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PREFACE

This book is designed to fill a gap in the literature on.vacuum
tubes, viz., graphical constructions. By graphical constructions
are meant those geometric manipulations by which are obtained
solutions to problems on nonlinear circuits, particularly those
involving vacuum tubes. It is therefore evident that ordinary
graphs and charts, used for the easy solution of analytical formu-
las, are not the subject matter of this book.

While the author realizes that the engineer and scientist usually
favor the analytical method of approach, he is also aware that
many practical problems are amenable solely to graphical or
experimental methods of attack, and he feels that this book may
serve a useful purpose in presenting the former of these two
methods. However, he has not hesitated to employ analytical
methods in conjunction with the graphical where such procedure
was of value, and thus the reader will often find an analytical
derivation in the body of the text, as in the chapters on balanced
amplifiers and on detection.

Much of the material incorporated here is original, and a good
deal of this appeared in the RCA Review and in Communications.
The author is indebted to these periodicals for permission to
include this material in the present text. However, in many
instances the discussion has been expanded and also revised, as
in the chapter on balanced amplifiers.

In order to forestall any criticism regarding the bibliography
at the end of each chapter, the author hastens to explain that his
choice was governed by the following considerations:

1. Only those articles which he had read and digested were
included.

2. Is the reference basic and still correct?

3. Is the article the most recent, and does it correct errors in
previous articles?

" 4. Is it readily available to the American public? (Only in

rare instances are foreign references cited.)
' vii



viii PREFACE

While such a choice may result in a list far less imposing than
those found in other texts, it is hoped that the reader will find the
references more readily available, less repetitious, and also less
contradictory and confusing.

There has been no attempt to make this book a complete
exposition of graphical methods. If it gives the reader a funda-
mental grasp of the subject and proves of value to him in his
work, its purpose will have been achieved.

No work, no matter how humble, is due solely to one man’s
effort. I am only too happy to acknowledge the aid and en-
couragement given me by my wife, who helped greatly in the
typing and preparation of the manuscript. I also wish to ac-
knowledge the assistance given me by Dr. Alfred N. Goldsmith,
who was also instrumental in obtaining the comments and
criticisms of others, particularly E. W. Herold, who review-
ed the third chapter and furnished me with many helpful sug-
gestions and criticisms. And finally I wish to express my thanks
to those other members of the Radio Corporation of America
who passed on the merits and value of this book.

ALBERT PREISMAN.
SILVER SPRING, MD.,
August, 1943.
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GRAPHICAL CONSTRUCTIONS FOR
VACUUM TUBE CIRCUITS

CHAPTER 1
THE NONLINEAR-CIRCUIT PROBLEM

1. Introduction.—Vacuum tubes belong to a large class of
circuit elements known as nonlinear parameters, and accordingly
the study of nonlinear circuits has become an important branch
of engineering. It must not be supposed, however, that it con-
stitutes a subclass of circuit theory. On the contrary, the most
general type of circuit is the nonlinear type, and linear passive
networks constitute only a special class of the above. Neverthe-
less, most books on circuit theory deal with linear passive net-
works, and the literature that has accumulated on this special
type of circuit is both- enormous and ever increasing. In recent
years, particularly since the advent of vacuum tubes, the need for
a treatment of the more general subject of nonlinear circuits has
become more and more acute, but the subject does not appear

‘to have had the attention that it warrants. At any rate, the
published results of such studies have not been satisfying or
sufficiently general to be regarded as a real start in this most
difficult of problems. F¥rom a practical viewpoint, the methods
proposed have been, in the main, special and not sufficiently
simple to attract the average engineer.

However, since the need for methods of solution becomes more
pressing each day, it is the intention to present here applications
of the methods to practical vacuum-tube problems. While those
employed are mainly graphical, any combination of analytical and
graphical solutions that gives an answer in the least time or with
the least effort will be utilized.

2. General Considerations—Complete Solution.—To indicate
the difficulty of the problem, it may be worth while to review very

briefly linear-cireuit theery. 1f we have 2n 2.-mesh network, we
1



2 CONSTRUCTIONS FOR VACUUM TUBE (jIRCUITS

can write n equations for the circuit—one equation for each mesh.
Thus

’i1Z11 + 'izle R 'l'nZIn = €1
i;Zm + 'i2Z22 + DR + inZ2n = €2
iXZn + i2zn2 + vt + /I:nzrm = €n

where Zy, is the total impedance of mesh 1; Z,,, of mesh 2, etc.;
Z 5 the impedance common to meshes 1 and 2, Z,, the impedance
common to meshes n and 2, etc., and ¢, and e, the current and
voltage, respectively, in mesh 1, etc.

Suppose that Z;, consists of an inductance, capacity, and
resistance in series. It can then be written operationally as
[Lpt, + 1Ry + (2,/pCh1)] where p = d/dtand 1/p = [dt. Inthe
same way, impedances in the other meshes can be written as
above. It will be observed that the equations are integro-
differential equations involving the time or, if the parameters are
distributed along the length, involving distance as well as time.
For lumped circuits, only the time is involved.

The latter can be reduced to ordinary second-order differential
equations by taking the derivative of the mesh equations with
respect to time and then employing any standard method of
solution and inserting initial conditions in order to evaluate the
integration constants. Such solutions are available because the
equations are linear in the derivatives and the function itself; i.e.,
mathematicians have discovered ways of solving these. The
solution is known as the classical method.

These equations can alternatively be solved by Heaviside’s
operational methods or by Laplacian transforms, and the solution
will be complete with initial conditions automatically inserted.
Because these methods are simpler and more straightforward,
they are generally preferred to the older classical method.

In either case, another feature that is of great importance is the
fact that each voltage imposes its current flow independently
of the other voltages present in the network; 7.e., the principle of
superposition holds, and the effects are directly additive.

Now suppose that L or R or C is not a constant, but a function
of the current through or voltage across it. Specifically, let
R = ¢(7), so that R is now a nonlinear parameter. We now have
in our mesh equation a term ¢¢(?), and our differential equations
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are no longer linear. No general mathematical methods are
known for solving such equations. The principle of superposition
no longer holds: each voltage reacts (cross modulates) with all the
others, indeed, may even be considered to react with itself, so that
a sinusoidal voltage may be considered to cross modulate with
itself to produce harmonic currents and voltages.

The solution thus becomes far more complicated. Some
simple special nonlinear differential equations, such as the Bessel
equation, can be solved by means of series expansions. However,
as stated above, these solutions are special, and the results so
involved that it is usually impossible to find the optimum value of
the parameters which will give maximum results, such as, for
instance, maximum power output in a particular impedance.
The solutions are thus far from satisfactory.

3. The Steady-state Solution.—The above discussion is con-
cerned with the complete solution of the network, the transient
" as well as steady state. Suppose only the latter is desired: is the
problem simplified to a satisfactory degree? The answer is,
unfortunately, no. In linear networks, the operational expres-
sions reduce to complex expressions, for p may be replaced by
jw. The problem then reduces from a set of differential equations
to a set of algebraic equations involving the complex variable
Jjo, and the method of solution is well known to the average elec-
trical engineer.

Since R, L, and C are assumed constant, the algebraic equations
are linear in the various unknown currents; and these may be
solved for by the method of determinants. Indeed, a whole host
of general network theorems may be evolved from the theorems
on determinants; the latter may be manipulated by matrix
algebra, for instance, to enable one to find circuits equivalent
to the given circuit. These theorems and manipulations have
been the subject matter of many texts and constitute a remark-
able body of knowledge in themselves.

Once again, let us inquire what happens if, for example, some
R is a function of the current 7, 7.e., if R = ¢(¢). Our steady-
state equations are no longer of the first degree, the method
of determinants is no longer valid, and all the theorems dependent
upon it no longer hold. We néw have to solve n equations in the
various 7’s of degree higher than the first, and no general method
of solution is known for such (nonlinear) equations.
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4. The Terminal Characteristic.—What can be done in the
situation described above? We must go back and study the
circuit anew. For simplicity (if such a term can be applied) let
us confine our attention from now on to nonlinear resistances.
One of the first questions to arise is what do we mean by resist-
ance? The answer may be the ratio of the voltage across the
resistor to the current through it. If the resistance is linear, then
this ratio is a constant and independent of the voltage and cur-
rent. But if the resistance is nonlinear, then the ratio of voltage
to current is a function of either, and we cannot specify the value
of resistance until we know the current. But since the latter is
usually the unknown and in ordinary (linear) circuit theory is
expressed as a function of the voltage and circuit parameters, we
are immediately enmeshed in the vicious circle of simultaneous
solution, with no general method of extricating ourselves.

Since the ratio of voltage to current is no longer a constant, so
that the simple relationship known as Ohm’s law no longer holds,
we are forced back to the more fundamental concept of the func-
tional relationship between current and voltage, rather than the
ratio of the two. This relationship is known as the load line or,
betterstill, as the terminal characteristic. For a linear resistance,
the terminal characteristic is a first-degree, or linear, equa-
tion, viz.,

1 = ke

where k is a constant, known as the conductance. Its graph is a
straight line, and this explains why it is called a linear resistance.
For a nonlinear resistance the terminal characteristic is other than
a first-degree equation. It may be of second degree or higher; it
may be transcendental; it may even be discontinuous.

Attempts have been made to assign resistance values to such a
. parameter. Thus, the ratio of the voltage to the corresponding
current has been called the d.c. resistance, and the ratio of a
change in voltage to the corresponding change in current has been
called the variational, incremental, or a.c. resistance of the
device. Graphically, if the terminal characteristic be plotted,
the former refers to the cotangent of the angle that the secant
(line joining the origin to the point at which the resistance is to
be found) to the terminal characteristic curve makes with the
voltage axis, and the latter refers to the cotangent of the angle
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that the tangent line to the curve makes with the voltage axis,
i.e., the reciprocal of the derivative of the curve.

The question now arises as to just how the terminal character-
istic is to be expressed. For a vacuum-tube diode, for example,
the plate current is practically proportional to the § power of the
plate voltage, when the latter is positive. It is zero for negative
plate voltages. The terminal characteristic is therefore a func-
tion whose derivatives are discontinuous over the range of plate
voltage normally encountered in rectifier practice, 7.e., for positive
and negative values. In a triode, for example, the range of
electrode voltages is often chosen so that the plate current is
never driven down to zero (cutoff), in order to avoid the above
type of discontinuity and consequent generation of distortion
products. In balanced amplifiers, on the other hand, such
discontinuity of action of either tube may be permitted (see
Chap. V).

5. Power-series Representation.—One method for handling
the forms of the terminal characteristic discussed above is that
of the power series. Here the relationship between e and < is
written as a series in ascending powers of e.

7 = kier + koer2 + kszed3 + - - - + kne™ (1)

Now suppose that the above parameter is in series with a linear
resistance (to simplify matters), and a voltage e, which is some
function of time. We wish to find the current flowing through
the two resistors in series. This is the typical problem encoun-
tered in mnonlinear circuit theory. We know the relationship
between the current and voltage across each parameter, but we
cannot tell how much of e is across either until we know the cur-
rent through each. But we cannot know this until we know the
voltage across either, for the current is a nonlinear function
of the voltage in the case of the first-mentioned parameter. This
is the vicious circle mentioned previously. There are, however,
two pieces of information available in the form of Kirchhoff’s
laws. The first is that the current is the same for both resistors,
since they are in series, and the second is that the sum of the two
voltage drops is equal and opposite to the impressed voltage e.

With this in mind, we can proceed as follows: Let the terminal
characteristic for the linear resistor be
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iy = <Tle> ez or ey =R @)
Then
e =¢€¢ — ey =¢e — 2R ; (3)
and
i1 = 1y 4)
so that the subscripts for the current can be dropped. If we
substitute Eq. (3) in Eq. (1), we obtain

i = kile — iR) + kao(e — iR)2 + ky(e — iR)* + - - -
: + ka(e — iR) (5)

This is now an equation in one unknown of the nth degree and can
be solved, at least approximately. We note that, if the second
resistor were also nonlinear, then Eq. (2) would not be so simple,
we should face the task of solving simultaneously two equations
of degree higher than the first, and the method of substituting
from Eq. (3) in Eq. (1) would not have been so simple to apply, if
at all possible. Indeed, even in the simpler case of one resistance
linear, the solution is not at all easy, and a method of successive
approximations has been worked out by Carson!* to facilitate
matters.

If both resistors had been linear and of value R, and R,,
respectively, then the method outlined above would have led to
the result

=__°
R, + R,

which is the well-known expression for Ohm’s law as applied to
two resistors in series. Indeed, a linear resistance is one whose
terminal characteristic is expressible by a power series having
only one term,; and that of the first degree. Simultaneous solu-
tion is then easy and, in the case of an n-mesh network, can be
readily effected by the use of determinants.

6. Objections to the Power-series Method.—The power-
series method is open to some serious objections, of both a prac-
tical and a theoretical nature. From a practical viewpoint, it is
cumbersome, laboricus, and too involved for everyday applica-
tion. However, where the curvature of the characteristic is not

)

* The superior numerals refer to the items listed in the Bibliography at the
end of each chapter.



