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PREFACE

This book is a revision and extension of notes prepared by the authors 
for courses given to the Communications Development Training Program 
at Bell Telephone Laboratories. This study program is given to all new 
members of the technical staff who have completed their university training 
at the B.S. or M.S. level. Thus the book is primarily intended for use 
at the senior or first-year graduate level.

The book should also be useful to graduate engineers working on electron­
tube development and manufacture and to engineers using electron tubes 
as circuit elements. Detailed descriptions are included of practical electron 
tubes as examples.

Throughout the text an effort has been made to present a coherent 
picture of the use of electron-field interactions to obtain useful device 
performance. The first 13 chapters relate primarily to vacuum tubes, and 
the last four chapters are concerned with gas-discharge devices. The text 
first considers the basic laws of electron motion in fields and electron emis­
sion. This is followed by a discussion of electron lenses and electron guns. 
Next, grid-controlled vacuum tubes are examined, and their equivalent 
circuits are derived. High-frequency limitations of grid-controlled tubes 
are explored through the concept of induced currents. This is followed by 
a detailed study of microwave tubes. A final chapter on vacuum tubes 
considers the noise performance of these devices. The last four chapters of 
the text consider first the Townsend discharge in a gas diode, followed by a 
discussion of cold-cathode and hot-cathode gas tubes, and finally a descrip­
tion of gas lasers.

Although considerable mathematical detail is included, an effort has 
been made to stress the physical principles of each device. Problems are 
included at the ends of most of the chapters to illustrate further concepts 
relative to the text material. References are cited for those who wish to 
pursue particular subjects in more detail. A notation has been adopted 
which is consistent with the symbols used in the literature, insofar as this is 
possible in a coherent presentation. No attempt has been made to include 
any historical comments concerning electron tubes. For the most part, 
tubes are discussed in configurations that are in practical use today rather 
than in those originally conceived.
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Chapter 1

ELECTRONS AND FIELDS

Electron-field interactions play an essential role in the operation of all 
electron tubes. Fields determine the motion of the electrons in the inter­
electrode space of a tube, and the electron motion in the interelectrode space 
determines the currents that flow in the external circuit connected between 
the electrodes.1 It is appropriate therefore that we begin this text with a 
review of the laws that govern the motion of electrons in electric and 
magnetic fields, as well as some properties of the fields themselves. The 
discussion of fields in the present chapter will be limited to static electric 
and magnetic fields. Time-varying fields will be considered in later chapters.

In describing fields and electron-field interactions, we must rely on certain 
experimental laws of physics. Several such laws from which much of our 
discussion of the present chapter will develop are:

1. A particle with charge q is acted on by an electric field E with a force 
proportional to §E, the force being in the direction of the field if q is positive, 
and in the opposite direction if q is negative.

2. When a particle with charge q moves with velocity u in a magnetic 
field B, it experiences a force proportional to the vector product gu X B. 
The force is in the direction of u X B if the charge is positive, and in the 
opposite direction if the charge is negative.

3. The electric flux crossing a closed surface surrounding a quantity of 
charge is proportional to the amount of charge enclosed by the surface and 
is independent of the shape of the surface. This is known as Gauss’s Law. 
A point charge therefore acts as a point source of electric flux, and with 
each unit of charge there is associated a certain total amount of electric flux.

4. In a static magnetic field the line integral of the magnetic field in­
tensity H around any closed path surrounding a flow of current I is propor-

*See Chapter 6.
1



2 PRINCIPLES OF ELECTRON TUBES

tional to the flow of current through a surface enclosed by the path. This 
relationship is known as Ampere’s Circuital Law. Lines of magnetic flux 
close on themselves, and there are no point sources of magnetic flux.

The constants of proportionality used in expressing the foregoing experi­
mental laws, together with the units used to measure mass, length, time, 
and charge, serve to determine the units in which the electric and magnetic 
field quantities are measured. Several systems of units are in use at present, 
each with its own particular advantages. However, the meter-kilogram- 
second system is perhaps the most widely accepted in electron-tube work, 
and we shall adhere to it throughout this text. Appendix I lists the inks 
units in which electric and magnetic field quantities are measured, to­
gether with their dimensions. Appendix II lists values of a number of 
physical constants, and Appendix III presents a summary of relationships 
governing static electric and magnetic field quantities.

Relativistic effects will be neglected throughout this text; that is, elec­
tron velocities will be considered small compared with the velocity of light.

1.1 Electron Motion in an Electric Field
(a) Change of Kinetic Energy and the Concept of Electric Potential

A charge of q coulombs in an electric field E volts/meter is acted on by a 
force çE newtons. The force is in the direction of the field if q is a positive 
charge, and in the opposite direction for a negative charge. Thus, when an 
electron moves in an electric field E, it experiences a force — eE newtons, 
where — e is the charge on the electron, e being equal to 1.602 X 10~19 
coulomb. The resulting motion of the electron is described in rectangular 
coordinates by the three equations,

m^ = — eEx, m^ = -eEv, mÿ = -eE, (1.1-1)

where m is the mass of the electron, and Ex, Ey, and E, are the components 
of E in the coordinate directions. If the first of these equations is multiplied 
by dx on both sides, we obtain

m d(dx/dt)
dt

, dx , dx dx = m—d -y- dt dtdt
dx]2' 
dt = —eEdx (1.1-2)= d

The right-hand part of this equation states that the portion of the electron’s 
kinetic energy associated with its motion in the x direction is changed by an 
amount — eEAx when the electron moves a distance dx in the x direction 
under the influence of the field. Similar expressions hold for motion in the y 
and z directions. It follows, therefore, that if the electron moves a distance 
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dl under the influence of the electric field, its net change in kinetic energy is 
equal to the vector product —eE-dl. This quantity may be positive or 
negative depending on the angle between E and dl.

If the electron travels from point A to point B under the influence of the 
electric field, its total change in kinetic energy is given by

fB
change in k.e. = — e I E-dl (1-1-3)

where the integral is taken over the path followed by the electron from A to 
B. This expression is of much importance in determining the behavior of 
charged particles in electric fields. It holds for time varying fields as well as 
for static fields.

If the field is constant with time and if the work done by the field on the 
electron serves only to change the kinetic energy of the electron, the field is 
said to be conservative. For such a field the integral in Equation (1.1-3) is 
independent of the path taken from A to B, and we can write

-e^ E-dl = 0 (1.1-4)

closed 
path

where the integral is taken around a closed path. In this case we can ascribe 
to each point in space a scalar potential such that the difference in potential 
between two points is equal to the line integral of E along any path between 
them. A potential difference of 1 volt exists between points A and B if the 
line integral of E along any path between them is equal to 1 volt. (Potential 
difference is sometimes called electromotive force or emf.)

If dl is an increment of distance in the direction of an electric field E, the 
change in potential dV over the distance dZ can be expressed as | dV | .= Edi, 
and we can write that

E = -VP (1.1-5)
where V is the scalar potential. The minus sign implies that the field is di­
rected from regions of higher potential to ones of lower potential. Equation 
(1.1-5) is valid in regions in which there is space charge as well as regions 
that are free of charge. From the equation, it is evident that E has the di­
mensions of volts per meter.

If an electron starts from rest and is accelerated through a potential rise 
of V volts, it acquires an amount of kinetic energy given by

fau1 = —ef E-dl = eV joules (1-1-6)

Substituting the experimentally measured values for e and rn in this, we 
find the velocity of the electron to be

u = 5.93 X 105VP meters/sec (1-1-7)
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A unit of energy frequently used to measure energies gained or lost by an 
electron is the electron volt. It is equal to 1.602 X IO-19 joule and is the 
kinetic energy gained by an electron when it is accelerated through a poten­
tial rise of 1 volt. If the electron travels between points differing in poten­
tial by V volts, its change in kinetic energy is V electron volts.

(b) Electron Trajectories in an Electric Field

Figure 1.1-1 (a) shows two electrodes, A and B, of arbitrary shape. Elec­
trode A is grounded, and electrode B is held at a positive potential with 
respect to ground. The path that might be followed by an electron which

(b)
Fig 1.1-1 An electron trajectory between two conducting electrodes.

starts from rest at electrode A and is accelerated in the direction of electrode 
B is shown by a broken line. Figure l.l-l(b) shows a curved portion of the 
path passing through point P. The electric field E acting on the electron at 
point P can be resolved into two components, one parallel to the trajectory 
and one transverse to it. The transverse component, Er, is responsible for 
bending the path of the electron and hence must lie in the plane of curvature 
of the trajectory. If u is the velocity of the electron at point P and r is the 
radius of curvature of the trajectory at that point,

mw „
— = cEt r (1.1-8)

Since the electron started from rest at electrode A, its kinetic energy at 
point P is given by

(mu2 = eV (1.1-9)

where V is the potential at point P. Combining these two equations, 
we obtain

2Vr = (1.1-10)
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Now V and Er are directly proportional to the voltage applied to electrode 
B. Since r is equal to twice the ratio of these quantities, it follows that r is 
independent of the voltage applied to electrode B. Consequently, if the 
electron starts from rest, its trajectory is the same for all positive voltages 
applied to electrode B.

A second point, which may seem intuitively clear, follows from similar 
reasoning. When the linear dimensions in Figure 1.1-1 (a) are scaled by a 
constant factor, the trajectory followed by the electron is scaled by the same 
factor. Let us suppose that all linear dimensions are multiplied by the 
factor k and that the voltage applied to electrode B remains unchanged. 
In this case the potential V at corresponding points between the electrodes 
will be unchanged. The direction of the electric field intensity also will be 
unchanged, but its magnitude will be \/k times as great. From Equation 
(1.1-10), it follows that r becomes k times its previous value, so that r and 
the trajectory scale with the other linear dimensions.

A third conclusion we can draw from Equation (1.1-10) is that the tra­
jectory is independent of the mass or charge of the particle, provided, of 
course, that the charge is finite and negative and the mass is not zero. 
Hence a negative ion would follow the same path as the electron, provided 
both started from rest at the same point on electrode A.

1.2 Motion in Combined Electric and Magnetic Fields

When a particle with charge q coulombs moves with velocity u meters 
per second in a magnetic field B webers per square meter, it experiences a 
force ju X B newtons. Thus, an electron moving in a magnetic field B ex­
periences a force — eu X B newtons, and the resulting acceleration of the 
electron is — (e/m)u X B meters per second2.

The vector u X B has the components Bzuy — Byuz in the x direction, 
Bxuz — Bzux in the y direction, and Byux — Bxuy in the z direction, where 
ux, uy, and uz are the components of u in the coordinate directions, and Bx, 
By, and Bz are the components of B in the coordinate directions. If both an 
electric field and a magnetic field act on an electron, the differential equa­
tions describing the motion of the electron are

dCx 
dP

r dz\+ B’dt - B^t)

d?y 
dt2

v i r dz dx 
E*+ B‘dt ~ BÃt

(1.2-1)

(1.2-2)

e 
m

and
dCz 
dt2

m i r dx p dy 
E‘ + B*dt - Bldt (1-2-3)
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where Ex, Ey, and Ez are the components of the electric field in the co­
ordinate directions. In cylindrical coordinates these equations become

cPr _ (de\2 
dt2 \dt /

Id/ ,de\ 
r dt\ dt / 

d2z 
dt2

(1-2-4)

(1.2-5)

(1.2-6)

We shall find a number of occasions to make use of these equations in later 
chapters.

Because the force resulting from the magnetic field is perpendicular to the 
motion of the electron, any component of force parallel to the trajectory 
must result from the electric field. However, it is the force parallel to the

Fig. 1.2-1 The motion of an electron in 
a magnetic field when the velocity of the 

electron is perpendicular to the magnetic 

field.

trajectory which changes the elec­
tron’s kinetic energy, and conse­
quently only an electric field can 
change the kinetic energy of an 
electron.

If the electric field is zero and if 
the velocity of the electron is per­
pendicular to the magnetic field, 
the electron moves in a circular 
path as illustrated in Figure 1.2-1. 
The radius R of the path is deter­
mined by the relation

acceleration = = = —uB R m (1.2-7)

or

r-7b (1.2-8)

The angular frequency of the circular motion of the electron is given by

_ u _ eB
R m (1.2-9)

As a simple example of motion in combined electric and magnetic fields, 
let us consider the case illustrated in Figure 1.2-2. Here, an electric field E 
lies parallel to the — y direction of a rectangular coordinate system, and a 
magnetic field B lies parallel to the — z direction. We shall assume that an 
electron starts from the origin at time t = 0 with zero velocity. The elec-
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tron is initially acted on only by the electric field, but as it advances in the y 
direction and gains velocity, it is acted on by the magnetic field with a force 
proportional to the product of its velocity and the magnetic flux density.

Fig. 1.2-2 The trajectory of an electron which starts from rest in crossed electric 
and magnetic fields.

As a result, the trajectory is bent back toward the x axis. For this problem 
Equations (1.2-1), (1.2-2), and (1.2-3) reduce to the two simple equations, 

d2x _ e „dy 
dt2 m dt

(1.2-10)
A = Le - —B— 
dt2 m m dt

It is easily shown that these equations have the solutions
dx E. .- = -(1-cosui)

(1.2-11) 
dy E . .

and
E , .

x = —Aut — sin V)UD
E (1.2-12)

y = ^g(l - cos ut)

where u = eB/m. Equations (1.2-12) are the equations of a cycloid, the 
electron trajectory being as illustrated in Figure (1.2-2). Each 2ir/o> 
seconds the electron returns to the x axis and then repeats the curved part 
of the trajectory.
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Next let us consider the scaling of electron trajectories in a region in 
which there is both an electric field and a magnetic field. It is convenient to 
rewrite Equation (1.1-8) to express the radius of curvature of the tra­
jectory as

mU1 it Or = -------------- 7----- (1.2-13)transverse force
where the transverse force in this case may result from both an electric field 
and a magnetic field. The transverse force, of course, lies in the plane of 
curvature of the trajectory. Clearly, if we change the electric field intensity 
and the magnetic flux density in such a manner that the right-hand side of 
this equation is unchanged for all points on the trajectory, the shape of the 
trajectory will not be changed. Suppose the electric field intensity at all 
points is increased by the factor a2 and the magnetic flux density is increased 
by the factor a. Then an electron which starts from rest at the beginning of 
the trajectory and travels to point P on the trajectory will have a2 times as 
much energy at point P, and its velocity will be a times as great. The part 
of the transverse force resulting from the electric field will also be a2 times 
as great; and since the part of the transverse force that results from the 
magnetic field is proportional to the product of u and B, this also will be in­
creased by the factor a2. Hence both the numerator and denominator of the 
right-hand side of Equation (1.2-13) will be increased by the factor a2, and 
the radius r will be unchanged. Thus, if we increase the electric field in­
tensity at all points in space by the factor a2 and the magnetic flux density 
by the factor a, the trajectory of an electron which leaves a given point in 
space with zero initial velocity will remain unchanged, but the electron will 
travel a times as fast. (The reader will readily verify this to be the case for 
the trajectories given by Equations (1.2-12).)

By similar reasoning it is easily shown that, if the linear dimensions of the 
electrodes are increased by the factor b, and if all the voltages applied to the 
electrodes are increased by the factor b2, and if the magnetic flux density al 
corresponding points between the electrodes is unchanged, the electron 
trajectory will also scale with the other linear dimensions of the system. In 
this case the electron velocity at corresponding points of the trajectory will 
be increased by the factor b.

As a final point, we should note that the motion of an electron in an elec­
tric or magnetic field is governed entirely by the forces acting on it. The 
only way we can change the kinetic energy of an electron is to cause the 
electron to be acted on by an electric field. Changing the potential in the 
region does not in itself change the kinetic energy of the electron.

1.3 Conservation of Energy and Charge
One of the most important laws governing the behavior of physical 

processes is the principle of conservation of energy. It states that energy 
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can never be created or destroyed. As applied to electron tubes, it tells us 
that whenever an electron gains kinetic energy, we can in principle account 
for the source of kinetic energy and show that the source lost an equal 
amount of energy. Similarly, when an electron loses kinetic energy, we can 
in principle find an amount of energy which has appeared elsewhere in the 
system equal to the lost kinetic energy.

Another significant law we learn from experimental physics is the 
principle of conservation of charge. This principle states that the total 
charge of a system, both positive and negative, can be changed only by 
adding charge to the system or removing charge from the system. In later 
chapters we shall frequently have occasion to consider volume charge 
densities or “space-charge densities” arising from a large number of elec­
trons in a region of space. If p(x,y,z) is the volume charge density, the total 
charge in an element of volume Av is p(x,y,z) Av. The principle of conserva­
tion of charge tells us that, if this quantity is changing with time, charge is 
flowing across the surface of the volume element, such that the total amount 
of charge both inside and outside is constant. Expressed mathematically, 
the principle states that

I J -ndS=~ I p(x,y,z)dv (1.3-1)

closed volume
surface

where J(x,y,z) is the current density associated with the flow of charge, and 
n is a unit vector normal to the surface element dS and pointing outward. 
Dividing both sides by Av and taking the limit as Av —> 0, the left-hand side 
becomes the divergence of J, and we obtain

V-J = (1.3-2)dt

This is known as the equation of continuity. We shall find a number of oc­
casions to make use of it in later chapters.

1.4 Static Electric Fields — Gauss’s Law, Poisson’s and Laplace’s 
Equations

(a) Gauss’s Law

In mks units the electric flux density D is related to the electric field in­
tensity E by D = ssoE, where e is the relative dielectric constant of the 
medium, and e0 is the permittivity of free space. The relative dielectric 
constant e is a dimensionless constant, which in free space has the value 1.
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The constant e.« is approximately equal to2 8.854 X 10-12 and has the di­
mensions of farads per meter or coulombs per volt per meter. Since E has 
the dimensions of volts per meter, the vector D has the dimensions of cou­
lombs per square meter. (The vector D is sometimes called the displace­
ment vector.)

If we surround a quantity of charge by a closed surface, a certain total 
amount of electric flux crosses the surface because of the charge inside. 
Gauss’s Law states that no matter what surface we choose to surround the 
charge, the total flux crossing the surface is the same. Furthermore, the 
amount of flux crossing the surface is proportional to the charge enclosed. 
Hence with each unit of charge there is associated a certain total amount of flux. 
In mks units the flux crossing the surface is numerically equal to the charge 
in coulombs enclosed by the surface. Gauss’s Law therefore can be ex­
pressed as

y D-nd,S = y ee0E-nd»S = q (1-4-1)

closed closed
surface surface

where n is a unit vector normal to the surface element dS, and q is the charge 
enclosed by the surface. If there is a distribution of charge within the 
region, the theorem can be written in the form

y DndS = y p{x,y,z)dv (1-4-2)

closed volume
surface

where p(x,y,z) is the volume charge density, and the integral on the right is 
taken over the volume enclosed by the surface. Equations (1.4-1) and 
(1.4-2) are valid even if the surface over which the integrals are taken 
passes through a conductor or other solid matter, or if it passes through a 
region of space charge. (However, if the surface element dS lies in a con­
ductor, E = 0, and the flux crossing dS is zero.)

If the volume enclosed by the surface in Equation (1.4-2) is Av, and if 
both sides of the equation are divided by Av, and the limit is taken as Av —> 0, 
we obtain

V D = p (1.4-3)

This provides another useful expression of Gauss’s Law.

2In mks units the magnetic permeability of free space is defined to be equal to

4?r X 10-’, and the constants Mo and are related by Moe» = 1 /c2, where c is the velocity
of light. Hence can be determined by experimental measurement of the velocity of

light. It is found that c = 2.996 X 108 meters/sec, so that = 8.854 X 10-12, or
approximately l/(36v X 10’).
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If q in Equation (1.4-1) is positive, the net electric flux crossing the sur­
face is directed outward, and if q is negative, the net electric flux is directed 
inward. If the charge enclosed by the surface consists of two equal but op­
posite charges, the net electric flux crossing the surface is zero.

Two results that follow directly from Gauss’s Law and symmetry argu­
ments are:

1. The electric field in free space at a distance r from a point charge q is 
given by

£ = j^pvolts/meter (1.4-4)

2. The electric field in free space outside a cylindrical charge distribution 
of uniform axial charge density is given by

E = T-volts/meter (1-4-5)
2ire„r

where r is the axial linear charge density in coulombs per meter, and r is the 
radius at which E is determined.

The concept of lines of electric flux, or field lines, is useful in presenting a 
picture of an electric field distribution. In the case of two equal but oppo­
site point charges, the electric field lines terminate on the two charges and 
extend from one charge to the other, the lines being directed from the 
positive charge to the negative charge. The total number of lines is propor­
tional to the amount of charge at the ends of the field lines. The field lines 
are parallel to the direction of the electric field, and the number of lines 
crossing unit area normal to the direction of the field is proportional to the 
average electric flux density over the unit of area.

Static electric fields are always associated with coulomb charges — 
either point charges, surface charges, volume charges, or perhaps a combina­
tion of the three. In electron-tube work a density of electrons in the inter­
electrode space of a tube can often be considered to be a volume charge 
density, or “space-charge density,” even though it is really a cloud of in­
dividual point charges.

If a point charge is brought close to a conductor, currents flow in the con­
ductor until a charge distribution is built up on its surface which exactly 
cancels the electric field that would otherwise be present within the con­
ductor. The surface charge is said to be an induced charge. Thus, when 
electrons are present in the interelectrode space of a vacuum tube, an 
amount of positive charge equal to the total charge on the electrons is in­
duced on the electrodes or other nearby surfaces, and one can imagine 
electric field lines extending from the induced surface charges to the elec­
trons in the interelectrode space.
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Charges on conductors are always surface charges. A net volume charge 
density within a conductor would lead to electric fields within the conduc­
tor with the result that currents would flow causing neutralization of the 
charge. Similarly, a static electric field at the surface of a conductor is al­
ways normal to the surface of the conductor, since otherwise it would have a 
component parallel to the surface, and charge would flow along the surface.

By a further application of Gauss’s Law, it is easily shown that the 
electric field intensity E in free space at the surface of the charged con­
ductor is given by

E = - (1.4-6)
So

where a is the surface charge density.
Equation (1.4-6) can be used to obtain an expression for the capacitance 

of a parallel-plate capacitor. When the capacitor is charged, electric field 
lines extend from the surface charge on one plate to the surface charge on 
the other, the charge on the plate at higher potential being positive, and 
that on the plate at lower potential being negative. If the spacing between 
plates is small compared with their linear dimensions so that edge effects 
are negligible, the potential difference from one plate to the other can be 
expressed as V = Ed = ad/z0 = qd^oA, where d is the spacing between 
the plates, A is the area of a single plate, a is the surface charge density, 
and q is the total charge on a single plate. The capacitance of the device is 
defined as the ratio of q to V, or

C = | (1.4-7)

In mks units, C is measured in farads. If the space between the plates were 
filled with a material of relative dielectric constant e, it is easily shown that 
E = a/sto, and C = ezaA/d.

(b) Poisson’s and Laplace’s Equations

Equation (1.4-3) can be written in the form

VD = V-(ee0E) = p (1.4-8)

Now E = — VP, and in free space e = 1. It follows that in a region of free 
space in which there is a distributed charge density p^x^jz), the potential V 
is described by the equation

V(VF) = UP = (1.4-9)

This relationship is known as Poisson’s Equation.
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If there is no space charge in the region, p = 0, and the potential satisfies 
Laplace’s Equation,

V2F = 0 (1.4-10)

As an example of a problem that can be solved with the aid of Poisson’s 
Equation, let us consider the potential within a long conducting cylindrical 
tube filled with a uniform charge density p0. (We can imagine that an elec­
tron beam of uniform charge density is directed down inside the tube and 
that the beam just fills the tube.) Using cylindrical coordinates, Poisson’s 
Equation for this problem becomes

Po
So

(1.4-11)

since there is no variation of V in the 6 or z directions. The reader will 
readily verify that V = — (p„/4e„)r2 + Ci In r + c2 is a solution of this 
equation, where Ci and c2 are constants. Evidently Ci = 0, since V is finite 
at r = 0. If the inside radius of the conducting tube is R meters, and if the 
tube is at zero potential, the potential at radius r is given by V = (p„/4e0) 
(R2 — r2) for r < R. Positive space charge raises the potential within the 
cylinder, and negative space charge lowers it.

A problem that can be solved with the aid of Laplace’s Equation is that of 
finding the potential in the region between two long concentric conducting 
cylinders which are held at different potentials. Since V does not change in 
the 6 or z directions, Laplace’s Equation for this problem becomes

Id.
r dr

(1.4-12)

This equation has the solution V = Ci In r + c2, where Ci and c2 are con­
stants. If the inner cylinder is held at potential Vo and the outer cylinder is 
at zero potential, and if their radii are a meters and b meters, respectively, it 
is easily shown that V = (Vo In r/b)/(In a/b). A solution of Laplace’s 
Equation which satisfies a particular set of boundary conditions is always 
unique, and the first and second derivatives of such a solution are con­
tinuous at all points between the bounding surfaces.

Potential distributions can also be obtained by integrating known electric 
field distributions along the direction of the field. In this case use is made of 
the relation E = — W Thus, if the axial charge density on the inner cyl­
inder in the above problem were specified, we could integrate Equation 
(1.4-5) with respect to r to obtain the potential as a function of r. In a 
similar manner, Equation (1.4-4) can be integrated with respect to r to ob­
tain the potential due to an isolated point charge. Thus

P = j-2- + Ci 
4?repr (1.4-13)
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where c, is a constant, and r is the distance from the charge q to the point at 
which V is determined. If V is assumed to be zero at large distances from 
the point charge, then c, = 0.

(c) Superposition

Because Laplace’s Equation is linear, the sum of the potentials arising 
from two or more point charges also satisfies it. If a region of space contains 
a number of point charges as well as surface charges and volume charges, 
the potential at point P can be expressed as

where dq is a point charge or element of surface charge or volume charge, 
and r is the distance from the point charge or element of charge to point P.

A problem that can be solved with the aid of Equation (1.4-14) is that of 
finding the potential at point P outside a conducting sphere with uniform 
charge density a. We shall assume that there are no other point charges,

Fig. 1.4-1 A construction which may be used in determining the potential at a 

point d meters from the center of a uniformly charged conducting sphere.

volume charges, or solid bodies nearby. With the aid of Figure 1.4-1 we can 
show that

a2irR2 sin0 dB _ R2a _ q 
iirs^R2 + d2 — 2Rd cos0 zjl 4ireod 

where R is the radius of the sphere, a is the surface charge density, d is the 
distance from point P to the center of the sphere, and q is the total charge 
on the sphere.

Finally, let us note that, since the electric field at a given point is related 
to the potential gradient at the point by E = —W and since the gradient 
operator is linear, the total electric field is a vector sum of contributions 
arising from each of the separate point charges, and elements of surface 
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charge and volume charge in the region. Hence superposition applies to 
fields as well as potentials.

1.5 Static Magnetic Fields — Ampere’s Circuital Law, Permanent 
Magnets

Static magnetic fields always result from charge in motion — sometimes 
an electron current in a conducting medium, or a beam of charged particles, 
or, in the case of permanent magnets, a preferred orientation of the electron 
spins or orbits in the solid matter of which the magnets are made. As in the 
case of an electric field, it is often convenient to picture a magnetic field in 
terms of magnetic flux or magnetic field lines. The lines lie parallel 
to the direction of the magnetic flux density B, and the number of lines 
crossing unit area normal to the direction of the field is proportional to |B|.

When current flows in a long cylindrical conductor and the direction of 
flow is parallel to the axis of the conductor, the magnetic field lines are 
circles concentric with the conductor and lying in a plane perpendicular to

® CURRENT FLOW OUT

(a) (b)

Fig. 1.5-1 Magnetic field lines associated with current flow in a wire and a loop.
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the axis. The magnetic flux density is found to be greatest at the surface of 
the conductor and falls off inversely with distance from the axis at larger 
distances from the axis. Figure 1.5-1 illustrates the direction of the mag­
netic field in relation to the direction of current flow. If the conductor is 
bent in the form of a loop, the magnetic field lines still surround the flow of 
current, and each field line threads through the loop. In all cases the field 
lines close on themselves, and there are no point sources of magnetic field. 
Magnetic field lines never start or stop at a point or surface as do electric 
field lines.

Since the magnetic field lines close on themselves, the total magnetic flux 
crossing a closed surface must be zero. The magnetic flux crossing an ele­
ment of area dS can be expressed as B • ndS, where n is a unit vector normal 
to the element of area. Hence

y B ndS = 0 (1.5-1)

closed 
surface

If the volume enclosed by the surface is very small and can be represented 
by Av and if we take the limit as Av —> 0, we obtain

/ = V B = 0 (1.5-2)

dosed 
surface
△v—>0

In the mks system the unit of magnetic flux is the weber, and magnetic 
flux density B is measured in webers per square meter.

For some purposes it is convenient to define a vector H, known as the 
magnetic field intensity vector, such that

B = mm JI (1.5-3)
where m is the relative permeability of the medium, and m« is the permeabil­
ity of free space. The relative permeability m is a dimensionless constant, 
which in free space is equal to 1. In mks units the constant m<> is defined to 
be equal to Air X 10-7 and has the dimensions of henries per meter or webers 
per ampere-meter. Since B has the dimensions of webers per square meter, 
H has the dimensions of amperes per meter.

(a) Ampere’s Circuital Law

Ampere’s Circuital Law states that the line integral of H around any 
closed path which surrounds a flow of current I is equal to the flow of cur­
rent across the area enclosed by the path, or

y H dl = I (1.5-4)

closed path
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If the closed path in this equation lies in a plane normal to a current density 
J and if the area surrounded by the closed path is very small and can be 
represented by AA, we can divide both sides of the equation by AA and take 
the limit as A A —>0 to obtain

/ XT = J 

closed path
△A—*0

or, since the left-hand side is the definition of the curl of H,
I V X HI = J

and

V X H = J

where J is a vector parallel to the flow of current and of magnitude equal to 
J. Ampere’s Circuital Law applies when the closed path lies within solid 
bodies, conductors, or magnetic materials, as well as in regions of free space.

Equation (1.5-4) can be used to obtain the magnetic field intensity at a 
distance a from the axis of a long cylindrical conductor in free space which 
conducts a current I amperes parallel to its axis. If the closed path in the 
equation is a circle of radius a and if the circle is normal to the axis of the 
conductor with center on the axis, so that H is parallel to the path at all 
points, we obtain

H2ird = I (1.5-6)

Hence the magnetic flux density B at a distance a from the axis of a long 
cylindrical conductor, which carries a current I and which is surrounded 
only by free space, is given by

B - (1-5-7)

Actually the magnetic field generated by a long straight conductor is a 
vector sum of contributions resulting from each element of length of the 
conductor. Ampere deduced that when a current I amperes flows in an 
element of length dl of a conductor, the magnetic flux density dB at a point r 
meters from the length dl is given by

dB = (1.5-8)

where dl is a vector of length dl and direction parallel to the current flow. 
The vector r is of length r and directed away from the element dl along a 
line joining dl to the point at which dB is determined. This result is known 
as Ampere’s Rule. It applies only when there is no magnetic material in the 
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region. With the aid of Figure 1.5-2 it is easily shown that the sum of the 
contributions to the net magnetic flux density at a point a meters from the 
axis of a long cylindrical conductor which carries a current I amperes is 
given by

Z”72 ppi cos</> d<f> _ pfl
-t/2 4ira 2ira (1.5-9)

in agreement with Equation (1.5-7). Ampere’s Rule is really a special form 
of the Circuital Law.

Fig. 1.5-2 A long cylindrical conductor carrying a current I amperes.

Equation (1.5-8) can in principle be used to determine the magnetic flux 
density at any point in space resulting from a coil of any shape, if sufficient 
ingenuity is used in carrying out the vector addition of the contributions dB 
from each element of current flow.

Perhaps the simplest application of Equation (1.5-8) is the problem of 
determining the magnetic flux density at the center of a circular loop of wire 

Fig. 1.5-3 Magnetic field lines associated with a toroidal coil which conducts a 
current I amperes.
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which carries a current I and is of radius a. In this case the vectors dB at 
the center of the loop resulting from each element dl of the loop are all 
parallel. The total magnetic flux density at the center is easily shown to be

B = (1.5-10)

and is parallel to the axis of the loop.
Figure 1.5-3 shows qualitatively the shape of the magnetic flux lines as­

sociated with a toroidal coil. If the turns are close together and regularly 
spaced, it is evident from symmetry considerations that the magnetic field 
lines must all lie within the toroid and that B outside the coil is essentially 
zero. If there are n turns per unit length around the periphery of the coil, 
application of Ampere’s Circuital Law to the path of integration shown in 
the figure gives

Hl = nil 
or

H = nl (1.5-11)

where I is the length of the curved part of the path within the toroid. (The 
only non-zero contribution to the line integral comes from the curved part 
of the path within the toroid.) The magnetic flux density within the coil is 
therefore given by B = /¿¿ni. This is also the magnetic flux density at the 
center of a long straight coil of n turns per meter.

The inductance of a coil is equal to the number of “flux linkages” per 
ampere of current passed through the coil, where the number of flux 
linkages is equal to the product of the number of webers linking each turn 
of the coil and the number of turns in the coil. In the case of the toroidal 
coil shown in Figure (1.5-3), the flux linking each turn of the coil is irr2B = 
nr2^!, where r is the radius of the turns. If the total number of turns in 
the coil is N, the number of flux linkages per ampere is w^nN, or

L = irdponN (1.5-12)

where L is the inductance of the coil. In the mks system inductance is 
measured in henries. If the coil were filled with a medium of relative per­
meability n, the inductance would be L = Trr2p.pfnN.

(b) Permanent Magnets

A number of metals including the elements iron, nickel, and cobalt, and 
certain alloys, as well as a group of ceramics called ferrites, exhibit a prop­
erty known as ferromagnetism. When a long cylindrical rod of one of 
these materials is placed along the axis of a coil and a current is passed 
through the coil, the magnetic flux density B within the rod is often hun-
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dreds or thousands of times that which would be obtained along the axis 
of the coil in the absence of the ferromagnetic material. The ratio of the 
magnetic flux density within the sample to that which would be obtained in 
free space with the same value of H is known as the relative permeability 
of the material and is designated by g. The magnetic flux density B with­
in the material can therefore be expressed as B = as in Equation 
(1.5-3).

Figure 1.5-4(a) shows a coil wound around a toroidal sample of ferro-
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(b) ALNICO V (C) SAE 1010 STEEL

Fig. 1.5-4 A coil surrounding a toroidal sample of ferromagnetic material and 
hysteresis loops for two ferrous alloys. Alnico V is frequently used as a permanent 

magnet material, and SAE 1010 steel is often used for pole pieces.
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Fig. 1.5-5 The magnetic flux lines associated with several shapes of permanent 
magnets, (a) Three toroidal magnets, two with air gaps. A small amount of flux 

leakage which would take place from the sides of the two magnets with the air 

gaps is not shown, (b) An ellipsoidal magnet, (c) A hysteresis loop, (d) A cylindrical 

magnet, (e) Plots of B and H along the axis of the cylindrical magnet.

magnetic material. By passing a current I through the coil, a magnetic 
field intensity H = nl is established within the sample, where n is the
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number of turns per unit length around the periphery of the toroid. If 
a low-frequency alternating current is passed through the coil, the magnetic 
flux density3 B within the material is found to lag the applied H. The 
familiar “hysteresis loop” is a plot of B vs. H obtained in this manner. 
Two examples of hysteresis loops are shown in Figure 1.5-4. The shape of 
the hysteresis loop is characteristic of the particular ferromagnetic material. 
(Notice the difference in the horizontal scale for the two hysteresis loops 
shown in the figure.) Materials having hysteresis loops with large enclosed 
areas make the best permanent magnet materials.

Figure 1.5-5 (a) shows three toroidal rings of ferromagnetic material. 
In one the ferromagnetic material forms a closed ring, in one there is a 
small air gap, and in one there is a larger air gap. We shall assume that 
each has been “magnetized” by winding a toroidal coil around it and 
momentarily passing a large current through the coil. When the mag­
netizing current is removed, the line integral of H around any closed path 
in the region must be zero, since there is no flow of current in or around the 
sample. From symmetry arguments we can easily deduce that within 
the closed ring, H = 0, and that B has the value indicated by point C on 
the hysteresis loop. The flux lines take the form of circles concentric with 
the axis of the toroid, and all are within the sample. There is no magnetic 
flux outside the sample.

In the case of the sample with the small air gap, nearly all the lines of 
flux cross the gap, so that B in the gap is approximately equal to B in the 
solid. However, since H is parallel to the direction of B in the gap and since 
the line integral of H along a path following the flux lines must be zero, 
H must be in the opposite direction to B in the magnetic material. It will 
be convenient to denote the values of B and H in the air gap with the sub­
script g and the values of B and H in the magnetic material with the sub­
script m. Then Bg = Bm. If H is integrated along a path followed by a 
flux line which crosses the center of the gap, we obtain

jCHdl = lHg + LHm = 0 (1.5-13)
where I is the length of the air gap, and L is the length of the path in the 
magnetic material. Evidently Hm is small and negative and the values of 
Bm and Hm might be those corresponding to point D on the hysteresis loop. 
Since B is positive, it follows from Equation (1.5-3) that p for the mag­
netized toroid is negative. In the case of the sample with the larger air gap, 
the values of Bm and Hm corresponding to point E might apply. In both 
samples with the air gap there will actually be “flux leakage” outside the

’Changes in the magnetic flux density B within the sample are linearly proportional 
to the time integral of the voltage generated in an auxiliary coil surrounding the sample 
and can be measured in this manner. 
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gap since H is not zero within the sample, and y H • dl must equal zero for all 
closed paths.

Figure 1.5-5(b) shows qualitatively the shape of the magnetic flux lines 
associated with an ellipsoidal sample of ferromagnetic material when the 
sample is magnetized parallel to the long axis of the ellipsoid. It can be 
shown that, when an ellipsoidal sample is magnetized parallel to one of its 
axes, the B lines within the sample are all parallel to each other and to the 
axis. The values of B^ and Hm in this case might correspond to point F 
on the hysteresis loop.

Figure 1.5-5(d) shows qualitatively the shape of the field lines associated 
with a cylindrical bar magnet4. Some of the flux lines leave the sample 
through the sides in this case, with the result that B is less at the ends than 
at the center. Consequently, although the values of Bm and Hm at the 
center of the magnet might correspond to point F on the hysteresis loop, the 
values of Bm and Hm at the ends might correspond to point G. Figure 
1.5-5(e) shows qualitatively the variation of H and B along the axis of the 
bar magnet.

From the foregoing discussion it is apparent that the operating point on 
the hysteresis loop is determined by the geometry of the permanent magnet. 
To illustrate this point further, let us return to the two toroidal magnets 
with air gaps illustrated in Figure 1.5-5(a). If it is assumed that all the 
lines of B cross the gap and that there is no flux leakage from the sides of 
the magnet, then

Bm = Bg = pjl, (1.5-14)

Combining this with Equation (1.5-13), we obtain

Bn   ¡¿cL 
ILn V (1.5-15)

This defines the slope of a line through the origin of the coordinate system 
for the hysteresis loop, and the intersection of this line with the hysteresis 
loop defines the operating point for Bm and Hm.

Since H dl — 0 for all closed paths in the neighborhood of a permanent 
magnet, it is possible to define a magnetic potential 0 such that the potential 

difference between points A and B is given by 0xb = — J H-dl. (The 

magnetic potential difference between two points is often called the mag­
netomotive force, or mmf, in analogy to the electromotive force, or emf, in 
electrostatics.) The magnetic field intensity is related to the magnetic 
potential 0 by// = — V0. Since B = in the region outside a per­

4After M. Abraham, R. Becker, Classical Theory of Electricity and Magnetism, p. 137, 
Blackie and Son, 1932.
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manent magnet, and since V-B = 0 and V- (V) = V2, the magnetic potential 
in the space surrounding a permanent magnet satisfies Laplace's Equation, 
VY = 0.

Magnetic fields are used to focus, or confine, the electron beams of a 
number of microwave tubes including traveling-wave tubes, klystron 
amplifiers, and backward-wave oscillators. Magnetic fields also play an

SAE 1010 STEEL _ limit.
POLE PIECE t Hili

CIRCULAR HOLE

PERMALLOY FIELD 
STRAIGHTENERS

CIRCULAR HOLE 
FOR OUTPUT — 

COAXIAL LINE

ALNICO V MAGNET

Bz IN WEBERS PER 

SQUARE METER

SECTION A-A

0 2 4 6
I I I ! I ■ I 
CENTIMETERS

Fig. 1.5-6 A permanent magnet circuit used to focus the electron beam of a travel­
ing-wave tube. The outline of the tube is shown in the figure. A plot of the axial 

magnetic field B- is shown at the right. The slight peaking of the axial magnetic 
field near the ends of the circuit results from the “re-entrancies” in the pole pieces. 

Within the pole pieces the axial magnetic field changes direction, and beyond the 

pole pieces the axial magnetic field has the opposite direction to that which it has in 
the center of the magnet.
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essential role in the operation of magnetron oscillators. By using permanent 
magnets rather than electromagnets to provide the magnetic field, the total 
power consumption of the tubes can be reduced.

Figure 1.5-6 shows a permanent magnet circuit for a traveling-wave tube. 
The circuit produces a magnetic flux density5 of nearly 0.06 weber/meter2 
along the axis of the tube in the region between the pole pieces. The mag­
netic flux density B in the pole pieces is well below that needed to saturate 
the pole piece material, so that H within the pole pieces is extremely small 
(see hysteresis loop for SAE 1010 steel in Figure 1.5-4). The pole pieces, 
therefore,* serve as equipotential bodies, the mmf being nearly constant 
throughout their volume. In a similar manner, the permalloy “field straight­
eners” are flat discs of high-permeability steel which serve as equipotential 
planes and assure that the lines of B are parallel to the axis of the traveling­
wave tube. Since B = nnJI, and n is very large for the field-straightener 
material, H within the field straighteners is correspondingly small. The 
permanent magnet is larger at its center than at its ends to account for 
flux leakage from its sides.

Fig. 1.5-7 A permanent magnet circuit for a magnetron.

“One weber per square meter = 104 gauss.
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Figure 1.5-7 shows a permanent magnet circuit for a magnetron. The 
circuit produces a magnetic flux density of about 0.5 weber/meter2 in the 
neighborhood of the magnetron’s cathode. The permendur sleeves inside 
the pole pieces serve to shape the magnetic field in the region between the 
cathode and anode so as to obtain electron trajectories which give optimum 
interaction between the electrons and the rf field.

PROBLEMS

A B

Problem 1.1

1.1 At time a single electron is emitted from electrode A with zero velocity, and 

at this time a voltage V = +10 volts is applied between the electrodes in such a 

direction that it accelerates the electron toward electrode B. It is assumed that the 
electric field intensity is uniform at all points between the electrodes. At time 6 the 

electron is halfway to electrode B, and the voltage V changes discontinuously to 
— 20 volts and remains at that value. Which electrode does the electron strike, and 

what is its kinetic energy in electron volts when it strikes the electrode?

Problem 1.2

1.2 Grids B and C are assumed to be ideal grids having the properties that they 
do not intercept electrons and that field lines do not penetrate through the grids.
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A single electron leaves electrode A with zero velocity at time L. At this time the 

voltage V is +10 volts and is in such a direction that the electron is accelerated to­

ward grid B. At time the electron is midway between grids B and C, and the volt­

age V changes to —20 volts. Which electrode (either D or A) does the electron 
strike, and what is its kinetic energy in electron volts when it strikes the electrode?

1.3 A very fine wire is held stationary at one end, while the other end passes over 

a pulley and is fixed to a weight which maintains a tension T newtons in the wire. 
Over a limited region between the fixed end of the wire and the pulley there is a 

magnetic field that varies across the region both in magnitude and direction. If 

a current I amperes is passed through the wire, the magnetic field causes a force to 

act on the wire which tends to deflect it. The force is equal to BI newtons per meter 
length of the wire and acts in the direction normal to both the current flow and the 

magnetic field. The resulting shape of the wire might be that shown in the figure. 

Suppose that the wire were removed and that an electron were directed toward the 

magnetic field along the path previously followed by the wire. Show that, if the 

electron momentum mu satisfies the relation mu/e = T/I, the electron trajectory 
through the region of the field will coincide with the path followed by the wire. 

Assume that the stiffness of the wire can be neglected and that its mass is negligible.

1.4 Points 1, 7, and 2 lie on the x axis of a rectangular coordinate system. Points
3, 7, and 4 lie on the y axis, and points 5, 7, and 6 lie on the z axis. The distance from 
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point 7 to each of its neighboring points is d meters. The region is filled with a 

uniform charge density p„ coulombs/meter3. Show that if the distance d is very 
small, the potential at point 7 is approximately given by

Vr = Ft + Fz + V» + V< + Fa + Ve dip, 
6 + 6e„

where Pi is the potential at point 1, and so on. What effect does the presence of 

space charge have on the potential at point 7?

1.5 Use Equation (1.4-14) to show that the potential at the center of an isolated 

spherical cloud of charge of radius R and uniform charge density pQ is given by

_ pJV _ 3q
Mn‘er 2e, 8^7?

where q is the total amount of charge in the cloud.

1.6 Part (a) of the figure shows qualitatively the field lines associated with two 

isolated point charges +? and — q. The plane A-A' lies midway between the two 
point charges. Since all points on the plane are equidistant from the two point 

charges, the potential on the plane is zero. Both charges contribute to the electric 

field intensity at the plane A-A'. Show that the total electric field intensity at the 
plane can be expressed as

E = Qÿ
2re«(r2 + y2)312 
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where y is the distance from the point charges to the plane A-A', and r measures 
the distance along the surface of the plane from the line joining the point charges 

to the point at which E is determined. The electric field intensity at the plane 

A-A' is, of course, normal to the plane.

Since all points on the plane A-A' are at zero potential, a thin planar conductor 
could be inserted along the plane without disturbing the potential and field dis­

tribution in the region. Suppose such a planar conductor were inserted and the 

left-hand charge were then removed. Evidently the right-hand half of the field 

pattern would remain unchanged. Hence the field distribution shown in part (b) 

of the figure must be that which applies when a point charge +7 is y meters from 
planar conductor. Field lines originating on the charge +7 terminate on negative 

induced charges on the surface of the conductor. Use the above expression for E to 
obtain an expression for the surface charge density induced on the planar conductor 

by the charge +7. Show that the total induced charge is equal to —7.

Show that the force tending to draw the charge +7 toward the planar conductor 

in part (b) of the figure is 72/[47re0(2y)2] newtons and that the work required to re­

move the charge +7 to infinite distance from the planar conductor is q2/[4rSo(4y)] 
joules.

1.7 A de current I amperes flows within a long cylindrical conductor of radius 

R. The current density is assumed to be uniform across the wire and directed par­

allel to the axis. Sketch qualitatively how the magnetic flux density B varies with 

radius r from the axis of the wire out to several times R. Make a similar sketch for 
the radial electric field intensity associated with a cylindrical beam of electrons. 

Assume uniform space charge density across the beam cross section.
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Chapter 2

ELECTRON EMISSION

The great majority of electron tubes depend upon thermionic emission 
as their source of free electrons. In this emission process, electrons within 
a conductor or semiconductor receive sufficient energy by thermal excita­
tion to overcome the forces tending to keep them within the solid.

Our interest in thermionic emission at this point lies in the fact that some 
inherent properties of thermionic emission seriously affect the design and 
performance of electron tubes. It is found, for instance, that the emitted 
electrons have small, but finite, velocities upon emission, so that in con­
sidering the shapes of the electron trajectories in the interelectrode space 
of a tube we must take into account the distribution of emission velocities. 
When we try to design an electron gun that will produce a thin beam of 
electrons with high current density, we find that we are seriously limited 
in doing so by the finite electron emission velocities.

It is also found that both the current of emitted electrons and the veloc­
ity distribution of the emitted electrons fluctuate with time. These fluc­
tuations constitute two principal sources of “noise” in electron tubes and 
lead to serious limitations in the performance of many amplifier tubes.

We are further limited in designing an electron tube by the fact that each 
thermionic cathode material is characterized by a maximum emission 
current density consistent with long life of the emitter. Since the per­
formance requirements of a tube are generally such that a certain total 
current must be drawn from the cathode, the maximum emission current 
density serves to determine the minimum area of the cathode emitting 
surface. In grid-controlled tubes this minimum cathode area usually 
determines the area of the remaining electrodes. The high-current-density 
beams used in klystrons and traveling-wave tubes are frequently obtained 
by making use of a relatively large cathode emitting surface in order to 
draw the required total emission current and by using electrostatic fields 
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to focus the electrons to a beam of smaller diameter. In later chapters we 
shall find that a number of the ultimate performance limitations of vacuum 
tubes result from the need for using a large cathode emitting surface.

Finally, some properties of the oxide-coated cathode are of concern to 
the tube designer and tube user. It is found, for instance, that the resistance 
of the oxide coating is often of the order of a few ohms across a square 
centimeter of coating. This resistance is effectively inserted between the 
cathode lead and the emitting surface. In the case of grid-controlled tubes, 
it serves as a negative feedback mechanism which has the effect of reducing 
the transconductance of the tube. Furthermore, during the processing 
of a tube and during the life of the tube, compounds form at the interface 
between the oxide coating and the base metal. These compounds place an 
additional impedance between the cathode lead and the emitting surface. 
The interface resistance is often ten or more times that of the oxide coating, 
and it increases with the life of the tube. End of life for many grid-con­
trolled tubes occurs when the growth of interface resistance reduces the 
transconductance of the tube below a minimum useful value.

These limitations are of sufficient importance to merit further consider­
ation of the thermionic emission process, and accordingly a major part of 
the present chapter will be concerned with this subject. (Discussion of 
noise in electron beams and its excitation by current and velocity fluctua­
tions at the cathode will be deferred until Chapter 13, however.)

Electrons can be emitted from a solid by processes other than thermionic 
emission. Whenever electrons near the surface of a solid are given sufficient 
energy to overcome the forces tending to keep them within the solid, some 
of the electrons escape. Excitation of the electrons near the surface can be 
caused by incident electrons, photons, positive ions, or excited atoms, and 
each of these means of excitation can lead to electron emission. Electron 
emission also can be caused by the application at the surface of sufficiently 
high electric fields that the surface forces are reduced to the point where 
electrons escape. Electron emission resulting from electrons striking a sur­
face is known as secondary emission; emission resulting from photons strik­
ing a surface is known as photoelectric emission; and emission resulting 
from the application of very high electric fields is known as field emission, 
or Schottky effect. Some characteristics of secondary emission and photo­
electric emission will be described in Sections 2.5 and 2.6, respectively. 
Emission caused by positive ions and excited atoms striking a surface is of 
interest in connection with gas-discharge devices, and we shall defer dis­
cussion of it until Chapter 14. Field emission has found only limited ap­
plication in electron-tube work1 and will not be described further.

1Some special-purpose cathode-ray tubes and x-ray tubes have field-emission cathodes. 
Certain arc-discharge processes are also known to depend upon field emission.
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We shall begin by describing briefly the behavior of electrons in the in­
terior of a metal and the forces that act on electrons at the surface of a 
metal.

2.1 Electrons in a Conductor, Work Function, and Contact Potential
(a) Electrons in a Conductor

It is well known that the structure of metals is crystalline. Three crystal 
structures frequently formed by the metallic elements are illustrated in 
Figure 2.1-1. These are the body-centered cubic structure, the face-

Fig. 2.1-1 Three common metallic crystal structures: (a) body-centered cubic 
structure; (b) face-centered cubic structure; (c) hexagonal structure.

centered cubic structure, and the hexagonal structure. The atomic spacings 
of several metallic elements that form these structures are shown in Figure 
2.1-1. Practically all nearest-neighbor spacings of the atoms in metallic 
crystals lie between 2 and 5 angstroms (1 angstrom = 10-8 cm).

Let us now look at the electronic structure of the isolated atoms. An 
atom is always characterized by certain discrete total energies which its 
electrons can have. Each electron in the atom has one of these energies and 
therefore is said to be in an energy state of the atom. With each energy 
state there is associated a certain characteristic motion of the electron 
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about the nucleus. For many purposes, an electron in a given energy 
state can be thought of as causing a cloud of charge about the nucleus. The 
probability of finding the electron in a given volume element about the 
nucleus is proportional to the charge density of the cloud at the volume 
element. It is found that electrons in certain energy states tend to con­
tribute their maximum charge density at approximately the same distance 
from the nucleus, and consequently there are said to be shells of electrons 
about the nucleus. Thus, copper has two electrons in its innermost shell, 
eight electrons in the next shell, eighteen in the next, and one in the outer 
shell. Metallic atoms have one to four electrons in the outer shell. Gen­
erally, the radius at which the outer-shell electrons in the isolated atoms 
contribute their maximum charge density is nearly half the nearest- 
neighbor spacings of atoms in the metallic crystal and at least several times 
the radius at which the electrons in the next smaller shell contribute their 
maximum charge density.2

Fig. 2.1-2 The potential experienced by an atomic electron as a function of radius r 
from the nucleus of the atom.

Figure 2.1-2 shows qualitatively how the potential that acts on an elec­
tron in an isolated atom varies with distance r from the nucleus. As the 
electron travels to large distances from the nucleus, so that it is outside the 
charge clouds of the other electrons, it leaves behind a net charge of +e on 
the atom and experiences a potential —e/4irs„r volts. At smaller distances, 
such that the electron is within the charge clouds of the other electrons, its

Reference 2.1, p. 349, lists the radii at which electrons in the various energy states 
of the lighter atoms contribute their maximum charge density.
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potential is complicated by interactions with other electrons. When the 
electron is inside the charge clouds of all the other electrons, its potential 
approaches — (Ze/4irei,r) + C, where Ze is the positive charge on the 
nucleus, and C is a constant.
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Fig. 2.1-3 The potential experienced by an electron in a metallic crystal. The 
potential is plotted along a line running through the centers of several of the atoms. 

The vertical lines in the figure indicate the locations of the atomic centers. The 

conduction band might extend from the bottom of the shaded region to well above 

V = 0.
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Figure 2.1-3 shows qualitatively how we may expect the potential to 
vary along a line of atoms in a crystal. Clearly, the potential will be 
periodic with extreme local variations near the nuclei. The crystal may be 
thought of as being made of a lattice of positive charge centers with the 
space between the charge centers filled with a cloud of negative charge. 
The positive charge centers are the metal atoms minus their outer-shell 
electrons, and the cloud of negative charge arises from the outer-shell 
electrons. At the interatomic spacings that atoms assume in a crystal, the 
charge clouds of the outer-shell electrons overlap appreciably, whereas 
very little overlapping takes place for the charge clouds of the electrons in 
the inner shells.

The overlapping of the outer-shell charge clouds causes a broadening of 
the possible energies that the outer-shell electrons can have into a band of 
energy states, known as the conduction band. Each energy state in the 
conduction band can be occupied by a maximum of two electrons. In a 
metal not all the energy states in the conduction band are filled. At ab­
solute zero only the lower part of the band is filled, while the higher energy 
states are unoccupied. If there are N outer-shell electrons in a piece of 
metal which is at absolute zero, the outer-shell electrons occupy the N/2 
lowest energy states in the conduction band, there being two electrons in 
each state. However, when the metal is at room temperature or higher, 
a few of the electrons are excited to higher states by thermal excitation. 
(In Figure 2.1-3 the conduction band would extend from the lower part 
of the shaded region to well above 7 = 0.)
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Excitation to the higher states also takes place when an electric potential 
gradient is established within the metal, and it can be shown that the 
existence of unfilled states just above the occupied part of the band is an 
essential condition for electric conduction. It is the outer-shell electrons 
that are responsible for electrical conductivity, for they find themselves 
relatively free to drift through the crystal under the influence of an applied 
electric field, while those in the inner shells remain bound to their atoms.

(b) Work Function

Next let us consider the forces acting on an electron at the edge of a 
metallic crystal. The letter A in Figure 2.1-3 marks the position of a sur­
face atom. An electron moving to the right from A would at first experi­
ence a potential similar to that in an isolated atom. However, at somewhat 
larger distances from A, the main effect results from a force called the 
image force. A well-known problem in electrostatics3 shows that a point 
charge +5 located y meters from the surface of a conducting plane is acted 
on by a force directed toward the plane and equal in magnitude to that 
which the charge would experience from an equal and opposite charge 2y 
meters away. The actual force arises from an induced surface charge 
—q on the conducting plane. In the case of an electron y meters from a 
planar conductor, the potential arising from the image force is — e/l&irzoy 
volts. If y is measured in angstroms, this becomes — 3.6/?/ volts.

As the distance y decreases and approaches the interatomic spacing d, 
the concept that the surface is a planar conductor becomes no longer valid, 
and the potential merges with that arising from the surface atoms. The 
location of the region over which the merging takes place depends upon the 
number of atoms per unit area of the crystal surface and upon the shape of 
the outer-shell electron clouds. Consequently, we would expect that the 
height to which the potential curve rises above the filled part of the con­
duction band will differ for crystals of different metals.

In Figure 2.1-3 we have shown the outer-shell electrons, or conduction 
electrons, to have energies distributed over a band having a definite maxi­
mum and minimum. Such is the case at absolute zero, and it is almost the 
case at room temperature. However, as already noted, when the metal is at 
room temperature or higher, a number of the electrons are excited to 
states just above the part of the conduction band that is filled at absolute 
zero. If the temperature is sufficiently high, a few electrons gain sufficient 
energy to overcome the image potential and leave the surface of the metal. 
This is the basis of thermionic emission.

’See Problem 1.6.
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The potential corresponding to the top of the part of the conduction band 
that is filled at absolute zero is frequently called the Fermi level. The work 
function of a metal is the energy that must be given to an electron at the 
Fermi level to enable it to escape from the metal with zero velocity. In 
the discussion that follows, we shall designate the work function by </> and 
assume that it is measured in electron volts. (The work function in electron 
volts is numerically equal to the potential rise in volts from the Fermi level to 
the potential V = 0 shown in Figure 2.1-3.)

The thermionic emission current density from a surface is closely related 
to the work function of the surface. With a large work function, the elec­
trons must be excited to higher energy states in the conduction band in 
order to be able to escape, and the emission current density for a given 
cathode temperature will be lower.

Table 2.1-1 lists the work functions of several metals.4 The work function

Table 2.1-1. Mean Work Functions

0
Metal (Electron Volts')
Ag.............................................................4.28

Al..............................................................3.74

Au............................................................4.58

Ba.............................................................2.29

C................................................................4.39

Ca.............................................................2.76

Cb............................................................3.99

Cs............................................................. 1.89

Cu............................................................4.47
Fe.............................................................4.36

K...............................................................2.15

0
Metal (Electron Volts)
Mo.......................................................... 4.27

Na............................................................2.27

Ni.............................................................4.84

Pd.............................................................4.82

Sb.............................................................4.08

Sr..............................................................2.35

Ta.............................................................4.12

Th............................................................3.41

Ti............................................................. 4.09

W............................................................. 4.50

of a clean metal surface is always of the order of a few electron volts, and 
the energy separation between the bottom of the conduction band and the 
Fermi level is also of about this magnitude.

Actually, </> is different for different faces of a metal crystal. The variation 
arises in part from the fact that the density of surface atoms changes from 
face to face, and the distance from the surface atoms at which the image 
potential merges into that of the surface atoms shows a corresponding 
variation. In the case of tungsten, the measured values for the different 
faces5 range from 4.30 electron volts to nearly 6 electron volts. The values 
listed in Table 2.1-1 are for polycrystalline surfaces.

’Reference 2.2.
’Reference 2.3.
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(c) Contact Potential

It can be shown that if two dissimilar metals are brought together at 
absolute zero, the potentials within the metals immediately become ad­
justed so that the Fermi levels in the two systems coincide. This situation is 
illustrated in Figure 2.1-4 for two metals at absolute zero. The figure would

Fig. 2.1-4 Two metals joined at absolute zero. The symbols 0t and 02 indicate 
potential differences which are numerically equal to the work functions of the 

two metals.

be the same at higher temperatures except that the tops of the filled parts 
of the conduction bands would not be well defined, since some of the elec­
trons are excited to higher energies. If the two metals have different work 
functions, the potential rises to different heights outside the two metals, 
and a potential difference must exist between a point just outside one metal 
and a point just outside the other. From the definition of the work function, 
we can see that this contact potential difference, as it is called, is numeri­
cally equal to the difference between the work functions of the two metals.

Since there is a potential difference between points A and B in Figure 
2.1-4, this can result only from the presence of induced surface charges on 
the conductors. The potential in the region between the two metals is 
therefore a superposition of the potential caused by the image force and 
that arising from the induced surface charge. The surface charges result 
from a flow of charge between the metals that takes place when the metals 
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are first joined. The flow of charge is such that the material of lower work 
function is positively charged.

If several wires made of different metals are connected in series, the 
potential difference in volts between a point just outside the wire on one 
end and a point just outside the wire on the other end is numerically equal 
to the difference between the work functions in electron volts of the two 
end metals. Let us suppose that two parallel metal plates made of different 
metals form a parallel-plate capacitor and that the plates are joined by 
a wire. If 0i and 02 are the work functions of the plates in electron volts, 
the potential difference in volts between a point just outside one plate and 
a point just outside the other will be numerically equal to 0i — 02. We 
shall designate it If d is the spacing between the plates, the electric 
field intensity in the region between the plates will be V^/d, neglecting 
edge effects, and the surface charge density a on the two surfaces that face 
each other will be given by

<7 = (2.1-1)
a

Evidently as the distance between the plates is varied, charge must flow 
along the wire joining them.

When a voltage difference is applied between two electrodes of a tube, 
the electric field intensity in the interelectrode space effectively results 
from the sum of the applied potential difference and the contact potential 
difference. Since the contact potential may amount to two or three volts, 
there are many cases where it cannot be overlooked.

If the cathode of a tube is oxide-coated, it will likely have the lowest work 
function of any of the electrodes. Thus, if all the electrodes in such a tube 
are directly connected together, the emitted electrons experience a retarding 
field that returns almost all of them to the cathode. Part of the “aging” 
or drift in the electrical characteristics of some grid-controlled tubes with 
life has been attributed to a change in the contact potential difference be­
tween the control grid and cathode as a result of a gradual contamination 
or decontamination of the grid surface.

2.2 The Richardson-Dushman Equation

A derivation of the law governing the thermal emission of electrons from 
a metal6 involves results that are closely related to the physics of solids and 
hence represents a departure from most of the work that will be emphasized 
in later chapters. In brief summary, an expression can be derived for the 

6See Reference 2.4, p. 137.
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number of electrons per unit volume of the metal which at temperature 
T are excited to states characterized by sufficient energy to enable the 
electrons to overcome the surface forces. (In Figure 2.1-3, these states 
would lie above the horizontal line corresponding to V = 0.) The current 
of electrons in these states striking unit area of surface from within the 
metal is assumed to be the emission current density and is found to be

Jo = “T2e~'t'IWT amps/meter2 (2.2-1)

where h is Planck’s constant, k is Boltzmann’s constant, T is the absolute 
temperature of the emitting surface, and </> is the work function of the metal 
in electron volts. Wt is the “electron-volt equivalent” of the energy kT 
and is given by

kT T
Wt = |—i = .. electron volts (2.2-2)|e| 11,600

where [ e | is a positive dimensionless constant numerically equal to the 
charge of the electron. Equation (2.2-1) is known as the Richardson- 
Dushman Equation for the emission current density. The equation can 
be expressed more conveniently in the form

Jo = amps/meter2 (2.2-3)

where

A = = 120 X 104 amps/meter2(°K)2
= 120 amps/cm2(°K)2

To a first approximation, </> is independent of temperature. However, 
experimental evidence indicates that it has a small temperature coefficient, 
and hence that it can be expressed as </> = </>„ + aT, where </>„ is the work 
function at absolute zero. (Measurements of the coefficient a for tungsten7 
indicate that it is of the order of a few times 10-5 electron volt/0#.) Sub­
stituting </> = </>„ + aT in Equation (2.2-3), we obtain

Jo = AT2e~^9+aT^Wr _

= (2.2-4)

where use has been made of the relations | e \ Wt = kT joules and Wt = 
7711,600 electron volts. A non-zero coefficient a, therefore, has the effect 
of modifying the constant A in the Richardson-Dushman Equation.

Experimental values8 of A' = Ae~aMlt for clean surfaces of several metals

’Reference 2.5.
’Reference 2.6.
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Table 2.2-1

A' <t>
Metal (Amp /cm^K)2) (Electron Volts)
Mo........................................................55 4.27

Ni..........................................................30 4.84
Pt...........................................................32 5.29

Ta.........................................................37 4.12

W...........................................................70 4.50

are given in Table 2.2-1, along with the corresponding work functions from 
Table 2.1-1. (It should be noted that accurate measurement of A' is ex­
tremely difficult, since a small error in the absolute temperature T can 
cause a large error in A'.)

Equations (2.2-3) and (2.2-4) indicate a critical dependence of the emis­
sion current density upon both the work function 0 and the temperature 
T of the emitting surface. Decreasing the work function by one electron 
volt increases the emission current density by e11-«00/7, for the same tem­
perature T. Table 2.2-2 lists values of the emission current density in

Table 2.2-2. Emission Current Density
AMPs/Cm2

T - °K 0 = 1.0 ev 0 = 2.0 ev 0 = 3.0 ev 0 = 4-0 ev 0 = 5.0 ev
1000 36Ö 3.3 X IO*3 3 X IO"8 — —

1500 — 17 7.6 X IO’3 3 X IO“6 1.4 X 10-’

2000 — — 4.4 1.3 X 10~2 4 X IO“5

2500 — — 230 2.1 2.1 X IO-2

amperes per square centimeter for several values of 0 and T assuming that 
A' = 40 amps/cm2(°K)2. Evidently cathodes with a high work function 
must be operated at a high temperature in order to obtain an appreciable 
emission current density.

The emission current density given by Equations (2.2-3) and (2.2-4) 
is often referred to as the saturation emission current density. Under most 
operating conditions less current is actually drawn from the cathode. If 
more electrons are emitted from the cathode than are drawn to the other 
electrodes, negative space charge accumulates just outside the cathode. 
This causes a small retarding field at the cathode surface which returns 
some of the emitted electrons to the cathode. The current drawn from the 
cathode is then said to be space-charge-limited. If full saturation emission 
current flows to the other electrodes, the current drawn from the cathode 
is said to be temperature limited, since the cathode temperature then deter­
mines the magnitude of the current flowing to the other electrodes.
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2.3 Cathode Materials
The choice of cathode materials to be used in a particular tube is deter­

mined by such factors as the environment in which the cathode is to be 
operated, the required emission current density, the tube life requirements, 
the temperature at which the cathode must be operated to obtain the 
emission density, and the power which must be supplied to heat the cathode. 
Generally, the choice of materials which will satisfy a particular appli­
cation is quite limited.

As a first consideration, all cathode materials are characterized by a 
maximum'operating temperature consistent with long life of the emitting 
surface. This means that they are characterized by a maximum emission 
current density consistent with long cathode life. In the case of pure metal 
cathodes, such as tungsten filaments, the limiting temperature is that 
at which evaporation of the metal starts to be appreciable. In the various 
other forms of cathodes to be described in this section, additional chemical 
and physical processes tend to limit the life of the cathode when too high 
temperatures are used. Since for many applications it is desirable to have 
available a high emission current density and since the emission current 
density increases rapidly with temperature, the cathode operating tem­
perature is often determined as a compromise between requirements for 
high emission density and requirements for long cathode life. Of the 
relatively large number of possible cathode materials that have been in­
vestigated,9 only a very few are capable of simultaneously giving appreci­
able emission current density and good life performance.

A second important consideration is the desirability of operating the 
cathode at as low a temperature as possible. A low cathode operating tem­
perature means low heater or filament power and greater power efficiency 
for the tube. If less heat is dissipated in the tube, less heat is radiated and 
conducted from the tube, and there is less heating of the surrounding 
apparatus. Furthermore, as the cathode warms up, thermal expansion of 
the cathode and its supports frequently causes a change in the electrode 
spacings and hence a change in the electrical characteristics of the tube. 
With a low cathode operating temperature, it is much easier to minimize 
these changes in spacing, and greater reproducibility of the electrical 
characteristics from device to device can be obtained. Finally, the noise 
which appears in the tube output, and which results from fluctuations 
in the emission current and velocities, is less when the required emission 
current density is obtained at a lower operating temperature.

Since a cathode with a low work function can provide a given emission 
current density at a lower operating temperature than one with a high work

“Reference 2.6.
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Fig. 2.3-1 Emission current density vs. cathode temperature for several types of 
thermionic emitters. The shaded blocks at the bottom of the figure show the normal 

operating range for three of the cathodes, (a) The oxide-coated cathode. Curve Ai 
gives the saturation emission current density under pulsed conditions. (Circular 

points, Reference 2.11; solid curve, Reference 2c, Volume I.) Curve At gives the 
de saturation emission density. The position of this curve may vary substantially 

with environmental conditions. DC current densities much in excess of 0.5 amp/cm1 

lead to relatively short cathode life, (b) The pressed nickel cathode. Curve B shows 
the de saturation emission current density obtained from a pressed nickel cathode 

(Reference 2.15). (c) The impregnated nickel cathode. Curve C shows the saturation 
emission current obtained from the impregnated nickel cathode. The measure­

ments were taken with 40 microsec pulses and a repetition rate of 60 pulses/sec 

(Reference 2.12) (d) Pressed and impregnated tungsten cathodes. Curve D shows the 
saturation emission density obtained from pressed and impregnated tungsten cath­

odes based on A' = 2.5 amps/cm2(°K)2 and <t> = 1.67 electron volts. (These con­
stants are given in Reference 2.13. However, it is the experience of the writers 

that under practical operating conditions somewhat higher cathode temperatures 

are needed to yield a given emission current density than those indicated by curve 

D). The thoriated tungsten cathode. Curve E shows the measured saturation emis­
sion current density of an uncarbonized thoriated tungsten filament (Reference 2.9). 

(f) Tungsten filaments. Curve F shows the saturation emission current density of a 
tungsten filament based on A' = 70 amps/cm2(°K)2 and </> = 4.5 electron volts. 
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function, much effort has been devoted to obtaining cathode materials 
with low work functions. The oxide-coated cathode combines good emis­
sion properties and appreciable life with a particularly low work function, 
and consequently it is the most widely used type of cathode emitter.

Some discussion of the more frequently used cathode materials is given 
in Sections (a) to (d) below. Methods for heating the cathode are de­
scribed in Section (e).

(a) Pure Tungsten

Filaments of pure tungsten10 are operated at about 2500°K. At this 
temperature they yield a saturation emission density of 300 to 400 ma/cm’ 
and radiate about 70 watts/cm2. This high radiation per unit area means 
that a relatively large amount of power is required to heat the filament. If 
the ratio of emission current density to power radiated per unit area is 
taken as a measure of efficiency in obtaining emitted electrons for a given 
amount of heater power, tungsten cathodes are the least efficient of the 
commonly used cathode materials.

The vapor pressure of tungsten at 2500°K is 1.3 X 10-8mm of Hg, 
which is sufficiently small that the filaments are able to survive several 
thousand hours of operation before failure occurs. Nearly all other common 
pure metals have vapor pressures much too high at temperatures at which 
appreciable thermionic emission takes place. (One exception is tantalum, 
which has found some application as a cathode material.) The melting 
point of tungsten is 364O°K.

Curve F in Figure 2.3-1 shows a plot of emission current density vs. 
temperature for a tungsten emitting surface.

Tungsten filaments find their chief application in tubes that operate with 
anode voltages greater than about 20 thousand volts. Other cathode 
materials suffer severe damage from bombardment by positive ions if 
used in tubes that operate at very high voltages. The positive ions are 
formed by the emitted electrons striking molecules of residual gas in the 
tube and are accelerated toward the cathode by the same field that ac­
celerates the electrons away from the cathode. If they strike an oxide­
coated cathode with sufficient energy, they may chip away part of the 
emitting surface. However, pure tungsten filaments show less damage as 
a result of such bombardment. A number of x-ray tubes, high-voltage 
diode rectifier tubes, and some high-voltage transmitting tubes use tung­
sten filaments.

I0The fabrication of tungsten filaments is described in Reference 2.7, Chapter 8.
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(b) Thoriated Tungsten
Thoriated tungsten filaments are made by adding 1 or 2 per cent of 

thorium oxide, ThO2, to the tungsten before it is sintered and drawn into 
filaments. After drawing, the filament is heated in an atmosphere of 
hydrocarbon vapor, causing the surface of the wire to be converted to 
tungsten carbide, W2C, to a depth of about one tenth of the wire radius, 
a process known as carbonization. The normal operating temperature of the 
filament is about 2000°K, and at this temperature the tungsten carbide 
slowly reduces the thorium oxide. Free atoms of thorium thus produced 
diffuse through the metal and eventually reach the surface, where some 
are adsorbed and others evaporate onto surrounding electrodes. Under 
normal operating conditions, there is probably somewhat less than a mono- 
layer of thorium atoms adsorbed on the surface of the filament. At the 
same rate that free thorium atoms diffuse to the surface, other thorium 
atoms that were adsorbed on the surface are lost as a result of evaporation, 
reaction with residual gases in the tube, and positive ion bombardment.

It is found that a partial layer of thorium atoms adsorbed on a tungsten 
carbide surface evaporates at a much slower rate at a given temperature 
than it would from solid thorium. As a result, the filament can operate at a 
much higher temperature than would be possible for solid thorium. How­
ever, if several layers of thorium are adsorbed on the surface, the evapora­
tion rate of the outer layers is much the same as from solid thorium, so 
that there is a tendency for additional layers to be lost, leaving only a 
single layer, or perhaps a little less than a layer.

The adsorbed atoms form a dipole layer at the surface with positive 
charge on the outside. This modifies the potential acting on a conduction 
electron at the surface of the filament causing the work function to be lower. 
The resulting work function is not that of thorium, but is one characteristic 
of thorium atoms adsorbed on a tungsten carbide surface. At 2000°K 
the work function is between 2.6 and 2.7 electron volts and A' is about 4 
amps/cm2(°K)2. The reason that A' is lower than the values measured 
for clean metal surfaces is not well understood.

Early thoriated tungsten filaments were not carbonized; thermal re­
duction of the thorium oxide was relied upon to release free thorium. 
Generally, the filaments were first “activated” by heating them well above 
the normal operating temperature for a few minutes to effect appreciable 
reduction of the thorium oxide. This was followed by operation for about 
a half hour at a somewhat lower temperature, still above the normal operat­
ing temperature, to permit diffusion of the free thorium to the surface. 
However, the rate of thermal reduction of the thorium oxide at the normal 
operating temperature was insufficient to keep up with the loss of thorium 
from the surface, and the filaments had to be “reactivated” from time to 
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time. Carbonization both increases the rate of reduction of the thorium 
oxide and reduces the rate of evaporation of thorium atoms from the sur­
face of the filament.11

As the filament temperature is increased above 2000°K, 'the rate of 
evaporation of thorium atoms from the surface increases faster than the 
rate of diffusion of thorium atoms from the interior of the filament, with 
the result that the fraction of the surface covered with thorium atoms 
decreases. This causes </> to increase toward the value for a clean tungsten­
carbide surface, and one might expect that the value of A' would likewise 
approach the corresponding value for a clean tungsten-carbide surface.

Curve E in Figure 2.3-1 shows the variation of the saturation emission 
current density with temperature for an uncarbonized thoriated tungsten 
filament according to measurements by Langmuir12. Between 2100°K 
and 2300°K, the emission density actually falls because of the rapid in­
crease of </> with temperature. Langmuir estimated that at the maximum 
of the curve, the surface was covered with about 0.8 of a layer of thorium 
atoms, whereas at the minimum to the right, he estimated there was only 
about 0.15 layer of thorium on the surface.

A plot similar to curve E for a carbonized thoriated tungsten filament 
does not appear to be available at the time of writing. However, at 2000°K 
carbonized filaments give an emission current density of about 3 amps/cm2, 
which is comparable to that indicated by curve E for uncarbonized fila­
ments. The radiation from a carbonized filament at 2000°K is about 28 
watts/cm2, so that the thoriated tungsten filament offers considerable 
advantage over pure tungsten filaments with respect to the ratio of emission 
current density to power radiated per unit area.

Thoriated tungsten filaments are used in a number of moderate-voltage 
transmitting tubes and a class of hot-cathode gas tubes, known as tungar 
rectifiers. Cathodes of thoriated tungsten are also used in high-power beam­
type microwave tubes, where the high emission capabilities of the thoriated 
tungsten cathode are an important advantage. The cathodes in this case are 
heated by electron bombardment.

(c) Oxide-Coated Cathodes

Although the physical processes involved in thermionic emission from 
an oxide-coated cathode are not well understood at present, the descrip­
tion of the physical processes and the interpretation of the tube processing 
given in the following paragraphs appear to be the prevailing thought 
in a somewhat simplified form.

»Reference 2.8.
’’Reference 2.9.
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General. The oxide-coated cathode is used in nearly all general-purpose 
tubes, many low-voltage transmitting tubes, and most hot-cathode gas 
tubes. It consists of a thin coating of a mixture of metallic oxides applied 
to a base of nickel or some nickel alloy.13 The oxides most frequently used 
are those of the alkaline earths, barium, strontium, and calcium, (i.e., 
BaO, SrO, and CaO). Since these oxides are unstable in the presence of 
atmospheric moisture, the coating is applied to the base in the form of the 
corresponding carbonates (BaCO3, etc.), and during the processing of the 
tube the cathode is heated to decompose the carbonates and release CO2.

To prepare the carbonates for application to the cathode, they are first 
ground into a fine powder and mixed with an organic binder and a suitable 
solvent. Often nitrocellulose serves as the binder and amyl acetate as the 
solvent. The resulting mixture is then applied to the cathode, often by 
spraying, although filamentary cathodes are frequently dipped in the 
mixture or drawn through it. The coated cathode is then dried in room air.

While the tube is being pumped, the envelope and electrodes are heated, 
generally by applying rf induction to the metal parts. Sometimes an oven 
is also placed over the tube for a period before the rf induction is applied. 
This heating of the envelope and electrodes drives off appreciable amounts 
of gases that are adsorbed on the inside surfaces of the tube. It also causes 
the organic binder in the cathode coating to decompose into volatile 
gases, which are pumped away. When the envelope and electrodes are 
suitably “outgassed,” the cathode temperature is raised to approximately 
1000°K for about a minute. This causes the carbonates in the cathode 
coating to decompose into carbon dioxide and the metal oxides, a process 
known as “breakdown.” The carbon dioxide is evolved as a gas and is 
pumped away.

A coating of the pure oxides is an insulator, and as such is capable of 
supporting very little sustained emission. To become suitable for ther­
mionic emission, the coating must first be “activated.” In this process, 
barium oxide is partially reduced, given rise to free barium atoms within 
the coating, which in turn aid in making the coating a semiconductor and 
increase its emission capabilities. Cathode activation is accomplished by 
heating the cathode to a temperature above the normal operating tem­
perature. Sometimes current is drawn from the cathode while at this 
elevated temperature. (Often the normal operating temperature lies be­
tween 1000°K and 1150°K.) The heating of the cathode above the normal 
operating temperature causes impurity atoms in the base nickel to diffuse 
through the nickel, with the result that some reach the interface between 
the coating and the nickel, where they reduce the oxides in the coating. It 

130ne exception is fluorescent lamps in which tungsten is used for the base.
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is found that the impurity atoms principally react with the barium oxide, 
so that the reactions at the interface lead to the release of free barium 
atoms. The passage of current through the coating probably also causes 
some electrolytic dissociation of the coating.

Most cathodes are activated partly while the tube is being pumped and 
partly after the tube is removed from the pump. Usually the cathodes of 
general-purpose tubes are raised to a temperature of 1200° to 1450°K for 
about 30 seconds during pumping and then “aged” for a length of time 
after removing the tube from the pump. Often a series of aging steps is 
used in which both the cathode temperature and the anode current are 
varied from step to step. The aging time may range from 10 minutes to 
several days, depending largely on the quality of the tube being made. 
Tubes intended for applications needing high reliability are generally 
aged for a longer period of time at a lower cathode temperature.

The activated coating is white in appearance, its thickness is of the order 
of 0.5 X 10-2 cm (0.002 inch), and it is highly porous, having a density of 
about one quarter that of the solid oxides. Its electrical properties are those 
of an n-type semiconductor.14

In some tubes a mixture of barium, strontium, and calcium oxides is used, 
the molecular proportions consisting of 10 to 14 per cent calcium oxide and 
about equal percentages of barium and strontium oxides. However, there 
has been a trend in the tube industry toward the use of “double-carbonate” 
coatings containing barium and strontium oxide in about equal molecular 
proportions. The “triple-carbonate” coating (barium, strontium, and 
calcium oxides) has been found to give faster activation and consequently 
is attractive from a manufacturing standpoint. However, the adherence of 
the coating to the base nickel is somewhat poorer, and failure due to peeling 
of the coating is more likely. In addition, some recent studies of the life 
capabilities of grid-controlled tubes made with double- and triple-carbonate 
coatings indicate that greater life can be achieved with the double-car­
bonate coating. The use of barium oxide alone has been found to give 
particularly unreproducible results,15 whereas an active coating of strontium 
oxide has a higher work function than that of a mixture of barium and 
strontium oxides.

>4At room temperature and higher, electrons are excited to the conduction band of 
the coating by donors which are distributed throughout the coating. At the cathode 
operating temperature, a few of the conduction electrons gain sufficient energy to over­
come the work function of the coating and escape from the surface. The current of 
escaping electrons is the thermionic emission current. At present there is some difference 
of opinion as to what constitutes the principal donor in the coating; possibly it is the 
free barium atoms.

I5It is thought that the barium oxide dissolves into the barium carbonate forming a 
solution which melts at about 1175°K. (Reference 2c, Vol. I, p. 62.)
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At the cathode operating temperature, barium oxide has an appreciably 
higher vapor pressure than either strontium oxide or calcium oxide. Con­
sequently, the barium oxide in the outermost part of the coating gradually 
becomes depleted, and evaporated barium oxide deposits on the surfaces 
surrounding the cathode throughout the operational life of the tube.

Equation (2.2-3), which gives the emission current density from a metal, 
does not apply to emission from a semiconductor and hence does not apply 
to emission from an oxide-coated cathode. However, it is found that the 
variation of emission density with temperature for an oxide-coated cathode 
is governed principally by the factor e-lcas in the case of emission from 
metal surfaces. Experimental values of <t> for commonly used coatings lie 
between 1.0 and 1.3 electron volts.

The cathodes of many general-purpose tubes are operated at tempera­
tures in the range from 1000° to 1150°K. At 1050°K, the heat radiation 
from an oxide coating16 is about 3 watts/cm2, and mean cathode current 
densities of a few hundred milliamperes per square centimeter are found to 
be consistent with reasonably long life of the cathode, perhaps 10 to 30 
thousand hours. However, if the cathode temperature is raised in order to 
increase the emission current density beyond 500 ma/cm2, the life of present 
types of oxide-coated cathodes is found to decrease rapidly with increasing 
temperature and cathode current density. When particularly long life is 
desired from a tube, lower operating temperatures are used, and the emis­
sion density must be correspondingly less. The oxide-coated cathodes used 
in repeater tubes for recently developed underwater telephone cables 
operate at 940°K, and are expected to have an average operational life in 
excess of 40 years. The mean current density drawn from the cathodes in 
this case is only 10 ma/cm2.

The Base Nickel. During operation of the cathode, free barium atoms in 
the coating diffuse through the coating, eventually reaching the outer sur­
face, whereupon many evaporate onto surrounding electrodes and the walls 
of the tube. Since an excess of barium atoms in the coating is necessary for 
the coating to be an active emitter, impurity atoms in the base nickel must 
continually reduce the barium oxide and release free barium atoms. For 
this reason, much attention has been given to the impurity content of 
nickels used as the base material. A nickel too rich in reducing agents will 
cause short cathode life, whereas a very pure nickel will lead to insufficient 
emission. In addition, most reducing agents form compounds at the inter­
face between the coating and the nickel, and these compounds often have 
the effect of placing an electrical impedance between the cathode lead and 

16Black-body radiation at this temperature is nearly 7 watts/cm2.
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the emitting surface. In grid-controlled tubes, such an impedance is likely 
to cause adverse effects on the electrical performance of the tube.

The principal reducing agents found in cathode nickels are listed in 
Table 2.3-1. Those elements near the top of the table are found to be more 
active reducing agents than those near the bottom of the table17. Zirconium

Table 2.3-1. Concentration of Reducing Agents in Per Cent 
by Weight in an Active Nickel and a Passive Nickel

Reducing Atomic Type A Type B
Agent Number (Active) (Passive)

C 6 0.06 < 0.01
Mg 12 0.04 < 0.01
Al 13 0.006 < 0.005
Si 14 0.03 < 0.01
Ti 22 0.02 < 0.005
Zr 40 None None
W 74 None None

and tungsten are found in cathode nickel only if they have been intentional­
ly added to the nickel. A nickel relatively rich in reducing agents is said to 
be an “active” nickel and has the property that shorter times are required to 
activate and age the coating. The concentration of reducing agents in such 
a nickel might be as indicated for Type A in the table. A nickel such as 
Type A is frequently used in the manufacture of commercial grid-controlled 
tubes. However, because of the relatively rapid rate of reduction of the 
barium oxide and because the formation of interface compounds (see below) 
may be appreciable, the life of the coating may be less than might be ob­
tained with smaller amounts of reducing agents.

A nickel that is nearly free of reducing agents, such as Type B in the table, 
would be considered to be a “passive” nickel. Such a nickel would be in­
capable of supporting substantial emission from an oxide cathode over an 
appreciable length of time because the rate of diffusion of impurity atoms 
through the nickel to the oxide coating would be too slow. In the manu­
facture of tubes requiring particularly long life there has been a trend in the 
industry toward the use of nickels that are more passive than Type A. Re­
cently, studies have been carried out on the performance of cathodes in 
which the base consists of a passive nickel to which one or two reducing 
agents are added in controlled amounts. One “single-additive” nickel which 
appears to perform satisfactorily contains about 0.1 per cent zirconium. 
The zirconium both increases the mechanical strength of the nickel and

’’Part of this undoubtedly results from the fact that the elements near the top of the 
table are lighter and hence diffuse faster.
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acts as the reducing agent to provide long-term activity of the cathode. 
A “double-additive” nickel which has also given good results contains 
0.01 to 0.03 per cent magnesium and 2 to 4 per cent tungsten. The magne­
sium makes possible the initial activity of the cathode, but it is soon lost 
from the nickel by reaction with the coating and evaporation from the sur­
face. The tungsten makes possible the long-term activity and considerably 
increases the mechanical strength of the nickel.

It is believed that the nickel itself does not reduce the oxides in the coat­
ing. Other impurities which are sometimes present in the nickel and which 
probably have little effect upon the coating activity are18 cobalt, iron, 
copper, and molybdenum. One nickel-cobalt-iron alloy which is sometimes 
used in oxide-coated filamentary cathodes contains about 19 per cent cobalt 
and 2 per cent iron. The addition of the cobalt and iron gives greater 
mechanical strength to the filament and increases its resistivity over that 
which can be obtained with pure nickel.

Interface. Next let us consider the events that take place at the interface 
between the base metal and the coating. When carbon atoms reach the 
interface, they react with the oxide to form CO and free barium. The CO is 
evolved as a gas, some of which contributes to the residual pressure in the 
tube, some is absorbed by the getter material, and some becomes adsorbed 
on the inside surfaces of the tube. Other reducing agents in the base form 

the barium oxide. Various workers 
have reported finding one or more of 
MgO, BaAl2O4, Ba2SiO4, BaTiO4, 
and Ba3WOe at the interface. Often 
the layer of compounds is referred 
to as “interface.”

The presence of such a layer be­
tween the coating and the base has 
the effect of placing an electrical im­
pedance between the cathode lead 
and the emitting surface. An ap­
proximate equivalent network19 for 
the impedance consists of a resist­
ance shunted by a capacitance as 
shown in Figure 2.3-2. Values of the 
resistance often range from a few 
tenths of an ohm to a few tens of 

solid compounds upon reacting with

Fig. 2.3-2 Approximate equivalent net­
work for the interface impedance. A 

more accurate network would include 

an additional resistance and capacitance 
in series which would shunt the network 

in the

'“Manganese and sulfur are known to have adverse effects on cathode activity.
19A more accurate network would include an additional resistance and capacitance in 

series which would shunt the network shown in Figure 2.3-2.



ELECTRON EMISSION 51

ohms for one square centimeter of emitting surface.20 The capacitance 
shunting the layer gives the parallel RC combination a time constant 
of about a microsecond. In the case of base nickels containing greater than 
0.05 per cent silicon, by far the greater part of the interface resistance re­
sults from Ba2SiO<, whereas base nickels having less than 0.01 per cent 
silicon lead to particularly small interface resistances. Often the interface 
resistance increases when the cathode is held at operating temperature for 
extended periods with no current being drawn. In cases where the silicon 
content of the base nickel is high, interface resistances as high as 1000 ohms 
and more have been observed after such operation.

The coating also exhibits a resistance, often of the order of a few ohms 
across the thickness of a square centimeter of coating. This resistance and 
the interface resistance add in series and are effectively inserted between the 
cathode lead and the cathode emitting surface. Such a resistance R in series 
with the cathode lead of a grid-controlled tube reduces the low-frequency 
transconductance of the tube. In a triode, the transconductance is reduced 
by the factor 1/(1 + gmR), where gm is the transconductance in the absence 
of the resistance R. For R = 100 ohms and gm = 10,000 micromhos, the 
transconductance is reduced by 50 per cent. At higher frequencies, of the 
order of a megacycle or more, the interface resistance is bypassed by the 
capacity shunting it, with the result that the transconductance approaches 
the value it would have in the absence of interface resistance.

During the life of a tube, the interface resistance increases because of the 
formation of additional quantities of interface compounds. This causes a 
further reduction in the transconductance, partly because of the factor 
1/(1 + gmR), and partly because an increase in R causes the cathode 
current to decrease, and this in turn reduces the transconductance. Often 
the two effects contribute comparable amounts to the decrease in trans­
conductance, and together will account for the failure of a tube.21

Since much smaller interface resistances are obtained with base nickels 
having low silicon content, there has been increasing use of such nickels in 
grid-controlled tubes and other tubes where minimum interface resistance 
is desirable.

Pulsed and DC Emission Current Densities. It is found that the saturation 
current density drawn from an oxide-coated cathode under pulsed condi­
tions with pulse lengths of the order of a few microseconds and a low-duty 
cycle is often of the order of 10 times that which can be drawn under de 
conditions. However, as the pulse length is increased to a few milliseconds,

“Sometimes the coating tends to blister or peel, and this adds to the apparent inter­
face resistance.

2'Frequently end of life of a grid-controlled tube is assumed to take place when the 
transconductance falls below about 65 per cent of its initial value.
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or a second, the amplitude of the current pulse decays toward the end of the 
pulse. Figure 2.3-3 shows the decay of current density drawn from a par­
ticular diode when a step-function voltage is applied to the anode. Two

Fig. 2.3-3 The decay of the saturation emission current density drawn from a 
particular diode when a step-function voltage is applied to the anode. The abscissa 
indicates time elapsed after application of voltage to the anode. (From L. S.

Nergaard, RCA Rev. 13, 464, December 1952)

effects are thought to be principally responsible for the decay of the pulsed 
emission current when the pulse length is increased to times of the order 
of a millisecond or a second:

1. Gas released from the anode and other electrodes struck by the elec­
trons tends to destroy cathode activity by oxidizing the impurity centers 
in the coating. The gas is released both as a direct result of electron bom­
bardment and as a result of heating caused by the kinetic energy of the 
incident electrons. It is known that O2, CO2, SO2, H2O, and CO are all 
effective in destroying the impurity centers.

2. Under the influence of the potential gradient established in the coating 
when current is conducted through the coating, the impurity centers tend 
to migrate toward the nickel base leaving a layer of oxide near the surface 
that is partially depleted of impurity centers.22

In Figure 2.3-1, curve At shows the saturation emission current density 
that can be drawn from an oxide-coated cathode in a very clean environ­
ment under pulsed conditions. Curve A2 shows the de saturation emission 
current that might be obtained under normal operating conditions. The 
position of curve A2 depends much on the environment in which the cathode 
is operated.

“Reference 2.10.
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Causes of Failure. Finally, let us list the principal causes of failure of 
oxide-coated cathodes. These are:

1. Formation of excessive interface.
2. Peeling or blistering of the coating.
3. Destruction of the coating by ion bombardment.
4. Evaporation of the coating.
5. “Poisoning” of the cathode by residual gases or foreign matter within 

the tube.
6. Depletion of the activating agents in the base nickel.

Of course, in filamentary cathodes mechanical failure of the filament itself is 
still another cause of failure.

(d) The L-Cathode; Pressed and Impregnated Cathodes of Tungsten and 
Nickel

Fig. 2.3-4 The construction of the Philips cathodes: (a) the L-Cathode; (b) the 
pressed or impregnated cathode. The heaters are shown schematically. (From

A. Venema et al., Philips Tech. Rev. 19, 177, 1957)

Several forms of cathode in which emission takes place from the surface of 
a porous tungsten body, which is covered with adsorbed barium and oxygen 
atoms, have been developed by the Philips Laboratories.23 One of these, 

“Philips Laboratories, Eindhoven, The Netherlands, and Irvington-on-Hudson, N.Y., 
U.S.A. The fabrication of the Philips cathodes is described in Reference 2.13.
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known as the L-Cathode, is illustrated in Figure 2.3-4(a). Here the emitting 
surface consists of a porous tungsten body of approximately 27 per cent 
porosity which is welded to a nonporous molybdenum support. A chamber 
between the tungsten and molybdenum initially contains (Ba, Sr)CO3 in 
solid solution. However, breakdown of the cathode causes the carbonates 
to be reduced to a solid solution of (Ba, Sr)O. During operation of the 
cathode, evaporated BaO diffuses and migrates through the tungsten pores, 
and some of it is reduced by the tungsten. As a result, the outer surface of 
the tungsten body becomes covered with adsorbed barium and oxygen 
atoms, perhaps nearly a monolayer of oxygen covered with a monolayer of 
barium.24 The emission constants for such a surface as measured by 
Philips Laboratories are approximately </> = 1.67 electron volts and 
A' = 2.5 amps/cm2(°K)2. Curve D in Figure 2.3-1 shows a plot of emission 
current density vs cathode temperature based on these constants.

In two other cathodes developed by the Philips Laboratories, the oxides 
are contained within the pores of the metal body rather than in a reservoir 
beneath it. In one of these, known as the pressed cathode, a powdered 
mixture of CaCO3, BaCO3, and A12O3 is mixed with a powdered tungsten­
molybdenum alloy containing 75 per cent molybdenum, and the resulting 
mixture is pressed together in a die. The compact is then removed from the 
die and sintered at 1850°C. The resulting metal body has a porosity of 
about 40 per cent. It is mounted in a molybdenum support as shown in 
Figure 2.3-4(b). Emission properties of the cathode are similar to the L- 
Cathode, but the rate of evaporation of BaO from the pressed cathode is 
somewhat higher. The use of A12O3 serves to increase the stability of the 
cathode in the presence of atmospheric moisture.

In still another Philips cathode, known as the impregnated cathode, a 
porous tungsten body of about 17 per cent porosity is first machined into 
the desired geometry. Then a powdered mixture of CaCO3, BaCO3, and 
A12O3 is brought in contact with the tungsten body and heated until the 
powder melts and is drawn into the pores by capillary action. The resulting 
cathode shows a lower rate of evaporation of BaO than the pressed cathode 
and has generally found favor over both the pressed cathode and the L- 
Cathode. (The L-Cathode requires a relatively long activation cycle, and 
difficulties are experienced in welding the porous tungsten body to the 
molybdenum holder so that there are no cracks through which the BaO 
can evaporate.) The emission properties of all three Philips cathodes are 
about the same.

“Reference 2.14.
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Several advantages of the Philips cathodes are:

1. High emission capability consistent with reasonably long life. Emis­
sion of a few amperes per square centimeter can be obtained with a cathode 
life of the order of several thousand hours when the cathode is operated in a 
relatively clean environment.

2. The emitting surface is physically strong and can be shaped very ac­
curately.

3. The surface is capable of withstanding strong ionic bombardment.
4. There is negligible potential drop across the cathode.

The cathodes have the disadvantage of requiring a higher operating tem­
perature than either the oxide-coated cathode or the pressed or the im­
pregnated nickel cathodes discussed below.

Philips cathodes have found application in a number of beam-type tubes, 
including cathode-ray tubes and certain microwave tubes. They have also 
been used in some magnetron applications.

Pressed and impregnated cathodes can also be made with the porous 
metal body made of nickel. Such cathodes combine most of the advantages 
of the Philips cathodes with a somewhat lower operating temperature for a 
given current density. The pressed cathode is made by pressing together a 
mixture of powdered (Ba, Sr)CO3 and powdered nickel in a die and sintering 
the resulting compact at 1000°C. The nickel body then has a porosity of 
about 50 per cent. Curve B in Figure 2.3-1 shows measurements26 of the de 
saturation emission current density vs. cathode temperature for the 
pressed nickel cathode. Pressed nickel cathodes are used in a number of 
beam-type microwave tubes.

Most magnetron oscillators use either pressed or impregnated nickel 
cathodes. The magnetron cathode is cylindrical in shape with the emitting 
surface on the outer side of the cylinder. During operation of the tube, 
many of the emitted electrons are returned to the cathode with appreciable 
velocity after traveling some distance through the tube. This “back 
bombardment” tends to destroy an oxide-coated cathode, but pressed or 
impregnated cathodes show little effect from the returning electrons. 
Generally, a molybdenum sleeve provides a base for the cathode, molyb­
denum having greater strength at the cathode operating temperature than 
nickel. However, because the coefficient of expansion of the outer nickel 
body is somewhat different from that of molybdenum, one or more interven­
ing layers of porous nickel or nickel-molybdenum alloy are used to help 
absorb the difference in expansion. The structure of a typical impregnated 

’’Reference 2.15.
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cathode is illustrated in Figure 2.3-5. Next to the molybdenum, there is a 
layer of nickel-molybdenum alloy followed by a coarse porous nickel layer 
onto which is sintered the finer outer layer. The porosity of the outer layer

Fig. 2.3-5 A cross-sectional view of a portion of an impregnated magnetron cathode

is about 50 per cent. The outer layer is generally impregnated by bringing 
it in contact with a colloidal suspension of (Ba, Sr)CO3. This is drawn into 
the pores by capillary action. Curve C in Figure 2.3-1 shows measurements 
of the saturation emission current density from the impregnated nickel 
cathode as a function of cathode temperature.

(e) Heating the Cathode

Most oxide-coated cathodes are indirectly heated. Often the cathode 
emitting surface in grid-controlled tubes has the shape of a circular or 
elliptical cylinder, and the heater consists of a coiled or folded tungsten wire 
which is inserted inside the cathode. To prevent the heater from making 
electrical contact with the cathode or short-circuiting to itself, a coating of 
aluminum oxide is applied to the heater after forming the wire into its final 
shape. The coated heater is then fired in an oven at about 2000°K to sinter 
the aluminum oxide. The resulting coating is hard and insulating and can 
withstand a moderate amount of abrasion during assembly of the tube. 
The normal operating temperature of the heater is about 400°C above that 
of the cathode.

Filamentary cathodes have the advantage over indirectly heated cath­
odes of being quicker to reach the operating temperature and of requiring 
somewhat less power. However, they have a number of important limita­
tions which preclude their use in many vacuum-tube applications. Principal 
among these are:

1. The cathode emitting surface has the shape of a long slender wire.
2. The voltage drop across the filament is often comparable to the inter­

electrode voltages.
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3. Mechanical motion of the filament as it warms up generally precludes 
the use of filamentary cathodes in tubes where close electrode spacings are 
needed.

4. The filament is mechanically weak at the operating temperature and 
hence must be supported at one or more points over its length in order to 
prevent it from contacting the other electrodes. If the supports are con­
ductors, they must be insulated from the other electrodes.

5. Direct current must be used to heat the filaments of high-gain ampli­
fier tubes, since an ac filament current would introduce hum in the output 
of the tube.

Oxide-coated filamentary cathodes have found application in a number of 
diode rectifiers, where the voltage drop across the filament and variations in 
the electrode spacings do not have an important effect on the tube per­
formance. They are also used in portable radio applications, where low 
power consumption is desirable, and in proximity fuses and other military 
applications where extremely fast warmup times are needed.

Cathodes that operate at temperatures above about 1400° or 1500°K are 
generally directly heated, either as filaments or by electron bombardment. 
Indirect heating would require sufficiently high heater temperatures that 
the aluminum-oxide coating on the heater would melt or evaporate.

A number of high-power klystron amplifiers which require an ampere or 
more of beam current use thoriated tungsten cathodes to take advantage of 
the high emission capabilities of thoriated tungsten. The cathode emitting 
surface is in the form of a concave disc and is heated by electron bombard­
ment from the reverse side. A bombarding current of several hundred 
milliamperes is obtained from an auxiliary oxide-coated cathode which is 
held a kilovolt or more negative with respect to the thoriated-tungsten 
cathode. The bombarding electrons generate sufficient heat in the thoriated 
tungsten cathode to raise it to an operating temperature of about 2000°K.

2.4 Thermionic Emission Energies

The equations given in Section 2.2 for the emission current density can be 
used to predict the distribution of emission energies in the direction normal 
to the emitting surface. If the work function </> of a metal is increased by 
Wn electron volts, it follows from Equation (2.2-1) that the emission current 
density at temperature T is changed by the factor Consequently,
this fraction of the emitted electrons is able to overcome a work function Wn 
electron volts greater than that actually present. It follows that the elec­
trons comprising this fraction have more than W„ electron volts of kinetic 
energy associated with their motion normal to the cathode at the time of 
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emission. Similarly, the fraction of electrons that leave the cathode with 
greater than Wn + dWn electron volts of kinetic energy in the direction 
normal to the cathode is e~(wn+dw„)/wr> an(j fractiOn of electrons that 
leave the cathode with normally directed energy in the range W„ to W„ + 
dW„ electron volts is

dP(Wn) = f-wniwT _ e-(Wn+dWn)/WT = (-wn/wTy _ (~dWnIWy (2.4-1)

If dWn is small compared with Wt, Equation (2.4-1) can be written as
dW

dP(W„) = (2.4-2)
W T

This expression gives the probability that the part of the emission energy 
associated with motion normal to the cathode lies in the range W n to 
Wn + dWn. It can be used as a weighting factor to calculate the average 
emission energy in the direction normal to the cathode. Thus,

/•co

average normally directed energy = I W„dP(W„) = Wt electron volts

(2.4-3)

If un is the electron velocity corresponding to a kinetic energy of Wn 
electron volts, then Wn = mun2/(2 | e |), where | e | is a positive dimension­
less constant numerically equal to the charge on the electron. Substituting 
for Wn in Equation (2.4-2), we find that the probability that the emission 
velocity of an electron has a component normal to the cathode surface in the 
range u„ to un + du„ is given by

dP(un) = (2.4-4)

It can further be shown26 that the emitted electrons have an average 
kinetic energy associated with their motion parallel to the cathode surface of 
Wt electron volts, and the probability that the part of the emission energy 
associated with motion parallel to the cathode surface lies in the range Wt to 
Wt + dWt electron volts is

dP(Wt) = ~ewtiwTdWt (2.4-5)
rr T

where the subscript t refers to motion in the “transverse” direction. If ut is 
the electron velocity corresponding to an energy of Wt electron volts, the 
probability that the emission velocity has a component parallel to the 
cathode surface in the range ut to ut + dut is

dP(ut) = ^c^^dut (2.4-6)

“Reference 2.4, p. 141.
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It will be helpful to combine Equations (2.4-4) and (2.4-6) to determine 
the distribution of total emission velocities and the angular distribution of 
the emission velocities. Multiplying the left-hand sides and right-hand 
sides of the two equations, we find that the probability that the emission 
velocity simultaneously has a component normal to the cathode surface in 
the range u„ to un + dun and a component parallel to the cathode surface in 
the range ut to ut + dut is given by

/ 777 \ 2
dP(un,ui) = dP(uf)dP(ui) = I Tm ) unuti-^Tdundut (2.4-7)

where u2 = u2 + u?. If the emission velocity u makes an angle 0 with the 
normal to the surface, then u„ = ucos0, andu( = usin0. (See Figure 2.4-1.)

Fig. 2.4-1 The relationship between u, u„, ut, and 0.

The probability that the emission velocity lies in the range u to u + du and 
makes an angle with the normal in the range 0 to 0 + d0 can therefore be 
expressed as

dP(u,6) = sin0 cos0 i^dudö (2.4-8)

Integrating this expression with respect to 0 from 0 to ir/2, we find that the 
probability that the emission velocity lies in the range u to u + du is given 
by

dP(u) = mu2
2kT 2kT (2.4-9)

Substituting W = mu2/2 | e | in this, we obtain the probability that the 
total emission energy lies in the range W to W + dW, or

W W
dPW - (2.4-10)

Figure 2.4-2 shows a plot of this probability function vs. W for a cathode 
temperature of 1000°K. The average total emission energy is 21Vr.
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From Equation (2.4-8) we can also obtain the angular distribution of the 
emission velocities. By integrating the equation with respect to u from 0 to

EMISSION ENERGY IN ELECTRON VOLTS

Fig. 2.4-2 The probability functions WrdP(W„)/dW„, WrdP(Wt)/dWi, and 

WrdP(W)/dW are plotted vs. Wn, Wt, and W, respectively.

oo, the probability that the direction of the emission velocity lies in the 
range of angle 6 to 9 + d9 with respect to the normal is found to be

dP(9) = 2 sin0 cosò dò (2.4-11)

Since the range of angle 9 to 9 + d9 with respect to the normal defines a 
solid angle 2ir sin0 d9, which is subtended at the surface of the emitter, the 
current density emitted per unit solid angle at an angle 9 with respect to the 
normal is

- dP(9) _ - cosò 
°2ir sin0 d0 ir (2.4-12)

where J„ is the emission current density.
In light optics a source of brightness B is said to emit according to 

Lambert’s Law if the radiation per unit area per unit solid angle in the 
direction 9 with respect to the normal is B cos0. The total radiation from 
unit area of the surface is then

[*12
J B cos0 2ir sin0 d0 = irB (2.4-13) 
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A thermionic cathode is therefore said to emit according to Lambert’s Law, 
and the quantity <70/ir is analogous to the “brightness” of the emitter, where 
Jo is the emission current density.

Appendix IV gives a summary of the important relations presented in 
this section. We shall make use of these relations in Section 4.4, where the 
effects of the electron emission velocities in electron guns are discussed.

It is interesting to note that the total kinetic energy of an emitted elec­
tron plus the energy required to overcome the work function of the metal 
must come from heat energy supplied by the cathode heater. Thus, in 
addition to making up for heat that is radiated and conducted away from 
the cathode, the heater must supply an amount of power given by IoV^iitt 
to the emitted electrons, where Io is the net current drawn from the cathode,
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Fig. 2.5-1 Secondary emission ratio vs. primary-electron energy for clean surfaces 
of several metals. (Cu — Reference 2.16; C, Ni — Reference 2.17; Mo, W —

Reference 2.18.)

and V^+2wt is a voltage numerically equal to 0 + 2Wt electron volts. If 
several amperes are drawn from the cathode, this power amounts to several 
watts.
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2.5 Secondary Emission

All solid surfaces, both conducting and insulating, are capable of second­
ary electron emission. The secondary-electron yield for a given bombarding 
energy is found to be directly proportional to the current of primary elec­
trons incident upon the surface, and for metals the yield is nearly independ­
ent of the temperature of the emitting surface.

Two important characteristics of the secondary emission from a surface 
are the total yield of secondary electrons as a function of the incident elec­
tron energy, and the distribution of secondary-electron energies for a given 
primary-electron energy. Figure 2.5-1 illustrates the results of measure­
ments of the first of these quantities for electrons incident upon clean 
surfaces of several metals. Plotted in the figure is the ratio of secondary 
electrons to primary electrons (often designated as S) as a function of the 
primary-electron energy. The same general shape of curve is found to apply 
to a large number of pure metals. In all cases, the curve rises to a maximum 
at a particular primary-electron energy and then falls off slowly with in­
creasing primary energy.

Fig. 2.5-2 Distribution of energies of secondary electrons from a gold target when 
155-volt primary electrons are incident upon the surface. (From E. Rudberg, 

Phys. Rev. 50, 138, 1936)

Figure 2.5-2 illustrates the distribution of energies of secondary electrons 
from a gold target when 155-volt primary electrons are incident upon the 
surface. The majority of emitted electrons have energies less than 30 elec­
tron volts. However, a few have energies ranging all the way up to that of 
the incident electrons. It is probable that the true secondary electrons are 
emitted with kinetic energies less than 50 electron volts, and that most of 
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the electrons emitted with energies between 50 electron volts and the pri­
mary energy are actually inelastically reflected primary electrons. The 
spike at the right of Figure 2.5-2 results from elastically reflected primaries. 
For the majority of metals, the most probable emission energy of the true 
secondary electrons lies between 1.3 and 6 electron volts.

Next let us say a few words about the interactions that occur within a 
clean metal target when primary electrons with energies of a few hundred 
electron volts are incident upon the surface. Generally, the primary elec­
trons travel through many atomic layers of solid before their kinetic energy 
is reduced to that of the conduction electrons in the metal. It is believed 
that the primary electrons lose their kinetic energy through excitation of 
both individual electrons and through electron plasma excitations.27 With 
each excitation the primary electron abruptly loses an amount of energy 
equal to that imparted to the excited electron or electron plasma.

The excitation energy of an electron plasma is a discrete quantized value 
which is characteristic of the particular metal target. In most cases this 
energy lies between 5 and 30 electron volts. After a very short time interval 
the electron plasma excitation energy is in turn imparted to one or more 
electrons in the form of kinetic energy.

It is the electrons that are excited nearest the surface of the metal that 
have the greatest chance of escaping from the surface and being observed as 
secondary electrons. Measurements of the depths from which secondary 
electrons are emitted from a platinum target28 indicate that, for 500-volt 
primary electrons, some of the emitted electrons receive their excitation 
energy as far as 15 atomic layers beneath the surface, and for 1000-volt 
primary electrons, some of the emitted electrons receive their excitation 
energy as far as 30 to 35 atomic layers beneath the surface.29

Of course, many of the excited electrons never reach the surface, and 
others lose sufficient energy before reaching the surface that they are unable 
to overcome the work function and escape. To evaluate the effect of change 
in work function on the secondary emission yield, McKay30 evaporated 
somewhat less than a monolayer of sodium onto a tungsten surface, thereby 
reducing the work function of the surface to about half that of clean 
tungsten. He found that the secondary-electron yield at the primary energy 
giving maximum 6 increased by about 60 per cent. Since the amount of 
secondary emission from the sodium was probably very small, he assumed 

“Reference 2.20.
“Reference 2.21.
“Elastic reflection of primaries probably takes place from the first one or two atomic 

layers. However, some inelastic reflection undoubtedly takes place from appreciably 
greater depths.

“Reference 2.22.
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that this increase resulted almost entirely from the change in work function 
of the surface.

The interactions between the primary electrons and the electrons of the 
solid, while best described by means of quantum mechanics, effectively 
result from interactions between the coulomb fields of the electrons. The 
excited electron receives an impulse that can be expressed as an integral 
of force X time. If the primary electron travels faster, the time of in­
teraction is shorter, so that the impulse is smaller, and the probability of 
excitation is correspondingly less. This picture can be used to explain the 
shape of the curve giving secondary-electron yield vs. primary-electron 
energy. At low primary energies, the yield of secondary electrons increases 
with increasing primary energy, because the primary electrons expend more 
energy in slowing down and hence cause a greater number of excitations. 
At appreciably higher primary energies, the primary electrons are less 
effective in causing excitations in atomic layers close to the surface (where 
the escape probability is greatest), since they travel faster, and the time of 
interaction is shorter. Consequently, the secondary-electron yield at higher 
primary energies falls off with increasing energy.

Table 2.5-1 lists values of ¿max, the maximum secondary-electron yield, 
and the corresponding primary-electron energy for a number of metals.31

Table 2.5-1*

Corresponding 
Primary Electron Energy 

Metal ¿max (Electron Volts')
Al..............................................................................................1.0 300

Au.............................................................................................1.46 750
C................................................................................................ 1.0 300

Cu.............................................................................................1.3 600
Mo....................................................................................1.25 375

Ni............................................................................................. 1.3 550

Pt..............................................................................................1.8 800
Ti.............................................................................................. 0.9 280

W.............................................................................................. 1.4 700

Zr.............................................................................................. 1.1 350

♦From H. Bruining, Physics and Applications of Secondary Electron Emission, Per­
gamon Press, London, 1954.

The values given in the table apply only to clean surfaces of the metals. 
However, since the electrode surfaces in an electron tube are generally con­
taminated with adsorbed gases, oxides, and material evaporated from the

3‘Reference 2f, p. 39. 
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cathode, the secondary-electron yield from the electrodes is likely to differ 
substantially from that for a clean metal surface. An appreciable amount 
of oxide on a metal surface often increases the secondary-electron yield by a 
factor of 2 or more.

PRIMARY-ELECTRON ENERGY IN ELECTRON VOLTS

Fig. 2.5-3 Secondary emission yield vs. primary-electron energy for several com­

pound surfaces. (After R. Koilath, Handbook of Physics, No\. 21, p. 232, Springer 
Verlag, Berlin, 1956)

Certain compound surfaces have been found to give particularly high 
secondary-electron yields. Values of 6mMC ranging as high as 10 or 12 have 
been reported in some cases. Several surfaces which have found application 
in electron tubes as good secondary-electron emitters are: a film of CssSb 
deposited on a metal electrode, magnesium oxide on the surface of a silver­
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magnesium alloy, beryllium oxide on the surface of a copper-beryllium alloy 
or a nickel-beryllium alloy, and cesium oxide partially reduced on a base of 
silver. Table 2.5-2 lists values32 of 3mnx and the corresponding primary-

Table 2.5-2

Corresponding 
Primary Electron Energy 

Metal 3max (Electron Volts')
Cs8Sb.................................................................................. 8.0 500

AgMg................................................................................. 9.8 500

CuBe................................................................................. 3.5-5.5 500-700

NiBe..................................................................................... 12.3 700
Ag-CsOrCs................................................................. 5.8-9.5 500-1000

electron energy for these surfaces. Figure 2.5-3 shows a plot of the second­
ary-electron yield for several compound surfaces as a function of the pri­
mary-electron energy. The values of obtained for these surfaces depend 
markedly on the manner of preparation of the surface, wide variations being 
possible.

If a surface is very rough, the escape probability of the emitted electrons 
may be substantially reduced, since electrons emitted from the bottom of a 
hole or valley may strike other projecting parts of the surface and be re­
captured. In cases where it is desirable to reduce the secondary emission 
from an electrode, the electrode is often coated with fine carbon granules. 
Bruining33 found that optimum reduction in the secondary-electron yield 
occurs when the carbon granules are about 30 angstroms in diameter and 
form a fine labyrinth. A plot of Bruining’s measured secondary-electron 
yield for carbonized nickel is shown in Figure 2.5-1 (curve “C(rough)”). 
The carbon can be deposited on an electrode either by spraying the elec­
trode with a suspension of lamp black or by passing it through a flame that 
is generating carbon.

Curves giving the secondary-electron yield vs. primary-electron energy 
for an insulator are similar in shape to those given in Figure 2.5-1, but the 
values of 5max are often appreciably greater. Figure 2.5-4 shows a plot of 
the secondary-electron yield from mica. In experiments to measure the 
secondary emission from an insulator, care must be taken to avoid charging 
the surface of the insulator, or the primary-electron energy will be in­
determinate. Several experimenters have devised pulsed techniques which 
overcome this difficulty.

“Courtesy Allen B. Dumont Laboratories, Clifton, N.J.
“Reference 2.17.
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Fig, 2.5-4 Secondary emission yield vs. primary-electron energy for mica. (After 

H. Salow, 2. Tech. Physik 21, 8, 1940)

Secondary emission is of interest in electron-tube work, sometimes as a 
useful effect and sometimes as an undesirable effect. In photomultiplier 
tubes a number of high-yield secondary emitting surfaces (“dynodes”) 
are operated in cascade with the result that very high overall gaiils are 
obtained. In tubes using 10 dynodes, overall gains of the order of IO5 or 
106 are often obtained.

In a magnetron many of the emitted electrons are accelerated by the rf 
field and then driven back against the cathode with appreciable velocity. 
The resulting secondary-electron emission probably accounts for a majority 
of the total emission from the cathode, although thermionic emission is 
generally also needed to keep the device in operation.

On the other hand, secondary emission often adversely affects the char­
acteristics of certain multielectrode tubes. One such tube is the tetrode 
vacuum tube, described in Chapter 5. If the screen grid of a tetrode is 
more positive than the anode, secondary electrons emitted from the anode 
are drawn to the screen grid; and over a range of the operating parameters, 
the anode current of some tubes decreases with increasing anode voltage.

Sometimes circuits employing grid-controlled tubes have been found to 
be bistable because of secondary emission from one of the grids. In one 
state a grid connected through a resistance to a fixed positive supply acts 
as an electron collector, 6 being less than 1.0. In this case, the potential 
of the grid is biased to a value less than that of the fixed supply. In the 
other state the grid potential is above that of the fixed supply, with the 
result that the electrons arrive with more velocity causing 8 to be greater 
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than 1.0, and the grid acts as an electron emitter. To obtain this second 
state there must be another electrode nearby at a still higher potential in 
order to collect the emitted electrons.

2.6 Photoelectric Emission

Photoelectric emission results from the interaction of photons incident 
upon a solid and electrons within the solid. The interaction is such that an 
individual photon imparts all its energy to a single electron within the solid. 
If the photons are incident upon a conductor or semiconductor and if the 
photon energy is greater than the work function of the surface, a fraction 
of the photons will be effective in causing the emission of electrons from the 
surface.

The energy of a photon is given by hv = hc/\, where h is Planck’s con­
stant, v is the frequency of the radiation, c is the velocity of light, and X 
is the wavelength of the radiation. Expressed in electron volts, the photon 
energy is equal to 12.4 X 103/X electron volts, where X is measured in 
angstrom units. (The visible spectrum extends from about 3800 to 7600 
angstroms corresponding to photon energies ranging from 3.3 to 1.6 electron 
volts, respectively.)

At room temperature very few electrons in a conductor are in energy 
states above the Fermi level, and hence the maximum energy of the escap­
ing electrons is very nearly given by hv — 0, where 0 is the work function 
of the surface. If the work function is greater than 3.3 electron volts, only 
ultraviolet radiation will cause photoelectron emission from the surface.

Figure 2.6-1 shows plots of photoelectric emission from clean surfaces of 
several metals, semimetals, and one semiconductor as a function of the 
energy of the incident photons. The ordinate in the figure indicates the 
fraction of the photons incident upon the surface that cause emission of a 
photoelectron. This fraction is called the quantum efficiency of the surface. 
Since visible light corresponds to photon energies in the range between 1.6 
and 3.3 electron volts, we see that some surfaces respond only to ultraviolet 
light. Thus a clean platinum surface requires photon energies in excess of 
4.6 electron volts to cause electron emission. The quantum efficiencies of 
clean metal surfaces are generally extremely low, of the order of 10-4 
or 10-6, and consequently clean metal surfaces have found little application 
in photoelectric devices.

Much better photoelectron yields are obtained from certain compound 
surfaces.34 Figure 2.6-2 shows the relative photoelectric emission of several

84The preparation of high-yield photoemissive surfaces is described in Reference 2k, 
Chapter 1.
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Fig. 2.6-1 Quantum efficiency of clean surfaces of several metals, semimetals, 
and one semiconductor as a function of the energy of the incident photons. (After 

Phys. Rev. 74, 1462, 1948; 76, 270, 1949; 84, 508, 1951; 81, 612, 1951)

frequently used compound surfaces as a function of the wavelength of the 
incident light. The S-ll surface is a cesium-antimony film so processed that
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it is largely CssSb. Often the film is deposited as a layer several hundred 
angstroms thick on a part of the glass envelope of the tube.36 Light is shone 
through the glass at the photoemissive surface, and the photoelectrons are 
drawn from the opposite side, or vacuum side, of the surface. Electrical 
contact to the photoemissive surface is made through an evaporated film

Fig. 2.6-2 Photoelectric emission current from several frequently used compound 
surfaces as a function of wavelength of the incident light. The curves are for equal 
values of incident radiant flux at all wavelengths. (Courtesy Allen B. DuMont 

Laboratories, Inc., Clifton, N.J.)

of metal which is deposited on the glass around the edge of the region 
through which the light is shone. The S-5 surface is also a cesium-antimony 
surface, the processing being somewhat different from that for the S-ll 
surface. The high response of the S-5 surface in the ultraviolet region is 
obtained by making the tube envelope of a glass which is transparent to 
ultraviolet light.

The S-8 and S-10 surfaces are compound surfaces prepared from silver, 
bismuth, and cesium. Cathodes having the S-3 response have compound 
surfaces of silver, rubidium oxide, and rubidium, whereas those having the 
S-l response have compound surfaces of silver, cesium oxide, and cesium.

36Sometime8 a layer of manganese oxide is first deposited on the glass.
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Both the S-3 and S-l surfaces have relatively low photoelectron yields but 
are capable of emission at wavelengths extending well into the infrared 
region. The upper limit of sensitivity for the S-3 surface occurs at about

Fig. 2.6-3 Quantum efficiency of a thick film of Cs3Sb as a function of photon 
energy in electron volts. The data refer to electron emission on the same side of the 

film as that on which the light was incident.

9000 angstroms, and that for the S-l surface occurs at about 12,000 ang­
stroms.

The ordinate in Figure 2.6-2 is amperes per watt of incident light, which 
is numerically equal to coulombs per joule or electrons per electron volt. 
Hence multiplying the ordinate of the curve by the photon energy in elec­
tron volts (i.e., electron volts per photon) gives the quantum efficiency 
in electrons per photon. Thus the S-ll curve has a maximum of nearly 
52 X 10-3 amp/watt at a wavelength of 4400 angstroms. The corres­
ponding photon energy is 2.8 electron volts, and the quantum efficiency of 
the surface for photons of this energy is 52 X 10-3 X 2.8 = 0.15 electron/ 
photon. Figure 2.6-3 shows results of measurements of the quantum 
efficiency of a thick film of Cs3Sb when light is incident upon the same side 
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of the film as that from which the emission takes place. Over a range of 
wavelengths from 2200 angstroms to 4000 angstroms, about one quantum 
in five is effective in causing the emission of a photoelectron.
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Chapter 3

BEAMS AND LENSES

An axially symmetric electric or magnetic field can be used to focus a 
beam of electrons much as a light lens focuses visible rays. Figure 3-1 
illustrates the focusing action of a converging light lens. Rays that pass 
through the lens close to the axis and in directions nearly parallel to the

Fig. 3.1 The focusing action of a converging light lens on rays which are close 
to the axis and nearly parallel to the axis.

axis are given a deflection which is proportional to the distance of the rays 
from the axis.

An axially symmetric electric or magnetic field, or a combination of the 
two, acts in a similar manner on the trajectories of electrons traveling 
through the field. Electrons that enter the field along paths close to the 
axis and nearly parallel to the axis experience a radial force which is pro­
portional to the distance of the electrons from the axis. The electron tra­
jectories therefore are deflected in proportion to their distance from the axis, 
and the axially symmetric field acts as a lens. Figures 3-2(a) and 3-2(b) 
illustrate an electric electron lens and a magnetic electron lens, respectively.

74
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A considerable parallelism exists between the geometric relations that 
govern the paths of light rays through a light lens and those that govern 
the trajectories of electrons through an electron lens. However, it will be 
useful to note several important differences between the two kinds of lenses.

Fig. 3.2 An electric electron lens and a magnetic electron lens.

In the first place, the boundaries of a light lens are usually well defined, 
whereas an electron lens between field-free regions has no well-defined 
boundaries, since the field approaches zero asymptotically at the ends of 
the lens. Rays passing through a light lens, such as that illustrated in 
Figure 3-1, suffer abrupt changes in direction in passing between the dif­
ferent media that make up the lens, but the electron trajectories in an 
electron lens change only in a continuous manner. The electron lens has 
greater versatility than a light lens in that its strength can be varied merely 
by changing the field intensity. However, we shall find that a charge-free 
region of axially symmetric electric or magnetic field can act only as a 
converging lens on a beam of electrons whose path begins and ends in 
regions of zero field. In this respect there is no counterpart to the diverging 
lens of light optics. Furthermore, aberrations in electron lenses are gen­
erally greater than in light lenses, and correcting for the aberrations is 
much more difficult. Finally, a magnetic electron lens causes a rotation 
of the image about the axis of the lens, and there is no counterpart to this 
in light optics.

It will be convenient to make use of several simplifications in notation 
in expressing the equations we shall use in this chapter. A single dot over a 
variable will be used to indicate the first derivative with respect to time, and 
a double dot will indicate the second derivative with respect to time. 
Thus r = dr/dt, and f = d^r/di2. Similarly r' = dr/dz, and r" = d^r/dz2,
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Fig. 3.1-1 Several electric electron lenses. Approximate shapes of trajectories of 
electrons passing through the lenses are shown by the solid lines.

where z is the axial coordinate. The ratio e/m appears frequently in the 
equations, and we shall denote it by ip

3.1 Electric Lenses
Figure 3.1-1 illustrates several types of electric lenses. The approximate 

shapes of trajectories of electrons passing through the lenses are shown in 
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the figure. The lens shown in Figure 3.1-1 (a) is formed by two coaxial 
cylinders of equal radius, the one at the right being at higher potential 
than the one at the left. An arrow on the upper trajectory indicates that 
it is the trajectory of an electron which passes through the lens from left 
to right. To the left of the gap the electron experiences a radial force 
tending to deflect it toward the axis, whereas to the right of the gap the 
radial force is directed away from the axis. However, since the electron is 
further from the axis to the left of the gap, and since the radial component 
of the field increases with distance from the axis, the inward force to the 
left of the gap is stronger. Furthermore, the electron travels more slowly 
to the left of the gap because it is in a region of lower potential. Conse­
quently, the trajectory receives a net deflection toward the axis, and 
some distance to the right of the lens the electron crosses the axis.

The lower trajectory shown in Figure 3.1-1 (a) is that of an electron which 
travels from right to left. As the electron enters the field, it is at first de­
flected away from the axis. However, after passing the gap, the electron 
travels more slowly, and since it is further from the axis, it experiences a 
relatively strong inward force. The electron, therefore, receives a net de­
flection toward the axis in passing through the lens.

Similar reasoning applies to the other electron trajectories shown in 
Figure 3.1-1. Each trajectory is reversible in the sense that an electron 
emerging from the lens would follow the same path back through the lens 
if its direction of travel were reversed without changing the magnitude of 
its velocity. Clearly, for a given potential difference between the electrodes, 
the faster an electron is traveling at the time it passes through a lens, the 
smaller the angle through which it will be deflected.

A particularly interesting lens is that illustrated in Figures 3.1-1 (c) and 
3.1-1 (d). The lens focuses an electron beam for either V2 > 7iorF2 < Vi. 
By holding 7i constant and varying V2, the stength of the lens can be 
varied without changing the electron velocity on either side of the lens. 
Such a lens is used in many cathode-ray tubes to focus the electron beam. 
It is often called an einzel lens. The German word “einzel” means “single” 
and is used in this case to imply that the potential and the electron velocity 
are the same on either side of the lens.

