding. A suitable value for a resistor to be used for a center tap is 100 ohms.

Increasing Heater Voltage Rating. Although it is best if the filament windings on the transformer are the same in number and rating as the original, it is very possible that such replacements will not be available. In that event, the following information will be useful. Filament windings when connected in series furnishes a resultant voltage which is the sum of the voltage ratings of the individual windings. A 2.5 -volt winding in series with another of 5.0 volts will be the equivalent of a voltage source rated at 7.5 volts. Care must be exercised to see that the two windings are connected with the windings aiding each other. An a-c voltmeter connected across the combined windings will indicate if they are aiding or bucking. The current rating of a series winding of this kind is limited to the lower of the two ratings of the individual windings.

For example, if two 6.3 -volt windings, each rated at 1.2 amperes are connected in series aiding, the voltage rating of the two windings is 12.6 volts at 1.2 amperes. If one of these is rated at 0.9 ampere and the other at 1.5 amperes, the current output of the series winding would be limited to 0.9 ampere.

Increasing Heater Current Räting. Windings may be connected in parallel so as to increase the current output rating, provided that each of the windings connected in parallel is rated at the same value of voltage. The current ratings need not be the same; the total current output will be the sum of the two individual current ratings. Care must be exercised to see that the two windings are connected in proper phase, otherwise they will buck each other. An a-c voltmeter connected across one winding while the other is being connected
in parallel will show whether the phase is correct. If the voltage is reduced, they are bucking.

Relative to the center-tap connection, if two like voltage windings are connected in series, the junction between them can serve as the center tap; individual center taps on the two windings being disregarded. If two unlike voltage windings are connected in series, the midpoint of a $100-\mathrm{ohm}$ resistor, shunted across the combined windings, can be used as the center tap.

If two windings are connected in parallel and each of them has a center tap, the two center taps may be connected together to serve as the combined center-tap connection. If only one of two windings in parallel has a center tap, it cannot be used as the center tap to serve both windings, a 100 -ohm center-tapped resistor should be connected across the untapped winding and its midpoint joined to the other center tap, at which point the common connection can be made.

Substitute Heater Windings. If the replacement transformer does not contain all the required heater windings, a supplementary filament transformer, capable of furnishing the required voltage and current, can be used apart from the regular power transformer. Its primary should be connected in parallel with the other transformer.

Half-wave rectifier heater windings do not require center taps. Either end of the winding will serve as the positive output lead with a filament-type tube. Full-wave rectifiers should employ center-tapped heater windings even if the rectifiers are of the cathode type.

Heater-Winding Insulation

As a rule, the voltage breakdown requirements of most heater windings which are a part of the power transformer can be satisfied by a rating of about 2,000 volts since the highest voltage in the system is far less than this amount. In cathode-ray equipment and other systems, it is possible that the cathode may be as much as 4,000 volts above ground and, since it is connected to the center tap of the heater winding, the latter is also above ground by the corresponding amount. This demands that the heater voltage winding be so insulated as to withstand this difference of potential. Sometimes (although very seldom), this requirement may be stated in the specifications. If it is not, it becomes the province of the technician to decide the voltage breakdown requirements of the heater winding.

Rectifier Plate Windings

The conditions surrounding the selection of a substitute power transformer relative to the plate winding are varied, so much so, that it becomes necessary to examine several approaches to the subject. To begin with, the constants of a power transformer utilized in a receiver (or some other kind of equipment) may not
be fully identified in service literature; a part number always is given, and sometimes, the current and voltage ratings of the heater windings are stated on the manufacturer's schematic. If this data is not given, the number required and the current rating of each become evident when reference is made to the schematic wiring diagram of the equipment in which the substitution is to be made. It discloses the number of heater or filament chains, and the voltage and current requirements of each. Summation of these indicates the minimum current ratings of the heater windings. The constants of the plate winding, however, are generally omitted. This means that some way must be found to ascertain the requirements of the plate winding so a proper substitute can be found in the event that an exact replacement from the original equipment manufacturer is not available.

The type of rectifiers and their ratings indicates the maximum voltage and current requirements of the plate winding. Seldom, if ever, are these tubes operated very close to their maximum ratings. Therefore, by noting the limits indicated in the tube characteristic chart, and the practical voltages being applied to the tubes in the system under consideration, it is possible to arrive at the voltage and current ratings of the plate winding. Whether it should be a full-wave winding, that is, center tapped, or a half-wave winding is indicated in the schematic of the equipment and by the organization of the rectifier system as a whole. But it is conceivable that there still may arise problems in establishing the voltage rating of the plate winding in view of the conditions experienced in choke- and capacitor-input filter systems, and because of the manner in which the parts catalogs describe the capabilities of the plate windings of power transformers. Generalizing, we can state that when the input of the power-supply filter system is. capacitive, the voltage rating of each half of the power-supply plate winding in a full-wave system can be as much as 10 to 15 per cent lower than the d-c voltage output of the rectifier at the prescribed value of d-c load. This stems from the fact that the input filter capacitance can be charged to approximately the peak value of the a-c voltage applied to the rectifier tubes. Some parts catalogs state the voltage and current ratings based on full-wave operation of the rectifier with capacitance input, whereas many others show the a-c voltage across each half of the plate winding at certain $\mathrm{d}-\mathrm{c}$ values in terms of choke input. This is a cause of confusion; in one case, the a-c voltage between the center tap and the extremes of the plate winding is less than the d-c voltage output from the rectifier by as much as 8 to 10 per cent, whereas in the other case, the a-c voltage rating of the plate winding may be as much as 10 to 15 per cent higher than the d-c voltage output from the rectifier.

What can be used as a guide in determining the basic requirements of the plate winding? The original
schematic of the equipment should be the first source of information, especially when it is supplemented by a voltage chart which indicates the voltages being supplied by the power supply. If the plate-current requirements of the tubes are not shown in the voltage chart, a reasonable approximation of these current values can be developed from the tube characteristic charts contained herein. Then, allowing for a 10 per cent voltage drop in the filter system of the power supply and perhaps a loss of about 5 per cent of the total output current through the bleeder connected across the power supply, one can arrive at the total current load requirements of the system and the maximum a-c voltage required between the center tap and the extremes aif the full-wave plate winding.

These data are naturally subject to variations, but the approach we have described is not too far off the path which must be followed. At least it suggests a way to gather the necessary information.

It may appear, because of the large number of commercial models, that receivers and amplifiers are distinctive in their general requirements. Such is not the case, for all fall into certain groupings and reflect certain general design considerations. It would be foolish to deny that such circuits as shown in Rider Manuals can serve as the guide for substitution requirements. So far as tube heater and signal electrode voltages and currents are concerned, there isn't much difference between the five- or six-tube talle models produced by different manufacturers. Individuality appears in the number of tubes, the specific designs of the transformers, the combination of functions and the like, but these play very little part in establishing the requirements of a power supply.

Cathode-Ray-Tube Substitutions

Cathode-ray-tube substitutions are more involved than ordinary receiving tube substitutions, if for no other reason than that the physical dimensions of the various cathode-ray tubes differ, and the replacement of one by another may require substantial physical changes in the cabinet. Nevertheless, substitutions are possible and the following are offered as suggestions. They are to be used in conjunction with the cathode-ray-tube specifications contained in this Guide Book.

1. All picture tube phosphors must be number 4. This is the last digit in the tube type number.
2. Wholly electrostatically operated picture tubes must be replaced with similar tubes. Since these are restricted in screen size, replacement for 7 - and 10 -inch electrostatically deflected and focused picture tubes are very limited.
3. Tubes which employ magnetic deflection and electrostatic focusing have no substitutes among either' completely electrostatic or magnetic types. The reverse is, of course, also true, a combination magnetic-deflec-

FOCUS COIL CURRENT RATINGS FOR MAGNETIC TYPE CATHODE-RAY TUBES

* Types employ RTMA Focus Coil 109 , all others RTMA focus focus coil 106.

Courtesy DuMont Labs

tion and electrostatic-focusing type tube cannot be a replacement for either an electrostatically or magnetically deflected and focused picture tube. Since the 7DP4, 9AP4, 10DP4, and 12AP4 are tubes of this type, they have no replacements except each other.
4. Picture tubes differ in the focusing coil currents, consequently, in some instances the focusing coil for the substitute tube may require more current than for the original. This necessitates modification of the focusing current supply system. Conversely, some substitute tubes may require less current through the focusing coil than the original, in which case a resistor shunted across the coil will serve the purpose. This current shunt can be calculated using the $d-c$ resistance of the focusing coil and the value of the current, just as in the case of heater current shunts. A variable resistance, $2,500-15,000$ ohms, shunted across the coil can be used to determine the value for the fixed resistance shunt. The accompanying table lists the focusingcoil currents for the different magnetic-type cathoderay tubes.
5. Replacing outside coated tubes with metal-cone types (or the reverse) requires care concerning the connection to the coating or the metal cone. The coating usually is connected to ground, whereas the metal cone usually is connected to a high voltage. The original receiver manufacturer's service notes must be consulted.
6. When a large tube is replaced by a smaller one, the characteristics of the substitute should be determined by reference to the characteristic chart ; if the
conditions in the receiver exceed the maximum voltage ratings of the tube, these must be reduced in order to employ the substitute. Usually, those operations are too complicated for the average technician; such substitutions are not recommended.
7. All picture tubes do not utilize like tule basing. See the cathode-ray-tube basing chart in Section 5.
8. Bear in mind that the ion-trap magnets in magnetically focussed picture tubes are not all alike, some call for a single magnet, others for dual magnets; check the cathode-ray-tule characteristics in Section 5.
9. If tube characteristics indicate that the original tube has an external coating furnishing a certain
amount of capacitance and the substitute tube does not, a corresponding value of capacitance should be added to the high-voltage power supply at the high-voltage output terminal. This capacitor must have the appropriate d-c working voltage rating.
10. If the ion-trap magnet for the original tube is of the electromagnetic type (coil) and the substitute utilizes a permanent magnet, the coil unit may be left intact (placed in a recess of the cabinet), or it may be replaced by an equivalent resistance of suitable wattage rating located as closely as possible to the power supply. It should not be disconnected without substituting the equivalent resistance into the current supply circuit.

FUNCTIONAL CLASSIFICATION OF TUBES

FUNCTIONAL CLASSIFICATION OF TUBES

APPLICATION		HEATER VOLTAGES								150 MILLIAMPERE HEATER CURRENT	300 MILLIAMPERE HEATER CURRENT		
		1.4	2.0	2.5	5.0		6.3		12.6				
	TRIODES	1C3 1E4G 1G4GT 1LE3 26	$\begin{aligned} & \hline \text { 1H4G } \\ & 30 \end{aligned}$	$\begin{aligned} & 27 \\ & 56 \\ & 485 \dagger \dagger \end{aligned}$	01A	6AESGT 6ADSG 6AF5G 6C5 6C5GT 6F5 6FSG 6FSGT	65 6J5GT 6K5G 6K5GT 6L5G 6PSGT 6SF5 6SFSGT	7A4 7B4 37 56 75S 76	$\begin{aligned} & \text { 12ESGT } \\ & \text { 12FSGT } \\ & \text { 12JSGT } \\ & \text { 12SFS } \\ & \text { 12SFSGT } \\ & 14 \mathrm{A4} . . . \end{aligned}$	6L5G 12ESGT 12F5GT 12J5GT 12SFS 12SF5GT 14A4	6AESGT 6AFSG 6ADSG 6CS 6C5GT 6F5 6F5G	6F5GT 6J5 6J5GT 6KSG 6K5GT 6PSGT 6SFS	$\begin{aligned} & \hline \text { 6SFSGT } \\ & \text { 7A4 } \\ & \text { 7B4 } \\ & 37 \\ & 56 \\ & 75 S \\ & 76 \end{aligned}$
	DOUBLE TRIODES			53		6A6 6AE7GT 6C8G 6F8G 6N7 6N7G 6SC7 6SC7GT		.	 12AU7 14F7 12AX7 12AY7 12SC7 12SL7GT 12SN7GT 14AF7 	$\begin{aligned} & \text { 12AU77 } \\ & \text { 12AX7 } \\ & \text { 12AY7 } \\ & \text { 12SC7 } \\ & \text { 12SL7GT } \\ & \text { 14AF7 } \\ & \text { 14F7 } \end{aligned}$	6C8G 6SC7 6SL7GT $627 G$ $7 F 7$ $12 A U 7$ $12 A X 7$	$\begin{aligned} & \text { 12AY7 } \\ & \text { 12SN7GT } \end{aligned}$	
	TETRODES		32	24		36					36		
	PENTODES	$\begin{array}{\|l\|} \hline \text { 1L4 } \\ \text { 1LGS } \\ 1 U 4 \\ 959 \\ \hline \end{array}$	$\begin{aligned} & \text { 1B4P } \\ & 1 E 5 G P \\ & 15 \end{aligned}$	57		6AU6 6BAS 6BH6 6C6 6J7 6J7G 6J7GT 6R6G 6SG7 6SG7GT	6SH7 6SH7GT 6SJ7 6SJ7GT 6W6GT 6W7G 7AB7 7AG7 7AH7 7C7	7ES 7G7 727 7T7 7V7 7W7 77 717A 954 956 9001 9003	$\begin{aligned} & \text { 12AU6 } \\ & \text { 12J7GT } \\ & \text { 12SH7 } \\ & \text { 12SH7GT } \\ & \text { 12SJ7 } \\ & \text { 12SJ7GT } \\ & \text { 14C7 } \\ & 14 \mathrm{V7} \end{aligned}$	 6BH6 12SJ7GT 6W77G 14C7 7AG7 954 7AH7 956 7C7 9001 7E5 9003 12AU6 12J7GT 12SH7 12SH7GT 12SJ7	6AU6 6C6 6J7 6J7G 6J7GT 6R6G 6SG7 6SG7GT 6SH7 6SH7GT 6SJ7 6SJ7GT	$\begin{aligned} & 7 \mathrm{L7} \\ & 7 \mathrm{T7} \\ & 7 \mathrm{W7} \\ & 77 \end{aligned}$	
	TUNING INDICATORS			$\begin{aligned} & \text { 2ES } \\ & 2 G S \end{aligned}$		6ABS/6N5 6AD6G 6AF6G 6AL7GT 6ES 6G5 6T5 6U5/6G5				6AL7GT	6ES 6G5 6T5 6U5/6G5		
	INDICATOR CONTROL					6AE6G				6AEOG			
tt 3.0 V . ${ }^{\text {e }} 1.25 \mathrm{~V}$													

FUNCTIONAL CLASSIFICATION OF TUBES

FUNCTIONAL CLASSIFICATION OF TUBES

APPLICATION		HEATER VOLTAGES										150 MILLIAMPERE HEATER CURRENT	300 MILLIAMPERE HEATER CURRENT
		1.4	2.0	2.5		6.3	12.6	25	35	70	117		
	GATED BEAM DEFLECTION				6BN6		12BN6					12BN6	6BN6
	DIODE TRIODES	$\begin{aligned} & \text { 1HSG } \\ & \text { 1HSGT } \\ & \text { 1LH4 } \end{aligned}$			6Q6G							6Q6G	
	DOUBLE-DIODE TRIODES		$\left\|\begin{array}{l} 1 \mathrm{BS} / 25 S \\ 1 \mathrm{H} 6 \mathrm{G} \end{array}\right\|$	$\begin{aligned} & 2 \mathrm{~A} 6 \\ & 55 \end{aligned}$	6AQ6 6A07GT 6AT6 6AV6 6AW7GT 6B6G 6BF6 6BK6 6BT6 6BU6								
	TRIPLE-DIODE TRIODES				$\left\lvert\, \begin{aligned} & \text { 6R8 } \\ & \mathbf{6 S 8 G T} \end{aligned}\right.$	$6 \mathrm{T8}$	12S8GT	1978\%			.	$\left\lvert\, \begin{aligned} & 1258 G T \\ & 19 \mathrm{~T} 8 \end{aligned}\right.$	6S8GT
	DIODE PENTODES	$\begin{aligned} & \text { 1LDS } \\ & \text { 106 } \\ & \text { 155 } \\ & \text { 1SBGGT } \\ & \text { 1T6 } \\ & \text { 1U5 } \end{aligned}$			$\left\lvert\, \begin{aligned} & \text { GF7 } \\ & \text { WFF7GT } \\ & \text { SVV7 } \end{aligned}\right.$		12SF7GT					12SF7GT	$\begin{aligned} & \text { OSF7 } \\ & \text { GSV7 } \end{aligned}$
	$\begin{aligned} & \text { DIODE POWER } \\ & \text { PENTODES } \end{aligned}$	$\begin{aligned} & \text { 1N6G } \\ & \text { 1N6GT } \end{aligned}$											
	DQUBLE-DIODE PENTODES	$\begin{aligned} & \text { 1F6 } \\ & \text { 1F7G } \\ & \text { 1F7GH } \end{aligned}$.	2B7	6B7 6B8 6B8G	$\begin{aligned} & \text { 6B8GT } \\ & 7 E 7 \\ & 7 R 7 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} 12 \mathrm{C} 8 \\ 14 \mathrm{E} 7 \\ 14 \mathrm{R} 7 \\ \hline \end{array}$					$\begin{aligned} & 12 \mathrm{C} 8 \\ & 14 \mathrm{E} 7 \\ & 14 \mathrm{R} 7 \end{aligned}$	 $6 \mathrm{B7} 7$ 6B8GT $6 \mathrm{BB8}$ $7 \mathrm{E7} 7$ 6 B 8 G $7 \mathrm{R7}$
	TRIODE PENTODES				$\begin{array}{\|l\|l\|} \hline \text { 6AD7G } \\ \text { 6F7 } \end{array}$	$\begin{aligned} & \text { 6F7G } \\ & \text { 6P7G } \end{aligned}$	12B8GT	25B8GT				25B8GT	6F7 6P7G
	DIODE TRIODE PENTODES	$\begin{aligned} & \text { 1B8GT } \\ & \text { 1D8GGT } \\ & \text { 3A8GT } \end{aligned}$		3A8GT*				25D8GT				25D8GT	
	HALF-WAVE RECTIFIERS POWER PENTODES						12A7	25A7GT					$\begin{aligned} & \text { 12A A7 } \\ & 25 \mathrm{~A} 7 \mathrm{GT} \end{aligned}$
	HALF-WAVE RECTIFIERS BEAM PENTODES	.							32L7GT0	$\begin{aligned} & \text { 70A7GT } \\ & 70 \mathrm{~L} 7 \mathrm{GT} \end{aligned}$	$\begin{aligned} & 117 \mathrm{LV7} \\ & \text { M7GT } \\ & 117 \mathrm{~N} 7 \mathrm{GT} \\ & 117 \mathrm{P7GT} \end{aligned}$	$\begin{aligned} & \text { 70A7GT } \\ & \text { 70L7GT } \end{aligned}$	32L7GT
- 1.25 V			- 2.8 V .		\% 18.9 V. $\quad 32.5 \mathrm{~V}$.								

Courtesy TUNG-SOL Lamb Works, Inc.

RECEIVING TUBE SUBSTITUTION GUIDE
FUNCTIONAL CLASSIFICATION OF TUBES

			10	$\stackrel{\underset{a}{e}}{\substack{2 \\ \hline}}$		旨					镸荡
				$\underset{\underset{\sim}{x}}{\underset{\sim}{x}}$					－		
						－	－				竒
							氝気気気				
							\％				发
						$\begin{aligned} & 10 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$	Nơ్ర్య				N
				$\underset{\underset{\sim}{e}}{\underset{\sim}{2}}$		－					
			1	$\begin{aligned} & \hat{a} \\ & \underset{\sim}{2} \\ & 0 \\ & 0 \end{aligned}$		－				号	
	发							㝘			
$\begin{aligned} & Z \\ & \frac{0}{k} \\ & \frac{1}{3} \\ & \frac{\mathbf{d}}{6} \\ & \hline \end{aligned}$			$\begin{aligned} & \stackrel{\sim}{\alpha} \\ & \stackrel{\mu}{x} \\ & \frac{x}{2} \end{aligned}$		pentode mixers	̈ㅡㅇ 음		$\begin{aligned} & \text { ! } \\ & \text { O} \\ & 0 \end{aligned}$			
	350 d	1vy3n3e	0.		เロиวา31	${ }_{\text {S }}$	3avm－Tna	S4013	33130		$\begin{array}{\|l\|} \hline 8798000 \\ 3971700 \\ \hline \end{array}$
	S83I83ANO5					Wnก	OA HDIH－	350dy	nd 7\％	43＊	M30

FUNCTIONAL CLASSIFICATION OF TUBES

APPLICATION			HEATER VOLTAGES							150 MILLIAMPERE HEATER CURRENT	300 MILLIAMPERE HEATER CURRENT
			COLD CATHODE	1.4	2.5	5.0	6.3	12.6	25		
	두ㅇㅜㅠ응	DIODES		$\begin{aligned} & \text { 1B3GT } \\ & \text { 1X2 } \\ & \text { 1V2 } \\ & \text { 1Y2 } \\ & 1 Z 2 \end{aligned}$	$\begin{aligned} & \text { 2V3G } \\ & \text { 2X2 } \\ & \text { 2X2/879 } \\ & 879 \end{aligned}$			-			
	유ㅇㅡㅡ를	DOLBLE DIODES					${ }^{6}$ ALS ${ }^{\text {. }}$	12ALS		12AL5	6ALS
		DIODES				5V4G	6U4GT 6W4GT		25W4GT		25W4GT
		DIODE CONNECTED					6AS7G			6AS7G	
		DOUBLE DIODE					6ALS	12AL5		12AL5	6.425
		DIODES	$\begin{aligned} & \text { 0Y4 } \\ & \text { 0Y4G } \end{aligned}$								
		DOUBLE DIODE	$\begin{aligned} & 024 \\ & \text { 024G } \end{aligned}$		$\begin{aligned} & 82 \\ & 83 \end{aligned}$						
		GLOW DISCHARGE DIODE	0A2 0A3/VR-75 0B2 0B3/VR-90 0C3/VR-105 0D3/VR-150								
		GAS TRIODE	1C21		$\begin{aligned} & \text { 2A4G } \\ & 2 \mathrm{B4} \\ & 2 \mathrm{C} 4 \\ & 885 \end{aligned}$		$\begin{aligned} & \text { 6D4 } \\ & \text { 6Q5G } \\ & \mathbf{8 8 4} \end{aligned}$				
		GAS TETRODES	.				$\begin{aligned} & \text { 2D21 } \\ & 2050 \\ & 2051 \end{aligned}$				
		RELAY TUBE	0A5								

SECTION 2

RECEIVING TUBE SUBSTITUTION GUIDE

This section includes the actual information on the tube substitutions. Four columns are included. The first column lists the tube type for which a substitute is desired. This listing is in numerical and alphabetical order. For example 6CB6 precedes 6CD6 and 6ZY5 precedes 7A4. We have not indicated any difference between metal and glass tubes of the octal type. The tube listed can thus be considered either as metal or a glass type. The letters $G, G T, G T / G, G A$, or $G P$ indicates that the tube has a glass envelope, the $G T$ and $G T / G$ are smaller and newer versions of the G type. The glass tubes, in practically all cases, have the same characteristics as the metal types.

One of the primary differences between the glass and metal tubes is that the metal type usually have an internal shield. A pin at the base of these tubes is connected to this shield. In most cases this pin is wired to the common ground or B minus of the set. In a few cases substituting a glass type for a metal type causes the circuit to become unbalanced or feedback occurs due to a lack of proper shielding. Most often this can be overcome by shielding the tulee or realigning the set.

The second column lists the various possible substitutes. Quite often more than one substitute is listed for a single tube. In such cases the tube in the first column is not repeated for each substitute but is listed only once.

The third column lists the performance of each tube. Three performance ratings are shown in this list. These are E for EXCELLENT, G for GOOD, and P for POOR. They define the suitability of a substitute predicated upon its electrical characteristics as compared to those of the original and upon the relationship between the characteristics of the substitute to the constants of the circuit, which was designed to function best with the original. The comparison between the characteristics of the tubes excludes the filament or heater voltage and current ratings. It is assumed that whatever may be the performance characteristics of the substitute - the filament or heater voltages and current are correct, even if it requires certain minor circuit modifications to accomplish this condition.

Concerning the E, G, and P ratings, it stands to reason that those tubes which bear E (excellent) ratings are either the exact equivalents differing perhaps in
basing and maybe in filament or heater voltage and current ratings - or so closely approximate the electrical characteristics of the original as to require no significant major modifications. All applicable tube substitutions which might bear an E rating in performance are not shown in the main listing. Some appear on the addenclum pages. These represent lastminute additions as the result of information received from television receiver manufacturers and appear at the end of this section.

Concerning the G (good) rating, it reflects more than just moderate differences in tube characteristics between the substitute and the original that is being replaced. It still means a triode substitute for a triode original, or a pentode substitute for a pentode original, and sometimes the conversion of a pentode into a triode, but the plate (and screen) voltage demands of the substitute may be higher than that of the original - or the transconductance or amplification constant of the substitute may be less than the original - all of which means that the circuit demands incorporated in the equipment design are not being met by the substitute tube. Possibly the plate impedance of the substitute is higher or lower, reducing the originally intended over-all amplification; perhaps a slight amount of distortion is added to the signal by the substitute. Yet the substitute may be used even if it is not as good in performance as the original, for again it is a matter of continuing the operation of a device.

Those substitutions which bear P (poor) ratings are used only as a last resort. They represent the extremes in tulbe substitution when it is a matter of accomplishing a repair job of sorts, rather than none at all because more appropriate substitutes are not available. Of course, modifications can be made in the circuit design and circuit constants so as to accommodate the tube rated poor, in which case, considerable improvement may be accomplished. It must be remembered, of course, that the P rating - or for that matter, the (G rating - is not a reflection upon the capabilities of the tube or the brand. It simply means that the tube, so designated in the list, was not intended for use in the type of system for which it is suggested as a substitute. With proper circuit changes, it might, as we said before, become a better performing substitute. But whether or not such design changes are warranted is a matter of individual consideration. As
far as circuit modification is concerned, it can be a tedious task. Much depends upon comparative reference data and background knowledge of circuits. Finally such changes are possible only if the cost is acceptable to the owner of the equipment.

The fourth or last column lists the circuit changes that are necessary to make the substitute operate properly. In many cases no change whatsoever is required, the original tube is pulled out and the substitute plugged in. Where the reference "parallel circuits only" or "series circuits only" is found, it refers only to the type of filament circuit arrangement in which the substitute tube can be used.

Original and Substitute Sockets

The tube substitution lists contain illustrations of the original and the substitute tube sockets when the tube interchange involves a change in sockets. These are offered as a convenience in wiring. The views are the bottoms of the sockets and these correspond to the pin locations on the bottom of the respective tube bases. The bottom socket view of the original tube will always be found to the left of the change writeup and will bear the designation "ORIG." The bottom socket view of the substitute tube will always be found to the right of the change writeup and will bear the designation "SUB."

The instructions given between the two illustrations state the respective socket terminals involved in the rewiring operation. In view of the necessity for removing one socket before mounting the other, it is suggested that as each wire is disconnected from the original socket, it be labeled with a tiny tag showing the appropriate socket connection number. These correspond to the pin numbers on the tube base. Then when being rewired to the new socket, all that is required is to solder the numbered lead to the terminal on the socket as stated in the instructions.

Care must be exercised to see that the socket connections are read in accordance with the location of the key as shown on the pages. In order to attain correspondence between the socket mounted on the chassis and the instructions, one or the other should be changed in physical position so that the keys or identifying terminals are in the same relative position. Another precautionary note relates to the grid caps. In many cases capped tubes are replaced by single ended tubes, and vice-versa. The leads must be properly connected. Finally in some substitutions the pin numbers on the original and the substitute are the same, that is, 1 to 1 , 2 to 2,3 to 3 and so on. This is not standard for all the tubes, nor is it standard for all the pins even if it is true for some of them in any one substitution. In other words, the instructions should be read completely. Nothing should be taken for granted.

ATTENTION!

Save Time and Money with RIDER'S New Book

TV Installation Techniques

By SAMUEL L. MARSHALL

Television Instructor, George Westinghouse Vocational High School

Nature of Television
Radio Propagation
Basic Antenna Principles
Transmission Lines and Special Antenna Systems Materials and Methods Used in Installations

High Mast and Tower Installations Problems Arising in Television Installations
Receiver Adjustments and Service in the Home Municipal Regulations
Appendix

GET YOUR COPY NOW!
 JOHN F. RIDER, PUBLLSHER, Inc., 480 Canal St., New York 13, N..Y.

RECEIVING TUBE SUBSTITUTION GUIDE

TUBE 1A7

1 R5
SUB. 1D7 1 L6 1 LA6 1 LC6
$1 \mathrm{A7}$ 1D

1AB5

PERF.

CIRCUIT CHANGES NECESSARY

P

G
E E

No changes; unless there is a resistor across 1 A7 filament, which must be removed. 1 D 7 . is rated 2 V 60 mils and draws slightly less than 50 on 1.4.

Same as 1 A7 to 1 U 6.
Change socket to loctal and rewire as follows:

G Make adaptor as follows: Solder rather heavy wires three inches long to all lugs except No. 5 of miniature socket. Break the 1A7, clean out the base and save the cap. Push the wires from miniature socket thru the base pins as follows:

No. 1 on miniature thru No. 2 of base		
2	thru	3
3	thru	6
4	thru	5
7	thru	7
6	bring out and solder grid cap on.	

The octal socket could be replaced by a miniature using the above connections but it is usually hard to find a place to mount it.

If 1 R5 squeals, reduce value of oscillator grid resistor to 75000 ohms or less if necessary. This resistor is, connected between terminal No. 5 on the the 1A7 socket and ground or filament.

An idea we have been using successfully is to dig a trough from pin No. 5 to pin No. 7 on the adaptor, filling this with the graphite preparation made for volume controls, measuring the resistance, and filling the trough until the desired resistance is acquired.

G Parallel circuits only. Change socket to miniature and rewire as follows: No. 2 on octal
to No. 1 on miniature

3	to	2
4	to	5
5	to	4
6	to	3
7		to
cap	to	6

G Parallel circuits only. Change socket to subminiature and rewire as follows:

No changes.

Reverse 1 AE 4 to 1 AD 4 procedure.
G
Parallel circuits only. Reverse 1 AB 5 to 1 AD 5 procedure.

RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
$1 \mathrm{B7}$	1 R 5	G	Parallel circuits only. Same as 1A7 to 1 R5.
	1 U6	G	Parallel circuits only. Same as 1A7 to 1 U 6 .
1 B8	1D8	E	No changes.
1 C 3	1G4	G	Where space permits. Change socket to octal and rewire as follows:
	1 LE3	G	Where space permits. Change socket to loctal and rewire as follows: No. 1 on miniature to No. 1 on loctal
1 C 5	1 A 5	G	Parallel circuits only. No changes.
	1D8	P	Remove and tape up any wires connected to 6 and 8. No connection to top cap.
	1 LA4	G	Same as 1A5 to 1LA4. Parallel circuits only.
	1 LB4	G	
	1Q5	G	No changes. Bias different but tone is reasonably good.
	1S4	G	Same as 3Q5 to 3S4, but connect nothing to No. 5 on miniature.
	1 T 5	G	Parallel circuits no changes. Series circuits shunt 35 ohm resistor across filament.
	3Q4	P	Change socket to miniature and rewire as follows:
	3S4	P	No. 2 on octal to No. 5 on miniature 3 4 to 2 to 4 to 3 to 1 and 7
	3Q5	P	Same as 1Q5 to 3Q5.
1 C 6	1 A 6	G	Parallel circuits only. No changes.
	$1 \mathrm{C7}$	G	Same as 1A6 to 1C7. Either series or parallel circuits.
	$1 \mathrm{D7}$	G	Same as 1A6 to 1C7. Parallel circuits only.
$1 \mathrm{C7}$	1 A 6	G	Reverse 1A6 to 1 C 7 procedure. Parallel circuits only.
	1C6	E	Reverse 1A6 to 1C7 procedure.
	1D7	E	Parallel circuits only. No changes.
1 C 8	1 AE5	G	Parallel circuits only.
	1E8	E	No changes.
1 C 21			No practical substitute.

[^1]

RECEIVING TUBE SUBSTITUTION GUIDE

No. 5 to No. 7
Connect pins No. 5 and No. 8 together.

No changes.
G Make adaptor as follows: Break the glass envelope on a burned out loctal tube leaving the extension of the pins intact. Bend the extension of the pins so that they connect to a miniature socket according to the following:

No. 1 on miniature to No. 1 on loctal

2	to	2
3	to	3
4	to	4
6	to	6
7	to	8

In case this substitution squeals on the high frequency end of the dial, change the oscillator grid resistor to 100 M ohms or less if necessary.

RECEIVING TUBE SUBSTITUTION GUIDE

ILN5-IN6

TUBE 1 LN5

SUB.

1S5

1SA6

1 D5

1 LC5
1 LN5

1 LD5

PERF.

P

Change socket to miniature and rewire as follows: Nos. 1 and 4 on loctal to No. 1 on miniature

(4) (9)	2	to	5	
$\left.3^{3}\right)^{(3)}$	3	to	4	(2) ${ }^{(3)}$
(2) (1)	4	to	1	(1) 0
ORIG.	6	to	6	sus.
	8 and 5	to	7	

RECEIVING TUBE SUBSTITUTION GUIDE

CIRCIIT CHANGES NECESSARY

G Same as 1 LC 5 to 1 SA6.

P Electric operation only. Same as 1LN5 to 1 N5. Connect nothing to pins not used.

P No changes. 1D5 rated 60 mils on 2 volts and pulls less than 50 on 1.4 volt.
G Same as 1 N5 to 1LN5.

E
Change socket to loctal and rewire as follows:
No. 2 on octal
to No. 1 on loctal

3	to	2
4	to	3
7	to	8
cap	to	6

Short loctal terminals 4 and 5
G No changes.
P Parallel circuits only. Change socket to miniature and rewire as follows:

No. 2 on octal
to No. 1 on miniature
3
4
7
cap
to
to 3

G Change socket to miniature and rewire as follows:

No. 2 on octal
3
4
7
cap
cap
to No. 1 on miniature

to 6
6

G Make adaptor as follows:

No. 2 on base	to No. 2 on top
3	to
4	to
7	to 7 and 3
7	to
cap	to

G Change socket to miniature or make adaptor as follows: No. 2 on octal to No. 7 on miniature.

3	to	2	(0) 0^{3}
4	to	3	(3) 0
7	to	1	(1)
cap	to	6	

P Electric operation only. Remove and tape up wire if any anchored on Nos. 5, 6 and 8.

Reverse 1 LD5 to 1 N6 procedure.

			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
1 N6	1SB6	G	Rewire as follows:
			$\text { No. } 5 \text { to No. } 8$
1 P5	1 N5	G	No changes.
	1S4	P	Parallel circuits only. Same as 1N5 to 1S4.
	1SA6	G	Same as 1 N5 to 1SA6.
	1 T4	G	Same as 1 N5 to 1 T4.
1 Q5	1 A 5	G	Parallel circuits only. No changes.
	1 C 5	P	No changes. Bias different but tone reasonably good.
	$3 \mathrm{B5}$	P	Move No. 7 to No. 8 and short No. 2 and 7 together.
	3C5	P	
	3Q4	P	Same as 1C5 to 3Q4.
	3Q5	P	Move No. 7 to No. 8 and short No. 2 and 7 together.
	3S4	P	Same as 1C5 to 3Q4.
1Q6	$\begin{aligned} & 1 \mathrm{~S} 6 \\ & 1 \mathrm{~T} 6 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	Rewire as follows:
			$\text { No. } \begin{array}{r} 1 \text { to No. } 4 \\ 7 \text { to } \\ 2 \text { to } \end{array}$
$1 \mathrm{R4} / 1294$	1 A3	\mathbf{P}	Reverse 1A3 to 1R4/1294 procedure.
d R5	1 A 7	G	Where extra space permits. Reverse 1A7 to 1 R5 procedure.
	1 LA6	G	Where space permits. Reverse 1LA6 to 1R5 procedure.
	1 LC 6	G	
1 S 4	1 LC 5	G	Where space permits. Parallel circuits only. Reverse 1LC5
	1 LN5	G	to 154 procedure.
	1 N5	G	Where space permits. Parallel circuits only. Reverse 1N5
	1 P5	G	to $1 \mathrm{S4}$ procedure.
	155	P	Parallel circuits only. Rewire as follows: Nos. 2 and 6 to No. 5 3 to 5 to 5
	1 L 4	P	Parallel circuits only. Rewire as follows:
	1 T4	P	
	1 U 4	P	No. 6 to No. 2
			- 3 to 6
			4 to 3

G TUBE SUBSTITUTION GUIDE IT4-IV5			
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
1 T4	$1 \mathrm{U4}$	G	No changes.
175	1 A5	G	No changes. 1 T5 pulls 10 mils more but it works OK.
	- $1 \mathrm{C5}$	G	Parallel circuits only. No changes.
	1D8	P	Remove and tape up wires if any anchored on No. 6 and 8. Parallel circuits only.
	1 G4	P	No changes. Emergency works good in most cases.
	1 LA4	P	Same as 1A5 to 1LA4
	$1 \mathrm{LB4}$	P	
	1Q5	G	Parallel circuits only. No changes.
	154	G	Same as 3Q4 to 3 S4 parallel circuits only except omit connection No. 8 on octal to No. 5 on miniature.
	$3 Q 4$		Electric operation only. Same as 3Q5 to 3S4 but connect nothing to No. 5 on miniature.
	$3 S 4$	\mathbf{P}	
176	1Q6	E	Rewire as follows:
			No. 3 to No. 2 1 to
	1S6	E	No changes.
$1 \mathrm{U4}$	1AF4	G	Parallel circuits only. No changes.
	1 L4	G	No changes.
	155	G	Rewire as follows:
			No. 5 to No. 1 2 to 3 to
	1SA6	G	Where space permits. Same as 1 T4 to 1SA6.
	1 T 4	G	No changes.
1 U5	155	E	Rewire as follows:
			No. 2 to No. 5 Reverse 3 and 4
1U6	1 L6	E	Parallel circuits only. No changes.
1 V	6Z3	E	No changes.
	12Z3	G	No changes necessary. Series circuits only. Six volts added to the filament string makes no difference.
1 V 2			No practical substitute.
1 V 5	$1 \mathrm{AC5}$	E	No changes.

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
3LE4	3LF4	E	No changes.
	$3 V 4$	G	Same as 3D6/1299 to 3V4.
3LF4	3D6/1299	G	Parallel circuits only. No changes.
	$3 V 4$	G	Same as 3D6/1299 to 3V4.
3Q4	3A4	P	Parallel circuits only. Rewire as follows:

Reverse No. 3 and No. 4
3D6/1299 G Parallel circuits only. Reverse 3D6/1299 to 3Q4 procedure.

3E5 G Parallel circuits only. Rewire as follows:

No. 6	to No. 2
3	to
4	to

3LE4	G	Reverse 3D6/1299 to 3Q4 procedure.
3LF4	G	
3S4	G	No changes.
3V4	G	Rewire as follows:

No. 6	to No. 2
3	to
4	to
4	

Change socket to miniature and rewire as follows:
No. 2 on octal to No. 1 on miniature

No. 2 on octal to No. 1 on loctal

	3	to	2	
(3) 3 (3)	5	to	4	
$3^{(3)}$	6	to	3	
(3)(1)	7	to	8	
ORIG.	8	to	7 and	
	cap	to	6	

6AB4
Remove and tape up any wires anchored on No. 5.
Parallel circuits only. Rewire as follows:
No. 7
to No. 2
1
to

Do not use blank connections on socket.

TUBE	SUB.	PERF.		
6AB4	6 N 4	P		Parallel circuits only. Rewire as follows:
:---:				

$6 \mathrm{AB5} / 6 \mathrm{~N} 5$	6 E 5
	$6 \mathrm{U} 5 / 6 \mathrm{G} 5$
$6 \mathrm{AB6}$	6 AC 6
	6 B 5

P Parallel circuits only. No changes.
P Parallel circuits only. No changes.
G Parallel circuits only. No changes.
$6 \mathrm{B5}$
G
Change socket to six prong and rewire as follows:

6N6
$6 \mathrm{AB} 7 / 1853 \quad 6 \mathrm{AC} 7 / 1852$
6AJ7
6SD7
6SE7
6SJ7
6SK7
6SS7
5693

7V7

7W 7
G Change socket to loctal and rewire as follows:
Change socket to loctal and rewire as follows:

No. 2 on octal
3

to No. 1 on loctal
no
Change socket to loctal and rewire as follows:

No. 2 on octal
3

to No. 1 on loctal
no
$\begin{array}{lll}6 A C 5 G & 6 A C 5 G T & E \\ & 6 A C 5 G T / G & \mathrm{E}\end{array}$

G No changes.
G No changes.
G No changes.
G Parallel circuits only. No changes.

G

G
G
G
G

G
Change socket to loctal and rewire as follows:
No. 2 on octal
to No. 1 on loctal

3
4
5
6
7
8

	No. 2 on octal	to No.	1	
	3	to	4	
	4	to	6	
	5	to	7	
	6	to	3	
	7	to	8	
	8	to	2	

Remove and tape up any wires anchored on pins No. 2 and No. 5

No. 2 on octal

3
4
5
7

8
to No. 1 on six prong

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
6AC5GT	$\begin{aligned} & \text { 6AC5G } \\ & 6 \mathrm{AC} 5 \mathrm{GT} / \mathrm{G} \end{aligned}$	$\underset{\mathbf{E}}{\mathbf{E}}$	No changes.
6AC6	6AB6	G	Parallel circuits only. No changes.
6AC7	7W7	G	Same as 6AB7/1853 to 7W7.
6AC7/1852	6AB7/1853	G	No changes.
	6AH6	G	Change socket to miniature and rewire as follows:
	6AJ7	G	No changes.
	6SD7	G	Parallel circuits only. No changes.
	6SE7	G	
	6SJ7	G	
	6SK7	G	
	6SS7	G	i
	5693	G	
	7V7	G	Same as 6AB7/1853 to 7V7.
6AD4	6K4	G	No changes.
$6 \mathrm{AD5}$	6AE5	G	No changes.
	6AF5	G	
	6C5	G	
	6 J 5	G	
	$6 \mathrm{P5}$	G	
	6 F5	E	Rewire as follows:

Remove wires from No. 3 and connect to No. 4. Connect grid lead to No. 5. This pin may be used for anchor. Extend to grid cap.

G Rewire as follows:
Connect terminal No. 5 to grid cap. This terminal may be used as an anchor.

G No changes.

6ADT-6AG6G			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
6AD7	6F7	G	Parallel circuits only. Change socket to seven prong and rewire as follows: No. 1 on octal to No. 5 on seven prong 2 to 1
			7 to 7
			8 to 6
	$6 \mathrm{P7}$	G	Parallel circuits only. Remove wires from No. 5 and extend to grid cap. Rewire as follows:
			$\begin{array}{ll} \text { No. } 4 & \text { to No. } 5 \\ 3 & \text { to } 4 \end{array}$
			7 to 3
			1 to 7
6AE5	$6 \mathrm{AD5}$		No changes.
	6 AF5		
	6C5		
	6 J 5		
	6 P 5		
6AE6	6AH7	G	Parallel circuits only. Rewire as follows:
			Remove and tape up any wires on No. 1 No. 8 to No. 4
			2 to 8
			4 to 6
			Connect No. 4 and No. 2 together
	6N7	\mathbf{P}	Parallel circuits only. Rewire as follows:
			No. 4 to No. 6 Connect No. 4 and No. 5 together.
6AF5	6 AD5	G	No changes.
	6AE5	G	
	6C5	G	
	6 J 5	G	
	6 P 5	G	
6AF6	6AD6	G	No changes.
6AF7			No practical substitute.
6AG5	6AJ5	P	Parallel circuits only. No changes.
	6AK5	G	Parallel circuits only. No changes.
	6AU6	G	No changes.
	6BC5	G	No changes.
	5590	G	Parallel circuits only. No changes.
	5591	G	
	9001	G	
	9003	G	
6AG6G			No practical substitute.

TUBE	SUB.	PERF.	CIRCUTT CHANGES NECESSARY
6AG7	$6 A K 7$	E	No changes.
6AH5	$6 A L 6$	G	Rewire as follows:

No. 4	to cap
1	to 4
6	to 5

6L6 G Rewire as follows:

No. 4	to No. 3
1	to
6	to

6AH6 * | 6AJ5 | |
| :--- | :--- |
| | 6AK5 |
| | 6AS6 |

P Parallel circuits only. No changes.
P
P Parallel circuits only. Rewire as follows:
Reverse No. 2 and No. 7

6AU6
6BC5
6BD6
EF50
6AH7

6AJ5
6AE6
6C8

6SN7

7N7

Parallel circuits only. No changes.
G Parallel circuits only. No changes.
P Parallel circuits only. No changes.
P Parallel circuits only. Reverse EF50 to 6BA6 procedure.

6AG5
6AK5
6AU6

P
P Parallel circuits only. Rewire as follows:
Reverse No. 2 and No. 3 Remove wires from No. 4
No. $5 \quad$ to No. 4
Connect wires removed from No. 4 to No. 6.

P
Connect wire from No. 1 to grid cap. Remove wires from No. 2
No. 8
to No. 2
4 to
8

Connect wires removed from No. 2 to No. 4.

P Parallel circuits only. Change socket to loctal and rewire as follows:
No. 1 on octal to No. 4 on loctal

2	to	2
3	to	3
4	to	7
5	to	5
6	to	6
7	to	8
8	to	1

Parallel circuits only. No changes.
No changes.
Parallel circuits only. No changes.

			RECEIVING TUBE SUBSTITUTION GUIDE GATE-GAXE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
6AT6	6AV6	G	No changes.
	6BF6	G	
	6BK6	G	
	6BT6	G	
	6BU6	G	
	6BD7	G	Parallel circuits only. Reverse 6BD7 to 6AQ6 procedure.
6 AU5	6AV5	G	Parallel circuits only. No changes.
	6BD5	\mathbf{G}	
6AU6 ${ }^{*}$	6AG5	P	No changes.
	6AJ5	P	Parallel circuits only. No changes.
	6AK5	P	
	6BA6	G	No changes.
	6BH6	G	Parallel circuits only. Rewire as follows:
			Reverse No. 2 and No. 7
	EF50	G ,	Reverse EF50 to 6BA6 procedure.
6AV5	6AU5	G	No changes.
	6BD5	G	
	6BQ6	G	Parallel circuits only. Reverse 6BQ6 to 6BD5 procedure.
6AV6	6AQ6	G	Parallel circuits only. No changes.
	6AT6	G	No changes.
6 AW7	6AQ7	G	Reverse 6AQ7 to 6AW7 procedure.
6 AX5	6AX6	E	Parallel circuits only. Tie Nos. 4 and 8 together.
	6BY5	E	Parallel circuits only. Rewire as follows:
			Connect Nos. 1 and 8 together; also Nos. 3 and 4.
	6W5	G	Parallel circuits only. No changes.
	6X5	G	
	6ZY5	G	
	1274	G	
6AX6	6 AX5	G	Can be used only where No. 4 and No. 8 in 6AX6 are connected together without change.
	6W5	G	
	6X5	G	
	6ZY5	G	
	1274	G	

6867			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
6BC7			No practical substitute.
6BD5	6AU5	P	Parallel circuits only. No changes.
	$6 \mathrm{AV5}$	P	
	6BQ6	G	Parallel circuits only. Reverse 6BQ6 to 6BD5 procedure.
6BD6	6AH6	P	Parallel circuits only. No changes.
	EF50	G	Reverse EF50 to 6BA6 procedure.
6BD7	6AQ6	G	Parallel circuits only. Change socket to miniature and rewire as follows:
	6AT6	G	No. 1 on noval to No. 7 on miniature
	6BF6	G	2 to 1
	6BT6	G	O-3 to 3
	6BU6	G	
			6 to 5
			8 to 6
6BE6	6BA7	G	Change socket to nine pin noval and rewire as follows: No. 1 on miniature to No. 2 on noval
			(0®)2 to 3 3 to 4
			(3) 0 (0) 4 to 5 (3)
			onio. 5 a to 9 a
			6 to 1
	5915	G	No changes.
6BF5	6AQ5	P	Parallel circuits only. No changes.
	6AR5	P	Parallel circuits only. Short No. 7 to No. 1.
6BF6	6BD7	G	Parallel circuits only. Reverse 6BD7 to 6AQ6 procedure.
	6BU6	G	No changes.
6BF7	6BG7	E	
6BG6	6BQ6	P	Parallel circuits only. Rewire as follows:
			$\begin{array}{cl}\text { No. } 8 & \text { to No. } 4 \\ 3 & \text { to } 8\end{array}$
	6CD6	P	Parallel circuits only. No changes. Sometimes it is necessary to increase wattage rating of screen resistor.
6BG7	6BF7	E	No changes.
6BH6	$6 \mathrm{BJ6}$	G	No changes.
	6AS6	G	Parallel circuits only. No changes.
	6BC5	P	
	6CB6	G	
6BJ6	6AS6	G	Parallel circuits only. No changes.
	6 BC 5	P	
	6CB6	G	

6 AX5

6X5

Parallel circuits only. Rewire as follows:

No. 8
to No. 3
to 8
4

P Where extra filament current is available. Parallel circuits only. Rewire as follows:
$\begin{array}{cc}\text { No. } 8 & \text { to No. } 3 \\ 4 & \text { to } \\ 8\end{array}$

Parallel circuits only. No changes.

Parallel circuits only. Reverse 6BD7 to 6AQ 6 procedure.
6BK6 G No changes.
6BD7 G
6BF6 G
6W5 G
6ZY5
$6 \mathrm{AB4}$

Rewire as follows:

Connect No. 5
to No. 1

P Parallel circuits only. Rewire as follows:

No. 7	to No. 2
1	to
5	to

[^2]

89 G Parallel circuits only. Change socket to six prong and rewire as follows: No. 2 on octal to No. 1 on six prong

G
Parallel circuits only. No changes.

* See Addendum at back of this section.

[^3]

RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
$6 \mathrm{J8}$	7 J 7	G	Change socket to loctal and rewire as follows:
	7S7	G	No. 2 on octal to No. 1 on loctal
			3 to 2
			8 to 7
			cap to 6
	7Q7	G	Same as 6A8 to 7Q7.
6 K 4	6AD4	E	No changes.
6 K 5	6AD5	G	Make adaptor as follows:
			No. 2 on base to No. 2 on cap
			$\begin{array}{lll} 3 & \text { to } & 3 \\ 7 & \text { to } & 7 \end{array}$
			8 to 8
			Connect grid cap to No. 5 on base. This
			substitution can also be made by merely connecting the grid cap to No. 5 on the socket.
	6AE5	G	Change connection as follows: cap to No. 5.
	6C5	G	
	$6 \mathrm{J5}$	G	
	6F5	G	Change connections as follows:
			No. 3 to No. 4
	6Q7	G	Cut off pins Nos. 4 and 5.
	6SF5	G	Make adaptor as follows:
			No. 1 on base \quad to No. 1 on top
			3 to 5
			$7 \quad$ to 7
			8 to 2
			cap to 3
	7A4	G	Change socket to loctal and rewire as follows:
	7B4	G	
			(3) 3 (${ }^{(3)}$
6K6	6A4/LA	P	Parallel circuits only. Reverse 6A4/LA to 6F6 procedure.
	6AD7	G	Parallel circuits only. Remove and tape up any wires anchored on pins Nos. 1 and 6.
	6AR6	P	Where additional filament current is available. Reverse 6AR6 to 6F6 procedure.

TUBE SUB. PERF. CIRCUIT CHANGES NECESSARY

Connect No. 3 to cap.

RECEIVING TUBE SUBSTITUTION GUIDE

TUBE
6N7

6N8

6P7.

