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Foreword

The tremendous research and development effort that went into the 
development of radar and related techniques during World War II 
resulted not only in hundreds of radar sets for military (and some for 

possible peacetime) use but also in a great body of information and new 
techniques in the electronics and high-frequency fields. Because this 
basic material may be of great value to science and engineering, it seemed 
most important to publish it as soon as security permitted.

The Radiation Laboratory of MIT, which operated under the super
vision of the National Defense Research Committee, undertook the great 
task of preparing these volumes. The work described herein, however, is 
the collective result of work done at many laboratories, Army, Navy, 
university, and industrial, both in this country and in England, Canada, 
and other Dominions.

The Radiation Laboratory, once its proposals were approved and 
finances provided by the Office of Scientific Research and Development, 
chose Louis N. Ridenour as Editor-in-Chief to lead and direct the entire 
project. An editorial staff was then selected of those best qualified for 
this type of task. Finally the authors for the various volumes or chapters 
or sections were chosen from among those experts who were intimately 
familiar with the various fields, and who were able and willing to write 
the summaries of them. This entire staff agreed to remain at work at 
MIT for six months or more after the work of the Radiation Laboratory 
was complete. These volumes stand as a monument to this group.

These volumes serve as a memorial to the unnamed hundreds and 
thousands of other scientists, engineers, and others who actually carried 
on the research, development, and engineering work the results of which 
are herein described. There were so many involved in this work and they 
worked so closely together even though often in widely separated labora
tories that it is impossible to name or even to know those who contributed 
to a particular idea or development. Only certain ones who wrote reports 
or articles have even been mentioned. But to all those who contributed 
in any way to this great cooperative development enterprise, both in this 
country and in England, these volumes are dedicated.

L. A. DuBridge.
VÜ





Preface

Soon after Drs. I. I. Rabi and L. A. DuBridge decided that the tech
nical knowledge of the Radiation Laboratory staff should be pre

served, it was evident that at least one complete book would be required 
on lumped-parameter circuits. The early planning for that book was 
done during a series of conferences called by L. J. Hawworth, and attended 
by B. Chance and G. E. Valley, Jr.

It was difficult to arrange all the subject matter in a way that would be 
easy to read and economical of space. It would have been possible to 
describe the various electrical devices in order, but to describe each 
instrument completely would have involved an intolerable amount of 
repetition concerning basic circuits, such as multivibrators and ampli
fiers. It would also have required an intolerable amount of cross
indexing if the work were to be usable by those interested, not in the 
particular instruments described, but in the application of their design 
principles to completely different problems. It was apparent, too, that 
the work should not stress radar.

The material was therefore divided into two parts: the first part to 
include the basic principles of circuit design, the second to pertain to the 
assembly of basic circuits into functional instruments such as receivers 
and data display systems. These decisions were made in the interests of 
clarity and brevity. Even so, upon completion of the consequent 
outline, it was evident that several volumes would be required. Accord
ingly new outlines were prepared for each of these and were then revised 
separately for each volume by committees composed of the editors and 
authors concerned.

The first of these books, Components Handbook, discusses the physical 
embodiments of the lumped-parameters themselves: resistors, cables, 
motors, vacuum tubes, etc. Next, Vacuum Tube Amplifiers and Wave
forms discuss the principles of circuit design, respectively, for circuits that 
are essentially linear (amplifiers) and for circuits that are essentially 
nonlinear (oscillators, electronic switches, and the like). The four 
following volumes concern themselves with the design of complex func
tional devices. They are Electronic Time Measurements, Electronic 
Instruments, Cathode Ray Tube Displays, and Microwave Receivers.

The amplifiers discussed in this volume are designed to have extreme 
ix



X PREFACE

values in one of several of the pertinent characteristics: bandwidth, 
sensitivity, linearity, constancy of gain over long periods of time, etc. 
In most cases the design of such amplifiers, in which the ultimate per
formance is obtained from available types of components, cannot be 
carried out by simple rules of thumb.

The volume therefore begins with a chapter on “Linear Analysis and 
Transient Response” which lays the theoretical basis for the high-fidelity 
reproduction of transient signals, such as rectangular pulses. Although 
the chapter is rather theoretical, a summary is contained in Sec. ITO of 
the precise steps needed to determine the transient response of a given 
network. The practical application of these principles is examined in the 
next chapter, “High-fidelity Pulse Amplifiers,” for direct, or “video,” 
pulses. The resemblance of this material to that contained in Chap. 3 
is only superficial; “Pulse Amplifiers of Large Dynamic Range” is about 
the design of amplifiers intended to deal with pulses of widely varying 
magnitude, all other characteristics being secondary. Chapters 4 through 
7 deal with the theoretical and practical aspects of several methods of 
amplifying, with varying degrees of fidelity, pulse-modulated carrier fre
quencies as high as 200 Mc/sec. Although the design principles are 
examined in these chapters chiefly from the standpoint of relatively high 
frequencies, they are perfectly general in their application. That this is 
true is exemplified by Chap. 10, “Low-frequency Feedback Amplifiers,” 
wherein some of the results of Chap. 4 are applied to filter amplifiers oper
ating at frequencies as low as 50 cps.

Chapter 8 deals with the examination and adjustment of the amplifiers 
previously described, especially when they are employed as intermediate 
frequency amplifiers in superheterodyne receivers. Chapter 9 discusses 
some of the innumerable ways in which inverse feedback can be employed 
to stabilize the gain of an amplifier. The well-known principles of 
Nyquist, Bode, and others are applied particularly to circuits in which 
inductances do not appear, and use is made of this fact to simplify the 
analysis; in addition the chapter describes the successively less approxi
mate phases through which the design of such an amplifier can proceed. 
Chapter 11 recounts the experience at the Radiation Laboratory concern
ing the design of rugged and reliable direct-coupled amplifiers, no par
ticular emphasis being placed upon extreme sensitivity.

Chapter 12, “Amplifier Sensitivity,” examines the subject of noise 
in a rigorous and very theoretical manner. The design of amplifiers for 
best signal-to-noise ratio is discussed in Chap. 13, “Minimal-noise Input 
Circuits,” and in Chap. 14 the experimental measurement of amplifier 
sensitivity is explained.

Appendix A contains an existence theorem on the physical realizability 
of filter amplitude characteristics.
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In addition to the material contained in this volume, information 
concerning the application of amplifiers to specific purposes will be found 
in other volumes. In particular the use of amplifiers in computers and 
servomechanisms is discussed in Electronic Instruments. In Cath
ode Ray Tube Displays is included a chapter devoted to amplifiers 
specifically designed to drive inductive loads (i.e., cathode-ray tube 
deflection coils). Microwave Receivers contains a good deal of infor
mation on the use in microwave receivers of the types of amplifier 
described in Chaps. 3 through 7. It also contains a discussion of the 
noise problem as it affects superheterodyne receiving systems.

The editors wish to acknowledge the inspiration and guidance of 
the Editor-in-Chief, L. N. Ridenour, and of his editorial board. This 
book is the product of a large organization, much of the credit for whose 
successful operation goes to Charles Newton and his able assistants 
Dr. V. Josephson, M. Dolbeare, and M. Phillips. Whatever uniformity 
of style and format the book may present is largely due to the Technical 
Coordination Group operating under the direction of Drs. L. B. Linford 
and A. M. Stone. To the authors, the editors extend their thanks for a 
task conscientiously performed and their congratulations upon its com
pletion. The assistance of Mr. J. H. Irving in furnishing important back
ground material for Chap. 1 is gratefully acknowledged. It is due to the 
generosity of the British Air Commission that Mr. R. Q. Twiss was able 
to work on the several important chapters that bear his name.

The preparation of the illustrations for the volume was ably supervised 
by Martha Murrell. The timely assistance of Margot Cheney and Beka 
Hepner resulted in the volume’s being prepared within the allotted time. 
It was the task of Doris Williams to type over the most illegible of the 
original manuscript.

Cambridge, Mass., 
July, 1946.

The Editors.
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CHAPTER 1

LINEAR-CIRCUIT ANALYSIS AND TRANSIENT RESPONSE

By Richard Q. Twiss

14. Introduction.—The purpose of this chapter is to provide a sys
tematic procedure for finding the response of a linear network to an 
applied signal under arbitrary initial conditions. The mathematical 
machinery used in deriving this procedure is based upon the Laplace 
transform.1

The Laplace transform analysis is not the only method that has been 
used to solve linear network problems; and because some of its present
day aspects have been influenced by earlier work, a short historical 
discussion will be given.

Long before the first statement of Kirchhoff’s laws or the development 
of linear-network analysis, Laplace had used transform theory to solve 
differential equations while Cauchy had employed the Fourier transform 
as the theoretical basis for an operational calculus. However, in the 
early treatment of the linear network by Clerk Maxwell, the classic 
theory of linear-differential equations was used. This method provides 
a solution in the form of the sum of a “particular integral” and the 
“complementary function,” the latter containing a number of arbitrary 
constants that have to be determined, from the initial conditions, by an 
auxiliary set of equations.

This treatment can be made entirely rigorous if the scope of applica
tion is sufficiently restricted, and it is still used in elementary textbooks. 
Unfortunately it is cumbersome in application, particularly when there 
are a large number of arbitrary constants to be determined. It was 
largely the search for a compact and simple solution that led Oliver 
Heaviside to develop the attack usually referred to as the Heaviside 
operational calculus. Heaviside himself was either ignorant of or 
indifferent to the work of his predecessors, and his system was presented 
as a set of disconnected and arbitrary rules which did, in fact, solve a 
wide range of problems with a minimum of computation but which 
totally lacked a valid theoretical basis.

The wide application of linear-differential equations in physics and 
engineering, the fact that Heaviside’s calculus (as it stands) is applicable

' For an excellent general reference see M. F. Gardner and J. L. Barnes, Transients 
in Linear Systems, Wiley, New York, 1942.
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2 LINEAR-CIRCUIT ANALYSIS AND TRANSIENT RESPONSE [Sec. 1-1

only to the case where the initial electrostatic and magnetic energy in the 
circuit is' zero, and the desire to furnish a rigorous mathematical founda
tion led a whole army of workers, most of whom appeared equally 
ignorant of Cauchy’s original work, into this field; it was not until a vast 
contribution to the theory of the operational calculus had been made that 
it was realized that this calculus is intimately related to the theory of the 
Laplace transform and that a proof of all Heaviside’s results can be 
provided on the functional transform basis.

This result naturally suggested the question as to whether or not the 
direct application of the Laplace transform theory could provide a solu
tion as simple and compact as that given by the operational calculus, but 
wider in application and completely rigorous and systematic in method. 
This question has now been answered in the affirmative; hence it can be 
expected that the Heaviside calculus will drop into desuetude and will 
be replaced by the transform analysis.

At the same time as the operational calculus was being investigated 
and extended, other writers were using the Fourier series and Fourier 
integral to derive the response of a network to an applied signal from its 
steady-state response. This line of approach, at least in its elementary 
form, is less powerful than the Heaviside calculus and is also directly 
applicable only to the case in which the initial electrostatic and magnetic 
energy in the network is zero. When the method is extended to over
come these disadvantages, it becomes virtually equivalent to the Laplace 
transform method. It is shown in Sec. 19 that both these methods can 
be regarded as special cases of the general transform theory in the complex 
plane.

It must be emphasized that in this chapter the mathematical machin
ery is regarded merely as scaffolding, as much as possible of which is to 
be dispensed with as soon as the fundamental form of the general solution 
has been found. Accordingly, only the most important results of the 
theory are proved, the auxiliary theorems being stated without justifica
tion, and no attempt is made to discuss those aspects of the Laplace 
transform theory which do not bear directly upon the linear-network 
problem.

Instead, emphasis is placed upon the methods for setting up the 
network equations, illustrated by practical examples. In Sec. 1-2 a 
condensed account is given of the basic properties of linear networks. 
In Sec. 1-3 the integro-differential equations for several practical net
works are derived, the results extended to the general case, and the mesh 
and nodal methods of setting up those equations are compared. In 
Sec. 1-4, which contains all the fundamental mathematical theory, the 
concept of the Laplace transform is introduced, its principal properties 
lerived, and its ability to transform a set of differential equations into a
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set of algebraic equations is illustrated for the case of the nth-order 
equation in a single independent variable. The inverse Laplace trans
form is then derived and used to complete the solution of the nth-order 
equation. The section terminates with a discussion of the convolution 
theorem and its application to network analysis. The theory is then 
applied to the equations of Sec. 1-3; the general solution is derived; and its 
form discussed.

It is at this stage that the concept of the “transform network” is 
introduced. This concept can often be of great help in solving practical 
problems; and because its use is not widespread, it is treated very fully. 
It might be regarded as a mistake in emphasis to attach such prominence 
to what is, in essence, merely a mechanism for shortening a part of the 
analysis, but this view can be countered by two powerful arguments. 
In the first place the most difficult and least standardized part of network 
analysis is the setting up of the transform equations. Once these equa
tions have been derived, a condensed procedure can be followed that is 
always the same whatever the particular problem to be solved. Secondly, 
the transform equations can be derived from the transform network 
by the conventional methods of the steady-state analysis without 
introducing the integro-differential equations at all. Thus the use of 
the transform network not only shortens the analysis but greatly sim
plifies it as well.

The standard procedure for solving network problems is summarized 
in Sec. l-II; and in Sec. 1-12 this procedure is applied to derive the com
plete solution of two practical examples.

The chapter also contains a section on the Fourier transform theory, 
the merits of which are compared with those of the Laplace transform.

1-2. The Basic Properties of Linear Networks.—Most of the concepts 
introduced in this section will already be familiar to the reader acquainted 
with the conventional steady-state network analysis. Reference can be 
made to any of the standard textbooks and in particular to Gardner and 
Barnes Transients in Linear Systems for a detailed discussion.1

The Class of Networks Considered.—The networks considered in this 
chapter are composed partly of lumped passive elements (inductors, 
capacitors, and resistors) and partly of active elements (voltage and 
current generators). These active elements are not physical entities but 
mathematical idealizations; in practice active networks will contain not 
pure generators but vacuum tubes. However, it is assumed that all the 
vacuum tubes treated in this analysis ”an be completely represented by a 
three-terminal network consisting of lumped-passive elements together 
with voltage and current generators.

1 The whole of the treatment of this section follows along lines similar to those 
adopted by M. F. Gardner and J. L. Barnes, op. cit.
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All the elements, both passive and active, are assumed to be linear 
(thus ensuring that the superposition principle can be applied) and 
invariant with time.

The Network Elements.—The integro-differential equations relating 
the voltage across a passive element to the current through it are set out 
in Table 1-1.

Table 11.—Passive-element Representation

_, . Sym-
Element ¿ , Impedance basis Admittance basis

Inductor

Capacitor

Resistor

nW ~L^ 
al 

where L is the self inductance
of the element, L = r-1

fsW = vs(0+) + S is{t) dt, 
where >S is the elastance of the 
element, S = C-1

VR(t) = RÎM, 
where R is the resistance of the 

element, R — G~l

ir(0 = *r(O-f-) + r i>r(t) dt, 
where r is the inverse self in
ductance of the element, 
T = L-'

ic(0 =C'^ 
at 

where C is the capacitance of the 
element, C = 5“1

= Gvoffh
where G is the conductance of the 
element, G = R~l

Note 1. The values tp(0+) and rs(O+) are the limiting values of ip(O and ra(O respectively as t 
decreases toward zero.

Note 2. The parameters L, S, R, r, C, G are descriptive of the element only and are independent 
of the time or of the magnitude of the voltage across the element.

It will be shown later in this section that there are two fundamental 
methods of deriving the basic equations: One uses the concepts voltage 
generator, impedance, and mesh; the other uses the concepts current 
generator, admittances, and node; and it is for this reason that in one 
column of Table 1-1 the voltage-current relation has been set out on an 
impedance basis and in the neighboring column on an admittance basis.

In the special case in which v(t) and i(t) are exponential functions of 
the time, V(p) exp pl and I(p) exp pt respectively,
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ÛW - Lp’ 
Veit) _ S 
t«(0 ~ p

MO 
MO

ir(t) = £ [ir(O+) = 0], 
P

ic(t)
Vc(t)

= R,

= CpM0+) = 0],

_ p

and the ratios Lp, S/p, R, are called p impedances; r/p, Cp, G, are callee 
p-admittances. In the particular case where p = ju is purely imaginary, 
the ratios are simply called impedances and admittances and are the 
familiar steady-state concepts.

The main properties of the active elements are set out in Table 1-2.

Voltage-current Source Transformation.—In the mesh analysis it is 
desirable that all the sources be voltage generators, but in the nodal 
analysis it is desirable that all the sources be current generators. In 
many cases it will be possible to achieve this state of affairs with the aid 
of one or the other of the transformations set out in Table V3.1

In the steady-state case when v(t) and i(t) are exponential functions 
of the time V(p) exp pt and I (p) exp pt respectively, these transformations 
are all special cases of the general transformations of Fig. 1-1 where ^(p) 
and Y(p) are p-impedances and p-admittances respectively related by the 
equations

Z<!” - W
V(p) = Z(p)I(p),

1 For a proof of these transformations see Gardner and Barnes, op. oil. p. 23.

"ài



Table 1-3.—Voltage-current Equivalences

Voltage generator Current generator
v(t) - Ri(t), 

।---- -------------------O where R = G~l

A v (t) c
L
^ttt) <

i(t) = Gv^), 
1 where G “ R 1

>G

- o

s v(t) - s f i(t) dt,
------ d(+-----------0 J

where S = C~l and Q is the initial charge 
on the condenser

J)v(O

A

Î
At«) Q"

'' dl
where C — S~l and Q is the initial charge 

- £ on the condenser

■o

L 
------ 1 0 0 0 j-------- o di

*'■ where L — r-1 and io is the initial current
J- 0 through the inductor

A 

r~^- 
i«) . | f

i(i) - »«) dt,
1 where r — L~l and io is the initial current 
’ p through the inductor

A
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where V(p) and Z(p) are constant-voltage and constant-current p-gen- 
erators respectively.

This general transformation can be used when deriving the transform 
equations from the transform network, but it cannot be used directly 
when setting up the integro-differential equations.

Fig. bl.—Voltage-current source equivalence.

Mutual Inductance.—Mutual inductance is not an element of a net
work in the sense discussed above; but, since the presence of magnetic 
coupling between the various inductances of the network affects the form 
of the network equations, this concept must be introduced.

A full discussion of mutual inductance will be found in all the stand
ard textbooks on electromagnetism.1

Consider the simple transformer of Fig. 1-2, where the two inductances
Li and Lt are coupled together by 
mutual inductance M.

If the inductor Lt is open cir
cuited so that it = 0, the voltage 
across 2-2 is +M dL/dt. Similarly 
if Li is open circuited, the voltage 
across the terminals 1-1 is ± M dit/dt. 
The ambiguity of sign is resolved as 
follows: If a positive rate-of-change 
of it induces in Circuit 1 a voltage 

Fig. 1-2.—Mutual-inductance coupling.

drop in the arrow direction, the sign is positive; if a voltage rise is induced, 
the sign is negative.

More generally if a coil Lj is coupled by mutual inductances Mlk to a 
system of coils Lk(j k, k = 1, • • • , n), then the open-circuit voltage 
across the coil Lj is

1 M. Abraham and R. Becker, Classical Electricity and Magnetism, Blackie, 
Glasgow, 1932; Sir James Jeans, Mathematical Theory of Electricity and Magnetism, 
4th ed., Cambridge, London, 1923.
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i nx dll । ig dlz . i nx din
+

where the signs of the various terms are determined by the rule above.
The Network Structure.—In setting up the basic equations such con

cepts as node, branch, mesh, etc., will be used, and in comparing the 
merits of the mesh and nodal analysis, it is necessary to 

i enumerate the number of independent node pairs and 
meshes. Because different writers have given these terms 

Fig 1-3 — different meanings, it seems desirable to remove the possi- 
Universal eie- bility of ambiguity by defining them here. The notation 
ment symbol. used is similar to that of Gardner and Barnes (loc. cit.), 
but a few minor changes, intended to bring out the difference between the 
steady-state and the transient analysis, have been made.

Such terms as “node” and “mesh” are primarily geometrical and 
do not depend upon the detailed nature of the elements making up the 
network. Accordingly the symbol of Fig. 1-3 will be used to represent 
any of the five basic elements (three passive and two active) whenever 
this appears desirable in the interests of clarity.

The various terms descriptive of the network structure will now be 
defined.

1. Terminal. The end points of an element are called its terminals.
2. Node. The junction point of two or more terminals is called a node. 

The junction point of no more than two terminals is called a simple

node or s-node. The junction point of more than two terminals is 
called a complex node or c-node. The network in Fig. l-4a has 
three s-nodes; the network in Fig. l-4b has three s-nodes and two c- 
nodes.

3. Branch. The series connection of elements, none of whose internal 
nodes is a c-node, is called a closed branch if the series connection is 
closed in an s-node or c-node and an open branch if the end points 
of the branch are both c-nodes. Examples of both closed and 
open branches are shown in Fig. 1-5.
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4. Mesh. Any closed path via one or more branches in series forms a
mesh. A closed branch is a special case of a mesh.

6.

7.

Separable part. A part of 
the network having only 
mutual inductive coupling 
with the rest of the network 
is called a separable part. 
Thus the network of Fig. 1-6, 
which has four c-nodes, two 
s-nodes, six open branches, 
and one closed branch, has 
three separable parts.
Reference node. One node 
of each separable part of a network is called the reference node of 
that part. The choice of reference node is arbitrary.
Independent node pair. The combination of the reference node 
with any other node of the same separable part is called an inde
pendent node pair.

Fig. 1*6.—Network with three separable parts.
It is clear from the above definitions that if N is the total number of 

nodes in the network, P the number of separable parts of the network, and 
Np the number of independent node-pairs, then

NP = N - P.

Another most important result, which can be proved by topological 
methods,1 is that M, the number of independent meshes, is given by

M = E - Np,

where E is the number of elements in the network. A heuristic proof of 
this result is given in Sec. 1-3.

It remains only to discuss the reason for dividing the nodes into s- and 
c-nodes. In the elementary steady-state analysis s-nodes are not regarded 
as nodes at all. The condition that no charge accumulate at any point of 
the network will be satisfied automatically at an s-node if it is assumed 
that the instantaneous current flowing in any element of a branch is equal 
to that flowing in any other element of the same branch. The impedance

1 See M. F. Gardner and J. L. Barnes, op. cit., for a bibliography of papers on this 
subject.
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or admittance of a branch can then be written down by inspection. This 
cannot be done, however, when the integro-differential equations for the 
network are being set up.

The point will become clearer after the concept of the transform net
work has been introduced, when it will appear that an s-node can be 
neglected only if the initial potential of the node is zero and if the initial 
currents flowing into it from inductors are zero.1

1-3. The Integro-differential Equations of the Linear Network.—It 
was pointed out in the introduction that the solution of practical problems 
is effected by deriving the trans orm equations from the transform net
work2 so that the integro-differential equations are not formulated 
directly. Nevertheless the methods of setting up .these integro-differen
tial equations are discussed in some detail and illustrated with several 
examples in this section. This course of action is followed for two reasons. 
In the first place the transform network can be employed with confidence 
only when the theory underlying it is fully understood, and this theory can 
be developed only from the integro-differential equations themselves. 
Second, the method of setting up the transform equations from the trans
form network is very similar in form, though more powerful in scope, to 
the methods of setting up the integro-differential equations from the 
original network.

The examples given in this section are not necessarily practical net
works; they have rather been chosen to demonstrate some particular point 
of the theory. This is not true, however, of the examples given at the 
end of this chapter, which are selected to illustrate the power of the 
method in solving practical problems.

Kirchhoff’s Laws and the Mesh-nodal Analysis.—Kirchhoff’s laws, 
which are the fundamental basis for the whole of network theory, can be 
stated as follows:

Law 1. The total voltage drop around any mesh of the circuit is zero.
Law 2. The total instantaneous current flowing into any node of the 

network is zero.

The basic equations can be obtained by applying these laws to every 
branch and node of the network, but this is usually an excessively clumsy 
procedure. A much shorter analysis can be obtained from the so-called 
“mesh-nodal analysis” which will now be described.

It may be emphasized here that Kirchhoff’s laws apply to both linear 
and nonlinear circuits, but the mesh-nodal analysis can be applied only to 
the former.

1 It will be shown that only under these circumstances will an s-node in the original 
network transform into an s-node in the transform network.

’ See Sec. 1-7.
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In the mesh method all current sources are replaced by voltage 
sources,1 and the variables are the M currents flowing in the M inde
pendent meshes. This system automatically satisfies Kirchhoff’s second 
law at every node, because as much current flows into any node as flows 
out of it. M independent equations are obtained by applying Kirch
hoff’s first law to the M independent meshes in turn, thus determining the 
system.

In the nodal analysis all voltage sources are replaced by current 
sources. If the network has N nodes and P separable parts, the variables 
are the N — P voltage differences across the N — P independent node 
pairs. N — P independent equations are obtained2 by applying Kirch
hoff’s second law to every node of the network in turn, thus determining 
the system.

Before the mesh-nodal analysis is applied to a few typical network 
structures, a heuristic proof will be given of the formula stated in Sec. 1-2 
relating the number of independent meshes to the number of elements and 
nodes in the network.

Let E be the number of elements, P the number of separable parts, and 
N the number of nodes. Then there will be E equations relating the 
currents flowing in the elements to the potentials across them, and N — P 
equations obtained by applying Kirchhoff’s second law to every inde
pendent node pair in turn. These N — P equations determine N — P of 
the currents in terms of the others; hence if the analysis is set up on the 
mesh basis, E — (N — P) equations will be needed to determine the 
unknowns, and this is therefore the number of independent meshes.

It may be observed that the mesh analysis will require fewer equations 
than the nodal if E < 2(Ar — P).

The Mesh Analysis and Examples.—In general the mesh equations 
may be set up in a large number of ways, subject only to the two provisos:

There are E — N + P mesh equations.
Every element of the network is included in at least one mesh.
The actual choice will depend upon which voltage or current is to be 

calculated. Usually it is required to find the voltage across a single 
element or branch of the network when an arbitrary signal is 
applied across some part of the network. If this is the case, it will 
be best to set up the mesh analysis in such a way that this element 
or branch is contained in only one mesh. In the general theoretical 
case, of course, where the solution for every current and voltage in 
the network is required, one choice of the independent mesh system 
is as good as another.

1 By one of the transformations of Table 1-3.
2 Not N equations. If Kirchhoff’s second law is satisfied at all but one of the 

nodes of a separable part, it will automatically, be satisfied at the remaining node.
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Two-mesh Network.—As a first example, consider the network of Fig. 
1'7. Initially it will be supposed that the condensers have charges Qi, 
Qu, Qj, respectively, and that currents pi, p2 are flowing in coils Li, in 
the directions indicated. It will be assumed that the inductances are 
coupled by mutual inductance M and are wound in phase. This network 
has one separable part, eight elements, and seven nodes; hence there are 
two independent meshes. The mesh system of Fig. 1-7 is the natural one 
to take if the voltage across Ri is to be determined. Had the voltage 
across Su been of primary interest it would have been better to have 
taken the mesh system of Fig. 1-8.

Fig. 1-7.—Two-mesh network. Fig. 1*8.—Alternative two-mesh network.

If Kirchhoff’s first law is applied to the first mesh of Fig. 1-1 and the 
results given in Table 1-1 are utilized, one gets 

e(t) = Rii'i + QiSi + Si y i'i dr + Li — M + QuSu

+ Su (ii — i2) dr;

applying the law to the second mesh gives 

0 = —QuSu — Su y (ii — i2) dr + L,

— M + QtS, + S2 [ it dr + Rtit. 
dt Jo

Collecting similar terms and transposing the equations gives

e(0 — QiSi — QuSu _ at
+ (Si + Su) y dr

t'l -
M i + Su y dr] l2,

Ri + Li J? + (S2 + Su) at
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Two of the initial conditions (the total voltage drop around the con
densers in the two meshes) have already been included in the equations;
the two remaining conditions are

n(0) = pi, »2(0) = p2.

If the following integro-differential operators are defined,

311 = Ri + (Si + S12) i dr + Li 

Jo dt

312 = ~M - «12 dr,

Z21 — -Mft~

322 — Ri + (St + Su) dr + Lt

(1)

and if Wi(0) = Q1S1 + Q12S12 is the initial voltage drop around the first 
mesh in a clockwise direction and if «2(0) = — Q12S12 + QtSt is the 
initial voltage drop around the second mesh in a clockwise direction, then 
the equations can be put in the condensed form

(2)

(3)

e(i) - Wi(0) = Znifit) + Zi2i2(t), 
— w2(0) = znifit) + 

where 
ii(0) = pi and 2'2(0) = ps

It will be noted that z^ = zei. This is a characteristic of all passive 
networks.

In normal network parlance efit) is called the driving function, and 
ifit) and ifit) are called the response functions.

The General Mesh Equations for the Passive Network.—The discussion 
in the first example was made as general as possible so that the develop
ment of the general case would not be too abstract when the condensed 
notation, defined below, is employed.

Let La, Ra, Sa be the total self-inductance, resistance, and elastance, 
respectively, in mesh j.

Let Lik, Rik, Sjk be the total self- and mutual inductance, resistance, 
and elastance, respectively, common to meshes J and k.

Let efit) be the driving voltage in mesh j.
Let ufiO) be the total initial voltage drop around the elastances in 

mesh j, in a clockwise direction.
Let ifit) be the current flowing in the Jth mesh in a clockwise direction.
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Let

Z,/ La + R^ -f- j q dr.

Let

ut
Rjk ^ik

Then z„ is the total impedance in the jth mesh and — z,t is the 
impedance common to the jth and A:th meshes. If Kirchhoff's first law

Fig. 1-9.—Equivalent circuit for a tube.

is applied to each of the n independent meshes in turn, the following 
system of equations results.

n

e/f) - u,(0) = z,*t*(i) (J = 1, • • • , n), (4)
*= i

where zlk = a,*. Of the initial conditions n are already included in the 
equations. The remaining n are given by the initial values of ij(t) 
(j = L • • • , n).

It will be seen that Eqs. (2) are a special case of Eqs. (4) when n = 2 
and eAt) = 0.

The General Mesh Equations for the Active Network.—In this chapter 
attention will be confined to the case where the three-terminal vacuum
tube network of Fig. l-9a can be replaced by the equivalent network of 
Fig. 1-96.

To demonstrate the modification produced in the network equations 
when vacuum tubes are present, let it be supposed that the grid-cathode 
circuit impedance operator

Zg - Lt + R„ 4- dr
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| pertains to the jth circuit and that the anode-cathode path is in the ¿th 
j circuit.

Then application of Kirchhoff’s first law to the ¿th circuit gives 
| Ztlfl + Zkiis + ’ ■ ' + ¿kfa + ’ ' ■ + iknin = 8t(() — p6g',

and since = z„i„ this equation can be written

Zkdl + Zt2l2 + ’ ' ' + (^ki + + ' ' ’ + Zknin = Sk(t) J

thus the general form of the active network equations are the same as 
those of the passive network save that it is no longer possible to assume

Zjk = %kj‘

The Nodal Analysis and Examples.—The nodal analysis is less widely 
used than the mesh analysis. However, in many cases, particularly for

Fig. 1*10.—Two-node network.

active networks, it is much more convenient, as the succeeding examples 
show.

Two-node Network.—Consider the network of Fig. 140, where the 
condensers Ci, Ct initially carry charges Qi, Qt and where initial currents 
Pi, P12, P2 flow in the inverse inductances Ti, Tn, T2 in the directions 
shown in the figure. This network has one separable part, three nodes, 
and nine branches; hence in the mesh analysis seven equations would be 
needed to determine the system. But th s network has only two inde
pendent node pairs, whose voltages may be taken as ei(i), 6t(t), the 
grounded node being taken as the reference node. If Kirchhoff’s second 
law is applied to these two nodes in succession and if the results given in 
Table 14 are utilized, one gets

i(0 = Ui e, + Ti y Ci dr — pi + <7iCi + Tn y (ei — 62) dr + pit, 

0 = Ct & 82 -|- T. y et dr — pt + Gtet + Fu j (et — ®i) dr — pu;

J
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collecting similar terms and transposing the equations one gets

4- pi — PH = Ci di 4~ Gi 4- (Fj + I'n)

Pi + P12 =
~h (^2 + r12) y dr J «2.

If the following integro-differential operators be defined

Vii — Ci m + Gi + (Fi + r12) j dr, yn = — Tj2 dr, 

yn — — Fi2 y dr, Pm = Ci 4- Gi 4* (Fj 4- Fu) dr,

and if ji(O) = 4~pi — ph is the initial current in the inductances flowing 
into the first node and if 72(b) = + (p2 4- P12) is the initial current in the 
inductances flowing into the second node, then the equations can be put 
in the condensed form

where

*1(0 4- ji(O) = yueilf) 4- yaeiC), 1
4"ja(0) = yiiedO 4- / (5)

e/0) = ea(0) =

In this case ii(t) is called the driving function, and ei{t), es(t) the response 
functions.

(a) (W W

Fig. 1’11.—Transformer equivalent networks.

Mutual Inductance in the Nodal Analysis.—In general where mutual 
inductance is present it is better to employ the mesh analysis. In the 
case where the d-c levels of the various parts of the network are not of 
interest it is possible, however, to replace a transformer by its equivalent 
T- or fl-network. Thus except for their d-c characteristics the three 
networks of Fig. Tlla, b, c are equivalent. The number of independent 
node pairs is not increased by this transformation because, provided the 
d-c characteristics are not important, the reference nodes for the various 
separable parts can be taken as coincident. Thus, although the number 
of separable parts in the nodal analysis is always reduced from P to 1 by
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this transformation, the number of nodes is reduced from N to N — P + 1, 
and hence there are still N — P independent node pairs.

To illustrate the above discussion by a practical example, consider the 
network of Fig. 1-12.

Since this network as it stands 
ments, and five nodes, there are 
no less than four independent 
meshes, and four equations would 
be needed to describe the network 
on the mesh basis. If, however, 
the voltage generator is replaced 
by the equivalent current genera
tor and the transformer is replaced 
by its equivalent II-network, the 
network assumes the general form 
of Fig. 1-10, which, as has already I 

has two separable parts, seven ele-

Fig. 142.—Mutual-inductance-coupled net
work.

een shown, can be described on the
nodal basis by only two equations.

Two-node Active Network.—The chief importance of the nodal analysis 
lies in the fact that it is especially suitable for application to active net

Fig. 1-14.—Equivalent two-node active network.

works in which the vacuum tube acts not merely as a buffer between 
successive stages but is embedded in the network. The equations for the 
active network of Fig. 1-13 will illustrate this point. This network is the 
basic circuit of a negative feedback pair when stray anode-grid capacity 
is taken into account.
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The equivalent circuit for this active network is drawn in Fig. 1-14, 
where all voltage generators have been replaced by current generators. 
It is assumed that all the initial currents in the coils and the charges on 
the condensers are zero; g is the transconductance of the tube; Ra is the 
internal resistance of the tube; Gt equals G'2 + (l/RJ ; and

i(t) = IT v(r) dr.

This network has two independent node pairs. If ground is taken 
as the reference node and ei(i), ei(t) as the potentials of the independent 
node pairs, then application of Kirchhoff’s second law to the two inde
pendent nodes in turn gives

i = T, I v dr = Ti i «1 dr + Ci —yj1 + G^i + C12 (ei — e2) 
Jo Jo dt dt

+ GnM — «2),

—gei = Tj J «2 dr + Ci —+ GiCi + C12 -r (e2 — ei) + (7is(e2 — ci). 
jo at at

After rearrangement the equations can be put in the form

IT (Ci + C12) + G, + + IT e.

<712 + Cn -37 ) «2, 
. dtj

0 =
g - G„ - Cil ÿ ei(t)

(C2 + C12) + G 2 + G12 + IT £ dr
«2.+

It may be seen that these equations are of the same general form as Eq. 
(5) save that yn yn.

Because the network of Fig. 1-14 has no less than 10 branches, it is 
obvious that the mesh analysis would prove formidable indeed.

The General Nodal Equations.—When setting up the general nodal 
equations for the passive network, it will be assumed that all voltage 
sources have been replaced by current sources and all mutual-inductance- 
coupled circuits replaced by the equivalent II- or T-networks.1 The 
following notation will be used.

1 Thus the network has only one reference node, the reference nodes of the various 
separable parts being taken as coincident.
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Let
r„ Gj, Cj be the inverse inductance, conductance, and capacitance 

linking the jth node to the reference node.
T,*, Ga, Cjk be the inverse inductance, conductance, and capacitance 

linking the jth node to the Hh node.
it(t) be the driving current in the jth node.
Pi be the initial current flowing into the jth node from the inductances. 
»¡(t) be the voltage of the jth node with respect to the reference node.

Vi

Vik 

. Va

where n is the number of independent node pairs. Then ya is the 
admittance linking the Jth node to all other nodes; yp, is the admittance 
linking, the Jth node to the Ath node. Application of Kirchhoff’s second 
law to each independent node pair of the network in succession yields the 
system of equations

iff} + p,' = yi^k(t) (j = 1, • • • , n); (6)
k=l

n of the initial conditions are contained in this system of equations. The 
remaining n conditions are given by the initial values of e*(i) (k = 1, 
. . . , n).

In the active network the equations assume the same general form as 
those of Eq. (6) save that it is no longer possible to assume yp, = y^.

Comparison of the Mesh and Nodal Analyses.—As developed in this 
section, there is a formal symmetry between the mesh-nodal methods of 
setting up the integro-differential equations which is summarized in 
Table 1-4.

In any particular case the mesh analysis requires more equations if 
E > 2 (TV — P) and fewer equations if E < 2{N — P). The mesh 
analysis is usually to be preferred where there are a considerable number 
of mutual inductances, and the nodal analysis is usually better when 
there are vacuum tubes embedded in the network.

In general, the above comparison of the mesh and nodal analyses is 
valid for the steady-state equations of the transform network. It is no 
longer possible to choose the shorter solution simply by comparing E
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Table 1-4.—Comparison of Mesh-nodal Analyses

Comparative basis Mesh analysis Nodal analysis

Passive elements...

Active elements....
Connections...............
Basic law.....................

Number of inde
pendent equa
tions.

Resistance, elastance, induct
ance; more generally imped
ance

Voltage sources
Elements in series
Kirchhoff’s first law: The volt
age drop around a closed mesh 
is zero

M = E — N + P, where M is 
the number of independent 
meshes

Conductance, capacitance, in
verse inductance; more gener
ally admittance

Current sources
Elements in parallel
Kirchhoff's second law : The 
current flowing into any node 
is zero

Vp = N — P, where Np is the 
number of independent node 
pairs

with 2(N — P), however, because more condensed methods of setting 
up the transform equations from the transform network may be available, 
giving in the mesh case fewer than E — N + P equations and in the 
nodal case fewer than N — P equations.

The Principle of Superposition.—It is one of the most important 
results of the theory of linear integro-differential equations that the solu
tions satisfy the principle of superposition. This principle may be stated 
in its simplest form as follows:

Any linear combination of two or more solutions of a set of linear 
integro-differential equations is itself a solution.

In network theory the principle takes a form that will now be illus
trated for the general mesh case.1

Let ikfit) (k = 1, . . . , n) be a set of solutions of the general mesh 
equations

n

Znifit) = efit) (j = 1, • • • , n),

and let ikfit) (k — 1, . . . , n) be a set of solutions of the general mesh 
equations

n

Z,kNt) = e'(t) (j = 1, ■ ■ • , n);
1

then Ui(Z) + 42® is a solution of the equations
n

Zikikif) — {j — 1, * * * ? n).

k = 1

1 The analysis for the nodal case follows exactly the same course.
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This result follows from the fact that

Zjkikl(t) + Zikiki(t) = Zikllklit) + fn(0].
The principle of superposition may be extended by continuity to 

state that the response of a network to the convergent sum of an infinite 
set of driving functions is equal to the sum of the responses of the net
work to each driving function taken separately, and it will be so used in 
Sec. 1-8 when considering the response of a network to a periodic driving 
function.

A particular use of the superposition principle occurs in regarding the 
system of driving functions

«1(0 = fiW, «2(0 = A(0, • ■ • , en(t) = fn(A

as a superposition of n systems, the first consisting of driving function 

«1(0 = /i(0, «a(0 =0, • • • , «»(0 = 0,
the second of

ei(0 = 0, e2(0 = , «n(0 = 0,
and so forth, thus reducing the general problem of finding the network 
response to an arbitrary system of generators to one of finding the 
response to a single generator.

The superposition principle is not given much prominence in this 
chapter and is introduced here chiefly because it will be needed in the 
analysis of the Fourier transform. It may be remarked, however, that 
it can be utilized to derive, heuristically at least, an expression for the 
transient response from the steady-state response.

1-4. The Theory, of the Laplace Transform. Introduction.—In this 
section the theory of the Laplace transform is developed as far as is neces
sary for the solution of the linear-network equations.

There are two main alternative methods for deriving this theory. 
One, which employs the principle of superposition to synthesize the 
response to component generators, is similar to that often used in heuristic, 
discussions of the Fourier transform theory, the response to an aperiodic 
function being regarded as the limiting case of the response to periodic 
functions. Unfortunately a considerable amount of discussion is required 
if the full power and rigor of the Laplace transform are to be made 
apparent on this basis. The second attack, which is followed exclusively 
in this chapter, introduces the Laplace transform as a mathematical 
concept with properties that fit it for use in the solution of linear integro
differential equations. The latter method is much more compact than 
the former and has the additional advantage of starting from funda
mentals and of requiring no special circuit theory. A possible drawback, 
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however, is that the abstract and formal nature of the discussion may 
obscure both the reasons for the various steps in the development and the 
physical interpretation of the results obtained. In order to mitigate this 
possibility the purpose of the various theorems will be pointed out when 
they are stated. In addition, the theory will be illustrated by applying 
it to a particular problem, the various steps of whose solution will be made 
as the appropriate stages are reached.

The Laplace transform sets up a one-to-one correspondence between a 
function /(¿) defined along the real axis and a function F(p) defined in 
the right half of the complex plane. Since it often happens that the 
transform of a function is a much simpler function than the original, a 
complicated relation involving the original function becomes a simple 
relation involving the transform function. In particular, linear integro
differential equations in a real variable transform into linear algebraic 
equations in the complex plane. It is this last property that makes the 
Laplace transform such a powerful tool in the solution of integro-differen
tial equations.

The procedure for solving problems with the aid of the Laplace 
transform follows essentially the same course in all cases.1 A mathe
matical process is found that transforms the set of equations in the 
original variables into a set of equations in the Laplace transforms of 
these variables. These equations are then solved to give explicit rela
tions for the Laplace transforms of these variables. The solution for the 
original variables is then obtained with the aid of the inverse Laplace 
transform.

The development given in this section is along lines parallel to the 
procedure outlined in the previous paragraph. The Laplace transform 
is first defined; the transforms of some typical driving functions are 
derived; and the convergence of the defining integrals is discussed. The 
mathematical process for obtaining the transform equations is then 
outlined; expressions are obtained for the Laplace transform of the 
integral and derivative of a function; and the solution of the transform 
equation is obtained in a particular case. The basic theory is completed 
with the introduction of the inverse Laplace transform and the derivation 
of its relation to the direct Laplace transform. The section terminates 
with a proof of the so-called “convolution theorem” and a short discus
sion of its application to network theory.

1 The Laplace transform is used to solve not only linear integro-differential equa
tions in a single independent variable but also linear equations with an arbitrary num
ber of independent variables, as well as partial differential, integral, and finite difference 
equations. The Laplace transform may also be applied to evaluate definite 
integrals, to sum series, and to develop the theory of functions both of the real and the 
complex variable.
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On the first reading it may be desirable to turn, at this stage, to Sec. 
1-10 where a summary of the £-transform theory is given. The reader 
untrained in mathematics can utilize this summary as a guide to the 
important parts of this section and can ignore the remainder, which is not 
essential for the practical application of the method, although it cannot 
be omitted if the underlying theory is to be understood clearly and its 
limitations, as developed in this chapter, made apparent.

The Laplace Transform.—As stated in Sec. 1-3 no attempts are made 
to provide a theory more general than will be needed in circuit analysis. 
Accordingly the class of functions discussed will be restricted to those 
normally encountered in practice. These functions, which are all of 
exponential type, will now be defined.

Definition 1. The ^-functions. Let /(0 be a function of t 
defined at least for all positive values of t. Then if real positive finite 
numbers A and k exist such that

1/(01 < Ac“
for all positive t, f(t) is said to be an ^-function, or a function of expo
nential type. If values of t exist such that j/(0| > Be 1̂' where k' < k 
and B is any real positive finite number, then k is called the normal 
exponent.

The ^-functions have a number of interesting properties of which only 
one will be stated here.1 It will be needed when the Laplace transform 
of the integral2 of a function is being considered.

Theorem 1. Let f(l) be an E-function; then dr is also an 
E-function of normal exponent k.

It might be thought that by confining attention to the ^-functions an 
appreciable loss would be suffered in the power and flexibility of the 
method. Thus all functions possessing poles on the real axis are barred 
from discussion and in particular the Kirchhoff-Dirac 5-function defined 
by

3(0 = 0, t 0, ’ 
y 3(0 dt = 1.

1 See Gustave Doetsch, Thewie und Anwendung der Laplace-transformatwn, Dover 
Publications, New York, 1943, for a discussion of those properties relevant to the 
Laplace transform theory.

2 All the integrals considered here are to be taken in the sense of Lebesgue. The 
use of a more general integral such as the Young-Stieltjes integral would have con
siderable advantages, and there would certainly be a good case for deriving the £-trans- 
form theory on this basis in a mathematical monograph, but the resulting analysis is 
too lengthy for a book of this kind.
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Fortunately the difficulty can be overcome simply by defining these 
functions as the limit of E-functions. Thus 6(f) can be defined, among 
many possible alternatives, by the equations

5(t) = 0: i < 0, |
6(f) = lim ae~“‘:i 0, f (7 a)

a—* co J

where it is to be understood that the limiting process will be carried out 
only at a stage in the analysis such that all subsequent operations are 
valid in the present theory.1

The arguments employed to justify the use of an analysis restricted 
to the class of E-functions naturally provoke the query as to whether or 
not further restrictions are advisable. Would anything be lost if atten
tion were confined to those functions where the integral f ” [/(¿)| dt is 

convergent? After all, every function realizable in practice is of this 
type. It is not possible to obtain infinite voltages and currents or even 
infinite rates of change of these quantities, because none of the applied 
signals can ever be infinite in duration. Nevertheless this further 
restriction will not be made in this chapter, because a considerable 
simplification of the mathematics is often achieved by employing mathe
matically idealized driving functions. If this additional restriction was 
imposed, it would not be possible to deal directly with the simple Heavi
side step function

f(t) =0, t < 0,
f(f) = 1, t 0;

a limiting process, as used for the 5-functions, must be employed. This 
process gets increasingly clumsy when functions such as

f(t) =t, t > 0,
or

f(t) = e^, t > 0

are discussed. It is true that such functions cannot in practice be 
obtained, but when considering the response of a network to a sawtooth 
waveform or to the built-up waveform of an oscillator it is much simpler 
to regard those processes as continuing indefinitely rather than ending 
after an arbitrary time T. It may be further noted that in the theory 
of linear networks, unstable networks or even networks with zero damping 
cannot be discussed with the restricted theory.

1 It may be noted that nothing would be gained, even if the restriction that all func
tions be E-functions, were removed. The integral in Eq. (7) is not a Lebesgue integral, 
but a Young-Stieltjes integral; such a function could not be introduced into the theory 
unless the latter were based throughout on the more general integral, a course of action 
already rejected because of its associated complexity of proofs.
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The functions to be dealt with have now been defined The concept 
of the Laplace transform may now be introduced.

Definition 2. The Laplace Transform. The Laplace transform 
F(p) of a function f(t), which is defined “almost everywhere” for non
negative values of i, is defined by

F(p) = y e^fC) dt

for these values of p for which the integral converges.1
Ftp) can be written symbolically as

F(p) £[7(0],

where £ is called the direct Laplace operator and is equal to ” e~pt dt. 

In the remainder of this book the Laplace transform, operator, inte
gral, and so forth, will be written £-transform, £-operator, £-integral, 
respectively.

In those regions of the complex plane where the £-integral is not 
convergent, F(p) is defined by analytic continuation. As an example 
consider the case when f(t) = 1. The £-integral of fit) is convergent 
for all R(p) > 0 and is equal to 1/p. But 1/p is a function regular all 
over the complex plane except for a simple pole at the origin. Hence 
F(p) may be defined as equal to 1/p in the left half of the complex plane, 
where the £-integral of f(t) diverges.

It may be emphasized at this point that no restrictions whatever are 
placed upon f(t) for negative values of t. Thus the three functions

(a) fW = 0, t <- 0; 7« = 1, t o
(&) 7(0 = e-\ t <; 0; 7(0 = 1, t è 0;
(c) W = r(0, t <; 0; 7(0 = 1, t è 0

all have the same £-transform, namely, 1/p. As will appear later, some 
advantages are to be gained by assuming that f(t) = 0 for t < 0, but 
there is no necessity that this be so.

1 This definition is the most general one possible if the integral, regarded as the 
improper integra

lim I e^”‘f(t) dt,
S-.0 
bl—* 00 

is defined in some sense.
A function is defined "almost everywhere” if it is defined everywhere save in a 

set of “zero measure.” In most practical cases the words “almost everywhere” can 
be omitted from the above definition, the term being introduced for reasons connected 
with the proof of the theory, not its application.
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The £-transform of a few simple functions common in network theory 
will now be derived.

I. f(t) = r:

F(p) = I e~p‘tn dt is convergent for R(p) >0.
Jo

Let pt = t, then

F(p) =

— pn+1 

if n is an integer.
2. f(t) = e“', a complex:

F(p) = / dt is convergent for R(p) > Ria) and = l/(p — a).
Jo

From the transform for eat it is possible to deduce the £-transform of 
cos pt, sin pt.

Thus

/ „ ew + e-w 1/1 , 1 \ p
v 2 2\p — tp p + iP/ p2 + d2

similarly

£(sin M

The £-transform of the hyperbolic sine and cosine can be found similarly.
3. f(t) = S(t): From the transform of e~a< it follows that

F(p) = lim _“__  
a—»ao p -f- a

F(p) is commonly taken equal to 1 (that is, the limiting process is carried 
out immediately), but this will not be done here until it has been shown 
that this course of action is legitimate in network analysis.

A fuller list of £-transforms will be found in Table 1 -5 at the end of 
this chapter. A number of basic theorems needed later in this section 
will now be stated.

Theorem 2. If /(i) is an ^-function with normal exponent k, then 
F(p) is convergent for all R(p) > k, so that F(p) converges over aright 
half of the complex plane.

Theorem 3. If f(f) is an E-function with normal exponent k, then 
pF(p) is bounded for all R(p) > k and F(p) tends uniformly to zero as 
p —> 00. This result is needed to establish the inverse £-transform.
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Theorem 4. If /(t) is an E-function of normal exponent k, then 
Fip) is regular in the half plane Rip) > k and

The next theorem is concerned with the important questions of the 
uniqueness of the Laplace transform.1

Theorem 5. If /i(i), fi(t) are E-functions with £-transforms Flip), 
Fi(p) such that Ei(p) = Flip) wherever the £-integrals of fiit) and fait) 
converge, then /i(i) = fi(t) almost everywhere for nonnegative values 
of t.

As stated above, the concept of “equals almost everywhere” is not 
one that plays an important part in network theory; and if we neglect this 
refinement, the theorem can be loosely stated: “If two functions have the 
same £-transform, then they are equal for nonnegative real values of t.”

The ¿-Transform of Integro-differential Equations.—In the previous 
section the £-transform concept has been introduced, and some of its 
fundamental properties stated. In this section it is proposed to show 
how it can be applied to transform integro-differential equations.

To keep the discussion concrete, attention will be focused on the 
linear equation with one dependent variable,

d^iit) . d^itt) di(t) .. .
a' ~dV + ~dt^~ + ’ ' ' + ai ~dT + + “-1 Jo dT

+ • • ■ + a_m (/ dr^ i(r) = eit). (8)

The solution of this equation will illustrate all the fundamental aspects 
of the general network solution, and in fact the network equations can 
often be reduced to the form of Eq. (8) by a judicious elimination process.

In the particular case of the solution of linear equations with one 
independent variable the mathematical process, mentioned above, for 
obtaining the transform equations is almost trivial.2 It consists merely 
in taking the £-transform of both sides of the equation. In order to 
effect this, three auxiliary theorems will be needed to give (1) the trans
form of a sum of functions, (2) the transform of the integral of a function, 
and (3) the transform of the derivative of a function. As these theorems 
are fundamental to this chapter, the proofs are given in full.

Theorem 6. Additivity. Let fiit),-fiit) be two E-functions with 
normal exponent k and £-transform Flip), Flip), respectively. Then

1 See Gustave Doetsch, op. cit., Chap. 3, p. 7; M. Lerch, Acta Math., 27, 339-351, 
(1903).

2 In other applications of the £-transform this is far from being the case.
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is an £-function with normal exponent k and ¿-transform 
aiFi(p) + atFi^p), where ai and a* are arbitrary constants.

Proof: The first part of the theorem is trivial. To prove the second 
part one has by definition,

£[ai/i(i) + «2/2(01 = y «“”'[«1/1(0 + 02/2(0] dt = a-i jo dt

+ «2 y «“”‘/2(0 dt = aK^p} + atFt(p), 

as required.
This result may be generalized by induction to give

(9)

Theorem 7. Transform of the Integral of a Function. If f(t) 
is an E”-function with normal exponent k, then /(r) dr has an ¿-trans

form F(p)/p, where F(p) is the ¿-transform of f(t).
Proof: By definition,

¿

now since /(0 is an ^-function, Jo fix') dr is differentiable with respect to 

t for all finite t. Hence integrating by parts one gets

y f(r) dr T e~pt f* 1*lim-------/ f(r) dr + lim 
X—- P J 0 . 0 x—»00

p—pt 
~fWdt.

But, since by Theorem 1 /(0 has normal exponent k, there exists A such 
that

hence for R(p) > k, 

lim
X—» 00

Accordingly,

¿
^/W dr lim - P e-”‘/(0 dt = 

x-x^pjo p

This theorem may be generalized by induction to give
Theorem 7a. If /(0 is an F-function of normal exponent k and 

¿-transform F(p), then the n-fold iterated integral dr^ f(r) (n a 
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positive integer) is also an E-function of normal exponent k, ¿-trans
formable at least for R(p) > k, such that

<io)

Theorem 8. If /(i) is an E-iunction with ¿-transform F(p) whose 
derivative/'(i) is also an E-function with normal exponent k, and if F(p) 
is the ¿-transform of /(i),

W)] = pF(p) - M).

Proof: Since f'(t) is an E-function with normal exponent k, then, by 

Theorem 1, f^ + tW is an E-function with normal exponent k. 
But 

and hence

/'« dr + 7(0+)

= £

by Theorem 6.
But, by Theorem 7,

¿W)]. 
p ’

and, since ¿[7(0+)] = f($+)/p,

£[/'«] = p47(0] -7(0+) = pF(p) — 7(0+).

This result may be generalized by induction to give
Theorem 8a. If f^ft), the nth derivative of f(t), is an E-function 

with normal exponent k, if

limi-.+o/W =/(0+), lim^+of(t) = /(0+), • • • ,
limi_+o/<’‘-1)(i) = 7("-1)(0+),

and if the ¿-transform of f(t) is F(p), then

¿Lr»»«] = p"F(p) - [p"-i/(o+) + p^y'(o+) + • ■ • + p7("-2)(o+)
+ ^>(0 + )]. (11)

It is now possible to obtain the transform of Eq. (8). Taking the ¿-trans
form of both sides and using the results of Theorems 6, 7, and 8 give 
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a„pn7(p) 4- a^ip^Ilp) 4- • • • 4- a<7(p) 4- a~^P--

, . . . , a-mZ(p)
pm

= E(p) 4- «„[»(O)?”-1 4- i'(0)p”~2 4- • • • 4- *"-1(0)]
4- a„_i[i(0)p"-2 4- ¿'(0)pn~3 4- • • ■ 4- tn~2(0)]

4- au(O),
= V(p), (12)

where 7(p), E(p) are the ¿-transforms of i(t") and e(t), respectively. 
V(p) is called the excitation transform function of the network. It con
tains the driving-function transform and the initial conditions.

It is seen that the use of the Laplace transform has in fact reduced the 
original integro-differential equation to an algebraic equation which may 
be solved for I(p) to give

Up) = --------------- .------------------- 1---------- - --------------------- — V(p); (13)

anpn 4- «„-iP” 1 4- • • • 4- a0 4------- 4- • • • 4-----~p pm

the denominator of Eq. (13) is called the “characteristic function,” and 
the equation obtained by setting the characteristic function equal to zero 
is called the “characteristic equation.”

Equation (13) is of the form

Response transform = system transform X excitation transform (14) 

and this is typical of all network solutions.
The system function, which is usually a more complicated expression 

than the reciprocal of the characteristic function, is the transform of the 
response of the system to the driving function whose transform is unity. 
It has been proved earlier in this section that the 5-function has, in the limit, 
the ¿-transform unity, and this is one of the reasons for the importance 
of the ¿-function in network theory. The conditions under which it is 
legitimate to take the ¿-transform of the ¿-function equal to unity are 
discussed in the next section, where it is shown that this operation is valid 
for all but an unimportant set of networks.

To complete the solution of Eq. (8), a means must be found for 
deriving i(t) from the expression for I(p) given in Eq. (13). There are 
two main alternative methods for effecting this. One is based upon the 
concept of the inverse ¿-transform. In the other, which is used by a 
number of writers, the transform function is broken down into a sum of 
simpler functions each of which may be recognized as one of the trans
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forms tabulated in Table 1-5 at the end of the chapter or in more complete 
tables given in other sources.1

The latter method has the advantage of mathematical simplicity in 
that no fresh ideas are introduced and no knowledge of contour integration 
is required, but the former will be followed here. For one thing it is 
quite easy to find network problems where the elementary method would 
fail or prove very cumbersome unless a formidable table of transforms 
was compiled. Furthermore, it will be shown that the standard pro
cedure based upon .the inverse Laplace transform is at least as short' and 
compact as any alternative.

The Inverse ¿-transform.—A number of the results needed in this 
section have already been stated in the discussion of the direct Laplace 
transform. One or two auxiliary theorems are required, however, to 
complete the introductory material. The relevance of these auxiliary 
theorems may become clearer if the explicit expression for the inverse 
¿-transform, hereafter called the ¿~^transform, is stated, the proof being 
deferred until later.

If F(p) is the £-transform of an E-function fit) with normal exponent 
k, then fit) = ¿"^Ffp)] is given by2

1 /*«+/«
/(0 = lim^ . / Fip)ert dp, t S 0, 

¿*3 J c~ju

where c is a real positive number greater than k.
Theorem 9. If F(p) is the ¿-transform of an E-function fit) with 

normal exponent k, then

C t+ju 
lim„_,. / ep,Fip) dp 

J C — JU

is uniformly convergent for finite t if c > k. This result follows simply 
from the theorem that states that pFip) is bounded in the right half 
of the complex plane.

Theorem 10. Let F(p) be the ¿-transform of an E-function fit) with 
normal exponent k. Then

1 f c +>W
s(<) = 2^- hm— . J Fip)er‘ dp

is also an E-function with normal exponent k.

1 See M. F. Gardner and J. L. Barnes Transients in Linear Systems, Vol. 1, Wiley, 
New York, 1942.

“Here and throughout this section fit) is taken equal to J[f(t + 0) +/(( — 0)] at 
a point of discontinuity.
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This result is proved by showing that e~c‘g(t) is bounded for all t; and 
since c is any number > k, g(t) is an ^-function with normal exponent k.

The main result of this section will now be proved. Once it is 
obtained, the derivation of the explicit relation for the £-l-transform can 
be achieved in a few lines.

Theorem 11. Let Ftp) be the £-transform of an E-function f(t) with 
normal exponent k. If

gif) = ¿lim, 

then

r c+jw
F(p)epl dp

J c-ja
where t > 0, c > k,

e~rtg(() dt.

Proof: Let
G(p,r) = f e-^g^) dt = [ e~p‘dtj-. / F^aie^da 

Jo Jo ^3 J c-j*

when R(a) > c on setting w equal to its limiting value, a step that is 
justified by the convergence of the integral. Now the order of integra
tion may be interchanged, since, by Theorem 9, the integrals involved 
are uniformly convergent. Hence

o

—--------  da.p - a

But / —— ■ — is absolutely convergent along the line R(a) = c by 
J P ~ v

fo+i”
Theorem 3; and since R(p) > c, this implies that I ------ —------ da

Jc-j* P a
can be made arbitrarily small by choosing t great enough. Accordingly
if G(p) = lim G(p,r), 

T—+ *

G(p) =
1 fc+i‘

2*3 Jc—j» p - <r da.

Let y da be the symbol representing integration in a clockwise direction 
around the contour composed of the straight line R (a) = c and the infinite 

half circle in the right half of the complex plane (Fig. 1-15). Let ds be 

the integral around the half circle alone. Now aF(a) is bounded all over 

the half plane R(a) > c; hence I is zero for all R(p) > c and
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accordingly
F(a) 

p - a do = da.
2tt] J p — a

But F(a) is regular in and on 

residues,
the contour hence by the theory of

Hence

i $ 2M da = 
^3 ' P *

Fig. 1'15.—The infinite right-half circle.

Theorem 12. Let/(0 be an ^-function with normal exponent k and 
¿-transform F(p); then

= 0

almost everywhere for t > 0, 

for t < 0.

The proof of the first part of this theorem follows from Theorems 5 
and 11. By Theorem 11, if

= è ePlG^ dp>

G(p) = j er^git) dt,

for R(p) > k.
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But by definition
F(p) = y e~p‘f(t) dt

for R(p) > k.
Hence by the uniqueness Theorem 5,

Ri) = gW
almost everywhere for t > 0.

To prove the second part of the theorem it may be remembered that 
pF Ip) is bounded for all R(p) > k. Hence if t < 0,

y ep‘F(p) dp = f eptF(p) dp,

where y has the same meaning as in Theorem 11, by Jordan’s lemma.1 
Now eptF(p) is regular (and bounded) for all R(p) > k. Hence by 
Cauchy’s theorem

eptF(p) dp — 0

for t < 0.
The second part of Theorem 12 provides the main reason why it is 

sometimes desirable to assume fit) = 0 for t < 0, since in this case

7(0 = eptFlp) dp

for almost all t.
The £-1-transform is an operator that may be written symbolically

- ¿i IZ dp (15)

Returning now to Eq. (8) it may be seen that the explicit expression 
for the response function is

*(0 =

1 rc+i-______________________e^V Ip) dp______________________
2»4 / . , , । li a-i t l a-"

/ CUP + O^-lP”1 + ■ • ■ + dip + do + — + • • • + 
Jt-i* ” P

(16)

This integral can most easily be evaluated by the theory of residues2 
which will be discussed briefly below.

1 See E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., 
Cambridge, London, 1927, p. 115.

2 For a fuller treatment see E. T. Whittaker and G. N. Watson, op. cit., pp. 164-
189.
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The Theory of Residues.—The evaluation of integrals in the complex 
plane is often best accomplished by transforming them into integrals 
around a closed contour. In the ¿-transform theory the integrals to be 
evaluated are of the form

¿jLZ F^ep,d^
and these can be transformed into integrals around a closed contour if the 
intégral of F(p)ept around the infinite half circle in either the right or left 
half of the complex plane is zero.

A sufficient condition that this is so can be deduced from Jordan’s 
lemma which states that

/ eptF(p) dp

is zero for all positive t when the path of integration is the infinite left 
half circle, provided that F(p) = O(l/p) for all R(p) < 0.1

Two corollaries of this result may be stated :

1. feptF(p) dp integrated over the infinite left half circle is zero for all 
t > T if epTF(p) = O(l/p) for all R(p) < 0.

2. fep‘F(p) dp integrated over the infinite right half circle is zero for 
all t < T if epTF(p) «= O(l/p) for all R(p) > 0. In particular the 
integral is zero for all i < 0 if Ftp) — 0(1/p) for all R(p) > 0.

It has already been noted in the previous section that the ¿-transform 
of an E-function is 0(l/p) for R(p) > c, and the majority of the ¿-trans
forms occurring in network theory are, in fact, O(l/p) for all R(p). The 
chief exceptions to this rule are functions of the form e~pTG(p) where 
G(p) is O(l/p).

। ft +/ «
For the time being let it be assumed that . I F(p)ept dp is 

“*3 Jc—j*
equal to either

or
¿j ^rJ^ePtdF’

where Ti is the contour formed by the straight line R(p) = c and the 
infinite right half circle and r2 is the contour formed by the straight line 

1 F(p) is said to be O(l/p) if pFfp) is bounded for all sufficiently large p.
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Rip) = c, the infinite left half circle and the two straight-line segments1 
jointing the points p = c ± j« and p = ±j«>.

It is a well-known result of the theory of functions that the integral 
of a meromorphic function taken in an anticlockwise direction around a 
closed contour containing a number of simple poles is equal to 2irj times 
the sum of the.residues of these poles.2 The residue of a pole is defined as 
follows:

Let H(p) be a function regular and nonzero in the neighborhood of 
the point p = p0. Then the residue of the function Hip)/(p — p^ at 
its nth order pole p = po is

1 Td^Hip)' .
(n - 1)! L Jp-m'

It follows that if F(p) is a function O(l/p) with poles at pb p2, p3, 
. . . , pn of order rlt r2, r3, . . . , r„ respectively, so that

Fip) = - n ------ - (17)
n (p - p«)"
3- 1

where Hip) is a function regular all over the finite part of the complex 
p-plane, then

n

¿j LZ dp=yh (i8)
/ = 1

where
Flip) = iP ~ PiY'Fip). (19)

All the system transforms of the networks considered in this chapter 
are similar in form to Eq. (17); since the common excitation transforms 
are of this form also, the response of any network to one of the common 
driving functions can be evaluated from the formula of Eq. (18). It is 
possible to find excitation functions whose transforms are not of the type 
of Eq. (17), but a discussion of such cases is outside the scope of this book 
and will not be attempted here.3

To illustrate the above theory the £-l-transforms of several functions 
will be derived.

• • • /*c+/ 80 „1 JF(p)epi Jp over the straight line p = c=o to p == j « is zero if / F^pye^dp 
Jc—j •

converges.
2 The function must be regular upon the contour.
3 See Gustave Doetsch, op. til.
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L = FT-a:

_ i epl
" 2rj Jp + adp

= èìhrradp-

smceF(p) = O(l/p); R(p) < 0.
But e^Kp + a) has a simple pole at p + a = 0 with residue e-“'. 

Hence/(I) = e~al.

2. F(p) = P J b :(p + a)2

HD - X i'+i' + V p-
/() 2rj J,-,, (p + ay dp

_ 1 2 e”‘(p + b)
2rjfr. (p + a)2 P’

since Ftp) = 0(1 /p), R(p) < 0.
But ep‘tp + b)/(p + a)2 has a double pole at p + a = 0, with residue

[(p + a = e-oi + i(b — a)e_“‘.

Hence 7(0 = [1 + (b — a)i]e~at.

3. Ftp) = 7——e;—, v—-¡—-y where a # b # c # 0: 
(P + a)(p + b)tp + c)

2rj J^j. (p + a)(p + b)(p + c)dp
_ 1 r pept

2*j /r, (p + a)(p + b)(p + c) dp’

since Ftp) = O(l/p), Rtp) < 0.

But 7—:—. , , ...—:—- has three poles, at p + a = 0, p + b = 0, (p + a)(p + b)(p + c) ? , r f -r ,
p + c = 0, with residues

ae~at
(a — b)(c — a)

be u ce~c‘
(a — b)(b — c)’ (c — a) (b — c)

respectively.
Hence

A0 = ae-“1 -, be-w , ce~c‘
(a — b)(c — a) + (a — b)(b — c) + (c - a)(b — c)'
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4, F(p) = e—:

Here
no = j- r+"°
™ 2nj Jp

_ 1 r e-rG-n dp
2rj JTl p

for I < r, since e7"F(p) is O(l/p) for R(p) > 0 and t < t, and

1 T e+p<'r) dp

for t > t, since ewF(p) is O(l/p) for R(p) < 0 and t > r. Now since 
e-p(r-1}ip no p0[es inside contour Ti,

W = 0 
for t < r.
The pole of e-p(r~‘>/p is at p = 0, which lies inside r2, and has residue 1. 
Hence

f(t) = 1 
for t > r.

The integral defining/(i) does not converge at the point of discontinu
ity t = r, but following the course of action adopted throughout this 
chapter, /(r) is taken as

_ fa ~ 0) + f(r + 0) 1
7 2 2

To conclude this section the conditions under which it is legitimate to 
take the transform of the ¿-function as unity will be considered.

As a basis for discussion consider Eq. (16) where V(p) — «/(p + a). 
Then if n £ 0,

apm
(p + a)(a„pm+n + a„-lpm+n-1 • • • aopm + a_ip”-1 + • • ■ + aN)

is 0(l/p) for R(p) < 0.
Hence

_ I f ap^er1 dp
~ 2xj Tr, (p + a)(a„pm+n + a,_ipm+”-1 + • ■ • + a„pm + • • • + a_m) ’

(20)
this integrand has poles at

p + a = 0
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and
a„p“+" _|_ a„_1p">+»-i • • ■ -|- aopm 4- a-ipm~1

4- ■ • • 4- = 0. (21)

Two conditions have to be satisfied if ¿[¿(/)] is to be taken equal to unity.
1. The residues of the poles of Eq. (21) must be the same whether 

¿[¿(i)] = 1 or ¿[¿(/)] = lima_,«, ae~at.
2. The residue of the pole at p 4 a = 0 must —> 0 almost every

where when a —> oo. The first condition is obviously satisfied, because

—------- > 1 and t-----r—v- (m > 1) —> 0 for all finite pt when a —>
Pt 4- a (pt 4- a)m
The second condition is satisfied only if n > 1, for the residue of p 4- a = 0 
is

a„(-a)m+n 4- a„-i(-a)“+’‘“‘ 4- ’ ’ • 4-«-™’

which, as may be seen by inspection, —> 0 as a —> co for i 0 if n 2, 
—> 0 as a —> co for i > 0 and —> l/(a„) as a —» <x> for I — 0 if n = 1 and 
diverges as a -> x if n = 0.

It may be concluded that the £-transform of the ¿-function may be 
taken equal to unity when the function is applied to a system whose 
system function is 0(l/p).

The Convolution Theorem.—One more theorem will be proved in this 
section: the so-called convolution or Faltung theorem. Although this 
does not play an essential role in the ¿-transform theory, it is sometimes 
useful in solving practical problems and is certainly valuable when 
discussing the general solution of the network.

Theorem 13. The Convolution Theorem. Let f(t) and g(t) be 
two E-functions with normal exponents ki, k2 and ¿-transforms F(p), 
G(p) respectively. Then if h(t) is a function whose ¿-transform is 
F(p)G(p),

W) = Jj(r)g(t - r) dr (22)

almost everywhere.
Proof: Let c be a number > kt, k2. Then

h(t) = 2-. [ F(p)G(p)epl dp 
^3 Jc—j»

almost everywhere, since if F(p) and G(p) are both ¿“‘-transformable, 
F(p)G(p) are so a fortiori.
But

F(p) = /(r^df,
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hence
! f c *

wG(p) dr e+pt dt

Ckp^fir^e^1^ dr dp.

Since the two integrals are uniformly convergent in the region under 
consideration, the order of integration can be changed to give

1 
_2tt;0

rc+i<» "
I G(.p'<ep'^r' dp dr
Jc-i*- - 

dp dr.

Now by Theorem 12

dp = g(t - r)
= 0

Hence

r) dr,

where h(t) is called the convolution of f(t} and g(t} and is written sym
bolically

h(t) = f(t) * g{t). (23)

This theorem will be applied in the next section to find the solution of 
Eq. (8).

Conditions for Stability, Steady-state Response, etc., of Integro-differ
ential Equations in a Single Variable.—In this section some of the general 
features of the solution of Eq. (15) will be discussed. Most of the points 
made will be applicable mutatis mutandis to the solutions of the general 
network case.

It has been shown above that the solution of Eq. (15) is

i(t} = _L C+1 “_________ p-v(p^___________
1; 2rjJc-jK (a„pm+n + an-ip"1^-1 + • • • + «_„) P’ 1 '

and provided that e~pt times the integrand is O(l/p), this may be written

It is always possible to factor the polynomial denominator of Eq. ^25) 
into the form
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11 aJp ~ Pi)r‘,
1=1 

where
a

r; = m + n.
i = i

Now the residue of the pole at p = pi is, in general, a function of the form 

e^Biit),

where Bi(t) is a polynomial in I of degree ri — 1.
If a„, a„_i, . . . , a_m are all real, then to every root pi — at + j0i 

there corresponds a conjugate root pi = ai — J0i so that i(t) is a sum of 
terms of the kind

ea‘‘ cos ^itBidf) + eaf sin ^iBi,(Z), (26)

where Bic(t) and Bis(t) are both polynomials of degree n — 1 and, pro
vided that E(p) is also a rational or regular function of p, iit) consists 
solely of terms of the form of Eq. (26).

If ai > 0, the corresponding term in i(J) tends to infinity with t. 
Hence a necessary and, in fact, sufficient condition that the system be 
stable is that all the poles of the system transform lie on or to the left 
of the imaginary axis in the complex p-plane. If all the poles lie to the 
left of the imaginary axis, the system is called absolutely stable. One of 
the most important cases occurs when the driving function is of the form

e(t) = e’ul.

Then, if all the initial conditions are zero,

V(p) = P + Ju
If the system is absolutely stable, the residues of the poles of the system 
transform all tend to zero as t tends to infinity and the response tends 
in the limit to the residue of the pole at p + jw 0. This residue is 
of the form

i(t) = Yljuje’“*,
where Viju) is a rational function of ju independent of the time. This 
response is the familiar steady-state response to a sinusoidal generator of 
angular frequency «. A further discussion of the steady-state response 
is given below in Sec. 1-8.

To conclude the discussion of Eq. (8) consider the application of the 
convolution theorem to its solution. Let v(t) be the excitation function
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of the system,1 and let the system function, that is, the response of the 
system to a ¿-function, be Q(t). Then

i(t) = v(t) * Q(t) — / Q(r)t>(i — t) dr — jo Q(t — r)v(r) dr. (27)

In practice it is usually simpler to evaluate i(f) directly from Eq. (16) 
with the aid of the theory of residues than to use Eq. (27). However, 
Eq. (27) is a compact form in which to present the solution and may be 
preferable should it be desired to evaluate the response of the system to a 
whole series of driving functions.

1-6. The Use of the ¿-transform in the Solution of Network Problems. 
In this section the use of the ¿-transform is illustrated by applying it to 

ri2

i
1

Fig. 1-16.—Two-node original network.

solve a special problem. As was the case in deriving the network equa
tions, the discussion is made more detailed than is necessary in order to 
bring out the general aspects of the solution. The extension to the 
general case can then be made with a minimum of explanation.

In the course of the treatment the concept of the transform network 
will be introduced in such a way as to make its practical value clear.

The network chosen as an example is shown in Fig. 1-16. It repre
sents a terminated low-pass filter section driven from a pentode source. 
The response of this network to a ¿-function will now be found.

To keep the discussion as general as possible it is assumed that there 
is an initial current p flowing in the inductor Tu in the direction shown 
in Fig. 1-16, and that the condensers have initial charges Qi, Q?, so that

lim(_o e fit) ~ Ci(0) =

lim^o efit) - e2(0) = &
c2

1 Assuming that this is an V-function, which is not the case if the initial cc^ditions 
are not all zero.
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where 6i(0, e2(0 are the voltages across the two independent node pairs, 
the grounded node being taken as reference node.

This network is a special case of the network of Fig. 1-10, and hence 
from Eqs. (5) the equations of state can be written

»1(0 - P = 2/1161(0 + 2/1261(0, 
= 2/2161(0 + 2/2262(0,

where yu, ya, yu, and 2/21 are operators given by

yn = Gi + Ct-^ + Yn 2/12 — — r12 I 
JO

ya — — Tn 2/22 = Gt 4" Ct

dr, ) 
(29) 

dr J
If

I(p) is the ¿-transform of i(t),
Ei(p) is the ¿-transform of e^t),
E2(p) is the ¿-transform of 62(0, 

then taking the ¿-transform of both sides of the Eqs. (28) yields

I(p) - £ = (c1P + Gi+^ E^p) - X e2(p) - Qi, ) 

r / \ (30)
£ = - X» + (Ctp + Gt + X ) E2p - Qt. ) 
P P \ p / I

If
W = I(p) - £ + Q„ ) 

P (31)
W = % + &, )

then Eq. (30) assumes the general form

A(p) = Yu(p)Ei(p) + YitEttp), I
Js(p) = Y^E^p) + YMp), j 

where

Fn(p) = Cip + Gi 4——> Yu(p) = — iX )
r12 P r (33)

Y2i(p) — —> Y22(p) — C2p 4- G2 4—j

*^i(p), A2(p) are the excitation transforms for node pairs 1 and 2 
respectively. They are equal to the sum of the driving transform across 
the node pair, the initial charges on the condensers, and p-1 times the 
initial inductor currents flowing into the nodes.
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Equations (32), the transform equations, are very similar to the 
normal steady-state equations for a network, a fact that enables one to 
derive them directly from the so-called transform network, which will 
now be introduced. Consider the diagram of Fig. 147, where the normal 
circuit elements have been replaced by the corresponding p-admittances. 
If Kirchhoff’s second law is applied to the two node pairs of the network 
on the assumption that the current through an element is equal to the 
product of the voltage across it and the p-admittance, one gets the 
system of Eqs. (32). But since the transform diagram can be con
structed directly from the network, the transform equations can be 
written down immediately without having first to set up the integro
differential equations and then to transform them.

The simplification of the analysis that results from using the transform 
network is often considerable, especially if there are a number of nonzero 
constants of integration. Accordingly a special section is devoted to 
deriving the procedure for setting it up in the general case, both for the 
mesh and nodal analysis, and to developing in greater detail the inherent 
advantages thus gained.

This subject is put aside for the moment, however, in order to return 
to Eqs. (32). These can be solved explicitly for Ei(p), E2(p) to give

F ~ 72(p)Fi2(p)
FutpjF^p) - F12(p)F21(p)’

p = J^pWulp) - Ji(p)F21(p)
P> Y^Y^p) - Y lt(p)Y n(p)'

The connection of the special with the general case is made more 
evident if this solution is itself put in more general terms.

Let
= |y 1

|i 21
y22|’ (34)
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and let Afp) be the determinant formed by replacing the jth column of
(j\

A(p) by

and

Then if Ajfp) is the cofactor of Pit in A(p), so that

2

1 ik Ajk ~ A(p)

2

Jk Aki = Afp),
k = 1

the solution can be written

Ai(p) Ji(p) Au(p) + J2(p) Au(p)
“ W =---------------- W)

- Ji(p)iln(p) + Jfp)fiifp),
v r \ ~ ^(p) _ Jf?} Am(p) + JAp) A22(p)
-V} -W- AW

- AW^sjW + JiWWp), 

or finally

Efp) = X (1 = 1. 2), (35)

where
= Mg).

iwi) A(p)

The elements i^W are system transforms in the sense defined above in 
Sec. 1-4; thus it may be seen that the transforms of the response functions 
can be expressed as the sum of a number of simple products of excitation 
and system transforms.

In the important case when all the initial constants are zero,

Mp) =

Efp) =

I(p) An(p)
A(p) '

I(p) A21(p)
A(p) '

(36)

To complete the solution it is necessary to obtain the explicit expres
sions for eft), eft). Now the tyAp) are rational functions of p; hence the 
Jfp)^ifp) terms are of the same form as the response transform of Eq. 
(13) and response functions may be found by the same means. As in the 
case of Eq. (8) the direct extraction of the residues is usually the quickest 
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and most convenient method of obtaining the solution, and this procedure 
is illustrated numerically below. The convolution theorem, however, 
can be used to express the response function as a sum of convolutions of 
an excitation and a system function. Thus if

and
jk(t) = £-1[A(p)], 

then
2

e,(0 = * pit).
k=l

In the general case wikit) is the voltage (current) response of the fcth 
node (mesh) to a ¿-function impulse applied across the jth node (mesh).

The poles of Quip) occur at the roots of the characteristic equation 
of the network, that is, at those values of p for which A(p) =0. A neces
sary condition that the network be stable is that all the roots of A(p) lie 
in the left half of the complex p-plane.

The solution of the chosen example will now be considered for the case 
when i(t) is a ¿-function. In order to simplify the labor of computation 
it is assumed that

Qt = Qi = 0, p = 0, Gi = G2 = G, CT = C2 = C.
The fact that the system transforms are all O(l/p) justifies taking 
£[3(£)] = 1- Substituting these values for the driving function and 
initial conditions in Eq. (35) gives

Cp + G + — Cp + G + —
E2(p) = t--------- 1 = ---------------- ,----------- ?---------u-

7 / r \2 v2 / gr \( Cp + G + “ I (Cp + G) ( Cp + G + —-^2)
\ P / P2 X P /

If 8CrI2/G2 > 1 the roots of Cp + G + 2Yi2/p = 0 are complex and are 
of the form — pi ± jp2, where

G G IST^C 7
P1 2C’ ~ 2C N G2 L

E2(p) has poles at Cp + G = 0 and p = — pi ± jp2, and the residues of 
ep‘E2(p) at these poles are as follows.

. i -f-YResidue at Cp + G = 0 is e /

n , , ■ ■ —pi+jpiResidue at p = — pi + jp2 is —--------------777------

„ . , , . . -p, -jp2Residue at p = — pi — jp2 is----7.—---------------------------
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But e2(i) is the sum of the residues of E2(p)ei>‘; hence

1 p!^”'1 sin pit , e~Pit cos pit
e^=2Ce C---------2C^~ +------2C------ ’ 

where
G . _ G ISCTTi 7

P1 ~ 2C an<1 2C \ G2 b

1-6. General Solution of the Network Equations. The Nodal Case.-- 
The procedure in the general case is a simple extension of that already 
illustrated for the two-node network of Sec. 1-5; thus a detailed derivation 
of the results is not necessary.

It was shown in Sec. 1-3 that the general equation in the nodal case 
may be written in the form

n

4(0 + Pi = (j = 1, ' " > (37)

where
Vi ~ 3i + r’ f0

—y^ — Cfk + Gjk + Tib jo dt,

n

Va ~ y: y^,
k^j=1

and pt is taken positive if the initial inductor current is flowing into the 
¿th node. Here n of the initial conditions are included in Eq. (37), and n 
more are given by the initial values of the node voltages

lim(_0 efit) - ei(0), lim(^o e2(t) — e2(0), • • • ,
lim^o en(t) = e»(0).

Taking the ¿-transform of both sides of each of Eqs. (37) gives1
n

Np) + + X ~
n

= YifiP)FNp) (j = 1, • • • , n), (38) 
k «1

1 £ ~ pCitEklp) — CikedO), etc.
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where l/p), Ek(p) are the ¿-transforms of ij(t) and ^(0 respectively and 

- Yik(p) = Cjk(p) +Gik + ^,i^k-, 

n
Y, = C,-p + Gi + Ya = Yi - X Y^. (38a)

Let 
n

yj = X Gik [e,-(0) — e*(0)] + C,e,(0). 

k^j,k — 1

Then yt is the sum of the initial charges in the condensers linking the jth 
node with all the other nodes of the network, the charge being reckoned 
as positive if the plate of the condenser connected to the jth node is 
positive.

Then, if the excitation transforms

J,(p) = A(p) + ^ + yi (j = 1, • • • , n) (39) 

are introduced, the equations assume the general form 
n

Ji(p) = X YikEk(p). (40)

The method of arriving at Eq. (40) directly from the transform network 
is an immediate generalization of that given in Sec. 1-5, but a detailed 
discussion is deferred until Sec. 1-7 in order to avoid duplication.

The close similarity between Eqs. (40) and (32) permits carrying out 
the remaining steps of the solution with a minimum of comment. Equa
tion (40) may be solved by Cramer’s rule to give

w = X =XA(p)Mp)i (4i) 

4=1 4=1

where A(p) is the principal determinant of the K^’s, A^(p) is the cofactor 
of Yik in A(p), and

If

^(p') A(p) '

and
£-1[A(p)] = ji/t)

MC = £ '(Mp)], 
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then the convolution theorem may be invoked to give the solution in the 
form

n

= X
k=l

The Mesh Case.—In Sec. 1-3 it was shown that the general equations 
in the mesh case may be put in the form

e,(0 ~ w/O) = 2ikik(t) (j = 1, • - • , n), (42)
A=1

where Uj(O) is the initial voltage drop around the elastances in mesh j in a 
clockwise direction and

d P dP
4~ Rjk 4“ J dt, L,, 4” Ra 4- Ba J dt.

Here n of the initial conditions are included in Eq. (42), and n more are 
given by the initial values of the mesh currents:

linu-o L(0 = fi(0), lim^o f2(0 = i2(0), ■ ■ • ,
lim,_0 in(t) = in(G).

If Ej{p), lk(p) are the ¿-transforms of e^t), ik(t) respectively, then taking 
the ¿-transform of both sides of Eq. (42) gives

n n
m - ^4-^(0) - Likik(0) = ^(p)A(p).

= 1 k = 1
Let

n

&(0) = L^O) - ¿,^(0); (43)
k^j = 1

<0(0) is, therefore, the total initial flux through mesh j. Then, if

Vi(p) = E^p) - ^ + ^(0), (44)

the equations assume the simple form

n
Ppp) = X Z^p^p). (45)

k=l

From here the solution is carried out exactly as for the nodal case.
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Unfortunately, JAp) f-Ap) in Eq. (41) is not always the ¿-transform 
of an E-function, although this is the only case with which the analysis 
developed in the previous section is competent to deal; it is, therefore, 
impossible to say that a solution always exists. For example, consider 
the case where pentodes with infinite internal impedances are connected 
by two-terminal interstage-coupling networks composed of a pure 
inductance, as in Fig. 1-18. Then if this system is driven by a current 
source i(t) and if the initial currents are zero, the expression for the out
put transform voltage is

E(p) = I(p)p",

where n is the number of stages. This function has no ¿“’-transform.
All that can be said is that Eq. (41) is the general solution for the 

nodal network if the response transforms are ¿“’-transformable. In any

Fig. 1-18.—The n-stage inductance amplifier.

achievable physical network this is, of course, always the case; it is also 
the case for most of the idealized networks with which one wishes to deal.

1*7. The Transform Network.—The concept of the transform network 
was first introduced in Sec. 1-5. In this section it will be shown how 
to set up the general transform network both in the mesh and the nodal 
case and how to apply it to derive the transform equations. A discussion 
is given of the value of the concept in practical cases.

The General Nodal Case.—The general equations for the nodal case 
are given by Eq. (40). These equations can be derived without setting 
up the general integro-differential equations, as follows. Replace the 
various elements of the network by their appropriate p-admittances.1 
Place across the ¿th independent node pair a constant-current p-generator 
JAp} of magnitude equal to the sum of three quantities:

1. IAp), the ¿-transform of iff, the driving function current gener
ator in the fcth independent node pair.

1 See Sec. 1-2 for the definitions of these quantities. It is assumed that all trans
formers are replaced by their equivalent n- or T-networks.
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2. pk/p, where pk is the total initial current flowing into the nth node 
from the inductors linking the nth node with the other nodes of the 
network.

3. jk, where yk is the sum of the initial charges on the condensers 
linking the /cth node with all the other nodes of the network, the 
charge being reckoned as positive if the plate of the condenser con
nected to the kth node is positive.

Thus

J kip) = I kip) + ^ + T*.

The general nodal equations are now set up by applying Kirchhoff’s 
second law to the independent node pairs of the transform network in 
turn, remembering that the current flowing into a p-admittance Y ip) is 
equal to Yip) times the voltage across it.

The procedure has been illustrated for a two-node network in Sec. 1-5.
The General Mesh Case.—Equations (45), the transform equations, of 

the general mesh case can be obtained in a similar fashion as follows. 
Replace the various elements of the network by their appropriate 
p-impedances.1 The method of taking account of mutual inductance 
will be discussed below. Place in the Jth mesh a constant voltage 
generator E,(p) equal in magnitude to the sum of three quantities:

1. Ejip), the ¿-transform of the driving function voltage generator 
in the Jth mesh.

2. — UjiO)/p, where w,(0) is the initial voltage drop round the capaci
tors in mesh j, in a clockwise direction.

3. 0,(0), where 0,(0) is the initial flux through the jth mesh, given by 
Eq. (46).

Thus
Mp) = Eiip) - ^ + MO).

The general mesh equations are now set up by applying Kirchhoff’s 
first law to each successive mesh of the transform network in turn, 
remembering that the voltage across a p-impedance Zip) is equal to Zip) 
times the current through the impedance.

Mutual inductance terms are allowed for, as in the conventional 
steady-state analysis, by assuming that the open-circuit voltage across 
coil L, coupled by mutual inductances M^ to a system of coils Lk(k j, 
j = 1, • • • , n) is simply

1 See Sec. 12. V . .

E-G. & G. URR ARY " A
LAS VEGAS BE/ ""'H —,



52 LINEAR-CIRCUIT ANALYSIS AND TRANSIENT RESPONSE [Sec. 17

n
± pMjk,

k*i=l

where the ambiguity of sign is resolved as in Sec. 1-2.
If this procedure is applied to the network of Fig. 1-9, then the trans

form network will be obtained in the form of Fig. 119,

Fig. 149.-—Two-mesh transform network.

where
Fi(p) — Efip) - QiSi — QuSn + Lip, — Mpi, 1
Yz(p) = +Q12S12 — Q2S2 + L2P2 — Mpi. j (46)

Applying Kirchhoff’s first law to the first and second meshes consecu
tively gives

vi(p)=w +j+l1P+- ifip) (mp+^y

V2(p) = -Ifip) ^Mp + y) + W (^ + y + ^ + L2p
(47)

These equations may be compared with the original Eq. (2) and it is 
easily verified that Eqs. (47) are, indeed, the transforms of Eqs. (2).

Advantages of the Transform Network.—The value of the transform 
network is chiefly evident when the initial electrostatic and magnetic 
energy in the circuit is nonzero, this being the case in which use of the 
original Heaviside calculus was most cumbersome. It is also the case 
where the possibility of getting a sign wrong or of miswriting a term is 
most serious. The transform network not only is valuable as a reliable 
short cut to writing down the transform equations but also can be used 
to derive these equations in a simpler form.

In the first place it is now possible to use Thevenin’s theorem in the 
general form given in Fig. 1-1, and this may decrease the number of 
equations required.
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Second, consider the transform network of Fig. 1-20. The transfer 
voltage of this network can be written down by inspection to give

v , , _ _____________ Ji&)_____________ .
™ Y i(p) + Y^p) + K1(p)F2(p)Z12(p)’

and if Fi, F2, Z12 are complicated 
siderable saving in labor.

Examples of this kind could be 
multiplied indefinitely, but enough 
has now been written to demon
strate the statement that the 
¿-transform method, using the 
concept of the transform network, 
is as simple and compact as the 
Heaviside calculus but is more 
rigorous and also more powerful 
because of the ease with which it < 
initial conditions.

networks, this may represent a con-

Fig. 1-20.—Transform Il-network.

be applied to the case of nonzero

1-8. The Steady-state Response of the General Linear Network.—Up 
to now attention has been focused solely on the response of a network to 
a nonperiodic driving function. There has been nothing in the analysis 
making it inapplicable to the periodic case, but the necessity of knowing 
the initial conditions prevents direct use of the ¿-transform theory. 
There are two ways out of this difficulty, both of which will be discussed 
in this section. In the second and more valuable method a modified 
¿-transform, the so-called §-transform, is employed. In the former, the 
periodic driving function is expressed as a series of sinusoidal driving 
functions. Because the response to a sinusoidal driving function can be 
written down from the transform network, the response function can be 
represented in the form of a series that may converge rapidly enough to 
justify the neglect of all but a few terms.

The first step in outlining the application of this method is to con
sider the response of the network to a signal Ie‘“‘ applied at time t = 0.

Now the ¿-transform of Ie’“‘ is

I .
P - jw’

thus, if the signal is applied across the jth node1 (mesh), the transform 
response across the fcth node (mesh) is

1 From the superposition principle of Sec. 1-3 there is no loss of generality involved 
in confining attention to the case where the driving function is applied across a single 
node (mesh).
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n

eap) = —nik(.p)+y ^apwap}, i
P Ju

»= i
where O.jAp} are system functions of the type discussed in Sec. 1-6 and 
Ui(p) are excitation functions due to the initial conditions and are all 
of the form a,- + (bi/p).

Let us assume that iliAp) U(p) are O(l/p) and that all the poles of 
HiAp) Vfp) lie to the left of the imaginary axis1 in the complex p-plane. 
Then the residues of all these poles decay exponentially with time, and 
after a sufficiently long time their sum is vanishingly small. The residue I 
of the pole at p — ja> = 0, however, is Ie’“‘i2iAj<v), which is oscillatory for 
real values of a.

It is clear from the above that after a sufficiently long time the 
response of the network differs by an arbitrarily small amount from

e(i) = (48)

More loosely, Eq. (48) is the response across the fcth node (mesh) to a 
signal Ie1“1 applied at time t = — oo across the Jth node (mesh). It is, of 
course, the familiar steady-state response and could have been obtained 
directly from the transform network by assuming p to have the special 
value ja.

The steady-state response to an arbitrary periodic waveform can be 
obtained from the above with the aid of the principle of superposition as 
follows:

If fit) is a periodic function of t with period T, that is,

fit + T) = f(t)
for all t, then fit) may be expressed as a Fourier series of the form 

2irjnt \
ane T , I

where > (49)
r (

1 ¡2 X
= T T dt’ I 

J ~2 I

provided that fit) satisfies suitable conditions2 which are always satisfied 
for practical driving functions.

1 Both these assumptions are essential if the network is to have a steady-state 
response at all, at least in the sense employed here.

2 Sufficient conditions, general enough for the present purpose, were given by 
Dirichlet. These are that

1. f(t + T)
2. fit) defined and bounded in the range — T/2 to T/2.
3. f(t) has only a finite number of maxima and minima in the range — T/2 to T/2.
4. f(t) has only a finite number of discontinuities in the range — T/2 to T12.
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If w = 2ir/T then Eq. (49) may be written as 

f(t) = ane^, 
— 06 

where 
T

On = I Tf(t)e-inat dt.
J ~2

But the response of the system to a signal applied at time t = — x 
is, by Eq. (48), 

anein“‘Ojk(jnu});

hence, by the principle of superposition, the output response to the 
periodic driving function /,(0 is

ept) = X e’^OiPjnu) P TfPt)e-ina‘dt. (50)

n = — w 2

It may happen that only a few of the terms of this series are significant, 
but often the series must be summed in closed form if the expression for 
the response function is to be useful.

There is another method of tackling the steady-state analysis, based 
upon a generalized form of the ¿-transform theory. This will now be 
discussed and illustrated by a practical problem.

Let /(/) be a periodic function with period T. The “steady-state 
Laplace transform” of f(t) which, following Waidelich,1 will be called the 
§-transform and written symbolically

Sl/Wl = W, (51)

is defined by the equation
St/(0] = FPp) = yT e~p‘f(t) dt. (52)

The “inverse §-transform,” or '-transform,” is given by

m - <“>

For the inverse transform, the path of integration W in the complex 
plane is the closed contour of Fig. 121 composed of Wi, Wi and two 

1 D. L. Waidelich “The Steady-state Operational Calculus,” Proc. I.R.E., 34, 38
83, February 1946. The treatment given in this section is based directly upon this 
paper, and reference should be made to it for more complete references and for an out
line of the proof of the results quoted.
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rectangular lines parallel to the real axis joining the ends of Wi and IF2. 
In the limit in which these end points tend to infinity, the integral of 
F,lp)epT/ll — e~pT) over those short rectilinear arcs is zero. The path 
W3, to be used later, is the same as W2 except that the direction is 
reversed. All the poles of Fs(p)/(1 — e~pl) must lie to the left of IP’s 
except for the points p = Ijn2tr)/T, where n is an integer, which must

Fig. 1-21.—The S-transform contour.

lie between IFi and IPs. If Ffp) 
has any poles on the imaginary axis 
or in the right half of the complex 
plane, W3 must be indented to ensure 
that these poles lie to the left of W3.

The method of applying the g- 
transform theory to the steady-state 
solution of linear integro-differential 
equations follows essentially the same 
course as in the ¿-transform theory. 
One takes the g-transform of both 
sides of the equations, thus trans
forming them into a set of algebraic 
equations that can be solved for the 
g-transform by the conventional 
process. The g-1-transform is then 
used to derive the final expression 
for the steady-state response.

To carry out this procedure three theorems similar to Theorems 6, 7, 
and 8 of Sec. T4 will be needed.

Theorem 66. Additivity. If F.(p) = g[/(i)] and G.lp) = g[g(Z)] 
then

SLKO + 17(01 = Fslp) + G.lp). (54)

Theorem 76. g-TRANsroRM of an Integral of a Function. Let
fit) be an E-function of period T and g-transform F.lp); if

git) = glO) + Jg fit) dt, 

then
shzWi = ^-p-- g«» + (55)

Theorem 86. g-TRANSFORM of the Derivative of a Function. 
If fit) is an E-function with period T and if fit) has g-transform F.lp), 
then

§[f(0] = pF .Ip) - (1 - e~pp)flQ). (56)
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Fig. 1-22.—Two-node network.

The above theorems can be generalized by induction as were Theorems 
6, 7, and 8.

At first sight it may be perplexing to see the occurrence of values of 
fit) at time zero. In a steady-state analysis one would not expect such 
terms to be present. The difficulty is more 
apparent than real, however, in that these 
terms do not, in general, contribute anything 
to the inverse g-transform.

The above theory is best illustrated by 
a practical example, which is taken directly 
from Waidelich.'

Let a square wave current i(t), where

T i(t) = A, 0<t 
' z

T iit) - —A, ^<t<T,

be applied to the network of Fig. 1-22. Then the voltage e(i) across 
the network is given implicitly by

AO —+ r di — p.

where p is the current flowing in the coil at time t = 0.
Taking the §-transform of both sides of the equation, and using the 

results of Theorems 66, 7b, and 8b give

A(P) = ( Cp + G + E) EAp) - Ce(Q) + i- 
\ p/ L P

(1 -

where e(0) is the voltage across the circuit at time t = 0 and I,ip), E„ip) 
are the §-transforms of i(t), e(t) respectively. Hence

and

E.ip)
A(p) + Ce(0) + (1 - e-rr)

r
Cp + G + p

eit) = S-H^XP)]
= L i ________ pl,jp)ept________

2*j J w (r + Gp + CpT(l - e-pr) aP
± f _p + pCejO)

' 2rj J w r + Gp + Cp2 - ap-
1 Ibid.
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The second integral has no poles inside the contour W ; hence by Cauchy’s 
theorem it is zero. Accordingly the initial conditions vanish from the 
steady-state solution, and we get simply

_ 1 [ ________ ________________
w 2^ Jw(r + GP + CpNi - ap-

But
r T/2 rr

Np) = / Ae-”' dt - / Ae-^ dt
jo J T/Z

= ± (1 _ e~ 2) _ 2 (1 - e 2) = ±(1_e ap.
p P P

Hence

1 f A(1 — e
2^ JW(T +Gp + CpNl - tr^P' <57)

Equation (57) is an integral taken around a closed contour and is deter
mined by the sum of the residues of the poles lying within. If this direct 
method of evaluating the integral is chosen, however, the response func
tion will be expressed simply as a Fourier series and the whole point of 
introducing the §-transform would vanish.

Alternatively one can proceed as follows.1
Since the integrals over the rectangular arcs joining the end points of 

Wi and IF3 are zero in the limit when these end points tend to infinity,

,,, 1 [ E.(p)e^ 1 [ E.(p)e^ ,
2*j JWl 1 - e-er p 2vj JWt 1 - e-p< dp~

Now

1 f Efipfe^ E.(p)e”‘ ( 1 + g-rr + + ■ . ■ +) dp
2rj Jwi I ~ 2irj J w, X /

= Xi I Es(p)ei“dp + ~ I E.(p)e^l-Ti dp + • ■ ■ +, (58)
A*) j il’i J H7

where TFi is the same path of integration as that of the £-1-transform; the 
integrals of Eq. (58), therefore, may be evaluated in the same way as those 
of Sec. 1-4. In particular we have 

iw.
Efip^e”1 dp = 0

for t < 0. Hence for t < 7’,

1 This method of solution can be followed in all cases and is not peculiar to the 
problem at hand.
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In the particular case with which we are dealing,

E.tp) =
A(1 - e 2 )2 
r + Gp + Cp2’

and, for t < T/2,

X i Et(p)ept dp = X i dp-
Jw, J w, T + Gp + Cp2 r

thus, for 0 < i < T/2, 

. -ri
1 f Aep> dp 1 j Aep,(l - e 2 )2

eW ~ 2*j JW1 V + Gp + Cp2 2irj J w, (r + Gp + Cp2)(l - e-””) dp-

Since

A , A(l-e 2)2
r + Gp + Cp2 anU [F + G(p) + Cp2] (1 -

are both O(l/p), the two integrals of Eq. (59) can both be trans
formed into contour integrals consisting of the infinite left-hand circle and 
the straight lines Wi and Ws, respectively. The only poles of these func
tions that lie inside these contours occur at the zeros of T + Gp + Gp2; 
evaluating the residues at these poles gives

e(0 4am ,----- e~nt n

sin nt + e

1 + 2e 2

for t < T/2, where

m

if G2 < 4rC;

for t < T/2 and where a = m + jn, B — m — jn, if G2 > 4rC.
1-9. The Fourier Transform Method.—Before the Fourier transform 

or ff-transform can be compared with the ¿-transform as a tool in solving 
network problems, it is necessary to give a brief outline of the essentials of 
the theory. In the introduction (Sec. 1-1) it was stated that there are 
two alternative methods of deriving the transform theory; one based 
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upon the steady-state analysis and the superposition principle and the 
other, which was followed in the body of this chapter, formal and abstract. 
The former method will be utilized here, partly to illustrate the principle 
and partly because the simplicity of the discussion provides one of the 
chief arguments for the J-transform.

In Sec. 1-8, where the steady-state analysis was discussed, it was 
shown that a periodic function with period T could be expressed as a 
Fourier series:

oe

7(0 =
— 00 

where

On = y, I Tf<f)e T dt, 
~2

provided that fit) satisfies certain conditions.
Now an aperiodic function can be regarded as the limiting case of a 

periodic function whose period T is allowed to extend to infinity. For
mally, then, the extension to nonperiodic functions is made by allowing 
T to tend to infinity, in such a way that

2irn , i 2tt\ ,
a = —pp ana lim I -yp I = da.

I T—> x \ ‘ /

If the sum is replaced by an integral, one gets in the limit

7(0 = ¿ da,

where
F(ja) = y dt. (60)

Flja) is the simple double-sided1 Fourier transform of f(t), and is in fact 
usually just referred to as the Fourier transform of f(t).

The basic Fourier integral theorem of Eq. (60) is not, of course, 
proved by an argument of the above kind, which, as presented here, has 
only dubious validity. But the foregoing discussion is valuable in that

1 Double-sided because the limits of integration of the defining integral of F(jw) go 
from — x to x. In the single-sided definition used in the ¿-transform case, the 
integration limits go from 0 to x. If /(/) = 0 for t < 0, it is, of course, immaterial 
whether the single- or double-sided transform be used.
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it traces the direct connection with the steady-state analysis, which will 
now be used to give the transient response of the general linear network.1

In Sec. 1-8 it was shown that if the network was dissipative, the output 
response after a sufficiently long time to a driving function Elj^ie^1 is of 
the form

Elj^e’^Sliklju),

where £lik(ja) is the appropriate system function.
Let it now be assumed that a driving function f(f) be applied to the 

network, where/(i) is defined for all real values of t, positive and negative, 
and is such that f ]/(0! dt converges. Now by the Fourier integral 

theorem/(i) may be regarded as a continuous sum of sinusoidal generators, 
each of which is applied to the network at time t = — ¡a. To find the 
response of the network to this system the superposition principle is 
invoked, in a more powerful form than we have proved it valid in Sec. 1-3, 
to state that the network response may be regarded as the sum (or integral 
in this case) of the response to the individual component generators. 
Now for t > 0 the response of the network to a sinusoidal generator ap
plied at time t = — « is simply the steady-state response. Accordingly, 
if

= y dt, (61)

the transient response of the network may be written

i(0 = / E(Ja>)í2J•*(Jw)e’", dw; (62)

this integral can be evaluated by the theory of residues as given in Sec. 
1-4, provided that the integral of the integrand of Eq. (62) taken around 
either the upper or lower infinite half circle is zero.

The most attractive point about this solution is its extreme simplicity. 
The integro-differential equations of the network have not been intro
duced at all, and there has been no need to discuss the condition of the 
system at time t = 0. Nevertheless a considerable price has been paid. 
The function/(i) must now be defined for all real values of t, not only for 
positive ones. This might not appear a serious hardship, as it is usual to 
take f(t) = 0 for t < 0 in the £-transform theory, but unfortunately it 
means that the initial conditions are fixed by the form of fit) and can no 
longer be chosen arbitrarily. Another disadvantage is that the restric-

'See E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford, 
New York, 1937, for a full theoretical treatment of this theory. It is shown there that 
f '/(0| dt must be convergent if the relationship is to hold.
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tions on the form of fit) are much more severe, at least in the simple 
theory, because it is now necessary that f \f(t) | dt converge, thus exclud

ing a whole range of useful functions from discussion.
The second disadvantage can, however, be overcome at the cost of 

increased complexity. Thus the range of driving functions can be con
siderably extended if instead of a function

e(0 =0, t < 0,
«(0 = fit), t > 0,

one considered the function

e(t) =0, t < 0,
e(t) = fit)e~ct, t > 0.

Then, even if fit) = O(in), l/We-eil dt converges for all c > 0. The 

response to the modified function can be found; and then after the inte
grations have been performed, c can be allowed to tend to zero.

A more powerful attack, which will, in fact, do everything that can be 
done by the ¿-transform theory, can be based upon the “generalized 
Fourier transform” defined by

Fiju) = f(f)e~<^‘ dt, (Ma)

where
fit) = y F(ju)e<'+M‘ du, t > 0, (636)

provided that |/(i)|e_c‘ dt converges.

This transformation1 can be applied to the integro-differential equa
tions exactly as was the ¿-transform,' and the solution follows along 
virtually identical lines. Initial conditions can now, of course, be chosen 
arbitrarily. The generalized Fourier transform method has, however, 
no advantage over the Laplace transform method.

The above discussion brings out the fact, emphasized in Sec. 1-1, that 
although the simple Fourier transform can be used to handle a restricted 
class of network transient problems, the ¿-transform provides a compact 
analysis of greater power and scope.

This last statement must not, however, be interpreted as implying any 
essential mathematical difference between the two, for, on the contrary 
they are closely interconnected. Thus formally, at least, the ¿-transform

1 See ibid., where this method is actually applied to solve a set of integro-differential 
equations.
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can be obtained from the generalized 5-transform by a shift of origin and a 
rotation of axes through ir/2.

It is necessary to make this point because in some treatments the 
Fourier and the Laplace transforms are compared as if they were distinct 
mathematical tools. This attitude is inadmissible. As the previous 
discussion was intended to show, the difference between the two trans
forms lies in their scope and in their historical background, not in their 
mathematical nature.

1’10. Summary of the Use of ¿-transform Theory in Network Prob
lems.—In order to place the theory upon a sound footing and at the same 
time display the fundamental properties of the Laplace transform in a 
clear light, care was taken to develop the mathematical analysis of Sec. 
1-4 on a rigorous basis.

Many readers, however, will be interested in the Laplace transform 
only as a tool in the solution of practical network problems and be willing 
to take the validity of the theory for granted. Accordingly, this section 
has been written as a guide to the location of the more important results, 
which are scattered throughout the chapter, so that the reader may use 
the Laplace transform method with the minimum of theory.

The problem is that of finding the output response vpt) of a linear net
work to a driving function 0(i) applied at time t = 0, when the initial 
charges on the condenser and the initial currents through the inductors 
are given.

The first step is to find the Laplace transform

iPp) = ¿[0(0] = y di (64)

of ipt). This may be done either by direct integration as in Eq. (64) or 
by reference to Table 1-5 if is one of the standard forms there tabulated.

The next step is to set up the transform network. In the case when 
all the initial conditions are zero, this can be done simply by replacing 
all the inductors, capacitors, and resistors by their p-impedances or 
p-admittances1 and the driving function by its Laplace transform Ipp). 
When the initial conditions are not all zero, the driving transform func
tions have to be suitably modified, as is discussed for the general mesh 
(nodal) case in Sec. 1-7. Applications to particular networks are in Sec. 
1-5 above and in Sec. 1T1 below. The transform output response is 
found by the conventional steady-state analysis and will be of the form of 
Eq. (41). _

It now remains only to evaluate vpt). As shown in Sec. 1-4, vpf) is 
given in terms of Vt(p) by the explicit relation

1 See Sec. 1-2 for a definition of these quantities.
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VkH) = [ Vkip)ep‘ dp, (65)

where c is a real positive number such that all the poles of V (p) lie to the 
left of c in the complex p-plane.

Integrals of the form of Eq. (65) were evaluated in Sec. 1-4 with the 
aid of the theory of residues, and a general expression was obtained for 
vk(t) when V k(p) was the product of an algebraic and a regular function. 
All the response transform functions considered in this chapter are 
of this type, and the principal results are restated here for convenience.

Two alternative cases exist:

1. pVkip)epl is bounded for all E(p) > c. In this case v(t) — 0.
2. pV kip) is bounded for all sufficiently large p in the half plane 

Rip) < c. In this case v(t) = 2 residues of the poles of Vkip)ept.

If Vk(p) is the product of an algebraic and a regular function, it can 
be expressed in the form

- n

8 = 1
where Hip) is bounded and regular for all finite p.

The poles of Fj(p) occur at p = p5(l = 1-, • • • , n), and the residue 
of Vkip)ep‘ at p = p, is

1 dr-~1
(66)

where
^.(p) = Vk(p)(p - p,)r-; (67)

thus
n

- I (At>1 37^irM^' <68> 
3=1

The above procedure has been discussed in greater'detail but along 
essentially the same lines in the main body of the text. In Sec. 1-11 it is 
applied to two practical examples.

1-11. Examples of Use of ¿-transform Theory to Solve Practical 
Network Problems. Response of an n-stage RC-coupled Pulse Amplifier 
to a Unit-step Function.—The first problem to be considered is the voltage 
response developed across the anode of the last tube of the amplifier 
chain of Fig. 1-23, when the input voltage e(t) is a step function of unit 
height. It will be assumed that all the stages are identical. Let trit) be 
the plate current of the rth tube, with ¿-transform Ir(p), and let er(l) be
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the voltage developed across the anode lead of the rth tube, with ¿-trans
form Efp). Then the transform network assumes the form of Fig. 1-24. 
If the tubes are pentodes, the output plate conductance can be neglected 
in comparison with 1/R, and

Ir+fp) = g^EAp) (r = 0, • • • , n - 1);

EAp) = • : • (r = 1 ■ • ■ n).

R + Cp
By a simple process of elimination one gets

EAP) (i + CRpf
Now, since

«(0 = 0, t < 0,
= 1, t > 0,

one can write
Elp) = / e~pl dp = - ; 

Jo p
thus en(t), the response function that equals ¿“‘[^„(p)], is given by

() ^^J^j.pA + CRpf^-

Normalizing by putting t = t/RC and e„(0 = en(f)/(gmR)n, one gets

1 ept
Pd + P)-^'
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Now pEn(p) is bounded for all n and all sufficiently large p; hence, by the 
results of Sec. 1-4,

e„(i) residues of poles of epl
p(l + p)»

But ep‘/p(l + p)" has a pole of order unity at p = 0 with residue unity 
and a pole of order n at p + 1 = 0 with residue

Re
sp

on
se

e„(i) is plotted as a function of t in Fig. 125 for values of n from 1 to 10.

1-25.—Response to a step function current of the n-stage RC-coupled pulse amplifier 
of Fig. 1-23.
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Response of Four-terminal Network to a Unit-step Function.—To con
clude this chapter, the ¿-transform theory will be applied to find the out
put response en(t) of the four-terminal network of Fig. 1-26 to a unit-step 
constant-current driving function i(t). This circuit1 has a very good rate

Fig. 1-26.—Four-terminal linear-phase coupling network.

of rise and extremely small overshoot. To evaluate the response 
numerically, the following normalized values for the circuit constants are 
taken:

C = 0.5, Ci = 0.22, C2 = 1,
El = 0.2, L2 = 0.7, R = 1.

hip), the transform-drive function, is 1/p. The transform network is as 
shown in Fig. 1-27, and will be analyzed on the nodal basis. The circuit 

node 1 1/Lp node 3

Fig. 1-27.—Transform of the network of Fig. 1-26.

has three independent node pairs as marked in Fig. 1-27, and, from the 
general transform Eq. (40) in the nodal case,

hip) = YMp) + F12E2(p) + Y13E3lp), 
0 = YuEilp) -f- Y22E2lp) + Y2iE3lp), 
0 = YsiEilp) + Y32E2lp) + YssEslp),

where the Ya are given by Eqs. (38a). If Alp) is the determinant of the 
array Yi,lp) and Aia(p) the cofactor of Fi3 in A(p), then the equation can 
be solved to give

1 R. L. Dietzold, Bell Telephone Laboratories, personal communication.
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p _ Hp) aNp)
- —Np)----

In the present case this may be expanded to give

R C1P + R+ L,p

i - r- 0
E^ = J ----------------------------------------- pq

PCp + i + Ep -R -Lp

~ R ^p + R+ETP 0
- ~ 0 C2p + ^-

Lp Lp

= - (RLfiLp2 + Lip + R){RL2LiCCiC2p* + L2LiCfiCi + C2)p4 
P

+ RL[LCC2 + LiCiC, + LiCC^p* + L[LC2 + LfiC + Ci + C2)]p2
+ RL(C + Cfip+L}^.

Substituting the numerical values of the circuit elements,

Efip) =
2.8571p2 + 12.987p + 64.9351

p(p6 + 6.5454p4 + 27.0130p3 + 67.7922p2 + 97.4026p + 64.9351)'

Now pEfip) is bounded for all sufficiently large p, so that

Nt) = residues of poles of E3(p)ep‘.

To find the poles pr of Efip), besides the simple pole at p = 0, it is neces
sary to solve for the roots of the 5th-degree polynomial in the denominator. 
By Newton’s method of approximation, one of the roots, pi for example, is 
found to be —1.892. Dividing the polynomial through by p + 1.892, we 
obtain the 4th-degree polynomial

p4 + 4.6534p3 + 18.2088p2 + 33.3412p + 34.3210,

the roots of which can be found by the standard formulas for quartic 
equations. Then the poles of E3(p) lie at the points

p = 0, 
pi = -1.892,
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p2 = -1.420 + 1.277/ p4 = -0.907 + 2.931/
p3 = -1.420 - 1.277/ p6 = -0.907 - 2.931/

All these poles are of order unity, so that the residues

br = eptEpPr)(,P - Pr)

can be found by substitution. This procedure is simplified by noting that 
since pt, pt and p4, p5 are pairs of complex conjugates, b2, b3 and bt, bs must

Fig. 1-28.—Response to step-function current of four-terminal linear-phase network.

also be pairs of complex conjugates. The following values are obtained 
for the b’s:

bo — 1,
bi = — 1.509a-1-8’“,
b2 = +(0.1716 + 0.9698j)e-(1-420+1-277i)<,
b3 = (0.1716 - O.gegS/e-'1-420*1-277'’1,
bt = (0.083 - 0.044j)e-<0■907+2•93”■’,, 
b6 = (0.083 + 0.044j+-<0-907+2-931I)1;

5

thus, since e3(0 =
r-0

br,

ept) = 1 - 1.509a-1-8’“ + e-°-907,(0.1666 cos 2.9311 + 0.0885 sin 2.9310 
+ a-1 420l(0.3432 cos 1.2771 - 1.9396 sin 1.2770.

This function is plotted against t in Fig. 1-28.
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Table 1-5.—List of Laplace Transform Pairs

No. fit) Fip)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

s(t)

eal

sin pt

cos pt

sinh pt

cosh pt

t

t"

Per*

f(t) = 0, t < 1
= 1, t > 1

fit) = 1, t < 1
= 0, t > 1

fit) = t, t < 1
= 0, t > 1

fit) = 0, i < 1
= t, t > 1

fit) = t, t < 1
= 1, t > 1

fit) = t, t < 1
= 2 - t, 1 < t < 2
= 0, t > 2

fit) = 1 - t, t < 1
= 0, t > 1

1.
P

lim —-— 
p + a
1

p — a 
0 

P2 + P2 
p 

pl +P2 
p 

pl - pi 
p 

pl — pi 
£ 
P2 

w! ...
—tt (n a positive integer)
P 
n’ 

( + o)»+i in a Positive integer)

Cf 
P 

1 - e~f
P 

1 — (1 + p)e~r 
p2 

e~p e~p
P P2
1 — ep 

p2

(1 - e-*)2 
Ps

1 _ (1 - e-v)

P P2



CHAPTER 2

HIGH-FIDELITY PULSE AMPLIFIERS

By Robert M. Walker and Henry Wallman

2-1. Introduction.1—Pulse amplifiers are employed in various branches 
of physical investigation, in radar and television receivers, and in certain 
new types of communication equipment (pulse-time modulation, fac
simile, etc.).

The subject of the next two chapters is the amplification of direct 
pulses, the amplification of pulses of a carrier frequency being considered

(M
Fig. 21.—Reproduction of a rectangular pulse, (a) Reproduction of the leading edge 

of a rectangular pulse. Note the rise time and the overshoot. If the amplifier is linear 
and the pulse duration is large compared with the rise time, the reproduction of the trailing 
edge is the negative of the leading edge, (b) Reproduction of the flat top of a rectangular 
pulse. Note the sag. If the amplifier is linear, the amplitude of the undershoot following 
the pulse is equal to the sag.

in Chaps. 4 through 7. This chapter is concerned with pulse amplifiers 
of high fidelity; Chap. 3 describes pulse amplifiers of lower fidelity but 
much greater dynamic range.

Emphasis on the Time Domain.—The emphasis in this chapter is 
mainly on the time response of amplifiers, that is, upon the shape of the 
output waveform as a function of time for appropriate pulse input. This 
approach is chosen because it is really only the time response that is of any

1 Sections 21, 2-2, and 2-3 are by Henry Wallman; the remainder of the chapter is 
by Robert M. Walker.

71
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interest to the user of pulse amplifiers; the familiar amplitude- and phase 
frequency curves are merely means to the end of good pulse response, and 
should be regarded as matters of subordinate interest.

Reproduction of Rectangular Pulses.—There are many types of pulses— 
rectangular, delta-function, sawtooth, rounded, etc.—in common use, 
and in a linear amplifier the response to any one of them completely 
determines the response to any other. In this discussion the rectangular 
pulse is used as the standard input signal. A rectangular pulse is the sum 
of a positive step function and a delayed negative step function; hence 
its reproduction by a linear amplifier is the sum of the response to a posi
tive step function and a delayed negative step function.

The reproduction of a step function can be divided into two distinct 
parts, namely, the reproduction of the leading and trailing edges and the 
reproduction of the flat top (Fig. 2-1). These two aspects will be 
considered in order.

2-2. Leading Edge of Pulse; Rise Time and Overshoot.—The most 
important characteristics of the reproduction of the leading edge of a 

rectangular pulse or step function 
are the rise time, usually measured 
from 10 to 90 per cent,1 and the 
“overshoot” (see Fig. 2-la).

A third characteristic is some
times also of importance, namely 
the time duration over which the 
amplitude of the overshoot oscilla
tions is appreciable. The problem 
is to minimize these three param
eters: rise time, overshoot, and 
overshoot-oscillation duration.

RC-coupling.—The basic pulse
amplifier stage is shown in Fig. 2-2. 
A tetrode or pentode is usually used 
iodes would have very high input

capacity because of the Miller effect.
When the reproduction of the leading edge is of interest, the circuit 

may be simplified as shown in Fig. 2-3.
The capacity C is the total interstage shunt capacity and is made up of 

the sum of the output capacity of the first tube, the input capacity of the 
following tube, and stray wiring capacities.

1 Other definitions of rise time are occasionally used, such as the intercept of the 
tangent drawn through the 50 per cent point of the step-function response. For 
some applications it is desirable to measure rise time between the 5 and 95 pi- cent 
points or the 1 and 99 per cent points.

B+

Fig. 2-2.—Basic pentode amplifier.

if the gain is at all high, since
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A voltage step function applied to the grid of the tube results in a 
current step function applied to the parallel RC-combination. It is 
the resulting voltage developed across the RC-combination that is the
desired amplifier response. If the 
load resistor R is small compared 
with the plate resistance of the tube 
(this is always the case for high
speed pentode stages), the stage 
gain ( = voltage amplification) is

Fig. 2-3.—Simplified circuit of pulse-amplifier 
stage employing RC-coupling,

Gain = g^R, (1) 

where gm is the transconductance of 
the tube. The step-function response is an exponential curve, free from
overshoot, as shown in Curve 1 of Fig. 1-25. Its rise time is given by

Rise time = 2.2RC.

Dividing Eq. (1) by Eq. (2) yields

Gain _ gm
Rise time 2.2C

(2)

(3)

The right side of Eq. (3) is a figure of merit for the amplifier tube. 
The gain/rise time ratio has a value of about 200/Msec for type 6AK5 tubes 
if it is assumed that g„ = 5000 Mmhos and C = 11.5 ppi. Therefore with 
an RC-coupling between two type 6AK5 tubes, a gain of 10 with a rise 

time of Ps Msec or a gain of 2 with a rise time of 
ttott Msec., etc., can be obtained.

For laboratory purposes or whenever reduced 
tube life can be accepted, the figure of merit for type 
6AK5 tubes can be increased to about 280/Msec by 
reducing the bias and thereby increasing gm.

Shunt Peaking.—The question arises as to what 
can be done to improve the gain/rise time ratio by 
use of circuits other than the RC-circuit. The next 
simplest circuit is the so-called shunt-peaked circuit 
shown in Fig. 2-4, for which the significant param
eter is the ratio m = L/R2C.

A family of step-function responses is shown in Fig. 2-5. There is no 
overshoot for m g 0.25. The performance of this circuit for various 
values of m is shown in Table 2-1. For m, = 0.41, for example, Fig. 2-5 
shows that a gain/rise time ratio between type 6AK5 tubes of 1.7 X 200 
= 340/mscc can be attained, accompanied, however, by an overshoot of 2.5 
per cent.
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Table 2-1.—Performance of Shunt-peaked Circuit

m Relative speed 
(referred to ÄC-circuit)

Overshoot, 
%

0 1.0 0
0.250 1.4 0
0.414 1.7 3.1
0.500 1.9 6.7
0.600 2.1 11.4

Figure 2-5 demonstrates that the rise time can be reduced at the 
expense of increased overshoot. The proper compromise between speed 
and overshoot depends on various external factors. It is common to 
regard overshoots of 40 or 50 per cent as acceptable in servoamplifiers, 
whereas in television amplifiers perhaps 5 to 10 per cent is all that should 
be tolerated, and in certain measuring apparatus only about 1 per cent.

Fig. 2-5.—Response of shunt-peaked circuit to a step function of current.

Within the restriction of two-terminal coupling networks little 
improvement can be attained over shunt-peaking. However, there is 
one other two-terminal network (Fig. 2-6) that is worthy of mention. 
The steady-state performance of this network1 gives it its name. Its 
step-function response (Fig. 2-7) has only 1 per cent overshoot.

Although the increase in performance of the circuit of Fig. 26 over 
that of the m = 0.41 shunt-peaked circuit is not very great, the extra 
complication is not great either; it is usually possible with a little ingenu
ity in layout to realize the capacity across the peaking coil as a stray 
capacity, so that no additional parts are required.

1 S. Doba, Bell Telephone Laboratories, private communication.
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Four-terminal Coupling Networks.—To get substantial improvement 
over the performance figures given in Table 2-1 it is necessary to go to 
four-terminal networks, that is, to 
make use of the partition of the 
interstage capacity between an in
put and an output capacity. A good 
example of such a circuit is the four- 
terminal linear-phase circuit shown 
in Fig. 1-26. The step-function re
sponse of this circuit, shown in Fig. 
1-28, exhibits an advantage in 
gain/rise time ratio of 2.48 as com

Fig. 2-7.—Response of two-terminal 
linear-phase network to a step function 
of current. Gain/rise time advantage 
over the RC-circuit is 1.77; overshoot is 
1 per cent.

Fig. 2*6.—Two-terminal linear-phase 
network.

3.75 R

-OSW'- 
1A5R2C

Fig. 2-8.—Four-terminal network de
signed for 1/1 capacity ratio.

pared with the RC circuit, and this ratio is accompanied by an overshoot 
of only 1 per cent.

The great speed and small overshoot of this circuit make it very 
attractive. However, as with all 
four-terminal networks, a certain defi
nite capacity ratio is assumed, in this 
case i. By the reciprocity theorem 
it is possible to reverse the network, 
thereby accommodating a 2/1 capac
ity ratio; but for capacity ratios differ
ing from either £ or 2, other circuit 
configurations must be employed. No 
such consideration is involved in the 
use of two-terminal networks, and the 
need to employ a different configura
tion for a different capacity ratio may 
be regarded as the price of the increased performance of four-terminal 
networks.

A four-terminal network designed for 1/1 capacity ratio1 is shown in
1 E. A. Schramm, Bell Telephone Laboratories, private communication from R. L. 

Dietzold. The curves of Fig. 2-9 are due to A. J. Grossman of the Bell Telephone 
Laboratories.
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Fig. 2-8, and its step-function response is shown in Curve a of Fig. 2-9. 
Curve a of Fig. 2'9 shows an advantage of 2.1 in gain/rise time ratio as

t/[K(C + OJ
Fig. 2-9.—Response to current step function of network shown in Fig. 2-8. (a) Cz = C;

(b) Ci = C/2; (c) C2 - 2C.

compared with the 7?C-circuit and has 2 per cent overshoot. Curves (b) 
and (c) of Fig. 2-9 show the effect of designing the circuit for 1/1 capacity 

2R 
AAAr

Fig. 2*10.—Series shunt-peaked circuit.

ratio when the actual capacity ratio is 2/1 or 1/2, respectively.
The somewhat simpler circuit shown 

in Fig. 2-10, called the series-shunt 
peaked circuit, was widely used at the 
Radiation Laboratory. Its step-func
tion response is shown in Fig. 2-Ila. 
Curve a of Fig. 2-11 shows an advan
tage of 2.06 in gain/rise time ratio 
compared with the ^C-circuit and has 
3 per cent overshoot. Curve b of Fig. 
2-11 shows the effect of a left-hand 
capacity that is only half the right-hand 

capacity. For many applications the step-function responses of Curves 
b of Figs. 2 9 and 2-11 are entirely satisfactory. Although the circuits of 
Figs. 2-8 and 2T0 give substantially poorer performance than the circuit 
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shown in Fig. 1-26, the latter circuit is less tolerant with regard to capacity 
ratio.

Composition of Rise Times.—It is of interest to know how the rise 
times of the individual stages combine in multistage amplifiers. A very

Fig. 2-11.—Response to current step function of series shunt-peaked circuit shown in 
Fig. 2-10. (a) Ci = C; (b) Ci = C/2.

good answer can be given to this question when the individual stages are 
free from overshoot. The result is as follows:

Rule l.1 For an amplifier made up of n stages, each of which is 
free from overshoot, rise times add in the root-square, that is,

r = Vr\+A + ■ ■ ■ + r’, (4)

where t is the over-all rise time and n, n, . . . , r„ are the rise times of the 
individual stages.

For the special case in which ri = t2 = ■ • • = r„, Eq. (4) reduces to

r = ri -\/n. (5)

Equation (5) shows, for example, that if a nine-stage amplifier made 
up of identical stages free from overshoot is to have an over-all rise time 
of Msec, each stage must have a rise time of Msec.

1 Rule 1 represents not the result of observation of many special cases but has a 
solid mathematical basis; it is in fact a translation into the language of transient 
response of the “central limit theorem” of probability, stated by Laplace in 1812.

Rules 2, 3, and 4 given below are essentially the results of observation of special 
cases.

All the rules given here, Rules 1 through 6, are safely applied only to minimum 
phase-shift networks.
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Equation (4) is actually a statement of a trend in the limit, as n 
increases indefinitely, and for any finite value of n is only approximate. 
However, the approximation is very good, usually within 10 per cent, even 
for values of n as small as 2. This fact is illustrated in the following 
listing, taken from Fig. 1-25, of rise times of identical cascaded EC-coupled 
stages (Table 2-2).

Table 2-2.—Rise Times of Cascaded RC-coupled Stages

n 1 2 3 4 5 6 7 8 9 10

Relative rise time (in units of 2.2
RC)................................................ 1.0 1.5 1.9 2.2 2.5 2.8 3.0 3.3 3.45 3.6

For stages having nonzero overshoot, there is no clean-cut rule cor
responding to Rule 1. However the following rough statements can be 
made:

Rule 2. For stages having very small overshoot (1 or 2 per cent) 
the overshoot grows extremely slowly or not at all as the number of 
stages increases, and Eq. (4) still holds.

Rule 3. For stages having overshoots of about 5 to 10 per cent, 
the overshoot increases approximately as the square root of the number of 
stages, and the rise time increases substantially less rapidly than as 
the root-square.

Rule 3 can be illustrated by two tables. The first, Table 2-3, taken 
from Fig. 7-5, describes cascaded transitionally coupled double-tuned 
stages.

Table 2-3.—Rise Time of Cascaded Transitionally Coupled Double-tuned 
Stages

No. of stages Overshoot, % Relative rise time

1 4.30 1.00
2 6.25 1.32
4 8.40 1.69
6 10.00 1.95

The second table, derived from Figs. 2-13 and 2-14, describes cascaded 
two-terminal networks of maximum gain-bandwidth product (Table 2-4). 
These two tables illustrate the general principle that amplifier speed, 
especially in multistage amplifiers, can be substantially increased if over
shoot requirements are relaxed; not only can the rise time per stage be 
reduced, but the over-all rise time is not very much larger than the rise 
time of one stage.
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Table 2-4.—Rise Time of Cascaded Two-tebminal Cibcuits of Maximum Gain
bandwidth Product

No. of stages Overshoot, % Relative rise time

1 9.4 1.00
3 15.2 1.45

A large number of examples of step-function responses of multistage 
amplifiers is given in two very valuable published papers.1

Rise Time Required in Measuring Apparatus.—When pulses are known 
to have a certain rise time. Eq. (4) can be used to determine how fast the 
response of the measuring apparatus should be in order to cause negligible 
slowing of the pulses being measured. Equation (4) shows that if the 
response of the measuring apparatus is twice as fast as the input pulse, the 
output pulse rise time is increased by only 11 per cent; if the measuring 
apparatus is three times as fast as the input pulse, the output pulse 
rise time is lengthened by only 5 per cent. Thus it can be said that for 
most purposes an amplifier two to five times faster than the pulses being 
measured can be regarded as infinitely fast.

Equivalent Rise Time of a Cathode~ray-tube Spot.—A cathode-ray tube 
does not have infinitely sharp focus; because of the coarseness of its spot, 
an intensity-modulated cathode-ray tube must be regarded as an example 
of a pulse-measuring instrument of nonnegligible rise time. The equiva
lent rise time is easily computed. If the spot is assumed to have radial 
symmetry with an approximately Gaussian-error-curve intensity dis
tribution, the spot may be regarded as the reproduction of a delta-func
tion impulse by an equivalent Gaussian-error-curve filter. The rise time 
of the step-function response turns out to be about equal to the time 
required for the electron beam to move a distance equal to the spot 
diameter at the writing speed in use (the spot diameter is measured 
between the 50 per cent points on its intensity-distribution curve). The 
equivalent rise time is thus given by

Spot diameter ,, ,. , ,,Sweep length X tlme per sweep length'

In a radar presentation employing a 10-mile sweep on a plan-position 
indicator (PPI), the time per sweep length is about 100 gsec and the 
ratio of spot diameter to sweep length is about 1/200. (The constants 
pertaining to a 5-in. tube employing a P7 persistent screen might be as 
follows: spot diameter = 0.3 mm; sweep length = 60 mm, both con-

1 H. E. Kallmann, R. E. Spencer, and C. P. Singer, “Transient Response,” Proc. 
I.R.E., 33,169-195 (1945); A. V. Bedford and G. L. Fredendall, “Transient Response 
of Multistage Video-frequency Amplifiers,” Proc. I.R.E., 27, 277-2fU ngsq)
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stants being proportionately larger for a 12-in tube.) Hence the equiva
lent rise time of the cathode-ray tube is 0.5 Msec. The preceding paragraph 
indicates that there is little point in this case in providing the pulse 
amplifier with an over-all rise time less than about 0.2 Msec.

Relations between Steady-state and Transient Responses.—So far in this 
chapter nothing has been said about the amplitude-frequency or phase
frequency characteristics of pulse-amplifier stages, on the grounds that 
they are of no direct interest to the user of pulse amplifiers. For two 
practical reasons, however, it is now desirable to discuss these matters.

The reasons are those of inadequacy of instrumentation, namely, the 
inadequacy at the present time of equipment for (1) experimentally 
measuring the pulse response of one stage of a really fast multistage 
amplifier and (2) mathematically computing the over-all pulse response of 
a multistage amplifier made up of complicated individual stages. It can, 
however, be expected that both these deficiencies will be overcome in the 
next few years.

It is, of course, true that the pulse response of a linear amplifier can be 
exactly computed from its amplitude-vs.-frequency and phase-vs.-fre- 
quency curves, but the following qualitative rules are often useful:

Rule 4. If r is the rise time, 10 to 90 per cent, of the step-function 
response of a low-pass amplifier without excessive overshoot and having a 
3-db bandwidth ffl, then1

rffi = 0.35 to 0.45.

Rule 5. The following three characteristics of an amplifier go 
together:2

1. Small overshoot (not more than about 1 or 2 per cent).
2. Amplitude-vs.-frequency curve approximately gaussian.
3. Phase linear over the pass band.

An illustration of Rule 5 is given in Fig. 2-12, which shows curves of 
absolute value vs. frequency and phase error vs. frequency (i.e., phase 
deviation from linearity) for a number of circuits whose step-function 
responses display small overshoot. The curves have been normalized 
to have their 3-db points at f = 1. Especially noteworthy is the closeness 
of fit, down to —10 db, among the Gaussian error curve and the ampli- 
tude-vs-frequency curves for the two- and four-terminal linear-phase 
networks. For contrast the absolute-value and phase-error vs. fre-

1 For overshoots of less than 5 per cent the value 0.35 is the one to take.
A consequence of Rules 1 and 4 is that for circuits leading to zero or very small

overshoot, the bandwidth inevitably decreases as the square root of the number of
stages.

s Rule 5, like Rule 1, is related to the central limit theorem of probability.
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quency curves are given for a circuit having 4.3 per cent overshoot (see 
Table 2-3).

Maximum Gain/Rise Time Ratio.—It would be very valuable to have 
theorems on the best possible gain/rise time ratio corresponding to Bode’s

Fig. 2U2.—Normalized absolute value and phase error curves, (a) Gaussian error 
curve, overshoot = 0 per cent (phase assumed linear) ; (b) RC-circuit, overshoot = 0 per 
cent; (e) two-terminal linear-phase network, overshoot — 1 per cent; (d) four-terminal 
linear-phase network, overshoot — 1 per cent; (e) low-pass equivalent of transitionally 
coupled double-tuned circuit, overshoot = 4.3 per cent.

theorems1 on the best possible gain-bandwidth product. It is clear that 
the problem is very difficult, even to formulate, particularly because the 
attainable gain/rise time ratio depends on the permissible overshoot. 
What is needed is a graph showing the largest possible gain/rise time 
ratio as a function of the fractional overshoot. An especially significant

1 H. W. Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand, 
New York, 1945, Chap. 17. The results are as follows: Consider low-pass interstage 
networks having input and output capacities C/2. Then if a simple 7?C-circuit has 
its 3-db point at a frequency interstage networks exist having flat gain out to o>o 
and with advantages ip voltage gain over the jRC-circuit of 2 and tt2/2 = 4.93 for the 
two-terminal arid four-terminal cases respectively.

By using nonidentical stages, which are not individually flat in gain but which 
have an over-all gain curve that is flat, W. W. Hansen [“On Maximum Gain-band
width Product in Amplifiers,” Jour. Applied Physics, 16, 528-534 (1945)] has been 
able to obtairva mean stage gain times over-all bandwidth improvement factor for the 
four-terminal case of 5.06 as compared with the simple UC-circuit. 
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point on such a graph would, of course, be that corresponding to zero 
overshoot.

Figures 2-13 and 2-14 are of interest in this connection. The imped
ance of the two-terminal network of maximum gain-bandwidth product1 
is of the form l/(p + VI + p and the impulse response has the

Fig. 2-13.—Response to step-function 
current of two-terminal flat-gain network of 
maximum gain-bandwidth product. The 
overshoot is 9.4 per cent, and the gain/rise 
time advantage over a parallel RC-circuit 
is 2.2.

equation2 the graph of
Fig. 2-13 is derived by integrating 
Jfit)/t and modifying the time 
scale by a factor of 2 to take 
account of the advantage in gain
bandwidth factor. The imped
ance of the n = 3 approximation3 
to the four-terminal network of 
maximum gain-bandwidth prod
uct, which has itself a gain-band
width factor of 4.84, is of the form 
l/(p + "\/l + p2)3. The impulse 
response has the equation 3J3(t)/t, 
from which Fig. 2-14 is obtained.

The fractional overshoots shown in Figs. 2-13 and 2-14 are surprisingly 
small when one considers the sharpness of cutoff of the pass bands causing 
them; the overshoot oscillations decay extremely slowly, however.

Fig. 2-14.—Response to step-function current of the n = 3 approximation to the four- 
terminal flat-gain network of maximum gain-bandwidth product. The overshoot is 
15.2 per cent, and the gain/rise time advantage over a parallel RC-cireuit is 3.75.

From Figs. 2-13 and 2-14 it can be conjectured that the possible 
improvement factor in gain/rise time ratio for two-terminal networks with 
not more than 9.4 per cent overshoot is about 2.2 and the correspond
ing figure for four-terminal networks (15.2 per cent overshoot) is about

1 H. W. Bode, op. cit., Eq. (17-13) and Fig. 17-4.
2 G. A. Campbell and R. M. Foster, “ Fourier Integrals for Practical Applications,” 

Bell System Tech. Monograph B584, (1931), Formula 576.3.
3 H. W. Bode, op. cit., Eq. (17-31) and pp. 440 et seq.



Sec. 2-2] LEADING EDGE OF PULSE 83

3.75. These estimates are, for various reasons, subject to considerable 
question.

The advantage of four-terminal over two-terminal networks is con
siderably less in gain/rise time ratio than in gain-bandwidth product.

Future Trends.—It is clear that it is not possible to secure order-of- 
magnitude improvements in gain/rise time ratio beyond present practice 
by the use of conventional amplifier cir
cuits. Various other possibilities exist, 
however. 'T

One possible method employs vacuum 
tubes as negative-capacity elements. L 
This method is illustrated in Fig. 2-15, 
where positive feedback through the small 
capacity C yields a negative capacitive 
input impedance for the first tube. Feed- 0 
back chains employing circuits like this Fia. 2-15.—Negative-capacity cir- 

one may be of value; but because the cuH’
negative capacity tends to zero at higher frequencies, the scheme may be 
better adapted to achieving moderately fast rise times at a high imped
ance level than extremely fast rise times at a low impedance level.

The development of secondary-emission and beam-deflection tubes 
may yield substantial increases in transconductance.

Q-- ■ --- ■ ♦ _ - |

Fig. 2-16.—“Transmission-line” amplifier.

Schemes exist that make it possible, in principle, to achieve arbi
trarily large gain/rise time ratios, even with present tubes, provided that 
the number of tubes is not limited. According to one proposal1 the band 
to be amplified is partitioned into n subbands, each of which is separately 
amplified by a conventional amplifier, the resultant voltages being added 
at the output terminals. This method has the defect, resulting from its 
additive character, that the gains and relative phases of the various 
channels must be kept in accurate adjustment.

1 C. W. Earp, British Patent 448113, accepted June 2, 1936.
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A more ingenious proposal1 is symbolically illustrated in Fig. 2-16. 
Transmission lines of the same propagation time are connected between 
the grids and the plates of a number of amplifier tubes. A voltage ei: 
applied to the first grid, is transmitted along the grid line to the second 
grid, and at the same time produces a plate current gme„ that is trans
mitted along the plate line. Because of the equal propagation rates 
along the grid and plate lines, the plate current gmea of the first tube 
arrives at the second plate in time to add to the plate current gmeg caused 
by the signal voltage on the second grid. This process continues along 
the whole line and has the effect of producing an output current n times 
that of one tube, without a corresponding increase in shunt capacity. 
Thus the gm/C ratio is multiplied by n.

In practice there may arise problems of line termination,2 but the 
proposal is extremely promising.

In his patent, Percival suggests building the whole apparatus in a 
single evacuated envelope, in the form of a long cathode with one trans
mission line for the grid and another for the plate.

The crux of the matter is that because of the large area of the ele
ments the tube can have an extremely high transconductance, while the 
equal propagation times along the grid and plate transmission lines elim
inate the disadvantages of the large interelectrode capacitances result
ing from the use of tube elements that are physically large.

2-3. Flat Top of Pulse.—This section is devoted to pulse distortion of 
the type shown in Fig. 2-16, which illustrates the nonfaithful transmission 
of direct current by the amplifier.

Figure 2-2 shows that there are three 7?C-combinations that hinder the 
transmission of direct current. These are the series CgRg grid circuit, 
the parallel RkCk cathode circuit, and the parallel RSCS screen circuit. The 
first of these circuits completely prevents transmission of direct current, 
and the other two reduce its transmission.

An exact analysis of the behavior of the amplifier shown in Fig. 2-2 
would require examination of the interactions of these three circuits, but 
because of its complexity this procedure will not be followed, and the 
effect of each of the three circuits will be considered as if the others did not 
exist.

Grid Circuit.—If the plate-load resistor is small compared with the 
grid resistor (this assumption is made throughout this section), the series 
CgRg circuit may be regarded as a voltage divider across which a step-

1 W. S. Percival, British Patent 460562, accepted Jan. 25, 1937.
z In both the transmission line amplifier and the recently announced traveling 

wave tube there is a close integration of the electron stream with the load network; 
the vacuum tube and its circuit are, as it were, one.
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function voltage is applied. The voltage division ratio is
pRgC g

1 + pRaCg

where p = ja. The step-function response, shown as Curve 1 in Fig.

Fig. 2'17.—Step-function response of n capacitance-coupled stages each of time constant 
RgCg.

Observe that the tangent at t = 0 intersects the base line at a time 
equal to one time constant. Hence for a time that is a small fraction of a 
time constant, the fractional sag is equal to the fraction of,the time 
constant; that is, the sag is 5 per cent at 5 per cent of a time constant.

Cascaded Grid Circuits.—The step-function response of n cascaded 
identical grid circuits is easily calculated. If the RC-product is normal
ized to the value 1, the over-all voltage division ratio is
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Therefore, the step-function response fit) is the Laplace transform of

i / p y n. i 
p \1 + p) (1 + p)"’

hence/(i) is the (n — l)st derivative of the Laplace transform of
1

(1 + P)n’ 
that is1

Jn-l
™ = dt^W^ (6)

A graph of f(f) is shown in Fig. 2-17 for n = 1, • • ■ ,5.
The important features to observe in Fig. 2-17 and in Eq. (6) are that 

(1) the slopes at t = 0 increase directly with n, and (2) there is one addi
tional crossing of the baseline for each additional capacitance-coupled 
stage.

For cascaded grid circuits with nonidentical time constants the graph 
of step-function response is very similar, although the mathematical 
expression involves only pure exponentials. For example, the step
function response of three capacitance-coupled stages having RC time 
constants 1/a, l/ft l/y respectively is

= g-(y - — y^ert“ + y2(d - a)e~v‘
(a — ~ ?)(v - «) ’

The slope of fit) at t = 0 is — (a + /3 + y). The following general state
ment is very useful:

Rule 6. For an amplifier made up of stages having imperfect trans
mission of direct current, the initial downward slope of the step-function 
response is the sum of the initial slopes of the component stages; that is, 
the slopes add arithmetically.

Rule 6 means that for amplifiers displaying small fractional sag in 
step-function response, the over-all sag can be computed simply by adding 
the sags from all individual causes. For example, if a certain amplifier 
has a step-function response displaying a sag in 100 Msec of 1 per cent for 
each of three coupling circuits, 2 per cent for a cathode circuit, and 2 per 
cent for a screen circuit, the over-all sag in 100 Msec is 7 per cent.

Correlation between Step-function Response and Low-frequency Cutoff.— 
Since the 3-db point of a single capacitance-coupled grid circuit is 
fo = 1/(2tRC), there is a clear connection between the time constant T of 
exponential decay and the 3-db low-frequendy point, namely, T = l/(2x/o).

1 G. A. Campbell and R. M. Foster, op. tit., Formula 431. The coefficients of e~‘ 
in the expansion of f(f) are called Laguerre polynomials.
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But for more than one stage there is no useful correlation between step
function response and low-frequency cutoff.

The reason is that the 3-db point increases as the square root of the 
number of stages whereas (Rule 6) the step-function slopes increase 
linearly with the number of stages. Unless the number of stages in an 
amplifier is stated, therefore, it does no good in determining sag to specify, 
as in common practice, the over-all low-frequency 3-db point.

Cathode Circuit.—An impedance Zk connected between cathode and 
ground of an amplifier stage (see Fig. 2-2) causes 
inverse feedback; as is well known, the output 
current of the tube is

_ „ 1
ffmCj , i 7 ‘

1 T QmAlk
(7)

For the case in which Zk is a parallel RkCk 
combination, the fraction in expression (7) takes 
the form Fig. 248.—(a) Plate cur

rent of tube having R^Ck 
cathode circuit when step
function voltage is applied 
to grid.

1 + pRkCk _ p + a
1 + g™Rk + pRkCk p + aK

where p = ja, a = l/RkCt, K = 1 + gmRk- The step-function response
corresponding to Eq. (8) is

7(0 = (9)

A graph of Eq. (9) is shown in Fig. 2-18.
The slope of Eq. (9) at t = 0 is — a(K — 1) = —gm/Ck- Hence if 

there is a 1 per cent sag allowed in a time t,, it is necessary that

Ck =
For a type 6AK5 tube, with gm =

Ck

100^!.

5000 pmhos,

— É1
“ 2 ‘

If ii = 500 gsec a 250-gf condenser would thus be required. Capacity 
values as large as this are usually impractical; in pulse amplifiers required 
to display small sag in step-function response it is therefore usual to 
leave the cathode resistor unbypassed. In that case the tube plate cur
rent, when a step-function voltage — eg is applied to the grid, is a step 
function of amplitude

_ . 1
gmCa - , p •

1 + gmKk

The gain-reduction factor 1/(1 + gmRk) is the price that must be paid for 
faithful flat-top reproduction.
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Sometimes, however, the cathode resistor is bypassed by a small 
condenser chosen for its effect in reducing rise time (see Sec. 2-4).

Screen Circuit.—An impedance Z> in the screen lead causes a drop in 
screen voltage and hence in plate current. The effect may be analyzed 
as follows, assuming Zk = 0 and a constant ratio k between screen and 
plate current (k is usually about i or 1): Let ip be the actual plate current. 
Then kip is the screen current; this produces a screen voltage drop kipZ„ 
which, in turn, leads to a plate-current reduction kipZ„gm,„ where 

is the screen-to-plate transconductance. Hence

ip ~ gpiC, ' kiPZ,gm,„ 
or

■ _  9 mOg
> 1 + Ztkga,;

But kgm,, — l/r„ where rs = deB/dis is the dynamic screen resistance 
(« plate resistance of the tube connected as triode with screen strapped 
to plate). Hence

ip = gnSg—--x- (10)
1 + — r.

If Z, is a parallel R,C, combination, the fraction in Eq. (10) may be 
written as

P + 0S 
p + B(S + 1)

where fi — l/r,C, and S = rJR,. The step-function response has the 
equation

+ S)' (11)

A graph of Eq. (11) has the same general form as Fig. 2-18:
The slope of Eq. (11) at t = 0 is — fi = — l/rX\. Hence for a I per 

cent sag allowed in time ti it is necessary to have

C, = 10W1 
’ r,

For a type 6AC7 tube, with r, approximately equal to 20,000 ohms,

C — E—
' ” 200
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If ii = 500 /zsec, C, = 2.5 gf. Since capacitors having such values are 
not too bulky, screen leads are usually bypassed.

Flat-top Compensation.—The plate supply decoupling network RdCd 
(see Fig. 2-2) permits compensation for the flat-top distortion due to 
RgCg.

The proper relation among Rh Cd, Rs, Cg is given by

RtCd = RgCg. (12)

If Eq. (12) is satisfied, then the voltage across Rg is given by Eq. (13), 
provided the tube of Fig. 2-2 is assumed to be a constant-current generator 
and the loading effect of Rg upon the plate circuit is neglected:

_ p P(P + a + á)
- WgKi + + 3)’ (13)

where p — jw, a = 1/ROC„ = l/RiCd, and S = l/RdCd. The step-func
tion response of Eq. (13) is

xyZ>- St _  Zip- OÍ
/(0 = ~ a — 0

(14a)

or

Fiq. 2-19.—Flat-top compensation, for RgCg with RdCd, Curves (a) and (b) for the case 
Rd — Ri. (a) RiCd — RaCg; (b) [RiRd/(Ri + Rd^Cd = RgCg‘, (c) Rd = 0.

Equations (14a) and (146) display zero slope at t = 0, and it is in this 
sense that Eq. (12) was said to be the proper criterion for the decoupling 
constants. The somewhat more usual relation

RlRd ¿7 __ nr 
DID ill “T Kd (15)

leads to the step-function response e~st. Figures 2-19a and b compare 
criteria (12) and (15) for the case in which a — S, i.e., Ri = Rd. It is seen 
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that even for a sag as large as 10 per cent, criterion (12) (Fig. 2-19a) 
permits 2.5 times as long a time duration as does criterion (15) (Fig. 2196). 
For comparison the uncompensated case is shown also, Fig. 2-19c.

If Rd >> Ri, the distinction between criteria (12) and (15) tends to disap
pear, because of the inexactness of commercial resistor and capacitor 
values. In principle, however, even for Ra/Ri as large as 5, a 1 per cent 
sag occurs at about seven times greater time duration with criterion (12) 
than with criterion (15).

Schemes exist for overcompensating the flat top of a pulse; such pro
cedures are sometimes useful with pulses of known duration. There are 
also methods for compensating the screen circuit by means of the de
coupling circuit, but these are not discussed here.

2-4. Inverse Feedback.—The main advantages of inverse feedback 
for pulse amplifiers are gain stabilization and improved linearity in the 
ratio of output to input voltage. Inverse feedback is also employed to 
reduce the rise time of unpeaked amplifiers.

Cathode Resistor.—The plate current of an amplifier tube with unby
passed cathode resistor Rk is

1 + QmRk (16)

Equation (16) shows that the sensitivity to changes in gm is divided by 
1 + gmRk', hence distortion caused by variation of g™ with signal amplitude 
is similarly reduced, and the amplifier linearity is improved. For the 
case where gmRk = 1, the distortion is cut in half.

If Rk is bypassed, there is no reduction in distortion for frequencies 
for which the bypassing is effective. Nevertheless, the variability in 
quiescent plate current among tubes of the same type is reduced; and 
because there is a good correlation between transconductance and quies
cent plate current for tubes of a given type, the transconductance variabil
ity is also reduced. This is an important argument in favor of self-bias, 
in view of the usual 2/1 range in gm permitted by the JAN-1A tube specifi
cations under fixed-bias conditions.

Cathode Peaking.—As mentioned in Sec. 2-3 it is usually difficult 
to bypass the cathode resistor with a condenser large enough to give good 
flat-top reproduction. In that case and provided also that the plate 
circuit is constrained to be a simple RC-circuit, it is worth while to choose 
a value of cathode bypass condenser according to the following discussion, 
in order to increase amplifier speed.

The analysis of this cathode compensation scheme is most simply 
carried out by normalizing the plate-circuit constants to consist of a 1-ohm 
resistor in parallel with a 1-farad condenser, setting 1 + gmRk = K and 
denoting the ratio of cathode-to-plate time constants by p. The output
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voltage is
1 + pp 1
K + pp 1 + p (17)

1 + QmZk 1 + P
If the cathode is left unbypassed, p = 0, and the response of Eq. 

(17) to a unit step-function voltage e„ is

Ip (i - e-g. 
A

(18)

If, on the other hand, the cathode bypass condenser is chosen so that 

Cathode time constant = plate time constant, (19)

then p = 1 and the response of Eq. (17) to unit step-function voltage e, is

fW = g (1 - e^‘). (20)

Fig. 2'20.—Step-function response of cathode-peaked pulse-amplifier stage,

K = 1 + gmRk = 2.

Ratio of cathode-to-plate time constants = p = RkCk/RiC.

It must be pointed out that although the cathode compensation 
scheme increases the gain/rise time ratio as compared with the unby
passed cathode resistor case, it yields no advantage in gain/rise time 
ratio as compared with the case in which the cathode is grounded or 
bypassed completely. This conclusion follows from Eq. (20), which 
shows that the K-fold increase in speed over the grounded-cathode case 
comes at the cost of a K-fold decrease in gain.

Cathode compensation can be employed with constants other than 
those prescribed by Eq. (19). In Fig. 2-20 is shown a family of step



92 HIGH-FIDELITY PULSE AMPLIFIERS [Sec. 2-4

function-response curves calculated for K — 2 and various values of p. 
As these curves show, the step-function response is overcompensated for 
too large values of p.

It is possible to combine cathode compensation with plate-circuit 
peaking of various sorts, but the details are complicated and are not 
given here. The gain/rise time ratio never exceeds that of the grounded- 
cathode case.

Screen Resistor.—A resistor between screen and screen voltage supply 
stabilizes the quiescent screen current and hence the plate current. The 
effect is very much like that of a cathode resistor and for the same reason 
reduces the transconductance variability among tubes of the sanie type.

The number of ohms in a screen resistor that produces the same 
degenerative effect as a 1-ohm cathode resistor can be determined by an

Fig. 2-21.—Feedback from plate to preceding plate.

argument like that used in Sec. 2-3 under “Screen Circuit.” It turns 
out that a screen resistor of

gmr, (21)

ohms is equivalent to a 1-ohm cathode resistor, where, as before, r, is the 
dynamic screen resistance.

A typical value of Expression (21) for a type 6AC7 tube with 
gm 10,000 gmhos and rs « 20,000 ohms is 200; hence a 60,000-ohm 
screen resistor has the current-stabilizing effect of a 300-ohm cathode 
resistor.

Grid-plate Resistive Feedback.—Local feedback can be applied from the 
plate of an amplifier stage back to its own grid as shown in Fig. 2-21. 
This circuit can be extended from stage to stage, in which case it is 
customarily called a “feedback chain,” This subject is treated at 
length in Chap. 6. In particular, as shown in Sec. 6-6, it is possible by 
such means to attain, with an amplifier employing simple interstage



Sec. 2-5] GAIN CONTROL OF PULSE AMPLIFIERS 93

networks (except for the first and last) the gain and bandwidth per
formance that would otherwise require complicated interstage networks.

Over-all Negative Feedback.—Moderate amounts of over-all negative 
feedback can be employed without much difficulty in two- or three-stage 
pulse amplifiers that use two-terminal coupling networks. For proper 
design of the loop gain characteristic the reader is referred to the exhaus
tive treatise of H. W. Bode.1

Figure 2-22 illustrates a simple application of negative feedback to a 
two-stage amplifier and cathode follower. Amplifiers of this sort can 
easily be built with inverse-feedback loop gains of 100, thereby reducing 
the sensitivity to gm variations by a factor of 100. In particular, varia
tion of gain with respect to heater voltage is made negligible.

B+

Fig. 2-22.—Simple illustration of over-all feedback.

2-5. Gain Control of Pulse Amplifiers. Attenuators.—Potentiometer
type step attenuators of the capacitance-compensated type, as shown in 
Fig. 2-23, may be used at the input terminals of a pulse amplifier or 
between stages. For pure attenuation with no waveform distortion, all 
the EC-products must be the same. If the impedance level at the 
attenuator can be kept low enough, say 100 ohms, so that the maximum 
RC-product (maximum resistance times stray capacity) is negligibly 
small compared with the rise time of the waveforms used, the addition 
of the compensating capacitances is unnecessary and a simple poten
tiometer can be used.

For intermediate cases where an extremely low impedance poten
tiometer is not permissible, a partially compensated potentiometer

1 H. W. Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand, 
New York, 1945,
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scheme can sometimes be used. This involves adding from input 
terminal to arm a condenser having a value equal to the capacity existing

Rfii = R2C2 = R3C2 = RtC^ = R^C^R^
Fig. 2-23.—Compensated step attenuator.

Output voltage 
(no load)

Unit-step 
input voltage'

t/RC
Fig. 2-24.—Step-function response for partially compensated potentiometer.

from arm to ground. The distortion of step-function response for 
different potentiometer adjustments is shown in Fig. 2-24. For voltage 
divisions up to 3 (k > 0.33), adding the extra condenser is an improve-



B+

Fig. 2-25.—Variation of gain by feed
back (cathode degeneration).
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ment; but for higher attenuation (k < 0.33), it is better to omit the 
condenser.

For use at line impedance levels (50 to 100 ohms), any of the standard 
types of ladder, T, or bridged-T attenuators may be used if the resistors 
are sufficiently noninductive (composition resistors, for example) and 
stray capacitances are kept down to a minimum.

A very interesting type of constant-impedance attenuator has been 
reported by H. E. Kallmann.1 Use of 
relation between decibels and shaft 
rotation, and the attenuation can be 
made independent of frequency up to 
about 70 Mc/sec or more.

Control of Tube Characteristics.— 
Since the gain of a pulse-amplifier stage 
is a direct function of gm, variation of 
gm by changing d-c voltages on the tube 
elements is a possible way of controlling 
gain. This method is practical in stages 
where the signal amplitude is small com
pared with the grid base. By simul
taneously applying the control voltage 
to several successive stages, an appre
ciable range of control may be achieved. 
The variable voltage may be applied to 
the control grid (through Re), the screen 
grid (through R,), or the suppressor 
grid. In the third case it is desirable 
to use a tube with good suppressor 
control, such as the type 6AS6.