Let us consider the radial forces acting on an electron in an axially 
symmetric electric field. In Appendix V it is shown that the potential at 
radius r from the axis of an axially symmetric potential distribution is 
given in terms of the potential along the axis by

V(z,r) = F(z,0) - jF"(2,0) + ¿7'"'(2,0) - . . . (3.1-1)

where V(z,0) is the potential along the axis, and the primes indicate dif­
ferentiation with respect to z. By means of Equation (3.1-1) the potential 
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at all points in an axially symmetric potential distribution can be described 
in terms of the potential on the axis. For regions close to the axis we can 
neglect all but the first two terms of this expression, so that

V(z,r) = V(z,O) - ?V"(z,0) (3.1-2)

and the radial gradient of potential is given by

= -Jf"(z,0) (3.1-3)
or Z

Since the radial force acting on an electron is given by — eEr = e(d V/dr), it 
follows that for small r the radial force is proportional to the distance of 
the electron from the axis. If the electron is traveling nearly parallel to 
the axis, its trajectory is deflected by an amount proportional to the dis­
tance of the trajectory from the axis. This therefore explains the lens action 
of an axially symmetric electric field.

Figure 3.1-2 shows a two-cylinder electron lens in which the spacing 
between the cylinders is small compared with their radii. An expression1

Fig. 3.1-2 A two-cylinder electric lens. The axial potential V(z,0) and its first and 
second derivatives are shown below the lens. The positions of the principal planes 

and the focal points for V2 = 4Pi are indicated (see Figure 3.1-4).

'Reference 3.1. 
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for the potential along the axis V (z,0) is plotted in the figure together with 
plots of V'(z,0) and 7"(z,0). The potential F(«,0) varies only slightly 
with changes in spacing between the cylinders, provided the spacing re­
mains small compared with the radii of the cylinders. From the foregoing 
discussion it is evident that the radial force on an off-axis electron is pro­
portional to the product of the distance of the electron from the axis and 

To the left of the mid-point between the cylinders the radial 
force is directed toward the axis, and for a given value of r it reaches a 
maximum R/2 to the left of the mid-point, where R is the radius of the 
cylinders. To the right of the mid-point the radial force is outward, and 
for a given value of r it reaches a maximum R/2 to the right of the mid­
point.

The equation describing the trajectory of an electron that travels nearly 
parallel to the axis of an axially symmetric electric field and at a small 
distance r from the axis is known as the paraxial-ray equation. It will be 
helpful to derive this equation, since we shall use it in later discussion. 
From Equation (3.1-3), we can express the radial force acting on an electron 
as

= «^7^ = - >fe0) (3-1-4)
OT 2

Now
r = Yz (3.1-5)

and
r = + Yz (3.1-6)

If the electron trajectory is nearly parallel to the axis, z will be approximate­
ly equal to the total velocity of the electron, and (z)2 can be equated to 
21/7(z,r), where y = e/m, and V(z,r) is measured relative to cathode potential. 
The quantity z on the right-hand side of Equation (3.1-6) is equal to the 
instantaneous acceleration of the electron in the z direction, or yW(z,r). 
Furthermore, V(z,r) ~ 7(z,0) and V'(z,r) = W(z,0), so that Equation 
(3.1-6) can be rewritten as

f = 2i?F(z,0)r" + (3.1-7)
Combining this with Equation (3.1-4), we obtain

, V'M», , F»(z,0) 
+ 27(z,0) + 47(2,0) °

This is the paraxial-ray equation which we set out to derive. Several 
important conclusions can be drawn from it:

1. If ri(z) and r2(z) are two independent solutions of the equation, then
ari(z) + br2(z) is also a solution of the equation, and, in fact, any solution 
rs(z) can be expressed in the form r3(z) = ar^z) + br2(z).
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2. Since the equation is homogeneous in V, increasing the electrode 
potentials in the same proportion does not change the shape of the tra­
jectory through the lens. Furthermore, the equation is independent of 
e and m, so that an electron or a negatively charged ion accelerated through 
the same potential rise and entering the lens along the same trajectory 
would follow the same path through the lens.

Equation (3.1-8) can be expressed in a second useful form by substituting
r = sf-im (3.1-9)

where V = V(zfi). This leads to

s"+tUtJY5 = ° (3.1-w)
lb\ “ /

Let us integrate Equation (3.1-10) along the axis of an axially symmetric 
field from one region of zero field to another. We obtain

St' - Sf = Pi^iSdz (3.1-11)
16 Jzl \ V j

where Zi and z2 are the z coordinates of two points on the axis on opposite 
sides of the lens and at which the potential gradient is zero. The point Zi 
is assumed to be on the initial side of the lens, and the point z2 is on the final 
side. Since the integrand on the right-hand side is always greater than zero, 
it follows that

Sf - Sf < 0 (3.1-12)

Now S = rFI/4, and S' = r’V114 + rV'/4Vw. Consider an electron which 
approaches the lens along a path that is parallel to the axis but displaced 
from it. For such an electron

S/ = | SV1“ + rV'/Ww [„ = 0

since r' = W = 0 at z = z,. It follows from Equation (3.1-12) that 
Sf < 0. However, at z = Zt, V = 0, so that r' < 0 at z = Zt. Thus the 
path of the electron is bent toward the axis by the field, and we must 
conclude that all charge-free regions of axially symmetric electric field between 
field-free regions act as converging lenses.

If an electron approaches a lens along a path that is parallel to the axis 
but displaced from it, the electron emerges from the lens as though it were 
deflected at a plane which generally is not at the geometrical center of the 
lens. This effect is illustrated in Figure 3.1-3 for several trajectories passing 
through an axially symmetric field at different distances from the axis. 
The plane at which the trajectories appear to have been deflected is called 
a principal plane, and the point where the electrons ultimately cross the
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axis is called a focal point. The distance from the principal plane to the 
focal point is called the focal length. There are two principal planes I and II, 
two focal points Fi and F2, and two focal lengths/i and/2, one of each associ­
ated with electrons moving in either direction through the lens. If the 
electrodes and their potentials are symmetrical about the geometrical 
mid-point of the lens, as in the case of the einzel lens shown in Figures 
3.1-l(c) and 3.1-l(d), the focal points and principal planes are also sym­
metrically located about the mid-point. However, in the case of the lens 
shown in Figure 3.1-2, where the potentials are not the same on either 
side of the geometrical mid-point, the principal planes are displaced to­
ward the low-voltage side of the lens, and the focal lengths are not equal. 
The location of the principal planes and focal points is shown in Figure 
3.1-2 for the case in which the potential of the right-hand cylinder is four 
times that of the left-hand cylinder.

Mathematical expressions for the potential F(z,0) along the axis of a 
lens are available for only a few electrode configurations, one example 
being the two-cylinder lens of Figure 3.1-2. Goddard2 has used the ex­
pression for F(z,0) given in Figure 3.1-2 to obtain solutions of the paraxial- 
ray equation for the case of electrons which approach the lens along paths 
that are parallel to the axis but displaced from it. In this way the positions 
of the principal planes and the focal lengths of the lens were determined as 
functions of F2/Fi. Figure 3.1-4 shows plots of the focal lengths fi and /2 
and the distances xi and x2 from the mid-point of the lens to the principal 
planes for a range of values of F2/Fi. The location of the principal planes 
is found to remain nearly constant for F2/Fi greater than about 4.

’Reference 3.2.
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V,

Fig. 3.1-4 The focal lengths/! and/2 for a two-cylinder lens, such as that shown in 
Figure 3.1-2, as a function of the ratio of the potentials applied to the cylinders. 

The potentials Pi and V2 are measured relative to that of the cathode from which 

the electrons are emitted. The distances x, and z2 from the gap between the cyl­
inders to the principal planes are also plotted in the figure. (From L. S. Goddard, 

Proc. Cambridge Phil. Soc. 42, 106, 1946)

In general, expressions for F(z,0) are very complicated, so that an ex­
plicit solution of the paraxial ray equation is difficult, if not impossible, 
to obtain. Furthermore, for many electrode configurations an expression 
for V(z,0) is not available. When there is no expression for V(z,0), the 
electrode configuration can be simulated in an apparatus called an elec­
trolytic tank,3 and the axial potential can be measured experimentally. 
Approximate solutions to the paraxial-ray equation can then be obtained 
by breaking the field up into a number of segments in the axial direction 

3See, for instance, Reference 3b, Figure 5.15, p. 67.
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and estimating the path of an electron across each segment.4 In a few 
specific electron lenses, data concerning the locations of the principal 
planes and focal lengths have been obtained by direct measurement of the 
focusing action of the lenses upon electron beams passing through them. 
Such data are given in Reference 3.5 and in Reference 3e, pp. 369-373.

In Appendix VI the following relations between the object position, the 
image position, and the focal lengths of an electron lens are derived:

£ + ^=1 (3.1-13)

magnification - ’ (3.1-14)
object size feu

and

where the object is located u units to the left of the first focal plane and the 
image is located v units to the right of the second focal plane. The region 
to the left of the lens is at potential Vi with respect to the cathode, and the 
region to the right of the lens is at potential V2. From Equation (3.1-15) 
we see that for the two-cylinder lens shown in Figure 3.1-2 the focal length 
f2 is twice fi, when V2 = 47i.

In a cathode-ray tube the electron gun directs the beam to a “crossover,” 
and a lens beyond the crossover forms an image of the crossover at the 
screen of the tube. Using Equations (3.1-13) and (3.1-14), the position of 
the image and its magnification can be related to the focal lengths of the 
lens and the position of the crossover.

The concepts of principal planes, of focal points, and of focal lengths 
have been adopted from light optics, where they are used to describe the 
paths of light rays through lenses. The arguments that are employed in 
Appendix VI to derive Equations (3.1-13) and (3.1-14) apply equally well 
to a light lens, and, in fact, Equations (3.1-13) and (3.1-14) are of principal 
importance in work with light lenses. It can be shown that the square root 
of electric potential in the case of an electron lens is analogous to index 
of refraction in light optics. For a light lens at the surface between two 
media of different indices of refraction, the ratio of the focal lengths is 
given by f2/fi = n2/ni, where ni and n2 are, respectively, the refractive 
indices of the media in which the focal points Fi and F2 are located. The 
two-cylinder lens shown in Figure 3.1-2 is therefore analogous to a light lens

’Methods for making such computations are discussed in: Reference 3.3; Reference 
3.4; Reference 3a, Chapter III; Reference 3b, p. 101; Reference 3e, p. 360.
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at the boundary between two media of different refractive indices, whereas 
the einzel lens is analogous to a light lens surrounded by a medium of the 
same index of refraction.

3.2 Magnetic Lenses

Figure 3.2-1 shows a magnetic lens that is formed by a cylindrical per­
manent magnet and two re-entrant pole pieces. Since the magnetic poten­
tial outside, the magnetic material satisfies Laplace’s Equation, the off-axis 
magnetic potential can be expressed in terms of the potential on the 
axis using Equation (3.1-1), where V(z,0) is replaced by ^(z,0), the 
magnetic potential on the axis. The magnetic flux density B in a region 
of free space is proportional to the gradient of magnetic potential, and it 
follows from the magnetic equivalent of Equation (3.1-3) that the radial 
component of B is directly proportional to r for small r. The z component 
of B, on the other hand, is nearly constant with r for small r, since the 
equipotential surfaces are normal to the axis at the points where they cross 
the axis.

Consider an electron that enters the lens shown in Figure 3.2-1 from the 
left along a path that is initially parallel to the axis but displaced a small 
distance from it. To the left of the gap the radial component of B is 
directed toward the axis and, since the force acting on an electron in a 
magnetic field is — e(u X B), the electron experiences a force that is 
directed out of the page. This gives the electron angular momentum about 
the axis, so that it crosses the z component of B as it passes through the 
central region of the lens. The z component of B deflects the electron 
toward the axis as it passes through the central part of the lens. Beyond 
the center of the lens the lines of B have a radial component away from the 
axis, and the electron loses angular velocity about the axis. We shall find 
that when the electron has traveled beyond the region of field, its angular 
velocity about the axis is reduced to zero. The electron therefore emerges 
from the lens with a radial component of velocity, which is directed toward 
the axis, and with no angular velocity. At some point beyond the lens the 
electron trajectory passes through the axis.

Suppose that two electrons approach the lens along paths that are parallel 
to the axis and lying in a plane containing the axis. One path is twice 
as far from the axis as the second, and the radial distance from the axis to 
each of the paths is small. As the electrons enter the magnetic field, the 
radial component of B encountered by the outer electron is twice that en­
countered by the inner electron, so that the outer electron acquires twice 
as much velocity in the 9 direction. The angular velocity of the two electrons 
about the axis is therefore the same, and the outer electron crosses the z
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Fig. 3.2-1 A magnetic electron lens.

component of B with twice as much velocity and receives twice as much 
deflection toward the axis. Beyond the center of the lens, the outer electron 
again experiences twice the radial component of B, this time directed away 
from the axis, and loses twice as much velocity in the 6 direction. Both 
electrons therefore emerge from the lens with zero angular velocity, and, 
since the outer electron received twice as much deflection toward the axis, 
both are directed toward the same point on the axis. Consequently, the 
trajectories to the right of the lens lie in a plane which contains the axis, 
but which is rotated about the axis from the plane that contained the 
trajectories to the left of the lens.

It will be helpful to develop two equations that describe the motion of an

Fig. 3.2-2 A surface of revolution which contains the electron trajectory. The axis 
of the surface of revolution coincides with that of the field.
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electron as it travels through an axially symmetric magnetic field along a 
path close to the axis and nearly parallel it. The electron is assumed to 
have zero initial angular velocity about the axis. The first equation relates 
the instantaneous angular velocity of the electron to the axial magnetic 
field, and the second describes the radial motion of the electron in passing 
through the field. The second equation is known as the paraxial-ray equa­
tion for magnetic fields.

Figure 3.2-2 shows a portion of a surface of revolution which contains 
the trajectory of an electron that enters the magnetic field along a path 
directed away from the axis. The axis of the surface of revolution coincides 
with thAt of the field. As the electron crosses the lines of B, it experiences 
a force in the 9 direction, and from Equation (1.2-5) we can write ehat

= nr&B, - zBr) (3.2-1)

where 6 = d9/dt and n = e/m. Multiplying by dt, we obtain
d(r20) = nr(drBz - dzB,) (3.2-2)

Consider an incremental length of trajectory in which the electron ad­
vances a distance dz in the z direction and a distance dr in the r direction. 
The magnetic flux that crosses the portion of the surface of revolution cor­
responding to the axial length dz can be expressed as

di = 2irr(drBz — dzBr) (3.2-3)

where di is assumed to be positive if the flux within the surface of revolu­
tion increases as z increases. Combining Equation (3.2-2) with Equation 
(3.2-3), we obtain

d(r20) = ^-di (3.2-4)
Zt

Integrating this equation along the axis from a point to the left of the 
lens where 9 — i = 0 to a point within the region of field, we obtain

r‘9 = (3.2-5)Zt

For small r, i is related to the axial magnetic flux density by Bz = i/rr\ 
so that

9 = (3.2-6)

Thus the angular velocity of the electron at a given point on its trajectory 
is proportional to the z component of magnetic field at that point, and when 
the electron has traveled beyond the region of field, its angular velocity is 
reduced to zero.
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From Equation (1.2-4), the radial force acting on the electron is given by

r - r(0)2 = —qr0Bz (3.2-7)

Combining this with Equation (3.2-6), we obtain

f + = 0 (3-2-8)

Now for an electron traveling nearly parallel to the axis of an axially 
symmetric magnetic field in a region where the electric potential is con­
stant, Equation (3.1-7) reduces to

r = 2r)Vr" (3.2-9)

where V is the potential through which the electrons have been accelerated. 
Combining Equations (3.2-8) and (3.2-9) gives

r" + ^B2r = 0 (3.2-10)
o V

This is the paraxial-ray equation for electrons traveling in an axially 
symmetric magnetic field when no electric fields are present. Together with 
Equation (3.2-6) it describes the trajectory of an electron traveling close to 
the axis of the field and nearly parallel to the axis. Since Equation (3.2-10) 
is linear, any solution of the equation can be expressed as a linear com­
bination of any two other independent solutions.

Rewriting Equation (3.2-10) in the form

r" = ~^B2r (3.2-11)
O V

we see that wherever Bz is different from zero, r" is negative, and the 
trajectory is curved toward the axis. Hence all magnetic lenses are con­
verging.

A “weak” lens is one for which the focal length is long compared with 
the region of field. Suppose that an electron approaches such a lens along 
a path that is initially parallel to the axis but displaced a small distance 
from it. Integrating Equation (3.2-11) along the axis between points on 
either side of the lens where the field is zero, we obtain

ri = y* Bfrdz (3.2-12)

where 2i and z2 are points on the axis on opposite sides of the lens and be­
yond the region of field, and rf is the slope of the trajectory at 2 = z2. 
If the focal length is long compared with the region of field, r will remain 
nearly constant in the region of field and can be taken outside the integral
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in Equation (3.2-12). The focal length f for such a lens is then given by

1 = -IL 
f r

B2dz (3.2-13)

In a magnetic lens the focal lengths/j and/2 are equal; and if the magnet 
and pole pieces are symmetric about a central plane, the principal planes 
are located equal distances on either side of the central plane. In the weak 
lens approximation it is generally sufficient to assume that the principal 
planes coincide with the mid-plane of the lens.

Fig. 3.2-3 An electromagnet lens.

Figure 3.2-3 shows an electromagnet lens with re-entrant pole pieces 
that almost touch each other. In the cylindrical region of space extending 
from the axis out to the pole pieces, f H • dl around any closed path is equal 
to zero, and we can define a magnetic potential within the region such that 
the magnetic potential difference between two points is equal to J” H ■ dl 
along any path between them.6 If the cylindrical part of the pole pieces 
is made of high permeability steel, so that it acts as a unipotential body, 
and if the spacing between the pole pieces is small compared with the 
inside radius of the pole pieces, a plot of magnetic potential along the 
axis would be of similar shape to the electric potential 7(2,0) plotted in 
Figure 3.1-2. The axial potential therefore would be proportional to tanh 
(1.32z/R) + constant, where R is the inside radius of the pole pieces. The

’However, we must confine ourselves to a region that does not surround the coil, 

since f H • dl along a closed path which surrounds the coil is not zero, and the magnetic 
potential would not be single-valued.
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axial magnetic flux density would be proportional to the gradient of this 
and can be expressed as

B, = B9i*xw(y^} (3.2-14)

Substituting this expression in Equation (3.2-13), we obtain for the re­
ciprocal of the focal length

1 = ^Bo2 \ sech4(^}dz (3.2-15)
J Or J «1 \ ^ /

Using the relations sech2 2=1— tanh2 z and sech2 zdz = d(tanh 2), we 
obtain

1 ’J d 2 R L ,/L322\ tanh3/1.322X1**

= 87B°Y32 3 = 87B°272 (3.2-16)

where the points 21 and z2 have been taken to be effectively at — ■» and 
+ «>, respectively. The focal length / is therefore given by

87 7
? = yBJR = 2.20 X 10“Bo2R (3.2-17)

For 7 = 104 volts, B„ = 10-2 weber/meter2, R = 2 X IO-2 meter (2 cm), 
the focal length / is 0.23 meter or 23 cm. In principle, such a lens might be 
used to focus the beam of a television picture tube.

If an electron trajectory on one side of a lens lies in a plane containing 
the axis, the trajectory after emerging from the lens will also lie in a plane 
containing the axis. However, the second plane is rotated about the axis 
from the first plane. From Equation (3.2-6) the angle of rotation between 
the planes is given by

<3-2J8>

where ii and i2 are, respectively, the times at which the z coordinate of the 
electron is 21 and z2, and where it is assumed that z is very nearly constant 
through the lens and is equal to -^2^7. If Bz is in the direction of travel of 
the electron, Q is positive. In the case of the lens described above with 
7 = 104 volts, B, = 10-2 sech2 (\..32z/R) weber/meter2, and R = 2 X IO-2 
meter, the angle 8 is 0.45 radian, or 26 degrees.

3.3 Aberrations and Deflection Defocusing Effects
Like light lenses, electron lenses have aberrations, or imperfections in 

their image-forming and focusing characteristics. Figure 3.3-1 illustrates
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Fig. 3.3-1 Spherical aberration, or aperture defect.

one type of aberration common to all electron lenses and known as spherical 
aberration, or aperture defect. This is one of the most serious defects of 
electron lenses. Rays that pass through the lens far from the axis are 
focused to a different focal point than the paraxial rays. In the figure, rays 
that enter the lens along paths that are parallel to the axis and very close 
to it are focused to the point Fi. However, rays that are initially displaced 

Fig. 3.3-2 Measurements of the spherical aberration in a two-cylinder electric 
lens. (From O. Klemperer, Electron Optics, 2nd Ed., Cambridge University Press, 

1953)
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an appreciable distance h from the axis are focused to the point Fi, and 
rays that are initially displaced a distance 2h from the axis are focused to 
the point F". In electron lenses the focal point generally moves closer to 
the lens for rays that are further from the axis. The effect can be accounted 
for if the theory presented in Sections 3.1 and 3.2 is extended to include 
higher-order terms in the expressions for the off-axis fields, and if the 
angles through which the electron trajectories are deflected are no longer 
assumed to be small.

Figure 3.3-2 shows experimental data concerning the spherical aber­
ration in a two-cylinder electron lens. Rays that approach the lens along 
paths that are parallel to the axis and displaced a distance h from it are 
deflected so that they cross the axis a distance f from the geometrical mid­
point of the lens. For a given semi-aperture h and focal length, the spherical 
aberration is evidently less when the electrons are accelerated in passing 
through the lens than when they are decelerated. To a first approximation, 
the axial displacement of the focal point is proportional to the square of 
the lens semi-aperture h. Magnetic lenses are generally found to have less 
spherical aberration than electric lenses of comparable focal length.

Suppose that in Figure 3.3-1 a screen were placed perpendicular to the 
axis at Fi. If the semi-aperture of the lens were 2h, the rays would strike 
the screen over a small circular area. Moving the screen closer to the lens 
would at first cause the diameter of the circular area to decrease and later 
to increase, the condition of best focus being that corresponding to mini­
mum diameter of the spot on the screen. The circular spot on the screen 
at best focus is called the circle of least confusion, as in light optics. As 
the semi-aperture of the lens is decreased, the diameter of the circle of least 
confusion decreases, and its axial position approaches the paraxial-ray 
focal point Fi.

A second type of aberration, known as chromatic aberration, is caused 
by the finite distribution of electron velocities in the beam. The faster 
electrons in the beam are deflected less by the lens than the slower ones. 
Additional types of aberrations are encountered when an electron lens of 
large aperture forms an image of an electron source of appreciable size. 
Some of these aberrations have counterparts in light optics and are identi­
fied with the same names as those used in light optics. They include coma, 
field curvature, astigmatism, and distortion. Magnetic lenses introduce 
still other aberrations associated with the rotation of the image. Factors 
contributing to the various types of aberrations encountered in electron 
optics are summarized below:

1. Higher-order components in the expressions for the off-axis fields to­
gether with geometrical factors relating to the large lens aperture and large 
deflection angles.
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2. The distribution of electron velocities (which leads to chromatic 
aberration).

3. Space-charge effects in which the electrons are deflected by the electric 
field associated with the beam itself.

4. Mechanical imperfections in the alignment or shape of the electrodes 
or pole pieces.

5. In the case of magnetic lenses, inhomogeneities in the magnetic 
material.

Although much can be done to minimize inherent aberrations in light 
lenses by causing the geometrical and physical properties of the lens to 
change with radial distance from the axis, similar corrections in electron 
lenses are much harder to achieve, since the off-axis fields are directly re­
lated to the axial field. Consequently, the resolution that can be achieved 
with a good electron lens is far less than can be achieved with a good light 
lens.

Changes in beam shape and focusing also occur when a beam is deflected. 
Figure 3.3-3 shows an electron beam that passes through a pair of deflection 
plates and is incident upon a planar screen mounted perpendicular to the 
axis of the undeflected beam. The undeflected beam is adjusted for best 
focus on the screen, and in this condition it is incident over a small circular 
region on the screen. When the beam is deflected, the spot on the screen 
becomes oval in shape and of area larger than that produced by the unde­
flected beam. Four rays, which are initially at the outer edge of the beam, 
are shown in the figure. Ray 1 is closest to the positive deflection plate 
when the beam passes between the plates, and ray 2 is closest to the nega­
tive deflection plate. Rays 3 and 4 are at the sides of the beam. Clearly, 
electrons in the upper part of the beam are in a region of higher potential 
as they pass between the plates, and they will remain in the deflecting field

Fig. 3.3-3 The deflection defocusing effect.
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for a shorter time than those in the lower part of the beam. Consequently, 
electrons in the upper part of the beam will be deflected less than those in 
the lower part of the beam, and rays 1 and 2 will cross at a point well in 
front of the screen. Rays 3 and 4 cross over somewhat closer to the screen 
but still in front of it, since the distance to the screen is further when the 
beam is deflected. The effect of the deflecting field in causing rays 1 and 2 to 
cross over sooner than rays 3 and 4 is called deflection defocusing. For a given 
mean angle of deflection and a given beam diameter, the difference between 
the deflection of rays 1 and 2 decreases as the length of the deflection plates 
increases. In applications where small deflection defocusing is particularly 
desirable, relatively long deflection plates are used.

Magnetic deflecting fields also cause defocusing effects similar to those 
illustrated in Figure 3.3-3. However, since the electrons maintain a con­
stant velocity in passing through a magnetic deflecting field, the deflection 
defocusing for a given angle of deflection is less in a magnetic deflecting 
field than in an electrostatic deflecting field. When large deflection angles 
are needed, magnetic deflecting fields are usually employed. Thus in televi­
sion tubes where the deflection angle (indicated by the angle 6 in Figure 
3.3-3) may range as high as 55 degrees, only magnetic deflection will give 
adequate focus of the beam over the whole screen.

In cathode-ray tubes the deflection angles are usually much smaller than 
in television tubes, generally less than 15 degrees, and the defocusing result­
ing from electrostatic deflection is usually not severe. Electrostatic deflec­
tion is preferred in cathode-ray tubes for two reasons: (1) Electrostatic de­
flection requires less driving power,6 and (2) better linearity between beam 
deflection and the applied deflection signal can be achieved with electro­
static deflection.

3.4 The Spreading of an Electron Beam Because of Its Own Radial 
Electric Field; Focusing and Confining Beams by Applied Axial 
Fields

In a number of microwave tubes it is desirable to use a small-diameter 
electron beam with high axial charge density. Such a beam generates a

•To illustrate this point, consider the energy per unit volume which must be stored 
in an electric field and a magnetic field in order to produce a given amount of deflection. 

If the deflecting force resulting from a magnetic field B is equal to that from an electric 
field E, then Beu = eE, and Bu = E. The ratio of the energy stored per unit volume 
in the magnetic field to that stored in the electric field is (B2 /2uo) / (ioE2 /2) = BW/E2 
= c2/u2, where c is the velocity of light, and where use has been made of the relations

= 1 /c2 and Bu = E. Since c is always greater than u, more energy per unit volume 
must be stored in the magnetic field in order to produce a given amount of deflection. 
Furthermore, the deflecting coils are generally outside the tube so that the volume in 
which the energy is stored is appreciably greater with magnetic deflection. These two 
factors combine to require much higher driving powers in the case of magnetic deflection 

than with electrostatic deflection.



94 PRINCIPLES OF ELECTRON TUBES

radial electric field, which in the absence of other applied fields causes the 
beam to spread, the off-axis electrons being deflected away from the axis. 
Usually it is desirable to prevent the beam from spreading, and this can be 
accomplished in several ways: (1) By directing the beam into a region of 
uniform axial magnetic field of sufficient intensity, (2) by directing the beam 
along the axis of a series of equally spaced magnetic or electric lenses of 
suitable strength, or (3) by directing the beam along the axis of a bifilar 
helix with the two windings at different potentials. We shall first describe 
the spreading of an electron beam because of its radial electric field. Later 
we shall consider the use of axial magnetic and electric fields to prevent 
the beam from spreading.

The axial linear charge density of a beam of current Io amperes and elec­
tron velocity uz meters per second is I a/uz coulombs per meter. From Equa­
tion (1.4-5) the radial electric field intensity at the surface of the beam is

(3.4-1)

where r is the beam radius. For a beam current of 10 ma, a beam diameter 
of 1 mm, and a beam voltage7 of 1000 volts, Equation (3.4-1) indicates a 
radial electric field intensity at the surface of the beam of 19 kv/meter, or 
19 volts/mm.

If the beam in the above example passed concentrically within a conduct­
ing cylinder of inside diameter 2 mm, the potential at the surface of the 
beam would be 6.6 volts less than that of the cylinder; and if the charge 
density across the beam were uniform, the potential at the center of the 
beam would be 11.4 volts less than that of the cylinder. However, in prac­
tice, the beam generates positive ions as a result of collisions between the 
electrons in the beam and molecules of residual gas in the tube. Since 
the radial field of the beam acts on the ions with a force directed toward the 
axis, the ions are entrapped by the beam. (The kinetic energy of the ions at 
the time they are generated is usually a small fraction of an electron volt, 
and this is not sufficient to overcome the potentials resulting from the radial 
field of the beam.) The trapping of ions by the beam in turn reduces the net 
axial charge density and thereby reduces the radial electric field. Generally, 
the ions tend to “drain” in the axial direction, since in most cases there is a 
region of lower potential at at least one end of the beam. The extent to 
which the beam charge is neutralized is therefore determined in part by the 
potential gradients along the axis of the beam and in part by the resid­
ual gas pressure within the tube.

Hines et al.* describe experimental measurements of the ion neutralization

’The net voltage through which the electrons have been accelerated. 
’Reference 3.6.
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of a beam having a current of 14.5 ma, a length of 17 cm, and a beam voltage 
of 950 volts. An axial magnetic field of 0.075 weber/meter2 (750 gauss) was 
used to focus the beam. (See later in this section for focusing with magnetic 
fields.) The ions drained toward one end of the beam only, the potential 
at the other end being higher than that of the main portion of the beam. It 
was concluded that the beam was about 14 per cent neutralized with ions at 
a tube pressure of 10-7 mm of Hg, 50 per cent neutralized at a tube pressure 
of 10~6 mm of Hg, and nearly fully neutralized at a pressure of a few 
times 10-6 mm of Hg. Pressures of the order of 10-7 to 10-6 mm of Hg might 
be typical of those attained in a beam-type microwave tube.

If there is no neutralization of the electron space charge by ions, the radial 
motion of the electrons at the outer edge of the beam as a result of the radial 
electric field intensity is described by the equation

= -eEr = (3.4-2)
at2 dz2 2irzoruz

If u2 is constant, this equation can be solved with the aid of tabulated 
functions.9 The results are plotted in Figure 3.4-1 for the case of a beam in

Fig. 3.4-1 The universal beam spread curve.

which the electron trajectories are assumed to be initially parallel to the 
axis. The plot shows the radius r ai the beam as a function of distance z 
along the beam, the initial radius being r„. The curve is sometimes called 
the universal beam spread curve. If the current density over the beam 
cross section is initially uniform, the radial field will deflect the trajectories

“Reference 3.7, p. 443. 
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of electrons in the interior of the beam by an amount proportional to their 
initial distance from the axis, and at points further along the beam, the 
current density over the beam cross section will still be uniform.

For a 10-ma, 1000-volt beam of initial diameter 1 mm in which the 
trajectories are parallel to the axis at z = 0 and in which no ion neutraliza­
tion takes place, the beam diameter would be 1.8 mm one centimeter 
further along the axis and 9 mm four centimeters along the axis. With 
partial ion neutralization the spreading would be less.

In traveling-wave tubes the electron beam must travel inside a long 
cylindrical'region defined by the slow-wave circuit of the tube with es­
sentially no interception of the beam by the slow-wave circuit. Often the 
slow-wave circuit consists of a wire helix of length perhaps 70 to 250 times 
its inside diameter. For the beam to travel inside such a slow-wave circuit, 
additional fields must be applied to prevent the beam from spreading. 
Several methods for doing this, involving the use of axial electric or mag­
netic fields, are considered under separate headings below.10

(a) A Uniform Axial Magnetic Field

Figure 3.4-2 shows a magnetic circuit which produces a long region of 
uniform magnetic field parallel to its axis. An electron gun is located within 
the left-hand pole piece and, because the pole piece acts as a magnetic shield, 
there is essentially zero magnetic field in the region of the gun. We shall 
assume that the transition along the axis from the region of zero magnetic 
field to the full magnetic field takes place over a very short axial distance. 
Suppose a single electron approaches the transition region from the side of 
zero magnetic field along a path which is initially parallel to the axis but dis­
placed a distance r0 from it. In passing through the transition region the 
electron acquires an angular velocity about the axis, which from Equation 
(3.2-6) is given by

6 = (3.4-3)

10At first thought it might seem that the beam diameter could be adequately limited 
by establishing a high enough gas pressure in the tube that the electron charge would 
be almost fully neutralized by ion charge. However, there would always be a small 
excess of electrons in the beam and hence a small radial field, since otherwise the ions 
would be free to escape. This small radial field would cause too much spreading of the 
beam for most traveling-wave tube applications. Furthermore, higher gas pressures 
result in greater ion bombardment of the cathode and shorter cathode life. High ion 
densities also result in mechanical oscillation of large numbers of the ions within the 
potential well formed by the electron beam. The ion motion modulates the beam and 
thereby causes a type of noise, called ion oscillation noise, to appear in the output of 
the tube.
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where B, is the uniform axial magnetic field, and y = e/m. If the electron 
passes through the transition region sufficiently quickly, it will still be at 
distance r0 from the axis upon entering the region of uniform axial field. 
Its velocity in the B direction therefore will be

ut = rd = rf^ (3.4-4)
&

This transverse velocity causes the electron to cross the lines of axial mag­
netic field, so that the motion of the electron in the transverse plane is 
circular with radius

The electron therefore travels through the uniform magnetic field in a 
helical path of radius r0/2, and since it initially started at distance r0 from 
the axis, with velocity only in the 6 and z directions, it periodically passes 
through the axis and returns to its original radius r0. Interestingly enough, 
this result is independent of the magnitude of the axial magnetic field, the 
initial electron velocity, or the initial distance of the electron from the axis. 
The time taken for the electron to complete one turn of its helical path is 
Trro/ut, so that the points at which the electron passes through the axis are 
separated by an axial distance given by

, ” r o 2?r , „ ,Az — uz — uz (3.4-6)ut nBz '
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Suppose a cylindrical electron beam of very low axial charge density is 
directed along the axis of the magnetic circuit shown in Figure 3.4-2. We 
shall assume that the axial charge density is sufficiently small that the radial 
electric field of the beam exerts a much weaker transverse force on the off-

Fig. 3.4-3 The broken line shows the beam envelope at the time the beam is launched 
into the magnetic field. The motion of individual electrons in the transverse 

plane after entering the magnetic field is shown by the solid lines.

axis electrons than the force exerted by the magnetic field. In such a beam, 
electrons which travel along paths that are parallel to the axis just before 
entering the magnetic field follow helical paths in the region of uniform 
magnetic field with one side of the helical path touching the axis. Each 
electron passes through the axis at points spaced by a distance K, the first 
point being \z/2 beyond its point of entry into the magnetic field. Figure 
3.4-3 shows the motion of the electrons in the transverse plane. Since 
all the electrons pass through (or close to) the axis at nearly the same 
points, the beam envelope necks down from its initial radius to a very small 
radius at a point K/2 beyond the point of entry into the magnetic field and 
each A, thereafter. The beam envelope therefore resembles that shown 
in Figure 3.4-2 and is said to be “scalloped.” For a 1000-volt beam and 
B2 = 0.05 weber/meter2, \2 — 1.3 cm.

Since electrons that enter the magnetic field with large r„ have greater 
kinetic energy in the transverse plane than those that enter with small r0 
and since all electrons in the beam have essentially the same total kinetic 
energy, the outer electrons will have slightly smaller axial velocity in the 
region of uniform magnetic field. The total kinetic energy of an electron in 
the region of uniform magnetic field can be expressed as

eV 0 = imtu»2 + u,2) = %m[(roiiB2/2)2 + u2] (3.4-7) 
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where Vo is the voltage through which the electrons have been accelerated. 
Clearly, an electron that enters the magnetic field with large ro will have 
smaller uz, and hence smaller Xz, in the region of uniform magnetic field 
than one that enters with small ro. Consequently, the outer electrons in the 
beam will gradually slip behind the inner electrons, and the envelope will 
be only quasi-periodic in the axial direction.

As the axial charge density of the beam is increased, so that the transverse 
force from the radial electric field becomes comparable with that resulting 
from the axial magnetic field, the electron motion is appreciably modified. 
Brillouin11 has described an exact solution for electron flow in an axial mag­
netic field in which the outward force resulting from the radial electric field 
of the beam is balanced by the inward force of the axial magnetic field. The 
conditions required for Brillouin flow are difficult to achieve in practice, but 
the solution defines a value of magnetic flux density in terms of the beam 
current, the beam voltage, and the beam diameter, and it is often helpful to 
measure the field actually needed to confine a beam to a given diameter in 
terms of this field.

To obtain Brillouin flow, the following conditions must apply at the point 
of entry of the beam to the region of uniform magnetic field:

1. The beam must have a uniform current density across its diameter.
2. The electron trajectories must be parallel to the axis just before 

entering the magnetic field.
3. The transition from zero axial magnetic field to the full field must 

occur over a very short axial distance.
4. The beam axis must coincide with that of the magnetic field.

In addition, there must be no trapping of ions by the electron beam.
In Brillouin flow an electron which enters the magnetic field at distance 

from the axis experiences a radial force which is just sufficient to keep it 
moving in a helical path of radius r0 about the axis of the beam. The trans­
verse force of the magnetic field must then be sufficient to account for the 
radial acceleration of the electron when moving in a helical path of radius r0 
plus the force resulting from the radial electric field at radius ro. The axial 
magnetic field is therefore determined by the relation

Bzeus = eEr<> (3.4-8)
f 0

If the beam radius is a and if the current density is uniform across the beam 
cross section, we can use Equation (3.4-1) to express the second term on the 

"Reference 3.8.
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right as

PR — r° — r° (3 4-0 )- a2 2™^ a2 2tz0(21iV0)1i2 k }

where V„ is the voltage through which the electrons have been accelerated. 
Combining Equations (3.4-4), (3.4-8), and (3.4-9), we obtain

5 2 =---- >/2_L— 0.69 X 10 Up (3 440)
’ VN2a2 k

This equation gives the magnetic flux density required for Brillouin flow. 
Since it is independent of the radius r„, the same magnetic field applies to all 
electron trajectories for which r„ < a. For a 10-ma, 1000-volt beam of 
diameter 1 mm, the Brillouin magnetic flux density is 2.95 X 10-2weber/ 
meter2, or 295 gauss.

In Brillouin flow the beam envelope maintains a constant diameter 
through the region of longitudinal magnetic field, the individual electrons 
following helical trajectories which are concentric with the beam axis, and 
the beam as a whole twisting about its axis with angular velocity 6 = pB z/2. 
In a thin “cross-sectional slab” of the beam the individual electrons main­
tain their positions relative to each other, and the slab as a whole rotates 
about the axis with angular velocity 0.

However, in practice, the axial charge density of the beam will be partial­
ly neutralized with ions. In this case the transverse force resulting from a 
magnetic field equal to the Brillouin field would predominate, so that the 
electrons would periodically pass near to the axis, and the beam envelope 
would be scalloped. Furthermore, most convergent electron guns12 give rise 
to sufficiently high transverse velocities that the maxima in the diameter of 
the scallops would be somewhat larger than the beam diameter at the point 
of entry into the magnetic field. (This point is further discussed in Refer­
ence 3g.) However, it is found that by increasing the magnetic field, the 
maximum diameter of the scallops can be reduced. Often a magnetic field 
equal to 1| to 3 times the Brillouin field is used.

As the magnetic field is increased appreciably above the Brillouin value, 
the transverse force resulting from the magnetic field becomes the principal 
transverse force acting on the electrons. Harker13 and Ashkin14 have con­
cluded on the basis of experimental measurements that with a magnetic 
field greater than, or equal to, about three times the Brillouin field, the 
effects of the radial electric field can be neglected, and a majority of the

12Guns which generate a beam of smaller diameter than that of the cathode.
13Reference 3.10.
1 Reference 3.11.
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MAGNETIC FLUX DENSITY IN WEBERS PER SQUARE METER

Fig. 3.4-4 Measurements of the beam interception by the slow-wave circuit of a 
traveling-wave amplifier as a function of the applied axial magnetic flux density. 

The beam was generated by the electron gun illustrated in Figure 4.5-l(a). (From 

J. P. Laico et al., Bell System Tech. J. 35, 1285, 1956. Reprinted by permission of 
American Telephone and Telegraph Company)

electrons pass through, or very close to, the beam axis. In this case an 
electron that enters the magnetic field at distance r„ from the axis travels in 
a nearly helical path of radius r0/2 and periodically passes through or close 
to the axis.

Figure 3.4-4 shows measurements of the fraction of the beam current 
intercepted on a helix-type slow-wave circuit of a traveling-wave amplifier 
as a function of the applied axial magnetic flux density. The data are 
plotted for several values of beam current. The helix had an inside radius of 
1 mm and a length of 17 cm. The electron gun was similar to that shown in 
Figure 4.5-1 (a). A plot of current density vs. radius for the electron beam 
at the point of entry into the magnetic field is shown in Figure 4.5-4. An 
electron emitted from the edge of the cathode with zero emission velocity 
in the direction parallel to the cathode surface arrives at the point of entry 
into the magnetic field at a radius of 0.45 mm from the beam axis. However 
other electrons emitted from the edge of the cathode with relatively high 
emission velocity parallel to the cathode surface arrive at the point of entry 
into the magnetic field at distances from the beam axis as high as 0.7 to 
0.8 mm.

Figure 3.4-4 shows that with increasing beam current, a higher magnetic 
field was required to prevent interception of the beam by the helix, as would
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Fig. 3.4-5 The data for Figure 3.4-4 are plotted vs. the ratio of the actual magnetic 
flux density to the Brillouin flux density for a beam of uniform current density and 

a radius of 0.45 mm.

be expected from Equation (3.4-10). Figure 3.4-5 shows the same data 
plotted as a function of the ratio of the actual magnetic flux density to the 
Brillouin flux density for a beam of uniform current density and radius 
0.45 mm.

(b) Confined Flow16

A type of electron flow, known as confined flow, is achieved with the 
electron gun entirely immersed in the magnetic field. Often a uniform axial 
magnetic field is used. The cathode of the electron gun might consist of a 
planar disc which is perpendicular to the field, whereas the accelerating 
electrode would have an aperture somewhat larger than the cathode diame­
ter. An electron gun that is used with confined flow (and has several ac­
celerating electrodes) is illustrated subsequently in Figure 4.5-1 (c).

“Reference 3b, p. 161.
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If the magnetic field lines are parallel to the beam axis over the entire 
length of the beam, starting at the cathode, the beam diameter obtained 
with confined flow is always larger than the cathode diameter, but it 
decreases and asymptotically approaches the cathode diameter as the mag­
netic field intensity is increased. With increasing magnetic field the elec­
trons increasingly tend to follow the field lines, and the motion of an 
individual electron in the transverse plane becomes limited to a smaller and 
smaller area, the motion being nearly circular.

With confined flow the magnetic field required to confine a given beam 
current to a given diameter is always greater than that needed when the 
beam is generated outside the magnetic field and injected into it, as de­
scribed in Section (a) above. Confined flow has found its chief application 
in low-noise microwave amplifier tubes, where the magnetic field in the 
region of the potential minimum reduces the transverse motion of the elec­
trons and thereby effects a reduction in the noise generated by the beam.

Confined flow also can be achieved with a convergent electron gun by es­
tablishing in the region of the gun a magnetic field that converges in the 
same manner as the electron trajectories in the absence of the magnetic 
field. In this case the electrons “follow the magnetic field lines” through the 
accelerating region of the gun, and in the region beyond the gun their mo­
tion is much as described above.

(c) Focusing with Periodic Magnetic Fields

A series of equally spaced lenses also can be used to focus an electron 
beam. In this case the off-axis electrons experience a radial impulse, which 
is directed toward the axis, as they pass each lens. The impulses deflect the 
electrons toward the axis, but between lenses the beam again spreads be­
cause of the radial electric field due to the space charge. For a particular 
condition of lens strength and spacing and for a particular average beam 
radius, the impulses from the lenses just balance the integrated radial out­
ward force resulting from the space charge of the beam, and the beam diam­
eter at successive lenses remains constant. The shape of the beam envelope 
is then somewhat as illustrated in Figure 3.4-6. Focusing an electron beam

Fig. 3.4-6 The focusing action of a series of equally spaced lenses.
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Fig. 3.4-7 The use of a periodic focusing 
structure reduces the weight of magnetic 

material needed to produce a given mag­
netic field over a given axial distance. 

(From J. T. Mendel et al., Proc. IRE 42, 
800, 1954)

with a series of equally spaced lenses 
is called periodic focusing, since the 
axial field varies periodically in the 
z direction.

The stability of periodic focusing 
can be made plausible by noting that 
if the beam radius increases above 
that needed to obtain the balance 
condition, the radial impulses re­
ceived from the lenses predominate, 
and the off-axis electrons receive a 
net deflection toward the axis. On 
the other hand, if the beam radius 
becomes less than that required for 
balance, the radial outward force 
predominates and the beam expands.

Periodic focusing can be achieved 
with both electric lenses and mag­
netic lenses. When magnetic lenses 
are used, the axial fields of succes­
sive lenses are usually reversed in 
direction, and in this way a substan­
tial reduction in magnet weight can 
be achieved over that of a permanent 
magnet or electromagnet which 
would produce a uniform axial focus­
ing field.16 To explain this, we might 
first note that the magnetic circuit 
shown in Figure 3.4-2 establishes a 
magnetic field throughout a far 
larger volume than that occupied by 
the beam, and, since the total weight 
of the magnet material is closely 
related to the magnetic energy 
stored in the space surrounding the 
magnet, much of the weight of the 
magnet would appear to be wasted. 

Figure 3.4-7 illustrates how weight can be saved using a periodic perma­
nent magnet circuit. The magnetic circuit shown in Figure 3.4-7 (a) is as­
sumed to produce a uniform axial magnetic field over the length of the

'“Reference 3.12.
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magnet. By increasing all the linear dimensions of the circuit by a factor of 
3, as in the magnetic circuit shown in part (b) of the figure, the length of the 
axial magnetic field is increased by three times, but the magnitude of 
the axial field remains unchanged. The larger magnet weighs 33 = 27 
times as much as the smaller magnet, and the energy stored in the space 
surrounding it is 27 times as great. On the other hand, three of the smaller 
magnets placed end for end with like poles together (i.e., north beside north 
and south beside south), as in the assembly shown in Figure 3.4-7 (c)., have 
1/9 the weight of the larger magnet and produce approximately the same 
axial field over the same axial distance, but with two reversals in direction. 
The energy stored in the space surrounding the three magnets in Figure 
3.4-7 (c) is approximately 1/9 that stored in the space around the larger 
magnet, since the leakage fields extend only 1/3 as far from the axis.

If the larger magnet were replaced with n smaller permanent magnets of 
the same total overall length and axial magnetic field, the weight of the 
periodic circuit would be 1/n2 times that of the larger magnet. However, in 
practice the reversals of the axial field are not really abrupt and, in order to 
achieve adequate focusing of the beam, a somewhat higher peak magnetic 
field must be used. This requires the magnets of the periodic structure to be 
somewhat heavier, and consequently the weight of the periodic circuit 
needed to focus a given beam is between 1/n2 and 1/n that of a single 
permanent magnet which would focus the beam with a uniform axial field.

Periodic structures also have the advantage of much smaller leakage 
fields and hence less likelihood of interference with nearby devices or 
equipment.

Let us now examine the electron motion in a periodic magnetic field. 
Equations (3.1-4) and (3.2-8) can be combined to give an equation that 
describes the radial motion of an electron in the presence of both an axial 
magnetic field and a radial electric field, namely

Suppose the axial magnetic field varies as a cosine function, so that
d d 2irzB. = Bo cos —r— L (3.4-12)

where L is the magnet period, or twice the center-to-center distance between 
adjacent pole pieces. Substituting for dV/dr = —F,from Equation (3.4-1), 
setting z = uj., and combining Equations (3.4-11) and (3.4-12), we obtain 
the following equation for the motion of an electron at the surface of the 
beam:

(Pr 
dA

2irz\2 cos -j— ) r — Z/ /
ylo 1

2ireowz3 r (3.4-13)
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It is convenient to make a change of variables and rewrite this equation in 
the form

+ a(l + cos 27> - ; = 0 (3.4-14)

where

« = -> 1 — —F“a L

HL2 _ 385Z+2

and where use has been made of the relations u2 = 2tjV0 and 2 cos2 T = 1

(a) 
INSUFFICIENT 

MAGNETIC FIELD 
<X =0.15 
/3 =0.2

(b)
CORRECT 

MAGNETIC FIELD 0 
a = 0.2 
/3 = 0.2

a

(0 
EXCESS 

MAGNETIC FIELD 
a= o.4 

3 = 0.2

Fig. 3.4-8 The shape of the envelope of a beam for three conditions of the magnetic 

field parameter a. The small ripples on the beam are associated with the pole 
piece spacing L/2. (From J. T. Mendel et al., Proc. IRE 42, 800, 1954) 
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+ cos 2T. The beam radius at the point of entry into the magnetic field is 
assumed to be a.

Solutions to Equation (3.4-14) have been obtained with the aid of an 
analog computer17 for the case in which: (1) The electron flow is “laminar,” 
that is, the electron trajectories do not cross one another; and (2) the cur­
rent density across the beam cross section is uniform. (Also implicit in 
Equations (3.4-13) and (3.4-14) is the assumption of no ion neutralization.) 
The shape of the beam envelope as determined by the computer for three 
values of the axial magnetic field is shown in Figure 3.4-8. The computer 
results show that minimum beam ripple is obtained when a = or

Brms2 = 0.69 X lO-VuTz (3.4-15)

where Blma = B0/yj2. It will be noted that the right-hand side of this 
equation is the same as that of Equation (3.4-10), which gives the Brillouin 
field needed to focus a beam of current I„, voltage Va, and radius a. Thus 
for a sinusoidally varying field the rms value of the magnetic field must 
equal the Brillouin field. This result is perhaps not surprising, since the 
radial force resulting from the axial magnetic field is proportional to B?, 
and with a sinusoidal field such that Blme = BBriiiouin, the average radial 
force from the magnetic field is the same as with Brillouin flow.

By setting 0 = 0 in Equation (3.4-14), the equation reduces to a form of 
Mathieu Equation18 that is characterized by solutions for a which are 
periodic in T for certain ranges of a, and which are unstable for other ranges 
of a. Figure 3.4-9 shows the ranges of a for which the solutions are stable.

UNSTABLE

0.66 1.72

UNSTABLE

6.13.76

Fig. 3.4-9 The regions in which Equation (3.4-14) is unstable when 0 = 0.

The significance of this is that, if we reduce the beam current Io to a vanish­
ingly small value, so that /3 —»0, but maintain constant beam voltage, 
there will be some values of the parameters B„, L, and V„ for which the 
beam will be focused by the lenses and others for which a = r/a will be un­
stable and the beam will become divergent. Furthermore, it is found19 
that even with higher beam currents the periodic structure transmits prac­
tically no current in the regions marked “unstable” in Figure 3.4-9.

“’Reference 3.13.
’’Reference 3.14.
’’Reference 3.13.
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In practice, most periodic circuits are designed to operate in the first 
“pass band” in Figure 3.4-9, corresponding to a < 0.66. To determine the 
value of Bo that should be used, the beam is first focused with a solenoid 
which produces a uniform axial field, and the minimum value of Bz which 
gives good beam transmission is measured. The value of B„ for the periodic 
circuit is then taken to be approximately -^2 times this field (assuming that 
the axial field is to vary in a nearly sinusoidal manner). The period L of 
the periodic circuit is then determined so that a is less than 0.66, perhaps 
30 per cent less. For B„ = 0.08 weber/meter2 (or 800 gauss), and a beam 
voltage of 1500 volts, a period L of 1.92 cm gives an a of 0.44. Reference 
3.15 describes the design of the pole pieces and permanent magnets for a 
periodic circuit.

(d) Periodic Focusing with Electric Fields
Tien20 has described the focusing of an electron beam using a periodic 

electric field. Such a field might be obtained with a series of ring electrodes 
as illustrated in Figure 3.4-10(a) or a bifilar helix such as that illustrated in 
Figure 3.4-10(b). In both cases the outer electrons experience a relatively 
strong force toward the axis when they are close to the electrodes at the

Fig. 3.4-10 Periodic focusing of a beam with electric fields: (a) with a series of ring 
electrodes, and (b) with a bifilar helix.

lower potential and a somewhat weaker outward force when they are 
opposite the electrodes at the higher potential. Also, their axial velocity is 
less when they experience the inward force than when they experience the 
outward force. Consequently, there is a net focusing effect that can be 
used to balance the outward force of the radial electric field of the beam. 
As in the case of periodic focusing with magnetic fields, the beam radius is

“Reference 3.16.
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found to be stable for some values 
of the focusing parameters, whereas 
for others it becomes divergent.

Tien pointed out that the bifilar 
helix also can be used as the slow- 
wave circuit of a traveling-wave 
amplifier. Such a tube has been de­
veloped by RCA.21 The helix struc­
ture of the RCA tube is illustrated in 
Figure 3.4-11. The length of the 
helix is 22 cm. Figure 3.4-12 shows 
measurements of the per cent beam 
current intercepted by the helix as 
a function of the voltages applied 
to the helix,
helix voltages.

•o*o*o*o*o*o

o*o*o*o*o*o*
o 0.5 1.0
I—i—i i i I i i i i I

CENTIMETERS

Fig. 3.4-11 The bifilar helix used in an 
electrostatically focused traveling-wave 

amplifier developed by RCA. (Courtesy 

Radio Corporation of America)

It can be seen that good focusing is achieved over a range of

Fig. 3.4-12 Beam interception on the helix structure illustrated in Figure 3.4-11 

vs. (V, — FJ/Fave, where Fi and F2 are the voltages applied to the two helices and 

Favg = (Fi + F2)/2. (From D. J. Blattner and F. E. Vaccaro, Electronics 32, No. 1, 

46, 1959. Copyright by Electronics, a McGraw-Hill Publication)

“Reference 3.17.
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PROBLEMS

3.1 The figure shows an electrode with a small aperture in it. To the left of the 

electrode there is a uniform potential gradient E,. An electron approaches the ap­
erture from the left along a path parallel to the axis of the aperture but displaced 

a small distance from it. As the electron passes through the aperture, the diverging 

field deflects it away from the axis. Show that the field in the region of the aperture 

acts as a diverging lens with focal length approximately equal to AV0/E„ where V„ 
is the potential through which the electron has been accelerated at the time it passes 

through the aperture. Assume that the electron’s velocity is sufficiently large when 
it reaches the aperture that the electron remains at nearly constant distance from 

the axis as it passes through the aperture, and the effect of the radial field is to give 
the electron an outward impulse.

3.2 A single turn of wire which conducts a current I. generates an axially sym­
metric field which can be used as a magnetic lens. Using the expression given in 
Equation (3.2-13) for the focal length of a weak lens, show that

256VOF = 98VOF

f ‘¡irmAI 2 ~ Ip

for such a lens, where R is the radius of the turn, and V„ is the beam voltage.

3.3 Sketch a magnetic lens that produces no net rotation of the beam.

3.4 Figure 3.3-3 shows a cylindrical beam of electrons that passes between two 

parallel deflection plates and is deflected through a mean angle 6. However, be­
cause of deflection defocusing effects, electrons at the upper side of the beam are 
deflected through a slightly smaller angle, which we shall assume to be 0 — A0, 

and electrons at the lower side of the beam are deflected through an angle 0 + A0. 
Show that for a given beam diameter and given angle 0, the incremental angle A0 
is inversely proportional to the length of the deflection plates. Assume that the 
field between the deflection plates is uniform, and that the effects of fringing fields 
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at the ends of the plates can be neglected. (Actually the fringing field at the exit 

end of the deflecting plates has the effect of reducing the deflection defocusing.)

3.5 Two apertured electrodes, one at higher potential than the other, form an 

electric lens. An electron beam passes through the lens in the direction of increasing 

potential. The electrode at lower potential has a wire grid across its aperture and 

is in contact with the grid. The wires of the grid are laid in two directions at right 

angles so as to produce a fine mesh. Show qualitatively that a beam passing through 

the lens experiences a diverging action. Note that this does not contradict the 

statements made in section 3.1 about axially symmetric fields acting as converging 
lenses.

3.6 Show that with Brillouin flow all the electrons of the beam have the same axial 

velocity, equivalent to that produced by an accelerating potential equal to the 

potential on the beam axis.

REFERENCES
Several general references pertaining to the material covered in this chapter are: 

3a. 0. Klemperer, Electron Optics, 2nd Ed., Cambridge University Press, Cam­
bridge, England, 1953.

3b. J. R. Pierce, Theory and Design of Electron Beams, 2nd Ed., D. Van Nostrand 
Co., Inc., Princeton, N. J., 1954.

3c. V. K. Zworykin, G. A. Morton, E. G. Ramberg, J. Hillier, and A. W. Vance, 

Electron Optics and the Electron Microscope, John Wiley and Sons, Inc., New 
York, 1945.

3d. V. K. Zworykin and G. A. Morton, Television, 2nd Ed., John Wiley, and Sons, 
Inc., New York, 1945.

3e. K. R. Spangenberg, Vacuum Tubes, Chapters 13, 14, 15, McGraw-Hill Book 
Co., Inc., New York, 1948.

3f. P. Grivet, Advances in Electronics, Vol. II, p. 47, 1950.
3g. G. R. Brewer, “Some Characteristics of a Magnetically Focused Electron 

Beam — Parts I and II, “Technical Memoranda No. /95 and No. 528, Research 
Laboratories, Hughes Aircraft Co., Culver City, Calif.

3h. P. A. Lindsay, “Velocity Distribution in Electron Streams,” Advances in 
Electronics and Electron Physics XIII, 182, 1960.

Other references covering specific subjects discussed in Chapter 3 are:

3.1 S. Bertram, Proc. IRE 28, 418, 1940.

3.2 L. S. Goddard, Proc. Cambridge Phil. Soc. 42, 106, 1946.

3.3 K. Spangenberg and L. M. Field, Proc. IRE 30, 138, 1942.

3.4 G. Liebmann, Advances in Electronics II, 102, 1950.

3.5 K. R. Spangenberg and L. M. Field, Elec. Comm. 21, 194, 1943.

3.6 M. E. Hines, G. W. Hoffman, and J. A. Saloom, J. Appl. Phys. 26, 1157, 1955.

3.7 K. R. Spangenberg, Vacuum Tubes, McGraw-Hill Book Co., Inc., 1948.

3.8 L. Brillouin, Phys. Rev. 67, 260, 1945.
3.9 J. P. Laico, H. L. McDowell, and C. R. Moster, Bell System Tech. J. 35, 

1285, 1956.

3.10 K. J. Harker, J. Appl. Phys. 28, 645, 1957.
3.11 A. Ashkin, J. Appl. Phys. 29, 1595, 1958.



112 PRINCIPLES OF ELECTRON TUBES

3.12 J. R. Pierce, J. Appl. Phys. 24, 1247, 1953.

3.13 J. T. Mendel, C. F. Quate, and W. H. Yocom, Proc. IRE 42, 800, 1954.

3.14 N. W. McLachlan, Theory and Applications of Mathieu Functions, Oxford 
University Press, Oxford, England, 1947.

3.15 J. E. Sterrett and H. Heffner, Trans. IRE ED-5, 35, 1958.

3.16 P. K. Tien, J. Appl. Phys. 25, 1281, 1954.

3.17 D. J. Blattner and F. E. Vaccaro, Electronics 32, No. 1, 46, 1959.



Chapter 4

DIODES AND ELECTRON GUNS

The simplest vacuum tube is the two-electrode tube, or diode. In its 
usual form, this tube consists of a thermionic cathode and an anode. When 
the anode is at a positive potential with respect to the cathode, electrons 
emitted from the cathode are drawn to the anode, and when the anode is 
negative with respect to the cathode, virtually no electrons reach it. The 
diode therefore serves as a one-way current device, and as such it finds its 
chief application.

The diode geometry that lends itself most readily to analysis of the elec­
tron behavior is that in which the cathode and anode are planar, parallel, 
and of linear dimensions large compared with the spacing between them. 
We shall find that the significant laws that describe the operation of diodes 
with this type of geometry apply also to diodes with more complicated 
geometries.

If a small aperture is made in the anode of a planar diode, some of the 
electrons emitted from the cathode pass through the aperture into the space 
beyond. The device therefore acts as a crude sort of electron gun. Most 
electron guns use at least one additional electrode which helps to shape the 
field between the cathode and anode. With a suitable choice of geometry for 
this electrode, and with a suitable shape of cathode and anode, it is possible 
to cause essentially all the current drawn from the cathode to pass through 
the anode aperture.

Electron guns are a basic element in many types of electron tubes. Many 
microwave tubes make use of high-current-density, cylindrical beams of 
electrons. To obtain these beams, electrode geometries must be devised 
that accelerate the electrons to the required velocity and focus them to the 
required beam diameter. The electron guns used in cathode-ray tubes and 
storage tubes focus the beam to a “crossover,” and an electron lens beyond 
the crossover forms an image of the crossover on the screen or storage 

113
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surface of the tube. Several designs of electron guns for microwave tubes, 
cathode-ray tubes, and storage tubes are described in Section 4.5.

Because the electrons emitted from the cathode of an electron gun have a 
finite component of velocity parallel to the cathode at the time of emission, 
the electrons tend to drift across the beam while being accelerated away 
from the cathode. If the electron beam is focused to a smaller diameter 
than that of the cathode, the transverse velocities of the electrons in the 
beam increase as the beam diameter is decreased. Ultimately, if the beam 
is focused to a crossover, the maximum current density that can be obtained 
at the crossover for a given cathode current density and beam voltage is 
limited by the emission velocities at the cathode. These effects are discussed 
in Section 4.4.

In this chapter and in subsequent chapters we shall use the subscript o to 
designate de electrode voltages and currents. Thus Fao and Iao are the de 
anode voltage and current.

4.1 The Planar Diode

Here we consider a diode consisting of two planar, parallel electrodes of 
linear dimensions large compared with the spacing between them. We as­
sume that the effects of fringing fields at the edges of the electrodes can be 
neglected, and that the fields between the electrodes are everywhere normal 
to the electrodes.

Figure 4.1-1 shows qualitatively the fields and potential distribution1 in 
the interelectrode space of such a tube for several conditions of applied 
anode voltage and cathode emission current. When electrons are present in 
the interelectrode space, electric field lines extend from induced positive 
charges on the electrodes to the electrons, and the net positive charge on the 
electrodes is equal to the total negative charge in the interelectrode space. In 
Figure 4.1-1 (a), the anode is held at cathode or ground potential while ap­
preciable electron emission from the cathode takes place. (We assume that 
both electrodes have the same work function, so that the effects of contact 
potential difference can be neglected.) In this case, electric field lines extend 
from induced positive charges on both electrodes to the electrons in the 
interelectrode space, with the result that the potential in the space between 
the electrodes is less than ground potential and reaches a minimum at some

'Notice that in Figures 2.1-2 and 2.1-3 of Chapter 2 we have plotted the potential 
that applies to a negative unit charge, whereas in Figure 4.1-1 we plot the potential of 
a positive unit charge. In the field of atomic physics, convention calls for using the po­
tentials that apply to negative charges, whereas in electron-tube work the potentials 
that apply to positive charges are more frequently used.
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Fig. 4.1-1 The field lines and potential distribution in the interelectrode space of 
a planar diode for several conditions of applied anode voltage and cathode 

emission current.



116 PRINCIPLES OF ELECTRON TUBES

point between the electrodes. Since the electrons emitted from the cathode 
have a range of velocities, the faster electrons are able to overcome the po­
tential minimum and pass on to the anode, whereas those emitted with 
relatively small velocity travel only part way out to the potential minimum 
before being returned to the cathode.

To the right of the potential minimum, all the electrons move from left to 
right, whereas to the left of the potential minimum there are additional 
electrons that travel part way out to the potential minimum and return to 
the cathode. This means that the electron density to the left of the potential 
minimum is greater than the electron density at points of equal potential to 
the right of the potential minimum. Consequently, the potential gradient 
is greater to the left of the potential minimum, and the position of the po­
tential minimum is displaced to the left of the mid-point between the elec­
trodes. Later we shall find that the potential difference between the 
cathode and the potential minimum is directly proportional to the average 
electron emission energy in the direction normal to the cathode. (See 
Equation (4.1-1).)

In Figure 4.1-l(b), a voltage Vao is assumed to be applied to the anode, 
but no cathode emission takes place. In this case, field lines extend from 
positive charges on the anode to negative charges on the cathode, and the 
potential varies linearly from the cathode to the anode. In Figure 4.1-1 (c), 
a small cathode emission is also assumed to take place. In this case, the 
emitted electrons experience a field which draws them toward the anode, so 
that the entire cathode emission current reaches the anode. The current 
drawn from the cathode is then said to be temperature-limited, since its 
magnitude is determined by the cathode temperature and shows little varia­
tion with changes in positive anode potential. The density of field lines 
leaving the anode in this case is greater than in Figure 4.1-1 (b), whereas the 
density of field lines arriving at the cathode is less than in Figure 4.1-l(b), 
the same anode voltage being applied in each case. (The density of field 
lines at a given point is, of course, proportional to the potential gradient 
at that point.)

As the cathode temperature is raised so that more electrons are emitted, 
more field lines originating on the anode terminate on electrons in the inter­
electrode space, and the electric field intensity at the cathode surface de­
creases correspondingly. At a sufficiently high cathode temperature, the 
field lines extending from the anode to electrons in the interelectrode space 
have sufficient density to account for the potential drop Va0, and the electric 
field intensity at the cathode is zero. This condition is illustrated in Figure 
4.14(d). With still greater cathode emission (Figure 4.14(e)), a potential 
minimum forms in front of the cathode, and some of the emitted electrons 
are returned to the cathode.
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When a potential minimum is present in front of the cathode, changes in 
cathode temperature serve only to raise or lower the potential at the mini­
mum and have very little effect on the net current drawn from the cathode. 
The current drawn from the cathode in this case is said to be space-charge- 
limited and is determined largely by the voltage applied to the anode. 
Increasing the anode voltage requires a greater density of field lines at the 
anode to account for the potential difference between the anode and the 
potential minimum. This means that more field lines extend from the anode 
to the electrons in the interelectrode space, and[ more of the emitted elec­
trons are drawn to the anode. Thus with increasing anode voltage, the 
current drawn from the cathode increases, and the potential at the mini­
mum rises closer to cathode potential. At a sufficiently high anode potential, 
the potential minimum disappears, and the current drawn from the cathode 
becomes temperature-limited.

Fig. 4.1-2 An idealized plot of anode current vs. anode voltage for a planar diode. 
The cathode temperature is assumed to be fixed.

Figure 4.1-2 shows an idealized plot of anode current vs. anode voltage 
for a planar diode. The regions in which the current drawn to the anode is 
space-charge-limited and temperature-limited are shown in the figure. A 
planar diode with a tungsten cathode would exhibit a current-voltage rela­
tionship that would closely approximate this curve.

From the discussion of emission energies given in Section 2.4, it will be 
recalled that the fraction F of the emitted electrons that can overcome a re­
tarding voltage of V volts is given by F = Thus, when the current
drawn from the cathode of a diode is space-charge-limited, the fraction F of 
the total emission current that is drawn to the anode is given by F = 
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t-ev„ikT, where — Vm is the potential at the potential minimum measured 
relative to cathode potential. Hence

leT TVm = In F = -77^ In F volts (4.1-1)
e ll,6uu

For F = 1/e and T = 1160°K, Vm = 0.1 volt. Under most operating con­
ditions, Vm is of the order of a few tenths of a volt or less. It is noteworthy 
that Vm is directly proportional to kT, the average emission energy in the 
direction normal to the cathode. If the emission energy were zero, the po­
tential minimum would vanish.

The plane of the potential minimum is often called the virtual cathode, 
since all the electrons that pass this plane ultimately reach the anode. Let 
us now proceed to determine the current-voltage relationship for a space­
charge-limited planar diode. We shall assume that the electrons pass the 
virtual cathode with zero velocity. The potential at the virtual cathode is 
taken to be zero, and distance x is measured from the virtual cathode toward 
the anode. If V(x) is the potential at a point x meters from the virtual 
cathode, and u(x) is the electron velocity at that point, the boundary condi­
tions at x = 0 are V = 0, u = 0, and dV/dx = 0. The equations relating 
the parameters of interest are:

Poisson’s Equation 
d2V _ p 
dx2 So

the energy equation

(mu2 = eV 

and the current density relation

J = — pu

where p is the volume charge density.
In these equations, p, u, and V are assumed to be functions of x, whereas 
from the equation of continuity it follows that J is independent of x. The 
charge density p is negative, and u is positive. Eliminating p and u from the 
above equations, we obtain

(4.1-2)

(4.1-3)

(4.1-4)

d2V = J 
dx2 So\2(e/m)V

(4.1-5)

Next, both sides of this equation can be multiplied by dV/dx and integrated 
with respect to x from x = 0 to x, giving

dV 2 
dx

AJV1'2
So^2(e/m)

+ Ci (4.1-6)



DIODES AND ELECTRON GUNS 119

Since V = dV/dx = 0 at x = 0, the constant G is zero. Taking the square 
root of both sides and integrating once more, we obtain

(4/3) A'4 = 2yj7To(m/2eNix + C2 (4.1-7)
Since V = 0 at x = 0, Ct is also zero. Finally, this equation can be solved 
for the current density J, giving

4 ,---------F3'2
j = (4.1-8)

If the experimental values of e, m, and e0 are substituted in this expression, 
it becomes

V3/2
J = 2.33 X 10-6-^y amps/meter2 (4.1-9)

Here V = V(x) is the potential at a point x meters from the virtual cathode. 
If the applied anode voltage is Va0 volts above that of the potential mini­
mum, and if the distance from the virtual cathode to the anode is d meters, 
the current density is given by

V 3/2
J = 2.33 X 10~6 ™ amps/meter2 (4.1-10)

If Vao > > Vm, the voltage VaQ can be taken to be the anode-to-cathode 
voltage. Similarly, the distance from the cathode to the potential minimum 
is usually small compared with the distance from the potential minimum 
to the anode, so that d can be taken to be the anode-to-cathode distance. 
Hence, to a good approximation, the current drawn from the cathode under 
space-charge-limited conditions varies as the 3/2 power of the anode volt­
age divided by the square of the anode-to-cathode distance. This result is 
known as the Child-Langmuir Law. Langmuir2 also developed more ac­
curate equations for the planar diode which take into account the disr 
tribution of electron emission velocities and which show the location of the 
potential minimum. However, for most purposes, Equation (4.1-10) 
gives a sufficiently accurate expression for the current density J, and the 
potential minimum can be assumed to be very close to the cathode.

4.2 Diodes with Other Electrode Geometries
Two further conclusions concerning Equations (4.1-9) and (4.1-10) are 

of interest:
1. If A is the cathode area of a planar diode, the current drawn to the 

anode under space-charge-limited conditions is given by JA = 2.33 X 10-6 
VaJ'^A/d2. Because of the factor 4/d2 in this expression, it is evident that,

^Reference 4.1. 
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if the linear dimensions of a planar diode are increased by a factor k, the 
same current flows to the anode for the same applied voltage.

2. Combining Equations (4.1-9) and (4.1-10), we obtain

V(x) = (4-2-1)

Hence, despite the fact that increasing the anode voltage increases the cur­
rent drawn from the cathode, the potential at points between the electrodes 
remains directly proportional to the applied anode voltage.

Equations describing the space-charge-limited flow of electrons between 
concentric cylinders and concentric spheres have also been derived.3 
In each of these cases, it is found that: (1) The current drawn to the anode 
is proportional to the 3/2 power of the applied anode voltage; (2) if two 
diodes differ by a factor k in their linear dimensions, the same current flows 
to the anode when the same anode voltage is applied; and (3) the potential

Fig. 4.2-1 A diode with a parabolic-shaped cathode and a planar anode.

at points between the electrodes is directly proportional to the applied 
anode voltage when space-charge-limited conditions apply.

In the planar, cylindrical, and spherical diodes, the field lines are straight, 
and the electron trajectories are parallel to the field lines. However, in 
diodes with other electrode geometries, this is not the case; when the field 
lines are curved, the electron trajectories cross the field lines. This effect is

’Reference 4.1, p. 245, and References 4.2 and 4.3. 
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illustrated in Figure 4.2-1 for a diode consisting of a parabolic-shaped 
cathode and a planar anode. The trajectory of a single electron is shown 
in the figure. Because the electron has inertia, the path it follows does not 
bend as sharply as the field lines.

The question then arises as to whether in a space-charge-limited diode 
with arbitrarily shaped electrodes the electron trajectories change their 
shape when the anode voltage is varied. To answer this question, suppose 
that V = V^x^jZ) and p = p^x^fZ) are steady-state solutions for the 
potential and charge in the interelectrode space of a particular diode. These 
solutions meet the following boundary conditions: V = Vat, at the anode 
surface, V = dV/dn = 0 at the potential minimum (which we shall 
assume coincides with the cathode surface). Here d/dn is the derivative 
in the direction normal to the cathode surface. From Poisson’s equation 
it follows that, if the anode voltage is now changed to kVao, solutions 
of the potential and charge distribution which meet the new boundary 
conditions are given by V = kVi(x,y,z) and p = kpi(x,y,z). Furthermore, 
it is shown in Appendix VII that only one steady-state solution of Poisson’s 
Equation will meet the boundary conditions for a space-charge-limited 
diode. It follows, therefore, that the potential in the interelectrode space 
of a space-charge-limited diode with arbitrarily shaped electrodes is directly 
proportional to the applied anode voltage. This being the case, we can 
invoke the same arguments that were used in Section 1.1 to show that the 
electron trajectories are not affected by changes in positive anode voltage. 
This conclusion, in fact, is experimentally verified, apart from effects 
arising from the finite emission velocity of the electrons.

Next let us consider how the current density J = — pu in the inter­
electrode space of a diode with arbitrarily shaped electrodes varies with the 
applied anode voltage when space-charge-limited conditions prevail. 
From the relationship,

|mu2 = eV(x,y,z) (4.2-2)

we see that u = u(x,y,z) is proportional to the square root of V(x,y,z), and 
hence it is proportional to the square root of the applied anode voltage. 
The charge density p = p(x,y,z) is related to the potential V(x,y,z) by

V2V(x,y,z) = -- (4.2-3)

Since V(x,y,z) is proportional to the applied anode voltage, and since the 
Laplacian operator is linear, it follows that p is directly proportional to the 
applied anode voltage. Consequently, J = — pu is proportional to the 3/2 
power of the applied anode voltage. Thus the current drawn to the anode 
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of a space-charge-limited diode having arbitrarily shaped electrodes is 
proportional to the 3/2 power of the applied anode voltage.

By similar reasoning we can deduce that, if the dimensions of a diode 
with arbitrarily shaped electrodes are scaled by a constant factor and if 
the tube is operated under space-charge-limited conditions, the total 
current drawn to the anode for a given applied anode voltage is unchanged. 
Let us suppose that the linear dimensions of a diode are increased by the 
factor k. The potential at corresponding points between the electrodes 
remains the same for the same applied anode voltage, so that the electron 
velocity u at corresponding points between the electrodes remains the same. 
However, dV/dx is changed by 1/k, and d2V/dx2 is changed by 1/fc2. 
Since p is proportional to V2V(x,y,z), it follows that p is changed by 1/k2. 
Consequently, the current density J = — pu is changed by 1/k2; and since 
the electrode area is k2 times its previous value, the current drawn to the 
anode for the same applied anode voltage remains unchanged.

4.3 Two Examples of Diode Rectifiers
The 412A

Figure 4.3-1 shows the construction of the Western Electric 412A full­
wave diode rectifier. The tube consists of two diodes with indirectly

Fig. 4.3-1 The construction of the Western Electric 412A full-wave diode rectifier.
The overall height of the tube is 6.7 cm.
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heated cathodes enclosed in a common envelope. A ceramic insulator sep­
arates the heater of each diode from the cathode. The cathodes are cy­
lindrical sleeves of nickel with a “double-carbonate” oxide coating on the 
outer side. The cathode-anode spacing is 0.5 mm. The anodes are made of 
nickel which is coated with fine carbon particles in order to increase the heat 
radiation from the outer surface. This in turn enables the anodes to operate 
at a lower temperature for a given power dissipation.

Figure 4.3-2 shows measurements of anode current vs. anode voltage for 
the 412A for several heater voltages. The normal heater operating voltage

Fig. 4.3-2 Anode current vs. anode voltage for the 412A for several heater operat­

ing voltages V*. The normal heater operating voltage is 6.3 volts.

is 6.3 volts. At Vk = 6.3 volts, the anode current is space-charge-limited 
over the range of anode voltages for which the data are plotted, and the 
anode current increases very nearly as the 3/2 power of the anode voltage. 
At the other filament voltages for which data are plotted in the figure, the 
anode current is space-charge-limited at lower anode voltages and “tem­
perature-limited” at higher anode voltages. In the region of “temperature­
limited” operation, the anode current actually increases with increasing 
anode voltage rather than remaining constant, as it would in an ideally 
temperature-limited diode. It is thought that this can be attributed to 
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the rough and porous nature of the oxide-cathode emitting surface. At 
the onset of temperature-limited operation only the current drawn from the 
outermost parts of the cathode surface is temperature-limited, whereas the 
current drawn from the re-entrant parts and the entrances to the pores is 
still space-charge-limited. Thus, with increasing anode voltage, the current 
drawn from regions that are still space-charge-limited continues to increase, 
but the total area from which space-charge-limited current is drawn de­
creases. Operation of the tube for an extended time in the temperature­
limited region is found to be harmful to cathode life.

Fig. 4.3-3 The construction of the Western Electric 274B full-wave diode recti­
fier. The over-all height of the tube is 13.8 cm.

Maximum ratings for the 412A are given in Table 4.3-1. The use of a 
ceramic insulator between the heater and cathode permits operation of the 
diodes with as much as 450 volts potential difference between the heater and 
cathode.
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Table 4.3-1

Maximum Rating
Peak inverse voltage*, volts................................................................................................. 1250

Peak anode current per anode, ma............................................................................... 300

DC output current (when operated as a full-wave rectifier), ma. .. 100

DC heater-cathode potential, volts.............................................................................. 450

♦Maximum negative voltage applied to the anode with respect to cathode voltage.

The 274B

The construction of the Western Electric 274B full-wave diode rectifier 
is illustrated in Figure 4.3-3. The tube consists of two diodes with fila­
mentary cathodes enclosed in a common envelope. The filaments are made 
from a nickel alloy and have a “double-carbonate” oxide coating. The 
nickel alloy contains the following elements in addition to nickel:

Element
Per Cent 
by Weight

Co.......................................................0.5 to 0.75

Cu...................................................... <0.10

Fe........................................................< 0.15

Mn.....................................................< 0.20

Per Cent
Element by Weight

C......................................................0.04 to 0.07

Si.....................................................<0.03

Mg.................................................0.04 to 0.08

Ti....................................................< 0.03

These small amounts of impurities in the nickel increase its resistivity and 
mechanical strength. The elements in the right-hand half of the table 

Fig. 4.3-4 Anode current vs. anode voltage for the 274B for several filament operat­
ing voltages V/. The normal filament operating voltage is 5.0 volts.
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also serve as the reducing agents which maintain the activity of the oxide 
coating. The filaments are connected in series within the envelope of the 
tube. The anodes are made of carbonized nickel, as in the 412A.

Figure 4.3-4 shows measurements of the anode current vs. anode voltage 
for the 274B. The normal filament operating voltage is 5.0 volts. The 
shape of the curves in the “temperature-limited” region is further com­
plicated for this tube by the facts that the distance from the filament sur­
face to the anode varies over the filament surface and that there is a voltage 
drop along the length of the filament. Consequently, the onset of tempera­
ture-limited operation occurs at different anode voltages for different parts 
of the filament surface.

Maximum ratings for the tube are given in Table 4.3-2.

Table 4.3-2

Maximum Rating
Peak inverse voltage, volts.................................................................................................... 1500

Peak anode current per anode, ma........................................................................  675

DC output current (when operated as a full-wave rectifier), ma. .. 225

4.4 Some Effects of Thermal Emission Velocities

Appendix IV summarizes the relations pertaining to the velocity dis­
tribution, energy distribution, and angular distribution of the electrons 
emitted from a thermionic cathode, as discussed in Section 2.4.

Because the electrons are emitted with a finite component of velocity 
parallel to the cathode surface, they tend to drift across the beam while 
being drawn away from the cathode by the applied field. In consequence 
of this, the electron beams generated by electron guns are always larger 
than they would be if the electron emission velocity were zero.

As a simple example to illustrate the sideways drift of electrons in an 
accelerating field, let us consider the electron trajectories in the planar, 
parallel diode shown in Figure 4.4-1. (In the illustrations used in this 
section, it will be convenient to identify the trajectories of electrons emitted 
from the cathode with zero kinetic energy with solid lines, and the tra­
jectories of electrons having finite kinetic energy at the time of emission 
with broken lines. The former electrons will be called nonthermal electrons, 
and the latter will be called thermal electrons.) Suppose the anode-to- 
cathode spacing of the diode shown in Figure 4.4-1 is 1 cm, and a voltage of 
+ 10 volts is applied to the anode. We shall assume that the cathode 
emission is very small and temperature-limited and that the electric field 
between the electrodes is uniform. Consider an electron which is emitted 
from the cathode with 1/10 electron volt of kinetic energy parallel to the
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-------------TRAJECTORY OF 
THERMAL ELECTRON

------------- TRAJECTORY OF 
NONTHERMAL ELECTRON

Fig. 4.4-1 Some electron trajectories in the interelectrode space of a planar diode.

cathode surface and no kinetic energy normal to the surface. At the time 
the electron strikes the anode, the ratio of its transverse energy to its energy 
in the direction of the accelerating field is 1/100. The corresponding 
ratio of velocities is equal to the square root of this, or 1/10. Since the 
final velocity in the direction of the accelerating field is twice the average 
velocity, the ratio of the transverse velocity of the electron to its average 
velocity in the direction of the field is 2/10. Consequently, the electron 
does not strike the anode at a point directly opposite its point of emission, 
but 2 millimeters to one side.

If the cathode temperature in the above example were 1160°K, the 
electron we have considered would have had average transverse energy, 
since Wt = 7711,600 electron volts is the average transverse energy. 
Other electrons would be emitted with appreciably greater transverse 
energies. Furthermore, if the current drawn from the cathode were space­
charge-limited, the time taken by an electron to reach the anode would be 
at least 3/2 as great (Problem 4.1), so that the electrons would drift even 
farther to the side. Of course, by increasing the accelerating voltage, the 
amount of sideways drift is reduced. If the anode voltage in the above 
example were increased to 1000 volts, the electron would drift only 0.2 mm 
to the side for the case of the uniform accelerating field.

Let us now consider the distribution of points of arrival on the anode of 
electrons emitted from a single point on the cathode of a planar diode. 
Suppose an electron emitted from a point on the cathode with transverse 
velocity ■yjkT/m drifts a distance a to the side in traveling from the cathode 
to the anode. If the anode voltage is large compared with kT/e, we can 
neglect the effects of emission velocities normal to the cathode (to a first 
approximation) and assume a constant time for electrons to travel from the 
cathode to the anode. In this case, an electron emitted from the cathode 
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with transverse velocity w ( would drift a distance r to the side while travel­
ing from the cathode to the anode, where

Ut
r = ^kT^^ (4-44)

Rearranging this equation, we obtain

ut = -^kT/m (4.4-2)

Substituting for ut in Equation (2) of Appendix IV from the above equation, 
we find that the probability that an electron, which is incident upon the 
anode, is displaced a distance in the range r to r + dr from the point on the 
anode directly opposite its point of emission is given by

dP(r) = X^'^dr2 (4.4-3)

Equation (4.4-3) implies a Gaussian distribution in two dimensions, and 
a can be identified as the standard deviation of the distribution. Thus 
electrons emitted from a single point on the cathode will be incident upon 
the anode at points whose density is given by a two-dimensional Gaussian 
function with standard deviation a.

An electron emitted from the cathode of a planar diode with a component 
of velocity parallel to the cathode follows a curved trajectory which bends 
increasingly toward the normal to the electrodes. For this reason, the 
current density of electrons arriving at the anode per unit solid angle in 
the direction normal to the anode is far higher than the cathode emission 
current density per unit solid angle in the direction normal to the cathode. 
From Equation (7) of Appendix IV it follows that the latter quantity is 
J0/t, where is the total cathode emission current density. Let us proceed 
now to obtain the current density of electrons arriving at the anode per 
unit solid angle in the direction normal to the anode. We shall use this 
quantity in later discussion.

We shall assume, as before, that fringing fields at the edge of the diode 
can be neglected, and that an electron emitted from the cathode with a 
component of velocity in the direction parallel to the cathode will maintain 
this component of velocity throughout its travel from the cathode to the 
anode. In this case, an electron which is emitted from the cathode in a 
direction making an angle 0i with the normal to the cathode, and which has 
kinetic energy eV\ joules at the time of emission, will be incident upon the 
anode at an angle 02 with respect to the normal such that

7,1/2
8111(92 = (Ut + y2)i/2sln^ (4.4-4)
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where V2 is the cathode-anode potential difference, 
sides of this gives

Differentiating both

cos02 dd2 =
7,1/2

(y, + ÿ^cos^i Mi (4.4-5)

From Equations (5) and (6) of Appendix IV, the current density of 
electrons emitted from the cathode with kinetic energy between eVi and 
e(Vi + dVi) joules and with emission velocities lying in the angular range 
0i to 0i + d0i with respect to the normal is

eV. deV,dJWM = Jo^e-er'll,T ^2 sin0i COS01 de. (4.4-6)

where Jo is the total cathode emission current density. This is also the 
current density at the anode due to electrons which are emitted from the 
cathode with kinetic energy in the range eVi to e(Vi + dVf) joules, and 
which arrive at the anode with angles of incidence in the range 02 to 02 + 
d02, where 02 is related to 0i by Equation (4.4-4). Thus the current density 
arriving at the anode per unit solid angle at an angle 02 with respect to the 
normal, and which is composed of electrons emitted from the cathode with 
kinetic energy in the range eVi to e(Vi + d 17) joules, is

dJ^ = J, dW
2ir sin02 «02 x kT kT

where we have substituted from Equations (4.4-4) and (4.4-5) for sin0i 
and cos0i d0i. By setting cos02 = 1 in the right-hand side of Equation 
(4.4-7), we obtain the current density which arrives at the anode per unit 
solid angle in the direction normal to the anode and which is composed of 
electrons emitted from the cathode with kinetic energy in the range eVi 
to e(Vi + dVi). Then, by integrating this quantity with respect to Vi 
from zero to infinity, the total current density incident upon the anode per 
unit solid angle in the direction normal to the anode is found to be

Ja(<»2 = 0) 1) (4.4-8)

This is the expression we set out to derive. It compares with a cathode 
emission current density per unit solid angle in the direction normal to 
the cathode of J Jir. In the discussion that follows we shall use Equation 
(4.4-8) to obtain an approximate expression for the maximum current 
density which can be obtained at a crossover.

Figure 4.4-2 shows a planar diode in which the anode has a small circular 
aperture. Two additional electrodes located behind the anode combine 
with the anode to form an einzel lens. (See Figures 3.1-l(c) and 3.1-1 (d).) 
The beam of electrons passing through the lens is focused to a crossover L
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Fig. 4.4-2 A planar diode with a small circular aperture in the anode. Two aper- 
tured electrodes behind the anode combine with the anode to form an einzel lens. 

The electrons passing through the anode aperture are focused to a crossover at 

the collector electrode.

units from the lens. A collector electrode at the crossover intercepts the 
beam. Let us now estimate the current density at the center of the cross­
over. We shall assume that Equation (4.4-8) gives the current density 
incident upon the anode aperture per unit solid angle in the direction normal 
to the aperture. We shall further assume that electrons emitted from the 
cathode with zero transverse velocity and incident upon the anode aperture 
from the cathode side are deflected by the lens in the direction of the center 
of the crossover. An element of area dA in the center of the crossover and 
normal to the beam axis will subtend a solid angle dA /L2 at a point on the 
aperture. Therefore, unit area of the aperture will transmit a current 

—(+ 1 Itt to the element of area dA, and the current density incident 
IT \ KI / L2
upon dA from unit area of the aperture will be — (+ 1 1^.. If the radius 

tt\kT )L?
of the aperture is R, the total current density at the center of the crossover 
will be

f/«F2 .W , .
J1 M (4.4-9)

More accurately, it can be shown with the aid of statistical mechanics4 
that the maximum current density obtainable at a crossover with any lens 
system is given by

-A/tS + Asm2# (4.4-10)
\ K1 /

Reference 4.4. See also Reference 4.5.
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where fl is the half angle subtended at the crossover by the aperture di­
ameter. Moreover, it can be shown that this limiting current density can 
be approached only when the aperture of the lens system passes a small 
part of the total current drawn from the cathode, and when the lens system 
is essentially aberration-free. The limiting current density given by the 
above expression applies both at a crossover and at an image of a crossover 
formed by a subsequent lens system.

In a cathode-ray tube the half angle fi of the cone of trajectories incident 
upon the screen is often of the order of 1/100 radian or smaller, whereas 
eV2 may be 5 X 104 times kT. Thus the maximum current density obtain­
able at the screen of the tube is often of the same order of magnitude as the 
cathode current density J„. However, because of aberrations, the actual 
current density at the screen is usually less than J&.

Suppose that in the device shown in Figure 4.4-2 an electron emitted 
from the cathode with transverse velocity -^kT/m passes through the anode 
aperture and strikes the collector at a point « units from the center of the 
crossover. If we assume that the transit time from the cathode to the col­
lector is the same for all electrons reaching the collector and that aberrations 
in the einzel lens are small, an electron that leaves the cathode with trans­
verse velocity ut will be displaced a distance r = Uia/ykT/m from the 
beam axis by the time it reaches the crossover. We then can use the same 
arguments that were presented in connection with Equation (4.4-3) to 
show that the current density incident upon the collector is proportional to 

where r is the distance measured along the surface of the collector from the 
beam axis.

If the lens in Figure 4.4-2 is made stronger, L decreases and (3 increases. 
However, a decreases, since the transit time from the aperture to the cross­
over is smaller. Similarly, decreasing the strength of the lens reduces fl 
and increases a. (Ultimately the beam will diverge at the lens.) Thus an 
electron beam can be focused to a crossover of small diameter and large 
angle of convergence fl, or a large diameter and small angle of convergence, 
but not simultaneously to a small diameter and small angle of convergence.

Next let us consider some effects of thermal emission velocities in con­
vergent beams such as are used in many microwave tubes. Figure 4.4-3 
shows a diode with a cathode emitting surface and anode which are portions 
of spheres, both concentric about the point P. Nonthermal electrons in 
such a diode travel in radial lines from the cathode to the anode, since the 
forces acting on them are directed toward the point P. The trajectory of 
one thermal electron is shown in the figure. Suppose this electron is emitted
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Fig. 4.4-3 Trajectories of a thermal electron and several nonthermal electrons in a 
spherical diode.

with velocity Ute parallel to the cathode surface. Since the forces acting on 
it are directed toward the point P, angular momentum about the point P 
is conserved. When the electron reaches radius r from the point P, its 
component of velocity Uir transverse to the radial direction is given by

mutTr = muipfc (4.4-11)

or 

Ulr Te dc
Ah ~ -yUt r d (4.4-12)

where fc is the radius of the cathode emitting surface measured from the 
point P to the cathode emitting surface, dc is the cathode diameter, and d 
is the diameter of the beam at radius f from point P. Consequently, as 
the thermal electron travels from the cathode toward the anode, its com­
ponent of velocity transverse to the nonthermal electron trajectories increases, 
and at a given point it is inversely proportional to the beam diameter at 
that point. This result applies when the current drawn from the cathode is 
space-charge-limited as well as when it is temperature-limited.

The foregoing is a particular example of a quite general relationship which 
applies to paraxial electron beams. This relationship states that, if the 
diameter of an electron beam is reduced from di to d2 by the action of axially 
symmetric fields and if the fields acting on the electrons are directly pro­
portional to the distance from the beam axis, the transverse velocities of 
the thermal electrons measured relative to the trajectories of the non­
thermal electrons are increased by the ratio di/d2. The discussion pre­
sented below will develop this more general relationship.



DIODES AND ELECTRON GUNS 133

It will be convenient to introduce a radial coordinate p which varies 
linearly from zero on the beam axis to unity at the beam edge. Let re(z) be 
the beam radius (corresponding to g = 1). We shall assume that the non­
thermal electrons travel in laminar paths, that is, paths that do not cross 
one another, and that the radial forces within the beam are directly propor­
tional to distance from the axis. The path traveled by a nonthermal elec­
tron is therefore one of constant g. If there is appreciable space charge in 
the beam, the assumption that the radial forces are proportional to distance 
from the axis implies a uniform current density over the beam cross section. 
(See Equation (3.4-9).)

Consider a thermal electron whose radial coordinate is given by

r = pr, (4.4-13)

where both g and re are functions of z. Differentiating this equation twice 
with respect to time gives

r = ¡ire + 2pre + pr, (4.4-14)

where
r, = r,'z (4.4-15)

and

f, = + Te'z (4.4-16)

Similar expressions hold for p and ¡1. (The notation used here is similar 
to that of Chapter 3.) Since the radial forces acting on the thermal electron 
are directly proportional to its distance from the axis, the radial acceler­
ation of the thermal electron is g times the radial acceleration of a non­
thermal electron at the edge of the beam, or

f = pr, (4.4-17)

Comparing this equation with Equation (4.4-14), we see that

¡ir, + 2pr, = 0 (4.4-18)

or

^re2) = 0 (4.4-19)

Integrating this, we find that

pr,2 = constant (4.4-20)

a relationship which applies over the whole length of the beam. Consider 
two points on the electron’s trajectory such that m — Mi at one point and 
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M = M2 at the second point. Let the beam radius be rei at the first point and 
re2 at the second point. Then, from Equation (4.4-20),

M2re? r«i
Mirei re2

(4.4-21)

Now the quantity mVci is the transverse velocity of the thermal electron 
measured relative to the trajectories of the nonthermal electrons at the 
point where the beam radius is rel. We shall denote it by Un- Similarly we 
shall set ut2 = M2re2. Equation (4.4-21) therefore can be written as

u(2 = (4.4-22)

where di = 2rei, and d2 = 2re2. This is the relation we set out to obtain.
The case we have just considered applied to a thermal electron whose 

initial transverse velocity is in the radial direction only. If the thermal 
electron also has an initial component of velocity in the 0 direction, that is, 
the direction both perpendicular to the beam axis and the radial direction, 
we can use a Cartesian coordinate system in the transverse plane to de­
scribe the transverse motion of the electron. For an axially symmetric 
electric field in which Er = ar, the x and y components of the radial field 
can be expressed as Ex = ax and Ey = ay. Furthermore we can rewrite 
the foregoing equations replacing r by x or y and m by px or m»- In this way 
it is easily shown that Equation (4.4-22) applies for any direction of the 
initial transverse velocity u«.

Fig. 4.4-4 A convergent electron gun which generates a beam of diameter d from 
a cathode of diameter dc.
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The foregoing results can be applied to an electron gun which generates 
a beam of diameter d and has a cathode of diameter dc. Such a gun is 
illustrated in Figure 4.4-4. The average transverse velocity of the electrons 
in the region where the beam diameter is d will be dc/d times the average 
transverse velocity at the cathode surface, and from Equation (2) of Ap­
pendix IV the probability that an individual electron has transverse 
velocity in the range ut to ut + dut at a point where the beam diameter is 
d will be

dP(ut) = Ici \ac / (4.4-23)

Highly convergent electron guns (guns with high dc/d) therefore generate 
electron beams with high transverse velocities.

4.5 Electron Guns

It will be convenient to consider separately the electron guns used in 
microwave tubes and those used in cathode-ray tubes and storage tubes, 
since the principles involved in the two cases are quite different.

a. Electron Guns Used in Microwave Tubes

Figure 4.5-1 shows three electron guns that are used in beam-type micro­
wave tubes. The first two have a relatively large cathode area in order to 
draw the required total emission current, and electrodes in front of the 
cathode focus the beam to a cross section much smaller than the cathode 
area. In this way electron beams of current density far greater than the 
cathode emission density can be obtained. The third electron gun is oper­
ated in a uniform axial magnetic field, so that the electron beam cross 
section is just a little larger than the cathode area, and the electron motion

Table 4.5-1

Gun a b c
Beam voltage, volts............................................................... 2600 500 570

Beam current, amp............................................................... 0.040 0.066 0.0005

Perveance, amp/volts3'2................................................0.30 X 10-6 5.9 X 10-6 3.7 X 10-8

Cathode current density, amp/cm2.................. 0.21 0.19 0.16

Average beam current density, amp/cm2. . 5 7 ~0.1

Angle of convergence*, degrees................................... 25 145 —

♦The angle subtended by a diameter of the cathode at the center of curvature of the 
cathode emitting surface.
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Fig. 4.5-1 Three electron guns used in microwave tubes.

is similar to that described in Section 3.4(b) under the heading of Confined 
Flow. Table 4.5-1 lists several important characteristics of these guns.

The electron gun shown in Figure 4.5-1 (a) consists of a cathode, a “beam-
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forming electrode,” which is operated at cathode potential, and an anode. 
The cathode emitting surface is concave and spherical in shape. The gun 
is called a Pierce electron gun, after J. R. Pierce,5 who first put the design 
of convergent electron guns on a firm basis.

Fig. 4.5-2 The evolution of a Pierce electron gun from a spherical diode.

To understand the choice of shape for the electrodes, we might first 
imagine a diode consisting of portions of two concentric spheres, such as 
the one illustrated in Figure 4.5-2(a). The cathode and anode are assumed 
to be defined by the intersection between the spherical surfaces and a 
right-circular cone with apex at the common center of the spheres. With 
such a device we can make a convergent beam of electrons. However, the 
nonthermal edge electrons travel in radial lines only if they experience a 
radial electric field and no transverse field. A little consideration shows 
that this will be the case only if the potential just; outside the beam varies 
with radius r (measured from the common center of the spheres) in the 
same way that it does inside the beam. The beam-forming electrode, 
therefore, is designed to create a potential along the edge of the beam which 
matches as nearly as possible that inside the beam. Finally, since we do 
not want to intercept the electrons, a hole must be made in the anode so 
that the convergent beam will pass on through. The resulting shape of the 
electron gun is similar to that shown in Figure 4.5-2(b).

The beam-forming electrode has its principal effect close to the cathode, 
where the electrons are moving more slowly and the transverse fields are 

“Reference 4.6.
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able to deflect the electron trajectories much more. Let us examine the 
shape of the beam-forming electrode in this region more closely. Figure 
4.5-3 shows a much expanded view of the edge of the beam close to the

Fig. 4.5-3 An expanded view of the edge of the beam in the region of the cathode.

cathode emitting surface. If the dimensions of the portion of the cathode 
shown in the figure are assumed to be small compared with the overall 
cathode dimensions, we can further assume that the portion of the emitting 
surface shown in the figure is planar and that the beam extends a consider­
able distance above and below the page. The potential problem then reduces 
to a two-dimensional one and is thereby simplified. In the portion of the 
beam we are considering, the potential will vary approximately as in 
the planar diode and will be given by

V = Az4« (4.5-1)
where A is a constant, and x is the distance measured from the emitting 
surface.

Appendix VIII considers two-dimensional potentials which are symmetric 
about an axis. It is shown there that, if the x axis of a Cartesian coordinate 
system is the axis of symmetry and if V = fix) is the potential on the x 
axis, V = Re/(z + jy) = |[/(z + jy) +f(x — jy)] is the potential through­
out the x-y plane. Furthermore, symmetry of potential about the x axis 
implies that dV/dy = 0 at y = 0, since the potential and its derivatives 
are continuous in a charge-free region.

Suppose we were to establish in the region just above the beam in 
Figure 4.5-3 a potential given by

V = Re A(x + jy)4« = ~[(x + jy)w + (z - jy)4«] (4.5-2) 
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This potential has the property that for y = 0 it reduces to V = Ax4/3, 
and furthermore that dV/dy = 0 at y = 0, so that there would be no 
transverse force on the electrons at the edge of the beam.

To establish such a potential, the beam-forming electrode must be 
shaped to conform to an equipotential defined by Equation (4.5-2) and 
must be operated at that potential. A convenient potential is that of the 
cathode, since no additional biasing supply is needed in this case. The 
equipotential corresponding to cathode potential is obtained by setting 
V = 0 in Equation (4.5-2) and is given by

y = (1 + <2)3 (4.5-3)

This is the equation of a straight line making an angle of 67.5 degrees with 
the x axis.

Thus, close to the electron beam, the beam-forming electrode makes an 
angle of 67.5 degrees with the beam edge, since in this region the approxi­
mations of a two-dimensional potential and a planar cathode are reasonably 
valid. The shape of the beam-forming electrode further from the beam and 
the shape of the anode are so chosen that they produce a potential along the 
edge of the beam which matches the potential that is characteristic of 
electron flow between concentric spheres. Often an electrolytic tank6 is 
used to determine experimentally suitable electrode contours.

In the region of the anode aperture there is a component of electric field 
directed toward the axis of the beam, and this acts as a diverging lens. 
If the anode aperture is small compared with the anode-to-cathode distance, 
the focal length of this lens is7 4Va0/V', where Va<, is the anode voltage, and 
V is the potential gradient on the cathode side of the anode aperture. 
(See Problem 3.1.) The lens causes the off-axis electrons to receive a small 
deflection away from the axis. Beyond the anode aperture, the radial 
electric field of the beam causes a further deflection of the off-axis electrons 
away from the axis, with the result that the beam ultimately reaches a 
minimum diameter and then diverges. If an axial magnetic field is used to 
confine the beam, the beam would normally be launched into the field near 
the point of its minimum diameter.

The discussion of Section 4.2 concerning the relationship between anode 
current and anode voltage for a space-charge-limited diode applies equally 
well to electron guns such as those illustrated in Figures 4.5-1 (a) and 
4.5-1 (b). Over the range of cathode currents for which space-charge- 
limited conditions prevail, the beam current varies as the 3/2 power of the 

’Reference 4a, p. 180.
’The effect of the finite size of the anode aperture in Pierce electron guns has been 

considered by Danielson et al., Reference 4.7, who conclude that in a typical case the 
focal length given by the above expression should be divided by about 1.1.
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anode voltage. Similarly, if the linear dimensions of an electron gun are 
scaled by a constant factor, the same beam current is obtained for the same 
applied anode voltage, and the beam dimensions scale with the other 
linear dimensions of the gun, provided space-charge-limited conditions 
prevail.

The ratio of beam current to (beam voltage)3'2 is a constant for any 
particular electron gun design over the range of beam currents for which 
space-charge-limited conditions prevail. The ratio is known as the per­
veance of the gun and is a measure of the amount of beam current the gun 
can generate for a given applied voltage. If two guns have the same geome­
try, but differ in their linear dimensions by a constant factor, they both 
have the same perveance.

Fig. 4.5-4 Beam current density vs. radial distance from the axis at the point of 
minimum beam diameter for the electron gun illustrated in Figure 4.5-1 (a).

The effects of thermal velocities in Pierce electron guns have been con­
sidered by Cutler and Hines,8 and later by Danielson et al.9 The parameters 
that apply to the beam at its point of minimum diameter have been sum­
marized in a family of curves by Herrmann.10 Data concerning the distribu­
tion of current density across the beam cross section, the size of the beam at 
its point of minimum diameter, and the location of the point of minimum

’Reference 4.8.
’Reference 4.7.
“Reference 4.9. See also Reference 4.10. 
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diameter with respect to the anode aperture can be obtained by reference to 
the papers by these authors. Figure 4.5-4 shows the calculated current 
density vs. radial distance from the beam axis at the point of minimum 
beam diameter for the electron gun illustrated in Figure 4.5-1 (a). The 
curves given by Herrmann also indicate that a nonthermal electron emitted 
from the edge of the cathode of this electron gun would arrive at the plane 
containing the minimum beam diameter at a radius of 0.045 cm from the 
axis. Notice that Figure 4.5-4 indicates that some of the thermal electrons 
are far beyond this radius when they reach the plane of minimum beam 
diameter. The beam radius at the cathode is 0.24 cm.

A measure of the distribution of transverse velocities in the beam at the 
point of minimum diameter can be obtained by assuming that the radial 
fields acting on the beam between the cathode and the point of minimum 
diameter are directly proportional to distance from the beam axis.11 We 
then can use Equation (4.4-23) to express the probability that an electron 
at the point of minimum diameter has transverse velocity in the range ut to 
Ui + dut as

dP(ut) = (4.5-4)
Kl \ Tc /

where rc is the beam radius at the cathode, and rmin is the beam radius at the 
point of minimum diameter. This result is sometimes interpreted by saying 
that the effective “temperature” of the beam generated by the gun is 
Wrmin)2?1. For the gun shown in Figure 4.5-1 (a) and for a cathode temper­
ature of 1000°K, we can obtain a first-order estimate of the beam tempera­
ture at the point of minimum diameter by setting rc = 0.24 cm and rmin = 
0.045 cm, or the minimum distance from the beam axis to the trajectory of a 
nonthermal electron emitted from the edge of the cathode. The resulting 
beam temperature is (0.24/0.045)2 X 1000 = 28,000°K.

The high transverse velocities in a beam generated by a convergent elec­
tron gun increase the difficulty of focusing the beam by any of the several 
methods described in Section 3.4. Higher focusing fields are required to 
confine the beam to a given diameter than would be predicted by simple 
theory which assumes laminar electron flow.

In most convergent electron guns, the total beam current determines the 
cathode area. On the one hand, the cathode emitting surface is character­
ized by a maximum emission current density consistent with long life of the

“This assumption implies that the beam current density is uniform over the beam 
cross section. However, from Figure 4.5-4 it is evident that, in fact, the beam current 
density at the point of minimum diameter falls off rapidly from a radius about equal to 
one third the beam radius. Consequently, the estimate of the beam temperature which 
follows Equation (4.5-4) can only be considered as a first-order estimate. 
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emitter, so that the total beam current determines the minimum cathode 
area consistent with long cathode life. On the other hand, a larger cathode 
area than necessary would be wasteful of heater power, and the transverse 
velocities in the beam for a given minimum beam diameter would be un­
necessarily high.

Some reflex klystron oscillators require high-current, high-current- 
density beams at relatively low voltages, often a few tens of milliamperes at 
a few hundred volts. Electron guns which produce these beams are of much 
higher perveance than the gun illustrated in Figure 4.5-1 (a). One way to 
increase the perveance of an electron gun is to reduce the anode-to-cathode 
spacing. This, in turn, necessitates opening the anode aperture in order to 
pass the beam. However, it is found that, if the diameter of the anode 
aperture approaches half the anode-to-cathode spacing, the potential at the 
center of the aperture falls sufficiently below anode potential that the spher­
ical diode is no longer approximated. In this case, the current density 
drawn from the edge of the cathode is greater than that drawn from the 
center of the cathode, and spherical aberration in the accelerating field 
introduces relatively high transverse velocities in the beam. Furthermore, 
it can be shown that, if the ratio rc/fx = (radius of cathode emitting surface 
measured from the center of curvature of the emitting surface)/(distance 
from anode aperture to the center of curvature of the cathode emitting 
surface) is reduced below 1.4, the lens at the anode aperture becomes suffi­
ciently strong that the beam beyond the anode is divergent.

Higher perveance also can be obtained by maintaining a relatively large 
fclra and by increasing the angle of convergence (i.e., the angle subtended 
by a diameter of the cathode at the center of curvature of the cathode 
emitting surface). This is the approach used in the electron gun shown in 
Figure 4.5-1 (b). The angle of convergence in this case is 145 degrees, or 
nearly 6 times that of the gun shown in Figure 4.5-1 (a). However, the 
anode aperture is still relatively small, and, in fact, the anode is shaped to 
follow the beam contour. Although an appreciably higher perveance is 
obtained in this manner, spherical aberration in the accelerating field causes 
many of the electrons emitted from the edge of the cathode to cross the axis 
of the beam near the point of minimum diameter. As a consequence of this, 
the electron flow is far from laminar, and the transverse velocities are large. 
The beam is therefore difficult to confine with a magnetic field. The use of 
even higher angles of convergence would lead to still greater transverse 
velocities, and few applications could use such a gun.

Figure 4.5-5 shows a plot of beam current vs. anode voltage for the gun 
shown in Figure 4.5-1 (b). The plot is made on “two-thirds power” paper in 
which the ordinate scale is proportional to the 3/2 power of linear distance 
measured up the page from the origin, while the abscissa scale is linear. The



DIODES AND ELECTRON GUNS 143

Fig. 4.5-5 A plot of beam current vs. anode voltage for the gun shown in Figure 
4.5-1(b).

straight-line relationship between I ao and Vao, when plotted on this paper, 
implies that Iao is proportional to Fa»3'2, as we would expect from our earlier 
discussion.

Figure 4.5-1 (c) illustrates an electron gun which is used in a low-noise 
traveling-wave amplifier. The gun is operated in a uniform axial magnetic 
field of 0.06 weber/meter2, and the electron motion is similar to that de­
scribed in Section 3.4(b) under the heading of Confined Flow. Several 
apertured accelerating electrodes are provided. The potentials of these 
electrodes are adjusted to minimize the amplitude of noise signals excited in 
the electron beam by statistical fluctuations in the electron emission veloci­
ty and current at the cathode. (The reduction of noise in an electron beam 
by this method is described in Chapter 13.) The uniform axial magnetic 
field might be provided by the permanent magnet circuit illustrated in 
Figure 1.5-6.

The cathode of the gun illustrated in Figure 4.5-l(c) is planar and of 
diameter 0.63 mm. A beam current of 0.5 milliamp is drawn from the 
cathode, and the cathode current density is 160 ma/cm2. As the beam 
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leaves the cathode, its diameter shows a slight increase because of transverse 
emission velocities and radial fields in the accelerating region. However, 
the axial magnetic field confines the beam diameter sufficiently that the 
beam can pass through a helix-type slow wave circuit of inside diameter 
1.3 mm and length 13 cm with less than 0.5 microamp interception.

b. Electron Guns for Cathode-Ray Tubes and Storage Tubes

These electron guns focus the beam to a crossover which is imaged onto 
the screen or storage surface by a lens beyond the crossover. Often an 
apertured electrode between the crossover and the lens passes only the 
central portion of the beam, so that the effects of aberrations in the gun and 
lens are small.

Generally the beam currents incident upon the screen or storage surface 
are lower than those used in microwave tubes. Storage tubes that make use 
of secondary emission from insulating materials often employ beams of a 
few microamperes at one or two thousand volts; cathode-ray tubes fre­
quently employ beam currents of a few tens of microamperes at several 
thousand volts, perhaps 2 to 6 thousand volts; whereas the beam incident 
upon the screen of a television tube often amounts to a few hundred micro­
amperes at 15 to 20 kv.

Fig. 4.5-6 A triode electron gun such as is used in a cathode-ray tube or storage 
tube.
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The crossover is formed by a “triode” system consisting of a cathode, a 
“grid,” and an anode, the grid and anode each having a single aperture. 
Such a structure is illustrated in Figure 4.5-6. The grid is always biased 
negatively with respect to the cathode, and consequently the current drawn 
from the cathode comes from a small circular area opposite the grid aperture. 
Equipotentials plotted in the figure show that electrons passing through the 
grid aperture experience a field which is both accelerating and convergent. 
The convergent field causes the nonthermal electrons to cross the axis 
between the cathode and the anode, and in this way the crossover is formed. 
Beyond the anode, the paths of the thermal electrons emitted from a single 
point on the cathode cross one another, and an image of the cathode is 
formed. The system is sometimes called an immersion lens, since the 
cathode is “immersed” in the accelerating field.

In the region of the crossover, the beam diameter reaches a minimum. 
The size of the minimum beam diameter is affected by three principal 
factors: Thermal emission velocities at the cathode, the accelerating po­
tential, and aberrations in the convergent field which forms the crossover. 
Space charge may also affect the beam diameter at the crossover if the beam 
current is high and the beam voltage is low. If the convergent field were 
aberration-free, and if space-charge effects were small, the nonthermal 
electrons emitted from all parts of the cathode surface would cross the axis 
at essentially the same point. In this case, we might further assume that a 
thermal electron passing the crossover would be displaced from the axis by a 
distance proportional to its initial transverse velocity and independent of its 
point of emission on the cathode. Suppose that an electron emitted from 
the cathode with transverse velocity equal to \kT/m were displaced a 
distance a from the axis by the time it reached the crossover. Then, using 
the arguments presented in connection with Equations (4.4-2) and (4.4-3), 
it is easily shown that the current density in the region of the crossover 
would be proportional to e~rll2°z, where r is the distance from the axis to the 
point where the beam current density is determined. If the lens system 
beyond the crossover is aberration-free, and if the beam is focused to a 
second crossover at the screen, the current density incident upon the screen 
is also of this form, but with a a increased by the magnification of the lens.

If the grid is made sufficiently negative, the beam current is cut off. 
Clearly the cutoff condition will prevail when the off-cathode potential 
gradient at a point on the cathode surface directly opposite the center of the 
grid aperture is zero or negative. Figure 4.5-7(b) shows a plot of the grid 
cutoff voltage vs. anode voltage for the triode shown in Figure 4.5-7(a). 
The straight-line relationship can be explained by noting that the net off- 
Cathode potential gradient is a superposition of that caused by the grid and 
that caused by the anode, so that doubling the anode voltage requires 
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double the grid voltage in order to keep the off-cathode potential gradient at 
the center of the cathode equal to zero. The slope of the line, of course, is 
dependent upon the electrode dimensions and spacings.

The difference between the applied grid voltage and the cutoff voltage is 
called the grid drive voltage. As the grid is made more positive than cutoff, 
the area of the region of the cathode from which current is drawn increases, 
and the current density drawn from regions of the cathode surface which are 
already contributing to the beam current increases. Figure 4.5-7 (c) shows

(b) (c)
Fig. 4.5-7 Plots of grid cutoff voltage vs. anode voltage and beam current vs. 

grid drive for the triode gun structure shown in part (a) of the figure.
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a plot of beam current vs. grid drive voltage for the triode shown in Figure 
4.5-7(a). The slope of the straight-line relationship indicates that the beam 
current of this structure increases as about the 2.4 power of the grid drive 
voltage over the range of values for which the data are plotted.

Many experimental data concerning relationships between design param­
eters and the electrical performance of electron guns for cathode-ray tubes 
and storage tubes are presented in an informative paper by Hilary Moss.12

PROBLEMS

4.1 For the conditions of applied anode voltage and cathode emission illustrated 

in Figure 4.1-1 (d), show that the time taken for an electron to travel from the 

cathode to the anode of a planar diode is 3/2 as great as the time taken when no 

space charge is present. Assume zero emission velocity and dV/dx = 0 at the 
cathode.

4.2 The 3/2 power law of anode current vs. anode voltage does not apply to a 

diode operating under temperature-limited conditions. Explain why the arguments 

presented in Section 4.2 are not applicable in this case.

4.3 The figure shows a beam of electrons which is convergent upon the point F. 
The trajectories of several nonthermal electrons and one thermal electron are shown 
in the figure. The beam current density is assumed to be small, and no external 

fields are applied in the region of the beam. From geometrical considerations show 

that the thermal electron crosses the nonthermal electron trajectories with a trans­

verse component of velocity which varies inversely as the beam diameter, and hence 

that

ri dtUti — ~ Uti = — Utidt

12Reference 4e.
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where uo and ua are, respectively, the transverse velocity of the thermal electron 
relative to the nonthermal electron trajectories at the points where the beam diam­

eter is di and d2, respectively.
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Chapter 5

GRID-CONTROLLED TUBES — 
STATIC CHARACTERISTICS

If a grid is placed in front of a thermionically emitting cathode and if the 
current drawn from the cathode is space-charge-limited, the voltage applied 
to the grid can be used to control the current drawn from the cathode. A 
triode vacuum tube consists of a cathode, a control grid, and an anode. 
Usually, a de bias voltage is applied to the control grid to make it negative 
with respect to the potential minimum and thereby reduce the interception 
of the electron beam by the grid. By superimposing a small ac signal on the 
de bias voltage, the beam current can be modulated with little expenditure 
of power. AC power amplification is then obtained by causing the ac cur­
rent flowing in the anode circuit to pass through a load resistance or im­
pedance of suitable size.

Additional grids also may be inserted between the control grid and anode. 
Generally, these are held at fixed potentials, but in some cases their control 
action on the beam is used to mix signals from independent sources. A 
tetrode has a control grid and a screen grid, whereas a pentode has a control 
grid, a screen grid, and a suppressor grid.

Usually the screen grid in a tetrode is biased at a fixed positive potential 
with respect to the cathode. Its shielding action between the anode and 
control grid reduces the capacitance between these electrodes and hence the 
coupling between the output circuit and the input circuit. In addition, the 
current reaching the anode of a tetrode is determined largely by the voltages 
applied to the control grid and screen grid and is nearly independent of 
anode voltage over a wide range of positive anode voltages. This is an ad­
vantage when high-voltage amplification per stage is required.

Many tetrodes are constructed with a large spacing between the screen 
grid and anode so that space charge in the interelectrode space will depress 
the potential between the electrodes and prevent secondary electrons 

149
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emitted from one electrode from reaching the other. The large spacing also 
reduces the output capacitance of the tube, and this is an advantage in 
high-gain, broadband amplifiers.

In the pentode, the supressor grid is inserted between the screen grid and 
anode. It is of a very coarse mesh, and usually it is biased at cathode 
potential. The suppressor grid depresses the potential between the screen 
grid and anode and thereby prevents secondary-electron exchange between 
these electrodes.

In the present chapter we consider the de behavior of triodes, tetrodes, 
and pentodes. The mechanical construction and performance of one ex­
ample of each of these tubes is described. In Chapter 6 the use of grid- 
controlled tubes in simple low-frequency amplifier circuits is described, and 
in Chapter 7 the problems and limitations of grid-controlled tubes when 
operated at very high frequencies are discussed.

As in the previous chapter, we shall use the subscript o to designate de 
electrode voltages and currents. Thus Vao and Ia0 are the de anode voltage 
and current.

5.1 A Particular Triode and its Electric Field in the Absence of 
Space Charge

In this section we first describe the electrode geometry and construction 
of a particular triode, the Western Electric 417A. Then we consider the 
electric fields in the interelectrode space of this tube when various potentials 
are applied to the electrodes, and when no space charge is present. The 
electrical characteristics of the 417A with space-charge-limited operation 
are described in Section 5.2.

The construction of the 417A is shown in Figure 5.1-1. This is an example 
of a triode in which the grid is mounted very close to the cathode to increase 
the effectiveness of the grid voltage in controlling the current reaching the 
anode. The tube is used in the input stage1 of a broadband amplifier which 
amplifies signals with frequencies varying from 58 to 90 Mc/sec.

Table 5.1-1 summarizes the important dimensions of the 417A electrodes. 
The cathode area is 0.38 cm2.

The cathode consists of a short length of nickel tubing that is flattened to 
provide two planar emitting surfaces. The wall thickness of the tubing is

’Actually two tubes are used in a “cascode” stage. Triodes are preferred for the 
input stages of high-gain amplifiers because they generate less noise than tetrodes and 
pentodes. Since the noise generated by the input stages is amplified by all the remaining 
stages, the noise output of a high-gain amplifier is much reduced by using low-noise 
tubes in the input stages.
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Fig. 5.1-1 The construction of the Western Electric 417A triode. The overall 
height of the tube is 4.4 cm.

Table 5.1-1
Millimeters

Grid wire diameter................................................................................................................................ 0.0074

(or 0.00029 inch)

Grid pitch, P (or center-to-center spacing of the grid wires)..................  0.065

Cathode-to-grid spacing, dct........................................................................................................ 0.045
Cathode-to-anode spacing, dca................................................................................................... 0.58

0.075 mm. A “double-carbonate” oxide coating is applied to the emitting 
surfaces.

The grid is made by winding tungsten wire onto a molybdenum frame and 
then brazing the wire to the frame with a small amount of gold. The high 
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tensile strength of tungsten permits winding the grid wire onto the molybde­
num frame while it is under appreciable tension.2 This ensures that the 
resonant frequency of the grid wires is high and minimizes the tendency for 
mechanical excitation when the tube is vibrated. Vibration of grid wires in 
grid-controlled tubes is a principal source of “microphonics.” After brazing 
the grid wires to the frame, the grid assembly is gold plated to raise its work 
function. This reduces thermionic emission from the grid wires, which 
would otherwise take place when the grid is heated by thermal radiation 
from the cathode.3

The anode, or “plate,” of the 417 A is made of nickel which is coated with 
fine carbon particles in order to increase the heat radiation from the outer 
surface and thereby reduce the anode operating temperature. Under 
typical operating conditions, a power of 3.5 watts is dissipated in the anode, 
and the anode temperature is between 500° and 600°C.

Let us consider now the potential obtained in the interelectrode space of 
the 417 A when various voltages are applied to the electrodes and when no 
space charge is present. It is convenient to think of the potential as being a 
linear combination of two separate potential functions, which we shall 
denote Fi(x,y,z) and F2(x,y,z). Fi(x,y,z) is the potential obtained in the 
interelectrode space when the grid is at +1 volt, and the cathode and anode 
are at ground potential. F2(x,y,z) is the potential obtained when the anode 
is at +1 volt and the grid and cathode are grounded. Clearly the functions 
Fi and F2 satisfy Laplace’s Equation, and so does any linear combination of 
them. In particular, the linear combination given by V(x,y,z) = VgoFi + 
VO0F2 satisfies the boundary conditions for the case in which the cathode is 
at ground potential, and the grid and anode are at Vgo and Vao volts, re­
spectively. Since it also satisfies Laplace’s Equation, it must be the poten­
tial function actually obtained with these boundary conditions.

Let us look more closely now at the functions Fi and F2. Figure 5.1-2(a) 
shows a plot of equipotential contours of the function Fi in a portion of the 
interelectrode space of the 417A.4 Figure 5.1-2(b) shows plots of Fi along 
two lines running from the cathode to the anode; one line passes through 
the center of a grid wire, and the other passes midway between grid wires. 
Figures 5.1-2(c) and (d) show similar plots for the function F2.

’About half the breaking tension of the tungsten wire is used.
’Grid emission tends to bias the grid in the positive direction. This increases the 

beam current and the power dissipation in the tube, which in turn raises the grid operat­
ing temperature and further aggravates the situation. In an extreme case, with a very 
high resistance in the grid circuit, a tube with high grid emission can be destroyed by 
excessive power dissipation in its electrodes.

’Plots such as this can be made with the aid of an electrolytic tank. See, for instance, 

Reference 4a, p. 180. Analytic expressions for Fi and F, are given in Reference 5.1, 
Equations 1 to 4. Approximate expressions are derived in Appendix IX.
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Fig. 5.1-2 Plots of the functions Fi and F2 for the interelectrode space of the 417A.

At the cathode the function Fx has a slope of 176 volts/cm for the 417A, 
whereas the function F2 has a slope of 3.8 volts/cm. The ratio of these 
electric fields is called the electrostatic amplification factor and is desig­
nated He,. Thus

dFx

Me« dP2
dx x»o 
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where x measures distance in the direction normal to the cathode and is zero 
at the cathode. For the 417A, pea = 176/3.8 = 46.

The electrostatic amplification factor measures the relative effectiveness 
of the grid and anode in creating an electric field at the cathode surface. In 
fact, a second definition of which follows directly from Equation (5.1-1) 
is that m«« is minus the ratio of the anode voltage to grid voltage which gives 
zero electric field at the cathode. Finally, since electric fields can be super­
posed, we can write

_ _dVao I
Mes jrr

Or go (constant electric field at the cathode
(5.1-2)

where dVaa and dVgo are incremental changes in the anode and grid voltages 
which give zero change in the electric field at the cathode.

Figure 5.1-3 shows plots of V = VQaFi + 7»^ in the region of the 
cathode and grid of the 417A for an anode voltage of 100 volts and three 
values of Vg„. For the particular geometry of this tube, a grid voltage of 
— 2.2 volts gives nearly zero electric field at the cathode. Using the second 
definition of the electrostatic amplification factor, given above, we find that 

= 100/2.2 = 45.5, or approximately 46, in agreement with the value 
previously obtained using Equation (5.1-1). If the grid voltage is changed 
by 1 volt with constant anode voltage, the electric field at the cathode 
surface changes by

dF, 
dx

= 176volts/cm

Thus, we can expect that the control action of the grid voltage upon the 
current drawn from the cathode with space-charge-limited operation will be 
considerable.

From the foregoing discussion it is evident that the electrostatic amplifi­
cation factor is entirely a function of the geometry of the electrodes. In 
Appendix IX it is shown that an approximate expression for the electro­
static amplification factor of a planar triode is given by

P In 12 sm -p- 
(5.1-3)

where dga is the grid-to-anode distance, P is the grid pitch, and R is the 
grid-wire radius. The expression is valid when the cathode-to-grid spacing 
dcg > P and when R < P/20. The electrostatic amplification factor is 
independent of the area of the electrodes, but it increases as the grid-to- 
anode distance is increased. It also increases if the grid-wire radius and 
grid pitch are decreased in such a manner that the ratio of wire radius to 
Fig. 5.1-3 Plots of V = U^Fi + UO»F2 in the region of the cathode and grid of the 

417A for Vac = 100 volts and Vg. = —3.4, —2.2, and —1.0 volts.
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pitch is maintained constant. (The ratio 2R/P is sometimes called 
the screening fraction of the grid because it indicates the fraction of the 
electrode area which is screened or shadowed by the grid.) Note that 
Equation (5.1-3) indicates that is independent of the cathode-to-grid 
spacing. Also given in Appendix IX are expressions for the functions Fi 
and Ft which are valid when dcg > P and when R < P/20.

Since V = + FOOF2, we can express the gradient of potential in
the x direction as

SF _ v dFi „ 9Ft 
dx ~ 00 dx a°dx

(5.1-4)

At the cathode, the potential gradient is therefore given by

dV I _ dFi I / y UÀ 
dx |I=o “ dx Uv aD± (5.1-5)

Thus the off-cathode field in the absence of space charge is proportional to 
the voltage (Vgo + Va0/pes). We shall find in the next section that the 
electrical behavior of a triode in the presence of space charge is dependent 
upon a voltage which is very nearly equal to (Vgo + Va0/pea).

5.2 The Triode with Space Charge

Grid-controlled tubes are almost always operated with the current drawn 
from the cathode space-charge-limited since only then is it possible for the 
grid to act effectively as a control electrode. If the cathode emission were 
ideally temperature-limited, the current drawn from the cathode would be 
independent of the grid voltage for all grid voltages at which temperature­
limited emission prevailed.

Figure 5.2-1 shows the grid and anode “characteristic curves” for the 
417A triode. These curves give the relationship between the current reach­
ing the anode and the voltages applied to the grid and anode. The grid of 
the 417A is generally “biased” negatively with respect to the potential 
minimum to prevent it from intercepting the electron beam.