THE NONLINEAR-CIRCUIT PROBLEM 7

too “‘violent,” so that a few terms of the series are adequate, it is
of great value, as it reveals the fundamental mechanism of
harmonic distortion, modulation, and detection.

From a theoretical viewpoint, its use for characteristics that
have sharp bends is questionable or at least nonorthodox. A
sharp bend, in mathematical parlance, means discontinuities
in the successive derivatives of the function; 7.e., they cease to
exist at the point where the ‘“break’ occurs. Now the usual
justification for a power-series representation of a function is that
it is really a Taylor or a Maclaurin expansion, and hence the
coefficients represent the values of the successive derivatives at
the point about which the expansion is made. If these deriva-
tives do not exist, then the Taylor or the Maclaurin expansion
does not exist. Nor are these expansions valid when extended
to a point of the curve for which the derivatives do not exist.

However, it is not, necessary that the coefficients be evaluated
by the Taylor expansion. They may be chosen by the process of
least squares, or zonal harmonics. As many points of the curve
are substituted as there are terms required in the series and the
resulting equations (in which e and 7 are known) are then solved
for the coefficients, which are now the unknowns. This is not
difficult, since the equations are linear in the coefficients.

. Suppose a characteristic with a sharp bend is approximated by
a five-term power series, and it is then decided to use a six- or
seven-term power series for greater accuracy. Since the char-
acteristic has a sharp bend or break, its derivatives do not exist
at this point, and a single Taylor series is not valid. The power-
series coefficients must be chosen in some other manner as indi-
cated above. Now it will be found that, if a seven- instead of a
five-term series is desired, all the first five coefficients will be
different from their original values; z.e., one cannot merely add to
the original five terms two more terms. The change in the
values of the first five coefficients may or may not be small; this
is immaterial, for the series is not the usual type of convergent
series, where more terms can be added to those originally deter-
mined to obtain greater accuracy. The latter feature is true of a
Taylor series and of the Fourier series. Thus, objections of a
fundamental, mathematical nature may be raised concerning the
use of a power series to represent a nonanalytic function (one
whose derivatives do not exist at every point). However, it is
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found that a power series with a sufficient number of terms
represents a function with a sharp bend in it to a sufficient degree
of accuracy for all practical purposes, and the main objection to a
power series for such a function is that a prohibitive number of
terms are required.

In passing, it is of interest to note that, if the current is a func-
tion of two voltages, such as that of the grid and plate of a triode,
then a double power series is required, unless the amplification
factor of the tube is a constant. Such a series is employed in
Chap. III. For tetrode, pentode, and other multielectrode
tubes, power series in many variables can be employed. Needless
to say, the computations become very involved.

7. Fourier-series Method of Representation.—In order to avoid
the use of series with so many terms, a Fourier-series method of
expansion has been employed. The Fourier series is usually
employed to represent the periodic
wave shape of some quantity that is
a function of time, but it may be
used to represent the functional
relationship between any two quan-

, tities, such as current and voltage.

~E +E e Although the series then exhibits
Fic. 1.—Diode-rectifier terminal the current as a periodic function of
characteristic. ) the voltage, this is of no consequence

- if the range of operations is limited to one cycle or less.

We shall now illustrate this method. In Fig. 1 is shown a
terminal characteristic such as that of a diode rectifier. We
choose an upper and lower limit for the voltage range, viz., +E
and —E, respectively. We now introduce an angle variable

|
|
|
|
|
|
|
1

me
=%

such that to every value of e there is a corresponding value of 6.
Note that fore = +E, § = +x respectively;i.e., as e ranges from
—E to +E, 8 ranges from —= to 4=, which is one cycle.

The current ¢ can now be expressed in terms of a Fourier series
as a function of  and hence of e. Thus

ir—-%’—}-zansinn()—}-b"cosn() (6)

n=1
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As mentioned previously, the range of 6 is limited to one cycle;
that is, e varies from —E to +E. The value of E must therefore
be chosen large enough to include all variations in e that are to be
encountered.

The values of the coefficients are to be calculated in the usual
manner, analytically,

1 [ 1[*
b”=E/_Ef(c) cosnfdd and a,.=E/_E fle)sinnodo (7)

or from the graphical plot of f(e) by a schedule analysis. The
advantage in representing the terminal characteristic f(e) by this
series rather than by a power series is that the former requires
fewer terms for a given accuracy of representation if the char-
acteristic has a sharp bend and the questions as to the validity
of the series are absent. The restrictions are very few, such as
the requirement of a finite number of maxima and minima per
cycle and no infinite values. Most functions encountered in
practice fulfill these restrictions.

A further refinement suggested by Barrow? is artificially to
prolong the characteristic in any arbitrary manner, which also
means to extend the limits for representation of one cycle. A
schedule analysis may then be made, and the desired portion
of the characteristic will be represented with the same accuracy
as before with fewer terms and hence less ensuing labor.

Suppose a nonlinear and a linear resistance are connected in
series with a given voltage. Let the former be represented by a
Fourier series such as Eq. (6), and the latter by B. If the same
procedure as that described for the power-series method be fol-
lowed here in order to find the current through the resistors, a
transcendental equation instead of a nonlinear algebraic equation
will have to be solved and no general method of solution exists.
If both resistances are nonlinear, the situation is even worse.
Hence this method is hardly sulted to solving nonlinear 01rcu1ts
of the type described above.

8. Application of the Fourier-series Method.—The Fourier-
series method may be applied in the evaluation of the distortion
products produced in a circuit if the relation between current
through and voltage across the circuit is known. Such an over-
all relation, or terminal characteristic, must first be found, say, by
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the power series or a graphical method, and then this relation
expressed as a Fourier series, of the form given by Eq. (6). -

Now, let e = f(t); i.e., let ¢ be a given function of time. Spe-
cifically, let

¢ = E,, sin wt (8)

If Eq. (8) be substituted in Eq. (6), terms of the form

b, cos ("LE_m sin 43‘) and @ sin <n1rE'm sin a_;t)

E E

are encountered in the expansion for 7, the current. These can be
expanded in terms of Bessel functions by methods due to Jacobi.

E,, sin wt E,. . E,
cos mgﬂ =Jo mrE + 2 2 J o E%, cos 2Kwt
ko ©)
. E., sin wt E,. .
sin M SRS 9 2 Josea " sin (2K — 1ot
k=1

in which J x(nrE../E) is a Bessel function of the first kind of order
k and modulus (nwE,,/E). Since Bessel functions are becoming
better known to engineers, this expansion is not an impractical
operation for the technical man. The terms in the resulting
series may be regrouped in individual series involving cos 2kwt
and sin (2t — 1)wt so as better to exhibit and evaluate the
various frequency components. However, since this all implies
that the over-all terminal characteristic has already been deter-
mined and then facilitates the evaluation of the distortion
products, it is not the method that we seek, viz., to determine
the over-all terminal characteristic when the individual terminal
characteristics, the method of connection, and the impressed
voltage are known. Moreover, the Fourier-series method applies
to single-valued functions only. We shall see later that if
reactances are present in the circuit the over-all terminal char-
acteristic is a closed loop, which means that the current is a
multivalued function of the voltage. It is therefore evident that
the Fourler series cannot apply to this type of circuit, which is an
unfortunate limitation.
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9. The Graphical Method.—The discussion of the graphical
method, which is the main theme of this book, will be deferred to
subsequent chapters. We shall proceed first to some elementary
considerations concerning vacuum tubes.

BIBLIOGRAPHY
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CHAPTER II
THERMIONIC VACUUM TUBES

1. Introduction.—In this chapter some of the fundamental
characteristics of thermionic vacuum tubes will be discussed.
It will thus serve as an introduction to the matters developed in
succeeding chapters. :

The thermionic vacuum tube is one of the most important
nonlinear resistances in use today. It owes its properties to
the fact that in it are to be found electrons ‘“in the open,” as it
were, divorced from the positive ions in whose company they are
normally to be found. We therefore begin with a rough picture
of conditions in the ordinary metallic conductor. :

In a solid metallic conductor, we find an orderly array of atoms
in definite geometric configurations known as a crystal lattice
structure. Consider a single crystal of the metal. The atoms are
bound together by certain atomic forces that constrain them to
maintain the crystal configuration in spite of thermal agitation
present at, say, room temperatures.

Each atom is made up of a positive nucleus, around which
rotate electrons in orbits at various distances from the nucleus.
In the crystal structure, the atoms are so close together that the
outermost orbital electrons are associated as much with one
nucleus or atom as with another and hence are free to move about
in the interior of the crystal, and indeed from one crystal to
another of the conductor. Depending upon the metal, there may
be one, two, or even three free electrons per atom. These free
electrons form a kind of gas within the conductor, and it is their
circulation around a closed metallic path that constitutes the
ordinary current flow in an electrical circuit.

2. The Potential Barrier.—It is evident that except for a rela-
tively slight hindrance to their motion, known as oimic resistance,
the free electrons find little difficulty in darting about in the con-
ductor under the impress of thermal agitation. The reason is to

be found in the balanced attractions of the various positive ions
12
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(atoms that have lost one or more electrons) if the electron is not
too close to any one ion. The region within a erystal may there-
fore be visualized as a space consisting of strong attractive centers
where the atoms are located and relatively force-free regions in
the remaining parts of the crystal. The corresponding electrical
potential field may therefore be compared to the gravitational
field of a series of plateaus pitted with deep holes (representing the
location of atoms). If the holes are filled with ‘““bound’’ orbital
electrons, then the ‘“free’’ electrons can hurdle these holes and
roam the plateaus. The analogy is admittedly naive but does
indicate in a sense the situation concerning bound and free
electrons.

Suppose an electron tries to pass out of the interior of the metal
through the boundary surface. Immediately the forces of attrac-
tion of the ions unite to pull it back, for the electron is now
leaving them all behind, whereas before it was immersed in their
force fields. The clectron thus experiences a potential barrier to
its escape; this barrier is known as the work function of the mate-
rial, g¢., the work required to move an electron through the
boundary surface and sufficiently far from it to render the attrac-
tive forces negligible. The electron is then completely free to
pursue its course outside the metal. )

3. Methods of Producing.Emission.—There are several ways
of imparting sufficient kinetic energy to the free electrons:

1. Bombarding them with other electrons, or particles, such
as positive ions or metastable atoms. If these possess sufficient
kinetic energy, they can impart this energy or a suitable portion
of it to the free electrons to enable them to overcome the potential
barrier at the surface and thus escape. This is known as second-
ary emission.

2. Illuminating the metal with light photons whose fre-
quency f, hence energy content fh (where h is Planck’s constant,
= 6.55 X 10727 erg sec.) is sufficient to enable the electrons to
pass the potential barrier. Thisis’known as photoelectric emission.

3. Producing a strong electric field at the surface of the metal
and thus pulling them out. If this is done by impressing a
potential between the metal and another electrode a reasonable
distance away (and making the latter the anode), it will be found
that a high voltage is necessary. However, high fields may be
produced by positive ions close to the surface without the need of
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an external potential, as in the case of positive mercury-gas ions,
or possibly metastable atoms near the surface of a pool of mer-
cury (cathode) or, in the case of barium ions, on the surface of the
core metal of an oxide-coated filament. However, the method
as normally considered is that of the application of a strong field
due to an external potential and is-known as high-field or auto-
electronic emission.

4. Heating the crystal lattice structure and thus imparting
to the free electrons sufficient energy to escape. This is known
as thermionic emission and is the method employed in thermionic
vacuum tubes.

4. Thermionic Emission.—Formulas for the thermionic emis-
sion of electrons have been developed. The formula employed
today is the Richardson-Dushman equation

o 1)

1= 4.0 exp

where 7 is the emission current per square centimeter, A, is a
constant involving certain constants of nature, T is the absolute
temperature, ¢ is the work function of the emitter, e 1s the
electron charge (= 1.591 X 107'? coulomb), and % is Boltzmann’s
constant (= 1.371 X 10=2? joule per degree). This equation is
based on the assumption that the electrons obey the Fermi-Dirac
statistics within the metal. The constant A, should equal
120.4 amp. per centimeter per degree from theoretical considera-
tions, but experimental results indicate a wide variation in its
measured value, due probably to the difficulty in obtaining a
clean surface on the metal measured.

However, the most important factor is the exponential. Small
variations in ¢ and T will cause large variations in 7, and so we
conclude that the material best suited for a thermionic emitter is
one that has the lowest work function and can withstand the
highest temperature without deteriorating. Hence, possession
of one of these characteristics alone is not sufficient to warrant
the use of a material for emission purposes.

6. Tungsten Cathodes.—Tungsten is a metal well suited for
thermionic emission. It is exceedingly refractory and has the
highest melting point of all metals (3655°K.). It can safely be
operated at 2400°K. for wires of small diameter and at higher
temperatures for wires of larger diameter. At these tempera-~
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tures, the exponential —e/kT becomes sufficiently small for
practical use of tungsten as a cathode even though the work
function is 4.54 volts, a rather high value. Tungsten is par-
ticularly well suited for high-power transmitting tubes, where the
cathode has to be especially rugged to withstand all the mechan-
ical and chemical requirements, particularly bombardment by
high-velocity positive ions in high-voltage operation.