This type of control is better suited to adjusting the output amplitude 
with a fairly constant input signal than it is for correcting for large input 
level variations where there is danger of overloading the first stage.

Variable Negative Feedback.—One s mple method of gain control is 
shown in Fig. 2-25.’ A variable cathode resistor is so arranged that it 
varies the feedback but not the tube bias. Gain variations up to 5/1 
can usually be accomplished in this way without difficulty. The limit 
depends on the speed of the stage, since, for higher speeds, the maximum 
size of the variable resistor must be held down. This method is good for 
variable input levels because the input voltage' overload level increases 
as gain is reduced.

For other types of feedback amplifiers, the gain can also be changed
1 H. E. Kallmann, “Portable Equipment for Observing Transient Response of 

Television Apparatus,” Proc. I.R.E., 28, 351-359 (1940).

“Kelvin line” permits a linear
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D-c restoration is most often

Voltage Voltage 
out

To ground or 
reference voltage level

Fig. 2-26.—Typical d-c restorer circuit 
(shown for positive-going signals).

by changing the feedback ratio. This may not be easy if the amount of 
feedback is large but can usually be accomplished with a compensated 
attenuator in the feedback path.

2-6. D-c Restoration.—This widely accepted but misleading designa
tion refers to a process of clamping either the most positive excursion 
or the most negative excursion of a signal to a specified voltage level. 
For a constant-amplitude periodic signal it is desired to accomplish this 
without significant -waveform distortion.

used where the signals are “single
sided,” as they are in television and 
radar pulse systems. When such 
asymmetrical signals have been passed 
through capacitive couplings, their 
d-c component is lost, and for this 
particular type of signal the use of 
the term “d-c restorer” is fairly well 
justified.

A typical d-c restorer circuit for 
positive-goin signals is shown in Fig. 
2-26. For negative-going signals the 
diode is reversed. Good d-c restora
tion requires signal amplitudes at least 
as large as 1 volt, since diode conduct
ance is small for small signals.

A danger with the d-c restorer shown in Fig. 2-26 for positive-going 
signals is that diode heater-to-cathode hum current develops a hum 
voltage across Rg. For type 6AL5 diodes with Rg = 1 megohm, and 
6.3 volts alternating current applied to the diode heaters, with one side 
of the heaters grounded, the hum voltage in 12 out of 98 tubes tested was 
in excess of 0.25 volts, and 1 tube produced 1.4 volts of hum. This hum 
voltage may be very disturbing. It may be avoided or reduced by use 
of one of the following: (1) A nonthermionic diode, such as a germanium 
crystal (but the back resistance of such crystals is small, tending to 
increase the sag in pulse response), (2) direct current on the diode 
heaters, (3) a separate heater winding for the diode heaters, suitably 
biased, or (4) smaller values of Ra (this also tends to increase sag). The 
heater-hum difficulty does not arise in the case of a d-c restorer for 
negative-going signals.

The action of the circuit of Fig. 2-26 upon signals is shown in Fig. 
2-27. Although not visible in this illustration, waveform distortion 
occurs whenever the amplitude of the envelope of the waveform increases, 
i.e., while the coupling condenser is being charged to its new value. 
When the amplitude of the envelope decreases, there is a delay in restoring
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the level of the baseline until the condenser has had time to discharge to 
the new value.

This discussion is based on the assumptions of (1) voltage generator 
impedance low compared with R„, (2) an ideal diode, and (3) a zero

Fig. 2-27.—Effect of d-c restorer (time scale long compared with time constants 
involved), (a) Original signal, d-c component shown dotted; (5) signal after d-c component 
has been removed; (c) signal at output terminals of d-c restorer.

Input 
signal

Sag caused by 
inadequate Rt Cg 

time constant

Output signal
with restorer Undershoot caused by

restoring charge in Cs 
through diode resistance

Fig. 2*28.—Clipping caused by d-c restorer (with rectangular input pulse having a time 
duration of the same order of magnitude as R^Cg').

impedance supply for Er. Ordinarily, the parameters are such that 
these approximations are justifiable. Also, it is assumed that the time 
constant RtC0 is large compared with the duration of individual pulses 
within the signal envelope but short enough to follow envelope varia
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tions. Here caution must be exercised, for these last assumptions are 
frequently not true. Figure 2-28 shows the result when a rectangular 
pulse having a duration of the same order as RgCg is passed through the 
circuit. In this case the flat top of the signal has been distorted because 
of the inadequate grid time constant RgCg, and the undershoot at the 
end of the signal has been radically altered in form by the action of the 
diode. The residual undershoot shown is due to the finite resistance 
of the actual diode; the ratio of undershoot to sag is approximately 
Rdiode/ (Ediod. + Esource).

For negative-going signals it is possible to use the grid of a zero-bias 
amplifier as its own d-c restorer, but the results are often not so good 
as the use of a separate diode for the purpose, because the grid-cathode 
conductance may not be large.

Where a d-c restorer is used, it must be remembered that the RgCg 
coupling circuit can no longer be exactly compensated by the decoupling 
network (see Sec. 2-3), since a nonlinear network with a nonlinear ele
ment cannot be exactly compensated by a linear network. Therefore, 
where a d-c restorer is required, the RgCg coupling circuit should be 
adequate to preserve flat top by itself.

2-7. Limiting Amplifiers.—For a good many purposes, particularly to 
avoid driving an intensity-modulated cathode-ray tube into the “bloom
ing” region, it is necessary to place an absolute limit on the magnitude 
of the output signal. This limit can be specified either with respect to 
(1) the a-c axis of the input signal or (2) the peak-to-peak excursion.

Both cases are customarily treated by adjusting the bias of a nega
tive-going pulse-amplifier stage so that it is driven beyond plate-current 
cutoff for signals larger than the specified value. Thus a definite limit is 
established.

A common way to set the limit is to increase the screen dropping 
resistor R, until the desired limit is obtained, leaving Rk at its normal 
value. This reduces the quiescent-plate-current variability among tubes 
and hence the limit-level variability, as discussed in Sec. 2-4.

If R, is bypassed, there is variation, however, of limit level with duty 
ratio, i.e., with the average value of plate current. The reason is that 
average plate current determines average screen current; this, in turn, 
in the presence of a bypassed screen resistor, determines quiescent screen 
voltage and hence limit level. The only way to combine limit-level 
stabilization -with regard to both duty-ratio and tube variability is to 
leave Rs unbypassed.

Unfortunately, leaving Rs unbypassed is not practical; it not only 
greatly reduces gain but also increases the input capacity of the tube 
by the amount gCss, where 9 is the voltage gain from grid to screen and 
Cg, is the grid-to-screen capacity; this is an example of a somewhat 
unconventional Miller effect. The conclusion is that an engineering 
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compromise has to be made between limit-level stabilization with 
regard to duty ratio and limit-level stabilization with regard to tube 
variability.

If limiting of the peak-to-peak type is desired, d-c restoration should 
be used at the grid of the limiter stage. This method may be economi
cally used by making Rk = 0, so that the grid performs its own restoring 
action to prevent excursions in a positive direction from ground level. 
(R, is then the sole current-stabilizing element.) It may be better to 
use a separate diode as the restorer, with its plate tied to the amplifier grid 
and its cathode tied to the desired potential. Certain precautions 
regarding the use of d-c restorers are noted in Sec. 2-6.

The output voltage from such a limiter has its positive excursion 
limited if the output signal is taken from the plate. Therefore, if it is 
desired to limit the negative excursion instead, the limiting stage should 
be followed by another that inverts the polarity.

2-8. The Mixing of Multiple Input Signals. Resistance Networks.—
Almost any of the types of resist
ance mixers used in the communi
cation field can be employed for 
pulses if noninductive resistors 
are used, capacities are kept down, 
and the impedance level is reason
ably low.

Tube Mixing.—Because a pen
tode is essentially a constant-cur
rent generator, one may parallel 
the plates of two or more pentode 
amplifiers, using a common load 
impedance. The effect of in
creased output capacity on the Fig. 2-29.—Feedback-amplifier mixer.

speed of the plate circuit must be taken into account, and allowance must 
be made for the effect of the increased direct current in the load and
decoupling resistors.

Fig. 2*30.—Nodal analysis of feedback-type 
mixer.

This system has the distinct 
advantage that it is unilateral. 
For cases where a maximum of 
isolation is desired among the in
put signals to be mixed, it is an 
excellent method. The linearity 
of mixing is not very good, 
however.

Under particular conditions tube mixing may be accomplished by 
using more than one grid as a signal-injecting element. For example, the 
suppressor of the type 6AS6 may be used in this way.
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Mixing Network with Feedback Amplifier.—Figure 2-29 shows a type 
of mixer whose output voltage is accurately additive. In addition, 
coupling among input channels is very low if the amplifier gain is high.

The behavior of this mixer circuit may be understood from the nodal 
analysis of Fig. 2-30, drawn for a single input channel. Setting Y = 
1/Z, G = 1/Rt, the determinant A is obtained:

A =
0

— Y(n+ 1)F 
gm~Y

Hence

Ei
— Y(gm - Y)A13 _ ____________________________________________

An (n + 1)F(I + G) -f- Y(gm — Y)
1 _

(n + 1)(F + G) (n + 1) (1 + I 

gm/G

0

1

Qm

1

gmRi

for Y « G, gm » G.
If1 gmRi >> n + 1, the output voltage is accurately equal to the nega

tive of the input voltage, regardless of variations in gm. By the principle 
of superposition the mixer as a whole is accurately additive in its input 
voltages, except for a sign reversal, i.e.,

eP = — (Ei + E2 + ■ ■ ■ + En).

Figure 2-31 shows a three-channel feedback mixer. The condenser C 
is included to block direct current. Because of the inverse-feedback 
action, the resistors R can be made much larger than usual for a given 
speed of response.

Nonadditive Mixing.—In some applications, particularly where the 
pulse output voltage is used to modulate the intensity of a cathode-ray 
tube, it may be desirable to arrange matters so that if two or more input 
signals occur at the same time, the output voltage will be that due to the 
largest signal only; this process is called nonadditive mixing. For 
example, if a cross-hatched pattern is to be presented on an intensity- 
modulated cathode-ray tube, it is desirable to suppress the extra bril
liance at the intersections of the lines that would occur if the two signals 
were added.

1 For a multistage amplifier gmRi should be replaced by the gain a of the amplifier 
with the feedback loop open.
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This can be done for any number of input channels of positive polarity
signals by putting the signals 
through separate cathode followers 
operating with a common cathode
load impedance Rk and biased in 
their quiescent conditions approxi
mately to plate-current cutoff 
(Fig. 2-32). If Rk can be made 
large enough so that the gain is 
nearly unity, then a signal of 10 
volts in one input channel intro
duces approximately 10 volts addi
tional bias on the other cathode 
followers. Thus a signal of less 
than about 10 volts in any of the 
other input channels cannot over
come the grid bias and hence does 
not appear in the output voltage. 
Therefore the largest input signal 
at any instant effectively masks 
all smaller ones.

Fig. 2-31.—Typical three-channel feedback
amplifier mixer.

For cases where the value of Rk is such that the gain is substantially
less than unity the biasing-off action is not complete, and some addition 
occurs for signals that arc smaller than the largest one.

Bias 
voltage

Fig. 2’32.—Nonadditive mixer for positive-polarity signals. Any number of input channels 
can be used, with one tube for each input channel. x. 'x _

LAS VcüaS BRAî
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When the initial quiescent bias is insufficient for plate-current cutoff, 
there are two significant effects: (1) The gain is less for small signals than 
for larger ones (a nonlinearity is introduced in the gain characteristic), 
and (2) the gain is reduced, again resulting in some addition of signals. 
Effects (1) and (2) are both due to the loading of the output circuit by the 
additional cathode impedances when the tubes are not operated at initial 
cutoff. Usually some additive effect can be tolerated, so that complete 
initial cutoff is not required.

"A"‘ LJ U LJ'TGround level

"B”u U L_l "□“LJ ’□ □" L_rGround level

Fig. 2*33.—Electronic input-channel switching. Input signal No. 1 is passed through 
when waveform “A” is below ground and waveform "B” is at ground.

In principle the same action can be obtained with diodes instead of 
cathode followers if the input signals come from sufficiently low impedance 
sources and the common load impedance of the diodes is large compared 
with the forward impedance of any one of the diodes. By poling the 
diodes properly, either polarity of input signal may be used, provided 
that all input signals have the same polarity. The diode method is not 
likely to be practical in most cases.

For either of these methods the d-c level of the input signals must be 
held constant; this ordinarily requires d-c restoration if the signals have 
appreciable duty ratio.

2-9. Electronic Switching of Pulse Amplifiers.—The need often arises 
to switch the input signal to a pulse amplifier so that it will be applied 
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only at a desired time. It is seldom permissible merely to turn off the 
plate or screen voltage or cut off the suppressor of an amplifier stage, 
since this action causes a severe switching transient, which is passed on 
to the rest of the amplifier.

The switching transient can be eliminated or at least reduced to a 
very short duration by the method shown in Fig. 2-33. The additional 
pentode is used to compensate for the change of current with switching 
in the amplifier pentode. An adjustment is provided for balancing the 
currents.

If it is desired to switch the amplifier input terminals from one input 
channel to another, the second input signal may be applied to the grid 
of the second pentode.

The device for generating the gating waveform (rectangular wave
form) may be a multivibrator or trigger circuit as the switching require
ments demand. For periodic switching controlled by a sine-wave 
generator (such as the power-line current), a “squaring” amplifier can 
be used. The essential requirement is that the d-c level of the top of 
the gating waveforms be fixed. If necessary, d-c restorers can be used 
at the grids of the cathode followers, but often direct coupling can be 
arranged.

240 . Output Stages. High-impedance Load.—Many of the applica
tions for pulse amplifiers concern a load that is essentially a high resistance 
shunted by a small capacity, such as the input impedance of a cathode
ray tube. For a tube used as a voltage output stage of a pulse amplifier 
of this sort, a logical figure of merit is the ratio of maximum output 
voltage to rise time with resistance-capacitance load. (This figure of 
merit disregards the important question of gain.)

For signals that are either symmetrical or of negative polarity at the 
grid of the tube the maximum output voltage is Em„ = IpRi, where IP 
is the quiescent plate current of the tube and Ri is the load resistor. If 
the total output circuit shunt capacity, including that of the load, is C 
and if t denotes the 10 to 90 per cent rise time, then

E I
= 22C volts/sec (22)

[compare Eq. (22) with Eq. (3)].
For signals of positive polarity at the grid of the tube, the same 

formula holds if Ip is redefined as the incremental plate current from the 
quiescent point to some allowable maximum. It is difficult to evaluate 
the figure of merit for the general case, since the allowable value of Ip is 
sometimes determined by plate dissipation, sometimes by emission, and 
sometimes by the requirement of avoiding grid current.

The following table has been compiled by considering the case of 
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symmetrical signals, making reasonable assumptions about the limiting 
factors on Ip and assuming 20-ppf capacity beyond the amplifier tube 
itself.

Table 25.—Ratio of Maximum Output Voltace to Rise Time for Various 
Tube Types

Tube type IPt ma C Em„/r (volts/^sec)

6AK5 10 23 200
6AC7 15 25 270
2-6AK5?s 20 26 350
(in parallel)
6AG7 30 27.5 500
6V6GT/G 45 27.5 750
6L6G 75 30 1130

The listings in Table 2-5 are sensitive to the assumed external capacity.
The proposal is sometimes made that the figure of merit [Eq. (22)] of 

an output stage can be increased by using cathode-peaking (Sec. 2-4). 
Consider a type 6AK5 tube, for example, with gm = 5000 gmhos and 
Rk = 200 ohms, so that 1 + gmRk = 2. Suppose the plate-load resistor 
is 2000 ohms, and suppose the cathode bypass condenser is chosen so that 
the cathode and plate time constants are equal. Then, as follows from 
Eq. (20), the response to a step-function grid voltage is as fast as normally 
results from the parallel combination of a 1000-ohm load resistor and the 
output capacity.

However, it is argued, the maximum output voltage is what is 
achieved from a 2000-ohm load resistor, i.e., 20 volts for a maximum 
change in plate current of 10 ma. Hence the ratio Ea„/r is thought to 
be twice what it is in the grounded-cathode case. The fallacy in this 
argument is that the inverse feedback is able to double the speed of 
output-circuit response only when there is enough plate current available 
to drive the output circuit with a sharply peaked current waveform, 
having an initial current twice its steady-state value. If this doubled 
plate current is not available, the inverse-feedback action fails. Hence 
the improvement in speed pertains to small signals only and not to 
limiting signals.

What happens in the .cathode-peaked amplifier stage above is that the 
maximum output signal is equal to 20 volts, corresponding to the com
bination of 10 ma and 2000 ohms, but the speed of response of a limiting 
signal is no greater than that of a grounded-cathode stage having the same 
plate circuit.

Push-pull Amplifiers.—When driving the deflection plates of a 
cathode-ray tube, considerable output voltage is required, and it is better
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Fig. 2-34.—Typical push-pull pulse-amplifier stage.

O
In

R = 80 ohms (for 6AC7's) "

Fig. 2-35.—Phase inverter, (a) Single-tube phase inverter; (b) balanced-output imped
ance phase inverter.
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from the standpoint of focus to apply the signals in push-pull. A push
pull output stage for such purposes is usually constructed like two 
identical single-ended stages, each driving a single deflection plate. 
The only difference is that the two cathodes are tied together and go 
through a common bias resistor. Because there is in principle zero 
signal current flowing through the cathode resistor, leaving the cathode 
resistor unbypassed entails no loss in gain, in contrast with the single
sided amplifier case. Such a stage is shown in Fig. 2-34.

Phase Inverters.—The transition between a single-sided stage and a 
push-pull stage is accomplished by means of a phase-inverter stage. It is 
usually impossible to employ a center-tapped pulse transformer because 
of its inadequate flat-top performance.

The circuit diagrams of two types of phase-inverter stages are shown 
in Fig. 2-35. The type shown in Fig. 2-35a is best used at fairly low 
level, where R can be kept small without requiring excessive plate cur
rent. At frequencies above about 10 Mc/sec a pentode should be 
employed in the circuit of Fig. 2-35a to avoid the signal transmission 
path through the grid-plate capacitance. When a pentode is employed, 
the plate resistor should be larger than the cathode resistor in the ratio 
of the cathode current to the plate current.

For operation at still higher frequencies it is wise to proportion the 
voltage divider consisting of the grid-cathode capacitance and the 
cathode-ground capacitance so that its loss is equal to the loss through 
the tube from grid to cathode, i.e., so that

C gk _ QmR 
Cgk + C ko__ 1 + QmR

where Cgk is the grid-cathode capacitance and is the cathode-ground 
capacitance. This requirement usually necessitates adding grid-cathode 
capacitance.

The phase inverter shown in Fig. 2-356 has low gain but has the 
advantage of equal and low output impedances. Moreover, both heater
cathode and plate-supply hum are canceled in this arrangement, whereas 
neither type of hum is canceled in the circuit of Fig. 2-35a.

The action of the circuit of Fig. 2-356 may be explained by denoting 
by i, the signal current in the cathode follower, by i\ the branch current 
(from the left-hand push-pull tube) that flows in the resistor R between 
push-pull cathode and ground, and by 1'2 the corresponding branch cur
rent from the right-hand push-pull tube. Then, if the push-pull tubes 
are assumed to have equal transconductance gm,

ii gmRlsj
it = —gmR(i. + ii + ii).
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Hence
»2 = »i(l -I- gmR) g mRÌ%,

¿2(1 + gmR) = —¿1(1 + gmR);
consequently

¿2 = —¿1-

Low-impedance Load.—A pulse amplifier is often required to drive a
low-impedance line of character
istic impedance between 50 and 
100 ohms. If such a line is termi
nated in its characteristic imped
ance, it can be treated as if it were 
a load resistor. But the necessity 
frequently arises for isolating the 
d-c level of the amplifier plate 
from the line, and in order to pre
serve good reproduction of pulse 
fiat top an extremely large block
ing condenser would then be re
quired. The customary way of 
avoiding these difficulties is to use 

B +

Triode, or pentode 
connected as triode

potential
Fig. 2-36.—Use of cathode follower to drive 

low-impedance line.

a cathode follower between the last amplifier stage and the line, as shown 
in Fig. 2-36.

Cathode Follower.—The cathode follower is a form of voltage feedback 
amplifier having a voltage gain less than unity. For a load impedance 
R, the gain is

9 =
gmR

1 + gmR
(23)

Since m zb 1 for pentodes and most triodes, Eq. (23) can be written

e gmR
1 + gmR

The output resistance is 
R

1 + gmR 
M

or approximately

T-,p = R(1 - 9).J- I Qmtl

(23a)

(24)

(24a)

The input capacitance of a triode cathode follower is

Cin « Cop + (1 - g)Cet, (25)
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where g is the gain of the cathode follower, CBP is the direct grid-plate 
capacity, and CBk is the direct grid-cathode capacity. For a pentode 
cathode follower with screen bypassed to cathode,

cin « (i - g)(c„. + cBk), (26)

B+

Fig. 2-37.—Circuit for analy
sis of effect of capacity in shunt 
with load of cathode follower.

where CB> is the direct grid-screen capacity.
As an example consider a type-6AC7 pentode cathode follower with a 

gm of 9000 pmhos and a 1000-ohm cathode load resistor. Then from 
Eqs. (23a), (24a), and (26) it follows that 
the gain g is ■&, the output impedance is 
100 ohms, and the tube input capacity is 
about 1.3 ppi. To this 1.3 ggf must be 
added the usual wiring and socket capacity 
of about 4 ppi; the total input capacity at 
zero frequency is thus reduced to about a 
third the usual 6AC7 value. It must be 
remembered, however, that for a cathode 
follower with RC load the input capacity 
increases somewhat with frequency because 
of the lower gain of the cathode follower 
at the higher frequencies; unfortunately, 
it is precisely at the higher frequencies that 
reduction in capacity is important.

The low output resistance of a cathode follower is its most valuable 
feature. If a condenser Ck is connected across the resistor Rk (see Fig. 
2-37), then the rise time is determined by the combination of Ck and the 
output impedance of the cathode follower; this rise time is only 1 — g as 
long as the rise time of the RkCk combination; i.e.,

= 2.2RkCk
1 T QmRk

(27)

For a given external capacity Ck considerably greater speed can therefore 
be obtained.

Equation (27) was derived on the assumption of a constant value of 
gm; that is for small signals. However, it holds for positive-going step 
functions even of extremely large amplitude, since in the positive direction 
the gm of a tube does not decrease until the grid is driven far into the 
positive region.

In the case of negative-going signals, Eq. (27) holds only for small 
signals. A large negative step-function grid voltage moves the grid 
voltage instantaneously; because the cathode voltage cannot follow 
instantaneously, the instantaneous grid bias is then large. (It must be 
remembered that the trailing edge of a positive pulse is a negative-going 
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step, to which the above remarks apply.) The tube is cut off if the 
amplitude of the step is larger than the difference between the quiescent 
grid-cathode bias and the bias value for cutoff. The condenser Ck then 
discharges through Rk only, until the cathode potential falls to the point 
where the tube again conducts.

The conclusions for pulses of amplitude about equal to the grid base 
of the tube are that (1) the cathode follower is an unsymmetrical device 
that is faster on the rising edge of the pulse than on the falling edge, (2) 
the fall time is a function of amplitude and may be as large as that of the 
external circuit. The fall time can be reduced by increasing the quiescent 
voltage drop across Rk, which ordinarily means increasing the quiescent 
plate current of the tube.

2-11. Examples. Pulse Amplifier for Deflection-modulated Cathode-ray 
Tube.—The amplifier whose circuit diagram is shown in Fig. 2-38 was 
designed for use with the Radiation Laboratory Model P-5 Synchro
scope1 and is intended to drive the deflection plates of a type 5JP1 
cathode-ray tube.

The over-all rise time of the amplifier is psec, with about 1 per cent 
overshoot over-all, and the sag in a 200-psec rectangular pulse is about 
1 per cent. The gain is 200, and the deflection sensitivity at the amplifier 
input terminals is about i volt/inch. The maximum peak-to-peak out
put voltage is about 220 volts, or 3i inches.

The amplifier is operated in Class A, so that it accepts signals of 
either polarity and its gain is independent of duty ratio.

The input step attenuator is of the compensated type discussed in 
Sec. 2-5, the semiadjustable condensers being set to make the RC products 
equal. The voltage ratio per step is about 3/1.

Fidelity of flat-top reproduction is achieved by leaving the cathode 
resistors unbypassed and employing large screen bypass condensers and 
large RSCO time constants. The coupling condenser between the type 
6AC7 phase-inverter tube and the left 6AG7 tube is only 0.001 gf, but 
flat-top compensation is used in that stage (see Sec. 2-3). The com
pensating network is placed in the grid lead rather than the plate-supply 
lead; this reversal permits a very small value of 5 [see Eq. (14)] and is a 
good idea where the plate-load resistor is small, as is the case in very high
speed amplifiers.

The peaking circuits are of the four-terminal linear-phase type (Fig. 
1-26) whose step-function response is shown in Fig. 1-28.

The phase inverter has the form of Fig. 2-35a. For the reasons given 
in Sec. 2-10 it is operated as a pentode. Hence the plate-load resistor 
(390 ohms, = 4300 in parallel with 430) is 20 per cent larger than the

1 Vol. 22, Chap. 7, of the Radiation Laboratory Series.



4.7 k

47

0.51 Ah

4=10

390 0.01

5AC7^

All resistors |w unless 
otherwise specified.

Input 0.01

f^AAf ]

3k
- —W/

3.9 k 4w 
2w 8 1 Ah

l.OAh

0.68 Ah
2.4 Ah

;0.82M

6AG7
1.5 Ah 

“-rW¥,~

510 0.01

430

0.01

8 Ah

700 
20 w

—+225» 
700 
20w

4.3 k

0.001
430 

0.1

520AAf

lAh

430 0.1

-225v

*3 
6AC7 6AG7/CS

, 4=0.25
<0.82 M

IM

43aaI

620aa! 
33k

1800A«f 
10 k

'6200AAf 
3k

lAh

2.6 AhK^________
>130 k X 75
> UK 829B 5w

IM

1 Ah

•7 k

2.6 Ah

130 k:

Fig. 2-38.—-Pulse amplifier for deflection-modulated cathode-ray tube.

0.01 IM 
AAAr

+225

0.01 IM

110 
H

IG
H

-FID
ELITY PU

LSE AM
PLIFIERS 

IS
ec

. 2 H



Sec. 211] EXAMPLES 111

cathode-load resistor (320 ohms), because the cathode current is about 
20 per cent larger than the plate current. .

Only the plate circuit of the phase inverter is peaked; the low output 
impedance of the cathode circuit is adequately fast without peaking.

Pulse Amplifier for Intensity-modulated Cathode-ray Tube.—The 
amplifier whose circuit diagram is shown in Fig. 2 39 was designed to 
drive the cathode of an intensity-modulated cathode-ray tube.

The over-all rise time of the amplifier is about Msec, with about 
5 per cent overshoot over-all, and the sag in a 1000-Msec rectangular pulse 
is about 2 per cent. The gain is about 20, with very conservative ratings 
of tube transconductances. The output voltage is about 35 volts.

The amplifier is intended for one-sided signals of positive polarity 
at the amplifier input terminals, and d-c restorers are used at the input 
terminals of the last amplifier tube and at the cathode of the cathode-ray 
tube.

Positive signal pulses, limited to an amplitude of 1 volt, are brought 
to the amplifier terminals on a 100-ohm coaxial line, whose terminating 
resistor is located on the amplifier chassis.
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Tube-mixing (Sec. 2-8) of the signal and market pulses is accom
plished in the 6J6. plate circuit. The gain of the mixer stage is about 
unity.

Gain is adjusted by varying the amount of degeneration in the cathode 
lead (Sec. 2-5) of the first type 6AK5 tube.

The peaking of the 6J6 mixer stage must take into account the shunt
ing effect of the triode plate resistance. A larger value of peaking 
inductance is therefore required for the same increase in speed. The 
second stage employs simple shunt-peaking, with m = 0.41 (Sec. 2-2). 
In the last stage, where it is necessary to achieve large output voltage as 
well as high speed, a four-terminal network is employed; this is a variant 
of the network of Fig. 1-26.

A 47-ohm, 0.01-Mf decoupling network will be observed in the plate
supply lead of the second stage. Its purpose is to decouple the amplifier 
from the particular power supply in actual use and has no general 
significance.



CHAPTER 3

PULSE AMPLIFIERS OF LARGE DYNAMIC RANGE

By Harry J. Lipkin

34. Introduction.—Certain special applications require high-gain 
video, or pulse, amplifiers that must handle a large dynamic range of 
incoming signals, with voltage ratios between largest and smallest signals 
of 106 or more. One such application is the “crystal-video receiver,”1 
in which an r-f pulse signal from the antenna is immediately detected 
and the resulting video signal amplified. The type of amplifier required 
for this purpose is quite different from the high-fidelity pulse amplifiers 
discussed in Chap. 2, as is made clear by the fact that not one of the 
amplifiers discussed in this chapter employs high-frequency peaking. The 
purpose of this chapter is to present the special features and design con
siderations of pulse amplifiers in which the emphasis is on high gain and, 
above all, very large dynamic range.

Gain.—To obtain maximum sensitivity, the amplifier should have 
sufficient gain to bring pulses up from the amplifier noise level to an 
amplitude suitable for viewing on an indicator or for triggering an 
auxiliary circuit. The rms open-circuit thermal-agitation noise level 
e = y/AkTRB is approximately 7 mv for an amplifier source resistance 
R = 3000 ohms and bandwidth B = 1 Mc/sec; if the amplifier noise 
figure is 3 db, the equivalent input noise level is 10 pv. To obtain a noise 
level output of 3 volts, a gain of 110 db is required. For other band
widths, noise figures, output levels, and source resistances the required 
gain varies somewhat, but the order of magnitude remains the same.

Dynamic Range.—Signals appearing at the input terminals of the 
amplifier may have amplitudes as small as that of the noise, that is, 
several microvolts, or as large as several volts. If no special care is taken 
to handle the large signals, they will either drive successive stages of the 
amplifier to cutoff or cause heavy grid current to flow, causing the ampli
fier to block for a considerable period after each strong pulse and thereby 
rendering it completely useless for the amplification of weak signals 
during that time. Some applications require that the period of insensi
tivity following strong signals be reduced below an acceptable minimum; 
others require further that the width of strong pulses be preserved 
despite limiting. In either case the problem of overload is the central

1 See Vol. 23 of the Radiation Laboratory Series.
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one in this type of amplifier and requires an entirely different approach 
from that of Chap. 2.

Microphonics.—A problem peculiar to high-gain pulse amplifiers 
is that of microphonics. Mechanical shock or vibration of the first 
amplifier tube causes fluctuations in the plate current which appear as 
low-frequency signals at the output of the amplifier. If the low-frequency 
response of the amplifier is good enough by conventional standards to 
pass the pulse satisfactorily, experience shows that microphonic signals 
are considerably stronger than saturation level, in spite of all mechanical 
precautions that may have been taken, such as shock mounting. Elimi
nation of microphonic signals can therefore be accomplished only by 
rejecting low frequencies somewhere in the amplifier. This rejection 
results in distortion of the pulse and in low-frequency overshoots which 
must be minimized in the amplifier design.

Small Amplifiers.—High-gain video amplifiers are often useful for 
ultraportable applications in which performance is secondary to light 
weight and low power consumption. Design of these amplifiers requires 
a different emphasis. Very often the circuits actually used are inefficient 
according to normal criteria such as gain-bandwidth product or number 
of stages.

Theoretical Approach.—The classic method of using the amplitude 
and phase response of a network in order to determine its transient 
behavior is very useful in linear cases; this treatment can be applied to 
high-gain video amplifiers, however, only with reservations. In the 
consideration of signals below saturation level linear theory is useful to 
determine rise time or optimum bandwidth for good signal-to-noise ratio. 
However, in regard to large signals and overload effects the amplifier is 
primarily nonlinear, and the linear theory is of little use.

Use with Square-law Detector.—High-gain video amplifiers are fre
quently preceded by a crystal detector to make a crystal video receiver. 
Since the detector is a square-law device, quantities such as dynamic 
range and signal-to-noise ratio are different if specified at the input 
terminals of the crystal from what they are at the input terminals of the 
amplifier. For example, a 100-db dynamic range at the amplifier input 
terminals corresponds to only a 50-db dynamic range at the crystal input 
terminals. A more extended treatment of crystal video receivers is 
presented in Vol. 23, Chap. 19, of this series.

3-2. Theory of Overshoots.—In video amplifiers condensers are 
widely used for coupling and bypass purposes. If these condensers are 
not to cause pulse distortion, they must behave as a perfect short circuit 
for any frequency other than zero. This restriction requires that the 
voltage across the condenser and therefore its charge remain constant 
regardless of the presence of signals. However, all signal voltages tend 
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to charge or discharge such condensers, each pulse causing a small change 
in the charge of each condenser. After the end of the signal pulse, each 
condenser tends to restore itself to its normal charge, thereby producing 
transients that appear as spurious signals following the pulse. These 
spurious signals are referred to as low-frequency overshoots, since they 
arise from the poor low-frequency response of the amplifier, i.e., the 
failure of the condensers to have zero impedance at low frequencies. 
In the remainder of this chapter, they are referred to simply as over
shoots and are the only type of such phenomena considered here.

In the type of pulse amplifier to which this chapter is devoted, the 
large dynamic range makes the matter of overshoots the main problem. 
It is not sufficient for the overshoots to be reduced to 10 per cent or even 1 
per cent of the signals producing them, because even 1 per cent of a very 
strong signal is still considerably stronger than the very weak signals to 
which the amplifier should be sensitive. In order that the overshoot on a 
1-volt signal be less in amplitude than a 10-mv signal, the overshoot must 
be less than 0.001 per cent. It is for this reason that the problem of how 
overshoots are produced and how they can be controlled is given the 
extensive analysis that follows.

Generation of Overshoots.—Consider the circuit of Fig. 3-1, which
represents a simplified coupling 
circuit. In the absence of signal, 
all voltages are zero, there is no 
current flow, and there is no charge 
on the condenser.

Let a rectangular pulse of cur
rent Ia be applied at the input ter
minals. The condenser appears as 

Fig. 3-1.—Coupling circuit.

a short circuit to the leading edge of the pulse. The voltages across Ri and 
Ri are equal and, if shunt capacity is neglected, rise instantaneously to

R\Ri 
Ri + Ri (1)

During the flat portion of the pulse, the condenser C charges as 
though through the resistances Ri and Ri in series. If this flat portion 
continued indefinitely, a steady-state condition would finally be reached 
where all the current flowed through Rlt the voltage across it being 
laRi- The voltage across Ri would be zero, and the voltage across C 
would therefore be IJh. The time constant determining the rate at 
which this condition is approached is (Ri + Rz^C. Therefore the 
voltage ec across the condenser is

ec = IaRfl — e (Bi+nqcy (2)
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If the pulse length t is short in comparison to the tqne constant 
(Ri + Rt)C, the voltage across the condenser at the end of the pulse is 
approximately

ec IaR1 (Ri + R2)C (3)

At the end of the pulse the current ceases suddenly, leaving this voltage 
on the condenser. The voltage due to the discharge current divides 
between Ri and R2, which are in series across C, in proportion to the 
resistances. Therefore the voltage across R2 is

leRiX Rt IaRiR*2 r /
= (Ri + Ri)C (Ri + R2) = Ri + Rt (Ri + Ri)C W

Comparison of Eqs. (4) and (1) shows that the ratio of the overshoot to 
the signal, called the fractional overshoot, is

a (Ri + Rt)C (5)

This overshoot decays exponentially to zero with the time constant 
(Ri + RpC. Ri is usually a plate-load resistor connected between the 
plate and the B+ voltage supply, and R2 is a grid resistor connected 
between grid and ground.

It is standard practice to make R2 as large as possible in order to 
reduce the fractional overshoot to a minimum without affecting the 
other characteristics of the amplifier, which are controlled by the plate
load resistor. However, this is a dangerous procedure if grid current 
flows. To see this, assume as a rough approximation that when the grid 
is driven positive, it acts to cause a short circuit between grid and ground 
but that when it is driven negative, it acts as an open circuit. During the 
pulse, therefore, R2 is zero, and Eq. (3) becomes

ec ~ (6)

At the end of the pulse, the grid circuit is open, and the resistance across 
the terminals of R2 regains its original value. Thus the division of the 
condenser voltage takes place across the two resistors, making the over
shoot amplitude

_ laR^X
eH! “ C(Ri + R2)’ { J

and the fractional overshoot is
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Thus the fractional overshoot is what it would be if the grid resistor 
were zero. However, the decay time constant of this overshoot is 
(Ei + Ri)C. Therefore, the conventional design, with Ei small and Ea 
large, is worthless in this condition 
of grid-current flow. The frac
tional overshoot is large because the 
high grid resistor has no effect, but 
the recovery is very slow because 
the high grid resistor is then 
effective.

In this analysis it has been as
sumed that the plate-load resistor 
Ei has been returned to ground 

Fig. 3-2.—Decoupling circuit.

instead of to B+ as is actually the case in an amplifier. This fact has no 
effect on the overshoot calculation in that it merely adds a d-c com
ponent to the voltage across Ei.

Similar calculations can be made for the decoupling, screen bypass, 
and cathode bypass circuits shown in Figs. 3-2, 3-3, and 3'4. The results 
are shown in Table 3 1.

It should be noted that the overshoot in the decoupling circuit is of the 
same sign as the signal, instead of the opposite sign as in the case in 
coupling circuits. Its amplitude depends on the plate-load resistor 

Fig. 3-3.—Cathode bypass circuit. Fig. 3-4.—Screen bypass circuit.

and is independent of the decoupling resistor. The decay time constant 
is, however, proportional to the decoupling resistor.

The screen and cathode circuits behave like the coupling circuit, 
except that in both of these cases tube resistances shunt the resistor 
determining the time constant. Also, since the coupling condenser 
blocks direct current completely, whereas the screen and cathode bypass 
condensers merely degenerate the d-c, the fractional overshoot is multi
plied by a factor of slightly less than unity. This factor becomes 
unity if the degeneration is complete. In the case of the screen bypass 
condenser this factor is complicated and involves the control character-
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istics of the screen grid. Since its effect in most practical cases is negli
gible, it is omitted in Table 34. The result is, therefore, a somewhat 
conservative approximation. Similar simplifying assumptions have been 
made in the cathode bypass case.
Table 31.—Fractional Overshoot and Recovery-time Constant for Common 

Circuits

Circuit Fig.
Fractional overshoot, 

t«T
Recovery time 

constant T

Coupling........................................ 31
T T (Ri + R,)C

(ß, -1- R2)C t

Decoupling.................................... 3 2

h I.II R^C
«1U K1 T

Cathode hypaw. 3 3
Qm? c
c , 1 

P» ' RÏ

Screen bypass............................... 3 4 T R'. + r,t G

All of these calculations are subject to the approximation r <K T.
Cascaded Overshoots.—Since each condenser produces an overshoot, it 

it necessary not only to understand how a single overshoot is generated

Fig. 3-5.—Waveform produced by cou
pling circuit whose input contains a pulse 
that has already passed through one such 
stage.

but also to ascertain the effect of 
several overshoot-producing cir
cuits in cascade. Consider first the 
response of the simple coupling cir
cuit of Fig. 34 to a signal that has 
already passed through such a cir
cuit in a previous stage. The input 
pulse then has a slightly drooping 
top and is followed by an overshoot 
as shown in Fig. 3-5. The action 
during the pulse itself is very similar 
to the case of the flat pulse, except 
that the charge on the condenser is 
slightly less because of the decrease 
in the driving current during the 
pulse. This is a second-order effect 
and can generally be disregarded.

Thus, the voltage across the condenser at the end of the pulse can be 
calculated from Eq. (3).

At the trailing edge of the pulse, the input current drops not to zero, 
as in the previous case, but to the negative value of the overshoot pro
duced by the previous stage. This current produces an output voltage 
that is the same in per cent as the input overshoot. To this voltage is
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added the voltage across the condenser, and an overshoot is thus produced 
whose amplitude is the sum of the original overshoot and the one that 
would be produced by this circuit if there were no previous overshoot 
present.

The decay of this double overshoot is more complicated than that of 
the single case. The sudden change in sign of the signal at the end 
of the pulse is followed more slowly by the condenser, which discharges 
and then charges in the opposite direction, aiming always for the point 
at which the condenser voltage equals the input voltage and the output 
voltage is zero. The waveforms for this case are shown in Fig. 3-5. 
Since the input signal is decreasing exponentially while the condenser
voltage is increasing, a point (point 
p in Fig. 3-5) is reached where the 
two curves cross and the input volt
age crosses the baseline. The con
denser now discharges, its voltage 
being always greater than the input 
voltage. This discharge action 

Fig. 3 6.—Waveform of pulse obtained
from several successive coupling-circuit 
stages. There is one crossing of the base-
line for each coupling circuit.

produces a secondary overshoot in which the voltage rises to a maximum 
in the same direction as the original signal and then drops exponentially 
to zero, as shown in Fig. 3 5.

Each successive condenser adds another overshoot. Thus after a 
number of such stages a waveform similar to that shown in Fig. 3-6 is 
obtained.

Although the preceding analysis presents a good qualitative picture 
of the secondary overshoot, in order to obtain quantitative information 
about its amplitude and duration it is necessary to go to a more rigorous 
mathematical treatment. Consider then the differential equation for 
the circuit of Fig. 3T:

de2 , e2 _ RiR¡ dii
'dt + T ~ (R? + Rt) dt’ (9)

where e2 is the output voltage, ii is the input current, and T is the time 
constant (Ri + R2)C. The solution of Eq. (9) is

<10>
where A is a constant of integration.

If ii is the result of the overshoots produced in m previous stages, it 
can be considered as the sum of exponential terms, each term represent
ing an overshoot. Thus

(ID 
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where Tj is the time constant of the Jth circuit, all the T/s being assumed, 
for the moment, to be unequal. Substituting Eq. (11) in Eq. (10), the 
result is

m

J = 1
m

= Ae~^ + V —(Tj T), (12)

where Ej — RiRi/(Ri + Ri)Ij is the output voltage that would be 
produced by an input signal I,, if the effect of C were neglected.

If any of the T/s are equal to one another, there are terms in the 
_ t_

expression for ii of the form (t/T/fe Ti, which also appear in the expres

sion for e2. If any of the Tfs are equal to T, terms of the form (t/Tfe ? 
appear in the expression for e2. The exact values of these terms can be 
determined by substitution in Eq. (10). Because of the complicated 
algebra involved in this substitution, only the results for the general case 
are given here.

Consider the general case of an amplifier in which, pieceding the 
circuit being considered, there are r circuits of time constant T and s cir
cuits of time constant Tj, where there are m different values of the time 

m
constant Tj and nj circuits for each value Tj. Then s = nj, and the

total number of circuits preceding the one considered is therefore

where Ek and Ekt are the products of Ik and Ip by RiR«/(Ri + RA.
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Equation (13) is quite complicated for use in amplifier design. If the 
presence of equal time constants is disregarded in an amplifier and Eq. 
(12) is used instead, an error is introduced which is, in general, not 
sufficient to alter the order of magnitude of the overshoot. Hence Eq. 
(12) is generally used for all rough calculations.

Examination of Eq. (12) shows that each overshoot entering the 
input terminals appears at the output terminals modified in amplitude 
by the factor 1/1 — (Tj/T), but with the exponent unchanged. There 
is added a term corresponding to the overshoot that would be produced 
by this particular coupling circuit in the absence of other overshoots. 
The amplitude of this term is dependent upon the initial value of the over
shoot. Since this has been shown by the previous analysis to be the sum 
of the individual overshoots each acting independently, the value of A 
can easily be obtained.

Using this analysis it is simple to trace each overshoot through an 
amplifier. At each successive coupling circuit an overshoot of given time 
constant is changed in amplitude, but not time constant, by a factor 
1 — Tj/T. If the time constant T of a coupling circuit is much greater 
than the time constant Tj of the overshoot, 1 — T j/T is close to unity, 
and the overshoot amplitude is unchanged by this circuit. This con
clusion is reasonable, since the charge on a condenser can not change 
appreciably during a time short in comparison to the time constant of 
the circuit. If on the other hand T is much less than Tj, the factor 
1 — Tj/T is very nearly equal to — Tj/T. A long overshoot is there
fore reduced in amplitude by a coupling network having a short time 
constant by a factor equal to the ratio of the time constants involved. 
Furthermore, the sign is changed, making the long time constant over
shoot appear on the other side of the baseline. It is this change of sign 
which gives rise to secondary and higher-order overshoots.

If T is nearly equal to Tj, very large values are obtained for the over
shoot amplitude. However, in order to satisfy the initial conditions, A 
is also large and opposite in sign to the other overshoot amplitude. 
Since T is very nearly equal to Tj, the exponents of these terms are very 
nearly equal for small values of t/T. Thus the two large terms 
very nearly cancel. To avoid taking the difference between two nearly 
equal large terms a good approximation can be made for small values 
of t/T by assuming that T is equal to Tj.

Nonlinear Effects.—Although ordinary linear-circuit analysis breaks 
down in cases where amplifier stages are overdriven, the theory of over
shoots as described here can still be applied. It is merely necessary to 
consider the effects of limiting on each signal wherever limiting occurs. 
The charging of the coupling condenser by grid current has already been 
considered.
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The first effect of limiting is to clip the top of the pulse, as shown in 
Fig. 3-7, reducing the amplitude considerably. When limiting occurs, 
the term fractional overshoot, as used in the preceding analysis, becomes 
ambiguous. This term was defined in reference to the signal amplitude 
at the point where the overshoot is produced. Thus the actual amplitude 

of an overshoot of 1 per cent, pro-
I duced before limiting, will be greater
| 'j at the amplifier output terminal
]  than a 10 per cent overshoot pro-
K duced after limiting has reduced the

signal amplitude by a factor greater 
than 10. Therefore, although the 
use of fractional overshoot is con
venient for the calculation of a 

Fro. 3-7.—Limiting. single circuit, it is better to convert
to absolute values in volts before combining the effects of several circuits. 
If this is done, there is no difficulty in using the methods previously 
outlined.

The shape of the top of the pulse depends upon whether the limiting is 
caused by driving the grid of a tube beyond cutoff or into the positive 
region. If the tube is cut off, the top of the pulse appearing on the plate 
must be flat, as shown in Fig. 3-7, because changes in the grid voltage 
below cutoff have no effect on the plate current. However, if limiting 
is produced by driving the grid positive, an increase in the grid voltage 
still increases the plate current, even though considerable power is 
required from the driving source. The top of a pulse limited by grid 
current still has a nonzero slope, although it is very much less than the 
slope of the input pulse.

As long as the pulse alone, and not the overshoot, is clipped, Eq. (13) 
holds without reservations. The limiting affects only the value of the 
constant A, which is chosen to meet 
the initial conditions as modified by 
the clipping of the pulse. In most 
cases, the overshoot amplitudes are 
kept sufficiently low so that they 
are not clipped. If as in Fig. 3 8 
this is not true, Eq. (13) still applies, 
but allowance must be made for the 
discontinuity. The limited portion Flo. 3.8._Limiting of 3n overshoot,

of the overshoot (between points
a and b in Fig. 3-8) can be considered as a single overshoot, having an 
infinite time constant. The constant A of Eq. (13) can be found from 
the initial conditions (Point a). The portion of the overshoot following 
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Point h is the same as if there were no limiting, except that a new value 
of the constant A, determined by the conditions at Point b, is again 
required.

3-3. Circuit Design for Minimum Overshoot.—Since the magnitude 
of the overshoot produced by a given circuit is inversely proportional 
to the time constant of the circuit, it is theoretically possible to make all 
overshoots negligible simply by making all the time constants sufficiently 
large. Practically, however, there is a limit to the maximum usable 
values of resistance and capacitance, and it is generally impossible to 
design a high-gain amplifier with no overshoots at all. Furthermore, 
even if it were possible, some form of low-frequency-rejection filter to 
eliminate microphonics would still be needed. This filter would neces
sarily introduce an overshoot, since it would effectively introduce a short 
time constant.

Although it is impossible to eliminate overshoots completely, it is 
advantageous wherever possible to design circuits so that the overshoots 
produced by them are negligible at the output terminals of the receiver. 
The magnitude of the overshoot following a very strong signal must 
therefore be negligibly less than the magnitude of a very weak signal, or 
else the fractional overshoot must be negligibly less than the ratio of the 
weakest signal to the strongest.

Because of limiting, the dynamic range of signals actually present 
at any given point in the amplifier varies from point to point in the 
amplifier. At each point of limiting, all signals above a certain amplitude 
are clipped. The dynamic range beyond this point is thus reduced, and 
therefore the allowable fractional overshoot is increased. Thus the first 
few circuits have the most severe requirements on the time constants 
in order to eliminate overshoots. The nearer a given circuit is to the out
put end the shorter its time constant can be without introducing appre
ciable overshoot.

If the dynamic range of an amplifier is one million, the fractional 
overshoot produced by any circuit preceding the first point of limiting 
must be less than one-millionth if the overshoot is to be negligible at the 
output end. This condition can generally be achieved only if there is a 
short time constant later on in the amplifier. If all time constants were 
long, the fractional overshoot produced by the first circuit would be 
approximately equal to the ratio of the pulse length to the time constant. 
To make this negligibly less than IO-6, a time constant of the order of 
seconds would be required for a 1-gsec pulse. It is impossible to obtain 
this value of time constant in most practical cases. As discussed in 
Sec. 3-2, use of a short time constant T2 later in the amplifier reduces the 
magnitude of the overshoot of time constant Ti due to the first circuit 
by 1 — Ti/Tt- In most practical cases this is approximately the ratio 
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of the time constants. The fractional overshoot for the overshoot of 
time constant T, is then given by

_ T Ti _ tTi 
a ~ ri - ~Tf

Solving Eq. (14) for Tt yields

(14)

(15)

Assuming that the overshoot must be one-tenth of the weakest signal 
in order to be negligible, a is 10-7 for a dynamic range of one million. 
Then, assuming as typical values r = 2 Msec and T2 = 5 Msec, Tj is found 
to be equal to 10,000 Msec, which is not an unreasonably high value for 
some circuits.

Overshoots in Conventional RC-circuits.—The expressions for the frac
tional overshoots of the common RC coupling, decoupling, cathode
bypass, and screen-bypass circuits are given in Table 3-1.

For coupling circuits, the upper limit on grid resistors for most tubes 
is about 1 megohm. If no grid current is drawn, a condenser of 0.01 pi 
gives a time constant of 10,000 psec. If the value of the resistor is 
closer to 0.1 megohm, the condenser required is 0.1 pi. These are 
reasonable values for use in most amplifiers, except those where extremely 
small size is required. However, the use of a “postage-stamp” size 
0.01-Mf condenser with a 1-megohm grid resistor allows a fairly small 
amplifier to be built.

If grid current is drawn, the grid resistor is shunted by the input 
conductance of the tube and no longer affects the time constant, which 
is now dependent upon the plate-load resistor and coupling condenser 
only. Since the plate-load resistor must carry the plate current of the 
tube, values higher than 50,000 ohms are not generally used. Although 
some special applications allow the use of a higher resistor, triodes are 
used in these cases for certain reasons discussed below (see Sec. 3-5). 
The plate resistance of the triode, therefore, effectively shunts the load 
resistor, and the parallel combination is generally less than 50,000 ohms. 
The coupling condenser required for a time constant of 10,000 Msec is 
therefore at least 0.2 pi and is generally higher. Elimination of over
shoots therefore becomes impractical with simple EC-coupling if grid 
current is drawn. Note that the use later in the amplifier of several 
small time constants instead of only one introduces another factor in 
Eq. (14) reducing the fractional overshoot a. This procedure allows the 
use of a time constant smaller than 10,000 Msec in the first circuit.

Decoupling circuits can generally be designed for negligible over
shoot. The plate load and decoupling resistors can commonly be made 
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as high as 10,000 ohms. This value of resistance requires a capacity 
of 1 ni to get a time constant of 10,000 ^sec. For a large amplifier this 
capacity is allowable, but for small amplifiers some other scheme must be 
used. Generally several small time constants later in the amplifier 
alleviate the problem.

Screen-bypass circuits require components of the same order of 
magnitude as decoupling circuits and are therefore subject to the same 
limitations. For this reason, it is often advantageous, especially where 
small size is important, to use triodes and eliminate the screen-bypass 
circuit.

Table 3-1 shows that the resistance determining the time constant 
of the cathode circuit is equal to the gm of the tube. Enormous cathode
bypass condensers are required to obtain a time constant of 10,000 jusec; 
e.g., a tube having a gm of 3000 /¿mhos requires a cathode-bypass con
denser of 30 /xf- For this reason it is common practice to leave cathode 
resistors unbypassed. If the cathode resistor is kept small, the loss in 
gain due to degeneration is not appreciable. In some cases, the cathode 
resistor is bypassed by a small condenser in order to improve the high- 
frequency response. In this case the time constant is so short that the 
overshoot is negligible and is obscured by the slow trailing edge of the 
pulse caused by poor high-frequency response.

Secondary Overshoots in Circuits with Two Short Time Constants.— 
When there are two short time constants, it can be shown by considering 
Eq. (12) that there will, in general, be a secondary overshoot. The 
factor 1 — Tj/T is negative for the term involving the larger of the two 
time constants. After a sufficiently long time the term having the 
shorter time constant becomes neg- __ 
ligible with respect to this term.
Since its sign is negative, it repre
sents an overshoot in the opposite ——-------------------------------------
direction from the original over
shoot and therefore a secondary
overshoot. The time at which the
crossing of the baseline occurs is '
always equal to some value between Fig. 3-9.—Elimination of secondary over- 
those of the two time constants and shoot by drawing grid current.

can be found by equating the two terms. Hence, the secondary over
shoot can be considered to be of negligible magnitude only if the longer 
time-constant overshoot is negligibly small.

Elimination of Secondary Overshoot by Means of Grid Current.—By 
use of grid current, the secondary overshoot normally produced by two 
short time constants can be avoided. As shewn in Fig. 3-9, the charging 
of the coupling condenser by grid current produces an overshoot so much 
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larger than that in the ordinary case that it completely obliterates the 
secondary overshoot normally present. The recovery in this case is, of 
course, poorer than in the absence of grid current; however, in some 
applications elimination of the secondary overshoot is more desirable 
than quick recovery.

This effect can very easily be considered quantitatively by using 
different values for the charging time constant and the discharging time 
constant of the circuit drawing grid current.

Let Tn be the time constant of charge of this circuit and Tn the time 
constant of recovery. The expression for the instantaneous overshoot 
voltage, given by Eq. (12), involves Tn only, since there is no grid current 
during the overshoot. (This assumption supposes no secondary over
shoot, which would drive the tube into the grid-current region again.) 
Let Ti be the other short time constant in the amplifier. Then, sub
stituting in Eq. (12),

__ t_
e2 = + —p—y (16)

M1 - IA
A is determined by the initial value of the overshoot. Since the initial 
value is determined by the charging of the coupling condenser, Tn is not 
involved. Thus the fractional overshoot is the sum of those overshoots 
produced by Tn and Ti acting independently, or

a = + 7^’ (i7)
I i in

Substituting this equation into Eq. (16) at i = 0 and solving for A,

. Tn - Tj - Tn 
T Tn(Tn - Ti) '

Substituting this into Eq. (16),

rfTn - Ti - Tn) re
TnlTn - Ti)

(18)

(19)

If Tib A Ti + Tn, both terms have the same sign, and there is no 
secondary overshoot. Optimum recovery occurs when Tn = Ti + Tn, 
and the first term drops out. In this case, the recovery is the same as 
if the second coupling circuit were absent.

Choke-coupled Circuit.—It has been shown that when grid current is 
drawn, the plate-load resistor must be made as high as possible to reduce 
the charging time constant of the coupling condenser. Since this 
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produces a large voltage drop across the resistor, considerable power is 
wasted. A high supply voltage and a high-wattage resistor are neces
sary. To avoid these complications, a choke can be used in place of the 
plate-load resistor. The choke acts as a high impedance during the 
charging of the coupling condenser but has a negligible d-c voltage 
drop. The circuit is shown in Fig. 3-10.

In a circuit of this type, the inductance of the choke may resonate 
either with the stray shunt capacity C, or with the coupling condenser
Cc, producing a train of damped 
oscillations following each pulse. 
This train of oscillations is effec
tively a series of overshoots and is 
therefore highly undesirable. To 
avoid this effect, both circuits must 
be damped by the grid resistor so 
that the transient following the 
pulse is not more than a single or 
at the most a double overshoot. 
Since the value of the grid resistor 
is determined by the amount of gain Fig. 3-10.—Choke-coupling circuit.

desired, the inductance of the choke is determined by the condition for 
greater than critical damping. Thus

4
L è 4C,R2.

(20)

The overshoot produced by the charging of the coupling condenser can 
be analyzed in the same manner as that for the coupling circuit of Sec. 
3-2. At the start of the pulse there is no current flowing in the choke. 
Therefore all the current must be charging the coupling condenser. If 
the pulse length is short compared with the resonant period of the tuned 
circuit formed by the choke and the coupling condenser, the current flow 
through the inductance is negligible and the approximation can be made 
that all the current flows through the condenser during the pulse. The 
voltage across the condenser at the end of the pulse is then

ec. = (21)

The discharging of the condenser through the choke and the grid 
resistor can be broken up into two parts: (1) the building up of the current 
in the choke and (2) the discharging of the condenser. This simplification 
is possible because the time constant of the inductance circuit is very 
short compared with the discharge time constant of the condenser. The 
condenser can therefore be considered as a source of constant voilage while
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the current builds up in the inductance; the inductance can be considered 
as a short circuit during the discharge of the condenser.

At the instant of the trailing edge of the pulse, there is no current 
flow because of the inductance of the choke. The full voltage of the 
condenser appears across the choke. The current then increases exponen
tially, approaching a steady-state condition where the full voltage across 

^1 the condenser appears across the
/ resistor. The time constant is L/R.

.________ L_____________ _ - The condenser discharges with a
। time constant RC as in the conven-

I tional EC-coupled circuit. This is
shown in Fig. 3-11. Thus the over- 

Fxo. 3'11.—Overshoot produced by choke- shoot differs from th t produced by 
coupling circuit. J

2?C-coupling only in the slow rise 
time caused by the charging of the inductance. The magnitude of the 
overshoot is equal to the original voltage across the condenser, which is 
given by Eq. (21). Since the magnitude of the signal is

the fractional overshoot is
e. IJlg, (22)

a R„C. (23)

Typical values for a choke-coupled circuit are Rs = 27,000 ohms, 
L = 85 mh, and Cc = 0.02 pi.

The time constant of the inductive circuits is then 3.15 Msec, which is 
small compared with 540 Msec, the time constant of discharge of the con
denser. This value is far from the 10,000 Msec needed for elimination of 
the overshoot. Choke coupling is 
where overshoots are not allowable.

“Smearer” Circuit.—The type 
of circuit commonly called a 
“smearer” is similar in principle 
to the method of using grid current 
to eliminate a secondary overshoot. 
This circuit makes use of the sharp 
drop in plate resistance that occurs 
when a tube is driven positively 
from a point where the plate cur
rent is low. Figure 3-12 shows a 
smearer. The tube is operated 

therefore not used in applications

Fig. 3-12.—Smearer circuit.

with a very high plate-load resistor shunted by a condenser C„ This 
condenser can be an actual capacitor, but in many cases the stray 
capacity is sufficient.
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A positive signal on the grid of this tube drives it into a highly con
ducting region where the plate resistance is low. The condenser C, is 
therefore charged very rapidly, as the time constant is short. At the end 
of the pulse, the negative overshoot on the grid cuts the tube off, thereby 
raising the plate resistance of the tube to infinity. The condenser C, 
must therefore discharge through the high plate-load resistor R. Since 
this time constant is long, the negative signal at the plate comes back 
exponentially to the baseline. If this time constant is sufficiently long 
compared with the time constants of the overshoots, the overshoots are 
completely eliminated, at the cost, however, of stretching the pulse con
siderably and obscuring any weak signals that may be present during the 
decay of the pulse.

Since the decay of the pulse in this type of circuit is exponential, the 
previous analysis of cascaded overshoots applies to this circuit as well, and 
an analytic treatment of it similar to that for the double short-time-con
stant circuit is possible.

Diode Clippers.—An obvious method of eliminating overshoots before 
they have an opportunity to be amplified and to produce secondary over
shoots is to clip them by means of diodes as they occur. A diode, intro
duced into the circuit after each overshoot is generated, should pass the 
signal but reject the overshoot, which is in the opposite direction. Unfor
tunately, this simple procedure is not practical for several reasons:

1. Since there is no perfect diode having a sharp discontinuity in its 
resistance, diodes act as ideal diodes only at high levels. Thus, if 
there are two overshoot-producing circuits in the early stages of the 
amplifier, diodes are of little use, since the secondary overshoot 
produced at low levels is in the same direction as the signal and 
cannot be eliminated at high levels by a diode.

2. Because the diode does not act as a perfect short circuit in one direc
tion and a perfect open circuit in the other, overshoots are not 
completely clipped by the diode but are merely attenuated. Thus 
a strong overshoot may come through a diode in sufficient magni
tude to cause trouble later on.

3. The impedance of a diode in the backward direction, particularly 
at low’ levels, is far from infinite. Thus a diode loads the circuit in 
which it is introduced. This is particularly serious when the stage 
gain is high and all extraneous loading must be avoided.

4. In clipping an overshoot, a diode also obliterates all weak signals 
occurring during the overshoot. This effect is illustrated in Fig. 
313.

Despite these disadvantages, diode clippers can be used advanta
geously in numerous applications as long as their limitations are kept in
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mind. The new germanium crystals,1 which are considerably better than 
most common vacuum tubes for this purpose, may make possible the use 
of diode clippers in applications for which a vacuum-tube diode could not 
be considered.

There are several types of circuits in which diodes can be used. The 

3-13.—Loss of -weak signal when 
clipping overshoot.

Fig.

series diode, shown in Fig. 3I4a, 
presents a low impedance to the 
signal and a high impedance to 
the overshoot, thus attenuating it 
by a factor equal to the ratio of 
the diode load resistance to the 
diode back resistance. Since the 
diode forward resistance is not zero, 
there is some attenuation of the 
signal as well.

The shunt diode, shown in Fig. 3-146, presents a high impedance to the 
signal and shunts the overshoot with a low resistance. The reduction of

Fig. 3*14ct.—Series diode. Fig. 3-145.—Shunt diode.

overshoots resulting from use of a shunt diode is a function of the resist
ance of the circuit in which it is inserted and is equal to the ratio of the 
circuit resistance to the diode back 
resistance. Here, again, there is 
some attenuation of the signal itself, 
this time because the back resist
ance is finite.

In using diodes, care must be 
taken not to produce unintentional 
“smearing” of the signal by the 
slow discharge of stray capacitances 
through the back resistance of the Fig. 3-15.—Delay-line coupling circuit.

diode. In the series diode, shown Tn Fig. 3-14a, smearing can happen 
unless the diode resistor is small.

1 See Vol. 17, Chap. 5, of this series.
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Diodes used directly in the circuit producing the overshoot do more 
than merely clip the overshoot. If a shunt diode, for example, is used 
in place of a grid resistor, the coupling condenser charges through a high 
resistance. The charging time constant is therefore long, producing a 
small overshoot. Moreover, the condenser discharges through a low 
resistance, thus recovering much 
more rapidly than would normally 
be expected. This same effect can 
be obtained without an auxiliary 
diode in a stage where the grid is 
driven negative, and any overshoot 
produces grid current. The grid
cathode circuit here acts as a diode, 
but only when there is no overshoot 
present before this stage. Any 
earlier overshoot is not shortened 

Fig. 317.—-Advantage of rectangular over
shoot.

Fig. 3-16.—Response of delay
line circuit to pulse.

by this short time constant; instead it charges the coupling condenser in 
the opposite direction through the low-impedance path of grid circuit or 
diode and produces a serious secondary overshoot.

Delay-line Grid Circuit.—If a delay line is used in the grid circuit of an 
amplifier, as shown in Fig. 3-15, a pulse at the input terminal travels to 
the end of the line and is reflected back in opposite phase. This reflected 
pulse in turn produces a second pulse, equal and opposite in sign to the 
original, and delayed by a time which is twice the length of the line, as 
shown in Fig. 3-16. This reflected signal can be considered as an over
shoot, which, instead of being exponential in shape, is rectangular. If 
the duration of an overshoot is defined as the time required for it to decay 
to a given absolute level, the rectangular overshoot has the great advan
tage of being constant in duration, regardless of signal strength, whereas 
the duration of the usual overshoot with exponential decay increases with 
signal strength. Thus the weak signals following a rectangular overshoot 
are preserved, whereas those following an exponential can be lost, as 
shown in Fig. 3-17.

The effect of the delay line upon a long overshoot is illustrated in Fig. 
3-18. The delayed signal is subtracted from the undelayed signal to give 
the resultant. The difference in amplitude between the delayed and the
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undelayed signals is the amount by which the undelayed signal has 
decayed during the delay and is equal to the amplitude of the overshoot:

A
a = —ao(l — e T) — ao A, (24)

where a0 is the fractional overshoot 
time, and T is the time constant of

Fig. 3-18.—Effect of delay line upon 
signal with overshoot (delay time equal to 
pulse width).

less than unity. Note that if the

of the original signal, id is the delay 
the overshoot. This relation is very 

much like that for the reduction 
of overshoots by the factor of 
1 — Ti/Tz by circuits having short 
time constants. Thus, the delay
line circuit behaves with respect to 
previous overshoots like a circuit 
having a time constant equal to the 
delay time.

The main disadvantage of the 
delay-line circuit is that the charac
teristic impedances of common de
lay lines are considerably lower 
than the load impedances generally 
desired in a high-gain amplifier. 
The use of this type of circuit, 
therefore, causes a loss of gain in 
all amplifiers except wide-band 
amplifiers, which use low load 
resistors. Also, there is a small 
loss in signal-to-noise ratio because 
the delayed noise adds to the 
undelayed noise, increasing the 
noise power.

This analysis has assumed 
ideal behavior of the line circuit. 
Actually there is attenuation in 
the line, and the reflected signal 
is not so large as the original. 
This effect modifies Eq. (24), 
replacing the 1 by a number 

attenuation of the line is correctly

adjusted, this number can be made equal to e T, in which case the over
shoot completely cancels out. This adjustment is generally not practical 
for large-scale production but is useful in the laboratory.

If the line is not terminated in its characteristic impedance, there are 
multiple reflections, producing multiple overshoots. Even if these over-
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shoots are small, they are important for a sufficiently large signal. The 
inherent advantage of the rectangular overshoot over the exponential 
is then lost. If the terminating impedance is less than the characteristic 
impedance, there is a reversal of sign on reflection, and a signal of the

J

Fig. 3-19a.—Pulse response of delay-line circuit terminated in too low an impedance.

same sign as the original signal is sent down the line. All the reflections 
are therefore of the same sign as the first, and the result is a lengthening 
of the overshoot in steps, as shown roughly in Fig. 3-19a. If the termina
tion is higher than the characteristic impedance, there is no sign reversal, 
and the signal is reversed in sign once each trip, thus producing reflections

Fig. 3-195.—Pulse response of delay-line circuit terminated in too high an impedance.

of successively alternating sign. This produces multiple overshoots, such 
as are roughly shown in Fig. 3-19i>.

Exact termination is difficult, especially with commercial tolerances on 
resistors. The maximum per cent overshoot that can be expected is 
roughly the tolerance of the resistor used. The difficulty of termination 
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is accentuated by any nonlinearity in the grid circuit, such as would 
occur with a positive signal strong enough to draw grid current. For this 
reason a certain degree of mismatch is to be expected; and since it is pref
erable to have a lengthened single overshoot rather than multiple over
shoots, it is desirable to design the termination slightly lower than the 
characteristic impedance. This still gives a result sufficiently better

Fig. 3-20.—Delay-line circuit using crystal 
clippers.

than simple RC-coupling to justify 
its use for some applications.

The combination of germanium- 
crystal clippers and delay lines is 
very effective. A crystal in series 
with the termination prevents load
ing of the original signal by the 
termination but still acts as a match 
for the reflection, which is opposite 
in sign. The nonlinear effect of 
the grid circuit on the termination 
can be eliminated by use of a series 
crystal, which allows the original 
signal to pass but acts as an open 

circuit for the reflected signal. This crystal also automatically clips the 
overshoot. A circuit of this kind is shown in Fig. 3-20.

Inverse-feedback Pairs.—The inverse-feedback-pair circuit described in 
Chap. 6 can be used in a high-gain video amplifier to improve the over
shoots. Because of two effects, considerably better performance can be 
obtained from a properly designed feedback pair: (1) If a feedback-pair 
amplifier is designed so that negative signals appear at the input terminals 
of the pair, the constants of the pair may be adjusted so that without 
excessive loss of gain the positive signal appearing at the second grid is 
limited to a value that does not cause grid current to flow. (2) Feedback 
also has the effect of reducing the overshoot of the interstage coupling 
circuit by a considerable factor from what it would be in the absence of 
feedback.

It is shown in Chap. 6 that the relative values of the load resistors in a 
feedback pair can be adjusted without changing the over-all response of 
the pair, provided that the feedback resistor is properly varied. This 
adjustment has the effect of varying the relative gains of the "two stages 
without changing the over-all response. Overloading of the second grid 
can therefore be minimized by putting as much gain as possible in the 
second stage and as little as possible in the first. The maximum signal 
appearing at the second grid is then much less than in a circuit with the 
same over-all gain and no feedback, and the overshoot on the maximum 
signal is not so great. In some cases, it may even be possible to design 
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the pair so that no grid current is drawn at all; this is a considerable 
improvement.

The theory of Chap. 6 cannot be applied to this problem without 
reservations, because large signals drive the tubes over a sufficiently wide 
range to make the assumptions of linearity invalid. Some theory using a 
nonlinear characteristic or making certain approximations can perhaps 
be worked out, but this has not yet been done. The procedure for design
ing this type of amplifier has been 
one of cut-and-try, using the tube
characteristic curves given in the 
tube manuals.

The effect of feedback upon 
overshoots can be calculated by 
using the same fundamental ap
proach as was used in Sec. 3-2. If 
the time constant of the circuit is 
assumed to be long in comparison 
with the pulse length, it is possible 
to calculate from the charging cur
rent and the pulse length the volt

8+

Fig. 3-21.—Inverse feedback pair.

age appearing across the coupling condenser at the end of the pulse. 
Thus, for the circuit of Fig. 3-21, the voltage across the condenser at the 
end of the pulse is

_ IT _ Eg T 
eC C ~ RgC’ (25)

where Eg is the amplitude of the signal pulse appearing at the grid of the 
second stage. The portion of this that appears across the grid resistor 
at the end of the pulse can be shown to be

0g 
ec

__________________ Rg__________________
„ . (R2 + Ru)Ri gmRiR2R„

" + Rk + Ri + Rn Ri + Ri + Rn

(26)

Substituting Eq. (25) in Eq. (26) one finds the fractional overshoot to be

€g Cg
“ = Eg = = gmRiR2Rt (RiRii)R\

Ri + Ri -F Ru Ri H- Ri "F Rn_

(27)

QmR 1-^2 

ßl + Rl 4" R12,

■ R\2
Ri 

QmRg
T Z12 A12

QmRlRl t

HD ÇmRlRd
R^ + R2 + R12
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Thus for an amplifier where no grid current is drawn, so that Rg can 
safely be made large, the fractional overshoot is reduced by a factor of 
gmRiR2/ (Ri + R2 + E12) over that of an amplifier without feedback. 
This effect is very useful in the early stages of high-gain amplifiers where 
huge capacitors would otherwise be necessary to eliminate overshoots.

As an example, consider the following typical values for such a circuit:

Ei = R2 = 10,000 ohms.
E12 = 50,000 ohms.
gm = 3000 pmhos.

For these values, the fractional overshoot is improved by the appreci
able factor of 6.

The recovery time constant, as might be expected, is given by the 
denominator of Eq. (27);

T = gmRiRn
I R12 

+ r2 
gmRp

Ei -F Ri T R
QmRlR2 : 

gmR 1R2

Direct-coupled, Inverse-feedback Pair.—The obvious method for elimi

Fig. 3-22.—Direct-coupled inverse-feedback 
pair.

In this circuit, the first’tube of 1

nation of the problem of charging 
of the coupling condenser by grid 
current is the elimination of the 
coupling condenser. Any conven
tional direct-coupled circuit can be 
used, carrying along with it the 
usual disadvantage of direct-cou
pled circuits, in particular, the need 
for a more complicated power sup
ply. Use of an inverse-feedback 
pair in conjunction with direct cou
pling, as shown in Fig. 3-22, allows 
the use of an ordinary power supply 
of the type used for other video 
amplifiers.1

3 pair is generally operated at a low
plate voltage, at which the tube still performs satisfactorily as an ampli
fier. The grid of the second tube is directly coupled to the first plate, 
and the large second cathode resistor furnishes sufficient cathode bias to 
bring the cathode potential above the grid potential by the desired

1 The unique advantages of the direct-coupled inverse-feedback pair were demon
strated by R. J. Grambsch at the Radiation Laboratory.
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amount. Because of the two types of d-c degeneration present in this 
circuit, it is unusually stable with respect to power-supply and tube varia
tions. The unique feature that enables its use as a practical amplifier 
is the effect of the feedback in reducing overshoot caused by the cathode 
bypass condenser, thus making possible bypassing of the large cathode 
resistor, which would otherwise cause a high loss in gain due to degeneration.

By an analysis similar to that for the inverse-feedback pair, it can be 
shown that feedback reduces the cathode-circuit overshoot by the same 
factor as it reduces the coupling-circuit overshoot in the capacity-coupled 
feedback pair. This factor is given by Eq. (26), with Rg taken as infinite. 
Therefore, the factor by which the fractional overshoot is reduced is 
1 + (gmRiRt/Ri + Rt + R12).

Thus it is possible to design a direct-coupled feedback pair in which 
the cathode of the second stage is bypassed. This has the advantage over 
all other types of circuits considered here in that it eliminates the problem 
of grid current. Note, however, that it is restricted to the case where 
negative signals only are impressed upon the first grid of the pair; for 
amplifiers that must handle both positive and negative signals this type of 
circuit is useless.

Effect of Shunt Capacitance.—The shunt capacitance to ground always
present in coupling circuits has 
been neglected thus far because, in 
common EC-coupled circuits, its 
effect is only to slow up the leading 
and trailing edges of the pulse, 
since this capacitance must be 

C

Fig. 3-24.—Coupling circuit including shunt 
capacity.

Fig. 3'23.—Usual effect of 
shunt capacity.

charged before any voltage change takes place. Thus the usual effect of 
shunt capacitance is that shown in Fig. 3-23.

With some of the special circuits described here, such as the choke
coupled or feedback circuits, another effect of shunt capacitance may be 
present which leads to overshoots. This effect can occur in all circuits 
where the full voltage across the coupling condenser does not appear as a 
signal on the grid after the pulse but divides between several branches.

Consider the typical coupling circuit of Fig. 3-24, with shunt capaci
tances Ci and Ct. At the end of the pulse, before there is current flow in 
the resistors to bring about the distribution of voltages discussed in Sec. 
3-2, there will be a brief flow of current charging up the capacitances C, 
and C2. The voltage on the coupling condenser is thus divided between 
the grid and plate circuits inversely as the associated shunt capacitances.
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Fig. 3-25.—Spike often produced by shunt 
capacity.

Therefore the magnitude of the overshoot depends upon the ratio of the 
capacitances rather than on the ratio of the resistances, as was mentioned 
in Sec. 3-2. As current begins to flow through the resistors, however, the 
charge on these shunt capacitances changes, and the conditions of the 
previous analysis hold. The time required for this change to take place 
depends upon the time constants of the shunt capacitance and the load 
resistors.

The initial magnitude of the overshoot as caused by this shunt capaci
tance can differ considerably from the values obtained from the previous 
analysis. Thus for the case where R, is very much greater than R2 or for 
the analogous cases of choke coupling and inverse feedback, which depend 
for their effectiveness upon having only a small portion of the condenser 

voltage appearing on the grid, the 
actual initial overshoot may be con
siderably greater than would be 
expected from Table 3-1 or from 
Eqs. (23) or (27). This effect is of 
comparatively short duration, as 
the ratio of its time constant to that 
of the expected overshoot is equal 

to the ratio of the shunt capacitance to the coupling condenser. Thus 
it appears as a sharp spike at the beginning of the overshoot, as shown in 
Fig. 3-25.

This effect may be troublesome in cases where the circuit has been 
designed to have a negligible overshoot according to previous considera
tions. The spike may be enough larger than the overshoot to come 
through the amplifier as an appreciable signal. Because it depends to a 
large extent upon stray capacitances, the effect is difficult to track down 
experimentally. One obvious cure is to transfer the spike to the plate by 
loading the offending grid circuit with a small condenser; this changes 
the distribution of the coupling-condenser voltage between the plate and 
grid circuits.

3-4. Design Considerations.—In the design of a complete amplifier, 
the individual circuits are chosen and combined in order to give the desired 
over-all performance. Because of the serious overload problem, the main 
consideration is usually one of overshoots; however, there are also other 
factors that must be considered.

Recovery.—A strong signal passing through an amplifier produces over
shoots obscuring following signals. The amplifier is ready for normal 
operation only after these overshoots have decayed to a level less than the 
weakest signals handled by the amplifier. The recovery time of an 
amplifier can then be defined as the time required for the decay to occur 
after the strongest signal that the amplifier can handle.
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Overshoots that are reduced to negligible amplitude at the output 
terminals of the amplifier can still be damaging to recovery. Overshoots 
produced by long-time-constant circuits are often easily reduced to 
negligible magnitude by a short time constant later in the amplifier. 
However, if the overshoot attains a sufficient magnitude to overdrive 
any stage before it encounters the short time constant, it causes a varia
tion in gain of this stage over a period of time during this overshoot, even 
though the overshoot itself is later reduced to negligible amplitude. 
This condition is illustrated in Fig. 3-26, which shows a possible block 
diagram with waveforms of the last stages of an amplifier. The signal 
at the grid of the first of these stages has a long negative overshoot which 
has been produced by an earlier circuit. This overshoot effectively drives 
the grid negatively to a point below its normal operating level and holds 
it there for a considerable time. During this period the transconductance 
of the tube is below normal, and the gain of the stage for any signal occur-

Fig. 3-26.—Effect of long overshoot on recovery.

ring during this period is low. The output voltage of this stage is 
coupled to the output stage through a short-time-constant coupling, 
which produces an overshoot of short duration and eliminates the long 
overshoot. However, this does not help the recovery, which has been 
affected by the loss of gain of the previous stage during the overshoot. 
Thus, at the output of the amplifier, no long overshoot is visible, but poor 
recovery is indicated by the absence of noise immediately following the 
signal. (The output noise level is, of course, proportional to the gain of 
the amplifier because the input noise level is constant.)

Equation (5) shows that the amplitude of the overshoot produced by a 
coupling circuit is inversely proportional to the time constant of recovery. 
Thus for good recovery either the time constant can be made very long, 
producing an overshoot of negligible amplitude, or it can be made very 
short, producing an overshoot of comparatively large amplitude but 
decaying very rapidly. Both of these approaches must be used in the 
design of any amplifier. Between these possibilities lies one value of the 
time constant which gives the worst possible, result, as can be shown by 
considering the expression for the instantaneous value of the overshoot 
voltage

e = e T- (29)
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This equation assumes that there is only one circuit producing the over
shoot. If t is set equal to l„ the recovery time desired for a given ampli
fier, then differentiation of Eq. (29) shows that the overshoot at this time 
is a maximum for T = tr. Thus for good recovery the time constant 
should be chosen either very much greater or very much less than the 
desired recovery time.

If several overshoots are present in an amplifier, the recovery time of 
the amplifier is determined by the worst individual overshoot. Since all 
short time constants are made as short as possible, several equal short 
time constants are often found in amplifiers. The recovery is then longer 
than if only one short time constant were present but is of the same order 
of magnitude.

Closely related to the problem of recovery is the problem of the allow
able number of overshoots in a given amplifier. Since there is no possi
bility of eliminating overshoots completely, high-gain video amplifiers 
can be divided into two groups. Those amplifiers in which there is no 
secondary overshoot in the same direction as the original signal will be 
referred to as single-overshoot amplifiers. Those in which a secondary 
overshoot and further overshoots are present will be referred to as multi
ple-overshoot amplifiers. Whether or not a given amplifier should have 
single or multiple overshoots is determined by its application.

Single-overshoot Amplifiers.—Single-overshoot amplifiers have an 
advantage over multiple-overshoot amplifiers where the recovery time 
desired is of the same order of magnitude as the pulse length. Thus 
where extremely rapid recovery is necessary, the single-overshoot ampli
fier must be used, as it must also in applications where a secondary over
shoot appearing as a spurious signal would cause difficulty. In some cases 
it may be possible to eliminate the secondary overshoot in the output 
circuit, as discussed later in this section, but this may involve a sacrifice 
in recovery time.

There are several approaches to the design of a single-overshoot ampli
fier. The obvious method is to make one time constant short to give the 
desired recovery and low-frequency rejection, while all the other time 
constants are very long. Since it has been shown that a sufficiently long 
time constant cannot be obtained in the coupling circuit in the presence 
of grid current, it is necessary to prevent the charging of the coupling 
condenser by grid current either by “brute force” or by use of the special 
inverse-feedback-pair circuits previously described, coupled either 
capacitively or directly.

In the brute-force method of preventing grid current, the operating 
potentials of the stage are chosen so that the maximum output voltage of 
each stage having a positive output signal will not drive the succeeding 
stage into grid current.



Sec. 3-4] DESIGN CONSIDERATIONS 141

If the amplifier handles signals of only one polarity, the stages can be 
divided into two types: those driven by negative signals and those driven 
by positive signals. The maximum output voltage of a negatively driven 
stage is that produced by cutting off the tube; this is equal to the voltage 
drop in the load resistor. To keep this drop low, a tube that draws a 
relatively low plate current for a given gm should be used and the tube 
should be operated at a low bias. In order to obtain satisfactory amplifi
cation from the positively driven stage while operating it at a high bias, 
the tube used must be one having a reasonable value of transconductance 
at a high grid bias. Tubes of high power consumption such as the 6AG7 
must therefore be used. If the amplifier must handle both polarities 
of signals, high-current tubes must be used all the way through, with each 
tube operated at a bias and a current low enough to give a satisfactorily 
limited output. Because increasing bias and decreasing plate current 
tend to decrease the transconductance, the gain obtainable per stage in an 
amplifier required to handle both polarities of signals is considerably less 
than in an amplifier handling only one polarity.

The use of inverse-feedback pairs allows the use of common amplifier 
tubes operated at comparatively low current. This circuit permits a 
considerable saving in weight and power consumption over the brute
force circuit. Note, however, that this type of circuit is subject to the 
spike type of overshoot due to shunt capacitance described in Sec. 3-3. 
The brute-force circuit, where all the voltage across the coupling 
appears as overshoot across the grid, does not suffer from this effect. 
The inverse-feedback pair is restricted to circuits where only one polarity 
of signal is used, and a negative signal is applied to the first grid of the 
pair. For this type of amplifier, performance as good as that of the brute
force circuit can be obtained at a considerable saving of weight and power. 
For amplifiers required to handle both polarities of signals, the only 
approaches discussed here that can be used are (1) direct coupling and 
(2) the prevention of grid current by brute force.

Another possibility for an amplifier required to handle only one polar
ity of signal is the double short-time-constant circuit discussed in Sec. 3-3 
which eliminates the secondary overshoot by making use of grid current. 
Because there are two short time constants to reduce the overshoots 
produced in the previous circuits, the time constants of these circuits need 
not be so long as in amplifiers having only a single short time constant. 
Thus in this circuit a small amount of grid current is allowable in an early 
stage, since the overshoot produced can be rendered negligible by the 
two short time constants following. This possibility allows even further 
simplification of the amplifier than was obtainable with the use of inverse
feedback pairs and is particularly useful in low-voltage applications where 
the power supply does not permit the use of brute force, direct coupling, 
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or inverse feedback. However, the recovery of the double-short-time- 
constant circuit is generally not so good as that of circuits using only a 
single short time constant, inasmuch as there are two short time constants 
to determine the recovery, instead of one.1

Special circuits, such as the delay-line coupling circuit and germanium- 
crystal clippers, can be used to advantage in single-overshoot amplifiers. 
The delay-line circuit can be used in place of the short time constant; the 
germanium crystal can be used wherever a clipper can serve a useful pur
pose (see Sec. 3-3).

Multiple-overshoot Amplifiers.—For applications where multiple over
shoots are allowable and the desired recovery time is moderately long in 
comparison with the pulse length, a multiple-overshoot amplifier is the 
simplest solution. Simple EC-coupled circuits can be used with moder
ately short time constants in the coupling circuits. Grid current is 
allowable provided that the grid resistors are not more than twice the 
plate-load resistors, thus making the time constants for positive and 
negative signals approximately equal. Bypass and decoupling circuits 
can use much shorter time constants than are permitted in a single-over
shoot amplifier, since there are more short time constants in the amplifier 
to reduce the overshoots produced by these circuits. For some applica
tions the use of circuits more complicated than the simple EC-circuit is 
advantageous. The choke-coupled circuit previously described can be 
used to some advantage in a multiple-overshoot amplifier to obtain a high 
gain per stage. The smearer circuit can be used at some points to improve 
the recovery. Delay lines can be used in place of any or all short time 
constants with the improvement in recovery discussed in Sec. 3-3. They 
are, however, subject to the disadvantages also outlined in that section, 
mainly the one of low impedance, which reduces the gain available per 
stage. Recovery can also be improved by clipping overshoots with 
germanium crystals, also with a possible loss in gain.

As will be shown later in this section, multiple-overshoot amplifiers 
are much less subject to interference from microphonics and extraneous 
low-frequency signals than are single-overshoot amplifiers because of the 
greater low-frequency rejection afforded by the larger number of short 
time constants.

Output Circuits.—If the application for which a high-gain video 
amplifier is used requires that the output signal be viewed on an indicator, 
standard output circuits, such as have been described in Chap. 2, can be 

1 According to Eq. (19), it is possible to adjust the time constants of the double
short-time-constant circuit to eliminate the first term and obtain recovery equivalent 
to that of a single circuit. In actual practice the recovery is always worse than that of 
a single circuit because of the difficulty of exact compensation. Overcompensation is 
usually necessary to ensure that there be no secondary overshoot.
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used. However, there are many applications where the amplifier output 
is never viewed but is merely used as a trigger for some other circuit. For 
these applications, it is often advantageous to make the amplifier output 
circuit a trigger circuit of some sort.

The most common type of output trigger circuit is the multivibrator, 
one form of which is shown in Fig. 3-27. The various types of circuits, the 
types of waveform obtainable, and other features of the multivibrator are 
discussed elsewhere in this series.1 However, there are certain specific 
characteristics of these circuits, regarded as output circuits for high-gain 
video amplifiers, which will now be examined.

It is generally advantageous to trigger the multivibrator with a 
negative signal on the normally conducting tube; in this way the amplifi
cation of this tube is utilized. Furthermore, the multivibrator action 
can prevent the charging of the input coupling condenser by grid current. 
If there were no multivibrator action, the positive overshoot would drive 
the input grid into the positive region and charge the coupling condenser 
with grid current, thus producing 
a long secondary overshoot. The 
multivibrator action, however, 
causes a large negative pulse, hav
ing a duration determined by the 
constants of the circuit, to appear 
on this grid. If this pulse is greater 
in amplitude than the positive 
overshoot on the input signal, as 
may well be, the grid will remain 
negative, and no grid current will 
be drawn. Care must be taken, 
however, that the positive over
shoot is not greater than the nega
tive multivibrator pulse; otherwise the overshoot will serve as a trigger 
to the multivibrator, causing the pulse to end too soon.

If a multivibrator output circuit is used with a multiple-overshoot 
amplifier, it is often desirable to make the length of the multivibrator 
pulse slightly greater than the time required for all the overshoots follow
ing a strong signal to decay. There is then only one output signal for 
each input signal to the'amplifier, regardless of the number of overshoots 
produced in the amplifier. This eliminates the possibility of overshoots 
appearing as spurious signals and providing false triggers to later circuits.

One variation of this, circuit can be used in cases where the original 
pulse length is to be preserved, but all overshoots must be eliminated.

1 Vol. 19, Chap. 9, “Rectangular waveform generators,” of the Radiation Labora
tory Technical Series.
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In this case, the input signal to the grid of the normally conducting tube 
in the multivibrator is of positive sign, with a negative overshoot as shown 
in Fig. 3-28. The positive signal is amplified by the first tube, producing 
a negative signal which has no effect on the second tube, which is already 
nonconducting. The negative overshoot , however, is in the proper direc
tion to cause multivibrator action, and the resulting multivibrator pulse 
can be made sufficiently long to cover all the overshoots. If the output 
signal is taken from the plate of the first tube, the result is a negative 
signal followed by a large positive overshoot, equal in length to the dura
tion of the multivibrator pulse. If this overshoot is objectionable, it can 
be clipped by a diode.

Another special output circuit is shown in Fig. 3-29. It is used in 
amplifiers operating at a low voltage, where it is desirable to get a high- 

voltage output signal, usually considerably higher than the supply voltage. 
The output stage is a power-amplifier tube, operated to draw a high plate 
current through an inductive load. When a negative signal on the grid 
of this tube shuts off the current, a high voltage L di/dt is generated across 
the inductance; this can be many times greater than the supply voltage. 
It is also possible to combine this circuit with the multivibrator by using 
an inductive plate load in the tube that is normally conducting.

Microphonics and Low-frequency Interference.—In any amplifier that 
has a high gain in the audio range, extraneous signals may appear as the 
result of mechanical shock or vibration or of pickup from adjacent power 
equipment. The problem of reducing this effect to a negligible level is 
different for each individual amplifier, depending upon the performance 
requirements of the amplifier and the particular conditions producing 
extraneous signals under which the amplifier will be used. However, 
certain general approaches to the problems are applicable in all cases.
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Despite all precautions that may be taken to prevent extraneous 
signals from getting into the amplifier, it is almost certain that they will 
be present with sufficient amplitude to necessitate their removal by some 
sort of filtering in the amplifier. This filtering must be inserted at some 
point before the signals reach sufficient amplitude to cause variation in 
the transconductance of the tubes, as in the case of long overshoots dis
cussed at the beginning of this section. The simplest form of such a 
filter is the short time constant used in single-overshoot amplifiers, which

Frequency in cps
Fig. 3-30.—Attenuation vs. frequency for microphonie rejection circuits, (a) .RC-circuit, 

T = 10 /¿sec; (b) KC-circuit, T — 1 ,usec; (c) delay line, id = 1 jusec.

will reject low frequencies to a certain extent. This is shown in Fig. 
3-30, which plots attenuation vs. frequency for two values of the time 
constant. The shorter the time constant the better the low-frequency 
rejection; but if the time constant is too short relative to the pulse length, 
the pulse will drop sharply in amplitude during its length; this drop is 
generally undesirable. If several short time constant circuits are present 
in an amplifier, the low-frequency rejection is much better than with 
only one, but there are more overshoots. Thus, in the design of an 
amplifier using EC-coupling, the time constants are made as short as 
possible without making the pulse response unsatisfactory.

The delay-line grid circuit described above can be used to reject low 
frequencies. If the line is lossless, the reflected signal, for any low-fre
quency sine wave, is equal in amplitude and almost 180° out of phase with
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the original signal. Because of the phase delay introduced by the line, 
the cancellation is not complete. The cancellation can easily be cal
culated, since the resultant signal is the difference between two equal sine 
waves differing in phase by 2^}^, where / is the frequency and td is the 
delay of the reflected signal with respect to the original signal. The 
attenuation-vs.-frequency curve for the delay line is also plotted in Fig. 
3-30, showing that the low-frequency rejection of this circuit is very nearly 
equivalent to that of an RC-circuit having a time constant equal to td-

The choke-coupled circuit has particularly good low-frequency rejec
tion because it has two frequency-sensitive elements, the choke and the 
coupling condenser. It is roughly equivalent to two 7?C-circuits in 
cascade.

As was shown for the ease of long overshoots, it is insufficient merely 
to make the amplitude of low-frequency signals negligible at the output 
terminals of the receiver. The low-frequency rejection circuit must be 
inserted before the amplitude of the extraneous signals is large enough to 
change the transconductance of any tube.

The other approach to the problem of extraneous low-frequency signals 
is to prevent their occurrence initially. Interference brought in by the 
power supply can be reduced by inserting appropriate filters in the B-sup- 
ply and heater leads or in the power line. Stray pickup can be reduced by 
proper shielding and grounding. Microphonics can be reduced by shock
mounting the amplifier, particularly the first tube, and by using tubes 
that are less microphonia. The exact extent t o which these methods must 
be used and the amount of filtering necessary depend upon the relative 
difficulty that these schemes impose. Each amplifier presents an indi
vidual problem.

Pulse Stretching.—There are some applications for high-gain video 
amplifiers requiring that the pulse length be preserved in passing through 
the amplifier, regardless of signal strength. This problem is serious 
because of the large dynamic range of the amplifier. A signal that is 
several volts at the input terminal is repeatedly amplified and limited 
throughout the amplifier, thus the signal appearing at the output ter
minals is only that portion of the input pulse below the saturation level 
of the amplifier, i.e., about one-millionth of the original signal, amplified 
up to saturation level. The width of the output pulse is therefore the 
width of the input pulse measured at a point 120 db down. Therefore, 
any slope in the trailing edge of the pulse due to shunt capacitance, as 
shown in Fig. 3-23, results in stretching of a strong pulse after repeated 
amplification and limiting.

Pulse stretching can very easily be analyzed quantitatively if a few 
simplifying assumptions are made. Consider a pulse, such as that shown 
in Fig. 3-23, consisting of an exponential rise followed by an exponential
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decay, as might occur if a rectangular pulse were distorted by the presence 
of shunt capacitance in a single circuit, e.g., the amplifier input circuit. 
Assume that this pulse is applied to an extremely wide-band amplifier, 
which has a negligible effect on the slopes of the leading and trailing edges 
of the pulse and merely amplifies and limits the signal. The output signal 
of this amplifier is then applied to a device measuring the length cf 
the pulse at the level corresponding to the amplitude of the minimum 
usable signal, so that the portion of the signal above the minimum usable 
level is of no interest. Since the amplifier does not distort the portion of 
the pulse below this level, the apparent pulse length at the output ter
minals is equal to the length of the pulse at the input terminals, measured 
at the minimum usable level. The pulse therefore appears to be longer 
than its true length by an amount equal to the time required for the pulse 
to decay from full amplitude to the minimum usable level.

Since the decay is exponential, the expression for the signal voltage 
during the decay is given by

e. = Eae r, (30)

where T is the time constant of the circuit, and E„ is the pulse amplitude. 
This equation can be reduced to

20 login —
■ t

8.68 __ ,—y- = 53.6o, (31)

where b is the 3-db video bandwidth of an RC-circuit having a time con
stant T, b therefore being equal to 1/2tT.

If e, is taken as the minimum usable signal, the quantity 20 logi0 (E„/e,) 
is the signal amplitude expressed in decibels above the minimum usable 
level. Equation (31) shows that the ratio of this quantity to the pulse 
stretching caused by this signal is, for a given single-stage RC-coupled 
amplifier, a constant independent of the signal strength, depending only 
on the bandwidth of the amplifier. The ratio, expressed in decibels per 
microsecond, is often used to specify the pulse stretching for an amplifier.1

In an actual amplifier, the simplifying assumptions may not hold. 
The circuits within the amplifier may lengthen the decay time. Since 
limiting occurs between stages, using the over-all bandwidth of the ampli
fier as 6 in Eq. (31) does not give the correct result. The effects of each 
circuit cannot be considered individually, because the amount of pulse 
stretching produced by several circuits is not the sum of the stretching

1 When a square-law detector precedes the amplifier, as mentioned in Sec. 44, the 
value of the pulse stretching in decibels per microseconds for the receiver, consisting 
of the combination of detector and amplifier, is half that for the amplifier. In this 
chapter it is the value for the amplifier alone that is considered.
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produced by the individual circuits. Thus the exact calculation of the 
pulse stretching is somewhat complicated. However, the approximation 
of Eq. (31) is often adequate if cautiously interpreted.

The obvious method of reducing pulse stretching is by decreasing the 
rise time of the circuits causing it, i.e., increasing the bandwidth of the 
stages causing the pulse stretching. This method involves a certain 
sacrifice in gain per stage because the minimum shunt capacity is deter
mined by the wiring and tube interelectrode capacitances, and the only 
method of reducing the rise time is therefore the reduction of the load 
resistors ■with consequent loss of gain.

Another possible method of reducing pulse stretching is by introduc
tion of an overshoot early in the amplifier before appreciable limiting 
takes place. This method has the 
effect of making the signal cross 
the baseline at a definite point, 
as shown in Fig. 3-31, instead of 
approaching the baseline asymp
totically, as in the previous case. 
This means that the maximum 
amount of pulse stretching that

Fig. 3-31.—Stretching limited by over
shoot. overshoot.

can occur in the amplifier is the distance ab in Fig. 331, regardless of the 
amount of amplification and limiting following this point.

The use of pulse-length discrimination may in some cases impose a 
restriction on permissible fractional overshoot. One type of circuit fre
quently used in pulse-length discriminators is a limiter followed by an 
integrating circuit, which gives an output proportional to the area of the 
pulse which is, since the amplitude is limited, proportional to the pulse 
length. If there is an overshoot of small peak amplitude but long dura
tion present, its area may be sufficient to make it an appreciably large 
signal after integration, as shown in Fig. 3-32. In this case, therefore, 
precautions must be taken to ensure that long-time-constant overshoots 
are negligible, not only before integration but after integration as well.

3 .6. Small Amplifiers.—High-gain video amplifiers find considerable 
application in portable and airborne equipment, where space, weight, and 
power drain must be kept as low as possible. These requirements com
pletely change the design of the amplifier. Circuits are chosen not only 
for their performance but for their ability to make use of small components 
and to require a minimum of power.
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Types of Small Amplifiers.—The various applications of small ampli
fiers may be grouped into several general classes according to the power 
available for the amplifier. There are applications where sufficient power 
is available to meet the needs of any circuit chosen. The problem is then 
merely the design of a lightweight, compact amplifier, using tubes with 
a-c-operated heaters, operating at moderately high plate voltages and 
currents.

There are applications where the available power supply limits the 
plate current, the heater current, or both. In this case tubes with a-c 
heaters are again used, but they may have to be types selected for low 
heater drain, operated at lower plate current. It is quite possible that 
this type of amplifier may use more tubes than one in which B-supply 
current consumption is no consideration.

Where the only source of power is a storage battery or generator of 28 
volts, it is advantageous to design an amplifier that does not require a 
plate voltage higher than 28 volts, thus eliminating the need for dyna
motors, vibrators, or similar equipment. Here the primary concern is to 
obtain the desired gain and performance with a 28-volt B-supply, size 
and heater power being of secondary importance. The B-supply current, 
negligible in comparison with heater current, is of no concern.

For some portable applications, the only source of power available 
is dry batteries. Since the operating time of such equipment is inversely 
proportional to the power drain, it is important that the power drain be 
kept as low as possible. Filament-type tubes must be used wherever 
possible because of the enormous saving in power over tubes using indi
rectly heated cathodes.

Choice of Tubes.—In small amplifiers, the prime consideration in 
choosing tubes and circuits is gain rather than gain-bandwidth product, 
as in most other pulse amplifiers. The best tube is the one furnishing 
the most gain for a given space or power requirement. In many applica
tions, the only requirement on amplifier response is that the output 
waveform indicate the presence of signals, and no other information 
regarding the nature of such a signal is necessary. Thus very large dis
tortion of the pulse is allowable.

From this point of view it becomes evident that triodes are generally 
superior to pentodes for small amplifiers, despite the advantage of pen
todes in having a higher amplification factor. In order to utilize the high 
pentode amplification factor, high plate-load resistors must be used. 
Their use produces a high d-c voltage drop across the load resistor, thus 
necessitating the waste of considerable power and the use of high-wattage 
load and decoupling resistors. The use of the choke-coupled circuit to 
circumvent this problem introduces added complexity to the circuit and 
increases its size by adding the chokes, which may well be larger than the
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tubes used. By choosing suitable compromise values, an amplifier in 
which the gain per stage is higher than that obtainable with triodes can 4 
still be built using pentodes without excessive power consumption. How
ever, the use of twin-triode tubes makes possible a considerably higher 
gain per envelope than that obtainable with pentodes. Furthermore, the i 
elimination of the screen-dropping resistor and bypass condenser may i 
allow a considerable saving in size, especially where miniature and sub
miniature tubes are used, and the size of the amplifier may well be deter
mined more by the number and size of the other components than by the 
tubes. The screen-bypass condenser for the first tube in particular ' 
presents a serious problem since it must be fairly large to ensure good I 
recovery. ;

The main disadvantage of triodes for normal pulse amplifier use, j 
namely, the Miller effect, is of little significance for this type of amplifier.
Although the grid-plate capacitance appears across the input terminals ; 
multiplied by the gain of the stage, thus causing the input capacity of the |
stage to be unusually high, this merely has the effect of reducing the j
bandwidth, thereby slowing the pulse rise and fall time. With triodes I 
having low grid-plate capacitance, such as the 7F8 and 6J6, the rise time ;
is still fast enough for a 2-Msec pulse to reach a flat top, so that the Miller j,
effect does not reduce the pulse gain. A reduction in pulse gain may 
occur, however, for shorter pulses or with tubes such as the 6SN7 and j 
6SL7 having higher grid-plate capacitances. The coupling condenser i 
must be kept considerably larger than the equivalent input capacitance, 
since the two capacitances are effectively in series across the plate load 
and act as a capacitance voltage divider. If the coupling condenser is 
too small, a considerable portion of the signal is lost across it. There is, 1
therefore, a limitation on the shortest possible time constant that can be ;
used without loss of gain.

Choice of Circuit.—The choice of the circuit to be used for a small 
amplifier depends upon the size and power requirements and the desired 
recovery. Brute-force prevention of grid current, with large time con
stants for all circuits except one, is not suitable for a small amplifier 
because of the large components required. Inverse-feedback pairs, 
direct- or capacity-coupled, can be used for amplifiers using heater
cathode type tubes, with a high-voltage plate supply. Because of the 
absence of separate cathodes in filament-type tubes, direct coupling 
cannot be used for them. Neither type of inverse feedback can be used 
under low voltage conditions without excessive loss of gain. Thus, the 
double short time constant is the only scheme outlined here usable for a 
single overshoot amplifier having a low plate-supply voltage.

For multiple-overshoot amplifiers, straight RC-coupling is simplest 
and best. Choke coupling can be used, but the advantages scarcely 
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justify the added weight and size. 
28-volt power supply, more stages 
are necessary for a given gain than 
with heater-cathode type tubes 
operated with a high B-supply volt
age, because the transconductance 
of the latter is much higher.

For some special applications in 
which a high B-supply voltage of 
approximately 300 volts is available 
but the allowable current drain is 
low, a reduction of the current drain 
by a factor of 2 can be achieved by 
connecting the tubes in pairs in 
series across the B-supply, as shown 
in Fig. 3-33. For pulses, the pair 
represents an ordinary pair of 
amplifier stages, since the cathode 
of the second stage is effectively grounded by the large condenser C. 
For direct current, the two tubes are in series across the B supply. Thus 

In applications with a battery or

Fig. 3-33.—Series-fed circuit.

B+.

Fig. 3-34.—Series-fed direct-coupled inverse-feedback pairs.
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the voltage across each tube is half the B supply (150 volts, if the total is 
300), which is still enough for good amplification, whereas the current 
drawn from the supply for the two tubes is only the plate current of one 
tube. This same idea can be extended to the direct-coupled inverse-feed
back pair, as shown in Fig. 3-34.

The characteristics of the amplifier are not determined completely by 
the circuit diagram. As has been discussed previously, stray capacitance 
can play an important part in the pulse response of the amplifier. Even 
more important in small amplifiers is the possibility of stray feedback, 
which may have a peculiar effect on the pulse response of the amplifier; if 
there is enough feedback, the result is oscillation. These effects can be 
avoided by proper layout and by properly grounding all ground points. 
Techniques for improving stability are discussed elsewhere in this series 
in great detail.1 Briefly, the following points must be considered: The 
stages should be laid out in a line from input to output terminals; com
mon ground points on the chassis should not be used for several stages, 
heaters should be grounded to the chassis at points where there are no 
other connections. These points will be illustrated in Sec. 3-6.

3-6. Examples.—In this section, six amplifiers are described; these 
present a good cross section of the types of amplifiers that can be used. 
For convenience they are numbered from one to six and are referred to 
by number. A summary of the characteristics of these amplifiers is 
given in Table 3-4, which specifies the fidelity with which the pulse is 
reproduced, the recovery time for full sensitivity after a 1-volt signal, the

Table 3-2.—Summary of Amplifier Characteristics

No. Fidelity
Approximate 
recovery, ^sec

No. of 
over

shoots
Circuit Output 

circuit Tubes used Power 
required Size

1 Good 15 Single Brute 
force

Simple Large pen
todes

Considerable Large

2 Fair 30 Single Direct- 
coupled 
pairs

Multivi
brator

Submin. 
triodes

A-c heater low 
B drain

Tiny

3 Fair 30 Single Double 
short 
time con
stant

Choke Loktal twin
triode

28 volts Small

4 Poor 100 Multiple Straight 
RC

Special
28 volts

Loktal twin
triode

28 volts Small

5 Poor 100 Multiple Choke 
coupled

Smearer Miniature 
pentode

A-c heater low 
B drain

Small

6 Poor 100 Multiple Straight 
RC

Multivi
brator

Miniature 
twin
triode fila
ment type

Batteries Small

’ Cf. Chap. 8.
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number of overshoots, the type of circuit used, the type of output circuit 
used, the general class of tubes used, the power requirements, and the 
relative size.

Amplifier 1.—Figures 3 35 to 3-38 show a high-gain video amplifier 
using the brute-force single-overshoot circuit, consisting of six stages, 
three 6AC7’s and three 6AG7’s. The amplifier1 is designed for negative 
pulses of about 2 Msec, and holds pulse stretching2 to 120 db/Msec.

The stages of the amplifier are designed in pairs, a typical one of which 
is shown in Fig. 3-35. In order to drive the 6AG7 into grid current, the 
grid voltage must rise above the cathode potential. At zero grid bias the 
plate current of the 6AG7, as operated in this amplifier, is about 64 ma.

Fig. 3-35.—Typical pair of stages for amplifier No. 1.

Adding to this the zero-signal screen current of 6 ma, there is a total of 
70 ma flowing through the cathode resistor during a pulse that barely 
drives the amplifier into grid current. The cathode voltage is therefore 
0.070 X 160 = 11.2 volts. If no grid current is to be drawn, the signal 
on the grid of this tube must therefore be limited to less than 11.2 volts. 
The limited output voltage of the 6AC7 is 0.010 X 1100 = 11 volts, which 
is less than 11.2 volts and therefore does not drive the 6AG7 into grid 
current. In the circuit diagram of Fig. 3-36 the values are slightly differ
ent and indicate on the basis of the previous calculation that grid current 
will occur. Actually, there are some discrepancies in the tube char
acteristics, which make the circuit of Fig. 3-36 practical without the draw
ing of grid current.

The time constants of all circuits are long except for that of the cou
pling circuit between the fourth and fifth stages, which is made short to

1 M. F. Crouch, “The Design of High-gain Video Amplifiers for Pulse Recep
tion,” Radiation Laboratory Internal Group Report 61-7/14/43, pp. 29-31.

2 60 db/^sec for a receiver consisting of a square-law detector preceding an ampli
fier of this type.
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introduce a single overshoot and to reduce microphonics. Because the 
application requires that there be a sag of not more than 20 per cent in a 
2-gsec pulse, a time constant of 10 gsec is used for this circuit. Since the 
signal on this grid is negative, the overshoot produced drives the tube 
into grid current, thus shortening the time constant of recovery for this 
circuit.

Cathodes are left unbypassed, except for the small condensers used for 
high-frequency peaking in the second and fourth stages. The screen 
bypass condensers are returned to the cathodes rather than to ground so 
that the signal component of the screen current may not flow through the 
cathode resistor and produce added degeneration. The degeneration is> 
kept as low as possible by the use of small cathode resistors.

Fia. 3 37.—Layout oi amplifier No. 1.

To ensure that the pulse stretching be held to 120 db/Msec, the band
width of the amplifier, according to Eq. (31), must be about 2 Mc/sec, 
which is the actual case.

The layout of the amplifier is straightforward and is shown clearly 
in Fig. 3 37. The row of condensers nearer the tubes are the screen bypass 
condensers, the others being decoupling condensers. Of particular impor
tance are the ground connections. There are three ground points for 
each tube, connected to pins 1, 2, and 3 of the tubes. For the 6AC7 these 
correspond to the shell, heater, and suppressor. For the 6AG7 these are 
the shell and suppressor, heater, and internal shield. In general, to 
ensure stability all circuit grounds should be connected to the suppressor 
pin and none to the heater. In this case, it has been found permissible 
to violate this principle to a small extent by returning the cathode circuit 
to the heater pin. Any further violation of this principle will definitely 
cause trouble. In the form of Fig. 3-37 the amplifier is stable with a small 
cover over the circuits of the first tube and the remainder of the amplifier 
open. For convenience, a cover fitting the entire amplifier is used.
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To reduce microphonics the first tube is shock-mounted. The leads to 
this tube, as shown in Fig. 3-37, are not connected to the socket itself but 
to tie points mounted on a bakelite ring, which are connected by flexible 
leads to the shock-mounted tube.

The amplifier requires an electronically regulated power supply fur
nishing 120 ma at 300 volts. Filtering in the heater line is necessary to 
prevent transients on the power line from being picked up within the 
amplifier and being amplified as signals.

Figure 3-38 shows the top view of the chassis of this amplifier, showing 
the large condensers used for screen bypass and decoupling.

Amplifier 2.—Figures 3-39 to 3-41 show a small amplifier made of 
subminiature tubes in a circuit of direct-coupled inverse-feedback pairs

Fig. 3-38.—Amplifier No. 1.

with a multivibrator output circuit. The inverse-feedback pairs are 
designed as described in Sec. 3-3. The last two tubes form a multivibrator 
which is triggered by the negative signal appearing on the grid. The 
short time constant for the elimination of long overshoots and low-fre
quency interference is the 1-Msec coupling time constant in the multi
vibrator, determined by 50 ppi and 20,000 ohms. In addition, the time 
constant in the grid circuit of the first tube of the multivibrator is shorter 
than is apparent, since the 1-megohm grid resistor is shunted by the 
conductance of the grid, which is normally positive.

Overshoots from other sources are minimized by the use of direct 
coupling to the positively driven' stages and of long time constants in the 
negatively driven stages. Decoupling has been eliminated, as the ampli
fier is quite stable if the B-supply impedance is low. This low impedance 
can generally be achieved by using a condenser of moderate size (between 
0.1 and 1 pi) across the supply. The circuit diagram for this amplifier is 
shown in Fig. 3-39,
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The unique feature of this amplifier is the small size obtained by the 
use of subminiature tubes. The «details of layout and construction are 
shown in Figs. 3-40 and 3-41. The tube clamps are mounted on a bake
lite strip, along with turret lugs, which are used for all connections. Slots 
are put into the strip to allow for the mounting of the postage-stamp-

size 0.01-gf condensers. The power leads are strips of copper foil run
ning along the back side of the strip, as shown in Fig. 3-40a, the upper strip 
being the B bus and the bottom strip being the heater bus. This arrange
ment serves the purpose of keeping the power leads close to the chassis, 
out of the way, and avoids congestion of leads. The strips are distant 
from circuit components and, having high capacity to ground and low 

Fig. 3-40g.—Back of mounting strip. Fig. 3-405.—Front of mounting strip.

inductance, are not so likely to cause feedback trouble as are ordinary 
wire leads.

The strip is mounted in the chassis, a similar bakelite strip being used 
to insulate the copper strips from the chassis. All connections are made 
to the turret-lug terminals on the strip, except for ground connections, 
which are made to turret lugs mounted directly into the chassis below the 
strip. There is a separate ground lug for each stage, plus other ground 
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lugs where the heaters are grounded. Some lugs serve as grounds for two 
heaters; others for one, depending upon convenience, but no lug is used 
both for heaters and for other circuits. With the precaution of separate

grounds and the copper strip as the heater lead, there is no need for further 
filtering of the heater current.

Amplifier 3.—Figure 3-42 shows an amplifier circuit that operates 
from a 28-volt supply. Because the double-short-time-constant circuit 
is used, there is only a single overshoot. The type 7F8 twin triode is used 
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for all stages except the output and performs quite well with a plate sup
ply of only 28 volts, although the gain per stage is naturally not so high as 
it would be with a higher plate voltage. Six stages of amplification are 
required before the output stage.

The amplifier is designed for a negative input signal. The two short 
time constants are in the fourth and sixth grid circuits, with all other 
time constants made very long. The time constant in the sixth grid cir
cuit is short when grid current is drawn but increases to 16 ^sec during the 
overshoot. (For strong signals triodes 3 and 5 are cut off, and their plate 
resistance is then infinite.) The time constant in the fourth stage is about 
2 Msec. Thus, in Eq. (19), Tk is 2 Msec, Tn is 13.5 Msec, and T2a is very 
short. This circuit clearly meets the condition for no secondary over
shoot, namely, that Tn be greater than the sum of T2a and T2, with a con
siderable factor of safety.

Fig. 3*43.—Block diagram of amplifier No. 4.

The recovery of the amplifier after strong signals is therefore gov
erned by the 16-Msec time constant. Since this coupling circuit occurs in 
the sixth stage after considerable limiting has taken place, the recovery is 
acceptable for most applications.

The overload problem in general is not so severe in 28-volt amplifiers 
as in those having a high plate voltage. Since the maximum possible 
signal that can appear upon any plate is about 10 volts instead of 100, 
an improvement of 20 db is automatically present.

The output circuit used is the one previously described in Sec. 3-4. 
The tube used is the twin pentode 28D7, which can draw a fairly heavy 
current with only 28 volts on the plate and screen.

The layout of this amplifier is not shown but is quite straightforward. 
The tubes are laid out in a line from input to output. The general 
placement of components is similar to that of Amplifier No. 4, as illus
trated in Fig. 3-456, except that the added complications of folding the 
strip back on itself and of using twin input circuits are not necessary.

Amplifier 4.—The amplifier shown in Figs. 3-43 to 3-45 is also designed 
to operate from a 28-volt power supply. The special requirement for
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this amplifier is that signals from either of two input channels, with 
opposite signs of input signal, cause the amplifier to furnish a 12-volt 
trigger into a 95-ohm cable. The exact nature of this amplifier can be 
understood from the block diagram of Fig. 3-43. In order to get the 
necessary relative inversion, the two input channels are mixed after one 
stage of amplification for the positive signal and two stages for the nega
tive. This mixing stage is followed by four stages of amplification and a 
multivibrator. In parallel with the normally conducting tube of the 
multivibrator, except for the plate circuit, is a driver stage using the 
high-voltage output circuit described in Sec. 3-4. The large output pulse 
is used to drive a cathode-follower output stage. Considerable output is 
obtained by use of type 28D7 twin-beam power-amplifier tubes as the 
driver and the cathode follower. The 7F8 twin triode, although not 
designed for 28-volt operation, performs well as an amplifier under this 
condition and is used for all stages except the output.

The circuit shown in Fig. 3-44 is one of straight BC-coupling with 
multiple overshoot. The time constants are chosen to make the recovery 
as rapid as possible. Short time constants are introduced into the ampli
fier as late as possible, so that the signal is limited before reaching these 
circuits and produces smaller overshoots. However, it is important that 
long overshoots do not reach sufficient amplitude to drive tubes into grid 
current. Hence, the short time constants are used in the coupling circuits 
of the first negatively driven stages, where the long positive overshoot 
would drive into grid current.

The time constants in the early stages are all made long. The problem 
of grid current is disregarded in the first positively driven stage (the 
maximum possible signal is still so small that any overshoot produced by 
grid current is made negligible by the short time constants following). 
The following stage, however, although negatively driven, is driven into 
grid current by the long overshoot. Since this would produce an 
extremely long paralysis of the amplifier, a short time constant is used for 
coupling at this point. The next stage is driven into grid current by the 
signal; hence the grid resistor is made approximately equal to the plate 
resistor to prevent a long recovery. The coupling condenser is made as 
large as possible (0.01 ni) to reduce the amplitude of the overshoot pro
duced here to a minimum. At the output of this stage, the long over
shoot has been amplified to a level where it is again troublesome, and 
another short-time-constant coupling is inserted. The time constant of 
coupling into the multivibrator is long, but the grid resistor is kept low 
because the requirements of the multivibrator, which is a straightforward 
circuit. All decoupling-circuit time constants are large; thus there are 
only two short time constants in the circuit.

The layout of this amplifier presents a peculiar problem because the
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space requirements do not permit the use of a narrow strip. The lay
out as shown in Fig. 3-45 solves the problem.

Figure 3-45a is a diagram showing the pin numbers of the tubes and 
numbering them for identification, and Fig. 3-45b is a photograph of the

Fig. 3’45a.—Layout of amplifier No. 4.

Fig. 3-45i>.—Photograph of layout of amplifier No. 4.

layout. The functions of the tubes, as numbered in Fig. 3-45a are as 
follows:

Triodes Vu and Vn are the first two stages of amplification in the 
negative signal channel, the input lead coming in from a connector on 
top of the chassis, located at the center of Tubes Vi, Vz, V3, and Vg. This 
connector is obscured by the parts covering it, but the input coupling 
condenser can be seen running alongside Tube V i, next to the large decou
pling condenser.
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Triode Vn is the input stage for the positive signal channel, the input 
connector being clearly visible on the front panel in front of Tube Vj.

The two channels are mixed at the plate of V2a, and the following four 
stages of amplification are Triodes U2i,, V^, V&, and V

Beam-power Tube V5» and Triode V« form the multivibrator, V6a 
being the normally conducting tube; Tube V5b is the driver, and Tube 6, 
both halves connected in parallel, is the cathode follower.

The input and high-level amplifier stages are at opposite corners of 
the amplifier. Although the output stage is next to the input, the feed
back loop is broken by the normally nonconducting half of the multi
vibrator. Therefore, there is no transmission of signal around the loop,

+300 v

Fig. 3-46.—Amplifier No. 5.

except immediately after a signal, when the recovery time of the multi
vibrator prevents continuous ring-around. Stray feedback is reduced still 
more by the 0.05-Mf decoupling condensers, which, standing on their sides, 
act as interstage shields, since they are at ground potential for pulses.

One difficulty encountered when 28D7 tubes are used is their heater 
power requirement of 11.2 watts. This requirement means that unless 
proper precautions are taken, there will be a considerable temperature rise 
in any equipment using these tubes. With the amplifier enclosed in a 
metal box with no ventilation, the temperature at points in the chassis 
rises to above 90°C. The maximum temperature can be reduced by 
providing for ventilation by making holes in the box and installing a fan.

Amplifier 5.—Figure 3-46 shows the circuit diagram of an amplifier 
using miniature pentodes with the choke-coupled circuit. This amplifier 
was designed to get the most gain from the fewest tubes with a recovery 
time of 100 Msec. For this reason the 6AK5-pentode choke-coupled 
circuit was chosen. For most purposes, this amplifier is inferior to one 
that could be designed using twin triodes, such as the miniature 6J6 or the 
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loktal 7F8. This is because the twin triodes, even with less gain per 
stage, permit more gain per envelope and also permit elimination of the 
chokes, which in this case occupy more space than the tubes. Further
more, the power consumption of the triodes can be reduced, with a reason
able gain being maintained, by using high load resistors.

The chokes chosen for this amplifier, 85 mh, represent the largest 
readily available air-core chokes. The coupling condensers are not criti
cal so long as the circuit is more than critically damped. The load 
resistors are chosen to give a gain of 40 db per stage, so that the over-all 
gain is about 120 db.

To keep the amplifier stable, extreme care is required in layout and 
grounding, because of the high gain in so small a space. To avoid

Fig. 3-47.—Amplifier No. 6.

instability, a small condenser (100 pul) is necessary to bypass the screen 
of the first tube to its cathode directly at the tube socket. The heaters 
must be grounded properly, and heater chokes are required.

To remove the necessary overshoot in the output of the third ampli
fier stage, a smearer is used. Any triode is suitable for the purpose. 
In this case a 6SL7 is used, simply because the other half of the tube is in 
use elsewhere in the equipment.

Amplifier 6.—Figure 3'47 shows the circuit diagram of an amplifier 
designed to operate from a battery supply for portable use. In this type 
of application, an enormous saving in heater power is realized by use of 
filament-type tubes, such as the 3A5 twin triode and the 1L4 pentode. 
Because there is no cathode in these tubes to isolate the filament supply 
from the signal path, the filament circuit is much more critical than it is in 
amplifiers using tubes with indirectly heated cathodes.

Because the filament carries signal current, the filtering of the filament 
circuit is very critical. A large condenser, about 25 gf, is generally 
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necessary across the filament of the first tube in order to ensure stability. 
With proper care in layout and grounding and separate filament-voltage 
dropping resistors for each stage, the 25-pf filament condenser should be 
sufficient for stability. However, the 25-af condenser alone would not 
be sufficient to eliminate low-frequency interference that could enter the 
amplifier through the filament circuit if a vibrator or dynamotor were 
used. For this purpose a series iron-core choke of low d-c resistance 
would be required.

Except for the filament circuit, the amplifier is quite straightforward, 
up to the multivibrator. Since there are two short 9-Msec time constants 
in the. latter stages, the long time constants in the first few stages need 
not be very long. Thus the time constant between the first two stages is 
about 1000 Msec, and that between the second and third is about the same, 
depending upon the signal level that determines the plate resistance. 
The amplifier is designed for a positive input signal; hence the input 
to the third stage is positive, and the grid resistor must be less than the 
plate resistor to prevent blocking by grid current. To make the time 
constant sufficiently large a condenser larger than that between the first 
two stages is required at this point. The next two stages have short 
time constants, 9 Msec, and low grid resistors, to prevent blocking by 
grid current.

The sixth stage is the conducting half of a multivibrator, triggered 
by the negative input signal. This stage is d-c coupled to the normally 
nonconducting tube of the multivibrator. Because of the very wide 
variation in the cutoff characteristics of the 3A5 tube, a 1L4 is used 
triode-connected, with its bias set by the 1006 potentiometer in the grid 
circuit. This controls the firing level of the multivibrator and is generally 
set so that the triggering by noise is sufficiently infrequent.

Multivibrator operation is not so reliable when using these filament
type tubes as it is for heater-type tubes. In particular, all impedances 
when the tubes are conducting are considerably higher than for corre
sponding heater-type tubes. Also, because of the absence of cathodes, 
cathode coupling is impossible. For this reason, d-c coupling is necessary 
in the multivibrator to ensure good recovery. In addition an extra tube 
is necessary to prevent overshoots and extraneous signals from turning 
the gate off too soon. This prevention of overshoots is accomplished by 
connecting the plate of a tube to the plate of the stage that drives the 
multivibrator. This tube is normally biased off but is d-c coupled to the 
plate of the normally conducting stage of the multivibrator. When 
the multivibrator fires, the positive gate is impressed upon this tube, 
rendering it conducting. This loads the fifth amplifier stage heavily so 
that no signals or overshoots pass this point during the duration of the 
gate.



CHAPTER 4

SYNCHRONOUS AND STAGGERED SINGLE-TUNED 
HIGH-FREQUENCY BANDPASS AMPLIFIERS

By Henry Wallman

4-1. Introduction.1—Typical of the wide-band bandpass amplifiers 
to be discussed in Chaps. 4 to 8 of this volume are amplifiers 2 Mc/sec 
wide at 30 Mc/sec of 110-db gain, 16 Mc/sec wide at 16 Mc/sec of 80-db 
gain, and 20 Mc/sec wide at 200 Mc/sec of 100-db gain.

The design of amplifiers of this type poses two main problems:

1. The theory of the interstage coupling elements needed to achieve 
such bandwidths and gains.

2. The practical questions of obtaining freedom from regeneration.

This chapter contains a detailed discussion of two schemes of inter
stage coupling; other schemes are considered in Chaps. 5 and 6. Chapter 
7 contains comparisons of the various amplifier-design methods and con
siderations of transient response, and Chap. 8 discusses measurement and 
alignment procedures, and means of avoiding regeneration.

Although Chap. 7 contains a fairly extended treatment of the repro
duction of pulses of a carrier frequency, the questions principally analyzed 
in Chaps. 4 to 6 are those involved in the design of amplifiers of large 
steady-state bandwidths. The reasons for placing the main emphasis on 
steady-state rather than transient-response considerations are the 
following:

1. For a tube type of given gm and C, speed of response is cut in half when 
one goes from a low-pass circuit to its centered bandpass analogue, 
because of the double-sideband nature of carrier-frequency signals. 
Thus when 6AK5’s are used in a bandpass amplifier that uses a 
single-tuned circuit (which is the bandpass analogue of RC-cou- 
pling), the gain/rise time ratio is only 100/Msec instead of 200/ms6c 
as in the low-pass case (see Sec. 2-2).

2. The circuits that are practical in bandpass amplifiers have to 
be much simpler and consequently less efficient than the bandpass 
analogues of the high-speed, low-overshoot circuits of Chap. 2. 
Thus the bandpass analogue of the four-terminal linear-phase net-

'This chapter is based on Radiation Laboratory Report 524, "Stagger-tuned IF 
Amplifiers,” Feb. 1944, by Henry Wallman.
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Fig. 41.—Bandpass analogue of four- 
terminal linear-phase network. Each of 
the inductors (capacitors) has to be tuned 
with its associated capacitor (inductor) to 
the desired band center.

work (Fig. 1-26), although entirely possible in theory, is quite 
unreasonable in practice, as Fig. 41 shows.

3. Because of reasons 1 and 2 and the gm/C limitations of present tube 
types, it is necessary in high-gain carrier-frequency pulse amplifiers 
to accept fairly large overshoots (10 per cent or more) in order to 
achieve rise times as short 
as Msec. Fortunately for 
radar applications, such over
shoots are tolerable.

4. With the variabi ity in tube 
capacities permitted by the 
present JAN specifications, 
the tuning changes caused by 
replacing tubes make it point
less to design a bandpass 
interstage network for the 
utmost performance with re

to small overshoot.

[For applications requiring 
carrier-frequency pulse amplifiers 
having high gain (106 or more), fast rise time (A Msec or less), and very 
small overshoot (1 or 2 per cent), it will be necessary to have tube-types of 
better gm/C ratio than the type 6AK5 and/or circuits accurately adjusted 
to the capacities of the individual tubes in use.]

The Different Interstage-coupling Schemes.—The most common types 
of interstage coupling methods are

1. Synchronous single-tuned.
2. Stagger-tuned.
3. Double-tuned (including stagger-damped).
4. Inverse feedback.

Each of these types has its advantages and disadvantages with 
respect to

1. Efficiency, i.e., gain-bandwidth product.
2. Constructional simplicity.
3. Noncriticalness of adjustment.
4. Ease of gain control and gain stability.

These various characteristics will be examined for each of the types.
Roughly speaking it can be said that the synchronous single-tuned 

scheme can be put in one class of maximum simplicity and minimum 
efficiency, whereas the other types are in another class having greater 
complication but also considerably greater efficiency.
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The coupling schemes to which this chapter is devoted are those 
of the synchronous single-tuned amplifier and the stagger-tuned amplifier.

Double-tuned circuits are discussed in Chap. 5 and inverse feedback 
in Chap. 6.

4-2. One Single-tuned Circuit.

Fig. 4-2.—A-c diagram of single-tuned 
amplifier stage.

shunt loss resistance of L and C).

The Equation.—If d-c returns are 
neglected, the diagram of a single
tuned amplifier stage is as shown in 
Fig. 4-2, where C is the total circuit 
capacity (the output capacity of T i 
plus the input capacity of T2 plus 
the wiring capacity) and R is the 
total circuit resistance (the parallel 
resistance of the load resistor, the 
plate resistance of Ti, the input re
sistance of Ti, and the equivalent 
he impedance is found to be

where

Z(f) = R-------  
d + j

/ ~ _____ _____
O VLC)

(1)

is the resonant frequency or band center and

1 _ 1 2ir/oL _ 1 IL
2irf0RC Q R R\C

is the dissipation factor (the reciprocal of the Q).
If the transconductance of Ti is gm, the voltage gain from the grid of 

Ti to the grid of Ti is
9 = gmR (2)

at band center and

g~Z(f) (3)

as a function of frequency. The gain is a maximum at band center, and 
this maximum gain will be denoted by g.

Geometric Symmetry.—The complex function in Eq. (1) displays 
“geometric symmetry”; i.e., for any two frequencies f and having 
fa as their geometric mean, the absolute values are equal and the phase 
angles opposite in sign.
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Bandwidth.—Throughout Chaps. 4 to 8 of this book, “bandwidth” is 
denoted by ffi and means full 3-db bandwidth, i.e., the bandwidth included 
between the left and right half-power or 0.707-voltage points.

The reasons for this choice of 3-db bandwidth are first that the 
mathematics is easier and second that the noise bandwidth1 is, except for 
a single single-tuned stage, quite accurately equal to the 3-db bandwidth.2

From Eq. (1) it follows that a 3-db point / — J occurs where 

or, substituting d = l/(2xr/0EC), where

j _ Q = 1.
J / 2rrRC

Because of the geometric symmetry about /o the other 3-db point is 
f/3; hence the bandwidth is

® = 2^RC (4)

Thus, the bandwidth of the circuit of Fig. 4-2 is independent of the center 
frequency.

Another consequence of Eq. (4) is

, _ bandwidth _ ® 
band center /0

Approximate Form; Arithmetic Symmetry.—One may write

/ _ h = f ~ fl = (f+f^f-h) 
h f ffo fh *

1 The noise bandwidth of an amplifier, the B in the noise power formula kTB, is 
the w’idth of an idealized bandpass filter having the same total area as that under the 
power-vs.-frequency curve of the amplifier and having the same peak value. For 
synchronous single-tuned amplifiers the ratio of noise bandwidth to 3-db bandwidth is 
1.57, 1.122, 1.155, M3, 1.11, 1.10, . . , 1.06, for 1, 2, 3, 4, 5, 6, . . . , « stages, and
for a single staggered n-uple (l/\/ (1 + x2n) voltage curve) the ratio is 1.11, 1.05, 
1.025, 1.02, 1.01, . . . , 1.00 for n = 2, 3, 4, 5, 6, . . . ,

2 In addition there is the following fact about transient response and bandwidth: 
For a large variety of common coupling arrangements, e.g. one, two, or infinitely many 
synchronous single-tuned circuits, one or two transitionally coupled double-tuned 
circuits, a transitionally coupled triple-tuned circuit, etc., the rise time is very closely 
a certain fixed constant (namely, 0.7) times the reciprocal of the 3-db bandwidth. 
Rise time here denotes the time for the step-function response to go from 10 to 90 per 
cent of its steady-state value (see Fig. 7-7).
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Now for values of / close to Jo it is approximately true that (/ + /»)// = 2; 
hence

L - h ~ o, f — 
fo f h '

For circuits whose bandwidth is small compared with the resonant 
frequency, i.e., low-dissipation circuits, a good approximation to the right 
side of Eq. (1) is therefore

O d 
d+j2^

Jo
or, using Eq. (5),

Z(/,“sfs+Xw- <’>

In contrast to the right side of Eq. (1), Expression (6) displays 
“arithmetic symmetry,” i.e., for any two frequencies f and 2/0 — /

Z (ft

Fig. 4-3.—Resonance curve of single-tuned circuit.

having /0 as their arithmetic mean the absolute values are equal and the 
phase angles opposite in sign (see Fig. 4-3).

It is true of the approximation in Expression (6), as of the exact 
form in Eq. (1), that

2tRC

The exact form of Eq. (1) would, of course, show arithmetic sym
metry if plotted on a logarithmic frequency scale.

Denoting f — f0 in Expression (6) by x, so that x represents frequency 
off resonance, Expression (6) is proportional to
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Taking ® = 2 yields the normalized selectivity function of a single-tuned 
circuit

1
1 + jx 

whose absolute value
1

V1 +r!
is shown in Fig. 4-4.

4-3. Amplifier Figures of Merit. Gain-bandwidth (g®) Product for a
Single Stage.—The evident figure of merit for a one-stage amplifier is the

product of voltage gain at band center by bandwidth.1 For any given 
circuit configuration it is always possible to increase the bandwidth at the 
cost of a proportionate reduction in gain, thereby preserving the product 
of gain and bandwidth. This fact follows from the impedance-level 
transformation applied to the given circuit, which consists of multiplying 
the value of each of its resistances by a factor k, leaving the capacity 
values unaltered, and multiplying the value of each inductance by k2. 
It is not hard to see that the impedance at any frequency f is k times 
the impedance of the original network at frequency kf; hence the gain 
at each frequency is multiplied by k, and the bandwidth divided by k.

1 On a steady-state basis; on a transient basis the appropriate criterion is gain/rise 
time (see Chap. 2). Sometimes the amplifier designer is concerned with steady-state 
behavior (wide-band amplifiers), sometimes with transient behavior (fast amplifiers). 
Fortunately, as previously mentioned, for the more common interstage circuits the 
product of bandwidth and rise time is approximately independent of the particular 
coupling circuit employed. Rise time is, however, not the only index of transient 
response; the percentage of overshoot is also very important. A full characterization 
of transient response can be given only by a graph such as that of the step-function 
response (see Fig. 7-7).
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g® Product and g® Factor for One Single-tuned Stage.—From Eqs. (2) 
and (4) it follows that the gain-bandwidth product for one single-tuned 
stage is1 1

S® = fe- (8) j

In order to focus attention on the circuit rather than on the tube the :
g® product will be normalized by expressing it in units of g„/(2irC); so '
normalized this quantity will be called the g® “factor.” Thus, Eq. (8) 
is equivalent to the statement for one single-tuned stage that

g® factor =1. (9)

g® Product for Mult 'stage Amplifiers.—When dealing with an n-stage 
amplifier, the appropriate figure of merit is not over-all gain2 times 
over-all bandwidth, but rather

(Over-all gain)1'" X over-all bandwidth.

As before, one can show that for a given scheme of interstage coupling 
this product is constant, whether the over-all bandwidth is large or small.

The following notation will therefore be adopted: whenever one 
speaks of the “g® product” of an n-stage amplifier, the g will denote 
the nth root of the over-all gain and the ffi will denote the over-all band
width. Further, the “g® factor” will mean the g® product expressed 
in units of g„J2rC.

It is sometimes convenient to give the name “mean stage gain” to 
the nth root of over-all gain.

44. Cascaded Synchronous Single-tuned Circuits.—The g® Factor for 
Synchronous Single-tuned Amplifiers.—If n identical single-tuned stages 
with selectivity functions 1/(1 + jx) (see Fig. 4-4) are cascaded, the 
over-all selectivity function is 

because of the isolating action of the tubes, and the over-all bandwidth, 
derived by setting the absolute value of Expression (10) equal to l/-\/2, is

Over-all bandwidth = one-stage bandwidth X v/(21/’‘ — 1).

For n > la good approximation to 21'” — 1 is (In 2)/n, from the power 
series expansion of 21/n; moreover l/-\/ln2 = 1.2 very closely; hence

1 Note that Eq. (8) is independent of frequency; for a given gain it is no easier to 
get a wide bandwidth at a high frequency than at a low.

2 “Gain” always means voltage gain at the center of the over-all pass band.
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one may write
,, , , . one-stage bandwidthOver-all bandwidth = ----------------------------- (approx.).

Therefore, for an amplifier of cascaded synchronous single-tuned circuits,

g® factor =
1

1.2 y/ n
(approx.). (11)

Equation (11) approaches zero as n increases, and the rapidity with 
which it approaches zero represents the principal weakness of syn
chronous single tuning.

Table 4-1.—Shrinking of Over-all Bandwidth in a Synchrono rs Single-tuned 
Amplifier

n ViS17” — 1) (exact)
1 , X(approx.)

1.2 v^-

1 1.00
2 0.64 0.59
3 0.51 0.48
4 0.44 0.42
5 0.39 0.37
6 0.35 0.34
7 0.32 0.32
8 0.30 0.29
9 0.28 0.28

Table 4-1 shows, for example, that if a nine-stage synchronous single
tuned amplifier is to have an over-all bandwidth of 4 Mc/sec, then each 
individual stage must be 4/0.28 = 14.3 Mc/sec wide. Further, assuming 
gm/2TcC = 57.3 Mc/sec, as for 6AC7’s with gm = 9000 pmhos and 
C = 25 ppi, the g® product is, from Eq. (11), only

16 Mc/sec — 0.28 X 57.3 Mc/sec;

hence the stage gain is only 4.
Maximum Bandwidth Possible at a Given Over-all Gain. —The circum

stance that the g® factor tends to zero implies that there is a maximum 
bandwidth for cascaded amplifiers of a given over-all gain and employing 
a given tube type no matter how many stages are permitted.1

For synchronous single-tuned stages the maximum bandwidth occurs 
when the gain per stage is V« (= 4.34 db), and the use of any larger 
number of stages yields only a smaller over-all bandwidth. This state-

1 This theorem appears to have been first noted by Alan Hazeltine, “Discussion on 
‘The Shielded Neutrodyne Receiver,’ by Dreyer and Manson,” Proc. I.R.E., 14, 395
412, (1926), particularly p. 406. The author is indebted to Mr. H. A. Wheeler for 
this reference-
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ment is proved as follows: Denote by g the required over-all gain, so 
that for an n-stage cascaded amplifier the stage gain is g1/n; denote by 
®(n) the over-all bandwidth of the n-stage amplifier; the problem is to 
find the value of n maximizing ffl(n).

From Eq. (11) one has

S!/’®W = (12)
2ttC 1.2 v n

or
f . Qm 1®(n) = ~------------ -7=.-----

2irC 1.2 x/n gV’

Setting (d/dn)®(n) = 0 shows that ®(n) is a maximum for n = 2 In g, 
or g1/o = V« = 4.34 db, completing the proof.

Unfortunately, the limitation on over-all bandwidth represented 
by this theorem is by no means an academic one; for present tubes the 
maximum possible bandwidth often turns out to be considerably less 
than is needed. Consider, for example, a synchronous single-tuned 
100-db amplifier. The maximum bandwidth occurs with 23 stages 
(100 db/4.3 db). The g® factor is 1/(1.2 a/23) = 0.174. If 6AC7’s 
are used and if gn/2irC is assumed to be equal to 57.3 Mc/sec, the g® 
product is 10 Mc/sec for 23 stages. Since the stage gain is x/e = 1.65, 
the over-all bandwidth is only 6 Mc/sec, which is entirely inadequate for 
many purposes. (It is worth repeating that the use of any number of 
stages greater than 23 would only reduce the over-all bandwidth.)

4-5. Example of a Synchronous Single-tuned Amplifier. Six-stage 
110-di> 6AC7 Synchronous Single-tuned Amplifier Centered at 30 Mc/Sec.— 
For bandwidths a third or less of the maximum bandwidth possible with 
synchronous single-tuned circuits, the use of such circuits is not too 
uneconomical, and in such cases this method has been widely employed, 
principally because of its simplicity. The following is a typical example:

If an interstage capacity of 25 yyi and, to be conservative, a 6AC7 
transconductance of 8000 /¿mhos are assumed, the ratio gm!2irC is 
51 Mc/sec.

The stage gain is = 18.3 db or 8.25; the bandwidth per stage is 
therefore 6.17 Mc/sec (51/8.25). The over-all bandwidth is then, 
according to Table 4-1, 2.16 Mc/sec (6.17 X 0.35).

The individual interstages have the a-c diagram of Fig. 4.2 where 
C = 25 Maf, L is chosen to resonate with C at 30 Mc/sec (hence 
L = 1.13 ph), and R = 1030 ohms as follows from either

Stage gain = gmR = 8.25 
or

Stage bandwidth = 5—575 = 6.17 Mc/sec.
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Practical Embodiment.—The circuit of an actual amplifier of this sort, 
designed by P. R. Bell, is shown in Fig. 4-5, and a photograph is shown

V3 Vt and V5 V6 are 

paired and wired the 
same as Vj V2

To V,

0.0010.001 0.001

RFC
Fig. 4-5.—Circuit diagram of 6-stage 110-db 6AC7 synchronous single-tuned amplifier 

centered at 30 Mc/sec.

All resistors are | w 

unless otherwise 
specified

in Fig. 4-6. The coils marked Li in Fig. 4-5 are self-resonant chokes at 
30 Mc/sec, wound on the load resistors, and are used to keep the plate 
voltage as high as the screen voltage.
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The tuning coils are tuned by copper 
plugs that can be moved into the field of the 
coils, thereby reducing their inductances. 
The alignment of such amplifiers can be 
carried out by tuning the individual coils 
so as to give maximum second-detector out
put signal when a 30 Mc/sec sine-wave signal 
is supplied to the input circuit. To assure 
that there are no gross errors, such as an 
incorrect damping resistor, it is, however, 
advisable to explore the amplifier pass band 
with a frequency-modulated signal generator, 
as described in Chap. 8.

4*6. Staggered n-uples. Arithmetic 
Symmetry.—In. this section single-tuned 
circuits will be considered, in the approxi
mation of Sec. 4-2, to have arithmetic 
symmetry. The exact case of geometric 
symmetry will be taken up in Sec. 4-7.

Definition, Advantages, and Disadvantages 
of a Staggered n-uple.—The goal of this sec
tion is to demonstrate that

(1) it is possible to stagger the tuning of 
n suitably damped single-tuned stages 
so as to get a 1/ selec
tivity curve (such an arrangement is 
called a flat-staggered n-uple1), as 
depicted in the upper half of Fig. 7-7, 
and

(2) the g® factor for a flat-staggered 
n-uple is l.2

It is important to have a clear picture of 
the relative standing of points (1) and (2). 
It is often thought that getting the “maxi
mally flat” selectivity curve l/x/(l + x2^ 
is a good thing in itself, i.e., that there is 

1 Of bandwidth 2; other bandwidths are then 
obtained trivially (see Table 4-2).

1 Another way of expressing (2) is this: A flat- 
staggered n-uple has as great an over-all bandwidth 
as does just one single-tuned stage of the same stage 
gain.
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something inherently desirable in a flat selectivity curve. Only under 
extremely unusual conditions is this the case, however. If one is 
concerned with steady-state considerations of covering a large range of 
frequencies (“wide” amplifiers), it would be better to have a gain char
acteristic with small dips, covering a substantially wider band (see Sec. 
7-6). If, on the other hand, transient considerations are controlling, as in 
television (“fast” amplifiers), then the flat-topped curve is not ideal 
because it leads to overshoots.

The only virtues of the l/-\/(l + x2") curve [point (1) above] are its 
simple mathematical character and its easily recognized shape when 
viewed on a cathode-ray tube with a swept-frequency generator; it is here 
adopted only as a means to an end, the end being the high gffl factor 
[point (2)]. In a sense, a flat selectivity curve is the penalty for a good 
9« factor.1 A really useful accomplishment, from the point of view of 
transient response, would be a stagger-tuning scheme with a good g® 
factor and yet a rounded (Gaussian-error) over-all selectivity curve.

Complex Impedance Having l/x/U + x2”) as Its Absolute Value.— 
The (minimum phase shift) complex impedance having + x2n) as 
its absolute value will now be determined.

This procedure turns out to be very useful in the treatment of the 
exact single-tuned circuit, and the complex impedance is needed in any 
case for the determination of transient response in Chap. 7.

Factoring,2 1 + x2n = x2" — (—1) —

[(x2 —ei)(x2 —ij)][(x2 —e2)(x2 —i2)] • • • [(x2 —e„,2)(2:2 —€n/2)], neven, . 
[(x2 —ei)(x2 —ei)][(x2 —e2)(x2 —e2)] • ■ ■ [(o:2+l)], nodd, '

where the e are the nth roots of — 1 and overlining indicates complex conju
gate. One now seeks complex expressions of the form (jx — Km) (jx — Km) 
whose absolute values squared are equal to the brackets of Eq. (13). 
Equating coefficients of

|(jx - Km)(jx — Kw)|2 = (x2 + Km2)(x2 + Km2) = X4 + (Km2 + km2)x2 + Km2Km2 
and (x2 — tm)(x2 — em) = x4 — (e„ + ln)x2 + emem shows that k„2 = — em, or

Km = (-«m)W, (14)
where in order to make the resulting impedances realizable, the value of 
Km is selected that lies in the left half-plane. It then follows that the Km 
are those of the 2nth roots of (— l)n+1 that lie in the left half-plane.

1 Fortunately the overshoot that goes with a l/\/(l 4- z2") curve is not too great 
for moderate values of n, so that the penalty is not too severe; for n = 1,2, 3, 4, 5, 6, 7, 
the percentage overshoots in the step-function responses are 0, 4.3, 8.1, 10.9, 12.8, 
14.3, 15.4, respectively (see Fig. 7-7).

2 Such a factoring was used by V. D. Landon, "Cascade Amplifiers with Maximal 
Flatness,” RCA Rev., 1941, 347—362, in particular p. 350; a similar factoring was earlier 
used by S. Butterworth, “On the Theory of Filter Amplifiers,” IViretess Eng., 1930, 
536-541, in particular p. 537.
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Equations (13) and (14) show that I In/ 1 + x2n is the absolute value of

• • • (¿x-Kn/2)(j«:-<in/2)i,neven, . .
— ■ ■ • (¿z+l)j, nodd;

see Fig. 4-7. _________
Equation (15) is thus a complex function having 1/a/(1 + z2n) as 

absolute value. Equation (15), moreover, has no poles in the right half 

Fig. 4-7.—Location of poles for a flat 
staggered n-uple. (a) n = 2; the 4th roots 
of —1 in the left half-plane, (b) n =3; the 
6th roots of +1 in the left half-plane.

of the X = y + jx plane and hence1 
is a realizable impedance function. 
Finally Eq. (15) has no zeros in 
the right half of the plane and 
hence, as a minimum phase-shift 
impedance, is uniquely determined 
by its absolute value.2 In other 
words, Eq. (15) is the complex 
impedance function of minimum 
phase shift having 1/y/(1 + x2n) 
as absolute value.

By writing k„ (Eq. (14)) in 
the form a + jb, one sees that

1

is the absolute value of

sin_+jU±c°s^

sin

Sin 2u + 3
. 3tt .

Sln2ÏÏ+7

. 3tt .
^2.+^
(n — 1)tt 

2n X ± cos
(n — l)ir\

2n / ; n even,

(1 + jx), n odd. (16)

+ 3

Each of the n linear factors of Eq. (16) is the selectivity function of a 
staggered single-tuned stage; for example, the first two factors

‘O, Brune, “Synthesis of a Finite Two-terminal Network,” Jour. Math. Phys., 
10, 191-236 (1931).

2 Y. W. Lee, “Synthesis of Electrical Networks,” Jour. Math. Phys., 11, 83-113 
(1932); H. W. Bode, U.S. Patent 2123178 (1938), “ Relations between Attenuation and 
Phase in Amplifier Design,” Bell System Tech. Jour., 1940, 421-454, and Network 
Analysis and Feedback Amplifier Design, van Nostrand, New York, 1945, Chap. 14.
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1

• l / ! 1sin s----filisi cos I2n J \ 2nf
are the selectivity functions of single-tuned stages with [see Expression 
(7)] bandwidths 2 sin ir/2n and resonance peaks cos -r/2n to the left and 
right respectively of band center. Clearly, therefore, the entire complex 
impedance in Eq. (16), and with it the absolute value l/y/(l -fi x2n), can 
be synthesized by means of a cascade of n amplifier stages coupled by 
suitable single-tuned circuits. These stages are arranged in symmetrical 
pairs (Fig. 4-8), except that in the case where n is odd the last factor 
represents a centered stage.

The point of this synthesis by factoring is that the isolating action of

Fig. 4-8.—Synthesis of l/v7(1 + z2") curve.

factor at a time, each simple factor being extremely easy to adjust and 
with no interaction among the various adjustments.

Synthesis by factoring can, of course, be used to obtain absolute-value 
curves more complicated than -fi x2"). Indeed, the method
appears to be of general application in all cases where one desires an ampli
fier of specified pass band and more or less high gain—“ filter amplifiers,” 
as Butterworth would call them. The amplifying action of several 
tubes is needed in order to secure the gain. One then might as well 
make use of their isolating action also, thereby making it possible to 
employ only very simple circuits throughout.

Proof Thai the g® Factor of a Flat Staggered n-uple Is 1.—Equation 
(16) has demonstrated point (1) of Sec. 4-6, that it is possible to stagger n 
single-tuned stages so as to get a l/y/(l -fi x2n) selectivity curve; it 
remains to show (2) that the g® factor is 1. This follows very easily, 
however, by associating the numerator | with each of the n factors of 
Eq. (16). So modified, each of these factors represents a single-tuned 
stage of g® factor 1. The absolute value of the product,

V(1 + z2”)’
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has an over-all gain of (£)" and therefore a stage gain of |. Because its 
over-all bandwidth is 2, the g® factor is 1, as desired. This completes the 
proof of the assertions of Sec. 4-6.

Staggered n-uple Table. Arithmetic Symmetry.—Table 4-2, derived 
from Eq. (16), shows how to make up a flat staggered n-uple, n = 1, 
. . . , 7, centered at/o and with over-all bandwidth ffi, under the assump
tion of arithmetic symmetry, i.e., ®//o small.

Table 4-2 shows that the component single-tuned stages of a staggered 
n-uple have smaller bandwidths than the over-all bandwidth of the 
n-uple. This case contrasts with the case of synchronous-tuned ampli
fiers, where, as has been seen, the individual bandwidths are considerably 
larger than the over-all bandwidth.

Table 4-2.—Flat Staggered ti-uples

Approximate case: Arithmetic symmetry, 
Band center = /0, over-all bandwidth = ®, and <R/fo small 
n Component single-tuned stages

2. Staggered-pair..................

3. Staggered-triple...............

4. Staggered-quadruple.. .

5. Staggered-quintuple. . .

6. Staggered-sextuple.........

7. Staggered-septuple....

Two stages staggered at fo z 
{Two stages staggered at/0

One stage centered at/o of 
{Two stages staggered at/0

Two stages staggered at/0 
{Two stages staggered at fQ

Two stages staggered at/0
One stage centered at/o of 

{Two stages staggered at /o
Two stages staggered at/o 
Two stages staggered at/o 

’Two stages staggered at/o 
Two stages staggered at/0 
Two stages staggered at/0 
.One stage centered at /0 of

: 0.35® of bandwidth 0.71® 
± 0.43® of bandwidth 0.5® 
bandwidth ®
± 0.46® of bandwidth 0.38® 
± 0.19® of bandwidth 0.92® 
± 0.48® of bandwidth 0.31® 
± 0.29® of bandwidth 0.81® 
bandwidth ®
± 0.48® of bandwidth 0.26® 
± 0.35® of bandwidth 0.71® 
± 0.13® of bandwidth 0.97® 
± 0.49® of bandwidth 0.22® 
± 0.39® of bandwidth 0.62® 
± 0.22® of bandwidth 0.90® 
bandwidth ®

4*7. Staggered n-uples : Geometric Symmetry.—Consideration will 
now be given to the exact treatment of single-tuned circuits, a matter 
which, as seen in Sec. 4-2, involves geometric symmetry.1

Definition of an Exact Flat-staggered n-uple.—The goal of this section 
is to demonstrate that

1. It is possible to stagger n single-tuned stages so as to get a 
1

1 The exact case appears to have been first treated, but in a cumbersome way, by 
Rudolf Schienemann, "Trägerfrequenzverstärker groszer Bandbreite mit gegenein
ander verstimmten Einzelkreisen,” Telegraphen Fernsprech Technik, 1939,1-7. Schie
nemann was apparently the first writer to point out the main advantage of stagger
tuning over synchronous-tuning, i.e., its larger gain-bandwidth product, although 
others had earlier noted the possibility of synthesizing complicated networks from 
simple circuits separated by tubes (“filter amplifiers” in Butterworth’s designation).
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selectivity curve (such an arrangement is called an exact flat- 
staggered n^uple, whose bandwidth/band center ratio1 is 5).

2. The g® factor for a flat-staggered n-uple is 1.

Two Staggered Single-tuned Stages of Equal Dissipation Factor.— 
Substituting d = l/(2ir/0C) in Eq. (3) one gets

(17)

as the gain function. Expressing gain in units of g„J2itC one can write

d + j
(18)

It is seen that the bandwidth of Expression (18) is df0 and the gain
is l/(d/o), in accord with the g® 
factor of 1 for a single-tuned 
circuit.

Now suppose a single-tuned 
stage peaked at frequency a is 
followed by a stage peaked at 1/a, 
so that f = 1 is the geometric 
mean of their resonant frequen
cies.
d (Fig. 4-9). 
(18)]

Fig. 4-9.—Two exact single-tuned circuits of 
same dissipation factor.

Suppose further that the two stages have the same dissipation factor 
Then the complex gain function of the product is [see Eq.

1
a a

d + j d + j (fa -V 7/ \ 7,
Multiplying the denominators together yields

d'+jdfa-j^+j^+ +

= d2 + a2 + 1 + jda (7 - 0 - (p + (19)

1 And whose band center is / = 1; other center frequencies are then obtained 
trivially (see Table 4-3). The value of 3 may be either less or greater than 1.



182 SYNCHRONOUS AND STAGGERED AMPLIFIERS (Sec. 4-7

Now

and

- 2.

Hence the right side of Eq. (19) can be written as

d2 + / i\ / i\ / A2+ 4/-7)dU + i) - ,
\ jj \ »/ \ j/

and one has

1
a a

d+H~ (f* - £
\a j I \ Ja

The point to observe about Eq. (20) is that the only variable in the right

hand side is the single combination j (f — displaying geometric 

symmetry about f — 1, which is the geometric mean of a and 1/«.
Flat-staggered n-uples.—Multiplying the two terms in each bracket of 

Eq. (16) .shows that l/Vl + z2n is the absolute value of

1

1 + jx2 sin -fi (jx)2 1 4- jx2 sin s- 4- (jx)2 ¿'ll

1 4- jr2 sin + 0'z)2 , n even,

1 + jx2 sin + (jx)2 1 4- jx2 sin 4- (jx)2 ■ ■ ■

(1 4- jx), n odd. (21a)

By analogy with Eq. (21a) it follows that

1



Sbc. 4-7} STAGGERED N-UPLES. GEOMETRIC SYMMETRY 183

is the absolute value of
1

1 
f,

2ôsin-+ df-

52 + j ( / — - ) 25 sin

A 41 
7/JI ' 

(n — l)ir 
2n 

1
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It is now possible to synthesize the absolute value

1
2n

by equating the coefficients of j in Expressions (20) and (216).

For the first factor of Expression (216), for example, one needs to know 
the dissipation factor di and resonant frequency at satisfying

/ 1 \2¿1 + I ai------ ) = 52,
\ “1/

/ i 11 or • ’T
i I a i H----- J = 25 sm — •\ a i/ ¿n

(22a)

(226)

Squaring Eq. (226) and replacing

one gets
/ 1 \2 T¿ÎI “i------ ) + 4d? = 452 sin2
\ aj 2n

substituting Eq. (22a) yields

d4 - ¿î(4 + ¿2) + 452 sin2 = 0;

solving,

4 - 1652 sin2 2n

1

=

1 2

2
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using the double-angle formula 1 — 2 sin2 r/2n = cos r/n, one concludes 
that

4 + 32 - J16 + 832 cos - + 34
d2 = -------------A--------------------”-------- (22c)

Equations (22a) and (22c) completely express di and a, in terms of 3.
Proceeding similarly with the other factors of Eq. (21) it is seen that

1

is the absolute value of

«i

j / \ J«i/

«3 «3

n even,

(23)

where, for k = 1, 3, • • • , n — 1,

dl = 4 + 32 - Vie + 832 cos kr/n + 34
2 ’

(24)

The factors in Eq. (23) are the impedances of single-tuned stages of 
dissipation factors dk, resonant in pairs at frequencies ak and l/ak. This 
establishes assertion (1) of Sec. 4-7; assertion (2) is evident from the fact 
that each of the factors of Eq. (23) has the g® factor 1, as does

1

itself.



Sec. 4-7] STAGGERED N-UPLES. GEOMETRIC SYMMETRY 185

Table 43.—Flat-staggered r-uples 
Exact case: geometric symmetry 

Band center = over-all bandwidth = ffi; and ®//0 = S 
n Component single-tuned stages

2. Staggered-pair....................  Two stages staggered at faa and fa/a of dissipation
factor d, where

M _ 4 + 8» - V16 + A
2

(“ ~ “)' + dl =
3. Staggered-triple................. Two stages staggered at /oa and fo/a of dissipation

factor d, one stage centered at /0 of bandwidth (B, 
where

4 + S* - V16 + 452 + 5* 
d ------------------------ 2--------------------

(«-^’+¿’ = 8’

4. Staggered-quadruple........ Two stages staggered at foai and /o/ai of dissipation 
factor di, two stages staggered at foots and fo/ct^ of 
dissipation factors ds, where

d, = 4 + 8» - VlC + 5.6568» + 8*
1 2

5. Staggered-quintuple......... Two stages staggered at/oai and /o/ai of dissipation 
factor di, two stages staggered at foots and fo/as of 
dissipation factor ds, one stage centered at/o of band
width (B, where

4 + 8» — Vie + 6.4728» + 6*
2

d* =

/ i y
lai — — I 4" dj 32,
X ai/

4 + 8» - Vie - 2.47 2 62 + 8»

2
i V

a3 — •— ] + d} ~ 32
k «3/
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The various stages of an exact flat-staggered n-uple do not have the 
same gain at band center [f = 1 in Eq. (23)], but instead, as follows from

the gain of each stage at band center is inversely proportional to its own 
resonant frequency. Each pair of staggered stages has as much gain at 
band center as any other pair, however, and for the odd n case the gain 
of the centered stage is exactly the mean gain of the n-uple. Further, 
for the odd n case the bandwidth of the centered stage is exactly the 
over-all bandwidth of the n-uple.