The circuit designer is frequently concerned with the small-signal behav­
ior of the active devices in his circuits and consequently with the slopes of 
the curves relating the currents reaching the terminals of a device to the 
voltages applied between the terminals. In the case of the triode, the small­
signal behavior of the tube can be described in terms of the slopes of the
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Fig. 5.2-1 The grid and anode characteristic curves for the 417A triode.

characteristic curves. Two parameters which are derived from these slopes 
are the transconductance and the dynamic anode resistance, or dynamic 
plate resistance. The transconductance is denoted by5 gm and is defined as

_ dlgo I _ dlao
9m ~ “ dV7o (5.2-1)

’Sometimes by Sm.
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where Iao is the de anode current. The dynamic anode resistance, denoted 
by ra, is defined as

_ dVgo I _ dV go 
° dlao dlao

(5.2-2)

Fig. 5.2-2 The transconductance, the dynamic anode resistance, and the ampli­
fication factor of the 417A triode as a function of the grid voltage and anode voltage.
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(5.2-4)

(5.2-5)

(5.2-6)

The product of gm and ra is called the amplification factor and is denoted by p. 
Thus

M = g^a (5.2-3)

The amplification factor also can be expressed in differential form, similar 
to the expressions given above for gm and ra. Suppose that Veo and Vao 
undergo differential changes d Vo„ and d Vao at a time when the tube is draw­
ing anode current Iao- The resulting change in anode current is given by

+ TfT™" u r go & r ao

= gmdVgo -|---- dVao 
Ta

Now if dV00 and dVao are such that dlao = 0, then 

n r - 9m

and hence 
=

The amplification factor g is usually approximately equal to the electro­
static amplification factor g«. Comparison of Equations (5.1-2) and (5.2-6) 
makes this approximate equality seem reasonable.

Figure 5.2-2 shows plots of the transconductance, the dynamic anode re­
sistance, and the amplification factor of the 417 A for various values of grid 
voltage and anode voltage. Evidently the transconductance increases with 
increasing anode current, the amplification factor is nearly independent of 
anode current, and the dynamic anode resistance decreases with increasing 
anode current. Typical operating conditions for the 417A are given in 
Table 5.2-1.

Consider the dependence of the anode current on the electrode potentials. 
It is found experimentally that an approximate expression for the current 
drawn to the anode of a triode is

ho = + (5-2-7)

where C and n are constants. Values of n generally lie between 3/2 and 2, 
but in some cases may be as high as 5/2. The expression is found to hold 
even for small positive grid voltages, provided the anode voltage is much 
greater than the grid voltage. The dependence of the anode current upon 
the voltage Vgo + Vao/u is perhaps not surprising, since we found in the 
last section that the off-cathode field in the absence of space charge is pro-



TABLE 5.2-1 SOME CHARACTERISTICS OF TUBES DESCRIBED IN CHAPTERS 5 AND 7

417A 
Triode

416B 
Triode

448A 
Tetrode

1983
Tetrode

350B
Beam Power 

Tetrode

403A/6AK5 
Pentode

(a)

Anode Voltage, volts 130 200 125 300 250 120

Anode Current, milliamperes 27 30 25.5 40 62 7.5
Anode Power, watts 3.5 6.0 3.2 12 15.5 0.9

(b)

Screen Grid Voltage, volts — — 125 200 250 120
Screen Grid Current, milliamperes — - 9.0 5 7 2.5
Screen Grid Power, watts - - 1.1 1.0 1.7 0.3

(c) Control Grid Bias, volts -1.2 -0.1 -1.1 -0.8 -18 -2.0

(d)

Transconductance gm, micromhos 25,000 60,000 34,000 45,000 6,900 5,000
Dynamic Anode Resistance ra, ohms 1,700 5,000 32,000 - 18,000 300,000
Amplification Factor /* 43 300 1100 - 124 1500

(e)

Cathode Area A, cm’ 0.38 0.164 0.86 0.164 3.6 0.18
Cathode Current Density, milliamperes/cm’ 71 180 40 270 19 56
Transconductance Per Unit Area of 

Cathode gm/A, micromhos/cma 66,000 370,000 40,000 280,000 1,900 28,000

(f)

Cathode-Control Grid Spacing, millimeters 0.045 0.018 0.060 0.030 0.56 0.077
Input Capacitance (Operating) C() pf - - 23 13.6 - 6.4

Output Capacitance Co, pf * 1.8 1,4 2.1 1.3 8.0 2.0
Gain-Bandwidth Product With 

Single Tuned Circuit Between Stages

24Co+Ci) >me9acycles
- - 215 480 - 95

(9) Cathode Lead Inductance, millimicrohenries - - 4 0.7 - -

PRIN
CIPLES O

E ELECTRO
N TU

BES

* I picofarad » IO"12 farad.
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portional to Vgg + Vao/pe„ and we have noted in the present section that 
M = Mw

In a triode in which the grid is well beyond the region of the potential 
minimum, the anode and grid combine to create a field on the grid side of 
the potential minimum which is approximately proportional to Vgo + Vao/p. 
For such a triode we would expect from the discussion given in Section 4.2 
that a value of n equal to 3/2 would be applicable in Equation (5.2-7), and 
the anode current would vary as (Vg0 + Uao/p)3'2.

The constant C in Equation (5.2-7) can be evaluated for a planar triode 
in which n = 3/2 in the manner outlined below. Let us first assume that 
the grid is removed and the tube is operated as a space-charge-limited diode. 
From Equation (4.1-9) the current drawn to the anode would be

V w Ia„ = 2.33 X lO-'-^j-A 
Uca

(5.2-8)

where dca is the distance from the potential minimum to the anode, and A is 
the cathode area. Solving for Vao, we obtain

” [2.33 X 10-«A
|2/3

d 4/3 Uca (5.2-9)

Next let the grid be inserted at a distance deg from the potential minimum, 
and let the applied grid voltage be that which was present in the beam at the 
same location before the grid was inserted. A plot of the potential distribu­
tion between the potential minimum and the anode for these conditions is

Fig. 5.2-3 The potential distribution in a space-charge-limited triode with the grid 
at beam potential.
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shown in Figure 5.2-3. The applied grid voltage under these circum­
stances is given by

V * go
J I2/3 la° R 4/3

2.33 X 10~6aJ ca (5.2-10)

With the grid at the potential of the surrounding beam, some of the beam 
current is intercepted by the grid wires. However, if the grid-wire diameter 
is much smaller than the grid-wire spacing, this interception will be a small 
part of the total anode current.

Substituting the above expressions for Vao and Vgo into Equation (5.2-7) 
and setting n = 3/2, we obtain

r T d 4/3T3/2= ^2.33 X°°1O-UK + f J (5-2’n) 

from which

C = r2'33 (5.2-12)

Lg^ + —

Finally, the anode current can be expressed as

I ao
2.33 X 1Q-6A(7C„ + Vao/^2

3/2 (5.2-13)
d 2 ^cg

This last equation states that the current density drawn from the 
cathode of a planar triode is the same as would be drawn by a planar diode 
having a cathode-to-anode distance of

and an applied anode voltage of Vg0 + Vao/n- Replacing

dcg 1 +

by de, where de is called the equivalent diode spacing of the triode, Equation 
(5.2-13) becomes Iao = 2.33 X 10-6A (Vgo + Vao/n)3/2/de2. The distance 
de is a function of the tube dimensions only; it is always greater than dcg 
and frequently less than 2dcg.

As the grid is moved closer to the cathode, the potential Vgo + Vao/p 
affects not only the electric field on the anode side of the potential minimum, 
but it affects the potential at the minimum. The dependence of the anode 
current upon the voltage Vgo + Va0/p then increases, and accordingly the
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exponent n in Equation (5.2-7) increases. For many “close-spaced” 
triodes, that is, triodes with small dcg, n is more nearly equal to 2 than 3/2. 
Figure 5.2-4(a) shows a plot of Iao vs. (Vg„ + Vao/p) for the 417A triode. 
From the figure it can be seen that a value of n equal to 2 is appropriate for
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Fig. 5.2-4 Plots of IM vs. (Vg0 + Va„/y) for the 417A triode and the 300B triode.

this tube. Figure 5.2-4(b) shows a plot of Zoa vs. (Vgg + Vag/p) for the 
Western Electric 300B triode in which the cathode-to-grid spacing is ap­
proximately half the cathode-to-anode spacing. Clearly, n = 3/2 is ap­
propriate for this tube.

To determine the relative positions of the grid plane and the plane of the 
potential minimum in the 417A, we have plotted in Figure 5.2-5 the poten­
tial in a planar diode in which a current density of 0.071 amp/cm2 passes 
the potential minimum.6 Such a current density might be typical of that 
passing the potential minimum in the 417A. A cathode emission current 
density of 0.5 amp/cm2 and a cathode temperature of 1025°K are assumed. 
The position of the grid wires in the 417A is shown in the figure. The plane 

6The method for obtaining the potential plot is described in References 5.2 and 5.3.
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of the grid wires is about three times as far from the cathode as the plane of 
the potential minimum. Of course, the potential on the grid side of the 
potential minimum in the 417 A would be much different from that shown 
by the dashed curve in Figure 5.2-5, because the grid bias voltage depresses

Fig. 5.2-5 The potential in a planar diode in which the current density passing 
the potential minimum is typical of that used in the 417A.

the potential in the region of the grid wires, and the potential midway 
between grid wires is much higher.

From Figure 5.1-3 it is evident that in the absence of space charge the 
potential over a plane which lies one third of the way out from the cathode 
to the grid wires is not uniform. Consequently, when space-charge-limited 
conditions prevail, we would expect the potential at the potential minimum 
would be slightly higher at points opposite the center of the opening be­
tween grid wires than directly under the grid wires. This means that the 
current passing the potential minimum is lower directly under the grid 
wires, and, if the grid voltage is made increasingly negative, the current 
passing the potential minimum will first cut off directly under the grid 
wires. This phenomenon is called Inselbildung or “island building.” Some 
consequences of Inselbildung are described in Reference 5.1. Inselbildung 
effects become particularly important when small grid-to-cathode spacings 
are used and when the ratio of grid pitch to grid-to-cathode spacing is large 
(of the order of 1 or greater).

In Chapter 6 it is shown that high transconductance is needed for high 
gain in an amplifier stage. Let us therefore proceed to examine what 
factors affect the transconductance of a tube. Clearly, the transconduct­
ance is directly proportional to the cathode area A. An expression for the 
transconductance can be obtained by differentiating Equation (5.2-7) with



GRID-CONTROLLED TUBES—STATIC CHARACTERISTICS 165

Fig. 5.2-6 Transconductance vs. cathode current density for the 417A triode.

respect to Vgo. Thus

al / V \n-i H Vn-D/n^ = fc = cV- + T) =Cn\t) <5-2-14)

Since both Iao and C are proportional to the cathode area A, gm is propor­
tional to A, as we would expect. Furthermore Iag = J A, where J is the 
current density drawn from the cathode. Consequently

gm cc (5.2-15)

For n = 3/2, gm oc J113, and for n = 2, gm oc J112. Figure 5.2-6 shows a 
plot of transconductance for the 417A triode vs. cathode current density. 
The normal operating point is marked with an X. In the neighborhood of 
this point it can be seen that gm is approximately proportional to Jw, 
whereas at lower current densities gm is proportional to a higher power of J.

The transconductance of a grid-controlled tube also increases as the 
distance between the grid and cathode is decreased, except at very small 
grid-to-cathode spacings, where Inselbildung effects become important. 
Figure 5.2-7 shows values of gm/JwA vs. dcg for several Western Electric 
tubes with small grid-to-cathode spacings and for a current density of 0.02 
amp/cm2. For most of these tubes, gm is approximately proportional to Jw 
at cathode current densities in the neighborhood of 0.02 amp/cm2. The 
points appear to be distributed about a line with slope —1, indicating that 
gm cc l/dcg.
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Fig. 5.2-7 Values of Gm/J^A plotted vs. dcg for several Western Electric tubes.

A theoretical upper limit to the transconductance that can be obtained 
from unit area of the cathode is reached when the grid is located at the 
potential minimum and when the grid wires and pitch are sufficiently small 
that the potential over the plane of the minimum is equal to that of the grid. 
From the discussion given in Section 2.4, it follows that the anode current 
under these circumstances is

Iao = JoAeeV“lkT (5.2-16)

where J0 is the cathode emission current density, A is the cathode area, and 
Vgo is the grid bias voltage, a negative number. By differentiating this with 
respect to VgO> we obtain

a = = T AMfcVaJkT _ e7qo /- 2.17-1
Qm dVga JoAkT kT ^.¿11)

Thus, in this theoretical upper limit of the transconductance of a grid- 
controlled tube, the transconductance is directly proportional to the 
current density J = Iao/A drawn from the cathode. (Note that J0 is the 
cathode emission current density, and J is the current density passing the 
potential minimum.) The ratio gm/Iaa is equal to 11,600/T1 mhos/amp.
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Figure 5.2-8 shows a plot of transconductance vs. grid-to-cathode spacing 
for the Western Electric 416B triode, described in Chapter 7 (Section 7.4). 
The transconductance reaches a maximum of 0.075 mho when the grid-to- 
cathode spacing is about 0.012 mm, and at still smaller spacings the trans-

Fio. 5.2-8 Transconductance vs. grid-to-cathode spacing for the 416B triode 
described in Chapter 7.

conductance falls because of Inselbildung effects. The anode current for 
each of the experimental points was 0.03 amp, and the cathode temperature 
was close to 1025°K. Using these values in Equation (5.2-17), we find that 
the theoretical maximum transconductance is 0.34 mho. This is about 4.5 
times the maximum observed transconductance, although the plane of the 
grid at maximum transconductance is approximately coincident with the 
plane of the potential minimum. It is probable that if a finer grid wire and 
smaller grid pitch were used, the theoretical maximum transconductance 
would be more nearly attained. However, the grid wire used in this tube is 
about as small as present technology permits.

In the 417A the grid is about three times as far from the cathode as the 
plane of the potential minimum. In consequence of this, the transconduct­
ance of the 417A is a still smaller fraction of the theoretical maximum. 
Typical values for the anode current and cathode temperature in the 417A 
are 0.027 amp and 1025°K. Substituting these values into Equation 
(5.2-17), we obtain a theoretical maximum transconductance of 0.31 mho, 
as compared with an actual transconductance of about 0.025 mho.

Since the plane of the potential minimum is always extremely close to the 
cathode, the control grid in most grid-controlled tubes is located well be­
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yond the potential minimum. However in high-performance tubes, high 
transconductance is achieved by moving the grid closer to the potential 
minimum, generally at the expense of more difficult assembly procedures 
and higher cost.

Two more parameters that affect the transconductance are the grid-wire 
diameter and the grid pitch. At small grid-to-cathode spacings, the trans­
conductance increases if both these quantities are reduced in such a manner 
that the screening fraction, or the ratio of the wire diameter to the pitch, is 
kept constant. An “open” grid structure, or small screening fraction, is 
usually desirable, since otherwise the beam current would be reduced, and 
the transconductance per unit area would be less. Often a pitch of between 
4 and 10 times the grid-wire diameter is used. In many close-spaced, high- 
performance amplifier tubes the grid-wire diameter is chosen to be as small 
as is practicable from the standpoint of mechanical fabrication of the grid 
structure, and the grid pitch is then set to obtain maximum transconduct­
ance per unit area of the cathode, having due regard for limits imposed by 
the available cathode current density, the available electrode voltages, and 
the permissible electrode heat dissipation.

The following points will summarize our discussion about the trans­
conductance of a triode:

1. The transconductance is directly proportional to the cathode area A.
2. The transconductance is proportional to a power of J which is of the 

order of 1/3 to 1/2 in practical cases.
3. The transconductance for a given J increases as the grid is moved 

closer to the cathode, until Inselbildung effects become important at very 
small grid-to-cathode spacings. When the grid is well beyond the potential 
minimum, the transconductance often varies approximately as l/dca.

4. At small grid-to-cathode spacings, the transconductance increases if 
the grid-wire diameter and pitch are reduced in such a manner that the 
screening fraction is kept constant.

The amplification factor is independent of the cathode area A, and it is 
almost independent of the cathode current density J (see Figure 5.2-2). 
Like the transconductance, the amplification factor increases if the grid­
wire diameter and pitch are reduced in such a manner that the screening 
fraction remains constant. The amplification factor also increases as the 
grid-to-anode distance is increased.

Figure 5.2-9 shows the values of m, 0™, and ra for a number of commercial 
and Western Electric grid-controlled tubes used in low-power amplifier 
applications. The code numbers of the Western Electric tubes begin with 
the numbers 3 and 4. Values of p for triodes typically vary from 5 to 100, 
values of gm vary from 0.002 to 0.05 mho, and values of ra vary from 102 to 
104 ohms.
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controlled tubes used in low-power amplifier applications.

D
YN

AM
IC

 AN
O

D
E R

ES
IS

TA
N

C
E,

Ta
, I

N
 OH

M
S



170 PRINCIPLES OF ELECTRON TUBES

5.3 Tetrodes and Beam-Power Tubes
(a) Tetrodes

In the tetrode, a second grid, known as the screen grid, is inserted be­
tween the control grid and anode. The screen grid is usually of a coarser 
mesh than the control grid and is operated at a fixed positive voltage with 
respect to the cathode. It serves three principal functions:

1. It reduces the capacitance between the control grid and anode and 
hence the coupling between the input circuit and the output circuit.

2. In Chapter 6 we show that the input capacitance of a grounded- 
cathode triode amplifier stage is given by Ccg + (1 + K)Cga, where Ccg is 
the cathode-to-grid capacitance, Cga is the grid-to-anode capacitance, and 
K is the voltage gain of the stage. Since K may be a fairly large number, a 
small capacitance between the grid and anode may cause considerable 
shunting of the input signal at higher frequencies.7 When a tetrode or 
pentode tube is used in a grounded-cathode amplifier stage, the shunting 
effect of the grid-to-anode capacitance is small, because Cga is small, and 
consequently much higher input impedances are possible.

3. Over a range of positive anode voltages the current reaching the anode 
of a tetrode is determined almost entirely by the voltages applied to the 
control grid and screen grid and is nearly independent of the anode voltage. 
This means that the dynamic anode resistance of the tetrode is high, and 
this is an advantage in obtaining high gain per stage. In Chapter 6, the 
gain of a simple amplifier stage without feedback is shown to be gmRiJ 
(1 + RL/Ta), where RL is the load resistance and ra is the dynamic anode 
resistance. (See Equation (6.3-7).) Clearly, high ra is desirable where high 
gain is needed.

Figure 5.3-1 shows a cross-sectional view of the Western Electric 448A 
tetrode. Figure 5.3-1 (c) shows a few of the grid wires and the relative 
spacings of the electrodes. Notice that the distance from the cathode to 
the screen grid in this tube is comparable with the distance from the cathode 
to the anode in the 417A. (See Figure 5.1-1 for comparison.) The 448A 
is used in a multistage amplifier which amplifies signals ranging in fre­
quency from 58 to 90 Me.

’Certain grounded-cathode triode circuits provide for “neutralization” of the grid- 
to-anode capacitance (Reference 5.4, p. 468), and much higher input impedances can 
be obtained. However, these circuits usually require careful adjustment of the circuit 
components in each stage if nearly complete neutralization is to be obtained. The 
grounded-grid circuit shown in Figure 6.3-5 has a much smaller capacitance between 
the anode and input circuit because the grid acts as an electrostatic shield. However, 

this circuit has a relatively low input impedance, of the order of l/gm in parallel with 
Rk. See Section 6.3.
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(C)
Fig. 5.3-1 The construction of the Western Electric 448A tetrode. The overall 

height of the tube is 4.8 cm.

The cathode of the 448A is a flattened nickel sleeve with a “double­
carbonate” oxide coating. The control-grid wires are made of tungsten 
which is gold plated to raise its work function and reduce grid emission. 
The screen grid is also made of tungsten, but the wires are coated with fine 
carbon particles to increase heat radiation and reduce the operating tem­
perature of the wires. The anode is made of carbonized nickel. The carbon­
izing increases the heat radiation from the outer surface and reduces the 
anode operating temperature. It also reduces secondary-electron emission 
from the anode.

Figure 5.3-2 shows the characteristic curves for the 448A. The screen­
grid voltage is indicated by Vlgo. Notice that the grid characteristics with 
Vao = Vae„ are quite similar to the grid characteristics for a triode. The 
anode characteristics show that Iao is nearly independent of Va„ over a
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Fig. 5.3-2 The characteristic curves for the 448A tetrode.
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range of positive anode voltages extending from well below screen-grid 
voltage to +200 volts or higher. Typical operating conditions for the 448A 
are given in Table 5.2-1.

Figure 5.3-1 shows that there is a large spacing between the screen grid 
and anode in the 448A. This serves two purposes:

1. With a large spacing, space charge between the screen grid and anode 
depresses the potential in the interelectrode space so that secondary 
electrons emitted from the anode are prevented from reaching the screen 
grid, and secondary electrons from the screen grid are prevented from 
reaching the anode. Without the potential depression, the current flowing 
in the anode circuit would be highly dependent on the relative voltages 
applied to the screen grid and anode, and the performance of the tube in 
an amplifier circuit would be seriously limited.

2. The large screen-anode spacing also reduces the output capacitance 
of the tube. The output capacitance is the capacitance between the anode 
and all other electrodes except the control grid. In Chapter 6 we shall find 
that a small output capacitance is desirable for tubes used in high-gain, 
broadband amplifiers.

Let us now look more closely at the potential between the screen grid and 
anode in the 448A. If we assume that the electron motion is normal to the 
plane of the electrodes and if edge effects are neglected, the potential be­
tween the screen grid and anode satisfies the one-dimensional form of 
Poisson’s Equation,

^ = -^ = (5.3-1)
dx2 so Zo^jV

where J is the beam current density passing through the screen grid, and x 
is the coordinate of the point at which V is determined. The potential V 
is measured relative to cathode potential, and the coordinate x is measured 
in the direction normal to the electrodes. Solutions of this equation cover­
ing four ranges of anode voltages Vaa are given in a paper by Fay, Samuel, 
and Shockley.8 Figure 5.3-3 shows plots of these solutions for conditions 
which apply to the screen-anode space of the 448A. The four solutions of 
Fay, Samuel, and Shockley are described under separate headings below:

Solution A. Vao < 0. In this case the potential decreases monotonically 
from the screen grid to the anode, but the shape of the potential is modified 
by the presence of space charge in the interelectrode space. At the point 
where the potential becomes negative, essentially all the electrons reverse

’Reference 5.5.
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Fig. 5.3-3 Solutions of Equation (5.3-1) for a screen-grid voltage of 125 volts, a 
screen grid-anode spacing of 5 mm, and a beam current density of 0.0268 amp/cm2. 
These are approximately the conditions that apply in the screen grid-anode space of 

the 448A tetrode under normal operating conditions.

the direction of their velocity and return to the screen grid. There is no 
space charge beyond this point. The anode current for this solution is, of 
course, zero.

Solution B. 0 < Va0 < Vi. Here the anode voltage is positive, but a 
“virtual cathode” with potential V = 0 exists between the screen grid and 
anode. Since the electrons are emitted from the true cathode with a range 
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of velocities, the faster electrons pass the virtual cathode and reach the 
anode, while the remaining electrons reverse the direction of their velocity 
at the virtual cathode and return to the screen grid. The fraction of electrons 
passing the virtual cathode is determined by the applied anode voltage. 
When Va0 = 0, essentially all the electrons are returned to the screen grid. 
As Vao is increased from zero, the fraction of electrons passing the virtual 
cathode increases until at some voltage 7i, all the electrons pass the virtual 
cathode, and the potential distribution suddenly changes to that of Solution 
C described below. (Note that 0 < Vao < Vi is a necessary but not suf­
ficient condition for Solution B to prevail, as discussed below.)

Solution C. V2 < Vau < 78. Here the anode voltage is positive, and 
space charge between the electrodes depresses the potential in the inter­
electrode space so that there is a plane of minimum potential at some point 
between the electrodes. The potential at the minimum is greater than 
zero and less than either the screen or anode potential. All the electrons 
passing through the screen grid reach the anode when this solution prevails.

If the anode voltage is increased from zero through the voltage 7i, the 
potential distribution changes abruptly from the “virtual-cathode” dis­
tribution of Solution B to the “potential-minimum” distribution of Solution 
C. If the anode voltage is then lowered through the voltage 7b Solution C 
prevails until some lower voltage V2 is reached. Lowering the anode voltage 
still further causes the potential distribution to change abruptly to the 
virtual-cathode solution. This “hysteresis effect” in which there are two 
possible solutions to the potential distribution in the interelectrode space 
for anode voltages between 7i and V2 can be observed in a number of 
tetrode vacuum tubes. Of course, the anode current is less than the full 
beam current when Solution B prevails.

The position of the plane of minimum potential of Solution C moves 
closer to the screen grid as the anode voltage is increased. When Va0 =73, 
the plane of the potential minimum coincides with that of the screen grid.

Solution D. Va0 > 73. Here the potential increases monotonically from 
the screen grid to the anode, and all the electrons reach the anode, as in 
Solution C.

In normal operation of the 448A, Solution C prevails. From Figure 
5.3-3 it can be seen that, when Vsg0 = Va0 = 125 volts, the potential 
minimum is about 18 volts below the screen and anode voltage. This po­
tential depression greatly reduces the exchange of secondary electrons 
between the anode and the screen grid.

There are several sources of error involved in the use of Equation (5.3-1) 
and the solutions of Fay, Samuel, and Shockley to obtain the potential in 
the interelectrode space of a tube such as the 448A. First, edge effects are 
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neglected. Second, many of the electrons that pass close to the screen­
grid wires as they enter the screen-anode space are deflected by strong 
local fields close to the screen-grid wires, so that the motion of these elec­
trons is certainly not entirely in the x direction. Finally, from Figure 
5.3-1 (b) it is evident that the spacing between the screen grid and anode 
of the 448A is comparable with the linear dimensions of the cathode of the 
448A, and consequently we would expect that the beam would spread as it 
travels between the screen grid and anode.

(6) Beam-Power Tubes

A second class of screen-grid tubes, known as beam-power tubes, also

i---------- 1------------ 1_______ i_______ i
0 I 2 3 4

SCALE IN MILLIMETERS

(C)
Fig. 5.3-4 The construction of the Western Electric 350B beam-power tube. The

overall height of the tube is 14 cm. 
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makes use of a large screen-anode spacing so that the space charge of the 
electron beam depresses the potential between the screen grid and anode, 
and secondary electrons from one electrode are prevented from reaching 
the other. Figure 5.3-4 shows the construction of the Western Electric 
350B beam-power tube. Notice that each screen-grid wire is directly 
opposite a control-grid wire. This construction greatly reduces the inter­
ception of the electron beam by the screen grid, since the negative bias 
on the control grid causes a “shadowing” of the screen-grid wires from the 
beam. In beam-power tubes an additional electrode, called a “beam­
forming electrode,” is located near the edge of the beam and held at cathode 
potential. This electrode also helps to depress the potential between the

Fig. 5.3-5 The grid and anode characteristic curves for the Western Electric 350B 
beam-power tube.
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screen grid and anode, but the principal cause of the potential depression 
in the region of the beam still arises from the space charge of the electron 
beam. The beam-forming electrode also prevents secondary electrons 
liberated from the anode from reaching the screen grid by means of paths 
outside the incident beam.

Typical operating conditions for the 350B are given in Table 5.2-1. The 
grid and anode characteristic curves for the 350B are shown in Figure 5.3-5. 
Note that the ratio of anode to screen-grid current is 8.9:1 for the 350B, 
whereas the same ratio for the 448A is 2.8:1.

The transconductance of a tetrode or beam-power tube is determined 
largely by the electrode geometry in the region between the cathode and 
the screen grid. However, it is reduced by the division of beam current 
between the screen grid and the anode. Often the interception of the beam 
current by the screen grid reduces the transconductance by 10 to 30 per 
cent over what it would be if the screen grid and anode were connected. 
The transconductance of the 350B is much lower than that of the 448A, 
principally because the 350B has a relatively large spacing between the 
cathode and control grid, and the distance between the control-grid wires is 
larger.

Figure 5.2-9 shows the p, gm, and ra of a number of tetrodes and beam­
power tubes. The transconductances of tetrodes and beam-power tubes fall 
in about the same range as those of triodes. However, the amplification 
factors of tetrodes are about an order of magnitude greater than those of 
triodes because of the shielding action of the screen grid.

5.4 Pentodes

Still another approach to the problem of eliminating the exchange of 
secondary electrons between the anode and the screen grid is that used in 
the pentode. Here a third grid, known as the suppressor grid, is inserted 
between the screen grid and anode. The suppressor grid is usually biased 
at cathode potential and therefore does not intercept any of the beam. Its 
pitch, or center-to-center wire spacing, is large, so that the potential at 
mid-point between grid wires is always well above cathode potential. In 
this way, most of the electrons that pass through the screen grid also pass 
through openings between suppressor-grid wires and travel on to strike the 
anode. However, the suppressor grid causes sufficient depression of the 
potential between the screen grid and the anode that it stops virtually all 
exchange of secondary electrons between these electrodes.

The pentode is by far the most widely used grid-controlled tube. Its 
advantages include high gain per stage and low grid-to-anode capacitance.
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The construction of the Western Electric 403A pentode is illustrated in 
Figure 5.4-1. The electrode structure of this tube is similar to that of the 
6AK5, a commercial code, and we shall refer to the tube as the 403A/6AK5 
in subsequent discussion. The suppressor grid is located relatively close to

SCALE IN MILLIMETERS 

(C)

Fig. 5.4-1 The construction of the 403A/6AK5 pentode. The overall height of the 
tube is 4.4 cm.

the screen grid to reduce the output capacitance. Figure 5.4-2 shows the 
characteristic curves of the 403A/6AK5. Typical operating conditions are 
given in Table 5.2-1.
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F iG. 5.4-2 The characteristic curves for the 403A/6AK5 pentode.
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As in the tetrode, the transconductance of a pentode is determined 
largely by the electrode geometry in the region between the cathode and 
the screen grid and is reduced by the division of beam current between the 
screen grid and anode. Pentode transconductances are therefore of about 
the same magnitude as those of triodes and tetrodes. However, the ampli­
fication factor and dynamic anode resistance of a pentode tend to be even 
higher than for a tetrode because the suppressor grid provides added shield­
ing between the anode and cathode. Pentode amplification factors usually 
lie between 103 and 104, whereas the dynamic anode resistance usually falls 
between 0.1 and a few megohms.

PROBLEMS

5.1 Show that the electrostatic amplification factor of a planar triode is given 

by

_ Ce,
Me» — p'-'ca

where Cct is the capacitance between the grid wires and the cathode, but does not 

include the capacitance between the leads and electrode supports, and Cea is the 
capacitance between the cathode and anode electrodes, but does not include the 

capacitance between the leads and electrode supports.

5.2 Equation (5.1-3) indicates that the electrostatic amplification factor 

depends upon the grid-wire diameter, the grid pitch, and the grid-to-anode spacing. 

However, it is nearly independent of the cathode-to-grid spacing dcg, provided dc, 
is large enough that the electric field at the surface of the cathode is uniform over the 

cathode surface. Can you explain qualitatively why should be nearly independ­

ent Of deg?
5.3 An amplifier is constructed with two triodes in parallel. For the particular 

set of voltages applied to the electrodes, the dynamic characteristics of one tube are 

ffmi, r„i, and Mi, and those of the other tube are gm2, ro2, and g2. What are the gm, 
r„, and m of the parallel combination?

5.4 A particular beam-power tube has a dynamic anode resistance of 200,000 

ohms at a control-grid voltage of Vg„ = Fi, a screeri-grid voltage V,t0 = V2, and an 

anode voltage V™ = V2. If the screen grid is connected to the anode and the tube is 

operated as a triode, the dynamic anode resistance is 10,000 ohms with Vg. = Fi 

and Vgg = V,g. = V2. For a particular application the screen grid is used as the 
control electrode and the control grid is maintained at a constant bias voltage Fi. 

The screen grid and anode operating voltages are V2. What is the transconductance 
of the tube using the screen grid as control electrode under these conditions? 

Assume that the screen-grid wires are ideally shielded behind the control-grid wires 

so that there is essentially zero current intercepted by the screen grid. Note that, 

for incremental variations in the applied potentials, the incremental change in anode 

current can be expressed as

dig. = ^dVgg + ^dV.gr, + ^dVgp
0 r go 0 V ago 0 ’ ao
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Chapter 6

INDUCED CURRENTS, EQUIVALENT NETWORKS, 
AND GAIN-BANDWIDTH PRODUCT

In the application of electron tubes as circuit elements we are interested 
in the currents that flow in the circuits external to the tube as a result of 
electron motion in the space between the electrodes. In this chapter we 
show how the external currents are related to the electron currents in the 
interelectrode space of a tube for cases in which the period of the ac voltages 
applied to the electrodes is long compared with the time taken by the elec­
trons to travel between the electrodes.

When an electron is gaining kinetic energy under the influence of an elec­
tric field, the source that provides the field loses an equal amount of energy. 
Similarly, when an electron is slowed down by an electric field, an amount of 
energy equal to the kinetic energy lost by the electron appears elsewhere 
in the system. Several problems that illustrate these effects are discussed 
in Sections 6.1 and 6.2.

In Section 6.3 we consider the small-signal analysis of simple circuits 
using grid-controlled tubes. We shall find that a grid-controlled tube oper­
ated with negative bias on the control grid and driven by a small ac signal 
can be simulated by either of two networks. One network contains a con­
stant current generator and passive elements, such as resistances, capac­
itances, and inductances, whereas the second contains a constant voltage 
generator and passive elements. In analyzing the small-signal behavior 
of an amplifier stage, these networks can be substituted in place of the 
tube, and the currents that flow in the various circuit elements can be 
determined by simple application of Kirchhoff’s Laws.

By applying the networks to the analysis of an amplifier stage which is 
part of a multistage amplifier, we find that the product of gain and band­
width that can be obtained from the stage is a constant that depends only 
on parameters of the tube itself and on the capacitances that shunt the 
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input and output circuit. Maximum possible gain-bandwidth product would 
be obtained if all external capacitances shunting the input and output 
circuits were reduced to zero. The expression for this maximum gain­
bandwidth product provides a useful figure of merit for comparing tubes 
to be used in high-gain, broadband amplifiers. High figure-of-merit tubes 
have a high transconductance and low input and output capacitances.

6.1 Induced Currents Resulting from the Motion of Charge Between 
Electrodes

When an electron travels near a conductor, surface charges are induced 
on the conductor so that the electric field within the conductor is zero at 
all times. As the electron moves, the surface charges rearrange themselves 
to maintain zero field within the conductor. If several conductors are pres­
ent in the region, and if the conductors are insulated from each other, 
their potentials vary with the motion of the electron. However, if two of 
the conductors are joined by a wire, the potential difference between them 
remains zero for all motions of the electron, and in general this condition 
can be satisfied only by a flow of charge along the wire joining the con­
ductors.

Suppose an electron is very near one of two conductors that are joined 
by a wire. Practically al! the lines of electric field arriving at the electron 
originate on positive charges on the surface of the nearby conductor. A 
surface charge distribution of total charge +e is therefore induced on the 
nearby conductor. A similar situation exists when the electron is very near 
the other conductor. It follows, therefore, that motion of the electron from 

a point very near the first conductor 

Fig. 6.1-1 An electron moving between 
two conductors.

to a point very near the second must 
be accompanied by a flow of charge 
+e from the first conductor to the 
second through the wire joining 
them.

Figure 6.1-1 shows an electron 
moving in the region between two 
conductors A and B. A battery 
maintains conductor B at a potential 
Vo volts above that of conductor A. 
If the electron travels a distance Ar 
in the direction of conductor B and 
the potential rise over the distance 
Ar is AV volts, the kinetic energy of 
the electron is increased by eAV 
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joules, where — e is the charge on the electron. This increase in kinetic 
energy must have come from the battery. We conclude that an amount of 
positive charge has flowed from conductor A to conductor B through the 
battery, and that the work done by the battery on the charge is eAF. 
Let the amount of charge that flowed from A to B be ^q. Then

or
AgF0 = eAF

Ag = ^-AF

(6.1-1)

(6.1-2)

Let Ai be the time taken by the electron in traveling the distance Ax. 
Dividing both sides of Equation (6.1-2) by Ai, we obtain

Aq _ e AF 
At ~ V0~M (6.1-3)

This can be expressed in differential form as

dq _ e dV dx dV dy dV dz 
dt V Q dx dt dy dt dz dt -y-E-U (6.1-4)

where i is the current that flows in the external circuit joining A and B, 
— e is the charge on the electron, E is the electric field acting on the electron, 
and u is the electron velocity. We notice that E is proportional to F„, so 
that, for a given electron velocity u, the current i is independent of the voltage 
applied between the electrodes. Let us set — E(x,y,z)/Vo =’Ei(x,y,z), where 
Ei is a vector function of position having the dimensions of meters-1 and 
equal in magnitude and direction to the electric field obtained when 
conductor B is held 1 volt negative with respect to conductor A. Equation 
(6.1-4) can then be expressed as

i = eEru (6.1-5)

Fig. 6.1-2 Four arbitrarily shaped elec- Fig. 6.1-3 An electron moving between 
trodes joined by a wire. two planar electrodes.
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Since i is independent of Va, this must be the current that flows when the 
battery is omitted and the conductors are joined only by a wire or an impedance.

Equation (6.1-5) can be applied to a system of several conductors, such 
as that illustrated in Figure 6.1-2. If i is the current flowing toward 
conductor 4, then Ei is a vector field having the same magnitude and 
direction as the electric field obtained when conductor 4 is held at a po­
tential of — 1 volt, and the remaining conductors are at ground potential.

Of particular interest is the problem of an electron moving between two 
planar electrodes whose linear dimensions are large compared with their 
spacing. Two such electrodes are illustrated in Figure 6.1-3. The electrodes 
are connected by a wire and are spaced by a distance of d meters. Neglect­
ing edge effects, the vector function Ei is equal in magnitude to 1/d at all 
points between the electrodes, and its direction is normal to the plane of 
the electrodes. If the velocity of the electron is also normal to the electrodes, 
the current flowing in the wire is given by

This result also can be obtained directly from Equation (6.1-2). For the 
case of the planar electrodes Equation (6.1-2) can be written as

Ag = e-y- = e-^- (6.1-7)

Dividing both sides by At and taking the limit as At —► 0, Equation (6.1-6) 
is obtained.

If many electrons are present between the electrodes shown in Figure 
6.1-1 and if they produce a charge density p, it follows from Equation 
(6.1-5) that the current in the external circuit is given by1

i = —y pEi-udxdydz 

volume

= —J" J-Eflxdydz (6.1-8)

volume

where J = pu is the current density at the volume element dxdydz, and the 
integral is taken over the region occupied by the space charge. This result 
also applies if the electrodes are joined by a wire or an impedance instead 
of the battery.

Next let us consider the currents that flow in the wires joining the elec-

*If p is a positive charge and moving toward electrode B, the incremental induced 
current pE,. u dxdydz flows away from electrode B.
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trodes shown in Figure 6.1-4(a) when a single electron travels from elec­
trode A to electrode B. We shall assume that the electron starts from rest 
at electrode A at time t„. The field between the grid and electrode A 
accelerates the electron toward the grid, and at time ti it passes through an

ti-t0= 2 (tg-t,)

(a) (b)
Fig. 6.1-4 Induced currents which flow in the external circuit when an electron 

travels from electrode A to electrode B. It is assumed that the electron starts at rest 
from electrode 4.

opening in the grid. The electron subsequently moves with constant veloc­
ity through the second region and strikes electrode B at time i2. In 
Figure 6.1-4(b) the induced currents that flow from ground toward the 
electrodes are plotted as functions of time. When the electron is between 
electrode A and the grid, it experiences a uniform accelerating field, so that 
its velocity and the induced current, eu/d, increase uniformly with time. 
To the right of the grid, where the electron travels at a steady velocity, 
the induced current is constant with time. The area under each of the 
shaded regions in Figure 6.1-4(b) is equal to the electronic charge.

While the electron is traversing the distance between electrode A and the 
grid, a total charge of +e flows through the battery from the negative 
terminal to the positive terminal. This means that the battery expends 
eV joules of work. The work is imparted to the electron in the form of 
kinetic energy by the field between electrode A and the grid. When the 
electron strikes electrode B, its kinetic energy is dissipated in the electrode 
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as heat. Thus the energy expended by the battery is turned into heat 
energy in electrode B. The positive charge that flows through the external 
circuit to electrode B is cancelled when the electron strikes the electrode.

6.2 Currents Induced in External Impedances

Fig. 6.2-1 Two electrodes connected 
by a resistance.

Let us consider the induced currents that flow in an external resistance 
connected between two electrodes. Figure 6.2-1 shows a beam of electrons 
which passes through a grid and strikes electrode B. Each electron is 

assumed to pass through the grid 
with the same kinetic energy. If n 
electrons pass through the grid per 
second, the same number strike elec­
trode B per second, and a current 
I„ = ne amperes flows from ground 
through the resistance to meet the 
arriving electrons. This current 
causes a voltage drop of I0R volts in 
the resistance. (We assume that the 
voltage drop is less than the voltage 
through which the electrons have 
been accelerated, so that the elec­
trons are not stopped before reach­
ing electrode B.) The power dis­
sipated in the resistance by the flow 
of charge is I JR watts.

Because there is a voltage drop in the resistance, each electron faces a 
decelerating field and loses kinetic energy eloR joules in traveling from the 
grid to electrode B. Since n electrons lose this amount of kinetic energy per 
second, the total power lost by the electrons in traversing the region is 
nelji = I JR watts. But this is the power dissipated in the resistance by 
the positive charges flowing to meet the electrons. Hence the kinetic energy 
lost by the electrons while traveling from the grid to electrode B is transformed 
into heat energy which is dissipated in the resistance R. When the electrons 
strike electrode B, the remaining part of their kinetic energy is trans­
formed into heat energy in electrode B.

Next let us suppose that the number of electrons passing the grid per 
unit time can be varied without changing their velocity. Let the current 
of electrons passing through the grid be given by i = I„ + Acos ut. An 
ac voltage hR cos wt appears across the resistance, and the total instantane­
ous power developed in the resistance is

PR = (Io+ Ii cos wt)2R watts (6.2-1)
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When this is averaged over time, we obtain

Pav = Io2R + -75— watts (6.2-2)

Evidently this power is greater than the de power developed in the 
resistance in the absence of modulation. However, the average number of 
electrons passing through tlte grid per second is the same as in the de case, 
and each has the same kinetic energy as it passes through the grid. Hence 
the average energy of the electrons when they strike electrode B must be 
less when the beam is modulated than in the de case. To explain this, we 
may note that during the half cycle in which the total beam current is 
greater than Io, the number of electrons passing the grid is greater than 
average. The voltage drop in the resistance and the retarding field are also 
greater than average during this half cycle. Consequently, more than half 
the electrons lose more kinetic energy than under de conditions. During 
the other half of the cycle, less than half the electrons lose less kinetic 
energy than under de conditions. Thus the ac power represented by the 
term IpR/2 in Equation (6.2-2) is also obtained at the expense of the 
kinetic energy of the electrons.

It is easy to extend our considerations to include impedances in the 
external circuit. If the resistance R in the above example were replaced 
by an impedance Z, the instantaneous voltage across the impedance and 
hence the instantaneous voltage across the interelectrode space would be 
Re[(Z„ + In^Z], where i = Re(Z„ + he’“1) is the instantaneous current 
of electrons crossing between the electrodes.

It is important to emphasize at this point that the voltage developed 
across the impedance is not caused by the electrons that strike electrode B 
flowing through the impedance. The results of Section 6.1 showed that the 
induced currents flow in the external circuit only while the charge is crossing 
between the electrodes. When the individual electrons strike electrode B, 
they cancel positive charges that have flowed to meet them.

That the induced current flowing through the impedance in the external 
circuit is independent of the size of the impedance is indeed a very impor­
tant result. The induced current is determined only by the current of 
electrons crossing between the electrodes and is equal to that current. If the 
beam is modulated, the ac power developed in the resistive part of the 
load increases linearly with this resistance. Consequently, if we can modu­
late the beam in a manner that consumes very little power, we have a means 
for amplifying ac power. The ac power output, of course, is obtained at the 
expense of the supplies that provide the de voltage to accelerate the electrons.

In the remainder of this chapter we shall describe the ac operation of 
grid-controlled tubes, and in later chapters we shall describe klystron
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amplifiers and traveling-wave amplifiers. We shall find that, although 
these tubes differ in the means used to modulate the beam and the type of 
load in which the ac power is developed, each provides ac power ampli­
fication by modulating an electron beam and causing ac induced currents 
to flow in external impedances. In klystron amplifiers and traveling-wave 
amplifiers the energy provided by the de supply is first converted into 
kinetic energy of the electrons. This energy in turn is partly converted into 
ac power which is dissipated in the load and losses of the system and 
partly into heat energy of the electrode struck by the electrons. In grid- 
controlled tubes employing screen grids, a similar energy transfer occurs 
when the anode and screen grid are connected to the same de supply 
voltage. (The screen grid and anode connections in this case would be 
similar to those illustrated in Figure 6.2-1.)

However, if the de supply provid­
ing the field that accelerates the elec­
trons is connected in series with the 
external impedance, as in the case of 
the triode tube, the transfer of power 
is somewhat different. In Figure 
6.2-2 we show the electrodes of the 
previous example with a battery of 
V volts connected in series with the 
external resistance. The electrons 
in this case are assumed to pass 
through the grid with negligible 
velocity and are accelerated toward 
electrode B by the field provided by 
the battery. In this case the induced 
currents flowing through the battery 
and the load resistance cause some of 
the power expended by the battery

to be transferred directly to the load resistance. The remaining power ex­
pended by the battery is converted into kinetic energy of the electrons, 
which in turn becomes heat energy of electrode B. If the instantaneous 
beam current is given by i = I„ + Ii cos ut, the average power developed 
in the resistance is I02R + HR/2, just as in the previous example. The 
average power expended by the battery is IN, and the average power 

( I 2R dissipated in electrode B is IN — I IO2R -|—k- 
\ 4*

6.3 Equivalent Networks
Consider a grid-controlled tube in which the control-grid voltage and 

anode voltage are varied, while the potentials applied to the remaining

GRID I 
CATHODE * B

ELECTRONS PASS 
THROUGH GRID -

WITH NEGLIGIBLE 
VELOCITY

1

Fig. 6.2-2 Two electrodes

BEAM OF 
'ELECTRONS

R

-2-V

connected
by a de supply and a resistance in series.
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electrodes are held constant. The current reaching the anode can be ex­
pressed as

Iao Iao(VgOìVaò) (6.3-1)

where Vgo and Vao are the control-grid and anode voltages. Generally this 
function is single-valued and continuous. If I„o undergoes a differential 
change because of differential changes in Vg0 and Vaû, then

dl ao =^ldVt. +^dVao 
(If go u r ao (6.3-2)

It follows that if very small ac voltages vg and va are applied to the control 
grid and anode, the induced ac current flowing in the anode circuit will be

• _ dlao , dlao
" dY,,”' + dVaaV' (6.3-3)

In terms of the tube parameters gm and ra discussed in Chapter 5, Equation 
(6.3-3) can be rewritten as

ia
, 1= ÇmVg + —Va l'a (6.3-4)

This important equation gives the induced ac current ia which flows in the 
anode circuit when small ac voltages vg and va are applied to the grid and 
anode.

Let us now consider two simple networks which we shall show to be 
described by Equation (6.3-4) and which can be used to simulate the tube

CONSTANT 
CURRENT 

GENERATOR

OANODE

N 

'■■■—O CATHODE

Fig. 6.3-1 The constant-current-generator small-signal equivalent network for a 
grid-controlled tube.

for network analysis. The first of these is illustrated in Figure 6.3-1. It 
involves a constant current generator,2 which generates a current — gmvg, 
in parallel with a resistance equal to the dynamic anode resistance ra. 
Referring to the figure, it is evident that the current flowing through the 
resistance ra away from the point A is —gmvg + ia. This current, multi­

2The symbol used in Figure 6.3-1 for a constant current generator will be used in 
subsequent illustrations in this and later chapters. Likewise, the symbol used in Figure 
6.3-3 for a constant voltage generator will be used in subsequent illustrations in this 
and later chapters.
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plied by the resistance ra, must equal the voltage v„ applied between the 
terminals. Hence

va = (-<Zmr0 + ia)ra (6.3-5)

A simple rearrangement of this equation shows that it is just another form 
of Equation (6.3-4). Thus, when a voltage va is applied between the termi­
nals of the network shown in Figure 6.3-1, a current i„, given by Equation 
(6.3-4), flows through the network from one terminal to the other. The 
same current flows in the anode lead of a grid-controlled tube when ac 
voltages vg and va are applied to the control grid and anode. Consequently, 
the network shown in Figure 6.3-1 can be used in place of the tube for 
purposes of network analysis. Figure 6.3-2(b) shows the construction of an 

(b) CONSTANT-CURRENT-GENERATOR 
EQUIVALENT NETWORK

CO CONSTANT-VOLTAGE - 
GENERATOR EQUIVALENT 

NETWORK

Fig. 6.3-2 A grounded-cathode triode amplifier stage and two low-frequency, small­
signal equivalent networks.

equivalent network for analysis of the low-frequency response of the simple 
grounded-cathode triode amplifier stage shown in Figure 6.3-2(a). Con­
stant current generators always have infinite internal impedance. This 
means that the voltages applied across the terminals of the generator do 
not affect the current generated.

In constructing the equivalent network shown in Figure 6.3-2(b), we 
have assumed that the control grid of the triode has a sufficiently negative 
bias that it does not draw any current. Secondly, since Equation (6.3-4) is 
valid only when the amplitudes of the ac signals are small, the equivalent
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network is suitable only for analysis of the small-signal operation of the 
stage. Finally, since we have not accounted for interelectrode capacitances,

Fig. 6.3-3 The constant-voltage-gener­
ator small-signal equivalent network for 

a grid-controlled tube.

work to zero, we obtain.

va — iara

interwiring capacitances, and lead 
inductances, the equivalent network 
can be used only at sufficiently low 
frequencies that these capacitances 
and inductances can be neglected.

The second network described by 
Equation (6.3-4) is shown in Figure 
6.3-3. It involves a constant voltage 
generator, which generates a volt­
age — pXg, in series with a resistance 
equal to the dynamic anode resist­
ance ra. By equating the sum of the 
voltages around the loop in this net-

- uVg = 0 (6.3-6)

Substituting m = gmra into this, we see that this equation is also equivalent 
to Equation (6.3-4). Thus the network shown in Figure 6.3-3 also can be 
used to simulate the ac response of a grid-controlled tube with ac voltages 
vg and va applied to the control grid and anode. Figure 6.3-2(c) shows the 
construction of a constant-voltage-generator equivalent network for the 
triode stage in Figure 6.3-2(a). Constant voltage generators always have 
zero internal impedance.

If the triode in Figure 6.3-2 (a) were replaced by a tetrode or pentode and 
the additional electrodes were maintained at constant potentials, the 
equivalent networks shown in Figures 6.3-2 (b) and 6.3-2 (c) would still be 
applicable at low frequencies. However, since m and ra tend to be extremely 
high for tetrodes and pentodes, the constant-current-generator equivalent 
network is usually found more satisfactory for the analysis of stages using 
these tubes.

The voltage gain of the amplifier stage shown in Figure 6.3-2 is given by 
the magnitude of the ratio of the ac voltage developed across the load 
resistance RL to the input voltage v0. From the figure it can be seen that 
this ratio is given by

voltage gain = 1^1 = Mr (6-3-7)
| Vg | tiL a Hl

In stages employing tetrodes and pentodes, ra may be very large compared 
with Rl, in which case the gain is very nearly given by

voltage gain = g^Rt. (6.3-8)
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Next let us extend the equivalent network shown in Figure 6.3-2(b) 
to include the effects of interelectrode capacitances and stray wiring capac­
itances. In the 417A triode described in Sections 5.1 and 5.2, the inter­
electrode capacitances are:

pf*

Grid to-anode capacitance....................................................................1.5

Grid-to-cathode capacitance...............................................................5.4

Anode-to-cathode capacitance.........................................................0.2

*0ne picofarad = 10-12 farad.

These capacitances include those between the internal leads to the elec­
trodes. In addition, the stray capacitances associated with external 
wiring and other circuit components may easily amount to 4 or 5 pf both 
between the grid circuit and ground and between the anode circuit and

Ccg = CATHODE-CONTROL GRID CAPACITANCE PLUS STRAYS 
Cca = CATHODE-ANODE CAPACITANCE PLUS STRAYS 

Csa = SCREEN—ANODE CAPACITANCE 

Cga = CONTROL GRID-ANODE CAPACITANCE 

CgS = CONTROL GRID-SCREEN CAPACITANCE

Fig. 6.3-4 Small-signal equivalent networks for a triode amplifier stage and a 
tetrode amplifier stage. The networks include the effects of interelectrode capaci­

tance and stray capacitance.
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ground. At frequencies above 100 kc the reactances associated with 
these capacitances may be comparable with other circuit impedances and 
consequently they must be considered in the circuit analysis. Figure 
6.3-4 shows equivalent networks for simple triode and tetrode amplifier 
stages where the interelectrode and stray capacitances are taken into 
account. In both networks we have assumed that the reactance of the 
capacitance CK is small compared with Rk and therefore that both quanti­
ties can be neglected.

Let us use the equivalent network shown in Figure 6.3-4(a) to determine 
the input admittance of the triode stage shown in the figure. This ad­
mittance is given by

■ _ 1 . A + A 
' “ RV Vg (6.3-9)

where Ii is the phasor corresponding to the current ii which flows through 
the cathode-to-grid capacitance Ccg (that is, ii = Re IW where u is the 
angular frequency of the signal), I2 is the phasor corresponding to the 
current i2 which flows through the grid-to-anode capacitance Cga, and Vg is 
the phasor corresponding to the input voltage vg. Now Ii = Vg juCcg, 
and I2 = (Vg — Va) juCga, where Va is the phasor corresponding to the 
output voltage va. Substituting these expressions into Equation (6.3-9), 
we obtain

ttg Ccg +
/ V \ii — — ir \ v\ ' Q/

(6.3-10)

The ratio — V J Vg is the complex gain of the stage. Since this is likely 
to have a large, positive real part, the input signal may be shunted by a 
large apparent capacitance. Because Cga is much smaller in tetrodes and 
pentodes, the shunting capacitance given by Equation (6.3-10) is greatly 
reduced in stages employing these tubes. In Section 6.4 we shall see that 
a low input capacitance is needed for tubes used in high-gain, broadband 
amplifiers. For this reason, most multistage high-gain, broadband ampli­
fiers employ tetrode or pentode tubes. However, triodes are sometimes used 
in the input stages of these amplifiers because of their better noise per­
formance. (See Chapter 13.)

Finally, let us determine the low-frequency input admittance of the 
grounded-grid amplifier stage shown in Figure 6.3-5(a). A low-frequency 
equivalent network for the stage is shown in part (b) of the figure. When a 
small ac voltage vc is applied to the cathode, an ac current ia flows in the 
cathode and anode leads of the tube, and an ac current ii flows in the re­
sistance r„ of the equivalent network. We neglect the effects of the anode-
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i- = -9mvg = 9mvc

Fig. 6.3-5 A grounded-grid amplifier stage and its low-frequency equivalent 
network.

to-cathode capacitance in this analysis. Applying Kirchhoff’s Laws to the 
network, we obtain

(6.3-11)

and
V„ = hr a - IaRL (6.3-12)

where Ia, h, and Vc are the phasors corresponding to ia, ii, and vc. These 
equations can be solved for h/Vc, and the input admittance can be ex­
pressed as

y _ 1 la _ 1 I 0 m + l/^a
Rk Vc Rk 1 + hf

If ra » Rl and g» 1, this reduces to

Y,; = 
Kk

(6.3-13)

(6.3-14)

If the tube has a transconductance of 0.025 mho, the input impedance is 
40 ohms in parallel with Rk- Grounded-grid amplifier stages are of limited 
usefulness because of their low input impedance.

6.4 Gain-Bandwidth Product

Resonant circuits are used in high-frequency amplifier stages to establish 
the frequency at which maximum gain is obtained. Because the gain falls 
off on either side of this frequency, each stage can be characterized by a 
bandwidth, or a range of frequencies about the resonant frequency over 
which the gain of the stage is within certain limits. Usually these limits are 
expressed as a number of db below the maximum gain. Thus the “3-db 
bandwidth” of an amplifier stage is the range of frequencies over which the 
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power gain is within 3 db of the maximum gain. Since 3 db very nearly 
corresponds to a power ratio of 2 and a voltage ratio of ^2, the voltage gain 
at the extreme frequencies of the 3-db bandwidth is l/-^2 times that at 
maximum gain.

In this section we show that the product of gain and bandwidth for an 
amplifier stage employing resonant circuits is a constant which depends 
only upon parameters of the tube itself and upon the external capacitances 
shunting the tube. By changing the load resistance in the anode circuit, 
both the gain of the stage and the bandwidth change in such a manner 
that the product of gain and bandwidth remain unchanged. First, it will 
be helpful to examine a few properties of resonant circuits.

If a parallel-resonant circuit is excited by an external source and then 
allowed to oscillate freely, the excitation energy is stored alternately in 
the electric field of the capacitance and in the magnetic field of the in­
ductance. As the oscillation continues, the losses of the circuit cause the 
amplitude of the oscillation to de­
crease. Although there is always 
some capacitance and resistance be­
tween the terminals of the induct­
ance, and some inductance and re­
sistance between the terminals of the 
capacitance, for most purposes the 
circuit can be assumed to consist of a 
pure inductance, a pure capacitance, 
and a pure resistance, all in parallel. 
Such a circuit is shown in Figure 
6.4-1. The resistance R is assumed

Fig. 6.4-1 A parallel resonant circuit.

to be of a magnitude which accounts for losses in the inductance and capaci­
tance, as well as any additional resistance which is connected in parallel 
with the circuit. The magnitude of the admittance of the parallel combina­
tion is given by

|K| = WW + W - 1/wL)2 (6.4-1)

where w is the angular frequency of the exciting signal. If the circuit is 
excited by a constant current source which generates a current Io sin wt, 
a sinusoidal voltage with amplitude Z0/|T| is developed across the circuit. 
Resonance occurs when wC = 1/wL, or w = 1/^LC. At this frequency |F| 
is a minimum and equal to 1/R.

A measure of the quality of a parallel resonant circuit is given by the Q of 
the circuit, which is defined as

„ _ ^energy stored at resonance 
energy lost per cycle (6.4-2)
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Since the energy stored in a capacitance C which is charged to a voltage V 
is j CV2, it is easily shown that, for a parallel resonant circuit, Q is given by

ACU 2 7?Q = 2*£^ = w„CR = (6.4-3)
Umax2 £ WoL
2R 'fo

where Umax is the peak voltage appearing across the circuit, and w, = 2irf0 
is the angular frequency of resonance.

From Equation (6.4-1) it follows that, if the circuit is excited by an ac 
current of constant amplitude but variable frequency, the voltage developed 
across the circuit falls to 1/^2 of its maximum value when the angular 
frequency w is such that

(6.4-5)

(6.4-6)

(6.4-7)

Multiplying both sides of this equation by R/Q and substituting for R/Q 
from Equation (6.4-3), we obtain

&> “«I _ 1 
Wo W | Q

Rearranging this gives

I (a) — O)o)(a) + a)0) I _ 1 _ 2Af 
I WW„ I Q fo

or

Q = — 2Af

where Af is the number of cycles away from resonance at which the voltage 
across the circuit falls to 1/^2 of its maximum value. The frequency 
2Af gives a measure of the width of the resonance response of the tuned 
circuit when excited by a constant current generator.

Let us now use these parallel-resonant-circuit concepts to determine 
the gain-bandwidth product for a pentode amplifier stage. The amplifier 
stage is shown in Figure 6.4-2, together with its equivalent network. The 
capacitance C, in the equivalent network is the input capacitance of the 
tube, or the sum of the capacitances between the control grid and all other 
electrodes except the anode. Co is the output capacitance of the tube, or 
the sum of the capacitances between the anode and all other electrodes 
except the control grid. C, is the sum of the stray capacitances shunting 
the output circuit plus any lumped capacitances that are connected across 
the output circuit. We shall assume that the capacitance Cga between the
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(à) PENTODE AMPLIFIER STAGE

Fig. 6.4-2 A pentode amplifier stage with a parallel resonant circuit connected to 
the anode.

control grid and anode is sufficiently small that it can be neglected. Also, 
the coupling capacitance C is assumed to be large enough that it has neg­
ligible reactance at the frequencies under consideration. The resistance R 
accounts for the losses in the output circuit, including those in the in­
ductance and capacitances. Usually it will be much larger than the load 
resistance RL.

Maximum gain for the stage occurs at the frequency at which the in­
ductance L resonates with the capacitances in parallel with it. If we let Re 
be the equivalent resistance of ra> R, and RL in parallel, the maximum gain of 
the amplifier stage is given by

gain = gmRe (6.4-8)
Since ra and R are likely to be large compared with RL, this is very nearly 
equal to gmRi. The Q of the tuned circuit shunted by the resistance Re is 
given by

Q = wo(C0 + Ct + C/)Re (6A-9)

where Ci is the input capacitance of the following stage. From Equation 
(6.4-7), the bandwidth over which this stage gives at least l/-^2 of the 
maximum voltage gain is given by

W = Q = 2^(0. + Ci + Chile (6-4-10)
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Finally, the product of gain and bandwidth for the stage is obtained by 
multiplying Equations (6.4-8) and (6.4-10). Thus,

gain X bandwidth = ______ Qm______  
+ Ci + C,) (6.4-11)

If the stray capacitances were zero and there were no lumped capacitances 
shunting the output circuit, the expression would reduce to

gain X bandwidth = ___ 0m___
2ir(C0 + Ci) (6.4-12)

The product given by Equation (6.4-12) represents a theoretical limit 
that is not attained in practice because of the stray capacitances that are 
always present. If we assume that the input capacitance Ci of the tube in 
the next stage is the same as that of the tube under consideration, the gain­

Fig. 6.4-3 A double-tuned resonant circuit between amplifier stages.

bandwidth product given by Equation (6.4-12) depends entirely on the 
parameters of the tube itself, and not upon RL or L. The equation shows 
that we can design the stage to have high gain at the expense of narrow 
bandwidth, or lower gain and a larger bandwidth. High gain, of course, is 
associated with large RL. It should be noted that RL includes the effect of 
the input loading of the following stage (see Section 7.3), and in practice 
this loading places an upper limit on the maximum gain per stage.

Sometimes double-tuned resonant circuits are employed between ampli­
fier stages, as illustrated in Figure 6.4-3. For such a circuit the gain­
bandwidth product depends upon the degree of coupling between the two 
circuits and upon the Q’s of the circuits. If the circuits are adjusted for 
“critical coupling” and if the Q’s of the primary and secondary circuits 
are equal, it can be shown3 that the gain-bandwidth product of the stage is 
given by

gain X bandwidth =-----F (6.4-13)
2t^2 fC~C0

where Ci is the total input capacitance of the following stage, including 
strays, and Co is the total output capacitance, including strays.

’Reference 6b.
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Equations (6.4-12) and (6.4-13) tell us that tubes to be used in high- 
gain, broadband amplifiers should have high transconductance and low 
input and output capacitances. Unfortunately, increasing the transcon­
ductance by increasing the cathode area also increases both the input and 
output capacitances, and if the transconductance is increased by decreasing 
the cathode-to-grid spacing, this also increases the input capacitance. 
However, in practice the stray capacitances which shunt the input circuit 
represent an appreciable part of the input capacitance, so that, if the tube 
design is changed to double the cathode area and hence double the trans­
conductance, it is likely that the total input capacitance including strays 
will not be doubled, the stray capacitance being nearly constant. Further­
more, when double-tuned circuits are employed, the gain-bandwidth prod­
uct increases directly with the transconductance but depends only on the 
reciprocal of the square root of the input capacitance. For these reasons, 
tubes for use in high-gain, broadband amplifiers are designed to have high 
transconductance. A large spacing between the anode and screen grid or 
suppressor grid is also desirable, since the output capacitance C„ is then 
reduced.

Equation (6.4-12) is frequently used to give a figure of merit for compar­
ing tubes for use in high-gain, broadband amplifier applications.4 By using 
a tube with a high gain-bandwidth product in a multistage amplifier, less 
stages are needed to achieve a total over-all gain and bandwidth. Table 
5.2-1 lists the maximum-possible-gain-bandwidth product gm/2r(CQ + C,) 
for the 448A tetrode and 403A/6AK5 pentode as 215 and 95 Me, respective­
ly. In practice, stray capacitance amounting to a total of 9 pf might shunt 
the input and output circuits, and in this case the actual gain-bandwidth 
products would be reduced to 160 Me and 46 Me for stages using these 
tubes.

PROBLEMS

6.1 Show that for a space-charge-limited planar diode the current pulse induced 

in the external circuit by the passage of a single electron from the cathode to the 

anode is given by 

where it is assumed that the potential minimum coincides with the cathode, t is 

the length of the current pulse, and t is the time measured from the instant the elec­
tron passes the potential minimum. Hint: Show that i is proportional to i2 without

•Sometimes Equation (6.4-13) is used.
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calculating the exact value of the constant of proportionality, then use the fact 

that I idt= e to find the value of this constant.
Jo

PLATE 
C

15-VOLT 
STORAGE 
BATTERY

Problem 6.2

6.2 In the apparatus shown, a single electron leaves the cathode and is accelerated 

toward plate A. It passes through the hole in plate A with 20 electron volts of 

kinetic energy and travels on through grid B to strike plate C.
(a) Sketch the current that flows from ground toward grid B as the electron 

travels from plate A to plate C. Indicate the relative values of the induced 

current at the times when the electron is at electrodes A, B, and C.
(b) When the electron has struck plate C, where can the 20 electron volts of 

kinetic energy that the electron had when it passed through plate A be found?

MATCHED 
LOAD

Problem 6.3

6.3 The figure shows a grounded-grid triode amplifier stage. Ci and C„ are, 
respectively, the input and output capacitances of the tube plus strays. (Notice 
that in this case the input capacitance is the cathode-to-grid capacitance, and the 

output capacitance is the grid-to-anode capacitance.) The input and output in­

ductance Li and L. resonate with Ci and Co, respectively, at the same frequency. 

The conductance Gi and Gc take into account the effects of losses in the input and 
output resonant circuits.

(a) Sketch the constant current generator equivalent network for the stage. 

(Neglect the cathode-to-anode capacitance.)

(b) The power gain of the stage can be defined as

power delivered to a matched load with conductance G = Go
power dissipated in input circuit
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Show that the power gain at resonance is given by gm/AG0. Assume that the 

dynamic anode resistance to is sufficiently large that very little of the current 

from the constant current generator flows through ra.
(c) Show that the product of the power gain at resonance and the 3-db band­

width for the stage is gm/ArC„, where the 3-db bandwidth is the bandwidth 
between frequencies at which the power gain has dropped 3 db below maxi­

mum gain.

6.4 In an amplifier stage such as that shown in Figure 6.3-4(a) the gain falls off 

with increasing frequency because of the capacitance shunting the output circuit. 
Show that the product of the zero-frequency voltage gain and bandwidth over 

which the gain is within 3 db of the zero-frequency gain is given by gm/2rrC, where C 
is the total capacitance shunting the output. Neglect the effect of the control grid- 

to-anode capacitance.
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Chapter 7

HIGH-FREQUENCY EFFECTS AND 
BEAM ADMITTANCE

In Chapter 6 we found that a modulated beam crossing between two 
electrodes induces an ac current in the external circuit joining the electrodes. 
If the electron transit time across the gap between the electrodes is small 
compared with the period of the beam modulation frequency, the induced 
ac current equals the ac component of the beam current. However, at high 
frequencies and moderate or low electron velocities, the electron transit time 
may be an appreciable part of the period of the ac signal. Suppose, for ex­
ample, that the electron transit time is one half the period of the modulation 
frequency. In this case one half a cycle of the modulated beam lies between 
the electrodes at any instant. Since the induced current is a sum of contri­
butions from the moving electrons in each volume element between the 
electrodes and since the phase of the beam modulation varies over the dis­
tance between the electrodes, the contributions to the induced current are 
not all in phase, and consequently the total induced current is less than the 
ac beam current.

Consider a modulated beam crossing between the screen grid and anode 
of a tetrode or between the grid and anode of a grounded-grid triode. If the 
modulation frequency is sufficiently high that the electron transit time is 
comparable with the period of the signal, the ac induced current flowing in the 
external circuit is less than the ac beam current, and the tube transconduct­
ance is correspondingly reduced. In general, at frequencies sufficiently 
high that electron transit-time effects are important, the transconduct­
ance and other tube parameters become complex numbers instead of real 
numbers, and their magnitudes are functions of the signal frequency.

Suppose an unmodulated beam passes through two grids. If an ac signal 
is applied between the grids, the electrons are acted on by the ac field, and 
their velocity acquires an ac component. Each electron in transit between 

204
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the grids induces a current proportional to its velocity in the external 
circuit joining the grids and hence in the signal generator. Since the total 
induced current is a sum of contributions by the individual electrons in 
transit between the grids and since the electron velocities have an ac com­
ponent, the total induced current has an ac component. Furthermore, 
because the electrons have inertia, the ac component of their velocity is 
generally not in phase with the applied signal, and the ac induced current is 
likewise not in phase with the applied signal. The ratio of the ac induced 
current flowing through the signal generator to the ac voltage applied to 
the grids is called the beam admittance or beam loading. Beam admittance 
effects become important at high frequencies where the electron transit 
time is comparable with the period of the ac signal. The small-signal beam 
admittance is directly proportional to the de beam current. Generally it 
has both a conductive and a susceptive part.

In Chapter 6 we noted that the capacitance between the control grid and 
anode in a grounded-cathode amplifier stage causes a capacitive loading of 
the input circuit. At high frequencies a conductive loading of the input 
circuit also occurs in grounded-cathode stages. This is caused partly by the 
inductance in the cathode lead and partly by beam admittance. At signal 
frequencies where input conductance first becomes important, the total 
input conductance is approximately proportional to the product of the low- 
frequency transconductance of the tube and the square of the signal fre­
quency.

High input conductance is a principal limitation of the performance of 
high-frequency grounded-cathode amplifiers and oscillators. In some tubes, 
input conductance limitations become important at frequencies of the order 
of a few tens of megacycles. However, by using very short cathode leads, 
and sometimes multiple cathode leads, the cathode lead inductance can be 
reduced, and the useful operating frequency raised. Similarly, short elec­
trode spacings and high electrode voltages help to increase the operating 
range by reducing the electron transit times. The electron transit time 
across the cathode-control grid region can be reduced by locating the plane 
of the grid wires close to the potential minimum and by using a higher 
voltage at the grid plane and hence a higher cathode current density.

Still another increase in the input admittance takes place when series 
resonance occurs between the inductance in the cathode and control grid 
leads and the capacitance between the cathode and control grid. In de­
signing high-frequency grid-controlled tubes, care must be taken that the 
frequency of this resonance is well above the operating range.

Generally tubes in which the electrode connections are brought out 
through the base are useful only at frequencies below 100 Me, or perhaps 
a few hundred megacycles in exceptional cases. If operation at still higher 
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frequencies is needed, planar electrodes are used, and the electrode con­
nections are brought out radially by means of disc leads which pass through 
the envelope. In this way the lead inductance and rf losses in the leads can 
be reduced to a minimum.

The chapter concludes with a description of two tubes designed for 
operation at frequencies well above 100 Me.

7.1 Electron Transit Time and Beam Admittance
When the electron transit time between the electrodes of a tube is 

comparable with the period of the ac signal applied to the electrodes, the 
tube behavior can be modified in several important ways. In this section 
we consider under separate headings three examples which illustrate these 
effects.

(a) A Modulated Beam Passing Between Two Electrodes

As a starting point, it will be helpful to consider the dimensions, beam 
voltages, and frequencies that are likely to be involved in problems in 
which transit-time effects are important. Suppose an electron beam is 
accelerated from zero velocity through 100 volts and then passes at con­
stant velocity through two grids separated by 1 mm. The electron velocity 
is 5.93 X 106 meters/sec, and the transit time from one grid to the other is 
(1/5.93) X 10~9 sec. This time is equal to the period of a 5930-Mc signal. 
If the beam current were modulated at this frequency, one whole cycle of 
the modulated beam would be between the grids at any instant. If the 
grids were spaced by 1 cm, the electron transit time would equal the period 
of a 593-Mc signal.

Let us proceed to determine the current induced in the external circuit

Fig. 7.1-1 The beam passing through grids B and C is modulated by an ac signal 

applied to grid A.
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joining two grids when a modulated beam passes between the grids. A 
suitable electrode arrangement is shown schematically in Figure 7.1-1. 
The current of electrons drawn from a planar cathode is modulated by an 
ac voltage applied to grid A. The electrons are then accelerated through 
a potential rise Vo and pass at nearly uniform velocity between grids B 
and C. Finally, they are collected by a planar anode. An admittance Y 
is connected between grids B and C. It is assumed that the ac voltage 
developed across this admittance is small compared with the voltage Vo­
lt is further assumed that grids B and C are ideal electrostatic shields, so 
that electric fields on one side of the grids do not penetrate through the grids 
to the other side.

The results of Chapter 6 tell us that the current flowing in the admittance 
Y is determined only by the electron current in the space between grids B and C. 
The electrons striking the anode cancel positive charges which have flowed to 
the anode to meet them, but they do not give rise to an additional component of 
current through the admittance Y. In fact, the induced current flowing in 
the admittance Y would be no different if grid C were replaced by the anode.

Equation (6.1-8) indicates that the ac current flowing in the admittance 
Y is given by

i(t) = —jj(x,y,z,f)-Eidxdydz (7.1-1)

volume

where J(x,y,z,t) is the instantaneous ac current density at the volume 
element dxdydz, and Ei is a vector function of position discussed in Section 
6.1. The integral is taken over the volume of the beam between grids B 
and C. If the grids extend well beyond the edge of the beam on all sides, 
Ei within the beam is normal to the plane of the grids, it is directed from 
grid B toward grid C, and it is equal in magnitude to 1/d, where d is the 
spacing between the grids. Let the electron velocity corresponding to 
the beam voltage Vo be u0, and let the direction normal to the plane of 
the electrodes be the z direction. We shall assume that the magnitude of J 
can be expressed as Ji(x,y) sin w(i — z/uj), and that f Ji(x,y)dxdy = Ii, 
where the integral is taken over the beam cross section. Substituting for 
Ei and §Ji(x,y)dxdy in Equation (7.1-1), and assuming that J*Ei is a 
negative quantity, we obtain

w 11 C C 2t(t) = j- / sin <4 t------ Idz
d Jo \ u0)

Ii Uof / , ud\= -5- — cosl at------ I — cos (7.1-2)d a [ \ Uo / J
where distance z is assumed to be measured from grid B toward grid C. 
If we set (wi — wd/2uo) = A, and wd/2u0 = B, the part of Equation (7.1-2)
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in brackets can be written in the form cos (A — B) — cos (A + B). Then 
using the identity that cos (A — B) — cos (A + B) = 2 sin A sin B, we 
can write Equation (7.1-2) as

. ad
S1IV / j \

i(t) = Ii—j—sin wl t — -— I ad \ 2uoj 
2u0

(7.1-3)

Finally, the electron transit time T„ between grids B and C is equal to 
d/u,,, so that

. aTo
sln~2~ 

i(t) = fi-^—sin a (7.1-4)

2

The factor [sin (o)T<,/2)]/(a)T„/2) is known as the beam-coupling co­
efficient, and the angle aT„ is called the transit angle. The beam-coupling 
coefficient measures the ratio of the ac current induced in the external 
circuit to the ac component of the beam current. In subsequent discussion 
we shall designate this ratio with the letter M. Figure 7.1-2 shows a plot 
of M as a function of the transit angle aT„.

From Equation 7.1-4 we see that the phase of the induced current flowing 
in the external circuit is the same as that of the beam current at a point 
midway between the grids.

Fig. 7.1-2 The beam-coupling coefficient M plotted as a function of aT0.
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Consider a tetrode amplifier stage in which the screen grid and anode are 
operated at the same voltage, and there is little potential depression be­
tween the screen grid and anode. The effect of a non-zero transit angle for 
the screen-grid to anode space is that the magnitude of the current gener­
ated by the constant current generator of the equivalent network is multi­
plied by the factor M and hence is given by | Mgm Vg |.

In the 448A tetrode, described in Section 5.3, the screen grid and anode 
are operated at 125 volts, and the spacing between these electrodes is 
0.5 cm. If the beam current is reduced so that there is little potential 
depression between the electrodes, the transit angle a>T„ is equal to 4.74 
X 10“9/ radians, where/ is the signal frequency in cycles per second. At 
a frequency of 1320 Me, uTa = 2ir, and from Figure 7.1-2 we see that the 
beam-coupling coefficient M is zero. Furthermore at integral multiples 
of this frequency, uTo is an integral multiple of 2ir, and the beam-coupling 
coefficient is again zero. The frequency 1320 Me corresponds to the re­
ciprocal of the electron transit time for this particular electrode spacing 
and beam voltage, so that at this frequency there is one whole cycle of the 
modulated beam between the electrodes at any instant. When the fre­
quency is an integral multiple of 1320 Me, there is an integral number of 
cycles of the modulated beam between the electrodes. Since the induced 
current flowing in the external circuit is a sum of contributions from each 
volume element between the electrodes, the total induced current must be 
zero when there is an integral number of cycles of the modulated beam 
between the electrodes.

The 448A is normally operated at frequencies below 100 Me. Since uT„ 
for the screen-grid to anode space of the 448A is equal to 0.15ir at a fre­
quency of 100 Me, it is evident from Figure 7.1-2 that M for this inter­
action region is nearly equal to unity for frequencies below 100 Me. How­
ever, in designing tubes to operate at frequencies approaching 1000 Me, 
transit-time effects in the output region of the tube may be a serious 
limitation. Notice that for a given ac beam current passing between the 
screen grid and anode of a tetrode, the electron transit .time from the 
cathode to the screen grid does not affect the magnitude of the ac current 
induced in the output circuit provided the screen grid acts as a good 
electrostatic shield. However, the phase of the output signal is delayed by 
the finite transit times involved, and consequently the transconductance 
as defined by Equation (5.2-1) becomes a complex number.

(i>) Small-Signal Admittance of an Unmodulated Beam Passing Between
Two Grids at Equal Potential

Suppose an ac signal is applied between two parallel planar grids, and an 
initially unmodulated electron beam passes through the grids. The motion 
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of the electrons in the space between the grids varies in response to the 
applied ac field, and this causes an induced ac current to flow through the 
signal generator. The ratio of the induced ac current flowing in the ex­
ternal circuit to the ac voltage applied by the signal generator is called the 
beam admittance, or beam loading.

Let us derive an expression for the small-signal admittance of an un­
modulated beam passing between two grids whose de potentials are equal. 
A suitable arrangement of electrodes is shown schematically in Figure 
7.1-3. The grids are assumed to be ideal electrostatic shields. An electron

Fig. 7.1-3 The ac voltage applied between grids A and B causes the electron motion 
to vary in response to the applied field. An induced ac current therefore flows 

through the signal generator, and the electron beam acts as a load on the 

signal generator.

beam of current Io is accelerated through a potential rise Vo before passing 
through grid A. The space-charge density between the grids is sufficiently 
low that there is negligible potential depression between the grids. An ac 
voltage Fi sin wt is applied between the grids by means of a signal generator. 
We assume that the signal generator has zero internal impedance for both 
ac and de signals and that Fj is small compared with Vo.

We shall first determine the transit time of an electron which passes 
from grid A to grid B and is acted on by the ac field (Fi/d) sin wt as it crosses 
the interelectrode space, where d is the grid spacing. The acceleration of 
the electron in the region between the grids is given by 

^z ^F 
dt2 d -sin wt

Wo Fi .
2To FoSln “ (7.1-5)

where u0 = \2riV0 is the velocity of the electrons passing through grid A, 
and TQ = d/uo is the electron transit time in the absence of an applied 
signal. Let the time the electron passed through grid A be ta. The velocity 
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of the electron at time t is found by integrating Equation (7.1-5) with re­
spect to time from t0 to t and adding u0. Thus

%= u° - A k(cos -cos (7j-6)

Integrating once more from to to t, we find that the z coordinate of the 
electron at time t is given by

u„ 7i .
z u0(t to) 2 2y I®174 sin wtg — w(t Zo)cos ûi/o]

(7.1-7)

where distance z is measured from grid A toward grid B. If we set z = d in 
this equation, the time t corresponds to the time of arrival of the electron 
at grid B, and the time t — t0 for z = d is the electron transit time. We 
shall designate this electron transit time by T. Then

Uo 7i
d = u0T — 2 '̂ ÿrisin wt — sin wt„ — wT cos (7.1-8)

or

T = To + q y [sin wt — sin wt0 — wT cos oA] (7.1-9) 

where we have substituted To for d/uo. Now as 7i —> 0, T —> To. Since 
we assume that 7i is small, the second term on the right-hand side of 
Equation (7.1-9) is small compared with the first term. We shall use the 
approximations that t0 = t — To and T = To in the second term of the 
right-hand side of the equation. This is equivalent to neglecting terms 
which involve the product of two or more small quantities. The electron 
transit time then becomes

T = To + yLr y[sin wt — sin w(t — To) — wT0 cos w(t — 77)] 
1 Q V O

(7.1-10)

We can now proceed to determine the current that flows in the external 
signal generator at time t. This current is a sum of contributions from all 
electrons in transit between the grids and hence includes all electrons that 
passed through grid A from time t back to time t — T. One electron induces

6 dza current i = g in the external circuit. In an increment of time dto an 

amount of charge I¿dt0 passes through grid A. At time t this charge causes 

an induced current to flow in the external circuit, where dz/dt is

the velocity of the electrons that comprise the charge Io dt0, and dz/dt is
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evaluated at time t. The total induced current flowing in the signal gener­
ator therefore is

t^Td dt (7.1-11)

Substituting for dz/dt from Equation (7.1-6) and carrying out the in-
tegration, we obtain

T IV.
l(t) = Io^ ~ Ti. rp 12 Vr^T C0S ~ Sln + Sln “(Z “1 o o) Vo

(7.1-12)

In the first term on the right we can substitute for T from Equation 
(7.1-10), and in the second term we can use the approximations t0 = t — T„ 
and T = T„, since the second term is already a small quantity. Thus we 
obtain

.... r I IT [2(1 — COS aiTp) — aiTpSinaiTp .
HO = 1«+ ------------------------------------------- °1sin aitW

2 sin uTq — aiT0(l + cos aTp)
COS ait (7.1-13)W

This is of the form i(t) = I„ + gV, sin ait + bV, cos ait, where

_ 2(1 — cosuTo) — aiTQ sin aiT„
9 ~g° 2(aiToy

, 2 sin aiTo - aiTo(l + COS aiT„)
6 = 9°--------------2W---------------- (7-M4)

and g0 = lo/V,,. Figure 7.1-4 shows plots of g/g» and b/g0.
Equation (7.1-13) shows that the current flowing in the signal generator 

due to the presence of the beam is made up of a dc term equal to the dc 
beam current and two ac terms, one in phase with the applied voltage and 
one in quadrature with the applied voltage. The capacitance between the 
grids also shunts the voltage generator, and an additional current is drawn 
from the signal generator to charge this capacitance. An equivalent net­
work for the system is shown in Figure 7.1-5. The capacitance C„ is the 
capacitance between the grids in the absence of the beam. Positive b cor­
responds to a capacitative susceptance, and negative b corresponds to an 
inductive susceptance. The admittance g + jb is called the beam ad­
mittance or beam loading. It shunts any external circuit connected between 
the grids. Figure 7.1-4 shows that as aiT„ approaches zero, both g and b go 
to zero.

In further explanation of the beam admittance, let us return to Equation 
(7.1-6). Because the electrons are acted on by the applied ac field, their
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Fig. 7.1-4 The quantities g/g„ and 6/g0 plotted as functions of the angle uT„.

velocity has an ac component. However, each electron induces a current 
€ dzi = -.-y, in the external circuit, and since dz/dt has an ac component, the 
a at

induced current resulting from an individual electron has an ac component. 
When the induced currents from all the electrons in transit between the 
grids are added together, the resulting total induced current also has an 
ac component. Furthermore, because the electrons have inertia, the ac 
component of their velocity is not in phase with the applied field. This 
accounts for the susceptive part of the beam admittance.

EFFECT OF 
THE BEAM

F ig. 7.1-5 An equivalent network for the region between grids A and B in Figure
7.1-3.
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To illustrate the magnitudes that might arise from beam-loading effects, 
consider a 100-volt, 100-ma beam crossing between two grids spaced by 
1 cm. We shall assume that the beam current density is sufficiently low 
that there is negligible potential depression between the grids. If a signal 
frequency of 200 Me is applied to the grids, wT0 = 2.11 radians, and 
g + jb = (1.38 + j 0.78) X IO"4 mho. This is equivalent to a resistance of 
7200 ohms in parallel with a capacitive reactance of 13,000 ohms. If a 
parallel resonant circuit were connected between the grids, the beam 
admittance would change both the tuning and Q of the circuit.

(c) Impedance of a Space-Charge-Limited Planar Diode

As a final example of electron transit-time effects, we derive in Appendix 
X the impedance of a space-charge-limited planar diode. It is assumed in 
the derivation that the potential minimum coincides with the cathode and 
that edge effects can be neglected. The impedance of the diode is found to 
be

(7.1-15)r . .z
À+3À

Fig. 7.1-6 The quantities r/ra and x/ra plotted as functions of the transit angle wTo.
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where A is the area of the electrodes, and r and x are given by

r = 12ra 2(1 — cos uT0) — uT0 sin uT0 (7.1-16)

and

x = -12ra +bw 1 o
uTo(l + cos uTj — 2 sin wT, (7.1-17)W'

Here T„ is the time required for an electron to travel from the cathode to 
the anode under the influence of the applied de field, and uT0 is the cor­
responding transit angle. The resistance ra is the “dynamic anode re­

Fio. 7.1-7 The conductance and capacitance of a space-charge-limited planar 

diode. The conductance g0 is equal to 3J0A/2Fo, and the capacitance C„ is equal to 
the capacitance of the parallel plate capacitor formed by the electrodes in the 

absence of space charge.

sistance” for a unit area of the diode and is equal to 2Ua0/3J0, where 
Va<> is the de voltage applied to the anode, and J» is the de current density 
drawn to the anode. Figure 7.1-6 shows plots of r/ra and x/ra as functions 
of the electron transit angle wTo. Figure 7.1-7 shows the conductance and 
capacitance of the diode as functions of wT„.
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It is also shown in Appendix X that at low frequencies the diode can be 
represented by an admittance F such that

9
Y = go + V-xC" o

(7.1-18)

where g0 = A /ra, and Co is the capacitance of the parallel-plate capacitor 
formed by the electrodes in the absence of space charge. Thus at low fre­
quencies the capacitance of the diode is reduced by the presence of space

Fig. 7.1-8 A low-frequency equivalent 
network for a space-charge-limited 

planar diode.

charge to 3/5 of the diode’s capaci­
tance in the absence of space charge. 
That the capacitance should be 
changed by the space charge is 
perhaps not surprising if we note 
that the field distribution and 
charges on the electrodes are quite 
different when space charge is 
present. In fact, when the potential 

minimum coincides with the cathode, there is no surface charge on the 
cathode at all. A low-frequency equivalent network for the diode is shown 
in Figure 7.1-8.

7.2 The Llewellyn and Peterson Equations

An important contribution to present understanding of the high-frequen­
cy electronics of grid-controlled tubes with planar electrodes was made in 
some studies by Llewellyn and Peterson.1 We shall not attempt to sum­
marize their paper here but merely show the form of the equations from

â b
CURRENT 
FLOW Jt

ELECTRON FLOW

(a)

â b c
I 
I 
I 
I 

Jti i Jtz
I 
I

I = AREA x(Jti-Jtz) 
(b)

Fig. 7.2-1 (a) The interaction region applicable to Equation (7.2-1). (b) The inter­

action region bounded by planes a and b is followed by a second interaction region 

bounded by planes 6 and c. From Ja, Ua, and Jti, the quantities Jb and Ub can be 
calculated. These can be used as entrance conditions for the second interaction 

region, and J„ and Uc can be calculated.

’Reference 7a. 
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which their studies developed. The reader who is interested in pursuing 
further the subject of high-frequency effects in grid-controlled tubes will 
find many interesting problems examined in the Llewellyn-Peterson paper.

The approach taken by Llewellyn and Peterson considers the parallel 
flow of electrons between two planes, a and b, as illustrated in Figure 7.2-1 
(a). Plane a might be a cathode or an ideal grid, whereas plane b might be 
an anode or an ideal grid. Suppose the electron beam passes through plane 
a with an ac component of convection current density J a and an ac com­
ponent of velocity U„. An ac voltage Va — Vb is applied between the 
planes, where Va — Vb is small compared with the average de beam voltage 
in the space between the planes. The electron velocity is assumed to be 
single-valued over any plane normal to the beam, and the ac component of 
the electron velocity is small compared with the de component. The 
Llewellyn-Peterson equations then take the form:

Vb - Va = A*JT + B*Ja + C*Ua
Jb = D*Jt + E*Ja + F*Ua (7.2-1)
Ub = G*Jt + H*Ja + I*Ua

where Ji, is the ac convection current density at plane b, Vb\s the ac com­
ponent of the electron velocity at plane 6, and Jr is the total ac beam current 
density between the planes, that is, the convection current density plus 
displacement current density, as discussed in Appendix X. Between any 
two electrodes Jr is a constant, independent of distance from an electrode. 
If plane b were an anode, then Jr times the area of the beam would be the 
ac current flowing in the anode lead, edge effects being neglected. The 
coefficients A* to I* are tabulated in Appendix XI. The coefficients are 
simple functions of the de electron velocities at planes a and b, the de 
transit time for the electrons crossing from plane a to plane b and the 
corresponding transit angle, and a space charge parameter f which varies 
from 0 with no space charge to 1 with maximum possible space charge. 
It should be noted that all quantities in Equations (7.2-1) are phasors.

If plane b is followed by a second “interaction region” bounded by planes 
b and c, as shown in Figure 7.2-1 (b), the quantities Jb and Ub, together 
with the corresponding de quantities, can be used as entrance conditions 
for the second region. The total current density in the second region, 
Jn, is equal to Jn minus the current per unit area flowing into plane b 
through an external lead. In terms of Jb, Ub, and Jtt, the ac convection 
current density and electron velocity at the third plane, Jc and Uc, can be 
calculated by further application of Equations (7.2-1).

Now the total current density Jr flowing toward any grid plane or 
electrode (from both sides) multiplied by the area of the .beam equals the 
ac current flowing away from the electrode in the external lead. Llewellyn
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and Peterson used this relationship and the expressions for Jr in the various 
interaction regions of a multi-electrode tube to construct an equivalent 
network for such a tube. The network is of particular value in analyzing 

the high-frequency performance of 
(vt-Vc)9u planar grid-controlled tubes. The 

QQ____ equivalent network of a triode oper­
ating with the grid negative with re-

^Cg

I l Vg 

GRID

Fig. 7.2-2 The equivalent network for 
a triode with grid negative with respect 

to the cathode, as derived by Llewellyn 

and Peterson.

spect to the cathode is shown in 
Figure 7.2-2. Llewellyn and Peter­
son show that under usual operating 
conditions the effects of space charge 
in the region between the control 
grid and anode can be neglected, and 
in this case the admittance y22 shown 
in the figure is simply the free-space 
capacitance C^ between the anode 
and a conducting plane coincident 
with the grid plane. The capaci-

tance Cg is equal to pC22, where m is the amplification factor of the tube. 
(If the grid were an ideal electrostatic shield, m would be infinitely large, 
and Cg could be replaced by a direct connection from the grid terminal to 
the central node of the network.) The admittance yn is the admittance 
of a space-charge-limited planar diode of spacing equal to the cathode-grid 
spacing and applied de voltage equal to the effective beam voltage at the 
grid. It is the reciprocal of the impedance z given by Equation (7.1-15). 
At low frequencies the transadmittance yi2 is approximately equal to minus 
the low-frequency transconductance of the tube. However, at higher fre­
quencies, it is modified to take into account the effects of the finite transit 
angles in the cathode-grid region and the grid-anode region. In Reference 
7a, Figure 8 shows the effect of frequency on the phase and magnitude of yi2.

Some consequences of Llewellyn’s and Peterson’s work are as follows:

1. The three results presented in Section 7.1 can be obtained directly by 
the application of Equations (7.2-1) to the particular problems considered. 
However, the equations are of much more general applicability in the 
sense that they can be used to solve a variety of similar problems with 
different de electrode voltages and different amounts of space charge in the 
beam.

2. At high frequencies the effects of non-zero transit angles in the various 
interaction regions of a grid-controlled tube can be evaluated by exami­
nation of the appropriate equivalent network.

3. When the transit angles in the input region of a grounded-cathode 
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amplifier are significantly greater than zero, the electron beam causes a 
loading of the input circuit. (See Section 7.3(a) for further discussion of 
this effect.) An expression for this beam loading was derived by Llewellyn 
and Peterson using the appropriate equivalent network. The expression 
indicates that at frequencies at which the beam loading first becomes 
important, the conductive part of the loading is approximately proportional 
to the product of the low-frequency transconductance and the square of the 
signal frequency. The derivation assumes that the electrons are emitted 
from the cathode with zero velocity and hence that the potential minimum 
coincides with the cathode.

7.3 Input Admittance

At high frequencies a principal limitation of grid-controlled tubes when 
operated as grounded-cathode amplifiers or oscillators arises from con­
ductive loading of the input circuit. Two effects contribute to the loading: 
one results from inductance in the cathode lead, and the second results 
from beam loading. Both contribute a conductive loading which is approxi­
mately proportional to the product of the transconductance of the tube and 
the square of the signal frequency. We consider the effects under separate 
headings below.

(a) Lead Inductance Effects

Although the distance from the socket to the cathode electrode of most 
grid-controlled tubes is small, often only 1 or 2 cm, the inductance associ­
ated with this length of lead can give rise to an important loading of the 
input circuit. Figure 7.3-1 shows schematically a grid-controlled tube in
which the cathode lead inductance is 
represented by a lumped inductance 
within the tube. We shall assume 
that the impedance between the 
socket and ground is negligible, and 
we shall neglect the loading which 
results from the non-zero transit 
angle in the input region of the tube. 
The phasor corresponding to the in­
put signal Vi is then given by

Vt=Vg+juLc(Ia + h) (7.3-1) 

Fig. 7.3-1 Schematic representation of 
grid-controlled tube with cathode- 

lead inductance.

where Vg is the phasor corresponding to the ac voltage between the cathode 
and grid electrodes, Ia is the phasor corresponding to the current ia flowing 
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in the anode circuit, and Ii is the phasor corresponding to the current ii 
flowing in the input circuit. If the load resistance in the anode circuit is 
small compared with the dynamic anode resistance, the current flowing in 
the anode circuit can be expressed as

la = gmVg (7.3-2)

where gm is the transconductance of the tube. If we assume that h « Ia, 
Equation (7.3-1) can be written as

V^Vfil+jaLcgA (7.3-3)

If the input capacitance of the tube is principally that between the 
control grid and cathode, the voltage Vg is related to the current flowing in 
the input circuit by 

where Ccg is the capacitance between the control grid and cathode. Com­
bining Equations (7.3-3) and (7.3-4), we can express the input admittance as 

y _ Ii _ ju>Ccg gaCeg(l jaLcgV , .

At frequencies of interest the term AL/gA in the denominator is small 
compared with unity and can be neglected. The input admittance then has 
a positive real part given by

Gi = WCcggm (7.3-6)

This conductance shunts the input circuit, and since it is proportional 
to the product of Lc and Ccg, it is desirable that both of these quantities be 
as small as possible in tubes used at very high frequencies.

In “miniature” tubes, such as the 403A/6AK5 pentode, described in 
Section 5.4, low cathode-lead inductance is achieved because of the short 
distance between the internal electrodes and the pins at the base of the tube. 
Furthermore, two cathode leads are used in the 403A/6AK5, each con­
nected to separate pins at the tube base. This permits parallel connection 
at the tube socket and results in a further reduction in the cathode-lead 
inductance. In the 403A/6AK5, Lc = 5 millimicrohenries with parallel 
connection to the cathode, Ccg = 3.7 pf (i.e., 3.7 X 10-12 farad), and 
gm = 5 X 10-3 mho. Using these values in Equation (7.3-6), we find that 
at a frequency of 100 Me, G', = 3.6 X 10-5 mho. This is equivalent to a 
shunting resistance of 28,000 ohms at the input of the tube. This resistance 
is paralleled by the beam-loading conductance discussed in Part (b) below.

In the 448A tetrode, described in Section 5.3, higher transconductance is 
achieved by the use of a larger cathode area than in the 403A/6AK5 and 
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a closer cathode-control grid spacing. This increases Ccg, and consequently 
it is even more important to have a low cathode-lead inductance in this 
tube. For this reason, three separate cathode leads are brought out of the 
448A for parallel connection at the base. Measurement of the cathode- 
lead inductance of the 448A with the three cathode leads in parallel in­
dicates that it is about 4 millimicrohenries. The capacitance Ccg is 18 pf, 
and gm is 0.034 mho. Substituting these values into Equation (7.3-6), 
we find that Gt = 9.7 X 10-4 mho at 100 Me. This is equivalent to a 
shunting resistance of 1030 ohms across the input circuit.

A second important lead inductance effect in a tube such as the 448A is 
the fact that series resonance can occur between the inductance of the 
cathode and control-grid leads and the capacitance between the cathode and 
control grid. If we assume a total of 10 millimicrohenries inductance in 
the cathode and control-grid leads in the 448A, series resonance with the 
18-pf capacitance between the control grid and cathode occurs at a fre­
quency of 375 Me. At this frequency the input impedance would be re­
duced to a very small value.

(b) Beam Loading in Grounded-Cathode Stages

The beam loading of the input circuit also has a conductive part which 
at low and moderate frequencies is proportional to the product of the 
transconductance and the square of the signal frequency. The discussion 
that follows explains why this is so. Consider a single electron that travels 
from the cathode to the anode of a grounded-cathode triode. An induced 
current somewhat like that shown in Figure 7.3-2(b) flows in the external 
circuit connected between ground and the grid electrode. At time t0 the 
electron leaves the cathode. At time ti it passes the grid, and the direction 
of the induced current reverses because the direction of the electron velocity 
relative to the grid plane reverses. At time t2 the electron strikes the anode. 
(If the tube were a tetrode or pentode, the time fa could be taken as the time 
at which the electron passes the plane of the screen grid.) The area under 
the part of the induced current curve from t„ to fa equals the area under the 
part from fa to fa, and if the grid were an ideal electrostatic shield, each area 
would equal the electronic charge e. At low frequencies, and with many 
electrons passing the grid per cycle, the current induced in the grid circuit 
by electrons crossing from the cathode to the grid plane is just balanced by 
the induced current caused by the electrons crossing from the grid plane to 
the anode, and there is no net current induced in the grid circuit. However, 
at higher frequencies, where the electron transit time T„ = fa — t0 is a 
significant part of the period of the ac signal, the induced currents resulting 
from electrons crossing the two regions may not be exactly 180° out of 
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phase. As a result, current ig flows in the grid circuit when a voltage is 
applied by the signal generator to the grid terminal. The ratio of this ac 
induced current to the applied signal is called the beam loading admittance.

Fig. 7.3-2 The induced current i shown in part b flows in the grid lead when a 
single electron travels from the cathode to the anode, ig is the total induced current 

from all the electrons.

Suppose the ac grid voltage is given by Vg sin wt. The ac beam current 
is then gmVg sin wt, where gm is the transconductance of the tube. During 
the half cycle when the grid voltage is increasing, the current of electrons 
leaving the cathode (or really the current leaving the potential minimum) 
is also increasing. We would expect that during most of this half cycle 
the current induced in the grid circuit by electrons crossing from the 
cathode to the grid plane would exceed that resulting from electrons cross­
ing from the grid plane to the anode, whereas during the other half cycle 
the opposite would be the case. Consider the instant when sin wt = 0, 
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and the ac part of the grid voltage is changing from negative to positive. 
The grid voltage is increasing most rapidly at this instant, and likewise the 
current of electrons leaving the cathode is increasing most rapidly. Be­
cause of the finite transit time fi — t„ required for electrons to cross the 
cathode-grid region, the number of electrons in transit in this region is not 
maximum at the same instant as the current leaving the cathode is a maxi­
mum, but a short time later. Furthermore, the current induced in the 
grid circuit by an individual electron is essentially zero as the electron 
leaves the cathode (because the electron velocity is nearly zero), but it 
increases as the electron approaches the grid plane. For these reasons, 
the net current induced in the grid circuit is not maximum when the rate of 
change of the current leaving the cathode is maximum, but a short time At 
later, where At is an appreciable fraction of ti — t„. Of course, similar reason­
ing applies to the grid-anode region of the tube and the current induced in 
the grid circuit by electrons crossing this region. Consequently, the time 
At is actually a function both of fi — t0 and fi — fi.

From the foregoing discussion, we would expect that the magnitude of 
the induced grid current ig would be proportional to the maximum rate 
of change of the beam current and hence proportional to the product of 
gmVg and the angular frequency a. Also, for transit times which are small 
compared with the period of the ac signal, doubling the transit time in the 
two regions of the tube also doubles the difference between the induced 
grid currents resulting from electrons crossing the two regions of the tube, 
and the net induced grid current ig is doubled. Thus ig is also proportional 
to the transit time T„ and can be expressed as

ig = Kg^VguTo cos a(t — At) (7.3-7)

where K is a constant. This can be expanded to give

ig = Kj/mU^Tofcos at cos aAt + sin at sin wAZ] (7.3-8)

The second term in brackets is in phase with the applied grid signal, so 
that the ratio of this term to the grid voltage Vg sin at is the conductive 
part of the input loading. Hence,

Gin = KgnaT0 sin aAt (7.3-9)

If the electron transit time is small compared with the period of the ac 
signal, aAt is a small angle, and to a first approximation the sine of the 
angle can be replaced by the angle. Thus

Gi„ a gma2ToAt (7.3-10)

It is significant that both the input conductance resulting from cathode- 
lead inductance and the input conductance resulting from beam loading are 
proportional to gma2. Some experimental measurements of the input 
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loading with grounded-cathode operation are described in Section (c) below.
The input conductance of a grounded-grid amplifier stage is high even 

at relatively low frequencies. From Figure 7.2-2 and the accompanying 
discussion it can be seen that the input admittance with grounded-grid 
operation is essentially yn in series with Cg + Cm = (p + 1). (We 
assume the anode is bypassed to ground.) At moderate frequencies the 
reactance of C22 (m + 1) is negligible, and the input admittance of the ampli­
fier is yn- Now yn is the admittance of a space-charge-limited diode of the 
same electrode area as the triode, with current density equal to the average 
beam current density, electrode spacing equal to the cathode-grid spacing, 
and applied anode voltage equal to the effective beam voltage at the grid. 
The variation with frequency of the conductive and capacitive parts of 
this admittance are plotted in Figure 7.1-7. The input conductance of a 
grounded-grid amplifier stage, therefore, varies as the conductive term 
plotted in this figure. (We should qualify this statement by noting that the 
derivation which led to the conductive term plotted in Figure 7.1-7 assumed 
that the electrons leave the cathode with zero velocity and hence that the 
potential minimum coincides with the cathode. Actually, it is probable that 
the electrons which travel part way out to the potential minimum and 
return to the cathode contribute significantly to the input loading. Further­
more, the derivation does not take into account the Maxwellian distribution 
of emission velocities, and this also must have an important effect.)

(c) Some Measurements of the Input Admittance of Grounded-Cathode 
Amplifier Stages

When the beam current of a tube is varied by changing the control-

Fio. 7.3-3 Change of input conductance and capacitance with cathode current for 

the 448A tetrode.
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grid voltage, both the input capacitance and input conductance vary. 
If the control grid is biased negatively to cut off the beam, the input 
capacitance results only from the interelectrode capacitance plus the 
capacitance between the leads to the electrodes, and the input conductance

Fig. 7.3-4 Input conductance and input capacitance vs. frequency for the 448A 
tetrode.

results only from the effects of the series resistance in the leads to the 
electrodes. However, as the beam current is increased, both the input 
capacitance and input conductance increase. The increase in input capaci­
tance results from beam loading, whereas the increase in input conductance 
results from both beam loading and cathode-lead inductance.

Figure 7.3-3 shows the change in input conductance and change in input 
capacitance vs. beam current for the 448A tetrode, described in Section 5.3. 
The measurements were made at a frequency of 75 Me. When the beam is 
cut off, the input conductance is 1.5 X IO-4 mho, and the input capacitance 
is 18 pf. Under normal operating conditions, the cathode current is about 
35 ma. At this cathode current the input conductance is about 1.03 X 10-3 
mho. Figure 7.3-4 shows the variation of input conductance and capac­
itance with frequency for the 448A. At about 70 Me the input con­
ductance increases approximately as the square of the signal frequency,
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Fig. 7.3-5 Input conductance vs. fre­
quency for the 6AC7 and 6AK5 (Cour­

tesy Radio Corporation of America.)

whereas at lower frequencies it does 
not increase as rapidly. Figure 7.3-5 
shows plots of the input conductance 
vs. frequency for the 6AC7 and 
6AK5 codes. The 6AK5 is described 
in Section 5.4.

7.4 Two Grid-Controlled Tubes 
for High-Frequency Ampli­
fication

From the discussion given in the 
previous sections and in Chapter 6, 
we can list several important electri­
cal and physical characteristics 
needed in a grid-controlled tube 
which provides high-gain, broadband 
amplification at frequencies above 
100 Mc/sec:

1. The tube must have a high 
gain-bandwidth product and hence a 
high transconductance and low input 
and output capacitances. This 

means that the transconductance per unit area of the electrodes must be 
high, and a short cathode-control grid spacing must be used.

2. The transit angle in the cathode-control grid region must be small so 
that the input loading (for grounded-cathode operation) is small. The 
transit angle in the cathode-control grid region can be made small by using 
a short spacing between the control grid and cathode and a relatively high 
average voltage at the grid plane and hence a high cathode current density.2

3. High voltages and not-too-large electrode spacings must be used at 
the output interaction gap to reduce the transit angle and keep the beam­
coupling coefficient near to unity.

4. The cathode-lead inductance must be small to reduce the input loading, 
and other lead inductances must be small to prevent the occurrence of 
series resonance with the interelectrode capacitances.

^Equation (2) of Appendix X shows that the electron transit time for a planar diode 

(with potential minimum coincident with the cathode) is proportional to dxlz/Joxlz, 
where d is the electrode spacing, Jo is the cathode current density. Consequently, the 
use of a high cathode current density and short cathode-control grid spacing reduces 
the input transit angle.
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Figure 7.4-1 shows the construction of the Bell Telephone Laboratories 
1983 tetrode, a developmental tube designed for operation at frequencies 
of several hundred megacycles per second. The cathode, control grid,

Fig. 7.4-1 The construction of the Bell Telephone Laboratories 1983 tetrode. The 
overall height of the tube is 5.1 centimeters.

screen grid, and anode connections are brought out radially from the elec­
trodes by means of “disc” leads which are spaced by ceramic rings. The 
heavy slanted lines in the figure indicate the cross section of the ceramic 
rings. Vacuum-tight seals are formed between the ceramic rings and the 
disc leads. This type of envelope construction offers several important 
advantages:

1. The lead inductance can be made extremely small.
2. At frequencies above 100 Mc/sec, rf losses in wire leads to electrodes 

become important, and the effects of these losses increase with signal 
frequency. By using disc leads, the surface area of the leads is greatly 
increased, and the losses are correspondingly reduced.

3. Power dissipated as heat in the screen grid and anode can be effectively 
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conducted away, thus increasing the permissible power dissipation within 
the tube.

Table 5.2-1 lists the operating conditions and important performance 
characteristics of the 1983 tetrode. A comparison with the 448A tetrode 
data shows that the high gain-bandwidth product is achieved at the ex­
pense of higher cathode current density and reduced cathode-control grid 
spacing. The transconductance per unit area of the cathode in the 1983 
is seven times that of the 448A.

Much more power can be dissipated in the anode of the 1983 than in the 
anode of the 448A, because the thermal conduction from the anode to the 
external connections is much better in the 1983. A higher anode voltage 
can therefore be used, and this helps to reduce the transit angle in the 
output gap. Also, a smaller spacing between the screen grid and anode is 
used — 2 mm for the 1983 compared with 5 mm for the 448A. By operating 
the anode of the 1983 at a voltage well above that of the screen grid, second­
ary electrons emitted from the anode are prevented from reaching the 
screen grid. However, part of the primary current to the anode results from 
secondary emission at the screen grid. To reduce this secondary emission, 
and in fact to reduce the primary current to the screen grid, a larger screen­
grid pitch is used in the 1983, about twice that of the 448A, the screen-grid 
wire diameter being the same in the two tubes. The heat dissipated in the 
anode and screen grid of the 1983 is carried away partly by conduction 
through the external connections to the leads and partly by forced-air 
cooling.

At the time of writing, a one-stage, grounded-cathode amplifier has been 
assembled using the 1983. The amplifier has a 50-ohm resistance connected 
between the control grid and cathode, and a signal generator with a 50-ohm 
internal impedance is used to drive the amplifier. The amplifier provides 
a midband gain of 10 db with a 3-db bandwidth extending from 0.5 Mc/sec 
to 250 Mc/sec. (Note that because of the low input impedance of the 
stage, only the output capacitance limits the bandwidth in such a stage. 
Consequently, the gain-bandwidth product given by Equation (6.4-11) 
is not applicable here.)

The second tube which we shall describe is the Western Electric 416B 
triode, a tube designed as a grounded-grid amplifier for signal frequencies 
in the neighborhood of 4000 Mc/sec. The construction of the 416B is illus­
trated in Figure 7.4-2. The envelope is a metal-and-glass structure in which 
glass rings separate the anode, grid, and cathode terminals and form 
vacuum-tight seals with these terminals. The input and output connections 
to the tube are made by means of waveguides.3 A cross-sectional view of 

’See Chapter 8.
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the associated waveguide components is shown in Figure 7.4-3. The lower 
part of the bulb is capacitively coupled to the cathode, and rf connection 
to the cathode is made through this capacitance. DC connection to the 
cathode is made through a pin in the base. The electrical characteristics 
of the 416B are summarized in Table 5.2-1.

Fig. 7.4-2 The construction of the Western Electric 416B triode. The overall 
height of the tube is 4.8 cm.

The principal design considerations which led to the electrode structure of 
the 416B are described in Reference 7c. The design was chosen to obtain 
as large as possible a product of (midband power gain) X (bandwidth) 
consistent with practical values of cathode current density and anode and 
grid power dissipation. (At signal frequencies of 4000 Mc/sec it is more 
meaningful to use a gain-bandwidth product involving the power gain 
rather than the voltage gain, since the power gain can be measured directly, 
whereas the voltage gain must be calculated from measurements of power 
gain.) Using the equivalent network for a triode given in Figure 7.2-2, the 
midband power gain with grounded-grid operation can easily be shown 
to be | ?/i2 |72GnG0, where Gn is the real part of yn, and GQ is the conductance
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■ *—416B

Fig. 7.4-3 The waveguide connections to the 416B. There is effectively a coaxial 
line from the anode terminal of the tube to a probe which extends into the output 

waveguide and which acts as a transducer between the coaxial line and the 

output waveguide.

of the output circuit. We assume here that the characteristic admittance 
of the output waveguide appears at the tube as an admittance Go/2 and 
that the losses in the output circuit of the amplifier are adjusted to match 
this admittance. Hence the total conductance shunting the output circuit 
is Go. If is further assumed that the losses in the input circuit contribute 
a shunting admittance at the input which is small in comparison with Gn, 
and hence the effect of the input losses can be neglected. The capacitance 
Cg in Figure 7.2-2 is assumed to have negligible reactance at 4000 Mc/sec.
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Since the input conductance of a grounded-grid stage is extremely high, the 
Q of the input circuit is correspondingly low, and the bandwidth of the 
stage is determined primarily by the output circuit. From Equations 
(6.4-3) and (6.4-7) the 3-db bandwidth of the output circuit is Go/2irCo, 
where is the capacitance shunting the output circuit. Thus

(midband power gain) X (3-db bandwidth) = J^2 (7.4-1)

The power gain decreases with increasing transit angle in the cathode­
grid region, and accordingly a high cathode current density and extremely 
small cathode-grid spacing are used to minimize the input transit angle.

Fig. 7.4-4 The grid-wire diameter, the grid pitch, and the cathode-grid spacing 
for several tubes described in this chapter and in Chapter 5 are compared. Only 

two grid wires from each code are shown.

Figure 7.4-4 shows a comparison of the cathode-grid spacing used in this 
tube and in several tubes described earlier. The cross section of two grid 
wires from each tube are shown in relation to a common “cathode plane.” 
The 416B has the same cathode area as the 1983, but a smaller cathode-grid 
spacing.

Several factors bearing upon the choice of grid-anode spacing in the 416B 
are:

1. The bandwidth G0/2irC0 can be increased by increasing the grid-anode 
spacing and hence reducing Co.

2. Increasing the grid-anode spacing with a fixed anode voltage increases 
the transit angle for the grid-anode region and reduces the power gain.
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3. Increasing the anode voltage to reduce the transit angle in the grid­
anode region increases the power dissipation in the envelope structure. 
In practice, the permissible anode dissipation is limited to about 6 watts 
because of the proximity of the metal-glass seal which joins the anode 
terminal to the glass ring that surrounds it.

4. Increasing the grid-anode spacing with a fixed anode voltage requires 
a higher average voltage at the grid plane in order to draw the required 
cathode current density and total anode current. However, the peak 
grid voltage cannot be permitted to go very far positive, or the grid inter­
ception would become excessive.

In practice the highest possible anode voltage is used consistent with 
the power handling capabilities of the envelope structure. This permits a 
reasonably large grid-anode spacing with not too large a transit angle 
(92 degrees at 4000 Mc/sec) and without excessive grid interception. 
Forced-air cooling of the anode is used to help conduct away the 6 watts of 
power dissipated in the anode by the electron beam.

The 416B is used in a three-stage amplifier which provides a small­
signal power gain of 9db per stage at a midband frequency close to 4000 
Mc/sec. The 3-db bandwidth of a single stage is 100 Mc/sec. As the input 
signal is increased from zero, the power gain at 4000 Mc/sec remains nearly 
constant up to a power output of about 20 milliwatts. However, at higher 
power outputs, the power gain falls with increasing power output; and 
at a power output of 0.5 watt, the midband power gain of the output stage 
is reduced to 5db.

PROBLEM

1. The beam of a cathode-ray tube passes between two parallel deflection plates 

of length d in the direction of the electron motion. Show that for small deflections 

of the beam by an ac signal applied to the deflection plates, the amplitude of the

deflection is proportional to the beam coupling coefficient where T„ is
0)2 o/2

the time the electrons spend in traveling the distance d, and w is the angular fre­

quency of the ac signal applied to the plates. Assume that edge effects at the de­
flection plates can be neglected and that the field between the plates is uniform at 

any instant.
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Cha pter 8

MICROWAVE COMPONENTS AND CIRCUITS

We have discussed in the previous chapter some of the high-frequency 
effects which occur in grid-controlled tubes. Lead inductances, inter­
electrode capacitances, conductor resistances, beam loading, and electron 
transit-time effects contribute deleteriously to the performance of high- 
frequency, grid-controlled amplifiers. As will be noted later in this chapter, 
conductor resistance losses actually worsen with increasing frequency due 
to an effect known as “skin effect.” Furthermore, as frequency increases, 
it is possible for lead wires to have lengths comparable with a wavelength, 
in which case they can act as antennas and radiate electromagnetic energy. 
These considerations lead one to abandon the wires and lumped components 
used at lower frequencies and to seek new and more appropriate components 
for microwave frequencies.

Let us first consider the evolution of the tuned circuit as the resonant 
frequency is increased into the microwave range. At low and moderate 
frequencies, lumped-constant resonant circuits, such as the one illustrated 
schematically in Figure 8-1 (a), are frequently used in electronic circuitry. 
The resonant frequency is given by f = l/2ir\LC, where L is the induct­
ance, and C is the capacitance. In a tetrode amplifier circuit, for example, 
an inductance L may be used to resonate with the interelectrode and stray 
capacitances of the output circuit so as to give maximum gain at a partic­
ular frequency.

As the operating frequency is increased, both the capacitance and in­
ductance could be decreased in order to maintain resonance at the operating 
frequency. However, for the case of the tetrode amplifier, a limiting value 
of the capacitance is soon reached for two practical reasons. First, transit­
time effects set a limit to how far the electrodes can be pulled apart. Second, 
the area to which the beam cross section can be reduced may be limited 
by (1) the maximum allowable cathode current density or (2) considerations

233
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(c) (d)
Fig. 8-1 Evolution of a cavity resonator from its low-frequency prototype, (a) 
Low-frequency prototype, (b) Inductance decreased to that of a single turn wire, 

(c) Single wires in parallel, reducing the inductance further, (d) Cavity resonator 

resulting from a continuation of the process of Figure 8-1 (c).

relating to beam spreading and confining the beam with external fields, 
as discussed in Section 3.4. This determines a minimum area for the elec­
trodes. As the frequency is further increased, therefore, one must resort 
to reducing the inductance. However, we soon reach the point where the 
inductance is a single short wire, as shown in Figure 8-1 (b). Still higher 
resonant frequencies can be obtained by paralleling the single wire with 
additional single-wire inductances, as indicated in Figure 8-1 (c). As 
this procedure is carried to the limit, one obtains the re-entrant cavity 
structure shown in Figure 8-1 (d). A cross-sectional view of such a cavity 
is shown in Figure 8-2. Such resonant cavities are used in klystrons and 
microwave triodes and tetrodes. Not only has the inductance been de­
creased in the resonant cavity, but also the resistance losses are lessened, 
and the self-shielding configuration prevents radiation losses. The fact that 
all of the electromagnetic fields are confined to the interior of the cavity 
will become more obvious after a discussion of “skin effect.”

To calculate the resonant frequency of a cavity such as that shown in 
Figure 8-2 is often a difficult process.1 However, approximate calculations

•References 8.1, 8.4. 
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can often be made to obtain useful 
information. For instance, we note 
that in the cavity shown in Figure 
8-2, the capacitive gap is short com­
pared with its diameter. This cavity 
may be thought of as two shorted 
coaxial lines joined by a capacitance. 
It can be shown that the input im­
pedance to each shorted coaxial line 
is given by the expression2

where c = is the velocity of 
light. The capacitance of the gap is 
given by the expression 

Fig. 8-2 Re-entrant cavity resonator 
which can be analyzed by simple 

transmission line theory. The cavity 

is airfilled.

where fringing effects are neglected. At resonance, the inductive reactance 
of the two shorted coaxial lines in series is equal in magnitude to the capac­
itive reactance of the gap, but of opposite sign. Hence,

. h = 0 (8-3)

The solution to this equation gives the resonant frequency. Rearranging 
the equation, we obtain

al , al— tan — = c c
hl

b2 In £ 
b

(8-4)

For the particular set of dimensions given by a = I, h = 0.0318Z, and 
a = Ab, Equation (8-4) is satisfied by al/c = 0.571, and we can scale the 
dimensions to suit any frequency. At 3000 Me, I is equal to 0.91 cm. This 
sort of scaling operation is a general property of microwave components. 
That is, if we multiply all dimensions by a factor K, all frequencies of 
interest are divided by K.

In the above example, the solution al/c = 0.571 is equivalent to saying 
that I is 0.0908 wavelength long. It can be shown that averaged over a 
cycle, a shorted coaxial line of this length contains 8.84 times as much

’Reference 8.2. 
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magnetic stored energy as it contains electric energy. The balance of the 
electric stored energy appears in the gap, since at resonance the electric 
and magnetic stored energies are equal in magnitude (but 90 degrees out of 
time phase). The region outside of the gap is called the inductive region 
of the cavity, and to a good approximation it can be considered to have 
only magnetic fields. The cavity can therefore be represented by the equiv­
alent circuit of Figure 8-1 (a), where the capacitance C is the gap capaci­
tance, and the inductance is chosen to give the correct resonant frequency.

Since Equation (8-4) contains the tangent function, it has an infinite 
number of solutions with larger values of frequency. Physically, this 
corresponds approximately to additional half wavelengths on the coaxial 
line at higher frequencies. This behavior is typical of all microwave 
cavities; that is, there are an infinite number of resonant frequencies or 
modes of oscillation. However, resonant cavities are nearly always operated 
in the lowest frequency, or dominant, mode because the resistive losses are 
usually lower in that mode. Resistive losses in the cavity can be repre­
sented in the equivalent circuit of Figure 8-1 (a) by a parallel resistance of 
such a value as to give the correct power loss per cycle for a given amount of 
stored energy.

Next let us consider the problem of transmitting microwave energy 
from one point to another with as little resistive and radiation losses as 
possible. Radiation losses can be kept to a minimum by using a suitable 
form of transmission line, such as a coaxial line, stripline, or a waveguide. 
Of these types of transmission line, the waveguide is capable of giving 
minimum attenuation per unit length at a given signal frequency, and it is 
the most commonly used form of transmission line at microwave fre­
quencies. A study of wave propagation in a waveguide provides a suitable 
introduction to a discussion of wave propagation along other forms of 
transmission line such as are used in microwave tubes.

Our principal mathematical tool for studying the transport of electro­
magnetic energy from one point to another is a set of equations, known as 
Maxwell’s Equations. These equations can be used to describe electro­
magnetic wave propagation in free space, and in principle they can be used 
to describe electromagnetic wave propagation along an arbitrarily shaped 
transmission line. We shall first consider the plane electromagnetic wave 
in free space and then show that electromagnetic wave propagation in a 
waveguide can be considered as a superposition of two plane electromag­
netic waves.

Suppose the direction of propagation of a plane electromagnetic wave is 
taken to be the z direction. With proper choice of the rectangular coor­
dinate system, the wave consists of an electric field component Ex and a 
magnetic field component Hy, both of which vary sinusoidally in the z 
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direction with wavelength Xo = c//, where c is the velocity of propagation, 
and f is the frequency of the signal. For a plane wave in free space H„ is 
related to Ex by Hy = (^o/po)Ex. The power density flowing in the z 
direction is equal to |Ex| watts per square meter of wave front.

Figure 8-3 shows the field lines associated with two plane waves of equal 
amplitude. One wave is propagating upwards and to the right with velocity

Fig. 8-3 Two plane waves. One is advancing upwards and to the right with veloc­
ity c, and one is advancing upwards and to the left with velocity c.

c, and one is propagating upwards and to the left with velocity c. Each 
wave front makes an angle 0 with the vertical, or z, direction. Maxwell’s 
Equations are linear, so that the field pattern resulting from a super­
position of the two waves is obtained by a vector addition of the individual 
field components. Figure 8-4 shows the field pattern which results from 
this vector addition.

The field pattern of Figure 8-4 moves only in the z direction. Exam­
ination of the vector diagram shown in the upper right-hand part of the 
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figure shows that, in the time taken for an individual plane wave to travel 
the distance EF, the field pattern of Figure 8-4 travels in the z direction a 
distance EG. Thus the phase velocity of the field pattern in Figure 8-4 is 
given by vp = c/sin0. On the other hand, the electromagnetic energy 
associated with the individual plane waves propagates in the direction of

Fig. 8-4 A superposition of the two plane waves shown in Figure 8-3. With increas­

ing time the whole pattern moves in the z direction with phase velocity vp = c/sin0. 

The wavelength in the z direction is given by Xz = Xo/sin0. The energy associ­
ated with the two separate waves propagates in the direction of travel of the wave 

fronts of the separate waves. This direction makes an angle of 90° — 0 with the z 
direction. Hence, the energy associated with the above pattern propagates in the z 

direction with a group velocity given by v „ = c cos (90° — 0 = c sin0.
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travel of the wave fronts and hence at an angle of 90 — 0 degrees with re­
spect to the z direction. Since one wave transports electromagnetic energy 
to the right and upwards, and the other wave transports electromagnetic 
energy to the left and upwards, the net transport of energy is in the z 
direction only. The velocity with which the energy is transported in the z 
direction is given by the group velocity vg = c cos (90° — 0) = c sin0.

The wavelength Xz of the field pattern in Figure 8-4 is easily seen to be 
related to the free-space wavelength X„ by = Xo/sin0.

From Figure 8-4 it is evident that the electric field intensity is zero along 
the planes AB and CD at all times, and the magnetic field lines never 
cross the planes. Hence, if thin conducting sheets were inserted along these 
planes, the field pattern would not be disturbed. In this case the two plane 
waves between the conducting sheets reflect from one side to another, at 
the same time progressing in the z direction. The plane waves outside the 
conducting sheets are likewise reflected from the conducting sheets, and the 
net result is that the field pattern of Figure 8-4 is undisturbed.

Next, let us remove the field pattern for a moment and suppose we have 
two conducting plates of very large area and spaced by the distance from 
plane AB to plane CD in Figure 8-4. Suppose that two plane waves are 
launched between the plates with the E field parallel to the plates and with 
the wave fronts making an angle 0 with the surface of the plates. The angle 
between the two wave fronts is then 20, as in Figure 8-3. The two waves are 
reflected from plate to plate, and the resulting field pattern is identical to 
that shown between the planes AB and CD in Figure 8-4.

Finally, suppose that the two “side plates” of the previous paragraph 
are joined by “top” and “bottom” plates to form a rectangular wave­
guide, as shown in Figure 8-5. The electric field lines now terminate on 
surface charges on the top and bottom plates, but the shape of the field 
pattern is otherwise unchanged. The waves propagate along the wave­
guide with phase velocity vp = c/sin0, and the electromagnetic energy 
propagates with the group velocity given by vg = c sin0. The axial wave­
length of the field pattern in the waveguide is given by X, = X„/sin0.

What we have done here is to find a field pattern that satisfies the bound­
ary conditions imposed by the rectangular waveguide. These boundary 
conditions require that the tangential component of electric field intensity 
at the surface of the conducting walls be zero, and the normal component 
of magnetic field intensity at the surface of the waveguide be zero. From 
Figure 8-4 it is evident that the distance between planes AB and CD is 
determined by the angle 0 and the wavelength Xo of the plane waves. 
Conversely, if we have a waveguide of a given width a and a given wave­
length Xo, the angle 0 is determined. If we set the width a of the waveguide 
equal to X„/2, it is evident from Figure 8-4 that cos 0 = X0/Xc, and hence
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SIDE VIEW

Fig. 8-5 Field patterns in a rectangular waveguide. The broken lines indicate the 
shapes of the magnetic field lines, and the solid lines indicate the shapes of the 

electric field lines.

sin0 = — cos20 = -^1 — Thus we have the relations

and

Vl - hJ/K1 

vg = cVl - hJ/\J

K = —-- -----
Vl - XO2/XC2

(8-5)

(8-6)

(8-7)

So far we have described only the most frequently used dominant mode 
of propagation of waves in a rectangular waveguide. From Figure 8-4 it is 
evident that waves in this mode can propagate only if Xo is less than Xc. 
We also note that Equations (8-5) and (8-6) indicate that vp and vg become 
imaginary quantities when Xo > Xc. The wavelength Xc is called the cutoff 
wavelength and is a characteristic of the waveguide and the mode of prop­
agation. Signals of wavelength shorter than Xc can propagate, but signals 
of longer wavelength cannot propagate. (We assume here that the di­
mension b of the waveguide is smaller than a.)

