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PREFACE
This book is designed to fill a gap in the literature on vacuum 

tubes, viz., graphical constructions. By graphical constructions 
are meant those geometric manipulations by which are obtained 
solutions to problems on nonlinear circuits, particularly those 
involving vacuum tubes. It is therefore evident that ordinary 
graphs and charts, used for the easy solution of analytical formu­
las, are not the subject matter of this book.

While the author realizes that the engineer and scientist usually 
favor the analytical method of approach, he is also aware that 
many practical problems are amenable solely to graphical or 
experimental methods of attack, and he feels that this book may 
serve a useful purpose in presenting the former of these two 
methods. However, he has not hesitated to employ analytical 
methods in conjunction with the graphical where such procedure 
was of value, and thus the reader will often find an analytical 
derivation in the body of the text, as in the chapters on balanced 
amplifiers and on detection.

Much of the material incorporated here is original, and a good 
deal of this appeared in the RCA Review and in Communications. 
The author is indebted to these periodicals for permission to 
include this material in the present text. However, in many 
instances the discussion has been expanded and also revised, as 
in the chapter on balanced amplifiers.

In order to forestall any criticism regarding the bibliography 
at the end of each chapter, the author hastens to explain that his 
choice was governed by the following considerations:

1. Only those articles which he had read and digested were 
included.

2. Is the reference basic and still correct?
3. Is the article the most recent, and does it correct errors in 

previous articles?
4. Is it readily available to the American public? (Only in 

rare instances are foreign references cited.)
vii



viii PREFACE

While such a choice may result in a list far less imposing than 
those found in other texts, it is hoped that the reader will find the 
references more readily available, less repetitious, and also less 
contradictory and confusing.

There has been no attempt to make this book a complete 
exposition of graphical methods. If it gives the reader a funda­
mental grasp of the subject and proves of value to him in his 
work, its purpose will have been achieved.

No work, no matter how humble, is due solely to one man’s 
effort. I am only too happy to acknowledge the aid and en­
couragement given me by my wife, who helped greatly in the 
typing and preparation of the manuscript. I also wish to ac­
knowledge the assistance given me by Dr. Alfred N. Goldsmith, 
who was also instrumental in obtaining the comments and 
criticisms of others, particularly E. W. Herold, who review­
ed the third chapter and furnished me with many helpful sug­
gestions and criticisms. And finally I wish to express my thanks 
to those other members of the Radio Corporation of America 
who passed on the merits and value of this book.

Albert Preisman.
Silver Spring, Md., 

August, 1943.



CONTENTS
Page

Preface........................................................................................................ v
Chapter

I. The Nonlinear-circuit Problem.................................................. 1
Introduction—General Considerations—Complete Solution— 
The Steady-state Solution—The Terminal Characteristic— 
Power-series Representation—Objections to the Power-series 
Method—Fourier-series Method of Representation—Applica­
tion of the Fourier-series Method—The Graphical Method.

II. Thermionic Vacuum Tubes........................................................... 12
Introduction—The Potential Barrier—Methods of Producing 
Emission—Thermionic Emission—Tungsten Cathodes—Thori- 
ated-tungsten Cathodes—Oxide-coated Cathodes—Indirectly 
Heated Cathodes—The Tube as a Nonlinear Parameter—Space 
Charge—Child’s Law—Discussion of Child’s Law—Departures 
from the Theory—The Triode Tube—The Amplification Factor 
—Factors Affecting the Amplification Factor of a Triode— 
Practical Application—Other Tube Parameters—Vacuum-tube 
Operation from the Physical Viewpoint—The Equivalent-plate- 
circuit Theorem—Equivalent Constant-current Source—Fur­
ther Discussion of the Tube Resistances—Equivalent Circuit 
for a Nonlinear Tube—Conclusion.

III. Elementary Graphical Constructions........................................... 44
Introduction—General Considerations—Simple-series Linear 
Circuit—Parallel Circuit—Series Parallel Circuits—Application 
to the Vacuum Tube—Resistance Coupling—Graphical Proof 
of the Equivalent-circuit Theorem—Dynamic Characteristic— 
Graphical Determination of the Dynamic Characteristic— 
Graphical Determination of the Static Characteristic—Com­
parison of the Static and Dynamic Characteristics—Effect of 
Grid Signal Voltage—Voltage Amplification—Inductance Plate 
Feed—Power Output of a Tube—Calculation of Second- 
harmonic Distortion—Maximum Power Output—Linear Char­
acteristic—Maximum Power Output—Parabolic Characteristics 
—Practical Application of Graphical Method—Tetrode and 
Pentode Tubes—Graphical Constructions for Tetrodes and 
Pentodes—Distortion Products in a Pentode—Effect of Varia­
tion in Load Impedance—Plate Efficiency—Space-charge and 
Coplanar Grid Tubes—Effects of Rectification in Plate Circuit 
—Load Line for a Reactance.

ix



X CONTENTS
Chapter Page
IV. Reactive Loads.................................................................................104

Introduction—Inductance and Nonlinear Resistance—Illustra­
tive Example—Capacity and Nonlinear Resistance—Illustrative 
Examples—Inductance, Linear Resistance, and Nonlinear 
Resistance in Series—Capacitance, Linear Resistance, and Non­
linear Resistance in Series—Inductance, Capacitance, Linear 
Resistance, and Nonlinear Resistance in Series—Parallel In­
ductive Circuit—Parallel Capacitive Circuit—Parallel Reso­
nant Circuit—Nonlinear Parallel Branch—Application of 
Graphical Constructions to Triode—Experimental Verification 
—Conclusions.

V. Balanced Amplifiers........................................................................137
Introduction—Physical Analysis—Graphical Application—Dy­
namic Characteristics—Modes of Operation—Self-rectification 
—Application to 6F6 Tube—Approximate Method for Deter­
mining the D.C. Component—Further Remarks on Self­
rectification—Optimum Value of Load Resistance—Typical 
Example—Correction for Mid-branch Impedance—Correction 
for Winding Resistance—Analytical Treatment—Mid-branch 
Current—Effect of Mid-branch Impedance—Effect of Mid­
branch Voltages—Ideal Push-pull Tubes—Constant-^ Parabolic 
Tubes—Properties of Square-law Tube—Optimum Value of 
Load Resistance—Self-bias—Mid-branch and Winding Resist­
ances—Summary of Plate-circuit Relations—Desirability of 
Driving Grids Positive—Driver-tube Considerations—Determi­
nation of Grid Current—Plate-circuit Distortion Products— 
Geometric Interpretation—Determination of Driver Resistance 
—Driver Input Transformer—Further Conclusions—Typical 
Calculations.

VI. Detection............................................................................................203
Diodes: Rectification Curves—Input Impedance—Diode Per­
formance: Resistive Circuit—Diode Performance: Tuned 
Source Impedance—Transrectification Diagrams.

VII. Miscellaneous Graphical Constructions..................................226
Feedback Constructions: Voltage Feedback—Feedback Con­
structions: Current Feedback—Plate Isolation—Effect of Low 
Grid Coupling Resistance.

Index................................................................................................................235



GRAPHICAL CONSTRUCTIONS FOR
VACUUM TUBE CIRCUITS

CHAPTER I

THE NONLINEAR-CIRCUIT PROBLEM

1. Introduction.—Vacuum tubes belong to a large class of 
circuit elements known as nonlinear parameters, and accordingly 
the study of nonlinear circuits has become an important branch 
of engineering. It must not be supposed, however, that it con­
stitutes a subclass of circuit theory. On the contrary, the most 
general type of circuit is the nonlinear type, and linear passive 
networks constitute only a special class of the above. Neverthe­
less, most books on circuit theory deal with linear passive net­
works, and the literature that has accumulated on this special 
type of circuit is both enormous and ever increasing. In recent 
years, particularly since the advent of vacuum tubes, the need for 
a treatment of the more general subject of nonlinear circuits has 
become more and more acute, but the subject does not appear 
to have had the attention that it warrants. At any rate, the 
published results of such studies have not been satisfying or 
sufficiently general to be regarded as a real start in this most 
difficult of problems. From a practical viewpoint, the methods 
proposed have been, in the main, special and not sufficiently 
simple to attract the average engineer.

However, since the need for methods of solution becomes more 
pressing each day, it is the intention to present here applications 
of the methods to practical vacuum-tube problems. While those 
employed are mainly graphical, any combination of analytical and 
graphical solutions that gives an answer in the least time or with 
the least effort will be utilized.

2. General Considerations—Complete Solution.—To indicate 
the difficulty of the problem, it may be worth while to review very 
briefly linear-circuit theory. If we have an ?<.-mesh network, we 
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2 CONSTRUCTIONS FOR VACUUM TUBE CIRCUITS

can write n equations for the circuit—one equation for each.mesh. 
Thus

ilZu + ¿2^12 + ' ’ ’ + inZln = Cl

AX21 + iiZa + ' ' ’ + inZin — 82

llZn I I2Z n2 I ’ ' ' I InZnn On

where Zn is the total impedance of mesh 1; Z^, of mesh 2, etc.; 
Z12 the impedance common to meshes 1 and 2, Znt the impedance 
common to meshes n and 2, etc., and fi and ei the current and 
voltage, respectively, in mesh 1, etc.

Suppose that Zu consists of an inductance, capacity, and 
resistance in series. It can then be written operationally as 
[Lpii + iiRi + (ii/pCi)] where p = d/dtund 1/p = f dt. In the 
same way, impedances in the other meshes can be written as 
above. It will be observed that the equations are integro­
differential equations involving the time or, if the parameters are 
distributed along the length, involving distance as well as time. 
For lumped circuits, only the time is involved.

The latter can be reduced to ordinary second-order differential 
equations by taking the derivative of the mesh equations with 
respect to time and then employing any standard method of 
solution and inserting initial conditions in order to evaluate the 
integration constants. Such solutions are available because the 
equations are linear in the derivatives and the function itself; i.e., 
mathematicians have discovered ways of solving these. The 
solution is known as the classical method.

These equations can alternatively be solved by Heaviside's 
operational methods or by Laplacian transforms, and the solution 
will be complete with initial conditions automatically inserted. 
Because these methods are simpler and more straightforward, 
they are generally preferred to the older classical method.

In either case, another feature that is of great importance is the 
fact that each voltage imposes its current flow independently 
of the other voltages present in the network; i.e., the principle of 
superposition holds, and the effects are directly additive.

Now suppose that L or R or C is not a constant, but a function 
of the current through or voltage across it. Specifically, let 
R = <t>(i), so that R is now a nonlinear parameter. We now have 
in our mesh equation a term i<i>(i), and our differential equations 
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are no longer linear. No general mathematical methods are 
known for solving such equations. The principle of superposition 
no longer holds: each voltage reacts (cross modulates) with all the 
others, indeed, may even be considered to react with itself, so that 
a sinusoidal voltage may be considered to cross modulate with 
itself to produce harmonic currents and voltages.

The solution thus becomes far more complicated. Some 
simple special nonlinear differential equations, such as the Bessel 
equation, can be solved by means of series expansions. However, 
as stated above, these solutions are special, and the results so 
involved that it is usually impossible to find the optimum value of 
the parameters which will give maximum results, such as, for 
instance, maximum power output in a particular impedance. 
The solutions are thus far from satisfactory.

3. The Steady-state Solution.—The above discussion is con­
cerned with the complete solution of the network, the transient 
as well as steady state. Suppose only the latter is desired: is the 
problem simplified to a satisfactory degree? The answer is, 
unfortunately, no. In linear networks, the operational expres­
sions reduce to complex expressions, for p may be replaced by 
jw. The problem then reduces from a set of differential equations 
to a set of algebraic equations involving the complex v&iable 
jw, and the method of solution is well known to the average elec­
trical engineer.

Since R, L, and C are assumed constant, the algebraic equations 
are linear in the various unknown currents; and these may be 
solved for by the method of determinants. Indeed, a whole host 
of general network theorems may be evolved from the theorems 
on determinants; the latter may be manipulated by matrix 
algebra, for instance, to enable one to find circuits equivalent 
to the given circuit. These theorems and manipulations have 
been the subject matter of many texts and constitute a remark­
able body of knowledge in themselves.

Once again, let us inquire what happens if, for example, some 
I? is a function of the current i, i.e., if R = </>(i). Our steady­
state equations are no longer of the first degree, the method 
of determinants is no longer valid, and all the theorems dependent 
upon it no longer hold. We now have to solve n equations in the 
various f’s of degree higher than the first, and no general method 
of solution is known for such (nonlinear) equations.
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4. The Terminal Characteristic.—What can be done in the 
situation described above? We must go back and study the 
circuit anew. For simplicity (if such a term can be applied) let 
us confine our attention from now on to nonlinear resistances. 
One of the first questions to arise is what do we mean by resist­
ance? The answer may be the ratio of the voltage across the 
resistor to the current through it. If the resistance is linear, then 
this ratio is a constant and independent of the voltage and cur­
rent. But if the resistance is nonlinear, then the ratio of voltage 
to current is a function of either, and we cannot specify the value 
of resistance until we know the current. But since the latter is 
usually the unknown and in ordinary (linear) circuit theory is 
expressed as a function of the voltage and circuit parameters, we 
are immediately enmeshed in the vicious circle of simultaneous 
solution, with no general method of extricating ourselves.

Since the ratio of voltage to current is no longer a constant, so 
that the simple relationship known as Ohm’s law no longer holds, 
we are forced back to the more fundamental concept of the func­
tional relationship between current and voltage, rather than the 
ratio of the two. This relationship is known as the load line or, 
better still, as the terminal characteristic. For a linear resistance, 
the terminal characteristic is a first-degree, or linear, equa­
tion, viz.,

i = ke

where k is a constant, known as the conductance. Its graph is a 
straight line, and this explains why it is called a linear resistance. 
For a nonlinear resistance the terminal characteristic is other than 
a first-degree equation. It may be of second degree or higher; it 
may be transcendental; it may even be discontinuous.

Attempts have been made to assign resistance values to such a 
parameter. Thus, the ratio of the voltage to the corresponding 
current has been called the d.c. resistance, and the ratio of a 
change in voltage to the corresponding change in current has been 
called the variational, incremental, or a.c. resistance of the 
device. Graphically, if the terminal characteristic be plotted, 
the former refers to the cotangent of the angle that the secant 
(line joining the origin to the point at which the resistance is to 
be found) to the terminal characteristic curve makes with the 
voltage axis, and the latter refers to the cotangent of the angle 
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that the tangent line to the curve makes with the voltage axis, 
i.e., the reciprocal of the derivative of the curve.

The question now arises as to just how the terminal character­
istic is to be expressed. For a vacuum-tube diode, for example, 
the plate current is practically proportional to the f power of the 
plate voltage, when the latter is positive. It is zero for negative 
plate voltages. The terminal characteristic is therefore a func­
tion whose derivatives are discontinuous over the range of plate 
voltage normally encountered in rectifier practice, i.e., for positive 
and negative values. In a triode, for example, the range of 
electrode voltages is often chosen so that the plate current is 
never driven down to zero (cutoff), in order to avoid the above 
type of discontinuity and consequent generation of distortion 
products. In balanced amplifiers, on the other hand, such 
discontinuity of action of either tube may be permitted (see 
Chap. V).

5. Power-series Representation.—One method for handling 
the forms of the terminal characteristic discussed above is that 
of the power series. Here the relationship between e and i is 
written as a series in ascending powers of e.

ii = kid + k^e^ + kae^ + • • • + knep (1)

Now suppose that the above parameter is in series with a linear 
resistance (to simplify matters), and a voltage e, which is some 
function of time. We wish to find the current flowing through 
the two resistors in series. This is the typical problem encoun­
tered in nonlinear circuit theory. We know the relationship 
between the current and voltage across each parameter, but we 
cannot tell how much of e is across either until we know the cur­
rent through each. But we cannot know this until we know the 
voltage across either, for the current is a nonlinear function 
of the voltage in the case of the first-mentioned parameter. This 
is the vicious circle mentioned previously. There are, however, 
two pieces of information available in the form of Kirchhoff’s 
laws. The first is that the current is the same for both resistors, 
since they are in series, and the second is that the sum of the two 
voltage drops is equal and opposite to the impressed voltage e.

With this in mind, we can proceed as follows: Let the terminal 
characteristic for the linear resistor be
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iz = e2 or e2 = izR (2)
Then

Ci = e — e2 = e — izR ' (3)
and

ii = it (4)
so that the subscripts for the current can be dropped. If we 
substitute Eq. (3) in Eq. (1), we obtain
i = ki(e — iR) + k2(e — iR)2 + k3(e — iR)2 + • • •

+ kn(e — iRY (5)
This is now an equation in one unknown of the nth degree and can 
be solved, at least approximately. We note that, if the second 
resistor were also nonlinear, then Eq. (2) would not be so simple, 
we should face the task of solving simultaneously two equations 
of degree higher than the first, and the method of substituting 
from Eq. (3) in Eq. (1) would not have been so simple to apply, if 
at all possible. Indeed, even in the simpler case of one resistance 
linear, the solution is not at all easy, and a method of successive 
approximations has been worked out by Carson1* to facilitate 
matters.

If both resistors had been linear and of value R\ and Rz, 
respectively, then the method outlined above would have led to 
the result

• _ e
1 - RT+Rz

which is the well-known expression for Ohm’s law as applied to 
two resistors in series. Indeed, a linear resistance is one whose 
terminal characteristic is expressible by a power series having 
only one term, and that of the first degree. Simultaneous solu­
tion is then easy and, in the case of an ?i-mesh network, can be 
readily effected by the use of determinants.

6. Objections to the Power-series Method.—The power­
series method is open to some serious objections, of both a prac­
tical and a theoretical nature. From a practical viewpoint, it is 
cumbersome, laborious, and too involved for everyday applica­
tion. However, where the curvature of the characteristic is not

* The superior numerals refer to the items listed in the Bibliography at the 
end of each chapter.
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too “violent,” so that a few terms of the series are adequate, it is 
of great value, as it reveals the fundamental mechanism of 
harmonic distortion, modulation, and detection.

From a theoretical viewpoint, its use for characteristics that 
have sharp bends is questionable or at least nonorthodox. A 
sharp bend, in mathematical parlance, means discontinuities 
in the successive derivatives of the function; i.e., they cease to 
exist at the point where the “break” occurs. Now the usual 
justification for a power-series representation of a function is that 
it is really a Taylor or a Maclaurin expansion, and hence the 
coefficients represent the values of the successive derivatives at 
the point about which the expansion is made. If these deriva­
tives do not exist, then the Taylor or the Maclaurin expansion 
does not exist. Nor are these expansions valid when extended 
to a point of the curve for which the derivatives do not exist.

However, it is not necessary that the coefficients be evaluated 
by the Taylor expansion. They may be chosen by the process of 
least squares, or zonal harmonics. As many points of the curve 
are substituted as there are terms required in the series and the 
resulting equations (in which e and i are known) are then solved 
for the coefficients, which are now the unknowns. This is not 
difficult, since the equations are linear in the coefficients.

Suppose a characteristic with a sharp bend is approximated by 
a five-term power series, and it is then decided to use a six- or 
seven-term power series for greater accuracy. Since the char­
acteristic has a sharp bend or break, its derivatives do not exist 
at this point, and a single Taylor series is not valid. The power­
series coefficients must be chosen in some other manner as indi­
cated above. Now it will be found that, if a seven- instead of a 
five-term series is desired, all the first five coefficients will be 
different from their original values; i.e., one cannot merely add to 
the original five terms two more terms. The change in the 
values of the first five coefficients may or may not be small; this 
is immaterial, for the series is not the usual type of convergent 
series, where more terms can be added to those originally deter­
mined to obtain greater accuracy. The latter feature is true of a 
Taylor series and of the Fourier series. Thus, objections of a 
fundamental, mathematical nature may be raised concerning the 
use of a power series to represent a nonanalytic function (one 
whose derivatives do not exist at every point). However, it is
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found that a power series with a sufficient number of terms 
represents a function with a sharp bend in it to a sufficient degree 
of accuracy for all practical purposes, and the main objection to a 
power series for such a function is that a prohibitive number of 
terms are required.

In passing, it is of interest to note that, if the current is a func­
tion of two voltages, such as that of the grid and plate of a triode, 
then a double power series is required, unless the amplification 
factor of the tube is a constant. Such a series is employed in 
Chap. III. For tetrode, pentode, and other multielectrode 
tubes, power series in many variables can be employed. Needless 
to say, the computations become very involved.

7. Fourier-series Method of Representation.—In order to avoid 
the use of series with so many terms, a Fourier-series method of 
expansion has been employed. The Fourier series is usually

Fig. 1.—Diode-rectifier terminal 
characteristic.

employed to represent the periodic 
wave shape of some quantity that is 
a function of time, but it may be 
used to represent the functional 
relationship between any two quan­
tities, such as current and voltage. 
Although the series then exhibits 
the current as a periodic function of 
the voltage, this is oi no consequence 

if the range of operations is limited to one cycle or less.
We shall now illustrate this method. In Fig. 1 is shown a 

terminal characteristic such as that of a diode rectifier. We 
choose an upper and lower limit for the voltage range, viz., +E 
and — E, respectively. We now introduce an angle variable 

such that to every value of e there is a corresponding value of 6. 
Note that for e = +E,0 = + tt, respectively; i.e., as e ranges from 
— E to +F, 3 ranges from —?r to +tt, which is one cycle.

The current i can now be expressed in terms of a Fourier series 
as a function of 3 and hence of e. Thus

co

i = an sin nd + bn cos nd (6)
n = 1
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As mentioned previously, the range of 0 is limited to one cycle; 
that is, e varies from — E to +E. The value of E must therefore 
be chosen large enough to include all variations in e that are to be 
encountered.

The values of the coefficients are to be calculated in the usual 
manner, analytically,

i rE 1 fE
bn = / /(e) cos n6 de and an = I f(e) sin ne de (7)A J — E L J —E

or from the graphical plot of /(e) by a schedule analysis. The 
advantage in representing the terminal characteristic/(e) by this 
series rather than by a power series is that the former requires 
fewer terms for a given accuracy of representation if the char­
acteristic has a sharp bend and the questions as to the validity 
of the series are absent. The restrictions are very few, such as 
the requirement of a finite number of maxima and minima per 
cycle and no infinite values. Most functions encountered in 
practice fulfill these restrictions.

A further refinement suggested by Barrow2 is artificially to 
prolong the characteristic in any arbitrary manner, which also 
means to extend the limits for representation of one cycle. A 
schedule analysis may then be made, and the desired portion 
of the characteristic will be represented with the same accuracy 
as before with fewer terms and hence less ensuing labor.

Suppose a nonlinear and a linear resistance are connected in 
series with a given voltage. Let the former be represented by a 
Fourier series such as Eq. (6), and the latter by R. If the same 
procedure as that described for the power-series method be fol­
lowed here in order to find the current through the resistors, a 
transcendental equation instead of a nonlinear algebraic equation 
will have to be solved and no general method of solution exists. 
If both resistances are nonlinear, the situation is even worse. 
Hence this method is hardly suited to solving nonlinear circuits 
of the type described above.

8. Application of the Fourier-series Method.—The Fourier- 
series method may be applied in the evaluation of the distortion 
products produced in a circuit if the relation between current 
through and voltage across the circuit is known. Such an over­
all relation, or terminal characteristic, must first be found, say, by 
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the power series or a graphical method, and then this relation 
expressed as a Fourier series, of the form given by Eq. (6).

Now, let e = j(t); i.e., let e be a given function of time. Spe­
cifically, let

e - Em sin at (8)

If Eq. (8) be substituted in Eq. (6), terms of the form 

bn cos mrEm sin at 
E

and a. sin \ A /

are encountered in the expansion for i, the current. These can be 
expanded in terms of Bessel functions by methods due to Jacobi.

nirEm sin at , nirEm nirEm Icos ----  -----  = Jo ---- F 2 > J2k - cos 2Kat IHi Hi & I
i = 1 J (9)

. mrEm sin at o V' r nirEm . ,o7 |sin -----  = 2 > Jtt-i sin (2k - I)at 1

k = i I

in which JK{wfEm/E) is a Bessel function of the first kind of order 
k and modulus (nirE^E). Since Bessel functions are becoming 
better known to engineers, this expansion is not an impractical 
operation for the technical man. The terms in the resulting 
series may be regrouped in individual series involving cos 2kat 
and sin (2k — l)at so as better to exhibit and evaluate the 
various frequency components. However, since this all implies 
that the over-all terminal characteristic has already been deter­
mined and then facilitates the evaluation of the distortion 
products, it is not the method that we seek, viz., to determine 
the over-all terminal characteristic when the individual terminal 
characteristics, the method of connection, and the impressed 
voltage are known. Moreover, the Fourier-series method applies 
to single-valued functions only. We shall see later that if 
reactances are present in the circuit the over-all terminal char­
acteristic is a closed loop, which means that the current is a 
multivalued function of the voltage. It is therefore evident that 
the Fourier series cannot apply to this type of circuit, which is an 
unfortunate limitation.
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9. The Graphical Method.—The discussion of the graphical 
method, which is the main theme of this book, will be deferred to 
subsequent chapters. We shall proceed first to some elementary 
considerations concerning vacuum tubes.

BIBLIOGRAPHY
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CHAPTER II

THERMIONIC VACUUM TUBES

1. Introduction.—In this chapter some of the fundamental 
characteristics of thermionic vacuum tubes will be discussed. 
It will thus serve as an introduction to the matters developed in 
succeeding chapters.

The thermionic vacuum tube is one of the most important 
nonlinear resistances in use today. It owes its properties to 
the fact that in it are to be found electrons “in the open,” as it 
were, divorced from the positive ions in whose company they are 
normally to be found. We therefore begin with a rough picture 
of conditions in the ordinary metallic conductor.

In a solid metallic conductor, we find an orderly array of atoms 
in definite geometric configurations known as a crystal lattice 
structure. Consider a single crystal of the metal. The atoms are 
bound together by certain atomic forces that constrain them to 
maintain the crystal configuration in spite of thermal agitation 
present at, say, room temperatures.

Each atom is made up of a positive nucleus, around which 
rotate electrons in orbits at various distances from the nucleus. 
In the crystal structure, the atoms are so close together that the 
outermost orbital electrons are associated as much with one 
nucleus or atom as with another and hence are free to move about 
in the interior of the crystal, and indeed from one crystal to 
another of the conductor. Depending upon the metal, there may 
be one, two, or even three free electrons per atom. These free 
electrons form a kind of gas within the conductor, and it is their 
circulation around a closed metallic path that constitutes the 
ordinary current flow in an electrical circuit.

2. The Potential Barrier.—It is evident that except for a rela­
tively slight hindrance to their motion, known as ohmic resistance, 
the free electrons find little difficulty in darting about in the con­
ductor under the impress of thermal agitation. The reason is to 
be found in the balanced attractions of the various positive ions 

12
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(atoms that have lost one or more electrons) if the electron is not 
too close to any one ion. The region within a crystal may there­
fore be visualized as a space consisting of strong attractive centers 
where the atoms are located and relatively force-free regions in 
the remaining parts of the crystal. The corresponding electrical 
potential field may therefore be compared to the gravitational 
field of a series of plateaus pitted with deep holes (representing the 
location of atoms). If the holes are filled with “bound” orbital 
electrons, then the “free” electrons can hurdle these holes and 
roam the plateaus. The analogy is admittedly naïve but does 
indicate in a sense the situation concerning bound and free 
electrons.

Suppose an electron tries to pass out of the interior of the metal 
through the boundary surface. Immediately the forces of attrac­
tion of the ions unite to pull it back, for the electron is now 
leaving them all behind, whereas before it was immersed in their 
force fields. The electron thus experiences a potential barrier to 
its escape ; this barrier is known as the work function of the mate­
rial, ye., the work required to move an electron through the 
boundary surface and sufficiently far from it to render the attrac­
tive forces negligible. The electron is then completely free to 
pursue its course outside the metal.

3. Methods of Producing-Emission.—There are several ways 
of imparting sufficient kinetic energy to the free electrons:

1. Bombarding them with other electrons, or particles, such 
as positive ions or metastable atoms. If these possess sufficient 
kinetic energy, they can impart this energy or a suitable portion 
of it to the free electrons to enable them to overcome the potential 
barrier at the surface and thus escape. This is known as second­
ary emission.

2. Illuminating the metal with light photons whose fre­
quency f, hence energy content fh (where h is Planck’s constant, 
= 6.55 X 10-27 erg sec.) is sufficient to enable the electrons to 
pass the potential barrier. This is known as photoelectric emission.

3. Producing a strong electric field at the surface of the metal 
and thus pulling them out. If this is done by impressing a 
potential between the metal and another electrode a reasonable 
distance away (and making the latter the anode), it will be found 
that a high voltage is necessary. However, high fields may be 
produced by positive ions close to the surface without the need of 
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an external potential, as in the case of positive mercury-gas ions, 
or possibly metastable atoms near the surface of a pool of mer­
cury (cathode) or, in the case of barium ions, on the surface of the 
core metal of an oxide-coated filament. However, the method 
as normally considered is that of the application of a strong field 
due to an external potential and is known as high-field or auto- 
electronic emission.

4. Heating the crystal lattice structure and thus imparting 
to the free electrons sufficient energy to escape. This is known 
as thermionic emission and is the method employed in thermionic 
vacuum tubes.

4. Thermionic Emission.—Formulas for the thermionic emis­
sion of electrons have been developed, ihe formula employed 
today is the Richardson-Dushman equation

^Ao^exp^ (1)

where i is the emission current per square centimeter, Ao is a 
constant involving certain constants of nature, T is the absolute 
temperature, p is the work function of the emitter, e is the 
electron charge ( = 1.591 X 10-19 coulomb), and k is Boltzmann’s 
constant ( = 1.371 X 10~23 joule per degree). This equation is 
based on the assumption that the electrons obey the Fermi-Dirac 
statistics within the metal. The constant Ao should equal 
120.4 amp. per centimeter per degree from theoretical considera­
tions, but experimental results indicate a wide variation in its 
measured value, due probably to the difficulty in obtaining a 
clean surface on the metal measured.

However, the most important factor is the exponential. Small 
variations in <p and T will cause large variations in i, and so we 
conclude that the material best suited for a thermionic emitter is 
one that has the lowest work function and can withstand the 
highest temperature without deteriorating. Hence, possession 
of one of these characteristics alone is not sufficient to warrant 
the use of a material for emission purposes.

5. Tungsten Cathodes.—-Tungsten is a metal well suited for 
thermionic emission. It is exceedingly refractory and has the 
highest melting point of all metals (3655°K.). It can safely be 
operated at 2400°K. for wires of small diameter and at higher 
temperatures for wires of larger diameter. At these tempera­
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tures, the exponential —e/kT becomes sufficiently small for 
practical use of tungsten as a cathode even though the work 
function is 4.54 volts, a rather high value. Tungsten is par­
ticularly well suited for high-power transmitting tubes, where the 
cathode has to be especially rugged to withstand all the mechan­
ical and chemical requirements, particularly bombardment by 
high-velocity positive ions in high-voltage operation.

6. Thoriated-tungsten Cathodes.—The heating power required 
for tungsten is rather high, and so other thermionic emitters have 
been sought. The most practical are the thoriated-tungsten 
and the oxide-coated cathodes, which we shall discuss in the order 
named. The potential barrier of a metal depends markedly 
upon the nature of its surface. Indeed, it is difficult in practice 
to obtain a pure metal surface, owing to absorbed gases and 
other impurities. Tungsten, for example, when contaminated 
with oxygen experiences an increase in its work function and hence 
a decrease in its emission at a given temperature. A monatomic 
film of thorium, on the other hand, reduces the potential barrier 
and hence the work function to a much lower value, so that 
copious emission is obtained at much lower temperatures, and 
hence filament heating power.1 The work function is about 2.63 
volts, as compared with 4.65 volts for pure tungsten.

It is to be noted that a pure thorium filament would not be 
as satisfactory as the above composite structure; for it could not 
be operated at the requisite temperature for satisfactory emission 
without undue evaporation, and also the work function is higher 
than that for the composite structure. The reason the monatomic 
film can be heated to a higher temperature than a solid thorium 
wire without evaporating from the tungsten base is that the force 
of adhesion, between tungsten and thorium is greater than the 
force of cohesion between two thorium atoms. Indeed, this 
accounts for the fact that the thorium layer is monatomic: any 
double layer would quickly be destroyed by the outer layer of 
thorium evaporating from the thorium layer underneath it.

In manufacture, the tungsten is mixed with 1 to 2 per cent of 
thoria (thorium oxide) and processed into a filament. The tube 
is degassed, and then activation is started. The filament is 
flashed for one or two minutes at about 2800°K. Some of the 
thoria is reduced to pure thorium by the tungsten, the resulting 
tungsten oxide being vaporized and deposited upon the cooler
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parts of the tube. (This takes place in spite of the greater heat 
of formation of thorium oxide as compared with tungsten oxide 
because of the volatility of thorium and diffusion to the surface, 
i.e., the mass-action law.)

The filament then is operated at about 2100°K. The thorium 
diffuses rapidly along the grain boundaries of the tungsten 
crystals to the surface and then migrates over the surface to cover 
a large fraction of it. At this temperature, however, the evapora­
tion of thorium from the surface is low.

The temperature is then reduced to the operating value of 
between 1800 and 2000°K., and at this temperature the diffusion 
is reduced markedly, although it is still greater than the rate of 
evaporation of a monatomic film. However, if this tends to 
produce a double layer of thorium, the outer layer will quickly 
evaporate, so that essentially emission is from a monatomic film

Such a film is sensitive to bombardment by high-velocity 
positive ions, which will tend to strip it off. It has been found, 
however, that if the thoriated-tungsten filament is heated to 
about 1600°K. in a hydrocarbon vapor a shell of tungsten carbide 
is formed. This is brittle, but the inner core of tungsten main­
tains the mechanical strength of the filament. Such carbonized 
filaments show a reduction to one-sixth in evaporation of the 
thorium layer at 2200°K. so that they can be operated at a higher 
temperature than the thoriated-tungsten filament. This, in 
turn, increases the rate of diffusion of thorium to the surface, thus 
enabling the damage due to positive-ion bombardment and 
oxidation to be more quickly repaired. Even so, however, this 
type of emitter is limited to tubes operating at plate potentials 
of 4,000 volts and lower.

After some time, thoriated-tungsten filaments lose their 
emissive powers owing to the consumption of the thorium 
produced by the initial flashing. Since there is still a reserve of 
thoria, the activation process can be repeated until all the reserve 
is consumed.

7. Oxide-coated Cathodes.—The second type of composite 
cathode is the oxide-coated structure. This consists of a metal 
base such as nickel with a few per cent of cobalt, silicon, or Konel 
metal (alloy of nickel, cobalt, iron, and titanium), coated with the 
oxides of barium and strontium. The latter are applied to a 
filament type of cathode by dragging the wire through suspen-
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sions of the carbonates in water and baking each successive thin 
layer or, in the case of indirectly heated cathode sleeves, by 
spraying them with a mixture of the carbonates suspended in a 
solution of nitrocellulose, which subsequently acts as a binder. 
The coating is then reduced to the oxides of the metal by heating 
them to a temperature of 1400°K. in a vacuum. The carbon 
monoxide that is evolved is continuously pumped off.

The cathode must now be activated. This is accomplished by 
heating it to a temperature between 1000 and 1500°K. for several 
minutes and then at a lower temperature, while plate potential is 
applied, for a longer period of time. Emission now begins to take 
place at an increasing rate until it reaches its normal value, which, 
at 1000°K., is equivalent to that of a tungsten filament at 
2300°K.

The oxide-coated cathode requires the lowest temperature of 
the three types discussed for copious emission and hence is 
employed wherever possible. Since the coating is sensitive to 
positive-ion bombardment and since a tube employing this type 
of cathode cannot be evacuated so completely as those employing 
the other two types, its use is limited to the lower voltage receiving 
type of tube. It has, however, a life of several thousand hours 
and, owing to its low operating temperature, is ideally suited for 
indirectly heated cathode purposes.

The mechanism of emission appears to be as follows: During 
the activation process, free barium metal is produced in the coat­
ing. This diffuses in part to the surface to form a monatomic film 
partly covering the coating, the remainder being diffused through­
out the coating. This free barium is produced by reduction and 
electrolysis of the oxides as a result of the elevated temperature 
and anode potential employed during the activation process. 
The barium is thus absorbed on the core metal and in the coating 
and is in the form both of atoms and ions, since it loses its outer 
electrons with relative ease.

The presence of absorbed ions (adions) near the core metal 
reduces the work function of the latter so that electrons can 
escape from within to the coating. They then pass through and 
relatively freely out of the latter into the space surrounding the 
cathode. The conductivity of the coating is predominantly 
electronic in the presence of free barium but is also partly ionic. 
The latter form of conductivity tends to maintain the free barium 
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content of the coating in spite of evaporation of the metal from 
the surface.

8. Indirectly Heated Cathodes.—The oxide-coated emitter is 
the only one suitable for indirectly heated cathodes, owing to its 
low operating temperature. This type of cathode consists of a 
heater wire coated with a layer about 0.5 mm. thick of the oxides 
of aluminum and beryllium, the combination then being placed in 
a nickel or Konel-metal sleeve on which has been placed an oxide 
coating. The heater operates at about 1000°K. and maintains 
the cathode at about 850°C., which is sufficient for copious emis-

a b
Fig. 2.—Oxide-coated cathode and complete tube. ‘ (Courtesy of RCA.)

sion from the oxide coating. Such indirectly heated cathodes are 
equipotential surfaces. Between such a cathode and the plate 
can be impressed a direct voltage, with resultant d.c. flow unless 
the latter is purposely modified by a desired a.c. potential applied 
between a third electrode (called a grid) and the cathode. This 
action will be explained later. At the same time, 60-cycle alter­
nating current can be applied to the heater, thus eliminating 
storage batteries or other d.c. sources for this purpose, and yet not 
having an unwanted component of this frequency appear in the 
output circuit as hum. This is of particular importance in audio 
amplifiers and radio receivers. Successful a.c. operation of such 
devices dates from the time indirectly heated cathode tubes were 
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introduced to the industry. Since, however, oxide-coated cath­
odes are not suitable for large transmitter tubes, this type of 
cathode cannot, unfortunately, be employed in such tubes; 
instead, filament type cathodes are still used.

In Fig. 2a may be seen an oxide-coated cathode, and in Fig. 2b a 
complete tube of this type.

9. The Tube as a Nonlinear Parameter.—If another electrode, 
called a plate, is introduced into the tube (now called a diode) and 
the plate is made positive with respect to the cathode, a current 
will flow if the cathode is heated to produce thermionic emission. 
If the plate is made negative with respect to the cathode, no 
current will flow, for the applied potential is assumed less than 
that required to produce field emission from the plate. By the 
same token, no current will flow if the plate is made positive with 
respect to the cathode but the latter is not heated.

The unilateral conductivity of the tube when the cathode is 
emitting makes it useful as a rectifier of alternating voltages and 
also indicates that such a device is a nonlinear parameter. This 
is so because in a linear parameter the current is Sirectly propor­
tional to the voltage regardless of whether the latter is positive or 
negative, whereas, in the case of the tube, the current is zero when 
the (plate) voltage is negative. Moreover, it will be found that— 
except at ultra-high frequencies—there is no lag between the 
current flow and the applied voltage, so that we can state more 
specifically that the vacuum tube is a nonlinear resistance parame­
ter. It is for this reason that Chap. I deals with nonlinear 
circuits, particularly nonlinear resistances: we have to deal with 
these when we deal with vacuum tubes.

10. Space Charge.—At first thought it would appear that a 
small voltage would be sufficient to draw all the emitted electrons 
through the obstacle-free space or vacuum over to the plate, 
since the thermal energy has done that which the voltage was 
unable to do, viz., carry the electrons through the surface of the 
cathode (emission). A moment’s reflection, however, will indi­
cate that this is not so, that there are obstructions in the space in 
the form of mutual repulsions between the electrons themselves 
and that these hinder the plate potential in its effort to transport 
the electrons. This repelling effect is known as space charge. In 
the conductor it is neutralized by the positive space-charge effect 
of the metallic ions in the crystal lattice structure, and the only
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opposition to the movement of the electrons is that of ohmic 
resistance—possibly the result of collisions of the electrons with 
the ions. But when the electrons are “out in the open,” remote 
from the ions, their negative space-charge effect becomes evident, 
and it will be found that a low plate voltage causes but a small 
current to flow, a higher plate voltage causes a greater current to 
flow, etc., until a voltage is reached which causes all the electrons 
emitted to flow. Higher voltages than this can cause no further 
increase in current, and the latter maximum value is known as the 
temperature-saturation value of current, whereas the former values 
are known as voltage-saturation values.

11. Child’s Law.—In 1911, Child2 gave the first analysis of the 
relationship between current and voltage in a vacuum tube. An 
account of this analysis will be given here because it is one of the 
few examples of nonlinearity in which the internal mechanism 
causing this is capable of quantitative exposition.

Child idealized the configuration by assuming that the cathode 
and plate were infinite parallel planes separated by a distance d. 
He further assflmed that the emission was infinite and therefore 
far in excess of any required for the current flow to be produced ; 
i.e., the plate voltage would be less than that producing saturation 
current. He further assumed that the electrons were emitted 
with no initial velocities. The effect of initial velocities is to 
project the electrons out into the interelectrode space in spite of 
the space charge; but since the emission velocities are low 
(equivalent to about 0.6 volt, average, for an oxide-coated cath­
ode), the error in neglecting them is small. Indeed, in spite of the 
idealization of the problem, the results are in good agreement 
with those experimentally obtained for actual tubes.

Consider a cloud of electrons in the interelectrode space. 
Those nearer the plate are repelled toward it by those nearer the 
cathode; the latter are repelled by the former toward the cathode. 
Those on the cathode have the greatest number of electrons in 
front of them and thus experience the greatest force opposing 
their moving toward the plate. At the same time, these must 
move toward the plate if others nearer the anode are to deposit on 
it, for Kirchhoff’s law as to the continuity of current flow must be 
satisfied here as in the case of any other type of electric current 
flow. Hence, the current flow will be of such magnitude that the 
resultant negative space charge of those electrons already in
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transit will be balanced by the forward pull of the anode upon the 
electrons just about to leave the cathode, i.e., upon those hardest 
to move. We shall now formulate the relationship between this 
equilibrium current and the plate voltage.

In electromagnetic theory for steady current flow we have 
Poisson’s equation

= 4^ (e.s.u.) (2)

where V is the potential at any point in the interelectrode space, 
x is the distance of the point from the cathode, and p is the charge 
density at the point in statcoulombs per cubic centimeter. 
Owing to the assumption of infinite parallel-plane electrodes, the 
electrostatic lines of force will all be perpendicular to the elec­
trodes, and hence the divergence of the electrostatic lines of forces 
in the y and z directions (indicated by d-V/dy- and dW/dz1, 
respectively) will be zero.

If there is no charge density at the point in question, (p = 0), 
then Eq. (2) becomes Laplace’s equation, viz.

Both Poisson’s and Laplace’s equations are based upon Gauss’s 
theorem or, more fundamentally, upon Coulomb’s law, which is 
an example of a central force. The proof of these theorems can be 
found in any standard text on electromagnetic theory.3

In our example, we assume that there is a charge p throughout 
the interelectrode space, so that Poisson’s equation is to be used. 
We note that p is not a constant, but a function of x. This rela­
tionship is given by the equation of continuity, i.e., the current is 
everywhere the same and furthermore is equal to the charge times 
its velocity. Hence, we can write

I = pv* (4)
where I is the current per unit area of the electrode surfaces and 
vx is the velocity of the electrons at the point distant x from the 
cathode.

It is also true, from the definition of potential as the work done 
on a unit charge in transporting it from a point of zero potential 
to the point whre potential is V, that the kinetic energy imparted 
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to an electron coming from the cathode (assumed at zero poten­
tial) to the point in question is

— Ve (5)
where m is the mass of the electron and e is its charge.

We can eliminate p and vx from Eqs. (2), (4), and (5) and obtain

~ = 2-irI (6)dx2 XI eV

The solution of this equation can be effected by multiplying 
through by 2(dV/dx) and integrating. Thus

dx dx2 dx\dx/ ye dx
and

f^Y = 8^ J?- V* + C (8)
\dx/ N e

We can now insert the boundary conditions:
1. For x = 0, — dV/dx = 0, since the latter represents the 

potential gradient, or force on a unit charge, and this is zero at the 
cathode for the equilibrium current, as explained previously.

2. For x = 0, V = 0, since by hypothesis we assumed the 
cathode to be at zero potential.

From these we find C, the integrating constant by Eq. (8), to be 
zero, so that

= J&d (—Y V* (9)
dx y \ e /

This first-order differential equation can readily be solved by 
separation of the variables and yields

7« = 8ttZ x216 ye
or

Z = ZX 1 f (10)
x2 97r\m U J

which, as indicated in Eq. (2), is in electrostatic units. This can 
be converted into practical units, and the constants calculated. 
If we further substitute d for x, we obtain
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I = 2.336 X IO-6 amp. per cm. (11)

where Vp is the potential between the plate and cathode. Equa­
tion (11) is known as Child’s law.

12. Discussion of Child’s Law.—An examination of Eq. (11) 
reveals the following:

1. For a fixed plate voltage VP, the voltage saturation current, 
as it is called, varies inversely as d2. This indicates the effect of 
varying the spacing of the electrodes of the diode.

2. Since I, the voltage saturation current, is the same for all 
values of x, the potential at any point at a distance x from the 
cathode is

V = 3 ■ • x^ = (const.) • x* (12)

This indicates the variation of potential with distance due to the 
presence of the negative electrons in the interelectrode region. 
We note that, if there were no electrons there, V would be a linear 
function of x, as in the case of the parallel-plate condenser.

3. Other facts that can easily be derived are that the potential 
gradient

F = — = —(const.) • (13)

that the velocity
vx = (const.) • x% (14)

and that
p = (const.) • x~2A (15)

For x = 0, p = <», which means that the emission must be 
assumed to be infinite, in order to represent a finite current at the 
cathode when the electron velocities there are assumed zero.

However, the most interesting fact is that presented by Eq. 
(11) itself, viz., that the current density, hence the total current, 
is proportional to the f rather than the first power of the plate 
voltage. This indicates that even for positive voltages the diode 
is nonlinear. Of course, as indicated in Chap. I, the entire 
terminal characteristic for positive and negative plate voltages is 
nonlinear, but the fact that even the positive range is nonlinear is 
of interest in connection with the following: Suppose that the 
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plate voltage was composed of a d.c. component Vi and an a.c. 
component Vz, whose peak value was less than 7X, so that 
Vp = 7i + Vz was always positive. * Then, if the terminal char­
acteristic for positive Vp were linear, Vz would produce an a.c. 
component of current of the same wave shape as Vz, whereas, if 
the f power holds, the current will be a distorted copy of Vz-

Physically, the reason for the 4 power is that, if the voltage is 
increased, the current is increased because of the greater number 
of electrons moved and because they are moving with a greater 
velocity than before. Since, for equilibrium conditions, the 
number of electrons en route to the plate must increase to a point 
sufficient to reduce the pull of the plate on the electrons at the 
cathode to zero and they are moving with a higher velocity, the 
current must increase more than in proportion to VP, that is, as 
V V p .

Langmuir derived Eq. (11) independently, as well as for the 
case where the plate is an infinite cylinder and the cathode is an 
infinite equipotential emitter situated on the axis of the plate. 
In this case, I varies as Vp- too, but only inversely as the radius 
of the cylinder if it is large compared with the radius of the cath­
ode. He has further shown that the f-power law holds theoreti­
cally for all geometric configurations of the electrodes and that the 
difference is only in the constants of the equations.

13. Departures from the Theory.—In actual tubes the depar­
ture from the f-power law may be appreciable. One of the 
reasons for this is that the electrodes are not infinite in extent, so 
that the fringing of the electrostatic field at the finite boundaries 
modifies the effects. Another is the effect upon the electrostatic 
field of supporting wires, and a third is the fact that the electrons 
are emitted from the cathode with initial velocities. The effect 
of the latter is to cause an excess of electrons in front of the 
cathode, so that the field at the cathode is negative and electrons 
at the cathode are repelled into it in spite of the pull of the plate. 
However, the initial velocities of most of the electrons are suffi­
cient to overcome this negative gradient and indeed cause it to be 
established in the first place.

* Note that voltages are represented in this chapter by V, in order that 
E may be reserved for the potential gradient. In other chapters, E is used 
for voltage to conform with the nomenclature suggested by the Institute of 
Radio Engineers.
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A fourth effect is that of the potential drop along the length of a 
filament type cathode (direct emitter), which affects the potential 
distribution between any part of the cathode and the plate. For 
an indirectly heated cathode this effect is absent, however.

These departures warrant, in many cases, the use of a power 
series in integral powers of V for the representation of the func­
tional relationship bet ween I and V. Indeed, the chief use of the 
2-power law is in correcting the value of the d.c. component of 
the plate current if the direct plate voltage is other than that 
normally specified. Another example is that of the correction of 
the d.c. component of the plate current in a pentode tube if the 
screen-grid voltage is other than that normally specified by the
manufacturer.

A final departure from the 
theory is obviously that where Vp 
is so high that temperature-satura­
tion current is caused to flow. 
The current then levels off, as 
shown in Fig. 3. Such leveling 
off is not pronounced in a com­
posite type emitter, such as an 

Fig. 3.—Temperature-saturation
characteristic.

oxide-coated cathode, owing, possibly, to the drawing out of further 
electrons from the crevices in the uneven cathode surface by 
higher values of Vp.

We note from this, however, that, if the cathode emits more 
electrons than will normally be required in operation, the plate 
current will be determined by voltage-saturation conditions, 
Child’s law will hold, at least approximately, and all types of 
cathodes having adequate emission will exhibit the same sort of 
terminal characteristic. Hence, in practice, the cathode is 
designed to emit such a large number of electrons that, even if the 
emission falls off with time, the terminal characteristic over the 
normal range of plate voltages wall remain unchanged.