6. Thoriated-tungsten Cathodes.—The heating power required
for tungsten is rather high, and so other thermionic emitters have
been sought. The most practical are the thoriated-tungsten
and the oxide-coated cathodes, which we shall discuss in the order
named. The potential barrier of a metal depends markedly
upon the nature of its surface. Indeed, it is difficult in practice
to obtain a pure metal surface, owing to absorbed gases and
other impurities. Tungsten, for example, when contaminated
with oxygen experiences an increase in its work function and hence
a decrease in its emission at a given temperature. A monatomic
film of thorium, on the other hand, reduces the potential barrier
and hence the work function to a much lower value, so that
copious emission is obtained at much lower temperatures, and
hence filament heating power.! The work function is about 2.63
volts, as compared with 4.65 volts for pure tungsten.

It is to be noted that a pure thorium filament would not be
as satisfactory as the above composite structure; for it could not
be operated at the requisite temperature for satisfactory emission
without undue evaporation, and also the work function is higher
than that for the composite structure. The reason the monatomic
film can be heated to a higher temperature than a solid thorium
wire without evaporating from the tungsten base is that the force
of adhesion_between tungsten and thorium is greater than the
force of cohesion between two thorium atoms. Indeed, this
accounts for the fact that the thorium layer is monatomic: any
double layer would quickly be destroyed by the outer layer of
thorium evaporating from the thorium layer underneath it.

In manufacture, the tungsten is mixed with 1 to 2 per cent of
thoria (thorium oxide) and prqcessed into a filament. The tube
is degassed, and then activation is started. The filament is
flashed for one or two minutes at about 2800°K. Some of the
thoria is reduced to pure thorium by the tungsten, the resulting
tungsten oxide being vaporized and deposited upon the cooler
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parts of the tube. (This takes place in spite of the greater heat
of formation of thorium oxide as compared with tungsten oxide
because of the volatility of thorium and diffusion to the surface,
i.e., the mass-action law.)

The filament then is operated at about 2100°K. The thorium
diffuses rapidly along the grain boundaries of the tungsten
crystals to the surface and then migrates over the surface to cover
a large fraction of it. At this temperature, however, the evapora-
tion of thorium from the surface is low.

The temperature is then reduced to the operating value of
between 1800 and 2000°K., and at this temperature the diffusion
is reduced markedly, although it is still greater than the rate of
evaporation of a monatomic film. However, if this tends to
produce a double layer of thorium, the outer layer will quickly
evaporate, so that essentially emission is from a monatomic film

Such a film is sensitive to bombardment by high-velocity
positive ions, which will tend to strip it off. It has been found,
however, that if the thoriated-tungsten filament is heated to
about 1600°K. in a hydrocarbon vapor a shell of tungsten carbide
is formed. This is brittle, but the inner core of tungsten main-
tains the mechanical strength of the filament. Such carbonized
filaments show a reduction to one-sixth in evaporation of the
thorium layer at 2200°K. so that they can be operated at a higher
temperature than the thoriated-tungsten filament. This, in
turn, increases the rate of diffusion of thorium to the surface, thus
enabling the damage due to positive-ion bombardment and
oxidation to be more quickly repaired. Ilven so, however, this
type of emitter is limited to tubes operating at plate potentials
of 4,000 volts and lower.

After some time, thoriated-tungsten filaments lose their
emissive powers owing to the consumption of the thorium
produced by the initial flashing. Since there is still a reserve of
thoria, the activation process can be repeated until all the reserve
is consumed. ‘ '

7. Oxide-coated Cathodes.—The second type of composite
cathode is the oxide-coated structure. This consists of a metal
base such as nickel with a few per cent of cobalt, silicon, or Konel
metal (alloy of nickel, cobalt, iron, and titanium), coated with the
oxides of barium and strontium. The latter are applied to a
filament type of cathode by dragging the wire through suspen-
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sions of the carbonates in water and baking each successive thin
layer or, in the case of indirectly heated cathode sleeves, by
spraying them with a mixture of the carbonates suspended in a
solution of nitrocellulose, which subsequently acts as a binder.
The coating is then reduced to the oxides of the metal by heating
them to a temperature of 1400°K. in a vacuum. The carbon
monoxide that is evolved is continuously pumped off.

The cathode must now be activated. This is accomplished by
heating it to a temperature between 1000 and 1500°K. for several
minutes and then at a lower temperature, while plate potential is
applied, for a longer period of time. Emission now begins to take
place at an increasing rate until it reaches its normal value, which,
at 1000°K., is equivalent to that of a tungsten filament at
2300°K.

The oxide-coated cathode requires the lowest temperature of
the three types discussed for copious emission and hence is
employed wherever possible. Since the coating is sensitive to
positive-ion bombardment and since a tube employing this type
of cathode cannot be evacuated so completely as those employing
the other two types, its use is limited to the lower voltage receiving
type of tube. It has, however, a life of several thousand hours
and, owing to its low operating temperature, is ideally suited for
indirectly heated cathode purposes.

The mechanism of emission appears to be as follows: During
the activation process, free barium metal is produced in the coat-
ing. This diffuses in part to the surface to form a monatomic film
partly covering the coating, the remainder being diffused through-
out the coating. This free barium is produced by reduction and
electrolysis of the oxides as a result of the elevated temperature
and anode potential employed during the activation process.
The barium is thus absorbed on the core metal and in the coating
and is in the form both of atoms and ions, since it loses its outer
electrons with relative ease.

The presence of absorbed ions (adions) near the core metal
reduces the work function of the latter so that electrons can
escape from within to the coating. They then pass through and
relatively freely out of the latter into the space surrounding the
cathode. The conductivity of the coating is predominantly
electronic in the presence of free barium but is also partly ionic.
The latter form of conductivity tends to maintain the free barium
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content of the coating in spite of evaporation of the metal from
the surface.

8. Indirectly Heated Cathodes.—The oxide-coated emitter is
the only one suitable for indirectly heated cathodes, owing to its
low operating temperature. This type of cathode consists of a
heater wire coated with a layer about 0.5 mm. thick of the oxides
of aluminum and beryllium, the combination then being placed in
a nickel or Konel-metal sleeve on which has been placed an oxide
coating. The heater operates at about 1000°K. and maintains
the cathode at about 850°C., which is sufficient for copious emis-

a b
F16. 2.—Oxide-coated cathode and complete tube. “(Courtesy of RCA.)

sion from the oxide coating. Such indirectly heated cathodes are
equipotential surfaces. Between such a cathode and the plate
can be impressed a direct voltage, with resultant d.c. flow unless
the latter is purposely modified by a desired a.c. potential applied
between a third electrode (called a grid) and the cathode. This
action will be explained later. At the same time, 60-cycle alter-
nating current can be applied to the heater, thus eliminating
storage batteries or other d.c. sources for this purpose, and yet not
having an unwanted component of this frequency appear in the
output circuit as hum. This is of particular importance in audio
amplifiers and radio receivers. Successful a.c. operation of such
devices dates from the time indirectly heated cathode tubes were
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introduced to the industry. Since, however, oxide-coated cath-
odes are not suitable for large transmitter tubes, this type of
cathode cannot, unfortunately, be employed in such tubes;
instead, filament type cathodes are still used.

In Fig. 2a may be seen an oxide-coated cathode, and in Fig. 2b a
complete tube of this type.

9. The Tube as a Nonlinear Parameter.—If another electrode,
called a plate, is introduced into the tube (now called a diode) and
the plate is made positive with respect to the cathode, a current
will flow if the cathode is heated to produce thermionic emission.
If the plate is made negative with respect to the cathode, no
current will flow, for the applied potential is assumed less than
that required to produce field emission from the plate. By the
same token, no current will flow if the plate is made positive with
respect, to the cathode but the latter is not heated.

The unilateral conductivity of the tube when the cathode is
emitting makes it useful as a rectifier of alternating voltages and
also indicates that such a device is a nonlinear parameter. This
is so because in a linear parameter the current is 8irectly propor-
tional to the voltage regardless of whether the latter is positive or
negative, whereas, in the case of the tube, the current is zero when
the (plate) voltage is negative. Moreover, it will be found that—
except at ultra-high frequencies—there is no lag between the
current flow and the applied voltage, so that we can state more
specifically that the vacuum tube is a nonlinear resistance parame-
ter. It is for this reason that Chap. I deals with nonlinear
circuits, particularly nonlinear resistances: we have to deal with
these when we deal with vacuum tubes.

10. Space Charge.—At first thought it would appear that a
small voltage would be sufficient to draw all the emitted electrons
through the obstacle-free space or vacuum over to the plate,
since the thermal energy has done that which the voltage was
unable to do, viz., carry the electrons through the surface of the
cathode (emission). A moment’s reflection, however, will indi-
cate that this is not so, that there are obstructions in the space in
the form of mutual repulsions between the electrons themselves
and that these hinder the plate potential in its effort to transport
the electrons. This repelling effect is known as space charge. In
the conductor it is neutralized by the positive space-charge effect
of the metallic ions in the crystal lattice structure, and the only
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opposition to the movement of the electrons is that of ohmic
resistance—possibly the result of collisions of the electrons with
the ions. But when the electrons are ‘‘out in the open,” remote
from the ions, their negative space-charge effect becomes evident,
and it will be found that a low plate voltage causes but a small
current to flow, a higher plate voltage causes a greater current to
flow, etc., until a voltage is reached which causes all the electrons
emitted to low. Higher voltages than this can cause no further
increase in current, and the latter maximum value is known as the
temperature-saturation value of current, whereas the former values
are known as voltage-saturation values.

11, Child’s Law.—In 1911, Child? gave the first analysis of the
relationship between current and voltage in a vacuum tube. An
account of this analysis will be given here because it is one of the
few examples of nonlinearity in which the internal mechanism
causing this is capable of quantitative exposition.

Child idealized the configuration by assuming that the cathode
and plate were infinite parallel planes separated by a distance d.
He further assfmed that the emission was infinite and therefore
far in excess of any required for the current flow to be produced;
i.e., the plate voltage would be less than that producing saturation
current. He further assumed that the electrons were emitted
with no initial velocities. The effect of initial velocities is to
project the electrons out into the interelectrode space in spite cf
the space charge; but since the emission velocities are low
(equivalent to about 0.6 volt, average, for an oxide-coated cath-
ode), the error in neglecting them is small. Indeed, in spite of the
idealization of the problem, the results are in good agreement
with those experimentally obtained for actual tubes.

Consider a cloud - of electrons in the interelectrode space.
Those nearer the plate are repelled toward it by those nearer the

_cathode; the latter are repelled by the former toward the cathode.
Those on the cathode have the greatest number of electrons in
front of them and thus experience the greatest force opposing
their moving toward the plate. At the same time, these must
move toward the plate if others nearer the anode are to deposit on
it, for Kirchhoff’s law as to the continuity of current flow must be
satisfied here as in the case of any other type of electric current
flow. Hence, the current flow will be of such magnitude that the
resultant negative space charge of those electrons already in
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- transit will be balanced by the forward pull of the anode upon the
electrons just about to leave the cathode, ¢.e., upon those hardest
to move. We shall now formulate the relationship between this
equilibrium current and the plate voltage.

In electromagnetic theory for steady current flow we have
Poisson’s equation

2
I = amp (es.u.) @
where V is the potential at any point in the interelectrode space,
z is the distance of the point from the cathode, and p is the charge
density at the point in statcoulombs per cubic centimeter.
Owing to the assumption of infinite parallel-plane electrodes, the
electrostatic lines of force will all be perpendicular to the elec-
trodes, and hence the divergence of the electrostatic lines of forces
in the y and z directions (indicated by d?V/dy* and d2V/dz2
respectively) will be zero.

If there is no charge density at the point in question, (p = 0),
then Eq. (2) becomes Laplace’s equatlon viz.

&y
dx?

Both Poisson’s and Laplace’s equations are based upon Gauss’s
theorem or, more fundamentally, upon Coulomb’s law, which is
an example of a central force. The proof of these theorems can be
found in any standard text on electromagnetic theory.?

In our example, we assume that there is a charge p throughout
the interelectrode space, so that Poisson’s equation is to be used.
We note that p is not a constant, but a function of z. This rela-
tionship is given by the equation of continuity, 7.e., the current is
everywhere the same and furthermore is equal to the charge times
its velocity. Hence, we can write

I = pv, 4)

where I is the current per unit area of the electrode surfaces and
v, is the velocity of the electrons at the point distant x from the
cathode.

It is also true, from the definition of potential as the work done
on a unit charge in transporting it from a point of zero potential
to the point whnre potential is V, that the kinetic energy imparted

=0 3)
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to an electron coming from the cathode (assumed at zero poten-
tial) to the point in question is

Tmw,?2 = Ve (5)
where m is the mass of the electron and e is its charge.
We can eliminate p and v, from Egs. (2), (4), and (5) and obtain

The solution of this equation can be effected by multiplying
through by 2(dV/dz) and integrating. Thus

dV d*vV d (dV\? 2m o, dV
%W‘@(%) =4l Ve @)
and
dvV\? 2m
Z_ = e /%)
(dx) 8l . V¥ 4+ C (8)

We can now insert the boundary conditions:

1. For x = 0, —dV/dx = 0, since the latter represents the
potential gradient, or force on a unit charge, and this is zero at the
cathode for the equilibrium current, as explained previously.