Finally, let us return once more to Figure 8-4. Suppose the plane CD 
were translated to the right a distance \c/2. The field pattern between the 
planes would then consist of two side-by-side patterns similar to the one 
described above for the dominant mode of the rectangular waveguide. 
Clearly this field pattern also satisfies the boundary conditions of an 
enlarged waveguide, that is, one twice as wide as we have previously con­
sidered. Or, conversely, for a given waveguide width, such a field pattern 
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can be established in the waveguide provided the free space wavelength 
of the signal is sufficiently short. In a similar way, we see that an infinite 
number of field patterns or modes of propagation can be established in a 
rectangular waveguide. As the field pattern becomes more complex, the 
cutoff wavelength becomes shorter, and the signal frequency must be 
higher. Furthermore, since waves can be reflected from the top and bottom 
of the rectangular waveguide, there is a second infinite set of modes of prop­
agation in which the electric field lines are parallel to the a dimension of 
the waveguide. Also, for a given signal frequency, a mode with the E field 
parallel to the a dimension can be superimposed on a mode with the E 
field parallel to the b dimension. The resulting field patterns, therefore, 
can be very complex. Later in the chapter we shall find that there are still 
other modes of propagation in which the E field has a z component and the 
H field is entirely transverse to the z direction.

The final section of the chapter considers the propagation of electro­
magnetic waves along transmission lines which are characterized by phase 
velocities that are less than the velocity of light. Such transmission lines 
form integral parts of a number of microwave tubes, such as traveling-wave 
tubes, backward-wave oscillators, and magnetrons.

8.1 Maxwell’s Equations and the Wave Equation

Some of the laws governing the behavior of static electric and magnetic 
fields were discussed in Chapter 1. The equations from that chapter which 
are pertinent to our present discussion are listed below.

Equation (1.1-4): E-dl = 0 (8.1-1)
closed path

Equation (1.4-3):
Equation (1.5-2):
Equation (1.5-5):

VD = p (8.1-2)
V B = 0 (8.1-3)

V X H = J (8.1-4)

We shall consider these equations one by one to see what form they take 
when time-varying fields are present.

First, it may be stated that Equations (8.1-2) and (8.1-3) are true as they 
stand for time-varying fields and charges as well as for static fields and 
charges.

Let us next consider Equation (8.1-1) as it applies to a closed loop of 
resistance wire. The experiments of Faraday have shown that, if the loop 
is linked by changing magnetic fields, there will be current flow around the 
loop and hence a voltage drop around the loop. That is to say, the right­
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hand side of Equation (8.1-1) is not equal to zero in such a time-varying 
field. Faraday’s law may be stated mathematically as

® Sdl = / ®-ndS (8.1-5)
J J

closed path surface

where the surface of integration is taken as any surface bounded by the 
closed path. Script letters are used for the time-varying field vectors to 
distinguish them from the de vectors used previously. Physically the law 
states that the total voltage induced in a closed loop is given by the time 
rate of change of magnetic flux linking the loop. We can convert this equa­
tion to a more useful form by applying it to a small loop of area AA, the 
loop being small enough that © can be taken as uniform in magnitude and 
direction. Let the component of © normal to the plane of the loop be denoted 
by ©„. Dividing both sides of the equation by AA and taking the limit as 
AA —> 0, we have

lim -J-, i 8 dl = (8.1-6)
aa-o AA J dt

closed path

But the left-hand side is equal to the component of V X E normal to the 
plane of the loop, so that

V X 8 = (8.1-7)
dt

Expressions for the curl in rectangular and cylindrical coordinate systems 
are given in Appendix XII.

Maxwell’s great contribution to these fundamental laws was a recognition 
of the fact that ac magnetic fields are set up not only by real currents con­
sisting of charges in motion, but also by so-called displacement currents. 
The displacement current density is given by the time rate of change of the 
electric flux density vector (d/dt) SO, so that Equation (8.1-4) becomes

V X K = <j + ~ (8.1-8)
dt

If we take the divergence of both sides of Equation (8.1-8), we obtain

since the divergence of a curl is identically zero. Using Gauss’s Law, 
Equation (8.1-2), this may be written as

V’S + % = °
dt 
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the equation of continuity, Equation (1.3-2). Thus, the introduction of 
the displacement current density in Equation (8.1-8) is necessary to 
satisfy the equation of continuity.

We may thus summarize our results for ac and dc fields in the four 
equations known as Maxwell’s equations:

V X £ =
0®
dt

_ 030v x k = g + — 
at

V© = p

V® = 0

(8.1-9)

(8.1-10)

(8.1-11)
(8.1-12)

Equations (8.1-9) and (8.1-10) when taken together, with conduction 
current density ¿J set to zero, form a very interesting pair. Equation (8.1-9) 
states that a changing magnetic field gives rise to an electric field, and 
Equation (8.1-10) in turn states that a changing electric field gives rise to 
a magnetic field. Thus it is clear how wave propagation and standing­
wave phenomena are obtained: each type of electromagnetic field vector 
acts as a source for the other. A change in one produces the other, and 
vice versa. Thus, energy oscillates continuously from the electric fields to 
the magnetic fields and back.

In all our discussions of microwave tubes we shall describe physical be­
havior for a simple sinusoidal variation at a fixed frequency. In all cases 
we shall be dealing with linear phenomena, and hence we can represent 
any arbitrary input or response by a superposition of sinusoidal inputs and 
responses. We can therefore use the phasor notation to describe the 
currents and field vectors:

£ = Re Ee3"*, ¿J = Re Je3“(, etc.

Then

= Re/wEe3"', etc. (8.1-13)dt

Thus, if all quantities vary sinusoidally at a single frequency, we have the 
following form of Maxwell’s Equations:

V X E = —juB (8.1-14)
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In rectangular coordinates Equations (8.1-14) and (8.1-15) can be written as

dEx 
dy

dEy . „
OZ

dEx _ 
de - = —jwppjly

dEy 
dx

dEx _ . (8.1-18)

and
dH, _ 
By

BHy r 1 nn — Jx “F JOJSSoEg dz
dHx _ 
de

dHz r 1 - EI $ — J y +

dHy _ 
dx

dHx _ .
J z “T (8.1-19)

where we have substituted B = in Equation (8.1-14) and D = ee„E in 
Equation (8.1-15).

In addition to Equations (8.1-14) through (8.1-17), it should be noted 
that two other equations from Chapter 1 are valid for time-varying fields 
as well as for de fields. These are the equations for the force on an electron, 
Section 1.2, and the equation of continuity, Equation (1.3-2), which in 
phasor notation becomes

V J = -jwp (8.1-20)

Let us now use Equations (8.1-14) and (8.1-15) to derive the wave equa­
tion for an electromagnetic wave in a region in which there are no free 
charges and no conduction currents. In this case the equations reduce to

V X E = — jwppM (8.1-21)
V X H = jweeoE (8.1-22)

Taking the curl of both sides of the first equation and combining the result 
with the second equation, we obtain

V X (V XE) = — jwppN XH = w2ppdseoE (8.1-23) 

Now from Equation 13 of Appendix XII,

V X (V X E) = V(V-E) - V2E (8.1-24)

The first term on the right here is zero since, from Equation (8.1-16),

V-E = (8.1-25) 



MICROWAVE COMPONENTS AND CIRCUITS 245

and we have assumed p = 0 in the region of space under consideration, 
Equation (8.1-23) then can be written as

V2E + fc2E = 0 (8.1-26)

where k2 = w2pp^e0. This equation is known as the wave equation for an 
electric field. Equations (8.1-21) and (8.1-22) also can be used in a similar 
manner to derive the wave equation for a magnetic field, namely

V2H + fc2H = 0 (8.1-27)

Equations (8.1-26) and (8.1-27) describe the propagation of an electro­
magnetic wave in a region of free space in which there are no free charges or 
conduction currents.

Perhaps the simplest application of Equations (8.1-26) and (8.1-27) 
is in the description of a plane electromagnetic wave, such as one might 
obtain at a very large distance from a radiating antenna. Let us assume 
that the electric field intensity of the wave is directed only in the x direction 
and is given by Ex. For a wave propagating in the z direction, Equation 
(8.1-26) then reduces to

+ k2Ex = 0 (8.1-28)az

This has the solution

Ex = E^»' (8.1-29)

Now k2 = and in free space p = e = 1. We shall set k = w/c fora 
wave in free space, where c = l/\p^0. If time dependence is included, and 
if we assume the propagating medium is free space, the expression for the 
electric field intensity becomes

fix = Re Eaoe^^ = Re = Exo cos ± 0

(8.1-30)

Here the plus sign in the term cos o>[i ± (z/c)] applies to a wave propagating 
in the negative z direction, and the minus sign applies to a wave propagating 
in the positive z direction. We see that the quantity c = 1 /y/p^, is the 
velocity of propagation of the plane wave, equal to 3 X 108 meters/sec.

By setting Ev = E„ = 0 in Equation (8.1-18), we find that Hx = H, = 0, 
and

TT _ i SEX k
Uy ~ — Jaz —E. 

Po (8.1-31)

where we have assumed a wave propagating in the positive z direction and 
have used a minus sign in the exponent on the right-hand side of Equation
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(8.1-29). We have also assumed that m = e = 1. Equation (8.1-31) indicates 
that for a plane wave propagating in free space, the ratio of the electric field 
intensity to the magnetic field intensity is given by This ratio has the 
dimensions of an impedance and is numerically equal to 377 ohms.

8.2 Energy Stored in Electric and Magnetic Fields; Power Flow in an 
Electromagnetic Wave

Here we shall first derive expressions for the energy stored per unit 
volume in electric and magnetic fields. The expressions apply to both static 
and time-varying fields.3

(a) Electric Fields

Consider a capacitor that is charged to a voltage of v volts. If an incre­
mental amount of charge dq is added to the charge already on the capacitor, 
the work done in adding the incremental charge is vdq. This work is con­
verted to energy stored in the electric field of the capacitor. Now from 
Equation (1.4-7) we have q = Cv, and hence dq = Cdv. Thus the work 
done in adding the charge dq to the capacitor is Cvdv. If the capacitor is 
charged from zero volts to v volts, the energy stored in the electric field of 
the capacitor is given by

energy stored = J" Cvdv = |Ct>2 (8.2-1)

If the capacitor is a parallel-plate device in which the plates are of area A 
and spacing d, and if edge effects are neglected, C = eeoA/d, and the energy 
stored per unit volume between the plates is %Cv2/Ad = ^„(v/d)2. Setting 
v/d = 8, where 8 is the electric field intensity between the plates, we obtain

energy stored per unit volume = |ss082 (8.2-2)

We see that the expression for the energy stored per unit volume depends 
only on the magnitude of the electric field intensity and is independent of 
the geometry of the electrodes that generate the field.

(b) Magnetic Fields

Equation (8.1-5) indicates that the voltage induced in a loop of resistance 
wire by a changing magnetic field is equal to the time rate of change of the 
magnetic flux linking the loop. Consider a toroidal coil, such as that shown 
in Figure 1.5-3. If the coil has N turns and all are linked by the flux fi, the

’References 8a, 8c, 8d.
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voltage induced in the coil by a changing 0 is given by

v = (8.2-3)at

Now the inductance L of the coil is equal to the number of flux linkages per 
ampere of current passing through the coil. Hence N<j> = Li, and

Nd# = Ldi (8.2-4)

Equation (8.2-3) then can be written as
div = 1% (8.2-5)
dt

This equation states that when the current through the coil is changing, 
there is a voltage v developed across the coil proportional to the rate of 
change of the current. (The resistive losses in the coil are neglected here.)

The rate at which work is being done to change the current in the coil is 
vi. Thus the work done in an increment of time dt during which the current 
changes by di is vidt = Lidi. This work is converted to energy stored in the 
magnetic field of the coil. The total energy stored in the magnetic field 
when the current in the coil is increased from zero to i is then

energy stored = f Lidi = ^LP (8.2-6)

In the case of the toroidal coil shown in Figure 1.5-3, L = Trr2fifionN, 
where r is the radius of the individual turns of wire, m is the relative permea­
bility of the medium filling the coil, n is the number of turns per unit length 
around the coil, and N is the total number of turns in the coil. If R is the 
mean radius of the toroid, n = N/2xR. The volume within which the 
magnetic energy is stored is approximately given by (irr2')(2irR'). Hence the 
energy stored per unit volume within the coil is given by \L?/(irr2) (2irR), 
which reduces to

energy stored per unit volume = (miAnif = (8.2-7)

where we have substituted 3C = ni from Equation (1.5-11). Again we see 
that the energy stored per unit volume depends only on the magnitude of 
the magnetic field intensity and is independent of the field configuration.

(c) Power Flow in an Electromagnetic Wave

Here we shall examine the power flow associated with a plane wave propa­
gating in free space. We shall assume that the wave propagation is in the z 
direction and consists of an electric field component 8Z and a magnetic field 
component 3C„. Consider a pillbox element of volume with faces of area A 



248 PRINCIPLES OF ELECTRON TUBES

lying parallel to the x-y plane and having thickness dz in the z direction. 
The energy stored in this volume will vary with time as the wave propagates 
past the volume element. From Equations (8.2-2) and (8.2-7), the in­
stantaneous stored energy in the volume element is given by

W = !(£<£? + nfK^Adz (8.2-8)
The rate of change of energy stored in the volume element is

0W . , / „ d&x . dXy\ 
— Adzi Zo&x + MoJCy I at \ ot at /
= -AdzUx^ + 3C^)

\ dz dz J

= -Adz^&Jty) (8.2-9)
dz

where we have substituted e0(d&x/dt) = — dXy/dz from Equation (8.1-10) 
and u0(dKy/dt) = — d&x/dz from Equation (8.1-9).

Thus the time rate of change of the energy stored in the volume element is 
equal to the change in the quantity AS^y in the distance dz. Since energy 
flows only in the z direction, we see that 8x3C,, is of the nature of a power 
density, or rate of flow of energy per unit area. It is customary to represent 
the power density by a vector S, which is directed in the direction of 
propagation. In the present case,

| S | = 8, = 8x3^ (8.2-10)
More generally, whenever there is propagation of electromagnetic energy, 
the power density can be represented by a vector S such that

S = 8 XK (8.2-11)
The vector S is called the Poynting vector after the man who discovered it. 
The power density is measured in watts per square meter.

Equation (8.2-10) can be written in another useful form as follows: 

8, = 5(8x3C, + 8x3C„) = i —8X2 +

Mo

= C Ls^ + LoSCy2

(8.2-12)
where we have substituted 8Z = ^Mo/e» 3C„ from Equation (8.1-31) and 
c = I/^jUoSo. This states that the energy stored in the electric and magnetic 
fields of the plane wave propagates in the z direction with velocity c, as we 
might expect.

8.3 Boundary Conditions
Maxwell’s Equations constitute a set of differential equations which can 

be solved in a given region subject to imposed boundary conditions. In 
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many cases, the region over which a solution is sought can be divided up 
into several subregions, and appropriate matching of fields is made at the 
boundaries between these regions. Let us therefore consider the relation­
ships between the fields adjacent to a boundary but on either side of it.

(a) Electric Fields

Figure 8.3-1 (a) shows the boundary between two regions of different 
relative dielectric constants za and sb- A single electric field line passing 
through the boundary between the two regions is shown. In region A the 
electric field has magnitude EA, and in region B it has magnitude EB. A 
small rectangle is drawn about the point where the field line crosses the 
boundary. The rectangle is Az units long in the direction parallel to the 
boundary and Az units wide in the direction normal to the boundary. Half 
of the rectangle is in each region. We shall assume that Ea can be resolved 
into two components, one parallel to the boundary E^a, and one normal to 
the boundary E±A- Similarly, Ea can be resolved into components E\\B 
and Eab-

Fig. 8.3-1 Electric field vectors at a point on the boundary between two regions. 

Region A has permittivity Sa^o and region B has permittivity sb^o.

Let us evaluate Equation (8.1-5) for the region defined by the rectangle 
AzAz in Figure 8.3-1 (a). Substituting fi = Re E e»1 and © = Re B e*“ in 
the equation, we obtain

Edi = -ju y B ndS (8.3-1)

closed loop surface

If both Az and Az are assumed to be very small, E in region A or region B 
will be constant in magnitude and direction over the part of the rectangle 
included in the region. Let the average value of the component of B 
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normal to the plane of the rectangle be Bn. Equation (8.3-1) can then be 
written

/ At At At At
® E-dl = E^BAz + Eab~^~ + ExA-n---- E^aAz — E±A—------Eab-x-J ¿¿t ¿i u

rectangle

= —jwB„AxAz (8.3-2)

Next let Ax —> 0 in such a way that the rectangle is still centered about 
the boundary. The right-hand side of Equation (8.3-2) then approaches 
zero, and the equation reduces to

— E^aAz = 0 (8.3-3)
from which

E\\a = E]\b (8.3-4)
Thus the components of E parallel to the boundary are equal on both 
sides of the boundary, despite the fact that the two regions have different 
dielectric constants.

Next let us consider the field perpendicular to the boundary. We shall 
work with the D vector in this case and show that the normal component of 
D is continuous at the boundary. Figure 8.3-1 (b) shows an electric field 
line which passes through the boundary between regions A and B. In 
region A, Da = sab^Ea, and in region B, DB = ebSoEb. A small pillbox­
shaped volume surrounds the point where the field line passes through the 
boundary. The pillbox has area AA on the faces parallel to the boundary 
and thickness Ar. We assume that Da can be resolved into a component 
D±a perpendicular to the boundary and D|,a parallel to the boundary. 
Similarly, DB can be resolved into DAB and .Dub.

Equation (8.1-16) can be written in the form

I V-Ddv = J" pdv (8.3-5)

volume volume

Using Gauss’s theorem (Appendix XII) this may be written as

closed surface

(8.3-6)

This is the same as Equation (1.4-2). Let us now apply this equation to the 
pillbox-shaped volume in Figure 8.3-1 (b). If we let the thickness Ax of the 
box become vanishingly small, and if we assume there is no surface charge 
at the boundary,

DndS = D±aAA — DabAA
closed surface

J" pdv = 0 

volume

(8.3-7)
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Then
Dla — D^_b (8.3-8)

Thus the perpendicular component of electric flux density is continuous at a 
boundary.

(6) Magnetic Fields

Next, consider the boundary between regions of relative permeability 
pa and pb, as shown in Figure 8.3-2(a). The figure shows a single magnetic 
field line which passes through the boundary. A rectangle of dimensions Ax

Fig. 8.3-2 Magnetic field vectors at a point on the boundary between two regions. 

Region A has permeability pap« and region B has permeability pbp«-

by Az surrounds the point where the field line crosses the boundary and is 
centered about the boundary so that the rectangle lies in each region. We 
assume that Ha can be resolved into components H±a and Hua, per­
pendicular and parallel to the boundary. Similarly, Hb can be resolved into 
components H±B and HiiB-

Let us evaluate Equation (8.1 -15) for the region defined by the rectangle 
AxAz in Figure 8.3-2(a). The equation can be written in the integral form

I (VXH)-ndS= I (J + jwD) ■ ndS 

surface surface

Applying Stoke’s theorem (see Appendix XII), we obtain

H-dl = I (J+jw^-ndS 

closed loop surface

(8.3-9)

(8.3-10)

If both Ax and Az are very small, H in region A or B will be constant in 
magnitude and direction over the part of the rectangle included in the 
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region, and J and D will be uniform over the area of the rectangle. Let the 
average values of the components of J and D normal to the plane of the 
rectangle be Jn and Dn. Equation (8.3-10) can then be written as

(f H-dl^ HliBAz +Hxb^ +-H„aAz 

closed loop

At At
—HAa—----- H±B— = (Jn + juD„)AxAz (8.3-11)

If we now let Ax approach zero, the right-hand side of the equation ap­
proaches zero, and the equation reduces to

H\\BAz — H\\AAz = 0 (8.3-12)
or

H»A = HjiB (8.3-13)

Hence the tangential component of the magnetic field intensity vector is 
continuous at a boundary.

Finally, let us consider the normal components of magnetic field at the 
boundary. We shall start with Equation (8.1-17) in the integral form:

I V-Bdw = 0 (8.3-14)

volume

Using Gauss’s theorem (Appendix XII) gives us

I B-ndS = 0 (8.3-15)

closed surface

If this equation is applied to the pillbox-shaped volume shown in Figure 
8.3-2(b) and if we let the thickness Ax of the volume become vanishingly 
small, we obtain

y B-ndS = BaaAA - BAbAA = 0 (8.3-16)

closed surface

Hence
BAa = Bab (8.3-17)

Thus the perpendicular component of magnetic flux density is continuous 
at a boundary.

In summary, at an infinitesimally thin boundary between two regions 
which have different permeability and permittivity, the tangential com­
ponents of E and H are continuous, and the perpendicular components of D 
and B are continuous.
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8.4 Ohm’s Law and Skin Effect
(a) Ohm's Law

Ohm’s Law is perhaps the first learned and most basic of the experi­
mental laws of electricity. At low frequencies this law states that the 
ratio of voltage drop to current in a resistor is a constant. At microwave 
frequencies, the current density throughout a resistor or a conductor is 
usually not constant, and Ohm’s Law is best stated in the form

J = o-E (8.4-1)

where J is the current density, E is the electric field intensity, and a is the
conductivity of the medium.

This equation can be related to 
the more familiar form of Ohm’s 
Law in the following way. Consider 
a conductor of length I and cross'- 
sectional area A, as shown in Figure 
8.4-1. A voltage V is applied over 
the length I, and a current density 
J flows parallel to the length I. We 
assume the current density is uni­
form over the cross section of the 
conductor. The electric field in­

Fig. 8.4-1 A uniform cylindrical con­

ductor of conductivity a.

tensity within the conductor is of magnitude E. Then J = «E, and the 
total current flowing in the conductor is given by

V VI = JA = «EA = ¿rA = 
I II (8.4-2)

or

V = IR (8.4-3)

where R = l/aA is the resistance of the conductor over the length I. 
Equation (8.4-3) expresses the more familiar form of Ohm’s Law.

(b) Skin Effect

Here we shall derive the distribution of current density in a semi-infinite 
conductor when an rf electric field is applied parallel to the surface of the 
conductor.4 Figure 8.4-2 shows a portion of the conductor. We shall as­
sume that the electric field is applied in the z direction only and that it 
does not vary in magnitude in the y and z directions. Let the electric field

•Reference 8a. 
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just outside the conductor be Ez0. From the discussion in Section 8.3, we 
know that this field will be continuous across the boundary between the 
conductor and free space, and hence that Ez0 also will be the electric field 
intensity just inside the surface of the conductor. We shall first determine

y AXIS DIRECTED INTO PAGE

Fig. 8.4-2 Current flow near the surface of a conductor at microwave frequencies.

the variation of Ez with distance x into the conductor, and since Jz = aEz, 
we shall note that Jz varies in a similar manner with distance into the 
conductor.

Let us use Equations (8.1-18) and (8.1-19) to derive an equation for Ez 
within the conductor. Since Ex = Ey = dEz/dy = 0, Equations (8.1-18) 
reduce to

Hx = Hz = 0 (8.4-4)
and

jappoHy = (8.4-5)

We shall set Jz = aEz and = Jv = 0 in Equations (8.1-19). Then

= 0 (8.4-6)
dz

and
^=(a+j^Ez (8.4-7)
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Substituting for Hy in Equation (8.4-7) from Equation (8.4-5), we obtain

= jwppja + jwKo)Et (8.4-8)ax

Consideration of the actual values of a, w, and ee„ for conductors at micro­
wave frequencies shows that

a (8.4-9)

Hence to a good approximation
¡Afi
—A = jwppoaE, (8.4-10)
aX

This is the wave equation for an electric field in a conducting medium. The 
equation is analogous to Equation (8.1-26), which applies to electro­
magnetic waves in free space or in a dielectric medium. Equation (8.4-10) 
has the solution

Ez = Ezoe~'l+f:i^Jil* (8.4-11)

Finally, substituting Jz = <tEz and Jzo = <rEZ0, we obtain

Jz = Jzot-n+f''!ai‘^ii * (8.4-12)

This equation shows that not only does the current density decay in magni­
tude away from the surface, but it also experiences a progressive phase 
shift. Although this relationship has been derived for a plane surface of 
infinite depth, it may be applied to curved surfaces of finite depth as long as 
the current decays in a distance small compared with the thickness and 
radius of curvature of the conductor.

It is convenient to write Equation (8.4-12) in the form

Jz = J^+w (8.4-13)

where

S = 1 (8.4-14)
•\Trfppoa-

The length S is known as the skin depth. The skin depth 5 is a measure of 
the rate at which the current density decays into the metal. In a distance S 
from the surface, the current density has dropped to 1/e of its value at the 
surface. This is a very rapid decay at microwave frequencies for most 
metals. Table 8.4-1 gives the number of skin depths in a 1.59 mm (1/16 
inch) thick wall of several metals commonly used in microwave transmission 
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Table 8.4-1. Number of Skin Depths in 1.59 mm Thickness 
Walls of Various Materials

Number at Number at
Metal 3 Gc 9 Gc

Silver.......................................................................................1352 2340

Copper................................................................................... 1318 2280

Gold..........................................................................................1106 1913
Molybdenum................................................................. 726 1258

Nickel................................................................................... 583 1010

Stainless steel (nonmagnetic)........................ 181 314

lines and electron tubes. This thickness is used for the wall of several stand­
ard size waveguides at microwave frequencies. Because the skin depth is so 
small at microwave frequencies, one normally assumes negligible currents 
exist on the outer surface of a waveguide or cavity. For example, at 3 Gc 
a copper waveguide of 1.59-mm wall thickness has current densities on the 
outer surface which are only 10~ 672 times the current density on the inner 
surface. Thus, in effect, perfect shielding is accomplished. Since the 
current density decays so rapidly with distance, the bulk of the metal in 
microwave conducting structures is not used to provide a path for current 
flow but rather is used for structural rigidity. It is an excellent approxima­
tion to visualize the wall currents in microwave structures as consisting 
solely of surface currents.

The imaginary part of the exponent in the right-hand side of Equation 
(8.4-11) gives the phase change of the electric field intensity as it propagates 
into the conductor. We see that the skin depth 5 corresponds to 1/2tt 
wavelengths of the type of wave propagation that takes place in the 
conductor.

One can use Equation (8.4-13) to determine the total ohmic power loss 
per unit surface area of the conductor for a given tangential component of 
magnetic field in free space just outside the conductor. The ohmic power 
loss in an element of volume having unit length parallel to the surface, unit 
width parallel to the surface, and thickness dx in the direction normal to the 
surface is (1 /2a) | J112 dx. The total power loss per unit area of the surface 
is then

Pn = ±£ | J, 12dx = A | Jzo |2 (8.4-15)

where we have substituted for Jz from Equation (8.4-13).
Often it is more convenient in using this equation to express Jzo in terms 

of the magnetic field in free space just outside the conductor. Within the 
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conductor we can rewrite Equation (8.3-10) in the form

H • dl = / (a + JweeojE • ndS = <rE ■ ndS

closed loop surface surface

= J J-ndS (8.4-16)

surface

where we have again made the approximation that a » aiee» within the con­
ductor. Figure 8.4-3 shows a cross-sectional view of the conductor near the

Fig. 8.4-3 Current flow in a conductor at microwave frequencies. The length L is 
much greater than 6. The component of magnetic field parallel to the path of inte­

gration is therefore zero along the right-hand side of the path of integration.

surface. The current flow J2 is assumed to be normal to the page and 
directed out of the page. Let us evaluate the left-hand side of Equation 
(8.4-16) for the path of integration shown in the figure. We assume that the 
length L is very large so that J, is essentially zero at the right-hand side of 
the path. For symmetry reasons there is no net contribution to the line 
integral for a component of H parallel to the top and bottom sides of the 
path of integration (assuming h is infinitesimally short). Then

closed loop

H dl = Htih
f J • ndS = Jzoh 

surface

t-<l+iwidx

JzohS
1 + J

(8.4-17)
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where Hu is the magnetic field parallel to the surface just outside the con­
ductor. Then

Hu = (8.4-18)

Substituting into Equation (8.4-15), we obtain

Ho = (8.4-19)

This equation is most useful in the sense that ohmic losses in cavity or wave­
guide walls can be computed directly from the magnetic fields in the free 
space adjacent to the metal without resorting to calculations of the currents 
within the metal conductors themselves.

Equation (8.4-14) shows that 3 is inversely proportional to the square root 
of the frequency. Hence, by Equation (8.4-19), the ohmic loss is propor­
tional to the square root of the frequency, for a constant conductivity and 
for a given magnetic field at the surface.

(c) The Perfect Conductor

The concept of a perfect conductor is often used in the study of micro­
wave components. In essence, this concept assumes, for purposes of solving 
for the fields in regions not containing metal, that the conductivity of the 
metal is infinite. Now, infinite conductivity implies that charges could 
travel instantaneously to neutralize any electric field which would tend to 
be set up within a conductor; thus the electric field within a perfect con­
ductor is zero. Since the tangential component of electric field is continuous 
at the surface of the conductor, the tangential component of electric field 
outside the conductor must be zero adjacent to the surface. However, 
electric field lines can terminate on surface charges on the conductor, the 
field lines being perpendicular to the surface at the point of intersection. 
On the other hand, magnetic field lines cannot pass through a perfect con­
ductor or terminate on it. Thus, there can only be a tangential component 
of magnetic field just outside a perfect conductor.

The errors involved in using the concept of a perfect conductor to find 
the external field distribution are of the same order of magnitude as the 
ratio of the skin depth to the other cavity or waveguide dimensions, and 
generally they may be considered to be negligible. Thus, for most purposes, 
the electromagnetic fields within a cavity or waveguide can be found under 
the assumption that the metal walls are perfect conductors. The fact that 
the conductor is imperfect affects only the power loss or attenuation, and 
this may be accounted for by using the concept of skin depth together with 
Equation (8.4-19).
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8.5 Waveguides

In this section we shall discuss solutions of the wave equation for the case 
of electromagnetic wave propagation in a waveguide. Figure 8.5-1 shows an 
end view of a waveguide. We shall assume that the waveguide is of infinite 
length in the z direction and its cross-sectional dimensions remain constant 
with z. The walls of the waveguide are perfect conductors, so that the 
solutions we obtain must satisfy the boundary conditions that the tangen­
tial component of electric field and the normal component of magnetic 
field be zero at the conducting surfaces. It turns out that there are an 
infinite number of solutions to the wave equation which satisfy these 
boundary conditions. These solutions are known as modes of propagation. 
This is analogous to the infinite number of possible modes of vibration for a 
vibrating string. Which modes are vibrated depend on how the string is 
plucked. In the waveguide, the manner and frequency of excitation at the 
input determine which modes are excited.

Fig. 8.5-1 Rectangular waveguide.

The infinite number of waveguide modes of propagation can be divided 
into two classes. Modes with E, equal to zero are known as transverse 
electric modes or TE modes. Modes with H, equal to zero are known as 
transverse magnetic modes or TM modes. As long as the waveguide is 
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uniformly filled with dielectric (including air or vacuum) the solutions fall 
into one or the other of these two classes.5

(a) TE Modes

The solution for the TE modes can be obtained as follows. The wave 
equations, Equations (8.1-26) and (8.1-27), are vector equations and hence 
are satisfied by each component of the electric and magnetic fields. Thus 
the z component of magnetic field satisfies the equation

TH, + k2H, = 0 (8.5-1)

where fc2 = a2yybsso. Expanding the Laplacian, we obtain

d2Hz d2Hz d2Hz ,2„ n
TT + TT + TT + = 0 (8.5-2)dx2 dy2 dz2

A particular solution to this equation may be obtained by the method of 
separation of variables as

Hz = A cos cos (8.5-3)a b

where m and n are arbitrary integers. We shall see later that this solution 
meets the boundary conditions imposed by the waveguide walls. Substitut­
ing Equation (8.5-3) into Equation (8.5-2), we find that the following re­
lationship must be satisfied for Equation (8.5-3) to be a solution:+ ^y + ^y = k2 = (8
The presence of the integers m and n in this equation indicates that there 
are an infinite number of solutions corresponding to an infinite number of 
modes of propagation.

If the variation of the magnetic field with time is included in Equation 
(8.5-3), the equation becomes

jo = Re A cos —— cos vVg llv *1 WO W0 i ca b

= A cos cos cos (at — ^z) (8.5-5)
ct b

We see that the wave travels in the z direction with a phase velocity 
given by

v„ = £ (8.5-6)

’Reference 8.3. 
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where /3 is determined by Equation (8.5-4) and is a characteristic of the 
particular mode of propagation.

The other components of the fields in the waveguide can be obtained from 
Equation (8.5-3) by means of Equations (8.1-18) and (8.1-19). Let us first 
note that (1) Ex is zero, and (2) all field quantities will vary with z as 

so that differentiating with respect to z is equivalent to multiplying 
by — jy We shall assume that the waveguide is filled with air, so that to a 
good approximation g = s = 1. Equations (8.1-18) then give

j@Ey = —japoHx 

and

jfiE* = jupjly

From Equations (8.1-19) we obtain

(8.5-7)

(8.5-8)

—j^Hx - = jaZoEy (8.5-9)

and
zu

+ j^Hy = jazRx (8.5-10)

Finally, combining Equations (8.5-7) and (8.5-9) as well as Equation (8.5-3) 
gives

„ —jailio nir . miry . nirx ,o _ ...
E* = TA C0S a 8m Te (8-5-U)

and

tt ftir . miry . nirx /o _H* = 1^ ~bA C0S a Sln "T * (8'5'12)

Combining Equations (8.5-8), (8.5-10), and (8.5-3) gives

„ jwu0 mir . . miry nirx
Ex = fa m —A Sln —~ cos -¡T* * (8.5-13)k2 — p2 a a b

and

tt a ■ m*V nirxHv = i/ —A sln —~ cos -r-e (8.5-14)k2 — fr a a b

Examination of Equations (8.5-11) through (8.5-14) shows that Hx is 
zero when x = 0 and when x = b, and Hy = 0 when y = 0 and when y = a. 
Similarly, Ex = 0 when y = 0 and when y = a, and Ev = 0 when x = 0 
and when x = b. Thus the normal component of H and the tangential 
component of E are zero at the inside walls of the waveguide. The field 
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solutions given by Equations (8.5-3) and (8.5-11) through (8.5-14) therefore 
satisfy the wave equation and the boundary conditions imposed by the 
waveguide.

From Equations (8.5-7) and (8.5-8) we note that

Ex
Hy

Ey
Hx (8.5-15)

0

showing that the perpendicular components of E and H are constant 
through the cross section of the waveguide.

In the introductory part of this chapter, we described the dominant TE 
mode, that is the TE mode with the lowest cutoff frequency. This is the 
TEio mode (m — 1, n = 0). The field components for this mode are

it a (8.5-16)

H = ^ésin^-^Uy »3111 C
t a (8.5-17)

Hx = A cos— a (8.5-18)

and
Ey = E2 = Hx = 0 (8.5-19)

The field configuration for this mode is shown in Figure 8-5.
Setting m = 1, n = 0 in Equation (8.5-4) gives

? + (i)‘ - - 7 - (v)’ (8.5-20)

or

(8.5-21)

where we have set Xo = 2irc/o>, the free-space wavelength of a wave of 
radian frequency w, and Xf = 2a, as in the introductory part of this chapter. 
The phase velocity for the TE]0 mode then becomes

O> wXo Cy = — — ___ . = ___________
P 0 2ir<l - XJ/X?

(8.5-22)

as in Equation (8-5). Similarly

2ir _Xo (8.5-23)

Next let us consider the group velocity vg. This is equal to the time 
average power flow in the waveguide divided by the energy stored per unit
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length in the z direction. From Equation (8.2-11), the time average power 
flow for the TEw mode is given by

time average power flow =
J" (time average of | S \)dxdy 

area of 
waveguide

^upoa3bA2 (8.5-24)

where (time average of | S |) = (time average of | S X K |) = j | EgHy |, 
and we have substituted for Ex and Hy from Equations (8.5-16) and (8.5-17) 
From Equations (8.2-2), (8.2-7), and Equation (6) of Appendix XIV, the 
average energy stored per unit length in the z direction is given by 

energy stored per unit length

= । E* I2 + Fo I Hy I2 + I H, ?)dxdydz =
(8.5-25)

Then

= time average power flow = = (8 5_26)
energy stored per unit length u

as in Equation 8-6. Some further discussion of the group velocity is given 
in Appendix XIII where it is shown that

= g (8.5-27)

From Equation (8.5-4) it is evident that fldfl = udu/c2, and hence

vjjg = c2 (8.5-28)

Substituting for vp from Equation (8.5-22) in this expression, we obtain 
v„ = cy/1 — \J/\C2, as in Equation (8.5-26).

The characteristic impedance* of the waveguide is defined in terms of the 
time average power flow and a “voltage” at the center of the waveguide 

p
given by the integral/ E^dx, where Ex is evaluated at y = a/2. From

Equation (8.5-16), the mean-square value of this voltage is

mean-square “voltage” _ bfipfaAMb2 
at center of waveguide 2iP (8.5-29)

’This definition is not unique. Two other definitions for waveguide impedance are 
also used. See Reference 8b, pp. 36, 37.
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The characteristic impedance for the TEw mode is then given by

„ mean-square voltage 2b Vmo/£<> 7546 ,
Ao “ ,. n — t ■ i ' ohms

time average power flow a yjl - W/K2 a^l - K2/K2
(8.5-30)

where we have substituted from Equation (8.5-24) for the time average 
power flow.

Let us plot Equation (8.5-4) as w vs. ft. We obtain the family of hyper­
bolas shown in Figure 8.5-2. Note that each mode has a cutoff frequency 
given by ft = 0 in Equation (8.5-4):

- ^(v)’ + (t)’ i’-”»
Furthermore, each curve is asymptotic to the straight line

w = ftc (8.5-32)
This straight line has a slope equal to c, the velocity of light. A simple 
geometric construction enables us to obtain the phase velocity correspond­
ing to any frequency for any mode. Suppose we want to know the phase 
velocity corresponding to propagation in the TEoi mode at a radian fre­
quency on. The slope of a line drawn from the origin to a point on the w-ft

Fig. 8.5-2 w-ft diagram for the TE modes in a rectangular waveguide. All the 
curves are asymptotic to lines through the origin with slopes equal in magnitude to 

the velocity of light, a/b = 2.3.
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curve for the correct mode and frequency (line A in Figure 8.5-2) gives the 
phase velocity, according to Equation (8.5-22). Note that the phase veloc­
ity for all propagating frequencies and all modes is greater than the velocity 
of light. If the waveguide were filled with a dielectric of relative dielectric 
constant e, the asymptote would correspond to c = 1/The fact that 
the phase velocity is greater than the velocity of light is a universal property 
of waveguides of this type, having transverse dimensions invariant with 
axial position.

The group velocity vg = dw/dft is equal to the slope of a line tangent to 
the w-ft curve at the operating [frequency (line B in Figure 8.5-2). It is 
evident that the group velocity is always less than the velocity of light.

(6) TM Modes

So far we have considered only the transverse electric or TE modes. We 
shall now consider the equivalent relationships for the transverse magnetic 
or TM modes.

We may begin consideration of the TM modes by considering the z 
component of Equation (8.1-26).

V2E, + k2Ex = 0 (8.5-33)
A particular solution to this equation is given by

Ez = A sin sin (8.5-34)a b
where m and n are integers. When this solution is substituted back into 
Equation (8.5-23), we find that

ft2 + ) + (y) = k2 = aPppfiSo (8.5-35)
\ a / \ 0 /

as in the case of TE modes (Equation (8.5-4)).
The other field components may be obtained from Equation (8.5-34) by 

application of Equations (8.1-18) and (8.1-19), in which case we set H, = 0. 
Thus we obtain

„ jwio mir . miry . nnx ,Q .Hx = yr—~ —A cos —- sin -7—e 1111 (8.5-36)k2 — fp a a b
„ jwea mr. . miry nirx /oXw\Hy = —7T—73 -7-A sin —- cos -7—e ** (8.5-37)k2 — (P b a b
„ juft nir , . miry nirx

~bA Sln—cos T (8-5'38)

Ev = --W —A co8 sin (8.5.39)
" k2 — ft2 a a b

It is easily shown that these field components satisfy the boundary condi-
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tions imposed by the waveguide, and hence these are the field components 
associated with transverse magnetic waves. Figure 8.5-3 shows the field 
pattern for the TMu mode (m = n = 1).

SECTION A-A

E LINES --------►

H LINES------

Fig. 8.5-3 TMU mode in a rectangular waveguide.

A complete afi diagram for both the TE and TM modes is shown in 
Figure 8.5-4. All of the TM modes are degenerate; that is, a TE mode has 
the same curve. The two lowest modes are TE modes and have no TM 
counterpart. Rectangular waveguide is normally operated in the mode of 
lowest cutoff frequency, the TEw mode.

Fig. 8.5-4 Complete a-fi diagram for a rectangular waveguide. All the curves are 
asymptotic to the velocity of light lines, a/b = 2.3.
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The relationships of power flow, group velocity, and phase velocity are 
the same for TM as for TE modes. If, for instance, we draw a straight line 
from the origin, as shown in Figure 8.5-4, then at the frequencies of inter­
section on each mode branch the phase velocities are all the same; cor­
respondingly, by Equation (8.5-28), the group velocities are also identical 
at these points.

We have not considered any losses in the above discussion. Losses may be 
taken into account by allowing the propagation constant 13 to be complex, 
so that the wave is attenuated in the z direction. In this manner, we can 
allow both for resistive losses in the walls and also dielectric losses if the 
guide contains dielectric.

Transmission line theory may be applied directly to waveguides. For 
instance, a quarter wavelength away from a short circuit one sees an open 
circuit. Of course, in the case of a 
waveguide, a wavelength is no 
longer equal to a free space wave­
length c//. Rather it is a guide wave­
length, given by X2 = 2ir/fl, and fl is 
obtained from the u-S curve; X2 is 
thus a function of frequency and of 
the mode of propagation.

No mention has yet been made of 
coupling energy in or out of a wave­
guide. One common method of 
coupling between a coaxial line and 
a waveguide is shown in Figure 
8.5-5. The center conductor of a 
coaxial line is brought down through 
the broad wall of the waveguide. 
The center conductor acts like an 
antenna to radiate energy into the 
waveguide. A short is placed in the 
waveguide a quarter wavelength to 
the left of the probe causing the re­
gion to the left of the probe to look 

Fig. 8.5-5 Coaxial line to waveguide 
transition.

like an open circuit at the probe. Hence, resultant power flow is to the 
right. At the receiving end of the waveguide, a similar transition may be 
used to couple energy back into a coaxial line.

8.6 Cavity Resonators
In the introductory section of this chapter, we looked at cavity resonators 

from the point of view of an evolution from a simple L-C circuit. With the 
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discussion of waveguides behind us, we can now look at cavity resonators 
from a different point of view.

Let us consider the electric field solutions for the TEI0 mode in a rec­
tangular waveguide. From Equations (8.5-16) and (8.5-19),

Ex = Bsin^£-^ (8.6-1)

Ey = Ex = 0 (8.6-2)

Now this solution corresponds to a wave traveling in the positive z direction. 
There is an.equally valid solution corresponding to propagation in the nega­
tive z direction:

Ex = C sin (8.6-3)a

Ey = Ez = Q (8.6-4)

where 0 is taken to be positive in both Equations (8.6-1) and (8.6-3)- 
Physically, the wave traveling in the negative z direction could be set up by 
an obstacle in a waveguide which reflects part of the outgoing energy back 
toward the source. The general solution is thus given by the superposition 
of the above two waves, resulting in

Ex = sin (8.6-5)

Ev = Ez = 0 (8.6-6)

Now, we can make a rectangular cavity resonator out of a rectangular 
waveguide simply by placing walls perpendicular to the z axis at z = 0 and 
z = L. Equation (8.6-5) must then satisfy the additional boundary condi­
tion of being zero at the added walls. Setting Ex to zero at z = 0 gives us

0 = B + C (8.6-7)

so that Equation (8.6-5) may be written

Ex = 2jC sin 0z sin (8.6-8)

The additional boundary condition at z = L is satisfied for

0 = (8.6-9)Li

where p is an integer. Since X, = 2s/0, this states that the cavity must be 
an integral number of half guide wavelengths long.

Using Equation (8.4-30) and setting m = 1 and n = 0 for the case of the
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TE« mode, we obtain an expression for the resonant frequencies of the 
cavity:

■^-^y+& r-w- (8.6-10)

A sketch of the lowest frequency, or p = 1, mode of oscillation is shown 
in Figure 8.6-1 for the case in which L = a. In a cavity at resonance, the

SECTION A-A

Fig. 8.6-1 Field patterns for the dominant mode of a rectangular cavity resonator.

electric and magnetic lines are 90 degrees out of time phase. The stored 
energy oscillates back and forth between the two kinds of fields. Unlike the 
waveguide fields, the resonator fields remain fixed in space, varying sinus­
oidally with time uniformly throughout the cavity.

This resonator and its field patterns may be compared with the re­
entrant cavity of Figure 8-1. One might have anticipated that the patterns 
of Figure 8.6-1 would occur when the heights of the posts in Figure 8-1 (d) are 
reduced to zero.

A field analysis such as we have just carried out also enables one to obtain 
the resonant frequencies of all the higher-order modes. These higher-order 
modes are usually of interest not because of their utility but rather because 
of the trouble they can cause. For instance, in a magnetron, higher-order 
modes may give rise to undesirable output signals.

Resonant cavities of the type considered here are useful as microwave 
circuit elements. In essence, they are low-loss resonant circuits, and they may 
be coupled together in various ways to achieve filter-type characteristics.
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As an example of a rectangular cavity resonator, let us consider a reso­
nator of the general shape shown in Figure 8.6-1. If we assume the base to 
be square, Equation (8.6-10) indicates the cavity will resonate in the TEwi 
mode (m — 1, n = 0, p = l)ata frequency of 3000 Me for a = L = 7.07 
cm. The largest dimension of the re-entrant cavity of Figure 8-2 resonant 
at the same frequency was only 1.85 cm. Thus the effect of re-entrancy in a 
cavity is seen to be a decrease in overall size for the same resonant frequency. 
Further analysis reveals that this decrease in size is obtained at the expense 
of increased losses for the same stored energy in the two types of cavity.

8.7 Slow-Wave Structures

We have seen in Section 8.5 that wave propagation in ordinary wave­
guides is characterized by a phase velocity which is greater than the velocity 
of light. The phase velocity is the velocity with which an observer would 
have to move so as to remain always in the same phase of the wave.

In the operation of traveling-wave and magnetron type devices, the 
electron beam must keep in step (or nearly in step) with a propagating wave 
Since electrons can be accelerated only to velocities which are less than the 
velocity of light, we must look for microwave circuits or structures capable 
of propagating waves with phase velocities less than the velocity of light.

Fig. 8.7-1 Transmission line composed of a single wire above a ground plane.
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Fig. 8.7-2 The helix slow-wave structure, (a) Helical coil within a concentric con­
ducting cylinder. This slow-wave circuit is obtained by wrapping the single-wire- 

above-ground into a helix, with the ground plane becoming the surrounding cylinder, 

(b) Electric field lines for a helix in free space.

For reasons that will become clearer in later chapters, ordinary waveguides 
partially or completely filled with dielectric are not satisfactory solutions to 
this problem. Instead, the solution will be found in a whole new class of 
structures appropriately called slow-wave structures or slow-wave circuits.

A simple, yet highly useful, slow-wave circuit can be demonstrated easily. 
Consider first a transmission line consisting of a single wire above a ground 
plane as shown in Figure 8.7-1. The propagation characteristics of such a 
line are well known.7 An oppositely charged image of the round conductor 
may be constructed within the ground plane, whereby the behavior of the 
single-wire-above-ground line becomes identical with the common two-wire 
line. This line propagates a TEM mode in a direction parallel to the axis of

’Reference 8.2. 
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the wire at the velocity of light. The TEM designation means that both 
the electric and magnetic field lines lie entirely in the transverse plane.

Now it is intuitively obvious that gradual bends or twists of the wire 
above the ground plane, keeping the spacing from wire to ground constant, 
will have only a minor effect on propagation characteristics of the line. The 
field lines will faithfully follow the wire, despite such bends. Thus we can 
imagine the line distorted into the helical coil shown in Figure 8.7-2(a). 
The requirement that the spacing from wire to ground remain constant is 
met by having the ground plane become a cylinder enclosing the coil. If the 
spacing from wire to cylinder is much less than the cylinder diameter and 
much less than the spacing between turns, the electric field lines from each 
wire will terminate almost entirely on the adjacent cylinder surface, and the 
field pattern will be similar to that of Figure 8.7-1.

Since the wave follows the wire at very nearly the velocity of light, the 
resultant velocity along the axis of the cylinder must be less than the 
velocity of light. Consequently, an electron can be shot along the cylinder 
axis at a velocity which enables it to keep in step with the wave. The 
velocity at which the “in step” electron moves is the phase velocity of the 
slow-wave circuit. From geometrical considerations, this phase velocity is 
easily shown to be approximately given by 

where d and p are the helix diameter and pitch, respectively.
Helices are commonly used as slow-wave circuits in low and medium 

power traveling-wave tubes. However, generally they are employed with­
out the attendant conducting cylinder surrounding the helix. This causes 
some quantitative changes in the physical picture presented above, but the 
basic nature of the slowing process is unchanged. Figure 8.7-2(b) shows the 
approximate shape of the electric field lines when no outer cylinder is 
present. For the particular case chosen in the figure, the free-space wave­
length of the signal is approximately equal to the length of wire in twelve 
turns of the helix.

For a structure to be a slow-wave circuit, it is necessary that it possess 
physical periodicity in the axial direction. That is, there is a finite length, 
called the period, by which the infinitely long structure must be translated 
in the axial direction so that one obtains the same structure back again, 
point for point. In the case of the helical circuit of Figure 8.7-2, for instance, 
a translation back or forth through a distance of one pitch length results in 
identically the same structure again. Thus, the period of this helical slow- 
wave structure is the same as its pitch.
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Only periodic structures can propagate slow waves when filled with air 
or vacuum. It can be shown that smooth, air- or vacuum-filled, nonperiodic 
structures such as the waveguides of Section 8.4 propagate fast waves only.

(a) Floquet's Theorem

Since slow-wave structures are necessarily periodic structures,8 let us 
examine some general theorems concerning the solutions of Maxwell’s 
Equations and the relations between phase velocity, group velocity, stored 
energy, and power flow in periodic structures.

Floquet’s Theorem concerns the nature of the single-frequency solutions 
for the electromagnetic fields obtained from Maxwell’s Equations. It may 
be stated as follows for a periodic structure consisting of identical cells 
of periodic length L placed end to end.

The steady-state solutions for the electromagnetic fields of a single 
propagating mode in a periodic structure have the property that fields 
in adjacent cells are related by a multiplicative complex constant, 
this constant being the same for all pairs of adjacent cells.

Mathematically the theorem may be stated as

E(x,y,z — L) = rE(z,y,z) (8.7-2)

where L is the length of one period of the structure, and r is a complex con­
stant. The direction of propagation is along the z axis, as before. The same 
expression can be written with E replaced by H.

The proof of Floquet’s Theorem may be obtained by use of the unique­
ness theorem9 of electromagnetic theory which states that the field 
solutions in two identical microwave structures, operating at the same fre­
quency, can differ only by a complex multiplicative constant, corresponding 
physically to two different levels of excitation. An analogous situation 
occurs in ordinary circuit theory where two identical circuits are excited 
by two different sources at the same frequency. The corresponding phasor 
currents in the two circuits can differ only by a complex constant, equal to 
the ratio of the phasors representing the two sources.

Consider the infinitely long periodic structures shown schematically in 
Figure 8.7-3(a). Each cell is numbered for identification purposes. Assume 
that the solutions for the electromagnetic fields for a wave propagating to 
the right have been obtained. Thus, the electric field in cell n may be des­
ignated

Eon

’Reference 8f.
’Reference 8c, pp. 486—488. 
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where the first subscript indicates that the solution pertains to the circuit 
in Figure 8.7-3(a), and the second subscript identifies the cell number.

Now let us consider a second structure obtained from the first by a 
linear translation in the axial direction of one periodic length as shown in

(a)

n-i n n + 1

(b)

n-a n-i n

Fig. 8.7-3 Infinitely long periodic structures having identical boundary conditions, 
(a) The original structure, (b) Structure obtained from the original structure by a 

linear translation of one period in the axial direction.

Figure 8.7-3(b). Because of the translational symmetry, the new structure 
will appear identical to the old structure. The uniqueness theorem requires 
that the fields of structure b be identical to those of structure a, except for 
a constant complex multiplier. That is,

Eb(n_i) = rEon
Et„ = rEa<„+i), etc. (8.7-3)

Now we identify structure b by its true nature; it is, after all, merely a 
translated version of structure a so that the field pattern in structure b is 
the same as in structure a but translated one period to the right.

Ef>(„_i) = Eo(n_i)

E4n = Ean, etc. (8.7-4)

Combining Equations (8.7-3) and (8.7-4), we get

Eo(n—1) = rEon
Eon = rEo(n+i), etc. (8.7-5)

This proves the theorem, since n is, of course, arbitrary.
This simple and highly useful theorem is analogous to theorems concerned 

with wave propagation in other types of periodic ensembles. For instance, 
the currents and voltages in an infinite chain of identical filter sections are 
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governed by the same basic rule; that is, the currents and voltages of one 
section are equal to the corresponding quantities in the preceding section 
multiplied by a complex constant. This analogy is often put to use when a 
microwave periodic structure is represented by an equivalent circuit con­
sisting of such a chain of filter sections.10

Let us now rewrite the complex constant r in Equation (8.7-2) using the 
defining relationship

T s (8.7-6)

so that Equation (8.7-2) becomes

E(x,y,z — L) — e$°LE(x,y,z) (8.7-7)

Now, 0O could in general be complex. If it were a pure real quantity, 
it is clear that Equation (8.7-7) implies only a phase shift from one cell to 
the next. A negative imaginary part to 0O would imply a decay in the 
strength of the fields with distance along the structure, corresponding to 
ohmic losses. For simplicity, let us assume a lossless structure, so that 
00 is real. Our results can be generalized later by allowing 0O to be complex, 
if we wish to take losses into account.

Now we shall postulate that the solution to Maxwell’s Equations in a 
periodic structure can be written in the following form

E(x,y,z) = EP(x,y,z)e~^‘ (8.7-8)

where Ep(x,y,z) is a periodic function of z with period L. A similar expres­
sion holds when E is replaced by H. Equation (8.7-8) can be proven to be 
the solution if two conditions are fulfilled. First, it must satisfy the wave 
equation for the electric field, Equation (8.1-26) and the proper boundary 
conditions; and second, it must satisfy Floquet’s Theorem, Equation 
(8.7-2). Let us first show that the latter condition is satisfied.

Equation (8.7-8) can be rewritten with z replaced by z — L.

E(x,y,z — L) = Ep(x,y,z — (8.7-9)

Since Ep is a periodic function with period L,

Ep(x,y,z — L) = Ep(x,y,z) (8.7-10)

so that Equation (8.7-9) becomes

E(x,y,z — L) = Ep(x,y,z)e~^‘‘‘e+^‘’L (8.7-11)

Equation (8.7-8) may be used in the right-hand side of this equation, 
obtaining

E(x,y,z — L) = E(x,y,z)e&°L (8.7-12)

“Reference 8h, Chapter 4.
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But this expression is the mathematical statement of Floquet’s Theorem, 
Equation (8.7-7). Therefore, Equation (8.7-8) does indeed satisfy Floquet’s 
Theorem.

The requirement that the right-hand side of Equation (8.7-8) should 
satisfy the wave equation will be applied later after we write Equation 
(8.7-8) in a more convenient form. Since Ep(x,y,z) is periodic in z with 
period L, we can express it by means of a Fourier series:

Ep(x,y,z) = 22 En(x,y)e 
— co

(8.7-13)

This equation is a vector equation, and it is merely a shorthand way 
of writing three separate equations, one for each vector component. The 
quantities En in the Fourier sum are the usual Fourier coefficients, except 
that they are functions of the transverse coordinates x and y. This may 
seem strange at first to one who is more familiar with the usual Fourier 
series in time, where the Fourier coefficients are constants. From this 
more conventional point of view, Equation (8.7-13) actually represents an 
infinite number of Fourier series, one for each choice of x and y.

Using Equation (8.7-13), the solution for a propagating wave in a peri­
odic structure, Equation (8.7-8) can be written

co

E(x,y,z) = 22 En(x,y)e~M°+2*^ (8.7-14)
— co

Defining

0n = (8.7-15)

we have
co

E(x,y,z) = 22 E„(x,i/)e-^»1 (8.7-16)

The quantities E„(x,2/)e-^”1 are known as space harmonics by analogy 
with time-domain Fourier series. Now we can impose the necessary con­
dition that our solution should satisfy the wave equation, Equation (8.1-26). 
Substituting Equation (8.7-16) into the wave equation, we obtain

V2 22 En(x,y)e + k2
co

22 En^^je--’3”2 
— ®

(8.7-17)= 0

Since the wave equation is linear, we can interchange the order of dif­
ferentiation and summation, obtaining

22 l^!E„(i^)t + k2E„(x,y)e = 0 (8.7-18)
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From this equation we see that if each space harmonic is itself a solution of 
the wave equation, that is, if the bracketed term is zero for each value of n, 
the summation of space harmonics automatically satisfies the wave equation, 
Equation (8.7-17). Thus each space harmonic is chosen as a solution of the 
wave equation and consequently must also satisfy Maxwell’s Equations. 
These statements do not imply that each space harmonic satisfies all of the 
boundary conditions in the structure; only the complete solution, Equation 
(8.7-16), satisfies this requirement. Physically, this means that it is impos­
sible to have wave propagation in a periodic structure consisting solely of one 
space harmonic; a mode of propagation must necessarily consist of an infinite 
number of space harmonics.

For simplicity in this section we have considered a periodic structure of 
infinite length. As in the case of ordinary transmission lines, a finite 
length structure will have propagation properties identical to those of the 
infinite structure, except that forward and backward traveling waves 
must be superimposed to allow for mismatches at the ends of the structure. 
In nearly all tubes using periodic structures, the structure is matched at 
both ends so as to eliminate reflected waves.

(b) Field Solutions in a Particular Slow-Wave Structure

A simple example may help to clarify some of the above points. Let us 
investigate wave propagation in the periodic structure shown in Figure 
8.7-4.11 This structure consists of two parallel infinite conducting planes.

Fig. 8.7-4 A slow-wave structure consisting of thin fins mounted perpendicular to 
one plate of a parallel-plate line. The direction of propagation is to the right or left.

On the bottom plane are mounted infinitesimally thin conducting fins of 
height h and infinite width (in the direction perpendicular to the page). 
The separation from the top of the fins to the top plane is d.

“Reference 8g.
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A set of coordinate axes may be chosen as shown, with the origin at the 
center between two fins. The periodic spacing is L. Slow-wave propagation 
can exist in the z direction.

As in any microwave structure there are many modes of propagation 
possible. The mode of lowest frequency is often the simplest to analyze, 
and in most structures it is the most commonly used mode. We shall thus 
content ourselves with studying the simplest mode of the structure shown 
in Figure 8.7-4. Since the structure itself is invariant in the y direction, we 
shall assume the electromagnetic fields are also invariant in this direction. 
A consequence of this assumption is that spatial derivatives in the y 
direction must be zero.

It will be convenient to divide the space between the planes into two 
regions. Region 1 is the space for which — h < x < 0, the region of the 
vanes. Region 2 is the gap above the vanes for which 0 < x < d. We can 
then solve Maxwell’s Equations separately in the two regions, and finally, 
we can equate the tangential components of electric and magnetic field at 
the boundary between the two regions, that is, at x = 0. Continuity of the 
tangential electric and magnetic field vectors is necessary, as discussed in 
Section 8.3. In each region we shall choose our solutions so that the 
boundary condition at a perfect conductor of zero tangential electric field 
is satisfied.

Region 1 will be considered first. Consider the unit cell bounded by the 
two vanes at z = ± L/2. The simplest solution here is a standing-wave 
solution to Maxwell’s Equations consisting of Eg and Hv components only. 
The desired solution for Eg is

Eg = A sin k(x + h) (8.7-19)

where A is an arbitrary constant and k = u/c. It may be verified that 
this solution satsifies the wave equation, Equation (8.1-26), and the 
boundary condition Ez = 0 at x = —h. The solution for the magnetic 
field may be obtained from Equation (8.7-19) by use of the second of 
Equations (8.1-18),

,, BEx (8.7-20)

Using Equation (8.7-19) and the fact that Ex is zero, we obtain

Hy = -jj-A 
MP«

cos k(x + h) (8.7-21)

It may be verified that the other components of H are zero.
Floquet’s Theorem, Equation (8.7-7), may be used to find the fields in 

region 1 in between the other pairs of vanes. If the gaps are numbered in 
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order with N = 0 corresponding to the gap centered at z = 0, N = 1 to the 
gap centered at z = L, etc., we then have from Floquet’s Theorem, in all of 
region 1,

E, = A sin k(x + h) (8.7-22)

Hy = -jJ—A COS k(x + h) t~^L (8.7-23)
Mm.

Next, we proceed to solve Maxwell’s Equations in region 2. The general 
solution is.given by Equation (8.7-16). Let us consider the z component:

00

Et = £ Ezn(x)e-^ (8.7-24)
— 00

Each space harmonic will satisfy Maxwell’s Equations, or equivalently, 
the wave equation, Equation (8.1-26), which in our case can be written 

(£+S+= °

Performing the z differentiation, we obtain

(£ “ + = 0 (8.7-26)

or simply

(£ ~ + = ° (8.7-27)

This equation has the solution

Ezn = Bn sinh yn(x - Cn) (8.7-28)

where
Tn2 On2 - k2

and Bn and Cn are arbitrary constants. The hyperbolic sine solution rather 
than the trigonometric sine solution has been chosen so that /3„2 > k2, 
since we are looking for slow waves. Since the phase velocity for a space 
harmonic according to Equation (8.7-24) is given by

^n = ^- (8.7-29)
Pn

we see that vpn < c if > k = a/c.
Equation (8.7-24) may now be written using Equation (8.7-28):

Ez = ¿ Bn sinh yfx — Cn) (8.7-30)



280 PRINCIPLES OF ELECTRON TUBES

The boundary condition that Ex = 0 at x = d can be satisfied jf we choose

Cn = d (8.7-31)

so that 
co

Ex = E Bn sinh 7n(z - d) (8.7-32)
— co

Next we equate the two expressions for Et given by Equations (8.7-22) 
and (8.7-32) at the boundary between regions 1 and 2. We can simplify 
this matching technique somewhat by noting that Floquet’s Theorem 
implies that if solutions are matched at the boundary in one cell of a periodic 
structure, they will be matched in all cells. Let us therefore match over the 
range — L/2 < z < L/2. We obtain

co

— E sinh y nd = A sin kh
— 00

for

-£ < z < 7 (8.7-33)
z z

The coefficients Bn can be obtained by the following process. Multiply 
both sides of the equation by and integrate over a period:

œ [LU [LIT
— E sinh 1 nd I (i&~-M‘dz = A sin kh / (8.7-34)

-» J-L/i J-LIT

The right-hand side is easily integrated. The left-hand side can be manip­
ulated as follows, using Equation (8.7-15):

[Li2 (0 for n m
/ = 2 (8.7-35)
J-lit J-LIT {Liorn = m

Equation (8.7-34) thus becomes

• 0mL sm-^-
— BmL sinh ymd = A—- ---- sin kh (8.7-36)

Mm

2

By substituting Equation (8.7-36) into Equation (8.7-32), we obtain for 
Ex in region 2

sin sinh yn(x — d)
Ex = —A sin fcfe E a t----------------------- ' (S.TST)

sinh y nd £
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We thus have a complete description of the z component of electric field in 
terms of an arbitrary amplitude factor A.

The other components of the electric and magnetic fields in region 2 may 
be obtained as follows. First, because Ey = 0 in region 1, it will also be 
zero in region 2, since tangential components of E are continuous at the 
boundary.

Next, the divergence equation, Equation (8.1-16), of Maxwell’s Equations 
is written (using Equation (2) of Appendix XII) as

dEx dE. 
dx + dz (8.7-38)

since there is no free charge in the region. This equation can be solved for 
Ex:

E (8.7-39)

Performing the indicated operations on Equation (8.7-37), we obtain

<» sin cosh y„(x — d)
Ex = —jA sin kh E----- ------------------------ (8.7-40)

” 2^ sinh7nd

The components of the magnetic field can be obtained by use of Equa­
tions (8.1-18). Since Ey = 0, and derivatives with respect to y are also 
zero, we see that

Hx = H, = 0 (8.7-41)

Equations (8.7-37), (8.7-40), and (8.1-18) together give, after simplification,

» sin cosh yn(x — d)
Ry = — sin kh E —77 --------------------(8.7-42)

At this point we have a complete description of the fields in the slow-wave 
structure, assuming that we know what value of So corresponds to a given 
frequency of operation. All the values of Sn and y„ can be obtained from 
So using Equation (8.7-15) and the relation defining y„,

V„2 = SJ ~ k2 (8.7-43)

A sketch of the electric field lines for SoL = zr/10 is shown in Figure 8.7-5.
An equation determining So from the frequency may be obtained by 

matching the tangential components of the magnetic field at the boundary 
between regions 1 and 2. However, at this point we must note that the
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solutions we have obtained are only approximate, due to the neglect of 
fringing fields near the vane tips in region 1. Because of this approximation, 
the magnetic fields in the two regions will not match point for point at the 
boundary. Let us therefore content ourselves with matching at the mid­
point of the gap, where z = 0.

Equating Equations (8.7-21) and (8.7-42) for z = 0 and x = 0, we obtain

... a> sin coth 7nd
--------------------------  (’«4) 

tv 11/ — co .

~2~ 7nn
where

k =

7» = slftn2 - k2

The solutions to this equation are obtained numerically. We shall discuss 
the resultant w-ft diagram in the next section.

Let us review briefly what we have accomplished in this section. We 
have used approximate solutions to Maxwell’s Equations in a periodic 
structure to obtain the slow-wave propagation fields. One may wonder as 
to the effect of the approximations involved. It turns out that the resultant 
w-ft diagram is relatively insensitive to small errors in the shapes of the 
field solutions, so that information derived from the w-ft diagram can be 
taken to be quite accurate. The exact shape of the fields will be somewhat 
in error, but this information is usually needed only approximately.

(c) The Brillouin Diagram

We have seen in Sections (a) and (b) that the electric or magnetic field 
for a propagating mode in a slow-wave structure can be expanded as a 
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summation of space harmonics, as in Equation (8.7-16), which we repeat 
here.

E(x,y,z) = 23 En^yje-^“2 (8.7-45)
— ®

where

An = fl« + (8.7-46)1J
Each space harmonic propagates in the positive z direction with a 

different phase velocity given by

vpn = (8.7-47)Pn
Therefore, the mode of propagation cannot be characterized at some 
frequency by a unique velocity as it was in the case of ordinary smooth 
waveguides. Referring to our previous interpretation of the phase velocity, 
we see that it is no longer possible for an “observer” to move so as to be always 
in the same phase of the total field. It is possible for the “observer” to move 
in synchronism with only one of the space harmonics that make up the total 
field. The phases of the other space harmonics will be continually changing 
as viewed by the “observer.” If the “observer” takes a time average of the 
total field that he sees over a sufficiently long period of time as he moves in 
synchronism with one of the space harmonics, the average obtained will 
be that given by the synchronous space harmonic alone, the net contri­
bution of the others being negligible in comparison. It will be useful in 
later chapters to bear in mind this interpretation of the phase velocity.

Let us now plot the u-fi curve for the periodic structure of Figure 8.7-4. 
We will want to make sure we include values of the propagation constant 
fln for all of the space harmonics. This diagram is known as a Brillouin 
diagram.12 It is customary to label the abscissa as the fl axis instead of the 
fl„ axis. Each branch of the Brillouin diagram is numbered according to 
the space harmonic to which it refers.

The fundamental space harmonic (n = 0) propagation constant is 
obtained as a function of frequency from Equation (8.7-44). Since this is a 
transcendental equation, there will be an infinite number of frequencies 
or modes of propagation for each value of fl. This infinite number of modes 
should come as no surprise, since we first encountered them in the analysis 
of ordinary waveguides. The curves for the fundamental space har­
monics are shown in Figure 8.7-6, including the higher-order modes. We have 

»After L. Brillouin who studied extensively wave propagation in periodic structures. 
See Reference 8f.
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included only the modes propagating in the positive z direction for the time 
being. The negative propagating modes have branches which are the mirror 
images of these about the a axis, as in Figure 8.5-4. We have labeled the

Fig. 8.7-6 The branches of the Brillouin 
diagram corresponding to the funda­

mental space harmonics of modes prop­

agating in the positive z direction.

lower branch with a zero, indicating 
that it corresponds to the funda­
mental (n = 0) space harmonic. 
We shall omit labeling the higher- 
order modes. Physically, these 
higher modes correspond approxi­
mately to additional half wave­
lengths in region 1 of Figure 8.7-4.

Now from Equation (8.7-46), we 
see that the Brillouin diagram 
branches for the other space har­
monics are obtained by taking 
the fundamental space harmonic 
branches in Figure 8.7-6 and tran­
slating them parallel to the fl axis 
through distances which are integral 
multiples of 2r/L. Figure 8.7-7 
shows this construction utilized to 
obtain the plus-one and minus-one 
space harmonics.

It would be enlightening at this 
point to consider the group velocity 
in a periodic structure. It is defined 
as in Section 8.5 for ordinary wave­

guides (Equation (8.5-27)):
da

Ve~ dß (8.7-48)

It has the same physical significance as before; that is, it is the velocity at 
which energy is transported down the periodic structure. Since all of the 
space harmonics must be taken together to constitute a mode of prop­
agation, we would expect all of them to have the same group velocity, 
corresponding to the velocity of energy transport. A glance at Figure 
8.7-7 shows that this is indeed the case. All of the branches for any mode of 
propagation have the same slope at any given frequency, hence, the same 
group velocity. Group and phase velocities are measured by geometrical 
constructions as in Figure 8.5-2. It should be noted that no equation similar 
to Equation (8.5-28) exists for slow-wave structures.

Figure 8.7-7 also shows that the minus space harmonics (n = — 1, 
— 2, etc.) have phase velocities that are negative, albeit the group veloc-
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A —*
Fig. 8.7-7 Branches of the Brillouin diagram for the three lowest space harmonics 

of modes propagating in the positive z direction.

ity is positive. This is an interesting property of periodic structures which 
has no parallel in the smooth waveguide case. This means that an electron 
“observer” can remain in synchronism with a wave which is actually trans­
porting energy in the opposite direction. This remarkable property has 
made possible the backward-wave oscillator and M-Carcinotron which will 
be described in later chapters.

Because the slow-wave structure shown in Figure 8.7-4 consists of two 
separate conducting members, it has no lower cutoff frequency, and in 
fact it propagates signals with frequencies ranging down to zero frequency, 
as is evident from the Brillouin diagram.

The branches marked n = —1, 0, and +1 in Figure 8.7-7 correspond to 
the principal mode of propagation. The broken lines in the figure have 
slopes corresponding to phase velocities of +c and — c, where c is the veloc­
ity of light. We see that all spatial harmonics of the principal mode of 
propagation lie either to the right or to the left of the vp = ±c lines rather 
than between these lines. This means that the phase velocities of the 
fundamental and higher-order space harmonics of the principal mode are of 
magnitude less than the velocity of light. Furthermore, the phase veloc­
ity of the n = 1 space harmonic of the principal mode is less than that of 
the fundamental, or n = 0 space harmonic, and the phase velocity of the 
n = 2 space harmonic is less than that of the n = 1 space harmonic.
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So far we have considered energy propagating solely in the positive z 
direction. The branches for the negative propagating modes are obtained 
by simply reflecting all the branches of Figure 8.7-7 about the a axis, as in 
Figure 8.7-8, where the complete Brillouin diagram is shown. It is seen that

377 277 _TT_ O 77 2 77 3 77

L L L L L L
3 —*

Fig. 8.7-8 Complete Brillouin diagram for the periodic structure of Figure 8.7-4.

all of these additional branches have negative group velocities, as expected. 
The numbers of these additional branches are chosen so as to correspond to 
the reflected branches.

(d) Power Flow

In order to complete our discussion of periodic structures we must con­
sider a means of calculating power flow from a knowledge of the electro­
magnetic fields of a propagating mode.

Equation (8.5-26) states that the power flow in a smooth waveguide is 
given by the product of the group velocity and the energy stored per unit 
length.13 Now, for a lossless periodic structure Floquet’s Theorem, Equa­
tion (8.7-7), states that the fields in all cells are equal in magnitude, dif­
fering only in phase. This means that the stored energy in each unit cell 

13In cases where the electromagnetic fields are known only approximately, this gives 
a more accurate evaluation of the power flow than does integration of the Poynting 
vector.
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of the periodic structure is the same as that in all the others. Hence, the 
stored energy per unit length can be simply calculated by taking the stored 
energy in any one unit cell and dividing by the length of the cell. With 
this adaptation, Equation (8.5-26) can be used to calculate the power flow in 
a periodic structure. It may be written as

WrP = vg-^ (8.7-49)Jj

where WL is the time average energy stored per cell and L is the length of 
the cell.

In calculating the average stored energy per period, it is convenient to 
realize that the time average stored electric energy per period is equal to the 
time average stored magnetic energy. Thus it is necessary to calculate only 
the average stored energy due to either the magnetic or electric fields and 
multiply this by two. This relationship can be proved rigorously for a 
periodic structure, but the proof is rather long and complicated.14

As an example, we may compute the power flow per unit width in the 
periodic structure of Figure 8.7-4. We have already solved for the field 
components, finding expressions for Ez and Hy in region 1 and Ex, Ex, and 
Hy in region 2, the other components being zero. In finding the stored 
energy it will be easier to use the magnetic field expressions, since only one 
component is involved.

The time average stored energy per cell (see Appendix XIV) is given by

WL = J | H |2* (8.7-50)

unit cell

Since the structure is of infinite width, we shall determine only the power 
flow per unit width, designated

WLw = ^ f f | Hy \2dzdx (8.7-51)

unit cell

where use is made of the fact that Hx = Hx = 0.
The contribution to this integral in region 1 is obtained by using Equation 

(8.7-21):

1 P
Wlwi = -e„LA2 / cos2 k(x + h)dx2 J-h

1 ti , sin2k/i]= ?A4![1 + (8.7-52)

“Reference 8g, pp. 10-14.
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In region 2, Hy is given by Equation (8.7-42), repeated below:

» sin cosh 7„(z — d)

Hy = —juicA sin kh 5? ——y ------------------- e-Ä’ (8.7-53)
— ® V nP n-C . 1 j—sinh Vn«

I Hy I2 is obtained by multiplying this quantity by its conjugate,

» sin cosh 7„(z — d)

Hy* = +juSoA sin kh £ —(8.7-54) 
— » ymPm^ . i j

—2— sinh 7™«

Equation (8.7-51) becomes, for region 2,

n
L!2

CmCnN^L^-^dzdx
-L/l

(8.7-55)
where we have written

sin cosh 7„(z — d)
C =______ i________________________

—5— sinh 7„aA

Fig. 8.7-9 Fundamental branch of the Brillouin diagram for the slow-wave struc­

ture of Figure 8.7-4, with dimensions given by h/d — 4 and h/L = 5.
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Performing the z integration, using Equation (8.7-35), we obtain

Wl«,2 = A2L sin2 kh £ 
Z — co

.
Sn 2 U cosh2 y„(x — d)j
AiV/. sinh27nd
\ 2

(8.7-56)
Integrating this expression and simplifying, we obtain

(■ »JA2 sin „ \
o TPnL I2 /

sinh 27„d
+ 27„d
sinh2 y nd (8.7-57)

The total time average stored energy is the sum of that given by Equations 
(8.7-52) and (8.7-57). Although Equation (8.7-57) is complicated, it is 
easily evaluated, since the series converges quite rapidly.

Next, we can compute the power flow, using Equation* (8.7-49) for a par­
ticular geometry of the finned structure shown in Figure 8.7-4. Consider 
a structure with dimensions chosen such that h/d = 4 and h/L = 5. Equa­

Fig. 8.7-10 Power per unit width in the structure of Figure 8.7-4 for a vane tip-to- 

tip voltage of one volt, h/d = 4 and h/L = 5.
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tion (8.7-44) is solved numerically to obtain the fundamental space har­
monic branch of the Brillouin diagram for the lowest frequency mode. 
This is shown in Figure 8.7-9. A line with slope equal to the velocity of 
light is drawn in for reference. We note, as before, that the phase velocity 
at every point on the curve is less than the velocity of light. The upper 
cutoff frequency is approximately that for which the vanes are a quarter 
wavelength long. We might have expected this, since the input impedance 
to a quarter wavelength shorted line is infinite, presenting an open circuit as 
far as axial current flow is concerned.

Having thus determined the relationship between w and ft0, we can pro­
ceed to calculate the power flow. It will be more interesting here to deal 
with an actual structure, designed for a specific operating frequency. Let 
us choose dimensions such that the mode cuts off at 10 Gc. This occurs for

h = 0.706 cm
L = 0.141 cm = h/5

d = 0.1766 cm = h/A

The power flow per unit width of the structure is presented in Figure 
8.7-10 as a function of ftgL. This curve is obtained by multiplying the 
group velocity by the time average stored energy per unit length, where 
the former quantity is obtained by measuring slopes in Figure 8.7-9. The 
power flow given is that amount required to produce a peak voltage of 
one volt from one vane tip to the next. From Equation (8.7-19) we see that 
this occurs for

Ez(0)L = AL sin kh = 1 volt

The power flow goes to zero as ftL approaches ir because the group velocity 
goes to zero. On the other hand, as ftL goes to zero, we approach the de 
condition where the top plate is all at one potential and the fins are all at 
the opposite potential. It becomes more and more difficult to maintain a 
voltage difference of one volt from one vane to the next, and the power 
required becomes infinitely large.

PROBLEMS

8.1 The equivalent circuit for the cavity in Figure 8-2 is given by a resistance, 

capacitance, and inductance in parallel, (a) Calculate the values of the capacitance 
and inductance at 3000 Me for the dimensions given in the text, (b) The magnetic 

field in the inductive sections of the cavity can be written

w 
T cos-z rr I c
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where z is measured from the top or bottom wall, respectively, and 1 is the current 
through the equivalent circuit inductance. Using Equation (8.4-19), find an ex­

pression for the ohmic power loss in the cavity at resonance for the dimensions 

given in the text. From this power loss find an expression for the resistance in the 

equivalent circuit. Neglect losses in the capacitive region of the cavity.

8.2 Scaling laws apply exactly to microwave structures whose walls are perfect 

conductors and approximately to others. The scaling law may be stated mathemati­

cally as follows. If E(x,y,z,af) is a solution to the wave equation, then Y(Kx,Ky.Kz, 
Kat) is also a solution, where A is a numerical constant. Demonstrate the validity 
of this statement.

8.3 Suppose that the cavity of Problem 8.1 is scaled to be resonant at K times 
3000 Me. (a) What are the resistance, capacitance, and inductance of the equivalent 

circuit for the new cavity, assuming the cavity walls are made of the same material? 

(b) What is the ratio of the Q’s of the two circuits, where Q = R/aL.
8.4 By applying Stoke’s theorem to Equation (8.1-14) show that the component 

of magnetic field perpendicular to a perfect conductor is zero, given that the parallel 

component of electric field is zero.

8.5 Show that the resistive power loss in a conductor may be derived assuming a 

uniform current density in a wall of a thickness equal to the skin depth, where the 

wall current per unit width is given by

/»CO

I. = J J,dx

and J, is given by Equation (8.4-13).

8.6 Slow-wave structures may sometimes be represented by an equivalent 

circuit consisting of a uniform lossless transmission line periodically loaded by either 

a series or a shunt reactance. If = 1/PO is the characteristic impedance and 

<Po is the phase shift per period of the unloaded line, then periodic shunt loading due 

to a susceptance B results in the relation

B .
cos SoL = cos <p„ — yry sin^o

where is the periodic phase shift of the periodically loaded structure. Similarly, 

for periodic series loading due to a reactance X, one obtains

%
cos (LL = cos ip« — yy- sin <p0

Prove either one of these relationships using the fact that corresponding voltages 

and currents in adjacent cells are related by the factor e->0°L. Use the results of 
uniform transmission line theory which state that the input and output voltages and 

currents for a line of electrical length are related by:

Pin = PoutCOS <p0 j7OutZosin <p0
lit, — loutCOS^o j'FoutFoSlIl^y

8.7 How is Equation (8.7-37) modified if the vanes of Figure 8.7-4 have a finite 

thickness A?
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8.8 From Equation (8.7-37) compute the relative magnitudes of the n = 0, ± 1, 

±2 space harmonics at the frequency for which (LL = ir/2. Compute them at the 

value of x for which they are a maximum.

8.9 A slow-wave structure has an equivalent circuit consisting of a cascade of 

filter sections whose shunt arm is a pure capacitance C and whose series arm is 
an open-circuited transmission line. The transmission line has a characteristic 

admittance of %a„C, where a0 is the lowest radian resonant frequency of the line; 

i.e., the susceptance of the series arm is given by B, = ^a0C tan (Kw/iah. Sketch 

the Brillouin diagram over the range 0 < o> < 4a„ and —2ir<PL < 2t. Deter­
mine the cutoff frequencies accurately and then qualitatively sketch in the curves. 

Make use of the filter formula cos (LL = 1 + B2/2Bi, where B2 is the susceptance of 
the shunt arm.

8.10 By studying the symmetries of a slow-wave structure one may deduce cer­

tain facts about its space harmonics. In the figure is shown an interdigital line, 

assumed to be infinitesimally thin in the y direction. This structure has a symmetry 

such that a translation of L/2 in the z direction accompanied by a reflection about 

the y-z plane results in the structure mapping back onto itself.

The solution for the electric field near x = 0 is of the form

CO

E, = (A„ cos kx + B„ sin fcr)e-|Twl£-/fti»
— 00

Because of the symmetry described above we can replace z by z + (L/2) and x by 

—x, and the resulting expression for E, can differ from the original only by a com­

plex constant. Use these facts to show that either A„ = 0 for n odd and Bn = 0 for 

n even (symmetric mode), or else An = 0 for n even and Bn = 0 for n odd (anti­
symmetric mode).
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Chapter 9

KLYSTRONS

We have seen in Chapter 7 the deleterious effects that occur in con­
ventional triodes and tetrodes as the signal frequency is increased. The 
factors degrading gain-bandwidth product and power output in these tubes 
may be divided into two categories:

1. Circuit Factors
These include lead inductance, stray capacitance, and power losses 
due to radiation, dielectric loss factor, and resistance.

2. Transit-Time Effects
These effects occur because of the finite time electrons take to travel 
between electrodes.

The losses due to circuit factors can be reduced by a judicious use of the 
microwave components discussed in the preceding chapter. On the other 
hand, one encounters certain fundamental difficulties in trying to mini­
mize transit-time effects. In the triode and the tetrode, it is the cathode- 
to-grid transit time which is the real culprit degrading the high-frequency 
gain and efficiency. One can decrease this transit time by decreasing the 
cathode-to-grid spacing. This approach has been used successfully in the 
Western Electric 416B triode, described in Section 7.4. But as one can see 
from the dimensions of this tube, as given in Section 7.4, it is unlikely 
that the operating frequency could be extended much higher by further 
reduction of electrode spacings. Accordingly, one must seek other means 
for modulating the electron beams in tubes operating at high microwave 
frequencies.

In the present chapter we shall describe two microwave tubes which 
make use of a second type of modulation called velocity modulation. Veloc­
ity modulation is obtained by impressing a small ac component of velocity 
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on a de electron beam. This can be done by allowing the beam to pass 
through two grids between which there is applied a small ac voltage. If 
the grids are spaced very close together, equal numbers of electrons emerge 
from the grids in equal intervals of time, but the velocity of the electrons 
has a small ac component. Such a beam is said to be velocity modulated. 
As the electrons travel away from the grids, the faster electrons move away 
from the slower electrons behind them and tend to overtake the slower 
electrons ahead of them. The axial density of electrons is therefore no 
longer uniform, and the beam current passing a point some distance from 
the grids has an ac component. In view of this, it is frequently said that 
the velocity modulation imparted to the beam when it passed through the 
grids gives rise to current modulation farther along the beam.

Fig. 9-1 Applegate diagram showing representative electron trajectories. The slope 
of each trajectory is proportional to the electron velocity. Velocity modulation is 

produced at the gap by the changing gap voltage. This results in density modulation 

beyond the gap.

The velocity modulation is illustrated in Figure 9-1, known as an Apple­
gate diagram. In this figure, plots of distance vs. time are given for a num­
ber of representative electrons (24 per cycle). The effects of space-charge 
forces are neglected in drawing the figure. The electrons leave the grids 
spaced uniformly in time, corresponding to the lack of current modulation 
at this point, However, each electron has a slightly different velocity, 
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depending on the instantaneous rf voltage between the grids when the 
electron passed through the grids. The instantaneous voltage between the 
grids is indicated on the figure. The slope of a trajectory is proportional 
to the electron velocity. Because of the difference in slopes, many of the 
trajectories converge so as to form electron bunches at some distance from 
the grids. We note that the bunches tend to form about an electron which 
goes through the grids when the voltage is zero and increasing. Similarly, 
the electrons tend to move away from an electron which goes through the 
grids when the voltage is zero and decreasing; this electron locates what is 
termed the antibunch.

If the ac voltage applied between the grids is of a very high frequency, 
the distance along the beam between maxima and minima in velocity will, 
of course, be very short. This means that appreciable density variations

Fig. 9-2 Two-cavity klystron amplifier.

will appear after the electrons have traveled a relatively short distance 
from the grids. Velocity modulation, therefore, lends itself particularly to 
high-frequency tubes. The two velocity modulated tubes described in the 
present chapter, the klystron amplifier and the reflex oscillator, are gen­
erally designed for operation at frequencies above 200 Me. Reflex klystron 
oscillators have been built which give useful output at frequencies greater 
than 100,000 Me, or 100 Gc.

In both these tube types the beam passes through grids that are an in­
tegral part of a resonant cavity. If the cavity is excited, the voltage devel­
oped across the cavity, and hence between the grids, imparts the velocity 
modulation to the beam. Power is extracted from the beam in the case of 
the klystron amplifier by allowing the beam to pass through a second 
resonant cavity. The cavity is excited by the induced currents associated 
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with the beam just as in the case of an external resonant circuit connected 
between a pair of grids. In the reflex oscillator the beam is caused to return 
through the modulating cavity with the right phase so that it adds to the 
excitation energy of the cavity.

Figure 9-2 illustrates a two-cavity klystron amplifier. In this particular 
example the rf signal is coupled into the input cavity by means of a coaxial 
cable. The output cavity is coupled to the load by means of a waveguide, 
taking advantage of the lower attenuation inherent in waveguide.

The electron beam is produced by an electron gun of the type shown in 
Figure 4.5-1 (a). This is a convergent Pierce gun which produces a small 
diameter beam from a cathode of much larger diameter. Thus, much higher 
beam current densities are available for a given cathode electron-emission 
density than in a triode or tetrode. This allows a large increase in the beam 
power passing through electrode gaps of a fixed area and capacitance and 
hence a large increase in the gain-bandwidth product which can be achieved 
with such a tube. The klystron is usually operated with the cathode at a 
negative potential and the other electrodes grounded, for reasons of con­
venience and safety.

Since the electrons must travel a considerable distance, the beam is 
prevented from spreading radially, due to the space charge repulsion, by 
applying an axial de magnetic field. This field is provided by a permanent 
magnet or solenoid, as discussed in Section 3.4.

After passing through the output cavity, the beam strikes a collector 
electrode. The function of the collector electrode could be performed by 
replacing the second grid of the output cavity with a solid piece of metal. 
However, having a separate electron collector has several advantages. 
First, the collector can be made as large as is desired in order to collect the 
beam at a lower power density, thus minimizing localized heating. If the 
collector were part of the rf circuit, its size would be limited by the maxi­
mum gap capacitance consistent with good high-frequency performance. 
Second, by having a separate collector, its potential can be reduced con­
siderably below the beam potential in the rf interaction region, thus re­
ducing the power dissipated in the collector and increasing the overall effi­
ciency of the device. It should be clear that the electron beam does not 
extract energy from any de power supply unless the electrons are actually 
collected by an electrode connected to that power supply. Thus in Figure 
9-2, if a separate power supply were connected between cathode and col­
lector and if the cavity grids intercepted a negligible part of the beam, the 
power supply between the cathode and collector would be the only one 
supplying any power to the tube.

It is clear that the two-cavity klystron amplifier has considerable advan­
tage over the conventional triode and tetrode for microwave signal ampli­
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fication. Circuit losses are greatly reduced by the use of resonant cavities 
at the interaction gaps and by the use of microwave transmission lines for 
making input and output connections. Furthermore, transit-time effects, 
which limit the high-frequency performance of triodes and tetrodes, are 
largely overcome by the use of velocity modulation. In the following sec­
tions, we shall take a more quantitative look at the electron interaction proc­
ess in the klystron amplifier. Later in the chapter we shall describe the 
reflex klystron oscillator.

9.1 Quantitative Theory of Klystron Interaction
The quantitative theory of klystron interaction may be conveniently 

divided into three parts, as follows:

1. The velocity modulation produced by a given voltage at the input 
cavity.

2. The current modulation at the output cavity resulting from the 
initial velocity modulation at the input cavity.

3. The current induced in the output cavity by the current modula­
tion on the beam.

The first and third parts have to do with the interaction between an 
electron beam and the grids of a cavity. (The region between the grids of 
a cavity is known as the cavity gap.)
(a) Velocity Modulation Produced by an RF Voltage Applied to the Grids 

of a Cavity

Fig. 9.1-1 Klystron buncher gap with 
rf voltage applied. Velocity modula­
tion is produced on the electron beam.

DIRECTION 
OF ELECTRON 

FLOW

The grids of the input cavity are 
represented in the equivalent circuit 
of Figure 9.1-1. An rf voltage source 
is shown connected to these grids. 
This voltage source is an equivalent 
source at the grids which replaces 
the external signal source indicated 
in Figure 9-2. As indicated in the 
introduction, this voltage will pro­
duce a velocity modulation on the 
beam, whose value we shall now 
determine.

Let the z axis be taken in the 
direction of electron flow, with the 
entrance grid at the position z = 0. 
The grids are assumed to be ideal; 
that is, all electrons pass through 
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without interception, and the rf electric field lines are perpendicular to 
and terminate on the grids.

Although an electron is between the grids, it experiences a force due to the 
rf electric field. This force causes an acceleration, as in Equation (1.1-1).

d2z _ e
dt2 m (9.1-1)

This equation holds for time-varying electric fields as well as for static 
fields. For the gap in Figure 9.1-1,

H2=-^sin<oi (9.1-2)

where d is the grid spacing, and A sin wt is the instantaneous gap voltage. 
Thus, the motion of an electron is given by the solution to the equation:

d?z eA .
dt2 md Sln W

Integrating once, we obtain

dz eA .-t: = u„ 5ÍCOS wt — cos wfa) dt wmd

(9.1-3)

(9.1-4)

where fa is the time at which the electron passed through the first grid, and 
uo is the de velocity of the electrons entering the gap. The velocity u„ is 
given by

u, = 4 — Vo (9.1-5)ym

where Vo is the de voltage of the electron beam, as in Figure 9-2. Equation 
(9.1-4) gives the velocity of the electron at any instant while it is in the gap. 
To find the exit velocity, we must substitute the time at which the elec­
tron leaves the gap for t in the above equation. Calling this time fa, the 
exit velocity is given by

u(d) = Uo--------^(cos wfa — cos wfa) wma (9.1-6)

If we assume that the amplitude of the rf voltage A is very small com­
pared with the de voltage of the beam Vo, the electron transit time in the 
gap is very nearly that given by the de velocity alone. Thus, if fa is the 
instant at which the electron is at the center of the gap,

fa = fa-/- (9.1-7)
2Uo 

and

fa — t0 + y (9.1-8)aUq
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If these expressions are substituted into Equation (9.1-6) and if we simplify 
the resulting expression by the use of trigonometric identities, we obtain 
the following expression for the exit velocity:

u(d) = U» + sin sin ut0 (9.1-9)umd 2u„

If the beam-coupling coefficient M is defined as in Chapter 7,

ud sm
M = —(9.1-10) ud

2u0

Equation (9.1-9) becomes

... . eMA .u(d) = u„ 4-------- sin utomu0

= u0(l + sin (9.1-11)

M is plotted as a function of the gap transit time in Figure 7.1-2. It is 
unity for zero transit time and drops off for non-zero values of transit time.

(b) The Bunching Process

Having discussed the process by which velocity modulation is produced 
on the beam at the input gap, we next consider the mechanism by which 
this velocity modulation causes bunching or current modulation to occur 
in the drift region between the two cavities.

This bunching process has already been described in connection with 
Figure 9-1, and we shall now seek a quantitative description of the process 
in order to answer important questions such as: What should the spacing 
be between the two cavities in order to achieve a maximum degree of 
bunching? What magnitude of current is induced in the output cavity?

For the moment we shall neglect the mutually repulsive forces of space 
charge. This approximation is reasonably valid for low-power tubes, where 
the electron density in the beam is relatively small. We shall further assume 
that all motion is in the z direction. Physically, this requires either that 
the space-charge forces be too small to cause transverse spreading or else 
that the electron motion be confined by a strong de magnetic field in the z 
direction.

The electrons emerging from the input cavity have a velocity given by 
Equation (9.1-11). Since there are no accelerating fields in the drift space 
between the two cavities, each electron moves at a constant velocity given 
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by this equation for its particular value of t0. This behavior has been 
depicted in the Applegate diagram of Figure 9-1.

Assuming a separation I between the centers of the input and output 
cavity gaps, the time of arrival t of a particular electron at the output 
cavity is given by the expression:

* ~ = (MA . (9.1-12)

Let us make the simplifying assumption that the input cavity voltage 
amplitude is much less than the dc beam voltage. This will be true in most 
cases, except for some very high power tubes. The second term in the

Fig. 9.1-2 Output-gap arrival time plotted vs. the time of departure from the input 
gap for various values of X, the bunching parameter, defined by Equation (9.1-14). 
6 is the dc transit angle. For X greater than unity, some electrons leaving the input 

gap at three different instants arrive at the same instant at the output gap.
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denominator is thus much less than unity, and Equation (9.1-12) can be 
approximately written as

t - to = -(1 - ? — sin (9.1-13)
^o\ • o /

or, in terms of radians,
at — ato = 0^1----2 V~ S^n

= 0 — X sin ato (9.1-14)

where 0 = al/uo is the de trailsit angle between cavities, and X = (M/2) 
(A/Vo)9 is a parameter known as the bunching parameter.

In Figure 9.1-2 are plotted curves showing output-gap arrival time as a 
function of input-gap departure time over one rf cycle, for various values of 
the bunching parameter. One notes that for values of the bunching param­
eter greater than unity, the departure time is a multivalued function of the 
arrival time for electrons near the bunch center. However, the arrival time 
is always a single-valued function of the departure time.

Let us first consider the situation for X less than unity. The instantane­
ous current reaching the output cavity can be written as

i(t) = J (9.1-15)

where dq is the amount of charge arriving at the output cavity in a time 
interval dt. In Figure 9.1-2 the ordinate and abscissa are proportional to t 
and to, respectively. We see from this figure that the amount of charge 
arriving in a time dt can be related to the corresponding departure time 
interval dt0 by

dq = —Ijito (9.1-16)

since electrons leave the input cavity evenly spaced at a rate given by the 
de current. The minus sign is used so that I o may be a positive quantity; 
dq is of course negative for electrons.

Substituting Equation (9.1-16) into Equation (9.1-15), we obtain

AO = (9.1-17)

where the derivative is obtained simply by measuring slopes on the curve of 
Figure 9.1-2. Current waveforms for several values of the bunching 
parameter are shown in Figure 9.1-3. Infinite current peaks are obtained at 
the arrival times for which the curves of Figure 9.1-2 have zero slope.

For values of the bunching parameter greater than unity, the fact that 
the curve of Figure 9.1-2 is multivalued results in three values of slope for a
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Fig. 9.1-3 Beam current waveforms at the output gap. For X greater than or equal 
to unity, infinite peaks are obtained at the points corresponding to zero slope in 

Figure 9.1-2. In an actual tube, these peaks though large would remain finite be­

cause of the space-charge forces.

given arrival time near the bunch center. This situation is easily handled 
as follows. Since Equation (9.1-16) must include the total chargefor a 
given arrival time, we must include a term for each of the three departure 
times; thus

dq — —Io [di0|i + diols + dio|s] (9.1-18)

Corresponding to Equation (9.1-17), we obtain

w= -4® +1^1 +1^11I dt |i | dt [2 | dt [3
In each case, the absolute value of the derivative must be taken. Physically 
this corresponds to the fact that the charge increment dg has the same sign 
regardless of the sequence of arrival oftheelectrons. A negative value of 
dto/dt merely indicates that electronsYvhich left the input cavity last arrive 
at the output cavity first; dq always has a negative value.

The current waveforms of Figure 9.1-3 may be Fourier analyzed to 
determine the fundamental component and the various harmonics. This 
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could be done graphically. However, it is possible to solve this problem 
analytically. We shall proceed with such an analysis.

The current at the output gap can be written as the Fourier series:
00

t(i) = —l0 + 22 I®« cos ~ +bn sin n(at — 0)] (9.1-20) 
n = l

where
1 P^T

a„ = - I i(t) cos n(at — 6)d(at)TV J S-T
and

1 P+t
b„ = — i(t) sin n(wt — 6)d(at)IT J 9—t

Let us consider first the situation for X less than unity, so that the curves of 
Figure 9.1-2 are single-valued.

It will be convenient to change the variable of integration from arrival 
time to departure time. Equation (9.1-17) gives us

i(t)d(wf) = -l^ato) (9.1-21)

From Figure 9.1-2, we see that the limits of integration become — t to +ir. 
When Equations (9.1-21) and (9.1-14) are substituted into the above 
integrals, we obtain

a„ = —~°y cosn(a>io — X sin. at0)d(at0)

and
b„ = y sinn(wL — X sin at0)d(,aQ (9.1-22)

bn is identically equal to zero since the integrand is an odd function of at0. 
The definite integral in the expression for an is given by a Bessel function:1

2J„(nX) = - y cos n(ato — X sin a>i0)d(a>i0) (9.1-23)

Equation (9.1-20) thus becomes
00 

t(i) = —1„ — 21 o 22 Jn(nX) cos n(at — 0) (9.1-24)
n = l

For values of X greater than unity, the same expression is obtained. This 
is shown in Appendix XV. For small values of X, Ji(X) = X/2 and Jn(nX)

’Reference 9.1, p. 150.
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is very small for n > 1. Equation (9.1-24) then becomes i(t) = —L 
[1 + X cos (ut — 0)] for small X and hence for small input signals.

Equation (9.1-24) shows that the various harmonics in the bunched beam 
have amplitudes proportional to Bessel functions of order n, where n is the

Fig. 9.1-4 Bessel functions of various orders. The maximum value oij, occurs at 
X = 1.84 and is equal to 0.582.

same as the harmonic. These Bessel functions are plotted in Figure 9.1-4. 
Since the abscissa in this figure is proportional to the transit time between 
cavities, we can adjust either the beam velocity or the distance between 
cavities so as to obtain a maximum amplitude for any of the harmonics. 
For an amplifier, we would make X equal to 1.84 so as to peak the funda­
mental component at the output cavity. On the other hand, it is also 
possible to use the tube of Figure 9-2 as a harmonic generator, in which case 
we would choose the transit time to correspond to the peak of one of the 
higher-order Bessel functions of Figure 9.1-4. Since these other peaks are 
nearly as large as that of the fundamental, the two-cavity klystron can be 
a very efficient harmonic generator. Of course, the output cavity would be 
tuned to the harmonic frequency.

Since the electrons become bunched about an electron which passed 
through the input cavity when the voltage across the input cavity was 
changing from decelerating the electrons to accelerating them, the center of 
the electron bunch arrives at the output cavity delayed by the de transit 
angle, but advanced by r/2. This can also be seen by comparison of the 
phase of the voltage applied to the input cavity with the phase of the funda­
mental component in Equation (9.1-24).
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(c) Current Induced in the Output Cavity by the Bunched Beam

DIRECTION 
OF 

ELECTRON 
FLOW

Fig. 9.1-5 Convention for positive in­
duced current adopted in this chapter. 

The induced current is equal to M times 
the beam current modulation at the 

center of the gap (in magnitude and 

phase).

To complete the description of klystron interaction, we must consider the 
current induced in the output cavity by the bunched beam. This problem 
has already been considered in Section 7.1(a), where we have considered 
the current induced by a modulated beam into a load connected between 

two grids. Although the discussion 
presented in Chapter 7 was applied 
to a tetrode, it might equally well be 
applied to a klystron, where we in­
terpret the pair of grids to be the 
grids of a re-entrant cavity reso­
nator.

We shall find it convenient to 
adopt the conventions for positive 
gap voltage and induced current in­
dicated in Figure 9.1-5. The direc­
tion for positive induced current is 
opposite to that used in Chapters 6 
and 7. In microwave tube work it is 
customary to assume that the ac 
component of beam current is posi­
tive when directed from left to right. 
Thus, the induced current indicated 
in Figure 9.1-5 is positive when the 
ac component of beam current is 
positive.

From Equation (9.1-24), the de and fundamental components of beam 
current at the output cavity are given by

i(l,t) = — Io + fa cos t—(9.1-25) 
\ Uo /

where
fa = -2IoJi(X) (9.1-26)

and we have substituted d = wl/u0. But this is exactly the same type of 
wavelike behavior that was assumed for the beam current density in Sec­
tion 7.1(a). From Section 7.1(a), therefore, we have the result that the in­
duced current (with positive direction assumed as in Figure 9.1-5) is given 
by M2fa cos w(t — l/uo), or in phasor notation we may write:

I = (9.1-27)

where I and fa^^iu«il are phasor quantities representing the induced 
current and the fundamental component of beam current at the gap center,
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respectively. Mt is the beam-coupling coefficient for the output cavity. 
Simply stated, the induced current is Mt times the fundamental component 
of the beam current at the gap center, both in magnitude and in phase. 

This is really a very important result; the induced current is independent 
of the loading of the output cavity. Thus, the modulated beam truly acts

ELECTRONS

CAVITY

PATH FOLLOWED 
BY INDUCED 

CHARGES

0 0
0 0 0

0 0

T

ÎZZZZZZZZZZZZZZZZZZZZA
Fig. 9.1-6 Path followed by the induced charges associated with an electron bunch 

passing through a cavity.

as a current source. Figure 9.1-6 shows the path followed by the induced 
charges associated with a single bunch of electrons which passes through 
the output cavity.

At resonance the phase of the oscillations in the output cavity is such that 
maximum decelerating voltage appears across the output cavity when maxi­
mum number of electrons is crossing the gap. This follows from the fact 
that at resonance the cavity and load appear as a resistance connected 
between the grids, so that when the induced current reaches a maximum, 
the voltage across the cavity is also a maximum. This explains the transfer 
of energy from the beam to the cavity.

How much power can be delivered to the output cavity and load from the 
bunched beam? This question can be answered most easily from a consider­
ation of the equivalent circuit of the output cavity, shown in Figure 9.1-7.

In this equivalent circuit, L and C are the inductance and capacitance of 
the re-entrant cavity itself, without the presence of the beam. These 
parameters are obtained as discussed in the introduction to Chapter 8. 
Similarly Gc is a conductance which accounts for the resistive and dielectric 
losses in the cavity. These parameters determine the cold unloaded Q of the 
cavity, defined by

Qo = (9.1-28)be
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Fig. 9.1-7 Equivalent circuit for the output cavity and its load. The symbols used 
are defined as follows:

V = gap voltage

I = induced current

C = gap capacitance

L = cavity inductance

g + jb = beam loading admittance

Gc = conductance representing cavity losses

Gl = load conductance (as seen from the cavity gap)

where ac is the cavity resonant frequency in radians.
The beam-loading admittance is given by g + jb. The parameters g and b 

are functions of the gap transit time. For an unmodulated beam, they are 
given by Equations (7.1-14) and plotted in Figure 7.1-4. Physically, these 
parameters express the fact that for a non-zero gap transit time, some 
energy is exchanged between the electrons and the rf energy stored in 
the output cavity. It is convenient to assume the same parameters for a 
modulated beam. This is a small-signal approximation, useful in predicting 
the small-signal performance of a klystron amplifier.

In most practical tubes, the output gap transit angle is much less than r, 
and the susceptive component is capacitive, as shown in Figure 7.1-4. 
Furthermore, when the transit angle is much less than ir, b varies linearly 
with frequency, and we may write

b = aCb (9.1-29)

where Ct, = g„T0/12. Here g„ and T„ are defined as in Equation (7.1-14). 
The hot unloaded Q is defined by

Qu = (9.1-30)Gc + g

where a0 is the resonant frequency of the cavity with the beam present. 
thus includes the intrinsic cavity parameters plus the loading due to the 
electron beam. It should be noted that for the small-signal approximation 
we are considering, Q „ is independent of whether or not the beam is velocity 
modulated in the input cavity. Thus it could be evaluated by measuring 
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the characteristics of the output cavity with the beam turned on, but with 
no rf drive on the input cavity.2

In Figure 9.1-7 the conductance Gl accounts for the load connected to the 
cavity. Since the actual load will be separated from the cavity by wave­
guide, transformers, and various other components, Gl is an effective value 
as seen at the cavity gap. It is defined so as to give a correct value for the 
power absorbed for any given gap voltage. The external Q is defined by

uJC + Cs) 
Gl

(9.1-31)

The loaded Q is the Q of the whole circuit of Figure 9.1-7. It is thus given 
by

Qi = (9J-32)
Gc + 0 + Li

From the last three equations, we note that

1 = A + 1
Qi Qu Q,

(9.1-33)

The remaining parameters in Figure 9.1-7 are the gap voltage V and the 
induced current I, defined previously.

To deliver maximum power to the load, we adjust the parameters such 
that

Gl = Gc + g (9.1-34)
and 

u2L(C + Ci) = 1 (9.1-35)

Equation (9.1-34) may also be stated as

Q* = Qu (9.1-36)

Fig. 9.1-8 Equivalent circuit for the input cavity and the signal source. The 
symbols used are as defined in Figure 9.1-7, with the additions:

I, = current source representing the rf input signal

G, = source conductance (as seen from the cavity gap)

’Measurements of resonant cavity characteristics are discussed in Reference 9.2.
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The load conductance may be adjusted by changing the coupling of the 
cavity to the load. The resonance condition, Equation (9.1-35), may 
be obtained by varying the cavity capacitance or inductance. One common 
way to do this is to deform mechanically the cavity to change the gap 
spacing, thus changing the cavity capacitance.

The equivalent circuit for the input cavity is shown in Figure 9.1-8. Here 
the current source at the right represents the rf input source. The other 
parameters have the same meaning as in Figure 9.1-7, except that GL is 
replaced by G,, the source conductance.

9.2 Reflex Klystrons

The klystron amplifier of Figure 9-2 is an extremely stable type of micro­
wave tube, where stability refers to freedom from oscillations. In normal 
operation there is no feedback from the output cavity to the input cavity, 
except perhaps by secondary electrons produced at or beyond the output 
cavity which make their way back to the input cavity. In order to make 
this tube oscillate, it is necessary to provide an external feedback path from 
the output cavity to the input cavity. This can be accomplished by tapping 
off a portion of the output power and feeding it back into the input cavity 
by means of an external transmission line. The oscillation frequency and 
power output are then determined by the simultaneous requirement that 
the loop gain be unity and the loop phase shift be a multiple of 2ir radians. 
The loop phase shift can be varied by changing either the beam voltage or 
the length of the feedback cable. Of course, if the frequency is varied any 
appreciable amount, the cavities must be retuned.

For many applications of micro wave oscillators, it is necessary to change 
the frequency rapidly. This is most readily done if the oscillation frequency 
can be varied electronically. In the oscillator described above, this can be 
done over a limited frequency range by changing the beam voltage. How­
ever, varying the beam voltage simultaneously varies the beam power, 
and this results in a larger change in output power with frequency than is 
desirable for most applications. This drawback is eliminated in the reflex 
klystron described below.

A schematic drawing of the reflex klystron, together with the power 
supply connections, is shown in Figure 9.2-1 (a). A potential profile along 
the electron beam is shown in Figure 9.2-1 (b). The electron gun injects the 
electron beam through the grids of a re-entrant microwave cavity. The 
electrons then approach an electrode known as the repeller, which is at a 
lower potential than the cathode. The repelling electric field in this region 
causes the electrons to “turn around” and pass once again through the 
cavity grids, but in the opposite direction. The electrons are then collected
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on the walls of the cavity or other grounded metal parts of the tube. Since 
this tube is a relatively low-power device, the power dissipated in the cavity 
by the incident electrons is not excessive. The broken lines in Figure 9.2-1 

Fig. 9.2-1 Reflex klystron and its potential profile, (a) Schematic drawing of the 
tube showing the power supply connections, (b) Potential profile along the beam 

from the cathode to the repeller.

indicate the trajectories of the outermost electrons in the beam. The reflex 
klystron is usually operated without any magnetic field to confine the beam, 
and consequently the beam spreads under the influence of its own space 
charge. However, since the total distance traveled by the electrons is 
small, the total radial spreading is not excessive.

If we postulate an rf voltage on the cavity grids, the beam is velocity 
modulated during its first passage through the grids. While the electrons 
are in the repeller region, the velocity modulation is converted into current 
modulation, much like in the drift space between cavities of a klystron 
amplifier. When the current modulated beam re-enters the cavity, it in­
duces an rf current in the walls of the cavity, as in the output cavity of the 
amplifier. This induced current is then the source of output power. The 
gap voltage is also produced by this induced current. Hence, the cavity 
serves a dual purpose; it is both the input cavity and the output cavity 
with feedback intrinsically provided.

The bunching mechanism in the repeller region can best be described by 
means of the Applegate diagram given in Figure 9.2-2(a). The correspond­
ing gap voltage as a function of time is shown in Figure 9.2-2 (b). Time 
markers are included on the abscissa in Figure 9.2-2(a), marking the
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Fig. 9.2-2 Electron trajectories in a reflex klystron showing the dependence on the 
instantaneous gap voltage at the moment of departure, (a) Applegate diagram for 

the If mode of oscillation, (b) Instantaneous gap voltage.

instants for which the gap voltage is zero. Figure 9.2-2(a) shows distance­
time plots for several electrons passing through the cavity at equally spaced 
intervals during one cycle of the cavity voltage. The electrons start out 
toward the repeller, are “turned around,” and arrive back at the gap at a 
later time. Each electron leaves the gap with a different velocity, depending 
on the instantaneous value of the gap voltage as it passes through. Electron 
B passes through when the voltage is a maximum, and it receives the great­
est increment of velocity. It therefore penetrates farthest toward the re­
peller before being turned back. On the other hand, electron D passes 
through when the gap voltage is maximally retarding, thus penetrating the 
least distance and arriving back in the shortest time span. Electrons A, C, 
and E go through the gap when the voltage is zero and penetrate toward 
the repeller an intermediate distance.

We note that a bunch forms around electron C which initially passed 
through the gap when the voltage was zero and decreasing. Since the bunch 
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arrives back at the gap at such an instant that the voltage is maximally 
retarding, energy is transferred from the beam to the cavity. In the dia­
gram shown, eight of the electrons are slowed down in their second transit 
through the cavity, whereas only four are speeded up.

Since the de transit time in the repeller region corresponds to 1J rf cycles 
for the condition shown in Figure 9.2-2, this mode of oscillation is known as 
the 1 f mode. Alternatively, a higher magnitude of reflector voltage would 
cause the electrons all to return to the gap in a shorter span of time, and 
oscillation in the J mode is possible. This occurs when the de transit time 
corresponds to j of an rf cycle. It is not necessary to have the transit time 
exactly j or If cycles; oscillations are possible for slight departures from 
these values, but at reduced power levels and at slightly different fre­
quencies. It is only necessary that the bunch be so phased that sufficient 
energy is transferred from the modulated beam to the cavity to make up for 
losses in the cavity and load. It is apparent that oscillations are possible for 
transit times corresponding to n + j cycles, where n is an integer.

With this much of an understanding of the qualitative behavior of the 
device, we proceed to take a more quantitative look.

For simplicity, the effect of space-charge forces on the electron motion 
will again be neglected. Because of the relatively low beam current of the 
reflex klystron, this is a good approximation everywhere except near the 
repeller where the electrons are reversing their direction of motion.

The tube has de voltages applied as in Figure 9.2-1, with I being the spac­
ing from gap to repeller. The polarities of gap voltage and induced current 
are taken as in Figure 9.1-5. Assume that there exists an rf voltage across 
the gap given by

v(t) = A sin at (9.2-1)

The exit velocity of an electron is given by Equation (9.1-11),

u(d) sin at\ (9.2-2)

where t0 is the time at which the electron passes through the center of the 
gap-

We shall assume that there is a uniform electric field between the repeller 
and the cavity so that the electrons experience a uniform force directed 
toward the cavity while traveling in this region. The resulting acceleration 
of the electrons is given by the differential equation:

S = “ ^+1^ (9.2-3)
dt2 m I
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This equation can be integrated once, obtaining

dz , „ e V„ + Vr0. .-77 = u(d) - -- ------- -,------(t - to)dt th t
(9.2-4)

where t0 is the time at which the electron first passed the mid-point of the 
cavity. Strictly speaking, the exit time from the gap rather than to should 
be used in Equation (9.2-4).

Let us now find an expression for the time t at which the electron returns 
to the gap. This value is obtained by solving Equation (9.2-4), with

S (9.2-5)

since the electron neither gains nor loses net energy in the repeller region. 
We obtain

, , 2mlu0 M A . 1 /n o
t - L = -777-37-^—7 1 + v IT Sln (9.2-6)e(Vo + Fso)L V0 J

where use has been made of Equation (9.2-2). Multiplying through by the 
radian frequency, we obtain

ut - uh = e 1 + £ sin uto (9.2-7)
At r q 1

where
2muluo 

e(Vo + VBo)
(9.2-8)

is the de transit angle in the repeller region.
To find an expression for the instantaneous current on the beam as it re­

enters the cavity, we proceed in the same manner as in Section 9.1, except 
that there is a different relationship between the departure and arrival 
times of an electron, that is, Equation (9.1-14) is replaced by (9.2-7). 
Comparing these two equations, we note that they are identical except for 
the algebraic sign of the term containing the bunching parameter X, where

M A
2 V,

(9.2-9)

The result for the reflex klystron therefore is given by Equation (9.1-24), 
except that X must be replaced by — X. We thus have the following result 
for the beam current injected into the cavity gap from the repeller region: 

i(t) = — Io — 2I0 ^2 (—l)"J„(nX) cosn(ut — 0) (9.2-10)
n = l

where use has been made of the identity3

3Reference 9.1, p. 128.
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Jn(-x) = (-l)VB(x) (9.2-11)

The fundamental component of beam current is 

ii(t) = cos (at - 6) (9.2-12)

In the notation of Figure 9.1-5, the electrons travel from right to left 
through the grids, so that the induced current phasor is given by

I = -ZMIJilxyr* (9.2-13)

which is — M times the phasor representing the current of Equation 
(9.2-12).

The equivalent circuit of the cavity is given as in the klystron amplifier 
by Figure 9.1-7, with one change. The beam-loading admittance is denoted 
by g' + jb' instead of g + jb, since in a reflex klystron the results of Section 
7.1(b) are not applicable. This is true for two reasons. First, the beam 
traverses the cavity twice and on its second transit is highly bunched. 
Second, the secondary electrons due to the beam impact contribute sig­
nificantly to beam loading.

The induced current I acts as a current source producing the gap voltage 
V. This voltage in turn is the cause of the original velocity modulation on 
the electron stream.

When the tube is oscillating in the steady state, we may write

-p + G +jB = 0 (9.2-14)

where
G = g' + Gc + Gl 

and
B = b' + aC - A

The amplitude and frequency of oscillation are determined by the condition 
that this equation be satisfied for both the real and imaginary parts. Let us 
define an electronic admittance by

(9.2-15)

Using Equations (9.2-1), (9.2-9) and (9.2-13), we have the following formula 
for the electronic admittance:

2MIoJ1(X)<r*

L^2Ji(X) 
2VO X (9.2-16)
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At oscillation, this admittance appears as a negative conductance shunted 
by some susceptance.

The electronic admittance is nonlinear since it is proportional to the 
factor

2JJX)
X

and X, the bunching parameter, is proportional to the rf gap voltage. This 
factor of proportionality is shown in Figure 9.2-3. As the magnitude of the

x
Fig. 9.2-3 Factor by which the electronic admittance varies with signal level. As 

the signal level goes to zero, this factor approaches unity.

rf gap voltage goes to zero, this factor approaches unity, and we obtain the 
small-signal value of the electronic admittance,

U. = (9.2-17)

When this admittance is plotted on a rectangular admittance chart as a 
function of 0, the de transit angle, one obtains the admittance spiral shown 
in Figure 9.2-4. The admittance starts at the origin for zero transit angle 
and then spirals outward and clockwise as the transit angle is increased. 
Oscillations are possible for values of the transit angle which produce a 
negative conductance which is greater in magnitude than the positive con­
ductance represented by the load and losses of the cavity. Maximum mag­
nitudes of negative conductance are obtained for values of 0 given approxi­
mately by n + f cycles, where n = 0,1,2 etc. The electronic admittance 
spiral corresponding to any level of oscillation, that is, for a value of X
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Fig. 9.2-4 Locus of small-signal electronic admittance Yes on a rectangular im­
pedance plot. The locus spirals out from the origin as the de transit angle is in­

creased from zero. Oscillations are obtained for negative conductances greater in 

magnitude than the total conductance loading the cavity, that is, for points to the 

left of the line — G — jB.

greater than zero, may be obtained from the small-signal spiral by shrinking 
the spiral radially by the factor 2Ji(X)/X obtained from Figure 9.2-3. 

Equations (9.2-14) and (9.2-15) may be written as
Y e = — (G+jB) (9.2-18)

We now look for a graphical method of solving this equation so that oscilla­
tion power and frequency can be predicted as a function of the de transit 
angle 6. For a fixed cavity geometry, the total shunt conductance G may 
be assumed constant over the frequency bandwidth of the cavity. The total 
shunt susceptance may be expanded as

B = wCt

= c>..+ ~ *,) 2CW 2GQi—

<a0
(9.2-19)
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where Ct is the gap capacitance plus a capacitance to account for beam 
loading, and Qi is the loaded Q with the beam present, defined in Equation 
(9.1-32). w„ is the radian resonant frequency with the beam present. We 
may plot

Aw
Wo

-(G+jB) = — G (9.2-20)

as a function of frequency in Figure 9.2-4. The plot consists of a vertical 
line G units to the left of the origin. Equal increments of distance along the 
line correspond to equal increments of cycles off resonance. As the fre­
quency is increased, the corresponding value of cavity admittance is found 
at a lower point on this line. By Equation (9.2-20) the frequency range 
between any two values of cavity admittance is inversely proportional to Qi.

By Equation (9.2-18) an operating point in Figure 9.2-4 is found as the 
intersection of the cavity admittance locus EF and the electronic ad­
mittance spiral for the particular value of gap voltage. Thus in Figure 9.2-4 
we note that small-signal oscillations (X = 0) are possible at the points E, 
F, H, K, L, and M, and the corresponding values of frequency and 6 may be 
read off. From the values of 0, values of the repeller voltage are determined 
from Equation (9.2-8), given the beam voltage Vo.

How does one determine the operating conditions for higher levels of 
oscillation? Assume that the tube is oscillating at point E on the chart, and 
the repeller voltage is decreased so as to increase 0 to correspond to the line 
OC. The small-signal admittance spiral has a larger magnitude of negative 
conductance than the positive value of cavity conductance. Hence oscilla­
tions will build up in amplitude and the admittance spiral will shrink until 
the conductances are equal in magnitude, that is, until point C recedes to 
point D on the shrunken spiral. An evaluation of the ratio of OD to OC 
gives the value of 2J1(X)/X, and hence the oscillation amplitude can be 
determined.

Oscillations of varying amplitude and frequency are produced con­
tinuously as one decreases the repeller voltage so as to move from point E 
along the line EF to point F. This whole range of operation is known as the 
3 j mode, since the center occurs at 0 = 31 cycles. Similarly, the 2 j mode 
of oscillation is produced over the range of transit angles needed to vary the 
electronic admittance from point K to point H. The 1J mode exists for 
transit angles needed to vary the electronic admittance from point M to 
point L. However, oscillations in the } mode are not possible since the 
cavity conductance is too large; that is, the cavity is loaded too heavily to 
permit oscillation in this mode.

A physical description of the buildup of oscillations may also be presented 
with reference to Figure 9.2-4. Suppose the electron beam is suddenly 
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turned on with a set of electrode voltages corresponding to the line ODC. 
At this instant there exists an appreciable range of frequencies for which the 
net conductance is negative and also for which phase conditions are appro­
priate for positive feedback (note that this is not the frequency range cor­
responding to the line segment ML, since the latter range holds only for 
sinusoidal steady-state signals). Noise within this frequency range is 
amplified in a regenerative manner and builds up in amplitude. As the noise 
builds up, the negative conductance decreases in magnitude and the fre­
quency range for regenerative amplification decreases. Finally, a stable 
operating-condition is obtained for which the amplification bandwidth is 
sufficiently narrowed so that the product of the input noise power and the 
amplifier gain is equal to the output signal power. This bandwidth is so 
narrow that it corresponds practically to a single frequency. This descrip­
tion of oscillator operation is useful in analyzing such quantities as signal 
buildup-time and oscillation line width. It applies not only to the reflex 
klystron but also to all other types of sinusoidal oscillators.

By means of the graphical procedure described above one can plot curves

Fig. 9.2-5 Theoretical output characteristics of a reflex klystron. These curves 
were computed directly from Figures 9.2-3 and 9.2-4, with absolute values chosen so 

as to give results typical of commercially available tubes.
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of power output and frequency vs. repeller voltage for any tube. Such 
curves are presented in Figure 9.2-5 where parameters have been chosen so 
as to obtain typical operating values. Three modes are obtained. For this 
example, modes of order higher than the 3 j mode are not possible, since 
further reduction of the repeller voltage does not increase the transit time 
sufficiently to obtain the next higher mode. It should be noted that lower 
power output is obtained as the mode number is increased. From Equation 
(9.2-9) the gap voltage magnitude A is proportional to X/B. Both X and B 
increase with increasing mode number, but B increases faster, so that the 
ratio X/B decreases.

The reflex klystron has been the most common microwave tube for many 
years. With the cavity tuned to a nominal frequency, electronic tuning 
over a considerable bandwidth is possible merely by varying the repeller 
voltage. Since the repeller draws no beam current and since the capacitance 
from the repeller to ground may be made very small, the output frequency 
can be modulated by the simplest of electronic circuitry.

The reflex klystron is frequently used as a local oscillator in a microwave 
receiver; the electronic tuning obtainable is ideal for automatic frequency 
control. It is also commonly used as a laboratory signal source and as an 
FM transmitter frequency-deviator tube.

The plots of power output vs. repeller voltage presented in Figure 9.2-5 
are typical. As the mode number is increased, wider tuning bandwidths are 
obtained, but the power output is decreased. Since wide tunability is 
usually the most desirable feature, most reflex klystrons are designed to 
operate in high-order modes, typically the 3 f, 4 J, and 51 modes. In order 
to obtain large bandwidth, Qi is made quite low. However, the large value 
of G does not permit oscillations in the lower modes.

Different center frequencies may be obtained by tuning the cavity to 
different resonant frequencies and adjusting the repeller voltage. Cavity 
tuning is often accomplished by mechanical deformation of the cavity size 
using a bellows type of construction. The output power can be controlled 
by changing the beam voltage and current. The beam current can be con­
trolled independently of the beam voltage if a control grid is included in the 
electron gun. This permits amplitude modulation of the output power.

An example of a reflex klystron is the WE-449A, shown in cross section in 
Figure 9.2-6. This tube uses an external type of cavity in which the in­
ductive portion is largely outside of the vacuum envelope of the tube. A 
ceramic window separates the internal and external portions of the cavity. 
This type of construction greatly simplifies the mechanical tuning adjust­
ment since the tuning adjustment can be made outside of the vacuum. In 
the 449A, this adjustment is made by the use of a plunger in the external 
cavity. The tube envelope is constructed entirely of metal and ceramic.
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Fig. 9.2-6 WE-449A reflex klystron. This metal-ceramic tube has an overall height 
of approximately 65 cm and has the operating characteristics given in Table 9.2-1.

The electron gun is of the type shown in Figure 4.5-1 (b), which generates 
a relatively high perveance beam of approximately 1 mm diameter. No 
magnetic field is used to prevent space-charge spreading of the beam, since 
the beam travels a relatively short distance.

The copper grids of the cavity have a geometry resembling the spokes of a

Table 9.2-1. WE-449A Operating Characteristics
Frequency range, Me................................................................................. 5925-6425

Beam voltage, volts......................................................................................450

Beam current, ma...........................................................................................48
Perveance, amp/volt3/2..............................................................................5.03 X 10-6

Repeller voltage, volts...............................................................................75 to 125
Mode............................................................................................................................ 2J

Power output, mw..........................................................................................125
Modulation sensitivity, Me/volt..................................................1.5 
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wheel in order to minimize electron interception. The gap spacing is 
0.58 mm; the gap has a capacitance of 0.3 pf. The repeller electrode is cup­
shaped in order to refocus the spreading beam so that it will pass through 
the grids on its return. The cavity has a hot unloaded Qu of 135 and a hot 
loaded Qi of 80.

The operating characteristics of the 449A are given in Table 9.2-1. The 
modulation sensitivity is defined as the ratio: (change in frequency of the 
output produced by a change in repeller voltage)/(change in repeller 
voltage). Greater than 40 mw of power is obtained over an electronically 
tunable bandwidth of 65 Me.

9.3 Space-Charge Waves

Up to this point we have neglected the forces of mutual repulsion of the 
electrons. This has been justified insofar as we have considered low-power 
devices in which the density of electrons in the beam is small. However, 
in the next section and in further chapters, we shall consider high-power 
amplifier tubes in which the forces between electrons play an important role 
in modifying the rf performance. Therefore, we must study the forces 
which are produced by the bunches of electrons existing in tubes such as 
the klystron amplifier and the way in which these forces tend to modify 
the bunching process.

In Section 3.4, we have considered the forces due to de space charge in 
electron beams, that is, in beams of uniform charge density with no bunch­
ing. Also discussed were the means of compensating for these forces using 
uniform or periodic axial magnetic fields or periodic axial electric fields. In 
the present section we shall consider the complementary effects of the rf 
bunches of electrons as a perturbation on the electron motion. We shall 
assume that the beam is confined to a nearly uniform diameter by one of the 
methods described in Section 3.4. It will be convenient to assume that the 
various quantities associated with an electron beam consist of a de part 
plus an rf perturbation due to the electron bunches. In general, we shall 
assume that the rf perturbation is small compared with its de counterpart.