Table 4-4.—Flat-staggered ti-uples

Asymptotic case: for 5 = ®//o less than 0.3 
Bandwidth =» Jo; over-all bandwidth = ®; and ®//0 = 5 

n Component single-tuned stages
2. Staggered-pair.................... Two stages staggered at/o ± 0.35® of dissipation factor

0.715
3. Staggered-triple................. Two stages staggered at/o ± 0.43® of dissipation factor 

0.55, one stage centered at/o of bandwidth ®
4. Staggered-quadruple... . Two stages staggered at/o ± 0.46® of dissipation factor 

0.55, two stages staggered at/o ± 0.92® of dissipation 
factor 0.195

5. Staggered-quintuple. . . . Two stages staggered at/o ± 0.48® of dissipation factor 
0.315, two stages staggered at /0 ± 0.29® of dissipa
tion factor 0.815, one stage centered at /0 of band
width ®

6. Staggered-sextuple........... Two stages staggered at/o ± 0.48® of dissipation factor 
0.265, two stages staggered at /0 ± 0.35® of dissipa
tion factor 0.715, two stages staggered at /0 ± 0.13® 
of dissipation factor 0.975

7. Staggered-septuple........... Two stages staggered at/o ± 0.49® of dissipation factor 
0.225, two stages staggered at /o ± 0.39® of dissipa
tion factor 0.623, two stages staggered at/o ± 0.22® 
of dissipation factor 0.903, one stage centered at /o 
of bandwidth ®

Exact Case.—Table 4-3, derived from Eqs. (23) and (24), shows how 
to make up an exact flat staggered n-uple, n = 1, ■ • • , 5, centered at 
/o and with over-all bandwidth ®. The ratio ffi//o is denoted by S. 
Because nearly equal numbers are subtracted in these formulas, calcula
tions should be carried out to three decimals.

Asymptotic Values.—The asymptotic values of the expressions in 
Table 4-3 for small values of 3 are easily derived, taking into account the 
approximations 

and
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for small values of a — (1/a). These asymptotic values are listed in 
Table 4-4; they are accurate for S = (&/fa less than 0.3; and because of 
their simplicity and accuracy in that range, they are to be preferred to 
the values derived from Table 4-2.

4-8. Flat-staggered Pairs, in Detail. Graphs.—Figure 4-10 was pre
pared from Table 4-3 for the case n = 2. The use of Fig. 4-10 will be 
clear from the following example:

Suppose a flat-staggered pair of 8 Mc/sec bandwidth is to be designed 
with band center at 10 Mc/sec. Then fa = 10 Mc/sec, ® = 8 Mc/sec, 
and 6 = 0.8, so that from Fig. 4-10 one finds that a = 1.33 and d = 0.535. 
Therefore, the pair is to be constructed of one stage staggered at

10 X 1.33 = 13.3 Mc/sec,
of dissipation factor 0.535 and hence of bandwidth 

0.535 X 13.3 - 7.1 Mc/sec,
and one stage staggered at 10/1.33 — 7.5 Mc/sec, of dissipation factor 
0.535 and hence of bandwidth 0.535 X 7.5 = 4.0 Mc/sec.

Cascaded Pairs and Comparison with Synchronous Single-tuned 
Stages.—The selectivity function of a flat staggered pair has the form

+ x4) in the low dissipation case and 1 in the

exact case. These curves are squarer than those for single-tuned stages; 
and because they are squarer, the bandwidth goes down less rapidly;1 it is 
easy to see that the over-all bandwidth of m pairs is the bandwidth of 
one pair times •v'T^1^---!)- For m > 1, a good approximation is

Over-all bandwidth of m pairs = bandwidth of one pair
1.1 \/m

(see Table 4-5).
Table 4-5.—Shrinking of Over-all Bandwidth, ot-cascaded Flat-staggebed 

Pairs

m y/21''"1 — 1 (exact)
1 , .(approx.)

(1.1 v w

1 1.00
2 0.80 0.76
3 0.71 0.69
4 0.66 0.64
5 0.62 0.61

1 And the overshoot is larger: 4.3 per cent for one pair, 6.25 per cent for two pairs, 
7.7 per cent for three pairs, 8.3 per cent for four pairs, 9.9 per cent for six pairs (see 
Fig. 7-5).
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Fig. 4’10.—Design curves for an exact flat staggered pair.
Note:

1. An exact flat staggered pair of stage gain 9 has as great an over-all bandwidth ® as 
does one single-tuned stage of gain 9, i.e., 9® = gm/2wC.

2. An exact flat staggered pair of over-all bandwidth ®, geometrically centered at /o 
consists of two single-tuned stages staggered at /oa and /ç/a of dissipation factor d, 
a being given, in the upper graph and d in the lower graph as functions of Ô = ®//o.

3. An amplifier made up of tn pairs has 1/(1.1 the bandwidth of one pair.
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For an «-stage amplifier, n even, made up of n/2 flat-staggered pairs, 
the g® factor is therefore

1
(25)

Dividing Expression (25) by Expression (11) one sees that the advantage 
in g® factor of an n-stage flat-staggered-pair amplifier over an «-stage 
synchronous single-tuned amplifier is

1.2 yn (26)

Three elements contribute to this advantage: the n/2 instead of n, 
because there are only half as many l/-\/(1 + x4) selectivity curves as 
there are stages; the fourth root instead of the square root, because of the 
l/y/(l + x4) curve rather than the l/-\/(l + x2) curve; and the 1.1 
instead of the 1.2.

Expression (26) has the value 2.0 for n = 6. This means that a 
six-stage amplifier in the form of three flat-staggered pairs has twice the 
g® factor of a six-stage synchronous single-tuned amplifier; hence for 
the same over-all gain the six-stage flat-staggered-pair amplifier has 
twice the over-all bandwidth.

4-9. Flat-staggered Triples, in Detail. Graphs.—Figure 4-11 was 
prepared from Table 4-3 for the case n = 3. The use of Fig. 4-11 will 
be clear from the following example:

Suppose a flat-staggered triple with a 20.6 Mc/sec bandwidth and 
band center at 14.3 Mc/sec is to be designed. Then/o = 14.3 Mc/sec, 
ffi = 20.6 Mc/sec, and 3 = 1.44, so that from Fig. 4-11, a = 1.84 and 
d = 0.60.

Therefore, the triple is to be constructed from

One stage staggered at 14.3 X 1.84 = 26.3 Mc/sec, of dissipation 
factor 0.60 and hence of bandwidth 0.60 X 26.3 = 15.8 Mc/sec.

One stage staggered at 14.3/1.84 = 7.8 Mc/sec, of dissipation factor 
0.60 and hence of bandwidth 0.60 X 7.8 = 4.7 Mc/sec.

One stage centered at 14.3 Mc/sec of bandwidth 20.6 Mc/sec.

Cascaded Triples and Comparison with Synchronous Single-tuned 
Stages.—The selectivity function of a flat staggered triple has the form

1/V(1 + X’) in the low-dissipation case and 1AFT-iy ¡°
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. Fig. 4-11.—Design curves for an exact flat staggered triple.
Note:

1. An exact flat staggered triple of stage gain 9 has as great an over-all bandwidth ® 
as does one single-tuned stage of gain S, i.e., 9® = 0m/27rC.

2. An exact flat staggered triple of over-all bandwidth ®, geometrically centered at 
/o, consists of two single-tuned stages staggered at /oa and /o/a of dissipation 
factor d, and one single-tuned stage centered at /o of bandwidth ®, a being given 
in the upper graph and d in the lower graph as functions of 5 = ®//o.

3. An amplifier made up of m triples has 1/(1.06 m) the bandwidth of one triple. 
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the exact case. These curves are squarer than those for a staggered 
pair; and because they are squarer, the bandwidth goes down less rapidly;1 
it is easy to see that the over-all bandwidth of m triples is the bandwidth 
of one triple times V21''’"~—"l- For m > 1 a good approximation is

„ n . □ jxu r . ■ > bandwidth of one tripleOver-all bandwidth of m triples = ------------------ -----------—
1.06 x/m

(see Table 4-6).

Table 4-6.—Shrinking of Over-all Bandwidth, to-cascaded Flat-staggered 
Triples

m — 1 (exact) 1.06 x/m (approx.)

1 1.00
2 0.86 0.84
3 0.80 0.79
4 0.76 0.75
5 0.73 0.72

For an n-stage amplifier, n divisible by 3, made up of n/3 flat-staggered 
triples, the g® factor is therefore

1
(27)

Dividing Expression (27) by Expression (11), the advantage in g® 
factor of an n-stage flat-staggered-triple amplifier over an n-stage syn
chronous single-tuned amplifier is found to be

(28)

Expression (28) has the value 2.5 for n = 6. This means that a six- 
stage amplifier in the form of two flat-staggered triples has 2.5 times the 
g® factor of a six-Stage synchronous single-tuned amplifier; hence for 
the same over-all gain the six-stage flat-staggered-triple amplifier has 2.5 
times the over-all bandwidth.

4-10. Gain Control of Stagger-tuned Amplifiers. First-order Effects. 
In a cascaded linear amplifier without feedback the over-all gain at any 
frequency is the product of all the gm’s by the product of all the imped
ances at that frequency. Because of this multiplicative property, if one

1 And the overshoot is larger: 8.15 per cent for one triple, 11.2 per cent for two 
triples, 14.2 per cent for four triples (see Fig. 76).



192 SYNCHRONOUS AND STAGGERED AMPLIFIERS [Sbc. 4-11

of the stages has its gm reduced but its selectivity characteristic left 
unchanged, the over-all gain is reduced in proportion, whereas the over-all 
selectivity curve is completely unaffected. Consequently, to the extent 
to which tube capacities and loadings do not vary with gm, it is possible 
to gain-control a stagger-tuned amplifier in any stage or combination of 
stages. In particular, there is no need to gain-control in pairs.

Second-order Effects.—To a certain extent it is however the case 
that reducing the gm of a stage does affect its input capacity and input 
loading. Variations in input capacity can often be held within narrow 
limits by the well-known artifice of leaving unbypassed part of the 
cathode-bias resistor of the gain-controlled stages, and variations in 
input resistance can be held within narrow limits by choice of a suitable 
cathode-bypass condenser. In practice, these measures have not proved 
necessary.

Because of grid-plate capacity there is a variation in input loading and 
capacity due to the Miller effect. Rather bad offenders in this respect 
are 6AK5’s, which have a ratio of transconductance to grid-plate capacity, 
socket included, that is about a third that of 6AC7’s. Miller effect in 
6AK5’s is somewhat vexing, but it is not fatal in wide-band amplifiers 
even at frequencies as high as 200 Mc/sec.

4-11. Examples of Stagger-tuned Amplifiers. Example 1. Nine- 
stage 80-db 6AC7 Flat-staggered Triple Amplifier Covering the Band 8.25 to 
24.75 Mc/Sec.—The geometric mean of 8.25 and 24.75 is 14.3 Mc/sec, 
which is therefore the geometric center of the band.

Preliminary estimates show that it is sufficient to use nine 6AC7 
stages arranged in the form of three flat-staggered triples. From Table 
4-6 it follows that the bandwidth per triple must be 20.6 Mc/sec in order 
to obtain the 16.5 Mc/sec over-all bandwidth.

The mean stage gain is most conveniently determined from the rela
tion that the 9® factor for a flat-staggered triple is equal to 1. Assuming 
a 6AC7 gm of 9000 pmhos and a C of 25 ppf, the ratio

= 57.3 Mc/sec;
ZjtG

consequently the mean stage gain is 57.3/20.6 = 2.78, or 8.9 db.
The center frequencies and bandwidths of the stages making up the 

three triples have already been worked out in Sec. 4-9. The load resistors 
are determined [from the relation that stage bandwidth = l/(2irRC)] to 
be 403, 1360, and 309 ohms respectively; the practical values are 390, 
1500, and 330.

A block diagram of an amplifier of this sort is shown in Fig. 4-12.1
1 This amplifier was built at the Radiation Laboratory, 1943, and required the 

theory of the case of large fractional bandwidth. The widest stagger-tuned amplifier 
constructed at the Radiation Laboratory had a bandwidth of 35 Me /sec; the center
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The order of frequencies is 14.3, 7.8, 26.3; 7.8, 26.3, 14.3; 26.3, 7.8, 
14.3. No special significance is to be attached to this order, although it 
seems wise to center both the first stage and the stage driving the detector. 
The tuning coils are fixed-tuned and wound on -j-in. bakelite rods to 
resonate with 25 ppi at the appropriate frequencies, as measured with a

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

(a)

6AC7

(6)
Fig. 442.—(a) Block diagram of nine-stage 80-db 6AC7 flat-staggered triple amplifier 

covering the band 8.25 to 24.75 Mc/sec. (b) Typical stage. Apart from the values of R 
and L the various amplifier stages have the same constants.

Q-meter. Because of the large bandwidth/band center ratio, the tuning 
is very uncritical. In all likelihood the coils could be wound from 
information contained in the inductance tables, and it would thus be 
possible to build amplifiers of this type with no equipment other than a 
soldering iron and a pair of pliers.

Example 2. Four-stage 80-db 6AK5 Flat-staggered Quintuple, 10 
Mc/Sec wide at 30 Mc/Sec.—The purpose of this amplifier, shown in

frequency was 80 Mc/sec, and 15 6AK5’s were employed in three flat-staggered 
quintuples. It was used as i.f. amplifier of an experimental radar system employ
ing Msec pulses. The gain was 100 db.
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Figs. 4T3 and 4-14, is to get high performance in a small space. The 
amplifier is folded back on itself, with the input connection and the first 
three amplifier stages located on one half of the chassis and the fourth 
amplifier stage, detector, and a pulse amplifier stage on the other half. 
The two halves are separately wired, each half having great accessibility 
because of its open L-shaped chassis. The two halves are connected with 
metal bushings, and the cover is then put over the combination.

There is only one connection between the two halves of the chassis, a 
wire connecting the tuning coil between Stage 3 and Stage 4 to the grid 
of Stage 4. This wires goes through one of the metal bushings, the

470 0.001
+150v, 

70 ma

0.3 Mh
Ftg. 4-13.—Circuit diagram of four-stage 80-db 6AK5 flat-staggered quintuple, 

10 Mc/sec wide at 30 Mc/sec. The coils are unity-coupled. The chassis shown in Fig. 
4-14 contains a pulse amplifier stage also.

return path for the signal currents being conducted along the inside 
surface of the second chassis, through the inside surface of the metal 
bushing, to the inside surface of the first chassis. In folded amplifiers 
it is essential in connecting the two chassis together to adhere to the 
principle of providing for the signal currents between the chassis a return 
path that lies entirely on the inner surfaces of the chassis. No difficulties 
are experienced in building folded amplifiers of over 100-db gain when 
such precautions are taken.

The use of “feed-through” button bypass condensers,1 mounted in 
the wall of the chassis, makes it possible to have only two components per 
amplifier stage in the interior of the chassis, namely, a tuning coil and a 
damping resistor. The decoupling resistors are situated on the other

1 Obtainable from the Erie Resistor Manufacturing Corporation, Erie, Pa.
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side of the vertical chassis wall, as can be seen in the outer view of Fig. 
4-14.

The tuning coils are on powdered iron cores, fixed-tuned and bifilar- 
wound, i.e., unity-coupled, thus eliminating the need for blocking con
densers. Although there are only four stages, there are five tuning coils, 
the input coil, which is the center-tuned coil of the quintuple, being the 
fifth.

The amplifier is designed according to the entry for n = 5 in Table 
4-3, which leads to the values of center frequency and bandwidth shown 
in Fig. 4T3. To achieve a gain of 80 db in four stages requires a mean

Fig. 4-146.—Top chassis view of four-stage 80-db 6AK5 flat-staggered quintuple, 10 Mc/sec 
wide at 30 Mc/sec.

voltage gain of 10 per stage. Since the g®-product for a flat-staggered 
quintuple is equal to gm/2TrC, an over-all bandwidth of 10 Mc/sec requires 
the 6AK5’s to be operated with a gm/2vC ratio of 100 Mc/sec. In the 
amplifier of Fig. 4-13 the interstage capacity C is 10 M^f; hence the tubes 
have to be operated with a gm of 6280 /imhos. This value is above the 
normal rated 6AK5 value, but the special conditions of use of this 
amplifier make it legitimate to overrun the tubes.

Example 3. Twelve-stage 100-db 6AK5 Amplifier, Made Up of Four 
Flat-staggered Triples, 20 Mc/Sec Wide at 200 Mc/Sec.—This amplifier 
was designed and built by M. T. Lebenbaum of Radio Research Labora
tory. The rough design of such an amplifier will first be worked through, 
to show how one determines whether or not a given number of stages is
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enough to provide the desired gain and bandwidth. For a 20-Mc/sec 
over-all bandwidth in four triples, the bandwidth per triple has to be 
26.3 Mc/sec (20/0.76), from Table 4-6. To achieve a gain in 12 stages 
of 100 db the required stage gain is 8.33 db = 2.61. The required 
g®-product for each triple is then 2.61 X 2.63 = 68.5 Mc/sec. There
fore a gn/2vC ratio of 68.5 Mc/sec is needed; and if C = 11 uM, a gm of 
4750 gmhos is required. This is a reasonable value, slightly less than 
the nominal gm for 6AK5’s, and hence validates the rough design.

The problem is now reduced to obtaining a flat-staggered triple of 
26.3 Mc/sec bandwidth at 200 Mc/sec. The value of 6 is 0.132, 
which is small enough to warrant use of Table 4 4. From this table, one 
finds that the triple should be composed of one stage at

200 + (0.43 X 26.3) = 211.3 Mc/sec,

of dissipation factor 0.5 X 0.132 = 0.066 and hence of bandwidth 
0.066 X 211.3 = 13.9 Mc/sec; one stage at

200 - (0.43 X 26.3) = 188.7 Mc/sec,

of dissipation factor 0.5 X 0.132 = 0.066 and hence of bandwidth 
0.066 X 188.7 = 12.4 Mc/sec; and one stage at 200 Mc/sec of band
width 26.3 Mc/sec.

The damping resistances for these bandwidths and an interstage 
capacity of 11 are 1040, 1160, and 550 ohms. A distinction has to be 
made, however, between the damping resistances and the actual plate
load resistors, especially at frequencies as high as 200 Mc/sec. In 
parallel with the tangible load resistors are three types of tube input 
resistance due to (1) transit-time effects, (2) cathode-lead inductance, 
and (3) “Miller-effect” feedback through the grid-plate capacitance from 
the plate circuits. The first two of these resistances are of positive sign 
in the amplifiers discussed here and vary inversely as the square of 
frequency. Since with 6AK5's the input resistance from these two 
effects is about 100,000 ohms at 30 Mc/sec, its influence is negligible at 
that frequency; at 200 Mc/sec, however, the input resistance is only 
about 2000 ohms and its influence is considerable. Even more important 
in stagger-tuned amplifiers is the Miller-effect input resistance, because 
it may have either sign. This input resistance measured at the grid
circuit resonant frequency is positive for a tube whose plate circuit is 
tuned to a frequency lower than that of the grid circuit and negative in 
the opposite case. At 200 Mc/sec this effect is serious in 6AK5’s because 
of the large grid-plate susceptance. In such a case, moreover, the input 
resistance varies rapidly over the band, and the individual circuits are not 
really single-tuned. An exact analysis is extremely complicated, but it 
has been found possible to get satisfactory results, even at 200 Mc/sec, by



198 SYNCHRONOUS AND STAGGERED AMPLIFIERS [Sec. 4-11

experimental determination of the plate-load resistor values needed to 
give the required individual bandwidths, It would probably be difficult 
to go much beyond 200 Mc/sec with 6AK5’s, however.

In the case at hand the constants of a triple are shown in Fig. 4-15; 
observe that the only nontube loading in the 211 Mc/sec circuit is the 
loss resistance, because of finite Q, of the coil connecting the plate to B+.

The unbypassed 10-ohm resistors between the B + lead and the screen 
terminals suppress a tendency of 6AK5’s to oscillate parasitically at 
about 500 or 600 Mc/sec when one employs high-Q bypass condensers 
such as the mica button type. Although these parasitic oscillations

AV,--------------- ’ ■ --W,---------------------------- wv
270 270 270

188.7 Mc/sec
12.4 Mc/sec

220 mm f
—*■ To + 105v

To gain 
control

Heaters:
0.3 0.3 a h 

-nnnD
0.3 a h 0.3 Mh

T 220 MM I t220mm( T220mm< 220 MM f

Fig. 4-15.—Circuit diagram of one triple of 12-stage 100-db 6AK5 amplifier made up of 
four flat-staggered triples, 20 Mc/sec wide at 200 Mc/sec.

occur only when the B+ voltage is at least 30 per cent above its rated 
value, it seems wise to be cautious. This matter of parasitic oscillations 
constitutes, incidentally, an argument against bypass condensers of 
high-Q.

Figure 4-16 is a photograph of a few stages of this amplifier. The 
amplifier is tunable, and the tuning coils are of special interest. The coils 
are essentially small springs of phosphor-bronze wire which are wound, 
as shown in Fig. 4-16, on i-in. diameter linen-bakelite rods. These rods 
are backed by other springs, not shown, and connected to screws on the 
upper side of the chassis so as to permit extension or retraction of the 
bakelite rod into the underside of the chassis. This action has the effect
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of increasing or decreasing the spacing between coil turns, thereby varying 
the coil inductance.

The alignment procedure is very simple and consists of connecting a 
signal generator to the amplifier input terminals and a voltmeter across 
the detector output terminals and then peaking each stage for maximum 
meter deflection, with the signal generator set to the frequency appro
priate to that stage. The order in which the peaking is done is immate
rial. It is easy to see how this procedure could be further simplified by 
a scheme of matching a color code of the adjustment screws to a color 
code of the signal-generator settings.

The reason for making this amplifier tunable is the wide variation at 
200 Mc/sec of the resonant frequency of the individual circuits, prin
cipally because of the variability in 6AK5 interelectrode capacities. 
The sum of the variability in 6AK5 input and output capacities per
mitted by the JAN-1A specifications is +0.9 ppi. If the average 
interstage capacity is 11 ppi, there is a fractional variability in capacity 
of about + -A; this means a variability in center frequency of about 
± which is about +8 Mc/sec at 200 Mc/sec. Although such 
extreme variations in capacity, and hence in tuning, are very unlikely, 
variations half as large, i.e., +4 Mc/sec at 200 Mc/sec, are entirely 
likely. Such variations are too large to be neglected in a 20-Mc/sec wide 
amplifier; hence the provision for tuning.

In summary one can say that a 20-Mc/sec wide amplifier at 200 
Mc/sec is more difficult to build than a 20-Mc/sec wide amplifier at 
60 Mc/sec in only one respect, namely, the need for tuning the individual 
stages of the 200-Mc/sec amplifier.



CHAPTER 5

DOUBLE-TUNED CIRCUITS

By Richard Q. Twiss

5*1, Introduction.—The theory of the double-tuned interstage cou
pling has been extensively discussed by a large number of writers1 for the 
broadcast receiver case, where the fractional bandwidth is small (less 
than 0.1) and the Q’s of the primary and secondary circuits are large 
(greater than 20). In this chapter, however, attention will be confined

M

Fig. 5’1o.—Inductance-coupled double-tuned circuit.

to the wide-band fixed-tuned case (bandwidths in excess of 4 Mc/sec, 
fractional band widths in excess of 0.1), and only two types of coupling 
will be considered, the inductance-coupled circuit of Fig. 5-la and the 
capacity-coupled circuit of Fig. 516. Of these the inductance-coupled 
circuit is the more useful, for the reasons given in Sec. 5-2, and unless 
otherwise stated it will be assumed that this circuit is being discussed.

1A very useful and complete account is given by C. B. Aiken, “Two Mesh Tuned 
Coupled Circuit Filters,” Proc. I.R.E., 35, February 1937. Considerable use will be 
made of the results of this paper in the present chapter; and as far as possible, the 
same symbols will be used. Reference may also be made to F. E. Terman, Radio 
Engineer» Handbook, 1st ed., McGraw-Hill, New York, 1943, Sec. 3.
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The approximate theory, mentioned above and hereafter called the 
“high-Q” theory, still yields very useful information when applied to 
circuits whose Q may be as low as 1. This is fortunate, since the more 
exact low-Q case is very cumbersome mathematically and has been fully 
worked out only for the case of transitional coupling. The approximate 
theory yields almost exact expressions for the gain-bandwidth factor and 
midband gain of a double-tuned circuit. In addition it gives values for 
the Q’s and the coefficient of coupling needed to achieve a desired band
width and shape of amplitude response that are useful first approxima
tions. The exact low-Q theory must, however, be used to find the correct 
resonant frequencies of the tuned circuits, the exact values of Q, and the 
coefficient of coupling. Alternatively, the high-Q theory can be used to 
find the approximate values of the circuit constants, and the correct 
values can then be found experimentally by a cut-and-try process.

Some of the more important results of the high-Q theory are given 
in Sec. 5-2, and an outline of the low-Q theory is given in Sec. 55. The 
latter section consists of a set of a design data for the transitionally 
coupled case.

In Sec. 5-6 is given a brief discussion of the so-called “stagger
damped ” bandpass amplifier; this is a scheme for obtaining very wide-band 
amplifiers by over- and underdamping successive stages of double-tuned 
circuits. The chapter concludes with a number of examples chosen to 
illustrate the theory.

5-2. The General High-Q Case.—The basic circuit upon which the 
analysis is based is that of Fig. 5-la. The results can also be applied 
to the circuit of Fig. 5-lb by suitable modification of the basic formulas.

The following symbols will be used, the notation being essentially 
that of Aiken.1

fo, the midband frequency.
0 7 1 12irtl> — 610 — '----- , -,-----------•

VhC2

Mk = - the coefficient of coupling.
y/Lht

s = k y/Q1Q2, the coupling index.
p = Q1/Q2, the Q ratio.
b = p + 1/p = (Q1/Q2) + (Qz/Qi).
0 = (s2 — tb)/(s2 + 1), the shape index.
v = y/QiQ2 (u/uo — wo/w), the frequency variable.
J, the primary current.

1 C. B. Aiken, “Two Mesh Tuned Coupled-circuit Filters,” Proc. I.R.E., 25, No. 2,
February 1937, In the remainder of this chapter this paper will be referred to simplv 
as Aiken.
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Ei, the primary voltage.
Ei, the secondary voltage.
It is shown by Aiken that Z12, the transfer impedance, is given 

approximately by
7 _ F2 _ js^RiRt
¿12 — ~F — ---------------------------------------- 7 ■---------- f (1)

j (1 + s2) + jv -\/b + 2 + (jv)2

so that the absolute value of Zi2 is given by

1^1 = lyl f------------  (2)

1 1 (1 + s2)2 - 2 (s2 - ^U2 + c4
I \ £ J

when Qi, Qt > 20 and k < 0.05.
One of the most common uses for the double-tuned circuit is as inter

stage network in a bandpass amplifier. Ef J is the output current of a 
tube whose dynamic resistance rv is included in Ri, then J is related to 
the grid-cathode voltage of the tube by the equation 

J
where gm is the transconductance and eg the grid-cathode voltage. The 
expression for the absolute value of the stage voltage gain g can therefore 
be written

_________ gmN/RiRiS
(1 + s2)2 - 2(s2 -f\v2 + v* (3)

Equations (2) or (3), which give the amplitude response of the net
work, are of fundamental importance and yield most of the useful 
information needed in the design of amplifiers employing high-Q double
tuned circuits.

Universal Resonance Curves.—Aiken has utilized Eq. (1) to plot 
universal resonance curves for 2jZ12l/-\/R1R2 for four different values 
of b, namely b = 2, 10, 50, and 200. In this chapter universal curves are 
plotted for the two cases Qi - Q2(b = 2) and Qi = co (b = co ) as 
discussed in Secs. 5-3 and 5 4.

By suitable transformation of the variables it is possible to provide a 
single set of resonance curves that provide all the essential data for the 
amplitude characteristic. If a new variable u and a new parameter fi 
defined by

u =

fi =

v
(1 + s2)*
s2 - ib
1 + s2

1
(1 + s2)« (4)
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are introduced,1 then Eq. (1) can be put in the form

\Zn\ — s yÆÆ _______1_______ _
Vl + s2 C1 ~ (5)

and if |Zi2| V1 + s2/s \/RiR2 is plotted as a function of u for various 
values of 3, the required resonance curves are obtained.

It may be noted in passing that these curves also give the amplitude 
response of staggered pairs and negative feedback pairs if the parameters 
are suitably redefined.

Equation (5) has not been used to plot universal resonance curves in 
this chapter because the increased difficulty of interpreting the curves 
outweighs the advantages gained from displaying the information on a 
single family of curves, but Eq. (5) makes it clear that the shape, as 
opposed to the scale of the amplitude response, is determined by the single 
parameter /J.

Critical and Transitional Coupling.—From Eq. (2) it may be seen that 
the midband gain is given by

So = VrARz s
1 + s2 ’ (6)

which depends only upon the coupling index s and not upon the Q ratio p. 
The value of k that, for fixed Q’s, makes the gain a maximum is called 
the critical coefficient of coupling; and when k has this value, the circuit 
is said to be critically coupled. From Eq. (6) the corresponding value of 
s is

so that, when the circuit is critically coupled, the midband gain is

Çm
2 (7)

1 It may be seen from Eq; (4) that as s’ —» « (the overeoupled ease), p —» 1 for all b, 
that is, for all Q ratios. As s2 —» 0 (the undercoupled case), however, g —♦ — ^b, which
does depend on the Q-ratio. The explanation for this is simple. As k, and therefore s, 
tends to zero the selectivity curve approaches that of the product of the two single
tuned circuits whose Q's are the primary and secondary Q’s respectively. In the 
equal-Q case this selectivity curve is the product of the selectivity curves of two single
tuned circuits with the same Q, and it is not possible to get a sharper response curve 
than this. In the unequal-Q case the selectivity curve can become much sharper; if 
the product of the Q’s is kept constant, then when one of the Q's is infinite, the over-all 
bandwidth is zero. In this chapter attention is confined to the case — 1 S d S 1, 
because cases where 0 < — 1 are of little practical interest.
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and the coefficient of coupling is

k = —A-— = geometrical mean of 4- and i- 
Qi (8)

Equation (7) gives the maximum attainable value for the midband 
gain.

In practice it is customary to use not that value of k which gives 
maximum midband gain but instead that value which gives the flattest 
selectivity curve. From Eq. (2) the corresponding value of s is given by

s2 = lb, (9)
since in this case

d|/iz| = d2|/i2| = 4M = n
dv dv2 dv3

when v = 0. When Eq. (9) is satisfied, the circuit is said to be transi
tionally coupled, because if the coupling coefficient is increased beyond the 
transitional value, the curve has two peaks, whereas for values of k below 
transitional the curve has a single peak. The transitional value of the 
coupling coefficient is

‘ ■ và* " + 01 à “d ® (10)

When the Q's are equal, b = 2, and transitional and critical coupling 
coincide. For all other values of Q, however, transitional coupling is 
greater than critical, since the rms of two unequal quantities is greater 
than the geometric mean.

The bandwidth (B between 3-db points in thè transitionally coupled 
case, as determined from Eq. (3), is

ffi = V1 + s2
2tt y/RiRz

(H)

Gain-bandwidth Factor.—It has been shown above that the general 
shape of the selectivity curve depends only upon a single parameter 0. 
defined by Eq. (4). Accordingly when comparing circuits with different 
Q-ratios but with the same values of /3 (that is, the same peak to midband 
ratios) and the same bandwidths, it is sufficient to compare rhe midband 
gains. The ratio of the responses at midband is then equal to the ratio 
of the responses at any other frequency. A more general basis of com
parison is given by the ratio of the product of midband gain and band
width when the circuits have the same values of /3. Because of the 
simplicity of the resulting expressions, the bandwidth is usually taken 
at the half-power points. The product of midband gain and bandwidth
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is, in this case, called the “gain-bandwidth product” of the circuit. In 
the important case of transitional coupling, this gain-bandwidth product 
is given by

g® = --------2s
° 2?r2 VCA yT + s2 (12)

where s2 = %b = KQ1/Q2 + Q2/Q1).
Now gm/(2ir2 y/CiCp is the gain-bandwidth product of a single-tuned

Fig. 5-2.—Gain-bandwidth factor of transitionally coupled double-tuned circuit as function 
of Q-ratio.

capacity, thus a convenient dimensionless figure of merit is the so-called 
“gain-bandwidth factor,” the ratio of the gain-bandwidth product 
of the particular coupling circuit to the gain-bandwidth product of a 
single-tuned coupling circuit. On this basis the gain-bandwidth factor 
for a single-tuned circuit is unity and for a transitionally coupled double
tuned circuit is

23
<1 + s2’ (13)

where s is given by Eq. (2). If s is eliminated between Eqs. (2) and (13), 
the gain-bandwidth factor can be shown to be equal to
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2 vT+V2 
(1+ p) ’ (14)

When p = 1, the equal-Q case, the gain-bandwidth factor is -y/2; as 
p tends to infinity, this factor increases monotonically to 2. Expression 
(14) is plotted as a function of p in Fig. 5-2.

When the coupling is not transitional, the expression for the band
width is complicated and the general expression for the gain-bandwidth 
product will not be computed. It is easy, however, to compare the 
effect of different Q-ratios on midband gain of circuits having the same 
shape index P and the same bandwidth.

The midband gain in the general case is

s. - «=4^- 0»j- I O
The shape index /3 is assumed constant where 

s2 - ib .
* - 72^. (16)

and since the bandwidth is also assumed constant, it is necessary that

7 
( s 
: )

2 _ Q1Q2
7 1 +s2

be constant, as may be seen from Eqs. (4) and (5).
From Eqs. (15), (16), and (17) it can be shown that

So = 2rf0 VC/Ct

'£ + JX 1J+w
It has been shown above that & is never greater than unity, so that

§o increases monotonically with ib. When ib 1, the equal-Q casef ; 4 (J
G = /1 + I 7 FJ
b0 2^ VC/C2 \ 2 J ’ 7-

and when Qi is infinite, so that ib = »,

g™7
2xrf 0 \/C1C2

The ratio of the midband gain in the two cases is simply
1 + A*

2 J ' (19)

For strongly overcoupled circuits, where 0 « 1, Expression (19) 
shows that the unequal-Q case gives no larger gain than the equal-Q case.
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For very weakly coupled circuits, on the other hand, where — 1, the 
unequal-Q circuit has a considerable advantage.1 At transitional 
coupling, where 0 = 0, the ratio is \/y/2, a result already obtained above.

The increased gain-bandwidth factor offered by the unequal-Q 
transitionally coupled case is not obtained without having to pay a con
siderable price, for it will now be shown that the amplitude response 
of the unequal-Q coupling is liable to develop serious asymmetry under 
conditions of slight mistuning.

The Effect of Mistuning.—If the secondary circuit is mistuned from 
midband by an amount +Af, where Af is small, then from Eq. (116) in 
Aiken the transfer impedance can be written

s -\/RiR2

(1 + s2 + ^)2 + »1(5 - 2) + 2^ Çg -

— 2v2 (s2 + + v*
\ * f

(20)

where un = -\/QiQî ^f/îo-
It will be noted that there is now a term in the first power of v in the 

denominator, so that the resonance curve is asymmetrical unless Qi = Q2. 
The greater the Q-ratio the more serious is the asymmetry produced by 
mistuning.

Aiken gives a number of curves illustrating the magnitude of this 
effect in particular cases.

Variation of k with Q-ratio When the Bandwidth Is Fixed.—Another 
feature of the unequal-Q case, which may prove undesirable, is that the 
coefficient of coupling required for a given fractional bandwidth increases 
with the Q-ratio, according to the same law as does the gain-bandwidth 
factor. From Eq. (11)

(B _ k y/1 + s2 
fo ~ 3 ’

so that k = («/^(s/Vl + s2)> which, but for the factor ffi/(2/0), is 
equal to the gain-bandwidth factor given by Eq. (13). Accordingly as p 
increases from 1 to oo, k increases monotonically from ®/(/o -\/2) to ®//o.

Despite the more critical dependence upon tuning and the larger 
coefficient of coupling, the unequal-Q coupling has a number of important 
applications, particularly as an interstage coupling circuit in wide-band 
amplifiers where the greater gain-bandwidth factor is important and as 
the input network of an amplifier where the addition of extra resistance 
(to equalize the primary and secondary Q’s) would make the noise figure 
seriously worse.

1 See footnote to Eq. (4).
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In these applications it is usually desirable to make the Q-ratio as high 
as possible. Hence the special case where one of the Q’s is infinite is 
discussed in Sec. 5-4. The equal-Q case is discussed in Sec. 5-3.

Gain-bandwidth Factor of an n-stage Amplifier.—The gain-bandwidth 
factor of an n-stage amplifier is defined as 2ir2 \/C-¡C2/gm times the 
product of the over-all 3-db bandwidth and the mean stage gain. For 
the transitionally coupled double-tuned circuit the ratio of over-all 3-db 
bandwidth to 3-db bandwidth of a single stage is

(2V» _ 1)K « = 1 _ 
lAn»’

the approximate expression is very accurate for large n and is within 
10 per cent of the correct value even for n = 2.

Accordingly the gain-bandwidth product of an n-stage transitionally 
coupled double-tuned circuit is

Sm  (21/71
2tt2 VCiCi vT + s2

1)«,

and the gain-bandwidth factor is

__ 0 . - ('21/n — ~   __ -__, 
V1 + s2 1 V1 + s2

(21)

(22)

where s is given in terms of the Q-ratio by Eq. (9).
The Driving-point Admittance.—A quantity of particular importance 

in noise-figure calculations is the driving point admittance Ku defined by

Aiken has shown that

Ka (23)

which can be expressed as the sum of a conductance Gu and a susceptance 
Bn, where
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The absolute value of F11 is given by

the absolute value of the primary driving-point admittance is thus equal 
to S/NR1R2 times the absolute value of the ratio of the transfer admit
tance Tn to the driving-point admittance of a single-tuned circuit (the 
secondary circuit). This last result can be used to provide universal 
resonance curves for the driving-point admittance if so desired. In 
Aiken curves of the driving-point impedance are given for the equal-Q 
case, and it is there shown, as can be deduced by inspection of Eq. (25). 
that the absolute value of the driving-point impedance is double-humped 
even when the circuit is transitionally coupled.

Capacity-coupled Circuit.—In the small fractional-bandwidth case the 
gain-bandwidth factor of the circuit of Fig. 5-15 is the same as that of the 
inductively coupled circuit, and the results of this section apply to this 
case if the coefficient of coupling is defined by

k =
_________________C12________________ Cj2

V(Ci + c12)(c2 + cn ~ Vc/ci
The chief drawback to the capacity-coupled circuit, however, is that 

the inductances Li and L2 must resonate with capacities larger than 
Ci and Ci, thereby reducing the gain-bandwidth factor. It is approxi
mately the case that Li must resonate with Ci in parallel with the series 
combination of C12 and C2 and L? must resonate with C2 in parallel with the 
series combination of Cn and Ci. The gain-bandwidth factor for this 
circuit is therefore multiplied by a factor approximately equal to

CiCz
(Ci + C12)(C2 + C12)

1 .
1 + k

For fractional band widths with k > 0.1 the loss in gain-bandwidth is 
appreciable and is the chief theoretical reason for rejecting the capacity
coupled circuit in favor of the inductively coupled circuit.

5-3. The High-Q, Equal-Q Case.—When Qi = Qi = Q the transfer 
impedance is

। 7 1 _  _  $ RiRi
1 121 ~ [(1 + s2)2 + 2(s2 - 1>2 +

where R,Ci = R2Ci, and v = Q(u/w<> — «o/«).
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Universal resonance curves for this case are given in Fig. 5-3, where 
ZlZA/x/RiRz is plotted, as a function of v, for various values of A. It 
will be noticed that all curves for coupling coefficients greater than unity 
have the same maximum value, a feature peculiar to the equal-Q case.

The more important properties of the circuit are stated below. They 
can be obtained from the general results of Sec. 5-2 by insertion of the 
special values Qi = Q?, b = 2.

Fig. 5-3.—Absolute value vs. frequency curves of high-Q equal-Q double-tuned circuits 
as function of coefficient of coupling. The parameters associated with the various curves 
are the values of kQ.

1. Gain-bandwidth product of single stage

= V2------ ______ • (27)
2ir2 x/CiCz

2. The transitional coefficient of coupling = 1/Q = critical coefficient 
of coupling.

3. Gain-bandwidth factor of single stage = v^.
4. Gain-bandwidth factor of n stages

5. Bandwidth at half-power points with transitional coupling:

, - /Ô
= V2 (2'/» - 1)« « (28)

6. The voltage gain at midband with transitional coupling:

where C = y 
hence

® Q 2irRC’ (29)

/"C/Cz, R = y/RiRz-,

k = 1 = ®- (30)
Q V2fo

p_ g^R
S 2
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7. Midband value of driving-point impedance:

Zn Ri
2 '

Design of Equal-Q Double-tuned Circuit io Meet Given Specifications.— 
The design of a transitionally coupled equal-Q circuit to have a given 
bandwidth is very simple. From Eq. (29) k and Q are found at once. If 
the primary and secondary capacities are known, it is possible to write 
down the values for the damping resistors.

In the more general case where what is given is the bandwidth at an 
arbitrary level and the height of the peaks, the design is best performed 
from the universal resonance curves of Fig. 5-3. The value of s cor
responding to the given ratio of peak response to midband response is 
found from Fig. 5-3, as is also the value of v at which the curve, with this 
value of s, intersects the level at which the bandwidth is specified. Since 
v and the bandwidth are known, Q can be determined; and because s is 
known, k can then be found. With the determination of the damping 
resistors the design is complete.

5-4. The High-Q Case When One of the Q’s Is Infinite.—When Qi is 
infinite, Rb s, b, and v all become infinite, so that the formulas given in 
Sec. 5-2 for the general case yield expressions that are indeterminate 
forms. Instead of considering these directly it is better to eliminate Ri 
from the expression for the transfer impedance so that this quantity is 
given solely in terms of finite quantities.

If this is done, Zn is given by 

hence

Z12
2irf0 VC/Ct

jk

k1 +g + (jay
(31)

(32)

where a = u/u0 — wo/w. It is clear from Eq. (32) that transitional 
coupling kt is given by

kt = —U=.
Q2 V2

When the circuit is transitionally coupled, the bandwidth at half-power 
points is given by

B t7- — w
Jo
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and the midband gain is

g = = 0m
b kt2rf0 y/C^i 2rf0 y/C/C2 \/2 R2 (33)

The gain-bandwidth product is
2 9m, 

2ir2 \/ C1C2

and the gain-bandwidth factor is 2. All these results have already been 
obtained in Sec. 5-2 above.

Universal Resonance Curves.—The shape of the response curve, in the 
case when one of the Q’s is infinite, may be varied either by changing k 
or by changing Q. Accordingly, the most useful means of presenting

Fig. 5-4.—High-Q double-tuned circuit, loaded one side only, Q fixed, k variable.

universal resonance curves for this case is to give one set of response 
curves with Q2 fixed and k variable and another set with k fixed and Q2 
variable.

1. Q Fixed, k Variable. For fixed-Q, transitional coupling is given 
by k = kt = 1/(Q -\/2)- In Fig. 5-4 the expression 

Zn2irft> VCiCj 
n/2 Qi

(34)

is plotted as a function of a/kt = y/2 Q2a, for k/kt = I, l/y/2, 1, 
x/2, 2.

In contrast to the behavior of equal-Q double-tuned circuits, discussed 
in Sec. 5-3, maximum secondary voltage does not occur at transitional 
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coupling, nor does the height of the peaks remain constant when the cir
cuit is overcoupled.

Maximum secondary voltage occurs at critical coupling; if Qi is really 
infinite, critical coupling means zero coupling, infinite primary voltage, 
zero bandwidth, and zero gain-bandwidth product.

2. k Fixed, Q Variable. For fixed k, transitional coupling is yielded 
by Q = Qi = l/(k y/2). In Fig. 5-5 the expression

is plotted as a function of a/k = x/2 Qta, for q = Q/Qt = i, l/y/2, 1,
<2, 2.

Fig. 5’5.—High-# double-tuned circuit, loaded one side only, k fixed, Q variable.

It may be noted that with k fixed and Q variable the voltage at band 
center is constant, a result that is evident from Eq. (32).

The bandwidth at half-power points is

2rRiC2
(36)

Input Driving-point Admittance.—From Eq. (24) it follows that the 
conductive and susceptive components of the driving-point admittance 
are given by

„ MB )
U11 ^(i + Q^y f (37)

©2 (1 + Q22+ - FQl) (

Bn = R2(i + Q^2) ’ / 
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and the absolute value of the driving point admittance is given by

T / 1 \ V427r/0C2Q2 pc4 - a2 I 2fc2 - M + a4

=-------Hr+W) ---- -  (38)
kQi /Ci 1 Ra
R, yCzWiï (1 + Ql^' 1 ;

It may be noticed that Gn varies with frequency like the amplitude 
response of two identical cascaded single-tuned circuits.

The Effects of Mistuning.—In the case where Qi is infinite Eq. (20) 
assumes the form

|Z12|

— 2t/0 C1C 2 / A/Y 
\Q2/o/

2a Af 
Qifo

- 2a2 k2 +

1 
2Q2 + a4 (40)

where Af/fo is the fractional frequency difference between the resonant 
frequencies of the primary and secondary circuits and a = w/u>o — wo/u.

It would be possible to plot a family of universal resonance curves for 
various values of k and Af if full information on the effects of mistuning 
were required. Here, however, a short discussion of the magnitude of the 
effect will be given in the case where the coupling is transitional. In that 
case, the transfer impedance is proportional to

__________ 1_________

J - 2QI (ft) a +
4 \jo/

(41)

where the 3-db bandwidth ® is approximately given by

® = 1
fo y/2 Qs (42)

The curve of Eq. (41) no longer has a peak at midband, 
is a single peak at

Instead there

1 (QtAfY 
Qi. \ 2/o / (43)

and the peak response is proportional to

(44)



216 DOUBLE-TUNED CIRCUITS [Sec. 5-5

The ratio r of the peak to midband response is

For a fixed Af it may be seen that the magnitude of the mistuning 
effect is inversely proportional to ffl; hence the wider the bandwidth the 
less critical does its unequal-Q coupling become.

If the mistuning is produced by a change — AC in the stray capacity C 
of the tube, then, to the first order,

AC = 2A/ 
C f0

and Eq. (45) becomes

r = -=---------- (46)

\2C Bj _

From Eq. (46) it appears that the important quantity is the fractional 
bandwidth, which must be large if the unequal-Q circuit is not to be too 
critical.

To illustrate the magnitude of the effect numerically, the following 
assumptions are made:

C = 15 ppi,
AC = 2.0 ppi, 

ffi = 15 Mc/sec, 
/o = 45 Mc/sec.

Then
1

T [1 - 3(* 3)«]« 
1 _ 1 

“ (1 - 0.35)M - (0.65)«'

Hence the response curve now has a peak of 1.95 db at 51.6 Mc/sec, an 
appreciable distortion.

Design Procedure When One Q Is Infinite.—The design procedure for a 
double-tuned circuit with one Q infinite follows essentially the same course 
as that for an equal-Q double-tuned circuit.

The main results of the last three sections are summarized in Table 
51.

5-5. The Transitionally Coupled Low-Q Case.—For wide-band 
receivers the high-Q theory is precise only at exceptionally high midband 
frequencies. The exact treatment, valid for the low-Q case as well, is



Sec. 5-5] THE TRANSITIONALLY COUPLED LOW-Q CASE 217

Table 5-1.—Summary of Properties of Inductively Coupled Double-tuned 
High-Q Circuit

Property General case, Q\/Q2 = p Equal-Q case, 
Qi — Q2 = Q Qi = “

Condition 
for transi
tional cou
pling

___________ 11 +p2
, /1 ( 1 1\ \ 2

N2\q‘+QI/~ pQ,
k = l

Q k “ —~7=
Qi V2

3-db band
width at 
t r a n s i - 
tional cou
pling

VÌ + WQtQifi = 1 + p fi

VQ& Vip Q

yfy, = V2

Q 2tRC

A__________ 1_____
a/2 Q V2 2rrRiCi

General ex
pression 
for mid
band gain

3mk y/QiQi y/RA 
1 + WLQt

g^kQ RiRi 
1 + k'Q1

Qm 1
2ir/0 y/c/Cg *

Midband 
gain with 
tran si- 
tional cou
pling

/— V2P (1 + p*) 
Sm VRiRi (1 + py

2

V2gmRiy^

Gain-band 
width fac
tor

2 Vi + P1

1 +p

a/2 2

Gain-band
width fac
tor of n- 
stage am
plifier

171+7 (2v. _ 1)H

1 + p
~ 2 V1 +P2 1

~ 1 + p l.ln*

a/2 (21/" - 1)M

V2
“ l.ln*

2(2'/» - 1)K

2 
” l.lnM

Ratio of re
sponse at 
peak to re
sponse at 
midband

1 +s2 1 + s2 fc2Q2

[(1 + ib) (2s2 + 1 - ib)]W 2s (fc2Q2 - J)«

extremely complicated and has been worked out fully only for the case of 
transitional coupling.1 Only the main results will be given here. A

1 A. M. Stone and J. L. Lawson, "Theory and Design of Double-Tuned Circuits,” 
Electronic Ind., p. 62, April 1946; "The Double-tuned Circuit with Transitional 
Coupling,” RL Report No. 784, November, 1945. See also C. P. Gadsden, “Flat-flat 
Coupling for the Double-tuned Circuit,” RL Internal Group Report 61-11/17/44, for 
an independent derivation.
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number of additional symbols that are needed in this section will now be 
defined.

/i o-----the primary frequency.
Ztt ■y/LiC i

1
/2 = o----- /FTT’ the secondary frequency.

L2C 2

= primary frequency with secondary short-circuited.
/j = secondary frequency with primary short-circuited.

As in the high-Q case, transitional coupling is defined by the condition 
that

d|Z12| _ d’|Z12| _ d3|Z12| _ 
df df2 df2

where Zlt is the transfer impedance and f = /o is the center frequency. 
The analysis is presented here for the equal-Q case and the case where 
Qi = °°.

Equal-Ci Case.—The design data for the equal-Q transitionally coupled 
case are shown1 in Fig. 5-6. If the 3-db fractional bandwidth is given, all 
the other data can be read off directly. The abscissa is the coefficient of 
coupling, in terms of which the other quantities are plotted. The circuit 
Q is obtained from Curve d where Q/2ir is plotted; note that Q is specified 
at /o, not fi; i.e., = f0RiCi = foRzCz. The resonant frequencies
may be found from Curve c. The frequencies /[, /2 at which one circuit 
resonates when the other is short-circuited are of importance in the lin
ing-up procedure.

It may be noted from these curves that the high-Q theory gives results 
that differ very little from the exact low-Q theory even for values of k 
as high as 0.40. For example, even if the fractional bandwidth is as high 
as 0.6, corresponding to a 3-db bandwidth of 18 Mc/sec at 30 Mc/sec, the 
approximate theory gives a value for k of 0.424, which is only 6 per cent 
too high. Even more striking is the fact that the gain-bandwidth factor 
is constant and equal to y/2 for values of k as high as 0.8, although as k 
tends to 1, the gain-bandwidth factor tends to 1; the case k = 0.8 cor
responds to a bandwidth 1.55 times the midband frequency, which is an 
extreme case. This means that if Q is calculated from the high-Q 
expression 

then this value of Q will be accurate for values of k as high as 0.8. It will 
also be noticed from Eq. (2) that [Zi2(/0)| x/R\Rz, the normalized mid
band value of the transfer impedance, is equal to 0.5 for all k.

1 Figs. 5-6 and 57 are taken from the paper of C. P. Gadsden, op. dt.
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It may be concluded that for the transitionally coupled double-tuned 
circuit with equal Q’s the approximate high-Q case provides design data 
accurate to within 6 per cent for values of fractional bandwidth up to 0.6, 
provided that the primary and secondary circuits are tuned to the fre-

Fig. 5-6.—Design data for low-Q transitionally coupled double-tuned circuit,

= Qi - Q.
(a) Fractional bandwidth ®//o; (6) normalized midband gain; (c) primary and secondary 
resonant frequencies; (d) Q/2r = — faRzCz-, (e) gain-bandwidth factor

l^i2(/o)|2ir®2 VCiCi.

quencies given by Curve c in Fig. 5-6. The approximate theory also 
provides expressions for the gain-bandwidth factor and the midband gain 
that are accurate up to fractional bandwidths of 1.55 for the former and 
even larger fractional bandwidths for the latter.
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Even for fractional bandwidths as large as unity, it is still very accu
rately the case, as in the high-Q approximation, that the bandwidth <Br at 
a level 20 log r db down from midband response is related to the 3-db 
bandwidth ffi by

Fig. 5-7.—Design data for low-Q transitionally coupled double-tuned circuit ,
Qz = Q. (a) Fractional bandwidth ®//q; (6) normalized midband gain; (c) primary 
resonant frequency; (d) secondary resonant frequency; (e) Q/2tt foRiC2; CO gain-band
width factor [Z^C/o)|2tt®2 \/C1C2.

Case When Qi Is Infinite.—The design data for the transitionally 
coupled double-tuned circuit when Qi is infinite are shown in Fig. 5-7. 
The most important difference between this case and the equal Q case is
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that the resonant frequencies of the primary and secondary circuits, given 
by Curves c and d, respectively, are no longer equal. As in the equal-Q 
case the high-Q theory gives values for k accurate to within 5 per cent 
for k less than 0.4. The value k = 0.4 corresponds to a fractional band
width of 0.435 (as opposed to 0.6 in the equal-Q case). The gain-band
width factor is constant and equal to 2 for values of k up to 0.9 but drops 
to y/3 as k tends to 1. The high-Q formula

Q = V2^
Jo

is accurate for values of k as high as 0.8. The normalized midband gain, 
plotted in Curve b, is no longer independent of k, but the high-Q result is 
accurate to within 5 per cent for fractional bandwidths as large as 1.4.

Apart from the differences mentioned above, the design of a transi
tionally coupled double-tuned circuit with one Q infinite proceeds along 
the same lines as for the equal-Q case.

5'6. Stagger-damped Double-tuned Circuits.—If n identical double
tuned transitionally coupled stages are cascaded, the over-all 3-db band
width is reduced by the factor (2I/n — 1)M as stated in Sec. 5-2. Thus in a 
conventional eight-stage double-tuned amplifier the over-all bandwidth 
is only (2M — 1)M = 55 per cent of the bandwidth of each stage. A 
scheme will now be described1 that eliminates this shrinking of bandwidth. 
The idea is to have successive stages over- and undercoupled so that the 
over-all response curve is maximally flat. For want of a better name this 
scheme is called “stagger-damping.”

Because of the complexity of the calculations for the exact case, the 
theory is based throughout upon the high-Q approximation. This is 
a weakness, since stagger-damping is likely to be noncritical enough for 
practical use only in the low-Q case. However, the wide range of validity 
of the high-Q theory for the case of transitional coupling, demonstrated 
in Sec. 5-5, lends support to the belief that results derived from this 
theory will be sufficiently accurate to yield the high predicted gain
bandwidth factors, at least after some cut and try.

Synthesis of a Maximally Flat Response Curve by Over- and Under
coupled Double-tuned Circuits.—In the first place attention will be con
fined to the case where one Q is infinite. It was shown in Sec. 5-4 that 
when Qi = so, the transfer impedance is given by

L ^2 _

1 Henry Wallman, “Stagger-damped Double-tuned Circuits,” RL Report No. 539, 
Mar. 23, 1944. Section 5-6 follows this report.
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The absolute value of Eq. (47) is

' 121" m v/rFr---- 71---- \--- T» v 12irfay/CiC2 ki + /I _ 2ki \ q4
L W2 / J

If the individual stages of the n-stage amplifier are over- and under
coupled to yield a maximally flat over-all amplitude response, this 
response will be of the form

8"
(54n + ainyA’

where 8 is equal to the fractional over-all bandwidth between half-power 
points.

Now from Eq. (4-21a) it may be seen that S"/^4" + a4n)w is the 
absolute value of

5 . 2 .

S2 4- ja2i sin + (ja)2 S2 + ja2S sin + (ja)2 in in

2« - 1 k y
52 + ja2S sin T +

Each factor of Eq. (49) has the same general form as Eq. (47); thus 
the first factor of Eq. (49), for example, may be realized by a double
tuned circuit loaded on one side only and satisfying

k = 8,

Qa = ----- ------ , (50a)
28 sin -/

4n

the second factor of Expression (49) by a double-tuned circuit loaded on 
one side only and satisfying

k = 6,
0 - ZpT, <5W’

25 sm 7in

and so on. Hence the selectivity curve Sn/y/34" -f- ain may be realized 
by an amplifier consisting of n suitably damped double-tuned circuits 
separated by vacuum tubes. An amplifier of this sort is called a "stag
ger-damped n-uple.”

In the approximate high-Q case this design possesses two very con
venient features.
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I. All the transformers have the same coefficient of coupling.
2. The coefficient of coupling is the ratio of desired over-all band

width to center frequency.

This means that only one transformer type is needed throughout. 
The only difference between the circuit of one stage and the circuit of 
another stage is in the value of damping resistor.

It must be pointed out, however, that because this scheme will be 
used only with wide-band amplifiers, the exact low-Q analysis must be 
used to calculate the circuit components. Under these circumstances the 
coefficients of coupling will vary from stage to stage, although the varia
tion will not, in practice, be large.

Gain-bandwidth Factor.—If the transconductance of each stage of the 
amplifier is gm, the over-all gain at midband is

gm ;
(2^/o

so that the mean stage gain is 
_______ ____  
2tt/0 n/C/C~z «

The over-all 3-db bandwidth is/oi, and hence the stage-gain times over-all 
bandwidth product is

____Qm____ 
2?r N CyCi

so that the gain-bandwidth factor is 2. This is the gain-bandwidth factor 
of a single transitionally coupled double-tuned circuit with one Q infinite 
and is twice that yielded by staggered single-tuned circuits.

Stagger-damped circuits bear the same relation to double-tuned cir
cuits, all transitionally coupled, as do stagger-tuned circuits to syn
chronous single-tuned circuits; both schemes eliminate the shrinking of 
over-all bandwidth that results when identical circuits are cascaded.

Stagger-damped n-uples Using Double-tuned Circuits with Both Q’s 
Finite.—It might be expected, as a corollary of the above analysis, that if 
a stagger-damped n-uple were constructed of equal-Q double-tuned cir
cuits, the over-all gain-bandwidth factor would be equal to -x/2, that is, to 
the gain-bandwidth factor of a single transitionally coupled equal-Q cir
cuit. Such is not the case, however; the gain-bandwidth factor of an n- 
stage equal-Q stagger-damped n-uple is 2l/2n, which tends monotonically 
to unity as n —» ».

It may be seen that if all the stages must be made of equal-Q double
tuned circuits, the stagger-damped scheme is of very little use.
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It has been shown in Sec. 5-2 that for a given bandwidth and shape of 
response, the ratio of midband gain in the equal-Q case to midband gain in 
the unequal-Q case tends to unity as k tends to unity and to zero as k tends 
to zero. Accordingly it would be possible to use equal-Q circuits for the 
overcoupled stages and unequal-Q circuits for the undercoupled stages 
and preserve an over-all gain-bandwidth factor close to 2. Such a design 
might prove a useful compromise between good gain-bandwidth factor 
and noncritical circuits.

For the general case where the Q’s are unequal the circuit components 
can be determined quite simply when it is remembered that the shape of 
the response curve of a circuit is determined once there is given the ratio 
of peak to midband response and the bandwidth at any level.

Fio. 5-8.—Stagger-damped pair (a) l/\/l - V' t/2 + V1: (b) l/x/l + -/2 + S'4!

(c) 1/+1 j/8. (a) and (6) are the component selectivity curves of a stagger-damped 
pair; (c) is the over-all result.

Let ® be the over-all bandwidth, to the half-power points, of a stagger
damped n-uple; then the circuit components of the rth stage must satisfy 
the two equations

® = (1 + s2)*, 
fa y/QiQz

n ’ in t\ a/6 + 2
2 sin (2r — 1) — = —. ■ - ■

4n V1 + s2

(51)

One more relation is needed to determine the system. The Q-ratio 
may be given or the magnitude of one of the Q's or the coupling coefficient 
k or a functional relation of all three, depending upon the particular 
problem under discussion. The important thing to emphasize is that 
there is no need for the third relation to be the same from stage to stage; 
it is necessary only that the two relations of Eq. (51) be satisfied.

Stagger-damped Pairs and Triples.—The particular cases of stagger
damped pairs and triples will be considered in slightly more detail.
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1. The Resonance Curves.—In Fig. 5 8 are shown the two resonance 
curves that make up a stagger-damped pair, and in Fig. 5-9 the three 
selectivity curves that make up a stagger-damped triple. The frequency 
variable in each figure is y = a/S.

The design data for the general case can be found from Eq. (50) by 
putting n = 2 in the stagger-damped pair case and n = 3 in the stagger
damped triple case.

Fia. 5-9.—Stagger-damped triple, (a) l/\/l — v2 y/s + y*', (b) 1 /y/1 + y*-, 
(c) 1/y/l + yi + y4; (d) l/y/\ + y12. (a), (b), and (c) are the component seiectiv- 

ity curves of a stagger-damped triple; (d) is the over-all result.

2. Cascaded Pairs and Triples.—When identical stagger-damped pairs 
are cascaded, the over-all bandwidth is reduced by the factor (2I/n — 1)». 
when n is the number of pairs, as in Table 5-2.

Table 5-2.—Reduction of Over-all Bandwidth with n Stagger-damped Pairs

n 2 3 4 5 6 7

0.896 0.845 0.812 0.782 0.768 0.754

Consider an eight-stage amplifier, for example, in the form of four 
stagger-damped pairs. The over-all bandwidth is 81 per cent of the 
bandwidth of one pair, so that the use of four pairs instead of one octuple 
entails a loss of only 19 per cent in over-all bandwidth.

When identical stagger-damped triples are cascaded, the over-all 
bandwidth is reduced by the factor (21/n — l)Hj, where n is the number of 
triples, as in Table 5 3.
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Table 5-3.—Reduction of Over-all Bandwidth with n Stagger-damped Triples

n 2 3 4 5

(¿l/n — 0.929 0.894 0.871 0.848

3. Transient Response.—The step-function response of a stagger
damped pair is graphed under n = 4 (Fig. 7-7) and shows a 10.9 per cent 
overshoot. The step-function response of a stagger-damped triple is 
graphed under n = 6 in the same Fig. 7-7 and shows a 14.3 per cent 
overshoot.

As pairs or triples are cascaded, the percentage overshoot is multiplied 
by a factor about equal to the square root of the number of pairs or 
triples.

5-7. Construction and Examples.1—It is usually difficult to achieve a 
coefficient of coupling larger than about i with a mutual-inductance- 
coupled air core transformer or j with a powdered-iron core transformer2 
unless the windings are made to overlap. For larger coefficients of 
coupling the use of the tt- or T-equivalent is then necessary. It must be 
kept in mind that there is a maximum coefficient of coupling possible 
in a sr or T, which occurs when the ir or T degenerates to an “ inverted-L ”; 
this maximum coefficient of coupling may be noticeably less than unity if 
the primary and secondary inductances are very different.

The r- or T-equivalent is sometimes employed even when the mutual
inductance-coupled transformer is possible, for the reason that it is easier 
to make and adjust three separate coils than a transformer with accurately 
made spacer. Many of the Radiation Laboratory double-tuned circuits 
employed to couple a crystal converter to the first amplifier grid were of 
this sort. The ir- or T-circuit is somewhat bulkier, however, and requires 
either a condenser or bifilar winding to block direct current.

Adjustment and measurement of a double-tuned transformer is best 
carried out with a Q-meter. The primary and secondary are each 
adjusted until they resonate with the appropriate primary and secondary 
capacities Ci and C2 at the design frequencies fi and /2, (see Fig. 5-6 or 
5-7), with the other winding open-circuited. The coupling is then 
adjusted until the primary winding resonates with Ci atfi (see Fig. 5-6 or 
Fig. 5-7) with the secondary short-circuited; similarly the secondary 

1 This section was written by Henry Wallman.
2 A coefficient of coupling of 4 corresponds to a fractional bandwidth of about ] in 

the case of loading on one side only and a fractional bandwidth of about 0.47 in the 
case of equal primary and secondary Q’s; a coefficient of coupling of | corresponds to 
fractional bandwidths of ] and 0.7 in the two cases. It is rare that these fractional 
bandwidths do not suffice.
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should resonate with C, at fi with the primary short-circuited. The 
procedure converges rapidly.

In manufacture, close tolerances must be maintained on the thickness 
of the spacer between primary and secondary as well as on the primary 
and secondary inductances.

The coefficient of coupling may be measured as follows: Denote by CM 
the capacity required to resonate the primary at a convenient frequency 
with the secondary open-circuited, and denote by Cic the capacity required 
to resonate the primary at the same frequency with the secondary short- 
circuited. Then

yjl- (52)

The result should be the same when the primary is replaced by the 
secondary.

Equation (52) is entirely exact, even for the low-Q case, if only induc
tance-coupling exists. In transformers intended for large fractional 
bandwidth, however, there is usually a certain unavoidable stray
capacity coupling; the result is that a certain amount of cut-and-try 
adjustment is required. In order to keep capacity coupling as small as 
possible, the terminals of the primary and secondary windings that are 
closest to each other should be those grounded for signal (B+ and ground, 
respectively).

The alignment procedure, once the transformers have been wired into 
the amplifier, follows very much the same method as that outlined above 
for adjusting the coils and is described in Sec. 8-4. Because double
tuned amplifiers are almost always fixed-tuned, the alignment procedure 
is usually employed only in the adjustment of the production prototype.

Example 1. Twelve-Stage 6AK5 100-dfe Amplifier at 60 Mc/Sec with 
12.5 Mc/Sec Over-all Bandwidth.—The circuit diagram of two typical 
stages of this amplifier, designed by C. E. Ingalls, is shown in Fig. 5-10, 
and a photograph in Fig. 5-11. One stage has provision for applying gain 
control voltage to the grid, and the other has not.

The bandwidth per stage is about 25 Mc/sec, and the stages are 
adjusted for a coupling just a very little more than transitional.

The primary capacitance is 4.8 ppi and the secondary capacitance is 
7.4 ppi. The primary Q is 2.2 times the secondary Q; this Q-ratio was 
experimentally determined in order that change of secondary capacitance 
with gain-control voltage might result in the least tilt in the pass band.

The coefficient of coupling is about 38 per cent. Powdered-iron cores 
are used.

The stage gain is 9 db even when the transconductance of the type 
6AK5 tubes is only 4000 j/mhos. A conservative rating of this sort 
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ensures adequate gain even with tubes all of which are close to the lower 
limit of the JAN-1A specifications on transconductance.

In the interest of low noise figure the first two stages of this amplifier 
employ the grounded-cathode triode grounded-grid triode circuit 

+120 v 

+180 v Gain control 
voltage +120v

Fig. 540.—Circuits of two typical amplifier stages of Example 1.

+ 180 v +120 v

Grid circuit

Filter resistor & bypass Tie point
Gain control 

i-f filter resistor

Ceramic insulated 
heater choke

B bypass

Filter 
resistor

Cathode 
bypass

Loading 
resistors

Bias 
resistor |

j Fi(t Spring clips fori
I resistor ^contact |
I to cover . j

Screen j
bypass ;

Fig. 5-11.—Layout of typical amplifier stages of Example 1.

described in Sec. 1310; the noise figure over the 12.5 Mc/sec bandwidth 
is 3.5 db. This was 2.0 db better than had been obtained with a type 
6AK5 pentode first stage.

Example 2.—The amplifier shown in Fig. 5-12 has a purpose similar to 
that of the amplifier of Fig. 414. The interstage circuits are double
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tuned, with loading on one side only, and transitionally coupled. The 
primary capacity is 7.0 uni, and the secondary capacity is 4.5 ppi.

Fig. 5-12.—Four-stage 6AK5 80-db double-tuned amplifier at 30 Mc/sec with. 10 Mc/sec 
over-all bandwidth, (a) Bottom view; (b) top view.

For an over-all bandwidth of 10 Mc/sec the bandwidth of each of the 
five double-tuned circuits (including the input circuit) has to be
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10
(2* - 1)« 16 Mc/sec.

Hence in Fig. 5-7 the value of (B//o is 0.53; the value of k is therefore 0.48; 
this is achieved by use of a powdered-iron core. If the secondary is 
unloaded, then the primary Q/2r at fa is 0.21 and the open-circuit primary 
and secondary frequencies are 30 X 0.97 = 29.1 and 30 X 0.91 = 27.3 
Mc/sec, and the primary and secondary frequencies with the other wind
ing short-circuited are 30/0.91 = 33 and 30/0.097 = 31 Mc/sec. The 
damping resistor Ri is determined from QI2r = foRiCi. If the primary is 
unloaded, it is the secondary whose Q/2tt at/o is 0.21, and the primary and 
secondary frequencies above are interchanged. The damping resistor Rz 
is determined from Q/2tt = faRzCz.

Fig. 5-13.—Layout of two stages of four-stage 80-db stagger-damped amplifier at 
30 Mc/sec with 1*0 Mc/sec over-all bandwidth. The tubes are the Raytheon baseless 
type CK-604.

In the amplifier of Fig. 5-12 the circuits are loaded alternately in the 
primary and secondary. Reduction of secondary capacity with increased 
control-grid bias tilts the response of one stage one way but tilts the 
response of the next stage the other; a fairly good over-all response is 
thereby preserved.

The chassis shown in Fig. 5-12 also contains a type 6AL5 detector, 
type 6AK5 first pulse-amplifier stage, and two pulse output stages 
employing the Sylvania type SD-834 baseless triodes, which can be seen 
in the lower left corner of Fig. 5-12a.

Example 3.—The amplifier shown in Fig. 513 is interesting in two 
respects: It employs stagger-damped pairs (Sec. 5-6), and the tubes are 
baseless.

The tube type is the Raytheon CK-604, which has almost exactly the 
same internal structure as the type 6AK5 and differs from it only in having 
a flat press, flexible leads, slightly higher heater temperature, slightly 
higher interelectrode capacitances, and a slightly smaller envelope, coated 
with metallic paint as shield. The transconductance is the same, but 
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because socket capacitances are eliminated, the actual gm/C ratio is 
only very slightly lower than for the type 6AK5.

The main virtue of the construction that results from the use of base
less tubes, apart from small size and elimination of parts, is that it permits 
one to employ circuits that are rather complicated and critical but of high 
efficiency. These circuits are matched to the individual tubes, and there 
is no danger that an unthinking maintenance man will misalign the 
amplifier by changing tubes.

The entire 80-db amplifier is only 5| in. long, in. wide, and 1 in. 
deep.

The circular components shown in Fig. 5-13 are feed-through button 
bypass condensers, and the hot-water-bottle-shaped objects are the base
less tubes. The mechanical design and construction of this amplifier is 
due to L. A. Harlow.

In a four-stage amplifier made up of two stagger-damped pairs, the 
bandwidth of each pair has to be only 10/0.896 = 11.2 Mc/sec (Sec. 5-6) 
for a 10 Mc/sec over-all bandwidth; compare this with the 16 Mc/sec 
stage bandwidth required in the preceding example for a 10 Mc/sec over
all bandwidth. Consequently, for given gain, over-all bandwidth, and 
interstage capacities, the tubes in a stagger-damped amplifier can be 
operated with a lower transconductance. In this stagger-damped 
amplifier the stage gain of 20 db requires a gm of only 3800 gmhos; this is 
only 76 per cent of the nominal gm, and the tubes should have very long 
life when operated in that way.



CHAPTER 6

HIGH-FREQUENCY FEEDBACK AMPLIFIERS

By Harry J. Lipkin

6-1, Introduction.—The gain-bandwidth product of an amplifier 
that uses synchronous single- or double-tuned coupling circuits can be 
improved by the use of inverse feedback that is a maximum at band center 
and drops off toward the edges of the band. As shown in Fig. 61, a 
flattening of the response curve of the amplifier with a consequent increase 
in the bandwidth results. If the increase in bandwidth is greater than 
the decrease in gain, the gain-bandwidth product is increased.

The simplest feedback circuit of this type is shown in Fig. 6-2. The 
feedback is produced by means of a feedback resistor connected between 

Fig. 6-1.—Amplifier response, (a) without 
feedback, (b) with inverse feedback.

the plate and grid of the amplifier 
stage. The proportion of the out
put voltage that is fed back de
pends upon the action of the 
voltage-divider circuit consisting of 

Fig. 6-2.—Simple feedback stage.

the feedback resistor Ru and the grid circuit impedance Z^ Since Zk 
is resistive and a maximum at resonance (band center), there is maximum 
feedback at this frequency with a phase shift of exactly 180°. As the 
frequency deviation from band center increases, Zk decreases and 
phase shifts are introduced in the amplifier and in the feedback-voltage 
divider, thus decreasing the magnitude of the feedback signal and shift
ing its phase. The negative feedback is therefore of the proper type to 
increase bandwidth.

232
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Multistage amplifiers consisting of feedback stages of this type are 
illustrated in Fig. 6-3 and are called inverse-feedback chains. Admit
tances rather than impedances are noted in Fig. 6-3 because of the simpler 
mathematical analysis possible on this basis. In the general case, any 
values can be used for the feedback impedances, and the shunt impedances
may be two-terminal elements, with variation from stage to stage, as

F.g. 6-3a.—Feedback chain using two-terminal shunt impedances.

Fjg. 6-36,—Feedback chain using four-terminal shunt impedances.

However, the simplest case, where the feedback impedance is a pure 
resistance and the shunt impedances are single-tuned circuits, is of 
primary importance and is considered in greatest detail in this chapter. 
A brief discussion of more complicated feedback chains is given in Sec. 
6-7.

Although, in the general feedback chain, the feedback and shunt 
impedances may be chosen arbitrarily from stage to stage, in practical 
applications, three special simplified cases of the general feedback chain 
find frequent use: (1) the uniform chain in which all stages but the first 
and last are identical, (2) inverse-feedback pairs in which the feedback is 
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zero in every second stage, and (3) inverse-feedback triples in which the 
feedback is zero in every third stage.

An important disadvantage of feedback-chain circuits is the removal 
of the isolation normally existing between vacuum-tube amplifier stages. 
There is considerable interaction between stages, and a change in the 
transconductance of any stage affects the feedback and therefore the

Fig. 6-4.—Feedback pairs.

shape of the amplifier pass band. It is therefore difficult to achieve 
satisfactory gain control in an amplifier employing a feedback chain. For 
this reason “feedback pairs” are often used, in which there is feedback 
only in alternate stages, as shown in Fig. 6-4. Each pair is isolated from 
the other pairs, and gain control can be achieved by varying the trans
conductance of the first stage of each pair, around which there is no feed-

Fig. 6-5.—Feedback triple using single-tuned circuits.

back. “Feedback triples,” in which there is no feedback in every third 
stage, are also often used for the same reason. Feedback pairs and 
triples are generally used with single-tuned circuits as shunt-loading 
admittances, as is shown in Fig. 6-5. For this reason, this chapter is 
mainly devoted to the consideration of pairs and triples using single
tuned circuits. In order to allow the use of the initial portions of the 
analyses for more complicated cases, the general two-terminal network 
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is employed up to the point where specialization to the single-tuned circuit 
is necessary for the analysis.

If all the stages of the general chain are identical, the resulting chain is 
said to be uniform and lends itself readily to mathematical analysis. 
Except for the case of feedback pairs and triples, no advantages for the 
general nonuniform chain have as yet been shown that would justify 
the added complications of its use over that of the uniform chain.

Although all analyses in this chapter refer to bandpass amplifiers, 
inverse feedback can be used to good advantage in video amplifiers as well. 
All the analyses in this chapter can be used in the video case by consider
ing the low-pass bandpass analogue discussed in Sec. 7-1.

6-2. Analysis of the General Chain.—The conventional approach to 
feedback-amplifier analysis is to determine the gain of the amplifier in the 
absence of feedback and the amount of feedback and from these quantities 
to calculate the gain in the presence of feedback from the formula 
G/(l — OS), where O is the gain of the amplifier without feedback and S 
is the gain of the feedback circuit. In considering the feedback-chain 
type of amplifier, this analysis is not practical, because each stage has its 
own feedback loop, which interacts with adjacent feedback loops. Fur
thermore, even in the single-loop case (inverse-feedback pair), the exact 
meaning of O is obscure because the feedback network acts as a load upon 
the grid and plate circuits, and removing the feedback changes the 
loading.1

The simplest approach to the analysis of the feedback pair or chain 
is that of writing the nodal equations for the circuit and solving them 
directly.

Gain of a Single Feedback Stage.—Consider the nth stage of the general 
feedback-chain amplifier employing two-terminal coupling elements, as in 
Fig. 63a. Let its voltage gain be denoted by g„. Then if the voltage on 
the grid of this stage is denoted by the voltage on the plate is gnet and 
the voltage on the plate of the following stage is g„g„+iei. The currents 
in the admittances Gn~i,„, Gn,„+i, and are

in— l,n (S'1 l)CnGn—l.n,

fn.n+1 = Sn(l g»+l)c lGn,n4-l, (1)

in OnClVn.

Since the plate current of the tube is — gmei, the following Kirchhoff 
node equation can be written for the plate terminal of the nth stage:

gmCl — (g„ l)enCn—+ g„(l gn+l)Cl(?n,n5-l 4“ QnClYn. (2)

1 H. W. Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand, 
New York, 1945, pp. 44-45 and 80.
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Solving this equation for gn yields

p . _________  9^ Gn—pg_________
bn Gn^.„ + Gn,n+1 + K„ - w

Thus the gain of any stage of an inverse-feedback chain is given by 
Eq. (3) in terms of the circuit constants of the stage and the gain of the 
following stage. It is, therefore, possible to use this equation to deter
mine the response of a chain by starting with the last stage and working 
backward through the amplifier.

Observe that the gain of an amplifier stage as defined here is the ratio 
of the output voltage of the stage to its input voltage. The inverse 
feedback around this stage reduces the input voltage to the stage but 
does not affect the ratio of output to input voltage. Thus the effect of the 
feedback around a given stage is not to reduce the gain of that stage, as 
here defined, but to load the previous stage, thereby reducing the gain of 
the previous stage. This fact is clearly shown by Eq. (3), where the 
effect of feedback upon the gain of the nth stage is given by the term 
Sn+iGn.n+i produced by the feedback in the following stage.

The term Gn_i,n in the numerator of Eq. (3) represents the direct trans
mission of signal around the nth stage through the feedback conductance 
Gn~i,n. Since this direct transmission is generally small compared with 
the amplified signal and is in any case not a function of frequency, the 
quantity gm — can be considered as a fictitious transconductance, 
corrected for the direct transmission and differing from the actual tube 
transconductance by a small quantity. This reduction in effective trans
conductance is calculated in Sec. 6-3.

The terms û-'n.n+i, and Y„ represent the parallel combination of 
all impedances connected to the plate of the nth stage. This then is 
the total direct loading Y„„ (as distinct from feedback loading) on the 
stage. It is therefore convenient to combine these into a single term. 
Equation (3) can then be written more conveniently as

Y nn Qn+lGn,n+l

where g1̂  = and Ynn = Gn_i,„ + Gn,n+1 + Yn.
Note that for the case of no feedback = Gn,n+i = 0, and Eqs. (3) 

and (4) reduce to 9„ = gm/Y = gmZ, the normal equation for the gain of a 
single stage without feedback.

Gain of General Chain.—Equation (4) can also be written in the form

9nFnn fjn(jn+lGn,n+l ”1“ f/m* “ 0- (5)
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Let Su be the over-all gain of all the stages from the first stage up to an 
including the Ath. Then, if Eq. (5) is multiplied by gi.n-i, one has

91.n— 19nFnn 91,«— 19n9ri+l(7ri,n+l 4“ £7mn91.”— 1 0, (6®)

or
?m„91."-l + T„„91." — Gn.n+^l.n+l = 0> (65)

since
91.n-19" = 91>"1

and
91,n-19«9«+1 = 91n+l-

Simultaneous linear equations for the 9i/s can be obtained by apply
ing Eq. (6) to each stage of the amplifier. Thus

E1191 — (712912 = ~9m„ \

9™, 9i + F22g12 — (?23gi3 = 0, I
9m, 912 + I 33913 — = 0, > (7)

9mn^l-n— 1 4“ I n«91n 0- /

Solving this set of equations for 9i„, which is the over-all gain of the 
amplifier, yields

Fn -G12 0 0 0 . . ~gm,
9m, F22 — G23 0 0.. 0
0 g'„} F33 — G34 0 . . 0

• • • • 0 ^mn_i Yn—l,n—1 0
. . • • 0 0® 0o r>b — Sin A

■ ■ ■ 9m„
■ ; » (8)

where
Kn - Gn 0 0 0 . 0 0

1^22 — ^23 0 0.0 0
0 9m, I 33 ~ G34 0.0 0

A =

0 0 . . . Yn—1, n—1 Gn—1, n
0 • • • • • 9mn Y nn

(9)
From Eqs. (8) and (9), an important property of inverse-feedback 

chains becomes evident, namely, their symmetry. If the stages of an 
amplifier are arranged in reverse order, with the last stage first, the over
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all response is unchanged. This property is of particular interest in the 
case of the uniform chain, where all stages are alike except for the first 
and last load impedances. To reverse the order of the stages of this type 
of amplifier, it is necessary merely to interchange the first and last load 
impedances, w’hieh are generally called the “terminations.” Reversing 
the terminations of a uniform feedback chain, therefore, does not affect 
the over-all response.

In the case of the feedback pair, interchanging the terminations is also 
equivalent to reversing the order of the amplifier and does not change the 
over-all response. However, in the case of the triple, this fact is no 
longer true. Reversing the order of the amplifier requires an interchange 
of the two feedback resistors as well as of the terminations. Thus, for 
a triple, unless the two feedback resistors are equal, interchanging the 
terminations changes the response.

Transmission Characteristic and Gain-bandwidth Product.—Inspection 
of Eq. (9) shows that all terms of the expanded determinant are positive 
and have the dimensions of conductance to the nth power. The terms 
can be formed by substituting factors of the form in the place of
Yk-i.t-iYu in the expression FhF22Ks3 • . ■ Yn„. The complete 
denominator of Eq. (8) therefore consists of a term YuY^Y^ . . . Y„„ 
plus all possible terms that can be formed by one or more substitutions 
of the type described above.

Thus far the analysis has been rather general, applying to feedback- 
chain amplifiers using any type of two-terminal network as the shunt
loading admittance. At this point it is convenient to consider the 
simplest type of feedback chain, namely, that using single-tuned circuits 
as shunt-loading admittances.

If the amplifier uses single-tuned circuits as shunt admittances, then 
each Yu can be expressed as

Yu = Gkk + jiirC (f - j), (10)

where the resonant frequency of the circuits is taken as unity.
The determinant of Eq. (9) therefore becomes

Ou + j2*C - 1)
— <J12 Q 0

Qm z Gu + —Ga 0

0 Q m' j Gii 4- j‘2tC

0 0 Qm t 0

0 0 . —Gn—l,n

0 0
. Gnn + j2*C (/ - 1)

(11)
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This is clearly a polynomial of the nth degree in j in which

the coefficient of the term of highest power is (2irC)". Equation (8) can 
therefore be written as

S =-------  
(2ttC)

(-l)"gmX, ’ ' '

AT , \ L i •> (12)

where the a’s are constants depending upon the values of the G’s and 
g'm’s.

This expression gives the gain as a complex function of frequency. 
The amplitude response is given by the absolute value of Eq. (12),

(13)

where the b’s are functions of the a’s of Eq. (12). Equation (13) can be 
written

where c* = bt/(2irC)2”.
For the maximum gain-bandwidth product obtainable in a pass band 

without dips, all the c/s except Co must be zero. This gives a flat response 
having a curve of the form 1/V(1 + X2"). Equation (14) can be 
written

+ (co1/2”)2"
(15)
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where “mean g'm” is defined as the geometric mean of the g'„’a of the 
various stages.

The over-all 3-db bandwidth is The mean gain is the nth root 
of the over-all gain; hence the gain-bandwidth product is

mean g'^___ 1__ l/2n _ mean g)
2irC / (c?'2")" ° 2rC (16)

A comparison of the response of a general feedback chain with that of
a stagger-tuned amplifier shows striking similarities. The response, as

given by Eq. (12) is mean g'm 
. 2ttC ,

divided by a polynomial of the nth

degree in j (f — yj, of which the leading coefficient is unity. This 

expression is identical with that obtained in the stagger-tuned case.
Thus, the feedback chain using single-tuned circuits for all shunt-load
ing admittances turns out to be equivalent to a stagger-tuned amplifier 
both in the shape of the response curve and in gain-bandwidth product.
This is verified by the case of the flat n-uple, as shown by Eq. (16). There 
are, however, two important cases where this equivalence breaks down.

1. Since g'm is slightly less than gm, the gain-bandwidth product is 
slightly less for inverse-feedback chains than it is for stagger-tuned 
amplifiers. This difference becomes appreciable at very large 
bandwidths where the stage gain is low.

2. Certain response curves and bandwidth, although achievable with 
stagger-tuning, would require negative admittances as shunt-load
ing elements in the equivalent feedback chain and hence cannot be 
realized in a practical way by feedback chains.

An important difference between the feedback chain and the stagger- 
tuned amplifier is in the effect of normalizing the resonant frequency.
Note that in Eq. (10) the use of a resonant frequency/0 merely changes 
the frequency variable from f — (1//) to f — (fg/f). The effect of this 
change in Eq. (12) is also to replace / — (1//) by / — (/„//) and does not 
change the constant a0, ai, ... , a„_i. Thus, the shape of a response

(p\
f — y 1 is independent of the resonant frequency 

and independent, therefore, of the ratio of the bandwidth to the center 
frequency. (This is not true in the stagger-tuned case.) If the curve is 
plotted against the frequency /instead of the variable (f — A the result

ing curve is not symmetrical about /0, but the bandwidth, as well as the 
curve shape as specified by the flatness or the number and amount of dips, 
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is unchanged. Thus the effect of retuning, by changing the tuning induct
ances of all the stages of the feedback chain to a different frequency, 
does not affect the absolute bandwidth of the amplifier or the flatness or 
number and amount of dips of the response curve, although the sym
metry of the curve may be changed.

To investigate further the nature of the response obtainable from an 
inverse-feedback chain, i.e., which type of polynomial in j (f — 

represents physically realizable feedback amplifiers, it is most convenient 
to examine first the simple case of the inverse-feedback pair.

6-3. The Inverse-feedback Pair.—The inverse-feedback pair can be 
considered as the special case of the general chain in which n = 2. Thus 
the frequency response of the pair can be determined directly from Eqs. 
(8) and (11).

Equivalence to Staggered Pair.—On substituting n = 2 into Eqs. (8) 
and (11), the following expression is obtained for the gain of a feedback 
pair as a function of frequency:

Umf] m,
9 = GuGzz + <7^612 + j2irC (f — (Gn + GA) + (f -

(17)

The denominator can be factored into two linear factors, as shown in
Eq. (18).

where
Gil + G1Z + s/(Gn + GA)2 — 4(G11G22 + (7m,Gi2) j

ArC ’ f

Gn + Gm — x/(Gn + G22)2 —. 4(GnG22 + g'm,GA (
AlA )

(18)

(19)

The quantities di and dz are either real or complex conjugates. If 
they are real, then Eq. (18) is obviously the response of two cascaded 
synchronous single-tuned stages having dissipation factors di and dz. 
If, however, di and dz are complex conjugates, of real part da and imagi
nary part db, Eq. (18) can be written as

9 =
(2rf)2 +j

(20)
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Comparison of Eq. (20) with Eq. (4-20) shows that the response of a 
feedback pair is identical with that of a staggered pair, except for the 
difference between gm^ and g'mi. For the low-dissipation case, where 
arithemetic symmetry can be assumed, / — (1//) is approximately 
2(7 — 1), and Eq. (20) becomes

s = ■ (21)
(2irC)2{da + j2[f — (1 — |dt)]} !d<. + j2[f — (1 + %db)] j

This equation is obviously the response of a staggered pair, staggered 
by an amount ± £di>. Thus, for a low-dissipation circuit a feedback pair 
is equivalent to a staggered pair of stages of dissipation factor da, stag
gered by an amount ± |dt, expressed as a fraction of the center frequency.

For the exact calculation of the equivalent staggered pair, rewrite 
Eq. (17) as

s = GiiG22 + g'mGi2 . Gy + 
(2iCp H J 2ttC

Comparing Eq. (22) with Eq. (4-20) for a staggered pair (exact case) 
shows that the two are equivalent if

Reduction to Normal Form.—If in Eq. (20) the expression

GllGü + <7mG12
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is set equal to G2, then

s =
g2+jive Q - y (Gn + Gn) +

G2 1 + j

~ ?) Gn + Gî2
(25)

The absolute value of Eq. (25) is given by

G G

(f - 7
J G ;

Equation (26) is the normalized form of the expression for the response 
of an inverse-feedback pair. The shape of the response curve depends 
only upon the parameter k, since the quantities G and C merely determine 
scale factors. Thus any desired response can be achieved if k can be 
made the proper value.

Inspection of Eq. (27) shows that k can vary between —2 and +2. 
The value k = — 2, occurring when G12 = 0 and Gn = Gn, represents 
two single-tuned circuits in cascade without feedback; the value k = 2, 
occurring when g/Gu is large compared with G^and G|2, gives a response 
that goes to infinity when x = 1, thus producing a double-humped 
response curve with infinite peaks. Between these two values, the value 
k = 0 results in a response equivalent to that of a flat-staggered pair. 
All other types of intermediate curves can be obtained, having single or 
double peaks depending upon whether k is positive or negative.

Since a feedback pair is equivalent to a staggered pair, feedback 
ra-uples consisting of feedback pairs can be built up in the same manner as 
staggered n-uples are built up from staggered pairs. The values of k are 
tabulated in Table 6.1 for n-uples from 1 to 4.
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Equation (276) can be solved for (fiGn:

> r _ 6n + - kG"G^
gmGn 2 + k ■ (28)

Table 6-1.—Values of Curve-shape Index for Flat Pairs, Triples, and 
Quadruples

Curve shape k

Two cascaded single-tuned circuits.................... 2 0

Flat pair: (1 4- x4) $................................................... 0 1
* 1

Pair in flat triple: (1 + x6) 2................................... -1 3

Pairs in flat quadruple: (1 4- x®) $........................ /- V? 3 +2 x/2
14- V2 3—2 a/2

Synthesis of a Feedback Pair.—The problem of designing an inverse
feedback pair to produce a desired response is the problem of determining 
the three conductances Gn, Gn, and Gn. The response is determined 
completely by two quantities: k, which determines the shape of the curve, 
and G, which determines the scale. Thus there are only two conditions 
to be satisfied by the three variables to be chosen. This extra degree of 
freedom permits a single infinity of parameter values, each giving the 
desired response.

If Eq. (28) is substituted into the definition of G one gets

_ (C?n + G22) 
2 + A (29)

Equations (29) and (28) can be reduced to the following form, which 
is more convenient for the design of a pair:

% + = vm
9m,Gn   Gn Ga
~~G2 G ^G

(30a)

(306)

Equations (30) are the fundamental equations for the design of an 
inverse-feedback pair in terms of the desired response. There is an 
extra degree of freedom present; the disposal of this extra degree of free
dom depends upon other considerations, which can be introduced into 
Eqs. (30) to determine the particular design desired.

Equations (30) show that for a given shape of the response curve, 
i.e., a given value of k, the quantities Gn/G, G22/G, and g’^Gn/G2 are 
independent of the value of G and of the center frequency of the amplifier.
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Thus, once these quantities have been determined by the shape of the 
amplifier, it is necessary merely to introduce the value of G as a propor
tionality factor in order to determine the actual ohmic values of the circuit 
resistances. From Eq. (26) it is evident that the over-all gain at band 
center is g'm g'mJG2. Thus the over-all bandwidth for a flat n-uple con
taining this pair will be G!2tC. The value of G for a given amplifier is 
therefore determined by either the gain or the bandwidth desired.

Note that Eqs. (30) are symmetrical in Gn and G22, so that Gn and 
G22 can be interchanged in any amplifier without changing the over-all 
response. The distribution of gain between the individual stages is 
affected by this interchange, so that considerations other than the shape of 
the over-all response curve may dictate the use of one or the other scheme.

Although the values of the normalized constants of a feedback pair 
can be determined for any value of k from —2 to 2, it is not always 
possible to scale this to a physically realizable amplifier having the desired 
gain or bandwidth because g'mG22 is proportional to G2, whereas gm is 
fixed by the type of tube in use. Therefore as G increases, Gn and G22 
increase in proportion to G, while Gw increases as G2. There is, then, a 
value of G above which Gw exceeds Gn or G22. This condition is not 
possible physically, because Gn has been defined as the sum of G22 and 
Gi and must therefore be greater than Gn. A similar argument holds for 
G22. Thus for each value of k, there is a limit on the gain and bandwidth 
that is obtainable using any specified tube type. Since the limit is an 
upper limit on G, it is a lower limit on gain and an upper limit on bandwidth.

These limits can easily be calculated from Eqs. (30). Since the gain of 
the pair is gm^JG2, the quantity g'nJ G is roughly proportional to the 
gain per stage. It is therefore convenient to solve Eqs. (30) for g'mJG.

dm, _ G,t — kGnG22 4~ G22 (.31)
G Gw(Gn 4- G22) 4- k

Because Gn and G22 are interchangeable, there is no loss of generality 
in assuming that G22 is the larger of the two. Equation (31) can therefore 
be written

since Gn S Gw-



246 HIGH-FREQUENCY FEEDBACK AMPLIFIERS (Sec. 63

If g'mi = gmv Eq. (32) represents the minimum gain per stage. Even 
if gmi g'mt, however, the maximum bandwidth obtainable for a flat 
n-uple containing this pair is

(33)

obtainable 
However, 

Therefore,

2ttC 2rC , , G22 , /G^2'
1 - k + 7“ ) 

Crn yyli/

In the design of an amplifier, the maximum bandwidth 
rather than the minimum gain is the significant quantity. 
Eq. (32) is useful in that it involves no tube characteristics, 
once a given shape of response is specified, the minimum possible gain per 
stage with g»^ = g^ is also specified, regardless of the tube type to be 
used. The bandwidth obtainable using any particular tube type can 
then be obtained from the gm/C ratio of the tube type.

In Eqs. (32) and (33), the extra degree of freedom in the design appears 
as the ratio G22/Gn, which can be chosen arbitrarily while still maintain
ing the desired response-curve by proper choice of the other parameters. 
Since Gn was assumed to be larger than Gu, it becomes obvious from 
Eqs. (32) and (33) that the value of Gn/G22 giving the greatest value for

is Gii/G22 = 1. For this case Eqs. (30), (32), and (33) become

Gn Ga a/2 4“ k
G ~ G 2 ' (34a)

2 - k
-qT- 4 ’ (345)

2 - k
2 V2 + k (34c)

g'm, V 2 + k
TrC 2 -k (34d)

Equations (34) are the fundamental design equations for a sym
metrical feedback pair. Since this pair gives the greatest maximum 
bandwidth in addition to being the simplest case, it is generally used where 
there are no other considerations requiring unequal loading in the two 
stages.

Note that for k = 0 and k = — 1, corresponding respectively to the 
flat pair and the flat triple, the minimum gain, again assuming gm = g'm 
comes out respectively 0.707 and 1.5. These values are so low that the 
restriction upon maximum bandwidth is of little significance, since it 
is not generally practical to build an amplifier having a gain per stage of 
less than 1.5. For higher-order n-uples or in cases where a response hav
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ing dips is desired, the restriction upon maximum bandwidth is impor
tant, as it is also in the case of the pair and triple where the loading is 
unsymmetrical.

Another special case of the inverse-feedback pair that is of interest is 
the limiting case where one of the shunt loading conductances, either 
Gi = Gn — G12 or Gz = G22 — Gi2, is zero. Then either Gn or G22 is 
equal to Gu. This case has the largest physically realizable ratio of Gn 
to G22 for a given over-all response. Because the values of Gn/G, G22/G, 
and g'm G12/G2 are not independent of G for this case, the design equations 
are more complicated and involve the solution of a quadratic equation- 
The equations for this case can be obtained from Eq. (30) by letting either 
G11 or G22 equal Gi2. The values of Gi2 and Gn, where G„ is either Gn or 
Ga, are given by

G12 1___G
G G12

Gn 
G

Cr

_ G 9m,
G12 G

(35a)

(356)

Other Formulations for the Response of a Feedback Pair.—Although the 
exact values of the qualities Q and S used in the conventional feedback
amplifier analysis are obscure for an inverse-feedback pair, the product 
<3$, which represents the transmission around the feedback loop, can easily 
be calculated. If a voltage es is impressed on the grid of the second stage 
of the pair,-the plate signal current is —gmes and divides between F2 and 
Gn. The plate signal voltage is easily calculated to be

9m, ~ G12 g'
ep “ ~Gf+~G^ “ gT2‘ (36)

The portion of this voltage fed back across the grid is

e> = e ____M____= e = _e

’ p G12 + Gj ” Gn e° GuGtI ( )

^nd therefore the feedback factor (iii is

OS= - (38)
Criitr22

The significance of this feedback factor in the previous analysis can be 
shown by rewriting the expression for the gain of the feedback pair as 
follows:

e = _____- M_____ = 9’nt9m, 1 .
b Y„Y„ + g'mGl2 YnY2i 1 - OS
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Equation (39) has the factor 1 — dB in the denominator which is 
characteristic of feedback amplifiers. In this form it becomes clear that 
the variation of amplifier gain with variations in transconductance of the 
second stage is reduced by the factor 1 — Gtfi, or 1 + (g'^Gn/GuGn), 
from what it would be in the absence of feedback.

The relation between the feedback factor Gfi and the quantity k deter
mining the shape of the response curve of the pair can be calculated from
Eq. (275).

- 2|aß|
, 0-22 Du x
k “ i + |aß| ’ '40a)

Gn , Gn _ , 
l«0l = °" 2 ■ (405)

Equation (40) shows that the feedback factor required for a given 
response is not uniquely determined by the curve-shape parameter k, 
because of the extra degree of freedom present in the design of inverse
feedback pairs, but depends also on the ratio Gn/ Gn of the loading of the 
two stages. The feedback factor 1 — G/3 is a minimum for any given 
selectivity-curve shape when Gn = Gn- This is the case of the sym
metrical feedback pair, treated in Eqs. (34). For this case, Eqs. (40) can
be written

l _ 2(1 |aßmto|) (41a)
" (1 + laM ( '

o — k
'a/M = (41&)

Values of are tabulated in Table 6-1 along with the values of 
k for the pairs used in the various n-uples.

The maximum value of the feedback factor giving a desired selectivity 
curve shape is obtained by making (Gu/Gn) + (Gn/Gn) as large as 
possible. This therefore corresponds to the limiting case treated in Eqs. 
(35) where one of Gi or Gt is zero. For this case

(42a)
D H

(\ +
\ G /

- (|aM - |a/M)2 = 0. (42&)

As might be suspected from Eqs. (35), the value of |ß/3| for this case 
depends upon G and requires the solution of a quadratic equation. The 
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values are therefore not tabulated. This case is of particular interest, 
since it represents the pair that has the maximum stability of gain with 
regard to tube variations (see Sec. 6-5).

Equation (38) can also be written

Gn

1------ 
OS

(43)

Sm, Gn

Since the feedback factor OS is greater than or equal to unity for all 
pairs having a flat or double peaked response, the over-all gain g of a feed
back pair is given approximately by

9 ~ (44)Cri2

This approximation is too high by a factor of 2 when OS = 1, i.e., flat 
symmetrical pair, and is better as OS increases.

6-4. Synthesis of a Feedback Chain.—The problem of synthesizing a 
feedback chain is one of determining the loading and feedback con
ductances necessary to obtain a desired response. Section 6-2 has shown 
that the response of an n-stage inverse-feedback chain can be expressed 
as the reciprocal of a polynomial of the nth degree in / — (1//), band 
center being taken as unity. This polynomial can then be factored into 
n linear factors. The synthesis problem is therefore one of determining n 
load conductances plus n — 1 feedback conductances, or a total of 
2n — 1 quantities, from the n equations that can be written for the n 
linear factors desired. There is therefore, in general, an (n — l)-fold 
infinity of possible solutions to the synthesis problem because of the 
n — 1 extra degrees of freedom.

In designing a feedback chain it is consequently possible to impose 
n — 1 auxiliary conditions upon the loading and feedback conductances in 
addition to the specification of the over-all response. There are various 
approaches to the design of the feedback chain, each using a different set 
of auxiliary conditions.

Reduction to Pairs.—The simplest method of feedback-chain design 
consists in arbitrarily setting every second feedback conductance equal 
to zero. This method results in an amplifier made up of feedback pairs, 
either with or without a single stage having no feedback, depending upon 
whether n is odd or even. Thus, depending upon whether n is odd or 
even, either i(n — 1) or in — 1 of the auxiliary conditions are used, and 
i(n — 1) or in remaining degrees of freedom are left.

The problem is now one of designing a number of inverse-feedback 
pairs to have a given over-all response. The factors of the polynomial 
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representing the response can be grouped into pairs so that the two factors 
in each pair are either real or complex conjugates. These pairs of factors 
can then be normalized to the form of Eq. (26), and each pair can be 
designed by use of Eqs. (30). Note that there is an extra degree of 
freedom in the design of each pair, thus making the total number of extra 
degrees of freedom equal to n — 1, as expected. If n is odd, there is one 
factor remaining alone, after the grouping in pairs; this factor corresponds 
to a single stage without feedback.

The design of a feedback chain has thus been simplified to the design of 
a number of pairs. There are various practical advantages resulting from 
the greater simplicity of this circuit over that of a chain with feedback 
throughout. There are no known advantages to the use of any other type 
of feedback chain over that of feedback pairs.

The physical realizability of a chain designed in this manner is limited 
by the same conditions that limit the design of a feedback pair. Thus, 
for a given shape of response, the minimum gain per stage is given by 
Eq. (34c) applied to the pair having the most negative k. Although it 
may be possible, by using more complicated chain circuits, to obtain a 
wider range of physically realizable amplifiers, this point has not been 
investigated because of the involved nature of the algebra encountered.

Synthesis of a Feedback Triple.—The three-stage feedback chain, or 
feedback triple, is somewhat more involved than the feedback pair, but it 
is simple enough to allow its use in practical feedback amplifiers. It can 
be shown that any inverse-feedback triple can be replaced by a combina
tion of a feedback pair plus a single stage, giving the same over-all 
response, with reduction neither of stability nor of physically realizable 
bandwidth; consequently there appears to be little specific advantage in 
the use of the triple. However, the usage of the feedback triple has been 
sufficient to warrant its treatment here.

Since a triple has three stages, there is a twofold infinity of solutions 
in the design of a triple for a given response and the design equations have 
two extra degrees of freedom.

The design equations for a triple can be written in a simple form if the 
response is specified in its complex form; i.e.,

$ 1 + Xt(jx) + hidx)2 -fi- (jx)3

In this case, the two parameters Xi and X2 must be specified to deter
mine the shape of the response curve. The parameters Xi and X2 cor
respond to the single quantity k specifying the response of a pair. Note, 
however, the important distinction between k and the X’s, in that A is a 
coefficient of the polynomial formed by taking the absolute value of the 
response whereas Xt and X2 are coefficients of the complex expression.
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The design equations for the triple can easily be derived by evaluating 
Eq. (11) for n = 3 and equating terms with the corresponding terms of 
Eq. (45).

Thus

GnG22G33 + + (1 — pjGeJ = 1, (46a)
(Gu -f- ^33)^22 + GuGss + + 9m,G23 = Xi, (466)

Gu + G33 + G22 = X2, (46c)

where G is taken as unity, so that the values obtained for Gu, G12, and 
Gss are actually Gu/G, G^/G, and G33/G, and ^Gn and g'mGis are 
actually these quantities divided by G2. The symbol p is defined as

ffm2<?12 
97^12 + 9^,023

If G22 and g'^G™ + g'mfiis are eliminated from Eq. (46), a single equa
tion in the three variables Gu, G33, and p is obtained.

p(Gh — hiGu + XiGn — 1)
+ (1 - p)(Gf3 - X2GI3 + ^G33 - 1) = 0, (47a) 

where
G22 = X2 — (Gu + G33), (476)

@m,G U + = X2 — (Gu + Gss)G22 ~ GuGsZ- (47c)

Equations (47) are the design equations for the feedback triple. 
There is considerable leeway in the choice of values, since there are two 
variables in Eq. (47a) that can be chosen arbitrarily within certain limits.

Note that the cases p = 1 and p = 0 are the degenerate cases cor
responding to the breakdown of the triple into a single stage without 
a feedback pair. For these cases, either Gu or G33 is the real root of the 
cubic equation

x3 — X2z2 + \ix — 1=0. (48)

Since this means that jx + Gu is a factor of the expression for the 
response, this procedure is clearly the equivalent of factoring the response 
into a linear factor representing a single stage without feedback and a 
quadratic factor representing a feedback pair.

Another degenerate case occurs when Gu = Gss- Then each of Gu 
and G33 is a real root of Eq. (48), and G22 and ^;Gi2 + 9^623 can be 
obtained from Eqs. (47). The extra degree of freedom is present in p, 
which can be chosen arbitrarily; thus for this case, the sum of the feed
back conductances must be a constant (assuming that g^ = g'mj), but 
this sum can be partitioned between Gu and G23 in any arbitrary manner. 
This case is of little practical significance, however, since for most desired
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response curves, such as the flat curves, this solution is not realizable 
physically, as discussed below.

If Gn and G33 are unequal, it follows at once from Eq. (47a) that one of 
Gn and Gn is greater than the real root of Eq. (48) and the other is less. 
Furthermore, Eq. (47b) shows that Gn plus G33 must be less than X2.

One case of the feedback triple of special interest is that for which a 
flat response of the form l/-\/(l + z6) is obtained. For this case, 
Xi = X2 = 2 and Eqs. (47) become

p(G*n ~ 2G2n + 2Gn - 1)+ (1 - p)(G3% - 2Gf3 + 2G33 - 1) = 0, (49a)
G22 = 2 — (Gn + G33), (49b)

9m,Gw + 9m,G23 = 2 — (Gn + G33) Gm — G11G33. (49c)

For this case, the real solution of Eq. (48) is unity, and the conditions 
for physical realizability are

Gn < 1 if G33 > 1 and G33 <1 if Gn > 1, (50a) 
(Gn + G33) < 2, (50b)

along with the previous conditions for any feedback chain,

Gn § Gn, (50c)
Gn / Gw + G23, (50d)
G33 § G23. (50c)

Note that the first two of these inequalities place restrictions on the 
amplifier that hold for all values of G whereas the last three (in actuality 
the most stringent of the last three for any particular triple) place no 
restriction on the shape obtainable but set an upper limit on the band
width obtainable for the desired curve shape.

The Uniform Chain.—Considerable work has been done on the feed
back chain, in which all stages are identical except for the first and last, 
which are referred to as terminations. The analysis of this type of 
amplifier can be carried out in a manner analogous to filter theory,1 and 
the result obtained that a gain-bandwidth factor (see page 172) of 2 is 
possible if (1) the stage gain is very high; (2) the termination is perfect, 
eliminating all reflections; and (3) there is no shunt conductance across the 
tuned circuits.

1 H. A. Wheeler, “Wideband Amplifiers for Television,” Proc. I.R.E., pp. 433-437, 
July 1939; E. Feenberg and W. W. Hansen, “Wideband Amplifier Design,” Sperry 
Gyroscope Co. Report, Nov. 11, 1942; A. J. Ferguson, “The Theory of I-f Amplifiers 
with Negative Feedback,” National Research Council (Canada) Report No. PRA-59, 
October 1942; R. Q. Twiss, “The Theoretical Design and Experimental Response of 
Single and Coupled Circuit Negative Feedback I-f Amplifiers,” Telecommunications 
Research Establishment (England) Report No. T-1649.
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The preceding analysis, however, has shown that for any feedback 
chain containing single-tuned circuits only, the maximum gain-bandwidth 
product obtainable for a flat response is unity. If the apparent dis
crepancy between these two points of view is examined, it will be revealed 
that if the uniform feedback-chain amplifier is terminated in a single-tuned 
circuit instead of the assumed perfect termination, the effect of the 
reflections is such as to produce wiggles in the shape of the pass band. If 
the amplifier design is modified to flatten out these wiggles, the gain
bandwidth factor is brought down to unity. Furthermore, if wiggles are 
allowable in the pass band, the preceding analysis has shown that it is 
possible to duplicate the performance of this uniform chain in all respects, 
including that of gain-bandwidth product, with an amplifier consisting of 
feedback pairs. It is necessary merely to obtain the mathematical 
expression for the response desired. A set of functions that can be used 
for specifying this type of response is the Tschebycheff polynomials.1

In order to secure the advantage of the uniform chain when properly 
terminated, it is necessary to use more complicated terminations than the 
simple single-tuned circuit. This matter is discussed in more detail in 
Sec. 6-7.

6'5. Miscellaneous Properties of Inverse-feedback Chains and Pairs. 
Gain Stability.—Because of the presence of feedback, it is to be expected 
that the gain of an inverse-feedback chain displays less variation with 
changes in tube characteristics than a bandpass amplifier having no feed
back. This fact can be easily verified.

The gain at band center of a feedback chain can be obtained from 
Eqs. (8) and (9) by substituting Ku for Gn- For convenience, assume 
that all the stages have the same gm and that g'm = gm. Then the gain of 
the amplifier at band center can be expressed as

n _ _________________(g™)n_________________
Ao + Aigm + Aa^ + • ■ • + An/2^m“/2

where the coefficients Ak are functions of the load and feedback con
ductances.2 The effect upon the gain of changes in gm can be obtained 
by taking the logarithmic derivatives of Eq. (51).

¿9 
9 
= dgm nA0 + (n — l)A,g„ + (n — 2)Aag^ + • • • + jnAn/ignN'’

gm _ Ao + Aigm + Aa^ + • • ■ + A„/2g"/2

1 Courant-Hilbert, Meihoden der Mathematischen Physik, Springer, Berlin, 1934, 
p. 75.
’For simplicity, an even number of stages is assumed. The results for an odd 

number of stages are the same, with ^(n — 1) substituted for ^n.

]■ (52)
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From Eq. (52) it can be seen that if A 0 is large compared with the other 
coefficients there is very little feedback, and the per cent change in gain is 
the same as it would be for an n-stage amplifier without feedback, namely, 
n times the per cent change in the transconductance of a single stage.

If the amount of feedback is very large, then all terms are negligible 
except the ones involving An/J. The per cent change in the gain is then 
found to be n/2 times the per cent change in the transconductance of a 
single stage, or half the per cent change in gain that would occur in the 
absence of feedback. If some intermediate value of feedback is used, the 
reduction in sensitivity to g„ variation is somewhat less; but in no case 
does a feedback chain reduce sensitivity to gm variation by a factor larger 
than 2.

The apparently anomalous situation where enormous amounts of 
feedback produce an improvement of only a factor of 2 in gain stability 
can be better understood if the case of a feedback pair is examined. From 
Eq. (38) the following equation can be written for the gain of a feedback 
pair at band center:

9 = (53)
GnGn

The logarithmic derivative of Eq. (53) gives the following expression 
for the gain variation:

dg _ dgmi । dgm, t 1, _ dgmi dgm, . 1 (54)
9 -I i gmtGn gmt 9mt 1 Off

GnGn

Equation (54) shows that the variation in gain due to variations in 
gmt is reduced by a factor of 1 — Q/3 from what it would be in the absence 
of feedback, as is usually the case in feedback amplifiers. However, there 
is no change in the gain variation due to changes in gmi over what would 
occur in the absence of feedback. This is also to be expected, since gmi is 
not included in the feedback loop, there being feedback only around the 
second stage. Thus, by increasing the amount of feedback, the change in 
gain due to variations in g^ can be made negligible, whereas that due to 
variations in gmi is entirely unaffected.

Consider now an amplifier consisting of cascaded inverse-feedback 
pairs. By making the feedback sufficiently large, the variation in gain 
produced by the variation of gm in the second stage of each pair can be 
made small. There remains unchanged, however, the variation due to 
the first stage in each pair. Thus the per cent variation in over-all 
gain will be that due to only half of the stages and will be equal to half
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the per cent variation that would be produced in the absence of feedback. 
This result is exactly the same as that obtained for the general chain.

Thus it can be seen that the gain stability of an inverse-feedback chain 
with feedback around every stage is no better than that of an amplifier 
consisting of cascaded pairs, i.e., with feedback around alternate stages. 
The most efficient way, therefore, to obtain gain stability in a feedback 
chain is to use cascaded pairs, thus stabilizing the gain of half the stages, 
and to employ some other form of stabilization for the other half of the 
stages, e.g., large cathode-bias resistors.

Overloading.—The analysis of a feedback pair has shown that there is 
an extra degree of freedom in designing a pair, which effectively changes 
the distribution of the gain between stages without affecting the over-all 
response. This immediately suggests putting as much gain as possible 
in the second stage and as little as possible in the first, thus reducing the 
size of the signal appearing on the grid of the second stage. Since the 
ratio of the signal on the second grid to that on the first has been decreased 
considerably from its normal value, a larger signal is required on the first 
grid to overload the second grid. The overload characteristics of the 
amplifier are therefore improved.

The gains of the two stages can easily be obtained from Eq. (4):

q. -
Gn

(55a)

(556)

The factor by which the signal on the second grid is reduced by the 
feedback is the ratio of the mean stage gain of the pair to the gain of the 
first stage, or

a/ S1S2 a/GiiG22 + gmGn G , .
=----------fe---------= fe (56)

where
gm, = gm, — gm.

This factor is a maximum for the case where Gn and Gn are equal since 
the maximum possible gain is then in the second stage. Then, since gm 
is generally large in comparison with Gn, the gain of the first stage is 
approximately unity. The factor by which the signal on the second grid 
is reduced must then be the mean gain per stage.

A word of warning is in order about this improvement in overload 
characteristics. Because the analysis was made for band center only, the 
improvement applies to single-frequency signals at the center of the band,



256 HIGH-FREQUENCY FEEDBACK AMPLIFIERS [Sec. 6-5

but it does not apply to pulsed signals or to single-frequency signals off 
band center. The effect of a change in frequency can easily be seen from 
Eq. (56), where for frequencies off band center, G22 must be replaced 
by Y22 and Gu must be replaced by Fn, where

Y22 = G22 + fritC

Yu = Gu + jZtrC (f - 0-
It can be seen that this change causes a rapid increase in 7S1S2/9i as 

the frequency departs from resonance. In particular, when

2irG (f - 0 = G,

which corresponds to the half-power point of a flat n-uple,

Y 22 = G22 + jG, (57 a)
F„ = Gu+jG, (576)

and

Vgigs _ y/jG(Gu + G12) _ v/jy/2 + k ¿«„I
gi G22+3G G22 ' ( }

3 G

V^S21 = \/2 + k ^2^1- (586)

+ (^)
From Eq. (586) it can be seen that the overload improvement factor in 

Eq. (56) applies only at band center and has dropped off to a factor of at 
most y/2 at the frequency corresponding to the half-power point of a flat 
n-uple.

Because of this effect, a pulse behaves according to the analysis for 
band center during the flat portion of the pulse, and the signal amplitude 
required to overload the second grid during this portion of the pulse is 
much greater than in the absence of feedback. However, overloading 
occurs during the leading edge of the pulse almost as soon as the pulse 
amplitude exceeds the amplitude required to overload an amplifier with 
the gain equally distributed between the two stages.

The exact nature of the overload occurring at the leading edge is 
somewhat complicated but can be partially understood by considering the 
waveform of the envelope of the pulse appearing on the second grid. 
This envelope is shown in Fig. 6-6. The peak is produced by the time 
required for the feedback to take effect. It is this peaked signal applied
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to the grid which makes the output pulse rise more sharply than it would 
if there were a square pulse applied to the grid.

The overloading at the second grid is of two varieties, one driving the 
tube into the grid-current region and the other driving the tube to cutoff.
The former drives the tube into a re
gion of increasing transconductance, 
thus increasing the feedback, and 
the other drives it into a region of 
decreasing transconductance thus de
creasing the feedback. Since an i-f 
pulse involves both directions, the 
situation is somewhat complex. 
However, if the spike of Fig. 6 6 is 
short compared with the pulse length, 
the lack of overloading during the 
flat portion of the pulse may be of 
considerable advantage.

In general, the overloading during 
the leading edge of the pulse has the 
effect of making the leading edge of 
the output pulse slower than it would 
be in the absence of feedback. 
However, the gain-bandwidth im
provement due to feedback is not 
entirely lost, since (1) the trailing 
edge of the pulse is less affected by 
the overload and (2) all pulses below 
the overload level have the fast rise 

Fig. 6 6.—Peaked envelope of pulse on 
second grid of a feedback pair.

corresponding to the increased bandwidth. This is illustrated in Fig. 6-7, 
which compares the waveforms of signals below and above the overload 
level for a feedback amnlifier with the waveforms of signals of the same 

(a) (by
Fig. 6-7.—Response to (a) weak signals and (b} overloading signals for feedback pair 

(solid line), and narrowband two-stage amplifier with, same gain distribution, between stages 
as feedback pair (dashed line).

levels for an amplifier without feedback having the same gain distribution 
between stages as the feedback amplifier.

High Output Level.—The possibility of putting the bulk of the gain of a 
feedback pair into the output stage allows a much higher output voltage 
to be obtained for a given bandwidth than can be obtained without feed
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back. The factor by which the output voltage can be increased by the 
use of feedback is equal to the overload-improvement factor in Eq. (56). 
However, this output voltage increase is subject to the same limitations 
that apply in the use of this circuit for the improvement of overload (see 
page 104). The improvement in speed effected by feedback is lost on 
strong signals. Thus the high output voltage is obtained at the expense 
of speed just as in an amplifier without feedback, but this loss in speed 
shows up principally on the leading edges of pulses of maximum ampli
tude. There is no loss of speed on pulses below the overload level.

Bandwidth Switching.—In all the preceding analysis it has been 
assumed that (/ is approximately equal to gm,. An interesting phenom
enon results if gm, is allowed to decrease to the point where the difference 
between gmt and g'„t becomes appreciable. A point is reached where 
gmi is equal to Gi2 and where g'mi must therefore be zero. At this null 
condition, the transmission of the signal directly around the second tube 
through the feedback conductance is exactly equal and opposite to that 
through the tube. If is decreased still further, the signal transmitted 
through the tube is less than that directly transmitted, g'm is negative, 
and the output signal increases, but with a phase reversal. When gm, 
is zero, g^ = — fe, corresponding to direct transmission alone. The 
gain in this case may be greater than the gain with gm, at its normal value, 
because of the absence of feedback when gm, is zero. The bandwidth is, 
however, considerably reduced. The sharpened selectivity curve thus 
obtained when the second tube of the pair is biased to cutoff can be used to 
simplify tuning the amplifier, since in that condition it is necessary 
merely to maximize the output signal of a very sharp circuit. This is not 
quite accurate, however, because of the change in the input capacity of the 
tube when it is turned off.

Good use can be made of the dependence of bandwidth on gm in an 
electrical two-position bandwidth switch. By properly adjusting the 
values of the circuit constants in a feedback pair it is possible to achieve 
any desired bandwidth in the narrow position when the second tube is 
turned off, subject to some restrictions on physical realizability. In addi
tion, the change in gain between the two positions can also be controlled 
by taking advantage of the extra degree of freedom normally present in 
the design of a feedback pair and by adding an additional degree of free
dom consisting of suitably selecting the value of gmt in the wide-band posi
tion. These two degrees of freedom can be used to determine the gain 
ratio and the bandwidth ratio of the switch.

The calculation of the design of such a bandwidth switch is somewhat 
complicated. There are four independent variables: the bandwidths in 
the two cases, the gain ratio, and the shape of the response curve in the 
wide-band position, as specified by the factor k. These four variables



Table 6-2a.—Bandwidth Switch Design Data*

<M 
ffiw

0.445 0.386 0.347 0.300 0.253

Sn
Ri
R

r2 
R

Ä12
R

IL 
R

Rt
R

Rn 
R g'mR Rt 

R
Rs
R

Rii 
R g'mR Ri 

R
r2 
R

Rw 
R g'mR Ri

R
Rt 
R

Ä12 
R

5.000 
2.000 
1.000 
0.500 
0 300 
0.200 
0.100 
0.050 
0.025 
0.010

8.86
19 40
64.50

00
111 90
43.40
15.22

0.681
0.759
0.844
1.000
1.140
1.282
1.550

4.700
3.165
2.450
2.000
1.790
1.670
1.550

2.135 
1.267 
0.816 
0 500 
0.335 
0 239 
0.129

13.39
78.40

0.614
0.736

4.660
3.155

2.350
1.414

24.20 0.645 4.730 2.6300 73.20 0.634 4.85 2.9400

266.00
17.81
9.31
6.15

1.545
1.866

1.490
1.421
1.384
1.362

0.0782
0.0400
0 0163

97.10
16.60
8.79

1.89G
2.285
2.805

1.369
1.330
1.307

0.0192
0.0470
0.0191

900.00
13.85

2.335
2.930

1.28
1.26

0.0555
0.02772.745 397 3.06 1.213 0.0247

♦ k = 2: Curve shape in wide-band position that of two cascaded single-tuned circuits, 
t = over-all bandwidth of pair in wide case.
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Table 6-2ò.—Bandwidth Switch Design Data*

®,

S»
S»

0.401 0.374 0.348 0.297

IL
R

Rz 
R

R12
R s'mR

IL
R

76 
R

ILz
R 9m,R

IL
R

Riz 
R

Ri 
R

Rz 
R

Rii 
R

5.00 2.345 1.78 4.70 2.37 3.11 1.404 4.72 2.50 3.84 1.368 4.73 2.63 5.95 1.149 4.74 2.94
3.00 2.64 2.165 3.76 1.89 3.72 1.630 3.76 1.99 6.20 1.365 3.85 2.24
2.00 6.04 1.590 3.22 1.78
1.00 .... ....
0.85
0.80 ______
0.75
0.55

..........
... ....

* k = 0: Curve shape in wide-band position that of fiat pair.
+ = over-all bandwidth of pair.
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0.248 0.2245

A’

0.202

76
R

Rz
R

ILz 
R

Ri
R

Rz
R

77 „ 
R 9m fi

76
R

76, 
R 9mR

5.00 0.31 1.100 5.030 3.320 12.52 1.055 5.15 3.540 18.20 1.014 5.290 3.780
3.00 11.21 1.208 3.985 2.523 18.21 1.159 4.06 2.700 35.40 1.100 4.170 2.890
2.00 13.11 1.360 3.320 2 020 49.75 1.256 3.38 2.155 97.50 1.21 3.465 2.31
1.00 9.20 1.970 2.490 1.341 20.34 1.739 2.53 1.440 330.00 1.568 2.580 1.550

0.80 5 64 2.720 2.300 1.170 — — ---- .----- ---- -— — —
0 75 10 30 2 235 2 30 1 220 40 50 1 900 2 315 1 300
0.55 .......... 10.13 2.850 2.070 1.067
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Table 6-2c.—Bandwidth Switch Design Data*

®„
0.200 0.175 0.1505 0.1267

1

Ri 
R R

^12
R Smß

R, 
R

Bz
R

Ä12 
~R

R, 
R

Rz
R

Än
R

Ri 
R

Rz
R

Æ12 
R

5.00 5.39 2.16 5.70 4.39 8.32 2.69 6.00 4.780 14.65 1.670 6.350 5.250 31.4 1.477 6.850 2.85
3.00 3.62 3.62 4.48 3.36 8.76 2.17 4.69 3.655 18.15 1.844 4.975 4.030 77.1 1.612 5.350 4.49
2.00
1.50
1.25
1.00
0.90
0.80 ....

18.40
12.82
7.92

2.185
2.680
3.960

4.110
3.605
3.320

3.250
2.785
2.520

966.0

44.8
24.6

1.825

2.810
3.240

4.405

3.215
3.075

3.63

2.50

2.36

* k = — 1: Curve shape in wide-band position that of pair in flat triple, 
t ®w = over-all bandwidth of flat triple including pair,
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are used to determine the four circuit parameters Gi, Gu, G2, and gmi. 
The algebra of the solution is involved and is not reproduced here. 
However, the results are summarized in Table 6-2, which gives the design 
data for feedback pairs in terms of the desired gain ratio and bandwidth 
ratio for three values of k, namely 2, 0, and — 1, corresponding respectively 
to curve shapes in the wide-band position of (1) two cascaded single
tuned circuits, (2) a flat pair, (3) the pair included in a flat triple. The 
constants of the pair are normalized, i.e., expressed as ratios to G. Since 
in the design of an amplifier one usually specifies resistances rather than 
conductances, the quantities G/Gi, G/ G2, and G/ Gi2 are expressed as 
Ri/R, R2/R, and Ru/R, where R = 1/G = l/2irC(Rw.

In Table 6-2 values of g„/gn, the ratios of the gain in the wide position 
to that in the narrow position, are tabulated vertically; values of ®„/®w, 
the ratio of the narrower to the wider bandwidths, are tabulated hori
zontally. The constants of the amplifier are tabulated in the square cor
responding to the bandwidth ratio and gain ratio.

A considerable number of values of gain and bandwidth ratios cannot 
be obtained because the amplifiers required would contain physically 
unrealizable elements. Such values are marked with dots. The range 
of physically realizable values varies widely with the factor k, as can be 
seen by comparing Table 6-2a, b, and c. An important region not cal
culated is for the case of k = —1, where there are physically realizable 
values of bandwidth ratio below 0.1 which do not require unreasonable 
values of the gain.

Dashed values in the table are physically realizable but uncalculated 
because they are of little practical interest.

6-6. Practical Considerations in Feedback-amplifier Design.—The 
approach thus far in this chapter has been a theoretical one in which the 
circuit components have been assumed to behave ideally. These assump
tions make the amplifier suitable for a mathematical analysis that does 
not become too involved and provide solutions that furnish good first- 
order approximations to the actual circuit constants required to produce 
the desired response. In actual amplifier design, however, the second- 
order effects frequently are very important, and considerable care must be 
taken to reduce them to a negligible level or to compensate for them.

The mathematical approach used in the preceding section becomes 
extremely involved when these second-order effects are considered. 
Instead, it becomes expedient to use an approach based mainly upon 
experiment and a simplified analysis using vector diagrams, such as has 
been used very successfully by Beveridge.1

The main second-order effects found in feedback amplifiers are those
1 H. N. Beveridge, “Information on Broad-band Feedback I-f Amplifiers,” Com

bined Research Group, Naval Research Laboratory Report CRG-93, Oct. 22, 1945.
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due to grid-plate capacity and grid-plate transit angle. Both of these 
effects tend to make the response curve unsymmetrical about the center 
frequency. By use of vector diagrams it is possible to determine the 
extent to which symmetry is impaired and the proper means of compensa-

-----  er ---- ►

Fig. 6-8.—Feedback stage.

tion. The magnitude of these effects can be discovered by experiment, 
and their correction determined by the vector diagram.

Vector Diagram for Feedback Stage with No Second-order Effects.—• 
Consider the feedback stage shown in Fig. 6-8. The vector diagram of

Fig. 6-9.—Vector diagram at resonance.

Fig. 6-9 applies to this stage at resonance. The input current is in phase 
with the input voltage, since the feedback voltage is also in phase. 
Figure 6T0 shows the vector relationships for the case of es at a higher and 
at a lower frequency than the resonant frequency. For the higher-

Fig. 6-10.—Vector diagram off resonance.

frequency case eph is retarded in phase, and for the lower-frequency case 
ePi is advanced in phase. The current iyh leads e„, whereas the current 
irh lags es. The voltage er across the feedback resistor is e„ — ep, and the 
current iT is in phase with eT. The input current i is the sum of ir and iv.
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It can be seen that the input current i is a symmetrical function about 
the center frequency; that is, and it are symmetrically disposed about 
Cg, if iyl iyh-

Fig. 6’11.—Vector diagram at resonance showing transit-time effect.

Vector Diagram for Feedback Stage with Transit Angle.—Figure 6-11 
shows a vector diagram for the circuit of Fig. 6-8 at resonance when there 
is a grid-plate transit angle 0. Here ep is retarded by the transit angle 
through the tube. The current ir now lags es, instead of being in phase

Fig. 6’12.—Vector diagram off resonance showing transit-time effect.

as before, and the input current therefore also lags ir. Figure 6-12 
shows this effect for frequencies above and below resonance. Because 
of the transit angle, eph and ePi are not symmetrical with respect to e0. 
Thus irh and iTi are not symmetrical; and when the equal currents iVh and 
ivi are added, the resulting input currents are unequal, ih being smaller

Fig. 6-13.—Correction of transit-time effect at resonance.

than it. Since the output voltages ep are equal, the gain is therefore 
higher above resonance than below.

This effect can be corrected by adding a capacity in parallel with the 
feedback resistor. The vector diagram for resonance is then as shown in 
Fig. 6-13, with the addition of the capacitive feedback current bringing 
the total feedback current back into phase with eB. Figure 6-14 shows 
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that irh, ir, and iri, which were unsymmetrically disposed about eB, are 
brought back into a symmetrical disposition about e„ and ik and it are 
therefore equal. Although this correction is really only approximate, it is 
satisfactory.

If the gain is high, the angles 0 and </> can be assumed to be equal, and 
the relation between the transit angle and the feedback resistor can be 
found from Fig. 6 13 to be

tan 0 — oiCizRw. (59)
Effects of Capacity across the Feedback Resistor.—There is always a 

small amount of capacity across the feedback resistor. The effect on the 
response is similar to that of transit angle, except that it is in the opposite
direction; it can be used, in fact, to 
angle. If the capacitance across 
the feedback resistor is larger than 
necessary to compensate for the 
transit-time effect, then its presence 
is serious. Equation (59) can 
therefore be considered to define an 
upper limit on the allowable value 
of the feedback resistor, where Ci2 
is the inherent capacity across the

compensate for the effect of transit

Fig. 614.—Correction of transit-time effect 
off resonance.

feedback resistor. If the design considerations demand a feedback resis
tor higher than this value, as may readily occur at frequencies where the

transit-time effect is negligible, 
other means must be used for pre
serving the flatness and symmetry 
of response.

The first thing to be done about 
feedback-resistor capacity is to re
duce it to a minimum. The ca
pacity across common half-watt 
resistors is approximately 0.2 ppi or 
more. Certain special low-capac
ity resistors, such as the Inter
national Resistance Company’s 
type MPM,1 have capacities be
tween | and it; of this capacity.

The obvious method for treat-
Fig. 615.—Feedback resistor tapped on ing this capacity is to tune it Out 

load resistor. & para]]ei inductance. This
method slightly upsets the feedback and may require a small decrease in 
the feedback resistor or an increase in the load resistor. Another possi- 

1 Vol. 17, Chap. 2, Radiation Laboratory Technical Series.
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bility is to tap the feedback resistor down on the load resistor, as is shown 
in Fig. 6-15.1 The combination of the two load resistors and the feedback 
resistor can be transformed into an equivalent T, as shown in Fig. 6-16, 
or an equivalent H, as shown in Fig. 6-15. These use lower resistances in 
the feedback network than the original circuit and are therefore less 
troubled by stray capacitance.

If either Gi or G2 is zero, this method does not work, but the feedback 
resistor can still be tapped down on the coil, as shown in Fig. 6-17.

Fig. 616.— T-network feedback. Fig. 6-17.—Feedback resistor tapped on coil.

6-7. More Complicated Feedback Amplifiers.—Since it has been 
shown that the gain-bandwidth product of an amplifier using single-tuned 
circuits can be improved by the use of inverse feedback, it is natural to 
expect that amplifiers using more complicated interstage-coupling circuits 
can similarly be improved.

The mathematical analysis of a general feedback chain using circuits 
more complicated than the simple single-tuned circuit becomes so involved 
that the solution is extraordinarily difficult. However, if all the stages 
but the last and first are made identical, the mathematics is sufficiently 
simplified so that an analysis can be carried through.

In this section a brief analysis is made for a uniform chain using two- 
terminal networks. The use of four-terminal coupling networks is 
considered in great detail by Twiss.2

The Uniform Feedback Chain.—The properties of an inverse feedback 
chain in which all the stages are identical can be determined from Eq. (9).

1 Bartelink, Watters, and Kamke, “Flat Response, Single-tuned I-f Amplifier,” 
General Electric Company internal report (forthcoming); also B. D. H. Tellegen and 
C. J. van Loon, U. S. Patent 2155025 (1939); this patent contains a very good early 
discussion of inverse-feedback bandpass circuits.

2 R. Q. Twiss, “The Theoretical Design and Experimental Response of Single and 
Coupled Circuit Negative Feedback Amplifiers,” T.R.E. Report No. T-1649.
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Assuming that all the gm’s are equal, Eq. (9) becomes for the uniform 
chain

△ =

Y 
gm 
0

-Gf
— Gf Y 

gm — Gf 
0

0 
-Gf

Y
gm —

Ó
Ó

-Gf
Gf Y

0 
-Gf

0 0 0 0 0
0 0 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0

■ (60)
9m — Gf y — Gf Ò
0 Vm -Gf Y -Gf

0 gm — Gf Y

where Y is the loading admittance Yu, and G/ is the feedback conductance 
Gi-i,u

If A„ is the value of A for an n-stage amplifier, A„ can be expressed in 
terms of A„_i and A„_2 by expanding A„ by minors.

An = Y A„_! + gmGf &n-2- (61)
This is a difference equation, the solution for which is given by

A„ = A(FO)» + B(Yb)n, 
where

Fa = g- + + (if™ ~ Gf)Gj,

Y* = +

A = 1 . __________ Y = F„
2 ' F„ - F»’

- gag,
D = 1 F = F„

2 ^7y\2 Yb - F„— G^Gj

(62a)

(62b)

(62c)

(62d)

(3.2e)

Note that for the case Gf = 0, or no feedback, Ya = F, Yb = 0, 
A = 1, B = 0, and An therefore is F", which is the familiar value for the 
uniform multistage amplifier without feedback.

If the values for A, B, Y„, and Yb are substituted from Eq. (62) into 
Eq. (61), the square roots cancel out and the result is the polynomial 
expected from previous theory, having a gain-bandwidth factor of unity 
for a flat-response curve when single-tuned circuits are used for shunt 
admittances. However, Eq. (62), unsimplified, shows certain properties 
of the uniform chain that can be used to secure a greater gain-bandwidth 
product with the aid of circuits more complicated than single-tuned 
circuits. Consider the function Ya if Y is the admittance of a single-tuned 
circuit. Then

zi / i\ /r rr7i\ "i2
Ya = y ~ f) \ 2 \ — 7/ + — (63)
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If Gf « gm (this corresponds to high gain), then Eq. (63) is

From Eq. (64) it is evident that the magnitude of Ya is independent of 
frequency for all values of f such that the quantity under the radical 
remains positive and increases as f varies beyond this range. Since the 
value of Ya at resonance is gmGf and the width of the band over which 
|F„| is constant is VgmGf/irC, it is obvious that Ya corresponds to an 
impedance having a gain-bandwidth factor of at least 2 for any number of 
stages. This is analogous to the two-terminal infinite filters yielding 
maximum gain-bandwidth product, as described in Sec. 2-2.

Although the advantage of the flat-amplitude characteristic of Ya is 
lost by the addition to it of the Yb term in any amplifier employing single
tuned circuits only, the use of a more complex circuit in the first or last 
stage of the amplifier allows the retention of this improvement in gain
bandwidth factor. Consider an amplifier where the load and feedback 
impedances of the last (or first) stage are Yt and Y¡t. Substituting these 
values and also substituting Eq. (62a) in Eq. (61) yields

An = A(Y'Ya + gMY^1 + B(YtYb + g^Y^Yf*- (65)

The F& term can be eliminated if

Y,Yb + ^F/, = 0. (66)
Substituting Eq. (62) in Eq. (66):

Yt = Ya (67)

Then

An = (Yaf (68)

If Y/i = G}, then An = (Ya)n, and Yt = Ya.
Thus an inverse-feedback chain that is terminated in an impedance 

Ya has the response of an amplifier without feedback in which the load 
impedance in each stage is Ya. Since Eq. (64) shows that Ya is the 
admittance of the infinite two-terminal filter previously discussed, feed
back chains, using only a single filter in either the first or last stage 
instead of one in each stage, can duplicate the performance of amplifiers 
using filters as coupling networks. This represents an appreciable 
simplification of the amplifier.

However, in actual practice this is not quite the case. Practical 
feedback chains do not realize the expected gain-bandwidth factor 2 for 
the following reasons:



Sec. 6-8] PRACTICAL EXAMPLES 269

1. The assumption made in arriving at Eq. (64) is true for high gains 
only. It is equivalent to assuming that the feedback conductance 
represents a pure transfer admittance, having negligible self
admittance. This assumption is, in general, not true over the 
range of gains commonly used for wide-band amplifiers. The 
effect of this difference is to decrease the gain-bandwidth product 
of a single stage and to round off the corner of the response curve 
so that the bandwidth decreases more rapidly when several stages 
are cascaded. This effect is illustrated in Table 6-3.

2. The presence of direct loading, in addition to the loading of the 
feedback resistor, increases the effect of the latter1 as explained in 
(1). This is also illustrated in Table 6-3.

3. Because the numerator of Eq. (8) contains g'm rather than gm, there 
is a small loss in gain-bandwidth product, namely, a factor of

4. Some performance is lost because the termination is never ideal.

Table 6-3.—Gain-bandwidth Factor of a Perfectly Terminated Feedback 
Chain as a Function of Mean Stage Gain, Direct Loading, and Number 

of Stages

^mG f 
G2

Gain-bandwidth factor

1 stage 2 stages 3 stages 4 stages

1.425 2.06 1.580 1.34 1 200
2.160 2.10 1.660 1.43 1.290
7.000 2.17 1.870 1.74 1 645

11.650 2.20 1.940 1.81 1.730
17.000 2.19 1.990 1.88 1.810
oo 2.15 2.045 2.02 2.020

6-8. Practical Examples.—As a first example of an amplifier using 
inverse feedback, consider the four-stage amplifier shown in the circuit 
diagram of Fig. 6-18. This amplifier was designed for an over-all band
width of 21 Mc/sec and a gain of 30 to 35 db. A brief calculation of the 
gain-bandwidth product for a 6AC7 shows that the requirements can be 
achieved with a flat quadruple, consisting of two inverse-feedback pairs.

The pairs to be used for this amplifier are chosen as symmetrical, as 
this is the simplest method. The amplifier can then be designed from

1 The loading effect of the feedback resistor and the direct loading can be somewhat 
compensated for by use of circuits producing a negative resistance at the input of the 
amplifier, such as a capacitive cathode circuit.
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Eq. (34). However, for a more accurate design, the difference between 
gm, and g'm, is taken into account. Thus, substituting gm — Gn into 
Eq. (346) for g'm,, a quadratic equation is obtained for Gn/ G.

If Eq. (69) is solved for Gn/G and the square root is approximated by 
taking the first three terms of its binomial expansion, one gets

Gn _ 2 - k / G\ [ 2 - k / G\21

g 4 Wl. + 4 w. (70)

Note that taking only the first two terms of the binomial expansion is 
equivalent to letting gm^ equal in Eq. (346).

Fig. 6-18.—Flat quadruple feedback amplifier.

From the bandwidth desired and the total interstage shunt capacity, 
both of which are known, the constant G can be determined since the 
bandwidth is given by G/2rC. Assuming a value of 26 ppi for C, G 
comes out to be 3450 jumbos. Then, assuming gm = 8600, gm/G = 2.5.

Now the constants of the amplifier can be determined from Eqs. 
(34a) and (70). From Table 6-1, it can be seen that the values of k 
for the two pairs of a flat quadruple are y/2 and — x/2. Thus, using 
Eq. (34a),

Gn Gn V2 + V2 i 0-925 for k = + y/2, Gn = 3200 = Gn, 
~G G~ ~ 2 j 0.383 for k = - y/2, Gn = 1333 = Gn-

From Eq. (70)

Gn _ 2 + V2 1 f 2 + V2 1 ’
G 4 2.5 [ 4 ‘ (2.5)2.

= i 0.060 for k = + V2, Gn = 207, 
[ 0.388 for k = - y/2, £12 = 1340.
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Then

Gi — Gt = Gn — Gia

Thus, for k = + \/2,

3000 for k = + 
0 for k — —

Ri = Rz = 330 ohms, Rn = 4800 ohms,

and for k — — n/2,

Ri = Rz = 00, Ä12 = 750 ohms.
+ 120v

2500 2500

2500

Mixer

1500

6AL56AK5

4=270

X'tal current

Note: All condensers are ppt
2500#

Fig. 6-19.—Circuit diagram of a practical 60 Mc/sec feedback amplifier. The interstage 
coils are unity-coupled, by being bifilar wound.

2500

22 k 12 k

6AK5

#270

1200

12 k

6AK5 6AK5 6AK5 6AK5

270
1 18 k

-180 
iso; 
2701 270

± 2700? #5 
T270 i

5k 
Gain control

A practical difficulty is encountered because of the infinite values 
obtained for Ri and Rt, since there must be low-resistance d-c paths from 
the plate to B and from grid to ground. One method of handling this 
difficulty would be to split the tuning coil into two coils, each having 
double the required inductance, and using one in the plate circuit and one 
in the grid circuit. In the case of this amplifier, another method was 
used. The 750-ohm feedback resistor was split into parallel resistors of 
1500 ohms each, one being connected from grid to grid, the other from 
plate to plate. In this way a d-c return path is furnished for both plates 
and both grids if the coil is in the plate circuit of one stage and the grid 
circuit of the other.



Fig. 6-20.—High-frequency inverse-feedback amplifier.
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A second example of a feedback amplifier is due to H. N. Beveridge. 
Fig. 6-19 is a circuit diagram and Fig. 6-20 a photograph of the last 
few stages. This amplifier consists of two inverse-feedback triples, 
having very slight dips in the pass band, with a gain of about 106 and a 
bandwidth of 10 Mc/sec at 60 Mc/sec.

The long thin resistors seen in Fig. 6 20 near the center of the chassis 
and running along its length are IRC type MPM resistors, used as feed
back resistors because of their very low end-to-end capacity, of about 
0.02 ¿pi. The tuning coils are bifilar-wound, i.e., unity-coupled, thereby 
eliminating the need for blocking condensers; the bifilar construction 
requires the coils to be very carefully impregnated, however, in order to 
prevent electrolysis. The coils are at right angles to the length of the 
chassis; the last one is shown without its impregnation.

The white stand-off bypass condensers visible in Fig. 6-20 provide 
extremely effective bypassing because of the employment of the “series
resonance” principle; i.e., the capacity of the bypass condensers is series 
resonant at 60 Mc/sec with the inductance of the condenser leads. A 
large part of the credit for the extreme simplicity and elegance of the ampli
fier, as demonstrated by the small number of parts shown in Fig. 6-19, 
is to be attributed to the effectiveness of the bypassing.



CHAPTER 7

BANDPASS AMPLIFIERS: PULSE RESPONSE AND 
GENERAL CONSIDERATIONS

By Henry Wallman

PULSE RESPONSE

7*1. Response of Bandpass Amplifier to Carrier-frequency Pulse. 
Bandpass Filters That Are Approximately Low-pass Filters Shifted Upward 
in Frequency.—The response of a bandpass amplifier to a microsecond 
pulse of a 30 Mc/sec wave can in principle be determined without 
approximation by applying the methods of Chap. 1; the driving func
tion is

/(i) = sin (2x30 X 10»i), 0 < t < 10-’,
= 0, otherwise,

and it is necessary to employ the exact form of the complex bandpass 
system function. Such calculations are extremely laborious1 but show 
just how the carrier-frequency oscillations are built up in the output 
waveform. The result of such a calculation is as shown in (a) of Fig. 7-1.

In certain applications such detailed information is important; an 
example is the case in which “phase detection” is employed in conjunc
tion with a coherent carrier-frequency oscillator. Usually, however, only 
simple rectification follows the bandpass amplifier, and it is sufficient to 
know the envelope of the carrier-frequency pulse [see (c) of Fig. 7-1].

For amplifiers of small fractional bandwidth it is often possible to 
simplify the calculations greatly on the basis of the following mathe
matical argument. Suppose a time function f(t) has the Laplace trans
form g(u). Then/(i)ei"«‘ has the transform g(w — w0). Now the time 
function fifie^ is used to denote a sine-wave carrier of frequency wo 
modulated in amplitude by f(t); its spectrum function is seen to be that of 
f(t) shifted by the carrier-frequency w0. Some bandpass filters can be 
regarded as the displacement in frequency of a lowpass filter, that is, are

1 A. W. Gent, “The Transient Response of R-f and I-f Circuits to a Wave Packet,” 
Standard Telephone and Cables Co., Ltd., Valve Laboratory Report No. G70, 1942. 
Exact calculations are made for the response of a single-tuned and a double-tuned 
circuit to a carrier-frequency pulse. It turns out that even for a fractional bandwidth 
as large as a half, the “envelope” of the carrier-frequency response is well approxi
mated by the response of the low-pass-equivalent filter.

274



Sue. 71] BANDPASS AMPLIFIERS, CARRIER-FREQUENCY PULSES 275

closely approximated by a filter whose mathematical expression can be 
written in terms of the single variable j(w — wo). An example [see Sec. 
4-2, in particular Fig. 4-4, and Eq. (4-6)] is a single-tuned circuit of 
small fractional bandwidth. For such filters it is then true that the 
envelope of the response (of the bandpass filter to the modulated carrier
frequency wave) is the response (of the corresponding low-pass filter)

Fio. 7-1.—Pulse response: (a) Response of bandpass amplifier to carrier-frequency pulse;
( 6) pulse response of low-pass equivalent of bandpass amplifier, (c) effect of rectifica
tion on (a).

to the envelope. This is shown in (6) of Fig. 7-1. All pulse responses 
in this chapter are computed on this simplified basis.

Observe that (c) of Fig. 7-1 is the absolute value of (6) of Fig. 7-1; thus 
the effect of overshoot on the trailing edge of a carrier-frequency pulse is 
different from its effect on the leading edge.

As an example of the simplified method consider the determination of 
the response of a single-tuned circuit at 30 Mc/sec, of bandwidth 2 
Mc/sec, to a microsecond pulse of a 30 Mc/sec wave. The low-pass
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filter corresponding to the 30 Mc/sec single-tuned circuit is a parallel 
RC-circuit having a bandwidth of 1 Mc/sec. Hence the leading edge 
of the envelope of the carrier-frequency pulse response is closely approxi
mated by the response to a step function of direct current of a parallel 
RC-circuit of 1 Mc/sec bandwidth. The complete pulse response is the 
sum of the leading-edge response and its l-gsec-delayed negative.

It is most important to observe that a 2 Mc/sec bandwidth in a 
oandpass amplifier yields only as much speed as does a 1 Mc/sec band
width in a low-pass amplifier. Hence the analogue of Rule 5 of Chap. 2 
is this:

If t denotes the rise time of the envelope of a carrier-frequency 
pulse and ffi the bandwidth between 3-db points of a bandpass amplifier, 
then*

rffi = 0.7 to 0.9.

Not every bandpass filter can be regarded as a frequency-shifted 
low-pass filter. In particular, a filter displaying an amplitude tilt across 
the band cannot be so regarded, because the amplitude response of a 
low-pass filter is always an even function of frequency. Hence for such 
bandpass amplifiers or for detuned amplifiers, the computation of 
carrier-frequency pulse response is more complicated and is not con
sidered here.

Lowpass-bandpass Analogy.—There is a systematic procedure for 
generating bandpass filters from low-pass prototypes that is often 
helpful in simplifying carrier-frequency pulse response calculations. To 
transform a given low-pass filter to a bandpass analogue centered at a 
frequency /o,

1. Leave the resistances unaltered.
2. Replace each capacitance C in the low-pass filter by a capacitance 

C/2, and put in parallel with it an inductance resonating with C/2 
at fQ. .

3. Replace each inductance L in the low-pass filter by an inductance 
L/2, and put in parallel with it a capacitance resonating with 
L/2 at /„•

The effect is to replace the variable f in the low-pass filter by

IA
2 y //’

this leads to a bandpass filter geometrically symmetrical about fo with a 
bandwidth twice that of the low-pass filter. Figure 4-1, for example, is 
the bandpass analogue of Fig. 1-26.

1 For amplifiers with small overshoot the value 0.7 is the one to take.
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The variable i[/ — (f/fo)] is approximately equal to / — /o for f close 
to fo, and to the extent to which this approximation is valid, that is, to 
the extent to which the bandpass filter has small fractional bandwidth, a 
bandpass analogue can be considered as a shift upward in frequency of 
its low-pass prototype.

Every low-pass filter has its bandpass analogue, but not every band
pass filter has its low-pass analogue. A very common filter that has no 
exact low-pass analogue is the 
double-tuned circuit.

If a given bandpass filter is 
recognized to have a low-pass 
analogue and if it has small frac
tional bandwidth, then it is clear 
that the low-pass analogue is the 
filter to use in pulse response 
calculations [see (a) and (c) of Fig. 
7-2]. But if no low-pass analogue 
exists, there may still exist a low- 
pass circuit whose mathematical 
expression is closely equivalent to 
that of the bandpass filter when 
/ — /o is replaced by/. ' This is the case in (b) of Fig. 7-2.

Pulse Response and Absolute Value Curve Alone.—For minimum 
phase-shift networks the absolute value-vs.-frequency characteristic 
completely determines the phase-vs.-frequency characteristic, and the two 
characteristics determine the pulse response. All the circuits described 
in Chaps. 4 to 6 are of the minimum phase-shift type. This fact leads 
to the important conclusion that if an amplifier has a certain absolute 
value curve, it has a specific pulse response, without regard to whether 
it uses stagger-tuned circuits, double-tuned circuits, stagger-damped 
circuits, combinations of double-tuned circuits and single-tuned circuits, 
or plate-to-grid inverse feedback, etc.

7-2. One-pole Networks.—As has already been asserted, a single
tuned circuit resonant at frequency/0 and of small fractional bandwidth is 
closely approximated by a parallel RC-circuit shifted up in frequency to 
fa; hence the envelope of the response to a step-function-modulated sine 
wave of frequency f0 is given by the step-function response of a parallel 
RC-network. The latter response is an exponential curve, of the form 
shown in Curve 1 of Fig. 1-25.

Similarly the step-function response of n cascaded identical single
tuned circuits is shown in Fig. 1-25 for n = 1, • • • ,10. The time scale 
t/(RC) in Fig. 1-25 pertains to the low-pass case, however. The correct 
time scale for the bandpass case is t/(2RC), reflecting the fact that a given
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bandwidth in a bandpass amplifier yields only half as much speed as 
does the same bandwidth in a low-pass amplifier. This assumes that the 
carrier frequency in the bandpass case is equal to the midband frequency 
(double-sideband operation).

The correlation between over-all speed and over-all bandwidth in an 
amplifier made up of cascaded identical single-tuned circuits is extra
ordinarily good. If r denotes rise time between 10 and 90 per cent and 
® denotes 3-db over-all bandwidth, then

r® = 0.70, (1)
whether 1, 2, ... or infinitely many stages are involved.

7-3. Two-pole Networks.—This case includes staggered pairs, double
tuned circuits, and inverse-feedback pairs. All these involve two single
tuned circuits or, equivalently, a pair of complex-conjugate poles in the 
complex frequency plane.

A Single Two-pole Network.—The fundamental complex form of the 
networks above can be normalized, in the case of small fractional band
width, as

.____ I_________ I____  (O’)
1 + j(x + a) 1 + j(x — a)

where x is proportional to frequency off resonance and a is the ratio 
of the imaginary part of the poles to their real part. The symbol a has a 
definite physical significance:

1. For stagger-tuned circuits, a is the ratio of the separation of the 
individual resonant frequencies to the bandwidth of the two 
individual stages.

2. For double-tuned circuits of equal primary and secondary Q, 
a = kQ. One can also write a = k/kt, where kt is the coefficient 
of coupling at transitional coupling. _______

3. For double-tuned circuits loaded on one side only, a = x^i^Q2 — 1.
4. In general for a double-tuned circuit of shape index S (see Sec. 5T), 

„ - a+py
\1 - 0/

The value a = 1 corresponds to the maximally flat absolute value curve 
The step-function response of Expression (2) is easily found to be 

proportional to
- _, [sin at >1 — er* (------ - 4- eos at I. , (3)

\ a /

The maximum value of Expression (3) is 1 4~ « “> that is, the frac
tional overshoot corresponding to Expression (2) is

(4)
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Expression (4) is graphed in Fig. 7-3. Two points follow from 
Expression (4), of which the second is quite important.

1. No matter how small a is, there is always some overshoot. Hence 
a pair of staggered circuits, no matter how slightly staggered, or an 
equal-Q double-tuned circuit, no matter how loosely coupled, 
always displays some overshoot.1

Fig. 7-3.—Overshoot of staggered pair as function of ratio a of separation of the reso
nant frequencies of the staggered circuits to their bandwidth. The value a = 1 corre
sponds to a flat staggered pair. The curve also applies to double-tuned circuits if a is 
suitably interpreted:

a = kQ for an equal-Q double-tuned circuit.
a — y/4kiQt — 1 for a double-tuned circuit loaded on one side only.
a — [(1 + /3)/(I — for a general double-tuned circuit having shape index 0.

2. From the point of view of transient response there is nothing at all 
critical about the point a = 1, that is, the point representing the 
maximally flat bandpass. As a passes through unity, which 
represents critical coupling for an equal-Q double-tuned circuit, the 
fractional overshoot merely increases smoothly.

In Fig. 7-4 is graphed the per cent overshoot as a function of peak-to
dip ratio; the curve also applies to double-tuned circuits of arbitrary 
Q-ratio, and inverse feedback pairs.

1 For a < 0.5, the overshoot is negligible, however.
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Fig. 7-4.—Overshoot of overstaggered pair, as function of ratio of maximum response 
to response at midband. The curve also applies to double-tuned circuits of arbitrary 
Q-ratio, and inverse-feedback pairs.

Fig. 7-5.—Step-function response of cascade of n flat-staggered pairs, n = 1, 2, 3, 4, 6, 
each pair of bandwidth 2 Mc/sec between 3-db points. These curves also apply to transi
tionally coupled double-tuned circuits, flat inverse-feedback pairs, and in general to all 
minimum-phase circuits having absolute value vs. frequency curves of the form 1 / \/ 1 + x4.
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Cascaded Maximally Flat Two-pole Networks.—In Fig. 7-5 are shown 
graphs of the step-function responses of 1, 2, 3, 4, and 6 maximally flat 
two-pole networks, corresponding to a — 1 in Expression (2), each 
individual network having a 2 Mc/sec bandwidth between 3-db points. 
(The over-all bandwidths are, of course, less than 2 Mc/sec.)

Figs. 7-5, 7-6, and 7-7 can be used for arbitrary bandwidths by remem-

Time in microseconds
Fig. 7-6.—Step-function response of a cascade of n flat staggered triples, n = 1, 2, 4, 

each triple of bandwidth 2 Mc/sec between 3-db points. These curves also apply to transi
tionally coupled triple-tuned circuits, flat inverse-feedback triples, flat combinations of an 
overcoupled double-tuned circuit and a single-tuned circuit, and in general to all minimum
phase circuits having absolute value va. frequency curves of the form 1/v (1 -f- a:6).

Some pertinent results are listed in Table 7-1; in the column marked 
t®, the t refers, as usual, to rise time between 10 and 90 per cent 
apd ffi to over-all 3-db bandwidth.
t/ble 7-1.—Step-function Response. Cascaded Maximally Flat Two-pole 

N etwobks

No. of networks Overshoot, % T®

1 4.30 0.69
2 6.25 0.72
3 7.70 0.75
4 8.40 0.76
6 10.00 0.79

The use of Table 7-1 is made clear by considering a six-stage amplifier 
having an over-all bandwidth of 2 Mc/sec. If the amplifier is made up 
of flat staggered pairs or flat inverse-feedback pairs, the over-all over
shoot is 7.7 per cent and the rise time is 0.37 /¿sec, because three maximally 
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flat two-pole networks are involved. If the amplifier consists of transi
tionally coupled double-tuned circuits, there are six maximally flat 
two-pole networks; hence the overshoot is 10.0 per cent, and the rise time 
is 0.39 gsec.

7-4. Maximally Flat Three-pole Networks.—The maximally flat 
three-pole network can be put in the normalized form

(1 + >a:)[l + jx + (¿x)2] ®

In Fig. 7-6 is shown the step-function response of 1, 2, 4 maximally 
flat three-pole networks, each network having a 2 Mc/sec bandwidth 
between 3-db points. Data are listed in Table 7-2 on the overshoot 
and the rise time r for a given over-all bandwidth ®.
iaTLE 7-2.—Step-function Response of Cascaded Maximally Flat Three-pole 

Netwobks

No. of networks Overshoot, % T®

1 8.15 0.73
2 11.2 0.80
4 14.2 0.87

7-5. Maximally Flat n-pole Networks.—Equation (4-15) gives the 
complex expression whose absolute value is the maximally flat function 
l/Vl + x2n; the n poles of Eq. (4-15) are equally spaced on the perim
eter of the left half of the unit circle, and the step-function response 
follows from the knowledge of the poles.

As an example consider the case n = 7. From Eq. (4-15)
1

VI + «14 (6)

is the absolute value of the minimum phase-shift complex expression
1

¿4» >4*- fà* fà* *

(p-e^p-e 7 )(p - e1 )(p - e 1 )(p - e7 )(p - e 7 )(p + 1)
(7)

_ 1
[0.22252 + ± 0.97493)][0.62348 + ± 0.78183)][0.90097

+ j(« ± 0.43388)](l + J«),
where p = ¿«. The phase lag of Expression (7) is

. , 0.44504« , . , 1.2470« . . . 1.8019« , , . /o.tan-1 —:------ 5- + tan-1  -------v + tan-1  ------ - + tan-1 «. (8)1 — « 1 — «2 1 — «2
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The partial-fraction expansion of Expression (7) is
0.73708p — 2.0649p - 3.3124

’ >5r >5»

(p —e7)(p —e 7) (p-e7)(p-e 7)

Fio. 7-7.—Step-function response of the (minimum phase shift) networks having the 
absolute value curves shown above.

The impulse response corresponding to Expression (7) is

e-o.22252^0 73708 cos o.97493i - 0.16823 sin 0.97493/) 
+ e~°-823481 (—2.06 49 cos 0.78183/ - 2.9501 sin 0.78183/) 
+ e-»-’«»»7'(-2.9838 cos 0.43388/ + 6.1964 sin 0.43388/)
+ 4.3118e-’, 

and the step-function response is
1 + 0.75602e-»-22262’ sin 0.97493/
+ e-»-62348<(3.3124 cos 0.78183/ + 0.00048 sin 0.78183/)
- 6.8774e-0 ’0»87' sin 0.43388/ - 4.3118e~‘.