6P8G
6Q5G
6Q6
6Q7

SUB.
79

PERF.
G
Change socket to six prong and rewire as follows: No. 2 on octal to No. 1 on six prong

P
. No. 1 on noval
as follows:
to No. 5 on loctal

2	to	6
3	to	7
4	to	1
5	to	8
6	to	2
7	to	3
8	to	4
9	to	7

6 F7

6AD5	G
6AE5	G
6AF5	G
6C5	G
6 J 5	G
6L5	G
7A4	G
37	G
76	G
$6 F 7$	E

No. 2 on octal
to No. 1 on seven prong

No practical substitute.
No practical substitute.
No practical substitute.
E No changes.
G
Change socket to seven prong type and rewire as follows: No. 2 on octal to No. 1 on seven prong
(3)

6SF5-			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
6SF5	7B4	G	Change socket to loctal and rewire as follows. Parallel circuits only: No. 2 on octar to No. 7 on loctal 3
6 SF 7	6SV7	G	No changes..
6SG7	$\begin{aligned} & \text { 6AB7 } \\ & \text { 6AC7 } \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	Parallel circuits only. No changes.
	6AG5	G	Change socket to miniature and rewire as follows:
	6BC5	G	No. 2 on octal to No. 3 on miniature
	6AJ5	G	Same as 6SG7 to 6AG5. Parallel circuits only.
	6AK5	G	
	6AN5	G	
	5591	G	
	9001	G	
	9003	G	
	6SH7	G	No changes. Cathode and suppressor grid are internally connected in the
	6SJ7	G	6SG7. In a limited number of circuits this substitution does operate. In
	6SK7	G	these cases short pins 3 and 5 together.
6SH7	6AB7	G	Parallel circuits only. No changes.
	6AC7	G	
	6AG5	G	Same as 6SG7 to 6AG5.
	6BC5	G	
	6AJ5	G	Same as 6SG7 to 6AG5. Parallel circuits only.
	6AK5	G	
	6AN5	G	
	5591	G	
	9001	G	
	9003	G	
	6SG7	G	No changes.
	6SJ7	G	
	6SK7	G	
	7G7/1232	G	Parallel circuits only. Change socket to loctal and rewire as follows: No. 1 on octal $\begin{aligned} & 2\end{aligned}$ to No. 5 on loctal
			7 to 8
			8 to 2
6SJ7	6C6	E	Reverse 6C6 to 6SJ7 procedure.
	6D6	G	
	77	E	
	78	G	

RECEIVING TUBE SUBSTITUTION GUIDE

6U6-6V6			RECEIVING TUBE SUBSTITUTION GUIDE	
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY	
6 U6	6F6	G	Parallel circuits. No changes.	
	6G6	P		
	6K6	G		
	6L6	P		
	6V6*	G		
	6W6	P		
$6 \mathrm{U7}$	6AU6	G	Same as 6K7 to 6AU6.	
	6BA6	G		
	6BD6	G		
	6C6-77	G	Reverse 6C6 to 6 J 7 procedure.	
	6D6-78	G		
	6D7	G	Same as 6J7 to 6D7.	
	6E7	G		
	$6 \mathrm{K7}$	G	No changes.	
	6S7	G	Same as 6J7 to 6SJ7.	
	6SH7	G		
	6SJ7	G		
	6SK7	G		
	6SS7	G		
	6W7	G		
	7A7	G	Same as 6K7 to 7A7.	
	7B7	G	Same as 6K7 to 7A7. Parallel circuits only.	
	7C7	G		
	7G7	G		
$\begin{array}{ll}36 & G \\ 39 / 44 & G\end{array}$				
6V4	6X4	E	Reverse 6X4 to 6V4 procedure.	
	6X5	G	Where space permits, reverse 6 X 5 to 6 V 4 procedure.	
6V6	6A4/LA	P	Parallel circuits only. Reverse 6A4/LA to 6F6 procedure.	
	6AD7	G	Parallel circuits only. Remove and tape up any wires anchored on pins Nos. 1 and 6.	
	6AQ5	G	Reverse 6AQ5 to 6V6 procedure.	
	6AR6	P	Where additional filament current is available. Reverse 6AR6 to 6F6 procedure.	
	$6 \mathrm{F6}$	G	Parallel circuits only. No changes.	
	6G6	P		
	6K6	G		
	6 L 6	G	Parallel circuits only. No changes.	
	6 U6	G		
	6 Y 6	G		
	7A5	G	Parallel circuits only. Remove and tape up any wires anchored on pins Nos. 1 and 6.	

			RECEIVING TUBE SUBSTITUTION GUIDE	6V6-6W7
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY	
6V6	7 B 5	G	Same as 6K6 to 7B5.	
	7 C 5	G		
	38	G	Same as 6F6 to 38. Parallel circuits only.	
	41	G	Same as 6F6 to 41. Parallel circuits only.	
	42	G		
	89	G	Same as 6F6 to 89. Parallel circuits only.	
6 V 7	6C7	G	Same as 6Q7 to 6C7.	
	6R7	G	No changes.	
	6SQ7	G	Same as 12Q7 to 12SQ7.	
	6SR7	G	Same	
	6 T7	G	Parallel circuits only. No changes.	
	:			
	$7 \mathrm{B6}$	G	Same as 6Q7 to 7B6.	
	7C6	G	Same as 6Q7 to 7B6. Parallel circuits only.	
	7E6	G	Same as 6Q7 to 7B6.	
	75	G	Same as 6Q7 to 75.	
	85	G		
6W4	6U4	E	No changes.	
6W5	024	G	No changes. Do not use where AC plate voltage exceeds	s per plate.
,	6 AX5	G	Parallel circuits only. No changes.	
	6AX6	E	Parallel circuits only. Tie No. 4 and No. 8 together.	
	6BY5	G	Parallel circuits only. Rewire as follows:	
			Connect Nos. 1 and 8 together No. 3 to No. 4	
	6X5	G	Parallel circuits only. No changes.	
	$6 \mathrm{YY5}$	G		
	626	G	Parallel circuits only. Short Nos. 4 and 8.	
	7 Y 4	G	Same as 6X5 to 7 Y 4.	
	$7 \mathrm{Z4}$	G		
	1274	G	No changes. Parallel circuits only.	
6W6	6 AR6	G	Reverse 6AR6 to 6F6 procedure.	
	6 L 6	G	Parallel circuits only. No changes.	
6W7	6C6-77	G	Parallel circuits only. Reverse 6 C 6 to 6 J 7 procedure.	
	6D6-78	G		
	6D7	G	Same as 6J7 to 6D7. Parallel circuits only.	
	6 E 7	G		

RECEIVING TUBE SUBSTITUTION GUIDE

SUB.

 $6 \mathrm{S7}$ 6SH7 G 6SJ7 6SK7 6U7 7A7 GNo. 1 on miniature to No. 3 on octal

Parallel cir
procedure.
Parallel circuits only. Reverse 5726 to $6 \mathrm{X4}$ procedure.
Parallel circuits only. No changes.
Parallel circuits only. Tie no. 4 and no. 8 together.

Connect Nos. 1 and 8 together
No. 3 to No. 4

			RECEIVING TUBE SUBSTITUTION GUIDE 6x5-6Y6
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
6 X 5	6W5	G	Parallel circuits only. No changes.
	6X4	G	Reverse 6X4 to 6X5 procedure.
	$6 Y 5$	E	Parallel circuits only. Change socket to six prong and rewire as follows:
	024	E	No changes. Do not use where AC plate voltage exceeds 250 volts per plate.
	$6 \mathrm{Z5}$	G	Same as 6X5 to 6Y5. Parallel circuits only.
	6Z6	G	Same as 6W5 to 6Z6.
	6 Y 5	G	Parallel circuits only. No changes.
	$7 \mathrm{Y4}$	E	Parallel circuits only. Change socket to loctal and rewire as follows: on loctal
	7Z4	G	Same as 6X5 to 7Y4.
	84	E	Change socket to five prong and rewire as follows:
			No. 2 on octal to No. 1 on five prong 3 5 7 8
	1274	G	Parallel circuits only. No changes.
6X6G			No practical substitute:
6Y3G			No practical substitute.
6 Y 5	6×5	G	Parallel circuits only. Reverse 6X5 to 6Y5 procedure.
	675	G	Rewire as follows:

Connect Nos. 2 and 6 together.

6AR6	G
6G6	P
6K6	G
6L6	G
6U6	G
6V6	G
7A5	G
7B5	G
7C5	G

7A7-7AB7

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
7AB7	1204	E	No changes.
7AD7	7AG7	P	Parallel circuits only. No changes.
	7AH7	P	
	7AJ7	P	
	7A.K7	P	
	7B7	P	
	7 C 7	P	
	7G7	P	
	7 H 7	P	
	7 L 7	P	
	7 T 7	P	
	7V7	P	
7AF7	7F7	G	No changes.
	7N.7	G	Parallel circuits only. No changes.
7AG7	7AH7	G	No changes.
	$7 \mathrm{B7}$	P	
	7C7	P	
	$7 \mathrm{AJ7}$	P	Parallel circuits only. No changes.
	7AK7	P	
	$7 \mathrm{G7}$	G	
	7H7	G	
	7L7	G	
	7 T 7	G	-
	7V7	G	
7AH7	7AG7	G	No changes.
	7B7	P	
	7C7	P	
	7AJ7	G	Parallel circuits only. No changes.
	7AK7	P	
	7G7	P	
	7H7	P	
	7L7	P	
	7 T 7	P	
	$7 \mathrm{V7}$	P	
7AJ7	$7 \mathrm{AH7}$	G	Parallel circuits only. No changes.
	$7 \mathrm{AK7}$	P	
	$7 \mathrm{B7}$	P	
	7 C 7	P	
	7G7	P	
	7V7	P	
		P	No changes.
	7L7	. P	
	7T7	P	
7AK7	$7 \mathrm{AH7}$	P	Parallel circuits only. No changes.
	$7 \mathrm{AJ7}$	P	
	$7 \mathrm{B7}$	P	
	7 C 7	P	
	7G7	P	
	7H7	P	
	7L7	P	
	7 T 7	P	
	7 V 7	P	

RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
7B7	6D7	G	Same as 7A7 to 6D7. Parallel circuits only.
	6E7	G	
	$6 \mathrm{J7}$	G	Parallel circuits only. Reverse 6J7 to 7L7 procedure.
	6K7	G	Parallel circuits only. Reverse 6K7 to 7A7 procedure.
	6S7	G	Reverse 6K7 to 7A7 procedure.
	6SH7	G	Parallel circuits only. Reverse 12SJ7 to 7B7 procedure.
	6SJ7	G	
	6SK7	G	
	6SS7	G	Reverse 12SJ7 to 7B7 procedure.
	6 67	G	Parallel circuits only. Reverse 6K7 to 7A7 procedure.
	6W 7	G	Reverse 6K7 to 7A7 procedure.
	7A7	G	Parallel circuits only. No changes.
	7C7	G	No changes.
	$7 \mathrm{H7}$	G	Parallel circuits only. No changes.
	$12 \mathrm{J7}$	P	Series circuits only. Reverse 6K7 to 7A7 procedure.
	$12 \mathrm{K7}$	P.	
	12SG7	P	Series circuits only. Reverse 12SJ7 to 7B7 procedure.
	12SH7	P	
	12SJ7	P	
	12SK7	P	
	14A7/12B7	P	Series circuits only. No changes.
	39/44	G	Same as 7A7 to 39/44. Parallel circuits only.
	77	G	Parallel circuits only. Reverse 6C6 to 7A7 procedure.
	78	G	
7B8	6 A 7	G	Reverse 6A7 to 7B8 procedure.
	6 A 8	G	Reverse as 12A8 to 14B8 procedure.
	6D8	G	Parallel circuits only. Reverse 12A8 to 14B8 procedure.
	6J8	E	Reverse 12A8 to 14B8 procedure.
	6 K 8	E	
	7A8	G	Parallel circuits only. No changes.
	$7 \mathrm{J7}$	G	No changes.
	$7 \mathrm{S7}$	G	No changes.
7C4	1203A	E	No changes.
	9006	G	Change socket to miniature and rewire as follows:

7C5-7C7			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
7 C 5	6AD7	G	Parallel circuits only. Reverse 6 K 6 to 7B5 procedure. Do not anchor on unused pins.
	6F6	G	Parallel circuits only. Reverse 6 K 6 to 7B5 procedure.
	6G6	G	
	6K6	G	
	$6 \mathrm{L6}$	G	
	6U6	G	
	6 V 6	E	
	6 Y 6	G	
	7A5	G	Parallel circuits only. No changes.
	7B5	G	Parallel circuits only. No changes.
	41	G	Same as 7B5 to 41. Parallel circuits only.
	42	G	
7C6	6B6	G	Parallel circuits only. Reverse 6Q7 to 7B6 procedure.
	6Q7	G	
	6R7	G	
	6SQ7	G	Parallel circuits only. Reverse 6SQ7 to 7B6 procedure.
	6ST7	G	Reverse 6SQ7 to 7B6 procedure.
	6T7	G	
	7B6	G	Parallel circuits only. No changes.
	12Q7	P	Series circuits only. Reverse 6Q7 to 7B6 procedure.
	12SQ7	P	Series circuits only. Reverse 6SQ7 to 7B6 procedure.
	$12 \mathrm{SR7}$	P	
	14B6	P	Series circuits only. No changes.
	14E6	P	
	75	G	Parallel circuits only. Reverse 75 to 7E6 procedure.
	85	G	
$7 \mathrm{C7}$	6C6	G	Parallel circuits only. Reverse 6C6 to 7A7 procedure.
	6D6	G	
	77	G	
	78	G	
	6D7	G	Same as 7A7 to 6D7. Parallel circuits only.
	6E7	G	
	$6 \mathrm{S7}$	G	Reverse 6K7 to 7A7 procedure.
	6SS7	G	Reverse 12SJ7 to 7B7 procedure.
	6W7	G	Reverse 6 K 7 to 7A7 procedure.
	7A7	G	Parallel circuits only. No changes.
	7B7	G	No changes.
	7H7	G	Parallel circuits only. No changes.

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
7C7	12J7	P	Series circuits only. Reverse 6 K 7 to 7A7 procedure.
	12 K 7	P	
	12SG7	P	Series circuits only. Reverse 12SJ7 to 7B7 procedure.
	12 SH 7	P	
	12SJ7	P	
	12SK7	P	
	14A7/12B7	P	Series circuits only. No changes.
	36	G	Same as 7A7 to 39/44. Parallel circuits only.
	39/44	G	
7D7			No practical substitute.
7E5	7A4	P	Parallel circuits only. Rewire as follows:
	7B4	P	Remove wires from No. 1
			- No. 2 to No. 1
			4 and 6 to 7
			- 5 to 6
			Connect wires removed from No. 1 to No. 6
	1201	E	No changes.
7E6	6B6	G	Reverse 6Q7 to 7B6 procedure.
	6Q7	G	
	6R7	G	Reverse 6Q7 to 7B6 procedure.
	6SQ7	G	Reverse 6SQ7 to 7B6 procedure.
	6SR7	G	Reverse 6SQ7 to 7B6 procedure.
	6 T 7	G	Parallel circuits only. Reverse 6Q7 to 7B6 procedure.
	75	G	Reverse 75 to 7E6 procedure.
	85	G	Reverse 75 to 7E6 procedure.
	7B6	G	No changes.
	7C6	G	Parallel circuits only. No changes.
7E7	6B8.	G	Reverse 6B8 to 7E7 procedure.
	7R7	G	No changes.
$7 \mathrm{F7}$	6C8	G	Reverse 6C8 to 7F7 procedure.
	6F8	G	Parallel circuits only. Reverse 6C8 to 7F7 procedure.
	6SC7	G	Reverse 6 SC 7 to 7F7 procedure.
	6SL7	G	Reverse 6SL7 to 7F7 procedure,
	7AF7	G	No changes.
	7F8	G	Reverse 7F8 to 7F7 procedure.
	7N7	G	Parallel circuits only. No changes.

			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
7K7	7B6	G	Rewire as follows:
	7E6	G	No. 2 to No. 7
			3 to 2
			4 to 3
	7X7	G	Rewire as follows:
			Remove wires from No. 2
			No. 3 to No. 2 4 to
			- Connect wires removed from No. 2 to No. 4
$7 \mathrm{L7}$	$6 \mathrm{J7}$	G	Reverse 6 J 7 to 7L7 procedure.
	6K7	G	Reverse $6 \mathrm{K7}$ to 7A7 procedure.
	7A7	G	No changes.
	7G7	G	Parallel circuits only. No changes.
	7H7	G	No changes.
	7T7	G	No changes.
	7V7	G	Parallel circuits only. No changes.
7N7	6C8	G	Parallel circuits only. Reverse 6C8 to 7F7 procedure.
	6F8	G	Reverse 6C8 to 7F7 procedure.
	7AF7	G	Parallel circuits only. No changes.
	7F7	G	Parallel circuits only. No changes.
7Q7	6SA7	G	Reverse 12SA7 to 14Q7 procedure.
7R7	7E7	G	No changes.
7S7	6A7	G	Reverse 6A7 to 7B8 procedure.
	6A8	G	
	658	G	Reverse 6J8 to 7J7 procedure.
	6K8	G	
	7B8	G	No changes.
	7J7	G	
7T7	7A7	G	No changes.
	7B7	G	Parallel circuits only. No changes.
	7 C 7	G	Parallel circuits only. No changes.
	7G7	G	Parallel circuits only. No changes.
	7H7	G	No changes.
	7L7	G	No changes.
	7V7	G	No changes.
	1231	G	Parallel circuits only. No changes.

12AT6-12AY7			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
12 AT 6	12AV6	G	No changes.
	12BF6	P	
	12 BK 6	G	
	12BT6	P	
	12BU6	P	
	12SQ7	G	Where space permits. Reverse 12SQ7 to 12AT6 procedure.
	12SR7	P	
	12SW 7	P	
$12 \mathrm{AT7}{ }^{*}$	12 AH 7	G	Where space permits. Reverse 12AH7 to 12AT7 procedure.
	$12 \mathrm{AU7}$	G	No changes.
	12 AV 7	G	Parallel circuits only. No changes.
	12 AX 7.	G	No changes.
	12AY7	G	
	12 BH 7	G	Parallel circuits only. No changes.
12AU6	12AW6	G	Reverse Nos. 2 and 7.
	12 BA 6	G	No changes.
	12 BD 6	G	
$12 \mathrm{AU7}{ }^{\text {* }}$	$12 \mathrm{AT7}$	G	No changes.
	12 AV 7	G	Parallel circuits only. No changes.
	$12 \mathrm{AX} 7$	G	No changes.
	$12 \mathrm{AY} 7$	G	
12AV6	12AT6	G	No changes.
	12BF6	P	
	12 BK 6	G	
	12BT6	G	
	12BU6	G	
12AV7	12AT7	G	Parallel circuits only. No changes.
	$12 \mathrm{AU7}$	G	Parallel -
	$12 \mathrm{AX7}$	G	
	$12 \mathrm{AY7}$	G	
	12 BH 7	G	
12AW6	$12 \mathrm{AU6}$	G	Rewire as follows:
	12 BA 6	G	Reverse No. 2 and No. 7
$12 \mathrm{AX7}$	12AT7	G	No changes.
	12AU7	G	
	$12 \mathrm{AV7}$	G	Parallel circuits only. No changes.
	12AY7	G	No changes.
	12BH7	G	Parallel circuits only. No changes.
12AY7	12AT7	G	No changes.
	12AU7	G	
	$12 \mathrm{AV7}$	G	Parallel circuits only. No changes.

128U6			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
12 BU 6	12AT6	P	No changes.
	12AV6	P	
	12BF6	G	
	12BK6	P	
	12BT6	P	
12 C 8	14E7	G	Change socket to loctal and rewire as follows:
	14R7	G	No. 2 on octal to No. 1 on loctal
			3 to 2
			(a) 4 to 3 (9)
			(3) 6 (1) 6 to 5 , (2) (0)
			$\begin{array}{lll}8 & \text { to } & 7 \\ \text { cap } & \text { to } & 6\end{array}$
12 E 5	1626	G	Parallel circuits only. No changes.
12 F 5	12 J 5	G	Rewire as follows: $\quad \because$
			No. 4 to No. 3. Connect grid wire to No. 5.
	12SF5	E	Same as 6F5 to 6SF5.
12G7G			No practical substitute.
12H6	12AL5	E	Change socket to miniature and rewire as follows:
			No. 2 on octal to No. 3 on miniature
			(90)3 to 2 4 to 5
			Oefic. 7 to 4
			8 to 1
12 J 5	12 F 5	G	Rewire as follows:
			No. 3 to No. 4
			Connect wire from No. 5 to grid cap.
	12SF5	G	Same as 12SF5 to $12 \mathrm{J5}$.
	14A4	G	Same as 6J5 to 7 A4.
	1626	G	Parallel circuits only. No changes.
$12 \mathrm{J7}$	$6 \mathrm{S7}$	P	Series circuits only, No changes.
	6W7	P	
	$7 \mathrm{B7}$	P	Same as $12 \mathrm{K7}$ to 7B7 but in series circuits only.
	7C7	P	
	12B7	E	
	$12 \mathrm{K7}$	G	No changes.
	12SG7	G	Same as $12 \mathrm{K7}$ to 12 SK 7.
	12SH7	G	
	12SJ7	E	
	12SK7	G	
	14A7	E	Same as $12 \mathrm{K7}$ to 7B7 but in series circuits only.
$12 \mathrm{K7}$	6 67	P	Series circuits only. No changes.

RECEIVING TUBE SUBSTITUTION GUIDE

RECEIVING TUBE SUBSTITUTION GUIDE

12SK7-12SQ7

14A5-14E7			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
14A5	12A6	E	Reverse 35L6 to 35A5 procedure.
	1284	P	No changes. Connect No. 4 to No. 7 for best results.
14A7/12B7	$6 \mathrm{S7}$	P	Reverse 12 K 7 to 7B7 procedure. Series circuits only.
	6W7	P	
	6SS7	P	Reverse 12SJ7 to 7B7 procedure. Series circuits only.
	$7 \mathrm{B7}$	P	Series circuits only. No changes.
	7C7	P	
	12B7	E	No changes.
	14C7	G	
	14H7	G	
	1280	G	
	1284	E	. $\sim^{\text {a }}$.
	12 J 7	G	Reverse 12 K 7 to 7B7 procedure.
	$12 \mathrm{K7}$	E	
	12SH7	G	Reverse 12SJ7 to 7B7 procedure.
	12SJ7	G	
	12SK7	E	
14AF7/XXD	12AH7	G	Reverse 12AH7 to 14AF7/XXD procedure.
	14F7	G	No changes.
	14N7	G	Parallel circuits only. No changes.
14B6	7C6	P	Series circuits only. No changes.
	12Q7.	E	Reverse 6Q7 to 7B6 procedure.
	14E6	G	No changes.
14B8	7A8	P	Series circuits only. No changes.
	12A8	G	Reverse 12A8 to 14B8 procedure.
	14J7	G	No changes.
	14S7	G	
14C5	14A5	G	Parallel circuits only. No changes.
14C7	$7 \mathrm{B7}$	P	Series circuits only. No changes.
	7C7	P	
	12B7	E	No changes.
	14A7	G	
	14H7	G	
	1280	G	
	1284	E	
14E6	12Q7	G	Reverse 6Q7 to 7B6 procedure.
	14B6	G	No changes.
14E7	12 C 8	G	Reverse 12C8 to 14E7 procedure.

TUBE	SUB.	PERF.	CIRCUT CHANGES NECESSARY
$14 \mathrm{E7}$	14R7	G	No changes.
14 F 7	12AH7	G	Reverse 12AH7 to 14AF7/XXD procedure.
	14AF7/XXD	G	No changes.
	14F8	G	Reverse 7F8 to 7F7 procedure.
14F8	14F7	G	Same as 7F8 to 7F7.
14H7	12B7	G	No changes.
	14A7	G	,
	14 C 7	G	
	1280	G	
	1284	G	,
$14 \mathrm{J7}$	7A8	P	Series circuits. No changes.
	$\begin{aligned} & \text { 14B8. } \\ & 14 \mathrm{~S} 7 \end{aligned}$	$\begin{aligned} & \text { G } \\ & \mathbf{G} \end{aligned}$	No changes.
14N7	14AF7/XXD	G	Parallel circuits only. No changes.
14Q7	12SA7	G	Reverse 12SA7 to 14 Q 7 procedure.
14R7	12C8	G	Reverse 12C8 to 14E7 procedure.
	14 E 7	G	No changes.
14S7	7A8	P	Series circuits only. No changes.
			Put 200 or 250 ohm $1 / 2$ watt resistor across filament terminals when substituting 7 volt for 12 volt types to compensate for faster heating.
	14B8	G	No changes.
	14J7	G	No changes.
$14 \mathrm{V7}$			No practical substitute.
14W7	12B7	G	No changes.
	14A7	G	
	14 C 7	G	
	$14 \mathrm{H7}$	G	
	1280	G	
	1284	G	
14 Y 4			No practical substitute.
15	1A4	G	Same as 15 to 1B4. Battery operation only. Parallel circuits.
	1B4	G	For battery operation only. Parallel circuits. Change socket to four prong type and rewire as follows:

2508GT-2525
TUBE SUB.

25D8GT

25L6 25A6

25 B5

25B6 25C6

25N6

43

5824
25N6

25S

25W4

25X6
$25 Z 6$

50X6

50 Y6

50 Y 7
50Z7
$25 Y 4$

25 Y5

PERF.

RECEIVING TUBE SUBSTITUTION GUIDE

CIRCUIT CHANGES NECESSARY

No practical substitute.
G No changes.
G Reverse 25B5 to 25N6 procedure.
G No changes.
G
G No changes.
G Reverse 43 to 25 L 6 procedure.
E No changes.
G Reverse 25B5 to 25N6 procedure.
E No changes.
E Rewire as follows:
No. $8 \quad$ to No. 2

3
to 4
Connect No. 4 and No. 8 together
3 and 5 together
G Where 25 X 6 is used by itself only. Replace line cord with 310 ohms. No changes.

G When 25×6 is used by itself, replace line cord or filament dropping resistor with 445 ohms. Change socket to loctal and rewire as follows:
No. 2 on octal to No. 1 on loctal

3	to	3
4	to	2
5	to	6
7	to	8
8	to	7

G Where 25×6 is used by itself, replace line cord or filament dropping resistor with 445 ohms.

G When 25X6 is used by itself, replace line cord or filament dropping resistor G with 445 ohms. Do not use No. 6 for anchor.

No practical substitute.
E No changes.
E
Same as $25 Z 5$ to $25 Z 6$.
No practical substitute.
E
No changes. Remove and tape up wires on unused terminals.
P Connect 60 ohm 5 watt resistor in series with filament circuit, will not work in voltage doubler circuit. If one cathode is used by itself for field excitation connect 4 and 8 together.

E No changes.

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
28D7	28D7W	E	No changes.
28D7W	28D7	E	No changes.
28 Z 5			No practical substitute.
30	1E4	P	Change socket to octal and rewire as follows:
	$1 \mathrm{G4}$	P	No. 1 on four prong to No. 2 on octal
	1H4	- E	$\left(\begin{array}{ll}\mathrm{O}_{2} & { }_{3} \mathrm{O} \\ \hline & 4 \\ \hline\end{array} \begin{array}{lll} & 2 & \text { to } \\ 3 & 3\end{array}\right.$
	31	G	Parallel circuits only. No changes.
31	30	G	Parallel circuits only. No changes.
32	1 A 4	G	No changes. 34 does not make good detector.
	$1 \mathrm{B4}$	G	
	34	G	
	951	G	
32 L 7	25A7	E	No changes.
	70A7	G	No changes. Difference in filament current makes necessary line resistance the same. Use only where 32 L 7 does not have other tubes in series with it.
	70L7	G	Reverse 6 and 8. Cord is correct. Use only where 32 L 7 does not have other tubes in series with it.
	117 L 7	G	Remove or short out the filament resistor and reverse connections 4 and 5
	117 M 7	G	to socket.
	117 N 7	G	Remove or short out filament resistor. Change connections as follows:
	117 P 7	G	No. 6 to 7
			8 to 6
			1 to 8
			. 4 to 5
			. 5 to 4
			Use only in conventional circuits where rectifier is first in the string and A.C. is connected to No. 7.
33	1 F4	G	Parallel circuits only. No changes.
	950	E	
34	$1 \mathrm{A4}$	G	No changes.
	$1 \mathrm{B4}$	G	
	32	G	
	951	G	
35A5	6G6	P	Same as 35 A5 to 35 L 6 but put a 250 ohm 10 watt resistor in series with the filament circuit.
	12A6	P	Same as above but put a 250 ohm 10 watt resistor in series with filament circuit.
	14 A 5	P	Put 125 ohm 10 W resistor in series with filament.

35L6-35Y4
TUBE 35L6

SUB.
6G6
12A6 P
12J5 P
35A5 E

50A5

35B5

PERF.
P

P

P

E
G

RECEIVING TUBE SUBSTITUTION GUIDE

CIRCUIT CHANGES NECESSARY

Put 250 ohm 10 watt resistor in series with filament circuit.
Insert 150 ohms resistance in series with the filament circuit.
Insert 150 ohms resistance in series with the filament circuit.
Change socket to loctal and rewire as follows:

Change socket to miniature and rewire as follows:

Do not use No. 7 on miniature.
Change socket to miniature and rewire as follows:

3	to	7
4	to	6
5	to	2
7	to	4
8	to	1

No changes.

Where space permits. Reverse 35 Y 4 to 35 W 4 procedure. No. 7 to No. 6 pilot light across it.

Change socket to miniature and rewire as follows:

No. 2 on octal to No. 1 on loctal
(3)

No. 2 on octal	to No. 3 on miniature	
3	to	5
4	to	6
5	to	1
7	to	4
8	to	2

No. 2 on octal to No. 3 on miniature

Do not use terminal No. 5 on miniature.

Where 35W4 is used by itself only. Remove line cord resistor or filament dropping resistor and replace with ordinary line cord. Rewire as follows: Remove and tape up any wires on No. 6 Pilot light will not burn. In order to light pilot light, connect 40 ohm 1 watt resistor in series with filament and connect

No. 1 on loctal	to No. 3 on miniature	
2	to	5
4	to	6
7	to	7

No change is necessary but pilot light will not light. Pilot light can be lit by same method as used from $35 Z 5$ to $35 Z 4$.
TUBE

3525-40

TUBE

41

6A4/LA G

6AR5 G Change socket to miniature and rewire as follows:

G

CIRCUIT CHANGES NECESSARY

Parallel circuits only. Reverse 6A4/LA to 42 procedure.
Reverse 6F6 to 41 procedure. Parallel circuits only. Connect nothing to unused pins.

6 F 6	G	Parallel circuits only. Reverse 6F6 to 41 procedure.
6G6	P	
6L6	G	
6 U6	G	
6V6	G	
6K6	E	Reverse 6 F 6 to 41 procedure.
7A5	G	Parallel circuits only. Reverse 7B5 to 41 procedure.
$7 \mathrm{B5}$	E	Reverse $7 \mathrm{B5}$ to 41 procedure.
7 C 5	G	Parallel circuits only. Reverse 7B5 to 41 procedure.
38	G	Parallel circuits only. Change socket to five prong and rewire as follows:
	G	
		0 O to 2 tor
		O. 4 ¢ to cap (1) (3)
		ons. 5 , to 4 sue.
		6 to 5

6L6 GG
6V6 G
$7 \mathrm{~A} 5 \quad \mathrm{G}$
7 B5 G

Change socket to miniature and rewire as follows:

TUBE

42
$4: 3$

45

SUR.

38
41
89

25A6

25L6

2 A3

35W 4
$117 \mathrm{Z3}$
$35 Z 5$
47

2 A 5

46

59

1619

PERF.

G

G
G

G

E

G

G

G

G

CIRCUIT CHANGES NECESSARY

Same as 41 to 38. Parallel circuits only.
No changes.
Same as 41 to 89. Parallel eircuits only.

Reverse 25A6 to 43 procedure.

Change socket to octal and rewire as follows:

No. 1 on six prong	to No. 2 on octal	
2	to	3
3	to	4
4	to	5
5	to	8

No changes.
Where $45 Z 3$ is used by itself only, remove 960 -ohm line cord resistor or filament dropping resistor and replace with 550 -ohm. Rewire as follows:

No. 1	to No. 3
2	to
6	to

Reverse Nos. 4 and 7
Do not anchor to unused terminals.

Where $45 Z 3$ is used by itself only, remove line cord resistor or filament dropping resistor and replace with ordinary line cord. Rewire as follows: No. 7 to No. 3
2 and 6
to 5
to 6
to 4
.
No changes.
Only when 46 is operated as class A with plate and screen tied together.
Change socket to six prong type and rewire as follows:
No. 1 on five prong to No. 1 on six prong

| 2 | to | 2 |
| :--- | :--- | :--- | :--- | :--- |
| 3 | to | 4 |
| 4 | to | 3 |
| 5 | to | 6 |$\underbrace{0}_{\text {sue. }}$

Connect 5 and 6 together.
P Remove wire from No. 4 and șhort Nos. 2 and 4 together.

G Change socket to seven prong and rewire as follows:

| No. 1 on five prong | to No. 1 on seven prong | |
| :--- | :--- | :--- | :--- |
| 2 | to | 2 |
| 3 | to | 4 |
| 4 | to | 3 |
| 5 | to | 5,6 and 7 |

G
Parallel circuits only. Make adaptor as follows:

No. 1 on base	to No. 2 on top	
2	to	3
3	to	5
4	to	4
5	to	7 and 8

There are or will be many used 1619 tubes available.

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
48			No practical substitute.
49			No practical substitute.
50	10	G	No changes.
50A5	35A5	E	No changes. Place 100 -ohm resistor in filament circuit.
	35B5	E	Same as 35 A 5 to 35 B 5 . Place $100-\mathrm{ohm} 10-\mathrm{W}$ resistor in series with filaments.
	35C5	E	Same as 35A5 to 35C5. Place 100-ohm 10-W resistor in series with filament.
	35L6	E	Same as 35A5 to 35L6. Place 100-ohm resistor infilament circuit.
	50B5	E	Same as 35A5 to 35B5.
	50C5	E	Same as 35A5 to 35C5.
	50C6	G	Same as 35A5 to 35L6.
	50L6	E	
50AX6	5026	G	No changes.
50B5	35B5	E	Place 100 ohms 5 watts in series with filament.
	50A5	G	Where space permits. Same as $35 \mathrm{B5}$ to 35A5.
	50C5	E	Same as 35B5 to 35C5.
	50L6	G	Where space permits. Same as 35B5 to 35L6.
50C5	50A5	G	Where space permits. Same as 35C5 to 35A5.
	50L6	E	Where space permits. Reverse 35L6 to 35C5 procedure.
50C6	35L6	G	Place 100 -ohm $10-\mathrm{W}$ resistor in series with filament.
	50A5	G	Same as 35 L 6 to 35 A 5.
	50L6	G	No changes.
50L6	12A6	P	No changes. Connect a $250-$ ohm $10-\mathrm{W}$ resistor in series with the filament circuit.
	12J5	P	Emergency substitution. Works well at low volume. Put 250 -ohm 10 -w resistor in series with filaments.
	35A5	E	Same as 35L6 to 35A5. Place 100-ohm 5-w resistor in series with filaments.
	35B5	E	Same as 35 L 6 to 35 B 5 . Place $100-\mathrm{ohm} \mathrm{10-w} \mathrm{resistor} \mathrm{in} \mathrm{series} \mathrm{with} \mathrm{filament}$.
	35C5	E	Same as 35L6 to 35C5. Place 100-ohm 10-w resistor in series with filament.
	35L6	E	Place 100 -ohm 5-w resistance in series with filaments.
	50B5	E	Same as 35L6 to 35B5.
	50C5	E	Same as 35L6 to 35C5.
	70A7	P	Remove and tape up wires connected to No. 6 or cut off No. 6 pin on 70A7.

RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
56	27	G	No changes.
	485	G	No changes.
56AS	37	E	Parallel circuits only. No changes.
	76	E	
56S	27	E	No changes.
	56	E	
57	58	G	No changes.
57AS	6C6	E	Parallel circuits only. No changes.
	77	E	
57S	57	E	No changes.
	58	E	
58	57	G	No changes. 58 is not a good second detector.
58AS	6D6	E	Parallel circuits only. No changes.
	. 78	E	
58S	57	E	No changes.
	58	E	
59	47	G	Reverse 47 to 59 procedure.
	1619	G	Parallel circuits only. Make adaptor as follows: $\begin{array}{ll}\text { No. } 1 \text { on base } \\ 2 & \text { to No. } 2 \text { on top } \\ 3\end{array}$
			$\begin{array}{lll} 3 & \text { to } & 4 \\ 4 & \text { to } & 5 \end{array}$
			5 and 6
			7 to 7
			There are or will be many used 1619 tubes available.
70A7	32L7	G	No changes. Where no other tubes in series with the 70 A 7 which has 150 mil filament instead of 0.3 amp .
	70L7	E	Change connection as follows:
			$\begin{array}{cc} \text { No. } 8 & \text { to No. } 6 \\ 6 & \text { to } 8 \end{array}$
			Connect Nos. 7 and 8 together.
			Pilót light will not light but may be lit by same procedure as 50 Z 7 to 50 Y 6 .
		E	Remove the line cord resistor and replace with straight AC cord. Reverse
	$117 \mathrm{M} 7$	\mathbf{E}	connections to 4 and 5 .
	117N7	E	Remove line resistor cord and replace with straight AC cord.
	117 P 7	E	Remove wire from No. 8
			Move No. 1 to No. 8 Reverse Nos. 4 and 5
			Move No. 6 to No. 7
			Place No. 8 on No. 6
70L7	32 L 7	G	Cord is correct. If 32 L 7 is alone in circuit. Reverse Nos. 6 and 8.
	70A7	E	Change connections as follows:
			No. 6 to No. 8
			8 to 6

RECEIVING TUBE SUBSTITUTION GUIDE

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
70 L 7	11.7 L 7	E	Remove line resistor cord and replace with straight AC cord.
	117 M 7	E	Reverse Nos. 4 and 5 Reverse 6 and 8
	117 N 7	E	Remove line cord resistor and replace with straight AC cord.
	117 P 7	E	Reverse Nos 4 and 5
			No. 8 on No. 7
			1 on 8
71 A	482	G	No changes. If push-pull circuit, both tubes must be changed to avoid hum.
	483	G	
75	6AQ6	G	Same as 75 to 6AT6. Parallel circuits only.
	6AT6	G	Change socket to miniature and rewire as follows:
	6AV6	G	No. 1 on six prong to No. 3 on miniature
	6BF6	G	2 to 7
	6BK6	G	(1) 3 O ${ }^{3}$
	6BT6	G	
	6BU6	G	O 5
			${ }^{\text {ORig. }} 6$ to 4
			cap to 1
	6B6	E	Change socket to octal and rewire as follows:
	6Q7	E	No. 1 on six prong to No. 2 on octal
	6R7	G	
			4 to 5 (3) 0 5 to 8 (1)
			ORIG. 6 lo 6 to 7 sus.
			cap to cap
	6C6	P	Emergency substitution. No changes but considerable loss of volume.
	6SQ7	E	Reverse 6SQ7 to 75 procedure.
	6SR7	G	
	6 T 7	G	Same as 75 to 6Q7. Parallel circuits only.
	6V7	G	Same as 75 to 6Q7.
	$7 \mathrm{B6}$	E	Change socket to loctal and rewire as follnws:
	7E6	G	No. 1 on six prong to No. 1 on loctal
			0 O- 2 to 2 (3)
			OR1G. 6 to 8 to sue
			cap to 3
	7C6	G	Same as above. Parallel circuits only.
	85	G	No changes. Sometimes works excellent, other times not so well.
76	6AE5	G	Reverse 6C5 to 37 procedure.
	6C5	E	Reverse 6 C 5 to 37 procedure.
	6 J 5	G	Reverse 6 C 5 to 37 procedure.

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
- 76	6 L 5	G	Reverse 6C5 to 37 procedure.
	6P5	G	Reverse 6C5 to 37 procedure.
	7A4	E	Reverse 7A4 to 37 procedure.
	7B4	G	
	XXL	E	
	37	E	No changes.
77	6C6	E	No changes.
	6D7	G	Same as 6C6 to 6D7.
	6E7	G	
	6J7	E	
	6K7	G	Same as 6C6 to 6J7.
	$6 \mathrm{S7}$	G	Same as 6C6 to 6J7. Parallel circuits only.
	6SH7	G	Same as 6C6 to 6SJ7.
	6SJ7	E	Same as 6C6 to 6SJ7.
	6SK7	G	Same as 6C6 to 6SJ7.
	$6 \mathrm{U7}$	G	Same as 6C6 to 6J7.
	6W7	G	Same as 6C6 to 6J7. Parallel circuits only.
	7A7	G	Same as 6C6 to 7A7.
	$7 \mathrm{B7}$	G	Same as 6C6 to 7A7. Parallel circuits only.
	7C7	G	
	7H7 ${ }^{\text { }}$	G	Same as 6C6 to 7A7.
	7 L 7	G	Same as 6C6 to 7A7.
	1221	E	No changes.
78	6D6	E	No changes.
	6D7	G	Same as 6C6 to 6D7.
	6E7	G	
	6 J 5	G	Same as 6C6 to 6J7.
	$6 \mathrm{K7}$	E	
	$6 \mathrm{S7}$	G	Same as 6C6 to 6J7. Parallel circuits only.
	6SH7	G	Same as 6C6 to 6SJ7.
	6SJ7	G	Same as 6C6 to 6SJ7.
	6SK7	E	Same as 6C6 to 6SJ7.
	$6 \mathrm{U7}$	G	Same as 6C6 to 6J7.
	6W7	G	Same as 6C6 to 6J7. Parallel circuits only.
	7A7	E	Same as 6C6 to 7A7.

78-83			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
78	7B7	G	Same as 6C6 to 7A7. Parallel circuits only.
	$7 \mathrm{C7}$	G	Same as 6C6 to 7A7. Parallel circuits only.
	7H7	G	Same as 6C6 to 7A7.
	$7 \mathrm{L7}$	G	Same as 6C6 to 7A7.
	39/44	E	Change socket to five prong type and rewire as follows: No. 1 on six prong to No. 1 on five prong 2 to $\quad 2$
79^{*}	6A6	G	Parallel circuits only. Change socket to seven prong and rewire as follows: No. 1 on six prong to No. 1 on seven prong 2 to 2
	6 N 7	G	Parallel circuits only. Reverse 6N7 to 79 procedure.
	6Y7G	G	Reverse 6N7 to 79 procedure.
	$6 \mathrm{Z7}$	G	Parallel circuits only. Reverse 6N7 to 79 procedure.
80	5 T 4	G	Change socket to octal and rewire as fallows:
	5U4	G	$\mathrm{O}_{2} \mathrm{O}$ No. 1 on four prong to No. 2 on octal
	5 V 4	G	2 2 20 4
	5W4	G	O' 0 , 3 to 6 (20)
	5 Y 3	E	
	524	G	
	5X4	G	Reverse 5X4 to 5\%3 procedure.
	$5 \mathrm{Y4}$	E	
	83 V	G	No changes.
	83	G	
	5Z3	G	No changes.
81	10	P	No changes.
	50	P	
82	2 A 3	P	No changes.
	45	P	
83	5 T 4	G	Same as 80 to 5 U4.
	5U4	G	
	5X4	G	Reverse 5X4 to 5Z3 procedure.
	$5 \mathrm{Z3}$	G	No changes.

[^4]

85-117N7		RECEIVING TUBE SUBSTITUTION GUIDE	
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
85	75	G	No changes.
$\begin{aligned} & 85 \mathrm{AS} \\ & 89 \end{aligned}$	85	E	No changes.
	6K6	G	Same as 6F6 to 89. Parallel or series circuits.
	41	G	Reverse 41 to 89 procedure.
	42	G	Parallel circuits only. Reverse 41 to 89 procedure.
99 V			No practical substitution.
X. 99	20	G	Parallel circuits only. No changes.
117L7	32 L 7	G	Place 280 -ohm cord or 50 -w resistor in series with filaments. Reverse socket connections Nos. 4 and 5.
	70A7	G	Place 300 -ohm cord or $10-$ w resistor in series with filaments. Reverse socket connections Nos. 4 and 5.
	70L7	G	Place 300 -ohm 10 -w resistor in series with filaments. Reverse socket connections Nos. 4 and 5, also 6 and 8.
	117M7	E	No changes.
$\begin{gathered} 117 \mathrm{~L} 7 \\ \text { or } \end{gathered}$	$\begin{gathered} 1.17 \mathrm{~N} 7 \\ \text { or } \end{gathered}$	E	Make adaptor as follows: No. 1 on base to No. 8 on top
117 M 7	117 P 7	E	2 to 2
			3 to 3
			4 to 4
			to 5
			7 to 7
			8 to 6
			AC line must connect to No. 7
117L7/M7	25A7	G	Connect 300 -ohm line cord in place of AC cord and change connections as follows:
			- Reverse Nos. 4 and 5.
117M7	32L7	G	Same as 117L7 to 32L7.
	70A7	G	Same as 117L7 to 70A7.
	70L7	G	Same as 117L7 to 70L7.
117 N 7	25A7	G	Connect 300 -ohm line cord in place of AC cord and change connections as follows:
			No. 6 to No. 7 8 to 6
			$1 \quad$ to 8
			Reverse Nos. 4 and 5.
	32L7	G	Remove and tape up any wire anchored on No. 1. Place 280 -ohm cord or $50-\mathrm{w}$ resistor in series with filaments. Reverse socket connections Nos. 4 and 5. Move No. 8 to No. 1.
	70A7	G	Place 300 -ohm cord or $10-$ w resistor in series with filaments. Reverse socket connections Nos. 4 and 5. Move No. 8 to No. 1 and No. 6 to No. 8.
	70L7	G	Remove and tape up any wires connected to No. 1. Place 300 -ohm cord or $10-\mathrm{w}$ resistor in series with filaments. Reverse Nos. 4 and 5, move No. 8 to No. 1 and short Nos. 7 and 8 together. For use in circuits where AC line is connected to No.7.

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
117 N 7	117 P 7	E	No changes.
117 P 7	25A7	G	Same as 117 N 7 to 25A7. Cord or resistor must dissipate 90 w .
117 Z 3	35W 4	G	Replace line cord with $533-$ ohm resistor cord. Rewire as follows: No. 6 to No. 7 Do not use No. 6 for anchor.
	45Z3	G	Replace line cord with 960 -ohm resistor cord. Rewire as follows. Do not use unused terminals for anchors.
	$117 \mathrm{Z4}$	G	Where space permits. Change socket to octal and rewire as follows:
$117 \mathrm{Z4}$	$117 \mathrm{Z3}$	G	Reverse 117 Z 3 to $117 \mathrm{Z4}$ procedure.
	117 Z 6	E	No change except to remove and tape up any wires which may be anchored to Nos. 3 and 4.
$117 \mathrm{Z6}$	6X5	P	Connect 200 -ohm 100 -w resistor in series with filament. Use only where Nos. 4 and 8 are tied together.
	$25 Z 6$	G	Connect 300-ohm line cord or 50-w resistor in series with filament.
	50 Y 6	E	No change except that a 450 -ohm $20-$ w resistor or line cord must be used in series with the filament.
	$50 \mathrm{Z6}$	E	Connect 220 -ohm line cord in place of AC cord.
	5027	E	Connect 440-ohm line cord in place of AC cord.
182B/482B	$\begin{aligned} & 71 \mathrm{~A} \\ & 183 / 483 \end{aligned}$	$\begin{aligned} & \mathbf{E} \\ & \mathbf{E} \end{aligned}$	No changes.
183/483	$\begin{aligned} & 71 \mathrm{~A} \\ & 182 \mathrm{~B} / 482 \mathrm{~B} \end{aligned}$	$\begin{aligned} & \mathbf{E} \\ & \mathbf{E} \end{aligned}$	No changes.
210 T	$\begin{aligned} & \text { VT52 } \\ & 10 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathbf{P} \\ & \mathbf{E} \\ & \mathbf{G} \end{aligned}$	No changes.
485	27	G	No changes in connections but put one inch piece of screen wire doubled in series with one side of filament winding.
	56	G	Same as 485 to 27.
864			No practical substitute.
950	$1 \mathrm{F4}$	G	No changes.
	33	G	Parallel circuits only. No changes.
954	956	E	No changes.

955-1274			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
955	5731	P	No changes.
956	954	E	No changes.
957	958A	G	Parallel circuits only. No changes.
958A	957	G	Parallel circuits only. No changes.
959			No practical substitute.
FM1000			No practical substitute.
1005/CK1 005	$\begin{aligned} & \text { 0Y4 } \\ & 0 \mathrm{Z} 4 \mathrm{~A} \end{aligned}$	G	No changes.
CK1013	5517	E	No changes.
1201	7E5	E	No changes.
1203	7 C 4	E	No changes.
1204	7AB7	E	No changes.
1206	7G8	E	No changes.
1221	6C6	E	No changes.
	77	E	
1223	6J7	E	No changes.
1229	1 A 4	E	No changes.
	$1 \mathrm{B4}$	E	
	32	E	.
	951	E	
1230	30	E	No changes.
1231	7G7	G	No changes.
	7V7	G	
1232	7G7	E	No changes.
1247			No practical substitute.
1265			No practical substitute.
1266			NQ practical substitute.
1267	0A4	G	No changes.
1273	7A7	G	No changes.
	7AJ7	G	
	7H7	G	
	7L7	G	
	7T7	G	
1274	6AX5	G	Parallel circuits only. No changes.
	6W5	G	
	6ZY5	G	
	6AX6	G	No change necessary but tie Nos. 4 and 8 together if convenient.

			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
1274	6BY5	G	Parallel circuits only. Rewire as follows: Connect Nos. 1 and 8 together No. 3 to No. 4
	6X5	E	No changes.
	$7 \mathrm{Y4}$	E	Same as 6X5 to 7Y4. Parallel circuits only.
	$7 \mathrm{Z4}$	E	
1275	5X3	G	No changes.
	5Z3	E	
	80	G	
	83	G	
	83V	G	
1276			No practical substitute.
1280	12B7	G	No changes.
	14A7	G	No changes.
	14 C 7	G	
	$14 \mathrm{H7}$	E	
	1284	G	
1284	12B7	G	No changes.
	14A7	G	
	14 C 7	G	
	$14 \mathrm{H7}$	G	
	1280	G	
1291	3B7	E	No changes.
1293	1LE3	G	Parallel circuits only. No changes.
1294	$1 \mathrm{R4}$	E	No changes.
1299	3D6	E	No changes.
1612	6 L 7	E	No changes.
1614	6L6	E	No changes.
1619	2 A 5	G	Reverse 2A5 to 1619 procedure.
1620	$6 \mathrm{J7}$	E	No changes.
1626	12E5	G	Parallel circuits only. No changes.
	12J5	G	
1629			No practical substitute.
1634	12SC7	G	No changes.
1.644	12L8	G	No changes.
1654			No practical substitute.
2050	2051	E	No changes.
2051	2050	E	No changes.
5517	CK1013	E	No changes.