(a) A Graphic Illustration of Space-Charge Waves

At this point it may be helpful to consider a graphic illustration of rf 
space-charge forces in an electron beam. Consider Figure 9.3-1. We wish 
to study two successive bunches of electrons as they travel down a drift 
tube at constant de velocity. There is a nearly infinite magnetic field in the 
direction of travel so as to prevent radial excursions of the electrons. For 
simplicity, we shall assume that all the electrons in one transverse plane 
move as a unit, constituting an inflexible disc of charge. This is a good ap­
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proximation for a thin beam. Although the electrons are moving to the 
right with an average velocity given by the dc voltage, we shall confine our 
attention to the relative motion of the discs. Thus, we shall view the 
motion from a frame of reference moving at the average electron velocity.

In Figure 9.3-1 (a) are shown the discs comprising the two bunches at one 
instant of time. Discs D and H are at the centers of a bunch and anti­
bunch, respectively. Thus, they have a velocity equal to the average

(e) +OL = 1T

Fig. 9.3-1 Oscillations due to space-charge forces in a reference frame moving at the 
dc velocity of the electrons. Five successive instants of time are shown, separated by 
an eighth-cycle of the oscillation frequency. Instantaneous velocity vectors are 

shown above the charge discs.
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velocity of the beam and remain stationary in our frame of reference. The 
center disc of the bunch exerts a repulsive force on the other discs in the 
bunch. Hence, discs A, B, and C are pushed to the left, whereas E, F, and G 
are pushed to the right.

Evidently the beam acts as an elastic medium, and oscillations of the 
discs in the axial direction will occur. A fraction of a cycle later in these 
oscillations the discs appear as in Figure 9.3-1 (b). Discs A, B, and C are 
moving to the left (in the reference frame) and are still being accelerated in 
that direction by the space-charge force of the bunch. At the same time 
discs E, F, and G are moving and being accelerated to the right.

Still later, in Figure 9.3-1 (c), the discs have attained a uniform spacing. 
However, they are not stationary in the reference frame. Discs A, B, and C 
are moving to the left, and discs E, F, and G to the right. Each disc sees 
as much space charge to the left as to the right; hence, the instantaneous 
acceleration is zero, and the discs have all reached their maximum velocity 
in the reference system. This is the instant for which the perturbation of 
charge density is zero; thus the rf components of velocity and charge dens­
ity are 90 degrees out of phase.

An eighth of a cycle later, we have the situation depicted in Figure 
9.3-1 (d). A bunch is now beginning to form centered about disc H. The 
repulsive forces emanating from the center of this bunch act in such a direc­
tion as to slow down the motion to the left of discs A, B, and C. Similarly, 
the motion to the right of discs E, F, and G is also slowed down.

These electrons are finally brought to rest in the reference frame at the 
instant depicted in Figure 9.3-1 (e). At this instant the instantaneous rf 
velocity is zero. The repulsive bunch is pushing to the right on discs A, B, 
and C, and to the left on discs E, F, and G.

For the next half cycle, the discs retrace their motions in the opposite 
directions, appearing as in Figure 9.3-1 (d), (c), (b), and (a), successively. 
After arriving back at the positions in Figure 9.3-1 (a), the cycle repeats 
itself. Thus the discs oscillate back and forth in the reference frame in a 
simple harmonic motion about the average positions shown in Figure 
9.3-1(c).

(b) Expressions for the AC Velocity, Charge Density, and Current Density

From the preceding discussion, we can write equations describing the 
motion of the charge discs of Figure 9.3-1. Let us assume that the bunches 
are produced by an rf source of radian frequency u at some distance to the 
left by some means such as a cavity gap. Since the beam velocity is u„ 
the bunch spacing is given by

2ir 2 IT 
fl.

(9.3-1)
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where 0, = w/wo.
Let z' be the axial coordinate in our frame of reference which moves with 

the de beam velocity. We shall assume that the origin is at the location of 
electron disc H (which we have assumed stationary in this reference frame). 
Let w, be the frequency at which the discs oscillate back and forth in the 
reference frame.

If we assume that the velocity and charge-density perturbations are 
simple sinusoidal variations in both time and position, the behavior shown 
in Figure 9.3-1 may be described mathematically by the two equations:

p = B cos 0^' cos(a>J + a) (9.3-2)
u = — C sin 0^' sin(a>J + a) (9.3-3)

where p and u are the instantaneous rf charge density and velocity pertur­
bations. B and C are positive constants determined by the magnitude of the 
rf perturbation, and a is a constant which determines the phase of the 
oscillations. The reader may verify that these relations hold for each of the 
instants illustrated in Figure 9.3-1. These two perturbations are seen to be 
90 degrees out of phase in both time and axial position.

Equations (9.3-2) and (9.3-3) may be written in terms of the laboratory 
reference frame, where z is the axial position, using the relationship

z = z' + uj (9.3-4)
obtaining

p = B cos(0eZ — wi) cos(o>,i + a) (9.3-5)
u = — C sin(&z — wt) sin(o>ai + a) (9.3-6)

The total charge density and velocity are given by

Ptot — ~p<> + p (9.3-7)
Utot = u0 + u (9.3-8)

where p„ is the magnitude of the electron charge density. Similarly, the 
total current density is written as

J tot — —J o J (9.3-9)

where Jo is the magnitude of the de current density, and J is the rf perturba­
tion. We shall refer to this current density in free space as convection cur­
rent density in order to distinguish it from conduction current density 
flowing in a conductor. The positive direction for this current density is 
taken in the +z direction.

The instantaneous convection current density at any point is defined as 
the product of the instantaneous velocity and charge density at that point. 
Thus, we have

J tot Ptot^tot (9.3-10)
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or

—Jo + J — —poU„ + Uop — poU + pu (9.3-11)

We assume that the rf perturbation is small compared with the correspond­
ing dc quantity; hence, the term pu can be neglected in comparison with the 
other terms since it is the product of two small perturbations. Using the 
fact that Jo = PoUo, we obtain

J = Uop — poU (9.3-12)

The equation of continuity, Equation (1.3-2), can be written for the rf 
perturbations as

¥ = “S O-3-13)
dZ dt

since J is not a function of the transverse coordinates. From Equations 
(9.3-5), (9.3-6), and (9.3-12), we obtain

-r- = —aB sin(.fle? — at) eosiagt + a) + PepoC cos(fle? — at) sin(aqt + a) oz
(9.3-14)

and

—77 = — aB sin(fleZ — at) eos(aqt + a) + aqB cos(fleZ — at) sin(o>9i + a) dt
(9.3-15)

Equating these last two equations, we obtain

aqB = PepoC (9.3-16)

relating the magnitudes of the velocity and charge-density rf variations. 
Using this relation, Equation (9.3-12) yields

J = UoB cos(fle? — at) cos(aqt — a) + —u0B sinifl^z — at) sin(w9/ + a)

(9.3-17)

In practical microwave tubes aq/a is small compared with unity, as we shall 
see later when we evaluate aq. Hence, the second term in this equation may 
be neglected in comparison with the first, and we obtain

J = u„B cos(fl<z — at) cos(aqt + a) (9.3-18)

(c) The Plasma Frequency

Next, we shall obtain a method for determining aq, the frequency at 
which the space-charge forces cause the electrons to oscillate back and forth 
in the reference frame. In addition, we shall verify the sinusoidal behavior 
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assumed for the rf variations. We shall accomplish this by examining the 
electron motion of Figure 9.3-1 in a more quantitative fashion.

Our results will be derived for a one-dimensional beam, that is, for a beam 
that is uniform in the transverse direction and infinite in diameter. The 
oscillation frequency for this particular case will be designated wp. Later we 
shall show how the results can be altered to apply to a beam of finite cross- 
sectional area, with or without surrounding metal walls.

Starting with the case of a beam of infinite diameter, we note that if the 
discs in Figure 9.3-1 are uniformly spaced, as in Figure 9.3-1 (c), there is no 
accumulation of charge at any position and hence no net electric field at any 
point. A uniform charge density—p0 exists everywhere. Consider a typical 
disc, disc B, and let zj be its equilibrium position shown in Figure 9.3-1 (c). 
In Figure 9.3-1 (d), disc B has moved to a new position zi. This movement 
produces a charge excess in the region 0 < z' < zi over that which existed 
when the discs were uniformly spaced given by

△g = —po(.Zo — zi) (9.3-19)

per unit area of the beam. This excess charge produces a restoring electric 
field at z' — zi given by4

Eg = -^(zj - zi) (9.3-20)
^0

Thus, the acceleration of the electrons comprising a disc at any position z' 
is given by

2' = e-^(zi-z') (9.3-21)
¡11/ So

using Equation (1.1-1). This equation has the solution

z' — zf = F cos(wpZ + t) (9.3-22)
where

wj = — (9.3-23)me0

The frequency corresponding to wp is called the plasma frequency. It is pro­
portional to the square root of the electronic charge density. This frequency

•The rf electric field as used here and in the remainder of this section is an rf perturba­
tion on the de electric field. As such, it represents a departure from the equilibrium 
value. Thus, it need not originate on positive charge and terminate on negative charge; 

rather, it originates on a deficiency of negative charge and terminates on an excess of 
negative charge. Some authors present a clearer physical picture by assuming the elec­
tron beam to be completely neutralized by immobile positive ions, so that rf electric 
field lines may originate on positive charges. This approach is not used here because it 
implies incorrectly that space-charge neutralization by positive ions is necessary for 
these space-charge waves to exist.
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applies only to a beam of infinite diameter. Practical beams of finite diam­
eter are characterized by a plasma frequency which is less than ap. This 
lower plasma frequency is called the reduced plasma frequency and is 
designated aq. F and t are independent of time, but they may be functions 
of Zo', the relative position in the bunch. For example, for S^o equal to 0 or 
ir, F must be zero, since discs H and D are stationary in the reference frame.

The motion described by Equation (9.3-22) is simple harmonic motion of 
electrons about their equilibrium positions in the reference frame. Let us 
apply this result to the electrons leaving the input gap of a klystron ampli­
fier. These electrons have a velocity given by Equation (9.1-11) at the exit 
of the gap,

pMA
u(d) = u0 A-------- sin ato (9.3-24)

THUo

where to is the time at which the electrons pass through the gap. Since the 
electrons under the influence of the space-charge forces exhibit simple 
harmonic motion, the velocity at a later time t is given by

eMA
Utot = Wo -I-------- sin at0 cos ap(t — t0) (9.3-25)mUo

where ap corresponds to the frequency of the harmonic motion as discussed 
above.

The position of an electron disc is given by the product of the elapsed 
time and the average velocity to that instant. Since the rf perturbation of 
velocity is assumed small compared with the de velocity, the average 
velocity is given approximately by uo. Hence,

z = Uo(t — io) (9.3-26)

This expression may be used to eliminate atQ from the sine term in Equa­
tion (9.3-25). Thus, we obtain

cMAUtot = w„----------sin(/3eZ — at) cos(wpi — ado) (9.3-27) 
mUo

This result is identical to that given by Equation (9.3-6), deduced from 
Figure 9.3-1, if we take a = (tt/2) — a^o and aq = ap. Thus, in an infinite 
beam the electrons oscillate back and forth in the reference frame at the 
plasma frequency. In a beam of finite diameter, the restoring forces are 
somewhat weaker, and we shall find that the frequency of oscillation aq 
is less than ap.

The phase angle a = (tt/2) — apto is essentially constant for any one 
bunch. This can be shown as follows. Over one cycle of the modulation on 
the beam, and hence over one bunch, t0 changes by 2r/a, and a/o changes 
by 2rap/a. Since at micro wave frequencies ap/a is usually small compared 



KLYSTRONS 329

with unity, the total variation in upt„ over a bunch is small. In Figure 
9.3-1 we have presented the results as though a were constant, for simplicity.

(d) Beams of Finite Diameter

The results we have derived so far have been derived for an electron 
beam infinite in cross-sectional area. All practical beams are, of course, 
of finite diameter; hence, we should inquire how the foregoing results are 
modified for a finite beam.

Let us return to a consideration of the forces between discs of charge. 
It will be easier for us to visualize the rf electric field lines if we can have 
them begin on positive charges and end on negative charges.6 Since these 
field lines are due to excess charge (from the equilibrium value) in any 
region, we can picture a deficiency of negative charge in any region as a 
positive charge. The electric field lines due to the equilibrium charge 
density — p„ are not considered at all, since the beam is assumed to be 
confined by one of the focusing schemes of Section 3.4. In other words, the 
electric field we shall depict is the difference between the total instantaneous 
electric field and the de electric field at any point.

The situation for an infinite beam is shown in Figure 9.3-2(a). The 
negative discs of charge (shown shaded) are clustered around the center of 
the electron bunch. The positive discs (unshaded) are clustered around the 
antibunch. The electric field lines in this case are given by straight hori­
zontal lines from the positive to the negative discs.

In Figure 9.3-2(b) the analogous situation is shown for a beam of finite 
diameter. The electric field lines are no longer straight horizontal lines, 
but instead they bow out. Thus, the axial component of electric field at 
any disc is reduced in magnitude. This occurs for two reasons. First, 
the bowing out of the field lines increases the area through which the total 
electric flux passes. Second, the tilting of the field lines means that only a 
portion of the total field exists as an axial component.

As a consequence of the weakening of the axial electric field, the total 
restoring force on a disc is reduced. Hence, Equation (9.3-20) may be 
written as

Eg = —R2—(z0' - zb) (9.3-28)
So

where R2 is a number less than unity and is a function of the beam diameter. 
The differential equation of motion (9.3-21) is altered by the same factor, 
and one thus obtains the solution:

z' — zj = F eos(Rupt + 0) (9.3-29)

6See footnote 4.
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Fig. 9.3-2 RF electric field lines in various beams. Positively charged discs (un­
shaded discs) are used in regions where the instantaneous electron density is below 

the de value. The shaded discs are negatively charged and represent electron 
densities above the de value, (a) Portion of an infinite beam in which all quantities 

are uniform in the transverse directions. The rf electric field lines are straight and 

parallel to the direction of electric flow, (b) Beam of finite diameter, (c) Finite 

diameter beam in a drift tube.

for the finite beam, instead of Equation (9.3-22). R is known as the space­
charge reduction factor, and we may define the reduced plasma frequency as

Wq = RWj, (9.3-30)
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All of the results derived for the infinite beam are directly applicable to the 
finite beam. It is necessary only to replace wP by wq. Implicit in this de­
velopment is the requirement of a strong axial magnetic field so that radial 
excursions of the electrons due to transverse rf electric fields are prevented.

In Figure 9.3-2(c) is shown the field pattern obtained when the beam is 
surrounded by a metal cylinder. Many of the field lines terminate on 
charges on the metal wall. This further reduces the restoring force which 
tends to bring the discs back to their equilibrium positions. Thus, the 
reduction factor R is seen to be a function of both the beam diameter and 
the proximity of a metal wall. As the wall comes closer to the beam, the 
space-charge forces become smaller, and the frequency of oscillation de­
picted in Figure 9.3-1 becomes smaller.

Fig. 9.3-3 Plasma frequency reduction factor vs. beam diameter for a solid, cylin­
drical beam of radius 6 in a concentric, perfectly conducting cylinder of radius a 

(Reference 9.3). (Courtesy of Transactions IRE)
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Values of the spaee-charge reduction factor have been calculated for 
various kinds of beams with surrounding metal walls.6 These results have 
been obtained by solving Maxwell’s Equations inside and outside of an 
idealized electron beam, such as we have considered, and matching bound­
ary conditions at the surface of the beam. Figure 9.3-3 shows the result 
for a solid cylindrical beam centered in a perfectly conducting metal cyl­
inder. The reduction factor is plotted as a function of ftb = wb/u„, where 
b is the beam radius, a is the radius of the conducting cylinder. Several 
curves are given, each for a different ratio of cylinder diameter to beam 
diameter. Most microwave tubes have beams with ¡¡J) in the range 0.5 
to 1.0, so that the reduction factor is typically $ to 5.

Let us determine the ratio wq/w for a microwave tube with the following 
properties:

Beam voltage, volts.........................................................2400

Beam current, ma............................................................ 40

Beam diameter, mm...................................................... 1.3

Wall diameter, mm......................................................... 2.3

Frequency, Me..................................................................... 6000

We shall describe a traveling-wave tube with these parameters in 
Chapter 10. From these data we obtain:

p„ = 1.04 X 10-3 coulomb/meter3

= 0.12 
w

ftjb = 0.84

From Figure 9.3-3 we find that

R = 0.46

so that

= 0.055

This confirms the previous assumptions that wq/w is small compared with 
unity in a typical case.

The rf part of Equation (9.3-27) for the instantaneous velocity can be 
written in a more convenient form as

1 Au = -jUIy cos sin(/3eZ — wt)
2 V o 

(9.3-31)

’Reference 9.3.
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where we have substituted for t — t„ from Equation (9.3-26), and we have 
set

0q = - (9.3-32)
Wo

We use wq here instead of wp so that the results will be applicable to beams 
of finite diameter. Since 0q is much less than Be, Equation (9.3-31) repre­
sents a wave propagating with a phase velocity equal to the dc beam veloc­
ity and whose amplitude is slowly changing with distance. A plot of this 
equation vs. distance at the instant wt = ir/2 is shown in the upper half of 
Figure 9.3-4.

The equation for the current density may be obtained from Equation 
(9.3-18) in the same manner. Thus

Fig. 9.3-4 Variation with distance of the rf velocity and convection current density 
for an electron beam which receives velocity modulation from an input cavity placed 
at z = 0. The output cavity is placed at flsz = ir/2 to obtain maximum induced 

current. The waveforms are shown at a particular instant of time. The envelopes re­
main stationary, whereas the sinusoidal waves within move to the right 

at the dc velocity.
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where use has been made of Equations (9.3-6), (9.3-16), (9.3-18), (9.3-31) 
and the fact that a = ir/2 — ui„, and Ja = u apc. J is plotted in the lower 
half of Figure 9.3-4 for the instant ut = ir/2.

From Figure 9.3-4 we note that the velocity modulation magnitude is a 
maximum at the position of the input cavity gap. Beyond the gap, the 
velocity modulation magnitude varies as | cos |, whereas the current 
modulation magnitude varies as | sin ^qz |. At a position given by

ir
2

(9.3-34)

the current modulation has become a maximum and the velocity modula­
tion is zero. This distance may be termed a quarter-plasma wavelength. 
If one were to construct a two-cavity klystron, the output cavity would be 
placed at this distance from the input cavity in order to obtain maximum 
induced current in the output cavity.

At this point it will be well to note that the foregoing solutions are small­
signal solutions, albeit space-charge forces are included. By comparison, 
the solutions of Section 9.1(b) are applicable under larger signal conditions 
— limited chiefly by the approximation in going from Equation (9.1-12) 
to (9.1-13) — but neglecting space-charge forces. The more general prob­
lem of large signal interaction with space charge considered require8 
elaborate computer calculations for solution.7

Thus we have from Equation (9.3-33) the result that with space charge 
at small signal levels the maximum current modulation occurs at the posi­
tion given by Equation (9.3-34) with a magnitude

This may be compared with the results of Section 9.1(b) for a finite signal 
level, but neglecting space charge. From Equation (9.1-24) we have the 
result that the maximum current modulation is given by

A = 1.16 (9.3-36)

at a position corresponding to

= 3.68^ (9.3-37)

These limiting results may be compared with the numerical results obtained 
by Webber which include both space charge and finite signal level.8 Figure

’Reference 9.4.
’Reference 9.4.
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Fig. 9.3-5 Variation of the magnitude of the fundamental component of con­
vection current with distance from the input gap, as given by computer calculations. 

For a beam of fixed voltage and current, the different curves represent operation at 

different input signal voltages, A. The nonlinear theory, neglecting space charge, de­
veloped in Section 9.1 predicts a non varying maximum value of 1.16 occurring at 

values of the abscissa marked B for five of the curves. The small-signal, space­

charge theory developed in this section predicts maxima as given by levels marked C 
for two of the curves, occurring at a fixed distance given by one quarter of a reduced 

plasma wavelength. The limits of applicability of the two theories are readily 

apparent (Reference 9.4). (Courtesy of Transactions IRE)

9.3- 5 shows Webber’s calculated plots of the magnitude of the fundamental 
component of current modulation vs. distance from the input cavity for 
various values of the parameter wqV„/wMA. which we have seen appears 
in Equations (9.3-35) and (9.3-37). This parameter may be considered to 
show the variation with input-cavity-signal level A for a given electron 
beam, wherein wq, w, Vo, and M are constant. At small signal levels, Equa­
tions (9.3-34) and (9.3-35) are seen to hold, whereas, as the signal level is 
increased, the values given by Equations (9.3-36) and (9.3-37) are obtained.
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(e) Fast and Slow Space-Charge Waves

The variation of the magnitude of the velocity and current density with 
distance as shown in Figure 9.3-4 has the appearance of a standing wave. 
Alternatively the behavior may be written as the sum of two traveling­
wave disturbances. Thus, Equations (9.3-31) and (9.3-33) may be written, 
respectively, as

1 A
u = -niJW pAsin (at — Bn) + sin(o>i — /3,z)] (9.3-38)

4 Vo

and
1 o 4

J = — A—M—[sm(at — Bn) — sin (col — Boz)] (9.3-39) 4 aq Vo

where

Bf = Bo - By (9-3-40)

and

B. = Bo + B, (9.3-41)

These two traveling waves are known as the fast and slow space-charge 
waves, since their phase velocities are respectively faster and slower than 
the de beam velocity.9

The fast and slow space-charge waves are two normal modes of excitation 
possible on a constant-dc-velocity electron beam in a drift tube. This 
means that each wave may exist by itself, or any combination of the two 
may exist. The input gap in a klystron excites the two waves such that the 
two velocity components are equal in magnitude and phase at the gap, 
whereas the current-density components are equal in magnitude but op­
posite in phase. The two different phase constants Bf and Bo acting over a 
distance given by Equation (9.3-34) bring the current density components 
into phase and the velocity components 180 degrees out of phase. Thus, 
when space-charge effects are taken into account, the klystron interaction 
principle may be thought of as an interference effect between the fast and 
slow space-charge waves.

As a final point, let us consider how the two-cavity klystron can be used 
to excite an electron beam with only the slow space-charge wave in the 
region beyond the output cavity. Let the input cavity produce the velocity 
and current-density variations given by Equations (9.3-31) and (9.3-33).

’Strictly speaking, the abscissa in Figure 9.3-3 should be Bjb or 0J> instead of 0,b and 
the space-charge reduction factor R should be computed separately for each space-charge 
wave. However, since 0, « little error is introduced by using 0,b for this com­
putation.
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The output cavity is placed a quarter-plasma-wavelength away, and the rf 
convection current induces current in the cavity. Let us adjust the loading 
of the output cavity so that this induced current produces an output gap 
voltage given by

—A cos( wt — £ —= A sin(wt — $ — — (9.3-42)
\ 2 Wqf \ i Wq 2 J

Note that this requires simply a conductance of proper value for the 
equivalent circuit of the output cavity and load. The velocity and current­
density variations produced by this second gap voltage alone may be 
obtained from Equations (9.3-31) and (9.3-33) by replacing wt by 

and by

A
One obtains after simplification:

1 A«2 = —AUqMyy sin fl,« cos(B^ — wt) (9.3-43)
* Vo

and

J2 = ~J0—mL cos fl,« sin(fl»z — wt) (9.3-44)
ûJq V o

In the region beyond the output cavity the modulation produced is the 
superposition of the variations produced by the two gap voltages. When 
Equations (9.3-31) and (9.3-43) are added and simplified, one obtains

1 A
u, = sin (fl, z — wt) (9.3-45)

Similarly, Equations (9.3-33) and (9.3-44) are added to give

J, = sin(fl,z - wt) (9.3-46)A Vo

Comparing these results with Equations (9.3-38) and (9.3-39), we see that 
we have obtained purely a slow space-charge wave, whose amplitude is 
twice as large as that of either space-charge wave in the drift region be­
tween cavities.

9.4 Multicavity Klystron Amplifiers

Most klystron amplifiers are high-power tubes wherein the rf space­
charge forces are quite important. Therefore, it is necessary to use the 
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space-charge wave theory developed in the previous section to evaluate 
properly the performance characteristics of these tubes. Let us first con­
sider these relations as they apply to the two-cavity klystron amplifier of 
Figure 9-2.

The rf velocity and current-density variations between the input and 
output cavities are as shown in Figure 9.3-4. The output cavity is placed 
at the point where the rf current modulation is a maximum, that is, at

= ir/2. For simplicity, the two cavities are assumed to be identical. 
From Equation (9.3-33) the magnitude of the rf convection current at the 
output cavity is given by

(9.4-1) 
V q

From the discussion given in Section 9.1(c), the magnitude of the current 
induced into the output cavity is equal to10

| Z21 = M\i2\ = (9.4-2)
£ (jJq r o

The equivalent circuit of the output cavity is given in Figure 9.1-7, The 
magnitude of the impedance of a parallel circuit of this type can be written 
as11

\M = I 1 /A A* t9’4'3)
G\1 + 4^/^)

v \j°/
where

Gt is the total shunt conductance
Qi is the hot loaded Q of the cavity
A is the resonant frequency
Af is the departure of the operating frequency from A

For the output circuit,

Gt = Gc + g + Gl (9.4-4)

where the symbols are defined in Figure 9.1-7. The output cavity is 
assumed matched to the load for maximum power transfer, that is,

. Gl = Gc + g (9.4-5)

“The results of section 9.1(c) are applicable under the assumption that w, « « 
and the output gap is short. Under these conditions, the convection current may be 
written as in Equation (9.1-25).

“Reference 9.5.
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The power delivered to the load is therefore given by

Pout = I I It H Zt /-Gl

\ ( LNiwNM'A2 1
32^7JU/ 1+4QJW

\f°/

(9.4-6)

where GCh is defined in terms of the hot unloaded Q of the cavities;

Gch — Gc + g (9.4-7)

The subscript ch is used here to designate “(unloaded) cavity hot.” The 
input power is the power delivered to the input cavity by the source. From 
Figure 9.1-8, we obtain

Pin = We (9.4-8)

The power gain is given by the ratio of Pout to Pin:

M*/A2/IN 1 1
power gam = — H 77 ) ------------7777 t9-4'9)

(2-cav. klystron) 19 \ V°I G,h 4qJ
\f°/

Let us examine the gain expression in detail. The last factor determines 
approximately the frequency dependence of the gain. The power is reduced 
to one half when Af/f0 = l/2Qi, so that the half-power bandwidth is given 
by

half-power bandwidth = f„/Qi (9.4-10)

Thus the bandwidth varies inversely with the loaded Q of the output 
cavity. However, by virtue of the term 1/GA2, the power gain is pro­
portional to the square of the cavity Q’s. Therefore it is possible to trade 
gain for bandwidth by adjusting the cavity Q’s. Normally, two-cavity 
klystrons are designed for maximum cavity Q’s, obtaining maximum gain 
and efficiency and accepting whatever bandwidth is produced. Thus, the 
klystron amplifier is inherently a narrow-band device.

From Equations (9.3-23) and (9.3-30) we have the following proportion­
ality:

wf ccpocc-^ (9.4-11)
yVo

Consequently, the term (w/wq)2 (Io/V„)2 in Equation (9.4-7) is proportional 
to IJV 2I2. This means that the power gain given by Equation (9.4-9) 
is proportional to the beam perveance, as defined in Section 4.5. Thus 
high perveance electron guns are needed in order to achieve high gain. 
Gains of 10 db or so are often obtained with two-cavity tubes.
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One way of achieving higher overall gain is to connect several two- 
cavity amplifier tubes, in series, each tube providing approximately 10 
db of gain. The power gain of two identical tubes in series is given by 
squaring the right-hand side of Equation (9.4-9),

M8/o\4/Z0Y 1 power gam = —( — 11 ~
(2 klystrons) / \ V„/ GN 

1

1 +4Q
(9.4-12)

where it is assumed that input and output ports are all matched to their 
transmission lines. A power gain of 40 db might be achieved by connect­
ing four 10-db tubes in series.

High gain is achieved in a much simpler fashion using the multicavity 
klystron amplifier. A three-cavity klystron amplifier is illustrated in Figure 
9.4-1. The construction of this tube is similar to the two-cavity amplifier, 
differing solely in the number of cavities. The tube functions in the follow­
ing manner. The input signal impresses velocity modulation on the beam 
at the input cavity gap. The second cavity is placed a quarter of a plasma 
wavelength away at the position of maximum rf convection current modu­
lation. The induced current in this cavity produces a voltage across its gap.

Fig. 9.4-1 Three-cavity klystron amplifier.

This second cavity voltage, which is considerably larger than the first 
cavity voltage, impresses velocity modulation on the beam at this point. 
This velocity modulation produces current modulation at the output 
cavity, a quarter-plasma-wavelength away. The rf convection current 
passing through the output cavity produces an induced current in the 
output cavity which causes rf power to be delivered to the load.
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Thus we see that the three-cavity klystron amplifier is very much like 
two two-cavity tubes placed end-to-end. The basic difference is that the 
output cavity of the first tube and the input cavity of the second tube are 
combined into one intermediate cavity in the three-cavity tube.

Let us carry out a simplified analysis of the three-cavity amplifier, 
Assume that all three cavities are identical; that is, all have the same 
unloaded Q and beam-coupling coefficient. The intermediate cavity is not 
externally loaded, but the input and output cavities are matched to their 
transmission lines.

If A is the magnitude of the input-cavity-gap voltage, the magnitude of 
the rf convection current injected into the intermediate cavity gap is given 
by Equation (9.4-1), as for the output cavity in the two-cavity tube. The 
induced current in the intermediate cavity is given by Equation (9.4-2). 
The magnitude of the gap voltage produced by this current is given by

1 a Io M2A 1

’ \Jo /

(9.4-13)

where Qu is the hot unloaded Q of the cavity. This voltage produces a 
velocity modulation on the beam, which is converted into an rf convection 
current at the output cavity of a magnitude given by Equation (9.4-1), 
with A replaced by | V21, that is

(9.4-14)

The current induced in the output cavity is M times this value. The power 
delivered to a matched load is given by

p = ---------1--------------- fa 4-151

8G- 1+4Q^
\jo

which, together with the expression for |i8|, becomes

The input power is given by Equation (9.4-8), so that the gain is

power gain 
(3-cav. klystron) 64 U J \ Tj G^ x + 4QJ^Y 1 + 4Qi2(^)2 

19°.4-17)
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Comparing this expression with Equation (9.4-12), which gives the gain 
of two two-cavity tubes in cascade, we note that the three-cavity tube has 
four times as much power gain at midband. However, we note that it also 
has less bandwidth by virtue of the fact that Qu = 2Qt. If we were to 
load the intermediate cavity by an external load so as to obtain Qi instead of 
Qu for this cavity, the two expressions for gain would be identical. For 
applications where bandwidth is not important, the higher gain made pos­
sible by using an unloaded intermediate cavity is a distinct advantage.

Still higher gain may be obtained by adding additional intermediate 
cavities. Multicavity klystrons with as many as seven cavities are com­
mercially available, although the most frequently used number of cavities 
is four. Each of the intermediate cavities functions in the same manner as 
in the three-cavity amplifier. Gains of greater than 60 db are obtained when 
the cavities are synchronously tuned, that is, all tuned to the same fre­
quency. However, often multicavity klystrons are operated with their 
cavities stagger-tuned so as to obtain greater bandwidth at some reduction 
in gain. This is analogous to the well-known design of wide-band IF 
amplifiers, wherein each stage is tuned to a slightly different frequency so as 
to improve the overall gain-bandwidth product. High-power klystron 
amplifiers with 40 to 50 db of gain and bandwidths equal to several per cent 
of the midband frequency are commercially available.

In high-power klystrons the cavity grids are omitted, since they would 
burn up due to beam interception. The beam-coupling coefficient in this 
case is given by a more complicated expression than Equation (9.1-10), 
but otherwise the interaction is unchanged.

Figure 9.4-2 shows two photographs of the Varian Associates VA-849,12 
which produces an output power of 24 kw CW (continuous wave). A cross- 
sectional drawing of the tube is shown in Figure 9.4-3. The tube can be 
purchased with cavities tuned to operate at any center frequency in the 
range 7125 to 8500 Me. It is about 45 cm long and weighs 14 pounds. 
Figure 9.4-2 (b) shows the tube in place in its electromagnet. The magnet 
weighs 200 pounds and dissipates a power of 1520 watts. It provides the 
axial dc magnetic field for focusing the beam.

The operating characteristics of the VA-849 are given in Table 9.4-1. 
The tube has four cavities, each with a cold unloaded Q„ of about 5000. 
Data are presented in the table for the synchronously tuned situation and 
also for the case when the third cavity has its resonant frequency tuned 
higher. The cavity gaps are equally spaced by a distance corresponding to 
approximately one ninth of a plasma wavelength. This spacing, rather

“Reference 9.6.



Fig. 9.4-2 VA-849 four-cavity klystron amplifier, (a) The tube without its electromagnet. The overall length of the tube is 
approximately 45 cm. (b) The VA-849 in place in its electromagnet. (Courtesy of Varian Associates)
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Fig. 9.4-3 Cross-sectional drawing of the VA-849. Each cavity is tuned by deforming a sidewall of the cavity. (Courtesy of 
Varian Associates)
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than a quarter-plasma wavelength, is used in order to increase the band­
width and efficiency of the tube. The data given in Table 9.4-1 demonstrate

Table 9.4-1. VA-849 Operating Characteristics
Frequency range, Me.........................................................7125-8500

Tuning range, Me................................................................60

Beam voltage, kv.................................................................23

Beam current, amps..........................................................2.7
Perveance, amp/volt3'2...................................................0.77 X 10-6

Beam diameter, mm..........................................................2.8

Synchronously Third Cavity 

Tuned Detuned

Saturated power output, kw...................................... 18 24

Drive power, watt........................................................................08 1

Gain, db........................................................................................... 54 43
Bandwidth (3 db), Me..................................................... 18 30

Electronic efficiency, %.................................................. 29 38

that judicious staggering of the cavity resonant frequencies not only in­
creases the bandwidth but also increases the electronic efficiency, where 
electronic efficiency is defined as the ratio of rf output power to the de 
beam power. The reason for this increase is beyond the scope of this text, 
but it is an extremely important attribute of the multicavity klystron 
amplifier. The collector is operated at the same voltage as the cavities and 
drift regions.

In summary, klystron amplifiers are characterized by high gain, very 
good efficiency, and freedom from oscillations. On the other hand, their 
bandwidths are relatively small. In addition, the phase shift through the 
tube is directly related to the beam velocity; thus, high regulation and low 
ripple are required in the beam voltage power supply to avoid undesirable 
phase-shift variations.

PROBLEMS

9.1 It is proposed to construct a two-cavity klystron amplifier which will amplify 

a 1-volt, 1000 cps signal. The input signal is applied directly to the grids of the input 
cavity to modulate a 100 electron volt electron beam. Explain why such a tube 

would be impracticable.

9.2 A two-cavity klystron is to be designed to operate as a harmonic generator. 
The distance between cavities may be varied so as to optimize the induced current 

for the desired harmonic. Calculate the magnitudes of the harmonic currents in­
duced in the output cavity for second, third, and fourth harmonic operation. Com­
pare these values with the magnitude of the fundamental induced current used for 
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two-cavity amplifier interaction. The cavity gap dimensions remain fixed; the gap 

transit angle is ir/2 radians for the fundamental frequency.

Ans.: h/h = 0.581, h/h = 0.248, IJIX = 0.

9.3 The primary beam current passing through the cavity of a reflex klystron is 

Io amps. If the tube is operating in the 1J mode and generating power at the hot 
resonant frequency/□ of the cavity (i.e., the resonant frequency when beam loading 

is included), show that the average amount of charge present in the region between 

the cavity gap and the repeller is given by —7/ 0/4/„.

9.4 The repeller electrode of a particular reflex klystron is planar and parallel 

to the grids of the resonant cavity, so that the electrons between the gap and the 

repeller experience a uniform retarding field. Voltages are applied as in Figure 

9.2-1. The voltage V b« is such that the electron transit angle 0« is equal to (n + J) 
2ir.

(a) Show that if an incremental voltage AUso is added to the voltage Vro, the 
incremental change in transit angle is given by

\ Wo Vo~r VBo J
(b) Using Figure 9.2-4, show that A0 is also given by

Aw
AB = -2Qi—

(c) Show that if Qi is large compared with 0»,

+o/n+ i),rK+ Vbo

9.5 Does the plasma transit angle ftqL between cavities vary with frequency? 

Here L is taken to be the distance between cavities. Explain.

9.6 An electron beam, confined to flow in the z direction by an infinite magnetic 

field, completely fills a perfectly conducting metal cylinder. fttb = ft,a = 1. Space­
charge waves exist on this beam as given by Equations (9.3-31) and (9.3-33). At a 

point where the ac component of convection current is zero (i.e., at ftqz = nir), the 
diameter of the metal cylinder is abruptly doubled. Assume that the de beam veloc­

ity remains unchanged through this discontinuity. At the discontinuity, con­

servation of kinetic energy dictates continuity of the ac velocity, and the ac con­

vection current is always continuous at a discontinuity where there is no beam 
interception.

Find the ratios of the maximum values of ac velocity and convection current of 
the second drift region to the corresponding quantities of the first. Use Figure 

9.3-3 to determine the space-charge reduction factors. Ans.: 1.0, 0.7.

9.7 A pure slow space-charge wave results in the beam beyond the output cavity 
when the output gap voltage is given by Equation (9.3-42).

(a) What is the value of output circuit conductance which results in this voltage?

(b) Show that a negative conductance of the same value results in a pure fast 
space-charge wave beyond the output cavity.
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These results demonstrate that a slow space-charge wave is excited by extracting 

rf energy from an electron beam, whereas a fast space-charge wave is excited by 

adding rf energy to an electron beam.

9.8 A three-cavity klystron amplifier is designed to operate at a midband fre­

quency of 9 Gc. Assume gridded gaps of 1.27-mm separation and that cavity losses 

are negligible. The beam voltage is 5 kv, and the beam current is 1 amp. The beam 

diameter is 5.08 mm, and the space-charge reduction factor R is equal to 0.6.

(a) Show that the midband gain is equal to 69.3 db.

(b) What is the distance between cavity gaps?

9.9 The gain-bandwidth product of an amplifier is defined as the product of the 

midband voltage gain and the half-power bandwidth. In the case of a klystron 

amplifier, the voltage gain may be taken as the square root of the power gain.

(a) Obtain an expression for the gain-bandwidth product of two two-cavity 

klystron amplifiers in series from Equation (9.4-12).
(b) Obtain an expression for the gain-bandwidth product of the three-cavity 

klystron amplifier from Equation (9.4-17), and compare with the result 

for part (a).

9.10 Derive an expression for the power gain of a four-cavity klystron amplifier. 

All cavities are spaced a quarter-plasma wavelength apart. The two intermediate 

cavities have no external loading, but the input and output cavities are matched to 

the external circuits for maximum power transfer.

9.11 A two-cavity klystron amplifier is made into an oscillator by feeding back 

some of the power from the output cavity into the input cavity. The feedback 

factor (the ratio of input-cavity-gap voltage to output-cavity-gap voltage) is 

De~iv, where D and <p are real numbers varied to change the frequency of oscillation. 
Neglect any cavity loading caused by the feedback path. The load is matched to the 

output cavity for maximum power transfer. The spacing between cavities is 

assumed to be a quarter-plasma wavelength for all frequencies of interest.

(a) Sketch equivalent circuits for both cavities, labeling voltages, currents and 

impedances in the conventional manner.

(b) Using the space-charge wave equations, find the ratio of the phasors rep­

resenting the input-gap voltage and the current induced in the output cavity.

(c) From the equivalent circuit and the results of part (b), find the ratio of the 

phasors representing the two cavity-gap voltages and equate this to the 
ratio given by the feedback factor.

(d) Taking the real and imaginary parts of the result of part (c), obtain two 

equations relating a, <p, and D.
(e) Eliminate D between the latter two equations and obtain y as a function of 

a, wq, and the cavity parameters.
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Chapter 10

TRAVELING-WAVE AMPLIFIERS

The multicavity klystron amplifier described in the previous chapter was 
shown to have high gain and efficiency at microwave frequencies. How­
ever, its fractional bandwidth was found to be at most a few per cent. The 
fractional bandwidth is essentially determined by the cavity Q’s. Lowering 
these Q’s results in greater bandwidth, but the overall gain is reduced, as 
shown by Equation (9.4-17). Let us look for modifications of the multi- 
cavity-klystron-amplifier structure which will increase the bandwidth 
without greatly reducing the gain.

The three-cavity klystron amplifier is shown in Figure 10-1 (a). The Q’s 
could be reduced by increasing the resistive loading of each cavity, either 
by increasing the cavity losses or by coupling each cavity to an external 
dissipative load. However, the power dissipated in this extra loading would 
be wasted. Instead, let us couple each cavity to a common transmission 
line, adjusting either the line length between cavities or the beam voltage 
so that the transmission line current arrives at the second and third cavities 
in phase with the current induced in these cavities by the electron beam. 
A suitable arrangement is shown in Figure 10-1 (b). The transmission line 
loading has the effect, of lowering the cavity Q’s without a corresponding 
power loss. The microwave power is fed forward along the transmission 
line, increasing the voltage in each cavity and finally appearing at the out­
put cavity.

We can go one step further, introducing additional cavities between the 
three we already have, as in Figure 10-1 (c). Successive cavity gaps are now 
closer than a quarter-plasma-wave length, so that the beam becomes only 
partially bunched between successive cavities. Nevertheless, the additional 
cavities result in a higher gain per unit length of the tube, as we shall see 
later, although the gain per cavity is less. As in Figure 10-1 (b), the operat­
ing conditions are such that the transmission line current arrives at each

349
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Fig. 10-1 Evolution of a traveling-wave amplifier from a multicavity klystron, 
(a) Multicavity klystron, (b) Multicavity klystron whose cavities are coupled by a 

transmission line, (c) Traveling-wave amplifier.

cavity in phase with the induced current due to the beam. The tube of 
Figure 10-1 (c) is a traveling-wave amplifier.

One may ask: “What is the effect of the transmission line energy that 
travels to the left from each cavity?” In a properly designed traveling­
wave amplifier, the backward-traveling energy contributions from suc­
cessive cavities are of such a phase that they cancel, and thus there is no 
appreciable net amount of energy traveling in the backward direction.1

•In the backward-wave oscillator (Chapter 11), these backward-traveling contributions 
do add in phase, producing positive feedback and hence oscillations.
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The assemblage of coupled cavities constitutes a slow-wave structure. 
As we have seen in Chapter 8, the slow-wave structure can be characterized 
by a Brillouin diagram, as in Figure 8.7-8. The phase shift per period of the 
fundamental wave on the circuit is given by

0i = PeL (10-1)

where fl. is the phase shift per unit length, and L is the period.
The electrons take a time T = L/uo in traveling from one cavity to 

another. If we wish a given electron to see the same phase of the rf signal 
as it passes through successive cavities, the phase change in a given cavity 
in time T must be 0i + 2nir. Hence

0i + 2nir (flJj + 2mr)uo--------  (10-2)

Setting fl. = u/uQ, we obtain

fl. = fl. + = fl. (10-3)X/

where fl„ is the phase shift per unit length of the ntk space harmonic 
Equation (10-3) may also be stated as

u<> = vpn (10-4)

where vpn = a>/fln is the space-harmonic phase velocity. Thus, traveling­
wave amplification is obtained when the de beam velocity is approximately 
equal to the phase velocity of the fundamental or any of the space harmonics 
with positive group velocity. Large fractional bandwidths are possible, 
since slow-wave structures may be designed with Equation (10-4) holding 
over a considerable frequency range.

Because of the large number of periods in practical slow-wave structures 
and the continuous nature of some (the helix, for example), it is convenient 
to treat the amplification process as the continuous interaction of velocity 
and convection-current waves on an electron beam with an electromagnetic 
wave propagating along the slow-wave circuit. This circuit wave is the 
space harmonic in synchronism with the beam, synchronism being defined 
by Equation (10-4). The nonsynchronous space harmonics have no net 
interaction with the electrons, and so they may be neglected. Historically, 
this was the approach first used in the discovery and analysis of the travel­
ing-wave amplifier.

The interaction between an electron stream and a traveling-electro­
magnetic wave is illustrated in Figure 10-2, where disc electrons are used, 
as in Chapter 9. We view the interaction from a reference frame traveling 
in synchronism with the electromagnetic wave, for which the axial com­
ponent of electric field is shown. In practice, the de velocity of the electrons
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Fig. 10-2 Electron discs interacting with a traveling wave. The arrows indicate 
the direction of the force on the electrons due to the wave. Figure (a) corresponds to 

the input end of the slow-wave structure. The situations presented in Figures (b), 

(c), and (d) are found at positions successively farther down the tube.

is adjusted to be slightly greater than that of the electromagnetic wave; 
consequently the electrons drift to the right in the reference frame.

Figure 10-2 (a) shows the conditions at the input to the slow-wave struc­
ture. The discs are uniformly spaced. Axial electric field exists due to volt­
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age on the slow-wave structure from the input waveguide. This electric 
field exerts a force to the left on discs A, B, C, D, and E and to the right on 
discs G, H, I, J, and K. These forces cause the electrons to begin to form 
a bunch centered about disc L.

Figure 10-2 (b) shows the conditions farther down the tube. Since the 
dc velocity of the electrons is slightly greater than the wave velocity, disc 
L has drifted into a retarding electric field, and the bunch has drifted with 
it. Since more electrons are in a retarding field than in an accelerating 
field, a net transfer of energy occurs from the beam to the electromagnetic 
field, thus increasing the axial electric field slightly.

In Figure 10-2 (c), we observe what happens still farther down the tube. 
The bunch continues to become more compact and it drifts farther to the 
right with respect to the wave. This brings more electrons into a retarding 
field, and the electromagnetic wave grows in amplitude.

Figure 10-2 (d) shows the conditions near the end of the tube. The bunch 
is even tighter, and most of the electrons are in a retarding field. An ap­
preciable fraction of the kinetic energy of the electrons has been converted 
into energy stored in the electromagnetic field, and the amplitude of the 
field has greatly increased. The amplified wave then propagates out 
through the output waveguide to the load.

We note that the velocity modulation produced by the circuit electric 
field and the subsequent conversion to density modulation is used to 
transer energy from the beam to the circuit, just as in a klystron. How­
ever, unlike a klystron, velocity modulation, conversion to current modu­
lation, and the inducing of currents into the circuit occur simultaneously 
and continuously along the whole length of the slow-wave structure.

In the following sections we shall consider the quantitative aspects of 
this interaction process.

10.1 Theory of the Traveling-Wave Amplifier

We shall consider the interaction process in the traveling-wave amplifier 
in two parts.2 First, we shall describe the motion of the electrons which 
results from the rf electric fields due to both the rf circuit voltage and the 
rf space charge.3 We have already considered a similar physical problem 
in Section 9.3, except in that case the space charge was the only source of 
electric field forces. The second part of this development concerns the 
manner in which the circuit voltage and current build up as current is 
induced into the circuit by the rf current in the electron beam. In the 

2Reference 10a, Chapters 1 and 8. Reference 10b, Chapter 7.
’The forces due to the rf magnetic field are negligible in comparison with those due to 

the rf electric field.
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development that follows, we shall derive two important equations, 
one giving the ac current induced on the beam by the rf field and one giving 
the rf field resulting from the modulated beam. These two equations can 
then be solved simultaneously to determine the self-consistent relations for 
the circuit and beam quantities.

We consider only the space harmonic of the circuit field in synchronism 
with the beam, as discussed in the introduction, since the other space 
harmonics travel at different phase velocities and have no cumulative 
interaction with the electrons.

As in the previous chapter, we consider only the rf forces, assuming that 
the de forces are either zero or balanced by one of the focusing schemes 
described in Section 3.4. For simplicity, we assume rf motion of the elec­
trons is possible only in the axial direction, as is the case for a strong axial 
magnetic field.

Script letters will be used in this section to denote time-varying quanti­
ties to distinguish them from phasor quantities.

The rf beam quantities are assumed small compared with their de 
counterparts, as in Section 9.3. Under this small-signal assumption, 
nonlinear terms in the equations of motion can be neglected, and we obtain 
only linear differential equations. We shall therefore obtain wavelike solu­
tions for the various quantities of the form

at = Re[ue’“‘-ri] (10.1-1)

where u is a phasor quantity having no time or z dependence. We thus 
introduce a generalized phasor notation. In this notation, the phasor 
quantity is multiplied by

before taking the real part. Using this notation, we have

= Re[ja>ue’“'-r*] (10.1-2)dt

and

= Re[—FueJ'"<-r’] (10.1-3)dz

so that partial differentiations with respect to time and z correspond re­
spectively to multiplication of the phasor quantity by jw and — r. Since 
all the rf quantities, both circuit and beam, have variations of the form 
given by Equation (10.1-1), we may write the various physical equations 
in the phasor notation, omitting the exponential factor.

From the description of traveling-wave interaction given in the intro­
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duction, we would expect r to have an imaginary part approximately 
equal to jft, = jw/uQ.

(a) The Electronic Equation

The total instantaneous beam velocity, convection current, and charge 
density are written in the mixed phasor notation as

«tot = Ug + u (10.1-4)

«tot = — Io + i (10.1-5)
Ptot = — Po + p (10.1-6)

where u, i, and p are phasors representing the rf components in the notation 
of Equation (10.1-1).4

We shall assume for simplicity that the various quantities are uniform 
across any transverse plane of the beam. Equation (9.3-12) for the convec­
tion current density can be written as

i = (uoP — PoU)S (10.1-7)

where £ is the cross-sectional area of the beam. The equation of continuity 
(1.3-2) is written for the phasor quantities as

-n = -jwpS (10.1-8)

Combining these two equations to eliminate p, we obtain 

relating the rf velocity and convection current.
The acceleration of an electron is given by Equation (1.1-1) as

dTl e „=---- S2r 10.1-10dt m

where S2r is the total instantaneous rf electric field as seen by the electron. 
This field is the sum of two contributions, space charge and the synchronous 
space harmonic due to the circuit voltage. Since the velocity of an electron 
is a function of both position and time, the total derivative in Equation 
(10.1-10) must be written as

cfU = Ml Mlâz 
dt dt + dz dt (10.1-11)

4The use of the symbol i as a phasor quantity representing the beam convection 
current has become standard in microwave tube work. Unfortunately, this symbol is 
also used for instantaneous circuit current. The latter usage will be avoided in this and 
succeeding chapters on microwave tubes to avoid confusion.
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For small-signal levels dz/dt is approximately given by the de beam velocity. 
Thus

dll Ml, Ml oniioi

Equation (10.1-10) then becomes in the phasor notation:

(jw — UoT)u =-----E,t

= ——(Ein + Ex,/} m
(10.1-13)

where Ezn is the axial component of electric field contributed by the syn­
chronous space harmonic, and Et,c is the field due to space charge.

In order to evaluate the field due to space charge, we merely need to solve 
Poisson’s Equation, Equation (1.4-9), where p is given by the rf space 
charge. This will be done using a one-dimensional beam of infinite cross 
section, with the effect of a finite beam diameter accounted for as in Section 
9.3. Poisson’s Equation for the one-dimensional beam is given in the phasor 
notation by

-VEx.' = (10.1-14)

Using Equation (10.1-8), we obtain a simple relationship between Ex,c 
and the convection current:

Ex„ = (10.1-15)

For a finite beam, it was shown in Section 9.3 that the force due to space 
charge is reduced by the space-charge reduction factor R2. Thus we have 
for a finite beam

E„e = jR2^ (10.1-16)
WSoO

This may be written in terms of the reduced plasma frequency as
Ex„ = j^i (10.1-17)

epjsw
where use has been made of Equations (9.3-23) and (9.3-30).

Finally, Equations (10.1-9), (10.1-13), and (10.1-17) can be combined to 
eliminate Ex,c and u. Thus we obtain

i =----- ---------------------- -= (10.1-18)
2Vq (F -#.)2 + ^

l*O J

This equation is called the electronic equation, since it determines the ac 
beam convection current i resulting from a given circuit voltage, as char-
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acterized by the space harmonic Ein. The time and z dependence of i and 
Ezn are as in Equation (10.1-1).

(b) The Circuit Equation

The convection current in the beam causes current to be induced in the 
circuit. This induced current adds to current already present in the circuit, 
causing the circuit power to increase with distance. Shortly, we shall 
derive an equation expressing this relationship.

It will be convenient to have a parameter that relates the space-harmonic 
amplitude of the electric field to the total power flow on the slow-wave 
circuit. Let us define the beam interaction impedance (or beam-coupling 
impedance) for the nth space harmonic as

(10.1-19)

where | Eln | is the amplitude of the axial electric field of the nth space 
harmonic, Sn is the phase constant of the n‘h space harmonic, P is the 
average circuit power flow, S is the cross-sectional area of the beam, and the 
area integral is taken over the cross section of the beam. For brevity, we 
shall refer to this quantity as the impedance. We shall find later that high 
impedance leads to high gain per unit length of the slow-wave circuit. In 
order to obtain high impedance, it is important that the electric field be 
concentrated in the vicinity of the electron beam. This precludes the use of 
dielectric loaded structures, where the electric field stored in the dielectric 
does not contribute to the interaction with the electron beam.

As an example, we can calculate the impedance for the fundamental space 

harmonic of the slow-wave structure described in connection with Figure 8.7-10. 

The impedance is a function of the point of operation; we shall calculate it for 

0L = ?r/4. Assume a very thin, cylindrical beam which just grazes the top of the 
fingers of the structure, shown in Figure 8.7-4. Assuming that the structure is 1 

cm wide, Figure 8.7-10 gives

P = 0.17 mw

for 1 volt from one vane tip to the next, or

AL sin kh = 1 volt

The magnitude of the fundamental space harmonic at the tips of the vanes is 

obtained from Equation (8.7-37) as

. IT ir
sm g x sm g

I Ezo I = A sin kh-------- = -- -----------volt ir L ir
8 8

= 0.974^ volt

Li
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Equation (10.1-19) for a thin beam becomes

K _ I I2 (0-974)2
2fl02P 2^(0.00017)

= 4520 ohms

For a thick beam the impedance would be lower, since E,„ is strongest at the vane 
tips.

From Equation (10.1-19), we can define the instantaneous power flow 
along the slow-wave structure as

o 2

P = (10-1-20)Pn ii-n
where &zn is the instantaneous value of the space harmonic averaged over 
the beam cross section as in Equation (10.1-19). Differentiating this 
expression, we obtain

dp = (10.1-21)

This equation expresses the change in instantaneous power flow due to an 
increment in the instantaneous value of the space harmonic.5

Ezn-+d£zn-"* 

&zn+ —

£zn-

*£zn+ + d^zn+ 

---------- ■------------------------------------------------- CIRCUIT

-* dz

2 BEAM

Fig. 10.1-1 Interaction of a short segment of convection current with the rf electric 
fields due to a slow-wave structure. The arrows above the circuit indicate directions 

of propagation.

Next consider Figure 10.1-1. The beam is divided up into short segments 
of length dz. Consider a typical segment in which the convection current 
has the instantaneous value i. This current segment induces currents in the 
circuit. These circuit currents give rise to electromagnetic waves which 
propagate in both directions from the point on the circuit adjacent to the

“For those troubled by the definition of Equation (10.1-20), an alternative derivation 
of Equation (10.1-21) consists of computing the instantaneous change in electric stored 
energy and applying Equation (8.5-26).
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current segment, Let 82„_ and 82n+ be the instantaneous values of the ntk 
order space harmonics moving to the left and to the right, respectively, at 
this point on the circuit. The induced currents due to this segment of con­
vection current causes 82n_ to change by d82n_ and 82„+ to change by dSzn+. 
Because of symmetry, we can say that

d82n_ = d8an+ (10.1-22)
in other words, the incremental changes in amplitude of the waves traveling 
in opposite directions from the point of induction are equal.

The change in instantaneous power flow for each direction is given by 
Equation (10.1-21). Therefore, the total instantaneous transfer of power 
to the circuit is given by:

dp = dp_ + dp+
2

a [6an—d82n_ + 82n+d82„+]
Pn 1^- n

2
= a (8«n— 82n+)d82n_

Pn A n
2

= + 82n+)d82„+ (10.1-23)
Pn ZL n

where use has been made of Equation (10.1-22).
The incremental instantaneous power flow into the circuit from the 

length dz of beam is given by6
dp = — i&zdz (10.1-24)

where i is the instantaneous value of the convection current, and 82 is the 
total electric field resulting from the wave on the slow-wave circuit. As dis­
cussed previously, all space harmonics are neglected, insofar as they 
interact with the beam, except the one in synchronism with the beam. Thus, 
in our case, Equation (10.1-24) becomes

dp = —t(82n_ + 82n+)dz (10.1-25)
for the convection current segment of Figure 10.1-1. Equations (10.1-23) 
and (10.1-25) can be combined to yield

d82n_ = d82n+ = —^Bn2Knidz (10.1-26)
This may be written in the phasor notation as

dEz^ = dEzn+ = ~^JKnidz (10.1-27)
Thus, we have an expression for the incremental waves propagating away 
from a point on the circuit in terms of the convection current which induces 
them.

“This expression may be derived directly from Maxwell’s Equations. See Reference 
10.1.
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Let r„ = a + jftn be the complex propagation constant for the n** space 
harmonic.

Let us write an expression for the total space-harmonic field at an arbi­
trary point (z = a). This is the sum of three contributions, as follows:

A. The power coming from the input waveguide causes a field Ezn(0) at 
the beginning of the circuit (z = 0). Thus we have at z = a,

EznA(a) = E.^O)^“ (10.1-28)
B. The superposition of the incremental waves dEzn+ arriving at z = a 

from the left is given by
EznB(a) = l\-r^dEzn+ (10.1-29)

C. The superposition of the incremental waves dEzn_ arriving from the 
right is given by

EznC(a) = £ C^^dE^ (10.1-30)

where I is the total circuit length. The total field at z = a is given by the 
sum of these three contributions

Ezn(a) = Ezn(ff)C^ - /n2Kn Pu-^^dz - /¡JKn / ie~r^dz 
4 Jo 4 J a

(10.1-31)
where use has been made of Equation (10.1-27). We can replace the variable 
of integration in the definite integrals by t and we replace a by z, an arbitrary 
point, obtaining

Ezn(z) = Ezn(0)(^‘ - far^^dr - ^n2Kn iW'^dr

(10.1-32)
Thus we have an integral equation relating the field at any point to the 
convection current on the beam.

Equation (10.1-32) is readily converted to a differential equation by 
differentiation with respect to z. In differentiating we must be careful to 
handle the integrals correctly, since the limits are functions of z’. Two suc-

’The following formula must be used: If 

pm 
Z(z) = / F(r,z)dr

then

dl i“ dF , , dp , da= I —dr + F(g,z) -  F(a,z) -j- dx J a dz dz------------ dz
See Reference 10.2, p. 353, or any other book on advanced calculus. 
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cessive differentiations of Equation (10.1-32) yield

WEln = VJE^O)^ - / ie-^-^dr
£ JO

- iF^dr + V^Kni (10.1-33)

where the left-hand side results from two successive applications of Equa­
tion (10.1-3). This result may be combined with Equation (10.1-32) 
yielding

= r^-r? do.i-34)

This equation is called the circuit equation, since it determines how the cir­
cuit field is affected by convection current in the beam.

(c) Solutions for Cumulative Interaction

The electronic equation and the circuit equation have been derived on the 
assumption that the various fields and beam quantities have a z dependence 
of the form

e~T‘
So far we have not said anything about values for r. It turns out that 

only certain values of T are allowable when we require that the circuit and 
electronic equations be simultaneously satisfied.

Upon solving for the ratio Ezn/i in both Equations (10.1-18) and (10.1-34) 
and equating the results, we obtain

(r2 - rA (r - jW + ^1 = (10.1-35)

the solution of which determines the allowed values of r.
We can put this equation in a neater form by defining certain parameters.8 

First, we define the small-signal gain parameter C by the equation

C3 = (10.1-36)

C is a small dimensionless parameter with values usually in the range 0.01 
to 0.1.

Next, we define the space-charge parameter QC by9

(10.1-37)

•Reference 10a, Chapter 7. ______

•For large space charge, QC is computed from the more exact expression -\l4QC3 =
„ , .—7-7; see Reference 10.4.
1 + (««/«)
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Since 0e and B„ are approximately equal for synchronism, and since r 
must have a similar imaginary part, we define the dimensionless param­
eters b, d, and 5 by the equations

To = jpe(l + Cb — jCd) (10.1-38)

and

r ^jpe(l +jCS) (10.1-39)

Since r„ = a + jpn, we see that b and d are real numbers given by 

and

d = (10.1-41)

b is a measure of the amount of synchronism between the electrons and the 
space harmonic, d is directly proportional to the circuit attenuation. 5 is a 
complex number, values of which are determined by solving Equation 
(10.1-35).

Equations (10.1-36) to (10.1-39) are substituted into (10.1-35). In so 
doing, advantage is taken of the fact that C is small; that is, terms of order 
C are neglected in comparison with terms of order unity. After simplifica­
tion, we obtain

81 - (-b+jd+jt) ~

where we have used the approximation
r fl 2̂ = 1 (10.1-43)
JPe

Equation (10.1-42) is a cubic equation in the unknown S. The solutions, 
when introduced into Equation (10.1-39), give us three allowable values for 
T, the complex propagation constant for the circuit-beam coupled system.10 
From Equation (10.1-42), we note that the solutions are functions of b (the 
degree of synchronism), d (the circuit attenuation), and QC (the space 
charge).

From Equation (10.1-39), we note that the difference between r andj@e is 
directly proportional to C, which from Equation (10.1-36) is a function of

“Since Equation (10.1-35) is a quartic equation, we see that one root has been lost due 
to the approximations we have made. This root corresponds to a backward propagating 
wave, which is nonsynchronous with the beam and which is not excited for proper 
termination of the circuit.
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the amount of coupling between the beam and the circuit. The stronger 
the coupling (the larger Kn is), the greater is this difference, as we should 
expect for two coupled systems.

Let us examine the nature of the solutions for the simple case:

b = d = QC = 0

Equation (10.1-42) reduces to

i3 = — j 

with solutions

(10.1-44)

Î3 = j

The values of r are then given by

Fi = —&C+W1 +^)

r2 = +1)
r3 = - C)

(10.1-45)

(10.1-46)

Since the various fields and beam quantities propagate as 

we see that Fi corresponds to a traveling wave whose amplitude grows ex­
ponentially with distance, r2 to one whose amplitude decays exponentially 
with distance, and Fa to a wave of constant amplitude. The wave cor­
responding to Ti is termed the growing wave, and it is this wave which is 
responsible for the gain in the traveling-wave tube. We shall find that, re­
gardless of the values of d and QC, we shall always obtain one growing wave, 
one decaying wave, and one wave of nearly constant amplitude, as long as b 
corresponds to operation sufficiently close to synchronism.11

We can examine the condition of synchronism for this example. It was 
pointed out in connection with Figure 10-2 that the electrons must travel 
slightly faster than the wave so that the bunch drifts into a retarding field. 
It is clear that the growing wave will predominate as the electrons move 
down the tube. Thus, the circuit field depicted in Figure 10-2 near the end

nd, of course, must not be so large as to neutralize the gain of the growing wave. 
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of the tube has Tj for its propagation constant, corresponding to a phase 
velocity given by

= |8e(l + IC) = r+lC (10.1-47)

which is indeed slightly slower than the de beam velocity. Thus, although 
the cold (no electrons) phase velocity vp„ is exactly equal to u0 from Equa­
tion (10.1-40), the hot phase velocity of the growing wave vpi is slower than 
u„. This must be true regardless of the values of b, d, and QC if we are to 
obtain amplification.

As a second example, we consider the condition of large space charge. 
Let the circuit attenuation be zero (d = 0), for simplicity. Under the condi­
tion that QC is large, we may neglect the first term on the right-hand side of 
Equation (10.1-42) in comparison with the second term, obtaining

tf^-AQC (10.1-48)
with the solutions

±j2^ (10.1-49)
From Equation (10.1-39), we obtain

±2C'iQC)
^^1±^ (10.1-50)

for the growing wave and constant-amplitude wave, respectively. Referring 
back to Equations (9.3-40) and (9.3-41), we see that these propagation con­
stants correspond to the slow and fast space-charge waves, respectively. 
The approximate form of Equation (10.1-48) does not allow computation of 
the real parts associated with these waves. Furthermore, the decaying 
wave propagation constant r2 is not evaluated at all. Numerical cal­
culations can be used to derive this information directly from Equation 
(10.1-42).12 The result of such a calculation is given in Figure 10.1-2, for 
QC = 1. The real and imaginary parts of 6 are defined by

8 = x + jy (10.1-51)
We note from this figure that a growing wave (positive values of x) is ob­
tained for b approximately between 0.9 and 2.8, with a maximum value of Xi 
equal to 0.5. The value of b corresponding to this maximum value of Xi 
determines the electron velocity for maximum gain. A useful approximate 
formula for the maximum value of Xi as a function of QC is13

X1 max = 2 (QU)174 (10.1-52)

“Reference 10a, Chapter 8. 
“Reference 10.3.
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Fig. 10.1-2 Real and imaginary parts of the three solutions for 5 for a traveling­

wave amplifier with zero loss and QC = 1. (From John R. Pierce, Traveling Wave 
Tubes, D. Van Nostrand Co., Inc., Princeton, N. J., 1950)

Having determined the three allowed values of the propagation constant 
T, which correspond to waves propagating in the forward direction, one can 
write an expression for the rf components of the total electric field, the 
velocity, and the convection current as

Ext = E,Tie~v'’ + ExT2t~Tv + E,nirs'

u = + U3c-rs“
i = li«-1,1* + + Z3«-r8t (10.1-53)

The values of the component waves can be found from the initial conditions 
at z = 0, the input end of the slow-wave circuit. Since the beam is un­
modulated at this point, we have

w(0) = 0
¿(0) = 0 (10.1-54)

For the same reason, the rf space-charge field is zero and the total electric 
field is given by the circuit voltage alone,

Bir(0) = B„(0) (10.1-55)
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The latter quantity may be determined in magnitude from the rf input 
power using Equation (10.1-19), which can be written as

| Etn |2 = 2SJKnP (10.1-56)

where | Ecn | is the rms average over the beam cross section. We assume all 
the quantities u, i, etc., are similar rms averages.

Before applying the above boundary conditions, we derive certain other 
relationships between Egr, u, and i. First, we introduce Equation (10.1-39) 
into (10.1-13), obtaining

p
u, =------TnjE .T,. (10.1-57)

for v = 1,2,3, that is, for each of the three waves. Next, we introduce 
Equation (10.1-39) into (10.1-9), obtaining

G = --7^^ (10.1-58)

which with Equation (10.1-57) becomes

<19W9>

Equations (10.1-57) and (10.1-59) may be substituted into Equations 
(10.1-53) so that the total electric field is the only variable. When this is 
done, and the boundary conditions (10.1-54) and (10.1-55) are applied, 
Equations (10.1-53) become

Egn(0) = EgTl + EgTZ + EgT3

0 = uHzTI + tBiK + yEgT} di O2 O3

0 = -zyEgTi + y2EgT2 + y^EgTs (10.1-60)Ol2 SJ 63

Since the 3’s are known, these three simultaneous equations may be solved 
to obtain solutions for E2ti, Egr2, and Egm in terms of Ez„(0). The solution 
for the growing wave is given by

F,„(0) ” («! - «(«x - ia)

We define the initial loss factor Ai in decibels by the expression

Ar = 20 log | ¿gy | db (10.1-62)

which can be evaluated from Equation (10.1-61).
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The total power gain of the traveling-wave amplifier may be written as 

gain = 20 log | | db (10.1-63)

where I denotes the output end of the slow-wave structure. For a practical 
tube where the gain is 20 db or more, the fields at the output end of the 
structure are given very accurately by the growing wave alone, so we may 
write

gain = 20 log | ■ | db (10.1-64)

This can be written as

gain = 20 log | eT*™1 db (10.1-65)

Since
| £-ni | = (10.1-66)

Equation (10.1-65) becomes

gain«», = Ai + 200.0x1 log e + A2 (10.1-67)

where

A2 = 20 log I db (10.1-68)
| HiTl |

The quantity A2 is termed the space-charge loss factor, since it is a measure 
of the ratio of the circuit field Ezn to the total field, at the end of the circuit 
where the growing wave predominates. We further define

B = (40tt log e)zi = 54.6xi (10.1-69)

and the number of electronic wavelengths on the circuit N by

N = (10.1-70)Zv

so that Equation (10.1-67) for the gain of a traveling-wave amplifier 
becomes

gain«», = Ai + A2 + BCN (10.1-71)

Finally, we must evaluate A2, the space-charge loss factor. Equation 
(10.1-59) may be written for the growing wave as

A = (10.1-72)
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This equation is combined with Equation (10.1-17) written for the growing 
wave to eliminate fa. After simplifying and introducing the definition of QC, 
Equation (10.1-37), one obtains

Eini _ SJ + 4QC
Esti SJ

(10.1-73)

recalling that E^i = E.nl + Eltcl. From Equation (10.1-68), A2 is thus 
given by

A2 = 20 log ¿i2 + 4QCI
A2 I (10.1-74)

In conclusion, we write an expression for the gain when b = d = QC = O'. 
From Equations (10.1-45), we calculate

Ai = — 9.54 db
A2 = 0 db

B = 47.3

so that Equation (10.1-71) becomes

gain^ = -9.54 + &.3CN (10.1-75)

(d) Summary of Gain Calculation

Let us review the steps in calculating the gain of a traveling-wave ampli­
fier. Knowing the properties of the beam and the circuit, we calculate 
C, N, b, d, and QC as follows:

C =
r/c 111/8 0 I4V J (10.1*36)

2r 2irw (10.1-70)

b = ftn~ ft. 
ftjC (10.1-40)

d
a 

~ft£ (10.1-41)

QC 4C2^ (10.1*37)

K„ is defined as in Equation (10.1-19) 6i, S2, and 63 are determined as the 
three roots of the cubic equation:

- py+7+5) - W (10.142)
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Next, Ai and A2 are calculated from the equations:

Jdb aowB)
and

A2 = 20 log I I db (10.1-74)
I "i I

Fig. 10.1-3 Graphs useful in calculating the gain of a traveling-wave amplifier. 

d = 0.025. C = 0. Curves for non-zero values of C are given in Reference 10.4. 
(Courtesy of Transactions IRE)
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Finally, the gain is computed from the equation: 
gairu = Ai + A2 + BCN 

where
B = 54.6X1

(10.1-71)

(10.1-69)

Considerable effort can be saved by using charts which give xj and A = Ai 
+ At directly in terms of b, d, and QC.14 Such a chart is shown in Figure 
10.1-3, where Xi and A are plotted vs. b for d = 0.025 and various values of 
QC. By these methods one can calculate the gain of a traveling-wave 
amplifier and the variation with frequency.

10.2 High-Power Tubes

The theory developed in the previous section enables one to calculate the 
performance of a traveling-wave amplifier once the properties of the beam 
and the slow-wave structure are known. We must know two things about 
the slow-wave structure — the Brillouin diagram and the strength of cou­
pling to the electron beam. The latter quantity is measured in terms of the 

Fig. 10.2-1 High-power slow-wave structure consisting of a cascade of re-entrant 
cavity resonators, with mutual inductive coupling obtained through apertures in 

their common walls.

beam-coupling impedance Kn. In this section we examine some of the tech­
niques used to evaluate these quantities for a typical high-power structure.

(a) The Brillouin Diagram

The slow-wave structure of Figure 10-1 (c) is well suited for high-power 
interaction. The large metal surfaces in this structure serve the dual pur-

“Reference 10.4. Curves for C = 0.2 are in error. Corrected curves are given in 
Reference 10.5, Figure 4(c).
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pose of keeping rf ohmic losses small and also of providing means for 
removing the heat due to beam interception on the re-entrant parts of the 
cavities. A simplified version of this structure is presented in Figure 10.2-1. 
In this structure, the coupling between cavities is obtained by means of 
coupling apertures placed in the inductive portions of the cavities. These 
apertures allow portions of the magnetic flux of one cavity to link the 
adjacent cavities, so as to provide mutual coupling between cavities.

An equivalent circuit for this structure is shown in Figure 10.2-2. Li and 
Ci are the inductance and capacitance of each re-entrant cavity, as dis-

vNe+iAoL vN vNfjM

Fig. 10.2-2 Equivalent circuit for the slow-wave structure of Figure 10.2-1.

discussed in Chapter 8. The inductance is shown as a single turn. M is the 
mutual inductance between cavities; obviously it becomes larger as one in­
creases the size of the coupling aperture. Loop currents are shown in each of 
the cavities. From Floquet’s Theorem we know that, if the current in the 
Nth cavity is In, the currents in the N — 1 and N + 1 cavities are given by

INe+’^L

and
InC^°L

respectively.
From Kirchhoff’s voltage law, we can write the loop equation for the N‘h 

loop as

(jwLi + — jwMlNt$°L — jwMlNe~$°L = 0 (10.2-1)
\ J“L1/

This may be simplified to yield

cos BL = U1 - (10.2-2)
m\ w /

where k! — 2M/Li is the coupling coefficient, and wc = l/^LA'i is the
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radian resonant frequency of the cavity. The upper and lower cutoff fre­
quencies are obtained from Equation (10.2-2) as

W2 = . - at 0.L = 0
VI - ki

and

W1 = -y=^= at 0OL = ir (10.2-3)
VI + kt

For kt = 0, the Brillouin diagram is a horizontal line given by w = wc. 
Increasing the coupling increases the width of the passband.

The Brillouin diagram is shown in Figure 10.2-3 for the fundamental and 
— 1 space harmonics for a value of kt equal to 0.4, as obtained from Equa­
tion (10.2-2). The fundamental is a backward wave, since its group and

Fig. 10.2-3 Brillouin diagram for the slow-wave structure of Figure 10.2-1, for 

kt = 0.4. A voltage line is shown corresponding to typical interaction with the —1 
space harmonic for forward wave interaction.

phase velocities are in opposite directions. In the traveling-wave amplifier a 
forward wave is necessary for amplification, since the power on the circuit 
travels in the same direction as the electron beam. The — 1 space harmonic 
is such a wave. The slope of the line joining the origin to point A gives the 
phase velocity of the space harmonic at the point A. Since this line is 
nearly tangent to the — 1 space-harmonic curve, the phase velocity is nearly 
constant over a moderately wide frequency range. Thus, with the dc beam 
velocity equal to this phase velocity, synchronous interaction is obtainable 
over a considerable frequency range.
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(b) The Beam Interaction Impedance

In calculating the beam interaction impedance, we shall need an ex­
pression for the total power flow in the circuit. This could be obtained 
directly from the equivalent circuit using network theory. However, it is 
easier to obtain the power from the group velocity and the average stored 
energy per period, as in Section 8.7(d). The average stored energy is equal 
to the peak electric stored energy,

WL = iCt | Uv |2 (10.2-4)

where Uv is the voltage across the Nth gap. The group velocity of the 
fundamental is obtained by means of a differentiation of Equation (10.2-2) 
as

du kiL w3 . T nnn
V^dp,= -2^  ̂ i10-2^

All the space harmonics have the same magnitude of group velocity at the 
same frequency. From Equation (8.7-49) the power flow in the forward 
direction is thus given by

P = | VN |2 sin 0oL (10.2-6)

In order to evaluate the impedance by Equation (10.1-19) we need an 
expression for the amplitude of the space harmonic. This is obtained by 
solving Maxwell’s Equations in the region of the beam.

Consider Figure 10.2-4. A series of concentric cylinders of inside radii 
a uniformly spaced along the z axis is shown. The periodic spacing is L, 
and the gap between cylinders is 6. The voltage across gap N is Uv, and 
we assume that the electric field across the gap at r — a is uniform and equal 
to Vu/b.

Fig. 10.2-4 Identical, concentric cylinders uniformly spaced along the z axis. 
The gap voltages obey Floquet’s Theorem. The internal fields are analyzed in 

terms of space harmonics.
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We confine our attention to the region r < a. The general solution for 
the electric field in this region is given by Equation (8.7-16), for which the 
z component is

Ee(x,y,z) = 22 Egn(x,y)e (10.2-7)
— co

As shown in Section 8.7, each space harmonic will by itself satisfy the wave 
Equation (8.1-26). The z component of the wave equation for the nth 
space harmonic can be written as

(£ + 1S\E™ ~ ~ = ° (Ï0.2-8)
\dx2 dyy

similar to Equation (8.7-27). Since the structure in Figure 10.2-4 has 
cylindrical symmetry about the z axis, it will be more convenient to write 
the above equation in cylindrical coordinates. The two-dimensional 
Laplacian can be written as

+ + (102-9)dx2 dy2 dr2 r dr r2 dff2 U 7

in polar coordinates.16 Since the boundary conditions in Figure 10.2-4 
have no functional dependence on 0, we look for space harmonics which 
also are independent of 0. The last term in Equation (10.2-9) is thus set 
equal to zero. Equation (10.2-8) becomes

S + = ° (10.2-10)
ar* r ar

where yn2 = fl»2 — k2 and is positive for slow waves, k is equal to u/c. 
Equations (10.2-10) may be written in a form recognizable as Bessel’s

Equation,

£ +; + T»]E™ = 0 (10.2-n)
dr r dr J

with t„2 = — y„2. The solution of this equation is well known:

Eln = B„J0(r„r) (10.2-12)

where J„ is the Bessel function of the first kind of order 0, and Bn is an 
arbitrary constant. Thus, the solution of Equation (10.2-10) is given by

Eln = B„Jo(j7nr) (10.2-13)

This modified Bessel function has a real value despite the fact that the

“Reference 10.2, p. 328. This may also be derived using the relations of Appendix 
XII together with the definition of the Laplacian of a scalar, V2* = V Vi. 
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argument is a pure imaginary quantity. This function is of sufficient 
importance that it is given its own symbol,

Joljlnr) = I0(ynr) (10.2-14)

It is plotted in Figure 10.2-5. From this figure we see that the axial electric 
field is weakest on the axis and strongest at the circuit. This behavior was 
also obtained in the slow-wave structure of Figure 8.7-4. In fact, this is a

Fig. 10.2-5 Modified Bessel function which gives the radial decay of the axial com­
ponent of a cylindrically symmetric space harmonic.

general characteristic of slow-wave structures; the axial field is strongest 
at the circuit. Most traveling-wave amplifiers have a value of ynr at the 
circuit in the range of 1 to 2 for the synchronous space harmonic. Thus, the 
field on the axis may be only half that at the circuit.

Equation (10.2-7) may thus be written as

Ez(r,z) = '^lBnI0(ynr')(: (10.2-15)

The space-harmonic amplitudes Bn are evaluated by imposing the boundary 
conditions at r = a. We take z = 0 to correspond to the center of the Nih 
gap. If we confine our attention to the unit cell centered at z = 0, we have 
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from Equation (10.2-15):

for | z | < ^

Ofor^ < |z| 
A (10.2-16)

Multiplying both sides of this equation by e+i^ and integrating over the 
range | z | < L/2, we obtain

g 
v sinflm?

B^HM = (10.2-17)
0 Pm 

2

where use has been made of Equation (8.7-35). The axial electric field is 
thus given by the expression

g 
v y sin /»(w) 

E,(r,z) = > ------y--------- (10.2-18)
—«o

The impedance for the nth space harmonic is obtained by introducing 
Equation (10.2-6) into Equation (10.1-19) together with the space-harmonic 
amplitude obtained from Equation (10.2-18). One obtains

K. - (10.2-19)

where 

6 Sin 0n? 
(10.2-20) 

0^ 
z

is the gap factor for the nth space harmonic, and

M2(n)2 = (10.2-21)

is the impedance reduction factor obtained by integrating the radial varia­
tion of the electric field over the cross section of the beam. Both factors 
are less than or equal to unity.

The impedance for the —1 space harmonic plotted in Figure 10.2-3 is 
obtained from Equation (10.2-19) by setting n equal to —1. The result is 
plotted in Figure 10.2-6 for k, and S/L both equal to 0.4. The impedance
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Fig. 10.2-6 Normalized impedance for the —1 space harmonic of the slow-wave 

structure of Figure 10.2-1. ki = 8/L = 0.4.

is seen to become infinite at both band edges since the group velocity goes 
to zero at these frequencies.

(c) A Numerical Example

As an example we calculate K_i at band center for a typical circuit. 
Assume that the cylinders shown in Figure 10.2-4 have the following 
dimensions:

a = 2 mm
c = 2.5 mm
6 = 2 mm
L = 5 mm

The structure is designed for a center frequency of 6000 Me with ki = 0.4. 
Assume an electron beam of very small diameter on the axis; under this 
condition,

=

Using the relation y_i2 = BA — k2, we obtain
Q

y_io = 0.992/3_1a = O.992y0_iL = 0.992(0.4)^ = 1.87

From Figure 10.2-5,

- WST) - °'23°
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In calculating the capacitance between cylinders we must make an allow­
ance for fringing effects. It has been found empirically that the capacitance 
is about four times that given by the simple parallel plate formula for the 
dimensions given. Thus,

Ci 4^a(c- a) 0 nl
0

The ordinate in Figure 10.2-6 is read as 0.1635 at band center. Thus,

K~l = 0.1635-^- = 0-1635(121ri09) (0.111 X IO"12) = 9-0ohms

This value of impedance is typical of circuits of this type.
With the above information it is necessary only to specify the beam cur­

rent and structure length to complete the description of the amplifier. 
The beam voltage is determined by the synchronism condition, ft, = ft_b 
at some frequency within the band.

Operation as a forward-wave amplifier is also possible in higher-order 
space harmonics, such as the —2, —3, —4, etc. However, from Equation 
(10.2-19), it is seen that the impedance falls off for these higher-space 
harmonics, because ftnL is larger and Miw and Af2(n) are smaller. There­
fore, the lowest possible order forward space harmonic is always used so 
as to obtain maximum interaction. This explains why the structure of 
Figure 10-1 (c) is superior to that of Figure 10-1 (b); for the same voltage, the 
latter corresponds to higher space-harmonic interaction, under the usual 
condition wg/w « 1.

(d) Description of a Practical Potver Traveling-Wave Tube

Figure 10.2-7 shows the construction of the Bell Telephone Laboratories 
type M4040 traveling-wave amplifier.16 A photograph of the tube is shown 
in Figure 10.2-8. This tube was designed to be the ground transmitter tube 
in the Telstar experimental satellite communications system. It uses a 
slow-wave structure similar to the one in Figure 10.2-1, except that the 
inductive coupling holes appear alternately at the top and bottom of the 
discs separating the cavities. This is done primarily to prevent inductive 
coupling between cavities which are not directly adjacent.

The slow-wave structure actually consists of two separate sections, 
nearly equal in length, placed end to end. Each section has its own rf 
input and output connections. The input rf signal is introduced onto the 
first section close to the electron gun. This signal is amplified by 17 db and 
then coupled out into an external sever termination. The electron bunches

“Reference 10.6.



Fig. 10.2-7 The Bell Telephone Laboratories M4040 traveling-wave amplifier, a 2.6-kw, 6000-Mc tube.
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in the beam induce currents into the second slow-wave structure section, 
and another 21 db of gain is produced. The power dissipated in the ex­
ternal sever termination results in an overall gain reduction of approxi­
mately 6 db, so that the net gain is 32 db. Without the beam present, the 
first and second sections of the slow-wave structure are completely isolated 
from each other. A slow-wave circuit which is terminated at some point 
near the middle for waves traveling in either direction is called a severed 
circuit.

Fig. 10.2-8 The Bell Telephone Laboratories M4040. The overall height is 117 cm.

A severed circuit is necessary in a traveling-wave tube to prevent oscil­
lations. Since it is impossible to match perfectly the input and output 
waveguides to the slow-wave structure over the entire operating frequency 
range, small rf reflections are invariably present at both ends of the struc­
ture. Without the sever, the wave reflected from the output connection 
travels back to the input with little attenuation and produces another small 
reflection. This provides a mechanism for positive feedback, and oscil­
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lations result if the gain between the positions of these two reflections is 
large. Thus, severing the circuit keeps the gain per section low enough to 
prevent such oscillations.

The M4040 tube has the characteristics given in Table 10.2-1. It is oper­
ated in a solenoid which furnishes a uniform magnetic field of 730 oersteds?

Table 10.2-1. BTL M4040 Operating Characteristics
Center frequency, Me..........................................................................6390

Beam voltage, kv......................................................................................17

Beam current, amps..............................................................................1.04
Saturation power output, kw.......................................................2.6

Electronic efficiency at saturation, %................................15

Small-signal gain, db.............................................................................32

Small-signal bandwidth (1 db), Me......................................780

The tube plus solenoid weigh 230 pounds. Only | per cent of the beam 
current is intercepted on the slow-wave circuit for small rf power levels; 
with output powers near saturation the circuit interception increases to 
about 3| per cent. The tube is operated with the collector at the same 
voltage as the slow-wave structure, so that approximately 14.5 to 17 kw of 
power is dissipated in the water-cooled collector, depending on the rf 
signal level. The length of the slow-wave circuit is 26 cm, and its inside 
diameter is 4.2 mm. The beam interaction impedance is 13 ohms. The 
electron gun is a convergent gun somewhat similar to that in Figure 4.5-1 (a) 
Its perveance is 0.466 X 10-6 amp/volts3/2. It produces an electron 
beam of 2.3 mm diameter.

The ion pumps shown in the figure are electronic vacuum pumps which 
help to maintain an extremely high vacuum in the tube under all conditions 
of operation. The tube is constructed entirely of metal and ceramic. The 
slow-wave structure is made of copper because of the excellent electrical 
and thermal conductivity of this metal.

If we compare this tube with the VA-849 klystron amplifier, whose char­
acteristics are given in Table 9.4-1, we note that the traveling-wave tube 
has much greater bandwidth and considerably less electronic efficiency. 
Thus, a choice between these two types in any particular application would 
depend largely upon the relative importance of bandwidth and electronic 
efficiency. It should be noted that the overall efficiency of each tube can be 
greater than the electronic efficiency if the collector voltage is lowered 
below the beam-interaction-space voltage.

10.3 Helix Slow-Wave Circuits

The most common slow-wave structure used in traveling-wave ampli­
fiers is the helix. Helix-type, slow-wave circuits permit large bandwidth and 
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high gain per unit length. However, for rf output powers greater than 
100 watts or so, a helix-type, slow-wave circuit would become excessively 
heated by beam interception and rf losses. Consequently, helix-type, 
slow-wave structures are used only at lower power levels.

In order to analyze the operation of the helix traveling-wave amplifier, 
we require information about the Brillouin diagram and the beam-coupling 
impedance. This information is obtainable by field analysis as in Chapter 8. 
However, the field analysis of the helix is a complicated mathematical 
problem; in fact, the exact solution for a helix of finite wire diameter has 
not been derived. The discussion presented here will be somewhat simpli­
fied, and we shall mention some of the more accurate results.

(a) The Brillouin Diagram for a Helix-Type, Slow-Wave Circuit

The electric field lines surrounding a helix are shown in Figure 10.3-1. 
This field pattern moves to the right at a phase velocity corresponding to 
the fundamental space harmonic. Unlike the helix of Figure 8.7-2(a), this

Fig. 10.3-1 The electric field lines surrounding a helix at a particular instant. 
The pattern travels at a phase velocity corresponding to the fundamental 

space harmonic.

helix does not have a surrounding metal tube. The helix in Figure 10.3-1 is 
shown unsupported. In practice, it would be supported by small dielectric 
rods or a surrounding dielectric cylinder, either of which would perturb 
the field pattern. However, we shall neglect this effect.
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The period of the helix is called the pitch and is denoted by the symbol 
L. The mean radius of the helix is a. In addition, we define the pitch angle 
fi by the equation

tan fi = (10.3-1)

The wave equation for the z component of electric field is obtained from 
Equations (10.2-8) and (10.2-9) as

^ + ^ + ^-^ = 0 (10.3-2)

In the case of the helix the field quantities are functions of 9, the angular 
coordinate, since the boundary conditions vary with 9. The space harmonics 
necessary to satisfy the helix boundary conditions are of the form17

Etn = R„(r)e^e~^ (10.3-3)

where Rn(r) is a function of only the radial coordinate for each space 
harmonic. The plus-or-minus choice for the 9 dependence is dictated by the 
winding sense of the helix. Substituting this assumed solution into Equa­
tion (10.3-2), we obtain

[fi + “ - - SXW = 0 (10.3-4)
[dr2 rdr r2]

If we put yj = —Tn2, we recognize this as Bessel’s Equation with the 
general solution

Rn(r) = bnJn(mr) + cJWrj) (10.3-5)

where J„(t„t) is the Bessel function of order n and Hnm(r„r) is the Hankel 
function of order n. Since rn = jya, the argument in the above functions 
is a purely imaginary number. Nevertheless, the values of the functions 
are either purely real or purely imaginary. The following modified Bessel 
functions are defined as to have purely real values:18

In(ynr) = j~nJn(jynr)

Kn(ynr) = (10.3-6)At

INur'), Ii(vir), Ko(yor), and Kfyir) are plotted in Figure 10.3-2. The 
In(ynr) functions go to infinity as r goes to infinity. The Kn(ynr) functions

•’Reference 10c, pp. 46, 47.
•8In order to avoid confusion with the beam interaction impedance, the Bessel function 

Kn (7»r) will always be written showing its functional dependence. Tables of the modi­
fied Bessel functions are given in Reference 9.1, pp. 224-243.



384 PRINCIPLES OF ELECTRON TUBES

go to infinity as r goes to zero. Thus, Rn(r) is given by Ir/yA) inside the 
helix and Kn(ynr) outside the helix, in order that the fields remain finite 
everywhere. Each space harmonic has its maximum amplitude adjacent to

Fig. 10.3-2 Modified Bessel functions. Io(y,r) and h(yir) apply to radial varia­

tions of fields within the helix, and Ko(yor) and K^yf) apply to fields 
outside the helix.

the helix and decays radially away from the helix, both inside and outside 
the helix.

Thus we have the following expressions for the z component of electric 
field. Inside the helix,

Ex = E BnIn(ynr-)^t-^ (10.3-7)

Outside the helix,
E, = E CnKn(ynr)^t-^ 

n
(10.3-8)

The amplitudes of the space harmonics are obtainable from the boundary 
conditions at the helix surface. This procedure has been carried out for a 
helix whose wires are thin tapes,19 but not for round wires. After a rather

“References 10.7, 10.8.
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lengthy, approximate analysis, one obtains expressions for the Brillouin 
diagram and beam interaction impedance. A similar analysis has been 
carried out for the sheath helix.20 The sheath helix is a mathematical 
model consisting of a continuous, cylindrical sheath of currents, all flowing 
around the cylinder at the pitch angle. We shall not go through these 
analyses, but rather we shall cite some of the results.

First, it is found that the w-ft curve of the fundamental space harmonic 
of the tape helix is very nearly given by the w-ft curve of the fundamental

Fig. 10.3-3 w-ft curve for the fundamental mode of a sheath helix. The velocity- 
of-light line is shown for tan^ = 0.125.

mode of the sheath helix. The fundamental mode of the sheath helix is 
presented in Figure 10.3-3. It is approximately given by a line of constant 
slope from the origin corresponding to the phase velocity

= w 
ft

= c tan (10.3-9)

This value of phase velocity corresponds approximately to that of a wave 
traveling around the cylinder at the pitch angle with the velocity of light, 
which is the value physical intuition would lead us to expect. (Note that ft 
here is equal to 2ir/X2, where X2 is the wavelength of the field pattern shown 
in Figure 10.3-1.) Let us approximate the actual w-ft curve of the- sheath 
helix by the straight line with slope given by Equation (10.3-9). The wave 
may be made as slow as desired by choosing the pitch angle small enough.

“Reference 10a, Chapter 3.
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Let us apply this sheath helix result to derive the Brillouin diagram of 
the tape helix. Using Equation (10.3-1) we note that the abscissa in Figure 
10.3-3 may be written as 0L for the tape helix. Taking the straight line in 
Figure 10.3-3 as the fundamental space harmonic for the tape helix, we 
draw in additional space harmonics as in Section 8.7, obtaining Figure 
10.3-4.

Fig. 10.3-4 Space harmonics corresponding to the straight-line approximation of 
the fundamental mode of a sheath helix. The branches are numbered as to the 

order of the space harmonic. The velocity-of-light line is shown for tan = 0.125.

In order to complete the Brillouin diagram for the tape helix we must 
include the so-called forbidden regions. The forbidden regions are regions 
in the Brillouin diagram for which electromagnetic energy is radiated 
away. In these regions the helix may be used as a helical antenna. Thus, 
the regions are forbidden in the sense that lossless propagation along the 
helix is not possible. The forbidden regions for the tape helix are shown 
shaded in Figure 10.3-5.

We can explain the existence of the forbidden region centered about 
8L = 0 in the following manner. Consider the form which the space­
harmonic fields take exterior to the helix in this region. This region is 
characterized by the fact that all phase velocities are greater than the 
velocity of light. Thus, in this region,

/V < k2 (10.3-10)
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Fig. 10.3-5 Approximate Brillouin diagram for the tape helix, with tan = 0.125. 
In this approximation, changing the pitch angle changes only the lower extent of 

the forbidden regions. The branches are numbered as to the order of 

the space harmonic.

where k = a/c. This means that yn = ^BJ — k2 is imaginary. If we put 
7» = jrn, we obtain the following expression for Ez external to the helix 
for the nth space harmonic,

Eln = (10.3-11)
from Equations (10.3-6) and (10.3-8). For large radii the Hankel function 
has the asymptotic representation:21

This radial variation corresponds to that of a cylindrical wave propagating 
radially to infinity. Thus for BJ < k2 the helix radiates energy, and by 
definition this is a forbidden region.

The other forbidden regions in Figure 10.3-5 are explained as follows. 
At any operating frequency all the space harmonics must exist in order that 
the boundary conditions be completely satisfied. Thus, if a portion of a 
space harmonic lies in the forbidden region described above, all the other 
space harmonics within the same frequency range are also forbidden.

These forbidden regions are responsible for the following important 
characteristics of the helix. First, the helix will not propagate above a 

“Reference 10.2, p. 159.
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certain frequency (wa/c = 3.6 for the conditions of Figure 10.3-5). Second, 
frequency stop bands are produced over ranges of frequencies approxi­
mately centered about wa/c = 1, 2, 3, etc.

(b) The Beam Interaction Impedance for a Helix-Type, Slow-Wave Circuit

Next, we derive an approximate expression for the beam interaction im­
pedance for the fundamental space harmonic of the helix. We do this by 
finding approximate expressions for the group velocity and stored energy 
per unit length. For the straight-line approximation to the Brillouin 
diagram, the group velocity is simply

v0 = vp = (10.3-13)
Po

We shall make use of the approximation yo = 0O, since u.^c for most 
helix tubes.

From a field plot as in Figure 10.3-1, we conclude that the 0-component 
of electric field is small compared with the r and z components. Thus, we 
set = 0. As a first approximation, we assume all the stored energy is in 
the fundamental space harmonic. For a thin tape helix the space-harmonic 
amplitudes must be the same at r = a both inside and outside the helix, 
since the boundary conditions are identical. Thus, from Equations (10.3-7) 
and (10.3-8), we have

El0 = BJa(y^~»- (10.3-14)

inside the helix, and

(10.3-15)
Ko(y <¿1)

outside the helix. Corresponding to these field components are the follow­
ing radial components:

Ero = jB^IM^' (10.3-16)
Vo

inside the helix and

Ero~ (10.3-17)
y o & o\Y <fl>)

outside the helix. The latter relationships may be verified using the di­
vergence relation, Equation (6) of Appendix XII.

The average stored energy per unit length is equal to the peak electric
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stored energy, given by22

W = -r' avg 2

= its,, [IJ(y<F) + IJly^rdr 
o

। I d ¡2I <?(.y Ji) + ire. | B„ | K2M

= 1 Bo 1 Z,2(v^)

[Ko2(yor) + Ki2(yor)]rdr

y jtl o(ytflftK o(y oK) (10.3-18)1

The last term in the bracket is approximately equal to 2 over the useful 
range of the helix, as shown in Figure 10.3-6. Thus, we have the approxi­
mate expression

Wavg = —e„ | Bo \2Io2(ysa) (10.3-19)

Equation (10.1-19) may be written 
for the beam-coupling impedance as

Ko J I E,o \2dS 
2^^^ (10.3-20)

where the area integral is taken over 
the cross section of the beam. Intro- 
ducing Equations (10.3-13), (10.3-14), 
and (10.3-19) we obtain

J | Bo MwW
— R2<S%21rae(,| Bo \2U(yji) 

Vo
80= M2(o)2 ohms (10.3-21) 
ica

where M2(o)2 is defined as in Equation 
(10.2-21). M2(o)2 varies between unity 
for a thin hollow beam grazing the 
helix and 1/Io2(yda) for a thin solid 
beam on the axis. The expression

Fig. 10.3-6 Function of modified Bessel 
functions which is approximately equal 

to 2 over the useful range of the helix.

given by Equation (10.3-21) for the impedance neglects the energy stored 
in the higher-order space harmonics. It can be shown23 that the inclusion

“Integrals of Bessel functions and useful identities are given in Reference 9.1, pp. 
144-146. These relations may be written in terms of the modified Bessel functions using 
Equations (10.3-6).

“Reference 10.8.
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of this additional energy reduces the impedance to approximately half 
that given by Equation (10.3-21). Thus, we have the useful approximate 
formula

15
K, M2(0)Vohms (10.3-22)Ka

for the beam-coupling impedance of a tape helix where k = w/c. Al­
though the foregoing relations are derived for a tape helix, they are also 
approximately valid for helices with round wires.

A typical helix tube may be designed for ka = 0.1 and y„a = 1.5. 
For a thin solid beam on the axis, Equation (10.3-22) gives a value of 55.3 
ohms for K„. This is considerably larger than values obtained with the 
high-power slow-wave structures discussed in the previous section. In 
comparing the Brillouin diagrams we see that the helix is capable of syn­
chronism over much larger bandwidths than the high-power structures. 
Thus, the helix is superior in all respects except power handling capability.

(c) An Example of a Traveling-Wave Tube with a Helix-Type Slow-Wave 
Circuit

Figure 10.3-7 shows the construction of the Western Electric 444A 
traveling-wave tube.24 The slow-wave circuit consists of a molybdenum 
wire which is wound in a helix and glazed to three ceramic support rods. 
The helix assembly, consisting of the helix and support rods, slides inside a 
glass envelope of precise inside diameter. The electron gun is similar to 
that shown in Figure 4.5-1 (a). An oxide-coated cathode is used.

Input and output connections to the helix are made by means of wave­
guides. The helix is “stretched” at each end and joined onto a cylindrical 
tubing which protrudes into the waveguide. This geometry provides a 
broadband rf match between the waveguide and the helix.

The magnetic circuit consists of two Alnico V magnets and two soft steel 
pole pieces. The circuit provides a nearly uniform axial magnetic focusing 
field of 600 oersteds. A number of permalloy “field straightener” discs are 
mounted perpendicular to the axis of the tube. Since these discs act as 
equipotential planes with respect to the magnetic field, they force the 
magnetic field to be axially symmetric with respect to the axis of the tube. 
The magnetic circuit is surrounded by an external magnetic shield (not 
shown in the figure) which reduces the leakage field outside the shield to a 
negligible value. The total weight of the magnetic circuit and shield is 85 
pounds.

“Reference 10.9; the Bell Telephone Laboratories’ 1789 tube is the prototype for the 
Western Electric 444A.
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Fig. 10.3-7 The 444A traveling-wave tube and its magnetic focusing circuit. The input and output connections to the slow- 
wave circuit are made by means of waveguides. The axial magnetic focusing circuit is provided by two Alnico V magnets. (The 

polarity of the magnets does not matter provided both are magnetized in the same direction.) The thin permalloy “field straight­

ener” discs are separated! by thick nonmagnetic metal spacers. The tube can be removed from the magnetic circuit and replaced 

when it fails. The overall length of the tube is 31 cm.
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Some additional facts about the tube are summarized in Table 10.3-1. The 
tube is used to provide rf amplification in a radio relay system over a band

Table 10.3-1. Some Facts Pertaining to the 444A 
Traveling-Wave Tube

Helix
Mean diameter, 2a, mm.............................................................................. 2.25

Wire diameter, mm...........................................................................................0.25

Pitch, L, mm...........................................................................................................0.75
Total turns................................................................................................................ 187

Length of helix, cm.......................................................................................... 14

Beam
Voltage, volts.......................................................................................................... 2400

Current, milliamps............................................................................................40
Perveance, amps/volts3/2............................................................................0.3 X 10-6

Beam power, watts...........................................................................................96

RF Interaction
Signal frequency, Me at midband....................................................6175

ka = wale...................................................................................................................0.148
Axial wavelength, mm..................................................................................4.7*

Total number of wavelengths on helix........................................30

C...........................................................................................................................................0.058

QC.......................................................................................................................................0.29
Operating power output, watts........................................................... 5

Saturation power output, watts......................................................... 12
Power gain at low signal levels, db................................................ 32-36

Power gain at 5 watts output, db.................................................... 31-35

Electronic efficiency at saturation, %.........................................12.6

*6.3 turns of helix.

of frequencies 500 Me wide and centered at 6175 Me. Over this band of 
frequencies the power gain is flat to within 0.7 db. The 3-db bandwidth of 
the tube is approximately 2400 Me and is limited primarily by the band­
width of the transitions between the waveguide and helix.

Near the center of the helix, the helix and support rods are coated with 
carbon. This provides about 70 db of attenuation on the slow-wave circuit 
and prevents reflected waves from the output end of the circuit from causing 
oscillations. This forms a severed circuit as in Section 10.2(d).

The anode of the electron gun is operated at about 200 volts higher po­
tential than the helix to prevent positive ions formed by the beam in the 
region of the helix from draining toward the cathode and bombarding the 
cathode. The air-cooled, copper collector is normally operated at only half 
the helix voltage, and hence half the voltage corresponding to the electron



.^PLUNGER FOR ADJUSTING RF MATCH 
BETWEEN HELIX AND WAVEGUIDE

Fig. 10.3-8 A periodic permanent-magnetic (PPM) focusing system for a tube similar to the 444A. The overall length is 33 cm. 
The annular magnets are magnetized in the axial direction. They are stacked so that like poles of any two adjacent 

magnets face each other.
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beam potential. Thus the overall efficiency of conversion of de to rf power 
is twice the electronic efficiency.

At the time of writing, 67 per cent of an initial group of 212 444A tubes is 
surviving after two and one-half years of service in the radio relay system, 
and extrapolation of the data giving per cent survival vs. life indicates that 
half the tubes may survive between four and five years.

Figure 10.3-8 shows a cross-sectional view of a periodic magnetic focusing 
(PPM) circuit for a tube similar to the 444A. The circuit uses Alnico VIII 
magnets which give a peak axial magnetic field of 1000 oersteds. The 
leakage fields from this magnetic circuit are relatively small because of the 
short axial length of the individual magnets, and no external shielding is 
needed. The magnetic circuit is held together with an epoxy compound 
which is not shown in the figure. The total weight of the magnetic circuit 
is 8 pounds.25 Waveguides of reduced height are used to couple rf power 
to the helix.

The broad bandwidths attainable with traveling-wave amplifiers make 
them ideally suited for broadband communication and radar systems. 
They are also useful as laboratory amplifiers. Bandwidths of 10 per cent in 
high-power tubes and 30 to 50 per cent in helix tubes are common. High 
gain tubes of 50 db or more are available; in this case, the circuit has more 
than one lossy section to prevent oscillations. Electronic efficiencies are 
good, but not as good as in the klystron amplifier. The positive feedback 
possible on the slow-wave circuit requires careful design to prevent oscilla­
tions, especially during the rise and fall times in pulsed operation, where the 
beam voltage is pulsed on and off.28 High regulation and low ripple are re­
quired in the helix voltage supply to prevent undesirable phase-shift 
variations.

PROBLEMS

10.1 The figure shows a typical connection of de power supplies to a traveling­

wave amplifier. Assume that the helix does not intercept any of the primary electron 

beam; neither does the anode of the electron gun.
(a) Which power supply provides the power that becomes useful rf power out­

put?

(b) The bunched electron beam induces ac currents in the helix. If the helix 
were somewhat lossy, these currents would dissipate energy in the form of 

heat in the helix. Which power supply provides this energy?

“Other PPM stacks for similar tubes have weighed less than a pound, using platinum­
cobalt magnets.

“As the voltage is increased toward the operating point, the electron velocity passes 
through points of synchronism with the phase velocity of the slow-wave structure where 

the impedance is very large (such as the point corresponding to 0-iL = 2r in Figure 
10.2-6). At such a point the danger of oscillation is greatest.
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Vao -=t Vo ,^VC0

Problem 10.1

(c) If the beam current is I,, what is the power supplied to the tube by the de 
power supplies?

(d) The efficiency of the tube is defined as the ratio of maximum possible rf 

power output to the de power input. Can the efficiency of the tube be raised 

by decreasing the potential Vco'l Assume that the exchange of secondary 
electrons between the collector and helix can be neglected.

(e) If all the electrons are to be collected by the collector, how small can the 

voltage Vc, be made? Give only a qualitative answer.

10.2 The space-charge parameter QC is the product of a dimensionless number Q 
and C, the small-signal gain parameter. Show that Q is independent of the beam 
current, as long as the beam current density is uniform over the beam cross section 

and the beam diameter is constant.

10.3 Using Figure 10.1-3 calculate the gain of a traveling-wave amplifier using 

the fundamental space harmonic under the following conditions:

/ = 9 Gc

K„ = 80 ohms

QC = 0.50

Io =10 amps

V, = 25 kv

d = 0.025

Bo = 725 radians/m

Assume that a circuit sever reduces the over-all gain by 6 db and results in an effec­

tive interaction length I of 7.62 cm. Neglect relativistic effects. Ans.: 33.3 db.

10.4 The traveling-wave amplifier theory developed in this chapter has assumed 

an infinite magnetic field so that transverse motion of the electrons is negligible. 
In a practical tube the magnetic field is finite. When a practical tube is operated 

with rf power output well below the maximum (or saturated) value, the percentage 

of the electron beam intercepted on the slow-wave structure is negligible. When 

the rf power input is increased so that the output power approaches saturation, the 

beam interception on the slow-wave structure often becomes 2 to 5 per cent of the 
total beam current. Explain qualitatively the reason for this increase.

10.5 Show that the apex of the triangle bounding the forbidden region for a helix 

is given by wa/c = sa/L.
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10.6 Show that the beam-coupling impedance K„ for a helix-type traveling-wave 
amplifier utilizing the fundamental space harmonic is given by

Ko = (MtJ) - WJ)]X.(0)

where b is the radius of the electron beam Which is centered on the axis and K/O) 
is the impedance for an infinitesimally thin beam on the axis. The following integral 

will be useful:

/ rlj(yr)dr = ^-[7»’(yr) - 7i2(Tr)] 
Jo

10.7 Using the result of the previous problem and Equation (10.3-22), calculate 

the impedance of a traveling-wave amplifier with ka = 0.2 and y„a = 1.0. The 
diameter of the electron beam is half the helix diameter.

10.8 When positive ions are present in an electron beam, the beam diameter tends 

to shrink, since the electron space-charge forces of repulsion are neutralized. When 

the collector voltage of a traveling-wave amplifier is depressed below that of the 

slow-wave structure, the ions are drained out of the beam into the collector and the 

beam diameter increases. What will be the effect on the gain of the amplifier when 

the collector voltage is depressed, assuming that the amount of electrons inter­
cepted by the slow-wave structure is negligible?

10.9 A traveling-wave amplifier, with voltages applied as in Problem 10.1, 

operates under the conditions b = QC = d = 0, so that the gain is given by Equa­
tion (10.1-75). Amplitude modulation of the rf output may be obtained by varying 

the anode voltage Va«, with the other voltages and rf power input held Constant­
ia) Show that the percentage change in rf power output is related to the per­

centage change in anode voltage by the expression:

= 5A5CN
i out V Ao

(b) Which voltage should be varied to produce phase modulation on the rf 

output with a minimum of amplitude modulation?

10.10 The slow-wave structure of a traveling-wave amplifier is severed perfectly 

at a point sufficiently far from the input that only the growing wave is of impor­

tance. (Perfect severing implies that circuit waves from either direction are ab­

sorbed without reflection and also that the sever is so short that the beam con­

vection current and velocity are unchanged before and after the sever.) Find the 

loss in over-all gain of the device in db due to the severing. Assume small C, and 

b = QC = d = 0. Hint: Rewrite and solve Equations (10.1-53) for the new initial 
values of electric field, velocity, and convection current just beyond the sever. The 

electric field is zero; the velocity and convection current are continuous from just 

before the sever. Find the ratio of the magnitudes of the growing wave E,ti just 

before and just after the sever. Ans.: 3.52db.
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Chapter 11

BACKWARD-WAVE OSCILLATORS 
AND AMPLIFIERS

Let us consider the operation of the traveling-wave tube shown in Figure 
11-1. This tube uses a helix as the slow-wave structure with input and out­
put connections to coaxial lines. In contrast to the forward-wave amplifier, 
this tube has an rf signal impressed onto the helix at the collector end, with

ELECTRON 
GUN

OUTPUT 
SIGNAL

HELIX COLLECTOR

vho

Fig. 11-1 A traveling-wave tube in operation as a backward-wave amplifier. A 
separate power supply connected to the anode permits beam current control 

independent of the helix voltage.

the signal output at the gun end. Separate power supplies are provided for 
the anode and the helix. This provides a means for adjusting the beam 
current independent of the helix voltage. The beam is assumed to be con­
fined by a strong axial magnetic field.

The helix voltage is adjusted to a value less than that normally used 
for forward-wave amplification. Assume Fa« corresponds to an electron 
velocity u<> such that a plot of ka vs. uL/uo = f)eL gives the line OA 

398
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in Figure 11-2. At the point of inter­
section of this line with the — 1 space 
harmonic, the space-harmonic phase 
velocity is equal to the electron veloc­
ity, and some sort of synchronous 
interaction is to be expected. Since 
the group velocity for this space 
harmonic is opposite to the direction 
of electron travel, we would not ex­
pect the interaction to be the same 
as that described in the preceding 
chapter.

Let us consider an electron on the 
outer edge of the electron beam at 
such a radius that it nearly grazes 
the helix. Alternatively, we could 
consider an electron in a thin hollow 
beam of essentially the helix diam­
eter. We shall assume that the 

Fig. 11-2 Brillouin diagram for a tape 
helix. The helix radius and pitch are 

given by the symbols a and L, re­

spectively. The slope of the line OA is 
proportional to the square root of the 

helix voltage.

helix is wound from a thin flat tape of metal. The electron sees rf axial 
electric field due to the helix while passing the gap between adjacent 
turns of the tape, and zero axial field when passing adjacent to a tape. 
We may consider these gaps as points of interaction between the beam 
and the helix.

The helix-beam coupled system effectively comprises a system of feedback 
loops as indicated in Figure 11-3. Bi is the total phase shift around a loop 

Fig. 11-3 Electrons adjacent to a tape helix interacting with the fields in the helix 

gaps. Bi, Bi, and B3 denote loop phase shifts for one, two, and three periods, 
respectively.

encompassing one period L of the helix, 02 two periods, etc., for a frequency 
corresponding to the intersection of line OA with the — 1 space harmonic in. 
Figure 11-2. The circuit is propagating a wave to the left with a funda­
mental phase shift /3L per period at this frequency, due to the impressed 
signal. Since ftL is the phase change in the rf signal which occurs when the 
beam travels a distance L, we have
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01 — BeL + BoL

02 = 2(B,L + BoL)

0, = 3(&L+ £<£), etc. (11-1)

From Figure 11-2 we observe that B-iL and BoL are related numerically by
B-iL = 2s - BoL (11-2)

Under the condition of synchronism, this must be equal to BeL,
BeL = 2s - BoL (11-3)

Introducing this expression into Equations (11-1), we obtain
0i = 2s
02 = 4ir
03 = 6ir, etc. (11-4)

The total loop phase shift for each of the feedback loops is an integral 
multiple of 2s radians. Hence, the tube will oscillate provided that the 
gain per feedback loop is sufficient. If the gain is not sufficient for oscilla­
tion, the tube acts as a narrow band regenerative amplifier. If the tube is 
used as an oscillator, there is no need for an impressed signal at the collector 
end of the helix. Oscillations are generated in the usual manner; that is, an 
infinitesimal noise signal at the proper frequency builds up because of the 
positive feedback until a stable operating point is reached.

If the tube of Figure 11-1 is to be used as an oscillator, the rf input signal 
is replaced by a passive termination, and operation proceeds in the following 
manner. The beam current is increased from zero by increasing the anode 
voltage Vao, with Vho held constant. As the beam current increases, the 
gain per feedback loop also increases. Finally, a point is reached where the 
tube breaks into oscillation. The de beam current corresponding to this 
point is termed the starting current, ISt-

Since there are many feedback loops, it is not necessary that each one 
have a loop gain equal to unity for oscillations to be produced. In fact, we 
should expect the starting current to vary inversely with the number of 
feedback loops or the length of the helix. We shall find that oscillations are 
produced when the product of the gain per wavelength along the helix times 
the number of circuit wavelengths exceeds some critical value. In terms of 
the traveling-wave tube parameters introduced in the preceding chapter, 
this product is proportional to CN.

A traveling-wave tube operated in this manner is known as a backward­
wave oscillator. The rf output power is taken from the electron gun end 
of the helix. In external physical appearance it is very similar to a traveling­
wave amplifier; the helix is usually shorter and larger in diameter, and there 
is no circuit sever or loss pattern.
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The frequency of oscillation is tuned electronically by varying the helix 
voltage. This is easily seen by referring to Figure 11-2. Changing the beam 
voltage changes the frequency corresponding to the intersection of the line 
OA with the — 1 space harmonic. Extremely wide electronic tuning ranges 
are obtainable; typically, the ratio of the highest to the lowest frequency is 
two to one.

With the beam current adjusted to a value below the starting current, the 
tube is usable as a backward-wave amplifier. RF power introduced at the 
collector end of the helix is amplified and delivered out the gun end. Be­
cause of the regenerative nature of the amplification process, extremely 
narrow fractional bandwidths are obtained, of the order of 0.5 per cent. The 
frequency of amplification is tuned electronically by varying the helix 
voltage. In systems requiring a highly selective, electronically tunable 
amplifier the backward-wave amplifier is unexcelled.

In the following sections we shall examine the quantitative aspects of 
these devices. Both oscillation and amplification modes of behavior are 
derived from the same basic theory, which is closely related to the theory 
of the preceding chapter.

11.1 Theory of Back ward-Wave Interaction

The theory of backward-wave interaction closely parallels that given for 
the traveling-wave amplifier in Section 10.1. An electronic equation and a 
circuit equation are derived individually and then solved simultaneously to 
determine allowed values for the “hot” propagation constants.

(a) The Electronic Equation

This equation expresses the electron motion induced by a space harmonic 
of the circuit field traveling synchronously with the electrons. It is given by 
Equation (10.1-18) for backward waves as well as for forward waves. It 
should be clear that synchronism refers to the equality of the electron 
velocity and the space-harmonic phase velocity; no condition is placed on 
the space-harmonic group velocity.

(b) The Circuit Equation

This equation expresses the manner in which currents are induced into 
the slow-wave structure by the beam convection currents and the way in 
which these induced currents propagate and combine.

This equation is derived with reference to Figure 10.1-1. In the case of 
backward-wave interaction, the arrows above the circuit refer to the 
direction of the group velocity, the direction of energy propagation, for each 
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of the waves shown. In the traveling-wave amplifier there was no ambiguity 
since the phase and group velocities were in the same direction. The con­
vection current segment in the beam induces power into the circuit, giving 
rise to incremental waves having group velocities directed away from the 
point of induction.

With this interpretation in mind, the development of Section 10.1(b) 
follows exactly for backward-wave interaction up to and including Equation 
(10.1-27). We shall proceed with the development from this point.

Let r0 = — a + jBn be the complex cold circuit propagation constant for 
a synchronous backward-wave space harmonic with positive phase velocity 
and negative group velocity. The — 1 space harmonic shown in Figure 11-2 
is of this type. Such a wave has a z dependence of the form

e-r<>2 = (11.1-1)

with a and fl„ both positive. We note that the wave amplitude is attenuated 
in the minus z direction corresponding to the direction of power flow.

In order to include the possibility of a backward-wave amplifier we assume 
that energy is introduced onto the circuit from an external signal source at 
the collector end. The total space-harmonic field at an arbitrary point 
(z = a) on the circuit is then given by the superposition of three contribu­
tions as follows:

A. The power coming from the external source at the collector end of the 
circuit (z = I),

Eg„A(a).= E^N'™ (11.1-2)

where Ezno is the value of the space harmonic at z = I corresponding to this 
power.

B. The superposition of the incremental waves dE„n+ arriving at z = a 
from the left are given by

EinB(a) = ^^^dEln+ (11.1-3)

C. The superposition of the incremental waves dEtn_ arriving at z = a 
from the right are given by

Egnc(a) = J^dE^ (H.l-4)

In all cases we note that the waves advance in phase and decay in ampli­
tude from the point of origin, characteristic of backward waves.

The total field at z = a is obtained by summing the above three contribu­
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tions and making use of Equation (10.1-27):

Ein(a) = EgnoJo^ - ^„2Kn I iJ^dz - /jKn / iJ^dz 
¿JO 4 Ja

(11.1-5)

where i is the ac convection current in the electron beam. The variable 
of integration is replaced by r, and a is replaced by z, a variable point, 
obtaining

Ezn(z) = E.not~^-^ - Un2Kn / farW^dr
JO

- y„2Kn f'i(r)f-T^dr (11.1-6)

This equation can be differentiated twice to obtain

r2E,„ = VJE^^ - li(r)^dT
4 Jo

- iMr^-^dr - (11.1-7)

where it has been assumed that the resultant space harmonic has a “hot” z 
dependence of the form

e-r*

The last two equations are combined to yield the circuit equation for back­
ward-wave interaction:

(r2 - V^E^ = -V^JKni (11.1-8)

This differs from the corresponding forward-wave amplifier equation, 
Equation (10.1-34), only in the sign of the term containing the impedance.

(c) Solutions for Cumulative Interaction

= jfteftJYpKnl, 
2Vo

(11.1-9)

Allowed values of the “hot” propagation constant r are determined from 
a simultaneous solution of the electronic and circuit equations. One obtains 

(r2 - r02)[ (r - jW + 
Uo

This equation is simplified by introducing certain parameters. C and QC 
are defined as in Equations (10.1-36) and (10.1-37). b and d are defined by

r„ = jft(l + Cb + jCd) (11.1-10)

and 5 is defined by Equation (10.1-39). Equations (10.1-40) and (10.1-41) 
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are correct as written for backward-wave interaction. Equation (11.1-9) 
simplifies to

62 = 5—¡-4-----7 - 4QC (11.1-11)
b+jd-fi

Equation (11.1-11) determines three allowed values for the “hot” 
propagation constant in terms of the various operating parameters of the 
tube. The various fields and beam quantities may thus be written as a 
superposition of three waves, as in Equations (10.1-53). The boundary 
conditions at z = 0 for these various quantities are the same as in the 
forward-wave amplifier, as indicated in Equations (10.1-60). It should be 
noted that E2n(0) corresponds to the rf output power for backward-wave 
interaction, and we have not so far determined its value explicitly. None­
theless, we can solve Equation (10.1-60) to determine the values of Eiri, 
E^, and E2r3 in terms of E2„(0). Thus, we obtain Equation (10.1-61) and 
similar expressions for EzT2 and EzT3 by permuting the subscripts.

It will be most convenient to write all of our equations in terms of the 
waves corresponding to the space-harmonic field due to the circuit. Com­
bining Equations (10.1-61) and (10.1-73), we obtain

Eznt _ 612 + 4QC
Ezn(0) (6j - SaX«! - 6,) 1 • - 7

with expressions for Ezn2 and Ezn3 obtained by permuting subscripts. The 
total space-harmonic field at any axial position is given by

Ezn(z) = Ez„ie-G‘ + E^-^ + E2n3e~r” (11.1-13)

Using Equation (11.1-12) and similar expressions for Ezn2 and Ezni, we 
obtain at z = I:
Ezn(l) = A + 4QC _ri! A + 4QC _T2l
F2B(0) (6j — 62) (6i — 63) (62 — 6s) (62 — 61)

+ (6 6 (1L1-14>
(03 — 01)(03 - O2)

The definitions given by Equations (10.1-39) and (10.1-70) are substituted 
into this equation, obtaining
F2n(Q i2rN _ 612 + 4QC 2tIiCn I 4QC 2r3,cN
Ezn(0) (61 — 62) (61 — 63) (62 — 63) (62 — 61)

(03 — 01)(03 “ O2)

The gain of a backward-wave amplifier is given by
gain = 20 log | | db (11.1-16)



BACKWARD-WAVE OSCILLATORS AND AMPLIFIERS 405

which may be calculated directly from Equation (11.1-15). The gain is seen 
to be a function of QC and CN directly and of 6, d, and QC indirectly, since 
the latter quantities determine the values of the 6’s. We shall further con­
sider the backward-wave amplifier in a later section.

As the value of the right-hand side of Equation (11.1-15) approaches 
zero, the backward-wave amplifier gain approaches infinity. At this point 
the tube will oscillate, since a finite value of Eln(0) is obtainable for a van­
ishingly small value of Ezn(l). Thus, the threshold conditions for oscillation 
are given by the solution of the equation

¿i2 + ^QC 622 + 4QC
(Si — ¿2) (¿1 — 63) (62 - 63X62 — 61)

-i------------6a2 + 4QC—2xtscN _ 0 nJ i_i7) 
+ (63 - 60(63 - 62) ° U ’ n

Since this equation has real and imaginary parts, there are in reality two 
simultaneous equations to be solved. Thus, two conditions are determined. 
One condition is CN, a quantity which we may interpret loosely as the 
product of gain per wavelength times the number of circuit wavelengths. 
This interpretation is based upon assuming an analogy to forward-wave 
amplifier theory, whereas in reality Equation (11.1-15) shows that back- 
ward-wave amplifier gain is given by an extremely complicated expression, 
not simply proportional to CN. The other condition determined by Equa­
tion (11.1-17) is b, the degree of synchronism between the beam and the 
space harmonic. This condition is analogous to the phase condition in 
oscillator theory. For a given helix voltage, this condition determines the 
frequency of oscillation precisely.

Solutions for the backward-wave oscillator starting conditions are not 
easily obtained. This is due to the fact that the values of the 6’s are by 
Equation (11.1-11) functions of b and C, which are unknowns. Thus, 
Equations (11.1-11) and (11.1-17) must be solved simultaneously, a task 
accomplished most readily with an analogue computer.

Let us examine the nature of the solutions in two simple cases. First, we 
assume zero space charge (QC = 0) and zero circuit loss (d = 0). The 
start-oscillation conditions are from computer calculations:1

CN = 0.314
b = 1.522 (11.1-18)

For a given helix voltage on a particular tube, the first condition in effect 
determines the beam current above which oscillations are produced. The 
second condition determines the exact frequency of oscillation. The cor­

1 Reference 11.1.
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responding values of S are

= 0.725 +>0.150

¿2 = -0.725 +>0.150

5s = 0.083 - >1.796 (11.1-19)

Phasors representing the three waves are shown in Figure 11.1-1. These 
phasors are derived from Equation (11.1-12) and the appropriate values of 6.

(a) COLLECTOR END

Ezna

(b) GUN END

Fig. 11.1-1 Phasor diagrams for the three waves in a backward-wave oscillator 

with QC = d = 0. (a) Waves at the collector end of the helix; these waves add to 
zero, (b) Waves at the gun end of the helix; these waves add to produce the 

output signal.

At the collector end of the circuit, the three phasors add to zero. As these 
waves propagate from the collector end to the gun end, they experience 
differential phase shift and different degrees of amplitude change by 
Equations (11.1-19) so as to obtain a non-zero resultant field at the gun end. 
The only wave that grows in this direction is Etni, and we see from Figure 
11.1-1 that this contributes only slightly to the total field at the gun end. 
Thus, backward-wave interaction is seen to be principally an interference 
effect between various waves rather than a growing-wave phenomenon as in 
the forward-wave amplifier. The conditions in a backward-wave amplifier 
are similar to those shown in Figure 11.1-1; in this case, the three waves at 
the collector end do not quite add to zero.
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As a second example, we consider the solutions for large space charge 
(QC > 0.25) and zero circuit loss (d = 0). Under these conditions it can 
be shown2 that the start-oscillation conditions are

CN i(QC)^

b^^C (11.1-20)

and the corresponding values of S are

-jV4QC[1 - l(QC)-3'4]

S2 j^4QC

«3 -jV4QC[1 + HQC)“’'4]

62 corresponds to the fast space-charge wave, 
as in Equation (10.1-51). This wave is negli­
gible in amplitude compared with the other 
two waves. The phasor diagrams for the 
three waves are shown in Figure 11.1-2 for 
QC = 1. We see that for large space charge 
we may think of the backward-wave oscillator 
circuit field as given by the interference of two 
waves. At the collector end they are 180 de­
grees out of phase, whereas differential phase 
shift causes them to be in phase at the gun 
end.

Accurate computations have been made of 
the start-oscillation conditions over the use­
ful ranges of space charge and circuit loss.3 
These results are presented in Figures 11.1-3 
and 11.1-4. These curves are used as follows. 
For a given helix voltage the ratio Q/N is cal­
culated (both Q and N are independent of 
beam current)4. CN for start oscillations is 
obtained from Figure 11.1-3. Then b is cal­
culated from Figure 11.1-4 and the known 
value of CN. The beam current can be cal­
culated from the value of CN and the known 
values of beam-coupling impedance, beam 
diameter, etc. This procedure gives the start-

(11.1-21)

(a) COLLECTOR END

Eznz

Ezni

Eznz

(b) GUN END

Fig. 11.1-2 Phasor diagrams 
for the three waves at the two 

ends of the helix of a back- 

ward-wave oscillator with QC 
= 1, d = 0. (a) Collector
end. (b) Gun end.

’Reference 11.1. Equations (11.1-21) were not correct as originally published. 
Hbid.
’See Problem 10.2.
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Fig. 11.1-3 Oscillations are produced in a backward-wave oscillator for values of 

CN equal to or greater than the value given above. Its value is a function of the 
space-charge parameter and the total circuit loss (Reference 11.1). (Courtesy of 

Proceedings IRE)

ing current at one frequency; it is repeated to determine the starting condi­
tions at other frequencies.

The above theory and results apply only at the threshold of oscillation. 
The equations were derived on the basis that all rf beam perturbations are 
extremely small so that the various physical equations are all linear.6 As 

“This was discussed in connection with Equations (9.3-12) and (10.1-12).
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the beam current is increased above the starting current, the level of oscilla­
tion is limited by nonlinear effects in the beam kinematics. The output 
power increases with beam current and the oscillation frequency decreases 
slightly; the latter effect is known as frequency pushing.

Q 
N

Fig. 11.1-4 Curves determining & in a backward-wave oscillator at start oscillation 

as a function of the space-charge parameter and circuit attenuation, b determines 
the exact frequency of oscillation, using Equation (10.1-40) (Reference 11.1). 