14. The Triode Tube.—We have seen that, owing to the pres­
ence of a space charge, the flow of the electrons is limited to a 
value given by Child’s law for a given plate voltage. This value 
is much less than that which would flow, for example, in a copper 
conductor of the same cross section as the cathode or plate; i.e., 
the d.c. resistance of the diode is much greater than that of the 
copper conductor. The resistance of the former is due to the 



26 CONSTRUCTIONS FOR VACUUM TUBE CIRCUITS 

opposition to the flow of electrons by their neighbors ahead 
of them; the resistance of the copper conductor is due probably 
to the collisions of the electron gas with the ions of the crystal 
lattice structure and this resistance is relatively small in value. 
The space-charge effect of the electrons in the copper is neutral­
ized by that of the positive ions.

On the other hand, it is practically impossible to modify the 
space-charge conditions in a conductor by the insertion of 
another control electrode, whereas, in the diode, such insertion 
has a profound effect upon the space-charge conditions and hence 
current flow. In the latter case, the electrons, as stated before, 
are “in the open” and hence at the command of the control 
electrode, whereas, in the conductor, the control effect of the 
many positive ions is so jumbled as to be negligible from a 
statistical viewpoint for the majority of the electrons of the outer 
orbits, and the effect of a control electrode is rendered negligible 
by the contradictory and hence balancing effects of the many 
positive ions.

The use of a control electrode, in the form of a mesh, or grid, 
occurred to De Forest6 in 1907 and shortly after to von Baeyer6 
in Germany. The resulting three-electrode tube is now known 
as a triode and exhibits remarkable control characteristics that 
form the basis of most of present-day electronic technique.

In 1913 van der Bijl7 gave what was possibly the first analytical 
treatment of the action of the grid. It will not be possible in this 
chapter to discuss the derivation. A more recent work by 
Vodges and Elder8 treats this matter very elegantly by the 
method of conformal mapping. For the purposes of this text, a 
physical interpretation will suffice.

Equation (12) showed that the space current I will be increased 
if the spacing between the electrodes, d, is decreased. Hence, if a 
third electrode is introduced between the plate and cathode, it 
may be expected to exert a more profound effect upon the space 
current than the plate. In addition, however, the grid shields 
the cathode from the electrostatic field of the plate and thus 
further reduces the effect of the plate upon the space current. As 
a result, the grid plays a more dominant role than the plate in 
determining the space current, even that portion of it which 
passes through the interstices of the grid en route to the plate and 
called the plate current. The relative effectiveness of the two
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electrodes is measured by a quantity called the amplification 
factor, which we shall now discuss.

15. The Amplification Factor.—The grid may be made either 
positive or negative with respect to the cathode. If positive, it 
will aid the plate voltage in producing current flow but will 
divert electrons to itself; if negative, it will oppose the plate 
voltage but draw no current and hence cause no expenditure of 
energy in, the electrical control source connected between it and 
the cathode. Hence, it is usually operated at a negative poten­
tial, called a negative bias. If this bias is too great, it will prevent 
the plate from drawing electrons away from the cathode, i.e., no 
current will flow. The tube is now said to be at cutoff, and the 
bias producing this condition is called the cutoff bias. In normal 
amplifier operation, the tube is operated above the cutoff point.

Suppose, in a particular tube, it is found that if the plate 
voltage is raised 10 volts but the grid is made negative by one 
more volt, as measured from an initial set of values, the plate 
current remains unchanged. Evidently the increased negative 
grid bias has just balanced the increased plate potential. The 
ratio of the two opposing changes is 10, and this is called the 
amplification factor of the tube (denoted by the symbol p).

It may then be found that, if the plate potential is increased 
by 20 volts, the grid must be biased back by 2.2 volts. The 
amplification factor is now only 9.09. This indicates that the 
amplification factor is somewhat variabfe. Hence, recourse is 
had to the calculus, and the factor is defined as 

where dVp and dV0 are differential changes, in the plate and grid 
voltages, respectively. Since they are of opposite sign, p is 
inherently a negative number, although, if this is understood in 
subsequent work, the positive sign may be employed and proper 
interpretation given to the results obtained.

16. Factors Affecting the Amplification Factor of a Triode.— 
The magnitude of p depends upon several factors, such as the 
geometric shapes of the electrodes, the spacing between the grid 
and plate, and the fineness of mesh of the grid structure. A typical 
triode construction is shown in Fig. 4; it will be noted that the grid 
is in the form of a helical coil of wire. The amplification factor is 
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increased if the pitch of the helix is reduced and the diameter of 
the grid wire is increased, for the grid can then shield the cathode 
from the electrostatic field of the plate more completely and thus 
render the plate less effective in producing plate current. In prac­
tice, triode tubes have amplification factors ranging from about 3 
to 100, while tetrode and pentode tubes have values of over 1,000 
in many cases, as will be explained in the following chapter.

As indicated in the previous section, the p of a triode may be 
variable with the tube voltages—indeed, always is variable to

Fig. 4.—Typical triode construction. {Courtesy of RCA.)

some extent in an actual tube. This variability may be explained 
as due to asymmetries in the tube structure. For example, 
suppose the pitch of the grid helix varies somewhat along the 
length. Suppose, for definiteness, that the helix is tight for half 
its length and coarse for the other half. .The tube may be 
regarded as essentially two tubes in parallel, one with a high 
(tight helix) and the other with a low g (coarse helix). As the 
negative bias of the actual grid is increased, the plate current 
of the higher p portion of the tube will reach cutoff first. From 
thence to the cutoff of the other portion of the tube, the latter 
will appear to have a lower p. Hence the amplification factor 
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of an ordinary tube having some unavoidable asymmetry in 
structure due to tolerances in manufacture will always show a 
decrease in as cutoff is approached. The effect, however, is 
usually small.

In some tubes, called variable-p or supercontrol tubes, the effect 
is purposely made large, in order to afford a gradual cutoff 
characteristic. In Fig. 5 is shown the relationship between a 
constant-// and a variable-// tube for comparison. In this figure, 
plate current iv is plotted against grid voltage Vc for a given 
plate voltage. It will be noted how protracted the variable-// 
cutoff is compared with the constant-// cutoff.

Variable-// tubes are employed in radio-frequency (r.f.) and 
intermediate-frequency (i.f.) amplifiers where automatic varia­
tion in amplification is desired to 
compensate for weak and strong 
broadcast signals. This compensa­
tion is known as automatic volume 
control (a.v.c.). They are also em­
ployed in audio amplifiers to vary the 
amplification according to whether 
the signal is weak or strong so as to 
accommodate a large volume range 
within the signal-handling capacities 
of the apparatus. This application 

Fig. 5.—Transfer characteris­
tics for constant- and variable-/* 
tubes.

is known as compression or expansion, depending upon whether the 
p is decreased or increased, respectively, as the signal increases. It 
is to be noted, however, that variable-// tubes are practically always 
of the pentode or multielectrode form, rather than the triode.

17. Practical Application.—Since the grid is more effective 
than the plate in determining the plate current, it is evident that 
more effect will be obtained by injecting the given signal voltage 
in the grid circuit than directly in the plate circuit, for a greater 
variation in plate current will be obtained by the former mode of 
operation. Thus, suppose the signal voltage Vs is a 100-cycle 
tone. If the source of this is connected in series with the grid 
and the bias battery, Vc, as shown in Fig. 6, the plate current 
will be a pulsating current instead of being a steady d.c. flow. 
This, in the absence of appreciable distortion, can be resolved 
into the original d.c. component plus an a.c. component of 100 
cycles. The latter is due to V8.
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In flowing through ZL (Fig. 6), the so-called “load impedance,” 
this a.c. component will develop 100-cycle power in it and also a 
100-cycle voltage across it.

If Vs were connected in series in the plate circuit, it would also 
produce a 100-cycle component in ip, but the component would 
be smaller than before, the power expended in Zv would be less, 
and the voltage across ZL would be less too. Moreover, whatever 
100-cycle power was expended in ZL would come directly from the 
source of Vs, whereas, if V, is injected into the grid circuit and 
the grid maintained sufficiently negative, no grid current can 
flow and no power is drawn from the source of V,. In this case, 
the power developed in ZL comes from the d.c. plate battery, of 

voltage F«,. The ratio of a.c. 
output power (in Zz.) to a.c. input 
power is now theoretically infinite 
and, in actual practice (owing to 

+ some slight losses), exceedingly 
great.*  This ratio is known as 
the power amplification factor and

Fig. 6.—Circuit for voltage and is of great importance when very 
power amplification. , c tr tweak power sources oi V8, such 

as high-fidelity microphones and photocells, are employed.
Usually, the power output in Zz, is insufficient for the purpose 

at hand. In that case the output voltage across ZL can be used 
to actuate the grid of a second tube, etc., until finally a stage is 
reached whose output power is sufficient. This final stage is 
known as a power output stage; usually, special tubes adapted for 
large power outputs are employed here, known as power tubes. 
The previous stages are known as voltage amplifier stages. The 
ratio of the output voltage to the input voltage of such a stage is 
known as the stage amplification or stage gain. Since these will 
be analyzed more fully later, no further discussion will be 
presented at this point.

18. Other Tube Parameters.—There are two other funda­
mental tube parameters that will be discussed at this point, the 
plate resistance Rp and the transconductance Gm. It will have 
been noted that the triode is operated so that direct plate current 

* At ultra-high frequencies, however, the input power may approach the 
output power in value, owing to transit-time effects.
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flows. The action of the grid is to produce a variation in this 
current, and this variation is called the a.c. component.

If we divide the d.c. plate potential Vbb by the direct plate cur­
rent Ib, we have a resistance Rb, called the d.c. resistance of the 
tube. This parameter, however, is seldom employed in analytical 
methods of solution. On the other hand, the ratio of alternating 
plate voltage (if alternating voltage be injected into the plate 
circuit) to the resultant a.c. component of plate current is a more 
useful ratio analytically and is called the a.c., variational, or 
incremental plate resistance (see Chap. I). It is evident that the 
alternating voltage superimposed on Vbb may be regarded as a 
variation or incremental change in 7^—hence the variety of 
names for this resistance. The latter is a function of the magni­
tude of the a.c. component of the plate as well as the grid bias 
voltage and hence, analogously to the expression for p, is written 
as 

R = dVp 
p dip Vy = const.

(17)

where dVp is the differential change in plate voltage and dip is the 
resulting differential change in plate current, under the condition 
that the grid voltage Vg remains constant. This parameter, as 
will be shown, is a very important one in vacuum-tube theory.

The transconductance Gm is a measure of the effectiveness 
of the grid voltage in producing a change in plate current. In this 
case, as in that describing the meaning of the Rp of a tube, it is 
assumed that there is no load in the plate circuit of the tube: even 
the plate (B) supply is assumed to have no internal impedance. 
Therefore, the only opposition to the flow of the a.c. component 
of plate current is the tube itself, i.e., its internal space-charge 
effects.

Referring to the Gm once again, we find that, for example, a 
1-volt increase in grid voltage allows the plate current of a tube 
to rise 2 ma. above its previous value, under the condition that the 
plate voltage is maintained constant. The Gm is then 0.002 amp. 
divided by 1 volt, or 0.002 amp. per volt, which is 0.002 mho, or 
2,000 micromhos. This is analogous to a.c. plate conductance 
(reciprocal of RP), except that the voltage is applied in the 
grid circuit and causes a transfer effect in the plate circuit— 
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hence the name “transconductance.” It is also often called 
“mutual conductance.”

The Gm is also a function of the grid voltage and plate voltage 
and if defined by the differential expression

G dip 
dV, Vp = const.*

(18)

where dip is the differential change in plate current due to the 
differential change in grid voltage, Vg, while the plate voltage Vp 
is maintained constant. This will be found to be a useful 
parameter too.

Now the p of the tube was defined as the relative effectiveness 
of the grid compared with the plate in determining the plate 
current; that is, dVg in Eq. (18) is equivalent to 1/p times a 
certain increment of plate voltage, dVp. Hence, Eq. (18) can be 
written as

xy _ dip _ p 
m - dV^p ~ r; (19)

since dip/dVp = 1/RP. The derived form for Gm given by Eq. 
(19) is particularly useful in circuit analysis.

19. Vacuum-tube Operation from the Physical Viewpoint.— 
If the grid is viewed as varying the internal space charge of the 
tube and, in this way, the current flow, then the tube may be 
regarded as an adjustable resistance of magnitude determined 
by the grid voltage. The resistance referred to is its d.c. resist­
ance, and the tube is thus a kind of rheostat controlled by a (grid) 
voltage rather than by a rheostat arm manually operated. If the 
grid voltage varies with time, then the d.c. resistance of the tube 
will vary with time, and the tube is then called a time-variable 
parameter. This type of parameter was not discussed in Chap. 
I. The differential equations describing a circuit containing 
linear and time-variable parameters involve di/dt multiplied by 
constant resistances and also by resistances that are functions 
of the same variable as the impressed voltages, viz., time. Such 
equations are, in general, easier to solve than nonlinear differen-

* Strictly speaking, these are partial derivatives, since ip is a function of 
Vg and Vp. The partial-derivative representation will be used in Chap. V, 
where both voltages are allowed to vary simultaneously as in normal 
operation.
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tial equations, which involve di/dt multiplied by resistances that 
are a function of the current, i.

If a tube has a characteristic such that, if the grid voltage be 
fixed at some value, the a.c. resistance is independent of the 
current drawn by the plate voltage, then the tube is said to be a 
linear tube. (Obviously, this holds only for positive plate volt­
ages great enough to counterbalance the negative grid voltage 
and prevent cutoff.) Since the current is a function of both the 
grid and plate voltages, the plot of such a characteristic (see 
Chap. Ill) is a surface in three-dimensional space. For a linear 
tube this surface is a cylinder of some sort.

If, in addition, the p of the tube is constant, then the cylindrical 
surface becomes a plane in space. In such a tube, if the range of 
operation is such that plate current flows at all times, the output 
voltage is an undistorted copy of the input (grid) voltage. Such 
a tube is highly desirable for amplification purposes, but it 
can be only approximated by actual tubes. This is evident from 
the following: For a linear tube, if the grid voltage Vg be kept 
constant, iP must be in proportion to Vp — /¿Vg, since the a.c. 
resistance Rp is constant and VP — pVg is the portion of the 
plate voltage that can cause plate current to flow. (Note that 
pVg is assumed negative, so that it cancels part of Vp.) The 
relationship is represented in Fig. 7 for two values of Vg (solid 
lines), viz., Vgi and Vgz- Note that, when VP equals pVgi, 
cutoff is reached for the curve to the left labeled Vgi and, when 
Vp = pVV2, cutoff is reached for the curve labeled V„z. Also, 
note that, for point P, the d.c. resistance is the cotangent of 01; 
while the a.c. resistance, or Rp, is equal to cot 02- These matters 
will be discussed more fully in the following chapter.

We have shown for the diode that, according to Child’s law, ip 
varies as Vp. While no rigorous derivation has been worked out 
for the triode tube, a somewhat similar relation holds approxi­
mately for the triode, viz.,

iP = A(VP + (20)
For actual tubes the relation between ip and Vp may depart some­
what from Eq. (20), but the exponent is in practically all cases 
other than unity. Hence, the actual triode curves are other than 
straight lines and may be of the shapes suggested by the dotted 
lines Fig. 7. Such curvature is further increased, in general, by
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variability of the amplification factor, particularly in the neigh­
borhood of cutoff.

The reader may be puzzled as to why the above discussion is 
concerned with a variation in the plate voltage, since it was 
explained previously that the given variation in voltage known 
as the signal voltage was preferably introduced into the grid 
circuit. The answer to this is that, for useful operation, a load 
impedance ZL (see Fig. 6) is inserted in the plate circuit, so that 
the variations in plate current, produced by the signal voltage 
acting on the grid, produce variations in the voltage across ZL 
which are a copy of the grid signal voltage. Since the impressed

Fig. 7.—Linear and actual tube-plate characteristics.

B voltage V» is direct, then if there is an alternating voltage 
Vl, across ZL, there must be a voltage — VL between the plate and 
cathode, as well as a direct voltage, in order that the sum of the 
voltage drops equals Tm,. This means that, when ZL is present, 
Vp is not constant but fluctuates, and hence we are concerned 
with the effect upon ip of these fluctuations, as well as of those 
in the grid circuit.

If the current is proportional to (Vp + instead of the 
first power, the current will be a distorted copy of Va and will 
produce a distorted voltage across ZL, and also one of opposite 
phase, as part of Vp, which will react to make the current some­
what differently distorted, etc., in short, the exact form of ip 
(and VL) for equilibrium conditions may be quite different from 
what it is when ZL = 0 and Vp = Vn, a constant direct voltage. 
Indeed, this is the basic problem of nonlinear circuits (see Chap. 
I): given a known voltage—here —in series with an impedance 
ZL—which may be linear—and a nonlinear impedance—that of
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the tube—to find the current flow through this circuit and the 
voltages set up, particularly the output voltage Vl.

If the signal voltage is sufficiently small, then the variations 
in ip and Vv will be correspondingly small, and the relation 
between ip and the grid and plate voltages may then be repre­
sented fairly accurately by

iP = A(VP + yVp) (21)
For a linear tube, this is an exact representation. Where Eq. 
(21) is adequate, a simple equivalent circuit, known as the 
equivalent plate circuit, may be employed, and the analysis of the 
tube behavior greatly simplified.

20. The Equivalent-plate-circuit Theorem.—Let the plate 
current ip be composed of the normal d.c. component Ib, due to 
the B-supply voltage Vbb and the grid bias voltage Vc, and an 
a.c. component Ip, due to a signal voltage Fs injected into the grid 
circuit. Then, according to Eq. (21),

ip = Ib + I p = — IbZL — IpZ^ + n(V s + Fc)] (22)
Note that may be a different impedance to the d.c. com­
ponent Ib from that to the a.c. component Ip. In the absence 
of the signal voltage V„ we have

ip = Ib = A(Vbb + gVc) (23)
Subtracting Eq. (23) from Eq. (22), we obtain

Ip = —AIpZi -|- Ap.Vs

(24)

It will now be shown that A = 1/RP. If the grid voltage be 
kept constant, Fs must equal zero. Under these conditions, from 
Eq. (21)

Si = A=A (25)
arpJ(Vt = V.=const.) Hp

from the definition of Rp given by Eq. (17).
Substituting this value of A in Eq. (24), we finally obtain

r _
P RP + Z (26)

This is the equivalent-plate-circuit theorem. It states that, as 
far as the a.c. component of the plate current is concerned, it is 
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as if the tube with its variable d.c. resistance were replaced by an 
apparent source whose internal impedance is Rp and whose 
generated voltage is ^Fs. The circuit equivalent to that of the 
plate is shown in Fig. 8, and it is evident by an application of 
Ohm’s law to this circuit that Eq. (26) will be obtained.

This is one of the most frequently used and hence most impor­
tant equations for vacuum tubes. The reason for this is that the 
vacuum tube, as mentioned previously, is a time-variable 
parameter and gives rise to circuit equations difficult to solve. 
The equivalent circuit is an ordinary linear type and easy to 
solve and hence is preferable to the actual in the solution of

Fig. 8.—Equivalent plate 
circuit for a.c. component.

vacuum-tube problems. Accordingly, 
it is employed wherever possible. It 
cannot be employed, however, to evalu­
ate the losses in the tube itself, which 
produce heating of the plate and are 
hence denoted as “plate dissipation.” 
But, for a linear tube at least, it gives 
the correct values of a.c. component of 
current and voltages in the external 
load impedance, and these are the 

quantities in which we are usually most interested.
In passing we note that the above theorem depends upon a 

more fundamental one, the compensation theorem, which states 
that a voltage drop due to some impedance may be replaced 
(compensated for) by a generator generating a voltage equal to 
this voltage drop. Here we are compensating for the variable 
resistive voltage drop in the tube by an equivalent generated 
voltage gFs and a fixed resistance Rp.

21. Equivalent Constant-current Source.—A variation of the 
equivalent-plate-circuit theorem follows at once from ordinary 
linear-network theory. Thus, let us first evaluate the voltage 
Fl across Zl. This is evidently

F L — 1 pZ l — pCs
Zl

Rp + Zl
(27)

Now multiply numerator and denominator by Rp, and obtain

*17   M n RPZ L __  s, RpZ L
r L ,, Cs tS , <7 Omes „

lip lip -f- ¿L lip "T"
(28)
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The quantity Gmes has the dimensions of current. This current 
may be considered as being produced by a constant-current 
generator. A constant-current generator is a source that feeds 
an unvarying magnitude of current into any finite value of load 
impedance connected to it. One physical interpretation of such 
a source is that it has infinite internal impedance and infinite 
generated voltage, of such order that their ratio is the finite value 
of current cited above. Evidently, such a generator will send the 
same value of current through any finite impedance connected in 
series with it.

The constant current Gmes flows through the internal resistance 
Rp of the actual source and the load impedance in, parallel and, in 
doing so, sets up the same voltage drop Vl as is set up across ZL, 
when regarded in series with the internal resistance Rp and the 
finite generated voltage pVs.

As stated before, these circuits are equivalent for any linear 
circuit, and not because the one under discussion happens to 
involve a vacuum tube. Which equivalent circuit to use, the 
constant voltage or the constant current, is a question of con­
venience. It has been regarded by some that the constant­
voltage type is preferable if the source resistance is low, as in the 
case of the average triode tube (2,000 to 10,000 ohms), and the 
constant-current type is preferable for high-impedance sources, 
such as pentode tubes (one megohm or thereabouts). However, 
either type of representation can be used for any type of 
circuit, and the constant-current source has been found to be of 
great convenience in the analysis of many vacuum-tube circuits. 
We shall illustrate this point with an example.

A well-known type of video amplifier circuit employed in tele­
vision as a voltage amplifier stage is shown in Fig. 9 and is known 
as a series-peaking circuit. Here Cp represents the unavoidable 
capacitance existing between the plate and ground of the first 
(left-hand) tube, and Ci is the likewise unavoidable capacitance 
associated with the input-circuit of the second (right-hand) tube. 
While these capacitances are mainly within the tube (although 
they must also include the stray wiring capacitances of the 
external load parameters to ground), it is convenient to consider 
them external to the tube and as part of the external load imped­
ance. The latter consists principally of RL, a resistance, and L, 
an inductance. The parameter Cg and Rg have a sufficiently high 
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susceptance and resistance, respectively, to be considered negligi­
ble in effect at the frequencies under consideration—one million 
cycles and higher. Finally, the input signal voltage is Vi, and 
the output amplified signal voltage, applied to the next tube, is 
F2. '

Let the driving-point impedance looking into terminals 1-1 be 
denoted by ZD, where this includes Cp, and the transfer constant, 
which is the ratio of voltage across terminals 2-2 to that across 
terminals 1-1, be denoted by T. Then, if the first tube be a 
pentode tube, its Rp may be regarded as so high compared with 
ZD as to be a negligible shunt to it. In that case, if we apply 
Eq. (28), we obtain

V2 = V^ZnT (29)

since the voltage across terminals 1-1 is ViGmZD and hence that 
across 2-2 is ~V\GmZDT, as above. The gain, a, of this stage is 
defined as

a = = GmZDT (30)
v 1

The problem of finding the gain is thus that of finding the values 
of ZD and T as functions of frequency—a straightforward problem 
in linear theory. The only manner in which the tube enters is 
through its Gm.

Suppose optimum values of Rl and L are thus found in terms 
of Cp, Cand the frequency f, which will make this stage have a 
satisfactory flat response over a certain portion of the frequency 
spectrum, say, up to 5 megacycles. Now suppose it is desired to 
find the optimum values for a low Rp triode tube. Is it necessary 
to start anew, since now the Rp is an appreciable shunt across ZD! 
Not at all. We can represent the triode tube by its equivalent 
pentode (constant-current) form. Here we merely place Rp 
across terminals 1-1 in Fig. 9. Now, if Rp is greater than the 
previously determined value of Ft in the case of the pentode tube, 
we can use instead of Rl a higher resistance RL', of such value 
that Rl' and Rp in parallel equal the previously determined value 
Rt. The triode circuit will then function in identical manner 
with the pentode tube. Since the latter permitted the gain to be 
determined by simple analysis of ZD and T, it was natural to 
derive the gain for this type of tube first.
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Of course, this procedure is possible only if the external load 
circuit starts off with a resistance RL. However, this is the case 
for many circuits. An interesting example is that cited by 
White9 for the low-frequency (l.f.) compensation of a video 
amplifier stage. There are other uses for the constant-current 
equivalent circuit, as in r.f. amplifier stages, but lack of space 
precludes presentation of these applications.

Fig. 9.—Series-peaking video circuit.

22. Further Discussion of the Tube Resistances.—The equiva- 
lent circuits presented have been those for a linear tube, i.e., one 
whose a.c. resistance Rp is constant. This, of course, does not 
imply that the d.c. resistance is constant. In Fig. 10 are shown 
three plate-current curves for a linear tube, corresponding to 
three grid voltages VB1, VB2, and VB,. The a.c. plate resistance 
(if all curves, for simplicity, are assumed to have the same slope) 
is the cotangent of angle BDM, 
CEM, or GFM and is independ­
ent of plate voltages that exceed 
the cutoff values. The d.c. re­
sistance, however, is not inde­
pendent of the plate voltage. 
Thus, suppose we set the grid 
voltage at V„,. Then, for two 
particular values of plate volt­
age, OH and OJ, the two d.c. 
plate resistances are the cotan­

Fig. 10.—D.c. and a.c. plate resist­
ances for a linear tube.

gents of angles AOM and BOM, respectively, and hence differ­
ent. Indeed, for a grid voltage Vei and a plate voltage OK, 
the d.c. plate resistance has still another value, the cotangent 
of COK, and so on, for other curves. Thus, the d.c. plate 
resistance is a function of the plate and grid voltages for all 
values of these, whereas the a.c. plate resistance may be independ­
ent of these for a limited range of values of these two voltages. It 
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is for this reason that the latter resistance is preferred in the power­
series method of solution, which is the method essentially 
employed in the previous two sections, although the power series 
consisted of only one term, the first-degree term. In the graphi­
cal method of solution, the d.c. resistance will generally be found 
to be the preferred parameter (note this fact in reading Chap. IV, 
particularly).

Fig. 11.—Equivalent circuit 
for a triode.

The vacuum tube is peculiar in that the d.c. and a.c. resistances 
are so widely different in value. Indeed, a little thought will 
indicate that the equivalent circuit is evident without the need 
of the derivation given, since an examination of Fig. 10 shows that 
the grid voltage seems to act more as a fixed potential p times as 
great in the plate circuit than as a means of varying the internal 
resistance of the tube. This is to be expected physically from the 
fact that the space-charge effect of the grid is a fixed effect in the 
plate circuit, rather than an effect proportional to the plate cur­

rent, which is the manner in which a 
resistive voltage drop would operate. 
The tube thus acts like the circuit 
shown in Fig. 11, in which C represents 
a kind of electrical check valve or 
diode that offers no resistance to the 
flow of current in the direction denoted 
by the arrow but does not permit cur­

rent to flow in the opposite direction. In this circuit, if Vp exceeds 
yVg, current flows owing to the effective voltage Vp + fiVg where 
pVg is opposite in polarity to Vp, as shown, and is limited (in the 
absence of an external load) solely by Rp. If the current in this 
circuit were plotted against Vp, curves similar to those shown in 
Fig. 10 would be obtained for different fixed values of pVg.

Nevertheless, it is more correct from an energy viewpoint to 
view the linear tube as a variable d.c. resistance, controlled by 
grid voltage, rather than as a fixed a.c. resistance Rp in series with 
two voltages Vp and uVg. This is because the source of pYg does 
not furnish or absorb any energy from the circuit if pYg is nega­
tive, whereas in Fig. 11 it is evident that the source of pYg 
receives energy from the source of Vp when Vp exceeds pYg. 
However, as far as considerations pertaining to an external load 
impedance are concerned, the representation equivalent to Fig. 
11 is valid and much simpler than the representation of the tube 
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as a variable d.c. resistance. This is why the equivalent circuit 
similar to Fig. 11 is employed when external load relationships 
only are required.

It is of interest to note that there are devices which are variable 
resistors for which the a.c. and d.c. resistances are equal. An 
example of this is the carbon button microphone. Here the 
resistance of the carbon granules of the button depends upon the 
pressure of the diaphragm on them. Let us assume such a button 
is under a normal pressure (say, atmospheric) and is in series with 
a direct voltage V. Let the normal resistance due to the normal 
pressure be R, and the variations in R due to variations in the 
pressure be + AR. For normal, steady pressure, the circuit 
equation is given by

IR = V (31)
For variations in pressure, we obtain variations + AI in the 
current, such that

(I + AI)(R ± AR) = V (32)
Subtracting Eq. (31) from Eq. (32) we obtain

+ AIR — SI AR = +1 AR

If AR is sufficiently small compared with R, then AZ will be small 
too, and AZ AR can be ignored, so that

+ AIR = ±Z AZ? (33)
Equation (33) states that the variations in resistance + AR may 
be replaced by an equivalent voltage + 1 AR, which, acting in a 
circuit of resistance R, causes a current + AZ to flow. Equation 
(33) is thus similar to Eq. (31). We thus have here, too, a 
circuit of fixed resistances and variable voltages equivalent to 
the actual circuit of fixed voltage V and variable resistance 
R + AR.

There is an important difference, however, between this 
equivalent circuit and the equivalent plate circuit of the triode. 
In the former, the apparent voltage ±Z AR is a function of the 
direct voltage V through the quantity Z, as well as a function of 
the variations in pressure through the quantity ±AR. In the 
equivalent plate circuit, on the other hand, the apparent voltage 
pVg is independent of direct plate voltage and current and a 
function solely of p and V„.



Fig. 12.—Terminal characteris­
tics for a carbon-button micro­
phone.
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This difference is also exhibited by the actual terminal charac­
teristics of the microphone as compared with those of the triode. 
In Fig. 12 are shown three terminal characteristics for the 
carbon button for normal pressure, higher pressure, and lower 
pressure (curves marked R, R — AR, and R + AR, respectively). 

We also note here that the d.c. 
resistance equals the a.c. resist­
ance for any particular value of 
pressure, as mentioned previously; 
but now we note, in addition, 
that both resistances vary, in con­
trast to the constancy of the Rp of 
a linear tube.

23. Equivalent Circuit for a 
Nonlinear Tube.—The reader may

wonder if, similar to the equivalent plate circuit for a linear tube, 
there exists an equivalent circuit for the nonlinear tube, i.e., for a 
tube with such curved characteristics that even for small grid­
voltage excursions, or swings, the approximation of a linear tube 
is insufficient or for an actual tube in which the grid swings are 
too great' for the linear-tube approximation to hold. The 
answer is yes; the equivalent circuit for the nonlinear tube is the 
more general, and that for the linear tube is but a special case of 
the former. Unfortunately, the derivation for the nonlinear 
tube is too involved to warrant presentation here but may be 
inferred from the series of terms occurring in Carson’s*  method 
of successive approximations for power-series solutions. Suffice 
it to say that the equivalent circuit involves a series of generators 
in circuit with the Rp of the tube and the external load impedance. 
The Rp may be that given by the reciprocal of the slope at the 
operating point—the point on the characteristics from which the 
a.c. excursions take place. The generated voltages are quanti­
ties involving Vp, VP2, Vp3, . . . , uVg, (gV,,)-, GuU„)3, ... If 
sufficient of these voltages are included, the equivalent circuit 
will give correctly, not only the fundamental component of the 
current through the external load impedance, but the distortion 
terms as well. Generally, however, so many generators must be 
evaluated if the characteristics are greatly curved as to discourage 

* Proc. 1919.
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the average engineer from employing this method in the solution 
of actual problems.

We note, in passing, that this more general equivalent circuit 
replaces, by the use of the compensation theorem, not only the 
variable d.c. resistance, but also the variable a.c. resistance of the 
nonlinear tube, with a constant a.c. resistance and sufficient 
apparent generated voltages to compensate for the variability 
of the a.c. as well as the d.c. resistance. It is an interesting 
artifice from a theoretical point of view; and if a few terms are 
sufficient satisfactorily to represent the curvature of the charac­
teristics, it can be used in actual problems without a prohibitive 
expenditure of labor. In Chap. Ill, as an alternative, will be 
given a graphical proof of the equivalent-plate-circuit theorem.

24. Conclusion.—This concludes our rather brief discussion of 
the thermionic vacuum tube, particularly the triode. Further 
reference will be made in succeeding chapters to the tetrode, 
pentode, and diode tubes. However, from now on the presenta­
tion will be mainly graphical in nature, although power-series 
methods will be employed where they throw further light upon 
the operation of the tube and its circuit.
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CHAPTER III

ELEMENTARY GRAPHICAL CONSTRUCTIONS

1. Introduction.—Before beginning the discussion of graphical 
methods of solution, it may be well to mention that these methods 
are not necessarily restricted to the solving of vacuum tube 
problems but can be applied to mechanical and magnetic circuits 
as well. The chief difficulty in the case of the latter is that the 
primary data on the magnetic circuit are not accurately known, 
particularly the relationship between magnetomotive force H 
and flux density B when the former is a complex wave function 
of time. In this case the terminal characteristic (B-H curve) is a 
hysteresis loop containing minor hysteresis loops, and the exact 
behavior of B vs. H for these minor loops is at least open to 
discussion. Often, derived curves obtained from secondary 
data, such as that of incremental permeability vs. H, are used, a 
procedure somewhat analogous to that employed in solving 
detector circuits (Chap. VI).

Another problem that might profitably be attacked by graphical 
methods is that involving nonlinear compliances, such as those 
encountered in loud-speaker structures. Here it may be that the 
production of subharmonics can be demonstrated in a more 
illuminating manner than by analytical methods.

As a final suggested example, the generated-voltage vs. field­
current and armature-speed characteristics of a shunt generator 
can be studied by graphical means, and the behavior of the 
machine under various operating conditions nicely predicted. 
For further information concerning this the reader should consult 
“Direct-current Machinery” by McFarland.

2. General Considerations.—In the previous chapter the 
mechanism of thermionic emission from various kinds of emitters, 
the action of the space charge in a tube and Child’s law, the effect 
of the introduction of a grid in the tube, the a.c. and d.c. plate 
resistances, the amplification factor p, the transconductance Gm, 
and the equivalent-plate-circuit theorems were all discussed.

44
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The derivation of the latter theorems depended upon the use of a 
simple power series to represent the terminal characteristics of 
the tube, viz., a single term involving the plate and grid voltages 
to the first degree. It was pointed out that, if the tube were 
nonlinear, a prohibitive number of terms of higher degree might 
be necessary adequately to represent the characteristics. The 
Fourier method of representation was not employed because it 
required that the over-all terminal characteristic of tube and 
external load impedance be known, rather than the terminal 
characteristics of the individual components and their method 
of connection.

The graphical method takes the curve or curves as determined 
experimentally and operates geometrically upon them. That 
is, the graphical method accepts the characteristic “as is” and 
does not concern itself with the inner meaning of its shape any 
more than is absolutely necessary. It therefore operates with 
directness and dispatch and avoids the complications inherent 
in the analytical method.

In view of the above, the question may arise as to why the 
graphical method is not used to the exclusion of the analytical 
method. The answer is that the former has several serious 
disadvantages as well as the above advantages. The disadvan­
tages are mainly as follows:

1. The accuracy of graphical results depends upon the mechan­
ical factors involved in drawing the curves and geometrical 
constructions, such as the thickness of the lines.

2. The graphical method is special: it usually gives a particular 
answer to a particular set of initial conditions. It does not 
indicate, as a general rule, the optimum initial conditions to give 
the best results. Thus, if we are given the power pack voltage 
applied to a tube, the grid bias, the grid signal voltage (“grid 
swing”), and load impedance, we can find the plate-current 
variation and, by an easy calculation, the power output of the 
tube. We cannot, however, find directly the c^timum bias, grid 
swing, and load impedance for maximum power output for a 
given power pack voltage except by a series of trials. The 
analytical method will give us this information, though often in 
complicated form. Possibly the main reason for the foregoing 
defect in the graphical method is the fact that it has not as yet 
been developed to the fullest extent; it may overcome this 
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limitation as it is improved. We are as yet bound to a great 
extent by the old Greek tradition of ruler and compass construc­
tions, and this tends to limit the scope of the graphical method.

3. The method fails under certain complicated conditions 
such as when the operating point changes appreciably with the 
signal voltage. However, successive approximations can be 
made to the true state of affairs, and it is further questionable 
whether the analytical method is really superior for these more 
complicated conditions.

4. Graphical constructions become far too involved, if not 
actually impossible, when more than three variables are involved, 
as in the case of a tetrode or pentode tube, unless all but three 
of the variables can be kept fixed, whereupon these become 
parameters rather than variables.

It may therefore be concluded that there is no general method 
of attack for vacuum-tube problems and that the best that can 
be done today is to employ both methods in an effort to obtain 
even working or approximate solutions. It is to be hoped that 
some day a general treatment of nonlinear networks (of which 
the vacuum tube is but one example) will be developed that 
compares with the treatment of linear networks.

3. Simple-series Linear Circuit.—To 
proceed with the graphical method, sup­
pose two constant resistances Ri and R2 
are in series with an e.m.f. Ei (Fig. 13). 
The current flow 11 is simply given analyti­
cally by Ohm’s law as

I =
1 Rr + Ri

The voltage drop across Ri is then hRi;
Denote the voltage drop across Ri by Ea',

that across R2 by EB.
Then *

IiRi — Ea (1)
IrRi = Eb = Ei — Ea (2)

R2

Fig. 13.—Two linear re­
sistances in series.

that across R2, hR2.

Suppose it is desired to solve this circuit graphically. The 
independent variable will be voltage; the dependent variable, 
current Zi. In order that there be but one independent variable. 
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say, Ea, the relationships given in Eq. (2) may be used in the 
form where IiRz is equal to (Ei — EA) rather than to EB. If 
these two equations are plotted, the straight lines OC and BC 
(Fig. 14), respectively, are obtained.

Fig. 14.—Graphical constructions for linear series circuit.

The slope of OC is evidently

cot ai = = Ri (3)
11

The plot of Eq. (2), viz., BC, is evidently shifted from the origin 
by a distance Ei and is of a negative slope corresponding to

, ( \ Ei — Ea , —Ebcot (tt — az) = -----=----  = — cot az = —f— = — Rz (4)
Ii Ii

OC and BC are called the terminal characteristics or load lines of Ri 
and R2, respectively; and if one of them is plotted from the origin, 
the other must be plotted from a shifted origin and with a nega­
tive slope, when it represents a resistor in series with one cor­
responding to the other load line. Where these two load lines 
intersect, at C, is the simultaneous solution of Eqs. (1) and (2).

This intersection gives a value of current Ii that is the same 
for both resistors. But this is the value of current that is 
sought, since in a series circuit the current is the same throughout 
the circuit. Hence h, the current in the circuit of Fig. 13, has 
been determined graphically by the intersection of the two load 
lines. The distance OA represents the voltage Ea required 
across Ri to force the current Ii through it, and AB represents 
the voltage EB required across Rz to force h through it. It is 



48 CONSTRUCTIONS FOR VACUUM TUBE CIRCUITS

evident from Fig. 14 that
OA + AB = Er (5)

and
OA = li cot «1 = hRr (6)

and
AB = Ir cot «2 = hR2 (7)

so that the graphical method checks with the analytical method. 
Suppose another voltage E2 is employed, shown in Fig. 14 as

less than Ei. The same procedure is followed as for Ei, and 
current Z2 is obtained. This may be repeated for any other 
voltage or voltages desired, and the corresponding currents 
obtained. If the circuit is viewed as a whole, its action may be

Fig. 15.—Graphical constructions 
for nonlinear series circuit.

so that' it is represented by

represented by means of a load 
line too. Thus, for a voltage Ei, 
the current is Zj. The ordinate 
DB equal to Ii is drawn at the 
end of Ei. Similarly, point F is 
obtained for voltage F2. Points 
D and F are on the load line for 
the two resistors Ri and R2; i.e., 
they are on the load line for a 
resistor R equal to Ri + R2 or the 
total circuit resistance. This load 
line passes through the origin 0 

the line OFD. This is a straight 
line, since those for the two resistors are straight.

In this particular example the graphical solution exhibits no 
advantage over the analytical, so that as yet its utility requires 
demonstration. Let us now take the case of two nonlinear 
resistors in series with an e.m.f. These will give rise to a figure 
similar to Fig. 12, except that Ri and R2 now vary with the 
current through them. The load line for each is hence a curve 
and they can be plotted from the ends of Ei, as shown in Fig. 15. 
Their intersection at C gives the desired value of current h. 
For some other voltage E2 the current I2 is obtained. If these 
current values are projected over to D and E, respectively, points 
on the load line for Ri and R2 in series are obtained, and this 
load line has been drawn in as OED. The latter is evidently a 
curved line, also.
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Apparently, the graphical solution is as simple as that for the 
fixed resistors. Let us now review the analytical method. 
Instead of Eq. (1), we now have for R\

i = kxe + k^e2 + k^e3 + • ■ • + knen (8)
and for Rz

i = ki(E - e) + kz(E - e)2 + • • • + km'(E - e^ (9) 
where E is the total applied voltage. These two power series 
have been purposely written with a different number of terms 
to suggest the fact that the two load lines have different curva­
tures, i.e., that the two resistors Ri and Rz vary in different ways 
with the current. To find the current through the two in series, 
Eqs. (8) and (9) must be solved simultaneously. Such equa­
tions, in general, are not solvable if of degree higher than the 
fourth, and the roots can be found only approximately, by 
Horner’s method, for example. The above thus demonstrates 
in a striking manner the directness of the graphical method, and 
this is true in the case of many nonlinear circuits.

In Chaps. I and II was mentioned an analytical method that 
gives a solution by a series of approximations.1 This results in 
involved computations, but it is general in scope. The circuit 
represented by Fig. 15 can be, in physical form, that of a driver 
tube energizing the grids of power tubes in a class ABz arrange­
ment. Thus the driver tube may exhibit some nonlinearity as 
represented by load line OC, and the grid circuit of the power
tube may exhibit nonlinearity as repre- [ 
sented by load line BC. This matter will 
be analyzed more thoroughly in the case of 
a class ABz circuit.

4. Parallel Circuit.—In Fig. 16 are shown 
two variable resistors Ri and Rz in parallel, 
and an e.m.f. Ei impressed across their ter­
minals. In this case the total current I

Fig. 16.—Parallel cir­
cuit.

should be given in order that this problem 
be equivalent to that of the series circuit;
i.e., I should be known, and then the component currents 
Ii and Iz through Ri and Rz, respectively, as well as Ei can be 
determined. In practice, however, Ei is usually given, and I, 
Ii, and Iz are to be determined. Hence, the method will differ
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somewhat from that employed for the series circuit; in fact, it 
will be similar to the problem of finding the component voltage 
drops, as well as the total impressed voltage in a series circuit 
when the current is known.

Referring to Fig. 17, we note that the axes are reversed: the 
voltages are plotted as ordinates, and the currents as abscissa; 
i.e., the conductances of the two resistors are utilized. OA 
represents the conductance load line for Ri, and AB that for R2. 
Length OB represents any desired value of total current I; OD 
represents I,, and DB represents 12. AD represents the value 
of Ei that could cause these currents to flow. If some other 
value of total current I is then chosen and the process repeated, 
the corresponding values of Zi and 12 will be found, and also Ei for

Fig. 17.—Graphical constructions for parallel circuit.

this value I. The load line for the two resistors in parallel can 
then be obtained by plotting the various values of I against the 
corresponding values of Ei. Then, for the given value of E, 
the value of I can be found, and the construction shown in 
Fig. 17 repeated for this value of I to obtain the corresponding 
components h and Z2.

The constructions can be shortened, however, as shown in 
the figure. Thus, the given value of Et is projected to curve OA. 
The intersection is at G, whose projection on the i axis is F. 
Then OF is the value of h for the given value of Ei. The same 
thing could be done for AB, and Z2 found. Then I would be 
the sum of h and I2. Or load line AB can be shifted a distance 
FD, so that its plot is the broken line GC. Then OF represents 
Zi, FC represents I2, and OC represents I.

Parallel circuits of nonlinear resistances are not so often 
encountered as series arrangements, so that this construction is 
seldom employed. However, where required, it is as easy to 
employ as the construction for the series circuit.
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5. Series Parallel Circuits.—Series parallel circuits can be 
solved by finding the load lines for the series parts of the network 
and those for the parallel parts and then combining these load lines 
as the circuit dictates. The above method fails, however, in the 
case of Wheatstone bridge circuits, but these are beyond the 
scope of this text.

6. Application to the Vacuum Tube.—If the graphical method 
is applied to the vacuum tube, such as a triode, then a complica­
tion is encountered: the plate current (dependent variable) is a 
function of two independent variables, the plate voltage and 
the grid voltage. Under these conditions the plot is a surface;

Fig. 18.—Triode surface and characteristic curves.

this is shown in Fig. 18a as a shaded area, with representative 
cross-sections, or “ribs,” on it.

It is inconvenient to perform the graphical constructions upon 
a space model; hence the principles of solid analytic and also of 
descriptive geometry are employed to obtain projections of this 
space model upon a plane, i.e., upon a sheet of paper.

The equation of the tube surface may be given as
ib = F(ec, eb) (10)

Consider the equation
ec = c (11)

where c is some constant. Equation (11) represents a plane 
parallel to the ib-eb coordinate plane, and at a distance of c units 
along the ec axis from the latter plane.

The simultaneous solution of Eqs. (10) and (11) represents 
the intersection of the tube surface with the plane, and this 
intersection may be considered a rib of the tube surface. If this 
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rib be projected over to the ib-Cb coordinate plane, it forms a curve 
as shown by any one of the family in Fig. 185. Different values 
of c give rise to different curves of the family. It is evident that, 
since ib is zero for negative values of eb, only the first quadrant is 
necessary to depict the significant features of all curves of the 
family.

Analytically, the simultaneous solution of Eqs. (10) and (11) 
means that ec has been made a parameter, so that ib thereby 
becomes a function of eb alone and thus can be plotted on a plane. 
As the parameter ec is changed from one value to another, the 
corresponding plot for ib vs. eb changes from one plane curve to 
another, and the totality of curves constitutes the plate family 
of characteristics.

In a similar manner, eb may be made a parameter and ib plotted 
against ec, and this will result in a family of curves too. This 
family is known as the plate-current-grid-voltage characteristic 
(Fig. 18c); and since ib is not necessarily zero for negative values 
of ec, the family requires both the first and second quadrants for 
its sphere of activity. In this family, the curves proceed to the 
left as the plate voltage is raised. Which family of curves is to 
be used depends upon the problem being considered. Usually, 
the grid voltage is known, and the plate current and plate 
voltage are unknown except at one point, so that the grid 
voltage is made the parameter and the ib-eb family is therefore 
used. Moreover, the constructions, as will be shown, are usually 
simpler for this family. In passing, it is well to note that the 
surface constitutes more than the shaded portion shown: it 
includes the points in the ib-eb plane where ib is zero. This is 
mentioned here because later some confusion may arise in the 
reader’s mind in applying the graphical solution. For large grid 
swings it may appear that a curve ends on the axis before it 
intersects some line of construction. In that case it is to be 
remembered that the curve then really proceeds along the axis, 
so that the intersection of the above line of the construction is 
with the axis.

We now come to the question of the resistor, which is usually 
placed in series with the plate of the tube and is moreover 
practically always linear. Figure 19 shows the electrical circuit. 
Here Rl is the load resistance in the plate circuit. We have seen 
earlier in this chapter that the load line for a fixed resistance is 
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a straight line. This concept must now be modified in view of 
the three-dimensional surface plotted for the tube characteristic. 
It is obvious that the relation between current through and 
voltage across the resistor is independent of the grid voltage 
applied to a tube which may or may not even be connected to this 
resistor. This fact can be shown by plotting the characteristic 
for as a load plane instead of as a load line. This load plane 
must intersect the ec-ei> plane in a line parallel to the ec axis in 
order to show the load plane’s independence of the grid voltage 
applied to the tube. In Figure 20 is portrayed the load plane 
for Rl (as a shaded area). Note that the intersection AB is 
parallel to the ec axis (hence perpendicular to the eL axis) and

Fig. 19.—Triode circuit. Fig. 20.—Load plane for linear resistor.

that the load plane is perpendicular to the ii-eL coordinate plane. 
The intersection of this load plane with the iL-eL plane, or CD, is 
the more usual load line for Rl, such that

cot </>L = Rl (12)
If we now wish to find the current flow through the tube and 

Rl, in Fig. 19, we must find the intersection of the tube surface 
with the load plane of Rl. The intersection of two surfaces is a 
curve in space, and this is shown in Fig. 21 as AB. This gives 
the locus of the plate current (which is also the current through 
Rl) for different values of grid voltage.

Once again we raise the objection to three-dimensional con­
structions and once again avoid it by plotting the projection of 
AI? on the i-e plane, that is, on a sheet of paper.

It will be evident that, since the load plane for RL is drawn 
perpendicular to the i-e plane, all lines in the former plane, even 
if curved, will project over to the latter plane as lines coincident 
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with the intersection of the two planes themselves. Since the 
intersection of two planes is a straight line, these other lines, such 
as AB, will appear as straight lines. Hence, if we operate 
graphically and according to the principles of descriptive geome­
try on the projections upon the i-e plane of the tube surface and 
that of the load plane for RL, we can obtain all the information 
we require concerning the performance of the circuit. The 
construction reduces to that of finding the intersection of the 
load line for RL with the plate family of characteristics on a plane.

If AB, Fig. 21, be projected to the i-ec plane, it will appear as a 
curve, whereas it appears as a straight line on the i-e plane, of

Fig. 21.—Three-dimensional graphical solution for triode circuit.

slope equal to cot 4>r [Fig. 20 and Eq. (12)], and hence is easier to 
draw in the latter case. This is possibly the most important 
reason why the i-e or, more specifically, the ib-eb family of curves 
is preferred to that of the grid family.

7. Resistance Coupling.—The circuit of Fig. 19 employs what 
is known as resistance coupling and is mainly used in voltage 
amplifiers to obtain a voltage across RL, which is an amplified 
copy of the grid signal voltage e„. This circuit will now be 
studied graphically in greater detail by applying the principles 
outlined in the previous section. As stated there, it is more 
convenient to use the projections of the surfaces than the surfaces 
themselves in applying the graphical method. Accordingly, 
instead of the tube surface, the ib-eb family of curves is employed; 
and, instead of the load surface for RL, its load line. It is to be 
noted first that, if the grid voltage were sufficiently negative, 
the current in the plate circuit would be reduced to zero (plate- 
current cutoff). Under such conditions there would be no 
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voltage drop in RL, and hence the plate voltage would equal 
Eu, (Fig. 19).