2. For z = 0, V = 0, since by hypothesis we assumed the
cathode to be at zero potential. '

From these we find C, the integrating constant by Eq. (8), to be

zero, so that
av [ 2m\"*

This first-order differential equation can readily be solved by
separation of the variables and yields

3(_»_—2 2@2
1% —1681r11[e z

V¥ 1 |2
27 6r \m (10)

or
I =
which, as indicated in Eq. (2), is in electrostatic units. This can

be converted into practical units, and the constants calculated.
If we further substitute d for z, we obtain
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I = 2336 X 10—° %;—6 amp. per cm. (11)
where V, is the potential between the plate and cathode. Equa-
tion (11) is known as Child’s law.
~ 12. Discussion of Child’s Law.—An examination of Eq. (11)
reveals the following:

1. For a fixed plate voltage V,, the voltage saturation current,
as it is called, varies inversely as d2. This indicates the effect of
varying the spacing of the electrodes of the diode.

2. Since I, the voltage saturation current, is the same for all
values of z, the potential at any point at a distance z from the
cathode is

3
V=3 \/37r2;nl2 - z*% = (const.) - x% » (12)
This indicates the variation of potential with distance due to the
presence of the negative electrons in the interelectrode region.
We note that, if there were no electrons there, V would be a linear
function of z, as in the case of the parallel-plate condenser.

3. Other facts that can easily be derived are that the potential
gradient

dv 14
E=— iz —(consF.) x! (13)
that the velocity
v, = (const.) - 2% (14)
and that
p = (const.) - % (15)

For £ = 0, p = «, which means that the emission must be
assumed to be infinite, in order to represent a finite current at the
cathode when the eleotron velocities there are assumed zero.

However, the most interesting fact is that presented by Eq.
(11) itself, vez., that the current density, hence the total current,
is proportional to the 4 rather than the first power of the plate
voltage. This indicates that even for positive voltages the diode
is nonlinear. Of course, as indicated in Chap. I, the entire
terminal characteristic for positive and negative plate voltages is
nonlinear, but the fact that even the positive range is nonlinear is
of interest in connection with the following: Suppose that the
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plate voltage was composed of a d.c. component V, and an a.c.
component Vi whose peak value was less than V,, so that
Vp, = Vi 4+ Vywas always positive.* Then, if the terminal char-
acteristic for positive V, were linear, ¥V, would produce an a.c.
component of current of the same wave shape as V,, whereas, if
the § power holds, the current will be a distorted copy of V..

Physically, the reason for the  power is that, if the voltage is
increased, the current is increased because of the greater number
of electrons moved and because they are moving with a greater
velocity than before. Since, for equilibrium conditions, the
number of electrons en route to the plate must increase to a point
sufficient to reduce the pull of the plate on the electrons at the
cathode to zero and they are moving with a higher velocity, the
current must increase more than in proportion to V,, that is, as
V.

Langmuir derived Eq. (11) independently, as well as for the
case where the plate is an infinite cylinder and the cathode is an
infinite equipotential emitter situated on the axis of the plate.
In this case, I varies as V,’* too, but only inversely as the radius
of the cylinder if it is large compared with the radius of the cath-
ode. He has further shown that the §-power law holds theoreti-
cally for all geometric configurations of the electrodes and that the
difference is only in the constants of the equations.

13. Departures from the Theory.—In actual tubes the depar-
ture from the $-power law may be appreciable. One of the
reasons for this is that the electrodes are not infinite in extent, so
that the fringing of the electrostatic field at the finite boundaries
modifies the effects. Another is the effect upon the electrostatic
field of supporting wires, and a third is the fact that the electrons
are emitted from the cathode with initial velocities. The effect
of the latter is to cause an excess of electrons in front of the
cathode, so that the field at the cathode is negative and electrons
at the cathode are repelled into it in spite of the pull of the plate.
However, the initial velocities of most of the electrons are suffi-
cient to overcome this negative gradient and indeed cause it to be
established in the first place.

* Note that voltages are represented in this chapter by V, in order that
E may be reserved for the potential gradient. In other chapters, E is used
for voltage to conform with the nomenclature suggested by the Institute of
Radio Engineers.
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A fourth effect is that of the potential drop along the length of a
filament type cathode (direct emitter), which affects the potential
distribution between any part of the cathode and the plate. For
an indirectly heated cathode this effect is absent, however.

These departures warrant, in many cases, the use of a power
series in integral powers of V for the representation of the func-
tional relationship between I and V. Indeed, the chief use of the
3-power law is in correcting the value of the d.c. component of
the plate current if the direct plate voltage is other than that
normally specified. Another example is that of the correction of
the d.c. component of the plate current in a pentode tube if the
screen-grid voltage is other than that normally specified by the
manufacturer.

A final departure from the Rmp. sat current
theory is obviously that where V, tp
is so high that temperature-satura- -3 Power Jaw

tion current is caused to flow.

The current then levels off, as

shown in Fig. 3. Such leveling Vp

off i1s not pronounced in a com- Fia. 3.—Tempera}tqre-saturation
. . characteristic.

posite type emitter, such as an

oxide-coated cathode, owing, possibly, to the drawing out of further

electrons from the crevices in the uneven cathode surface by

higher values of V.

We note from this, however, that, if the cathode emits more
electrons than will normally be required in operation, the plate
current will be determined by voltage-saturation conditions,
Child’s law will hold, at least approximately, and all types of
cathodes having adequate emission will exhibit the same sort of
terminal characteristic. Hence, in practice, the cathode is
designed to emit such a large number of electrons that, even if the
emission falls off with time, the terminal characteristic over the
normal range of plate voltages will remain unchanged.

14. The Triode Tube.—We have seen that, owing to the pres-
ence of a space charge, the flow of the electrons is limited to a
value given by Child’s law for a given plate voltage. This value
is much less than that which would flow, for example, in a copper
conductor of the same cross section as the cathode or plate; 7.e.,
the d.c. resistance of the diode is much greater than that of the
copper conductor. The resistance of the former is due to the
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opposition to the flow of electrons by their neighbors ahead
of them; the resistance of the copper conductor is due probably
to the collisions of the electron gas with the ions of the crystal
lattice structure and this resistance is relatively small in value.
The space-charge effect of the electrons in the copper is neutral-
ized by that of the positive ions.

On the other hand, it is practically impossible to modify the
space-charge conditions in a conductor by the insertion of
another control electrode, whereas, in the diode, such insertion
has a profound effect upon the space-charge conditions and hence
current flow. In the latter case, the electrons, as stated before,
are ‘“‘in the open” and hence at the command of the control
electrode, whereas, in the conductor, the control effect of the
many positive ions is so jumbled as to be negligible from a
statistical viewpoint for the majority of the electrons of the outer
orbits, and the effect of a control electrode is rendered negligible
by the contradictory and hence balancing effects of the many
positive ions.

The use of a control electrode, in the form of a mesh, or grid,
occurred to De Forest® in 1907 and shortly after to von Baeyer®
in Germany. The resulting three-electrode tube is now known
as a triode and exhibits remarkable control characteristics that
form the basis of most of present-day electronic technique.

In 1913 van der B1J17 gave what was possibly the first analytical
treatment of the action of the grid. It will not be possible in this
chapter to discuss the derivation. A more recent work by
Vodges and Elder?® treats this matter very elegantly by the
method of conformal mapping. For the purposes of this text, a
physical interpretation will suffice.

Equation (12) showed that the space current I will be increased
if the spacing between the electrodes, d, is decreased. Hence, if a
third electrode is introduced between the plate and cathode, it
may be expected to exert a more profound effect upon the space
current than the plate. In addition, however, the grid shields
the cathode from the electrostatic field of the plate and thus
further reduces the effect of the plate upon the space current.  As
a result, the grid plays a more dominant role than the plate in
determining the space current, even that portion of it which
passes through the interstices of the grid en route to the plate and
called the plate current. The relative effectiveness of the two
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electrodes is measured by a quantity called the amplification
factor, which we shall now discuss.

15. The Amplification Factor.—The grid may be made either
positive or negative with respect to the cathode. If positive, it
will aid the plate voltage in producing current fiow but will
divert electrons to itself; if negative, it will oppose the plate
voltage but draw no current and hence cause no expenditure of
energy in the electrical control source connected between it and
the cathode. Hence, it is usually operated at a negative poten-
tial, called a negative bias. If this bias is too great, it will prevent
the plate from drawing electrons away from the cathode, 7.e., no
current will flow. The tube is now said to be at cutoff, and the
bias producing this condition is called the cutoff bias. In normal
amplifier operation, the tube is operated above the cutoff point.

Suppose, in a particular tube, it is found that if the plate
voltage is raised 10 volts but the grid is made negative by one
more volt, as measured from an initial set of values, the plate
current remains unchanged. Evidently the increased negative
grid bias has just balanced the increased plate potential. The
ratio of the two opposing changes is 10, and this is called the
amplification factor of the tube (denoted by the symbol u).

It may then be found that, if the plate potential is increased
by 20 volts, the grid must be biased back by 2.2 volts. The
amplification factor is now only 9.09." This indicates that the
amplification factor is somewhat variable. Hence, recourse is
had to the calculus, and the factor is defined as

_av,
ke dVg:'i=const. (16)

where dV, and dV, are differential changes, in the plate and grid
voltages, respectively. Since they are of opposite sign, u is
inherently a negative number, although, if this is understood in
subsequent work, the positive sign may be employed and proper
interpretation given to the results obtained.

16. Factors Affecting the Amplification Factor of a Triode.—
The magnitude of u depends upon several factors, such as. the
geometric shapes of the electrodes, the spacing between the grid
and plate, and the fineness of mesh of the grid structure. A typical
triode construction is shown in Fig. 4;it will be noted that the grid
is in the form of a helical coil of wire. The amplification factor is
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increased if the pitch of the helix is reduced and the diameter of
the grid wire is increased, for the grid can then shield the cathode
from the electrostatic field of the plate more completely and thus
render the plate less effective in producing plate current. In prac-
tice, triode tubes have amplification factors ranging from about 3
to 100, while tetrode and pentode tubes have values of over 1,000
in many cases, as will be explained in the following chapter.

As indicated in the previous section, the u of a triode may be
variable with the tube voltages—indeed, always is variable to

GRIDS
Diameters
measured to
0.001 inch

CATHODE - SLEEVE ¢ NN\ ,’ CATHODE COATING
WALL , \ “Weieht variation

nalL Weight variation
Approximately ' 9 less than
0.002 inch thick ! \ ) ), 0.00007 oz.

AR PRESSURE ] GRID WIRE
1/100,000,000 that = Diameter does
of atmospheric pres- q i not vary more than
sure at sea level

HEATER WIRE

Inspected under i i “ Diameter does
polarized light i not vary more than
for strains i 0.00002 inch

F16. 4.—Typical triode conétrution. (Courtesy of RCA.)

some extent in an actual tube. This variability may be explained
as due to asymmetries in the tube structure. For example,
suppose the pitch of the grid helix varies somewhat along the
length. Suppose, for definiteness, that the helix is tight for half
its length and coarse for the other half. The tube may be
regarded as essentially two tubes in parallel, one with a high u
(tight helix) and the other with a low p (coarse helix). As the
negative bias of the actual grid is increased, the plate current
of the higher u portion of the tube will reach cutoff first. From
thence to the cutoff of the other portion of the tube, the latter
will appear to have a lower u. Hence the amplification factor
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of an ordinary tube having some unavoidable asymmetry in
structure due to tolerances in manufacture will always show a
decrease in u as cutoff is approached. The effect, however, is
usually small.

In some tubes, called variable-p or supercontrol tubes, the effect
is purposely made large, in order to afford a gradual cutoff
characteristic. In Fig. 5 is shown the relationship between a
constant-p and a variable-y tube for comparison. In this figure,
plate current 7, is plotted against grid voltage V. for a given
plate voltage. It will be noted how protracted the variable-u
cutoff is compared with the constant-u cutoff.

Variable-u tubes are employed in radio-frequency (r.f.) and
intermediate-frequency (i.f.) amplifiers where automatic varia-
tion in amplification is desired to
compensate for weak and strong ip
broadcast signals. This compensa-~
tion is known as automatic volume
control (a.v.c.). They are also em-
ployed in audio amplifiers to vary the
amplification according to whether
the signal is weak or strong so as to 0 ¥
accommodate a large volume range .. 5 _ Trancfer characteris-
within the signal-handling capacities tics for constant- and variable-i
of the apparatus. This application tubes.
is known as compression or expansion, depending upon whether the
uis decreased or increased, respectively, as the signal increases. It
is to be noted, however, that variable-u tubes are practically always
of the pentode or multielectrode form, rather than the triode.