5517/CKIO13-5691			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
5517/CK1013			No practical substitute.
5590	6AG5	P	Parallel circuits only. No changes.
	6BC5	G	
	5591	G	No changes.
	9001	G	
	9003	G	
5591	$6 \mathrm{BC} 5$	P	Parallel circuits only. No changes.
	$6 \mathrm{AG5}$	G	
	5590	G	No changes.
	9001	G	
	9003	G	
5608-A	53	E	No changes.
5618	2E30	G	Parallel circuits only. Rewire as follows:
	5812	G	Remove wires from No. 4
			No. 1 to No. 4 6 to 1
			to 3
			\square
			2 to 5
			Connect wires removed from No. 4 to No. 2.
5635			No practical substitute.
5636			No practical substitute.
5643			No practical substitute.
5646			No practical substitute.
5647			No practical substitute.
5654	6AJ5	G	No changes.
	6AK5	G	
5670	7F8	G	Where space permits. Same as 2C51 to 7F8. Parallel circuits only.
5672	5678	G	No changes.
5676	5677	P	Parallel circuits only. No changes.
5677	5676	G	Parallel circuits only. No changes.
5678	5672	G	No changes.
5679	7A6	E	Where No. 4 is not used on 5679. No changes.
5686			No practical substitute.
5687	6 J 6	G	Parallel circuits only. Reverse 6J6 to 5687 procedure.
5691	6SL7	E	Parallel circuits only. No changes.
	6SN7	P	No changes.
	5692	P	

TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
5692	6SN7		No changes.
	5691	P	
5693	6SJ7	E	No changes.
	6SK7	P	
5694			No practical substitute.
5697			No practical substitute.
5702	5784	G	No changes.
5703	5744	P	No changes.
5704			No practical substitute.
5718	5719	P	No changes.
5719	5718	P	No changes.
5722			No practical substitute.
5725	6AJ5	P	No changes.
	6AK5	P	
5726	6X4	G	Parallel circuits only. Rewire as follows:
			No. 1 and 5 to 7
			2 to 1
5731	955	P	No changes.
5744	5703	P	No changes.
5783			No practical substitute.
5784	5702	G	No changes.
5785			No practical substitute.
5787			No practical substitute.
5812	2E30	G	No changes.
5823			No practical substitute.
5824	25A6	P	No changes.
	25B6	E	
	25C6	P	
	25L6	E	
5840	5899	G	No changes.
	5900	G	
	5901	G	
5847			No practical substitute.
5879			No practical substitute.
5896			No practical substitute.
5897	5898	P	No changes.

5898-XXL			RECEIVING TUBE SUBSTITUTION GUIDE
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
5898	5897	P	No changes.
5899	5840	G	No changes.
	5900	G	
	5901	G	
5900	5840	G	No changes.
	5899	G	
	5901	G	
5901	5840	G	No changes.
	5899	G	
	5900	G	
5910			No practical substitute.
5915	6BE6	E	No changes.
5931			No practical substitute.
5932			No practical substitute.
9001	5590	P	No changes.
	5591	G	
	9003	G	
9002	$6 \mathrm{AB4}$	P	Rewire as follows:
			$\begin{array}{ll} \text { No. } 2 & \text { to No. } \begin{array}{l} 7 \\ 5 \end{array} \\ \text { to } & 1 \end{array}$
9003	$\begin{aligned} & 5590 \\ & 9001 \end{aligned}$	$\begin{aligned} & \mathbf{G} \\ & \mathbf{G} \end{aligned}$	No changes.
9004			No practical substitute.
9005			No practical substitute.
9006			No practical substitute.
X6030			No practical substitute.
XXFM	7X7	E	No changes.
XXL	6C5	E	Reverse 6J5 to XXL procedure.
	$6 \mathrm{J5}$	E	Reverse 6J5 to XXL procedure.
	$6 \mathrm{K7}$	E	Reverse 6 K 7 to XXL procedure.
	7A4	E	No changes.

ADDENDUM		RECEIVING TUBE SUBSTITUTION GUIDE	
TUBE	SUB.	PERF.	CIRCUIT CHANGES NECESSARY
6Y7G	79	G	Reverse 6 N 7 to 79 procedure.
79	6 Y 7 G	G	Reverse 6 N 7 to 79 procedure.
1603	6 C 6	E	No changes.
	7700	E	
$161!$	6 F 6	E	No changes.
7000	6 J 7	E	No changes.
7700	6 C 6	E	No changes.
	1603	E	

IDENTICAL TUBES WITH UNLIKE HEATER VOLTAGE AND CURRENT RATINGS
Substitute high voltage tubes for low voltage tubes in series circuits only with suitable shunt resistor when required. Substitute low voltage tubes for high voltage tubes in parallel circuits with voltage dropping resistor in series with filament -- in series circuits with suitable shunt resistor. For all cases see instructions in Section 1. The performance for each substitution is excellent.

TUBE	SUB.	TUBE	SUB.	TUBE	SUB.
2 A 3	6 A 3	$7 \mathrm{B6}$	14B6	14B8	7B8
2A5	42	7B8	14B8	14E6	7E6
2 A 6	75	7E6	14E6	14 E 7	7E7
2A7	6A7	7E7	14 E 7	$14 \mathrm{F7}$	7 F 7
2B7	6B7	7F7	14F7	14F8	7F8
6 A 3	2 A 3	7F8	14 F 8	$14 \mathrm{J7}$	$7 \mathrm{J7}$
	1276	$7 \mathrm{J7}$	14 J 7	14N7	7N7
6A6	53	7N7	14N7	14 N 7	7N7
6A7	2 A 7	7Q7	14Q7	14Q7	7Q7
6A8	12A8GT	7R7	14R7	14R7	$7 \mathrm{R7}$
6B7	2B7	12A8GT	6 A 8	25B8GT	12B8G
6B8	12 C 8	12B8G	25B8GT	25L6	1632
6 F 5	12F5GT	12 C 8	6B8	30	RK42
6H6	12H6	12 F 5 GT	6F5	42	2 A 5
$6 \mathrm{J5}$	12 J 5 GT	12H6	6H6	53	6A6
6 J 7	12J7GT	12 J 5 GT	6 J 5	55	85
$6 \mathrm{K7}$	12 K 7 GT	12 J 7 GT	6J7	56	56AS
6 K 8	12 K 8	$12 \mathrm{K7GT}$	$6 \mathrm{K7}$		76
6L6	1631	12 K 8	6 K 8	56AS	56
6Q7	12Q7GT	12Q7GT	6Q7		76
6SA7	12SA7	12SA7	6SA7	57	57 AS
6SC7	12 SC 7	12SC7	6SC7	57 AS	57
	1634	12SF5	6SF5	58	58AS
6SF5	12SF5	12SF7	6SF7	58AS	58
6SF7	12 SF 7	12SG7.	6SG7	75	2 A 6
6SG7	12SG7	12 SH 7	6SH7	76	56
6SH7	12 SH 7	12SJ7	6SJ7	85	55
6SJ7	12S.J7	$12 \mathrm{SK7}$	6SK7	1276	2 A 3
6SK7	12SK'7	12SL7GT	6SL7GT		6A3
6SL7GT	12SL7GT	12SN7GT	6SN7GT	1631	6L6
6SN7GT	12SN7GT		1633	1632	25L6
	1633	12 SQ 7	6SQ7	1633	6SN7GT
6SQ7	12SQ7	$12 \mathrm{SR7}$	6SR7		12SN7GT
6SR7	$12 \mathrm{SR7}$	14A4	7A4	1634	6SC7
7A4	14A4	14B6	7B6	RK42	30

TELEVISION RECEIVER FILAMENT CIRCUIT ARRANGEMENT

The filaments of the tubes in most television receivers are either arranged in parallel, series and parallel, or series-parallel circuits. It is necessary to know the filament arrangement of a particular television receiver before some of the tubes in the circuit may be substituted because in many cases, a substitution will involve the addition of a resistor (or other circuit component), or the rearrangement of some part of the filament circuit to make for proper tube operating conditions. For example, the substitution of a tube with a 6.3 volt filament for one with a 12.6 volt filament requires the addition of a series resistoror a shunting resistor depending upon whether the filament is in a parallel or a series circuit respectively. (see Section 1).

In the following section all of the information about filament circuits needed to effect successful substitutions is given for most television receivers. The receivers are listed by model number (or chassis number for those sets having no model number) under the name of the manufacturer. In the second column is found the first page number of the section in the Rider Television Manuals in which all of the servicing information as well as schematics for the

Model	Rider Man. Page	Type Cir.	No. of Chains	Sch.
ADMIRAL CORP.				
4H15A, 4H15B, Ch. 20A1; 4J1, Radio Ch.	4-1	P	2	1
$4 \mathrm{H} 15 \mathrm{~S}, 4 \mathrm{H} 15 \mathrm{SN}, \mathrm{Ch} .30 \mathrm{~A} 1,30 \mathrm{Bl}, 30 \mathrm{Cl}$, 30D1; 4H1, Radio Ch.	3-17	P	5	3
4H16A, 4H16B, Ch. 20A1; 4J1, Radio Ch.	4-1	P	2	1
$4 \mathrm{H} 16 \mathrm{~S}, 4 \mathrm{H} 16 \mathrm{SN}, \mathrm{Ch} .30 \mathrm{Al}, 30 \mathrm{~B} 1,30 \mathrm{C} 1$, 30D1; 4H1, Radio Ch.	3-17	P	5	3
4H17A, 4H17B, Ch. 20A1; 4J1, Radio Ch.	4-1	P	2	1
4H18C, 4H18CN, Ch. 20B1; 4K1, Radio Ch.	4-1	P	2	1
$4 \mathrm{H} 18 \mathrm{~S}, 4 \mathrm{H} 18 \mathrm{SN}, \mathrm{Ch} .30 \mathrm{~A} 1,30 \mathrm{~B} 1,30 \mathrm{C} 1$, 30D1; 4H1, Radio Ch.	3-17	P	5	3
4H19C, 4H19CN, Ch. 20B1; 4K1, Radio Ch.	4-1	P	2	1
4H19S, 4H19SN, Ch. 30A1, 30B1, 30C1, 30D1; 4H1, Radio Ch.	3-17	P	5	3
4H115S, 4H115SN, 4H116S, 4H116SN, 4H117S, 4H117SN, Ch. 30A1, 30B1, 30C1, 30D1; 4H1, Radio Ch.	3-17	P	5	3
4H126A, 4H126B, Ch. 21 Al; 4J1, Radio Ch.		P	2	1
4H126C, 4H126CN, Ch. 21A1; 4K1, Radio Ch.	4-1	P	2	1
4H126S, 4H126SN, Ch. 30A1, 30B1, 30C1, 30D1; 4H1, Radio Ch.	3-17	P	5	3
4H137A, 4H137B, Ch. 21A1; 4J1, Radio Ch.	4-1	P	2	1
4 H137S, 4 H137SN, Ch. 30A1, 30B1, 30C1, 30D1; 4H1, Radio Ch.	3-17	P	5	3
4H145A, 4H145B, Ch. 20B1; 4J1, Radio Ch.	4-1	P	2	1
4H145C, 4H145CN, Ch. 20B1; 4K1, Radio Ch.	4-1	P	2	1
4H145S, 4H145SN, Ch. 30A1, 30B1, 30C1, 30D1; 4H1, Radio Ch.	$3-17$	P	5	3.

set are given. Under "Type Circuit", a "P" indicates that all of the filaments are in parallel chains across the secondaries of the power and/or filament transformers, an "S, P " indicates that some of the filaments are in parallel chains and some are in series circuits across the line or power transforme r , and " $\mathrm{S}-\mathrm{P}$ " indicates that the filaments are in a series-parallel circuit across the line. Where the filament arrangement is either ' S, P ' or ' $\mathrm{S}-\mathrm{P}$ ', the filament circuit is reproduced at the end of this section, and appears with the number shown in the "Schematic" column. The schematics numbered 1-6 are typical of the majority of parallel filament circuits except for the addition of one or two chains similar to those shown. The schematics 7-35 are reproductions of the ' S, P ', and "S-P" circuits previously referred to.

The number of circuits or chains into which the filaments of any set are divided appears under the "Number of Chains" column. NOTE: The 1 B3 high voltage rectifier circuit has not been included in the number of chains since this rectifier in practically all cases comes off the secondary of the horizontal output transformer.

Model	Rider Man. Page		No. of Chains	Sch.
ADMIRAL CORP. (Cont'd)				
4H146A, 4H146B, Ch. 20B1; 4J1, Radio Ch.	4-1	P	2	1
4H146C, Ch. 20B1; 4K1, Radio Ch.	4-1	P	2	1
4H146S, 4H146SN, Ch. 30A1, 30B1, 30C1, 30D1; 4H1, Radio Ch.	3-17	P	5	3
4H147A, 4H147B, Ch. 20B1; 4J1, Radio Ch	h. 4-1	P	2	1
4H147S, 4H147SN, 4H155S, 4H155SN, Ch. 30A1, 30B1, 30C1, 30D1, 4H1, Radio Ch.	3-17	P	5	3
4H156C, 4H156CN, Ch. 20B1; 4K1, Radio Ch.	4-1	P	2	1
4H156S, 4H156SN, Ch. 30A1, 30B1, 30C1, 30D1; 4H1, Radio Ch.	3-17	P	5	3
4Hi57A, 4F157B, Ch. 20B1; 4J1, Radio Ch.	4-1	P	2	1
4H157S, 4H157SN, Ch. 30A1, 30B1, 30C1, 30D1; 4H1, Radio Ch.	3-17	P	5	3
4H165A, 4H165B, Ch. 20B1; 4J1, Radio Ch.	4-1	P	2	1
$4 \mathrm{H} 165 \mathrm{~S}, 4 \mathrm{H} 165 \mathrm{SN}, \mathrm{Ch}, 30 \mathrm{~A} 1,30 \mathrm{~B} 1,30 \mathrm{C} 1$, 30D1; 4H1, Radio Ch.	3-17	P	5	3
4H166A, 4H166B, Ch. 20B1; 4JI, Radio Ch.	4-1	P	2	1
4H166C, 4H166CN, Ch. 20B1; 4K1, Radio Ch.	4-1	P	2	1
$4 \mathrm{H} 166 \mathrm{~S}, 4 \mathrm{H} 166 \mathrm{SN}, \mathrm{Ch} .30 \mathrm{Al}, 30 \mathrm{~B} 1,30 \mathrm{C} 1$, 30D1; 4H1, Radio Ch.	3-17	P	5	3
4H167A, 4H167B, Ch. 20B1; 4J1, Radio Ch.	4-1	P	2	1
4H167C, 4H167CN, Ch. 20B1; 4K1, Radio Ch.	4-1	P	2	1

RECEIVING TUBE SUBSTITUTION GUIDE

Model	Rider Man. Page	Type Cir.	$\begin{aligned} & \text { of } \\ & \text { ans } \end{aligned}$	Sch.	Model	Rider Man. Page	Type Cir.		Sch.
ANDREA RADIO CORP. (Cont'd) \quad BACE TELEVISION CORP. (Cont'd)									
CO-VK124, Edgemont, Ch. VK124	2-8	P	5	3	160 TM	2-1	P	3	5
CO-VK125, Ridgeway, Ch. VK12	2-8	P	5	3	190-K, $190-\mathrm{KFD}, 190 \mathrm{KHD}$.	2-1	P	3	5
CVK19, Normandy, Ch. VK-19	2-8	P	5	3	BAGDAD TELEVISION CO., INC.				
CVK-126, Gramercy, Ch. VK12	2-8	P	5	3	19 Tube Set	2-1	P	2	1
T-VJ12, Ch. VJ12	1-1	P	5	3	BELL TELEVISION, INC.				
TVK12, Saratoga; TVK-127, Sharron; Ch. VK12	2-8	P	5	3	$\begin{aligned} & \text { 16DD, 16T, 16TD, 19DD, 19T, 19TD, } \\ & \text { 1502, 1503, 2002, } 2003 \end{aligned}$	4-1	P	3	5
ANSLEY RADIO \& TEL	V., IN				$\frac{\text { BELMONT RADIO CORP. }}{\text { (RAYTHEON) }}$				
701	2-1	P	3	5	Coronet	3-1	S-P	9	10
702, 113 AM-FM, Radio	2-2	P	3	5					
					Observer	3-1	S-P	3	9
717, 718, 725, Ch. P-101	4-1	P	3	5	A-7DX22-P, Series A	4-1	S-P	3	9
ASSOCIATED MERCHANTS CORP.									
AM510, Same as Tele-King 510	4-1	P	3	4	A-10DX22, Observer; A-10DX24, Ch. A, B, C, D; Radio Ch.	3-1	S-P	6	10
AM712, Same as Tele-King 712	4-1	P	3	4	B-10DX22, Ch. A, B, C, D; Radio Ch.	3-1	S-P	6	10
THE ASTATIC CORP.					C-1102, Ch. 12AX22	4-6	P	2	1
AT-1, Booster	4-1	P	1		C-1104B, Ch. 12 AX 27	5-1	P	3	2
ATWATER TELEVISION CO.					C-1401, Ch. 14AX21	5-9	P	3	2
135, 513	5-1	P	3	2	C-1602, Ch. 16AX23, 16AX25, 16AX26	5-21	P	2	1
AUTOMATIC RADIO MFG. CO., INC.					7DX21	2-6	S-P	3	9
AR-TV-709	2-1	S-P	2	7	7DX21, Series B	2-6	S-P	3	9
TV-12-49, TV-12-50	4-1	S-P	3	8	10AXF43, Ch. A, B, C, D; Radio Ch.	3-1	S-P	3	9
TV-16-49, TV-16-50, TV-16-51	3-1	P	3	2	10DX21, Ch. A, B, C, D; Radio Ch.	2-1	S-P	6	10
TV-1205	5-5	S-P	3	8	$\begin{aligned} & \text { 10DX22, 10DX24, Coronet, Ch. A, B, C, } \\ & \text { D; Radio Ch. } \end{aligned}$	31-1	S-P	6	10
TV-1205, Series B	5-1	P	1		18DX21	2-6	S-P	3	9
TV-1294	5-5	S-P	3	8	18DX21A	2-6	S-P	3	9
TV-1605, TV-1615	5-5	S-P	3	8					
TV-1649, TV-1650, TV-1651, Series B	5-6	P	3	2	22A21, 22AX21, 22AX22	1-25	P	2	1
TV-1694	5-5	S-P	3	8	BENDIX RADIO DIV.				
TV-5001	5-2	P	1		235B1	2-1	P	2	1
TV-5006	5-2	P	1		235 B1, Codés A, B, C, D, E, F, G, H, I, J, K, L, M, MA, MB, MC, MD	3-1	P	2	1
TV-5012	5-2	P	1						
TV-5061, TV-5077	5-2	P	1			2-1	P	2	1
TV-5111	5-2	P	1		$325 \text { M8, Codes A, B, C, D, E, F, G, H, I, }$ J, K, L, M, MA, MB, MC, MD	3-1	P	2	1
BACE TELEVISION CORP.					2001, 2002, 2020, 2021; 2000 Series	3-21	P	3	2
$16 \mathrm{RCC}, 16 \mathrm{RCH}, 19 \mathrm{RCC}, 19 \mathrm{RCH}$	4-1	P	5	3	2025	4-1	P	3	2
150-D	2-1	P	5	$1 \& 5$	2051	5-1	P	3	2
160C	2-1	P	3	5	3001, 3002, 3030, 3031; 3000 Series	3-21	P	3	2
160-K	2-1	P	3	5	3033	4-1	P	3	2

RECEIVING TUBE SUBSTITUTION GUIDE

Model	Rider Man. Page	Type Cir.	of	Sch.	Model	Rider Man. Page	Type Cir.	No. of Chains	Sch.
BENDIX RADIO DIV. (Cont'd)					$\begin{aligned} & \text { CROSLEY DIV. } \\ & \text { AVCO MFG. CORP. (Cont'd) } \end{aligned}$				
3051, 6001	5-1	P	3	2					
					9-413B, 9-413B-2	3-1	P	4	6
6002	4-1	P	3	2					
					9-414B	4-1	P	4	6
6003	5-1	P	3	2					
					9-419M1-LD, 9-419M3-LD	4-26	P	3	2
6100 BRUNSWICK	5-1	P	3	2					
					.9-420M	4-38	P	4	6
See RADIO \& TELEVISION INC.					9-422M, 9-422MA	.4-47	P	3	2
BUD RADIO CO					9-422M-LD	5-1	P	3	2
TAB-98, Booster	2-1	P	1		9-423M	4-59	P	4	6
TAB-99, PreAmp	2-1	P	1		9-423M-LD	5-14	P	4	6
CALBEST ENGINEERING \& ELECTRONICS CO.					9-424B	4-38	P	4	6
5082, 5086, 5086R, 5089, 5089R	5-1	P	3	2	9-425	3-9	P	3	4
CAPEHART-FARNSWORTH CORP.					10-401	5-25	P	3	4
Also See FARNSWORTH TELEV. \& RADIO CORP									
$\begin{aligned} & \text { 3001-B, } 3001-\mathrm{M}, 3002-\mathrm{B}, 3002-\mathrm{M}, \text { Ch. } \\ & \text { C-272; Ch. CX-30 } \end{aligned}$	4-1	S, P	3	15	$10-414 \mathrm{MU}, 10-416 \mathrm{MU}, 10-416 \mathrm{MIU}$	5-37	P	4	6
					10-419MU	5-42	P	3	4
$\begin{aligned} & 3004-\mathrm{M}, \mathrm{Ch}, \mathrm{C}-268 ; 3006-\mathrm{M}, \mathrm{Ch} . \mathrm{C}-274 ; \\ & \text { CX-31 } \end{aligned}$	4-17	P	3	2	307TA, 307TA-50	1-1	P	3	5
					348CP, Ch. TR1, TR2, TR3	2-15	P	3	6
3007-M, Ch. C-276; Ch. CX-30	4-1	S, P	3	15					
					THE DENMAR TELE	ION CO			
$\begin{aligned} & 3011-\mathrm{B}, 3011-\mathrm{M}, 3012-\mathrm{B}, 3012-\mathrm{M} \\ & \text { Ch. C-281; Ch. CX-33 } \end{aligned}$		P	2	1	630-HV	3-1	P	3	6
$\begin{aligned} & \text { 4001-M, Ch. C-268; 4002-M, Ch. C-274; } \\ & \text { Ch. CX-31 } \end{aligned}$	4-17	P	3	2	DE WALD RADIO M	CORP			
					BT-100, BT-101	2-1	P	3	5
CERTIFIED RADIO LABORATORIES									
					CT-101	3-1	P	3	5
47-71	1-1	P	3	2					
					CT-102, CT-103, CT-104	3-2	P	5	3
48-10	1-1	P	3	2					
					DT-120	4-1	P	5	3
49-10	2-1	P	3	2					
					DT-161	4-1	P	5	3
49-710	2-1	P	3	2					
					DT-1020, DT-1030, DT-X-160	4-1	P	5	3
4920	4-1	P	4	6					
					ALLEN B. DUMONT LABOR	TORIE	, INC.		
CERTIFIED TELEVISION LABORATORIES									
See CERTIFIED RADIO LABORATORIES					Inputuner	1-1	P	1	
CLEERVUE TELEVISION CORP.					RA-101, Devonshire, Hampshire, Plymouth, Revere, Sherwood, Westminster	1-7	P	6	4\&5
Hollywood, Regency	1-1	P	3	5					
CONSOLIDATED TELEVISION CORP. Also See TELE-KING CORP.					RA-101-B	2-1	P	6	2 \& 5
2315	1-1	P	1		$\begin{aligned} & \text { RA-102, RA-102-B1, RA-102-B2, } \\ & \text { RA-102-B3, Clifton, Club } \end{aligned}$	1-34	P	3	5
CORNELL TELEVISION, INC.See VIDEO CORP. OF AMERICA.					RA-103, Chatham, Savoy	1-58	P	3	2
$\begin{aligned} & \text { CROSLEY DIV. } \\ & \text { AVCOMFG. CORP. } \end{aligned}$					RA-103-D, Canterbury, Rumson, Sheffield; RA-104-A, Hastings, Wellington	3-1	P	4	6
9-403M, 9-403MA, $9-403 \mathrm{M}-2$	3-1	P	4	6	RA-105, Colony, Stratford, Westbury, Whitehall	2-5	P	4	5
9-404M	4-1	P	4	6					
					RA-105-B, Sussex	4-5	P	4	5
$\begin{aligned} & 9-407,9-407 \mathrm{M}, 9-407-1,9-407 \mathrm{M}-2 \text {, } \\ & 9-407 \mathrm{M}-3 \end{aligned}$	2-1	P	2	2	RA-106, Club 20	2-34	P	4	5
9-409M3-LD	4-13	P	3	2	RA-108-A, Bradford, Mansfield	4-5	P	5	5\&1

RECEIVING TUBE SUBSTITUTION GUIDE

receiving tube substitution guide

Model	Rider Man. Page	Type Cir.	No. of Chains	Sch.	Model	Rider Man. Page	Type Cir.	No. of Chains	Sch.
GAMBLE- SKOGMO, INC. GAROD RADIO CORP. (Cont'd)									
FA43-8965A, FA43-8965B	3-1	S-P	3	9	2043 T	4-10	P	3	4
FA43-8966	4-1	S-P	6	10	2546 T	4-10	P	3	4
TV43-8908	4-15	P	3	2	2547 T	4-10	\mathbf{P}	3	4
TV43-8960	3-10	P	3	2	2548 T	4-10	P	3	4
94TV1-43-8940A	4-21	P	2	1	2549 T	4-10	P	3	4
94TV2-43-8970A, 94TV2-43-8971A	3-17	P	4	6	3912 TVFMP; 11FMT, Radio	1-1	P	4	6
94TV6-43-8953A	5-9	P	3	2	3915 TVFMP; 9FMT, Radio	2-12	P	4	6
GAROD RADIO CORP: GENERAL ELECTRIC CO.									
10TZ20, Ambassador; 10TZ21, Malibu; 10TZ22, Monticello; 10TZ23, Catalina	4-5	\mathbf{P}	4	6	HM-171	1-1	P	3	2
					HM-185	1-3	P	3	2
12TZ20, Belvedere; 12TZ21, Claridge; 12 TZ22, Caronet; 12TZ23, Carlton	4-5	\mathbf{P}	4	6	HM-225, HM-225B	1-14	P	2	1
$15 \mathrm{TZ} 24,15 \mathrm{TZ25} 15 \mathrm{TZ} 26,,15 \mathrm{TZ27}$	4-5	P	4	6	HM-226B, HM-226-7A	1-14	P	2	1
19C6, 19C7	5-18	P	3	4	10C101, 10C102, $10 \mathrm{~T} 1,10 \mathrm{~T} 4,10 \mathrm{~T}, 10 \mathrm{~T} 6$	5-1	S-P	2	19
900 Series	2-1	\mathbf{P}	4	6	12C101, 12C102, 12C105	5-25	S-P	2	19
1000	2-1	P	4	6	12C107, 12C108, 12C109	5-35	S-P	2	20
1042G	3-7	\mathbf{P}	3	4	12C107, 12C108, 12C109, B Version	5-35	S-P	2	20
1042 T	4-10	P	3	4	$12 \mathrm{K1}$	5-12	S-P	2	19
1043G	3-7	P	3	4	12 Tl	5-25	S-P	2	19
1043 T	4-10	P	3	4	12T3, 12 T 4	5-35	S-P	2	20
1100	2-1	P	4	6	12T3, 12T4, B Version	5-35	S-P	2	20
1142	4-1	P	3	4	800A, 800B, 800C, 800D	4-1	S-P	2	18
1143	4-1	P	3	4	801, Early, Late	1-28	P	3	2
1200	2-1	P	4	6	802	1-52	P	4	6
1244 T	4-10	\mathbf{P}	3	4	803	2-1	P	4	6
1245 T	4-10	P	3	4	805, Early, S, T, U, W, Versions	3-1	S-P	2	18
1344	4-1	P	3	4	806, 807, Early, S, T, U, W, Versions	3-1	S-P	2	18
1345	4-1	P	3	4	809, Early, S, T, U, W, Versions	3-1	S-P	2	18
1546 T	4-10	P	3	4	810	2-11	P	5	5
1547 T	4-10	P	3	4	811	2-11	P	5	5
1548 T	4-10	P	3	4	814	2-22	P	5	5
1549 T	4-10	\mathbf{P}	3	4	817, S, T, U, W, Versions	4-9	S-P	2	18
1646	4-1	\mathbf{P}	3	4	818	4-24	S-P	2	18
1647	4-1	P	3	4	820	3-16	\mathbf{P}	5	5
1648	4-1	P	3	4	821, S, T, U, W, Versions	4-9	S-P	2	18
1649	4-1	P	3	4	830, Early, R, T, Versions	3-31	\mathbf{P}	5	5
1671	5-15	P	3	4	835, Early, R, Versions	3-45	\mathbf{P}	4	5
1672, 1673, 1674, 1675, 1974, 1975	5-18	P	3	4	840	4-34	P	5	5
2042 T	4-10	P	3	4	901, Preliminary	1-73	P	5	3

RECEIVING TUBE SUBSTITUTION GUIDE

RECEIVING TUBE SUBSTITUTION GUIDE

RECEIVING TUBE SUBSTITUTION GUIDE

RECEIVING TUBE SUBSTITUTION GUIDE

	Rider Man. Type No. of Model Page Cir. Chains Sch.

TRANS-VUE CORP.

90X, 90XFM, 90XFMB	$4-1$	P	4	6
145, 145B	$3-1$	P	4	6
$160-$ L, Entertainer	$3-3$	$\mathrm{~S}-\mathrm{P}$	6	33
400	$5-1$	P	2	1
601,610, Ch. 16AX23, 16AX25, 16AX26	$5-11$	P	2	1

10 T	$3-1$	P	3	4
12 L 50	$5-1$	P	4	6
12 T	$3-1$	P	3	4
$16 \mathrm{G} 50,16 \mathrm{R} 50$	$5-1$	P	4	6
$16-\mathrm{T}$	$4-1$	P	3	4
16 T, Rev.	$5-11$	P	3	4
16 T 50	$5-1$	P	4	6

UNITED MOTORS SERVICE
DIV. OF GENERAL MOTORS CORP.