This serves to locate one point (0, Ebb) of the load line of Rl 
on the family of characteristics. Since Rl is a linear resistance, 
its load line is straight, and hence only one other point of it need 
be found to determine it. This can be done by assuming any 
convenient voltage value El, across Rl, and solving for the 
resultant current through RL by Ohm’s law. Thus

n = (13)JXl

The point (iL, El) can then be located on the graph paper, joined 
to the other point (0, Ebb) by a straight line, and thus the load 
line of Rl obtained.

Fig. 22.—Two-dimensional graphical solution for triode circuit.

In Fig. 22 is shown the ib-eb family of curves. The voltage 
between the plate and cathode of the tube (eb) is to be measured 
from the origin to the right; the voltage across RL (Fig. 19), from 
Ebb to the left. For the cutoff grid voltage —egt the plate current 
is zero, the plate voltage is E», and the voltage across RL is zero. 
If the grid is driven sufficiently positive (value not indicated, 
since never realized in an actual tube), the plate current is at a 
maximum, Im; eb is zero; and the voltage across Rl is OL, that is, 
Ebb- For intermediate values of the grid voltage, the plate cur­
rent is between Im and zero in value, eb is some value less than 
Ebb, and the voltage across Rl is the difference between E^ and 
eb. The graphical construction is therefore exactly similar to 
that shown in Fig. 15.

Suppose, in the circuit shown in Fig. 19, that eg is zero. The 
grid voltage is then merely Ec, so that the plate current is steady, 
or d.c. Assume that Ec is the value — shown in Fig. 22. The
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intersection of the load line ImL with the curve for — eg„ or A, 
gives the value of the d.c. component (shown as h)- Then OB 
represents the value of eb, and LB the value of the voltage drop 
across Rl (when no signal, eg is impressed). It is evident from 
the figure that the sum of the two voltages is E^, the plate­
circuit or B battery voltage. Point A is known as the quiescent 
point, as it is the value of the plate current when the tube voltages 
are steady, or quiescent.

If a signal voltage eg is applied, the instantaneous value of the 
voltage between the grid and cathode changes, since it is now 
equal to eg + Ec or ec. The plate current now varies along the 
load line ImL. If eg is a sine-wave voltage of peak amplitude 
Ec(= —e^, then, when it is in the positive direction and peak 
value, it just cancels Ec, so that the instantaneous grid voltage 
is zero; and when it is at the negative peak value, it causes the 
instantaneous grid voltage to be twice — eg„ or — egi. The plate 
current accordingly varies from A to C back to A again, then 
down to D, and then back to A during one cycle of eg; that is, it 
varies about the point 4 to a maximum value C and a minimum 
value D. Simultaneously, the plate voltage varies from the 
normal value OB to OF and to OG, while the voltage across Rl 
varies, respectively, from the normal value of LB to LF and LG. 
At all times the sum of these two voltages is OL = Ebb, the B 
supply voltage. It is to be noted also, from the foregoing, that 
as the plate current rises the plate voltage drops while the voltage 
across RL rises, and vice versa when the plate current drops, so 
that when eg is sinusoidal, ep is approximately a sine wave, 180 
deg. out of phase with eg, while the voltage across RL (as measured 
from the B supply end to the plate) is approximately a sine wave, 
in phase with eg. This all checks with the analytical treatment 
of the equivalent-plate-circuit theorem5 given in Chap. II, 
although that treatment assumed the tube to be linear, whereas 
here this restriction need not be made.

8. Graphical Proof of the Equivalent-circuit Theorem.— 
The above graphical construction affords an interesting proof 
of the equivalent circuit theorem. Consider triangle ACM, 
Fig. 22. It represents a circuit containing Rl (whose load line 
is CA) in series with the RP of the tube (whose load line is MC). 
The current CN, which is the a.c. component of ib for a grid 
swing from ec = —egt to ec = 0, may alternatively be regarded



(14)
ib = Ib

(15)
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as being produced by a voltage equal to MA impressed across the 
above two resistors in series, and the triangle is the graphical 
solution of this alternative viewpoint. Since MA is parallel 
to the eb axis, it represents a change in plate voltage, together 
with a compensating change in grid voltage, which leaves the 
current unchanged at the value AB = Ib. By definition, this 
is the p of the tube; i.e.,

. MA = MA 
0 ( eg

so that
MA = peg

Hence the vacuum tube, which is a resistor adjustable by grid 
voltage, in series with a linear resistor Rl and a constant voltage 
Ebb, may be replaced by a circuit equivalent to the actual plate 
circuit in which a constant resistance of value Rp is in series with 
Rl and a voltage pe„. The tube may thus be regarded as equiva­
lent to an active source of generated voltage p times the input 
grid signal voltage e„ and of internal resistance Rp.

Any curvature in the tube characteristic, MC, may be regarded 
as evidence of nonlinearity in Rp. An alternative viewpoint, 
as embodied in the power-series method, is to regard the tube of 
constant resistance equal to the initial slope of MC and generating 
a series of voltages proportional to peg, p2eg2, p^e^, etc., which, 
together with the above constant resistance, give rise to cur­
rent CN.

9. Dynamic Characteristic.—In a simplified analytical treat­
ment it is generally assumed that there is no load in the plate 
circuit and, in some cases, that the tube characteristic is linear. 
This is done to simplify the mathematics. As pointed out 
earlier in this chapter, where these restrictions are not imposed 
more involved computations based upon Carson’s method of 
approximations can be employed. The reason for these compli­
cations is that the vacuum tube has, in general, a nonlinear char­
acteristic. Owing to this, all the voltages of the tube at any 
instant must be taken into account before the plate current can 
be determined, since these voltages cross modulate one another, 
so that the principle of superposition does not hold, and the 
effect of each voltage cannot be determined independently of the
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other voltages, as can be done in ordinary linear circuits (see 
Chap. I).

If the tube has a load impedance connected to its plate, such 
as Rl (Fig. 19), and even if this load impedance is linear, then, 
because of the nonlinearity of the tube, it is necessary to find all 
the voltages across the tube elements before its plate current can 
be determined. Where the load impedance is zero, the plate 
voltage is constant and equal to Ebb, the B supply voltage, and 
the problem is simplified. But where the load impedance is not 
zero, the plate voltage varies in inverse manner with the plate 
current, as just demonstrated in the preceding section, and this 
factor in turn changes the variation of the plate current. It has 
been found convenient to classify these two cases as follows:

1. The variation of ib with ec when the plate load impedance 
is zero.

2. The variation of ib with ec when the plate load impedance is 
not zero.

The plot of (1) is called the static characteristic, because eb 
remains static, or constant; the plot of (2) is called the dynamic 
characteristic, because eb is variable, changing, or dynamic. 
These two characteristics can be easily determined graphically 
and, with much greater difficulty, analytically by Carson’s 
method. The above statement holds rigorously, however, only 
for a load resistance such as Rl (Fig. 19) and but approximately 
for an impedance such as a choke and resistor in parallel. Where 
the load impedance is a pure inductance, the graphical method 
becomes more involved. In. general, the dynamic characteristic 
may be regarded as the functional relationship between the 
primary cause ec and the final effect ib. Intermediate effects 
of the primary cause, such as eb, though in turn contributory 
causes to the variation of ib, are contained in the coefficients 
of the functional expression between ec and ib. Thus the equation 
of the dynamic characteristic contains ec as the independent 
variable, ib as the dependent variable, and the effects of Rl 
(variation of eb) as parameters of this equation.

10. Graphical Determination of the Dynamic Characteristic.— 
Figure 22 furnishes all the information necessary for the plotting 
of the dynamic characteristic, since it gives the different values of 
ib for the corresponding values of the grid voltage ec. The char­
acteristic is plotted in Fig. 23. The points in this figure are
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obtained from the intersections of the load line with the plate 
family of curves, and the letters here are the same as those for 
Fig. 22. This curve differs from a static characteristic for the 
tube in that here the plate voltage is different for each point, 
whereas in a static characteristic it 
be noted that this particular 
dynamic characteristic is for'a 
load resistance Rl. For some 
other value of load resistance, 
the dynamic characteristic will 
be some other curve. This will 
be further discussed in Sec. 12 
of this chapter.

11. Graphical Determination 
of the Static Characteristic.— 
To obtain the static character­
istic, the load line for a zero load 

It is toremains constant.

ec
Fig. 23.—Dynamic characteristic.

resistance must be drawn, and its intersection with the plate 
family of curves found. Evidently, if Rl is zero, its load line is 
perpendicular to the eb axis through the point E» (Fig. 22). It is 
shown as a broken line in Fig. 22, and two intersections are given,

thenJ and These are

■ecs-e^ -eC3 -ec2 -eci 0 + . 
ec

Fig. 24.—Comparison of static 
and dynamic characteristics.

higher order terms in the

plotted as the static characteristic 
in Fig. 24, as well as the dynamic 
characteristic for comparison.

12. Comparison of the Static and 
Dynamic Characteristics.—From 
Figs. 24 and 25, the static and 
dynamic characteristics may be 
compared and the following points 
noted:

1. The static characteristic rises 
more steeply then the dynamic 
characteristic.

2. The latter is more nearly 
straight, which means that the 
power series representing it have 

smaller coefficients. This in turn means that the harmonic 
distortion generated is less. The higher RL is, the flatter the 
curve and the less its slope. The reader may verify for himself 
that
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cot 0 = p - d I16)
IlL "i IXp

where Rp is the internal plate resistance of the tube at the par­
ticular point L in question. From a physical viewpoint, it is to 
be noted that RL, which is assumed a constant parameter, masks 
the variability of Rp—i.e., the nonlinearity of the tube—and that, 
the higher Rl is, the greater this masking and the more nearly 
linear is h with ec.

3. In Fig. 25 have been plotted various dynamic characteristics 
for different values of Rl, and also the static characteristic once 
more, for comparison. The statements made in (2) are seen to 
be verified. Curve LJK is the static characteristic, LC the

Fig. 25.—Comparison of various dynamic characteristics.

dynamic characteristic for Rl assumed previously, and LM for a 
smaller value oi Rl and LN for a larger value. The point to be 
emphasized here is that all the curves cut off at the same cutoff 
bias — egi, a matter that is not often sufficiently stressed. In 
ordinary class A operation of the tube, a value of grid bias Ec is 
chosen such that, if a sinusoidal signal voltage eg is impressed, 
then, on the positive grid swing, the total grid voltage

Ec + eg = ec

does not exceed zero, so that the grid does not go positive with 
respect to the cathode and hence draw current. This means that 
the grid does not require any appreciable power from the source, 
but only voltage. On the negative grid signal swing, the total 
grid voltage ec must not exceed the cutoff point for the tube 
(point L, Figs. 22 to 25), for otherwise the plate current will not be 
able to follow the grid signal voltage and hence will not be a true 
copy of it, in which case the amplified voltage across Rl will not 
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be a true copy of the signal voltage. Since the positive and 
negative halves of eg are equal when it is a sine wave, it is evident 
that the grid bias Eg must be halfway between the cutoff voltage 
ec = — egi and the zero point ec = 0- Furthermore, the peak 
value of the grid signal voltage must not exceed Ec. From Fig. 
25 it can be seen that the proper bias and maximum signal 
voltage will be the same for all values of R L, since the correspond­
ing dynamic characteristics all cut off at the same point L, where

13. Effect of Grid Signal Voltage.—From Sec. 12 it is seen 
that the maximum grid signal swing is the same for all values of 
Rl- In Fig. 26A, B and C there has been plotted a dynamic 
characteristic for the tube, curve LAC. In all cases the grid

Fig. 26.—Dynamic operation for various values of grid swing.
bias Ec has been chosen halfway between cutoff and ec = 0. In 
A the sinusoidal signal voltage has a peak value equal to Ec. It 
has been plotted as a function of time, the latter axis extending 
downward. The corresponding plate current as a function of 
time has been plotted to the right of the dynamic characteristic 
LAC, since the instantaneous current ib for each instantaneous 
value of ec can be projected over from the dynamic characteristic 
quite easily. (For the current, the time axis is horizontal, as 
shown.) From this figure it can be seen that, if the dynamic 
characteristic is nearly flat, the positive lobe of ip exceeds the 
negative lobe (peak values) by very little. It can be shown, both 
by the power-series6 method and by the Fourier series, that the 
excess of one lobe over the other is due mainly to the production 
of a second harmonic, as well as additional direct current. In 
Fig. 26A, where this excess is small, the distortion and production 
of additional d.c. component will be small.

These deductions are even more apparent when the signal 
voltage is small, as in Fig. 26B. This checks with the power-series
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method of development; for where the exciting voltage is small, 
the higher order terms (k2e2, kief, etc.) of the ii-ec expansion* are 
negligible compared with the first-power term kiec, since the 
square, cube, etc., of a small quantity are small compared with 
the first power. This means that the power series reduces 
practically to the first-power term, or is a linear equation. This 
in turn implies no distortion products: the current is a faithful 
copy of the grid voltage.

Figure 26(7 depicts the case where eg exceeds Ec, so that the grid 
swings positive on the positive half cycle and the plate current 
reaches cutoff before the grid has swung through the negative 
peak value. The plate current is evidently distorted, even if the 
driver tube preceding this tube were capable of supplying the grid 
losses when the grid goes positive. The distortion, as shown, is 
mainly due to plate-current cutoff: the negative lobe is flattened 
at its peak. The asymmetry of the wave implies at least even 
harmonic distortion, as well as the production of considerable 
additional d.c. component. The latter phenomenon is known as 
“ self-rectification ” in a tube and is permissible only when the 
distortion products can be filtered out, as in a narrow frequency­
range amplifier. It is also permitted in broad-range amplifiers 
when the action of one tube is supplemented by that of another, 
as in a balanced-amplifier circuit, operating ABt or AB2 (Chap. V).

14. Voltage Amplification.—The graphical construction affords 
a means of evaluating the voltage gain of a resistance-coupled 
amplifier. As can be seen from Fig. 22, the d.c. voltages applied 
are Eh, and Ec = — egi. For the load resistance Rl chosen and for 
a grid swing eg equal to Ec, the peak-to-peak plate-voltage swing is

OG - OF

so that the peak voltage is FG/2.

FG
a 2eg 2EC {U)

Analytically, the stage gain may be evaluated by means of the 
equivalent circuit theorem as

a = R^R~
lip -r Hl Up T Hl

* ib = k,ec + kzec2 + ktecs + • • ■ is the equation of the dynamic 

= FG

The stage gain is therefore
FG

characteristic.
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In the latter formula, however, Rp and even p may vary from 
their value at the quiescent point A, and their nominal values as 
given by the manufacturer may be for some other quiescent point. 
Equation (17), on the other hand, is correct for the actual oper­
ating conditions, and it will be found that an experimental deter­
mination of the gain usually checks Eq. (17) much more closely 
than it does Eq. (18).

It will be evident that, as R L is increased, a will increase, until 
when Rl becomes infinite the gain will become equal to the p 
of the tube as measured along the eb axis. In practical circuits, 
however, a shunt path consisting of a grid coupling condenser 
and grid resistor is present through which the a.c. component 
ip of ib can also flow, so that the load impedance to ip becomes less
than that for the d.c. component 
Ib, which can flow only through 
Rl- There are then two load 
lines to consider, a matter best 
reserved for a following chapter. 
A further complication is that the 
load impedance becomes reactive 
at low frequencies where the re­
actance of the grid coupling con­
denser is appreciable compared 
with the grid resistance and also at the higher frequencies where 
tube and stray wiring capacities have an appreciable shunting effect.

15. Inductance Plate Feed.—The graphical methods discussed 
thus far have been concerned with a pure constant resistance 
in the plate circuit. There is another important type of plate 
load, however, shown in Fig. 27. This circuit is equivalent in 
effect to an ideal transformer whose primary is in parallel with the 
load resistance or across whose secondary there is connected an 
equivalent load resistance. As may be noted from Fig. 27, L is 
an ideal inductance whose resistance to direct current is zero, 
whose reactance to alternating current is infinite, and whose 
distributed capacity is zero. It may be regarded as an ideal 1:1 
autotransformer, which establishes its equivalence to the loaded 
transformer cited above. Rl is a constant resistance, whose 
value is therefore independent of frequency. The total load 
impedance consequently shows zero resistance to direct current 
and a resistance RL to alternating current.
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When eg is zero, the plate current is d.c. and flows solely through 
L, since the latter short-circuits Rl- The plate voltage eb is then 
evidently equal to Ebb, since there is no voltage drop in the load 
impedance to direct current. When a signal voltage eg is 
impressed, the grid voltage ec varies by an amount eg about the 
direct bias voltage Ec and causes the plate current to vary about 
its normal steady d.c. value. The variation in the plate current 
is the a.c. component and, as explained previously in this section, 
cannot flow through the infinite impedance of the ideal choke L 
but must flow through RL. The graphical construction must 
therefore be modified from that employed for a purely resistive 
plate load (resistance coupling). The procedure is as follows:

In Fig. 28 is shown the ib-eb family of curves. For the grid 
voltage Ec alone, the load line is vertical and starts at eb = Ebb.

Fig. 28.—Path of operation for inductive plate feed.

The point at which it intersects the curve for which ec = Ec, at 
A, is the normal d.c. component Ib. This is the quiescent point, 
about which, as a first approximation, the a.c. component is 
assumed to alternate. The load line for the latter must pass 
through A. Another point on the load line is found from the 
equation im = E^/Rc, this value must be added to Ib to give 
point J, as shown in the figure. The load line J A intersects the 
voltage axis at point B. This is the point at which the instan­
taneous value of ib is zero, or the cutoff point; it occurs when ec 
swings sufficiently negative (here shown as ec = ec5).

It is immediately apparent that at cutoff the plate voltage 
exceeds the normal supply voltage Ebb by an amount E^B, 
whereas in resistance coupling the plate voltage at cutoff was just 
equal to Em. Also, it is evident that, the higher RL is, the less is 
im, while point A remains unchanged, so that the load line has less 
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slope and intersects the voltage axis farther to the right; i.e., the 
plate voltage at cutoff becomes greater.

This cutoff plate voltage can be evaluated quite simply. Thus, 
referring to Fig. 27, we know, by Kirchhoff’s laws, that the sum 
of the voltages in the plate circuit must at all times be zero. 
Also, in an ideal choke, the current (Zb) cannot change—at least 
suddenly—so that if the internal current of the tube is reduced to 
zero the choke current Zb must be diverted to Rl. In flowing 
through Rt it sets up a voltage drop Ii,Rl, and this voltage drop 
will be in the same direction as Eu>. Thus,

Cb — ERl — E^ = 0 
or

6b = Ebb + IbRh (19)
From a physical viewpoint, when an attempt is made to decrease 
the current in a choke the voltage across it rises —here by an 
amount ERl. This is popularly known as the “inductive kick” 
and is the cause, for example, of the heavy arc across the switch 
blades when direct current is interrupted in an inductive circuit. 
The advantage of this type of load impedance is immediately 
apparent. It enables the same results to be obtained as for a 
pure resistance but at a lower B supply voltage.

The above analysis affords another means of determining point 
B (Fig. 28), so that the load line may be found in two ways, by 
means of points A and B or points A and J, as desired. It can 
be seen that the load line is the same as for a resistance-coupled 
amplifier operated at a plate supply voltage OB, so that the net 
effect of the choke is to increase in effect the B voltage and there­
fore, in turn, the maximum permissible grid swing or signal 
voltage and a.c. component of the plate current for class A oper­
ation. The tube can thus deliver more power output; for this 
reason, power tubes are always connected to their load (usually 
resistive) through output transformers or chokes depending upon 
the values of the load resistors.

The phenomena noted above are possibly more easily seen from 
the ib-ec family of curves (Fig. 29). These are obtained from the 
plate-voltage family of Fig. 28 in exactly the same way as in 
the case of resistance coupling, i.e., by plotting the intersections 
CDEAFGB. In this way, curve BAC (Fig. 29) is obtained. The 
static characteristic may also be obtained by drawing a vertical 
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line through A in Fig. 28 and plotting the intersections here 
as curve DAE. Note that the tentative operating point A occurs 
at the steady direct bias voltage E„ and is determined by the 
static characteristic, while, as has already been explained, all 
other points of the dynamic curve do not fall on the static curve. 
As a result, the dynamic cutoff B occurs at a more negative grid 
voltage than the static cutoff D.

In studying the action of a tube, it is customary, for the sake 
of simplicity, to assume that a sinusoidal signal grid voltage (ej 
is impressed. In actual operation, the signal voltage impressed

Fig. 29.—Dynamic operation for two values of load resistance.

depends upon the nature of the sound impressed upon the 
microphone, or, in general, upon the nature of the voltage 
generated in the pickup device feeding the tube. Consequently, 
the voltage may be complex, and a thorough analysis of the tube 
output should take this all into account. However, the effect of 
a complex wave, such as two sine waves not harmonically related, 
is to cause harmonic and cross-modulation products to be gener­
ated in the plate circuit. If the tube is a component of a broad­
range amplifier, these products should be reduced as much as 
possible. This means a linear relation between ib and ec, that is, a 
straight dynamic characteristic. Then, if a simple sine-wave 
signal voltage is impressed upon the grid, the plate current can be 
expected to be practically sinusoidal too. Since, for the linear 
dynamic characteristic, the principle of superposition holds, we 
then know that the complex wave can be broken up into its 
components (such as by the Fourier series if the complex wave is 
periodic and hence the components are harmonically related) 
and the action of each studied separately. While the actual grid
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voltage may even consist of transient terms, such transient 
analysis is usually too involved to warrant employing it; more­
over, it can be shown that, if the amplifier amplifies equally sine 
waves of all frequencies in the range, it will react sufficiently 
faithfully to transient terms.* On the other hand, if the tube is 
used in a narrow-range amplifier, then the particular kind of 
complex signal voltage is known, and a special analysis of its 
behavior can be made. For example, if a carrier and its side 
bands, such as a modulated r.f. wave, are impressed upon the 
grid of a detector tube, then the output can be calculated by 
special methods beyond the powers of the graphical methods 
outlined here (see Chap. VI).

Hence, it may be concluded that the graphical method shown 
thus far is best suited for wide-range amplifiers, such as audio 
amplifiers, in which the distortion products are kept at a mini­
mum; and in this case the action of the tube, when a simple sine­
wave signal voltage is impressed, is representative of its action 
when a complex wave is impressed. We therefore shall study the 
behavior of the tube represented by Figs. 28 and 29 when a sinu­
soidal signal voltage eg is impressed. The a.c. component of the 
plate current is approximately sinusoidal and is shown as ip in Fig. 
29. The method of obtaining it is obvious from the figure. If a 
higher value of RL is used, the dynamic characteristic slopes less 
and is more nearly straight—line B'AC'. Note that this line 
passes through the same operating point A as line BAC. The 
a.c. component of the plate current is now ip and, while less in 
magnitude than ip, is a somewhat more faithful current copy of 
eg. Which value of RL to use depends upon whether the tube 
is to deliver power into Rl or merely generate a voltage across 
it that is to be an amplified copy of eg. However, in the latter 
case, the preceding type of load (resistance coupling) is usually 
preferred, and the inductance plate feed is used where maximum 
power output is desired from the tube.

16. Power Output of a Tube.—We shall now discuss maximum 
power output into Rl when the latter is shunted by an ideal 
choke or inductance. The operating point must first be deter­
mined, hence grid bias Ec for a given plate supply voltage Ebb. 
It has been seen that the d.c. component of the plate current is

* See, for example, Guillemin, E. A., “Communication Networks,” 
Chap. XI.
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determined by the static characteristic, and so it is evident from 
Fig. 29 that, if a bias voltage greater than Ec is employed, then, 
for a given value of Rl, the dynamic characteristic is lowered 
(although approximately the same slope as before) and as a 
consequence crosses the static curve at a point to the left of A 
and the axis at a point to the right of B. This means that the 
cutoff grid voltage is reduced as the d.c. bias is increased, and 
vice versa.

However, after having chosen the d.c. bias, we can increase Rl, 
decrease the slope of the dynamic curve, and cause it to cross the 
ec axis farther to the left. Hence, a proper choice of Rl can 
cause the cutoff grid voltage to be twice the normal bias voltage 
if it is so desired. In Fig. 29 it is seen that for a normal bias of 
Ec the dynamic curve BAC for a particular value of Rl intersects 
the ec axis at B and that

OB = 2EC
For class A operation, the grid must not be driven positive, so 

that it will not draw current and thus impose a load upon the 
source of its signal voltage, eg. Evidently, then, the peak posi­
tive value of eg (assumed a sine wave) must not exceed Ee. But, 
on the negative half cycle, the negative peak value of ea will be 
Ec, which, when added to the normal negative d.c. bias Ec, makes 
the total grid voltage at that instant 2EC. Class A operation 
requires that this peak negative voltage does not exceed the cutoff 
voltage, so that excessive distortion and rectification are not 
produced in the plate current. Therefore Ec must be adjusted 
to such a value that, for a given magnitude of Rl, it is one-half 
the cutoff grid voltage, and this is its optimum value. Further­
more, the peak signal voltage eg must not exceed Ec. This is the 
case for the dynamic curve just cited.

If, after choosing Ec, as above, RL is now increased, dynamic 
curve B'AC is obtained, whose cutoff point B' is top great, so 
that the plate current is not varied to its furthest extent. For 
this value of Rl the d.c. bias should be increased until it is just 
half the new value of cutoff voltage. As it is increased, however, 
it must be noted that the cutoff voltage decreases, so that the 
increase in the bias voltage must take this latter factor into 
account.

If the bias voltage is increased, then the maximum signal 
voltage, or so-called “excitation,” of the tube may be increased. 
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It may strike the reader that this may impose an excessive demand 
upon the signal source. This matter, however, is governed 
by the following practical considerations: In class A operation the 
grid is not driven positive and hence draws no current. It 
merely requires an exciting voltage, which is why the vacuum 
tube is often called a “ potential-operated ” device. Since power 
is the product of the voltage by the current, then, if the grid 
draws no current, it requires no power from the exciting source. * 
Therefore, from a power viewpoint, the source need not be com­
parable with the tube in power-handling ability. Furthermore, 
it is normally possible to obtain in the plate circuit an amplified 
copy of the signal-voltage input. Hence the input stage need 
not deliver a voltage that is comparable with that of the output. 
As a consequence, in practical design the increase in signal voltage 
required from the preceding stage when the bias voltage of the 
power stage is increased is of negligible importance both from a 
power and from a voltage viewpoint as compared with the 
increased power or voltage output possible from the power 
tube.

It is therefore desirable to choose RL and Ec such that the 
maximum power output is obtained in the plate circuit, regardless 
of the value of signal input that may be required in such a case. 
An a.c. component of the plate current will then be obtained that 
will flow through RL (while the d.c. component flows through L) 
and hence will be expended as power in RL. In practice, RL may 
be any load, such as a loud-speaker, that presumably imposes a 
practically resistive reaction upon the tube.

Before seeking the optimum values of RL and Ec (hence eg), it 
is of interest to see what the a.c. power output of the tube into 
Rl is for any value the latter may have, and hence the correspond­
ing value of Ec for class A operation. It is to be noted from 
Fig. 29 that the plate current has a maximum value determined 
by point C and a minimum value given by point B and that it 
varies sinusoidally between these limits so that the peak value 
of the sine wave is half the maximum variation of the total peak 
plate current. It is further to be noted that in the figure point B

* In such amplifiers where the grids are driven positive, the grid power is 
small compared with the plate power, so that even in this case the above con­
siderations hold approximately. Ultra-high frequencies are excluded from 
this discussion, however.
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is chosen as the cutoff value where is zero. In practice, the 
grid never is swung quite to cutoff for a single tube (class A) but to 
a value where the dynamic characteristic begins to bend markedly. 
This is done to avoid the excessive distortion products introduced 
by this portion of the curve, since the remainder of the curve is 
usually substantially linear. The minimum value of the plate 
current is therefore never quite zero but a small value, which we 
shall denote as Imin. Let us also denote the maximum value of 
it, as Im„. The total variation in the current is evidently the 
difference between the two, and the peak value of the a.c. com­
ponent is therefore

i^ = (20)

The effective value is

/Ipeak Zmax Zmin mi \
_---- — —-- .-------—----- (Al)

V2 2 V2

This current in flowing through R L produces I2R losses or, rather, 
power equal to

(I — I )2
P„ = (I^Rl = Rl (22)

o

Equation (22) gives the a.c. power output of the tube in terms of 
Rl and the it variation. It is not necessary, however, to use the 
curves of Fig. 29 for 7mal and These can be obtained just 
as readily from Fig. 28, from which Fig. 29 was derived. Thus 
CI (Fig. 28) represents Im„, and GH represents Imin.

The power output can also be calculated from the fact that, if 
the a.c. component is practically a pure sine wave (of the same 
frequency as e„), then the voltage across Rl will be practically 
a pure sine wave too. The maximum voltage across Rl is evi­
dently BI (Fig. 28), and the minimum voltage BH, so that the 
voltage variation across Rl is their difference, or HI. But HI is 
also evidently equal to OH — 01, where OH is the maximum 
plate voltage (call it Emax) and 01 is the minimum plate voltage 
(call it Emm). We have then that

HI = En,c — Emin
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The peak value of the alternating voltage across Rl is evidently

F Emax Emin

2
and the effective value is

Tn FpeakUm — —
V2

Emax — Emin
(23)2 2

The effective values of the current through and voltage across 
Rl are therefore known, and their product is evidently the power 
expended in Rl, that is, the power output of the tube. Hence, 
the latter may be written as

Po
(Emax — Emin) (Imax (24)8

which is the more usual form in which the output power is 
written. Obviously, this equation must check Eq. (22).

It is thus seen that the graphical method makes it possible to 
derive the ib-ec or dynamic characteristic of the tube for any 
value of Rl from the static or ib-eb family of curves and also 
determine the power output if the dynamic characteristic is sub­
stantially linear. It can do more than 
this: it makes it possible to estimate 
the amount of distortion as well, if this 
is small.

17. Calculation of Second-harmonic 
Distortion.—If the dynamic character­
istic does not depart too far from 
linearity, which is practically always 
the case for normal class A operation, 
then it is found, both experimentally 
and analytically, that the distortion 
consists practically entirely of the second harmonic.

A typically distorted output wave for a sinusoidal input is 
shown in Fig. 30A. Time AB equals time BC, and the rise in 
plate current ib from the quiescent value Ib is greater than the 
drop in the next half cycle. This wave can be analyzed into a 
fundamental current if, a second-harmonic current izf, and a d.c. 
component i* in addition to the original value Ib (Fig. 30B). 
The latter component, ide, is due to the fact that the unequal 
increase and decrease in ib take place in equal time intervals.

7 \
A/ IB C

(a)

Fig. 30.—Analysis of distortion 
of the output wave of a tube.
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AB = BC. It is also to be noted that ide equals the peak value 
of iif*

If the three components are added, it will be apparent from the 
figure that the positive peak of ib (call it I^A is

Zmax — If + Ùf + ide + Ib 
Imia ib if I tdc 1 ^2/

(25a) 
(256)

The sum and difference of Eqs. (25a) and (256) give, respec­
tively,

Imax + Imin = 2(i,/„ + i2j + Ib) (26)
Zmax Imin 2iy (2/ )

Since ide = iy, Eq- (26) becomes

Fig. 31.—Power-output be­
havior for a linear tube.

/max + /min “ 41*2/ + 2/& (28)
From Eqs. (28) and (27) the percentage 

second-harmonic distortion can be found.

% 2d harmonic distortion = ~ X 100
O

= + ~ 2/C X 100 (29)
2(7max -¿min)

18. Maximum Power Output—Linear 
Characteristic.—In the special case where 
the static characteristics are linear (which 

is a rather rough approximation for an actual tube) the values 
of Ec and Rl for maximum power output may be easily derived. 
Thus, suppose, as in Fig. 31, that CAP is the static characteristic, 
DAE is a dynamic characteristic for some value of Rl, and OB is 
the correct bias voltage for that value of Rl, that is OB is one-half 
of OD, the cutoff grid voltage. If the tube is assumed to have an 
amplification factor of value p, a plate supply voltage of value 
Ebb, and an internal resistance of Rp, the equation for CAP may 
be written as

• _ FSc lb p■ttp (30)

* This is true only in resistance coupling. For choke feed, ide flows 
through the zero impedance of the choke and i2, through Rl, so that ide 
exceeds the peak value of it,. The error in assuming them equal is not 
serious, however, and facilitates the analysis.
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and for DAE as
L =

6 Rp + Rl (31)

The dynamic cutoff voltage OD is given by Eq. (19) and the fact 
that plate voltages must be divided by g to give their equivalent 
effect in the grid circuit. Thus

OD = —* = —(32) 
M M M

Furthermore, 
j Em + mEc
Ib = ~r;...  (33)

since the only impedance to it is the internal resistance of the 
tube, Rp, which, for linear characteristics, is the constant a.c. 
resistance of the tube. By Eqs. (32) and (33) we have

_ _ Em(,Rp + Rl) . ECR 
yRp Rp (34)

The grid bias Ec( = OB) must be half of OD, so that finally we 
obtain

OB = Ec — Ebb(RP Rl)
g(2Rp + Rl) (35)

The peak signal voltage e„ must not exceed Ec. For this grid 
swing the plate current follows along the dynamic characteristic 
DAE, and its peak positive value is

t _  ___ pEc _ Ebb___
pm ~ Rp + Rl “ 2Rp + Rl ( '

The power output Po is the product of the square of the effective 
value of Ipm by Rl, so that

P — {E^Rl
0 2(22^ + Rl)2 '

It can be shown by the methods of differential calculus that Po is 
a maximum when

Rl = 2RP (38)
From Eq. (35) the corresponding value of the grid bias is found 
to be

E‘=~l~ (39)
fjl
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and the maximum power output to be

P. Eh? 
16Æp (40)

Equations (38) and (39) give the optimum values of El and Er, 
respectively, for maximum output, for a tube having linear 
characteristics. If the grid swing is limited in an actual tube 
to the region where the characteristic is substantially straight, 
i.e., where is above the sharp bend near cutoff, results are 
obtained in fair agreement with the above equations. Analyti­
cally this means that the B voltage is reduced in effectiveness by 
an amount depending upon how much Imi„ exceeds zero. Let Es 
denote the plate voltage for ec — 0 and ib — Then the 
previous derivation can be modified by denoting the effective 

B voltage as Ebb — Es instead of 
Ebb, Eqs. (37), (39), and (40) 
become, respectively,

Fig. 32.—Power output 
resistance.

is the internal plate

P.

E,

pa q max

load

= (E» - Es)2Rl 
2(2RP + Rl)2

_ — ì(Ebb — E,)

_ (Eu> — Es)2 
16RP

(37a)

(39a)

(40a)

while Eq. (38) remains unchanged, 
that is, Rl = 2RP, where Rp

resistance at the operating point. As a
consequence, these optimum values are the ones usually chosen, 
tentatively, at least, for a single tube operating class A. It will 
be found, however, that Rl may be varied over quite a range 
without P„ changing materially. In Fig. 32, Po is plotted' 
against Rl, and it is to be noted that the peak of the curve is very 
flat. This result can be verified by substituting various values 
for Rl in Eq. (37). Thus, for RL = RP instead of 2RP, the power 
output is decreased by 11.1 per cent, or approximately |db, an 
amount hardly noticeable to the ear.

The reader may be surprised to learn that Po is a maximum 
when Rl = 2RP, as it may possibly be his impression that 
maximum power output occurs when the load impedance is equal 
to the generator impedance. The reason for this apparent
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contradiction is that, while the tube may be considered a gener­
ator developing an e.m.f., by the equivalent circuit theorem, 
there is nothing in this theorem that imposes any limit on the 
magnitude of the equivalent e.m.f. except that it be q times the 
grid signal voltage. For an ordinary generator the e.m.f. is 
independent of the load impedance; in the case of the tube, the 
maximum signal voltage on the grid and hence the equivalent 
e.m.f. in the plate circuit vary in the manner described above 
with load impedance. Hence, as the latter is increased, the 
former is increased, but the a.c. component of the plate current 
through the impedance is decreased, so that these opposing con­
siderations conspire to give maximum power output when the 
load impedance is twice the tube plate resistance, as has been 
shown above. If the grid swing is fixed, however, and thus the 
equivalent e.m.f. in the plate circuit, then maximum power output 
occurs when Rl = RP.

19. Maximum Power Output, Parabolic Characteristics.— 
If the static characteristic is not linear but may be represented 
fairly accurately by the first- and second-order terms of a power 
series, then, by the principles of plane analytic geometry, the plot 
of the plate current vs. grid or plate voltage (static characteristic) 
is a parabola and is called a parabolic characteristic. The dynamic 
characteristics for various values of load resistance are also 
parabolas, flatter than that for the static characteristic.

In this case it can be shown that the maximum power output, 
the magnitude of the distortion products being disregarded, 
occurs when

Rl = 1.21RP (41)
e. - (42)

These results apply to the case where the load resistance Rl is 
paralleled by an ideal inductance, i.e., inductance plate feed. It 
is interesting to note that here RL exceeds Rp by only 21 per cent 
and that the grid bias is less than for the linear tube. It is 
evident, therefore, that for an actual tube the optimum values for 
Rl and Ec may be noticeably different from those given by Eqs. 
(38) and (39) or by Eqs. (41) and (42), respectively. Further­
more, the distortion products, especially in the latter case, may 
be excessive, and hence a higher value of RL may be required to
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reduce these. The actual values of Rl and Ec to be used will 
therefore depend upon the tube; but, once chosen, the graphical 
method will give a fairly accurate idea of the power output under 
these conditions. This will be discussed further in the following 
section.

20. Practical Application of Graphical Method.—The preced­
ing derivation was for a linear tube, and optimum values of load 
resistance and bias were found for this type. The ib-eb char­
acteristics for an actual tube, however, are seldom straight lines, 
and so the optimum values must be chosen with respect to a 
permissible amount of distortion rather than no distortion at all, 
as was the case above. In this discussion, a triode is assumed, 
and the problem resolves itself into three parts:

1. Choice of the Quiescent Point.—This is the point in the 
ib-eb family which determines the no-signal plate current E and 
the applied voltages. If no signal is applied to the grid, the plate 
current is d.c. (E) and flows through the choke rather than the 
parallel-load resistor RL, so that there is no (a.c.) power output. 
The (d.c.) power input from the B supply is therefore all expended 
in heating the plate. This power, termed plate dissipation, 
WPd, must not exceed the safe value permitted by the manu­
facturer of the tube.

A further consideration is the maximum B supply voltage Ebb 
that may be applied to the tube. On the negative half cycle 
of the grid swing, the plate voltage rises to a value

eb = Ebb + IbRL

This value must not exceed the dielectric strength of the insulat­
ing members of the tube. This maximum value of eb indirectly 
determines Ebb, and safe values of the latter are generally given 
by the manufacturer.

Since Wpd and E» are thus specified, E can be found from the 
relationship

This value of E is laid off vertically on the ib-eb family through 
the value of eb = Ebb. If the actual choke (usually the primary 
of the output transformer) has an ohmic resistance of R„, then the 
load line for Rw can be drawn through Ebb instead of the vertical 
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line. In either case, the intersection of the line with a curve 
of the family at a point Ib units above the eb axis is the quiescent 
point, and the grid voltage corresponding to that curve is the 
value of grid bias, Ec, which is to be employed.

2. Choice of Rl-—The load line for RL is to be drawn through 
the quiescent point mentioned above, at least as a first approxi­
mation. Clearly this line must not strike the eb axis at a point 
to the left of the ib-eb curve whose grid voltage is 2EC, since then 
ib would reach cutoff before the grid had reached its peak nega­
tive swing and the distortion would be excessive. (A peak swing 
of Ec is assumed, since this will just drive the grid to zero volts, 
with respect to the cathode, on the positive half cycle. It will 
thus give maximum power output for the particular value of Ri. 
chosen under class A operating conditions.)

How close to the eb axis the load line for RL may cut the 2EC 
curve depends upon the next factor to be considered, viz., the 
permissible percentage distortion. The latter is assumed to be 
all second harmonic, which is not far from the truth for a triode. 
A typical value is 5 per cent; this means that the second-harmonic 
current or voltage component is 5 per cent of the corresponding 
fundamental component. The power ratio is therefore as the 
square, or 1:400. This may also be expressed as the second 
harmonic is 26 db down on the fundamental, since

10 log = — 26 db

A tentative load line is drawn subject to the obvious precaution 
mentioned previously, and and Imin are noted. The per­
centage second-harmonic distortion can then be calculated from 
Eq. (29). If the value is more than is permissible, it can be 
reduced by tilting the load line up, although the line must still 
pass through the quiescent point. After a few trials, the correct 
tilt for the load line will be found. It must be borne in mind, 
however, that the position of the load line will have to be cor­
rected owing to the self-rectification of the tube, and this in turn 
will change the percentage of distortion. This correction will 
be given in greater detail in Sec. 27.

There is a method of finding at once the proper slope of the load 
line by means of a “distortion rule”; but since this does not take 
into account the shifting of the load line due to self-rectification, 
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with the attendant change in the percentage distortion, it will not 
be described here.

3. Calculation of Power Output.—Once a suitable slope for the 
load line has been found, the corresponding value of Rl can be 
calculated, as by choosing any two points on it and dividing the 
difference in voltage ordinates by the difference in current ordi­
nates. The power output is then given by Eq. (22),

D (Zmax Zmin) Rl

or, alternatively, by Eq. (24).
Several points of interest are to be noted. If the B supply 

voltage can be safely increased beyond the value chosen, then Ib 
[by Eq. (43)] will decrease for a fixed WPd- This, in turn, means 
that the quiescent point moves to the right and downward; that 
is, Ib is less, and Ec is greater (to obtain the lower Ib with increased 
Ebb). As a result, Rl must be increased in order that cutoff be 
prolonged to twice this greater value of bias; particularly since 
the quiescent point has moved down as well as to the right.

The power output will at first increase because it tends to vary 
as Em2 [provided that the bias can be adjusted close to the opti­
mum value given approximately by Eq. (39)] and only slowly to 
decrease as RL is increased. However, as Em is increased, Ec 
must be decreased to values considerably more negative than the 
corresponding optimum values; and since RL must also be con­
siderably increased, Po begins to decrease. At the same time, the 
signal voltage required to obtain Po increases with Ee.

The result is that, if a tube is correctly designed, it will be found 
that WPd, Rp, fi, and the maximum value of Em are so coordinated 
that the optimum value of RL is not much in excess of 2RP for a 
nominal value of permissible distortion, say, 5 per cent. For 
example, a type 45 tube has a maximum recommended value of 
275 volts for Em, a permissible plate dissipation of 10 watts, hence 
a value of Ib of about 36 ma., to which corresponds a bias of 
Ec = —56 volts. If the tube were linear, then the optimum 
value of Ec would be —58.9 volts for a y. of 3.5 [Eq. (39)]. The 
value of Rp at the quiescent point is 1,700 ohms, and the value of 
Rl for 5 per cent distortion is 4,600 ohms, which is not too far in 
excess of 2RP = 3,400 ohms, the optimum value for a linear tube. 
The power output is 2 watts.
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If were materially increased above this value, RL would 
have to be considerably greater than 2Rt, the bias and hence 
maximum grid swing would be increased markedly, but the power 
output would be but little greater.

Another point to note is that the plate dissipation is greater for 
no signal than for maximum eB permissible under class A opera­
tion. In short, the tube runs cooler when it is delivering a.c. 
power than when it is not. While this is contrary to the action 
of ordinary sources of power, it need occasion no surprise, since a 
vacuum tube is not a source of energy in the sense of being the 
seat of an active a.c. e.m.f., but rather (as mentioned previously) a 
variable resistor capable of converting some of the d.c. energy sup­
plied to it by the B supply into a.c. output energy. When its 
resistance is not varied (ec maintained constant at the value Ec), 
then it dissipates the d.c. energy as heat.

21. Tetrode and Pentode Tubes.—It is shown in Sec. 16 that 
the power output is

P(Emax Emin) (Imax I min) A
o = g

For a linear tube, I mm can be zero, and evidently Imax is then 21 b, 
the d.c. component of the plate current. For a tube that is not 
linear, Imm is greater than zero, and hence Imax is less than 2Ib. 
Since Ib is fixed by plate-dissipation considerations after Ebb has 
been chosen, it is evident that Imax is indirectly limited by these 
two factors, also. It will likewise be evident that, since the load 
line for R L must pass through the ec — 0 curve of the plate family 
at the value of I max, through the ec = Ec curve at the value Ib, and 
through the ec — 2EC curve at the value Imm, Emax is determined 
by the intersection of the load line with the 2EC curve and Emm by 
the intersection with the ec = 0 curve. Thus, all factors entering 
into the power-output formula are determined by the tube family 
of characteristics and the position of the quiescent point on the 
tube family, i.e., the permissible plate dissipation and choice of 
Ebb-

From the inherent characteristics of a vacuum tube, it is evi­
dent that, for a given Ib, Imax cannot exceed 2Ib, since, for equal 
current excursions about Ib, this would require a negative value 
for Imi„. The quantity Imax — Imm may therefore be regarded as 
relatively fixed. If it is desired to increase P„, then such increase 
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must be sought for in the quantity E^ — Emia. The limits here 
(like those for the current) are Emia = 0 and E^ = 2Ebb, but it 
will be found, as by examination of Fig. 28, the Emia is consider­
ably greater than zero for a triode, owing to the appreciable slope 
of the ec = 0 curve. Since, ignoring distortion,

Emax — Ebb = Ebb — Emin

it is evident that Emax is considerably less than 2Ebb- Improve­
ment in tube performance can therefore be obtained if E,,,-,,, can be 
brought closer to zero.

A hypothetical tube whose characteristics would permit such 
increase in output power is shown in Fig. 33. It is not necessary 
that the ib-eb curves continue into the second quadrant (shown by

Fig. 33.—Hypothetical tube having 
high power output.

broken lines in the figure). 
Instead, they can coalesce into a 
single line making a very acute 
angle with the ib axis, as shown by 
the solid line in the figure, and 
yet the power output will be the 
same as for the former case. In 
this way, we do not depart too 
far from an actual tube in that we 
do not require plate current to 
flow when the plate voltage is 
negative.

It is evident that, as is shifted to the left (as in the case of 
this hypothetical tube), Rl will have to be increased, as compared 
with a linear tube whose plate family has the same slope as those 
of this tube but whose curve corresponding to ec = 0 passes 
through the origin. This means that the load line for Rl will 
swing counterclockwise about Q, so that E^ will shift to the 
right, as well as Emin to the left. As a result, — Emin will 
increase, as will also, therefore, the power output.

In practice, much the same effect may be obtained by introduc­
ing into the tube structure a fourth electrode, called a screen grid, 
between the control grid and the plate and imposing a positive 
potential, usually less than that on the plate, upon this electrode.

The tube characteristics shown in Fig. 34 are considerably 
modified from those shown in Fig. 33, but the effect upon the 
output power is much the same. While the screen grid was possi­
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bly introduced for another purpose, viz., that of eliminating 
coupling between the output and input circuits through the plate- 
to-control-grid capacitance, we shall concern ourselves here with 
its effect upon output power, since this is a matter more pertinent 
to graphical analysis.

It will be noted that for the particular tetrode shown in Fig. 34 
the ib-eb curves show only a tendency to coalesce to the left and 
that to the right they are all nearly horizontal. At a plate voltage 
denoted by a vertical line and marked as the limit of a region 
labeled “values unstable,” the curves show a sudden change in

curvature; this break has been called a “knee” in the characteris­
tic. Obviously this knee should be as sharp and as close to the 
ib axis as possible, in order that increased power output may be 
obtained. (This is the case for Fig. 33.)

In an actual tetrode the knee is considerably rounded, and the 
curves to the right of the knee are more nearly horizontal. The 
reason for the latter fact will be discussed first. The screen grid 
has much more effect upon the space current than the plate 
because of its closer proximity to the cathode. At the same time, 
the screen draws normally very little current because its area of 
interception of the cathode current is small, and thus most of the 
electrons pass through its interstices en route to the plate. The 
screen, however, tends to shield the cathode or space current from 
electrostatic action by the plate; and if the shielding were perfect,
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the plate current would be independent of the plate voltage and 
due solely to the screen voltage. In this case, the curves would 
be truly horizontal, and the Rp of the tube would be infinite. In 
actual tubes, the electrostatic field of the plate penetrates into 
the cathode region through the interstices of the screen grid and 
thus affects the plate current to some extent. As a consequence, 
the curves rise slowly with plate voltage and thus produce a 
finite, though very high, value of Rp.

This same shielding action also produces a tube having a very 
high'/x, where p is defined as

g _ and e„„ maintained const.)
dCc

A value for dep of 1,000 volts may just balance the effect of 1 volt 
on the control grid; i.e., p may be 1,000 or higher. The ra^o 
p/Rp = Gm, however, is about the same as for a triode.

The various factors affecting rounding of the knee of each 
characteristic curve will now be discussed. The electrons pro­
jected by the screen grid through its interstices toward the plate 
enter a region where they are decelerated if the plate voltage is less 
than the screen voltage, which is usually the case during the posi­
tive half cycle of the control-grid swing. As a result of this, they 
accumulate in this region in the form of a space-charge cloud and 
tend to repel fresh oncoming electrons.

Many of the latter are thus repelled back to the screen, increas­
ing the screen current at the expense of the plate current. Some 
are even repelled (through the interstices of the screen) all the 
way back to the cathode, thus even reducing the cathode current. 
The lower eb, the more marked these effects.

However, another factor appears that is even more potent 
in rounding the knee, and this is secondary emission from the 
plate. If primary electrons of the cathode stream strike the 
plate with a velocity corresponding to twenty volts or more, they 
cause secondary electrons to be emitted from the plate in a 
manner akin to the action of heat in producing thermionic emis­
sion. In addition, some of the primary electrons are reflected 
from the plate back toward the cathode. The screen grid, being 
at a considerably higher potential, captures these electrons and 
thus augments its current at the expense of that flowing to the 
plate. In extreme cases, the plate-current loss of secondaries
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may be so severe that the external plate-current flow may even 
reverse. The space-charge cloud between the screen and plate, 
however, tends to prevent this loss in plate current, since the 
secondaries are emitted at relatively low velocities corresponding 
to but a few volts and hence are readily repelled by the cloud back 
to the plate. They may, however, skirt around the cloud and 
thus reach the screen.