(Courtesy of Proceedings IRE)

Another effect that may appear at higher beam currents is a higher mode 
of oscillation. This mode is predicted as the next higher-order solution of 
the transcendental Equation (11.1-17). Since this mode requires a beam 
current related to the main-mode starting current by a factor of eight or 
greater, it is not obtained under normal operating conditions.

The rf power output cannot be predicted from the linear theory pre­
sented here. A combined theoretical-empirical analysis has been made to 
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determine this important quantity.6 The results are that the maximum 
electronic efficiency is given by

V.^L3C (11.1-22)

for small space charge (QC < 0.5) and by

for large space charge (QC > 0.5), where C and wq are calculated at the 
operating value of beam current, which is somewhat larger than the starting 
current. Since C and wq/w are typically quite small in these tubes, maxi­
mum electronic efficiencies are usually no more than a few per cent. These 
efficiencies are maximum in the sense that various imperfections in the 
tube (such as circuit loss and poor circuit match) cause further reduction 
of the output power.

11.2 Backward-Wave Oscillators

The most commonly used slow-wave structure for backward-wave 
oscillators is the helix. Interaction is with the —1 space harmonic as 
shown in Figure 11-2.

The characteristics of the Brillouin diagram for the helix have been 
determined in the preceding chapter. The frequency of oscillation is ap­
proximately given by the intersection of the voltage line OA in Figure 11-2 
with the — 1 space harmonic. An accurate determination of the frequency 
requires the use of Equation (10.1-40) together with a knowledge of b and C.

Over what frequency range will a typical tube operate? As the helix 
voltage is increased, the voltage line approaches coincidence with the 
fundamental space harmonic. This situation occurs at a frequency cor­
responding to ka = 0.5. The electrons are in synchronism with two space 
harmonics simultaneously. If the ends of the helix are not perfectly 
terminated, reflections are set up which are amplified in both directions, 
causing erratic behavior in the power output as a function of frequency. 
This situation is usually avoided by restricting operation to frequencies 
below this point.

At extremely low frequencies the coupling impedance K_t drops off 
rather seriously, as we shall see later. Since there is an upper limit to the 
beam current, CN falls below the start-oscillation value, and the tube will 
not oscillate. Thus, operation is usually restricted to the frequency range 
from ka equal to 0.1 or 0.2 up to ka slightly below 0.5.

’Reference 11.2.
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Next we shall consider an evaluation of the coupling impedance K~i. 
No exact theoretical analysis has been made of this parameter. However, 
several rather complicated approximate analyses have been made.7 Follow-

V Vf“j^oL

j I j —I
—L— a

I*------- L---------J !

Fig. 11.2-1 Cross section of a thin tape helix obtained by the intersection with the 

semi-infinite plane given by 6 = 0.

ing the pattern set up in the previous chapter, we shall present an extremely 
simple approximate evaluation of K~i which compares favorably with the 
more complicated analyses over the useful frequency range of the helix.

Let us consider a thin tape helix. Figure 11.2-1 shows a cross-sectional 
view of the helix obtained by means of the intersection with the semi­
infinite plane 0 = 0. By Floquet’s Theorem the voltages across two succes­
sive gaps in this plane differ by the factor assuming negligible circuit 
attenuation. We consider, for the purpose of this analysis, the set of space 
harmonics with positive group velocity. Identical results are obtained for 
the set with negative group velocity.

From Equation (10.3-7) the axial electric field at r = a and 0 = 0 is 
given by

Ez = BnIn(yna)t-^ (11.2-1)
n

We assume that the electric field does not vary with position within the 
gap. The evaluation of the coefficients Bn proceeds as in Equations 
(10.2-15) to (10.2-17), obtaining

BnLIn(y„a) = MunyV (11.2-2)

where Mu., is defined by Equation (10.2-20) and V is the voltage across 
the gap at z = 0. Thus, the total axial field within the helix is given by

n

a summation of space harmonics.

’References 11.3, 11.4.
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The impedance is evaluated from Equation (10.1-19) asJ Mi(^2M2^\V\2
1 2B2-tPS 2BNL2P (11.2-4)

Fig. 11.2-2 Backward-wave impedance of a tape helix for b/L = 1/3. The sim­
plified theory of this chapter is compared with the more complicated theoretical 

values derived by Tien (Reference 11.4) and Watkins-Ash (Reference 11.3).

where the space-harmonic amplitude is obtained from Equation (11.2-3).
Af2(„)2 is defined by the equation 

where B is the beam cross-sectional area, and the integral is taken over the 
beam cross section.

The impedance for the fundamental is given in the same manner as
J l^l2«^ M1(0)2M2(0)2|T|2

2B2PS 2Bo2PS

Combining Equations (11.2-4) and (11.2-6), we obtain

„ _ „ Mi(_i)2 M^2 (BqL)2
1 °M1(n2 MiW2 (B^L)2

(11.2-6)

(11.2-7)

relating the beam-coupling impedances of the fundamental and — 1 space 
harmonics. Since we have derived an expression for Ko in the preceding 
chapter, this equation enables us to determine K-i.



Fig. 11.2-3 SE 201 backward-wave oscillator. Since this tube is operated with the cathode at ground potential, an insulator is provided 

in the rf output connector to isolate the high voltage on the helix. (Courtesy of Stewart Engineering Co.)
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From Figure 11-2 we have the following relationships: 

ß„L = 2irka

ß_iL = 2ir(l - ka) (11.2-8)

These relations are inserted into Equation (11.2-7) together with Equation 
(10.3-22) for Ko to obtain

K^i = Mii-n 2 15(fca)3 
(1 — ka)*

sin2 ^-(1 — ka)
----------- -------- ohms

sin2 ^ka 
Li

(11.2-9)

This is plotted in Figure 11.2-2 as a function of ka forb/L = |. Also plotted 
are the results of two other analyses.8 A comparison of these three results 
tends to substantiate the approximate analysis we have used.

The radial variation of the —1 space-harmonic field is proportional to 
the function Ifiyir), plotted in Figure 10.3-2. This function goes to zero 
on the axis, so electrons there do not interact with the circuit. Consequent-

(b)

Fig. 11.2-4 SE 201 backward-wave oscillator, (a) Vacuum tube alone, without 
rf output coupling and focusing magnet, (b) Complete package of tube in per­

manent magnet. The package is 22 cm long and 11 cm in diameter. (Courtesy 

of Stewart Engineering Co.)

aIbid. 
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ly, backward-wave oscillators are often built using hollow beams instead of 
solid ones.9

As an example of a practical backward-wave oscillator, let us consider the 
Stewart Engineering Company SE 201, shown in Figure 11.2-3. Photo­
graphs of the tube are shown in Figure 11.2-4. This tube delivers a mini­
mum of 10 mw of power electronically tunable over the frequency range 7 to 
12.4 Gc. The power output and helix voltage as a function of frequency 
are shown in Figure 11.2-5 for a beam current of 7 milliamps. The electron

Fig. 11.2-5 Electrical characteristics of the SE 201 for a constant beam current of 
7 ma. (a) Power output vs. frequency, (b) Tuning curve, helix voltage vs. fre­

quency. (Courtesy of Stewart Engineering Co.)

beam is hollow, with an outer diameter of 2.9 mm and an inner diameter of 
2.4 mm. The power may be varied by means of a control grid in the electron 
gun, which varies the beam current. Amplitude modulation is obtained in 

8Space-charge reduction factors for hollow beams are given in Reference 9.3.
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this manner. The collector is cooled by heat conduction to the envelope of 
the package.

The helix is a molybdenum tape, 0.127 mm thick and 0.508 mm wide. 
The tape is wound into a helix with an inside diameter of 3.2 mm and a 
pitch of 1.06 mm. At the highest operating frequency, ka = 0.416.

The tube is packaged in a permanent magnet; the complete package 
weighs 11 pounds. The electron beam is focused using confined flow as 
described in Section 3.4(b); that is, the magnetic field is relatively uniform 
from the cathode to the collector. The permalloy rings help to provide a 
uniform magnetic field as in the tube of Figure 10.3-7. The gun end of the 
helix is connected to the center conductor of a coaxial cable for rf output 
power by means of a pin through the glass envelope of the tube.

A lossy material is applied at the collector end of the helix so as to provide 
an internal rf termination. The pin connection at this end of the helix is for 
connection to the helix dc power supply.

An important characteristic of oscillators is the relative strength of the 
desired output signal as compared with all other spurious frequencies. The 
desired signal in this tube is at least 60 db larger than the total power in all 
spurious signals. Backward-wave oscillators in general produce extremely 
clean output signals.

The chief disadvantage of the backward-wave oscillator is its low elec­
tronic efficiency. At the highest frequency at which the SE 201 operates 
the tube has an electronic efficiency of only 0.3 per cent. On the other hand, 
the backward-wave oscillator provides a wider electronic tuning range than 
any other microwave tube. The backward-wave oscillator has been built 
at higher frequencies than any other microwave tube; power outputs of a 
few milliwatts have been obtained at 500 Gc.

11.3 Backward-Wave Amplifiers

The backward-wave oscillator may be used as a backward-wave amplifier, 
provided that rf coupling is furnished at the collector end of the helix for 
application of the input signal. The beam current is adjusted to a value 
below the current needed to start oscillation. The amplified output signal 
is taken from the gun end of the helix.

The helix voltage is adjusted as indicated in Figure 11-2. Amplification 
is obtained at the frequency of synchronism with the — 1 space harmonic. 
As the signal frequency is varied from the synchronous value, the space- 
harmonic phase velocity departs from the beam velocity much faster 
than in a forward-wave amplifier. As a result, backward-wave amplifiers 
have much narrower fractional bandwidths, typically 0.1 to 1 per cent.

The voltage gain of a backward-wave amplifier is given by the reciprocal 
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of the right-hand side of Equation (11.1-15). For a particular tube, at the 
beam voltage and frequency corresponding to synchronism, the right-hand 
side of Equation (11.1-15) is a function of the beam current, F(I0). At start 
oscillation it is equal to zero,

F(Ist) = 0 (11.3-1)

We can find an approximate expression for the gain as a function of beam 
current by expanding F(I0) in a Taylor series about the starting current. 
That is,

F(IO) ~ F(IST) + (L- 1st)01ojzsr
(11.3-2)

In taking the partial derivative, we make the simplifying assumption that 
the total change in F with current is due to the change in C in each exponent. 
Thus, we neglect the variations in the 6’s and QC. Using this approxima­
tion, one obtains:

= Io - 1st 2tCWF 6,(6/+ 4QC) 62(6/ + 4QC)

1st 31 st (6i — S2)(Si — S3) (S2 — S3)(S2 — 61)

W + 4QC) 

(63 — 61) (d3 — S2) (11.3-3)

where all the parameters are evaluated at IST. The gain may thus be 
written as

1 k'
gain = 20 log . . . db = 20 log-------- y- db (11.3-4)

I F \1 o) I 1 1 o
1st

where k' is a function of the helix loss and the space-charge parameter, as 
defined by the last two equations. Values of k' are given in Table 11.3-1 for 
zero helix loss and various values of QC. Maximum gain is obtained for QC 
in the neighborhood of 0.5. Equation (11.3-4) is plotted in Figure 11.3-1 
for QC = 0.

Table 11.3-1

QC
0 

0.25 

0.50 
0.75 
1.00 
1.50

k’
1.01
1.22 

2.03 
1.71

1.83 
1.68
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Examination of Figure 11.3-1 reveals that appreciable gain is achieved 
only for beam currents extremely close to the starting current value. In 
addition, slight variations in the beam current produce large fluctuations in

Fig. 11.3-1 Theoretical gain of a single helix backward-wave amplifier for QC = 0. 
The value of gain is the maximum value at the center of the amplification band. 

Appreciable amounts of gain are obtained only for beam currents just below the 

starting current, 1st.

the gain at high-gain levels. This characteristic makes gain stability a seri­
ous problem. This is a consequence of operating so close to the point of 
oscillation. Since IST generally increases with frequency, the gain at 
constant beam current generally decreases with frequency.

Another disadvantage of this device is the lack of discrimination against 
signals outside the amplifying passband. All signals may propagate along 
the helix from the input to the output without any attenuation other than 
the normal helix attenuation. This latter attenuation is kept as small as 
possible so as to obtain maximum gain at the operating frequency. In 
contrast, the circuit sever in the forward-wave amplifier provides 60 db or 
more of attenuation to signals outside the amplifying band.

These disadvantages are eliminated in the device shown in Figure 11.3-2, 
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the cascade backward-wave amplifier.10 This device is evolved from the 
single-helix backward-wave amplifier by using two helices of equal length. 
Each helix has one end terminated as shown. This procedure is analogous 
to the transition from a two-cavity to a three-cavity klystron amplifier.

The amplifier functions in the following manner. The first helix acts as a 
single-helix backward-wave amplifier, with the amplified circuit power be­
ing dissipated in a termination at the gun end of the helix. The modulation

TERMINATION

VA
INPUT 

SIGNAL
OUTPUT 
SIGNAL

TERMINATION

va
ELECTRON 

GUN I

COLLECTOR

Vao

Fig. 11.3-2 The cascade backward-wave amplifier.

produced on the beam by the first helix is carried by space-charge waves to 
the second helix, where backward-wave interaction produces additional 
gain. The output signal is removed from this helix as shown in Figure 
11.3-2. Because of the physical separation between the two helices, the 
input and output ports of the tube are effectively isolated for frequencies 
outside of the amplification band.

It may at first appear that the gain of the cascade amplifier is merely 
twice the gain in db obtained on the first helix. However, this is not the 
case; the gain of the second helix is considerably larger than that of the first 
helix. This is due to the fact that the beam is premodulated upon entering 
the second helix, resulting in enhanced interaction and larger overall gain. 
As an example, for a beam current of one-half the starting current for either 
helix, the gain in the first helix is 6 db, whereas the gain in the second helix 
is 15 db. These theoretical values are for QC = d = 0. In this case, an 
overall gain of 21 db is obtained for a beam current considerably below the 
starting current.

Experimental curves for the gain of a particular cascade backward-wave 
amplifier are shown in Figure 11.3-3.11 The variation of gain with beam 
current is much less severe than in the case of a single-helix tube, for equal 
overall gains. One drawback of the backward-wave amplifier is evident

•’Reference 11.5.
uIbid.
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1st

Fig. 11.3-3 Experimental measurements of gain in a cascade backward-wave 
amplifier. Appreciable values of gain are obtained for beam currents considerably 

below the starting current. The helix voltage is adjusted for maximum gain at each 

frequency (Reference 11.5). (Courtesy of Proceedings IRE)

from these curves. The maximum gain varies considerably with frequency 
for a constant beam current. For a beam current of 3 ma, the gain varies 
from 17 to 27 db for the frequencies indicated in the figure.12 Constancy of 
maximum gain can be achieved by varying the beam current in conjunction 
with the helix voltage.

The cascade backward-wave amplifier is thus seen to overcome the most 
serious drawbacks of the single helix version. As a result, we have a practi­
cal device for those applications requiring a narrow-band amplifier, voltage 
tunable over a wide frequency range.

PROBLEMS
11.1 An idealized, lossless slow-wave structure has a Brillouin diagram whose 

fundamental or zero-order space harmonic is a straight line between the points

“Thus at 2175 Me the starting current is 3.45 ma. For a beam current of 3.0 ma, 

I./Ist = 3.0/3.45 = 0.87, and the corresponding gain is 27 db. On the other hand, at 
3600 Me a beam current of 3.0 ma gives L,/Ist = 3.0/8.7 = 0.34. The corresponding 
gain is 17 db.
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0L = 0, a = W./2 and 0L = tt, w — w„. The axial component of the electric field 
is given by the expression

Efx,y,z) =

CO

10L\eo) Z/n2+l 
— CD

where

1J

and P is the total power flow for a propagating mode.

(a) Sketch the Brillouin diagram over the range —2ir<0L< 2ir. Indicate 
typical points of operation for traveling-wave amplifiers and backward-wave 

oscillators.
(b) Derive expressions for the beam-coupling impedances for fundamental and 

backward-wave interaction.

(c) In operation as a forward-wave amplifier the beam voltage is pulsed up to 

give synchronous interaction with the fundamental space harmonic. During 

the rise time of this voltage pulse, the electron velocity is synchronous with 

the phase velocity of the backward wave, and there is the possibility of back­

ward-wave oscillations. Derive an expression for CN for the backward wave 

as a function of the variables w and 0e, assuming fl_i = fl. (small C). The 
ratio of 1» to IV'2 remains constant during the rise time of the voltage.

(d) What is the maximum gain of the traveling-wave amplifier at the frequency 

w = jo;,,, limited by the criterion that backward-wave oscillations are not 

produced during the rise time of the beam voltage pulse? Assume small C, 
and QC = d = 0. 6 = 0 for the amplifier. The circuit is perfectly matched 
at both ends. Ans.: 11.9 db.

11.2 Show that 7W2(—i)2 in Equation (11.2-9) for an annular beam in a helix is 

given by

M^o2 =
(&2 - c2)Il1(y..1a)

where a is the helix radius, b is the outer beam radius, and c is the inner beam radius. 
The following expressions will be helpful:

I-far) = —I far) 

rh2(ar)dr = yr[h2(ar) — I far) I far)] z

11.3 A tape helix backward-wave oscillator is to be designed to oscillate at 9 Gc. 

Find the helix length and beam current necessary for oscillations to start at a beam 
voltage of 2500 volts, using Figures 11.1-3 and 11.1-4, assuming negligible helix 
less. Assume the electron beam is a thin annular beam just grazing the helix, so 

that = 1 ; assume i/L = J so that the helix impedance is given by Equation 
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(11.2-9) as plotted in Figure 11.2-2. The following parameters are also given:

Helix radius a = 2.54 mm
cot = 10

Space-charge reduction factor R = 0.4
Beam cross-sectional area = 4 mm2

Ans.: 2.06 cm, 49.6 ma.

11.4 Calculate the power output for the backward-wave oscillator of the previous 

problem at beam currents of 60 ma, lOOma, and 200 ma.

11.5 For large values of the space-charge parameter QC, the incremental propaga­
tion constants of a backward-wave oscillator are given by Equations (11.1-21).

(a) Show that the magnitudes of the convection current and the z component 
of the electric field due to the circuit at the threshold of oscillation are given 

as functions of z by the equations:

I i(z) I = I i(0 I sin ifttCfQC)-11^
| Ezn(z) | = | EzJO) |cos ifteCfQCy-viz

(b) From the results of part (a) show that the starting value of CN is given by

CN = %(QC)W
(c) If the beam current is made much larger than the value necessary to start 

oscillations, the backward-wave oscillator will oscillate in a higher-order mode. 

Assuming that this higher order mode occurs at the same frequency and beam 

voltage as the fundamental mode of oscillation, show from the results of part 

(a) that it occurs at a beam current equal to 81 times the starting value for 

the fundamental mode of oscillation.
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Chapter 12

CROSSED-FIELD DEVICES

In the microwave devices we have described in previous chapters, the de 
magnetic field has been used merely as a means of confining the electron 
beam to a given diameter. The beam focusing using the de magnetic field 
and the rf interaction process have been considered as two independent 
problems. In crossed-field devices, on the other hand, the de magnetic 
field plays a direct role in the rf interaction process. We shall find that 
amplifier gain, oscillator starting conditions, and power output are all func­
tions of the de magnetic field in crossed-field devices.

All crossed-field devices have one property in common. In the rf inter­
action space, there exists both a de magnetic field and a de electric field, 
perpendicular to each other. As an introduction to these devices, let us 
study the motion of a single electron in such a field configuration.

Figure 1.2-2 in Chapter 1 shows a rectangular coordinate system in a 
region of crossed electric and magnetic fields. The electric field intensity E 
is directed in the negative y direction, and the magnetic flux density B is 
directed in the negative z direction. We wish to study the motion of an 
electron which leaves the origin at time t = 0 with an initial velocity given 
by the three components uox, uoy, and zero. Since there is no force in the z 
direction, the motion of the electron is constrained to the x-y plane.

The electron motion is given by the solution of Equations (1.2-10). The 
solutions for the instantaneous velocity and position are

dx E (E \ . ,
Ux = 37 = n — I -5 — Icos wd + Uoy sin wd (12-1) at d \d /

uy = 37 = (35 — uox )sin wd + cos wd (12-2)
at \d /

and
x = ~i — — — u^sm wd + —(1 — cos wd) (12-3)

D Wc\t> / 0>c

423
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where

Fig. 12-1 Electron motion in a region of uniform, crossed de electric and magnetic 

fields. Trajectories are shown for electrons with a zero y component of velocity at 

x = 0 and with various values for the x component.

1(E
V = w\B — UoxRl — COS wcf) + — sin wct 

/ Wc
(12-4)

eB
m

is the cyclotron frequency in radians per second. The electron trajectories 
determined by these equations are shown in Figure 12-1 for uov = 0 and 
various values of u0X.
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Solutions for non-zero values of u0p are similar; the trajectories are ob­
tained from Figure 12-1 by translating the x-y coordinate system so that the 
origin falls at other points on the trajectories. In this case, a value of 
given in the figure is interpreted as the x component of velocity along the 
trajectory for which the y component is zero.

The solutions exhibit several interesting properties.

1. The motion is cycloidal except for the case u„x = E/B, = 0, for 
which the electron moves in a straight line. In this particular case, the force 
due to the electric field is exactly balanced by the force due to the magnetic 
field.

2. The frequency of the cycloidal motion is given by the cyclotron fre­
quency and is thus a function only of the magnetic field and the charge-to- 
mass ratio for an electron.

3. The average drift velocity in the x direction is given by E/B, com­
pletely independent of the initial velocities and uOi,.

Item number 3 is of particular interest. An approximate picture of the 
electron motion in a region of crossed electric and magnetic fields can be 
obtained by neglecting the cyclic motion of the electron and considering 
only the average motion. This average motion is perpendicular to both E 
and B and has a magnitude E/B. It is a function only of the fields at the 
location of the electron and does not depend on the electron’s past history. 
Thus, the electron tends to follow an equipotential line of the electric field.

The basic elements of a crossed-field device are shown in Figure 12-2.1

Fig. 12-2 Basic elements of a crossed-field device. Rf electric field lines due to a 
traveling-wave on the slow-wave structure are pictured at a particular instant 

of time.

Electrons are traveling parallel to a slow-wave structure. There is a de 
electric field E directed as shown away from the slow-wave circuit and a de 
magnetic field B directed into the page. The de motion of the electrons is

•This linear model is useful for analysis. Practical crossed-field devices are usually 
constructed in a cylindrical configuration, as we shall see later. 
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assumed to be as in Figure 12-1 for u0I = E/B. The slow-wave structure is 
assumed to be propagating a wave in the direction of the electron flow with 
a phase velocity equal to E/B. Thus, some form of synchronous inter­
action is evidently possible between the electrons and the electromagnetic 
wave.

We can view the interaction from a frame of reference traveling to the 
right with a velocity E/B. In this reference frame both the electromagnetic 
wave and the electrons appear motionless until we include the effect of the 
rf electric field on the electron motion.

The trajectories which result when we include the effect of the rf electric 
field are shown in Figure 12-3. These trajectories are derived using the

77 

2

______________ I_______________  

O

PHASE OF RF WAVE

Fig. 12-3 Electron trajectories in a reference frame synchronous with the rf travel­
ing wave. Space-charge forces are neglected. The average drift motion of the 

electrons is seen to be along lines orthogonal to the electric field lines.

following reasoning. In the reference frame the rf electric field appears 
stationary. Thus, we may consider the electron motion to be determined 
by static fields, the electric field having spatial dependence but no time 
dependence. If we assume that the electric field’s spatial dependence is 
slow and continuous, we may use the solutions previously derived for a 
constant field, which are illustrated in Figure 12-1. Thus, the motion has a 
cycloidal appearance with a net drift of the electron along a path orthogonal 
to the electric field lines. The cycloidal amplitude and period vary mono­
tonically corresponding to the monotonically increasing strength of the 
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electric field as the slow-wave structure is approached. For simplicity, 
space-charge forces are neglected.

The average kinetic energy of the electron at any position is determined 
from the average drift velocity, given by

Uavg = § (12-5)

where ET is equal to the sum of the de electric field and the rf electric field at 
the position under consideration. Since the rf field is strongest at the slow- 
wave structure, and decays monotonically away from it, the electron con­
tinuously gains average kinetic energy as it drifts toward the slow-wave 
structure. On the other hand, the electron loses de potential energy of an 
amount given by the product: eE X (displacement of the electron in the 
direction of the slow-wave circuit). This de potential energy loss is greater 
than the increase in kinetic energy of the electron; the balance of the energy is 
delivered to the rf field by the mechanism of induced currents. That is, each 
electron continuously induces a current in the slow-wave circuit; the power 
delivered by each electron to the circuit is proportional to the dot product of 
the total electron velocity and the rf electric field.

Electrons in phases given by ir/2 < |0| < fir (see Figure 12-3) move 
away from the slow-wave structure rather than toward it. These electrons 
extract a net amount of energy from the rf field. However, since the rf 
electric field is much weaker for these electrons than for the group which 
moves toward the circuit, there is still a large net transfer of energy to the 
rf field. In a magnetron oscillator the electrons which move away from the 
slow-wave circuit return to the cathode and serve the useful purpose of 
heating it so that less heater power is required. They also liberate secondary 
electrons which constitute a large percentage of the total emission.

Approximate trajectories which neglect the cycloidal motion are indi­
cated by dotted lines in Figure 12-3. These trajectories are constructed by 
drawing lines orthogonal to the E-field lines. The average velocity in the 
reference frame at any point is 1/B times the rf electric field at that point.

One important characteristic of crossed-field devices should be noted at 
this time. As the electrons interact with the rf field, they remain in syn­
chronism with it until they are finally collected on the slow-wave structure. 
Crossed-field devices are said to convert potential energy into rf energy, 
since the electron’s kinetic energy in the direction of propagation of the rf 
wave is essentially unchanged. This is in contrast to the klystron and the 
traveling-wave tube, wherein rf energy is derived from the longitudinal 
kinetic energy of the electrons. The fact that the electrons remain locked to 
(or phase focused by) the rf wave, even at extremely large signal levels, 
leads to very high electronic efficiencies in crossed-field devices. Efficiencies 
of 70 per cent and higher have been obtained.
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In the following sections we shall examine three classes of crossed-field 
devices, the magnetron, the crossed-field amplifier, and the M-carcinotron. 
Because of the inherent complexity of the two-dimensional electron motion 
in crossed fields, we shall restrict ourselves to somewhat idealized models of 
the physical phenomena. This idealized approach is also necessitated by the 
fact that there is not complete agreement among individuals working in the 
field as to the correct approach to some of the basic theoretical problems.

12.1 Magnetrons

A schematic illustration of the functional parts of a magnetron oscil­
lator is shown in Figure 12.1-1. A cylindrical cathode is surrounded by an

Fig. 12.1-1 A magnetron oscillator.

anode consisting of a re-entrant slow-wave structure. A uniform magnetic 
field, parallel to the cylindrical axis, fills the region between cathode and 
anode.

Electrons emitted from the cathode would flow radially to the anode 
were it not for the magnetic field, which causes the electron trajectories 
to be bent. In the crossed-field geometry of Figure 1.2-2, the maximum 
distance an electron can penetrate toward the anode is obtained from Equa­
tion (12-4). We see that this distance is inversely proportional to the 
strength of the magnetic field. Neglecting the effect of the rf field, a suf­
ficiently large magnetic field causes most of the electrons to turn back 
toward the cathode before reaching the anode. This results in a dense, 
turbulent sheath of electrons rotating about the cathode.

The slow-wave structure propagates an electromagnetic wave around its 
circumference with the average angular speed of the electrons. This pro-
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duces an interaction of the type described in connection with Figure 12-3. 
Electrons flow to the anode in “spokes” which are synchronous with the 
rf wave. See Figure 12.1-2. The re-entrant nature of the slow-wave struc­
ture provides a built-in feedback mechanism which permits oscillations to

Fig. 12.1-2 Approximate shape of the space-charge configuration in the inter­
electrode space of a magnetron. This configuration rotates, giving the appearance 

of the spokes and hub of a wheel.

occur. One period of the slow-wave structure bounded by two vanes is 
referred to as a resonator. One of the resonators of the slow-wave structure 
is coupled inductively to a loop formed from the center conductor of a 
coaxial cable. The coaxial cable in turn delivers the rf output signal to the 
load.

The end hats on the cathode structure are at cathode potential but 
nonemitting. They serve to prevent the electrons from spreading axially 
out of the interaction space.

The slow-wave structure in the magnetron of Figure 12.1-1 is essentially 
a folded version of the structure of Figure 8.7-4. The Brillouin diagram for 
this structure was presented in Figure 8.7-8. The portion of this diagram 
currently of interest is replotted in Figure 12.1-3, where 0 is the phase 
shift per period.

Since the circuit is closed on itself, or “re-entrant,” oscillations are 
possible at frequencies for which the total phase shift around the circuit 
is an integral multiple of 2ir radians. Thus, if N is the total number of 
periods of the slow-wave structure, oscillations can occur at the frequencies 
corresponding to

2im 
v ~ AT (12.1-1)
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Fig. 12.1-3 Brillouin diagram for the slow-wave structure of a magnetron. Points 
at which oscillations are possible are indicated for a re-entrant structure 

6 periods long.

where n is an arbitrary integer. These values of phase shift and the cor­
responding frequencies are indicated by points in Figure 12.1-3 for N = 6.

In order for oscillations to be produced at these points, two conditions 
must be fulfilled. First, the anode voltage Vao must be adjusted so that the 
average rotational velocity corresponds to the phase velocity of the slow- 
wave structure. Second, the beam-coupling impedance must be sufficiently 
large. The operating points shown in Figure 12.1-3 are termed modes of 
oscillation, with the mode identified by stating the phase shift per cavity.

Although oscillations are theoretically possible in any of the modes given 
by Equation (12.1-1), the magnetron is always designed for operation in the 
ir mode because this allows the strongest possible interaction. Thus, in 
Figure 12.1-3, the magnetron is designed to oscillate at a radian frequency 
W3.

Magnetrons are usually operated with the voltage Vao pulsed on and off, 
so as to produce short pulses of rf signal. As the voltage is increased to­
ward the value corresponding to the ir mode, it must necessarily pass 
through the points of synchronism with other modes (4ir/3 and 5ir/3 modes 
in Figure 12.1-3). Since spurious oscillations in these modes are unde­
sirable, it is necessary to design the slow-wave structure carefully to avoid 
them. Either the beam-coupling impedance must be too low for oscil­
lations, or else the losses associated with these modes must be large enough 
to prevent oscillation buildup in the time available.

The magnetron as described thus far oscillates at only one frequency, 
the frequency corresponding to the v mode of the slow-wave structure.
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Such fixed-frequency magnetrons have very limited application; some form 
of tunability is highly desirable. Tuning of the magnetron is accomplished 
by means of a mechanical perturbation of the slow-wave structure. This 
causes a change in the Brillouin diagram with a consequent change in the 
tt mode frequency One way of tuning the structure of Figure 12.1-1 is 
to insert a uniform array of metal pins into the inductive regions of the 
resonators, one pin in each resonator. This causes a reduction in the in­
ductance of each resonator so that the frequency w3 is increased, the in­
crease being proportional to the depth of penetration. Practical schemes 
for electronic tuning of magnetrons have not been developed at the time of 
writing.

Oscillation in the t mode is unique in that the electrons are actually 
synchronous with two space harmonics simultaneously. These space 
harmonics are: First, the fundamental space harmonic corresponding to 
power flow in the direction of the electron flow, and second, the — 1 space 
harmonic corresponding to power flow in the opposite direction. Since the 
circuit is cut off at this frequency, the net power flow in either direction is 
zero. Thus the two power flows described above are equal and opposite. 
Space-harmonic analysis reveals that the two space harmonics described 
above are excited to equal amplitude at t phase shift per period, for equal 
power flow in the two directions. Thus, the summation of the two syn­
chronous waves and their space harmonics corresponds to a standing wave 
as in any microwave cavity at resonance. Interaction phenomena is thus 
conveniently described in terms of the cavity Q’s — the unloaded Q, 
external Q, and loaded Q — as defined in Chapter 9 for the klystron.

In the case of the ir mode, the synchronous electromagnetic wave de­
scribed in connection with Figures 12-2 and 12-3 is interpreted as the 
superposition of the two synchronous space harmonics described above.

(a) The Hull Cutoff Condition

We are ready to consider some of the quantitative aspects of magnetron 
interaction. First, we shall consider a model of the electron motion which 
includes space-charge forces but excludes all rf fields. This is known as the 
static magnetron problem. Instead of the re-entrant cylindrical structure 
used in most magnetron oscillators, we shall consider the linear magnetron 
structure shown in Figure 12.1-4. This model exhibits all of the essential 
characteristics of the cylindrical version, without the attendant mathe­
matical complexity. A uniform dc magnetic field B is directed into the page. 
The solution we wish to demonstrate is one in which the electrons all 
move in straight lines from left to right with velocity E/B. We have 
already noted that this type of motion is possible for an individual elec­
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tron, so that the problem that remains is that of finding the potential and 
charge distribution in the interelectrode space when many electrons are 
present. Because of the planar geometry, we must assume that when the 
electrons reach the right-hand end of the model of Figure 12.1-4, they dis­
appear and reappear at the left-hand end.

ANODE. —f
+ B® E !

BEAM BOUNDARY

X CATHODE f

Fig. 12.1-4 Linear model of a magnetron. Rf fields may be precluded by replacing 
the slow-wave structure by a uniform conducting plane.

The de voltage Vao applied between the slow-wave structure (anode) 
and the cathode causes a de electric field E(y) directed away from the anode.

Using the coordinate axes shown in Figure 12.1-4, the electron motion 
is assumed to be such that all electrons flow to the right with a velocity 
given by

B Bdy

Uy = Ug — Q (12.1-2)

where V is the electrostatic potential, a function of y. The de electric field 
E(y) is a function of the y coordinate within the beam because of the 
space charge. The beam lies within a region extending a distance h from 
the cathode, where h is known as the hub thickness.2

Next, we solve for the electrostatic potential within the beam. If the 
electrons originated at the cathode, energy conservation would indicate that

|mw22 = eV (12.1-3)

Eliminating ux between the last two equations gives us

df\2 
dy ) = 2-BN 

m
(12.1-4)

•This stream of electrons is referred to as the hub, since in the cylindrical magnetron it 
has the appearance of the hub of a wheel.
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This differential equation may be rearranged as
dV~^ = dy (12-1-5)

B^V

in which form it may be integrated directly, with the solution

eB2
V = (12.1-6)2m

for the potential within the beam. The constant of integration has been 
eliminated assuming V = 0 at y = 0.

The potential and electric field at the hub surface are obtained from 
Equation (12.1-6) as

7(A) = ¿-BW (12.1-7)
2m

and

Ey = = --B2h (12.1-8)dy m

From Section 8.3, we know that the electric field must be continuous across 
the beam boundary. Therefore, Equation (12.1-8) gives the electric field 
in the region h < y < d. The potential at the anode is thus obtained from 
Equation (1.1-6) as

Efiy 

= 7(A) + -B2h(d - A)

p
= LB2h(d - h/2) (12.1-9)

where use has been made of Equation (12.1-7). This equation allows one to 
calculate the hub thickness for various values of magnetic field and anode 
voltage.

From Poisson’s Equation, Equation (1.4-9), one may calculate the charge 
density ydthin the hub from Equation (12.1-6) as the constant value

p = _^b2 (12.1-10)m
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From Equation (12.1-9) we may calculate the threshold anode voltage 
for which the anode draws current. This occurs when the hub thickness 
h is exactly equal to the spacing d. This voltage is known as the Hull cut­
off voltage, given by

1 p
Vao = g-W (12.1-11)2 m

This relationship is plotted in Figure 12.1-5. For operating points below 
the parabola of this figure, the anode theoretically will not draw current.

Fig. 12.1-5 Hull cutoff voltage for a magnetron. For voltages below the parabola, 
the anode theoretically will draw no current.

It is interesting to note that Equation (12.1-11) is a consequence of the 
law of conservation of energy. Thus the same result is obtained for any 
other assumed set of electron trajectories or distribution of charge density, 
provided that they are independent of the x coordinate. This can be shown 
very easily as follows. An electron leaving the cathode with zero velocity 
of emission arrives at the anode with a kinetic energy given by

2m[uX2 + Uy2]ys=d — eVoo (12.1-12)

From a single integration of the first of Equations (1.2-10), we have

ux = —By (12.1-13)

where use has been made of the initial condition ux = 0 at y = 0. Com-
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bining the last two equations, we obtain 

K, = /-BW + (12.1-14)

Cutoff oocurs for uy = 0 at the anode, obtaining Equation (12.1-11).
A typical experimental curve3 of anode current as a function of anode 

voltage is shown in Figure 12.1-6 for a cylindrical magnetron with a con­
stant value of magnetic field. Also shown is the corresponding curve for 
zero magnetic field. The latter curve exhibits the three-halves power de­
pendence of Current on voltage as given by Equation (4.1-10) up to the 
point where the emission becomes temperature limited. The experimental 
curve with a non-zero magnetic field is characterized by three segments as 
indicated in the figure.

Fig. 12.1-6 Experimental variation of anode current with anode voltage for a con­
stant magnetic field in a magnetron without an rf circuit.

Segment 1 occurs for very large values of anode voltage. Here the elec­
tric field force is so strong compared with the magnetic field force that the 
electrons travel nearly radially to the anode; the situation is essentially 
the same as for zero magnetic field.

Segment 2 occurs for voltages approximately equal to the Hull cutoff 
value. In this region the current increases rapidly as the voltage is raised, 
reaches a maximum, and then abruptly falls to the value corresponding to

’Reference 12.1.



436 PRINCIPLES OF ELECTRON TUBES

Segment 1. Segment 3 shows a small, non-zero anode current for voltages 
below the Hull cutoff value.

The existence of anode current for voltages below the Hull cutoff value 
is in direct violation of the Hull cutoff theory, indicating the inadequacy 
of this theory. A number of hypotheses have been proposed to explain this 
behavior.4 Certainly, the idealized electron flow assumed in Figure 12,1-4 
is not readily attained. Perturbations of this flow give rise to space-charge 
fields which tend to push certain of the electrons to the anode and others 
back to the cathode.6 This instability results in anode current, emission of 
secondary electrons from the cathode and additional heating of the cathode 
due to the electron back bombardment, and the generation of excess rf 
noise. The overall picture is complicated by the spread of electron emission 
velocities and electron-electron collisions in the hub. These effects are most 
pronounced for voltages near the Hull cutoff value. For this condition the 
amount of rotating space charge is the greatest, and hence the conditions 
for space-charge instabilities are most favorable.

In spite of the experimental contradictions to the electron flow model of 
Figure 12.1-4, we shall assume in subsequent discussion that the model 
provides a first approximation to the unperturbed electron flow in the 
magnetron. The presence of the electromagnetic field due to a slow-wave 
structure will act as a strong perturbation on this model, an effect which 
will be considered in the next section. We may consider the perturbations 
discussed in the previous paragraph to be negligible in comparison.

(6) The Hartree Condition

The Hull cutoff condition (Figure 12.1-5) determines the anode voltage 
necessary to obtain non-zero anode current as a function of the magnetic 
field in the absence of electromagnetic fields. In this section we shall 
consider a second condition which must be imposed on B and Vao. If 
interaction is to take place between the electrons and the rf wave propagat­
ing along the slow-wave circuit, the electron velocity parallel to the circuit 
must be approximately equal to the phase velocity of the wave. This 
leads to a relationship between B and Vao known as the Hartree condition.

The Hartree condition is determined as follows. Electron flow is assumed 
to exist as in Figure 12.1-4. The hub thickness h is of the order of one 
fourth the cathode-anode spacing d. Now if a weak electromagnetic wave 
is present, electron flow to the anode is possible, as in Figure 12-3, provided 
that the electrons are in synchronism with the wave. Since the electrons

‘Reference 12a, Vol. 1, pp. 179-326, 359-366.
“This perturbed flow produces space-charge forces in the x direction so that Equation 

(12.1-13) is no longer valid.
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at the hub surface (y = h) have the greatest velocity, the threshold anode 
voltage for oscillation is determined by the condition of synchronism of 
these electrons with the rf wave.

The velocity of electrons at the hub surface is obtained from Equations 
(12.1-2) and (12.1-8) as

Ux(h) = —Bh (12.1-15)

For synchronism, this is equal to the phase velocity of the slow-wave 
structure,

u 
ë = —Bhm (12.1-16)

where fl is the circuit propagation constant at the desired operating point. 
For the ir mode, fl is given by

= ir (12.1-17)

where L is the period of the circuit. At the onset of oscillations we may 
neglect the presence of space charge exterior to the hub. Thus, Equation 
(12.1-9) determines the anode voltage as a function of the hub thickness. 
The hub thickness may be eliminated between Equations (12.1-9) and 
(12.1-16), obtaining

V r ao uBd m a>2

~ë 2e& (12.1-18)

This is the Hartree condition.
The Hartree voltage is plotted as a function of the magnetic field in 

Figure 12.1-7, together with the Hull cutoff curve. The usual ¡operating 
region of a magnetron is shown in the figure. Below this region, neither 
oscillation nor appreciable anode current is obtained. Above this region, 
anode current independent of the rf properties of the circuit would be 
obtained. Typically, the operating point is quite close to the Hartree line in 
order to avoid spurious oscillations in higher voltage modes. Thus, the 
hub thickness is a small fraction of the cathode-anode spacing.

Within the region of operation, raising the anode voltage causes increased 
anode current and rf power output. The velocity of the electrons at the 
surface of the hub is obtained from the relations of Section 12.1(a) as

... eBdux(h) =----  1 — */l —m y
2mVao 
eBW (12.1-19)

As the anode voltage is raised above the Hartree value, this velocity in­
creases above the synchronous value. Nonetheless, the forces due to the 
rf field tend to pull these electrons back into synchronism with the wave.
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Fig. 12.1-7 Region of operation of a magnetron, between the Hartree line and 
the Hull cutoff parabola.

This behavior is shown in the computed trajectories of Figure 12.1-8.6 
The trajectories correspond to electrons leaving the hub surface with 
average velocities in the x direction given by Equation (12.1-19) for three 
different anode voltages. Space-charge forces are neglected. Figure 
12.1-8(a) shows the trajectories at the Hartree voltage; electrons leave the 
hub in synchronism with the wave and remain in synchronism with it up 
to the anode. Figure 12.1-8(b) shows the trajectories for a somewhat 
higher anode voltage, representing typical magnetron operation. Al­
though the electrons start out faster than the wave, they are phase focused 
back by the rf field forces so that the spoke is nearly centered about zero 
phase. Zero phase corresponds to the maximum rf electric field and con­
sequently to the position of strongest interaction. Figure 12.1-8(c) shows 
the trajectories at still a higher value of anode voltage. Once again we see 
the focusing action of the rf field. The noncycloidal trajectories of Figure 
12.1-8 are approximate in that the initial acceleration at the hub surface is 
arbitrarily set to zero. The cycloidal trajectories in Figure 12.1-8(c) 
illustrate the trajectories resulting without this approximation.

As the level of oscillation is increased, the average center of the spoke 
tends to advance in phase with respect to the wave. This has the effect 
of an inductive loading of the circuit, and the frequency of oscillation

®J. Feinstein, Reference 12a, Vol. 1, pp. 554-579.



Fig. 12.1-8 Computed electron trajectories in a reference frame synchronous with 
the rf wave on the circuit, neglecting space-charge forces. Zero phase corres­
ponds to a maximally retarding field, as in Figure 12-3. (a) Trajectories for 
operation at the Hartree voltage; the oscillation level is low. (b) Trajector­
ies at a typical rf level of operation, (c) Trajectories at a very high rf level of 

operation (Reference 12a). (Courtesy of Academic Press, Inc.)
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consequently increases slightly. This effect is known as frequency pushing. 
Its magnitude is too small to provide a practical means for electronic tuning

Further calculations of the type shown in Figure 12.1-8 indicate that 
there is a minimum or threshold value for the rf electric field in order to 
obtain a stable current spoke for each value of anode voltage greater than 
the Hartree value. Below this threshold the electrons do not form a spoke 
but instead are returned to the hub.

(c) Power Output and Efficiency

The efficiency of the magnetron is the ratio of the rf power output to the 
product of anode voltage and anode current. It may be expressed in turn 
as the product of the electronic efficiency ne and the circuit efficiency yc- 
The electronic efficiency expresses the percentage of the de or pulsed input 
power which is converted into rf power on the slow-wave structure. The 
circuit efficiency, on the other hand, determines the percentage of this rf 
power which is delivered to the load exterior to the tube.

A B

BEAM RESONATOR LOAD

Fig. 12.1-9 Equivalent circuit for one resonator of a magnetron. The symbols are 
defined in the text.

The circuit efficiency may be evaluated in terms of the equivalent circuit 
presented in Figure 12.1-9. Each resonator of the slow-wave structure is 
taken to comprise a separate resonant circuit, with equivalent circuit 
parameters C, L, and Gc. Thus for vane resonators, as shown in Figure 
12.1-1, C is the capacitance at the vane tips, including fringing capacitance. 
From a knowledge of C and the resonant frequency, the inductance L 
can be determined. The resonant frequency of each individual resonator is 
taken as the ir mode frequency of the whole anode structure. A conductance 
Gc is chosen so as to give the correct value of rf loss on the anode circuit 
per resonator. The unloaded Q of the magnetron is thus

Qu = (12.1-20)
Gc

where Wo is the radian resonant frequency.
The rf voltage across the vane tips (terminals A A') is given by the phasor 

V. Gb is the equivalent load conductance per resonator chosen in such a 
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manner as to give the power delivered to the load per resonator. The anode 
circuit and load are connected at terminals BB' by various components 
such as coupling loops, transformers, lengths of transmission line, etc., 
which usually introduce reactive effects and loss by their presence. For 
simplicity, we neglect these effects. The external Q is defined by

Q. = (12.1-21)

The loaded Q of the circuit is given by

Qi = r (12.1-22)

and the Q’s are related by Equation (9.1-33). It is to be noted that the 
values of the Q’s are the same when defined for the anode structure as a 
whole, since they represent ratios of energy stored to energy dissipated.

The circuit efficiency is given by

* = gA'Gc (12.1-23)

which may be written in terms of the Q’s as

’• -1 - 4«.
Maximum circuit efficiency is obtained when the magnetron is loaded 
very heavily by the load, that is, for GL^GC. However, heavy loading 
makes the tube operation quite sensitive to the load, which is undesirable 
in some cases. Because of the reactive effects associated with the load and 
output coupling circuit, load changes can cause shifts in the frequency of 
oscillation. Therefore, the ratio of Qi/Qe chosen is often a compromise 
between the conflicting requirements for high circuit efficiency and fre­
quency stability.

The electronic admittance due to the electrons is represented by Y. in 
Figure 12.1-9. This admittance has a negative conductance representing 
the power generated and a small inductive susceptance whose variation 
with oscillation level produces frequency pushing. This latter effect was 
discussed in the previous section.

The electronic efficiency may be obtained from the following formula:

Fgen Va0Ia0 Blast /in , netV. = yy =-----yj------  (12.1-25)

where Pgen is the rf power induced into the anode circuit by the electrons, 
Foo is the anode voltage, Iao is the anode current, and Float is the power 
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lost in the tube other than the rf losses in the slow-wave structure and 
output circuit.

Float consists of two main parts. The largest loss is the anode dissipation, 
given by the kinetic energy of the electrons striking the anode. A much 
smaller loss is due to the back bombardment of the cathode; electrons in 
unfavorable phases gain energy from the rf field and return to the cathode 
with an excess of kinetic energy. The back bombardment is usually 3 to 
10 per cent of the input power.7

The kinetic energy of the electrons reaching the anode may be estimated 
in the following manner. From trajectory plots as in Figure 12.1-8 we 
conclude that it is approximately correct to assume that all the electrons 
arrive at the anode in zero phase of the rf wave. Thus, if Emax is the maxi­
mum value of the x component of the synchronous space harmonic of the 
rf electric field, the average y component of the velocity of the electrons on 
striking the anode is approximately

uM = (12.1-26)

using Equation (12-5). The average value of the x component of velocity 
is approximately given by the synchronous value,

ux(d) = (12.1-27)

The rf power generated by the electrons is given by

Pgea = ^ao^ao -^lost

= laoVaq ~ Iaof [U2(d) + U,2(d)]

= laoVao ~ 1^ (12.1-28)

where use has been made of Equations (12.1-26) and (12.1-27). The power 
loss associated with cathode back-bombardment is neglected for the time 
being.

From the equivalent circuit of Figure 12.1-9 we have the following 
expression for the power generated by the electrons,

Psen = | V (12.1-29)
J Qi

where N is the total number of resonators comprising the anode structure, 
and V is the rf voltage appearing across the resonator gap. The amplitudes

’A. M. Clogston, Reference 12b, p. 525.
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of the space harmonics may be determined by space-harmonic analysis 
as in the preceding chapters. The amplitude of the x component of the 
electric field at the circuit is given by

Bmax
_ ^171 (12.1-30)L

where Mi is the gap factor for the it mode, computed from Equation 
(10.2-20), and L is the center-to-center spacing of the vane tips. The 
power generated may thus be written as

Peea “ 2MjQE'"™ (12.1-31)

Emax2 may be eliminated between Equations (12.1-28) and (12.1-31) and 
the result solved for Pg^- One then obtains the following expression for 
the electronic efficiency:

, mw2

1.1-32)
p , _ 3 gen 

IaoVao
B2 eNUwC

where the prime indicates that the cathode back-bombardment power loss 
has been neglected. Using this formula, one may evaluate the influence of 
the various magnetron parameters on the electronic efficiency. Since 
w/0 is approximately E/B, both numerator and denominator approach 
unity as the magnetic field is increased. Thus, magnetrons are designed to 
operate at as high a magnetic field as can be conveniently obtained in order 
to achieve high electronic efficiency.

Decreasing Qi would increase the electronic efficiency but decrease the 
circuit efficiency. Also, a low value of Qi makes it difficult to start the 
oscillations in the desired mode. The value of Qi is thus a compromise 
between the values for best overall efficiency and ease of starting oscillations.

In the following section we shall describe a typical magnetron, the West­
ern Electric 7208B. The parameters of this magnetron which appear in 
Equation (12.1-32) are:

/ = 16.5 Gc
Vao = 17.5 kv
Iao = 16.8 amps
B = 0.74 webers/meter2
Qi = 1025

Qu = 4000
C = 0.15 pf
N = 32
L = 0.94 mm

Mi2 = 0.762

Using Equation (12.1-32) one calculates 

rR = 64%
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If we assume that the cathode back-bombardment power loss is 6 per cent of 
the input power, we obtain the net electronic efficiency, 

fie = 58%
From Equations (9.1-33) and (12.1-24), the circuit efficiency is calculated 

as
Ve = 74% 

resulting in an overall efficiency of
ri = w = 43%

an excellent value of efficiency for an oscillator at such a high frequency. 
This corresponds to an output power of 126 kw.

(d) Description of the Western Electric 7208B Magnetron

The Western Electric 7208B magnetron is shown in Figure 12.1-10.8 
This tube is operated with the anode voltage pulsed on and off so that short

Fig. 12.1-10 Western Electric 7208B magnetron, complete with permanent 
magnet. The complete unit weighs 14 pounds and is 20 cm high.

pulses of rf power are produced. The rf output frequency is mechanically 
tunable over the range 15,500 to 17,500 Me. Typical operating character­
istics are listed in Table 12.1-1.

’Reference 12.2.
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Table 12.1-1. W.E. 7208B Typical Operating Characteristics
Frequency, Me........................................................................................15,500 to 17,500

Peak power output, kw...........................................................................125

Peak anode voltage, kv........................................................................... 17.5

Peak anode current, amps.................................................................... 19

Current pulse duration, microsec................................................. 3

Duty cycle........................................................................................................... 0.001
Magnetic field, webers /m2.................................................................... 0.74

Pulling figure (VSWR = 1.5:1), Me......................................... 6

The pulling figure is defined as the total variation in frequency when the 
phase of a mismatched load is varied through all values. A voltage-

Fig. 12.1-11 Functional drawing of the Western Electric 7208B.
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standing-wave ratio (VSWR) of 1.5 to 1 is equivalent to a mismatch such 
that 4 per cent of the output power is reflected back into the tube.

The maximum duty cycle of the 7208B is 0.001, where

duty cycle = average power output 
peak power output (12.1-33)

Another useful formula for the duty cycle is

duty cycle = (pulse length) X (pulse repetition frequency)
(12.1-34)

Most magnetrons are designed to be pulse operated. This form of opera­
tion is particularly useful in radar systems. Since the magnetron anode is 
grounded, pulsed operation is achieved by applying negative, rectangular­
shaped voltage pulses to the cathode.

The 7208B magnetron is of a type known as a coaxial magnetron because 
of the particular anode slow-wave structure used, A functional drawing of 
the tube is shown in Figure 12.1-11. The anode consists of a cylinder with 
vanes extending radially toward the cathode. This anode cylinder also 
forms the center conductor of a coaxial resonator. Every other resonator 
in the vane array is coupled to the coaxial resonator by means of a slot in 
the common wall.

Since the vanes are approximately a quarter wavelength long in the radial 
direction, the impedance seen at the slot looking toward the vane tips is 
very small. Thus, circumferential current may flow unimpeded on the 

Fig. 12.1-12 Field patterns of the TEou mode in a coaxial resonator.
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outer surface of the anode in much the same way as if it were unslotted. 
We may therefore consider the coaxial cavity to have the same field patterns 
as for the case of a solid cylindrical center conductor,

The desired mode of operation for the coaxial resonator is the TEOn 
mode, whose field patterns are shown in Figure 12.1-12. Since the wall 
currents are perpendicular everywhere to the magnetic field lines, we see 
that the field patterns for the TEon mode correspond to circumferential 
current flow on all the wall surfaces. There is no current flow in either the 
radial or axial direction. Since there is no current flow across from the 
coaxial cylinders to the end plates, a gap may exist between these surfaces 
without disturbing the field patterns. This permits the incorporation of a 
tuning ring, as shown in Figure 12.1-11, so that the length of the coaxial 
resonator may be varied. Since the resonant frequency of the cavity in­
creases as the cavity length is decreased, this provides a means for tuning 
the cavity.

The currents entering the vane array through the coupling slots have 
the same phase in each of the slotted resonators. Hence, the fields in each 
of the slotted resonators are in phase. Currents are induced in the un slotted 
resonators by virtue of the mutual coupling between adjacent resonators. 
These induced currents are 180 degrees out of phase with the currents in 
the slotted resonators. Hence the field components in adjacent resonators 
are 180 degrees out of phase. This produces the desired x-mode field con­
figuration.

Because of the tight coupling of the vane array to the high-Q coaxial 
cavity, the x-mode frequency is essentially that of the coaxial cavity alone. 
The unloaded Q of the 7208B is 4000 at midband. Rf power output is 
coupled from the coaxial cavity to a waveguide by means of a coupling 
slot as shown in Figure 12.1-11. This results in a midband loaded Q of 
approximately 1025.

Pole pieces are built right into the tube so as to concentrate the magnetic 
flux in the interaction space. The horseshoe-shaped permanent magnets 
provide a magnetic flux density of 0.74 webers/meter2 in this region. The 
tube, complete with magnets, weighs 14 pounds and is 20 cm high.

The damping material indicated in Figure 12.1-11 damps out resonant 
modes of the cavity with current flow patterns across the junctions of 
cylindrical surfaces and end walls. As indicated above, the TEOu mode 
does not fall into this category, and consequently it is not damped by this 
lossy material. If this damping material were not present, troublesome 
oscillations could occur in modes other than the desired one.

A magnetron performance chart is an instructive manner of presenting 
the important operating characteristics. Such a chart is shown in Figure 
12.1-13 for the 7208B. Primarily, the chart is a plot of anode voltage vs.
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Fig. 12.1-13 Performance chart of the Western Electric 7208B at a frequency of 
16.5 Gc. The usual operating magnetic field is 7400 gauss, furnished by the per­

manent magnets.

anode current at a fixed frequency, with magnetic field as a parameter. 
Variation of the magnetic field is achieved by operating the tube in an 
electromagnet. Contours of constant power output and constant efficiency 
are also included. As the voltage is raised, the anode current and power 
output increase rapidly. The power output increases almost in direct pro­
portion to the power input. The upper limit on power output is usually 
reached when arcing commences in the tube due to the high electric fields.

As the anode voltage is increased, the efficiency first increases and then 
decreases, for constant magnetic field. Equation (12.1-32) demonstrates 
this behavior. For small anode current, the efficiency goes up as Va0 in­
creases. Physically, this corresponds to a decreasing percentage of the total 
energy associated with the synchronous velocity of the electrons. As 
the anode current Ia0 becomes appreciable, the efficiency begins to fall off. 
This corresponds to the increasing percentage of the electron kinetic 
energy associated with velocity directed toward the anode.
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Magnetrons provide a compact, high-efficiency source of rf power with 
an operating voltage which is relatively low in comparison with other 
tubes of similar power output. Because of cathode back-bombardment, 
anode erosion due to electron bombardment, and other factors, magnetrons 
tend to have shorter life than other microwave tubes. Magnetrons have a 
lower signal-to-noise ratio than other micro wave tubes; however, for most 
power tube applications, this is not important. The noisiness is primarily 
due to the excitation of other modes of the resonant system. Unlike the 
reflex klystron and the backward-wave oscillator, where the frequency is 
voltage tunable, the frequency of the magnetron is determined primarily 
by the resonant frequency of the anode structure; hence, stability of the 
output frequency in the magnetron is attained without precise regulation 
of the supply voltage. On the other hand, the requirement of mechanical 
tuning in the magnetron prohibits the use of the magnetron in applications 
where extremely rapid tuning is desired.

12.2 Crossed-Field Amplifiers

The crossed-field amplifier9 is very 
similar to the magnetron oscillator, 
both in internal construction and ex­
ternal appearance. The only impor­
tant difference is that the anode slow- 
wave structure of the amplifier does 
not close on itself. Instead, the two 
ends of the circuit are both connected 
to separate external transmission 
lines, one for the input and one for 
the output rf signal.

A schematic drawing of the 
crossed-field amplifier is shown in 
Figure 12.2-1. An applied voltage 
and de magnetic field are provided 
as in the magnetron oscillator. 
Spokes of current are formed by the 
rf electric fields. These spokes rotate 

Fig. 12.2-1 Schematic drawing of a 
crossed-field amplifier.

in a clockwise direction around the cathode. For forward-wave inter­
action, rf power enters at terminals BB', flows around the circuit in a 

’This discussion is limited to crossed-field amplifiers having a continuous cathode with 
a re-entrant beam. Crossed-field amplifiers have also been constructed where the electron 
beam is injected into the interaction region and then collected (as in Figure 12.3-1); 
however, the latter device has not been as widely used as the device considered here.
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clockwise direction, and exits at terminals AA'. The current spokes 
travel in synchronism with the circuit wave, inducing currents in 
phase with those of the circuit wave, thus causing it to grow. This inter­
action mechanism is like that of the magnetron oscillator, except that the 
circuit wave grows with distance whereas it is of constant amplitude in the 
oscillator.

Alternatively, backward-wave interaction is obtained when the rf power 
is introduced at terminals A A' and removed at terminals BB'. This is actu­
ally the mode of operation for the particular circuit shown in Figure 12.2-1.10 
This circuit consists of a two-wire line with connections made alternately 
to the vanes, as shown. It is' a fundamental backward-wave structure.11

Fig. 12.2-2 A crossed-field amplifier with a drift region between the input and 
output ends of the rf circuit.

Although the circuit is non-re-entrant, the beam is re-entrant. As a 
result, the crossed-field amplifier could oscillate if the loop gain were high 
enough. This limits the gain to about 10 or 15 db in high-power amplifiers 

“Reference 12.3.
"Slow-wave structures are characterized as either fundamental forward or fundamental 

backward wave structures, depending upon whether the space harmonic of greatest 
amplitude is a forward or a backward wave.
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with a circuit completely around the circumference, as in Figure 12.2-1. 
The spoke moves from the output end of the circuit to the input end, 
phased so as to produce positive feedback and high efficiency. This phasing 
condition limits the bandwidth to the order of 10 to 15 per cent.

Some crossed-field amplifiers are built with the circuit encompassing 
only a fraction of the total circumference as illustrated in Figure 12.2-2.12 
This results in a significant drift space for the electron beam between the 
two ends of the circuit. In this drift space, the electron spokes are con­
siderably dispersed by the space-charge forces, thus reducing the feedback 
mechanism of the electron stream. As a result, gains of the order of 15 
to 20 db are possible. Since loop phasing of the electron stream is not critical, 
this type of crossed-field amplifier is capable of wider bandwidths. On the 
other hand, the reduction of positive feedback results in a lower electronic 
efficiency.

The anode slow-wave structure presented in Figure 12.2-2 consists of a 
waveguide periodically coupled by slots to each resonator of the anode vane 
array. The waveguide is filled with dielectric so that the phase velocity is 
slowed down to the synchronous velocity of interaction. Interaction is 
with the fundamental forward-wave space harmonic.

Crossed-field amplifiers are designed with the rf electric field at the input 
strong enough to form a complete current spoke of the type shown in Figure 
12.1-8(a). Thus, fully formed spokes are present at all positions along the 
circuit. Under this condition both theoretical and experimental evidence 
indicates that the power induced into the circuit by each spoke and the de 
current per spoke are nearly constant, independent of both the spoke 
location and the rf electric field at that point.

Each current spoke induces two circuit waves, one traveling toward the 
input, the other toward the output. However, only the waves traveling 
toward the output add in phase. The waves traveling toward the input 
tend to cancel each other so that the net power out of the input port is 
very small. Since each spoke induces equal power into the circuit, the 
circuit wave grows with a power increasing linearly with distance from 
input to output.

Since the circuit wave growth is linear, increasing gain from 10 db to 
20 db corresponds to increasing circuit length by a factor of ten. In con­
trast, exponential wave growth achieves this gain increase with a doubling 
of the circuit length. This is another reason why crossed-field amplifiers 
typically exhibit low values of gain.

The total power generated in a given crossed-field amplifier is inde­
pendent of the rf power input, so long as the input power exceeds the thresh-

12J. Feinstein and R. J. Collier, Reference 12a, Vol. 2, pp. 211-222.
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old value for spoke stability at the input. The power generated can be 
increased only by increasing the anode voltage and current. This be­
havior is illustrated in Figure 12.2-3. Neglecting circuit attenuation, the

Fig. 12.2-3 Rf output power as a function of rf input power, with anode voltage 
as a parameter. The rf power generated Peen and the rf input power Pin are in­

dicated for the lowest anode voltage. 7Mi, Vaot, and indicate successively 
increasing anode voltages.

output power is given by the sum of the input power and the power 
generated (which is constant for constant anode voltage). Thus, the am­
plifier gain is a function of the power input. That is,

■ Pin T Pyen . , Pyen gain =----- g—= 1 + p— 
in r in

(12.2-1)

Therefore, the device is not a linear amplifier but rather is termed a satu­
rated amplifier.

If the rf drive is insufficient to form a stable current spoke at the input, 
no gain is produced and no power is generated at the desired frequency. 
Instead spurious oscillations are produced which may be attributed to the 
re-entrant nature of the beam and the inherent instability of electrons in 
crossed fields. These spurious oscillations become “locked out” when the 
tube is amplifying normally at the input frequency.
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Since high efficiency is one of the principal attributes of the crossed- 
field amplifier, let us derive an expression for this quantity in terms of the 
various tube parameters.

The efficiency may be defined as the product of the electronic efficiency 
ile and the circuit efficiency yc. The electronic efficiency is defined as in 
Equation (12.1-25). The overall efficiency is defined as

V = (12.2-2)

where Pout and Pin are the rf power ouput and input for the tube, re­
spectively. It is necessary to include the latter quantity in the definition 
of efficiency since it is usually an appreciable percentage of the output 
power. For example, if the gain of the tube is 6 db, then Pin would be 25 
per cent of PM. This sizable contribution must be subtracted from the 
output power in order to obtain an accurate evaluation of the efficiency of 
conversion of dc to rf energy. The circuit efficiency is thus obtained from 
Equations (12.1-25) and (12.2-2) as

Ve
P out P in

gen
(12.2-3)

Since the power generated per unit length is constant, the output power 
is given by

’ = P. f-lalout A int

= Pine-2’1 + LEA(1 - e™) 
Zed

(12.2-4)

where a is the attenuation constant of the circuit, and I is the circuit 
length. Introducing this expression into Equation (12.2-3) results in the 
following expression for the circuit efficiency:

m = 1 in
2al Pg.n

e“2“') (12.2-5)

The term Pin/Pgen becomes negligible for high gain devices.
Next we calculate an expression for the electronic efficiency. Starting 

with Equation (12.1-25) an analysis is made similar to that for the magnetron 
oscillator. It is assumed that the input signal is sufficiently strong for spoke 
stability and that the rf power grows linearly with distance along the 
circuit. We further assume that the dc current per spoke is a constant, 
independent of the rf level at any point. The loss due to back-bombard­
ment is not considered at this time. We assume that the circuit runs com­
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pletely around the circumference, as in Figure 12.2-1. We shall show later 
how the result may be modified to apply to circuits that do not.

The energy lost by the electrons on striking the anode is equal to their 
kinetic energy and consists of two parts, corresponding to the two velocity 
components given by Equations (12.1-26) and (12.1-27). The velocity 
given by Equation (12.1-26) increases with position along the circuit since 
the rf field is increasing. The rf field is related to the power flow at any 
point by the definition of the beam-coupling impedance at the circuit,

F 2-rr _ J-7 max 
202P (12.2-6)

The value of impedance is taken at a specific point, rather than being 
averaged across the beam as in Equation (10.1-19). The point at which 
it is taken is adjacent to the anode circuit, corresponding to a maximum 
value of the x component of the synchronous space harmonic, ¿’max.

Using Equations (12.1-26) and (12.2-6), the power lost per spoke due 
to the motion toward the anode is given at any position by

p _ j mÿKP
° s°e B2 (12.2-7)

where I,, is the de current per spoke, and P is the power flow on the circuit 
at the position considered. Since the power varies linearly with position, 
the average loss over the circuit length is

p1 8 avg
_ j m p2K . p , 
— ¿to ctTviX1 m I 1 out/ e ¿n (12.2-8)

The total power loss for all the spokes is obtained using Equations 
(12.1-27), (12.2-1), and (12.2-8) as

P lost It m^Kfÿ + l\p
2 eV/ t e 2B2\g - 1/ (12.2-9)

where g is the power gain.
The expression for the electronic efficiency is obtained by combining 

Equations (12.1-25) and (12.2-9) as

1 mw2
2eV„,^ 

Iaom^KIg + 1\ 
B2 2e \g — 1 /

(12.2-10)

where the prime indicates that loss due to back-bombardment of the 
cathode has not been included. Comparing this result with the correspond­
ing result for the magnetron, Equation (12.1-32), we note a strong similar­
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ity. Designing for high efficiency in both devices involves optimizing 
more or less the same parameters.

Equation (12.2-10) applies to a circuit which runs completely around 
the circumference of the tube. A rough estimate of the efficiency for a 
tube with a drift space can be obtained in the following manner. The total 
anode current is assumed to be independent of the length of the drift space. 
The power generated, on the other hand, must be only a fraction F of the 
power generated using a circuit covering the whole circumference, where F 
is the fraction of the circumference covered. Thus, the electronic efficiency 
is F times the value for a tube with no drift space.

Let us calculate the efficiency of a typical crossed-field amplifier with the 
following parameters:

f = 9100 Me
Va<l = 35.8 kv 
la. = 18.5 amps 
B = 0.40 weber/meter2 
ft = 1155 radians/meter 
K = 120 ohms 
8 = 10

2al = 0.230 (1 db attenuation) 
Pin = 42 kw

These parameters apply to an experimental tube assembled at Bell Tele­
phone Laboratories. From Equation (12.2-10), we calculate the value

= 69%

If we subtract 5 per cent for back-bombardment of the cathode, the net 
electronic efficiency becomes

ne" = 64%

for a circuit completely around the circumference. In the particular ex­
perimental tube whose parameters are given above, the circuit covered 
only three fourths of the circumference (F = f). Therefore,

n. = Fy” = 48%

for this particular tube.
In order to calculate the circuit efficiency using Equation (12.2-5), we 

must first calculate Pgen from the value of electronic efficiency obtained 
above. We obtain

Pgen — n.laoVao = 316 kw

From Equation (12.2-5), the circuit efficiency is calculated as

yc = 87%
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so that the overall efficiency is

9 = Me = 42%

A value of 43 per cent was measured on this experimental tube. This value 
would be improved considerably if the length of the drift space were 
reduced.

Fig. 12.2-4 Raytheon RK8129 Amplitron. The tube weighs 110 pounds with 
magnet, and it fits within a 51-cm cube. (Courtesy of Raytheon Company)

Next, we present a description of a particular crossed-field amplifier, 
the Raytheon RK8129 Amplitron,13 pictured in Figure 12.2-4. Typical

Table 12.2-1. RK8129 Amplitron Typical 
Operating Characteristics

Frequency, Me.................................................................................................2900 to 3100
Peak power output, Mw................................................................................... 3

Average power output, kw............................................................................. 15
Peak anode voltage, kv..................................................................................... 50

Peak anode current, amps.............................................................................. 66

Peak rf input power, kw (minimum)...................................................550
Gain, db............................................................................................................................. 8
Pulse duration, microsec................................................................................... 10

Efficiency, %.................................................................................................................. 78 

^Amplitron is a Raytheon trade name for a magnetron amplifier. The RK8129 is 
also designated the QK622.
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operating characteristics of this tube are tabulated in Table 12.2-1.14 The 
device is characterized by an extremely high efficiency, albeit the gain is 
only 8 db. Such a tube is useful as the final stage in a high-power trans­
mitter, where over-all efficiency is the prime consideration.

High electronic efficiency is obtained through the use of an anode circuit 
of the type shown in Figure 12.2-1, with essentially a zero-length drift 
space. Since the circuit attenuation is less than 0.5 db, the circuit efficiency 
is also high.

Typical operating characteristics are shown as a function of frequency in 
Figure 12.2-5. The curves shown are for constant rf input signal, with the 
peak VaoIao product held approximately constant. The latter condition 
is automatically obtained when the anode voltage pulses are obtained from

Fig. 12.2-5 RK8129 typical operating characteristics. The rf input power and 
peak anode current are held constant at 490 kw and 62 amps, respectively. (Cour­

tesy of Raytheon Company)

'♦Reference 12.4.
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a line-type modulator.16 The power output and gain are seen to vary little 
over the frequency band.

Tubes of this type have been operated in parallel to obtain additional 
power.

Proper operation of crossed-field amplifiers prohibits the application of 
anode voltage unless an rf signal is being applied at the input. This pre­
vents the generation of spurious rf output signals, which could possibly 
damage the tube. These spurious signals result from the basic instabilities 
of electrons in crossed fields.

Because of the phase locking phenomenon in crossed-field amplifiers, the 
phase pushing is very small. In the R.K8129, the phase changes 0.5 degree 
per 1 per cent change in peak anode current.

Crossed-field amplifiers have a number of attributes. They provide a 
compact, high-efficiency amplifier with fractional bandwidths of the order 
of 10 per cent and relatively low-voltage operation. The efficiency is 
typically higher than that of the magnetron oscillator and substantially 
higher than that of the traveling-wave or klystron amplifier. When the 
tube is used as a power output tube in a radar installation, rf signals re­
ceived by the antenna may be passed through the tube to the lower rf level 
input waveguide before they are separated from the common transmit­
receive circuit. This is possible because there is no sever in the anode 
circuit. A simpler duplexer18 can therefore be used. Another attribute is the 
low phase pushing. Cold cathode operation is possible, thus eliminating 
the necessity of a high-voltage-insulated heater supply.

On the other hand, the crossed-field amplifier has several disadvantages 
in comparison with klystron amplifiers and traveling-wave amplifiers. 
Since it is a saturated amplifier, it cannot successfully transmit amplitude 
modulated signals. The low gain requires the use of a high-power traveling­
wave tube or klystron as a driver tube. The noise level is high, as is typical 
of all crossed-field tubes.17 The fact that the electron beam must be dis­
sipated on the anode slow-wave structure presents serious cooling problems 
at high power levels.

12.3 M-Carcinotron Oscillators
The M-carcinotron oscillator18 is a backward-wave oscillator in which the 

“An anode voltage source where the voltage pulse is obtained by discharging an arti­
ficial transmission line using a thyratron as a switch.

“A duplexer is a device which alternately connects the transmitter and receiver circuits 
to a radar antenna.

•’Recent experiments have indicated that the noise is not inherently high in injected- 
beam crossed-field amplifiers (footnote 9); see Reference 12.6.

“Also known as an M-type backward-wave oscillator. To avoid ambiguity, the device 
of Chapter 11 is termed an O-type backward-wave oscillator.
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interaction between the electrons and the slow-wave structure takes place 
in a region of crossed de fields.

A linear version of an M-carcinotron is shown in Figure 12.3-1. A slow- 
wave structure is arranged parallel to an electrode known as the sole. With

Fig. 12.3-1 Linear version of an M-carcinotron oscillator.

the slow-wave structure at ground potential, a voltage VSo is provided to 
make the sole negative. This produces a de electric field as shown. A de 
magnetic field is directed into the page. As indicated in the figure, this 
magnetic field is also present in the electron gun region.

The electron gun is different from the electron guns in Chapter 4, because 
of the action of the magnetic field. The electrons are drawn from the 
cathode toward the accelerator by the accelerator voltage V Ao. However, 
the magnetic field causes the electron trajectories to be curved through a 90- 
degree angle as shown. At this point the electrons leave the gun region and 
enter the interaction region. If the voltages are chosen properly, the elec­
trons enter the interaction region with a velocity E/B so that they travel 
parallel to the circuit,19 until they are finally collected by the collector 
electrode. Since the cathode surface is rectangular, a rectangular sheet 
beam is formed.

The rf interaction is similar to that of the backward-wave oscillator. 
The electrons interact with a backward-wave space harmonic of the circuit, 
the energy on the circuit flowing opposite to the direction of the electron 
motion. This provides the feedback necessary for oscillation. The circuit 
is terminated at the collector end, and the rf signal is removed at the gun 
end.

“This neglects the rf perturbations of the electron motion which will be considered 

later.
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The interaction with the backward-wave space harmonic may be dis­
cussed in connection with Figure 12.3-2. A line is drawn from the origin 
with a slope given by E/B, the drift velocity of the electrons. The inter­
section of this line with the backward-wave space harmonic determines the 

Fig. 12.3-2 Interaction using the back­
ward-wave space harmonic, is 

the radian frequency of oscillation.

frequency at which the space-har­
monic phase velocity equals the 
electron drift velocity, the synchro­
nism condition. Thus oscillations 
are produced at a radian frequency 
on provided that the beam current 
exceeds the starting value. Elec­
tronic tuning may be accomplished 
by changing the sole voltage VSo or 
the cathode voltage VCo, so as to 
vary the electron drift velocity. 
Amplitude modulation may be 
obtained by varying the accelerator 
voltage Vao, which varies the beam 
current.

Because of the phase focusing in­
herent in crossed-field devices, the

exact frequency of oscillation is determined almost entirely by the circuit 
characteristics. That is, the frequency pushing (due to increasing the beam 
current) is very small.

Since the M-carcinotron is a crossed-field device, high-efficiency operation 
is possible. Efficiencies of 20 to 30 per cent are easily obtained.

The electron flow indicated in Figure 12.3-1 is perturbed by the rf electric 
field of the circuit. The perturbed electrons are shown in Figure 12.3-3 at a 
particular instant of time for a thin beam. Each electron moves in syn­
chronism with the wave with a trajectory of the type previously discussed 
in connection with Figure 12-3.

For the purpose of discussion, half-cycle groups of electrons are identified 
by the letters A through G. Electrons A near the beginning of the circuit 

a c D E F G

SOLE

Fig. 12.3-3 Thin beam electrons and electric field lines at a particular instant of 
time in an M-carcinotron.
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are moving toward the circuit, whereas electrons B are moving toward the 
sole. Farther down the circuit, electrons C are closer to the circuit, and 
electrons D are closer to the sole. However, electrons C have departed a 
greater distance from the unperturbed path than have electrons D. Thus, 
the electrons have lost a net amount of potential energy, this energy having 
been transferred to the rf field. The reason for the greater displacement of 
the electrons moving toward the circuit is that these electrons are in 
stronger rf fields, since they are closer to the circuit. Electrons E and F 
further illustrate this behavior. Electrons G have moved so far from the un­
perturbed position that some of them are being intercepted on the circuit.

In addition to the transverse motion of the electrons, there is also a 
bunching of the electrons in the longitudinal direction. Both of these effects 
cause induced currents in the circuit, and hence both effects must be con­
sidered in an analysis of the interaction process. Except for this added 
complexity, the analysis proceeds as for the backward-wave oscillator in 
Chapter 11. We shall not go into the details of this analysis. The interested 
reader is referred to the references.20 The small-signal theory predicts the

Fig. 12.3-4 Typical physical configuration of an M-carcinotron. The circular form 
of the device results in a lower magnet weight than would be required for a linear 

version. The rf attenuator shown serves to provide an rf termination for one end 
of the slow-wave structure. (Courtesy of Raytheon Company)

“Reference 12a, Vol. 1, pp. 395—495, 528-553, Reference 12.5.
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DC VOLTAGE 
TERMINALS

Fig. 12.3-5 Litton Industries L-3726 M-carcinotron. The tube weighs 16.5 
pounds, with magnet. It measures approximately 18 cm in diameter and 13 cm 

high. (Courtesy of Litton Industries, Electron Tube Division)

starting current, and various large-signal, nonlinear theories allow one to 
estimate the efficiency. M-Carcinotrons are generally constructed in the 
circular re-entrant form shown in Figure 12.3-4. The slow-wave structure 
and sole are circular and nearly re-entrant to conserve magnet weight; the 
sole has the appearance of the cathode in a magnetron.

A typical M-carcinotron is the Litton L-3726, shown in Figure 12.3-5. 
The construction is similar to that of Figure 12.3-4. The circuit is an 
interdigital line,21 a two-wire line with “fingers” extending alternately 
from one line toward the other. The tube delivers a minimum of 165 watts 
CW, voltage tunable over the frequency range 4800 to 6550 Me.

Table 12.3-1. L-3726 Typical Operating Characteristics*
Frequency, Me.................................................................................................4800 to 6550
Power output, watts................................................................................. 167 to 305

Cathode voltage, Vc«, volts................................................................2045 to 4755

Accelerator voltage, Fa«, volts...............................................................1615
Sole voltage, Fs„, volts.....................................................................................2450

Cathode current, ma........................................................................................... 300
Spurious output ratio, db (minimum)................................................ 15

’The symbols are defined in Figure 12.3-1.

Typical operating characteristics are summarized in Table 12.3-1. Tun­
ing curves are shown in Figure 12.3-6. For this type of operation, tuning is

21See Problem 8.10.
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accomplished by varying the cathode voltage Vc<>. A faster rate of tuning is 
accomplished by varying the sole voltage, since the sole draws very little 
current and has only 65 picofarads of capacity to ground. However, with 
sole tuning the tuning range is limited to about 900 Me with the other 
voltages held constant.

FREQUENCY IN GC

Fig. 12.3-6 Tuning curves for the L-3726. These data correspond to fixed values 

of sole voltage Vs. and cathode current of 2450 volts and 300 ma, respectively. 
(Courtesy of Litton Industries, Electron Tube Division)

Examination of Figure 12.3-6 reveals that the frequency tuning with 
voltage is nearly linear. This feature allows a simplification of the circuitry 
associated with electronic tuning. Linear tuning results chiefly from the 
fact that the electron drift velocity is linearly related to the dc electric field 
in the interaction space, which in turn is directly proportional to the 
cathode voltage Vco- In contrast, the electron velocity in the O-type back-



464 PRINCIPLES OF ELECTRON TUBES

ward-wave oscillator is proportional to the square root of the tuning voltage. 
As a result, the tuning sensitivity of the M-type oscillator is higher.

The electronic efficiency of the L-3726 varies from 27.5 per cent at the 
low-frequency end to 24 per cent at the high end for the operating condi­
tions given above.

A disadvantage of the M-carcinotron is a relatively high degree of 
spurious output, due to the inherent instability of electrons in crossed 
fields. The spurious output of the L-3726 is as much as 15 db below the 
desired signal. Because of this high noise level, M-carcinotrons have found 
considerable applications as high efficiency jamming sources for electronic 
countermeasures.

We may summarize our discussion of the M-carcinotron by comparing its 
characteristics with those of the O-type backward-wave oscillator. Both 
tubes are electronically tunable over large bandwidths. The M-carcinotron 
has the advantages of high efficiency, linear tuning, and low-frequency 
pushing. On the other hand, the M-carcinotron has considerably more noise 
or spurious output.

PROBLEMS

12.1 Derive Equation (12.1-19). Show that the velocity at the hub surface 

varies from w/ft at the Hartree voltage to (eB/m)d at the Hull cutoff voltage.

12.2 Calculate the convection current density at the hub surface using the model 

of Figure 12.1-4 for a magnetron with the following parameters.

B = 7400 gauss
Va„ = 17.5 kv

d = 0.90 mm

Ans.: 2560 amps/cm2

12.3 The electromagnetic fields in a magnetron operating in the w mode may be 

considered to be either those corresponding to a standing wave or the result of the 

superposition of two equal traveling waves carrying equal amounts of power but

Problem 12.3
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in opposite directions. The figure shows a linear version of a magnetron electrode 

configuration; this slow-wave structuie is similar to that of Figure 8.7-4 and has 

similar properties.
(a) Sketch a Brillouin diagram for the lowest frequency mode of this structure 

over the range — 2r < BL < 2ir. Label the space harmonics. Indicate the 
point of interaction for the ir-mode and indicate which two space harmonics 

are synchronous with the electrons at this point. Indicate which of the re­

maining space harmonics correspond to power flow in the same direction as 

each of the synchronous space harmonics.

(b) The x component of the rf electric field in the region between the vane tips 
and the cathode for power flow in the positive x direction is given by

F+X^sinh 7„(d — y) sin BnS/2A^x
L sinh 7„d BnS/2— co

where Bn = B« + (2m/L) and 7„ = ^Bn1 — k2, using an analysis similar to 

that given in Section 8.7(b). V+ is the voltage across the vane-tip gap centered 

at x = 0. Write the corresponding expression for a wave having equal 

power flow in the negative x direction, if F_ instead of V+ is the voltage 

across the gap centered at x = 0 in this case.
(c) For equal power flows in the two opposite directions | F+ | = | F_ |. Using 

this fact show that the four space harmonics discussed in part (a) have equal 

amplitudes at the frequency corresponding to ir-mode operation.

(d) Show that the superposition of Ex+ and Ex- corresponds to a standing wave, 
for ir-mode operation.

12.4 Calculate the parameters of the equivalent circuit of Figure 12.1-19 as they 

apply to the Western Electric 7208B magnetron from the data given at the end of 

Section 12.1(c). Assume that Ye is purely conductive.

12.5 A crossed-field amplifier is being operated under conditions corresponding 

to maximum gain at a given anode voltage. Is it possible to increase the gain of the 

device by increasing the circuit length, assuming that the anode voltage and other 

circuit parameters are held constant? Is it possible to increase the rf power output 

for the same rf power input by this means? Is it possible to decrease the rf power 

input for the same rf power output by this means? Explain.

Problem 12.6
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12.6 The figure shows ideal laminar flow in an M-carcinotron under de conditions; 

that is, neglecting the effects of the rf fields. All electrons are assumed to follow 

circular paths, and the angular velocity is the same for all electrons independent of 

the radius. The latter condition allows exact synchronism of all electrons with the 

rf field despite the space-charge forces. Assuming that the electron charge density 

is uniform, independent of the radius, show that this ideal flow requires

y *’(1-2 Inf)

4so\ a/

and

Vc. = (1 + 2 In f)

4s„\ o/

where p is the electron charge density and the voltages are defined in Figure 12.3-1.

12.7 The Hull cutoff parabola and Hartree line as plotted in Figure 12.1-7 have 

been derived from a linear model of the magnetron. Show that curves of identical 

shape are obtained for the usual cylindrical model of the magnetron.
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Chapter 13

NOISE

An important and fundamental limitation in the performance of all 
electron tubes and their associated circuits is noise. In this chapter we 
shall consider noise to be unwanted signals having a random or incoherent 
nature. The effects of noise may be of greater or lesser importance in com­
munications systems, depending on the type of modulation used and the 
level of the intelligence-bearing signal relative to that of the noise. Noise 
may obscure weak signals in the case of amplitude or frequency modulation 
systems, and it may give false signals in pulse code modulation systems.

The word “noise” is also often used to include unwanted man-made sig­
nals, such as those due to electric motors, diathermy machines, automobile 
ignitions, transmitter harmonics, etc. However, such signals can be re­
duced to tolerable levels at their sources by proper engineering, and we 
shall not further consider this type of noise.

Random noise results from the finite charge on the electron or other 
carriers within the conductors and devices used in electronic circuits. 
Because an electric current within a conductor or an electron beam is made 
up of individual charged particles in motion, and because each particle 
carries a finite discrete charge, the current flow is never continuous but is 
subject to statistical fluctuations about an average value.

We shall find that the induced current flowing in the external circuit of a 
temperature-limited diode is characterized by a mean-square fluctuation 
current, or noise current, given by

7 = 2els^f (13-1)
where — e is the electronic charge, ISo is the dc beam current, and Af is the 
bandwidth over which the noise current is measured. This expression is 
valid only when the electron transit time is small compared with the period 
of the noise frequencies under observation. Noise resulting from a current 
flow which is limited by the random passage of electrons over a potential 

467
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barrier, such as the potential barrier at the surface of a temperature-limited 
cathode, is known as shot noise.

A second fundamental source of random noise results from the thermal 
motions of electrons or other charge carriers within a resistance. The 
motion of the charge carriers within the resistance causes a noise voltage to 
appear across the terminals of the resistance. We shall find that the mean 
square noise voltage across a resistance R is given by

P = 4kTRbf (13-2)
where k is Boltzmann’s constant, equal to 1.38 X 10-23 joules/°K, T is the 
absolute temperature of the resistance, and △/ is the bandwidth over which 
the noise voltage is measured. If the resistance is connected to a second 
resistance, noise power is transmitted from the first resistance to the second 
resistance, and likewise noise power is transmitted from the second re­
sistance to the first resistance. Maximum noise power is transmitted from 
one resistance to the other when the two resistances are equal. This maxi­
mum transmitted noise power, or the available noise power from the re­
sistance, is given by

P = kTAf (13-3)
In grid-controlled tubes, the individual electrons of the beam pass the 

control grid at random times with the result that noise currents are induced 
in the grid circuit. This leads to a noise voltage at the control grid, and this 
noise voltage is amplified by the tube. Still another kind of noise, called 
partition noise, appears in the output of grid-controlled tubes and beam­
type tubes when an electrode such as a screen grid intercepts a portion of the 
electron beam and hence adds random fluctuations to the remainder of the 
beam current. This type of noise is closely related to shot noise.

In beam-type microwave tubes, the random nature of the electron emis­
sion time and emission velocity gives rise to initial current and velocity 
modulation on the electron beam, and this in turn is amplified.

Noise sets a limit to the smallest signal that an amplifier can detect. The 
noise at the output of an amplifier consists of the amplified thermal noise 
due to the resistance of the source plus the noise added by the amplifier 
itself. For high receiver sensitivity, the noise added by the amplifier should 
be as small as possible.

The noise performance of an amplifier is specified by a quantity termed 
the noise figure (or noise factor). The noise figure F is defined by1

p QokToB + Na _ . . Na
 F " “ 1 + (13'4)

•References 13.1, 13.2. Available power is the power delivered to a matched load. 
Available power gain is the ratio of available powers at the output and input of an 
amplifier.
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where Na is the total available noise power due to noise sources within the 
amplifier, g0 is the available power gain of the amplifier at band center, To is 
a standard reference temperature equal to 290°K, and B is the amplifier 
bandwidth. The bandwidth B is,defined as

B= 9(f)df (13-5)bo Jo
where g(/) is the available power gain at frequency/. The quantity QjcToB 
in Equation (13-4) is then the total available noise power output for an 
ideal noiseless amplifier with the same variation of available power gain 
with frequency. Equation (13-4) states that the noise figure is equal to the 
ratio of the total available output noise to the available noise which would 
be present at the output if the amplifier itself were noiseless, assuming a 
source temperature of 290°K. The noise figure is usually expressed in 
decibels; that is, ten times the logarithm to the base 10 of the above 
quantity.

The expression for noise figure may be written in another form. The 
available signal power at the input Sin is related to the available signal 
power at the output Sout by

S„u, = goSm (13-6)

Equation (13-4) may thus be written
Si„ Si„

QjcToB + Na Noat

where Nin and Nout are the available noise powers at the input and output, 
respectively, assuming the standard source temperature.

The noise figure defined above is sometimes called the average noise 
figure, since the noise power is averaged over the entire bandwidth of the 
amplifier. Alternatively, for wide-band amplifiers, it is sometimes desirable 
to know the spot noise figure, a function of frequency. The spot noise figure 
is defined as above, except that noise power is measured in some small unit 
frequency interval centered at the signal frequency. B in the above equa­
tions is then replaced by this unit frequency interval.

The above definitions of noise figure assume a standard source tempera­
ture To of 290°K, room temperature. This is convenient for noise figure 
measurements. However, receivers are sometimes operated with receiving 
antennas pointed toward the sky. Under such conditions, the effective 
source temperature is often considerably less than room temperature.2 At

’Reference 13.3, 
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frequencies proposed for satellite communications, 1 to 10 Gc, the effective 
sky temperature may be as low as 4°K. Let us examine the applicability of 
the noise figure concept under these conditions.

The available output noise added by the amplifier is obtained from 
Equation (13-4) as

Na = (F - l)kT0Bg0 (13-8)

The total available output noise for a source at temperature T, is given by 

Nout = kTsBg. + Na

[T1 + ^(F - 1) (13-9)

where the prime indicates that the actual source temperature is indicated. 
Using Equation (13-6), this may be written as

¡fh-fel'+iy-1’]
which relates the signal-to-noise ratios at the input and output of the 
amplifier.3

Equation (13-10) may be used to determine the minimum detectable 
input signal for a receiver. Suppose that we ask: How weak can the input 
signal be and still be distinguished from the noise? The signal-to-noise ratio 
at the output corresponding to this condition is somewhat arbitrary, so we 
shall take it as unity. That is, we shall set Sout/Nout = 1. This corresponds 
to a doubling of the output power as a criterion to determine the presence of 
a signal.

The minimum detectable input signal <Si„ from Equation (13-10) is 
plotted in Figure 13-1 as a function of noise figure for Sout/Nout = 1 and for 
three source temperatures. The receiver bandwidth is taken arbitrarily 
as 1 Me. Values for other bandwidths are easily obtained, since the mini­
mum detectable input signal is directly proportional to the receiver band­
width. For a source at room temperature, the relationship between mini­
mum detectable input signal and noise figure is linear. However, for lower 
source temperatures, the minimum detectable input signal decreases more 
rapidly with decreasing noise figure. Thus, considerable improvement is 
realized by using low noise figure receivers (F < 5 db) in systems whose re­
ceiving antennas are directed toward the sky.

’Another useful noise quantity is the effective input noise temperature of the amplifier, 
equal to T.(F — 1). This is the temperature of an equivalent noise source at the input 
of an equivalent noiseless amplifier which replaces the actual amplifier. It is useful 
because it gives the relative contribution of the amplifier to the total output noise for 
any source temperature.
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Fig. 13-1 Receiver sensitivity for a bandwidth of 1 Me for signal sources at various 
temperatures as a function of the receiver noise figure. The signal-to-noise ratio at 

the receiver output is assumed to be unity.

We shall use the noise figure concept at several places in this chapter as a 
measure of the noise performance of an amplifier.

13.1 Fundamental Sources of Noise

There are certain fundamental sources of noise due to the fact that 
electron current is composed of individual electrons, each with its own 
velocity and position. Statistical methods have been used to analyze these 
effects.4 Most of the analyses are rather complex for an introductory study 
of noise; hence, we shall limit our discussion to nonrigorous demonstrations 
of the fundamental theorems.

(a) Thermal Noise

Any passive resistance acts as a noise source with an available noise 
power given by Equation (13-3). The available noise power is the power

♦Reference 13.4.
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Fig. 13.1-1 Two equal resistors at 
different temperatures connected to­

gether. Ri is at temperature Ti, and 

Ri is at temperature T2.

which is delivered to a matched load. 
Thus in Figure 13.1-1, if Ri = Ri, a 
power kT^Af flows from Ri to R2 
within the frequency range Af, and 
similarly kT^Af flows from R2 to Ri 
within the frequency range Af, where 
T\ and T2 are the respective resistor 
absolute temperatures. If Ti > T2, 
energy is transferred from Ri to R2. 
If the resistors are at the same tem­
perature, no net transfer of energy 

occurs; the powers flowing in the two directions are equal.
Equivalent circuits for a resistor as a noise source are given in Figure 

13.1-2. v2 and i2 indicate time averages of the square of the voltage and 
current, respectively. An equivalent rms quantity would be given by the

( a) (b)
Fig. 13.1-2 Equivalent circuits for the thermal noise associated with a passive 
resistance. R in these equivalent circuits is taken to be noiseless, (a) Voltage 

source equivalent circuit, (b) Current source equivalent circuit.

square root of such a quantity. It is simple to demonstrate that each of 
these circuits has an available power equal to kTAf. The resistor in each 
equivalent circuit is considered noiseless; the voltage and current sources 
represent the only sources of noise.

As an example of the use of these equivalent circuits, let us determine the 
exchange of energy for the circuit of Figure 13.1-1, where Ri R2 and 
Ti T2. The equivalent circuit is shown in Figure 13.1-3, using the voltage 
source equivalent circuit of Figure 13.1-2(a). The two noise sources are 
uncorrelated. That is, the random electron motion of one resistor is com­
pletely independent of that of the other resistor. Thus, if we were to com­
pare the relative phases of the two sources in a very narrow bandwidth, the 
phase difference could be anywhere from zero to 360 degrees, with equal 
probability, and is continuously varying. Each source acts completely in­
dependently of the other. We may use a very special type of superposition
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Fig. 13.1-3 Noise equivalent circuit for two unequal resistors Ri and R2, having 

temperatures T, and T2, respectively, connected together.

in these problems of uncorrelated noise sources: The noise power delivered 
from each source to the other parts of the circuit may be evaluated by 
computing power with all other sources set to zero. Thus, in Figure 13.1-3 
the power delivered to R2 from Ri is given by

p _ vJR2 _4kT1R1R2àf
12 (Ri + RN (Rt + RN

Similarly, the power delivered to Ri from R2 is

p _ V22Hi _ 4JcTjR2RtAf , 1 .
21 (Rt + R2y (Ri + Ri)2 ( }

The net flow of power from Ri to R2 is

p _ p 4k(Ti — T2)RiR2àf . .
P12 P2' (ft+%)2 (13.1-3)

If Ri = R2 = R, we have

Pi2 — P2i = k(Ti — (13.1-4)

which agrees with our previous result.
As another example, we shall determine the noise voltage appearing 

across the terminals A-A' in Figure 13.1-1. This voltage would be of 
interest in the case where the resistors shown comprise the grid circuit in an

Fig. 13.1-4 Noise equivalent circuit of two resistors in parallel, both at the same 
temperature. It is demonstrated that the noise properties are given by the thermal 

noise of the equivalent parallel resistor.
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amplifier; this noise voltage multiplied by the voltage gain of the amplifier 
appears as a portion of the output noise of the amplifier.

The noise voltage appearing across terminals A-A' is most readily deter­
mined using the current source equivalent circuit of Figure 13.1-2(b). The 
noise equivalent circuit for the two resistors is shown in Figure 13.1-4. For 
convenience, we define the conductances Gi = A/Ri, G2 = l/TA, and 
Gt = Gi -J- Gi = 1/Rt. The total noise voltage is obtained by superposi­
tion of the mean-square voltages produced by each noise source. The total 
noise voltage is given by

4kTiGiAf , AkT2G2Af
V^ = —G^-+—G^-

= AkAf^^+Jj^ (13.1-5)

If Ti = T2 = T, Equation (13.1-5) becomes

= AkTRrAf (13.1-6)

which is the open-circuit voltage of Figure 13.1-2(a), with R replaced by Rt, 
the equivalent resistance of the parallel combination of resistors. This is a 
special case of a more general theorem; that is, the available output noise 
power at any two terminals of a passive isothermal network is equal to 
kTAfi Thus, the noise at two terminals of any passive isothermal network 
may be obtained from the equivalent circuits of Figure 13.1-2, where R in 
Figure 13.1-2(a) is given by the real part of the two-terminal impedance and 
1/R in Figure 13.1-2(b) is given by the real part of the two-terminal 
admittance.

Noise calculations in circuits containing reactive elements are made using 
the equivalent circuits of Figure 13.1-2 and the rules of ac circuit analysis. 
As an example let us compute the noise current flowing in an R-L-C loop. 
The impedance of the loop is given by

| Z | = ^R2 + (wL - 1/wC)2

Using the equivalent circuit of Figure 13.1-2(a), the noise current is given by

— v2 AkTRAf
1 “ |ZT2 ~ R2 + (wL - 1/wC)2

A simple derivation of the expression for thermal noise, Equation (13-3), 
proceeds as follows.6 In Figure 13.1-5 are shown two identical resistors of

’This general theorem requires only that each resistor possess bilateral network 
properties with respect to the output terminals. See Reference 13.4, pp. 185-189, 

’Reference 13.5.
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resistance R joined by a lossless 
TEM transmission line of character­
istic impedance R. All parts of the 
circuit are at a temperature T. 
Since the transmission line is matched 
at both ends, each resistor is deliver­
ing its available power to the line. 
This power then flows to the other 
resistor where it is dissipated.

Now, suppose that the line is sud­
denly shorted at both ends. The 
shorted line is a resonant element

LOSSLESS TEM 
TRANSMISSION LINE

Fig. 13.1-5 A transmission line ter­
minated in its characteristic impedance 

R at both ends. The line and the ter­
minating resistors are all at the same 

temperature T.

with resonant frequencies corresponding to the line length L being an 
integral number of half wavelengths, that is

fn =
nc
2L (13.1-7)

where c is the velocity of propagation on the line, and n is an integer. Thus 
the modes of oscillation are spaced by a frequency interval Af, where

c
2L (13.1-8)

From the equipartition theorem of statistical mechanics,7 each mode of 
oscillation will have associated with it an energy kT. Now the standing 
wave corresponding to the resonant mode is comprised of two traveling 
waves, traveling in opposite directions. Hence, each traveling wave has 
an energy I kT and an energy per unit length given by

_ kT
1 2L (13.1-9)

Since the group velocity for a TEM transmission line is c, the power flow 
in one direction P is given by

IcTrP = cWl = ^. (13.1-10)

We may substitute for L from Equation (13.1-8) obtaining

P = kTAf (13.1-11)

Since the line was shorted instantaneously, this must also be the power flow 
in each direction before the lines were shorted. Thus, each resistor has an 
available noise power given by Equation (13.1-11). A rigorous develop­
ment of an expression for thermal noise is outlined in Appendix XVI.

’Reference 13a, Chapter 11.
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(b) Shot Noise

In an electron tube the cathode emission current consists of individual 
electrons emitted at random. The random emission times for the individual 
electrons result in fluctuations of the current induced in the output circuit. 
The noise associated with these fluctuations is known as shot noise.

When the current drawn from the cathode is space charge limited, the 
space charge near the cathode acts to reduce the shot noise, an effect which 
will be studied later. On the other hand, when the emission is temperature 
limited, full shot noise is obtained. Diodes operated with temperature­
limited emission are often used as standard noise sources.

The magnitude of full shot noise for a diode can be evaluated by statis­
tical methods. Full shot noise is given by a current source of mean-square 
value8

z2 = 7—(¡Kwi)2 + 2(1 — coswt — wt sin wt)]A/ (13.1-12)

for a planar diode, where Is<l is the temperature limited dc current, and 
t is the electron transit time. The ac current i is equal to the difference 
between the instantaneous value of the current and the average value, and 
i2 indicates the time average of the square of this quantity. Equation

Fig. 13.1-6 Variation of full shot noise with transit angle in a parallel-plane diode 
(From An Introduction to the Theory of Random Signals and Noise, by W. B. Daven­
port and W. L. Root. Copyright 1958. McGraw-Hill Book Co., Inc. Used by 

permission)

•Reference 13.4, Chapter 7.
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(13.1-12) is plotted in Figure 13.1-6. At low frequencies, full shot noise is 
given by

F = 2eISoAf (13.1-13)

The latter expression holds for diodes of any geometry. It is to be noted 
that full shot noise is not a function of temperature; one might expect this 
since it is caused by random emission time.

A simple derivation of Equation (13.1-13) proceeds as follows.9 Consider 
the vacuum tube shown in Figure 13.1-7 consisting of two identical, planar, 
close-spaced cathodes parallel to each other. The entire structure is 
assumed to be enclosed in an isothermal oven at temperature T. Each 
cathode emits a small temperature limited current with noise fluctuations, 
intercepted by the opposite cathode, so that a noise current flows in the 
external wire connecting the two cathodes. This noise current is equal to

? = 4kTGAf (13.1-14)

from Figure 13.1-2, where G is the ac conductance of the diode formed by 
the two cathodes. This formula applies to the diode since it is a passive, 
isothermal structure in thermal equilibrium.

Next we must evaluate the ac conductance of the diode. This con­
ductance is equal to dIo/dVo in the limit as both the diode current Io and

Fig. 13.1-7 Isothermal structure con- Fig. 13.1-8 Equivalent circuit for the 
sisting of two identical, planar, close- noise from a temperature-limited diode 
spaced cathodes parallel to each other. at low frequencies.

the diode voltage V. approach zero. In order to evaluate the functional 
relationship between Io and let us assume that cathode A is positive 
with respect to cathode B, the potential difference being equal to V„. 
The diode current I, is given by

Io = IABo - IBAo (13.1-15)

’Reference 13.6.
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(13.1-16)

(13.1-17)

(13.1-18)

where IABo corresponds to the current of electrons emitted from cathode 
B arriving at cathode A, and IBAo corresponds to the current of electrons 
emitted from cathode A arriving at cathode B.

Since electrode A is positive, IABo is equal to the maximum or saturated 
value of temperature limited current, which we call Ig0. On the other hand, 
the electrons emitted from cathode A see a repelling field so that only the 
electrons with normally directed emission energy greater than eV„ electron 
volts are able to escape from A and arrive at B. The probability dis­
tribution function for the emitted electrons is given by Equation (2.4-2) 
as a function of the kinetic energy associated with the normally directed 
velocity. The fraction of the emitted electrons with energies sufficient to 
overcome the potential barrier is obtained from this equation as:

J 1 ^'^dWnkBAo = WTjeVo = 
iso i rL- / t-^lwTdWn 

WT Jo

Thus, the total current is given by
T = To — To f~^olkT a o So

For Vo approaching zero, the conductance is given by

_ Bl o I _ el so 
AVo “ ~kT

from Equation (13.1-17).
When the value of conductance given by the last equation is substituted 

into Equation (13.1-14), one obtains

? = 4kTGAf = 4eISoAf

This noise current is the sum of two equal uncorrelated shot noise currents 
— that due to cathode A and that due to cathode B. For a single cathode 
the shot noise is half of this, or

? = ZelsoAf

identical with Equation (13.1-13).
The low-frequency equivalent circuit of the temperature limited diode 

for noise calculations is given in Figure 13.1-8.

(c) Velocity Fluctuations

In addition to a random emission time, each electron possesses a random 
emission velocity. In low-frequency tubes operating under space-charge 
limited conditions, we shall find in the next section that it is the randomness 
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of the electron velocity which sets a limit to the minimum noise. In micro­
wave tubes, the velocity fluctuations act as initial velocity modulation on 
the electron beam, which may be amplified to produce output noise.

The probability distribution function for the normal component of 
electron emission velocity is given by Equation (1) of Appendix IV as

dP(un) = (13.1-19)

where Tc is the cathode temperature. As the emitted electrons move 
toward the, potential minimum, those of lowest velocity are continuously 
sorted out and returned to the cathode.

Let us calculate the average velocity of the forward moving electrons at 
any point between the cathode and the potential minimum. The normal 
component of velocity of an electron at a point where the electrostatic 
potential relative to the cathode is V may be written in terms of the emis­
sion component un as

p
u2 = Un2 + 2-7 (13.1-20)m

Since the electrostatic potential is independent of an individual electron’s 
velocity, Equation (13.1-20) leads to

udu = undun (13.1-21)

Thus, Equation (13.1-19) can be written as

dP(u) = (13.1-22)fol e

The average velocity of the electrons moving away from the cathode 
at a point between the cathode and the potential minimum where the 
potential relative to the cathode is V is given by

f" 2

I ^-(-(m/2kTc)(u!-2eV/m)^u
/*co

a constant. This is an interesting result. Since u is independent of V, we 
must conclude that even though all electrons are being slowed down by the 
repelling field of the potential minimum, the average velocity of those 
passing the potential minimum is constant. Moreover, this average veloc­
ity is also independent of the potential difference between the cathode and
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the potential minimum. Thus, u remains constant even though the po­
tential mimimum fluctuates due to some noise perturbation.

The average velocity given by Equation (13.1-23) is an average taken 
over a sufficiently long length of time. At any particular time the average 
electron velocity may be slightly higher or slightly lower than this value. 
The mean-square fluctuation of the average velocity at the potential 
minimum can be shown to be10

¿7 = ^J^4 - (13.1-24)

where Iao is the de anode current, ua is the difference between the in­
stantaneous value of the average velocity at the potential minimum and 
the value given by Equation (13.1-23), and uA2 is the time average of the 
square of this quantity.

(d) Space-Charge Smoothing

When tubes are operated under space-charge limited conditions, the 
output noise is found to be considerably less than that corresponding to 
full shot noise. Thus, if the noise is represented by a current source in the 
plate circuit, it is of a strength,

F = T2 • 2eIa<Af (13.1-25)

where transit-time effects are assumed to be negligible, Ia<> is the de anode 
current, and r2 is a factor less than unity.

A physical explanation of the space-charge smoothing of the shot noise 
is easily given. Potential profiles for a space-charge limited diode are 
shown in Figure 13.1-9. The equilibrium potential profile is shown as a 
solid line. If, due to shot noise fluctuations, a larger than average number 
of electrons is emitted at a particular instant, the potential minimum would 
be depressed slightly as indicated by curve A. Because of the deepening 
of this minimum, a smaller percentage of the emitted electrons is able to 
pass the minimum and go on to the anode. Only those electrons with 
sufficiently high emission velocities can pass the minimum. Thus, the 
higher instantaneous emission current is somewhat neutralized by the 
rejection of a larger percentage of the emitted electrons by the deeper 
potential minimum. Curve B corresponds to the opposite situation, where 
a fewer-than-average number of electrons are emitted at a particular 
instant. In this case, there is less space charge in front of the cathode, the 
potential minimum becomes shallower, and a larger percentage of the 
emitted electrons pass on to the anode.

“Reference 13.7.
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Fig. 13.1-9 Potential distribution in a space-charge limited diode under equilib­

rium conditions (heavy line). Dotted curves A and B indicate the potential dis­
tributions obtained due to an instantaneous excess or deficiency of emitted cur­

rent, respectively.

This space-charge smoothing process is indeed very effective. At low 
frequencies, the current fluctuations are reduced greatly. r2 may be as low 
as 0.02.

We can derive a simple expression for the space-charge smoothing factor 
T2 using the Llewellyn and Peterson equations of Section 7.2.11 The 
Llewellyn and Peterson equations are given by Equations (7.2-1), and the 
coefficients are tabulated in Appendix XI. The equations are applied to 
an open-circuited diode; that is, the diode is operated with an rf open 
circuit such as is obtained with a series rf choke of high inductance. We 
shall derive the noise-fluctuation voltage appearing across the diode.

In Figure 7.2-1 (a) we take the potential minimum to correspond to plane 
A and the anode to correspond to plane B. The first of Equations (7.2-1) 
(symbols as defined in Section 7.2) may be written as

VB - VA = B*JA + C*UA (13.1-26)
since Jt = 0 for an open-circuited diode. From Appendix XI we have 

f = 1 (13.1-27)

"Reference 13.7.
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for a space-charge limited diode, and

uAo = 0 (13.1-28)

corresponding to zero de velocity at the potential minimum, so that 
7’2

B* = -£UAo[2P - BQ] = 0 (13.1-29)SoP
and

O'»! PC* = —— UBOÇ (13.1-30)
6 p

At low frequencies, B approaches zero and

g-i (13.1-31)

so that C* is given by

C* = --Ubo (13.1-32)e

Thus, from Equations (13.1-26), (13.1-29), and (13.1-32), we have
/ ^>7 \ O'»? -

v2 = ( -ubo ) Wa2 = — (13.1-33)
\ e / e

where y2 is the mean-square voltage fluctuation across the open-circuited 
diode, and uA2 is the mean-square velocity fluctuation at the potential 
minimum; Vao is the de anode voltage. But, as discussed in part (c) above, 
Ua2 is given by Equation (13.1-24). Thus, Equation (13.1-33) may be 
written as

v2 = 2kTcAf^(4 - x) (13.1-34)
x ao

Equation (13.1-34) may be written in a more useful form. Let us define 
the dynamic resistance of the diode as

dVra=^ (13.1-35)
t/x ao

as in Appendix X. Since the space-charge limited diode current is pro­
portional to the three-halves power of the voltage, we have

2 V-
= (13.1-36)O ¿ao

Thus, Equation (13.1-34) may be written as

= 4k9TcraAf (13.1-37)
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where 6 = 3(1 — r/4) = 0.644. Com- _____
paring this with the correspond- I I
ing expression for thermal noise, we 7*=r*aeIaoAftQ > r
see that the diode appears as a ther- ' y < a
mal noise source whose temperature I_____ 1
is 0.644 times the cathode tempera- Fig 13 Equivalent circuit for the 
ture. The equivalent circuit is given noise from a space-charge limited diode, 
in Figure 13.1-10. The resistance ra is noiseless.

The reader may wonder why the
formula for thermal noise does not apply directly, that is, why 0 should 
not be unity. The reason for this is that the space-charge limited diode 
is not in thermal equilibrium, a necessary condition for the validity of 
the thermal noise available power expression. By virtue of the dc current, 
chemical energy from an external dc voltage source is being converted into 
the heat associated with plate dissipation. On the other hand, the tube 
of Figure 13.1-7 corresponded to thermal equilibrium since no dc voltages 
were applied to it; thus thermal noise formulas could be applied directly.

Converting Equation (13.1-37) to an equivalent current source and com­
paring with Equation (13.1-25), we obtain an expression for r2,

r2 = (13.1-38)
€ r a©

For a typical oxide-coated cathode, with Tc = 1000°K, this becomes

r2 = 2^57 (13.1-39)
r ao

with Va0 in volts.
Practical diodes usually produce more noise than is predicted by the 

above expressions. In high-current diodes, the noise may be an order of 
magnitude greater. This is due in part to elastic reflections of electrons 
at the anode. The reflected electrons find their way back to the potential 
minimum where they increase the fluctuations in the current passing the 
potential minimum. Triodes, on the other hand, show good agreement 
with the above expressions, since the negative grid deflects the reflected 
electrons and prevents most of them from returning to the potential 
minimum.12

The results of this section are applicable only to low frequencies, where 
transit times are negligible. Effects at higher frequencies will be considered 
later.

“Reference 13.8.
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13.2 Noise in Grid-Controlled Tubes

Triodes, tetrodes, and pentodes have other sources of noise in addition 
to shot noise. In this section we shall study these other noise sources, and 
in addition we shall consider the modification of the shot noise expression 
so that it will apply to grid-controlled tubes.

The equivalent circuit for the noise sources of a tetrode or pentode is 
shown in Figure 13.2-1.13 The reduced shot noise is given by ij. In tet­
rodes and pentodes there is partition noise ip2 due to the random inter­
ception of current by the screen grid. The screen-grid noise current is2 is

CATHODE

Fig. 13.2-1 Equivalent circuit for the noise of a tetrode or pentode. The noise 
sources are as follows:

iij Induced grid noise

ip2 Partition noise

i,2 Shot noise
Screen grid interception noise 

vj Cathode-coating noise

usually eliminated as a noise contributor by means of a bypass capacitor 
from screen grid to the cathode. The induced grid noise is represented by 
the generator iig2; this noise results from fluctuations of induced grid 
current due to the electrons in the cathode-grid region. Finally, cathode­
coating noise or flicker noise is represented by the voltage source vj. All 
of these noise sources will be discussed in detail in this section.

The same equivalent circuit applies to a triode, except that the sources 
iP2 and i,2 are eliminated.

Certain simplifications of the equivalent circuit are possible at high and 
low frequencies. Above 100 kc the flicker noise is usually negligible with 

1ST. E. Talpey, Reference 13b, Chapter 4.
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respect to shot noise so that vj may be eliminated. Below 15 Me the 
induced grid noise is usually negligible.

(a) Shot Noise in a Grid-Controlled Tube

To derive an expression for the shot noise in a grid-controlled tube, we 
consider the control grid and the cathode to comprise an equivalent diode.14 
The results of Section 13.1(d) are applied to this diode to determine the 
shot noise current. Assuming that the grid does not intercept or alter this 
current, this will then be the noise current reaching the anode and appearing 
in the output circuit, neglecting transit-time effects.

The reduced shot noise current for a space-charge limited diode is ob­
tained from Equation (13.1-37) as

ij = 4k6TcgaAf (13.2-1)
where

1 _ 3 7„ 
ra 2 Vge0 (13.2-2)

is the conductance of the equivalent diode consisting of cathode and 
control grid; Vgeo is the equivalent voltage which would have to be placed 
at the plane of the control grid so as to obtain the current Iao in a parallel­
plane diode of the same electrode spacing. This voltage is obtained from 
Equation (5.2-13) as

(13.2-3)

where

i+^YTn\aCg/ (13.2-4)

We are assuming that the conditions leading up to Equations (5.2-13) and 
(13.1-37) are fulfilled; that is, we assume that the spacing from the potential 
minimum to the grid is much greater than the spacing from the potential 
minimum to the cathode. The transconductance gm is obtained by dif­
ferentiating Equation (5.2-13) as 

where use has been made of the definitions given by Equations (13.2-3)

‘•Reference 13.8.



486 PRINCIPLES OF ELECTRON TUBES

and (13.2-4). Combining Equations (13.2-2) and (13.2-5), with Vao given 
by Vee0, we obtain

gm = <rga (13.2-6)

so that the noise current is given by

(13.2-7) O’

using Equation (13.2-1).
Since a generally ranges between 0.5 and 1 and 6 is approximately 2/3, 

Equation (13.2-7) states that the shot noise in a grid-controlled tube is 
equal to the thermal noise generated by a resistor whose temperature is 
2/3 to 4/3 the cathode temperature, the conductance of the resistor being 
equal to the transconductance of the tube.

Noise calculations are often facilitated by representing the shot noise 
by a passive resistor at room temperature in series with the grid lead of 
value R^ and an equivalent tube with zero shot noise. The thermal noise 
current appearing in the plate lead due to this resistor is given by

? = gm^kTR^Af (13.2-8)

Equating Equations (13.2-7) and (13.2-8) we obtain

R.o = (13.2-9)O’ a dm

which, for a typical tube using an oxide-coated cathode, becomes approxi­
mately

2 5
R^ = — (13.2-10)

gm

Measured values16 of R^ are given in Table 13.2-1 for several common 
receiving tubes. All of these tubes are triode connected; that is, the plate 
is connected to the screen grid and suppressor grid in the case of tetrodes 
and pentodes.

Finally, one may express the reduced shot noise for a grid-controlled 
tube in terms of a space-charge reduction factor, that is,

i2 = r2-2eIaoAf (13.2-11)

where expressions for r2 may be obtained from Equations (13.2-7) through 
(13.2-10)

16T. E. Talpey, Reference 13b, p. 175.
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All of the above expressions may be used for the shot noise in a tetrode 
or pentode provided we define a properly. This is accomplished by re­
placing TO() and in Equations (13.2-3) and (13.2-4) by the screen-grid 
voltage and the screen-grid-to-cathode spacing, respectively. Ia0 in Equa­
tion (13.2-11) is the anode current, which might be considerably less than 
the cathode current if the screen-grid interception is high.16

Table 13.2-1. Measured Noise Quantities at 30 Me*

Tube /Transconductance
(Triode Qm

Connected) Micromhos
6AG5 6000

6AK5 5500

6AU6 6600

6BC5 5800

6BC6 7300

6J6 4400
396A/2C51 5400

404A 16000

Shot Noise, 
Equivalent 

Résistance Req, 
Ohms
480

460

420

590

410

720

550

240

Induced Grid 
Noise, Equivalent 
Conductance G^,, 

Micromhos
140 

45

210

130

175
60

40

70

’Courtesy M.I.T. Press, Massachusetts Institute of Technology, Cambridge, Mass.

(b) Induced Grid Noise

At frequencies greater than 15 Me the noise current induced in the anode 
circuit of a triode amplifier stage is found to be greater than that predicted 
by the shot noise theory of the previous section plus the additional thermal 
noise due to the grid resistance. This additional noise is caused by noise 
currents which are induced in the impedance of the grid circuit and which, 
in turn, cause noise voltages to appear between grid and cathode.

Figure 13.2-2 shows qualitatively the current induced in the grid circuit 
by the passage of a single electron from the cathode to the anode. The 
total current induced in the grid circuit is the sum of that arising from each 
of the electrons in transit. Since there are fluctuations in the rate of emis­
sion from the cathode, the total current induced in the grid circuit fluc­
tuates so that a noise voltage appears across the impedance of the grid 
circuit in addition to that arising from thermal noise. This voltage causes 
the beam to be modulated and consequently increases the fluctuations in the 
current induced in the anode circuit. The induced grid noise increases as 
the square of the frequency; and at frequencies greater than 100 Me, it

16Ibid} pp. 177-180.
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Fig. 13.2-2 Current induced in the grid circuit of a triode due to the passage of a 
single electron from the cathode to the anode.

is a principal limiting factor in the design of low-noise amplifiers using grid- 
controlled tubes.

From the physical description of the induced grid noise given above, 
it is evident that there is a relationship to the input conductance of the 
grid discussed in Section 7.3(b). The theory of that section may be applied 
to electrons having shot noise fluctuations with the result that the induced 
grid noise is given by a noise current generator of value17

Ù»2 - 4k0TGlnAf (13.2-12)

where T is equal to room temperature, Gin is the input conductance dis­
cussed in Section 7.3(b), and

T 0 = 1-43^7 (13.2-13)

equal to approximately 5 for oxide-coated cathodes. The induced grid 
noise predicted by this equation arises from the shot noise fluctuations in 
the convection current passing through the grid. Thus, there is a corre­
lation18 between this noise and the shot noise in the anode current described 
in part (a) of this section. This correlation must be taken into account in 
any noise calculations.

“Reference 13.9.
“If the product of two noise currents has a nonzero time average, the currents are said 

to be correlated.
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In. addition to the correlated component of induced grid noise described 
above, there is an uncorrelated component19 which may be as much as 70 
per cent of the total induced grid noise. This uncorrelated component is 
thought to arise from three major sources;

1. Equation (13.2-12) is derived assuming a uniform transit time for all 
electrons. In reality, some electrons move closer to the negative grid wires 
than others, these electrons having thus a longer transit time. The random­
ness of this transit time introduces an additional induced grid noise.

2. A small percentage (2 to 3 per cent) of electrons elastically reflected 
from the anode find their way back to the grid, inducing additional noise 
currents. Since elastic reflections are purely random, and there is no space­
charge smoothing of this current of electrons, this contributes significantly 
to the uncorrelated induced grid noise.

3. Electrons with insufficient emission velocity to pass the potential 
minimum induce current in the grid circuit if the total transit time is a 
significant portion of an rf cycle. This “total emission noise” is of course 
uncorrelated with the current passing the potential minimum.

Just as the shot noise may be replaced by a resistor Req in the grid circuit, 
so also may we represent the total induced grid noise by an equivalent 
shunt conductance Geq in the grid circuit. This conductance is placed from 
the grid to the cathode; thus an rf short from grid to cathode eliminates 
induced grid noise. Since Req is in series with the grid lead, a similar rf 
short does not eliminate the shot noise contribution. Measured values20 
of Geq are given in Table 13.2-1 for several common tubes.

(c) Partition Noise

Since the screen grid of a tetrode or pentode is at a positive potential, 
it collects a portion of the beam current, and since the electrons have 
random components of transverse velocity, the rate of collection of 
electrons by the screen grid fluctuates in time. As a result, the current 
passing on to the anode also fluctuates, these fluctuations being in addition 
to the reduced shot noise already present in the beam. Noise of this type, 
introduced by the random division of current between two or more positive 
electrodes, is known as partition noise.

As a result of partition noise, the noise generated by tetrodes and pen­
todes is often three to five times as great as that generated by the same 
tube connected as a triode.

Since the normal and transverse velocity components of electrons are 
uncorrelated, the shot noise and partition noise are also uncorrelated.

MT. E. Talpey, Reference 13b, pp. 166-176.

xIbid.
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The following expressions for the partition noise sources indicated in 
Figure 13.2-1 may be derived:21

ij = (1 - T2) • 2e^/^Af (13.2-14)
1 ko

= r2 • 2eIsgoAf (13.2-15)

where Iao, Iko, and Isgo are the de anode, cathode, and screen-grid currents, 
respectively, and r2 is the space-charge reduction factor defined by Equa­
tion (13.2-11). __

If we assume that the noise source is effectively bypassed by the 
screen-grid capacitor, the total anode noise is given by the summation of 
Equations (13.2-11) (reduced shot noise) and (13.2-14) (partition noise), 
with the result

i.2 + VTgo + logo 
Iko

2eIa0Af (13.2-16)

An upper limit to the anode noise is obtained by setting r2 equal to unity 
in the above equation, corresponding to no space-charge smoothing of the 
shot noise. One obtains 

i? + ip = 2eIaoA] (13.2-17)

the expression for full shot noise. Thus, despite partition noise effects, the 
total anode noise can never be greater than that corresponding to full 
shot noise in the anode current. Physically, this corresponds to the fact 
that without space-charge smoothing the electron arrival times are com­
pletely random, and random interception of some of these electrons cannot 
increase the randomness of a process that is already completely random.

One may define a noise equivalent grid resistor R,^ by Equation (13.2-8) 
as for the triode. Its value may be obtained by equating Equations (13.2-8) 
and (13.2-16). This resistor replaces all the anode noise of the tube, 
that is, shot noise plus partition noise. Hence, values of Eeq for tetrodes and 
pentodes are three to five times as large as the values given in Table 13.2-1.

(d) Flicker Noise and Other Miscellaneous Noise Sources

Flicker effect or cathode-coating noise becomes important at low fre­
quencies and may determine the ultimate sensitivity of an audio amplifier. 
Its magnitude is inversely proportional to frequency, and it is usually 
negligible at frequencies above 100 kc.

Present theory22 indicates that flicker effect is due to fluctuations of the 

21T. E. Talpey, Reference 13b, pp. 177-180.
“A. van der Ziel, Reference 13b, Chapter 2.
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voltage drop across a thin surface layer (depletion layer) on the oxide 
coating of the cathode. Because of the porous nature of the oxide coating, 
it is proposed that the fluctuating surface layer voltage modulates the 
current coming from the pores. For further discussion of the theory, the 
reader is referred to the reference cited.

Another possible source of noise in grid-controlled tubes is secondary­
emission noise. Secondary electrons emitted from the anode which go to 
other electrodes result in fluctuations of the anode current. This noise is 
minimized by choosing proper de electrode voltages such that the secondary 
electrons from the anode are returned to the anode.

Other sources of tube noise include noise due to ionized gas in the tube, 
poor electrode contacts, leakage currents along the surfaces of insulators, 
primary emission from the control grid, charges building up on the glass 
envelope, microphonics due to mechanical vibrations of electrodes, and 
hum caused by heater current induction. All of these sources of noise can 
be reduced to a negligible level with proper design and operating conditions.

(e) Amplifier Stage Noise Figure Calculation.

In this part we shall derive an expression for the spot noise figure of an 
amplifier stage with an equivalent circuit similar to that given in Figure 
13.2-3. This may be assumed to be the equivalent circuit of either a triode, 
tetrode, or pentode, where for simplicity we have assumed that the anode- 
to-grid capacitance has been neutralized and that input and output ca­
pacitances have been tuned out by shunt inductances. Thus, all impedances 
are purely real, for simplicity. This is done so that we can concentrate our 
attention on the noise properties of the amplifier without worrying about 
the complex circuit analysis required with reactances present.

The expression for the spot noise figure is obtained from Equation (13-4)
as

N
(13-2'18)

where Na is the available noise power of the amplifier in the bandwidth Af, 
and the other symbols are as defined in connection with Equation (13-4).

The available power gain g0 is defined as the ratio of the powers available 
at the output and input of the amplifier. The available power at the input 
is the power available from the source, given by

Pal I A I2 
4G, (13.2-19)

The available power at the output is given by
= gJ\ 1.12 

4(G. + Ga + Gin)2G, (13.2-20)
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where

The available power gain is thus 
o = Pai =_____ 0m2Ge_____

Pat (G, + Gg + Gin)2Ge

(13.2-21)

(13.2-22)

Next we calculate the available output noise due to noise sources within 
the amplifier. Assuming that the frequency is high, the noise sources are 

Fig. 13.2-3 Simplified equivalent circuit of a triode, tetrode, or pentode amplifier 
stage. The parameters are:

I, Current generator representing the source

G, Equivalent source conductance

Gg Grid conductance

Gia Grid input conductance due to beam loading (Section 7.3(b)) 

ra Dynamic anode resistance
Rl Plate circuit load resistance

induced grid noise, anode noise due to shot noise and partition noise, and 
thermal noise arising from the grid conductance Gg and the anode resistance 
Rl = 1/Gl- All of these noise sources are uncorrelated, except for the cor­
relation between induced grid noise and shot noise discussed in Section (b). 
For simplicity we shall take the correlation between these noise sources to 
be zero. Expressions including this correlation and the effects of circuit 
reactance are derived elsewhere.23

The amplifier noise current produced in the grid circuit is given by 
7? = AkTGgAf + i~2 = 4kT(Gg + G^Af (13.2-23)

using the definition of G«, given in Section (b). The noise voltage appearing 
in the grid circuit is given by24

—2 = = 4kT(G„ + Ge<l)Af
 1 (G. + Gg + Gin)2 (G, + Gg + Gin)2

23T. E. Talpey, Reference 13b, pp. 188-204.
“Note that the effect of induced currents in the grid circuit is taken into account by 

two separate factors. G,„ expresses the loading at the signal frequency and is noiseless. 