Model	Rider Man. Page	Type Cir.	No, of Chains	Sch.	Model	Rider Man. Page	Type Cir.	No. of Chains	Sch.
WILCOX-GAY CORP. (Cont'd)					ZENITH RADIO CORP. (Cont'd)				
OL Series, Serial Nos. Below 26,000	5-22	P	3	2	G2951, G2951R, Stratosphere; G2952R, St. Regis; Ch. 29G20	3-1	P	5	5
9V Series	4-1	P	2	1					
9W Series	4-12	S, P	2	34	G2957, Ch. 23G23, Endue; G2957R, Ch. 23G23, Regent; G3059R, Ch. 24G23, 24G25, Sheraton; G3062, Ch. 24G23, 24G25, Classic; 6G20, Radio Ch.	4-17	S-P	5	35
ZENITH RADIO CORP.					G3157RZ, Madison; G31572, Entwine; G3158RZ, Van Buren; G3173RZ, Madison; G31732, Entwine; G3174RZ, Van Buren; Ch. 23G24	4-38	P	3	5
G2322, Ch. 23G22, Claridge	4-17	S-P	5	35					
G23222, G2327Z, Ch. 23G24, Garfield	4-38	P	3	5					
G2340, Ch. 23G22, Endear; G2340R, Ch. 23G22, Saratoga	4-17	S-P	5	35	G3259RZ, Washington; G3262Z, Jefferson; G3275RZ, Washington; G3276Z, Jefferson; Ch. 24 G 26	4-38	P	3	5
G2340RZ, Ch. 23G24, Adams; G2340, Ch. 23G24, Ensign	4-38	P	3	5	27 T965R, Ch. 27F20, 27F20Z, Broadmoor	3-1	P	5	5
G2346R, Ch. 23G22, Graemere	4-17	S-P	5	35	28T295, Ch. 28F22	2-1	P	5	5
G2350RZ, Ch. 23G24, Adams; G23502, Ch. 23G24, Ensign	4-38	P	3	5	28T925E, 28T925EU, Ch. 28F22, Revised, Biltmore; 28T295R, 28 T92RU, Ch. 28 F22 Revised, Mayflower; 28 T926E, Ch. 28F25	3-1	P	5	5
G2353E, Ch. 23G22, Biltmore	4-17	S-P	5	35	Saratoga; 28T926R, Ch. 28F25, Claridge				
G2353EZ, G2356EZ, Ch. 23G24, Tyler	4-38	P	3	5	28T960, Ch. 28F20	2-1	P	5	5
G2420E, Ch. 24G20, Wilshire; G2420-EOX, Ch. 24G20-OX, Wilshire, G2420R, Ch. 24G20, Newport; G2420-ROX, Ch. 24G20-OX, Newport					28 T960E, Ch. 28 F20 Revised, 28 F20Z, Waldorf; 28T960K, Ch. 28F20 Revised, Derby	3-1	P	5	5
					28T961, Ch. 28F21	2-1	P	5	5
G2437RZ, Jackson; G2438RZ, Lincoln; G24382, Entice; G2439RZ, Monroe; Ch. 24G26	4-38	P	3	5	28T961E, Ch. 28F21 Revised, Wilshire28T962, Ch. 28 F 20	3-1	P	5	5
						2-1	P	5	5
G2441, Ch. 24G24, Endow; G2441R, Ch. 24G22, 24G24, Lexington	4-17	S-P	5	35	28T962R, Ch. 28F20, Revised, Warwick	3-1	P	5	5
G2441 RZ, Lincoln; G24412, Entice; Ch.24G26	4-38	P	3	5	28T963, Ch. 28F21 28T963R, Ch. 28F21 Revised, Newport; 28 T964R, Ch. 28F23, Stratos phere	2-1	P	5	5
G2442E, Waldorf; G2442R, Mayfair; Ch. 24G22, 24G24	4-17	S-P	5	35		$3-1$$3-1$	P	5	55
					29G20, Ch.		P	5	
G2442RZ, Jackson; G2448RZ, Monroe; Ch. 24 G 26	4-38	P	3	5	37T996RLP, Ch. 28F23, Sovereign; 37T998RLP, Ch. 9E21Z, 28F20	3-1	P	5	5
```G2454R, Ch. 24G21; G2454-RCX, Ch. 24G21-OX```	4-1	P	4	6	Revised, Gotham; 42 T999RLP, Ch. 28F23 Marlborough				

## FILAMENT SCHEMATICS



RECEIVING TUBE SUBSTITUTION GUIDE


No	TYPE	FUNCTION	NO	TYPE	FUNCTION	NO	TYPE
V1	GAU6	RF AMP.	V12	6at6	AUDIO AMP.	V1	6AG5
V2	6AGS	MIXER	V13	2516	AUDIO OUTPUT	V2	6 J 6
$v$	GJ6	RF OSC.	V14	12SN7	HORIZ. OSC.	V3	6AU6
V4	GAU6	1ST. IF AMP.	V15	12SN7	HORIZ. OUTPİT	v4	6AU6
V5	6aU6	2ND. IF AMP.	V16	12SN7	VERT. OSC.	V5	6aU6
v6	6aU6	3RD. IF AMP.	V1?	12SN7	VERT. OLTPITT	V6	6AU6
$v 7$	ÓALS	VIDEO 2ND. DETECTOR	V18	2526	L.V.RECTIFIER	V7	6AL5
V8	6AU6	VIDEO AMP.	V19	6x5	L. V.RECTIFIER	V8	$12 \mathrm{AU7}$
v9	OAU6	VIdEO OUTPUT	V20	12SN7	h.v. OSC.	V9	6AU6
V10	SaU6	RATIO DETECTOR DRIVER	V22	7 JPL	PICTURE TUBE	V10	6AL5
V11	6AL5	RATIO DETECTOR					

9


(10)


RECEIVING TUBE SUBSTITUTION GUIDE


RECEIVING TUBE SUBSTITUTION GUIDE


## RECEIVING TUBE SUBSTITUTION GUIDE





RECEIVING TUBE SUBSTITUTION GUIDE

receiving tube substitution guide


169

## SECTION 4

## SERVICING SUGGESTIONS

## Suggestions For Making Adapters

When they are available, the manufacturer's bases and sockets are the thing to use in making adapters but, when this material is not to be had, we have found the following methods very practical.

There is a molded octal socket sold everywhere, which with the tinned metal mounting removed, fits into the top of a bakelite octal tube base as if made for the purpose. No 24 or 26 wires are soldered to the socket and pulled down through the tube base pins, soldered and cut off. Bits of spaghetti should be used to avoid shorts. In the case of 12 K 7 and other tubes with top caps, a hole is drilled in the side of the base opposite the grid pin. A flexible wire with grid clip is brought out through this hole to connect the top cap. In case of substituting a loctal for an octal such as the 1LA6 for 1A7 the grid lead from tube socket is brought out through this hole to connect the top cap.

In case of substituting a loctal for an octal such as the 1LA6 for $1 A 7$, the grid lead from the tube socket is brought out through the side of the base and an old tube cap soldered on. Always select bakelite bases with eight pins. Most octal tubes have only 7 pins or less, but pin 6 is needed in most adapters.

Another, and we believe, better way to make adapters is to remove the 8 pin wafers from the bases of metal tubes. Use No. 18 tinned wire soldering them in the pins first, preferably by dipping, then bend each one so that it will meet the terminal lug on whatever kind of socket is necessary. All of the socket terminal lugs sit down on the bakelite ridge around the wafer and the wires hold them firmly in place.

If 1 R5 tubes are comparatively plentiful and 1A7's are impossible to secure, an adapter can be made easily and quickly as follows:

Select an 8 pin octal base with metal band. With the pliers remove the metal, leaving the bottom wafer and pins. Cut 5 pieces of No. 18 tinned wire $11 / 4$ inches long, dropping them down into pins $2,3,5,6$, and 7 , bending them over enough to avoid their falling through and then solder the ends. Put a piece of spaghetti $3 / 8$ inch long on the wire from pin 6 and bend it flat down on the wafer and across to the pin 3, then straight up. Push the wires through holes in miniature socket lugs as shown in substitution data, bend wires outward and down, then cut off close, clinch with pliers and solder. This makes a rugged adapter with very little danger of shorts. The same procedure is followed in making an adapter to use a 1 T 4 in place of a 1 N 5 . An 8 pin wafer from the base of a metal tube also makes a good adapter.

Adapters are best soldered by dipping. Melt enough solder in a very small pan or tin can lid over an electric or gas hot plate to just touch the ends of the pins on an octal
base when the guide pin is on the bottom. Use a quarterinch dowel pin or piece of shaft, pushing it down inside the guide pin so that it can be used as a handle. Dip the pins for 3 or 4 seconds then lift it out and dip the ends of the pins in water to cool them quickly. This is very much faster and better than doing it one pin at a time with a soldering iron.

To Repair the Filaments in 150 Ma Tubes
(For Emergency Use Only)
Many 150-ma heater tubes can be made to give additional service after they have been burned out, that is, after the filament is open. The necessary parts are: a power transformer with a $50-\mathrm{ma}$ secondary that will deliver 750 volts across the high-voltage winding, seven octal sockets, two loctal sockets, and a chassis pan with room enough to mount them. The connections are very simple, as illustrated in the diagram of Fig. 4-1, and require less than two hours to assemble.


FIG. 4-1. Illustrating the setup for filament repair.

We have found by experience that putting the push button in the primary side of the transformer, in addition to protecting the operator from shocks, causes a hotter starting arc to weld the broken filament. The six sockets connected in series are for testing the repaired tubes. Put enough tubes in series to make as close as possible to 115 volts and short the filament connections on the remaining sockets that are left empty. Number 3 octal socket is for a 12SQ7, 6SQ7, and a few other types which have their heater connections on pins 7 and 8.

The operation is as follows. Insert the line plug, turn on the switch, and place the tube to be repaired in the proper socket. A low-wattage lamp drawing current from the same electric circuit should be in front of the operator. Press the button quickly, making as short a contact as possible. If the lamp dims, you have welded the ends of the

## RECEIVING TUBE SUBSTITUTION GUIDE

heater together. If they are not welded, press the button several more times, while snapping at the tube with the fingers of the other hand. If this does not weld the filaments, allow three seconds to elapse when working with metal tubes and then push the button again. Repeat this, then wait ten seconds and press for the last time. The switch contact should be as short as possible each time.

For 6- and 12-volt glass tubes, the same procedure is employed except that you must observe the tube and continue to press the button at intervals until the filament shows light. For higher voltage tubes such as $50 \mathrm{~L} 6,35 \mathrm{~L} 6,35 \mathrm{~A} 5$, etc. the button must be held down slightly longer. Success has been obtained in repairing about forty percent of burned out $150-$ ma heater tubes which include 12SA7, $12 \mathrm{SK} 7,12 \mathrm{SQ} 7$, 50L6, 35Z5, and almost all other 12-, $14-$, $35-$, and 50 -volt heater tubes. The filaments of tubes having current ratings of less than 150 ma will be completely destroyed when burnedin this apparatus, and tubes with high current ratings will overload the transformer severely, although in some cases a repair can be made. If the results are not satisfactory, try using a different transformer. Our experience shows, however, that a $\mathbf{7 5 0}$-volt secondary is the most satisfactory.

We have had many inquiries about the low-wattage lamp mentioned above. This lamp should be not larger than 40 watts and does not have to be connected to the apparatus. It may be the light in the shop where you are working and serves only to show you when the current has welded the ends of the broken filament in a metal tube. When the high voltage passes through the filament, there is a surge of current lasting only a very small fraction of a second. The transformer draws a rather large amount of current from the electric light line, pulling the voltage down and causing the light to blink or flicker. It is not needed in the case of glass tubes since you are able to see when the filament lights.

The average life of repaired tubes is short. We describe this process for use only in case of emergency and in no case recommend the use of a repaired tube when a new one is available. Even when the tube is not available, a repaired tube should be burned for at least one hour before putting it in a customer's radio.

## $35 Z 5$ Tubes

Possibly most service men know this, but it will bear repeating for the benefit of those who do not. The 35 Z 5 filament is between pins 2 and 7 with a tap brought out to pin 3. This tap is about 5 volts, from pins 2 to 3 and provides current for the pilot light. Operating the radio with burned out pilot light causes this section to burn out and breaks the filament circuit. Pins 2 and 3 may be shorted together so as to use the remaining 30 -volt filament and the tube may still give long service. Check eyery burned out $35 Z 5$, and if there is continuity between pins 3 and 7 , the tube is still usable.

If it is necessary to use the pilot light, connect a 25- to 30 -ohm resistor from pins 3 to 2 , either on the tube base (be careful that it does not short to metal chassis) or on the socket terminals, and the pilot light will light as usual.

## Substitution of Complete Sets of Tubes

Most of the popular $12-$, $35-$, and 50 -volt tubes now in use are nearing the end of their lives. Often a customer comes in and pays for a substitute tube and the necessary rewiring job, only to be back again within a week or ten days with another "impossible to get" tube burned out. He may again go to considerable expense to replace that one and have the same thing happen again.

Since most of the 6-and 25-volt, 0.3-ampere tubes are comparatively plentiful, a complete changeover job is more practical and satisfactory. Replace 12SA7 with 6SA7, 12 SK 7 with 6SK7, 12 SQ 7 with 6SQ7, 50 L 6 or 35 L 6 or any of the other 25 -volt, 0.3 -ampere output tubes, and $25 Z 5$ with 25Z6. The only necessary changes are in connection with the rectifier tube and replacement of the a-c line cord with a line resistor cord of 130 ohms. Red goes to the switch and black to pins 3 and 5 of the $35 Z 5$ socket after removing the pilot light wire from pin 3. Any wire on pin 4 is removed and taped up, 4 is connected to 8 , the line cord resistor and a 25 -ohm resistor are connected to the wire from pin 3 and the other end of resistor to pin 2.

## Changing Battery-Operated Radios For Electric Operation

This is not a job for the novice, but any experienced radio serviceman can make the change with very satisfactory results if there is room on the chassis for an additional tube.

First find a location for the rectifier tube, drill a hole and mount the socket. Remove all battery wires. Connect one side of the line cord to pins 2,3 , and 5 of a 117 Z 6 socket; connect the other side of the cord to the A battery switch, ground the other side of the switch and also pin 7 of the 117Z6.

From pins 4 and 8, the cathodes of the rectifier, connect a $1-w, 1,500$-ohm resistor, R1, to the screen grid of the 3Q5 tube or whatever output tube is used. This is the filter resistor and must have a $20-\mathrm{mf}, 150$-volt capacitor, C 1 , from each end of the resistor to ground for 60 -cycle operation, or 40 mf for 25-cycle operation.

It is quite likely that you will find one end of each tube filament connected to ground. All of these grounds must be removed and the filaments connected in series as shown in Fig. 4-2. The tubes indicated are for a typical battery-operated receiver. The capacitors and resistors connected to pins 2 and 7 may be left where they are, at least for the present. (We are using pin numbers of octal tubes. If the loctal series is used, the filament pins are usually 1 and 8 instead of 2 and 7. The loctal 1LA6 or 1 LC 6 is the equivalent of the octal 1A7, the loctal 1LN5 or 1LH4 for the octal 1H5, and the loctal 1LA4 or 1LB4 for the octal 1A5 or 1T5.) If there are more tubes than are shown in the diagram, connect their filaments between the 1N5 and the 1 H 5 .


FIG. 4-2. Typical circuit arrangement for changing battery-operated radio to electric operation using a 117 Z 6 GT rectifier tube.

Connect a 2,500 -ohm resistor between the rectifier cathodes and one side of the filament of the output tube. This is the filament dropping resistor and has a filter capacitor of from 40 to 200 mf connected between its low
end and ground. This capacitor should be rated at 25 volts because if a tube burns out the voitage rises and might break down a 6 - or 12 -volt rated capacitor. The filament dropping resistor should be 10 watts if mounted above the hassis ad at least 20 watts if mounted underneath where it cannot radiate the heat so readily. There is a 2,200 -ohm, 16-w flexible resistor, that seems to be quite plentiful, rather low priced, and is very easy to mount since it is insulated.

Wire in the resistors $R 4$ and R5 permanently, and R3 temporarily as it may have to be changed. If a $1 \mathrm{A5}$ or 1 T 5 is used instead of the 3 Q 5 or $3 \mathrm{B5}$, resistor R 4 is omitted. The purpose of $R 4$ and $R 5$ is to bypass the current passed from plate to filament in the output tube and to avoid overloading the other filaments.

Now check the grid resistors. The resistor from the grid of the output tube should go directly to ground and each of the others to its own negative filament, pin 7. The lower end of the volume control is connected either directly or through a resistor to ground, or to a filament (which has been disconnected from ground). Leave it where it is for trial; however, if there is distortion, try returning it to the filament circuit between the 1 A 7 and 1 H 5 for 1.4 -volt bias, or between the 1 H 5 and 1 N 5 for 2.8 -volt bias, leaving it wherever the tone is best.

Now make up a resistor to take the place of a set of tubes. The resistance of each 1.4 -volt filament is approximately 28 ohms, and for the set shown in Fig. 4-2 should be a total of 140 ohms. If it had a 1 A 5 or 1 T 5 in the output, the resistance would be 28 ohms less, or 112 ohms. If there should be an additional 1.4 -volt tube, it would be 28 ohms more, or 168 ohms. Connect this resistor from pin 2 of the output tube to ground. Put in the rectifier tube, connect the line cord of the set and then turn it on. The voltage across the resistor should be slightly less than 7
volts. If over 7 volts, replace resistor R3 with a lower value. If under 6.2 volts, replace $R 3$ with a higher value. If you have difficulty in getting the correct filament voltage, remember that increasing the capacitance of C1 at the rectifier increases the voltage, and if this capacitor does not have sufficient capacitance you cannot get the correct voltage.

When the voltage has been adjusted, remove resistor R3 and then insert the tubes. The bypass capacitor C4 may already be in the set. If the capacitors are not in and there is a tendency to distort or oscillate, put them in, and make sure that all No. 1 pins of the tubes are grounded to chassis. If the radio does not have a series capacitor in the antenna, it is necessary to put in a 0.01 mf between the antenna and coil to avoid burning out the coil if the antenna should be grounded.

Many other types of rectifiers may be used instead of the 117 Z 6 which was chosen as the example because it does not require a resistor line cord. For 2526, use a line-cord resistor of 300 ohms , connecting red to switch, black to pins 3 and 5 , and resistor to pin 2; for $35 Z 5$ and $35 Z 4$ tubes, use a 540 -ohm resistor cord, connecting black to pin 5 , red to switch, and resistor to pin 2; for a $25 \mathrm{Z5}$ tube, use a 300ohm cord, connecting red to switch, black to pins 2 and 5, resistor to pin 1, pin 6 to ground, and the filter resistor to pins 3 and 4. These are the most popular rectifiers, but several others may be used with the proper line-cord resistor.

The grounding system and physical factors of the receiver to be worked on should be examined before attempting the changeover. Some bugs may be expected on the first job so do not be discouraged if it does not work perfectly right at first; a little patience in trying to get rid of the bugs will be well rewarded. Remember that the filaments of tubes in most battery-operated radios are only d-c operated. Always check the filament conditions of the tubes with which you are working.

In this section a number of charts and tables are shown that we believe will be very helpful to users of this book. Included in this grouping is a complete listing of receiving tube characteristics and bases and also a separate listing of cathode-ray-tube characteristics and bases. In addition such tabulated matter as RTMA capacitor, resistor, and transformer color codes, ballast tube and resistor number-
ing codes, pilot lamps, and a cross index of Army VT numbers and commercial vacuum-tube numbers are included. The last named chart will not only help ArmedForces personnel but will be of valuable aid to anyone who has surplus Army tubes and desires to identify the equivalent commercial number for possible use or substitution in commercial equipment.

## RTMA RECEIVING TUBE RATINGS

It shall be standard to interpret the ratings on receiving types of tubes according to the following conditions:

## 1. CATHODE

The heater or filament voltage is given as a normal value unless otherwise stated. This means that transformers or resistances in the heater or filament circuit should be designed to operate the heater or filament at rated value for full-load operating conditions under average supply-voltage conditions. A reasonable amount of leeway is incorporated in the cathode design so that moderate fluctuations of heater or filament voltage downward will not cause marked falling off in response; also, moderate voltage fluctuations upward will not reduce the life of the cathode to an unsatisfactory degree.

## A. 1.4-VOLT BATTERY TUBE TYPES

The filament power supply may be obtained from drycell batteries, from stcrage batteries, or from a power line. With dry-cell battery supply, the filament may be connected either directly across a battery rated at a terminal potential of 1.5 volts, or in series with the filaments of similar tubes across a power supply consisting of dry cells in series. In either case, the voltage across each 1.4 -volt section of filament should not exceed 1.6 volts. With power-line or storage-battery supply, the filament may be operated in series with the filaments of similar tubes.

For such operation, design adjustments should be made so that with tubes of rated characteristics, operating with all electrode voltages applied and on a normal line voltage of 117 volts or on a normal storage-battery
voltage of 2.0 volts per cell (without a charger) or 2.2 volts per cell (with a charger), the voltage drop across each 1.4 -volt section of filament will be maintained within a range of 1.25 to 1.4 volts with a nominal center of 1.3 volts. In order to meet the recommended conditions for operating filaments in series from dry-battery, storage-battery, or power-line sources it may be necessary to use shunting resistors across the individual 1.4 -volt sections of filament.

## B. 2.0-VOLT BATTERY TUBE TYPES

The 2.0 -volt line of tubes is designed to be operated with 2.0 volts across the filament. In all cases the operating voltage range should be maintained within the limits of 1.8 volts to 2.2 volts.

## 2. POSITIVE POTENTIAL ELECTRODES

The power sources for the operation of radio equipment are subject to variations in their terminal potential. Consequently, the maximum rating shown on the RTMA Vacuum Tube Data Sheets have been established for certain design center voltages which experience has shown to be representative. The design center voltages to be used for the various power supplies together with other rating considerations are as given below:

## A. A-C OR D-C POWER-LINE SERVICE IN U.S.A.

The design center voltage for this type of power supply is 117 volts. The maximum ratings of plate voltages, screen-supply voltages, dissipations, and rectifier output currents are design maximums and should not be exceeded in equipment operated at a line voltage of 117 volts.

## B. STORAGE-BATTERY SERVICE

When storage-battery equipment is operated without a charger, it should be designed so that the published RTMA maximum values of plate voltages, screen-supply voltages, dissipations, and rectifier output currents are never exceeded for a terminal potential at the battery source of 2.0 volts per cell. When storage-battery equipment is operated with a charger, it should be designed so that $90 \%$ of the same RTMA values are never exceeded for a terminal potential at the battery source of 2.2 volts.

## C. "B"-BATTERY SERVICE

The design center voltage " B " batteries is the normal voltage rating of the battery block, such as 45 volts, 90 volts, etc. Equipment should be designed so that under no condition of battery voltage will the plate voltages or dissipations ever exceed the recommended respected maximum values shown in the data for each tube type by more than $10 \%$.
D. OTHER CONSIDERATIONS

1) Class A Amplifiers

The maximum plate dissipation occurs at the 'zerosignal" condition. The maximum screen dissipation usually occurs at the condition where the peak-input signal voltage is equal to the bias voltage.
2) Class B Amplifiers

The maximum plate dissipation theoretically occurs
at approximately $63 \%$ of the "maximum-signal" condition, but may occur practically at any signal voltage value.
3) Converters

The maximum plate dissipation occurs at the 'zerosignal" condition and the frequency at which the oscillator-developed bias is a minimum. The screen dissipation for any reasonable variation in signal voltage must never exceed the rated value by more than $10 \%$.
4) Screen Ratings

When the screen voltage is supplied through a series voltage-dropping resistor, the maximum screen voltage rating may be exceeded, provided the maximum screen dissipation rating is not exceeded at any signal condition, and the maximum screen voltage rating is not exceeded, at the maximum-signal condition. Provided these conditions are fulfilled, the screen-supply voltage may be as high as, but not above, the maximum plate voltage rating.

## 3. TYPICAL OPERATION

For many receiving tubes, the data show typical operating conditions in particular services. These typical operating values are given to show concisely some guiding information for the use of each type. They are not to be considered as ratings, because the tube can be used under any suitable conditions within its rating limitations.

## RECEIVING TUBE SUBSTITUTION GUIDE

## RECEIVING TUBE BASES

The diagrams on the following pages show standard socket connections corresponding to the base designations given in the column headed "Socket Connections" in the classified tube-data tables. Bottom views are shown throughout. Terminal designations are as follows:


Alphabetical subscripts-D, $\mathrm{P}, \mathrm{T}$ and HX indicate, respectively, diode unit, pentode unit, triode unit or hexode unit in multi unit types. Subscript M, T or CT indicates filament or heater tap
Generally when the No. l pin of a metal-type tube in Table I, with the except:on of all triodes, is shown connected to the sheli, the No. 1 pin in the glass (G or GT) equivalent is connected to an internal shield.
R.M.A. TUBE BASE DIAGRAMS

Bottom views are shown. Terminal designations on sockets are shown above. / B3


20


3N



$4 B R$

$4 F$

$4 P$
NC(4)
$4 Y$



2 N




4 B


4 BU


40



42
ce: (5):
$2 T$




4BB


4 C


4 H


4 S


5A





4BC

$4 C G$


4J


4SA


5AA





4AP

4AT


4BJ






5AB









5AC

## R.M.A. TUBE BASE DIAGRAMS

Bottom views are shown.


## RECEIVING TUBE SUBSTITUTION GUIDE

R.M.A. TUBE BASE DIAGRAMS

Bottom views are shown.


## RECEIVING TUBE SUBSTITUTION GUIDE

R.M.A. TUBE BASE DIAGRAMS

Bottom views are shown.

R.M.A. TUBE BASE DIAGRAMS

Bottom views are shown.


6BJ

## (2) (2) <br> $6 C$

$6 F$




$6 x$









IAW
(2) (3) (4)


6BM


$6 G$







TAH


7AJ








7BA
R.M.A. TUBE BASE DIAGRAMS

		Bottom	are shown		
78 C					7BJ

Courtesy ARRL Handbook

## RECEIVING TUBE CHARACTERISTICS

TABLE I－METAL RECEIVING TUBES
Characteristics given in this fable apply to all fubes having type numbers shown，including metal fubes，glass subes with＂G＂suffix，and banfam fubes with＂GT＂suffix． apply fo all tubes having type numbers shown，including metal fubes，glass fubes whith＂G＂suffix，
For＂$G^{\prime \prime}$ and＂GT＂fubes not listed（not having metal counterparts），see Tables II，VII，VIII and IX．

Typo	Name	Socket Connec－ tions	FII．or Heater		Capacitance $\mu \mathrm{ffd}$ ．			Use	Plate Supply Volts	Grid Bias	$\begin{gathered} \text { Scroen } \\ \text { Volts } \end{gathered}$	$\begin{aligned} & \text { Screen } \\ & \text { Current } \\ & \text { Ma. } \end{aligned}$	Plate Current Ma．		Transcon－ ductance Micromhos	Amp． Factor		PoworOutputWatts	Type			
			Volts	Amp．	In	Out	Plate－ Grid															
6A8	Pentagrid Convortor	8 A	6.3	0.3	－	－	－	Osc．－Mixer	250	－3．0	100	3.2	3.3	Anode－grid（No．2） 250 volis max．${ }^{\text {a }}$／hru 20，000 ohms					$6 A^{8}$			
$\begin{aligned} & 6 A B 7 \\ & 1853 \\ & \hline \end{aligned}$	Television Amp．Pontode	8 N	6.3	0.45	8	5	0.015	Class－A Amp．	300	－ 3.0	200	3.2	12.5	700000	5000	3500	－	－	$\begin{aligned} & 6 A 877 \\ & 1853 \end{aligned}$			
$\begin{aligned} & 6 A C 7 \\ & 1852 \\ & \hline \end{aligned}$	Telovision Amp．Pentode	8 N	6.3	0.45	11	5	0.015	Class－A Amp．	300	160＊	150	2.5	10	1000000	9000	6750	－	－	$\begin{aligned} & 6 A C 7 \\ & 1852 \end{aligned}$			
6AG7	Shorp Cut－off Pomiode	8 Y	6.3	0.65	13	7.5	0.06	Class－A1 Amp．	330	－ 3.0	150	$7 / 9$	30／30．5	130000	11000		10000	3.0	6AG7			
6AJ7	Shaip Cut－off Pentode	8 N	6.3	0.45				Class－A Amp．	330	$160^{\circ}$	300	2.5	10	1000000	9000	－			6AJ7			
6AK7	Pentodo Power Amp．	8 r	6.3	0.65	13	7.5	0.06	Class－A Amp．	300	－3	150	7	30	130000	11000	－	10000	3.0	6AK7			
688	Duplex－Diode Pentode	$8 E$	6.3	0.3	6	9	0.005	Class－A Amp．	250	－ 3.0	125	2.3	9.0	650000	1125	730	－		688			
6 C5	Triode	60	6.3	0.3	3	11	2	Class－A Amp．	250	－8．0		－	8.0	10000	2000	20			6C5			
								Bias Defoctor	250	－17．0		－	Plate curront adjusted to 0.2 ma ．with no signal									
6FS	High－$\mu$ Triodo	5M	6.3	0.3	5.5	4	2.3	Class－A Amp．	250	－ 1.3			0.2	66000	1500	100	－		6 65			
6F6	Pentode Power Amplifier	75	6.3	0.7	6.5	13	0.2	Class－A，Pont．${ }^{\text {S }}$	$\begin{array}{r} 250 \\ 315 \\ \hline \end{array}$	$\begin{array}{\|l\|} -16.5 \\ 22.0 \\ \hline \end{array}$	$\begin{aligned} & 250 \\ & 315 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 36^{7} \\ & 42 \\ & \hline \end{aligned}$	$\begin{aligned} & 80000 \\ & 75000 \end{aligned}$	$\begin{array}{r} 2500 \\ 2550 \\ \hline \end{array}$	$\begin{array}{r} 200 \\ 200 \\ \hline \end{array}$	$\begin{aligned} & 70000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.2 \\ & 5.0 \\ & \hline \end{aligned}$				
								Class－A，Triode ${ }^{1}$	250	－20．0			347	2600	2500	6.8	4000	0.85	6F6			
								Class－AB2 Amp．${ }^{\circ}$ Class－AB2 Amp．${ }^{\circ}$	$\begin{aligned} & 377 \\ & 375 \end{aligned}$	$\begin{array}{r} 340^{*} \\ -26.0 \\ \hline \end{array}$	$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{array}{\|c} 8 / 18 \\ 5 / 19.5 \\ \hline \end{array}$	$\begin{aligned} & 54 / 77 \\ & 34 / 82 \end{aligned}$	Power oulpul for 2 fubes af stated load，plate－to－olate			$\begin{aligned} & 10000 \text { " } \\ & 10000 \text { s } \end{aligned}$	$\begin{aligned} & 19.6 \\ & 18.5 \end{aligned}$				
								Class－AE2 Amp．${ }^{10}$	$\begin{array}{r} 350 \\ 350 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 730^{*} \\ -38 \\ \hline \end{array}$	－	＝	$\begin{aligned} & 50 / 61 \\ & 48 / 92 \end{aligned}$	二	二	－	$\begin{array}{r} 10000 \\ 6000 \mathrm{~B} \\ \hline \end{array}$	$\begin{array}{r} 9 \\ 13 \end{array}$				
6H6	Twin Diode	70	6.3	0.3				Roctifier		Max．a．c．vollage per plate $=150$ r．m．s．Max．output current 8.0 ma．d．c．									$6 \mathrm{H6}$			
615	Triode	69	6.3	0.3	3.4	3.6	3.4	Class－A Amp．	250	－ 8.0			9	7700	2600	20			635			
617	Sharp Cul－off Pentode	7R	6.3	0.3	7	12	0.005	R．F．Amp．	250	－3．0	100	0.5	2.0	1.5 mog ．	1225	1500	－					
$6 J 7$	Sharp Cul－orf Ponlode	7 R	6.3	0.3	7	12	0.005	Blas Datector	250	－4．3	100	Cathode current 0.43 ma ．			－		0.5 mog．		67			
6K7	Variable－$\mu$ Pontode	7R	6.3	0.3	7	12	0.005	R．F．Amp．	250	－ 3.0	125	2.6.	10.5	600000	Oscillator peak velis $=7.0$				$6 \mathrm{K7}$			
								Mixor	250	－10．0	100			－								
6 K 8	Triode－Hoxode	8 K	6.3	0.3				Convertor	250	－ 3.0	100	6	2.5	Triode Plate（No．2） 100 volts， 3.8 ma．					$6 \mathrm{K8}$			
616	Boam Power Amplifor	7AC	6.3	0.9	10	12	0.4	Single Tube Class $A_{1}$	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	$\begin{array}{\|l\|} \hline 170^{\circ} \\ \hline \end{array}$	$\begin{array}{r} 250 \\ 200 \\ \hline \end{array}$	$\begin{aligned} & 5.4 / 7.2 \\ & 3.0 / 4.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 75 / 78 \\ & 51 / 54.5 \end{aligned}$	－	（	－	$\begin{aligned} & 2500 \\ & 4500 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \\ & \hline \end{aligned}$	616			
								Singlo Tube Class A	$\begin{array}{r} 250 \\ 350 \\ \hline \end{array}$	$\begin{aligned} & -14.0 \\ & -18.0 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 5.0 / 7.3 \\ & 2.5 / 7.0 \end{aligned}$	$\begin{aligned} & 72 / 79 \\ & 54 / 66 \end{aligned}$	$\begin{aligned} & 22500 \\ & 33000 \end{aligned}$	$\begin{aligned} & 6000 \\ & 5200 \end{aligned}$	二	$\begin{aligned} & 23500 \\ & 4200 \end{aligned}$	$\begin{array}{r} 6.5 \\ 10.8 \end{array}$				
								P．P．Class $A_{1}{ }^{6}$	270	$125^{\circ}$	270	11／17	134／145	－	－		5000.	18.5				
								P．P．Class $A, 0$	$\begin{aligned} & 250 \\ & 270 \\ & 27 \end{aligned}$	$\begin{array}{r} -16.0 \\ -17.5 \end{array}$	$\begin{aligned} & 250 \\ & 270 \end{aligned}$	$\begin{aligned} & 10 / 16 \\ & 11 / 17 \end{aligned}$	$\begin{aligned} & 120 / 140 \\ & 134 / 155 \end{aligned}$	$\begin{array}{r} 24500 \\ 23500 \\ \hline \end{array}$	$\begin{aligned} & 5500 \\ & 5700 \\ & \hline \end{aligned}$	$\bar{Z}$	$\begin{array}{\|c} 5000 \\ 5000 \\ 5008 \\ \hline \end{array}$	$\begin{aligned} & 14.5 \\ & 17.5 \end{aligned}$				
								P．P．Class $\mathrm{AB}^{\text {B }}$ ，	360	$250^{\circ}$	270	5／17	88i100	Power oulput for 2 tubes． Lsad plato－lo－plate			9000	24.5				
								P．P．Class AB，${ }^{\text {\％}}$	360	－22．5	270	5／15	88／132				6600 ＊	26.5				
								P．P．Class AB：＂	$\begin{array}{r} 360 \\ 360 \\ \hline \end{array}$	$\begin{array}{r} -18.0 \\ -22.5 \end{array}$	$\begin{aligned} & 225 \\ & 270 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.5 / 11 \\ 5 / 16 \\ \hline \end{array}$	$\begin{array}{r} 78 / 142 \\ 88 / 205 \\ \hline \end{array}$				$\begin{gathered} 6000{ }^{\circ} \\ 3800 \\ \hline \end{gathered}$	$\begin{array}{r} 31.0 \\ 47.0 \\ \hline \end{array}$				
617	Pentagrid Mixer Amplificr	71	6.3	0.3				R．F．Amp．	250	－ 3.0	100	5.5	5.3	800000	1100	－		－	617			
6	Penlognd Mixor Amplilicr	8	0.3	0.3				Mixar	250	－6．0	150	8.3	3.3	Over 1 meg．	Oseillator－grid（No．3）voltage $=-15$							
6N7	Twin Triode	8 B	6.3	0.8				Class－B Amp．	300	0	－	－	35／70	－	－	－	8000	10.0	6N7			
607	Duplox－Diode Triode	$7 V$	6.3	0.3	5	3.8	1.4	Triode Amp．	250	－ 3.0	－	－	1.1	58000	1200	70	－		607			
6R7	Duplex－Diode Triode	7 V	6.3	0.3	4.8	3.8	2.4	Triode Amp．．	250	－9．0	$\underline{\square}$	－	9.5	8500	1900	16	10000	0.28	6R7			
657	Remoto Cut－off Pentode	7R	6.3	0.15	6.5	10.5	0.005	Class－A Amp．	250	－3．0	100	2.0	8.5	1000000	1750				657			
6SA7	Pentagrid Convorter	ER ${ }^{2}$	6.3	0.3				Convertor	250	$0^{1}$	100	8.0	3.4	800000	Grid No． 1 resistor 20000 ohms				6SA7			
6587Y	Pentagrid Converter	8R	6.3	0.3	9.6	9.2		Convarter	100	－ 1	100	10.2	3.6	500005	930	－1	－		6587Y			
								Convartar	250	－ 1	100	10	3.8	1000000	950		－					
						Osc．Section in 88－108 Mc．Sorv．			250	22000 ${ }^{\text {｜}}$	12000	12．6／12．5	6．8／6．5	－	－		－	－				
$65 C 7$	Twin－Triode	85	6.3	0.3				Class－A Amp．	250	－ 2.0	－	－	2.0	53000	1325	70	－		6SC7			
6SFS	High－$\mu$ Triode	6AB	6.3	0.3	4	3.6	2.4	Class－A Amp．：	250	－2．0．	－	－	0.9	66000	1500	100	－	－	6SFS			

TABLE I-METAL RECEIVING TUBES-Continuod


[^5]TABLE II-

Type	Name	Socket Connections	Fil. or Heater		Capacitane	
			Volts	Amp.	In	Out
6AE7GT ${ }^{10}$	Twin-Input Triode	7 AX	6.3	0.5		
6AFSG	Triode	60	6.3	0.3		
6AF7G	Twin Electron Ray	8AG	6.3	0.3		
6AG6G	Power-Amplifer Pentode	75	6.3	1.25		
6AH5G	Beam Power Amplifier	6AP	6.3	0.9		
6AH7GT	Twin Triode	8BE	6.3	0.3		
6AL6G	Beam Power Amplifier	6AM	6.3	0.9		
6ALJGT	Electron-Ray Tube	8CH	6.3	0.15		
6AQ7GT	Duplex Diode Triode	8 CK	6.3	0.3	2.3	1.5
GARG	Beam Power Amp.	6B9	6.3	1.2	11	7
GAR7GT	Diode Triode	8 CG	6.3	0.3	1.4	1
6AS7G	Low-Mu Twin Triode	8BD	6.3	2.5		
684G	Triode Power Amplifier	55	6.3	1.0		
686 G	Duplex-Diode High- $\mu$ Triode	7 V	6.3	0.3	1.7	3.8
6896GT	Beam Pentode	6AM	6.3	1.2		
68G6	Beam Power Amplifier	587	6.3	0.9	11	6.5
6C8G	Twin Triode	8 G	6.3	0.3		
6086	Pentagrid Converter	$8 \AA$	6.3	0.15		
69310	Triode-Hexode Converter	80	6.3	0.3		
6013	Twin Triode	86	6.3	0.6		
6.68G	Pentode Power Amplifier	75	6.3	0.15		
6H4GT	Diode Rectifer	5AF	6.3	0.15		
6H8G	Duo-Diode High- $\mu$ Pentode	8 E	6.3	0.3		
6J8G ${ }^{10}$	Triode Heplode	8 H	6.3	0.3		
6K5GTiO	High $\mu$ T Triode	50	6.3	0.3	2.4	3.6
6K6GT	Pentode Power Amplifier	75	6.3	0.4		
615 G	Triode Amplifer	60	6.3	0.15	2.8	5.0
6M6G	Power Amplifier Pentode	75	6.3	1.2		
6M7G	Pentode Amplifier	7R	6.3	0.3		
6M8GT	Diode Triode Pentode	8AU	6.3	0.6		
6N6G10	Direct-Coupled Amplifer	$7 A U$	6.3	0.8		
6P5GT10	Triode Amplifer	60	6.3	0.3	3.4	5.5
6P7G10	Triode-Pentode	70	6.3	0.3		
6P8G	Triode-Hexode Converter	8K	6.3	0.8		
6966	Diode-Triode	6Y	6.3	0.15		
6R6G	Pontode Amplifier	6AW	6.3	0.3	4.5	11
656GT	Remole Cut-off Pentode	SAK	6.3	0.45		
658GT	Triplo Diode Triode	8CB	6.3	0.3	1.2	5
6SD7GT	Medium Cut-off Pentode	8M	6.3	0.3	9	7.5
6SE7G1	Sharp Cut-off Pentode	8 N	6:3	0.3	8	7.5
6SH7L	Pentode R.F. Amp.	8BK	6.3	0.3		
6SLTGT	Twin Triode	8BD	6.3	0.3		
6SN7GT	Twin Triode	8BD	6.3	0.6		

## -6.3-VOLT GLASS TUBES WITH OCTAL BASES-Continued

	Use	Plate Supply Volts	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Volts } \end{gathered}$	Screen Current Ma.	Plate Current Ma.	Plate Resisfance Ohms	Transconductonce Micromhes	Amp.   Facfor	Lood Resisfance Ohms	Power Output Watts	Type
	Driver Amplifer	250	-13.5			5.0	9300	1500	14			6AE7GT
	Class-A Amplifier	180	-18.0			7.0	-	1500	7.4			6AF5G
	Indicator Tube											6AF7G
	Class-A Amplifer	250	- 6.0	250	6.0	32		10000		8500	3.75	6AG6G
	Class-A Amplifer	350	-18	250			33000	5200	\%	4200	10.8	6AHSG
	Converter \& Amp.	250	- 9.0			$12^{1}$	6600	2400	16		-	GAH7GT
	Class-A Amplifier	250	-14.0	250	5.0	72	22500	6000		2500	6.5	6ALGG
	Indicator	Outer edge of any of the three illuminated areas displaced $1 / 16 \mathrm{in}$. min. outward with +5 volts ta its eloctrode. Similar inward disp. with -5 volts. No pattorn with -6 volts grid.										6ALTGT
2.8	Class-A Amplifer	250	- 2.0			2.3	44000	1600	70	-		6AQ7GT
0.55	Class-A Amplifior	250	-22.5	250	5	77	21000	5400	95			6AR6
2	Class-A Amplifor	250	-2			1.3	66500	1050	70	-		6AR7GT
	D.C. Amplifier	135	250*			125	280	7500	2.1			
	Class-A, Amp. P.P.	250	2500*			100/106	280	$225 \%$		$6000{ }^{6}$	13	6AS7G
	Power Amplifer		Characteristics same as Type 6A3-Table IV									684G
1.7	Detec:or-Amplifer		Characteristics same as Type 75-Table IV									6B6G
	Deflection Amp.	250	47*	150	2.1	45		5500				6806GT
0.5	Deflection Amp.	400	-50	350	6.0	70		6000		-		6BG6
	Amp. I Section	250	- 4.5			3.1	26000	1450	38			6C8G
	Converter	250	$-3.0$	100	Cathode current 13.0Ma.			Anode grid (No. 2) Volts $=250^{3}$				6D8G
	Converter	250	- 2.0			Triode Plate 150 volts						$6 E 8 \mathrm{G}$
	Amplifier	250	-8.0			91	7700	2600	20			6F8G
	Class-A Amplifier	180	- 9.0	180	2.5	15	175000	2300	400	10000	1.1	
	Class-A Amplifier ${ }^{2}$	180	-12.0				4750	2000	9.5	12000	0.25	6G6G
	Detector	100				4.0				$\square$		6H4GT
	Class-A Amplifer	250	- 2.0	100		8.5	650000	2400	-			6H8G
	Converior	250	- 3.0	100	2.8	1.2	Anode-grid (No. 2) 250 volis max. 5 ma.					6 68G
2.0	Class-A Amplifier	250	- 3.0			1.1	50000	1400	70	-		6K5GT
	Class-A Amplifier		Characteristics same as Type 41-Table IV									6K6GT
2.8	Class-A Amplifier	250	- 9.0			8.0		1900	17	$\square$		6156
	Class-A Amplifier	250	-6.0	250	4.0	36		9500		7000	4.4	6M6G
	R.F. Amplifier	250	-2.5	125	2.8	10.5	900000	3400				6M76
	Triode Amplifier	100				0.5	91000	1100			-	
	Pentode Amplifer	100	- 3.0	100	-	8.5	200000	1900				6 MBGT
	Power Amplifor	Characteristics same as Type 685-Table IV									-	6NGG
2.6	Class-A Amplifior	250	-13.5			5.0	9500	1450	13.8			6P5GT
	Class-A Amplifier	Characteristics same as 6F7-Table IV										6P7G
	Converter	250	- 2.0	75	1.4	1.5	Triode Plate 100 v. 2.2 ma .					6P8G
	Class-A Amplifier	250	- 3.0	-	-	1.2	$\square$	1050	65			6966
0.007	Class-A Amplifier	250	$-3.0$	100	1.7	7.0		1450	1160	-		6R6G
	R.F. Amplifier	250	-2.0	100	3.0	13	350000	4000	-			6S6GT
2	Class-A Amplifier	250	- 2.0	-	-	0.9	91000	1100	100	-		6S8GT
. 0035	R.F. Amplifer	250	- 2.0	100	1.9	6.0	1000000	3600	-			6SD7GT
. 005	R.F. Amplifer	250	- 1.5	100	1.5	4.5	1100000	3400	3750			6SE7GT
	Class-A Amplifer	100	- 1.0	100	2.1	6.3	350000	4000				6SH7L
		250	- 1.0	150	4.1	10.8	900000	4900				
	Class-A Amplifier	250	-2.0	-	-	2.31	44000	1600	70	-	-	6SLTGT
	Class-A Amplifier	250	- 8.0	-	-	9.01	7700	2600	20	-	- 6	6SNTGT

TABLE II-6.3-VOLT GLASS TUBES WITH OCTAL BASES-Continued