The characteristic curves shown in Fig. 34 are based on the 
premise that the screen voltage does not vary. In the more 
general case, where this is not so, the plot would involve four 
dimensions. However, if the screen voltage is maintained con­
stant and then the control-grid potential is set at various values, 
ib-eb characteristics can be obtained that require only a plane for 
their portrayal. This is the case for Fig. 34, where the screen is 
shown maintained at a fixed potential of 90 volts.

As mentioned before, the tetrode was developed to prevent 
interaction between the output and input circuits, particularly at 
radio frequencies, for such interaction could result in regeneration 
and a tendency for the tube to oscillate. This matter can be well 
handled by analytical methods. The ability of a tetrode tube 
over that of a triode to give increased output at a given B supply 
voltage which has been studied here by graphical methods but 
which is not sufficiently emphasized in most texts, is another 
important feature of this tube.

The effects of secondary emission by the plate can be reduced 
in several ways. One is to treat the surface of the plate with a 
material, such as carbon, which is a poor secondary emitter. 
(Secondary emission depends upon the work function, just as 
does thermionic emission.) Another method is to rib the surface 
of the plate in such a manner as to produce strong local electro­
static fields in the crevices in such direction as to tend to prevent 
the loss of secondaries.

A third, and most important method, is to introduce a fifth 
electrode, called the suppressor grid, between the screen and 
plate, which makes the tube a pentode. The suppressor is 
normally maintained at cathode potential. Under these condi­
tions, it does not interfere materially with the action of the screen 
grid in shifting the characteristic curves, as mentioned at the 
beginning of this section. Since, however, it is relatively very 
negative with respect to the plate (as well as the screen grid), it
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repels secondaries from either direction back to the electrode of 
their origin, and particularly is effective in moving the knee in 
the characteristics to the left, i.e., to lower plate potentials.

A fourth method is that embodied in the beam power tubes of 
the tetrode type. Here, by proper design, an equipotential 
surface of zero gradient with respect to the cathode is established 
in the region between the screen and plate. That such a surface 
is possible i's evident from the consideration that in this region 
between two positive electrodes must be some points con­
stituting, in general, a surface, where the electrostatic forces of 
the two electrodes upon a charge are balanced. This surface 
may vary in position depending, in part, upon the space-charge 
effects of the electron stream in this region, but by proper design 
its position over wide ranges of plate current can be maintained 
within a suitable interval of the region. Such an equipotential 
surface can function as a suppressor grid with even greater 
uniformity than a physical grid. The establishment of such a 
zero gradient surface is facilitated by the focusing of the space 
current in the form of beams through the interstices of the control 
grid. By aligning the helical coils of the screen grid with those 
of the control grid and by the use of “beam-confining” plates at 
cathode potential, the electron stream can be focused away from 
the screen-grid wires even if eb is considerably lower than esg, so 
that the diversion of space current to the screen is minimized. 
At the same time, this focusing produces beams that overlap 
in the region between the plate and screen grid to form a surface 
of uniform electron density having zero gradient, and this surface 
acts as a uniform suppressor grid. The beam-confining plates 
prevent plate secondaries from flowing around the sides of the 
beams back to the screen grid or beyond (to the cathode).

In the ordinary pentode, the suppressor grid has a nonuniform 
action upon the electrons in the region between the screen grid 
and plate. As a consequence, the reduction of plate current as 
eb is reduced is more gradual, particularly as the component 
of velocity normal to the plate varies from one electron to 
another, so that some are stopped and reversed in direction more 
easily than others. In the beam power tube the electron veloc­
ities are more uniform in direction. Hence, as the plate voltage 
is reduced, a fairly well defined value is reached at which the 
plate current suddenly begins to decrease; in short, the knee is 
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very sharp and well defined, which, in turn, means that Emin is 
quite definite in value and lower than it would be for the ordinary 
pentode tube. This, in turn, results in greater power output, 
particularly for a permissible amount of distortion.2

In Figs. 35 and 36 are shown the characteristics for a pentode 
and beam power tube, respectively.

Distortion will obviously be excessive if the load line for RL 
cuts through the ib-eb curves below the knee. The output wave 
shape will have a flattened peak on the positive half cycle of the 
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grid swing, or even possibly a subsidiary minimum, whereas the 
other half cycle may be a relatively faithful copy of the grid 
signal voltage. In any event, excessive distortion is indicated.

This distortion may be minimized in several ways:
1. By reducing RL. This reduces the plate-voltage excursions 

to a region to the right of the knee in the characteristics. This is 
the mode of operation best suited to the development of maximum 
power output with permissible percentage distortion or for the 
extreme wide-band amplifiers, such as video amplifiers, where the 
load impedance is inherently low.

2. By reducing the grid swing eg. This is usually feasible only 
in the low level or front end of an amplifier system; i.e., Rl may 
be maintained at a high value, with resultant high circuit gain, 
only if the tube is relatively “oversize” compared with the grid 
swing it is called upon to handle.

3. By increasing Ebb to compensate for the large voltage drop 
in Rl. In this way, large voltage gains and levels can be had 
simultaneously. By increasing Ebb to 1,000 volts and adjusting 
Ec accordingly for a 57 tube, output voltages across a load resistor 
of 250,000 ohms have been obtained sufficient to swing the grid 
of an 845 tube to maximum power output. This method is 
rather obvious and not ordinarily feasible on account of the high 
power supply voltage required.

4. By reducing the screen potential. This is a common 
method employed in screen-grid resistance-coupled audio ampli­
fiers and permits high values of RL to be used, with the result of 
high circuit gain. On the other hand, the reduction in screen 
potential lowers the gm of the tube, and this tends to reduce the 
circuit gain. The reduction in gm is a result of the complex 
reactions that take place in a multigrid tube, as can also be noted 
from the shape of the ib-eb characteristics. Of interest in this 
connection is the unequal spacing of the ib-eb curves for equal 
increments of ec. The principal effect of lowering esg is the shift­
ing of the knee to the left, so that for relatively large grid swings 
and high values of RL the plate voltage can dip to fairly low values 
without having the space current or plate secondaries diverted 
to the screen grid, i.e., without reaching the knee of the char­
acteristics and thus producing excessive distortion.

It might appear that choke feed would obviate the need for 
reducing esg under these conditions. However, a choke having
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sufficient inductance (hence, reactance at the lowest frequency 
to be amplified) relative to the high value of Rp encountered is 
rather difficult to build, and the above condition is necessary for 
a practical choke to approximate an ideal choke premised for 
such operation. Hence, resistance coupling is normally employed, 
and the screen potential is reduced to about half the value pos­
sible if an ideal choke were available. The gain possible is much 
higher than that obtained by an ordinary triode but is far less 
than the tube g, because this could be approached only if Rl were 
many times Rp. For power pentodes, however, RL is relatively 
low, so that, by Thevenin’s theorem, the choke feed sees a fairly 
low apparent source impedance. In this case, choke feed

ec-0

^bb ^bb
Fig. 37.—Graphical constructions for a tetrode or pentode tube.

is practicable and appears usually in the form of an output 
transformer.

22. Graphical Constructions for Tetrodes and Pentodes.— 
The graphical constructions for a tetrode or pentode are exactly the 
same as for a triode: the quiescent point is first located, and then 
the load line for RL is drawn, as a first approximation, through the 
quiescent point. It must not reach cutoff for a grid swing equal 
to the value ec = 2EC, just as in the case of the triode. However, 
in the case of a triode, a grid swing in a positive direction to 
ec = 0 occasions no difficulty, whereas, for a tetrode or pentode, 
such a swing for the load line required to prevent premature 
cutoff may carry the path of operation on the positive half cycle 
into the knee of the characteristic. In short, excessive distortion 
of either half of the cycle of ip is possible.

In Fig. 37 are shown the ib-eb characteristics for a power 
pentode together with a load line (solid line) for a suitable Rl 
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(choke feed). For class A operation, the bias must be midway 
between ec for cutoff and ec = 0. To this value of Ec will corre­
spond a certain value of Ea and Ib and hence a certain value of 
Wpd = RE a at no signal. If JFpj is not excessive, the value of 
El is satisfactory, and the power output can be calculated, by 
Eq. (22), just as in the case of a triode.

But if Wpd is excessive, a trial load line (broken line) correspond­
ing to a lower value of Rl can be chosen. The cutoff point is not 
affected very materially because of the small effect of eb upon 
ib', but, for the same bias as before, the positive grid swing can be 
made to avoid the knee of the characteristics, and, as will also be 
noted, Ea is reduced, so that Wpa is decreased too.

It will be apparent from Fig. 37 that cutoff is poorly defined, 
since the ib-eb curves for very negative values of e„ are very closely 
spaced. Consequently, only that region of operation where the 
curves have more open spacing is generally employed, and the 
calculation of distortion for a given El becomes much more 
involved than for a triode. This will be discussed in the next 
section.

The graphical constructions very clearly illustrate the con­
siderations presented in this section. For example, it may be 
noted how Rl is limited to values far less than the Rp of the tube, 
for practicable operation and minimum distortion. The curves 
of the figure can apply to resistance coupling instead of choke 
feed, if Ea is assumed to be the value where El cuts the eb axis. 
Thus, Fig. 37 illustrates the conditions for voltage amplifica­
tion as well as for power output.

23. Distortion Products in a Pentode.—Figure 37 indicates 
that the relation between ib and eb is quite involved when the 
screen is maintained at a fixed potential and that the curves do 
not obey a simple law such as the f power relationship of Child. 
As a consequence, the distortion products involve more than the 
second harmonic, and an appreciable third harmonic is also 
generated. The amounts of second and third harmonics pro­
duced depend upon the value of load resistance chosen. A safe 
rule is to avoid having the load line cut the curves to the left 
of the knee of the characteristic. In the majority of circuits, the 
tubes are used in a push-pull or balanced amplifier circuit, and 
in this case the even harmonics are balanced out. In such cases 
the load line may be chosen to give a minimum of third harmonic, 
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as then the tubes in push-pull will generate a minimum of 
distortion products.

To examine this in more detail, it will be evident that the 
simple formula for second-harmonic distortion in a triode will 
hardly apply here, at least to the odd-harmonic terms, and a 
more extended analysis must be used. This may be done 
graphically by plotting the signal voltage (assumed a sine wave) 
against time and then plotting the corresponding current function 
of time. The method has been outlined in Sec. 13 of this chapter 
(see Fig. 26A, B, and C). The resultant current wave can then 
be analyzed by means of the Fourier analysis in terms of its
fundamental and harmonic components. 
As a final check, the tube may be set up 
in an actual circuit, and an experimental 
run made, using either an oscillograph and 
the Fourier analysis or a harmonic 
analyzer. Several tubes should be tried, 
and the results averaged to minimize the 
discrepancies due to unavoidable varia­
tions between individual tubes.

Another method, which is possibly more 
illuminating, is to find the dynamic 
characteristic graphically and express 

Fig. 38.—Dynamic charac­
teristic for a pentode tube.

it then by a power
series having a sufficient number of terms to fit the curve 
to the degree of accuracy desired. If the grid voltage is then 
assumed a sine wave, the distortion, products in the plate current 
can be calculated. It will be found that the second-order term
contributes to the d.c. component and the second harmonic.3 
It will be shown that an odd term—in particular, the third-order 
term—contributes to the third harmonic and the fundamental. 
Thus, the dynamic characteristic of a pentode for a somewhat 
high value of RL is of the shape shown in Fig. 38. It has a kind 
of symmetry in that the top and bottom of the curve bend 
toward the horizontal, so that the positive and negative lobes 
of the plate a.c. component will be flattened, although not 
necessarily to the same degree, for a sinusoidal grid signal voltage. 
This, in turn, indicates odd harmonics. The power series repre­
senting this curve will require at least three terms to fit it to any 
degree of accuracy.

ip = kiCg + k2eg2 + k^ej (44)
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where ip is the variation of the plate current about the d.c. com­
ponent and eg is the variation in grid voltage about the normal 
bias voltage Ec. In short, Eq. (44) expresses the variation of.the 
plate current with grid voltage about the operating point A for 
some load resistance Rl. The second-order term k2eg2 will 
contribute to the second-harmonic and d.c. components if

eg = E sin ait (45)
The third-order term k3eg3, when the value for eg from Eq. (45) 

is substituted and expanded trigonometrically, becomes
k3eg3 = k3E3 sin3 ait = k3E3(l sin ait — f sin ^ait) (46)

It is thus seen that the third-order term contributes three times 
as: much to the fundamental as it does to the third harmonic. 
Furthermore, for the shape shown for the dynamic characteristic, 
k3 is inherently negative, so that the third-order contribution 
to the fundamental is subtractive from the first-order term 
kiE sin ait and hence tends to reduce the fundamental power 
output. This is to be expected, since the curve shows that

— /min is less than for a linear characteristic, as shown by the 
broken line (Fig. 38).

If a lower value of Rl is chosen, the dynamic characteristic 
will have the curvature of the lower part of the curve shown in 
Fig. 38 but will tend to remain concave upward, rather than 
having the S-shaped characteristic shown in the figure. This is 
due to the fact that the steeper load line cuts the it-eb curves in a 
region where they continually draw farther apart as the grid is 
made less negative.

The simplest power series approximating this characteristic 
at all satisfactorily is a parabola, i.e., one having the forfn

ip = k\eg -|- k2eg2 (4/)
Such a characteristic gives rise to second-harmonic distortion for 
sinusoidal excitation. It is thus evident that, as Rl is increased 
from a low value, the second-harmonic distortion tends to decrease 
from some high value, possibly down to zero. As the load line 
begins to cut into the knee of the characteristic, third-harmonic 
distortion begins to appear. Further increase in RL usually 
tends to augment this and also to produce increasing amounts of 
second-harmonic distortion, as well as a rich crop of higher
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harmonics. The increase in second-harmonic distortion from 
the minimum (possibly zero value) results from asymmetry in the 
dynamic characteristic about the operating point.

It is therefore difficult to choose a load line so that a maximum 
power output can be obtained with a predetermined or permissi­
ble percentage distortion, since the latter cannot even approxi­
mately be assumed to be all second, as in the case of a triode. 
For a single-ended tube (not push-pull) a value of RL is chosen, 
after a series of trials, such that no harmonic exceeds a certain 
permissible value. One rule is to specify that the square root of 
the sum of the squares of the percentages of the various har­
monics does not exceed a certain value, such as 7 per cent. As 
mentioned previously in this section, for balanced-amplifier 
operation a value of Rl that gives a minimum of third harmonic, 
though considerable second, is usually chosen, since no even 
harmonics will appear in the output in any case. The 6L6 beam 
power tube, on the other hand, is so designed as to produce a 
minimum of third harmonic for a reasonable value of Rl, since an 
important application is in push-pull circuits.

It has therefore been seen that the main effect of the sym­
metrical curvature of the dynamic characteristic is the reduction 
in the fundamental output and that a secondary effect is the 
production of third-harmonic distortion. While the main effect 
reduces the plate efficiency of the tube, the latter is still higher 
than that of a triode. The third-harmonic distortion, as well as 
the second (produced by the second-order term), is, however, 
appreciably higher than that for a triode; nevertheless, the pen­
tode has established a place for itself as a power-output tube. 
Owing to its inherently high a, it has a high power sensitivity and 
can operate directly out of the power detector in a radio receiver 
without overloading the latter, yet with sufficient power output 
to the loud-speaker. (The power sensitivity is defined as the 
quotient of the power output by the required grid signal-voltage 
input.)

24. Effect of Variation in Load Impedance.—The discussion in 
Sec. 21 indicates that, in the process of increasing the power out­
put from a tube by introducing a screen grid, Hl can be increased 
somewhat but that in actual tubes the Rp is increased enormously 
owing to the shielding action of the screen between the plate and 
cathode. This is on the basis of maximum power output with an 
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acceptable percentage distortion. Unlike the triode, however, it 
was shown that Rl cannot arbitrarily take on higher values 
without the distortion being increased inordinately. Hence, Rl 
is limited to values considerably less than the Rp of the tube.

If Rl is increased, the power output may at first increase owing 
to the mismatch in impedance being less, but the distortion 
products increase rapidly, since the load line slopes too far to the 
left (see, for example, Fig. 37) and cuts the ib-eb curves below the 
knee. This is also true if the load impedance is partly inductive 
as well as resistive, although the load line for this kind of imped­
ance has not as yet been derived. The result is that the load 
impedance must not vary materially from its permissible value

Fig. 39.—Loud-speaker compensating circuit, pentode output tube.

with change in frequency or any other cause. Where it is resistive 
in nature, no such difficulty will be experienced. Usually, how­
ever, the pentode feeds a loud-speaker, and the latter has some 
inductance as well as resistance. Its impedance will increase with 
frequency, and hence the distortion products may be excessive at 
the higher frequencies. For example, an electrodynamic loud­
speaker may have a voice-coil impedance of 10 ohms at 30 cycles 
and 50 ohms at 5,000 cycles. It is evident that the loud-speaker 
will reflect back to the tube an excessive value of load impedance 
at the latter frequency and hence may produce excessive distortion 
products. It must be noted, however, that the second harmonic 
is 10,000 cycles, which is the limit of the usual audio range; but 
if a complex signal voltage having an h.f. and l.f. component is 
impressed, a different beat frequency in the audio range may be 
produced.

This effect may be compensated by the introduction of a 
resistance-capacity network in the plate circuit of the tube 
(Fig. 39). The condenser C draws a leading current through 
resistor R, which limits the magnitude of this leading current and 
hence the compensation for the lagging current drawn by the 
useful load, represented by a resistance RL and an inductance Ll 
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in series. For perfect compensation (assuming ideal choke for L) 
the elements must have the following relation:

^ = R = Rl (48)
In this case, the entire load would appear resistive at all fre­
quencies and of value R = Rl. It would be found, however, that 
the l.f. components of the plate current would flow mainly 
through Rl and the h.f. components through R; and since Rl 
represents a loud-speaker or similar load and R an ordinary 
resistance, it can be seen that the acoustic output would be 
limited to the lower frequencies, while the higher frequencies 
would be dissipated solely as heat energy in R. For this reason, 
R is as large as possible consistent with maintaining the load 
impedance below a value that will give excessive distortion 
products and, together with C, is chosen of such value as to 
compensate sufficiently for the rise in impedance of Rl and Ll at 
the higher frequency to be reproduced. This is largely a matter 
of “cut and try,” although a mathematical analysis is possible. 
The main difficulty is in determining Rl and Ll, which are com­
posed of static and motional components.

Where two loud-speakers are used as h.f. and l.f. units, the 
compensation can be made more perfect, in that R can represent 
the impedance of the h.f. unit (which is usually practically resis­
tive in nature); Rl, the resistive component of the l.f. unit; Ll, 
its inductance plus any additional amount placed in series with it; 
and C, the condenser in series with the h.f. unit. Equation (48) 
can then be used, although it gives no absolute values for C and 
Ll, but only their relation to R and RL. Their absolute values 
can be determined, however, by the manner in which they are to 
divide the h.f. and l.f. components between themselves. This, 
however, depends upon the individual characteristics of the two 
loud-speaker units.

25. Plate Efficiency.—In analyzing the operation of power 
amplifier tubes, it has been found useful to rate them on the basis 
of plate efficiency. This is defined as the ratio of maximum a.c. 
power output to the d.c. input power supplied to the tube by the 
B supply. This can be formulated for a linear tube in terms of 
Rl and Rp by the use of Eqs. (33), (35), and (37). These equa­
tions give the values of Ib, Ec, and Po in terms of p, Eh, Rp, and 
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Rl, so that for a given tube (having a certain p and Rp) and a 
given Eu, the efficiency can be found for any value of Rl. (Note 
from the above equations that Rl determines Ec and hence Ib.) 
Thus, the power output is

p _ ERRl 
' ~ 2(2Rp A RL)2

From Eqs. (33) and (35) we obtain
t _ Eb? 

b “ 2RP + Rl 
The d.c. input power is

(37)

(48)

(49)
and the plate efficiency

Ebb2RL/2(2Rp + Rl)2 Rl 
p Ebb2/2RP + Rl ' 2(2RP + Rl)

This is a maximum when RL is infinite in value, in which case
Eff.pmax = 50 per cent

This is the highest efficiency obtainable for a tube operating 
class A, but higher efficiencies are possible under class B and 
C operation. In these modes, the grid bias is normally set at 
cutoff and beyond, respectively, so that the plate current flows 
for but a portion of the cycle. The average value of the current 
or d.c. component is therefore small (hence, the power input) so 
that the plate efficiency is consequently high. Such methods of 
operation produce high distortion products, which can be filtered 
out in the case of a narrow frequency-range amplifier but are 
objectionable in the case of a broad frequency-range amplifier. 
However, where the latter is of the balanced-amplifier type, it 
may be operated class B without objectionable distortion, owing 
to the balancing out of even-order terms in the power series 
expressing the relation between a.c. signal input and a.c. output 
(see Chap. V, Balanced Amplifiers).

In the case of a linear triode operating under optimum condi­
tions, Rl equals 2RP, and

Eff.p = 25 per cent
by Eq. (50). This means that, under maximum grid excitation, 
75 per cent of the B power is still consumed in heating the plate.
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In the case of a pentode the a.c. output for a given Ebb and Ib 
(hence B power) is greater than for the triode, owing to the 
greater value for (Emax — EmSa) so that the plate efficiency can 
approach more nearly the theoretical maximum of 50 per cent. 
As a practical instance, the plate efficiency for a 45 triode is 
but 18.8 per cent and, for the 2A5 pentode, 35.3 per cent. The 
reason these are less than the theoretical values given previously 
is that the tubes are not linear, and hence the grid swing is 
restricted to that portion of the dynamic characteristic which is 
more nearly so, i.e., that portion above the cutoff point and in 
addition, in the case of the pentode, to the right of the knee of 
the characteristics.

26. Space-charge and Coplanar Grid Tubes.—An interesting 
variation in the method of operation of the tetrode and pentode 
is to impress a positive potential upon the first grid and use the 
second as a control grid. The tube is then known as a space­
charge tube. The positive first grid helps overcome the space 
charge and causes a large space current to flow, of which it diverts 
only a small portion to itself. The second grid, being negatively 
biased, slows up the electrons composing this space current, so 
that they form a cloud just before it. This cloud of electrons 
forms a second virtual cathode, of large surface, close to the 
control grid. As a result of the large surface, the plate resistance 
is low; as a result of the proximity of the cloud to the control 
grid, the g is high; and thus high voltage amplification, and also 
large power output, are obtained at a low plate voltage. These 
tubes have been used in Europe to some extent, because the 
alternating power-supply voltages vary so much from one city 
to another that B batteries are employed to a much greater 
extent than in this country.

Another type of tetrode is the coplanar grid tube. This has 
two grids wound in the same plane; one is used as a space-charge 
grid by biasing it positively, and the other as a control grid. 
This type of tube is essentially a space-charge tube and has a 
high power output for a given B voltage. Unlike the screen­
grid tetrode, it is not appreciably troubled by secondary emission 
from the plate, because the negatively biased control grid 
counteracts the attraction of the other positive grid for the 
plate secondaries. As a consequence, the plate characteristics 
resemble those of a pentode. The tube has not as yet been 
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marketed, although known for years, but shows considerable 
promise as a power amplifier.

27. Effects of Rectification in Plate Circuit.—According to 
Sec. 9 of this chapter, the dynamic characteristic can be repre­
sented by an equation of the form

ip = k^g + k2eg2 + k3eg3 + • • •

where ip is the incremental component of the plate current ib due 
to the incremental component eg of the grid voltage ec. In the 
absence of eg, ip = 0, and ib = Ib, the initial direct plate current 
due to the direct grid-bias and plate voltages. If eg is of the 
form

eg = Eg sin at

and this is substituted in the previous equation, a term
k2E2 sin2 wt

is obtained, which can be expanded into Eg2/2, an additional 
d.c. component over and above Ib, as well as a second-harmonic 
component of the form (£92/2) sin 2wZ. Higher even-order 
terms will also contribute positive or negative amounts to these 
two components. The additional d.c. component Eg2!2, due to 
the nonlinearity of the dynamic characteristic, is attributed to a 
property of the tube known as self-rectification. This effect may 
be prorated as equivalent to a change in bias of the tube plus a 
suitably transformed a.c. grid-signal swing. In the case of 
inductive plate feed, it will also appear as an apparent increase 
in the power pack voltage Ebb. In any event, the operating 
point (about which the plate current varies to produce the 
various a.c. components) shifts away from the quiescent point, 
and a correction to the load line may have to be made.

If the load is a pure resistance (to both alternating and direct 
current), then it affects all components alike; i.e., the load line 
for all components is the same. Thus, in Fig. 40, if A is the 
quiescent point and the grid voltage swings to ec = 0 and 
ec = ¿Ec, then the plate current varies from A to B and to C, 
respectively. If the grid swing is sinusoidal in nature, then the 
plate current will have the wave shape shown to the right as D. 
This can be analyzed. Assume that it consists of an additional 
amount of d.c. component GI, a fundamental, and second
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harmonic as shown at E. The additional d.c. component pro­
duces a voltage drop in the load resistance Rl of value FH, so 
that the fundamental and second harmonics (a.c. components) 
vary about the point G... Point G is called the operating point 
and corresponds to a lower bias voltage Ec'. Thus, although

Fig, 40.—Shifting of operating point due to self-rectification, plate characteristic.

the operating point does not coincide with the quiescent point, 
it nevertheless lies on the load line BC.

The above can also be seen from the ib-ec curves (Fig. 41). The
lettering corresponds with that 
component that flows is GI, i 
acteristic is the same as for the 
other components. Hence, it 
is projected over to the dynamic 
curve as point G.

The situation becomes more 
involved in the case of induc­
tive plate feed, since now the 
additional direct current as 
well as the original direct 
current flows through the 
zero resistance choke, while 
the a.c. components must flow 
through Rl. As a consequence, 
the load line for the direct

Fig. 39. The additional d.c. 
for this the dynamic char-

Fig. 41.—Shifting of operating point 
due to self-rectification, transfer charac­
teristics.

current is vertical, while that
for the alternating current is the sloping one for RL, and the 
operating point is moved off the originally assumed load line 
passing through the quiescent point.4 The solution of this 
difficult case is one of successive approximations, whether per-
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eb
Fig. 42.—Correction to load line— 

inductive plate feed, plate character­
istics.

formed graphically or analytically. In Fig. 42 the solution is 
indicated to the first degree of approximation. BAC is the origi­
nal load line drawn through the quiescent point A. From this 
the tentative wave shape can be found for a sine-wave signal 
voltage, as in Fig. 39, and this wave shape analyzed for the 

additional d.c. component. 
This is drawn vertically upward 
from A as AG, as the resistance 
to AG is that of the choke, viz., 
zero. The load line for RL is 
now drawn through G (which is 
the first approximation to the 
operating point) and is 
represented by KGL. The 
resultant plate-current wave 
shape is again analyzed for 
further additional d.c. com­

ponent, and the operation repeated until no further increase is 
obtained. The. increments are usually negligible after the first 
approximation (which is therefore sufficient) because, it will 
be noted, G represents a lower bias voltage than A, so that the 

Fig. 43.—Correction to load line—inductive plate feed, transfer characteristics.

corrected grid swing about G is greater in the negative direction 
than in the positive direction (where G is the corrected a.c. axis), 
as a consequence of which the rise in plate current about G does 
not appreciably exceed the decrease in plate current in spite of the 
upward curvature of the family of characteristics.
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In Figure 43 the same state of affairs is pictured on the ib-ec 
plane. The quiescent point A for ec = Ec is on the static curve 
DAF. The dynamic curve is CAB, and for a sine-wave grid 
signal voltage eg the current wave is ip. This contains a d.c. 
component idc, and this value is projected over to the static curve 
as G. The corrected dynamic characteristic is LGK, and G is 
the operating point, different from the quiescent point A. As 
stated before, for class A operation, idc (as well as the harmonic 
distortion) is small, and one approximation, as shown, is usually 
sufficient. In fact, for ordinary purposes this correction is unim­
portant, particularly for values of Rl comparable with Rp. This 
can be seen from the fact that, if Rl is not very high, the dynamic 

' curve does not differ noticeably from the static curve over a small 
interval around the quiescent point A, so that G is nearly on the 
original dynamic curve CAB, and hence the corrected dynamic 
curve LGK is displaced from its original position CAB by only 
a small amount. As a result, the corrected plate current ip is 
nearly identical with the original shape ip.

The correction for tube rectification is of some importance in 
class A work only in the case of pentodes, where the generation 
of additional d.c. component and harmonic distortion may be 
appreciable. In class B and C work (single-endec^, where the 
grid swing is large and beyond the cutoff of the plate current, the 
correction may be considerable. However, in these cases, Rl 
may be chosen much below Rp in value (where the grid swings 
positive) in order to prevent the plate voltage from dropping to 
zero during the positive half cycle of the grid swing; and where 
this is the case, the dynamic curve does not differ much from the 
static curve, so that the operating point is nearly on the original 
dynamic curve and its correction almost coincides with it. In 
resistance coupling it has been noted that the operating point 
remains on the original dynamic curve, so that the maximum and 
minimum values of ip are the same as those for ip and hence such 
items as power calculations remain unaffected. In passing, it 
may be noted that in a truly linear tube no rectification occurs 
during class A operation and the above correction is therefore 
unnecessary.

28. Load Line for a Reactance.—If an inductance L of finite 
value (in contradistinction to an ideal choke) be used as a plate 
load, the load line becomes an ellipse, for a linear tube. This is 
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a consequence of the fact that the voltage across L is out of phase 
with ip, so that the load voltage is a doubled-valued function of 
ip and the load line becomes a closed curve, viz., an ellipse. To 
show this, assume that a sine-wave voltage is applied to the grid 
of a linear tube. The resulting variation in plate current will be 
sinusoidal in shape and can be expressed as

ip = Ip sin at (51)
This current, in flowing through the load impedance Zl, consist­
ing of inductance L and resistance Rl in series, sets up a load 
voltage that may be expressed in complex notation as

eL = iPZL = (Ip sin at)(RL + jaL) (52)
Multiplying through, we obtain

eL = IpRl sin at + jlpaL sin at (53)
We may express

¡jlpaL sin at = IpaL cos at (54)
Substituting Eq. (54) in Eq. (53),

eL = IpRl sin at + IpaL cos at (55)
In the ri^it-hand side of the equation, ip is expressed in terms 

of its maximum value Ip and the sine and cosine of at. We wish 
ip to be expressed directly in terms of Ip, and not with reference 
to at or t, as the load line is a relation between instantaneous 
current and voltage and depends only indirectly upon time in so 
far as this varies the impedance function that the load line repre­
sents. Hence, we shall substitute in Eq. (55) ip for Ip sin at and 
Vlp2 — ip2 for Ip cos at and obtain

eL = Rkip + aL \/Ip2 — ip2 (56)
or

Cl — Riip = aL N^Ip2 — ip2 (57)
Squaring, we obtain

e2L — 2RLeLiP + RtJip2 = a2L2Ip2 — a2L2ip2 
or

e2L - 2RLeLip + ip2(RL2 + a2L2) = a2L2Ip2 (58)
Since

R2L + a2L2 = Z l2
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we obtain finally
Cl2 — 2RLeLiP + ip2ZL2 = oALHp2 (59)

Equation (59) is that of an ellipse whose origin is at the quies­
cent point A (Fig. 44).

The following facts can be shown to hold:
1. The intersections of the maximum and minimum values of 

ip with the ellipse at B and C, respectively, represent as abscissa 
the maximum and minimum values, respectively, of the inphase 
or resistive voltage drops, that is, RlIp and ( — RLIP). These are 
shown as AO and AE, respectively.

2. Also, when ip is zero (total plate current at that instant 
equals It), the maximum quadra­
ture voltage drop across L is j /
obtained. Thus, AF represents ____/b / / 

IpwL, and AG represents —IpwL.
3. Similarly, AH and AI Ib ~/\ 

represent IPZL and — IpZl, 
respectively, which are the eb
maximum positive and negative Fig. 44.—Reactive load line, plate 
values Of eL. characteristics.

' 4. Since the sum of the plate voltage, eb, and eL must at all 
times equal Em, we have that the change ep in plate voltage from 
its normal value is given by the equation

eP = — eL (60)
so that an equation similar to Eq. (59) can be obtained between 
ep and ip. Hence, the path of ip, with respect to ep, is the above 
ellipse.

5. For an inductive load, in which case we have +joiL, the 
ellipse is to be traversed in a clockwise direction; for a capacitive 
load —j/wC, in a counterclockwise direction.

6. In view of (1), (2), and (3) or from Eq. (59), it can be seen 
that, the greater RL compared with &L, the flatter the ellipse. 
Thus, as the inductive reactance is reduced the load ellipse 
flattens out to the familiar load line for Rl, viz., BAC.

7. The derivation culminating in Eq. (59) is independent of 
the quiescent point. The latter may therefore be determined 
by any B supply voltage and any resistance Rdc of the load that 
would determine Ib and hence point A. Thus Rjc may be differ­
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ent in value from RL, the load resistance to alternating current. 
Also, for the linear tube, the ellipse is symmetrical, and hence 
the a.c. component is symmetrical about the quiescent point, so 
that the operating point coincides with the quiescent point.

8. The projection of the ib-eb curve (ellipse) upon the other 
coordinate planes—in particular, the ib~ec plane—is evidently 
an ellipse too; i.e., the dynamic characteristic is an ellipse instead 
of an open curve, as in the case of a resistance (see Fig. 45). A 
is an ellipse for a load impedance ZL, in which the ratio of wL to 
Rl is large; B is an ellipse for the same magnitude of wL, but a 
smaller ratio of wL to Rl', C is the line for Rl equal to Zl and uL

Fig. 45.—Reactive load line, grid 
characteristics.

equal to zero.
9. For a nonlinear tube, Eq. 

(51) no longer holds, in that ib 
contains harmonic-distortion 
products. The curve is still in 
general a closed one, but not 
elliptical in shape (although it 
may be described visually as an 
ellipse having curved axes). The 

derivation of this curve can be accomplished graphically and is 
illustrated in the next chapter. The most important feature here 
is that the elliptical load line dips farther down into the curved 
lower part of the plate family of curves than the one for a load 
resistance, and hence the distortion products are greater. In 
order to operate on the upper, more linear part of the curves, it 
is necessary to reduce the C bias or increase the load impedance, 
and this is more necessary as the ratio of L to Rl increases, owing 
to the wider ellipse obtained.

In practice, reactance plate loads are intentionally used in 
voltage amplifier stages, where the grid swing is usually compara­
tively low and ZL very high, in order to obtain a high voltage 
gain. In this case, the slant of the ellipse and its size are such as 
generally to avoid the high distortion part of the characteristic. 
Conditions, however, may possibly arise in a power tube under 
which the leakage reactance of the output transformer, as wrell 
as the inductive reactance of the connected loud-speaker, will 
give an elliptical load line at the higher frequencies and hence 
more distortion than at the lower frequencies. These distortion 
products, however, will be mainly outside the frequency band,
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although the difference beat frequency for a. complex signal 
voltage may not be.

Reactive load impedances in the general case are treated by a 
method given in the following chapter. The derivation in this 
section is given mainly as an example of the complex reactions 
actually taking place even in a linear tube, but any unfavorable 
effects are minimized under usual operating conditions by the 
requirement of a high ratio of ZL to Rp for high voltage gain.
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CHAPTER IV
REACTIVE LOADS

Fig. 46.—Simple Lr-series 
nonlinear circuit.

1. Introduction.—Chapter III deals with nonlinear resistive 
circuits, special circuits involving ideal inductances paralleled by 
linear resistances, and a linear resistance (linear vacuum tube) 
in series with an inductance. This chapter deals with nonlinear 
resistances in series with reactive loads and voltages of any wave 
form, although the method it develops can also be employed in 
the case of nonlinear inductances or condensers. It is therefore 
general in scope and comparatively simple to apply. For want 
of a better name, it shall be called the finite-operator method.

The finite-operator method is an 
adaptation of the point-by-point method 
of solving a differential equation and is 
analogous to that described by R. Usui,1 
but it is not confined to oscillatory circuits. 
Perhaps the best way to explain it is by 
means of illustrative examples.

2. Inductance and Nonlinear Resist­
ance.—Suppose we have an inductance L, in series with a nonlinear 
resistance r, and a source of e.m.f. e, which is some known function 
of time f(t). Let r be defined in terms of the voltage er and 
current i relations. Thus

er = </>(z) (1)

The equation for the circuit (shown in Fig. 46) is

e = f(f) = + <¡>(1) (2)

This equation is not, in general, capable of solution, owing to 
the presence of the term </>(/). If r were a linear resistance, <fi(i) 
would represent a constant, G, its conductance; and Eq. (2) 
would become an ordinary linear differential equation of first 
order and degree and could easily be solved. In the form 
shown above, it is solvable by means of a series expansion for 

104 
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certain forms of </>(f). The point-by-point method, and par­
ticularly the graphical method to be given, is capable of solving 
it even though is known, not analytically, but merely as an 
experimental plot of i vs. er, known as the load line or terminal 
characteristic for r.

In using the point-by-point method, we start with certain 
initial conditions of e and i. Usually i is assumed zero at the 
start, as the start is ordinarily the closing of a switch. For the 
initial value of e and i, a value Afi is found, which, in a given 
time Aib will satisfy Eq. (2). The current is now

iz — ii + Aii (3)
and the voltage is now

e2 = Bi A Ae (4)
A new time interval Ai2, preferably equal to A(b is assumed, 

and with ei and i2 as given above a new increment Af2 is found 
that satisfies Eq. (2). The process is repeated until as many 
points of the over-all load line (relation between over-all voltage 
and generator current i) are determined as required. The 
process is therefore an approximate method of determining some 
particular integral or solution of Eq. (2), depending upon the 
initial conditions assumed.

In this method, the following will be noted:
1 . The voltage e at the start of an interval of time Ai is assumed 

to remain at that value during the interval and then instantly to 
jump to a value e + Ae at the end of the interval. It then 
remains constant at this value and then jumps to the next 
value at the end of the next interval, etc. This means that the 
voltage time wave is being broken up into narrow rectangles 
of width Ai and of such length that they fall within the time-wave 
curve. It is possible, however, to assume that the voltage rises 
to the value e + Ae at the beginning of the time interval. This 
is the method of breakup of the voltage time wave employed in 
the graphical method, to be described next, and corresponds 
geometrically to breaking up the wave into rectangles whose tops 
fall outside the curve. Finally, it may be assumed that the 
voltage rises linearly with time from the value e to e + Ae so 
that its average value during the time interval Ai is e + (Ae/2). 
This corresponds to breaking up the wave into narrow trape­
zoids and approximates the wave form more closely than the 
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other two methods. Any one of the three may be employed 
in either method, and for sufficiently small time intervals should 
yield results as nearly equal as desired.

2 The additional voltage drop in r due to Ai is not taken into 
account. To do so would require a series of trials, especially if 
r is nonlinear. The graphical method does take this factor 
into account.

To proceed with the graphical method, Eq. (2) is first rewritten 
in finite-increment form. It is to be remembered that the 
voltage at the start of and throughout the time interval At is 
assumed to be e + Ae and that the current at the end of the 
time interval is i + Ai. Hence,

A?'
e + Ae = L — + ^(j, + Ai) (5)

The fraction L/At is to be called the finite operator curve and in 
this case is to be represented by a straight line (because L is 
assumed a linear inductance) at an angle to the voltage axis of

9 = cot 1 Ki

The graphical construction is as follows:
The voltage time wave is broken up into small rectangles of 

(preferably equal) width At. The voltage at time t will be e; 
throughout the interval t + At, e + Ae. In Fig. 47, suppose, 
for example, that, at t = 0, e = 0, i = 0. The first voltage 
increment Aei is projected up as OC. From C a straight line 
at the angle 0 [Eq. (6)] is drawn. It intersects the load line 
for r in A. Then AB is the first increment of current, Ait. It 
produces a voltage drop in r of OB equal to <£(Ati) and in the 
inductance L of value

BC = AB cot 9 = Ait (7)AG

Point D is the first point of the over-all load line. From point E, 
as shown, GE is drawn at the same angle 9. Then GH is Ai2, the 
next increment of current in time At2. It is evident that

OB -j- AH — <0(Afi Aif) (8)
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and
HE = Ai2F (9)

and that 
OB d- AH -f- EE = A&i -|- (10)

so that Eq. (5) is satisfied. The construction is continued, and 
further points on the over-all load line are thus obtained. In

Fig. 47.—Graphical solution for Lr nonlinear circuit.

general, the load line spirals around until it finally closes, which 
means that steady-state conditions have been attained. The 
number of spirals necessary is in general theoretically infinite, 
but in practice the curve is essentially closed after a few turns. 
This convergence depends, among other things, upon the skill 
with which the initial conditions are chosen and the damping in 
the circuit. When the steady-state solution alone is desired, 
the transient spirals are a handicap and are due to the generality 
of the method.
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3. Illustrative Example.—The above method may be illus­
trated by an example involving a purely linear circuit, for which 
the analytical solution is known. Some nonlinear examples will 
be given later. Consider a circuit having only inductance in 
series with a sinusoidal voltage e applied so that, when t = 0, 
e = 0.

Since the circuit has no resistance we can expect a transient 
that never dies out. The construction is shown in Fig. 48. We 
note that the figure closes in one cycle and that it is distorted in 
its elliptical form, also that it is entirely in the first and second

Fig. 48.—Displaced ellipse obtained for pure linear inductance.

quadrants. The distortion is due to finite increments used. 
The fact that the figure is in the first and second quadrants indi­
cates that there is a d.c. component present in the current flow, 
of value (from the symmetry of the figure) of one-half the peak 
value. Its actual value, as well as the equation of the figure, 
can be calculated as follows:

Let the time intervals Ai be such that

U=tx

where x is the number of current increments obtained in the 
time t. Let the equation of the voltage be

e = Em sin at (12)
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From the figure it is evident that

. • Emt .
Aix = ~r sin “Z xL

. . EmtAii = xL sin Lilt
x

. ■ Emt sin 2wt
Az2 = —

xL X

A • Emt sinAz3 = —Í- —
xL X

Summing up the equations we obtain

Emt / . wt . 2wt .
=■ —f- (sin---- h sin------F • • • + sin wi

XL \ X X

(13)

(14)

The sum of the series of the angles is known from trigonometry, 
so that Eq. (14) becomes

Emt sin ^{x + Vylpit/x) X sin (wl/2) 
xL L sin (15)

As x approaches infinity, this reduces to

• _ Emt / . „ ülíX 2Em , .
lx ~ ¿ÏT(wt/2x) Vm 2j ~ ~wL ~ C0S "Z) (16;)

Fig. 49.—Simple rC-series 
nonlinear circuit.

Equation (16) checks with the analytic expression for this circuit 
and is the equation of the curve if the time intervals Ai are made 
infinitesimal in value. The d.c. com­
ponent mentioned previously is Em/wL, 
and the peak value is evidently double 
this or 2Em/wL.

It is thus seen that this graphical 
method checks with the analytical solu­
tion for a simple circuit and initial 
conditions. At the present time, it 
would appear that the proof given above is too complicated to use 
in establishing the correctness of the graphical method for more 
complicated circuits and initial conditions.

4. Capacity and Nonlinear Resistance.—We now take the case 
of a capacity C in series with a nonlinear resistance r and voltage 
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e (Fig. 49). Assume, for simplicity, that there is no initial charge 
in C and no current flow in the circuit. The equation, in dif­
ferential form, is

e=f(t) f idt + ^i) (17)

In finite-increment form this becomes

e + Ae = -p T i + yy i + cj>(i) (18)

The finite operator curve will now be At/C. Note that (At/C)~2,i 
is the total voltage Ec, built up in the condenser in the previous 
time intervals, and (At/C)i is the additional voltage ec built up 
in the condenser in the present time interval by the current flow. 
Equation (18) may therefore be rewritten as

e + Ae — Ec = yy (i) + </>(/) (19)

The graphical construction is as follows:
The voltage time wave is broken up into small (preferably 

equal) time intervals Ai. In Fig. 50A, AeL is the first voltage 
increment OC. At C, a line AC at the angle

0 = cot”1 (20)

is drawn, and it intersects the load line for r at A. Note that AC 
is the finite operator curve, straight because C was assumed a 
constant parameter. The first current increment Afi is evi­
dently AB, while OB is the voltage across r and BC is the voltage 
developed across C. The point D is the first one on the over-all 
load line. A length A B equal to Afi is now laid off on the auxili­
ary diagram (Fig. 50 B), and AC is drawn at the angle 0 to BC. 
Then BC is the total voltage Ec developed across the condenser, 
which in this first construction is the same as BC in Fig. 50A. 
The second voltage increment Ae2 is laid off (point E), and a 
distance FE ( = BC) subtracted from it. Through F the finite- 
operator curve is drawn at the angle 0 to the voltage axis; it 
intersects the load line for r in G. Then GH is the new value of 
current, and I is the second point on the over-all load line. The
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distance HF represents FE represents Ec = (fit/Cyzi,
OH represents and, clearly,

OH -|- HF 4- FE = e 4- Ac (21)
The remaining points of the over-all load line are found in 

the same manner. Thus, GH is laid off on Fig. 50.8 as GC, 
and GF is drawn at the angle 9. Then BF is the new value of 
Ec = (Ai/C)2i. This is laid off from J (Fig. 50A) as JK, and

Fig. 50.—Graphical solution for rC nonlinear circuit.

from K the finite operator curve is drawn. It intersects the load 
line of r in L, and M is the third point in the over-all load line, 
while LN is the new value of current. This is laid off on the 
auxiliary diagram (Fig. 50B) as LF, and the finite operator curve 
LQ drawn. Then BQ is the next value of Ec, which is laid off from 
the end of Ae4 on Fig. 50A, etc. Since Ec builds up quite rapidly 
as i continues to flow, it ultimately overtakes the impressed 
voltage e, so that the operator curve begins to move to the left 
and i begins to decrease even if e is still increasing. The result 
is that the over-all load line begins to fold over and spiral around 
clockwise, which is the proper direction for a capacitive load line 
to take.
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The auxiliary diagram (Fig. 50B) has more than constructional 
utility. The points D, E, and P as shown are the points on the 
capacitive load line; i.e., they are the locus of current vs. voltage 
across the condenser when the latter is in series with the given 
nonlinear resistance r and the voltage e impressed.

5. Illustrative Examples.—As before, an example illustrating 
the method outlined above will be chosen from a linear circuit for 
which the analytic solution is known.

Suppose a condenser C and linear resistance R are in series with 
a unit impulse voltage Ei. The graphical construction is shown 
in Fig. 51.

At the start (t = 0), At is zero (hence At/C) and therefore 0 is 
90 deg., so that the first operator curve AB is perpendicular to the

Fig. 51.—Exponential charging of linear C through linear R from d.c. voltage.

e axis, as shown. The first current flow is therefore AB. From 
then on, the finite operator curves AC, DE, FG, HI, JK, etc., 
make the angle 9 given by Eq. (32) with the e axis. Since the 
impressed voltage Ei is constant after t = 0, the voltages built 
up across the condenser due to the accumulating charge are 
subtracted in line from point A. Thus, Ec, equals AD; Ec, 
equals AD 4- DF; Ect equals AD 4- DF 4- FH; etc. An 
auxiliary diagram is therefore not required for constructional 
purposes in this special case but has been drawn in at the extreme 
right to give the load line for the condenser alone. The current 
may be plotted against time, as shown in the center diagram 
(this can be done in any case for a load line).

The relation between current ix, during the interval At starting 
at any time t, and voltage Ex-i at the beginning of that interval 
may be formulated for the above example as follows:
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- Ex-t R +

E^ - i^i{At/C) _ EU1 - WO/(R + At/C)] 
~ R + (At/C) R + (At/C)

so that
ix _ . At

ü-t C[R + (Ai/C)]
and therefore

ii
Since

1 - C[R + (Ai/C)]J

E
11 R + (Ai/C) 

and
At = Z

X 

we obtain
e r i T*-1’ _ e r i

R + (t/xC) [1 + (t/xCR)] R Ll + (t/xCR)

As x increases without limit (Ai —» 0),
Ei — , It p-t/RC

lx R

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

which checks the analytic solution for an RC circuit in series with 
an impulse voltage Ei.

6. Inductance, Linear Resistance, and Nonlinear Resistance 
in Series.—We shall now proceed more briefly with several other 
circuit combinations. First we take the case of an inductance L 
in series with a linear resistance R, a nonlinear resistance r, and 
a source of e.m.f. e — f(t).

It is possible first to combine R and r in series graphically as 
described in Chap. I. Then this new value of resistance can be 
solved with L as described in Sec. 2 above. However, it is desir­
able to perform the above construction in one diagram, if possible, 
particularly if in a more involved circuit it is necessary to'do so 
in order to perform the entire construction at all.

The finite-increment equations are

c -J- Ae = <b(i -|- Ai) -|- (f -|- Ai)R -|- Ai ~ (30)
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or

where

as before.

e + Ne — er = iR + Ni (31)

er = 4>(i + Ni)

The reader may have noticed by this time how similar are 
finite-operator expressions such as R + (L/Nt) to operational and 
j-operator impedance expressions. Further, such similarities 
will be noted in succeeding examples.

The graphical construction is 
The voltage wave is as usual

Fig. 52.—Series circuit involving linear 
L and R and nonlinear r.

as follows:
broken up into finite time incre­

ments Nt and voltage incre­
ments Ne. Suppose, as in Fig. 
52, at some instant the voltage is 
e + Ne and the current at that 
time is i. From the end of 
e + Ne a line R is drawn at 
an angle to the e axis of value

a = cot-1R (32)
Where it intersects the abscissa through the tip of i, another line 
R + (L/Nt) is drawn at the angle / such that

= cot-' \R + (33)

Where this second line intersects the load line for r in C deter­
mines Ni, as shown, and point Q is the next point of the load 
fine. (P was the preceding point previously determined.) The 
method of construction is of course used from the very start, and 
Fig. 52 merely illustrates the method at some particular moment. 
The reader can check for himself that it conforms with Eqs. (30) 
and (31). Indeed, it will be noted that the construction is such 
that i is determined by the load lines for R and r, and Ni by 
L/Nt in addition to r and R.