17. Practical Application.—Since the grid is more effective
than the plate in determining the plate current, it is evident that
more effect will be obtained by injecting the given signal voltage
in the grid circuit than directly in the plate circuit, for a greater
variation in plate current will be obtained by the former mode of
operation. Thus, suppose the signal voltage V, is a 100-cycle
tone. If the source of this is connected in series with the grid
and the bias battery, V., as shown in Fig. 6, the plate current
will be a pulsating current instead of being a steady d.c. flow.
This, in the absence of appreciable distortion, can be resolved
into the original d.c. component plus an a.c. component of 100
cycles. The latter is due to V..
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In flowing through Z, (Fig. 6), the so-called ‘“‘load impedance,”
this a.c. component will develop 100-cycle power in it and also a
100-cycle voltage across it.

If V. were connected in series in the plate circuit, it would also
produce a 100-cycle component in ,, but the component would
be smaller than before, the power expended in Z; would be less,
and the voltage across Z, would be less too. Moreover, whatever
100-cycle power was expended in Z; would come directly from the
source of V,, whereas, if V, is injected into the grid circuit and
the grid maintained sufficiently negative, no grid current can
flow and no power is drawn from the source of V,. In this case,
the power developed in Z. comes from the d.c: plate battery, of
voltage V. The ratio of a.c.
output power (in Z.) to a.c. input
power is now theoretically infinite

100~ i . .
3+ some slight losses), exceedingly
_ ““ VbbT’— great.* This ratio is known as
} —+—

and, in actual practice (owing to
= the power amplification factor and
Fic. 6.—Circuit for voltage and is of great importance when very
power amplification.
weak power sources of V,, such
as high-fidelity microphones and photocells, are employed.

Usually, the power output in Z is insufficient for the purpose
at hand. In that case the output voltage across Z, can be used
to actuate the grid of a second tube, etc., until finally a stage is
reached whose output power is sufficient. This final stage is
known as a power output stage; usually, special tubes adapted for
large power outputs are employed here, known as power tubes.
The previous stages are known as voltage amplifier stages. The
ratio of the output voltage to the input voltage of such a stage is
known as the stage amplification or stage gain. Since these will
be analyzed more fully later, no further discussion will be
presented at this point.

18. Other Tube Parameters.—There are two other funda-
mental tube parameters that will be discussed at this point, the
plate resistance R, and the transconductance G,. It will have
been noted that the triode is operated so that direct plate current

* At ultra-high frequencies, however, the input power may approach the
output power in value, owing to transit-time effects.
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flows. The action of the grid is to produce a variation in this
current, and this variation is called the a.c. component.

If we divide the d.c. plate potential V,, by the direct plate cur-
rent I,, we have a resistance K, called the d.c. resistance of the
tube. This parameter, however, is seldom employed in analytical
methods of solution. On the other hand, the ratio of alternating
plate voltage (if alternating voltage be injected into the plate
circuit) to the resultant a.c. component of plate current is a more
useful ratio analytically and is called the a.c., variational, or
incremental plate resistance (see Chap. I). It is evident that the
alternating voltage superimposed on V,, may be regarded as a
variation or incremental change in Vy—hence the variety of
names for this resistance. The latter is a function of the magni-
tude of the a.c. component of the plate as well as the grid bias
voltage and hence, analogously to the expression for g, is written
as

av, —
B~ ()
where dV, is the differential change in plate voltage and dz, is the
resulting differential change in plate current, under the condition
that the grid voltage V, remains constant. This parameter, as
will be shown, is a very important one in vacuum-tube theory.

The transconductance (., is a measure of the effectiveness
of the grid voltage in producing a change in plate current. In this
case, as in that describing the meaning of the R, of a tube, it is
assumed that there is no load in the plate circuit of the tube: even
the plate (B) supply is assumed to have no internal impedance.
Therefore, the only opposition to the flow of the a.c. component
of plate current is the tube itself, 7.e., its internal space-charge
effects. _

Referring to the G, once again, we find that, for example, a
1-volt increase in grid voltage allows the plate current of a tube
to rise 2 ma. above its previous value, under the condition that the
plate voltage is maintained constant. The G,, is then 0.002 amp.
divided by 1 volt, or 0.002 amp. per volt, which is 0.002 mho, or
2,000 micromhos. This is analogous to a.c. plate conductance
(reciprocal of R,), except that the voltage is applied in the
grid circuit and causes a transfer effect in the plate circuit—
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hence the name ‘“transconductance.” It is also often called
“mutual conductance.”
The G, is also a function of the grid voltage and plate voltage
and if defined by the differential expression
s

az
dVg Vp=const.* ( )

where di, is the differential change in plate current due to the
differential change in grid voltage, V,, while the plate voltage V,
is maintained constant. This will be found to be a useful
parameter too.

Now the u of the tube was defined as the relative effectiveness
of the grid compared with the plate in determining the plate
current; that is, dV, in Eq. (18) is equivalent to 1/u times a
certain increment of plate voltage, dV,. Hence, Eq. (18) can be
written as

_dy, I
On =av,/u " R,
since di,/dV, = 1/R,. The derived form for G, given by Eq.
(19) is particularly useful in circuit analysis.

19. Vacuum-tube Operation from the Physical Viewpoint.—
If the grid is viewed as varying the internal space charge of the
tube and, in this way, the current flow, then the tube may be
regarded as an adjustable resistance of magnitude determined
by the grid voltage. The resistance referred to is its d.c. resist-
ance, and the tube is thus a kind of rheostat controlled by a (grid)
voltage rather than by a rheostat arm manually operated. If the
grid voltage varies with time, then the d.c. resistance of the tube
will vary with time, and the tube is then called a {ime-variable
parameter. This type of parameter was not discussed in Chap.
I. The differential equations describing a circuit containing
linear and time-variable parameters involve d7/d¢ multiplied by
constant resistances and also by resistances that are functions
of the same variable as the impressed voltages, »iz., time. Such
equations are, in general, easier to solve than nonlinear differen-

(19)

* Strictly speaking, these are partial derivatives, since 7, is a function of
V,and V, The partial-derivative representation will be used in Chap. V,
where both voltages are allowed to vary simultaneously as in normal
operation.
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tial equations, which involve di/dt multiplied by resistances that
are a function of the current, 7.

If a tube has a characteristic such that, if the grid voltage be
fixed at some value, the a.c. resistance is independent of the
current drawn by the plate voltage, then the tube is said to be a
linear tube. (Obviously, this holds only for positive plate volt-
ages great enough to counterbalance the negative grid voltage
and prevent cutoff.) Since the current is a function of both the
grid and plate voltages, the plot of such a characteristic (see
Chap. III) is a surface in three-dimensional space. For a linear
tube this surface is a cylinder of some sort.

If, in addition, the u of the tube is constant, then the cylindrical
surface becomes a plane in space. In such a tube, if the range of
operation is such that plate current flows at all times, the output
voltage is an undistorted copy of the input (grid) voltage. Such
a tube is highly desirable for amplification purposes, but it
can be only approximated by actual tubes. This is evident from
the following: For a linear tube, if the grid voltage V, be kept
constant, 7, must be in proportion to V, — uV,, since the a.c.
resistance R, is constant and V, — uV, is the portion of the
plate voltage that can cause plate current to flow. (Note that
vV, is assumed negative, so that it cancels part of V,.) The
relationship is represented in Fig. 7 for two values of V, (solid
lines), »iz., V,1 and V,.. Note that, when V, equals uV,,
cutoff is reached for the curve to the left labeled V,, and, when
Vo = uVys, cutoff is reached for the curve labeled V.. Also,
note that, for point P, the d.c. resistance is the cotangent of 6,
while the a.c. resistance, or I2,, is equal to cot ;. These matters
will be discussed more fully in the following chapter.

We have shown for the diode that, according to Child’s law, 7,
varies as V,. While no rigorous derivation has been worked out
for the triode tube, a somewhat similar relation holds approxi-
mately for the triode, viz.,

1, = AV, + .“Vg)% (20)

For actual tubes the relation between 7, and V, may depart some-
what from Eq. (20), but the exponent is in practically all cases
other than unity. Hence, the actual triode curves are other than
straight lines and may be of the shapes suggested by the dotted
lines Fig. 7. Such curvature is further increased, in general, by
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variability of the amplification factor, particularly in the neigh-
borhood of cutoff.

The reader may be puzzled as to why the above discussion is
concerned with a variation in the plate voltage, since it was
explained ‘previously that the given variation in voltage known
as the signal voltage was preferably introduced into the grid
circuit. The answer to this is that, for useful operation, a load
impedance Z. (see Fig. 6) is inserted in the plate circuit, so that
the variations in plate current, produced by the signal voltage
acting on the grid, produce variations in the voltage across Z;
which are a copy of the grid signal voltage. Since the impressed

Ol
0 VVg| FVgg . Vp

F16. 7.—Linear and actual tube-plate characteristics.

B voltage Vy is direct, then if there is an alternating voltage
V., across Z ., there must be a voltage — V , between the plate and
cathode, as well as a direct voltage, in order that the sum of the
voltage drops equals Vi. This means that, when Z, is present,
V, is not constant but fluctuates, and hence we are concerned
with the effect upon 7, of ‘these fluctuations, as well as of those
in the grid circuit.

If the current is proportional to (V, + uV,)? instead of the
first power, the current will be a distorted copy of V, and will
produce a distorted voltage across Z., and also one of opposite
phase, as part of V,, which will react to make the current some-
what differently distorted, etc., in short, the exact form of 7,
(and V.) for equilibrium conditions may be quite different from
what it is when Z. = 0 and V, = V3, a constant direct voltage.
Indeed, this is the basic problem of nonlinear circuits (see Chap.
I): given a known voltage—here Vy—in series with an impedance
Z;—which may be linear—and a nonlinear impedance—that of
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the tube—to find the current flow through this circuit and the
voltages set up, particularly the output voltage V.

If the signal voltage is sufficiently small, then the variations
in 7, and V, will be correspondingly small, and the relation
between i, and the grid and plate voltages may then be repre-
sented fairly accurately by

ip = AV + 1Vy) (21)
For a linear tube, this is an exact representation. Where Eq.
(21) is adequate, a simple equivalent circuit, known as the

equivalent plate circuit, may be employed, and the analysis of the
tube behavior greatly simplified.

20. The Equivalent-plate-circuit Theorem.—Let the plate
current 7, be composed of the normal d.c. component I+, due to
the B-supply voltage Vi, and the grid bias voltage V., and an
a.c. component I ,, due to a signal voltage V, injected into the grid
circuit. Then, according tc Eq. (21),

’L'p = Ib + Ip = A[(Vbb - IbZL - IpZL) + #(Vs + V.:)] (22)
Note that Z, may be a different impedance to the d.c. com-
ponent I, from that to the a.c. component I,. In the absence
of the signal voltage V,, we have

i, =1y = AV + uV.) 23)
Subtracting Eq. (23) from Eq. (22), we obtain
I,= —AI,Z, + AuV,

A
Iy = wVei 47,

It will now be shown that A = 1/R,. If the grid voltage be
kept constant, V, must equal zero. Under these conditions, from

Eq. (21)

(29)

1

di, 1
R,

de ] (Vg=Ve=const.)

from the definition of R, given by Eq. (17).
Substituting this value of A in Eq. (24), we finally obtain

=4 = (25)

_ MV
IP - Rp + ZL (26)

This is the equivalent-plate-circuit theorem. It states that, as
far as the a.c. component of the plate current is concerned, it is
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as if the tube with its variable d.c. resistance were replaced by an
apparent, source whose internal impedance is R, and whose
generated voltage is uV,. The circuit equivalent to that of the
plate is shown in Fig. 8, and it is evident by an application of
Ohm’s law to this circuit that Eq. (26) will be obtained.

This is one of the most frequently used and hence most impor-
tant equations for vacuum tubes. The reason for this is that the
vacuum tube, as mentioned previously, is a time-variable
- parameter and gives rise to circuit equations difficult to solve.
The equivalent circuit is an ordinary linear type and easy to
solve and hence is preferable to the actual in the solution of

vacuum-tube problems. Accordingly,
(T; it is employed wherever possible. 1t
Rp cannot be employed, however, to evalu-
ate the losses in the tube itself, which
produce heating of the plate and are
hence denoted as ‘““plate dissipation.”
Vs But, for a linear tube at least, it gives
the correct values of a.c. component of
Fig. 8—Equivalent plate oyrrent and voltages in the external
circuit for a.c. component. .
load impedance, and these are the
quantities in which we are usually most interested.

In passing we note that the above theorem depends upon a
more fundamental one, the compensation theorem, which states
that a voltage drop due to some impedance may be replaced
(compensated for) by a generator generating a voltage equal to
this voltage drop. Here we are compensating for the variable
resistive voltage drop in the tube by an equivalent generated
voltage uV, and a fixed resistance R,.