Type	Name	Sockel Connections	Fil. or Heater		Capacitance $\mu \mu \mathrm{fd}$.			Use	$\begin{array}{\|c\|} \text { Plate } \\ \text { Supply } \\ \text { Volts } \end{array}$	Grid Bias	$\begin{array}{\|l\|l\|} \hline \text { Screon } \\ \text { Volts } \end{array}$	Screen Current Ma.	Plate Curren! Ma.	$\begin{array}{\|c\|} \text { Plate } \\ \text { Resistance } \\ \text { Ohms } \end{array}$	Transconductance Micromhos	Amp. Factor	LoadResistanceOhms	Power   Output   Natts	Type
			Volts	Amp.	In	Out	PlateGrid												
6SU7GTY	Twin Triode	880	6.3	0.3				Class-A Amplifor	250	- 2.0			2.3	44000	1600	70	-		6SU7GTY
6T6GM IV	Amplifior	62	6.3	0.45				Class-A Amplifier	250	- 1.0	100	2.0	10	1000000	5500				6T6GM
6U6GT	Beam Power Amplifar	7 AC	6.3	0.75				Class-A Amplifor	200	-14.0	135	3.0	56	20000	6200		3000	5.5	6USGT
6070	Variable-s Pantade	7R	6.3	0.3	5	9	. 007	Class-A Amplifor		Characteristics same as Type 6D6-Table III									6079
6 V7G ${ }^{10}$	Duplex Diode-Tricte	7 V	6.3	0.3	2	3.5	1.7	Detector-Amplifor		Characteristics same as Type 85-Table III									6V76
OWGGT	Boam Power Amplifier	$7 \overline{A C}$	6.3	1.25				Class-A Amplifer	135	-9.5	135	12.0	61.0	-	9000	215	2000	3.3	6W6GT
6W76	Pentode Dat. Amplifier	7 R	6.3	0.15	5	8.5	. 007	Class-A Amplifior	250	- 3.0	100	2.0	0.5	1500000	1225	1850			6W7G
$6 \times 66$	Electron-Ray Tube	7AL	6.3	0.3				Indicator Tube	250		0 v . for $300^{\circ}, 2 \mathrm{ma}-\mathrm{c}^{-8 \mathrm{v} . f o r} 0^{\circ}, 0 \mathrm{ma}$. Vane grid 125 v .								$6 \times 66$
6Y6G	Beam Power Amplifer	7AC	6.3	1.25	15	8	0.7	Class-A Amplifer	135	-13.5	135	3.0	60.0	9300	7000		2000	3.6	6 Y 6 G
6Y7G10	Twin Triode Amplifer	8 B	6.3	0.3			-	Class-8 Amplifer		Charscteristics same as Type 79-Table IV									6 Y76
6276	Twin Triode Amplifier	88	6.3	0.3				Class-B Amplifor	180	0			8.4	-			12000	4.2	6276
6276	Twin Triode Amplifier							Class-B Ampliner	135	0			6.0		-		9000	2.5	
717A	Sharp Cur-off Pentode	8BK	6.3	0.175				Class-A Amplifier	120	- 2.0	120	2.5	7.5	390000	4000		-		717A
1223	Sharp Cut-off Pentode	7R	6.3	0.3				Class-A Amplifer		Characteristics same as 6CO-TablelV									1223
1635	Twin Triode Amplifier	88	6.3	0.6				Class-8 Amplifiter	400	0		-	10/63	-	-	-	14000	17	1635
5691	Hi-Mu Twin Triode	88D	6.3	0.6	$\begin{array}{\|l\|} \hline 2.41 \\ 2.75 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2.3 \\ 2.78 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 3.6: \\ 3.68 \\ \hline \end{array}$	Class-A Amp.	250	- 2		-	$2.3{ }^{1}$	44000	1600	70	-		5691
5692	Medium-Mu Twin Trióde	8BD	6.3	0.6	$\begin{aligned} & 2.37 \\ & 2.6^{3} \end{aligned}$	$\begin{aligned} & 2.57 \\ & 2.78 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \% \\ & 3.38 \end{aligned}$	Class-A Amp.	250	-9	-	-	6.51	9100	2200	18	-	-	5692
7000	Low-Noise Amplifier	7R	6.3	0.3			-	Class-A Amplifer	Charactoristics same as Type 6J7-Table										7000
1 Par plate.   2 Screen tied to plate.					${ }^{3}$ Through 20,000-ohm dropping resistor.   4 Values ore for single fube.					${ }^{6}$ Values are for two tubes in push-pull.   - Plate-lo-plate value.					${ }^{7}$ No. 1 triode.   ${ }^{8}$ No. 2 triode.	9 Pook a.f. volts G-G.   ${ }^{10}$ Discontinued.			

TABLE III-7-VOLT LOCK-IN-BASE TUBES
For other lock-in-base types seo Tables VIII, IX, and X

Type	Name	Sockel Conner fions	Heoter		Capacitance $\mu \mu \mathrm{fd}$.			Use	Plate Supply Volts	Grid Bias	$\begin{gathered} \text { Scroen } \\ \text { Volts } \end{gathered}$	Screen Current Ma.	$\begin{aligned} & \text { Plate } \\ & \text { Curront } \\ & \text { Ma. } \end{aligned}$	$\begin{gathered} \text { Plate } \\ \text { Resisfance } \\ \text { Ohms } \end{gathered}$	Transconductance Micromhos	$\left\lvert\, \begin{aligned} & \text { Amp. } \\ & \text { Factor } \end{aligned}\right.$	$\begin{gathered} \text { Lood } \\ \text { Rosislance } \\ \text { Ohms } \end{gathered}$	PoworOutputWath	Type
			Volts	Amp.	In	Out	PlatoGrid												
7A4	Triode Amplifier	SAC	7.0	0.32	3.4	3	4	Class-A Amplifior	250	- 8.0	-		9.0	7700	2600	20			744
7 AS	Beam Power Amplifier	6AA	7.0	0.75	13	7.2	0.44	Class-A1 Amplifer	125	- 9.0	125	3.2/8	37.5/40	17000	6100		2700	1.9	7A3
$7 \mathrm{A6}$	Twin Diode	7AJ	7.0	0.16				Rectifior			Max.	A.C. volts	per plate-	150. Max. O	utput current	-10 ma .			7A6
7 A7	Romote Cut-off Pentode	8 V	7.0	0.32	6	7	. 005	Class-A Amplifor	250	- 3.0	100	2.0	8.6	800000	2000	1600	1 -		7A7
7AB	Multigrid Converter	80	7.0	0.16	7.5	9.0	0.15	Convertor	250	-3.0	100	3.1	3.0	50000	Anod	-grid 2	volts ma	. ${ }^{2}$	7AB
7AD7	Pentode	8 V	6.3	0.6	11.5	7.5	0.03	Class-A, Amp.	300	68*	150	7.0	28.0	300000	9500	-	-		7AD7
7AF7	Twin Triode	BAC	6.3	0.3	2.2	1.6	2.3	Class-A Amp.	250	-10			9.0	7600	2100	16			7 7AF7
7AG7	Sharp Cut-off Pentode	8 V	7.0	0.16	7.0	6.0	0.005	Class-A Amp.	250	250*	250	2.0	6.0	750000	4200				7AG7
7AN7	Pentode Amplitior	8 V	6.3	0.15	7.0	6.5	0.005	Class-A Amplifior	250	250*	250	1.9	6.8	1000000	3300	-			7AM7
784	High $-\mu$ Triode	5AC	7.0	0.32	3.6	3.4	1.6	Class-A Amplifer	250	-2.0	-	-	0.9	66000	1500	100			784
785	Pentode Power Amplifier	6AE	7.0	0.43	3.2	3.2	1.6	Class-A, Amplifier	250	$-18.0$	250	5.5/10	32/33	68000	2300		7600	3.4	785
786	Duo-Diode Triode	8W	7.0	0.32	3.0	2.4	1.6	Closs-A Amplifor	250	- 2.0			1.0	91000	1100	100	-		786
787	Remote Cut-off Pentode	8 V	7.0	0.16	5	7	. 005	Class-A Amplifer	250	- 3.0	100	2.0	8.5	700000	1700	1200	$\underline{\square}$		787
788	Pentagrid Convertor	$8 \times$	7.0	0.32	10.0	9.0	0.2	Convertor	250	-3.0	100	2.7	3.5	360000	Anode	-grid 250	0 volts max	${ }^{1}{ }^{1}$	788
$7 \mathrm{C5}$	Totrode Power Amplifier	6AA	7.0	0.48	9.5	9.0	0.4	Class-A, Amplifier	250	-12.5	250	4.5/7	45/47	52000	4100	-	5000	4.5	7C5
7 Cb	Duo-Diode Triode	8 W	7.8	0.16	2.4	3	1.4	Class-A Amplifor	250	- 1.0			1.3	100000	1000	100			$7 \mathrm{C6}$
$7 \mathrm{C7}$	Pomtode Amplifer	8 V	7.0	0.16	5.5	6.5	. 007	Class-A Amplifor	250	$-3.0$	100	0.5	2.0	2 meg.	-1300		-		$7{ }^{7} 7$
$7 \mathrm{D7}$	Triode-thexode Converter	BAR	7.0	0.48				Convertor	250	-3.0]			Triode	Plate ( ${ }^{\text {a }}$ O. 3)	150 v .3 .5	ma.			707

Courtesy ARRL Handbook

TABLE III－7－VOLT LOCK－IN－BASE TUBES－Confinued

Type	Nome	Socket Connec－ fions	Hoator		Capacitance $\mu \mu \mathrm{fd}$ ．			Use	Plate Supply Volts	Grid Bias	$\begin{gathered} \text { Screen } \\ \text { Volts. } \end{gathered}$	Scroen Current Ma．	PlateCurrent Ma．	$\begin{gathered} \text { Plate } \\ \text { Rosistance } \\ \text { Olvas } \end{gathered}$	Transcon－ ductance Micromhos	Amp． Factor	LoadResistanceOhms	PowerOutputWatts	Type
			Volts	Amp．	In	Out	Plate－ Grid												
$7 E 6$	Duo－Diode Triode	8w	7.0	0.32				Class－A Amplifier	250	－ 9.0	－	－	9.5	8500	1900	16	－		TES
$7 E 7$	Duo－Diode Pentode	8AE	7.0	0.32	4.6	4.6	． 005	Class－A Amplifior	250	－ 3.0	100	1.6	7.5	700000	1300			－	$7 E 7$
787	Twin Triode	8AC	7.0	0.32				Class－A Amplifer ${ }^{2}$	250	－ 2.0	－		2.3	44000	1600	70			787
758	Twin Triode	88W	6.3	0.30	2.8	1.4	12	R．F．Amplifor	250	－2．5			10：0	10400	5000				758
	Twin trode							R．F．Ampliter	180	－ 1.0			12.0	8500	7000				
$\begin{aligned} & 7671 \\ & 1232 \end{aligned}$	Sharp Cut－off Pentode	$8 V$	7.0	0.48	9	7	． 007	Class－A Amplifer	250	－ 2.0	100	2.0	6.0	800000	4500	－		－	$\begin{aligned} & 7671 \\ & 1232 \end{aligned}$
$\begin{aligned} & 7681 \\ & 1206 \end{aligned}$	Dual Tatrode	88V	6.3	0.30	3.4	2.6	0.15	R．F．Amplifier ${ }^{\text {？}}$	250	－ 2.5	100	0.8	4.5	225000	2100	－	－	－	$\begin{aligned} & 7681 \\ & 1206 \end{aligned}$
7H7	Somi－Variablo－$\mu$ Pentode	8 V	7.0	0.32	8	7	． 007	R．F．Amplifer	230	－2．5	150	2.5	9.0	1000000	3500				$7 \mathrm{H7}$
787	Triode－Heptode Converter	8AR	7.0	0.32				Converter	250	－3．0	100	2.9	1.3		Triode Plate	250 v．	Max．${ }^{1}$		797
7K7	Duo－Diode Migh－$\mu$ Triode	8BF	7.0	0.32			－	Class－A Amplifer	250	－ 2.0			2.3	44000	1600	70	－		767
75	Sharp Cut－off Pentode	8 V	7.0	0.32	8	6.5	． 01	Class－A Amplifer	250	－ 1.5	100	1.5	4.5	100000	3100	Cathode	Resistor 250	Of：	$7 \mathrm{7L}$
7N7	Twin Triode	8AC	7.0	0.6	$\begin{array}{r} 3.4 \\ 2.94 \\ \hline \end{array}$	$\begin{aligned} & 2.0 .0 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.0^{\circ} \\ & 3.0^{\circ} \\ & \hline \end{aligned}$	Class－A Amplifer ${ }^{2}$	250	－ 8.0	－	－	9.0	7700	2600	20	－	－	7N7
707	Pentagrid Converter	8 AL	7.0	0.32			－	Converter	250	0	100	8.0	3.4	800000	Grid No．	1 resisto	or 20000 oh	hms	
7R7	Duo－Diode Pentode	8AE	7.0	0.32	5.6	5.3	． 034	Class－A Amplifier	250	－ 1.0	100	1.7	5.7	1000000	3200	－	－		
757	Triode Hoxode Converter	881	7.0	0.32				Converter	250	－ 2.0	100	2.2	1.7	2000000	Triode	－Plote 2	250 v．Max．${ }^{1}$		
777	Pentode Amplifor	8 V	7.0	0.32	8	7	． 005	Class－A Amplifer	250	－ 1.0	150	4.1	10.8	900000	4900	－	－ 1	－ 1	
767	Sharp Cut－off Pentode	8 V	7.0	0.48	9.5	6.5	． 004	Class－A Amplifer	300	160＊	150	3.9	10	300000	5800		－		7V：
7W7	Sharp Cut－off Pentode	88J	7.0	0.48	9.5	7.0	． 0025	Class－A Amplifier	300	－ 2.2	150	3.9	10	300000	5800	$\square$	－		7W7
7×7	Duo－Diode Triode	882	6.3	0.3			－	Class－A A mplifier	250	－ 1.0			1.9	67000	1500	100	－		7X7
1231	Pentodo Amplifier	8 V	6.3	0.45	8.5	6.5	． 015	Class－A Amplifier	300	200	150	2.5	10	700000	5500	3850	－	－	1231
1273	Nonmicrophonic Pentode	8 V	7.0	0.32	6.0	6.5	． 007	Class－A1 Amplifior	250	－3．0	100	0.7	2.2	1000000	1575	－	－	－－	1273
									100	$-1.0$	100	1.8	5.7	40000	2275	－－	－－	－－	
5679	Twin Diode	7 CX	6.3	0.15			－	V．T．V．M．Rectiffer						ne as 746					5679
XXL	Triode Oscillator	SAC	7.0	0.32	＝	－	－	Oscillator	250	－8．0｜	二	二	8.0	－	2300	20	－	$\square$	XXL

＊Cathode resistor－ohms．
I Applied through $\mathbf{2 0 0 0 0}$－ohm dropping resistor．
Each section．
${ }^{3}$ Triod：No． 1.
－Triode No． 2
TABLE IV－6．3－VOLT GLASS RECEIVING TUBES

Type	Name	Base	SockotConnec－ fions	Fil．or Heater		Capacitance $\mu \mu \mathrm{fd}$ ．			Use	Plate Supply Volts	Grid Bias	$\begin{aligned} & \text { Screen } \\ & \text { Volts } \end{aligned}$	Screen Current Ma．	$\begin{aligned} & \text { Plate } \\ & \text { Current } \\ & \text { Ma. } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Plate } \\ \text { Resistance } \\ \text { Ohms } \end{gathered}\right.$	Transcon－ ductance Micromhos	Amp． Factor	$\begin{array}{\|c\|} \text { Lood } \\ \text { Resislance } \\ \text { Ohms } \end{array}$	PowerOutputWalts	Type
				Volts	Amp．	In	Out	Plate－ Grid												
$\begin{aligned} & \hline \text { 2C21/ } \\ & 1642 \end{aligned}$	Twin－Triode Amplifier	M．	7BH	6.3	0.6	－	－	－	Class－A Amp．	250	－16．5	－	－	8.3	7600	1375	10.4	－		$\begin{array}{\|c\|c\|c\|} \hline 2 \mathrm{COL1} \end{array}$
									Cless－A Amp．	250	－45		，	60	800	5250	4.2	2500	3.5	
6 A3	Triofe Pawor Amplifior	M．	4D	6.3	1.0	7.0	5.0	16.0	Class AB，Amp．${ }^{10}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	$\begin{array}{r} -62 \\ 850 \end{array}$		$\begin{aligned} & \text { d Bias } \\ & \text { Bias } \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	－－	－	－	$\begin{aligned} & 300011 \\ & 500011 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \\ & \hline \end{aligned}$	6A3
6A4；	Pentode Power Amplifir	M．	5B	6.3	0.3				Class－A Amp．	180	－12．0	180	3.9	22	60000	2500	150	3000	1.5	644
6 A6	Twin Triode Amplifer	M．	78	6.3	0.8			－	Class－B Amp．P．P	$\begin{array}{r} 250 \\ 350 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		－	Power	output is for load，plate	one tube at －to－plate	staied	$\begin{array}{r} 8000 \\ 10000 \\ \hline \end{array}$	$\begin{array}{r} 8.0 \\ 10.0 \\ \hline \end{array}$	6A6
$6{ }^{6} 7$	Pentagrid Converter	5.	\％	6.3	c 3	8.5	9.0	0.3	Convortor	250	－ 3.0	103	2.2	3.5	360000	Anota gris	1 （No． 2	2） 200 volts	max．	6A7
6ABS／6N5	Electron－Ray Tube	5.	6	6.		二	－	－	Indicator Tube	180	Cut－of	Grid Bias	$=-12 \mathrm{v}$ ．	0.5		Targol Curran	nf 2 ma ．		－	6AB5／6N5
6AF6G	Electron－Ray Tube Twin Indicator Type	5.		0.3	6.15			－	Indicator Tube	$\begin{aligned} & 135 \\ & 100 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Ray Con } \\ & \text { Ray Cont } \end{aligned}$	rol Voltag tol Voltag	$\begin{aligned} & 81 \text { for } \\ & =60 \mathrm{for} \end{aligned}$	$\begin{aligned} & 0^{\circ} \text { Shadow } \\ & 0^{\circ} \text { Shadow } \end{aligned}$	Angle．Targe Angle．Targa	$\begin{aligned} & 10 f \text { curran } \\ & \text { ef curren } \end{aligned}$	$\begin{aligned} & \mathrm{nt} 1.5 \mathrm{ma} . \\ & \mathrm{nf} 0.9 \mathrm{ma.} \\ & \hline \end{aligned}$		6AF6G
6B5	Direct－Coupled Power Amplifer	M．	6AS	6.2	0.8				Class．A Amp．${ }^{9}$ Push－Pull Amp	$\begin{aligned} & 300 \\ & 400 \end{aligned}$	$\begin{gathered} 0 \\ -13.0 \end{gathered}$	－	$\begin{aligned} & 61 \\ & 4.51 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\underline{241000}$	$\underline{2400}$	58	$\begin{gathered} 7000 \\ 10000^{11} \end{gathered}$	$\begin{aligned} & 4.0 \\ & 20 \\ & \hline \end{aligned}$	6B5

table iv-6.3-volt glass receiving tubes-Continued

table v-2.5-volt receiving tubes


TABLE VI-2.0-VOLT BATTERY RECEIVING TUBES

Type	Name	Baso	Socket Connee Hions	Filamont		Capacilance $\mu \mu \mathrm{fd}$.			Use	$\left\|\begin{array}{c} \text { Plato } \\ \text { Supply } \\ \text { Volis } \end{array}\right\|$	Grid Bias	$\begin{gathered} \text { Scroen } \\ \text { Volls } \end{gathered}$	ScreenCument Ma.	$\begin{gathered} \text { Plate } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	$\begin{gathered} \text { Plate } \\ \text { Resisfance } \\ \text { Ohms } \end{gathered}$	Transconductance Micromhes	Amp. Factor	$\begin{array}{\|c\|} \text { Load } \\ \text { Rosistance } \\ \text { Ohms } \end{array}$	PoworOutpurWaths	Type
				Volts	Amp.	In	Out	PlateGrid												
1A4P	Variable- $\mu$ Pontode	S.	4 M	2.0	0.06	5	11	. 007	R.F. Amplifior	180	- 3.0	67.5	0.8	2.3	1000000	750	750	-		1AAP
1A4T	Varioble- $\mu$ Toltrode	S.	4K	2.0	0.06	5	11	. 007	R.F. Amplifior	180	$-3.0$	67.5	0.7	2.3	960000	750	720	-	-	1A4t
1A6	Pentagrid Convertor	S.	61	2.0	0.06				Converter	180	- 3.0	67.5	2.4	1.3	500000	Anode gric	( ${ }^{\text {No. 2) }}$	) 180 max.	volts	1A6
184P/951	Pontode R.F. Amplifier	s.	4 M	2.0	0.06	5	11	. 007	R.F. Amplifior	$\begin{array}{r} 180 \\ 90 \end{array}$		$\begin{aligned} & 67.5 \\ & 67.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 1500000 \\ & 1000000 \\ & \hline \end{aligned}$	$\begin{aligned} & 650 \\ & 600 \end{aligned}$	$\begin{array}{\|r\|} 1000 \\ 530 \\ \hline \end{array}$	-		184P/951
185/255	Duplox-Diode Triode	S.	6 M	2.0	0.06	1.6	1.9	3.6	Triode Class-A	135	$-3.0$	-	-	0.8	35000	575	20	-		185/25S

TABLE VI-2.0-VOLT BATTERY RECEIVING TUBES-Continued

Type	Namo	Dose	Socket Connoctions	Filament		Capacitance $\mu \mu \mathrm{fd}$.			Use	$\left\|\begin{array}{c} \text { Plate } \\ \text { Supply } \\ \text { Volis } \end{array}\right\|$	Grid Bias	$\begin{gathered} \text { Scroen } \\ \text { Volits } \end{gathered}$	Screen   Cument Me.	Plafe Current Ma.	$\begin{gathered} \text { Plate } \\ \text { Rosisfonce } \\ \text { Ohms } \end{gathered}$	Tranecenductance Micromhos	Amp. Factor		$\left\|\begin{array}{l} \text { Power } \\ \text { Owtpu1 } \\ \text { Wafts } \end{array}\right\|$	Type
				Volts	Amp.	In	Out	$\begin{array}{\|l\|l} \text { Plato- } \\ \text { Grid } \end{array}$												
166	Pontagrid Convertor	5.	6	2.0	0.12	10	10		Convertor	180	- 3.0	67.5	2.0	1.5	750000	Anote grid (No. 2) 135 max. volis				166
154	Pentode Power Amplifier	M.	5K	2.0	0.12				Class-A Amp.	135	-4:5	135	2.6	8.0	200000	1700	340	16000	0.34	$1 F 4$
									R.F. Amplifer	180	- 1.5	67.5	0.6	2.0	1000000	650	650			
1F6	Duplox-Diode Pontoda	s.	6 W	2.0	0.06	4	-	. 007	A.F. Ampliner	135	$-1.0$	135	Plate, 0.25 megohm; screen, 1.0 megohm					Amp. $=48$		IF6
15 \#	Shorp Cut-off Pentode	S.	5 F	2.0	0.22	2.3	7.8	0.01	R.F. Amplifior	135	- 1.5	67.5	0.3	1.85	800000	750	600			15
19	Twin-Triode Amplifer	S.	6 C	2.0	0.26				Class-D Amp.	135	0	-	-	-	Load plato-to-plate			10000	2.1	19
30	Triode Detoctor Amplifior	S.	40	2.0	0.06				Class-A Amp.	180	-13.5	-	-	3.1	10300	900	9.3	-	-	30
31	Triodo Power Amplifior	5.	4 D	2.0	0.13	3.5	2.7	5.7	Class-A Amp.	180	-30.0	Cris	-	12.3	3600	1050	3.8	5700	0.375	31
32	Sharp Cut-off Pentode	M.	4 K	2.0	0.06	5.3	10.5	. 013	R.F. Ampliner	180	- 3.0	67.5	0.4	1.7	1200000	650	780			32
33	Pomode Power Amplifer	M.	SK	2.0	0.26	8	12	1	Class-A Amp.	180	-18.0	180	5.0	22.0	55000	1700	90	6000	1.4	33
34	Varlablo- $\mu$ Pentode	M.	4 M	2.0	0.06	6	11	. 015	R.F. Amplifer	180	$-3.0$	67.5	1.0	2.8	1000000	620	620	-	-	34
									Class-A Amp. ${ }^{1}$	135	-20.0		-	6.0	4175	1125	4.7	11000	0.17	49
49	Duol-Grid Power Amp.	m.	SC	2.0	0.12				Class-8 Amp. ${ }^{\text {2 }}$	180	0	-		Power eutput for 2 fubes				12000	3.5	49
840	Pentode	S.	5 J	2.0	0.13				Class-A Amp.	180	$-3.0$	67.5	0.7	1.0	1000000	400	400			840
950	Pentode Power Amplifior	M.	SK	2.0	0.12				Class-A Amp.	135	-16.5	135	2.0	7.0	100000	1000	125	13500	0.575	950
RK24	Triode	M.	4D	2.0	0.12				Class-A Amp.	180	-13.5		$\underline{-}$	8.0	5000	1600	8.0	12000	0.25	RK24
1229	Tetrode	M.	4 K	2.0	0.06					Special Type 32 for low grid-curront applications										1229
1230	Triode	M.	40	2.0	0.06	3.0	2.1	6.0		Spocial Type 30 for low grid-curront applications										1230

TABLE VII-2.0-VOLT BATTERY TUBES WITH OCTAL BASES

Typo	Namo	Socket Connerflons	Fllament		Copecitance $\mu \mu \mathrm{fd}$.			Use	$\begin{aligned} & \text { Plate } \\ & \text { Supply } \\ & \text { Volts } \end{aligned}$	Grid	$\begin{gathered} \text { Screen } \\ \text { Volts } \end{gathered}$	ScreonCurrent Ma.	$\begin{aligned} & \text { Plote } \\ & \text { Curron! } \\ & \text { Ma. } \end{aligned}$	$\begin{gathered} \text { Plate } \\ \text { Rochisfance } \\ \text { Ohms } \end{gathered}$	Transconductance Micrombes	Amp. Fector	$\begin{gathered} \text { Lood } \\ \text { Resisfance } \\ \text { Otmms } \end{gathered}$	Powor   Outpul Wath	Type
			Volts	Amp.	In	Out	PlateGrid												
1076	Hoppode	72	2.0	0.06	10	14	0.26	Converter	Charactoristics some as Type ICO-Table VI										1076
10SGP	Variablo- $\mu$ Ponlodo	5 r	2.0	0.06	5	11	. 007	R.F. Amplifer	Choracteristics same as Type IAAP-Table VI										10309
1036r ${ }^{+}$	Vartablo- $\mu$ Totrodo	5R	2.0	0.06				R.F. Amplifiter	180	-3.0	67.5	0.7	2.2	600000	650				1036T
1076	Pomtagrid Converter	72	2.0	0.06	10.5	9.0	0.25	Convertor	Charactoristics some as Type IA6-Table VI										1076
1ESGP	Pentode Amplifier	5 Y	2.0	0.06	5	11	. 007	R.F. Amplifior	Chóracteristics same as Type 184-Table VI										125GP
$1 E 76$	Doublo Pentode Power Amp.	8 C	2.0	0.24				Class-A Amplinor	135	-7.5	135	2.01	6.51	220000	1600	350	24000	0.65	1E76
1F56	Pentode Power Amplifier	$6 \times$	2.0	0.12				Class-A Amplifer	Cherectoristics same as Typo IF4-Table VI										IFSC
1F762	Duplox-Miode Pentode	7AD	2.0	0.06	3.8	9.5	0.01	Devoctor-Amplifier	Characteristics same as Type IFO-Table VI										1776
1656	Pentode Power Amplifier	$6 \times$	2.0	0.12		-	-	Clase-A Amplifer	135	-13.5	135	2.5	8.7	165000	1550	250	9000	0.53	1656
IMAG	Triode Amplifier	55	2.0	0.06				Detector-Amplifior	Charocteristics same as Type 30-Tablo VI										IM46
1766	Duplex-Diode Triode	7AA	2.0	0.06	1.6	1.9	3.6	Detactor-Amplifer	Charactoristics same as Type 185-Taple VI										1460
1J5G\%	Pontodo Power Amplifior	$6 \times$	2.0	0.12				Class-A Ampliner	135	\|-16.5	135	2,0	7.0	-	950	100	13500	0.45	IJSG
1860	Twin Triode	7AB	2.0	0.24				Closs-B Amplifer	Charocteristics some as Typo 19-Table VI										1260
			2.0	0.12				Class-A, 1 soction	90	(-1.5)	-	-	1.1	26600	730	20			
4 ACG	Twin Triode	8	4.0	0.06				Class-B, 2 zentions	90	-1.5		-	$10.8{ }^{3}$				8000	1.0	4 A 66

Courtesy ARRL Handbook

TABLE VIII－I．5－VOLT FILAMENT BATTERY TUBES
see also Table $X$ for Special 1.4 －voli Tubes

Typo	Name	Base	$\left\|\begin{array}{c} \text { Socketel } \\ \text { Connoc- } \\ \text { fions } \end{array}\right\|$	Filament		Capocitance $\mu \mu \mathrm{fd}$ ．			Use	Plefte Supply Volts	Grid Bias	$\begin{aligned} & \text { Seroen } \\ & \text { Volts } \end{aligned}$	ScroenCurrent Ma．	$\begin{array}{\|c} \text { Plate } \\ \text { Curront } \\ \text { Ma. } \end{array}$	$\begin{array}{\|c\|} \text { Plate } \\ \text { Rolistonce } \\ \text { Ohms } \end{array}$	Transcon－ ductance Micromhes	Amp． Factor	$\begin{array}{\|c\|} \text { Load } \\ \text { Reasistance } \\ \text { Ohmis } \end{array}$	$\left\lvert\, \begin{aligned} & \text { Power } \\ & \text { Outpot } \\ & \text { M-welts } \end{aligned}\right.$	Type
				Volts	Amp．	In	Out	Plate． Grid												
IASGT	Pentocto Power Amplifiter	0.	$6 \times$	1.4	0.05				Class－A1 Amp．	90	－4．5	90	0.8	4.0	300000	850	240	25000	115	1ASGT
1A76T	Pentogrid Convertor	0.	72	1.4	0.05			－	Convertor	90	0	45	0.6	0.55	600000	Anode－arid volis 90				1A76T
IABS	Pontode R．E．Ampliner	L．	SBF	1.2	0.05	2.8	4.2	0.25	R．F．Amplifior	$\begin{array}{r} 90 \\ 150 \end{array}$	$\begin{gathered} 0 \\ 0 \\ -1.5 \end{gathered}$	$\begin{array}{r} 90 \\ 150 \end{array}$	$\begin{aligned} & 0.8 \\ & 0.0 \end{aligned}$	$3.5$	$\begin{array}{r} 275000 \\ 125000 \\ \hline \end{array}$	$\begin{aligned} & 1100 \\ & 1350 \end{aligned}$	－		－	IABS
107GT\＃	Heptode	0.	72	1.4	0.1		－	－	Converter	90	0	45	1.3	1.5	350000	Grid No． 1 resistor 200，000 ohms				18769
188GT	Diode Triode Pontode	0.	saw	1.4	0.1	－	－	－	Triode Amplitier Pentode Amp．	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{gathered} 0 \\ \hline-6.0 \end{gathered}$	90	1.4	$\begin{aligned} & 0.15 \\ & 6.3 \end{aligned}$	$\underline{240000}$	$\begin{aligned} & 275 \\ & 1150 \end{aligned}$		$14000$	210	183Gt
1CSGT	Pentode Power Ampttior	0.	$6 \times$	1.4	0.1				Class－A1 Amp．	90	－7．5	90	1.6	7.5	115000	． 1550	165	8000	240	ICSGT
1DEGT	Diode Triode Pontode	0.	8AJ	1.4	0.1			－	Triode Amp． Pomodo Amp．	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{array}{\|c} \hline 0 \\ -9.0 \end{array}$	90	1.0	$\begin{aligned} & 1.1 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 43500 \\ & 200000 \end{aligned}$	$\begin{aligned} & 575 \\ & 925 \end{aligned}$	25	二	二	1086T
IEAG	Triode Amplithor	0.	55	1.4	0.05	2.4	6	2.40	Closs－A Amp．	$\begin{aligned} & 90 \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 0 \\ -3.0 \\ \hline \end{array}$	－	－	$\begin{aligned} & 4.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 11000 \\ & 17000 \end{aligned}$	$\begin{array}{r} 1325 \\ \hline 828 \\ \hline \end{array}$	$\begin{aligned} & 14.5 \\ & 14 \end{aligned}$	－	－	1546
16467	Triodo Amplition	0.	55	1.4	0.05	2.2	3.4	2.80	Class－A Amp．	90	－6．0	－		2.3	10700	225	8.8	－		164GT
10667	Twin Triode	0.	7AB	1.4	0.1	－	－		Class－A Amp．	$90$	$0$			1.0	45000	673	30	12000		16SOT
THSGT	Diade Hither Trode													1／7	34 volis input per grid			12000	675	
ILA4	Pomodo Power Ampllifer	L．	SAD	1.4	0.05		6		Class－A Amp．	90	Characteristics same as 1A5GT									ITSEG
11.46	Pontagidd Convertor	L．	7AK	1.4	0.05		－		Converter	90	0	45	0.6	0.55	Anode Grid Volss 90					ILA6
1184	Peortodo Power Amplitior	1.	SAD	1.4	0.05				Clase－A Amp．	90	－9	90	1.0	5.0	200000	925	－	12030	200	LISA
126	Hoplodo Converter	L．	8AX	1.4	0.05				Converter	90	0	67.5	2.2	0.4	Grid No．4－67．5 v．，No．5－av．					1286
ILCS	Romote Cut－off Pentode	L．	7AO	1.4	0.05	3.2	7	． 007	R．F．Ampolifier	90	0	45	0.2	1.15	1500000	775	－	$\square$	－	ILCS
12 Cb	Pombagrid Converior	L．	7AK	1.4	0.05				Convertor	90	0	35.	0.7	0.73		Anodo Grid Volts 45				ILC6
1105	Diode Pontode	L．	6AX	1.4	0.05	3.2	6	0.18	Class－A Amp．	90	0	45	0.1	0.6	950000	600	－	－	－	1105
143	Triode Ar．opllifor	L．	4AA	1.4	0.05	1.7	3	1.70	Class－A Amp．	$\begin{aligned} & 90 \\ & 90 \\ & \hline \end{aligned}$	0 -3	－	－	$\begin{aligned} & 4.5 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 11200 \\ & 19000 \end{aligned}$	$\begin{array}{r} 1300 \\ 760 \end{array}$	14.5	－	－	1123
1203	Pontodo R．F．Amp．	$L$.	7AO	1.4	0.05			－	Closs－A Amo．	90	0	45	0.4	1.7	1000000	800	－			1165
3L4	Diodo Hight $\mu$ Triode	1.	SAG	1.4	0.03	1.1	6	1.00	Class－A Amp．	90	0	－	$\underline{\square}$	0.15	240000	275	65			1LH4
ILNS	Remote Cut－off Pentode	1.	740	1.4	0.05	3.4	8	． 007	Class－A Amp．	90	0	90	0.3	1.2	1500000	750				ILNS
INSGT	Remote Cur－aft Pentade	0.	5Y	1.4	0.05	3	10	． 007	Class－A Amp．	90	0	90	0.3	1.2	1500000	750	1160			INSGT
$1066 \cdot$	Ofodo－fiower－Pemiodo	0.	7AM	1.4	0.05				Class－A Amp．	90	－4．5	90	0.6	3.1	300000	800		25000	100	IN6O
IPSGT	Pentode	0.	5Y	1.4	0.05	3	10	． 007	R．F．Amplifer	90	0	90	0.7	2.3	800000	800	640	－		IPSGT
193GT	Totrode Power Amplifor	0.	6AF	1.4	0.1	－	－	－	Closs－A Amp．	$\begin{aligned} & 85 \\ & 90 \end{aligned}$	$\begin{aligned} & -5.0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & 85 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 7.2 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 70000 \\ & 75000 \end{aligned}$	$\begin{aligned} & 1950 \\ & 2100 \\ & \hline \end{aligned}$	－	$\begin{aligned} & 9000 \\ & 8000 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 270 \end{aligned}$	105Gt
1R4／1294	U．h．f．Diode	1.	4AH	1.4	0.15	－			Roctiner	Max．r．m．e．vollage per diato－ 30					Max．d．c．output current－ $340 \mu$ ．					1R4／1294
15A6GT	Modium Cut－off Pontodo	0.	6CA	1.4	0.05	5.2	8.6	0.01	R．F．Amplifier	90	0	67.5	0.68	2.45	800000	970	－	－	二－	ISAGGT
1SE6GT	Diode Pontode	0.	6 CB	1.4	0.05	3.2	3	0.25	Class－A Amp．	90	0	67.5	10.38	1.45	700000	665		me9	$\underline{1102}$	1586GT
ITSGT	Beam Power Amplifier	0.	6AF	1.4	0.05	4.8	－	0.50	R．C．Amplifior	90	0	90	Seroen resistor 5 meg．，arid 10 meg．					1 meg ：	$110^{2}$	
387／1291	U．h．f．Twin Triode	1.	785	$2.8{ }^{3}$	0.11	1.4	2.6	2.6	Class－A An．er．	9	－6．0	90	1.4	6.5	$\underline{11350}$	1150		14000	170	175GT
1293	U．h．f．Triodo	$L$	4AA	1.4	0.11	1.7	3.0	1.7	Closs－A Amp．	90	0			4.7	10750	1300	14			$\frac{387 / 1291}{1293}$
306／1299	U．h．f．Tetrode	L．	688	2.83	0.11	7.5	6.5	0.30	Class－A Amp．	135	－6	90	0.7	5.7	$\square$	2200		13000	500	306／1299
$3 \mathrm{E6}$	R．F．Pontode	L．	7 CJ	$\begin{aligned} & 9.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.05 \end{aligned}$	5.5	7.5	0.007	Closs－A Amp．	90	0	90	1.3	3.8	300000	2100			7	3E6
RK42	Triode Amplifier	s．	4 D	1.5	0.6				Class－A Amp．		Characteristies same as Type 30－Table VI									2K42
RK43	Iwin Triode Amplufier	5.	6 C	1.5	0.12				Class－A Amp．	135	－3	－	－	4.5	14500	900	13	－	－	RK43

TABLE

Type	Name	Base	Sockel Conmecfions	Heater		Capacitance $\mu \mu \mathrm{fd}$.		
				Volts	Amp.	In	Out	PleteGrid
$12 \mathrm{AS}{ }^{8}$	Pentode Power Amplifier	M.	$7 F$	$\begin{array}{r} 12.6 \\ 6.3 \\ \hline \end{array}$	$\begin{aligned} & 0.3 \\ & 0.6 \\ & \hline \end{aligned}$	9.0	9.0	0.3
1246	Eeam Power Amplifier	0.	7AC	12.6	0.15			
$12 A 7$	Rectifier-Amplifier	M.	7K	12.6	0.3			
12ABGT	Heptode	0.	8 A	12.6	0.15	9.5	12	0.26
12AH7GT	Twin Triode	0.	8 EE	12.6	0.15	Each Triode Soet.		
1206m	Dlade Triode	0.	6 r	12.6	0.15			
1287 ML	Pemtode Amplitier	0.	8 V	12.6	0.15			
1240GT ${ }^{8}$	Triode-Pentode	0.	85	12.6	0.3	Triode Section Pentode Soction		
12 Cs	Duplex-Diode Pentode	0.	8 E	12.6	0.13	6	-	. 003
12ESGT	Triode Amplifiner	0.	60	12.6	0.15	3.4	5.5	2.60
12FSGT	Triodo Amplither	0.	5M	12.6	0.15	1.9	3.4	2.40
12976	Duplox-Diode Triode	0.	7 V	12.6	0.15			
$12 \mathrm{H6}$	Twin Diode	0.	70	12.6	0.15			
12J3GT	Triode Amplifier	0.	60	12.6	0.15	3.4	3.6	3.40
121769	Sharp Cut-aH Pontodo	0.	78	12.6	0.15	4.2	3.0	3.8
$12 \times 761$	Remote Cut-off Pomtode	0.	7R	12.6	0.15	4.6	12	. 005
12 KB	Triode Hexode Converter	0.	${ }^{\text {OK }}$	12.6	0.15			
124807	Twin Pentode	0.	8 BU	12.6	0.15	5	6	0.70
120761	Duplox-Diode Triode	0.	7 V	12.6	0.15	2.2	5	1.60
1258GT	Triplo-Diode Triode	0.	${ }^{\text {CPB }}$	12.6	0.15	2.0	3.8	1.2
12547	Heptode	0.	8R	12.6	0.15	9.5	12	0.13
$125 \mathrm{C7}$	Twin Triode	0.	85	12.6	0.15	2.2	3.0	2.0
12585	Hiph- $\mu$ Triode	0.	6AE	12.6	0.15	4	3.6	2.40
125F7	Diode Variable- $\mu$ Pentode	0.	7AZ	12.6	0.15	5.5	6.0	. 004
12367	Medium Cut-off Pentode	0.	CBK	12.6	0.15	2.5	7.0	. 003
12547	Sharp Cut-off Pentode	0.	88K	12.6	0.15	8.5	7.0	. 003
12537	Sharp Cut-off Pemodo	0.	8 N	12.6	0.15			
$125 \times 7$	Remote Cut-off Pentode	0.	8 N	12.6	0.15	6.0	7.0	. 003
12SUGT	Twin Triode	0.	880	12.6	0.15			
12SNTGI	Twin Triode	0.	880	12.6	0.3			
12507	Duplex-Diode Triode	0.	80	12.6	0.15	3.2	3.0	1.60
12587	Duplex-Diode Triode	0.	80	12.6	0.15	3.6	2.8	2.40
12567	Duplox-Diode Triode	0.	80	12.6	0.15	3.0	2.8	2.4
$125 \times 7$	Twin Triode	0.	880	12.6	0.3	3.0	0.8	3.6
12577	Heptode Converter	0.	8R	12.6	0.15	Osc.-Grid leak 20000 ohms		
$14 \mathrm{A4}$	Triode Amplifier	1.	SAC	14	0.16	3.4	3.0	4.00
14A5	Beom Power Amplifier	L.	6AA	14	0.16			
$\begin{aligned} & 14 A 71 \\ & 1287 \\ & \hline \end{aligned}$	Remote Cir-off Pentode	L.	8 V	14	0.16	6.0	7.0	. 005
14AF7	Twin Triode	$L$.	8 AC	14	0.16	2.2	1.6	2.30
1486	Duplex-Diode Triode	1.	8W	14	0.16			
1488	Pentogrid Converter	L.	8	14	0.16	$1 \mathrm{c} 2=4 \mathrm{Ma}$.		
14 CS	Boom Power Amplifior	L.	6AA	14	0.24		-	

IX - HIGH-VOLTAGE HEATER TUBES

Use	Plate Supply Volts	Grid Bras	Seroen Veths	Screen Current Me.	Plato Current Me.	Plato Resistance Ohme	Transcenductance Micromhos	Amp. Factor		Power Oepput Wafts	Type
Class-A Amp. ${ }^{6}$	$\begin{aligned} & 100 \\ & 180 \end{aligned}$	$\begin{aligned} & -15 \\ & -25 \end{aligned}$	$\begin{aligned} & 100 \\ & 180 \end{aligned}$	$\begin{aligned} & 3 / 6.5 \\ & 8 / 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 / 19 \\ & 45 / 48 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 50000 \\ & 35000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1700 \\ & 2400 \end{aligned}$		$\begin{array}{r} 4500 \\ 3300 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.8 \\ 3.4 \\ \hline \end{array}$	$12 \mathrm{A5}$
Class-A Amp.	250	-12.5	250	3.5	30	70000	3000		7500	3.4	12A6
Class-A Amp.	135	-13.5	135	2.5	9.0	102000	975	100	13500	0.55	12A7
Converter	Characteristics same as 6AE-Table I										12AOGT
Class-A Amp.	180	- 6.5	-mo	$\cdots$	7.6	8400	1900	16	-	4	12AM7 GT
Class-A Amp.	250	- 2.0	venom	$\square$	0.9	91000	1100	100	$\longrightarrow$	-	1296M
Class-A Amp.	250	- 3.0	100	2.6	9.2	800000	2000	$\cdots$	$\square$		$12: 37 \mathrm{ML}$
Class-A Amp. Class-A Amp.	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & -1 \\ & -3 \\ & \hline \end{aligned}$	100	2	$0.6$	$\begin{array}{r} 73000 \\ 170000 \\ \hline \end{array}$	$\begin{aligned} & 1500 \\ & 2100 \\ & \hline \end{aligned}$	$\begin{array}{r} 110 \\ 360 \\ \hline \end{array}$	$\square$		12900T
Clase-A Amp.	Characteristics some es 688-Table 1										12c8
Class-A Amp.	250	-13.5	$\longrightarrow$		50		1450	13.8	-	-ma	12.50T
Class-A Amp.	C. Charactoristics same as 65F5-Tablo I										123507
Class-A Amp.	250	- 3.0		-		580001	1200	70	-		12976
Rectiner	Choracteristics same as 6H6-Table 1										$12 \times 16$
Class-A Amp.	Cheracteristics same as 6/5-Tablo I										123S6T
Class-A Amp.	Charactaristics seme as 617-Table I										127791
R.F. Amplifier	CharacterisNes semme as 6X7-Table 1										$12 \times 768$
Converter	Characteristics seme as 6K8-Table 1										12K8
Class-A1 Amp.	180	-9.0	180	2.8	13.0	160000	2150	-	10000	1.0	12mot
Class-A Amp.	Charocteristics same es 667-Toble I										129707
Class-A Amp.	250	- 2.0			0.9	91000	1100	100	-	$\cdots$	129307
Converter	Characteristics same as 6SA7-Table I										12SA7
Class-A Amp.	Characteristics same as 6SC7-Table I										125 C 7
Class-A Amp.	Characteristics same as 6SF5-Table 1										12575
Class-A Amp.	Characterisfics same as 65F7-Table I										12987
Class-A Amp.	Charactorisfics same es 6SC7-Tablel										12597
M-P Ampllitier	Characteriatics samo es 6SN7-Table I										12847
Class-A Amp.	Characterisfics samo as 68577-Table I										$12 \leqslant 17$
R.F. Ampliner	Characteristics some as 6SK7-Table I										$125 K 7$
Class-A Amp.	Characteristics same as 6SL7GT-Table II										12517GT
Class-A Amp.	Characteristics same as 6SN7GT-Table II										12SNTGT
Class-A Amp.	Characteristics same as 6597-Table I										12807
Class-A Amp.	Characteristics same es 6R7-Table I										12587
Class- $A_{1}$ Amp.	250	$-9$	-	-	9.5	8500	1900	16	-	--	12SY7
Class-A1 Amp. ${ }^{\text {a }}$	250	-8	$\cdots$	-	9	7700	2600	20	$\cdots$		$125 \times 7$
Converter	250	$-2$	100	8.5	3.5	1000000	450		$\longrightarrow$	-	$125 Y 7$
Class-A Amp.	Characteristics samo as 7A4-Toble III										$14 A 4$
Class-A, Amp.	250	-12.5	250	3.5/5.5	30/32	70000	3000	-m-	7500	2.8	14A5
Cluss-A Amp.	250	$-3.0$	100	2.6	9.2	800000	2000	$\cdots$	-	-	$\begin{array}{\|l\|} \hline 14271 \\ 12: 7 \\ \hline \end{array}$
Class-A Amp.	250	-10	--	-	9	7600	2100	16	$\underline{\square}$	-	14AF7
Class-A Amp.	Characteristics same as 786-Table III										1486
Converter	Characteristics same as 788-Table III										1488
Class-A Amp.	Characteristics same as 6V6-Table I										14C3 -

TABLE IX - HIOH-VOLTAGE HEATER TUBES-Continued

Type	Nome	Saso	$\left\|\begin{array}{c} \text { Socket } \\ \text { Connec- } \\ \text { Htons } \end{array}\right\|$	Heater		Capaettonce $\mu \mu \mathrm{fld}$.			Uso	Plato Supply Yolts	Grld Blas	Seroen Volis	Screen Current Ma.	Pato Cument Ma.	$\begin{array}{\|c\|} \text { Plote } \\ \text { Reselstonce } \\ \text { Ohms } \end{array}$	Transconductance Micromhos	Amp.   Factor	$\begin{gathered} \text { Load } \\ \text { Rosistance } \\ \text { Ohms } \end{gathered}$	PowerOutpurWotts	Typo
				Volts	Amp.	In	Out	PiatoGrid												
$14 \mathrm{C7}$	R.F. Pontode	1.	8 V	14	0.16	6.0	6.5	. 007	Class-A Amp.	250	- 3.0	100	0.7	2.2	1000000	1575				14.7
1486	Duplex-Diode Triode	L.	8w	14	0.16				Class-A Amp.	Characteristics same as 7E6-Table III										$14 E 6$
14E7	Duplox-Diode Pentode	$L$.	BAE	14	0.16	4.6	5.3	. 005	Class-A Amp.	Choracteristics same as 7E7-Table III										$14 E 7$
14F7	Twin Triode	$L$.	8AC	14	0.16				Class-A Amp.	Charactoristics same as 7F7 - Table ili										14F7
1475	Twin Triode	L:	8BW	12.6	0.15	2.8	1.4	1.2	Class-A1 Amp.	Charactoristics samo as 7F8										1478
1447	Somi-Variable- $\mu$ Peniodo	$L$	8 V	14	0.16	0.0	7.0	. 007	Class-A Amp.	250	-2.5	150	3.5	9.5	800000	3800				14.77
14.17	Iriode-Hoxado Convertor	L.	CBL	14	0.16	$\underline{p t}=5 \mathrm{Ma}$.			Convertor	Characteristics some as 737-Tablo III										1417
14NT	Prin Triodo	$L$	BAC	14	0.32				Class-A Amp.	Charactoristics samn as 7N7-Table lil										$14 \times 7$
1407	Heptode Pontagrid Converter	L.	8AL	14	0.16		-	-	Convertor	Characteristics same as 707-Table III										1497
1487	Duplex-Dioce Pentode	L.	BAE	14	0.16	3.6	3.3	. 064	Class-A Amp.	Characterstics same as 7R7-Tablelll										14.7
1487	Triode Heptode	L.	8 BE	14	0.16	$1 \mathrm{pt}=5 \mathrm{Ma}$.			Converter	230	-2.0	100	3	1.8	1250060	523		-		1457
1467	H.f. Pentode	L.	8 V	14	0.24		$\cdots$		Class-A Amp.	300	-2.0	150	3.9	9.6	300000	5800				1407
$14 \mathrm{W7}$	Pentode	L	88	14	0.24	$\mathrm{R}_{\mathrm{k}}=160 \mathrm{ohms}$			Class-A Amp.	300	- 2.2	150	3.9	10	300000	5800				14 W 7
18	Pontode	M.	68	14	0.30				Class-A Amp.	Charocteristics some as 6f60										18
19SG6G	Eoom Power Amp.	0.	SBT	18.9	0.3	11	6.5	0.65	Defioction Amp.	400	Poak surge $E_{P}=4000 \mathrm{~V}$. Pook surge $\mathrm{E}_{\mathrm{G}}=-100 \mathrm{~V}$. $\mathrm{I}_{\mathrm{G} 2}=6 \mathrm{ma}. \mathrm{I}_{\mathrm{P}}=70 \mathrm{mma}$.									18PG6G
2013 GM	Triode Heptode Convertor	0.	8 H	20	0.15				Convertor	250	- 3.0	100	3.4	1.5	Triode Plote (No.6) 100 v .1 .5 ma .					20J36M
2147	Triode Hoxode Convertor	1.	BAR	21	0.16		-	-	Convater	$\begin{aligned} & 250 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & =3.0 \\ & =3.0 \end{aligned}$	$100$	$\mathrm{ode}^{2.8}$	$\begin{aligned} & 1.3 \\ & 3.5 \end{aligned}$		$\begin{array}{r} 275 \\ 1900 \\ \hline \end{array}$	$32$			21A7
25468	Pentode Powey Amolifier	0.	75	25	0.3	8.5	12.5	0.20	Class-A Amp.	135	-20.0	135	8	37	35000	2450	85	4000	2.0	2546
2SATOT:	Rectifier Power Pentode	0.	8 F	25	0.3				Class-A Amp.	100	-15.0	100	4	20.5	50000	1800	90	4500	0.77	25A701
		0.	60	25	0.3				Class-A Amp.	110	+15.0	Ueed in	dynemeresp	45	celt me	3800	58	2000	2.0	
25ACSGT	Triode Power Amplitios	0.	60	25	0.3				Class-A Amp.	165	Used in dynamic-couplod circuit with GAFSG driver							3500	3.3	25ACSGT
$2525{ }^{\text {2 }}$	Dlaect-Coupled Triodes	5.	60	25	0.3				Class-A Amp.	110	0	110	7	45	11400	2200	25	2000	2.0	2585
25366 ${ }^{2}$	Pentode Power Amplitior	0.	78	25	0.3				Class-A Amp.	95	-15.0	95	4	45		4000		2000	1.75	25866
25856T ${ }^{8}$	Trode Pentede	0.	37	25	0.15				Closs-A Amp.		Charectoristies eame as 128s6T									258369
3589561	Beam Pentode	0.	6AM	25	0.3				Dofliection Amp.	250	47*	150	2.1	45	$\underline{ }$	5500		-		2580669
$23 \mathrm{CSG}{ }^{8}$	Beom Power Amplliter	0.	7AC	25	0.3				Class-A $\mathrm{A}_{1}$ Amp.	135	-13.5	135	3.5/11.5	58/60	9300	7000		2000	3.6	$23 C 60$
25DEGT	Diode Triode Pentode	0.	BAF	25	0.15				Triode Amp.	100	-1.0			0.5	91000	1100	100			250807
25030r	Diode Triode Pemode			25	0.15				Pontode Amp.	100	- 3.0	100	2.7	8.5	200000	1900				250907
2516	Beom Power Amplitor	0.	7AC	25	0.3	16	13.5	0.30	Class- $\mathrm{A}_{1}$ Amp.	110	- 8.0	110	3.5/10.5	45/48	10000	8000	80	2000	2.2	2516
254068	Diroet-Coupled Trioder	0.	7w	25	0.3				Closs-A Amp.	110	0	110	7	45	11400	2200	25	2000	2.0	$23 N 66$
						Each Unit Push-Pull			Cless-A Amp.	26.5	-4.5	26.5	2/5.5	20/20.5	2500	5500		1500	0.2	
26A7GT	Ampliace	0.	ssu	26.5	0.6				Closs-AB Amp. ${ }^{3}$	26.5	- 7.0	26.5	2/8.5	19/30		Sco		$2500 \cdot$	0.5	26ATOT
321701	Diode-beam Tetrode	0.	82	32.5	0.3				Class-A Amp.	110	- 7.5	110	3	40	15000	6000		2500	1.5	321707
35AS	Ceam Power Amplitor	1.	6AA	35	0.15				Class-A1 Amp.	110	- 7.5	110	$3 / 7$	40/41	14000	5800		2500	1.5	35AS
35166	Ceam Power Amplliter	0.	7AC	35	0.15	13	9.5	0.80	Class- $A_{1}$ Amp.	110	- 7.5	110	3/7	40/41	13800	5800		2500	1.5	35160
43	Pentode Power Amplifer	M.	68	25	0.3	8.5	12.5	0.20	Class-A Amp.	95	-15.0	95	4.0	20.0	45000	2000	90	4500	0.90	43
$48^{8}$	Tetrode Power Ampliter.	m.	6A	30	0.4				Class-A Amp.	96	-19.0	96	9.0	52.0		3800		1500	2.0	48
S0A5	Beom Power Amplilicer	1.	6AA	50	0.15				Class-A, Amp.	110	- 7.5	110	4/11	49/50	10000	8200		2000	2.2	50AS
SOCGGT	Boam Power Ampllters	0.	7AC	50	0.15				Class- $\mathrm{A}_{1}$ Amp.	135	-13.5	135	3.5/11.5	58/60	9300	7000		2000	3.6	SOCSGT
5016GT	Beam Power Amplitier	0.	7AC	50	0.15				Class-A Amp.	110	- 7.5	110	4/11	49/50	-	8200	82	2000	2.2	50166T
70a7G	Diodo-Beom Totrodo	0.	8AB ${ }^{1}$	70	0.15				Class-A Amp.	110	- 7.5	110	3.0	40	$\underline{\square}$	5800	80	2500	1.5	70A76T
70UGG	Diode-Beam Tetrode	0.	BAA	70	0.15				Class-A1 Amp.	110	- 7.5	110	3/6	40/43	15000	7500		2000	1.8	701709
$\begin{aligned} & 1177671 \\ & 117 \mathrm{MyGi} \\ & \hline \end{aligned}$	Rectifier-Ampliner	0.	8 AO	117	0.09				Cless-A Amp.	105	- 5.2	105	4/5.5	43	17000	5300	-	4000	0.85	$\begin{array}{\|l\|} \hline 117069 / \\ 117 \mathrm{myof} \\ \hline \end{array}$
117N70T	Roctifior-Amplifier	0.	BAV	117	0.09				Cless-A Amp.	100	- 6.0	100	5.0	51	16000	7000		3000	1.2	117N7OT
117 PTOT	Rectifier-Amplifor	0.	sav	117	0.09				Class-A Amp.	103	- 5.2	105	4/5.5	43	17000	5300	-	4000	0.25	117P70T

table ix-high-voltage heater tubes-Cominuod


TABLE X-SPECIAL RECEIVING TUBES

Type	Namo	Base	Socker Connec Hions	Fil. or Hoctor		Capacitonce $\mu \mu \mathrm{fd}$.			Us	$\begin{gathered} \text { Plate } \\ \text { Supply } \\ \text { Volls } \end{gathered}$	Grid Bias	Screen Volis	Screen Current Ma.	$\begin{gathered} \text { Plote } \\ \text { Current } \\ \text { Ma. } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Plate } \\ \text { Rosislance } \\ \text { Ohms } \end{gathered}\right.$	Transconductance Micromhes	Amp. Factor		PoworOutputWatts	Type
				Volts	Amp.	10	Out	Plate. Grid												
$00-A^{7}$	Triode Detector	M.	40	5.0	0.25	3.2	2.0	2.50	Grid-Loak Def.	45	-	-	-	1.5	30000	666	20			00-A
01-A ${ }^{\text {a }}$	Iriode Devector Amplifior	M.	4D	5.0	0.25				Class-A Amp.	135	-9.0		-	3.0	10000	800	8.0	-		O1-A
				1.4	0.1	2.6	4.2	2.0	Class-A Triode	90	0	$\sim$		0.15	240000	275	65			
3A8Gt	Diode Triode Pentode	0.	8AS	2.8	0.05	3.0	10.0	0.012	Class-A Pentodo	90	0	90	0.3	1.2	600000	750		-		3ABCT
38567	Boam Power Amplifor	0.	7 AP	$\begin{aligned} & 1.4 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \end{aligned}$				Class-A Amp.	67.5	- 7.0	67.5	$\begin{aligned} & 0.6 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.7 \\ & \hline \end{aligned}$	100000	$\begin{aligned} & 1650 \\ & 1500 \\ & \hline \end{aligned}$	-	5000	$\begin{aligned} & 0.2 \\ & 0.18 \end{aligned}$	3056T