7. Capacitance, Linear Resistance, and Nonlinear Resistance in 
Series.—We next take the case of a capacitance C, a linear resist­
ance R, and nonlinear resistance r, in series with an e.m.f. e = f(t). 
The equations are
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e + Ae = + iR + 'f, i' + tt i (34)

e + Ae — eT — Ec = i (R + ) (35)

where d>(i) = er and (At/C) Xi = Ec.
The voltage built up in the condenser, Ec, can be determined, 

starting with the initial current, in the manner described in 
Sec. 4. The only change is that, instead of using At/C as the 
cot 9 in Eq. (20) for the construction of Fig. 50/1, the finite 
operator curve is at an angle

9' = cot"1 (R + = ) (36)
\ c /

To determine Ec, however, we use Fig. 50B unchanged; i.e., 
angles ACB, GFB, etc., are equal to 9 as given by Eq. (20). 
Again we note that R and r could be first combined in series into 
an equivalent resistance and then the constructions of Fig. 50 
used as shown but that the method given above achieves the 
same result with one less diagram. Also, if R is zero, the con­
struction given above becomes identical with that given in 
Sec. 4.

8. Inductance, Capacitance, Linear Resistance, and Nonlinear 
Resistance in Series.—In this circuit we have an L, C, R, r series 
circuit. The final equation for the graphical construction is

e +Ae - er - Ec = i(^ + R) + Ai(f+ ft +R] (37)

where er = <t>(i + Ai) and Ec = (At/C) Xi.
The graphical construction is given in Fig. 53. The angles are 

given by
a = cot-1 (f + R) (38)

9 = cot-1^ + ~ + A (39)

The voltage Ec across the condenser at the beginning of the time 
interval Ai is found by an auxiliary diagram exactly the same as 
that shown in Fig. 50B, and the angle 9 is the same as there. 
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In Fig. 53, the current increment Ai is represented by AB and 
together with the current i at the beginning of the time interval 
forms the new value of current used to obtain the next value of 
Ec, as well as determining the next point of the over-all load line. 
Point C is the one just determined. If R = 0, angles a and 9 
can still be found from Eqs. (38) and (39), and the same con­
struction used. The circuit is now reduced to an L, C, r series 
circuit.

9. Parallel Inductive Circuit.—In Fig. 54 is shown an e.m.f. in 
series with a nonlinear resistance r and a combination of an

Fig. 53.—Series circuit having 
linear//, C, and R and nonlinear r.

iL+AiL+iR

Fig. 54.—Parallel LR in series 
with nonlinear r.

inductance L and linear resistance R in parallel. Suppose the 
currents are as shown, that the impressed voltage during time 
interval At is e + Ae, and that the voltage across the LR parallel 
combination is E. We have, then, that

e + Ae — 'plL + AiB + is) — E

E = Ain = iKRiaI
A • TV 1E L/At

E
R

iR + AiL = E

E = + (At/L) + (1/E)

(40)

(41)

(42)

(43)

(44)
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Substituting the value of E from Eq. (44) in Eq. (40), we obtain

e + Ae — H- Aib T is) — (Ír + Aif)
1

(At/L) + (1/R)
(45)

Fig. 55.—Graphical construction for 
parallel LR.

Equation (45) forms the basis of the graphical construction 
shown in Fig. 55. At some point in the construction the voltage 
has attained the value e + Aem. The inductive current from 
the previous time interval has attained the value iL, as shown. 
From A the finite-operator curve 
BA is drawn so that

ABAC = cot-1
(46)

Its intersection B with the load 
line of r determines point F, a 
newly determined point on the 
over-all load line. The voltage 
across the parallel circuit is E, 
as shown. Then DA is drawn 
such that

ADAC = cot“1 (47)Ai
It is evident that DC = Ait, 

BD = iR, and ABGD = cot-1 R.
To determine the next point of the load line, we use as our new 
current through the inductance the previous value iL, or HI. 
Through H a line is drawn parallel to BA, and where it intersects 
the load line for r in J determines the next point K of the over-all 
load line. The construction is continued as just described, thus 
giving succeeding over-all load-line points. The start of the con­
struction is of course determined by the initial conditions.

10. Parallel Capacitive Circuit.—Suppose, in Fig. 54, we 
replace the inductance L by a condenser C. Our equations are

e + Ae — <p(ïc + Ír) — E (48)

(49)
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from which we obtain

(C/Nt) + A/R) in + ic + (50)

so that

e + Ae + i*) (C/Ximi/R) 2

. = (C/Nt) + (1/R) +

Equation (51) forms the basis of the graphical construction 
which is similar to that in Fig. 50. The quantity

(C/Nt) + (1/Æ) 2 lc

is found at any time by adding the condenser currents up to that

Fig. 56.—Graphical construction for 
parallel RC linear parameters.

time (as in Fig. 50B) but drawing 
through the tip of each current a 
finite-operator line not at the 
angle given by Eq. (20) but at an 
angle

8 = C°t-1 (C/M) + (1/E) (52)

The quantity is then subtracted 
from e + Ae on the main dia­
gram; and, from the end of the 
remainder starting on the e axis, 

finite-operator curves are drawn at the angle 0 given by Eq. (52). 
Thus the first two successive points of the over-all load line are 
shown in Fig. 56. (Initial conditions are that current, charge, 
and voltage are all zero.) Starting from A, BA is drawn so that 
ABAO = 0. Then DA is drawn so that AD AO = cot-1 R.
Then DB = ici, and DC = iBi. On the auxiliary diagram to the 
right, DB is drawn equal to ic„ and DI so that ADIB = 0. Then
BI = 1—,, 7 ic for the first time interval, in which

(C/Nt) + (1/E)
2ic is merely ici, and BI is subtracted from Aei + Ae2 as FG on the 
left-hand main diagram. (Meanwhile, we note that E is the 
first point of the over-all load line). Through G, HG is drawn at 
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the angle 0, giving rise to M as the second over-all load-line 
point. If we draw FL parallel to DA, we obtain LI as in and HL 
as iM. Then iC2 is laid off on the auxiliary diagram to the right as 
LI, and LN drawn parallel to DI. Then BN represents the new

value of + ic that is to be subtracted from the
voltage Aei + Ae2 + Ae3 in the next time interval before the third 
over-all load-line point can be found.
tinued until as much of the over-all 
load line is obtained as is desired.

11. Parallel Resonant Circuit.—A 
parallel resonant circuit, shown in 
Fig. 57, has a nonlinear resistance r. 
We wish to solve for the incremental 
current in the case of L and present 
current in C and therefore may 
regard the previous currents II and 
Zic as known, since they are the 
algebraic sums of AiL and ic, respec­
tively, determined previously by the 

The procedure is con-

Fig. 57.—Parallel resonant
nonlinear circuit

method by which the present Ait and ir are to be found. With 
this in mind we write down the equations

E =

e A Ae — <¡>(Íl + AiL + ic) = E
At V . , . At 
C A/lc + lcC + bcRi — ERi + At) AiL

(53)

(54)

Equation (54) may be written after some simple algebraic trans­
formations as

Í 7 7 \E = (AÍl + ic) ( ÿ— . y I + ir.
yzi -j- z2/

RiZ2
Zi + Z2

+ AtZi
C(Zi + ZJ (55)

where Zi = Ri A (L/At) and Z2 = Ri A\(At/C).
Substituting the value of E from Eq. (55) in Eq. (53), we obtain

e A Ae — <¡>(Íl + AiL + ic) — E
RiZ2

Zi + z2

r AtZi
|_C(Ei + Zj ic — (AiL + ic)
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This last equation forms the basis of our graphical construction. 
We have managed to introduce the branch currents iL and Zic 
(which, as stated above, are known) in such a manner that their 
voltage effects are both subtractive from e + Ae, instead of 
individually subtractive from E. The graphical construction is

Fig. 58.—Graphical solution for parallel resonant circuit.

shown in Fig. 58. From A the finite operator curve BA is 
drawn so that

¿BAO = cot'1 (57)

Then AC is drawn so that

¿CAO = cot-1 Z, (58)
Then CD = AiL„ and BC = ici. These are then laid off on the 
auxiliary diagram on the right as D'C and CB', respectively. 
Then D'M is drawn so that

¿D'MC = cot-1 (59)
Z1 -f- ¿2

whereupon CM = iLlRiZ2/(Zi + Z2)], where iL is simply AiL1. 
Also from B', NB' is drawn so that

Then C'N = [AtZi/C^Zj, + Z2)]SiC, where Zic is simply ict in 
this first time interval.
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From the voltage during the next time interval, viz., + Ae2, 
both these quantities must be subtracted or a total distance MN 
(right-hand diagram) must be subtracted on the left-hand 
diagram. This length is shown in the latter diagram also as 
MN. From N we go up a distance AH, to F and draw FG 
parallel to AB. Then GL represents ic + AH, and J is the next 
point on the over-all load line. To get AH and thus by sub­
traction from GL the quantity ic, we proceed as follows: From M 
we draw HM so that ¿.HMO = cot-1 From H we draw HI 
parallel to CA. Then IL is AiL in this second time interval, and 
hence GI is ic. On the auxiliary diagram to the right we draw 
NP = GI and QD' = IL. Then PS is drawn parallel to B'N and 
QR parallel to D'M. Then SR is subtracted from Aei + Ae2 + Ae3 
on the left-hand diagram, where it is represented by RS too. 
From T directly above S we draw TU to the load line of r, and V 
is the next point of the over-all load line. Then from R (as 
previously from M) we draw KR parallel to HM and then KW 
parallel to AC. The length WX represents the next value of 
AiL, which, when subtracted from UX, gives UW, a reverse, or 
discharge, current in the condenser. Thus, on the right-hand 
diagram, we draw VS = WU and QZ = WX, and the construc­
tion continues in the manner described.

The construction is really simpler than the above detailed 
exposition would indicate. The actual operations are easy to 
perform, but the process is admittedly laborious. However, no 
other method will give the solution to this complicated circuit 
more quickly or easily. Indeed, if the load line for r is very 
irregular or broken, any other method is far more complicated 
or impossible to use, except, of course, a machine differential 
analyzer.

We note, in passing, that if C is infinite and Ri = 0 the con­
struction becomes identical with that given in Sec. 9, while, 
if L = 0 and R2 = 0, it becomes identical with that given in 
Sec. 10.

12. Nonlinear Parallel Branch.—The illustrative examples 
that have been given should afford a fairly good insight into the 
general method of solving graphically reactive circuits. Other 
and more complicated examples can be worked out, but it must 
not be overlooked that the process becomes very involved, just as 
an operational expression or even ordinary integration becomes
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very involved and almost impossible to evaluate. One other 
example will be given of practical and theoretical interest. The 
circuit is shown in Fig. 59. This may represent a linear driver 
tube of constant plate resistance RP, driving the grid of a suc­
ceeding tube positive, the latter’s very nonlinear resistance being 
represented by rg. The equivalent voltage generated in the plate 

circuit of the driver tube is 
represented by e = /(/). If this 
is of low frequency, then the 
driver transformer may be fairly 
accurately represented as 
shown, where Rpw represents 
the primary winding resistance, 
Rm the secondary winding 
resistance, and Lm the open­
circuit inductance (assumed 
linear). For the purpose of 
construction, it is convenient 

to lump Rp and Rpw into one equivalent resistance Ri and Rsw and
rg into an equivalent non-linear resistance r.

The equations are

e -F Ae — (Ìl -F AÌl -F ir)Ri — E
„ .. LE = Ail = irr

(61)
(62)

from which we can obtain

B - (zr + Ail) + (1/r) (63)

so that

e 4- Ae — (Ìl + AÌl 4" ir)Ri = (ir 4“ Aif)
1

(At/L) + (1/r) (64)

The expression . .■ is to be the finite operator curve
(At/L) -F (1/r)

that will be used to intersect R^ It will be noted that, owing to r, 
this operator is truly curved, and not a straight line, as has been 
the case in the preceding examples. It must be determined 
before we can proceed with the remainder of the construction.
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Referring to Fig. 60, we have the load line for r plotted. From 
any point A on the current axis, a line AB is drawn so that

¿BAO = cot-1 (65)Jj

The intersection B, projected 
upward to C in line with A, is a 
point on the finite-operator curve

1| / V This means
(M/L) + (1/r)
that, if the voltage were to change 
from zero to the value AC in a 
time interval At and L and r 
were in parallel, then the total 
current through the two branches 
would be AO, of which JO would 
be the portion through r and 
A J the portion through L.

Fig. 60.—Paralleler finite operator— 
auxiliary graphical construction.

Similarly, DE and GH, etc., are drawn parallel to AB and give 
rise to the respective points F and I, etc., on the finite operator 
curve. This curve we shall designate as Z.

Fig. 61.—Graphical solution for nonlinear parallel resistor.

We can now proceed with the remainder of the construction, 
which is shown in Fig. 61. The load line for Ri is plotted. 
While in this example it is assumed a straight line (Ri linear), the 
method can be used even if Ri is nonlinear as well as r. That is, 
the driver tube may be regarded as nonlinear too. From the end 
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of Aei (point A) the finite operator curve AB, which was deter­
mined in Fig. 60 as OCF, is drawn. Its intersection with the 
load line of Ri in B is projected over to H, which constitutes the 
first point of the over-all load line. Then CA is drawn so that

AC AO = cot“1 (66)Ai

whereupon CJ = NiL1 and BC — iR1. Then C is projected over 
horizontally to E directly over D, where OD = Aei + Ae2. The 
finite operator curve is shifted over so that it passes through E 
and intersects the load line for Rx in G. Then FE is drawn 
parallel to CA, FK is NiL„ and FG represents iB1. Also, point I is 
the second point of the over-all load line. The finite operator 
curve is now shifted over so that it passes through point N, and 
its intersection L with the load line for R determines the next 
point M of the over-all load line. In this way the successive 
points of the latter can be determined.

If Ri is a linear resistance, a modification in the graphical con­
struction can be employed that will eliminate the need for shifting 
the curved finite operator curve but will shift the straight load 
line for Ri. However, it is just as simple to cut out a template for 
the curved finite operator curve, and therefore the alternative 
construction will be omitted.

13. Application of Graphical Constructions to Triode.—The 
above constructions can be applied to a triode (or multigrid tube 
if all but one grid are at constant potentials), with the only 
restriction, of course, that the connected circuits can pass direct 
current. In the case of a triode we note that the impressed 
voltage e equals Em, the generated plate supply voltage, and is 
therefore constant. The instantaneous resistance of the tube, 
however, is a function of the grid voltage. If the latter is a 
known function of time, then the approximate value of the 
instantaneous resistance is known during any time interval Nt, 
and the graphical construction is therefore possible. To illus- 
strate the application, let the triode characteristics be those 
shown in Fig. 62. Suppose an inductance L and resistance R are 
in series with the plate and the B voltage Em- There are really 
two transients, (1) when the plate supply switch is first closed 
(establishment of initial d.c. component), and (2) when signal 
voltage e„ — f(t) is first impressed in the grid circuit in addition 
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to the normal bias voltage Ec. Ordinarily we are not interested 
in the transient set up in (1); hence we determine the initial d.c. 
component by merely drawing the load line for the resistance R 
of the load, in the well-known manner. The load line for (2) is 
the one we now wish to determine. We proceed as follows:

From the plate voltage Ea we draw the load line for R as shown 
in the figure, line AEbb. Its intersection B with the bias voltage 
curve Bc determines the initial d.c. component.

The instantaneous signal voltage es is now determined for each 
time interval At, and the corresponding curve of the plate family

Fig. 62.—Path of operation for triode with inductive load.

used. As shown in Fig. 62, es is assumed to be sinusoidal and to 
start from its zero value. Only these curves of the plate family 
have been plotted, as shown, and in the figure large time intervals 
At have been taken in order to make the figure clearer. If the 
grid voltage in the first time interval At changes from Ec to 
Ec + Ae„, the current rises along BC, where

9 = cot-1 + 7?) (67)

and CE represents Ai, and CD the total current i at that instant. 
The procedure is exactly the same as that followed in Sec. 6. The 
point C is projected over to the Ea ordinate as F, and the latter is 
really the point on the over-all load line, all points of which will be 
along this Ebb ordinate. However, in the case of the triode we 
prefer to call such points as C, H, K, etc., the over-all load line, in 
which case our meaning is “plot of functional relation of plate 
current vs. grid voltage,” rather than “actual energy-supplying 
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voltage Ebb impressed in the circuit.” From the bottom of F, or 
point E», a line is drawn at the angle whose cotangent is R—viz., 
EbbA. This line intersects the current abscissa through C and F 
in G. Through G we draw GH parallel to BC, and HI is the next 
instantaneous value of current.

In the case of a triode, the procedure just outlined is unneces­
sary because the impressed voltage Ebb is constant, whereas in 
Sec. 6 every step is necessary. Here we need merely project 
the points over to the load line for R and then draw the 
finite operator curve through the projected point over to the next 
value of the grid parameter. Thus H is projected over to J and 
JK drawn parallel to CB. Then K is the next point of the load 
line, and the rest are found in the same manner.

Fig. 63.—Experimental setup to check graphical construction of type 45 triode 
with inductive load.

It will be noted from Fig. 62 that if cutoff of the plate current 
occurs during the negative portion of the grid swing, at point L, 
the curve will continue to the left along the eb axis to the point Ebb 
and will rise from there for every cycle of grid swing thereafter. 
Hence, if the steady-state solution is desired and it is foreseen 
that cutoff will occur, the construction can be started at Ebb and 
the initial loop BCHK ignored. This is a fortunate reduction in 
the amount of work necessary in a very nonlinear case, that of 
operation beyond cutoff.

In analyzing the theory of this application, we may regard the 
triode as a resistance that varies both with current and time in a 
determinable manner, while the impressed voltage remains con­
stant at the value Ebb- On the other hand, we may regard the 
construction as the discrete projections on the eb-ib plane of the 
intersection of a shifting finite-operator surface with the tube 
surface.
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14. Experimental Verification.—Experimental setups have 
been made to check some of the circuits described in the preceding

Fig. 64.—Path of operation for type 45 triode—graphically and experimentally— 
225-volt plate supply.

Fig. 65.—Path of operation for type. 45 triode—250-volt plate supply.

sections. One such is shown in Fig. 63. A 45 tube was measured 
for its plate-family characteristics. Thus calibrated, it was con­
nected to an inductance L, of 1 henry, and a resistance R as shown.
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The total resistance of the load circuit was adjusted to 800 ohms. 
The grid was connected to a beat-frequency oscillator set to 200 
cycles and the grid signal voltage, of sinusoidal wave shape, 
adjusted so that its peak value was 70 volts and therefore equal to 
the bias. In this way, as large a grid swing as possible was 
obtained without the grid being driven positive and thus contrib­
uting distortion products to the plate-current wave shape. The 
plate voltage Ebb was adjusted to various values as shown on the

accompanying graphical diagrams (Figs. 64 to 66), and wires A 
and B were connected to the vertical deflection plates of a cathode­
ray oscilloscope, while A and C were connected to the horizontal 
deflection plates. In this way, a figure was obtained on the screen 
that would correspond to the graphical construction for these 
operating conditions.

The results are shown in Figs. 64 to 66. The small figure on 
each graph represents a copy of the oscilloscope trace. It will be 
noted that qualitatively the two correspond, although the trace 
shows a transient that the author feels originated in the oscillo­
scope. Quantitative checks were not possible, and investigation 
showed that the small figure of thick line on the oscilloscope could 
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hardly serve for accurate comparison. Moreover, it was found 
that the deflection plates were not quite at right angles to one 
another. Hence a crest voltmeter was used to measure minimum 
and maximum plate voltages. These checked fairly well with the 
graphical construction, and the values are shown on the diagram 
by crosses.

A brief summary of the graphical method will be given. The 
procedure is as in Sec. 6, with the difference that a triode is used 
here. The grid voltage wave is es = 70 sin 40Chri.

This wave is broken up into 10-deg. intervals, so that
Ai = 1/7,200 sec.

Then L/At = 7,200, and R + (L/At) = 8,000. In drawing a 
finite operator curve, it must be remembered that the cotangent 
of the angle of inclination is 8,000 only if the units of current and 
voltage are amperes and volts, respectively, and the scale divi­
sions are equal. In the graphs shown, the rise is 10 divisions for 
every 32 divisions horizontally for R + (L/At) and 50 divisions up 
for 16 divisions horizontally for R(= 800 ohms). In these 
examples, the current cuts off during a portion of the cycle; hence, 
steady-state over-all load lines can immediately be drawn by 
starting the construction at ib = 0 and eb = Ebb as shown.

In comparing the results, it was found that the maximum 
deviation between the construction and the peak voltmeter read­
ings was approximately 4 per cent for plate voltage. A study of 
the figures will show, however, that the readings are probably in 
error, particularly the peak current readings. Thus, we know 
from theoretical considerations that the load line must start on 
the plate-voltage axis at Ebb; that is, ib = 0, eb = Ea is one point 
on the curve, since cutoff occurs. Also, the load line must be 
tangent to the zero grid-voltage curve. If it is attempted to 
draw a load line through these two points and the peak current 
and voltages are experimentally determined, it will be found 
that the load line does not at all resemble the figure of the 
oscilloscope, which at least qualitatively checks the graphical 
construction.

Another check for the latter is as follows: If the load line is 
replotted as a plate current-time wave and analyzed for its d.c. 
component, it will be found that it checks the d.c. plate milli­
ammeter very closely. It is felt that this check, together with
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Mi|iF—W—i|i|ih!
Fig. 67.—Dynatron oscillator circuit 

using type 36 tetrode.

the fairly close maximum and minimum plate-voltage peak 
voltmeter readings, constitutes sufficient proof of the correctness 
of the method and the construction. Of course, some error is to 
be expected in the latter since finite rather than infinitesimal time 
intervals are used.

The second example is that of a dynatron circuit. The con­
struction of Sec. 11 is to be used. 
The circuit and value of 
parameters employed are shown 
in Fig. 67. The inductance had 
an ohmic resistance of 500 ohms, 
so that the total resistance of 
that branch was 800 ohms. 
The screen voltage was main­
tained constant at 130 volts, and 
the plate supply voltage at each 
of three values, 45, 22.5, and 
13.5 volts.

A simplification of the construction (Fig. 68) of Sec. 11 is possi­
ble because of (1) zero resistance in the capacitive branch and (2) 
constant applied voltage at one of the three given values. The 
dynatron characteristic is represented by r and the plate supply 
voltage by Eo. Assume that this can be applied in such manner 

Fig. 68.—Graphical construction for dynatron oscillator circuit.

that no oscillations start, so that a steady current BM flows as 
determined in the well-known manner by R. This is our initial 
condition. Then BA represents the voltage drop in R due to BM. 
There are two equal voltages present in the parallel branches of 
the circuit, each of value AB = (BM)R. By the methods out­
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lined previously, they may be replaced by two equivalent voltages 
appearing in series with Eg, viz., AB(Zt/Zl) and AB(Zt/Zc). 
The former represents the series voltage drop equivalent to the 
actual voltage across R and the latter the series voltage drop equiv­
alent to the actual voltage across C, due to its stored charge. If 
these two equivalent voltage drops are added algebraically to Eo, 
we obtain Eg — AB[(Zi/Zc) (Zi/Zl)) = Eg — AB. Thus, if 
we attempt to proceed with a graphical construction from our 
initial condition by proceeding as in Sec. 11 and draw the finite 
operator curve for Zt from Eg — AB to r, we find that Zt starts 
from point B on r, and thus our construction does not move from 
its initial position B. This means that the circuit is in equilib­
rium and must receive a shock impulse in order to start oscillating. 
Suppose this is accomplished by imparting an additional charge 
on C and thus changing the voltage across the latter by an amount 
Ec. The equivalent voltage in series with Eg is EctZi/Zc) and is 
represented (Fig. 68) by BC. We can now proceed. From C, 
CD is drawn to represent Zt. Then DG represents ic +• AfL, and 
GA represents the voltage E across the parallel resonant tank 
circuit. From B, BF is drawn to represent ZL. Then FG is 
Az'l and FD is ic', and it is noted that, owing to the negative 
resistance characteristic of r, FD represents a charging current 
into the condenser C. Two equivalent series voltages must now 
be added algebraically to C, viz., AiL(RZt/ZL) and icZt. This can 
be done by drawing FH parallel to DC and then UK to represent 
the finite operator curve RZi/Z,.. Then K is the next point from 
which Zt can be drawn to r to get the next values of ic and AiL.

The construction can be further simplified in two ways:
1. From F a finite operator curve of value Z([l — (R/ZL)J can 

be drawn to GA and the intersection projected up to FL to obtain 
point K. This replaces two finite operator curves FH and HK 
with one. Thus, for each point, three finite operator curves Zt, 
ZL, and Z([l — (R/ZL)] are required.

2. In the examples to be presented, ZL comes out such a high 
value that its operator curve is nearly parallel to the voltage axis. 
Hence, AiL (or FG) and FK were computed directly upon a slide 
rule to obtain greater accuracy. Thus, after CD is drawn, volt­
age GB can be read off from the graph. Then this voltage can be 
divided by Zl and the quotient Aft laid off graphically as GF. 
Furthermore, AH is multiplied by Z£[l — (R/Zl)] and the 
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product laid off graphically as FK. Then from K a line KN, 
parallel to CD and thus representing Zt, is again drawn to r, and 
the process is repeated. The construction thus becomes one 
graphical and two slide-rule manipulations for each point and 
represents a welcome saving in construction lines in the solution. 
We thus use the graphical construction where it is indispensable— 
to find ic + NiL or the intersection of the finite operator curve Zt 
with the irregular curve representing the load line or character­
istic for r.

The characteristic to be plotted here is the current in the 
inductive branch vs. the tank voltage E. Point F in Fig. 68 
represents one such point.

In the example of Fig. 67, the finite operator values were 
calculated for a Nt equal to 1/72,000 sec. Then

z- “ 177^000+800 - 72'800
_ 1/72,000 _

Zc 5 X IO“9 2,777
_ 72,800 X 2,777 _

Zt 72,800 + 2,777 ’
and

~ 21575 (‘-T^w)-2’6“

These values are then divided by 1,000 to obtain the proper 
cotangents when the current scale is in milliamperes.

The characteristic for a plate voltage of 45 volts is shown in 
Fig. 69. It will be noted that there is a close similarity between 
the graphical construction and the figure obtained on the oscillo­
scope. In the former, the initial charge assumed was insufficient 
to give a closed loop in one cycle, but it was obtained in the second 
excursion around the dynatron characteristic. The number of 
points in the closed loop indicate the frequency in that they are 
1/72,000 sec. apart and total to one period. Thus there are 
35 points, and the corresponding frequency is

1
35(1/72,000) = 2,060 c.p.s.

The experimentally determined value was 2,100 c.p.s. and is in 
good agreement.
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From the points of the characteristic curve (load line for 
inductive branch) a time wave can be drawn. This was done and 
analyzed for its d.c. component. The value obtained was 0.79 
ma. The experimental value read on the d.c. milliammeter 
varied from 0.75 to 0.8 ma. during the test. In reference to this 
it is to be noted that the dynatron characteristic varied over any

Fig. 69.—Path of operation for dynatron oscillator—45-volt plate supply.

appreciable period of time and was due apparently to decrease in 
secondary emission with time. Hence it was felt that only 
moderate agreement could be expected between the graphical and 
experimental values. The graphical figure was checked quantita­
tively against the oscilloscope figure after the latter was cali­
brated; and although good agreement was obtained, it was 
decided that the precision of measurement was too low to warrant 
this check as a means of confirmation of the graphical method.

In Fig. 70 is shown the characteristic for a plate supply voltage 
of 22.5 volts. There is a close similarity between the graphical 
and oscilloscope figures, particularly the cutin at the left-hand 
side. The frequency (graphical) was 1,750 c.p.s. (corresponding 
to 41 points), and the experimental value was the same. The d.c. 
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component was 1.42 ma. (graphical) as compared with 1.3 ma. 
average (experimental).

In Fig. 71 is shown the characteristic for a plate supply voltage 
of 13.5 volts. The oscillations are comparatively feeble, and

-40 -30 -20 -10 0 +10 +20 +30 +40 +50 +60 +70 +80 +90 +100
Plate volts

— Oscil osco;>e fiqijre

--------.

Fig. 70.—Path of operation for dynatron oscillator—22.5-volt plate supply.
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Fig. 71.—Path of operation for dynatron oscillator—13.5-volt plate supply.

hence it was found advisable to enlarge the scale of the graph. 
The frequency was 1,567 c.p.s. (graphical), corresponding to 
46 points, as compared with 1,580 c.p.s. (experimental). The d.c. 
component was 2.79 ma. (graphical) as compared with 3.04 to
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3 .28 ma. (experimental). Although the agreement is poor, it is 
to be expected in view of the weak oscillations. No attempt was 
made to use a crest voltmeter in these runs as it was found that 
the capacitance of the leads and meter had an appreciable effect 
upon the characteristic. In the main, it was felt that good 
experimental verification of the graphical method had been ob­
tained, particularly for the larger amplitudes of oscillation.

Interesting and very simple graphical constructions and results 
can be obtained from the method just outlined if some of the 
circuit parameters are allowed to approach zero or infinity. 
Thus, if L = 0, we have a resistance R by-passed by a condenser 
C; and if the nonlinear resistance r is that of a triode, which varies 
in known manner with time (signal voltage on grid known), then 
a transrectification diagram can be made if the triode be adjusted 
to act as a grid-bias detector. Lack of space precludes any 
further discussion of these matters; it may merely be noted that 
some of the results mentioned by R. Usui1 can be verified by the 
construction given above.

15 . Conclusions.—By breaking up a derivative ratio into two 
parts and using one part as a finite operator curve, a graphical 
method of construction has been developed of wide scope and 
comparatively simple manipulation. In contrast to the usual 
method of isoclines,9 each lineal element (starting with the initial 
point) helps to determine the next one, so that no visual judgment 
is required in choosing these to blend into a smooth curve.

Questions can be raised as to the smallness of time intervals 
required, the possibility of cumulative error in proceeding from 
point to point, and the effects of discontinuous variations in the 
nonlinear elements. With regard to the latter, it is to be noted 
that the time interval can be decreased in the neighborhood of a 
discontinuity and increased again in the more uniform portions of 
the characteristic.
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CHAPTER V

BALANCED AMPLIFIERS

1. Introduction.—The balanced amplifier, or (as it is more 
popularly known) push-pull circuit, was invented by Colpitts, but 
the use of this circuit dates back to the development of the 
double-button carbon microphone. At this time its ability to 
cancel out the even-order modulation products of two nonlinear 
resistances was first recognized.

It was first developed for class A operation of vacuum tubes 
and, in inverse connection, as a frequency doubler. Later on, its 
suitability for class B and AB operation in audio work began to be 
appreciated. Today this circuit is finding wide application, not 
only in these fields, but also in the fields of detection, modulation, 
etc.

The correct analysis did not appear until a considerable period 
of time had elapsed after the introduction of the circuit. Two of 
the earliest expositions were given by Kilgour4 and Thompson.5 
The physical analysis in Sec. 2 is based on an unpublished report 
by Dr. C. J. Travis, dated Aug. 18, 1932.*  Much new mate­
rial, however, has been added.

The balanced circuit may be resistance or transformer coupled. 
In the former case, it functions as two single-side amplifiers con­
nected in series cumulative for odd-order modulation products 
and series opposition for even-order products. In the case of the 
transformer-coupled type, however, an additional factor enters 
in—the coupling between the plate circuits of the two tubes 
through the mutual inductance existing between the two halves of 
the primary winding. The analysis is therefore more involved 
and will be treated in detail here.

2. Physical Analysis.—Figure 72 shows the push-pull type of 
circuit but with an output choke instead of an output transformer. 
This may be considered a 1:2 autotransformer and for the present 

* The author is indebted to the RCA License Division for permission to 
include this material.
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may be regarded as an ideal transformer, i.e., as having unity 
coupling, zero ohmic resistance, negligible magnetizing current, 
and no distributed capacity. An actual transformer approxi­
mates the ideal transformer over a frequency range depending 
upon the excellence of its design. The load resistance RL is 
called the plate-to-plate resistance and is the reflected value that 
an actual load across an actual output-transformer secondary 
presents to the two tubes.

When a signal voltage eg' is impressed across the primary of the 
input transformer, it induces equal and opposite voltages eg and 
— eg in the two halves of the secondary. Assume the signal

Fig. 72.—Idealized push-pull circuit.

voltage acting in the grid circuit of the top tube is in a positive 
direction and thus opposite to the bias Ec, while that in the grid 
circuit of the bottom tube is in a negative direction and thus 
additive to Ec. As a result, the top-tube current H increases, 
while the bottom-tube current i2 decreases.

Previously, when only the bias and power-supply voltages, E„ 
and Ebb, respectively, were acting, the two currents H and i2 were 
equal and flowing in opposite directions through the output 
choke. Now, when H and i2 are varying in opposite directions 
from their initially equal values, the output choke will allow the 
currents in its two half windings to vary only if they are equal to 
each other at all times. It is clear from the figure that the power 
supply must carry the sum of the two currents (it + z2) at all 
times; hence, each half of the output choke carries half of this 
current, or (fi + z2)/2; as shown. If H exceeds this amount, the 
difference, or
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flows through Rl to the bottom of the choke and thence combines 
with iz to flow up through the lower half of the choke to the power 
supply and thence back to the two tubes. If we add these two 
components, we obtain

■ । ii — iz fi + iz (2)

which satisfies our initial assumption of equality of the two cur­
rents through the two halves of the choke.

The current through RL is the load current and was found to be 
(fi — iz)/2. It sets up a voltage Cl across RL of value

fi — fa ,,
Cl —  Q— Rl (3)

From the figure it is evident that half this voltage appears in the 
plate circuit of the top tube in a direction opposing Ebb, while the 
other half appears in the plate circuit of the bottom tube as addi­
tive to Ebb. The two plate voltages therefore vary in opposite 
directions from their normal value Ebb-

If we regard the arrangement as a four-terminal network, we 
can draw the following conclusions concerning its performance:

1. An alternating signal voltage is impressed across its input 
terminals, whose magnitude may be considered as 2e9, a grid-to- 
grid voltage.

2. An alternating output current (fi — iC/2 flows through the 
load Rl connected to its output terminals. This current may be 
considered a plate-to-plate current.

3. An alternating output voltage eL appears across its output 
terminals, and this voltage may be considered a plate-to-plate 
voltage.

Thus the input and output voltages and current are alternating 
in character, and the direct voltages E^ and Ec are not apparent 
externally. Unfortunately, our primary information is that 
concerning the two tubes individually and is in the form of a 
family of curves for each, which, for similar tubes, are identical. 
In addition, the foregoing analysis has provided this further 
information:

1. The grid voltages vary oppositely from their common bias 
value, and to equal degree, when an input signal is impressed.



Fig. 73.—Graphical construction on 
plate family of tube characteristics.
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2. The plate currents vary oppositely from their common d.c. 
value, and in the same direction as the respective grid voltages, 
but not necessarily to equal degree.

3. The plate voltages vary oppositely from their common value 
Ek, to equal degree, but in directions opposite to their respective 
grid voltages.

3. Graphical Application.—The foregoing is sufficient for a 
graphical analysis of the performance of the circuit. Thus, as 
shown in Fig. 73, we lay off our d.c. components at the power­
supply voltage Ebb, just as in the case of a single-tube stage. The 
two values are represented by E- Now assume that a signal 

voltage 2e„ is impressed (grid- 
to-grid). One grid changes to a 
value Ec + eg, the other to 
Ec — eg (where Ec is almost 
invariably inherently negative). 
For some value of Rl, the plate 
voltage for the tube whose grid 
voltage is Ec + eg will drop by an 
amount Aep, while for the other 
it will rise by the same amount

Aep. Lines proj ected up from the axis to the respective grid voltages 
at these two points represent it and i2, respectively. Then it — i2 
represents twice the load current flowing through this particular 
value of Rl. The latter’s magnitude can be found from the fact that

Rl _ 2 ACp ...
~2 ~ L - E 1 '

For some other value of Rl, Aep will be different (hence also 
it and i2). In particular, for a higher value of Rl, Aep will be 
greater, and—as can be found by trial from the figure—it — i2 
will be smaller. For RL infinite, Aep will have some finite value, 
and it — E will be zero, which checks with Eq. (4). For RL zero, 
it — E will have some finite value, but Aep will be zero. If Ae„ 
is chosen greater than the value for Rl infinite, it — i2 wall come 
out negative. This means that Rl is now negative, i.e., a source 
of energy, and is of no practical importance. In this way, 
successive values of it — E may be had for corresponding values 
of 2 Aep, while 2eg is the parameter.

If we now make the latter assume some other values, so that 
half of it represents a departure from Ec in one direction and 
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the other half represents an equal departure from Ec in the 
opposite direction, we can repeat the process outlined in the 
preceding paragraph and obtain a new set of values for — i2 
and 2 Nep. This can be repeated until the desired range of 2eg is 
covered.

A point worthy of note is that, for small values of Aep (low 
values of RL) and large values of the parameter 2eg, the ib-eb curve 
for Ec — eg will strike the eb axis at a point higher than Em + Aep 
so that apparently i2 cannot be determined. It must be remem­
bered, however, that no curve of the family ends on the eb axis; 
each continues from that point to the left along the axis. Hence
we see that the above values of 
2 Aep and 2eg merely mean that i2 is 
zero under those conditions. This 
brings out the fact that, if the grid 
swing is great enough or RL suffi­
ciently small, each tube cuts off 
during alternate half cycles. This 
mode of operation may be defined as 
class AB (sometimes called class A 
prime). If 2eg is not excessive or if 
Rl is sufficiently great, neither 
tube’s current cuts off, and this may 
be considered class A. In addition, 
we must note that cutoff also depends upon the operating point, 
which we shall for the moment assume is determined by Ib.

The sets of values of ii — i2 and 2 Aep for various values of the 
parameter 2eg may now be plotted on a separate sheet of paper, 
as shown in Fig. 74. These give rise to a family of curves that 
may be considered the characteristics for the balanced circuit and 
that corresponds to the families for the individual tubes. The 
difference, as noted previously, is that this family is for alternat­
ing voltages 2eg and 2 Aep and alternating currents (it — i2)/2, 
since the balanced circuit or four-terminal network is responsive 
to these only. We see that, the larger 2eg, the greater both 
2 Aep and («i — i2)/2 for a given load resistance Rl. It is also to 
be noted that for each set of operating values Eg and Em a 
different family is obtained. As shown in the figure, the curves 
occupy the second quadrant, which is the only one of practical 
interest in the case of a passive resistive load. For reactive loads 
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all four quadrants are involved owing to the energy storage and 
discharge in and from this type of load during different portions 
of the cycle of grid swing (assumed sinusoidal). The latter type 
of load, however, presents too many difficulties to be discussed 
here.

In a subsequent section it is shown that, for parabolic tube 
characteristics, the curves of the above family are straight lines. 
For actual tubes, however, they may not be; but if they are 
essentially parallel to one another, at least over a certain range, 
and equidistant, the distortion products for a suitable value of Rl 
will be small. For class A operation, the optimum value of El is

Rl = 2RP (5)
where Rp is the plate resistance at the operating point of either 
tube, the latter being assumed to have parabolic characteristics. 
For class AB operation a good value is

Rl = ARP (6)
where Rp is the plate resistance of either tube at peak positive 
grid swing and for a value of tube current in the neighborhood of 
that to which it will rise for this value of Rl- Although this 
means that we have defined Rl in terms of itself, it will be found 
that Rp in this range does not vary much; moreover, the power 
output is not materially changed with nominal variation in Rl 
from the value set by Eq. (6).

In case the positive grid swing is such as actually to drive the 
grid positive with respect to the cathode (sometimes called class 
AB2), then a new consideration enters in: the minimum plate 
voltage at that instant should be from two to three times the 
amount by which the grid is positive with respect to the cathode. 
Since the minimum plate voltage is given by

^miu Ebb Ep (7)
and the positive grid voltage e by the algebraic sum

e = Ec A eg (8)
we can determine for 2eg what 2 Aep should be. This in turn will 
determine RL.

Equation (4) indicates that the relation between (ii — i2)/2 
and 2 Aep is linear. Hence, the load line for RL is a straight line
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on Fig. 74 and passes through the origin. It may be determined 
in exactly the same manner as that for single-tube operation and 
is shown in Fig. 74 as OA for the desired value of RL. The inter­
sections of AO with the various curves give the load current 
(zi — f2)/2 and voltage (2 Aep = El) for various values of grid 
swing 2eg and for the chosen value of Rl. We can now plot 
(zi — i2)/2 vs. 2e„ and obtain the push-pull dynamic characteristic, 
as shown in Fig. 75. Corresponding points here are labeled as in 
Fig. 74. If the tubes are suited for this mode of operation and 
the operating point is satisfactory, the characteristic obtained 
will be straight, or nearly so. Actually, 
it occupies both the first and third 
quadrants, although it is evident that 
the plot in the third quadrant is the same 
as that shown in the first quadrant, 
only inverted, and hence has been 
omitted in the figure. As a result, only 
odd-order terms are present in the power 
series for the characteristic, and thus the 
circuit has eliminated the even-order 
terms in its output, which for a sinusoidal 
signal voltage means suppression of the 
even harmonics. The plot (ix — z2)/2 vs.
time may now be made if the wave shape of 2e„ is known or 
assumed and the former wave shape then analyzed for its 
sinusoidal components.

We can now plot the relation between the individual tube cur­
rents and their respective grid swings on Fig. 73 and thus deter­
mine the load line of Rl on each tube characteristic. Referring to 
Fig. 74, we see that when the grid-to-grid voltage is 2e9, the 
plate-to-plate voltage is 2 Aep„ when the grid-to-grid voltage is 
2e„, the plate-to-plate voltage is 2 Aep„ etc. Half of each plate- 
to-plate voltage is to be associated with each tube in the proper 
direction. Thus in Fig. 76 we repeat Fig. 73 and on it show half 
of 2 Aepi, 2 AeP2, etc., laid off on the eb axis on either side of the 
quiescent voltage Ebb. From these points, lines are projected 
vertically to the curves having corresponding values for the grid 
parameter. In this way, we obtain points 1, 1, 2, 2, 3, 3, etc. 
These represent at any instant the magnitudes of ix and i2 in the 
respective tubes or the values of the current in either tube for 
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Fig. 75.—Transfer, or out­

put, characteristic for bal­
anced amplifier.
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corresponding moments in the alternate half cycles. According 
to the latter viewpoint, if we join these points by a smooth curve, 
we have the relation between the current in either tube and its 
grid voltage, i.e., the load line of Rl for each tube.

In general, this load line will be curved, rather than straight, 
as is the case for a single tube, and (as shown in the figure) may 
cut off on the right-hand side of Ehb (just beyond point 3). For 
parabolic characteristics, the load line will be a parabola too, 
up to the point of cutoff. The reason for the curvature of the 
load line is that the tubes may be regarded as two generators

Fig. 76.—Apparent load-resistance line as viewed by either tube.

connected in parallel to the load RL through the output choke. 
The tubes may be regarded as generating equal voltages, and 
in the same direction for the above equivalent circuit, but as 
having internal resistances variable throughout the grid cycle, 
and in opposite directions. As a consequence, the division of 
load throughout the cycle will be unequal (except at the operat­
ing point, where they have equal internal resistances), and hence 
the impedance Rl reflected to either will be variable. Spe­
cifically, at the operating point, Rl appears as RL/2 to either; 
beyond cutoff of either tube, Rl appears infinite to that tube 
and Rl/A to the other.

As indicated by Eq. (4), the lines joining points 1, 1, 2, 2, 
etc., of Fig. 76 all make the same angle 9 with respect to the Ep 
axis, of value

e = cot-1 (9)

Moreover, it will be evident from the geometry of the figure that 
these lines will all be bisected by the ordinate, that is, by the 
ordinate through the operating point, and projections (2 Aep) 
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will be bisected by this ordinate too. Accordingly, Kilgour4 
has suggested sliding a rule at the angle given by Eq. (9) along 
the paper so that the segment intercepted by equal grid curves 
to either side of Ec will be bisected by the operating ordinate. 
The intersection of the rule under this condition with each pair 
of curves gives the value of it and i2 immediately on the original 
tube family of curves, from which all other relationships may be 
plotted. This method has much to recommend it when RL is 
known, as it eliminates much labor; it will be used here for 
further work.

4. Dynamic Characteristics.—The load line of Fig. 76 may be 
replotted so as to exhibit the relationship between ib and ec.

Fig. 77.—Individual and composite dynamic characteristics.

Such a plot is evidently the dynamic characteristic of either 
tube. This curve is shown as ABC in Fig. 77 for one tube. If 
this be then rotated first about a vertical line through Ec and 
then about the eb axis, a second dynamic characteristic DEF for 
the other tube is obtained. The two curves will then exhibit 
the operation of the stage very clearly. A positive grid swing 
for one tube is a negative grid swing for the other. Thus, a 
positive grid swing ECG for the top tube is an equal but negative 
grid swing for the bottom tube, and the corresponding plate 
currents are GH and GI, respectively. If the latter is subtracted 
from the former, GJ is obtained; and since this represents 
it — i2 at that instant, it also represents 2iL. In similar manner, 
other values of 2iL can be obtained. For a grid swing per tube of
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ErE, the plate current of the top tube is KE, and that of the 
bottom tube is zero (cutoff), so that 2íl becomes identical with 
the former tube’s current from that point on. Thus, the peak 
value of iL is CF/2. The same holds true for the next half 
cycle, in which BL replaces KE and AD replaces CF. The plot 
of 2Íl vs. ec is thus DLEJKC and corresponds to the curve in 
Fig. 75 (which is drawn for the first quadrant only, however).

It will be noted that two curved dynamic characteristics can 
combine to give a fairly linear output characteristic, at least 
over the range where they overlap. Even where either tube 
cuts off, the departure from linearity may not be excessive, and 
hence the distortion products will be fairly small. In addition, 
if line LEcJK blends smoothly into the portion KC and LD 
(is tangent to them), then the higher order distortion products 
will be relatively small. Specifically, this means that for a 
sinusoidal input eg the higher harmonics of iL will be small in 
amplitude. The concave portions KC and LD represent por­
tions of the cycle where 2iL becomes identical with one or other 
of the two tubes. These portions may have the curvature 
shown, whereupon iL has an upward departure from linearity, 
or “overshoot,” or the curvature may be in the opposite direc­
tion, whereupon iL may be said to exhibit an “undershoot.” 
An analysis of this feature will be given later.

5. Modes of Operation.—The amount of overlap of the two 
characteristics affords a means of defining the mode of operation 
of the stage. It will depend upon the position of the quiescent 
point of each tube and the value of the plate-to-plate load 
resistance Rl, i.e., upon how soon cutoff of either ib is reached 
during alternate half cycles. In spite of the fact that Rl appears 
as a nonlinear load resistance to either tube (curved load line), 
the position of the cutoff point on the ec axis is determined by 
the same considerations as that of a single-ended tube (see 
Chap. Ill, Sec. 15). If RL is small, the individual load lines 
are steeper, cutoff is earlier in the cycle, and the overlap is less. 
If the quiescent point is lowered, either by decreasing Ea or 
increasing Ec, or both, the overlap is decreased. On the other 
hand, a change in the quiescent point may be balanced by the 
proper contrary change in the magnitude of El so as to leave the 
overlap unchanged. Finally, if the grid swing is sufficiently 
great, the overlap will not cover the peak-to-peak grid swing.
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The important point about Fig. 77 is that the tubes may cut off 
alternately early in their respective negative half cycles of grid 
swing without the output current 2iL having much distortion. 
This is in marked contrast to single-ended operation, where 
premature cutoff produces strong distortion products, i.e., 
plate current must flow during the entire grid cycle. The 
removal of this exacting requirement in the case of balanced 
amplifiers permits Ec, Rl, and Ebb to be selected so as to obtain 
increased power output for a permissible amount of distortion. 
The operating conditions may be selected so as to produce the 
following modes of operation:

1. Class A.—If Rl, E„, and Ebb are so selected that plate cur­
rent for either tube flows during the entire grid-voltage cycle, 
and the grids are not driven positive, then the stage is said 
to operate class A. The overlap of the two dynamic characteris­
tics is then complete; and if these characteristics have the proper 
curvature, iL will be linearly related to the grid swing eg and 
the distortion will be zero. In practice, iL is more linear for 
this mode of operation than for the others to be described. 
For maximum output in the case of triode tubes, Rl should be 
in the neighborhood of 2RP, where Rp is the plate resistance of 
each tube at the quiescent point. (This will be shown later.) 
In this case, the overlap can be complete only if the quiescent 
point is sufficiently high, i.e., if Ib is of sufficient magnitude. 
For a given Em, this value of L, determines the bias Ec. On the 
other hand, EbbIb must not exceed the permissible plate dis­
sipation WPd; hence, for class A operation, there is an upper 
limit to Eu,. This, in turn, limits the amount of power output 
possible from the given tubes.

2. Class AB.—As has been shown, fairly distortionless output 
may be obtained even if the overlap is not complete (Fig. 77). 
In this case, plate current for either tube flows for less than 
360 deg. but for more than 180 deg. of the grid-voltage cycle. 
This mode is known as class AB operation. If this can be 
obtained with a grid swing that does not drive the grid positive, 
then it is called class ABi. Usually, in any case, Rl is chosen to 
give maximum power output. Hence cutoff may be varied by 
the other factor, the position of the quiescent point on the 
tube ib-eb family of characteristics, and this position can be such 
that class ABi operation is obtained by making Ec sufficiently
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large relative to Eu» i.e., by overbiasing. Stated in inverse 
fashion, E^ can be increased to much higher values than is per­
missible in class A operation, since Ib can be kept down by over­
biasing to a value that will not cause EbbIb to exceed Wpd. The 
peak value of iL will then be greater, and consequently the 
power output as well.

To summarize, class AB operation permits RL to be chosen 
without reference to cutoff considerations and Ebb to be chosen 
without limitation as to plate dissipation. As a consequence, 
the power output will be greater than for a single-ended stage 
required to operate class A and subject to limitations as to the 
value of Rl and E^.