21. Equivalent Constant-current Source.—A variation of the
equivalent-plate-circuit theorem follows at once from ordinary
linear-network theory. Thus, let us first evaluate the voltage
V. across Z,. This is evidently

Zy

R+ Z, 27

Vo= IpZL = Uey

Now multiply numerator and denominator by R,, and obtain

V 13 RpZL RpZL

L=_R—pest+ZL=GmeeRp+Z‘L

(28)
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The quantity G.e, has the dimensions of current. This current
may be considered.as being produced by a constant-current
generator. A constant-current generator is a source that feeds
an unvarying magnitude of current into any finite value of load
impedance connected to it. One physical interpretation of such
a source is that it has infinite internal impedance and infinite
generated voltage, of such order that their ratio is the finite value
of current cited above. Evidently, such a generator will send the
same value of current through any finite impedance connected in
series with it.

The constant current Ge, flows through the internal resistance
R, of the actual source and the load impedance in, parallel and, in
doing so, sets up the same voltage drop V. as is set up across Z,,
when regarded in series with the internal resistance R, and the
finite generated voltage uV,.

As stated before, these circuits are equivalent for any linear
circuit, and not because the one under discussion happens to
involve a vacuum tube. Which equivalent circuit to use, the
constant voltage or the constant current, is a question of con-
venience. It has been regarded by some that the constant-
voltage type is preferable if the source resistance is low, as in the
case of the average triode tube (2,000 to 10,000 ohms), and the
constant-current type is preferable for high-impedance sources,
such as pentode tubes (one megohm or thereabouts). However,
either type of representation can be used for any type of
circuit, and the constant-current source has been found to be of
great convenience in the analysis of many vacuum-tube circuits.
We shall illustrate this point with an example.

A well-known type of video amplifier circuit employed in tele-
vision as a voltage amplifier stage is shown in Fig. 9 and is known
as a sertes-peaking circuit. Here C, represents the unavoidable
capacitance existing between the plate and ground of the first
(left-hand) tube, and C; is the likewise unavoidable capacitance
associated with the input-circuit of the second (right-hand) tube.
While these capacitances are mainly within the tube (although
they must also include the stray wiring capacitances of the
external load parameters to ground), it is convenient to consider
them external to the tube and as part of the external load imped-
ance. The latter consists principally of R., a resistance, and L,
an inductance. The parameter C, and R, have a sufficiently high-
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susceptance and resistance, respectively, to be considered negligi-
~ ble in effect at the frequencies under consideration—one million
cycles and higher. Finally, the input signal voltage is V,, and
the output amplified signal voltage, applied to the next tube, is
Vo
Let the driving-point impedance looking into terminals 1-1 be
denoted by Zp, where this includes C,, and the transfer constant,
which is the ratio of voltage across terminals 2-2 to that across
terminals 1-1, be denoted by T. Then, if the first tube be a
" pentode tube, its B, may be regarded as so high compared with
Zp as to be a negligible shunt to it. In that case, if we apply
Eq. (28), we obtain

Vo= ViGnZnT ’ (29)

since the voltage across terminals 1-1 is V,G,Zp and hence that
across 2-2 is V.G.Z T, as above. The gain, a, of this stage is
defined as

0 =— = GuZ,T (30)

The problem of finding the gain is thus that of finding the values
of Zp and T as functions of frequency—a straightforward problem
in linear theory. The only manner in which the tube enters is
through its G,,.

Suppose optimum values of B; and L are thus found in terms
of C,, C., and the frequency f, which will make this stage have a
satisfactory flat response over a certain portion of the frequency
spectrum, say, up to 5 megacycles. Now suppose it is desired to
find the optimum values for a low R, triode tube. Is it necessary
to start anew, since now the R, is an appreciable shunt across Z,?
Not at all. We can represent the triode tube by its equivalent
pentode (constant-current) form. Here we merely place R,
across terminals 1-1 in Fig. 9. Now, if R, is greater than the
previously determined value of R in the case of the pentode tube,
we can use instead of R a higher resistance R,’, of such value
that R." and R, in parallel equal the previously determined value
Ry. The triode circuit will then function in identical manner
with the pentode tube. Since the latter permitted the gain to be
determined by simple analysis of Z, and 7, it was natural to
derive the gain for this type of tube first.



THERMIONIC VACUUM TUBES 39

Of course, this procedure is possible only if the external load
circuit starts off with a resistance B;. However, this is the case
for many circuits. An interesting example is that cited by
White® for the low-frequency (l.f.) compensation of a video
amplifier stage. There are other uses for the constant-current
equivalent circuit, as in r.f. amplifier stages, but lack of space
precludes presentation of these applications.

1 OO ——{—1
.[ L J_ ?

R
-}: ) -f— )

F16. 9.—Series-peaking video circuit.

22. Further Discussion of the Tube Resistances.—The equiva-
lent circuits presented have been those for a linear tube, z.e., one
whose a.c. resistance R, is constant. This, of course, does not
imply that the d.c. resistance is constant. In Fig. 10 are shown
three plate-current curves for a linear tube, corresponding to
three grid voltages Vg, V,,, and V,. The a.c. plate resistance
(if all curves, for simplicity, are assumed to have the same slope)
is the cotangent of angle BDM,
CEM, or GFM and is independ- .
ent of plate voltages that exceed 'p
the cutoff values. The d.c. re-
sistance, however, is not inde-
pendent of the plate voltage.
Thus, suppose we set the grid
voltage at V,,. Then, for two !
particular values of plate volt- 0 D H JE K F
age, OH and OJ, the two d.c. Fic. 10.—D.c. and a.c. plate resist-

. ances for a linear tube.

plate resistances are the cotan-

gents of angles AOM and BOM, respectively, and hence differ-
ent. Indeed, for a grid voltage V, and a plate voltage OK,
the d.c. plate resistance has still another value, the cotangent
of COK, and so on, for other curves. Thus, the d.c. plate
resistance is a function of the plate and grid voltages for all
values of these, whereas the a.c. plate resistance may be independ-
ent of these for a limited range of values of these two voltages. It

fe-mme << -]
e

l€ ~ —~——
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is for this reason that the latter resistance is preferred in the power-
series method of solution, which is the method essentially
employed in the previous two sections, although the power series
consisted of only one term, the first-degree term. In the graphi-
cal method of solution, the d.c. resistance will generally be found
to be the preferred parameter (note this fact in reading Chap. IV,
particularly).

The vacuum tube is peculiar in that the d.c. and a.c. resistances
are so widely different in value. Indeed, a little thought will
indicate that the equivalent circuit is evident without the need
of the derivation given, since an examination of Fig. 10 shows that
the grid voltage seems to act more as a fixed potential u times as
great in the plate circuit than as a means of varying the internal
resistance of the tube. This is to be expected physically from the
fact that the space-charge effect of the grid is a fixed effect in the
plate circuit, rather than an effect proportional to the plate cur-

o rent, which is the manner in which a

— <L resistive voltage drop would operate.
s 9:2[: The tube thus acts like the circuit
Rp Vpé shown in Fig. 11, in which C represents

= a kind of electrical check valve or
T diode that offers no resistance to the
Fia. 1l1.—Equivalent circuit flow of current in the direction denoted
for a triode. by the arrow but does not permit cur-
rent to flow in the opposite direction. In this circuit, if V,exceeds
uV,, current flows owing to the effective voltage V, + uV, where
1V, is opposite in polarity to V,, as shown,-and is limited (in the
absence of an external load) solely by E,. If the current in this
circuit were plotted against V,, curves similar to those shown in
Fig. 10 would be obtained for different fixed values of uV,.
Nevertheless, it is more correct from an energy viewpoint to
view the linear tube as a variable d.c. resistance, controlled by
grid voltage, rather than as a fixed a.c. resistance R, in series with
two voltages V,and uV,. This is because the source of uV, does .
not furnish or absorb any energy from the circuit if 4V, is nega-
tive, whereas in Fig. 11 it is evident that the source of uV,
receives energy from the source of V, when V, exceeds uV,.
However, as far as considerations pertaining to an external load
impedance are concerned, the representation equivalent to Fig.
11 is valid and much simpler than the representation of the tube
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as a variable d.c. resistance. This is why the equivalent circuit
similar to Fig. 11 is employed when external load relationships
only are required.

It is of interest to note that there are devices which are variable
resistors for which the a.c. and d.c. resistances are equal. An
example of this is the carbon button microphone. Here the
resistance of the carbon granules of the button depends upon the
pressure of the diaphragm on them. Let us assume such a button
is under a normal pressure (say, atmospheric) and is in series with
a direct voltage V. Let the normal resistance due to the normal
pressure be R, and the variations in R due to variations in the
pressure be +Al. For normal, steady pressure, the circuit
equation is given by

IR=1V (31)

For varlatlons in pressure, we obtain variations +AJ in the
current, such that

(I FANR L+ AR) =V (32)
Subtracting Eq. (31) from Eq. (32) we obtain
FAIR — AI AR = +1 AR

If AR is sufficiently small compared with R, then AI will be small
too, and AI AR can be ignored, so that

FAIR = +1AR (33)

Equation (33) states that the variations in resistance + AR may
be replaced by an equivalent voltage +1 AR, which, acting in a
circuit of resistance R, causes a current F Al to flow. Equation
(33) is thus similar to Eq. (31). We thus have here, too, a
circuit of fixed resistances and variable voltages equivalent to
the actual circuit of fixed voltage ¥V and variable resistance
R + AR.

There is an important difference, however, between this
equivalent circuit and the equivalent plate circuit of the triode.
In the former, the apparent voltage +1 AR is a function of the
direct voltage V through the quantity I, as well as a function of
the variations in pressure through the quantity +AR. 1In the
equivalent plate circuit, on the other hand, the apparent voltage
uV, is independent of direct plate voltage and current and a
function solely of x4 and V,.
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This difference is also exhibited by the actual terminal charac-
teristics of the microphone as compared with those of the triode.
In Fig. 12 are shown three terminal characteristics for the
carbon button for normal pressure, higher pressure, and lower
pressure (curves marked R, R — AR, and R + AR, respectively).
R-AR We also note here that the d.c.
1 R resistance equals the a.c. resist-

ance for any particular value of

al pressure, as mentioned previously;

/ R*8R hut now we note, in addition,
0 Vv that both resistances vary, in con-

;; trast to the constancy of the R, of

Fig. 12.—Terminal characteris- & linear tube.
tics for a carbon-button micro- 23. Equivalent Circuit for a
phone. Nonlinear Tube.—The reader may
wonder if, similar to the equivalent plate circuit for a linear tube,
there exists an equivalent circuit for the nonlinear tube, i.e., for a
tube with such curved characteristics that even for small grid-
voltage excursions, or swir.lgs, the approximation of a linear tube
is insufficient or for an actual tube in which the grid swings are
too great' for the linear-tube approximation to hold. The
answer is yes; the equivalent circuit for the nonlinear tube is the
more general, and that for the linear tube is but a special case of
the former. Unfortunately, the derivation for the nonlinear
tube is too involved to warrant presentation here but may be
inferred from the series of terms occurring in Carson’s* method
of successive approximations for power-series solutions. Suffice
it to say that the equivalent circuit involves a series of generators
in circuit with the R, of the tube and the external load impedance.
The R, may be that given by the reciprocal of the slope at the
operating point—the point on the characteristics from which the
a.c. excursions take place. The generated voltages are quanti-
ties involving V,, V2, V.3, . . ., uV,, wV,)? V)3 ... If
sufficient of these voltages are included, the equivalent circuit
will give correctly, not only the fundamental component of the
current through the external load impedance, but the distortion
terms as well. Generally, however, so many generators must be
evaluated if the characteristics are greatly curved as to discourage

*Proc. I.R.E., 1919.
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the average engineer from employing this method in the solution
of actual problems.

We note, in passing, that this more general equivalent circuit
replaces, by the use of the compensation theorem, not only the
variable d.c. resistance, but also the variable a.c. resistance of the
nonlinear tube, with a constant a.c. resistance and sufficient
apparent generated voltages to compensate for the variability
of the a.c. as well as the d.c. resistance. It is an interesting
artifice from a theoretical point of view; and if a few terms are
sufficient satisfactorily to represent the curvature of the charac-
teristics, it can be used in actual problems without a prohibitive
expenditure of labor. In Chap. III, as an alternative, will be
given a graphical proof of the equivalent-plate-circuit theorem.

24. Conclusion.—This concludes our rather brief discussion of
the thermionic vacuum tube, particularly the triode. Further
reference will be made in succeeding chapters to the tetrode,
pentode, and diode tubes. However, from now on the presenta-
tion will be mainly graphical in nature, although power-series
methods will be employed where they throw further light upon
the operation of the tube and its circuit.

BIBLIOGRAPHY

. LaneMUIR and RoGERs: Phys. Rev., 4, 544, 1914,

. CuiLp, C. D.: Phys. Rev., 32, 492, 1911.

PiacE, LEigH: “Introduction to Theoretical Physics.”

LanGMUIR, I.: Phys. Rev., 2, 450, 1913.

DeForest, L.: U.S. Patent 841387 (1907); U.S. Patent 879532 (1908).

Von BAEYER: Verhandl. deut. physik. Ges., T, 109, 1908.