3 CSOT	Power Output Pentode	0.	740	$\begin{array}{\|l\|} \hline 1.4 \\ 2.8 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 0.1 \\ 0.05 \\ \hline \end{array}$		-	-	Class-A Amp.	90	-9.0	90	1.4	6.0	-	$\begin{aligned} & 1550 \\ & 1450 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 80000 \\ & 10000 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.26 \\ & \hline \end{aligned}$	3CSOT
3 Cb	Twin Triode	1.	78W	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1 \\ 0.05 \\ \hline \end{array}$			-	Class-A Amp.	90	0	-	-	4.5	11200	1300	14.5	-	-	3c6
3LEA	Power Amplifier Pentode	L.	6BA	2.8	0.05			-	Class-A Amp.	90	-9.0	90	1.8	9.0	110000	1600		6000	0.30	31E4
3 LFA	Power Amplifior Totrode	1.	688	$\begin{array}{\|l\|} \hline 1.4 \\ 2.8 \\ \hline \end{array}$	$\begin{array}{\|l} 0.1 \\ 0.05 \\ \hline \end{array}$			-	Class-A Amp.	90	- 4.5	90	$\begin{aligned} & 1.3 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 75000 \\ & 80000 \\ & \hline \end{aligned}$	$\begin{array}{r} 2200 \\ 2000 \\ \hline \end{array}$	-	$\begin{aligned} & 8000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.27 \\ & 0.23 \\ & \hline \end{aligned}$	3LF4
3056t	Beam Power Amplifer	0.	7AQ	$\begin{array}{\|l\|l} 1.4 \\ 2.4 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.1 \\ 0.05 \\ \hline \end{array}$	$\begin{aligned} & \text { Paral } \\ & \text { Sorio } \end{aligned}$	$\begin{aligned} & \text { lied File } \\ & \text { os Fila } \end{aligned}$	$\begin{aligned} & \text { amonts } \\ & \text { ments } \end{aligned}$	Class-A Amp.	90	-4.5	90	$\begin{aligned} & 1.3 \\ & .1 .0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.5 \end{aligned}$	$\square$	$\begin{aligned} & 2100 \\ & 1800 \\ & \hline \end{aligned}$	-	8000	$\begin{array}{\|l} 0.27 \\ 0.25 \\ \hline \end{array}$	3056T
4 ACO	Twin Priode Amplifier	0.	36	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.06 \\ 0.12 \end{array}$	Triod	des Po	ratlel	Class-A Amp.	90	- 1.5	-		2.2	13300	1500	20			4 A 60
GFA	Acorn Triode	A.	78 R	6.3	0.225	2.0	0.6	1.90	Class-- Amp.	80	150*			4.6	2900	5800	17	3050	1.0	$6 F 4$
64	U.A.F. Triode	A.	78 R	6.3	0.225	1.3	0.5	1.6	Class- $\mathrm{A}_{1}$ Amp.	80	150**	-	-	9.5	4400	6400	28	-		644
10	Triode Powor Amolifior	M.	4D	7.5	1.25	4.0	3.0	7.00	Class-A Amp.	425	-37.0	$\underline{\square}$	-	18.0	5000	1600	3.0	10200	1.6	10
11/12 ${ }^{1}$	Triodo Dotertor Amolitios	M.	4F/4D	1.1	0.25				Class-A Amp.	-135	-10.5		-	3.0	15000	440	6.6	-		11/12
207	Triode Power Amolifer	S.	4D	3.3	0.132	2.5	2.3	4.10	Class-A Amp.	135	-22.5		$\bar{\square}$	6.5	6300	525	3.3	6530	0.11	20
227	Totrodo R.F. Amplifior	M.	4 K	3.3	0.132	3.5	10	0.02	Class-A Amp.	135	- 1.5	67.5	1.3	3.7	325000 :	500	160	-		22
26	Triodo Amplitior	m.	4 D	1.5	1.03	2.8	2.5	8.10	Class-A Amp.	180	-14.5	-	$\underline{\square}$	6.2	7300	1150	8.3	-	-	26
$40^{7}$	Triode Vollage Amplifer	m .	40	5.0	0.23	2.8	2.2	2.00	Class-A Amp.	180	- 3.0	-	-	0.2	150000	200	30	$\underline{-1350}$		40
50	Triode Power Amplifier	m .	40	7.3	1.25	4.2	3.4	7.10	Class-A Amp.	450	-84.0	-	-	53.0	1800	2100	3.8	4350	4.6	50

TABLE $X$-SPECIAL RECEIVINC

Type	Name	Bcse	Sockel Connections	Fil, or Moator		Capacisance $\mu$ upd.			Use	Plate Supply Volts
				Volts	Amp.	In	Ous	Plais. Grid		
71-A	Triodo Power Amplifier	M.	4 D	3.0	0.25	3.2	2.9	7.50	Class-A Amp.	180
99.	Triode Datoctor Amplitior	S.	4D	3.3	0.063	2.5	2.5	3.30	Class-A Amp.	90
112A 7	Triodo Detestor Ampliner	m.	4D	5.0	0.25				Closs-A Amp.	180
$\begin{aligned} & 18281 \\ & 4828 \\ & \hline \end{aligned}$	Triodo Amplifior	M.	4 D	5.0	1.25	-	-	-	Class-A Amp.	250
183/483 ${ }^{7}$	Powes Triode	M.	4 D	3.0	1.25				Class-A Amp.	250
4857	Triode	S.	3A	3.0	1.3				Class-A Amp.	180
864	Triode Amplifer	S.	4D	1.1	0.25			-	Class-A Amp.	90
954	Pentode Detiector,	A.	588	6.3	0.15	3.4	3.0	0.007.	Class-A Amp.	250
			sas	6.3	0.15	3.4	3.0	0.007	Blas Detector	250
935	Triede Defecter, Amplinar, Oscilletor	A.	SBC	6.3	0.15	1.0	0.6	1.40	Class-A Amp.	250 90
936	Variablo- $\mu$ Pontode	A.	588	6.3	0.15	3.4	3.0	0.007	Class-A Amp.	250
	R.F. Amplitier							0.007	Mixer	250
937	Triode Detector, Ampitiner, Osclliator	A.	58D	1.25	0.05	0.3	0.7	1.20	Class-A Amp.	135
$\begin{aligned} & 958 \\ & 958-\mathrm{A} \\ & \hline \end{aligned}$	Triode A.F. Amplition, Osefllator	A.	580	1.25	0.1	0.6	0.8	2.60	Class-A Amp.	135
959	Pontodo Detoctor, Amplifier	A.	SEE	1.25	0.05	1.8	2.5	0.015	Class-A Amp.	145
7E5/1201	U.h.f. Triode	1.	88N	6.3	0.15	3.6	2.8	1.50	Closs-A Amp.	180
7CA/1203	U.h.f. Diode	1.	SAN	6.3	0.15				Roctifiol	
$\begin{aligned} & 74871 \\ & 12044 \end{aligned}$	Sherp Cut-off Pontode	L.	880	6.3	0.15	3.5	4.0	0.06	Class-A Amp.	250
1276	Triodo Power Amplifior	m.	40	4.5	1.14				Class-A Amp.	
1609	Pomtode Amplifer	5.	58	1.1	0.25				Class-A Amp.	135
9004	U.h.f. Diode	A.	481	6.3	0.15				Detoctor	
9005	U.h.l. Diode	A.	586	3.6	0.165				Defoctior	
Ef-SO	Sharp Cut-off Pemtode	L.	9 C	6.3	0.3	8	5	0.007	1.F.-R.F. Amp.	250
$\begin{aligned} & \mathrm{Cl}-2 \mathrm{CA4} \\ & \mathrm{Cl}-464 \mathrm{~A} \\ & \hline \end{aligned}$	U.h.f. Triode	0.	Fig. 17	6.3	0.75		-	$\cdots$	Closs-A Amp. and Modulator	250
$\begin{aligned} & \mathrm{Gl}-446 A \\ & \mathrm{Gl}-446 \mathrm{~B} \\ & \hline \end{aligned}$	U.h.f. Triode	0.	Ftg. 19	6.3	0.75		-	-	Oscillator, Amp. or Converter	250
$\begin{aligned} & 559 \\ & \text { OL.559 } \end{aligned}$	U.h.f. Diode	0.	Fig. 18	6.3	0.75				Defector er írans. line switch	5.0
MU.2C35	Speciel Mi-Muv Triode	0.	Fig. 38	6.3	0.3	5.2	2.3	0.62	Shunt Voltage Regulator	8000
VT52	Triode	M.	4D	7.0	1.18	5.0	3.0	7.7	Class-A Amp.	220
X6030	Diode	1.	Fig. 4	3.0	0.6				Nolse Diode	90

## TUBES-Continued

Grid Bjas	$\begin{gathered} \text { Seroon } \\ \text { Volts } \end{gathered}$	Screen Current Ma.	Plate   Current Ma.		Tronsconductance Micromhes	Amp. Factor		Power Ontpus Weffs	Type
-43.0	二-	-	20.0	1750	1700	3.0	4800	0.79	71.A
-4.5	$\square$	-	2.5	15500	423	6.6	-	-	99
-13.5			7.7	4700	1800	0.5	$\square$	-	112A
-35.0	-	-	18.0	-	1500	5.0	-	$\cdots$	$\begin{aligned} & 18281 \\ & 4228 \\ & \hline \end{aligned}$
-60.0	-	-	25.0	18000	1800	3.2	4500	2.0	183/483
- 9.0	-	-	6.0	9300	1350	12.5	$\longrightarrow$		485
-4.5			2.9	13500	610	8.2	-		864
- 3.0	100	0.7	2.0	1.5 meg.	1400	2000			
-6.0	100		Plate current fo be adjustod fo 0.1 ma. with no slignal						954
- 7.0		$\cdots$	6.3	11400	2200	25	$\longrightarrow$		
-2.5	-	-	2.5	14700	1700	25			935
- 3.0	100	2.7	6.7	700000	1800	1440			
-10.0	100	-	-	Oscillator peak volis-7 min.					936
- 5.0	-		2.0	20800	650	13.5	-		937
- 7.5	-	-	3.0	10000	1200	12	$\cdots$		$\begin{array}{\|l\|} \hline 958 \\ 958-A \\ \hline \end{array}$
- 3.0	67.5	0.4	1.7	200000	600	480	-		959
$-3$			5.5	12000		36			725/1201
Max. p.m.s. vollage-150				Max. d.c. outpul evrront-8 mana.					7C4/1203
- 2	100	0.6	1.75	800000	1200	$\square$	-	-	$\begin{array}{\|l\|} \hline 74871 \\ 1204 \end{array}$
		Choractoristics sumilar to 6A3							1276
- 1.5	67.5	0.65	2.5	400000	723	300			1609
	Max. e.c. voltoge-117. Max. d.e. outpuf cwrom-5 ma.								9004
	Max. a.c. volfage-117. Max. d.c. output current-1 ma.								9005
150*	250	3.1	10	600000	6300				EF-50
100*	-	-	25.0	-	7000	-	-	-	$\begin{aligned} & \text { OL-2CA4 } \\ & \text { OL-464A } \end{aligned}$
200*	-	-	15.0	-	4500	45	$\square$	$\square$	$\begin{aligned} & G L-A 46 A \\ & G L-468 \end{aligned}$
	-	—	24.0	-	-	-	$\square$	-	$\begin{aligned} & 559 \\ & 61-559 \end{aligned}$
-200			5.0	525000	950	500	-		NU-2C35
-43.5	-		29.0	1650	2300	3.8	3800	1.0	V752
			4.0	-	-	-	-		X6030

RECEIVING TUBE SUBSTITUTION GUIDE

RECEIVING TUBE SUBSTITUTION GUIDE
TABLE X-SPECIAL RECEIVING TUAES - Continuod

Type	Nome	Doso	$\left\lvert\, \begin{gathered} \text { Sockel } \\ \text { Conneo- } \\ \text { tiona } \end{gathered}\right.$	Fil. or Heoler		Copocitance $\mu \mathrm{\mu} / \mathrm{d}$.			Us	$\left\lvert\, \begin{gathered} \text { Plate } \\ \text { Supply } \\ \text { Voplis } \end{gathered}\right.$	CridBias	$\underset{\substack{\text { Scraoen } \\ \text { Volts }}}{ }$	$\begin{aligned} & \text { Scrosen } \\ & \text { CWMont } \\ & \text { M. } \end{aligned}$	$\begin{gathered} \text { Plate } \\ \text { Curron! } \\ \text { Ma. } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Plate } \\ \text { Roelstonce } \\ \text { Ohms } \end{gathered}\right.$	TranseonductionceMicromhes	Amp.	$\left\|\begin{array}{c} \text { Loedd } \\ \text { Roalstonco } \\ \text { Ohme } \end{array}\right\|$		Type																
				Volts	Amp.	in	Oul	$\begin{aligned} & \text { Plaio- } \\ & \text { Gride } \end{aligned}$																												
XXB	Twin-Triode   Frequency Converter	t.	Fig. 9	$\begin{array}{\|l\|} \hline 2.81 \\ 1.4 \\ 3.2 .21 \\ \hline 1.6 \\ \hline \end{array}$	$\begin{aligned} & 0.031 \\ & 0.10 \\ & \hline \end{aligned}$	-	-	-	Convorter ${ }^{2}$	901	-	-	-	$\begin{aligned} & 4.56 \\ & 4.58 \\ & 1.4 .4 \\ & \hline 1.46 \end{aligned}$	$\begin{aligned} & 11200{ }^{4} \\ & 112000 \\ & 19000 \\ & 1900 \end{aligned}$	$\begin{aligned} & 13004 \\ & 33008 \end{aligned}$	14.5		-	xI																
																$\begin{aligned} & 7601 \\ & 7601 \end{aligned}$	14.51	-																		
XXFM	Twin-Diode Triode	L.	832	6.3	0.3				Close-A Amp.	250	-1	-	-	1.9	6700	1500	100			xXF																
* Cathode resistor-ohms.		1 Doth sections.   2 Secilon No. 2 recommended for h.f.e.						${ }^{2}$ Dry bentiory operation. - Section No. 1.			4Section No. 2.   - Same as X99. Type V99 is same, but sockel connections are 4E.																									
TABLE XI-MiNIATURE RECEIVINO TUBES Other minieture iypes in Tables XIII and XV																																				
Type	Name	Dase	$\left.\begin{array}{\|c} \text { Sockel } \\ \text { Conct } \\ \text { Cilonace } \end{array} \right\rvert\,$	Fil. or heater		Copesitance $\mu \mu \mathrm{pd}$.			Us	PlateSupplyVoiss	CridElias	$\underset{\substack{\text { Scroon } \\ \text { Volts }}}{ }$	$\begin{aligned} & \text { Saroon } \\ & \text { Curront } \\ & \text { Ma. } \end{aligned}$	$\begin{array}{\|c} \text { Plote } \\ \text { Curent } \\ \text { Ma. } \end{array}$	$\begin{gathered} \text { Plate } \\ \text { Redatonce } \\ \text { Othme } \end{gathered}$	Transconductunce Micromion	Amp.	$\left\|\begin{array}{c} \text { Loodd } \\ \text { Ronstonce } \\ \text { Ohme } \end{array}\right\|$	$\left\|\begin{array}{c} \text { Power } \\ \text { Oulput } \\ \text { Wots } \end{array}\right\|$	Protorypo																
				Valm	Amp.	! ${ }^{\text {n }}$	Orr	$\begin{array}{\|c\|} \hline \text { Plate- } \\ \text { Orld } \end{array}$																												
143	H. F. Diode	B.	SAP	1.4	0.15				$\begin{aligned} & \text { Dofoctor } \\ & \text { F.M. Diserim. } \end{aligned}$		Max. e.c. volloge per plato-117.				Max. output curiont-0.5 ma.					-																
114	Shero Cut-eff Pemode	B.	6AR	1.4	0.05	3.6	7.3	. 008	Closs-A Amp.	9	0	90	2.0	4.3	350000	$\underline{2025}$	-1			INSCT																
18s	Pentogid Convertor	${ }^{2}$	7AT	1.4	0.05				Converter	9	0	67.5	3.0	1.7	500000	300	Ord N0. 1100000 ohms			INTOT																
184	Poonlegrid Power Amp.	$B$.	7 AV	1.4	0.1		-	-	Clasi-A Amp.	90	-7.0	67.5	1.4	7.4	100000			8000	0.270																	
155	Diode Pennode	B.	${ }_{\text {bav }}$	1.4	0.03			-	Clase-A Amp.	67.5	0	67.5	0.4	Seroen rosistor 3 meg , grid 10 meg .				1 mea.	$\overline{0.050}$	-																
174	Veriablo- $\mu$ Pontode	E.	GAR	1.4	0.03	3.6	7.5	0.01	Closs-A Amp.	9	0	$\frac{90}{67.5}$	$\frac{1.4}{0.5}$	3.3	500000	Idd 10 mog.																				
14	Sherp Cut-efl Pemodo	B.	6AR	$\frac{1.4}{1.4}$	0.05	${ }^{3.6}$	7.5	0.01	Clost-A Amp.	9	0	9		1.6	1300000	900				ITSGOT																
105	Diodo Pomiode	$\frac{\text { a. }}{\text { B. }}$	60w					1.3	Closs-A Amp.	67.3	0	67.3	0.4	1.6	600000	623		-		$\underline{\text { INSOT }}$																
2 Cs 1	Twin Triado		${ }^{3} \mathrm{C}$	6.3	0.3	2.2	1.0		$\begin{aligned} & \text { Class-A1 Amp. } \\ & \hline \text { Cless-A1 Singlo } \\ & \hline \end{aligned}$	150	- 2			8.2		3500	35			7 FP																
2430	Coem Power Pentode	Q	709				4.5			250	$450^{*}$	250	7.42	$4{ }^{4}$	63000	3700	40.	4500	4.5																	
				6.0	0.7	10		0.5	Closs- $A_{1}$ Amp. ${ }^{\text {a }}$	250	$229{ }^{\text {a }}$	250	14.02	$00^{2}$	-	-	80.	90009	9																	
									Close- $A D_{1} A m p{ }^{\text {a }}$	250	-23	250	13.52	602	-	=	48.	$8000{ }^{\circ}$	12.5																	
									Closes-A $A_{1}$ Amp. ${ }^{\text {a }}$	250	-30	250	$20^{2}$	1202			40.	$2000 \cdot$	17																	
$3 \mathrm{A4}$	Power Ampliner Pontode	B.	783	1.4	$\begin{array}{\|c\|} \hline 0.2 \\ 0.1 \\ \hline \end{array}$	4.8	4.2	0.24	Class-A, Amp.	$\begin{aligned} & 133 \\ & 130 \\ & \hline \end{aligned}$	- 7.5   8.4	$\begin{aligned} & 90 \\ & 90 \\ & \hline 9 \end{aligned}$	2.6   2.2	$\begin{array}{r} 14.9^{21} \\ 16.1^{2} \\ \hline \end{array}$	$\begin{gathered} 90000 \\ \hline 100000 \end{gathered}$	1900	-	8000	0.6																	
3 A 5	M.F. Twin Triode	B.	78.	1.4	$\begin{aligned} & \begin{array}{l} 0.22 \\ 0.11 \end{array} \end{aligned}$	0.9	1.0	3.20	Close-A Amp.	90	- 2.5		-	2.7	8306	1200	15		-																	
304	Powor Ampunter Pentodo	a.	7BA	$\begin{aligned} & 1.4 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 0.1 \\ 0.05 \\ \hline \end{array}$	Paredilel FillamontsSeries Filoments			Closs-A Amp.	90	- 4.5	90	$1.7$	$7.7$	$\begin{aligned} & 1000000 \\ & 120000 \end{aligned}$	$\begin{array}{r} 2150 \\ 2000 \\ \hline \end{array}$	-	10000	$\begin{aligned} & 0.27 \\ & 0,24 \end{aligned}$	зоser																
354	Powor Ampliner Pontode	-	78A	$\begin{aligned} & 1.4 \\ & 2.8 \end{aligned}$	0.05	$\begin{aligned} & \text { Parallol Filomente } \\ & \text { Sevies Pilemonts } \\ & \hline \end{aligned}$			Class-A Amp.	90	- 7.0	67.5	1.4	$\begin{aligned} & 7.4 \\ & 6.1 \\ & \hline \end{aligned}$	100000	$\begin{array}{r} 1575 \\ 1425 \\ \hline \end{array}$	-	2000	$\begin{aligned} & 0.27 \\ & 0.225 \\ & \hline \end{aligned}$	30307																
3 V 4	Powor Amplinor Pentode	E.	cax	1.4	0.1	Peroliol filloments			Clast-A Amp.	90	-4.5	9	2.1	9.5	100000	2150		10000	0.27	3050t																
3 V 4	Powor Ampliner Pounco			2.8	$\begin{array}{\|l\|} \hline 0.05 \\ \hline 0.13 \\ \hline \end{array}$	Saries Piliements					-4.5	90	1.7	7.7	120000	2000		10000	0.24																	
6AB4	Triode R.F. Amp.	D.	SCE	6.3			0.5 1.5		Closs-A Amp.	250	-2	-	-	10	-	3500	35		-	$\begin{aligned} & \text { malomith } \\ & 12 A 17 \end{aligned}$																
6ACS	Sheop Cur-oft Pentode	B.	780	6.3	0.3		-	-	Closs-A Amp.	235 100	$\begin{aligned} & 2000^{\circ} \\ & 1000^{\circ} \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \end{aligned}$	2.0 1.6	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 800600 \\ & 300000 \end{aligned}$	$\begin{aligned} & 5000 \\ & 4750 \end{aligned}$		$=$		6SH7CT																
GAMS	Sheop Cu-ett Pentode	B.	7CC	6.3	0.45	10	2	0.03	Pontode Amp.	200 150	$\frac{160^{*}}{160^{*}}$	150	2.5	$\frac{10}{12.5}$	$\begin{array}{r}500000 \\ \hline 3000\end{array}$	1000		=	-	6ACT																
									Trode Amp.   R.F. Ampliner	$\frac{150}{28}$	${ }^{1600^{*}}$	28	1.2	12.5 3.0	$\begin{array}{r}3000 \\ \hline 9000\end{array}$	11000	250	=																		
6ass	Sharp Cut-ot Pentode	b.	7PM	6.3	0.173	-		-	Clase-ABAmp.	180	-7.5	73	. 2		$\underline{ }$	2750		$20000{ }^{\circ}$	1.0																	
										180	$200^{\circ}$	120	2.4	7.7	690000	5100	3500																			
6AKs	Sherp Cur-ott Pentode	в.	780	6.3	0.175	4.2	2.1	0.03	R.F. Ampliner	150	$330^{\circ}$	140	2.2	7.0	420000	4300	1000																			
										120	200*	120	2.5	7.5	340000	5000	1700	工																		

## Courtesy ARRL Handbook

TABLE XI-MINIATURE RI

Trpo	$\cdots$ Nemes	Sase	$\begin{aligned} & \text { Soctref } \\ & \text { Connec- } \\ & \text { liens } \end{aligned}$	Fil. or Heater		Capectionce aufd.			Uso
				Vales	Amp.	In	On	$\begin{aligned} & \text { Plono- } \\ & \text { Orld } \end{aligned}$	
GAK6	Powor Amplitior Pomtodo	6.	78K	6.3	0.13	3.6	4.2	0.12	Clest-A Amp.
GALS	U.h.f. Twin Doode	B.	687	6.9	0.8				Detocter
GANS	Power Amp. Peonode	E.	750	6.3	0.5	0.0	4.0	0.05	ClaseiAl Amp.
6aNS	Turan Diedo	B.	781	6.3	0.2			-	Onocter
6AOS	Scem Power Townde	8.	782	6.3	0.45	7.6	6.0	0.25	Cless-A, Amps.
6 696	Dveclicto M1-min Titade	E.	781	6.3	0.15	1.7	1.5	1.80	Class-A Triode
cars	Pomtado Pown Amp.	2.	$60 C$	6.3	0.4		-		Cless-A A Amp.
CASS	Qeam Pentedo	D.	7 CV	6.3	0.8	12	6.2	0.6	Class-A, Amp.
GASS	Shere Cut-ett Pomber	B.	7 CM	6.3	0.175	4.0	2.0	0.02	Close-A Amp.
CATS	Duplox Diado Triode	0.	701	6.3	0.3	2.3	1.1	2.10	Clase-A Amp.
GAUS	Sharp Cin-eft Pomede	0.	700	0.3	0.8	5.5	5.0	. 0035	Class-A Amp.
GAVG	Duediedo Mr-me Triode	0.	781	6.3	0.8				Class- $A_{1}$ Amp.
canc	Remote Cut-eti Pendeno	0.		6.3	0.8	5.5	5.0	0035	Close-A Amp.
can	Perner id Converter	E.	हCI	6.3	0.5	9.5	0.3		Convorion
ca0s	Remete Ceterf Prentede	0.	7cc	6.3	0.3				Closs-A Amp.
	Pombe did Converter	B.	7CH	6.3	0.3	Ore. Grid 50000			Conventer
${ }^{4} \times 6$	On/lox-Diedo Triodo	8.	707	6.8	0.3	1.8	1.1	2.0	Closs-A, Amp.
${ }^{4} \mathrm{CNO}$	Sherp Cut-eft Poutado	B.	7 CM	6.3	0.15	5.4	4.4	00035	Cloze-A1 Amp.
CMS	Remefo Cuholf Pentodo	B.	7 Cm	6.3	0.15	4.5	5.0	. 0025	Class-A, Amp.
CA	Tolado Amplifior	0.	686	6.3	0.15	1.8	1.3	1.00	Clore-A, Amp.
64	Uh.f. Greunded-Cifd R.F. Ampplition	0.	700	6.3	0.4	5.5	0.24	4.0	Grounded-ordd
66	Twin Tolede	0.	7eF	6.3	0.45	2.2	0.4	1.6	Cless- $\boldsymbol{A}_{1}$ Alinp. Mixer, Ocilliator
Cum	U.h.f. Titede Amplitior	B.	7CA	6.3	0.2	3.0	1.6	1.10	Clase-A Amp.
6 Ste	Titplo-OVedo Tritade	0.	9 ¢	4.3	0.45	1.5	1.1	2.4	Clmes-A, Amp.
12 LLS	Twin Diode	B.	68	12.6	0.15	2.5			Datocter
12ar6	Duplex Oficto Priedo	B.	Tis	12.6	0.15	2.3	1.1	2.10	Closs-A A inp.
$12 \times 77$	Doente İdodo	8.	9 A	6.3	0.8	$\frac{2.5}{}{ }^{\text {2 }}$	0.457	1.457	Cloce-A A Ame.
12AC6	Sher Cut-eff Pomporo	B.	7CC	12.6	0.15	3.5	5.0	. 0038	Ciose. $A_{1}$ Amap.
12407	Trina-Titede Ampllitios	8.	9A	6.3	O.3	1.6	0.57	1.51	Cless-A, Ampr.
12AVG	Duediede Hi-mu Triode	B.	707	12.6	0.15				Closio- $A_{1}$ Ampo.
12AW6	Sharp Cut-off Pontade	9.	7cm	12.6	0.15	6.5	1.5	0,025	$\begin{aligned} & \text { Pomtodo Amp } \\ & \hline \text { Triodo Amp. } \\ & \hline \end{aligned}$
12AW7	Shere Cut-off Pentede	B.	7CM	12.6	0.15	6.5	1.5	0.025	Closs-A, Amp.
$12 A \times 7$	Double Triode	B.	9 A	12.6	0.15	1.61	0.46 ?	1.77	Cless-A, Amp.
				6.3	0.3	1.69	0.34 ${ }^{\text { }}$	1.78	
$12 \mathrm{AY7}$	Dual Triode	B.	9A	$\begin{array}{r} 12.6 \\ 6.3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.15 \\ 0.3 \\ \hline \end{array}$	1.3	0.6	1.3	Clase-A Amp.
12046	Remote Cut-eff Pentode	E.	7CC	12.6	0.15	5.5	5.0	. 0033	Clest-A Amp.

## ECEIVING TUBES-Cominued

$\begin{gathered} \text { Plote } \\ \text { Supply } \\ \text { Vefts } \end{gathered}$	Grld Sas	Sereon Velts	Sereen Current Ma.	Plofe Current Ma.	Plato Resisfance Onmes	Tranacenductance Miciemhos	Amp. Pacter		$\begin{aligned} & \text { Power } \\ & \text { Outpet } \\ & \text { Wefts } \end{aligned}$	Pretetype
180	$-9.0$	180	2.5	15.0	200000	2300		10000	1.1	$\cdots$
		Max. r.m.t. voltage-150. Max. d.c. entput currom-10 ma. ${ }^{\text {l }}$								CH6OT
120	$-6$	120	12	35	12500	000				6 SO7
R.m.s. veltoes per pheto $=75$ volis; d.c. outpet $=3.5$ ma. with 25000 ohms and 8 muld. loed;										-
110	- 0.5	180	$4.0^{2}$	$30^{2}$	50000	3700	291	3500	2.0	SVCOT
240	-12.5	250	$7.0^{2}$	$47^{2}$	32000	4100	451	5000	4.5	
250	-3.0			1.0	$5 \times 900$	1200	70		$\square$	6770
100	- 1.0		$\square$	0.8	\$1900	1150	70	$\square$		
250	-18	250	5.52	$33^{2}$	60000	2300		7000	3.4	creot
250	-16.5	250	$5.5{ }^{2}$	$35^{2}$	65000	2400	$\square$	7000	3.2	
150	- 8.5	110	2/6.5	35/36	-	5600		4500	2.2	60761
120	-2	120	3.5	3.5		3500		4s00		
250	$-3$			1.0	58000	1200	70	-m		
250	$-1$	150	4.3	10.8	2000000	5200		$\square$		6SW76T
250	$-2$	O	$\square$	1.2	62500	1000	100	$\square$		650791
250	$6{ }^{*}$	100	4.2	11	1500000	4400				cso7er
230	-1	100	16	3.3	$1000 \% 06$	3.5		-		6sc7r
100	$-1$	100	5	13	120000	2350				6SK701
250	$-3$	100	3.5	9	70000	2000		-		
250	-1.3	100	7.8	3.0	1000000	475		$\square$		6SA7GT
25	- 9	$\longrightarrow$	$\underline{\square}$	9.5	3500	1900	16	10000		CSki7 01
250	-1	150	2.9	7.4	1400000	4600	16	-		$\underline{-}$
250	$-1$	10	3.3	9.2	1300000	$3 \times 00$	-	$\square$		6S5761
250	-2.5	$\underline{-}$	-	10.5	7700	2200	17	$\longrightarrow$		6JSET
150	200*	$\longrightarrow$	$\cdots$	15.0	4500	12000	55	$\longrightarrow$		
160	100*		$\square$	10.0	5000	11000	53	$\square$		
100	50*	$\cdots$	$\square$	0.5	7100	5300	38	-	-	-
180	$-3.3$	-	$\square$	12.0	$\square$	6000	32			-
250	-3			1.0	5800	1200	70	$\square$		
100	$-1$		$\underline{6}$	0.8	5400	1300	70	$\square$	$\square$	
	R.m.s. voltoge per plate $=117 \mathrm{i}$ d.c. outpit $=99$ ma. per plates peak ma.									

TABLE XI-MINIATURE RECEIVING TUBES - Comanued

Type	Name	Bose	$\left.\begin{array}{\|c\|} \hline \text { Socker } \\ \text { Connec- } \\ \text { tions } \end{array} \right\rvert\,$	Fil. or Mootor		Copacitance $\mu \mu \mathrm{fd}$.			Use	Plete Supply Volis$\qquad$	Grid Elas	$\begin{aligned} & \text { Senoen } \\ & \text { Volts } \end{aligned}$	Screen Corrent Me.	Plate Cument Me.	$\begin{array}{\|c\|} \hline \text { Mlate } \\ \text { Resistance } \\ \text { Ohme } \end{array}$	Transcenductence Micromhes	Amp. Factor	$\left\|\begin{array}{c} \text { Lood } \\ \text { Rochstanco } \\ \text { Ohms } \end{array}\right\|$	PowewOutputWatis	Prolotype
				Velts	Amp.	In	Out	$\begin{gathered} \text { Plato- } \\ \text { Grid- } \end{gathered}$												
128AT	Pentogrid Convertor	6.	BCT	12.6	0.15	9.5	8.3		Convertor	250	$-1$	100	10	3.8	1000000	3.5	7	-		-
122006	Romate Cut-off Pontode	B.	7CC	12.6	0.15	4.3	5.0	. 004	Class-A Amp.	250	- 3	100	3.5	9.0	700000	2000				12SK707
128E6	Pontogrid Convertor	$B$.	7CH	12.6	0.15	Ose. Grid 50000 !:			Converter	250	- 1.5	100	7.8	3.0	1000000	475				125A768
12856	Duadiose Iriode	6.	7 BT	12.6	0.15	1.8	1.1	2.00	Class A Amp.	250	-9		-	9.5	8500	1900	16			12SR7GT
1916	Twin Triode	8.	7BF	18.9	0.15	2.0	0.4	1.5	Class $A_{1}$ Amp.	100	50*			8.51	7100	5300	38			-
1978	Triple-Diade Triade	B.	$9 E$	12.9	0.15	1.5	1.1	2.4	Closs-A, Amp.	250	-3			1.0	5800	1200	70			
2646	Romots Cut-oft Pontode	$B$.	7 72	26.5	0.07	6.0	5.0	. 0033	Class-A, Amp.	250	125*	100	4	10.5	1000000	4000				
26 Cb	Duplex-Diodo Triode	B.	781	26.5	0.07	1.8	1.4	2	Clogs-A, Amp.	250	-9			9.5	8500	1900	16			
2606	Pontogrid Converter	6.	7CH	26.5	0.07	Osc. Grid 20000 SI			Converter	250	-1.5	100	7.8	3.0	1000000	475				
. 3585	Boam Power Amplifior	8.	782	35	0.15	11	6.5	0.4	Closi- $A_{1}$ Amp.	110	- 7.5	110	7:	$41:$	-	5800	40	2500	1.5	3516G7
35 CS	Boom Powne Amplifier	8.	7CV	35	0.15	12	6.2	0.57	Class-A, Amp.	110	--7.5	110	37	$40 / 41$		5800		2500	1.5	-
5085	Boam Power Amplifior	B.	782	50	0.15	13	6.5	0.50	Class-A Amp.	110	$-7.5$	110	4.0	49.0	14000	7500		3000	1.9	5016GT
SOCS	Beam Power Amplifter	8.	7CV	50	0.15				Closs-A, Amp.	110	- 7.5	110	4/8.5	49150	10000	7500		2500	1.9	
5590	Pentodo	E.	750	6.3	0.15	3.4	2.9	0.01	Clasi-A, Amp.	9	820*	90	1.4	3.9	300000	2000				
5591	R.F. Pentode	6.	780	6.3	0.15	3.9	2.85	0.01	Class-A, Amp.	180	200*	120	2.4	1.7	690000	5100	3500	-		
S654	Sharp Cut-off Pontodo	3.	780	6.3	0.175	4	2.9	0.02	Ctass-A1 Amp.	120	200*	120	2.5	7.5	340000	5000	[			
5697	Dual Triode	B.	9H	12.6	0.45	4	0.45	3.1	Class-A Amp.	250	12.5			16	4000	4100	16.5	,		-
										120	2			34	2000	10000	20			
5722	Noiso Gomerating Diode	8.	${ }^{\text {SCB }}$	2/5.5	1.6		1.5		Moise Genevatan	200				35.	-	-				
		8.			0.15	3.6	3.0	0.01	Class-A Amp.	250	- 3.0	100	0.7	2.0	1 mag. -	1400		-		
9001	Sharp Cut-off Pentode	©.	78 m	6.3	0.15				Mixer	250	- 5.0	100	Onc. peok voliogo 4 volis			350		-		
9002	Triode Datoctor,	B.	7TM	6.3	0.15	1.2	1.1	1.40	Cless-A Amp.	250	-7.0	$\underline{\square}$	-	6.3	11400	2200	25.			-
	Amplition, Oseillator	-	71m	6.3	0.15	1.2			Cless-A Amp.	90	2.5	$\bar{\square}$	-	2.5	14700	1700	25			
		B.	7PM	6.3	0.15	3.6	3.0	0.01	Clast-A Amp.	250	- 3.0	100	2.7	6.7	700000	1800		-		
9003	Romole Cut-otr Poniode	B.	7Pm	6.3	0.15				Mixer	250	10.0	100	Ose. peot volloge 9 volm			600				
9006	U.h.f. Diode	B.	68	6.3	0.15			-	Denoctor	Max. e.e. vollage- 270. Max. d.er output eurroni-5 me.										
- Cathiode resistor-ohmis.			I Por Plate.   I Maximum-signal cursent for full-power outpif.							Also no-utgnal plote ma. when se indicated. No signol plato ma.						${ }^{1}$ Triode No. 1.   ${ }^{5}$ Triade No. 2.				

TABLE XII-SUB-MINIATURE TUBES
${ }_{1}^{1}$ Triode No. 1.


- Grid No. 2 tied to plate and No. 3 to cethode.

Typo	Name	Bose	Socket   Connec   fions	Fil. or Hooter		Copactionce mufd.			Use	$\begin{aligned} & \hline \text { Plose } \\ & \text { Supply } \\ & \text { Volts } \end{aligned}$	Grid Bias	$\begin{gathered} \text { Sercen } \\ \text { Volis } \end{gathered}$	Screen Current Me.	$\begin{array}{c\|} \hline \text { Plate } \\ \text { Current } \\ \text { Ma. } \end{array}$	PlateResistanceOhms	Tronsconduciance Micromhos	$\left\|\begin{array}{l} \text { Amp } \\ \text { Factor } \end{array}\right\|$	LoadResistanceOhms	PowerOutput Woths	Trpe
				Volts	Amp.	In	Out	PlatoGrid												
IACS	Power Pontode	Bs.	Fip. 14	1.25	0.04				Class-A, Amp.	67.5	-4.5	67.5	0.4	2.0	150000	750		25000	0.05	IACS
IADS	Sharp Cut-off Pentode	B.	Fig. 16	1.25	0.04	1.8	2.8	0.01	Closs-A1 Amp.	67.5	0	67.5	0.75	1.25	700000	735		-		IADS
ICB	Hoptode	-		1.25	0.04	6.5	4.0	0.25	Convertor	30	0	30	0.75	0.32	300000	100		-		IC8
$1 E 8$	Pontogrid Convertor	B.	Fig. 27	1.25	0.04	6			Convartor	67.5	0	67.5	1.5	1.0	-	150				1E8
176	Diodo-Pontodo	B8.	Fig. 28	1.25	0.04				Class-A Amp.	67.5	0	67.5	0.4	1.6	400000	600	-	-	$\square$	176
IV5	Audio Penlode	1	\%	1.25	0.04		]	-	Class-A, Amp.	67.5	-4.5	67.5	0.4	2.0	150000	750		25000	0.05	IV5
IWS	Sharp Cut-off Pentode	1	$\because$	1.25	0.04	2.3	3.5	0.01	Clast- $A_{1}$ Amp.	67.5	0	67.5	0.75	1.03	700000	733		-		IWS
$2 E 31$	R.F. Pentode	1	2	1.25	0.05				Class- $A_{1}$ Amp.	22.5	0	22.5	0.3	0.4		500				2E31
$2 E 32$	R.F. Pentodo	1	?	1.25	0.05				Class-A Amp.	22.5	0	22.5	0.3	0.4	350000	500		-		2 E 32
$2 E 35$	Audio Pentode	1	2	1.25	0.03				Closs- $A_{1}$ Amp.	22.5	0	22.5	0.07	0.27	-	385	-	-	0.0012	2E35
$2 E 36$	Audio Pentode	1	2	1.25	0.03				Class-A, Amp.	22.5	0	22.5	0.07	0.27	220000	385	-	150000	0.0012	2536
	Aude ronlode								Class-A, Amp.	45	-1.25	45	0.11	0.45	250000	500		100000	0.006	
2 E 4	Diode Pentodo	1	2	1.25	0.03				Dofoctor Amp.	22.5	0	22.5	0.12	0.35	-	-		$\underline{\square}$	-	2541
2E42	Diodo Pentode	1	2	1.25	0.03				Denoctor Amp.	22.5	0	22.5	0.12	0.25	250000	375	-	1 meg.	二	2542

Cour tesy ARRL Handbook

TABLE XII

Type	Name	Case	SocketConnes-Ilions	Fll. of Hoater		Copaclionce $\mu \mu \mathrm{ld}$ d.		
				Volls	Amp.	In	Out	Opld
2921	Triode Meptode	1	8	1.25	0.05			-
$2 \mathrm{G22}$	Conventer	1	2	1.25	0.05			
$6 \times 4$	Triode	1	2	6.3	0.15	2.4	0.8	2.4
1247	Diode	1	2	0.7	0.063		$\sim$	
CKSO1	Pentode Volfoge Amplifier	$-1$	:	1.25	0.033	$\square$	$\cdots$	$\xrightarrow{2}$
CK502	Pentode Outpul Amplifiep	$-1$	2	1.25	0.033			
CKS03	Ponfode Output Amplifier	-1	2	1.25	0.033	-		
CKSO4	Pontode Output Amplifier	-1	2	1.25	0.033		$\cdots$	
CK505	Pentode Veltage Ampltiler	-1	2	0.625	0.03	-		
CK506	Penfode Oufput Ampllifier	-1	2	1.25	0.05			
CK507	Ponfode Output Amplifier	-1	:	1.25	0.05			
CK509	Triode Voltage Amplifier	-1	2	0.625	0.03			
CKS10	Dual Spece-Charge Totrode	-1	$\pm$	8.6259	0.05			
CKS12	Low Microphonic Pentodo	1	2	0.625	0.02			
CX5158X	Triode Voliage Amplifior	$-1$	${ }^{2}$	0.625	0.03			
CX520AX	Audio Pentode	1	2	0.625	0.05			
CK521AX	Audio Pontode	1	9	1.25	0.05			
CRS22AX	Audio Pentode	1	2	1.25	0.02			
CX523AX	Pentode Output Amp.	1		1.25	0.03			
CK524AX	Pentode Output Amp.	1		1.25	0.03			
CX525AX	Ponfode Output Amp.	1		1.25	0.2			
CK526AX	Pentode Outpul Amp.	1		1.25	0.2			
CK527AX	Pentode Output Amp.	I		1.25	0.015			
CK529AX	Shioldod Outpue Ponfode	1	느느는	1.25	0.02			
CKSSIAXA	Diode Pentode.	1	2	1.25	0.03			
CKSS3AXA	R.F. Pentode	1	?	1.25	0.05			
CXS56AX	U.h.f. Triode	1	2	1.25	0.125			
CKS69AX	U.h.f. Triode	1	2	1.25	0.07			
CKS69AX	R.f. Penfode	1	2	1.25	0.05			
CK605CX	Shorp Cut-off Pöntode	1	$\longrightarrow$	6.3	0.2			
CK6068x	Single Diode	1	2	6.3	0.15			
CK603CX	U.h.f. Triode	1	2	6.3	0.2			
CK619CX	Mi-Mu Triode	1	*	6.3	0.2			
CK624CX	Sharp Cut-otf Pentode	1	$\square$	6.3	0.2			
CK650AX	Sherp Cut-eff Pentode	1	2	6.3	0.2			
CK5672	Pentode Oulput Amp.	1	$\square$	1.25	0.05			
$\begin{aligned} & \text { HY113 } \\ & \text { HY123 } \end{aligned}$	Triode Amplifier	-1	5K	1.4	0.07			
HYIIS MY 145	Pentode Velfage Amplifier	-1	5K	1.4	0.07		-	
$\begin{aligned} & \text { HY125 } \\ & \text { HY155 } \end{aligned}$	Pentode Power Amplifier	-1	5K	1.4	0.07			
M54	Tefrode Power Amplifier	1	2	0.625	0.04			
M64	Tehnde Vollage Amplifier	1	2	0.625	0.02			
M74	Tetrode Voltage Amplifier	1	2	0.625	0.02			
2K61	Gas Triode	1	2	1.4	0.05			
$\begin{aligned} & \text { SD917A } \\ & 5637 \end{aligned}$	Triode	1	2	6.3	0.15	2.6	0.7	1.4

## = SUB-MINIATURE TUBES - Continued



TABLE XII - SUB-MINIATURE TUBES - Continued

Trpe	Name	Base	Secket Connec fiens	Fill. or Hopler		Copecilonce $\mu \mu \mathrm{fl}$ /			Use	$\begin{array}{\|l\|} \hline \text { Mate } \\ \text { Supply } \\ \text { Voly } \end{array}$	Grid	$\begin{aligned} & \text { Seroen } \\ & \text { Volts } \end{aligned}$	Screen Current Me.	Mate.CurrentMe.	Plater   Reslatance   Ohms	Transconductance Mieromhos	Amp.		$\infty \begin{aligned} & \text { Power } \\ & \text { Oulpu1 } \\ & \text { Wafte } \end{aligned}$	Type
				Volts	Amp.	In	Out	$\begin{array}{\|l\|} \hline \text { cido } \\ \hline \end{array}$												
$\begin{aligned} & \mathbf{5 0 8 2 8 9 A} \\ & 5638 \\ & \hline \end{aligned}$	Audio Pontode	1	2	6.3	0.15	4.0	3.0	0.22	Cless-A1 Amp.	100	270*	100	1.25	4.8	150000	3300	-	-	-	
$\begin{aligned} & \hline 50828 E \\ & 5634 \\ & \hline \end{aligned}$	Sherp Cul-off Pontode	$\cdot$	-	6.3	0.15	4.4	2.8	0.01	Closs-A, Amp.	100	150*	100	2.5	6.5	240000	3500	-	-	-	$\begin{aligned} & \hline 5022^{28 E} \\ & 5634 \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{SN944} \\ & \hline 5633 \\ & \hline \end{aligned}$	Remmete Cut-off Pentode	,	-	6.3	0.15	4.0	2.8	0.01	Class-A, Amp.	100	150*	100	2.8	7.0	200000	3400		-	-	$\begin{aligned} & \hline \text { SN944 } \\ & \hline 5633 \\ & \hline \end{aligned}$
SN946	Diode	1	:	6.3	0.15	1.8			Rootflier	150				9.0	-					SNTA6
$\begin{aligned} & \text { SN947D } \\ & \hline 6640 \\ & \hline \end{aligned}$	Audto Beam Pentode	1	2	6.3	0.45		-	-	Class-A, Amp.	100	-9	100	2.2	31.0	15000	5000		3000	1.25	$\begin{aligned} & \text { SN947C } \\ & 5640 \\ & \hline \end{aligned}$
SNO48C	Voltape Repuldior	1							Regulater				perating	volmoge $=9$	5; Max. Curr	,				SNAMSC
SNO933D	Power Pontodo	1		6.3	0.15	9.5	3.8	0.2	Class-A Amp.	150	100	100	4/7.5	21/20	50000	9000		9000	1.0	SNPSSD
$\begin{aligned} & \mathbf{S N O S 4} \\ & 5641 \\ & \hline \end{aligned}$	Malf-Wave Recrifior	1	2	6.3	0.45			-	Roettitior	300		-	-	45.0	-	-		-		$\begin{aligned} & \hline \text { SN9S4 } \\ & \text { S641 } \\ & \hline \end{aligned}$
SNagsse	Duel Triodo	1	2	6.3	0.45	2.8	1.0	1.3	Class-A1 Amp. ${ }^{1}$	100	$100^{\circ}$		-	5.5	8000	4250	34	-		SN9358
$\begin{aligned} & \text { SN9568 } \\ & \text { S642 } \\ & \hline \end{aligned}$	H.V. Helf-Wave Rectifiee	-	-	1.25	0.14			--	H.V. Roettior			inver	V. $=100$	Max. $A$	Average Ip =	2 Ma . Poak 1	$1 p=23$			$\begin{aligned} & \text { SN9368 } \\ & 5642 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { SN957A } \\ & \text { SC4S } \end{aligned}$	Triode	1	2	6.2	0.15	2.0	1.0	1.8	Class-A, Amp.	100	560*	-	-	5.0	7400	2700	20	-		$\begin{aligned} & \mathbf{3 N 9 5 7 A} \\ & 3645 \\ & \hline \end{aligned}$
SN1006	Triode	1	2	6.3	0.13				Class-A1 Amp.	100	$320^{\circ}$			1.4	29000	2400	70	-		SN1006
SN1007	Mixer	4		6.3	0.15	5.0	2.8	0.003	Mixer	100	$150^{\circ}$	100	5.0	4.0	230000	900	-	-		SN10078

$\stackrel{\square}{8}$
TABLE XIII-CONTROL AND REGULATOR TUBES

Type	Name	Base	Socket Connecfions	Cathode	Fil. or Moutor		Use	Poek Anede Volicige	Max.   Anede   Me.	Minimum Supply Voltage		OperatingMe.	Orld	Tube Volisege Drop	Type
					Velts	Amp.									
0 O2	Volvepe Requlater	7 -pin 8.	580	Cold		-	Voltoge Regulator	-		185	150	3-30			0 O2
OAS	Gas Pemtode	7 - pin 8.	Fig. 33	Cold			Relay er inderem	Plato-750 V., Scroen -90 V, Grid +3 V ., Pulse - 85 V .							OAS
032	Voftore Reculator	$7 \tan 8$.	580	Cold			Vottege Regulator		-	133	108	5-30	-		022
$\begin{aligned} & \text { OAAG } \\ & 1267 \end{aligned}$	Gos Triedo Starter-Anedo Iype	6 -pin 0.	$\begin{aligned} & 4 V \\ & 4 V \end{aligned}$	Cold	-	-	Cold-Centrode Strater-Anode Roley Tube	With $105-120$-volf a.c. anode supply, peak starter-anode e.c. volfage is 70 , peak r.f. voltege 53. Pock d.c. ma $=100$. Average d.e. $\mathrm{ma}=25$.							$\begin{aligned} & 0 A 46 \\ & 1267 \end{aligned}$
1847	Volloge Regulator	7 -pin 8 .			-	-	Votbegi Regulater	-	-	225	82	1-2		-	1847
1621	Ges Triode Glow-Dischange Type	6 -pin 0 .	4 V	Cold	-	-	Velay Tube	125-143	23	$66^{\circ}$				73	1C21
2AAG	Gas Triode Grid Type	7-pin 0.	53	FII.	2.5	2.5	Comfrol Tube	200	100	$\underline{\square}$				15	2 C 46
6056	Gas Triode Grid Type	8 -pin 0.	60	Hr.	6.3	0.6	Swaep Cireult Oscillator	300	300			1.0	0.1-10:	19	6956
284		5-pin M.	3A	Mr.	2.5	1.4									$2 \mathrm{B4}$
2 Ca	Gas Triode	7 -pin 8.	SAS	Fll.	2.5	0.65	Comtrol Tube	Pato volis $=350 ;$ Grid volis $=-50 ; A \mathrm{wy}$. Ma. $=5 ;$ Pcat Ma. $=20 ;$ Voltage drop $=16$.							2 C 4
2021	Gas Tetrode	7 -pin $\mathrm{B}^{\text {. }}$	730	Htr.	6.3	0.6	Orid-Controlled Reetifer	650	500		650	100	$0.1-10^{7}$	8	2021
							Reday Tube	400	-		500	1500	-4.07	15	
3 C 23	Gas and Morcury Vapor	4-pin M.	36	Fil.	2.5	7.0	Orid-Controlled Recenter	1000	6000		100	1500	-2.5 ${ }^{8}$	15	3 C 23
604	Gas Triode	7 -pin 8 .	SAY	Mr.	6.3	0.25	Control Tube	Plate volis	50; Orid	lis $=-50$;	va. Ma. $=2$	; Poak Me.	100, Voltag	drop $=16$.	604
17	Mercwry Vaper Triode	4-pin M.	36	FII.	2.5	5.0	Crid-Convolled Roerther	7500	2000	-58	$\underline{1000}$	500	200-3000	10-24	17
874	Vothere Ropulator	4 -pin M.	45			-	Volrage Regatator		-	125	90	10-50	-		874
876	Curront Requlator	Megul					Curront Rogulater				40-60	1.7	-		876
884	Gas Triode Grid Type	O-pin 0.	60	H.	6.3	0.6	Swoep Clircuil Oreilletor	300	200			2	25000	-	884
885	Gas Triode Grid Type	5-pin S .	54	Hin.	2.5	1.4	Grid-Controlied Rocthiner Sanae as Type 884		300	Character	bites same a	$\frac{75}{79084}$	25000		885

Courtesy ARRL Handbook

## RECEIVING TUBE SUBSTITUTION GUIDE

## TABLE XV-RECTIFIERS-RECEIVING AND TRANSMITTING

See also Table XIIf-Centrol and Regulator Tubes

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Name	Base	Sockel Connec Hons	Cothede	Fill. or Heater		Max.M.C:VologePer Plato	$\begin{aligned} & \text { D.C. } \\ & \text { Ouput } \\ & \text { Cument } \\ & \text { Me. } \end{aligned}$	Max. Inverse Peak Volfoge	PookPlateCumentMe.	Trpe
					Volts	Amp.					
BA	Full-Wave Rectifier	4-pin M.	41	Cold			350	350	Tubo drep	P 80 v .	G
BH	Full-Wave Reetifior	4 -pin M.	41	Cold			350	125	Tube drep	9 90 v .	G
ER	Half-Wave Roetifer	4-pin M.	4 H	Cold			300.	50	Tube dro	p 60 v .	G
CE. 220	Half-Wave Rectititer	4-pin M.	4 P	Fil.	25	3.0		20	20000	100	HV
OY4	Holf-Wave Rectior	$5-\mathrm{pin} 0$.	484	Cold	$\begin{gathered} \text { Connet Pins } \\ 7 \text { and } 8 \end{gathered}$		93	75	300	500	G
024	Full-Wave Rectfler	$5-$ pin 0.	48	Cold			350	30-75	1250	200	G
1	Half-Wave Rectiner	4-pin S.	46	Hit.	6.3	0.3	350	50	1000	400	MV
1.V	Half-Wave Rectifier	4-pins.	46	Hth.	6.3	0.3	350	50			HV
183GT/8016	Half-Wave Rectifier	6 -pin 0.	3 C	Fil.	1.25	0.2		2.0	4000	17	HV
1848	Half-Wave Rectifor	7 -pin 8.	-	Cold		-	800	6	2700	50	6
$1 \times 2$	Half-Weve Rectifier	$9-$-pin 8.	Fig. 29	Fil.	1.25	0.2		1	15000	10	HV
122	Half-Wave Recther	7 -pin B.	7CB	Fil.	1.5	0.3	7800	2	20000	10	HV
2825	Half-Wave Reetifier	7-pin B.	31	Fil.	1.4	0.11	1000	1.5		9	HV
2V3G	Half-Wove Roctiler	6-pin 0.	4 r	Fil.	2.5	5.0	-	2.0	16500	12	HV
2W3	Half-Wave Rectifor	S-pin 0.	4 X	FII,	2.5	1.5	350	55			HV
2X2/87910	Half-Wave Roctifler	4 -pin 5.	$4 A B$	Hers.	2.5	1.75	4500	7.5			HV
2×2-A	Half-Wave Recther	A-pin 5.	4AB	Same as $2 \times 2 / 879$ bul will withstand severe shock \& vibration							HV
$2 \times 2$	Half-Wave Rectifor	4-pin M.	AAB	Fil.	2.5	1.75	4400	5.0			HV
222/684	Half-Wave Reettion	4-pin M. M.	418	Fil.	2.5	1.5	350	30			HV
3824	Herf-Wave Reetifor	$4-\operatorname{pin}$ M.	T-4A	Fil.	$\begin{aligned} & 5.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 60 \\ & 30 \end{aligned}$	$\begin{aligned} & 20000 \\ & 20000 \\ & \hline \end{aligned}$	$\begin{array}{r} 300 \\ 150 \\ \hline \end{array}$	HV
3825	Half-Wavo Roctifior	4-pin M.	4 P	Fil.	2.5	5.0	$\square$	500	4500	2000	$\underline{6}$
3826	Half-Wave Roetiher	8 -pin 0.	Fig. 31	Hir.	2.5	4.75	-	20	15000	8000	HV
DR-3827	Half-Wave Rectifor	4-pin M.	48	Fil.	2.5	5.0	3000	250	8500	1000	HV
SAZ4	Full-Wave Reetfifier	5-pin 0.	ST	Fil.	5.0	2.0	Some as Trpe 80				HV
SR4GY	Full-Wove Rectitior	5-pin 0.	5 T	Fil.	5.0	2.0	$\begin{aligned} & 9004 \\ & 9507 \end{aligned}$	$\begin{aligned} & 1504 \\ & 1757 \end{aligned}$	2800	650	HV
574	Full-Wave Rectinor	5 pin 0.	ST	Fil.	5.0	3.0	450	250	1250	800	HV
SU4G	Full-Wave Rectifior	8 -pin 0.	51	Fil.	5.0	3.0	Same as Type 323				HV
SV4G	Full-Wave Restifler	8 -pin 0.	51	Mir.	5.0	2.0	Same as Trpe 33 V				HV
5W4	Full-Wave Rectioer	5-pin 0.	51	Fll.	5.0	1.5	350	110	1000		HV
$5 \times 3$	Full-Wave Rectifer	4-pin M.	4 C	Fil.	5.0	2.0	1275	30			HV
5X46	Full-Wave Rectilies	8 -pin 0.	50	Fil.	5.0	3.0	Same as 523				HV
5Y36	Full-Wave Rectiler	5-pin 0.	51	Fil.	5.0	2.0	Some as Type 80				HV
SY4G	Full-Wave Rectilior	8-pin 0	50	Fil.	5.0	2.0	Some as Type 80				HV
523	Full-Wave Rectifior	4-pin M.	4 C	Fil.	5.0	3.0	500	250	1400	-	HV
524	Full-Wave Rectifor	5-pin 0.	51	Hht.	5.0	2.0	400	125	1100	$\longrightarrow$	HV
SWAGT	Damper Service	6-pin 0.	4 CG	Htr.	6.3	1.2		125	2000	600	HV
	Half-Wove Reetifier						350	125	1250	600	
6W5G	Full-Wave Rectifor	6 -pin 0.	65	Hir.	6.3	0.9	350	100	1250	350	HV
$6 \times 4$	Full-Wave Rectiter	7-pin B.	7CF	Hir.	6.3	0.6	325	70	1250	210	HV
$6 \times 5$	Full-Wove Rectifior	6 -pin 0.	65	Hir.	6.3	0.5	350	75			HV
6Y3G	Half-Wave Reetifiter	5-pin 0.	4AC	Htr.	6.3	0.7	5000	7.5			HV
$6{ }^{510}$	Full-Wave Rectifier	6-pin S.	61	Htr.	6.3	0.8	350	50			HV
623	Half-Wave Rectinor	$4-\operatorname{pin}$ M.	46	Fil.	6.3	0.3	350	50	-	-	HV
62510	Full-Wave Recthor	6 -pin S .	6 K	Hitr.	6.3	0.6	230	60	-	-	HV
6ZY5G	Full-Wave Recthor	6-pin 0.	65	Hir.	6.3	0.3	350	35	1000	150	HV
7 Y 4	Full-Wave Recther	8 -pin L .	5AB	Hir.	6.3	0.5	350	60			HV
724	Full-Wave Rectifier	8-pin L.	5AB	Hir.	6.3	0.9	$\begin{array}{r} 4501 \\ 325: \\ \hline \end{array}$	100	1250	300	HV
12A7	Roettifer-Pentode	7-pin S.	7K	Hit.	12.6	0.3	123	30	-		HV
1223	Hall-Wavo Roectifer	4 -pin S.	46	Hir.	12.6	0.3	250	60		-	HV
1225	Voltage Doubler	7-pin M.	71	Hir.	12.6	0.3	225	60		-	HV
14 Y	Full-Wave Rectifer	$8-p i n t$.	5AB	Hir.	12.6	0.3	$\begin{aligned} & 4501 \\ & 3254 \end{aligned}$	70	1250	210	HV
1423	Half-Wevo Rectitior	4-pin S:	46	Hent	12.6	0.3	250	60	-	$\underline{-}$	HV
25A76 10	Rectior-Pentode	8 -pin 0.	8 F	Hr.	23	0.3	125	75			HV
25 W 4	Half-Wave Reetfitior	6-pin 0.	4CG	Mr.	25	0.3	350	125	1250	600	HV
$25 \times 6$ GT	Voltage Doubler	7-pin 0.	70	Mr.	25	0.15	125	60			HV
23Y4GT	Half-Wave Reethler	6-pin O.	5AA	Hir.	23	0.15	125	75	-	-	HV
25Y5 10	Voltage Doubler	6-pin 5.	$6 E$	Hit.	25	0.3	250	85		-	HV
2523	Half-Wave Recttior	4-pin 3.	46	Atr.	25	0.3	250	50		$\underline{-}$	HV
2524	Half-Wave Reettior	6-pin 0.	SAA	Hr.	25	0.3	125	125	-	-	HV
2525	Rectifior-Doubler	6-pins 5 .	6E	Him.	25	0.3	125	100	$\underline{-}$	500	HV
2326	Rectiliter-Doublor	7-pin 0.	70	Hin.	25	0.3	125	100		500	HV
2825	Full-Wove Rectiher	8 -pin L.	5AB	Htrs	28	0.24	$\begin{aligned} & 4507 \\ & 325: \end{aligned}$	100	-	300	HV
32176T	Reetifter-Tetrode	8 -pin 0.	82	Atr.	32.5	0.3	125	60		$\square$	HV