(11)
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Expression (11) is shown as Curve 7 of Fig. 7-7, after its time scale has 
been changed to correspond to a bandwidth for the maximally flat seven
pole network of 2 Mc/sec.

Figure 7-7 displays the step-function response of maximally flat 
n-pole networks of 2 Mc/sec bandwidth for n = 1, • • • , 7; Table 7-3 
lists overshoot and rise time.

Table 7-3.—Step-function Response of Maximally Flat «-pole Networks

n Overshoot, % T(S

1 0 0.70
2 4.3 0.69
3 8.15 0.73
4 10.9 0.78
5 12.8 0.82
6 14.3 0.85
7 15.4 0.89

7-6. Overstaggered Circuits.—In Sec. 4-6 it was pointed out that the

off resonance
Fig. 7-8.—Overstaggered pairs. The parameter is the ratio a of separation of the 

resonant frequencies of the staggered circuits to their bandwidth. The value a = 1 corre
sponds to a flat-staggered pair.

are its mathematical simplicity and its easily recognized shape. It was 
also stated that substantial increases in gain-bandwidth factor could be 
attained if slight dips in the pass band were allowed; this point will now 
be demonstrated,
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Overstaggered Pairs.—In Fig. 7-8 is shown the right half of the selec
tivity curves1 derived from two staggered single-tuned stages of band
width 2, the parameter attached to the curves being the variable a of 
Expression (2), that is, the ratio of separation of the resonant frequencies 
of the staggered circuits to their bandwidth. The parameter value 
a = 0 corresponds to synchronous stages, a — 1 to a flat staggered pair 
and values of a greater than 1 to overstaggered pairs. Table 7-4 shows 
the gain factor for these staggered pairs, that is, the mean stage gain at 
midband, in units of gm/2rC. For a = 1, for example, which corresponds 
to a flat-staggered pair of over-all bandwidth 2 -1/2, the stage gain is 
1/(2 this is in accord with the stage gain times over-all bandwidth 
factor of 1 for a flat-staggered pair. Also listed in Table 7-4 are the per 
cent overshoot [see expression (4)], the values of the shape index 3 (see Sec. 
5'2) corresponding to each value of a, and the relative gain at band 
center of a double-tuned circuit of the same shape index and bandwidth 
as the corresponding staggered pair. It will be seen that a double-tuned 
circuit loaded on one side only always has an advantage of exactly 2 over 
the staggered pair whereas for an equal-Q double-tuned circuit the rela
tive advantage lies with the staggered pair for undercoupled circuits, that 
is, circuits of small overshoot.
Table 7-4.—Midband Gain Factors Corresponding to Curves of Fig. 7-8, in 

Units of g^ArrC

a Overshoot, 
%

R - a‘ ~ 1
3 a2 + 1

Stage gain 
factor for 
staggered 

pair

Gain factor 
for 

equal-# 
double-tuned 

circuit

Gain factor 
for 

double-tuned 
circuit loaded 
on one side 

only

0 0 -1.000 0.500 0 1.000
0.2 0.00 -0.920 0.490 0.192 0.980
0.4 0.04 -0.725 0.464 0.344 0.928
0.6 0.53 —0.470 0.429 0.441 0.858
0.8 2.0 -0.219 0.390 0.487 0.780
1.0 4.3 0 0.353 0.500 0.707
1.2 7.3 +0.180 0.320 0.490 0.640
1.4 10.6 +0.324 0.290 0.473 0.580
1.6 14.0 +0.438 0.265 0.450 0.530
2.0 20.8 +0.600 0.223 0.400 0.446
2.4 27.0 +0.705 0.192 0.355 0.384

1 The transition from a flat-staggered n-uple, n = 2, 3, 4, • • • , to an overstag
gered n-uple of the same over-all bandwidth turns out to be very simple: The individual 
resonant frequencies are left unaltered, and the individual bandwidths are all nar
rowed in the same ratio. This rule is not quite exact but is a close approximation 
even in the large fractional-bandwidth case, provided the dips are small.
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Overstaggered Triples.—In Fig. 7-9 is shown the right half of the selec
tivity curves yielded by a three-stage amplifier consisting of a centered 
single-tuned stage of bandwidth 4 and two symmetrically staggered 
single-tuned stages of bandwidth 2, the parameter being the ratio a of 
peak separation of the staggered stages to their bandwidth. The value 
a = V3 corresponds to a fiat-staggered triple, and values of a greater 
than y/3 to overstaggered triples.

The step-function response for such overstaggered triples is propor
tional to

0 , 2 . A
d— e ‘ sin at Ia /

1 - —24 (12)

Table 7-5 shows the gain factor for these staggered triples, that is, the 
mean stage gain at midband, in units of gm/2rrC. For a = y/3, for 

Fig» 7-9.—Overstaggered triples. The parameter is the ratio a of separation of the 
resonant frequencies of the staggered circuits to their bandwidth. The value a = \/3 
corresponds to a flat triple.

example, corresponding to a flat-staggered triple of bandwidth 4, the 
gain factor is 0.25, in accord with the gain-bandw'idth factor of 1 for a 
flat-staggered triple. Also listed are the mean gains at midband for the 
two-stage combinations consisting of a centered single-tuned stage and an 
overcoupled double-tuned stage that have the same shape and bandwidth 
as the corresponding overstaggered triple.

Consider the curve corresponding to a = 2.5 in Fig. 7-8, for example; 
the curve shows 1 per cent or 0.1-db dips. The bandwidth between the 
84 per cent or 1.5-db points is 5.2(= 2 X 2.6). Two such overstaggered 
triples have 0.2-db over-all dips and a 3-db bandwidth of 5.2. Since the 
mean stage gain factor is 0.205 (see a = 2.5 in Table 7-5), the gain
bandwidth factor for the overstaggered triples is 1.07. Two flat- 
staggered triples, on the other hand, have a gain-bandwidth factor of only 
0.86 (see Table 4-6). The two overstaggered triples thus have a
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Table 7-5.—Midband Gain Factors Corresponding to Curves of Fig. 7-9, in 
Units of gN2irC

a
Stage gain factor for 

staggered triple

Stage gain factor for 
combination of a cen

tered single-tuned stage 
and an equal-Q double

tuned stage

Stage gain factor for 
combination of a cen

tered single-tuned stage 
and a double-tuned 

stage loaded on one side 
only

x/3 0.250 0.329 0.353
2.0 0.232 0.316 0.334
2.5 0.205 0.296 0.307
3.0 0.184 0.274 0.281
4.0 0.154 0 243 0.248
5.0 0.134 0.220 0.222
6.0 0.119 0.203 0.204

superiority in gain-bandwidth factor of 25 per cent, at the expense of only 
0.2-db over-all dips.

When it is considered that the 0.2-db dips are those in the over-all 
response of an amplifier of six stages, it is clear that the increase of 25 per 
cent in gain-bandwidth factor is a very large reward for forsaking the 
maximal flatness of pass band. The increase in gain-bandwidth factor 
may be employed in several ways: to increase the gain by 25 per cent per 
stage, or 11.5 db over-all, for a fixed bandwidth; to increase the over-all 
bandwidth by 25 per cent for a fixed over-all gain; or to leave gain and 
bandwidth fixed and substantially increase tube life by operating the 
tubes with 20 per cent reduced transconductance.

The overstaggered triple case just considered is interesting also in its 
transient-response aspects. The overshoot corresponding to a single 
overstaggered triple having the constants above (a = 2.5) turns out to 
be 10.2 per cent, and the overshoot for two such triples is about 14.5 per 
cent; this is very closely the same as the overshoot for a flat-staggered 
sextuple (see Table 7-3). Moreover, for a given gain the combination 
of two such overstaggered triples is about 7 per cent faster than the flat 
sextuple. Hence even from the point of view of pulse response it would 
be better to build a six-stage amplifier in the form of two slightly over
staggered triples than one flat sextuple. This furnishes another illustra
tion of the lack of inherent advantages in maximally flat pass bands.

GENERAL CONSIDERATIONS

7-7. Gain-bandwidth Factor.—Table 7-6 lists the gain-bandwidth 
factors for a number of coupling schemes. In each case the gain is the 
mean stage gain, the bandwidth is the over-all 3-db bandwidth, and 
the gain-bandwidth factor is the ratio of the gain-bandwidth product to
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gm/d^2 y/CiCz), where Cj and C2 are the output and input capacities 
respectively.1
Table 7-6.—Gain-bandwidth Factor of Various Interstage Coupling Schemes

Interstage coupling scheme
; Normalized 

selectivity 
curve

g® factor

1. m synchronous single-tuned circuits.............. 1
(1 +

(2'/” -

2. m flat-staggered n-uples........................................ 1 (2Vw — l)l/2n
(1 4- z2n)m/2

3. m transitionally coupled equal-Q doubled- 
tuned circuits.................................................... I

(1 +
2« (2V” - 1)M

4. m transitionally coupled double-tuned cir
cuits loaded on one side only................. 1 2(2'/" - 1)M

(1 + x1)"^
5. m flat stagger-damped n-uples made up of 

equal-Q double-tuned circuits................. 1
(1 4- xin)n^

21/2»(2V»» —l)l/4n

6. m flat stagger-damped n-uples made up of 
double-tuned circuits loaded on one side
only.............................................................................. 1

2(2l/m — l)V*n(1 + x*^2
7. m flat pairs consisting of a single-tuned cir

cuit and an overcoupled equal-Q double
tuned circuit..................................................... 1

3H(2V- - 1)H(1 + Z«)”'2
8. m flat pairs consisting of a single-tuned 

circuit and an overcoupled double-tuned 
circuit loaded on one side only...............

m transitionally coupled triple-tuned cir
cuits ........................................................................

1
2^(2'/” - 1)«

a (2Vm — 1)14, wherea 
varies between 1 and 
2, depending on the 
ratio Ci/Ci; « = 1 
for C1/C2 = 1, a = 2 
for Ci/Ct = 3.

9.
(1 + Z6)m/2

1

10. Plate-grid resistive feedback circuits with 
simple singlo-tuned termination are ex
actly equivalent to stagger tuning except 
that the effective tube transconductance 
is slightly reduced (by the shunting affect 
of the feedback conductance)..................

(1 + a6)”/2

'For single-tuned circuits the use of 2 XCiCi instead of C = C, + Ci implies 
that the tuning coil is employed as an autotransformer tuned with capacity 2Ci and 
tapped down in the impedance ratio Cj/Ci. The improvement in gain-bandwidth 
factor yielded by assuming the capacity 2 yf'CiCi instead of Ci + Ci is almost always 
negligible; for Ci = 2Ci, for example, the improvement is 6 per cent.
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Table 7-7.—Oveb-all 3-db Bandwidths Obtainable with Tubes Having a 
P„/(2t2 VC1C2) Ratio of 62 Mc/Sec.

Type of amplifier Over
shoot, %

80 db 
over-all gain. 
Bandwidth, 

Mc/sec

100 db 
over-all gain. 
Bandwidth, 

Mc/sec

Three stages:
Three synchronous single-tuned.................... 0 1.5 0.65
Flat-staggered triple.......................................... 8.15 2.9 1.3
Overstaggered triple with 0.1-db dips......... 10.2 3.5 1.55
Three transitionally coupled equal-Q dou

ble-tuned ....................................................... 7.7 2.9 1.3
Three transitionally coupled one-side-loaded 

double-tuned................................................ 7.7 4.1 1.9
Flat stagger-damped triple made up of one- 

side-loaded double-tuned circuits......... 14.3 5.8 2.6
Four stages:

Four synchronous single-tuned...................... 0 2.7 1.5
Two flat-staggered pairs................................... 6.25 5.0 2.8
Flat-staggered quadruples................................ 10.9 6.2 3.5
Four transitionally coupled equal-Q double

tuned .............................................................. 8.4 5.8 3.3
Four transitionally coupled one-side-loaded 

double-tuned................................................ 8.4 8.1 4.7
Six stages:

Six synchronous single-tuned.......................... 0 4.7 3.2
Three flat-staggered pairs................................ 7.7 9.5 6.5
Two flat-staggered triples................................ 11.2 11.5 7.8
Two overstaggered triples with 0.1-db dips 

per triple....................................................... 14.5 14.3 9.8
Flat-staggered sextuple..................................... 14.3 13.4 9.2
Six transitionally coupled equal-Q double

tuned .............................................................. 10.0. 11.2 7.7
Six transitionally coupled one-side-loaded 

double-tuned............................................... 10.0 15.8 10.8
Three flat stagger-damped pairs made up 

of one-side-loaded double-tuned circuits ~ 18 20.6 15.6
Nine stages:

Nine synchronous single-tuned...................... 0 6.2 4.8
Three flat-staggered triples............................. ~ 13 17.8 13.8
Three overstaggered triples with 0.1-db dips 

per triple....................................................... ~ 17 23.2 18.0
Nine transitionally coupled equal-Q double

tuned .............................................................. ~ 12 16.7 13.0
Nine transitionally coupled one-side-loaded 

double-tuned................................................ ~ 12 23.6 18.4
Three flat stagger-damped triples made up 

of one-side-loaded double-tuned circuits ~ 25 39.7 30.9



290 BANDPASS AMPLIFIERS [Sec. 7-8

Table 7-7 is derived from Table 7-6 and shows the over-all 3-db 
bandwidths that can be achieved at over-all gains of 80 and 100 db 
with various numbers of amplifier stages. The value assumed for 
p„/(2x2 y/CiCi) is 62 Mc/sec. This is appropriate to the type 6AK5 
tube with capacities Ct — 4.4 ppi and C2 = 6.7 ppi, and conservatively 
rated to have a transconductance of 4200 /¿mhos.

For other tube types, capacities, and transconductances, each of 
the bandwidths listed in Table 7-7 should be multiplied by the ratio 
of the other value of pm/(2x2 y/CtC2) to 62 Mc/sec. For example, for 
type 6AC7’s assumed to have gm = 7800 gmhos, C, = 8 ppi, C2 = 17 ppi, 
the bandwidths in Table 7-7 are to be multiplied by 0.85 ( =

Also listed in Table 7-7 is the step-function overshoot accompanying 
the various coupling schemes.

7-8. Gain Control.—Bandpass amplifiers are usually gain controlled 
by varying the transconductance of one or more of the tubes by adjust
ment of suitable electrode potentials. There are two common methods 
of reducing gain: the first reduces the plate-cathode or screen-cathode 
potential, and the second increases the cathode-grid bias.

The first method, reducing plate potential, has the advantage of 
producing less detuning for a given gain reduction, that is, less change in 
input capacity, and is sometimes employed for this purpose when examin
ing amplifiers in the laboratory for regeneration (see Sec. 8-5). It has 
the very serious disadvantage, however, that the saturation level of the 
amplifier is reduced when gain is lowered and hence should never be used 
when overload capability is of importance.

The second method, increasing the cathode-grid bias, is almost uni
versal. The usual procedure is to return the grid circuits of the gain- 
controlled tubes to a variable negative supply, although sometimes the 
cathodes are connected to a variable positive supply.

For quick recovery from overload it is important that the d-c resistance 
in the grid circuit be small. Hence the d-c resistance in the supply for the 
gain-control voltage should not exceed about 2000 ohms.

Among tubes of a given type there is, unfortunately, only poor cor
relation between transconductance and bias voltage for low values of 
transconductance. For example, among a set of about 200 type 6AK5 
tubes a 6-volt bias yielded a 50-db gain reduction with one tube and only 
18 db with another. The correlation between transconductance and 
plate current is very good, however, and it has been suggested that a 
scheme for accurate gain control should be based on regulating current 
rather than voltage.

A limit on gain reduction is established by parasitic signal paths 
through the grid-plate capacitance and decoupling circuits. The maxi
mum possible gain reduction depends on the operating frequency, the 
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impedance level of the interstage networks, the effectiveness of decoupling, 
etc., but rarely exceeds about 40 or 50 db per stage.

7-9. Gain Variability.—Sections 7-9, to 7-11 are concerned with 
aspects of bandpass amplifier design that are important in large produc
tion but have only minor significance for laboratory amplifiers.

The problem of gain variability in amplifiers is serious because of the 
wide variability in transconductance permitted by the JAN-1A specifica
tions. Thus for the type 6AK5 a (/„-variability is permitted between 
3500 jumhos and 6500 jumhos under fixed-bias conditions. This is a range 
of 1.86 to 1, or 5.4 db. For a synchronous single-tuned amplifier, for 
example, there would therefore be a 5.4-db range per stage between a 
low-limit tube and a high-limit tube; it is clear that in six-stage amplifiers 
an over-all gain variability of 32 db between one amplifier and another 
might occur.

The situation is mitigated by the stabilizing effect of cathode bias. 
Experience has shown that there is good correlation between trans
conductance and quiescent plate current; hence if a cathode-bias resistor 
Rk is employed, the variability in gm is reduced almost by the factor 
1 + gmRk- For a type 6AK5 with Rk = 200 ohms, the variability is 
almost cut in half, to the range between 4000 and 6000 /imhos, say.

For a type 6AC7 tube the transconductance is permitted by the 
JAN-1 A specifications to vary between 7000 and 12,500 ^mhos; this is, 
however, with the stabilizing effect of a 160-ohm cathode-bias resistor 
already included in the JAN-1A test specifications. The fractional gm 
variability is thus seen to be considerably greater for the type 6AC7 than 
for the type 6AK5.

Returning to the type 6AK5, one may ask what accommodations in 
design are to be made for the 4000- to 6000-Mmho variability in gm. It is 
clear that the matter is one of probabilities and that the designer must try 
to answer this question: “If the design proceeds on the assumption of a 
certain nominal gm, say 4200 jumbos, what fraction of the amplifiers will 
turn out to be deficient in gain?” The answer must then be weighed 
against the extra complication, in number of stages, components, man
hours, etc., of a design based on an assumed gm of 4,000 jumhos, say.

There are two errors to avoid in this analysis of probabilities: The 
first is the assumption that the gm’s of the various tubes in an amplifier 
have independent probability distributions. Unfortunately, there is a 
tendency for tube characteristics to run in bunches, all the tubes in a given 
production-run being very closely alike. Hence it can happen that al) 
the sockets of an amplifier are filled with tubes from a batch of relatively 
low-<7„ tubes.

The second error to be avoided, consists in the assumption that all 
gm values within the allowed range are equally probable. This would
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lead to the pessimistic conclusion that the design gm must be the lowest 
possible value. It is, however, very rare that a production run of tubes 
has an average gm equal to the low limit.

In the absence of full statistical data there is a somewhat arbitrary 
decision involving the value to assume for gm) but it seems fairly con
servative to assume in designing amplifiers to be produced in large pro
duction that the type 6AK5 has a gm of about 4200 ^mhos. A statistical 
examination made at the Naval Research Laboratory showed that con
siderably less than 5 per cent of type 6AK5 tubes, with 200-ohm cathode 
bias resistors, had gm’s less than 4200 gmhos.

The question remains of what to do about the tubes that have larger 
gm, presumably up to about 6000 /¿mhos even with self-bias; the ratio 
6000/4200 is about 1.4 or 3 db. The answer is that provision must be 
made for additional gain control in the amount of 3 db per stage over and 
beyond the gain-control range required by the operating requirements 
of the amplifier. (This extra gain can be controlled, if desired, by a 
screw-driver adjustment, since it varies only with tube replacement and 
tube aging.) For example, a certain 12-stage wide-band amplifier of 
100-db gain was intended for use as the i-f amplifier of a high-precision 
inshore-navigation radar system. A gain control of 100 db was needed 
for the operating radar system; to this had to be added 36 db for tube 
gm variability, so that the over-all gain-control range was 136 db in what 
was nominally a 100-db amplifier. The 136-db gain-control range was 
achieved by applying gain control to each of stages two to seven.

Plate-to-grid resistive feedback (Chap. 6) reduces the dependence of 
amplifier gain on tube transconductance by a factor of not quite 2. If 
larger amounts of gain stabilization are required, other methods must be 
employed (see Sec. 6-5).

7-10. Capacity Variability.1—The JAN-1A specifications permit 
±0.5 ppi variability in the input capacity of type 6AK5 tubes and 
±0.4 ppi variability in output capacity; the total for a single-tuned 
interstage circuit is ±0.9 ppi. If the nominal interstage capacity is 
10.8 ppi, there is a fractional variability2 of ± fi. Hence if random tubes 
are inserted in an already tuned amplifier, the individual interstage cir
cuits may exhibit fractional frequency variability as large as ± this is 
± 1.25 Mc/sec at 30 Mc/sec and ±2.5 Mc/sec at 60 Mc/sec. Subjectto 
certain modifying conditions mentioned below, account must be taken 
of the effect of such detuning.

1 The relative importance of load resistor variability is usually secondary to that 
of capacity variability if 5 per cent tolerance resistors are used, except for amplifiers 
of very large fractional bandwidth, which are noneritical in any case.

1 For type 6AC7 tubes the JAN-1A capacity variability (output plus input) is 
±3.7 ppf. With a 25 ppf interstage capacity this is a fractional variability of about 
± 4, almost double that for the type 6AK5.
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The situation, is much like that described in Sec. 7-9 on gain variability, 
with the important difference that this time the tendency for tube char
acteristics to run in bunches represents an advantage rather than a 
disadvantage. The reason is that a set of tubes having uniformly low 
capacitances produces the result, to the first order, of a uniform shift 
upward in frequency, without distortion of the pass band. Because the 
precise frequency of a bandpass amplifier is usually much less important 
than the shape and width of its pass band, there is little harm done by the 
frequency shift.

Examination at. Naval Research Laboratory of a large sample of type 
6AK5 tubes showed that more than 90 per cent of the tubes fell within 
the inner half of the capacity range permitted by the JAN-1A specifica
tions; that is, tolerances of ±0.45 ppi in the sum of input and output 
6AK5 capacities included 90 per cent of the tubes.

To the tube-capacity variability must be added a certain wiring
capacity variability caused by variation in physical placement of coils, 
resistors, etc. This variability should be small in a well-designed layout 
in which the various components are rigidly mounted in prescribed 
positions.

The next problem is to establish a connection between capacity 
variability and the performance of amplifiers. For synchronous single
tuned amplifiers the problem is simple and the results are reassuring. 
Consider, for example, a synchronous single-tuned amplifier at 60 Mc/sec 
employing type 6AK5 tubes and having a 2 Mc/sec over-all bandwidth. 
The inner half qf the JAN-1A capacity variability leads to a fractional 
capacity variability of about ± which corresponds at 60 Mc/sec to a 
detuning of ± ff = ±1.25 Mc/sec. The individual stage bandwidths 
are 6 Mc/sec for an over-all bandwidth of 2 Mc/sec. In the least favor
able case, in which three of the tubes have the lowest capacities and the 
other three have the highest capacities, the resonance peaks of each pair 
are 2.5 Mc/sec apart, for individual 6 Mc/sec bandwidths. The reduc
tion in stage gain turns out to be 0.7 db; a certain additional variability 
in gain has thus been introduced, but this variability is much like that 
due to gm variations and, as a matter of fact, is of smaller extent. The 
over-all 3-db bandwidth in this “slightly staggered” case is 3.5 Mc/sec; 
the overshoot is completely negligible, about 0.05 per cent per pair; and 
usually the increase in bandwidth is not objectionable.

For the more complicated amplifier coupling schemes such as stagger 
tuning, double tuning, and inverse feedback, the question of assessing 
amplifier performance in the presence of capacity variability is much 
more difficult.

The problem can be split into two parts, to neither of which is it 
possible at this time to give anything like an adequate answer. The 
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first part is this: From the point of view of pulse response what con
stitutes adequate preservation of amplifier pass band? Much more work 
is needed to determine the effect of a tilt or asymmetry in pass band on 
response to a carrier-frequency pulse. Rough experimental investiga
tions indicate that a tilt across the band of 2 db has extremely little 
effect on the pulse response, so that the requirements on tilt are appar
ently not at all critical. A peak on one side of midband does little harm 
unless the peak is large, 3 db or more; in that case if the carrier-frequency 
pulse is retuned to the peak frequency, the pulse response tends to have 
a speed appropriate to the new 3 db bandwidth, but without overshoot. 
A pass band with a peak on each side of midband seriously increases 
overshoot, however.

The second part is this: For a given statistical distribution of inter
stage capacities what is the statistical distribution of amplifier pass 
bands? The problem is made more difficult by the different effects of 
capacity variability on the different types of amplifiers. Thus the 
bandwidth of a double-tuned circuit or an inverse-feedback pair or triple 
can only be increased by detuning, and the gain can only be reduced; with 
stagger-tuning, however, the bandwidth can be either increased or 
decreased and the gain decreased or increased, depending on whether the 
detuning moves the side circuits farther from midband or closer to mid
band. Furthermore, with single-tuned circuits (stagger-tuned or 
inverse-feedback) a batch of tubes with normal output capacities and 
greater than normal input capacities essentially produces only a reduction 
in midband frequency, without distortion of the pass band; under the 
same circumstances the pass band of double-tuned circuits is altered in 
shape. Indeed, an increase in input capacity together with an equal 
decrease in output capacity produces no effect at all on single-tuned 
stages but leads to double-tuned circuits that are double humped.

Analyses have been made in the Radiation Laboratory of the effect 
on a flat-staggered pair or staggered triple of interstage capacity varia
bility; in the staggered-triple case, for example, there are 27 combinations, 
corresponding to having each of the three stages tuned to nominal 
frequency, extreme low frequency, or extreme high frequency. Similar 
calculations have been made at the Bell Telephone Laboratories for 
equal-Q double-tuned circuits. Although these calculations are already 
quite laborious, they do not yield information on the statistical distribu
tion to be expected among the amplifiers.

An experimental statistical investigation was made at the Nava] 
Research Laboratory of three six-stage 6AK5 amplifiers at 60 Mc/sec, 
each of about 90-db gain and 12 Mc/sec bandwidth. Flat inverse- 
feedback triples were employed in one amplifier, flat-staggered triples in 
another, and transitionally coupled equal-Q double-tuned circuits in the 
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third. Only one amplifier of each type was used, but 20 sets of six tubes 
were chosen at random from a stock of 120 6AK5 tubes of three different 
manufacturers and inserted in the sockets of the various amplifiers. 
The 60 Mc/sec gains and the 3-db bandwidths were noted. The results 
were gain variabilities of 4, 13, and 11 db and bandwidth variabilities 
of 2, 3, and 3 Mc/sec in the inverse-feedback, stagger-tuned, and double
tuned cases respectively; the gain variability includes the effect of gm 
variability as well as that of detuning. These data indicate a superiority 
of the inverse-feedback triples over either staggered triples or equal-Q 
double-tuned circuits of about 3/1 in gain stability and 3/2 in bandwidth 
stability. There are several comments that can be made about these 
results:

1. Because only one amplifier of each type was involved, no informa
tion was obtained on the effects of wiring-capacity variability; this 
variability is likely to be somewhat more serious in the inverse
feedback case, where the influence of grid-plate capacity is espe
cially important (see Sec. 6-6).

2. No account was taken of the tendency of tube capacities to run 
closely alike in a given production run. For this reason the results 
above are probably pessimistic.

3. The relatively poor showing of the equal-Q double-tuned circuits, 
namely, the conclusion that they are as critical as staggered 
triples, is hard to understand. This is especially dubious because 
staggered pairs are quite surely less critical than staggered triples; 
the conclusion would then have to be that staggered pairs are less 
critical than equal-Q double-tuned circuits.

4. For work with short pulses, there remains the important question, 
already mentioned, of the influence on pulse response of the tilts 
and asymmetries observed in the various pass bands, and hence of 
the significance of 3-db bandwidth.

7-11. Pretuned Coils. Tuning Adjustments in the Field.—It is the 
opinion of the author that a high-gain, high-frequency amplifier should be 
built in such a way that tuning the amplifier is impossible once it leaves 
the factory, even if synchronous single-tuned circuits are used; this 
applies whether the application is military or commercial, and a fortiori to 
circuits more complicated than single-tuned circuits.

The reasons are that

1. Adequate signal generators are usually not available.
2. Adequate skill is even less common. There is a great need, as 

stressed in Sec. 8-5, to make all connections really coaxial if 
high gain is used : suitable connectors are rare in the field, and 
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even rarer is the realization of how essential it is to use them. 
A measurement made with clip leads on a high-gain amplifier is 
often completely meaningless.1

3. Interstage tuning adjustments that are accessible in the field 
are a great temptation to maintenance men repairing equipment 
after a breakdown and are often tampered with and thrown 
completely out of adjustment, even though the likelihood of 
misalignment was negligibly small.

For these reasons it is felt that field tuning adjustments generally do 
more harm than good.2

Amplifiers in Which the Probability of Tube Replacement Is Small.— 
Amplifiers can be divided into two types: those in which the probability 
of tube replacement is small and those in which the probability is large. 
The first type has as its extreme those amplifiers employing baseless 
soldered-in tubes, such as Example 3 of Sec. 5-7. It also includes, how
ever, amplifiers of rather small life expectancy employing tubes with 
sockets.

For this type of amplifier it may be wise to adjust the coils in the 
factory to the particular tubes in use, and the possibility is presented 
of using quite complicated circuits, even though these are critical in 
adjustment. This method (see Example 3 in Sec. 5-7) almost certainly 
represents the future trend in high-performance amplifiers, of closely 
integrating the amplifier tubes and the amplifier networks (see p. 84).

Amplifiers in Which the Probability of Tube Replacement Is Large.— 
For such amplifiers, which make up a very large part of present designs, 
there are two subcases:

(a) coils tuned in the factory.
(/?) pretuned coils.

If, as is being assumed here, the probability of tube replacement is 
high, the only legitimate purpose of (a) is to accomodate variability 
in wiring capacities; it is incorrect to use (a) to accomodate for tube
capacity variability as well, for the reason that an amplifier tuned with 
a set of tubes having capacities off in one direction would be doubly 

1 The author recalls an attempt to carry out a simple measurement of cathode
bias voltage in a high-gain 60-Mc/sec amplifier. Attaching clip leads caused the 
amplifier to regenerate and led to the false conclusion that the tube was drawing 
excessive current. The precaution of removing the next tube from its socket was not 
obvious to the man making the measurement, who, although an intelligent and well- 
trained electrical engineer, was not accustomed to high-gain amplifiers.

2 The tunable amplifier of Example 3 of Sec. 411 was intended for use in . -ell- 
equipped operating locations of semilaboratory type.
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mistuned with a set of replacement tubes having capacities at the other 
extreme.1

But, as already pointed out, in a well-designed mechanical layout 
the component locations are accurately specified; hence the possibility 
of being able to accommodate wiring-capacity variability is not very 
important.

The advantages of (0), i.e., pretuned coils, are substantial:

1. Simpler and less expensive coils.
2. Elimination of the time consumed in tuning (but not checking) 

the amplifier.
3. Smaller coil size and hence reduced tendency to regeneration 

(because of the smaller magnetic field around the coils),
4. Reduced interstage capacity.2

The conclusion then is that tuning coils should be pretuned in ampli
fiers in which there is a fairly high probability of tube replacement. The 
design of such amplifiers should assure adequate performance with random 
selection of tubes (see Sec. 7 10).

Most of the amplifiers built at the Radiation Laboratory employed 
pretuned coils, with a certain concession to wiring capacity variability 
that proved valuable in production. A single stage, often the center- 
tuned stage of a staggered triple, was provided with a tuning adjustment. 
With a standard set of tubes inserted in the amplifier the tunable stage 
was adjusted to give a symmetrical pass band, after which the tuning 
adjustment screw was snipped off and a random set of tubes inserted. 
The single adjustment proved to be capable of accommodating the normal 
production variability in wiring capacities.

7-12. Comparison of Amplifier Types. Gain-bandwidth Product.— 
From Table 7-7, for example the entry under six stages, it is seen that, 
synchronous single-tuned amplifiers have substantially smaller gain
bandwidth products than do any of the other amplifier types. Flat- 
staggered pairs have somewhat smaller gain-bandwidth products than do 
transitionally coupled equal-Q double-tuned circuits, and flat-staggered 
triples have slightly larger gain-bandwidth products. Transitionally 
coupled one-side-loaded double-tuned circuits have an advantage of 
exactly y/2 over transitionally coupled equal-Q circuits, and stagger
damped circuits, in turn, surpass the one-side-loaded circuits.

1 Hence if coil tuning is done at all, it should be done with a set of “standard” 
tubes, that is, tubes having capacities approximately equal to the nominal JAN-1A 
values.

2 In an amplifier employing type 6AK5 tubes substitution of pretuned coils for 
tunable coils reduced the interstage capacity by 10 per cent and hence increased the 
gain-bandwidth factor by 10 per cent.
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Plate-grid resistive feedback amplifiers with single-tuned circuit 
terminations, i.e., the usual inverse-feedback bandpass amplifiers, 
are exactly equivalent in gain-bandwidth product to stagger-tuned 
amplifiers, except that the effective transconductance in the feedback 
amplifiers is slightly less than in stagger-tuned amplifiers.

In practice the gain-bandwidth advantage of transitionally coupled 
equal-Q double-tuned circuits over flat-staggered pairs is likely to be 
less than that indicated in Table 7-7, for the reason that interstage 
capacities are somewhat larger in the double-tuned case. Between 
6AK5 tubes, experience has shown an interstage capacity about 10 per 
cent larger when the larger coils of double-tuned circuits are used than 
with single-tuned circuits.

Selectivity.—Selectivity has two aspects: squareness of pass band 
near midband and attenuation of frequencies far from midband. With 
regard to the first consideration, amplifiers employing synchronous 
single-tuned circuits are very poor, amplifiers employing flat-staggered 
pairs, flat feedback pairs, or transitionally coupled double-tuned circuits 
are better, staggered or feedback triples are still better, and staggered 
or feedback quadruples or staggered-damped pairs even better, and so 
forth. The larger the value of n in selectivity curves of the form

1
-y/1 + x2“

the squarer is the top of the pass band, of course, but cascading stages 
having a given value of n produces negligible squaring-up of the relative 
pass band.

Remote frequency selectivity can be assessed by the ratio of 40- to 
3-db bandwidth, for example. For six-stage amplifiers this ratio is 
5.5 for synchronous single-tuned stages, 3.0 for flat pairs, 2.5 for flat 
triples, 2.35 for transitionally coupled double-tuned circuits, and 1.7 for 
stagger-damped pairs.

Overshoot.—Table 7-7 shows that synchronous single-tuned stages 
excel in having small overshoot; this is to be expected as a reflection 
of the general principle that the squarer the pass band the greater the 
overshoot.

An amplifier made up of transitionally coupled double-tuned circuits 
has greater overshoot than an amplifier of the same number of stages 
employing flat-staggered or inverse-feedback pairs. The reason is that 
the signal in the stagger-tuned or feedback amplifier encounters only 
half as many selectivity curves of the form 1/y/l + x4 as it does in the 
double-tuned amplifier.

Consider a two-stage amplifier. For a stage gain g the over-all 
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bandwidth of a flat-staggered pair is ffi, where 9® = q„J2mC. The stage 
bandwidth of a transitionally coupled equal-Q double-tuned circuit of 
stage gain g is ® y/2. Because there are two double-tuned circuits, the 
over-all bandwidth is less than ffl V2 and turns out to be 1.12®; that is, 
the transitionally coupled equal-Q double-tuned amplifier has a 12 per 
cent larger gain-bandwidth product than the flat-staggered pair. The 
superiority in gain/rise time ratio turns out, however, to be only 8 per 
cent. Moreover, the overshoot in the two-stage double-tuned amplifier 
is 6.25 per cent, as compared with 4.3 per cent for the staggered-pair 
amplifier. If, to put pulse comparisons on an equal basis, the staggered 
pair is overstaggered so as also to yield an overshoot of 6.25 per cent, it 
develops that the superiority in gain/rise time of the equal-Q double
tuned circuits over the staggered pair is only 1 per cent. Indeed if the 
requirements on an amplifier are that the over-all overshoot be held to less 
than about 4 per cent (depending on the number of stages), an equal-Q 
double-tuned amplifier is actually inferior to one using staggered pairs.1 
The conclusion is that when overshoot considerations are important, 
equal-Q double-tuned circuits should not be regarded as superior in 
gain rise time ratio to staggered pairs.2

Simplicity.—Undoubtedly the simplest amplifier is that employing 
synchronous single-tuned stages. The coils are simple and are identical 
in the various stages; tuning is easy; and there are no critical components.

Stagger-tuned and inverse-feedback amplifiers also require only 
simple tuning coils.

Inverse-feedback amplifiers have the' disadvantage of requiring 
special feedback resistors of extremely small end-to-end capacities, 
such as the IRC type MPM (see Example 2 in Sec. 6-8). Once these 
resistors are available, however, inverse-feedback amplifiers have the 
advantage over stagger-tuned amplifiers that the coils are alike from 
stage to stage.

Double-tuned transformers are considerably more complicated in 
construction than single-tuned coils and require accurate control of the 
spacer thickness that determines mutual inductance, as well as control 
of both primary and secondary inductances. The greater complexity of 
the tuning coils constitutes the only important objection to the use of 
double-tuned circuits in large-production amplifiers. Other objections 
are the greater size of the coils and the resulting larger capacity. The 
common objection of greater difficulty of alignment is spurious, inasmuch 
as the coils ought to be fixed-tuned in any case.

1 This is apart from the consideration mentioned above that interstage capacity 
is somewhat higher for double-tuned stages than it is for single-tuned stages.

2 Double-tuned circuits loaded on one side only are, however, superior in gain rise 
time ratio to staggered pairs, even for the same overshoot.
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Gain Control.—Inverse-feedback amplifiers have the disadvantage 
that it is not possible to control the gain of a stage around which inverse 
feedback is applied, for the reason that changing the gm of such a stage 
would also change its bandwidth. Hence gain control can be applied 
to only half the stages of feedback pairs, to one stage out of three of 
feedback triples, and to the first stage only of a general n-stage feedback 
chain. These restrictions are often bothersome, for example in radar 
receivers, where very wide-range gain control is needed. The difficulties 
are not too serious in the case of staggered pairs, however.

Stagger-tuned or double-tuned amplifiers can be gain controlled 
in any stage or combination of stages.

Gain Stability.—Circuits employing plate-to-grid resistive feedback 
(whether pairs, triples, or chains) display a certain gain stabilization 
factor against gm variations; this factor is always less than 2.

It must be pointed out that although this gain stabilization factor 
of about 2 is useful for some applications, it is of no great value for 
radar or television and is inadequate for use in measuring instruments, 
where gain stabilization factors of about 100 are desired.

Tuning Stability.-—This topic has been discussed in Sec. 7-10. In 
view of the fact that for amplifiers intended for large production the 
relative criticalness of tuning is one of the most significant points upon 
which to compare the different amplifier coupling schemes, it is most 
unfortunate that so few results are known. A few statements can be 
made, however.

It is known that synchronous single-tuned stages are extremely 
noncritical in tuning, that staggered pairs are less critical than staggered 
triples, that equal-Q double-tuned circuits are much less critical than 
double-tuned circuits loaded on one side only, and that stagger-damped 
circuits employing one-side-loaded double-tuned circuits are extremely 
critical.

Nothing at all is known about the relative criticalness of feedback 
pairs and feedback triples.

The Naval Research Laboratory tests cited in Sec. 7-10 showed a 
superiority in bandwidth stability of 3/2 of feedback triples over staggered 
triples.

It is a guess, therefore, that feedback triples and staggered pairs 
are about equal in tuning stability.

It is a guess that staggered triples are less critical than one-side-loaded 
double-tuned circuits.

Finally, it is a guess that despite the Naval Research Laboratory 
tests cited in Sec. 7-10, equal-Q double-tuned circuits are less critical 
than either staggered pairs or feedback triples, that is, are the least 
critical circuits next to synchronous single-tuned circuits.



CHAPTER 8

AMPLIFIER MEASUREMENT AND TESTING

By Yardley Beers and Eric Durand

The measurement and testing of the following amplifier character
istics are discussed in this chapter:

1. Gain.
2. Bandwidth and shape of pass band.1
3. Pulse response.
4. Overload characteristics.
5. Freedom from regeneration.

In connection with Item 5 this chapter contains a fairly extended 
treatment of means of eliminating regeneration.

Because of its extreme importance, an entire chapter (Chap. 14) is 
devoted to the measurement of the signal-to-noise performance of 
amplifiers

The emphasis in this chapter is on measuring instruments and tech
niques that are fairly new. Consequently there is no discussion of c-w 
generators.

84. Swept-frequency Signal Generators.—These are used primarily 
in amplifier alignment and determinations of pass band. In a typical 
setup, as shown in the block diagram of Fig. 8-1, the generator fre
quency is periodically swept across a band of frequencies at some a-f rate. 
The sweep waveform either may be a sawtooth, with a rapid “fly-back” 
to the starting frequency or may be smooth, sweeping up and then back 
in frequency. It is important that the amplitude of the signal from 
the generator be constant over the swept band. Simultaneously, 
a synchronized voltage sweep is applied to the horizontal plates of a 
cathode-ray oscilloscope. The sweep waveform must be such that a 
given horizontal position of the cathode-ray-tube spot corresponds 
uniquely to a single frequency, regardless of whether the sweep is from 
low to high or from high to low frequency. The relation between spot 
position and frequency should be as linear as possible. If the output

1 There is no discussion of phase-measuring techniques, principally because there 
was only occasional need in the work of the Radiation Laboratory to employ phase
correcting networks. For minimum-phase-shift networks, pulse response is deter
mined by the absolute value vs. frequency characteristic alone.
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voltage of the swept-frequency generator is applied to a circuit and 
the rectified output of that circuit is applied to the vertical plates of the 
oscilloscope, the spot traces out the amplitude-vs.-frequency curve of the

Fig. 8-1.—Block diagram of test setup using swept-frequency generator. The oscillo
scope should have a high-gain audio amplifier, and the chain of elements between the detec
tor and the cathode-ray-tube plates, including the audio amplifier, must have low-frequency 
response extending to well below the sweep rate.

Fig. 8-2.—Typical response curves observed with a swept-frequency signal generator, 

circuit, modified by the rectification law. Response curves so traced 
for typical amplifiers are shown in Fig. 8-2.

The frequency modulation may be generated electronically using 
a reactance tube or by varying the reflector voltage of a reflex velocity-
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modulated oscillator, or it may be generated mechanically by a device 
that alters either the inductance or the capacity of the oscillatory circuit.

Reactance-tube generators generally have only a small fractional 
frequency excursion.

Very wide-band frequency modulation together with great flexibility 
in choice of band center may be achieved by using a mechanically swept 
microwave oscillator and by mixing the output signal with that of 
another microwave oscillator separated in frequency from the first 
by a suitable amount. If more power is desired, a carefully designed 
wide-band amplifier operating at the beat frequency may be added.1

A second type of tunable swept-frequency generator that depends 
on the beat between a fixed and a modulated oscillator has been built 
commercially by RCA. Frequency modulation of a fixed-tuned oscillator 
is accomplished mechanically by using the voice coil of a dynamic 
speaker to drive a variable condenser; the other oscillator is tunable 
but unmodulated. Both oscillators operate in the region between 100 
and 200 Mc/sec.

A swept-frequency generator in wide use at the Radiation Laboratory 
depends on a motor-driven variable condenser, with a single oscillator 
operating in the desired frequency range. The frequency excursion 
is about ± i of the center frequency, and the center frequencies usually 
employed are 30, 60 and 100 Mc/sec.

Constancy of amplitude is maintained by means of an automatic 
gain control that adjusts the gm of the oscillator tube according to the 
output amplitude. This type of amplitude limitation results in an 
output signal that is relatively free of harmonics.

It is not satisfactory to obtain output-voltage constancy by use of 
an amplitude limiter. Such means lead to large harmonic content, 
and what is required of a swept-frequency generator is not merely 
constancy of the output voltage but constancy of the fundamental
frequency component of the output voltage.

A complete schematic diagram is shown in Fig. 8 3. The oscillator 
employs a twin-triode type 6J6, in a conventional push-pull Hartley 
circuit. Frequency modulation is accomplished by a special condenser 
whose rotor plates are driven at 1800 rpm by a synchronous motor. 
Outlines of the plates and the electrical connections are shown in Fig. 
8 3. Note that the two halves of the rotor are insulated from each 
other and from ground. The unit consists essentially of two condensers 
in series, and the capacity used is that existing between the stator

•Harold Johnson, “A Wideband Frequency-modulated Alignment Oscillator,” 
RL Report No. 738, May 31, 1945. The maximum frequency excursion obtained is 
about 110 Mc/sec with amplitude variation of less than 1 db. The center frequency 
may be adjusted anywhere from zero to 400 Mc/sec.
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sections. Thus, when the stator plates are aligned with the rotor 
plates, the capacity is a minimum; when they are at 90°, it is a maximum. 
A complete capacity cycle occurs twice per shaft revolution, so that 
the period is 60 ops. For each revolution of the shaft, the same value 
of capacity appears four times. It is important that the four angles 
involved be accurately complementary and supplementary, so that the 
four corresponding spots on the cathode-ray tube may be fused. A high 
degree of mechanical symmetry is therefore required.

For the automatic gain control, a signal from one of the 6J6 grids 
is applied to a diode rectifier. The resultant negative output is fed 
back through a cathode follower to determine the bias on the grids of 
the two sections of the oscillator. A single type 6AQ6 duplex diode
triode serves both functions.

When the circuit under test has appreciable response over the entire 
swept range, which is often the case when a single stage is being examined, 
it is hard to tell where the baseline, or position of zero response, lies 
(see Fig. 8-26). To overcome this difficulty, a baseline-marker circuit 
is arranged to turn off the oscillator during one of the four half-sweeps per 
shaft rotation. For this purpose a multivibrator employing a type 
6SN7 tube is used. The plate of the 6AQ6 cathode-follower gain
controlling tube is fed from one of the multivibrator plates, so that 
when that section is conducting, the oscillator grids are biased beyond 
cutoff, reducing the output power to zero. When the same section is 
nonconducting, however, the gain circuit functions normally. The free- 
running period of the multivibrator is about 30 cps, and the grid-return 
resistors are unequal so that one phase is about three times as long 
as the other. It is synchronized to the sweep frequency by a signal 
taken from the horizontal plate sweep.

Several marker devices may be used to indicate the relation between 
cathode-ray spot position and frequency. The simplest is called a 
“passive” or “absorption” marker and consists merely of a tunable 
high-Q circuit loosely coupled to the oscillator. This circuit absorbs 
some energy from the circuit at its resonant frequency and produces a 
small dip at the corresponding point on the trace. The scheme suffers 
from two drawbacks. First, it is hard to detect the dip when the output 
amplitude is low, notably in the determination of the “crossover fre
quency” of a discriminator; and second, if the limiter circuit in an f-m 
receiver is really effective, the dip will be wiped out. The effects on 
the oscilloscope of such a marker as well as of the two markers mentioned 
below are illustrated in Fig. 8-2.

The second device is the “active” marker, which is simply a low- 
powered tunable oscillator that beats with the swept-frequency oscilla
tor at the point at which the two frequencies are nearly equal. This 
point is also hard to detect when the output amplitude is low.
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The final device, used in the generator of Fig. 8-3, is the “blanking” 
marker. A small amount of energy is coupled from the oscillator into 
the high-Q tunable circuit connected to the right-hand grid of the 6SL7. 
This tube, being connected as an “infinite impedance,” or cathode 
detector, offers little loading, so that a considerable positive voltage is 
built up at the grid resonant frequency. As the oscillator frequency 
is swept past this point, therefore, a short positive pulse is generated. 
This pulse is applied to an amplifier consisting of the left half of the 
6SL7 to produce a large negative pulse that may be applied to the 
intensity grid of the cathode-ray tube to cause a momentary extinguishing 
of the beam. The sharpness of this blank spot can be increased by 
biasing the amplifier beyond cutoff so that only the tip of the pulse is 
effective. This type of marker produces a clear indication even when 
the response of the circuit is zero and is definitely superior to the other 
markers.

Since the capacity variation with angle is linear, the frequency 
variation is crowded at the high-frequency end of the sweep. This 
disadvantage may be offset by making the horizontal deflecting sweep 
slow at one end and fast at the other. To obtain such a sweep, sinu
soidal power is applied to a type 6SK7 pentode amplifier biased so that 
it is carried from a region of low gm to one of high gm by its grid signal. 
This distorts the input wave into the desired shape. A phase-shifting 
network with coarse and fine controls is provided so that the upsweep 
and downsweep in frequency can be made to coincide on the oscilloscope.

The power supply is self-explanatory. VR-tube regulation is used 
for the screen of the sweep-amplifier tube and for the negative supply 
for the automatic-gain-control circuit.

8-2. Direct and Carrier-frequency Pulse Generators.—Although 
many of the properties of amplifiers can be determined from measure
ments with c-w generators, their response to transients is best measured 
with pulsed signals.

A good pulse generator should have as short a rise and fall time as 
possible, and the regions at the top and after the end of the pulse should 
be fiat and free of “wiggles.” Carrier-frequency pulses should be free 
from frequency modulation during the pulse.

Secondary properties of good pulse generators are (1) independence 
of pulse output amplitude and shape from line voltage, pulse repetition 
frequency, and output loading; (2) good shielding; and (3) wide range 
of available pulse lengths.

If the pulses are initiated by a trigger from an external source, the 
starting time should be free of “jitter”; that is, the delay between the 
trigger pulse and the output pulse should be constant. In “.self-syn
chronized” pulse generators, on the other hand, there is normally a
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trigger source for initiating operations in external equipment; these 
triggers should start quickly and rise rapidly and also be free from 
jitter with respect to the output pulse.

A pulse generator designed and built at the Radiation Laboratory 
contains not only a pulsed carrier-frequency oscillator, usually at either 
30 or 60 Mc/sec, but also two direct-pulse generators that actuate the 
carrier-frequency section. All three sections contain the latest design 
principles and are thus illustrative of the current state of the art; the 
generator is described in detail.

Figure 8-4 is a block diagram of the generator, and Fig. 8-5 is a com
plete circuit diagram.

The generator is divided into four sections: (1) power supply, (2) 
short-direct-pulse generator, (3) long-direct-pulse generator, and (4) 
carrier-frequency pulse generator.

Power Supply.—The supply provides +400, +195, +105, and —150 
volts, all but the +400 volts being regulated with gas voltage-regulator 
tubes.

Short-direct-pulse Generator.—Operation of this circuit is as follows: 
A positive trigger applied to the trigger-shaper gas tetrode V\ causes it 
to fire. Because Ci prevents any sudden change in plate potential, 
the breakdown results in the appearance of a sharp positive trigger 
pulse at the cathode. This trigger is coupled, in a way that will be 
considered later, to the grids of the two gas tetrodes Vt and V5, which are 
the actual pulse generators. Before the appearance of the initiating 
trigger pulse, these tubes are nonconducting because of the bias voltages 
on their grids. The cathode of Vt and the plate of V$ are held at ground 
potential by R2s, while R33 and R23 hold the plate of Vi at about +250 
volts.

When Vf fires, its cathode potential rises abruptly, causing the start 
of the output pulse and simultaneously providing plate voltage for Vs.

Simultaneously, the pulse from the Vi cathode is applied through 
Rn to the control grid of 1+ The rise of voltage on this grid is expo
nential, because of Rn, the shunt capacity C+, and the grid-to-ground 
capacity of V3. The amount of bias on this grid is set by the “pulse 
length” adjustment Ris, so that the time at w+ich the grid voltage 
reaches the firing point may be varied. There is thus an adjustable 
delay between the firing of Vi and that of V3.

The firing of V5 marks the end of the pulse, since it results in abruptly 
lowering the potential at the plate-cathode junction of V3 and V4 nearly 
to ground. An approximately rectangular positive pulse is thus gen
erated at this junction. Some of the details that are responsible for 
the speed of rise and the flatness of the top of the pulse will now be 
considered.
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The combination of Rn and the total stray capacity between the 
Vt control grid and ground results in a small delay between the firing 
of Ui and that of U4. This delay is large enough to ensure that when 
the delay in firing of Vs is set at its minimum value, Vs fires at least 
as soon as Vt. Therefore, the minimum pulse length that can be gen-

Fig. 8-4.—Block diagram of pulse generator.

erated is determined only by the breakdown time of V5 and the speed 
with which the plate voltage on Vs can rise.

The delay line Li provides a flat top for the pulse. Earlier pulse 
generators used a large capacity between the plate of and ground. 
The flatness of the top of the pulse was limited by the ability of this



Fig. 8*5.—Circuit diagram of pulse generator. S2 — A, B, and C are nominally 1-gang 11-position switch decks. S2 — D is nominally 
a 2-gang 5-position deck, but a sixth position is used as an off position. S2 is shown in position 3. Sz positions: (a) — long; (b) + long; 
(c) carrier-frequency long; (d) carrier-frequency short; (e) — short; (/) + short.

S
ec

. 8-2] 
D

IRECT AND CARRIER-FREQ
U

ENCY PU
LSE

 G
ENERATO

RS 
309



310 AMPLIFIER MEASUREMENT AND TESTING [Sec, 8-2

capacity to hold its charge. If the capacity was made large, it became 
difficult to replace the charge during the interval between pulses. The 
amplitude of the output signal was therefore a function of pulse repetition 
frequency. The delay line has a small total capacity to ground and 
can therefore be charged quickly to full potential. On the other hand, 
it sustains its voltage accurately for the time required for a signal to 
travel to the end of the line and back. In this pulse generator, the

R — Zg

Eb

5xl0'8sec 
Time

Fig. 8-7.—Shape of voltage rise at the 
Va, Vs junction, (a) Without compensat
ing condensers Cio and Cn; (b) compensating 
condensers set correctly; (c) compensating 
condensers too small. El is the voltage at 
which the grid oi Vi starts to draw current.

Fig. 8-6.—Equivalent circuit of delay line after firing of V4. Before the firing of Va, 
represented by the switch Sw, the voltage across C is zero and the voltage across C10 and 
C11 is the supply voltage Eb. When Sw is closed, the charge on Ci& and Cu is rapidly redis
tributed and shared by C.

line “length” is either i or 1 psec and therefore pulses as long as 1 or 
2 psec, respectively, can be generated. The flatness of the pulse top 
is determined mostly by the quality of the line, although the limiting 
action of the following amplifier Vj contributes appreciably.

The action of the delay line may be represented by a battery whose 
voltage is the voltage to which the line is charged in series with a resist
ance equal to the characteristic impedance of the line for a period equal 

to twice the length of the line 
after the firing of Vt. Figure 8-6 
shows the equivalent circuit for 
the short interval following the 
firing of Vi. The stray capacity 
existing between the Vt cathode 
and ground, shown as C, may be 
as much as 50 ppf because it in
cludes interelectrode capacities of 
VV3, and Vt. The voltage at 
the cathode therefore would rise 
along the curve (a) shown in Fig. 
8'7 with a time constant of about 
5 X 10~8 sec. When it reaches a 
value determined by the bias on 

the grid of V7, its rise ceases because of the diode action of the grid-cathode 
combination. If, however, a capacity C/o and Cn, shown in dotted 
lines in Fig. 8-6, is added between the Vi plate and ground when the 
switch »Su/W) is closed, the junction point A quickly reaches a voltage 
determined by the ratio of the capacity divider formed by C and CT,,
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Cn. By proper adjustment of Ch, this voltage may be made equal to 
the desired final pulse voltage. In this case, the rise time is limited 
only by the stray inductance in the leads associated with the condensers 
and may easily be made less than 2 X 10-9 sec. The rise obtained 
with such compensation is shown in Fig. 8-76.

The fall time of the pulse is short because it is determined by the 
very low effective internal resistance of Vs at the instant of firing or by 
residual lead inductances.

If the pulse amplitude at the Vt, Vs junction is so large that heavy 
current is drawn by the grid of V7, the current drain on the delay line 
results in a falling off of its voltage. Therefore, a bias adjustment R3a 
is installed as a “flatness set.’’

The output tube Ft is biased far beyond cutoff during the interpulse 
interval. Thus it provides a sharp termination for the pulse, free from 
“wiggles.” Positive and negative output pulses may be taken from its 
cathode and plate respectively.

Because of the extremely rapid rise and fall times required of the 
pulse generator in order that it can give the carrier-frequency pulse a 
good start (see below), the greatest care must be taken in the layout 
of the pulse-generator tubes and amplifier.

Long-direct-pulse Generator.—The heart of the long-pulse generator 
is a one-sided multivibrator, made up of the triode V2 and the pentode P# 
As far as the multivibrator action is concerned, V6 acts as a triode, its 
screen grid g2 serving as the plate. In the normal condition V2 is fully 
cut off by the bias supplied by a resistance network, whereas V6 is fully 
conducting. A positive pulse applied to the grid of V2 through a diode 
(V3, cathode and grid) causes V2 to conduct, and the resulting decrease 
of its plate potential, transmitted through Ct, Cs, or C3, cuts off the 
control grid of V s. Therefore, the voltage at the plate of V6 rises; this 
is the leading edge of the pulse.

Presently, at a time determined by R21 and the adjustable R22, the 
negative voltage at the control grid of Vs disappears, and V6 starts to 
conduct. The resultant decrease of the potential on the screen grid 
of V6, coupled through C<> and later, for direct current, through Rlt, cuts 
off V2 once more, restoring the original condition and terminating the 
pulse. Pulse length is adjusted by R22 and by the choice among C2, C3, 
and Ci.

The diode action provided by V3 is necessary to prevent the fall 
of voltage marking the end of the initiating trigger from restoring the 
multivibrator to its original condition. The connections shown at the 
plate of V3 have no significance; it was used as a convenient tie point.

Positive and negative output pulses are obtained from the cathode 
follower V21, and the, amplifier V36 respectively.
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Carrier-frequency Pulse Generator.—The oscillator proper Fs is of 
the “electron-coupled” type, normally inhibited from oscillation by the 
heavy damping of the cathode follower V9 connected across the tuned 
circuit. The carrier-frequency pulse is initiated by applying a large 
negative direct pulse from the short-direct-pulse generator to the control 
grid of the cathode follower. This pulse removes the damping and 
allows the oscillator to start. Because of the extremely rapid rise of 
the direct pulse, which occurs in a fraction of a carrier-frequency cycle, 
the standing current of the cathode follower in the inductance of the 
oscillatory circuit starts the oscillations.

Suppose for the moment that the oscillator tube were removed. 
After the direct pulse cuts off the current ic in the cathode follower, 
a damped oscillation exists in the LC-cireuit, whose amplitude starts 

exponentially at a rate depending 
on the circuit Q, as shown in Curve 
1 of Fig. 8-8. If the tube is rein
serted but with the oscillatory 
circuit adjusted for very weak feed
back, the falling off of amplitude 
is delayed, a “negative resistance” 
supplied by the tube offsetting part 
of the circuit losses (Curve 2). 
Increasing feedback prolongs the 
delay until a value is reached at 
which the amplitude remains con
stant, circuit losses being just offset 

by the tube (Curve 3). More feedback results in a rising amplitude of 
oscillation, the rise continuing until limited by nonlinear conditions in the 
tube such as grid current or change of g„ (Curve 4).

If the condition producing Curve 3 is met, the carrier-frequency 
pulse rises to it's full value in a fraction of a cycle and retains constant 
amplitude for the duration of the direct pulse. When the damping is 
restored, the oscillation dies out rapidly because of the severe loading 
(l/<7m) of the cathode-follower impedance.

The energy supplied to the LC-circuit bjr the tube is adjusted by 
R3S, which governs the screen-grid voltage. In order to make the voltage 
across the tuned circuit independent of frequency, a constant L/C ratio 
must be maintained. Therefore, both inductance and capacity must 
be suitably ganged and tuned together. To maintain a flat-topped 
pulse over the carrier-frequency band, compensation must be made for 
changes in circuit Q. A small bypass condenser across the cathode 
resistor Ri2 increases the amount of regenerative feedback at high 
frequencies. Because the oscillator tube always operates over a highly 
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linear portion of its characteristic, the output signal is exceptionally 
free of harmonics.

To ensure constant output, the supply voltage for the cathode fol
lower is regulated to +105 volts by the gas regulator Vi2. However, 
the average cathode-follower current is about 100 ma under low-duty- 
ratio conditions (short pulses or low repetition rate), whereas, at the 
maximum duty ratio of 90 per cent, the current is small. Under the 
heavy-current conditions, the Vff-tube might extinguish, since current 
intended for it is diverted to the cathode follower. A diode Vu is there
fore provided to allow the plate of the cathode follower to fall below 
+ 105 volts without extinguishing the VR-tube.

To provide the fast starting discussed above, the short-pulse generator 
is always used to initiate the oscillator action. The reason is that the 
rise time of the pulse from the long-pulse generator is about 10~7 sec, 
a time long compared with a quarter-cycle at 60 Mc/sec and hence far 
too long to give a clean start. By the time the short pulse is over, 
however, the long-pulse voltage will suffice to keep the cathode follower 
turned off. However, it is not desirable that the long-pulse rise time 
be too short lest, because of the grid-to-cathode capacity of Vg, a “wiggle” 
be imparted to the carrier-frequency oscillation. Also, again because 
of this capacity, the output impedance of the pulse generator would 
constitute a complex load on the LC-circuit, causing some frequency 
modulation and lowering its Q. Both of these effects are overcome by a 
small r-f choke in the line from the long-pulse generator.

The pulse selector switch Ss offers a choice of positive and negative, 
direct- and carrier-frequency pulses, both long and short. In addition 
to switching the output jacks to the appropriate points in the circuit, 
the switch interrupts the plate supply for the long-pulse generator in the 
short-pulse positions and also short-circuits the plate of the trigger 
shaper Vj of the short-pulse generator in the long-pulse positions. As 
was explained above, the short-pulse generator is left in operation to 
give a quick start when long carrier-frequency pulses are required. A 
second switch Si offers three ranges of pulse lengths in the long-pulse 
position.

The pulse generator gives satisfactory operation for duty ratios up 
to 90 per cent and pulse repetition frequencies up to about 2000 per 
second, the output being independent of repetition frequency up to this 
value. Operation at 4000 pulses per second results in a slight “sag” 
in the short-pulse output, which may be eliminated by readjustment of 
I?30.

8-3. Miscellaneous Testing Equipment.—The devices described in 
this section are modifications of well-known instruments adapted to 
particular uses.
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Vacuum-tube Voltmeters.—Such instruments, when intended for 
use at high frequencies, usually have the rectifying diode contained 
in a small probe at the end of a flexible cable. The input capacity of 
the probe is made up of the anode-cathode capacity of the diode and of 
stray capacitance. The British diode type CV58, which has extremely 
small anode-cathode capacity, makes possible a vacuum-tube voltmeter 
with an input capacity of about 0.6 ppi. Even this capacity is dis
turbing in bandpass amplifiers, but it can often be allowed for.

At high frequencies the vacuum-tube voltmeter output voltage 
changes because of series resonance between lead inductance and stray 
capacity. By mounting a type CV58 tube in a close-fitting brass shell 
used as one terminal of the probe, the other terminal being the anode 
lead of the type CV58 diode which projects about an eighth of an inch 
through the top of the bulb, it is possible to achieve accuracies of a 
few per cent up to several hundred megacycles per second and usable, 
although inaccurate, results up to 2000 Mc/sec.

“Synchroscopes.’’1—These are oscilloscopes intended for the observa
tion of short, periodic pulses. Special features are

1. Fast sweeps. The sweeps may occupy only a small part of the 
interpulse interval. For detailed observation of a microsecond 
pulse, the pulse may be spread over the entire cathode-ray-tube 
face.

2. Sweep-starting-time controls, to enable the operator to shift 
the starting time of the sweep with respect to that of the pulse 

■ under examination.
3. Extremely small time jitter.
4. High-fidelity pulse amplifiers. The amplifier of Fig. 2-38, having 

a rise time of 5% //sec, was designed for use in the model P5 syn
chroscope.

Attenuators.—For amplifier measurement, attenuators are usually 
matched to the impedance of a coaxial line, 50, 75, and 100 ohms being 
common values. Therefore, if a load equal to the attenuator iterative 
impedance Rn is attached to one end of the attenuator, the same imped
ance will be observed looking into the other end. Matched attenuators 
are, on principle, dissipative, since reflection is always a sign of a mis
match. If a matched attenuator has large attenuation, the impedance 
looking into the attenuator is approximately Ro, regardless of the imped
ance of the load at the other end. This fact is utilized to provide sources 
or loads of known impedance, the attenuator serving to isolate the 
circuit under test from the variable or unknown impedance of the primary 
source or the ultimate load.

1 Cathode Ray Tube Displays, Vol. 22, Chap. 7, Radiation Laboratory Series.
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The most important type of attenuator for amplifier testing is a 
calibrated device variable in steps and using small composition resistors 
in either x- or T-networks. A typical circuit is shown in Fig. 8-9. Table 
81 shows the values that should be used for various attenuations for an

Table 81.—Resistance Values for Attenuator Shown in Fig. 8-9

Attenuation, 
db

Ra Rb

Test data

Resistance 
P to Q

Resistance P or 
Q to ground

1 1305 8.7 8.7 657
2 654 17.5 17.2 330
3 438 26.6 25.7 227
5 267 45.6 42.1 144.5

10 144.0 106.7 78.0 91.9
20 91.7 361 123.2 76.8

iterative impedance of 75 ohms.
An attenuator of this type is reliable for frequencies from zero up 

to a limit determined by stray lead inductance and capacity. By using 
small composition resistors carefully mounted, satisfactory operation, 
with regard to accuracy of calibration and of match, may be obtained

Fig. 8-9.—A 75-ohm attenuator. The accuracy of any section may be determined with a 
bridge by measuring the resistances from P to Q and from P and Q to ground with the 
switch in the out position. The values that should be obtained are shown in Table 8-1 
together with the values of the individual resistors. For any other iterative impedance» 
multiply these values by the ratio of the new impedance to 75 ohms.

up to about 100 Mc/sec. One arrangement that works well in this 
region is shown in Fig. 8-10. The over-all attenuation of this unit is 
over 100 db. Careful shielding is required if the leakage power due to 
stray coupling is to be kept well below the desired power. Note that 
in the arrangement shown, all leads are very short and each section is 
fully shielded from the adjoining sections.

Wire-wound resistors cannot be used because of their inductance. 
Semiprecision composition resistors are invariably bulky and have 
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excessive capacity to ground. Allen-Bradley |-waU carbon resistors 
are therefore used and are selected for 2 per cent accuracy from a large 
lot, or else resistors measuring less than the desired value are “trimmed” 
to the correct value by filing out a notch through the insulating ease 
into the composition until the correct value is obtained, after which the 
notch is sealed with lacquer. In general, because of aging and tem
perature effects, it is not worth while to try to achieve an accuracy 
greater than 2 per cent.

In making bandwidth or noise measurements, it is often necessary 
to be able to change the strength of the input signal by exactly 3 db. 
For this purpose, a single-element attenuator of the type discussed 
above may be used. It is generally mounted in a small metal can 
provided with input and output cable fittings and is installed in the

Fig. 8-10.—A 75-ohm attenuator box.

line from the signal generator to the amplifier under test. Some of the 
swept-frequency signal generators have such attenuators built-in.

Dummy Input Circuits.—The output lead from most signal generators 
is a coaxial cable. It is necessary to provide the proper termination for 
this cable to ensure the correct functioning of the attenuator. On the 
other hand, correct functioning of an amplifier requires that the imped
ance of the test source be the same as the impedance Zi = Bi + jXi of 
the source used in actual operation.

Therefore, a “dummy input circuit” is used to couple the generator 
to the amplifier under test. As seen from the generator, the circuit 
impedance is Ro, the characteristic impedance of the cable; as seen 
from the amplifier it is Zi = Ri + jXi-

In microwave radar receivers the i-f amplifier signal source is a 
crystal mixer whose i-f impedance is made up of a resistance in parallel 
with a capacitance. The resistance ranges from 200 to 500 ohms, and the 
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capacitance ranges from 5 to 15 ppi for the mixer proper. If a cable 
is used to attach the mixer to the amplifier, it is almost always necessary 
to take the admittance-transforming properties of the cable into account 
(by means of an admittance circle diagram, for example), rather than 
to regard the cable as a lumped capacity. This is the case even for a 
cable as short as 12 in. at 30 Mc/sec or 6 in. at 60 Mc/sec.

Sometimes the mixer is left in place, and the signal is introduced 
through a “dummy crystal.” Figure 8-11 shows the usual arrangement. 
The impedance seen looking into the input terminals of the amplifier 
is usually relatively high. The impedance seen from the cable looking 
into the dummy crystal is therefore only slightly less than the value of the 
shunt resistance Ra. In practice, Rz is set equal to Rt>, providing the 
correct termination for the cable, and hence for the attenuator. Looking 
back into the dummy crystal from the amplifier, one sees Ri in series 
with Ro/2, since the cable itself, being terminated by Rt> at the generator 

To attenuator
~ <Rn>

— Cable shield braid

Fig. 811.—Dummy-crystal diagram showing approximate physical layout.

or attenuator end, looks like Ro- The value of Ri is therefore chosen 
so that Ri + (Ro/2) — Ri.

When a dummy crystal is used, no provision for capacitance need be 
made, because the mixer itself supplies the right amount. At times, 
however, it is preferable to remove the mixer and replace it with a 
complete “dummy mixer.” The circuit used is the same as before, 
but a variable condenser Ci is added from the output end of R, to ground 
to simulate the mixer capacity. The dummy mixer is generally mounted 
in a small metal can. If the amplifier to be tested includes a cable for 
the mixer, a suitable cable fitting is mounted directly on the can. If 
the amplifier is provided with a jack, a short cable may be included 
as part of the dummy mixer. In either case, the condenser is adjusted 
to present the same capacity that would be seen at the point of attach
ment with the regular mixer in place.

Dummy mixers have been built in which various values of IL can 
be selected by means of a switch. In addition to providing values 
ranging from 200 to 500 ohms, 0 and 5000 ohms are provided to facilitate 
the study of the effect of variation of crystal impedance on amplifier
bandwidth and noise-figure performance. The former serves to damp 
out the selective effect of the input circuit in order that effects in later 
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circuits may be studied; the latter essentially provides a constant-current 
source useful for special applications.

Attempts have been made to develop signal generators with push
pull output connections for testing the balanced input circuits used 
with balanced mixers. It is not difficult to obtain equal output voltages 
at the generator, but it is very difficult to provide matched pairs of 
attenuators that will give equal output voltages at low level. It has 
been found, fortunately, that all necessary information can be obtained 
from tests using a single-ended output signal introduced, by means of a 
dummy crystal, first into one and then into the other crystal holder, 
the unused holder being supplied with a second dummy crystal con
taining a resistor of value Ri, one end of which is grounded. The output 
voltage that would be obtained with a push-pull input source is 6 db 
more than the average of the two output voltages obtained in the above

Pi

To attenuator

P/

Fig. 812.—Double dummy mixer for unbalance tests on balanced input amplifiers.

manner (if it is assumed that the push-pull input circuit is fairly well 
balanced). Unbalance in push-pull input circuits may be readily 
measured by feeding equal in-phase signals into both input terminals. 
A special dummy-crystal pair may be constructed for this purpose, 
using the connections shown in Fig. 8-12. With such a device, the 
output response of a perfectly symmetrical circuit is zero, and the ratio 
of response to in-phase signals to response to push-pull signals is a 
measure of the unbalance.

Special problems arise in the use of a noise-diode signal generator for 
the measurement of signal-to-noise ratio. These are considered in 
Sec. 14-5.

8-4. Measurement and Alignment of Bandpass Amplifiers.—It is 
possible to make bandpass and alignment tests by using a modulated 
or unmodulated c-w signal generator, making a series of point-by-point 
measurements, but the process is tedious. The swept-frequency genera
tor technique discussed in Sec. 8-1 is far superior, in that it enables the 
operator to see at a glance the entire shape of the pass band. It also 
permits quick observation, from peaks and dips in the shape of th? 
selectivity curve, of incipient regeneration in the amplifier.
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On the other hand, the point-by-point c-w generator method must 
be used if there is a need, as sometimes arises, for accurate measure
ments of response more than 20 db down on a selectivity curve.

The basic arrangement of the equipment involved in the swept- 
frequency-generator technique has already been shown in Fig. 81. 
This section is concerned with the means whereby signals are introduced 
into and taken out of the amplifier under test and the interpretation 
of the observations.

Connections to the Amplifier.—The proper way of making connections 
to an amplifier under test is of very great importance. It is very common 
with high-gain amplifiers that poor connections to measuring apparatus 
introduce more regeneration than there is in the amplifier itself.

The only safe way of dealing with high-gain amplifiers is to have 
all signal connections, to both input and output terminals, rigorously 
coaxial. Furthermore, it is wise whenever possible to incorporate 
some attenuation between generator and amplifier and between amplifier 
and measuring device; this has the effect of reducing the gain in the feed
back loop from the amplifier output circuits, through the coupling 
between measuring device and generator, back to the input circuits.

These precautions may be relaxed somewhat in the case of measure
ments involving but one or two amplifier stages, where it may be per
missible to connect a generator by very short leads. In the long run 
it is much wiser, however, to spend some time constructing an adequate 
collection of coaxial fittings, adapters, and attenuators than to carry 
out the meaningless and variable measurements resulting from hasty 
connections of input and output leads by means of clips.

Input Connections.—The method of introducing the signal so as to 
include the effects of the coupling circuit into the first amplifier tube 
has already been covered in the discussion of dummy input circuits 
(Sec. 8-3). To study subsequent circuits the signal is applied to the 
grid of one of the amplifier tubes. A 75- or 100-ohm cable from the 
attenuator is terminated with a suitable resistance; and if only one or 
two stages are involved, very short leads are run from the center con
ductor to the grid in question and the outer conductor is soldered to 
the amplifier chassis. For measurements involving more than two 
stages a special probe or dummy tube is built; this probe is plugged 
into the preceding tube socket and enables measurements to be made 
with the amplifier chassis cover in place.

The impedance looking toward the signal generator is either 37.5 
or 50 ohms, since the terminating resistor is in parallel with the cable 
impedance. This low resistance broadens the pass band of the coupling 
circuit at the point of signal introduction so that the observation refers 
only to the subsequent circuits.
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Figure 8-13 shows the tube and circuit line-up for a typical amplifier. 
The significant pins on the various tube sockets are designated by the 
letters P, G, K, for plate, grid, cathode respectively. The tubes and 
circuits are lettered, and reference is made by these letters in the following 
discussion.

Fig. 8-13.—Tube and circuit line-up in an amplifier. The cathode-circuit impedance 
Ze is a short circuit at the intermediate frequency and is equal to the bias resistance (50 to 
200 ohms) at pulse and lower frequencies.

Output Connections.—Suppose that Circuit B is to be examined. 
The signal generator is attached either to GB or Pa, as discussed above. 
Three types of output connections are possible.

1. High-impedance Vacuum-tube Voltmeter.—A high-impedance vac
uum-tube detector may be attached to Gc to measure the alter
nating voltage at this point. Such a detector must be designed 
to provide negligible loading and detuning. The British type 
CV58 has been used in probe circuits with an effective capacity 
of about 0.6 ppi, but even this small value causes considerable 
detuning because of the small total tuning capacity in the average 
coupling circuit (about 10 or 11 ppi between type 6AK5 tubes). 
Most probes show capacities of 4 ppi or more. This method is 
seldom used.

2. Low-impedance Voltmeter.—Vacuum tubes or crystal rectifiers 
are used, but in either case the rectifier input terminals are shunted 
with a low resistance. For instance, in the crystal-rectifier type 
the shunt resistor may be 70 or 100 ohms, which provides correct 
termination for a coaxial cable. The rectifier may then be located 
at a point distant from the amplifier and is usually located close 
to the output indicator, which is generally an oscilloscope with 
a high-gain audio amplifier.
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The point of attachment for the measurement of Circuit B 
is Pc or Go (for single-tuned circuits), in contrast with the case of 
the high-impedance vacuum-tube voltmeter. The low impedance 
voltmeter so broadens Circuit C that it has negligible effect 
on the observed selectivity curve.

This method suffers from the presence of “Miller effect" capac
ity at the input of Tube C. On the average, for type 6AK5 tubes, 
a total capacity Cpg exists from plate to grid, including socket 
and wiring capacities, of about 0.04 to 0.06 ppf. Because of the 
Miller effect, there is an apparent input capacity of (g + IK/,, 
where g is the stage amplification. In the functioning amplifier, g 
may be about 5 or 10, so that (g + 1)CM ranges between 0.24 
and 0.66 ppf. But with the low-impedance-voltmeter probe in 
place, the stage gain is less than unity, causing a proportional 
reduction in the input capacity of Tube C and a consequent 
increase in the resonant frequency of the coupling circuit B. 
The detuning effect may amount to a megacycle per second at 30 
Mc/sec or more and makes it difficult to determine interstage 
resonant frequency accurately.

3. Self-rectification Connection.—With moderately large signals applied 
to the grid of a bandpass amplifier tube, the grid excursion carries 
over into nonlinear regions and the average cathode current 
increases slightly. The increase in cathode current is therefore 
a measure of the signal amplitude; the tube is, in fact, acting 
as an “infinite impedance” detector. Within limits, the detector 
response so obtained is square law, the cathode-bias resistor 
having too small a value to linearize the response by inverse 
feedback.

To make the observation, a lead is connected from the cathode 
(Kc in the case in question) of the amplifier tube to the oscilloscope 
amplifier input terminal, through a low-pass filter consisting of a 
series 10,000-ohm resistor and a 1000-gMf condenser to ground. 
The output voltage is developed across Zc, which at these low 
frequencies is resistive. Tube C is, of course, left in its socket. 
This method causes no detuning, either from vacuum-tube
voltmeter probe capacity, as in the first method, or from changing 
Miller-effect capacity, as in the second. The output voltage is 
fairly low, however, so that the gain of the audio amplifier must 
be high. The only serious drawback is that the connection can 
be made only with the chassis cover removed. This is not a 
serious drawback, since it is primarily used for accurate tests 
involving a single stage, when regenerative feedback is likely 
to be small.
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Bandwidth and Bandpass Shape.—In measuring bandwidth it is 
convenient to observe the value of the output signal with a certain 
input power and then to double the input power by switching out a 
3-db attenuator and to observe the frequencies at which the output signal 
has the same strength as before. This method of relying on a constant 
output indication makes it unnecessary to know the output or input 
law of the indicating device.

Bandpass Amplifier Alignment.—In the next few paragraphs tech
niques are discussed for accurate alignment of amplifiers intended for 
laboratory use or as prototypes for production. The adjustments 
usually consist in selecting suitable values of fixed damping resistors 
and suitable values of fixed tuning inductances. The production 
amplifiers are very likely to be fixed-tuned, so that there may be no 
alignment operation involved in production; however, for both prototype 
and production amplifiers an over-all check on pass band is recom
mended, as described below.

Synchronous Single-tuned Amplifiers.—The pass band of individual 
stages may be examined as described earlier in Sec. 8-4, making use of 
the “self-rectification connection” of one of the amplifier tubes as the 
indicating device. Once the individual stages have been given the 
correct values of damping resistors, the easiest method for aligning a 
tunable synchronous-tuned amplifier is to use an unmodulated c-w 
generator set to the desired center frequency and to peak each stage 
for maximum response, as indicated by the detector output current or 
voltage.

Stagger-tuned Amplifiers.—The individual stage bandwidths and 
center frequencies are examined in the same manner employed for 
synchronous-tuned amplifiers. Once the stages have been given the 
correct values of damping resistors, the easiest method for aligning a 
tunable stagger-tuned amplifier is to use an unmodulated c-w generator 
and peak each stage for maximum response with the generator set at 
the frequency appropriate to that stage. The sharpness of peaking may 
be increased by applying the detector output voltage to a high-gain 
indicating device and “bucking-out” most of the deflection.

Double-tuned Amplifiers.—The adjustment of an individual circuit 
is best done as follows, with a swept-frequency signal generator con
nected to the grid of the tube preceding the circuit in question and the 
output indication taken from the cathode of the tube following the 
circuit. First the primary is very heavily loaded, with a resistor less 
than a fifth of that normally in place; this makes the pass band single
tuned, and the secondary inductance is adjusted to the appropriate 
frequency. The primary loading is then restored to its former value; 
the secondary heavily loaded; and the primary adjusted to its appropriate 
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frequency. It should be remembered that if the bandwidth/band 
center ratio of the double-tuned circuit is high, the primary and secondary 
frequencies so determined do not coincide with the desired band center 
(see Sec. 5-5). After the initial loadings are restored on both primary and 
secondary, the coupling is adjusted to give the desired bandpass shape. 
If the bandwidth is not correct, the loading resistor or resistors must be 
changed and the process repeated. When the original double-tuned 
circuit is designed with care, this process converges rapidly.

Inverse-feedback Amplifiers.—Inverse-feedback chains can be aligned 
by applying an unmodulated signal to the grid of the last tube in the 
chain and peaking the output circuit of this tube for maximum detector 
deflection. The signal generator is moved back to the grid of the next 
to last stage, and the next to last stage is peaked. This process is 
continued until all the stages in the chain have been aligned.

The Complete Amplifier.—After alignment in the case of adjustable 
amplifiers or construction in the case of amplifiers with pretuned coils, 
the amplifier-bandpass shape should be examined to see that the band
width, bandpass shape, and center frequency fall within allowable 
limits. In this test a swept-frequency generator is used, the signal 
being introduced through a dummy input circuit (Sec. 8 3) and the 
output signal taken from the amplifier detector. The observation that 
is made at this time to detect regeneration will be considered separately 
in the next section.

8-5. Undesired Feedback Effects (Regeneration) in Bandpass Ampli
fiers.—A common difficulty with high-gain amplifiers is regeneration, in 
which energy is transmitted from a point at high gain back to one of low 
gain. A single stage, a group of consecutive stages, or an entire amplifier 
may be involved.

Indications of Regeneration.—Very strong regeneration is evident 
through oscillation. Moderate regeneration is apparent through varia
tions in output voltage with changes in the location of external ground 
connections or when the external power supply leads are touched by hand 
or connected to ground through a large condenser.

The most convenient indication of regeneration is the change of 
pass band with variations in gain-control setting or with variations in 
plate-supply voltage; this change can be observed very easily by use 
of a swept-frequency signal generator.

The phase and amplitude of the fed-back voltage depends upon the 
forward gain and the properties of the feedback parameters. Since 
all these depend upon frequency, the net gain is increased at some fre
quencies and decreased at others. Therefore the presence of feedback 
causes a frequency-dependent distortion of the pass band. Unfortu
nately, a certain amount of feedback is inevitable, due to Miller effect 
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and cathode-lead inductance, but in the following discussion these effects 
will be assumed to be small. Moreover, if the control-grid voltage is 
varied, the input capacity changes also and to a larger extent than with 
changes in plate-supply voltage; this change causes a certain amount of 
detuning. For this last reason, varying gain by changing control-grid 
voltage is not so reliable a method of testing for change of pass band 
due to regeneration as varying gain by changing plate-supply voltage. 
In changing the plate-supply voltage, however, a precaution must be 
taken against change of pass band because of overload; it must be 
remembered that the amplifier is more likely to be overloaded with low 
plate voltage than with high plate voltage.

Just how much change of pass band can reasonably be ascribed to 
some of these unavoidable effects (Miller-effect detuning, change in 
input capacity, etc.) and how much must be ascribed to regeneration is 
difficult to specify. However, it is safe to say that a change in 3-db 
bandwidth of more than 10 or 20 per cent (which may be either an 
increase or decrease) or the appearance of subsidiary maxima and minima 
in the pass band is an indication of regeneration.

Causes of Regeneration.—In wide-band high-gain multistage amplifiers 
there are several types of feedback that can cause regeneration: improper 
shielding of input from output leads; improper decoupling of heater, 
plate-supply, and gain-control circuits; “waveguide” effect; and parasitic 
oscillations. It is often difficult to determine which of these is the cause 
of regeneration because all show some of the same symptoms. For 
example, the presence of “hot” plate-supply leads is not necessarily 
due to improper decoupling in those leads but may be due to other 
types of regeneration. Thus the search for the cause and cure of regen
eration is largely a trial-and-error process. Nevertheless there are a 
few helpful remarks that can be made.

The location of components involved in a feedback path can often 
be determined by exploring the amplifier chassis with a probe connected 
to a high-gain amplifier of the same frequency; a sharp increase, in output 
deflection from one heater terminal to another, for example, is cause for 
suspicion.

Coupling between Input and Output Leads.—The cause and cure of 
regeneration due to insufficient shielding of the input and output leads 
is more or less obvious. One of the most frequent instances is that 
in which the input lead is connected through a coaxial cable having its 
outer conductor improperly grounded. To avoid difficulties the outer 
conductor should be rolled back in a radially symmetrical way and 
soldered to the chassis immediately at the point of entry.

In general, regeneration caused by coupling between input and output 
leads can be prevented by the use of adequate shielding at either the 
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input or output leads, but it is much more desirable to place the shield
ing on the input lead because that reduces the pickup of extraneous 
signals, noise from rotating electrical machinery, and so forth, as well 
as reducing regeneration.

Heater Circuits.—Regeneration due to improper decoupling in the 
heater circuit can be detected by observing the pass band with a swept- 
frequency signal generator and momentarily disconnecting the heaters 
of one or more tubes from the heater-supply voltage. There should 
be no discontinuous change in bandpass shape at the instant the dis
connection is made—only the continuous change that is due to the 
cooling down of the tubes. The cure can be effected by improving the 
heater decoupling.

“Waveguide" Feedback.—Waveguide type of feedback is due to the 
electromagnetic field set up by one of the interstage-coupling coils in a 
stage at the high-gain end of the amplifier and propagated down the 
amplifier box, which acts as a waveguide “beyond cutoff,” to a coil 
located in one of the earlier stages. Its presence can be detected by 
connecting a wire or placing a post or metal block so that it makes 
electrical contact with opposite sides of the chassis and noting whether 
or not the symptoms of regeneration are reduced in magnitude. There 
are many possible modes, of which one is transmitted through the 
amplifier box at a loss of about 30 db for a length of the box equal to 
its width. Hence if the amplifier were 2 in. wide, there would be only 
15 db/in. of attenuation, and a 105-db amplifier 7 in. long would be 
extremely risky. The prevention of this type of feedback is mainly 
in the design, namely, to mount the amplifier in a chassis as long and 
as narrow as possible. Further prevention can be effected by placing 
posts or baffles in the chassis at various points selected by experiment. 
These should make good electrical contact to both the top and bottom 
of the chassis.

It should be pointed out that if the frequency and gain per stage 
are both very large, the amplifier may be unstable because of grid
plate feedback. Also there is a limit to the gain per stage that can be 
obtained because of waveguide feedback, since the tube-socket diameter 
sets a practical lower boundary to chassis width. If either of these 
limitations is being exceeded, then it will be necessary to redesign the 
amplifier to employ more stages so as to obtain the desired total gain 
without excessive gain per stage. If a narrow over-all bandwidth is 
desired under these circumstances, it will be necessary to add capacity 
to one or more of the interstage-coupling networks.

If none of the previous procedures uncovers the cause of regeneration, 
the cause can usually be ascribed to improper decoupling of the plate
supply or gain-control leads or to parasitic oscillations.
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Decoupling Circuits.—The crucial component in plate-supply, gain
control, and heater leads and cathode bypass circuits is the bypass 
capacitor.

At low frequencies the inductance in the leads of a bypass capacitor 
may be neglected, but at 30 or 60 Mc/sec or higher the lead inductance 
is very important. The inductive reactance of 1 in. of No. 20 wire is 
4 ohms at 30 Mc/sec and 8 ohms at 60 Mc/sec.

If at all possible, it is very wise to make use of the inductance of the 
bypass capacitor leads to achieve series-resonant bypasses. For a 
2000-mmî bypass capacitor at 60 Mc/sec (see Fig. 6-20) a |-in. lead is 
necessary.

If the capacitor Q is infinite, the impedance to ground at 60 Mc/sec 
is 0 ohm; if the Q is only 5, the impedance at 60 Mc/sec is only 0.25 ohm. 
At frequencies off resonance the effect of a finite Q is even less important. 
Thus at either 50 or 72 Mc/sec the impedance is about 0.5 ohm for 
Q = co and 10 per cent higher for Q = 5. Therefore, there is no advan
tage in high-Q bypass capacitors; as a matter of fact, there is considerable 
advantage in low-Q bypass capacitors, in order to reduce the likelihood 
of parasitic oscillations (see below).

There is considerable point, however, in having a high C/L ratio. 
If a 500-mmî bypass capacitor is series-resonated at 60 Mc/sec, the range 
over which its impedance is less than about 0.5 ohm extends from 57 
to 63 Mc/sec; for a series-resonant 2000-gf capacitor the corresponding 
range is 50 to 72 Mc/sec. In the latter case, variability of as much as 
+ 20 per cent in either capacity or lead length still results in extremely 
effective bypassing.

Parasitics.—Parasitic oscillations are well known to workers with 
power amplifiers and oscillators. They are oscillations that occur at 
frequencies lying outside the normal pass band of the amplifier.

Three methods are useful in locating parasitic oscillations. In the 
first method, use is made of an absorption wavemeter, a grid-dip meter, 
or other high-Q circuit that may be tuned over the band of frequencies 
in which the oscillation is expected to be. The amplifier pass band is 
presented on the face of a cathode-ray tube, using the usual swept- 
frequency-generator technique, and the wavemeter is tuned over its 
band while held close to the components of one of the stages of the 
amplifier. When the oscillation is located both in frequency and in 
position within the amplifier, a distinct change will be noted in the 
shape of the pass band or in the grid-dip meter deflection.

Another method is to listen for the parasitic oscillations with a 
variable-frequency communications receiver.

The third method is to observe the value of the current in the plate
supply lead as the plate voltage is raised from a low value. There will 
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be observed a discontinuous change in current as the voltage at which 
the oscillations start is reached.

In some cases, the effects of parasitics show up directly on the cathode
ray tube in the swept-frequency-generator test. The feedback coupling 
may not be adequate for self-sustained parasitic oscillations in the 
quiescent amplifier; but when a signal is applied to the input terminals, 
the grids of the various tubes are swung in the positive direction at the 
crest of each cycle of signal frequency. This swing causes a momentary 
increase in tube gm that may result in the inception of parasitic oscillations, 
and these oscillations will last until the positive swing has disappeared. 
This effect shows up as a fuzzy, diffuse region on the cathode-ray-tube 
face at sUch frequencies as cause the effect.

A low-frequency parasitic (“motorboating”) is generally due to an 
unfortunate combination of the values of the components in the decou
pling networks associated with the input and output circuits of an amplifier 
and can be cured by changing the values of these components or by 
introducing damping into these networks. High-frequency parasitic 
oscillations can be cured by changing the location and length of leads. 
High-frequency parasitics (500 to 600 Mc/sec) observed in some ampli
fiers built in the Radiation Laboratory were cured by connecting 10-ohm 
composition resistors between the screen-grid socket terminals and the 
plate-supply bypass condensers.

8-6. Pulse Response.—The pulse response of amplifiers is best 
checked directly by use of pulsed signal generators. The types of 
input and output connections used are the same as for c-w measurements 
and have been covered in Sec. 8-4. Suitable pulsed signal generators 
and the synchroscopes used for observation of the output signal have 
been discussed in Secs. 8-2 and 8-3. This section is concerned with a 
discussion of the types of tests that are made and the interpretation of 
the observations. It is assumed that the shape of the output pulse from 
the signal generator is essentially perfect and that the speed and flatness 
of top of the measuring equipment substantially exceeds that of the 
amplifier under test.

The amplifier under test may be of either the low-pass or bandpass 
type; direct pulses are used in the first case and carrier-frequency pulses 
in the second.

In general, it is necessary to reproduce signals of two types: short 
single pulses separated by long intervals during which no signals appear 
and long single pulses separated by either long or short intervals. In 
the latter case, one is concerned with the duty ratio, which is the fraction 
of the time during which signals are present.

Single Short Pulses.—In making tests with short recurrent pulses, 
the following points may be observed: (1) the distortion in pulse shape 
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due to its transmission through the amplifier, (2) the effect of input 
signal amplitude on the output-pulse shape and amplitude, and (3) 
the aftereffects of a pulse strong enough to cause amplifier overloading.

The main discussion of pulse response was contained in Chaps. 2 
and 7. Pulse distortion due to certain specific causes is illustrated in 
Fig. 8-14. For carrier-frequency pulses the absolute values of the 
shapes shown in Fig. 8-14 are to be regarded as those of the carrier
frequency envelopes (see Fig. 7-1). If the pulse shows excessive rise 
and fall times (Fig. 8-146), the amplifier over-all bandwidth is inadequate; 
the narrowing may be either in the bandpass or the low-pass stages or 
both. If the rise time is short and the fall time long (Fig. 8-14c), the 
trouble is due to a “polarized time constant.” Such an effect is pro
duced, for example, when a capacity is charged from a low-impedance
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Fig. 814.—Effects of amplifier characteristics on output-pulse shape.

source through a diode that conducts during the leading edge of the 
pulse, whereas the diode no longer conducts during the trailing edge of 
the pulse; therefore the capacity discharges slowly through a high 
resistance. Another situation that gives rise to the same effect occurs 
with large pulses transmitted through a cathode follower, as described 
in Chap. 2; the positive-going edge is faster than the negative-going 
edge. In some applications such a “polarized time constant,” or “pulse 
stretcher,” is deliberately introduced, but generally it is to be avoided.

Overshoot and ringing (Fig. 8-14d) occur if the pass band of a band
pass amplifier has too square a shape. Similar effects may occur from 
a dip in the center, due to regeneration (see Sec. 8-5) or to overcoupling 
the transformers in amplifiers using double-tuned coupling circuits or to 
overstaggering the off-frequency stages in a stagger-tuned amplifier 
(see Sec. 7-6).

In a low-pass amplifier, overshoot is generally due to overpeaking. 
Readjustment of the values of peaking inductances is the general cure.
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Fig. 8'15. — Response of 
bandpass amplifier to pulse of 
substantially detuned carrier 
frequency.

If'both types of amplifier stages are included in the amplifier under 
test, separate observations should be made on the bandpass and low- 
pass sections to locate the cause of the trouble.

Another cause of a pulse shape similar to that shown in Fig. 8-14d 
is an improperly terminated transmission line, the “wiggles” being due 
to reflections; a place in which this trouble frequently occurs is in the 
line connecting the synchroscope to the amplifier under test.

The problem of flatness of top does not ordinarily exist for single 
short pulses.

Single Long Pulses.—A frequently observed effect with long pulses 
is illustrated in Fig. 8-14e. The downward slope of the top of the pulse 
and the depression of the baseline after the end of the pulse is generally 
due to lack of d-c transmission in the pulse 
amplifier. It can also be produced by poor 
power-supply regulation when tubes are 
operated beyond their linear regions with a 
large duty ratio; this latter effect can easily 
be detected by connecting the synchroscope 
to the power-supply leads. A large group of 
strong short pulses causes a similar depres
sion of the baseline. This effect is very 
undesirable, because it results in a loss of 
sensitivity to weak signals for a period after the completion of the long 
pulse or the group of short strong pulses.

Figure 814/ shows the effects of overcompensating for flat top (see 
Sec. 23).

An important advantage of bandpass amplifiers over video amplifiers is 
that apart from overload effects leading to a loss in gain, the envelope of a 
carrier-frequency pulse can never display the lack of flat top shown in 
Fig. 814e. The reason is that bandpass amplifiers do actually transmit 
the carrier-frequency component, whereas video amplifiers (unless direct 
coupled) do not transmit the zero frequency component.

Pulses of a carrier frequency substantially different from the center 
frequency of a bandpass amplifier are reproduced as shown in Fig. 8-15, 
the flat portion indicating the steady-state transmission of the pulse 
frequency. Figure 815 shows the envelope of the response.

8-7. Overload and “Blackout” Effects.—Amplifiers used with pulses 
sometimes show a number of undesirable overload effects.

The amplifier may show a loss of sensitivity after a very strong 
pulse of short duration, frequently indicated by the reduction in the 
noise output voltage. In some cases the recovery of sensitivity may 
require a time that is long compared with the interval between pulses, 
in which case the amplifier is “blocked.” The most frequent cause of 
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this effect is the flow of grid current, which causes a charge to be collected 
upon a grid coupling condenser. If there is a large time constant asso
ciated with the grid circuit, this charge requires a long time to leak 
away, during which time the gain is reduced (see Chap. 3). The cure 
is obviously (1) if possible, to supply sufficient negative bias to reduce 
the grid current and (2) to make the time constant in the grid circuit 
short compared with the pulse length. This difficulty is frequently 
encountered in a grid-bias gain-control circuit; to avoid this difficulty, 
variable bias voltage for gain control of a bandpass amplifier should be 
supplied from a low-resistance source (2000 ohms at the most) even 
though the grids normally draw no current.

Another cause of a loss of sensitivity after a strong short pulse is the 
“blackout” effect; this is the temporary loss in transconductance of an 
amplifier tube after an overloading pulse. This effect is extremely 
variable from tube to tube of the same type and even of the same manu
facturer and is not fully understood. One explanation that has been 
proposed is that there are small particles of dielectric on the surface 
of the control grid, perhaps driven from the cathode emitting surface, 
which become charged during the pulse and require a finite time to 
discharge, during which time the tube transconductance is reduced. 
This effect can usually be distinguished from grid-current effects because 
it will be found to vary considerably with substitution of tubes, whereas 
with grid current little change will be noted from one tube to another. 
Blackout effects are most likely to occur in plate detectors but can be 
observed in high-level bandpass-amplifier stages as well. The best 
cure is the substitution of tubes, if permissible. The effect can be 
reduced by operating the tube with an unbypassed cathode resistor; 
this has the effect of reducing the cathode-to-grid signal potential but 
sacrifices gain.

8-8. Measurement of Gain and Determination of Amplifier Law. 
Gain.—The measurement of gain is, in principle, very simple. A signal 
generator, which may be of any type (c-w, swept-frequency, or pulsed), 
is connected through an attenuator to the input terminals of an amplifier, 
and an appropriate detector or indicator (which need not be calibrated) 
is connected to the output terminals. The signal level s adjusted to 
give a convenient deflection on the indicating instrument; then the signal 
generator and attenuator are connected directly to the indicating device 
and are adjusted a second time to give the same deflection. The gain is 
given directly by the ratio of attenuator settings.

Unfortunately, however, in practice the measurement of gain involves 
a much more complicated procedure, and under most circumstances 
it is difficult to get an accurate value. The calibration of signal genera
tors and attenuators assumes that they are terminated in some definite 
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impedance. It is very rare that either the input terminals of the amplifier 
or the indicating device offer this impedance. Also it may be necessary 
to employ matching networks or “dummy-input circuits” to make the 
signal generator present the correct signal-source impedance to the 
amplifier. To allow for all these effects, the signal level measurements 
must be supplemented by numerous impedance measurements and 
calculations.

When the impedance levels are high, as is normally the case at the 
input or output terminals of a vacuum tube, the measurements become 
simple. An artificial impedance equal to the correct terminating 
impedance is connected across the output terminals of the attenuator, 
both when the signal generator and attenuator are connected to the 
input terminals of the amplifier and when they are connected to 
the indicating device. Almost always this impedance is so low that the 
effect of the impedances which are present in parallel with it (such as 
plate-load resistors) can be neglected. Then the voltage gain is given 
directly from the ratio of the two attenuator settings, as indicated 
previously. The power gain can be found by multiplying the square 
of the voltage gain by the impedance ratio of the normally present 
input and output impedances.

Production-line Test for Gain.—There are many applications where 
an accurate measurement of gain is unnecessary. In the manufacture 
of amplifiers it is necessary merely to be sure that the amplifiers coming 
off the production line have adequate gain for the application for which 
they are intended. In such cases a prototype amplifier exists that 
has been tested in its intended application and is known to have adequate 
gain. The test of the other amplifiers consists of determining whether 
they have more or less gain than the prototype. This test can be 
effected by applying a standard signal and noting whether the output 
is greater or smaller than with the prototype.

In many applications the required amount of gain is such that the 
weakest detectable signals will have signal strengths comparable to the 
noise generated within the amplifier. Therefore it is necessary that 
the amplifier have sufficient gain to make the noise easily perceptible in the 
indicating device. In such cases the noise generated within an amplifier 
can itself be used as the “standard signal” for testing gain.

The procedure is first to determine that the production amplifiers 
contain no improper sources of noise by measuring their noise figures 
(see Chap. 14). Second, some sort of output indicating device that 
will give an indication of noise power output, such as an oscilloscope, 
is connected to the output terminals. Those amplifiers which give as 
great or greater deflection on the output device as the prototype have 
adequate gain.
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Amplifier, or Detector, Law.—The “amplifier law’’ is the name given 
to the relation between output and input voltage. In the event that 
the amplifier contains a detector, this relation is more properly called 
a detector law, because most of whatever nonlinearity exists is usually 
due to the detector. It is essential to have accurate knowledge of the 
amplifier or detector law if the amplifier is to be used for the precise 
measurement of signal amplitudes. A measurement of the law is also 
important as a design check on certain amplifiers, especially those which 
are to be part of radio receivers. If the law is nonlinear, undesirable 
cross modulation will be produced in the presence of interfering signals. 
Also the “saturation” or “limiting” of the output signal at too low 
signal-input levels is an indication of poor overload capability.

The amplifier, or detector, law can be determined with the aid of a 
signal generator, attenuator, and output indicating device, as in the 
gain measurements, except that the indicating device should be cali
brated in terms of voltage, current, or power. The readings of the 
output device for various positions of the attenuator are noted. It is 
convenient to make a plot of the logarithm of the output reading against 
the setting of the attenuator (expressed in decibels), and from this it 
can easily be seen whether the law is a simple power law or not. At 
very high gain it is impossible to make an accurate determination of 
the law because the signal is masked by noise developed by the amplifier.



CHAPTER 9

LOW-FREQUENCY AMPLIFIERS WITH STABILIZED GAIN

By Duncan MacRae, Jr.

9-1. Problems Characteristic of Computer Amplifiers.—The design of 
many electronic computing devices involves the representation of func
tions by the magnitudes of alternating voltages. In these computers, 
amplifiers are needed either to transform the output and input imped
ances of the different computing elements within the device or as com
puting elements themselves. They can be used for the latter purpose 
for example, to multiply a particular function by an arbitrary and some
times variable factor.

The gain of such an amplifier must be held constant within closely 
prescribed limits regardless of the variability of vacuum-tube parameters, 
the manufacturing tolerances of passive components such as resistors and 
capacitors, possible variations of the ambient temperature, etc. The 
variation in gain that can be tolerated depends upon the desired accuracy 
of computation (the figure of ±0.1 per cent was usually specified by the 
Radiation Laboratory).

Economy requires that the desired constancy of gain be achieved 
without using circuit components whose characteristics must themselves 
be maintained within narrow tolerances. The specified tolerances for 
resistors and condensers, for instance, are usually not narrower than 
5 and 10 per cent respectively, although in some obvious cases resistance 
values must be more closely specified.

Inverse feedback can be employed to render the gain of computer 
amplifiers less sensitive to the variations in the values of the circuit 
parameters. Variations in gain due to changes in tube parameters 
can be reduced by local feedback methods such as the use of unbypassed 
cathode resistors or d-c feedback from plate to grid (see Chap. 3). The 
principal design problems, then, derive from the fact that the feedback 
circuit requires high gain, which tends to make the amplifier oscillate 
at frequencies often far removed from the frequency band that it is 
designed to amplify.1

The decision as to the number of stages of amplification necessary 
to obtain the desired reduction of gain sensitivity to component varia-

1 H. W. Bode, ‘'Relations between Attenuation and Phase in Feedback Amplifier 
Design,” BSTJ, 19, 421, July 1940.
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bility is determined not only by the general requirements of the system 
but also by the tolerances of the circuit components, the gain attainable 
from each stage, the bandpass requirements set by the feedback circuit, 
and the polarity of feedback, which determines for certain feedback 
circuits whether the number of stages should be even or odd.

The following criteria determine the choice of the particular feedback 
circuit:

1. The fraction fi of the output signal which is to be fed back at the 
computing frequency must be maintained within the prescribed 
tolerance.

2. The circuit shall require the minimum number of precision com
ponents (e.g., ±1 per cent resistors).

3. Preferably there should be no need for an amplitude control to 
compensate for the variability of any of the components used 
in the amplifier; if such a control is necessary, its required range 
of adjustment should be kept small in order to minimize effects 
of maladjustment.

4. The feedback circuit used should cause the amplifier to have the 
desired input and output impedances.

The choice of feedback methods for computer amplifiers is more 
restricted than for audio amplifiers or for most filter amplifiers because 
of the small permissible variability of fi; the feedback circuit therefore 
cannot usually involve tubes. The simplest type of feedback circuit 
satisfying this requirement is that for which |/3| = 1, that is, a circuit in 
which the output voltage may either be subtracted from the input voltage 
and the difference applied to the first grid or be applied directly to the 
first cathode. Possible subtracting methods include resistive mixing 
(with an odd number of stages) and subtraction of output voltage 
from input voltage by means of a transformer. Feedback to the first 
cathode is most easily accomplished when the load is inductive; if the 
load is resistive, cathode feedback can be accomplished by the use of an 
auxiliary inductance to provide a d-c return for the first cathode, or by 
the use of a transformer. By modifications of these methods, any 
desired fraction of the output voltage can be fed back to the input 
terminals: In Circuit a of Fig. 9-1 (resistive mixing) the resistors Ri 
and Rt can be varied; in Circuit b the transformer T can be designed 
to have any desired ratio, or a potentiometer can be incorporated so 
as to add a variable fraction of the output voltage to the input voltage; 
in Circuits c and d an extra tap can be designed into the inductance or 
transformer. For relatively low-precision applications, each of these 
circuits can be reduced to a single-stage amplifier: Circuit c will simply 
become a cathode follower if the amplifier “box” is made an open
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circuit; in other cases the amplifier is made a short-circuit or zero-stage 
amplifier.

Fig. 9-1.—Feedback circuits, (a) Resistive mixing at grid; (b) transformer subtrac
tion at grid; (c) cathode feedback with auxiliary inductance; (d) cathode feedback with 
transformer.

9-2. Analysis of Types of Feedback. Resistive Mixing.—In the 
analysis of the resistive-mixing type of feedback circuit (Fig. 9-la), it is 
assumed that the source is a generator of voltage e, having an output 
impedance Z„, that the amplifier 
can be replaced by a generator 
— det having an output imped
ance Zo in the absence of feed
back, and that the first-stage grid 
is connected to ground through 
an impedance Ze (Fig. 9-2). The 
gain and the output impedance of 
this circuit can be calculated by 
writing the circuit equations with

Fig. 9-2.—Schematic circuit for resistive- 
mixing feedback.

ei and i as the two independent variables. The gain will then be deo/det 
and the output impedance will be de0/di. Because the equations are 
linear, these quantities are respectively (eo/eji.o and (eo/O.-o. Using 
nodal equations,

/ 1 , 1 , 1\ e<
.Rar + + z. «2 Zj e,~ Rt + Z.’ (la)
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and

(16)

Then the voltage gain is

Now if

and G » 1,

S =

________________(—aRi + Zo)________________
(i + + z/) + -——/—?! /-1 (Ra Zo)

L za

Z, Ri + Z„
Ri + Zg Ri + Z.,

— <3Rj + Zg _ Ri _____ Zg 
a(Bi + Z,) Ri + Z, a(Ri + Z,)

But usually Ri + Z, Zo; and since G» 1, Eq. (3) becomes, to a 
very good approximation,

q = R* 
b Rl + Z, 

Then
dg _ —dRi dRi / Ri \ . dZs i Z. \
■g - Ri + r? \Ri + zj +'Z/\R1 + zj’ ( ; 

which makes it evident that in order for variations in source impedance 
to have little effect on the gain of the amplifier, Z, must be very much 
less than Ri; thereupon fractional variations in Ri and Hi affect the 
gain equally.

The output impedance is given by the following equation:

As G grows indefinitely, and if
Z, <K Ri,
Z„ » Ri, 

(Rl + Ri)Zg 
- ------ ----------- ’ (6)

which is simply Zg divided by the loop gain. A reduction of output 
impedance is a general property of voltage-feedback amplifiers.

Cathode Feedback.—When cathode feedback is used, the sensitivity 
of the over-all gain g to the m of the first stage cannot be made appreciably 
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less than 1/g, i.e., dlng/dlng & 1/m. To prove this, assume the 
operating characteristics of the first stage of the amplifier shown in 
Fig. 9-lc to be given by the usual relation

iv “= 9m (esk + (7)

and the remaining stages to have a gain of — gt. Then

efk = —Rlip — ek, (8a)

where — a-c plate-to-cathode voltage,
= a-c cathode-to-ground voltage;

e04 = e,- — ek, (86)
where — a-c grid-to-cathode voltage,

ii — input signal voltage;

ek = $e0 = pRoipO» (8c)

where e0 = output signal voltage,
¡1 — feedback ratio,

Rl — first-stage load resistance.
Combining Eqs. (8) with Eq. (7),

= iP P + — + 3R^(1 + P ■
iff« V \ F/J

But the over-all gain is given by

„ _ Cl> RiipQb

and therefore,
1 as —  = 1— 4. B Lflfl j. 1|. fai
g R^ gmRz^ mSM P V m/ J

Now g6 will ordinarily be made very large in order to render the effect 
of component variations on g negligible. In this case Eq. (9) may be 
written as

1=+^(1+1) (10)
b \ F/

Inverting and differentiating, it is found that dQ/dy — 1/3(1 + m)2; 
hence

din g m dg _ m nt
dlnM ^dp M(1+m)2’ k 7

It is evident that this expression becomes smaller as p becomes 
larger; now if p is large, p p + 1. Then from Eq. (10) g 1/^, 
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where 8 is the over-all gain. Substituting these approximations in 
Eq. (11) and noting the conditions under which they are made.

Therefore, in order that the gain may be protected against variations 
of the amplification factor of the first stage, the latter must be as large 
as possible.

The input impedance of a cathode-feedback amplifier can be cal
culated with the aid of the preceding analysis. The predominant 
contribution to the input impedance is that resulting from capacitive 
coupling of the grid to the plate and cathode. The input impedance is 
defined as the ratio of grid voltage to total current flowing to the grid 
node. The total current is the sum of the currents in the capacitances 
Cip and Cat. These currents are determined by the alternating voltages 
at the plate and cathode as well as by the input voltage e,. The voltage 
differences egp and eok have the effect of changing the apparent input 
capacitance; since the currents in the two branches are in parallel, it is 
possible to write

_ G ^op , 
in HP *

Now
&gp ~~~

since e< = e„ by definition. Then
epp _ ।

Ci

But
eo — e^g = 

whence
e>p s
* g6

where g and g^ are related by Eq. (9). Similarly
&gk — &k

and
= 1 - = 1 _ pg

6/ Ci

since e* = Therefore,

cin = Cap(i + ^} + Cekd - 0$). (14)
\ Sv
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In deriving Eq. (12) it was assumed that g^ » 1, from which it followed 
that 0g « 1. Because this is an inverse-feedback amplifier, Qt, > g. 
Moreover, if gb» g, then

Cin = Cer. (15)
Comparison of Grid and Cathode Feedback.—Certain distinctions 

may be made between grid and cathode feedback. If the load is resistive, 
the method shown in Fig. 9-la of resistive mixing at the grid has the 
advantage of light weight, for it requires no additional iron-core parts. 
The input impedance is nearly equal to Ri because the high gain of the 
amplifier requires that the alternating voltage applied to the first grid 
remain small. On the other hand, the input impedance of the circuit in 
Fig. 9-lb will be approximately equal to the impedance of the inter
winding capacitance of the transformer. The input capacitances of 
the circuits in Figs. 9-lc and 91d are low, approximately equal to Clp. 
The output impedance of each of these circuits is roughly equal to the 
output impedance of the output stage divided by the loop gain.

If the load is an inductance, Method c of Fig. 9-1 is probably prefer
able to Method a because precision resistors are not required. Circuits b 
and d have an advantage from the standpoint of low power drain on the 
output stage, because the use of a transformer makes possible push-pull 
operation, with a corresponding increase in efficiency.

9-3. The Stability Problem.—Certain phase and amplitude require
ments must be satisfied by a feedback amplifier in order that it shall 
not oscillate. These requirements give rise to the problem of syn
thesizing networks that possess special characteristics, subject to practical 
limitations imposed by the resistances, condensers, tubes, and wiring. 
At sufficiently low frequencies a 90° phase lead is introduced by each 
coupling capacitor and the associated grid resistor; at high frequencies 
a 90° lag is associated with each stage, determined by its input capacitance 
and the output resistance of the preceding stage. The design objective 
is to cause the loop gain G0 to decrease to less than unity at frequencies 
between which the phase shift does not exceed 180°. For a one-stage 
amplifier the problem is not difficult unless there are elements in the 
circuit producing a phase shift of 180° or more (such as a transformer 
plus a coupling capacitor). The two-stage amplifiers that can be made 
from the feedback circuits of Figs. 94b and 94d involve transformers 
that may introduce 180° phase shift at high frequencies; if the circuit of 
Fig. 94c is used, there are also two coupling networks affecting the 
low-frequency response. Three-stage EC-coupled amplifiers involve at 
least three coupling networks, each of which will give 90° phase shift 
at low frequencies, as well as three networks having an analogous effect 
at high frequencies (the output resistances and the shunt capacitance 



340 LOW-FREQUENCY AMPLIFIERS WITH STABILIZED GAIN [Sec. 9-3

of following stages). The limiting transfer characteristic (in both 
phase and amplitude) determined by these networks is known as the 
asymptotic characteristic.

The easiest way to satisfy the stability condition at the low-frequency 
side of the pass band, for a two-stage or three-stage amplifier, is to 
let one or two coupling networks attenuate at 6 db/octave down to the 
frequency at which the loop gain is unity or less than unity by the 
desired amplitude margin.1 If it is possible to use sufficiently large 
resistances and capacitances, the other coupling networks may be made 
to introduce very little phase shift above this frequency and to have 
almost all their phase-shifting effect at frequencies where the loop gain 
is less than unity. The analogous procedure for the high-frequency

Frequency in cps
Fig. 9-3.—Low-frequency asymptotic characteristics. Solid line represents possible 

asymptotic characteristic for a three-stage amplifier.

response is again to make one stage attenuate so that unity gain is 
reached before the other stages have any effect. This might be achieved, 
for instance, by putting an additional capacitance in parallel with one 
of the tube input capacitances. This method cannot be used, however, 
if the necessary loop gain is too high relative to the ratio of the frequency 
at which the amplifier is designed to operate and the frequency at which 
the asymptotic characteristic has unity gain (see Fig. 9-3). In the 
example shown in Fig. 9 3 the computing frequency is 1000 cps, and 
the gain at this frequency is 1000 (60 db). If the designer tried to 
make the amplifier attenuate at 6 db/octave, the effect of the asymp
totic characteristic as determined by the inherent properties of the 
amplifier components would predominate before unity gain was reached 
and oscillation would probably result. If he could produce a slope of 9 
db/octave, however, it might be possible to reach unity gain without 
having 180° phase shift. Roughly, 6 db/octave corresponds to 90°,

1 F. E. Terman, Radio Engineers’ Handbook, McGraw-Hill, New York, 1943, 
p. 398.
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12 db/octave to 180°, etc.; in order to afford a margin of safety, there
fore, the slope of the attenuation curve must be somewhat less than 
12 db/octave. In order to obtain slopes between 6 and 12 db/octave, 
networks more elaborate than single RC-coupling networks can be 
used.

The characteristics attainable are sharply limited if light weight is 
required, for this means that neither condensers larger than some physi
cally small size such as 0.1 pi nor heavy choke coils are permissible in 
the low-frequency networks.

(a)

(b) (c>
Fig. 9’4.—Typical coupling network, (a) Coupling network; (b) low-frequency equivalent 

circuit; (c) high-frequency equivalent circuit.

The principal topic to be developed here is the stabilization of three- 
stage amplifiers by the use of coupling networks similar to those shown 
in Fig. 9-4. A good example of this is given by Bode.1 The method 
used in this example emphasizes the amplitude response, an easily 
measurable function, and the calculation of the phase response from it. 
An alternative method, which has advantages in certain special cases, 
employs the direct calculation of phase response as a function of fre
quency, using the amplitude response at only a few points. The cal
culation of the phase response of resistance-capacitance networks is 
considerably easier than the calculation of the amplitude response. It

1 H. W. Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand, 
New York, 1945, pp. 514-517.
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is particularly helpful at low frequencies, where the values of the param
eters involved are fairly well determined; at high frequencies the values 
of stray and input capacitances are less well known before the layout 
is made, and more experimental work has to be done to complete a 
design. i

The equivalent high-frequency and low-frequency stabilizing net- j 
works used (Fig. 9-4) may be considered together. The property of j 
these networks that makes them useful is that each may have a ‘ ‘ plateau ’ ’ ;
in the curve of phase shift vs. frequency. There are other RC-networks |
having this property, but all those using only two “independent” con- :
densers1 may be treated mathematically in the same way. If it is 
assumed that these networks include the effect of the output impedance । 
of the preceding stage and the input impedance of the next stage, each 
network may be analyzed as a three-terminal network containing R’s i
and C"s and operating from zero impedance into infinite impedance. '
By means of the loop analysis, the ratio eo/e. may be expressed as a i 
quotient of determinants. The denominator is a polynomial of the ; 
second order in 1/p; the numerator cannot be of order higher than the 
second. Thus, the most general representation of eo/e. is 1

eo = p2 + flip + bi = A (p - p0(p - pa), ,16>
e; p2 + aap + bi (p - p3)(p - pt)’ k

where the roots pt ... pt are real quantities of dimension T-1 because « 
it has been assumed that the networks contain only resistances and 
capacitors.

The physical significance of this relationship is that for certain real 
values of p (corresponding to exponentially varying voltages and cur
rents) the ratio eo/et can be either zero or infinite.2 However, only 
the pure imaginary values of p are considered in finding the phase 
response of the network as a function of frequency. As a further sim- ' 
plification, it may be noted that the equivalent low-frequency network [ 
has zero response at zero frequency and unity response at infinite fre
quency; the equivalent high-frequency network behaves in exactly the 
opposite way, having zero response at infinite frequency and unity .
response at zero frequency. Thus, for the low-frequency network, ;

Co = p(p - Pz) Q7 '
et (P - PNP - Pt) { i ) '

1 Two condensers are “independent” if current loops can be so drawn that only 
one passes through each of the condensers. This ensures that the determinant of ,
coefficients in the loop equations is a polynomial of the second order in 1/p, since 1/p [
occurs twice on the principal diagonal. ,

2 Bode, op. cit., pp. 28-30.
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and for the high-frequency network,

£» _ ~P»P* (P ~ P^
ti Pz (p - p3)(p - Pt) ’

Finally, setting p = jw and making use of the fact that the phase 
angle of a product of complex factors is the algebraic sum of their separate 
phase angles, it is found that for the low-frequency network

, / eQX tr ... 01 o> , , oi .
</> I — I = + h + tan 1--------- tan 1----------- tan-1------- > (18a)V.7 2 -p3 -p3 -p, v '

and for the high-frequency network

<p f—'j = tan-1 — ------tan-1 —------- tan-1 —-— (18b)
MV -p3 -p3 -p4

In computing the phase response of such a 
to find the roots that characterize it and to 

network, it is necessary 
use them in connection

with a single inverse-tangent curve (Fig. 9-5). This curve gives directly

90°

c 45°
43 
II

-S-

0°
0.01 0.10 1 10 100

w/p (logarithmic)
Fig. 9-5.—Inverse-tangent curve.

observing that at a = p„ d> = 45°.

the phase shift of a single RC 
coupling network. The over-all 
phase response of the network or 
of several such networks is the 
algebraic sum of these inverse
tangent curves. Changing the 
value of pt is equivalent to adding 
a constant to logio o> and has the 
effect of moving the curve bodily 
along the login w axis without 
changing its shape. Any partic
ular curve may be located by
The corresponding frequency, at which the capacitive reactance of a 
single network is equal to its resistance, will be called the central fre
quency. The design objective is now to produce a desired total phase 
response; this is done by successive trials, as will be illustrated in Sec. 9 7.

Consider first the “phase-advance” network, so-called from its use 
in servomechanisms (see Fig. 9-6).
For this circuit, 

co _ Ri _ p + CRt
ei_____ 1_____ , p . Ri + Rt 1 }

(1/Ed p RtRiC

Then the phase response of the circuit will be given by

tp = tan-1 (piRiC) — tarn
/ wEiE2C\
\Ei 4- rJ (20)
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This expression as plotted in Fig. 9-66 has a maximum value at the 
logarithmic mean of the two roots — pi = + 1/CR1 and

_ _ ■ (Ri + Rz)
V2 — + P P it litth

It may also be seen from Fig. 9-65 that the value of maximum phase 
shift is

The maximum value of phase shift is equal to the difference of the 
two dotted curves at the center of the horizontal axis and is equal to 
twice the difference of either dotted curve fiom 45°. This result is 
generally useful in connection with linear RC-networks containing only 
one condenser. It may be noted that

(22)

This equation may sometimes be used as a convenient way of determining 
pz/pi in order to find the maximum phase shift; the right-hand side 
of the equation may be found from experimental gain measurements 
with and without the condenser (see Sec. 9-13).

A typical low-frequency stabilization network is shown in Fig. 9-7a. 
The frequency characteristic of this network can be explained qualita
tively by considering the effects that occur as the impedance of one 
capacitance or the other becomes large with decreasing frequency. 
The usual design procedure is to let Ri and C\ be larger than R2 and 
Ci respectively, At the high-frequency end of the characteristic, Ri
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has a considerably higher impedance than C2, and the characteristic, 
determined largely by Rt and Ct, starts as an inverse-tangent curve. 
As the frequency is decreased, the impedance of Ct increases to the 
same order of magnitude as that of Ri. To the extent that the impedance 
of the section consisting of Ri, Ci, and Ct approaches a real quantity 
in this region, there is a tendency for the phase shift to return to zero. 
Finally, as the impedance of Ci rises to the order of magnitude of Ri, 
the response of the network approaches that of the part consisting of 
Ri, Ci, and Rt, this response being another inverse-tangent curve.

The equations for this network can be written

__________ Ri__________
9o_  p 1 1- = Ä2 + ------------J-------------------------  

' + pCi

=_________ P (P + R^i + R^)__________

2 , / 1 1 i \ 1
P P \RiCi + RtCi RiCtJ + RiRtCtCt

The roots are, for the numerator,
n / 1 , 1 \

Pl — 0, p2 — — I + p-~- 1
1 it IV 2/

and, for the denominator,

\RjCi RiCt RiCtJ
- -- ------------------ 9---------------------

(24a)

“oKF (24&) 
1Ì1ÌÌ2L 1C2
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If, in these expressions, the assumptions are made that Cl»C2 
and Ri» Rz, the following approximate formulas are obtained:

Pa = " R/Cz’ ~ RiCff ~

Here pz and ps may be said to correspond to a phase-advance network, 
and p* corresponds to the low-frequency limiting response. The phase 
response is then given by Eq. (18a). The phase-shift characteristic 
can thus be represented as an algebraic sum of three inverse-tangent 
curves or as the sum of a curve like that of the phase-advance network 
and an additional inverse-tangent curve (Fig. 9-76). In the central 
region of the characteristic the phase is relatively constant with respect 
to frequency. In the design of a three-stage amplifier the average

Analogue of phase
advance network

Fia. 9-8.—High-frequency stabilization network, (a) Network; (6) phase response.

phase shift in this region should be kept somewhat less than 60° in order 
that the response for three such networks will be less than 180°.

Similarly, the network, equivalent at high frequencies to that shown 
in Fig. 9-4a can be considered to be mathematically equivalent to the 
series-shunt circuit (rpC.) plus a circuit analogous to the phase-advance 
network, which may be called a phase-retard network. This equivalent 
circuit is shown in Fig. (9-8a). In calculating the response of the 
equivalent high-frequency network, a similarity to the low-frequency 
network may be noted. If the components in Fig. 9-7a are renamed by 
substituting rp for Rz, C, for Cz, R3 for Ri, and C3 for Ci, the result is 
found to be the same as for the equivalent high-frequency network, except 
that the input and ground terminals are interchanged. From this 
it can immediately be seen that the sum of the responses of the high- 
frequency network and the renamed low-frequency network is unity; 
for if at any frequency the response of the high-frequency network is 
Z2/(Zi + Z2) (where Zx — rp and Z2 is the impedance of the network
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C„ Rz, C3), the response of the renamed low-frequency network is 
Zi/(Zi + Z2). Therefore

£o = i _ p(p ~ Pa) 
e; (p - p»)(p - Pi)

where the p/s may be found from Eq. (24) by renaming the terms. In 
particular, from Eq. (23),

/ , 1 , 1 \

1° = 1------------- ,---- X------ ------------------------------- (25a)
6( / 1 1 1 \ 1

pi + p \^ct + + RaC,J + R,C^,C.

= 1 p+TdC3

TpC, (p - p3)(p - pt)

Subject to the approximations 7?3 « rp, C, « C3, the roots are approxi
mately

P2= ~ R^,’ \

P^ - > (255)

Pi= ~ /
SAMPLE DESIGNS OF COMPUTER AMPLIFIERS

Three computer amplifiers that have been designed for inductive 
loads and one for a resistive load will be discussed here. The reason 
for the emphasis on inductive loads is that several types of computer 
use angle resolvers1 whose input impedances are chiefly inductive.

Table 91.—Data on Resolvers

Manufacturer............................................................... Arma Corp.
Serial No....................................................................... Dwg. No. 213044 XD-759542
Weight, lb..................................................................... 5 1
Stator reactance (400 cps)t ohms..........................  
Stator-to-rotor voltage ratio (rotor open-cir-

j5000 j3000*

cuited)....................................................................... 1.0 0.9
Maximum voltage on stator (400 cps), rms... . 100 volts ~ 60 volts
Corresponding “saturation current,” ma........... 20 V2 20 V2
Peak deviation from linearity of rotor voltage Approximately f Approximately f

with respect to stator voltage (as fraction of 
max. output), %.

0.15 0.15

♦ Effective series resistance = 600 ohms.
f These figures are subject to variation, dependent upon the method of measurement. The values 

given are conservative.

1 Vol. 17, Chap. 10, “Rotary Inductors,” Vol. 21, Chaps. 19 to 21 (uses of resolvers), 
Radiation Laboratory Series.
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Pertinent data on two types of resolver are given in Table 1T1. It 
was arbitrarily decided to let the resolver stator be the primary winding 
and its rotor be the secondary or output winding. It can be seen (Table 
9-1) that within the specified region of operation, the magnitude of 
rotor output voltage varies almost linearly with the magnitude of stator 
input voltage.

In the design of these circuits, electrolytic condensers are used to 
bypass cathode and screen impedances but are not used for interstage 
coupling because of the effect that d-c leakage through the condenser 
might have on the grid bias. The maximum value of coupling capaci
tance used is limited to 0.1 pi because of the physical size of paper
dielectric capacitors of this value. In a great deal of aircraft equipment, 
electrolytic capacitors can not be used at all because they do not meet 
specifications for high-altitude operation.

9-4. Single-stage Drivers. The Cathode Follower.—This simplest 
one-stage feedback amplifier has been used extensively as an impedance

changing device, but the employment 
i of reactive loads requires special de

C e,____________ signs. A typical a-c cathode-follower
\r~y circuit is shown in Fig. 9-9.

R^e* The input impedance can be calcu- 
______________L lated by methods similar to those of

Sec. 9-1. The input capacitance is 
equal to Cgp + [(e» — ek)/e<]Cand is 
approximately equal to Cgp. The 
resistive component of input imped- 

capacitance) is R„[ei/(ei — e2)]. If the 
current in Rg is neglected relative to the cathode current in comput
ing e2, the quantity [et/N — e2)] can be easily calculated. The gain of 
the cathode follower is

Ri?

Fig. 9-9.-—A-c cathode follower, 

ance (in parallel with this

Ok = _________ 1__________
e' i -----------1_____

p gm(Ri + Rt)

and

c2 _ Rt 
ek Ri + Rt

Therefore, 

et = 1 =__________1__________________
- e2 L _ et r _ ---------------------- Rt--------------------  '

111
(Ri + Rz) Id------ h - ,p , p \

. p gm(Ri + Ri)!
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and the input resistance is approximately

Rs Ri -J-

if m» 1, and gm(Ri + Rz)» 1. A nonresistive cathode impedance Zt 
could be substituted for Ri + Rz without invalidating the derivation of 
e/c, provided that the d-c levels are properly maintained. In this 
case

Ct ______ 1______
1 + - + -L

P gmZk

and
et - ek = 1___ 1_

m gmZt (27)

The limits of linear operation of a cathode follower are determined 
by the grid current and cutoff characteristics of the tube. These limits 
can be calculated by the use of the preceding equations. If it is assumed 
that the voltage eat = e, — ek has the limits 0 (corresponding to grid 
current) and eco (at cutoff), and if the region of a-c operation is chosen 
so that these limits are reached together by the positive and negative 
peaks of the grid-cathode waveform, then the maximum output is given 
by

M 9mZk

_ — 0
- 2 ’ 

and1

e « %

Since the rms value of

then, finally, the maximum rms output is given by

|(*U| = -------
2a/2 - + —7

_________ €P_________ .

2V2|1 + i[ (29)

The value of ep used for a reactive load will be different from that for a 
resistive load, for in the former case the load line is an ellipse and the

1 See, for example, F. E. Terman, Radio Engineering, McGraw-Hill, New York, 
1937, p. 121.
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nearest approach to cutoff will 
supply voltage.

It is often undesirable to 
driving an inductive resolver 
rotor transfer characteristic is

Fig. 9-10.—Single-stage driver.

from a relatively high-impedance

be at a value of ep less than the plate

use an ordinary cathode follower for 
because the linearity of the stator-to- 
affected by magnetic saturation; more

over, unless resonant tuning is used, 
the tube must supply a direct current 
at least as great as the peak alternating 
current in the inductive load. For 
cases where the desired range of oper
ating frequencies is too great to per
mit such tuning, the circuit of Fig. 
9-10 which was designed for use with 
the Arma resolver (Table 9-1), can be 
used. To make use of the tetrode 
characteristics of a tube such as the 
6V6, it is necessary to bias the screen 
source and condenser-couple it to the 

cathode. The circuit shown in Fig. 9-10 satisfies these conditions because 
the inductive load itself has the high a-c and low d-c impedance neces
sary for screen bias. The d-c screen current flowing through the load 
is less than 5 ma and does not produce serious saturation.

For this circuit the maximum deviation from linearity of peak a-c 
voltage across the load with respect to peak a-c input voltage was
measured as 0.08 per cent of maxi
mum output up to an output volt
age of 60 volts rms. However, 
changing tubes, especially changing 
from one make of 6V6 to another, 
changed the gain by + 0.25 percent.

A single stage with plate-to-grid 
feedback can also be used to drive
an inductive load as is shown in ,,
Fig. 941. In this circuit the plate Bias ~
current flows through the inductor; Fig- 9'11 -Single-stage driver with plate- 

b ’ to-gnd feedback.
and because it may saturate the
core, the maximum output voltage is correspondingly limited. The 
analysis of resistive-mixing feedback in Sec. 9-2 is applicable to this 
circuit. Compared with the modified cathode follower shown in the 
previous figure, it has the disadvantages of lower input impedance and 
increased sensitivity to tube-parameter variability.

9'6. Driver with Push-pull Output Stage and Regeneration within 
the Loop.—The circuit in Fig. 9-12 was designed to drive the stator of an
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Arma resolver (Table 9-1). Cathode feedback was employed, and a 
pentode was therefore used in the first stage to secure a high amplifica
tion factor. The design procedure for this amplifier was largely experi
mental, both with regard to antioscillation measures and with respect 
to maintaining constancy of gain with tube change. The O.OOl-pf con
denser across the output transformer was used to suppress oscillations; 
it prevented the high-frequency response from falling off too rapidly 
with increasing frequency. The 2.2-kilohm resistor and the 0.05-pf 
condenser provide a low-Q tuning for the load. The feedback from the 
transformer secondary to the right-hand grid of the output stage is 
regenerative. The bleeder determining how much signal is fed back 
was adjusted so that the output stage, disconnected from the pentode, 
was just on the threshold of oscillation, thus providing an over-all gain 
very near to unity. The decrease in the linearity of the regenerative 
stage of the amplifier was offset by the increase of gain; thus the linearity

Fig. 9-12.—Driver circuit with push-pull output stage and regeneration.

(and constancy of gain with respect to tube changes, etc.) with the 
over-all negative feedback was not impaired (see Chap. 10). Since 
the over-all feedback factor was unity, infinite gain without negative 
feedback would be needed for unity gain with the negative feedback. 
If exactly unity gain is not an important consideration, more sym
metrical push-pull action can be obtained by reducing the regeneration; 
this can be done without appreciably sacrificing constancy of over-all 
gain.

The observed performance of the circuit was as follows: The differ
ence between output and input voltages was less than 0.03 volt up to 
an output voltage of 70 volts rms. This figure includes the effects due 
to substituting tubes whose parameters vary over the entire range per
mitted by the manufacturing tolerances.

Two-stage Driver fob Inductive Load without Transformer 
Output

9-6. General Considerations.—The object of designing this circuit 
was to reduce the weight in comparison with the amplifier shown in
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Sec. 9-5 and to analyze more thoroughly the conditions for preventing 
oscillations. In order to save weight, miniature tubes were used, and 
the load, a Bendix resolver (Table 9-1) especially designed for light
weight applications, was condenser-coupled rather than transformer
coupled.

The circuit type of Fig. 94c was chosen, and the accuracy require
ment set at ±0.1 per cent probable variation in over-all gain (and 
± 0.001 radian in phase) with respect to replacement oi all components. 
This requirement seemed realizable because a loop gain O0 of 300 to 500 
can be obtained with two stages if 0 = 1; the approximate variation of 
gm (the largest source of error) is ±30 per cent, and feedback could 
reduce the effect of this by a factor of approximately 1/0O.

The circuit was designed to give a maximum output voltage of 
between 10 and 40 volts rms. The supply voltage, tube type, and load 
determine this, and the voltage scale of the computer was to be chosen 
accordingly. It was assumed that the first stage would employ a type 
6AK5 and the output stage a type 6C4. The plate supply voltage 
was to be 250 volts, and the operating frequency was to be 500 cps ± 2 per 
cent. The tube-parameter tolerances, as given in the JAN specifica
tions, are shown in Table 9-2. In many cases it would be desirable to 
supplement these with additional tube data relating more directly to 
circuit design.1

Table 9-2.—Excerpts from JAN Specifications* for Types 6AK5 and 6C4 Tubes

Charac
teristic

6AK5 under operating conditions 
of epf = 120v, eOi = —2v, and 

eOi — 120v

6C4J under operating conditions 
of ep ss 250v, and eg = —8.5v

Min. Max. Min. Max.

^0 0 —0. lOjua 0 — 1.5 ^a
ip 3.0 ma 12.0 ma 6.5 ma 14.5 ma

Qm

0.8 ma
3500 Minhos§

4.0 ma
6500 /xmhos 1750 /imhos 2650 jumhos

* Issued November-December 1944.
+ Maximum allowable value of ev (according to supplement of Mar. 30, 1945): 180i, design-center 

value.
t The maximum recommended value of grid-leak resistor is 0.25M with fixed bias, 1.0M with cathode 

bias.
§ Reduction of heater voltage to 5.7 volts causes a reduction of gm of 15 per cent.

9-7. Design of the Output Stage.—A schematic diagram of the output 
stage is shown in Fig. 943. It incorporates cathode bias, condenser
coupling to the load, and an additional condenser CL to increase the

1 See Chap. 11.
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apparent load impedance by parallel-resonant tuning. Cathode bias 
was used because it permits a large grid-leak resistor (Table 9-2) and 
because it stabilizes tube parameters with respect to tube replacement 
and heater-voltage variation. In the complete amplifier the tuning 
condenser Ci does not appreciably affect the current through the resolver 
stator for a given input voltage, since the voltage feedback makes the 
voltage across the load nearly equal to the input voltage throughout 
the operating range of the circuit. This condenser extends the operating 
range of the amplifier. Parallel-resonant tuning has the disadvantage 
of increasing the variation in phase shift that is produced by variation 
in the values of capacitance or of stator impedance, but it will be seen that 
this is not a serious difficulty.

Fig. 913.—Output stage of driver.

In order to find the variations in load impedance and in phase shift 
that might occur, the variations in the load circuit parameters were 
calculated. Measurements of a typical resolver-stator impedance 
showed a variation of 15 per cent over the temperature range —50° to 
+80°. The values of the stator impedances at room temperature for 
all the units measured varied as much as ± 12 per cent from their mean; 
but if condensers were individually selected to tune each resolver, this 
effect could be almost nullified. The average value of stator impedance 
at 500 cps was 600 + J3500 ohms. The maximum variation in capacity 
of condensers of the sort to be used was ±10 per cent apart from tem
perature-dependent changes. As a working assumption, the variation 
to be expected in the LC product will be taken to be ± 15 per cent.

It must be determined whether this range of variation of the LC 
product can lead to an undesirable phase shift through the amplifier 
or can make the maximum output voltage too small because of the 
reduced load impedance. The impedance of a parallel-resonant circuit
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in which the resistance R is in series with the inductance is given by 

izi- I R^T^L2 + . o>RC
^(uRC)2 + (oPLC - I)2’ 0 ~ tan R tan 1 - cÆC

Sample values of \Z\ and 0 can be calculated to show the effect of com
ponent variations. Suppose that

oi — 3140 radians/sec (J — 500 cps),
R = 600 ohms,
L = 1.1 henrys,
C = 0.092 pi (selected so that oi2LC = 1).

For the expected variations of L and C the corresponding values of 
[Z| and <t> are as follows:

L = 1.1 h 
C = 0.092

L and C each 
increased by 7 %

L and C each 
decreased by 7 %

20,300 ohms 15,700 ohms 15,700 ohms
0 -10° -48° -28°

Even though the phase angle <t> corresponding to an increase of 7 per 
cent in both L and C is 48°, the phase shift from the grid to the output 
terminal under this condition will be considerably less than 48° because

(a) Circuit; (b)load.

(a) (6)
Fig. 9-14.—Triode circuit with condenser coupling to resistive 

operating lines.

the output impedance of the tube (nearly equal to rp if Rk is sufficiently 
well bypassed) is smaller than the load impedance. Since feedback 
can reduce the phase shift by a factor of approximately 1/0G, a loop 
gain 00 of 500 will suffice to keep the phase shift with feedback below 
0.1°.

It is necessary to choose the best value of d-c plate-load resistance; 
for this purpose the following derivation is helpful. For a triode amplifier 
whose plate is condenser-coupled to a resistive load of resistance large 
enough so that the output voltage is not limited by plate dissipation 
(Fig. 9-14), there is a value of the d-c plate load resistance Ri for which 
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maximum output voltage can be obtained without exceeding a given 
distortion. This value and the corresponding output voltage can be 
calculated roughly by means of an analysis based on idealized tube 
characteristics. The procedure will be to state mathematically that 
the positive and negative voltage swings at the plate, measured from 
the quiescent voltage, are equal and are limited by cutoff and grid 
current respectively (Fig. 9-145). This condition, together with the 
tube characteristics and component values, determines the operating 
line and the output voltage for the tube. Maximizing the output 
voltage with respect to Ri gives the desired value of R,.
Let V = d-c plate supply voltage,

E = d-c plate voltage,
I = d-c plate current,
e = instantaneous plate voltage,

ei = plate voltage at e„ = 0, 
e2 = plate voltage at cutoff, 
i = instantaneous plate current, 

Rl = load resistance, 
p _ RiRl 

~ (Ri + Rl)

The value of e at cutoff is
= E + IRt. (30)

The value of e at e„ = 0 (assumed to be the grid-current point) is given 
by the tube characteristic

• 61I = — 
rp

and the equation of the a-c load line

e - E = (i - I)(-Ri). 
Solving for eb 

E -|- IRi ei = — — ■
1 +-2 

• p

If the positive and negative voltage swings from E are equal,

6i = E — IRt. (34)

By eliminating ei from Eqs. (33) and (34), a relation between E and 1 
can be obtained. Combining this with the d-c relation

E = Epp — IRi, (35)

it is possible to solve for I and to compute the peak output swing

(31)

(32)

(33)

Cpeak IRi.
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The rms output is then e^/y/2, or

Ry . 2rp
Rt Rt

(36)

Maximizing the rms output with respect to Ry gives

and
Ry = y/^rpRi

(Criaa) max

(37)

(38)

This derivation may be generalized to take into account nonlinear 
characteristics: If the negative plate swing is a times as great as the 
positive swing, the equations become

and
R i — \/ (1 + a) rpR l

(Crms) mu

V
2 a/2

1+fe + 2

(1 + a)R

(39)

(40)

To estimate the maximum output voltage, 18,000 ohms can be 
used as the average value of \Z\, and r„ set equal to 10,000 ohms. Accord
ing to the treatment for a triode, if the departure of Z from a pure 
resistance is neglected, Ry can be selected equal to

V2 X Ì8K X 10K = 19K ~ 20,000 ohms.

The output voltage to be expected can be found approximately from 
Eq. (38): if Bh = 250 volts,

250 volts

(•-out):
2 v2

1 + — + + Ri

88 volts ,,
r~r7TTc L , ok = 35 volts rms- 1 + 0.56 + 1.05

In Fig. 9-24 this value is compared with experiment.
The d-c and a-c load lines for a 6C4 are shown in Fig. 9-15a. The 

approximate optimum bias is found to be —7 volts; the corresponding 
d-c plate voltage is +170 volts; and the plate current, 5 ma; hence the 
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cathode resistor should be 1500 ohms. The plate dissipation is 0.85 
watts (see Fig. 9-15). A 5.0-pf electrolytic condenser, for which

M = 64 ohms at 500 cps, 
wG

may be used to bypass the cathode. The preliminary design of the 
output stage is shown in Fig. 9-156.1

D-c load line <20 k)
A-c load line (10 k)

(a)
(6)

Fig. 916.—Type 6AK5 characteristic with tolerances.

9-8. Design of Pentode Stage.—Table 9-2 shows that the expected 
variations among 6AK5’s are somewhat greater than among 6C4’s. 
Moreover, a maximum plate voltage is specified for the 6AK5. In 
selecting electrode voltages it is helpful to use characteristic curves 
that indicate the tolerances ot tube performance (Fig. 9-16). From 
the plate-current and screen-current specifications on the 6AK5, it can

1 See Appendix B.
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be concluded that the spread of the tube characteristics is roughly 
equivalent to a change in grid bias of ± 1 volt. This restricts possible 
designs that use fixed bias, as can be seen from Fig. 917a. This graph 
shows that a plate-load line drawn from a sufficiently large supply 
voltage will include undesirable operating regions for some tubes if the 
bias is —2 volts. For example, either the operating point will be near 
the “knee” of the pentode curves in the case of high-current tubes, or 
the plate voltage will exceed the absolute maximum rated value in the 
case of low-current tubes. (The value of 180 volts shown in Fig. 9-17 
is actually a design-center value, but it serves to illustrate the point.) 
Thus, there is a maximum plate-supply voltage at which a particular 

Fig. 917.—Tolerances and selection of plate load, (a) Type 6AK5 characteristic; (b) 
amplifier with bleeder resistor.

fixed bias can be used. If it is desired to operate the tube at fixed 
bias and to use a higher-voltage plate supply than this, the plate resistor 
can be replaced by a bleeder from B+ to ground (Fig. 9-175).

In the design to be described in this section a cathode resistor will 
be used to stabilize the tube characteristics. For the stabilization of ip 
it is convenient to use the ip — ea diagram together with the relation 
es = —ipRk graphically expressed as a “load line” (Fig. 918a). It is 
seen that the spread of ip for different tubes is considerably reduced 
from the spread at fixed bias by the use of a cathode resistor of the 
proper value. The optimum value is determined by a compromise 
between the fact that the plate-current stabilization is greatest for 
high Rk and the fact that the correlation between a fractional change in 
ip and a given fractional change in gm becomes less at low values of 
plate current. If linear characteristics are assumed (Fig. 9-185), the 
“stabilization factor,” the ratio by which the ip spread is reduced, can 
be derived. From the geometry, (A — B)/B = (A/B) — 1 = gmRit
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Therefore,
B Al p cathode bias 1 ^41)
A Alp fixed bias 1 + gmRk

This is an approximate measure of the reduction of the effect of tube 
replacement. Similar results are obtained when a combination of fixed 
bias and cathode bias is used. Analogous considerations also apply to 
variations of heater voltage (Sec. 10-5, Fig. 10-16). The objects of 
stabilizing ip are to keep the plate voltage within rated limits and to 
reduce the variation of g„ and therefore the variation of gain. Complete

Eg m volts

Fig. 918.—Stabilization of plate current by cathode resistor, (a) Mutual characteristics 
of several type 6AK5’s, Ep = Es = 90', Ef = 6.3', four different manufacturers; (b) 
idealized characteristics, A = spread of ip, with fixed bias, B = spread of ip with cathode 
bias.

data on the gm-ip correlation are not available; the curves of Fig. 918a 
indicate the extent of gm variation. The variation in plate voltage is 
Ri times the ip variation, as is seen from the ip-ep diagram.1

The screen bias must also be considered. The criteria for the choice 
of the operating point are the maximization2 of gm/ip and the minimiza
tion of plate dissipation. Table 9-3 shows that other things being 
the same, the smallest values of ip/gm (highest gain) are obtained at 
low screen bias and high (negative) grid bias. It would be desirable 
to obtain data on 6AK5’s beyond the printed characteristics, but in

1 There is a more elegant over-all geometrical representation of this. If the func
tion fp(ep,et) for fixed screen voltage is represented as a surface in three dimensions, 
the Ohm’s law relations affecting ep and ea may be represented by two load planes. 
(A. Preisman, Graphical Constructions for Vacuum-tube Circuits, McGraw-Hill, New 
York, 1943, p. 53.)

2 For given values of plate supply voltage and d-c plate voltage, the gain of the 
stage is proportional to gm/ip. The reason for this is that the fixed drop across the 
d-c plate load is Epp — Ep = ipRb, and the gain is gMlc = gm(Epp — Ep)/ip. This 
assumes that Ri. is the same for alternating current and for direct current.
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their absence Ea is chosen equal to —3 volts, Ea, = 90 volts. Since 
ip = 1.1 ma, the cathode resistor will be 2700 ohms. The average 
screen current is 0.45 ma; the extent to which it will be stabilized with 
respect to tube variation by cathode bias is not known; the screen is

+250v

__ 0.4 ma
+ 81 v —(WV—+125 v 

110k
Thevenin’s theorem 

equivalent circuit 
for screen bias

Fig. 9-19.—Preliminary design of pentode stage.

biased from an 0.6-ma bleeder. If the operating e„ is to be 115 volts 
(the center of the permissible range) and B+ = 250 volts, the load 
resistor Ri will be (250 — 115) volts/1.1 ma = 123 kilohms « 120 
kilohms. Therefore the circuit assumes the form shown in Fig. 9-19.

Table 9 3.—Valve of ip/gm for Type 6AK5 as a Function of Grid and Screen 
Voltages*

e„, volts 'i ec , volts2' gM, /imhos ip, ma ip/gm, volts

-1 150 9000? 20.00 2.20
— 2 150 7000 14.50 2.00
-3 150 5000 8.70 1.70
— 4 150 3200 4.70 1.50

-1 120 7200 13.10 1.80
—2 120 4800 7.60 1.60
-3 120 2800 3.70 1.30
-4 120 1400 1.60 1.14

-1 90 4800 7.00 1.46
— 2 90 2800 3.00 1.07
-3 90 1300 1.10 0.85
-4 90 400 0.25 0.63

-1 60 2700 2.10 0.78
—2 60 1000 0.40 0.40
-3 60 100? 0
-4

* Voltages from data in RCA Tube Handbook.
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9-9. Constancy of Gain with Respect to Circuit Parameters.—The 
stabilization factor [Eq. (41)] for ip and ep is about 4.5, since

gmRk = 1300 X IO"6 X 2700 = 3.5,

and the value of 120 kilohms can therefore be used for the load resistor 
without causing ep to depart from the desired region.

The sensitivity of over-all gain to component variation will now be 
calculated. The complete circuit at the present design stage is shown 
in Fig. 9-20. The d-c resistance of the resolver stator is 170 ohms, which 
is sufficiently small not to necessitate changing the cathode resistor of 
the first stage. If perfect bypass at 500 cps is assumed, the gain of the 
second stage may be expressed as pZi/(rp + where Z2 is the effective 
a-c load.

Fiu. 9-20.—Driver circuit with tentative resistance values.

The gain of this stage, Qt in Eq. (9), can be calculated without con
sidering the effect of the pentode stage. If Ct were zero, the cathode 
input impedance of the pentode ivould be l/gm] actually7 the grid is 
varying more than the cathode, so that when the cathode rises, the 
current in Ti increases slightly. This corresponds to a negative con
ductance in parallel with the load. Its effect is small, however, for 
the conductance is gm(ek — Ci)/ek ~ —gm/300 using an experimental 
value of (ek — e//ek. Since gm = 1300 /¿mhos, this is a negative resist
ance of —300/(1300 X 10-6) ohm or —230 kilohms in parallel with the 
18-kilohm load. Since the 20-kllohm plate resistor is in parallel with 
this, the a-c load impedance is the parallel combination of all three of 
these resistances, or 10 kilohms. Using rp = 10 kilohms, the gain of the 
second stage is

g -
rP + Z,

W X 107c 
107; + lOi S' (42)
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The expressions developed for cathode feedback in Sec. 9-2 can now 
be applied. In this circuit 0 = 1. Equation (9) then assumes the 
form

9 m 9& QmRh,
(43a)

where 0 = feedback ratio 
g = amplifier gain with feedback, 

g& = gain of second stage, 
Ri = a-c load of first stage,

M, gm — variational characteristics of first stage.
There is an additional network not considered in the previous analysis, 

namely, the screen-biasing circuit coupled to the first cathode. If the 
first cathode resistor could be considered as completely bypassed, this 
would merely be a high impedance in parallel with the load and as such

Fig. 9*21.—Pentode stage with unbypassed cathode resistor. Arrows indicate direc
tions of currents in plate and screen circuits assuming et and et positive.

could be neglected. If the first cathode is not bypassed, additional 
terms are introduced into Eq. (43a), which then becomes

I-1 1. , 1 il । 1 \ , Rk _ Rk 
U &V gmRi) QbRl Rg, (435)

where Rtt is the Thevenin’s-theorem equivalent screen-biasing resist
ance. The origin of the two new terms may be clarified by reference 
to Fig. 9-21. The feedback holds ek at nearly its former value, but the 
plate current and the current through R„s now flow through Rk, changing 
the output voltage accordingly. In this case, by choice of and Rt, 
the over-all gain can be made to center at unity rather than at some 
smaller value, although the sensitivity to g^, gm> and p will not be decreased 
thereby.

Substituting circuit values in Eq. (43a),

s 1 1300 + 8 \1300 +
1

1.3 X 160,
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Now, although both the exact tolerances of p and gm and the correlation 
of gm with ip are unknown, it can be seen that the term 1/(8 X 1300) is 
relatively negligible, and the expression may be written as

I _ i ~ J + _L.
S 1300 1660

Even if each of these quantities is subject to a 40 per cent variation, 
the variation in 1/g will not exceed 0.1 per cent. Therefore the loop 
gain seems sufficient.

9-10. Stability Against Oscillation.—The loop gain that is important 
for this problem is found by breaking the loop between the first and 
second stages, and holding the first grid at a-c ground.1 In this case 
the second stage is operating into the low input impedance at the cathode 
of the first stage. This input impedance is affected by the screen circuit 
as well as by the plate circuit; it is

----- 7---- = T~m~T'--Enn X 106 ohms ~ 550 ohms.g™, + 912 1300 + 500

The gain of the second stage therefore may be expressed roughly as 
gm/ifim, + 912), 
where gm = grid-plate transconductance of the first stage,

912 — grid-screen transconductance of first stage, 
9„, = transconductance of second stage.

The loop gain is the product of this quantity and the cathode-to-plate 
gain of the pentode, the latter being approximately gm RL , where Rl is 
the load resistance of first stage. Hence, if both cathodes are bypassed, 
the loop gain is

qm
a = rl. (44)

1 +

It is also this factor which determines the reduction of extraneous 
voltages (B+ ripple, for example) by the circuit.

Experimentally, the gain from the second grid to the first cathode 
with the loop open was found to be approximately one, in fair agreement 
with the predicted value 2000/1800. The loop gain with the loop open 
(experimentally) was about 100, and the predicted value was

gg X 120 X 1.3 - 170.

The experiments mentioned were done with a 4-^f bypass capacitor in 
each cathode circuit.

’ If the driver is used in another loop, however, the potential of the first grid will 
vary depending on the effect on it of the output through this loop.
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Now that the loop gam at 500 cps is known, the next step is to con
sider shaping the response at higher and lower frequencies. (It is 
assumed for the present that the observed gain will suffice to reduce 
the effects of component variations.) Experimental curves of loop gain
(amplitude and phase response)

Fig. 9-22.—(a) Amplitude response of resolver driver with, loop open; (6) phase response 
of resolver driver with loop open (experimental points).

Frequency in cps

denser values used are screen bypass, 4 pi; first-cathode bypass, 0.5 pf; 
both coupling condensers, 0.1 pi; second-cathode bypass 5.0 pi. It 
will be shown later that these values are satisfactory. The circuit 
tested was thus similar to that of Fig. 9-23. At low frequencies the 
circuit is like an LC-network and at high frequencies like an RC-network 
(whose phase shift approaches 90°), hence the different slopes at high 

All resistors *4 watt unless indicated
Fig. 9-23.—Final design of resolver-stator driver. All resistors 1 watt unless otherwise 

indicated.

and low frequencies of the curve in Fig. 9-22. The frequency at which 
the resolver-stator inductive reactance equals 600 ohms, which is the 
value of its resistance at 500 cps, is given by 2rr/ = R/L, f = 600/7 = 80 
cps. On the low-frequency side, unity gain is reached at about 30 cps 
(Fig. 9-22a). The frequency at which the RC-coupling network has 
45° phase shift is f = l/2irRC. If R = 0.51 megohm, and C = 0.05 ^f, 



Sec. 9-10] STABILITY AGAINST OSCILLATION 365

/ = 6.4 cps. Thus the phase shift of the coupling network is effective 
only at frequencies at which oscillation cannot occur. The rest of the 
condenser values are also satisfactory in that it appears unlikely that 
any 180° phase shifts will occur within the region where the loop gain 
is unity or greater.

A method of determining the approximate values of bypass con
densers is to select them so that their maximum phase-shift contributions 
occur at different frequencies.1 If a 2.0-pf condenser is used to bypass 
the screen, the approximate frequency at which this produces maximum 
phase shift is

2zrCr9j 2tt X 2 X KU6 X 30,000 CpS ~ 3 cpS:

where it does not particularly influence the possibility of oscillation. 
(The screen variational resistance is rg 2) The approximate effect of 
the cathode RC-circuits may be seen with the aid of a family of curves 
showing the falling off and phase shift in output voltages at low 
frequencies in a resistance-coupled amplifier.3 The maximum phase 
shift caused by a phase-advance network (to which each of these is 
equivalent) is 2 tan-1 Vpa/pi — 90° [Eqs. (21) and (22), Fig. 9-6], 
It is found experimentally by measuring the gains with the cathode
condenser removed that the ratio 
of Wpi) = (e2/ei)„/(c2/ei)0 = 4 
for the triode and J for the pen
tode. The corresponding phase 
shifts are 37° and 12°. The 
choice of a 5.0-pf condenser to 
bypass the second cathode resistor 
puts the maximum phase shift of 
that network at about

(2ttX15OOX5X1O-6) CpS “ 21 Cps'
Output in rms volts

Fig. 9-24.—Fractional error voltage as a 
function of output voltage of second stage.

The phase-shift effect of the first cathode network may be put at a higher 
frequency, since the smaller maximum phase shift makes it possible to 
put the curve nearer to 500 cps without producing much phase shift or 
attenuation at 500 cps. If, for example, the value of RC is made to 
correspond to 100 cps,

° 2tt X 100 X 2700 X 106 Mf ~ °’6 gf'

' The process of staggering networks is treated by Bode, op. cit., pp. 514-517.
2 F. E. Terman, Radio Engineers' Handbook, McGraw-Hill, New York, 1943, p. 358.
3 Ibid., p. 359.
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In these calculations, use has been made of the approximation that the 
maximum phase shift of the equivalent phase-advance network is at a 
frequency 1 /^RtC*); actually this is the central frequency of one of the 
inverse-tangent curves, but for small phase shifts the error is not serious.

The final circuit design then assumes the form shown in Fig. 9-23. 
The difference between input voltage and output voltage may be meas
ured by means of an oscilloscope, and the ratio of the peak value of this 
voltage to the peak value of the output voltage is plotted in Fig. 9-24 
as a function of output voltage. Most of this difference voltage, in the 
region above 20 volts output voltage, corresponds to distortion resulting 
from cutoff of the second stage.

Up to an output voltage of 20 volts rms this amplifier approximately 
satisfies the original specifications. The fractional difference between 
output voltage and input voltage is 0.002; for this quantity to vary by 
0.001, variations in component values must combine to produce a frac
tional variation in gain of at least -j. The phase-shift condition is approxi
mately satisfied, for even a loop phase shift of 48° (calculated for values 
of L and C at the extreme limits of the tolerances prescribed) would 
produce an over-all phase shift of only 0.002 sin 48° radian, or about 
0.08°, as compared with the requirement of 0.06°.

Three-stage Amplifier for Resistive Load

9-11. General Considerations.—In the design of this amplifier it is 
desired to increase a voltage by a factor that will be adjustable about a 
mean value of 4.5 and that will remain constant to within + 0.1 per cent 
with respect to component variations. The input voltage is available 
from a relatively low-impedance source, and in order to save weight it is 
desired not to use transformers. A three-stage amplifier -with resistive 
mixing is to be used (Fig. 9-la).1 The amplifier is to use miniature 
tubes. It is required to operate linearly to as high an output voltage 
as is possible with a given plate supply voltage.