As an example, a single 2A3, which must therefore operate 
class A, can have a maximum value of Ebb of 250 volts. To keep 
within the permissible Wpd (at no signal) of 15 watts, Ib must be 
kept down to 60 ma., which in turn means a bias of —45 volts. 
The maximum power output employing an RL = 2,500 ohms 
and for 6 per cent distortion is then 3.5 watts. Two 2A3 tubes 
in push-pull can have a value of Ebb = 300 volts, Ib = 40 ma., 
Ec = —62 volts, Rl (plate-to-plate) = 3,000 ohms. The maxi­
mum power output is 15 watts, and the distortion is 2.5 per cent. 
In this particular case, it will be found that the overlap is prac­
tically 100 per cent, so that the balanced stage may also be 
regarded as operating class A. However, it will be found that 
the dynamic characteristics are so curved that single-ended 
operation for the operating conditions chosen would result in 
objectionable distortion, and hence the preceding values must 
be used. Push-pull operation thus permits the very extreme of 
class A operation to be attained for this tube, and it will be 
observed that the power output is considerably more than 
double that for comparable single-ended operation. If the 
limit of insulation strength on the negative half cycle of either 
tube is not exceeded, then even higher values of E^ and true 
class ABi operation with even greater output are possible.

Another subclassification of class AB is class AB2, which refers 
to that mode of operation in which the grid swing is sufficient 
not only to produce early cutoff of the plate currents but also to 
drive the grids positive as well. More will be said about this 
later; at present it will be noted that even greater output is 
possible in this case than for class ABi.
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Fig. 78.—Dynamic character­
istics for extreme class AB (class B) 
operation.

3. Class B.—If the two dynamic characteristics just fail to 
overlap, a mode of operation known as class B is obtained. This 
mode is produced by biasing the tubes to cutoff and is the limit 
case of class AB. It is evident that the plate current for each 
tube flows for only 180 deg. of the cycle in alternate sequence. 
It is also clear that 2iL is identical first with the plate current of 
one tube during one half cycle and then with that of the other 
during the next half cycle. Hence, if the two dvnamic char­
acteristics are curved, distortion will be present in the output. 
Consequently, distortionless operation for true class B is possible 
only if the two tubes are linear, for only in this case will the two 
dynamic characteristics be straight 
lines.

In actual practice, the dynamic 
characteristics are fairly straight 
except near cutoff. The output 
current H can then be made fairly 
linear with e„ if a slight overlap of 
the two characteristics is per­
mitted, so that their curvatures 
will cancel out. This is shown in 
Fig. 78. For a suitable bias Ec, 
corresponding to point B, a small 
direct plate current flows through 
either tube, HB and BI, respectively, and the respective cutoffs are 
F and G. Within this interval of overlap, 2il is given by ABC, and 
it may be fairly straight. Beyond a grid swing of BG mFB, 2H 
becomes identical with CD (= ii) or AE ( = if), respectively. 
If CD and EA are fairly straight and tangent to ABC, then 
higher order as well as lower order distortion products are 
relatively small.

Within the interval FG, the dynamic characteristics FHC and 
AIG are the result of push-pull operation, and the sliding-rule 
method of determining these is theoretically necessary. With­
out this interval, however, one tube or the other is inoperative, 
so that Rl appears as Rl/A to the active tube (the output choke 
acts as a 2:1 step-down transformer from Rl to either tube). 
Hence, over that portion of the cycle where only one tube is 
operative, the load line, as drawn on the ib-eb family, is straight 
and corresponds to Rl/A If the overlap is small, then little 
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error is entailed if either dynamic characteristic is assumed to 
pass through point B, which means that although the operation 
is, strictly speaking, class ABt it may be regarded as practically 
class B.

Most so-called “class B stages” are really of the extreme 
class AB type shown in Fig. 78, but designating them as class B 
involves little error in describing their practical operation. An 
interesting example is that of a pair of type 46 or 59 tubes in a 
class B stage. These tubes are so designed that the plate cur­
rent even at zero bias is very small; and, for the normal power 
outputs possible from these tubes, the grids are swung through 
such large voltages into the positive regions (from the above­
zero-bias operating point) that cutoff occurs very early in the 
half cycle and true class B operation is closely approximated.

A further point is that, if 2iL in the overlap region does not 
blend smoothly into the individual tube characteristics, then 
the distortion products may be an excessive percentage of the 
fundamental for grid swings which just carry 2i£ beyond the 
overlap region and in addition, as mentioned above, the higher 
order terms will be undesirably prominent.

6. Self-rectification.—Just as in the case of a single-ended 
stage, the d.c. component of the plate current, Ib, of each tube 
of a balanced amplifier generally increases with impress of grid 
signal voltage eg. This effect is known as self-rectification and 
represents the manner in which the stage conforms with the 
principle of the conservation of energy, since, for the large grid 
swings possible, the a.c. power output would greatly exceed the 
original d.c. energy input; hence, the stage automatically draws 
a greater value of 21 b and consequently d.c. energy input to 
cover the power output, plus an amount that represents the 
plate dissipation of the two tubes at full signal.

The mechanism by which the tubes draw additional d.c. com­
ponent has been discussed in Chap. I (Sec. 25). If the increase 
in plate current during the positive half cycle exceeds the 
decrease during the negative half cycle, then the average or 
d.c. component will exceed the quiescent value; i.e., self-rectifica­
tion will result. In the case of the balanced amplifier this can 
easily occur during large grid swings, since either tube’s current 
is driven to very high values during the positive half cycle, but 
only to zero on the negative half. Furthermore, low values of 
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Rl are possible and desirable, and these in turn produce cutoff of 
ib early in the negative half cycle of eg, which also helps increase 
the self-rectification. For these reasons, class ABz operation 
should exhibit self-rectification to the greatest degree.

The increase in Ib does not bear any simple relationship to eg, 
and therefore the increase in d.c. input with eg may be at a 
different rate from that of the a.c. power output. Hence the 
difference between the two, which is the plate dissipation, may 
be greater at full signal than it is at no signal, and a tube that is 
correctly biased to keep within the limits of plate dissipation at 
no signal may overheat at full signal. It is therefore necessary 
to calculate the amount of self-rectification.

While the graphical method gives the individual tube load 
lines and these in turn enable the d.c. component of the plate 
current to be determined in exactly the same manner as for 
single-ended operation, a method will be described that probably 
is quicker in obtaining the desired result. The quantity ii A iz 
represents the mid-branch current that flows through the power 
supply. As will be shown subsequently, it contains all the even 
harmonics, including the zero-frequency component, or d.c. It 
therefore pulsates above 2Ib (the quiescent d.c. components of 
both tubes) at a fundamental rate equal to twice the frequency 
of eg. If 2Ib be subtracted from it and the difference plotted 
against time and analyzed, its d.c. component can be ascer­
tained. This is then to be added to 2Ib, giving the total 21 b', 
which when multiplied by Ea gives the d.c. energy input at 
full signal. The a.c. power output Po can be determined from 
Rl and the peak value of ii and corresponding minimum value of 
iz. Thus

P„ = Ud(Peak) = ^A^Vrl 
L V2 J \2V2J

= Rl (10)

(For other than class A operation, iz is zero, and it may just 
reach zero at peak swing even for class A operation.) The plate 
dissipation (per tube) at full signal is then evidently

= If Ea (11)

and this, too, must not exceed the manufacturer’s rating.
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The actual procedure is probably best illustrated by an 
example, given in the following section.

7. Application to 6F6 Tube.—The construction described above 
will be applied to a pair of 6F6 tubes in push-pull. The oper­
ating conditions are as follows:

Em = 350 volts
Ec = —38 volts
Ib = 22.5 ma.

Rl = 6,000 ohms (plate-to-plate) 
eg = 63.8 volts (peak per tube)

For this grid swing the grids are each driven 25.8 volts positive, 
but a zero-impedance driver (preceding) stage will be assumed.

Fig. 79.—Push-pull load line for 6F6 tube—sliding-rule method.

The characteristic curves are shown in Fig. 79, and AB is the 
load line for either tube, obtained by sliding the rule at an angle 
corresponding to 3,000 ohms and bisected by the 350-volt 
ordinate. From this curve, simultaneous values of i\ and i2 
can be obtained for the corresponding grid swings. Thus, if 
eg is 8 volts per grid, is 30 ma. and i2 is 15 ma. Then 
(«i + ¿2)/2 = 23 ma., which is 0.5 ma. greater than the quiescent 
value 22.5. This increase of 0.5 ma. will be called fadd- The 
values for grid swings up to 63.8 volts have been set down in



Fig. 80.—Interpolation curve— 
additional direct current vs. grid­
signal swing.
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Table I, page 155. The quantity 4dd represents half the amount 
by which the power-supply current pulsates above its quiescent 
value.

This is then plotted against eg and curve CD (Fig. 80) obtained. 
The purpose of this graph is to allow f.dd to be interpolated for 
values of eg not shown in Fig. 79 
but corresponding to uniform 
increments of 9.

If we now assume es is sinusoidal 
and of peak amplitude 63.8 volts, 
its equation is

es = 63.8 sin at

We can then calculate the 
instantaneous values of es for 
every 10 deg. of the cycle, or any 
other interval 9, and then find 
the corresponding values of from Fig. 80. These are tabulated 
in Table II, page 155. From this table, iadd is plotted against 9 and 
curve EF (Fig. 81) obtained. The area underneath this curve is 
then found in any convenient way, such as by adding all the 
small squares of the graph paper below it and dividing by the 
base. The quotient, to the proper scale, represents the d.c. 
component of iadd; in this case, it comes out to be 26.4 ma.

Fig. 81.—Wave shape for additional direct current.
This is added to the quiescent value of 22.5 ma., giving a total 
of 48.9 ma. = Ib. The d.c. power input is therefore

h'Eu, = 2 X 0.0489 X 350 = 34.2 watts
The a.c. power output Po is

x 6,000 = 15.3 watts
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The plate dissipation per tube is
T„ 34.2 - 15.3
WPd —--------s------  ~ 9-95 watts ¿1

The plate efficiency is

Po = 
Ib'Ebb

15.3
„.-a = 44.8 per cent34.2 K

Finally, in Fig. 82, is shown the output characteristic, viz., 
in vs. e„. Its linearity indicates that the stage output is prac­

6g, volts
Fig. 82.—Output characteristic for 6F6 

balanced amplifier.

tically directly proportional to 
the input, even though the 
individual tube currents are not. 
Hence, while the output of 
either tube is badly distorted, 
the output of the stage into the 
load resistance is not.

8. Approximate Method for 
Determining the D.C. Com­
ponent. The procedure 
described previously for obtain­
ing the additional d.c. com­
ponent is rather laborious, and 
a simplified method is greatly 
to be desired. A fairly good 
estimate of the total d.c. drawn 

under full signal drive can be made very simply from the following 
considerations:

If two linear tubes were operated class B, the bias of either 
would be at cutoff, and during no-signal periods their d.c. drain 
would be zero. Under full-signal drive, each would draw a half 
sine-wave current, and in the mid-branch the current would be a 
series of half sine waves similar to that furnished by a full-wave 
rectifier. If ix is the peak current of either, then the average 
current, or d.c. component, in the mid-branch would be (2/ir)ii, 
or 63.7 per cent of ix.

In ordinary practice, however, the tubes employed are not 
linear, and only an approach to class B operation can be made, 
i.e., extreme class AB. The curvature of their characteristics 
causes the tubes to draw current even during no-signal periods
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Table I

«0 71 ¿2
it + L

2 7a dd

8.0 31 15 23.0 0.5
22.0 53 7 30.0 7.5
28.0 63 o 34.0 11.5
38.0 85 2 43.5 21.0
48.0 107 0 53.5 31.0
58.0 131 0 65.5 43.0
63.8 143 0 71.5 49.0

Table II

9 sin 0 e. Tadd

10 0.1736 11.07 1.5
20 0.3420 21.80 7.3
30 0.5000 31.90 15.2
40 0.6430 41.00 24.0
50 0.7660 48.90 32.0
60 0.8660 55.20 39.5
70 0.9400 59.90 45.3
80 0.9850 62.80 48.3
90 1.0000 63.80 49.0

and, when signal is applied, to draw a mid-branch current that 
looks more like a direct current with a double-frequency sine­
wave current superimposed than a series of half sine waves. This 
is borne out, for example, by the current wave shape shown in 
Fig. 81. For such a wave shape, the d.c. component per tube is 
the original (no-signal) d.c. component per tube plus one-half of 
half the difference between the crest and trough values of the 
mid-branch current. This is the same as saying it is the average 
between the crest and trough values, i.e., half their sum.

The crest value per tube is evidently half the sum of the two 
tube currents at peak grid swing, or (it + f2)/2. If E is zero for 
this swing, then the crest value is simply ix/2. The trough value 
is evidently the original d.c. component per tube. Hence we may 
write the full-signal current as being 

1
2

I de
1
2 (12)E + E । T

--- 2---’ > Ide
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where the latter expression is for i2 = 0 and in either case Ide is the 
original direct current per tube. If Eq. (12) were to be applied 
to the case of two linear tubes in class B operation (in which case 
Ide — 0), we should have Ide 50 per cent of fi/2 instead of 
63.7 per cent of +/2, or 13.7 per cent too low.

For class AB operation of actual tubes, a value of Ide inter­
mediate in value between that given by Eq. (12) and that given 
by class B operation for two linear tubes will be found to flow. A 
fairly good approximation for a wide range of operation is to 
increase the value of Ide given by Eq. (12) by about 5 per cent. 
We thus have, finally,

If we apply Eq. (13) to the previous example of the 6F6 tubes, 
we obtain

, , 1.05 /142 . .. ,Uc = -s- I "vy + 22.5 I = 49.1 ma.

By the more exact method of the preceding section, IG was found 
to be 48.9 ma., which is very close to the above value.

As another example, take the case of an 807 tube, whose charac­
teristics are shown in Fig. 85 and whose operating voltages are 
Em = 400 volts, Esg = 300 volts, and Ec = —25 volts. From 
the figure, it is found that Ib is 50 ma. per tube. For a grid swing 
of +15 volts positive and a plate-to-plate resistance of 3,800 
ohms, it will be found that = 350 ma. and i2 = 0. Then, by 
Eq. (13),

j , 1.05 (350 , _n\ 11 o iIde = —w-i-q—h 50 ) = 118.1 ma.

By the more exact method, Ib comes out to be 120 ma., which is 
again in good agreement with the former value.

Equation (13) in conjunction with the principles of Sec. 10 will 
be found to be particularly useful for quick calculations of the 
peak grid swing, optimum load resistance, power output, input 
power, plate dissipation, and plate efficiency. The more exact 
method need be used only where a more careful check of such 
matters is required or possibly for nearly pure class B operation.
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9. Further Remarks on Self-rectification.—In Chap. I (Sec. 
25), the need for correcting the load line in the case of choke feed 
was discussed. As was shown, the operating point moves off 
the load line to a position corresponding to a lower value of bias 
(if Ib increases when grid signal is impressed) in such manner that 
the locus of the d.c. component of the plate current is along the 
load line of the d.c. resistance of the choke, whereas the locus 
of the a.c. component is along the load line of Rl-

It would appear reasonable that a similar correction should be 
made in the case of a balanced amplifier. However, such is not

Fig. 83.—Sliding-rule method showing paths of operation for the output and 
mid-branch currents.

the case. A rigorous proof is not available, but the reasonable­
ness of the above statement will be shown from two viewpoints.

1. In Fig. 83 is shown the position AB of the sliding rule for 
an instantaneous grid swing 2eg. As demonstrated in Sec. 3,

, n Ri' cot 9 = -x- 3
and AF = ii, BG = i2, AC = CB, Q = quiescent point, and
FEu, = EbbG. It is also evident that AD = — iz = 2iL-

It is further apparent from the geometry of the figure that CEbb, 
the bisector of the two sides of the trapezoid FABG, is the aver­
age between AF and BG, i.e., that

CE^ = ^^G = bi + bz (R)

CEbb is therefore equal to half the mid-branch current flowing 
through the B supply, CQ is equal to half the rise in this current 
from its quiescent value, 2QEbb( = 21 b), and hence CQ = iadd 
(as mentioned in Sec. 7). For a larger grid swing 2eS!, i^A is 
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evidently equal to JQ. It will be noted that the locus of ¿<1 
is a vertical line through Ebb, or the load line for corresponds 
to a zero impedance power supply and output choke, as assumed 
in the derivation of this graphical construction.

Since zadd contains all the even harmonics including the addi­
tional d.c. component due to self-rectification, it is evident that 
the graphical construction as given satisfies the requirements for 
the locus of {ix + if) ¡2 = as well as for (z\ — if)/2 = iL, 
and hence no correction for the load line is necessary as in the 
case of a single-ended amplifier. To summarize, the locus for 
z'i and i2 is HAQBI and for zadd is Ek>QCJ, a vertical straight line, 
and both loci satisfy the respective requirements that ix — i2 
be determined by a plate-to-plate resistance of value RL and 
that ix + i2 be determined by a zero mid-branch impedance— 
that of the power supply and windings of the two halves of the 
output choke.

2. From a physical viewpoint it will be apparent that no 
correction to the load line is necessary. In the case of a single- 
ended amplifier, the quiescent d.c. value of the plate current, 
Ib, as well as the d.c. component at full signal, If, flows through 
the output choke paralleling RL. In an actual circuit this choke 
has some finite inductance L, instead of infinite inductance, as 
assumed in the ideal case of Sec. 27, Chap. I. The magnetic 
energy stored in the choke is equal to fUIf at no signal and 
fLIf2 at full signal. The difference in energy stored accounts 
for the correction of the load line (the shift of the operating point 
away from the quiescent point). If, as is usually the case, If 
exceeds Ib, the load line is shifted upward; if If is less than Ib, 
as may possibly be the case for a pentode, then the load line 
will have to be shifted downward.

In the case of a balanced amplifier, the d.c. components of 
the two tubes always balance one another in the two windings of 
the output choke, and thus no d.c. magnetic flux is established 
and no energy is stored. There is thus lacking the mechanism by 
which the load line may be shifted, and hence no correction is 
necessary.

10. Optimum Value of Load Resistance.—The fact that no 
correction is necessary is fortunate in that it enables in most cases 
an estimate or determination of the optimum value of Rl and es to 
be made by a simple graphical procedure.
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Whether the tube is operated class A, AB, or B, cutoff of either 
tube current occurs in practical cases at least at the peaks of the 
grid swing, so that at those points, if not earlier in the cycle, 2«l 

becomes identical with the individual tube currents. Specifi­
cally, in class AB operation, 2fz, becomes identical with the 
current of the tube whose grid is being driven positive over an 
appreciable portion of that half cycle. During this portion, the 
other tube is inoperative, and hence the first tube feeds Rl 
directly and thus sees its reflected value of Rl/A

In Fig. 84 is shown the load line for RL as it appears to either 
tube. Cutoff occurs for one tube at C, for a grid swing equal to 
— egi; for the other, undergoing a grid swing of Aeg„ the current

Fig. 84.—Method of determining optimum value of the load resistance.
has reached the value of AB. Its load line (for increased grid 
swing) continues along the straight line AD, corresponding to a 
value of Rl/A Thus, for a grid swing eg„ point D is reached and 
the current is DG, while, for the other tube, point F is reached and 
its current is zero.

From previous considerations it is clear that DF corresponds 
to Rl/2- i.e.,

cot = (15)
But

GEti, = EbbF
GEbb   i — R L ,,= cot 01 = — (16)

But DA has the slope corresponding to Rl/A Hence DA when 
prolonged passes through Ebb. This important fact enables an 
optimum value of RL to be found for maximum power output.
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In linear-circuit theory, the maximum-power theorem states 
that maximum power output is obtained when the load resistance 
equals the generator internal resistance. In the case of a triode 
push-pull stage, the Rp of each tube varies from infinity (beyond 
cutoff) to a certain finite value during the grid-voltage cycle, and 
hence the above theorem cannot be applied directly to this 
circuit. However, it will be evident that most of the power out­
put during one half cycle comes from the tube whose grid swing 
is in a positive direction and occurs mainly during the peak of the 
half cycle. The same is true for the other tube during the next 
half cycle. Hence, if El be matched to the value of the Rp of the 
tubes at the peak positive grid swing, maximum power output 
may be expected.

In this region of the ib-eb characteristic, the value of Rp is fairly 
constant, for it will be observed in general that the ib-eb curves 
are fairly straight and parallel to one another. However, it will 
also be noted that for positive grid voltages the curves exhibit a 
knee just as for pentode tubes, and for the same reason—a posi­
tive electrode (here the control grid) between the plate and 
cathode. It is evident that the load line per tube must avoid this 
knee. The higher the grid voltage, the farther to the right does 
the knee occur, since space current can be diverted to the control 
grid even at a higher plate voltage.

With these facts in mind, we can proceed with the determina­
tion of the optimum value of El. A line is drawn through the 
point Ebb on the eb axis, at a slope corresponding to the average 
value of Rp in the upper left-hand region of the tube characteris­
tics, such as EbbAD (Fig. 84). The optimum value of Rl is simply

El = 4EP (17)

Where this line strikes the knee of an ib-eb curve indicates the 
maximum grid swing possible without excessive distortion. It is 
possible, however, to lower El (tilt the above line more to the 
vertical) and thus obtain a greater grid swing before the knee of 
an ib-eb curve is reached and hence even more power output.

However, another factor must be taken into account, and that 
is the plate dissipation at full signal. The steeper the load line, 
the greater the self-rectification and hence the d.c. power input at 
full signal. Consequently, while a lower value of Rl may permit 
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a greater grid swing and hence more power output, the plate 
dissipation may rise to an excessive value.

Indeed, even if Rl is chosen according to Eq. (17), the plate 
dissipation may be excessive. In such an event, either a higher 
Rl or a smaller grid swing or both must be employed. Equation 
(17) is therefore a guide for, rather than an absolute determina­
tion of, Rl; but any tube whose design is properly coordinated 
will require a value of Rl not far from the value given by Eq. (17). 
For example, a pair of 2A3 tubes in class AB, operation require a 
plate-to-plate load resistance of 3,000 ohms. It will be found 
that this value is approximately 4RP for either tube, where the Rp 
is measured at, for example, ec = 0 and eb = 100 volts, whereas 
Rp at the quiescent point is 800 ohms.

The above discussion is concerned with the triode tube. In the 
case of the pentode, it will obviously be impossible to choose Rl 
according to Eq. (17). In this case, a line is drawn through Em 
at a sufficient slope to avoid the knee of the characteristics. The 
slope of this line corresponds to Rl/4 and thus indicates the 
maximum value of Rl that can be used. Just as in the case of a 
single-ended pentode, R l must be much smaller than Rp to avoid 
excessive distortion products, so that the mismatch in impedance 
is very great. Hence, the maximum permissible value of Rl is 
the value that gives the maximum power output, since it gives 
the least mismatch.

11. Typical Example.—As an example of the above, Fig. 85 
gives the plate family for an 807 beam power tetrode. For class 
ABi operation, the maximum slope is given by AB and corre­
sponds to a resistance of 1,650 ohms. The value of Rl is therefore 
6,600 ohms. The distortion will be found to be 2 per cent, 
mainly third order, at a power output of 34 watts.

If class AB2 operation is desired, it will be found—after a series 
of trials—that a positive grid voltage of +15 volts can be 
attained. Several factors enter into this determination and will 
be discussed presently. If this value be chosen, then the line CA 
must be used instead of BA, since the latter would obviously cut 
the knee of the characteristics for a grid swing into the positive 
region. For line CA, Rl comes out to be 3,800 ohms. The 
power output is approximately 60 watts, with a distortion content 
that depends upon the design of the preceding driver stage. The 
dissipation at full signal is approximately 24 watts (plate
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and screen grid), which is within the limits permitted by the 
manufacturer.

If a higher positive grid swing is desired, a lower value of Rl 
will be required. While the power output will be increased, the 
dissipation will be increased to a value higher than permitted, so 
that the above-15-volt positive grid swing is the maximum per­
missible. This fact can be discovered only after trying different 
grid swings and corresponding values of Rl and analyzing the 
results in the manner described in Sec. 6 or 8.

Ese= 300 volts
Fig. 85.—Push-pull characteristics for a 6L6 tube.

Other factors determining the peak grid swing are the driver 
power required for the grids (to be discussed later), the per­
missible grid dissipation, and, finally, instantaneous emission of 
the cathode (particularly in the case of oxide-coated cathodes). 
Unfortunately, little information concerning these is normally 
furnished by the manufacturer.

12. Correction for Mid-branch Impedance.—In actual bal­
anced-amplifier circuits, the B and C sources often have appreci­
able impedance. These are called mid-branch impedances and 
usually the B supply impedance is the more important. We shall 
analyze the effects of two types of this impedance here:
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1. The case where the impedance is a pure resistance Rb to all 
frequencies. The resistance is usually that of the various wind­
ings in the power-supply circuit, plus that of the rectifier tube.

2. The case where the impedance is a resistance Rb to direct 
current and zero to alternating current. This is approximately 
the case when the filter section is terminated in a condenser of 
such size that its reactance to twice the lowest frequency to be 
amplified is negligible.

We shall take Case (1) first. We note that the resistance to 
(fi — ii)/2 is Rl as before but that the resistance to 21 b (for

Fig. 86.—Graphical construction for the case of a mid-branch resistance.

eg — 0), and to it + i2 (when ea A 0) is Rb. This is equivalent to 
a current (it + i2)/2 flowing through a resistance 2Rb. To depict 
these items graphically, we proceed as follows:

From the point Ek, (Fig. 86) (corresponding to the open-circuit 
or generated voltage of the B power supply) a line EbbB is drawn 
at an angle f such that

= cot'1 2Rb (18)

Its intersection with the curve labeled Ec gives the no-signal d.c. 
component of each tube. For equal grid excursions Ec + eg and 
Ec — eg about Ee, the simultaneous currents of the two tubes are 
given by AG and CD, where 8 is determined by Eq. (9) and B is 
the mid-point of AC. The position of AC can be found by sliding 
a rule, at the angle 0 to the Cb axis, up or down along the curves.

Since BF is always along the load line BEa of 2Rb and it — i2 
along the load line of Rl/2, we have satisfied the conditions 
stated above. Points A and C are thus two points of the load line 
for the tube. Other points can be found in the same manner by
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sliding the rule along other pairs of tube curves so that the mid­
point of the segment of the rule is always on BEbb.

Some interesting results can be obtained for various values of 
Rb. In general, the load line is flatter and not so steep as for Rb 
equal to zero. If Rb equals El/4, the load line becomes a straight 
line whose slope is that for El/2 (line HI, Fig. 86). For Rb > Rl/A, 
the load line is concave downward (line JK). In all cases, the 
power output is evidently decreased since (it — iz)/2 is smaller.

Case (2) is more difficult, although more common in practice, 
but it can be solved by a series of approximations. The difficulty 
lies in the fact that the d.c. component of must lie along 2Rb, 
whereas the a.c. components (the other even harmonics) lie on a 
vertical line, since the impedance to their flow is now zero.

As before, Ib is determined by 2Rb, that is, line EbbB of Fig. 86. 
The sliding rule must now be bisected by the ordinate through Q 
instead of BEbb. When the load line is drawn, the current fadd can 
be found, as in Sec. 6 or 8, and analyzed for its d.c. component. 
This is added to Ib, and where this value intersects BEa, say, at 
point M, is the new revised value of direct plate voltage of /he 
tubes. That is, the increase in the d.c. component due to self­
rectification causes a larger drop in Rb than 2Ib (the value of both 
tubes at no signal) and hence changes the operating point.

The sliding rule must now be bisected by the ordinate through 
M. A new load line is obtained and the new fadd analyzed for its 
d.c. component. This will be less, for the revised load line will lie 
below the first, although cutoff occurs earlier in the cycle. The 
revised d.c. component of iadd, when added to Ib, willl locate a 
lower point M' and hence a new ordinate between the second and 
the first (the one through Q). The process is continued until no 
further revision is necessary. The end result will be that the 
power output will be less than for the case where Rb is zero.

13. Correction for Winding Resistance.—In actual practice, 
a two-winding transformer instead of a tapped choke is used. 
The two halves of the transformer may each have appreciable 
resistance; call it RPW. The secondary winding resistance Es„ may 
be combined with the actual load resistance rL and reflected by 
the square of the turns ratio n to give the plate-to-plate resistance 
R L. Thus,

Rl = (19)
n2
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The primary resistances, however, cannot be disposed of so 
readily. The circuit of Fig. 72 may be modified to take care of 
this condition by the well-known transformer theory, as shown in 
Fig. 87. As can be seen, the primary winding resistances can be 
associated with the two tubes instead of with the transformer so 
that we may regard the tubes as generators having higher 
internal resistances. The situation, however, is not quite the

Fig. 87.—Balanced-amplifier circuit having output transformer with winding 
resistance.

same as that discussed in Sec. 12, for there Rb acted as a common, 
or coupling, resistance between the two tubes, whereas here each 
Rpw carries only its own tube current.

This case can be handled by first replotting all the tube curves 
so as to include as part of the equivalent tube’s resistance. 
This is a laborious process, and the resulting family of curves 
would hold only for the particular value of Rpw used. Another

Fig. 88.—Proof of construction for case of winding resistances.

output transformer with a different primary winding resistance 
would require a new set of curves. Fortunately, the construction 
can be simplified so as to apply to the original tube family of 
curves.

In Fig. 88 is shown the method of construction which is also 
that of the sliding rule. Line DEbb is the load line for Rpw. AB is 
the segment of the rule between curves of equal grid swings eg.
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The slope of AB is such that

d = cot“1 \ Rpw + \ (20)

where RL is given by Eq. (19). Furthermore, D is the mid-point 
of AB, and C is the normal d.c. component. Points A, C, and B 
are on the load line, and further points can be determined in 
exactly the way that A and B were. From this, further facts and 
constructions clearly follow.

The proof is as follows: Suppose the correct values of ix and i2 
were known beforehand for the grid swing e„ and are represented 
by H and G, respectively. Owing to Rpw, the instantaneous plate 
voltages are determined where the load lines for R,™ through A 
and B strike the eb axis in J and K, respectively. If ix and i2 are 
correct, then

J Ebb — EbbK

and JK is the voltage across R l.

Points H and G are the projections of A and B, over to the 
ordinates through J and K, respectively. The line joining H and 
G will make the proper slope corresponding to cot-1 {RL/2'). The 
mid-point of HG is represented by F and its vertical projection on 
CEbb as D. We note that FEbb = {HJ + GK)/2 and that trian­
gles AH J, DFEbb, and BGK are similar, so that

t\v _ A J 4“ BKVBbb — -------2-------

This in turn means that figure AJKB is a trapezoid, and therefore 
ADB is a straight line whose mid-point is D.

We finally note that the angle of slope of AB is given by

0 = cot-1 AH + JK - BG
HJ - GK

_ {HJ)Rpw + JK- {GK)Rpw 
HJ - GK

RPw
JK

HJ - GK (21)_  p Ixl pw I 2

This establishes the correctness of the construction.
This construction can be combined with that given in Sec. 12. 

For the case of Rb, a resistance to all frequencies, DEbb is drawn to 
represent the load line for 2Rb + Rpw, and AB so that Eq. (20) is 
still valid. For the case of Rb, a resistance to direct current only, 



BALANCED AMPLIFIERS 167

we draw DEbb to represent 2Rb + Rpu, and where it intersects the 
Ec curve at C is the normal value of d.c. component. Through C 
a line representing Rpl„ is drawn, and the rule is slid so that AB is 
bisected by this line rather than by the first one representing 
Rpic + 2Rb.

14. Analytical Treatment.—The literature on balanced ampli­
fiers is not so extensive as that on single-ended amplifiers; hence, 
an analytical treatment will now be given to supplement the 
graphical analysis. The most general case will be treated first— 
two tubes in push-pull with an actual three-winding (output) 
transformer, together with mid-branch impedances.

Fig. 89.—Generalized balanced-amplifier circuits.

Although there are possibly simpler equivalent circuits for the 
three-winding transformer, the one shown in Fig. 89 will suffice for 
the analysis. Here the three-winding transformer is represented 
by three ideal two-winding transformers, one ideal three-wind­
ing transformer, and suitable impedances. Thus, Zl23 repre­
sents a mutual impedance common to the three windings and due 
to flux that links all three windings regardless of in which winding 
or windings the corresponding magnetomotive force or forces are 
located. Similarly, Zl2 represents the mutual impedance exclu­
sive to primary winding 1 and the secondary winding 2; Z32, the 
mutual between primary winding 3 and secondary 2; Z13, the 
mutual between primary windings 1 and 3. Furthermore, Zt 
represents an impedance to be found only in the mesh of primary 
1. It can consist of an inductance due to flux that links only 
winding 1, winding resistance, and any other impedance deliber­
ately inserted in series with the top tube. Similar interpretations 
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are to be given to Z2 and Z3, while ZL represents the load imped­
ance and Zb and Zc are mid-branch impedances, of which Zg is also 
in the mid-branch grid circuit. Normally, windings 1 and 3 have 
an equal number of turns, while winding 2 may have a different 
number (usually less). However, another two-winding ideal­
transformer of the corresponding, turns ratio can be inserted at 
terminals A and B and the secondary connected to the actual 
value of load impedance. Hence, no loss in generality is incurred 
in assuming equality of turns of all three windings and a value of 
secondary load impedance that is the reflected value of the actual 
load impedance employed.

For perfectly balanced operation it is necessary that the tubes 
be identical, that impedance Z3 equal Z3 and Z12 equal Z32. It 
will now be shown that the output load current contains no even­
order modulation products* of the input signal voltage 2eg. 
First, suppose that 2eg is symmetrical about the time axis, i.e., 
has no even harmonics. From the symmetry of the circuit it is 
evident without further proof that the load current will be 
symmetrical about the time axis and will therefore contain only 
odd harmonics too. Hence, for a symmetrical input voltage, no 
even-order modulation products appear in the output.

Consider next an input voltage that is asymmetrical with 
respect to the time axis. Specifically, assume

2eg = Ei sin aid + E2 sin a:2t (22)
* A modulation product is a sinusoid appearing in the output of a non­

linear circuit, which is of a frequency different from those of the voltages 
impressed upon the circuit. If a single-frequency voltage is impressed, then 
the modulation product is a harmonic of the impressed voltage. If the 
impressed voltage consists of several sinusoids, then the modulation products 
are of two kinds, harmonics, and summation and difference beat frequencies. 
The latter are often called cross-modulation products, as they represent the 
interaction of the impressed voltages and their harmonics upon one another 
within the circuit. Let m represent the mth harmonic of one of two impressed 
voltages and n that of the other. The cross modulation produces summation 
and difference beat frequencies of value m + n and m — n respectively. If 
m and n are both odd or both even, then m + n and m — n are both even. 
These are then called even-order modulation products. If one is odd and the 
other even, m + n and m — n are called odd-order modulation products. 
This concept can be extended to three or more impressed voltages, and the 
harmonics themselves can be regarded as a special kind of cross modulation 
—that of the impressed voltage with itself, or one of the other harmonics 
that it evokes.
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The output load current may be expressed as

ib = Ii sin (ad + </>i) + Iz sin (a2t 4* <bz) 4* Is sin (2wii + </>3)
4~ Ii sin (2a2t 4~ <t>i) 4“ Is sin [(on 4" az)t 4" </>a]

4- Is sin [(coi — a2)t 4- </><;] 4- • • ■ (23)

In Eq. (23) only the first- and second-order modulation products 
have been indicated. The form of the third and higher order is 
apparent. It will now be shown that the amplitudes of the even­
order terms are zero.

Suppose that the connections of the input source were reversed. 
Then Eqs. (22) and (23) would become, respectively,

2e/ = Bi sin (ad 4- it) + B2 sin (azt 4- tt)
= — BisinwJ — Ez sin azt = — 2es (24)

and

ib — Ii sin (ad 4" 4" d>z) 4- Iz sin (a>2< 4“ it 4“ <t>z)
4~ 13' sin (2oiiZ 4- 2tt 4- <¡>3') 4“ Ii sin (2a2t 4~ 2?r 4~
4- 13 sin [(cji + az)t + 2tt 4" ^5’]

4" Is sin [(coi — az)t 4- 2?r 4- <t>o] 4* • • • 
= —If sin (ad 4~ $1) — Iz' sin (a2t 4~ d’z')

4- Is sin (2q>iZ 4- <¡>3') 4- Ii sin (2a2t + <j>i)
4-Is sin [(wi 4“ az)t + </>/]

4- Is sin [(a>i — az)t 4- <t>e] 4~ • • • (25)
From the symmetry of the circuit it can be seen that

ib = —ib

since the currents must have the same form but must flow in 
opposite directions through Zb. This can be the case only if the 
even-order modulation products (which do not change sign upon 
reversal of the input voltage) are zero; i.e., 13, 13 , h, I/, 15, Is, 
Is, Is’, etc. are zero, and in addition the other I’s in Eqs. (23) and 
(25) are equal, and also the </>’s. The above results can be 
expressed more compactly as

n m
¿L = XXI nm sin [(wn ± + <Am«] (26)

0 0
n m

in = X I™ S*n "I" (27)
0 0 
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where Inm Inm , <hmn 4>mn , and Inm Inm 0 if 71 “I- m IS 
even. Hence the output load current iL(t) and the output load 
voltage eL(t) = contain only odd-order modulation
products of 2eg(t), where the t indicates that these quantities are 
functions of time and the w indicates that Zl is a function of 
frequency.

15. Mid-branch Current.—The mid-branch current is evi­
dently ii + iz from Fig. 89 and is evidently unchanged in sign 
when 2eg is reversed. Therefore, by a process of reasoning similar 
to the above, it cannot contain any odd-order modulation prod­
ucts and must contain only even-order terms. Hence the 
statement that the odd harmonics flow in series, and the even 
harmonics in parallel, through the balanced-amplifier circuit. 
The odd harmonics encounter the impedances, such as Zl, in series 
around the circuit, whereas the even harmonics encounter only 
the mid-branch impedances. (Impedances such as Zv and Z3 
are effectively in parallel for these, whereas Z13 is effectively in 
series for the odd harmonics.) In the case of an ideal three- 
winding output transformer and zero branch impedances, the 
even harmonics encounter no impedances in the external circuit. 
Specifically, in flowing through the infinite impedances of the two 
primary windings in opposite directions, they encounter no net 
impedance because they cancel each other’s induced voltages 
there, since the windings are assumed to have unity coupling.

16. Effect of Mid-branch Impedance.—The preceding analysis 
has revealed some interesting points.

1. Mid-branch impedances, such as Zb and Ze, can produce no 
even-order terms in the output of a perfectly balanced amplifier.

2. The voltages across them can, however, cross modulate with 
the signal voltage 2eg to produce odd-order terms. For an inter­
esting application to vacuum-tube voltmeters see Turner and 
MacNamara.2

3. If such odd-order terms have the right phase, they may 
reduce similar odd-order terms produced by the tubes themselves. 
This, however, depends upon the particular tubes; in general, 
mid-branch impedances should be avoided, as by the use of suffi­
cient by-pass condenser capacity.

4. Contrary to statements sometimes made, mid-branch 
impedances do not produce even-order terms in a perfectly 
balanced amplifier.
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5. The impedance of each half of the primary circuit must be 
the same; otherwise ri and i2 will not interchange in value during 
the two halves of the cycle of 2e9, when the latter is symmetrical 
with respect to the time axis. In other words, unbalance here 
will produce even harmonics.

6. If the tubes are not identical, even-order modulation prod­
ucts will result.

17. Effect of Mid-branch Voltages.—We have seen that mid­
branch impedances produce no even-order terms but that the 
voltages across them may cross modulate with eg to produce odd­
order terms. Since we have placed no restriction upon the form 
of Zb and Zc, they can be such as to have any kind of voltages 
developed across them by ri + i2. Hence, what is true for Zb and 
Zc is true for any mid-branch voltages ei and e2 inserted in the 
grid and plate mid-branches, respectively, ei and e2 may be, for 
example, hum voltages.

If 2eg is zero and only ci and e2 are present, it is evident that the 
latter produce equal current flows in the two tubes, so that the 
voltages induced in the secondary cancel one another, and hence 
ib is zero. That is, in a perfectly balanced amplifier, with no 
signal impressed, hum voltages produce no hum output. How­
ever, when a signal voltage is impressed, the hum voltages cross 
modulate with it to produce odd-order output current components 
in addition to that which is a copy of the signal voltage. It is 
therefore advisable to filter adequately the plate and grid-bias 
supplies, although the filtering in practice may be less than for a 
single-side amplifier because of the fact that the hum is not apparent 
during silent moments (when 2eg = 0) and the cross-modulation 
products are partly masked by the louder signal components in 
the output when 2eg is not zero. For best results and least distor­
tion, however, the filtering should be as complete as possible.

18. Ideal Push-pull Tubes.—It will now be of interest to find 
what the tube characteristics should be in order that the output 
current and voltage are faithful copies of 2eg. Since mid-branch 
impedances produce odd-order cross-modulation products in the 
output, it can be seen that these impedances should be zero, 
which in turn also implies that the output transformer should be 
ideal and the load impedance resistive—call it RL.

It will be assumed that the tube characteristics can be expressed 
by a suitable power series. No restriction on the variability of the 
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y of either tube (both identical) will be made; hence, a double 
power series will be required (for triode tubes). The expansion 
will be made from the origin—eb = ec = ib = 0; hence, it will be 
of the Maclaurin form. Where operation beyond cutoff of either 
tube is desired, suitable modifications will be made. The applica­
tion of the methods that follow to four- and five-element tubes 
should be self-evident to the reader and are omitted because the 
triple and quadruple power series required reveal nothing different 
from the double series. Indeed, for constant screen-grid and 
suppressor-grid voltages, the multielement tubes are equivalent to 
triodes. Also, as shown by Peterson and Evans,3 a single power 
series in terms of the control-grid voltage as the independent 
variable may be written (the ordinary dynamic characteristic), 
but the more general double power series will be used here because 
it reveals the circuit parameters more definitely.

The series may be written as follows:

ib = AioCt + Aoific + Anebec -|- A2oC&2
+ AoaCc2 + A2ie62ec + A12ebec2 + • • ■

m n
= X X ^hkechebk (28)

0 0

From the calculus it is known that -

a - 1 dh+kibhk h\k\ defdef (' J

This is the law by which a Maclaurin expansion in two variables 
is accomplished. The extension to three or more variables should 
be self-evident to the reader.

The series is in terms of the tube electrode voltages; i.e., if these 
are known, the tube current ib can be found from Eq. (28). How­
ever, as is usually the case in tube problems, it is not these volt­
ages which are known, but those applied to the tube electrodes 
through load impedances, in which occur voltage drops due to the 
as yet unknown current ib. This is particularly the case for the 
plate circuit but can also be true for the grid circuit if grid current 
flows or if there is feedback from the plate into the grid circuit. 
In the balanced-amplifier circuit a further complication arises: 
the plate voltage of either tube depends, in part, upon the voltage 
induced from the other tube’s action.
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Fortunately, however, these effects all occur in the external 
load circuit, which is linear, so that they may be superimposed 
one upon the other. As mentioned at the beginning of this sec­
tion, in the following analysis an ideal three-winding transformer 
is assumed, or its equivalent, an ideal two-winding autotrans­
former with unity coupling between its two windings, across 
which Rl is connected. (This was also assumed in the discussion 
at the beginning of this chapter.) To either tube, RL appears as 
Rl/A. Thus, to tube I the voltage drop in the winding to which 
it is connected is ERl/A. However, RL appears as Rl/A to 
tube II, and this tube experiences a voltage drop in its winding of 
ERl/A. The latter voltage drop induces an opposite voltage in 
the first winding, and similarly for the voltage drop ERl/A in the 
second winding. As a consequence, the total voltage drop to 
Tube I is (E — «2)(Rl/4); to Tube II,

(E - E)(Rl/A) = -(E - E)(Rl/A).

Ne may therefore write for tubes I and II, respectively,

ebt = Ebb — (fl — E)

= Ebb + (E - E) (30)

The corresponding grid voltages are

Bel — Ec A

Re Og (31)

Substituting these values from Eqs. (30) and (31) in Eq. (28), we 
obtain

E = Ahk(Ec + egJ

0 0
m n

E = Ahk(Ec — eg)h

o o

Ebb - (E - E)

Ebb + (E — if) —j-4 (32)

The load current is
i2 (33)2
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For distortionless amplification,

H = B^ = (34)

where B i is a constant. But from Eq. (32) we have

= 2 2¥ {«-«•> 

0 0

D "Ifc
Ea ~ (ii - iz)

— (Ec + eg)h Ea + (fi — iz)
ßk)

L I
“4 J I (35)

The individual factors can be expanded by the binomial 
theorem, so that each term of the function represented by Eq. 
(35) may in itself be written as the difference in the products of 
two functions. Thus,

h
(Ee + eg)h = Kh-~ q + ER^c

h
= rg+iEf^ep

q=0 
h 

(Ec -eg^ = (-1)«^ ~

<7=0 
h

Ur , ,7? (h—q)p q ' q+^C Vy

g = 0
k

Ebb-di-if)^ =2^(~iy
p = 0

k(k — 1) • • ■ (k — p + 1)

p =0

(fi - iz)
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Em +
o

Substituting the functions of Eq. (36) in the representative 
term of Eq. (35), we obtain

4y (Ec + eg)h Ebb - (ri - ri)
£ 4

- (Ec - egff Ebb + (ri - ri) ~
h k

= {X r'^E^e^ (-^Sp+1Ebb^ 

0 0
h k

- X (-1)“r^E^h~“}e‘q X Sr^’' (ip,
0 0

7 "Ii^)^]J (37)

It will be noted that for all even values of p and q the terms of 
Eq. (37) cancel, whereas for all odd values of pand# the terms add.

/R \Since q is the exponent of eg and p of (it — ri) I -g Y it will be seen 

that only odd-order terms are present in the output current of a 
push-pull amplifier, which is a verification of the results previ­
ously obtained for the more general case.

Here we do not desire odd-order terms of degree higher than the 
first; hence, possible combination for q and p are

? = 0,
? = 1, 
i = 1,
<1 = 2, 
q = 0,

p = 0 \ 
p = 0 I 
P = 1 > 
p = 0 \
P = 2 /

(38)

Since q takes on all integral values from 0 to h and p all integral 
values from 0 to k, we see that the pairs of values given in Eq. (38)
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apply to h and k too, hence also to m and n, respectively. The 
power series for our ideal push-pull tubes must therefore be of the 
form

ix = A oo + Axo(Ec + e„) + Aoi Ebb ~ (ix - it)

+ Axx(E, (ix - it) + A20(Ec + ea)2

T> I2

l2 — A oo +

+ A 02 Ebb + (ix — it) —r4 (39)
Axo(Ec — e„) + Aoi Ebb + (ix — it)

+ Axx{E, — ef Ebb + (ix — it) + A20(Et -

7? I2 
Ebb + (ix — it)

or either tube’s current may be expressed in terms of its electrode 
voltages as

ib = Aoo + AxoCc + AoxOb + AxxScSb + A20ec2 + Ao2eb2 (40)
Equation (40) is that of a quadric surface or conicoid in space, 

in general translated from the ib, ec, and eb coordinate axes and 
rotated in the eb-ec coordinate plane. From physical reasoning 
we know that it is valid only for positive values of eb and for such 
combinations of eb and ec as give values of ib equal to zero or 
positive; i.e., it is not valid below plate-current cutoff.

However, not all forms of this quadric surface are physically 
realizable in vacuum tubes. Thus, if An2 — 4A2oAO: is negative, 
then, by the principles of solid analytic geometry, Eq. (40) repre­
sents an elliptic paraboloid, which is a closed surface. It would 
therefore produce families of curves on the coordinate planes that 
are within finite limits of plate and grid voltages and hence would 
not correspond to those of any (at present) physically realizable 
tube.

If An2 — 4A2qAo2 is positive, Eq. (40) represents a hyperbolic 
paraboloid translated from the eb, ec, and ib axes and rotated with 
respect to the first two (Fig. 90). It would produce realizable 
curves upon the eb-ib and ec-ib planes (Fig. 91) and would represent 
the surface of a variable-^ tube. This is an interesting result in 
that it indicates that variable-g tubes having parabolic character-
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istics have a distortionless output when in push-pull, class A. 
Such tubes could be used in a volume expander without causing 
any distortion (perfect matching of the tubes is inferred, but is 
difficult to obtain in practice).

19. Constant-y Parabolic Tubes.—Another form for Eq. (40) 
of practical interest is that in which

2 X/À20A02

Fig. 90.—Tube surface of the form of a hyperbolic paraboloid.

(in which case the second-degree terms form a perfect square) and
Fig. 91.—Plate and grid characteristics for a hyperbolic paraboloid

(Al0\ _ A 20
Aoi/ Aoi

a constant to be identified with the amplification factor of the 
tube. Under these two conditions Eq. (40) becomes

Aoi(yec + eb) + Ao2(yec + eb)2 = it, (41)
which is a parabolic cylinder (Fig. 92) and gives rise to a family 
of parabolas with equidistant spacing upon the eb-ib and ec-ib 
coordinate planes (Fig. 93). If it is remembered that the general 
definition of the amplification factor is

_ dib/dec 
dibfdeb (42)



178 CONSTRUCTIONS FOR VACUUM TUBE CIRCUITS

and that the A’s of the power series are formed according to the 
law of a Maclaurin expansion, viz.,

1 dh+kib 
hk h\kl dech debk (43)

then, if g is assumed constant, it can be shown that 

and

so that

Fig. 92.—Tube surface of the form of a parabolic cylinder.

(44)

Fig. 93.—Plate and grid characteristics for a parabolic cylinder.

which are exactly the assumptions made in order that Eq. (40) 
reduce to Eq. (41).

It is an experimental fact that in most triodes the tu.be surface 
is tangent to the ec-eb coordinate plane so that

dib _ dib _ 
dec deb ’
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where ib is zero, and Eq. (41) becomes

ib = Aoz(jiec + eb)2 (45)
which is the well-known van der Bijl’s equation.