G.,, gives the noise contribution but does not affect the loading at the signal frequency.
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Note that, although G, and Gin are not amplifier noise sources, they do 
influence the noise voltage developed. The noise current appearing in the 
anode circuit due to this noise voltage is given by

Î22 2~2 = 4kTgm2(Gg + GN^f
9ml (G. + Gg + GlN (13.2-25)

The noise current appearing in the anode circuit due to the shot noise, 
partition noise, and plate load resistor is given by

i? = i~2 + + 4kTGiAf = ikT^R^ + GL)^f (13.2-26)

where R^ was defined in Section (c).
The available output noise is given by

AT _ G2 + l32 _ LTAfT + GN gm27?eq + GL
4G. }[Ge(Ge + Gg + GN2 Ge

(13.2-27)

Substituting this equation and Equation (13.2-22) into (13.2-18), we 
obtain the desired expression for the spot noise figure: 

where it has been assumed that room temperature T is equal to the standard 
noise temperature To of 290°K.

Let us calculate the noise figure of a typical high frequency (30 Me) 
triode amplifier stage using this formula. Assume the following parameters:

G, = 300 micromhos
Gg = 35 micromhos

Geq = 50 micromhos
Gi„ = 17 micromhos
Gl = 10 micromhos
Req = 450 ohms

gm = 5000 micromhos

With these parameters substituted into Equation (13.2-28), one obtains

F = 1 + 0.117 + 0.164 + 0.186 + 0.0002 = 1.47

which is equal to 1.67 db. The factors in this expression are arranged in 
the same order as in Equation (13.2-28) so as to illustrate the relative 
contribution of each noise source. Immediately evident is the fact that 
thermal noise due to resistance in the anode circuit is negligible compared 
with the other quantities, and thus in general this term can be neglected.
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The expression for the noise figure which applies when reactances are 
present is26

G, G.

G, ym
[(G. + Gb + Gin)2 + ^(C, + Cc + G)2] (13.2-29)

where C, is the source capacitance, Cc is the grid-circuit capacitance, and 
Ci is the “cold” input tube capacitance (i.e., the input capacitance without 
beam loading). Here negative susceptances are represented by equivalent 
negative values of C, or Cc. Examining this equation, we see that minimum 
noise figure is obtained when the net inductance of the source and grid­
circuit resonates with the “cold” input tube capacitance. This does not 
necessarily correspond to the frequency of maximum gain, due to the 
detuning effect of the susceptance due to beam loading.

13.3 Noise in Microwave Tubes

Either traveling-wave, backward-wave, or klystron amplifiers can serve 
as low noise amplifiers at microwave frequencies. The same basic theo­
retical considerations of low noise design apply to each of these devices. 
However, most low-noise research work has been done on the traveling­
wave amplifier, with the result that this particular device has been produced 
with the lowest noise figures. Thus, we shall concentrate our study on the 
traveling-wave amplifier.

There are many sources of noise in the traveling-wave amplifier. Thermal 
noise arises from the attenuation of the helix. Random emission current 
(shot noise) and random emission velocities result in initial noise current 
and noise velocity on the electron beam as it enters the helix, both of which 
are amplified and appear as output noise. Partition noise may arise from 
interception on the electrodes of the electron gun or on the helix itself. 
Secondary electrons can also contribute noise. Most of these noise sources 
can be minimized in low-noise tubes by obvious means. Copper plating 
of the helix is used to minimize attenuation. Proper focusing of the beam 
minimizes beam interception, and the collector in low-noise tubes is usually 
operated at a positive potential with respect to the helix to recapture 
secondary electrons emitted from the collector. Minimizing the noise due 
to the emission fluctuations is much more subtle and will constitute the 
greater part of our discussion.

25T. E. Talpey, Reference 13b, p. 200.
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(a) T elocity and Current Fluctuations in the Electron Beam

In order to study the effects of the velocity and current fluctuations in 
the electron beam, we shall make use of the space-charge wave theory of 
Section 9.3 and the Llewellyn-Peterson equations of Section 7.2. Both of 
these theories concern the propagation of small, sinusoidal perturbations 
on an electron beam. How then can we apply these theories to noise per­
turbations which are small but certainly not sinusoidal? Suppose we 
measure and plot as a function of time the instantaneous current and 
velocity fluctuations of an electron beam over some finite time interval. 
These functions may be analyzed by means of the Fourier integral to obtain 
an equivalent sinusoidal current and velocity for a frequency interval Af. 
Thus, the propagation of noise perturbations may be determined from 
the propagation of the equivalent sinusoidal quantities. These equivalent 
sinusoidal quantities may be related to the corresponding noise fluctuations 
by equating the integral of the noise power density spectrum over the 
frequency interval Af to the power of the equivalent sinusoidal signal.

Let us study the propagation of such waves in a space-charge limited 
diode connected at the anode to a drift region. We shall first confine our 
study of the diode to the region from the potential minimum to the anode. 
The diode may be analyzed using the Llewellyn-Peterson equations of 
Section 7.2, where plane A is taken at the potential minimum and plane B 
at an arbitrary plane up to and including the anode. Assuming that the diode 
is open-circuited at the frequency of interest, the total rf beam current 
density Jr is equal to zero in Equations (7.2-1). The entrance conditions 
at plane A are assumed to be a convection current equivalent to full shot 
noise, Equation (13.1-13), and an ac velocity given by Equation (13.1-24). 
The initial current and velocity fluctuations are assumed to be uncorrelated, 
so that the equivalent sinusoidal quantities have no fixed phase relation­
ship. Thus, we consider each initial quantity separately, independent of 
the other.

We may write our results directly in terms of the noise fluctuations. 
Since the mean-square values of the noise fluctuations are proportional 
to the square of the magnitudes of the equivalent sinusoidal quantities, 
we have from Equations (7.2-1) and (13.1-13) the following results for the 
shot noise:

if = | E* |V = | E* f2eFAf

A = A| H* |V = ¿| H* ?2eI0Af (13.3-1)

where the subscript 1 is used to denote the contribution of shot noise current 
fluctuations to the convection current and velocity at an arbitrary plane.
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<S is the beam area. Similarly, we have for the uncorrelated initial velocity 
fluctuations, from Equations (7.2-1) and (13.1-24):

7 = S2! F* I2u7 = S2! F* l2^^(4 - tt)

uj = 11* \2uA2 = 11* |2^^(4 - tt)
THl o (13.3-2)

Fig. 13.3-1 Noise standing waves in a particular space-charge limited diode and 
the drift region following the anode. The noise due to shot noise and initial velocity 
fluctuations are assumed to be uncorrelated. Distance is measured in terms of 

plasma transit angle from the potential minimum, (a) Convection current fluctua­
tions due to shot noise, (b) Velocity fluctuations uj due to shot noise, (c) 

Velocity fluctuations uj due to initial velocity fluctuations at the potential minimum.
(d) Convection current fluctuations due to initial velocity fluctuations.
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where the subscript 2 is used to designate the contribution of intitial veloc­
ity fluctuations to the convection current and velocity at an arbitrary 
plane. The coefficients E*, H*, F*, and I* are functions of the location of 
this plane.

The results of this analysis are shown in Figure 13.3-1, calculated for a 
particular diode. In Figure 13.3-1 (a) is shown the mean-square value of the 
convection current fluctuations ii2 resulting from the shot noise current at 
the potential minimum. In Figure 13.3-1 (b) is shown the mean-square 
value of the associated rf velocity fluctuation til2. Note that the abscissa 
is the plasma transit angle measured from the potential minimum. The 
location of the anode has been arbitrarily chosen. In parts (c) and (d) of 
the figure are shown the corresponding quantities w22 and if due to the 
initial velocity fluctuations at the potential minimum.

At the anode plane, the beam enters a drift region at anode potential, 
and the rf quantities vary in the axial direction with an envelope deter­
mined by the plasma wavelength as in Figure 9.3-4. The maxima of if 
and tii2 in the drift region are separated by a half-plasma wavelength. It 
should be emphasized that these are standing wave patterns, stationary in 
space. The phase and amplitude of these standing waves are obtained 
using Equations (9.3-31) and (9.3-33) by matching boundary conditions 
at the anode plane. These boundary conditions are that the rf convection 
current and velocity must both be continuous at the anode plane.

We note from the figure that it is the initial velocity fluctuations rather 
than the initial shot noise which contributes the major part of the noise of 
the drifting beam. If we assume a space-charge smoothing factor r2 at 
the potential minimum, the contribution of the shot noise becomes even 
smaller in the drifting beam. Thus, the noise produced by using this beam 
unmodified in a traveling-wave tube results almost entirely from the initial 
velocity fluctuations.

Since the initial velocity fluctuations contribute so greatly to the noise 
in the drifting beam, let us study a scheme which has been proposed for 
reducing this source of noise.28 Assume that the anode voltage of the diode 
Vao is small compared with the desired helix voltage. Suppose that the 
beam is suddenly accelerated to the helix voltage V 0 at plane C, shown in 
Figure 13.3-1. This plane is chosen at the position where the velocity 
ti22 is a maximum and if is zero. If u„- and Au2_ are the dc velocity and 
instantaneous velocity fluctuation just before the velocity jump, and 
and An^ are the corresponding quantities just after the velocity jump, we 
have from conservation of energy:

(uo+ + Aw^)2 - (Uo- + Ati2_)2 = -(Vo - Vao) (13.3-3)

••Reference 13.10.
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where Vao is the diode anode voltage. Expanding the left-hand side and 
neglecting the terms (Au2+)2 and (Aw2-)2, we obtain

2wo+Aw2+ — 2w0_Aw2_ = 0
or

Au2+ _ Uo-
Auì- uo+

(13.3-4)

Thus, the bigger the velocity jump, the larger is the reduction of the rf 
velocity fluctuation.

Fig. 13.3-2 Noise reduction resulting from successive velocity jumps, (a) Potential 
profile along the beam, (b) Velocity fluctuations, (c) Convection current 

fluctuations.

We may carry the above noise reduction scheme even further. Suppose 
that at another plane located a quarter-plasma wavelength beyond plane 
C we suddenly decelerate the beam again. Since the rf velocity is zero at 
this plane, the principle behind Equation (13.3-4) does not apply and the 
noise properties of the beam are essentially unchanged. However, now we 
may introduce another velocity jump a quarter-plasma wavelength farther 
on and achieve a further noise reduction. Thus, if this process of acceler­
ation-deceleration is repeated N times, the final noise velocity fluctua­
tion uwJ is in principle related to the initial fluctuation uj by

u2WJ = / FqoV 
uj \F» / (13.3-5)
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Since the rf convection current is proportional to the rf velocity from the 
theory of space-charge waves, the corresponding convection current 
fluctuations are reduced by the same factor. Thus, one may reduce the 
noise due to the velocity fluctuations to any desired level merely by choosing 
enough velocity jump cycles. This process is illustrated in Figure 13.3-2.

Does all of the above discussion mean that we can actually produce a 
noiseless beam? To answer this question, we must examine the waves 
due to the shot noise, ¿i2 and uf. As drawn in Figure 13.3-1 these waves 
do not reach their maxima and minima at exactly the same planes as those 
waves due Jo the initial velocity fluctuations, if and uf.™ Thus, although 
the noise due to the initial velocity fluctuations can in principle be reduced

Fig. 13.3-3 Space-charge smoothing factor T2 for the shot noise at the potential 
minimum as calculated for a typical space-charge limited diode at microwave 

frequencies. A pronounced dip is obtained at 2500 Me; this particular diode has 
a plasma frequency of 3784 Me at the potential minimum (Reference 13.11). (Cour­

tesy of J. Appl. Phys.)

without limit by the velocity jump process, the noise waves due to shot 
noise cannot be correspondingly reduced. In fact, the lowest noise figure 
that one can obtain under the above conditions is approximately 6 db.28 

The foregoing discussion assumed full-shot noise at the potential mini­
mum. Numerical calculations29 have demonstrated that a space-charge 
smoothing factor r2 considerably less than unity may be obtained under 

“This disparity in the phases of the standing waves can be shown to be a general 
principal. See Reference 13b, Chapters 3 and 5.

“H. A. Haus, Reference 13b, Chapter 3.
“Reference 13.11.
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conditions suitable to a traveling-wave tube. The results of such a cal­
culation are shown in Figure 13.3-3 for a particular diode for which the 
smoothing is optimized at a frequency of 2.5 Gc. The frequency for mini­
mum T2 is a function of the plasma frequency at the potential minimum; 
in this case the plasma frequency is equal to 3784 Me. Different values of 
the plasma frequency would cause the minimum value of T2 to occur at 
higher or lower frequencies. This calculation was made numerically 
assuming charge discs emitted at random times and with random velocities 
from a cathode, including the forces due to space charge. Physically the 
smoothing process is analogous to that described in Section 13.1(d), except 
that transit-time effects become important.

For reduced shot noise, uncorrelated with the velocity fluctuations, the 
minimum noise figure is given by30

F = 1 + rV4^r^ (13.3-6)

which approaches 1 (0 db) as T approaches zero. Tc is the cathode tem­
perature.

One additional mechanism of noise reduction remains to be considered. 
So far we have considered the initial current fluctuations and velocity 
fluctuations at the potential minimum to be uncorrelated. It can be shown 
in general31 that the minimum noise figure decreases as the amount of 
positive correlation increases. We can see intuitively how such correlation 
permits further reduction of the noise. Correlation implies a definite 
phase relation between part of the noise from each of the two noise sources 
(shot noise and initial velocity fluctuations). If this phase is of the correct 
value, the two noise sources can be made to cancel each other.

Correlation of the proper type may be produced in the low-velocity re­
gion of the diode just beyond the potential minimum. In this region, 
thermal velocities are of the same order of magnitude as the de velocity, 
so that the physical interaction is highly nonlinear. Some ultra-low- 
noise guns are designed especially to extend this low-velocity region using 
proper electrode voltages so that the nonlinear noise reduction mechanism 
is enhanced. Theoretical calculations32 have indicated that such a low- 
velocity region can result in a noise figure approaching 0 db. Experimental 
measurements have also been made demonstrating the existence of such 
correlation in beams produced by ultra-low-noise electron guns.33

Let us return to a further consideration of the velocity-jump noise re-

MR. W. Peter, Reference 13b, p. 232.
alH. A. Haus, Reference 13b, Chapter 3.
“Reference 13.12, 13.13.
’’References 13.14, 13.15.
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duction scheme illustrated in Figure 13.3-2. The discontinuities in potential 
produce strong electric lens effects (Section 3.1) which, despite the strong 
axial magnetic field used in the gun region, produce a conversion of trans­
verse velocity fluctuations into longitudinal velocity fluctuations. Thus, in 
practice, it is found that this noise reduction scheme does not result in the 
lowest noise figures. It is found34 that a gradual increase in voltage, of the

(b)

Fig. 13.3-4 Typical ultra-low-noise electron gun. (a) Gun geometry showing 
voltages applied to the electrodes, (b) Potential variation at the position of the 

electron beam.

proper variation with distance between the low-velocity diode region and 
the helix input, can achieve an equivalent noise reduction. In addition, 
the gradual taper of voltage is effective over a wider frequency band. This 
voltage variation is analogous to matching two transmission lines of dif­

34R. W. Peter, Reference 13b, Chapter 5.
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ferent characteristic impedance; the exponential taper is superior electri­
cally to a sudden change of the characteristic impedance.

We may summarize the construction of a typical ultra-low-noise gun in 
Figure 13.3-4. A strong axial magnetic field confines the electrons to mo­
tion in the longitudinal direction; this field is usually stronger than that in 
the helix-interaction region. Voltages applied to the electrodes produce an 
extended low-velocity region for the beam near the cathode. This potential 
distribution results in electron emission which is primarily from the edge of 
the cathode, producing a hollow beam. Because of this fact some cathodes 
are made annular, and some are constructed with an additional probe 
electrode at the cathode center. The oxide coating applied to the end of the 
cathode also extends a small distance down the cylindrical outer surface of 
the cathode as shown. It is thought that the intense charge concentration 
in the beam near the corner of the cathode produces conditions similar to 
those producing the dip in the space-charge smoothing factor, as predicted 
in Figure 13.3-3. The extended low-velocity region permits correlation to 
take place. The gradual increase of voltage to helix potential is carefully 
shaped so as to result in minimum tube noise figure.

At the time of writing this chapter, the lowest spot noise figure measured 
on a traveling-wave tube was 1.0 db at a frequency of 2600 Me.35 Probably 
still lower noise figures could be obtained with additional research. One 
may contrast this value with noise figures which have been measured at 
microwave frequencies on microwave triodes; values of 16 db or so are 
common.36

Low-noise traveling-wave amplifiers are commonly used as rf amplifiers 
in sensitive receiver systems. In this application the traveling-wave ampli­
fier provides built-in protection from burnout of the crystal detector follow­
ing it. As the rf power input to the tube is increased, the rf power output 
reaches a limiting or saturated value, this value being less than that re­
quired to damage the crystal diode.

(b) Description of the Western Electric GA53851 Low-Noise Traveling- 
Wave Amplifier

The Western Electric GA53851 is a typical ultra-low-noise traveling­
wave amplifier with a noise figure of 4.9 db at frequencies between 5 and 
6 Gc. The tube is shown in Figure 13.3-5. Part (a) of the figure shows an 
outline of the tube together with the corresponding variation of the axial 
magnetic field used to focus the electron beam. It is to be noted that the 
magnetic field is peaked in the vicinity of the cathode in order to restrict

35Reference 13.16.
36Reference 13.17.



ZZlŒlEo-

ENLARGED VIEW OF CATHODE
CROSS SECTION OF TUBE 

IN REGION OF HELIX

(b)
Fig. 13.3-5 Western Electric GA53851. The complete package with magnetic circuit weighs 36 pounds and is 34 cm long, (a) 
Tube outline showing the corresponding variation of the axial magnetic field, (b) Cross-sectional drawing of the vacuum tube 

alone showing the values of the applied voltages. The waveguide couplers and magnetic circuit are similar to those of Figure 10.3-7
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transverse motion of the electrons as much as possible in the low velocity 
region of the electron gun.

The general construction of the tube is shown in Figure 13.3-5(b), exclu­
sive of the waveguide couplers and magnetic circuitry. These additional 
parts are somewhat similar to those previously shown in Figure 10.3-7. 
The cathode coating is applied to an annular region at the end of a cylindri­
cal sleeve of nickel. Coaxial with the cathode sleeve is a probe electrode 
with a positive bias of about 7 volts. The voltages applied to the other 
electrodes of the electron gun are also shown in the figure. These voltages 
lead to a potential profile along the electron beam much like that of Figure 
13.3-4 (b).

The operating characteristics of the tube are presented in Table 13.3-1. 
The beam current is typically low to minimize the total beam noise at the 
entrance to the helix. Despite the low beam current, high gain is obtained 
merely by making the helix long enough. The collector voltage (500 volts) 
is made much higher than the helix voltage (220 volts) so as to capture 
within the collector all secondary electrons emitted from the collector. 
With a lower collector voltage, some secondary electrons from the collector 
would reach the region of the beam which is inside the helix, and this has 
been found to degrade the noise figure.

Table 13.3-1. WE GA53851 Typical Operating Characteristics
Frequency, Me.................................................................................................5000 to 6000

Noise figure, db.......................................................................................................... 4.9

Small-signal gain, db.............................................................................................21

Beam voltage, volts................................................................................................220

Beam current, ma....................................................................................................60
Saturation power output, mw.....................................................................0.10

The helix is copper plated molybdenum wire of 0.064 mm diameter. The 
helix is 13.3 cm long, with a pitch of 0.175 mm and a mean diameter of 
1.5 mm. It is glazed to three ceramic rods which support it in the glass 
envelope of this tube.

The electron gun forms a hollow beam of 0.51 mm inner diameter and 
0.74 mm outer diameter. Since the electron trajectories very nearly follow 
the magnetic field lines, and since the magnetic field decreases from 1250 
gauss at the electron gun to 600 gauss in the region of the helix, the beam 
expands to approximately 1| times its original diameter by the time it is 
within the helix.

The complete package of tube, magnet, and waveguide couplers weighs 
36 pounds and is 34 cm long.
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PROBLEMS

13.1 A temperature-limited diode is 

connected in series with a resistance R 
and a battery. The resistance R is at 
a temperature of 290°K. The dc diode 

current J„ can be adjusted by varying 
the cathode temperature. Suppose it is 

adjusted so that the mean-square noise 

voltage v2 across R, in a frequency band 

Af, is just twice the value that existed 
before the diode was turned on. What is 

the dc voltage in volts across R with the 
diode operating under these conditions?

13.2 Derive an expression for the mean-square noise voltage appearing at the 

terminals of a series connection of two resistances R, and Ri at temperatures T, 
and T2i respectively.

13.3 A resistance R, inductance L,
R

Problem 13.3

and capacitance C are connected to­
gether as shown in the figure. The 

thermal noise generated by the resistance 

gives rise to voltage fluctuations across 

the terminals of the capacitance. The 

input impedance as seen at the terminals 

of the capacitance is denoted by the 

symbol Z.
(a) Using one of the noise equivalent

circuits of Figure 13.1-2, derive an expression for the mean-square volt­

age fluctuaiton across the capacitance.

(b) Show that the noise voltage across the capacitance is equal to that of a re­

sistance of value equal to the real part of Z.
13.4 Two identical resistances, each

of resistance R, are connected together; I I
both are at the same temperature. Each < ____ <
resistance generates thermal noise which R> C^-~ <R 

is dissipated in the other resistance. 1

A capacitance C shunts the two resist-
ances; this capacitance represents the Problem 13.4

stray capacitance inevitably present in

any physical circuit.
(a) Show that the total noise power flowing from one resistance to the other, 

as integrated over the entire frequency range from zero to infinity, is given 

by kT/2RC.
(b) Show that the average stored energy in the capacitance due to the noise 

fluctuations is given by )kT.
13.5 A resistive pad inserted into a transmission line is designed such that its 

image impedances are equal to the characteristic impedance of the transmission 
line. The definition of noise figure may be generalized to apply to passive networks, 
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where the available power gain is less than or equal to unity. Find an expression 

for the noise figure of a resistive pad inserted into a lossless transmission line which 

is matched at both ends. What is the noise figure of a pad designed to produce an 

attenuation of 3 db?

13.6 An amplifier consists of two stages of amplification. The first stage has an 

available power gain g, and a noise figure Fi. The second stage has an available 

power gain & and a noise figure F2.
(a) Show that the noise figure of the whole amplifier Fa is given by

(b) If the first stage has a noise figure of 4 db and an available power gain of 20 

db, calculate the maximum noise figure of the second stage for an overall 

amplifier noise figure of 4.5 db.

13.7 Assuming that one has a power meter capable of measuring noise power over 
the appropriate frequency bandwidth, explain how one could measure the induced 

grid noise and the reduced shot noise for a triode with the equivalent circuit given 

in Figure 13.2-3.

13.8 Calculate Feq for a pentode, including the partition noise. The control grid 

interception is negligible.

gm = 5000 micromhos

Ia„ = 7 ma

Isi„ = 2 ma

13.9 The noise figure of the amplifier in Figure 13.2-3 is a function of the source 

conductance G,. Show that the lowest noise figure is obtained for Gs given by

' Gg + Geq 
Req 4“ Gl/

+ (Gg + Gi»)2
13.10 In the fluorescent lamp 

noise source shown in the figure, 
the matched termination causes 

a noise power kTB to flow to a 
matched load whether the lamp 

is on or not. When the lamp is on, 

an additional noise power equal to 

38 times kTB flows to the load. 
Suppose that the noise source is 

connected to the matched input 

of a traveling-wave amplifier 

(TWT), and a detector which 
measures noise power over a band

B is connected to the output of 
the tube. The gain of the traveling-wave amplifier is assumed to be uniform over 
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the band B. Let

noise power output from TWT with lamp on 

noise power output from TWT with lamp off

Show that the noise figure of the amplifier is given by

X - 1
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Chapter 14

CONDUCTION THROUGH A GAS 
AT LOW CURRENTS

Gas tubes are a class of electron tubes in which conduction takes place 
through a partially ionized gas between the electrodes. Some types of gas 
tubes include: rectifiers, voltage-reference tubes, voltage-regulator tubes, 
counting tubes, tubes used as switching elements, storage elements, indi­
cator lamps, and sources of illumination. Gas lasers also make use of a gas 
discharge. For each type of service the design of the tube is different.

As an introduction to the subject of gas tubes we shall discuss in the 
present chapter some of the mechanisms involved in gas discharges at low 
currents between unheated electrodes. The range of currents we shall con­
sider extends from perhaps a few electrons per second to a few micro­
amperes. In the two chapters that follow we shall consider discharges at 
higher currents, and we shall describe a number of specific devices.

Both ions and electrons contribute to the conduction of current in a gas 
tube, their motions being relatively complex because of frequent collisions 
with other particles in the interelectrode space. Since many of the processes 
taking place in a discharge depend on particle collisions, and since collision 
processes are inherently statistical in nature, it is usual to describe the dis­
charge phenomena in terms of average particle behavior rather than in­
dividual particle histories. In regions of uniform electric field intensity a 
statistical description of the particle behavior in terms of the average 
particle density, the particle drift velocity, and the distribution of particle 
energies can sometimes be given. Some data are also available on the ex­
citation and ionization caused by electrons moving through a gas under the 
influence of a uniform electric field. However, discharges often involve 
regions of rapidly changing fields, and when this is the case, much less is 
generally known about the particle behavior.

509
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In addition to ions and electrons, photons and excited atoms called 
metastables often play an important part in the discharge.

Many gas tubes have cathodes that are not heated and hence are called 
cold-cathode tubes. When a discharge is established in such a tube, an 
electron leaving the cathode gives rise to a number of discharge products, 
ions, metastables, and photons, as well as additional electrons. Many of the 
ions are drawn to the cathode by the electric field, and some of the meta­
stables and photons reach the cathode. Each has a certain probability, less 
than one, of releasing another electron. At currents at which cold-cathode 
tubes are normally operated, the current drawn by the tube must be limited 
by a series resistance, and the voltage across the tube adjusts itself so that 
the average number of discharge products generated by an electron leaving 
the cathode is sufficient to cause the release of one more electron from the 
cathode. Electron emission is thus supported by the discharge itself, and 
the discharge is said to be self-sustaining.

In order to establish a self-sustained discharge in a cold-cathode tube, the 
voltage applied to the tube must be raised above a value known as the 
breakdown voltage. Over a range of currents covering several orders of 
magnitude up to about 10 microamps, the anode-to-cathode voltage of the 
self-sustained discharge is equal to the breakdown voltage, the condition for 
breakdown being the same as that for a self-sustained discharge at low cur­
rents. At higher currents, above about 10 microamps, the sustaining volt­
age falls below the breakdown voltage, and a visible glow can be seen in the 
interelectrode space. Above 200 microamps the glow is fairly intense, 
and the discharge is said to be a glow discharge. Most cold-cathode tubes 
are normally operated in the glow-discharge region.

It should be noted at this point that provided the cathode area is suffi­
ciently large, the discharge current for a given applied voltage is nearly 
independent of the cathode area at low discharge currents. This occurs be­
cause a portion of the cathode surface will always have slightly more favor­
able surface conditions for electron emission than the rest of the cathode, 
and the discharge tends to start opposite this part of the cathode. Once the 
discharge is initiated, the ion bombardment of the cathode in the region of 
the discharge tends to keep this part of the cathode somewhat more free of 
absorbed contaminent gases, with the result that it remains a better elec­
tron emitter. Thus for discharge currents below 200 microamps, the re­
mainder of the cathode surface plays very little part in the discharge, pro­
vided the cathode area is sufficiently large. It is therefore customary to 
describe the discharge at low discharge currents in terms of the total dis­
charge current rather than the discharge current density.

Voltage-reference tubes, voltage-regulator tubes, counting tubes, and 
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neon indicator lamps are all cold-cathode devices. Some switching tubes 
and storage elements are also cold-cathode devices.

The gas fillings of cold-cathode tubes are usually noble gases, since these 
do not interact with the electrode material, and more stable electrical char­
acteristics can be obtained. Often neon, or argon, or a mixture of neon and 
argon are used. One material frequently used for the cathodes of voltage­
reference and voltage-regulator tubes is molybdenum, since it can be 
processed to give a particularly clean surface. Recently niobium has also 
been shown to give very stable cathode surfaces when used with the noble 
gases. Cold-cathode tubes used in switching applications often have oxide­
coated nickel cathodes and are filled with a mixture of neon and argon.

In the first sections of this chapter we shall describe the motions of ions, 
electrons, and metastables through the noble gases. Later we shall discuss 
the low-current discharge in neon gas between planar molybdenum elec­
trodes. In Chapter 15 we shall discuss the glow discharge and some specific 
cold-cathode tubes. In Chapter 16 we shall describe a quite different form 
of discharge known as the hot-cathode discharge.

In this chapter and in the remaining chapters we shall consider only dc 
discharges in which both the electrode voltages and currents are constant 
with time. Consequently we shall omit the subscript “o” which was used in 
previous chapters to designate dc quantities.

14.1 The Kinetic Nature of a Gas
The molecules of the noble gases are single atoms which for many pur­

poses behave like hard elastic spheres. They travel at average velocities of 
the same order of magnitude as the speed of sound in the gas and experience 
frequent elastic collisions with each other. At pressures normally used in 
cold-cathode tubes the average distance traveled in the interval between 
collisions is very large compared with the molecular diameter and small 
compared with typical electrode dimensions and spacings.

The density of molecules in a gas at 0°C is equal to 3.54 X 1016 p mole­
cules per cubic centimeter, where p is the pressure in millimeters of Hg. 
Cold-cathode tubes are often filled to pressures of the order of 10 to 100 mm 
of Hg. (1 mm of Hg is equivalent to 1/760 of atmospheric pressure or 
133 newtons/meter2). At p = 50 mm of Hg there is an average volume of 
space per molecule equal to the volume of a cube of side 83 angstroms (one 
angstrom = 10-8 cm). In this chapter and in subsequent chapters we shall 
use p to designate pressure in millimeters of Hg and P to designate pressure 
in mks units.

Approximate molecular diameters1 for the noble gases neon and argon
Viscosity Diameters, Landolt-Bornstein Tables, Julius Springer, Berlin, 1950, Vol. 1, 

Part 1, p. 325.
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are 2.67 angstroms and 3.76 angstroms, respectively. Equation (14.1-8) 
below gives the mean distance traveled by a molecule between collisions 
(mean free path) as 1 /(-^nird2), where n is the number of molecules per 
unit volume, and d is the molecular diameter. Using the approximate 
molecular diameters given above we find that at 50 mm of Hg and 0°C, the 
mean free path of a neon molecule in neon is 18,000 angstroms, and the 
mean free path of an argon molecule in argon is 9000 angstroms.

At 0°C the average velocity of neon molecules is 538 meters/sec, and the 
average velocity of argon molecules is 381 meters/sec. We shall find shortly 
that the average kinetic energy of the molecules is directly proportional to 
the absolute temperature of the gas.

From statistical mechanics we learn how the molecular velocities are 
distributed. The law that expresses this distribution is known as the 
Maxwell-Boltzmann distribution law.2 It states that the probability M 
that a molecule has velocity u with components in the range u x to u* + dux, 
uy to uy + dUy, Ux to Ux + du, is given by

M = (2irkT/m^'^^^^duiduydui (14.1-1)

where u2 = uj + uy2 + ux2, k = Boltzmann’s constant, T is the absolute 
temperature of the gas, and m is the mass of the molecules.

It is convenient to imagine a velocity space in which three rectangular co­
ordinate axes measure the velocity components ux, uu, and u,. Each mole­
cule in a given enclosed volume can at any time be represented by a point 
in such a space, and from Equation (14.1-1) we see that the fractional 
density of points in the space, or the number of points per unit volume di-

Fig. 14.1-1 Velocity distributions of argon molecules for gas temperatures of 
300°K and 900°K.

’Reference 14.1, p. 90; Reference 2, p. 52. 
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vided by the total number of points, is equal to (2skT/m)~w f-m't'l'lkT. It 
follows that the fraction of the total points lying in a spherical shell of 
radius u and thickness du, and hence the fraction of the total number of 
molecules having velocities in the range u to u + du, is given by

f(u)du - (2skT/m) 3l2e mutl2kT4TU2du (14.1-2)

The velocity distribution given by this expression for T = 300°K and 
T = 900°K is plotted in Figure 14.1-1 for argon molecules.

Using Equation (14.1-2), the average kinetic energy of the molecules is 
easily shown to be

roo

(k.e.)nvK = 2sm(2skT /mF212 I uie~mu'l2kTdu

= (3/2)kT (14.1-3)

The average kinetic energy of the molecules is thus directly proportional to 
the absolute temperature of the gas and is independent of the mass of the 
molecules and hence of the kind of gas.

In a similar manner, the average molecular velocity can be shown to be 
given by

UavE = 4(kT/2smY'2 = (EkT/smU2 (14.1-4)

Next let us determine the pressure on the walls of the containing vessel. 
From Equation (14.1-1) we can determine the fraction of the total number 
of molecules with velocity in the range ux to ux + dux. This fraction is 
given by

F(ux)dux = (2skT /m) e mu'l2kTdugdul dux

= (2skT/m) 1/2i mux^l2kTdUx (14.1-5)

The number of molecules striking unit area of surface normal to the x direc­
tion per unit time with velocities in the range ux to ux + dux is ux nF(ux)dux, 
where n is the number of molecules per unit volume. If the molecules are 
reflected from the wall so that their x component of velocity is reversed, 
each molecule suffers a change in momentum 2mux upon collision with the 
wall. The pressure is therefore given by

/*co
P = 2mn(2skT/m)-112 / ux2Um^i2kTdUx = nkT (14.1-6)

(Actually collisions between the gas molecules and the walls are not 
always elastic and, in fact, sometimes result in the molecule “sticking” to 
the surface. However, in a steady-state condition in which the temperature 
of the walls equals the temperature of the gas, the current of molecules 



514 PRINCIPLES OF ELECTRON TUBES

arriving at the surface equals the current leaving, and the average energy of 
the incident molecules equals that of the departing molecules. Hence, for 
the purpose of determining the pressure on the walls, it is possible to treat 
the interactions at the surface as though only elastic reflections are taking 
place.)

Rearranging Equation (14.1-6), we find that n, the number of molecules 
per unit volume, is equal to P/kT. Since P/kT is independent of the mass 
of the molecules, we can conclude that for the same conditions of tempera­
ture and pressure all gases have the same number of molecules per unit 
volume. This result is known as Avogadro’s Hypothesis.

If we let N equal the number of molecules in one gram molecular weight of 
gas and let V be the volume occupied by this amount of gas, then

p = (N/V)kT

PV = RT (14.1-7)

where R = Nk is a universal constant for one mole of gas equal to 8.31 
joules/°K. Equation (14.1-7) is known as the equation of state for a perfect 
gas.

As a final point let us consider the average distance traveled by molecules 
between collisions. We shall first assume that only one molecule is moving 
and that the rest are stationary and randomly distributed throughout space 
with an average density of n molecules per cubic meter. If the molecules 
have an effective diameter d for the collision process, a collision takes place 
whenever the center of the moving molecule passes within d meters of the 
center of a stationary molecule. The effective volume swept out by the 
moving molecule per unit time is therefore uircP cubic meters per second, 
where u is the velocity of the moving molecule. The average number of 
collisions made by the moving molecule per unit time is nurd2, and the 
mean distance traveled between collisions (mean free path) is u/nuird1 = 1/ 
nir<P.

This derivation of the mean free path is only an approximate one, how­
ever, for we have neglected the effect of the motion of the other molecules. 
When this additional motion is taken into account, it can be shown that the 
mean free path L is given by3

^2 nird2
(14.1-8)

’Reference 14.1, p. 110.
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14.2 Diffusion and Mobility
(a) Diffusion

When two dissimilar gases are mixed in such a manner that concentration 
gradients exist within the mixture, the concentration gradients tend to 
become diminished by a process known as diffusion. As an example of this 
process we shall consider what happens when the gases CO and N2 are 
mixed. We shall assume that the gases are initially separated by a partition 
as in the apparatus shown in Figure 14.2-1 and that the pressure on both

PARTITION

Fig. 14.2-1 A chamber with removable partition.

sides of the partition is the same. The gases CO and N2 have been selected 
because their molecules have the same mass and travel with the same aver­
age velocity. This means that each diffuses into the other at approximately 
the same rate, which considerably simplifies the problem.

When the partition is removed, there is a net flow of N2 molecules to the 
right and a flow of CO molecules to the left. (We shall assume that there is 
no turbulence or convection within the gas.) The flow results from the 
thermal motions of the molecules and continues until the partial pressure of 
the two gases is uniform throughout the entire chamber.

Diffusion processes are always characterized by a net flow of the diffusing 
particles away from regions of high concentration. To explain this, let us 
first calculate the current density of N2 molecules crossing a plane within 
the gas. Using Equation (14.1-5), we find that the current of N2 molecules 
crossing unit area within the gas is given by

7*00

n / uxF(ux)dux = n(kT/2irm)112 — nu^/L (14.2-1) 
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where n is the density of N2 molecules and UaVg is the average molecular 
velocity given by Equation (14.1-4). Hence the current of N2 molecules 
crossing a plane within the gas is proportional to the density of N2 mole­
cules at the plane and to the average molecular velocity.

Next let us consider the flow of N2 molecules across planes C and D in 
Figure 14.2-1. If the partial pressure of N2 molecules at plane C is greater 
than that at plane D, the current of N2 molecules crossing plane C in the 
direction from left to right will be greater than that crossing plane D from 
right to left. As a result, there will be a net current of N2 molecules flowing 
in the direction from left to right across plane E midway between planes 
C and D.

As a very rough approximation let us assume that the total current of N2 
molecules crossing plane E from left to right is characteristic of the density 
of N2 molecules L units to the left of plane E, where L is the mean free path. 
Similarly, let us assume that the total current of N2 molecules crossing plane 
E from right to left is characteristic of the density of N2 molecules L units 
to the right of plane E. Then the net current density J of N2 molecules 
crossing plane E is given by

= (14.2-2)
z dx

where the x direction is taken normal to the planes C, E, and D and the co­
ordinate of plane E is given by x = x0. Although this equation is only 
approximate, it is apparent that we can express the current density J in the 
form

j = -D^ (14.2-3)
dx

where D is a constant of dimensions length2/time. The constant D is known 
as the diffusion coefficient. More generally, diffusion takes place in three 
dimensions, and we can write that

J = -D^n (14.2-4)

Since the N2 molecules are conserved, we can invoke an equation of con­
tinuity on them, namely that

VJ = (14.2-5)
dt
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Combining Equations (14.2-4) and (14.2-5), we obtain

DVfai = J (14.2-6)
dt

This equation is known as the diffusion equation. It is of similar form to 
that which applies to the flow of heat in conducting bodies, and a mental 
picture of a particular diffusion process can often be obtained in terms of 
heat flow in conducting bodies of similar geometry. (In the case of heat 
flow, n would be replaced by temperature or heat energy, and J would rep­
resent flow of heat energy.)

The diffusion coefficient D is inversely proportional to the total gas 
pressure, and experiment shows that it is not in general critically dependent 
on the relative composition of the two gases. An approximate expression 
for D is given by Equations (14.2-2) and (14.2-3), namely D = Luwg/2. 
A more accurate expression that takes into account the distribution of 
molecular velocities is given by4

„ 3ir^2r Im + M ,, . „
D = -^-LuaveyJ - (14.2-7)

where it is assumed that molecules of mass m and average velocity uavg are 
diffusing into a gas of molecular mass M, and where the molecules are 
assumed to behave like hard elastic spheres upon collision with one another. 
The diffusion coefficient for electrons diffusing through a gas is given by5 
D = Lutve/3, where uavg is the average electron velocity, and L is the 
electron mean free path for collisions with the gas molecules.

Diffusion takes place in a number of physical processes which are char­
acterized by random particle motion and mean free paths. When ions, 
metastable atoms, or electrons are present in a gas, there is a tendency for 
nonuniformities in the particle concentration to be evened out as a result of 
diffusion.

If a boundary of the chamber is also a sink for the diffusing particles, as is 
the case when metastable atoms or ions diffuse through a gas to a metal 
surface, the boundary condition n = 0 applies at the surface.

It is sometimes useful to regard diffusing molecules as being driven by 
their partial pressure gradient. To understand this view of the process let 
us first consider the diffusion of a gas through a porous carbon block as 
illustrated in Figure 14.2-2. Here again the gas penetrates the block because 
of the random motion of the gas molecules. If the block has unit cross

•Reference 14.1, Sections 109, 267.
•See Reference 14.1, Section 269, for a derivation of the electron mobility. Using 

Equations (14.1-4) and (14.2-12) of the present text, the above expression for the elec­
tron diffusion coefficient can be obtained from the electron mobility.
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POROUS CARBON 
BLOCK

->| k-dx, dP 

p, >P2

Fig. 14.2-2 A porous carbon block. The left-hand side of the block is in contact 

with a gas at pressure Pi, and the right-hand side is in contact with the same gas 
at pressure P2.

section, the gradient of partial pressure of the gas dP/dx in the direction of 
diffusion is equal to the resistive force per unit length that the block offers 
to the flow of gas. The partial pressure difference dP over the length dx, 
effectively exerts an average force dP/ndx on each gas molecule, where n is 
the density of gas molecules in the slab of thickness dx.

Similarly in the diffusion of N2 into CO the gradient of the partial pres­
ure of the N2 molecules equals the resistive force per unit area and per unit 
length in the direction of diffusion offered by the CO molecules. In this 
case the resistance offered by the CO molecules arises from the partial 
pressure gradient of the CO molecules and is directed oppositely to the 
partial pressure gradient of the N2 molecules. We shall find this view of the 
diffusion process useful in the discussion of the relationship between diffu­
sion and mobility given below.

(6) Mobility-

Next let us consider the motion of positively charged atomic ions of the 
noble gases through their parent gases. We shall assume that the density of 
the ions is sufficiently small that the field resulting from the charge of an ion 
has negligible effect on the motion of the other ions. If no external fields are 
applied, the ions behave much like their parent gas molecules. They have 
essentially the same mass as the parent molecules and exhibit much the 
same velocity distribution. (However, their cross section for collision is 
probably somewhat larger than that of the parent molecules.) Any net 
motion of the ions in this case results from diffusion.
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If, on the other hand, there exists a uniform electric field intensity E in 
the region, the ions acquire a drift velocity in the direction of the field. If 
the ions are singly charged, the electric field acts on them with a force eE 
newtons at all times and gives them an acceleration eE/m in the direction of 
the field, where m is the mass of an ion. In the steady-state condition the 
energy gained by the ions in drifting under the influence of the field is 
transmitted to the gas molecules in elastic collisions, so that the average 
drift velocity of the ions is a function only of the magnitude of the electric 
field intensity and not of how long the ions have drifted under the influence 
of the field. Consequently at pressures normally used in cold-cathode 
tubes the power expended by the external source applying the field appears 
largely as heat energy of the neutral gas molecules rather than as kinetic 
energy of the ions.

For weak electric fields the average drift velocity u of the ions is linearly 
proportional to the applied electric field intensity E and can be expressed as

u = pE (14.2-8)

where g is a constant known as the mobility of the ions.
The resistance which ions encounter in drifting through a gas under the 

influence of a weak electric field is essentially the same as the resistance en­
countered by ions diffusing through the gas. It is reasonable therefore to 
expect the existence of a direct correlation between the diffusion coefficient 
D and the mobility g.

In the diffusion of ions there is effectively a force dP/ndx acting on each 
ion causing it to drift in the direction of the partial pressure gradient, the x 
direction, where P measures the partial pressure of the ions, and n measures 
the ion density. It is convenient to associate a velocity u' with the diffusion 
process such that J = nu' = — Ddnjdx, where J is the number of ions 
crossing unit area normal to the partial pressure gradient per second, and n 
is the ion density. The velocity u' can be expressed in the form

= _Ddn = DdP
n dx P dx

It follows that the force dP/ndx acting on each ion as a result of the partial 
pressure gradient is given by

I dP I _ PW
Indx I nD (14.2-10)

If, on the other hand, there is no gradient in the concentration of ions, but 
an electric field E exists in the region causing the ions to drift with a velocity 
u equal to u', then the force eE must equal dP/ndx, or

eE = — eu' _ Pu'
M nD

(14.2-11)
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Hence6
D = P_ = kT (14.2-12)n en e

where the relationship P = nkT given by Equation (14.1-6) is assumed to 
apply to the ions diffusing through their parent gas. This equation gives 
the desired relation between the mobility and the diffusion constant.

If it is assumed that collisions between the ions and the gas molecules are 
elastic, Equations (14.2-7) and (14.2-12) can be combined to give an ex­
pression for u, namely that

e 3ir\2T /m + M 
" kT~32~U,iVll\ M (14.2-13)

where m is the mass of the ions and M is the mass of the gas molecules.

14.3 Motion of Ions and Electrons through a Gas under the Influence 
of an Electric Field — Experimental Results

In this section we shall first present some results of measurements of the 
drift velocities of noble-gas ions through their parent gases when a uniform 
electric field is applied. Later we shall discuss the motion of free electrons 
through a noble gas under the influence of a uniform electric field.

Figure 14.3-1 shows some measured values7 of the drift velocities of noble­
gas ions through their parent gases as a function of E/p, the ratio of the 
electric field intensity to gas pressure. The quantity E/p is an independent 
parameter in a number of gas discharge phenomena since at constant E/p 
the average energy which an ion or electron gains in the interval between 
collisions is a constant. Furthermore, since the ion or electron loses kinetic 
energy with each collision, it must reach an equilibrium kinetic energy 
which depends only on the energy gained between collisions. It is custom­
ary in gas-discharge work to measure E in volts/per centimeter and p in 
millimeters of mercury rather than in inks units. This convention will be 
adhered to in the discussion that follows.

The log-log plot in Figure 14.3-1 shows a slope of one at low values of E/p, 
indicating that u is proportional to E/p and hence to E in agreement with 
Equation (14.2-8). On the other hand, at high values of E/p the curves 
have a slope of 1 /2, indicating that u is proportional to ^E/p. An analysis 
of the problem8 which takes into account the nature of the ion-atom forces 
is able to predict this variation of u with E/p.

’When the ion velocity distribution is not Maxwellian, this relationship is not strictly 

true.
’References 14.3 and 14.4.
’Reference 14.5.
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E/p IN VOLTS PER CENTIMETER X MM OF Hg

Fig. 14.3-1 Drift velocities of noble-gas ions through their parent gases as a func­
tion of E/p.

In Chapter 15 we shall find that the maximum value of E/p which is ob­
tained in the normal glow discharge with molybdenum electrodes and neon 
gas is of the order of 200 volts/cm X mm of Hg. At this value of E/p the 
drift velocity of neon ions in neon is about 2250 meters/sec, or approximate­
ly 4.2 times the thermal velocity of neon molecules. Since the thermal 
energy of a neon molecule is approximately 0.025 electron volt and since the 
lowest excited state of neon lies at 16.6 electron volts, there is essentially 
no excitation or ionization of neutral atoms by ions in the discharge. The 
same result applies to discharges in the other noble gases.

When free electrons drift through a noble gas under the influence of an 
electric field, the picture is considerably different. The concept that the 
drift velocity for weak electric fields is determined by a mobility is less 
meaningful for electrons because the electron mean free path is found to be a 
function of the electron energy. (It will be recalled that the expression for 
the ion mobility given by Equation (14.2-13) is directly proportional to the 
mean free path and that the mobility was assumed to be independent of ion 
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energy.) Figure 14.3-2 shows some experimentally measured9 values of a 
quantity Pc proportional to the reciprocal of the mean free path of free elec­
trons in the noble gases as a function of the square root of the electron 
energy. The abscissa is therefore proportional to the electron velocity.

Fig. 14.3-2 The collision probability Pc plotted as a function of the square root of 

the electron energy for electrons in the noble gases. (From R. B. Brode, Revs.
Modern Phys. 5, 257, 1933)

The quantity Pc, known as the collision probability, equals I/pL, where p is 
the gas pressure in millimeters of Hg and L is the electron mean free path in 
centimeters. In the case of the heavier gases, Pc drops to relatively small 
values at electron energies of about 1 ev. This effect, known as the Rams­
auer-Townsend effect, can be explained quantum mechanically, and is dis­
cussed in several texts.10

’Reference 14.6.

“See, for instance, L. I. Schiff, Quantum Mechanics, McGraw-Hill Book Co., Inc., 
New York, 1949, p. 109.
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For a given value of E/p, electrons gain much greater energies in drifting 
under the influence of the field than do ions. This effect can be attributed 
to the much smaller mass of the electrons. When an ion drifts through a 
gas under the influence of an electric field, the average energy transferred 
to the gas molecules per elastic collision is an appreciable part of the total 
kinetic energy of the ion. In a “head-on” elastic collision between an ion 
and a molecule in which the molecule is at rest and is of the same mass as 
the ion, the ion transfers all its kinetic energy to the struck particle. How­
ever, in a head-on elastic collision between an electron and a molecule, 
conservation of energy and momentum requires that the electron be re­
flected with almost all its kinetic energy. (The collision is in some ways 
similar to a collision between a ping pong ball and a bowling ball.) Con­
sequently, even at relatively low values of E/p, of the order of 1 or 2 volts/ 
cm X mm of Hg, free electrons in neon gas may scatter their way up to 
sufficient energies to cause excitation of the gas molecules, the energy being 
gained as the electrons advance in the direction of greater potential. At 
higher values of E/p many of the electrons gain sufficient energy to cause 
ionization.

Table 14.3-1 lists some of the energies needed to excite and ionize the 
molecules of the noble gases. The metastable states referred to in the table 
are excited states for which the quantum-mechanical probability per unit 
time of direct transitions to the ground state by radiation is very small. 
An atom excited to such a state is frequently called a metastable.

Table 14.3-1. Excitation and Ionization Energies of 
Noble Gas Molecules in Electron Volts

Wm Wr W,
He..........................................................................19.80 21.21 24.58

Ne..........................................................................16.62 16.85 21.58

A............................................................................. 11.55 11.61 15.77

Kr......................................................................... 9.91 10.02 14.01

Xe........................................................................ 8.32 8.45 12.14

Wm = excitation energy of lowest metastable state.
Wr = excitation energy of lowest level from which direct radiation to the ground state 

can take place.
W, = first ionization potential, or energy needed to remove a single electron from the 

outer shell of a neutral molecule.

When electrons make inelastic collisions with molecules of the noble 
gases in which excitation or ionization takes place, the electrons lose a large 
part of their kinetic energy. If a collision results in excitation of a neutral 
molecule, the kinetic energy lost by the electron equals the excitation ener­
gy of the molecule plus the kinetic energy gained by the molecule. Even 
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more energy is lost if ionization of a neutral molecule takes place. Con­
sequently, the “steady-state” condition in which electrons drift through a 
gas under the influence of a moderate or large electric field is a dynamic 
condition in which the electrons scatter their way up to energies sufficient to 
cause excitation or ionization, whereupon they abruptly lose most of their 
energy and start over again.

Each time an electron ionizes a neutral molecule, an additional electron is 
released which is also accelerated by the field and which may cause further 
ionization. An “avalanche” therefore results in which a single electron fall­
ing through a sufficiently large potential drop gives rise to many electrons.

Fig. 14.3-3 The ionization coefficienti? as a function of E/p. (From A. A. Kruithof 

and F. M. Penning, Physica 4, 430, 1937)

Figure 14.3-3 shows some measured11 values of a quantity y known as the 
ionization coefficient per volt as a function of E/p. y is defined by the rela­
tion dN = yNdV, where dN is the incremental number of ion-electron pairs 
produced by N electrons in falling through dV volts. This definition implies 
that an “average” avalanche of e’r electrons is generated by a single elec­
tron in falling through V volts. However, the values of y shown in Figure

'•Reference 14.7.
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14.3 -3 apply only to electrons that have a velocity distribution characteris­
tic of the “steady-state” condition in a region of uniform E/p. If the field is 
established between planar electrodes and if the electrons begin at the 
cathode (V = 0) with relatively small energy, the size of the avalanche is 
more accurately expressed by where Vo is a voltage which accounts 
for the potential drop through which the electrons must fall in order to ac­
quire the energy distribution characteristic of the established field. Figure

E/p VOLTS PER CENTIMETER X MM OF Hg

Fig. 14.3-4 The voltage V„ as a function of E/p. (From M. J. Druyvesteyn and 

F. M. Penning, Revs. Modern Phys. 12, 87, 1940)

14.3 -4 shows some measured values  of 7» as a function of E/p for several 
noble gases.

12

Of particular interest in Figure 14.3-3 is the curve for the gas mixture 
99.9 per cent Ne — 0.1 per cent A since it is well above the curves for pure 
neon and pure argon over a considerable range of E/p values. The greater 
ionization in the Ne-A mixture results from a two-stage, modified p process 
in which neon metastables ionize neutral argon atoms. Reference to Table 
14.3-1 shows that the lowest metastable state of neon is higher than the 
ionization potential of argon. Furthermore, it is known that when a neon 
atom is excited, the probability that it goes into a metastable state is high13, 
probably greater than 50 per cent for E/p less than 12 volts/cm X mm of 
Hg. A current of fast electrons passing through the Ne-A mixture therefore 
generates a considerable number of neon metastables. The metastables 
diffuse through the gas with a relatively high probability of striking neutral 
argon atoms before being de-excited (see next section). Upon collision with 

“Reference 14.8, p. 100.
“Reference 14.9, p. 463; Reference 14.8, p. 100.
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an argon atom the excitation energy of the metastable is transferred to an 
outer-shell electron in the argon atom giving the electron sufficient energy to 
leave the atom. The neon metastable thereby becomes an unexcited atom, 
and an argon ion is generated. The phenomenon is known as the Penning 
effect.

For pure neon and argon the curves of 7 fall off at low values of E/p be­
cause of an increasing ratio of excitation to ionization and because of energy 
losses in elastic collisions. The curve of 7 for the Ne-A mixture falls off at 
low E/p because an increasing portion of the energy received by the elec­
trons is lost in elastic collisions.

A measure of the voltage drop needed for a single electron to produce one 
more electron is obtained by setting = 2, or V = (1/7) In 2. For pure 
neon 7 has a maximum value of 0.015 at which (I/7) In 2 = 46 volts. For 
pure argon 7 has a maximum value of 0.025 at which (1/7) In 2 = 28 volts; 
and for the Ne-A mixture 7 has a maximum value of 0.037 at which (1/jj) 
In 2 = 19 volts. The latter value of 7 is the maximum value so far measured 
for any gas or gas mixture.

It is sometimes useful to define an additional ionization coefficient a such 
that a = yE. a is known as the ionization coefficient per centimeter. In 
analogy to the definition of 7 given earlier, a satisfies the relation dN = 
aNdx, where dN is the number of ion-electron pairs produced by N electrons 
in traveling dx centimeters through the gas. In a discharge between planar 
electrodes in which there is a uniform electric field intensity between the 
electrodes, the electron current can be expressed as Z = =

Fig. 14.3-5 The figure shows how the energy received by free electrons drifting 
through neon gas under the influence of a uniform electric field is spent as a function 

of E/p. From F. M. Penning, Physica 5, 286, 1938)
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I ot^v~v oi, where x0 is the distance from the cathode at which the potential is 
Vo, and Io is the electron current emitted from the cathode. Since a = yE, 
and y is a function of E/p, the ratio a/p is also a function of E/p.

Figure 14.3-5 shows how the total energy received by free electrons drift­
ing through neon under the influence of an electric field is spent14 as a func­
tion of E/p. Part of the energy received by the electrons is expended in 
elastic collisions (Elast.), part in inelastic collisions leading to excitation 
and ionization (Excit., Ion.), and part in accelerating newly released elec­
trons up to the average energy (Kin.).

14.4 Metastable Generation, Diffusion, and Destruction

Metastables play an important part in a number of gas-discharge 
phenomena. Metastables are generated by high-energy electrons striking

Fig. 14.4-1 ft measures the average number of metastables produced by an electron 
in advancing one centimeter in the direction of the field. The data are for free elec­

trons in neon.

neutral molecules and by radiative transitions from other excited states. 
Since the metastables are uncharged, they diffuse through the gas and 
behave much like unexcited molecules (except that their effective diameter 
for collision is somewhat larger than that of the unexcited molecules).

'•Reference 14.10, p. 288; Reference 14.8, p. 103.
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Eventually each metastable experiences a collision which causes it to lose 
its identity as a metastable. In this section we shall present some data re­
lating to metastable generation and diffusion, and the results of calculations 
based on the data. We shall also discuss briefly the mechanisms by which 
metastables are destroyed.

In analogy to the ionization coefficient a we can define a coefficient 0 
which expresses the average number of metastables produced by a single 
electron in advancing one centimeter in the direction of the field. Just as 
a/p is a function of E/p, so also is 0/p. Rogowski16 has estimated 0/a for 
neon as a function of E/p by reducing Kruithof and Penning’s16 data for the 
ionization coefficient in neon-argon mixtures. His results are given in Table 
14.4-1 together with Kruithof and Penning’s values of i?. The right-hand 
column in the table gives 0/p = (0/a)riE/p. Figure 14.4-1 shows a plot of 
0/p vs. E/p.

Table 14.4-1. Ionization and Metastable Generation 
Coefficients for Neon

E/p 0/a V 0/P
Volts/ Metastables / Ion-Electron Pairs/ Metastables /

cm X mm of Hg Ion-Electron Pairs Volt cm X mm of Hg
(Ref. 14.11) (Ref. 14-7)

2 102 0.00034 0.0694

5 22 0.0016 0.176

10 5.3 0.0050 0.265

20 2.1 0.0096 0.404

30 1.3 0.012 0.468

50 0.85 0.0142 0.604

100 0.6 0.0145 0.87

Metastables generated in a discharge of low current density are lost prin­
cipally by (a) diffusion to the electrodes or walls of the containing vessel 
where de-excitation takes place, (b) collisions with neutral atoms leading to 
excitation or de-excitation to a nearby radiating state, from which a transi­
tion to the ground state can take place, and (c) collisions with two neutral 
atoms leading to the formation of an excited molecule which may be meta­
stable.17 In discharges of higher current density additional interactions be­

“Reference 14.11.
“Reference 14.7.
“Reference 14.12. In collisions leading to the formation of a metastable molecule, one 

of the neutral atoms becomes bound to the metastable, thus forming the molecule, and 
the other neutral atom carries away the binding energy of the molecule. The fact that 
the metastable molecule is stable, and the unexcited diatomic molecule is not, can be 
attributed to different electron configurations in the two cases.
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tween metastables and metastables, between metastables and electrons, and 
between metastables and ions contribute to the destruction of the meta­
stables. In the metastable-metastable interactions, one metastable becomes 
ionized and the other becomes de-excited.

In a discharge of low current density in which only the first three types of 
interaction are important, the equation expressing the density of meta­
stables within the discharge is

^ = D^~ ApM “ Bp2M + (14.4-1)

where M is the number of metastables per unit volume, D is the meta­
stable diffusion coefficient, p is the gas pressure in millimeter of Hg, A 
is the frequency of metastable destruction by two-body collisions at 
a pressure of 1 mm of Hg, B is the frequency of metastable destruction by 
three-body collisions at a pressure of 1 mm of Hg (both Ap and Bp2 have 
the dimensions (Time)-1), J(x) is the electron current density, and e is the 
electronic charge. It is assumed that the discharge takes place between 
planar parallel electrodes. The left-hand term in the equation and the 
first term on the right comprise the diffusion equation, Equation (14.2-6). 
The terms ApM and Bp2M express the volume rate of destruction of 
metastables, and the term J(x) S(x)/e expresses the volume rate of gener­
ation of metastables. In the steady-state condition both sides of the equa­
tion are zero.

Phelps and Molnar18 have measured the coefficients D, A, and B for 
neon metastables in neon. They found that D = 146/p cm2/sec, where p 
is the pressure in millimeters of Hg, A = 50 sec-1 (mm of Hg)-1, and B = 
0.5 sec-1 (mm of Hg)-2.

McClure19 has used Equation (14.4-1) and the values of D, A, and B 
given above to determine the steady-state current of metastable atoms 
reaching the cathodes of several devices having planar electrodes, a neon 
gas filling, and particular applied anode voltages. The current of meta­
stables reaching the cathode was determined by calculating DdM/dx at 
x = 0 using the boundary conditions that M = 0 at x = 0 and x = d, 
where d is the electrode spacing.

The results of McClure’s calculations are shown in Table 14.4-2. The 
applied anode voltages Va given in the table are the experimental break­
down voltages for devices with planar molybdenum electrodes and neon-gas 
fillings. The quantity G is the average number of metastables striking the 
cathode for each electron leaving the cathode. Later when we come to

’’References 14.12 and 14.13.
’’Reference 14.14.



Table 14.4-2. Data Relating to Avalanches in Neon Gas Between Planar Electrodes*

pd mm of Hg X cm 1.25 1.50 1.75 2.0 2.5 3 4 5 7 9 11

V a volts 148.5 146.0 145.0 145.1 147.6 151.9 162 173 196 220 239

E Ip volts /cm X mm of Hg 119 97 83 73 59 51 40 35 28 24 22

^(Vg— Vo) — ^(d—xo) 5.3 5.4 5.5 5.6 5.8 6.1 6.5 7.0 7.7 8.6 8.9

G metastables /electron 0.62 0.67 0.71 0.75 0.79 0.81 0.80 0.74 0.62 0.52 0.43

H metastables /electron 2.5 2.7 2.9 3.1 3.7 4.3 5.6 6.9 9.4 12 15

K ions /electron 4.3 4.4 4.5 4.6 4.8 5.1 5.5 6.0 6.7 7.6 7.9

‘Pressure p = 40 mm of Hg. The voltages Vo are the breakdown voltages for devices with planar molybdenum electrodes and neon- 
gas fillings.
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discuss the breakdown phenomenon in Section 14.6 we shall make use of 
these results.

A second calculation of interest is the average number of metastables 
produced by the release of a single electron from the cathode. Assuming 
that few metastables are generated closer to the cathode than a distance 
x0 = (V„/Va)d, where Vo is the voltage plotted in Figure 14.3-4, this 
average number of metastables is easily shown to be

H = B I (“^^dx = -(t“«-*») - 1) (14.4-2)
a

The ratio B/^ can be obtained by plotting a smooth curve of the data 
given in Table 14.4-1. Table 14.4-2 lists the values of H calculated in this 
manner for the particular applied voltages and pd values selected in the 
table. The quantity K given in the table is the average number of ions 
generated by each electron leaving the cathode. K is equal to —1.

14.5 Emission of Electrons from Metal Surfaces by Ion, Metastable, 
and Photon Impact

The cold-cathode glow discharge is self-sustaining because products of the 
electron avalanches — ions, metastables, and photons — strike the cathode 
and release additional electrons. The self-sustaining condition is attained 
when the average number of discharge products generated by the release 
of a single electron from the cathode is sufficient to release one more 
electron. In normal glow discharges with noble gases and clean molyb­
denum or tungsten electrodes, about two thirds of the cathode emission 
results from ions striking the cathode, about one third results from in­
cident metastables, and photoelectric emission may account for a few per 
cent.20

The emission of electrons from clean metal surfaces under impact by 
ions of the noble gases has been investigated in detail by Hagstrum.21 
The results of his investigations of the electrons emitted from molybdenum 
and tungsten by singly charged ions of the noble gases are shown in Figure 
14.5-1. The quantity 7 plotted in the figure is the average number of 
electrons emitted per incident ion. The measurements were taken using an 
exceptionally well evacuated system. Each observation was made immedi­
ately after the metal surface had been heated to a high temperature to 
drive off adsorbed layers of gas and before appreciable readsorption had 
taken place.

“Reference 14.15.
21References 14.16 to 14.19.
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Fro. 14.5-1 The quantity 7 for ions of the noble gases incident upon clean tungsten 

and molybdenum surfaces. (From H. D. Hagstrum, Phys. Rev. 104, 672, 1956)

From his measurements Hagstrum concluded that for helium ions of 
kinetic energy less than 400 electron volts and for Ne, A, Kr, and Xe ions of 
kinetic energy less than 1000 electron volts the ion kinetic energy plays 
only a secondary role in the electron emission and is not directly responsi­
ble for the kinetic energy imparted to the emitted electrons. Instead, the 
emitted electrons derive their kinetic energy from the potential energy of 
the ions. The mechanism is as illustrated in Figure 14.5-2. As the ion 
approaches the metal surface, an interaction between the field of the ion 
and the fields of two electrons e, and e2 in the conduction band of the metal 
causes one electron e, to be captured by the ion, and the second electron e2 
to be excited to an energy level well above the conduction band. The 
electron ei goes into the lowest unfilled state of the ion making it an un­
excited atom. This releases an amount of energy e which is imparted to 
the second electron. Hagstrum concluded that the probability of this 
interaction taking place when noble-gas ions of 10 electron volts of kinetic 
energy or less are incident upon the metal surface is very nearly unity.
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Fig. 14.5-2 The interaction that takes place at a molybdenum surface between 
an incident neon ion and two electrons in the conduction band of the metal.

The quantity 7 therefore measures the probability that the electron e2 will 
escape from the metal when excited to the higher state.

Since the electrons ei and e2 may initially have any energy within the 
conduction band, the excitation energy of the e2 electron just after the 
interaction may have a range of values. From Figure 14.5-2 it is easily 
shown that the maximum possible energy of the emitted electrons is 
Wt — 20, where W{ is the ionization potential of the ion in electron volts, 
and 0 is the work function of the metal surface in electron volts. The 
emitted electron e2 has maximum energy only if both electrons ei and e2 
were originally in energy states at the top of the conduction band and if the 
electron e2 suffers no loss of energy before it leaves the surface. It is reason­
able to expect that for different ions incident upon the same surface, high 
7 would be associated with a high value of W{ — 20, and vice versa. From 
Figure 14.5-1 it is evident that, for low incident ion energies, 7 decreases 
with increasing ion mass in going from He to Xe. This can be attributed 
to a corresponding decrease in Wi with increasing mass of the ions.

In investigating the emission of electrons from molybdenum by He+ 
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ions Hagstrum found that the electron emission at low ion energies (~10 
electron volts) was reduced by about a third when the surface was covered 
with a monolayer of helium gas. Varney22 has measured 7 for noble-gas 
ions striking a molybdenum surface through observations taken with a 
pulsed discharge. It is likely that the molybdenum cathode used in his 
measurements was covered with approximately a monolayer of noble gas, 
and hence more closely approximated conditions which are normally ex­
perienced in a gas-discharge device. Varney’s measured values of 7 are 
shown in Figure 14.5-3 as a function of E/p. The curves show nearly

Fig. 14.5-3 Measurements of 7 taken with a pulsed discharge. (From R.N. Varney, 

Phys. Rev. 93, 1156, 1954)

constant values of 7 for E/p greater than 150 volts/cm X mm of Hg. 
These maximum values of 7 are less than those observed by Hagstrum 
apparently because of the effects of adsorbed gas on the metal surface. 
For low values of E/p the curves become almost straight lines approxi­
mately directed at the origin. The reduction in 7 at lower E/p is attrib­
utable to diffusion of the emitted electrons back to the surface as a result 
of collisions with gas molecules. As E/p increases, the probability of 
diffusion back to the cathode decreases; and for E/p greater than 150 
volts/cm X mm of Hg, virtually none of the emitted electrons return to 
the cathode.

Gases with polyatomic molecules, such as hydrogen, nitrogen, oxygen, 
and carbon dioxide, tend to become adsorbed on metal surfaces much more 
than the noble gases. When a tube is filled with a gas such as hydrogen, 
the cathode becomes covered with several monolayers, whereas a noble

“Reference 14.20.
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gas may only cover the cathode with a single monolayer. As a result, 7 
for a discharge in hydrogen is very small, perhaps a few times 10~4 at low 
E/p, where the ions have little energy with which to penetrate the adsorbed 
layers. At higher E/p, 7 takes on higher values, perhaps 10-2 to 10-1, as 
the ions gain sufficient energy to approach the surface more closely.

Hagstrum concluded that, when a metastable atom of a noble gas is 
incident upon a clean molybdenum or tungsten surface, it experiences a 
two-stage interaction in which it first becomes ionized by losing its excited 
electron to the conduction band of the metal. The excited electron tunnels 
through2? the potential barrier between the atom and the metal and occupies 
a vacant state in the metal directly opposite the metastable level. The 
incident particle is then indistinguishable from an incident ion so that an 
interaction similar to that illustrated in Figure 14.5-2 follows. It is there­
fore thought that the values of 7 for metastable atoms of the noble gases 
incident upon clean molybdenum or tungsten surfaces are the same as for 
the corresponding ions.

The contribution made by photoelectric emission to the total cathode 
emission depends markedly on the work function of the cathode surface. 
Photoelectrons are emitted from the cathode because photons generated in 
the discharge strike the cathode and interact with electrons in the con­
duction band. The interaction is such that the energy of an individual 
photon is imparted to a single electron. The electron is energetically able 
to escape from the metal if it is excited to a state at least 0 volts above the 
conduction band, where 0 is the work function of the cathode surface. 
For a given energy hv of the incident photon, the maximum energy of the 
emitted photoelectrons is hv — 0, where h is Planck’s constant, and v is 
the frequency of the radiation. Low work function cathodes are in general 
more efficient emitters of photoelectrons, so that the photoelectron emission 
from an oxide-coated cathode (work function 1 to 2 electron volts) is likely 
to be much greater than that from a metal surface such as molybdenum 
(work function 4.3 electron volts). Because 7 is quite small for discharges 
in gases with polyatomic molecules, the proportion of the total cathode 
emission arising from the photoelectric process is thought to be greater 
in these discharges than in discharges with the noble gases.

14.6 The Townsend Discharge and Breakdown

A gas discharge can be considered to be a state of conduction through a 
partially ionized gas between two electrodes. The current density of the

23A quantum-mechanical effect in which an electron can pass through a potential 
barrier, even though classically the electron should not do so because it does not have 
sufficient kinetic energy to overcome the barrier.
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discharge may vary over many orders of magnitude, from perhaps a few 
electrons per second per square centimeter (~10-18 amp/cm2) to thousands 
or millions of amperes per square centimeter in the arc discharge. It 
happens that as the discharge current is increased above about 10 micro­
amps, two independent phenomena start to show their influence on the 
discharge. Events which depend upon the square of the current density, 
such as metastable-metastable interactions and electron-metastable inter­
actions, become of importance, and the space charge density in the inter­
electrode space starts to modify the potential distribution between the 
electrodes. A Townsend discharge24 is characterized by a current density 
which is sufficiently small that neither of these effects are of importance.

In the present section we shall use the experimental data presented 
earlier to discuss the Townsend discharge and the phenomenon known as 
breakdown. Two discharges occurring at higher current densities, the glow 
discharge and the arc discharge, will 
Chapter 15.

CATHODE ANODE

Fig. 14.6-1 A discharge device consist­
ing of two large planar electrodes.

be described in the first section of

Let us suppose we have a device 
consisting of two large planar elec­
trodes, a cathode and an anode, 
spaced by a distance of d centi­
meters, as illustrated in Figure 
14.6-1. The interelectrode space is 
filled with a noble gas at a pressure 
of p millimeters of Hg. The applied 
voltage Va is less than the break­
down voltage Fi, of the device. The 
anode has a number of holes in it, 
and light is shone through the holes 
at the cathode. We shall assume 
that the incident light causes a cur­
rent of Io photoelectrons to be drawn 
from the cathode. Each photo­
electron gives rise to an avalanche 
which in an average case consists of 

— 1) ion-electron pairs
plus the original electron. The — 1) ions generated in the ava­
lanche are drawn to the cathode where they release y(NVa~v°'1 — 1) addi­
tional electrons. Metastables generated in the avalanches also strike the 
cathode and release electrons. If Ic is the total cathode emission, and G is 

’’After J. S. Townsend who contributed much to the early understanding of gas­
discharge phenomena.
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the average number of metastables striking the cathode as a result of the 
emission of a single electron from the cathode, then

I. = I. + - 1 + G)L (14.6-1)

or

Ic = 1 - - 1 + G) (14.6-2)

where it is assumed that the contribution to I. made by photons generated 
in the discharge is negligible. The current of electrons reaching the anode 
is Zce’(F“-F<,), or

J fltVo-Vol 
1« = 7------- , °v_v ,----- 7“—^ (14.6-3)1 — v°> — 1 + G)

This equation expresses the anode current of a Townsend discharge, 
when the discharge takes place between planar electrodes with a voltage 
Va applied between the electrodes, and when a photoelectron current Io 
is drawn from the cathode. The equation is known as the Townsend 
Equation.

As the applied voltage Va increases, the denominator of the Townsend 
Equation decreases and the numerator increases.26 At a particular applied 
voltage Vs, the denominator becomes zero and the current Ia may increase 
many orders of magnitude. The condition is known as breakdown, and the 
voltage Vs is called the breakdown voltage of the device.

The condition that the denominator of the Townsend Equation be 
zero is essentially the condition for a self-sustaining discharge, namely that 
the average number of discharge products generated by the release of a 
single electron from the cathode be sufficient to release one more electron 
from the cathode. In such a discharge the current Ia is no longer pro­
portional to the photocurrent Io, and in fact would continue if the light 
source were turned off. To limit the current of a self-sustained discharge, 
a resistance R is placed in series with the supply voltage. The voltage Va 
is then V, — IaR , where V, is the supply voltage.

Figure 14.6-2(c) shows qualitatively the variation of Ia with Va for a 
particular device. The broken curve in the figure shows the Ia-Va character­
istic for an increased photocurrent If. The horizontal part of the solid 
curve in the Townsend region and the portions of the solid curve to the 
right of the Townsend region correspond to self-sustained discharges. 
Evidently, the current of the self-sustained discharge in the Townsend

26It should be noted that at low applied voltages, and hence at low E/p, many of the 
photoelectrons diffuse back to the cathode, so that increasing the applied voltage in­

creases the current I. of photoelectrons drawn from the cathode.
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Fig. 14.6-2 Current voltage characteristics of a cold-cathode diode, (a) Current 
is plotted on a linear scale, and (c) current is plotted on a logarithmic scale.

region can be varied over several orders of magnitude with essentially no 
change in Va.

To understand the stability of the self-sustained discharge we should 
note that the anode voltage of a self-sustained discharge is that voltage 
which makes the average avalanche contain enough discharge products to 
release one more electron from the cathode. Suppose that a discharge 
current Ia and an anode voltage Va are obtained when the supply voltage 
is V, and the series resistance is R. If the current Ia were to increase a 
small amount to Ia + Ala, the anode voltage Va = V, — IaR would fall 
AlaR volts below the voltage needed for the discharge to be self-sustaining. 
The avalanches would then contain less than enough discharge products 
to release one more electron from the cathode, and the current Ia + Al„ 
would decrease. The current Ia therefore adjusts itself to the value which 
makes Va the voltage needed to sustain the discharge.
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The condition for breakdown can be expressed as
7(ertn-v.) - 1 + G) = ! (14.6-4)

or

Vb = Vo + -In(- + 1 - G 
n VY

(14.6-5)

where Vb is the breakdown voltage. Figure 14.6-3 shows a plot of Vb 
as a function of the product of the gas pressure p and the electrode spacing 

Fig. 14.6-3 The breakdown voltage for devices with planar molybdenum electrodes 
and neon and argon fillings.

d for devices with planar molybdenum electrodes and neon and argon 
fillings. To a first approximation Vb is a function of the product pd, since 
at constant pd and constant applied voltage, both the average number of 
collisions made by an electron in traveling from the cathode to the anode 
and the average voltage gained in the interval between collisions are con­
stant. The relationship that

n = ¿(pd) (14.6-6)

is known as Paschen’s Law.
It will be of interest to evaluate the quantity 7 (e^vo-vo) _ 1 q. G) 

for one of the pd values shown in Table 14.4-2. The voltages Va given in 
the table are the measured breakdown voltages for devices with planar 
molybdenum electrodes and neon fillings at a pressure of 40 mm of Hg. 
Consequently if we use the value of Va indicated in the table and the value 
of 7 for neon ions incident on molybdenum, the quantity y^^o-y^ _ 
1 + G) should equal 1.0. The device we shall consider has a pd of 5 and hence 
an electrode spacing of 0.125 cm. The measured breakdown voltage is 173 
volts. As the applied voltage is increased toward breakdown, E/p approaches
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3 4.6 volts/cm X mm of Hg. From Figure 14.5-3 we find that 7 = 0.14 
for this value of E/p. From Table 14.4-2 the quantity e’<F«-vo) js found 
to be 7.0 and G = 0.74. Hence 7(e’(F“-F«) — 1 + G) = 0.94. The dif­
ference between 0.94 and 1.0 can easily be explained in terms of the accuracy 
of the experimental data we have used.

Since each value of pd defines a unique Vt, it also defines a unique E/p, 
namely Vt/pd. The breakdown voltage Vt can therefore also be plotted 
as a function of the value of E/p which applies at breakdown. Such a plot 
could be made from the data given in Table 14.4-2. Figure 14.6-3 shows 
that minimum breakdown voltage for a tube with a neon gas filling and 
planar molybdenum electrodes occurs at a pd of about 1.8 mm of Hg X cm. 
At this pd, Vt — 145 volts, and E/p = 145/1.8 = 80 volts/cm X mm of 
Hg. Reference to Figures 14.3-3 and 14.5-3 shows that both 1? and 7 are 
at their maximum values at approximately this value of E/p. Table 14.4-2 
shows that G is a relatively slowly varying function of the value of E/p 
at breakdown. Consequently, Vt = V„ + (l/i?) In [(1/7) + 1 — G] is a 
minimum at E/p = 80 volts/cm X mm of Hg and hence at pd = 1.8 mm 
of Hg X cm.

When it is important that breakdown voltage of a cold-cathode tube be 
reproducible to within narrow limits, the pressure and electrode spacing 
are often chosen so that Vt is at its minimum value. In this case small 
variations in p and d from tube to tube make little change in the breakdown 
voltage.

Equation (14.6-6) is valid for electrode geometries other than the planar 
geometry if all electrode dimensions are scaled in proportion to the electrode 
spacing d.
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Chapter 15

THE GLOW DISCHARGE AND 
COLD-CATHODE TUBES

If the current drawn by a neon-molybdenum device with planar, parallel 
electrodes is increased beyond about 10 microamps, events which occur 
with a frequency proportional to the square of the current density such as 
metastable-metastable interactions and electron-metastable interactions 
begin to show their influence on the discharge. These interactions lead to 
the generation of a greater number of ions for each electron leaving the 
cathode.1 Since almost every ion is drawn to the cathode, but less than 
half the metastables reach the cathode, the voltage needed to sustain the 
discharge is reduced below that of the Townsend discharge, and hence 
below the breakdown voltage.

At about the same current, or perhaps at somewhat lower current, the 
space charge caused by relatively slow-moving ions drifting toward the 
cathode becomes sufficient to raise the potential close to the cathode. 
This causes an increase in E/p at the cathode surface. If E/p at breakdown 
is less than that which gives maximum emission coefficient 7, the emission 
coefficient increases with the increase in E/p, and the voltage needed to 
sustain the discharge falls still further.

At a current of about 20 microamps, a region of diffuse glow can be seen 
in the interelectrode space, and the glow is observed to fill only a portion of 
that space. As the current is increased from 20 microamps to 200 micro­
amps, the boundaries of the glow region become more clearly defined, and, 
for relatively large pd, the glow is observed to be closer to the cathode than 
the anode. At currents above 200 microamps, the glow area tends to increase 
linearly with current up to the point where the cathode is covered with glow.

When the two metastables interact, one becomes ionized, and the other returns to 
the ground state. Collisions between fast electrons and metastables frequently result 
in ionization of the metastables.

542
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The discharge in this range of currents is said to be a normal glow dis­
charge and is characterized by a nearly constant sustaining voltage. If 
the current is increased beyond the point where the cathode is covered with 
glow, the sustaining voltage rises, and the discharge is said to be an ab­
normal glow discharge. At still higher currents it becomes an arc, and the 
anode-to-cathode voltage falls to a value comparable with the ionization 
potential of the gas.

The sustaining voltage of the normal glow discharge depends on such 
quantities as the emission coefficient y, the product pd, and the functions 
which give the probabilities of excitation and ionization for electron col­
lisions with the molecules as a function of the incident electron energy. 
Because it is possible to process tubes so that the cathode remains relatively 
clean over long periods, and hence y remains nearly constant, and because 
the other factors determining the sustaining voltage are essentially con­
stant with time, it is possible to obtain sustaining voltages which change 
only a fraction of a per cent in a year of continuous service. Voltage­
reference tubes used in regulated power supplies are so processed.

In voltage-regulator tubes, use is made of the fact that the sustaining 
voltage is nearly constant with current over a range of currents from about 
200 microamps up to the current at which the cathode is covered with glow. 
The tubes are operated in parallel with a load of variable impedance, and 
the parallel combination is connected through a series resistance to a power 
supply. The voltage drop across the load therefore equals the sustaining 
voltage of the tube, the circuit parameters' being so chosen that the tube 
operates in the normal glow discharge. As the current drawn by the load 
increases, the current drawn by the tube decreases, and the voltage drop 
across the combination remains nearly constant.

A cold-cathode diode is essentially a two-state device. If a voltage less 
than the breakdown voltage is applied to the tube, practically no con­
duction takes place, and the device is characterized by almost infinite 
impedance. However, if the supply voltage, in series with a suitable re­
sistance, is raised above the breakdown voltage, the glow discharge is 
established. The discharge in this second state is characterized by ap­
preciable current conduction, a much lower impedance, and a sustaining 
voltage which is less than the breakdown voltage. By reducing the supply 
voltage sufficiently, the discharge can be caused to return to the low-con­
duction, or essentially nonconducting, state. This two-state nature of the 
tubes makes possible their use both as storage elements and as switching 
elements. In some tubes designed for switching applications, a third 
electrode located closer to the cathode is added to initiate the glow dis­
charge.
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15.1 The Glow Discharge, Ionization Time, and the Arc Discharge

(a) The Glow Discharge

The visible glow of the normal glow discharge is caused by excited atoms 
undergoing radiative transitions to lower states. It is observed only where 
there is an appreciable current of fast moving electrons which have suf­
ficient energy to excite neutral atoms. Since the glow region of the normal 
glow discharge covers only a portion of the electrode area, this must be 
the only region where there is an appreciable current of fast electrons, and 
we must conclude that nearly all the cathode emission comes from the 

Fig. 15.1-1 Approximate plots of the electric field intensity and potential in the 
interelectrode space of a gas tube with planar, parallel electrodes.

glow-covered part of the cathode. Furthermore, since the glow area of the 
normal glow discharge is linearly proportional to the current drawn by 
the tube, it follows that the normal glow discharge is characterized by a 
constant current density over the glow area. For molybdenum electrodes 
and neon gas, this current density is found to be J = 5p2 microamps/cm2, 
where p is the pressure in millimeters of Hg.



THE GLOW DISCHARGE AND COLD-CATHODE TUBES 545

In a search for a better understanding of the mechanisms involved in 
the glow discharge, a number of investigators have made probe measure­
ments of the potential in the interelectrode space of glow-discharge devices.2 
Unfortunately, such measurements always tend to disturb the field under 
observation, so that the information obtained is only approximate. How­
ever, most observers have concluded that the electric field intensity E falls 
off in a nearly linear manner with distance from the cathode, becoming 
zero, or almost zero, at some distance dc from the cathode. A plot of the 
electric field intensity in the interelectrode space of a glow-discharge device 
may be something like that shown in Figure 15.1-l(b). Qualitative plots 
of the potential in the interelectrode space for three different ranges of 
currents are shown in Figure 15.1-1 (c). The plots for the transition region 
and the normal glow discharge are made along a line running through the 
glow area perpendicular to the cathode.

The part of the glow discharge extending from the cathode out to dc 
is known as the cathode-fall region, since nearly all the voltage drop in the 
tube takes place in this region. A linear decrease of E from the cathode 
out to dc and no electric field intensity beyond dc would imply a uniform net 
density of positive charge from the cathode out to dc and no net charge 
beyond that point. Beyond dc there is an ion-electron “plasma” con­
sisting of approximately equal numbers of ions and electrons diffusing 
through the gas and perhaps drifting under the influence of weak electric 
fields. It is believed that the probability of ion-electron recombination in 
this region is small.

Because most of the potential drop in the glow discharge takes place close 
to the cathode, the metastables and photons produced in the discharge are, 
for the most part, generated closer to the cathode than in the Townsend 
discharge. This increases the probability of their reaching the cathode and 
provides a further reason for the lower sustaining voltage of the glow dis­
charge.

The foregoing picture of the glow discharge leads to a number of questions 
about the mechanisms involved. Unfortunately, present understanding of 
the glow discharge is not at all complete, and a quantitative explanation of 
the shape of the potential distribution between the electrodes is not avail­
able. However, we can write down several conditions which mathematically 
describe the discharge. For a device with planar electrodes these are:

1. The discharge is self-sustaining. This implies that at the cathode

= 7(J+|x=o + G7-|x_o) + (contribution caused by (15.1-1) 
photons striking the cathode)

’References 15.1 to 15.5. 
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where J+ |»-o is the ion current density at the cathode, J_|2=o is the electron 
current density at the cathode, and G is the average number of metastables 
striking the cathode per electron released from the cathode.

2. The electric field intensity is given by

= (n _ (15.1-2)
dx e„ So

where n+ and n_ are the ion and electron densities, respectively.

3. V(x) = y" Edx

(15.1-3)
Va = y Edx

where Va is the sustaining voltage of the discharge, and d is the electrode 
spacing.

4. J + = n+u+e

J_ = n_u_e (15.1-4)
J+ +J-= J

where u+ and u_ are, respectively, the ion and electron mean velocities, and 
J is the total current density.

The quantities J+, J_, n+, n_, u+ and u_ are all functions of distance x 
from the cathode, whereas J = J+ + J_ is independent of x. The values of 
u+ in the cathode-fall region are probably close to those plotted in Figure 
14.3-1, but may differ slightly because of the rapidly changing field. How­
ever, very little is known about the distribution of electron velocities in the 
cathode-fall region and beyond. This means that y cannot be obtained from 
the data given in Figure 14.3-3 which are valid only for a uniform electric 
field intensity. For similar reasons few data are available on the generation 
of metastables and photons in the cathode-fall region and beyond. At the 
present time opinions differ between experimenters on what fraction of the 
ions is generated in the cathode-fall region and what fraction is generated 
beyond the cathode-fall region.

If the coefficient fix) giving the average number of ions generated by a 
single electron per volt potential rise were known together with the rates of 
generation of ions from metastable interactions, we could add one more 
equation to those given above, namely

5. = n'(x) |J_| |H| + (contributions from
ax ax processes leading to

metastable ionization) (15.1-5)
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Because so many of the processes taking place in the glow discharge are 
interrelated, a complete mathematical description of the discharge would be 
very complex indeed. (It may be well to note once more that the voltage 
drop Vc of the cathode fall is determined by the condition that the electrons 
passing through the cathode-fall region must gain sufficient energy to gener­
ate the current of discharge products which strike the cathode and which 
serve to maintain the electron emission. If 7 is 0.2, about 5 ions and meta­
stables must strike the cathode for each electron leaving the cathode. Of 
course, additional energy is lost by the electrons in exciting atoms to radiat­
ing states, in increasing the thermal energy of the gas, and in generating 
metastables ’which do not reach the cathode. Consequently the voltage 
drop of the cathode fall must be at least several times the ionization poten­
tial of the gas. In a neon-molybdenum device, 7 is about 0.2 and Vc is close 
to 110 volts, or 5.1 times the ionization potential of neon.)

Some further understanding of the problem can be obtained by assuming 
that the electric field intensity really does vary as shown in Figure 15.1-1 (b). 
In this case we can use the preceding equations to estimate E, p, and dc in 
the cathode-fall region in terms of the voltage drop Vc across the cathode­
fall region and the observed cathode current density J.

Let the electric field intensity in the cathode-fall region be given by

(15.1-6) 
dc \ dcJ

where Vc is the voltage drop of the cathode fall, and the minus sign in front 
of the right-hand side implies that the direction of E is that of decreasing x. 
Vc is approximately equal to Va over a range of pd values up to pd = 20 mm 
of Hg X cm for neon-molybdenum devices, but at higher pd there is a 
voltage rise in front of the anode. Since several ions on the average are 
needed to release one electron from the cathode and since the electron 
velocities in the cathode-fall region are many times those of the ions, the 
space charge in the cathode-fall region is primarily caused by ions. We can 
therefore write that

= P+ = A = (15.1-7)
ax e<> e„u+ dj

Note that since E decreases linearly with x, p+ is independent of x, and J), is 
proportional to u+. From Equation (15.1-7), it follows that

W = (15.1-8)

It will be convenient to rewrite Equation (15.1-1) in the form

J-|z-0 = 7'/+|x=0 (15.1-9) 
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where y' is greater than y by an amount that accounts for the contributions 
to the electron current density at the cathode caused by metastables and 
photons striking the cathode. Combining Equations (15.1-9) and (15.1-4), 
we obtain

Ah = (15.1-10)
1 T V

Since J* is proportional to u+, in the cathode-fall region, we can use the 
values of both J+ and u+ at x = 0 in Equation (15.1-8). Combining that 
equation with Equation (15.1-10), we obtain

(pdc)2 = (15.1-11)
J IP

Now from Equation (15.1-6),

For a planar molybdenum cathode and neon gas, Vc = 110 volts and 
J/p2 = 5 microamps/cm2 X (mm of Hg)2. E/p at the cathode is of the 
order of 200, so that y = 0.20 (Figure 14.5-3). y' may be of the order of 0.30 
assuming that the metastables striking the cathode give rise to about a third 
of the cathode emission and that the contribution caused by photons is 
small. (A change of 20 per cent in the assumed value of y' would only 
change pdc by about 2 per cent.) Equations (15.1-11) and (15.1-12) are 
consistent for one particular value of pdc only. A choice of pdc = 1.08 mm 
of Hg X cm is easily shown to satisfy both equations. From the second 
equation we find that (E/p)\^ = 204 volts/cm X mm of Hg. According 
to Figure 14.3-1 the corresponding value of u+|I=0 is 2.3 X 103 meters/sec. 
Substituting for J/p2, w+L=o, and 1 + y' into the right side of. the Equation 
(15.1-11), we obtain pdc = 1.08 mm of Hg X cm, confirming our choice. 
(One must be a little careful of units in this last substitution. If J is ex­
pressed in amperes per square centimeter, u+ in meters per second, and V. in 
volts, then dc is in centimeters.) If the gas pressure in the device is known, 
dc is determined from pdc = 1.08 mm of Hg X cm. The electric field in­
tensity can be obtained using Equation (15.1-6), and p+ can be obtained 
using Equation (15.1-7).

The fact that pdc is a constant means that the cathode-fall region is a 
definite number of mean free paths in thickness, the number being inde­
pendent of pressure. A rough estimate of the number of mean free paths 
involved can be obtained using the data for the collision probability Pc 
plotted in Figure 14.3-2. The electron mean free path is given by the 
reciprocal of Pc divided by the gas pressure in millimeters of Hg. For elec­
trons of 15 to 30 electron volts in neon Pc ~ 12 (cm X mm of Hg)-1, and 
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the mean free path ^l/(12p) cm, where p is in millimeters of Hg. Combin­
ing this with dc = 1.08/p cm, we find that the cathode-fall region is approxi­
mately 13 mean free paths in thickness. (However this does not mean that 
only 13 collisions are made by the electrons on their way through the 
cathode-fall region, since in some of the collisions the electrons are deflected 
through large angles.)

Still another calculation of interest is the ratio of ions to gas molecules in 
the cathode-fall region. Now from Equation (15.1-7)

The density of ions is given by p+/e, and the ratio of ions to gas molecules 
is p+/ne, where n is the density of gas molecules. For a gas at 0°C, n = 3.54 
X 1022 p molecules/meter3, where p is the pressure in millimeters of Hg. In 
the cathode-fall region the gas temperature is usually somewhat higher than 
0°C, but for the purpose of an order-of-magnitude calculation it will suffice 
to use n = 3.54 X 1022 p. For neon gas and planar molybdenum electrodes 
the ratio of ions to gas molecules in the cathode-fall region is therefore

w = 3.54 X 1022e(1.08 X KF2)2 = 3-0 X 10 9P (15.1-14)

For p = 50 mm of Hg, there is one ion for approximately 7 million gas 
molecules in the cathode-fall region.

Next let us consider the scaling of gas-discharge devices. It was pointed 
out earlier that the breakdown voltage of a gas diode with planar, parallel 
electrodes is a function of pd, where p is the gas pressure and d is the elec­
trode spacing. It was also noted that if all the linear dimensions of a gas 
diode having arbitrarily shaped electrodes are scaled by a factor k, and if the 

Fig. 15.1-2 The linear dimensions of device B are k times those of device A, and 
the pressure of the gas filling in device B is 1/k times that in device A.

DEVICE B
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pressure is changed by 1 /k, the breakdown voltage to a first approximation 
remains unchanged. This is so because the average velocity gained by an 
electron in the interval between collisions is the same for the same applied 
voltage, and the average number of collisions which an electron makes in 
traveling between the electrodes is unchanged. (Or, stated another way, 
E/p is the same.)

The same scaling law applies to glow discharges. Figure 15.1-2 shows two 
gas-discharge devices A and B. If the linear dimensions of device B are k 
times those of device A and if the pressure of the gas filling in device B is 
1/k times that of device A, the number of mean free paths between the 
cathode and anode of each device is the same. Consequently electrons 
traveling from the cathode to the anode of the two devices make the same 
average number of collisions on the way. If glow discharges are established 
in the devices, we would expect that the voltage difference per mean free 
path along a line joining the cathode and anode would be the same in each 
case (remembering that the discharges are self-sustaining). This means 
that the voltage at corresponding points between the electrodes would be the 
same, and the sustaining voltages would be the same. The latter point is, 
in fact, experimentally verified.

Now from Poisson’s Equation we know that the net charge density p is 
proportional to V2F. But since V is the same at corresponding points be­
tween the electrodes of the two devices, and since the dimensions of device B 
are k times those of device A, V2F in the interelectrode space of device A is 
k2 times that at corresponding points in device B. Consequently, the charge 
density p in the interelectrode space of device A is k2 times that in device B. 
And since the voltage gained per mean free path is the same, the mean drift 
velocities of the charged particles at corresponding points between the 
electrodes is the same. Consequently, the cathode current density J = pu 
of device A is k2 times that of device B, andJ/p2 is the same for the two de­
vices. Since the cathode area of device B is k2 times that of device A, the 
cathodes are covered with glow at the same current.

Figure 15.1-3 shows how the sustaining voltage of a discharge tube with 
planar molybdenum electrodes and a neon filling varies with pd, where d is 
the electrode spacing. The measurements were taken by varying d with p 
constant. For 5 < pd < 20 mm of Hg X cm, the sustaining voltage is 
virtually constant. However, if d is decreased so that pd falls below 5 mm 
of Hg X cm, the sustaining voltage rises, apparently because the anode 
enters a region in which some of the excitation and ionization contributing 
to the discharge takes place. A discharge in a neon-molybdenum device 
with pd < 5 mm of Hg X cm is said to be “obstructed.” (Since pdc for the 
cathode-fall region is only 1.08 mm of Hg X cm, it is evident that some of 
the metastables and ions reaching the cathode are generated well beyond
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Fig. 15.1-3 The normal-glow-discharge sustaining voltage of devices with planar 

molybdenum electrodes and neon and argon fillings as a function of pd. In ob­

taining the curve for neon p was held at 50 mm of Hg, and d was varied. In ob­

taining the curve for argon p was held at 25 mm of Hg, and d was varied.

the cathode-fall region.) It would be reasonable to expect that the current 
density J of the normal-glow discharge would be principally determined by 
events taking place at pd < 5 mm of Hg X cm. This is in fact the case, for 
if d is varied with p constant, J remains unchanged provided pd > 5 mm of 
Hg X cm. When this result is combined with the scaling law for J/pi2 dis-

NEGATIVE 
GLOW

Fig. 15.1-4 The potential V and electric field intensity E in a long tube with 
pd » 20 mm of Hg X cm.
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cussed above, it follows that J/p2 for the normal-glow discharge is constant 
for all neon-molybdenum devices with planar electrodes and pd > 5 mm of 
Hg X cm.

If pd is increased beyond about 20 mm of Hg X cm the sustaining voltage 
Va again rises. At somewhat higher values of pd, a region of glow appears in 
front of the anode and oscillations in the discharge can be detected. Figure 
15.1-4 shows a tube in which pd is assumed to be much greater than 20 mm 
of Hg X cm together with a plot of potential V and the electric field in­
tensity E. Several regions of visible glow can be distinguished in such a 
tube. The cathode-fall region extends from the cathode out to a. Relative­
ly little light is emitted from this region, and it is frequently called the 
cathode dark space, or the Crookes dark space. Between a and b a much 
brighter region of glow known as the negative glow can be seen. In devices 
with pd < 20 mm of Hg X cm most of the visible glow comes from this 
region. Excitation and ionization in the region are thought to be largely 
due to fast electrons arriving from the cathode fall. In a neon-molybdenum 
device the outer edge of the negative glow corresponds to a pd of about 
5 mm of Hg X cm. Between b and c there is a region, known as the Faraday 
dark space, from which very little radiation takes place, apparently because 
most of the free electrons do not have enough energy to excite the gas 
molecules. Between c and d a region of diffuse glow known as the positive 
column can be seen; and finally, between d and the anode, there is a some­
what more intense glow known as the anode glow.

The negative glow region, the Faraday dark space, and the positive 
column are all plasmas, or regions in which the ion and electron densities 
are approximately equal. Because the electron velocities in the plasma are 
much greater than the ion velocities, the current of electrons reaching the 
edge of the plasma in front of the glass walls is much greater than the ion 
current. The walls therefore become negatively charged, and a “sheath” 
forms between the plasma and the glass. The voltage drop in the sheath 
serves to reduce the electron current reaching the glass walls to a value 
equal to the ion current. (Since the walls are insulating, the electron and ion 
currents to the walls must be equal.) Some discussion of plasmas and 
sheaths is given in the first section of Chapter 16.

Fast electrons from the cathode fall expend most of their energy in the 
negative-glow region where most of the excitation and ionization needed 
to support the cathode emission take place. In the Faraday dark space 
few electrons have sufficient energy to cause excitation. Conduction 
through the Faraday dark space results largely from diffusion of electrons 
from the negative-glow region to the cathode end of the positive column. 
Ions enter the Faraday dark space both from the negative glow and from 
the positive column.
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The electron current reaching the sheath at the edge of the plasma is 
generally hundreds of times greater than the ion current, so that electrons 
reaching the edge of the plasma, for the most part, are reflected by the 
sheath. However ions reaching the edge of the plasma are drawn into the 
sheath and neutralized upon reaching the walls. A nearly uniform gradient 
of potential extends over the length of the positive column giving the elec­
trons sufficient energy to generate ion-electron pairs needed to make up for 
ion and electron losses to the walls. The nature and appearance of the 
positive column depend considerably on the product of the filling pressure 
and tube radius as well as on the current density. A variety of types of 
positive column can be obtained by varying these factors,3 but a discussion 
of the possible forms of positive column would be outside the scope of the 
present treatment. The positive column is responsible for the radiation ob­
served from “neon” advertisement signs and gas lasers and is indirectly 
responsible for the radiation emitted from fluorescent lamps.

If the current drawn by a cold-cathode tube is increased beyond the point 
where the cathode is completely covered with glow, the voltage drop across 
the tube rises, and the current density of the discharge increases linearly 
with the total current. Such a discharge is said to be an abnormal glow dis­
charge. The fact that the discharge is restricted to a cathode of fixed size 
area implies a further boundary condition for the abnormal glow discharge 
in addition to the conditions listed earlier for the normal glow discharge. 
Probe measurements of the cathode-fall region of the abnormal glow dis­
charge4 show that dc decreases with increasing current, as would be expected 
from Equation (14.1-11).

(b) Ionization Time

The ionization time of a cold-cathode device is defined as the time that 
elapses between the application of a voltage greater than breakdown be­
tween the anode and cathode of the tube and the initiation of the glow dis­
charge. We shall assume we have a device in which pd is a little greater than 
the pd value which gives minimum breakdown. If a voltage just above 
breakdown is applied to the anode, an electron leaving the part of the 
cathode surface closest to the anode on the average will generate sufficient 
excited atoms and ions to release slightly more than one electron from the 
cathode. A current buildup results which soon produces sufficient space 
charge to initiate the glow discharge.

The ionization time is made up of two parts. One part is the delay which 
occurs between the application of voltage to the anode and the release from 
the cathode of the electron or electrons which initiate the current buildup.

’Reference 15.6, p. 155.
♦Reference 15.1.
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The second part is the time required for the current to increase to the 
point where the glow discharge is established. In general, both parts de­
crease as the excess of the applied voltage over the breakdown voltage 
increases.

Some means to initiate the release of electrons from the cathode is 
generally provided in cold-cathode tubes. Often a spot of radioactive 
material is painted on the inside of the envelope close to the anode-to- 
cathode gap. This ensures frequent ionizing events in which high-energy a 
or fl particles are released into the filling gas causing ionization of the gas. 
A few of the ions and electrons generated in this manner diffuse through the 
gas to the anode-to-cathode gap. When voltage is applied to the anode, the 
electrons are drawn to the anode, perhaps causing further ionization on the 
way, and the ions are drawn to the cathode, where some may release elec­
trons by the y process. Because only a few charged particles reach the inter­
electrode space, several ionizing events may take place before the current 
buildup is initiated.

If the radioactive material used is a compound of radium, a small quanti­
ty of radioactive radon gas is generated by the radium. The radon mixes 
with the filling gas and ensures some radioactivity throughout the interior 
of the tube.

In some tubes a radioactive isotope of krypton, known as krypton 85, 
is added to the filling gas. The nucleus of this isotope undergoes a radio­
active decay in which it releases a fl particle which in turn causes ionization 
of the filling gas.

Tubes in which radioactive material has been placed for the purpose of 
obtaining short ionization times are said to have a radioactive keep-alive. 
The ionization time of these tubes is, of course, a function of the amount of 
radioactive material, the proximity of the decaying particles to the anode- 
to-cathode gap, and the excess of the supply voltage over the breakdown 
voltage, a quantity referred to as the “overvoltage.” If the overvoltage is 
10 volts, average ionization times of a few hundred microseconds can readily 
be obtained with a radioactive keep-alive. The time required for the cur­
rent buildup with such an overvoltage may be several tens of microseconds. 
Because of the random nature of the radioactive decay, the ionization time 
is a statistical quantity and is best described by a distribution of individual 
measurements.

In some tubes a low-current discharge between auxiliary electrodes is 
operated continuously as a keep-alive mechanism. Such a discharge is called 
a de keep-alive. Generally, the current drawn by the de keep-alive is of 
the order of a few microamperes, although smaller currents are sometimes 
sufficient. Ions and electrons generated by the auxiliary discharge find 
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their way to the gap between the main anode and cathode and are re­
sponsible for initiating the current buildup in the main gap.

A third keep-alive mechanism, known as a photoelectric keep-alive, in­
volves the use of a surface which emits photoelectrons and which is held 
close to cathode potential. If light falls on such a surface, a current of 
photoelectrons is emitted. When voltage is applied to the anode, the photo­
electrons are drawn to the anode causing ionization on the way and initiat­
ing the discharge.

If no keep-alive mechanism is provided in a cold-cathode tube, the dis­
charge is eventually initiated by residual radioactivity within the tube or by 
a cosmic ray event. In such cases ionization times of the order of a second or 
more may be encountered.

Finally, if a very high voltage is applied across a short gap, the discharge 
may be initiated by field emission from the cathode. Two common gas­
discharge devices in which the discharge is initiated by field emission are the 
spark plug and the carbon-block lightning protector used on telephone 
lines to prevent voltage surges from reaching central office or subscriber 
equipment.

(c) The Arc Discharge

If the current density of the abnormal glow discharge is increased suffi­
ciently, the sustaining voltage Va reaches a maximum, after which it de­
creases either continuously or abruptly. The drop in Va is accompanied by 
a transition to a form of discharge known as an arc. The arc is a self- 
sustaining discharge which is characterized by a high current density 
(^lO3 to 106 amps/cm2) and a low sustaining voltage (~10 to 20 volts). 
Usually the area of the cathode surface covered with glow from the dis­
charge is quite small. The visible light from the discharge always contains 
strong spectral lines of the cathode material.

The low sustaining voltage implies that electrons are emitted from the 
cathode by some supplementary mechanism in addition to the y process. It 
has been shown that thermionic emission plays an essential role in arcs 
formed with carbon and tungsten cathodes, the intense heat needed to 
maintain the thermionic emission being generated by ion bombardment of 
the cathode. However the electron-emission mechanism involved in arcs 
formed with copper or liquid mercury cathodes seems less certain. Field 
emission is a possibility.5 (It can be shown that the temperatures needed

•Reference 15.6, p. 140; References 15.7 and 15.8. See also discussion of other possible 

mechanisms by A. Von Engel, Ionized Gases, Oxford University Press, Oxford, England, 
1955, Chapter 9 Sections 5 and 6, and discussion by J. M. Meek and J. D. Craggs, 

Electrical Breakdown of Gases, Oxford University Press, Oxford, England, 1953, Chapter 12. 
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for appreciable thermionic emission from copper or liquid mercury cathodes 
would be sufficient to vaporize the cathode material.) If field emission is the 
mechanism involved, the large fields needed to release electrons from the 
cathode are probably generated by a high density of ions drifting toward the 
cathode.

15.2 Three Examples of Cold-Cathode Tubes
In this section we shall describe three cold-cathode tubes manufactured 

by the Western Electric Company, each of a different construction and each 
used for a different purpose. The first is the 423C, a two-electrode device 
used as a voltage-reference tube in power supplies. The second is the 427A, 
a three-electrode tube used as a voltage regulator in power supplies. The 
third is the 426A, a three-electrode tube used as a switching element in a 
telephone circuit which permits selective ringing of subscribers on party 
lines.

The 423C

Figure 15.2-1 illustrates the construction of the 423C voltage reference 
tube. The electrodes are molybdenum and the gas filling is argon, a com­
bination that has been found to give sustaining voltages which are par-

CATHODE

ANODE

CERAMIC 
ELECTRODE 
SUPPORT

Fig. 15.2-1 The 423C voltage reference tube. The overall height of the tube is 
4.4 cm.
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ticularly stable with time. The back of the cathode is coated with powdered 
nickel which has a higher work function and hence lower 7 than molybde­
num. This serves to restrict the glow to the inner face of the electrode. A 
small amount of radioactive krypton gas is added to the argon filling gas as a 
radioactive keep-alive. The getter shown in the figure is used to evaporate 
a thin film of barium on the inside of the glass envelope during processing of 
the tube. The barium “getter flash” serves to adsorb molecules of the non­
noble residual gases within the tube.

Principal electrical characteristics of the tube are shown in Table 15.2-1.

Table 15.2-1 WE 423C Operating Characteristics

Typical Values
Breakdown voltage, volts............................................................................135

Sustaining voltage, volts..............................................................................100

Operating current, ma................. .............................................................. 4to8

The pressure of the gas filling is 32 mm of Hg, and the electrode spacing is 
0.05 cm. The product pd is therefore 1.6 mm of Hg X cm. This choice of 
pd represents a compromise between a desire to obtain minimum breakdown 
voltage and a desire to keep out of the obstructed-discharge region. Figure 
14.6-3 shows that minimum breakdown voltage for a device with planar 
molybdenum electrodes and an argon filling is obtained at a pd of 1.0 mm of 
Hg X cm. However, Figure 15.1-3 indicates that the discharge is ob­
structed at this pd. Minimum breakdown voltage is desirable from the 
standpoint of the power supply applications in which the tube is used, but 
since the sustaining voltage of an obstructed discharge is thought to be less 
stable on a long-term basis, a somewhat larger pd is used.

The cathode area of the tube is 0.46 cm, and the normal glow discharge 
covers the cathode at a current of 8 milliamps. The parameter J/p2 is 
therefore 17 microamps/cm2 X (mm of Hg)2. Using this value of J /p2 and 
assuming 7' = 0.12, the quantity pdc can be calculated from Equations 
(15.1-11) and (15.1-12). It is found that pdc = 0.45 mm of Hg X cm. 
Since pd = 1.6 mm of Hg X cm, the cathode-fall region of the discharge 
extends about 0.3 of the way from the cathode to the anode.

Tubes of the 423C type are found to drift less than a volt in sustaining 
voltage in a year of continuous operation. Part of this stability is achieved 
through careful processing to ensure that the electrodes are particularly 
clean and hence that 7 remains constant throughout the life of the device. 
The processing includes heating the electrodes inductively with rf to bright 
red temperatures while the tubes are being pumped. This cleans the elec­
trode surfaces and drives contaminant gas from the interior of the metal. 
After pumping is completed, the tubes are filled with the argon-krypton 85 
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mixture and sealed off. They are then subjected to operation at relatively 
high currents including pulsed operation at currents of the order of several 
amperes. This processing, known as aging, causes molybdenum to be 
sputtered from the surface of the cathode onto the anode and the surround­
ing walls, leaving the cathode particularly clean. The sputtering results 
from positive ions striking the cathode and imparting their kinetic energy to 
molybdenum atoms or groups of atoms at the surface. The high current 
densities at which the tubes are aged (and which place the discharge far
into the abnormal-glow region) are

Fig. 15.2-2 The 427A voltage regulator 
tube. The overall height of the tube is 

5.5 cm.

found to increase the sputtering rate 
greatly. At normal operating cur­
rents of 4 to 8 ma, the cathode 
sputtering is very slight.

The 423C is capable of almost in­
definite life, since at normal operat­
ing currents there is nothing which 
“wears out” in the tube.

The 427A

Figure 15.2-2 shows the construc­
tion of the 427A voltage regulator 
tube. The electrodes are molybde­
num and the gas filling is a mixture 
of argon and a small amount of 
krypton 85 at a pressure of 21 mm of 
Hg. The electrode configuration 
shown in the figure gives electrical 
characteristics which are similar to 
those of devices with planar, parallel 
electrodes. By folding the cathode 
around the anode, a relatively large 
cathode area can be enclosed in a 
relatively small envelope. Like the 
423C, the outside of the cathode is 
coated with a material which re­

stricts the glow to the inner surface of the cathode.
Important electrical characteristics of the tube are shown in Table 15.2-2.

Table 15.2-2 WE 427A Operating Characteristics

Typical Values
Main-anode breakdown voltage, volts............................................165

Main-anode sustaining voltage, volts.............................................. 100
Starter-anode breakdown voltage, volts.......................................125

Recommended operating current, ma..............................................5 to 40 
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The product pd for the main-anode gap is equal to 3.0 mm of Hg X cm.
The tube is processed in a manner similar to the 423C, and its main-anode 

sustaining voltage is almost as stable as that of the 423C. Like the 423C it 
is capable of almost indefinite life.

A typical circuit in which the tube might be used is illustrated in Figure 
15.2-3. As the load increases, the current drawn by the 427A decreases. If 
the current drawn by the 427A falls in the range from 5 to 40 ma, the sus­
taining voltage of the tube is very nearly constant, and the voltage drop 
across the load remains nearly constant.

Fig. 15.2-3 A circuit in which the 427A is employed as voltage regulator.

The supply voltage V, in Figure 15.2-3 must at least equal the starter­
anode breakdown voltage if conduction is to take place when the switch <8 
is closed. If V, is greater than the starter-anode breakdown voltage, closing 
the switch initiates a discharge between the starter anode and the main 
cathode. If the current of this discharge is greater than about a tenth of a 
milliampere, the discharge transfers immediately to the main anode. For 
smaller starter currents, transfer of the discharge to the main anode depends 
on the applied anode voltage.

The 426A

The construction of the 426A switching triode is illustrated in Figure 
15.2-4. The tube is used in an application which requires a low sustaining 
voltage and a high main-anode breakdown voltage. The stability of the 
sustaining voltage is not at all critical, and the total life of the tube does not 
need to be more than 100 hours at a current of 30 ma. Two features of the 
design contribute toward a low sustaining voltage:

1. The cathode consists of nickel sheet coated with a mixture of barium 
and strontium oxides. This gives a low work function and a high y.

2. The gas filling is a neon-argon mixture consisting of approximately 
95 per cent neon and 5 per cent argon. The neon-argon mixture gives a 
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high 77 because neon metastables ionize argon molecules. (The gas pressure 
is 40 mm of Hg. A very small amount of krypton 85 is added to the filling 
gas as a radioactive keep-alive.)

High main-anode breakdown voltage is obtained by locating the anode 
far from the cathode. This in turn leads to oscillations in the discharge, but 

Fig. 15.2-4 The 426A switching triode.
The overall height of the tube is 4.4 cm.

Fig. 15.2-5 Expected life of the 426A 
in hours as a function of the cathode 

current.

the oscillations are not a concern in the applications in which the tube 
is used.

Principal electrical characteristics of the 426A are shown in Table 15.2-3.

Table 15.2-3 WE 426A Operating Characteristics

Typical Values
Main-anode breakdown voltage, volts....................................... > 180

Main-anode sustaining voltage, volts.............................................. 69
Starter-anode sustaining voltage, volts...................................... 72

Operating current, ma..................................................................................... 30
Ionization time, starter gap, milliseconds.................................. 10 
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The starter-gap ionization time is measured with an applied voltage which 
exceeds the starter-gap breakdown voltage by 15 volts.

The life of cold-cathode tubes with oxide-coated cathodes is found to 
decrease rapidly with increasing current because of a corresponding increase 
in the sputtering of the cathode coating. When most of the oxide coating is 
sputtered away, the sustaining voltage starts to rise. End-of-life of tubes of 
this type is frequently measured in terms of a rise in sustaining voltage 
above a preselected value. Figure 15.2-5 shows how the expected life of the 
426A varies with current. The cathode is covered with glow at about 10 
milliamps.

15.3 The Hollow-Cathode Discharge and the Stepping Tube

If a cold-cathode device is constructed in which the cathode has a re­
entrant or “hollow” part, a quite different form of glow discharge can some­
times be obtained. The phenomenon is known as the hollow-cathode dis­
charge. Figure 15.3-1 shows several possible forms of hollow-cathode. The

rzzzzzzzzzzi

effect can be obtained with a U-shaped cathode, two parallel planar cath­
odes, a cylinder, or a spherical cavity. In order to obtain the hollow­
cathode discharge, the product of the filling pressure p and the distance a 
across the hollow must be such that electrons leaving opposite inner sides of 
the hollow enter a common negative-glow region in the central portion of 
the hollow. In the case of a neon-molybdenum device with two parallel, 
planar cathodes, a is taken to be the distance between the cathodes, and the 



562 PRINCIPLES OF ELECTRON TUBES

product pa must be less than about 10 mm of Hg X cm and greater than 
some lower Umit, which probably is less than 1 mm of Hg X cm.

Characteristics of the hollow-cathode discharge are:

1. Except at very low discharge currents, the sustaining voltage of the 
hollow-cathode discharge is lower, for a given discharge current, than the 
sustaining voltage of a device with a planar cathode having the same surface 
area as the hollow cathode. This means that when the discharge is first 
initiated, the current emission and glow build up on the inside of the hollow, 
drawing the anode voltage below the sustaining voltage for a discharge on the 
outside of the cathode. Consequently, over a wide range of discharge 
currents, very little glow is observed on the outside. (However, if the dis­
charge current is increased sufficiently, the glow eventually spreads to the 
outside of the hollow.)

2. Depending on the filling pressure and the dimensions of the cathode, 
the current needed to cover the inner sides of two parallel planar cathodes 
with glow is sometimes as much as several hundred times that needed to 
cover an equal area of a planar cathode. The same applies to devices with 
U-shaped cathodes or cylindrical cathodes.

The mechanisms responsible for the anomalous behavior of the hollow­
cathode discharge are not well understood at present, and we shall not at­
tempt an explanation of them.

Fig. 15.3-2 (--------- ) Anode voltage vs. anode current curve for a device with a hollow
cathode of the type shown in Figure 15.3-1 (d). (--------- ) Anode voltage vs. anode
current curve for a device with planar, parallel electrodes. Both tubes have molyb­

denum cathodes and neon fillings.
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In Fig. 15.3-2 the solid curve shows a plot of sustaining voltage vs. dis­
charge current measured for a cathode of the type shown in Figure 15.3-1 (d) 
The cavity diameter was 0.75 mm, and the tube was filled with neon to a 
pressure of 98 mm of Hg. The product of pressure and diameter was there­
fore close to 7.5 mm of Hg X cm, and the area of the inside of the cavity 
was close to 0.017 cm2. A planar cathode of equal area would be covered 
with glow at a current of about 0.8 milliamp at the same filling pressure.

The broken curve in the Fig. 15.3-2 shows a plot of the sustaining voltage 
vs. discharge current measured for a neon-molybdenum device with a planar 
cathode of area 0.45 cm2, a planar, parallel anode, and a filling pressure of 
60 mm of Hg. The cathode was covered with glow at about 8 ma. (The 
product pd for the device was 7.5 mm of Hg X cm, where d is the anode-to- 
cathode spacing.) The back of the cathode was coated with a material of 
lower 7 than that of molybdenum so that the glow would remain only on the 
face toward the anode. The higher sustaining voltage of the cavity cathode 
at very low currents can probably be attributed to the constriction of the 
discharge by the small opening to the cavity.

Fig. 15.3-3 The construction of the 439A stepping tube. The overall height of the 
tube is 5.6 cm.
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The hollow-cathode effect is used in the 439A counting or stepping tube 
illustrated in Fig. 15.3-3. The tube has 20 cathodes arranged in a ring 
around a common disc-shaped anode. Alternate cathodes, called output 
cathodes, are connected to external leads and identified as Ki, K2,... Au. 
The remaining cathodes are called stepping cathodes and identified as 
Bi, B*,... Bio. The stepping cathodes are joined together internally in two 
groups of five, each group having an external lead. For most circuit appli­
cations the two groups of five are connected together externally.

The tube is operated so that the discharge is normally on one of the K 
cathodes. A negative pulse applied to the stepping cathodes causes a dis­
charge on A! to transfer to B2 during the pulse and to A2 at the end of the 
pulse. A second pulse causes the discharge to transfer to K3, and so on. 
The electrode arrangement permits both electrical and visual counting of the 
pulses. A normal cathode inside the ring of 20 can be used to “zero” the 
position of the discharge before a counting operation. An auxiliary anode 
located under A10 can be used to obtain an output every tenth pulse so that 
several tubes can be used in a “decade counter.” In a three-tube decade 
counter, one tube counts every pulse, a second tube counts every tenth 
pulse, and the third tube counts every hundredth pulse.

The key to the transfer mechanism lies in the shape of the cathodes. 
Each cathode consists of a molybdenum wire wound into a coil forming a 
hollow region with a straight portion of the wire, called a pick-up tab, at the 
upper end. The discharge is normally in the hollow part of the cathode, 
since it is more efficient there, and the sustaining voltage is lower. The 
pick-up tab extends over the end of the hollow part of an adjacent cathode 
and serves as a preference mechanism which causes the discharge to transfer 
in one direction only. The discharge current is usually about 2 ma. (The 
tube is filled with neon to a pressure of 105 mm of Hg.)

Fig. 15.3-4 A number of B and K cathodes arranged in a row.
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Figure 15.3-4 shows a number of B and K cathodes arranged in a row. 
Alternate B cathodes are connected together and serve to step the dis­
charge from one K cathode to another. The discharge is shown to be on Ki 
in the figure, and the pick-up tab of B2 extends into the region of ionization 
of the discharge. The B cathodes are biased 20 volts positively with respect 
to the K cathodes. A negative pulse of —40 volts superimposed on the bias 
voltage makes the voltage difference between B2 and the anode greater than 
the sustaining voltage for a discharge on the pick-up tab of B2. The dis­
charge therefore quickly builds up on the pick-up tab of B2, drawing the 
anode voltage down so that it is less than the sustaining voltage for the dis­
charge on Ki. The glow on KY therefore extinguishes. Transfer of the dis­
charge to the pick-up tab of B2 is rapidly followed by a buildup of current in 
the hollow of B2, since the sustaining voltage of the discharge in the hollow 
is less than on the pick-up tab. This causes the anode voltage to fall still 
further, and the glow on the tab extinguishes.

Thus the negative pulse applied to the B cathodes causes the glow to 
transfer from the hollow part of Ki to the hollow part of B2. Removal of the 
pulse makes the B cathodes more positive than the K cathodes and causes 
the glow to transfer from the hollow of B2 to the hollow of K2. Successive 
pulses applied to the B cathodes cause the discharge to advance one more K 
cathode to the left for each pulse.

By applying a sufficiently large negative pulse to the normal cathode, the 
discharge can be transferred from any of the K cathodes to the normal 
cathode, since the anode voltage falls to a value insufficient to maintain a 
discharge on any of the other cathodes. The stepping cathode Bi has two 
pick-up tabs which enable it to transfer the discharge to Ki from either the 
normal cathode or Kw.

In most circuit applications the auxiliary anode is connected through a 
series resistance to the anode supply. Because the auxiliary anode is 
shielded from all cathodes except Kw, it draws current only when the dis­
charge is on Km. When the glow transfers to Kw, the auxiliary anode po­
tential falls giving a negative output pulse which can be used to drive a 
second stepping tube. Positive output pulses can be obtained from any of 
the K cathodes by placing a resistance of suitable size in series with the 
cathode load.

With suitable external circuitry the 439A can be used to count pulses at 
repetition rates as high as five kilocycles.
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Chapter 16

HOT-CATHODE TUBES

In the normal glow discharge described in the previous chapter the 
current of discharge products striking the cathode amounts to several ions, 
metastables, and photons per electron released from the cathode. This 
relatively large ratio of incident discharge products to emitted electrons is 
made necessary by the low efficiency of the y and photoelectric emission 
processes. Since the discharge is self-sustaining, the emitted electrons must 
gain sufficient energy to generate the current of discharge products striking 
the cathode, and consequently the voltage drop in the cathode-fall region 
must be at least several times the ionization potential of the gas.

If a thermonically emitting cathode is used in place of the cold cathode, 
and if the thermionic emission current is at least equal to the current flowing 
in the external circuit, the voltage drop across the tube is much smaller, in 
many cases less than the ionization potential of the gas. Hot-cathode tubes 
filled with mercury vapor often conduct currents of several amperes at a 
voltage drop of 6 to 9 volts, despite the fact that the ionization potential of 
mercury is 10.4 volts.

The high-current, low-voltage properties of the hot-cathode discharge 
make possible the design of hot-cathode rectifier tubes for use in high- 
voltage power supplies, the power losses in the tubes being small compared 
with the power delivered to the load. The hot-cathode discharge is also 
used in some switching tubes where a low anode-to-cathode voltage drop is 
desirable. Both rectifier and switching tubes usually show a nearly constant 
voltage drop as the current is varied from a relatively small value up to the 
cathode thermionic emission current At higher currents the anode-to- 
cathode voltage rises.

In the conducting state most of the interelectrode space of a hot-cathode 
gas tube is filled with a plasma in which the ion and electron densities are 
approximately equal, and in which potential gradients are small. Often 

567
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the potential gradient in the direction from the cathode to the anode is of 
the order of a few tenths of a volt per centimeter. Between the plasma and 
the cathode there is a region of nonuniform charge, called a sheath, in which 
a voltage drop of several volts takes place. Hot-cathode tubes are generally 
operated with the cathode current space-charge-limited so that there is a 
small potential minimum just outside the cathode. Ions flow from the 
plasma toward the cathode, and electrons drawn from the potential min­
imum flow toward the plasma. Often the electron current in the cathode 
sheath is several hundred times the ion current.

Sheaths also form between the plasma and the walls of the tube and 
between the plasma and the anode. The walls are at a negative potential 
with respect to the plasma, while there is often a small rise in potential in 
going from the plasma to the anode.

The cathode of a hot-cathode rectifier or switching tube frequently con­
sists of a nickel ribbon or mesh coated with barium and strontium oxides or 
other emissive material. The cathode is heated by passing a current 
through it. Other tubes have indirectly heated, oxide-coated nickel 
cathodes. Because power must be supplied to heat the cathode and hence 
to maintain the discharge, the discharge is not self-sustaining.

Generally quite low filling pressures are used, in some cases a few tenths 
of a millimeter of Hg, but often as small as a few thousandths of a millimeter 
of Hg. The use of low filling pressures serves two purposes. It reduces the 
cooling of the cathode by the gas, and it makes the product of the pressure 
and the maximum distance between the electrodes much smaller than that 
which gives minimum breakdown voltage. As a result, relatively high in­
verse voltages (anode negative with respect to the cathode) can be applied 
without cold-cathode breakdown occurring. This is particularly desirable in 
high-voltage rectifier applications where the anode may be several thousand 
volts negative with respect to the cathode during part of the ac cycle. The 
gas fillings are usually noble gases, or mercury vapor in equilibrium with 
liquid mercury, or a combination of the two. In some special-purpose tubes 
hydrogen is used. However, gases with diatomic or polyatomic molecules 
lead to much higher voltage drops and consequently are not generally em­
ployed.

In all gas tubes there is a tendency for the discharge to cause a small 
amount of the filling gas to become embedded or entrapped in the electrodes 
and walls of the tube. This gas “cleanup” is thought to result from ions 
impinging on the inner surfaces of the tube where they become entrapped 
by material sputtered from the cathode. In cold-cathode tubes where the 
filling pressure is relatively high, gas cleanup is seldom of importance 
since the fractional loss of pressure is usually quite small. However, in hot- 
cathode tubes the fractional loss of pressure during the life of the tube can 
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be appreciable because of the much smaller initial filling pressure. Tubes 
filled with noble gases at too low an initial filling pressure are likely to fail 
during operation life because of gas cleanup.

The use of mercury vapor in equilibrium with liquid mercury to provide 
the filling gas has the advantage that gas cleanup merely results in some of 
the condensed mercury being converted to vapor without any change in 
pressure. The mercury condenses on the coolest part of the tube, and the 
temperature of the condensed mercury serves to determine the pressure of 
the vapor in equilibrium with the liquid. Generally the mercury vapor 
pressure lies between 10-3 and 10-1 mm of Hg.

Most of the visible light from the discharge comes from the plasma. If a 
tube is constructed with a large electrode spacing, and the tube geometry 
is such that the plasma region is long and narrow, as in the case of the fluo­
rescent lamp, the plasma is said to be a positive column. The light radi­
ation from the positive column is used for illumination purposes in several 
large classes of tubes, including fluorescent lamps and mercury-vapor lamps. 
The cathodes of these tubes are heated by ions incident upon the cathode 
and are said to be ionically heated cathodes. The discharge in this case is a 
self-sustaining discharge, since no additional power is expended to maintain 
conduction.

In the first part of this chapter we shall describe the hot-cathode dis-

Fig. 16.1-1 Mercury-vapor pressure vs. condensed mercury temperature.
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charge in mercury vapor. Later we shall discuss a number of specific types 
of hot-cathode devices.

16.1 The Hot-Cathode Discharge in Mercury Vapor; Plasmas and 
Sheaths

The hot-cathode discharge in mercury vapor and in other gases is dis­
cussed in references 16.1 to 16.11 listed at the end of this chapter.

Like the noble gases, the molecules of mercury vapor are single atoms. 
Their effective diameter for collision is not far from that of neon or argon 
molecules, but their mass is about 10 times that of the neon molecule.

Figure 16.1-1 shows the variation of mercury-vapor pressure as a function 
of the temperature of the condensed mercury. Many hot-cathode, mercury- 
vapor tubes are rated for condensed mercury temperatures falling in a range 

Fig. 16.1-2 The quantity Pc plotted as 
a function of the square root of electron 

energy for electrons in mercury vapor. 