Before selecting the tube types to be used, the loop gain necessary 
for the desired degree of constancy of over-all gain must be considered. 
For the purpose of calculating the loop gain 00 required, it is assumed | 
that the loop gain will vary by ± 40 per cent as a result of all component 
variations (+12 per cent peak variation for each stage). This assump
tion means that half the difference between the extreme values of 
1/00, corresponding to the +40 per cent variation of 0 about a value 0O, 
must be 0.001 or less. This is expressed mathematically as follows:

ra»1 4 x Kra - ra)' and (46)
1 By variation of the mixing resistances, the circuit may also be used for multipli

cation or division with low output impedance.
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The voltage fed back to the first grid is 1/5.5 times the output voltage 
of the third stage, this attenuation being characteristic of resistive 
mixing; for if the ratio Rb/Ra = 4.5, the voltage at the first grid will be 
4.5/5.5 times the input voltage plus 1/5.5 times the output voltage. 
Therefore the gain of the amplifier from first grid to third plate must 
be about 5.5 X 500 = 2750. If it is assumed that three similar stages 
are used, the gain of each would be -y/2750 ~ 14. This gain can prob
ably be realized if three 6C4’s (g « 17) are used, as shown in Fig. 9-25.1

If the load resistances of the three amplifier stages are large compared 
with rP! the stage gains will be nearly equal to p and will depend more

Fig. 9*25.—Schematic circuit of three-stage driver without stabilization networks.

on p than on other circuit parameters; therefore the variation of p with 
tube replacement and aging will be the principal source of error. Data 
on the variation of p among 6C4’s are given in the JAN specifications: 
The limits are 15.5 and 18.5 for Ea = —8.5 volts and Ep = +250 volts. 
If the equipment is assumed to be calibrated for a mean value of

p = 17.0 ± 1.5,

the peak variation in p per stage is then ± 9 per cent.
9-12. Design of Individual Stages.—The first two stages can be 

identical, since they are both to operate at relatively low level. For a 
given plate current (limited by the permissible power drain from the 
plate supply) higher gain can be obtained at low plate voltage. Assume 
Ip = 1 ma, Ep ~ 30 volts, Epp — 250 volts. The circuit constants may 
then be determined.

„ (250 — 30) volts ,Rs = -------- ;-------------- = 220,000 ohms, an RMA value.1 ma

1 Alternatively, a pentode output stage might be considered in order to increase 
the maximum output voltage.
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If the bias is —2 volts, then Rk = 2 volts/1 ma = 2 kilohms. The 
operating point on the 6C4 characteristics is shown in Fig. 9-26. The 
size of the cathode bypass condenser must be determined with some 
care, because it influences the phase shift at low frequencies and hence 
the possibility of oscillation. The bypass condensers will be given the 
smallest values that will provide satisfactory gain for each stage; these

Fig. 9-26.—D-c operation of first and second 
6C4 amplifier stages.

may be altered later when the 
question of oscillation is con
sidered. The gain of a single 
triode stage is given by 

(46)

where Rl, the a-c load resistance, 
is the resistance of the parallel 
combination of R3 and R„ (Fig. 
10-25) and is assumed for the pres
ent to be 150 kilohms. The

equivalent circuit is shown in Fig. 9-la. The cathode impedance should 
be sufficiently small not to decrease the gain of a stage more than approxi
mately 5 per cent. The condition that the reactance of Ck/(p + 1) be 5 
per cent of Rl is satisfied by

Ck uRl X 0.05 2a- X 500 X 150,000 X 0.05 °'8 (47^

It may not be necessary to use this value of Ck to achieve the desired 
gain, because the effect of Ck adds in quadrature rather than directly. 
The gain of each of these stages, with no cathode degeneration, will be 
approximately

1 p
1 +

17

h— r 150

16, (48a)

where the values p = 17, rp = 10 kilohms are estimated average values 
at the operating point (Fig. 9-26).

The output of the third stage is condenser-coupled to the precision 
resistor RB (Fig. 9-25). Since the circuit operation keeps the first grid 
near zero a-c potential, the a-c load line for the third stage has a slope 
corresponding to the parallel resistance of Rb and the d-c plate load Rt. 
The value of Ri for maximum voltage output can be found from the 
expression1 Ri = n/2tpRb, where rp ~ 10 kilohms. This value of r,,

1 See Sec. 9-7 for derivation.



Sec. 9-12] DESIGN OF INDIVIDUAL STAGES 369

is the estimated static plate resistance along the zero-bias line, since it is 
this quantity which enters into the derivation for maximum output. 
The value of Rb is determined by the availability of high-resistance 
precision wire-wound resistors. In this design the values Ra = 100

Fig. 9-27.—Preliminary design of three-stage driver exclusive of stabilization networks.

kilohms and Rb = 450 kilohms were chosen tentatively, although it 
might be possible to use higher values and thereby increase the output 
voltage. The value of Ri is then -\/2 X 10A: X 450A ~ 100 kilohms.
The d-c operating conditions are 
shown in Fig. 9-28. A bias of about 
—7 volts (arrived at by drawing 
approximate load lines on the 6C4 
characteristics with the object of 
maximizing the plate voltage swing) 
seems desirable. This corresponds 
to a plate current of about 1.0 ma, 
and Rk ~ 6.8 kilohms. A cathode
bypass condenser of about 1 pi will 
suffice for the third stage. The cir
cuit then assumes the form shown 

Fig. 9-28.—D-c operation of third amplifier 
stage.

in Fig. 9-27.
The values of grid-leak resistors shown are trial values and are likely 

to be changed subsequently in the design of the stabilization networks. 
The gain of the third stage will be approximately

p 14
+ 25

80

« 11, (48b)

the values p = 14, rp « 25 kilohms being estimated from the tube char
acteristics near the operating point as is shown in Fig. 9-28, and the value
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Rl = 80 kilohms being the parallel resistance of the d-c plate load (100 
kilohms) and Rb = (450 kilohms). Therefore the expected over-all 
gain is (16)2 X 11 ~ 2800, and the loop gain a is about 500 (54 db).

9-13. Stability against Low-frequency Oscillation.—The frequencies 
at which the cathode-bypass networks produce maximum phase shift 
can be calculated approximately from the time constants RkCk. If the 
phase shift is small, the frequency of maximum phase shift is approxi
mately that at which one of the RC-networks involved produces 45° 
phase shift, that is, the frequency at which the reactance of the capacity 
Ck equals the resistance Rk. For the network RkCk, this frequency is 
given by the equation

2rfRkCk = 1.
For the first two stages,

f ~ ArRAk = 6.28 X 2000 X IX 10“6 = 80 CpS’

For the third stage, the corresponding frequency is about 25 cps. The 
ratio of the gain with the bypass condenser to that without the condenser 
determines the maximum phase shift resulting from each cathode-bypass 
network; this corresponds to the ratio

of Eq. (22).
This gain ratio may be found from Eq. (46) for the gain of a triode 

amplifier with cathode impedance Zk.

Zk = Rk atf = 0,
Zk = 0 at/ = » ;

therefore,
(SiX^o _ 1 । (m + 1)#*
(Si)r-O Rl + Tp

For the first two stages this has the value

for the third it is

1 -----18 X 2^ = j 22-
150A + lOfc ’

1 -I- 15 X 6.8fc _ i 97 
80k + 25fc

The corresponding maximum phase shifts, which in Eq. (21) are given 
by <t>m = 2(tan-1 pi/pa — 45°), are 5.6° for each of the first two stages 
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and 16° for the third. The reductions in gain make the remaining 
stabilization problem somewhat easier, however, for they produce an 
attenuation of 1.97(1.22)2 = 2.9 at very low frequencies without pro
ducing an appreciable phase shift. Thus it can be considered that the 
loop gain that must be reduced to unity by the coupling networks at 
low frequencies is approximately 500/2.9 « 170. At high frequencies 
the corresponding figure is 500.

In stabilizing the amplifier at low frequencies it should first be deter
mined whether or not the desired response can be obtained with coupling 
networks, each consisting of a single resistance and capacitance. To save 
weight no coupling capacitor greater than 0.1 pi will be used. According 
to the RCA Tube Handbook the grid resistor should not exceed 1.0 
megohm. In order to see if the desired response can be obtained in this 
way, the phase response of the respective RC coupling networks can be 
plotted and the frequency found at which 180° phase shift is obtained. 
It can be assumed that the low-frequency limit is determined by a time 
constant of 0.1 sec resulting from one coupling network whose constants 
have the maximum values given above. It is also assumed that the other 
coupling networks will not decrease the gain at 500 cps by more than 
5 per cent. By a straightforward application of network analysis, the 
central frequencies fi of the other networks can be found.

■ , ■ _1. = 0.95,

or
A = VOA = 0.3, ft - 150 cps, 
ouu

where ft = l/2irRC. Figure 9-29 shows the phase response of the loop 
in the case where a phase shift of 45° occurs at 150 cps for two of the 
coupling networks and at 1.6 cps for the third (corresponding to R = 1 
megohm and C = 0.1 pi). The over-all phase shift other than that of the 
phase advance of the cathode-bypass networks reaches 180° at/ = 12 cps; 
at this frequency the attenuation is approximately (r^)2 = 0.0064. 
This does not quite suffice to reduce the gain to unity,1 since

170(0.0064) = 1.1.

Some small alterations of circuit constants might suffice to reduce 
this value below unity; however, to provide a larger safety factor addi
tional networks are used. The resulting design will therefore indicate 

1 This conclusion may also be reached by use of the formula in Terman, op. cil., 
p. 398. According to this expression a loop gain of 190 may be stabilized in this way,



372 LOW-FREQUENCY AMPLIFIERS WITH STABILIZED GAIN [Sec. 913

how considerably higher gains may be stabilized. The introduction 
of a network of the type shown in Fig. 9-7 for low-frequency stabilization, 
has the advantage not only of introducing an additional equivalent phase
advance network (which, as was shown, can attenuate without introduc
ing phase shift at low frequencies) but also of moving the low-frequency 
limiting time constant to a lower frequency. The reason for this is 
that in the stabilization network of Fig. 9-7, the low-frequency phase 
response is determined largely by RiCi as shown in Eq. (24c); the limita
tion on Ci is still the same as for the single RC-network, but Ri can be 
considerably larger, since it is not in the d-c grid-return path.

If the circuit is designed with three such networks, full advantage 
will be taken of this effect. The values of R i and Ci used are 5.1 megohms

Fig. 9-29.—Phase response of three-stage driver (loop „open) with single JZC-coupling 
networks.

and 0.1 pi respectively, the resistance value now being limited only by 
possible leakage paths. The corresponding central frequency, l/2ir/fiCi, 
is 0.3 cps. The use of these networks affords the possibility of adding 
three phase-advance curves to the limiting curve, which is determined 
approximately by the RiC/s. The design procedure will be to choose 
these three curves so that they add to give an over-all phase response 
that rises fairly rapidly to about 150° phase shift (as the frequency is 
decreased from 500 cps) and remains in this vicinity until the limiting 
curve takes over and brings the phase shift to 180°. In this the designer 
may be guided approximately by the phase-area theorem.1 This states 
that for networks whose gain changes from one fixed value at zero fre
quency to another at infinite frequency, the area under the phase-shift 
curve is proportional to the gain ratio. The theorem is applicable to 

1 Bode, op. cit., p. 286; Terman, op. cit., p. 218.
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phase-advance networks. In order to have a fast rise of phase angle 
with respect to frequency and to increase the phase area between 50 
and 500 cps, at least two of the curves should have effect near 500 cps. 
It seems desirable that the third have effect at lower frequencies. A 
further restriction is that the two precision resistors at the input grid 
of the driver constitute part of the coupling network. This restricts 
the value of R2 for this network because of the other requirements 
on Rb (see Fig. 9-25): that it have a high value in order to increase 
the maximum output but that it cannot be higher than a conven
iently obtainable value for precision wire-wound resistors. The general 
nature of the desired phase response is shown in Fig. 9-30. This diagram

Frequency (cycles)
Fig. 9-30.—First approximation of synthesis of phase networks.

was arrived at by successive trials of different phase-advance curves. The 
following terminology is used: coupling network from first plate to second 
grid, Network A; from second plate to third grid, Network B; from third 
plate to first grid, Network C.

The procedure is to find the constants of networks having approxi
mately the response sketched and then to calculate their properties more 
accurately. It has already been decided that Ri = 5.1 megohms and 
Ci = 0.1 pi for each of the three networks. Furthermore, for Networks 
A and B the sharp rise from 500 cps necessitates1 that 1/2ttR2C2 ~ 110, 
or R2C2 = 0.0015 sec. The only other information necessary to the 
design of the stabilization networks is the value of R2/Ri for each net
work, this ratio being approximately equal to p2/pi for the phase-advance 
network. The expression </>„„ = 2(tan-1 y/p2/p\ — 45°) [Eq. (21)] 
yields p2ip\ = 14 for </> = 60° (Network A) and 120 for </> = 80° (Net-

1 It can be shown that if single BC-circuits are used to attenuate at high and low 
frequencies, the frequencies at which the output is 1/n of its maximum value (n » 1) 
are closest together if both RC products are equal to 1/wc, where wc is the design or 
computing frequency. This would mean setting /i = 500 cps if the amplifier had 
enough gain to spare a factor of l/\/2 for each network.
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Table 9-4,—Constants of Networks A and B

Constant Network A Network B

Ri 
Ci

Ri (first approx.)

Ci (first approx.)

(final values)

5.1 megohms
0.1 4
5-^ = 36o*

14

0.0042^

0.005 pi
300*

5.1 megohms
0.1 pi 
5100* 
“120"

= 0.035 pi
0.02 pi

75*

work B). The resulting constants are shown in Table 9-4. The reason 
for making a second approximation to Rt is that the condenser C2 is 
available only in values such as 0.01, 0.02, 0.05, and 0.1 pi. Thus, 
when the nearest Ct has been selected, the time constant RtCt is wrong 
as regards its effect at 500 cps. The procedure is to readjust Rt to make 
RtCt again equal to 0.0015 sec. The effect on the maximum phase shift 
of the phase-advance networks is small. The phase response of these 
two networks will now be plotted in order to determine more precisely 
what characteristics the third network should have. The roots pt may 
be found from Eq. (24):

+ RtCt + RiCt 
Pz.* = ---------------------X------------------------

For Network A:

Roots Corresponding frequency = -7“, cpsAIT
pz = —41 sec-1 6.5
p3 = —706 sec-1 112
Pi = —1.85 sec-1 0.29

Similarly, for Network B:

Roots
P2 — —11.8 sec-1 
ps = —676 sec“1 
pt — —1.93 sec-1

Corresponding frequency
1.9

108
0.31

The corresponding inverse-tangent curves and their algebraic sum, includ
ing the curves for pi but not for p2 or p3 for Network C, are shown in 
Fig. 9-31. From this characteristic it appears that the third phase
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advance network should have maximum phase shift at 1.6 cps and that 
this maximum should be approximately 50°. Therefore, from Fig. 9-6,

y/pipt — 2tt X 1.6 cps = 10 radians/sec,
and from Eq. (21)

50° = 2

Fig. 9-31.—Phase characteristics for two stabilization networks.

Therefore, for Network C:
Roots 

Pi = 3.6 sec-1 
pg =27.5 sec-1

Corresponding frequency, cps 
0.57
4.4

The constants of Network C may, now be selected. It has already been 
decided that Ri = 5.1 megohms, Ci = 0.1 pi. From the approximate 
versions of Eq. (24c),

P2 R&
~ 1

P3 ~ Rte;

Therefore, approximately,
Ct = 0.055 pi (use C = 0.05 pi), 
Rt a C80 kilohms.
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Finally, for one of these networks, the sum of the resistances of the 
precision resistors at the input terminals of the driver constitutes R2. 
Therefore, the procedure will be to specify values for these resistors con
sistent with the low-frequency-stabilization design. A satisfactory 
solution is to use the values of 550 and 125 kilohms, which add to 675 
kilohms and have the ratio 4.4. The calculated over-all phase-shift 
characteristic for the three networks A, B, and C is shown in Fig. 9-32. 
The phase margin afforded is 20° over a frequency range extending down 
to 0.5 cps. The attenuation at 0.5 cps due to the three networks can

0.1 1 10 100 1000
Frequency (cps)

Fig. 9-32.—Calculated phase re.sponse of three low-frequency stabilization networks, 

now be calculated. The reactance values in the networks at this fre
quency are shown in Fig. 9-33. It may be seen by inspection that the 
attenuation of Network A is about Toi that of Network B, about 
and that of Network C, about 4. Thus the over-all attenuation is 
i/so (72 db). This is considerably greater than the factor of 190 (46 db) 
required. However, the expense in parts is not much greater than if 
Networks A and B alone had been used (which would probably have 
sufficed), and the design indicates the order of gain that could be stabilized 
by this method.

9-14. Stabilization against E gh-frequency Oscillation.—At high fre
quency the limiting phase shifts arc determined largely by tube char-
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acteristics (variational plate resistance and input capacitance). The 
first step in design of stabilizing networks is to find the limiting (asymp
totic) phase-shift characteristic. For the first two 6C4’s, the plate 
resistance is approximately 10 kilohms, and for the third, 25 kilohms. 
The presence of a series resistor between the third plate and the first 
grid would, of course, introduce a considerably higher output impedance 
than rp, but this can be reduced, if desired, by the use of a bypass con
denser. The interelectrode capacitances given1 are Cok =1.8 ppi, 
Cgk = 1.6 ppi, and C„p = 1.3 ppi. The input capacitance of a triode 
amplifier with fixed cathode potential is

Ci„ = C„k + (1 — Gi)Cep (49)

(cf. Sec. 9-2). Here G,, the gain of the stage from grid to plate, is a 
negative quantity. The gains of the three stages as calculated in Eqs.

<-¡3-2 Ml (- j 3.2 Ml (—j3.2M>

0.005 0.02 0.05

Network A Network B ~ Network C “
Fig. 9-33.—Low-frequency stabilization networks with reactances at 0.5 cps.

(48a) and (b) are respectively 16, 16, and 11; consequently the cor
responding input capacitances are 23.7, 23.7, and 17.2 ppi. Since 
allowances must be made for stray wiring capacity and the effect of 
output capacitances of previous stages, safe figures to use are 35, 35, 
and 25 ppi.2 The corresponding values of rv are 10, 10, and 25 kilohms; 
however, if no condenser is put across the resistor from third plate to 
first grid, the effective output impedance of the third stage is 600 kilohms. 
The frequencies at which the phase shifts due to the first and second 
coupling networks are 45° are 450 and G30 kc/sec respectively. If it is 
assumed that these phase shifts add to give 90° at about 500 kc/sec, 
the question arises as to whether or not it is possible to stabilize the 
amplifier by attenuating with a single I?C-network, such as the 600- 
kilohm resistor combined with a coupling condenser from the third to 
the first stage. It will be desirable to let the phase shift of the high- 
frequency networks at 500 ops be a lag of 23° in order to cancel the lead 
resulting from the low-frequency networks (Fig. 9-32). As was mentioned 
above, a lag of 45° would be better if the amplifier were capable of com-

1 RCA Tube Handbook, Vols. 3 and 4, Radio Corporation of America, Camden. 
New Jersey, June, 1942.

2 If pentodes had been used, these figures might have boon reduced considerably.
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pensating for the corresponding reduction in gain (by a factor of 1/\/2). 
If the network produces 23° phase shift at 500 cps, its central frequency 
(of 45° phase shift) must be 1250 cps. This will not quite suffice to 
attenuate by a factor of -Xrs before a frequency of 500 kc/sec is reached. 
If two of the networks are made to attenuate rapidly, they must then 
have a central frequency such that 500 cps will be the logarithmic mean 
between it and 110 cps, the corresponding frequency for the low-frequency 
networks if there is to be zero phase shift at 500 cps. Thus, 5002/110 = 
2270 cps; and if the third network has a central frequency of 630 kc/sec, 
stabilization is possible1 but with a very small safety factor.

The next alternative is to attenuate by means of a single RC-circuit 
and a single phase-retard network. If this is done, it seems desirable to 
start both phase-shift curves near 500 cps, as was done on the low-

Tp =25 k 550 k 100 k

(a) (b)
Fig. 9-34.—(a) High-frequency network at first grid; £>) ThSvenin's theorem equivalent 

circuit.

frequency side. The network from the third plate to the first grid may 
be transformed by use of Thévenin’s theorem, as is shown in Fig. 9-34. 
Its central frequency, if no additional condensers are used, is 45 kc/sec. 
The central frequency required for the first two inverse-tangent curves is 
2270 cps, as was calculated previously. The procedure for selecting the 
other inverse-tangent curve in the phase-retard network will be to plot 
the response exclusive of this curve and then determine its position by a 
graphical trial-and-error process (Fig. 9-35). This process leads to the 
conclusion that the central frequency of the final curve should be about 
50 kc/sec.

The constants of the networks may now be selected. First, a .con
denser will be inserted from the first grid to ground in order to produce a 
central frequency of 2270 cps. The value of this condenser that makes 
the capacitive reactance equal to the resistance (Sec. 9-3) is

C1 = 2ïrfR - C’ = 6.28 X 1.0 X 106 X 2270 farad “ 35

= (680 - 35) ppi. (50)

1 Terman, op. cit., p. 398.
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A value of 680 ppi will be used. Next, a phase-retard RC-network as
shown in Fig. 9-36 will be introduced into the coupling circuit between

Fig. 9-35.—Calculated phase characteristics of high-frequency network.

(a) (6)
Fig. 9-36.—Coupling network between first and second stage, (a) Interstage coupling 

network; (b) approximate high-frequency equivalent circuit.

Sec. 9-3. The behavior of the network near 500 cps is determined largely 
by rp and C3 and is characterized by a central frequency of 2270 cps; 
rp = 10 kilohms; therefore C3 = 6800 ppi, and an approximate value of
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0.006 pi is used. The other central frequency is 50 kc/sec and is deter
mined by RiCz of Eq. (25). Therefore

Ra 6.28 X 6 X 10-’ X 5 X 104 540 °hmS'

The nearest RMA value, 560 ohms, will be used. The roots pt and the 
corresponding central frequencies may now be calculated, using the 
values rOM = 10 kilohms, C, = 35 ppf, R3 = 560 ohms, C3 = 0.006 pt.

P2 RiC.
(^ + ^~
\R3C3 rmlCs 

p3,4 —--------------------s—

1
R3ruglC3C,

Therefore
p3 = 3.02 X 105 sec-1 
p3 = 57 X 10” sec“1 
p, = 14,900 sec-1

fi = 47 kc/sec 
f3 = 9.1 Mc/sec 
ft = 2.4 kc/sec

Fig. 9-37.—Over-all phase characteristic of amplifier at high frequencies (calculated).
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It may be noted that the limiting high-frequency characteristic for this 
network has been moved from 450 kc/sec to 9.1 Mc/sec. Whereas the 
central frequency determined by the plate resistance of the first stage 
and the input capacitance of the second was 450 kc/sec, the addition of 
the stabilization network effectively puts a 560-ohm resistance in parallel

Network A Network B Network C

9.3 k
O—W» 1 •

0.006#
(-¡30 ohms) I

§560

1----- 0
#35/^

(-¡4.5 k)

8.4 k 
O w------------  

25/ipf 
(-¡6.4 k)

100 k

715 ppf - : 
(-¡220 ohms)

Fig. 9-38.—High-frequency stabilization networks with reactances at 1.0 Mc/sec.

with the input capacitance at high frequencies. The resulting phase 
response is determined not by the plate resistance of the first stage alone 
but by the parallel combination of this resistance and 560 ohms. This 
results from an effect like the one taken into account by means of The- 
venin’s theorem for the network at the first grid. At sufficiently high 

Fig. 9-39.—Design of three-stage feedback amplifier with stabilization networks.

frequencies the impedance of C3 is small, and the resistances rp and R3 
form a similar combination. The phase response of the high-frequency 
networks is plotted in Fig. 9-37. The phase shift is less than 160° tip 
to a frequency of 1 Mc/sec. The attenuation can now be estimated as 
was done for the low-frequency network. The three interstage networks 
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are shown in Fig. 9-38, with reactance values calculated at 1 Mc/sec. 
The plate-load and grid-leak resistances, which have been neglected so 
far, are included, and it will be seen that their effects are small. In the 
case of Network C, the output capacitance of the third triode cannot rigor
ously be lumped with the input capacitance of the following stage, but 
this fact has been ignored in getting an approximate result. The estimated 
values of attenuation at 1 Mc/sec are fr, |, and Tiro for Networks A, B, 
and C, respectively. The corresponding over-all attenuation is 15.000 
(84 db).

The final paper design of the amplifier is shown in Fig. 9-39.
9-15. Experimental Checks and Completion of the Design.—A test 

model of the circuit of Fig. 9 39 was set up. No oscillations were 
observed. The maximum output was about 70 volts rms before dis
tortion was observed at the first grid. When the 5-1-megohm resistor 
and O.l-Mf condenser of Network A were disconnected, oscillations 
occurred at a frequency of 12 cps. This is about what would be pre
dicted from Fig. 9-31 if the phase-shift curve continued up from 500 cps 
as would be caused by the two single RC-coupling networks alone. Dis
connecting the 5.1-megohm resistor and the O.l-Mf condenser in both the 
second and third networks did not produce oscillations. Disconnecting 
the 560-ohm resistor and the 0.006-pf condenser in Network A produced 
oscillations at 180 kc/sec; the curves in Fig. 9 35 labeled 2.4, 450 and 
630 kc/sec would add to give 180° phase shift at about 500 kc/sec. 
When the 680-mmI condenser at the first grid was disconnected, however, 
no oscillation occurred. These measurements show that large safety 
factors were allowed. They are still no assurance in themselves, how
ever, that if the circuit were produced in quantity, Network A alone 
could be used for stabilization, because a combination of adverse param
eter variations within the allowed tolerances might still cause oscillation.

The measured loop gain was 430, the respective stage gains being 
15.5, 13.3, and 11 as against the predicted values of 16, 16, and 11 respec
tively. The d-c electrode voltages were roughly as predicted.

The ratio of zero-frequency to infinite-frequency gain as regards 
the cathode-bypass condensers was found by removing one condenser 
at a time and measuring gains. The respective ratios were 1.5, 1.5, and 
1.8 as compared with the predicted values 1.22, 1.22, and 1.75, and the 
measured over-all ratio was 4.0 instead of 2.6. Some of this discrepancy 
is probably due to the fact that the Re’s were changed for the stabiliza
tion circuits after the calculations of gain ratios were made. This again 
means that the precautions taken in low-frequency stabilization were 
unnecessarily great, for the effective loop gain that had to be reduced 
by the networks was Kr1 = 107 rather than 190.

The loop gain and loop phase shift were measured over a limited
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frequency range (10 cps to 30 kc/sec) and were found to agree with the 
predicted values.

To complete the circuit diagram, it is necessary to include tolerances 
and wattages and to specify parts that may be procured. This will not 
be done in the present case, except to state that every condenser or 
resistor except the two precision resistors at the first grid could probably 
be assigned a tolerance of ± 20 per cent.

The design of this circuit is by no means complete for production. 
It should be laid out and built with the proper physical arrangement of 
parts, and this model should be tested for oscillation, mounting rigidity, 
life of tubes, etc. The problem of parasitic oscillations that arise from 
parameters not represented in the circuit diagram (stray wiring capaci
ties, lead inductances) must be attacked separately. If the additional 
parameters can be represented as lumped constants, an analysis can be 
made, but the usual procedure is to insert experimentally small shunting 
capacitors or small series resistors in grid circuits in order to suppress 
such oscillations.

In designs of circuits to suppress oscillations, it is desirable to have 
large safety factors. This not only reduces the chance of oscillation but 
makes it possible to select circuit components that are manufactured to 
wider tolerances.

The high-frequency network in this circuit, a single phase-retard 
network, was more effective in reducing gain than was the low-frequency 
one, which involved three phase-advance networks. This is shown by the 
fact that over a frequency range of a factor of 2000 (500 cps to 1 Mc/sec) 
the high-frequency network attenuated by a factor of 15,000 whereas 
over a frequency factor of 1000 (| to 500 cps) the low-frequency network 
attenuated by a factor of only 4000.

It is of interest to note that the asymptotic characteristic or limiting 
phase-shift curve is not a fixed limit. The use of low-frequency or high- 
frequency stabilization networks, as in this circuit, has the effect of 
pushing both asymptotes farther out (for different reasons in the two 
cases).



CHAPTER 10

LOW-FREQUENCY FEEDBACK AMPLIFIERS

By Harold Fleisher

10-1. Frequency-selective Networks.—Inverse feedback can be used 
in the design of low-frequency selective amplifiers to attain a desired 
over-all characteristic, but this characteristic is not the flat response 
of the type desired in audio amplifiers. In this case, a network that 
rejects a certain frequency range can be used in the feedback loop to 
produce maximum over-all transmission in that frequency range. The 
circuit, then, is an electronic bandpass filter, which for sufficiently low 
frequencies (for example, 30 cps) may be of much lighter weight than the 
corresponding LC-filter. Staggered tuning (Chap. 5) can be used to 
sharpen the bandpass characteristics.

The lattice or bridge network is the most general selective network 
that can be used in the feedback loop of an amplifier to produce a desired 
frequency-selective characteristic. Balance of the bridge at a particular 
frequency is the proper null condition for the rejection of that frequency, 
and by suitable choice of components this balance can be obtained at 
any desired frequency. The Wien bridge is an example of such a network.

Bridge networks, however, do not have a common ground between 
their input and output terminals, and this feature either limits the type 
of circuit in which they can be used or requires the use of additional 
coupling devices such as transformers. The latter alternative may be 
undesirable for very low-frequency applications. Circuits such as the 
bridged-T and parallel-T (or twin-T) networks, which are equivalent to 
the Wien-bridge network, are three-terminal networks having a common 
ground for both input and output terminals and are thus more useful. 
These networks', however, have several inherent limitations, perhaps the 
most serious of which is the greater interdependence of the parameters 
that must be adjusted to set their rejection frequency. This inter
dependence causes component tolerance specifications to become more 
critical; and if it is desired to vary the rejection frequency, more inter
dependent controls are required. For example, to adjust the rejection 
frequency of a Wien bridge continuously and over a fairly wide range 
requires that two components (two capacitors or resistors) be simul
taneously varied, whereas similar adjustment of a twin-T network 
requires that three components be simultaneously varied.

384
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The networks to be discussed in this section are, specifically, the 
Wien-bridge network, a bridged-T network involving a coil the Q of 
which may be used as a parameter to vary its selectivity characteristic, 
and the twin-T network (see Fig. 10-1).

The mathematical basis for the following discussion will be the 
transfer function, which will be determined for no-load operation of the 
network. This function is defined as the ratio of the output voltage 
to the input voltage and will be denoted by /3. Other characteristics, 
such as input and output impedances, will be of secondary importance, 
because the networks will be used under no-load conditions.

Such networks may be easily analyzed for /3 by the use of nodal analy
sis. Thus, if Terminals 1 and 3 are the input and output terminals of 
an arbitrary four-terminal network that has a common ground for the 

input and output terminals, and if A is the characteristic determinant
of the network,1 then

Co _ A13

C; “ An’ (1)

where Au and An are the cofactors of A, including the proper sign. 
Bridged-T Network.—For the bridged-T network in Fig. 10-16,

A =

pC ---- 1 - pC
r + pL

-pC ~ + 2pC

-- / f — PGr + pL r

r + pL

- pC

pC 4---- T—r r + pL

(2)

where p = ja;

1 See Chap. 1.
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and

-pC

1 -pCr + pL
W+1 -pC

-pG
»

pC + , jr r + pL)

(3)

The rejection frequency «o, at which the null in transmission occurs, is 
obtained by setting An = 0, but only if An + 0. The two conditions 
imposed on the components to obtain the null (obtained by setting the 
real part and the imaginary part of Au equal to zero) are1

1 2
“° = /RC2’ and = LC (4)

If the Q of the coil at the resonant frequency is used as a parameter 
(Qo = uaL/r), the two conditions imposed on the network for a null in 
transmission become

Qo — wfi2RC, = A.
° LC (5)

Thus «o is the resonant frequency of the inductance combined with the 
two series capacitors. If p is defined equal to w/«o and Qo is used as a 
parameter, fi for the bridged-T network in Fig. 10-1 may be written

1
6bt

p / 
p2 — 1 \Qo/

(6)
1 ~j

Equations (5) and (6) provide most of the network information required 
to design a frequency-selective amplifier.

Wien-bridge Network.—The null conditions and the value of fi for the 
Wien-bridge network may be obtained in a similar manner.

2 _ 1 _ 1
R3RiC3Ci R2C2

J _ Rs , Gt _ „ 
a ~ Ri C~3

1 There ia no loss in generality in assuming both capacitors equal except in study
ing the effects of capacitor variability. Equation (4), however, may be written as 
follows:

2 L 
rRC^i

and
2 _ Cl + Ci 

“° " LC&, ’
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1 1
" 3 -3^

J p- - 1
(8)

where again p = w/wa.1 The factor — | may be neglected in considering 
the frequency response of the network; but because it is part of the 
voltage ratio, it must be taken into account when the Wien bridge is 
to be used in a specific circuit.

Twin-T Network.—The null frequency of the twin-T network is 
determined by the two equations

(Ri + R^RiCiCt
and ) (9)

2 _ Ci + C2 l
"" " CsCiCiRiR, /

from which, by eliminating frequency, the null condition as a function 
of the component parameters may be obtained.

R\R2
Ri + Ri _ Ci + C2 

r3 - c3 (10a)

Because of the separation of variables, n is a real number that may vary 
from 0 to <». It has an optimum value, n = 1, although other considera
tions may require using values of n other than unity, such as n = 2 or 
n = i.

If Ri = R2 = R and Ci = C2 = C, then

- f.' <>»>
and the transmission of the twin-T network becomes

0TT — P2 ~ 1

(p2 - 1) - j2p
\ y/n /

(lla)

If Ci = C2 = C is given an arbitrary value, and if Ri = R2, the circuit 
may be “balanced” at any prescribed frequency by variation of the 
resistances alone, because then Eqs. (9) both become

j _
“° R2C2’ 

1 See Fig. 104a for definition of a.
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and they are therefore simultaneously satisfied. To achieve balance 
at an arbitrary frequency, adjustments of two resistors are required; 
to achieve balance at a prescribed frequency, three resistors must be 
adjusted.

The optimum value of n may be defined as the value of n for which 
|0| has the steepest slope at the rejection frequency /0 = o>o/2ir. Since

. dp (n -fi 1)’

the maximum slope is determined by setting d/dn (d|0|/dp)p„i equal 
to zero, from which it is readily determined that the maximum slope of 
the attenuation characteristic occurs when n = 1. Then

1
0TT —

1 -M"- 
p- - 1

(lib)

Equation (11b) will be used throughout the remainder of this chapter.
It must be noted here that the slope of |0| at p = 1 is a relatively 

slowly varying function of n and other considerations may require 
choices of 7i other than n = 1. Thus, if n = 2 in Eq. (10b), R3 = R/4, 
C3 = C, and all three capacitors become equal in value. This makes it 
possible to couple all the capacitors mechanically and have a continuous 
variation of rejection frequency. On the other hand, although the 
maximum slope is —0.5 at n = 1, the slope decreases only to —0.472 at 
n = 2. This is approximately a 6 per cent change. Similarly, at 
n = y, R3 = R, C3 = 4C, and the maximum slope also decreases to 
-0.472.

Inspection of Eqs. (6), (8),

Fig. 10-2.—Phase-amplitude diagram 
of twin-T network.

and (11b) indicates their similarity in 
form. Equation (lib), the transmis
sion of the twin-T network, may 
therefore be used as a typical example. 
In polar form, 0 = |0|F, and from Eq. 
(11b)

(12)

Then |0| may be expressed as a function of 9: |0| = cos 9, which is seen to 
be the polar equation of a circle of radius i, tangent to the imaginary 
axis and with center at (|,0) (see Fig. 10-2). From Fig. 10-2 it may be 
seen that as p increases from Oto 1 (w from 0 to w0), 9 varies from 0 to 
— ir/2; and as p increases from 1 to « (w from wo to «), 9 varies from



Sue. 101] FREQUENCY-SELECTIVE NETWORKS 389

Fig. 10-3.—Characteristics of rejection networks. The values of Qo pertain to the 
bridged-T network; curve A pertains to a twin-T network for which n = 1; curve B pertains 
to a Wien-bridge network, (a) Phase characteristics; (6) amplitude characteristics.
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— 3ir/2 to — 2r (or +tt/2 to 0). Thus a discontinuity in phase exists 
at p = 1.

In Fig. 10-3 are shown the phase and amplitude characteristics of 
rejection circuits of this type. The foregoing analysis shows that, 
whereas in the Wien-bridge and twin-T circuits the exact conditions for 
maximum sharpness of the rejection band are completely realizable 
(as, for example, by setting n = 1 in the twin-T network), in the case 
of the bridged-T network the sharpness of the rejection band is deter
mined by the Q of the choke coil employed, and this is set by practical 
and not by theoretical considerations. Therefore in Fig. 10-3 are 
shown characteristics for a bridged-T network employing chokes of 
several Q values, but only a single curve corresponding to the condition 
for narrowest rejection band is shown for each of the Wien-bridge and 
twin-T networks. It will be seen that the Wien-bridge network cor
responds to a bridged-T network whose choke has a Q of f and that the 
twin-T network corresponds to a bridged-T network whose choke has a 
Q of

The practical possibility of achieving complete rejection at the null 
frequency can be discussed on the basis of the null conditions determined 
by the component parameters of the network. The effects of variability 
of components due to temperature effects, aging, and manufacturing 
tolerances must be considered if a given frequency is to be rejected. If 
the rejection frequency is to be adjustable over a range of values, the 
additional problem of simultaneously varying the values of two or 
more components is introduced. This second problem may be con
siderably simplified by the proper choice of component values and of 
suitable mechanical couplings.

If the twin-T network is used as an example, it is seen from Eqs. (9) 
that1 if wo is assumed to be constant and Ci Ci, Ri « Ri,

Temperature, tolerance, and aging variations can all be considered 
by means of Eqs. (13). By inspection of Eqs. (13), it can be seen that 
for the ideal case the temperature coefficients of the resistors and capaci
tors should be equal and opposite, i.e., the capacitors may have a positive 
temperature coefficient (such as silver mica), and the resistors may have 
a negative temperature coefficient (such as precision carbon resistors).

1 If Rt and R, are equal within 10 per cent (and the same is true for Ci and Ci), 
then Eqs. (13) are accurate within 0.25 per cent.
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Commercial components are available, however, that have temperature 
coefficients of less than + 50 parts per million per degree centigrade. 
For many purposes, the probable operating-temperature range is so 
small that the use of such components will introduce negligible tempera
ture effects.

The choice of the tolerances to which components must be held is 
determined by the following factors: expense and ease of obtaining the 
component, facility of adjustment, and required accuracy of adjustment. 
Components of better than +1 per cent accuracy are generally expensive 
and difficult to obtain. However, as the precision of the component 
increases, the amount of adjustment required decreases.

Aging is an unknown factor for many components and is determined, 
among other things, by conditions of use. The effects of aging can be 
minimized if well-constructed, stabilized components are used.

If sufficiently accurate frequency standards“are available, ± 1 per 
cent or +2 per cent components are usable and represent a good com
promise between the use of precision components and ease of adjustment. 
The “ease of adjustment” may be arbitrarily defined as being inversely 
proportional to the percentage range that the variable components must 
cover to maintain the null at a given frequency.

In Fig. 10-lc, Rz may be split into two resistors R( and R'z, and R3 
into R( and R3. R'z and R3 are then the trimmer resistors which are 
determined within the limits prescribed by Eqs. (13). Thus, if ± 1 per 
cent resistors and ±2 per cent condensers are used, the conditions on 
R" and R" are readily determined from Eqs. (13) to be

0 g R'f g 0.08R,
0 O" g 0.06 f = 0.03R. (14)

The null discussed in this section was assumed to mean zero trans
mission, but in the next section the actual attenuation required will be 
discussed in relation to the requirements of frequency-selective amplifiers.

10-2. Frequency-selective Amplifiers.—The frequency-selective am
plifiers to be discussed in this section 
can be qualitatively described as hav
ing a frequency characteristic roughly 
corresponding to the inverse of that 
of the rejective network and similar to 
that of a single-tuned RLC-network. 
A quantitative discussion will be given 

e

Fig. 10-4.—Block diagram of rudi
mentary feedback amplifier.

under the following assumptions: A single feedback loop is used through 
the rejective network; the amplifier without feedback is stable at all
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frequencies; and the output signal applied to the feedback loop is r 
radians out of phase with the input signal.1

The simplified block diagram of Fig. 10 4, where 0 may be chosen as 
the transmission of any of the networks discussed in Sec. 10-1, then 
applies. If 9 is the over-all gain of the amplifier, then

c = —s 1+00 (15)

which is the customary feedback formula.
example, 0 may be chosen as

In the twin-T network, for

0TT
1

4
1 — J 1P----p

where u — p — 1/p. Then,

(16)

If the bridged-T network is used,

0BT------------- 2'
1 ~

and2
9 = 1________ = 1 ~ j Go«)

1 + F (a + 1) - i Çq—

From either Eq. (16) or (17), it may be shown that 9/« defines a circle 
in the complex plane with center on the real axis at |(Ct + 2)/(G + 1), 
having a radius of ^0/(0 + 1) (see Fig. 10-5). The ratio g/G is unity 
at p = 1, (a? = a>o) and is a minimum at zero and infinite frequencies. 
This minimum is readily seen to be 1/(0. + 1). As S approaches

1 a may then be taken as a positive real number and equal to the gain of the ampli
fier without feedback.

2 The over-all gain of an amplifier using either a Wien-bridge or a twin-T network 
may be obtained from this equation. Thus, if Qo = I, S/a is given for an amplifier 
employing a twin-T network; and if Qo — J, g/d, is given for an amplifier employing 
a Wicn-bridge network.
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Fig. 10-5.—Phase-amplitude diagram 
of feedback amplifier employing bridged-T 
network.

infinity, the radius of the circle approaches I, and the circle becomes 
tangent to the imaginary axis.

For comparison, the “selectivity” of the ELC-network shown in 
Fig. 4-2, may be defined as Z(u)/R = ys = 1/(1 + jQu), from Eq. (4-1) 
where u = (u/w0) — (wo/w). The quantity 7« defines a circle of unit 
diameter tangent to the imaginary 
axis.

The width of the pass band of 
the series-resonant circuit may be 
specified in terms of the frequen
cies at which the power transmitted 
is half that transmitted at reso
nance, i.e., at which yj = I. It is 
well known that these frequencies 
are simply related to the Q of the 
series-resonant circuit, being given 
by 1/u = +Qo where Qo = oiaL/R.
the bandwidth directly in terms of Q.

The fact that both 7., and g/0 define circles in their respective com
plex planes indicates the similarity in shape of their phase and amplitude 
characteristics. It is therefore reasonable to define a Q-factor for the 
feedback amplifier in terms of the frequencies at which (Q/S)2 = I. 
From Eq. (16),

This makes it convenient to specify

At the half-power frequencies, wj and u2, |^| = —; and from Eq.

(18a),
2 2 __ 16_

Ul "2 2'
This can be rewritten as

l _ J_ ViQ + I)2 - 2 
u i «2 4

By analogy with the RL( -net.work, Q = 1/Ui = l/u2. T hus.

„ _ ViC + J)2 - 2 
hlrr — -----------j-----------

Since, in general, (« + 1) >50, the numerator can be expanded in a 
power series, from which it follows that with an error of less than 0.04
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per cent,

Qtt = (18b)

Similarly, from Eq. (17), the Q of the amplifier using a bridged-T network 
in the feedback loop is

qBt = (19)
\ ^ /

where Qo is the Q of the coil at the resonant frequency o>0.
The same definition of Q may be applied to the rejective networks 

themselves; the Q of the twin-T network is found from Eq. (lib) to be 
1 and for the bridged-T network to be Qo/2.

It is to be noted that the phase and amplitude characteristics of 
these amplifiers for the moderate gain (about 40) required to yield a Q 
of 10 are identical with those of the RLC-network, not only at the 
resonant frequency w0 but also for an appreciable frequency range about 
the resonant frequency. With a Q of 10 the minimum transmission 
obtainable (theoretically at zero and infinite frequencies if a perfect 
amplifier is assumed) is K of the maximum transmission at or minus 
32 db. As 8 approaches infinity, the characteristics of the frequency- 
selective amplifier approach those of the RLC-network in both phase 
and magnitude. Using the Q defined in Eq. (18b) as a parameter, 
Eq. (18a) may be written as

0 - «
where u = p — 1/p. The corresponding phase angle is

1 40 = tan-1 7;----- tan 1 -■ Qu-------------u

“Universal” resonance and phase curves for a frequency-selective 
amplifier using a twin-T network in a degenerative feedback loop may 
now be plotted from the following equations, using Q as a parameter.

= -10 log10 (1 + QV) + 10 logI0 (1 + (21a)

1 4
0 = tan-1 77- — tan’1 — (21b)Qu u

These curves are illustrated in Fig. 10-6. Equations (21) apply only to 
a frequency-selective amplifier using a twin-T network in the feedback 
loop or to a bridged-T network for which Qo = /. Similar equations, 
which are more general since they involve the use of two parameters
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Fla. 10 6.—Resonance and phase curves for a frequency-selective amplifier using a twin-T 
network in a degenerative feedback loop, (a) Resonance curves; (b) phase curves.
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(Qo of the coil and Q of the amplifier), may be obtained for amplifiers 
using a bridged-T network,

— 10 log10 (1 + QW) + 10 logio

6 = tan-1 -7— Qu

1 + (22a)

(22b)

Equation (21a) simplifies to the expression for the transmission of the 
ÄLC-network,

|7,U = — 10 logic (1 + QM,

with an accuracy of about 1

«0
Fig. 10-7.—Block diagram of rejection 

amplifier.

per cent if |u| g 0.57. This condition 
restricts the frequency range to 

0.76 1.32. Equation (22a) may
be similarly simplified to the same order 
of accuracy if |w| 0.28/Qo.

A special case of the frequency- 
selective amplifier is the rejection ampli
fier that effectively “sharpens” the 
null of the network used in the feedback

loop. The transmission of such an amplifier is seen from Fig. 10-7 to be

_ aß
“ 1 + aß' (23)

The Q of the rejection amplifier using a twin-T network is approximately 
(Ct — l)/4 to the same order of accuracy as was determined for the 
selective amplifier. Similarly, the Q of the rejection amplifier using a 
bridged-T network is Q = Qo/2(a — 1). Thus the frequency dis
crimination of the network is improved by a factor nearly equal to the 
gain of the amplifier without feedback.

Network-attenuation Requirements of Frequency-selective Amplifiers.— 
The actual attenuation of the network at the null frequency as related 
to the gain of the frequency-selective amplifier without feedback (i.e., 
at the null frequency) can be discussed by means of the following approxi
mate equation derived for the amplifier with a twin-T network in the 
feedback loop:

||| ~ 1 +2 (24)

where Q is the Q of the frequency-selective amplifier. A value for 
n slightly different from zero may be obtained by varying a com

ponent parameter from the nominal value required for a null. The 
feedback ratio 0 may then be expressed as a function of frequency and
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of this parameter. The required gain and transmission of the amplifier 
having been decided upon, the required attenuation of the network at 
the null frequency is then determined by Eq. (24). This, in turn, 
determines the amount of adjustment required, as discussed in Sec. 10-1.

The gain and transmission requirements are a consequence of both 
the Q desired and the over-all stability of the amplifier as determined 
by its Nyquist diagram.1 The Nyquist diagram of these amplifiers is 
essentially that of the fi diagram shown in Fig. 10 2. The fi of the dia
gram must be multiplied by a, but at the null frequency afi ~ 0, and 
at other frequencies it remains positive. If, for example, the maximum 
variation of the transmission at the null frequency is allowed to be 
approximately 10 per cent in order to be safely within stability require
ments, and the Q desired is assumed to be 20, then

2 y/2 Q|d|(p-i) = and |d|(P=u = Jq 2

Thus, ~ 1/600, which represents an attenuation of about 56 db.
Because an attenuation of approximately 60 db is difficult to measure, 

the rejection amplifier may be used to measure the actual attenuation 
of the network at the null frequency. This amplifier not only improves 
the frequency discrimination of the network but also raises the voltage 
level of the observed signal by a factor proportional to the gain of the 
amplifier. Thus, from Eq. (23) the attenuation of the rejection amplifier 
at the null frequency can be obtained in a manner similar to the deriva
tion of Eq. (24).

|9J(p-d - 4Q!3|(p-i>, (25)
where Qr is the Q of the rejection amplifier. If, now, the Q of the rejec
tion amplifier is equal to the Q of the frequency-selective amplifier, the 
following equation is obtained:

|| ~ 1 + “A-' (26)

Under the conditions of the previous example, namely, that Q = 20 
and that the variation in gain be approximately 10 per cent, it is seen 
that |gr|(P=i) = -\/2/10, which represents an attenuation of 17 db, and 
that, from Eq. (25), |d| = |g!/80 which, again, represents an attenuation 
of 56 db. Thus the null required of the network, although relatively 
difficult to measure directly, is easily determined by means of a rejection 
amplifier of the same Q (i.e., same gain without feedback) as the fre' 
quency-selective amplifier in which the network will be used.

1 See H. W. Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand, 
New York, 1945, for a complete discussion of the Nyquist diagram and the design 
criteria that it imposes.
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10-3. The Design of Frequency-selective Amplifiers.—According to 
the simplified theory discussed in the preceding sections, the amplifier 
must fulfill the following general conditions: (1) The bandpass char
acteristic must be essentially flat in the frequency range within which the 
selected frequency will lie; and (2) the amplifier must be Class A, that is, 
essentially linear.

Condition 1 means that nowhere within the frequency range should 
the transmission attenuate at more than a few 2) decibels per octave 
and beyond this range it should be sufficiently flat so that the over-all 
00 characteristic falls off at less than 12 db/octave.1 Because the

operating-frequency range is limited, the coupling networks are .simple 
and in many cases consist simply of an RC-network. Amplifiers of 
more than three stages require more complicated coupling devices, such 
as decoupling stages designed to eliminate undesirable feedback loops.

Condition 2 requires that the tubes be operated in the linear part of 
their characteristics, but for many purposes Class AB operation is 
allowable.

The “no-load” condition on the network can be obtained by coupling 
it directly to the grid. Where necessary, mixing networks may be used 
if they approach the no-load condition by having an impedance of at 
least 2.5 times that of the output impedance of the network. However, 
the mixing network not only may introduce an undesirable phase shift

1 See Bode, op. cit. An attenuation of 6 db/octave will result in 90° phase lag for 
minimum-phase-shift networks.
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but will also attenuate the signal to the grid, producing incomplete 
feedback.

The following discussion of the design of a typical single-stage fre
quency-selective amplifier will illustrate the requirements imposed on 
such amplifiers under the given conditions of a specified Q and a definite 
null frequency. The schematic diagram of the amplifier is shown in 
Fig. 10-8. As a specific example, let the Q be 15 and the null frequency 
be 30 cps. Furthermore, let the network used be a twin-T network. 
This network has the advantage of not requiring a choke, which may be 
prohibitively large and heavy at 30 cps. It is also assumed that the 
network has been adjusted to a null as determined in the previous 
sections. The tube shown is a triode but may be a pentode if necessary. 
The no-load condition on the twin-T network is obtained by tying it 
directly to the grid. The proper grid bias is maintained by the direct 
coupling through the network. The input signal generator is assumed 
to be of low impedance, and the input signal Ei may therefore be applied 
to the cathode.

At the midfrequency of 30 cps, the gain of the amplifier without the 
selective degenerative feedback is given as

a = r + p~ZTFiW’ <27)
+ Hl T

where rp is the dynamic plate resistance of the tube and p is its amplifica
tion factor. Because, from Eq. (18b), the gain required is four times 
the Q, i.e., Gt = 60, a triode must have a fairly high p and rp in order 
to be used. Many triodes of the receiving type cannot qualify. Many 
duplex tubes, however, contain such triode components, and many 
receiving and uhf pentodes, when triode-connected, perform adequately. 
A typical example might be a tube with a p of 100 and an rp of 100,000 
ohms. If, in Eq. (27), the impedance Rt of the generator is neglected, 
the load resistor Rl is found to be 150,000 ohms. If this value is used 
to determine a load line, the B+ and bias voltages necessary for proper 
operation of the amplifier can be found.

The high-frequency response of this amplifier can be neglected, but 
the low-frequency response is extremely important. The constants of 
the coupling network Ci and Ro must be so chosen that its 3-db point 
occurs at a frequency so much less than the null frequency of the network 
that the additive phase shifts cannot cause the amplifier to oscillate. 
A conservative design criterion would be to have the 3-db frequency 
of the coupling network approximately one-tenth the null frequency of 
the twin-T network. Then the phase lead introduced by the coupling 
network at the null frequency would be approximately 10°, whereas the 
phase lag introduced by the twin-T network at the 3-db frequency of 
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the coupling network would be approximately 22.5°. Thus, for example, 
the 3-db frequency would be 3 cps.

The grid-leak resistor may be chosen as high as is practicable to 
insert in the grid circuit of the particular tube, and it must not be over
looked that in the circuit in Fig. 11-8 the two branch arms of the twin-T 
network are part of the grid leak. If a nominal value of R„ = 1 megohm 
is chosen, from the relation a>3dtlRgCi = 1, a value for C, = 0.053 pi is 
obtained. The choice of value of CL is similarly determined for low- 
frequency response and depends upon the impedance to which it is 
coupled. For applications at frequencies below 1000 cps, the high-fre
quency response of the amplifier may safely be neglected because it is 
determined mainly by the shunt impedances of the amplifier stages. 
These are negligible for single-stage and two-stage frequency-selective 
amplifiers but must be taken into account for multistage amplifiers, in 
common with all feedback amplifiers.

Equation (27) may be used to investigate component tolerances for 
the amplifier if it is again assumed that R, = 0. The tolerances for 
Ci and Rg are determined by the phase-shift requirements and under the 
conditions given previously may safely be ± 10 per cent or even + 20 per 
cent. From Eq. (27)

¿G = Sp 5Rl / r„ \ _ Srp / rp \ 
Gt p Rl \rp + Rl) rp \rP A Rl)

The manufacturing tolerances for many tubes are such that p and rp 
have approximately the same percentage variation, whereas the gm may 
have about 1.5 times as much. Thus Eq. (28) may be approximated 
by

&Q _ bd ip / Rl \ , &Rl / rp \ . .
Q" “ o' ~ P yrp +lL.) + Rl \l + Rl)' ( ’

Using the values given for rp and Rl and assuming that

+ brP , 1n + — = —- = + 10 per cent, 
M r„

then

~ +6 per cent + 0.4 (30)
Q Rl

Thus, if a manufacturing tolerance of +10 per cent is allowable for the 
Q of the amplifier, the tolerance imposed upon the load resistor also is 
approximately 10 per cent. On the other hand, because of the tube
tolerance limitation, the manufacturing tolerance of the Q in the example 
given can never be less than ±6 per cent and with +5 per cent load 
resistors would be +8 per cent.
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If the cathode resistor Ri (in Fig. 11-8), which is assumed to be the 
generator impedance, is appreciable in value, it must be considered as 
causing cathode degeneration. Equation (29) may be then written as

bQ ~ bp /_____ El_____ \ . bRi, /______rp______\ . .
Q p \rp + El + pRi/ Rl \rp + El + pRi)

The additional assumptions in Eq. (31) are that g» 1 and that El and 
Ei have the same percentage variations. The effect of Ei for a high-M 
triode is pronounced, even if Ei is only about rn of Rl. For the param
eter values previously assumed, if Ei = 1500 ohms, the percentage varia
tion of Q becomes

~ ± 3.7 per cent + 0.25 (32)
W Hl

Thus, the effect of tube-parameter variations (which includes aging) 
is reduced by nearly one-half, and the allowable resistor tolerances are

-Egi

Fig. 10-9.—Frequency-selective amplifier employing cathode follower, 

correspondingly widened if the same tolerances for the Q are to be 
maintained.

A circuit essentially equivalent to that of Fig. 10-8, except that in 
this case it is possible to use a generator of any internal impedance, is 
shown in Fig. 10-9. The cathode of the second tube is directly coupled 
to the cathode of the first tube, which then acts as a cathode follower, 
providing a high input impedance for the selective amplifier. In all 
other respects the circuits are the same, and the same requirements 
obtain for the coupling network from the source to the grid of the first 
tube.

A two-stage triode amplifier, which eliminates the necessity of apply
ing the input signal to the cathode, is the so-called “cascode” amplifier 
shown in Fig. 10-10.
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A qualitative analysis of this circuit shows that a signal Ci appearing 
at the grid gi of the lower tube is amplified and appears at the upper 
grid as essentially Gei, the total amplification then being of the order of 
a2 if the two tubes are assumed to be the same. However, the amplifica
tion of a signal appearing at the upper grid is reduced by the cathode 
degeneration caused by the plate resistance of Vi in the cathode circuit 
of Vt. In-phase signals at the grids are amplified in phase so that the 
grids effectively produce the same action but of different magnitude, 
and they are independent of each other.

From the point of view of the frequency-selective amplifier, this is 
very desirable, since the upper grid g> may be used to insert the signal

and the lower grid gi may be used as the high-impedance load for the 
network. Simple midfrequency-gain formulas may be obtained for 
both upper and lower grids if it is assumed that both tubes are identical. 
Thus

a = a rRl + + 2)tp 9m l’

fí - »Rl
” H, + (M + 2)rp;

(33a)

(336)

where m and rp are the amplification factor and dynamic plate resistance 
of either tube. For the circuit as shown in Fig. 10-11, the gain 
being the loop gain, is the gain to be used in computing the Q of the 
amplifier. Thus, two triodes of moderate p can be used to obtain ampli
fications comparable to those of pentodes and frequency-selective 
amplifiers of correspondingly high Q. Two triodes in a single envelope 
are especially useful, and the 6SN7 with p ~ 20, rp ~ 8000 ohms and the 
6SL7 with p ~ 70, rp ~ 50,000 ohms should be mentioned specifically.
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Figure 10-11 illustrates two typical amplifiers, Fig. 10-Ila being a 
low-Q amplifier (Q ~ 6) and Fig. 10-lib a high-Q amplifier with a Q 
of about 15 by virtue of the fact that the cathode follower allows Rl 

to be increased from 36,000 to 100,000 ohms. The addition of the 
cathode follower to the feedback loop in Fig. 10-11b isolates the high- 
impedance plate load from the input terminal of the network and provides

a source of low input impedance for the network. At the same time it 
acts as a buffer amplifier between successive stages.

The design criteria represented in these two typical circuits are 
conservative. All resistor power ratings are overrated, approximately 
five times, and all coupling networks have their 3-db points at a fraction 
of a cycle per second.

The photographs in Fig. 10-12 show the general layout and con
struction features of a lightweight unit that utilizes four frequency- 
selective amplifiers. A plug-in fixed-frequency twin-T network is also 
shown in Fig. 10-12a.

Figure 10-13 shows a lightweight selective amplifier and detector 
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constructed of subminiature tubes (SD834)1 and components. The 
amplifier of Fig. 10-13 was designed for a minimum number of com
ponents of the widest possible tolerance. Its schematic diagram is 
shown in Fig. 1014.

TO
Fig. 10-12.—Lightweight unit using four frequency-selective amplifiers, (a) Side view, 

showing plug-in twin-T network; (6) bottom view.

The design of a rejection amplifier is simplified by using a cascode 
amplifier, since the input and feedback grids are independent. The 
amplifiers shown in Fig. 10'11 can be readily converted into rejection am
plifiers by taking the output voltage from the lower grid gi and apply
ing it to an isolating stage such as a cathode follower.

1 Now known as type 6K4; c.f. “Circuits for Sub-miniature Tubes,” Electronics. 
19, 5, May 1946.



Sec. 103] THE DESIGN OF FREQUENCY-SELECTIVE AMPLIFIERS 405

Although Fig. 10-lib can properly be called a three-stage amplifier, 
a more typical example is the three-stage direct-coupled amplifier1

Fig. 10-13.—Photograph showing lightweight selective amplifiers and detectors constructed 
of subminiature tubes.

shown in Fig. 10-15. This amplifier is designed for battery operation 
and hence for low power consumption.

1 H. H. Scott, “A New Type of Selective Circuit and Some Applications,” Proc. 
I.R.E., 26, 226-235, February 1938. See General Radio Catalog “K” Sound Analyzer 
type 760A.
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The direct coupling eliminates the coupling networks and their 
attendant phase shifts, thus improving the low-frequency response.

Fig. 1045.—Three-stage direct-coupled amplifier. {Courtesy of General Radio.)

The input voltage is applied to the cathode of the first tube, and the 
twin-T network ties to the grid through a 0.025-Mf condenser. The 
resistance of the 2-megohm grid-leak resistor is large compared with
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the output impedance of the network. The three resistor elements of the 
twin-T network are coupled mechanically and adjusted so that the null 
frequency will vary continuously from 25 to 7500 cps. Since the gain 
of the amplifier without feedback is constant throughout this frequency 
range, the result is a frequency analyzer with a constant Q throughout 
the frequency range. This has proved very useful for such types of 
measurement as low-frequency noise measurement and harmonic analysis.

An increasingly important field of application of these frequency- 
selective amplifiers is their use as low-frequency (i.e., frequencies below 
1000 cps) bandpass and “tone” filters. An important objection to 
purely passive networks involving inductance and capacitance is the 
excessive weight and size required to obtain the proper frequency-selection 
characteristic.

It is known that bandpass filters may be obtained by stagger-tuning 
single-tuned RLC-networks if there is no interaction among the net
works. This isolation may be accomplished by means of buffer ampli
fiers, and the resulting pass band is a synthesis of the single-tuned stages.1

It was demonstrated in Sec. 10-2 that these frequency-selective ampli
fiers were nearly identical in phase and amplitude response with single
tuned networks, the deviation being inversely proportional to the gain 
of the amplifier. Because of the single feedback loop involved, two or 
more such amplifiers can be connected in cascade with no resultant inter
action. Thus, each amplifier not only is equivalent to a single-tuned 
RLC-network but also acts as its own buffer amplifier.2 Hence these 
amplifiers may be stagger-tuned to provide adequate bandpass filters 
in the low-frequency region.

Although any number of stages may be stagger-tuned (see Chap. 4), 
a filter whose 3-db bandwidth ranges from 40 to 63 cps with a center 
frequency of 50.2 cps3 may be taken as a concrete example to which Figs. 
1012a and 12b apply. Then it is found that for an exact staggered 
quadruple4 two stages of dissipation factor di staggered at /»«i and 
f3/ai and two stages of dissipation factor d3 staggered at and f0/a3 
are needed, where

™ 4 + 52 - V16 + 5.656S2 + 54 , / 1\!,„ „
a? =--------------------- ---------------------- and I cq------ I 4- df = ¿2

2 \ «1/
,2 4 + 82 - x/16 - 6.656a2 + a4 , / 1\2 , „

d} = --------------------- x--------------------- and I a3------ I + d23 = S‘,
A \ «3/

1 See Chap. 4 for a complete discussion on the principles of stagger-tuning.
2 The use of a cathode follower as in Fig. 10-1 lb considerably improves the isola

tion from stage to stage.
3 The example will be discussed on the basis of geometric symmetry. Hence the 

center frequency is the geometric mean between the 3-db frequencies.
4 The dissipation factor for a single-tuned circuit is 1/Q = A/sdoZ/rea-
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fa = the center frequency, A/ = the 3-db bandwidth,

S fa Q’ dl Qi d3 Qa

Using these formulas, it is found that to produce the required bandpass 
filter there are needed amplifiers tuned to 40.6 and 61.9 cps each with a 
Q of 15 and two amplifiers tuned to 46.0 and 54.9 cps each with a Q of 6. 
The amplifier of Fig. 10-1 la is representative of the low-Q amplifiers, 
and that of Fig. 10-11b of high-Q amplifiers.

Fig. 10-16.—Pass band, four-section stagger-tuned filter. Calculated values, solid 
lino; experimental values, dotted line, (a) /j = 40.6 cps, Qi ~ 15; (6) /2 = 46.0 cps, 

(c) /s = 54.9 cps, Qs — 6; (e) = 61.9 cps, Qi — 15.

Figure 10-16 shows the synthesis of the bandpass characteristic from 
the four stagger-tuned frequency-selective amplifiers. For comparison, 
an experimental bandpass characteristic representative of a number of 
identical units is indicated on this figure by the dotted curve. The 
attenuation through this filter (i.e., the “insertion loss”) was found to be 
14 db and was constant witbin 1 per ceni for input signals ranging from 
0 to 6 volts rms. Inspection of Fig. 10-10 at the midfrequency (40 cps) 
shows a loss of about 36 db, and Eq. (33b) shows that the gain of the 
amplifier with respect to the signal input grid is approximately 1/p 
times the gain with respect to the lower grid. Since ~ 20, the gains 
of the amplifiers at their resonant frequencies become, respectively, 
3.0, 1.2, 1.2, and 3.0, or a total gain of about 22 db. Hence the mid
frequency loss is 14 db.

The construction features of these “electronic” filters are shown in 
the photographs of Fig. 10-12. These units also contain a power supply, 
a-c amplifier, detector, and indicator stages.



CHAPTER 11

DIRECT-COUPLED AMPLIFIERS

By John W. Gray

INTRODUCTION

A direct-coupled amplifier is one in which the input, output, and inter
stage couplings are conductive, i.e., direct connections or resistive 
networks. No “blocking” condensers or coupling transformers are 
employed. Thus, d-c signals may be amplified, whereas the bandpass 
characteristics of other types of amplifiers drop to zero gain at zero 
frequency.

Usually zero frequency is the most important part of the pass band, 
and it has the highest gain, except in certain servoamplifiers where, for 
damping purposes, the d-c is attenuated in comparison with low audio 
frequencies. Where rapid fluctuations are to be followed, the pass band 
must extend correspondingly high in the frequency spectrum, but only 
in a very special case would a direct-coupled amplifier be expected to 
pass frequencies much above the audio spectrum.

11-1. Applications of Direct-coupled Amplifiers.—Below are listed 
several fields of application, with a brief statement of some special fea
tures of each. A direct-coupled ampl fier is not the only type applicable 
in each of these cases, since a sequence of modulation, a-c amplification, 
and demodulation may sometimes be used.

Vacuum-tube Voltmeter.—The purpose of the direct-coupled amplifier 
in a vacuum-tube voltmeter is to convert, with a linearity and constancy 
of gain of from 5 to 0.1 per cent, a d-c voltage derived from a high- 
impedance source into a current in a low resistance. Precision of linearity 
and gain may be achieved by the use of negative feedback. Except for 
battery-operated types, the instrument ought to operate independently 
of supply-voltage variations. The input impedance should be low 
enough so that the grid current of an ordinary low-power tube will cause 
negligible additional loading.

Electrometer.—This is a class of vacuum-tube voltmeter in which 
special precautions are taken to keep the input current very low. Special 
tubes are used, and low electrode voltages are employed in order to 
minimize ionization, which would cause grid current to lower the input 
impedance. Batteries are the most common source of power.

409
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Resistance Measurement.—This application of direct-coupled ampli
fiers includes ohmmeters for the measurement of high resistance, bolom
eters, resistance-strain gauges, and photocell amplifiers. Usually a 
vacuum-tube voltmeter is used in some sort of a bridge circuit.

Mirror Oscillograph Drivers.—A direct-coupled amplifier is needed 
when, as is often the case, a record of the d-c component of the signal is 
desired. A higher frequency limit to the pass band and, in general, 
more current output are required than for a vacuum-tube voltmeter.

Calhode-ray-tube Deflection.—A direct-coupled amplifier is required 
for some types of measurement with oscilloscopes, such as the measure
ment of tube characteristics. For electrostatic deflection a large linear 
voltage swing, in push-pull form but with very little power output, is 
needed. Magnetic deflection requires large current and power, and the 
inductance of the coils makes the bandpass problem rather difficult.

Relays and Solenoids.—It may be desired to operate a magnetic 
device when a d-c voltage, current, or a resistance reach some pre
determined value. Linearity is not important here, but sensitivity and 
stability are.

D-c Servoamplifier.—In this case, a motor must be driven in a direc
tion corresponding to an “error signal,” which comprises the amplifier 
input signal and which the resulting motion of the motor will tend to 
reduce or reverse. The input signal may be the difference between two 
variable d-c voltages or between a variable voltage and a fixed potential. 
The amplifier may furnish all the power to the motor but often only 
controls its motion by a differential field control or some other device. 
“Proportional control” is usually, although not always, desired; it 
implies a rough linearity between error input and motor-control output 
in the neighborhood of zero error. For large errors the output is expected 
to be limited in the proper sense. Since the servo loop itself comprises 
a complete negative-feedback system, no resistive negative feedback is 
normally employed in the amplifier except, perhaps, to reduce the d-c 
gain in favor of a-c gain to achieve better damping. D-c stability and 
sensitivity are the important factors in the amplifier.

Voltage and Current Regulators.—A voltage-regulator amplifier is 
similar to a servoamplifier, in that an error voltage, the difference 
between a standard and the regulated output or a fraction thereof, is 
amplified and used to control the output in order to minimize the error. 
In a current regulator the output current is passed through a constant 
resistance, and the resulting voltage is compared with the standard 
voltage to give the error.

Impedance Changing.—When a variable d-c voltage supplied by a 
high-impedance source is required to operate a low-impedance load, a 
d-c impedance changer of unit voltage gain is needed. This, depending 
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on the requirements, may be a simple cathode follower or a higher-gain 
direct-coupled amplifier with negative feedback.

Phase-splitting; Subtracting; Level Changing; Summing.—These and 
similar operations that are sometimes performed in d-c computing cir
cuits can be performed by certain types of direct-coupled amplifiers, 
usually with large negative feedback.

Integration and Differentiation.—High-gain direct-coupled amplifiers 
are used in the “amplified time constant” methods of voltage integration 
and differentiation. In the first case, a series resistance is connected to 
the input terminals, and a condenser gives over-all negative feedback. 
In the second case, the resistance and condenser functions are reversed. 
Thus, the differentiator is not direct-coupled to its input terminal and 
is independent of the input level, but interstage and output coupling 
are direct.

11-2. Problems Peculiar to Direct-coupled Amplifiers.—The fact 
that conductive coupling must be used throughout results in several 
special problems of design and stability. One obvious design problem 
arises because plate potentials are considerably higher than grid poten
tials. It is therefore necessary either to have the cathode of a following 
stage at this higher potential from ground or to use a device to lower 
this potential the correct amount. Since batteries are usually impractical 
here, a negative supply voltage and a resistance divider are generally 
required, with resulting decrease in gain.

The “zero adjustment” problem is the most difficult one resulting 
from conductive coupling. If the effects of noise and pickup are neg
lected, a nonconductively coupled amplifier gives zero output for zero 
input regardless of circuit parameters such as resistor values, supply 
voltages, and tube characteristics. This is not true of a direct-coupled 
amplifier; the d-c output at a given d-c input (e.g., zero) depends on all 
these things. A certain output current or voltage is usually required for 
a specified input. In order to meet this requirement some kind of “zero” 
adjustment is needed to compensate for variation of the above parameters 
(1) between amplifiers of the same design, due to tolerances of like com
ponents, and (2) because of effects of aging, temperature variation, 
vibration, etc. For rational circuit design, the expected extreme limits 
of voltage, resistor, and tube characteristics must be known, as well as 
their effects on the circuit. The zero adjustment should provide suffi
cient latitude to compensate for these extremes, and the incidence of 
these extremes, together with the appropriate zero adjustment, should 
not put any part of the circuit out of its good operating range.

Voltage-supply variation will depend on the kind of regulation 
provided. Its effect on zero shift and some methods of minimizing or 
canceling this effect will be discussed in connection with specific circuits.
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Resistor tolerances, temperature characteristics, and stabilities are 
covered in another volume.1 The use of wire-wound or other high- 
stability resistors will be recommended for certain critical positions in 
precision amplifiers. The effects of production tolerances, heater
voltage variation, and aging on the static characteristics of vacuum tubes 
will also be examined.

SPECIAL ASPECTS AND EFFECTS OF VACUUM-TUBE PROPERTIES
11-3. Variability of Vacuum-tube Characteristics.—The Joint Army

Navy Specification, JAN-1A, for Electron Tubes2 is a standard of what 
limits of variability may be expected in tubes of any given type. Per
tinent data therefrom, for common tube types, are presented in the 
Components Handbook. Maximum and minimum plate current are 
specified for given plate voltage and grid bias or self-biasing cathode 
resistor. The limits of transconductance and amplification factor are 
also given for the same test conditions.

In direct-coupled amplifiers, the operating plate current and voltage 
are usually established by design, and grid bias is then adjusted to com
pensate for tube tolerance. Therefore, it is desirable to interpret the 
limits in terms of grid bias. For the conditions of the JAN test, the grid
bias spread may be computed by dividing the plate-current spread by 
average transconductance. If, in the test, bias were obtained from a 
cathode resistor, the change in bias between upper and lower limits would 
have to be added to the above figure. This value is obtained by mul
tiplying the biasing resistance by the spread of cathode current. The 
three examples following illustrate the computation :

1. Fixed bias, pentode:
Tube:

6SJ7 Sharp-cutoff pentode.
Test conditions:

Eb = 250 volts, Ec2 = 100 volts, Eci = — 3 volts.
Plate current:

Minimum Ip = 2.0 ma, maximum I„ = 4.0 ma, Alp = 2.0 ma.
Transconductance :

Minimum Sm = 1325 gmhos, maximum = 1975 /imhos, 
Average Sm = 1650 /rnihos.

Computed grid bias tolerance:
AEC = ^ = = 1.21 volts.

Om 1.65

1 Components Handbook, Vol. 17, Chaps. 2 and 3, Radiation Laboratory Series.
2 Issued by the Joint Army-Navy Electron Tube Committee, Army-Navy Elec

tronic and Electrical Standards Agency, 12 Broad St., Red Bank, N. J,



Sec. 11-3] VARIABILITY OF VACUUM-TUBE CHARACTERISTICS 413

2. Cathode bias, triode:
Tube:

6J6 (one section) miniature double triode.
Test conditions:

Eb = 100 volts, Rk = 50 ohms, grid grounded.
Plate current:

Minimum Ip = 5.5 ma, maximum Ip = 12.5 ma,
Alp = 7.0 ma.

Transconductance :
Minimum Sm = 4000 gmhos, maximum Sm = 7300 ¿¿mhos,
Average Sm = 5650 ¿imhos.

Actual test grid bias (—Rtlb):
Minimum E„ = —0.275 volts, maximum Ec = —0.625 volts.

Computed grid-bias tolerance:
7 0AEC = + 0.35 = 1.6 volts.5.o5

3. Cathode bias, tetrode or pentode:
Tube:

6AJ5 low-voltage miniature pentode.
Test conditions:

Eb = Ed = 28 volts, Rk = 200 ohms, grid grounded.
Plate current:

Minimum Ip = 1.8 ma, maximum Ip = 4.0 ma, Alp = 2.2 ma.
Screen current;

Minimum Ic2 = 0.1 ma, maximum Ic2 = 2.0 ma.
Transconductance :

Minimum Sm = 2000 jxmhos, maximum Sm = 3500 Mmhos, 
Average Sm = 2750 gmhos.

Cathode current (sum of Ip + lu):
Minimum It = 1.9 ma, maximum Ik = 6.0 ma.

Actual test grid bias ( — RtIk):
Minimum E„ = —0.38 volts, maximum E„ — —1.2 volts

Computed grid-bias tolerance:
2 2AEC = + 0.82 = 1.62 volts.2.75

The tolerances of the first stage of a direct-coupled amplifier have by 
far the greatest effect on the zero adjustment. This stage is most often 
a voltage amplifier, operating with plate voltages and currents con
siderably lower than were employed in the JAN tests. The question 
therefore arises as to the validity of the tolerance computed as above.

In the case of a triode, if the assumption is made that the differences 
between samples of a tube type lie only in plate resistance and in ampli
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fication factor and that the characteristics are linear and obey the 
formula

T _ Et, + pEc
Ip — *rp

it follows that variations of p and/or r„ result in the following variation 
in grid bias required at a given plate voltage and current:

AEC = ^Arp- —c Ap.
M A

The same sort of formula applies to a pentode if p and rp refer to screen 
voltage. Actually, about the only generalization that can be made is 
that the variation between tubes measured at the grid is less for small 
currents and grid biases.

11-4. Vacuum-tube Characteristics at Low Currents.—In voltage 
amplification, which is the function of all but the output stage in most 
d-c amplifiers and of the output stage as well in some, it is generally 
desirable to employ each vacuum tube in such a way as to obtain the 
maximum gain, with little regard for the resulting impedance levels. 
This involves operation at rather low currents, for which the ordinary 
published tube data are unsatisfactory for use in a critical analysis. 
This section is largely the result of special measurements of vacuum-tube 
characteristics in the low-current region, from which certain generaliza
tions are made regarding voltage amplifiers.

In hot-cathode vacuum tubes the best simple formulation of the 
relationship between anode current and electrode potentials is generally 
considered to be the three-halves power law: According to this law, 
the plate current in a diode is proportional to e^-, and in a triode the 
total anode current (including the grid current if the grid bias is so small 
that this current is appreciable) is proportional to [egk + (e^k/p)]^- 
The basis for the derivation of this law is the assumption of a copious 
supply of electrons at the cathode surface, all of which are emitted with 
no excess energy so that the potential gradient at the cathode surface 
can be zero. For large currents, where ePk or [e„k + (e„k/p)] is large 
compared with the initial electron velocities (expressed in electron-volts), 
the three-halves power law is valid. For low currents an entirely 
different relationship obtains.

The portion of the total number of electrons emitted from a hot 
surface having normally directed velocities greater than e electron-volts 

Tr
is e u.600^ where T is the temperature in degrees Kelvin. Thus, if this 
expression represents the plate current of a diode, there must be a point 
in the tube e volts below the cathode potential that the rest of the elec
trons have insufficient energy to attain. This minimum potential 
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usually results from a space charge of excess electrons; but if the plate 
potential is itself negative, the minimum potential in the tube may 
actually be at the plate. Below the plate potential where this becomes 
true, the plate current is an exponential function of plate voltage. (Con
tact potential also is important, but it can be considered to be due to a 
constant voltage added to the plate supply.) The exponent is such that, 
for oxide-coated cathodes operating at from 1000° to 1100° K, an incre
ment of plate voltage of about 0.21 volt produces a 10-fold increase of 
plate current. If the logio of current is plotted against plate voltage, 
the result should be a straight line with a slope of 1/0.21.

Fig, 11-1.—Low-current characteristics of several diodes and diode-connected tubes, with 
logarithmic current scale.

The preceding theory is fairly descriptive of all tubes with unipoten
tial cathodes, at low currents. Figure 11-1 shows the logarithmic char
acteristics of samples of several tube types, either diodes or connected 
as such (grids connected to plate). The curves are straight for currents 
below 50 to 500 pa, depending on cathode area and spacing, and most of 
them have about the same slope: approximately 1/0.25. (These curves 
are not necessarily typical of the various tube types. Considerable 
shift in the voltage scale is encountered from tube to tube. For example, 
for several 6SL7’s, the voltage at 1 pa ranged from —0.7 to —1.3 volts, 
although the slopes and shapes of the curves were fairly consistent.)

In a triode operated as such, where potential differences exist between 
plate and grid, the relationship of anode current to grid-cathode potential 
seems still to be logarithmic, up to the same current level as it is when the 
plate-to-grid potential is zero. The slope of the curve is decreased by 
the plate-grid potential, probably because of distortion of the unipotential
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surfaces around the grid. This distortion and the decrease of slope of 
the curve are roughly proportional to grid bias and therefore to 1/p 
times the plate potential. Thus, the curve at a given plate potential is, 
in general, steeper for a high-M than for a Iow-m triode.

Fig. 11-2.—Logarithmic low-current characteristics of certain triodes.

The curves of Fig. 11-2 are the conventional “mutual” or “transfer” 
characteristics of certain triodes, but with plate current in a logarithmic 
scale. The lower portions of the curves are fairly straight and have 
slopes that approach that of the diode-connected tube for low plate
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potentials but that decrease from this value as plate voltage is increased. 
(An aberration is evident in the case of the triode-connected 6Y6—the 
loss of control at low currents, because of leakage around the grid.) As 
explained above, this decrease of slope with respect to plate voltage is 
less noticeable for the higher-^ triodes.

Fig. 11*3.—Logarithmic low-current characteristics of certain pentodes.

If Eg is the reciprocal of the slope of any curve in Fig. 11 2. i.e., the 
plate current increases 10-fold for each Eo increment of e,,!.-, the mutual 
conductance at this point is

Qm
2.3tp

Eg

and is therefore proportional to the plate current while the curve is 
straight. It is evident that for a given plate voltage and plate current, 
the gm in the low-current region is greater for high-M than for low-g 
triodes, regardless of rating. Also, for a given triode at a given plate 
current, gm is greater at lower plate voltages.

From the curves and from the formulas developed in a later section, 
it will be evident that the maximum voltage gain is obtainable in a d-c
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amplifier if the tube operates at as low a plate voltage as possible and at a 
plate current corresponding to the top of the straight part of the curve 
as in Fig. 11-2.

Similar pentode characteristics are given in Fig. 11-3, from which 
it is evident that the maximum gain obtains at as low a screen-grid 
voltage as is permissible without resulting in the flow of control-grid 
current.

11>5. Grid Current.—A knowledge of the grid-current characteristics 
of vacuum tubes is essential to an understanding of certain important 
limitations of direct-coupled amplifiers.

Fig. 11'4.—Negative and positive grid current in a triode operated with constant-plate 
current (6SL7; ip =0.1 ma).

Negative Grid Current.—When the grid is negative with respect to 
the cathode, a current, which is the result of positive ions that are 
attracted to the grid, flows from the grid terminal. The ionization of 
the residual gas in the tube depends on voltage gradients, and therefore 
the negative grid current increases with higher plate voltage as well as 
with greater negative grid voltage. Since the positive-ion current is
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the result of residual gas, its magnitude varies widely from tube to tube. 
For ordinary receiving tubes under usual operating-voltage conditions 
it may be anything from 0.00001 to 0.1 pa. The JAN specifications 
usually limit the grid current to 1 or 2 pa, but generally this value may 
be considered as being very conservative. The JAN specifications for 
the 6AK5 grid current is 0.1 and for the 6SU7, 0.02 pa. Thus the 
latter tube is a good choice where a very high input impedance is needed, 
although the 6SL7 and many other tube types, when operated at reason
ably low plate voltage, may generally be relied on for grid currents as 
low as this. The effect of plate potential on positive-ion current (nega
tive-grid current) is illustrated for one example of a high-p triode in 
Fig. 11 4. (Variation of this part of the curve, from tube to tube, is 
considerable; the illustration is presented only to show the trend.) 
Plate current was held constant, so that as the grid voltage was lowered, 
the plate voltage rose p times as much. Negative grid current varies 
about as the square of the plate potential. Reduced cathode tem
perature has very little effect on this relationship; a given plate potential 
occurs at a reduced grid bias (see Sec. 11-5), but a given plate potential 
produces a certain positive-ion current almost independently of cathode 
temperature.

“Electrometer tubes” are specially designed and constructed not 
only to have very little gas to be ionized but also in such a way that they 
are operative at very low electrode potentials in order to minimize the 
possibility of ionization. In this way and with special insulation, these 
tubes operate with grid current of the order of 10~16 amp. When the 
positive-ion current is less than about 0.0001 pa, a photoelectric grid 
current may be large enough to be of importance. Roberts,1 operating 
a 606 pentode at plate and screen potentials of 20 volts, observed that a 
decrease of grid current from 10~10 to 10-12 amp resulted from shielding 
the tube from light. A reduced cathode temperature can help in this 
respect by decreasing the illumination from the cathode.

Another source of negative grid current exists in some tubes, namely, 
grid emission. This emission may occur if the grid is contaminated 
and especially if the tube power dissipation is high, even though the grid 
dissipation itself is negligible. It rarely amounts to more than 1 or 2 pa 
if the plate dissipation is not above the rating, but even this small amount 
may be a consideration where a high resistance is employed in the input 
circuit to a power stage.

Positive Grid Current.—Positive grid current, caused by electrons 
flowing to the grid from the cathode, is much greater and much less 
erratic than the negative grid current. The grid receives electrons as 
if it were the plate of a diode. Because of the initial velocities of the

1 Shepard Roberts, “A Feedback Microammeter,” RSI., 10, 181, June 1939. 
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thermoelectrons, many of them have sufficient energy to arrive at the 
grid even if it is at a considerable negative potential with respect to 
the cathode. Thus, this positive grid current becomes as great as the 
negative (positive-ion) grid current, making the net current zero at some 
negative grid potential, usually about — 10 to —1.8 volt for oxide
coated unipotential cathodes at temperatures of 1000° to 1100° K. This 
is the “floating-grid” potential, which the grid assumes if disconnected. 
It is largely independent of plate voltage but tends to be slightly more 
negative at the lower values.

Because of the distribution of electron initial velocities, the grid 
current increases exponentially with respect to grid potential, increasing 
itself by a factor of 10 for every 0.2- or 0.3-volt increase of potential. 
(The fact that the grid potential moves as the logarithm of the grid cur
rent is used in certain computing devices.) This exponential type of 
increase ends at from 10 to 100 pa; thereafter the nature of the increase 
depends on the tube type and is also considerably affected by plate 
voltage—the lower the plate voltage the more the grid current.

The logarithmic portion of the grid-current curve is shown in Fig. 
11-4. This part of the curve shows much less variation from tube to 
tube than the negative portion. A reduction of cathode temperature 
reduces the grid current at a given bias, but it also increases the plate 
potential at a given plate current. The result is that if the grid current 
is not to exceed some predetermined magnitude, for a certain plate 
current the minimum allowable plate potential is not affected by cathode 
temperature.

Minimum allowable plate potential is of great importance in d-c 
amplifier design. It depends primarily on the maximum allowable 
positive grid current, which depends on input resistance, and on the 
permissible voltage error resulting from their product. For example, a 
grid current of 0.02 pa. in a series input resistance of 1 megohm causes 
the actual grid voltage to be 20 mv lower than the input potential. In 
the case of Fig. 11-4, with a plate current of 0.1 ma, this would occur at 
ev = about 50 volts, regardless of cathode temperature. In this same 
example, a reduction of plate current by a factor of 10 (to 0.01 ma) 
would lower the plate potential by only 15 or 20 volts.

The higher the p of a triode the higher will be the minimum allowable 
plate potential (assuming a given allowable grid current and a given 
plate current), the latter being roughly proportional to the former.

In a pentode, the plate can operate at much lower potentials than 
in a triode, provided that the screen is at a sufficiently high potential to 
permit ample negative bias on the control grid. The only requirement 
on the pentode-plate potential is that it be high enough to keep the 
screen from taking all of the current; most low-power pentodes will 
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operate satisfactorily as voltage amplifiers with plate potentials in the 
neighborhood of 10 volts.

1 1.6. The Effect of Heater-voltage Variation.—Variation of the 
cathode temperature of a vacuum tube in which the current is limited 
by electrode potentials and space charge rather than by cathode emission 
has the effect of varying the average initial electron velocity and therefore 
also the electrode voltages required to obtain a given electron flow.1 
When the plate current is very small compared with cathode emission,

Fig. 115 Fig. 11-6
Fig. 11-5.—Diode heater-voltage characteristics (6SL7 as diode).

Fig. 11-6.—Triode heater-voltage characteristics (6SL7, Ep = 150 volts).

independent of plate current. It may be expressed in terms of the 
amount by which the cathode voltage must be changed relative to the 
other electrode voltages in order to hold the current constant as 
the cathode temperature is varied.

For oxide-coated unipotential cathodes, this amount is approximately 
0.2 volt for a 20 per cent change of heater voltage about the normal value, 
whether the tube is a diode, a triode, or a multigrid tube. Figure 11-5 
illustrates the relationship for a diode. (A 6SL7 triode with grid con
nected to plate was used as a diode in this test, for comparison with 
Fig. 11-6. An ordinary diode gives the same result, however.) It is 
seen that the slope dEffdEh at a given value of heater voltage is not 
greatly affected by current at the low-current values employed.

1 L. R. Koller, The Physics of Electron Tubes, 2d ed., McGraw-Hill, New York, 
1937 ; W. G. Dow, Fundamentals of Engineering Electronics, Wiley, New York, 1937 ; 
J. Millman and S. Seely, Electronics, McGraw-Hill, New York, 1941. See also Ap
pendix C for a discussion of the drift of vacuum-tube characteristics under constant 
applied potentials.
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Figure 11-6 gives the same sort of information for the same tube 
used as a triod'e. Here the plate-to-cathode voltage was fixed; and as 
the cathode temperature varied, the current was held constant by adjust
ment of the grid potential. To have been completely comparable with 
the diode characteristics, the plate-to-grid potential should have been 
held constant; however, the results differ only by 1/m. It is seen that 
the slope dEc/dEh is about the same as was the slope dEp/3Eh for the 
diode and that in this case, too, it remains fairly constant with changes 
in plate current.

If no compensation is employed, a direct-coupled amplifier will 
suffer a drift in the zero with any variation in the heater voltage. As 
will be shown later, it is not possible to cancel this drift with inverse 
feedback. As measured at the input, the drift caused by the first stage 
is simply (dEc/dEh)AEh; i.e., about 200 mv for a 20 per cent heater
voltage change (assuming an oxide-coated cathode and low plate current). 
Drift in subsequent stages is less important, depending on the preceding 
gain.

Various practical methods of counteracting the effect of change in 
heater voltage will be detailed in later sections. The most important 
of these rely, in some manner, on the canceling effect of an auxiliary tube 
that has the same heater supply and therefore undergoes the same sort 
of drift as the amplifying tube. Usually, equivalent tube types are used 
for the compensation, but some methods employ a diode to compensate 
a triode or pentode. The use of double tubes, such as the 6SL7, is 
preferable, since the cathode characteristics of a pair of triodes in the 
same envelope, made on the same day by the same manufacturer, are 
likely to be more alike than the characteristics of a random pair. To 
check this, the characteristics of 18 6SL7 double triodes (36 triodes) 
were measured. For each triode was recorded the change in grid bias 
that was needed to hold constant a plate current of 0.2 ma at a plate 
voltage of 150 volts while the heater voltage was changed from 10 per cent 
below normal to 10 per cent above normal. The tubes were of various 
ages and makes. The average value of AEh for the 20 per cent change 
was 210 mv, and 90 per cent of the values lay between 191 and 210 mv. 
Pairing the triodes at random -without regard to envelopes, the average 
difference in AEk between pairs1 would be 14 mv, whereas the average 
difference between the two triodes in each envelope was only 8 mv.

A set of mutual characteristics for a 6SL7 is given in Fig. 11-7 for 
two different heater voltages. For a given current, dEc/dEk is not 
affected by the value of Ep; nor is dEfdEb appreciably affected by the 
value of lp for currents less than 1 ma, such as are employed in most

1 In a gaussian distribution of values, the average difference between pairs of values 
is where a is the standard deviation of the distribution.
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voltage amplifiers. For higher currents, no longer negligible compared 
with cathode emission, dEc/dEh changes somewhat more with change in 
current and is also subject to much more variation from tube to tube.

Table 11-1 gives the average characteristic (in terms of AEC required 
by a 20 per cent change of Eh about normal) and dispersion of the char
acteristic for rather limited samples of certain tube types. Both high 
and low values of current were applied, and the results show that for 

Grid bias in volts
Fig. 11-7.—Effect of heater volt

age on 6SL7 characteristics.

Seconds after an abrupt Ef change
Fig. 1b8.—Heater-cathode time lag of a 

6SL7.

high currents the effect of heater-voltage variation is greater and much 
more erratic. Pentodes were connected as triodes for these tests; 
this type of operation is legitimate, because it is found that the ratio 
between plate and screen currents is not affected by this connection.

Table 114.—Effect of Electrode Voltages and Currents on the Average 
Drift Resulting from Heater-voltage Variation and on the Deviation 

from This Average, and the Grid Bias and Deviation Therefrom

Tube 
type

No. of 
tubes in 
sample

Plate 
(and 

screen) 
potential, 

volts

Plate 
(and 

screen) 
current, 

ma

Average 
grid 
bias 

{Eh
= 63v), 
volts

Probable 
deviation 
of grid 
bias, 
volts

Average 
bias shift 
required 
for ^Eh 
= 20%, 

mv

Probable 
deviation 
of bias 
shift, 
mv

6SN7 10(20 sec.) f 60 2.0 -1.65 ±0.15 210 ± 15
(240 10.9 -6.70 ±0.40 425 ± 90

6SJ7 10 ( 60 2.5 -1.60 ±0.10 215 ± 15
(240 10.0 -7.20 ±0.35 400 ±110

6AC7 10 f 60 2.0 — 1.30 ±0.25 210 ± 15
(240 8.0 -5.10 ±0.60 290 ± 40

6AG7 10 j 60 10.0 —3.20 ±0.20 220 ± 20
(240 40.0 -7.90 ±0.25 325 ± 50



424 DIRECT-COUPLED AMPLIFIERS [Sec. 11-7

Fig. 11-9.—Simple triode 
amplifier.

There is a certain amount of thermal lag between a change of heater 
voltage and the resulting change of emission. Its magnitude, for a 
sudden increase or decrease of heater voltage on a 6SL7, is shown in 
Fig. 11-8 in terms of the lag in bias for a given current. This lag is of 

particular interest where the method of compen
sation involves the direct application of heater 
voltage as a circuit parameter. Where the com
pensation employs another tube as mentioned 
above, it is of interest only in so far as the lag 
varies from tube to tube.

DESIGN PRINCIPLES
11-7. Single-ended Triode Amplifiers.—The 

amplifier of Fig. 11-9, with fixed cathode poten
tial, may be analyzed by drawing a load line on 
the graph of plate characteristics in the conven
tional manner (see Fig. 11-10). The plate cur

rent and plate-to-cathode voltage may then be read directly from the 
figure for any value of grid voltage.

In so far as the characteristics may be considered to be straight and 
parallel and to start from zero plate current at zero plate and grid voltage,

Fig. 11'10.—Plate characteristics with load line.

the operation of the amplifier may be analyzed mathematically from the 
formula for plate current:

(1)

where p is and rp is . Substituting deat. dip*p
plate current is found to be

ip —

Epp — R„ip for epk, the

(2)Epp “J- jl&gk 
Tp ■“H Up

and the plate voltage is
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p Epp p^gk
Bp = Epp - Rpip = ----------------- (3)

1 +
Rp

From Eq. (2) the current gain (considering Rp as the load) is

&IL = , (4)
degk rp d- Rp

and from Eq. (3) the voltage gain is

(5)
dCgk । । rp

1 +R~P

Thus the current gain approaches gm if Rp is small compared with rp; 
and if Rp is large compared with rp, the voltage gain approaches p.

Fig. 11-11.—Typical triode amplifier characteristics.

This relation would indicate that a very high resistance should be 
employed for R,, if a voltage amplifier is to realize the maximum gain. 
Actually, rp is approximately inversely proportional to plate current for 
small values of i,,, and p drops slightly as plate current is decreased. 
Therefore, for a given EPl„ the gain ceases to increase as Rp is increased 
beyond a finite multiple of r„. For instance, in » G.TG triode, by measuring 
the inclement of plate voltage obtained between c„ = —2.5 and —5 
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volts, it can be shown that if Epp = 200 volts, increasing Rp above about 
75,000 ohms gives no increase in the gain. On the other hand, an 
increase of Epp gives an appreciable increase of gain.

Except where tube rating is exceeded, the factors limiting the range 
of voltage or current output are the plate-supply voltage (or zero-load 
current) and the point where grid current becomes excessive as deter
mined by the input impedance. The latter, except for a low input 
impedance, generally occurs at a grid voltage of from — 1 to — 2 volts.

The linearity of a simple triode amplifier, considered over the entire 
output range, is rather poor because the plate resistance increases and 
the amplification factor decreases toward the low-current end of the load 
line. Figure 11-11 shows a typical triode amplifier characteristic and 
is derived by drawing a suitable load line on a family of ip vs. ep curves 

for a type 6J6 triode. The dashed curve results 
from grid current flowing in the input resistor.

However, linearity over a given range can be 
greatly improved by raising the plate-supply 
voltage to a value considerably above the upper 
limit required to obtain the desired output volt
age. For many triodes, p is constant with re
spect to plate voltage if plate current can be 
maintained constant. Thus, for good linearity 
as well as for maximum gain, the ideal voltage 
amplifier would have infinite Rp and infinite 
Epp. Some constant-current device, such as will 
be described in connection with pentode ampli
fiers, may be employed in the plate circuit to 

approach this ideal. The linearity of output under conditions of constant 
plate current is illustrated for a 6SL7 in Fig. 11-20.

Triode Amplifier with Cathode Resistor.—When a resistance is inserted 
in series with the cathode, as in Fig. 11-12, the load line, if it is derived 
from Rp + Rk instead of Rp, still describes the performance of the 
amplifier. But since egk is no longer the same as eg but is equal to 
eg — ipRk (assuming no external cathode load), it is not possible to obtain 
an operating point directly from the load line. For a given e0, one 
estimates ip, computes the corresponding ipRk and egk, refers to the dia
gram (Fig. 11-10) to see how far the resulting ip is from the estimate, 
and repeats the process with some intermediate estimate of iP. When 
Rk is large (comparable, for instance, with rp or greater) and when e„ 
is positive and sufficiently large so that egk will be small in comparison, 
the first estimate of ip is assumed to be equal to or a little larger than 
eg/Rk. This usually proves to be an accurate assumption. When 
an operating point on the load line has been determined, its interpretation 
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is as follows: The difference between epk and Epp is apportioned between 
Rp and Rk in proportion with their relative values.

When Rk is small, it may be convenient to redraw the plate char
acteristics to include the effect of this resistor and to consider the new 
graph as if an equivalent tube (having a different set of characteristics 
from the original) were being used. The procedure is illustrated in 
Fig. 11-13, where the plate characteristics of a 7F8 triode are modified 
by a 1000-ohm cathode resistor. The points are plotted by assuming 
values of eg and egk and computing i„ from ip = (eg — egk)/Rk. The 
resulting curves (shown solid) are the plate characteristics of the equiva
lent tube, upon which load lines may be drawn in the usual manner with 
no further consideration of Rk.

Fig. 11-13.—Modification of triode plate characteristics by a cathode resistor (7F8 triode, 
Ric = 1000 ohms).

It is helpful to analyze the circuit of Fig. 11-12 on the basis of the 
simple approximation of Eq. (1). Substituting Epp — Rpip — Rkip 
for epk and eg — Rkip for egk, the plate current is found to be

_________EPp -|- peg__________ 

rp + Rp + (m + l)Rt (6)

A rather useful concept is obtained by comparing Eqs. (6) and (1). It 
is seen that when a triode has resistors in series with its cathode or plate 
or both, the triode with its resistors may be considered equivalent to a 
simple triode having the same p but having a plate resistance equal to 
rp + Rp + (p + 1)7?*. Figure 11-14 illustrates this equivalence. Figure 
11-13 bears this out for the case of the cathode resistor: p is unchanged 
in going from the dashed to the solid curves, but rp is increased by 
(p + l)Rk.

From Eq. (6) it follows that the plate and cathode voltages are 
(assuming negligible grid current)



428 DIRECT-COUPLED AMPLIFIERS [Sec. 11 7

rP + (m + l)Rt pp Epp P-Cg

P i । r? + (m + Y)Rk 
RP

and
Epp 4" uG 

ek = r + R~
i 1 j ' p 'M + 1 n------ p----  Rk

(8)

Equation (7) could have been derived from Eq. (3) by considering Rk 
as part of an equivalent triode and consequently adding (g + \)Rk to 
rp, as suggested in the foregoing paragraph.

Fig. 1114.—Triode equivalent of triode with plate and/or cathode resistor.

Equation (7) shows a gain from grid to plate of

___________ —M___________

, । ry + (m + 
RP

The cathode resistor affords a negative feedback that, in addition to 
reducing the gain, reduces the variation in gain caused by variations of 
rp and m- This tends to keep the gain constant when tubes are changed 
and also to make the output-vs.-input curve more linear. The effect of 
variations of rp and p on the gain may be found by partial differentiation 
of Eq. (9). The resulting fractional change of gain is

Ag _ rp + Rp + Rk Ap _  ________ ip________  Arp /,q\
g rp + Rp + (p + l)Rk p fp + Rp + (p + l)Rk ip

Thus if Rk is such that (p + l)Rk is n times (rp + Rp) the gain is reduced 
by a factor of n + 1 [see Eq. (9)]. The fractional change in gain caused 
by a given variation of rp is then reduced by the same factor as that 
caused by a variation of p if p is large compared with n.

If p is large and pRk is large compared with rp 4- Rp, the gain is 
approximately Rp/Rk- This gain and the deviation from it are shown 
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by Fig. ll-15a, which is one form of graphical representation of Eq. (9). 
Figure 11156 is a different form for use where Rk is low.

The variational plate output impedance of a simple triode amplifier 
(Fig. 11-9) is equivalent to rp and RP in parallel. By applying the 
equivalent-triode theory developed above, it is found that the plate

(y + \)Rk/Rp
(b) Curves for low Rk

Fia. 11-15.—Gain of triode amplifier with cathode resistor.

output impedance for a triode amplifier with cathode resistor (Fig. 11-12) 
is

. _ rp + (h + l)Rk n 
RP + rp+(y + l)Rt Kv' (ID

To find the cathode output impedance, consider the change in the current 
flowing into the cathode terminal in Fig. 11-9 if the cathode is ungrounded
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and ek is varied by external means. This current is — ip, which from 
Eq. (2) is

_ ■ __ Epp ek -j- p(eg ek) t
G rp + Rp ’

therefore, if ek is raised by an increment Aek without changing Epp or e„

A( fp) . d~ 1 712'1

Aek Tp + Rp

which is thus the admittance of the cathode terminal. If this impedance 
is put in parallel with Rk, the cathode output impedance of a triode with 
cathode resistor (Fig. 11-12) is

A similar procedure may also be employed in the derivation of Eq. 
(11).

D-c Cathode Follower.—If the cathode is to be used as the output 
terminal, the circuit of Fig. 11-12 is a “cathode follower,” although the 
usual practice is to omit Rp. In the latter case Eqs. (6), (8), and (13) 
become

Epp 4~ peg
rP + (p + 1)E*

F pp MCg

M + 1 +

p + 1
ilk

(14)

(15)

(16)

Generally p and Rk are large enough so that for practical purposes the 
following approximations can be used:

ek « + (1 -
M X

rp R A R& 
pRk / 

p “F
~pRkra’

zk «

(17)

(18)

(19)
I

Qm

The cathode follower is not a voltage amplifier but is a simple and 
excellent impedance changer or power amplifier, in which a high degree
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of stability and linearity is afforded by the inherent negative feedback. 
The variability of gain may be obtained directly from Eq. (10); and since 
the same current flows in both R„ and Rk, the fractional gain variation 
is the same measured across either resistor. Dropping Rp and rear
ranging Eq. (10) for clarity,

1 + —
A8 = -------------Ll A-------------- 1-------- Of?. (20)
8 1 + (p + 1) M 1 + (p + 1) r*

rv rr

For example, if p is 20 and Rt is twice the average value of rP. and if p 
increases by 20 per cent and rp decreases by 50 per cent of its average 
value as the working range is traversed, the percentage change of gain is

AS = 1+2__  y o 2 — _____-_____X ( — 05)
9 1 + 21 X 2 X 1 +21 X 2 X 1 '

= 0.014 + 0.012 = 2.6 per cent,

which indicates a 2.6 per cent change in slope of the output-vs.-input 
curve, or a deviation from linearity of less than ±0.2 per cent.1 Equa
tion (15) shows that a given variation of plate-supply voltage results in a 
variation in the output of a cathode follower of only l/(p + 1 + rp/Rk) 
times this change of voltage.

The output-vs.-input curve of a cathode follower may be obtained 
from a load line with a slope of —1/Rk drawn on the plate characteristics 
(Fig. 11-10). (Epp is, of course, measured from the fixed terminal of Rk 
in case this is not at ground potential.) The output voltage is simply 
Epp ~ tpk', and for any given output, the input is this value plus egk at 
this point on the load line. The load line reveals immediately, without 
the necessity of plotting the output curve, the useful range of the cathode 
follower (as limited by grid current and by low plate current) and the 
tube power dissipation.

The linearity of a cathode follower may be greatly increased for special 
applications where precision is paramount by the use of a “constant
current” device in place of Rk. As has been mentioned, the p of many 
triodes at constant current is independent of plate voltage. Therefore, 
good linearity is obtainable if the load line can be made horizontal. 
The devices of Fig. 11-16 afford good approximations to constant current. 
The pentode circuit of Fig. 11-16a relies on the fact that the pentode plate 
current is fairly independent of plate voltage. Current is determined 
by the self-biasing resistor R and by the screen potential. The latter 
should be as low as possible, because if the pentode plate falls below the

lCf. Fig. 11-52, Eq. (102).
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level of the screen, the screen current will increase. This effect, in turn, 
will decrease the plate current by increasing the biasing current in Rk 
and by lowering the screen voltage by extra loading of the bleeder. If a 
suitable negative voltage source is available, it may be convenient to 
connect Rk and the grid to this source and to connect the screen to ground.

(a) Pentode circuit (6) Triode circuit
Fia. 11-16.—Constant-current devices replacing Rk of a cathode follower.

The triode circuit of Fig. 11-166 (if it is assumed that ek remains suffi
ciently above E so that there is negligible grid current) may be analyzed 
by application of Eq. (6).

‘ — ek
p rp + (m + l)Rt

Thus the equivalent resistance is

= rP + (m + WA

and it behaves within the limit of useful range as if its nether end were 
connected to a potential pE below the reference level. This triode con
stant-current device has much greater stability with respect to tube drift 
than has the pentode because a given drift of grid-to-cathode voltage 
causes less percentage change of the drop across Rk. Figure 11-206 
shows the improvement in linearity of a cathode follower that may be 
achieved by using such a constant-current device.

If a constant-current device is employed, the cathode-follower output 
impedance [Eq. (16)] is simply the reciprocal of the transconductance.

11-8. Single-ended Pentode Amplifiers.—If both the cathode and 
screen grid of a pentode (or tetrode) are at fixed potentials, with no 
series resistances, the operation of the amplifier may be determined by 
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means of the load line, as for a triode (see Fig. 11-17). The plate char
acteristics employed must apply to the existing screen potential.

A complete mathematical description of the approximate operating 
characteristics, such as was based on Eq. (1) for the triode, is not feasible 
here. However, since m and rp are derivatives at an operating point, 
the gain, which is also a derivative, is correctly expressed by Eq. (5).

Fig. 11 17.—Pentode amplifier and load line on plate characteristics.

As m is in practice large and rather indeterminate, the gain is better 
expressed for computation in the form

d^p _ _ QmRp . zqI j
de„ J Rp

rp

Since, in general, rp is very great compared with Rp, a good approxima
tion is

« -gmRp. (22)

It would seem that the voltage gain is proportional to the plate
load resistance except for very high values of Rp. Actually, in the 
case of any ordinary “sharp cutoff” pentode operating as a voltage 
amplifier, the transconductance is very nearly proportional to the plate 
current. Thus for a given plate-supply voltage and a certain operating 
range of plate voltage, the gain is independent of Rp over a very wide 
range of values. On the other hand, it is roughly proportional to 
Epp ep.

If Epp, together with Rp, can be raised without limit, a very high gain 
may be attained. The same effect may be achieved by the use of some 
kind of constant-current device in place of the load resistor. Such a 
device is shown in Fig. 11-18. This is the same as the constant-current 
element shown in Fig. 11-165 except that here a battery or its equivalent 
is needed. The operation of the triode (if there is assumed to be suffi
cient plate-to-cathode voltage to keep its grid from drawing current) 
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may be determined by substitution of the “equivalent triode” with Rk 
included. This substitution changes the plate resistance to

fp + (m +

and in applying Eq. (1), epk = Epp — ep and egk = E (Fig. 11-14),
Epp + pE 

ip + (p + l)R;t
(23)

Fig. 11*18.—Constant-current device as a 
pentode load resistor.

Thus, except for an upper working limit somewhat below Epp, this 
triode arrangement behaves like a 
resistor of value rp + (p + l)Rk (or 
roughly, pRf), whose upper termi
nal is attached to a potential pE 
above Epp. This device is not often 
practical because it requires a battery 
or floating power supply.

In general, with a given plate
supply voltage and without the use 
of a special circuit such as the fore
going, the maximum voltage gain is 
obtained when the screen grid is 
operated at the lowest potential per
missible from the standpoint of con
trol-grid current. The gm of ordinary 
sharp cutoff pentodes, at any given 
plate current, increases slightly with 
reduced screen potential.

If the screen-to-cathode voltage 
is subject to variation, the analysis

of the operation of an amplifier is more involved than if it is fixed. For 
rough calculation, advantage may be taken of the facts that over the usual 
range of operation, both plate and screen current are fairly independent 
of plate voltage, and screen current is a substantially constant ratio of 
plate current (between i and |). An equation similar to Eq. (1) is 
sometimes useful, although it is not so accurate or complete a description 
of the characteristics. The plate current is the same sort of function of 
screen voltage as it was of plate voltage in the case of the triode. There
fore, in applying Eq. (1) to a pentode, degJdip is used instead of de,pldip, 
and degJdeg instead of dep/dea.

dip
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Thus, if the screen grid has a series resistor, (e.g., from a bleeder 
whose output resistance is appreciable), and if the assumption is made 
that ig* is a constant fraction n of ip, then

• Utsg
RgTlip 4 Cg

deg 'y2

from which

(25)
+ n^g2

and

(26)

The gain is

RpQm (27)

If the pentode amplifier is further complicated by a cathode resistor, 
as in Fig. 11-19, the current flowing in this resistor must be considered 
to include screen current. But if the assumption is made that = nip, 
where n is a constant, then ik is (n + l)zp. Equation (24) yields

. . de» .Egg nRg ip (n -|- l)ipRk -f- — (n + l)ipRk]
,■ = __________________ de«_________________

p de,_ ^2
dlp 

from which
„ deg

ip = -------------- 7d^\--------------(28)ai; + ^ + W+1) +
The voltage gain is

^P _ _ Rp^m.790)
De Di / Di X° 1 + nRSi + (1 +n)Rk(gm + Eh)

OEa \ OGn /\ w2/
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Fig. 11-19.—Pentode amplifier with 
cathode and screen resistors.

Pentode Cathode Follower.—In a-c applications a cathode follower can 
make capital of the high gain afforded by a pentode, for the purposes of 
obtaining good linearity and low attenuation, by the use of a condenser 
to maintain constant screen-to-cathode potential. In d-c circuits, 
however, where (unless a battery or floating power supply is used to set 

the screen at a fixed potential with 
respect to the cathode) the screen- 
to-cathode potential varies along 
with the plate-to-cathode potential, 
the pentode operates as a triode. In 
computing the cathode-follower per- 
formance, the triode-connected 
plate characteristics apply. There 
are cases, however, where some ad
vantage may be taken of the extra 
electrode. For example, if a stable 
output at high power level is desired, 
and if a regulated, but low-power, 
voltage source is available, the screen 
can be tied to this regulated source, 
and the plate, which furnishes most 
of the power, can be connected to 
an unregulated source. The output 

will then hardly be affected by plate-voltage fluctuation.
11-9. Cascode and Other Series Amplifiers. Constant-current Plate 

Load.—It is evident that the gain of an amplifier is a maximum when 
both Rp and Epp are infinite and ip is finite. In this case, also, the output 
signal is most linear, since the gain, being simply p, is independent of 
rp. For most triodes p, at any given plate current, tends to be constant 
over a wide range of plate voltage. The effect of infinite or very great 
Epp and Rp may be achieved by the use of a “constant-current” device 
between the plate and the B + voltage supply.

One such device is a diode with such a low filament voltage that its 
current is limited by cathode emission and is thus independent of its 
plate-to-cathode potential. A diode with an indirectly heated, oxide
coated cathode does not have really constant current at low temperature 
because the emission depends partly on plate voltage,1 but the partial 
effect is of some value. Figure 11-20a shows the increase in both gain 
and linearity of a triode amplifier using a diode instead of a fixed plate 
resistor. A diode having a pure tungsten cathode would be more effective 
but less convenient. In either instance, the device is subject to con-

1 See W. S. Dow, Fundamentals of Engineering Electronics, Wiley, New York, 1937, 
p. 204.
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siderable drift if the filament supply voltage varies. Figure 11-206 
shows analogous data for a cathode follower using the constant-current 
triode circuit shown in Fig. 11-166.

A high-vacuum photoelectric cell has a current independent of voltage 
at any given value of illumination and thus may be used as a constant
current device. The current is at most a few microamperes, and the 
illumination must be constant; however, the scheme may be of value in 
certain applications.

es in volts
Fig. ll-20a.—Output characteristics of a triode amplifier with and without a “constant

current” diode as plate load (6SL7 triode, Epp ~ 250 volts). Solid curves: plate load is a 
6H6 diode, Ej = 2.4 volts; dashed curves: plate load is a 1.1-megohm resistor.

The constant-current arrangement of Fig. 11-166, as used in a cathode
follower circuit, may be adapted as an amplifier plate load as shown in 
Fig. 11-21. In this adaptation, since the cathode end rather than the 
plate end of the device varies in potential, a battery or floating supply 
is needed to determine the grid potential, although no appreciable current 
is required from this source. A small constant-voltage glow tube, with 
its current furnished by a resistor from the positive supply, may be used 
as the voltage standard in place of the battery, but this current is variable 
and therefore must be small compared with plate current.

The device of Fig. 11-21 is a cathode follower in which the current is 
approximately E/R. The greater E and g2 are the more nearly constant 
will be the current. From Eq. (6), the current is

- _ Epp ep + ptE 
P rp2 + (pt + 1)R



438 DIRECT-COUPLED AMPLIFIERS [Sec. 11-9

De
vi

at
io

n f
ro

m
 lin

ea
rit

y i
n 

vo
lts

Fro. 11-21.—Triode amplifier with "constant-current” plate load, (a) Complete circuit; 
Pi) equivalent circuit.
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and its rate of change with respect to amplifier plate voltage is

dip _1 ran
dep rpt + (ms + 1)R

The device becomes inoperative before ep reaches Epp, but it is seen from 
Eq. (30) that over its operating range, the current behaves as if it would 
be zero when ep = Epp + pE. Thus, except for the limited operating 
range, the device is equivalent to a plain resistance of value

R' = rP2 + (P2 + 1)R (32)

returned to a B + voltage of

E'p = Epp + P2E, 
as shown in Fig. 11-216.

-1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1
eu in volts

Fig. 11*22.—Output characteristics of a pentode amplifier with and without a constant
current plate load.

The constant-current circuit of Fig. 11-21 is especially effective in 
increasing the gain of a pentode because the gain with constant current 
is p, which, for a pentode at low current, is very high. Figure 11-22 
shows the output curve of a 6SH7 pentode with a 6SL7 constant-current 
plate load, where E = 45 volts. The gain is about 7000, whereas with a 
simple resistor and the same B + voltage it is only 600.

The output impedance of a pentode amplifier with a constant-current 
load is very high; and if it is followed by a resistance divider, the gain 
may be seriously decreased. In effect, the divider resistance parallels 
the equivalent resistance of the constant-current circuit. If the voltage
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level must be lowered before being applied to the grid of the next stage, 
a cathode follower is advisable for the purpose.

If the battery is omitted in Fig. 11-22, the circuit does not, in any 
sense, comprise a constant-current device. It behaves like a simple 
resistor, of value rp2 + (ms + 1)R, attached to the Epp source. There
fore, no increase of gain obtains. If the two triodes are similar, however, 
and if the amplifier triode also has a cathode resistor of value R, the 
arrangement is useful in that the output voltage is more linear than that 
of a simple amplifier and the effect of cathode temperature variation is 
canceled (see Sec. 11-11).

The pentode constant-current circuit of Fig. ll-16a may be adapted 
as a plate load for an amplifier by the use of a battery or its equivalent 
for the screen supply. This type of supply has the disadvantage that 
appreciable current is drawn therefrom. A simple divider for the screen 
supply attached between the cathode and Epp is ineffective, because in 
this case ip will tend toward zero as ep approaches Epp, as is the case with 
a plain resistance plate load.

Cascode Amplifier.—The preceding constant-current circuits have the 
aim of making the gain equal to p by elimi
nating the 1/gmRp term from the gain equation

9 = (33)
A 4---- -— 
p gmRp

Thus they are most effective for a pentode 
amplifier where gmRp normally is much less 
than p. In a triode amplifier, on the other 
hand, p is much smaller, and the first term in 
the denominator of Eq. (33) is usually the 
more important. It is the result of variation 
of the plate voltage, which has very little effect 
in a pentode because of the isolating effect of 
the screen on the plate. A cascode amplifier 

tends to hold the triode plate potential fixed but still permits its current 
to flow in a load resistor. .Thus the behavior is similar to that of a 
pentode, with the advantage that no screen current is required.

A circuit arrangement is shown in Fig. 11-23. The upper tube has a 
fixed grid, so that the excursions of its cathode are limited. If epl were 
really held constant, the current gain of the lower triode would be gm 
and the voltage gain from es to ep would be — gmRp, as in a pentode.

Actually the lower triode has as its plate load the cathode input 
impedance of the upper tube, which is, from Eq. (12), (rp 4- RP)/(p -j- 1). 
The current gain is thus
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Aip

Ae„
M______  

r p + Rp

M + 1

(34)

and the voltage gain is

___________ 1___________
1 , + Rp 1

g^Rp + Rp p(p + 1)
(35)

Thus, if Rp is large in comparison with rp, p2 takes the place of the p 
in Eq. (33).

The value of should be sufficiently high to keep the input grid 
from drawing appreciable grid current, and the operating range of ep 
should be far enough above Est so that the current in the upper grid 
will not become comparable with ip.

11-10. Differential Amplifiers. Cathode as Input Terminal to an 
Amplifier.—The cathode or grid of a tube or both may be employed as
input terminals. From Eq. (2), the plate current in 
Fig. 11-24 is

Eyp + Pe<i — (p + l)ek

(36)

The gain of the amplifier with respect to the cathode 
input terminal is — (p + l)/p times that with respect 
to the grid input terminal. If both input terminals 
are used, the output voltage is much more sensitive 
to changes in their difference than to changes in 
their common level. If their difference is held con
stant, will change only Rp/(rp + Rp) as much as

Epp

p

Ck

Fig. 11-24.— 
Triode with two in
put terminals.

any common change of ek and e„ whereas ep responds by p times this much 
to any change of their difference.

The input impedance to the cathode is low and is equal to

Zk =
r p + Rp

P + 1 (37)

Any resistance in the cathode circuit Rk has the same effect as adding 
(p + 1)R£ to the plate resistance. Thus, Eq. (36) becomes

Epp + pea — (/i + l)ek 

rP + Rp + (p + l)Rk ’ (38)
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where e'k is the cathode input voltage outside of Rk. The output voltage 
is still p times as responsive to input voltage difference as to mean input 
voltage level.

In spite of the low impedance of the cathode, it is often convenient 
to employ it rather than the grid as the input terminal, because the

Fig. 11-25.—Cathode follower as an 
input means.

amplifier used in this way gives an 
output voltage of the same sense as 
that of the input voltage.

Cathode Input Voltage Applied 
through a Cathode Follower.—A cathode 
follower affords a convenient means of 
obtaining the necessary low impedance 
for the cathode input terminal. In 
addition to high input impedance and 
amplification without inversion, the 
arrangement illustrated in Fig. 11-25 
provides a balancing of the effect of 
heater-voltage variation and a con

venient high-impedance terminal (e2) for zero adjustment or feedback or 
both.

The input voltage is attenuated according to the voltage gain of the 
cathode follower, which is p/(p + 1 + rp/Rk). Also, the output imped
ance of the cathode follower, rp/(p + 1 + rp/Rk), acts as a resistance in 
series with the cathode of the amplifier. Thus, the gain from ei to eP is

Si = _______ (mz 4- 1)RP_____
, p , Us + l)^!rpz + tip -|____________  

__ LI J- W

(39)

in which the subscript numbers 1 and 2 refer to the cathode follower and 
amplifier triode, respectively. If these are the same, the gain is

1 I ^p । lp(tp 4~ Rp) 
Rp RpRk(p + 1)

(40)

Cathode Follower Used as a Cathode Return.—The circuit of Fig. 11-25 
may even be used when voltage inversion is acceptable; in this case 
the input voltage may be applied to the amplifier grid. Possible reasons 
for using the circuit in this way are (1) The input voltage may be at some 
level far from ground, and a bleeder of sufficiently low resistance for the 
cathode return may be undesirable; (2) the cathode follower grid may be 
used for negative or positive feedback; (3) the cathode follower may be 
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used for a zero adjustment for the input level; (4) the effect of heater
voltage variation on zero shift is largely canceled; and (5) the output char
acteristic may be more nearly linear because of a mutual cancellation of 
the variation of plate resistance. The gain from e2 to ep is computed 
from Eq. (9), where the cathode resistor is the cathode-follower output 
impedance.

rP2 + RP + —
Mi + 1 +

If the tubes have the same characteristics,

„ M m + 1 Ri
02 i + + r^p + Rp> ' (42)

Rp RpRk(,p + 1)

If the p’s are equal and Rt is large, the last term in the denominator 
of Eq. (41) is approximately rpl. The sum of the two plate currents, 
which is equal to the current in Rk, is substantially constant, so that a 
decrease in the amplifier current causes an almost equal increase in the 
plate current of the cathode follower. If the two plate currents are of the 
same order of magnitude, the variations of plate resistance caused by 
variation of plate current will be about equal and opposite. The denom
inator of Eq. (41) will thus be fairly constant over a considerable output 
range, and an increase in linearity will result.

Differential Input.—The circuit of Fig. 1T25 is more suitable than 
that of Fig. 11-24 for the amplification of the difference between two 
voltages, because both input terminals have a high impedance, the 
cathodes mutually offset the drift due to heater-voltage variation, and 
the output voltage may be less affected by the “common-mode varia
tion” (common change of level) of the two input voltages.

This independence of the common mode is a feature of importance 
when the amplifier is to be used as a comparator,1 in which the output 
voltage ideally should be a function only of the difference between the 
input voltages and not of their average. The degree of rejection of the 
common mode may be expressed by the ratio of the gain of the amplifier 
with respect to the average of the input voltages to that with respect to 
their difference. If the two input potentials are ei and e2, an output 
voltage variation may be expressed as

Aeg = §i Aei -|- Q2 Ae2 (43)

1 Cf. Vol. 19, Chap. 17.
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or

△co — o (A«i — A^j) + (Si + g?)
Aei + Ae2 (44)2

The second coefficient in Eq. (44), 9i + g2, should be zero or very small 
in comparison with the first coefficient (St — Qs)/2.

In the case of Fig. 11-24 the proportional response to the common 
mode, expressed as the ratio of (Çi + g2) to (Si — g2)/2 is approxi
mately 1/p. For Fig. 11-25, where the triodes have been assumed to 
be identical, comparison of Eqs. (40) and (43) shows the ratio to be 
approximately

Si + Sa ~
Si - Sa (m +

2

(45)

With given voltage levels, this ratio cannot be reduced indefinitely by 
increasing R, because the resulting decrease of current causes rP to increase

Epp

Fig. 11-26.—Use of constant-current device to minimize common-mode effect.

as well. A large negative return potential for Bk is advisable. Figure 
11-26 illustrates the use of a constant-current device to simulate a very 
large Rk without reduction of current.

Even with an effectively infinite Rk, however, the common-mode 
rejection depends on equality between the p’s of the two triodes. The 
assumption oi Rk — <» in Eqs. (39) and (41) shows that if the tubes in 
Fig. 11-22 are dissimilar, even though the constant-current device is 
perfect, the proportional common-mode variation is

91 + Sa _
91 - Sa

2

Pi ~ Pi__  
, Pi + Pi 

PiPi 4------ 2—

pi ~ Pi 
pipi

(46)

(47)
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or approximately 1/m times the fractional difference of the g's. Thus, 
high-g tubes are indicated, and double triodes are preferable because 
they are generally bet’ter matched. For 6SL7’s, for example, Eq. (47) 
rarely exceeds 0.1 per cent. The 6SU7 double triode is a specially 
designed and selected 6SL7 in which the quantity expressed by Eq. (47) 
is held to a minimum.1

From Eqs. 
Fig. 11-25 is

(11) and (16), the output impedance of the circuit of

(48)

When Rk is large, this is approximately

y ^RpTp
p ~ v+ ^p (49)

or Rp in parallel with twice rp.
The foregoing equations in this section relate mainly to variational 

quantities. The equations for the d-c levels are cumbersome and are of

1 Care should be exercised not to read into Eq. (45) more than it actually says 
For instance, although pentodes have very large /¿’s, Eq. (45) does not apply to their 
use, since in its derivation it is assumed that Rk » but in view of the large plate 
resistance characteristic of pentodes it is unlikely that this condition can easily be 
made to obtain. Thus, when two 6SJ7 pentodes (m > 1000) are employed in a cir
cuit like that of Fig. 11-22, the common-mode rejection is found to be no better than 
when two 6SL7 triodes are employed.

Again, if Rk is made large by the use of a large ohmic resistor, the plate currents 
of the two tubes may be so small that their individual ^’s may differ by more than the 
amount measured under normal operating conditions. Nor can Eq. (45) be expected 
to apply if, when two tubes of differing p. are employed, some other means is used to 
balance the amplifier to give zero output for a certain pair of grid potentials.

The above is possibly the explanation of the fact that when highly sensitive 
amplifiers are used to detect cross talk between the two tubes being tested, a variation 
of the common-mode bias, for balanced tubes, passes through zones where a minimum, 
a maximum, or a point of inflection is obtained at the output. In these regions the 
output is almost independent of small variations of common-mode signals, whereas 
between these regions the output varies at an appreciable rate. The length of these 
zones, in which the output is independent—within the noise level of the amplifier—of 
the common-mode signal, varies with the type of tube. For example, it is found that 
the region may extend over several hundred millivolts of common-mode signal for 
type 6SL7 tubes. But for type 6SN7 tubes the region may be as great as 1 or 2 volts. 
Another series of experiments indicated that this region was between 500 and 600 mv 
for pentodes (type 1620), when the criterion was the observation of a signal corre
sponding to a 10 /*v difference between the two grid potentials. Editor.
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less value in analysis and design. The problem in this regard would be, 
typically, to determine — e2 for a certain value of ep and for a given 
level of the input voltages. The sum of the two tube currents will be 
known in the case of the circuit of Fig. 11-26, and in Fig. 11-25 it is

Epp

Fig. 11-27.—Method of zero adjustment.

Fig. 11*28.—Symmetrical differential 
amplifier.

tiometer between the cathodes as

usually approximately ei/Rk. The current in the amplifier tube is 
(EPp — ep)/RP, and that in the cathode follower is the difference between 
this and ei/Rk. Thus the approximate epk and ip are known for each 
tube, and the eok’s may be found by consulting the plate characteristic 

curves. Since the ej,’s are the same, 
Ci — e2 is the difference between the 
^gk S«

The cathode-follower input voltage 
ei generally will be somewhat lower 
than e2 because of the higher plate 
voltage. The difference may be re
duced by employing a lower-potential 
source for the cathode-follower plate; 
in fact, a potentiometer to this plate 
may comprise a zero adjustment. 
More commonly, however, the zero 
adjustment, if required, is a poten- 
shown in Fig. 11-27. This decreases 

the gain by effectively adding (p -|- 1) times half the resistance of 
the potentiometer to the rp of each triode. (The resulting negative 
feedback may or may not be of value, depending on the application.) 
It also increases the common-mode susceptibility [Eq. (45)]. The value 
of this resistance depends on tube tolerances, but it may be held to a 
minimum by proper choice of the cathode-follower plate potential.
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Differential Output.—A differential amplifier with two output ter
minals, such as the type illustrated by the symmetrical arrangement of 
Fig. 11-28, finds frequent application. It might be used as the first 
stage of a multistage amplifier; as a differential voltage output stage 
(actuating the plates of an oscilloscope, for example); or as a current or 
power output device, where the load (an ammeter, a relay, a motor field, 
a pair of magnetic oscilloscope deflecting coils, etc.), appears either 
between the two plates or, in two parts, as the Rp’s.

To find the voltage gain from ei to ep2, which is the same as that from 
e2 to ept (assuming equal tubes), Eq. (39) may be applied. Because rpi 
is increased by Rp, the resulting gain is

Sia —
pRp

(Rp + rp) 2 +

Similarly, from Eq. (41), the gain from ei to epi or from e2 to ep2 is

Su — S22 —
__________—uRP_________

[2 +
RP —I- r p 

(m + l)Rt (51)

The gain from either input terminal to the two output terminals across 
which the voltage ea appears is the difference between Eqs. (50) and (51).

This is identical with the gain of a simple triode amplifier and is not 
affected by Rk (except in so far as Rk determines the current and therefore 
affects rP).

The differential output voltage is unaffected by common-mode varia
tion of the input voltage (provided the p’s and rP’s are equal). Thus, for 
example, the input voltage might be applied to only one grid, the other 
remaining fixed, and the output voltage between the plates would be 
the same as if the input voltage were applied in “push-pull,” one half 
to each grid. In the latter case, however, the output voltage would 
be truly “push-pull,” whereas with one grid fixed the plate of the triode 
with the moving grid would move 1 + Artv® times as far as the other 

(p + I)#*
plate. Usually this difference is very slight; but if Rk is small and it is 
important to have balanced output voltage, this may be accomplished 
by using slightly unequal Rp’s.

The differential output voltage will be affected by the input voltage 
level if there are inequalities between the triode characteristics. This 
effect may be appreciable where the amplifier is being used to detect the 
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difference between two potentials, each of which is subject to considerable 
variation. When the triode characteristics are different, the gain from 
ei to eo may be found from Eqs. (39) and (41) in a manner similar to 
that by which Eq. (52) was obtained. It is

„ =_____________ Ams + wj____________________ ; f53)
1 —J-T A2 + + RJ +

pt + 1 {pt + J

where the subscripts refer to the respective triodes. The gain g2, from 
e2 to eo, is the same as gi with opposite sign and subscripts. If the 
differences between the p’s and rp’s are small, the proportional response 
to the common-mode input voltage is approximately

1 + /p + R/>
gi + gs ~ 2Rk pi — pt . rp r— rpi

(0! - 9A ~ M + 1 M 2(p + 1)R* rp <54) 
2

Thus, if a given percentage of dissimilarity between either the p’s or the 
rp’s is assumed, the appearance of the common-mode input voltage in 
the differential output voltage is lessened by the use of higher-^ triodes 
and a higher Rk.

In some applications it is desirable that not only the differential 
output voltage but also the level of the two output voltages be unaffected 
by the input voltage level. The variation of the output voltage level 
is approximately — Rp/2Rk times that of the input voltage; this variation 
may be eliminated by the use of a constant-current circuit in place of 
Rk. This method also minimizes the effect on the differential output 
voltage [Eq. (54)], thereby eliminating the effect of difference between 
the rps.

As has been pointed out, unless Rk is very small, the output voltage 
of a differential amplifier is very nearly “push-pull” even if the input 
voltage is applied to only one grid. This effect comes about by virtue 
of the cathode coupling; the cathodes undergo excursions about half as 
great as those of the moving grid, thus furnishing an input voltage to the 
cathode of the tube with fixed grid and simulating a true push-pull input. 
An important result is improved linearity over a large range of output 
voltages. This result is indicated by Eq. (53), since the sum of rpi 
and rp2 tends to remain more nearly constant than either of them alone. 
Figure 11-29 illustrates the degree of linearity effected, as well as the 
balanced output voltage obtained with a single input voltage (cf. Fig. 
11-11).
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Equation (52) indicates the rate of change of differential output volt- . 
age with respect to differential input voltage. By symmetry, the output '
voltage should be zero at zero input voltage. Therefore, from Eq. (52), [
the voltage equation is j

ep2 - ePi = (ei - e2). (55) I

It is evident that the differential output voltage is independent of plate- I 
supply voltage, whereas in the case of the single-triode amplifier [Eq. (3)]

Fig. 11-29.—Example of differential amplifier and characteristic

any variation of Epp appears in the output voltage multiplied by

Tp
(Rp + r p)

Inequalities between the two triodes will result in Eq. (55) being in 
error by a constant amount. Often this error is immaterial, as the zero 
adjustment can be located elsewhere in the circuit. If zero output 
voltage at zero input voltage difference is required, a potentiometer 
between the cathodes, as in Fig. 11-27, usually is satisfactory, although 
it decreases the gain to some extent. It is sometimes preferable to employ 
a potentiometer in the plate circuit to increase one Rp and decrease the 
other. In either case, the unbalance required by the zero adjustment 
tends to spoil the rejection of the common mode and the push-pull 
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nature of the output voltage; if these are important, a pair of triodes like 
the 6SU7, which requires the minimum of zero adjustment, should be 
used.

Addition of a separate resistance in series with each cathode decreases 
the gain as given by Eq. (52) by the addition 
to the denominator of p + 1 times this 
resistance. This resistance may be used as a 
gain adjustment where desired. (The in
crease of linearity accompanying the decrease 
of gain is an advantage over simple attenu
ation.) To avoid the use of a double poten
tiometer, the ir-connected equivalent circuit 
as shown in Fig. 11-30 may be used instead 
of the T-connected cathode circuit. The 
gain potentiometer is generally of low resist
ance as compared with the cathode-return 
resistance, and each of these is about twice 
the value that Rk would have in the T-circuit. 
There is a minimum of interference between 
the gain and zero adjustments as shown.

Pentode Differential Amplifier.—Equation (55) may be written in the 
form

ep2 - ePi JhUe (61 _ e2). (56)

1 rp

If pentodes are employed, the plate resistance may be assumed infinite, 
and

Ppp
ePi epl gmRP(et c2). (57)

Thus a somewhat higher voltage 
gain is obtainable with pentodes 
than with triodes. The special 
problem in the case of the pentode 
differential amplifier concerns the 
screen potential and current.

If a battery or floating supply 
can be used to furnish cathode
screen potential, good common
mode rejection may be realized. 
Also, since the screen current does 
resistor, the output voltage is balanced as in the triode amplifier.

In general, however, the screen grids are supplied from a fixed source 
or by means of a common resistor as in Fig. 11-31. The current in Rk 
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is then the sum of the plate and screen currents. If the total screen 
current varies, the push-pull aspect of the output voltage will suffer. 
This effect is likely to be noticeable if either plate potential falls much 
below the screen potential. Therefore, R, should be chosen carefully, 
with this in mind.

11-11. Output Circuits. Requirements.—The type of output signal 
required of a direct-coupled amplifier varies greatly. Therefore, each 
application must be considered separately in choosing the appropriate 
output stage. Loads may be classified according to any of the following 
characteristics; the impedance, voltage, and current range required; 
whether or not both positive and negative voltage or current are expected; 
the degree of linearity desired; and the number of terminals needed. 
An example of a single-terminal load is an amplifier in which a voltage 
is to be fed back in a d-c computing circuit, wherein the amplifier is a 
voltage-equating device. A two-terminal load might be the deflecting 
plates of an oscilloscope, a voltmeter or ammeter, a relay, a motor 
field, or a magnetic oscillograph. Some loads, such as magnetic oscillo
scopes, differential relays, magnetic amplifiers, and servo-motor fields, 
have three or four terminals for differential excitation.

If there are no preceding stages in the amplifier, the design must take 
account of the input voltage level and provide an adjustment for varia
tions of components in accordance with 
the principles of preceding sections. 
Generally, however, there will be one or 
more stages of voltage amplification 
ahead of the output stage, and it will be 
assumed that the zero adjustment has 
been taken care of there. The actual 
output voltage from the preceding stage 
will be considerably above ground and 
usually must be dropped down to fit the 
input voltage level of the output state 
by a divider that also attenuates.

Fig. 11 -32.—Plate as output ter
minal.

Therefore, a high input voltage level is usually preferable.
Simple Amplifier with Plate as Output Terminal.—If the load is of 

very high resistance or if the required voltage swing is small, the load 
may be connected between some fixed point and the plate of the output 
tube, as in Fig. 11-32. In computing the performance of the amplifier 
with the load, Thevenin’s theorem may be applied, using the unloaded 
characteristics and the output impedance. Another method involves 
considering Rl in parallel with Rp as the net plate resistor. In this case 
a fictitious Epp, which is equal to the value of voltage assumed by ep 
with the tube removed, should be employed to determine the output 
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characteristic. From Eq. (5), with Rp paralleled with Rl, the voltage 
gain is

S = (58)

For a low-resistance load, such as a meter or a relay, the voltage gain is 
of much less interest than the rate of change of load current with input 
voltage, which is called the “current gain.” This quantity is equal to 
the voltage gain divided by Rl.

AiL _________dm .

- . Rl . Rl
(59)

Often the load resistance may be neglected, in which case

¿Al

~ 9' (60)

If the output voltage is to be “single-ended” with a large working 
range encompassing ground potential, a negative voltage supply will 

(A) (B) icy
Fig. 11-33.—Voltage output embracing ground potential.

be needed. Two general methods of obtaining this voltage are shown in 
Fig. 11-33. In (a) the output voltage is obtained from a divider, and in 
(6) the input voltage and the cathode supply are taken from dividers. 
If it is assumed that the tube permits a certain minimum plate voltage 
without having appreciable grid current and that a certain B— voltage 
is available, it is found that the output voltage is somewhat less attenu
ated in (a) than is the input voltage in (6); also, in (b) the impedance of 
the cathode tie point decreases the gain. On the other hand, the output 
impedance in (a) is much higher than in (b), and the upper limit of the 
output range is lower. For these reasons it is sometimes advisable to 
employ the depressed cathode method, with a cathode-follower tie point
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as in Fig. 11-33c. In addition to providing a low-impedance cathode 
return, this method permits the application of positive feedback (dashed 
resistor), which is beneficial if used in conjunction with over-all negative 
feedback (see Sec. 11-13). In any case a high-resistance plate resistor 
should be employed because the greater the plate current the higher the 
minimum allowable plate voltages. A pentode tube is much superior 
to a high-M triode in point of low limiting plate voltage and is therefore 
generally preferable in this application.

Cathode-follower Output Stage.—If the output voltage requirement is 
the same as in the foregoing paragraph but 
the current load is appreciable, a cathode 
follower may be added to any of the cir
cuits of Fig. 11-33. Its cathode resistor 
should be returned to the B~ voltage to 
permit the output voltage to reach zero 
without much nonlinearity. Its input volt
age will have to drop somewhat below zero, 
but this amount is minimized by the use 
of a high-M tube and by a plate supply that 
is no higher than needed in view of the 
maximum output voltage required.

If one terminal of the load is or can be at some fixed positive potential, 
the arrangement might be as shown in Fig. 11-34. By The venin's theo
rem, from Eqs. (15) and (16), the voltage “gain” with the load is

(61)

(Rl includes the resistance of the load tie point). The current gain is
this expression divided by Rl.

At L _  gm

1 + (m + 1} ~
(62)

which, if Rl is negligible, approaches

AtL

Aea ~
(63)

just as in the case of Fig. 11-32. In fact, if Rl is negligible, the only 
difference between Figs. 11-32 and 11-34 is the nature of the saturation, 
and even here the difference is one of sense only. In Fig. 11-34 the maxi
mum reverse current is the current obtained with the tube removed and 
depends on the magnitude of Rk; the maximum forward load current 
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depends only on tube capability and plate voltage. A similar, but 
reverse, situation obtains for Fig. 11-32. Where Rl is appreciable, the 
current equations (59) and (62) differ by pRl in the denominator. In 
this case, the gain of Fig. 11-34 is lower, but its inherent negative feedback 
gives it greater linearity.

Differential Cathode Follower.—The resistance of the return point for 
the load resistor may decrease the current gain considerably if a bleeder 
is used as in Fig. 11-34. It may be advisable to employ a second cathode 
follower as a tie point as in Fig. 11-35. Similarly to Eq. (62), the current 
gain is found to be

Aik _  ___________ Qm__________

Ae’ 2 + (m + 1) — + 
ttjg

or, for very small load resistance,

AÎl ~ g™.
Aee 2

(64)

(65)

Fig. 11*35.—Differential cathode fol
lower.

Saturation in either direction occurs when one of the tubes cuts off. 
The load current is then simply the 
current in Rk. In the forward direc
tion there is still a slight current in
crease beyond this point, and Eq. (62) 
then applies with RL increased byEj,.

This circuit is convenient for driv
ing ammeters and magnetic oscil
lographs, which have negligible 
resistance and which need the pro
tection against overloads afforded by 
the saturation. Good linearity is 
afforded by mutual cancellation of 
plate resistance variation. Extra 

linearity may be obtained at the expense of gain, simply by the addition 
of resistance in series with the load.

The input terminals may conveniently be at both grids, instead of 
at only one as shown, from the two plates of a differential amplifier.

Differential Amplifier.—The case of a high-impedance push-pull 
load, such as oscilloscope plates, is covered by the differential amplifier 
analysis of Sec. 11-10. The voltage range available depends on the 
B+ voltage supplied, and the push-pull nature of the output voltage, 
if the input voltage is single-ended, depends on the B — voltage being 
large in comparison with the input voltage.
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To describe the performance of the differential amplifier with a load, 
as in Fig. 11-36, it is perhaps easiest to begin with the assumption of zero 
load resistance. In this case, since the cathodes are tied together and 
the plate voltages are equal, the difference between the plate currents is

ipt ipt jm/i c2). (66)

The currents in the two Rp’s are ipl + and iPt — Il respectively. 
Since the R/s are equal and receive 
the same voltage, these currents 
are equal, and Eq. (66) becomes 
(for Rl = 0)

iL = — — 61). (67)

The output impedance of the am
plifier is the ratio of open-circuit 
voltage to short-circuit current and 
thus is found, from Eqs. (67) and 
(55), to be

z" - ¿A' (68)
or twice the output impedance of 
a simple amplifier. Application of Th^venin’s theorem to Eqs. (55) and 
(68) gives the voltage gain with load as

Epp

Fig. 11*36.—Differential amplifier with 
load.

Rp Rl

from which the current gain is found to be

-----—— =------------------------ (70) A(d - e2) o , Rl , Rl-------------------------------------k ’
2 + rp + Rp

It is evident that when, as in an ammeter, the load resistance is 
negligible, the gain of a differential amplifier is identical with that of a 
differential cathode follower. The linearity of the two types is the same, 
and the linearity of the differential amplifier may be improved at the 
expense of gain by insertion of resistance between the cathodes, as in 
Fig. 11-30. A possible reason for preferring the cathode follower would 
be the extra damping afforded a meter by the low output impedance. 
For loads with considerable resistance, like a motor field, a relay, or a 
solenoid, the differential amplifier is preferable when maximum gain is 
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desired. Also, when a quick current response in spite of load inductance 
is required, it is preferable to use the plate circuit. In this case, the 
current through the load tends to follow the grid voltage without being 
influenced by the voltage across the load as much as it would be if the 
load were in the cathode circuit.

If a pentode differential amplifier, where p and rp are almost infinite, 
is used as an output circuit, Eq. (70) reduces to

AIl _  _ gm
A(ei — ez) _ Rl

2 + RP
(71)

Twice as much current gain can be realized if the load is divided into 
two parts, as in the case of a differential relay or a magnetic oscilloscope, 
where each of the two parts is simply one of the Rp's and the output is 
the difference between these currents. For a pair of triodes, this output 
current is [adding Rp to rp in Eq. (61)]

?'i — iz — _ f p (ei — e2). 
‘p \ TUp

(72)

In the case of a pair of pentodes, the load resistance does not decrease 
the gain, and Eq. (66) applies directly.

Two-tube Series Arrangement.—The circuit 
of Fig. 11-37, where ek is the output voltage, is 
sometimes useful as a power amplifier. A similar 
circuit, having another resistor equal to R in 
series with the lower cathode and with the output 
terminal at ep, affords cancellation of heater
voltage variation and is described in Sec. 11-12. 
The circuit between Epp and ep, comprising the 
plate load for the lower tube, resembles the 
constant-current circuit of Fig. 11-18, but with
out the battery it is not actually a constant
current device. It is merely the equivalent of 
a simple resistance, of value rp + (p + 1)R, 

returned to Epp. Thus in Fig. 11-37 the voltage gain to the ep terminal is

&Qp _ —Wp + (m + 1)R] 
Ae„ 2rp + (M + 1)^ ’

Since all the current flows through R, the cathode is at a point at a dis
tance R from the ep end of the total equivalent resistance rp + (p + 1)R, 

and therefore ek moves —— times as much as ep. Thus,
rP + (p + 1)R
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the gain to the cathode (with no load) is

Aek _ — m(fp + pR) 
Aeg 2rp + (g + 1)jR (74)

To find the gain with a load, it is easiest first to determine the current 
gain in the case of a zero-resistance load. If Rl is zero in Fig. 11-38, 
so that ek is fixed at E, a change Ae„ will produce a plate current incre
ment &ipl of g Aeg/(rp + R). This incre
ment, in turn, lowers the upper grid by a 
voltage increment R times this, so that the 
upper tube current changes by an amount 
&iP2, equal to -g!RAe,/rp(r, ±R). 
Thus, if Rl = 0, the net current gain is

AÌl

tee
M_________

rp + R rp(rp + R) 
rv + pR

9m T^TR' (75)

The current gain with a load of negligi
ble resistance, where a suitable intermedi
ate voltage source exists for a load tie 
point, is considerably greater than that 
for a simple amplifier or a differential 
amplifier or cathode follower.

Fig. 11’38.—Series amplifier with 
load.

The output impedance is the ratio of open-circuit voltage gain to short
circuit current gain.

7 = r + R
° P 2rp + (M + 1)R' (76)

From Eq. (74), by means of Thevenin’s theorem, the voltage gain with 
any load resistance is found to be

~p(rp + mR)

2rp + (M + 1)R + (rp + R)
ILL

The current gain with any Rl is

AL.
Ae9

rp + pR

rp + R 1 + (g + 1) — + 2R. rp

(77)

(78)

It is apparent from Eq. (78) that as long as Rl is considerably smaller 
than rp, R may be chosen so that the current gain is several times gm. 
The maximum range of output current in both positive and negative 
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directions is achieved with E = Epp/2 and R = but the maximum 
gain occurs with an R of several times l/gm-

If a pentode is used in the lower posi
tion, as in Fig. 11-39, the formulas are 
simpler. In this case, Eq. (74), the voltage 
gain with Rl = x , becomes

Fig. 11-39.—Series amplifier using 
pentode.

= ~9m(rp + pR), (79)

where gm refers 
rp to the triode, 
simply

to the pentode and p and 
The output impedance is

Zg rp, (80)

because the pentode current is independent 
of its plate voltage, so that if ek is moved 
by external means, the triode bias will re
main constant and its current will vary 

according to plate resistance. From Eqs. (79) and (80) the voltage gain 
with load is found to be

G = — n Tp + PÜ, 

1+12.
Rl

and the current gain is

Aii _ rp + pR 
Ae„ “ 9m rv + Rl

(81)

(82)

A practical example of this output circuit is given in Fig. 11-42. Both 
tubes are pentodes, but the upper tube behaves like a triode because its 
plate and screen both are fixed.

A comparison of this circuit with the differential amplifier shows that 
for tubes of the same capabilities, the former has at least four times the 
gain and twice the maximum output current in both directions as the 
latter. On the other hand, this circuit requires a low-impedance inter
mediate voltage source, and, for a given available B + voltage, the 
input voltage level must be considerably lower than that for a differential 
amplifier.

11-12. Cancellation of Effect of Heater-voltage Variation.—The funda
mental effect of heater-voltage variation was explained in Sec. 11-6: 
A definite change of heater voltage is the equivalent of a definite change 
of the cathode potential relative to the other electrode potentials. For 
oxide-coated cathodes, a 10 per cent increase of heater voltage is the 
same as a cathode-potential decrease of about 100 mv, although this 
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figure is subject to some variation from tube to tube and is larger and 
more erratic if the cathode current is very great. Thus the effect can 
be canceled either by an equal displacement in the opposite direction of 
the cathode potential or by approximately the same grid potential dis
placement in the same direction. If such a cancellation is not applied, 
the output of the amplifier will shift by its gain times this equivalent
cathode-potential decrease. If more than one stage is involved, each
will contribute to the heater effect by an amount 
that depends on the gain of the following stages, 
but, in general, the gain of the first stage will be 
great enough so that the heater effect in following 
stages is negligible in comparison.

Negative feedback cannot reduce the amount 
of adjustment required at the input to cancel 
this effect. This fact is obvious in the case of a 
cathode follower. The effect of an increase of 
Ef is the same as the insertion of a low-voltage 
battery of zero resistance in series with the 
cathode, as shown in Fig. 11-40. If this were 
done, with no change in eg, ek would change by 
an amount almost equal to the battery voltage 
AE. To cancel this change, eg must be lowered 

B+

Fig. 11-40.—Heater
voltage variation effect on 
a cathode follower.

by just AE.
In a majority of applications, some method of canceling the effect of 

variations of heater voltage is necessary or advisable. (Of course, if 
the heater supply is well regulated, or if the resulting error is within allow
able limits in a specific application, no cancellation will be needed.)

Diode Cancellation.—A comparison of Figs. 11-5 and 11-6 shows that 
the slopes of these curves for the diode are substantially the same as 
those for the triode. (At extremely low currents the triode curves 
become a little steeper, because incomplete grid control over the electrons 
is more noticeable with increasing temperature.) Thus the variation 
in a diode, whose heater is connected to the same source as that of the 
triode, may be used to offset the variation in the amplifying tubes.

One method of diode cancellation is shown by Fig. 11-41. The 
negative B voltage is large compared with the expected fluctuation at the 
cathode, so that the current in R may be considered constant (R is 
required to be large compared with the diode’s variational resistance). 
It is desired that, with no change in eg, ip (and thus ep) will remain con
stant. To permit this, a certain increase of Ef must be compensated 
for by a certain rise Aek at the cathode of the amplifier. But if the diode 
has the same cathode characteristic, this same increase Aek will occur at 
the diode, since the diode current is constant. If the two cathode»
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have different heater-voltage characteristics, the compensation will 
suffer accordingly. But generally the error will be less than one-tenth 
of that with no correction; e.g., the error due to a 10 per cent change of 
Er, measured at e„ will be less than 10 mv.

The error due to the fact that R is finite is not noticeable in comparison 
with that due to tube differences unless the voltage across R is less than 
about 10 volts. It can be shown that this error is only (R + rd) 
of the error with no compensation, where is the diode variational 
resistance.

The value of R must be such that its current will be greater than the 
maximum in the amplifying tube; otherwise the diode will cut off, and 
the amplifier will cease to function as such. The cathode return of the 
amplifier is through the variational diode resistance rd (in parallel with 

R, which should be large enough 
to be negligible in comparison). 
A loss of gain [Eq. (9)] results 
unless prd [or (deg,/deg)rd if a pen
tode is used] is very small com
pared with RP. It must be 
remembered, in selecting R, that 
rd is a function of the diode cur
rent and may be determined from 
the slope of the diode current
voltage curve. At very low cur
rents (e.g., below 0.2 or 0.3 ma, 
for a 6AL5) rd becomes inversely 
proportional to the current, with 
a multiplier that is not a function 
of the diode type or even of the 
number of diodes in parallel (since 
increasing the number would de

crease the current and increase the variational resistance of each). Thus,, 
for all diodes with unipotential oxide-coated cathodes, the variational 
resistance at very low current approximates

0.09 , .. ,rd ~ :— kilohms (83)

if id is in milliamperes.1 This variation of the diode impedance might 
conceivably be used to linearize a portion of the amplifier output curve 
by varying the gain in a direction opposite to its natural curvature.

1 This equation derives from the fact that the current at small values is exponential 
with respect to voltage: id ~ where T is the absolute temperature of the
cathode and is 1000° to 1100°K in this instance.
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Tubes with diodes using the same cathode as the triode or pentode 
are especially useful in the circuit shown in Fig. 11-41, since the heater
voltage characteristics are bound to be nearly identical. For example, 
a sample of six 6SQ7 double-diode triodes was tested in the circuit of

Fig. 11-41, with the diode plates in parallel (ep = 150 volts; ip — 0.1 ma; 
id = 0.08 ma). The adjustments required at the grid by a 20 per cent 
heater-voltage change were —10, —5, 0, -f-2, +3, and +6 mv, whereas 
the adjustments required with the cathode grounded ranged from 195
to 212 mw. The drift due to aging 
of the heater or cathode may also be 
fairly well canceled in this way.

Figure 11-42 is the circuit dia
gram of a direct-coupled velocity 
servo amplifier,1,2 which furnishes 
field excitation for a d-c servo motor. 
The input stage of this amplifier uses 
diode cancellation of heater-voltage 
variation. The Zero-adjustment re- Fid. 11’43.—Diode heater-voltage eamel- 
sistance and screen-grid bleeder do lation at amplifier grid.

not impair this function because the currents here are substantially 
constant. The diode current is two or three times the cathode current 
or the pentode.

A method that requires two diodes but needs no negative supply and 
permits manual adjustment for differences in cathode characteristics is 
illustrated by Fig. 11-43. The circulating current due to initial electron

1 Telecommunications Research Establishment Report.
2 Cf also Sec. 11-14 for further discussion of this circuit.
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velocity (Edison effect) in the diodes inserts a negative voltage in series

B+

B-

with the grid. This voltage increases with increasing heater voltage, 
and its slope factor may be adjusted with the potentiometer. The 
resistance employed may be anywhere from 10,000 ohms to 1 megohm. 

A single diode is not potent enough 
because of the load imposed by the 
resistance.

Cathode Follower and Differential 
Amplifier Cancellation.—In Fig. 11-44 
the diode of Fig. 11-41 is replaced by 
a cathode follower. The same reason
ing that explained the action in the 
case of the diode circuit is equally 
appropriate here, as are the remarks 
concerning the assignment of the value 
of Rk. For the cancellation to be as 
effective as possible, the B— voltage 
must be large enough so that Rk may 

be very large compared with the reciprocal transconductance of the 

Fig. 11'44.—Balancing Ep variation 
with a cathode follower.

cathode follower. In the comparison with the diode circuit, this latter 
quantity corresponds to the diode variational resistance.

The grid of the cathode follower provides a convenient high-impedance 
point for zero adjustment for the amplifier. This and other features
of the circuit have been discussed under 
differential amplifiers. If the load re
sistor is transferred to the right-hand 
triode in Fig. 11-44, to obtain an output 
of the same sense as the input, or if the 
circuit is made into a symmetrical differ
ential amplifier, the cancellation of 
heater-voltage variation still obtains in 
the same way. Double triodes, such as 
the 6SL7 or 6SU7, are convenient for this 
type of application and give reasonable 
assurance of similar cathode character
istics. (The 6J6 should be very appro
priate, since the same cathode is used 
for both triodes; but it seems subject 

B +

Fig. 11'45.—Balancing Ef vari
ation with a self-biased cathode 
follower.

to considerable drift because of its type of construction.)
The circuit of Fig. 11-45, which employs a self-biasing cathode 

follower as a cathode return for the amplifier tube, permits adjustment 
for the inequality that may exist between the cathode characteristics 
of the two tubes. If iPi is to be held constant in spite of any given change
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of heater voltage, ek must be changed by some amount AEi. Since ipi 
is constant, the resulting change of current in Rk all occurs in the cathode
follower tube.

AlpJ =
AEi 
Rk (84)

If x is the portion of Rk between the cathode and the grid tap, the change 
of grid bias is

Aegk — ~x AEi (85)
But this tube behaves as if a small voltage — AE2 (which is approximately 
equal to — AEi) had been inserted in series with its cathode (as in Fig. 
11-40). Thus the effective grid-to-cathode voltage has changed by the 
amount AEi — x AEi, and effective plate-cathode voltage has changed 
by AE2 — NEi. So from Eq. (1),

AiPi =
AEi — AE, -f- pi(AEi — x AEi)

(pi 4- 1) AEj ~ (xpi 4~ 1) AEi 
rpi

Combining (86) and (84), 
Rk = ______ _________
Z- 

^^AE] ~ X) ^AE^1

Or, approximately,
é®2 — x I Rk — • AÊ1 X y Rk ~

(86)

(87)

(88)

If the two cathodes have exactly equal characteristics, so that AEi = AEi, 
the portion of Rk below the grid tap is simply

(1 - x)Rk = (89)

where rP3 is the plate resistance of the cathode-follower tube, and if there 
is a resistor inserted in series with this plate, it is included in rPi.

The amplifier tube cathode is, in effect, connected to a voltage 
Epp/(p +1) through a resistance rp2/(p 1), regardless of the value of 
the portion of Rk above the grid tap (although this value does determine 
the cathode-follower plate current, which in turn affects rpi). Thus the 
amplifier tube will be just about cut off at zero grid voltage, and it will 
have a gain [Eq. (9)] of pRp/(RP + 2rp). The value of Rk is not critical 
but should be between two and eight times rP/p. The triodes should be 
aged for a while and cycled several times through the extremes of heater 
voltage before the adjustment is made.
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Cancellation by a Series Triode.—In the circuit of Fig. 11-46, the plate 
resistor for the amplifier (lower) tube comprises a circuit resembling the 
constant-current device of Fig. 11-18 except that the voltage E is omitted. 
Thus this is not a constant-current device but is simply the equivalent 

Epp

Fig. 11'46.—Can
cellation of Ef vari
ation with a series 
triode.

of a resistor whose upper end is attached to Epp 
and whose value is rp + (m + 1)R [Eq. (23)]. Thus 
from Eq. (7), if the two triodes are similar,

Cp —

rP + (m + l)Rk 
rp + (m + 1)R

Epp peg

1 । U + (p + 1)74 
rP + (m + 1)Ä

(90)

If the two cathodes respond equally to a change of 
heater voltage, R should equal Rk for cancellation 
of the effect.1 With ee fixed, a given increase of Eh 
causes a certain small increase of current; but since 
this increase is the same in both tubes, the grid 
biases change identically. Therefore, the two plate- 
to-cathode voltages suffer no change, and ep remains 
constant. If Rk = R, Eq. (90) becomes

_  Epp  pea
ep “ T I' (91)

Thus, when eg is zero, the output voltage is half the plate-supply potential 
(as is already apparent by symmetry), and the gain is p/2. The output 
voltage is linear with respect to e0 because rp does not appear in Eq. (91). 
Of course, the two rp’s were assumed equal, but this assumption is not 
far in error, as the currents in the two tubes are equal.

The output impedance, from Eq. (11), is (if Rk = R)

rP + (p + l)Rt 
2Zp (92)

If the two cathodes have different heater-voltage characteristics, 
either R or Rk may be adjusted until cancellation is obtained. This 
adjustment will not usually change the gain from p/2 by more than 5 per 
cent.

Cancellation by Means of a D-c Potential Proportional to Heater Voltage. 
If the d-c load on the power supply is fairly constant, its unregulated 
output will vary in proportion with the a-c line voltage and therefore 
with Eh- Thus this output may be employed in some way to offset the

1 Maurice Artzt, “Survey of D-c Amplifiers,” Electronics, August, 1945.
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Fig. 11-48.—First grid 
as diode plate.

effect on the cathode of the variations of Eh. For example, in Fig. 
11-47, if Eh increases, ek will rise a small amount, which, if the adjustment 
is right, will keep the plate current constant with no change of eg. If 
the cathode is on the bleeder at a point 1 volt from ground, then regard
less of the total voltage on the bleeder, ek will 
rise 0.1 volt with a 10 per cent rise in the 
unregulated source. This rise is just about 
the required amount. Another resistor, in
serted in series with the cathode for degenera
tion or zero adjustment, will not affect the 
cancellation.