20. Properties of Square-law Tube.—The square-law type of 
tube has some interesting properties. Referring to Eq. (45) we 
may write for the balanced-amplifier circuit having a resistive 
load Rl

il — A 02

= A 02

Ebb — (ii — iz)

E — (ii — iz) (46)

where E = Ebb + gEc is the equivalent diode voltage for the d.c. 
component and

From Eqs. (46) and (47) we obtain
z • ■ \ 4A02B _ n.*2) - 1 + Me« - L

(47)

(48)

If we substitute the value of ii — iz from Eq. (48) in (47) and 
set iz equal to zero, we obtain the value of grid swing for cutoff of 
iz, viz.,

ges — E(1 -|- AozERl) (49)
If we substitute the latter value of y.ea in either Eq. (46) or Eq. 
(48), we obtain the value of ii where iz cuts off, viz.,

ii = 4A02E2 (50)
At this point the plate voltage has dropped by the amount 
[from Eq. (50)]

ii^ = A02E2RL (51)

and the effective voltage has been changed from E by the amount 
of the corresponding grid swing given by Eq. (49), or is now equal 
to E(2 + AozERl).. Let the remainder of the grid swing be 
designated by e/; then

ii — A02 E(2 + AozERl) ~~ + = 2iL (52)
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The reader can check from this equation that ii equals 4 A 0zE2 
when peg' is zero.

Equation (48) gives the relation between the load current it. 
and peg above cutoff of iz (class A operation), while Eq. (52) gives 
the relation below or beyond cutoff of iz (class AB operation), for 
the particular tube given by Eq. (45).

The slope of iL above cutoff is evidently [differentiating Eq. 
(48)]

die — 2A zE (53)
dpeg 1 T A^zERl

The slope beyond cutoff, found by differentiating Eq. (52), is 
dib Ao2[2E + peg' + AozE2Rl — (iiRb/^)]

dpe.g' 1 + (Aoz/2)[2E + peg' + AozE2Rl — (HRi/ty]
When peg' equals zero, this becomes

dir _ 2A02E
dpeg' g 1 T AozERl

which is the value given by Eq. (53). That is, the class A charac­
teristic blends smoothly into the class AB characteristic for this 
type of tube, and hence the over-all characteristic may be 
assumed to have fewer higher harmonics than one exhibiting a 
sharp break at this point. This matter may be conveniently 
represented graphically by plotting one tube’s characteristics 
inverted with respect to the other, but so that their operating 
points line up, as described in Sec. 4. Thus, in Fig. 94, ii — iz 
is tangent at cutoff to the it and iz curves. The broken lines 
indicate the individual tube characteristics if they were parabolic 
beyond cutoff. It will be noted from Eq. (50) that ii at cutoff is 
independent of El: the smaller the latter is, the faster it increases, 
but also iz to cutoff. Also, the blending shown in Fig. 94 is true 
regardless of the value of El or E(=Ew + yEf): the greater the 
bias, or the smaller El is, the sooner does cutoff begin, and the 
sooner does the characteristic become it alone and continue 
parabolically as shown previously or given by Eq. (52). The 
latter parabolic departure from linearity is not great unless the 
grid swing is very much beyond cutoff and is moreover upward 
and in a direction to offset the effects of grid current. Hence the 
relation between load current H and grid signal voltage eg may be 
linear, for quite a large value of the latter.
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Equation (49) shows that the cutoff grid voltage is smaller, the 
smaller Rl or E. The smaller E is, the greater Ec is relative to 
Ek for a given p. The significance is that class AB operation, 
i.e., operation up to and beyond cutoff, is obtained either by 
means of overbias or by using a low value of RL, as stated more 
generally in Sec. 5. At the same time, the preceding paragraph 
has indicated that the distortion products may nevertheless be 
small under these conditions. As may be recalled from Sec. 5, 
the value of overbiasing is that a high power-supply voltage Ebb 
may be used and yet the quiescent d.c. component Ib may be kept

Fig. 94.—Push-pull operation beyond cutoff for parabolic tubes.

down to where the plate dissipation at no signal is within safe 
limits. The possible increase, thereby, of Ebb results in greater 
maximum power output.

As was also mentioned in Sec. 5, the value of being able to use 
low values of Rl is that the latter can be chosen for maximum 
power output for a given E» without the restriction (so cramping 
in single-side amplifiers) that the plate currents do not approach 
too near cutoff and produce too much distortion.

21. Optimum Value of Load Resistance.—The optimum 
value oi Rl for class A operation is easily formulated. Thus, for 
values of peg below cutoff [given by (49)], and from (48), we have 
that the power output is

p _ (fi — EYRl _ 2Ao22E2p2e2RL
8 (1 + AnERLy W
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The optimum value of Rl occurs where SPo/SRl = 0, or
Rl = AOiE = 2RP (57)

since the plate resistance Rp is given by

RP = -^=ÌAo2E (58)

It is to be noted that the above value of Rp is that at the operating 
point.

If the grid swing is greater than the cutoff value (class ABi of 
ABi), we have seen that we must modify the above results since 
the two tubes are in the picture for only part of the grid swing. 
A complete mathematical treatment is involved and unnecessary, 
since actual tubes are only approximately parabolic in their 
characteristics. In Sec. 10 it was shown that

Rl — 4RP (59)
where Rp is now the plate resistance at peak swing.

22. Self-bias.—Where self-bias is employed, the change in 
d.c. component must be small; otherwise, the bias will be 
increased with impress of e0, and this in turn means a lower 
operating point and decreased output. It is assumed, of course, 
that the bias resistor is adequately by-passed; otherwise, as 
pointed out above, odd harmonics will be generated too. A 
small change in d.c. component is obtained by using a higher 
value of Rl than for fixed bias, since then the cutoff grid voltage 
is prolonged and the self-rectification in each tube is less. The 
grid swing generally has to be decreased too, to minimize the 
latter effect. The result of increasing Rl from its optimum value 
and reducing eg is to decrease the power output; hence, fixed bias 
is preferable when available.

23. Mid-branch and Winding Resistances.—It is of interest to 
show, analytically, how the individual tube’s load line is Straight­
ened out by a mid-branch resistance Rb. The plate voltage can 
be written

ebl = Em — (ii + ii)Rb — (ii — ri) (60)

If Rb is equal to Rl/4, Eq. (60) becomes

ebl = Em - ii (61) 
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or the plate voltage of tube I is not dependent upon the plate 
current of tube II—This means that that particular value 
of Rb( = Rl/A) has decoupled tube I from tube II by introducing 
a coupling equal and opposite to that of the two halves of the 
output transformer. The load line for either tube will therefore 
be a straight line determined by the resistance Rl/2 and is 
tangent at the operating point to the curved load line of either 
tube when there is no mid-branch resistance.

In the case of winding resistance in the output transformer, the 
corrections as detailed in the previous section give the individual 
tubes’ currents. From these the power output can be calculated, 
but it must be remembered that this is the output into the trans­
former. To obtain the power output into the load resistance Rl, 
the losses in the output transformer must be subtracted.

24. Summary of Plate-circuit Relations.—In this chapter there 
have been formulated some general theorems on balanced- 
amplifier circuits. Assuming truly balanced conditions, it has 
been shown that

1. The output contains odd-order but no even-order modulation 
products.

2. The mid-branch current contains even-order but no odd­
order modulation products.

3. Mid-branch impedances produce voltages that cross modu­
late with the signal voltage to produce odd-order modulation 
products in the output, in vector addition to those normally 
produced by the tubes themselves.

4. Mid-branch voltages produce no output directly but do 
cross modulate with the signal voltage to produce odd-order terms 
in the output.

5. A tube whose power series contains no term higher than the 
second will give distortionless output in a balanced amplifier 
operating class A. This is true even if its amplification factor is 
variable, subject to the above restrictions.

6. In the case where the above type of tube has a constant 
amplification factor, even in class AB a nearly distortionless out­
put can be obtained. In particular, the square-law tube (van der 
Bijl’s equation) gives a smooth dynamic characteristic for the 
above operation, which indicates a lack of high-order modulation 
products. This is true for all reasonable values of load resistance, 
bias, and signal voltage.
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7. The above tube can give greater output in conjunction with 
a similar tube in balanced-amplifier operation than in single­
side operation, because a higher supply voltage can be used, with 
overbias to keep the no-signal plate dissipation down. Also, an 
optimum value of load resistance can be used, even though either 
tube cuts off before the peak of the signal swing is reached. 
Thus, for this tube operating class A, when the load resistance 
(plate-to-plate) is twice the tube resistance (at the operating 
point), maximum power output is obtained. If operation beyond 
class A is desired, i.e., class AB, maximum power output is 
obtained when the load resistance is four times the tube resistance 
at the point of peak signal swing. The above results are approxi­
mately true for tubes of parabolic characteristics.

8. Maximum grid swing is determined by the grid current. 
The latter depends, however, upon the plate voltage, which is at a 
minimum when the grid voltage is at a maximum. The value to 
which the plate voltage drops is determined by the load resistance 
as well; hence the peak grid swing is best determined graphically 
for the value of load resistance determined previously.

9. The full-signal plate dissipation depends upon a number of 
factors, so that it is best calculated after the additional d.c. 
component has been determined graphically. It can be reduced 
to within safe limits by reducing the grid swing, increasing the 
load resistance, or increasing the bias. The latter is often 
done, which results in more nearly class B operation. The 
advantage is better all-day operating economy; the disadvantage 
is mainly higher percentage of distortion products.

10. For self-bias, the change in d.c. component (hence change 
in bias) must be minimized. This can be done by operating more 
nearly class A, which means generally a higher value of load 
resistance and reduced signal voltage, for the same percentage of 
distortion products.

25. Desirability of Driving Grids Positive.—At this point in 
the discussion of balanced amplifiers the analysis of the grid 
circuit will be developed. If the grids were not to be driven posi­
tive, then the input circuit for the balanced-amplifier stage would 
not differ materially from that of the single-side circuit. The 
only additional precaution of any consequence would be that of 
ensuring that the two grid voltages (in the two halves of the 
secondary of the input transformer) were in phase opposition at 
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all frequencies. This is because the balanced-amplifier input 
transformer is essentially a three-winding transformer, and it is 
therefore possible for the two secondary voltages to be other than 
in phase opposition, particularly at the higher frequencies due to 
unbalances between the distributed capacities of the windings 
and mutual inductances between the two halves of the secondary 
as well as between each half and the primary.

However, the power output of a balanced amplifier under the 
above conditions is relatively low; and while the plate-supply 
voltage may be increased (and the C bias also increased in order 
concomitantly to keep the plate dissipation within prescribed 
limits, especially at no signal) and thus more power output 
obtained, there is an upper limit to this increase that is deter­
mined by the insulation strength of the tube and the cost of the 
power supply, particularly the filter condensers.

Since, as has been shown previously, balanced-amplifier opera­
tion is not limited by plate-current cutoff, it would appear equally 
desirable to remove the other restriction necessary for class A 
operation, that the grids be not driven positive. Therefore 
experiments have been directed toward the expanding of the 
range of operation, with the result that, under proper design, grid 
swings of amplitude sufficient to drive the grids positive have 
been successfully employed. Thus, there has been a large 
increase in power output and also in plate efficiency, and, in addi­
tion, the obtaining of large power outputs at reasonably low B 
voltages. This mode of operation has been previously defined as 
class AB2 (Sec. 5).

26. Driver-tube Considerations.—It is a fundamental fact in 
the theory of electrical circuits that, when current flows in the 
same direction as the voltage acting in that circuit, power is 
absorbed by the latter. In the case of the grid circuit, whenever 
the grid is driven positive, electron flow is from the cathode to the 
grid and then externally around the grid circuit back to the 
cathode, which means that the conventional flow of electric 
current is in the same direction as the grid signal voltage. 
Hence, it represents energy absorbed in the grid circuit, and this 
energy must come from the source of signal voltage, i.e., the tube 
preceding the power-amplifier stage. We therefore see that the 
latter tube has been elevated from the role of a voltage-amplifier 
stage to that of a power-amplifier stage. Therefore, it is usually
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called a driver tube; i.e., it drives the grids of the balanced-ampli­
fier stage alternately positive and supplies the electrical power 
absorbed by them when positive. The driver tube must there­
fore have a power rating adequate for the grid requirements and 
indeed, as will be shown, must have more than this rating in order 
that the distortion produced in the grid circuit be kept within 
allowable limits.

It may be well to elaborate the latter point. The load fed by 
the driver tube, viz., the grid circuit of the balanced-amplifier 
stage, is very nonlinear in its characteristic. For example, if the 
grids are negatively biased, no current flows until they are 
actually driven positive by' the driver, so that they appear to the 
latter as an infinite load resistance for the early part of the signal 
cycle. Then in that portion of the cycle where they are driven 
positive they suddenly appear as a finite resistance, w’hich, how­
ever, is not constant, for the grid current is not even in direct 
proportion to the positive grid voltage. It is therefore evident 
that the voltage drops in the driver and associated coupling trans­
former will depend upon this variable grid current and hence the 
terminal voltage across either half of the transformer will be 
distorted by the internal drops in it and the driver tube even 
though an equivalent sinusoidal voltage be generated in the tube 
itself.

Our problem is therefore twofold:
1. To determine the grid-current flow during the portion of 

the cycle of the signal voltage when the grid is positive:
2. To determine the permissible internal impedance of the 

driver source for a prescribed allowable distortion of the grid 
signal voltage. It will be found that this consideration indicates 
a tube of a size greater than grid power (as averaged over the 
entire signal cycle) would in itself require. In short, driver 
internal regulation is the determining factor in the choice of the 
size of tube, rather than grid power considerations.

We shall discuss problem 1 first, in Sec. 27.
27. Determination of Grid Current.—The instantaneous grid 

current is a function both of the grid and the plate voltage. The 
relative effect of the plate voltage, as compared with the grid 
voltage, upon the grid current has been called the “reflex factor” 
and, while analogous to the amplification factor, is practically 
always of a value less than unity. However, under extreme
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conditions of operation it is possible for the plate voltage to have 
at some instant a large effect upon the grid current, due to the 
relative division of the space current between the two electrodes 
and also to secondary emission and even possible dynatron 
effects occurring either at the plate or at the grid. Consequently, 
any attempt to determine the grid-current vs. grid-voltage char­
acteristic must take into account the plate voltage. The latter 
in turn depends upon the actual grid-to-cathode voltage and load 
impedance (as well as any regulation in the B power supply).

Thus, it would seem that a method of simultaneous solutions 
must be employed. However, it is possible first to solve the

Fig. 95.—Determination of operating grid current.

plate-circuit condition (as given in the previous sections) upon the 
assumption of a certain form of grid voltage (usually sinusoidal) 
and then determine the alteration of grid voltage permissible as 
far as distortion of the output of the plate circuit is concerned. 
This is tantamount to assuming, as a first approximation, that the 
driver internal impedance is zero. Hence, if the load line for the 
balanced amplifier has been determined for this form of grid 
voltage, the grid current can then be found. For this purpose, 
it is convenient to plot the latter as a function of the plate voltage, 
with the grid voltage as a parameter. This gives rise to a family 
of curves that is superimposed on the plate family as shown in 
Fig. 95.

It will be noted that for a very positive grid voltage eCs the grid 
current at any plate voltage is higher than for a lower positive grid 
voltage ect- It will also be noted that the curve for any one posi­
tive grid voltage rises as the plate voltage decreases. As men­
tioned previously, this is due to the fact that the grid, being 
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closer to the cathode, diverts space current to itself. As a result, 
the plate-current curve drops sharply downward where the corre- 
spending grid-current curve rises sharply upward; hence, the load 
resistance Rl must be chosen low enough so that its curved push- 
pull load line cuts the plate family of curves above the region 
where they thus droop sharply, or otherwise excessive distortion 
will result.

If the grid voltage is more than twenty volts positive or there­
abouts, secondary emission may occur at this electrode. This 
phenomenon is not well understood as yet, although at present 
there is considerable research to determine its characteristics and 
quantitative relations. The amount of secondary emission 
depends not only upon the potential of the electrode but also 
upon its substance and surface condition. By suitably treating 
the surface of a grid, the secondary emission may be considerably 
reduced.

When secondary emission occurs at the grid and the plate at 
that instant is more positive than the grid, secondaries may go 
from the latter to the plate. The result is that the grid current 
may cease to rise with increase of grid potential, or it may rise 
less rapidly than for lower grid potentials, or, in extreme cases, 
it may even decrease, sometimes even to the point of going 
negative. The latter case gives rise to a dynatron action; the 
grid-to-cathode variational resistance is negative, and at that 
moment the grid or input circuit may oscillate (depending upon 
the positive damping in this circuit).

The plate current will reflect these oscillations in its wave 
shape, and the result is distortion that is not even of harmonic 
frequency with respect to the fundamental. Such dynatron 
action may occur if the plate voltage is high when the grid swings 
sufficiently positive and will reveal itself by the shape of the 
right-hand portion of the grid-current curves.

However, owing to the load resistance, the plate current increases 
in the tube whose grid is swinging positive, and the plate voltage 
is concomitantly falling, as indicated, for instance, in Fig. 95. 
That is, when the grid eg is at its peak positive value, then the 
plate voltage at that instant is at its minimum value; hence, such 
dynatron action can occur only if eb is sufficiently high even when 
at its minimum value. This is not usually the case unless a very 
low value of load resistance is employed or a very high value of
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B voltage. Consequently, this action may be expected more in 
large high-voltage tubes than in small tubes used for radio 
receivers, etc. Of course, the surface of the grid also has an 
important bearing on the matter.

In extreme cases, dynatron action may occur at the plate. 
The result is ordinarily a flattening of the peak of the plate­
current wave, although, for high values of load resistance and 
large positive grid swings, the plate-current wave may show at 
its center a subsidiary minimum instead of a peak. This, of 
course, means that, as the grid swings positive to its peak value, 
the plate current at first increases but then decreases, owing to the 
grid diverting the space current more completely to itself and 
also possibly to its robbing the plate of secondaries, if, at that 
instant, the grid is actually at a higher potential than the plate, 
with respect to the cathode. The latter condition would indicate 
a very large grid swing and high load resistance, a condition not 
usually encountered in audio amplifiers, particularly if operation 
is confined to the region mentioned in the previous sections of 
this chapter.

After this brief discussion we are now ready to plot the grid 
current per tube for a given plate load resistance. In Fig. 95, 
ABODE is the load line presented to each tube by a load resist­
ance Rl (plate-to-plate). It intersects the plate-current curves 
for successively higher positive values of the grid parameter in 
C, B, and A, respectively, as shown. The corresponding instan­
taneous values of plate current and plate voltage are OF, BH, 
AJ, and OF, OH, OJ, respectively. Thus, at maximum grid 
swing ec, the plate voltage has dropped to its minimum value OJ 
from its normal value at no signal of OEm- For that value of 
plate voltage OJ and for that grid voltage ect, the grid current at 
that instant is evidently KJ. Similarly, for the grid swing eC2 
and plate voltage OH, the grid current is IH; for eci and OF, it is 
GF. Thus, the actual grid current ig for different grid voltages 
and the given value oi Rl can be found. We now plot ig vs. 
ec or ig against the signal voltage eg (either grid to cathode) 
as shown in Fig. 96. On this same graph the load current 
Il = (ii — iJ/2 through Rl can also be plotted, as detailed in 
the previous sections. It is necessary to plot only one half cycle 
of eg, as the other half cycle gives identical results from the 
symmetry of the circuit.
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28. Plate-circuit Distortion Products.—We are now ready to 
attack the second half of the problem stated at the end of Sec. 26. 
We first assume that the driver internal impedance is zero. In 
this case, the actual signal voltage eg is identical with the known 
voltage generated within the driver despite the fact that grid 
current flows. Thus, the load line for shown in Fig. 97 repre­
sents at the same time a plot between the load current and the 
generated voltage of the driver. If this load line is straight, 
then, as mentioned previously, the load current is an exact copy 
of the generated driver voltage and no distortion results. How­
ever, this graph is usually not straight for the entire range of grid

Fig. 96.—Grid- and load-current characteristics for a balanced amplifier.

swing so that we know that distortion will be present. Our 
problem is to determine, at least approximately, the amount of 
distortion corresponding to a certain degree of departure of this 
load line from linearity. In the case of a triode operating class 
AB, the top end of the load line rises above the linear line OA 
(Fig. 97) and is called an overshoot. In the case of a pentode, it 
is quite possible for the load line to be below OA, viz., OB. Such 
a load line may be said to have an undershoot.

To determine the distortion products in either load line we 
assume a power-series relation between iL and eg, viz.,

ib = aeg + ceg3 (62)
It will be noted that the square term is missing. It has been 
shown, Sec. 14, that there can be no even-order modulation 
products in the output of a perfectly balanced push-pull amplifier 
but that there can be odd-order products, which in the case of a 
resistive load corresponds to a power-series relationship between 
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iL and eg involving only odd powers of eg. As a fairly satisfactory 
approximation, we assume that no terms above the third degree 
are present. This means that we assume that all the distortion 
is third harmonic if eg is sinusoidal in form. If the coefficient c 
is positive, then the plot of this curve gives rise to load line OC 
(Fig. 97), whereas, if negative, it gives rise to load line OB. We 
tnerefore see that by choosing the proper sign for c we can repre­
sent, to a fair degree of accuracy, load lines having overshoots

Fig. 97.—Three types of balanced-amplifier operation: A, linear; B, undershoot; 
f C, overshoot.

and load lines having undershoots. In the case of a linear load 
line it is evident that c is zero.

Now let
es = EB sin ext (63)

Substituting Eq. (63) in Eq. (62) we obtain
in = aEg sin + cEg3 sin3 ext (64)

From trigonometry, we know that
sin3 ext = i sin ext — i sin 3wZ (65)

Substituting Eq. (65) in Eq. (64) we finally obtain
iL = (aEg + icEg3) sin ext — icE? sin 3ext (66)

The quantity tcE/ sin ext represents the contribution of the 
third-order, or cubic, term to the fundamental frequency. If c 
is positive, it represents an increase in the fundamental compo­
nent over that given by a linear load line; if negative, it represents 
a decrease. The remaining term -^cEg3 sin 3<xt represents third- 
harmonic distortion produced by the third-order term.
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29. Geometric Interpretation.—Referring once again to Eq. 
(62) we see that the quantity cEg3 is represented in Fig. 97 by 
distances CA or AB if c is positive or negative, respectively, and 
at the' moment when eg is at its peak value. The different wave 
shapes are shown in Fig. 98.4, B, and C. Figure 98.4 shows the 
wave shape for an overshoot. The broken line shows the actual 
peak wave shape, and the solid line superimposed on it shows the 
amplitude of the fundamental component whose peak is IC A 
below the peak of the actual wave. The third-harmonic distor­
tion is shown in its proper phase about the axis. Its peak ampli-

Fig. 98.—Wave shapes corresponding to A, overshoot; B, linear; C, undershoot 
in push-pull characteristics.

tude is iCA. In Fig. 988 the actual wave shape and fundamental 
component are identical, and the third-harmonic component is 
zero. In Fig. 98C the actual wave (broken line) has a peak ampli­
tude /AB below the fundamental peak; the latter, in turn, is f AB 
below the fundamental peak of Fig. 988. The third-harmonic 
distortion in the last example has a peak amplitude iAB, and 
its phase is reversed with respect to that of Fig. 98.4 because the 
sign of c is reversed (negative for undershoot).

It is therefore evident that the departure of the load line from 
linearity enables us to estimate the third-harmonic distortion 
produced thereby and, conversely, if the permissible amount of 
third-harmonic distortion is specified, the departure from 
linearity at the peak can be found.
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The effect of internal driver resistance is to cause a flattening 
of the load current at its peak. It may therefore be regarded as 
equivalent to the case of a zero-resistance driver and a load­
current undershoot. That is, either we can regard the driver 
resistance as zero, the terminal (actual grid voltage) and gen­
erated voltages as being identical, and the load current as having 
a plot such as OB (Fig. 97), or we may consider (as is actually 
the case) that the load line is OA or possibly even OC but that 
the terminal or grid voltage is flattened from the generated 
sinusoidal shape owing to the voltage drop produced by the grid 
current flowing through the internal resistance of the driver. 
Either viewpoint will give the same peak load current at the 
end of the first quarter of the cycle when the generated driver 
voltage has reached its maximum. Externally, the effect of 
driver resistance is to convert a tube that might otherwise exhibit 
an overshoot into a tube that exhibits an undershoot. We are 
now in a position to determine the permissible driver internal 
resistance.

30. Determination of Driver Resistance.
Let Po = desired fundamental power output

Ilf = peak fundamental current which, flowing through
Rl = plate-to-plate load resistance, gives rise to Po 

n = permissible percentage of distortion (assumed all third 
harmonic). It is therefore the ratio of peak third- 
harmonic current to Ilf.

Then

po = (iLry^ (67).

or
T fa^0 tea}
Ilf = a/ zW’ (68)V Hl

which determines Ilf for a given P„ and Rl.
Suppose (Fig. 99) that OC represents the load line for the load 

current. Through 0 a straight line OA is drawn. This should 
coincide as closely as possible with the lower end of OC. In Sec. 
20 it was shown that for a parabolic tube the load line is straight 
up to the point of cutoff of one tube and from this point rises 
parabolically, since from then on the load current and the plate 
current of the other tube are identical. Hence, the load line is 
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straight up to the cutoff value of the signal voltage, and then an 
overshoot occurs. In actual tubes this condition is approximated 
so that it is usually possible to draw a line OA that coincides with 
the lower portion of OC. Next, a horizontal line is drawn 
through the ordinate Ilf determined by Eq. (68). Then another 
horizontal line is drawn through the ordinate (1 + 3n)ILF- 
Third, a horizontal line is drawn through the ordinate (1 — n)I lf-

Fig. 99.—Graphical constructions for determining permissible driver resistance. 

As shown in Fig. 99, the horizontal line through (1 + 3n)ILF 
intersects OA in A. OD is the peak value of the generated grid 
swing. The horizontal line through (1 — n)ILF intersects OC 
in E, which corresponds to a grid voltage OF. EF intersects 
the grid current curve in G. Then GD is the load line for the 
total driver resistance RD. IH is the terminal, or actual, peak 
grid-to-cathode voltage of the tube which is at that moment 
drawing grid current. At some other moment of the generated 
grid-voltage cycle such as point J, the terminal voltage is found
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by drawing LK parallel to GD and then projecting this down 
to the grid-voltage wave in point M. NM represents the termi­
nal or grid voltage at that instant. In this way, the terminal 
grid-voltage wave shape can be determined as shown by the 
broken line. This broken line evidently coincides with the solid 
line for the grid signal voltage to the left of where the grid-current 
curve begins to rise above the ea axis.

A study of Fig. 99 will show that the value of Rd will fulfill the 
requirements if the power series of Eq. (62) is sufficiently accu­
rate. For the load line for in may be assumed to be OP instead 
of OC, as far as peak load current is concerned in the actual 
circuit. DP represents the peak actual current; DQ represents 
the peak of the fundamental component of this actual current. 
Load line OP undershoots the linear load line OA by a distance 
AP. Three-quarters of this distance, or AQ, represents reduc­
tion in the fundamental component due to the undershoot charac­
teristic. One-quarter of AP, or QP, represents peak amplitude 
of third-harmonic current; and QP is evidently n per cent of Ilf 
as required, and Ilf or DQ is the fundamental component that 
will give the required fundamental output Po.

On the other hand, if we take the actual conditions, OC is the 
actual relation between load current and grid signal voltage. If, 
at the peak swing, a peak current of FE (= DP) is required, the 
terminal grid voltage need drily be OF instead of OD. Since OD 
is the peak generated voltage, then FD is the allowable internal 
voltage drop of the driver; and since for a grid voltage of OF the 
grid current is FG, the internal driver resistance is evidently FD 
divided by FG, or GD is the load line for RD. The latter can 
therefore be calculated from the scales of current and voltage 
on the graph.

31. Driver Input Transformer.—The internal driver resistance 
Rn must be prorated between the winding resistances of the driver 
input transformer and the plate resistance of the driver tube 
itself. Moreover, a driver tube of adequate size must be chosen. 
In actual practice, the nearest standard-size tube manufactured 
is selected. Suppose the one chosen requires a certain B supply 
voltage, also a certain bias Ec, and that it has a certain p and a 
certain plate resistance Rp. Assume it is to be a class A driver. 
Then, the equivalent voltage in the plate circuit has a maximum 
magnitude of pEc.
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It will be desirable, if possible, to use a grid swing less than 
this maximum value. This will depend upon the Rp of the tube 
and the winding resistances of the driver transformer. In order 
to reduce the number of variables present, assume that the 
primary winding resistance Rpw and the winding resistance 
Rsu, of half of the secondary cause equal losses. This means that, 
if the turns ratio (primary to one-half secondary) is a:l, then

Rpw = a2Rsw (69)
Now let the ratio of total winding resistance to Rp be denoted by 
q. A reasonable value for q is 10 per cent. Then the apparent 
source impedance, as viewed by the grid of either power tube, is

_  RP + Rpw 4” a2Rsw _  Rp(l 4" ff)Ka — ------------ 5 — sa2 a2

But the graphical construction of Fig. 99 requires that
Ra A Rd

If we use the equal sign, then

8P(1 + g)
Rd

Equation (72) thus gives the step-down ratio required in the 
driver transformer, after a reasonable value of q has been chosen. 
We are now in a position to check the suitability of the choice of 
driver tube.

In the midrange of frequencies for the transformer, say, around 
1,000 cycles, the open-circuit reactance of the primary is suffi­
ciently high and the leakage reactances are still sufficiently small 
so that, in the absence of grid current, the transformer may be 
regarded as practically an infinite impedance across the tube. 
The circuit gain is then approximately equal to the tube //. The 
graphical construction gives the value of generated voltage, 
OD (Fig. 99), that is required. The input signal to the driver 
tube grid is then evidently

eg = OD (73)

If eg is less than or at most equal to the bias voltage of the driver 
stage, then the tube and transformer chosen for this stage are 
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satisfactory; if not, then a tube having a higher p or lower Rv> 
that is, a higher transconductance gm, will be necessary.

It will also be evident that the effect of the grid-current flow is 
to reduce the generated voltage OD to the lower terminal voltage 
OF, and that this latter voltage is of the proper magnitude to 
cause the flattening of the grid-voltage wave to the degree which 
permits the desired amount of power output to be obtained with 
the acceptable amount of distortion (assumed all third harmonic).

The driver tube is generally of a size known as a power tube 
and as such usually draws a considerable d.c. component Ib- It 
is rather difficult and expensive to construct a driver transformer 
that has a sufficiently high open-circuit reactance under these con­
ditions, and so often a push-pull driver stage is employed, since 
in a push-pull stage the d.c. components of the two tubes’ cur­
rents cancel each other’s magnetic effects in the two primary 
windings. Although a push-pull family of curves could be 
drawn for this stage as outlined in Sec. 3 (Fig. 74), it will be 
sufficiently accurate to assume that the apparent internal resist­
ance of the stage is 2RP and the apparent generated voltage (on 
the primary side) is 2pe„. If, in addition, the turns ratio a is 
taken as that of the entire primary to one-half of the secondary, 
then Eqs. (72) and (73) will hold equally well in this case. The 
regulation will be half of that for a single-ended stage with the 
appropriate transformer.

If it is desired to employ a driver transformer furnished by 
some manufacturer, then its suitability may be determined by 
the formulas

Rp + RpW + a?Rsw Z a2Rn (74)
(75)

32. Further Conclusions.—The material of -the preceding 
paragraphs may now furnish us with the following conclusions :

1. This analysis is based upon the assumption that the open­
circuit reactance and the leakage reactance are very high and 
negligibly small, respectively. This condition is probably 
approached by a good driver input transformer at frequencies in 
the neighborhood of 1,000 cycles.

2. At low frequencies the open-circuit reactance becomes lower 
and comparable to the Rp of the driver tube, whereupon the
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generated voltage available in the grid circuit is less, so that the 
power output obtained will not be so high as desired. That is, 
the frequency response droops off at lower frequencies. On the 
other hand, by Thevenin’s theorem, the impedance that the grid 
circuit of the tube sees looking back into the source is less than 
its value at higher frequencies by the shunting effect of the open­
circuit reactance. Hence, we might expect that the effect of 
the open-circuit reactance is to reduce not only the power output 
but the amount of distortion because the grid swing is less and 
the equivalent internal driver impedance is less, so that the grid­
terminal voltage wave is not flattened so much.

3. At higher frequencies, say, around four and five thousand 
cycles, we may expect the leakage reactance to have an appreci­
able effect upon the output and distortion products. Since it is 
a series reactance, it makes the internal driver impedance appear 
higher and therefore causes more flattening of the grid-voltage 
wave, hence more of an equivalent undershoot in the plate 
circuit and consequently less fundamental output and more dis­
tortion. Therefore, unless it is kept down to a very low figure 
at those frequencies, it causes the calculations given above to be 
considerably in error. As a consequence, we may regard these 
calculations for the driver and winding resistances as giving a 
maximum, or upper, figure, or else we may choose for our com­
putation a lower value of n in order to be on the safe side at the 
higher frequencies.

The effect of leakage reactance upon the wave shape can be 
determined by means of the principles established in Chap. II 
(Sec. 6). The driver tube can be assumed to have a linear 
internal resistance, and this can be combined with the winding 
resistances to form a value Rt. This, in conjunction with the 
leakage reactance, forms the finite operator curve, which is slid 
along the grid-current-grid-voltage characteristic. The result 
is a loop upon the latter characteristic, and the appropriate pro­
jections of this loop over to the characteristic give the instan­
taneous grid or terminal voltages. In general, it will be found 
that for an increasing generated voltage the above instantaneous 
values are lower than for corresponding moments in the next 
quarter cycle when the generated voltage is decreasing, so that 
the grid voltage wave no longer has symmetry about its values 
at 90 and 270 deg. of the cycle. The result is both an increase
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in odd-order modulation products as well as a shifting in phase 
of the various components over that which would occur if no 
reactance were present.

The converse problem, that of determining a permissible 
amount of leakage reactance which will give an acceptable 
amount of distortion, is exceedingly difficult, if at all possible of 
solution— at least, from a practical viewpoint. Hence, if this 
factor is particularly important in some problem, a series of 
trials of various magnitudes of reactance may be the best method 
of attack. On the other hand, as noted previously, if these param­
eters । are known, then the determination of the grid-voltage 
wave form (hence that of the output) is a straightforward problem.

4. The method, as has been cautioned throughout this discus­
sion, is based on the assumption that all the distortion for a 
sinusoidal input is third harmonic. Actually, the load line for 
ii, requires a more complicated power series, which means that 
higher harmonics are really present. However, their amplitudes 
are usually very small so that if a conservative value for n is 
taken, say, 5 per cent or less, the effects of these higher harmonics 
need not be feared.

5. The driver tube should preferably be of a type that is not 
critical as to the value of load impedance. This means that it 
should be preferably operated class A, and even then that it be 
preferably a triode rather than a pentode. A pentode is very 
critical as to load resistance and will give rise to high distortion 
products in its plate circuit if the load impedance presented to 
it is very variable, such as a grid-to-cathode resistance. How­
ever, this may be obviated by the use of inverse feedback of the 
type that makes the apparent tube resistance lower.

6. The difficulty in obtaining a driver input transformer design 
whose winding resistances will fall within the required limits 
given by Eqs. (72) and (73) depends upon the initial load line 
for iL. If this has an overshoot, then, as is evident from Fig. 
99, the allowable driver resistance will be greater or, what 
amounts to the same thing, more internal voltage drop in the 
driver can be allowed before this overshoot is converted into the 
permissible undershoot.

7. No mention has been made of the C bias source for the 
balanced-amplifier stage. If the internal resistance of the latter 
were the same both to the a.c. and d.c. components of the grid­
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current wave, then it could be subtracted from the value of Ri> 
before proceeding to calculate a and Eq. (72). Usually, how­
ever, the impedance of this source to alternating current is 
negligibly small because a large by-pass condenser is placed 
across its terminals. Hence, its only effect is to experience a 
voltage drop due to the d.c. component of the grid current. 
This, in effect, means a change in the steady bias value. To 
calculate this effect and consequent effects upon the grid-current

Fig. 100.—Grid-current determination for à 6F6 tube.

wave would have to be determined by a Fourier analysis, then 
the voltage drop in the C bias found, and then the grid-current 
curves shifted in a negative direction by the amount of this 
voltage drop. A recalculation of the voltage drop in the grid 
circuit would then have to be made, as well as calculation of the 
position of the load line for Rl, which would be shifted too. 
Then the correct grid-current wave would be determined, its 
value of d.c. component found, and another correction made to 
the bias. In this manner, by a method of approximations, a 
final state of equilibrium could be found.

8. However, the methods outlined previously will serve at 
least to determine feasible values for the constants of the driver 
stage, and at least one conclusion can be drawn, viz., that the 
bias source should have as low a d.c. resistance as possible and 
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should be adequately by-passed so as to have a negligible a.c. 
impedance in the working range of frequencies.

33. Typical Calculations.—An illustrative example will help 
to make the method discussed above clearer. The 6F6 tube cited 
previously (page 152) will be used here. Figure 100 shows the 
push-pull load line as it appears to either tube. This load line 
intersects the +10, +20, +30, 
and +40 grid-voltage curves at 
points that are projected down­
ward to the corresponding grid­
current curves, as shown by the 
broken lines. The corresponding 
grid currents are indicated by 
circles. The load current iL and 
the grid current ig are then plotted 
against eg (Fig. 101). A straight 
line is now drawn as nearly 
coincident with the lower part of 
the ii-eg curve as possible. It 
will be noted that the latter 
represents an overshoot compared 
with the straight line, although it 
shows signs of an ultimate under­
shoot for a sufficiently large grid 
swing.

Suppose an output power Po of 
Fig. 101.—Determination of the 

driver resistance, 6F6 tube.

18 watts is desired, with a third-harmonic distortion of 5 per cent 
(= n). The fundamental load current will therefore be

Ilf — /2 X 18V
\ 6,000 / X 1,000 = 77.5 ma.

Lines are drawn through current values of 15 per cent greater 
and 5 per cent less than 77.5 ma., or through 89.2 ma. and 
73.6 ma., respectively. The line through 89.2 ma. intersects the 
linear line at a value for eg of 84.8 volts, while the one through 
73.6 ma. intersects the actual load line at a value for eg of 65.5 
volts. This corresponds to a grid current of 9.5 ma. The per­
missible driver resistance is therefore

p 84.8 - 65.5 _ __n ,
Rj> = —» nnnc— = 2,030 ohms0.0095
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A driver tube must now be chosen. If a 6F6 triode-connected 
tube is chosen, it can be operated class A as follows: The B supply 
voltage is 250 volts; the bias, — 20 volts; the plate resistance Rp is 
2,600 ohms; and the amplification factor p is 7. A value of 
q = 0.1 will be chosen. Then, by Eq. (72), the turns ratio is

/ 2/)30 
\1.1 X 2,600 = 1.187:1

The primary winding resistance Rpm is 0.05 X 2,600, or 130 
ohms. The secondary winding resistance Rsw is therefore 
130 (1.187)2, or 92.3 ohms. These should be realizable in a
practical transformer design.

Next the grid swing must be checked. By Eq. (73),

es
84.8 X 1.187

7 14.36 volts

Since this is less than the 20 volts bias, the tube will be a satisfac­
tory driver when used in conjunction with the above driver 
transformer.

It must be remembered that the leakage reactance of the driver 
input transformer will tend to increase the distortion products 
and reduce somewhat the fundamental power output. However, 
this should not be excessive in a carefully designed transformer. 
In addition, the distortion products of the driver tube will appear 
in the output of the balanced-amplifier stage, mainly as second 
harmonic. These, too, should not be excessive, since the Rp of 
the driver is fairly low, viz., 2,600 ohms, and the grid swing of 
14.36 volts is moderate.
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CHAPTER VI

DETECTION

1. Diodes—Rectification Curves.—The diode detector is in 
almost universal use today as a demodulator, but its circuit 
design is far removed from that of the early Fleming valve. Its 
present-day popularity is due to its ability to handle reasonably 
large signals without overlooking, its characteristic of linear detec­
tion of large signals, and ability—if required—to furnish the 
variable bias necessary for automatic volume control with 
simplicity of associated circuits.

A linear detector is one whose output is a faithful copy of the 
envelope of the modulated h.f. wave impressed 
upon it; i.e., the former is directly proportional to 
the latter. Such detection is facilitated by the 
use of an ideal diode. An ideal diode is one 
whose impedance to current flow in one direc­
tion is zero and whose admittance to current flow 
in the opposite direction is zero. Actual diodes 
practically meet the latter condition, but not 
the former, since they present a finite, 
usually nonlinear resistance in the conductive direction.

An elementary diode circuit is shown in Fig. 102. The h.f. 
source impedance is assumed zero. The condenser Cl is assumed 
to have negligible reactance at the high carrier frequency fc and to 
have negligible susceptance at the low modulation frequency fm. 
We shall first, however, assume that ec is unmodulated, i.e., of 
constant amplitude. The rectified output voltage eL will there­
fore be d.c. Its magnitude, as well as that of the current flow 
through the diode, could be found by the methods described in 
Chap. IV (Sec. 10); but these become very involved when ec is 
assumed to be modulated, and various impedances present in the 
actual circuit are taken into account. Accordingly, a simpler, 
although more approximate method, is to be sought.

Fig. 102.— 
Elementary 
diode-detector 
circuit.

203
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Fig. 103.—Rectification diagram and 
load line for a diode detector.

the relationship that iRL = eL.

For steady amplitude of ec, eL can be found experimentally as 
well as graphically. Thus, first, by the compensation theorem, 
the impedance ZL can be replaced by a zero-impedance d.c. 
source e, so poled as to oppose current flow through the diode. If 
a constant value of ec is impressed as well and its peak amplitude 
exceeds e, rectified current will flow through the diode and its d.c. 
component i can be measured. If e is varied from the peak value 
of ec to zero, i will vary from zero to some maximum upper limit 
and give rise to an e-i curve similar to an ordinary ib-eb curve for 
a triode. If ec is now adjusted to another fixed value, another 
curve will be obtained, etc., until a whole family is developed.

This is shown in Fig. 103. The 
curves are approximately equi­
distant in spacing and are known 
as rectification curves for the diode. 
It will be noted that they proceed 
from right to left as ec is increased 
and also that these curves can 
be obtained at a conveniently 
low frequency for ec.

If e is now replaced by ZL, i 
and eL (in place of e) must satisfy 

For any value of ec, i can be
found from the graphical solution for Rl and the diode in series. 
Thus, the load line for RL is laid off as OA, and its intersection 
with the diode family at B gives the output current BC for a peak 
alternating (carrier) voltage ec,. The diode curves can represent 
by their slope the nonlinear internal resistance of the diode rd. 
Then DO can represent an equivalent direct voltage generated in 
the circuit, of value equal to the maximum value of eci. The 
portion DC is lost as voltage drop across the diode, and the 
remainder CO is available across Zl. If Zl» rd, then it can be 
seen that CO is practically equal to the maximum value of ec„ and 
DC approaches zero. This is usually the case in actual practice. 
The diode thus approaches the ideal diode in performance.

Now suppose ec represents a modulated wave, of the form
e„ = Ec(l + m sin wmt) sin wct (1)

where œ,„ = 2tt/„, the low modulation angular frequency, and 
= 2irfc, the higher carrier angular frequency. It is evident 
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from Eq. (1) that the amplitude of ec may be regarded as made up 
of a constant value Ec and a variable quantity, of peak magnitude 
mEc and varying at a frequency fm. Suppose in Fig. 103 that 
ec, = Ec. Then BC and CO represent the constant components 
of the output current and voltage, respectively. The variation in 
amplitude due to mEc produces a path of operation along AO. 
Assume, specifically, that m = 1 (100 per cent modulation) and 
that this carries the operation from B to A and from B to 0. The 
output current then varies from BC to AE and down to zero, or 
it has an a.c. component as well as the d.c. component BC, which 
alone is produced when there is no modulation (m = 0). Simi­
larly, the output voltage has a variable, or a.c., component of 
peak-to-peak value EO, as well as the d.c. component CO. It will 
be noted that the output voltage and current can follow the input 
carrier up to 100 per cent modulation. If the diode family con­
sists of straight lines of equidistant spacing, then from the 
geometry of the figure it is evident that the output voltage will be 
a constant fraction of the envelope of the input and there will be 
no distortion, i.e., linear detection. In particular, if rd = 0, the 
diode curves will be vertical and eL will be equal to the amplitude 
of the envelope; i.e., the above-mentioned fraction will be unity. 
This ratio, or fraction, is known as the detection efficiency. If the 
diode family is curved and Rl is low relative to rd, it is evident 
that the detection efficiency will vary over the path of operation, 
and hence over the modulation cycle, and also will be less than 
unity.

2. Input Impedance.—The output load ZL or, more specifically, 
Rl (assuming Cl has negligible susceptance at the modulating 
frequency) presents a certain equivalent resistance to the source 
of ec. The value of this resistance, call it Rc, involves rd as well 
and in practice is influenced by the other impedances in the circuit, 
such as that of Cl (if appreciable) and of the source. However, a 
fair approximation to Rc may be had as follows:

The actual current wave shape through the diode is a series of 
narrow pulses, which represent the charging current of Ch as it 
charges up to the peaks of ec through rd. As ec passes from its 
positive peak value down to its peak negative value, CL discharges 
more slowly through the higher resistance Rl. The action of the 
diode is thus determined by two time constants, the charging time 
constant C¡.rd. and the discharge time constant ClRl. For a con-
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Fig. 104.—Waves shapes 
of current and voltage in diode 
detection for fixed-carrier ampli­
tude.

stant amplitude carrier of peak value Ec, the output voltage eL, 
the input voltage ec of peak amplitude Ec, and the diode current id 
are as shown in Fig. 104. The wave form for is exactly that for 
an ordinary condenser input filter. If Ri^rd and l/acCL is 
negligibly small, the ripples in cl are negligible and eL is practi­
cally equal to Ec. In this case, id consists of exceedingly narrow 
impulses. It is an interesting fact that such a wave form for id, 
when analyzed into a Fourier series, yields a fundamental a.c. 
component ic (of frequency/c) which is practically twice the d.c.

component i0. This is practically 
true regardless of the wave form of 
the pulses, so that we may set

ic = 2«o (2)
As the pulses become narrower and 

narrower, Eq. (2) approaches an 
equality more and more closely. 
This is the case as RL exceeds rd more 
and more, and such are the conditions 
in normal practice. If RL does not 
greatly exceed rd, then the pulses 
become broader, their shape is of 
more consequence, and ic decreases 
from its value of 2f0. Over quite 

a large range of practical value of Rl and rd, such as, for example, 
specific values of 4 megohm and 5,000 ohms, respectively, Eq. (2) is 
practically an equation. From the above it is apparent that Rl 
appears to the source of ec as one-half its actual value; i.e.,

Rc ^Rl (3)
A further refinement is to take rd into account as well as Rl, 

so that, somewhat more accurately,
Rc = 1(Rl + rd) (4)

However, as stated above, rd is usually negligible in broadcast 
practice as compared with Rl.

If ec is a modulated wave, further complications arise. If the 
envelope drops too rapidly, Cl in conjunction with Rl may fail 
to follow this drop, and the inward peaks of modulation will be 
“ clipped ” and the output distorted. The rectifier is now rectify­
ing the envelope as well as the carrier wave itself. If fc»fm, 
this clipping can be avoided by a suitably low choice of the time 
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constant ClRl. Figure 104 must now be replaced by Fig. 105. 
Actually, the pulses of id during inward modulation will be less 
than those during outward modulation because of the fact that 
Cl cannot discharge so rapidly through RL as it can charge 
through rd, but this factor will be ignored and the pulses repre­
sented as varying symmetrically with the envelope. This cor­
responds to the pulses and components of id of Fig. 104 being 
modulated by the factor m sin umt. As a consequence, instead 
of io, we have an output current composed of the d.c. component 
i0, acting as a (d.c.) carrier for an a.c. wave im of frequency fm.

Fig. 105.—Wave shapes of current and voltage in diode detection for modulated 
carrier.

Similarly, the h.f. component is icm, which in turn can be broken 
up into a term of constant amplitude, ic, of frequency fc, and two 
side bands, icm, of frequency fc + fm and icm2 of frequency fc — fm.

It is evident that, like Eq. (2), the following approximate 
equations hold:

ic = 2io I , .
i A- i ~ 97 I VO“cmt I “cm, -- j

If, tentatively, icm, is assumed equal to icm., then

Icmi Icmi tn (6)
We now have, in addition to Eq. (4), the following:

Remi Rcm2 = Rl + rd (7)
where Rcmi and Rcm2 are the apparent impedances that Rl + rd 
presents to side-band voltages of frequencies/c A fm and/0 — fm, 
respectively.
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These two apparent impedances can be combined into a single 
equivalent impedance of ^(Rl + rd) in the following manner:

In Fig. 106 is shown a vector representation of a modulated 
wave. The carrier voltage vector, of constant amplitude, is 
shown as Ec. Around it rotate in opposite directions at a 
frequency fm the two side-band voltages, each mEc/2 in peak 
amplitude. Their resultant at any instant, mt,, is clearly colin- 
ea,r with Ec and varying at the frequency fm from a positive peak 
amplitude of mEc to a negative peak amplitude of —mEc. The 
equation of this voltage is therefore

e = me, = (m sin <xmt)Ec sin (8)
We may regard the quantity m sin &mt as a modulating operator 

of the carrier voltage Ec

Fig. 106.—Vector relation 
of side bands and carrier for 
amplitude modulation.

sin wct, and its product by Ec also repre­
sents the equation of the envelope. At 
any rate, to e = mec, the apparent 
impedance of the diode load is
Rem = fRcmi = fRcm, = i(Ri + ^d) (9)

Now suppose that Cl does not have 
negligible susceptance to sl, i.e., that 
Cl by-passes Rl appreciably at the

modulation frequency fm. Then the a.c. component of H must be
broken up into two quadrature components, one, He through Cl, 
that leads the a.c. component of eL by 90 deg.; the other, Hr through 
Rl, that is in phase with cl. The total must have been produced 
by a modulated carrier current capable of producing this through 
the diode.