35 W 4	Hall-Wavo Reetifier	7-pin 8.	580	Hir.	$35^{2}$	0.15	125	$100^{\circ}$	330	600	HV
$35 \mathrm{Y4}$	Holf-Wave Rectifler	8-pin 0.	SAL	Hin.	$35 \%$	0.15	235	$\begin{gathered} 60 \\ 100^{8} \end{gathered}$	700	600	HV
3523	Half-Wave Reetifor	8 -pin L.	42	Hr.	35	0.15	$250{ }^{\circ}$	100	700	600	HV
3524GT	Half-Wavo Roctifor	6-pin 0.	5AA	Hit.	35	0.15	230	100	700	600	HV
35256	Hetf-Wave Roctifier	O-pin 0.	6AD	Htro.	35:	0.15	125	$\begin{gathered} 60 \\ 1008 \\ \hline \end{gathered}$	-	-	HV

RECEIVING TUBE SUBSTITUTION GUIDE
TABLE XV-RECTIFIERS-RECEIVINO AND TRANSMITTING-Cominued
See also Table XIII-Control and Rogulator Tubes

Type No.	Name	Base	$\begin{array}{\|c\|} \hline \text { Socket } \\ \text { Conmec- } \\ \text { Hons } \end{array}$	Cathedo	Pit. or Hoetor		Max. A.C. Vothoge Per Plato	D.C. Outpur Current Ma.	Max. Inverse Peak Vollage	Peak Plato Current Me.	Type
					Volts	Amp.					
3526 G	Voltoge Doubler	6-pin 0.	70	Hh.	35	0.3	125	110		500	HV
4025GT	Malf-Wave Rectifler	6-pin 0.	6AD	Htr.	40:	0.15	125	$\begin{gathered} 60 \\ 100: \\ \hline \end{gathered}$	-	-	HV
4523	Half-Wave Rectifier	7 -pin 8.	SAM	Htr.	45	0.075	117	65	350	390	HV
4525GT	Half-Wave Rectitier	6-pin 0.	6AD	Htr.	45:	0.15	125	$\begin{gathered} 60 \\ 100 \end{gathered}$	-	-	HV
$50 \times 6$	Votroge Doubler	B-pin L.	7AJ	Htr.	50	0.15	117	75	700	450	HV
$50 \mathrm{Y6GT}$	Full-Wave Reetther	$7-\operatorname{pin} 0$.	70	Hint.	50	0.15	125	85	0		HV
SOY7GT	Voltoge Doublar	$3-$ oin L.	BAN	Htr.	50:	0.15	117	65	700		HV
S026G	Vollape Doubler	7 -pin 0.	7 Q	Htr.	50	0.3	125	150			HV
S027610	Volloge Doubter	B-pin 0.	BAN	Htr.	50	0.15	117	65	-	-	HV
70A7GT	Recthier-Tetrode	B-pin O.	BAB	Atr.	70	0.15	$125{ }^{3}$	60			HV
7017GT	Rectlier-Tetrode	e-pin O.	BAA	Htpr.	70	0.15	117	70	-	350	HV
72	Haff-Weve Recthor	4 -oin M.	4P	Fil.	2.5	3.0	-	30	20000	150	HV
73	Holh-Weve Rocther	B-pin 0.	4Y	FII.	2.5	4.5		20	13000	3000	HV
80	Full-Wave Rectrice	4-pin M.	4 C	Fil.	5.0	2.0	$\begin{aligned} & 3501 \\ & 500: \\ & \hline \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \\ & \hline \end{aligned}$	1400	375	HV
81	Hoff-Wave Rectimer	4.pin M.	48	Fil.	7.5	1.25	700	85	-	-	HV
82	Full-Wove Recilior	4-pln M.	4 C	Fil.	2.5	3.0	500	125	1400	400	MV
83	Full-Wave Rectimer	4-pin M.	4 C	Fi.	5.0	3.0	500	250	1400	800	MV
83-V	Full-Wave Roctifin	4-pin M.	4AD	Hhr.	5.0	2.0	400	200	1100		HV
24/624	Full-Wave Roettiler	S-pln S.	5D	Her.	6.3	0.5	350	60	1000		HV
$\begin{aligned} & 117 \mathrm{GT} / \\ & 117 \mathrm{M} 7 \mathrm{GT} \\ & \hline \end{aligned}$	Rectitiver-Tetrode	e-pin 0.	8 AO	Htr.	117	0.09	117	75	-.	-	HV
117 NTGT	Recther-Totrede	O-pin 0.	BAV	Hin.	117	0.09	117	75	350	450	HV
117P7GT	Roenther-Tefrode	Eepin 0.	BAV	H4.	117	0.09	117	75	350	450	HV
11723	Half-Wave Roctiter	7 -pin 8 .	48R	Hint.	187	0.04	117	90	330	-	HV
1172467	dif.Weve Rectinor	$6-\operatorname{tin} 0$.	5AA	Her.	117	0.04	117	90	350		HV
$11726 G T$	Vothere Doubler	7 -din 0.	70	Atr.	117	0.075	235	60	700	360	HV
217.A10	Holf-Wave Reether	4 -pin d.	4AT	FII.	10	3.25			3500	600	HV
217-C	Half-Wave Rectifier	4 -pin J.	4AT	Fil.	10	3.25	$\square$	-	7500	600	HV
2225	Molf-Wave Rectiliop	4 -pin M.	4P	Fil.	2.5	5.0	-	250	10000	1000	MV
249-8	Maff-Wave Rectifer	4 -pin M.	Fig. 33	FII.	2.5	7.5	3180	375	10000	1500	MV
HK253	Heff-Wave Rectther	4-pin d.	4AT	FII.	5.0	10		350	10000	1500	HV
$\begin{aligned} & 703 A \\ & R K-705 A \end{aligned}$	Hasf-Wave Rectitier	t-min W.	T-3AA	FII.	$\begin{aligned} & 2.50 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\square$	$\begin{array}{r} 50 \\ 100 \end{array}$	$\begin{aligned} & 35000 \\ & 35000 \\ & \hline \end{aligned}$	$\begin{aligned} & 375 \\ & 750 \\ & \hline \end{aligned}$	HV
816	Holf-Wave Recthior	4 -pin 5 .	4	Fil.	2.5	2.0	2200	123	7500	500	MV
836	Hetr-Wave Recthtor	4 -tin M.	4 P	Htr.	2.5	5.0	-	-	5000	1000	HV
666A/866	Hath-Wave Rectiter	4-pin M.	$4 P$	Fil.	2.5	5.0	3500	250	10000	1000	MV
8608	Haff-Wove Rectiter	$4-\ln M$.	$4 P$	Fil.	5.0	5.0	$\underline{\square}$	$\underline{-}$	8500	1000	MV
066 dr.	Holf-Wave Recthin	4-pin M.	48	Fil.	2.5	2.5	1250	2503		-	MV
HY866 \$\%.	Holf-Wave Rectiner	4-pin M.	48	Fil.	2.5	2.5	1750	2503	5000	$\square$	MV
RKE66	Half-Wave Recther	4-pin M.	$4 P$	FII.	2.5	5.0	3500	250	10000	1000	MV
87110	Half-Wave Rectilfor	4 -pin M.	4 P	FII.	2.5	2.0	1750	250	5000	500	MV
878	Hath-Wave Rectiter	4-pin M.	4 P	Fin.	2.5	5.0	7100	5	20000	$\square$	HV
879	Hatf-Weve Rectifler	4-pin S.	$4 P$	Fil.	2.5	1.75	2650	7.5	7500	100	HV
872A/872	Half-Wave Roctitar	4 -pin J.	4AT	Fil.	5.0	7.5	$\square$	1250	10000	5000	MV
973A	Half-Wave Rectiter	4-pin J.	4AT	Fil.	5.0	10.0	$\square$	1500	15000	6000	MV
$\begin{aligned} & 024 A / \\ & 1003 \\ & \hline \end{aligned}$	Full-Wave Rectiter	5 -pin 0.	42	Cold	-	-	$\square$	110	880	-	G
$\begin{aligned} & 1005 / \\ & \text { C } \times 1005 \end{aligned}$	Full-Wave Rectifler	e-pin 0.	5AO	FII.	6.3	0.1	-	70	450	210	6
$\begin{aligned} & 1006 / \\ & \text { CK } 1006 \end{aligned}$	Full-Wave Rectifor	4-pin M.	4 C	FII.	1.75	2.25	-	200	1600	-	G
CK1007	Futh-Weve Rectiller	$8-\operatorname{pin} 0$.	T-96	Fil.	1.0	1.2	-	110	980	-	G
CK1009/BA	Full-Wave Reather	4-pin M.	$\square$	Cold	$\square$	$0 \cdot$	-	350	1000	$\square$	G
1274	Full-Wave Rectifier	6-pin 0.	65	Hrp.	6.3	0.6	Same as 7 Y4				HV
1275	Full-Wove Reetther	4-pin M.	4 C	Fil.	5.0	1.75	Same as 523				HV
1616	Holf-Wave Rectifler	4-pin M.	4	Fil.	2.5	5.0	-	130	6000	800	HV
$\begin{aligned} & 1641 / \\ & \text { RK60 } \\ & \hline \end{aligned}$	Full-Wave Rectifier	4-pin M.	T-4AG	FII.	5.0	3.0	$\square$	$\begin{array}{r} 50 \\ 250 \\ \hline \end{array}$	$\begin{aligned} & 4500 \\ & 2500 \end{aligned}$	-	HV
1654	Helf-Wave Rectitior	7-pin B.	22	Fil.	1.4	0.05	2500	1	7000	6	HV
5317	Holf-Wave Rectifior	7-pin 8.	58U	Cold			1200	6	$\square$	50	G
5825	Holf-Wave Rectifior	4-pln M.	$4 P$	Fil.	1.6	1.25	$\underline{-}$	2	60000	40	HV
8008	Half-Wave Roctifer	4 -tin ${ }^{6}$	Fir. 11	FII.	5.0	7.5	-	1250	10000	5000	MV
8013 A	Half-Wave, Roctifer	4-pin M.	4 P	Fil.	2.5	5.0	-	20	40000	150	HV
8016	Half-Wove Rectiter	$6-\tan 0$.	4AC	Fil.	1.25	0.2	$\square$	2.0	10000	7.5	HV
8020	Holl-Wove Rectitier	4-pin M.	4P	Fil.	3.0	5.5	10000	100	40000	750	HV
					3.8	6.5	12500	100	40000	750	
RK19	Full-Wave Roctifiep	4 4-2in M.	4AT	Atm.	7.5	2.5	1250	2004	3500	600	HV
RK21	Hall-Wave Rectifier	4-pin M.	4 P	Hth.	2.5	4.0	1250	2004	3500	600	HV
RK22	Full-Wave Rectther	4-pin M.	T-4AG	Htpr.	2.5	8.0	1250	2004	3500	600	HV

1 Wht ingut choke of at least 20 henrys.
2 Tapped for pitet lomps.
Topped for pilet lomps.
${ }^{1}$ a Per pair with chel
5 With 100 otrms min. realstance in series with plete; withour series resistor, maximum p.m.s. plato rating is 117 volts.

- Same as 872 A/072 except for heavy-duly push type base.

Filament connected to pins 2 and 3, plete to top cap.
Theke Inpert.
8 Whireut panel lemp.

- Using enly ene half of nlamens.
10 Olecentinced.


## CATHODE-RAY TUBE BASES


$58 V$


5ce


GAL













 (2)





14L


CATHODE-RAY TUBE CHARACTERISTICS
electrostatic types-cathode ray tubes

Type	Heacer		Nominal Dimensions		Base	$\begin{gathered} \text { Han } \\ \text { Basing } \end{gathered}$	Screen		Maximum Desipn Center Ratiors				Typical Operatina Conditione					
	Volts	Amperes	Diameter Inches	Lenpch					Anode 11	\% 2	Anode \#3	$\begin{array}{\|l\|} \hline \text { Anode } 2 \text { to } \\ \text { Deflection } \end{array}$	Anode \#2	node "1	d ${ }^{\text {a }}$	Grid Panpe	$\begin{gathered} \text { Deflect } \\ \text { Ave. Volte } \end{gathered}$	DC/Inch
							Fluorescence	Persiste				(eat Volis					D 1-2	D 3-4
$\begin{aligned} & \text { 2AP1 } \left.{ }^{2}\right) \\ & \text { 2APIA) } \end{aligned}$	6.3	0.6	2	7-7/16	$\begin{aligned} & \text { Small She } 11 \\ & \text { Magnal } 11 \text { Pin } \\ & \hline \end{aligned}$	$\begin{aligned} & 118 \\ & 11 \mathrm{~L} \end{aligned}$	Green	Medium	500	1000	$\ldots$	600	$\begin{array}{r} 500 \\ 1000 \end{array}$	$\begin{aligned} & 125 \\ & 250 \\ & \hline \end{aligned}$	$\ldots$	$\begin{aligned} & 15-45 \\ & 30-90 \end{aligned}$	$\begin{aligned} & 115 \\ & 230 \end{aligned}$	$\begin{array}{r} 98 \\ 196 \\ \hline \end{array}$
28 PI 1	6.3	0.6	2-1/16	7-5/8	$\begin{aligned} & \text { Small Shell } \\ & \text { Duodecal } 12 \text { Pin } \end{aligned}$	$\begin{aligned} & 12 F \\ & 12 F \end{aligned}$	Green	Medium	1000	2500	$\ldots$	500	$\begin{aligned} & 1000 \\ & 2000 \\ & \hline \end{aligned}$	$\begin{aligned} & 150-280 \\ & 300-560 \\ & \hline \end{aligned}$	$\ldots$	$\begin{aligned} & 0-67.5 \\ & 0-135 \end{aligned}$	$\begin{aligned} & 115-155 \\ & 230-310 \\ & \hline \end{aligned}$	$\begin{array}{\|r\|} \hline 74-100 \\ 148-200 \\ \hline \end{array}$
$\begin{aligned} & 3 A P 1, \\ & \text { 3AP1A) } \\ & \text { 3 (PA4) } \end{aligned}$	2.5	2.1	3	11-1/2	Medium 7 Pin	$\begin{aligned} & \text { 7AN } \\ & 7 C E \\ & 7 \mathbb{N N} \end{aligned}$	Green Green White	Medium Medium Medium	1000	1500	....	600	$\begin{array}{r} 600 \\ 800 \\ 1000 \\ 1200 \\ 1500 \\ \hline \end{array}$	$\begin{aligned} & 170 \\ & 230 \\ & 285 \\ & 345 \\ & 475 \\ & \hline \end{aligned}$		$\begin{gathered} 14-40 \\ 14-40 \\ 17-50 \\ 20-60 \\ 22.5-67.5 \end{gathered}$	$\begin{array}{r} 47 \\ 61 \\ 76 \\ 91 \\ 114 \\ \hline \end{array}$	$\begin{array}{r} 45 \\ 58 \\ 73 \\ 87 \\ 87 \\ 109 \\ \hline \end{array}$
$\begin{aligned} & 3 \mathrm{ePP1A} \\ & 3 \mathrm{BP} 1 \mathrm{~A} \end{aligned}$	6.3	0.6	3	10	$\begin{aligned} & \text { Medium She } 11 \\ & \text { Diheptal } 12 \text { Pin } \end{aligned}$	$\begin{aligned} & 144 \\ & 144 \end{aligned}$	Green Green	Medium Medium	1000	2000	$\ldots$	500	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 430 \\ & 575 \end{aligned}$	$\ldots$	$\begin{gathered} 22.5-67.5 \\ 30-90 \end{gathered}$	$\begin{aligned} & 168 \\ & 221 \\ & \hline \end{aligned}$	$\begin{aligned} & 123 \\ & 164 \\ & \hline \end{aligned}$
$3{ }^{3} \mathrm{PI} 1$	6.3	0.6	3	10-3/8	$\begin{aligned} & \text { Medium } \\ & \text { Magnal } 11 \text { Pin, Sleeve } \end{aligned}$	11 C	Green	Medium	$100 n$	2000	$\ldots$	50	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	430   575	..	$\begin{gathered} 22.5-67.5 \\ 30-90 \end{gathered}$	165.5 124	221 165
$\begin{aligned} & \begin{array}{l} 3 D P 11 \\ 30 P 1 A) \end{array} \end{aligned}$	6.3	0.6	3	10-7/16	$\begin{aligned} & \text { Medium She 11 } \\ & \text { Diheptal } 12 \text { Pin } \end{aligned}$	$\begin{aligned} & 14 \mathrm{C} \\ & 14 \mathrm{H} \end{aligned}$	Green	Medium	1000	2000	$\cdots$	50	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 430 \\ & 575 \end{aligned}$	$\cdots$	$\begin{gathered} 22.5-67.5 \\ 30-90 \end{gathered}$	$\begin{aligned} & 166 \\ & 221 \end{aligned}$	$\begin{aligned} & 123 \\ & 164 \\ & \hline \end{aligned}$
${ }^{3151} 1$	6.3	0.6	3	9-15/16	Large Wafer Mapnal 11 Pin, Sleeve	114	Green	Medium	1000	2000	$\cdots$	500	$\begin{aligned} & 1500 \\ & 2000 \\ & \hline \end{aligned}$	$\begin{aligned} & 430 \\ & 575 \\ & \hline \end{aligned}$	$\ldots$	$\begin{gathered} 22.5-67.5 \\ 30-90 \end{gathered}$	${ }_{221}^{165.5}$	${ }_{165}^{124}$
$\begin{aligned} & \text { 3FP7 } \\ & 3 \text { 3P7A } \end{aligned}$	6.3	0.6	3	$10$	$\begin{aligned} & \text { Medi um Shell } \\ & \text { Diheptal } 12 \text { Pin } \end{aligned}$	$\begin{aligned} & 148 \\ & 140 \end{aligned}$	Characteri Phosphor	istics of $\text { INo. } 7$	1000	2000	4000	500	$\begin{aligned} & 2000 \\ & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 555 \\ & 430 \\ & 575 \end{aligned}$	$\begin{aligned} & 2000 \\ & 3000 \\ & 4000 \end{aligned}$	$\begin{gathered} 30-90 \\ 22.5-67.5 \\ 30-90 \end{gathered}$	$\begin{aligned} & 221 \\ & 221 \\ & 295 \\ & \hline \end{aligned}$	164   163   217
$\begin{aligned} & 3 G P 1 \\ & 3 G P 4 \\ & \hline \end{aligned}$	6.3	0.6	3	11-1/2	$\begin{aligned} & \hline \text { Medium Shell } \\ & \text { Maknal } 11 \text { Pin } \end{aligned}$	$\begin{aligned} & 11 A \\ & 11 A \end{aligned}$	Green White	Medium Mediun	1000	1500	....	500	$\begin{aligned} & 1000 \\ & 1500 \\ & \hline \end{aligned}$	$\begin{aligned} & 234 \\ & 350 \\ & \hline \end{aligned}$	$\ldots$	$\begin{gathered} 16.5-49.5 \\ 25-75 \\ \hline \end{gathered}$	$\begin{array}{r} 80 \\ 120 \\ \hline \end{array}$	$\begin{array}{r} 70 \\ 105 \\ \hline \end{array}$
$\begin{aligned} & 3 \text { 3P1A } \\ & \text { 3CPAA } \\ & \hline \end{aligned}$	6.3	0.6	3	11-1/2	$\begin{aligned} & \text { Medium Shell } \\ & \text { Magnal } 11 \text { Pin } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IIN } \\ & \text { IIN } \end{aligned}$	Green White	Mediun Medium	1000	1500	$\ldots$	550	$\begin{array}{r} 1000 \\ 500 \end{array}$	$\begin{aligned} & 163-291 \\ & 245-437 \end{aligned}$	$\ldots$	$\begin{gathered} 16.5-49.5 \\ 25-75 \end{gathered}$	$\begin{aligned} & 64-96 \\ & 96-144 \end{aligned}$	$\begin{aligned} & 56-84 \\ & 84-126 \end{aligned}$
3 3P1	6.3	0.6	3	10	$\begin{aligned} & \text { Sodium ShelI } \\ & \text { Diheptal } 12 \text { Pin } \end{aligned}$	$\begin{aligned} & 141 \\ & 14 \sqrt{1} \end{aligned}$	Green	Medium	1000	2000	4000	500	500 2000 500 2000	$\begin{aligned} & \hline 430 \\ & 575 \\ & 430 \\ & 575 \\ & \hline \end{aligned}$	$\begin{aligned} & 1500 \\ & 2000 \\ & 3000 \\ & 4000 \\ & \hline \end{aligned}$	$\begin{gathered} 22.5-67.5 \\ 30-90 \\ 22.5-67.5 \\ 30-90 \\ \hline \end{gathered}$	$\begin{aligned} & 120 \\ & 160 \\ & 150 \\ & 200 \\ & \hline \end{aligned}$	$\begin{array}{r} 89 \\ 119 \\ 111 \\ 148 \\ \hline \end{array}$
$\begin{aligned} & 3 \mathrm{KPP} \\ & 3 \mathrm{KP4} \end{aligned}$	6.3	0.6	3	11-1/2	$\begin{aligned} & \text { Nedium She 11 } \\ & \text { Neanal } 11 \text { Pin } \end{aligned}$	$\begin{aligned} & 11 M \\ & 11 M \end{aligned}$	Green minte	Medium Medium	1000	2500	....	500	$\begin{aligned} & 1000 \\ & 2000 \\ & \hline \end{aligned}$	$\begin{aligned} & 160-300 \\ & 320-600 \\ & \hline \end{aligned}$	$\ldots$	$\begin{aligned} & 0-45 \\ & 0-90 \end{aligned}$	$\begin{array}{\|c\|} \hline 50-68 \\ 100-136 \end{array}$	$\begin{aligned} & 38-52 \\ & 76-104 \end{aligned}$
34 PI	6.3	0.6	3	8	$\begin{array}{\|l\|} \hline \text { Sma } 11 \text { She } 11 \\ \text { Duodecal } 12 \text { Pin } \\ \hline \end{array}$	12F	Green	Medium	1000	2500	$\cdots$	500	$\begin{array}{r} 1000 \\ 2000 \\ \hline \end{array}$	$\begin{array}{r} 200-350 \\ 400-700 \\ \hline \end{array}$	.	$\begin{aligned} & \hline 0-63 \\ & 0-126 \\ & \hline \end{aligned}$	$\begin{aligned} & 140-190 \\ & 280-380 \\ & \hline \end{aligned}$	
3)P1	6.3	0.3	2-3/4	6-1/8	European 9 Pin	9D	Green	Medium	700	1500	$\ldots$	550	$\begin{array}{r} 800 \\ 1000 \end{array}$	$\begin{array}{r} 200-320 \\ 240-480 \\ \hline \end{array}$	$\ldots$	$\begin{array}{r} 21-50 \\ 31-74 \end{array}$	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline 219-290 \end{array}$	$\left\lvert\, \begin{aligned} & 89-121 \\ & 133-181 \end{aligned}\right.$
$\begin{aligned} & 3 \mathrm{FPP1} \\ & 3 \mathrm{APIA}^{2} \end{aligned}$	6.3	0.6	3	9-1/8	$\begin{aligned} & \text { Small Shell Duodecal } \\ & 12 \text { Pin } \end{aligned}$	12E.	Green	Hedium	1000	2500	$\cdots$	500	$\begin{aligned} & 1000 \\ & 2000 \end{aligned}$	$\begin{aligned} & 165-310 \\ & 330-620 \end{aligned}$	$\ldots$	$\begin{aligned} & 67.5 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 85 \\ & 61 \\ & \hline \end{aligned}$	$\begin{aligned} & 172 \\ & 122 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { 3SP1 } \\ & \text { 3SP4 } \end{aligned}$	6.3	0.6	3x1-1/2	9-1/8	$\begin{aligned} & \text { Small She11 } \\ & \text { Duodecal } 12 \text { Pin } \end{aligned}$	12E	Green White	$\begin{aligned} & \text { Medium } \\ & \text { Mediun } \end{aligned}$	1100	2750	$\cdots$	$\cdots$	$\begin{array}{r} 1000 \\ 2000 \\ \hline \end{array}$	$\begin{aligned} & 165-310 \\ & 330-620 \end{aligned}$	$\ldots$	$\begin{gathered} 28.5-67.5 \\ 58-135 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 73-99 \\ 146-198 \end{array}$	$\begin{gathered} 52-70 \\ 104-140 \\ \hline \end{gathered}$
5API	6.3	$\overline{1.6}$	5-1/4	13	Large Wafer   Marnal 11 Pin, Sleeve	114	Green	Medium	1200	2000	....	500	$\begin{aligned} & 1500 \\ & 2000 \\ & \hline \end{aligned}$	$\begin{aligned} & 430 \\ & 575 \\ & \hline \end{aligned}$	$\ldots$	$\begin{aligned} & 31-57 \\ & 40-74 \end{aligned}$	93	90
5AP4	6.3	0.6	5-1/4	13	$\begin{aligned} & \hline \text { Larfe Wofer } \\ & \text { Magnal } 11 \text { Pin, Sleeve } \\ & \hline \end{aligned}$	11A	White	Medium	1200	2000	....	500	$\begin{array}{r} 1500 \\ 2000 \\ \hline \end{array}$	$\begin{aligned} & 430 \\ & 575 \\ & \hline \end{aligned}$	$\ldots$	$\begin{aligned} & 17.6-57 \\ & 22.8-74 \\ & \hline \end{aligned}$	93	90
$\begin{aligned} & \text { SBP1 } \\ & \text { SBP4 } \end{aligned}$	6.3	0.6	5-1/4	16-3/4	$\begin{aligned} & \text { Larpe Wafer } \\ & \text { Mapnal } 11 \text { Pin } \\ & \hline \end{aligned}$	$\begin{aligned} & 111 \\ & 111 \end{aligned}$	Green White	Medium Modium	1000	2000	....	500	$\begin{array}{r} 1500 \\ 2000 \\ \hline \end{array}$	$\begin{aligned} & 310 \\ & 425 \\ & \hline \end{aligned}$	$\ldots$	20-60	$\begin{aligned} & 63 \\ & 84 \\ & \hline \end{aligned}$	$\begin{array}{r} 57 \\ 76 \\ \hline \end{array}$
SBP1A	6.3	0.6	5-1/4	16-3/4	Medium She II $\text { Mapnal } 11 \text { Pin }$	11 N	Green	Medium	1000	2000	....	50	$\begin{aligned} & 1500 \\ & 2000 \\ & \hline \end{aligned}$	337-450	$\cdots$	$\begin{aligned} & 15-45 \\ & 20-60 \\ & \hline \end{aligned}$	$\begin{aligned} & 63 \\ & 84 \\ & \hline \end{aligned}$	$\begin{array}{r} 57 \\ \quad 76 \\ \hline \end{array}$
5BP7A	6.3	0.6	5-1/4	16-3/4	$\begin{aligned} & \text { Medium Shell } \\ & \text { Mlagnal } 11 \text { Pin } \end{aligned}$	11 N	Characteri	istics of reen	1000	2000	....	500	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 235-420 \\ & 315-560 \end{aligned}$	$\cdots$	$\begin{aligned} & 15-45 \\ & 20-60 \end{aligned}$	$\begin{aligned} & 52-74 \\ & 70-98 \end{aligned}$	$\begin{aligned} & \hline 47-67 \\ & 63-89 \end{aligned}$

electrostatic types-cathode ray tubes

Type	Heater		Nominal Dimensions		Rase	$\begin{array}{\|l\|l\|} \text { RNA } \\ \text { Besing } \end{array}$	Screen		Maximum Design Center Ratings				Typical Operating Conditions					
	Voles	Amperes	Diameter Inchea	Length Inches			Fluoreacence	Persistence	Anode il Volts	Anode 2 Volts	$\begin{gathered} \text { Anode \#3 } \\ \text { Volts } \end{gathered}$	Anode \%2 to   Deflection   Plate   Peak Volts	Anode \#2 Voles	Anode :1 Avg. Volts ${ }^{\text {-. }}$	$\left\|\begin{array}{c} \text { Anode \#3 } \\ \text { Volts } \end{array}\right\|$	Grid RangeVolts	$\begin{gathered} \text { Deflection } \\ \text { Avg. Voles } \operatorname{DC} / \text { Inch } \\ \hline \end{gathered}$	
																	D 1-2	D 3-4
$\begin{aligned} & 5 C P_{1} \\ & \mathrm{SCPP} \end{aligned}$	6.3	0.6	5-1/4	16-3/4	Medium Shell   Diheptal 12 Pin	$\begin{aligned} & 14 \mathrm{~B} \\ & 14 \mathrm{C} \end{aligned}$	Green White	Medium Medium	1000	2000	4000	500	$\begin{array}{r} 2000 \\ 1500 \\ 2000 \\ \hline \end{array}$	$\begin{aligned} & 575 \\ & 430 \\ & 575 \\ & \hline \end{aligned}$	$\begin{aligned} & 2000 \\ & 3000 \\ & 4000 \end{aligned}$	$\begin{gathered} 30-90 \\ 22.5-67.5 \\ 30-90 \\ \hline \end{gathered}$	$\begin{aligned} & 73 \\ & 69 \\ & 92 \\ & \hline \end{aligned}$	$\begin{aligned} & 64 \\ & 56 \\ & 74 \\ & \hline \end{aligned}$
SCP1A	6.3	0.6	5-1/4	16-3/4	Medium Shell   Diheptal 12 Pin	$\begin{aligned} & 14 \mathrm{~J} \\ & 14 \mathrm{l} \end{aligned}$	Green	Medium	1000	2000	4000	500	$\begin{aligned} & 2000 \\ & 1500 \\ & 2000 \\ & \hline \end{aligned}$	$\begin{aligned} & 575 \\ & 430 \\ & 475 \\ & \hline \end{aligned}$	$\begin{aligned} & 2000 \\ & 3000 \\ & 4000 \end{aligned}$	$\begin{gathered} 30-90 \\ 22.5-67.5 \\ 30-90 \end{gathered}$	$\begin{aligned} & 73 \\ & 69 \\ & 92 \\ & \hline \end{aligned}$	$\begin{aligned} & 64 \\ & 56 \\ & 74 \end{aligned}$
5GP1	6.3	0.6	5-1/4	16-3/4	$\begin{array}{\|l\|} \hline \text { Large Wa fer } \\ \text { Mapnal 11 Pin, Sleeve } \\ \hline \end{array}$	11A	Green	Medium	1000	2000	....	500	2000	425	$\ldots$	24-5¢	36	72
$\begin{array}{\|l\|} \hline \text { 5HP1 } \\ \text { 5HP4 } \end{array}$	6.3	0.6	5-1/4	16-3/4	Larke Wa fer Magnal 11 Pin, Sleeve	$\begin{aligned} & 111 \\ & 11 A \\ & \hline \end{aligned}$	Green White	Medium Medium	1000	2000	....	500	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 310 \\ & 425 \end{aligned}$	....	$\begin{aligned} & 15-45 \\ & 20-60 \end{aligned}$	$\begin{aligned} & 63.5 \\ & 84.8 \\ & \hline \end{aligned}$	57.8 77.0
5hP1A	6.3	0.6	5-1/4	16-3/4	Large Wafer Magnal 11 Pin, Micanol	11 N	Green	Medium	1000	2000	$\cdots$	500	$\begin{aligned} & 1500 \\ & 2000 \\ & \hline \end{aligned}$	$\begin{array}{r} 337 \\ 450 \\ \hline \end{array}$	$\cdots$	$\begin{aligned} & 15-45 \\ & 20-60 \\ & \hline \end{aligned}$	$\begin{array}{r} 63 \\ 84 \\ \hline \end{array}$	57 76
$\begin{array}{\|l} \hline 5 \sqrt{P 1} \\ 5 J P 4 \\ \hline \end{array}$	6.3	0.6	5-5/16	16-3/4	$\underset{\substack{\text { Medium } \\ \text { Magnal } \\ \text { N }}}{ } 11$ Pin	$\begin{aligned} & 115 \\ & 11 \mathrm{E} \end{aligned}$	Green White	Medium Medium	1000	2000	4000	500	$\begin{aligned} & 1000 \\ & 2000 \end{aligned}$	$\begin{aligned} & 240 \\ & 520 \end{aligned}$	$\begin{aligned} & 2000 \\ & 4000 \\ & \hline \end{aligned}$	$\begin{gathered} 22.2 .51 .8 \\ 45-105 \end{gathered}$	96	96
$\begin{array}{\|l\|} \hline \text { 5JP1A } \\ \text { SJP4A } \end{array}$	6.3	0.6	5-5/16	16-3/4	$\begin{aligned} & \text { Mledium } \\ & \text { Magnal } 11 \text { Pin } \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \end{aligned}$	Green White	Medium Medium	1000	2000	4000	500	$\begin{array}{r} 1500 \\ 2000 \\ \hline \end{array}$	$\begin{aligned} & 250-472 \\ & 333-630 \\ & \hline \end{aligned}$	$\begin{aligned} & 3000 \\ & 4000 \end{aligned}$	$\begin{aligned} & 34-79 \\ & 45-105 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 58-86 \\ & 77-115 \\ & \hline \end{aligned}$	$\begin{aligned} & 58-86 \\ & 77-115 \\ & \hline \end{aligned}$
$\begin{aligned} & 51 P 1 \\ & 51 P 4 \end{aligned}$	6.3	0.6	5-5/16	16-3/4	Medium Mapnal 11 Pin, Sleeve	$\begin{aligned} & 11 \mathrm{~F} \\ & \hline 1 \mathrm{~F} \end{aligned}$	Green White	Medium Medium	1000	2000	4000	500	$\begin{aligned} & 1000 \\ & 1500 \\ & 2000 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 375 \\ & 500 \\ & \hline \end{aligned}$	$\begin{aligned} & 2000 \\ & 3000 \\ & 4000 \\ & \hline \end{aligned}$	$\begin{gathered} 15-45 \\ 22.5-67.5 \\ 30-90 \end{gathered}$	$\begin{array}{r} 52 \\ 77 \\ 103 \\ \hline \end{array}$	$\begin{aligned} & 45 \\ & 68 \\ & 90 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { SLP1A } \\ & \text { SLP4A } \end{aligned}$	6.3	0.6	5.5/16	16-3/4	Medium Mapnal 11 Pin, Sleeve	$\begin{aligned} & 11 T \\ & 11 T \end{aligned}$	Green White	Medium Medium	1000	2000	4000	550	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 282-475 \\ & 376-633 \end{aligned}$	$\begin{aligned} & 3000 \\ & 4000 \end{aligned}$	$\begin{gathered} 22.5-67.5 \\ 30-90 \end{gathered}$	$\begin{aligned} & 62-93 \\ & 83-124 \end{aligned}$	$\begin{array}{\|l\|} \hline 54-8 i \\ 72-108 \\ \hline \end{array}$
$\begin{array}{\|l\|} \hline \text { 5MP1 } \\ \text { 5MP4 } \\ \hline \end{array}$	2.5	2.1	5-5/16	15-7/8	Large 7 Pin	$\begin{aligned} & \text { 7AN } \\ & \text { 7AN } \end{aligned}$	Green White	Medium Medium	1000	1500	....	600	$\begin{aligned} & 1000 \\ & 1500 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 375 \end{aligned}$	$\cdots$	$\begin{gathered} 16.5-49.5 \\ 15-45 \end{gathered}$	66	60
$\begin{aligned} & \text { SNP1 } \\ & \text { SNP4 } \end{aligned}$	6.3	0.6	5-5/16	16-3/4	Large Wafer Mapnal 11 Pin, Sleeve	$\begin{aligned} & 111 \\ & 11 \mathrm{~A} \\ & \hline \end{aligned}$	Green White	Medium Medium	1000	2000	....	500	$\begin{aligned} & 1500 \\ & 2000 \\ & \hline \end{aligned}$	$\begin{aligned} & 337 \\ & 450 \\ & \hline \end{aligned}$	$\ldots$	$\begin{aligned} & 15-45 \\ & 20-60 \end{aligned}$	84	76
$\begin{aligned} & \hline 5 R P 1 \\ & 5 R P 4 \\ & \hline \end{aligned}$	6.3	0.6	5-1/4	16-3/4	$\begin{array}{\|l} \text { Medium Shel11 } \\ \text { Diheptal } 12 \text { Pin } \\ \hline \end{array}$	$\begin{aligned} & 14 F \\ & 14 F \\ & \hline \end{aligned}$	Green White	Medium Medium	15550	3500	25500	1200	$\begin{aligned} & 2000 \\ & 2000 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 518 \\ & 528 \\ & \hline \end{aligned}$	$\begin{aligned} & 10000 \\ & 20000 \\ & \hline \end{aligned}$	$\begin{aligned} & 30-90 \\ & 30-90 \\ & \hline \end{aligned}$	$\begin{aligned} & 30-45 \\ & 36-54 \end{aligned}$	$\begin{array}{\|l\|} \hline 30-45 \\ 36-54 \\ \hline \end{array}$
$\begin{aligned} & \left.\begin{array}{l} 5 R P 1 A \\ \text { SRP4A } \end{array} \right\rvert\, \end{aligned}$	6.3	0.6	5-1/4	16-3/4	$\begin{aligned} & \text { Medium She } 11 \\ & \text { Dilieptal } 12 \text { Pin } \\ & \hline \end{aligned}$	14 F	Green White	$\begin{aligned} & \text { Medium } \\ & \text { Medium } \end{aligned}$	15550	3500	25500	1200	$\begin{aligned} & 2000 \\ & 2000 \end{aligned}$	$\begin{aligned} & 518 \\ & 528 \\ & \hline \end{aligned}$	$\begin{aligned} & 10000 \\ & 20000 \end{aligned}$	$\begin{aligned} & 30-90 \\ & 30-90 \\ & \hline \end{aligned}$	$\begin{aligned} & 30-45 \\ & 36-54 \end{aligned}$	$\begin{array}{\|l\|} \hline 30-45 \\ 36-54 \\ \hline \end{array}$
$\begin{array}{\|l\|} \hline \text { 5SP1 } \\ \text { SSP4 } \end{array}$	6.3	0.6	5-1/4	18-1/2	$\begin{aligned} & \text { Medium Shell } \\ & \text { Diheptal } 12 \text { Pin } \end{aligned}$	$\begin{aligned} & 14 \mathrm{~K} \\ & 14 \mathrm{~K} \end{aligned}$	Green mite	Nedium Medium	1000	2000	4000	500	$\begin{aligned} & 1500 \\ & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 431 \\ & 431 \\ & 4375 \\ & 575 \end{aligned}$	$\begin{aligned} & 1500 \\ & 3000 \\ & \hline 4000 \end{aligned}$	$\begin{aligned} & 22.5-67.5 \\ & 22.5-67.5 \\ & 30-90 \end{aligned}$	$\begin{aligned} & \hline 55 \\ & 69 \\ & 92 \\ & \hline 9 \end{aligned}$	$\begin{aligned} & 48 \\ & 59 \\ & 79 \end{aligned}$
SUP1	6.3	0.6	5-1/4	14-3/4	$\begin{array}{\|l\|} \hline \text { Small She 11 } \\ \text { Duodecal } 12 \text { Pin } \\ \hline \end{array}$	12E.	Green	Medium	1000	2500	....	500	$\begin{aligned} & 1000 \\ & 2000 \\ & \hline \end{aligned}$	$\begin{aligned} & 170-320 \\ & 340-640 \\ & \hline \end{aligned}$	....	$\begin{gathered} 22.5-67.5 \\ 30-90 \end{gathered}$	$\begin{aligned} & 28-38.5 \\ & 56-77 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 28-31 \\ 46-62 \\ \hline \end{array}$
SVP7	6.3	0.6	5-1/4	16-3/4	$\begin{aligned} & \hline \text { Medium Shell } \\ & \text { Magnal } 11 \text { Pin } \end{aligned}$	11 N	Characteristics of Phoashor No. 7		1000	2500	$\cdots$	500	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 236-422 \\ & 315-562 \end{aligned}$	$\cdots$	15-45	$\begin{aligned} & 52-74 \\ & 70-98 \end{aligned}$	$\begin{array}{\|l\|} \hline 47-67 \\ 63-89 \end{array}$
5xp1	6.3	0.6	5-1/4	17-5/8	Medium She 11 Diheptal 12 Pin	14 F	Green	Medium	1550	3500	25500	1200	$\begin{aligned} & 2000 \\ & 2000 \\ & 2000 \end{aligned}$	$\begin{aligned} & 362-695 \\ & 362-695 \\ & 362-695 \end{aligned}$	$\begin{array}{r} 4000 \\ 10000 \\ 20000 \end{array}$	$\begin{aligned} & 30-90 \\ & 30-90 \\ & 30-90 \\ & \hline \end{aligned}$	$\begin{array}{r} 72-108 \\ 102-695 \\ 362.695 \\ \hline \end{array}$	$\begin{aligned} & 24-36 \\ & 34-52 \\ & 46-68 \\ & \hline \end{aligned}$
$7 \mathrm{EP4}$	6.3	0.6	7	15-1/2	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Medium Shell } \\ \text { Magnal } 11 \text { Pin } \end{array} \\ \hline \end{array}$	11 N	White	Medium	1500	3300	....	700	2500	650	$\ldots$	36-84	110	95
$7{ }^{\text {7ap4 }}$	6.3	0.6	7	14-1/2	$\begin{array}{\|l\|} \hline \text { Medium Shell } \\ \text { Diheptal } 12 \text { Pin } \\ \hline \end{array}$	146	White	Medium	1500	4000	....	300	3000	810-1200	....	36-84	93-123	75-102
$\begin{array}{\|l\|} \hline 7 \mathrm{JP1} 1 \\ 7 \mathrm{JP4} 4 \end{array}$	6.3	0.6	7	14-1/2	Medium Shell Diheptal $12 \cdot$ Pin	146	Green White	Medium Medium	2800	6000	....	750	6000	1620-2400	$\cdots$	72-168	186-246	50-204
8EP4	6.3	0.6	8-3/4	16-1/2	$\begin{array}{\|l\|} \hline \text { Medium She II } \\ \text { Diheptal } 12 \text { Pin } \\ \hline \end{array}$	146	White	Medium	3100	6600	$\ldots$	750	6000	2000	....	72-168	146-198	124-198
$9 \mathrm{NP1}$	2.5	2.1	9	21	Medium 6 Pin	6 EN	Green	Medium	1500	5500	.1..	1500	5000	1150	....	$45 \cdot 135$	190	175

electrostatic types-cathode ray tubes

Type	Heater		Norinal Dipensions		Base	$\operatorname{RIMA}_{\text {Basing }}$	Screeß		Maximum Design Cienter Ratings				Typical Operating Conditions					
	Volts	Amperes	Diameter	Length Inches			Fluorescence	Persistence	Anode in Volts	Anode *2 Volts	Anode \#3 Volts	$\begin{array}{\|l\|} \hline \text { Anode } 2 \text { 2 } \\ \text { Deflection } \\ \text { Plate } \\ \text { Peak Volis } \end{array}$	Anode \#2 Voles	$\left\|\begin{array}{c} \text { Anode } 11 \\ \text { Avg. Volts } \end{array}\right\|$	AnodeVolts	Grid Range	$\begin{array}{\|c\|} \hline \text { Deflection } \\ \text { Ave. Voles DC/Inch } \\ \hline \end{array}$	
																	D 1-2	D 3-4
10GP4	6.3	0.6	10	18-1/2	Medium Shell   Diheptal 12 Pin	146	White	Medium	2000	5000	....	509	$\begin{aligned} & \hline 4500 \\ & 5000 \\ & \hline \end{aligned}$	$\begin{aligned} & 1130-1660 \\ & 1250-1850 \\ & \hline \end{aligned}$	$\cdots$	$\begin{aligned} & 54-126 \\ & 60-140 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 112-149 \\ 125-165 \\ \hline \end{array}$	$\begin{array}{r} 90-127 \\ 100-135 \\ \hline \end{array}$
10194	6.3	n. 6	10	19-1/4	Medium Stiell Diheptal 12 Pin	145;	White	Hedium	2 non	5 Son	$\cdots$	600	$\begin{aligned} & 0000 \\ & 50 \mathrm{p} \end{aligned}$	$\begin{array}{r} 960-1440 \\ 1200-1800 \end{array}$	$\ldots$	$\begin{aligned} & 48-112 \\ & 60-140 \end{aligned}$	$\begin{array}{\|r\|} \hline 88-120 \\ 110-150 \\ \hline \end{array}$	$\begin{aligned} & 68-92 \\ & 85-115 \\ & \hline \end{aligned}$
12FP7	6.3	0.6	12	24	Medium Shell   Dilieptal 12 Pin	14 F	Characteristics of Mosphor No. 7		2000	4000	8000	1000	$\begin{aligned} & 2000 \\ & 4000 \\ & 3000 \\ & 4000 \\ & \hline \end{aligned}$	$\begin{array}{r} 625 \\ 1250 \\ 937 \\ 1250 \\ \hline \end{array}$	$\begin{aligned} & 4000 \\ & 4000 \\ & 4000 \\ & 8000 \end{aligned}$	$\begin{aligned} & 30-90 \\ & 30-90 \\ & 30-90 \\ & 30-90 \end{aligned}$	$\begin{array}{r} 55 \\ 83 \\ 110 \\ \hline \end{array}$	$\begin{array}{r} 63 \\ 94 \\ \hline 125 \\ \hline \end{array}$
12 CP 7	6.3	0.6	12	22	Medium Shell   Diheptal 12 Pin	14B	Characteristics of Phosphor No. 7		2000	4000	6000	1000	$\begin{aligned} & 3000 \\ & 3000 \\ & 4000 \\ & 4000 \\ & \hline \end{aligned}$	$\begin{array}{r} 857 \\ 857 \\ 8143 \\ 1143 \end{array}$	$\begin{aligned} & 3000 \\ & \text { 6000 } \\ & 4000 \\ & 6000 \end{aligned}$	$\begin{aligned} & 49-147 \\ & 49-147 \\ & 65-195 \\ & 65-195 \end{aligned}$	$\begin{array}{r} 73 \\ 89 \\ 97 \\ 108 \\ \hline \end{array}$	$\begin{array}{r} 68 \\ 83 \\ 91 \\ 101 \\ \hline \end{array}$
12HP1	6.3	0.6	12	23-1/2	Medium Mamal 11 Pin, Sleeve	11 J	Green	Medium	1500	5500	....	1000	5 mm	$\begin{gathered} 1150 \\ +25 \% \\ -30 \% \end{gathered}$	$\ldots$	45-135	19	25
$\begin{aligned} & 1 \mathrm{AMP1} \\ & 14 \mathrm{AP4} 4 \\ & \hline \end{aligned}$	2.5	2.1	13-3.'8	24-1/4	12 Pin Peripheral Contact	$\begin{aligned} & 12 A \\ & 12 A \\ & \hline \end{aligned}$	Green Whice	Nedium Medium	1800	4000	8000	....	$\begin{aligned} & 200 n \\ & 40 m \end{aligned}$	$\begin{array}{r} 500 \\ 1000 \\ \hline \end{array}$	$\begin{array}{r} 4000 \\ 8000 \\ \hline \end{array}$	$\begin{aligned} & 20-60 \\ & 40-120 \\ & \hline \end{aligned}$	$\begin{array}{r} 65 \\ 130 \\ \hline \end{array}$	$\begin{array}{r} 65 \\ 130 \\ \hline \end{array}$
$\begin{aligned} & 20 \mathrm{APl} 1 \\ & 20 \mathrm{AP4} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	2.1 2.1	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{array}{\|l\|} \hline 27-7 / 8 \\ 27-7 / 8 \end{array}$	12 Pin Peripheral Contact	$\begin{aligned} & \hline 12 A \\ & 12 A \end{aligned}$	Green White	Medium Medium	$\begin{aligned} & 1800 \\ & 1800 \end{aligned}$	$\begin{aligned} & 4000 \\ & 4000 \end{aligned}$	$\begin{aligned} & 8000 \\ & 8000 \end{aligned}$	$\ldots$	$\begin{aligned} & 2000 \\ & 4000 \\ & 2000 \\ & 4000 \\ & \hline \end{aligned}$	$\begin{array}{r} 500 \\ 1000 \\ 500 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 4000 \\ & 8000 \\ & 8000 \\ & 8000 \\ & \hline \end{aligned}$	$\begin{aligned} & 20-60 \\ & 40-120 \\ & 20-60 \\ & 40-120 \end{aligned}$	$\begin{array}{r} 55 \\ 110 \\ 65 \\ 130 \\ \hline \end{array}$	$\begin{array}{r} 55 \\ 110 \\ 65 \\ 130 \\ \hline \end{array}$
902	6.3	0.6	2	7-1/2	Hedium She 11 Octal 8 Pin	801	Green	Medium.	3 CO	600	$\ldots$	347	400 600	$\begin{aligned} & 100 \\ & 150 \\ & \hline \end{aligned}$	$\cdots$	$\begin{aligned} & 20-60 \\ & 30-90 \\ & \hline \end{aligned}$	$\begin{array}{r} 93 \\ 139 \\ \hline \end{array}$	$\begin{array}{r} 78 \\ 117 \\ \hline \end{array}$
902-A	6.3	0.6	2	7-7/16	Medium She 11 Octal 8 Pin	8 CD	Green	Medium	300	600	$\ldots$	347	$\begin{aligned} & 4000 \\ & \qquad 20 \end{aligned}$	$\begin{aligned} & 100 \\ & 150 \\ & \hline \end{aligned}$	$\ldots$	$\begin{aligned} & 20-60 \\ & 30-90 \\ & \hline \end{aligned}$	$\begin{array}{r} 93 \\ 139 \\ \hline \end{array}$	$\begin{array}{r} 78 \\ 117 \\ \hline \end{array}$
$\begin{aligned} & 905 \\ & 907 \\ & 909 \end{aligned}$	2.5	2.1	5-1/4	16-1/2	$\begin{array}{\|l\|} \hline \text { Long Shell } \\ \text { Medium S Pin Micanol } \end{array}$	$\begin{aligned} & \text { SRR } \\ & \text { SRP } \\ & \text { SRPP } \end{aligned}$	Green Blue Bluish-White		600	2000	$\cdots$	1000	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 338 \\ & 450 \end{aligned}$	$\ldots$	$\begin{gathered} 13-39 \\ 17.5-52.5 \end{gathered}$	$\begin{aligned} & \hline 86 \\ & 115 \end{aligned}$	73 97
905-A	2.5	2.1	5-1/4	16-1/2	Long Shell Medium 5 Pin Micanol	SBR	Green	Medium	600	2000	$\ldots$	1000	$\begin{aligned} & 1500 \\ & 2000 \\ & \hline \end{aligned}$	$\begin{aligned} & 338 \\ & 450 \end{aligned}$	$\ldots$	$\begin{gathered} 13-39 \\ 17.5-52.5 \\ \hline \end{gathered}$	$\begin{array}{r} 86 \\ 115 \\ \hline \end{array}$	73   97
$\begin{aligned} & \hline 908 \\ & 910 \end{aligned}$	2.5	2.1	3	11-1/2	Medium 7 Pin	$\begin{aligned} & \text { 7AN } \\ & \text { 7AN } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Bluish } \\ \text { Bluish-Whice } \end{array}$	Very Short Long.	1000	1500	$\cdots$	600	600 880 1000 1250 1500	$\begin{aligned} & 170 \\ & 230 \\ & 285 \\ & 345 \\ & 475 \end{aligned}$	$\ldots \ldots$ $\cdots \cdots$ $\ldots \ldots$ $\ldots \ldots$	13-46 $30-70$	$\begin{aligned} & 46.3 \\ & 62 \\ & 77 \\ & 94 \\ & 115.2 \end{aligned}$	$\begin{gathered} 44 \\ 57.8 \\ 72.5 \\ 88 \\ 110 \\ \hline \end{gathered}$
908-A	2.5	2.1	3	11-1/2	Medium 7 Pin	7CE	Blue	Very Short	1000	1500	....	500	$\begin{aligned} & 1000 \\ & 1500 \\ & \hline \end{aligned}$	$\begin{array}{r} 287 \\ 430 \\ \hline \end{array}$	$\ldots$	$\begin{gathered} 16.5-49.5 \\ 25-75 \\ \hline \end{gathered}$	$\begin{array}{r} 76 \\ 114 \\ \hline \end{array}$	$\begin{array}{r}18 \\ 109 \\ \hline\end{array}$
912	2.5	2.1	5-1/4	16-1/2	$\begin{aligned} & \text { Medium } \\ & 5 \text { Pin Miconol } \end{aligned}$	912	Green	Medium	4500	1500	$\ldots$	7000	$\begin{array}{r} 5000 \\ 10,000 \\ 15,000 \\ \hline \end{array}$	$\begin{aligned} & 1000 \\ & 2000 \\ & 3000 \end{aligned}$	$\ldots .$. $\cdots$ $\cdots$	$\begin{aligned} & \hline 27-81 \\ & 31-93 \\ & 35-105 \\ & \hline \end{aligned}$	$\begin{aligned} & 306 \\ & 620 \\ & 90 \\ & 90 \end{aligned}$	248   498   745
913	6.3	0.6	1-5/8	4-3/4	$\begin{array}{\|l\|} \hline \text { Small Wafer Octal } \\ 8 \mathrm{Pin} \\ \hline \end{array}$	913	Green	Nedium	200	500	....	250	$\begin{gathered} 250 \\ 500 \\ \hline \end{gathered}$	$\begin{array}{r} 50 \\ 100 \end{array}$	$\ldots$	$\begin{aligned} & 10-30 \\ & 32-98 \\ & \hline \end{aligned}$	$\begin{aligned} & 169 \\ & 363 \\ & \hline \end{aligned}$	$\begin{aligned} & 121 \\ & 254 \\ & \hline \end{aligned}$
914	2.5	2.1	9-1/4	21-1/2	Medium 6 Pin	6 BF	Green	Hedium	1900	7000	$\cdots$	3 nOO	1500   2500   $5 n 00$   7006	$\begin{array}{r} 300 \\ 515 \\ 1030 \\ 1450 \\ \hline \end{array}$	$\ldots$. $\ldots$ $\ldots \ldots$ $\ldots$	$\begin{aligned} & 25-75 \\ & 2559 \\ & 25-75 \\ & 25-75 \\ & \hline \end{aligned}$	$\begin{aligned} & 75 \\ & 124.5 \\ & 248 \\ & 348 \\ & \hline \end{aligned}$	$\begin{aligned} & 58.7 \\ & 97.8 \\ & 195 \\ & 274 \\ & \hline \end{aligned}$
914A	2.5	2.1	9-1/4	2n-1/16	Medium 6 Pin	914A	Gireen	Nedium	1000	$700 n$	$\cdots$	3000	$\begin{aligned} & 1500 \\ & 2500 \\ & 500 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{array}{r} 320 \\ 500 \\ 1100 \\ 1550 \\ \hline \end{array}$	$\ldots .$. $\ldots \ldots$ $\ldots \ldots$	$\begin{aligned} & 25.75 \\ & 25.75 \\ & 25-75 \\ & 25-75 \\ & \hline \end{aligned}$	69.5   115   231   323	$\begin{aligned} & 54.6 \\ & 918 \\ & 182 \\ & \hline 254 \\ & \hline \end{aligned}$
$\begin{array}{\|c\|} \hline \mathrm{VCH} \\ 139 \mathrm{~A} \\ \hline \end{array}$	4.0	1.1	2-3/4	7-7/8	Furopean	$\begin{aligned} & \hline \text { VCR } \\ & 139 \Lambda \end{aligned}$	Green	Medium	1000	1000	....		80	120-15n	$\ldots$	7-16	104	140

207

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Heater		Ault						$\left\|\begin{array}{c} \text { Ion } \\ \text { Trap } \\ \text { Requi red } \end{array}\right\|$	Base	$\underset{\text { HMasinf }}{\text { RMA }}$	$\mu \mu$ f. Filter Capacitance Provided by Bull Coating	$\begin{aligned} & \text { Deflection } \\ & \text { Fond } \\ & \text { Focesing } \\ & \text { Melliod } \end{aligned}$	Maximum Desipn Center Ratings		Typical Operation			Type
	Volta	Amperes	Nominal Face Dimensions in Inches	$\begin{aligned} & \text { Lenpth } \\ & \text { in } \\ & \text { Inches } \end{aligned}$	$\begin{gathered} \text { Con- } \\ \text { struction } \end{gathered}$	Terminal	$\begin{aligned} & \text { Face } \\ & \text { Plate } \\ & \text { Color } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Deflection } \\ \text { Anfle } \\ \text { in Depreea } \\ \text { (Note 1) } \end{array}$						$\begin{array}{\|c\|} \text { Anode } \\ \text { Volca } \end{array}$		Anode   Voles	Acceler-   ator   Grid   Voles	Control Grid Nepative Volte	
3497	6.3	0.6	3 Diam.	9-13/16	Glass	Snap	Clear	55	None	Medium Shell (ectal 8 Pin	5N	None	Marnetic	5000	200	$\begin{aligned} & \hline 40000 \\ & 5000 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 15-45 \\ & 15-45 \end{aligned}$	$3 \mathrm{LP7}$
$3 \mathrm{NP4}$	6.3	0.6	2-9/16 Diam.	10	Gless	Recessed Small Ball	Clear	42	None	Special 5 Pin	3NP4	275 Min, 375 Max.	Marnetic	25000	$\cdots$	24000	$\ldots$	60	3NP4
SPPM	6.3	0.6	5 Diam.	11-1/8	Glasa	Hecessed Small Boll	Clear	53	None	$\begin{aligned} & \text { Medium Shell } \\ & \text { Octal } 8 \text { Pin } \\ & \hline \end{aligned}$	88 x	None	Magnetic	8000	300	6000	250	45	SFP4
SFP7A	6.3	0.6	5 Diem.	11-1/2	Glasa	Recessed Small Ball	Clear	53	None	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Medium Shell } \\ \text { Octal 8 Pin } \end{array} \\ \hline \end{array}$	88x	None	Magnetic	8000	700	$\begin{aligned} & 4000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{array}{r} 250 \\ 250 \\ \hline \end{array}$	$\begin{array}{r} 25-70 \\ 25-70 \\ \hline \end{array}$	SFP7A
SFP7	6.3	0.6	5 Diam.	11-1/8	Glass	Snap	Clear	55	None	Small Wafer Octal 8 Pin with Sleeve	SAN	None	Magnetic	7000	300	$\begin{aligned} & 4000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 25-75 \\ & 25-75 \\ & \hline \end{aligned}$	5FP7