If the source is not well filtered, filtering 
may be done at the cathode. But a condenser 
of a given capacity is more effective if placed 
as shown, about midway on the bleeder.

Rapid line fluctuations will produce errors 
whose nature and duration is revealed by Fig. 
11-8. Another disadvantage of this method 
is that the correction is linear with respect 
to Eh whereas the effect itself is curved (Fig.
11-6); therefore, the cancellation is of limited range.

Cancellation by Special Connections of Multigrid Tubes.—The circuit 
of Fig. 11-48, wherein the second grid of a tetrode or pentode is used 
as the control grid for the plate current, is actually very much like the 
circuit of Fig. 11-41. Here the first grid instead of a separate diode 

plate is grounded (or otherwise fixed) and acts as a 
diode plate to furnish a large part of the cathode 
current. If the cathode temperature is increased, 
its potential will rise; and since ig is practically 
constant (ep is assumed to be held constant, and 
the variation of ek is small compared with the drop 
across Rk), its rise will be just enough to neutralize 
the effect on the other electrodes in the tube. The 
advantage over the diode-cancellation method of 
Fig. 11-41 is that the same cathode area is used 
in the cancellation as in the amplification. The 
drift that is caused by change of average initial 
electron velocity with time is also canceled in the 
same way as that due to temperature change.

Ordinary pentodes are generally unsatisfactory in this circuit because 
the screen grid has so much control over the plate current that the latter 
is completely cut off (except of extremely high plate voltage) when the 
screen-grid potential is lowered far enough so that its own current is
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negligible. The suppressor grid, on the other hand, has very little 
control. In a tetrode like the 6V6, however, the effect of the screen 
grid is between these two extremes. Figure 11-49 shows the plate char
acteristics of a 6V6 in the circuit of Fig. 11-48, with a negative supply 
of 45 volts, and Rk = 90,000 ohms, so that ik is just about | ma. The 
curves are similar to those of an ordinary triode with a p of about 40,

Fig. 11-50.—Effect of heater voltage on egz and ek.

except that the current has an upper limit of ] ma. Figure 11-50 shows 
the effect of heater voltage on ek and e„2, the latter being adjusted so as to 
maintain constant plate current. When ip and ia are about the same, 
eo2 is fairly constant over a large temperature range.

The 6AS6 miniature pentode has a specially designed suppressor grid 
that has unusually effective control over the plate current. This tube 
may be used in a manner similar to the one in the circuit of Fig. 11-48,
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but with the suppressor as the control grid and the screen grid at some 
positive potential. This method of operation has the advantage of 
producing plate characteristics more like those of a pentode, but the 
cancellation of heater-voltage effect seems to be less effective Over a wide 
operating range than in the case of the tetrode. A pentagrid con
verter tube might also be applicable in the same way as the 6AS6. 
More research is indicated in this field, with a possible objective of 
developing a suitable tube for the purpose.

11-13. The Use of Feedback in D-c Amplifiers. Conductive Negative 
Feedback.—Conductive, or direct-coupled, negative feedback can reduce 
the dependence of gain upon output d-c voltage or current (i.e., non
linearity or amplitude distortion) and tube characteristics. It cannot 
reduce the effect of zero drift or displacement of a given amplifier 
(as referred to the input terminals) no matter * whether it is due 
to heater-voltage variation, tube aging or replacement, or microphonics. 
This fact was illustrated in Sec. 1112 for the case of a cathode follower, 
in which the zero drift referred to the 
input terminals was found to equal the 
tube drift in terms of the shift of 
grid-to-cathode potential required to 
maintain constant current. In some 
instances, as in the arrangement of 
Fig. 11-51, negative feedback can 
actually increase the effect of drift 
as seen at the input terminals. In Fig. 11-51, if the amplifier drifts so 
that a given change Ae0 is required to hold ea constant, the change 
required at the input terminals is Ae^ = AefiRi + Rg^/Rg.

However, if a given over-all gain is required, negative feedback can 
reduce the effect on zero displacement of changes in certain parts of an 
amplifier by permitting the use of more amplification ahead of these 
parts. This is often of great value, since a power-output stage is much 
more susceptible to shifts caused by variations of load, supply voltage, 
heater voltage (because of greater tube currents), etc., than is a voltage 
amplifier with very low power output.

The common form of the feedback equation is

8 = 03)

where G is the gain without feedback, g is the gain with feedback, and 0 
is the fraction of output voltage that is added to the input voltage. This 
equation is based on the assumption of simple addition involving no 
attenuation of the input voltage and no disturbance of the amplifier 
parameters by the feedback action. In Fig. 11-51 the resistance addition 

Fig. 11*51.—Direct feedback using 
resistance adding.
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of input voltage to a fraction of the output voltage attenuates the input 
voltage by the factor R2/(Ri + R2), and Eq. (93) therefore becomes1

g _ _________ ®______ (94)
b Ri + Rz, oRi

Ri + Rz

For negative feedback the sense of the amplifier must be such that a is 
negative.

Perhaps the most common form of negative feedback is through the 
cathode. Some of the aspects of this method, as applied to single-stage 
voltage amplifiers, were covered in Sec. 11-7. Equation (93) cannot be 
applied directly because the operation of the amplifier itself is somewhat 
affected by this type of feedback. From Eq. (9) it is seen that the 
insertion of a cathode resistor Rk gives the triode amplifier a gain of

9 = -
__________ M_______
1 + ^ + (M + 1) 

lip
Rk
RP

(95)

whereas the gain without this degeneration is simply

a = (96)

R

Combination of these equations to obtain a form like Eq. (93) results in

Thus the feedback factor is, in effect,

o M + 1 Rk
p p Rp

1 In the resistance addition of e„ and e, to obtain e„,

R, Ae, + R, 
~ A/ + R2 ’

But the amplifier gain is

Seg
and over-all gain with the feedback is

e = 4/
b Ae.-

(97)

(98)

(i)

(ii)

(iii)

Combination of Eqs. (i), (ii), and (iii) gives Eq. (94). 
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which is rather different from the common form in that it is a function of a 
characteristic of the triode, although a given percentage change of p 
will cause only 1/(m + 1) times as much percentage change in fi.

If fi is constant in Eq. (93), differentiation shows that a change Aft 
of the gain of the amplifier will produce a change with the feedback of

or

(1 - afi)2

Ag = S Aa 
g a a

(99)

(100)

(101)

of gam in the same ratio as it

Fig. 11-52.—Relation of nonlinearity 
to change of gain.

This equation indicates that the introduction of negative feedback reduces 
fractional deviations from constancy 
reduces the gain. Of course, if cathode 
feedback is employed so that Eq. (98) 
obtains, Eq. (101) is not complete for 
any change of p but is complete for a 
change or rp. This agrees with the 
conclusions drawn from Eq. (10) in Sec.
11-7.

Although negative feedback tends 
to stabilize the gain with respect both 
to changes of circuit parameters at any 
given value of output voltage and to 
changes of the output voltage itself, 
these two factors may be considered 
separately to some extent. One or the 
other of them may be of greater importance in a given application, and 
this may affect the nature of the feedback employed.

Variation of gain with respect to output voltage results in non
linearity. The common way of expressing nonlinearity is in terms of 
maximum deviation of the curve of output voltage plotted against 
input voltage, from the best linear approximation thereto, given as a 
percentage of the total working range of output voltage. This quantity 
may be related to the change of gain over the length of the curve if the 
nature of this change is known. For example, if the gain, which is the 
slope of the curve, changes uniformly with respect to input, the curve is 
part of a parabola, as shown in Fig. 1T52. The dashed line is the best 
linear approximation, and 8 is the maximum deviation. Thus the non
linearity is expressed as 3/Eo, where Eo is the range of output voltage.
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A geometrical calculation reveals that the nonlinearity is

A = 1^9
Ea 16 So

(102)

where go is the slope of the dashed line and Ag is the difference between 
the slopes at the extremes of the curve. In most cases where the curva
ture is greater near one end, the fractional nonlinearity is an even smaller 
fraction of the fractional maximum change of gain. In any event, 
Eqs. (102) and (101) show that the fractional nonlinearity is decreased by 
negative feedback in the same ratio as is the gain.

If there is more than one stage in an amplifier, the question may arise 
as to whether the negative feedback should be over all or over the 
individual stages. The total amplification is

a = aia2a3, • ■ • , (103)

where ai, a2, etc., are the amplifications of the stages. If each has its 
own deviation in gain, which is assumed to be small, then differentiation 
shows that the fractional deviation of a is simply the algebraic sum of the 
individual fractional deviations:

Aa _ ABi Aa2 Aa3 
a Bi a2 a3 (104)

If over-all feedback, which reduces the gain to g, is employed, Eq. (101) 
gives the deviation of gain as

Ag = g /aBi Aa2 , Aa3 _ _ . 
g a \ ai a2 a3 ' (105)

On the other hand, if feedback is on an individual basis so that each 
stage has its gain reduced from ai to gb etc., then the linearity of each 
stage is improved according to Eq. (100):

Agi _ gi ABi 
g3 “ ai a3 > etc.

Thus, as in Eq. (104), the over-all deviation in this case is

△g _ 9i Aai . g2 Aa2 g3 ab3 _ _ _ doei
g ai Bi a2 a2 a3 a3 k '

If the over-all gain is to be the same in both cases, i.e., if g = gig2g3, ■ • • ,
then Eq. (106) yields a larger result than Eq. (105), since g/a will be
much smaller than any of the individual ratios gi/3i, etc. Thus the 
over-all degeneration is by far the more effective in linearizing and 
stabilizing the gain.
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In many cases, it is more convenient to apply the degeneration to 
individual stages, especially in view of the simplicity of the cathode
resistor method or the fact that proper phasing of the feedback may not 
otherwise be possible. The question then arises as to what the appor
tionment of degeneration should be among the stages. This will depend 
to some extent on whether linearity or stability of gain with respect to
circuit elements is desired. If linearity is 
of the degeneration should be placed where 
there is the greatest range of voltage (or 
current) to be encountered because the 
fractional nonlinearity tends to be greatest 
there. But if it is desirable to have con
stancy of gain with respect to tube param
eters, etc., each stage should be stabilized 
regardless of the magnitude of its output 
voltage swing.

Over-all negative feedback to the cath
ode of the first stage may be applied as 
shown in Fig. 11-53, where the rest of the 
amplifier beyond the first stage is general
ized and assigned the gain O'. From Eq.

of greater importance, most

Fig. 11*53.—Over-all cathode
feedback.

(13) the portion of the output fed back to the cathode is found to be

_ R1

Ri + Rt + (m + 1) • P “1“ lip

This attenuating network also has the effect of inserting in series 
with the cathode of the first tube a resistance of value

n _ R,Ri 
* - Ri + Rt'

As explained in Sec. 11-7 this has the effect of increasing the plate resist
ance of the triode by (m + 1)R*. Thus,

A = (m + l)fe Ae0 - p Aeg
1 I Tp + (m + 

+ RP

But Aep = Ae0/G', and the over-all gain may therefore be found as

S = T (108)
(m + 1)**

Ct lip
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But the gain of the first stage alone (including the effect of Rk) is

0" ------------------ .VSd- (109)1 _L + U + l)Elt
RP

Substituting this in Eq. (105),

S =----------- ---------— • (110)

The total amplification without the feedback (but with RO is a = 0'0", 
so that the gain with feedback, in the form of Eq. (93), is 

which is very much like the single-tube case of Eq. (97). The feedback 
factor here is

0 = - (112)

The negative sign shows that for negative feedback, 0 must be positive, 
i.e., 0' must be negative.

The possible variation of 0 can cause variation of gain with this type 
of feedback, no matter how large 0 is. Differentiation of Eq. (Ill) 
shows that if p and 0 are both subject to small changes, the resulting 
change of gain is

Ag_8A0 ¿SAm-g-0-0+T7' (113)
If 0 is very large compared with g, Eqs. (Ill) and (113) become

8’TTIS <114>
and

Thus the limiting factor in the degree of linearization and gain stabiliza
tion achieved is expressed by Eq. (115). If a considerable range is 
covered by the input voltage, the plate-to-cathode voltage will vary, 
since the cathode voltage follows the input voltage. Because of the con- 
commitant variation in p, nonlinearity may result, but it can be kept to a 
minimum by keeping the plate current in the tube practically constant, 
i.e., by having 0' large enough so that the variation of ep will be small 
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^pp

Fig. 11-54.—Cathode and screen 
feedback.

compared with the drop across Rp. Obviously a high-M tube is preferable 
in the input position. As an example of the effect of tube replacement, 
g for 6SL7’s at a plate current of 0.2 ma varies approximately from 61 
to 73 for different tubes. Therefore, the maximum change of gain 
to be expected from Eq. (115) would be 0.26 per cent.

If a pentode with its screen at a fixed potential is employed in the 
input stage, the preceding analyses and formulas still apply, except that p 
must be replaced by &eak/deak and rp does 
not appear. The screen may be kept at a 
constant potential above the cathode by 
means of an auxiliary network, as in Fig. 
11-54 where Ri/Rs = Rz/Ri- Thus the 
expression on the right-hand side of Eq. 
(115) is very nearly equal to zero. If the 
variation in pentode plate current is small, 
and if the screen potential never swings 
much above the plate potential, the screen 
current will be reasonably constant, so that 
Rs and Ri may be rather large. A simpler 
arrangement than that of Fig. 11-54 puts 
the screen on a bleeder from cathode to 
B+. The operation is then somewhere 
between the two conditions described.

In all of the previous discussion, the loading effect of the feedback 
network on the amplifier has been assumed to be included in Ct. If the 
amplifier also delivers power to an external load, which is not constant, 
Ct will be caused to vary, and g will vary in accordance with Eq. (113).

The feedback arrangements of Figs. 11-53 and 11-54 as well as those 
of Fig. 11-51 are voltage negative feedback; they operate to stabilize the 
output voltage with respect to changes of load; i.e., the effective output 
impedance is decreased. In fact it may readily be demonstrated that the 
output impedance of the amplifier is decreased in the ratio g/Q.

This is not the case with the simple cathode-resistor system of Fig. 
11-12 where the voltage output terminal is at the plate. Equation (11) 
shows that the output impedance is actually increased. This type of 
feedback, which operates to stabilize the current in the load resistor 
by feeding back a voltage developed by this current in a fixed resistor, 
is termed current feedback. Figure 11-55 shows a more elaborate example 
of current feedback. The output is the current in Rl. As this current 
also flows in Rk, the fedback voltage is proportional to it. (The current 
of the input tube also flows in Rk, but this is usually much smaller and 
is also nearly constant.) Figure 11-55 would be the same as Fig. 11-53 
if the output voltage were considered to be the voltage at the cathode 
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of the output tube (and k = 1 in Fig. 11-53). Thus the output current 
may be derived from these considerations by simply dividing the output 
voltage by Rt. The current in Rl is linearized with respect to e„ and 
stabilized with respect to changes of Rl, Epp, etc., in a manner identical 
with that of the output voltage of Fig. 11-53.

The cathode feedback arrangement of Fig. 11-53 leaves the input 
circuit with no compensation for variation of heater voltage. In the 
resistance-adding feedback of Fig. 11-51, compensation may be provided 
at the input stage, but this type of feedback is often less desirable than 
the other because of the lower input impedance and because of the need 
for high-resistance precision resistors. Compensation may be provided

Epp

Fig. 11-55.—Example of current feedback. Fig. 11-56.—Cathode-follower feedback.

in the case of cathode feedback, by feeding back to the plate of a diode 
arranged as in Sec. 11-12. A more common method employs a cathode 
follower as in Fig. 11-56, which has the advantage that Ri and R2 do not 
reduce the gain of the input stage and therefore may be large enough to 
avoid serious loading of the output stage. The effective resistance in 
series with the cathode of the first triode is, from Eq. (16),

rP

where rp and p refer .to the cathode follower. If the triodes are similar, 
this effective resistance has the effect on the gain of the triode of slightly 
more than doubling its plate resistance. From Eq. (15) it is apparent 
that the effective feedback factor of Eq. (112) should be multiplied by 
p/(p + 1 + rp/Rk) so that if the p’s are the same,
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0 = - (116)

•Kt

where k = Ri/(Ri + R2). The two p’s, however, are subject to small 
changes independently of each other. If mi and g2 refer respectively to 
the amplifier and cathode follower and rp to the latter, Eq. (115) becomes

(a) . (b)
Fig. ll-57a.—Linear sweep or integrating circuit employing positive feedback.

Fig. 11-576.—Amplifier characteristics of Fig. ll-57a with different feedback adjustments.

Much the same conditions obtain if the second triode in Fig. 11-56 
is used as the amplifier so as to obtain the opposite sense of output voltage 
or if the two triodes are employed as a differential amplifier. The pecul
iarities of these arrangements are discussed in Sec. 11-10.

Positive Feedback.—Positive feedback has the effect of increasing the 
gain. Also, because Eq. (101) applies as well to positive as to negative 
feedback, it decreases the linearity and stability of gain. In some 
applications, such as when the output-voltage range is small and when 
it is feasible to readjust the feedback when tubes are replaced, this 
limitation is not serious. Amplifiers used in voltage regulators, linear 
sweep circuits, and servomechanisms may sometimes employ positive 
feedback to advantage.

In a linear sweep circuit, or voltage integrator, employing a direct- 
coupled amplifier and a resistor and condenser in a “fed-back time
constant” arrangement, perfect operation requires infinite gain. This 



476 DIRECT-COUPLED AMPLIFIERS [Sec. 11-13

may be obtained by adjusting the feedback factor fi so that it is the 
reciprocal of the amplification, thereby causing the denominator in 
Eq. (93) to disappear. The circuit will still operate if fi is so great that 
the denominator is actually negative—there will simply be an error of 
the same nature, but of opposite sign, as if the gain were finite and 
positive. Figure 11-57 gives an example of a simple linear sweep circuit 
or voltage integrator employing a high-gain amplifier with over-all 
capacitive negative feedback through C and R, such that, in so far as e„ is 
constant, the rate of change of output voltage is proportional to the 
input voltage. The amplifier between eg and e0 is a single-stage amplifier 
with a cathode-follower output stage and positive feedback to the cathode, 
as in Fig. 11-53. The curves are input vs. output voltage characteristics 
for the amplifier. The upper and lower limits are caused by grid current 

in the cathode follower and in the

Fig. 11-58.—Voltage regulator employing 
positive feedback.

amplifier triode respectively (the 
grid resistor being for the purpose 
of demonstrating the latter). 
Curve 1 represents the character
istics with no positive feedback and 
shows a maximum gain of about 50. 
For Curve 2 the feedback was ad
justed so as to afford infinite gain 
over a limited range. In the case 
of Curve 3 even more feedback was 
used, resulting in negative gain over 
a portion of the output voltage 
range. This reflex part is unstable; 
without R and C the output volt
age would jump along dashed line 
A or B (respectively) if eg were 
being raised or lowered, but with R

and C in operation the whole curve is actually traced out.
For perfect operation, an electronic voltage regulator, requires an 

amplifier with infinite gain, which may be approached or achieved con
veniently with the aid of positive feedback. The regulator circuit also 
includes over-all negative feedback, which results in stability even though 
the positive feedback may be slightly more than is needed for infinite 
gain. The regulator of Fig. 11-58 may be adjusted to give an almost 
constant output over a limited range of load-current or supply-voltage 
variation. Positive feedback is provided by the resistive coupling 
between the cathode-follower plate and the amplifier grid. If the 
amplifier grid voltage is lowered, the decrease in plate current results 
in an almost equal increase in plate current in the cathode follower, 
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which acts on the bleeder resistance to add to the input change. The 
cathode follower also provides heater-voltage compensation and loading 
of the reference source. The small condenser increases the negative 
feedback at high frequency, thus preventing oscillation. This circuit 
is given not as an example of a good voltage regulator but only as an 
illustration of the use of positive feedback as a simple means of increasing 
amplification.

In a servoamplifier the input signal comprises the error, and the gain 
should therefore be as high as possible. Because linearity is not of 
importance, it is permissible to employ positive feedback in many 
applications. Usually the upper limit of gain is determined by con
sideration of stability of the servomechanism, but there are instances1 
where infinite gain may be employed to advantage, and the feedback 
may be even greater, as in Fig. 11-575, Curve 3, without causing oscilla
tion, although an error of the reverse sense results.

If the feedback is adjusted for infinite gain [¡3 = 1/0 in Eq. (93)] 
and thereafter the amplification without feedback changes by a certain 
percentage (e.g., because of tube replacement), the gain with feedback 
will become some finite positive or negative quantity whose magnitude 
will be proportional to the original amplification. If 0 = 1/0 in Eq. 
(93) and if 0 + AG is substituted for 0, the gain with feedback is found 
to be

g = -0
1 + A0/0 

A0/0 ' (118)

Thus, for example, if 0 in Fig. 11-57 were adjusted to give Curve 2 and 
then the tube were replaced by one with an amplification that was 10 per 
cent higher, the curve would assume a shape slightly more like that of 
Curve 3, with a slope of —50(1 + 0.10)/0.10 = —550.

When positive feedback is to be applied to a multistage amplifier, 
the question arises as to whether to apply it over all or to the individual 
stages. In the case of negative feedback it was determined that from 
the standpoint of constancy of gain, it is better when arranged overall. 
The same reasoning gives the opposite answer for positive feedback. 
When g/0, gi/0b etc., are greater than one, the expression for Ag/g in 
Eq. (106) is smaller than that in Eq. (105). Thus, it is a general rule that 
positive feedback, if employed, should be applied only over single stages 
rather than over the whole amplifier. Of course, it should be applied to 
the stages that are subject to the least percentage variation of gain.

It follows, then, that a multistage amplifier with over-all negative 
feedback may be further stabilized as to gain by the use of positive feed
back over individual stages. Figure 11-59 gives a computed illustration

’ For example, in velocity servomechanisms employing RC feedback for stability.
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of this principle in the case of an amplifier of two stages, each with a

Fig. 11-59.—Variation with respect to 
(i of the over-all gain 8 of two stages each 
having amplification (i with fixed over-all 
negative feedback adjusted so that 9=5 
when Ct = 20. Curve (1), no positive feed
back; Curve (2), fixed individual positive 
feedback adjusted to give each stage a gain 
of 100 when <i = 20; Curve (3), fixed indi
vidual positive feedback adjusted to give 
each stage infinite gain when Ct = 20; 
Curve (4), fixed positive feedback over only 
one of the stages adjusted to give it infinite 
gain when Ct = 20.

version in two stages. Individual 
+ 250« 

normal amplification of 20 and each 
being subject to the same variation. 
For each curve, the gain was com
puted from Eq. (93); the feedback 
factors were assumed to remain 
constant at values giving an over
all gain of five at the normal value 
of Ct. The individual positive feed
back is seen to give a great improve
ment in constancy of gain. The 
improvement is appreciable even 
when the positive feedback is 
applied to only one of the stages.

Figure 11-60 is the circuit of a 
two-stage voltage amplifier employ
ing SD-834 subminiature triodes 
(p w 15), with over-all negative 
feedback as in Fig. 11-51. The 
input voltage is applied to the 
cathode of the first amplifier tube 
by way of a cathode follower, per
mitting the necessary voltage in
positive feedback is provided for

330 k 5 560 k 220 k

Fig. 11-60.—Two-stage voltage amplifier with gain stabilized at 10 by over-all nega
tive feedback. Positive feedback operative for each stage with switches Si and S2 in 
positions shown.
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each stage: in the first stage by coupling from the cathode-follower 
plate to the amplifier grid and in the second stage by coupling from 
the output stage (cathode follower) to the amplifier cathode, as in 
Fig. 11-57a. In the linearity tests whose results are presented in 
Fig. 11-61, the nonlinearity of the amplifier was exaggerated by operation 
up to an output voltage of 100 volts, where the second-stage amplifier 
tube is near cutoff. Figure 11-61 shows an improvement in the linearity 
of more than 10-fold obtained by the positive feedback, with the same 
over-all gain. Substituting a weaker set of tubes, without readjustment 
of feedback, lowered the gain from 10 to 7.95 when the positive feedback 
was not employed and from 10 to 9.78 when it was employed. A stronger 
set of tubes had the effect of changing the gain from 10 to 10.30 without 
and to 9.91 with positive feedback. In the latter case, the positive 
feedback was more than enough for infinite gain in each stage, but the

in volts
Fig. 11-61.—Deviation from linearity of output voltage, with and without positive 

feedback for each curve; negative feedback was adjusted so ea = 0 at e» =0 and eo = 100 
ate, = —10.

condensers prevented oscillation by reducing the effect at high frequencies 
without impairing the negative feedback.

No improvement can be obtained by the preceding method in the 
gain stability of a single-stage amplifier. Two /3’s between the same 
output and input points simply add algebraically.

EXAMPLES OF SPECIAL-PURPOSE AMPLIFIERS
In the next three sections are circuit diagrams and qualitative explana

tions of a few examples of direct-coupled amplifiers. The circuits are 
selected with the primary view of illustrating the principles discussed 
in previous sections, and they are not necessarily the best that have been 
developed for the purpose.

1L14. Current-output Amplifiers. Meters.—The single-stage differ
ential amplifier of Fig. 11-62, which actuates a j-ma meter, illustrates 
the independent gain and zero adjustments shown in Fig. 11-30. The 
differential action affords a linearity commensurate with that of most 
portable meters. For a grid input voltage of 1 volt at full scale (as 
shown), very little resistance is needed between the cathodes; if the 
minimum full-scale input voltage can be 2 or 5 volts, the higher resistance
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allowed between the cathodes will appreciably improve the linearity. 
Saturation limits the overload on the meter to about 100 per cent.

A more precise voltmeter, suitable for actuating a recording meter, 
is given in Fig. 11-63. Current feedback is employed, the current in

Fig. 11-62.—Simple vacuum-tube voltmeter.

the meter being measured by a stable resistance and a voltage propor
tional to it fed back to the auxiliary grid of the input differential amplifier.

The second stage is a pentode amplifier with its cathode returned to a 
cathode follower. This arrangement permits differential input so that 
the full gain of the first stage is realized. It also allows input voltages

Fig. 11-63.- --Voltmeter using high-gain amplifier.

at the plate level of the first stage; therefore, no dropping divider is 
needed at this point where the drift of such a divider would be felt much 
more than after the second stage. Another feature permitted by the 
cathode follower in the second stage is the local positive feedback (by 
means of the 5.4-megohm resistor), which increases the linearity with
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over-all negative feedback (Sec. 11-13). Connecting the pentode screen 
and triode plate together prevents the common dropping resistor from 
causing a reduction in gain; in addition, the reduction in screen voltage 
produces higher gain in the pentode. The output cathode follower is 
designed to limit the current in the 1-ma meter at about 2 ma in either 
direction; the two limits result from plate-current cutoff and from grid 
current in the input resistance.

The circuit may be used for full-scale input voltage as high as 10 volts, 
the limit depending on the value of the feedback resistor. The lower 
limit of full-scale input voltage is determined by the drift of the input 
tube. This limit is about 100 mv, and at this scale factor the drift may 
be noticeable over a period of hours. In order to minimize this drift,

the input tube should be aged several hundred hours with the heater on. 
Selection of this tube is also recommended, as some tubes are subject to 
rapid erratic changes equivalent to input “noise” of 2 or 3 mv or more. 
This effect may be observed on the meter if the current-feedback resistor 
is reduced to 5 or 10 ohms.

Magnetic Oscillograph Driver.—The first stage of the driving circuit 
of Fig. 11-64 illustrates the use of a constant-current circuit in a differen
tial amplifier to eliminate the input common-mode variation from the 
output voltage. The input voltage may be either differential or single
ended (with the unused input terminal fixed at the appropriate level) 
and may be at any level from — 50 to +100 volts. Voltages beyond these 
limits may be reduced by the use of dividers. Thus, several driving 
circuits for measuring voltages at various levels may use the same power 
supply.
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The gain may be varied from 6 to 25 ma per volt; large input voltages 
may be reduced by an input attenuator, but the amplifier gain should be 
set at minimum in such cases. The maximum output current is about 
+ 18 ma; it can be increased by the use of smaller cathode-follower 
cathode-return resistances and larger output tubes. The negative 
feedback is applied individually in this amplifier, because over-all feed
back is impractical where the input level is so variable. Linearity is 
satisfactory for the purpose.

Servoamplifiers.—The servoamplifier in Fig. 11-65 is designed to 
drive the differently wound fields of a small instrument servo motor.

The arrangement shown comprises a velocity servomechanism, wherein 
the motor drives a tachometer generator whose output voltage is sub
tracted from the input speed-control voltage. The difference voltage 
is the “error signal” to be amplified. No negative feedback is used in 
the amplifier itself, as this would detract from the linearizing effect 
of the over-all negative feedback, which includes the tachometer. On 
the other hand, local positive feedback is beneficial (Sec. 1T13), and this 
is provided in the first stage by the resistive coupling from the first plate 
to the second grid. This is designed for approximately infinite gain. 
The capacitive negative feedback, in combination with the resistances 
in series with the condenser, provides damping of oscillations of the 
servomechanism.

The input stage of the servoamplifier, which was shown in Fig. 11 42, 
employs a diode to balance the effect of heater-voltage variation on the 
cathode of the pentode. The zero-adjustment resistance and screen-grid
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voltage divider do not impair this function, as the currents in the various 
parts of the divider are substantially constant. The diode current 
is two or three times the pentode current. A slight loss of gain results 
from the zero adjustment and diode variational resistance, but these 
are very small compared with the plate-load resistance. The small 
auxiliary resistors in series with grid and plate are designed to dampen 
possible high-frequency oscillation. The operation of the output stage 
has been explained in Sec. 11-9.

Current Regulator.—Where large currents are to be held constant, 
the constant-current circuits of Sec. 11-8 are inadequate. The power 
control and the voltage amplification must be done separately, (and 
the current must be fed back and compared with a standard). The

function of the circuit of Fig. 11-66 employing an unregulated voltage 
source is to maintain a constant current in a load resistor whose resistance 
is subject to large variation. The load current flows in a constant resist
ance in the cathode circuit of the power stage, and the resulting voltage 
is fed back to the cathode of the input stage, whose grid receives the 
standard voltage. The cathode of the second voltage stage is connected 
to the same point, partly for convenience and partly because the slight 
cathode coupling between the first and second stages comprises positive 
feedback, increasing the gain. The condenser inhibits oscillation by 
decreasing phase retardation at high frequencies. If the 200-volt source 
changes, the output current changes in the same proportion. No 
compensation is provided for heater-voltage variation; a 10 per cent 
change amounts to an input drift of about 100 mv, which causes an output 
variation of 0.13 per cent.

Voltage-output Amplifiers. Electrostatic Oscilloscope Driver.— 
An electrostatic oscilloscope requires a large deflecting voltage, applied 
in a push-pull manner. The two-stage driver in Fig. 11-67 employs a
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pair of pentodes to get a large voltage swing without using an excessive 
supply voltage. The pentodes are arranged in a differential amplifier 
with single-ended input and with considerable linearizing degeneration 
from resistance between the cathodes. The input stage illustrates the 
method of cancellation, with a series triode, of drift due to heater-voltage 
variation, as explained in Sec. 11-2. The cathode resistor may be 
adjusted to give the best cancellation (after the tube has been aged for 
several hours) by observing the output change upon variation of the 
heater voltage. Thereafter, the zero adjustment is made at the plate 
of the upper triode. The input grid resistor is designed to protect the 
grid from excessive current due to high input voltage.

+ 450v

Fig. 11-67.—Two-stage voltage amplifier for oscilloscope deflection.

Comparison Amplifier.—In d-c circuits and especially in computing 
devices, the need sometimes arises for a high-gain amplifier with two 
input terminals and a single output terminal, in which the output voltage 
depends only on the difference and not on the mean level of the input 
voltages. The general application is in the electronic solving of an 
algebraic equation. The two input voltages are the two equal parts of 
the equation, and the output voltage is the “unknown,” which actuates 
other circuit elements involved in the equation in such a way as to force 
the two input voltages into equality. Thus there is an over-all negative 
feedback in the application of the amplifier, and linearization by means 
of negative feedback within the amplifier is superfluous and detrimental. 
On the other hand, local positive feedback, if designed toward obtaining 
infinite gain, can improve the performance.
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In the amplifier of Fig. 11'68 freedom from the effect of the common
mode variation is obtained by the use of a differential input stage with a 
constant-current triode as the common-cathode return. As the input 
voltage level is changed from 0 to +80 volts, the input voltage difference 
needs to be changed by less than 50 mv, for the majority of 6SU7 tubes, 
in order to hold the output voltage constant.

In addition to permitting the use of both output terminals of the 
first stage, the differential arrangement of the second stage provides a 
linearizing effect and allows the maximum output voltage range, as in 
Fig. ll-33c. It also provides a simple means for local positive feedback,

+250v +400 to 500 v

250 k
Fig. 11-68.—Two-stage amplifier with differential input and single-terminal cathode

follower output.

which is applied by resistive coupling from the cathode-follower output 
terminal to the cathode-follower grid in the second stage. The condenser 
in this network prevents oscillation by decreasing the positive feedback 
at high frequencies.

The output voltage range is from somewhat below zero to considerably 
above 250 volts. Without the positive feedback the gain of the amplifier 
is about 500, with very good linearity. With the positive feedback 
operative the output voltages traverse at least 250 volts while the input 
difference changes not more than 50 mv.

The resistance coupling between the high-voltage supply and the 
plate of the first tube is used to cancel the effect on the output of varia
tions in this voltage. The +250 volts and — 150-volt supplies are 
regulated. Heater-voltage variations are, of course, balanced by the 
differential arrangement.
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The comparison amplifier may be used as a driver, similar to a cathode 
follower but having much greater precision, by connecting the output 
terminal to one of the input terminals (e2 in Fig. 11-68). It may also 
be used as a linear, adjustable-gain amplifier, by feeding back any 
desired fraction of the output voltage through a resistance attenuator.

Inverting Amplifier.—For inverting a signal voltage (i.e., obtaining the 
negative of it, not its reciprocal), the simple degenerative triode circuit 
of Fig. 11-8 may be employed with plate and cathode resistors nearly 
equal. Besides having only medium precision, such an arrangement is 
limited in application because the output voltage contains a large

additive constant. This constant voltage is directly affected by any 
supply-voltage variation, and both it and the gain are affected by output 
load.

More precise voltage inversion, without these disadvantages, is 
accomplished by a high-gain amplifier whose input voltage is the average 
of the voltage to be inverted and the amplifier output voltage. The 
amplifier is sensed to invert, so the averaging process is done by negative 
feedback. If the gain is high enough so that the amplifier input voltage 
is negligible, and if the averaging resistors are equal, the output voltage 
is the negative of the input voltage.

In Fig. 11-69 a two-stage amplifier is made to invert by the use of 
cathode-follower input to the second stage. Positive feedback is applied 
in the second stage by means of resistive coupling between the first plate 
and the second grid. The potential is dropped to the grid of the output 
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cathode follower, without attenuation, by the use of a triode constant
current circuit. This not only prevents attenuation but also permits a 
greater range of output voltages than would be possible with an ordinary 
divider. The input stage illustrates the use of a first grid as a diode plate 
to eliminate drift due to cathode change. For voltage inversion without 
change in scale factor Ri and Rg are equal. Amplification or attenuation 
may be obtained by other ratios between these resistances. The con
denser-resistor feedback at the input stage prevents oscillation.

Voltage Level Changer.—Figure 11-70 illustrates a use of the push
pull quality of the output of a differential amplifier with a single input 
terminal. It is a simple device for providing a voltage that remains at a 
fixed potential difference above a variable input voltage. A possible

+250v

Fig. 11-70.—Differential amplifier arranged as a level shifter.

application might be to hold the screen of a pentode at a certain voltage 
with respect to the cathode regardless of movement of the latter. The 
resistance negative feedback from the first plate to the first grid is adjusted 
so that the gain from the input terminal to this plate is —1. Since the 
output is push-pull, the gain to the other plate is +1, but with a shift in 
voltage level.

11-16. A Galvanometer-photoelectric Tube Feedback Amplifier.—- 
The minimum input scale factor of direct-coupled amplifiers is limited by 
drift of the characteristics of the input tube. The minimum significant 
input-voltage variation, with ordinary vacuum tubes, is seldom much less 
than 1 mv, even under short-time laboratory conditions.

The usual method of amplifying or measuring d-c voltages, too small 
for a direct-coupled amplifier, is to convert the direct current to alter
nating current by a modulator that is not subject to drift and to amplify 
the resultant voltage with an a-c amplifier. Depending on the output 
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requirements, the amplifier output voltage may or may not be demodu-
lated. Such modulation systems are

(d)
Fig. 11-71.—Feedback arrangements with 

galvanometer phototube input, (a) Voltage 
input, voltage output; (5) voltage input, 
current output; (c) current input, current 
output; (d) current input, voltage output.

8i almost equal to e{. If equality is 
voltage becomes

outside the scope of this chapter.
An alternative to the a-c con

version method employs a device 
that is inserted ahead of a direct- 
coupled amplifier and is capable 
of increasing the amplitude of the 
input signal without drift. Line
arity in the device itself is not 
needed if it is possible to arrange 
over-all negative feedback.

Such a scheme is afforded by 
the combination of a mirror galva
nometer with a photoelectric tube. 
The general arrangement is shown 
in Fig. 11-71. A current in the 
galvanometer in one direction 
turns the mirror and alters the 
light received by the phototube in 
such a way as to raise the ampli
fier output voltage, and a current 
in the galvanometer in the other 
direction lowers the amplifier out
put voltage in a similar manner. 
A very small current is required 
to turn the mirror far enough to 
obtain full amplifier output volt
age in either sense.

The negative feedback through 
a potential divider, illustrated in 
Fig. ll-71a, acts to reduce the 
galvanometer current by nuking 

attained and is is zero, the output

Ri + Rz eo = —e..

If iB is not negligible, the output voltage is

Ri + Rz , n - -,
Cq — \&i R^sh

(119)

(120)

where R is the parallel combination of Ri and Rz, plus the galvanometer 
resistance, plus any series input resistance between e, and the gal
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vanometer. For good linearity Rie should be small in comparison with e;. 
Ideally, therefore, the galvanometer should have no mechanical restoring 
torque and no friction.

The series feedback of Fig. 11-716, where the output current is 
measured by being passed through a fixed resistance R3, gives an output 
current of

p ■
t (121)

if is is negligible.
Figure ll-71c is an arrangement for current amplification. If ig is 

negligible, so that i, = i2, the output current is

Also, the input voltage is zero, which is a requirement of an ideal current
measuring device.

The output voltage of the arrangement of Fig. 11 -71d is

eo = Rfii (123)

if the galvanometer current is assumed to be zero. If the requirements 
are such that this resistance is too large for practical application, e0 may 
be attenuated before being fed back as a current through Rs.

In the circuits of Figs. 11-716 and 11 -71c, which have current feedback, 
the output current is not affected by the load resistance, the output 
voltage adjusting itself to compensate for any variations thereof.

By the use of a suspension galvanometer with a minimum restoring 
torque, the galvanometer current required for full output may be made 
a very small fraction of a microampere. In Figs. ll-71a and 11-716 the 
galvanometer and feedback resistances can be low [e.g., approximately 
1000 ohms for R in Eq. (120)]; therefore if the input circuit resistance is 
also low, voltages well below 1 mv may be amplified with good linearity 
and without interference from drift. Drift of the amplifier itself is of 
negligible importance because it is offset by a very small shift of the 
mirror position.

The device actually comprises a servomechanism and is therefore 
subject to mechanical oscillation under some conditions. This oscillation 
may be obviated by negative feedback through a condenser, in addition 
to the resistive negative feedback and at a somewhat higher amplification.

The rapidity of response does not depend on mechanical restoring 
torque. The latter can (and should) be zero; the negative feedback 
will always act to hold the galvanometer rigidly in its proper position. 
Any change of input voltage, which results in a galvanometer current 
and a turn of the mirror, is immediately counteracted by feedback of the 
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proper amount to cause the mirror to assume its appropriate new position. 
Any small error in this position results in a large restorative galvanometer 
current. Since the total movement is small and the electrical restoring 
torque is large, the rate of response of the device is much higher than 
that of a galvanometer as such. The frequency response is limited by 
the inertia, the movement required, and the condenser feedback needed < 
to prevent oscillation.

The circuit of Fig. 11-72 has been used successfully as a micro- | 
ammeter.1 The feedback is as illustrated in Fig. ll-71c, where Rt and Rz

Fig. 11*72.—Microammeter based on Fig. ll*71c.

are in the form of an ayrton shunt to give several scale factors. The 
condenser feedback to prevent hunting is derived at a point of higher 
gain than the resistive feedback, by employing a tap on the plate-load 
resistor for the latter. No heater-voltage compensation is needed, as 
this effect is not noticeable; most of the gain of the system is ahead of the 
amplifier tube.

A differential phototube is employed, in a manner that affords very 
high output voltage to the amplifier grid for a small shift of the light 
beam. At the low voltages employed, the rate of change of anode- 
to-cathode voltage with respect to illumination, for a given current in 
each part of the phototube, is high. With the two parts connected in 
series as shown, the two currents are equal (if output current to the

1 Shepard Roberts, personal communication. 
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amplifier grid is neglected), with the result that an increase of light 
to one cathode and a decrease of light to the other gives the same output 
voltage that would be obtained if an infinite load resistor were used for 
each section. A change of total light does not change the voltage level 
as it would if load resistors were used.

The electrical isolation between the amplifier input terminals and 
the galvanometer permits the former to be at a lower potential than the 
latter, so that the output signal need not have its potential lowered for 
the feedback.

The effective input resistance is much lower than that of the gal
vanometer alone, because the feedback tends to keep the voltage across 
the galvanometer at zero regardless of input current.

11-17. D-c Amplifier Analysis.—This section deals with the analysis 
of the performance of a d-c amplifier from inspection of its circuit dia-

+200v 250v

Fig, 11-73.—Computation of tube-operating conditions, based on an estimated grid poten
tial for the following tube.

gram. The primary object is to determine the approximate voltages 
and currents at every part of the circuit in order to ascertain if each tube 
is being used in a satisfactory manner. Other objects of analysis may 
be the determination of linearity, effect of variation of supply and fila
ment voltages, effects of the incidence of extremes of tube and resistor 
tolerances, etc.

Because of the rather large possible discrepancies between nominal 
and actual resistance values, only a fairly rough computation is justified 
in most instances. Simple application of Ohm’s law, Thivenin’s theorem, 
and the principles of the foregoing sections as applied to individual 
stages are sufficient to describe adequately the d-c aspects of any multi
stage amplifier.

An estimate of the grid-cathode potential in a tube is a good starting 
point for determining conditions in the preceding stage. From a knowl
edge of the tube type and the plate load the grid bias can be estimated 
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within 2 or 3 volts. (For a low-/j power tube a consultation of its char
acteristic curves may be advisable.) The computation proceeds back
ward in the circuit from this point. Some specific examples will illustrate 
the method; no attempt will be made to formulate a general set of rules.

In Fig. 11-73a the bias for the following tube has been estimated 
as —5 volts. The potential across the lower part of the divider is thus 
100 volts; therefore (if there is no grid current) the pentode plate potential 
must be 1/2.2 of 100 above —5, or +40 volts, and the divider current 
is about 0.05 ma. The current in the plate resistor is = 0.26 ma, 
and the plate current is 0.26 — 0.05 = 0.21 ma. Screen current will be 
about one-fourth to one-half of this, for example, 0.1 ma. The resistance 
of the screen bleeder as viewed from the screen is 32,000 ohms, so its 
regulation due to screen current is only 3 volts. Screen potential is 
about 60 volts. The grid potential of the pentode is found, from char
acteristic curves, to be about —2.0 volts (subject to some variation from 
tube to tube). This bias is ample to ensure against positive grid current.

From the characteristic curves, the transconductance, at ip = 0.21 ma 
and e, = 60 volts, is found to be about 0.8 ma/volt. The value of ps, 
or —deg/de0, is 35. The effective load resistance is the parallel resistance 
of 620,000 ohms and 3.2 megohms, or 520,000 ohms. The gain, from 
Eq. (27), is therefore (assuming n = 0.5)

= -(520) (0.8) = -420 =
b (0.5) (32) (0.8) 1 + 0.37

1 + 35

(The second term in the denominator is due to screen-bleeder resistance; 
if this were reduced by a factor of 4 the gain would be 380, an increase 
that might be worth the extra current drain.) The output divider to 
the following grid attenuates the gain to about 200.

In Fig. 11-736 the output to the differential amplifier will evidently 
be in the neighborhood of +100 volts. Since there is no divider, the 
plate current is 150 volts/1000/; = 0.15 ma. From Fig. ll-73a, the 
grid bias appears to be about —1.6 volts. If the cathode resistor is 
for the purpose of zeroing the input potential for an output of 100 volts, 
its value will be 1.6/0.15 = 10.7 kilohms. Plate resistance and ampli
fication factor at ip = 0.15 ma, ep = 100 volts, are 130,000 ohms and 
65 (approximately); therefore the gain is [Eq. (9)]

„ =___________ 65 = _ 65 =
b 1 । 130 + (66) (10.7) 1 + 0.83

1 + 1000

In both (a) and (6) of Fig. 11 -73, an increase of 10 per cent in heater 
voltage will require a lowering of input potential of about 0.1 volt if the 
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output is to be held constant; otherwise the output will change by this 
amount times the gain.

Since the output variation required for full-range operation of the 
following tube is only a few volts at most, the preceding computations 
should suffice. If the required output range of the tube in question is 
great, the computation must be repeated for each limit. This usually 
is necessary only at the output stage.

The output of the amplifier of Fig. 11-69 is supposed to range from 
—50 to +50 volts with respect to ground. At the lower limit, the 
cathode follower has a plate-cathode voltage of 300, a plate current of 
1 ma, and a grid bias, therefore, of —4 volts; its grid potential will then 
be —54 volts. The current in the constant-current circuit comprising 
the lower part of the divider feeding the cathode follower is about 
75 volts/1 megohn = 0.075 ma; the amplifier plate therefore is at a 
level 150 volts above the cathode-follower grid, or +96 volts. Current 
in the plate resistor is (250 — 96)/560 = 0.275 ma, so that the plate 
current is this quantity minus 0.075 or 0.2 ma. The grid of this triode 
is in the neighborhood of +10 volts, and the cathode will be slightly above 
the grid; therefore the current in the common cathode resistor is 0.32 ma, 
and 0.12 ma is left in the first triode of the differential amplifier. At 
the upper output limit, the amplifier plate is at +199 volts, plate current 
is 0.09 ma, and plate current in the other triode is 0.32 minus this, or 
0.23 ma. In this condition the latter triode still has ample plate-cathode 
voltage (about 90 volts) to ensure that the grid current is negligible in 
view of the input resistance.

The average plate resistance of each of the differential amplifier 
triodes is about 120,000 ohms. (One increases and the other decreases 
as the output range is traversed.) The first triode is a kind of cathode 
follower driving the cathode of the second. The plate-supply divider 
adds 110,000 ohms to the rp of this cathode follower with a p of 65, and 
Eq. (40) gives a gain from the first grid to the second plate of 40, without 
the positive feedback. Thus, for 1 volt of input, the second plate moves 
40 volts. The first plate moves of this, or 8 volts in the opposite 
direction, since a certain change of current in the 560,000-ohm plate 
resistor implies an equal and opposite change in the other. This 8 volts 
of plate movement causes a 0.8-volt displacement at the second grid, 
so that for the assumed 1 volt of total differential input only 0.2 volt is 
needed at the first grid; the positive feedback increases the gain by a 
factor of 5.

In determining the d-c levels in a multistage amplifier the logical 
direction for the computation to proceed is generally from the output 
toward the input. An important exception is in the case of differential 
amplifiers, where the double-ended signal is transmitted as such from 
stage to stage.
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For example, in the servoamplifier of Fig. 1165, the level of the 
grids of the output stage cannot be estimated as in the foregoing examples; 
this level is determined by conditions in the first stage. The input grids 
are at about +50 volts, and the cathodes ride a volt or two about this, 
so the sum of the plate currents is 0.35 ma. At balance, then, the plates 
will be at 250 — (510) (0.17) = 160 volts, approximately. About 8 or 
9 ma will flow in the output-tube cathode resistor, and this is divided 
between the two motor fields according to the amount of unbalance.

In Fig. 11-64 the first step is to compute the current in the constant
current pentode. If the ip and is vs. es curves of the pentode are avail
able, a simple method is to draw a line from the origin with a slope of 
— 1/R*, as shown in Fig. 11-74. The point at which this line intersects 
the curve of total cathode current, for the screen-cathode potential in

Fig. 11-74.—Determination of constant-current pentode current.

question (about 100 volts in this instance), will indicate the bias. In 
the example this is —2.8 volts, and the plate current is therefore 0.3 ma. 
This current flows in the two plates of the differential amplifier, regardless 
of the input level, so that the average of the two plate potentials is 
250 — (320) (0.15) = 200. The cathodes of the power tubes will ride 
at about 20 volts above their grids; therefore, at balance, the current 
in each of these tubes will be -nr = 22 ma. This is also the approxi
mate current available for the load at saturation, i.e., when either tube 
is cut off.

When part of an amplifier is in differential form but the output is 
not, the computation may have to converge from both ends. The cir
cuits of Figs. 11-63 and 11-68 are examples of this situation. In the 
latter, the grid of the output cathode follower is required to travel from 
about —8 volts to nearly +250 volts. This range gives the limits of 
plate potential (from ground) and current in the preceding triode; but 
to find its cathode level and the limits of current in the other triode of 
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this differential pair, a fresh start must be made at the input stage. 
Here, the constant-current circuit holds the total cathode current at 
0.3 ma. At balance, each plate current will be 0.15 ma. With no 
plate current each plate would be at about 210 volts because of the 
dividers to the following stage input. The effective plate-load resistance 
is 420,000 ohms, including the dividers, so the plates will be at

210 - (420) (0.15) = 145 volts.

Thus, the grids of the second stage are at —103 volts, and its total plate 
current is about 0.33 ma.

Computation of gain may be made either by application of the gain 
formulas (with care to evaluate the variational tube parameters in the 
vicinity of the existing conditions) or by recomputation of the input 
for two assumed values of output. The same alternatives exist in the 
determination of the effects of positive and negative feedback. Linearity 
may be estimated by means of a gain calculation at each extreme of output 
and application of Eq. (102) or an appropriate variation thereof.

For determination of the effect of possible extremes of resistor values 
and vacuum-tube characteristics, at least two computations of the con
ditions must be made, after a qualitative inspection to decide which 
extreme of each component will result in a displacement of a given sense.

In ascertaining the shift resulting from changes of d-c supply poten
tials, the appropriate derivatives of the amplifier formulas [e.g., Eqs. 
(3), (7), (15), and (26)] may be applied. Great care must be used to 
consider the effect on every electrode of each tube, e.g., the screen grids 
of pentodes. Perhaps a surer method is a recalculation of the amplifier 
input for a certain output, at each of two extremes of the supply voltage; 
the output shift would be this value times the gain.



CHAPTER 12

AMPLIFIER SENSITIVITY

By E. J. Schremp

12-1. Introduction.—There is always a limit to the number of vacuum
tube stages that may be used profitably in a vacuum-tube amplifier. 
Various factors enter in determining what this limit of useful amplifica
tion will be. The one that is treated in this chapter and is perhaps most 
common is that arising from the existence of electrical noise or spon
taneous current and voltage fluctuations in the early stages of an amplifier 
and in the signal source itself. These small fluctuations, generally 
indiscernible under other circumstances, can always be detected in a 
circuit that is attached to or forms a part of the first few stages of a 
very high gain amplifier. Therefore, in order to detect signals entering 
the input of such an amplifier, input signals larger than a certain mini
mum size are required; input signals of smaller size could not be recog
nized even after amplification, because they would be masked by the 
amplified noise which is already observed. Because further amplification 
would increase by the same factor the noise and signal amplitudes 
observed at the output, such further amplification is useless in detecting 
input signals smaller than the minimum size. This notion of a “mini
mum detectable signal” may be taken, for the present, as a qualitative 
definition of the term “amplifier sensitivity.” Later on in this chapter, 
this term is dealt with quantitatively, and the factors upon which it 
depends and the ways in which it may be improved are illustrated.

The existence, in all kinds of circuit elements, of residual or spon
taneous current and voltage fluctuations, although not a macroscopic 
phenomenon and therefore not a matter of familiar experience, never
theless represents a microscopic condition that prevails in all material 
bodies and in all forms of energy. That is to say, electrical noise is but 
one manifestation of the statistical fluctuations that occur on a micro
scopic scale in all forms of matter and energy in which it is found that 
the constituent molecules, ions, electrons, and even photons are in a 
perpetual state of more or less random motion. The simplest and earliest- 
known example of this state of chaotic motion underlying all matter 
may be observed, with the aid of a microscope, in a clear liquid containing 
a suspension of very fine particles. These particles will be observed to 
dance around in the liquid, in a permanent state of random zigzag motion

496
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The smaller the particles are the more violent their motion becomes and 
the more accurately they simulate the motions of the liquid molecules 
themselves. By this simple experiment in “Brownian movement” 
(so-called after the English botanist Brown who first observed this 
phenomenon in 1827), the existence and movement of molecules are 
proved directly. Similar movements of electrons and ions in electrically 
conducting materials are therefore to be expected; and in consequence 
of their movements, spontaneous current and voltage fluctuations must 
occur in such materials.

In general, any current or voltage fluctuation having the character
istics just described represents a certain variety of electrical noise. The 
distinguishing properties of such fluctuations are (1) their microscopic 
character, (2) their permanence, and (3) their intrinsic randomness 
(which may be of different types or degrees). Accordingly, the physical 
origin of such fluctuations must always involve large aggregations of 
small charged particles, moving under the influence of their own mutual 
forces or of other forces of comparable complexity or randomness. 
As long as the charged particles concerned are about the size of electrons 
or ions, their motions under such forces will be sufficiently random to give 
rise to current and voltage fluctuations of the type designated here as 
electrical noise.

12-2. Thermal Noise. Definition.—Of the various kinds of electrical 
noise, the simplest and perhaps also the most important is that called 
“thermal noise.” Before defining it, however, it is well to consider 
first a little more deeply the meaning of the general term “noise” as it 
applies to electrical networks. In many applications of network theory 
it is sufficient to regard electricity as the flow of a continuous charged 
fluid. However, as already indicated by the “atomistic” line of thought 
in the preceding paragraphs, electric charge is known always to be 
localized in discrete charged particles, which are either electrons or ions. 
Every electric current, then, is the result of the motions of such electrons 
or ions. Now the motion of any one charged particle sets up a convection 
and displacement current, each of which is of the nature of a current 
pulse. Every electric current, therefore, is in actuality a sequence of 
such current pulses. Although in many cases, because of the immense 
number of charged particles in motion, the electric current is apparently 
continuous, it is nevertheless subject to fluctuations, for it must always 
remain a sequence of current pulses, perhaps very closely spaced, but 
never spaced closely enough so that the successive pulses join together 
continuously. The resulting small fluctuations in current are called 
“noise currents.”

The nature of these noise currents is governed by the nature of the 
motions of the electrons or ions responsible for the observed current.
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But the mechanical motions of these electrons or ions are coupled with 
other forms of energy, such as the mechanical energy of molecular heat 
motion, the mechanical energy of a dynamo, the chemical energy of an 
electrolytic cell, or the radiant energy incident on an antenna or photo
cell. In order to describe the character of the electronic or ionic motions 
and thereby to describe the character of their resulting noise currents, 
it is necessary, then, to specify something of the nature and conditions 
of the other forms of energy that interact with these electrons or ions.

If, in particular, the electrons or ions are in thermal equilibrium with 
all the other forms of energy with which they might be coupled, then the 
noise due to them is called “thermal noise.” Thus, in a circuit that is in 
thermal equilibrium, while the average net current is zero at every 
point, there are electronic or ionic motions in every direction. These 
motions are coupled with the thermal agitation of the molecules of the 
circuit, and hence there will be current fluctuations, which under this 
special circumstance are called “thermal-noise currents.”

Observation.—One way of observing thermal noise is with the aid 
of a very sensitive galvanometer. With such an instrument it is observed 
that the galvanometer mirror suspension never comes precisely to rest, 
no matter how carefully all external sources of vibration are eliminated. 
One cause of this residual random motion of the galvanometer suspension 
is the bombardment of the mirror by air molecules, a process completely 
analogous to the phenomenon of Brownian movement mentioned above. 
But even if the suspension were placed in an evacuated chamber, some 
residual random motion of the mirror would still remain. This would 
be due to the flow of thermal-noise currents in the moving coil. Although 
these currents are extremely small, they are sufficient to cause observable 
rotations of the moving coil, provided that the coil suspension is of very 
small moment of inertia.

Thermal noise can also be observed with the aid of a high-gain radio 
receiver. When this method is used, an audible noise, due to small 
current fluctuations in the first few stages of the receiver, can be heard 
in the loud-speaker. For this reason, such current fluctuations were 
originally called “noise currents.” These current fluctuations are, in 
part, thermal-noise currents in the input circuit of the first stage. This 
may be verified by observing the reduction in audible noise that occurs 
when the receiver input is short-circuited.

Measurement of Open-circuit Thermal-noise Voltage.—Some of the 
principal features of thermal noise will now be investigated quanti
tatively and from an experimental approach. A parallel resonant circuit 
will be selected as the object upon which to make measurements; and 
these measurements will be made with an r-f amplifier with a thermo
couple meter capable of reading the mean-squared output voltage of the
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amplifier at its output. The experimental arrangement is shown in 
Fig. 121. The parallel resonant circuit is composed of the ohmic 
resistance R, the essentially loss-free coil L, and the essentially loss-free 
capacitance C (inclusive of the amplifier input capacity); M is the 
thermocouple output meter, and the entire parallel resonant input circuit 
is assumed to be in thermal equilib
rium at an absolute temperature T.

There are certain reasons why a 
parallel resonant circuit is preferable 
to any other circuit as the object for 
measurement: (1) The r-f amplifier
has an unavoidable input capacity Ftg. 124,-BLC-input circuit r-f ampli. r r j tier, and output meter M.
which would shunt the circuit to be
measured, thereby ruling out the possibility of studying any other 
equally simple circuit such as a series resonant circuit, and (2) the study 
of a parallel-resonant circuit leads to an understanding of the separate 
thennal-noise behavior of a resistance R, an inductance L, and a capaci
tance C.

Using an r-f amplifier as the measuring instrument is, in effect, the 
same as attaching across the parallel-resonant circuit a sensitive volt
meter of infinite internal impedance (if as previously remarked, its 
input capacity is thought of as belonging to the parallel resonant circuit). 
Consequently, an r-f amplifier is especially well suited to the measure
ment of the open-circuit thermal-noise voltage across the parallel resonant 
circuit, which shall hereafter be designated as a certain unknown function 
of time V (i).

There are several possible methods of indicating the output response 
of the r-f amplifier to this thermal-noise voltage V(i). For example, the 
r-f amplifier might be followed by a frequency converter and an audio 
amplifier and loud-speaker, in which case the thermal-noise voltage U(i) 
would be indicated by an audible noise. Or the r-f amplifier might be 
followed by a frequency converter or detector and a video amplifier and 
oscillograph. In this case, the thermal-noise voltage U(i) would be 
indicated by a visible trace on the oscillograph. Or again, the r-f 
amplifier might be followed by an averaging device, such as a thermo
couple, in which case the thermal-noise voltage V(i) would be indicated 
by a d-c meter. Since the last type of indication is quantitative, whereas 
the other types are generally only qualitative, the thermocouple meter M 
has been used here as the output indicating device.

For the experimental arrangement of Fig. 12-1 to yield a correct 
quantitative measure of the thermal-noise voltage U(t), three experi
mental conditions must be fulfilled:

1. The input capacitance of the r-f amplifier (which composes a part 
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of the total capacitance C of the parallel-resonant input circuit) 
must be frequency-independent and must be the only contribution 
of the r-f amplifier to the input admittance.

2. The r-f amplifier must be linear.
3. The extraneous noise output from other sources of noise within 

the amplifier must be independent of the input termination of the 
r-f amplifier.

If the open-circuit voltage V(i) is now regarded as existing only 
within a unit interval of time and as vanishing outside this time interval, 
then it may be assumed that it is quadratically integrable or, in other 
words, that

f+« f+n _
V2(i) dt = / V2(t) dt = V2 (1)

is finite and equal to the mean-square value of F(i). Accordingly, F(l) 
possesses a Fourier integral representation

V(tj = y v(ju)e’“‘ du (2)

with a Fourier transform
r +

v(ju) = / V (t/e^“1 dt (3)

which is a function of the angular frequency

u = (4)
and with a spectrum

S(u) = v2(ju) 
r+ r+ - 

= V(t)V(t')eí“(■‘'~‘, dt dt' (5)

= / R (r) COS ur dr,

where R(r) is the correlation function

R(t) = V(f)V(l + r) dt. (6)

Moreover, we can write

__ r 4-« 1 r + *
V2 = / V2(t) dt = A / S(u) du = R(0) (7)

J - - ¿r J - x

as a consequence of Eqs. (1), (5), and (6). As the unit of time is indef
initely increased [i.e., as more and more of the time extension of V(t) is 
compressed into the unit time interval], both S(a>) and R/r) approach 
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a limit, and these limit functions S(u) and E(r) are regarded as the 
spectrum and correlation function of V(t), respectively.

If the r-f amplifier is tuned to a band-center frequency u0 and possesses, 
from input to output, a complex voltage gain G(ju,uo), then the output 
voltage, Vo(i,LCo), due to thermal noise in the input circuit, will possess 
the Fourier integral representation

Fo(i,wo) = / G(ju,u0')v(ju)e>“t du (8)

with a Fourier transform equal to
/* + «

G(ju,u0)v(ju) = I VoCt^e1^ dt. (9)

V„(l,ajo) will not vanish outside exactly the same time interval as does 
V(t), except in the limit as the unit of time is indefinitely increased (in the 
sense of the preceding paragraph). But in this limiting case, yo(i,wD) 
will exist only within the same unit interval of time in which V(t) exists 
and will vanish outside this time interval, so that it, too, may be assumed 
to be quadratically integrable or, in other words, that

/•+- r+«
/ VJ(i,o>o) dt = J Vl(t,ao) dt = FoC“«) (10)

is finite and equal to the mean squared value of V^i,«,,). This result is 
concordant with the assumption that the Fourier integral representation 
(8) and the Fourier transform (9) of Fo(Z,w„) both exist.

Now the spectrum of Vo(Z,wo) will be

So(u,u0 = K(u,u0)S(u), (11)
where

K(u,u0 = |(J(fca),a>0)|2 (12)

so that, in analogy with (7),

= / Vl(t,u0 dt = / So(u,u0 du (13)
J — « J — co

or

K(u,uOS(u) du. (14)

This last equation may be regarded as an integral equation to be solved 
for the unknown spectrum function S(u), in which the kernel K(u,u„) 
is the squared magnitude of the amplifier voltage gain function and the 
function Fo(wP) is the mean squared output voltage due to thermal noise 
in the input circuit—both of the latter functions being experimentally 
measurable, as is shown below.

The measurement of the kernel K(u,u0) may be carried out by apply-
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ing across the input terminals of the r-f amplifier a known voltage of 
frequency w from a standard signal generator. Care must be taken that 
the output impedance of the signal generator is so compensated that the 
net impedance terminating the amplifier input terminals is identical 
with that of the original parallel resonant input circuit of Fig. 12-1. 
Then, with this known input voltage adjusted to a magnitude well above 
the noise level, the mean squared output voltage response to this signal 
may be directly measured by the thermocouple meter M (with the possible 
insertion of a frequency-independent attenuator of known attenuation). 
Thus the ratio of this mean squared output voltage to the mean squared 
input signal voltage provides the value of K(ui,ws) for the signal frequency 
w and the amplifier tuned frequency wo, and can be measured
as a function of both of its arguments w and wo, which can be varied at 
will.

The measurement of V2(«rj) may also be carried out in the following 
way. With the original arrangement of Fig. 12-1, let be the
reading of the thermocouple meter M when the parallel resonant input 
circuit is open-circuited, that is, when it is in the condition shown in 
Fig. 12-1. Then Mo(wo) will be equal to the mean squared output voltage 
due to all sources of noise within the amplifier. On the other hand, 
let M,Na) be the reading of the thermocouple meter M when the parallel 
resonant input circuit is short-circuited. Then will be equal to
the mean squared output voltage due to all sources of noise within the 
amplifier except that due to thermal noise in the input circuit. Since 
the thermal noise in the input circuit is uncorrelated with any other source 
of noise, it will add to the output with any other source of noise in the 
mean square; and since it has been assumed that the output response to 
all other sources of noise is independent of the input terminating imped
ance of the amplifier,

V«(«o) = Mfia/ — Mfiu/). (15)

That is to say, V2(a>d) is directly measurable as the difference in readings 
of the thermocouple output meter M, without and with the r-f input 
terminals short-circuited, respectively. Thus F2(w0) may be measured 
as a function of its argument which can be varied at will.

Consider now what happens to the integral Eq. (14) as the bandwidth 
of the r-f amplifier is narrowed indefinitely. The spectrum >S'(w) is 
unaffected in this process, but the kernel KNau) becomes indefinitely 
narrower, becoming in the limit proportional to a delta function. More 
precisely, in the limit,

r ~ “o), (16)
/ K(x,cN dx
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where I
3(w — uo) =0 if u # u„ (17a) |

= 00 if <U = U„, (176) ।
r + “ I
/ b(u — w„) du = 1, (17c) :

J — »> I
r +» ।

J 3(w — wP)/(a>) du — fAL (17d)

if fA) is any continuous function of u. At the same time, the observed 
mean squared thermal-noise output voltage V2A») undergoes a change, 
approaching in the limit

Uj(o>o) = y N(x,uo) dx y b(u — wp)S(o)) du. (18)

If the unknown spectrum >S(w) is assumed to be continuous, then from
Eqs. (17<f) and (18) it must be given by

sm = —> (19)
I KM du

where the foregoing limiting condition of an infinitely narrow bandwidth 
is imposed. Thus we have found one solution of the original integral 
Eq. (14), which is continuous, and experimentally determinable, accord
ing to Eq. (19), as the ratio of the measured mean squared thermal
noise output voltage V2(u„) to the measured gain-bandwidth integral 

/ri' K(u,uo) du, in the limit when the amplifier bandwidth is

infinitely narrow. In practice, this continuous spectrum SA„) is well 
approximated even when the experimentally observed bandwidth, 
though relatively very narrow, is still finite. Thus, it is possible to 
measure the continuous spectrum §A°) as a function of its argument 
u„, which may be varied at will.

When so measured, for different values of R, L, C in Fig. 12-1 and 
for different absolute equilibrium temperatures T, the continuous 
spectrum S(m) will be found equal to

Vi 'i 2kTRSA) = ---------- /------j-y (2°)
1 + R2(uC - 4)

\ “A /
where k is Boltzmann’s constant, 1.38 X 10~23 joules/°K. Now, by 
Eqs. (2) and (5), such a spectrum corresponds to a single voltage pulse 
U(t), initiated at the time t = 0, and behaving thereafter in accordance 
with the relation



504 AMPLIFIER SENSITIVITY [Sec. 12 2

where

U(t) = (2A7,R)^(2ir)-1

= act - (2RCac)~l sin act], (21)

'c LC (2RC)2' (22)

But U(t) is evidently not the actual thermal-noise voltage T(f), because 
F(i), if observed, would appear more like a sequence of such pulses 
U(f) distributed at random in time and in amplitude.

I ndeed, the spectrum of E(t) is quite another solution of the integral 
Eq. (14). It is a function <S(w) + §(a), everywhere discontinuous, for 
which we can say only that

5(w — Wo))S(w) dir — lS(aB). (23)

Because the number of such solutions >S(a>) is infinite, neither the spectrum 
S(œ) nor F(i) itself can be determined solely from the integral equation 
(14) alone.

Apart from its relation to the elementary pulse U(t), however, the 
measured spectrum S(a) may be interpreted as the statistical spectrum 
of I/O- Experimentally it is the frequency average

0(w — da, (24)

of the spectrum S(w) of V(t), taken over an infinitely narrow frequency 
band. From another viewpoint, it is effectively an ensemble average,1 
at one frequency wo, of a great number of spectra S(a), corresponding 
to a great number of samples of V(t). Finally, according to the equation 
[see Eq. (7)]

__  1 f+“ lf+”V2 = I S(a) dw = I S(a) da, (25)
"7T J _ ® ^TT J — oo

it can be spoken of as the mean square of the thermal-noise voltage 
V(t) per unit-frequency interval and can be written

=-df = 27/ (26)

The result of the foregoing measurements, then, is that the thermal-
An ensemble average of a set of functions fn(x), (where n = 1, 2,

at any point Xo is defined by the expression y(x0) = (W)^/,^).
■ • ,N) taken
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noise voltage F(t), appearing across the open-circuited parallel resonant 
circuit of Fig. 13-1, has a statistical spectrum

(27)

(28)

Localization of Thermal-noise Emf.—In the parallel resonant circuit 
of Fig. 12-1, the source of thermal noise, or the thermal-noise emf, may 
be localized by extrapolating the measured statistical spectrum, Eq. (27), 
and mean square, Eq. (28), of F(Z) to two limiting cases: (1) an isolated 
resistance R (assuming L infinite and C zero) and (2) an isolated LC-cir- 
cuit (assuming R infinite).

In the first case, V(i) becomes !+(/), the open-circuit thermal
noise voltage of R, with a statistical spectrum [see Eq. (27)].

sv 2 _____ _
= IMW = 2kTR. (29)

But then, according to Thevenin’s theorem,1 R must contain an internal 
series thermal-noise emf

EXt) = Vx(t), (30)

independent of the termination of R, with a statistical spectrum

ap2 _____ _
= 2kTR (31)

GJ

and a total mean square E^ which is infinite. This result, Eq. (31), 
is evidently applicable to any resistance R occurring in any physical 
circuit configuration as long as R itself is in thermal equilibrium. The 
formula, Eq. (31), discovered by Johnson2 in 1928, is known as Johnson’s 
“thermal-noise formula.”

In the second case, F(Z) becomes VLc(t), the open-circuit thermal
noise voltage of the LC-circuit, with a total mean square [cf. Eq. (28)]

VTC = ^ (32)

1 For a statement of Thevenin’s theorem, see, for example, Everitt, Communication 
Engineering, McGraw-Hill, New York, 1937, pp. 47-49.

2 J. B. Johnson, Phys. Rev.t 32, 97 (1928).
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and a statistical spectrum [ef. Eqs. (27) and (28)]

= CT+T2 = W + ft) (f< = A (33) 
aj ¿C \ /

which vanishes everywhere but at the resonant frequency

uc = (LC)-^. (34)

Application of Thevenin's theorem to this case produces indeterminate 
results because an a priori choice exists between a series emf on the one hand 
and a circulating current in the LC-circuit on the other, or certain com
binations of the two. Fundamentally, however, there can be no emf 
in the LC-circuit, because such a circuit constitutes a conservative system, 
and the observed open-circuit voltage must be construed as a true poten
tial difference arising exclusively from the flow of a circulating current. 
Hence, VLc(t) must be regarded as a sinusoidal potential difference

VLC(t = —= -/r' = Vo cos uc(t - ¿o), at L

developed by a vestigial thermal-noise current

IL(t) = - = i0 sin „(t _

of arbitrary amplitude
T = 11
Ia ucL

(35)

(36)

(37)

Fig. 12-2.—Isolated XC circuit.

permanently circulating in the LC-circuit, as shown in Fig. 12-2.
It is meaningless, of course, to speak of the temperature of this circuit 

or of the statistical spectrum of its open
circuit voltage Vlc^I), because Vtc(i) has a 
mean square

FL = ^ = (38)

which is quite arbitrary. But in the sense 
of an ensemble of such circuits, successively disconnected from a given 
resistance R in thermal equilibrium, the quantity Vq/2 has an ensemble 
average that is

T] _ kT
2 C ’ (39)

where T is the temperature of R. Only in this sense does a definite 
meaning attach to the statement that FzXO has a statistical spectrum 
which vanishes everywhere but at the resonant frequency uc and yet
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has a mean square

yr = A.
Vlc c (40)

It may be concluded, therefore, with respect to the general parallel 
resonant circuit of Fig. 12-1, that a thermal-noise emf resides in R, but not 
in L or C. More generally, with respect to any network that is in thermal 
equilibrium and contains only R, L, and C elements, it may be concluded 
that all of the thermal-noise emf’s reside in the R elements alone and are 
given by Eq. (31). It may be concluded further that no such emf resides 
in any L or C element of such a network.

Still more generally, if elements of mutual inductance M are included 
in any such network, it is still possible to conclude that all of the thermal
noise emf’s reside in the R elements alone. The reason for this is that if 
these dissipative R elements are removed, the resulting network again 
constitutes a conservative system in which the observed thermal-noise 
voltages are true potential differences arising exclusively from the flow 
of circulating currents. These vestigial thermal-noise currents circulate 
permanently in the network, appearing as combinations of sinusoids of 
arbitrary amplitude, with certain discrete frequencies determined 
by the L, C, and M parameters of the network.

To summarize, then, in any network composed exclusively of R, L, C, 
and M elements, which is in thermal equilibrium, the resistances R 
and not the reactive elements L, C, and M are the seats of thermal-noise 
emf. Each thermal-noise emf is determinable, from the value of its 
associated resistance R, in terms of Eq. (31).

Harmonic Analysis of Thermal Noise.—In 
any network composed exclusively of R, L, C, 
and M elements, whose structure in terms of 
these elements is completely known and 
which is in thermal equilibrium, it is possible 
to write Kirchhoff’s equations once the emf’s 
of thermal noise have been localized and 
evaluated. In the following discussion, the 
parallel resonant circuit is taken as a representative example. The 
various thermal-noise variables are defined by Fig. 12-3.

If Fourier integral representations are assumed for all of the thermal 
noise variables, thus

Fig. 12-3.—Thermal noise vari
ables in RLC circuit.

1 f+x
= 2tt J d<0

f + 20
x(ju) = I X^e-’^dt,

(41a)

(416)
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where

X(t) = ER(t), V(t), IB(t), Ic(t), Qc(i) (42a)
x(ju) = eR(jw), v(ju), iRiju), ii(ju), ic(ju), qc^u) (42b)

then Kirchhoff’s circuit equations can be written in either of two forms. 
The first form is as differential equations in the time domain, thus

V(t) = Exit) - RIs(t) = (Zl C-

IR(t) = IL(t) +

dt ’

(43a) 

(43b) 

(43c)

Alternatively, they may be written as algebraic equations in the fre
quency domain, thus

vlju) = eR(ju) — RiB(ju) = ja>LiL(ju) = (44a)

tX>) = irW + (44b)
ic(ju) = juqctju). (44c)

Now, Eqs. (44) are susceptible of analysis by the usual methods of 
a-c network theory. Thus, by manipulation of Eqs. (44), it is found 
that

eB(ju) iaW

1 + R
= v(ju) = juLiL(ju)

(juC + —=) 
\ J^L/

= gc(>) 
juC c ’ (45)

These equations suffice to determine the statistical spectra of all the 
thermal-noise variables. For if, in accordance with Johnson’s formula, 
Eq. (31), we write

^172 ___________
= ]^)p = 2kTR

then, from Eq. (2-45), it follows that

(46)

AV2 ,______= VWT2
aJ

2kTR
/ 1 \21 + R2 ( uC - 4 )
I uL J

/ i Y2kTR( uC--- 7 IX uL /
7 IV1 + R2( uC----- r 1
X /

(47a)

(47b)
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aJ

2kTR
_______ A-L2
i+r2(uc - y 

\ (¿L
2kTR^2C2

1 + R2(uC - -V
\ (¿Li

2kTRC2
1 + R21 uC - L

(47 c)

(47d)

(47e)

It will be observed that Eq. (47a), the statistical spectrum of E(i), 
agrees with the measured spectrum, Eq. (27), as it should.

Further, from Eqs. (46) and (47), we are led to the following mean 
square values of the thermal-noise variables:

and

(48)

(49a)

(496)

(49c)

(49d)

(49e)

In the present example, as seen from Eqs. (48), (496), and (49d), 
there are three thermal-noise variables whose mean square values are 
infinite. They are ER(t), IrA, and Ic(f). Because these three variables 
are not quadratically integrable, they do not conform strictly to the 
conditions required to possess Fourier integral representations. This 
difficulty is due to a slightly incorrect extrapolation of the experimental 
formula (27) toward infinite frequencies. It will be shown below that 
the quantum theory of thermal noise requires that the spectrum of any 
thermal-noise variable shall fall off at very high frequencies and shall 
vanish at infinite frequency. The quantum theory, therefore, requires 
that every thermal-noise variable shall have a finite mean square value 
and hence shall possess a properly behaving Fourier integral representa
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tion. For practical purposes, however, the statistical spectra and the 
mean squares given by the present methods (whenever the latter are 
finite) are accurate enough.

The discussion of the statistical spectra and time averages of the 
thermal-noise variables in Fig. 12 3 has not been as rigorous as it should 
be. A more careful consideration of them follows here. From the dif
ferential equations (43), it can be concluded that all six thermal-noise 
variables X(f) [c/. Eq. (42a)] are causally related in some way, as yet 
not adequately described. On the assumption that these thermal-noise 
variables all possess Fourier integral representations, their causal con
nections have been expressed by Eqs. (45). These equations show that 
the Fourier transforms x(jw) [cf. Eq. (42b)] of all the thermal-noise vari
ables are expressible as functions of any one Fourier transform, say 
eR(ja). Thus, the general expression

x(ja) = <t>x(ja)eR(jai) (50)
can be written, where

<51>

is independent of eiAju). Hence, from Eq. (41a),

x(z) r StA da (52) 

J _ „ deR{jw)

can be written. But, from Eq. (415), the relation
r + » 

esG'w) = I dr (53)

is clear, so that
X(Z)=L [+ Er(t) dr [+ p^ e’^da, (54) 

or
r + *

X(t) = / X'[ER(ty (t - r)] Er(t) dr, (55)

where
r».«.«- -)i -1 gg «■—> («>

is the “functional derivative” of X(f) with respect to ER(f). That is to 
say. all the thermal-noise variables are expressible as “functionals” of 
any one thermal-noise variable, say ER(t), in accordance with Eq. (55). 
The functional derivative X^E^t), (i — r)], when it refers to a current 
variable, is related to what is frequently called an “indicial admittance.”

The physical meaning of the functional derivative, Eq. (56), is readily 
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seen from Eq. (55), for if
Efff) = S(t - to), (57)

then from Eq. (55) it is found that

X(t) = X'[ENt), (t - to)]. (58)

In other words, the functional derivative of X(t) with respect to EK(t) 
is the response X(t) to a unit impulse function ER(t). In general, it is 
a pulse initiated at the time to [or the time t in Eq. (55)], which damps 
out at a certain rate in the future time t > to. For example, it is found 
that for t r

(t - r)] = I ----------t------------ pr .
/ 1 + R (juC + —y )

4/ — » \ 3^3^/
(l~r)

= (RC)-^ 2RC [cos NJ - r) + (2RCNT1 sin „„(t - r), (59) 
where

= LC - 1/(2RC)2 (60)

and similar transients can be found for the functional derivatives of the 
other variables X(t), except that, in the cases of Eg(t), IR(t), and Ic(t), 
the functional derivatives contain an additional part that is proportional 
to a delta function a(t — r). But, for the rest, all the functional deriva
tives behave as Eq. (59), with a damping constant equal to 2RC.

Assuming that Exit), the actual thermal-noise emf, exists only within 
the unit-time interval (— | g t g + i) and vanishes outside it, it is 
possible to write

r + H
X(t) = / X'[Ea(i), (t - t)]Er(t) dr (61)

J -ti
and conclude that x(t) vanishes for t < — i and damps out with a time 
constant 2RC for i > + i. But now, as the unit time interval is made 
indefinitely large compared with 2RC, the tails of the pulses of the type 
described by Eq. (59) and accordingly the tail of X(t) itself for t > + £ 
become infinitely short in time duration. In the limit, this leads to the 
result that all of the thermal-noise variables X(t) vanish outside the 
unit time interval (— | g t g + i). Accordingly, the mean square 
value of any variable X(t) may be reckoned with respect to the foregoing 
unit time interval and may be written in the following alternative forms:

_ f+ki r+*
X2 = / X2(t) dt = / X2(t) dt. (62)

J-W J - *
But since, in general,

/ X2(t)dt = ±f+ Nju)l2da>, (63)
3 — SO J — oo
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it is also possible to write

X2 = ¡x(jw)|2d«J = L y ¡«O'w)|2 du,
(64)

a general result that expresses the mean square of a variable X(t) as an 
integral taken over its true spectrum |x(jw)|2 or, equally well, over its 
statistical spectrum |x(jw)|2. Similarly, it is possible to speak of the 
statistical spectrum as the mean square value of the variable per unit
frequency interval, in accordance with the relation

= Rm)|2. (65)

Now that the results of Eqs. (64) and (65) have been established on a 
somewhat more rigorous basis, Eqs. (46) to (49), which were insuffi
ciently explained above, can be better justified and also better understood.

Another interesting result of the analysis just dealt ivi th above is 
that the statistical spectrum of any thermal-noise variable X(t), which 
is a functional of the thermal-noise emf ER(t), is proportional to the true 
spectrum of the functional derivative WTEifi), (t — r)]; provided that 
the statistical spectrum of ER(t) is a constant (as it is in the present case, 
according to Johnson’s formula). This may be readily confirmed by 
comparing Eqs. (56) and (47). If the meaning of the functional deriva
tive is kept in mind, it is possible to recognize in this the important result 
that the statistical spectrum of any thermal-noise variable X(t), which 
is a functional of ER(t), is identical, to within a constant, with the true 
spectrum of the response function X(f) to a unit impulse function EK(i).

Still another interesting result of the foregoing analysis is that if

^(0 = Anb(t - tO, (66)

then, by Eq. (55),
+ °®

X(t) = AnX'[ER(t), (t - in)], (67)
— »

or, in other words, a transient pulse expansion for any thermal noise 
variable X(/) is found.

Electromagnetic Energy of Thermal Noise.—If the differential equa
tions (43a) are multiplied by IB(i), the result is

V(f)Is(f) = ER(t)IR(t) - RIg(t) = IR(t) L i lOi) = (68)

With the aid of Eq. (435), IR(t) can be eliminated from the last two expres-
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sions above, with the result that

V(t)Is(G = + LIc(f) I At) (69a)
(1L Chi

_ d QAG , IAGQAG ,dt 2C + C ' (69&)

Also,
V(GIAG = V(t)[IAG + Zc(Q]
= IAGL % I At) + (70)

dt c<
_ d \liag QAty

dt L 2 2C _

The results of Eqs. (69) and (70) are equivalent, for it will be observed 
that since by Eq. (43a)

^=L^IAG, (7D

it follows that
d LlAt) _ IAGQAG
It 2 C 17 J

4^ LI At) J. I At). (726)
U/h ¿V U/h

Now the result to be emphasized here is that it is possible to write

V(t)IAt) = ER(t)IR(t) - RIR(t) =
LIl(t) QAt)

2 2C (73)

This result is an expression of Poynting’s theorem, as it applies to the 
electromagnetic energy of thermal noise in the parallel resonant circuit 
of Fig. 13-3. Here it is seen that the circuit elements L and C are the 
seat of thermal-noise energy, where it is stored in the two forms of elec
tromagnetic free energy

FAG =

F AG =

(74a)

(746)

It is seen, further, that the emf ER(t) is the source of this energy, produc
ing it at a rate equal to EAGIAG, and that the circuit element R is the 
sink of this energy, dissipating it at a rate of RI AG-

Similarly, in any circuit or portion of a circuit in thermal equilibrium, 
the seat of thermal-noise energy in electromagnetic form is the electro
magnetic field associated with its positive, frequency-independent ele
ments of inductance and capacitance; the sinks of this energy are its
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positive, frequency-independent elements of resistance; and the sources 
of this energy are the thermal-noise emf’s internal to and in series with 
these elements of resistance.

The time average of V(t)IR(t) is considered below: 
f f + 00

V&izii) = J V®IR® dt = J V(t)IR(t) dt. (75) 

By Parseval’s theorem, this may be written

V(t)IR(t) = 1 vija^-ja) da. (76)

But by Eq. (45) it may also be written

C + " (jaC + Uy) da
V(t)IK(t) = ------ (77)

J - n 1 ( wC — —)\ (¿L f
or again, since |eR(jw)p may be replaced in the integrand by Je7Gw)|2,

+ ’ GwC + UU da
-A_______________

» 1 + R2 ( aC — —7
\ h)Li

Now this integral must vanish, inasmuch as its integrand is an odd func
tion of a. Therefore, we have the result that

TW) = 0. (79)

According to Eq. (73), this means that, on the average, the rates of pro
duction and dissipation of electromagnetic energy of thermal noise are 
equal, that is,

MM = W(0, (80)

or in other words, that the average net rate of change of electromagnetic 
energy of thermal noise is zero.

£ [F^t) + Fc(t)] = 0. (81)

It will be observed that these results conform with the condition that 
there be thermal equilibrium.

Next it is important to find the average rate of production (and the 
equal rate of dissipation) of the electromagnetic energy of thermal noise. 
From Eqs. (80) and (496), we see that this average rate is infinite, that is, 

= oo . (82)
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On the other hand, from Eq. (47b), it is clear that the average rate per 
unit-frequency interval is finite and equal to

^[571®] =
aj

ZkTRHwC - —Y
wL /
i Y

uL /

= 2kT

(83)

But, as was said above, the quantum theory of thermal noise requires 
that the average rate of production [Eq. (82)] be finite and that the 
average rate per unit-frequency interval [Eq. (83)] fall off to zero at 
infinite frequency. Equation (82), therefore, cannot be taken as correct, 
and Eq. (83) can be used only at frequencies that are not extremely high.

It was seen in Eq. (81) that the average rate of change of electro
magnetic energy of thermal noise is zero. The average value of this 
electromagnetic energy is given by Eq. (49), from which it is found that

C 1(0 2 2 ’

Felt)

(84a)

(84b)QW = 
2C 2 ’

These results, Eqs. (84), are of general validity, in the sense that they 
are not restricted to the parallel resonant circuit of Fig. 12-3. They 
imply that in any inductance L or capacitance C, imbedded in a network 
in thermal equilibrium but not mutually coupled through its electro
magnetic field with other elements, there resides an average amount of 
electromagnetic energy of thermal noise equal to kT/2. This general 
result was first deduced, theoretically, by DeHaas-Lorentz in 1913.

Classical Statistical Mechanics of Thermal Noise.—A discussion of the 
parallel resonant circuit of Fig. 12-3 from a thermodynamic viewpoint 
follows. The material components of this system may be regarded as 
an essentially loss-free metallic coil of inductance L, an essentially loss
free metallic condenser of capacitance C, and a dissipative element of 
resistance R, all of which are positive and linear, at least for small signals, 
and of negligible frequency variation over a reasonably large range of 
frequencies. The dissipative element R may be a metallic or electrolytic 
conductor, a dielectric or hysteresis loss, or a radiation resistance, and 
so on, provided it behaves in accordance with the conditions prescribed 
above.

It is assumed that the circuit is in thermal equilibrium and isolated. 
Alternatively, it might be assumed to be in thermal equilibrium with its 
surroundings. The former condition was chosen, so that the total energy 
U of the system would be finite and constant.
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From a thermodynamic viewpoint, the total quantity of mechanical 
heat energy Q that resides in the molecular motions of the material of the 
whole circuit must be considered as a part of the total energy U of the 
system. The total free energy F residing in the system must also be 
considered as another part of the total energy U. This free energy 
usually includes the electromagnetic energy of thermal noise just dis
cussed, as well as whichever of the following energy forms may be 
present: the mechanical energy of moving parts of the circuit, the elec
trochemical energy of an electrolyte, the electromagnetic energy of a 
radiation field, and similar energies. Accordingly, for the complete 
thermodynamic system, we may write

U = Q + F = const., (85a)

T = = const., (856)c

where S is the total entropy of the system.
The total free energy F of the system being considered can now be 

written
F = F(Il, Qc, x, y, z, ■ ■ ■ , w) (86a)

= F^Il) + Fc(Qc) + f(x, y,z, • ■ ■ , w), (866)
where

7 72
Fl(Il) = (87a)

Fc(Qc) = M (876)

are the contributions due to electromagnetic energy of thermal noise, 
which are continuous functions of the respective parameters II, Qc, and 
where f(x, y, z, . . . , w) represents any other forms of free energy that 
may reside within the dissipative element R, which are continuous func
tions of certain other unspecified parameters x, y, z, . . . , w.

A necessary and sufficient condition for thermodynamic equilibrium, 
with U and T constant, is that the entropy >8' shall be a maximum or, 
as seen from Eq. (85), that the total free energy F shall be a minimum. 
But in order that F may assume its minimum value F „, it is necessary 
first, as seen from Eqs. (86) and (87), that IL = Qc = 0 and, second, 
again as seen from Eqs. (86) and (87), that x, y, z, . . . , w shall assume 
critical values xo, y„, z„, . . . , w0 which make f(x, y, z, . . . , w) a 
minimum. Then, in the neighborhood of thermodynamic equilibrium, 
the deviation of the total free energy F may be written, approximately,

7 72 7)2
F - Fo = + ^ + a(x - xo)2 + b(y - y0)2 + c(z - z0)2

+ • • ■ + p(w — Wo)2 (88)
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where a, b, c, . . . , p are positive constants and where no cross-product 
terms exist, because it is assumed that the parameters x, y, z, . . . , w, 
like Il and Qc, are independent.

In actualitv, true thermodynamic equilibrium cannot be maintained, 
because every individual interaction process between forms of heat 
energy Q and free energy F causes a finite change in the distribution of 
the total energy U in these two energy forms. Thermodynamic equilib
rium can be maintained on the average, however, and this state is 
called “statistical equilibrium.” But statistical equilibrium is attended 
by fluctuations in the heat energy Q and compensatory fluctuations in 
the free energy F, in view of Eq. (85a).

The fluctuations of the total free energy F, away from its minimum 
value Fo, are governed by the thermodynamic probability W, which is 
related to the entropy <8 of the system by the equation

W = (89)

where k is Boltzmann’s constant. Although W is fundamentally a func
tion of the entropy <8 alone, it may be specified completely in terms of 
the mechanical parameters of the heat energy Q, for by Eqs. (855) and 
(89) it can be written

W = (90)

In this form it expresses the probability for any possible distribution 
of the heat energy Q. But, according to Eq. (85a), we can write

U = Q+ F = Qo+Fo = const., (91)

and therefore we can rewrite Eq. (90) in the form

W = Woe<r‘-^/kT. (92)

When written in this form, W expresses the probability for any possible 
distribution of the total free energy F.

Thus, with the aid of the thermodynamic probability W, the mean 
deviation F — F o of the total free energy F away from its equilibrium 
value Fo can be evaluated. In particular, it is possible to evaluate the 
mean deviation

F — F* = a(x — Zo)2 (93)

of the free energy associated with the fluctuations in any one parameter 
x on which the total free energy depends. Thus, the probability that 
11, Qc, x, y, z, . . . , w lie in the range (IL, IL + dIL; Qc + dQc; x, 
r + dx; y, y + dy; z, z + dz; ■ ■ ■ ; w, w + dw) is given by

W dli dQc dx dy dz ■ ■ ■ dw, (94)

and hence, when integrated over the entire domain of these variables,
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nin-i W dIL dQc dx dy dz dw = 1

j H n ■ i a(x — Xs,yW dlxdQcdx dy dz ■ ■■ dw

— a(x — xo)2.

(95a)

(95b)
But, from Eqs. (88) and (92),

W = Wo exp -
r 72 n2
-Y + - x°)2 + ~ i^2 + ciz -z»)2

+ • • • + p(w — Wo)2 
kT (96)

Hence, dividing Eq. (95b) by Eq. (95a), it is found that

Now, if

a(x — Zo)2 =
— Xo)2 e “(l (fx

a(x—xo)2/*r (fa

/ a Y\ .
u = Vfr? / Xi>p

then Eq. (97) becomes

a(x — Xo)2 = kT
u2e “5 du

e~ul du
or

-7----------n kTa(x — x0)2 = -7J-

Similarly,

Lil = QI
2 2C = a(x — Xo)2 = b(y — y0)2 = c(z — zo)2 -

—7----------n= p(w - Wo)2 = -y;

(97)

(98a)

(98b)

(99)

(100)

(101)

or, in other words, the mean fluctuation in free energy associated with 
each independent parameter is equal to kT/2. This result is an extension 
of the theorem of equipartition of energy, which applies to molecular 
heat motions and states that the mean fluctuation in the kinetic energy 
of molecular heat motion is kT¡2 for each distinct degree of freedom.

Comparison of the first two equations (101) with Eqs. (84) shows 
complete agreement between the former, which are theoretically deduced, 
and the latter, which are experimentally observed. It must be remem-
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bered that Expressions (84) are time averages, however, whereas Expres
sions (101) are ensemble averages. But in a physical system of the sort 
dealt with here, the molecular motions as well as the time variations of 
the parameters of free energy are so complicated as to yield essentially 
an ergodic system. For such a system time averages and ensemble 
averages are the same

It is important to observe, also, that the first two equations (101) 
give the mean fluctuation in electromagnetic free energy of thermal noise 
and that Eq. (84) gives the mean value of this energy. Both of these 
terms have the same meaning in the present case, however, because the 
equilibrium value of the electromagnetic free energy of thermal noise is 
zero.

Integral Equations for the Spectrum of the Thermal-noise emf.—In the 
discussion leading to Eqs. (84), the experimental conclusion was reached 
that in any inductance L or capacitance C in thermal equilibrium, not 
mutually coupled through its electromagnetic field with other circuit 
elements, there resides an average amount of electromagnetic energy of 
thermal noise equal to k T/2. In other words, it was experimentally
shown that

LIAG _ QW) _ at 
2 2C 2 (102)

The same conclusion was reached theoretically in the discussion leading 
to Eqs. (101). Now, taking this result as a point of departure, let us 
inquire what follows concerning the spectrum of the thermal-noise emf 
EB(t) in a parallel resonant circuit.

First, by virtue of Eqs. (62) and (63), Eq. (102) may be rewritten 
thus:

1 f + " v-t
2i i2^)!2^ y (103a)

y f+ \qc(.ju)\-du = kTC. (1036)

Further, utilizing the relations of Eq. (45) for a parallel resonant circuit, 
for such a circuit this becomes

(104a)

(1046)

which constitutes a pair of simultaneous integral equations that are 
satisfied by the unknown spectrum of the thermal-noise emf EAG-
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Now if
a2gLC = 1, 
agRC = Q, 

a 
~ = V, Wo

then Eqs. (104) simplify to

(105a) 
(105b)

(105c)

(106a)

(106b)

(107a)

(107b)

In other words, for a parallel resonant circuit, the thermal-noise emf 
Eg($ must have a spectrum [eRw)!2 that, for w = ao-g and for w — uo/ii, 
satisfies the integral equation

kTR 
Q

(108)IMjw)i2

Now consider q as the imaginary part of the complex variable

r = s + (109)

and reexpress Eq. (107) as contour integrals, taken counterclockwise 
around the right half-plane of f, thus:

kTR 1 r. , ______ di_____
1 — Q2 f f +

\ d

i - Q2 (r +

(110a;

(110b)

One particular solution may be assumed which possesses no
poles in the right half-plane of f and for which ei?(wo/r) therefore also
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possesses no poles in the right half-plane of f, since the substitution of 
1/f for f maps the right half-plane of f into itself. In this case, the poles 
of both integrands of Eqs. (110) in the right half-plane of f are the same 
and occur when

+ I = 1
or when

2Qr = 1 + VI - (2Q)2,

(111)

(112)

where the pole corresponding to the positive sign in Eq. (112) may be 
designated by fj and the pole corresponding to the negative sign by f2. 
Then

-kTR
Q

= Res

and similarly

-kTR
Q

Wl2
1 - Q2

+ Res

r-n
i - Q2(f +1

(1 - ft) '*'(!- f|) ’ (113a)

— Res

2Q

IM^of)!2

Now it will be observed, from Eq. (112), that

fif2 — 1-

Hence Eq. (113) may also be written thus:

— 2kTR = Vi + 
1

or

2ATE(1 - fD

f? - 1

U y — v ^(^osi

|e«(wof i)|2 f? eR —

(114)

(115a)

(1155)

(116a)

(1165)

V(<»>ofl)|2 
f2 -1 '
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or
I Wo

es\K
2

— 2kTR - MAA - 2kTR] = 0,

[MAAi2 - 2kTR] - x €r - 2kTR = 0,

(117a)

(1176)

or, eliminating |eB(w0/fi)|2,

[|e«Wi)|2 - 2kTR] (1 - ii) = 0. (118)

Therefore, regardless of the value of f i (and including the exceptional 
values that are roots of = 1), it follows that throughout the right
half-plane,

|eB(wofi)|2 =
2
- 2kTR. (119)

This leads to the result that if the spectrum |eB(wof)|2 of the thermal-noise 
emf ER(t) in a parallel resonant circuit is assumed to possess no poles in 
the right half-plane of f, then it must be a constant throughout the right 
half-plane of f and equal to

IMwoM2 = 2kTR, (120)

and, in particular, considered as a limit, it must be a constant everywhere 
along the imaginary axis of the f-plane and equal to

|eB(;w)|2 = 2kTR. (121)

This result does not imply, however, that |eB(w0f)|2 is a constant through
out the left half-plane of f unless it is further assumed that eB(wof) is an 
analytic function throughout the f-plane.

It can be said, therefore, that the only function which satisfies the 
integral Eqs. (104) and at the same time possesses no simple poles in the 
right half-plane of f is a constant, given by Eq. (120). This solution 
corresponds to the measured statistical spectrum (31); but at the same 
time it corresponds to the true spectrum of a single impulsive emf

ER(t) = - N (122)

and not to the true spectrum of the thermal-noise emf ER(t).
There is another way of writing Eqs. (107) to apply to the complex 

f-plane, which is to be preferred to the formulation (110). Equations 
(107) can be written

kTR 1 / eB(wof)eB( —wof) df , ,-Q- “ 9------------7-------A (123“)
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(123b)

where the integrals are taken around the same contour as before. If, 
now, a solution ««(wof) that possesses no simple poles in the right half
plane of f is assumed, it does not follow that eB(uoi')eB( — uoi') will also be 
free of poles in the right half-plane of f. For this to be so, it would have 
to be assumed that eR(œof) possesses no simple poles either in the right or 
left half-plane of f. However, it is still admissible for eB(q>of) to possess 
poles along the axis of imaginarles, provided the contour integrals of 
Eqs. (123) do not enclose any of these poles. In this case, Eqs. (123) 
lead, in complete analogy with the preceding analysis, to the result that

cR(<qo()eR( uof) — 2kTR, (124)

or, in other words, that

eRW) = ±(2kTR)*, (125)

everywhere in the complex plane of f, except possibly along the imaginary 
axis. But if there are any deviations from Eq. (125) along the imaginary 
axis, these must be of a nonanalytic character, consisting of a distribution 
of singularities which is everywhere dense.

A more satisfactory picture of the solution eR(o>of), therefore, is that 
it is an analytic function everywhere off the imaginary axis of f and is a 
constant given by Eq. (125); but on the imaginary axis, eR(wof) may or 
may not be analytic. If it is analytic, then it is given by Eq. (125) along 
the imaginary axis, and it represents the statistical spectrum of EB(t) or 
alternatively the true spectrum of the impulsive emf [Eq. (122)]. If it 
is not analytic, however, then its dense distribution of singularities along 
the imaginary axis will be quite arbitrary, and it will represent the true 
spectrum of EB(f), but not uniquely.

Now, in addition to the analytic solution [Eq. (125)], which is entirely 
free from singularities, there also exist other analytic solutions eR(wof) 
possessing simple poles. Thus, if Eq. (123) is written in the three forms

kTR Jz 
q “ 2^ r

eB(uoI)eB( — ut¡f) dj
/ 1Y i - q Y+y

■y J eB I—- I di

/ A2i - Q2 (r + y

(126a)

(126b)
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and where it will be noted, from Eq. (112), that

_ 1 / eRAoAeA — “of) df
2irj r / A2’ri - Q2 y

(126c)

where the third of these equations is obtained from the second by replac-
ing C by 1/f, and if es(o>of) is assumed to be such that

)eA~^of) — ao + an/(A — fn) 
n

(127)

then from Eqs. (126a) and (126c), we can write

. . eRAaAeA~(1 + 75) du

o = ? 1 (D X S / (128a)
r / 1Y1 - Q2 y

— Qo4>q 4~ y a-n&n, (1286)

where
n

</>0 =
(1 Vf? +1 , + A 
\2Q)\A - 1 A - M (129a)

— <t>n + <A" (1296)

V =
1 

2Q
fi + 1______ . A + 1

L(f? - i)(f? - AA (Az - i)(f? - fi)J (129c)

<t>n =

(¿b^n + r)

(129d)/ 1 \2?
1 - Q ( f n + - I 

\ Sn/

AA = 1, 
> / 1 \

(130a)

fi + 1 = ^ = W(1 + r) r = VI - (2Q)2, (1306)

f2 + 1 = Q = (2Q2)
(130c)

fi - 1 = (^iQ2) r^r +
(130rf)

K “ 1 = (¿) W - 1),
(130e)

A + A = ¿5 - 2> (130/)

f2 _ >2 — Y
J 1 S 2 (130g)
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w - am - m = 1 - + w + g

-g#-«■(;.+¿y (1306)

(131a)

(1316)

(132a)

(1326)

Consequently, Eq. (128) becomes

(133)

It is clear that egM) may have any number of simple poles except 
one and that the positions of these poles may be anywhere in the f-plane, 
provided the coefficients in Eq. (127) satisfy the single constraint, 
Eq. (133). With any given positional distribution of poles, however, and 
with all coefficients a„ fixed but one, the remaining coefficient is a function 
of Q, according to Eq. (133). Therefore, such solutions e«(wof) as are 
here described are not independent of the Q of the parallel resonant 
circuit and hence cannot represent the true emf EB(t).

Quantum Statistics of Thermal Noise.—The theoretical result that the 
equation

R+R = 2kTR (134)

holds for the statistical spectrum of the thermal-noise emf EB(t) in series 
with a resistance R at an equilibrium temperature T needs to be reexam
ined if it is thought to apply it to extremely high frequencies.

In the first place, the picture of a parallel resonant RLC-circuit is, 
strictly speaking, appropriate only to a range of frequencies below which 
radiation will occur. Obviously, it is physically impossible to construct 
a parallel resonant circuit in such a way as to confine the electromagnetic
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fields, at extremely high frequencies, to the interior of the inductance L 
and capacitance C. In discussing extremely high frequencies, therefore, 
the parallel resonant circuit can no longer serve as a model; another cir
cuit model, of a simple type that admits of the existence of propagated 
electromagnetic waves, must be found.

Perhaps the simplest such model1 is the circuit shown in Fig. 12-4. 
Let the concentric line there shown be terminated at each end by a 
resistance R. If each of these resistances has the physical form of a solid 

o_______________ o_____ disk of material of appropriate
I I conductivity, so that it closes com
s R " Concentric line - ft s pletely its end of the concentric
I. . o_____________________ ______ I line, all electromagnetic radiation

Fig. 12-4.—Concentric line terminated at approaching either end of the line 
both ends with a resistance R. js ep[1(?r absorbed or reflected, pro

vided the disks are thick enough or of enough resistivity to attenuate 
completely the outwardly propagated waves. This ensures that what
ever electromagnetic fields exist in the interior of the line do not leak out
side the line.

Such a circuit constitutes a physical system that can be regarded as 
completely isolated and can be studied under conditions of thermal 
equilibrium, just as the parallel resonant circuit was studied above as an 
isolated physical system in thermal equilibrium. As before, the resist
ances R are seats of molecular heat motion, each having a total heat 
energy Q. Other forms of free energy might reside in these resistances R, 
as assumed in the previous case, but that assumption need not again be 
made here. Just as the existence of electromagnetic free energy in 
the fields of the inductance L and the capacitance C was assumed for the 
parallel resonant circuit, the existence of electromagnetic energy in the 
form of electromagnetic waves propagated back and forth parallel to 
the axis of the concentric line is assumed here.

It is necessary, then, to find a set of independent parameters on which 
this electromagnetic energy depends, analogous to the current IL in the 
inductance L and the charge Qc of the capacitance C in the case previously 
treated. Although there were but two degrees of freedom of free energy 
(Il,Qc) in the former case, there are an infinite number in that now under 
discussion. These correspond to the infinite number of standing waves 
that could be set up along the axis of the concentric line, were it short- 
circuited and—a tacit assumption for this discussion—nondissipative.

Thus, if I is the length of the line and v the velocity of propagation 
of the electromagnetic waves along its length, then the longest possible 
wavelength of the standing waves in the short-circuited case would be

Xi = 21, 
1 Cf. also H. Nyquist, Phys. Rev., 32, 110 (1928).

(135)
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and the lowest frequency would be

_ v _ v 
P1 ” M - 21

But in addition to this frequency ri, all integral multiples of iq are 
usually present. Hence two degrees of freedom (electric and magnetic) 
may be associated with each frequency.

v„ = nvi. (137)

Now if the fundamental frequency ri is made very small by making 
the length I of the line very large, the number of harmonic frequencies 
contained in any arbitrarily small frequency interval (v, p + dv) can be 
maintained very large. Assuming that this is the case, we may speak 
henceforth of the electromagnetic energy dU, associated with all degrees 
of freedom in the frequency interval (r, v + dv) and similarly of the 
power dP, delivered across any cross section of the line in either direction 
by the corresponding traveling waves.

The number of degrees of freedom of electromagnetic energy in the 
interval of frequency (v, v + dv) is

dN, =----  = ( — I dv, (138)V1\V/ '

and so, on the basis of classical statistical mechanics, which assigns to 
each degree of freedom an average energy equal to kT/2, the correspond
ing average electromagnetic energy Would be

If this energy, residing in standing waves in the case of a short-circuited 
line, can be thought of as shared by equal and opposite traveling waves, 
then the average power passing any cross section of the line in either 
direction is half of the fraction of dU, that is contained in v units of length 
of the line. In other words, the average power in either direction equals

dP„ = kTdv. (140)

The result, Eq. (140), is applicable, according to the above derivation, 
only to the short-circuited line, on the assumption that the standing 
electromagnetic waves existing therein are in thermal equilibrium at a 
temperature T. In particular, however, it is applicable at any cross 
section of a line that extends indefinitely in both directions. But in this 
latter case the impedance of the line, looking in either direction, is a pure 
resistance equal to n/L/C, if L and C are the inductance and capacitance
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per unit length of the line, respectively. Therefore, if in Fig. 12-4 both 
resistances R are equal to

R - A <1411
then at any cross section of the line in Fig. 12 4 the conditions will be 
indistinguishable from those which would exist in the case of a short- 
circuited line extending infinitely far in both directions, provided the 

physical system of Fig. 12-4 is in thermal equi
librium. Hence, it can be concluded that each 
resistance R in Fig. 12-4 emits and absorbs an 
amount of power of average value

dP, = kTdv (142)

in every frequency interval (p, v + dv) when 
matched into the line and when in thermal 
equilibrium with the line at a temperature T.

The power emitted by each resistance R should not be dependent on 
the nature of the load to which it is matched, provided the latter is 
in thermal equilibrium with it. Either resistance R, then, may be 
represented as a source of power, as shown in Fig. 12-5, with a load 
impedance

ZL = R, (143)

Fig. 12-5.—Equivalent 
representation of resistance R 
as a source of thermal noise, 
with any load impedance Zl-

whose nature need not be specified except that it should be matched. 
In Fig. 12-5 the power emitted by R is also the power absorbed by Zl. 

But if E, is the emf giving rise to «this emitted power in the frequency 
interval (p, y + dv), then the current flowing in ZL is

E, _ E,
R + Zl 2R

and the power absorbed by Zl is

Therefore, by Eq. (142),
E2 = AkTRdv.

(144)

(145)

(146)

This, then, is the average value of the square of the thermal-noise emf 
residing in R for the frequency interval (», v + dv). But the ratio 
E^/dv is just twice the statistical spectrum |eff(;w)j2 the value of which 
was found above by other methods. (Negative as well as positive fre
quencies are employed conventionally for the latter and only positive 
frequencies for the former.) The result

. MjL)|2 = 2kTR
is therefore found again.

(147)
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Actually, this result is not strictly correct, as might already be inferred 
from the nature of Eq. (139) for the total electromagnetic energy in 
the frequency interval (v, v + dv). This is because the integral of this 
expression diverges when taken over all frequencies, indicating that 
the total electromagnetic energy for all frequencies, or for all degrees 
of freedom, is infinite. In fact, however, the total energy in the present 
isolated physical system is finite. That the heat energy is finite is 
assured by the fact that the number of degrees of freedom of the molecular 
motions, though large, is yet finite. But the electromagnetic energy has 
an infinite number of degrees of freedom, and the result given above, 
to the effect that each degree of freedom (electric or magnetic) of electro
magnetic energy possesses an average energy equal to kT/2, must there
fore be reexamined.

If the short-circuited line is reconsidered from the point of view of 
quantum theory, associating quanta of radiant energy hvs (where h is 
Planck’s constant) with the standing electromagnetic waves of frequency 
v„ then a statistical consideration of these quanta, involving the following 
quantities, must be made.

u, — hvg
Z„g

Z,

N, = nZ„,

= energy of each quantum of frequency vs.
= number of modes of oscillation of frequency v, con

taining n quanta.

= Z„g = total number of modes of oscillation of
n

frequency vs.
= total number of quanta of frequency v,.

U,

N, = total number of quanta of all frequencies.

= total energy of quanta of frequency v,

= total energy of quanta of all frequencies.

The probability of a state in which, at the frequency vs, Zgs modes of 
oscillation contain no quanta, Zig modes contain one quantum, Z2s modes 
contain two quanta, and in general Zn, modes contain n quanta, is

Hz-!
w. (148)n
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Therefore the complete probability, or thermodynamic probability, of 
any distribution of quanta at all frequencies is

(149)

For the short-circuited line, thermodynamic equilibrium therefore 
corresponds to the maximum value of Eq. (149) or to the maximum value 
of the corresponding entropy expression

we can therefore write

S = k In W (150a)

= k In Z.\ - k In ZJ.
S n s

(1506)

Now, by Stirling’s approximation,

In x ! = x In x — x (x » 1 ) ; (151)

Za hi Za — k Z na In Zns- (152)

When S and therefore also W are a maximum with respect to variations 
in Zn„ we have

0 = ôS = k bZa In Z, — k bZns In Z„„. (153)

But because Z„ is a constant fixed by the geometry of the concentric line,
we also have

0 = &Z. = 5Zn„ (154)

and therefore Eqs. (153) and (154) become

0 — &Zns In Zna,
n s

0 = bZ„,.

(155a)

(1556)

In addition, the total number N of quanta and the total energy U of the 
quanta are constants. Therefore
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0 = SN = nSZ„,, (156a)
n 8

0 = SU = nu„5Zn,. (1565)
n 8

If now we ] 
(156a) by 0, ai 
stants, and if 
iZ^, in the rest

multiply Eq. (155a) by unity, Eq. (1555) by — In a„ Eq. 
nd Eq. (1566) by v. where a,, B, v are undetermined con- 
we add the four resulting expressions, the coefficient of 
riting sum must vanish; that is,

0 = In Zn, - Ina, + n(0 + vu,)- (157)

Therefore we rnay write
7
— = (158)

and hence

a« A/ 
n

= [1 - _ i. (159a)
— = ) ne-ntfi+ru.}

a, 
n

— __  _______\ p~

0(0 + vu,)
n

—______ d____  fl _ b-(3+fu),]-1
0(0 + vu.)11 e J

= e-an-™.)^ _ e-(i+„u,)]-2 (1596)
Consequently,

N
Eh = [eo>+^.) _ i]-i. (160)
z.

If we call es = B and write ua = hv8, this becomes
at

- I)“1. (161)

When this 
for the frequer

result is compared with Expression (138), it is found that 
icy interval (r„ r, + dv,)

97
Z. = dv.. (162)

Furthermore, 1 
be written

die total average energy of the quanta of frequency v, can

U, = N,hv„ (163)
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or, by Eqs. (161) and (162),
= 2Z hv. dv. ( )

v Be’1”' - 1 v

But this result, for small values of the frequency v„, should agree with 
Expression (139). Therefore, Eq. (164), in the notation of Eq. (139), can 
be written thus:

jrr _ 2Z hv dv

21 hv dv
“ v (B - 1) + Bvhv (165)

Equating Eqs. (139) and (165), we find that

~ = (B - 1) + Bvhv. (166)K 1

Since equality (166) must hold for all low frequencies, it must follow that

B = 1, (167«)

* = (1676)

Therefore, the correct expression (164) for the total average energy 
of the quanta in the frequency interval (r, v + dv) becomes

dU, = - ^4+^1 (168)

and the corresponding expression for the average power passing any cross 
section of the line in either direction becomes

dP- = (169)

Finally, the corresponding statistical spectrum |eB(jw)p of the thermal
noise voltage ER(t) in either resistance R in Fig. 12-4 or 12 5 becomes

RA = (170)

Actually, for room temperature and for frequencies up to and well 
beyond the visible region, Expression (170) is indistinguishable from the 
usual low-frequency expression (47).

Nyquist’s Thermal-noise Theorem.—Expression (147) or its more 
exact quantum theoretical extension (170) gives the statistical spectrum 
of the thermal-noise emf ER(t) in series with an ohmic, frequency
independent resistance R. This result may be extended to apply to any 
passive two-terminal network that is in thermal equilibrium, as was first 
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shown by Nyquist.1 To show this, let Zb in Fig. 12-5 be an arbitrary 
passive two-terminal network, whose impedance Zb may be expressed as 
a complex function of frequency

Zl = Z(ja) = R(jw) + jX(ja). (171)
If Zb is in thermal equilibrium with R in Fig. 12-5, then the average 
thermal-noise power absorbed by Zb and arising from R in any frequency 
interval (y, v + dv) must equal the average thermal-noise power absorbed 
by R and arising from ZL in that frequency interval. Hence, if

170 dv = 2kTR dv (172)

is the mean squared thermal-noise emf for this frequency interval which 
is in series with the resistance R, and if

\ez(ja)\2 dv = 2kTR'dv (173)

is the corresponding mean squared thermal-noise emf supposed to be in 
series with Zb, then the power absorbed by Zb and arising from R is

• jp = \eR(ju)\2 dvR(ju)
Z [R + R(ja)]2 + X\ja) 

_ 2k T dvRR(ja) 
“ [R + R(>)]2 + X\ja)’

while the power absorbed by R and arising from Zb is

>p = |ezM)|2 dpR
ara [R + R0+)]2 + X2fa) 

2kT dvR'R t 
[R + R(ja)]2 + X2(ja)

(174)

(175)

But since dPz = dPR, we find that R' — R(ja) and hence that

MO2 = 2kTR(ja). (176}
This result, Eq. (176), is the analytical statement of Nyquist’s theorem, 
in the usual form corresponding to 
the low-frequency approximation 
to Eq. (170). According to this 
theorem, any passive two-termi
nal network in thermal equilib
rium at the temperature T may 
be represented in the sense of 
Thivenin’s theorem as an active 
generator of thermal noise, as 

Fig. 12-6.—Two equivalent representa
tions of Nyquist’s noise theorem: (a) in terms 
of impedance; (b) in terms of admittance.

shown in (a) of Fig. 12-6, where its impedance Z(ja) is given by Eq. (171) 
and the Fourier transform ez(ju) of its thermal-noise emf ¿7(0 is given 
in the mean square by Eq. (176).

1H. Nyquist, Phys. Rev., 32, 110 (1928).



534 AMPLIFIER SENSITIVITY [Sec. 12-2

An alternative expression of Nyquist’s theorem is possible on an 
admittance basis. Let

K(» = = Gw) + jB(w) (177)zw)

be the corresponding admittance of ZL in Fig. 12-5, expressed as a com
plex function of frequency. Then if

ir(ju) = = e^Y^’ (1?8)

the quantity i+w) represents the Fourier transform of the constant
current generator Ir(i) which, placed with Y(ju) as shown in (b) of Fig. 
12-6, acts as an equivalent source of thermal-noise power in the sense of 
Norton’s theorem (the admittance analogue of Thevenin’s theorem). 
But, according to Eq. (178),

|irO'")l2 = |e4J")l2[<?2(>) + B2<w)]
= 2kTR<w)[G2<w) + B2(w)]; (179)

and therefore, since Eq. (177) gives the result that

R(w) = V (180)w ' G\ju) + B2(>)
it follows that

= 2kTG(ju). (181)

This result, Eq. (181), is another analytical statement of Nyquist’s 
theorem, in terms of the admittance representation of (6) of Fig. 12-6 and 
in the form corresponding to the low-frequency approximation to Eq. 
(170).

A Generalization of Nyquist’s Thermal-noise Theorem.1—For passive 
networks in thermal equilibrium that have three or more terminals, it 
would appear possible, in theory, to represent the complete thermal-noise 
behavior by applying Nyquist’s theorem independently to each com
ponent element of the network. In practice, however, networks whose 
actual component elements are unknown are often found. In such cases 
a network must be represented in terms of apparent component elements 
whose unreality is commonly manifested by their failure to be passive. 
Consequently, for the general M-terminal passive network in thermal 
equilibrium, a complete thermal-noise representation lies beyond the 
province of Nyquist’s original theorem. In the following discussion, an 
analogous but more general theorem which represents completely the 
thermal-noise behavior of any passive network in thermal equilibrium is 
stated. The proof of this theorem is given elsewhere.

1 Cf. also E. J. Schremp, to be published.
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As a preliminary to the statement of this theorem, certain restrictions 
that are conventionally imposed must be removed from the formulation 
(181) of Nyquist’s theorem.

Actually, the current ir(ju) that occurs in (b) of Fig. 12-6 and in 
Eq. (181) is the complex Fourier transform in the Fourier integral 
resolution

1 f+“
Iy(G = — du (182)

¿TT J — m

of the time-varying thermal-noise current impressed across the passive 
admittance Y(ju). This time-varying current is experimentally observa
ble and is, therefore, quite naturally taken to be a real function of time, so 
that between the Fourier transforms at frequencies u and — u the relation

ir(-ju) = i*(ju) (183)
is assumed to hold. Consequently, Nyquist’s theorem (181) may also be 
written in either of the two forms

iY(ju)i*(ju) = 2kTG(ju), (184a)
iY(ju)ir(—ju) = 2kTG(ju). (184b)

The first form is always equivalent to the form (181), but the second form 
is equivalent only if the relation (183) holds. As will presently be seen, 
the conventional formulation of Nyquist’s theorem as exemplified by the 
relations (181) and (184a) must be abandoned in what follows, in favor 
of the formulation (184b); and the conventional relation (183) must be 
abandoned in favor of a more general relation. The same kind of changes 
must be made in Eq. (176).

It is necessary in what follows to bear in mind certain properties of the 
admittance Y(ju) whose real part G(ju) occurs in Eq. (181). This 
admittance is always a function of the argument ju and never of any other 
argument containing j or u. Consequently it always follows that

Y(-ju) = Y*(ju). (185)
Hence, since

G(ju) = i[Y(ju) + F’O«)], (186)
Eqs. (184b) can be rewritten in the form 

iAjWA-A) = kT[Y(ju) + F(-ja>)]. (187)
By similar reasoning, Eq. (176) can be replaced by the relation 

ez(ju)ez(—ju) = kT[Z(ju) + Z(—ju)]. (188)
In what follows, Eqs. (187) and (188) are taken as the fundamental 

formulations of Nyquist’s theorem. Or, using the complex frequency,
X = a + ju, (189)
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these two equations can be expressed to apply to the whole X-plane, thus:

— X) — kT[Y (X) + F(— X)] (190a)
ez(\)ez(— X) = kT[Z(\) + Z( — X)]. (1906)

The complete thermal-noise behavior of a given passive network in 
thermal equilibrium can be described, when its complete physical struc
ture is known, by applying Nyquist’s theorem in the form (190a),

= - kT[yma(\) + ymn(~ X)] (191)

independently to each passive branch element — ymn(X). This is the 
internodal formulation of Nyquist’s theorem, because it is expressed in 
terms of the internodal currents impressed between different nodes m and 
n. These internodal currents have the following noteworthy properties. 
First, because imn(X) is, by definition, the current flowing from node m to 
node n, we can write

immW = — inmW- (192)

Second, because of the incoherence of the thermal agitations of any two 
distinct passive admittances, we can write

VW/V) = 0 (193)

for any two distinct nodal pairs (m,n) and (r,s).
On the other hand, it is equally possible to express Nyquist’s theorem 

in terms of the nodal thermal-noise currents

n

(m n), (194)

each of which represents the net thermal-noise current flowing into a 
given node m. Consider the average product

X) (m n, r + s). (195)

As a consequence of the incoherency properties (193), this average 
product reduces to either of the expressions

imOOLi—X) = — imr(X)imr( —X) (m r) (196a)

= imn(X)imn( —X) (m = r n), (1966)
n

depending on whether the nodes m and r are different or not. Therefore, 
by using Eqs. (191), we can write
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inWifi-X) = kT[ymT(X) + yN-X)] (m r) (197a)

= — kT AA) + Vmn(— X)] (m = r n). (1976)

But if
= — ^ ymn(X) (m n) (198)

n

is called the total admittance from node m to all other nodes, then Eq. 
(197) can be written in the single form

AAA = kTtyNX) + A-AL (199)

which is valid both when the nodes m and r are distinct and when they 
are the same. Equation (199), then, is the nodal formulation of Nyquist’s 
theorem.

In considering the problem of representing the actual thermal-noise 
behavior in a passive A/-terminal network the physical structure of which 
is unknown, the existence of this actual physical structure may certainly 
be assumed. It may be supposed to be represented by a network con
taining N g M nodes and having nodal thermal-noise currents im(\) 
(m = 1, 2, • • • , N) that obey Eqs. (199). If N = M, the problem 
would not exist, because the actual physical structure of the Af-terminal 
network would then be known. On the other hand, if N > M, and if 
node N is internal to the network, then the current iv(X) and the branch 
admittances —ymn(X) are not usually susceptible to measurement.

Because this is so, the current iN(X) and the branch admittances 
— yAX) may be thought of as quantities that may be varied in certain 
ways, as long as these variations do not conflict with the observable 
properties of the thermal noise in the network. Specifically, AX) can 
be changed to

ix(X,a) = [1 - a(X)A(X), (200)

where a(X) is any complex number if im(X) and ymn(F) are also changed as 
follows:

= UX) - a(X) A (201a)
y™w

yUU) = ymn(X) - a(X) yUX), (2016)

as may be seen in detail by referring to the proof of this result, published 
elsewhere.1

Equations (201) form a continuous group of transformations, with the 
complex parameter a, that transform the actual physical network into an

1 E. J. Schremp, to be published.
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infinite variety of equivalent networks. Let us then consider the 
expression — which, for a = 0, is given by Nyquist’s
theorem as expressed by Eqs. (199). By Eq. (201a),

= V(X)zr(—X) (202)

- a(X) 5kWU(-X)

Therefore, by Eq. (199), this gives

= UUX) + y^(-x)] (203)IC 1

- „(y^S^x) + W~x)]

— a(— X) [ymN(X) 4- ymx(~x)]

+ a(X)«( —X) --- TV ^""(X) + y™( —X)].yNNlh)yNN\, — A)
But this can be written simply

im(\,a)ir( — X,a) = kT[ymr(X,a) + y„A~ x, a)], (204)

because, equating the right-hand sides of Eqs. (203) and (204) and using 
Eq. (2016), we get

~ «(X) ^00y.vx(h)

ymr(^) “F l/mri,

— Ol(X) [?/Nr(X) + VNr(— X)]yNNih)

(205)

+ a(X)a( —X)[j/„.v(Xjl/r.v( —X)J
1 

y<v«(x)
1

yxx( — x)
Or, noting that the t/’s are bilateral,

0 = ymxWyrxW + ^Vx) 
(yxx\h) ynx{—x)

— a(X)a( —X) -----Try 4-------t——- }•
Lyiviv(X) yxx( — X)JJ (206)
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Therefore, the result in Eq. (204) holds as long as a(X) obeys the con
straint

o = a(x)[i — «(—x)]/?/w(—Y + a(—YU — «(Y]/y™(Y- (207)
This result is of considerable significance; for it shows that Eqs. (204) 

constitute for the representation of thermal noise an invariant expression 
that holds for any value of the continuous parameter a(X) that obeys the 
constraint in Eq. (207). Moreover, an analogous result holds with 
respect to any other internal node of the original physical network or of 
any transformed variety of this network corresponding to a certain value 
of a(X). Expression (204) is therefore an explicit method for finding all 
possible equivalent representations of the given network for which, in 
terms of the appropriate thermal-noise nodal currents i„(X; «2, . . . )
and branch admittances — ^(X; ai, a2, . . . ), it is possible to express 
the complete thermal-noise behavior in the invariant form

¿„(X; a2, • ' ’ )v( —X; m, a2, • • ■ ) = kT[ymr(\; ai, a2, • • • )
+ ymr( — X; au, a2, ■ ■ ■ )]. (208)

In particular, if a(X) = 1 in Eqs. (201), then it is seen that

MM) = 0, (209a)
y^Ka) = 0, (2095)

or, in other words, that the node N is completely eliminated. But by 
iterating the transformation in Eqs. (201) with respect to all internal 
nodes in succession and setting

<m(Y = a2(X) = • ■ • = aw_M(X) = 1 (210)

one arrives at the M-node or external representation of the given M-ter
minal network itself. For this representation Eq. (208) assumes the 
specialized form

1, 1, • • • )L(-X; 1,1,--)= kT(y„„(\-, 1, 1, • • • )
+ ymr(-\; 1, 1, • • ■ )]. (211)

The content of this generalization of Nyquist’s theorem is thus 
expressed, in the general case, by Eq. (208). But in addition to this 
nodal formulation of the result, it is possible also to give an internodal 
formulation. The existence of mutually incoherent internodal thermal
noise currents that, for any representation of the given network, satisfy 
relations analogous to Eqs. (192) to (196) can again be assumed. There
fore, the result in Eq. (208) can also be expressed in the internodal form

«1, «2, ■ • ■ )2mr( —X; Oj, a2, • • ■ ) = — kT\ymr(\; a-La2, • • ■ )
+ ymr( — X; aj, a2, • • • )], (212) 
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or, what is the same thing, in the form

imAN, ai, a2, • ■ ■ — «1, a«, ■ • • )
= —2kTgmr(\; ai, a2, ■ ■ ■ ), (213) 

where —gmr(\; ai, a2, • • • ) is the effective branch conductance linking 
nodes m, and r.

For
ai(X) = a2(X) = • ■ ■ = 0, (214)

the result in Eq. (213) is identical with Nyquist’s original theorem, as it 
applies to the actual physical structure of the given network; whereas, for 
general values of ai(X), a2(X), . . . , consistent with the constraints of the 
form in Eq. (207), the result in Eq. (212) is a formal extension of Nyquist’s 
theorem to any equivalent representation of the given network -wherein 
the effective branch conductances — gm,(\; a2, a2, • • • ) may or may not 
be passive elements. Because, in general, — gmr(ja; a2, a2 ■ ■ ■ ) is not 
necessarily positive for all real frequencies w, it follows that we cannot, in 
general, write

imr(~ja; ai, «2, ■ ■ ' ) = imr(ja; ab a2, ■ ■ ■ ). (215)

However, from Eqs. (213) it can be seen that it is sufficient, instead, to 
write

iR — ja; «1, «!,•■■)= + imr(ja; ai, a2, • • • ), (216)

where the positive sign is taken if the conductance — gmr(ja; ab a2, ■ • • ) 
is positive and the negative sign if this conductance is negative.

The significance of this change from the conventional restriction in 
Eq. (215) to the weaker restriction in Eq. (216) is apparent from the 
Fourier integral representation

Imfit', «i, «2, ’ ’ • ) = yimr(ja; a2, a2, • • • )e'“‘ da (217) 

of the time-varying thermal-noise current impressed across the apparent 
branch admittance —ymr(jw, a2, a2, ‘ ' )■ This change means that,
although the time-varying thermal-noise currents Imr(t; 0, 0, ... ) 
envisaged by Nyquist’s theorem are always real functions of time, the 
corresponding currents Im/t; ab a2, . . . ) envisaged by the generalized 
theorem stated, are here, in general, complex functions of time. This 
result is not surprising; just as the real character of these currents in the 
conventional sense is required by the fact that they are experimentally 
observable (or at least are assumed to have a real existence), so their 
complex character in the generalized sense just described reflects the fact 
that these currents need not be experimentally observable (and indeed 
need not have any real existence).
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On the other hand, the nodal thermal-noise currents

Im(t; ai, a2, • • ■ ) = ai, «2, • • • ) (m n) (218)
n

are always real, although they are observable only if they refer to nodes 
that are also terminals of the given network. To show that this is so, 
consider Eqs. (208) for m = r:

i„(ju; ai, a2, ■ ■ ■ )im(—ju; ai, a2, • • • )
= 2kTgmm(jw; ai, a2, • • • ). (219)

By definition [see Eq. (198)], gmm(ja; ai, a2, . . . ) is precisely that 
conductance between the node m and all other nodes short-circuited 
together. This conductance is always positive for a passive network.

■ It follows, therefore, that

ai, a2, ■ • ■ ) = on, «2, ’ ’ • ) (220)

and that Im(t; ai, a2, . . . ) is invariably a real function of time. This 
real character of the nodal currents Im(t; ai, a2, . . . ) is not incompatible 
with either the sometimes complex character of the internodal currents 
I„T(t; ai, a2, ■ ■ • ) or the sometimes nonpassive character of the apparent 
branch admittances —ymr(ju; a,, a2, . . . ), because no inconsistency 
arises in either Eqs. (218) or (198) under these circumstances.

The Quasi-thermal Noise in Passive Networks That Are Not in Thermal 
Equilibrium.—Under certain circumstances the theory of thermal noise 
can be applied to situations in which true thermal equilibrium does not 
hold. For example, a passive circuit in which the different resistive 
elements are at different temperatures is not, strictly speaking, in true 
thermal equilibrium even if the different resistive elements are maintained 
at their respective temperatures by some artificial means. But if they 
are so maintained, the noise power that each individual resistance emits 
may be taken equal to that which would occur in the case of equilibrium 
at its particular temperature, although the noise power absorbed by the 
same resistance will not be equal to that emitted, as in true thermal 
equilibrium.

Thus, if a linear passive network is considered to have a nonuniform 
temperature distribution of such a character that each of its resistance 
elements Rn (n = 1, 2, . . . , N) is maintained at a constant absolute 
temperature Tn, then Nyquist’s theorem can be applied to each resistance 
Rn at its appropriate temperature Tn. In other words, a series thermal
noise emf with a mean square per unit-frequency interval equal to

|e„(V)l2 = 2kTnRn (221)

may be associated with each such resistance.
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On this premise, it is then possible, as was first shown by Williams,1 
to find an analytical expression for the mean square value of the open
circuit “thermal” noise voltage appearing across any two points of the 
given network. To find this expression, let the given network be 
represented as shown in Fig. 12-7, where we consider two terminal pairs 

(n,n). Let the terminal pair

Fig. 12-7.—Arbitrary linear passive net
work showing one component resistance Rn 
at temperature Tn, regarded as input with 
terminals (n,n) ; and any two points of the 
network (m,m) regarded as output terminals. 
8 is a short-circuiting switch.

(m,m) represent any two points 
of the network across which it is 
desired to evaluate the open-cir
cuit thermal-noise voltage, and let 
the terminal pair (n,n) represent 
the terminals of any one compo
nent resistance R„. Now let 
YUju) be the transfer admit
tance between the generator en(ja) 
and the output terminals 
short-circuited by the switch 8. 
The mean square value per unit

frequency interval of the short-circuit thermal-noise current
which will flow through the switch S, because of the generator e„(ja), can 
be expressed in terms of this transfer admittance. The result, from 
Eq. (221), is

\in(ju)\2 = 2kTnR„\YnJjN\2. (222)

Since a similar result holds for each resistance R„, the net short-circuit 
thermal-noise current

n

(223)

has a mean square per unit-frequency interval equal to

YUiNYU—jNe/jNefi—ju)-

(224a)

(2246)

But since, for different resistances Rn and Rk, the thermal-noise voltages 
en(ju) and efiju) are uncorrelated, i.e.,

en(ju)ek(— ju) =0 (n X k), (225)
Eq. (2245) reduces to

FURT2 = I Ynm(ju) I AMR I2 (226a)
n

1 F. C. Williams, Jour. Inst. Elec. Eng., 81, 751 (1937).
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= ^2kTnRn\Y„Jju)\2. (2266)

n

Knowing now the short-circuit current the mean square thermal
noise voltage appearing across the open-circuited terminal pair (m,m) 
can be evaluated by an application of Thevenin’s theorem. According 
to this theorem, this open-circuit voltage e(ju) is related to the short
circuit current i(ju) by the equation

= Z(ju)i(jw), (227)

where Z(ju) is the driving-point impedance at the terminal pair 
Thus, by Eqs. (2266) and (227), it is found that

|e(>)|2 = 2kTnRn\Ynm(ju)\2\Z(ju')\2, (228)
n

which is the desired result.
In the special case of true thermal equilibrium, when all the resist

ances R„ are at a common temperature T, Eq. (228) reduces to

RM’ = ^kT Rn\Ynm(ju)\2\Z(ju^ (229)
n

But by Nyquist’s theorem, it should be possible to write this

|e(M|2 = 2kTR(w), (230)

where R(jw) is the real part of Z(jw). This equivalence will hold if

RW = (231)
n

It is shown below that Eq. (231) is identically true, following a proof 
given by Williams.

Referring again to the network of Fig. 12-7, let Ymn(ju) be the transfer 
admittance from the terminals (m,m) to the terminals of the generator 
e„(ja). Now, since the given network is composed entirely of bilateral 
elements,

Ym„(ju) = Ynm(ju). (232)
Therefore, if a voltage

e = E sin ut (233)

is impressed across the terminals (m,m), the power dissipated in the 
resistance Rn is, on the average,
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(234a)

(2346)

(235)

(236)

(237)
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_RnE2\Ynn(ja)\2 
r* ~2

R^Y^af2, 
2

and the total power dissipated in the network will be

P = Pn = ~ R^Y,^)/.
n n

But if Z (ja) is written

Z(ja) — R(ja) + jX(ja), 

the same total power can be written also 
P2 
~ RW 

P = W<'

Therefore, if expressions in Eqs. (235) and (237) are equated, it is found 
that

RW = R»|M0w)|a|Z(>)|2, (238)
n

which is the same result as Eq. (231).
This result, in combination with the result in Eq. (229), provides, in 

effect, an independent proof of Nyquist’s theorem.
12-3. Shot Noise. Definition.—In the general definition of noise in 

Sec. 12-1 it was stated that the essential characteristic of any source of 
noise is that it involves large aggregations of small charged particles 
moving under the influence of their own mutual forces or of other forces of 
comparable complexity or randomness. Rather general equilibrium con
ditions can be used to evaluate the special case of thermal noise just 
treated, without considering in detail the behavior of the individual 
charged particles. Another fundamental type of noise, which, in con
trast to thermal noise, emphasizes much more than individual behavior 
of each discrete charged particle, is considered here. This type of noise, 
called “shot noise,” is of prime importance not only because of its fre
quent occurrence in practice but also because the study of it opens up an 
important body of theory, complementary to the theory of thermal noise.

The simplest example of shot noise, which has been called “pure shot 
noise,” is found in a temperature-limited diode, in which electrons are 
emitted from a hot cathode and collected at an anode in a completely 
unilateral flow. The flow may be one in which the electron trajectories 
are parallel, as in a planar diode, or it may have various other geometries.
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such as that in which the trajectories are radial, as in a concentric- 
cylinder diode. In any case, the essential feature is that the flow of 
electrons is unilateral, starting at one surface and ending at another. 
The result of requiring that the diode be temperature-limited is, in the 
first place, that every electron emitted by the cathode goes to the anode. 
Secondly, each electron moves at so great a velocity v that for any finite 
current density,

j = P», (239)

the associated charge density p will be negligibly small. As a result, the 
potential distribution V between the two electrodes, determined by 
Poisson’s equation

V2F = -4wp, (240)

will be a solution of Laplace’s equation

V2F = 0 (241)

depending only on the diode geometry and the potential difference and 
not upon the electrons themselves.

Actually, the situation may not be so simple because, even if the 
charge density p is negligible, the time variation of the potential V may 
not be negligible. It might, therefore, be better to write instead of 
Eq. (241) the wave equation

1 d2V V2V~^ = °-

More than this, the vector potential A, which may also act upon the 
electrons and obeys the D’Alembert equation

™ " 7 S = " — ’ (243)
C2 dt2 C

must be considered.
These more exact considerations may be neglected, at least except at 

very high frequencies, however, because in the Lorentz equation for the 
force F acting on each electron, i.e.,

F = e (e + V~^~y (244)

the electric field
E = -VF - (245)

C uL

is to a good approximation given by

E = — VF, (246)

where V is the static potential distribution given by Eq. (241), and the 
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magnetic field
H = V X A (247)

is so small in comparison to E that it may be neglected in Eq. (244).
That is to say, then, that as far as their low-frequency components are 

concerned, the electron trajectories in a temperature-limited diode are 
determined solely by the static scalar potential distribution V and not 
by the electrons themselves. The flight of each electron from cathode 
to anode, therefore, may be regarded as an independent event. More 
than this, it is usually permissible to assume that the different electrons 
exhibit, in their flight, no difference in behavior or in their effect upon the 
circuit.

Hence, it becomes possible to analyze the shot noise in the tempera
ture-limited diode by considering a single typical electron k, emitted 
at the cathode at a time L, pursuing a typical trajectory and giving rise 
to a typical response in the diode circuit. The extension of the analysis 
to all emitted electrons is then a matter of summing all these similar 
responses, which differ only in respect to the emission time t^. Since 
these emission times h have a Poisson probability distribution, a statis
tical treatment of them is capable of yielding average values of the 
resulting shot-noise effects.

From this simple example of shot noise, it can be seen that the typical 
characteristic of shot-noise phenomena in general is one that emphasizes 
the electrodynamic properties of the individual electrons (or, in some 
cases, other charged particles) and that the typical methods of treatment 
of shot noise should commence, whenever possible, with the selection of 
groups of similar, independent electrons.

Observation of Shot Noise in Diodes.—This form of noise, like thermal 
noise, is readily observed with the aid of a high-gain radio receiver. If a 
temperature-limited diode is placed across the input terminals of the 
receiver, the intensity of the audible noise in the loud-speaker will 
increase as the direct current in the diode is increased, being a minimum 
when no diode current flows at all. The increase in audible noise with 
increasing diode current is thus an indication of the shot noise contributed 
separately by the diode.

Shot Noise in a Parallel Resonant Circuit. Measurement of Open
circuit Shot-noise Voltage.—A parallel resonant circuit, with which a 
temperature-limited diode is in parallel, can be used to measure open
circuit shot-noise voltage. Such a diode contains an inherent capaci
tance, which can be included as part of the total capacitance C of the 
parallel resonant circuit. Under temperature-limited conditions, the 
plate resistance of the diode will be so high that it may be neglected. 
Therefore the total shunt resistance R of the parallel resonant circuit may 
be regarded as containing no contribution from the diode, except possibly 
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due to small ohmic losses, in which case all of the resistance is represent
able as a single shunt resistance R, passive and frequency-independent 
and in thermal equilibrium at a temperature T.

Following further the procedure of measurement used earlier in 
conjunction with thermal noise, let the above parallel resonant circuit 
containing the diode be attached to the input terminals of a high-gain r-f 
amplifier. As before, let the output indicating device be a thermo
couple meter M, calibrated to read the mean square output voltage of 
the amplifier. The experimental arrangement is then as shown in Fig. 
12-8, where R is the net parallel resistance of the parallel resonant input 
circuit, L is an essentially loss-free coil, and C is the net parallel capaci
tance of the input circuit (inclusive of the diode capacitance and the 
input capacitance of the first amplifier tube) and where the whole input 
circuit (excluding the diode and the input amplifier tube) is in thermal 
equilibrium at an absolute temperature T.

Under these conditions the open-circuit noise voltage will be a function 
of time V(i), which contains two uncorrelated parts, Up/) and F2(0.

V(t) = 71(0 + V2(t), (248)

where 7i(Z) is the open-circuit thermal-noise voltage, which was pre
viously analyzed in detail, and where V2(t) is the open-circuit shot-noise 
voltage, which is examined below.

If now, pursuing the same method of measurement employed above in 
connection with thermal noise, the statistical spectrum S(tv) of the open
circuit noise voltage V(!) is measured as a function of the parameters R, 
L, and C of the resonant circuit and as a function of the témperature T 
and the diode direct current I, it is found that

S(u) = 2kTR + elR2
(249)

where k is Boltzmann’s constant and e is the electronic charge.
Because the noise voltages 71(0 and V2(t) are statistically inde

pendent, it follows that their statistical spectra <§i(w) and S2(o>) add 
linearly, according to the relation

S(u) — St(u) + Ñ2(w). (250)

When Eqs. (249) and (250) are compared, and it is remembered that

= 2kTR
/ i \2’

1 + R2 ( uC - -4 )
\ uL/

(251)
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then
elR2

±y
uL)

(252)St(u) =
1 + RHuC -

is found as the experimental result for the statistical spectrum of the open
circuit shot-noise voltage in Fig. 12-8.

The open-circuit shot-noise voltage V2(t), then, possesses a statistical 
spectrum equal to

dV2 
df

______elR2_______
/ 1 \2’

1 + R2 [ aC - 4 )\ wLl

(253)

and a total mean square equal to

ff’ df

elR
~ 2C' (254)

Localization of the Shot-noise Constant-current Generator.—If, as in the 
analysis of thermal noise, the respective limiting cases of Eq. (253) for an 
isolated resistance R and an isolated ¿/.'-circuit are considered here, it is 
found that in the first case (L = », C = 0)

dV2 
df

= elR2 (255)

and in the second case (R = » )

dVl 
'df (256)

In neither of these limiting cases

Fig. 12-8.—Temperature-limited shot 
noise in a parallel resonant circuit as meas
ured with an r-f amplifier.

limiting Eqs. (255) and (256) or the

is there any evidence of a source of 
noise intrinsic to the elements in
volved (R in the first case or L and 
C in the second) as was found 
in the case of thermal noise. 
Rather, there is evidence of an 
external source of noise, depend
ing on the diode current I. The 
appropriate representation of this 
source, as seen from either the 

general Eq. (253), is in the form of a 
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shunt constant-current generator I(t) with a mean square per unit
frequency interval equal to

= el. (257)

Such a current generator, impressed across the RLC-circuit, does, in fact, 
lead to the result of Eq. (253). Similarly, if it is impressed across the 
isolated resistance R or the isolated LC-circuit, it leads to the result of 
Eq. (255) or (256), respectively.

Hence Eq. (257) gives the experimental determination of the source of 
shot noise in a temperature-limited diode. This result agrees with that 
which was first deduced theoretically by Schottky1 in 1918.

Theory of Temperature-limited Shot Noise.—A theoretical proof of the 
result Eq. (257) is given here. To do this, the individual electrons 
emitted by the cathode and the effect of the passage of these electrons 
upon the diode circuit will be examined. The effect of the passage of any 
one electron k upon the diode circuit may be expressed in terms of the 
total current lift) which flows through a short-circuiting external path 
between anode and cathode as a result of this passage. From the 
Maxwell equation

, . , dE 
+ ¿7

V X H =----- (258)

where H is magnetic-field strength, j is current density, and E is electric
field strength, it follows that

=°- (259)
\ dt /

If Eq. (259) is integrated across the area A normal to the lines of flow 
of the total current density, j + (l/47r)dE/di, it is found that the inte
grated total current

lift) = I j.dA+^l ^-dA (260)

is the same at all cross sections of the current flow at the same instant t. 
That is, lift) is divergenceless, which means that the passage of the 
electron k sets up a circulatory current, flowing from anode to cathode 
within the diode and returning from cathode to anode through the 
external short-circuiting path. Moreover, this current lift) is the same at 
every point of this circulatory path at any instant t. The part of the 
path within the diode corresponds to the constant-current generator of 
Eq. (257) as long as the potential difference induced between the elec-

>W. Schottky, Ann. phys. 57, 541 (1918); 68, 157 (1922). 
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trodes does not react on the electron in its flight. It is justifiable to 
assume this condition, at least at low frequencies.

If Eq. (259) is integrated with respect to the time t, an expression 
having the form of a charge results:

QAG = j Ik(t) di J I j • dA dt + 4 y E ■ dA. (261)

Here the first term refers to the fraction of the electrons’s own charge -e 
which is deposited on the anode at any time t. This fraction, of course, is 
either zero or one, according to whether the electron has reached the 
anode or not. If the first term is called Q'k(t~), then QAt) is a function of

the passage of single electron k from passage of a single electron k from cathode 
cathode to anode. to anode.

time having the form shown in Fig. 12-9 in which, for convenience, 
the emission time tk has been set equal to zero.

The second term in Eq. (261) can be written

QkA = j E ■ dA. (262)

It is l/4?r times the total electric flux incident on the anode at the time t, 
and hence it is the net charge induced on the anode by the electron. A 
qualitative picture of what this induced charge is at any time t, corre
sponding to the various successive positions of the electron in the cathode
anode space, can be obtained. If, as assumed above, the electron 
departs from the cathode at the time t = tk = 0, then at that time and 
at all previous times the charge Qk (?) induced on the anode is zero, as 
indicated in Fig. 12-10. As t increases beyond t = 0, however, an 
increasing fraction of the opposite charge +e will be induced on the 
anode. This fraction will increase monotonically until, at the transit 
time t, the whole charge +e is induced. But precisely at the time r and 
for all times thereafter, the electron comes to rest in front of and infinitely 
close to the anode. Accordingly, for t r, the induced charge remains 
equal to +e, as shown in Fig. 12-10.

The charge Q'k(t), as represented in Fig. 12 9, applies strictly to a 
plane in front of and infinitely close to the anode but not to the anode
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itself, whereas the charge as represented in Fig. 12-1G, applies to 
the anode itself. As far as the anode itself is concerned, the charge 
Q((<) should be represented as always zero, because for the purpose of 
establishing QR), it has been assumed that the electron stops just before 
reaching the anode. Accordingly, the total charge Quit) is equal to 
Qi'(/) when computed at the anode. This would not be the case, how
ever, were the total charge QM) to be computed at some other plane 
within the cathode-anode space.

There has been much confusion as to the interpretation of the charge 
resulting from the passage of a single electron k. It has been 

interpreted by some writers as just the induced charge Qk(t), correspond
ing to the displacement current, and by others (particularly in the low- 
frequency limiting case) as just the charge corresponding to the 
convection current. But it was shown above that it is actually the total 
charge Q*(i) = + Qk(t), corresponding to the total current Ik(t)
given by Eq. (260). In the present case, Qk(t) — 0 and Qk(t) = Qk(f)> 
but this is merely an accidental result of the particular choice of plane 
for the evaluation of the total charge Qk(t).

' The confusion occurring here disappears as soon as the exact nature 
> of the electron’s trajectory is recognized. This trajectory, in the present 
I case, is specified by saying that for t g 0 the electron is at rest in front of 
। and infinitely close to the cathode, for 0 5 i i t the electron is in motion 
i from cathode to anode, and for t r the electron is at rest in front of and 
! infinitely close to the anode. The electron trajectory, described as a 
j function xk(l), is therefore broken in character at t — 0 and t = r, as is 

shown qualitatively in Fig. 12-10, and this broken character is the point 
that resolves the confusion.

The analytic expression for Qk(i) in the interval 0 < i < r is ascer
tained next. At this time, as at all other times t, Qk(t) = Q” (i), the 
induced charge on the anode. This induced charge is easily calculated 
when the electron is permanently at rest at a point x somewhere between 
the cathode and anode. Actually, however, the electron, when at this 
point x, is not at rest. It is necessary, then, to ask what effect, if any, 
results from its motion. From the viewpoint of special relativity theory, 
the electron’s charge — e is invariant under a Lorentz transformation, and 
so also is the net induced charge +e on the anode and cathode. But 
what can be said about that part of the induced charge which is on the 
anode alone? The answer can be found from Expression (262). For 
not only is the integral (262) an invariant -when taken over both anode 
and cathode, but its integrand itself is invariant. This integrand can be 
written

dQk(t} = ~Exdy ds. (263)
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But in this expression E„, dy, and dz are all unaffected by a Lorentz 
transformation in the z-direction. Therefore, dQk(t) is Lorentz-invar
iant, as is its integral Qk(t) also, when taken over the anode alone. This 
result means that may be computed from, the point of view that the 

„ electron is at rest at a point x and

Fig. 1241.—Potential distribution in a 
plane parallel diode under space charge 
conditions

/(z) =

hence may be computed as a func
tion

QL'(O = /(*) (264)

and then, using the actual depend
ence of z on t, written as a function 
of t.

Now from electrostatics it is 
known that

e (265)

where d is the cathode-anode spacing (see Fig. 1211). On the other
hand, x varies with time in a way approximately prescribed by the equa-
tion of motion

md2x „
T - -’E‘ (266)

where m is the electronic mass and E = const, is the electrostatic field 
in the diode space, due to the fixed potential difference V = Ed. There
fore the electron, starting at rest, has a trajectory given by

— eEx L = Kt2, (267)
m2 ' '

where K is a positive constant (since E is intrinsically negative). Accord
ingly, from Eqs. (264), (265), and (267),

QW) = ~t2 (0 < t < 0 (268)

From Eq. (267),
d = Kt2, (269)

so Eq. (268) may be written as
Qi' W = e QY, (270)

which gives = e when t = t, as it should.
Thus, by differentiating Eq. (270) with respect to t, it is found that

z*(0 = 2|' (0<t<T) (271)
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is the displacement current flowing into the anode. For t < 0 and for t > r, 
the displacement current Ik (t) vanishes (see Fig. 12-10). This is also the 
total current Ik(G that would be detected in a short-circuiting ammeter 
placed between anode and cathode, and this current, therefore, is to be 
identified as the contribution to Eq. (257), due to a single electron.

The behavior of the Fourier transform of I At) is examined next. 
This is

ik{ju) = j* lA^er^dt, (272)

or, from Eq. (271),

. .. . 2e fs . , 
= -¡ff I ue du

= [(cos 6 — 1 + 6 sin 0) — /(sin 0 — 0 cos 0)], (273)

where 9 = ut is the transit angle. As 6 —> 0, this tends to

iWA = e. (274)

Hence, for infinitely small transit time t, Ik(t) can be written

aw = i /_+. e"1 d“’ (275)

and this is e times a delta-function of time, zero everywhere except at the 
emission time t = 0, but with a time integral equal to e.

The spectrum of the current pulse Ik(t) is given, in general, by

/2e\2|W)12 = ( ) [(cos 0 - 1 + 0 sin 0)2 + (sin 0 - 0 cos 0)2]

/? \2
= () [02 + 2(1 - cos 0 - 0 sin 0)]. (276)

As 0 —> 0, this tends to

\iAW\2 = V (277)

a result in agreement with Eq. (274). Hence, for infinitely small transit 
time t, I kit) has a constant spectrum equal to e2.

Hitherto the time t = 0 has been taken as the time of emission of a 
single electron from the cathode. The case in which electrons are 
emitted at random times tk is now considered. Then the total current 
Ik(t) due to the Zcth electron, emitted at time tk, has to be written

I At) = 2; (tk<t<tk + r). (278)
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The Fourier transform iifju) is now

ik(ju) = / Ik^Qe-’“1 dt (279a)
Ju 
2e f“‘+e

= ^2 (u — uk)^!U du (279b)V J Uk

where 6 = ur, u = ut, uk = utk. But if v = u — uk, Eq. (279b) becomes

o re
ik(ju) = e-’“1“ / ve~’v dv. (280)

« Jo
That is, it is possible to write

= ifjute-1'“1*, (281)

where i(ju) is given by Eqs. (271) to (273).
Hence for the total current due to all electrons,

I(t) = htf) (282a)
k

1 /■+”. . V
= 2^ I du e1“1 y (282b)

k
= A f i(ju)e’“‘ duS(u), (282c)

Ztt J _ co

where S(u) is the random function

S(u) = e-^k. (283)
k

To find average values, either time averages of I(t) or ensemble averages 
of S(u) may be taken, since these two kinds of average are here equivalent. 
Thus, for the time average of 1(f) it is possible to write

___  1 f + ” ____
1(f) = I = A- i(ju)e^‘ duS(u), (284)^7T J _ oo

where S(u) is the ensemble average of S(u). Now when u + 0, S(u) = 0, 
but the integral of S(u) is finite, like that of a delta-function. Hence, 
taking the value of the integrand of Eq. (284) for u = 0,

¿ I S(u) du = I, (285)

where I is the average or direct current flowing in the diode.
Now consider the expression for the square of the instantaneous total



Sec. 12 3] SHOT NOISE 555

current. From Eq. (282c) this will be of the form

/ 1 \2 * f + *
(286)

Thus, for the time average of F(i), it is possible to write

= (¿) f [+ du dw'S^SU) (287)

where FiNSTu/ is the ensemble average of S(w)S(w') for any values of 
u and u'. In general, for independently selected values of u and u,

S(u)S(u') = SU) SU7) = 0 (288)

as long as neither u nor u' vanishes and also provided (u + u') does not 
vanish. This means that the double integral of Eq. (287) contributes 
nothing except along the three loci

u = 0, (289a)
u' = 0, (2896)

u + u’ = 0. (289c)

Taking the first locus, Eq. (289a), and using the result, Eq. (285),

I2(i)u-o = 4 I i(ju')e,u'‘ du'Nu) (290)
Z?T J _ ee

I is found for the contribution along this locus. But the integrand of this 
result vanishes unless u' = 0, so that the two loci, Eqs. (289a) and 
(2896), likewise contribute nothing except at their common point of 

, intersection, u = u' = 0. At this common point of intersection, Eq. 
(290) becomes ____

= F. (291)
That is to say, the contribution to Eq. (287) at the origin u = u' = 0 is 
just the square of the average or direct current.

The only remaining contribution is along the locus of Eq. (289c), now 
excluding the origin. But along this locus, </ = — w, S(a>)SM') becomes, 

I according to Eq. (283),

I S(u)S(u') = (292)

The ensemble average of this may be readily shown to be identical with 
¿>(0), which behaves like the improper part of the delta-function. Hence 
the contribution to Eq. (287) along the locus Eq. (289c) can be written

I2(Ou^>'=o = y ju) du ~ f S(O') du', (293) 
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where the second integral, evaluated at the point a' = —a, gives the 
result

11 s<0) -1. Wl

Hence we have, for the a-c fluctuations in the diode current, a mean 
square given by (dropping the subscript a + a' = 0)

R) = i + ” |WI2^, (295)
^7T C J — co

or, for the mean square fluctuation per unit-frequency interval,

dP I
r( = - |*W|2- (296)Uj t-

But from Eq. (276), this becomes
^72 o
M = el [+ + 2(1 - cos 9 - e sin 0)]. (297)
dj 9‘

Expression (297) is the desired result. It gives the statistical spectrum 
of temperature-limited shot noise, or so-called “pure shot noise,” for any 
value of the transit angle 9. At low frequencies, when 9 is negligible, the 
result (297) reduces to

dU< = eI’ (298)

which agrees with the experimental result (257) for the low-frequency 
case.

Space-charge Reduction of Shot Noise.1—In the case of the tempera
ture-limited diode just treated, the conditions were of the greatest pos
sible simplicity: (1) Space charge was completely negligible so that 
there was no interaction among the electrons. (2) All electrons had 
essentially the same trajectory, ending at the anode. (3) The effects of 
different electrons were additive after the fashion of mutually inde
pendent random events.

The question of what happens at low frequencies when the diode 
potential difference is not sufficiently great to eliminate space charge is 
considered next. In this case, each electron moves in an electrostatic 
field that is due in part to the diode potential difference and also in part 
to other emitted electrons. The potential distribution between cathode 
and anode is now established from Poisson’s equation

(299)

D. 0. North, RCA Rev., 4, 4, April 1940; 6, 1, July 1940; also W. Schottky, JJTm. 
Veroff. Siemens-Werke, 16(2), 1 (1937); F. Spenke, Huss, Veroff. Siemens-Werke, 16(2), 
19 (1937).
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where p is the electronic space-charge density, a function of position in the 
interelectrode space. Moreover, in contrast to the temperature-limited 
case, the spread in emission velocities of the different electrons must also 
be taken into account. In the temperature-limited case, the potential 
difference was so great that this velocity spread was of negligibly small 
importance.

In a parallel plane diode, the potential distribution, that is, the solu
tion V of Poisson’s equation (299), is in general a function of the distance 
x between cathode and anode, of the form shown in T'ig. 12-11. There is 
usually a potential minimum, at a distance x„ from the cathode (d is the 
anode-cathode distance) and with a negative value Vm with respect to 
the cathode (7O is the anode-cathode potential difference).

Unless an emitted electron has an initial kinetic energy in excess of 
—eVm, it will not go to the anode but will return to the cathode. Hence, 
in general, there are tw’o groups of emitted electrons: (1) those of lower 
energy than — eVm which return to the cathode («-electrons) and (2) 
those of higher energy than ~e7m which are collected at the anode 
(0-electrons).

The distribution in kinetic energy of the emitted electrons is given 
by the Maxwell-Boltzmann law, which, in this case, can be written

= 1^, (300)

where
E = g, (301a)

dE = f dV, (3016)
fc I

and where eV is the initial kinetic energy of the emitted electrons, k is 
Boltzmann's constant, T is the absolute cathode temperature, and di 
is the emission current corresponding to the range of initial kinetic ener
gies edV. The meaning of I, is found by integrating Eq. (300) over 
all emission energies from zero to infinity; it is simply the total emission 
current.

According to Fig. 12-11, the current collected at the anode is just

I — j I,e~sdE ~ (302)
J Em

where
eV
Tf (303)

is the lower integration limit for the 0-electrons.
It might be supposed that the effect of the space charge and in par-
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ticular of the potential minimum is to separate the electrons into a- and 
/3-groups in a fixed way and that the problem of ascertaining the resulting 
noise could be handled by treating the a- and /3-groups of electrons as 
independent sources of noise, more or less along the lines employed above 
for the temperature-limited case. But this would be to overlook the fact 
that each individual electron alters momentarily the potential minimum Vm 
by its entry into the space-charge region. This fact is, at bottom, the sole 
cause of the space-charge reduction in the diode shot noise.