. Van per Buv, H. J.: Verhandl. deut. physik. Ges., 16, 338, 1913; Phys.
Rev., 12, 180, 1918.

. Vobges, F. B, and F. R. ELpER: Phys. Rev., 24, 683, 1924,

9. Wurte, E. C.: English Patent 456450.

e

oo



CHAPTER III
ELEMENTARY GRAPHICAL CONSTRUCTIONS

1. Introduction.—Before beginning the discussion of graphical
methods of solution, it may be well to mention that these methods
are not necessarily restricted to the solving of vacuum tube
problems but can be applied to mechanical and magnetic circuits
as well. The chief difficulty in the case of the latter is that the
primary data on the magnetic circuit are not accurately known,
particularly the relationship between magnetomotive force H
and flux density B when the former is a complex wave function
of time. In this case the terminal characteristic (B-H curve) is a
" hysteresis loop containing minor hysteresis loops, and the exact
behavior of B vs. H for these minor loops is at least open to
discussion. Often, derived curves obtained from secondary
data, such as that of incremental permeability vs. H, are used, a
procedure somewhat analogous to that employed in solving
detector circuits (Chap. VI).

Another problem that might profitably be attacked by graphical
methods is that involving nonlinear compliances, such as those
encountered in loud-speaker structures. Here it may be that the
production of subharmonics can be demonstrated in a more
illuminating manner than by analytical methods.

As a final suggested example, the generated-voltage vs. field-
current and armature-speed characteristics of a shunt generator
can be studied by graphical means, and the behavior of the
machine under various operating conditions nicely predicted.
For further information concerning this the reader should consult
“ Direct-current Machinery’”’ by McFarland.

2. General Considerations.—In the previous chapter the
mechanism of thermionic emission from various kinds of emitters,
the action of the space charge in a tube and Child’s law, the effect
of the introduction of a grid in the tube, the a.c. and d.c. plate
resistances, the amplification factor u, the transconductance G,,

and the equivalent-plate-circuit theorems were all discussed.
44
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The derivation of the latter theorems depended upon the use of a
. simple power series to represent the terminal characteristics of
the tube, viz., a single term involving the plate and grid voltages
to the first degree. It was pointed out that, if the tube were
nonlinear, a prohibitive number of terms of higher degree might
be necessary adequately to represent the characteristics. The
Fourier method of representation was not employed because 1t
required that the over-all terminal characteristic of tube and
external load impedance be known, rather than the terminal
characteristics of the individual components and their method
of connection.

The graphical method takes the curve or curves as determined
experimentally and operates geometrically upon them. That
is, the graphical method accepts the characteristic “as is’’ and
does not concern itself with the inner meaning of its shape any
more than is absolutely necessary. It therefore operates with
directness and dispatch and avoids the complications inherent
in the analytical method.

In view of the above, the question may arise as to why the
graphical method is not used to the exclusion of the analytical
method. The answer is that the former has several serious
disadvantages as well as the above advantages. The disadvan-
tages are mainly as follows:

1. The accuracy of graphical results depends upon the mechan-
ical factors involved in drawing the curves and geometrical
constructions, such as the thickness of the lines.

2. The graphical method is special: it usually gives a particular
answer to a particular set of initial conditions. It does not
indicate, as a general rule, the optimum initial conditions to give
the best results. Thus, if we are given the power pack voltage
applied to a tube, the grid bias, the grid signal voltage (“grid
swing”’), and load impedance, we can find the plate-current
variation and, by an easy calculation, the power output of the
tube. We cannot, however, find directly the dbtimum bias, grid’
swing, and load impedance for maximum power output for a
given power pack voltage except by a series of trials. The
analytical method will give us this information, though often in
complicated form. Possibly the main reason for the foregoing
defect in the graphical method is the fact that it has not as yet
been developed to the fullest extent; it may overcome this
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limitation as it is improved. We are as yet bound to a great
extent by the old Greek tradition of ruler and compass construc-
tions, and this tends to limit the scope of the graphical method.

3. The method fails under certain complicated conditions
such as when the operating point changes appreciably with the
signal voltage. However, successive approximations can be
:nade to the true state of affairs, and it is further questionable
whether the analytical method is really superior for these more
complicated conditions.

4. Graphical constructions become far too involved, if not
actually impossible, when more than three variables are involved,
as in the case of a tetrode or pentode tube, unless all but three
of the variables can be kept fixed, whereupon these become
parameters rather than variables.

It may therefore be concluded that there is no general method
of attack for vacuum-tube problems and that the best that can
be done today is to employ both methods in an effort to obtain
even working or approximate solutions. It is to be hoped that
some day a general treatment of nonlinear networks (of which
the vacuum tube is but one example) will be developed that
compares with the treatment of linear networks.

3. Simple-series Linear Circuit.—To
proceed with the graphical method, sup-
pose two constant resistances R; and R,

! are in series with an em.f. E, (Fig. 13).
CED The current flow I, is simply given analyti-
cally by Ohm’s law as

I

Ry

E,

11=R1+R2

Fig. 13.—Two linear re-~
sistances in series.

The voltage drop across R, is then I,R;;
that across Ry, I,R,. Denote the voltage drop across B, by Eu;
that across R, by Es.

Then o
IlRl = EA (1)
IR, = Ep = E, — E,4 (2)

Suppose it is desired to solve this circuit graphically. The
independent variable will be voltage; the dependent variable,
current I,. In order that there be but one independent variable,

P T P P I T R



ELEMENTARY GRAPHICAL CONSTRUCTIONS 47

say, E4, the relationships given in Eq. (2) may be used in the
form where I R, is equal to (E, — E,) rather than to Es. If
these two equations are plotted, the straight lines OC and BC
(Fig. 14), respectively, are obtained.

C D, -
_________ > _/T
N/ | e '
. AT F
| \‘\ s |
R AN < I :
! DN R, | [
| L~ Ny |
LT NC | |
//| : \\ | :
N
0z« L IA NI B

F16. 14.—Graphical constructions for linear series circuit.

The slope of OC is evidently

cot ay = 'E—A =R, (3)
I,
The plot of Eq. (2), viz., BC, is evidently shifted from the origin
by a distance E, and is of a negative slope corresponding to
E,— E, —FEs

I, = — cot a; = I, = —R, (4)

OC and BC are called the terminal characteristics or load lines of R,
and R, respectively; and if one of them is plotted from the origin,
the other must be plotted from a shifted origin and with a nega-
tive slope, when it represents a resistor in series with one cor-
responding to the other load line. "Where these two load lines
intersect, at C, is the simultaneous solution of Egs. (1) and (2).

This intersection gives a value of current I, that is the same
for both resistors. But this is the value of current that is
sought, since in a series circuit the current is the same throughout
the circuit. Hence I, the current in the circuit of Fig. 13, has
been determined graphically by the intersection of the two load
lines. The distance OA represents the voltage E4 required
across R, to force the current I, through it, and AB represents
the voltage Es required across R, to force I, through it. It is

cot (r — ap) =
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evident from Fig. 14 that

OA + AB = E, (5)

and
0OA = 11 cot ay = 11R1 (6)
and '
AB = Il cot Qg = Ile (7)

so that the graphical method checks with the analytical method.
Suppose another voltage E; is employed, shown in Fig. 14 as
less than E;. The same procedure is followed as for E,, and
current I, is obtained. This may be repeated for any other
voltage or voltages desired, and the corresponding currents
obtained. If the circuit is viewed as a whole, its action may be
represented by means of a load
line too. Thus, for a voltage E,,
i the current is I,. The ordinate
DB equal to I; is drawn at the

C _ end of E,. Similarly, point F is

~-7D  obtained for voltage E;. Points

S \-—flé:’rF C : D and F are on the load line for
,,"if;\’*\\: Iy the two resistors R, and R,; i.e.,
OL‘ ________ £ _'_J e they are on the load line for a
o e COR . £, ----- J resistor R equal to R, + R,or the

F16. 15.—Graphical constructions total circuit resistance. Thisload

for nonlinear series circuit. line passes through the origin 0’
so that it is represented by the line OFD. This is a straight
line, since those for the two resistors are straight.

In this particular example the graphical solution exhibits no
advantage over the analytical, so that as yet its utility requires
demonstration. Let us now take the case of two nonlinear
resistors in series with an e.m.f. These will give rise to a figure
similar to Fig. 12, except that R, and R, now vary with the
current through them. The load line for each is hence a curve
and they can be plotted from the ends of E,, as shown in Fig. 15.
Their intersection at C gives the desired value of current I,.
For some other voltage E, the current I, is obtained. If these
current values are projected over to D and E, respectively, points
on the load line for R, and R, in series are obtained, and this
load line has been drawn in as OED. The latter is evidently a
curved line, also.
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Apparently, the graphical solution is as simple as that for the
fixed resistors. Let us now review the analytical method.
Instead of Eq. (1), we now have for R,

i =kie + koo + kse® + - -+ + kpen (8)
and for R,
i=k/(E —¢) +k/(E—e€)?+ - +k/(E—¢e)" (9)

where E is the tolal applied voltage. These two power series
have been purposely written with a different number of terms
to suggest the fact that the two load lines have different curva-
tures, 7.e., that the two resistors R, and R vary in different ways
with the current. To find the current through the two in series,
Eqgs. (8) and (9) must be solved simultaneously. Such equa-
tigns, in general, are not solvable if of degree higher than the
fourth, and the roots can be found only approximately, by
Horner’s method, for example. The above thus demonstrates
in a striking manner the directness of the graphical method, and
this is true in the case of many nonlinear circuits.

In Chaps. I and II was mentioned an analytical method that
gives a solution by a series of approximations.! This results in
involved computations, but it is general in scope. The circuit
represented by Fig. 15 can be, in physical form, that of a driver
tube energizing the grids of power tubes in a class A B, arrange-
ment. Thus the driver tube may exhibit some nonlinearity as
represented by load line OC, and the grid circuit of the power
tube may exhibit nonlinearity as repre-
sented by load line BC. This matter will
be analyzed more thoroughly in the case of
a class A B, circuit.

4. Parallel Circuit.—In Fig. 16 are shown
two variable resistors R; and R; in parallel,
and an e.m.f. E; impressed across their ter-
minals. In this case the total current 7
should be given in order that this problem Fic. 16.—Parallel cir-
be equivalent to that of the series circuit; cuit.

i.e., I should be known, and then the component currents
I, and I, through R, and R,, respectively, as well as £, can be
determined. In practice, however, E; is usually given, and I,
I,, and I, are to be determined. Hence, the method will differ
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somewhat from that employed for the series circuit; in fact, it
will be similar to the problem of finding the component voltage
drops, as well as the total impressed voltage in a series circuit
when the current is known.

Referring to Fig. 17, we note that the axes are reversed: the
voltages are plotted as ordinates, and the currents as abscissa;
i.e., the conductances of the two resistors are utilized. OA
represents the conductance load line for R,, and AB that for R,.
Length OB represents any desired value of total current I; OD
represents I,, and DB represents I.. AD represents the value
of E, that could cause these currents to flow. If some other
value of total current I is then chosen and the process repeated,
the corresponding values of I; and I will be found, and also E, for

F16. 17.—Graphical constructions for parallel circuit.

this value I. The load line for the two resistors in parallel can
then be obtained by plotting the various values of I against the
corresponding values of E;. Then, for the given value of E,
the value of I can be found, and the construction shown in
Fig. 17 repeated for this value of I to obtain the corresponding
components I; and I,.

The constructions can be shortened, however, as shown in
the figure. Thus, the given value of E; is projected to curve OA.
The intersection is at G, whose projection on the ¢ axis is F.
Then OF is the value of I, for the given value of E;. The same
thing could be done for AB, and I, found. Then I would be
the sum of I, and I,. Or load line AB can be shifted a distance
FD, so that its plot is the broken line GC. Then OF represents
I, FC represents I, and OC represents I.

Parallel circuits of nonlinear resistances are not so often
encountered as series arrangements, so that this construction is
seldom employed. However, where required, it is as easy to
employ as the construction for the series circuit.
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6. Series Parallel Circuits.—Series parallel circuits can be
solved by finding the load lines for the series parts of the network
and those for the parallel parts and then combining these load lines
as the circuit dictates. The above method fails, however, in the
case of Wheatstone bridge circuits, but these are beyond the
scope of this text.

6. Application to the Vacuum Tube.—If the graphical method .
is applied to the vacuum tube, such as a triode, then a complica~
tion is encountered: the plate current (dependent variable) is a
function of two independent variables, the plate voltage and
the grid voltage. Under these conditions the plot is a surface;

ib
Ib 7 /,Q
(39 7
/,
/,
/47/
! <

(b) (c)

Fi1G. 18.—~—Triode surface and characteristic curves.

this is shown in Fig. 18a as a shaded area, with representative
cross-sections, or “ribs,” on it.

It is inconvenient to perform the graphical constructions upon
a space model; hence the principles of solid analytic and also of
descriptive geometry are employed to obtain projections of this
space model upon a plane, 7.e., upon a sheet of paper.