${ }^{\text {SFP14 }}$	6.3	0.6	5 Diam.	11-1/8	Glass	Snap	Clear	55	None	Smell Wafer Octal 8 Pin with Sleeve	SAN	None	Mafnetic	7000	700	$\begin{aligned} & 4000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 25-75 \\ & 25-75 \\ & \hline \end{aligned}$	SFP14
$5 \mathrm{TP4}$	6.3	0.6	5 Diam.	11-3/4	Glase	Recessed Small Covicy	Clear	50	None	$\begin{aligned} & \text { Medi un Shell } \\ & \text { Diheptal } 12 \text { Pin } \end{aligned}$	12C1	100 Min, 500 Max.	Note 2	27000	350	27000	200	70	5TP4
SWP15	6.3	0.6	5 Diam.	11-7/16	Glass	$\begin{aligned} & \text { Pecessed } \\ & \text { Small Cavity } \end{aligned}$	Clear	50	None	$\begin{aligned} & \text { Saal } 11 \text { Shell } \\ & \text { Duodecal } 7 \text { Pin } \end{aligned}$	12C1	100 Min, 500 Max.	Note 2	27000	350	20000	200	70	$5 \mathrm{SWP15}$
7AP4	2.5	2.1	7-1/8 Diam.	13-1/2	Gloss	None	Clear	55	None	Medium 5 Pin	5NJ	None	Note 2	35000	No Grid	35000	No Grid	67.5	$7 \mathrm{AP4}$
$7 \mathrm{PP1}$	6.3	0.6	7 Diam .	13-1/4	Glasa	Snap	Clear	55	None	$\begin{aligned} & \hline \text { Octal } 8 \text { Pin } \\ & \text {-ith Sleeve } \\ & \hline \end{aligned}$	SAN	None	Magnetic	7000	675	$\begin{aligned} & 4000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$	78P1
78P7	6.3	0.6	7 Diam.	13-1/4	Gless	Sosap	Clear	55	None	$\begin{aligned} & \text { Octal } 8 \text { Pin } \\ & \text { with Sleeve } \\ & \hline \end{aligned}$	SAN	None.	Mapnetic	7000	300	$\begin{aligned} & 4000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$	7897
78P7A	6.3	0.6	7 Diom.	13-1/4	Glos:	$\begin{aligned} & \text { Recessed } \\ & \text { Small Ball } \\ & \hline \end{aligned}$	Clear	53	None	$\begin{aligned} & \text { Medium She 11 } \\ & \text { Octa } 1 \text { P Pin } \end{aligned}$	8BX	None	Maknetic	8000	700	$\begin{aligned} & 4000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 25-70 \\ & 25-70 \\ & \hline \end{aligned}$	7 Pm 1 A
$7 \mathrm{CP1}$	6.3	0.6	7 Diam.	13-7/16	Gloss	Snap	Clear	57	None	Medium Shell Octal 8 Pin	6 A.	None	Note 2	8000	300	$\begin{aligned} & 4000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & \hline \end{aligned}$	${ }^{\text {CPP1 }}$
$7 \mathrm{CP4}$	6.3	0.6	7 Diam.	13-7/16	Glase	$\begin{aligned} & \text { Heceased } \\ & \text { Small Ball } \\ & \hline \end{aligned}$	Clear	57	None	Medium Shell $\text { Octal } 8 \text { Pin }$	6 A 2	None	Note 2	8000	300	6000	250	45	$7{ }^{1} \mathrm{CP}_{4}$
70 P 4	6.3	0.6	7-3/16 Diam.	14-1/16	Glass	$\begin{aligned} & \text { Recessed } \\ & \text { Small Cavity } \\ & \hline \end{aligned}$	Clear	50	Double	$\begin{aligned} & \text { Sma } 11 \text { She l1 } \\ & \text { Duodecal } 7 \text { Pin } \\ & \hline \end{aligned}$	12 C 2	400 Min, 1500 Max.	Note 2	8000	410	6000	250	45	TDP4
$7 \mathrm{FP4}$	6.3	0.6	7-3/16 Diam.	13	Glasa	Recessed Small Ball	Clear	50	None	$\begin{aligned} & \text { Small She 11 } \\ & \text { Duodeca1 } 7 \text { Pin } \\ & \hline \end{aligned}$	12D2	500 Max .	Mametic	8000	410	6000	250	33-77	$7 \mathrm{HP4}$
8AP4	6.3	0.6	8-1/2 Diem.	14-1/4	Metal	Cone Lip	Clear	54	Sinple	$\begin{aligned} & \text { Small Shell } \\ & \text { Duodec al } 7 \text { Pin } \end{aligned}$	12H	None	Mametic	10000	No Grid	9000	No Grid	27-63	8AP4
8AP4A	6.3	0.6	8-1/2 Disam.	14-1/4	Metal	Cone Lip	Gray	54	Single	Small She II   Duodecal 5 Pin	12H	None	Magnetic	9000	No Grid	7000	No Grid	27-63	${ }^{\text {8AP4A }}$
9.P4	2.5	2.1	9-1/8 Diam.	21	Glasa	Cap	Clear	40	None	Medium 6 Pin	${ }_{6} \mathrm{AL}$	None	Noce 2	7000	250	$\begin{aligned} & 6000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$	9AP4
${ }^{9} \mathrm{CP4} 4$	2.5	2.1	9 Diam.	15-7/8	Glass	Cap	Clear	$\cdots$	None	6 Pin Base	4 F	None	Magnetic	7000	No Grid	$\begin{aligned} & 6000 \\ & 7000 \\ & \hline \end{aligned}$	No Grid	$\begin{aligned} & 90 \\ & 100 \end{aligned}$	${ }_{9} \mathrm{CPP}_{4}$
9687	6.3	0.6	9 Diam.	17	Glasa	Cap	Clear	55	None	Octal 8 Pin with Sleeve	SAN	None	Magnetic	7000	300	$\begin{aligned} & 4000 \\ & 7000 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \\ & 45 \end{aligned}$	96P7
9.JP1	2.5	2.1	9 Diam.	15-11/16	Glage	Snap	Clear	55	None	Small Wafer Octal 8 Pin with Sleeve	88 R	None	Note 3	5000	No Grid	$\begin{aligned} & 2500 \\ & 5000 \end{aligned}$	No Grid	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	9.JP1
9187	6.3	0.6	9 Diam.	14-31/32	Glass	Cop	Clear	55	None	$\begin{aligned} & \text { Octal } 8 \text { Pin } \\ & \text { with Sleeve } \end{aligned}$	$\overline{5 A N}$	None	Mapnetic	7000	300	4000 4000 7000 7000	$\begin{aligned} & 250 \\ & 125 \\ & 250 \\ & 125 \end{aligned}$	$\begin{aligned} & 55-105 \\ & 30-50 \\ & 60-100 \\ & 30-50 \end{aligned}$	91P7
9MP7	6.3	0.6	9 Diam:	17-1/2	Glass	Cap	Clear	55	None	Octal 8 Pin with Sleeve	SAN	None	Marnetic	7000	300	$\begin{aligned} & 4000 \\ & \hline 6000 \end{aligned}$	250	25-75	91P7
10BP4	6.3	0.6	10-1/2 Diam.	17-5/8	G1ass	$\begin{aligned} & \hline \text { Recessed } \\ & \text { Small Covity } \\ & \hline \end{aligned}$	Clear	50	Double	$\begin{aligned} & \text { Sma 11 She 11 } \\ & \text { Duodecal } 7 \text { Pin } \\ & \hline \end{aligned}$	1212	500 Min, 2500 Max.	Magnetic	10000	410	9000	250	20-60	10EP4
108P4A							Gray												$108 P_{4}$
10CP4	6.3	0.6	10-1/2 Diam.	16-5/8	Glass	$\begin{aligned} & \text { Recessed } \\ & \text { Small Ball } \end{aligned}$	Clear	50	None	$\begin{aligned} & \text { Small Shell } \\ & \text { Duodecal } 7 \text { Pin } \\ & \hline \end{aligned}$	12D2	500 Max.	Mapnetic	11000	410	8000	250	30-66	10CP4

RECEIVING TUBE SUBSTITUTION GUIDE

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Heater		Bulb						$\left\|\begin{array}{c} \text { Ion } \\ \text { Trap } \\ \text { Renui rod } \end{array}\right\|$	Buas	$\underset{B E B A}{\text { AMA }}$	anf filter Gapacitance Provided by Aulb Coatinp	$\begin{gathered} \text { Heflection } \\ \text { ond } \\ \text { Hocuing } \\ \text { Metliod } \end{gathered}$	Maximum Desipn Center Ratings		Cypical Operation			$\begin{gathered} \text { Type } \\ \text { No. } \end{gathered}$
	Volts	Amperes	Nominal Face Dimensions in Inches	$\begin{aligned} & \text { Lenpeh } \\ & \text { in } \\ & \text { Inclies } \end{aligned}$	Construction	Termical	Face Plate Color	$\begin{array}{\|c\|} \hline \text { De flection } \\ \text { Anple } \\ \text { in Deprees } \\ \text { (Note 1) } \\ \hline \end{array}$						$\left\|\begin{array}{\|c\|} \text { Anode } \\ \text { Volts } \end{array}\right\|$	$\begin{array}{\|l\|} \hline \text { Acceler- } \\ \text { ator } \\ \text { Grid } \\ \text { Volts } \\ \hline \end{array}$	$\left\|\begin{array}{c} \text { Anode } \\ \text { Volts } \end{array}\right\|$	Acceler-   ator   Grid   Golts		
100P4	6.3	0.6	10-1/2 Diam.	17-5/8	Glass	Recessed   Simall Covity	Clear	50	None	$\begin{aligned} & \text { Sma 11 She 11 } \\ & \text { Inodecal }{ }^{\text {P Pin }} \end{aligned}$	12r3	Notie	Note 2	10000	410	9000	250	36-84	100P4
10EP4	6.3	0.6	10-1/2 Diam.	17-5/8	Glas:	Snap	Clear	50	Double	$\begin{aligned} & \text { Small She II } \\ & \text { Duodecal? Pin } \\ & \hline \end{aligned}$	122	1: ${ }^{\text {a }}$	Mapnetic	11000	330	8000	250	20-65	10EP4
10 FP 4	6.3	0.6	10-1/2 Diam.	17-5/8	Glass	$\begin{array}{\|l\|} \hline \text { Recessed } \\ \text { Small Cavity } \\ \hline \end{array}$	Clear	50	None	$\begin{array}{\|l\|} \hline \text { Small She 11 } \\ \text { Buodecal } 7 \text { Pin } \\ \hline \end{array}$	12C1	500 Min, 2500 Max:	Mapnetic	10000	410	9000	250	27-63	10FP4
10KP7	6.3	0.6	10-1/2 Diam.	17-5/8	Glass	$\begin{array}{\|l\|} \hline \text { Recessed } \\ \text { Small Cavity } \\ \hline \end{array}$	Clear	50	None	$\begin{aligned} & \text { Small sliel1 } \\ & \text { Duodecal }{ }^{2} \text { Pin } \\ & \hline \end{aligned}$	1211	Nonte	Magiotic	10000	700	$\begin{aligned} & 7000 \\ & 9000 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 27-63 \\ & 27-63 \end{aligned}$	10xP7
$10 \mathrm{MP4}$	6.3	0.6	10-1/2 Diam.	17	Glass	$\begin{aligned} & \text { Recessed } \\ & \text { Small Covity } \end{aligned}$	Clear	52	Doutle	$\begin{aligned} & \text { Small shell } \\ & \text { Buodecal } \text { S } \mathrm{P}_{\text {in }} \\ & \hline \end{aligned}$	120	$500 \mathrm{Min}, 2500 \mathrm{Max}$.	Mognetic	10000	No Grid	9000	No Grid	27-63	109P4
10MP4A							Gray												10MP4A
12AP4	2.5	2.1	12-1/16 Diam.	25-3/8.	Glasa	Cap	Clear	40	None	Medium 6 Pin	6AL	Nane	Note 2	7000	250	$\begin{aligned} & 6000 \\ & 7000 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \\ & \hline \end{aligned}$	12NP4
$12 \mathrm{CP4}$	2.5	2.1	12-1/16 Diam.	18-5/8	Glass	Cap	Clear	...	Nane	6 Pin Base	4 F	None	Mametic	7000	No Grid	$\begin{aligned} & 6000 \\ & 7000 \end{aligned}$	No Grid	$\begin{array}{r} 90 \\ 110 \end{array}$	$12 \mathrm{CP4}$
121) 77	6.3	0.6	12 Diam.	20-3/4	Glasa	Medium Cap	Clear	55	None	Small Wafer Octal 8 Pin with Sleeve	5AN	None	Mapnetic	7000	300	$\begin{aligned} & 4000 \\ & \hline 7000 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 25-75 \\ & 25-75 \end{aligned}$	12097
120P7A	6.3	0.6	12 Diam.	19-5/8	Glass	Medium Cap	Clear	50	None	$\begin{array}{\|c\|} \hline \begin{array}{l} \text { Medium Shell Oetal } \\ \text { B Pin } \end{array} \\ \hline \end{array}$	819	None	Marnetic	10000	700	$\begin{aligned} & 4000 \\ & 7000 \end{aligned}$	$\begin{array}{r} 250 \\ -250 \\ \hline \end{array}$	$\begin{aligned} & 25-70 \\ & 25-70 \end{aligned}$	12DP7A
12.JP4	6.3	0.6	12 Diam .	17-1/2	Glass	Snap	Clear	50	Nane	$\begin{aligned} & \text { Smal1 Shell } \\ & \text { Duodeca1 }{ }^{\text {Pin }} \\ & \hline \end{aligned}$	1201	None	Magnetic	12000	410	10000	250	27-63	12JP4
$12 \mathrm{KP4}$	6.3	0.6	12-7/16 Diam.	17-5/8	Glase	$\begin{aligned} & \text { Recessed } \\ & \text { Small Carity } \\ & \hline \end{aligned}$	Clear	54	None	$\begin{aligned} & \text { Small Shell } \\ & \text { Duodeal ? Pia } \\ & \hline \end{aligned}$	1212	500 Min, 2500 Max.	Magnetic	12000	410	10000	250	27-63	12194
$12 \mathrm{KP4A}$	6.3	0.6	12-7/16 Diam.	17.5/8	Glose	$\begin{aligned} & \text { Receased } \\ & \text { Small Covity } \\ & \hline \end{aligned}$	Gray	54	None	$\begin{aligned} & \text { Small Sholl } \\ & \text { Buodecal s Pin } \\ & \hline \end{aligned}$	1202	$500 \mathrm{Min}, 2500$ Max.	Mognetic	12000	410	11000	250	27-63	$12 \mathrm{KP4A}$
$121 \mathrm{~L}_{4}$	6.3	0.6	12-7/16 Diam.	18-3/4	Glase	Recessed Small Cavity	Clear	54	Double	$\begin{aligned} & \text { Small shell } \\ & \text { Duodecul S PiA } \end{aligned}$	182	750 Min, 3000 Max.	Magretic	12000	410	11000	250	27-63	12.18
12LP4A							Gray												12LP4
120P4	6.3	0.6	12-7/16 Diam.	17-1/2	Gless	Recessed Small ball Cop	Clear	55	Sinflo	$\begin{aligned} & \text { Sma } 11 \text { She } 11 \\ & \text { Duadeeal } 7 \text { Pin } \end{aligned}$	1201	None	Mapnetic	12000	410	10000	250	27-63	120P4
120 P 4 A							Gray												120PM
12RP4	6.3	0.5	12 Diam.	17-1/2	Glass	Receased   Small Ball Cap	Clear	56	Single	$\begin{array}{\|l\|} \hline \text { Small shefl } \\ \text { Inodeeal Pin } \\ \hline \end{array}$	1202	: ${ }^{\text {c }}$	Magnetic	12000	410	10000	250	$27=63$	12274
12SP7	6.3	0.6	12-7/16 Diam.	18-3/4	Glass	$\begin{aligned} & \text { Recessed } \\ & \text { Small Cavity } \end{aligned}$	Clear	55	None	$\begin{aligned} & \text { Simoll shell } \\ & \text { Duadeal } 9 \text { PIn } \end{aligned}$	1201	None	Magneitie	16008	410	9000	250	87-63	12SP7
12TP4	6.3	0.6	12-7/16 Diam.	18-3/4	Glast	$\begin{aligned} & \text { Receased } \\ & \text { Small Cavity } \\ & \hline \end{aligned}$	Clear	54	Double	$\begin{aligned} & \text { Small Shell } \\ & \text { Duodecal } 7 \text { Pin } \end{aligned}$	12 DI	None	Marnetit	18000	410	11000	250	27-63	127P4
12प44	6.3	0.6	12-7/16 Diam.	18-5/8	Metal	Cone Lip	Clear	54	Double	$\begin{aligned} & \text { Sma 11 Shell } \\ & \text { Duodecal } 7 \text { Pin } \end{aligned}$	1233	None	Magnetie	12000	410	11000	850	$8^{7}=63$	12194
12UP4A							Gray												12UP4
12UP4B				-			Gray												12UP4B
$12 \mathrm{VP4}$	6.3	0.6	12-3/8 Diam.	18	Gleas	$\begin{aligned} & \text { Recessed } \\ & \text { Small Covity } \\ & \hline \end{aligned}$	Clear	55	Doulle	$\begin{aligned} & \text { Small Shell } \\ & \text { Duadeeal } 1 \text { Pin } \end{aligned}$	126	990 Min, 3000 Max.	Magnetic	12000	No Grid	11000	No Grid	33-77	12VP4
12VP4A							Gray												12VPM
148P4	6.3	0.6	12-1/2×9-11/16	16-13/16	Glass	$\begin{aligned} & \text { Recesased } \\ & \text { Small Cavity } \end{aligned}$	Gray	65	Double	$\begin{aligned} & \text { Smifl shell } \\ & \text { Moodecal Pio } \end{aligned}$	1202	500 Min, 2000 Max.	Mapnetic	12000	410	11000	250	27-63	148P4
$14 \mathrm{CP4}$	6.3	0.6	12-1/2 $\times$ 9-11/16	16-3/4	Glass	$\begin{aligned} & \text { Recessed } \\ & \text { Small Cavity } \end{aligned}$	Gray	65	Double	$\begin{aligned} & \text { Smad ITheli } \\ & \text { Duadeeal opin } \\ & \hline \end{aligned}$	1262	1500	Magnetic	14000	410	12000	300	33-77	14.84
14DP4	6.3	0.6	12-1/2 $\times 9-11 / 16$	15-3/4	Glass	$\begin{array}{\|l\|} \hline \text { Recessed } \\ \text { Souall Cavity } \\ \hline \end{array}$	Gray	65	llouble	$\begin{aligned} & \text { Small Jhell } \\ & \text { Duadesal } 5 \text { Pin } \\ & \hline \end{aligned}$	1671	None	Mapnetic	14000	410	11000	250	27-63	140P4
15AP4	6.3	0.6	15-1/2 1 l iam.	20-1/2	Glase	$\begin{array}{\|l\|} \hline \text { Recessed } \\ \text { Small Boll } \\ \hline \end{array}$	Clear	52	None	$\begin{aligned} & \text { Bmill Bhell } \\ & \text { Duade }{ }^{2} \text { ? Pin } \end{aligned}$	12 G	None	Magnetic	15000	410	12000	250	27-63	15AP4
15CP4	6.3	0.6	15-1/2 Diam.	21-1/2	Glos:	$\begin{array}{\|l\|} \hline \text { Receased } \\ \text { Sma 11 Cavity } \\ \hline \end{array}$	C.lear	37	Double	$\begin{aligned} & \text { Small Bhell } \\ & \text { Duodecal } 19 \text { in } \end{aligned}$	1201	None	Mapnetic	15000	410	$\begin{array}{\|r\|} \hline 9000 \\ 15000 \\ \hline \end{array}$	$250+$	45	15CP4

magnetic type cathooe ray tubes

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Heater		Bulb						$\begin{gathered} \text { Ion } \\ \text { Trap } \\ \text { Required } \end{gathered}$	Base	$\underset{\text { Basing }}{\text { Hant }}$	mef Filter Capacitance Provided by Bulb Coating	$\begin{aligned} & \text { Deflection } \\ & \text { and } \\ & \text { Focusing } \\ & \text { Method } \\ & \hline \end{aligned}$	Maximum Design Center Ratings		Typical Operation			$\begin{gathered} \text { Type } \\ \text { No. } \end{gathered}$
	Volts	Amperes	Nominal Face Dimensions in Inches	$\begin{gathered} \text { Length } \\ \text { in } \\ \text { inches } \end{gathered}$	Construction	Terminal	Face Plate Color	Jeflection Anple in Jeprees (Note 1)						$\begin{array}{\|l} \text { Anode } \\ \text { Volts } \end{array}$	Acceler   ator   Grid   Volts	$\left\lvert\, \begin{aligned} & \text { Anode } \\ & \text { Volta } \end{aligned}\right.$	Acceler ator Grid Volts	$\begin{array}{\|c} \hline \text { Control } \\ \text { Grid } \\ \text { Negotive } \\ \text { Volta } \\ \hline \end{array}$	
15DP4	6.3	0.6	15-1/2 Diam.	20-1/2	Glasa	$\begin{aligned} & \hline \text { Kecessed } \\ & \text { Small Ball Cap } \\ & \hline \end{aligned}$	Clear	57	Double	$\begin{aligned} & \text { Small Sliell } \\ & \text { Duodecal } 5 \text { Pin } \end{aligned}$	1211	Nane	Mapnetic	15000	410	13000	250	27-63	150P4
16AP4	6.3	0.6	15-7/8 Diam.	22-5/16	Hecal	Cone Lip	Clear	53	Double	$\begin{aligned} & \text { Small Shell } \\ & \text { Duodecal } 5 \text { Pin } \end{aligned}$	1203	None	Magnetic.	14000	410	$\begin{array}{r} 9000 \\ 12000 \\ \hline \end{array}$	$\begin{aligned} & 300 \\ & 300 \\ & \hline \end{aligned}$	$\begin{array}{r} 33-77 \\ 33-77 \\ \hline \end{array}$	16AP4
16AP4A							Gray												16AP4A
16CP4	6.3	0.6	15-7/8 Diam.	21-1/2	Glass	Recessed Small Cavity	Clear	52	Doutile	$\begin{array}{\|l} \hline \text { Smand Shiell } \\ \text { Duodecal } 7 \text { Pin } \\ \hline \end{array}$	1201	None	Mapnetic	15000	410	12000	250	27-63	16CP4
16DP4	6.3	0.6	15-7/8 Diam.	20-3/4	Glass	Receszed Small Cavity	Clear	60	Double	$\begin{aligned} & \text { Small Shell } \\ & \text { Duodecal } 7 \text { Pin } \end{aligned}$	1201	None	Magnetic	15000	410	$\begin{array}{r} 9000 \\ 12000 \\ \hline \end{array}$	250	45	16DP4
160P4A							Gray												16 P 4 A a
$16 \mathrm{FP4}$	6.3	0.6	15-7/8 Diam.	19-5/8	Metal	Cone lip	Clear	60	Doulle	Small She 11   Duodecal 5 Pin	1203	None	Mapnetic	14000	410	12000	300	33-77	16EP4
16FP4							Gray												16EP4A
16 FP 4	6.3	0.6	16-1/8 Diam.	20-1/4	Gless	$\begin{array}{\|l\|} \hline \text { Reces sed } \\ \text { Small Ball Cap } \\ \hline \end{array}$	Clear	62	Sinfle	$\begin{array}{\|l\|} \hline \text { Small Shel II } \\ \text { Duodecal } 7 \text { Pin } \\ \hline \end{array}$	12D1	None	Magnetic	16000	410	13000	250	27-63	16FP4
$16 \mathrm{GP4}$	6.3	0.6	15-7/8 Diam.	17-11/16	Metal	Cone Lip	Clear	70	Sinfle	$\begin{aligned} & \hline \text { Sma 11 Shell } \\ & \text { Duodecal } 5 \text { Pin } \\ & \hline \end{aligned}$	1213	None	Hagnetic	14000	410	12000	300	33-77	$16 \mathrm{CP4}$
$16 \mathrm{HP4} 4$	6.3	0.6	15-7/8 Diam.	21-1/4	Glass	Recessed Small Cavity	Clear	60	Double	$\begin{aligned} & \text { Small Shell } \\ & \text { Duodecal } 5 \text { Pin } \end{aligned}$	12D2	1500 Min. 3500 Max.	Hapnetic	14000	410	12000	300	33-79	16HP4
16HP4A							Gray												$161{ }^{\text {P4A }}$
16JP4	6.3	0.6	16-1/8 Diam.	20-3/4	Glas8	$\begin{array}{\|l\|} \hline \text { Recessed } \\ \text { Small Covity } \\ \hline \end{array}$	Clear	60	Double	$\begin{array}{\|l\|} \hline \text { Sman 11 She II } \\ \text { Duodecal } 5 \text { Pin } \\ \hline \end{array}$	12D2	750 Min, 2000 Max-	Marnetic	14000	410	11000	250	27-63	16.JP4
16.JP4A							Gray												16.JP4A
$16 \mathrm{KP4}$	6.3	0.6	14-3/4 $\times 11-1 / 2$	18-3/4	Glass	$\begin{aligned} & \text { Recessed } \\ & \text { Small Cavity } \\ & \hline \end{aligned}$	Clear	65	Single	$\begin{array}{\|l\|} \hline \text { Small Shell } \\ \text { Duodecal } 5 \text { Pin } \\ \hline \end{array}$	1202	1500	Mapnetic	16000	410	14000	300	33-77	16KP4
16LP4	6.3	0.6	15-7/8 Diam.	22-1/4	Glosa	Recessed Small Cavity	Clear	52	Double	$\begin{array}{\|l\|} \hline \text { Smoll She II } \\ \text { Duodecal } 5 \text { Pin } \\ \hline \end{array}$	12m	1500 Min, 3500 Max-	Marnetic	14000	410	12000	300	33-77	16LP4
$16 \mathrm{LP}^{\text {P4 }}$							Gray												161844
$16 \mathrm{MP4}$	6.3	0.6	16-1/8 Diam.	21-3/4	Gless	$\begin{aligned} & \text { Recessed } \\ & \text { Small Cavity } \\ & \hline \end{aligned}$	Clear	60	Double	$\begin{array}{\|l\|} \hline \text { Small Shell } \\ \text { Duodecal } 5 \text { Pin } \\ \hline \end{array}$	12D2	1500 Min, 3500 Max.	Magnetic	14000	410	12000	300	33-77	16MP4
16MP4							Gray,												161P4A
160P4	6.3	0.6	14-3/4 $\times 11-17 / 32$	19.146	Class	Receased Small Cevity	Gray	65	Double	$\begin{aligned} & \text { Sma11 Shell } \\ & \text { Duodecal } 7 \text { Pin } \\ & \hline \end{aligned}$	12D1	None	Mapretic	16000	410	$\begin{array}{r} 8000 \\ 14000 \\ \hline \end{array}$	$\begin{array}{r} 250 \\ 250 \\ \hline \end{array}$	27-63	16094
16RP4	6.3	0.6	14-3/4 $\times 11-1 / 2$	18-3/4	Giass	Recessed Small Cavity	Gray	05	Sinfle	$\begin{aligned} & \text { Small She 11 } \\ & \text { Duodecal } 5 \text { Pin } \\ & \hline \end{aligned}$	1202	1500	Magnetic	16000	410	12000	300	33-77	168P4
16SP4	6.3	0.6	15-7/8 Diam.	17-5/16	Glasa	Recessed Small Cavity	Clear	70	Double	Sma 11 Shell Duodecal 5 Pin	12D2	$1500 \mathrm{Min}, 3500 \mathrm{Max}$.	Mapnetic	14000	410	12000	300	33-77	16SP4
16SP4A							Gray												16 PP4A $^{\text {d }}$
16TP4	6.3	0.4	16-1/8 Diam.	18-1/8	Glass	Recessed Small Cavity	Gray	70	Sinple	$\begin{aligned} & \text { Small Shell } \\ & \text { Ihodecal } 5 \text { Pin } \\ & \hline \end{aligned}$	12D8	1500	Marnetic	14000	410	12000	300	33-77	$16 T P 4$
16194	6.3	0.6	14-3/4 $\times 11-1 / 2$	18-1/8	Glass	$\begin{array}{\|l\|} \hline \text { Recessed } \\ \text { Small Cavity } \\ \hline \end{array}$	Gray	65	Single	$\begin{array}{\|l\|} \hline \text { Sma Il She II } \\ \text { Duodecal } 5 \text { 'Pin } \\ \hline \end{array}$	12D1	None	Magnetic	15000	410	12000	300	27-63	164P4
16.194	6.3	0.6	15-7/8 Diem.	17-3/16	G1ess	$\begin{aligned} & \hline \text { Recessed } \\ & \text { Small Cavity } \\ & \hline \end{aligned}$	Gray	70	Sinfle	$\begin{array}{\|l\|} \hline \text { Simall Shell } \\ \text { Duodecal } 5 \text { Pin } \\ \hline \end{array}$	12 DI	None	Magnetic	15000	410	12000	250	27-63	16VP4
$1 \mathrm{kWP4}$	6.3	0.6	15-7/8 Diam.	17-3/4	Gless	$\begin{aligned} & \text { Recessed } \\ & \text { Small Cavity } \\ & \hline \end{aligned}$	Gray	70	Double	$\begin{aligned} & \text { Small Shell } \\ & \text { Buodecal } 5 \text { Pin } \end{aligned}$	1201	Nane	Mapmetic	15000	410	12000	250	27-63	16WP4
16XP4	6.3	0.6	14-3/4 $\times 11-17 / 32$	18-3/4	Glasa	$\begin{aligned} & \hline \text { Recessed } \\ & \text { Small Cavity } \\ & \hline \end{aligned}$	Gray	65	Doutle	$\begin{array}{\|l\|} \hline \text { Small Shell } \\ \text { Dundecal }{ }^{\text {Pin }} \\ \hline \end{array}$	12 DI	None	Memetic	15000	410	12000	250	27-63	16xP4
16YP4	6.3	0.6	15-7/8 Diam.	17-5/16	Gless	Recessed Small Cavity	Gray	70	Single	$\begin{aligned} & \hline \text { Small Shell } \\ & \text { Buodecal } 5 \text { Pin } \\ & \hline \end{aligned}$	1212	750 Nin, 2000 Mlax	Mapmetic	14000	410	12000	300	33-77	16YP4
19AP4	6.3	0.6	18-5/8 Diam.	21-1/2	$\mathrm{M}=\mathrm{tal}$	Cone lip	Clear	65	Single	$\begin{aligned} & \text { Small Shell } \\ & \text { Drodecal } 7 \text { Pin } \\ & \hline \end{aligned}$	1203	None	Nagnetic	19000	410	13000	250	27-63	19AP4
19AP41							Gray												19AP4A

Courtesy Sylvania Electric Producta Inc.

Type	Heater		Bulb						$\left\|\begin{array}{c} \text { Ion } \\ \text { Trap } \\ \text { Required } \end{array}\right\|$	Base	RMA	mef Filter Capacitance Provided by Bulb Coatinp	$\begin{array}{\|c\|c\|} \hline \text { Deflection } \\ \text { Fond } \\ \text { Focusing } \\ \text { Method } \end{array}$	Maximum Deaipn Center Ratings		Typical Operation			Type No.
	Voles	Amperes	Nominal Face Dimenaions in laches	$\begin{aligned} & \text { Lenpeh } \\ & \text { in } \\ & \text { Inches } \end{aligned}$	Construction	Terminal	$\begin{aligned} & \text { Face } \\ & \text { Plate } \\ & \text { Color } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Deflection } \\ \text { Angle } \\ \text { in Deprees } \\ \text { (Note 1) } \\ \hline \end{array}$						$\begin{array}{\|c} \text { Anode } \\ \text { Volte } \end{array}$	$\begin{array}{\|l\|} \hline \text { Acceler- } \\ \text { ator } \\ \text { Grid } \\ \text { Volts } \\ \hline \end{array}$	Anode	$\begin{array}{\|l\|} \hline \text { Acceler- } \\ \text { ator } \\ \text { Grid } \\ \text { Voles } \\ \hline \end{array}$	Control   Grid   Nerative   Voles	
19DP4	6.3	0.6	18-7/8 Dism.	21-1/2	Glase	Recessed Small Gavity	Clear	66	Double	$\begin{aligned} & \text { Small Shell } \\ & \text { Duodecal S Pin } \end{aligned}$	1202	1000 Min, 3000 Max.	Mapnetic	19000	410	13000	250	26-63	19DP4
$19 \mathrm{PP4}$	6.3	0.6	18-7/8 Diam.	22	Glas:	Pecesaed Smell Cavity	Gray	66	nouble	Small Shell Duodecal 5 Pin	1201	None	Mapnetic	19000	410	13000	250	27-63	19FP4
$19 \mathrm{CP4}$	6.3	0.6	18-7/8 Dise.	21-1/4	Glase	Recessed Smoll Cavity	Gray	66	Single	$\begin{array}{\|l} \hline \text { Smoll Slie } 11 \\ \text { Duodecal } 5 \text { Pin } \\ \hline \end{array}$	12 nl	None	Mapmetic	19000	410	13000	250	27-63	19GP4
20RP4	6.3	0.6	20 Diem.	28-3/4	Gleas	Medium Cap	Clear	54	None	$\begin{array}{\|l\|} \hline \text { Small Sliell } \\ \text { Duodecal } 7 \text { Pin } \\ \hline \end{array}$	1201	None	Mapnetic	16500	750	$\begin{aligned} & 10000 \\ & 15000 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{array}{r} 25-70 \\ 25-70 \\ \hline \end{array}$	209P4
$22 \mathrm{AP4}$	6.3	0.6	21-11/16 Diam.	22-7/8	Mocal	(Cone Lip)	Ciear	70	Single	$\begin{array}{\|l\|} \hline \text { Small Shellt } \\ \text { Duodecal } 5 \text { Pin } \\ \hline \end{array}$	$12 \mathrm{U3}$	None	Mametic	19000	410	14000	300	33-79	22NP4
22AP4A							Gray												22 APM
904	2.5	2.1	5-1/16 Dism.	16-1/4	Glase	Cap	Clear	$\cdots$	None	Medium 6 Pin	6 AL .	None	Note 4	4600	250	$\begin{aligned} & 1000 \\ & 3000 \\ & 4600 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 100 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 34 \\ & 35 \\ & 39 \\ & \hline \end{aligned}$	904
Sup11	6.3	0.6	5 Diam.	11-7/16	Gloes	$\begin{aligned} & \text { Recessed } \\ & \text { Small Cavity } \\ & \hline \end{aligned}$	Clear	50	None	$\begin{array}{\|l\|} \hline \text { Small She II } \\ \text { lnoodecal 7 Pin } \\ \hline \end{array}$	12 C 2	100 Min, 500 Max.	Note 2	27000	350	27000	200	42-98	519 P11
7M97	6.3	0.6	7-3/16 Diam.	12-1/2	Glose	Receased   Small Cavity   Recensed	Clear	50	None	$\begin{array}{\|l} \hline \text { Small She II } \\ \text { Duodecal } 5 \text { Pin } \\ \hline \end{array}$	12DI	None	Magnetic	8000	700	$\begin{aligned} & 4000 \\ & 7000 \end{aligned}$	$\begin{array}{r} 250 \\ 250 \\ \hline \end{array}$	$\begin{aligned} & 27-63 \\ & 27-63 \\ & \hline \end{aligned}$	ner
19884	6.3	0.6	17x13-3/32	21-1/8	Glase	Receased Small Cavity	Gray	65	Single	$\begin{array}{\|l\|} \hline \text { Small Shell } \\ \text { Brodecal } 5 \text { Pin } \\ \hline \end{array}$	1202	1000 Min , 2500 Max.	Magnetic	19000	410	13000	250	26-63	19184
$162 \mathrm{P4}$	6.3	0.6	15-7/8 Diam.	22-1/4	Glose	Recessed Small Cavity	Gray	52	Single	$\begin{array}{\|l\|} \text { Small She II } \\ \text { Duodecal } 5 \text { Pin } \\ \hline \end{array}$	1272	750 Min, 2000 Max.	Mametic	16000	410	12000	300	33-79	162P4
16WP4A	6.3	0.6	15-7/8 Diam.	17-3/4	Glose	Recessed Small Cavity	Gray	70	Sinfle	Small Shell Duodecal 5 Pin	12 D 2	750 Min, 2000 Max.	Mapnetic.	16000	410	12000	250	27-63	16 mPM
17AP4	6.3	0.6	15-3/8 $\times 12-1 / 4$	18-5/8	Glaes	$\begin{aligned} & \text { Recessed } \\ & \text { Smoll Cavity } \end{aligned}$	Gray	65	Single	$\begin{aligned} & \text { Small Shell } \\ & \text { Duodecal } 5 \text { Pin } \\ & \hline \end{aligned}$	1202	$750 \mathrm{Min}, 200 \mathrm{M}$ Max.	Magnetic	16000	410	12000	300	33-79	17AP4
178P4	6.3	0.6	15-25/64 $\times 12-9 / 64$	19-5/8	Glasa	Recessed Small Cavity	Clear	65	Sinfle	$\begin{aligned} & \text { Saall Shell } \\ & \text { Duodecal } 5 \text { Pin } \end{aligned}$	1212	750 Min, 2000 Max.	Magnetic	16000	410	12000	300	33-77	178P4
178P4							Gray												17EP4A
10FP4	6.3	0.6	10-1/2 Dim.	17-5/8	Glase		Gray	54	None	$\begin{array}{\|l\|} \hline \text { Small Slic } 11 \\ \text { Imodecal 5 Pin } \\ \hline \end{array}$	12 D 2	500 Min, 2500 Max.	Mapmetic	12000	410	11000	250	27-63	10PP4A

Note 1: Horizontal Deflection Anglea are given for Rectangular Tubea
Courtesy SyIvania Electric Producta Inc.
Note 2: Mapnetic Deflection, Electrostatic Focusing.
Note 3: Electrostatic and Mapnetic Deflection, Mapnetic Focising.
Note 4: Electrostatic and Magnetic Deflection, Electrostatic Focusing.

## CROSS INDEX OF ARMY VT NUMBERS AND COMMERCIAL NUMBERS

VT   NUMBER	COMMERCIAL NUMBER
VT-1 . . . . WE-203A (obsolete)	
VT-2	E-205B
VT-3 . . . . . Obsolete.   VT-4A.... Obsolete.	
VT-4B . . . . Commercial 211.	
VT-4C . . . JAN 211.	
VT-5 . . . . WE-215A	
VT-6 . . . . 212A (obsolete)	
VT-7 . . . . WX-12 (obsolete)	
VT-8 . . . . . UV-204 (obsolete)	
VT-10 . . . Obsolete.	
VT-11 . . . Obsole	
VT-12 .... Obsolete	
VT-13 . . . Obsolete.	
VT-14.... Obsolete.	
VT-16 . . . Obsolete.	
VT-17... . 860.	
VT-18 . . . Obsolete.	
VT-19 ... 861.	
VT-20 . . . . Obsolete.	
VT-21 . . . . Obsolete.	
VT-22 . . . 204A.	
VT-23 ... . Obsolete.	
VT-24 . . . 864.	
VT-25 . . . 10.	
VT-25A . . . 10 Special.	
VT-26 . . . 22.	
VT-27 . . . 30.	
VT-28 ... 24, 24A.	
VT-29 . . . 27.	
VT-30 ... 01-A	
VT-31 ....31.	
VT-32 . . . Obsolete.	
VT-33 . . . 33.	
VT-34 . . . 207.	
VT-35 ... 35/51.	
VT-36 . . . 36.	
VT-37 . . . 37.	
VT-38 . . . 38.	
VT-39 . . . 869.	
VT-39A . . 869A	
VT-40 . . . 40.	
VT-41... 851.	
VT-42 . . . 872.	
VT-42A . . . 872A (Special fil.).	
VT-43 . . . 845.	
VT-44 . . . 32.	
VT-45 . . . 45.	
VT-46 . . . 866.	
VT-46A . . 866A.	
VT-47 . . . 47.	
VT-48... 41.	
VT-49 . . . 39/44.	
VT-50 . . . 50.	
VT-51 . . . 841.	
VT-52.	Special.


VT   NUMBER	COMMERCIAL   NUMBER	VT   NUMBER	COMMERCIAL   NUMBER
VT-53	. Canceled (superseded by VT-42A).	$\begin{aligned} & \text { VT-99 . } \\ & \text { VT-100 } \end{aligned}$	$\begin{aligned} & .6 \text { F8G. } \\ & .807 . \end{aligned}$
VT-54	34.	VT-100A.	. 807 Modified.
VT-55	865.	VT-101.	837.
VT-56	56.	VT-102.	Canceled.
VT-57	57.	VT-103. .	6SQ7.
VT-58	58.	VT-104. .	. 12SQ7.
VT-60	850.	VT-105. .	. 6SC7.
VT-62	. 801,801 A.	VT-106. .	803.
VT-63	. 46.	VT-107.	. 6V6.
VT-64	. 800.	VT-107A.	. 6V6GT.
VT-65	6C5.	VT-107B.	. 6V6G.
VT-65A	. 6C5G.	VT-108.	450 TH.
VT-66	6F6.	VT-109.	2051.
VT-66A	6F6G.	VT-111.	5BP4/1802 P4.
VT-67.	. 30 Special.	VT-112.	6AC7/1852.
VT-68	. 6B7.	VT-114. .	. 5T4.
VT-69	6D6.	VT-115..	6L6.
VT-70	. 6F7.	VT-115A.	6L6G.
VT-72	. 842.	VT-116	6SJ7.
VT-73	. 843.	VT-116A.	. 6SJ7GT.
VT-74	. 524.	VT-116B.	. 6SJ7Y.
VT-75	. 75.	VT-117.	. 6SK7.
VT-76	. 76.	VT-117A.	. 6SK7GT.
VT-77	77.	VT-118.	832.
VT-78	. 78.	VT-119.	. 2X2/879.
VT-80	. 80.	VT-120.	954.
VT-83	. 83.	VT-121.	. 955.
VT-84	. 84/6Z4.	VT-122.	530.
VT-86	. 6 K 7 .	VT-123.	RCA A-5586 (super-
VT-86A	6K7G.		seded by VT-128).
VT-86B	. 6 K 7 GT .	VT-124.	. 1A5GT.
VT-87	. 6L7.	VT-125. .	. 1C5GT.
VT-87A	. 6L7G.	VT-126. .	. 6X5.
VT-88	. 6R7.	VT-126A.	. $6 \times 5 \mathrm{G}$.
VT-88A	. 6R7G.	VT-126B.	6X5GT.
VT-88B	. 6R7GT.	VT-127.	Special tube.
VT-89	. 89	VT-127A.	Special tube.
VT-90	. 6 H 6.	VT-128. .	. 1630 (A-5588).
VT-90A	. 6H6GT.	VT-129. .	. 304TL.
VT-91	. 6J7.	VT-130.	. 250TL.
VT-91A	. 6J7GT.	VT-131.	. 12SK7.
VT-92	. 6Q7.	VT-132.	. 12 K 8 Special.
VT-92A*。	. 6Q7G.	VT-133.	. 12SR7
VT-93	. 6B8.	VT-134. .	. 12A6.
VT-93A	. 6B8G.	VT-135.	. 12J5GT.
VT-94	. 6 J 5.	VT-135A.	. 12 J 5.
VT-94A	. 6 J 5 G .	VT-136. .	. 1625.
VT-94B	. 6 J 5 Special selec.	VT-137.	1626.
VT-94C	. 6J5G Special selec.	VT-138.	. 1629.
VT-94D	. 6 J 5 GT .	VT-139..	. VR150-30.
VT-95	. 2 A3.	VT-140*.	. 1628.
VT-96	. 6N7.	VT-141. .	. 531.
VT-96B	. 6N7 Special selec.	VT-142..	WE-39DY1.
VT-97	. 5W 4.	VT-143. .	. 805.
VT-98	. 6U5/6G5.	VT-144. .	813.

* Indicates VT number has been canceled.

VT   NUMBER	COMMERCIAL NUMBER
VT-145. . . 523.	
VT-146. . . . 1N5GT.	
VT-147. . . 1A7GT.	
VT-148. . . . 1D8GT.	
VT-149. . . . 3A8GT	
VT-150A. . .6SA7GT.	
VT-151. . . . 6A8G.	
VT-151B. . . 6A8GT.	
VT-152....6K6GT.	
VT-152A. . . 6 K 6 G .	
VT-153. . . . 12C8 Special.	
VT-154. . . 814.	
VT-155. . . . Special tub	
VT-156. . . . Special t	
VT-157. . . Special tu	
VT-158. . . . Special t	
VT-159. . . Special	
VT-160. . . . Special tub	
VT-161. . . . 12SA7.	
VT-162.... 12SJ7.	
VT-163. . . 6C8G.	
VT-164. . . . 1619.	
VT-165. . . . 1624.	
VT-166. . . 371 A .	
VT-167. . . 6 K 8.	
VT-167A. . . 6 K 8 G .	
VT-168A. . . 6Y6G.	
VT-169. . . 12C8.	
VT-170. . . 1E5-GP.	
VT-171. . . . 1 R5.	
VT-171A. . . Loctal Equiv. of 1 R5.	
VT-172. . . 1 S5.	
VT-173... 1 T4.	
VT-174. . . . 3S4.	
VT-175.... 1613.	
VT-176. . . 6AB7/1853	
VT-177. . . 1 LH4.	
VT-178. . . . 1 LC6.	
VT-179. . . . 1 LN5.	
VT-180*. . . 3LF4.	
VT-181. . . 774.	
VT-182. . . . 3B7/1291.	
VT-183. . . 1R4/1294.	
VT-184.	VR90-30.


VT	COMMERCIAL
NUMBER	NUMBER

VT-185. . . . 3D6/1299.
VT-186. . . . Special tube.
VT-187. . . 575A.
VT-188. . . .7E6.
VT-189. . . . 7F7.
VT-190. . . . 7H7.
VT-191. . . 316 A .
VT-192. . . . 7A4.
VT-193. . . . 7C7.
VT-194. . . . 7J7.
VT-195. . . . 1005.
VT-196. . . . 6W5G.
VT-197A. . . 5 Y3GT/G.
VT-198A. . . 6G6G.
VT-199. . . . 6SS7.
VT-200. . . . VR-105-30.
VT-201. . . 25L6.
VT-201C. . . 25L6GT.
VT-202. . . 9002 .
VT-203. . . . 9003.
VT-204. . . HK24G.
VT-205. . . . 6ST7.
VT-206A. . . 5V4G.
VT-207. . . 12AH7GT.
VT-208. . . . 7 B8.
VT-209. . . . 12SG7.
VT-210. . . . 1 S4.
VT-211. . . . 6SG7.
VT-212. . . . 958.
VT-213A. . . 6L5G.
VT-214. . . . 12H6.
VT-215. . . . 6E5.
VT-216. . . . 816.
VT-217. . . . 811.
VT-218. . . . 100TH.
VT-219. . . . Canceled.
VT-220. . . . 250TH.
VT-221. . . . 3Q5GT.
VT-222. . . . 884.
VT-223. . . . 1H5GT.
VT-224. . . . RK-34.
VT-225. . . 307A.
VT-226. . . 3EP1/1806P1.
VT-227. . . . 7184.
VT-228. . . . 8012.
VT-229. . . . 6SL7GT.

[^6]
## BALLAST TUBE AND RESISTOR NUMBERING CODES FOR ACDC RECENEES USNG 0.3 NWP. SEBES CONNECTED HEATEES

There are two manbering codes now in use for bollost ond resistor tubes. Eath codes use parts of the type designation to indicote the various divisions of the tube's service. For excmple, type numbers in the first system (W) might be BKX51DJ or L55B and, in the second sysfem (B), might be 200R44 or 200R. These lefter and number combinations are explained by the following examples.

SYSTEM A


NOTE 1.
"Ballast" action indicates that the pilot lamp shunt resistor has low starting resistance when cold, protecting the lamp filament from the initial current surge, and has much higher resistance when hot, applying full operating voltage to the lamp.

NOTE 2.

Tube Letter	Lamp No.	Volts	Amperes	Bead Color
K	40 and 47	6.3	0.15	Brown
L	44 and 46	6.3	0.25	Blue
M	50 and 51	7.5	0.2	White

NOTE 3.
$X$ denotes a 4 pin base and metal shell. $Y$ or $Z$ denote octal bases but with different pin connections. (See Figures A to K.)

## NOTE 4.

This number includes the drop in the series resistor plus the drop in the pilot lamp and its shunt. The number represents the difference between the sum of the heater voliages and the line voltage of 117.5 volts. Tubes are made with the following numbers: $98,92,86,80,73,67,61,55,49,42,36,30$, $23,17,11$. The number to be used is the one closest to the voltage difference mentioned above.







SYSTEM B

All tubes under System $B$ have glass bulbs and 4 pin bases and their type designations start with a number.


EXAMPLE

The numbers 4, 8, or 44, in combination with the preceding letter, indicate the internal tube connections. (See below.)

The letters $R$, $L$, or $M$, when followed by a number, indicate the type of pilot lamp which must be used with thls tube. See Note 2, using the letter $R$ in place of K. The letter R, alone, indicates only a form of internal tube connection without pilot la.np.)

This number indicates the equivalent resistonce in ohms at 0.3 ampere. Thus, $200 \times 0.3=60$ volts drop.



EXAMPLE: $2130 \mu \mu f . \pm 7 \%, 600$ W.v. (Values for color shown in the above parenthesis)

THREE DOT COLOR CODE   FIRST DIGIT OF SECOND DIGT OF   CAPACITANCE IN CAPACITANCE IN   MICROMICROFARADS MICROMICROFARADS				DECMAL MULTIPLIER
color	DIGIT mumeral	ofcimal multiples	rOLETAMCE	wOAKING VOLTACE
BLACK	0	1	20\%	-
BROWN	1	10	1\%	100
RED	2	100	2\%	200
ORANGE	3	1000	3\%	300
YELLOW	4	10000	4\%	400
GREEN	5	-	5\%	500
BLUE	6	-	6\%	600
VIOLET	7	-	7\%	700
GRAY	8	-	$8 \%$	800
WHITE	9	-	9\%	900
GOLD	-	0.1	-	1000
SIIVER	-	0.01	10\%	-

## POWER TRANSFORMER LEAD COLOR CODE

Power transformer leads in radio receivers may be identified by the following colors (or color patterns) on the lead coverings.


Courtesy TIJNG-SOL Lamb Works, Inc.


RESISTANCE VALUE: The nominal resistance valuo In ohms is identified by a three digit symbel. The first two digths are the first two figures of the resistence value in chmes. The third dight specilies the number of zeros which follow the first two Rgiures.

## I-F TRANSFORMER LEAD COLOR CODE

I-F transformer loods in radio receivers moy be identifiod by the following colors on the lead coverings.
PLATE LEAD BLUE GRID (or diode lead) GREEN B+ LEAD RED GRID RETURN BLACK FOR "FULL-WAVE" TRANSFORMER SECOND DIODE lead will be green-black.

AUDIO TRANSFORMER LEAD COLOR CODE
Interstage and Output Audio Transformer leads in radio receivers may be identified by the colors on the lead coverings as shown.


RECEIVING TUBE SUBSTITUTION GUIDE

PILOT LAMP TABLE					
Lamp No.	Volts	Amperes	Bead Color	Miniature Base	Bulb Type
40	6-8	0.15	Brown	Screw	T-3 1/4
41	2.5	0.50	White	Screw	T-3 1/4
42	3.2	0.35	Green	Screw	T-3 1/4
43	2.5	0.50	White	Bayonet	T-3 1/4
44	6-8	0.25	Blue	Bayonet	T-31/4
45	3.2	0.35	White	Bayonet	T-3 1/4
46	6-8	0.25	Blue	Screw	T-3 1/4
47	6-8	0.15	Brown	Bayonet	T-3 1/4
48	2.0	0.06	Pink	Screw	T-3 1/4
49	2.0	0.06	Pink	Bayonet	T-3 1/4
50	6-8	0.20	White	Screw	G-3 1/2
51	6-8	0.20	White	Bayonet	G-3 1/2
55	6-8	0.40	White	Bayonet	G-4 $1 / 2$
292	2.9	0.17	White	Screw	T-3 1/4
292A	2.9	0.17	White	Bayonet	T-3 1/4
1455	18.0	0.25	Brown	Screw	G-5
1455A	18.0	0.25	Brown	Bayonet	G-5
1490	3.2	0.16	- -	Bayonet	T-3 1/4

GERMANIUM CRYSTAL DIODE CHARACTERISTICS

Germanium Crystal	Min. Forward Current at $+1 v$ (Ma)	Max. Reverse Current   (Microamp.)	Peak Inverse Voltage (Volts)	Average Anode Rect. Current (Ma)	Peak Anode Rect. Current (Ma)
1 N34 $\}$	5.0	$\{50$ at $-10 v$	75	40	150
1N34A\}		$\{800$ at $-50 v$			
1N35*	7.5	10 at -3v	75	22.5	60
$\left.\begin{array}{l} \text { 1N38 } \\ \text { 1N38A } \end{array}\right\}$	3.0	$\left\{\begin{array}{c} 6 \text { at }-3 v \\ 625 \text { at }-100 v \end{array}\right.$	120	40	150
1N39	3.0	$\left\{\begin{array}{l} 200 \text { at }-100 v \\ 800 \text { at }-200 v \end{array}\right.$	225	40	150
1N40**	$\left\{\begin{array}{c}12.75 \\ \text { (at } 1.5 \text { volts) }\end{array}\right.$	50 at -10 v	75	22.5	60
1N41**	$\left\{\begin{array}{c} 12.75 \\ \text { (at } 1.5 \text { volts }) \end{array}\right.$	50 at -10v	75	22.5	60
1 N 42 **	$\left\{\begin{array}{c} 12.75 \\ \text { (at } 1.5 \text { volts) } \end{array}\right.$	$\left\{\begin{array}{c} 6 \text { at }-3 v \\ 625 \text { at }-100 v \end{array}\right.$	120	22.5	60
1 N48	4.0	833 at -50v	85	50	150
1N51	2.5	1670 at -50v	50	25	100
1N52	4.0	150 at -50v	85	50	150
1N54 $\}$	5.0	10 at -10v	75	40	150
1N54A\}					
1 N55 $\}$	3.0	$\{300$ at $-100 v$	170	40	150
1N55A $\}$		$\{800$ at $-150 \mathrm{v}$			
1N56 $\}$	15.0	300 at -30v	50	50	200
1N56A $\}$					
1 N57	4.0	500 at -75v	90	40	150
1 N58 $\}$	4.0	800 at $-100 v$	115	40	150
1N58A					
$1 \mathrm{~N} 60^{+}$	$t$	$\dagger$	70	40	150
1 N63	4.0	50 at -50v	125	50	150
1 N64	Tested for	efficiency in 44	Mc video	detector c	cuit.
1 N65	2.5	250 at -50v	85	50	150
1N69*	5.0	850 at -50v	75	40	125
1N70*	3.0	410 at -50v	125	30	90
LN71 ${ }^{\text {+ }}$	- 15.0	300 at -30v	50	50	200

NOTE: Crystals 1 N48, 1 N51, 1N52, 1N63, 1N64, and 1 N65 are General Electric types, all others are Sylvania types unless otherwise indicated.

* Units are matched in the forward direction at +1 volt so that the current flowing through the higher resistance unit is within $10 \%$ of that in the lower resistance unit. Ratings shown are for each diode.
** Consists of 4 specially selected and matched germanium diodes whose resistances are balanced within $\pm 2.5 \%$ in the forward direction at 1.5 volts. For additional balance, the forward resistance of each pair of varistor crystals are matched within 3 ohms. Ratings shown above are for each diode.
+ Units are tested in a circuit employing an input of 1.8 volts rms at $40 \mathrm{mc} .70 \%$ modulated at 400 cycles. Demodulated output across a 4700 ohm resistor shunted by a 5 mmf capacitor is a minimum of 1.1 volts peak to peak.
- JAN types
${ }^{\text {t+ }}$ Consists of four matched low impedance germanium diodes each of which, with a voltage of one volt impressed in the forward direction, will pass a current within one ma of the average current of the four. Ratings shown above are for each diode.


[^0]:    ${ }^{11}$. F. Rider and S. D. Uslan, Encyclopedia on Cathode-Ray Oscilloscopes and Their Uses, John F. Rider Publisher, Inc., New York, N. Y., 1950, pp. 389-401.

[^1]:    * See Addendum at back of this section.

[^2]:    * See Addendum at back of this section.

[^3]:    * See Addendum at back of this section.

    76

[^4]:    * See Addendum at back of this section.

[^5]:    Courtesy ARRL Fandtook

[^6]:    * Indicates VT number has been canceled.