For suppose that a /3-electron of (normalized) kinetic energy 

is allowed to traverse the potential minimum. When it does so, it alters 
momentarily the space-charge density p and therefore also the potential 
distribution V(x) everywhere in the diode space, according to Poisson’s 
equation (299). Along with this change, there is of course a change in 
the potential minimum Vm. Hence, by Eq. (302) there will be a depar
ture from the equilibrium current I collected at the anode. This effect 
may be expressed in the following way.

If there were no such effect on the potential minimum, the line of 
thought of the preceding paragraph could be followed. Then it could be 
said that the effect of the given ^-electron would be to set up in the 
external anode-cathode short-circuit path a total current pulse Ip(t) with 
a Fourier transform which, at low frequencies and disregarding its time 
phase, can be written

tg(>) = e. (304)
Now, however, a correlated correction term must be included with 
i^(ju) due to the departure from the equilibrium value of the direct diode 
current 1, caused by ip(ju). This departure from equilibrium is propor
tional to ip(ju), with a proportionality factor that can be written — 63, 
signifying by the subscript 0 that it refers to a /3-electron (of a given 
energy) and signifying by the minus sign that the correction term is 
usually of a compensatory nature. Therefore the net current developed 
in the external short-circuiting path by the passage of the given /3-electron 
must be assigned a (low-frequency) Fourier transform equal to

itfiu) = - h) = e(l — 83). (305)
Similarly, if an «-electron of (normalized) kinetic energy E = eV/kT 

is emitted into the space-charge region, it will also cause a departure 
from the equilibrium current I to the anode, even though it does not 
traverse the potential minimum. If there were no such effect on the 
equilibrium current I, the line of thought of the preceding two paragraphs
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could again be followed. The effect of the given a-electron could be said 
to induce in the anode a displacement current IW) with a Fourier trans
form which, at low frequencies and disregarding its time phase, can be 
written

£0«) = efW, (306)

where f(ju) expresses the actual frequency dependence of the resulting 
displacement current, which must tend to zero with the frequency. 
Here again, however, a correlated correction term must be included with 
ilfju) due to the departure from the equilibrium value of the direct diode 
current I, caused by iA.ju). This departure from equilibrium leads, in 
analogy with Eq. (305), to a net current developed in the external short
circuiting path by the passage of the given a-electron, whose (low- 
frequency) Fourier transform can be written

A(^) = eUfa) ~ A]. (307)

But since the low-frequency approximation for f(ju) is zero, this becomes

lAju) = — eSa. (308)

Now Equations (305) and (308) refer to a single electron, of given 
initial energy and of the a- or /3-type, respectively. Actually, within any 
velocity class, even though considered infinitesimal, there will be a large 
number of emitted electrons. These may be treated in the same manner 
as the temperature-limited case. Following that treatment for the 
(3-electrons of energy E, the corresponding mean square current fluctua
tion per unit-frequency interval is, in analogy with Eq. (296),

If

dl^E) = dI(E) 
df e = edI(E)(f - SA2. (309)

Is 1 ~~ fy, (310)

and if Eq. (309) is integrated over all /3-electron emission energies, the 
total mean squared current fluctuation per unit frequency interval due to 
all ^-electrons is found to be

where

¿A
df (311)

| ' 7%dI(E) =

* J Em
(312)

=

is the average value of 7^ over all 0-electron energies.
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Similarly, for the «-electrons of energy E, the mean squared current 
fluctuation per unit-frequency interval is

AAA = M>)l2 = edI(EWa (313)

Letting
T. = -5« (314)

and integrating Eq. (313) over all «-electron emission energies, the total 
mean squared current fluctuation per unit-frequency interval due to all 
«-electrons is the expression

dp —
= ely2, (315)

where
Em

y2e~B dE
NeZ---------------- ’ (316)
I e~E dE
o

is (I./1 — 1) times the average value of y2 over all «-electron energies.
Finally, adding the mutually independent results (311) and (315), the 

total mean squared anode current fluctuations per unit-frequency 
interval, due to both a- and /-electrons, is the expression

Np
= ^r2, (317)

where
r2 = yl + ~B (318)

is the so-called “space-charge reduction factor.”
It was intended here only to indicate the logical processes leading up 

to the result (317) and to give a qualitative description of the way in 
which the space-charge reduction factor r2 should be evaluated. For the 
actual evaluation of r2 the reader is referred to other sources.

Shot Noise in Negative-grid Triodes.—Qualitatively, a negative-grid 
triode resembles closely the diode with space charge in so far as the low- 
frequency analysis of its shot noise is concerned. The space-charge 
reduction factor r2 is, in principle, arrived at in exactly the same manner 
as has just been indicated for the diode. The exact calculation of F2 
has been carried out by North and others for normal triode operation, for 
tubes with a fairly high amplification factor p. An approximate expres
sion for T2 thus obtained is

r = (319)
a elp
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where T is the cathode absolute temperature, gm is the mutual con
ductance, Ip is the direct current to the plate, a is a geometrical factor 
usually ranging from | to 1, and 0 is a space-charge factor for which a 
good approximation is given by the formula

Accordingly, from Eqs. (317) and (319), the statistical spectrum of 
the plate shot-noise current is given by

= I+W = (A 2kTgm. (321)
aJ \a/

This shot-noise current, with a Fourier transform ip(ju), is to be regarded 
as a nodal current, flowing out of the plate under the condition that all 
three nodes (cathode c, grid g, plate p) are mutually short-circuited. If 
Njui), iodu), and iP(ju) are written for the nodal shot-noise currents 
flowing out of the cathode, grid, and plate, respectively, then in general

Nju) + Nju) + iP(ju) = 0. (322)

At low frequencies the statistical spectrum of ip(ju) is given by Eq. (321). 
Furthermore, at low frequencies,

Nju) = 0, (323)

since the grid, being negative, collects no electrons and therefore receives 
only an induced current that has no low-frequency components. Conse
quently, Eq. (322) becomes at low frequencies

Nju) + ip(ju) = 0, (324)

whence it is seen that the cathode nodal shot-noise current has the same 
statistical spectrum as the plate nodal shot-noise current, namely,

= \NiU2 = 0) 2kTgm (325)

Instead of dealing with nodal shot-noise currents, which are in general 
mutually correlated, it is preferable to find an equivalent set of internodal 
shot-noise currents, so chosen as to be statistically independent. The 
procedure for doing this has already been described in the section on the 
generalization of Nyquist’s thermal-noise theorem. For there it was 
shown that if im(ju) (m = 1, 2, ■ • ■ , N) are the nodal noise currents in a 
given network, then an equivalent set of statistically independent inter- 
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nodal noise currents may be set up through the defining relations

l+W)l2 = — im(ju)in(-ju) (m n) (326)

provided the quantities on the right-hand side of Eq. (326) are positive 
and real.

Consequently, applying this procedure to the three nodal shot-noise 
currents ic(ju), is(ju), and ip(ju) for the negative-grid triode at low 
frequencies and remarking that ig(ju) here vanishes, it is found that

I VO'") 12 = = 0 (327a)
IOzO") j2 — Ju) — 0 (3276)

|V0’")l2 = -ipWiA—ju) = [îpO")i2 = (-) 2kTgn. (327c)

Hence, for a negative-grid triode at low frequencies, there is only one 
statistically independent internodal shot-noise generator, given by 
Eq. (327c).

Thus, regardless of the nature of the circuit in which the negative-grid 
triode is placed, that is, regardless of the impedances placed in the 
cathode, grid, and plate leads, the response to the shot noise generated 
by the triode may be found by regarding the source of shot noise as an 
internodal constant-current generator placed between cathode and plate 
and having the statistical spectrum given by Eq. (327c).

It has been a common practice to replace the true internodal shot
noise current source Eq. (327c) by an equivalent shot-noise emf in the 
grid-cathode input circuit. The advantages of this usage are dubious 
and are apt to lead to a confusion of the true state of affairs, and hence 
this practice is less to be recommended than the practice of using the 
representation (327c). However, since this device is so commonly 
applied, it will be briefly described here.

The current ipc(ju) in Eq. (327c) may be related to a fictitious cathode
grid voltage ecg(ju) by the equation

ipe(ju) gmCcgÇju). (328)

Hence the shot noise arising in the triode, actually as the current source 
VO"); may, for certain purposes only, be regarded as arising as an 
emf eCg(ju) in series with whatever impedance zcs(ju) is located in the 
grid-cathode branch. This emf eco(ju) is then said to have a statistical 
spectrum which equals, according to Eqs. (327c) and (328),

= (-) ~ (329)
• \a/ 9m
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It is further found convenient by many writers, though again not 
subscribed to here, to regard the emf ecg(ja) as a thermal-noise emf, due 
to an effective equivalent resistance Rpti- If To is room temperature (it 
will be recalled that T is here cathode temperature), then one might 
accordingly write

= 2fcr07?-I. (330)

Hence, identifying Eq. (329) with Eq. (328), we find that

(331)

Thus, the true source of shot noise in the triode is here replaced by a 
fictitious one, namely, a resistance R„lt at room temperature To, placed in 
series with the branch impedance zcg(ja), which is regarded as emitting 
thermal noise but for all other purposes is regarded as absent from the 
circuit.

When the shot noise generated at very high frequencies in a negative
grid triode is considered, the detailed analysis becomes much more 
difficult. Actually, no really satisfactory solution of the high-frequency 
case has yet been obtained. However, it is possible to carry out a very 
approximate calculation of the first-order effects of the electron transit 
time, assuming that the transit angle is small. The basis for this approxi
mate analysis rests upon the assumption that the effect of the a-electrons 
is negligible and that the effect of the /¡-electrons is representable in terms 
of an equivalent group of /¡-electrons, all having a common velocity equal 
to the average velocity v of the actual Maxwell-Boltzmann distribution 
of /3-electrons.

As an indication of the approximate validity of this assumption, an 
independent derivation1 of the low-frequency formula (321) is carried out 
by means of this simplified model of a triode tube.

First, the average velocity v of the /¡-electrons is defined by the 
formula

E vm dI(E)
J Dm (332)

where v„ is the velocity of the /¡-electrons at the potential minimum when 
their initial velocity is v(E). That is,

Hence,
= (E - Em)kT.

Vm (E - Em)

(333)

(334)

1 Cf. also C. J. Bakker, Physica, 8, 23 (1941).
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Now, from Eq. (300),
dl(E) = Iae~s dE,

where Ia is the total cathode emission current. Hence,

2kTV‘ 
m /

i (E — Em)^e^ dE
J Em

Multiplying numerator and denominator by e^,

vAer" du

eru du

is found, where

But

Therefore

u — E Em.

(AcTY 
\ 2m /

(335)

(336)

(337)

(338)

(339«)

(3396)

(340)

v —

v =

This, then, is the single equivalent initial velocity which will be 
assumed for all the ^-electrons in a triode. By neglecting the «-electrons 
and assuming for the ^-electrons this common “emission” velocity v from 
a fictitious “cathode” located at the potential minimum, we arrive at a 
model in which the electron trajectories are all the same, all electrons 
“emitted” being collected at the anode, and in which the field and there
fore the electron acceleration is zero at the “cathode.”

Now any individual electron on this model will move in accordance 
with the equation of motion

ma = —eE, (341)

where a is its acceleration at any point x between cathode and anode and 
where E is the electric field that it experiences at the point x. Now the 
time rate of change of E, taken along the trajectory of the moving elec
tron, is

dE 
dt

fdE\
\ôæ /

dE
dt’ (342)

where v is the electron velocity at the point x, in the x-direction. But if 
the field E is a function of x and not of y or z, as it will be in a planar diode
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or similarly constructed triode (except very near the grid wires), it is | 

possible to write ,
~ = V • E = 4irp, (343) I

where p is the space-charge density. Therefore [

dE , . dE ..... I
_ = W+_. (344)

But if I is the total current density at any distance x from the cathode, 
then it is possible to write

I = + (345)
\47T/ dt

Hence
dE
Tt = 4,ri’ (346)

and consequently, from Eq. (341),

-4JA1.dt \mj

Now, according to Eq. (346),

A = f±W-V— 
dx \4tt/ \dt/ yds: /

or, according to Eq. (343)
di _ dp
dx dt

(347)

(348)

(349)

But since the electronic charges are conserved along their trajectories, 
dp/dt must vanish, and therefore

A = 0. (350)

Hence, I is the same at all points x, at a given time t, or, in other words, a 
function of the time t alone. If we assume a steady-state current in the 
tube, then we may assume that I is constant in time. This result there
fore also holds in Eq. (347), where I is to be evaluated along the trajectory 
of the moving electron. Therefore, da/dt is a constant, and

a(t) = — 4?r

the initial acceleration being zero. Integrating again,

v(t) = It2 4- V,

(351)

(352)
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where, according to assumption v is the electron’s initial velocity. Inte
grating once again,

= + (353)

if z(0) = 0 is the “cathode” position. If d is the diode spacing (or the 
equivalent diode or cathode-grid spacing in the triode), and if t is the 
corresponding electron transit time, then

d = C+) (r) + <354)

This result gives the total current I in terms of the spacing d, the initial 
electron velocity v, and the transit time r.

This result corresponds to the equilibrium total current in the equiva
lent diode but says nothing about the current fluctuations that we seek to 
evaluate. But this formula should indicate that if there are such current 
fluctuations SI, these fluctuations should be subject to Eq. (354) as a 
constraint. The source of such fluctuations Si must be sought as 
residing in a fluctuation Sv in the emission velocity v of the electrons. 
According to Eq. (354), since d and t are fixed, SI and Sv must be related 
thus:

0 = — t3 SI + r Sv, (355)

or
MW” «

Referring to Eq. (332), it becomes possible to assign an origin to the 
fluctuations Sv. For the result

dI(E) = IUdE (357)

is true only on the average, and in every range of initial energy dE there 
actually are fluctuations SI(E) in the emission current. These fluctua
tions will cause fluctuations Sv, according to Eq. (332), not only because 
of the changes in the integrands of Eq. (332) but also because of asso
ciated changes in the potential minimum and therefore in the lower 
integration limit E„„ this change being a small quantity SEm. Hence, 
from Eq. (332),

/ vm dI(E) + vm SI(E) - v MA Em SEm

v + Sv -------------------------------------------------- (358)
dI(E) + SI(E) - Em SEm

is the augmented initial velocity due ultimately to a fluctuation SI(E)
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in the emission of /¡-electrons of energy in the range dE at E, in the actual 
Maxwell-Boltzmann distribution. Accordingly,

vmdI(E) — v I dI(E) + (v„ — r) 61(E) 
J

[ dI(E) + 61(E) -(^\Em 6Em
J e„ \aE /

(359)

Now, using Eq. (332) and neglecting the variations 61(E) and 6Em in the 
denominator of Eq. (359), in the first approximation, it is found that

w = K - t>) 61(E)

= . (360)

Hence, from Eq. (356),
81 = V-^ zqfi1'

61(E) \2irJ\eJ It2

gives the fluctuation in I due to the fluctuation 61(E) in the emission of 
/3-electrons of energy in the range dE at E.

Now 61(E) is a true shot current fluctuation, with a statistical 
spectrum

(A\JiTETY = e dI(E). (362)
\aJ /

Therefore the statistical spectrum of 61, due to the /3-electrons of energy 
in the range dE at E, is, from Eqs. (361) and (362),

- v)2edI(E)W k—ph .
and the statistical spectrum of the total fluctuation in the equivalent 
diode current, due to /3-electrons of all energies, is

f - (& (?)’ U) A <- - "W-
The integral in Eq. (364) is

[ (vm-vydI(E)= / vi,dI(E)-2v[ vmdI(E)+v2[ dI(E) 
I En J Em J Em J Em

= / t-2 dl(E) - PI (365)
J Em
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or, from Eqs. (334) and (340),

X (.. - »)■ dim - (^) I. V - dE - (^) / 

■ (?) (/„ * - v) <36<i>

(2kTl\ L 1 \ 
°\“^A 4V

Hence

f<s67)

Expression (367) may be simplified by making use of the value of the 
a-c conductance g of the equivalent diode. The derivation of the expres
sion for g proceeds from Eq. (346), where I now includes a small a-c 
component. Because of the length of this derivation only the result is 
given here:

; - (?) (s) <368>
where I is the equilibrium direct current as previously defined. Inserting 
this expression in Eq. (367), it is found that

= 3^1 -^(2kTg). (369)

Here the space-charge factor in Eq. (320) first introduced in conjunc
tion with Formula (319) may be identified. Futhermore if the relation

g™ = ag (370)

between the triode mutual conductance gm and the conductance g of the 
equivalent diode is used, then Eq. (370) becomes

w - C)(37i>
which is identical with the result of Eq. (321). Hence the present model 
of a triode tube seems justified, at least under operating conditions where 
6 is given by Eq. (320), as usually occurs under normal triode operation.

This model is now used to evaluate in the first approximation, the 
shot-noise current fluctuations that are induced in the grid of a triode 
tube. To do this, recall that the fluctuation current SI given by Eq. 
(361) is the total current fluctuation incident upon the grid. Of this total 
current, one part (the convection current) flows to the plate, and another 
part (the displacement current) flows out the grid lead. The latter part is



Sec. 12-3] SHOT NOISE 569

given by
8i- - (¿) (f)■ (372>

where E is evaluated at the grid, or in other words at the “anode” of the 
equivalent diode. E is given by Eq. (341) in terms of the electron 
acceleration a at the grid, thus:

E = - a, (373)

while da/dt is given by Eq. (347):

^=-4t(-V (374)
dt \m/ 7

But now, in contrast to the previous treatment of this equation, it must 
be assumed that I is no longer constant in time, but is of the form

I = Io + 81, (375)

where Io is the constant equilibrium value of I and 81 is the time-varying 
fluctuation given by Eq. (361), which, for any particular angular fre
quency u, may be assumed to be a sinusoidal function of the time t. 
This leads to a change in the initial conditions of Eq. (374), so that upon 
integration of this equation one gets, instead of Eq. (351), the result 
(good only to the first order)

n a (e\ । 255 .

where 5/ and 55 are both sinusoidal functions of time (for any single noise 
frequency) that are correlated with each other according to Eq. (356), viz.,

If we eliminate 3v from Eq. (376), it is found that

a = (A T (378)
\mj \ 3 / 7

Now, since 81 is of the form e'at,

— da . , (e \ it 8l\
~dt J"4,r \3/ (379)

Hence, from Eq. (373),
= U fe) 81, (380)

dt \ o /
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and from Eq. (372),

61 s 51 ■ (381)

This result is true for the noise components at the frequency a and 
shows that the induced grid-noise components at any frequency w are 
(within the limits of validity of this proof) in quadrature with the total 
noise current fluctuation 61. It is further to be noted that this result 
refers not only to a single frequency a but also to a single emission energy 
E of the /-electrons in the actual Maxwell-Boltzmann distribution, in 
accordance with Eq. (361). But the integration over this distribution 
of emission energies E is to be carried out just as before, so that for the 
statistical spectrum of the induced grid shot-noise current due to all 
/-electrons the result

dlp _ ("A2 dP
df \s) df ' }

is found. Or, using Eq. (371),

= (+Y (02kT9m- (383)

aj \ o / v/

This result may be further simplified by introducing the expression 
for the a-c electronic loading of the equivalent diode. This loading 
1/Re may also be evaluated by integrating Eq. (374) under first-order 
a-c initial conditions. Because of the length of the derivation, only the 
result

is given here. Introducing this result into Eq. (383), it is found that

From Eq. (383) it is seen that the induced grid noise, in the first 
approximation, increases proportionally to the square of the frequency, 
so that at low frequencies it is negligible, and Eqs. (327) give an adequate 
description of the source of shot noise in a negative-grid triode. But at 
higher frequencies, calling

= IP(fi + I fit) (386)

the total shot-noise current incident upon the grid and

-¿(ju) = ifija) + ifija) (387)
its Fourier transform,
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= TÄ ^(-^ZkTgm (388a)
aj \e/

= W = 2kT^ (388&)

dff = TA = [1 + ] (0 2kY^ (388M

must be written for the statistical spectra of the three nodal shot-noise 
currents Ifit), Ifit), Ifit)-

Although Eqs. (388) indicate the presence of three nodal current
generators ifiju), Nju), ifiju), these three 
currents are correlated with one another. 
Accordingly, there should exist another 
equivalent representation of a negative 
grid triode in which, even at moderately 
high frequencies, there is just one statisti
cally independent source of shot noise. 
Such a representation will now be found.1 

Llewellyn has shown2 that a negative
grid triode may be represented at high 
frequencies in the manner shown by Fig. 
12-12, where C^, Cgr, Cpc are the low- 
frequency interelectrode capacitances, rp 
is the low-frequency plate resistance, and 

tpc — gm(eg e,,), (389)
where gm is the low-frequency transcon
ductance. Here there enter in addition 

Fig. 12-12.—Representation of 
a negative-grid triode at moder
ately high frequencies.

two small series resistances rcg and rgp, which are negligible at low fre
quencies but not at high, and are responsible for the electronic loading 
of the triode. For the case where the grid-plate transit time is negligible, 
their values are 

(390a)

(3906)

where p is the low-frequency amplification factor and y is the ratio of 
grid-plate to cathode-grid spacing. It is seen that rcg is positive, rgp is 
negative, and both are frequency-independent.

1 Cf. also E. J. Schremp, to be published.
2 F. B. Llewellyn, Bell System Tech. Jour., 16, 575 (1936).
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If the nodal shot-noise currents ic(ju), ig(ja), iP(ju) are incorporated 
into Fig. 12-12, then these will all three be subject to the relations [see 
Eqs. (381) and (386)]

ic(jü>) = i, 
• / • \ i iw\ •W«) = (-y I

w - - WA

(391a)

(391b)

(391c)

where i is the single statistically independent shot-noise current whose 
proper location is to be found.

If a fourth node n, artificially introduced into the network of Fig. 
12-12, is used, then it may be assumed that i is an internodal current 
located between the nodes c and n. Furthermore, if — ycn, —y^n, —yPn 
are arbitrary bilateral branch admittances linking cathode, grid, and 
plate with the fictitious node n, then, by Eqs. (201) (in which a — 1), we 
can write

S = H - (^i», (392a)
\ynn/

ip =2° - (w} (392b)
\ynn/

(392c)
\ynn/

where, to conform with the desired shot-noise representation, one may set

I? = -in = t, (393a)

A = ip = 0. 
Thus it is found that

(393b)

• /1+ y™\ .
= 1 ---------  1 In

\ ynn /
(394a)

ig = i,\ynn/
(394b)

ip = (~ K
\Vnn/

(394c)

and hence, from Eqs. (391), that

= 0, 
y an

(395a)

ygn __

ynn 3
(395b)

Vpn = _ /1 + jur\
ynn \ 3 /

(395c)
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This result means that the node n is effectively a point “tapped in’’ 
on the grid-plate impedance

-1
Vbp

= r + (396)

The result then should be
1 1 1

(397)= — + — >
Vop Von Vnp

or, using Eqs. (395),

Vnn _ jar
Vav , I fa

3
________ 3 (398)

But from Eqs. (396),
j^^gp (399)1 + jar^

SO
/ 3Cgp\
\ T /

(400)2/"» ” /. , ■ \'
(1 +jarspC0PA^JfiI\

\ o /
Hence, from Eq. (3956),

ygn " (1 3 )CJGm)
E+AXvA (401)

I t Titi PgpA ■ 1
= ( rQP + TP ~ ( ““a“ J + 1\ \ /

j^^gp

while, from Eqs. (396), (397), and (401),

। 1 _ T । *
+ yPn ~ 3Cep + \ 3 / (402)

Thus, the branch impedance — 1 /ycn may be written

1 , • T , 1^gn “T 4" • JVgn QP
where

(403)

— । r '¡'gn Tgp T* Q/-y (404)
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is a frequency-independent resistance that is negative or positive accord
ing as r < \3rQPCap\ or r > \3rgpCeP\ and where

Lyn (405)

is a negative, frequency-independent inductance. Similarly, the branch

Fig. 1213.—Noise representation of a 
negative-grid triode at moderately high 
frequencies.

that, in the first approximation, is a 
spectrum:

impedance — l/ypn can be written

----= rpr. + juLpnr (406) 
ypn

where

rPP = OTT- (407) 

is ane gative, frequency-independ
ent resistance and where

Lpn = (408)
o

is a positive, frequency-independent 
inductance.

Therefore, one complete equiva
lent network representation of a 
negative grid triode at moderately 
high frequencies, in which there is 
but one statistically independent 
shot-noise current generator, is as 
shown in Fig. 12-13. Here the 
shot-noise constant-current gen
erator i has a statistical spectrum 

constant equal to the low-frequency

¡¿¡2 = - 2kTgm.
<r

(409)

The current generator ipg is, as before, given by the relation

V = gm(.ea - ec). (410)

The representation of Fig. 12-13 must not be expected to hold when 
the cathode-grid transit angle becomes large or when the grid-plate, 
transit angle is too large to neglect completely. Theoretically, it would 
be possible to modify the present representation so as to render these 
limitations unnecessary; but it would be of little value to do this, because 
when these limitations are removed, the basic assumption of the present 
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analysis becomes questionable, namely, that only the /¡-electrons need be 
considered, and all have a common initial velocity.

Once it becomes necessary to account for the Maxwell-Boltzmann 
distribution of electron emission velocities, the possibility no longer exists 
of representing the shot noise at very high frequencies in terms of a single 
statistically independent current generator, in the manner of Fig. 12-13. 
Rather, at least two independent generators then appear to be necessary.

Shot Noise in Pentodes.1-2—N suppressor-type pentode operated with 
its control-grid negative is effectively a tetrode, since the suppressor grid is 
ordinarily at the cathode d-c potential and collects no electrons. Its 
usual function is merely to suppress the flow of secondary electrons from 
the plate to the screen grid.

In a suppressor-type pentode the total cathode direct current Ic 
divides between the screen grid and the plate. If I, is the direct current 
flowing to the screen grid and Ip the direct current flowing to the plate, 
then the direct current relation

_ Ic = L + Ip (411)
exists.

Since the theory of shot noise in a pentode at low frequencies can be 
easily extended to the case of a multicollector amplifier tube with N 
collectors, the general case in which there are N collector electrodes is 
dealt with here. In this case, Eq. (411) becomes

N

L = In. (412)
1

In order to examine the detailed behavior of the shot-noise fluctua
tions in the case of an 2V-coIlector tube, it is necessary to return to the 
shot-noise analysis in a diode with space charge, modifying it in such a 
way as to account for the new configuration of collector electrodes.

In the absence of any compensating action at the virtual cathode 
(potential minimum), a pure shot current fluctuation i^ having a statis
tical spectrum equal to

|i“|2 = eln (413)

will flow into each collector n. These fluctuation currents will be 
statistically independent, that is,

MJ - 0 (m n). (414)

Correspondingly, there will flow out of the cathode a pure shot current
1 R. Q. Twiss and E. J. Schremp, Abstract, Spring 1946 meeting, American Physical 

Society, Cambridge.
• D. O. North, RCA Rev., 6, 2, October 1940.
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fluctuation i'J, given by

Therefore, from Eqs. (414) and (415),

eln
N

In ~ elc.

(415)

(416a)

(4166)

In the presence of a compensating action at the virtual cathode, the 
shot current fluctuation in that now flows into the nth collector will 
consist of three parts:

in = i'n + in + in’. (417)

The first part i'n can be written

1 - K (1 - (418)

This part is due to the ^-electrons (strictly, it refers only to a single 
velocity group) flowing to the nth collector. The second term in Eq. 
(418) indicates a reduction due to the compensating action at the virtual 
cathode. This reduction term is similar to the compensating term 5g in 
Eqs. (305) and (310) for the diode case but differs from it by the factor 
In/Ic. This factor In/Ic is required in the present case, since the com
pensating current at the nth collector is, on the average, proportional 
to the direct current In to the nth collector.

The second part i" may be written

i'/ = - ^)- (419)

This part is due to the d-electrons flowing to all other collectors but the 
nth. It is a purely compensatory current, completely analogous to the 
second term of Eq. (418).

The third part i”' can be written

(420)

This part is due to the a-electrons (again of a single velocity group) and 
arises from their effect upon the virtual cathode. Here again ¿J may be 
regarded as a pure shot-noise fluctuation current that would exist if there 
were no virtual cathode and would have a statistical spectrum (for all
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«-velocity classes) equal to 

= e(I. - Ic), (421)

where Ia is the total cathode emission current. If the quantity 
N 

i'c" = i'” (422)
i 

is defined, then, from Eq. (420), 

i"' = Tail, (423)
and hence it follows that 

= (424)

where 7« is the average value of 72 over all «-electron energies. But 
according to Eq. (316), if 77 is multiplied by the quantity (I./I, — 1), 
the average value of 72 over all 0-electron energies is obtained. In the 
diode case, this was called yl- Thus Eq. (424) becomes 

¡77^ = (425)
(A1) 

or, using Eq. (421) 
W!\2 = T&c- (426)

But this expression is identical with the contribution of the «-electrons 
to the statistical spectrum of the shot-noise current in a diode, as given 
by Eq. (315). Hence the result

(427) 

is obtained. Furthermore, 1/ is statistically independent of the fluctua
tion currents (n = 1, 2, • • ■ , N) and hence, by Eq. (415), also of i°. 

Again, in the presence of a compensating action at the virtual cathode, 
the shot-current fluctuation ic that flows out of the cathode consists of 
two parts: 

ic = i'c + i'”. (428)

The first part i' can be written

i'c = Tgi°- (429)
It is due to the (¡-electrons (again of a single velocity group) leaving the 
cathode and may be identified, from Eqs. (418) and (419), with’ the 
expression

N

1
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The second part i"' is given by Eq. (423) and is due to the «-electrons 
(of a single velocity group) leaving the cathode. Finally, from Eqs. 
(422) and (430), we can write

N

ic + ~ Un + i” + %')> (431)
1

or, from Eqs. (417) and (428),
N

ic = in- (432)

This last result was, of course, to be expected. It expresses the fact 
that the sum of all the shot-noise nodal currents flowing out of the tube 
must vanish.

Thus, from Eqs. (417) to (420), one can write

i* = ~ (if)(1 ~+ (k) yA (433)

while, from Eqs. (423), (428), and (429), 

ic = + yai„- (434)

Now consider the expression imin for m + n. From Eq. (433),

iX - - (£) (1 - (1 -

+ (i - M 7a K2, (435) 
* C \ -J C f

or, from Eqs. (416) and (427),

Imin n / Imln\ /. , , / I ml n\ 77-----------77 . / I ml n\ —7— = -2 I -7— Hl ~ +1 -7— ) (1 - yp)2 + I —f— I 7«
V \ C / \ * C / \ i c /

= (?I + yj - 1), (436)

or, remembering that
r2 = V2 + t! (437)

one finds

(1 _ r2) (m ny (438)

Again, consider the expression inic. From Eqs. (433) and (434),

= (ri RiP + (r} vi W (439)
y-i c / \-4 c /
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or, from Eqs. (416) and (427),

or

- (1 - yg)y»In + y^I, 

= (yl + Tg) fa (440)

inic = eI„T2. (441)

The results (438) and (441) indicate that all of the nodal shot-noise 
currents are mutually correlated. But if instead of employing nodal 
currents, an equivalent set of internodal shot-noise currents is introduced, 
it turns out as in the case of the generalization of Nyquist’s thermal noise 
theorem that this latter set of internodal shot-noise currents may be so 
chosen as to be mutually uncorrelated. For let

and

L = Ln, (n = 1, 2, ■ • • , N) (442a)
n

(4426)

Now if it is assumed that all of these internodal currents imn are mutually 
uncorrelated, that is, that

imnirs = 0, (mn) + (rs), (4+)

then, from Eqs. (442),
(444a) 
(4446)

whence, from Eqs. (438) and (441),

(m N n).

(445a)

(4456)

Thus betw'een the cathode and any collector n there is a shot-noise 
internodal current generator i„„ whose statistical spectrum is that of a 
diode with a direct current In, and between any two collectors m and n 
there is a partition noise internodal current generator imn whose statistical 
spectrum is always real and positive and vanishes when either collector 
draws no direct current or when T2 = 1. Moreover, the shot-noise 
generators icn and the partition noise generators imn are mutually uncor
related, either among themselves or with each other.

The question may be raised as to the validity of this apparently' 
arbitrary choice of internodal current generators, subject to the inco-
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herency conditions of Eq. (443). For if one considers the expression for 
the potential difference e„„ between any two nodes m and n, this will be 
of the form

(446)

where Z™ is the transfer impedance between the input nodal pair (rs) 
and the output nodal pair (mn); and the question may be raised as to 
whether or not the value of emn is independent of the choice of internodal 
currents ir, when this choice is subject to Eq. (442).

The question may be settled in the affirmative in the following way.1 
Since

. Z™ = -Z™, (447)
one can write

Z“» = Z”” - Z™, (448)

and therefore Eq. (446) becomes

= i - Z^ir,). (449)

But if ' '

ir = Irs (450)
8

is written for the nodal current at node r, then Eq. (449) becomes

i Z™ir + Zn.^ 

r s

= Z^ir. (451)
r

Furthermore, if use is made of the relation

i' = 0 (452)
T

to eliminate one particular node, k say, then Eq. (451) can be written

e„„ = (Zr - Z^ir
r

= Z^iT. (453)
T

1 E. J. Schremp, to be published.



Sec. 12-3] SHOT NOISE 581

This last result is expressed in terms of the original nodal currents and 
hence must be the correct expression for em„. But it has just been seen 
that Eq. (453) is completely equivalent to Eq. (446) as long as Eqs. (450) 
hold true. Therefore Eq. (446) must 
be valid, regardless of the choice of 
internodal currents, as long as the 
choice is subject to Eq. (450).

The behavior of shot noise in a 
pentode at moderately high frequen
cies may be analyzed along lines sim
ilar to those previously followed for 
the triode.

To begin with, a representation 
of a pentode for high frequencies, 
corresponding to Llewellyn’s repre
sentation (Fig. 12-12) of a triode, can 
be found. This pentode representa
tion is shown in Fig. 12-14, where 
Cag, Cgp, Cpc, CCgg, Cgp are the low~ 

Fig. 12-14.—Representation of a pentode 
at moderately high frequencies.

frequency interelectrode capacitances, rp is the low-frequency plate resist
ance, r, is the analogous low-frequency screen resistance, and

Ipc Cc) -]- gpa(eg 0c),
lac QNS'Q Oc),

(454a)
(4546)

where gpo, gpa, gag are the low-frequency transconductances between plate 
and grid, plate and screen, and screen and grid, respectively. Here there 
occur, in series with the grid capacitances Cgc, Cgp, Cga, three small 
resistances rgr, rgp, rgs, which are negligible at low frequencies but not at 
high and are responsible for the electronic loading of the pentode.

It is here assumed that the grid-screen and grid-plate branch imped
ances are of the form

y,, r°‘ + juCgs

-1 = , 1
Vop rSP + juC„p'

(455a)

(4556)

To find the values of rga and rgp, which correspond to the assumed forms, 
Eq. (455), for the branch admittances — yga and — ygp, the case where the 
pentode is connected as a triode can be considered, i.e., where screen and 
plate are short-circuited together. Then there will be a new grid-plate 
branch admittance

y«p tye. d” Vgp), (456)
and this will be of the form
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C + jFCg. + cgp)’ (457)

where r°p is given by Llewellyn’s formula Eq. (3916). Accordingly, one 
must set

ju(Cg3 + Gap) _ juC a3 ,_____JuOgp ¿4^21
1 + j^gp(Cgl + C„) 1 + jwrg,Cg, 1 + jargpCgP {

or

3uC°‘ + c„) -

+ 3“C™ .r + VVXVT+CV “ 1 + ^rgpC9P. = °- (459)

The only way of satisfying this condition at all frequencies is to set

1 + jwrgv(Cgs + CgP) = 1 + jwr„.Cg. = 1 + jurgpCgp (460) 

or in other words to let

Then,
(461)

(462a)

(4626)

Thus the following may be taken as the expressions for rgc, rg„ rgp.

( 9
T,IC \80p (463a)

(463b)

(463c)

where m and gm are the low-frequency amplification factor and trans
conductance of the pentode when connected as a triode and where y is the 
ratio of the grid-screen to cathode-grid spacing. These results give a 
positive grid-cathode resistance given by the triode formula, and a 
negative grid-screen resistance r„. and grid-plate resistance rgp, given by 
slight modifications of the triode formula.

In order to incorporate in this representation the sources of shot and 
partition noise, notice the fact that according to Formulas (445), a 
pentode at low frequencies is analogous to two triodes, with statistically 
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independent shot-noise current generators ia and icp, together with a 
statistically independent partition noise current generator iap.

Therefore at relatively high frequencies the noise representation of a 
pentode will be a simple extension of the triode representation shown in

Fig. 1215.—Noise representation of a pentode at moderately high frequencies.

Fig. 1213. 
where

This extension of that representation is shown in Fig. 12 15, 

rom = rea + W_> (464a)
0V gg

rgn = rop + W-, (4646)

(464c)

Lgn = (464d)

r,m = (464e)

rpn = (464/)

Lm = (464?)0

LPP = (4646)u
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Here the three tube noise current generators have statistical spectra 
given by

CT = e/sr2
CT = elpr2 
CT = 6^5(1 - r2),

I c

(465a) 
(4656) 

(465c)

whereas the two current generators iec and ipc are again given by

Lc 9sa(^a ^c), 
tPc — g pa(f:o d- -1— Cc).

In the triode case, r2 is given by

r2 = 9 2kTgm 
<r elc

But it is approximately true that 

9m __ 9w _ 9pa 
Ic Is Ip’

so that Eqs. (465) can also be written in the form

P7T2 = - 2kTgst,

M2 = - 2kTgp„, (I
CT = (eIc - - 2kTgX

gm gm \ cr /

(466a) 
(4666)

(467)

(468)

(469a)

(4696)

(469c)

12-4. The Logical Distinction between Thermal Noise and Shot 
Noise.—Now that the two principal kinds of noise—thermal noise and 
shot noise—have been discussed in some detail, it will be profitable to 
summarize the distinctive features of each kind of noise.

The essential characteristic of thermal noise is that it exists only in a 
physical system that is in strict temperature equilibrium. Thermal noise 
is therefore usually an idealization, but there are, in practice, many 
situations where temperature equilibrium may be assumed to hold 
approximately, and in such situations it is convenient and useful to 
describe the noise as thermal.

On the other hand, shot noise is characterized as random electrical 
fluctuations due -to the unilateral flow of electrons or other charged 
particles through some part of a circuit. Of course, practically every 
kind of noise, including thermal noise, may be regarded as a form of shot 
noise, provided allowance is made for the various possible trajectories 
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of the charged particles and each group of particles having the same 
trajectory (but different time phases) is treated as a separate unilateral 
flow. But it is usually more convenient to treat thermal noise as a 
phenomenon subject to analysis by statistical mechanics rather than to 
treat it as a special form of shot noise—which, nevertheless, it is.

Therefore, whenever any form of noise is encountered that does not 
have the characteristics, at least approximately, of thermal noise, it is 
probable that the most convenient approach to its analysis will be to 
regard that form of noise as a superposition of shot-noise fluctuations, 
taking into account the unilateral flow of each group of charged particles 
having a common type of trajectory.

In the last section not only the so-called “pure shot noise” in a tem
perature-limited diode but also every other form of noise associated with 
thermionically emitted electrons has been treated as a form of shot 
noise. In so doing, the meaning of the term “shot noise” may have been 
broadened beyond what it was originally meant to convey. But this 
extension of meaning and its further extension to include thermal noise 
and, indeed, almost all forms of noise seem justified by the fact that as 
long as a certain degree of randomness (which, by definition, is a char
acteristic of all forms of noise) exists in the motions of the charged 
particles responsible for the noise, of whatever kind observed, then the 
methods of analysis of the “pure shot effect” are applicable thereto. 
These methods may, however, as in the case of space charge reduced noise 
and partition noise, have to include a treatment of the mutual correla
tions of different charged particles or, as in the case of induced grid noise, 
have to include a treatment of the finite inertia of the charged particles.

There have been published several treatments of thermal noise as a 
form of shot noise, based upon considerations of the trajectories of 
electrons in a metallic conductor. Since none of these treatments has 
the generality of the treatment by statistical mechanics, they are not 
included here. But one particular example of the equivalence of the 
two points of view will be given here, whose merit is that it clearly 
exhibits the necessary conditions for the noise to be thermal and yet 
represents a very simple kind of shot noise.

This example is that of a bilateral diode.1 Let both the cathode and 
plate of a diode be thermionic emitters at the same temperature T. The 
cathode and plate need not be of the same material, nor need they have 
the same total emission current. However, the fact that both cathode 
and plate are at the same temperature, which is constant in time, indi
cates that the interior of the diode is a system in thermal equilibrium. 
For even if the surroundings are at a lower temperature, for example, the 
temperature T of the electrodes may be maintained by d-c heating of the

1 CJ. also D. O. North, RCA Rev., 4, 4, April 1940. 
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electrodes, and this heater power completely dissipated by external 
radiation to the surroundings. Thus, even though the diode may not be 
in thermal equilibrium with its surroundings but rather in a state of 
quasi-equilibrium characterized by a flow of power from the heater 
batteries to the surroundings, via radiation, nevertheless the partial 
system consisting of the interior of the diode will be in thermal equilibrium 
at the electrode temperature T.

Now if the diode electrodes are externally short-circuited, the cathode 
will have a total emission current,/J, of which only a part, Ic, will be 
collected by the plate, on the average, and the plate will have a total 
emission current Ip, of which only a part, Ip, will be collected by the 
cathode, on the average. But since there is thermal equilibrium, there 
can be no net average flow of current from cathode to plate or vice versa; 
for the existence of any net average flow of current in either direction 
would heat up the collector electrode and cool off the emitter electrode.

Hence, on the average,

Ic = IP = I, (470)

but also fluctuation currents are superposed upon both Ic and Ip, with 
average values that are zero. It is these fluctuation currents which are 
to be identified with the thermal-noise current fluctuations in the diode, 
whose average spectrum, according to statistical mechanics, is

R2 = 2kTg, (471)

where g is the diode conductance.
If these current fluctuations are regarded as shot current fluctuations 

associated with the cathode and anode emission currents Fc and /“, the 
average spectra of these two shot current fluctuations are, respectively,

RP = el+l = eIV2c, (472a)
RP = eIpY2P = eITp, (4725)

and the average spectrum of the net shot current fluctuations is

R"2 = Rp + Rp
= e/(rj + r2). (473)

Therefore the values of the average equilibrium current I from either 
electrode to the other and of the space-charge reduction factors r2 and 
T2 for the two emission currents must be determined.

First r2 and Ip must be evaluated. To do this, consider what the 
compensatory effect will be upon the pure shot current fluctuation 
produced by the emission of a single electron, of any energy, from the 
cathode. This electron will cause a change in the equilibrium potential 
distribution between the cathode and anode and a consequent change 
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in the average equilibrium currents Ic and Ip. But since both Ic and I v 
are governed by the same Maxwell-Boltzmann distribution of emission 
velocities, and since the new equilibrium potential distribution therefore 
reduces both Ic and Ip by the same amount, the new equilibrium values of 
Ic and Ip must again be equal. Therefore the emission of one electron 
from the cathode does not cause any compensatory current fluctuation 
in either direction but causes only a pure shot current fluctuation—and 
this only if it succeeds in reaching the plate. Therefore T2 = 1. By the 
same reasoning, F2 = 1. Hence Eq. (473) becomes

Rp = 2el. (474)

Returning to Eq. (471), the diode conductance g can be evaluated. 
To do this, let the external short circuit between cathode and plate be 
replaced by a voltage E, such that the plate, say, is positive with respect 
to the cathode. This voltage difference will cause Ic to be greater than 
Ip, by an amount given, according to the Maxwell-Boltzmann distribu
tion, by the ratio

L = (475)
r P

According to this expression, any variation in E, with the temperature T 
held fixed, must lead to variations in Ic and Ip given by

Sic Slp e SE (476)Tc~Tp ~ 'kT'
from which it follows that

1 dL \ dlv _ e
Ic dE Ip dE kT (477)

In particular, when E = 0 this becomes

T A - »>> <«8>

for then Eq. (470) holds. But by definition, the diode conductance g is

g = 6 AA = °)’ (479)

so that the result is that
el

9 = kT (480)

But according to this result Eqs. (471) and (474) are completely 
equivalent. Thus the complete equivalence of the thermal-noise and 
shot-noise points of view for the case of a diode in thermal equilibrium has 
been shown.
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12-5, Other Types of Tube Noise.1 Cathode Flicker Effect.—At audio 
frequencies the noise generated by vacuum tubes with oxide-coated 
cathodes exceeds greatly the magnitude predicted by the ordinary shot 
effect previously discussed. This departure is observed both under 
temperature-limited and space-charge operating conditions. It is also 
observed, at still lower frequencies, when the cathode is a tungsten 
filament. This effect was first pointed out by Johnson2 and subse
quently named “flicker effect” by Schottky,3 who at the same time 
presented a theoretical analysis of the effect.

Experimentally, what is observed is an excess production of noise, 
superposed upon the usual shot effect, increasing in most cases with the 
square of the emission current (or temperature-limited plate current) but 
decreasing with the inverse square of the frequency. Because of its 
frequency dependence, the flicker effect becomes negligible at frequencies 
exceeding a few kilocycles per second.

The explanation of this phenomenon offered by Johnson and Schottky 
is that at the surface of the cathode, the emissivity fluctuates in time as a 
result of local changes in the surface condition of the cathode. These 
fluctuations in emissivity are thought to arise from the appearance or 
departure, at the cathode surface, of a single foreign atom or a small 
group of such atoms in the molecular condition.

The average time duration r of one of these foreign atoms at the 
surface is the quantity assumed to be responsible for the falling off of this 
effect with increasing frequency. The total cathode emission current 
may therefore be thought of as itself fluctuating with an average period 
equal to r. Hence, for frequencies w » 1/r, the components of these 
fluctuations in emissivity may be expected to fall of rapidly, and the exact 
analysis shows that they fall off as 1 /X.

The fact that the flicker effect increases with the square of the emission 
current is explained by the property that during its period of existence 
at the cathode surface, any foreign atom will cause a steady change in 
current that is proportional to the total current. Hence it follows that 
the mean square current fluctuations are proportional to the square of the 
total current.

Under space-charge conditions flicker effect is thought to be reduced 
even more than the true shot effect. The reduction, for flicker effect, is 
probably of the order of magnitude that follows from assuming, as 
Llewellyn first assumed4 erroneously for shot effect, that the plate current 

1 For a more extensive treatment, see It B. Mou!lin, Spontaneous Fluctuations of
Voltage, Oxford University Press.

3 J. B. Johnson, Phys. Rev., 26, 71 (1925).
3 Moullin, loc. cit.
4 Moullin, loc. cil
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fluctuations are linearly reduced below the emission current fluctuations 
by the ratio dl/dJ, where I is the plate current and J the emission current.

Positive-ion Noise.—Positive ions may exist in a vacuum tube either 
as a result of emission from the cathode or as a result of collision ionization 
of residual gas in the tube. Because the net positive-ion current is 
exceedingly small, its noise contribution is negligible in most modern 
vacuum tubes, even under space-charge conditions where the action 
of a single positive ion on the virtual cathode may multiply its current 
pulse many fold. A simple test of the possible existence of positive-ion 
noise is to measure the grid gas current. If this does not exceed a few 
hundredths of a microampere, positive-ion noise should be negligible.

Ballantine1 was the first to analyze the effects of collision ionization 
on the noise in tubes. His result is that the mean square noise voltage 
due to this cause is proportional to the five-thirds power of the plate 
current.

Thompson and North,2 in a subsequent investigation of this effect, 
showed that the fluctuations due to collision ionization are proportional 
to the grid gas current, giving the complete dependence on tube geometry 
and electrode potentials.

Positive-ion noise is more variable with frequency than the ordinary 
shot effect, for the transit times of positive ions are hundreds of times 
larger than those of electrons. Thus, at frequencies above 106 cycles 
transit time effects for positive ions already have to be considered.

Secondary-emission Noise.—When an electron emitted by the cathode 
of a multicollector tube reaches any particular collector electrode, the 
possibility exists that one or more secondary electrons may be emitted 
by that collector. If the potential distribution in the tube is not inten
tionally adjusted to retard this secondary emission, there will generally 
be a flow of secondary electrons between the various electrodes. The 
secondary electrons will be correlated in time with the primaries and will 
generally lead to departures in the noise behavior of the tube from that 
which has been heretofore described.

Suppose, for example, that in a screen-grid tube secondary electrons 
are produced at the screen, which flow to the plate. The most funda
mental way of describing this situation is the following. As in the 
discussion of temperature-limited shot noise, the total cathode emission 
current can be written as

I fit) = e / e’"‘ df er’“1* (481)

n

where in is the emission time of the nth emitted electron. Similarly,
1 Moullin, loc. cit.
2 B. J. Thompson and D. O. North, RCA Rev., 5, 3, January 1941.



590 AMPLIFIER SENSITIVITY [Sac. 12-5

the total current flowing to the screen can be written

n

(482)

where q,n is the charge delivered to the screen as a result of the emission 
of the nth electron from the cathode. In the same way again, the total 
current flowing to the plate can be written 

Ip(t) = [ e’“‘ df V
(483)

where qp„ is the charge delivered to the plate as a result of the emission 
of the nth electron from the cathode.

Consider now the average value of the product Ia(t)Ip(t~). This 
will be

_______ f + •» r +» va V
I,(1)1 Al) = I J df df } } qsmqpne-’^ t̂ (484)

mn

where the average of the double sum in the integrands of Eq. (484) is an 
ensemble average. As has previously been seen in the case of the tem
perature-limited diode, there is a d-c contribution to such an expression, 
evaluated by setting u = u = 0. In this case the average of the double 
sum becomes

S QsmQpn qam 9pn- (485)

mn m n

But this contribution, as seen from Eqs. (482) and (483), leads simply to 
the product of the average values of I,(t) and Ip(t); so that

I.WAt) = n7)TM
f + • r + • ri n

+ / J df df ) y qtmqpne.-11-“^“'^, (486)
mn

where it is to be understood that the double integration excludes the 
contribution for u — A = 0.

Again as previously seen, for arbitrary values of w and u' the ensemble 
average vanishes for the double sum in the integrand of Eq. (486). 
However, if u + u' = 0, this is no longer the case. For then Eq. (486) 
becomes

I.WAG - HWAf = df J* df^^ q.mqpne-^-^ (487)
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Unless tm — t„, the ensemble average of the double sum in Eq. (487) 
will again vanish. Hence Eq. (487) can be written as

I,(i)Ip(t) - LWIpy) = df / df q.mqpm, (488) 

m 
or, what is the same thing,

~Is(t)I„(f) = df' V q^qpm, (489)

where the average product qsmqpm is to be evaluated in the sense that q,m 
and qpm are the charges delivered to the screen and plate, respectively, as 
the result of the emission of the with electron from the cathode.

Suppose now that the result of Eq. (489) is applied to the special 
case where the screen and plate are tied together (and hence may be 
regarded as identical) and where temperature-limited conditions obtain. 
This procedure will, of course, exclude momentarily any secondary emis
sion effects. As a result, however,

Iff) = IP(t) = Iff), (490)
and

q^m C. (491)

Correspondingly, Eq. (489) becomes

11(f) = df V 4- (492)
aJ

But for this case
¿CT=e/o, (493)

where la is the average value of Iff). Hence, from Eq. (492),

m

But Eq. (489) can be written as

Q0 OCT = df £ 4, (495)

m
and hence, from Eq. (494),

( Ift)Ip(t) = elo (496)
\ aJ/ \ e /

where q,qp is the average product of the charges delivered to the screen 
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and plate, respectively, as the result of the emission of all electrons from 
the cathode.

Equation (496) is thus a general formula, applicable to all cases, 
whether involving secondary emission or space-charge reduction or 
partition noise effects. In order to apply it, one must only be sure to 
interpret correctly the meaning of the average product q.qp.

Thus, suppose again that the tube is in a temperature-limited condi
tion but that the screen and plate are regarded as now distinct electrodes. 
In this case, if there is no secondary emission from the screen, one may 
assign q,/e the two values 0,1 and qp/e the two corresponding values 1,0. 
But the probability that qje = 0 is IP/Io, and the probability that 
q,/e = 1 is 1,/Io. Hence

(O),(l)p + (l)s(0)p = 0, (497)

and therefore, in this case,

IfiNfiO = 0. (498)

That is to say, for the temperature-limited case, in the absence of second
ary emission, there is no noise current generator between screen and plate, 
and hence no partition noise.

But if there were secondary emission from the screen, then in the 
temperature-limited case one would have to assign qfie the two values 
0,1 and qp/e the two corresponding values 1, 8, where 8 is the average 
number of secondaries produced per primary. Then, instead of Eq. 
(497), ___

MM = (M (0).(l)r + (y\ (D.(5), = M) 5. (499)
\ r / \io/ vo/ vo/

Then, placing this result in Eq. (496),

= el.d, (500)

which means that there would be a noise current generator between 
screen and plate, acting like a pure shot current generator in which the 
emission of charges of magnitude eb, associated with the screen direct 
current Is, takes place from screen to plate.

Again, consider the tube under space-charge conditions, with screen 
and plate tied together and therefore no secondary emission. In this 
case q,/e and qp/e both take on the value ya for the «-electrons and the 
value ya for the ^-electrons. Therefore

^=72+72, (5oi) 
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where the averages on the right-hand side are taken over all emission 
energies. That is, using the notation of the preceding section,

V2 = fQ yldlfiE) = Q-) j\2dI(E) (502a) 

7» = (y) i* 7 dIff(E) = (1) [ “ y% dI(E) (502b)
VO/ JO V 0/ J Fn

But the averages of yl and y% have been written previously with respect 
to the /-electron energies only, thus:

71 = (y) y\2dZ(E) (503a)

7> = (t) I ^dI(E) (503b)
\* Cf J En

Since, however, the integrals in Eqs. (502) and (503) are respectively 
equal, it follows that

/A., = CT (504a)
t|Zo = 7^0 (504b)

so that Eq. (501) becomes

= (CTr 7^ (r) (505)
Vo/

and Eq. (496) becomes [noting that Z3(0 = — ^(¿)1

T2 = el A2, (506)

which is the same as the result earlier established for this case.
Finally, consider the case where the screen and plate are distinct but 

without any secondary emission taking place. In this case q./e takes 
on the value [1 — (I,/Zc)(l - y?)] and 1p/e takes on the value

- (r) <> -

if an emitted electron goes to the screen; qUe takes on the value

- (7) (1 “ T9)

and q„/e takes on the value [1 — — 7«)] if an emitted electron
goes to the plate; and q,/e takes on the value (I./I^ya and qje takes on 
the value (lv/Ic)ya if an emitted electron goes back to the cathode..
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Therefore

so that Eq. (496) becomes

VW) = ~e (l - 7“ “ 
(^) (i - r2). (511)

This result agrees with the result formerly obtained for the partition 
noise current generator between screen and plate.

These few examples suffice to show how the general formula Eq. (496) 
may be applied to any particular case. The case where both partition 
noise and secondary emission noise exist together in a pentode with space 
charge is left untreated. To deal with this case requires merely a minor 
change in the values just previously assumed for qs/e and qP!e, involving 
the quantity 3 which was introduced in the temperature-limited case. 
The cases of amplifier tubes having special secondary electron emitting 
electrodes and of electron multiplier tubes are also not treated, although 
such cases also may be treated with the aid of equations analogous to 
Eq. (496).

From the discussion above, it is seen that the processes of secondary 
emission and of space-charge reduction are in a way just different mani
festations of one fundamental process, for which Eq. (496) provides the 
basic formal treatment.

Microphonics.—A still further form of noise occurring in amplifier 
tubes, but one that strictly speaking might better be described otherwise 
than as noise, is so-called microphonics. This microphonic “noise” 
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arises from mechanical vibrations of the tube electrodes. The effect is 
found to arise mostly at audio frequencies where, due to the vicinity of 
loud-speakers or other sources of vibration, the tube structure frequently 
commences to vibrate at certain resonant frequencies. Although the 
mechanical vibrations are confined to low frequencies, they may cause 
disturbances at radio frequencies through modulation effects. Micro
phonics can be reduced by the use of shock-absorbing tube mounts and by 
shielding the tubes from sound waves. They also depend to a great 
extent upon the tubes themselves, for out of a set of tubes of the same 
type it is often possible to select certain ones in which microphonic action 
is much less pronounced. In severe cases it is necessary to build special 
nonmicrophonic tubes.

12-6. Other Types of Input-circuit Noise.—Under ideal conditions, 
input-circuit noise is pure thermal noise, at an absolute temperature T 
that may usually be taken to be room temperature or about 63°F or 
290°K.

However, departures from the ideal conditions are frequently encoun
tered. Such departures always are due to the failure of the input circuit 
to be in true thermal equilibrium. For example, an input circuit that is 
completely passive will still not be in thermal equilibrium if various parts 
of that circuit are, for any reason, subjected to temperature gradients.

Again, the output of a preceding stage or component of a receiver is 
often regarded as the input circuit of a given following stage or com
ponent, and under such conditions one must inquire into the character 
of the preceding stage or component. For example, the preceding 
component which acts as input circuit may include a crystal or tube 
detector or frequency converter. Such an element is in general non
passive and hence is incapable of exhibiting true thermal equilibrium. 
The same holds true if the preceding component is another amplifier 
stage or if it includes any form of loading due to a tube or other non
passive element.

Still again, when the input circuit includes an antenna, the radiation 
resistance of the antenna is very seldom in a condition of strict tempera
ture equilibrium. This is because the radiation field seen by the antenna 
couples the latter with sources of radiation of all descriptions, such as the 
terrain, the atmosphere, and even the sun and other astronomical bodies, 
and such sources of radiation are far from being in thermal equilibrium. 
However, it is frequently useful and a sufficiently good approximation to 
regard the antenna to be in thermal equilibrium with the outside space. 
Whether or not this is so, it is common practice to specify the over-all 
sensitivity of a receiver in terms of the thermal noise that would be 
produced by the antenna’s radiation resistance if the latter were in true 
thermal equilibrium at room temperature.

Similarly, the sensitivity of any amplifier stage or component is, for 
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the sake of standardization, defined in terms of the thermal noise that its 
effective signal source would produce if the latter were in thermal equi
librium at room temperature.

12-7. Amplifier Sensitivity: Definition and Theoretical Discussion of 
Noise Figure, Available Power Gain, and Noise Temperature.—At the 
beginning of this chapter the manner in which the noise in an amplifier 
sets a limit to the amount of useful amplification was discussed qualita
tively. It was there indicated, again qualitatively, that as the level 
of the noise is lowered, the amplifier is able to detect smaller and smaller 
signals; in other words, the sensitivity of the amplifier is increased.

There is an absolute limit to the sensitivity that can be obtained with 
an amplifier, which is set not by the amplifier itself but by the signal 
source that feeds it. For the signal source of any amplifying system is 
itself always a source of noise even if the remainder of the amplifier is not. 
As has been seen in the preceding section, the input circuit of an amplifier 
(which contains the signal source.) is to be regarded, under ideal condi
tions, as a source of thermal noise at room temperature. Of course, it is 
theoretically possible to lower the temperature of a source of true thermal 
noise indefinitely and thereby to eliminate completely its thermal noise. 
But, practically speaking, the ultimate signal source of an amplifier, 
whatever it may be, is usually beyond the control of the observer, as far 
as the regulation of its “temperature” is concerned.

Thus, if the ultimate signal source is the radiation field seen by an 
antenna, it is obviously impossible to suppress completely the sources of 
noise in the surrounding terrain, atmosphere, and other more or less 
remote seats of electromagnetic energy. Similarly, if the ultimate signal 
source is a communication network, a microphone or television scanning 
system, an ionization chamber, a photocell, or a counter, the ultimate 
sources of noise residing in the signal source are partially or wholly 
beyond the control of the observer.

Therefore, since in most cases the ultimate signal source approximates 
in behavior a passive impedance in thermal equilibrium at room tem
perature, it is reasonable to adopt the convention that the absolute limit 
to an amplifier’s over-all sensitivity is fixed by regarding its ultimate 
signal source as a source of thermal noise at room temperature. If, in any 
particular case, the ultimate signal source produces more or less noise 
than this rule would assign, a corresponding correction can be made in 
specifying the amplifier sensitivity for the particular case in question.

In this section, for the purpose of dealing quantitatively with the 
problem of amplifier sensitivity, it will be convenient to introduce the con
cepts of noise figure, available power gain, and noise temperature. These 
quantities will be defined for an amplifier component network, and 
methods will be presented for measuring them by means of electron tube 
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noise standards. For the sake of generality, the amplifier component 
network in question will be considered as the first of two networks in 
cascade, and the definitions will be phrased in terms of suitable output 
noise powers, registered in the output of the combined network.

Network Block Diagram.—In Fig. 1216 the two component networks 
are shown in cascade, with their terminals (11), (22), and (33) located 
across the shunt output resistances Ri of the signal source and R2 of 
Network 1 and the shunt resistance Rs of the power detector, respectively. 
The input impedances Zi of Network 1 and Z2 of Network 2 include the 
reactances shunting their respective signal sources Ri and Rz, and the

Fig. 12*16.—Two component networks in cascade.

output impedance Z3 of Network 2 includes the shunt reactance of 
the power detector, which registers the power Pa absorbed in Rs.

With a thermal signal source of resistance Rs at room temperature 
T, the sources of noise in the configuration of Fig. 12-16 are (1) a thermal
noise current is whose statistical spectrum is

2kT 
b Rs (512)

and (2) an arbitrary number of statistically independent excess noise cur
rents im and in, impressed across in
ternal branches (mm) of Network 1 
and (nn) of Network 2, whose sta
tistical spectra have arbitrary magni
tudes A and i2, respectively. Thus, 
if Network 1 is passive and dissipa
tionless, its shunt output resistance 
Rz will be the reflection of Rs, and the 

Fig. 12*17.—First network of Fig. 
12*16 replaced by a thermal signal 
source of equal resistance R», at room 
temperature.

only noise current will be ii. Otherwise the extra noise currents are all 
included in the im.

In Fig. 12-17 the first component network is replaced by a thermal 
signal source of equal resistance R2 at room temperature T. In this 
configuration the terminal impedances remain unchanged, but the sources 
of noise are (1) a thermal-noise current whose statistical spectrum is

2kT 
Rz (513)
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and (2) the statistically independent excess noise currents i„ of Fig. 12-16.
The output noise power in this case is Pb.

Output Noise Power.—In the two configurations of Figs. 12-16 and 
12-17 the total output noise powers are, respectively,

m n

p» = Pt + 2^ (5146)
n

where
Pi= [+ \ZNju)\2df, (515a)

Pt^ i+ PU)df^4 i+ \Z23(ju)\2 df, (5156)
J — « xl3 J — »

Pm = / 1^=4/ \Zmfiju)\2dJ, (515C)

Pn = / P„(u)df=£ [+ \ZNjwNdf, (515d)
J — « n-3 j — «

and where the transfer impedances Zi3, Z23, Zm3, Zn3 refer to the input 
terminals (11), (22), (mm), (nn), respectively, and to the output terminals 
(33). _ '

Definition of Noise Figure, Available Power Gain, and Noise Tempera
ture.—For an arbitrary network the noise figure F, available power gain 
”W, and noise temperature t are

F = total noise power output from network with a thermal signal 
source 4- noise power output from thermal signal source,

W = noise power output from thermal signal source 4- noise power 
output from thermal output impedance,

t = total noise power output from network with a thermal signal 
source 4- noise power output from thermal output impedance.

In terms of the output noise power expressions of Eq. (515), these 
definitions lead to the following equations for the noise figure Fi, available 
power gain Wi and noise temperature G of Network 1, and for the noise 
figures F2 of Network 2 and Fu of the combined network:

Pl + Pm

Fi = -------------~----------- > (516a)

Wi = M (5166)
*2
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m

m
11 “ F

= F^ly

f2

F12
m

p । 72 — 1
1 + Wi ’

_ h F F 2 — 1
“ Wi ’

(516c)

(516d)

(516c)

(516/)

(516s)

(5166)

Single-frequency Noise Figures, Available Power Gain, and Noise 
Temperature.—If, through suitable filtering, the output power detector 
in Figs. 1216 and 1217 is made to respond only to the noise powers 
P(X) Af within a narrow band Af at the angular frequency a = 2tt/> these 
single-frequency powers may be used in Eq. (516) to define and measure 
the single-frequency noise figure FAX), available power gain Wi(w), and 
noise temperature ij(o>) of Network 1, and the single-frequency noise 
figures F2(X) of Network 2 and Fi2(X) of the combined network. The 
explicit forms of these quantities are [c/. Eqs. (515) and (516)]

FAX) = 1 + V (A 2, (517a)
ZtAju) v 7

m
w/cu) = (D \Zl3(ju)/Z2Aju)\2, (5176)

tAX) = FAu)V?Au), (517c)
FAX) = 1 + y fy) 2 (517d)

' L-i \?f |Z23(jw) ' 7
n

F12V) = FAX) + (517c)
W l^J

From these equations it can be shown that F\, Wi, h, F2, and Fi2 are 
weighted means of their single-frequency analogues, with weight factors 
given by one or another of the normalized pass bands

t> r s I ZtAjX 12
BAU) = ~f~+^-----------------

\ZtAjX)\2df
(518a)
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r f x _ l^23O‘w)|2

j_„ \Z23(ju)\2df
(5185)

of the combined network or Network 2, respectively; thus

r + *
Fi = / Ff^Bfu) df, (519a)

r + *
W,= ' df, (5196)

r a 93
¿1 — / ¿1(w)B2(w) df, (519c)

r + m
F2 ~ / F¿(w)B2(w) df, (519d)

r + «
Fn = / F 12(u)Bfu) df. (519e)

Noise Measurements with Electron Tube Noise Standards.—If, in the 
configuration of Fig. 12-16, electron tube noise standards are placed 
across the terminals (11) and (22), there will be impressed across these 
terminals pure shot-noise currents Aii and Ai2 whose statistical spectra 
are arbitrarily variable and known in absolute magnitude from the 
formulas

(AL)2 = eh,
(AL)2 = eh,

(520a) 
(5205)

where h and h are the arbitrarily variable direct currents of the respec
tive noise standards.

Furthermore, if the two noise standards are tuned to zero admittance 
for the frequencies passed by the combined network and Network 2, 
respectively, then the incremental output noise powers registered at the 
terminals (33), due to the respective shot-noise currents Ai) and Ai2, will 
be

APi = \Z^df (521a)

AP2 = \Z23(ju)\2 df, (5216)

where the transfer impedances Z13(ju) and Z23(w) remain unmodified by 
the presence of the two electron tube noise standards; for if either noise 
standard has an admittance that is irremovable, it is generally possible 
to remove the equivalent amount of admittance from the networks 
themselves.

With two noise standards thus applied to the circuit configurations of 
Figs. 12-16 and 12-17, the quantities Wi, L, Fs, and F,2 can be directly 
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measured, and Ft can be calculated from these quantities with the aid of 
Eq. (516d) or (516^).

Measurement of Available Power Gain Wi.—In the configuration of 
Fig. 1216, bring the two noise standards across the terminals (11) and 
(22) alternately to arbitrary direct currents Ii and I2, and note the 
corresponding incremental output noise powers AP2 and AP2 [cf. Eqs. 
(521)]. Now from Eqs. (515) and (516)

3/ \Z23(ja)\2 df
(522)

and hence, from Eqs. (512) and (513),

■Wi =
Zis(Ja)\2df

/_/" \z^\2df
(523)

Therefore, from Eqs. (521),
12R2 AP i

IiRi AP2
(524)

Thus can be measured by means of Formula (524) by noting the ratio 
of the incremental output noise powers AP3 and AP2 corresponding to 
arbitrary direct currents Zi and Z2 if the resistances Ri and R2 are known.

Measurement of Noise Temperature h.—In the configuration of Fig. 
12-16, note the total output noise power

m n

(525)

Then, changing to the configuration of Fig. 1217, bring thenoise standard 
across the terminals (22) to a direct current I2 such that the total output 
noise power Pt + AP2 is the same as the total output noise power Pa in
Fig. 1216. Then, since

Pb = Pi + Pn,
n

it follows that

Pl + Pm = Pi + AP2

m

and

(526)

(527)

(528a)
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2

Now, from Eqs. (513) and (515),

P* = (S’) P"

while, from Eqs. (5216)

APz = \ZM\2df.

Hence

Z1 = 1 + (¿t) ia-

(5286)

(529)

(530)

(531)

For an assumed room temperature T= 290°K, (e/2kT) = 20 volts-1; so 
that, for this assumed value of the room temperature,

ii = 1 + 2OAR2 (532)

Thus, from the value of /2 in amperes and that of P2 in ohms, ¿i can be 
measured by means of Formula (532).

Measurement of Noise Figure F2.—In the configuration of Fig. 12-17, 
bring the noise standard across the terminals (22) to a direct current A 
such that the original output noise power

A = (533)

is just doubled. Then
n

F> =1 + p2 ’ (534a)

Pb
- p2 (5346)

ap2
~ pT (534c)

Now

APz
- © r._

(535a)

Pz (5356)

so that

(536)



Sec. 12 7] AMPLIFIER SENSITIVITY 603

Thus, at the room temperature assumed above, Fz can be measured from 
the value of It in amperes and that of Rz in ohms by means of the 
formula

Fz — 201 zRz- (537)

Measurement of Noise Figure F u.—In the configuration of Fig. 12-16, 
turn off the noise standard across the terminals (22) and bring the noise 
standard across the terminals (11) to a direct current I, such that the 
original output noise power

Pa = Ps + Pm + Pn (538)
m n

is just doubled. Then

Fu = 1 + —------ ------------- > (539a)

= L (5396)

= (539c)

Now

APi = f_ J \ZMI2 df, (540)

while, from Eqs. (512) and (515),

<M1>

Hence
f p \

Fiz = hRu (542)

Thus, at the room temperature assumed above, Fn can be measured 
from the value of Ii in amperes and that of Ri in ohms by means of the 
formula

Fl2 = 207A. (543)

Limitations of the Foregoing Methods.—The usual definitions of mean 
noise figure, available power gain, and noise temperature break down 
whenever the signal source resistance IL varies with frequency through 
the pass band of the combined network or the output resistance Rz of 
Network 1 varies with frequency through the pass band of Network 2. 
However, the definitions of single-frequency noise figure, available power 
gain, and noise temperature retain their meaning at any frequency u at
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which the frequency dependent signal source resistance RYu) and output 
resistance Rfiu) do not become negative, and these single-frequency 
quantities can therefore be measured by the foregoing methods at any 
such frequency, provided the ohmic resistances Rl and R2 employed in 
these measurements are made equal to Ri(u) and R/N, respectively. 
Furthermore, if Ri(u) and R2(m) are positive at all frequencies passed 
by the networks, it is possible to generalize the definitions of mean noise 
figure, available power gain, and noise temperature by expressing these 
quantities as weighted means of their single-frequency analogues, in 
accordance with Eqs. (519).

If Rt(u) becomes negative at any frequency w, it becomes impossible 
to define Fi(u), Wi(R, or F12(w) operationally in terms of physically 
realizable measurements. Similarly, if R2(u) becomes negative, it is 
impossible to define operationally WiU), ¿(“j, or F2(u). In the latter 
case Fi(u) and F12(u) can be defined and FJ2(u) can be measured provided 
Ri(u) is positive, but the dependence of Fi2(w) upon the excess noise of 
Network 2 can no longer be expressed in terms like those of Eqs. (516</) 
and (5166.).

Strictly speaking, these limitations are not attributable to the particu
lar methods of measurement but are inherent in any operational definition 
of noise figure, available power gain, and noise temperature. However, 
for theoretical purposes it is possible and also sometimes useful to 
generalize the definition of these quantities1 in the same sense that 
attaches to our generalization of Nyquist’s thermal-noise theorem.

Specification of Noise Figure, Available Power Gain, and Noise Tem
perature.—The single-frequency noise figure Fflu), available power gain 
WiU), and noise temperature ¿i(w) of a given network are not, in general, 
attributes of this network alone but are dependent upon the output 
impedance of the signal source and the input impedance of the following 
network. Therefore, along with measured values of these quantities, the 
corresponding values of these impedances should be specified.

Furthermore, the mean noise figure Fi, available power gain Wi, and 
noise temperature ii of the given network are, in general, dependent upon 
the bandpass characteristic of the following network. Therefore, along 
with measured values of these quantities, the corresponding bandpass 
characteristic of the following network should be specified. In the 
special case when Fi(w), Wi(«), or ii(w) is frequency-independent, the 
mean quantity is equal to the single-frequency quantity and is then 
independent of the bandpass characteristic of the following network.

12-8. Amplifier Sensitivity: Methods of Improvement by the Sup
pression of Tube Noise.2—In the design of an amplifier component net-

1 E. J. Schremp, to be published.
2 Cf. also E. J. Schremp, to be published,
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work for operation at low signal levels, one objective is to reduce the noise 
figure to a minimum, subject to certain other practical requirements. 
From Eq. (517a) it is seen that to achieve this, it is necessary to minimize 
both the ratios and the ratios The ratios z^/7f
depend upon the signal source resistance and upon such internal char
acteristics of the network as the resistance elements, tube types, and 
operating voltages used. The ratios \Zm3(jw)/Z13(ja)\'1 between the 
responses to excess noise and the response to signal depend exclusively 
upon the amplifying properties of the network. In order fully to 
minimize these ratios, it is not generally sufficient merely to maximize 
the signal transfer impedance Zifija). Rather, it is necessary also to 
manipulate (for example, by means of internal feedback) the excess noise 
transfer impedances Zm3(ja) so as to suppress wholly or partially the 
output excess noise, even at a possible sacrifice in the signal gain.

As each of the terms of Eq. (517a) of the form (^/7)\Zm3(ja)/Z13(ja)\2 
tends to zero, the noise figure of the amplifier component network 
approaches unity. In this limiting case the network is said to be an 
ideal amplifier. Although any one term of this form may be made to 
vanish in four possible ways (i.e., by letting or Zm3(ja) approach zero 
or by letting h or Zifija) approach infinity, the two ways that correspond 
to the condition

zI3(>) u

will be of most concern in what follows. When, for each independent 
excess noise source m, Eq. (544) is fulfilled, it is generally fulfilled at only 
one frequency, and therefore the amplifier network is ideal at only one 
frequency. It is, in general, possible to achieve the conditions of Eq. 
(544) for each noise source m in one or more ways by establishing con
straints on the values of the branch admittances of the amplifier network, 
as implied by Eq. (544) and more explicitly indicated when one has at 
hand the explicit expressions for the transfer impedances Zm3(ja) and 
Zi3(ja) for the particular amplifier network in question. These condi
tions for an ideal amplifier are therefore, in a sense, analogous to a set of 
bridge balance conditions.

Thus, in order to deal adequately with the problem of suppressing 
tube noise in amplifiers, it is advisable to begin with a discussion of the 
various possible circuit arrangements that can be built around a single 
tube (here, for simplicity, assumed to be a triode) in such wise as to yield 
no response in the output to the shot noise generated by that tube. 
Hence the single-triode case will be considered here in enough detail to 
afford a fundamental understanding of our method of approach. Although 
other, more complicated cases are not treated here, the methods in such 
cases are but simple extensions of those described here.
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As has been seen, the source of shot noise in a triode tube, at least at 
relatively low frequencies where transit time is unimportant, may be 
regarded as a constant-current generator impressed between the cathode 
and plate. Hence, those circuit arrangements containing a single triode 
in which the transfer impedance between this current generator and the 
output terminals vanishes will be considered first.

Accordingly, it is necessary to begin with a brief discussion, first of 
the branch admittances encountered in a general triode circuit and second 
of the transfer impedances encountered therein.

Branch Admittances of an Isolated Triode.—An isolated vacuum-tube 
triode (i.e., one without external circuit elements attached) constitutes a 
three-node network, in which the three electrodes c, g, p (cathode, grid, 
plate) are the three nodes. The nodal network equations for it can be 
written

'¿m 'ep (m, y - c, g, p) (545)

where im is the net alternating current entering the node m, em is the 
alternating voltage of the node m, and

dim 
den

(m, n = c, g, p) (546)

is the negative of the branch admittance between nodes m and n (which has 
a definite sense, for it may not be bilateral). These branch admittances 
satisfy the relations

n = o (m, p = c, g, p.) (547)

They form a three-by-three array

F' Y’ Y*'
ye y q y?
1 q 1 s * g
yc yff yp 
* p * p * p

(548)

in which, according to Eq. (547), the sums of all rows and all columns are 
zero. Therefore, the diagonal admittances F', F", Y? are derivable from 
the nondiagonal admittances (the actual branch admittances) through 
the relations (cf. Eq. (547)]

-F' = F? 4- Y* = FJ + Fj, (549a)
- F? = Y* + Y‘g = Y‘ + Y^ (5496)
-Yr = Fj + F’ = Y* + yr (549c)
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Now if
Cco = Cac, (550a)
Cap = Cpa, (5506)
Cpc = Ccp, (550c)

are the (bilateral) interelectrode capacitances of the triode tube and gm 
and rp are its mutual conductance and plate resistance, respectively, it 
may be readily deduced from the defining Eqs. (546) or from the low- 
frequency approximation to Fig. 1212 that the branch admittances 
— F” of an isolated triode possess the values set forth in the following 
array:

c 9 p

c jwC QC
Qm + + pc

g 9m + juCgc
Qm "F j^^pg

p 1 , . _
■F jwCpc

Tp

The diagonal elements Y°, FJ, F’ are not exhibited in this array; but as 
previously mentioned, they are to be found with the aid of Eqs. (549). 
It will be noted that none of the nondiagonal admittances (the actual 
branch admittances) is bilateral; for instead of the relations

y; — y? = Y’ - yj = y? - y; = o (552) 

which characterize bilateral branch admittances, we find the relations 

y; - y° = y» - y* = y? - y; = gm. (553) 

Branch Admittances of a General Three-node Triode Network.—The 
branch admittances — Y™ just discussed above are intrinsic to a triode. 
If across every nodal pair (m,n) an external admittance of arbitrary value 
— Ay™ is attached, then one has for branch admittances the negatives 
of the quantities

Y™' — + AY™ (m, n = c, g, p), (554)

and the resulting network will constitute what may be called a general 
three-node triode network.

If every external branch admittance — AY™ is bilateral, i.e., if

Al'™ — AU" = 0 (m, n = c, g, p), (555)

then the resulting network will be referred to as bilaterally loaded.
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Transfer Impedances of an Isolated Triode". Definition.—The nodal 
network equations (545) may be rewritten in a way that expresses the 
nodal voltages em in terms of the nodal currents im, thus:

em = Z^ip (m, p = c, g,p). (556)

If, further, emn is defined as the internodal voltage difference

emn em e„, (557)
and if

Z™ = Z? - Z?, (558)
then, from Eq. (556),

em„ = V Z™^. (559)

Again, if it is assumed that the nodal currents im are expressible solely in 
terms of internodal constant-current generators inm, flowing from node n 
to node m, according to the relations 

"im ipm (m, 11 = 0, g, p),

then Eq. (559) can be rewritten thus:

Finally, if
Z™ = Z“" — z™,

(560)

(561)

(562)

and if it is noted that the dummy subscripts u, v in Eqs. (561) are inter
changeable and that

(563)

it follows that Eq. (561) can be written in the form

emn = — i Z"Hip, (m, n, u, v — c, g, p). (564)

There has thus been introduced a set of coefficients Z“”, each of which 
possesses a definite physical meaning; namely, if, between a certain nodal 
pair (r,s) a constant-current generator irs is impressed, then there will 
result across any other (or the same) nodal pair (m,n) a voltage difference

p — _
^mn ^rs (rs- (565)
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The coefficient Z"" is, therefore, the negative of the transfer impedance 
between the input nodal pair (r,s) and the output nodal pair (m,n).

If Eqs. (545) and (556) are considered together,

Y"e„ (566a)

Cm = (5666)

and are substituted one in the other, it is found that

im = Y^Z^i. = i, 2^ Y^Z12, (567a)

em = Z”1A = X X (5676)

Now let

Y™Zt = 3™ + Am„ (568a)

\ 'fm'Yv — s J- R/ u 1 v — umv I Umpy
z-f

(5686)

where 8„, is the Kronecker symbol, for which

Smy = 0 (m # r)
= 1 (m = p)

(569a) 
(5696)

and where Aml, B„, are to be determined. On substituting Eq. (568) in 
Eq. (567), it is found that Amr, Bm, must be such that

mvZv 0,

= 0.

(570a)

(5706)

The only way for Amv to be other than zero is for a linear dependency to 
exist among the nodal currents im and similarly for the Bm„ and the nodal 
voltages em. Such a linear relation does exist for the im and is of the form

= 0, (571)

whence it can be concluded that Amr may be any constant Am But
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ordinarily no other such linear relation exists among the im, and no such 
relation at all exists among the em. Hence A„, = Am, Bm, = 0, and 
therefore

Y?ZP = 6m, + Am, (572a)

Z^Y* = (5726)

Further, according to Eq. (558),

Z^Y* = bmr - 6nr, (573)

and, in view of Eq. (547),

Y^Z^ = + Am. (574)

Hence, by Eqs. (562) and (547),

Z^Y? = 6mr - 5n„ (575a)

Y?Z™ = amr - 6^, (5756)

or, by a slight change of subscript notation,

Y"Zf,n = Z^Y^ = 5mr - (m, n, r, s, n = c, g, p). (576)

Either set of Eqs. (576) allows the transfer impedances — Z”" to be 
evaluated in terms of the branch admittances — F" for an isolated triode.

Transfer Impedances of an Isolated Triode: Evaluation.—If in Eq.
(576) m takes on successively the values r, s, t, where r, s, t = c, g, p in 
any cyclic order, then Eq. (576) may be written thus:

F;Z*" = Z^Yf = 1, (577a)

Y^ = Z^Y; = -1, (5776)

Z^F* = 0. (577c)
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Of these three equations, only two are independent, since [cf. Eq. (547)]

Y' + yj + y^ = y? + y; + y? = o. (578)

Setting n = s in Eq. (577), the result, written out in full, becomes

y^;; + = z-y; + z^y* = 1, (579a)
y?Z" + Y^Z“ = z«y; + Z^ = -1, (5796)
y‘Z;; + = z;;y; + z%Y‘ = o, (579c)

where Eq. (579c) is also seen to follow from Eqs. (579a) and (5796) by 
simple addition.

Now it will be observed from Eq. (579c) that
Y‘rZ” =

Y&” =

Y1̂ , 

Y^,

(580a)
(5806)

or, in other words, that

¿rs _
Yt

Tat Tri¿rs „ ^st _

y; y;
i . . ,— = invariant. A (581)

These invariant relations can be put in the more concise form
gab 1
XA = t = invariant, (582)V * A 1 K '

where a, b, c = r, s, t in any cyclic order. Written out in full, Eq. (582)
states that

7w 7ep 7pc 1
eg   ^cg   eg   x

y® Y* Y? a’ (583a)
/W /BP /pc I
Yc Yc Yc A

p c x g 4-1
(5836)

Teg yap 7pc 1
pc __ pc __ pc __ x 

ÿ» “ ÿf “ y° " a' (583c)

and hence it shows that every transfer impedance is proportional to a 
certain corresponding branch admittance, with a proportionality factor 
1/A that is invariant for all transfer impedances. The invariant quantity 
A may be found by substituting Eq. (582) in Eq. (579). Thus Eq. (579) 
becomes

y;y‘ - YrtY‘ = Y^’i - y;y; = a, (584a)
yp’i - YiY‘r = y^yì - y;y; = -a, (5846)
y;y; - yp" = ypi - y]y( = o, (584c)

or, in other words,

A = a; = a; = a; = A' = A’ = a? (585a)
U 1 s (5856)

= a» = ¿o _ ap“p “p p’ (585c)
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where A” is the cofactor of F“ in the determinant |F”| of the array (548).
From Eq. (585) and the branch admittance array (551), it is found 

that

A — jaCgj.it Um j^CgP) + jutCcg 4" Cgp) — + ju(Cgp + Cpc) 
7 p

(586)

Evidently A will vanish only when the frequency u is zero. Accordingly, 
every transfer impedance of an isolated triode will be finite at frequencies 
u 0, becoming neither infinite nor zero, as may be seen from Eq. (586) 
and the array (551). At zero frequency the branch admittances — F’, 
— F’, — F“ vanish, and accordingly, from Eqs. (583) and (586), the 
corresponding transfer impedances — Z^, — Z^, — Zfc remain finite; 
whereas, since all the remaining branch admittances remain finite, the 
remaining transfer impedances all become infinite.

Therefore, in an isolated triode, all of the responses to shot noise, 
indicated by Zopp, Z^, Zfc, are finite at all frequencies; so that here the 
condition of zero shot-noise output is never attainable (except, of course, 
at infinite frequency). On the other hand, the response to any signal 
placed across any nodal pair other than the plate-cathode pair becomes 
infinite at zero frequency, and hence the ratio of shot noise to signal 
output, at any output nodal pair, becomes zero at zero frequency.

Transfer Impedances of a General Three-node Triode Network.—The 
transfer impedances — Z™" discussed in the last several paragraphs relate 
to an isolated triode. However, all of the general relations there set 
forth, for both branch admittances and transfer impedances, apply 
equally well to a general three-node triode network provided the (nega
tive) branch admittances F” of an isolated triode are replaced by the 
branch admittances (negative)

F“' = F“ + AF” (587)

of a general three-node triode network and provided the (negative) 
transfer impedances Z“n of an isolated triode are replaced by the transfer 
impedances (negative)

Z""' = Z™ + AZ™ (588)

of a general three-node triode network. In this way, the new transfer 
impedances — Z™ are defined by the relationships of Eqs. (583) and 
(584), now written with the F’s and Z’s primed rather than unprimed. 
Thus, in particular,

Jab! 1

|f = (589)

and
Yra'Yl' - Yl'Yf = A', (590) 
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where a, b, c = r, s, t in any cyclic order, thereby defining the Z””' in 
terms of the Y™'.

This procedure of defining the Z”"' in terms of the Y™' suggests that 
the branch admittances — Y™' are capable of independent variation 
[subject to the constraints of Eqs. (578) and (553)] whereas the Z””' are 
not. This is indeed the case, as will be found demonstrated in detail 
elsewhere.1

Conditions for Complete Suppression of Tube Noise in a Three-node 
Triode Network.—It is always possible, at a single frequency wo, to reduce 
to zero the tube noise voltage developed between any pair of electrodes 
in a three-node triode network. If the two electrodes in question are 
designated by r, s (where r, s, t = c, g, p in any cyclic order), then this 
condition of zero tube noise output is expressible in the form

Z”' = 0. (591)
Now, according to Eq. (589),

Vs'
Zf = (592)

Hence, as long as A' is not zero, the condition of Eq. (591) is equivalent 
to the condition

Yf = 0. (593)

That is to say, if the tube noise voltage between nodes r and s is to be 
made zero, then the branch admittance Ff between the grid g and the 
remaining node i must be zero.

There are three possible choices of output terminals, namely, (c,g), 
(g,p), (p,c). For each of these terminal pairs, then, the corresponding 
condition for zero tube noise output is

Yf = 0 (eg), (594a)
Yf = 0 (g,p), (5946)
Fg' = 0 (p,c). (594c)

According to Eqs. (587) and the admittance array (551), these three 
conditions can be written, at the frequency w = &>o,

-AF’ = F’ = -jWp (c,?), (595a)
—AF’ = F? = -fiWac (g^, (5956)
-△Fg = Fg = -\-jWCgp + C„c) (p,c). (595c)

From Eqs. (595), it is clearly necessary that for each of these three cases, 
the corresponding external branch admittance (namely, — NY^, — AF’, 
or +AFg) shall be purely reactive at the frequency If in any one of 
these cases this external branch admittance happens to be arbitrarily 
assignable regardless of the external circuit arrangement, then it may

E. J. Schremp, to be published. 
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be taken most conveniently to be an inductance that resonates, at the 
frequency the appropriate one of the three capacitances Csp, Cac, 
(CgT + C^.

On the other hand, if this external branch admittance happens to 
include a part that is required by the external circuit arrangement, then 
it must also include the exact negative of that part. For example, if the 
part required by the external circuit arrangement is a positive resistance 
representing the signal source, then the total external branch admittance 
in question must contain a compensating part that, at the frequency a>o, 
assumes the form of an equal negative resistance. Such a compensation 
can generally be achieved by the introduction of a fourth node, linked 
to the original three nodes (c,^,p) by means of suitable passive branch 
admittance elements. However, the use of this device to eliminate tube 
noise must, in general, introduce a slight amount of excess thermal noise.

In connection with the three conditions of Eqs. (595) it is important 
to notice that not more than one of these three conditions should be 
simultaneously satisfied at the frequency o>0. For if any two of these 
conditions are simultaneously satisfied, then by Eq. (578) the third will 
also be satisfied; and therefore, since

N = n'Kf - Y°'Y°', (596)

it will follow that A' = 0 at a = ^o. In this case, the tube noise 
voltage output will not be suppressed at any of the three terminal pairs

(?>P), (Pfi)- However, this case is again a favorable one from the 
point of view of signal-to-noise ratio, for it again corresponds to an 
infinite ratio of signal to noise, inasmuch as the voltage responses to 
signals applied elsewhere than between plate and cathode are all infinite.



CHAPTER 13

MINIMAL NOISE CIRCUITS

By Richard Q. Twiss and Yardley Beers

13-1. Introduction.—The purpose of this chapter is to describe prac
tical methods by which amplifiers can be designed and adjusted to detect 
the weakest possible signals. The subject of the detectability of weak 
signals involves many aspects, including some factors external to the 
amplifier, such as the kind of signal, the manner in which the information 
is presented to the observer, the time-duration of observation, and subjec
tive factors concerning the observer himself. These matters can only be 
mentioned in passing here; complete details can be found in another book 
of this series.1

In the amplifier itself, the principal factor is the relative amount of 
noise produced in the amplifier and in the signal source as compared with 
a perfect amplifier of the same pass band, which contains no noise except 
in the signal source. In other words, for a given bandwidth the principal 
factor is the noise figure. A less important factor is the shape of the 
bandpass curve.

In this chapter attention is focused primarily upon methods of getting 
good noise figures. A few qualitative remarks concerning the effect 
of the pass band upon the detectability of weak signals are in order, 
however. In general, the spectrum of the input signal is distributed 
over a limited band of frequencies, while sources of noise produce noise 
over very much wider bands of frequencies. If the pass band of the 
amplifier is narrow compared with the signal spectrum, the detectability 
of signals is impaired because the output signal reaches only a fraction of 
its peak value. As the pass band is widened, the signals are reproduced 
more faithfully, and the reproduced signal reaches its peak value. At the 
same time, if the gain is held constant, both the total signal and noise 
output powers increase. An optimum width is ultimately reached. For 
still wider pass bands the output noise power continues to increase 
steadily, but the output signal power increases hardly at all; hence the 
detectability of weak signals deteriorates. The bandwidth can vary 
considerably in either direction from the optimum value, however, before 
the detectability of weak signals is greatly impaired.2 From the point of

1 See Threshold Signals, Vol. 24, Radiation Laboratory Series.
2 With rectangular pulses, the optimum 3-db bandwidth is 1.2 times the reciprocal

615
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view of detectability of weak signals, therefore, selection of the optimum 
bandwidth is not critical and may be determined by other factors, such as 
frequency instability of the signal source.

The first part of this chapter is concerned with the basic properties 
of the tube itself, such as noise figure, available power gain, and stability. 
In Secs. 13-9 and 13-10 this information is used as the basis of a discussion 
of the relative advantages of various possible tube configurations. It is 
shown that to obtain the best possible noise figure it is desirable to use a 
double-triode input combination consisting of a grounded-cathode triode 
followed by a grounded-grid triode.

Not very much attention is paid to the design of interstage coupling 
networks, because when the double triode input configuration, mentioned 
above, is used, these circuits do not have an important effect upon the 
noise figure. The input network that couples the source to the first tube 
is, however, of primary importance, because its design and adjustment 
can make a considerable difference in the noise figure. For narrowband 
receivers a straightforward single-tuned circuit can be used as input 
network. To obtain good noise figures with wider bandwidths, however, 
double-tuned circuits or feedback loading must be used.

From the previous paragraphs, it can be inferred that a good noise 
figure often can be obtained only at the cost of more critical adjustment, 
extra components, and compromises on other characteristics of the 
amplifier. The improved performance is usually worth the difficulty 
encountered in obtaining the best possible noise figure, but under some 
circumstances it is not.

For example, suppose that the amplifier is a radio receiver working 
under conditions in which atmospheric noise is predominant. The 
sources of noise within the amplifier would have to be very strong to 
influence the total noise level appreciably, and there would be little 
advantage in having an exceedingly good noise figure. In more quantita
tive terms, if the antenna were replaced by a resistor of value equal to the 
radiation resistance of the antenna, all the sources of noise could be 
represented (according to the definition of noise figure in Sec. 12 7) by a 
generator having an available power of FkTB. Part of this, kTB, is due 
to the resistor, and the other part, (F — l)kTB, is due to the amplifier. 
(The noise figure F as used here is a dimensionless ratio.) Because the 
antenna is in a strong electric field produced by atmospheric disturbances, 
its available noise power is larger by a factor t (called the equivalent 
antenna temperature) than that of the resistor at room temperature, 

pulse length, and the detectability of weak signals does not deteriorate more than 1 db 
until the bandwidth is either approximately three times or one-third the optimum. 
Further details are contained in Threshold Signals, Vol. 24, Radiation Laboratory 
Series.
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Consequently, when the antenna is connected, all of the sources of noise 
combined have an available power

Pan = (t + F - l)kTB. (1)

The minimum detectable signal is proportional to Pan.
The meaning of Eq. (1) can be clarified by considering a numerical 

example. What is the improvement in minimum detectable signal if F 
is improved from 2.00 (3 db) to 1.59 (2 db) given (1) t = 1 and (2) 
t = 10? In Case (1), the quantity in the parentheses in Eq. (1) is equal to 
2.00 when F = 2.00 and 1.59 when F = 1.59. The ratio of the two values 
of Pan is 0.79, or 1 db, indicating that a 1-db improvement in noise figure 
causes a 1-db improvement in minimum detectable signal. In Case (2), 
the values of the quantity in parentheses are respectively 11.00 and 
10.59, and the ratio of the values of Pan is 0.96, or 0.17 db. Hence, in this 
case, a 1-db improvement in noise figure causes only a 0.17-db improve
ment in minimum detectable signal. This improvement in noise figure 
would hardly be worth while if an extra tube would have to be added in 
the amplifier to attain it.

Another situation to be considered is one in which the amplifier 
derives its signal from another network (which might contain other 
amplifiers or frequency converters). The noise figure of the combination 
is given by Eq. (12-516i/) which is repeated here for convenience:

F = F1 + (2)

where F = noise figure of the combination,
Fi = noise figure of first network,
F2 = noise figure of the second network (the amplifier under 

consideration),
Wi = available power gain of the first network.

(All quantities are expressed as pure ratios.) The second term on the 
right, which expresses the contribution of the amplifier under considera
tion, contains a factor of 'Wi in the denominator. Hence if Wi, the gain 
of the first network, is large, any sources of noise within the second 
amplifier have little effect on the noise figure of the combination. It is, 
therefore, useless to expend much effort in making the noise figure of the 
second amplifier very good. If the gain of the first network is small, 
however, the reverse is true. Some other consequences of Eq. (2) are 
discussed below.

If the first network consists of a crystal converter and the second 
is the i-f amplifier of a receiver, Wi is low, and the noise figure of the 
amplifier following it is moderately important. According to convention, 
when discussing crystal converters, the noise figure of the crystal is 
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written as the product of the loss ratio 1/W of the crystal and another 
parameter called the equivalent crystal temperature t. The symbol t is 
defined as the ratio of the available noise power at the i-f terminals of the 
crystal to that of an ohmic resistor at room temperature. The expression 
for the over-all noise figure Eq. (12-5166) is repeated here.

F = L (Fi + t - 1), (3)
w

wherein all quantities are expressed as pure ratios.
It is illuminating to consider a numerical example. What is the 

effect on the over-all noise figure when F2 is improved from 2.00 (3 db) to 
1.59 (2 db) if the crystal temperature has a typical value of 2? In the 
first case, the quantity in the parentheses in Eq. (3) is 3.00, and in 
the second case it has a value of 2.59. The improvement in the over-all 
noise figure is the ratio 3/2.59 = 1.16 = 0.64 db (the gain having 
canceled out). This is comparable to the 1-db improvement in F2. In 
this example, it has been supposed that the local oscillator has contributed 
no noise. This assumption is valid in many practical cases, especially 
those in which the intermediate frequency is large compared with the 
signal frequency or in which a balanced mixer is employed.

Now consider what would have happened to this result if local 
oscillator noise had been present. The local oscillator generates noise 
that is concentrated mainly in a frequency band surrounding the local 
oscillator frequency. If the intermediate frequency is a small fraction 
of the radio frequency, an appreciable amount of this noise is at the 
signal frequency and is converted to the intermediate frequency. This 
i-f noise produces an increase in the equivalent crystal temperature. 
Suppose that the local oscillator noise has caused the equivalent crystal 
temperature to increase from 2 to 6. Then as F2 is improved 1 db from 
2.00 to 1.59, the over-all noise figure is improved only by the ratio 
7/6.59 = 1.06 = 0.26 db. This relatively small improvement would not 
be worth while if it involved the addition of many parts.

13-2. Basic Noise-figure Considerations.—A multistage amplifier 
can be represented as a chain of boxes connected between the signal source 
and the indicating device. Each box contains an electrical network, a 
pair of input terminals, and a pair of output terminals. Boxes of two 
general types occupy alternate positions in the chain. One type contains 
vacuum tubes, sources of d-c power, and decoupling filters. The ampli
fier designer can choose the tube-type, whether to use a pentode or a 
triode; and the tube configuration (grounded cathode, grounded grid, or 
grounded plate).

The second type of box contains coupling networks consisting of 
reactances and resistances. . The designer is free to choose the form of 
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these networks to give the optimum noise figure, subject to the condition 
that the over-all transfer characteristics of the amplifier meet the required 
bandwidth specifications. The most important of these networks from 
the point of view of noise is the one between the signal source and the first 
tube. Basically, the network is an impedance transforming device. It 
is connected between the signal source and the input terminals of the first 
box, which contains a vacuum tube serving as a load for the signal source. 
This first network usually contains only those resistive elements which 
are unavoidable in practical reactances, because, as will become evident 
later, the noise figure deteriorates when dissipative elements are added 
to the input circuit. In certain special cases, however, it may be neces
sary to use dissipative elements to broaden the bandwidth, even at the 
cost of some deterioration in noise figure.

The signal source is not only the origin of the signal but also the origin 
of a certain amount of noise, partly due to the thermal-agitation effect 
within its resistive elements. Its internal impedance is the same when 
it is acting as a source of signal as when it is acting as a source of noise. 
The ratio of signal power Pt to noise power P„, which the signal source 
dissipates in the load, is therefore independent of the value of the load 
impedance or the adjustment of the coupling network. This is true if 
the effect of the small unavoidable resistive elements within the network 
is neglected and it is assumed that the pass band of the network remains 
wide compared with that of the circuits which follow the first stage. The 
maximum values of Ps and P„ both occur when the load impedance is 
matched to the signal source and are independent of the value of the load. 
Thus, the addition of the coupling network to the signal source does not 
alter the available signal power Ps or noise power P„ of the signal source 
but only the value of the impedance to which these powers are supplied- 
The load impedance, which is, of course, the input impedance of the first 
tube, contains sources of noise within itself. The amount of noise that 
the load dissipates within itself usually depends upon the impedance 
mismatch between it and the signal source. Thus the ratio of signal 
power to total noise power P'n dissipated within the load1 varies with the 
adjustment of the first network.

Usually the adjustment that causes this ratio to be a maximum is not 
the same adjustment that gives maximum gain. ■ The latter condition is 
obtained with the signal source impedance matched to the load. Signal- 
to-noise ratio can usually be improved by proper mismatch of the signal

1 The ratio of the available signal power to the available noise power at the output 
of the amplifier is equal to PJP'n if it is assumed that the noise generated by the load 
impedance represents all the tube noise. If the amplifier were ideal and had no sources 
of noise within it, this ratio would be equal to P,/Pn. The latter ratio divided by the 
former gives the noise figure according to the primary definition in Sec. (12-7). 
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source to the input of the first tube, at the expense of gain which can be 
restored by later stages of the amplifier.

In the preceding discussion, it has been implied that all the sources 
of noise within the amplifier can be represented as a single source of noise 
located in its input impedance. It will be seen later that if so desired, 
this representation can be achieved by certain simple artifices. The 
qualitative conclusion drawn from the previous argument is then per
fectly valid. The previous discussion has also been simplified by the 
assumption that the bandwidth of the coupling network is large com
pared with the bandwidth of the later circuits in the amplifier. This 
assumption implies that the over-all bandwidth, as well as the values 
of the impedances of the signal source and load averaged over the pass 
band, are independent of the adjustment of the input network. (If this 
assumption is not valid, these considerations are complicated in an 
additional way: The available power of the signal source and of all noise 
sources depends upon the over-all bandwidth of the circuit between these 
sources and the output indicating device.) Thus, the bandwidth asso
ciated with the sources of noise in the output of the first tube depends 
only upon the coupling networks following the first tube. The available 
power of this tube, therefore, is independent of the input network, 
whereas the available signal and noise powers of the signal source vary 
if the input network is made narrow.

In order to calculate the noise figure of an amplifier in which the band
width of the coupling network is not large compared with the bandwidth 
of the later networks, it can be assumed that the pass band is broken up 
into narrow elements. The calculation for each element can then be 
performed as described above, and the results averaged with respect 
to the gain of the amplifier. The previous discussion can apply as an 
approximation, therefore, even to cases in which the input network has a 
narrow bandwidth.

Noise Representation.—A source of noise can be represented in a 
variety of ways. It can be represented as a conventional electrical 
generator, which can then be described in terms of its internal impedance 
or admittance and one of the following: electromotive force, current 
strength, or available power. Various other representations arise from 
applications of the formulas for shot and thermal noise; and conversely, 
sources of shot and thermal noise can be expressed in terms of conven
tional generators. For example, the thermal noise in a resistor R can be 
expressed as a voltage E in series with a noiseless resistor R, where the 
rms value of E is given by

E2 = 4kTRB, (4)

where k = Boltzmann’s constant = 1.380 X 10-23 joule per degree 
Kelvin,
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B = bandwidth in cycles per second,
T = room temperature in degrees Kelvin.

The available power W, the maximum power that this noise source can 
supply to an external load, is obtained when the external load is matched 
to the source:

Ft
W = ~ = kTB; (5)

W = 4.00 X 10"16 watt, for B = 1 Mc/sec, and T = 290°K.
According to the usual methods of transformation, this can be con

sidered with equal validity as a current generator I in parallel with a 
noiseless conductance G where G = 1/R and I = GE. When these 
quantities are substituted into Eq. (4) one obtains

I2 = 4kTGB. (6)

Conversely, a noise current I in parallel with a noiseless conductance 
G can be thought of as being the thermal noise due to the conductance at 
a fictitious temperature Ti, where Ti is defined by I2 = 4kTiGB.

It is sometimes convenient also to represent an rms noise voltage E in 
terms of a parameter R^, called the equivalent noise resistance, in such a 
way that

E2 = AkTR^B. (7)

By comparison with Eq. (4), it is clear that R^ can be considered as the 
value of resistance whose thermal-agitation voltage is E when the tem
perature is room temperature T. It should be remembered that although 
R^ has the dimensions of a resistance, it is only a parameter that gives the 
magnitude of an emf and does not imply the dissipation of power.

13-3. The Determination of the Noise Figure, Power Gain, and Other 
Characteristics of the First Stage.—A schematic diagram of a typical 
amplifier chain is shown in Fig. 13-1. The first stage consists of the

----------------- First tube
Input ---Q T, 

coupling 
network--------------- N

Cr T

Fig. 13-1. —Conventional amplifier schematic diagram.

signal source, the first coupling network, and the first tube; the rth stage 
consists of the rth tube and the network coupling the rth with the 
(r — l)th tube.

If the effects of feedback from stage to stage are neglected, Eq. (2) 
can be expanded to express the over-all noise figure of the amplifier in the 
form
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F - F |F2 — 1,F3 — 1 Fr — \ Fr — 1 . .F - F1 + + + Mv? + (8)
where Fr = the noise figure of the rth stage when fed from a source 

impedance equal to the output impedance of the (r — l)th 
stage,

"Wr = the available power gain of the first r stages,
Fr = the noise figure of the remainder of the amplifier succeeding 

the rth stage.
In all practical cases, the series of Eq. (8) is rapidly convergent, so that, 
at most, three and usually only two terms are significant.

It may be seen from Eq. (8) that if the available power gain and noise 
figure of any individual stage is known, then the over-all noise figure of an 
amplifier built of such stages can be found.

It is the purpose of this section to provide this information together 
with other relevant data, such as input and output admittance, voltage 
gain, and so on, that will be useful when discussing the problems of 
amplifier design involved in getting an optimum noise figure.

The Input Coupling Network and Associated Noise Sources.—The first 
stage is composed of two parts: the tube itself and the coupling network

Fig. 13-2.—Equivalent circuit for input network.

together with the source. Two properties only of the input network are 
of interest here: the power gain, and the admittance that the network 
presents to the input terminals of the tube. It is shown in Sec. 13-11 
that the circuit of Fig. 13-2 is an equivalent network, valid for any type 
of passive four-terminal coupling as far as these two properties are 
concerned. If
G, = the transformed source conductance,
Gi = the parallel combination of the network losses and the ohmic losses 

across the input of the tube,
Yi = the susceptance presented by the network to the input terminals 

of the tube, 
the total input admittance Y, presented to the tube is

Y. = G. + Gi + jYt. (9)
In Fig. 13 2, Fl is the load,1 presumed noiseless, into which the tube is to 
work.

1 The noise sources associated with Yl are looked upon as being part of the second 
stage in the present division.
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Associated with the input network are two statistically independent 
constant-current thermal-noise generators i, and ii, the mean square 
values of which for the frequency interval df are given by

^df = 4kTG, df, |
i2df = «an?! df. I ' '

The effective source temperature T is defined to be 290°K = 62.6°F. 
In an ideal receiver the thermal-noise generator associated with the source 
conductance G, would be the only noise generator in the amplifier.

This arbitrary choice of the magnitude of T is made here for reasons 
of numerical convenience, namely, that e/2kT = 20 for T = 290°K, where 
e is the charge of an electron = 1.60 X 10-19 coulomb, and is not neces
sarily the actual temperature of the source. Thus, if the source is the 
radiation resistance of an antenna with effective temperature vT, v may 
range from 0 to 100 or more. The over-all noise figure F of the system, 
as distinct from Fa, the noise figure of the amplifier defined as above, is 
given in this case by

F = v — 1 + Fa-

Although it might appear that difficulty would arise if the local tem
perature of the amplifier at the source were different from 290°, this 
difficulty is only apparent. The noise figure of the amplifier is defined 
to be the noise figure obtained when all the thermal-noise sources are at 
290°K. Suitable corrections have to be made when it is required to find 
the noise output of the amplifier at other local temperatures.

In view of the above discussion it might be thought inevitable that a 
be taken equal to unity [see Eq. (10)]. In fact, this will usually be done 
in this chapter. Sometimes, however, it is convenient or even necessary 
to assume that a is not equal to unity. For example, some of the net
work loading may be produced by electronic means, so that ii is not a 
pure thermal-noise current. Alternatively, it might be desired to 
represent some or all of the other noise sources in the amplifier by a 
suitable modification of the effective temperature of Gi. For these 
reasons a will not be taken equal to unity at this stage.

Further discussion of the input coupling network and its associated 
noise sources is deferred until Sec. 13-14. The choice of the first tube and 
the location of the associated noise source will now be considered.

Equivalent Noise Representation of the First Tube.—In general, the 
main body of the amplifier consists of a sequence of pentodes, but some 
choice can often be exercised in deciding upon the circuit connections for 
the first or second tube, especially when sensitivity considerations are 
important. Thus, although it is quite usual to employ a grounded- 
cathode pentode as the first tube in an r-f or i-f amplifier, improved noise 
figures can often be obtained by the use of one or even two triode input
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stages, the circuit connections 
different ways. For example,

Fig. 13-3.—Equivalent noise repré
sentation for a pentode.

of which can be chosen in a number of 
grounded-cathode, grounded-grid, and 
grounded-plate triode input stages have 
been tried at one time or another. 
Each of these choices possesses certain 
advantages.

It was shown in Chap. 12 that the 
circuit of Fig. 13-3 provides an equiv
alent noise representation for a pentode, 
valid under the assumptions there 
stated, where the tube itself is now 

assumed noiseless and the sources of noise are four constant-current intra
nodal generators located as shown in the figure. The currents ipk, ik„ isp 
are statistically independent, i.e.,

ipkiks = IkAsp Ispipk 0, (11)
but ig is given by the equation

“ j^ n (ipk 4“ iks), (12)o
where u is the angular frequency and r the grid-cathode transit time.

The cathode nodal noise generator ik is 
defined by

ik = ipk + iks, (13)
so that

3^ ß
Fig. 13*4.—Equivalent noise 

is 90° out of phase with the cathode nodal representation for pentode with 
noise generator. The mean square values screen connected to cathode, 

of iPk, ik„ iap in the frequency interval df are given by Eqs. (12-465). 
The most important case is one in which the screen of the pentode 

is short-circuited to the cathode as far as all noise generators are con
cerned, so that the equivalent noise circuit assumes the simpler form of 
Fig. 13-4, where

Ip Ipk 4" Isp
and

ig — ju $ (jpk 4” iks)’

From Eqs. (12-465) and (12-382), it may be seen that

i2p df = 2elA2 + (1 - r2)
- k

= '2eI^ df-
(14)

More familiar expressions for i2 and i2 will now be obtained.
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If Gr is the grid-cathode conductance due to transit-time loading, then 
i^/Gr is independent of or and it is usual to regard i„ as being the thermal
noise current due to a conductance G, at a temperature 0 times the room 
temperature, so that

Fi df = 4kBTG, df. (15)

For tubes with oxide-coated cathodes and limiting space-charge 
reduction factors, 0 is approximately equal to 5.1

It is often convenient to regard ip as the thermal-noise current due to a 
conductance R^g™ at room temperature where g„, is the transconductance 
of the tube and Rn the equivalent noise resistor, so that

F2 df = 4kTRMg2m df, 
where

2eIpT2 + 261 T. p) 

=

(16)

(17)

From some points of view it is desirable to preserve the distinction 
between shot and partition noise currents and write Rm in the form

R.a = R™, + RPs, (17a)
P -

“ 4kTgF
where

R - - r2)/7pE„ • (17b)
■ 1 }f m

Ene and E„, are called the equivalent shot-noise resistor and the equivalent 
partition noise resistor respectively.

It has been shown2 that for tubes with good space-charge reduction
factor T2 r— 0.05 and a cathode temperature of 1000°C,

Enc « — (17c)

R„ « — “ Eg™
In the above case, the equivalent noise circuits for the triode and the 

pentode are identical, the only difference being that RK is appreciably 
larger for the pentode. Accordingly, there is no need to treat the two 
cases separately.3

In the case of the usual low-pass amplifier, the induced grid noise

1 C. J. Bakker, “Fluctuation and Electron Inertia,” Physica, 8, No. 1, January 
1941; I). O. North and W. R. Ferris, “Fluctuations Induced in Vacuum Tube Grids 
at High Frequencies,” Proc. I.R.E., 29, 49-50 (1942).

2 W. A. Harris, RCA Rev., 6, 505-524, April 1941; 6, 115-124 (July 1941).
3 This statement will have to be modified when the effects at cathode-lead induct

ance on noise figure are considered in Sec. 13-12 and when the correlation of induced 
grid noise and shot noise is considered in Sec. 13-13.
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generator L, of mean square magnitude proportional to me square of the 
frequency, can generally be neglected. In the high-frequency bandpass 
case the mathematical analysis is complicated by the fact that this noise 
generator is correlated with the cathode shot-noise generator. When, 
however, the impedances presented to the electrodes of the tube are all 
purely resistive, this correlation may be ignored because the mean square 
effects produced by the generators at a subsequent stage in the amplifier 
add linearly.

If all the reactances associated with the first stage are midband 
resonant, then is and Ik are 90° out of phase at midband and add destruc
tively at frequencies above resonance and constructively at frequencies 
below resonance. Hence, if the pass band of the input circuits is wide 
compared with the over-all pass band of the amplifier, the error in the 
noise figure will be small if it is assumed that is and ik are uncorrelated 
over the whole amplifier pass band.1 The general case will be taken up 
again in Sec. 13-13, and the possibility of utilizing the coherence between 
induced grid noise and cathode shot noise to obtain improved noise 
figures at very high frequencies will be considered.

In deriving the noise figure for the first stage, two additional simplify
ing assumptions will be made. These are that

1. The effects of lead inductance in the grounded electrode lead can be 
neglected.

2. Any reactance coupling the input terminals of the tube to the out
put terminals is neutralized, at least over the receiver pass band.

The validity and importance of these assumptions are discussed in 
Sec. 13-9.

Expressions for the noise figure, available power gain, and so on, of the 
first stage will be derived for three alternative connections: (1) grounded 
cathode, (2) grounded grid, and (3) grounded plate, as shown in Fig. 
13-5, where the noise sources have been omitted in order not to complicate 
the diagrams excessively. The correct locations of the noise sources are 
given in Figs. 13-2 and 13-4, and their mean square magnitudes by Eqs. 
(9), (15), and (16).

It is necessary to sound a note of warning. Although the results in 
this section are based upon the equivalent circuit of Fig. 13-3, it must be 
emphasized that the theoretical and experimental basis for this circuit 
is not yet firmly established. At low frequencies, where the transit angle 
is so small that the contribution of induced grid noise is negligible, the 
equivalent circuit can be accepted fairly confidently, but it can be relied

1 It is shown in Sec. 13-13 that if the variation of Gr over the band is neglected and 
if the amplifier transfer characteristics are geometrically symmetrical about midband, 
then this error is zero.
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upon far less at higher frequencies. All that can fairly be claimed for the 
circuit of Fig. 13-3 is that it is the best available model.1 It gives results 
in good agreement with experiment for some tubes, such as the type 
6AK5; and even if the values of the equivalent noise generators cannot I 

I
I

always be taken direct from the formulas, their general form and order of 
magnitude are correct. Despite this, however, the divergence between 
theory and practice is considerable in the case of some tubes, like the 
type 6J4. In such cases the equivalent noise generators must be found by 
experiment, as must the correlation between them, for the particular 
circuit arrangement under discussion.

General Relations for A Three-terminal Tube.—The machinery used to 
derive the required results will now be discussed before it is applied to the 
circuits of Fig. 13-5.

Expressions for the basic properties 
of these circuits will be found scattered 
throughout the technical literature and 
are usually proved by elementary meth
ods. Here they will be derived by a 
unified treatment based on the tube 
impedance theory developed in Chap. 
12, the main results and the notation of 
which will, for convenience, be restated 
here.

The basis of discussion is the general 

Fig. 13-6.—The general externally 
loaded three-node network.

three-node network of Fig. 13-6, where the three electrodes k, g, and p 
(cathode, grid, plate) are the three nodes linked by three passive inter
nodal admittances Yk„, Yop, IM Quantities F" (m, p = k, g, p) called 
the branch admittanceswill be introduced, satisfying the relations

1 The theoretical basis, which is due to C. J. Bakker, op. cit., is essentially the same 
as that developed by F. B. Llewellyn and his associates at the Boll Telephone Labora
tories. The Llewellyn analysis is, however, more detailed and shows how the equiva
lent shot-noise resistance depends upon the frequency and the transit angles in the 
tube, a dependence that has been neglected in this chapter.
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y? = Y™ = 0 (m, M = k, g, p). (18)
H m

They form a three-by-three array whose elements are shown in Table 
13-1. The diagonal elements are not shown in this array but are 
obtained from Eq. (18). The Y™ are not of direct interest but are defined 
because they are related to the transfer impedances Z“? by the simple 
relation 

7 “3 1
= £ (<*, fi,v = k, g, p), (19)

where A is the cofactor of F” in the determinant of the array and 
where Z“? is the transfer impedance from terminals m, v to terminals a, fi.

(To distinguish the various circuits of Fig. 13-5 one from another, the 
symbol for the grounded electrode is used throughout this section as a 
left-hand suffix wherever a danger of ambiguity arises. Thus 6Zg 
denotes the forward transfer impedance of the grounded-grid tube while 
kF denotes the noise figure of the grounded-cathode tube.)

In all three cases, expressions for A will be needed. These are given 
in Eqs. (20) and are calculated from Table 131 for the network of
Fig. 13-5.

,yp 
nig -(Y. + GJkY’

jA -
.F’ ,Vp nip 0 -(fa-)

\ rp/

Y° gi g gig -(F. + GA Yl) ( ~ gm + Y i)

r)(n + A, 
Fp/

<4 =
pYl Vp 

gi p yl - (- + kA 
vp 7

PYI, Vp 
pi g

= g'mYL + (Fs + G,) ( — - 
V P

-(Gr+Y.) (~gm+Y.)

b Yl^
(20)

pL =

pYp pY- Y, - ( Yl + Y, + - )

where

= (ffm

9m = Qm + —

+ G/Y. + (yl + - 
X r

= * +1

}(Y. 
p/

+ Gr),

(21)
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and where m is the amplification factor of the tube. All the introductory 
material has now been assembled, and the principal properties of the 
three circuits can be written down. The more familiar results are 
derived with a minimum of discussion, but the power gain and noise 
figure are treated in greater detail.

Table 13-1.—The Branch Admittances T™

M ~ -____
Cathode, k Grid, g Plate, p

Cathode, k..................................................... ................ Î kg 3™ 4----- 4" Ypk

Grid, g............................................................ g™ 4" y kg g-m 4" Pop

Plate, p...........................................................
1
- + Y vi VP .............................

Tp is the plate resistance of the tube.

The Input Admittances.—The input admittances Fn are simply the 
reciprocals of the input impedances Zp"t, which can be calculated directly 
from Table 13-1 with the aid of Eqs. (20) and (21) to give

(22)

The Output Admittances.—The output admittances Y zz are the 
reciprocals of the output impedances and can be found in the same 
way as the input admittances. They are given by
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Y«p = * ■ = -A —
" ,Z'P tYÏ

y>* =P1 pk
i = A

J# PYg

(I + YL)(Yg + Gr)
vp/ _ 1 I y

Y.+G,
G'mYL + (F. + Gr) (I + Ft) 

g^+ŸV+GT
^(Y. + gj _ y 1 ' p____________  

+ g'm + Y, + Gj
(gm + Gr)Y. + Fl + A (Y, + Gr)

• p
Gr+ Y,

1Z , 1 , (?m+Gir)F,
= Yl + A + F, + Gt

(23)

=
1 _ _

Voltage Gain.—The voltage gain g is equal to the ratio of the forward 
transfer impedance to the input impedance, so that g is given by

9 =
Z$
Z?,. (24)

The values of g derived from Eqs. (24) and (19), using Table 13-1, are 
given by

G _ = = -9m \
„Z^ iF” 1 ’ Ik^ka k1 P Y L | 1 I

rp {
G — aZ°g _ — 9m \ /oA)

»9 vya yr 1 I '¿°'OPkQ 1‘ K Yl | IL Pp \
G _ ^OP - VY0 = 9m + Gr J

„Yl g’m + Gr + Yb I
Transfer Admittances.—The transfer admittances Yi2 can be worked 

out directly from their definition as the reciprocal of Z^. They can also 
be derived, however, from Eq. (24), which may be put in the alternative 
form

9
(26)

Using Eqs. (22) and (20), we get
v (F. + Gr)( Fl + i

kÿ ■ 9^
(Y,+Gt)(yb + y

(27)

f12
»9 9m *

Y12 — P1 1 

pS Qm +

( Fl + A 

9m + Gr ’
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Available Power Gain.—By definition, the available power gain P, 
from a current source I, in parallel with a source admittance G, + jY, 
where G, and Y are real, is the maximum power that can be delivered to 
a load and is given by

(28)

Accordingly when the amplifier is driven by a current source Z„ Eq. (28) 
gives the available input power.

To calculate the available power gain of the first stage, it will first be 
necessary to find the power fed into the load Yl when there is an input 
current source I, and then to choose Y l to make this power Pl a maxi
mum. By definition the available power gain W is then given by

(29)

Now if Z") is the input impedance of the tube, the input voltage E„ is 
given by

Es = LZ^, (30)

and if § is the voltage gain, the voltage developed across the load is

El = gz-z, =
I 11

(31)

so that the power delivered to the load is

(32)

where Gl is the conductive component of YL, which is to be chosen to 
make Pl a maximum.

From Eqs. (32), (25), and (22) it follows that
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The power gain in the grounded-cathode case is a maximum when 
Yl = f/rp, so that iW, the available power gain, is given by

= nr+w2’ (34a)

The expression for ,Pl.^ is quite complicated unless all the admit
tances involved are purely conductive. In this special case, the optimum 
value of Y t is

v „ (G. + Gs + Gr)
L “ L~ M + G. + Gs + Grf

and the available power gain „W is given by

w _____________
° " (g'm AG. A Gif GA(G. + Gt + GA

(35)

(346)

In maximizing pPi it is assumed, as is almost universally the case, that

Gr ( Yl + 1)
__ X______ (A/ y g^+Gr+Yi^1"

so that the optimum value of YL is given simply by

Y i = g'm + G„ 

and the available power gain p^ by

(36)

(37)

(34c)

In the special but important case in which Y. is purely resistive and 
the two inequalities

Gt G,, G. « gm

are satisfied, the exnressions for the available power gains assume the
simple form

I
= g + 1, > (38)

w — 1” (M + 1)G/ )

so that in this case
AV = (39)

The First Stage Noise Figure.—In Sec. 13-2 it was pointed out that all 
sources of noise within the amplifier can be represented by a single source 
of noise in the input impedance. This artifice will not be used, however, 
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in calculating the noise figure in this section. The total mean square 
noise voltage produced across the output terminals of the tube will be 
determined instead. The ratio of this quantity to the mean square noise 
voltage produced by the thermal-noise generator associated with the 
source conductance G, is the noise figure of the first stage Fi.

In order to simplify the analysis, attention is confined to the so-called 
“single-frequency” noise figure, which is the ratio of the available noise 
powers, in the infinitesimal frequency interval df, delivered by the actual 
amplifier to those which might be delivered by an ideal amplifier. The 
over-all noise figure can then be found by the averaging process described 
in general terms in Sec. 14-2.1

It has been shown above that the noise sources of the first stage can 
be represented, under the simplifying assumptions stated, by four 
statistically independent constant-current noise generators: i„ and i, 
across the input terminals p, v; ip across the plate-cathode terminals; i„ 
across the grid-cathode terminals.

Because these generators are statistically independent, the total mean 
square noise voltage el df, in the frequency interval df, produced across 
the output terminals of the network is equal to the sum of the mean 
square noise voltages produced by these generators independently. 
Hence,

% df = (ij + df + T2\Z^\2 df + ^i2 df, (40) 

while el df, the mean square noise voltage produced across the output 
terminals of an ideal amplifier by the source noise generator, is given by

e2adf= i;\Z°£\2df.

Hence the single-frequency noise figure of the first stage is

F = 1 + 11 + ^ W 3 W
1 iì L2 i*.

Utilizing Eqs. (10), (15) and (16) one gets

Fi = 1 + |a2| + |62|,Lf s Lr a Cr 8
where

J K Zpt 
a ~ z^ and 6 “

1 In quantitative terms, the over-all noise factor F is given by 

(41)

(42)

(43)

(44)

where F is the single-frequency noise figure and x4(/) is the characteristic of voltage 
absolute value vs. frequency of the amplifier from source to output terminals.



Table 13-2.—The Properties

Property Grounded cathode

Input admittance

Output admittance

Transfer admittance

Voltage gain

Available power gain

Approximate available 
midband power gain

Noise figure

Yl+ -

0m
Qm

1

P0m

aG, PG, 
hl + g.+ Gt

* When all reactances are tuned out.



or the Three Triode Input Circuits of Fig. 13.5 o
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rp r. + Gr
1

9m
9m

1

(s; + G, + Gi + G^G. + G1 + Gr)

» + 1

«G, 0Gr
G. G. G.(u + I)2 1

__________ Tp

gm + Gt

(gm + Gr)^?, 
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R.MY. + Grl
(g™ + 0^

M
INIM

AL NO
ISE CIRCU

ITS 
[S

ec
. 13-3



Sec. 13-4] THE EQUIVALENT NOISE RESISTANCE 635

Whenever numerical values are to be inserted into Eq. (43), a will be 
taken equal to 1 and (3 equal to 5.

It now remains to compute a and b for the three networks of Fig. 
13-5, which is done with the aid of Eq. (19) and Table 131.

ka

g(l

Pa

z^ ’
= ^ = i

ZYg ’
= =

Zf, Y^
^TS 

g™ + G,

= z% = yj = _ y, + g,
1 Zfi Yp gm ’ 

= Z™ = H = H + G,
' ZS YU gl ’
l = Zfl 2_1 = JR-YF!

(45)

so that the noise figures in the three cases are given by

Jx = 1

Jh = 1

pF i — 1

aGi /3A R^ + GJ2
+ G, + G, Gs ’

■ «Gi . 0Gr . 7?eY» + GT|2
+ g, r G. > +~WS ’

aG^ 0G,\gmr ^L2 + R^\Y. + GY
G, Gs(gm + Gr)'2 \gm + Gr{2Gs

(46)

All the results derived in this section are displayed in Table J32. It 
will be noticed [see Eq. (39)] that the available power gain of the grounded- 
cathode triode is approximately equal to the product of the power gains 
of the other two circuits. This is a most significant point, clearly dis
playing the advantage of the grounded-cathode configuration.

13-4. The Equivalent Noise Resistance of Practical Tubes.—In the 
previous section, expressions for the noise figure of the first stage were 
obtained in qualitative form. Before discussing these results with a view 
to optimum design of the input circuit and tube arrangement, it is 
desirable to provide a quantitative basis for the analysis by giving typical 
magnitudes for the various parameters appearing in Table 13-2.

The Equivalent Noise Resistor Rrq.—In Eq- 0") is given a theoretical 
expression for the equivalent noise resistance of a tube, which is applicable 
either to a triode or to a pentode the screen of which is connected to its 
cathode.

This equation has been utilized in setting up Table 13-3, in which the 
values of equivalent noise resistances and transconductances of common 
receiving tubes are given. These values are calculated from the nominal 
values of the transconductance and plate and screen currents given in the 
RCA Tube Handbool:. Average values of input and output capacitances, 
which are valid for the case when the tube has its cathode grounded, are 
given also; these values do not include socket or wiring capacitances.

It must be emphasized once again that these theoretical values, 
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although valuable as guides to performance, should be supplemented by 
experimental results for any given tube type. Although agreement 
between theory and experiment is quite good for some tube types, such 
as the type 6AK5, it is much less satisfactory for others, such as the type 
6J4. The reasons for this discrepancy are not yet understood. It has 
been vaguely conjectured that the gold-plated grid of the type 6AK5, 
with its low emission, may be responsible for its lower noise.

Table 13-3.—Equivalent Noise Resistances of Receiving Tubes

Tube umhos Req, ohms cm U Cml, U

Triode amplifiers

6AC7 11,250 220 11.0 4.0
6AK5 6,670 385 4.0 2.0
6C4 2,200 1,140 1.8 1.3
6F4 5,800 430 2.0 0.6
6J4 12,000 210 2.8 0.2
6J5* 2,600 960 3.4 3.6
6J6‘ 5,300 470 2.2 0.4
6SC7* 1,325 1,890 2.2 0.3
6SL7* 1,600 1,560 3.2 3.6
6SN7* 2,600 960 2.9 1.0
7F8* 5,650 440 2.8 1.4
9002 2,200 1,140 1.2 1.1

Sharp cutoff pentodes

1L4 1,025 4,300 3.6 7.5
6AC7 9,000 720 11.0 5.0
6AG5 5,000 1,640 6.5 1.8
6AJ5 2,750 2,650 4.1 2.0
6AK5 5,000 1,880 4.0 2.4
6AS6 3,500 4,170 4.0 3.0
6SH7 4,900 2,850 8.5 7.0
6SJ7 1,650 5,840 6.0 7.0
9001 1,400 6,600 3.6 3.0

Remote cutoff pentodes

1T4 750 20,000 3.5 7.3
6AB7 5,000 2,440 8.0 5.0
6SG7 4,700 4,000 8.5 7.0
6SK7 2,000 10,500 6 0 7.0
9003 1,800 13,000 3.4 3.0

* One unit of a dual triode tube.

Another point to bear in mind is that there is wide variation in the 
equivalent noise resistances of individual tubes of a given type. A plot of 
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cathode current vs. transconductance of a large number of tubes under 
fixed operating voltages shows that, in general, cathode current increases 
with transconductance. Both theoretically and experimentally the 
noise resistance is found to decrease as the transconductance and cathode 
current increase.

A few tubes of each type draw appreciably more current than typical 
tubes with the same transconductance; an even smaller number draw less 
current. The former are found to have particularly large noise resist
ances; in fact, a tube with medium transconductance and abnormally 
large cathode current generally leads to a worse noise figure than a tube 
that has minimum transconductance and normal current. Possible 
causes are the presence of gas, or defects in the control-grid winding such 
that it does not cover the entire useful length of the cathode structure. 
Tubes with abnormally low currents, on the other hand, usually have 
very low noise resistances. In the case of multigrid tubes a possible 
explanation is an accidental alignment of the wires of the various grids 
which reduces screen current without reducing transconductance.

Optimum operating voltages of the tube are found by experiment. 
In general, a tube should be operated to give as high a transconductance 
as possible; this means that it must have large plate and screen currents. 
Because the input stage is not required to handle very large signals, the 
first tube may be operated at moderately low plate and screen voltages, 
and a high transconductance may be obtained by the use of a low bias. 
If the bias is too small, however, grid current will flow and cause the noise 
figure to deteriorate seriously.

The Input Circuit Loss G,.—In Sec. 13-3 the effective temperature of 
Gi was taken to be aT in order to take into account the case in which some 
of the loading is electronic. In the present discussion, attention is 
confined to the simple case in which the damping arising from causes 
other than transit time is entirely due to pure resistive loss, so that a can 
be taken equal to unity.

In general, Gi consists of two components: Gu, the loss of the input 
circuit, and Go, the cold loss of the tube.

The cold loss Go is due partly to leakage around the bulb of the tube 
and partly to losses in the tube socket. The magnitude of Go varies with 
different tubes and different tube sockets, but by careful design it should 
be possible to keep it small in comparison with Go

lf Cs is the total input capacity and /o the midband frequency, then

Go = (47)

where the Q is that of the coil. The Q varies slowly with capacity and 
frequency and depends chiefly upon wire diameter and mechanical 
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construction. In practical amplifiers, the Q’s obtained range from 80 to 
300. In this chapter a Q of 150 is assumed whenever it is desired to 
insert numerical values. Typical values of Cs range from 5 to 20 ppf or 
even higher, so that at 60 Mc/sec GD ranges between 10 and 50 pmhos 
for a Q of 150.

It can be observed from Eq. (47) that Gn varies directly with f0 and 
Cs and inversely with Q.

The Transit-time Damping Gr.—Despite the great importance of 
induced grid noise very little reliable information is available as to the 
transit-time loading and equivalent noise temperature ST of the common 
i-f and r-f tubes. C. J. Bakker1 has published experimental results in 
confirmation of the formula of Eq. (15) in which / is taken equal to 5 for 
the type EF-50. These results were approximately confirmed at the 
MIT Radiation Laboratory for the type 6AK5; but as was the case for the 
equivalent shot-noise resistor, agreement between experiment and theory 
was much less satisfactory for other tube types. It is thus necessary to 
measure the equivalent induced grid noise resistor for any given tube 
either directly, as in the experiments of Bakker, or indirectly by measure
ment of Fi after measurement of Gi and R^.

For the type 6AK5, which has a very small induced grid noise current, 
Gr may be taken equal to 12 gmhos at 30 Mc/sec. Because Gr varies 
as the square of frequency, GT is equal to 48 .umhos at 60 Mc/sec for this 
tube type. For the British type C V138, the value of Gr should be taken as 
20 pmhos at 30 Mc/sec and 80 ^mhos at 60 Mc/sec. Most of the other 
tube types listed in Table 13 3 have values roughly the same as the 
CV138.

13-5. The First-stage Noise Figure.—The noise figure of the first stage 
is approximately the same for the three arrangements of Fig. 13-5. A 
short discussion is given in this section of the conditions under which this 
approximation is valid.

From the expression for Fi in Table 13-2 it can be seen that the terms 
involving R^ are approximately the same if the following two inequalities 
are satisfied:

M » 1, I
g™ » Gr. J

(48)

The first of these is valid for all pentodes and all high-gain triodes; the 
latter is true at all frequencies at which the tube can function as an 
amplifier.

A more obvious difference can be found in the contribution of the 
induced grid noise term. For the grounded-plate tube this term is

1 C. J. Bakker, "Fluctuations and Electron Inertia,” Physica, 8, No, 1, January 
1941.
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BGr(gm — G,)2 
Gs(gm + Gr)2

whereas for the grounded-cathode and grounded-grid cases it is

BGr 
G,

Expressions (49) and (50) are approximately equal only if

g™ » Gr, 1
ÿm G„. j

(49)

(50)

(51)

The first inequality has been discussed above; but if the latter is not 
satisfied, the grounded plate appears to have an advantage over the other 
two arrangements. This advantage is not appreciable, however, unless 
BGr/Gs is comparable with H^G, when G, is comparable with g^. This is 
not usually true, so that the conventional approximation that the noise 
figure of a tube is independent of its configuration is, in most cases, quite 
justified. A further comparison of the three arrangements is deferred 
until expressions for the optimum source admittance have been obtained 
and other aspects of the noise figure discussed.

For the present it is assumed that the inequalities of Eq. (51) are 
satisfied, so that the noise figures for the three arrangements are all given 
by

F _ I I I I + Gt/ /to
r i - 1+ y---- r y---- 1---------- ---------- ’ (52)

where
Y. = Gs + Gt + jY (53)

Several conclusions can be drawn immediately. First, the noise 
figure is a minimum when

Fi = 0,

that is, when the total admittance presented to the input terminals of the 
tube is purely conductive.1 Thus, quite apart from bandpass require
ments, it is desirable to have the input circuit resonant at band center.

Second, the noise figure is increased by increasing Gb not only because 
of the increase of the term aG-G, but also because Fs is increased and 
hence EeaiFs +GT|2/GS. Thus, the noise figure is always increased by 
increasing the loss in the input circuit, even if this loss conductance is 
effectively at zero temperature (a = 0).

13-6. The Optimum Source Admittance.—The primary purpose of t-hc 
input network is to present that admittance to the input terminals of the 
first tube which makes the noise figure a minimum. When the over-all

1 This conclusion will have to be modified when the correlation between shot and 
induced grid noise is taken into account (Sec. 1313).
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noise figure is determined by the first stage alone, this value of G. is the 
one which makes Fi a minimum. If the second-stage noise contribution 
is small, the correct value of G, differs from this only slightly.

From Eq. (53) this value of G„ opt is given by setting

ß _ dFi _ aGi + ßGr + E.q[(Gi + GN + F2] p 
dG. G2 +

ps _ + fiGr + Rn[(Gi + Gr)2 + F2]
•■°” Rk ’

(54)

(55)

To express this result in a more condensed form, the distinction 
between induced grid noise and thermal noise will now be dropped and 
two new quantities Gbi and pi will be introduced:

Gel — Gt + Gr, ]
PiGal = aG\ + fiGr. J k ;

The total damping across the input circuit is Gbi, and piT is its effective 
temperature. The expression for G;^ now becomes

™ _ PiGbi + RNGh + Fj)
----------------------- n (57)

In most practical cases, at least as far as the input circuit is concerned,
Pi» RNBly

and in this special case the optimum source conductance at midband 
(Yi = 0) assumes the value

(58)

The corresponding value for the optimum attainable midband noise 
figure Fi,ovt is

F^ =1+2 n/pGbiR^. (59)
Equations (58) and (59) are of fundamental importance.
From Eq. (58) it is seen that at midband G„,ori is inversely proportional 

to (RU/ so that the optimum conductance presented to the pentode is, 
other things being equal, always less than the optimum conductance 
presented to the same tube connected as a triode. Thus, even apart 
from its better noise figure, the triode is more suitable than the pentode 
tube type in applications requiring a large bandwidth, because the greater 
G,.^, the greater is the bandwidth of the optimum input circuit.

At frequencies different from midband, where Y1 is no longer zero, 
Eq. (57) shows that G,,opt should be increased over its midband value 
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if optimum noise figure is to be obtained over the band. In the majority 
of practical cases in which the input circuit is wide compared with the 
receiver pass band, the importance of this effect is negligible, especially 
since the variation of noise figure with G„ is small when G. is in the 
neighborhood of its optimum value.

As the noise contribution of the second stage becomes more appre
ciable, Gs^t tends asymptotically toward the value that enables the 
greatest amount of power to be delivered to the input admittance of the
tube. This value is Gbi in the case of the grounded plate and grounded

g'mYL
Yi + l/rpcathode and + Gi in the case of the grounded grid. This

shift is small when the noise figure of the amplifier is good.
The above results will now be illustrated by a numerical example. 

With the type 6AK5,

Rk (triode) = 385 ohms, 
R^ (pentode) = 1880 ohms,

gm (triode) = 6670 Mmhos,
gm (pentode) = 5000 Mmhos.

If the frequency is taken to be 60 Mc/sec typical values for Gr and Gi 
are

Gr = 48 Mmhos,
Gi = 20 Mmhos.

Taking 8 = 5, a = 1 one gets for the type 6AK5, triode-connected, at 
midband,

G„opt — 730 Mmhos,
Fi,opi — 2.14 db,

while for the type 6AK5, pentode-connected, at midband

GStag, 330 Mmhos,
Fi,ODt = 3.8 db.

The relative magnitude of the contribution of induced grid noise 
in the grounded-plate and grounded-cathode tubes can now be discussed. 
For the type 6AK5 triode of 60 Mc/sec considered above,

Gsm,t = 730 Mmhos

so that the theoretical noise figure for the grounded-plate tube is 1.92 db, 
an improvement over the grounded-cathode tube of 0.2 db. This 
improvement is much less appreciable at lower frequencies and under 
most conditions is not significant.

13-7. Variation of Noise Figure with Source Conductance and with 
Frequency.—If the amplifier is driven from a crystal source, the source 
conductance may vary from crystal to crystal by a factor of 2 or 3 to 1 or
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even more. Accordingly, the variation of noise figure and bandwidth 
with source conductance is important in the design of an input stage. 
Now the expression for first-stage midband noise figure given in Eq. (52) 
may be put in the form

Fi = 1 + |p + R^Gbi 1 + Çj—) {
(60)

This is plotted as a function of Gs/Gbi for various values of RfiGsi and for 
p equal to unity, in Fig. 13-7. If the input network is chosen so that the 

Fig. 13-7.—Variation of noise figure with source conductance various values of R^Gm

optimum source conductance is presented to the tube when the crystal 
conductance assumes its geometric mean, the variation of noise figure 
with conductance is minimized. Thus, a four-to-one variation of source 
conductance produces a change in noise figure of

0.2 db when R^Gbi = 0.01, 
0.4 db when R^Gbi = 0.1, 
0.6 db when RmGni = 1.0,

when the mean conductance is assumed to be optimum.
It will be noticed that the variation of noise figure becomes more 

pronounced as R^Gbi increases, so that, in this feature as well, the triode 
is superior to the pentode.

In some cases, however, the source conductance may be very far from 
optimum. Under these circumstances a change of four to one in source 
conductance produces a change of nearly 6 db in noise figure.



Sec. 13-8) COMP ARISON OF ALTERNATIVE TUBE CONFIGURATIONS 643

When G, « G,.QVt the midband noise figure is given approximately by 

F ~ I R^bi

G’ Gbi G‘ (61)

= 1 + R^Gbi 1 ;

when Gi X> G,,mt the midband noise figure is given by

F == 1 + RaaGt- (62)
Equation (61) holds when the amplifier is driven from a pentode or 

grounded-grid stage and Eq. (62) holds when the amplifier is driven 
directly from the antenna or a grounded-plate stage.

Fig. 13-8.—Single-frequency noise figure as a function of the ratios of input susceptance to 
input conductance. .Req Gbi = 1-0 in (a), 0.1 in (6), 0.01 in (c).

In amplifiers in which the bandwidth of the input circuit is not large 
compared with the effective receiver bandwidth, the variation of noise 
figure with frequency is of interest. In Fig. 13-8 the noise figure is 
plotted as a function Yf/(GS + Gbi)2 for various values of R^Gm when 
Gs is chosen to give optimum midband noise figure, with p equal to unity.

If the input circuit is a grounded-cathode or grounded-plate tube, 
Y\/(G, + Gbj)2 rarely exceeds 1.25 over the effective amplifier bandwidth; 
but if the input circuit is a grounded-grid tube, so that the pass band 
of the input circuit is -wide, then F?/(GS + Gbi)2 might conceivably be 
large at the extremities of the effective receiver band and the variation 
of noise figure over the band might be appreciable.

13-8. Comparison of Alternative Tube Configurations.—It has been 
shown above that the noise figure of an isolated triode is appreciably 
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better than that of an isolated pentode. Nevertheless, because of its 
very low grid-plate capacity a pentode can be used in conventional 
grounded-cathode circuits with large stage gain and high stability. The 
simplicity of this design, which permits the employment of identical 
tubes and interstage couplings throughout the amplifier and does not 
require any special care in construction, justifies its use in cases in which 
optimum noise figure is not of paramount importance. A brief discussion 
of the over-all noise figure of a cascade of grounded-cathode pentodes is

Fig. 13-9.—Grounded-cathode-pentode in
put circuit.

GB2, and Rw the equivalent noise 
the output admittance, l/rp, of th<

given in this section. For simplic
ity, it is assumed that the inter
stage couplings have two terminals 
(Fig. 13-9). The more general case 
is a simple extension of this.

Grounded-cathode Pentode Input 
Circuit.—Let Gsi be the total loss 
conductance of the second stage, in
cluding the transit time loading, p,T 
the effective noise temperature of 
resistor of the second tube. Now 
first pentode may be assumed to 

be high in comparison with GB2, so that the midband noise figure F2 of 
the second stage is of the approximate form of Eq. (59). It is given by

F2 — 1 ~ rfinApz + R^ßui).
From Table 13-2, the available power gain of the grounded-cathode 

pentode is
«06 __ EOnfi’

(G, + <3+1)"
where GSi is given by Eq. (56).

Hence F, the noise figure at midband of the first two stages, is given
by
7 = ^ + ^ irtBl ,

G.~ + G,

The first-stage voltage gain gx « pm(l/G»i), so that F may be written
(GÄ1 + G,)2! 1 1
------ p------- Rea, + (Ilea, + p'iRml , (63) 

j bi
where Rm — I/Gb2. It is thus possible to neglect second-stage noise if

(64)

When the inequality (64) is not satisfied, the effect ot second-stage noise 
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can be taken into account by a suitable increase in R^, so that for 
optimum over-all noise figure, Ge must be decreased toward an asymp
totic value of Gbi as second-stage noise becomes more important.

For stage voltage gains greater than 5, second-stage noise is virtually 
negligible, even if p is equal to unity, that is, if all the loading in the 
plate of the first stage is produced by a physical resistance. Under these 
circumstances, the noise figure of the amplifier is approximately equal to 
Fi, the noise figure of the first stage. Any appreciable improvement 
must, therefore, come by a reduction of Fi.

Table 134.—Noise Figures of Amplifiers

Circuit

Tube type
Fre

quency, 
Mc/sec

3-db band
width 

Mc/sec
Noise figure, db*

First
Sec
ond

Input
Over

all
Min. Me

dian Max.

Pentode circuit:
Grounded-cathode 6AC7 6AC7 30 10.0 1.5 3.4 3.9 4.4

pentode grounded- 6AK5 6AK5 30 12.0 6 0 2.6 3.3 4.5
cathode pentode

Triode circuit:
Grounded-cathode

6AK5 6AK5 60 7.5 3.0 4.1

triode grounded-grid 6AK5 6J4 6 2 1 0.25
triode t 6AK5

6J4
6J4
6J4

30
180

12
30

6
2.5

1.1 1.35
5.5

1.7

Grounded-plate triode 
grounded-grid triode

6J4 6J4 30 12 3.4 2.5

Grounded-cathode 6AK5 6AK5 30 12 8 2.9
triode grounded- 
cathode pentode

6AC7 6AC7 30 12 2 3.0

Grounded-grid triode 
grounded-grid triode

CJ4 6J4 180 100 2.5 7.0

* Minimum and maximum noise figures are given in case of amplifiers of which at least 50 were 
measured. Maximum figure neglects worst 5 per cent.

t The optimum source resistance for the grounded cathode 6AK5 triode grounded-grid triode circuit 
was experimentally determined to be about

15,000 ohms at 6 Mc/sec,
2,500 ohms at 30 Mc/sec,

400 ohms at 180 Mc/sec.

The amplifiers in the 6- and 30-Mc/sec grounded-cathode grounded-grid cases above were built by J. L. 
Lawson and R. R. Nelson with every precaution to ensure optimum noise figure. The coil Q’s in the 
input and neutralizing circuits were greater than 200, and the 6AK5 bias was selected for best average 
noise figure (70 ohm cathode bias resistor at 105 plate volts). The variability in noise figure in the 
6-Mc/sec case was very small.

In Sec. 12-7 it was pointed out that it is theoretically possible to make 
the partition noise in the screen circuit nullify that in the plate by the 
proper use of feedback produced by a series reactance in the screen-grid 
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circuit. In individual experimental amplifiers at 30 Mc/sec it has been 
possible to improve the noise figure by about 1 db by selecting the proper 
value of screen bypass condenser or by connecting a small inductance 
between the screen-grid socket terminal and the bypass condenser. 
Such effects are very hard to control, and it has not been possible to 
manufacture amplifiers in quantity in which the noise figure was con
sistently improved by this kind of feedback. Accordingly, if better noise 
figures are to be obtained, a triode input circuit must be used.

In Table 13-4, the noise figures of typical pentode and triode amplifiers 
are given (also see Sec. 13-10). It should be emphasized that the first- 
stage noise figures of experimental pentode amplifiers increase more 
rapidly with frequency than the theory given in Sec. 14-3 would suggest. 
The reasons for this are not fully known; it is possible, however, that the 
larger number of uncontrolled feedback paths in the pentode tube may be 
responsible. This last fact makes the employment of a triode input 
circuit at high frequencies especially desirable when optimum noise 
figure is to be obtained. .

Triode Input Circuits.—In Sec. 13-5, it was shown that under certain 
simplifying conditions, the noise figures of the three triode input circuits 
were the same. In this section, the analysis is developed further, and 
other relevant properties of the circuits are considered.

The most important of these properties are displayed in Table 13-5. 
They are discussed and compared in succession.

Instability and Input Capacity Due to Feedback.—The chief objection 
to the use of triodes in conventional high-frequency amplifiers is the 
presence of feedback capacity which tends to produce instability. In 
Row 1 of Table 13-5 the input conductance produced by feedback is 
given, where = \/Rt. is the load conductance, IC. and B,IP are the load 
and feedback susceptances respectively, and the load reactance is assumed 
to have the value most conducive to oscillation.1 In Row 2 the input 
capacity due to feedback is given for a ease in which the load susceptance 
is zero.

Grounded Cathode.—The effects of feedback capacitance for a grounded- 
cathode triode are particularly undesirable. Not only is the effective 
input capacity materially increased and the bandwidth of the input 
circuit thereby decreased, but the negative input conductance may cause 
instability. Even if the source conductance is large enough to prevent 
oscillation, the rapid change of input conductance with frequeney-

1 For a derivation and discussion of those results see K. R. Sturlcy, Radio Receiver 
Design, Part I, Wiley, New York, 1943, pp. 37-56.

2 SUu-ley, loc. cit., shows that this input eondnetance is approximately equal to 
(gaJLfBliG'l + Bl), where Bl is the load susceptance and Bap the feedback 
susceptance.



Table 13-5.—Comparison of the Three Triode Input Configurations of Fig. 13-5

Property Grounded cathode Grounded grid Grounded plate

1. Value of input conductance due to feedback 
capacity when load reactance is assumed to 
have value most conducive to oscillation
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produces asymmetry in the transfer characteristics of the input coupling 
network, especially if it is a double-tuned circuit. Ideally at least, these 
effects can be overcome either by neutralizing the feedback susceptance 
over the whole band1 or, more simply, by resonating it out at midband 
frequency with an inductance. In the latter case, which is the only form 
of neutralization discussed in this chapter, the input conductance is small 
and positive and varies symmetrically about the midband frequency. 
As far as the bandwidth of the input circuit is concerned, however, the 
effective input capacity is still C„p(l + OmRe). This form of neutraliza
tion becomes too critical for large values of g„,Rr, and is practical only in 
low-gain circuits.

Grounded Plate.—The effects of feedback capacitance are more com
plicated for the groundcd-platc triode. Sturley- shows that the input 
conductance Gu due to feedback susceptance Bk,, is given by

fi _____ B ky(G i.B kjl gmEr) 
" _ (Gl + g7af + lBkq ■Uh

If GLBka is small compared with gmBL, G„ is negative when Bkll and BL 
have the same sign. Hence tuning out the feedback capacity does not 
remove the danger of instability. It merely ensures that G„ is zero at 
midband and increases in magnitude symmetrically around midband 
to the maximum negative value given in Table 13 5. Although this 
maximum is much less than the corresponding quantity in the unneutral
ized grounded-cathode case, instability may still result.

In many practical cases,’ however, Gi,Bk„ is of the same order as 
gmBL, although in general it is smaller in magnitude, if B,,k is resonated 
out at midband. Under these circumstances it may be better not to 
tune out Bkg because if Bk„ is a pure capacitance G„ docs not. become 
negative until frequencies appreciably higher than midband are reached, 
and the magnitude of G„ will be always less than when the capacity is 
tuned out. Another point to bear in mind is that it is very difficult to 
tune out the grid cathode capacitance at a given frequency owing to the 
variation of this capacitance with grid bias. In order, however, to 
provide an equal basis for comparison of the merits of the three alter
native triode input circuits, it is assumed throughout this section that the 
feedback capacitance is resonated out at midband frequency.

Grounded Grid.—Tn conventional tube construction the grid wires lie 
between the plate and the cathode. By suitable arrangement of the 
electrode leads, therefore, it is possible to make the cathode-plate capacity

1 See F. E. Terman, Radio Engineer’s Handbook, 1st cd. McGraw-Hill, New York, 
1943, pp. 467-474, for a discussion of possible neutralizing circuits.

2 See K. R. Sturley, loc. ait.
3 See the grounded-plate grounded-grid circuit discussed in Sec. 13-10 below.
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much lower than either of the other two interelectrode capacities. From 
Row 1 in Table 13-5 it may be seen that the grounded-grid configuration 
is less subject to oscillation than the other two configurations and would 
be so even if the feedback capacity were the same in all three cases. Since 
the feedback capacity is in general smaller, the grounded grid is unques
tionably the most stable arrangement. If the feedback capacity is large, 
as is the case with the triode-connected 6AK5, neutralization may be 
desirable but will certainly not be critical. As may be seen from Table 
13-5, the input capacity due to feedback is negative in the grounded-grid 
circuit so that the presence of this capacity actually increases the band
width of the input circuit. This effect is small, however, because CPk is 
small and any possible advantage is outweighed by the fact that the input 
capacity of the grounded grid must include the cathode-heater capacity 
Ck*.

First-stage Noise Figures When Losses in Neutralizing and Output Coils 
Are Considered.—When the noise figures of the various triode input 
circuits were compared (in Sec. 13-5), it was assumed that the coil loss in 
the input circuit was the same in all three cases. Because input capacity 
varies with tube configuration, however, this assumption is clearly an 
oversimplification. A fairer comparison would allow for this difference 
and would also include the losses in the neutralizing and output coils, 
since the capacities with which those coils are resonant are, essentially, 
part of the first stage. This comparison is made here on the following 
assumptions:

1. All coils have the same magnification Q and are all midband 
resonant.

2. The output capacity of the input network, apart from inter
electrode capacities, is Ci and independent of the tube configuration.

3. The output capacity of the first stage, apart from interlectrode 
capacities, is Cz and independent of the tube configuration.

4. The feedback capacity in the grounded-plate and grounded- 
cathode cases is resonated out at midband.

5. The plate-cathode capacity Cpk is negligible.
6. All the losses are assumed to be at temperature T.

1. The Input Circuit Coil Loss.—The effects of the loss G, in the input 
coil have already been discussed in Sec. 13-5. It contributes a term 
Gi/G, to the noise figure.

2. The Neutralizing Circuit Coil Loss.—It can be shown that the 
thermal-noise constant-current generator associated with the loss con
ductance GY in the neutralizing coil produces the same effect on the noise 
figure as if it were connected across the input terminals; that is, it con
tributes a term Gu/G„ to the noise figure. This result is proved for the 
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grounded-cathode triode in the discussion of the effect of feedback 
resistance on noise figure given in Sec. 13-12. For the grounded-plate 
triode the noise generator is in parallel with the induced grid noise 
equivalent generator. Tt was shown in Sec. 13-6 that it was permissible 
to assume that this generator is connected across the input terminals.

The Output-circuit Coil Loss.—The effects of the loss in the output 
coil Gu on the noise figure depend upon the configuration. Let Fi, Gp, and 
W be the noise figure, output conductance, and available power gain of 
the first circuit when the output coil loss is zero. Let /'/, G'p and W' be 
the corresponding quantities when this loss is Gi>. Then

r„ r । \
Ii -11 +

w, = (66)
Gp + Go \ 

G'p = Gp + G i). J

The values for G'p, W', and F[ calculated from the expressions for 
W, Gp, etc., given in Table 13 3 are given in Rows 3, 4, and 5, respec
tively, of Table 13-5 on the assumption that Gs gm and

+ + l)r„» rf
O’ D

Unless Gn is very large, it is clear that the output coil loss has no 
appreciable effect on the noise figure of the grounded-cathode or grounded- 
plate tubes. In the grounded-grid case, however, the noise figure is 
approximately the same as if the thermal-noise constant-current gener
ator associated with the output coil loss were connected across the input 
terminals.

The values of Gi, G12, Gn in terms of Q, the midband angular frequency 
w(l, and the corresponding capacities are given in Rows 6, 7, and 8, respec
tively, of Table 13-5. The results of the comparison are summarized in 
Row 9 of the faille, where the value of Gi,„a is given. This last term is 
the equivalent conductance that, when placed across the input terminals, 
produces a thermal-noise power at the output of the amplifier equal to the 
sum of the noise produced by the losses in the input, neutralizing, and 
output coils. Its magnitude is given by the equation

G1,m = G1 + G12 + (67)

This equivalent loss conductance is the same for the grounded-cathode 
and grounded-plate circuits but larger in the grounded-grid circuit, owing 
to the effects of plate-to-ground stray capacitance and cathode-heater 
capacitance.
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Available Power Gains.—The most striking and important difference 
between the three alternative triode configurations lies in the available 
power gain, which is much greater for the grounded cathode than for the 
other two. If output coil losses are not taken into account, the grounded 
grid would have a greater available power gain than the grounded plate, 
since, in general, m + 1 > g^/G,. Because of its very low output con
ductance, however, it is very difficult to take full advantage of the 
available power gain of the grounded-grid triode. As shown above, out
put coil losses will change the available power gain from m + 1 to G,/GD 
at the same time as output conductance is increased from l/(g + l)rp to 
Go- If bandwidth considerations were unimportant, it would be possible 
to transform the output conductance of the first stage to present the con
ductance to the second stage which minimizes the second-stage noise 
figure. Under these conditions, the contributions of the second-stage 
noise at midband to the noise figure of the amplifier would be in direct 
ratio to the available power gain. Even when output-coil loss effects are 
allowed for, however, the comparison is still flattering to the grounded 
grid. Because the output coil loss conductance is much larger than the 
optimum source conductance of the second stage, it must be stepped up 
by a ratio1 G,/GD, and the output susceptance of the first stage will be 
stepped up in the same ratio. The interstage bandwidth is thereby 
narrowed, and the off-resonance second-stage noise figure is increased.

With the grounded-plate tube, the reverse holds good. The output 
conductance is very large, « l/gm. This has to be stepped down, if the 
optimum source conductance is to be presented to the second tube, by a 
ratio equal to G,/gm, and the output susceptance of the first tube will be 
stepped down in the same ratio and hence will play a very small part in 
determining the noise figure and bandwidth of the second stage.

In the grounded-cathode case, the output conductance 1 /Fv of the 
first tube is usually less than Gs,OBt!, but of the same order of magnitude. 
The large available power gain ensures that the second-stage contribution 
is much less in this case than in either of the two alternatives, even if 
1/fp is not transformed to be equal to GR,,.

The main results of this comparison are summarized in Table 13-6.
13-9. Noise Figures of Single-triode Input Circuits.—In this section, 

a discussion of the noise figure of a number of alternative input arrange
ments using a single triode to drive a pentode chain is given. This 
discussion is intended to form an introduction to Sec. 1310, in which 
two-triode input stages—which represent the best that can be done in the 
present state of the art—are analyzed.