The equation of the tube surface may be given as

i = Flec, e) - (10)
Consider the equation
€c = C (11)

where ¢ is some constant. Equation (11) represents a plane
parallel to the 7;-¢, coordinate plane, and at a distance of ¢ units
along the e, axis from the latter plane.

The simultaneous solution of Eqs. (10) and (11) represents
the intersection of the tube surface with the plane, and this
intersection may be considered a rib of the tube surface. If this
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rib be projected over to the 7,-¢; coordinate plane, it forms a curve
as shown by any one of the family in Fig. 18b. Different values
of ¢ give rise to different curves of the family. It is evident that,
since 17, is zero for negative values of e, only the first quadrant is
necessary to depict the significant features of all curves of the
family.

Analytically, the simultaneous solution of Eqs. (10) and (11)
means that e, has been made a parameter, so that 2, thereby
becomes a function of e, alone and thus can be plotted on a plane.
As the parameter e, is changed from one value to another, the
corresponding plot for 7, vs. e, changes from one plane curve to
another, and the totality of curves constitutes the plate family
of characteristics.

In a similar manner, ¢, may be made a parameter and ¢, plotted
against e., and this will result in a family of curves too. This
family is known as the plate-current-grid-voltage characteristic
(Fig. 18c¢); and since 7, is not necessarily zero for negative values
of e, the family requires both the first and second quadrants for
its sphere of activity. In this family, the curves proceed to the
left as the plate voltage is raised. Which family of curves is to
be used depends upon the problem being considered. Usually,
the grid voltage is known, and the plate current and plate
voltage are unknown except at one point, so that the grid
voltage is made the parameter and the 7-e;, family is therefore
used. Moreover, the constructions, as will be shown, are usually
simpler for this family. In passing, it is well to note that the
surface constitutes more than the shaded portion shown: it
includes the points in the #-e, plane where ¢, is zero. This is
mentioned here because later some confusion may arise in the
reader’s mind in applying the graphical solution. For large grid
swings it may appear that a curve ends on the axis before it
intersects some line of construction. In that case it is to be
remembered that the curve then really proceeds along the axis,
so that the intersection of the above line of the construction is
with the axis.

We now come to the question of the resistor, which is usually
placed in series with the plate of the tube and is moreover
practically always linear. Figure 19 shows the electrical circuit.
Here R, is the load resistance in the plate circuit. We have seen
earlier in this chapter that the load line for a fixed resistance is
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a straight line. This concept must now be modified in view of
the three-dimensional surface plotted for the tube characteristic.
It is obvious that the relation between current through and
voltage across the resistor is independent of the grid voltage
applied to a tube which may or may not even be connected to this
resistor. This fact can be shown by plotting the characteristic
for R, as a load plane instead of as a load line. This load plane
must intersect the e.e, plane in a line parallel to the e. axis in
order to show the load plane’s independence of the grid voltage
applied to the tube. In Figure 20 is portrayed the load plane
for R, (as a shaded area). Note that the intersection AB is
parallel to the e. axis (hence perpendicular to the e, axis) and

Ec Ebb
i
Fi1s. 19.—Triode cireuit. Fia. 20.—Load plane for linear resistor.

that the load plane is perpendicular to the 7;-e, coordinate plane.
The intersection of this load plane with the 7.-¢. plane, or CD, is
the more usual load line for Ry, such that

cot L = R[, (12)

If we now wish to find the current flow through the tube and
R., in Fig. 19, we must find the intersection of the tube surface
with the load plane of R;. The intersection of two surfaces is a
curve in space, and this is shown in Fig. 21 as AB. This gives
the locus of the plate current (which is also the current through
R.) for different values of grid voltage.

Once again we raise the objection to three-dimensional con-
structions and once again avoid it by plotting the projection of
A B on the i-¢ plane, that is, on a sheet of paper.

1t will be evident that, since the load plane for R, is drawn
perpendicular to the i-e plane, all lines in the former plane, even
if curved, will project over to the latter plane as lines coincident
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with the intersection of the two planes themselves. Since the
intersection of two planes is a straight line, these other lines, such
as AB, will appear as straight lines. Hence, if we operate
graphically and according to the principles of descriptive geome-
try on the projections upon the i-e plane of the tube surface and
that of the load plane for R, we can obtain all the information
we require concerning the performance of the circuit. The
construction reduces to that of finding the intersection of the
load line for R, with the plate family of characteristics on a plane.

If AB, Fig. 21, be projected to the z-e. plane, it will appear as a
curve, whereas it appears as a straight line on the ¢-¢ plane, of

fe / °

Fi1G. 21.—Three-dimensional graphical solution for triode circuit.
slope equal to cot ¢, [Fig. 20 and Eq. (12)], and hence is easier to
draw in the latter case. This is possibly the most important
reason why the i-e or, more specifically, the 7-¢, family of curves
is preferred to that of the grid family.

7. Resistance Coupling.—The circuit of Fig. 19 employs what
is known as reststance coupling and is mainly used in voltage
amplifiers t0 obtain a voltage across R, which is an amplified
copy of the grid signal voltage e,. This circuit will now be
studied graphically in greater detail by applying the principles
outlined in the previous section. As stated there, it is more
convenient to use the projections of the surfaces than the surfaces
themselves in applying the graphical method. Accordingly,
instead of the tube surface, the 7;,-¢, family of curves is employed;
and, instead of the load surface for R, its load line. It is to be
noted first that, if the grid voltage were sufficiently negative,
the current in the plate circuit would be reduced to zero (plate-
current cutoff). Under such conditions there would be no
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voltage drop in R, and hence the plate voltage would equal
Ew (Flg 19)

This serves to locate one point (O, E;) of the load line of Ry
on the family of characteristics. Since R, is a linear resistance,
its load line is straight, and hence only one other point of it need
be found to determine it. This can be done by assuming any
convenient . voltage value E. across R,, and solving for the
resultant current through R, by Chm’s law. Thus '

' . E,
L = R: (13)
The point (iz, E.) can then be located on the graph paper, joined
to-the other point (O, Ey) by a straight line, and thus the load
line of R obtained.
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F1c. 22.—Two-dimensional graphical solution for triode circuit.

In Fig. 22 is shown the 4-¢, family of curves. The voltage
between the plate and cathode of the tube (e;) is to be measured
from the origin to the right; the voltage across R, (Fig. 19), from
E.; to the left. For the cutoff grid voltage —e,, the plate current
is zero, the plate voltage is Ey, and the voltage across R is zero.
If the grid is driven sufficiently positive (value not indicated,
since never realized in an actual tube), the plate current is at a
maximum, I.,; ey is zero; and the voltage across R, is OL, that is,
Ey,. For intermediate values of the grid voltage, the plate cur-
rent is between I,, and zero in value, e, is some value less than
E,,, and the voltage across R, is the difference between Ey and
e,. The graphical construction is therefore exactly similar to

“ that shown in Fig. 15.

Suppose, in the circuit shown in Fig. 19, that e, is zero. The
grid voltage is then merely E., so that the plate current is steady,
ord.c. Assume that E. is the value —e,, shown in Fig. 22. The
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intersection of the load line I, with the curve for —e,, or A,
gives the value of the d.c. component (shown as I,). Then OB
represents the value of e,, and LB the value of the voltage drop
across R; (when no signal, e, is impressed). It is evident from
the figure that the sum of the two voltages is E, the plate-
circuit or B battery voltage. Point A is known as the quiescent
point, as it is the value of the plate current when the tube voltages
are steady, or quiescent,

If a signal voltage e, is applied, the instantaneous value of the
voltage between the grid and cathode changes, since it is now
equal to ¢, + E. or e.. The plate current now varies along the
load line I,L. If e, is a sine-wave voltage of peak amplitude
E.(= —e,,), then, when it is in the positive direction and peak
value, it just cancels E,, so that the instantaneous grid voltage
is zero; and when it is at the negative peak value, it causes the
instantaneous grid voltage to be twice —e,, or —e,. The plate
current accordingly varies from A to C back to A again, then
down to D, and then back to A during one cycle of ¢,; that is, it
varies about the point A to a maximum value C and a minimum
value D. Simultaneously, the plate voltage varies from the

‘normal value OB to OF and to OG, while the voltage across K.
varies, respectively, from the normal value of LB to LF and LG.
At all times the sum of these two voltages is OL = Ey, the B
supply voltage. It is to be noted also, from the foregoing, that
as the plate current rises the plate voltage drops while the voltage
across R, rises, and vice versa when the plate current drops, so
that when e, is sinusoidal, e, is approximately a sine wave, 180
deg. out of phase with e,, while the voltage across R, (as measured
from the B supply end to the plate) is approximately a sine wave,
in phase with e,. This all checks with the analytical treatment
of the equivalent-plate-circuit theorem® given in Chap. II,
although that treatment assumed the tube to be linear, whereas
here this restriction need not be made.

8. Graphical Proof of the Equivalent-circuit Theorem.—
The above graphical construction affords an interesting proof
of the equivalent circuit theorem. Consider triangle ACM,
Fig. 22. Tt represents a circuit containing R (whose load line
is CA) in series with the R, of the tube (whose load line is MC).
The current CN, which is the a.c. component of 7, for a grid
swing from e, = —e,, to e, = 0, may alternatively be regarded



ELEMENTARY GRAPHICAL CONSTRUCTIONS 57

as being produced by a voltage equal to M A impressed across the
above two resistors in series, and the triangle is the graphical
solution of this alternative viewpoint. Since MA is parallel
to the e, axis, it represents a change in plate voltage, together
with a compensating change in grid voltage, which leaves the
current unchanged at the value AB = I,. By definition, this
is the g of the tube; i.e.,

MA MA
* 3 = 4
0— (—eaz) € #:lib=fb (l )
so that
MA = pe, (15)

Hence the vacuum tube, which is a resistor adjustable by grid
voltage, in series with a linear resistor R, and a constant voltage
Ew, may be replaced by a circuit equivalent to the actual plate
circuit in which a constant resistance of value I, is in series with
R and a voltage ue,. The tube may thus be regarded as equiva-
lent to an active source of generated voltage u times the input
grid signal voltage e, and of internal resistance R,.

Any curvature in the tube characteristic, MC, may be regarded
as evidence of nonlinearity in R,. An alternative viewpoint,
as embodied in the power-series method, is to regard the tube of
constant resistance equal to the initial slope of M C and generating
a series of voltages proportional to ue,, u?,2 wue,® etc., which,
together with the above constant resistance, give rise to cur-
rent CN.

9. Dynamic Characteristic.—In a simplified analytical treat-
ment it is generally assumed that there is no load in the plate
circuit and, in some cases, that the tube characteristic is linear.
This is done to simplify the mathematics. As pointed out
earlier in this chapter, where these restrictions are not imposed
more involved computations based upon Carson’s method of
approximations can be employed. The reason for these compli-
cations is that the vacuum tube has, in general, a nonlinear char-
acteristic. Owing to this, all the voltages of the tube at any
instant must be taken into account before the plate current can
be determined, since these voltages cross modulate one another,
so that the principle of superposition does not hold, and the
effect of each voltage cannot be determined independently of the
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other voltages, as can be done in ordinary linear circuits (see
Chap. I).

If the tube has a load impedance connected to its plate, such
as R, (Fig. 19), and even if this load impedance is linear, then,
because of the nonlinearity of the tube, it is necessary to find all
the voltages across the tube elements before its plate current can
be determined. Where the load impedance is zero, the plate
voltage is constant and equal to E, the B supply voltage, and
the problem is simplified. But where the load impedance is not
zero, the plate voltage varies in inverse manner with the plate
current, as just demonstrated in the preceding section, and this
factor in turn changes the variation of the plate current. It has
been found convenient to classify these two cases as follows:

1. The variation of 7, with e, when the plate load impedance
is zero. ‘

2. The variation of 7, with e, when the plate load impedance is
not zero.

~The plot of (1) is called the static characteristic, because e,
remains static, or constant; the plot of (2) is called the dynamic
characteristic, because e, is variable, changing, or dynamic.
These two characteristics can be easily determined graphically
and, with much greater difficulty, analytically by Carson’s
method. The above statement holds rigorously, however, only
for a load resistance such as R (Fig. 19) and but approximately
for an impedance such as a choke and resistor in parallel. Where
the load impedance is a pure inductance, the graphical method
becomes more involved. In general, the dynamic characteristic
may be regarded as the functional relationship between the
primary cause e, and the final effect 7. Intermediate effects
of the primary cause, such as e, though in turn contributory
causes to the variation of 7, are contained in the coeflicients
of the functional expression between e, and #,. Thus the equation
of the dynamic characteristic contains e, as the independent
variable, 7, as the dependent variable, and the effects of R.
(variation of e;) as parameters of this equation.

10. Graphical Determination of the Dynamic Characteristic.—
Figure 22 furnishes all the information necessary for the plotting
of the dynamic characteristic, since it gives the different values of
1y for the corresponding values of the grid voltage e.. The char-
acteristic is plotted in Fig. 23. The points in this figure are
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obtained from the intersections of the load line with the plate
family of curves, and the letters here are the same as those for
Fig. 22. This curve differs from a static characteristic