Consider a modulated carrier current whose equation is
i = I[1 + m sin (wmt + 0)] sin aict (10)

This can be expanded into the form
trIi = I sin ----cos (uct + wmt + 9)

TH T+ COS-(a>cZ - umt — 9) (11)

The process of detecting or demodulating this current consists 
(among other things) in beating the side bands with the carrier. 
The two difference beat frequencies will be

[sin (wmt + 9) + sin (a>mt + 0)] = id sin (wmt + 9) (12)
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The vector diagram for the current defined by Eqs. (10) and 
(11) is shown in Fig. 107 at the instant t = 0. The reference 
axis is along the vertical. If 0 were not present, the lower and 
upper side bands would be, respectively, vertically up and down 
at this instant of time. The presence of 0 causes both vectors 
to take up the positions shown. Thus the lower side band 
(l.s.b.) lags from the vertical by 0, and the upper side band 
(u.s.b.) leads from the vertical by 0. Their resultant nevertheless 
remains colinear with the carrier, so that no envelope distortion 
occurs. The envelope, however, regarded as a wave shape, leads 
its position for 0 = 0 by the quantity 0. This wave, upon detec­
tion, gives rise to an alternating 
current of frequency fm that leads the 
voltage cl by the angle 0. But it is 
evident from the preceding discussion 
that Cl is in phase with the envelope 
of the modulated voltage wave mec. 
Hence, a modulated current i whose 
envelope leads that of the modulated 
voltage mec by the angle 0 and whose 
upper and lower side bands therefore 
lead and lag, respectively, the 

Fig. 107.—Vector relations at 
some instant of time for the case 
where the sideband currents are 
out of phase with the side-band 
voltages.

i

corresponding side bands of the voltage wave gives rise to a 
demodulated current id, which leads the demodulated voltage eL
by the same angle 0.

We may at least expect the converse to be true, viz., that, if 
id leads cl by 0, then the modulated h.f. current has upper and 
lower side bands that lead and lag those of the modulated h.f. 
voltage. At the same time, since the actual current is in the 
form of pulses, the sum of the side-band currents is twice id.

We shall now attempt to find a form of impedance which, 
when placed directly in the h.f. circuit, has the same effect upon 
the current components as ZL acting through the diode. This 
effect can be expressed in the following manner: The diode trans­
lates the side bands down in the spectrum from the carrier fre­
quency fc to a zero frequency carrier. The lower side band would 
therefore have a negative frequency (be below zero in frequency). 
A negative frequency is physically equivalent to a positive fre­
quency; i.e., the angle of the lower side band is reversed in sign, 
and thus the two side bands become directly additive. In the 
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case of the u.s.b. and l.s.b. currents, respectively, leading and 
lagging the corresponding voltage side bands, the translation ■ 
through detection produces the following results: The l.s.b. 
voltage becomes one of negative frequency and hence becomes 
directly additive to the upper side band to form the total voltage 
eL (a.c. component) of frequency fm. The l.s.b. current becomes 
one of negative frequency and lagging angle 9. Upon reversing 
to obtain a positive-frequency wave, 9 changes sign too, to 
become a leading phase angle. The l.s.b. current thus becomes 
in phase with the u.s.b. current after detection and is therefore 
directly additive to the latter, to form a total current it (a.c. 
component) that leads en by the angle 9. This is a very striking 
and interesting feature of detection.

The h.f. impedance equivalent to ZL is a parallel resonant 
circuit shunted by a resistance (Fig. 108.4). Suppose it is 
antiresonant at /c. Then

LC = (13)

The impedance at this frequency is evidently simply R, and this 
corresponds to (Rl + rd)/2 by Eq. (7). Now consider the admit­
tance A of the LC portion of the circuit at the frequencies 
fc ± fm, that is, at the u.s.b. and l.s.b. frequencies, respectively.

A — ry -|- j(aic + oim)C± um)L

Equation (14), in conjunction with Eq. (13), gives

A = 1 "-1 + + 2jumC
j(we ± ^m)L

since if »um, the term wm2/wc2 is negligibly small, 
corresponding impedance is therefore

Z " + ¿C

This is an inductive reactance to the l.s.b. voltage and a 
capacitive reactance of equal amount to the u.s.b. voltage. It 
will thus give rise to leading u.s.b. and lagging l.s.b. currents, 
which, upon detection in a pure resistive load, will give rise to a 

(14)

(15)

The

(16)
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current iL that leads the voltage eL. Hence, the impedance Z is 
potentially equivalent to ZL. The equivalence is complete if2

C = Cl

L = J_L u>JC

D Rl + Td
R =

(17)

because the h.f. currents total to double iL. More accurately, 
rd, the diode resistance, should appear in series with Z for com­
plete equivalence but in practical cases can usually be ignored, 
as well as in the third equation (for R).

(op (b)
Fig. 108.—Equivalent car­

rier-frequency circuits: A, cir­
cuit giving desired phase shift 
to side-band currents; B, cir­
cuit equivalent to that in {A) 
for a limited frequency range.

Fig. 109.—Actual diode 
circuit.

For uic, Fig. 108B is practically equivalent to Fig. 108A 
if

R~ nr (18)

and so either circuit may be used to represent the apparent 
impedance that the diode and load present to the h.f. source.

One further type of diode load of practical interest is shown 
in Fig. 109. The circuit CgRg permits the grid of the following 
tube to be coupled to the diode load without assuming the direct 
bias voltage developed across Rl- Its equivalent h.f. impedance 
is represented in Fig. 110. The condenser Cg appears as L' and 
C in parallel, and these are in series with R', which represents 
Rg. At sufficiently high modulation frequencies, Cg has practi­
cally no effect, nor have, therefore, L' and C' any effect, so that 
R' becomes simply parallel to R, as do Rg and Rl-
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3. Diode Performance—Resistive Circuit.—It is of interest to 
study first the diode performance when the tuned circuit is 
assumed to present a source impedance R to the carrier and side­
band frequencies, and the load a resistance Rl to the carrier and 
a resistance Rl to the modulation frequencies, where Rl is 
equal to Rl and Rg in parallel (Fig. 109). It is therefore assumed 

that Cg has negligible reactance and 
CL*has negligible admittance at the 
modulation frequency fm, while the 
tuned circuit has negligible admit­
tance to the side-band frequencies 
fc ± fm- Throughout this discus­
sion, Cl is assumed to have 

negligible reactance to all h.f. components flowing through it.
In the preceding section it was shown that Rl had an apparent 

resistance to the h.f. source of Rl/2. In the same manner, R 
has an apparent resistance, when viewed from the diode l.f. out­
put terminals of value 2R. The envelope appears from these 
same terminals as a voltage Cl, composed of a d.c. component

Fig. 110.—Equivalent h.f. circuit 
for actual diode circuit.

Fig. 111.—Graphical construction for actual diode circuit, showing clipping for 
high degrees of modulation.

equal to the carrier peak amplitude Ec, and an a.c. component 
equal to the vector sum of the side-band amplitudes, or

mEc sin amt.
The above is sufficient information for proceeding with the 
graphical construction.

The “successive steps” are shown in Fig. 111. First the quies­
cent point for the unmodulated carrier Ec is determined. Through
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0, the load line OA for RL is drawn. Then a rule is slid at an 
angle 9 such that

9 = cot-1 (Rl + 2R) (19)

Where it intersects OA in a diode rectification curve, at B, such 
that CD equals Ec, is the quiescent point. The load line for 
Rl + 2R is DB. The reader can check that OD is the voltage 
drop in the apparent source impedance (as viewed from the diode 
output terminals), CE is the voltage drop in the diode itself, and 
EO is the voltage developed across Rl.

Now suppose that the carrier is modulated and that the instan­
taneous peak carrier voltage mec is at the moment under con­
sideration greater than Ec (envelope rising above its average 
carrier value), by an amount AEC. To find the path of operation 
for the modulated carrier, proceed as follows:

Shift the voltage axis up to B, so that its new position is BF. 
Through B draw the steeper load line for Rl, viz., GH. Now 
slide a rule IJ at an angle

9' = cot“1 (Rl' + 2R) (20)

to a position where its intersection with GH in I is also that of a 
characteristic curve IK and such that KJ equals AEC. Then BJ 
represents the voltage drop in 2R; KL, that in the diode; and LB, 
that developed across the a.c. diode load resistance Rl. This 
process is then repeated until all values of the envelope have 
been used.

Since the path of operation is clearly along GH, it is in practice 
necessary to find the points corresponding only to the peaks of 
the envelope. It is also evident from the figure that a peak 
envelope which carries the path of operation beyond II will result 
in output distortion. We shall now discuss this in greater detail.

The resistance Rl to the a.c. component of the output current 
iL is less than the resistance Rl to the d.c. component. This 
would mean that, if m = 1, the peak modulation voltage is equal 
to the average, or carrier, voltage Ec; hence, the a.c. component 
of iL would exceed the d.c. component, or the total would have 
to be negative during peak inward modulation. But this is 
impossible, since the diode cannot conduct reverse current. 
Hence, the path of operation for inward modulation is first along 
BH (Fig. Ill) and then along the eb axis, or the negative peaks 
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But for 
that

of ii are “clipped,” with resulting distortion. This is similar to 
excessive grid swing in a three- (or more) element tube, where the 
operation is carried beyond plate-current cutoff. There also 
results some self-rectification, with consequent shifting of the 
operating point away from B.

To avoid such clipping, the maximum modulation of the 
generated input signal must be less than m. To find this maxi­
mum permissible value m', for m, draw MH parallel to IJ, that 
is, at the slope for 2R + RL'. It is then evident from the figure 
that the generated carrier voltage is

Ec = CE + EO 4- OD = idclfd + Rl 4" 27?) (21)
whereas the maximum permissible decrease in the generated 
carrier envelope is

m'Ec = QN 4~ NB + BM = iL(rd + Rl 4- 2R) (22)

From Eqs. (21) and (22), m' = ^ + Rl' + 2R) 
Ide Vd 4- Rl + 2R) 

maximum permissible modulation, iL just equals idC, so

, rd + Rl' + 27? 
rd + Rl + 27?

It is to be noted from Eq. (23) that, the smaller Rl is compared 
with Rl, the smaller m' will be, whereas, the greater R is, the 
more nearly does m' approach unity. In short, R tends to 
counteract the difference between Rl' and Rl in reducing the 
value of m'; but this, of course, does not indicate that a high 
value of 7? is desirable, since the actual ouput voltage cl would be 
reduced. The main point in presenting the action of R is to 
show that the percentage modulation at which clipping just 
occurs is dependent upon all parameters, including rd, although 
it is primarily caused by the lower value of R l as compared with 
Rl. If rd is comparable with Rl, then the reflection of 7? into 
the output circuit will be less than 27? and quite difficult to 
determine. However, for quite a range of rd < Rl the above 
value of 27? holds fairly accurately; indeed, in usual broadcast 
practice where rd « Rl (diode approaches the ideal), Eq. (23) 
reduces to

f Rl 4- 27? 
m = 7?Z +27?
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The difference in total circuit resistance for the envelope 
2R A Rl and the carrier 2R A Rl results in a reduction in the 
envelope at the combined diode and load terminals as compared 
with the generated voltage. From Fig. Ill it is evident that the 
generated envelope voltage is MQ and the terminal voltage is BQ 
(including the drop in the diode). It is also evident that the 
carrier generated voltage is CD and the carrier terminal voltage 
is CO. The percentage modulation mG of the generated signal 
is MQ/CD, while the percentage modulation m7- of the terminal 
voltage is BQ/CO. From the figure it is evident that

_ MQ _ iL(2R -|- Rl' -|- tf) \
ma “ CD ~ i^(2R A RlA^) /

_ BQ _ H^Rl' + rd) ( <25)
mT CO idc(RL + rd) )

Then the percentage reduction in modulation is

my _ /Rl + rA / 2R -|- Rz, T r<A , .
wis \Rl rd J \2R + Rl T rdJ

If a greater percentage of modulation is employed than that 
given by Eq. (24), it will be found that around peak inward 
modulation, where cutoff of iL occurs, the envelope terminal 
voltage will become equal to the generated envelope voltage, 
whereas for other portions of the modulation cycle Eq. (26) 
indicates that the terminal voltage will be less. Hence, the 
envelope terminal voltage will be distorted in that it will have its 
negative half cycles peaked, whereas the output voltage cl will 
have its negative peaks flattened.

From the above, the following points are evident:
1. For the usual diode circuit, where the a.c. output resistance 

is less than the d.c. output resistance, a value of modulation less 
than unity must be employed if distortion is to be avoided.

2. The source resistance tends to counteract this effect, but 
only in degree, and at the expense of the output signal.

3. The above two considerations also result in a lesser depth 
of modulation of the carrier voltage developed across the diode 
and load resistance as compared with that generated in the source.

The construction shown in Fig. 111 is based on the assumption 
that rd HZ Rl, for otherwise R would not appear as 2R in the 
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diode output circuit. However, it does take rd into account in 
determining the maximum permissible percentage modulation 
m' and the percentage reduction in modulation. If rd is negligi­
ble, Eqs. (24) and (26) will be found to coincide with those given 
by Wheeler2 and also those given by Court.3

It will also be evident that, if a very large inductance whose 
winding resistance equals Rl is substituted for Rl, or (what is 
equivalent) a large inductance of negligible winding resistance be 
placed in series with RL, and if, in addition, Rg is made equal to 
Rl, then the d.c. and a.c. resistances will be equal. In this case, 
100 per cent modulation can be accommodated without “clip-

Fig. 112.—Complete diode cir­
cuit including h.f. source.

Fig, 113.—Equiva­
lent circuit for that in 
the preceding figure.

ping.” However, the cost and bulk of the inductance, as well 
as its susceptibility to hum pickup, mitigate against its use in 
practice.

It is also possible to obtain distortionless operation for 100 per 
cent modulation with the ordinary type of resistive load by 
inserting a positive direct voltage in series with the diode. Its 
value should be equal to HO (Fig. Ill), in which case it would 
move the load line for Rl over to the origin 0 instead of H. 
However, its value is dependent upon the magnitude of the car­
rier voltage Ec, and distortion can occur for values of Ec greater 
or smaller than the value that just brings the load line for RJ 
over to the origin 0. For a coihplete discussion, the reader "can 
consult Wheeler2 or Court.3

4. Diode Performance—Tuned Source Impedance.—The anal­
ysis given above is sufficient for most purposes. However, there 
may occur in practice a circuit such as that shown in Fig. 112. 
The pentode here may be regarded as a constant current genera­
tor whose current is Gmeg,. This current induces in the tuned 
secondary coil, having inductance L and resistance R, a voltage 
jaMGmCi. At this point, Fig. 112 may be replaced by Fig. 113 



Fig. 114.—Complete diode 
circuit as viewed from the l.f. 
side.
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by the use of Thevenin’s theorem and also in view of the discus­
sion in Sec. 2 and Figs. 108 and 108A.

As viewed from terminals 1-1, the apparent source impedance 
is as shown, where R = ALgR'. The apparent generated (open­
circuit) voltage is that developed across C before the diode is 
connected. For the carrier it is

_ • z> 7| r A/j^cC   Gm-M /O'TA c " E^G^M R, + ~__________ (27)

if L and C are adjusted to resonance at the carrier frequency fc. 
Similarly, for the upper and lower side bands, the apparent gen­
erated voltages are, respectively,

+ _ . GmM \ Cc e»1 R'C ) 
_ GmM } (28)

G egl RI(J |

It is evident that they are in phase 
with the input voltages and in the same 
ratio, GmM/R'C. Hence, the modu­
lated wave is undistorted by the tuned circuit, at least if <ac. 
These voltages and the apparent source impedance can be reflected 
to the output side of the diode circuit, and the circuit will appear 
as in Fig. 114. At the higher modulation frequencies where C 
is of some importance, C„ is usually unimportant, so that Rl and 
Rg in parallel may be replaced by Rl as in Sec. 3.

While the quiescent point for the carrier voltage is determined 
as in the preceding section, the a.c. path requires the method of 
Sec. 10 of Chap. IV for its determination. Although fairly 
accurate linear-circuit calculations are possible and generally 
more desirable, an example will be worked out to show the 
graphical application.

In this example, 2R will be taken as 0.2 megohm, C as 200 ppf, 
Cl as 500 ppf, Rl as 0.125 megohm, and Rg as 0.5 megohm. 
The diode rectification family is that shown in Fig. 116 and is 
that for a 6H6 tube.

The problem as given presents formidable difficulties. The 
rigorous method of attack is to take Cg into account as well as 
the other diode load parameters. Not only does this increase 
the complexity of the circuit and hence the labor; but also, owing 
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to the large RgCg time constant as compared with the period of 
the modulation frequency to be used (5,000 c.p.s.), many cycles 
of operation will have to be traversed before steady-state condi­
tions are attained.

This characteristic of the finite operator method is due to its 
generality and completeness of attack. A similar situation arises 
if it be employed to solve a choke-feed power-output stage. In 
the latter case, a simplification and usually a satisfactory approxi­
mation are made in assuming that there are two resistive load 
lines, a d.c. load line corresponding to the ohmic resistance of the 
choke, and an a.c. load line corresponding to the load resistance 
as it appears in parallel with the choke. As a first approxima­
tion, these two are assumed to intersect at the quiescent point, 
and this intersection is then shifted to correct for self-rectifica­
tion. The finite operator method, on the other hand, would give 
a very narrow load spiral or scroll, which would finally, after 
many cycles, close into a steady-state narrow loop practically 
coinciding with the final position of the load line as determined 
by the more approximate method.

However, the phenomenon to be exhibited here is that of 
clipping due to the shunting effect of Cl upon RL. Hence, we 
shall assume that Rg is a negligible shunt upon RL, that is, that 
the a.c. and d.c. resistances are identical and equal to Rl- We 
shall assign a value of 0.1 megohm to this parameter. This 
represents the above 0.5- and 0.125-megohm resistors in parallel.

The graphical construction will proceed from the origin of the 
family of curves rather than from the quiescent point, and 100 per 
cent modulation will be assumed for ec as determined by Eq. (27) 
in conjunction with Eq. (28). The equivalent voltage, as it 
appears across the output side of the diode circuit, will be taken as

ec = 20 - 20 cos (2tt X 5,000t) (29)

While this is a rather low voltage, it will exhibit the clipping 
phenomenon described above, particularly for a modulation 
frequency of 5,000 c.p.s. The circuit parameters given above 
are entirely practical, although Cl has been chosen rather large 
to emphasize the effect.

Let the voltage drop across R and C be ei and that across the 
diode output load ZL (Rl and Cl in parallel) be e2. Also, let
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iCL be the instantaneous current through Cl, ic that through C, 
in that through R, iRb that through Rl, and iT the total current. 
Then

It — ice d- ink — ic A~ is
At ( . ■ L>

61 — 0- 1 bcL + / 1 = ImJib

__ At (. V.\62 — -q 1 be 4* / ~ 'tsR

Cc — Ci + 62 + irTd

(30)

(31)

(32)
(33)

where is the nonlinear diode resistance as given by the family 
of curves.

From Eqs. (30) to (32) can be obtained

Ci — irZ -|- ZXic 
e2 = irZb -|- ZicXicL (34)

where Z = 1/(R + At/C) and ZL = 1/(Rl + At/CL) 
Then, from Eqs. (33) and (34) is obtained

6c ZlXIcl — ZXic — ItZl 4~ irZ -|- irTd (35)

Equations (34) and (35) form the basis of the graphical construc­
tion. Thus, at any stage of the 
process, Xic and XiCL are known by 
summing up the currents from the 
first application of ec, when we can 
assume, if we wish, no initial charges 
on Ci and C; that is, Xic and XiCL 
are zero. Therefore, the net 
voltage

en = ec — ZLXicL ZXic

is known and is applied in a manner 

Fig. 115.—Graphical con­
struction for a diode circuit hav- 
ing appreciable shunting capaci­
tance at modulation frequencies.

similar to that described in the preceding two sections of this 
chapter.

In Fig. 115 is shown the construction. The net voltage at the 
moment under consideration is CD. The voltage ZLXiCL is 
laid off from the origin as OB. Through B is drawn BA to 
represent the finite operator Zl. Then AC, which represents 
the finite operator Z + ZL, is slid parallel to itself until its inter­



220 CONSTRUCTIONS FOR VACUUM TUBE CIRCUITS

section with AB in A is also that of a diode rectification curve 
AD, such that DC equals the net voltage

On — ec — Zl^ÌcL — ZUc.
Then AE equals iT, DE represents the diode voltage drop iTrd, 
and EO equals iTZL + Z^icL or e2, the voltage across the diode 
load. In addition, it is evident that Eq. (35) is satisfied. The 
important point to note is that rd is here a family of curves, and 
hence the proper member of the family must be selected. This 

Fig. 116.—Path of operation for 
diode circuit for 100 per cent modula­
tion, showing clipping on inward 
modulation.

and R. Note that ex is equal 
to iTZ 4- ZAic.

has been done by drawing ZL or 
AB at a distance B0( = Zl^1cl) 
from the origin 0, so that point 
E will be distant from 0 by the 
amount e2, the voltage across the 
diode load.

From AE, the new values of 
ice and ic can be found. To 
determine Icl, for instance, 
divide e2( = E0) by Rl to obtain 
isL- Subtract this from ir, and 
the difference is iCL. This may 
turn out positive or negative, 
depending upon whether Cl is 
charging from the source or dis­
charging through Rl during the 
particular time interval At. 
Similarly, ic can be found from ex 
o BC plus Zhic, or alternatively

The successive values of iT, HicL, Zic, icL, ic, ei, e2, en, etc., can 
be arranged in the form of a tabular schedule, in order to syste­
matize the work. Where possible, slide-rule calculations should 
be made to shorten the work, as in the calculations for iCL and 
e„. Note that these could also be obtained graphically, but, as 
pointed out in the dynatron example of Chap. II, the graphical 
process is best reserved for such work as must be done on the 
nonlinear element itself, here rd.

In the example cited, 20-deg. intervals in the cycle were 
chosen, so that At = A X 1/5,000 = 1/90,000 sec. Then 
Zl = 18,330 units, and Z = 43,400 units. From Eq. (29) it is
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evident that, at the start (t = 0), ec = 0 volts. In addition, zero 
initial charges are assumed for the two condensers. During the 
first time interval, ec is assumed to have the constant value of 
1.2 volts, which it actually attains at the end of the time interval. 
Since SiCL = Sic = 0, en is therefore 1.2 volts too. The first 
position of ZL is also evidently through the origin (Fig. 116), 
and the intersection with Z and a diode curve is such that 
ir = 15^a, e2 = 0.3 volt, and ei = 0.7 volt. Then iRL = 
3/xa, icL = 15 — 3 = 12/ta, and ZLSiCL = 0.22 volt. Simi­
larly, iR = 3.5/ua, ic = 11.5 andZSfc = 0.5 volt. Therefore, 
ZcSicL -|~ ZSici, — 0.72 volt.

During the next time interval At, ec rises to 4.7 volts. There­
fore, en = 4.7 — 0.72 = 4.0 volts. The operator ZL is now 
drawn through 0.22 volt. Its intersection with Z and the proper 
diode curve is at a value of iT = 50ga, e2 = 1.0 volt, and

ei = 0.5 + 2.3 = 2.8 volts.

The several computations are then made as in the first step, and 
the process repeated. For the initial conditions chosen, the load 
loop does not close until about 1| cycles have been computed. It 
will be observed that the loop is flattened at the bottom, since ir 
cannot become negative. Over this flat part, it will be found 
that en is negative, so that Z and Zl intersect on the voltage axis, 
and ir is therefore zero. The diode curve that intersects with 
the above two operators is the appropriate one that meets the 
axis en units to the right of the intersection and then, of course, 
proceeds along the axis to the left, as in the case of class AB 
balanced-amplifier constructions. The flat portion of the loop 
represents a period of time during which the condensers discharge 
through their respective resistances, thus diminishing SìCl and 
Sic (hence ZlSìCl and ZSic) until their sum is less than ec, 
whereupon e„ becomes positive once more, iT becomes greater 
than zero, and the loop rises once again. The steady-state con­
dition is given by the narrower loop in the figure.

The above circuit, however, is amenable to fairly simple and 
accurate analytical treatment. Thus, the a.c. component of 
ir., or im, is given by

• _
lm ~ zT+^z (36)
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where em is the voltage corresponding to the modulation envelope, 
ZL = Rt'/(1 + jwCiRi), and Z = R/(l + jwCR), where Rl is 
Rl and Rg in parallel.

The d.c. component of iL, or ic, is due to a voltage correspond­
ing to the carrier amplitude, ec, and is given by

lc Rl + 2R (37)

The percentage modulation of the carrier and also of the d.c.
output current is

mc = im   em Rl + 2R   Rl + 2R 
ic Cc Zl + 2Z Zl + 2Z (38)

where ma is the percentage modulation of the carrier voltage ec. 
But mc cannot exceed unity, since im cannot exceed, at its nega­
tive peak value, ic, since then the diode current would be reversed, 
which is impossible. Hence, the maximum value of mQ that 
corresponds to mc = 1 is, by Eq. (38),

mG = Zl + 2Z
Rl + 2R (39)

The terminal voltages (envelope and carrier) across the diode 
and Zl are related to the generated voltages em and ec, respec­
tively, by

Zl \
eTn Zl + 2Z /

Rl (4°)
STc ~ 6c Rl + 2R )

The percentage modulation of the terminal carrier voltage is

mT ^Tm

Ctc
(em\ ( Zl\ (Rl + 2R\ (Zl\ (Rl + 2R\ 
\cc)\Rl)\Zl + 2Z/ mG\RL)\ZL + 2Z/

The maximum value of mT is also unity, since otherwise the 
instantaneous voltage would reverse across the diode, whereupon 
the latter would short out the signal voltage and thus prevent 
the latter from having any appreciable reverse value. Hence, the 
maximum value of mo for mT = 1 is

/Rl\ /Zl + 2Z \ 
\Zl / \Rl + 2R)

Rl 
^Z-Lm° (42)
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In short, the permissible value of mG here is greater than that 
given by Eq. (40), so that, for the circuit postulated, clipping due 
to current cutoff is the limiting factor. The above derivation 
assumes rd is negligibly small, whereas the graphical construction 
does not.

For the example given, m0 comes out to be 59.3 per cent. If Rl 
is taken as 0.125 megohm, mB is 54.8 per cent, so that no great 
error was made in assuming that the a.c. and d.c. load lines are 
identical. At low modulation frequencies the construction of
Fig. Ill is permissible, since Cl 
and C have negligible susceptance. 
The maximum permissible 
modulation is then given by Eq. 
(24) and for this example comes 
out to be 92.3 per cent.

In Fig. 117 has been plotted 
the load loop for a 20-volt gen­
erated carrier wave modulated 
59.3 per cent by a 5,000-cycle 
frequency. The equation of the 
envelope is therefore

ec = 20 - 11.9 cos (2tt X 5,000i) 
(43) Fig. 117.—Path of operation for a 

diode circuit with maximum per­
missible percentage modulation at 
which no clipping occurs.

It will be observed that the loop 
is just perceptibly flattened; it 
is considered not only that this is in good agreement with Eq.
(40), but also that Eq. (40) is definitely a maximum value for the 
permissible modulation, since clipping just occurs for this value. 
In passing, it is well to note that rarely if ever is such high modu­
lation encountered in practice at such a high modulation fre­
quency. The question may still arise as to what happens when 
a strong l.f. and weak h.f. complex modulation wave is impressed. 
This can be answered by the graphical method, but, unfortu­
nately, each wave shape requires individual treatment. This 
question in general has never been satisfactorily answered for a 
large number of nonlinear circuit problems.

5. Transrectification Diagrams.—Another form of detector,, 
used more in the past than at present, is the plate-circuit detector. 
Usually, a tuned circuit feeds the grid, which is biased close to 
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or at plate-current cutoff of a triode or pentode tube. Detection 
therefore takes place in the plate circuit; and if a large input grid 
signal is employed, the detection is approximately linear—some­
times called “power detection” (although this may also be had 
with the old grid leak detector).

The plate load is a resistor, and the plate is by-passed to 
ground (or the cathode) by a condenser sufficiently large to short- 
circuit the h.f. currents developed in the plate circuit, but not 
(too) appreciably the higher modulation frequencies. The plate 
may be coupled to the following grid by means of a grid coupling 
condenser and resistor.

The plate load therefore corresponds to that of the diode, viz., 
ZL; indeed, the tube functions like a diode fed from a resistive

Fig. 118.—Transrectification 
curves.

source, the RP of the tube. It is there­
fore possible to develop experimentally 
a family of transrectification curves 
similar to that for a diode. Such a 
family is shown in Fig. 118. The load 
resistor may be replaced by a zero­
impedance d.c. source of active voltage. 
The parameter is carrier voltage as in the 

case of a diode, but here the carrier voltage is applied to the grid, 
rather than directly in the plate circuit. The family depends 
upon the value of grid bias chosen. The curve at the extreme 
right, for zero carrier voltage, is the ordinary static characteristic 
of the tube for the bias voltage. Progressively higher carrier 
voltages produce successive curves to the left. Ordinarily, 
carrier voltages exceeding in peak value the bias voltage are not 
used or shown, since the grid would draw current and produce 
distortion.

The graphical constructions are exactly the same as for the 
diode. Thus, if the plate load resistance is lower to the envelope 
voltage than to the carrier, clipping occurs for modulation per­
centages approaching 100 per cent. Modifications in the 
graphical constructions for application to the triode must be 
made as indicated in Chap. II (Sec. 13).

From the foregoing it is evident that the plate-circuit detector 
is no better than the diode as regards clipping and consequent 
distortion for high degrees of inward modulation. The two 
advantages of plate-circuit detection are
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1. That it does not load the tuned circuit, and thus reduce the 
voltage developed at that point, as well as flatten the resonance 
curve.

2. That the tube serves as an amplifier of the input signal, as 
well as a detector.

However, adequate amplification is easily obtained in the 
preceding tuned stages in the case of the diode, and the plate­
circuit detector may overload owing to grid current if the signal 
input is unduly large, as on outward modulation exceeding 100 
per cent. This distortion is in addition to that produced in the 
plate circuit on inward modulation in the form of clipping, which 
also occurs in diode detection. Possibly the main reason for 
the diode superseding the plate-circuit detector is the fact that 
the load resistor is at a positive potential to ground and hence 
not in an effective position to furnish automatic volume control 
to the r.f. and i.f. stages.
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CHAPTER VII
MISCELLANEOUS GRAPHICAL CONSTRUCTIONS

1. Feedback Constructions—Voltage Feedback.—An interest­
ing graphical construction has been developed for a tube to which

Fig. 119.—Typical voltage feed­
back circuit.

feedback has been applied.12 A 
typical circuit is shown in Fig. 119. 
Here, the actual voltage ec applied 
between grid and cathode is composed 
of the signal voltage eg and the feed­
back voltage ef, which is in phase 
opposition with eg. (The direct 

bias voltage Ec is not considered.) If the condenser C be suffi­
ciently large, then its reactance compared with Rx and Ri over the 
range of frequencies under consideration is negligibly small, and

Rt
Of — — UCl

Kx + Ira (1)

where eL is the output voltage due to eg impressed and
Ri 

n = TR^TRf)

is the percentage feedback. Since the latter is a real number 
(ratio of resistances), it represents a voltage in phase with eL. 
From the figure it is evident that

= eg — ef = eg — neL
_ unegZb
~ e° RT+Tl

Solving Eq. (2) for ec, we obtain
_ Rp 4“ Zl

9 Rp + Zl(1 4* M^)

(2)

(3)

Then sl is found to be, from Eq. (3) by reference to Eq. (2),

& L & g
yZL

Rp 4~ Zl(1 4~ un) 
u Zl

_ 1 4- yn _ _RP/(1 4~ un) 4“ Zl 
226

(4)
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Equation (4) indicates that the tube may be replaced (as far as 
the external terminals are concerned) by an equivalent tube 
whose amplification factor is p/(l + pn) and whose internal resist­
ance is

RP
(1 + pn)

If condenser C were omitted, then feedback would occur for 
the d.c. as well as for the a.c. components; but, with C present, 
only the a.c. components are affected by the feedback. Never­
theless, the following graphical construction, based on the absence

Fig. 120.—Modification in plate characteristics of a tube, due to voltage feedback.

of C, can be used with simple modifications to determine the 
behavior of the stage when C is present.

Equation (4) indicates that the feedback may be regarded as 
modifying the ib-eb family of curves, rather than ZL. Hence, the 
graphical construction can be used to modify the original tube 
family as follows:

In Fig. 120 is shown a beam-power-tube family of charac­
teristics. Suppose the percentage feedback n equals 10 per cent. 
Then, for any plate voltage eb, e/ equals O.le?,, and this must be 
added to any chosen value of ec to give the applied input 
voltage eg. Thus, suppose we take the 200-volt ordinate. This 
represents a feedback voltage of —20 volts. The intersection 
at A with the zero-volt grid curve therefore represents a value of 
e„ equal to —20 volts; its intersection with the — 5-volt grid 
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curve at B represents a value of eg equal to —25 volts; etc. Next, 
consider the 150-volt ordinate. Its intersection with the —5-volt 
curve at C represents a value of eg equal to —20 volts; its inter­
section with the zero-volt curve at D represents e„ = —15 volts, 
etc. Points of the same value of eg may now be joined by a curve, 
as shown by each of the heavy lines.

The curves represent the characteristics of the equivalent tube. 
They are steeper and more closely spaced, hence (as explained 
in Chap. I) represent a tube of lower Rp and /^respectively. 
This checks with Eq. (4). It must be remembered that this 
family varies with the value of n, just as in Chap. Ill it was shown 
that the push-pull family of curves varied with the quiescent 
point.

This family may be used to determine the performance of a 
push-pull or single-ended stage and represents an interesting 
graphical combination of methods. Thus, suppose the tube is 
used single-ended in conjunction with a 2,220-ohm load resistor. 
Assume further that condenser C (Fig. 119) is present and that 
the bias is —15 volts and Ebb =250 volts. The latter values, 
being d.c., are laid off on the original tube family, as shown at 
point E.

For a.c. grid swings, the feedback ib-eb characteristics are to 
be used. The maximum positive grid swing is evidently

40 — 5 = 35 volts,

whereas without feedback it would be 15 volts. The ratio is 
= 2.33. This ratio may be formulated analytically as 

follows:
The gain without feedback is evidently

,RP + Zl
(5)

From Eq. (4), the gain with feedback is found to be

Cl _  _ ¿Zl
eg f Rp + ZL(1 + /m)

From Eqs. (5) and (6), we obtain
ay _ 1
a 1 + na
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or the gain is reduced by the factor 1/(1 + na). In this example, 
this quantity should come out to be 1/2.33, or 1 + na should be 
2.33.

Referring to Fig. 120, we note that

a 250 - 50
15 13.3

Fig. 121.—Typical current 
feed-back circuit.

The positive half cycle has been taken, and distortion in the 
output ignored. Then 1 + na = 1 + (0.1 X 13.3) = 2.33, 
which checks the ratio of relative grid 
swings required for the same output volt­
age Cl.

2. Feedback Constructions—Current 
Feedback.—Another type of feedback 
circuit is shown in Fig. 121. Here feed­
back occurs in the un-by-passed cathode 
resistor Rc and depends upon the plate 
current. The feedback voltage Ef is 
therefore proportional to the current 
through the load impedance Zl, rather 
developed across it.

The analytical formulation for this case is

than the voltage

_  - D „ a tlRc
eC I pile G o i H i v-Rp -p Kc “r

from which
_ Rp + Rc + Zl 

c ° Rp A Rc(f A p) A Zl
Since

Zl 
eL Rp + Rc + Zl

we obtain finally
________ Zl________

Rp + Rc(l + m) + Zl

(8).

0)

(10)

(11)

Equation (11) indicates that the tube is equivalent to a tube 
having the same p, but an internal plate resistance equal to that 
of the former, plus an amount Rc(l + p). Hence a graphical
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construction will be sought which converts the ib-eb characteristics 
of the actual tube into that of the equivalent one.

In Fig. 122 are shown the characteristics of a triode tube (solid 
lines). Suppose this has an un-by-passed self-bias resistor Rc 
of 2,100 ohms in series with the cathode. When the plate cur­
rent is 4 ma., the drop across Rc is 8.4 volts. If the input 
voltage ea (Fig. 121) is 6 volts, then the actual voltage between 
grid and cathode, or ec, will be —2.4 volts. For this bias, a plate 
voltage (to cathode) of 95 volts is required to maintain the plate 
current. The voltage between the plate and ground, or the 
total, is therefore 95 + 8.4, or 103.4, volts. The values for the

Fig. 122.—Modification in plate characteristics of a tube, due to current feedback, 
equivalent tube are ef = 6 volts, eb = 103.4 volts, and ib = 4 ma. 
The point (4, 103.4) can be laid off on the actual tube’s charac­
teristics, and this, in conjunction with other such points corre­
sponding to the value of ef = 6 volts, will form one curve of the 
equivalent tube’s characteristics, viz., the one for which the grid 
voltage is 6 volts. For convenience, these are exhibited in the 
accompanying table. The values from the first and last columns 
are plotted on Fig. 122 and give rise to the +6-volt equivalent­
tube characteristic (heavy line).

Next, a value of +4.0 volts can be taken for ef and a similar 
table prepared and plotted. For example, at ib = 4 ma., ef = 8.4 
volts, ec = —4.4 volts, eb = 140 volts, and eb = 148.4 volts.

In Fig. 122 three such characteristics have been plotted, viz., 
the 4-, 6-, and 8-volt characteristics for the equivalent tube. It



MISCELLANEOUS GRAPHICAL CONSTRUCTIONS 231

Calculations for Equivalent Tube

ù, ma. 6/ Ec ec Eb Eb

3 6.3 +6.0 - 0.3 44 50.3
4 8.4 +6.0 - 2.4 95 103.4
5 10.5 +6.0 - 4.5 140 150.5
6 12.6 +6.0 - 6.6 195 207.6
7 14.7 +6.0 - 8.7 250 264.7
8 16.8 +6.0 -10.8 310 316.8

10 21.0 +6.0 -15.0 400 421

will be evident that the equivalent Rp is much higher, as pre­
dicted by Eq. (11). It will also be noted that the curves are 
more nearly linear and hence that the distortion, for a constant
impedance load, will be less. On 
the other hand, a variable imped­
ance load, such as a loud-speaker, 
will not be damped so effectively as 
by the same tube using voltage 
feedback and may give rise to an 
objectionable transient response.

The graphical constructions for 
resistance coupling, for instance, 
are the same as in the preceding 

Fig. 123.—Two-stage plate-iso­
lation circuit.

case. In this example, the
feedback is present for the d.c. as well as the a.c. components, 
but the load line is drawn on the characteristics just the same as 
in the examples in Chap. I.

3. Plate Isolation.—In audio and video voltage amplifier 
stages, it is usually necessary to employ plate isolation or decou­
pling circuits to obviate undesirable feedback through the internal 
impedance of the common B power supply. Such a circuit is 
shown in Fig. 123, in which Ri and R2, Ci and C2 represent the 
resistors and condensers, respectively, of a two-section plate 
isolation filter. Except at the very low end of the frequency 
range, Ci and C2 can be regarded as having negligible reactance 
compared with Rl, Ri, and R2. Hence, the impedance to the 
a.c. component ip of the plate current ib is practically RL, while 
the impedance to the d.c. component Ib is RL + Ri + R2. It is 
desired to analyze this circuit graphically, in order to determine 
optimum values for the circuit parameters.
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The problem can be formulated in several ways, but possibly 
the following is the most significant: Suppose a peak-to-peak out­
put voltage of value 2cl is desired and that the B supply voltage 
is Ebb- (Clearly, Ebb must exceed 2eL; and, owing to the drop in 
Ri + Rt, it must exceed it by a considerable amount. In order 
that the stage have good gain, Rl should be at least 3RP. The 
procedure is then as follows:

In Fig. 124 is shown a set of tube characteristics. The above 
assumed value of Rl gives the load line to the a.c. component 
ip. This load line is slid along the curves in such manner that its 
left-hand tip at all times touches the ec = 0 curve. Where its 
projection on the eb axis attains the value of 2eL gives the proper 
location for it on the tube characteristics. A position somewhat

Fig. 124.—Graphical construction for plate-isolation circuit.

higher may be desired in order to reduce the distortion com­
ponents. If the tube is a triode, these may be evaluated as 
second-harmonic distortion by Eq. (29), Sec. 17 of Chap. III. In 
this way, the peak negative value of the grid voltage may be 
ascertained, eei.

The bias is evidently half this voltage, as shown. Point A is 
then evidently the value of the d.c. component Ib. From A a 
line is drawn to E^. This is the load line for the d.c. component 
and represents a value of resistance equal to Rl + Rx + Rs- 
Since Rl has been assumed, Rx + R2 can then be found. Then Cj 
and C2 can be selected so as to give the proper time constants in 
conjunction with Rx and R2 for adequate plate isolation. (This is 
a matter of ordinary linear circuit analysis.)

If the results are not entirely satisfactory, another value of Rl 
can be assumed and the process repeated. The object generally 
is to obtain a maximum value for Rx + Rz consistent with a 
minimum of distortion content in 2eL. Usually, in small-voltage 
amplifier tubes, the value of Ib and Eb and hence the plate dis­
sipation are of no particular concern.
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If a certain value of Ri + R2 is desired, then, after choosing 
Rl, the load line for Rl + Ri + Rz can be laid off from point A 
and its intersection with the eb axis, or Ebb, thus found. Thus 
the solution may be for the requisite value of B supply voltage 
for a given amount of Ri + R2 in conjunction with an assumed 
Rl.

In low-level stages the tube is usually oversize; i.e., the grid 
swing is but a small fraction of the maximum possible. This, 
in turn, of course means that 2«l is also very small. In such a 
case, point A can be close to the eb axis (Ib can be small) and also 
close to the ib axis (Eb can be small). Usually, the distortion 
products need not be considered, since for small grid swings the 
amplification is practically linear.

From the above it is evident that the load line for RL will be 
low on the tube characteristics and also that either R± + R2 can 
be much higher for a given Ebb or E^ can be much lower for a 
given Ri + Rz plus assumed value (of Rl. This is important 
because generally the low-level stages require the most filtering, 
and the higher the values of Ri and R2 the smaller Ci and C2 for 
the required amount of filtering.

It should be obvious that the above applies equally well to a 
one-section plate isolation filter. As far as the graphical con­
structions are concerned, the result obtained is the total amount 
of isolation resistance possible, regardless of into how many 
sections it is divided.

4. Effect of Low Grid Coupling Resistance.—The preceding 
construction may be used for another problem that may arise 
in practice. Suppose that the conventional method of coupling 
to the next stage is employed, viz., Cg and Rg, as shown in dashed 
lines in Fig. 123. If the tube shown is a pentode, then Rl is 
usually of high value, —0.1 megohm or more. If the following 
tube is a power tube, then Rg may have to be of the same order of 
magnitude as Rl owing to grid-current considerations. Then, if 
we assume that the reactance of Cg is negligible in the range of 
frequencies under consideration, the impedance to the a.c. 
component is Rg and Rl in parallel, a value materially less than 
Rl, while the resistance to the d.c. component is at least Rl (if 
Ri and R2 are not employed). Thus the a.c. output is less than 
would be obtained if the load line for the two components were 
substantially the same (Rg » Rl).
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The construction is the same as in Fig. 124, except that, in the 
case of a triode, Rg is known and Rl is to be determined so that 
from point A it passes through Em- It is not. evident whether 
this is always possible; in any event, it can apparently be deter­
mined only by a series of trials. However, a solution can always 
be found by assuming a value for RL, then drawing the load line 
for Rg and Rl in parallel, and then drawing from point A (Fig. 
124) the load line for Rl alone, thus determining Em-

Fig. 125.—Graphical constructions for the case of lower a.c. than d.c. plate-load 
resistance—pentode tube.

This permits an even more unusual solution in the case of a 
pentode. In Fig. 125 are shown the ib-eb characteristics for such 
a tube. Operation to the left of the knee (to the left of AB) is to 
be avoided. Distance BC represents 2eL. Therefore AD repre­
sents the load line for Rg and Rl in parallel such that the distor­
tion products are not excessive and ec = 2EC is the maximum 
negative grid swing. Half this value is the value of bias Ec to 
be used (point E). Since Rg is predetermined and known, Rl can 
be found from load line AD. The load line for Rl is drawn 
through E, and where it intersects the eb axis in F gives the value 
of B supply voltage required. This construction can obviously 
be further modified to take into account the presence of plate 
isolation resistors.
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INDEX
A

Amplification factor, 27
power, 30
of screen-grid tubes, 82
of triodes, 27
variable, 28

Amplifiers, balanced (see Balanced 
amplifiers)

class A, 60, 69, 142, 147
coplanar grid, 95
feed-back in, 226
pentode, 83, 161
plate efficiency, 93
power, 67, 72, 75, 78
resistance-coupled, 54
triode, 72, 158
video, 37
voltage, 54

B

Balanced amplifiers, 137
analytical derivation, 167
class AB, 142, 147
class B, 149
driver circuit, 184
graphical construction, 140
mid-branch impedance, 162, 170
triode, 152, 158
winding resistances, 164, 182

Beam power tube, 84, 161
Bias (see Grid bias)

C

Capacitance load line, 99, 109, 117
Carrier wave, 204, 208
Cathode, a.c. operation, 18

indirectly heated, 18

Cathode, oxide coated, 16 
thoriated tungsten, 15 
tungsten, 14 
virtual, 95

Circuit, equations, linear, 1
nonlinear, 1, 104, 113, 121

Characteristic curves, beam power 
tube, 85

diode, 204
pentode, 84
surface, 51
tetrode, 80
triode, 51

Child’s law, 20
discussion, 23

Choke feed, 63, 87, 216
Class A, AB, and B (see Amplifiers)
Coplanar grid tube, 95
Cross modulation, 168n.
Current feedback, 229
Cut-off grid voltage, 27, 60, 64, 146

D

Decibel, 77
Degenerative feedback, 226
Demodulation (see Detection)
Detection, diode, 203

reactive load, 216 
rectification curves, 204 
resistive load, 212 
resistive source, 212 
tuned source, 216

Detection, plate circuit, 223 
transrectification curves, 224

Diodes (see Detection)
Distortion, analysis for balanced 

amplifiers, 168, 190
for beam power tubes, 91
for driver stage, 193

235
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Distortion, for pentodes, 88
for second harmonic, 71, 90
for tetrodes, 87
for third harmonic, 90, 190

Distortion products, 8, 190
maximum permissible, 77

Double power series, 8, 171
Driver tube design, 192
Dynamic characteristics, 9, 145
Dynatron oscillator, 130

E

Electrons, equation of flow, 21 
secondary emission, 82

Emission, secondary, 13, 82 
thermionic, 14

Equivalent constant current theo­
rem, 36

Equivalent plate circuit theorem, 
35, 42, 56

F

Feedback, current, 229
reduction, in distortion, 231

in Rp, 228
voltage, 226

Field emission, 14
Filter-plate isolation, 231

for loud-speaker, 92
Finite operator, 106
Fourier series, 8

analytical calculation, 9

G

Gain of amplifier, 86, 228-229
Grid bias, 60, 67, 74, 182, 202
Grid coupling, effect on load line, 233
Grid current, 184, 190
Grid excitation, 60, 67, 86, 184, 193
Grid power, 186

H

Harmonics (see Distortion)
Hum, in balanced amplifiers, 171

I

Ideal transformer (see Transformer) 
Impedance-finite operator, 106
Impedance matching, 92
Inductance, choke feed, 63

for diode, 216
load line, 97, 104, 113, 116. 127

L

Laplace’s equation, 21
Linear circuit equations, 1
Linear detection, 203, 224
Linear parameter, 1
Linear tube, 72, 76
Load line, capacitive, 99, 109, 114

inductive, 97, 104, 113, 116
resistive, 46, 52
tuned circuit, 115, 119, 216

Loud-speaker compensation, 92

M

Modulated wave, 204 
vector representation, 208-209

Negative bias (see Grid bias)
Negative feedback (see Feedback)
Network loud-speaker compensa­

tion, 92
Nonlinear parameter, 60, 87, 90

0
Operating point, 96
Oscillation, 130
Output-balanced amplifier, 150, 153, 

191
beam power tube, 84
maximum, 75, 159
pentode, 85
tetrode, 83
triode, 67, 71

Output transformer (see Trans­
former)

Over-all load line. 48
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P

Parabolic tube, 75, 179, 181
Parallel circuit, 49, 116-117, 119
Parallel resonance, 119, 130, 210
Pentode tubes, 83
Photoelectric emission, 14
Plate detector, 223
Plate dissipation, 76, 151, 154
Plate efficiency, 93, 154
Plate isolation, 231
Plate resistance, definition of, 30, 56,

182
reduction of, 228
screen grid, 82

Poisson’s equation, 21
Potential barrier, 12
Power detector, 223
Power output (see Amplifiers)
Power sensitivity, 92
Power series, 5, 49, 57, 61, 171
Push-pull (see Balanced amplifiers)

Q

Quiescent point, 56, 76, 96

R

Reactive load line, 99, 104, 109, 113-
117, 119, 121, 124

Rectification, self-, 96, 150, 153-154, 
157

Resistance, different, for a.c. and 
d.c., 211, 213, 231, 233

load line, 46, 52, 158
plate (see Plate resistance)

Resistance-coupled amplifier (see
Amplifiers)

Resonant circuit, 115, 119, 130, 210, 
216

Reversed feedback (see Feedback)

S

Screen grid tube, 79
Secondary emission, 13, 82
Self-rectification (see Rectification, 

self-)
Series circuit, 46

Series parallel circuit, 51
Side bands, 206, 208
Space charge, 19, 83
Space charge tube, 95
Static characteristics, 58-59
Suppressor grid, 83

T

Taylor’s series, 7
Temperature saturation, 20
Terminal characteristic, 4
Tetrode tube, 79
Thermionic emission, 14
Thevenin’s theorem, 217
Transconductance, 30
Transformer, choke feed, 63, 116, 

121, 137
driver, 121, 185, 195
ideal, 138
three-winding, 167

Transrectification curves, 224
Triode, 25, 124
Triodes, balanced amplifiers, 152

characteristics, 51-56, 124
equation for, 33
optimum load, 72
power output, 67-71

Tube characteristics, 51, 80, 84, 85, 
204

U

Unilateral conductivity, 19

V

Vacuum-tube characteristics (see 
Tube characteristics)

Van der Bijl’s equation, 179
Variable-mu tubes, 29, 176
Vector diagram, of modulated wave, 

208-209
Virtual cathode, 95
Voltage amplification, 54, 62, 86, 231
Video amplifier, 37

W

Work function, 13-17
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