Historically, the first bandpass amplifiers with triode input stages
1 This ratio is derived on the assumption that the optimum source conductance to 

drive the second stage is the same as that which drives the first stage.
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used a grounded-grid tube because it was known that considerable voltage 
gains could thus be obtained without instability. The large input con
ductance of the grounded-grid circuit due to cathode feedback, which

Table 13-6.—Comparison of Various Single-triode Input Circuits

Input tube Advantages Disadvantages

Grounded cathode 1. Highest available power 
gain, hence maximum possi
ble reduction of second-stage 
noise

1. Tendency to instability with 
large voltage gain, but easier 
to neutralize and more stable 
with small voltage gain than

2. Output conductance l/rp of 
same order of magnitude as 
optimum source conductance 
of second stage

3. Equivalent loss conductance 
equal to that of grounded 
plate

4. Highest voltage gain

grounded plate

Grounded plate 1. High output conductance, 
hence easy to get wide-band 
interstage coupling

1. Variation of grid-cathode 
capacity with grid bias makes 
neutralization difficult

2. Induced grid noise contribu
tion slightly less than in al
ternative configurations

2. Tendency to instability, par
ticularly with small Gl, even 
if grid-cathode capacity is

3. Bandwidth of input circuit 
greater than in grounded- 
cathode case because of 
lower input capacity

resonated out
3. Available power gain much 

lower than in grounded- 
cathode case

Grounded grid 1. High stability due to cathode 
feedback and low plate
cathode capacity

1. Low available power gain
2. Critical dependence of first- 

stage noise figure on output
2. Large input conductance 

giving wide transfer band
pass characteristics for input 
network

1

circuit loss
3. Greatest equivalent loss con

ductance
4. Low output conductance, 

which combined with point 1 
means second-stage noise 
contribution important

5. Dependence of input and 
output admittance on load 
and source admittance re
spectively

made the input network very wide and largely independent of variation 
in source admittance, also worked in its favor. Despite its low power 
gain, which often leads to rather poor over-all noise figures, these advan
tages are still important enough to warrant the use of such a triode as the 
first stage in special cases.
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Grounded-grid Triode Input Circuit.—The interstage coupling may be 
either a single-tuned or a double-tuned circuit. The latter has been used 
in production amplifiers, all the additional damping being placed in the 
secondary. The effects on the noise figure of the loss in the output coil 
are far too serious to permit the use of additional primary damping. 
Although the power gain of the grounded-grid amplifier is so low as to 
cause an appreciable second-stage noise contribution to the noise figure, 
such amplifiers have been built with better noise figure than straight 
pentode amplifiers.1 Unfortunately, double-tuned circuits with all the 
damping on one side are critical and liable to asymmetry. Despite the 
larger gain-bandwidth product of the unequal-Q coupled circuit, there
fore, it may be better to use a single-tuned circuit as shown in Fig. 13-10.

Flu. 13-10.—Grounded-grid triode driving a pentode with a single-tuned circuit interstage 
coupling.

To achieve the required interstage bandwidth, the input conductance 
of the pentode may be reduced, either by adding cathode lead inductance 
or by the use of resistive feedback between plate and grid, as discussed in 
Chap. 6. Although the second method is usually preferred for practical 
reasons, either of the two provides an input conductance that is at a 
very low effective noise temperature. The second stage in Fig. 13-10 is 
tapped down on the interstage coupling coil so that the coil losses are 
reduced.2 For any given bandwidth there will be an optimum point at 
which to tap for minimum over-all noise figure. If the grounded grid is 
preceded by a grounded-cathode tube, as in the optimum circuit discussed 
in Sec. 13-10, this refinement is unnecessary.

Let Gt, be the interstage coupling loss and n^Go the conductance 
presented to the input terminals of the second tube. The midband noise 
figure3 F2 of the second stage is given by

1 To find the noise figure of such a combination the method detailed in Sec. 13-14 
may be used, with suitable modifications. Because the analysis is quite lengthy, it 
will not be given here; the reader may" refer to E. W. Herold, “An Analysis of the 
Signal to Noise Ratio of UHF Receivers,” RCA Rev., January 1942.

2 The capacitance with which the coil is to resonate is thus reduced.
3 The expression for the noise figure of the first two stages at frequencies other than 

midband is complicated and is not given here.
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Ft = 1 + +n-Go
ReafiNG pi + Gaz)2 

Mut ’

when the output coil loss is regarded as part of the first stage.
From Table 13 5, the noise figure and available power gain of the 

first stage are given by

,, , , piGm + Gd EGG + Gbi)'
r 1 — 1 4----------,.-------- 4------------- r,----------;

Vs vrs

so that the over-all noise figure at midband is

F = IG + = 1 + ~ piGbi + Go + + M ^Gd2 + GsN
it i Ui L h- ti"

+ (Gs + GKN (68) Gi

The form of Eq. (68) shows that when the first tube is a grounded grid, it 
is possible to take account of the noise contributions of the remainder 
of the amplifier by modifying pi to p, where

pGai — PiGbi + Go + “ H—Nr (nN ot + Gat)2, (69)n- jt-

and the over-all noise figure becomes

(70)

Thus, as second-stage noise becomes appreciable, G, has to be increased 
for optimum over-all noise figure. The asymptotic value toward which 
Gs,opi tends cannot be derived from Eq. (68) owing to the approximations 
made in deriving the power gain of the grounded-grid amplifier. It is 
possible to show, however, that this value is the one that enables the 
source to deliver the maximum power to the grounded-grid amplifier.

An alternative method of increasing bandwidth in the interstage 
coupling without adding physical resistance is to use a second grounded- 
grid stage to follow the first.

The interstage coupling network is of the same form as in Fig. 13-10, 
the tap position being determined as before by bandwidth and noise
figure requirements. A detailed discussion of this circuit is not given 
here, but it can be shown that the noise contribution of the second 
grounded-grid stage becomes appreciable at the edges of the pass band 
because of the large susceptance presented to its input terminals. Third- 
stage noise is also appreciable with this circuit except for very narrow 
bandwidths. The main use of such an input configuration is at fre- 



Fig. 13-11.—High-stability interstage 
coupling with grounded-cathode-triode input 
stage.
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quencies around 200 Mc/sec. The noise figure of a practical amplifier 
using this arrangement is given in Table 13-4.

Grounded-plate Triode Input.—If stability considerations are neg
lected, the grounded-plate triode input can give performance superior to 
those of the grounded-grid circuit as regards both bandwidth and noise 
figure. In the only application of this configuration yet used, a grounded- 
grid triode followed the input 
grounded-plate stage. Discus
sion of this case is therefore more 
appropriate in Sec. 13-10 and is 
given there.

Grounded-cathode Triode Input. 
Because of its high available-pow
er gain, the grounded-cathode tri
ode is the ideal choice for an input 
stage, provided it can be kept 
stable. In the analysis of the stability of this configuration given in Sec. 
13-8, it was pointed out that the negative input conductance was inversely 
proportional to the load conductance Gn presented to the output termi
nals of the tube. Accordingly, if neutralization is to be noncritical, Gt, 
must be large.

If the over-all amplifier bandwidth is very large, the stage gain and 
hence 1/Gl are necessarily small. Under these circumstances, a straight
forward coupling between the grounded-cathode input stage and the 
second stage might be practical, because second-stage noise will be no 
more important in this case than if a pentode input stage were used. 
The chief disadvantage would lie in the large capacitance across the input 
coupling network due to the Miller effect. At narrower bandwidths, 
however, the use of a wide-band, heavily damped interstage coupling 
network throws away much of the advantage inherent in the large 
available power gain of the first tube.

A possible compromise is effected by the circuit shown in Fig. 13-11. 
The plate of the grounded-cathode input tube is tapped down on the 
interstage coupling coil so that a large conductance1 is presented to the 
plate of the triode.

If Get is the'loading across the grid of the second stage with effective 
temperature ptT and if n2 is the impedance step-up ratio of the auto
transformer, then Ft, the midband noise figure of the second stage, is 
given by

Ft ~ 1 + nLpGsitpi + ReaiGBi)
1 This conductance should lie between and g„/4, the minimum value

depending upon the size of the grid-plate capacity of the grounded cathode, the ease 
with which the neutralization can be effected, and the midband frequency.
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if n2rp » Gbz and the over-all noise figure at midband is

, । (piRbz + Req ?) I / — 1 \
i- +—,r ( }

where g = gm/n2GD2 is the voltage gain to the plate of the first tube and 
Gbz = 1/Rb2- The quantity g is fixed by stability considerations and 
Gbi by bandwidth requirements. With narrow bandwidths, where 
g2n2 is large, the noise figure of the circuit is effectively that of the first 
stage. Because the plate-output susceptance of the grounded-cathode 
triode is stepped down by the coil, it has only a small effect on the band
width of the interstage coupling. Hence, if p2 is appreciably less than 
unity,1 good noise figures can be obtained even for quite appreciable 
bandwidths. This circuit therefore is preferable to the grounded-grid 
circuit. It is not the best that can be done, however, because the second- 
stage noise contribution is greater than if a pentode first stage had been 
used. The correct answer to the problem is to use a grounded-grid tube 
to follow the grounded-cathode input stage; this provides a large con
ductance across the output terminals of the first tube and yet gives a 
noise figure very close to the theoretical optimum. This configuration 
will receive detailed analysis in the next section.

It will be noticed from Eq. (71) that the second-stage noise contribu
tion can be taken fully into account by suitable modification of the 
equivalent noise resistance of the first tube. Accordingly, as second- 
stage noise becomes predominant, the optimum source conductance tends 
asymptotically toward the value Gm which causes the maximum power 
to be delivered to the first tube. This result also holds for the grounded- 
plate case and is in direct contrast with the grounded-grid case where 
second-stage noise is taken into account by suitable modification of

13-10. Double-triode Input Circuits.—The ideal triode input circuit 
should have the following features:

1. All the improvement in input stage noise figure over the pentode 
that is theoretically possible.

2. The contribution of second and later stages to the noise figure no 
greater than with pentode input stages of the same bandwidth.

3. A circuit that is stable and no more critical in adjustment than 
with pentode stages of the same bandwidth.

There are nine combinations possible with two triode input tubes because 
a choice between the grounded-cathode, grounded-grid, and grounded- 
plate connection may be made for each of the first and second stages. 
There is, however, only one circuit that meets all the above requirements.

1 This is the case if the loading across the tuned circuit is provided largely by elec
tronic means, as discussed above for the grounded-grid triode interstage coupling.
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That is the combination of a grounded cathode followed by a grounded 
grid.1 This circuit is considered below in detail, and a discussion of 
practical amplifiers using this input arrangement is given. A short 
discussion of alternative input circuits using a grounded-plate and a 
grounded-grid first stage illustrates the superiority of the grounded- 
cathode triode first stage.

Grounded-cathodertriode-Grounded-grid-triode Input Configuration.— 
The circuit described here has permitted noise figures as low as 0.25 db at 
6 Mc/sec, 1.35 db at 30 Mc/sec, and 5.5 db at 180 Mc/sec, without 
critical adjustment of any sort (see Table 13-4).

When a grounded-grid stage succeeds the grounded cathode, as shown 
in schematic form in Fig. 13-12, a 
presented to the plate of the first tri
ode so that it is quite stable.2 The 
bandwidth of the interstage coupling 
will be very large so that there is no 
need to add additional damping even 
in the most extreme cases. Finally it 
may be observed that the output 
conductance of the first tube is of the 
same order of magnitude as the 
optimum source conductance for the 
second tube, so that the full available 
power gain of the grounded-cathode 
triode is utilized. Neglecting output coil loss, the output admittance 
of the grounded grid is low, because the admittance presented to its input 
is small compared with gm. If coil loss is taken into account, the output 
admittance is equal to the conductance Go of the coil loss, and the con
tribution of third-stage noise can be estimated as in Sec. 13-9.

The neutralizing circuit of Fig. 13-12 modifies both the output 
admittance and the available power gain of the first stage. For the 
present this effect is neglected, and it is assumed that the output con
ductance of the grounded-cathode tube is l/rp. The noise figure of the 
second stage F2, then, is given by

very large conductance ~ gm2 is

Interstage 
coupling coil

Fig. 13-12.—Grounded-cathode-tri- 
ode—grounded-grid-triode input con
figuration.

Fi — 1 + piGsiTp + rpR^ Gb2 +

1 See Henry Wallman, A. B. Macnee, and C. P. Gadsden, “Low-Noise Amplifier,'' 
Proc. I.R.E. 36 (1948), 700-708.

2 In Fig. 13-12 a neutralizing coil is provided to resonate out the grid-plate capacity, 
but this is included in order to improve the noise figure rather than for reasons of 
stability. Even at frequencies as high as 180 Mc/sec it is possible to omit the neutral
izing coil and still maintain stability; the noise figure in that case is degraded, however, 
from 5.5 db with neutralizing coil to 8.0 db without.
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From Table 13-2 the available power gain of the first stage is 

g™Garp '
(G, + GbQ2 + YV

and since the noise figure of the first stage is

p , , PiGbi , E«q,[((?« + Gbi)2 + Kj] 
= 1 + +-------------- g.----------------------

the exact expression for the noise figure of the first two stages combined is

v 1 । PiGbi , (G, + Gm)2 + Fj i p GasF=1+^ + - +

+ 7^|(gBi + -Y + Fill- (72)
L \ ^p/ J J

In general, l/rB» Gm so that, at midband, the shot noise of the 
second tube makes a contribution only 1 /u2 that of the shot noise of the 
first tube. It is not until the frequency is so different from midband that 
Yl/9mi is comparable with unity that the second-tube shot noise becomes 
important. The contribution of the second-stage thermal noise and 
induced grid noise will also be negligible in comparison with that of the 
first tube if (G3/gm)2 « 1.

Thus, although it is necessary to make a careful choice of the first tube 
and its operating conditions, the choice of the second tube depends very 
little on its equivalent noise resistance. It is usually made solely by the 
criterion of low cathode-plate capacity because if this capacity is large, 
neutralization of the second tube may be necessary, although in such 
cases it is usually quite uncritical. The operating conditions of the 
second tube are also unimportant; if it is considered desirable to econo
mize in power consumption, the tube can be run with high grid bias and 
low plate voltage.

The second stage should have a fairly high transconductance, how
ever, because, as already noted, the stability of the first stage results from 
the heavy loading applied to the plate of the first stage by the input con
ductance (« gmi) of the second stage.

If the grounded-grid stage is followed by a stage the midband noise 
figure of which is F3 ~ 1 + (m + l)rPGB3(p3 + RWGB3) when fed from 
a high output admittance,1

1_______ 1 
rpg'mi ~ (m + l)r,’

then the over-all noise figure of the combination, at midband,
1 In deriving this expression it has been assumed that the dynamic resistance rv 

of the first and the second tubes is the same.
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F — 1 4- - L Bl + -—gl A A [ Real 4---- 2“ [P1Gb2 + Gb3(p3 + ReaG»3)]L 
o.-------- ( gmx j

where the contribution of second-stage shot noise has been neglected. 
In general piGat/g^ can also be neglected. In this case if

e = —3, 
b 9ml

the expression for noise figure assumes the form

F - 1 4- + A (P3RB3 + Rw)
ua \js L □

(73)

But this is of exactly the same form as Eq. (63), which gives the noise 
figure of a pentode followed by a second stage. The differences are that 
gmi is greater for a pentode connected as a triode than for a pentode, so 
that g is larger for the triode connection, whereas R^, is now the equiva
lent noise resistance for a triode instead of that for a pentode. This 
double-triode circuit thus achieves the ideal standard laid down at the 
beginning of this section.

To conclude the theoretical discussion of the grounded-cathode 
grounded-grid circuit, the effects of the neutralizing circuit are analyzed 
below. It is assumed for simplicity that the input coupling network is a 
single-tuned circuit whose magnification Qi is given by 

Qi =
WoC3

G, + Gi
where C, is the input stray capacity (excluding Miller capacity) and Gbi 

is the input damping (excluding the neutralization coil loss).
If Gia is the conductance of the neutralization coil loss with magnifica

tion Q, then

G12 ~ Q ’

and the output admittance Y of the first tube is given approximately by 

y _ 1 1 S'CTzQ + QiQa2) , . „ gm .
22 r„ + (G. + Gm)(1 + Qla2) + (G. + Gal)(l + Qi«2) (74)

where a = (oj/wo) — (wo/w). This means that the midband output 
conductance is reduced to I/r'p. where

4 = A + (75)
rp rp (G, + Gbi)

while it can be shown that the available midband power gain is
9mTp

G. '
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The effect on the contribution of the third stage is negligible, as can 
be seen from Eq. (73) in which l/rp does not appear explicitly. It is true 
that the noise contributions of the second-stage shot noise will be increased 
as l/rp is increased, as may be seen from Eq. (72), but this contribution 
is so small in any case that the over-all effect is insignificant.

Another, and more serious, effect of the grid-plate circuit of the first 
tube is that the output susceptance is increased by a factor gm/(G, + Gm). 
This narrows the bandwidth of the interstage coupling and causes the 
shot noise of the second tube to contribute appreciably at frequencies far 
from the midband unless Cop is small.1

The 3-db bandwidth of the single-tuned input circuit is equal to

________ G,________
2ir(Ci + 2CSP + GA)

where Ci is the input capacity apart from that of the tube. It must be 
remembered, however, that as shown in Sec. 13-6, the equivalent thermal
noise constant-current generator, which gives a noise power equal to that 
produced by the losses in the neutralizing and input circuits, has a mean 
square value equal to

Cl + Cgp + Ckg
Q

and not to
Cl + 2C0P + Cig 

Q ■

Nothing has been said in this discussion about the effects of cathode- 
lead inductance. This might be expected to have an important effect 
on the performance of the grounded-cathode tube, because it is well 
known that feedback due to this inductance is responsible for the greater 
part of the input conductance of the tube. In Sec. 1312, however, it is 
shown that this inductance has no effect upon the noise figure and only a 
small effect on the available power gain of the first triode. Its effect 
on the over-all noise figure is thus very small.

In Table 13-4, the noise figures of a number of practical amplifiers 
using this circuit are given. It can be seen that they represent a con
siderable improvement over any cf the other arrangements listed.

A Practical Grounded-cathode-triode-Grounded-grid-triode Amplifier.— 
The circuit diagram is given in Fig. 1313; photographs of the unit are 
shown in Figs. 13-14 to 13-16. This unit was designed to replace the first 
three i-f stages of a radar receiver that employed a type 6AC7 grounded- 
cathode pentode input stage. The output and power connections there
fore are made through a built-in plug which plugs into the socket of the 

1 This is why it is necessary to tune out the grid-plate capacity of the first tube 
to get optimum noise figure (see footnote 2 on p. 657).
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third tube of the original receiver. The input cable, which is attached to 
the unit, goes to a crystal mixer with an output resistance of 300 ohms. 
The capacity of the mixer plus that of the cable is about 30 pul. Only 
minor alterations in the original receiver were necessary to accommodate 
this unit. Because of space limitations the input circuit coils had Q’s of 
only about 120. The average noise figure in production was about 
1.6 db. The input network is a degenerate “ir” or “inverted L” net
work, as shown in Fig. 13-13. It is designed to operate into an input

Fig. 1313. Circuit diagram of practical grounded-cathode-triode-grounded-grid-triode 
input amplifier.

capacity of 7 ppf plus 2.4 ppf due to Miller effect, and it is transitionally 
coupled at a crystal resistance of 500 ohms. As a result, with the average 
crystal resistance of 300 ohms, it is somewhat less than transitionally 
coupled. The first tube is neutralized by Li, which resonates the 1.2-^f 
grid-plate capacity. Neutralization of the first stage causes an 0.25-db 
improvement in noise figure. The cathode-plate capacity of the grounded- 
grid 6AK5 tube, V2, is 3.1 mmU which is very high. It wasfound desirable 
to neutralize1 the cathode-plate capacity by L2.

The direct current flowing between the cathode of V2 and ground 
follows a devious route: through R3, which supplies grid bias, and then 
through Li, L3, and Lt to ground.

1 Use of a type 6J4 or 6J6 triode for the grounded-grid stage would be much better. 
The type 6J6 tube is best employed with only one of its triode sections functioning, pins 
1, 3, 4, 5 being connected star-fashion to the tube socket center pin and grounded. 
Because of the large cathode-plate capacitance of a triode-connected grounded-grid 
6AK5 (resulting from the internal connection of suppressor and cathode) the type 
6AK5 makes a very inconvenient grounded-grid stage.
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The type 6AK5 was selected as first tube because of its excellent 
noise figure. Its use as the second tube, in the grounded-grid stage, was 
purely a matter of convenience.

The neutralizing coils L, and Lg 
generator to the input terminals, 
broken off in sockets Fi and Vt 
in turn and so adjusting L, and 
Lt that no output was obtained 
at the center frequency.

This amplifier was produced 
in considerable quantity. When 
the correct values of the neutral
izing inductances were found for 
the prototype, the coils for other 
amplifiers were made by repro
ducing these inductances with a 
5 per cent accuracy. These 
coils were then soldered into the 
amplifiers without further ad
justment. The interstage cir-

were adjusted by connecting a signal 
placing a tube with one heater pin

Fig. 13-15.—Side view of Fig. 
13-13.

Fig. 1316.- Bottom view of Fig. 13-13.

cuit between Vi and Vt is very broad, and therefore 5 per cent accuracy 
suffices for L3 also. All the other coils arc reproduced with an accuracy 
of 2 per cent. '

Separate d-c returns are provided for the crystal mixer and the grid 
of Vi by the use of a blocking condenser Co The choke coil L,, in 
parallel with Lt, forms one of the members of the degenerate ir-network. 
A decoupling filter, consisting of Ct, C3, Ct, Lt, and L3, is connected 
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Interstage coupling coil
Fig. 13-17.—Grounded - plate-triode- 

grounded-grid-triode input configuration.

between the end of Li and the telephone jack which is used for connecting
in a meter for measuring crystal current.

Grounded-plate-triode-Grounded-grid-triode Input Configuration.— 
Because this amplifier configuration has been investigated at a number of 

laboratories, a short discussion1 
will be given here.

The basic circuit2 is shown in 
Fig. 13 17. The cathode of the 
first tube is tapped down on the 
interstage coupling coil so as to 
present the optimum admittance 
to the grounded-grid tube for 
minimizing the second-stage noise 
figure. Since the input conduct
ance of the grounded-grid stage is 

large, the bandwidth of this circuit is very large.
The available power gain of the first stage is gmi/Gtl. If G^ is the 

optimum conductance to present to the second stage, then the over-all 
noise figure of the first two stages, ("assuming that the cathode-grid 
capacity is tuned out) is given by

jp _ 1 I PiGbi . (Gbi + G»i)2 + Fl i p

G I
। G,i pArsi . fin + G.i)2 + Y2 p 1) 

gmi L G.2 G,i 1J J

This expression is very similar3 to that for the noise figure of the 
grounded-cathode-triode-grounded-grid-triode circuit, except that sec
ond-stage noise is reduced in the ratio instead of (Gtl/gml)2.

To the first order, G,i ~ G,2 and Fi ~ F2, where Ft and F2 are the 
noise figures of the first and second stages respectively. Hence

F = 1 + (Ft - 1) (1 + - 1 + 2 VGmIE, (1 +

_______, 9/^
= 1 + 2 + — > (77)

Qm

so that the noise figure of the combination does not differ appreciably 
from that of the first stage above.

1 For a more detailed analysis, see G. C. Sziklai and A. C. Schroeder, Proc. I.R.E., 
33, 707-711, October 1945.

2 This optimum adjustment of the grounded-plate-grounded-grid combination 
requires either two separate triodes or a dual triode with separate cathodes, as does 
the grounded-cathode-grounded-grid combination.

3 The slight reduction in induced grid noise, which is a feature of the grounded- 
plate triode, has been neglected in deriving this expression.
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The output admittance of the combination is that of the single 
grounded-grid stage, so that the presence of third-stage noise can be 
allowed for by suitable increase in Gbi, as for the grounded-cathode triode 
grounded-grid triode. The lower available power gain of the grounded- 
plate triode means that the contribution of third-stage noise is corre
spondingly greater.

A more powerful objection to the use of this circuit is its tendency to 
instability. This point has already been made in the general discussion 
of the grounded-plate circuit given in Sec. 13-8, and only a short analysis 
will be given here. With the circuit of Fig. 1317 the load conductance 
Gl presented to the output terminals of the grounded-plate tube is large 
compared with gm. In fact

Gl = (78)
<'»2

where Gs2 is the conductance presented to the cathode of the grounded- 
grid triode.1

It was stated in Sec. 13-8 that the input conductance of the grounded- 
plate tube is given by

G - Bkg(GLBkg — g^Bf) .
' ~ (Gb + gmy + (Bkg + BLy

where Bka and BL are the grid-cathode and load susceptances respectively.
If the grid-cathode and load capacitances are tuned out, Gg is sym

metrical about midband frequency but is negative unless B^ is increased 
by the addition of extra capacitance, since gmBL is greater than GLBkg. 
To prove this it may be observed that the total cathode-ground capaci
tance load in the grounded-plate tube is

Ci = Ckk + C2 + (Ckk 4- C2 + Ckg), (80)ot2

when Ckk, Ckg are the cathode-heater and cathode-grid capacitances and 
C2 is the wiring and tube socket stray capacitance.2 If Co is the self
capacity of the neutralizing coil, the total grid-cathode capacitance of 
the grounded-plate circuit is

Ckg + Co
and

Gi(Ckg + Co) - gmCi = ^(C2 + Ckk - Co) - gm(Ckh + C2), (81) 
tra2

1 In deriving the expression it has been assumed that the transconductances of the 
two triodes are the same and that l/rp2 » Gli, the load conductance presented to the 
plate of the grounded-grid tube.

2 It has been assumed that Ckh, Ckg, and C2 are the same for both triode tubes.
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which is negative unless
/p \Co > (C, + Cm)(— + 1)-
\ Qm /

If the grid-cathode capacity is not tuned out, the input conductance 
of the tube is asymmetrical about midband and becomes negative at high 
frequencies when Co is sufficiently large.

In either case the danger of instability at high frequencies is apparent. 
It may prove necessary, therefore, to introduce additional resistive loss 
in the input circuit1 or to increase the grid-cathode capacitance to prevent 
oscillation. Either course of action increases the noise figure, and the 
second lowers the bandwidth of the input circuit.

To sum up, it may be said that this circuit is inferior to the grounded- 
cathode-grounded-grid circuit in noise figure and stability. It has a 
slight advantage in input capacity ; and at frequencies so high that $Gr is 
comparable with G,.^, the lower induced grid noise contribution could 
possibly swing the scales in favor of the grounded-plate grounded-grid 
circuit. Usually, however, the grounded-cathode grounded-grid circuit 
is to be preferred.

In one particular simplification of the grounded-plate triode grounded- 
grid triode circuit, called the “cathode-coupled circuit,” the cathode 
of the first triode is directly connected to that of the second, thus permit
ting the use of a double triode such as the type 6J6, having only one 
cathode. The noise figure of this simple combination is poorer than that 
of the grounded-plate grounded-grid circuit in which impedance stepup is 
employed between the first and second cathodes. The cathode-coupled 
combination is equivalent in noise figure to a single grounded-cathode 
triode with twice the value of and is equivalent in gain to a single 
grounded-cathode triode with half the transconductance. Somewhat 
better noise figures can be obtained, however, with the cathode-coupled 
circuit than with grounded-cathode pentode amplifiers.

13-11. General Considerations of the Effect of Feedback on Noise 
Figure.—In this section, it is shown that within certain limitations, the 
introduction of feedback does not influence the noise figure2 but does 
affect the bandwidth of the input circuit by changing the input admit
tance of the first tube. Consider first the effect on noise figure. In Fig. 
13-18 is shown a signal source A and amplifiers B and F. Feedback can 
be introduced by closing the switch 8 so that some of the output voltage 
of the amplifier B is transmitted through the network E back to the input

1 Thia was, in fact, the means employed to obtain stability in a grounded-plate- 
grounded-grid amplifier built at another laboratory.

! This subject has been treated previously by W. A. Harris, “Fluctuations in 
Vacuum-tube Amplifiers and Input Systems," RCA Rev., 6, 505-524, April 1941; 6, 
115-124, July 1941.
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terminals. Examples are feedback due to an impedance in series with 
the cathode of a tube (a class that includes the cathode follower) and 
feedback due to a capacitance or resistance connected between grid and 
plate of a single grounded-cathode stage. On the other hand, the 
grounded-grid amplifier, which is also a feedback amplifier, because its 
output current flows through its input circuit, utilizes feedback of another

IE)
Fig. 13-18.—Block diagram of amplifier with feedback.

type. The point I denotes an independent source of noise within the 
amplifier B, and and QD denote the voltage gains between the input of 
B and I and between I and the output of B, respectively; fi is the voltage 
gain of the network E and is assumed to be less than unity. In the 
argument that follows it is assumed that

1. The network E and the amplifier B transmit signals only in the 
directions denoted by the arrows.

2. The amplifier B has sufficient gain to make sources of noise within 
amplifier F negligible.

3. The network E contains no sources of noise.

The noise figure will be computed with no feedback (S open). The 
noise source I is replaced by a voltage Ei located in the signal source such 
that E, gives the same voltage at the output of the amplifier B as the 
actual source of noise. This causes the available noise power of the 
signal source to increase by

(82)

According to the definition of noise figure given in Sec. 13-2

f - 17 w (83i
3

where the summation is taken over all sources of noise including the 
thermal noise of the signal sources, whose voltage is E3.

The voltage at I is E^ When feedback is introduced by closing 8, the 
voltage at I becomes E], where

= Ej + GfiE],
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and where a = QnQc the voltage gain without feedback. This equation 
may be solved for E' to give

It should be emphasized that a/, the total gain of the networks around 
the loop, is independent of the location of the point I. Therefore all 
independent noise voltages within the loop, including those at the input 
(such as the signal source) and at the output, are modified by the same 
factor1 1/(1 — a/) so that the noise figure is independent of a/.

In many wide-band amplifiers, however, the above assumptions (and 
therefore the previous argument) are not strictly valid. In the first 
place, the feedback network E usually consists of passive elements only, 
and signals can be transmitted through it to the output of the amplifier B. 
If the amplifier B consists of a single wide-band stage with its inevitable 
low gain, the signal fed through E is not negligible and causes the equiva
lent voltage pertaining to the signal source I, to be modified by a different 
factor from that which modifies other sources located within the amplifier 
B. In such cases second-stage (amplifier F) noise must be considered 
also and becomes more important as the gain of amplifier B is reduced by 
introducing feedback. In some cases, also, the feedback network con
tains resistors or may itself be a resistor from grid to plate of the amplifier 
tube. Such resistors, of course, are sources of thermal noise.

When these conditions prevail, the general argument given previously 
is not completely valid, and the noise figure changes with introduction of 
feedback, although the change is usually small.

Another situation that is not covered by this argument is that in 
which a source of noise within the second amplifier F is coherent with a 
source within the first amplifier. By proper choice of the value of g, 
these sources can be made to nullify each other, and an improvement of 
noise results. Sources of noise of this type are those due to partition 
of the electron stream between the screen grid and plate in a multigrid 
tube so that at one instant a fluctuation in the screen-grid current is 
accompanied by a fluctuation in the plate current of equal magnitude but 
opposite sign. By introducing feedback between the screen grid and the 
input terminal of the tube, the fluctuation in the screen current can be 
made to cancel the effect of the fluctuation in the plate current. This 
matter is discussed in Chap. 12 and briefly in Sec. 13-13.

Change of Input and Output Admittance Due to Feedback and Change 
in Available Power Gain Due to Feedback and Presence of Load.—Here the 
change of input admittance is calculated for a common situation shown

1 See H. W. Bode Network Analysis and Feedback Amplifier Design, Van Nostrand, 
1945, particularly pp. 33-34.
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in Fig. 1319. One input and one output terminal of the amplifier are 
grounded. Feedback is produced by an admittance Y12 connected 
between the ungrounded terminals. When Fi2 is zero, Fn and F22 are 
the total input and output admittances, including the source and load 
admittances.

Fig. 13-19.—Amplifier with admittance connected between input and output terminals.

Take Yu = G. + Gt + jYi + Y10, where Gs is the transformed source 
conductance, Fi is the susceptance associated with the input circuit, Gi 
is the input circuit loss, F10 is the input admittance due to sources of 
feedback other than Y12 and includes the transit-time damping, unless, as 
in a grounded-plate circuit, this is part of Y22.

It is assumed that Fn is independent of Y22 (an assumption that is 
not valid if the amplifier consists of a grounded-grid amplifier whose load 
admittance Fl is small compared with its dynamic plate conductance 
l/rp). The amplifier may contain any number of stages. It is assumed 
here that at the center of the pass band, the phase angle between the 
input and output voltages is either zero, as in the case of a single-grounded 
grid or cathode-follower stage, or 180° as in the case of a single-grounded 
cathode amplifier. The total voltage across Fi2 is then equal to Bi(l ± g) 
where the upper sign pertains to a phase angle of 180° and the lower sign 
to a phase angle of zero. The current 112 flowing through Fi2, is then

In = — Fi2Bj(l + g). (85)

The voltage gain of the amplifier from input to output is g.
The input voltage Ei is the same as though an admittance Yf were 

connected in parallel with the input and the feedback through F12 
were disconnected, where

Yf = - = y12(i ± g). (86)

Let g be the voltage gain with the admittance Yu present and d be 
the voltage gain with Yi2 equal to zero. The connection between these 
two gains can be found by writing down the condition that the current 
12 flowing out of the amplifier should equal the current flowing in the load 
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plus the current flowing in the feedback network in both cases. One gets

and
A = iF^gE, - £^(1 ± g) (87)

A — i + izdEi. (88)
Equating these expressions, one gets

a+p2

1 + p-2' 

y ss

(89)

The first term in the numerator is due to signal coming through the 
tube, and the second term is due to signal transmitted from input to
output terminals through F i2. 
yields

Y?

Substituting the value of g into Eq. (86)

Futi ± a) 
1 + p? ’ 

J 22

(90)

If Yis is small compared with Fss, the voltage gain is not altered by 
connecting the feedback admittance, which means g is very nearly equal 
to a.

It can be therefore concluded that the output voltage is modified in 
two ways by the use of this type of feedback. First, the loading on the 
signal source is changed; this changes the input voltage considerably and 
constitutes a relatively large effect. The second effect—the change in 
voltage gain—is usually relatively small. The change of loading changes 
the pass band of the input circuit. If Fx, averaged over the pass band, 
contains a positive conductance or a negative capacity, the bandwidth can 
be made to increase; but if it contains negative conductance or a positive
capacitance, 
will oscillate, 
is given by

the bandwidth decreases. If Yi> ~ — Fn, the amplifier 
The total input admittance YA in the presence of feedback

F(i — Fu + Yr = Fu + YAI ± a)
1 + p-2

y 22

(91)

Output Admittance.—To find the output admittance, it is necessary 
to find the output voltage Ez when a current source J is applied across the 
output terminals. Let E, be the voltage across the input terminals of the 
amplifier and let Iz, the current flowing out of the amplifier, be related 
to the input and output voltages Es and Ez by the linear equation

— Iz~ +GmEi + g?Ez, 

where Gm is the generalized transconductance of the amplifier and gT is the 
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generalized dynamic conductance of the amplifier. It may be noted that

gP + Yl — Yu,

where Ft is the load admittance. If Kirchhoff’s second law is applied 
to the independent node pairs formed by the input and output terminals 
respectively, one gets

J = FnfEa — Ei) + (YL + gP)Ei ± GmEi,
0 = YnEi + - Ei),

and solving for Ei gives

J = Yu + y1£(yn ± Gm) 
Kn + Yu

Ei,

so that the total output admittance Y'n is given by

vi _ v । i GA) .
Z 22 — Z 22 4----------y, ---------- I92)Z H + Z 12

Available Power Gain.—To find the available power gain when the 
load Yl is considered part of the feedback amplifier it is first necessary 
to find the output voltage Ei when a current I, flows into the input 
terminals of the amplifier and when an additional load Y'L is connected. 
If Ei is the voltage across the input terminals, then application of Kirch
hoff’s second law to the two independent node pairs formed by the input 
and output terminals gives

I. = EiYn + (Ei - Ei)Yi,
0 = AGmEi 4- gpE2 + (Y l + Yl)Ei + (Ei — Ei)Yu, 

so that
T _ ~ Yn(±Gm — Bn) — (Tn + Yn)(gP + Yl + Y'L 4- Kis) „
' ±Gm - Yu Ei

Yu(Yu ± Gm) + (y22 + y'bAYh + y12) „ = ---------------------- ~------ —-----------------------  th n

The power delivered to the load Y'L is

E^l = G’L\Gm + yi2)|V.2

^»(yn ± Gm) + (yu + y^KTn + y12)i2'

If all the admittances in the circuit are conductances, this power is a 
maximum when

Y'l = G'L = Ga + G12(Gh + Grn) 
(Gn + Gl2)

(92a)

Because the available input power to the amplifier is II/4G,, the 
available power gain W is given by
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__ ___________ G,(G„ + Gn)2_____________
(Gu + G12)]G22(G11 + Gl2) + G12(G11 + Gj]

(93)

where G22, Gu, Gi2, G,, are the conductive components of F22, Yu, Yi2, Y, 
respectively.

If there is no feedback of this type present, Gi2 is equal to zero and
Expression (93) becomes

g.g;
G22(G, + Gi) (93a)W =

Equations (34a) and (34c), which give the available power gains of single
stage grounded-cathode and grounded-plate amplifiers with no load 
resistors connected, are special cases of Eq. (93a). In such cases, Gn 
consists of the output admittance of the tube.

•Equations (92a), (93), and (93a) do not apply accurately to a grounded- 
grid amplifier, because the input admittance of a grounded-grid amplifier, 
given by Eq. (22), depends upon the value of the load. At one extreme, 
when the dynamic plate conductance l/rp is large compared with the 
load admittance, the input admittance is approximately equal to g'mrpY L 
or (g + 1)Kl. At the other extreme (a situation that is frequently 
encountered in practice) 1 /rp is small compared with the load admittance 
Yl, and the electronic component of the input admittance becomes 
constant and equal to g^. In this latter case the results of previous 
discussions can be made to apply. The output admittance is equal to the 
output admittance of the tube plus the admittance of the load; and 
because the available power of a constant-current generator is inversely 
proportional to its internal conductance, the available power gain W 
with the load is equal to the available power gain without the load multi
plied by the ratio of the tube’s output conductance to the sum of the 
output conductance and the conductance of the load. The calculation 
of the output admittance and available power gain when the input 
admittance is not constant will not be given here but can be effected by 
evaluating the power output in terms of the input admittance and finding 
the value of auxiliary load that receives the maximum power.

13-12. Miscellaneous Types of Feedback and Their Effect on Noise 
Figure.—In this section two important cases of feedback are considered: 
(1) the grounded-cathode tube with resistance feedback from plate to 
grid and (2) the grounded-cathode tube with feedback provided by 
inductance in the cathode lead.

Feedback Produced by a Resistor between Input and Output.—A resistor 
between the grid and the plate of a grounded-cathode amplifier has been 
widely used as a means of increasing the over-all gain-bandwidth product. 
This subject was discussed at length in Chap. 6. It can be seen from 
Eq. (88) that if Fn is a pure conductance Gn, the input admittance Yr 
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due to feedback, consists of a conductance at the center frequency of the 
output circuit while at other frequencies it contains positive and negative 
susceptances when the load also contains positive and negative susceptive 
components. This conductive component causes the bandwidth of the 
input circuit to increase and the voltage output of the amplifier to decrease 
because of the greater loading on the signal source.

Two possible applications of this feedback system are of interest. It 
is possible to use resistor feedback to widen the pass band of the input 
network if the bandwidth of the latter is too narrow to give the required
over-all amplifier bandwidth when 
the source conductance is chosen 
to give optimum over-all noise 
figure. This possibility is dis
cussed in greater detail in Sec. 
13 14. It is also possible to use 
resistor feedback in the first tube 
of the main amplifier chain so that 
the load into which the single- or 
double-triode input circuit works 
is at a very low effective tempera
ture. The distinction made 

Fig. 13-20.—Pentode with plate-grid resist-
ance feedback.

above between these two applications is not a fundamental one. The 
theoretical results derived for one case apply also to the other.

The basic circuit with resistance feedback is given in Fig. 13-20. It is 
assumed that a pentode stage is used so that grid-plate capacity feedback 
can be neglected. If the circuit is driven from a source Gs, and if the 
effects of cathode-load inductance and finite transit angle are neglected, 
it has been shown1 that the midband noise figure of the stage is given by

f _ < I PiGbi . Gi2 (gm + Gs 4" Gbi + G]2)2
} ~ G. + Gl (gm - G^f

I \ M Urn) (Gt + Gbi + G12)2 .
+ G...... H G,^’ (94) 

y /

where Gbi is the sum of the input circuit loss and the transit time con
ductance and Gi. is the load conductance.

It can be seen from Eq. (94) that for values of G!2 small compared 
with gm, the noise figure at midband is the same as if Gii were connected 
across the input terminals. When Gu approaches g,n, the noise figure 
approaches infinity, but by reference to Eq. (87) it may be seen that this

1 A. B. Macnee, RL Internal Report 61-10/1/45.
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corresponds to a value of Gu which gives zero gain, a situation of no 
practical interest.

All the formulas derived earlier in Sec. 1311 can be applied to the 
amplifier of Fig. 13-20. From Eq. (90), Gf, the total input admittance 
at midband due to feedback, is given by

Glt^m + G'l) 
G'l + G12 (95)

where G'L = Gl + (l/rP). Because the tube is a pentode, l/rp can be 
neglected in comparison with Gl so that

Gf
Gn(gm + Gl) Gitgm 

Gl + G12 Gl
(95a)

The output admittance G22 and available power gain W, respectively, 
at midband are given, from Eqs. (92) and (93), by

1 . I GNG, + Gbi + g™) „ n + Gs)Gi2
g22 - - + Gl + + G/+A GL'

w =
________________________ G,(gm - GiN________________________

(G, + Gbi + Git) Gl) (G. + Gbi + Gi2) + Gi2(Ge + Gbi + dm) 
’ (97)

________________________ Nil_____________________
(G, + Gbi + Gi2)[Gl(Gs -f- Gbi + Git) + NN + G,)]

= _______ NN__________(97(1'1
(G, + G„1 + Gn)^

The condition for transitional coupling is

2CiC2[jmGi2 + GuGtt + Git(Gn + G22)] = [GnC2 + G22Ci

+ GifiCi + Ct)]2, (98)

while the 3-db bandwidth ffi of the negative feedback pair is given by

m — ^SmGit + GuGt. + Gi2(Gh + G22)]| ,...
2t VCN't ’ J

where Ci and Ct are the total capacities to ground across the input and the 
output circuit respectively. In the important case when Ci = Ct and 
Gl» Gu, l/rp, Gn, then the condition for transitional coupling becomes

2gmGu « Gl,

® ~ 2iC MmG12 = (99a)

This last equation implies that the over-all 3-db bandwidth of the stage, 
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when negative feedback is applied, is the same as if there were no negative 
feedback but a conductance Gl connected across each tuned circuit. In 
this latter case the noise figure would have been

D I B
F = 1 + + +----- 0? (G, + G„ + Gl)2;

kJ 3 (j 3 (-J g

and because Gl = » Gn, the noise figure for the same 3-db
bandwidth is considerably improved by the use of resistance feedback.

It can be shown that the noise figure of the stage, with resistance 
feedback, at frequencies other than midband is

R 4-^
n P I P “•a ' n2F - 1 + +---- [((7s + GBiy + (94o)

where a = (a/atj) — {a3/a).
It may be seen from Eq. (94a) that although the pass band of the 

input circuit has been appreciably increased by feedback, the variation 
of noise figure with frequency is virtually unaltered by feedback. This 
result is in full agreement with the general arguments given in the center 
part of this section.

Feedback by Cathode-lead Inductance.—It has been shown that feedback 
due to cathode-lead inductance produces an input admittance, between 
grid and cathode terminals, that contains a conductive component.1 If 
Lk is the cathode-lead inductance and if the reactance of this inductance 
is small compared with the other impedances in the circuit, particularly 
the grid-cathode reactance l/wCia, then this conductance Gc is given 
approximately by

Gc = a2LkCtagm,

where a is the angular frequency. If grid-plate feedback is also present, 
it has been shown by Sturley2 that the total input admittance due to the 
two effects is their sum.

This input conductance lowers the available power gain of the tube 
and hence increases the contribution of the second-stage noise to the 
noise figure in the same way as would a conductance Gc connected across 
the input terminals of the tube at effective noise temperature zero.

If the first tube is a triode, however, the cathode-lead inductance has 
no effect on the first-stage noise figure, although this is not true for a 
pentode. The equivalent noise representation for the triode case is 
shown in Fig. 13-21 where the equivalent shot-noise generator lies

1 M. J. O. Strutt and A. van der Ziel, Proc. I.R.E., 26, 1011-1032 (1936).
2 K. R. Sturley, Radio Receiver Design, Part I, Wiley, New York, 1943, pp. 50-53.
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Fig. 13-21.—Equivalent noise representation 
of a triode with cathode-lead inductance.

between plate and cathode. The cathode-lead inductance feeds back 
part of the shot-noise current in antiphase to the grid. It can be shown 

that the mean square current 
flowing from the shot-noise gen
erator in the output lead that 
grounds the plate is reduced in 
the same ratio as the available 
power gain. The noise figure of 
the first stage is thus left un
changed. In the pentode case, 
however, the partition noise cur
rent that flows between screen 
and plate is unaffected by the 
presence of grid-cathode induct

ance; therefore, in a pentode, the noise figure is made worse by this 
feedback.

The mean square noise current flowing in an output short circuit, 
produced by the thermal-noise and induced-grid-noise generators in the 
input circuit is

Qm(Gs + PiGbi)_____ 4 kTR
(G. + GB1 + GW + Y2sD’

where GBi includes the transit-time loading but not Gc. In deriving this 
expression, it has been assumed that the grid-plate susceptance is zero.

It can be shown that the shot-noise constant-current generator 
produces a mean square output short-circuit current approximately 
equal to

gm[(G'« + Obi)2 + I71] , „ „„
(g;+Gbi + ga + Yts”10-

Hence, the noise figure of the first stage above is

Fl =i + + iw+ni«« (100)
Cr s Ctg

which is independent of Gc.
The available power gain is now

________gii+pO»________. Hon
(G, + gb1 + Gcy + y2’ k u 7

and since the output admittance is unchanged at l/rP, the contribution 
of second-stage noise has been increased by the ratio

(Gs + Gbi + GA- + y? I'ino'i
(G. + GBA+YI '

For some purposes it is convenient to regard Gc as part of GY, the 
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noise temperature of G„ being taken as zero. The formulas for the over
all noise figure of an amplifier, derived earlier in this chapter, can then be 
used unchanged, provided that the equivalent shot-noise resistance of the 
triode is assumed to be

„ (G, + GBl - Gc)2 + Y]
" (G, + GB1y + Y] ’ (103)

where Gbi is now assumed to contain G.. The available power gain is

____ g*mrrG,
(G. + GBiY + Y2' (104)

When the first tube is a pentode,, the rigorous analysis is more com
plicated because the oresence of cathode-lead inductance causes some of

Fig. 13-22.—Equivalent noise representations of pentode with cathode-lead inductance

the screen shot-noise current to flow in the anode circuit. If this effect 
is neglected, however, as is justifiable for small values of cathode-lead 
inductance, the noise figure of the first stage assumes the form

F, = 1 + +
(G.+GbiY + F]

G,
R R^G. + Gbi - Gcy + Y2] 

(G, + MF + F? (105)

where Rac, R^ are the equivalent shot- and partition-noise generators 
of the first tube. Their magnitudes are given by Eq. (17).

The effects of cathode lead inductance are most easily represented 
by the equivalent circuit of Fig. 13-22. The voltage generators cjc, cjs 
are given by

ejc = 4kRncT,
S = 4kRmT. (106)

If second-stage noise is important, its contribution can be allowed for by 
suitable increase of R„„

13-13. The Correlation between the Induced Grid-noise and the 
Shot-noise Currents.—Until now the correlation between induced grid
noise current and shot-noise current has been neglected, and it has been 
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assumed that these currents could be treated as if they were statistically 
independent. In this section the correlation is taken into account, and 
the possibility is considered of using the correlation to obtain improved 
noise figures at high frequencies, where induced grid noise is very 
important.

The discussion is based on the grounded-cathode triode circuit of Fig. 
13-23. The analysis holds equally for the grounded-grid case as far as

first-stage noise figure is concerned, but not as regards available power 
gain.

In order to simplify the analysis it is assumed that the feedback 
susceptance between input and output terminals is neutralized over the 
effective amplifier pass band and that the input circuit is a single-tuned 
circuit. The effects of transit time on the magnitude of the equivalent 
shot-noise resistance are ignored as are the effects of cathode-lead induct
ance on the first-stage noise figure. The last assumption is justified 
by the discussion on this subject in Sec. 13-12.

Because of the approximate nature of the treatment and the still 
tentative theory on which it is based, it must be emphasized that this 
discussion can only be regarded as qualitative. The numerical results 
given are provided for illustration and have not been checked experi
mentally. Almost certainly they are too optimistic as to what can be 
done to cancel out induced grid noise at high frequencies.

The following symbols will be employed:

C, = the total input capacity.
Gt = the transit-time damping conductance.
Gi — the input coil losses.
G, = the source conductance.
L, = the input coil inductance.
Yi = the total input susceptance.
Y, = the total input admittance equal to Gi + G, + Gr + jY i.
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For convenience Gr is regarded as noiseless, the induced grid current 
being associated directly with the shot current.

As stated in Sec. 13 3, the induced grid-noise current is is related to 
the cathode shot-noise current i, by the equation

where u is the angular frequency and r the cathode-grid transit time. It 
has been assumed in deriving this formula that ie and ipk flow from the 
cathode to the grid or plate respectively. But the steady direct current 
in a tube flows from plate to cathode. Accordingly, if the grid-cathode 
voltage produced by it is is/Y„ then this voltage produces a current 
9mis/Y, from plate to cathode or a current — gmis/Y. from cathode to 
plate.

Hence, the noise sources in the first stage produce a total noise current 
in the short-circuited output lead equal to

The mean-square value of this current is

(FJ2 |FJ2 Y, - g™jo |

and the noise figure F, of the first stage can be written

„ , . if , i2 . rfi — 1 + + 22 Y, g™ju 5
*■9 hym &

= 1 + J + KG. + G1 + G,)2\ + (y, - (107)

from Eqs. (10), (15), (16), and (17). When Yi = 0, Fi reduces to the 
familiar expression for the midband noise figure of the first stage:

Fi = 1 + % + (G. + G, + Gr)2; (108)

when Ei = \/0Gr/!{„„; however, Fi is given by 

C RFi = 1 + Jv + y (G. + Gi + G.)2. (109)

Therefore, by proper choice of the susceptance of the input network it is 
apparently possible to eliminate the induced grid-noise contribution, at 
least at a single frequency, and to obtain a noise figure determined by coil 
losses and shot noise alone.
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This optimum value of Fi is directly proportional to the angular 
frequency a since G,/a2 is independent of frequency. Hence Fi should 
be the susceptance of a pure capacity Cr; that is, the input circuit should 
be capacitive at the midband frequency of the over-all amplifier. In the 
case of the type 6AK5, connected as a triode, where

R«, = 385 ohms,
Gr = 12 gohms at 30 Mc/sec,
0 = 5,

this capacity comes out to be approximately 2.0 ggf.
In any practical case the input capacity C, will be appreciably larger 

than 2.0 and the input circuit must then consist of a coil that resonates at 
midband frequency with Ca — CT. Let F' = Fi — then Fi
can be written

U RFi= l+^ + — (G. + GMGJV1 + +) (110)

tvnere
wfiCg — Cr) (W uA .....

V - R+6/ +Gr U ~ -/ (ll )

If GMt» Gi + Gr, the optimum source conductance when a = 0 is 
given approximately by

G‘™ £

and
Fj ® 1 + 2 VGCT,

whereas in the case Fi = 0, the conventional midband case, 

p — ¡GT+^Gt

'’°Pt \ Rr„
and

Fi ~ 1 + 2 y/(Gi + 0G,)ReQ.

Thus in cases where &Gr is of the same order as or larger than Gi an 
appreciable improvement in noise figure can, at least ideally, be obtained. 
To achieve this improvement a certain price has to be paid. The transfer 
characteristics of the input circuit are now asymmetrical; and if the 
amplifier is fed from a source such as a crystal, whose conductance can 
vary within appreciable limits, it is difficult to correct for this asymmetry 
later in the amplifier. It might be suspected that the mistuning would 
produce a loss in the available power gain of the stage. This is not the 
case, however, at least for the grounded cathode, as the decrease in 
G,,opl due to the improved noise figure more than compensates for the 
effect of mistuning, the ratio of the available power gains in the resonant 
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and mistuned cases respectively being

which is less than 1, where Gc is the input conductance due to cathode-lead 
inductance. The difference in the available power gains, however, is not 
large.

The mistuning discussed above is likely to be really worth while only 
at high frequencies where the induced grid noise is important and the 
asymmetry produced by mistuning relatively small. To illustrate the 
magnitude of the improvement obtained by mistuning consider the case 
of the type 6AK5 triode-connected, when the midband frequency is 
180 Mc/sec.

If the input coil magnification is 150 and the total input capacity 
14 ppi, then

Gi = 90 gmhos when the circuit is mistuned,
= 100 pmhos when the circuit is midband resonant, 

and
Gr — 400 gmhos.

When the circuit is midband resonant, the optimum source conductance is

Gs.opi = 2,340 ^mhos

and the theoretical noise figure is

F, = 3.2 = 5.0 db.

When the circuit is mistuned, the optimum source conductance is

Gs,„ct = 690 ^mhos

and the theoretical noise figure is

Fi = 1.9 = 2.75 db.

Thus it is apparently possible to improve the single-frequency noise 
figure of the first stage by 2.25 db by mistuning the input circuit 15 
Mc/sec lower than band center. As stated already in this section this 
result is probably too optimistic, but an appreciable improvement in noise 
figure should be obtainable, and rough experimental evidence exists of this 
trend.

The variation of noise figure with frequency may be obtained from 
Eq. (110). In the present case the noise figure for the mistuned amplifier 
has deteriorated 0.5 db at frequencies ±4 Mc/sec from the midband.
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Throughout this chapter, it has been assumed that induced grid-noise 
and shot-noise currents can be regarded as statistically independent if the 
input circuit is midband resonant and the pass band of the amplifier 
geometrically symmetrical about midband frequency. The validity of 
this assumption will now be established.

Equation (107) can be written in the form

Fs = 1 + gl * ßGr + (G. +Gs + GA2 + Y2 — ^GRn (112)

If Yi is antisymmetrical about midband frequency, the average noise 
figure at frequencies geometrically disposed about the midband is equal to

i + [(G. + Gs + ga2 + y?]

if the variation of Gr over the frequency band is neglected. But this is 
just the result that would have been obtained if the correlation between 
the two noise currents had been ignored.

13-14. Input Coupling Networks.—The purpose of the input coupling 
network is to transform the conductance of the signal source to a value 
that gives the optimum noise figure consistent with the bandpass and 
pulse-response characteristics required of the amplifier.

The input networks discussed in this section are of two general types: 
(1) the single-tuned circuit, usually realized as autotransformers, shown 
in Fig. 13-24a, 6; (2) the double-tuned inductively coupled circuit, which 
may be realized in any one of the equivalent forms of Fig. 13-25a, b, c.

In general the single-tuned circuit is used whenever it permits the 
bandwidth requirements to be met with the source impedance trans
formed to give optimum noise figure. This circuit employs the fewest 
number of parts, occupies the least space, and is easy to align. Changes 
of source conductance produce bandwidth changes no more serious than 
those produced in any alternative input network, and the effect on pulse 
response of errors in tuning is very small.

If the input network bandwidth is too narrow when the source con
ductance is transformed for optimum noise figure, two courses of action 
are open to the designer. Either he can retain the single-tuned circuit 
and increase its bandwidth by lowering the source conductance or adding 
damping by one of the methods discussed in Sec. 13-12, or he can employ 
a double-tuned input circuit. Such a circuit has approximately double 
the bandwidth for the same transformed source conductance as the 
single-tuned circuit,1 and it has increased selectivity, which may prove 
valuable when image rejection is important. The double-tuned circuit

1 When the double-tuned circuit is transitionally coupled. If the circuit is under
coupled, this improvement decreases rapidly.
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has the disadvantages of increased size and complexity and greater 
dependence on circuit constants and tuning errors, particularly the 
latter.

The choice of input network to meet the design requirements of any 
particular wide-band amplifier thus necessarily involves some com
promise and is based on a knowledge of the bandpass, output admittance, 
tuning, and distortion characteristics of the alternative networks. It is 
the purpose of this section to provide this information in a suitable form. 
Extensive use is made of the results of Chaps. 4 and 5, where the theory of 
single- and double-tuned circuits is discussed.

Before the properties of the networks of Fig. 13-24 and 13-25 are 
considered in detail, the statement made in Sec. 13-3 will be justified. 
There it was indicated that the circuit of Fig. 13-2 provides an equivalent 
network for the transfer and output driving-point admittances of any 
type of input coupling.

By Thévenin’s theorem any two-terminal network containing both 
active and passive elements can be represented as a single-current 
generator J and an admittance Y, in parallel with it, where Yt is com
posed of a conductance G and a susceptance Yi. In the particular case 
discussed in this chapter J equals the sum of the signal current I, and the 
thermal-noise current whose mean square fluctuation i2 is

i2 = 4kTiGB, '

where Ti is the effective noise temperature of G.
If the network has an available power gain W, which will be unity 

when the network is dissipationless, then it is possible to split G into two 
parts, G, and Gi, where G, represents the transformed source conductance 
and Gi the network losses, such that

G, + Gi’ 
G = G, + Gi.

The noise current i can be regarded as composed of two statistically 
independent noise currents i, and ii whose mean square values are given 
by

(I, + h)2 = 4kTiGB,
I2 = 4kTG,B,
II = ikaTGiB,

connected across the input terminals of the tube, where aT is the noise 
temperature of Gi, which is the network of Fig. 13-2, as required.

One important point must be made here if confusion is to be avoided.
In discussing the noise figure of the first stage, reference to Eq. (53) shows 
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that it is necessary to know the admittance presented to the terminals 
of the first tube by the external circuit. The input tube conductance due 
to feedback (whether produced by cathode-lead inductance or grid-plate 
resistance as in the grounded-cathode tube or by direct cathode feedback 
as in the grounded-grid tube) does not appear in the expression for first- 
stage noise figure, although this conductance affects the available power 
gain and hence the second-stage noise figure. In calculating the transfer 
admittance or pulse response of the input network, however, this con
ductance must be included. If the input tube is a grounded-grid triode,

fa)

Signal source
(6)

Fig. 13-24.—Single-tuned input network; (a) simple form, (6) autotransformer.

this conductance is so large that the bandwidth of the input network is 
wide enough for all practical amplifiers. Hence when the various means 
for increasing the pass band of the input circuit are discussed, attention is 
confined to the grounded-cathode case.

The two specific input networks with which this section is concerned 
will now be considered, the simpler case of the single-tuned circuit being 
dealt with first. In both cases it is assumed that the source admittance 
consists of a conductance GA in parallel with a capacity Ca and that the 
input capacity of the tube, together with stray wiring and tube socket 
capacities, is CB. Unless otherwise stated it is assumed that the input 
conductance of the tube due to feedback is negligible in comparison with 
the output conductance of the input network.

The Single-tuned Circuit.—The simplest network of this type is 
shown in Fig. 13-24a. Here C, is equal to CA + CB, and this capacitance 
is resonated by L, at midband.

It is only by rare coincidence that Ga is equal to the value of source 
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conductance that gives an optimum noise figure. If the source is an 
antenna or a crystal, the most important case, Ga is generally very much 
smaller than this value1 so that some means of transforming Ga must be 
employed. The most commonly used method for achieving this is 
illustrated in Fig. 13-246, where the source is tapped down the input coil 
so that L, becomes an autotransformer. The conductance GB is the sum 
of coil loss and transit-time damping, and La is the part of L, between the 
tap and ground.

The only case that is considered is the one where the susceptance of 
La is much greater than the source admittance. Under these circum
stances the equivalent circuit can be put in the form of Fig. 13-24a, where 
L, resonates with C, at the midband frequency and

C. = CB + Ca = cB + (113)

From Eq. (53) the single-frequency noise figure of the first stage is

p = i j- 2? +
' G. G.

(GB + G.)2 + (h - "lY .
\wo ^ / .

(114)

where G, is independent of frequency.
In the discussion of optimum source conductance given in Sec. 13-5 

attention was directed primarily to the midband noise figure. At 
frequencies other than midband it may be seen from Eq. (55) that the 
optimum single-frequency source conductance is greater than the mid
band value, so that the source conductance that gives the optimum noise 
figure over the entire pass band is greater than the conductance that gives 
optimum midband noise figure.

It has been pointed out in Sec. 13-5 that in many practical cases the 
source conductance Ga varies between wide limits—between mGA and 
Ga/tu—from amplifier to amplifier. If bandwidth considerations permit, 
it is desirable to choose the position of the tap on the input circuit so that 
the optimum source conductance Gs,oot is presented to the input terminals 
when the source conductance assumes its mean value Ga, because by these 
means the variation of noise figure with source conductance is held to a 
minimum. The bandwidth of the input circuit varies directly with the 
source conductance, and its minimum value is

(Bmin
Gi.am/m + Gb + Gp

2^C. ’ (115)

1 Occasions can arise when Ga is very much larger than the optimum value, for
example, when the stage whose noise figure is to be minimized is driven from a pentode 
or grounded-grid stage. This case has already been considered in Sec. 13-6 and is not 
dealt with further here.
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where (B is the 3-db bandwidth, and GP is the input conductance of the 
tube due to cathode-lead inductance in the grounded-cathode case or to 
direct cathode feedback in the grounded-grid case.

If (Bmin is such that the over-all amplifier bandwidth is adequate, the 
design of the input circuit is complete. If, however, the bandwidth is too 
narrow, a number of alternative procedures can be adopted, as follows.

LALB~M2 
y M

Signal source

S <5.
LaLiTM*

Lb-M

Fig. 13-25.—Double-tuned inductively coupled input network; (a) mutual-inductance- 
coupled circuit, (5) self-inductance-coupled T-circuit, (c) self-inductance-coupled ir circuit.

Dovble-tuned-circuit Input Network,—The method most widely 
employed in the MIT Radiation Laboratory to obtain increased band
widths in the input circuit was the use of a double-tuned inductance- 
coupled input network, which may be realized in any one of the equivalent 
forms of Fig. 13 25a, b, c. This network has a gain-bandwidth factor 
roughly double that of the single-tuned circuit. The capacity-coupled 
network is not used as a wide-band input network because it is as com
plicated as the inductance-coupled case while its gain-bandwidth factor is 
appreciably lower.1

Despite the fact that, in' general, the primary Q is of the order of 
unity, the analysis given here will be based upon the “high-Q” theory of

1 See Sec, 5-2 for a discussion of this point.
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Sec. 5-2. The results are accordingly only approximate, but the general 
conclusions can be accepted as valid for all practical cases. This con
clusion is justified by the fact that the high-Q theory gives correct values 
for gain-bandwidth facts and midband transfer impedance even when the 
fractional bandwidth is as high as 1.5, as is shown in Sec. 5-5.

It is convenient to assume that Ga, the primary conductance, is equal 
to the sum of the loss conductance of the primary coil La and the source 
conductance G'A. In general the primary coil loss is negligible in com
parison with G'A. When this is not so, it can be allowed for by taking the 
over-all noise figure of the amplifier to be

Ga

Gi (116)

when F is the noise figure of the amplifier driven by a source conductance 
Ga.

Bandwidth and Transformed Source Conductance.—If G, is the trans
formed source conductance, then from Eq. (5-42)

where

(117)

(118)

If Qb = 2TrfnCB/GB « Qa, the transfer impedance of the network 
assumes the form of Eq. (5-36), the so-called one-side-loaded case,

\Z„] = --------- ---- —7--------™ (H9)
2rf0 VCaCb (k* + a2 Qt~2k + “7

where k = M/x/LaLb.

If the input network is transitionally coupled

FQ1 = I, (120)

and so ffi, the bandwidth between half-power points, is
p 

ffi = kfo = ---- -- =• (121)
2^Ca V2

But the transformed midband source conductance is

G.0 = ^^ = L+Ga; (122)
U A
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hence the 3-db bandwidth ® can be written

_ VM)
® ~ ^Cj' (123)

Referring back to Eq. (115) one sees that when GP + Ga « G,o [a 
situation that has been assumed in deriving Eq. (120)] the 3-db band
width for the single-tuned circuit is 

2^+  ̂
G A

when m — 1.
Even if G,Ca/Ga the double-tuned circuit has a 3-db bandwidth 

■\/2 times that of thè single-tuned circuit. In general, however, it is not 
wise to let the input circuit bandwidth, at 1 db down, be narrower than 
the over-all bandwidth. If the bandwidths at 1 db down are compared, 
the transitionally coupled double-tuned circuit is twice as good as the 
single-tuned circuit, since the 1-db bandwidth of the double-tuned circuit 
is

G.o
2kCb

and the 1-db bandwidth of the single-tuned circuit is 

______ G,q______  
2ir2 (cB +

This advantage becomes more pronounced as the ratio of input 
circuit bandwidth to over-all bandwidth increases.

In making this comparison it has been assumed that when the circuit 
is transitionally coupled, the transformed source conductance is optimum. 
It may be seen from Eq. (122) that this is true only if the ratio of second
ary to primary capacity is correct. In general this is not the case, and it 
is necessary to increase either CB or Ca and choose k so that the coupling 
remains transitional. The more important case, which will be con
sidered here, is when Ca has to be increased. This procedure has two 
obvious disadvantages. An extra component has to be added, and the 
primary coil loss conductance is increased, thus increasing the noise 
figure of the first stage.

An alternative method for decreasing the transformed source con
ductance to its optimum value is to decrease k below transitional and 
leave the capacities unchanged. For fixed Ga and CB, this optimum value 
of k is given by

^2 —_ I A^sO 
- öiCT (124)



Sec. 13141 INPUT COUPLING NETWORKS 689

The chief drawback to this method is that for given G,o, the bandwidth is 
appreciably less than when CA is increased and the coupling kept transi
tional. In the limiting case, when the coupling is well below transitional, 
the shape of the response curve of the input circuit is approximately 
that of a single-tuned circuit with 3-db bandwidth

® = EJCQa. (125)

From Eq. (124), (B can be written

„ _ foGgdCA _ GgO, 
“ CbGaQa “ 2irf0CB

which is approximately equal to the 3-db bandwidth of the single-tuned 
circuit input when

„ G,0Ca 
C-B » -Q—,

so that most of the advantages of the double-tuned circuit is lost when 
coupling is below transitional.

Effects of Variation of Circuit Parameters.—The effect of variations in 
the coupling coefficient on the magnitude of the transformed source con
ductance can be deduced from Eq. (117); the conductance Gg varies as the 
square of the coefficient of coupling. The variation in the shape and 
bandwidth of the amplitude characteristic is given in Fig. 5-4, where the 
absolute value of the transfer impedance is plotted as a function of k.

The coupling coefficient can be held to a 10 per cent tolerance fairly 
easily, but variations in source conductance Ga may be much greater, as 
much as 3 or 4 to 1, as pointed out in Sec. 13-5; hence the variation in 
source conductance is usually much more important than the variation in 
coupling coefficient.

The midband transformed source conductance can be written as

„ _ fcWo) 2CaCb 
too — ■-------- ri----------

from Eq. (117). In contrast to the single-tuned circuit case, Gl0 varies 
inversely with Ga. The variation, however, is still linear, so that a 
4 to 1 change in Ga produces a 4 to 1 change in Gs0- The variation in the 
shape and bandwidth of the amplitude characteristic of the input net
work with change of Q is given in Fig. 5-5. It will be noticed that as Ga 

is increased, the bandwidth decreases, the shape of the response tending 
to that of a single-tuned circuit.

The variation in bandwidth is not linear, however, as was-the case in 
the single-tuned circuit. It now varies more rapidly than 1/GA. In 
fact as Ga is increased, the bandwidth tends, in the limit, to the band
width of a single-tuned circuit input with the same value of transformed 
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source conductance. This result means that the advantage, in band
width, of the double-tuned circuit vanishes when the variation in source 
conductance gets very large.

Transient-response considerations normally impose a limit on the 
maximum height of the peaks of the amplitude characteristic of the input 
network. In one typical design the height of the peaks were limited to 
1 db above response at midband; in another design it was required that 
the input network have 0 db peaks, that is, be transitionally coupled, 
when GA assumed its minimum value.

It may thus be seen that there are three requirements on the input 
network for optimum performance:

1. When GA assumes its minimum value, the ratio of peak to midband 
response must not exceed some arbitrary level, for example, 1 db.

2. When GA assumes its maximum value, the bandwidth at some 
given level, say 1 db, must be greater than a certain amount.

3. When GA assumes its geometric mean value, the optimum source 
conductance should be presented to the input terminals of the tube.

An example of the design of an input network on this basis is given 
in Sec. 1315.

Noise Figure of First Stage with Double-tuned Input Circuit.—The
noise figure of the first stage when a coupled-circuit input network is used 
is given by

Fs — 1 + pGmil + QW1) , IL 1
G.a W.AZW (126)

where 2Y is the transfer impedance of the input network. This result 
follows from Eq. (117), which gives the transformer source conductance, 
and from Eq. (5'30), which relates the driving-point admittance Yu of 
the network to the transfer impedance.

It may be seen from Eq. (126) that thermal noise associated with the 
secondary coil loss and the induced grid noise make contributions to the 
single-frequency noise figure that increase toward the edge of the pass 
band. If the edges of the pass band correspond to the 1-db points of the 
amplitude response of the input network, however, this effect is small.

Alternative Methods of Increasing the Bandwidth of the Input Circuit.— 
To get still wider bandwidths one of a number of methods can be used, 
and these will be considered very briefly.

1. Increase in G,. One widely used method is to increase G„ the 
transformed source conductance. ' In the single-tuned-circuit case 
this is done by moving the tap nearer to the top of the coil. The 
advantage of this method is that the curve of noise figure against 
transformed source conductance is very flat in the neighborhood 
of optimum source conductance and an increase of 2 to 1 above 
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optimum in G, changes the noise figure only slightly, as may be seen 
from Fig. 13-7.

If Ga varies between wide limits, however, the noise figure when Ga is a 
maximum will now be appreciably worse than when Ga is a mini
mum. This wide variation of noise figure between one amplifier 
and another may prove undesirable. Another point is that the 
effects of source capacitance become more pronounced as the tap 
is moved further up the coil. From Eq. (115) it may be seen that 
the maximum bandwidth attainable by changing this tap position 
is given by

= _M 
2^0/

and this sets a definite limit to what can be done by this procedure. 
The bandwidth of the double-tuned circuit may also be increased by 

increasing G„ either by increasing the coefficient of coupling or by 
decreasing Ca, if possible.

2. Increase in the Secondary Loading by Adding Physical Resistance.— 
This procedure should be followed only as an absolutely last resort, 
because the increase in noise figure is very large if a considerable 
increase in the bandwidth is to be obtained.

3. Increase in the Cathode-lead Inductance of the First Tube.—As 
pointed out in Sec. 13-12 the only effect of cathode-lead inductance 
is to reduce the available power gain of the first stage. The noise 
figure, if the tube is a triode, is unchanged. In Sec. 13-10 it was 
shown that the available power gain of the grounded-cathode
triode-grounded-grid-triode combination is so high that third-stage 
noise contribution is, in general, small. Accordingly this method 
of increasing bandwidth is probably the one that affects the noise 
figure least. The disadvantages are that the variation of input 
conductance, and hence of bandwidth, from tube to tube is likely 
to be large and that an extra and not easily controlled component 
has been added.

This method of increasing the bandwidth is also practicable when 
the input circuit is double-tuned, but it is not nearly so effective. 
As the secondary loading is increased, the Q's of primary and 
secondary tend to equality. The gain-bandwidth factor of an 
equal-Q coupled circuit is l/v’2 that of an unequal-Q coupling 
when the coefficient of coupling is chosen to be transitional in 
each case, so that the proportional increase in bandwidth is less 
than in the single-tuned-circuit case.

4. Increase in Loading of Input Circuit by Resistance Feedback.—In 
Sec. 13-12 it was pointed out that resistance feedback could be 
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used to provide loading at a low effective noise temperature. 
In the discussion there given, the resistor was placed between 
grid and plate of a pentode tube. If the input configuration 
consists of a grounded-cathode triode followed by a grounded-grid 
triode the resistance feedback will be from the plate of the grounded- 
grid tube to the grid of the grounded-cathode tube, as shown in 
Fig. 13-26. The expressions for input conductance, bandwidth, 
etc., are the same as those given in Sec. 13-12 if gm is taken to be 
the transconductance of the first tube.

The noise figure of the first stage is approximately that which would 
result if the feedback resistor were connected across the input 
terminals.

Fig. 13-26.—Feedback circuit for increasing bandwidth of input circuit with negligible 
deterioration of noise figure.

13-16. Example of Alternative Designs of Input Coupling Network.— 
The problem considered in this section is to design an input network to 
a 30 Mc/sec amplifier with a grounded-cathode triode (type 6AK5) as 
the first tube, when the source is a crystal the conductance of which varies 
between 5000 and 1330 ^mhos. It will be assumed that the minimum 
stray capacity of the source is 5 ppi, that the total tube input capacity 
is 10 ppi, including Miller effect capacity resulting from the fact that 
Cep = 1.2 ppi, and that all the coils have Q’s of 150. The designer is at 
liberty to choose any input network that he pleases subject to the require
ment that the amplitude response of the network have no peaks and that 
the bandwidth at 1 db be at least 5 Mc/sec.

For the triode-connected 6AK5 at 30 Mc/sec,

R«, = 385 ohms, 
Gr = 12 Aimhos,
Gi = = 12

w
Under these circumstances the optimum transformed source con

ductance at midband is
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p _ pGr + Gi
'Js.opt n

Req
= 430 /xmhos

and the optimum value of the midband noise figure is

Fi.c = 1+2 y/Wr + = 1.33 (1.3 db).

It will be noticed that in this case, the induced grid-noise contribu
tion is of far greater importance than the thermal noise of the coil loss. 
The effect of the source stray capacity on the noise figure is negligible. 
A number of alternative designs will now be given based on the discus
sion of Sec. 13-14.

Single-tuned Input Circuit.—As stated in Sec. 13-14 it is desirable 
that the optimum transformed conductance be presented to the tube 
when the source inductance assumes its mean value. But the optimum 
transformed conductance is 430 ^mhos, and the mean value of the source 
conductance is 2540 /imhos. Hence the admittance stepdown of the 
input circuit must be

430 = 1
2540 5.3

Accordingly the 1-db bandwidth of the input circuit will vary from 1.8 to 
5.4 Mc/sec, while the noise figure at midband will have a maximum 
value of 1.4 db, an increase of 0.1 db over the optimum.

Before discussing the various alternative methods for increasing the 
bandwidth by electronic loading, the design of a double-tuned input 
circuit will be considered.

Double-tuned Input Circuit.—In this case the optimum transformed 
source conductance can be achieved either by increasing CA or by decreas
ing k. These two alternatives will be considered in order.

If the input circuit is to be transitionally coupled when the source 
conductance assumes its minimum value and if the transformed source 
conductance is to be an optimum when the source conductance assumes 
its mean value, then the following two equations must be satisfied:

V2 GA.m J

If these equations are solved for CA and k, the result is

CA = 9 ppi, 
k = 0.31.
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The bandwidth at 1 db varies from

1.92 to 10.8 Mc/sec, 

a variation of 4 -\/2 to 1 as opposed to 3 to 1 in the single-tuned case. 
Because of the large variation in source conductance the advantage of 
this circuit over the single-tuned circuit is very small.

If no capacity is added to the primary, then the value of k that gives 
optimum transformed source conductance when GA assumes its mean 
value is

, 2   Ggtr,ptCA 1“ OCTROI’
hence

k = 0.416.

In this case the bandwidth varies between

1.9 and 5.0 Mc/sec,

so that the minimum bandwidth is the same as when CA was increased; 
the bandwidth variation has, however, been cut in half.

Neither of these circuits provides adequate bandwidth, so that one 
of the other methods of Sec. 1314 must be employed.

Increasing the Transformed Source Conductance.—If the tap position 
is so chosen that the bandwidth at 1 db is 5 Mc/sec when the source 
conductance assumes its minimum value of 1330 gmhos, then the admit
tance stepdown ratio is 1.59/1 and the transformed source conductance 
will vary from 3140 to 1040 ^mhos.

The corresponding noise figure will vary from 3.46 to 1.65 db, and 
the bandwidth from 15 to 5 Mc/sec at 1 db.

Adding Cathode-lead Inductance.—If cathode-lead inductance is 
added to bring the minimum bandwidth up to 5 Mc/sec at 1 db, the 
noise figure of the first stage alone will be unchanged, while the band
width will vary from

8.6 to 5 Mc/sec at 1 db.

This greatly reduced variation is often of considerable advantage in 
designing wide-band amplifiers, as it enables compensating circuits to 
be used later in the amplifier.

Loading with Resistive Negative Feedback.—If it is assumed that the 
interstage capacity is the same as the input capacity, then the conductance 
of the feedback resistor turns out to be approximately equal to 100 ^mhos. 
The optimum source conductance is now 620 ¿imhos, and the optimum 
noise figure is 1.8 db. The noise figure at the extremities of the band 
is 2.0 db. The variation of bandwidth is about the same as in the case 
where loading was provided by the cathode-lead inductance.



CHAPTER 14

MEASUREMENT OF NOISE FIGURE

By Yardley Beers

14-1. Introduction.—The measurement of noise figure affords an 
effective method of checking the ability of an amplifier to detect weak 
signals. The method of making such measurements is very simple and 
can be carried out quickly and precisely if the proper apparatus is avail
able ; such apparatus is described later in this chapter.

The measurement of noise figure is based upon one of its subsidiary 
definitions given in Chap. 12. In this definition it is assumed that all 
of the actual noise sources within the amplifier are replaced by a single 
source of noise connected to the input terminals and having an internal 

• impedance equal to that of the signal source. The available power (a 
quantity that will be discussed in Sec. 14-2) of this fictitious noise source 
W„ is by definition such that this hypothetical amplifier has the same 
noise output power as the actual amplifier. If such an experiment were 
performed with an ideal amplifier, the only source of noise would be the 
thermal-agitation noise of the signal source, whose available power is 
kTB, where k is Boltzmann’s constant, 1.38 X 10~23 joule/degree C, T 
is the temperature in degrees Kelvin, and B is the noise bandwidth 
defined below. Then the noise figure F is defined as

Numerically kTB = 4.00 X 10"21 watt for T = 290°K and B = 1 cps.
The definition of noise bandwidth B was given in Chap. 12 and is 

repeated here:

b= Jo Gpe ’

where Gp is the actual power gain, defined as the power delivered to the 
indicating device (such as a meter, cathode-ray tube, or loud-speaker) 
divided by the available power of the signal source, and Gp3 is the maxi
mum value of Gp. This definition is tantamount to replacing the actual 
power-frequency curve of the amplifier by a rectangular curve having the 
same area and a height equal to Gpo. The width of this fictitious rec
tangle is equal to B. In almost all practical situations B is very nearly 

695
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equal to the bandwidth between half-power points.1 A notable exception 
occurs when the pass band is that of a single single-tuned circuit, in 
which case B is r/2, or 1.57, times the half-power bandwidth.

Noise figure is measured by the use of a signal generator that gen
erates either noise or an unmodulated c-w signal. If the amplifier is to 
be used with signals that consist of pulses or some other special form of 
modulation, it is valuable to supplement noise-figure measurements by 
determinations of minimum detectable signal making use of signals of 
the type for which the amplifier is intended. Such measurements involve 
subjective factors that prevent them from being made as easily or with as 
high precision as measurements of noise figure. However, they do give 
a valid check upon the amplifier, especially in regard to its pulse response.

In the following sections, it will be assumed that the signal-source 
impedance can be represented by a single resistance in parallel or in 
series with a single reactance. In cases where this assumption does not 
hold, that is, where the signal-source impedance is a complicated function 
of the frequency, it is necessary to place in the amplifier a variable
frequency bandpass filter so narrow that this assumption is valid and then 
to measure what E. J. Schremp2 calls the “single-frequency noise figure” 
as a function of frequency, and finally to average these values, weighted 
with respect to the gain, to give the complete noise figure.

The general procedure for measuring noise figure is (1) to measure 
Wn [see Eq. (1)] and (2) to determine the bandwidth B. To measure 
W„ a signal generator of the same internal impedance as that of the 
amplifier source is connected to the input terminals of the amplifier. 
With the generator turned off the available noise-power output of the 
amplifier is observed, and then the generator is turned on and adjusted 
to double the output power. Since the output power has been doubled, 
the available power that has been added must be equal to that previously 
present, that is, to W„. (It is assumed here that the amplifier is capable 
of handling this doubled power without overload. Such an assumption 
is not always fulfilled, especially as noise peaks several times rms may 
be encountered.)

The signal generator may be of either the c-w or noise variety. With 
a noise generator the procedure, although fundamentally the same, is 
simplified by the fact (to be shown in Sec. 14-5) that the available power 
of a noise generator is proportional to bandwidth. Therefore when the 
expression for available power W„ is substituted into Eq. (1), the band
width cancels out, and the noise figure is obtained directly without the 
necessity of determining bandwidth.

1 See footnote 1 on p. 169.
2 E. J. Schremp, RL Internal Group Report 61-5/18/43. See also S. Roberts, 

“Some Considerations Governing Noise Measurements on Crystal Mixers,” Proc. 
I.R.E., 35, 257-265 (1947).
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14-2. Discussion of Available Power.—Since the definition of noise 
figure employs the concept of available power of generators, it is worth 
while to discuss this term and to prove some very elementary theorems 
that will be needed later in this chapter.

The most usual representation of an arbitrary electrical generator 
consists of a constant voltage in series with a constant internal impedance 
Z„. Therefore, if these quantities and one of the following four quantities 
concerning the load are known, the other three can be calculated: the 
impedance of the load, the voltage across it, the current through it, or

(a)
Fig. 14-1.—Three representations of a generator.

w,z(

(c)

the power dissipated in it. ThAvenin’s theorem states that it is possible 
to represent in this way any network, containing generators and linear 
impedances, having two terminals to connect it to the outside world. 
According to this representation the electromotive force E, the internal 
impedance Z„, and the external load Z are to be connected in series, as 
in Fig. 14-la. Norton’s theorem states that as far as the outside world 
is concerned, it is also possible to consider the same generator as a con
stant-current source generator in parallel with the internal admittance 
of the generator, Y„ = 1/Za, and with the load connected as indicated 
in Fig. 14-16. It is possible to transform from one to the other of these 
representations by the relation

E = IZ„ 2
Y.

(2)

Finally, it is possible to consider the generator as a source of power 
and to describe it quantitatively in terms of “ available power” W, defined 
as the maximum power that the generator can cause to be dissipated in 
an external load. This maximum power occurs when the external load 
impedance is the complex conjugate of Za and, therefore, when the voltage 
across the resistive component of the load is E/2 or the current through 
it is Z/2. The relations by which one converts from the constant-voltage 
or constant-current representations are obvious:

E2W = —, ARa
W = —, 

4G„

(3)

(4)
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where Ra is the resistive component of Za and Ga is the conductive com
ponent of Ya.

Corresponding to each of these three representations is an experi
mental method for evaluating the generator. A voltmeter or potenti
ometer connected across the generator terminal measures E. The 
current strength I can be found by short-circuiting the terminals and 
measuring the current. The available power can be measured by means 
of a variable-impedance power-measuring device whose impedance can 
be adjusted to give maximum reading.

It is to be emphasized that these three representations are equivalent, 
and any of them can be used for any generator, only as far as the external

Fig. 14-2.—Generator with conductance in parallel with its terminals.

¡°2
circuit is concerned; for calculating the power dissipated within the 
generator itself, detailed knowledge of the generator must be available.

Next consider what happens when various combinations of passive 
elements are connected to a generator. The combination can be con
sidered as a new generator of different available power and internal 
impedance.

Theorem 1.—Connecting a network that consists of reactive elements 
changes only the internal impedance and not the available power.

Corollary.—Connecting a lossless transmission line whose character
istic impedance is Ro or a four-terminal network containing only reactive 
elements and having both its iterative impedances equal to Ro to a 
generator whose internal impedance is Ro changes neither the interna] 
impedance nor the available power of the generator.

The justification for these statements is self-evident and needs no 
further proof.

Theorem 2.—Connecting a conductance G2 in parallel with a generator 
whose internal admittance has the conductive component Go changes the 
internal conductance to Go + G2 and reduces the available power to 
Go/(Go + G2) times the available power of the original generator.

This situation is represented by Fig. 14-2. The inner box contains 
the original generator, which is conveniently regarded as a current source 
I in parallel with an internal admittance Go. The available power of 
the original generator is, from Eq. (4),
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It is clear that the internal conductance of the generator in the large 
box is Go + G2. The available power of the generator in the large box is

I2 w, =____t_____
2 4(G0 + Gt)

Solving for W2 in terms of IF0 yields 

which proves the theorem.
Theorem 3.—Connecting a resistance Ri in series with a generator 

whose internal impedance has the resistance component Ro changes the

Fig. 14-3.—Generator with resistance in series with its terminals.

internal resistance to Ro + Ri and reduces the available power to 
Ro/(Ro + Ri) times the available power of the original generator.

The proof of this theorem is similar to that of Theorem 2, except that 
it is convenient to consider the original generator as an emf E in series 
with an internal impedance, as indicated in Fig. 14-3.

14-3. Measurement of Noise Figure with Unmodulated Signal 
Generators. The Relation of Noise Figure to Other Quantities That 
Express the “Noisiness” of an Amplifier.—The procedure for measuring 
the noise figure of any amplifier with an unmodulated c-w signal generator 
is similar to the one that has been used for many years for checking 
radio receivers. This method employs a signal generator containing 
a voltmeter, a calibrated attenuator, and a dummy antenna whose 
impedance is that of the actual antenna. The signal generator voltage 
is adjusted to cause the output power of the receiver to be twice that 
due to noise alone. When a standard dummy antenna is employed, this 
voltage itself is often used to describe the “noisiness” of the receiver. 
The quantity Wn can be calculated by substituting this value of the 
voltage and resistance of the dummy antenna into Eq. (3). The quantity 
W„ also is sometimes used to describe the “noisiness” of the receiver. 
Finally, the noise figure can be calculated by substituting W,. into Eq. (1).
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The bandwidth B can be calculated by performing the integration indi
cated in Sec. 14-1 either numerically or analytically, or it may be approxi
mated by the use of the half-power bandwidth as also noted in Sec. 14-1. 
In that section the fact was demonstrated that these three methods 
of describing the noisiness of a receiver are equivalent if it is assumed 
that the bandwidth and antenna impedance are specified. It is to be 
noted again that the voltage at the actual input terminals of the receiver 
is not known—only the voltage at the input of the dummy antenna is 
known.

There are certain difficulties connected with the use of c-w signal 
generators. The smallest power that can be directly measured with 
good laboratory apparatus to an accuracy of a few tenths of a decibel 
is about 10-6 watt. On the other hand, the noise figures of amplifiers of 
bandwidths of a few megacycles per second usually run from near one 
to about one hundred times (0 to 20 db), corresponding to equivalent 
noise powers of 10~14 to 10-12 watt. Hence, a signal generator must be 
equipped with a calibrated 80- or 60-db attenuator, which must be accu
rate to a few tenths of 1 db if the noise figure is to be known with similar 
accuracy. Such apparatus can be built but is difficult to maintain and 
is not practical for general use. Second, as has been pointed out earlier, 
the exact determination of bandwidth is a nuisance. Third, some devices 
that might be used to indicate receiver output power do not respond to 
noise and c-w signals in the same way. These difficulties can be avoided 
by the use of a noise generator.

NOISE GENERATORS

14-4. General Discussion.—There are a number of devices that have 
been used as noise generators for amplifier measurements. The out
standing feature of all of them is that their available power is proportional 
to an easily measured direct current. In the case of the temperature
limited diode, the constant of proportionality between the available power 
and the current is easily calculated, and it can be used as an absolute 
instrument up to about 300 Mc/sec. Above this frequency the measure
ment of impedance (which is required for determining the proportionality 
constant) becomes difficult, transit-time effects change the noise output, 
and the diode-noise generator can no longer be used as an absolute 
instrument, although it is still useful for relative measurements. Instru
ments of this type will be described in Secs. 14-5 and 14-6. For use at 
frequencies above about 1000 Mc/sec, a noise source has been developed1 
that utilizes a reflex velocity-modulated local-oscillator tube with its reflec
tor voltage adjusted to prevent oscillation. This source is useful because 
large available powers are obtainable with it. At frequencies somewhat

1 M. C. Waltz and J. B. H. Kuper, RL Report No. 443, Sept. 17, 1943.
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above 3000 Mc/sec, transit-time effects in available tubes make the 
calibration vary rapidly with frequency, and this device is not satis
factory even for relative measurements. Third, silicon crystals (of the 
type used for rectifiers and mixers) generate considerable noise when 
direct currents are passed through them in the “reverse” direction. A 
practical crystal noise generator will be described in Sec. 14-7. Such a 
device is very compact and convenient for field measurements, but it 
must be calibrated in terms of signal generators of other types.

14-6. Theory of Noise Generators Using Temperature-limited 
Diodes. Highfmpedance Noise Generators.—A temperature-limited diode 
(that is, one whose plate voltage is high enough to saturate the plate 
current) acts like a generator of noise current having a certain rms value 
In, because of the “shot” effect—the fluctuations in the number of 
electrons emitted by the cathode. The mean squared current 1% is 
given by

« = ^IB, (6)
where e = charge of the electron = 1.60 X 10-19 coulomb,

I = direct current through the diode (in amperes),
B = bandwidth of the device being used to observe the noise. 

Formula (6) does not apply rigorously to coated cathodes, which have 
another cause of noise (flicker effect), due to shifting of the active spots 
on the cathode.

A simple noise generator1 consists of such a diode connected in parallel
with a resistance Ra equal to the 
resistive component of the signal
source impedance and a reactance 
simulating the parallel reactance 
of the signal source. This com
bination is connected to the input 
of the amplifier and the value of I 

To 
amplifier 

input 
terminals

Fig. 14-4.—High-impedance diode noise
generator.

adjusted by varying the diode filament current to double the noise output 
of the amplifier (see Fig. 14-4). The available power of the generator Wn 
can be calculated by substituting Eq. (6) into Eq. (4), giving

W„ = fIRaB. (7)
If this is substituted into Eq. (1), the noise figure F is

F = ^TIRp (8)

= 20IRa for T = 290°K (8a)
1 The use of temperature-limited diodes as signal generators for comparative 

measurements was reported by S. Ballantine, Physics, 4, 294—306 (1933); and by D. O. 
North, RCA Rev., 4, 441-472, April 1940; and 5,106-124, July 1940. The high imped
ance diode noise source was developed at the Radiation Laboratory as a practical 
device for the measurement of noise figures by E. J. Schremp and C. P. Gadsden.



702 MEASUREMENT OF NOISE FIGURE [Sec. 14 5

Equation (8) is a most important formula, for it gives the noise figure in 
terms of two easily measurable quantities, I and Ra.

This noise generator is very useful provided that (1) the noise gener
ator can be connected in place of the signal source with very short leads 
and (2) the parallel reactance of the noise generator can be made entirely 
equivalent to that of the signal source over the entire range of frequencies 
of interest. There is always some capacity across the noise diode. In 
the cases where the desired shunt reactance corresponds to a capacity 
greater than the diode capacity, the desired capacity can be attained by 
adding a padding condenser. In other cases, which occur fairly often in

A Low loss line B D R, E

Fig. 14-5.—Matched-line diode noise generator.

practice, the desired reactance is that of a capacity smaller than the dis
tributed diode capacity. These cases are somewhat embarrassing, 
because there is no completely satisfactory way of producing the desired 
reactance. The best that it is possible to do is to resonate out the unde
sired capacity by an inductance; this procedure is exact at only one 
frequency.

These difficulties can be largely avoided by the use of a “low-imped
ance” or “matched-line” noise generator.

The Matched-line Diode Noise Generator.1—This apparatus (see Fig. 
14-5) consists of a noise diode feeding a lossless line of characteristic 
impedance Ro with a termination at the generator end and a matching 
network consisting of Ri and Rt and X selected so that the internal 
impedance of the entire device equals that of the signal source.

The capacity C is the distributed capacity of the diode, and L resonates 
with C at the band center of the amplifier to be tested. More exactly, 
L and Ro are selected so that the same impedance is measured within 
1 per cent at AA' as at BB' (the other components to the right being 
disconnected in both cases). Since Ro is a resistor of relatively low 
value, the bandwidth of the circuit C, L, Ro is large compared with the 
usual amplifier bandwidths; therefore the diode capacity has much 
smaller effect than in the high-impedance noise generator. (In a typical

1 This device was developed at the Radiation Laboratory by C. P. Gadsden and 
8. A. Wingate at the suggestion of S, N. VanVoorhis.
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case, in which C is 10 ppi and Ro is 75 ohms, the bandwidth is about 
200 Mc/sec.)

There is no fundamental reason why the line should be terminated in 
its characteristic impedance. Whatever the conditions of termination 
may be, it is possible by application of Thevenin’s theorem to select 
matching networks giving the proper internal impedance and then to 
calculate the available noise power in terms of the direct current through 
the diode. However, for reasons that will become evident, the calcula
tions are greatly simplified if the line is terminated in its characteristic 
impedance at the generator end (contrary perhaps to what one might 
first expect), the calibration then being independent of the length.1

The analysis of this generator is carried out in the following steps. 
First, the components to the left of terminals A A' form a simple noise 
generator whose available power is found by replacing Ra by Ro in Eq. 
(7). According to Theorem 1 in Sec. 14-2, the addition of a lossless line 
of characteristic impedance Ro means that the generator, viewed at the 
terminals BB', has internal impedance Ro and the same available power 
as at AA'. The effects of R2 and Rk upon the internal impedance and 
available power can be found by applying Theorems 2 and 3 respectively. 
The reactance X is adjusted to make the parallel reactance of the gener
ator equal to that of the actual signal source and does not change the 
available power.

If the available power of the generator is calculated in this fashion 
and the result substituted into Eq. (1), the noise figure is given by

= 20-----7—for T = 290°K, (9a)/ p \2 ’ 'M1 + w )

where Ra, the parallel output resistance of the generator, is made equal 
to the parallel output resistance of the actual signal source and Ro, Ri, 
and Ro are chosen to give the desired value of Ra by the use of the follow- 
ing relation :

(10)

Two special values of R2 are of interest. If R2 — «,
1 Termination of the amplifier end of the line in its characteristic impedance does 

not yield any advantage. If both ends of the line are terminated, four times as much 
direct current is needed, and this sometimes exceeds the safe operating conditions of 
the tube.
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e RII 
2kT Ra ’ 
20R2I

Ra
for T = 290°K.

(U)

(12)

By comparison with Eq. (8), it can be seen that for a given noise figure 
the ratio of the direct current required with the matched-line noise 
generator to that required with the high-impedance noise generator is 
(Ra/Ro)2- To cite a typical example, if Ra is 300 ohms and Ro is 75 ohms, 
sixteen times as much current is required with the matched-line noise 
generator as with the high-impedance noise generator.

If Rt is made equal to Ra,

p = e FU
2kT 4R/

= 5R? 4 fOr T = 290°K. 
Ha

Ra = Ri 4- ^Ro-

(13)

(13a)

(14)

It can be seen by comparing Eq. (11) with Eq. (13) that four times 
as much diode direct current is required to measure a given noise figure 
if both ends of the line are terminated in the characteristic impedance 
of the line than if only the generator end is terminated.

14-6. Construction of Diode Noise Generators.—Diodes used as noise 
generators should have the following characteristics: pure tungsten or 
thoriated-tungsten filament, good saturation (the reciprocal of the slope 
of the plate-current vs. plate-voltage curve should be at least fifty times 
the desired generator resistance), short leads, and low capacity. Also, 
for matched-line use diode noise generators should have a moderately 
large emission and plate dissipation. Of all the tube types tested in the 
Radiation Laboratory the British type CV172 is the most satisfactory. 
The Western Electric type 708-A, the Eimac type 15E (the type 15R does 
not saturate very well), and the type 801A seem to be more or less satis
factory for matched-line generators. The type 01A and the Sylvania 
type X-6030 are satisfactory for high-impedance generators (except that 
the type X-6030 is not very rugged mechanically). At 30 Mc/sec com
parisons among many of these types have yielded agreements within 
0.05 db.

Oxide-coated filamentary tubes have proved unsatisfactory where 
highest accuracy is desired, and indirectly heated oxide-coated cathode
type tubes are doubly undesirable because of the difficulty and sluggish
ness with which they are controlled.

In Figs. 14-6 and 14-7 are shown an experimental noise diode under 
development at the time of writing.1 The tube, designated the type

1 Harwick Johnson, RCA Review, 8 (1947), 169-185.
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R6212, is constructed in the form of a small section of coaxial line of 
50-ohm characteristic impedance, and the filament is in the form of a loop 
of wire around the inner conductor. A section of high-loss 50-ohm cable, 
terminated at its far end by a 50-ohm resistor, is connected to one end of 
the tube and serves as the resistor Ro in the circuit shown in Fig. 14-5. 
Another section of cable connected to the other end of the tube is used to

Fig. 14-6.—R6212 noise diode unassembled. {Courtesy of RCA Laboratories.)

connect the tube to the input of the amplifier. Because of its unusual 
construction, this tube is capable of giving quantitative results at higher 
frequencies than conventional tubes.

The construction of noise generators is not difficult. The generator 
should be completely shielded. Its power leads should be filtered to 
prevent pickup of extraneous signals, particularly pickup from the output 
stages of the amplifier, since this pickup might cause regeneration. 
Because the diodes are operated under temperature-limited conditions, 
the plate-supply voltage need not have particularly good regulation or 
filtering.

Under temperature-limited conditions, the plate current varies very
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rapidly with filament voltage. Therefore, if the filament is to be operated 
from the a-c mains, it will be necessary to provide a constant-voltage 
regulator in the a-c line. Alternatively the filament can be operated 
from storage batteries. Because of the rapid variation of emission with 
filament voltage, two rheostats for the control of filament voltage should

Fig. 14-7.—R6212 noise diode assembled. (Courtesy of RCA Laboratories.) 

be included in the apparatus: one for rough control and the other for fine 
control. It is important to have firm electrical connections in the filament 
circuit. Because of the large filament current the number of connectors 
and toggle switches should be kept to a minimum; and if alternating 
current is employed for the filaments, these connectors and toggle switches 
and the control rheostats should be placed in the primary of the trans
former, where slight changes of resistance will have very small effect. 
Sometimes it is necessary to clean the filament pins of the tube and tube 
socket.

A noise generator employing a type CV172 tube is depicted in Fig. 
14-8, and the complete circuit diagram is shown in Fig. 14 9. It was



Fig. 14-9.—Circuit of noise generator.
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designed primarily for use as a matched-line generator employing a section 
of 75-ohm cable (not shown in the diagram), and, therefore, a 75-ohm 
resistor is shown in parallel with the output terminal. However, this 
same design could be used as a simple high-impedance generator by 
raising the value of this resistor and adjusting the reactance in parallel 
to a suitable value.

In the light of the previous paragraph, the inclusion of the large 
amount of filtering and the VR-105 regulator tube in the power supply is, 
perhaps, not entirely necessary.

14-7. Crystal Noise Generators.—Silicon crystals produce consider
able noise when a direct current is passed through them in the direction 
of lower conductivity.1 Practical noise generators of this type, which

Fig. 14*10.—Crystal noise generator.

can be used at frequencies up to 
at least 3000 Mc/sec, have been 
developed at the Radiation 
Laboratory. The circuit dia
gram of a crystal noise generator 
designed for use at 30 Mc/sec 
is shown in Fig. 14-10. Because 
it was desired to use a meter with 
a sensitivity of 1 ma full scale, 

it was necessary to provide a ir-attenuator consisting of R2, Rz, and Rt 
to reduce the output power to a convenient value. The values were 
selected so that the parallel resistance at the output terminals was 
approximately 300 ohms, equal to that of the actual signal source used 
with the amplifier. The value of Cz is adjusted to equal the capacity 
of the signal source. The crystal current is adjusted by variation of Ri 
until the amplifier noise output power is doubled, and the noise figure is 
determined from this value of the crystal current and the calibration 
of the instrument, which must be made experimentally by comparison 
with a signal generator of another type. Such instruments are very 
compact and simple in construction but must be calibrated frequently 
if high accuracy is desired.

MEASUREMENT OF AMPLIFIER OUTPUT POWER

Experience at the Radiation Laboratory has indicated that most 
difficulties encountered in noise-figure measurements are due to factors 
external to the noise generator and are caused by improper methods of 
measuring relative power output of the amplifier.

The choice of an output-power measuring device depends upon

'J. E. Houldin, “The Crystal Capsule as a Generator of Noise,” Report of the 
General Electric Company (Great Britain), July 9, 1943.
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whether or not an unmodulated c-w generator is to be used and whether 
accuracy can be sacrificed for simplicity.

14-8. Attenuator and Postamplifier.—This combination represents 
the most accurate and generally satisfactory means of comparing amplifier 
output powers. Although it is more complex than the other schemes 
described here, it is very rugged and can be operated successfully by 
relatively untrained personnel. It is therefore ideally suited for use on 
production lines as well as in research laboratories.

Fig. 14*11.—Attenuator and postamplifier method of measuring noise.

Method.—The method is illustrated by a block diagram in Fig. 14-11. 
The procedure is first to observe the reading of the output meter with 
the attenuator switched out and the noise generator turned off. Then the 
attenuator is switched in, and the noise generator adjusted to make the 
output meter have the same deflection as before. If the attenuator has 
a power ratio a equal to 2, the available power of the noise generator 
must have been that required to double the amplifier output power. 
In the event a is not exactly 2, a very simple correction can be made, as 
will be shown later. Because the postamplifier is operated at constant
signal level, no harm is caused by overloads within it, and this unit can 
be connected to the amplifier under test at a stage where the signal 
level is low enough to avoid overload difficulties. This connection can 
be made by means of an adapter that plugs in place of one of the tubes 
in the amplifier.

Construction.—The postamplifier should have the same center fre
quency as the amplifier under test and a bandwidth somewhat greater. 
Great care should be exercised in shielding the postamplifier, and it 
should be operated from its own power supply to avoid any chance of 
feedback to the amplifier. It is convenient to gang with the attenuator 
a switch connected to the noise generator plate supply, so that it can 
be turned on and the attenuator switched in by a single knob. However, 
this switch should be isolated from the attenuator to prevent signals 
from leaking out. The detector uses any of the common diode receiv
ing tubes. A meter indicating 1 ma full scale in series with the diode
load resistor is adequate for many measurements, but the over-all 
sensitivity can be increased by using a meter of 30 or 100 ^ia full scale, 
with a dry cell and a variable resistance in series with it connected across 
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the meter to buck-out the “dark” current of the diode. It is also useful 
to have a jack connected to the high-voltage end of the load resistor 
through a decoupling filter so that the apparatus may be connected to an 
oscilloscope in order to observe the pass band of either the postamplifier 
or the combination of the amplifier and postamplifier when a swept- 
frequency signal generator is connected to their respective input terminals.

The attenuator and its immediate circuit are designed with these 
objectives: (1) to make the calibration independent of the condition of 
impedance mismatch at the output of the amplifier and (2) to have a 
value of a as near to 2 as possible. The diagram of the attenuator and

212
Fig. 14-12.—Details of attenuator and its immediate circuit.

its immediate circuit is shown in Fig. 14-12. If the characteristic imped
ance of the cable is other than 75 ohms, the values of the resistors are 
to be multiplied by the ratio of the characteristic impedance to 75 ohms. 
The resistors are |-watt carbon resistors, and those in the attenuator are 
selected by a Wheatstone bridge to be within 2 per cent of the indicated 
values. If none are available within this tolerance, they can be produced 
by filing away a portion of a resistor of lower value and covering the 
filed-place with a coat of lacquer.

The terminating resistor R and the inductance L (which resonates 
the input capacity of the tube) are selected so that the same impedance 
(at the center frequency of the amplifier) is measured across the pins of 
P3 at both positions of the attenuator switch. If this condition is met, 
the calibration of the attenuator is independent of the impedance pre
sented by the cable. As a precaution against slight errors in the values 
of L and R, the cable should present an impedance that approximately 
matches the iterative impedance of the attenuator in order to absorb 
any waves that might be reflected back from R and L.

In Fig. 14-12, the amplifier end of the cable is fitted with a plug P, 
that fits into a tube socket of the amplifier, here assumed to employ 
single-tuned circuits. This plug is designed to connect the cable in 
parallel with the load of the tube in front of that displaced by the plug.



Sec. 14-8] ATTENUATOR AND POST AMPLIFIER 711

The plug contains a 75-ohm resistor terminating the cable in its charac
teristic impedance. The plug presents a net impedance of 37.5 ohms 
(75 ohms in the plug in parallel with a 75-ohm terminated line); this 
heavy damping leads to a very large bandwidth. An alternative proce
dure is to omit the resistor in the plug Pi but to insert between Pt and 
Pt a T- or ir-attenuator pad having a 75-ohm iterative impedance 
and at least 10-db attenuation. In fact if amplifiers with different gains 
or the same amplifier with various settings of the gain control are to be 
measured, the postamplifier must have sufficient gain to operate with

' 0 in 1 2 3 4 5 6 7 8 9 i
„ . I—.    . . _ _

Fio. 14-13.—Bottom view of postamplifier.

an amplifier of minimum gain, and it is desirable to employ, between 
Pt and P3, a variable step attenuator of the type described in Sec. 8 5 
to compensate for excess gain.

The method of calibrating the attenuator is to apply a c-w signal of 
variable power to it. The relative power level of the signal must be 
known in terms of a bolometer, vacuum-tube voltmeter, or waveguide 
attenuator. The attenuation factor a of the attenuator is given by the 
ratio of the two signal-power levels that give the same deflection on the 
output meter with the attenuator out and in respectively. It is necessary 
to use signal levels that are high compared to noise, and the precaution 
mentioned above of presenting to the attenuator an impedance equal to 
its iterative impedance should be observed. If the procedure previously 
outlined is followed, the attenuation will be within ±0.2 db of 3 db at
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30 Mc/sec. Another method employing the calibration of a noise gen
erator will be described at the end of this section. This method usually 
can be used when the equipment mentioned above is not available.

Photographs of a unit of the type described in this section are shown 
in Figs. 14-13 and 14-14. The circuit diagram is shown in Fig. 14-15.

Fig. 14-14.—Top view of postamplifier.

The amplifier is shielded from the power supply and from the section of 
the selector switch that controls the plate supply of the noise generator. 
This unit has a bandwidth of 8 Mc/sec centered at 30 Mc/sec, and the 
voltage gain between the grid of the first tube and the plate of the third 
tube is approximately 350.

Correction to Be Applied When a Is Not Equal to 2.—The correction 
to be applied when a is not equal to 2 is very simple. When a noise 
figure is measured, it is assumed that at the input terminal of the ampli
fier there is a single source of noise whose available power is Wn and which 
simulates all the sources of noise within the amplifier (see Sec. 14-1). 
With the attenuator in, the noise source is turned on and adjusted to 
give an available power Wi such that the output power obtained is 
the same as that with the noise generator off and the attenuator out. 
Therefore

Wn + W1 = aWn, (15)
or

Wn
Wi 

a -
(16)
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The procedure is to (1) calculate the noise figure as though a were 
exactly 2 and (2) divide the result by a — 1 if the noise figure is expressed 
as a ratio or subtract 10 logio (a — 1) if it is expressed in decibels.

Equation (16) shows the effect of an error in attenuator calibration 
on the accuracy of noise-figure determination. For example, if a is 
believed to be exactly 2 but is only approximately 2, then, because a — 1 
is approximately unity, half as large, the percentage error in noise figure
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Fig. 14’15.—Auxiliary postamplifier for noise-figure measurement. Amplifier com
pletely shielded.

is approximately twice as great as the percentage deviation between 
a and 2.

Attenuator Calibration by Means of a Noise Generator.—The following 
method permits calibrating an attenuator with extreme precision; the 
only requirement on the output power-measuring device is that it be 
able to indicate that power has not changed.

First, a direct current Ii is passed through the noise generator so 
that the noise output power of the amplifier with the current Ii flowing 
and the attenuator in is the same as the noise output power with the 
attenuator out and the noise generator off. If Wi is the available noise
generator power corresponding to Zi, then

Wn + W3= aW.. (15)

Next the noise-generator current is adjusted to a value I2 such that with 
I2 flowing and the attenuator in, the noise output power of the amplifier 
is the same as with the attenuator out and the current Ii flowing. If 
W2 is the available noise-generator power corresponding to 12, then

W„ + W2 = a(W„ + Wi). (17)
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Subtracting Eq. (15) from Eq. (17) yields

Wz — Ws
“----- FT"’

If Ws and Wz are proportional to Is and Iz, with the same propor
tionality constant (as is true for a given temperature-limited diode noise 
source),

a = = £ - 1. (18)

It is thus possible to determine a with all the precision with which 
the direct currents Is and Iz can be measured. Although Eqs. (15) and 
(17) are valid only if the amplifier preceding the attenuator is linear, 
this linearity is very easy to achieve simply by operating the part of the 
amplifier preceding the attenuator at low level.

14-9. Method Employing Gain-control or Uncalibrated Attenuator.— 
A method1 has been developed for use with noise generators that requires 
only the noise generator and an output meter of any type whatever 
(usually a d-c voltmeter connected across the detector load resistor in a 
receiver) but that requires that the amplifier have a gain control and 
assumes that the noise figure is independent of gain-control setting. 
This latter assumption is not always valid and is discussed further in 
Sec. 1413.

The method is as follows. First the deflection of the meter is noted 
with no noise-generator current. Then an arbitrary current 11 is passed 
through the generator and the output meter is read a second time. 
Next with the current Is flowing, the amplifier gain control is set so 
that the output meter returns to its first deflection. Finally, the current 
is raised to a value Iz so that the output meter has the second deflection. 
If Ws and JU2 are the available powers of the generator corresponding to 
Is and Iz respectively,

Wz + Wn _ Ws + Wn
Ws + Wn W„

Solving Eq. (19) for Wn yields
W - -” Wz - 2Ws

Dividing by kTB, one has [see Eq. (1)],

p _ Wn _______\kTB/_____  
kTB (Wz\ _ „ / H’A 

\kTBJ ¿\kTBj
* M. C. Waltz, RL Internal Group Report—61-9/15/43.

(19)

(20)



Sec. 1411] BOLOMETERS 715

For a given temperature-limited diode noise source the ratios 171/(67'13) 
and Wt/(kTB) have the form ML and ML, wnere

M = 2<0Ra

for a high-impedance noise generator, and

= 290°K.

(21)

for a matched-line noise generator, [see Eqs. (8) and (9)], at T 
Hence,

v = Mil 
1 L - 2L

This method is very useful for field measurements because it requires 
so little equipment, but the accuracy is often poor, mainly because 
I2 — 2L is usually small compared with L or L, and therefore a small 
fractional error in either 11 or L leads to a relatively large error in L — 2L- 
Often more accurate values are obtained if L and It are rather large 
(compared with the value of I used in the other methods). Unfortu
nately, however, many amplifiers overload at such high signal levels.

14*10. Crystal and Diode Rectifiers.—Crystal and diode rectifiers 
(which include the detectors incorporated in radio receivers) suffer dis
advantages as amplifier power-output measuring devices except in regard 
to availability. Usually they do not respond to a combination of noise 
and c-w signals according to the same law as to noise alone and hence 
are not reliable for highest accuracy when c-w generators are employed. 
Even with noise generators, considerable effort must be expended, espe
cially with wide-band amplifiers, to establish the output-deflection vs. 
input-power law of the detector. (Such detectors usually have a “dark 
current” with no signal applied. Depending upon individual conditions 
it is sometimes necessary to subtract the dark current and at other 
times to neglect it in establishing some simple law.) Also the law itself 
usually holds for only a small range of signal levels. Hence this method 
is usually not very accurate even with noise sources.

Crystal detectors used with indicating devices that have a deflection 
sensitivity of about Ipa full scale have been found to be very accurately 
linear in power, but with meters of lower sensitivity crystals may deviate 
considerably from such a law.

14*11. Bolometers.—A bolometer is the most satisfactory output
indicating device for use with unmodulated c-w signal generators because 
it responds to unmodulated c-w and noise powers according to the same 
law. It can be used with noise generators as well.
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An unbalanced-bridge type of bolometer is sufficient for this purpose, 
since it is necessary to measure merely relative power and not absolute 
power in watts at the output terminals of the amplifier. Such a device 
is illustrated in Fig. 14-16, where Ri is a ro-amp Littelfuse or a Thermis
tor that (together with the decoupling resistors R3 and Ri) forms one

Fig. 14*16.—Unbalanced-bridge bolometer.

arm of a Wheatstone bridge, the other arms being R6, R3, and R,. With 
the amplifier turned off, the bridge is balanced by the adjustment of 
Ri. With the amplifier operating, its output power, consisting of noise 
or signal or a combination of both, is dissipated in R2. This changes its 
resistance, upsetting the balance of the bridge and causing the meter to 
deflect. If the amplifier is linear, the deflection is proportional to the 
input power to the bridge.

The value of Li is adjusted to resonate with C, the output capacity of 
the tube, at the center frequency of the amplifier. The bandwidth of 
this output circuit is ,

® = irRiCfl, (22)

where fo is the center frequency. The ratio of the voltage across Ri and 
the voltage at the input of the tube, if the dynamic plate resistance is 
assumed to be very high, is

e =---------------------- (23)
Cut Vl + RlC2ul

where u3 — 2irfa. In order to obtain a large bandwidth it may be neces
sary to increase C by connecting a condenser in parallel with the output 
of the tube. According to Eq. (23) this action causes a reduction in 
gain. If an even greater bandwidth is desired (at the further expense 
of gain), Li may be made zero and L3 made to resonate C, giving a parallel- 
tuned circuit loaded by Ri.

There is considerable danger of burning out R2 or the meter, and care 
must therefore be taken in operating the apparatus. Furthermore, the
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apparatus should be shut off while making connections or changes, 
because oscillation may result from improper connections.

Generally it is not very convenient to connect such a device to an 
already constructed amplifier. Therefore it is desirable to mount such 
a device in an auxiliary “postamplifier” whose input signal is obtained 
from a plug replacing one of the tubes of the amplifier under test.

14*12. Thermocouple Meters.—Experience obtained at 30 Mc/sec has 
indicated that depending upon the particular thermocouple in use, the 
deflection of such meters does not always vary linearly with power nor 
do they accurately obey the same law as at direct current. Therefore 
if they are used, they should be calibrated in terms of other devices such 
as attenuators or bolometers at the frequency at which they are to be 
used.

SPECIAL TOPICS

14*13. ESect of the Gain Control.—Usually the only important sources 
of noise in an amplifier lie within the first few stages, because the ampli
fication of the first stages causes these noise sources to overshadow any 
noise in later stages. However, if a gain control is placed in one or more 
of the early stages, noise in later stages may predominate at low settings 
of the gain control, especially since these later stages are usually not 
carefully designed in regard to their noise. Hence, the noise figure may 
deteriorate at low-gain settings.1

A spurious effect sometimes appears at high-gain settings, where the 
noise figure measured by the attenuator or bolometer methods may 
appear to be larger than at intermediate-gain settings. This effect is 
due to overload of the stage or stages preceding the power-measuring 
device and causes the measurements to be in error, but it does not indi
cate that the actual ability of the amplifier to detect weak signals has 
deteriorated.

It is clear, therefore, that noise figure should be measured at several 
gain-control settings to be sure that no overload effects preceding the 
power-measuring device are taking place. Second, when it is desired to 
repeat the measurement of the noise figure of an amplifier with the highest 
possible precision, the gain-control setting must be reproduced.

14*14. Correction for Temperature.—At a temperature of 290°K, the 
numerical values of the constants in the various expressions for noise 
figure, Eq. (1) and especially Eqs. (8a) and (13a), are of a convenient 
value for calculations. Because 290°K is near room temperature, it is 
usually accurate enough to use these simple values of the constants 
without making individual determinations of the temperature. Situa-

1 This is. not usually a serious matter in the practical use of amplifiers, because, in 
general, an amplifier needs to have the best possible noise figure only when it is being 
used to amplify very weak signals, that is, when its gain is high.
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tions have arisen, however, where the noise figure was so low (1.06 times 
= 0.25 db for amplifiers at 6 Mc/sec, 1.35 times = 1.3 db for amplifiers 
at 30 Mc/sec employing the grounded-cathode-grounded-grid-triode input 
circuit discussed in Sec. 13-10) and the precision of the measurements so 
high that the effect of variations in temperature had to be considered. 
Furthermore, because of heat produced within the apparatus it was 
necessary to place a thermometer on or near the resistor that simulated 
the resistance of the signal source.

In this connection it is interesting to consider a “radiometer” noise
figure determination carried out by J. L. Lawson. A brass cube about 
If in. on a side was provided with a well for the insertion of a thermometer

0 290 390
Temperature of source-resistance in °K 

Fig. 14-17.—Radiometer determination of 
amplifier noise figure.

and a cylindrical hole for insertion 
of a -J-watt carbon resistor. The 
resistor was connected to the in
put terminals of a 30-Mc/sec am
plifier so that the only source of 
noise, apart from that in the am
plifier itself, was the thermal-agi
tation noise in the resistor. The 
amplifier noise output power was 
then recorded as a function of the 
temperature of the brass block 
over a range from 290° to about 
390°K. (The brass block was pre
sumably large enough to achieve a 
good approximation to tempera
ture equilibrium; the source of 

heat was a soldering iron. The behavior of the resistance as a function 
of temperature had previously been allowed for.)

The points lay remarkably accurately on a straight line, as indicated 
in Fig. 14-17. Extending this line back to 0°K gave the noise originating 
in the amplifier alone (the excess noise of the amplifier); the noise figure 
at 290°K was in fact

p _ ____________ output noise power at 290°K_____________
output noise power at 290°K — output noise power at 0°K

For the particular amplifier under test, this value came out to be 1.50, 
whereas the noise-diode determination of noise figure had yielded 1.52.

The success of these simple procedures requires an amplifier with 
sufficiently good noise figure to show significant variation in total output 
noise power for a small change in source-resistance temperature; diffi
culties in attaining temperature equilibrium would arise at temperatures 
far above room temperature.

The value of the noise figure F at given temperature T can be calcu



Sec. 1415] AMPLIFIERS WITH PUSH-PULL INPUT CONNECTIONS 719

lated by substituting the exact value of T into the various formulas, 
but for the comparison of different measurements it is necessary to cal
culate Fa, the value of the noise figure that would have been obtained if 
the temperature were some standard value To. According to the defini
tion of noise figure contained in Sec. 14-1, it is possible to replace all of 
the sources of noise within the amplifier and signal source by a generator 
of available power W, at the input of the amplifier. From Eq. (1)

Wn = FkTB.

Part of this power, kTB, is due to the thermal-agitation noise of the signal 
source, whereas the rest, (F — l)kTB, is due to sources within the ampli
fier. If the measurement had been performed at To, the first part would 
have had the value kTaB. For the lack of information to the contrary, 
it is generally assumed that the second part would have been unchanged. 
Therefore, the total available power would have been

W„, ~ kTaB + (F - l)kTB, (24)
and the noise figure Fa would have been found by dividing Wn, by kTaB-.

T FTFa^l--++~ (25)
la la

The last term on the right is the value of the noise figure that would 
have been obtained if the temperature Ta, instead of the actual tempera
ture, had been used in the formulas for noise figure [Eqs. (1), (8), and 
(13)].

Obviously the most convenient value for Ta is 290°K, because 
e/(2kT) is then equal to 20. In this case

TF^1-io + F'2

where F’ is the noise figure calculated by using 290° for T in the formulas 
for noise figure, or, in other words, the value obtained using the simple 
value of e/(2kT) = 20, as in Eqs. (8a) and (13a).

14-IS. Noise Figure of an Amplifier with Push-pull Input Connec
tions.—Although it is possible to construct signal generators with 
push-pull output connections, they are not necessary for noise-figure 
measurements of amplifiers with push-pull input connections.

Ordinary generators can be used in the following manner: The normal 
signal source has an impedance consisting of a resistance Ra in parallel 
with a reactance X; therefore, the signal generator is adjusted to have 
an output impedance equal to that of Ra and X in parallel and is con
nected across one input terminal and ground. A dummy impedance 
equal to that of Ra and X in parallel is connected between the other 
terminal and ground. Some of the power supplied by the signal source 
is transmitted through the input circuit and is dissipated in the dummy 
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impedance. This effect of the dummy impedance modifies the voltage 
across the terminals of the signal source in the same way as would a 
resistance Ri and a reactance X' connected in parallel with its terminals. 
According to Theorem 2 in Sec. 14-2, the available power is effectively 
reduced by the factor Ra/(Ra + Ri). Usually it can be assumed that 
the input circuit acts as transformer with a unity turns ratio, causing 
Ri to be equal to R* and the ratio to be equal to one-half. In other 
situations, Ri can be measured by an impedance-measuring device, and 
the ratio can be calculated.

The procedure then is to perform the measurements and calculations 
as though the amplifier were single sided and the parallel resistance of 
the signal source were Ra. Then the noise figure determined in this way 
is multiplied by the ratio Ra/(Ra + Ri). In order to eliminate the effects 
of unbalance, the signal generator and dummy impedance should be 
interchanged, the measurements repeated, and the two results averaged.

14-16. Measurement of Noise Figure of Superheterodyne Radio 
Receiver with Image Response.—In a superheterodyne radio receiver 
there is always some response at the image frequency. Consequently 
there is a contribution to the output noise power from noise sources at 
the image frequency; these include thermal-agitation noise, grid noise 
of the first tube, and possibly other effects. Hence an equivalent noise 
generator at the amplifier input terminals, at signal frequency, has to 
have larger power than if there were no image response. A perfect 
receiver has no image response, and the bandwidth B in Eq. (1) is evalu
ated for the signal band only. Therefore the noise figure of the receiver 
deteriorates because of the image response. If the gain were the same 
at the image frequency as at the signal frequency, and if the noise sources 
enumerated above were the only ones present, the noise figure would be 
increased by a factor of 2. Since the gain at image frequency is usually 
less than at signal frequency and since other sources of noise are present, 
such as plate noise, the factor by which noise figure is multiplied is 
usually considerably less than 2 but, of course, never so small as 1.

When unmodulated c-w signal generators are employed to measure 
noise figure, no difficulty is encountered, since these generators do not 
produce a signal at the image frequency. However, noise generators 
produce noise at the image frequency as well as at the signal frequency.

For calculating the noise figure, it is necessary to know the value of 
the d-c noise-generator current needed to double the noise output power 
if there had been no image response. This value is equal to the observed 
current multiplied by the ratio (Gp + G'A/Gp, where GP and Gp are the 
average actual power gains at the signal and image frequencies respec
tively. Consequently, noise figures calculated by substituting the actual 
observed current into Eq. (8) or (13) should be corrected by multiplica
tion by thia factor.



APPENDIX A

REALIZABILITY OF FILTERS

By Henry Wallman

Given a certain amplitude characteristic, the question arises as to 
whether or not it can be realized by means of a physical filter. For 
example, is there any physical network whose absolute value is a gaus- 
sian-error curve? The only restriction on a “physical network” is that 
it show no response to an applied signal until the input switch is closed; 
i.e., that the Fourier transform be zero for time t < 0.

A complete and very simple answer to the question of realizability 
is provided by a theorem of Paley and Wiener, drawn from the theory 
of Fourier transforms in the complex domain.

The result for the gaussian-error curve is that it is not realizable.

A(«l

Fig. A4.—Gaussian-error-curve filter, 
A(«) = e*“2.

Flo. A-2.—Step-function response of Gaus- 
sian-error-curve filter.

A*l. The Paley-Wiener Criterion.—If it were possible for a filter to 
have a gaussian-error curve A(w) = e~“' as amplitude characteristic 
(Fig. A-l), and zero phase lag, so that the complex system function is 

= e~"!, then the step-function response 

1
M =

of such a filter is the error function (Fig. A2)

JW = e^'^dt.
2

Now consider an idealized low-pass filter, having for amplitude char
acteristic the function A.(w) = 1 for — 1 < w < 1 and A(w) =0 other- 
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wise (Fig. A-3), and zero phase lag, so that the complex system function 
is H(u) = 1 for —1 < « < 1, and H(u) = 0 otherwise. Then the step
function response is the sine-integral function (Fig. A-4)

; /'. iL

There is something very disquieting in Figs. A-2 and A-4, in that they 
show response for time t < 0 although a physical system obviously 
cannot react to a step function before the step function has even been 
applied.

A(w)

-10 1 «
Fig. A-3.—Idealized low-pass filter A(w) = 1 

for — 1 < w < 1, = 0 otherwise.
Fig. A-4.—Step-function response of ideal

ized low-pass filter.

The reason for this difficulty lies in the false assumption that it is 
possible for a filter to have a gaussian-error, or idealized low-pass ampli
tude characteristic, and zero phase lag.

Moreover, the difficulty cannot be removed by associating a linear 
phase lag, no matter how great, with the gaussian-error or idealized low- 
pass amplitude characteristics. Although a linear phase lag has the 
effect of shifting the time origin in Figs. A-2 and A-4 to the left, no matter 
how great this shift to the left, it would still remain true that there would 
be some response even before the input switch were closed.

As a practical matter, a response of, for example, one-hundred
millionth per cent for time < 0 can be neglected, in the sense that it 
has no experimental meaning; hence these filters are “practically” 
realizable, with large enough phase lags (see Sec. A-3 for a more precise 
discussion of this point).

Nevertheless, it is of considerable mathematical interest to determine 
whether or not there is any phase function whatever, linear or otherwise, 
that can be associated with either the exact gaussian-error amplitude 
curve or the exact idealized low-pass amplitude curve so as to give 
strictly zero transient response for t < 0. The answer is no, and this 
negative answer is a consequence of an extraordinarily elegant theorem 
of Paley and Wiener,1 which states, in the language of engineering:

1 R. E. A. C. Paley and Norbert Wiener, "Fourier Transforms in the Complex
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If A(u) is an arbitrary amplitude characteristic, i.e. an even non
negative function of frequency, having a Fourier transform, Alfa) is 
said to be “realizable” if it is possible to associate with the amplitude 
function A(w) a phase-lag function fafa (not necessarily linear) such that 
the combined frequency function ^(ai)«-’*!"! yields zero transient response 
for / < 0. (This is clearly a very general and nonrestricted conception 
of realizability.) Then

Theorem of Paley and Wiener.—A necessary and sufficient condition 
for an amplitude function A (w) to be realizable is that

. <■> 
be finite.1

In words: A realizable amplitude characteristic cannot have too great 
a total attenuation.

A realizable characteristic may have infinite rejection for a discrete 
set of frequencies, but it cannot have infinite rejection over a band of 
frequencies.

The theorem of Paley and Wiener has the great merit that although 
it is of a complex-variable nature in content and proof, Criterion (1) 
itself is entirely expressed in the domain of real variables.

Both the gaussian-error curve and the idealized bandpass character
istic attenuate too much to satisfy Criterion (1). Hence neither is 
exactly realizable. This is not just a practical difficulty but a theoretical 
impossibility.

The mathematical meaning of this nonrealizability is as follows: For 
every sequence of filters whose amplitude curves approximate more and 
more closely to the gaussian-error curve or to the idealized low-pass 
amplitude curve, it will be found that the successive phase characteristics 
diverge.

A-2. Examples. Gaussian-error Curve.—To illustrate this divergence 
of phase characteristics one may examine a familiar method of approxi-
Domain,” Am. Math. Sac. Colloq. Pub., 19 (1934), Chap. I, “Quasi-analytic Func
tions,” Theorem XII, pp. 16 and 17.

The exact quotation is as follows: “Let 4>(z) be a real nonnegative function not 
equivalent to zero, defined for — x < x < x, and of integrable square in this range. 
A necessary and sufficient condition that there should exist a real- or complex-valued 
function F(x} defined in the same range, vanishing for x z0 for some number z«, and 
such that the Fourier transform G(x) of F(x) should satisfy |G(z)| = <t>(x) is that

r x.”
J - • 1 + x1

1 Integral (1), if it exists, is in fact an evaluation for a special case of the expression 
giving the logarithm of a complex impedance function in terms of the logarithm of its 
absolute value.
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mating in amplitude to a gaussian-error curve to see how it leads to 
divergent phase functions.

Fig. A-5,—Cascade of n identical ^C-coupled pulse-amplifier stages.

Consider a cascade of n identical EC-coupled pulse-amplifier stages 
(Fig. A-5). The amplifier has the complex selectivity function

(1 + jaRCF", (2)

whose absolute value is [1 + (uRC)2 
is held constant as n increases, e.g., if

Fig. A-6.—Absolute value vs. frequency 
curves of (a) cascade of n identical RC- 
coupled stages, (6) gaussian-error curve; 
both curves adjusted to have their 3-db 
points at oi = 1.

] 2. If the over-all 3-db bandwidth 
the 0.707 voltage point is maintained 
at u = 1, then RC = (21/n — 1)H 
From the Taylor’s series approxi
mation 21/n — 1 « (In 2)/n, Expres
sion (2) becomes

/ WEy. (3) 
\ V n /

The absolute value of Expression. 
(3) is

and the phase lag of Expression (3)

= n ts

Compare Expression (4) with a gaussian-error curve having w = 1 as 
its 0.707 point (Fig. A-6), the formula for which is

.In 2 
2e

It is plain from Expression (4) that A„(w) converges to e 2 , as

follows from the definition of e as lim 
n—► •

i\”
- ) : on the other handnJ

diverges, by becoming indefinitely large for all w. That is, the 
sequence of cascaded EC-coupled stages tends to a gaussian-error curve in 
amplitude, but (and this is the whole point of the example) the associ
ated phase functions (5) diverge.
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Idealized Low-pass Filler.—A similar state of affairs prevails for the 
idealized low-pass filter. This filter is not realizable (not because of 
the steepness with which the amplitude curve cuts off but rather because 
the amplitude curve cuts off to zero). The approximate low-pass filter

AM

Fig, A-7.—Approximate low-pass filter, 
A(w) « 1 for — 1 < « < 1, = e otherwise.

Fig. A-8.—Phase vs. frequency curve, 
j । j 1 ¿jI

^(w) ** ¡In. <] • In ---------b corresponding to j 1 — G)|
absolute-value curve of Fig. A-7.

of Fig. A-7, which cuts off to e, is realizable, however, no matter how small 
e may be. The corresponding phase-lag function is1 (Fig. A-8) propor
tional to

4>(u) = |ln e| In

Filters Having |sin w/a>| and sin2 u/u2 as Absolute Values.—These two 
amplitude characteristics (Fig. A-9) do satisfy the Paley-Wiener criterion 

1 + w
1 — w j

Fig. A-9.—Absolute value vs. frequency curve of (a) (sin u/id), and (d) (sin2 w/cu1).

(1) and, as it happens, are very simply realizable, with linear phase lags, 
in the forms (sin w/u)e~’a and (sin2 u/u2)e~2ia. Routine integration 
shows the step-function responses to be as shown in Fig. A-10. (The 
step-function response of the (sin2 filter is made up of two
parabolic arcs.)

The fact that |sin u/w\ and sin2 u/u2 satisfy Criterion (1) does not 
mean that these two amplitude curves, with their infinity of arches, are 
exactly realizable by means of a finite number of resistances, inductances,

1 E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford, New 
York, 1937, p. 121.
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and capacitances, but it does mean that it is possible to have a sequence 
of filters, each made up of a finite number of lumped circuit elements, 
that tend to |sin u/"l or sin2 w/w2 in amplitude and whose phase functions 
converge (as a matter of fact, converge to linear phase lags of a and 2a 
radians respectively).

Indeed, an example of such a sequence of finite filters has been sug
gested by E. A. Guillemin. In pulse-forming networks of the sort shown 
in Fig. A-ll, as the number of elements increases, the current I2 tends

Fig. A*ll.—Idealized pulse-forming network. The system function for Et/Ei is 
(sin w/w)e-,u.

more and more to a square pulse, and hence the voltage E2 to an inclined 
step. Therefore the ratio E2/Ei (see Fig. A-10) tends to (sin

It is even possible that the complex functions (sin a/a)e~i“ and 
(sin2 w/a>2)e~2’“ can be exactly realized by a finite number of lines with 
distributed constants.

A-3. The Practical Meaning of the Paley-Wiener Criterion.—For 
sufficiently negative values of i, the Fourier transform of an arbitrary 
amplitude characteristic A (a) [subject only to the (physically inevitable) 
condition of having a Fourier transform] is as small as is desired, 
whether or not the Paley-Wiener Criterion (1) is satisfied. Consequently
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it is possible to approximate to the given amplitude characteristic, as 
closely as desired over any finite frequency interval,1 by a real filter 
with large phase lag, i.e., large time delay. If it happens that Criterion 
(1) is satisfied, then the theorem of Paley and Wiener asserts that there 
is, in fact, a way of carrying out this approximation so that the phase 
functions converge to some finite 0(oj), thereby yielding a finite time 
delay.

The practical significance of the Paley-Wiener criterion is then as 
follows:

An amplitude characteristic having a Fourier transform can be 
approximated arbitrarily closely by finite filters whether it satisfies the 
Paley-Wiener criterion or not; but if it does satisfy the Paley-Wiener 
criterion, then the entire approximation process can be carried out within 
the bounds of a finite time delay, whereas if the Paley-Wiener criterion is 
not satisfied, the approximation process necessitates an infinite time 
delay.

The following may be said in summary: Amplitude characteristics 
having a Fourier transform can be divided into three types:

1. Those exactly realizable by a finite number of R, L, C elements, 
for example, l/\/l + u2. Amplitude characteristics of this type 
satisfy the Paley-Wiener criterion, and in addition the correspond
ing complex frequency characteristic [1/(1 + JR for the above 
example] is rational.

2. Those exactly realizable by an infinite number of R, L, C elements 
(or by a finite number of lines with distributed constants), e.g., 
|sin oi/R- These are exactly realizable in the sense that as the 
approximation to the given amplitude characteristic becomes 
closer and closer, the associated phase functions converge also. 
Amplitude characteristics of this type satisfy the Paley-Wiener 
criterion.

3. Those not exactly realizable at all but approximable arbitrarily 
closely over any finite frequency interval, although only at the 
expense of increasingly large time delay, e.g., e~“\ Amplitude 
characteristics of this type do not satisfy the Paley-Wiener 
criterion.

1 But the approximating filter would then behave differently at u = ® and would 
therefore have an entirely different abstract-mathematical character.
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CALCULATION OF LOAD-TUNING CONDENSER

By Duncan Mac Rae, Jr.

A more refined treatment of the method of selecting the tuning con
denser for the output stage of the two-stage amplifier (Sec. 9-6) can be 
considered if extremely small phase shift is desired. For a circuit with 
cathode- and plate-circuit impedances, the equivalent circuit can be

Fig. B4 .—Equivalent circuit of amplifier with impedance in cathode circuit.

(a) (&)
Fig. B2.—Equivalent circuits of output stage. R' = apparent resistance of parallel- 

resonant circuit. C3 = excess of C2 over v'alue required for resonant tuning, (a) Equiva
lent circuit of output stage ; (b) simplified equivalent circuit if stator is tuned capacitatively.

drawn as is shown in Fig. B-l. For the operating point chosen, the 
6C4 has u ~ 16, rp ~ 10,000 ohms.

Therefore with the constants of Fig. 9-156 in the output stage, the 
equivalent circuit is as shown in Fig. B-2. The stage can be adjusted to 
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zero phase shift if the load is tuned slightly capacitively. The magnitude 
of apparent capacitance can be determined as follows: The LRC-circuit 
may be considered as composed of a pure resistive tuned circuit (20£) 
in parallel with an additional capacitor C3; if the cathode impedance is 
neglected (or if it is replaced by the corresponding series RC-circuit), 
the equivalent circuit of Fig. B-l becomes part of a Wien bridge, and 
the condition for zero phase shift (in the case Z* « 0) is = 1;
then,

= (2r500)2 X 17,000 X 7500 X 10-7 = 0008

This circuit requires an extremely accurate selection of condensers, 
which may be feasible for experimental equipment but is impractical 
when wide production tolerances and temperature coefficients are 
involved.



APPENDIX C

DRIFT OF VACUUM-TUBE CHARACTERISTICS 
UNDER CONSTANT APPLIED POTENTIALS

By John W. Gray

The severest limitation is imposed upon direct-coupled amplifiers by 
the fact that the characteristics of any vacuum tube will gradually shift 
while the tube is in operation even though the conditions of operation 
are all held constant. For example, if the plate and grid voltages and 
filament or heater voltage are held constant, the plate current will drift 
slightly even after temperature equilibrium has been reached. This 
drift (except in the case of “microphonics” or dimensional changes due 
to shock or vibration) is attributable to cathode change resulting in varia
tion of the average initial electron velocity of emission. This premise is 
substantiated by the nature of the shift of tube characteristics; it is found 
to be of the same type as that caused by variation of cathode temperature 
(see Fig. 11-7). Generally, as a tube ages, the drift is in the direction 
of decreasing emission; but short-time drifts are erratic as to sense and 
rapidity.

As in the case of cathode temperature effect (Sec. 11-6), the most 
convenient way to express the drift is in terms of the variation of control
grid bias that is required to hold the plate current constant with a given 
value of plate voltage (and screen-grid voltage). In addition to being 
more directly descriptive of the effect upon amplifiers, this quantity is 
more independent of plate current and voltage than is the drift of current 
with constant grid bias.

The first stage of an amplifier is usually the only stage wherein the 
tube drift is of much importance, since the drift of the second stage is less 
effective by a factor equal to the voltage gain of the first, etc. (Excep
tions occur when the first stage is a cathode follower or an electrometer 
tube designed for low grid current but having very low gain.) This 
fact is fortunate, because the drift of a power stage is greater than that 
of a voltage amplifier operated at low power. Minimum drift in most 
ordinary receiving tubes occurs at plate currents of between 0.1 and 1 
ma (10 to 100 pa for the small, filament types) and at plate and screen 
voltages as low as permissible from the standpoint of control-grid current, 
although neither current nor voltage is at all critical. The drift takes 
place as a general shift of the characteristics, as for cathode temperature 
change.
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Rate of drift is relatively great in new tubes. Most of the drift 
during the life of a tube usually occurs during the first hundred hours of 
cathode operation. It is therefore advisable to age a tube, with filament 
voltage applied, for several days before use where stability is essential.

Figures C-l and C-2 show the long-term drift of a group of 6SL7 
double triodes. Readings of grid bias required, for a certain plate current 
at a certain voltage, were made at the times indicated. Heater voltage 
was held constant only during readings; the rest of the time it varied with 
the a-c line and was turned off several times. Because of the much more 
rapid variation at first, a logarithmic time scale is used.

Differential amplifiers are often used as input stages to help neutralize 
the effect of heater-voltage variation. The question arises as to whether 
any cancellation of drift is also accomplished. For short-time drift, 
where a zero adjustment can be made every day or so, the drift of each 
tube is erratic, and the use of two tubes instead of one in the first stage 
will multiply the probable drift by y/2- For intervals of weeks or months, 
however, Figs. C-l and C-2 seem to indicate that there is some drift 
cancellation between double triodes.

Figures C-l and C-2 show that the amount of drift over periods of 
weeks is measured in tens of millivolts. (Some tubes are considerably 
worse than the group illustrated.) Thus, unless a zero adjustment can 
be made at frequent intervals, it is rather pointless to make an amplifier 
with a gain such that its output range is traversed as the input voltage 
changes by only 1 mv. If the zero set can be made just before the 
application, if a selected tube is used, and if heater voltage is constant, 
it is possible for input variations of a fraction of a millivolt to have 
significance.
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Figs. C-l and C-2.—Drift of three 6SL7’s (six triodes) dur-
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Hours of tube operation (logarithmic scale)
ing 3200 hr. Triode pairs are indicated by similar lineation.
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stagger-tuned, 322 

gain control of, 191 
negative input resistance at high 

frequencies, 197 
synchronous single-tuned, 322 

gain-bandwidth factor for, 172 
under test, proper way of making con

nections to, 319 
testing of, 301-332 
triode (see Triode amplifiers)

Amplitude characteristics, 394 
Amplitude response, 341 
Angle resolvers, 347
Asymptotic characteristic, 340
Attenuator calibration, by means of 

noise generator, 713
Attenuators, 93, 314

B

Bandpass, maximally flat, 279
Bandpass amplifier alignment, complete 

amplifier, 323
double-tuned amplifiers, 322 
inverse-feedback amplifiers, 323 
stagger-tuned amplifiers, 322 
synchronous single-tuned amplifiers, 

322
Bandpass amplifiers, alignment of, 318

323
measurement of, 318-323 
pulse response of, 274

735
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Bandpass amplifiers, regeneration in, 323 
response of, to pulse of substantially 

detuned carrier frequency, 329 
undesired feedback effects in, 323-327

Bandpass filter, electronic, 384
Bandpass shape, 322
Bandwidth, 169, 322

of input circuits, methods of increasing, 
690

maximum possible at given over-all 
gain, 173

noise, 169
over-all, obtainable with various cir

cuits, 289
Bandwidth switching, with inverse-feed

back pairs, 258
Bias, cathode, 353

fixed, 358
screen, 359

Bias voltage, and transconductance, cor
relation between, 290

Blackout effects, 329, 330
Bolometers, 715-717
Boltzmann’s constant, 503, 517, 620, 695
Branch,8
Bridge network, 384
Bridged-T networks, 384, 385
Brownian movement, 497

C

Calculus, operational, 1
Capacitance, 4

input, 339
Capacitors, electrolytic, 348
Capacity variability, 292-295
Cascode amplifiers, 440
Cascode low-noise circuit (see Grounded- 

cathode grounded-grid circuit)
Cathode, grounded (see Grounded cath

ode)
as input terminal, 441
unipotential, 421

Cathode bias, 353
Cathode circuit, 87
Cathode degeneration, 401
Cathode feedback, 336, 351
Cathode flicker effect, 588
Cathode follower, 107, 348

d-c, 430
differential, 454

Cathode follower, pentode, 436
Cathode peaking, 90
Cathode-ray tube, 410

deflection-modulated, pulse amplifier 
for, 109

intensity-modulated, pulse amplifier 
for, 111

Cathode-ray tube spot, equivalent rise
time of, 79

Cathode resistor, 90
Cathode temperature, 419-421
Central limit theorem of probability, 77,

80
Choke-coupled circuit, 126
Circuits, cascaded synchronous single

tuned, 172-174
double-tuned (see Double-tuned cir

cuits)
overstaggered, 284-287
single-tuned, 168-171

Cofactors, 385
Coil loss, 649
Coils, bifilar, 196

pretuned, 295-297
vs. tunable, 295

tunable, 295
unity-coupled, 196

Component tolerances, 400
Components, variability of, 390
Condensers, bypass, 368
Conductance, 4
Constant-current device, 431, 432, 437
Convolution theorem, 3, 39
Coupling, coefficient of, 202

conductive, 411
critical, 204, 214
transitional, 204, 213

Coupling networks, 398
Crystal, dummy, 317
Crystal temperature, equivalent, 618
Crystal-video receiver, 113
Current generator, 4
Cutoff, low-frequency, and step-function

response, 86
Cutoff characteristics, 349

D

{-function, 23
D-c plate-load resistance, 354
D-c restoration, 96-98
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D-c restorer, heater-to-cathode hum in, 96 
Delay-line circuit, terminated in too

high an impedance, 133
terminated in too low an impedance, 

133
Detector law, 332
Differential amplifiers, 441—451

pentode, 450
Differential input, 443
Differential output, 447
Differentiation, 411
Diode clippers, 129
Dissipation factor, 168
Double-tuned circuits, 201-231

alternate primary and secondary load
ing of, 230

capacity-coupled, 210
equal-Q, critical coupling for, 279
high-Q, 202, 210
low-Q, transitionally coupled, 216
stagger-damped, 221-226
transitionally coupled, exact, with one- 

side loading, 220
exact equal-Q, 218

Dummy mixers, 317
double, 318

Dynamic range, 113
large, pulse amplifiers of, 113-165

E

Ease of adjustment, 391
Elastance, 4
Electrometer, 409
Electronic computing devices, 333
Ensemble average, 504, 519
Entropy, 516
Ergodic system, 519
Excitation transform, 30

F

J-transform, 59
Faltung theorem, 39

(See also Convolution theorem)
Feedback, cathode, 336, 351

by cathode-lead inductance, 675
effect of, on noise figure, 666-672
inverse (see Inverse feedback)
negative, 428, 459
T-network, 266

Feedback, variable negative, 95 
voltage, 353

Feedback-amplifier design, practical con
siderations in, 261-266

Feedback amplifiers, flat quadruple, 270 
with four-terminal coupling networks, 

266
high-frequency, 232-273

Feedback chain, with four-terminal shunt 
impedances, 233

gain-bandwidth product of, 238
general, 235

gain of, 236
reduction of, to feedback pairs, 249
synthesis of, 249-253
uniform, 252, 266

Feedback effects, undesired, in bandpass 
amplifiers, 323-327

Feedback Loop, 384, 392
Feedback pairs, 234

reduction of feedback chain to, 249 
resistor in, effect of capacity across, 265 
synthesis of, 244

Feedback resistor, tapped on coil, 266
Feedback stage, single, gain of, 235 

with transit angle, vector diagram for, 
264

Feedback triples, 234
synthesis of, 250

Figure of merit, 73, 171
Filter amplifiers, 179
Filters, idealized low-pass, 722 

realizability of, 721-727 
realizable, 723 
tone, 407

Flat-staggered pairs, 187—189
exact, 188
m-cascaded, shrinking of over-all band

width, 187
Flat-staggered quintuples, 193
Flat-staggered triples, 189—191

exact, 190
Flat-top compensation, 89
Floating-grid potential, 420
Fluctuations, 497
Fourier integral, 2
Fourier series, 2
Fourier transform, 1, 59—63
Frequency marker, active, 305

blanking, 306
passive, 305
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G

Gain, maximum, 418
measurement of, 330
over-all, 336, 361
power (see Power gain)
production-line test for, 331

Gain-bandwidth factor, 172, 205, 287-290
of feedback chain, 268
for flat-staggered n-uple, 176
increase in, due to overstaggering, 287 
for synchronous single-tuned ampli

fiers, 172
of transitionally coupled double-tuned 

circuit as function of Q-ratio, 206 
of various interstage coupling schemes, 

288
Gain-bandwidth product, 171, 172, 297, 

298 '
of feedback chain, 238
maximum, 82

Gain control, 93-96, 290
effect of, on noise figure, 717
of stagger-tuned amplifiers, 191

Gain/rise time ratio, 73
Gain variability, 291
Gaussian-error curve, 80, 81, 721, 723
Grid-bias spread, 412
Grid circuit, 84

delay-line, 131, 145
Grid current, 349, 418-421

negative, 418
photoelectric, 419
positive, 419

Grid emission, 419
Grid-leak resistor, 353
Grid noise, induced, and shot noise, cor

relation between, 677—682
Grounded cathode, 634, 652
Grounded-cathode grounded-grid ampli

fier, 661
Grounded-cathode grounded-grid circuit, 

616, 657, 660
Grounded-cathode input circuit, 646
Grounded-cathode pentode, 645
Grounded-cathode pentode input circuit, 

644
Grounded-cathode triode, 645
Grounded-cathode triode grounded-grid 

t iode, 645, 657

Grounded grid, 634, 652
Grounded-grid input circuit, 648
Grounded-grid triode, 645
Grounded plate, 652
Grounded-plate input circuit, 648
Grounded-plate triode grounded-grid tri

ode, 645, 664

H

Heater voltage, 422
Heater-voltage variation, 353, 421-424
Heaviside, Oliver, 1

I

Impedance, 4, 5
input, 338, 339, 348, 363
internal, 401
load, 353
output, 336, 439

Impedance changer, 430
Impedance source, low-, 366
Inductance, 4

mutual, 7
in nodal analysis, 16

Input circuit loss, 637
Input circuits, bandwidth of, methods of 

increasing, 690 
double-triode, 656-666 
double-tuned, noise figure of first stage 

with, 690
dummy, 316

Input connections, 319
Input coupling networks, 682—692
Input network, double-tuned-circuit, 686
Input signals, multiple, mixing of, 99

102
Input voltage, 353, 366
Integration, 411
Integro-differential equations, 4, 10-21 
Inverse feedback, 90-93, 333, 384, 422 
Inverse-feedback chain, gain stability of, 

253
Inverse-feedback pairs, 134, 241—249 

bandwidth switching with, 258 
direct-coupled, 136 
gain stability of, 253 
overloading in, 255 
series-fed direct-coupled, 151
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J

Joint Army-Navy Specification (JAN), 
412

K

Kelvin line, 95
Kirchhoff’s laws, 1, 10

L

¿-integral, 25
¿-operator, 25
¿-transform, 25
Laguerre polynomials, 86
Laplace transform, 1, 21-42

inverse, 3, 31
steady-state, 55

Laplace transform pairs, list of, 70
Linear-circuit analysis, 1-70
Linear-differential equations, 1
Linear-phase coupling network, 67
Linear-phase network, 75
Linearity, 426, 431
Load, resistive, 354
Load impedance, 353
Load line, 426

a-c, 356
d-c, 356

Loop gain, 336, 340, 352, 363
Lowpass-bandpass analogy, 276

M

Manufacturing tolerances, 390
Maxwell, Clerk, 1
Mesh, 4, 9
Mesh analysis, 11

and nodal analysis, comparison of, 19, 
20

Mesh equations, for active network, 14 
for passive network, 13

Microphonic rejection circuits, 145
Microphonics, 144, 594
Mistuning, effects of, 215
Mixers, dummy, 317
Mixing, nonadditive, 100

resistive, 334, 335
tube, 99

Motorboating, 327

N

n-pole networks, maximally flat, 282-284 
step-function response of, 284

n-uples, flat-staggered, 176
approximate case, 180
asymptotic case, 186
exact, 180
exact case, 185
gain-bandwidth factor for, 176

staggered, 176-180
Negative-capacity circuit, 83
Networks, bridge, 384

bridged-T, 384, 385
characteristic determinant of, 385
coupling, 398
four-terminal, 385
four-terminal coupling, 75
input coupling, 622
linear, 3-10
one-pole, 277
parallel-T, 384
three-pole (see Three-pole networks)
three-terminal, 384
transform, 3, 50-53
twin-T, 384, 387
two-pole (see Two-pole networks)
Wien-bridge, 386

Nodal analysis, 15, 385
mutual inductance in, 16
and mesh, comparison of, 19

Node, 4, 8
reference, 9

Noise, 497
atmospheric, 616
electrical, 497
induced grid, 625
input-circuit, 595
local oscillator, 618
in networks not in thermal equilibrium, 

541
partition, 579
positive-ion, 589
random, 497
shot (see Shot noise)
thermal (see Thermal noise)

Noise bandwidth, 169
Noise circuits, minimal, 615-694
Noise correlation function, 500
Noise currents, 497
Noise figure, 596-604, 621-635, 645
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Noise figure, of amplifier with push-pull 
input, 719

comparison of alternative tube con
figurations with, 643-651

effect of feedback on, 666-672
effect of gain control on, 717
first stage, 632, 638

with double-tuned input circuit, 690
measurement of, 695-720

with attenuator and postamplifier, 
709

of superheterodyne radio receiver 
with image response, 720

with unmodulated signal generators, 
699

single-frequency, 696
of single triode input circuits, 651—656
variation of, with source conductance 

and frequency, 641-643
Noise-figure considerations, 618—621
Noise-figure correction for temperature, 

717
Noise-figure method, using uncalibrated 

attenuator, 714
Noise generators, 700

attenuator calibration by means of, 713
crystal, 708
diode, 704-708

matched-line, 702
high-impedance, 701
with temperature-limited diodes, 701

704
Noise measurements, 600
Noise power, available, 619
Noise reduction, space-charge, 625
Noise representation, 620

equivalent, 623
for pentode, 624

Noise resistances, equivalent, 636
Noise resistor, equivalent, 635
Noise spectrum, 500
Noise temperature, 596—604
Nonlinear effects, 121
Norton's theorem, 697
Nyquist diagram, 397

O

Ohmmeters, 410
Operating frequency, 352
Operating-temperature range, 391

Oscillation, parasitic, 383
stability against, 363—366

Oscillograph, mirror, 410
Output circuits, 142

multivibrator, 144
Output impedance, 336, 439
Output stages, 103, 352
Output voltage, 431
Overload, recovery from, 290
Overload effects, 329, 330
Overshoot, 71-84, 114-123

cascaded, 118
limiting of, 122
of overstaggered pairs, 280
secondary, 125
of staggered pairs, 279

Overshoot oscillation, 72

P

Pairs, cascaded, 187
flat-staggered (see Flat-staggered pairs)
overstaggered, 284

overshoot of, 280
stagger-damped, 224, 230
staggered, overshoot of, 279

Paley-Wiener criterion, 721-723, 726, 727
Parallel-T networks, 384
Passive-element representation, 4
Pentode, at moderately high frequencies,

581, 583
noise representation for, 624
shot noise in, 575

Pentode cathode follower, 436
Pentode differential amplifiers, 450
Phase-advance network, 343
Phase characteristics, 394
Phase inverters, 106
Phase response, 341

total, 343
Phase shift, 353
Phase-shift impedance, minimum, 178
Phase-shift networks, minimum, 277, 301
Physical realizability, 723
Planck’s constant, 529
Plate, grounded, 634
Plate current, and transconductance, 

correlation between, 290
Plate-current spread, 412
Plate-load line, 358
Plate-load resistance, d-c, 354
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Plate potential, minimum allowable, 420
Plate-supply voltage, 426
Positive-ion current, 418
Potentiometer, partially compensated, 94
Power, available, 621, 697-699
Power amplifier, 430
Power gain, 621—635

available, 596-604, 651
Pulse, flat top of, 84-90

leading edge of, 72
rectangular, 72

Pulse-amplifier stage, basic, 72
Pulse amplifiers, 71-112

for deflection-modulated cathode-ray 
tube, 109

electronic switching of, 102
for intensity-modulated cathode-ray 

tube, 111
of large dynamic range, 113-165

Pulse generators, 308
carrier-frequency, 306-313
direct, 306-313

Pulse response, and absolute value curve
alone, 277

of amplifiers, 327
of bandpass amplifiers, 274

Pulse stretching, 146

Q

Q-factor, 393

R

Radiometer noise-figure measurement, 
718

ÄC-network, phase-retarded, 379
Recovery-time constant, 118
Rectifier, crystal, 715

diode, 715
Regeneration, 323

in bandpass amplifiers, 323
causes of, 324

coupling between input and out
put leads, 324

decoupling circuits, 326
heater circuits, 325
parasitics, 326
waveguide feedback, 325

indications of, 323
Regulators, 410

Rejection band, 390
Rejection frequency, 386
Resistance, 4
Resonance curves, universal, 213
Resonant frequency, 386, 394
Response transform, 30
Rise time, 71—84

composition of, 77
equivalent, of cathode-ray-tube spot,

79
in measuring apparatus, 79

S

S-transform, 55
Saturation, magnetic, 350
Screen bias, 359
Screen-biasing circuit, 362
Screen circuit, 88
Screen resistor current stabilizing effect,

92
Selectivity curve, maximally flat, 176
Series-fed circuit, 151
Series-resonant bypass condensers, 273
Servoamplifier, 410
Shot noise, 544—584

in diodes, 546
and induced grid noise, correlation be

tween, 677-682
in negative-grid triodes, 560
in parallel resonant circuit, 546
in pentodes, 575
space-charge reduction of, 556
temperature-limited, 549
and thermal noise, distinction between, 

584-587
Shunt peaking, 73
Signal, minimum detectable, 496

weak, detectability of, 615
Signal generators, swept-frequency, 301—

306
unmodulated, measurement of noise 

figure with, 699
Signal power, available, 619
Smearer circuit, 128
Source admittance, optimum, 639—641
Stability, 339-348, 411

against oscillation, 363—366
Stabilization factor, 358
Stages, double-tuned, cascaded transi

tionally coupled, 78
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Stagger-tuned amplifier, negative input 
resistance at high frequencies, 197

Stagger tuning, 166, 407
Statistical equilibrium, 517
Statistical fluctuations, 496
Steady-state responses, and transient 

responses, relations between, 80
Step attenuator, compensated, 94
Step-function response, of cascade of n 

flat-staggered pairs, 280
of cascade of n flat-staggered triples, 

281
of cascaded maximally flat three-pole 

networks, 282
of cascaded maximally flat two-pole 

networks, 281
and low-frequency cutoff, 86
of maximally flat n-pole networks, 284

Superposition, 20
Symmetry, arithmetic, 169

geometric, 168
Synchroscopes, 314
Synthesis, by factoring, 179
System transform, 30

T

T-network feedback, 266
Temperature coefficients, 390
Temperature effects, 390
Temperature variation, 411
Terminal, 8
Thermal lag, 424
Thermal noise, 497—544, 620 

electromagnetic energy of, 512 
harmonic analysis of, 507 
localization of, 505 
quantum statistics of, 525 
and shot noise, distinction between, 

584-587
spectrum of, 519
statistical mechanics of, 515

Thermal-noise energy, seat of, 513
sink of, 513
source of, 514

Thermal-noise formula, 505
Thermal-noise theorem, 532

generalization of, 534
Thermal-noise voltage, 498
Thermocouple meters, 717
Thermodynamic equilibrium, 516

Thévenin’s theorem, 378, 505, 697
Three-pole networks, cascaded maxi

mally flat, step-function response of, 
282

maximally flat, 282
Time averages, 519
Time constant, amplified, 411
Time domain, 71
Transconductance, and bias voltage, 

correlation between, 290
and plate current, correlation between, 

290
Transfer function, 385
Transform network, 3, 50-53
Transformer equivalent networks, 16
Transient response, 1-70

of overstaggered triples, 287
and steady-state response, relation be

tween, 80
Transit time damping, 638
Transmission-line amplifiers, 83
Triode, negative-grid, at moderately high 

frequencies, 571, 574
Triode amplifier characteristic, 426
Triode amplifiers, with cathode resistor, 

426
single-ended, 424—432

Triode input, grounded-cathode, 655 
grounded-plate, 655

Triode input circuits, 646
grounded-grid, 653
single, noise figures of, 651-656 

various, comparison of, 652
Triode input configurations, three, com

parison of, 647
Triples, cascaded, 189

feedback, 234
flat-staggered, 189-191

transient response of, 287
stagger-damped, 224
overstaggered, 286

Tube mixing, 99
Tube noise, suppression of, 604-614
Tube-parameter tolerances, 352
Tube replacement, 353
Tubes, baseless, 230

electrometer, 419
subminiature, 156

Tuning, parallel-resonant, 353
resonant, 350 
synchronous, 166
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Twin-T networks, 384, 387
Two-pole networks, 278-282

cascaded maximally flat, 281 
step-function response of, 281

V

Vacuum-tube characteristics, at low cur
rents, 414—418

Vacuum-tube voltmeter, 314, 409 
high-impedance, 320 
low-impedance, 320

Voltage amplification, 73
Voltage circuit, high-output, 144

Voltage-current source transformation, 5
Voltage feedback, 353
Voltage gain, maximum, 417
Voltage generator, 4
Voltage-supply variation, 411

W

Wien bridge, 384
Wien-bridge network, 386

Z

Zero adjustment, 411
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