(From R. B. Brode, Revs. Modern 
Phys. 5, 257, 1933)

between 20°C and 80°C correspond­
ing to vapor pressures of approxi­
mately 10-3 to 10“1 mm of Hg. If 
the condensed mercury temperature 
falls below 20°C, the voltage drop 
across the tube rises because colli­
sions between plasma electrons and 
gas molecules become too infrequent. 
At condensed mercury temperatures 
appreciably greater than 80°C, the 
inverse breakdown voltage may fall 
below the tube rating, since the in­
verse breakdown voltage decreases 
rapidly with increasing vapor pres­
sure.

Figure 16.1-2 shows the collision 
probability Pc for electrons in mer­
cury vapor as a function of the 
square root of the electron energy.1 
The figure is similar to Fig. 14.3-2. 
The electron mean free path is given 
by L = l/pP, cm where p is the 
vapor pressure in millimeters of Hg. 
At a pressure of 10-2 mm of Hg, the 
mean free path of a 10-electron-volt 

electron in mercury vapor is approximately 1.4 cm, and the mean free path 
of a 2-electron-volt electron is approximately 0.4 cm.

Figure 16.1-3 shows a schematic illustration of a hot-cathode tube with a
'Reference 16.12.
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Fig. 16.1-3 A hot-cathode discharge tube with planar electrodes.

planar oxide-coated cathode and a planar anode. A plot of the potential 
along a line running from cathode to anode is also shown in the figure. 
Close to the cathode there is a potential minimum, the current drawn from 
the cathode being space-charge-limited. Just beyond the potential mini­
mum the potential rises steeply, accounting for much of the potential differ­
ence between the electrodes. The remainder of the interelectrode space, 
except for thin sheaths close to the anode and glass walls, is filled with a 
plasma in which the ion and electron densities are approximately equal. If 
the length of the tube were increased, the voltage drops close to the cathode 
and anode would remain essentially unchanged, but the positive column 
would become longer, and the same potential gradient would continue over 
its full length. Tubes used in rectifier and switching applications usually 
have relatively small electrode spacings so that the voltage drop in the 
plasma will be small.

It will be convenient to describe the plasma and sheaths under separate 
headings below. Our objective will be twofold: (1) To present orders of 
magnitude for the principal physical quantities involved, and (2) to make 
plausible the current-voltage relationship of the hot-cathode discharge.

(a) The Plasma

If a voltage well below the ionization potential of the gas is applied to a 
device such as that shown in Figure 16.1-3, only a very small current is 
drawn from the cathode and practically no ionization takes place. How­
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ever, if the applied voltage is raised somewhat above the ionization poten­
tial of the gas, the rate of generation of ions increases rapidly. Both the ions 
and electrons tend to diffuse in the direction perpendicular to the axis of the 
tube, but because the electrons are very much faster, the walls become 
negatively charged, and an excess positive charge accumulates in the in­
terior of the tube. Electrons are drawn toward the region of excess positive 
charge with the result that the plasma is formed. Once the plasma is es­
tablished, the voltage drop of the tube generally falls below the value 
needed to initiate the discharge. Since the walls are insulating, the electron 
current striking the walls in the steady-state condition equals the ion 
current.

The approximate uniformity of potential within the plasma can be at­
tributed to the much greater mobility of the electrons compared with that 
of the ions. The electrons are drawn toward a region in which the potential 
is maximum, and they flow away from a potential minimum. The net result 
is that potential gradients within the plasma are small, and the density of 
ions and electrons is very nearly equal. The electrons are almost entirely 
responsible for conduction through the plasma, the drift velocity of the ions 
being extremely small compared with that of the electrons. The fact that 
the potential gradients in the direction of conduction are small means that 
the plasma is effectively a good conductor.

The electrons cross and recross the plasma many times, experiencing 
frequent collisions with neutral molecules, ions, and other electrons. Be­
cause the potential falls away at the edge of the plasma, the electrons, for 
the most part, are reflected back toward the plasma by the sheaths. Meas­
urements of the distribution of electron velocities in the plasma indicate 
that it is very nearly a Maxwell-Boltzmann distribution. The random nature 
of the electron velocities is thought to result from interactions between the 
electrons themselves rather than interactions with ions or neutral mole­
cules.2 Two factors are important here:

1. In electron-molecule or electron-ion collisions, the energy exchange is 
extremely small, provided the collisions are elastic, because of the much 
greater mass of the molecule or ion. However, in electron-electron inter­
actions, an appreciable energy transfer can take place since the masses of 
the colliding particles are equal.

2. The electron-electron interactions result from interactions of the fields 
of the particles and, hence, are not of a hard-sphere nature like electron­

2 Another mechanism which may contribute to the randomizing of the electron veloc­
ities in low-pressure discharges is discussed in Reference 15.13. The mechanism in­

volves space-charge oscillations in the sheaths.
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molecule or intermolecular collisions. The potential caused by the field of 
an electron at a distance r angstroms from its center is 14A/r volts, so that 
the electron-electron interactions can take place at appreciably larger inter­
particle distances than electron-molecule or intermolecule interactions. 
Consequently the “cross section” for electron-electron collisions is much 
larger than for electron molecule collisions.

The Maxwell-Boltzmann distribution of electron velocities is generally 
characterized by a relatively high temperature, often one to a few tens of 
thousands of degrees Kelvin. Measurements of the electron temperature Te 
for a positive column in mercury vapor are shown in Figures 16.1-4 and

Fig. 16.1-4 The electron density ne, the electron temperature Te, and the axial 

electric field intensity E vs. the discharge current. (From B. Klarfeld, Tech. Phys. 
USSR 5, 913, 1938)

16.1- 5. The average electron kinetic energy is given by d)kTe = T ,/7700 
electron volts. For Te = 15,000°K the average electron kinetic energy is 
about 1.9 electron volts. It is the few very high-energy electrons in the 
Maxwell-Boltzmann distribution that are responsible for the excitation and 
ionization taking place in the plasma. In a mercury vapor discharge at a
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Fig. 16.1-5 The axial electric field intensity E and the electron temperature T „ 
vs. mercury-vapor pressure for a discharge in mercury vapor. (From B. Klarfeld, 

Tech. Phys. USSR 5, 913, 1938)

condensed mercury temperature of 40°C, most of the ionization results from 
two-stage processes in which the molecules are raised to an excited state in a 
first collision and ionized in a second collision.3 The excited states principal­
ly involved are metastable states with excitation energies of 5.46 and 4.66 
electron volts.

Also shown in Figure 16.1-4 are the electron density ne and the potential 
gradient E along the axis of the positive column. The electron density ne is 
an average of the electron density measured on the axis and at the edge of 
the plasma. The ratio of ne to the density of gas molecules is shown in Fig. 
16.1-6. For the discharge conditions indicated in the figure only about one 
molecule in a thousand is ionized.

The ion kinetic energies are much smaller than those of the electrons, the 
average ion kinetic energy being at most a few times the thermal energy of 
the gas molecules. Interactions with other ions and neutral molecules lead 
to a randomizing of the ion velocities and an approximately Maxwell- 
Boltzmann distribution of velocities.

Ions reaching the edges of the plasma are drawn into the sheath and ac­
celerated toward the walls of the tube, causing a depletion of the ion density 
toward the edge of the plasma. As a result, the potential along the axis of

’References 16.5 and 16.6.
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MERCURY VAPOR PRESSURE IN MM OF Hg

Fig. 16.1-6 The electron density ne and the ratio of n, to the density of gas mole­

cules n0 as a function of mercury-vapor pressure. (From B. Klarfeld, Tech,. Phys. 
USSR 5, 913, 1938)

the positive column of a device like that shown in Figure 16.1-3 is likely 
to be several volts higher than at the edges of the plasma, and the radial 
electric field tends to accelerate the ions toward the sheaths.

It is convenient to regard the plasma ions as being characterized by an 
average lifetime equal to the average time spent by the ions within the 
plasma. Over a range of filling pressures p and positive-column radii R, the 
average ion lifetime is a function of the product pR, since constant pR 
means a constant number of mean free paths from the tube axis to the tube 
walls. High filling pressures and large radii are associated with long life­
times, whereas low filling pressures and small radii lead to short lifetimes. 
To a first approximation the average lifetime depends only on the product 
pR and is independent of the ion density or the current conducted along the 
positive column. The metastable molecules generated by the discharge are 
similarly characterized by an average lifetime.

The concept of an average ion lifetime is helpful in describing the balance 
of events taking place in the plasma:

1. The electron and ion currents to the walls are equal, and the rate of 
generation of ion-electron pairs per unit length of the positive column 
equals the current of electrons or ions striking unit length of the glass walls.

2. Since the ion and electron densities are approximately equal, each 
plasma electron must on the average generate one ion-electron pair once
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Fig. 16.1-7 E/p vs. pR for a discharge in mercury vapor. (From B. Klarfeld, 

Tech. Phys. USSR 5, 913, 1938)

every average ion lifetime in order to maintain the supply of ions in the 
plasma.

In the steady-state condition the electric field intensity E parallel to the 
axis of the positive column becomes that value which enables the electrons 
to gain sufficient energy to meet Condition 2 above. The average electron 
kinetic energy is, of course, a function of E/p rather than E alone. Figures

Fig. 16.1-8 The electron temperature Te vs. pR for a discharge in mercury vapor. 

(From B. Klarfeld, Tech. Phys. USSR 5, 913, 1938)
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16.1 -7 and 16.1-8 show plots of E/p and T, vs. pR for a positive column in 
mercury vapor. As pR increases, corresponding to longer lifetimes, both Te 
and E/p decrease.

The electron drift velocity parallel to the axis of the tube, ue, is also deter­
mined by E/p and, hence, by Condition 2 above. If the ion lifetimes are 
short, E/p is large, and u, is large. If A is the cross-sectional area of the 
positive column, and n, is the average electron density over the area A, 
the total current conducted by the positive column can be approximately 
expressed as

la = | neu,Ae | (16.1-1)

where e is the charge on the electron, and where the drift velocity of the 
ions parallel to the axis of the tube is assumed to be small compared with 
ue. To the extent that E, and hence E/p, are independent of Ia, u, does 
not change with Ia, and the electron density ne is directly proportional to Ia, 
as is evident from Figure 16.1-4. Since the ion density is nearly equal to 
n, and since the average ion lifetime is to a first approximation independent 
of Ia, the rale of generation of ion-electron pairs per unit volume also increases 
linearly with la- We shall make use of this result later when we discuss the 
nature of the current-voltage relationship for the discharge.

(Actually both E and T, decrease slightly with increasing Ia [Figure 
16.1-4] because the frequency of two-stage ionizing events tends to increase 
in proportion to the product of n, and the density of excited atoms.)

The product of E and Ia can be equated to the sum of the power radiated 
as light energy per unit length of the positive column and the power ex­
pended per unit length as heat energy.

As a final point we shall use Equations (14.1-4) and (16.1-1) to deter­
mine the ratio of the average electron velocity UaVg to the electron drift 
velocity ue for the discharge conditions indicated in Figure 16.1-4. From 
the data given in the figure, A is equal to (x/4) X (3.2)2 = 8 cm2, and 
la/n, = (f) X 10-11 amp cm’/electron. From Equation (16.1-1) we 
find that u, = 1.04 X 107cm/sec. The average electron velocity character­
istic of the Maxwell-Boltzmann distribution can be obtained from equation 
(14.1-4). If Te = 15,000°K, Uavg = 7.6 X 107 cm/sec, or 7.3 times the 
electron drift velocity.

(6) The Sheaths

In considering the nature of the sheaths it . will first be convenient to 
imagine that a planar conducting probe is inserted part way into a plasma. 
If the probe is held at a negative potential with respect to the plasma, it 
becomes surrounded by a thin layer of ions that are drawn from the plasma 
and accelerated toward the probe. Upon striking the probe, the ions lose 
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their charge and become unexcited molecules. The thickness of the sheath 
adjusts itself to account for the potential difference between the probe and 
plasma. Field lines extend from ions in the sheath to negative charges on 
the surface of the probe, and the integral of the electric field intensity from 
the probe to the plasma accounts for the potential drop in the sheath. If 
the discharge conducts a large current, the rate of arrival of ions at the 
edge of the plasma is large, and the electric field intensity in the sheath is 
large. The thickness of the sheath is therefore small. If the discharge 
current is reduced or if the potential difference between the probe and 
plasma is increased, the sheath thickness increases. In the case of a probe 
in a mercury vapor plasma, the sheath thickness is a small fraction of a 
millimeter except at very small discharge currents or high sheath voltages 
(» 10 volts).

PROBE POTENTIAL RELATIVE TO PLASMA POTENTIAL—»

Fig. 16.1-9 Current to a probe in a plasma vs. potential of probe relative to that 
of the plasma.

Figure 16.1-9 shows qualitatively a plot of current to a probe in a plasma 
as a function of the probe potential relative to that of the plasma. At high 
negative probe potentials, the current to the probe is almost independent of 
the probe potential and equals the ion current drawn into the sheath. 
However, as the probe potential is made more positive, some of the high- 
energy electrons reaching the edge of the plasma are able to overcome the 
retarding field in the sheath and strike the probe. If the electrons have a
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Maxwell-Boltzmann distribution of velocities and if the electron mean 
free path is large compared with the sheath thickness, the fraction of elec­
trons able to overcome a potential V is t~eVikT', where Te is the electron 
temperature. The current of elec­
trons reaching the probe can there­
fore be expressed as

Iep = (16.1-2)

where Ie is the electron current 
reaching the edge of the sheath in 
front of the probe, and V is the volt­
age drop in the sheath. A plot of the 
electron current to a probe as a func­
tion of the probe voltage is shown in 
Figure 16.1-10. The linear part of 
the curve can be expressed as

lnAP = «-A (16.1-3)
1 .z

where V is in volts, and where V is 
taken to be the potential rise from the 
probe to the plasma. The tempera­
ture of the plasma electrons is there­
fore 1.2(e/k) = 1.2 X 11,600 = 13,- 
900°K. When the probe potential 
equals or exceeds the plasma poten­

Fig. 16.1-10 Measurements of electron 
current to a probe in a mercury-vapor 
plasma vs. probe potential. (From B. 

Klarfeld, Tech. Phys. USSR 4, 44, 1937)

tial, all the electrons reaching the edge of the plasma in front of the probe 
are drawn to the probe, and the curve of Iep vs. V bends to the right.

The ion current drawn to a probe biased negatively with respect to a 
plasma has been studied analytically by Allen, Boyd, and Reynolds.4 
Curves given in their paper show the potential distribution within the 
sheath and near the edge of the plasma.

When a mercury-vapor discharge is established in a device like that 
shown in Figure 16.1-3, the voltage drop in the sheath between the plasma 
and the glass walls is of the order of 8 volts.6 This sheath voltage serves to 
reduce the current of electrons reaching the walls to a value equal to the 
ion current.

Between the plasma and the anode of the tube shown in Figure 16.1-3 
there is probably a small rise in potential. Ions generated in the sheath

•Reference 16.14.
‘Reference 16.11. 
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flow toward the positive column and serve to match boundary conditions 
with respect to ion flow at the anode end of the positive column. (Within 
the positive column the ion drift velocity has a component parallel to the 
axis of the tube and directed toward the cathode. There is therefore 
effectively a flow of ions along the positive column in the direction of the 
cathode. Ions generated in the anode sheath serve to match this flow.) 
If the anode is made very small, the voltage rise in the anode sheath may 
be appreciable, and a region of more intense glow surrounds the anode. 
In other tubes in which a cylindrical anode surrounds a cylindrical hot 
cathode, the electron current reaching the edge of the plasma in front of the 
anode may exceed the current flowing in the external circuit, in which case 
there is probably a small fall in potential in going from the plasma to the 
anode.

Because the work function of the anode is usually a few volts greater 
than that of the cathode, the anode-to-cathode voltage drop of a hot- 
cathode tube as measured in the external circuit is a few volts greater 
than it would be if the electrodes were of the same work function.

The cathode sheath represented by the region AB in Figure 16.1-3 
is sometimes called a double sheath. Electrons flow from A toward B, and 
ions flow in the opposite direction. Electrons also enter the sheath from 
the plasma but for the most part are reflected back to the plasma. Field 
lines extend from ions in the B side of the sheath to electrons in the A side. 
Since the electric field intensity at A and B is very nearly zero, there is 
approximately one ion in the sheath for every electron.

Now the velocity of an electron or ion of given kinetic energy is inversely 
proportional to the square root of the mass of the particle. Consequently, 
if the potential in the sheath were symmetrical about the midpoint between 
A and B, the ratio of the time required for an ion to travel from B to A to 
the time required for an electron to travel from A to B would be (mi/m,)112, 
where mi is the ion mass, me is the electron mass, and where it is assumed 
that the particles start with zero velocity and experience no collisions on the 
way. For mercury ions, this ratio is 604. Consequently, the electron 
current flowing from A to B in a mercury discharge is probably several 
hundred times the ion current flowing from B to A.

The voltage drop in the cathode sheath is such as to assure, that the 
electrons arriving at the plasma from A will have sufficient energy to generate 
the ions needed to make up for ion losses from the cathode end of the 
positive column. If the electron and ion currents in the cathode sheath 
are denoted by Ie and Iv, respectively, then Ie + Ip = I a- Since I,/!, is 
to a first approximation determined by factors other than the discharge 
current la, both Ie and Ip are directly proportional to la. And since the 
ionization taking place in the plasma is directly proportional to Ia, the current 
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Ip of ions arriving at the cathode end of the positive column is proportional to 
Ia, and the voltage drop in the cathode sheath does not change with Ia. Be­
cause the voltage drop in the plasma also shows little change with Ia, the voltage 
drop in mercury-vapor rectifier tubes is nearly independent of current up to 
a current equal to the cathode thermionic emission current. At higher currents 
the anode-to-cathode voltage rises.

The thickness of the cathode sheath varies with the discharge current 
Ia and is such as to assure that the necessary electron current is drawn from 
the potential minimum at A. When Ia is large, the electric field intensity 
at the midpoint between A and B is large, and the sheath thickness is small.

16.2 Three Examples of Hot-Cathode Tubes

In this section we shall describe three hot-cathode tubes, two used in 
rectifier applications and one used as a switching element. The first is the 
249B, a two-electrode mercury-vapor tube used in high-voltage rectifier 
applications. The second is the 393A, a three-electrode tube filled with 
both mercury vapor and argon and used as a rectifier in regulated power 
supplies. The third is the 2D21, a four-electrode tube filled with xenon and 
used as a switching element.

The 249B

Figure 16.2-1 illustrates the construction of the 249B. The cathode con­
sists of a nickel mesh filament coated with barium and strontium oxides. 
The filament is surrounded by a nickel heat shield which helps to reduce the 
power needed to heat the filament and which is connected electrically to 
the center of the filament. During conduction a thin sheath forms between 
the heat shield and the plasma, with the result that the heat shield has 
little effect on conduction through the plasma. The anode consists of a 
nickel disc on which carbon has been deposited to increase heat radiation.

During assembly of the tube a small glass pellet containing liquid 
mercury is attached to the lower part of the cathode supporting structure 
by means of a nickel mesh which completely encloses the pellet and which 
is welded to the cathode supporting structure. Ater the tube has been 
pumped and before it is sealed off from the pump station, the nickel mesh is 
heated with rf causing the glass pellet to soften and admit liquid mercury 
to the inside of the tube. The nickel mesh serves to retain the ruptured 
glass pellet.

Principal electrical characteristics and ratings for the tube are shown 
in Table 16.2-1. The filaments of hot-cathode tubes are designed to operate 
at low voltages so that the voltage drop from end to end of the filament 
will be small compared with the anode voltage drop. The condensed mer-
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Fig. 16.2-1 The construction of the 249B diode rectifier tube. The overall height 
of the tube is 19.4 cm.

cury temperature is assumed to be the temperature of the lowest part of 
the glass envelope, just above the base.

Figure 16.2-2 shows a plot of anode voltage drop vs., anode current for a 
particular 249B. The plot shows a nearly constant anode voltage drop over 
a wide range of currents, as would be expected from our earlier discussion. 
The curve should be compared with the Ia-Va curve for a space-charge- 
limited vacuum diode in which Ia a Vaw.

Figure 16.2-3 shows a plot of anode voltage drop vs. condensed mercury 
temperature for a particular 249B. Below a condensed mercury tem­
perature of 20° to 25°C, the anode voltage drop rises because collisions 
between the electrons and gas molecules become too infrequent. It has
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Fig. 16.2-2 Anode voltage drop vs. anode current Ia for a particular 249B.

Table 16.2-1 WE 249B Operating Characteristics

Maximum Ratings 

Peak inverse anode voltage, volts............................... 7500

Peak anode current, amps........................................................ 2.5

Average anode current, amps................................................ 0.64

Condensed mercury temperature, °C..............................+20 to +70

Electrical Data

Anode voltage drop, volts..................................................................... 7 to 11*
Filament voltage, volts ac....................................................................2.5

Filament current, amps ac................................................................... 7.5

’Typical values for new tubes at a condensed mercury temperature of 40°C.

been found that the sputtering of the cathode coating in hot-cathode 
mercury-vapor tubes increases rapidly with increasing anode voltage 
drop above about 25 volts. Consequently, operation for extended periods 
at condensed mercury temperatures below 15° or 20°C leads to greatly 
reduced life.

Other commercially available mercury-vapor diode rectifiers are capable 
of conducting average currents as high as 20 amps.

The 393A

Figure 16.2-4 illustrates the construction of the 393A rectifier tube. 
The tube has a third electrode, called a grid, which serves to control 
initiation of the discharge. Hot-cathode tubes with such a control elec-
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CONDENSED MERCURY TEMPERATURE IN DEGREES CENTIGRADE

Fig. 16.2-3 Anode voltage drop vs. condensed mercury temperature for a 
particular 249B.

trode are called thyratrons. Like the 249B, the cathode is a nickel mesh 
filament coated with barium and strontium oxides, and the anode is a 
carbonized nickel disc. The grid electrode, also made of carbonized nickel, 
very nearly surrounds the cathode. The tube is filled with both argon at 
a pressure of 0.1 mm of Hg and mercury vapor in equilibrium with liquid 
mercury.

If the grid is biased to about —10 volts with respect to the cathode and 
if the anode voltage is then raised from zero to +1000 volts, essentially no 
anode-to-cathode conduction takes place. The negative bias on the grid 
in this case is sufficient to cause electrons emitted from the cathode to be 
returned to the cathode and the breakdown voltage between the anode and 
grid is considerably in excess of 1000 volts. However, if the grid bias is 
gradually reduced with the same applied anode voltage, a point is reached, 
perhaps at a grid bias of — 5 volts, at which a small current of electrons is 
drawn through the slot at the upper end of the grid. The electrons passing 
through the slot enter a region of relatively strong electric field intensity in 
the grid-anode space and are accelerated toward the anode. On the way 
some cause ionization. If sufficient current flows to initiate a plasma, the 
tube quickly transfers to the high conduction state in which the anode 
voltage drop is of the order of 12 volts, and the anode current is limited by 
the resistance in series with the supply voltage. In this second state the 
grid is surrounded by a sheath which accounts for the voltage drop between 
the grid and plasma and which is thin compared with the width of the slot 
in the grid. Increasing the negative voltage applied to the grid in this case 
has little effect on conduction through the tube, except at extremely small 
anode currents.
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Figure 16.2-5 shows a control characteristic measured for a particular 
393A (solid curve) at a condensed mercury temperature of 40°C. Points to 
the left of the curve correspond to operating conditions in which the tube 

Fig. 16.2-4 The construction of the 
393A thyratron. The overall height 

of the tube is 16.8 cm.

Fig. 16.2-5 Control characteristic 
for the 393A.

does not conduct provided the grid bias is1 applied before the anode voltage. 
However, if the grid bias is reduced so that the operating point moves to the 
right and crosses the curve shown in the figure, conduction is initiated at the 
point of crossing. The broken curves in the figure show the published 
limits for the tube. At higher condensed mercury temperatures the control 
characteristic moves to the left, and at lower condensed mercury tempera­
tures it moves to the right. The spread between the two broken curves 
includes variations within the rated condensed mercury temperatures, 
variations during life, and variations from tube to tube.

If the grid potential is raised above that of the plasma, the grid becomes 
an anode, and practically the full current of the discharge is drawn to it. 
The voltage drop of the tube with the grid tied to the anode is often 6 to 9 
volts at a condensed mercury temperature of 40°C. Figure 16.2-6 shows the 
variation of grid current with grid voltage, the grid voltage being measured 
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relative to the cathode potential. In most applications a resistance is 
placed in series with the grid to limit the grid current.

During operation of the tube the grid is heated by radiation from both 
the cathode and anode. Since some of the cathode coating is generally

Fig. 16.2-6 Grid current vs. grid voltage for a 393A.

sputtered onto the grid, sufficient heating of the grid will result in electron 
emission from the grid. Part of the emission current is drawn to the anode 
and, if the current flow is sufficient, the control action of the grid is lost. 
The average current handling capabilities of the tube are therefore limited 
by the need to avoid overheating the grid.

The use of a filling of both argon and mercury vapor permits operation of 
the tube at ambient temperatures as low as — 55°C. If the condensed mer­
cury temperature is below 15° or 20°C when conduction is first initiated, the 
discharge starts off as an argon discharge, the mercury vapor density being 
insufficient to support the discharge. Because the ionization potential of 
argon is higher than that of mercury (15.8 volts compared with 10.4 volts), 
and perhaps because the lifetimes of the lighter argon ions are shorter than 
those of the mercury ions, the anode voltage drop of the argon discharge is 
a few volts higher than that of the mercury discharge, and the electron 
temperature is similarly higher. As conduction continues, heat is dissipated 
in the electrodes and conducted and radiated to the envelope. This causes 
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the condensed mercury temperature to rise and increases the mercury vapor 
pressure. When the condensed mercury temperature reaches 20° or 25°C, 
the mercury vapor density is sufficient to support the discharge, and the 
anode voltage drop falls. Since the electron temperature is lower when the 
mercury discharge is established, very little ionization of the argon mole­
cules takes place. It is found that cleanup of the argon occurs primarily 
while the argon discharge is established, and that it is greatly reduced when 
the mercury discharge takes over.

Principal electrical characteristics and ratings for the 393A are sum­
marized in Table 16.2-2. The condensed mercury temperature limits apply 
only to starting conditions. The tube must be operated in an environment 
which will permit the equilibrium condensed mercury temperature to reach 
at least 20°C, since operation at lower condensed mercury temperatures for 
prolonged periods leads to cleanup of the argon and shortens the life of the 
tube.

Table 16.2-2 WE 393A Operating Characteristics

Maximum Ratings

Peak anode voltage, forward or reverse, volts................ 1250

Peak anode current, amps.................................................................... 6

Average anode current, ampâ............................................................1.5

Average electron current to grid, ma........................................ 10
Condensed mercury temperature, °C..............................—55 to +80

Electrical Data

Anode voltage drop, volts............................................ ...................10 to 14*

Filament voltage, volts ac....................................................................2.5

Filament current, amps ac....................................................................7.0

•Typical values for new tubes when the grid is held at a negative potential with respect 

to the plasma, and when the condensed mercury temperature is 40°C.

The deionization time or recovery time of a thyratron is the time re­
quired for the grid to regain control of the discharge after conduction has 
been stopped by removing the anode voltage. Often several hundred micro­
seconds elapse before the ion and electron densities in the interelectrode 
space become sufficiently small that the grid regains control. The deioniza­
tion time increases with the vapor density, with the discharge current before 
interruption, and with decreasing grid bias. At a condensed mercury tem­
perature of 40°C and an anode current of 1.5 amps, the deionization time of 
the 393A is of the order of a few hundred microseconds.

Other commercially available mercury-vapor thyratrons conduct average 
currents as high as 30 amps. Inverse anode voltages of some mercury-vapor 
thyratrons range as high as 15,000 volts.
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SHIELD 
GRID

Fig. 16.2-7 The construction of the 2D21 shield-grid thyratron. The overall 
height of the tube is 5.4 cm.

The 2D21

Figure 16.2-7 shows the construction of the 2D21 shield-grid thyratron. 
The tube has an indirectly heated cathode, a control grid, an anode, and an 
additional electrode called a shield grid. The shield grid virtually surrounds 
the other electrodes, and baffles in the shield grid serve to separate the re­
maining electrodes from one another. The tube is filled with xenon to a 
pressure of 0.16 mm of Hg.

The use of a shield grid has several advantages:

1. It reduces heat radiation to the control grid from the cathode and 
anode, and it reduces the amount of cathode coating sputtered onto the 
control grid. Grid emission is thus greatly reduced.

2. The shield grid also reduces capacitive coupling between the grid and 
anode. Without the shield grid or other circuit protection, the grid-anode 
capacitance of a thyratron is sometimes sufficient to cause the grid to be 
driven positive by a fluctuation or surge of anode voltage, thereby per­
mitting faulty initiation of the discharge.

3. The shield grid provides an additional means for controlling initiation 
of the discharge. Figure 16.2-8 shows the control characteristic of the tube 
for several values of shield-grid voltage. By making the shield grid a few 
volts positive or negative with respect to the cathode, the control char-
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Fig. 16.2-8 Control characteristic for the 2D21 for several values of shield-grid 
voltage.

acteristic can be moved to the left or right, respectively. The shield grid 
can thus be used to switch the grid control circuit in and out of operation.

The 2D21 is principally used in switching applications. Because the grid 
emission and grid-anode capacitance are both small, the tube can be driven 
by high impedance sources.

Principal electrical characteristics and ratings for the 2D21 are listed in 
Table 16.2-3.

Table 16.2-3 2D21 Operating Characteristics

Maximum Ratings

Peak inverse anode voltage, volts................................................ 1300

Peak anode current, ma..........................................................................500

Average anode current, ma.................................................................100

Ambient temperature, °C............................................................— 75 to +90

Electrical Data

Anode voltage drop, volts...................................................................... 8

Heater voltage, volts ac..........................................................................6.3

Heater current, amp ac............................................................................0.6

16.3 Other Types of Hot-Cathode Tubes
(a) The Tungar

This is a hot-cathode diode frequently used as a half-wave rectifier in 
storage-battery chargers. The tube is filled with argon to a pressure be­
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tween 50 and 100 mm of Hg and has a thoriated tungsten filament. The 
filament operates at about 2200°C, or about 200°C higher than thoriated 
tungsten filaments used in transmitting tubes. The higher filament operat­
ing temperature is made possible by the high argon filling pressure, which 
reduces the rate of evaporation of thorium atoms from the cathode. Tun- 
gars typically conduct average currents of 2 to 15 amps. The filament 
voltage is often 2.0 or 2.5 volts, and the filament current may be as high as 
15 to 25 amps. The high argon pressure leads to relatively low peak inverse 
voltages, of the order of 300 volts.

(b) Hydrogen Thyratrons

A class of hydrogen filled thyratrons has been developed for use in power 
supplies which deliver driving power to magnetrons and klystrons in radar 
applications. The hydrogen thyratron is generally connected in series with 
a pulse transformer across a charged delay line, and the microwave tube is 
connected to the output of the pulse transformer. A positive pulse applied 
to the control grid of the thyratron serves to discharge the delay line 
through the transformer and thyratron. Between periods of conduction the 
delay line is recharged with energy for the next pulse. Pulse currents as 
high as 1 to 3 thousand amps are conducted by some hydrogen thyratrons.

The use of a hydrogen filling leads to shorter deionization times than can 
be obtained with other fillings.6 Deionization times of hydrogen thyratrons 
are typically 2 to 10 microsec with some very high-current tubes ranging as 
high as 50 microsec. The short deionization times permit operation of the 
magnetron or klystron at pulse rates of several kilocycles.

The anode voltage drops of hydrogen thyratrons are much higher than 
those of mercury-vapor or noble-gas filled thyratrons, often between 90 and 
150 volts. The relatively high voltage drops result partly from the short 
lifetimes of the hydrogen ions, and partly from the fact that most of the 
inelastic collisions between plasma electrons and gas molecules result in 
excitation of the vibrational and rotational states of the molecules and in 
disassociation of the molecules rather than excitation of electronic states 
or ionization.

Hydrogen thyratrons almost always have indirectly heated, oxide-coated, 
nickel cathodes. The filling pressure frequently lies between 0.2 and 1.0 mm 
of Hg. Because gas cleanup is appreciable in high-current tubes, the filling 
is often obtained by means of a “hydrogen reservoir” consisting of a

’(1) Because the lighter ion mass leads to shorter ion lifetimes in the decaying plasma 
at the end of a pulse; (2) it is thought that recombination of ions and electrons in the 
decaying plasma may be appreciable; (3) there are no hydrogen metastables. Probably 
(1) is the most important reason.
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quantity of titanium hydride in contact with an auxiliary heater. When 
heated, the titanium hydride evolves hydrogen until the surrounding gas 
reaches an equilibrium pressure at which the rate of evolution of hydrogen 
equals the rate of reabsorption. Higher reservoir temperatures lead to 
higher equilibrium pressures, and when the reservoir heater is turned off, 
the gas filling is reabsorbed, and the tube pumps down to very nearly a 
vacuum.

(c) Tubes with Ionically Heated Cathodes

A number of gas tubes used for illumination purposes have cathodes that 
are heated to thermionic emitting temperatures by the current of ions 
incident upon the cathode rather than by passing a current through the 
cathode. The discharge in this case is in many respects similar to the 
thermionic arc. Familiar examples of tubes using such ionically heated 
cathodes are the fluorescent lamp and mercury-vapor lamps used for street­
lighting. These tubes frequently have two ionically heated cathodes, one 
at either end of a discharge tube, and are operated from an ac supply.

The cathodes consist of a coil of fine tungsten wire coated with oxides 
suitable for thermionic emission and wound on a somewhat heavier tungsten 
support wire. Often the coil is itself wound into a larger coil, and sometimes 
this in turn is coiled once more giving a “triple coil” structure. Usually the 
discharge heats only a portion of the cathode to thermionic emitting tem­
peratures. Sometimes the heated region slowly moves along the cathode, 
and other times it remains stationary. The multiple-coil structure provides 
a large amount of cathode area with closely controlled thermal and electri­
cal resistance to the current carrying support wire. Starting the discharge 
is accomplished by passing a current through the support wire for a short 
period or by applying a sufficiently high voltage between the electrodes 
that the discharge starts as a cold-cathode discharge.

Fluorescent lamps usually contain argon or krypton at a pressure of 
about 3 mm of Hg and mercury vapor in equilibrium with liquid mercury. 
The noble-gas filling aids in starting the discharge and serves to increase the 
lifetimes of ions and metastables once the discharge is established. However 
the noble-gas ions do not otherwise take part in the discharge once it is 
established. The discharge converts as much as 60 per cent of the input 
power to ultraviolet radiation of wavelength 2537 angstroms. Phosphors 
coated on the inside of the bulb serve to transform part of the ultraviolet 
radiation to visible light, hence the term “fluorescent.”

Mercury-vapor lamps generate visible light directly, the efficiency being 
increased by operation at high mercury-vapor pressures, often several 
atmospheres.
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More detailed descriptions of gas-discharge lamps are given in References 
16g, 16h, and 16i.
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Chapter 17

GAS LASERS

A relatively recent development in the field of gas-discharge devices is the 
gas laser. This device generates a highly directional beam of coherent light 
with perhaps a few milliwatts of power and with a line width, or frequency 
stability, which in principle can be made as small as a few cycles per second 
or a few tens of cycles per second. Before the invention of the laser, all 
available light sources, such as incandescent lights, fluorescent lights, and 
gas discharge sources, provided only incoherent light, that is, light in which 
the photons are emitted at random instants of time and with random phase. 
The light generated by the laser is a sinusoidal electromagnetic wave with a 
frequency stability which is determined largely by the dimensional stability 
of the device.

The brightness of a gas laser beam is enormously greater than that of 
non-laser light sources. Thus the sun, which radiates much like a black 
body with a temperature of 6000°K, has a total radiation at all wavelengths 
of about seven kilowatts per square centimeter of its surface. However, if it 
were possible to filter out a narrow band of light one kilocycle wide in the 
region of the spectrum where the sun has its peak output (at a wavelength 
of 4800 angstroms), the total power radiated within this narrow band 
would be only 10-8 watt per square centimeter of the sun’s surface. The 
radiation per unit solid angle in the direction normal to the sun’s surface 
would be 1/x times this power (see Equation (2.4-13)). In contrast, a gas 
laser might generate a beam with a few milliwatts of power in a band which 
in principle could be only a few cycles per second wide. The angular spread 
of the beam can be made less than one minute of arc. The gas laser there­
fore provides an entirely new and powerful tool in the field of optics, and it 
may well find a number of applications in the communications field.

The word “laser” is made up from the first letters of the words light 
amplification by stimulated emission of radiation. Stimulated emission refers 
to an interaction between an excited atom and an electromagnetic field in 

594
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which the excited atom undergoes a transition to a state of lower energy and 
imparts the lost energy to the electromagnetic field. The process is the 
reverse of the more familiar phenomenon of light absorption by matter and, 
in fact, involves precisely the same physical concepts. For stimulated 
emission to occur, the frequency of the electromagnetic wave multiplied by 
Planck’s constant h must equal the energy given up by the excited atom. 
Consider an atom which is excited to a state from which it can decay to a 
lower state by spontaneous emission of a photon hv. If an electromagnetic 
field is established in the region of the atom and if the frequency of the field 
is v, the atom can decay to the lower state either by spontaneous emission 
of a photon hv or by imparting the same amount of energy to the energy 
stored in the electromagnetic field. The latter process is called stimulated 
emission.

Suppose an electromagnetic wave propagates through a gas in which a 
fraction of the atoms are in either of two excited states, one with an energy 
hv above the other and such that atoms in the upper state can decay to the 
lower state by spontaneous emission of a photon hv. The electromagnetic 
field causes some of the atoms in the upper state to decay to the lower state 
by stimulated emission. Similarly atoms in the lower state can absorb an 
amount of energy hv from the electromagnetic field and become excited to 
the higher state. The probability per unit time of an atom in the lower state 
absorbing an amount of energy hv and becoming excited to the higher state is 
equal to the probability per unit time of an atom in the upper state being 
stimulated by the field to undergo a transition to the lower state. This 
probability is proportional to the square of the field intensity of the elec­
tromagnetic wave.

In a noble gas at room temperature essentially all the atoms are in their 
lowest, or ground, state. Excitation to higher states can occur in several 
ways, for example, by establishing a de discharge in the gas, by applying a 
high-frequency rf field of sufficient intensity to maintain a glow discharge 
in the region of the gas, or by irradiating the gas with light of a suitable 
wavelength. Suppose that by one of these mechanisms two excited states 1 
and 2 are populated so that there are densities ni and atoms in these 
states per cubic centimeter of the gas. Suppose further that state 2 is of 
higher excitation energy than state 1, that atoms of state 2 can decay to 
state 1 by spontaneous emission of a photon hv, and that the conditions of 
the discharge are such that1 Th > ni. Then an electromagnetic wave of fre-

•As discussed subsequently in Section 17.1, atoms in a given excited state are charac­
terized by a total angular momentum which may have several possible orientations 
relative to a particular direction of observation. These individual possible orientations 
of the total angular momentum are called magnetic substates. In the absence of a 
magnetic field, all magnetic substates have the same energy, and all are equally popu­

lated. In the above discussion the quantities n, and n, must be taken to be the popula­
tions of the individual magnetic substates of excited states 1 and 2. 
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quency v passing through the gas will cause more atoms per unit volume and 
per unit time in state 2 to decay to state 1 by stimulated emission than it 
will cause atoms in state 1 to absorb hv from the field and become excited to 
state 2. There will therefore be a net addition of energy to the electromagnetic 
wave, and the wave is amplified in passing through the gas.

Suppose next that optical reflecting surfaces are placed at either end of 
the discharge tube. If the surfaces are of such a spacing that there is an 
integral number of half wavelengths at the frequency v between them, a 
standing-wave pattern can be established in which the waves are reflected 
forward and back across the discharge. Such a reflecting system for light 
waves is called a Fabry-Perot interferometer and is the optical equivalent of 
a cavity resonator for microwaves. When a standing wave pattern of wave­
length c/v is established in the region of the discharge, and when n2 > ni, 
energy is added to the electromagnetic wave by the discharge. The power 
level then builds up until the upper state is sufficiently depopulated by the 
electromagnetic wave that an equilibrium is reached between power added 
to the wave by gas discharge and power lost in reflection, diffraction, and 
absorption in the optical system.

Such a system is effectively an oscillator of frequency v and is called a 
laser. If one of the reflectors transmits a small portion of the incident light 
(~1 per cent) rather than totally reflecting it, the transmitted beam is a 
sinusoidal electromagnetic wave of frequency v and of frequency stability 
determined largely by the stability of the optical path length between the 
reflecting surfaces. Gas laser action has been observed to occur in a number 
of gases and between a number of pairs of excited states of these gases (see 
Table 17.3-1). The wavelengths corresponding to some of the transitions 
are in the visible spectrum, whereas others arc in the infrared or ultraviolet 
regions.

If the light output from a laser is passed through a second discharge tube 
with the same gas filling and discharge conditions, so that m > ni, the light 
is amplified in passing through the discharge.

The first gas laser2 used a gas filling consisting of a mixture of helium and 
neon. It happens that the excitation energies of two helium metastable 
states3 very nearly coincide with the excitation energy of two excited states 
in neon. When a de or rf discharge is established in the gas mixture, a high 
density of helium metastables is generated. These metastables collide with 
unexcited neon atoms causing excitation of the neon atoms to the excited 
neon states of nearly equal energy and causing the helium atoms to return

‘Reference 17.1.
3 A metaatable state is an excited state from which spontaneous decay to a lower state 

is forbidden by the quantum-mechanical selection rules for electric-dipole transitions. 
(This does not necessarily preclude de-excitation by other processes or different types 
of transitions having a much smaller probability per unit time.)
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to their ground state. The excited neon atoms can be stimulated to decay 
to a number of lower excited states, permitting laser action at a number of 
wavelengths ranging from the visible to the infrared region.

In the present chapter we shall first discuss the excited energy levels of 
atoms, particularly helium and neon, and we shall describe the balance of 
events occurring in laser action between two excited states of an atom. 
Then we shall describe a particular helium-neon laser and its performance, 
and we shall summarize briefly the range of performance and operating 
conditions presently obtained with other lasers.

17.1 Energy Levels in the Atoms

From quantum mechanics we learn that there are only certain discrete 
energies and angular momenta which the electrons that are bound to an 
atom can have. An atom in its ground state, or unexcited state, has all its 
electrons in the lowest possible energy states. As discussed in Section 2.1, 
for many purposes an electron in a given energy state can be thought of as 
causing a cloud of charge about the nucleus. The probability of finding an 
electron in a given volume element about the nucleus is proportional to the 
density of the cloud at the volume element. It is found that electrons in 
certain energy states tend to contribute their maximum charge density at 
approximately the same distance from the nucleus, and consequently there 
are said to be shells of electrons about the nucleus. Helium in its ground 
state has two electrons in a single shell about the nucleus. Neon in its 
ground state has two shells of electrons with two electrons in the inner 
shell and eight electrons in the outer shell. Argon in its ground state has 
three shells with two electrons in the inner shell, eight electrons in the next 
shell, and eight electrons in the outer shell.

Because electrons in the innermost shell of an atom are on the average 
closer to the nucleus than electrons in the next shell, greater energy is re­
quired to remove these electrons from the atom. Consequently electrons in 
the innermost shell are said to be in states of lower energy than electrons in 
the next shell. Similarly, in atoms with three or more shells, electrons in the 
second shell are more tightly bound to the atom than electrons in the third 
shell, and so on. However, an experimental law of physics, known as the 
Pauli exclusion principle, prohibits all the electrons in the atom from going 
into the states of lowest energy and hence into the shell which is closest to 
the nucleus. Only two electrons can go into the inner shell, whereas up to 
eight electrons can go into the second shell, and up to eighteen can go into 
the third shell.

The fact that there are shells of electrons about the nucleus is directly 
related to the quantization of the electron motions. It is customary in the 
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field of spectroscopy to describe an electronic state by means of two quan­
tum numbers n and I. The quantum number n is related to the average 
radial distance of the electron orbit from the nucleus and hence to the shell 
that the electron is in. The number n may have integral values 1, 2, 3 .... 
An electron in a state for which n = 1 is in the innermost shell of the atom, 
an electron in a state for which n = 2 is in the next shell, and so on. The 
quantum number I indicates the oribital angular momentum of the electron 
about the nucleus. This angular momentum is given by \l(l + 1) h/2s, 
where h is Planck’s constant. I can have values 0, 1, 2, ... n — 1. The 
atomic spectroscopists further use the letters s, p, d, and f to correspond to 
Z = 0, 1, 2, and 3. Thus the electronic configuration of an unexcited helium 
atom is given by (Is)2, where Is indicates a state with n = 1 and I = 0, and 
the superscript 2 indicates that two electrons are in this state. The electron­
ic configuration of the ground state of neon is written as (Is)2 (2s)2 (2p)6, in­
dicating that there are two electrons in Is (n = 1, I = 0) states, two elec­
trons in 2s (n = 2,1 = 0) states, and 6 electrons in 2p (n = 2,1 = 1) states. 
An excited neon atom might have one of the 2p electrons raised to a 3s level 
The electronic configuration for the atom in this case would be (Is)2 (2s)2 
(2p)5 3s. The excited electron might also be raised to any of the following 
states: 3p, 3d, 4s, 4p, 4d, 4f, 5s, 5p, etc. Radiative transitions can occur 
only between states whose values of I differ by ± 1.

The energy levels are not determined uniquely by the quantum numbers 
n and I. Electrons also have an intrinsic spin angular momentum, and inter­
actions between this angular momentum and the orbital angular momenta 
lead to a splitting of the excitation energies into closely spaced groups of 
states. Finally, each of these states is characterized by a total angular mo­
mentum which is a vector sum of the spin and orbital angular momenta of 
all the electrons of the atom. The total angular momentum is characterized 
by a quantum number J such that the total angular momentum is equal to 
^J(J + 1) h/2s, where h is Planck’s constant. If there are an even number 
of electrons in the atom, J is an integer, and if there are an odd number of 
electrons in the atom, J has a value equal to one half an integer. The total 
angular momentum can have 2J + 1 possible components in any direction 
of observation. For example, if J is 2, the total angular momentum along a 
direction of observation can be —2h/2s, — lh/2s, 0, +1A/2t, or +2h/2s. 
These individual possible orientations of the total angular momentum are 
referred to as magnetic substates. In an applied magnetic field, the energies 
of the magnetic substates are separated by an amount proportional to the 
magnetic field intensity. In the absence of a magnetic field, all magnetic 
substates have the same energy, and all are equally populated. In the intro­
ductory part of this chapter we referred to population densities ni and nr for 
two excited states, 1 and 2. As noted1, these population densities must be 
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taken to mean the density of atoms in any one magnetic substate of excited 
states 1 and 2. Thus, if Ni is the total density of atoms in state 1 and if there 
is no externally applied magnetic field, ni = Ni/(2J + 1).

It is not possible to make an exact quantum mechanical calculation of the 
energy levels in an atom with more than one electron because the forces 
acting on an individual electron result not only from the nucleus but also 
from all the other electrons, and the motion of each electron affects the mo­
tions of all the other electrons. However, calculations involving a number 
of approximations have been made, and the energy levels can be measured 
with a high degree of accuracy by spectroscopic observations.

Figure 17.1-1 shows a graphical presentation of the energy levels of the 
lower excited states in helium and neon. It is assumed in this plot that only 
one electron is excited. Each excited level in neon is actually broken into a 
group of closely spaced states which result from different possible orienta­
tions of the electron spin and orbital angular momenta. The lowest excited 
states in neon are four 3s states in the neighborhood of 16.7 electron volts. 
An excited atom in one of these states has the configuration (Is)2 (2s)2 (2p)6

Fig. 17.1-1 The lower excited states in helium and neon. The excitation energy 
is measured relative to the ground state.
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3s. The splitting of the 3s state into four states results from different orien­
tations of the spin angular momenta relative to the orbital angular mo­
menta. Each of the four 3s states is characterized by a particular value of 
the total angular momentum quantum number J. This in turn leads to 
2J + 1 magnetic substates for each of the four 3s states. The next higher 
states are ten 3p states in the neighborhood of 18.7 electron volts. The 
electronic configuration for these states is (Is)2 (2s)2 (2p)6 3p.

The lowest excited states in helium are two 2s states which differ in 
energy because the electron spin angular momenta are parallel in one case 
(the state of lower energy) and opposed in the other case. Both these states 
are metastable. Their excitation energies very nearly coincide with those 
of the 4s and 5s states in neon. In the operation of the helium-neon laser, 
the helium 2s metastables are destroyed largely by collisions with ground­
state neon atoms. In these collisions the excitation energy of the metastable 
helium atom is transferred to a neon atom, thereby exciting it to the 4s or 5s 
state. Laser action can then occur in neon between 5s and 4p states, be­
tween 5s and 3p states, and between 4s and 3p states. Three wavelengths 
frequently observed with helium-neon lasers are shown in Figure 17.1-1 
The wavelengths are measured in microns (symbol g). 1g = 10-6 meter = 
104 angstroms.

17.2 Operation of a Laser

It will be helpful to express in equation form the balance of events that 
occur in laser action between two excited states of an atom. Our objective 
will be to derive an expression for the power output of light from one end of 
the laser in terms of certain parameters of the discharge. Figure 17.2-1 
shows an energy level diagram in which laser action is assumed to take place 
between two excited states, 1 and 2. We shall use the following quantities:

ni and rh are the population densities, or numbers of atoms per cubic 
centimeter, in states 1 and 2.

ni and Th are the time rates of change of the population densities ni and n2.
Si and S2 are the rates at which atoms in states 1 and 2 are produced by 

the discharge per cubic centimeter of gas. Si is assumed to account for all 
means of generating atoms in state 1 except spontaneous decay of atoms in 
state 2 to state 1. We shall consider spontaneous decay from state 2 to 
state 1 separately.

Ai and A2 are the probabilities per unit time of atoms in states 1 and 2 
decaying by spontaneous emission.

+2i is the probability per unit time of an atom in state 2 decaying to state 
1 by spontaneous emission.
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TII
[ENERGY= hr
I
I1

OTHER EXCITED STATES

GROUND STATE 
------------------------------------------------------- n0

Fig. 17.2-1 An energy level diagram showing the excitation energies of a hypothet­
ical atom measured relative to the ground state.

P is the electromagnetic power crossing a square centimeter of a plane 
normal to the direction of propagation of the wave.

Bi2 and B21 are the stimulated emission coefficients for transitions from 
states 1 to state 2 and for transitions from state 2 to state 1. The coefficient 
B12 is such that BuP is the probability per unit time that an atom in state 1 
will be stimulated to absorb energy hv from the electromagnetic field and 
become excited to state 2. B2iP is the probability per unit time that an 
atom in state 2 will be stimulated by the electromagnetic field to decay to 
state 1. The coefficients Bi2 and B2i are equal.

The quantities Ai, A2, A21, B^, and B21 are functions of the electronic con­
figuration of the individual states.

The time rates of change of the population densities ni and n2 are given by

Ai = Bi + nstAa + B21P) — ni(Ai + B12P) (17.2-1)
and

hs — B2 — ns(A2 + B21P) + 111B12P (17.2-2)

In the steady-state condition,
ni = nt = 0 (17.2-3)

Combining the above three equations and solving for n2 — ni, we obtain 
_ _ B2(A1 — A21) — B1A2

n2 1 A1A2 + B21P(A1 + A2 — A21) 
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where we have made use of the equality Bi2 = B2i.
The power P increases with distance x in the direction of propagation if 

m > ni and decreases if n2 < nb We can write

t- = hvBnPfnz - nJ = p (17.2-5)
ax 1 rf-

where

“ = TtM - A21) - A1A2 (17.2-6)

and

2_ + ±Ai A2 AiA2/ (17.2-7)

In the small-signal case in which a weak electromagnetic wave passes 
through the gas, yP « 1, and dP/dx = aP, or

P = Poex (17.2-8)

where P„ is the electromagnetic power crossing a square centimeter of a 
plane normal to the direction of propagation at x = 0. The power of the 
electromagnetic wave therefore builds up exponentially with distance in the 
direction of propagation. However, as yP approaches unity, n2 — ni de­
creases, and dP/dx is no longer proportional to P.

Suppose that reflecting mirrors are placed at opposite ends of the dis­
charge tube and that a fraction t of the light incident upon the mirrors is 
transmitted through the mirrors. We shall assume that t is small compared 
with unity (~1 per cent) and that a fraction 1 — i of the light incident 
upon the mirrors is reflected without loss. The particular laser we are con­
sidering therefore generates a beam of equal intensity from both ends of the 
discharge tube. In the steady-state condition, the standing wave field 
pattern between the mirrors can be resolved into two traveling waves, one 
traveling to the left and one traveling to the right between the mirrors. The 
power gain of one of these waves in traveling the distance L between the 
mirrors must equal the power lost in reflection, and hence the power trans­
mitted through the mirror. The power transmitted through the mirror is 
tP per square centimeter of the mirror, where P is the light power incident 
upon a square centimeter of the mirror. The quantity tP is small compared 
with P, so that the power gain in traveling the distance between mirrors is 
also small compared with P. Accordingly we can use Equation (17.2-5) to 
express this power gain as

dP = aPL 
dx 1 + yP

(17.2-9)
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Equating the right-hand side of the equation to tP and solving for tP, we 
obtain

“■'Kt-1) (17.2-10)

This expression gives the light power output per square centimeter from one 
end of the laser in terms of the quantities a, y, and t. The quantities a and y 
are related to Si, S2, Ai, A2, and A2J through Equations (17.2-6) and (17.2-7)

17.3 A Helium-Neon. Gas Laser

Figure 17.3-1 shows the construction of a particular helium-neon gas 
laser. The helium-neon gas mixture is contained within a discharge tube 
which has windows at either end and which has a relatively long positive­

Fig. 17.3-1 The construction of a helium-neon laser.

column region. The cathode and anode are mounted to one side of the tube 
axis. Precision mirrors coated to reflect red light are mounted beyond the 
windows at the ends of the discharge tube in such a manner that they reflect 
light forward and back along the tube. The mirrors are only partially re­
flecting (~99 per cent), so that a small amount of light (~1 per cent) is 
transmitted through them. The transmitted light provides the power out­
put of the device. The light output is visible and has a wavelength of 0.6328 
micron.

The discharge tube is filled with a mixture of helium and neon, consisting 
of seven parts of helium mixed with one part of neon. The filling pressure is 
1.8 mm of Hg. The inside diameter of the long glass tube is 2 mm, and the 
length of the straight portion of the tube is 30 cm. The discharge is operated 
at a current of approximately 10 ma, which corresponds to an anode-to- 
cathode voltage drop of 1300 volts. The cathode consists of a directly 
heated nickel mesh with an oxide coating. The anode is made of nickel.

At both ends of the discharge tube there are fused quartz windows, 
called Brewster windows. Each window is inclined relative to the tube axis 
such that the normal to the window makes an angle of 55.5 degrees with the 
tube axis. At this angle the reflection of 0.6328-p light polarized in a plane 
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containing the tube axis and the normal to the window is a minimum. The 
angle is known as the Brewster angle4. The light transmission through the 
windows for this wavelength and polarization is approximately 99.9 per 
cent for each passage through a window. The transmission of light polarized 
in a direction perpendicular to the plane containing the tube axis and the 
normal to the windows is much less, and consequently laser action does 
not take place for such light. The windows are about 2 mm thick and 
polished on both faces to a flatness of better than 800 angstroms.

Each mirror consists of a highly polished fused quartz surface onto which 
is evaporated alternate layers of a material of high index of refraction (ZnS) 
followed by a material of low index of refraction (ThOF2). Each layer is a 
quarter wavelength thick at 0.6328 n, the outer layer being of the material 
of a high index of refraction. Reflections from each interface beneath the 
surface add in phase to the wave reflected from the outer surface and in­
crease the total light reflection. The mirrors used in the laser shown in 
Figure 17.3-1 consist of 7 layers of ZnS and six layers of ThOF2. Such a 
mirror transmits about 0.7 per cent of the incident light, whereas less than 
0.5 per cent is absorbed or scattered, and the remainder is reflected. The 
surface of the mirrors is slightly concave with a radius of curvature of 3 
meters. The curvature serves to focus the reflected light in the direction of 
the opposite mirror and reduces the loss of radiation by diffraction effects.

Light is reflected between the mirrors at either end of the discharge tube, 
and for wavelengths at which the optical distance between the mirrors is an 
integral number of half wavelengths, a standing-wave pattern is established. 
The two mirrors therefore serve as a sort of cavity resonator. When such a 
system is constructed using plane mirrors, it is called a Fabry-Perot inter­
ferometer. At the resonant wavelengths, successive reflections from the 
mirrors add in phase. If the frequency of one or more of the resonant 
modes lies within the frequency range of a neon transition between two 
excited states, and if the upper state has a sufficient excess population over 
the lower state, laser action can occur.

Let L be the optical spacing between the mirrors. The resonant frequen­
cies of the Fabry-Perot interferometer are such that

or

nc
v " 2L (17.3-2)

‘The Brewster angle #(x) for a given wavelength of radiation X is such that tan e(x) 

equals the index of refraction of the window material for the wavelength X. 
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where n is an integer, v and X are the frequency and wavelength of the 
radiation, and c is the velocity of light. In the laser shown in Figure 17.3-1 
the distance L is approximately 37 cm. With such a spacing between planar 
mirrors, the resonant frequencies are separated by c/2L = 400 Me.

The frequency stability of the laser shown in Figure 17.3-1 is determined 
principally by the stability of the optical path L between the mirrors. 
Differentiating Equation (17.3-2) with respect to L, we obtain

dv = = ~rdL

or

For a change in optical path dL = 1 ansgtrom = 10-8 cm (about a quarter 
of an atomic diameter) in a length L of 37 cm, we obtain dv/v = 10~8/37 = 
2.8 X 10-10. Frequency stabilities of this magnitude or better are attain­
able using various frequency control schemes or by careful isolation of the 
laser from all mechanical disturbances. In principle it should be possible 
to stabilize the frequency to within a range of a few cycles per second. On 
the other hand, the frequency can be modulated in accordance with Equa­
tion (17.3-4) by attaching one of the mirrors to an electromechanical 
transducer which causes the distance L to vary in response to an applied 
electrical signal.

Operation of the Laser Shown in Figure 17.3-1

At a discharge current of 10 ma, both helium and neon ions take part in 
the current conduction, and the anode-to-cathode voltage drop is found to 
be intermediate between that of a pure neon discharge with the same 
partial pressure and a pure helium discharge with the same partial pressure. 
The discharge leads to the generation of a relatively high density of helium 
metastables in the two helium metastable states (~3 X 10n/cm3). The 
metastables are formed by electron collisions with helium atoms in which 
the atom is excited either directly to the metastable level or to a higher 
level from which it decays by one or more radiative transitions to the 
metastable level.

The metastables in turn diffuse through the gas mixture until they are 
destroyed by one of the following processes: (1) collisions with neon atoms 
in which the neon atom is excited to a 4s or 5s state, (2) collisions with the 
walls of the discharge tube, and (3) collisions with free electrons in which 
the metastable is excited to a higher state. Primarily the metastables are 
lost by the first of these processes, and consequently neon atoms are 
excited to the 4s and 5s levels at a relatively high rate.
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In the absence of an electromagnetic field, excited neon atoms in a 5s 
state decay to 4p and 3p states by spontaneous emission of a photon. 
Atoms in 4p states in turn decay to 3d, 4s, 3s states, or the ground state, 
by spontaneous emission of a photon, and atoms in 3p states decay to 3s 
states or the ground state by spontaneous emission of a photon.6 The prob­
ability per unit time of an excited atom in a 4p or 3p state decaying by 
spontaneous emission of a photon is sufficiently large that in the absence of 
an electromagnetic field the population of excited neon atoms in 4p or 3p 
states is less than the population of excited neon atoms in 5s states. The 
laser shown in Figure 17.3-1 actually exhibits laser action simultaneously 
between the 5s and 3p levels in neon leading to the generation of 0.6328-ju 
light, and between the 5s and 4p levels leading to the generation of 3.39-p 
light.

In the emission spectrum of neon the half-power width of the 0.6328-p 
line is found to be approximately 1.5 Gc, expressed as a frequency. This 
width results primarily from the well-known Doppler effect. In the dis­
cussion following Equation (17.3-2) it was noted that the resonant fre­
quencies of the cavity illustrated in Figure 17.3-1 are separated by 400 Me. 
Thus there are approximately three resonant frequencies within the width 
of the 0.6328-p line. In consequence of this, the laser illustrated in 
Figure 17.3-1 exhibits laser action at three closely spaced wavelengths within 
the Dopper width of the 0.6328-p line. From Equation (17.3-2) it is 
evident that the frequency spacing of these “modes” of oscillation increases 
as the optical distance L between the mirrors is reduced. Thus lasers have 
been constructed with about one third the length of the device shown in 
Figure 17.3-1 which give laser action in only one mode. In these devices the 
frequency spacing between modes is approximately equal to the Doppler 
width of the 0.6328-ju line.

The quantity a in Equation (17.2-8) has been measured for 0.6328-p 
light and for the discharge conditions of the device illustrated in Figure 
17.3-1. The frequency of the light was at the center of the Doppler width 
of the line. The quantity a was found to be approximately 0.14 per meter, 
corresponding to a gain of about 15 per cent per meter of travel through the 
gas. The corresponding value of ny — ni for small P has been calculated 
to be6 3.9 X 109 per cm3. For the 5s — 4p transition leading to the genera­
tion of 3.39-ju light, a has been measured in a discharge tube with an 
inside diameter of 6 mm and found to be ^4 per meter, corresponding to 
a power gain of 52 per meter. The corresponding value of — ni has 
been calculated to be 9 X 108 for small P.

’Not all 3p and 4p states have quantum-mechanically allowed transitions to the 
ground state.

•Reference 17.2.
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One way to prevent laser action at a particular wavelength while main­
taining it at another wavelength is to use prisms between the Brewster 
windows and the mirrors, as illustrated in Figure 17.3-2(a). By orienting 
the prisms at an appropriate angle, operation at the desired wavelength 
can be obtained. The function of the prism and mirrors also can be com­
bined, as shown in Figure 17.3-2(b).

Fig. 17.3-2 By the use of prisms, the laser action can be limited to a single wave­
length.

The total light power output of the laser shown in Figure 17.2-1 for the 
three modes in the neighborhood of 0.6328-g is approximately 3 mw at a 
discharge current of 10 ma. Many design parameters besides the length L 
of the discharge tube affect this power output. These include: the diameter 
of the discharge tube, the filling pressure, the ratio of helium to neon, as 
well as the discharge current. However consideration of these parameters 
is beyond the scope of the present discussion.

The beam spread of the light transmitted through the mirrors is of the 
order of several minutes of arc. However this spread can be reduced with 
the aid of a lens to approximately b/d, where d is the diameter of the dis­
charge tube. For X = 0.6328 X 10-4 cm and d = 0.2 cm, \/d is approxi­
mately one minute of arc.

17.4 Other Gas Lasers

For laser action to occur in a gas one must establish an “inverted popu­
lation” for two excited states between which spontaneous emission can 
occur. By “inverted population” we mean that the magnetic substate 
population of the upper state must exceed that of the lower state. In the 
helium-neon laser the 5s neon state is populated largely by excitation of 
neon atoms to the 5s state in collisions with helium metastables.
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Inverted populations also can be obtained in dc discharges in the pure 
noble gases as well as in molecular gases. Finally, inverted populations 
have been obtained in cesium by irradiating a tube containing cesium vapor 
with light from an adjacent helium discharge tube. It turns out that the 
photon energy of one of the stronger spectral lines observed in the helium 
discharge falls within the Doppler width of the excitation energy of a cesium 
state, and by irradiating the cesium with this helium light, excitation of the 
cesium atoms occurs and laser action for two transitions has so far been 
observed.

In Table 17.4-1 we have attempted to summarize the numbers of lines 
in the various gases for which laser action, either pulsed or continuous, 
has been observed. The minimum and maximum wavelengths for these

Table 17.4-1

Gas

Number of Lines 

Observed

Range of Wavelengths, 

Microns

He 1 2.06

Ne 117 0.59-133

A 31 1.62-26.9

A+ 10 0.45-0.53

Kr 25 1.69-7.06

Xe 27 2.03-18.5

0 1 0.85

C 2 1.07-1.45

N 2 1.36-1.45

n2 Several tens of transitions 0.3-1.2

S 2 1.05-1.06

Hg 2 1.53-1.81

Cl 2 1.97-2.02

Br 4 0.85

I 2 3.24-3.43
Cs 2 3.20-7.18

CO 20 0.56-0.66

H2O 9 23.3-78.8

CO2 21 9-11

lines for each gas is also listed. At the time of writing, investigation of laser 
action in gases is proceeding at such a rapid rate that the listing will be out 
of date by the time this textbook has been printed. However the table will 
serve to indicate the extent of the published investigations as of early 1964.

The lines observed in A+ are transitions between excited states of singly 
ionized argon. Laser action has been observed for atomic nitrogen (N) 
transitions and for molecular nitrogen (N2) transitions. It turns out that 
the lower state for the N2 and CO transitions is metastable, so that as laser 
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action proceeds, the population of the lower state increases, and the inverted 
population soon vanishes. Laser action is therefore observed using a pulsed 
discharge and is found to occur for only a fraction of a microsecond at the 
start of the pulse.
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APPENDIX I

MKS UNITS AND DIMENSIONS

Quantity Unit Dimensions

Length Meter L

Mass Kilogram M

Time Second T

Charge Coulomb Q

Velocity Meter /second LT-1

Force Newton LMT~2

Energy, work Joule L2MT^

Power Watt L2MT~2

Electric potential Volt L^MT^Q-1

Electric field intensity E Volt /meter LMT-y

Electric flux Coulomb Q

Electric flux density D Coulomb /square meter L^Q

Capacity Farad L^M^T2^

So (permittivity of free space) Farad /meter L^M-1^2

Electric current Ampere T-'Q

Magnetic field intensity H Ampere /meter L^T^Q

Magnetic flux Weber L^T^Q-1

Magnetic flux density Weber /square meter MT^Q-1

Inductance Henry DMQ-2

M«(permeability of free space) Henry /meter LMQ~2

Electric resistance Ohm L^T^Q-2
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TABLE OF PHYSICAL CONSTANTS* AND

CONVERSION BETWEEN UNITS

Permittivity of free space So = 8.854 X IO"12 farad /meter

Permeability of free space Mo = 4?r X IO-7 henry /meter

Velocity of light c = 2.998 X 108 meters /second

Charge of the electron e = 1.602 X IO-19 coulomb

Mass of the electron m = 9.108 X 10"3t kilogram

Ratio: electron charge /electron mass elm = 1.759 X 10“ coulomb /kilogram

Boltzmann’s constant k = 1.380 X 10"23 joule /degree

Planck’s constant h = 6.625 X 10"84 joule-second

Conversion Between Units

1 angstrom (A) = 10-10 meter

1 micron (g) = 10-6 meter
1 gauss = 10-4 weber /square meter

1 oersted = (l/4ir) X 10s amperes/meter

1 pound = 0.4536 kilogram

1 liter = 1000 cm’
1 torr = 1 mm of Hg pressure

= 13.595 kilograms/square meter

1 electron volt = 1.602 X 10-19 joule

•For adjusted best values of the physical constants as of 1955, see E. R. Cohen, 

K. M. Crowe, and J. W. M. Dumond, Fundamental Constants of Physics, Interscience 

Publishers, Inc., New York, 1957.
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SOME RELATIONSHIPS PERTAINING TO ELECTRIC AND MAGNETIC 

FIELDS AND CURRENT FLOW

(a) Static Fields
Electric Fields

Electric field intensity.................................E, E

Electric flux density.......................................D, D
Electric potential.............................................V

Permittivity of free space........................e«,

Relative dielectric constant...................e

Space charge density..................................... p

Total charge........................................................... q

* D = eeÆ
y D-ndS = y pdv = q 

dosed surface volume

Magnetic Fields

Magnetic field intensity.......................... H, H

Magnetic flux density................................B, B

Magnetic potential.........................................

Permeability of free space.....................p.
Relative permeability................................g

Current density vector.............................J
Total current.......................................................I

B = pp.H

dosed path

V X H = J

♦ VD = p

‘Energy stored per unit volume

VB = 0

= sæoE2 ‘Energy stored per unit volume = ^pp.H2

VAB = - fA E-dl

E = -VF

In the absence of current-carrying con­

ductors:

Ÿab = — £ H dl

H---------V^

In a region of uniform dielectric constant 
where there is no distributed charge 

density:

V2F = 0

In the presence of a distributed charge 

density p

V2F = -- 
Sa

‘At the interface between two dielec­

tric materials, the normal component 
of D and the tangential component of 

E are continuous. (It is assumed here 
that there are no surface charges.)

In a region of uniform permeability 

and in the absence of current carrying 

conductors:

VV = 0

‘At the interface between two magnetic 

materials, the normal component of B 

and the tangential component of H are 

continuous. (It is assumed here that 
there are no surface currents flowing at 

the interface.)

’These relations also apply to time-varying fields.
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(b) Time-Varying Fields
Maxwell’s Equations are:

d®

ot

VSJ = p

V® = 0

Script letters are used here to indicate that the field components are time varying. 

If the field components vary with a single angular frequency w, we can set

£ = ReEe’"', ® = ReBe>“', etc.,

and

= RejwBe’“', etc. 
ot

Then

V X E---------jwB

V X H = J + jwD

V D = p

V B = 0

(c) Current Flow
Ohm’s Law can be written as

or

J = oE

V = IR

where a is the conductivity of the medium, and R is the resistance between the 

terminals where the voltage V is measured.

The equation of continuity can be written as

- 4
If the current density $ is time varying at a single angular frequency w, we can 

set g = Reje1"'. Then
VJ = -jup
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A SUMMARY OF RELATIONS PERTAINING TO THE VELOCITY DIS­

TRIBUTION, ENERGY DISTRIBUTION, AND ANGULAR DISTRIBU­

TION OF THE ELECTRONS EMITTED FROM A THERMIONIC CATHODE

Symbols:

un = velocity of an emitted electron in the direction normal to the emitting 

surface in meters per second.

ut = velocity of an emitted electron in the “transverse” direction, or 

parallel to the emitting surface, in meters per second.

u = total emission velocity in meters per second.

Wn = kinetic energy of an emitted electron in the direction normal to the 

emitting surface in electon volts.

Wt = kinetic energy of an emitted electron in the “transverse” direction, or 

parallel to the emitting surface, in electron volts.

W = total emission energy in electron volts.

k = Boltzmann’s constant.

T = absolute temperature of emitting surface in degrees Kelvin.

WT = electron-volt equivalent of kT.

6 = direction of emission velocity relative to the normal to the surface.
|e[ = a dimensionless positive constant numerically equal to the charge on

the electron.

m = mass of the electron.
Jo = total emission current density in amperes/meter2.

Some Relationships Between the Above Quantities:
mu? mu? T„ mu2

W„ = "^rr W = + Wt = -¡-I
2|e| 2|e[ 2|e| 

kT T

= h" = iwlectronvolt8-
The Distribution Functions:

The probability that an electron is emitted with a component of velocity normal 

to the cathode surface in the range uP to un + dun is

dP(Un) = ^-^'¡2kTdUn (1)
The probability that an electron is emitted with a component of velocity parallel 

to the cathode surface in the range ut to ut + dut is

dP(ut) = ^—Ri^dut (2)

The probability that an electron is emitted with kinetic energy normal to the 

cathode surface in the range Wn to Wn + dWn is

dP(Wn) = (3)
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The probability that an electron is emitted with kinetic energy parallel to the 

cathode surface in the range Wt to Wt + dWt is

The probability that 

range IF to W + dW is

dP(Wt) = -Ce-w‘iwrdWt (4)

W T 

an electron is emitted with total kinetic energy in the

W dW
dP(W) = (5)

The probability that the direction of the emission velocity makes an angle in 

the range 0 to 0 + d0 with respect to the normal is

dP(0) = 2sin0cos0d0 (6)
The emission current density per unit solid angle at an angle 0 with respect to

the normal is

dP(0) _ cos0
^irsinO ° ir W
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IN AN AXIALLY SYMMETRIC FIELD THE POTENTIAL AT OFF-AXIS 

POINTS CAN BE EXPRESSED IN TERMS OF THE POTENTIAL ON THE

AXIS AND ITS DERIVATIVES

Here we consider the potential at radius r from an axis of symmetry, which will 

be designated as the z axis. Laplace’s equation for an axially symmetric field is

Let us suppose that the potential at radius r can be expressed as a power series in r 

of the form
V(z,r) = a„(z) + aj^r2 + ajz)^ + ... (2)

where the odd powers in r are missing because of symmetry about the axis. Sub­

stituting this expression into Equation (1), we obtain for the coefficient of r*

(n + 2)2an+2 + (3)

If the right-hand side of Equation (2) is to be a solution of Equation (1), the 

coefficient of r" must be zero. Hence

1 d’à, 
an+2 (n + 2)2 dz2 (4)

Now a„(z) is the potential on the axis, or V(z,O). Hence a2(z) = — iV"(z,0), 

a^z) = +ytV""(z,0), and so on, where the primes indicate differentiation with 

respect to z. The potential V(z,r) is therefore given by

T2 T*V(z,r) = V(z,0) - Çv"(z,0) + ^V""(z,O) - .. 
4 64

(5)
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SEVERAL RELA TIONS BETWEEN THE OBJECT POSITION, THE IMAGE 

POSITION AND THE FOCAL LENGTHS OF AN ELECTRON LENS

(a) The Relation - + - = 1 
u v

Figure VI-1 shows three electron trajectories n(z), r2(z), and r3(z) which pass 

through a region of axially symmetric field. To the left of the lens the trajectory 

r2(z) is parallel to the axis but displaced unit distance from it, whereas to the right 

of the lens it passes through the focal point F2. Similarly r/z) passes through the 

focal point F, to the left of the lens and emerges parallel to the axis and unit distance 

from it to the right of the lens. The trajectory r3(z) crosses the axis u units to the 

left of the first principal plane and v units to the right of the second principal plane.

Fig. VI-1 Three electron trajectories which pass through a lens.

Since n(z) and r2(z) are independent solutions of the paraxial ray equation, we 

can write that
r3(z) = arfz) + brfz) (1)

where a and b are constants. At the point where r3(z) crosses the axis to the left 

of the lens,

r3(z) = 0 = arfz) + br2(z) = -a^ + 6 ®

from which

B = a 
u a + b

(3)

At the point where r3(z) crosses the axis to the right of the lens, 

r3(z) = 0 = a - b^ (4)
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and

Adding Equations (3) and (5), we obtain

^+^=1 (6)

u v
Thus, if we know the focal lengths of a lens and the positions of the principal 

planes, Equation (6) can be used to determine the focusing action of the lens on 

any trajectory which is close to the axis and nearly parallel to the axis. In the case 

of an einzel lens in which the electrodes and potentials are symmetrical about a 

geometrical mid-point of the lens, fi = fi = f, and Equation (6) becomes

- + - = I U V f
(7)

(b) Magnification = y-- 
hi ft u

With the aid of Figure VI-2 and geometrical considerations similar to those

Fio. VI-2 Trajectories used to determine the expression for the magnification 

of a lens.

used in part (a) above, it is easily shown that the magnification of the lens, given 

by hi/hi, can be expressed as

¿2 = v — ft = fl v 
hi ft fi u

(8)

(c) The Relation y

Let us suppose that rfz) and rfz) are two solutions of the paraxial-ray equation,
Equation (3.1-8). Then

~ H | W(z,0) , , V"(z,0) 
2V(z,0) 1 + 4V(z,0) 1 ° (9)
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and

,, , F'(z,O) , , F"(z,O) „ , x
Ti + 27(z,0)r2 + 4V(z,0)r2 ° (10)

Multiplying the first equation by r2 and the second by Ti and subtracting, we 

obtain

(n'% - N'N + - r/n) = 0 (11)

which can be expressed as

1 NNr2 - NN = F'(z,0)

Nfi — Nr-i dz 2F(z,0) ' '

Integrating both sides with respect to z, we obtain

ln(r/r2 — NN = — | In F(z,0) + In A (13)

and hence

Nr2 — Nn = A[F(z,0)]-1'2 (14)

where A is a constant. Let us suppose that to the left of the lens r2(z) = 1, r2'(z) = 0, 

and F(z,0) = Fi, and to the right of the lens Nz) = 1, r/(z) = 0, and V(z,0) = F2. 

The trajectories Nz) and r2(z) are therefore as shown in Figure VI-1. From 

Equation (14), we can write that to the left of the lens

N = AVrw (15)

and

1 Pi1'2
* = r7 = ± <16)

To the right of the lens,

-N = AVN'2 (17)

and

Finally, combining Equations (16) and (18), we obtain
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A STEADY-STATE SOLUTION OF POISSON’S EQUATION FOR A SPACE­

CHARGE-LIMITED DIODE IS UNIQUE

The potential in the interelectrode space of a diode satisfies Poisson’s Equation, 

^(x^z) = (1)

We shall assume that the electrons leave the cathode surface with zero velocity.

Let us first consider the case in which the anode voltage Vm, is zero. Clearly, 
V(x,y,z) = p(x,y,z) = 0 is the only possible solution in this case. If p were not 
zero, electrons would be present between the electrodes, and the potential in the 

interelectrode space would be depressed below cathode potential. Field lines 

then would extend from induced charges on the cathode to the charge in the inter­

electrode space, and the potential gradient dV/dn at the cathode surface would be 

negative. However, since the electrons leave the cathode surface with zero velocity, 

all the electrons would be returned to the cathode immediately upon emission. 
This contradicts our assumption that there is charge present in the interelectrode 

space. Thus we must conclude that for Va0 = 0, p(x,y,z) = 0. Equation (1) 

then reduces to Laplace’s Equation, which gives V(x,y,z) = 0 for the boundary 

condition Va0 = 0.
For Va0 > 0 and for space-charge-limited operation, a steady-state solution to 

Equation (1) must satisfy the following boundary conditions: 

at the cathode surface, where d/dn is the derivative in the direction normal to the 

cathode surface. (Note that the assumption of zero emission velocity means that 

the potential minimum coincides with the cathode.)

2. V = Voo at the anode surface.

Let us suppose that there are two independent solutions of Equation (1) which 

meet these boundary conditions for Vm, > 0. Let the solutions be:

Vi(x,y,z), corresponding to a charge distribution pi(x,y,z)

and

V2(x,y,z), corresponding to a charge distribution pi(x,y,z)

In such a case V = V, — V2 would be a solution of Equation (1) which satisfies 

the boundary conditions V = 0 at the anode and V = dV/dn = 0 at the cathode 

and which corresponds to a charge distribution pi — pi. But from the discussion in 

the previous paragraph we know that V(x,y,z) = p(x,y,z) = 0 is the only solution 
to Equation (1) which meets the boundary conditions for Va0 = 0. Thus we 

conclude that Vi = Vi, and pi = p2. Hence a steady-state solution of Poisson’s 

Equation for a space-charge-limited diode is unique.
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IF A TWO-DIMENSIONAL POTENTIAL IN FREE SPACE IS SYMMET­

RIC ABOUT AN AXIS, THE POTENTIAL AT OFF-AXIS POINTS CAN 

BE EXPRESSED IN TERMS OF THE POTENTIAL ON THE AXIS

The derivative of a complex function /(z) = f(x + jy) = u(x,y) + jv(x,y) is 

defined as

f(z) = lim A±A) -/W 
Ai-K) AZ

(1)

where Az = Ax + jAy. It can be shown that necessary and sufficient conditions 

for the existence of a unique derivative of /(z) are that 

and

dx dy

These equations are known as the Cauchy-Riemann conditions. (See, for instance, 
R. V. Churchill, Introduction to Complex Variables and Applications, McGraw-Hill 

Book Co., Inc., New York, 1948, p. 30.) A function /(z) = u + jv is said to be 

analytic in a region of the z plane if the derivative /'(z) exists at every point in 

that region. Examples of analytic functions are z, z2 + 1, e‘, and sin z, where 

z = x + jy in each case.

If we take the partial derivative of Equation (2) with respect to x and the partial 

derivative of Equation (3) with respect to y, we obtain

&u _ ¡Pv , d^ _ dPu 
dx2 dxdy an dxdy dy2

from which 

d*u d^u _ 
dx2 ' dy2 “ °

In a similar manner it can be shown that

^ + ^ = 0

dx2 dy2

(4)

(5)

Hence the real and imaginary parts of an analytic function of z satisfy Laplace’s 

Equation in two dimensions.

Now u(x,y) can be expressed as

u(z,i/) = Re/(z + jy) = i(f(x + jy) + fix - jy)] (7)
If y in this expression is replaced by — y, the value of u is unchanged, so that 
u(x,y) is symmetric about the x axis. It follows, therefore, that the real part of 
an analytic function /(z) defines a potential which satisfies Laplace’s Equation in 
two dimensions and which is symmetric about the x axis.
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Figure VIII-1 shows two electrodes 

which are assumed to extend to infin­

ity above and below the page. One is 

at ground potential, the other is at a 

positive potential. The coordinate axes 

shown in the figure are such that the 

x axis lies in the plane of symmetry of 

the electrodes. Let us suppose the poten­

tial along the x axis between the elec­

trodes is given by V = Jife, where 

/i(z) = Sfx + jy) = ufx.y) + jv^xy) is 

an analytic function. Then consider the 

potential given by

Wife») = ilA(* +jy) + /i(* -jy)] (8)

Fig. VIII-1 Two electrodes which are 
symmetric about an axis and which 

extend indefinitely above and below 

the page.

To show that no other function Ui(x,y) 

that Uifey) is in fact the potential in t 

we can make use of two other results oi

This satisfies Laplace’s Equation in two 

dimensions, and when y = 0, it gives 

the correct potential along the x axis. 

Furthermore, it is symmetric about the 

x axis.
also satisfies these conditions, and hence 

æ interelectrode space of Figure VIII-1, 

complex variable theory. These are:

1. Any function Ui(x,y) which satisfies Laplace’s Equation in two dimensions 

defines a function v2(x,y) such that j2(z) = u2(x,y) + jv2(x,y) is analytic. (See 

Churchill, p. 139.)

2. If/Jz) and >2(2) are analytic throughout a region in the z plane, and if/i(z) = 

/2(z) along a curve within the region, then /i(z) = /2(z) throughout the region. 

(Churchill, page 189.)

It follows from (1) above that the function u2(x,y) defines an analytic function 

/2(z). But/2(z) = /i(z) along the x axis, and consequently/2(z) = /i(z) at points off 

the x axis, and u2(x,y) = Ui(x,y).
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APPROXIMATE EXPRESSIONS FOR THE ELECTROSTATIC AMPLI­

FICATION FACTOR OF A PLANAR TRIODE AND FOR THE FUNCTIONS 

Fi AND Ft

Here we make use of complex variable theory and that branch of complex 

variable theory known as conformal mapping to derive approximate expressions 

for the electrostatic amplification factor of a planar triode and for the functions 

Fi and Ft. First it will be helpful to discuss a few concepts relating to conformal 

mapping.

Suppose that w = u(x,y) + jv(x,y) = f(z) = fix + jy) is an analytic function 

of z. (See Appendix VIII for a definition of an analytic function.) The function 

/(z) “maps” each point z. in the x-y plane into a corresponding point in the 

u-v plane. Suppose that two curves Ci and Ct in the x-y plane intersect at z«, and 

the tangents to these curves at z« make an angle y with each other. The two 

curves will map on the u-v plane into two curves Ci and Ct which intersect at w„. 

Furthermore it can be shown that, provided /(z) is analytic at z. and provided 

f'(z„) # 0, the angle between the curves C, and Ct at w. is also y. (See, for instance, 

R. V. Churchill, Introduction to Complex Variables and Applications, McGraw-Hill 

Book Co., Inc., New York, 1948, pp. 135 and 136.) A mapping which preserves 

angles between pairs of curves in this manner is said to be conformal.

For example, the equation u(x,y) = a defines a curve in the x-y plane, and 

every point on that curve maps onto a point on the straight line u = a in the u-v 

plane. (See Figure IX-1.) Similarly, every point on the curve v(x,y) = 6 in the x-y

u
a

Fig. IX-1 The curves u(x,y) = a and v(x,y) = 6 in the x-y plane map into the 
lines u = a and v = b in the u-v plane.

plane maps onto the line v = b in the u-v plane. Suppose the two curves in the 

x-y plane intersect at z„. Consider the slope of the curve u(x,y) = a at z0. Taking 

the total derivative of u(x,y) = a, we obtain

du = ^dx + ^dy = 0 (1)

dx dy
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and

du 

dy _ dx 

dx du 

dy

(2)

If the partial derivatives in Equation (2) are evaluated at z„, the expression gives 

the slope of the curve u(x,y) = a at z„. Similarly the slope of the curve v(x,y) = b 

at z0 is given by — (dv/dx)/(dv/dy), where the partial derivatives are evaluated at 

Zo- By applying the Cauchy-Riemann conditions given by Equations (2) and (3) 

of Appendix VIII, it is easily shown that the slope of one curve is minus the re­

ciprocal of the slope of the second curve and hence that the two curves are orthog­

onal to each other at z„. Since the curves map into the lines u = a and v = b in 

the u-v plane, the mapped curves are likewise orthogonal at the point of inter­

section, and the mapping preserves the angle between the curves.

Similarly, a set of orthogonal curves giving the equipotential contours and the cor­

responding field lines for a particular boundary value problem in the x-y plane would 

map into a second set of orthogonal curves in the u-v plane.

Suppose that V(x,y) is a solution of Laplace’s Equation in two dimensions for a 

particular boundary-value problem in the x-y plane. Then

dW dW
dx2 dy2

(3)

Let the potential V(x,y) be generated by applying voltages Vt, V2,... to electrodes 

1, 2,... in the x-y plane. The curves defining the electrodes in the x-y plane map 
into corresponding curves in the u-v plane. Let us further suppose that the voltages 

Vi, V2, ... are applied to the “mapped electrodes.” Now since each point zQ in 

the x-y plane defines a point w0 in the u-v plane, the potential V(z,y) can be ex­
pressed as V(w,v). Furthermore V(u,v) = Vi at mapped electrode 1, it equals V2 

at mapped electrode 2, and so on. In addition, it is shown below that V(u,v) 
satisfies Laplace’s Equation in the u-v plane, and since solutions to Laplace’s 

Equation are unique, it follows that V(u,f) gives the potential in the region sur­

rounding the mapped electrodes when the voltages Vi, V2,... are applied to them. 
Thus the equipotential contours and field lines in the x-y plane map onto cor­

responding equipotential contours and field lines in the u-v plane. This result is 

useful in solving two-dimensional potential problems because it may be possible 

to determine V(u,f) more easily than V(x,y). However, once we know V(u,v), 

we can obtain V (x,y) by a change of variables.
As a final point let us show that V(u,f) satisfies Laplace’s Equation in two 

dimensions. We can write

dV _ dV du dV dv 

dx du dx dv dx

and

dW dW/dMy d2V dudv dVdhc dW/dnV dVd2»

dx2 du2 \dz / dudv dx dx du dx2 dv2 \dz / dv dx2

A similar expression can be obtained for d2V/dy2. Substituting these expressions in
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Equation (3) and making use of Equations (2), (3), (5), and (6) of Appendix VIII, 

we obtain

Since the quantity in the rectangular brackets is generally not zero, it follows that

d’E , BW
Bu2 Bv1

(7)

Thus V(a,v) satisfies Laplace’s Equation.

Next let us see how these results can be applied to a planar triode in the absence 

of space charge. Figure IX-2(a) shows a portion of the planar triode. One grid

(a)

Fig. IX-2 A portion of a planar triode in the x-y plane mapped onto the p-6 plane.

wire is shown with a solid ring, and the two adjacent wires are shown with broken 

rings. Two lines extend from the cathode to the anode midway between the central 

grid wire and the two adjacent wires. The pitch of the grid is P, so that the spacing 
between the two lines is P. We shall consider only the portion of the triode between 

the two lines. Clearly the amplification factor of this portion of the triode will be 

the same as for the whole device.
It will be convenient to replace u + jv in the foregoing discussion by peP. The 

transformation which enables us to solve the potential problem in the planar 
triode is given by

u + jv = pe" = f(z) = = e^+iyup (8)

From this we see that

p = (9)
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and

e = (io)
Figure IX-2(b) shows how the triode maps onto the p-6 plane by means of this 

transformation. The anode maps onto a circle where daa is the grid-to-anode 

spacing; whereas the cathode maps onto a circle of radius where d„a is
the cathode-to-grid spacing. Since e2T = 256, it is evident that the radius of the 

mapped anode is very large compared with unity, and the radius of the mapped 

cathode is very small compared with unity. The center of the grid wire maps 

onto the point p = 1, 0 = 0, and the perimeter of the grid wire maps onto a closed 

curve about the point p = 1, 0 = 0. If the radius of the grid wire is very small 
compared with P, say less than P/20, the closed curve is nearly a circle and is 

small in diameter. Notice that the transformation maps the point (x, y 4- nP), 

where n is an integer, onto the same point in the p-6 plane as the point (x,y). Con­

sequently the remainder of the triode beyond the part shown in Figure IX-2(a) is 

mapped on top of the mapping shown Figure IX-2(b).

Suppose the mapped cathode carries an axial charge density +tc coulombs 
per unit length in the direction normal to the page, and the mapped grid carries an 

axial charge density +ra coulombs per unit length in the direction normal to the 

page. We shall assume that the radii of the mapped cathode and mapped grid 

are sufficiently small that these axial charge densities can be considered as line 

charges. An expression for the potential resulting from a line charge t coulombs 
per unit length surrounded coaxially by a cylindrical conductor is obtained by 

integrating Equation (1.4-5) with respect to radius r. Thus

V^Vo-J—lnr (11)

¿ire«

where V„ is a constant that adjusts for the level of potential in the region, and r is 
the radial distance from the line charge to the point where the potential is deter­

mined. The potential in the interelectrode space of Figure IX-2(b) is a super­

position of that arising from the axial charge density t„ and that arising from the 
axial charge density ra. The contribution resulting from the axial charge density r„ 

is given by Equation (11), where t becomes t„, and r becomes p. Since the radius 
of the mapped anode is much greater than unity, the axial charge density ra is 

nearly coaxial with the mapped anode. Hence to a good approximation Equation 

(11) also can be used to give the potential resulting from this axial charge, where 

in this case radius r is measured from the point p = 1, 0 = 0. Thus an approximate 

expression for the potential at point A is given by

V(p,8) = C - lap - Inp,

= C - - A-ln(p24- 1 - 2pcos0) (12)

where pi = (p2 4- 1 — 2p cos 6)w is the distance from the point p = 1, 0 = 0 to 

point A, and C is a constant which adjusts for the level of potential in the region.
Combining Equations (9), (10), and (12), the potential in the interelectrode 

space of the planar triode can be expressed as

V(x,y) = C- ^- -^-ln( 4- 1 - 2e2”'p cos /y ) (13)
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At the cathode x = —dcs, and the exponential terms in the argument of the log­

arithm are extremely small compared with unity. The argument of the logarithm 

is therefore nearly 1, and the potential at the cathode is approximately given by

K« = C + (14)
s«P '

If we assume that the cathode potential is zero, then

« Tedcg
ZoP

At the anode x = d„a, and the first term in the argument of the logarithm is far 

larger than the second and third terms. Neglecting the second and third terms, and 

substituting for C from Equation (15), the anode potential is found to be

y-   X cBcg + Ted ga + Xgdga ...
Vao — _ (16)

So*

Examination of the equipotentials given by Equation (13) indicates that in 

the neighborhood of the origin they are very nearly circles about the origin. If 

the grid radius R is small compared with P, say R < P/20, the potential at (R, 0) 

is therefore very nearly equal to the potential at (0, R). Let us evaluate the 

potential of the grid by setting x = 0 and y = R. Then

F-=-^-2^ln2smF (17)

where we have made use of the relationship 1 — cos 2a = 2 sin2 a.

Now the electrostatic amplification factor of the triode is equal to minus the 

ratio of the anode voltage to grid voltage needed to give zero electric field at the 

cathode. Since xc = 0 when the electric field at the cathode is zero, the electrostatic 

amplification factor is given by

Me« —
V " ao 
v~ t 1 go for

2irdeo
Pin

(18)

As a final point, Equations (16) and (17) can be solved for xc and xs and the 
resulting expressions can be substituted in Equation (13). In this way we can 

express V(x,y) in the form

V(x,y) = (19)
where

(
2^- \ 
PTx/p + 1 - 2e2T*/P cos — y j

11 ~ , A------------------------------------------------ L (20)
^ga -r ™cg i

and

dcg + X + (P/Axdgfiiicdcg In + 1 - 2«Wl'p cos ^y\
F2 =------------------------------------------------------------ -------------------------------------------------—- (21)

dga + dcg + Pesdcg



628 APPENDIX IX

At x = —dce, the argument of the logarithmic term is very nearly 1, and the 

derivative of the logarithmic term is essentially zero. If these approximations are 

taken into account, it is easily shown that

dF,

“ iFt 

dx

(22)

Note that the origin for the coordinate system is different here than in Equation 

(5.1-1).
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IMPEDANCE OF A SPACE-CHARGE-LIMITED PLANAR DIODE

When a small ac signal is superim­

posed on the dc voltage applied to a 

space-charge-limited diode, the electron 

velocity exhibits an ac component, and 

an ac induced current flows in the ex­

ternal circuit connected to the diode. 

Here we derive an expression for the im­

pedance given by the ratio of the applied 

ac voltage to the ac induced current in 

the external circuit for the case of a 

planar diode.

The planar diode is illustrated in 

Figure X-l. We assume that the virtual 

cathode coincides with the actual cath­

ode so that, strictly speaking, our results 

apply only to this case. Let us gather 

together three relations which we shall 

use later in obtaining the impedance of 

the diode:

Fig. X-l A space-charge-limited planar 
diode.

1. From Equations (4.1-8) and (4.1-10), the dc current density flowing between 

the electrodes of the diode is given by

4s0(2>;)1'2 V™ = =

9 i' 9 cP
(1)

where p = e/m, V is the dc potential at distance z from the cathode, u. = ^2iiV 

is the dc electron velocity at z, is the dc anode voltage, and d is the electrode 

spacing.

2. The electron transit time between the electrodes in the absence of an applied 

ac signal is given by

(2)

where we have substituted from Equation (1) for

3. The low-frequency “dynamic anode resistance” for a unit area of the electrodes 

is given by

_ dV., _ 21^ _ Tod
r“ dJo 3 Jo 2eo '

Note that this has the dimensions of resistance times area.
Let us proceed now with the derivation of the impedance of the diode. Since 

the fields are one-dimensional, Poisson’s Equation for this problem is

dE _ p_ 

dz e.
(4)
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where p is the space-charge density at the point where E is determined. The 

equation of continuity, Equation (1.3-2), becomes

dp(u0 + u) dp
dz + dt = ° (5)

d 

dz

/ ' dE
p(U0 + U) + So—

where u is the ac component of the electron velocity. Combining Equations (4) 

and (5), we obtain

= 0 (6)

This equation states that the quantity p(u0 + u) + zo(dE/dt) is independent of z 

in the region between the electrodes. The term p(u„ + u) is simply the current 

density resulting from the flow of charge between the electrodes. The second 

term also has the dimensions of a current density and is called the displacement 

current density.
To understand the displacement current density better, consider a parallel-plate 

capacitor in the absence of space charge. If a time-varying voltage V is applied 

to it, a current i = C(dV/dt) = e0A(dE/dt) flows in the leads to the capacitor. 

The quantity efdE/dt) is the displacement current density. The total displace­

ment current crossing a surface between the plates is equal to the conduction 

current in the leads. It is a real current in the sense that it gives rise to the same 

magnetic field that would be produced by a similar distribution of current in a 
conductor. In the parallel-plate capacitor, the displacement current density is 

uniform everywhere between the plates. However, in the space-charge-limited 

diode, the electric field lines extend between charge that is in transit between the 

electrodes and induced charges on the anode. Clearly E is a function of z in this 

case, so that the displacement current density also is a function of z.

We shall call the quantity p(u„ + u) + tAdE/dl) the total current density and 

denote it by Jt- The current flowing in the cathode and anode leads of the diode 

is given by JtA, where A is the area of the electrodes. With the aid of Equation (4), 

Jt can be expressed as
dEdz , dE\ 

dz dt dt /

The quantity in the brackets is the time rate of change of the electric field experi­

enced by a moving electron. The first term arises from the variation of E with z 

as the electron travels with velocity dz/dt toward the anode, and the second term 

arises from the time variation of the field. The sum of the terms gives the total 

derivative of E with respect to time. Hence

dE

dE
Jt = p(u0 + u) + = e„|

The acceleration of the electron is given by

- mF dp--^ (9)
Differentiating this with respect to time and substituting for dE/dt from Equation 

(8), we obtain

d?z dE_ri 
dp = ^di ~ (10)
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Equation (6) showed that Jr is independent of z. However, it is not independent 

of time if the voltage applied to the electrodes is changing with time. If a small 

sinusoidal voltage is superimposed on the de voltage between the electrodes, JT 

will have a sinusoidal component and can be expressed as

Jt = — (Jo + Ji sin at) (11)

where Jo is the current density given by Equation (1), and Ji is small compared 

with Jo- The minus sign implies that the current flows in the minus z direction, 
or toward the cathode. Substituting in Equation (10) for Jr, we can perform suc­

cessive integrations with respect to time to obtain expressions for the acceleration, 

velocity, and position of an electron with respect to time. Let the time the electron 

left the cathode be ta. The boundary conditions at time L are z = dz/dt = ^z/dl2 = 

0. Integrating Equation (10) from t, to t then gives

^z v
Jo (t — to)--------(cosa/ — coswL) 

U
(12)

Integrating a second time gives

dz v I 

dt e© I

Finally,

, 9 F j (t - M3 

z — 7 do - SoL b

(t to)2 J\. . . Jl
.— ----------------Jsinod — sino««) -f—(t — L) cosed,

2 w2 œ

r Jl/ i i \ I i \ • g , Jl(t to)2
+ — (cosai — cos aio) + -dt — to) sinat. H --— 

a3 a2 a 2

(13)

cos at.

(14)

By setting z = d in the last of these equations, the time t — t„ becomes the 
electron transit time T. If we then multiply both sides of the equation by 6g»/i?Jo, 

the equation can be rewritten in the form T3 = T„3 + i = T„3(l + b/T03), where 

5 is a summation of terms containing Ji/J„ as a factor. If the ac voltage applied 

between the electrodes is small compared with the de voltage, Ji is small compared 

with J», and 8/T„3 is small compared with unity. We can then write T = T„ 

(1 + 5/3 T„3) = To + 5/3 To2. Since 5/3 T„2 is small compared with T„, we can set 

t — to = To and to = t — T„ in the expression for 5/3To2. This is equivalent to 

neglecting terms containing the product of two or more small quantities. Thus we 

obtain

T= To -
Ji 2

JoO>3To2
cosed + uTo sinw(Z — T„)

+ -1) cos «(t- T.)
(15)

As a final part of our calculations we shall integrate the electric field E from the 

cathode to the anode to obtain an expression for the instantaneous voltage between 

the cathode and anode. Thus

(16)

where (Pz/dt2 is the acceleration of an electron at distance z from the cathode at 

time t, and we have substituted E = — (l/y)cPz/dt2 from Equation (9). The
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derivative dz/dt» can be found by differentiating Equation (14) with respect to t„. 

Thus

dz ii (t - t.)2 . .
— =------------------------(J » + Ji sm o>t„)
(Ug So Z

(17)

We can now substitute from Equations (12) and (17) into Equation (16) and 

carry out the integration. We shall neglect terms containing the product of two 

or more small quantities, that is, terms containing Jf and higher powers of A. 

The time T appears in the answer, and we can substitute for it from Equation (15). 

Thus we obtain

va = V. + [2(1 — cosai?») — ù>T„ sinaiTJ sin ad
So w (,

— I -——-—H o>T<,(l + cosaiT») — 2 sin wT0 

I 6

This is of the form

va = Vo + rJi sin ait + xJi cosali

cosali (18)

(19)

where r and x are, respectively, a resistance for a unit area and a reactance for a 

unit area and are given by

r = 12r,
2(1 — cos oiTo) — aTg sin aT.

(20)
“L (“T1«)4

x 12r° +
qiTo(l + cos oiTo) — 2 sin oiTo

(«To)4

—r,
W1

84
(21)

and Ta = iVao/Jo from Equation (3). The quantities r/ra and x/ra are plotted in 

Figure 7.1-6 as functions of oiT„.
An ac induced current JiA sin ait flows in the external circuit in response to the 

applied ac voltage given by Equation (19), where A is the area of the electrodes. 

The diode therefore presents an impedance given by Z = (r/A) + j(x/A) to the 

applied ac voltage. At low frequencies, or small wT., this impedance reduces to

z - A1 -4"r' (22)

In constructing an equivalent network for the device it is more useful to use the 

admittance given by the reciprocal of this, or

14/ Q \ QY = > = -( 1 +^T„) = B.+jwMa

Z rN 10 / o
(22)

where g0 = A/ra = Adlao/dVao, and C„ = s<>A/d is the capacitance of the parallel­

plate capacitor formed by the anode and cathode in the absence of space charge. 

This equation indicates that at low frequencies the diode acts as a conductance 
g. = AdJo/dVaa shunted by a capacitance equal to f times the capacitance of the 

diode in the absence of space charge. A low-frequency equivalent network for 
the diode is shown in Figure 7.1-8.
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LLEWELL YN-PETERSON COEFFICIENTS
Tabulated below are the coefficients in the Llewellyn-Peterson equations dis­

cussed in Section 7.2.

1 T’lF
A = “”(Wao W&o)” ” 1 — 

e0 2 pe»

1 T2
= MP-W)

C* = —-2f(ua(, +

UtoP + f(uao + Uto)P

D* = 2f

E* = —[^ - f (u^ +

p* _ e° 2£/U<w + Utg\ a

y t\ ut, r

n T2 1
G* = MP - ßQ) - UoJ> + + OP]

So P Ubo

h* = - niSo 2 y Ubo / P

I [Uao f*(Uao “I- Wfco)]®
Ubo

The following dc quantities and relationships pertain to these coefficients:

Uao and Uto are the dc electron velocities at planes a and b.
T is the electron transit time from plane a to plane b in the presence of the dc 

space charge in the interelectrode space but in the absence of applied ac 

signals.

T„ is the electron transit time from plane a to plane b in the absence of space 

charge and in the absence of applied ac signals. (Note that T and T„ have 
meanings in this appendix different from those in Appendix X.)

f is a space charge factor related to T and T, by f = 3(1 — T„/T).
If d is the distance from plane a to plane b, then

T
d = (1 - f/3) (Uao + ut,)-

A

If Jo is the dc current density passing through either of the planes,

e„ 2f
4 o — (Wqo “T Ubo)
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The following quantities contain the angular frequency w of the ac signal.

ft = jwT, where J = 1, and w is 2ir times the frequency of the ac
signal.

„ . ft2 ft3 ft1P = 1 - - ftt~^P- ■ ■
Z O o

, ft2 ft3 ft3
i p 2 6 24

„ . ft3 ft* ft3 ft38=2 — 2e-^ -ft - = -t-4-E--±-4-X-..
p p 6 12 40 180



APPENDIX XII

SOME USEFUL VECTOR RELATIONSHIPS

Let A be an arbitrary vector and 4> an arbitrary scalar in the real or phasor 

notation. ix, i„ etc. are unit vectors in the coordinate directions indicated by the 

subscripts. The following relationships apply to A and 4>. In rectangular coordi­
nates:

A — 1XAX -j- IgAg -j- laAa (1)

v a dA, dA„ dA, 

V’A= dT + dT + lT
dA. _ dAA . (dA, _ dAA . (dAg _ dAA 
dy dz / X dz dx / *4 dx dy /

. d$ , . d$ , . d$ 
= u——|- iB——|- is- 

da: dy dz

In cylindrical coordinates:

A — i,Ar + i,A, + i,A,

dAr Ar 1 dA, dA, 
v-A = ‘d7 + 7 + ;’dF + 17

IdA, _ dAA . /dA_r _ dAA . /dA, 1 dAr AA

r dB dz / \ dz dr / *4 dr r dB r /

. M 1W W
*rdr ^r dB 2‘dz

In any coordinate system, the following two theorems are true: 

Gauss’s Theorem

^A-ndS = Jv-Adv 

dosed surface volume

Stoke’s Theorem

A-dl = y (V X A)-ndS

dosed loop surface

The following vector identities may be useful:

A X (B X C) = B(A-C) - C(A-B)
V-(A X B) = B-(V X A) - A-(V X B)

V’A = V(V-A) - V X (V X A)
635
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Equation (13) defines the Laplacian of a vector. In rectangular coordinates it is

given by

V2A = LVU, 4- ifVsA, 4- i,W, (14)

where

A’ dx2 + dy2 + dz? (15)

H = + (16)
dx2 dy2 dz2

V2A^ (17)
’ dx2 dy2 dz2 (17'

Detailed proofs of the above relationships are given in texts on vector analysis 

or advanced calculus. A good discussion is given in J. B. Hildebrand, Advanced 

Calculus for Engineers, Chapter 6, Prentice-Hall, Inc., New York, 1949.
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GROUP VELOCITY AND ENERGY FLOW

The .physical significance of the group velocity can be made clearer by considering 

the propagation of a pulse modulated carrier wave down a lossless transmission 

line or waveguide of arbitrary length L.1 This line is assumed to propagate the 

energy in a single mode, which can be characterized by one branch of an w-ft diagram 

of the type shown in Figure 8.5-2.

Let us suppose that some information in the form of a pulse of electromagnetic 

energy is impressed into the waveguide at the input end. We can ask ourselves the 

question: How much time will elapse before we can detect this pulse or information 

at the output end, a distance L away?

Since all of the field components in a single mode are related by Maxwell’s 

Equations, we can study the propagation of just one of them, and this 

will characterize the behavior of the other components as well. Assume that this

Fig. XIII-1 A high-frequency carrier with a modulation envelope m(t).

component has a time variation f(f) at the input as shown in Figure XIII-1. As is 

usual with modulation systems, the rate of change of the envelope m(t) is assumed to 

be very slow compared with the frequency of the carrier. This means that a 

Fourier analysis of the resultant waveform fit) would yield frequency components 

clustered closely to the carrier frequency. Thus f(f) may be written as

f(l) = Re (1)

where wa is the carrier radian frequency.

The modulation envelope m(t) may be written in terms of its Fourier transform

M(p)tir‘dp (2)

■Reference 8h, pp. 81-84.
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Since any practical modulation system will have a finite bandwidth, this equation 

can be written

Z
Po

M(p)tiv,dp (3)

-Pa

This expression may be used in Equation (1), obtaining

Z
n

M(p)ei'“o+r‘',tdp (4)
-Pa

The quantity /(t) is the superposition of terms of slightly different frequencies, 

centered about the carrier frequency. Thus, the pulse of energy is a superposition 

of waves of different frequencies, each with its own propagation constant. Each 

component has a different phase shift from the input to the output. Since the 

system is linear and lossless, the output is a superposition of the input frequencies, 

each one shifted in phase by the proper amount. If g(t) is the time variation of the 

field component at the output,

C Pa
g(t) = Re / Mlpye^^-^dp (5)

J —Po

where 0 is a function of w0 + p, the frequency. Since all of the frequency com­

ponents are close to the carrier frequency, the variation of the propagation constant 

with frequency may be adequately represented by the first term of a Taylor series.

dB (6)

where Ba is the propagation constant for the carrier frequency. We thus obtain

g(t) = (7)

This represents a carrier modulated by a modulation envelope n(t), where

f Po
n(l) = / (8)

J—Pa

Comparing with Equation (3), we see that

m(0 = n( t + (9)

that is, the modulation envelope at the output is exactly reproduced from the input, 

but at a time (dB/dw)L later. This is just as if the pulse of energy had traveled 

with a velocity

dw
V‘ = dB

This is the physical significance of the group velocity.
The same relationship holds for all of the field components. Hence, if we could 

visualize the electromagnetic bundle of energy, we would see it move physically 

with the velocity v,.
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These results may be applied to continuous wave propagation at a single 

frequency. That is, we may think of a continuous wave as being a superposition of 

rectangular modulated pulses placed end-to-end. It is clear that the power flow 

in this case is given by

P = VgWt (11)

where Wi is the total energy stored per unit length.
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TIME AVERAGE STORED ENERGY

The instantaneous magnetic stored energy is given by

W = i^[K(t)<2dv (1)

volume

The instantaneous magnetic field may be written in the phasor notation

K(t) = ReHe1"1 (2)
where

H = H, +JH. 

and Hr and H,- are real. Thus

3C(i) = H, cos at — Hf sin at (3)
Equation (1) may be written

W (t) = Im« / (I Hr |2 cos2 at + | H,-12 sin2 at — 2Hr • H,- sin at cos at)dv (4)

volume

The time average of this quantity is given by

W.re = iM«y[|Hr|2 + | Hi |2]dti (5)

volume

But this is simply

Wivg = (6)

volume 

Now in a periodic structure, since the time average magnetic stored energy equals 

the time average electric stored energy, the total time average stored energy per 

cell is given by

WL = |M« J | H |2<fo (7)

unit cell
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KLYSTRON INTERACTION FOR A HIGH DEGREE OF BUNCHING

In the theory of klystron interaction, large values of the bunching parameter 

(X > 1) result in crossings of the electron trajectories such that a given arrival 

time near the bunch center corresponds to three different departure times. This 

behavior is illustrated in Figure 9.1-2.

In Figure XV-1, the curve for X = 1.5 is replotted as n vs. ra, where

and

Ta = wt0

Tb = wt — d

(1)

(2)

That is, ra and n are normalized departure and arrival times, respectively. Certain

Ta —

Fig. XV-1 Output gap arrival time in radians plotted vs. the input gap departure 
time in radians for X = 1.5.
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points have been labeled on this graph which characterize the limits of the multi­

valued branches.
Assuming that the subscript 2 in Equation (9.1-19) refers to the branch with 

negative slope from to ro3, Equation (9.1-19) may be written as

i(t) = —Io
dra 
dn,

draI I dra 
dn, ¡2 dn 3_

(3)

Equation (9.1-20) for the Fourier coefficient a„ becomes

a„ cos nndn

cos nndn

Io I dra j — I — cos nndn
22 J T6a

(4)

Consider the second integral term. When the variable of integration is changed, 

one has:

cos nndn (5)

— cos nrtdn (6)

and

P’drJ

I — I cos nndn
Jn, an|3

(7)

When Equations (5), (6), and (7) are added together, one obtains the simple 

result:

J “al

Equation (4) thus becomes simply:

(8)

(9)

This equation is the same as the first of Equations (9.1-22) which was derived for 

the case of small bunching parameter (X < 1), and hence it leads to the same 

Fourier coefficients. The bn coefficients may be shown to be identical in the same 
fashion.
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A DERIVATION OF THE EXPRESSION FOR THE 

THERMAL NOISE GENERATED BY A RESISTANCE

Here we derive an expression for the thermal noise generated by a resistance, 

using as a basis for our derivation the random motions of the charge carriers in the

Fig. XVI-1 A cylinder of resistive material with two conducting end plates.

resistance.1 Figure XVI-1 shows a view of the resistance. We shall assume that the 

resistance consists of a cylinder of resistive material between two conducting end 

plates. The end plates are joined by an external wire. We shall further assume 

that the charge carriers within the resistance have a charge — e, a density n per 

unit volume, a mobility p, and a diffusion constant D. (See Section 14.2 for a dis­

cussion of diffusion and mobility.) If a voltage v were applied across the resistance, 

there would be an electric field v/L within the resistance, where L is the distance 

from one end plate to the other, and a current

v . v ...
z = -epnA = - (1)

Li it

would flow through the resistance, where A is the area of the end plates, and R is 

the magnitude of the resistance. We assume that the linear dimensions of the end 
plates are sufficiently large in comparison with L that the effects of fringing fields 

can be neglected. The resistance R is then given by

If there is no applied voltage across the resistance, the motions of the charge 

carriers is of a random-walk nature, sometimes called Brownian motion. (For a 

discussion of Brownian motion, see E. H. Kennard, Kinetic Theory of Gases, Sections 

160-164, McGraw-Hill Book Co., Inc., New York, 1938. A second informative 

discussion is given by D. K. C. MacDonald, Noise and Fluctuations: An Introduction, 

Section 1.2, John Wiley and Sons, Inc., New York 1962.) On a microscopic scale 
the individual charge carriers travel along highly irregular paths which are char-

'This derivation follows that given by K. M. Van Vliet and J. Blok, Physica 22, 
231, 1956.
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acterized by frequent abrupt changes in direction. For such motion, it can be 

shown that the mean squared displacement per carrier in one coordinate direction, 

say the x direction, in time t is given by

Ax2 = 2Dt. (3)

A derivation of this equation is given in Kinetic Theory of Gases, Section 163.

In Figure XVI-1 let the x direction be parallel to the axis of the cylindrical 

resistance. If an individual carrier with charge — e travels a distance Ar within the 

resistance, where Ar has a component Ax in the x direction, there is a net displace­

ment of charge

(4)

in the external circuit, where again it is assumed that the linear dimensions of the 

end plates are large compared with the distance L. This equation is similar to 

Equation (6.1-7). Squaring both sides of this equation and taking the mean value 

for a large number of carriers, we obtain

(5)

Combining this with Equation (3), the mean squared displacement of charge in the 

external circuit per carrier in time At is

Now the diffusion coefficient is related to the mobility by

kT 
D^-p

as in Equation (14.2-12). Combining Equations (2), (6), and (7), we obtain 

where N„ = nAL is the total number of carriers within the resistance.

Ao(AZ)
If we set iJAt) = ———> where if Al) is the mean current in time At resulting 

from the charge displacement Aq(At), we have

(9)

The subscript e is used here to indicate that we are dealing with the motion of an 

individual carrier. This expression gives the mean of the square of the average 

current flowing in time At in the external wire as a result of the motion of an in­
dividual carrier within the resistance. By Fourier analysis it can be shown2 that the 

2C. J. Bakker, Physica 5, 581, July, 1938. See Equation (17).
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frequency distribution associated with a rapidly fluctuating current with mean 

square average value over a time At of t,(Ai)2 is given by

if = HJAtfiAtAf (10)

where △/ is the bandwidth over which i,(i)2 is measured. Substituting from Equa­

tion (9), we obtain

if
^Af 
N„R 1 (U)

Since the motions of the individual carriers are independent of one another, the 

mean-square current flowing in the external wire as a result of the motions of all 

N0 carriers is N, times that given by Equation (11) and hence is given by

(12)
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Aberrations in lenses, 89-92
Abnormal glow discharge, 543, 553
Activation of oxide cathode, 46-47

Admittance, beam, 205, 206-216
Admittance, input, 195

grounded-cathode triode amplifier, 195
grounded-grid triode amplifier, 195
high-frequency effects, 219

measurements of, 224
Ampere’s circuital law, 1, 16

Ampere’s rule, 17
Amplification factor p, 159, 168

electrostatic amplification factor m«, 
153-156, 623-628

typical values of, 169
Amplifiers:

crossed-field, 449-458
grid-controlled tubes, 183-232
grounded-cathode, 192
grounded-grid, 196, 202
klystron, 337-345
traveling-wave, 349-394

Amplitron, 449-458
Amplitude modulation of oscillators, 415, 

460
Angular momentum of an electron about a 

nucleus, 598
Anode, 113
Anode resistance, 158
Antibunch, 296
Applegate diagram:

reflex klystron, 312
two-cavity klystron, 295

Arc discharge, 555-556
Attenuation constant a, 267, 275, 360,

362, 402, 453
Available power, 468, 491
Available power gain, 468, 492
Avalanche, 524, 530, 536

Avogadro’s hypothesis, 514

Back bombardment, 55, 427, 442
Backward wave, 284r-285, 372, 399, 450, 

460
Backward-wave amplifier, 398-401, 416-

420, 450
bandwidth, 416 
gain, 404, 417—420

Backward-wave oscillator, 398-416
beam interaction impedance, 414
efficiency, 410

frequency, 405
M-carcinotron, 458-464
starting current, 406-408
tuning range, 410

Bandwidth:
backward-wave amplifier, 401, 416
backward-wave oscillator, 401, 410

grid-controlled tube amplifier, 196-201
klystron amplifier, 339-345
noise, 469
traveling-wave amplifier, 381, 390, 392, 

394
Beam-coupling coefficient M, 208, 300
Beam-forming electrode, 136, 177
Beam interaction (coupling) impedance

K, 357, 373-378
backward-wave, 412-414
crossed-field devices, 430, 454

helix, 388-390
Beam-loading admittance, 205, 206-216, 

308, 315
in grounded-cathode stages, 221-226

Beam-power tubes, 176-178
equivalent circuit, 190-196

Beam spreading:
due to de space charge, 93-96

due to thermal electrons, 126-135
Bessel functions:

383
J^X), 305
K.(X), 383

Bessel’s equation, 374
Bias, 149, 156, 170, 178, 192

Bifilar helix, 109
Binder, 46
Boundary conditions:

electric fields, 249-251
magnetic fields, 251-252

Breakdown, 537
Breakdown voltage, 510, 539
Brewster angle, 604
Brewster window, 603
Brillouin diagram, 282-286, 370-372

helix, 382-388
magnetron, 430
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Brillouin flow, 99-100
in a magnetron, 431-435
magnetic field required, 100

Bunching of electron beam, 206-219, 

221-224
in a crossed-field device, 439, 460

in a klystron, 300-305, 311
in a traveling-wave amplifier, 352-353

Bunching parameter X, 302

Capacitance:
beam-loading, 308
energy stored in, 246

input, measurement of, 225
interelectrode, 170, 173, 179, 194-196,

198-201, 212, 216, 218
of a cavity resonator, 235, 440
parallel plates, 12
slow-wave structure, 378

Carbonate, double or triple, 47
Cascade backward-wave amplifier, 419

Cathode:
cold, 531

filamentary, 56
impregnated, 53

in electron guns, 136
L-cathode, 53
magnetron, 55, 428
materials, 41-57
oxide, 45
Philips, 53
photo, 68, 70
pressed, 53
thoriated tungsten, 44

tungsten, 43
Cathode back bombardment, 55, 427, 442

Cathode dark space, 552
Cathode-fall region, 545
Cathode lead inductance, 219-221
Cathode-ray tube:

crossover, 83, 130, 144—145
deflection defocusing effects, 92-93

electron gun, 144—147
Cauchy-Riemann conditions, 621

Cavity resonator, 233-236, 267-270, 307-
310, 338, 440-441, 446-447

capacitance, 235
current induced by a beam, 306

inductance, 235-236
quality factor (Q), 307-309

resistance, 236, 307
resonant frequency, 235, 269
velocity modulation produced by, 298- 

300
Characteristic curves:

for a pentode, 180

Characteristic curves (Cant.'):

for a tetrode, 172
for a triode, 157

Characteristic impedance, waveguide, 263- 

264
Charge density modulation, 325
Child-Langmuir law, 119
Chromatic aberration, 91

Circuit efficiency, 441, 453
Circuit equation:

backward-wave oscillator, 401-403
traveling-wave amplifier, 357-361

Cleanup, 568
Coaxial magnetron, 446
Cold-cathode diode, current-voltage char­

acteristics of, 538
Cold-cathode discharge, 535-556
Cold-cathode tubes, 556-565
Collector electrode, 297

Collision probability Pc, 522, 570
Complex propagation constant r, 360,402
Conductance:

in a cavity resonator, 307, 440
input in grid-controlled tube, 221-226
noise equivalent grid conductance, 489, 

492
Conduction electrons, 32-35
Confined flow, 102-103
Conservation of charge, 9

Conservation of energy, 8, 183, 187-190
Constant-current generator, 191-192
Constants, physical, 611
Constant-voltage generator, 193

Contact potential, 37-38
Continuity equation, 9, 242, 355, 613
Control grid, 149, 151

Convection current, 217, 325, 355, 358
noise fluctuations, 495-499

Conversion table, 611
Correlation of noise, 472, 488-489, 492, 

500
Counting tube, 564-565
Coupling, cavity to transmission line, 

429,447
coaxial line to waveguide, 267 

Coupling networks, interstage, 196-201 
Crookes dark space, 552 
Crossed-field amplifier, 449-458

bandwidth, 451
compared with other amplifiers, 458

efficiency, 453-456
gain, 450-452

Crossed-field devices, 423-464
amplifier, 449-458
magnetron, 428-449
M-carcinotron, 458-464
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Crossover, 83, 145
maximum current density, 130, 145

Curl, 17, 635

of electric field, 242
of magnetic field, 17, 242

Current density, maximum at beam cross­

over, 130, 145
Current density, total, 217, 630
Current fluctuation noise, 495-500
Current induced by moving electron (see

Induced currents)
Current modulation:

klystron, 300-305
space-charge waves, 326, 336

Cutoff frequency, wavelength, 240, 264
slow-wave structure, 372

Cycloidal electron motion, 7, 425
Cyclotron frequency, 424

Deflection defocusing, 92-93
Deionization time, 587
Determinental equation:

backward-wave tube, 403
traveling-wave amplifier, 361

Diffusion, 515-518
coefficient for electrons diffusing through 

a gas, 517
coefficient for molecules diffusing 

through a gas, 517
diffusion coefficient D, 516
diffusion equation, 517

Dimensions of physical quantities, 610
Diode, 113-126, 620

arbitrarily shaped electrodes, 119-122
impedance of a planar diode, 214-216, 

629-632
scaling laws for, 121-122
shot noise, 467, 476-478, 485-487

Disc leads, 227
Displacement current, 242
Displacement vector, 10
Divergence, 10, 635

of current, 9, 244
of electric field, 10, 243
of magnetic field, 16, 243

Double-tuned resonant circuit, 200
Drift velocity in a plasma:

electrons, 521
ions, 519-521

Drift velocity in crossed fields, 425
Duty cycle, 446
Dynamic anode resistance ro:

for a diode, 215, 482, 629
for a triode, 158
typical values of, 169

Dynode, 67

Efficiency:
backward-wave oscillator, 410
circuit, 441, 453
crossed-field device, 427, 443, 444, 448, 

453-156
electronic, 345
traveling-wave amplifier, 381

Einzel lens, 77
Electric field, 1-4, 612

boundary conditions, 249-251
force due to, 1-2
line charge, 11
line integral of, 3
point charge, 11
surface charge, 12
time varying, 241-244, 613

Electric flux, 10-11
Electric flux density, 9
Electrolytic tank, 82, 139
Electromagnetic waves:

guided, 239-241, 259-267
plane, 236-239, 245-246

TE, 259-265
TEM, 271-272
TM, 259, 265-267

Electron beam, 93-109
bunching, 206-219, 221-224, 300-305
focusing, 96-109
maximum current density, 93-96, 130

noise fluctuations, 495-502
space-charge waves, 322-337
spreading due to space charge, 93-96
thermal effects, 126-135

Electron emission, 30-72

Electron guns, 135-147
for cathode-ray tubes and storage tubes, 

144-147
for microwave tubes, 135-144
klystron, 297, 310, 321, 344
low-noise, 143, 501-504
M-carcinotron, 459
Pierce, 137

traveling-wave amplifier, 381, 390, 

501-504
Electronic admittance, 315-318
Electronic efficiency, 345, 381, 394

backward-wave oscillator, 410, 416
crossed-field amplifier, 454

magnetron, 443
Electronic equation:

backward-wave oscillator, 401
traveling-wave amplifier, 355-357

Electronic tuning:
backward-wave oscillator, 401
linear, 463
M-carcinbtron, 462-464
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Electronic tuning (Cont.):

reflex klystron, 318
two-cavity klystron, 310

Electron lens (see Lens)
Electron optics, 74-93
Electron trajectories:

in a crossed-field device, 439, 460

in a klystron, 295, 311
in a traveling-wave amplifier, 352
in an electric field, 2-5

in an electric lens, 76
in combmed electric and magnetic 

fields, 5-8, 423-428
Electron volt, 4
Electrostatic amplification factor g„,

153-156, 623-628
Electrostatic focusing, 108-109

Emission:
cold-cathode, 531-535
field, 31, 555
photoelectric, 68-72, 533

secondary, 62-68
space-charge-limited, 117

spontaneous, 595
stimulated, 595

temperature-limited, 38-40, 117
thermionic, 30-61, 555

velocities, 57, 126, 614
Emission energies, 57-61, 614-615

effects of, 126-135, 140-141
End hats, 428-429
Energy, electromagnetic, 246-247, 263, 

287-289
electric, 246
magnetic, 246-247

stored in cavity resonators, 235-236, 640
stored in slow-wave structure, 287, 373, 

389, 640
Energy of an electron, 2-4, 6, 8-9, 183, 

187-190
Energy of electron emission, 57-61, 

126-135
Energy states, 32-35
Equation of continuity, 242, 355, 613
Equation of state for a perfect gas, 514
Equivalent circuit:

grid-controlled tube, 191-196, 218
interface impedance, 50
klystron cavity, 308, 309
magnetron cavity, 440
noise in grid-controlled tube, 484
shot noise, 477, 483
slow-wave structure, 371
thermal noise, 472, 474

Excitation energy of noble gas molecules, 
523, 597

External Q, 309, 441

Fabry-Perot interferometer, 596, 604
Faraday dark space, 552
Faraday’s law, 242

Feedback in a backward-wave oscillator, 

399-400
Fermi level, 36
Ferromagnetism, 19
Field distribution:

in cavities, 235, 269, 446
in slow-wave structures, 271, 282, 425
in waveguides, 240, 266

Field emission, 31, 555

Field equations for time-varying systems, 

242-245
Fields:

normal, 251, 252
tangential, 250, 252

Field straighteners, 25, 390
Flicker noise, 490-491

Floquet’s theorem, 273-277
Fluorescent lamps, 46, 553, 591

Flux:
electric, 10-11

magnetic, 15
Focal length, 81, 88, 139
Focal point, 81
Focusing electron beams, 93-109
Forbidden regions, 386-388
Force on charged particle, 1-2, 5-8

Forward wave, 372, 449
Fourier analysis:

applied to klystron beam current, 304, 

642
applied to space harmonics, 276
noise fluctuations, 495

Frequency pulling, 441, 445

Frequency pushing, 409, 438-440, 460
Frequency scaling, 235, 291
Fundamental space harmonic, 283

Gain:
available, 468
backward-wave amplifier, 404, 417-420
crossed-field amplifier, 450-452
klystron, 339-345
traveling-wave amplifier, 368-370

triode amplifier, 193
Gain-bandwidth product, 196-201, 231
Gain parameter C, 361

Gap factor Afi, 376
Gas:

conduction through, 520-540

diffusion, 515- 518
kinetic nature, 511-514
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Gas (Cant.):

mobility, 518-520

pressure, 511
Gas lasers (see Lasers)
Gas tubes:

cold cathode, 535-565
hot cathode, 567-592
rectifiers, 581-587
voltage reference tube, 556-558

Gaussian distribution of electrons, 128

Gauss’s law, 1, 9, 241
Gauss’s theorem, 252, 635

Getter, 557
Glow discharge, 542, 544-553 (see also

Hollow-cathode discharge, 561)

Gradient, 635
Gradient of potential, 3
Grid:

control, 149, 151
screen, 149, 170
suppressor, 150, 178

Grid-controlled tubes, 149-232
beam-power tube, 176-178
equivalent networks, 190-196
high-frequency effects, 204-226

noise, 484—494
pentode, 178-181
tetrode, 170-176, 227-228
triode, 149-169, 218, 228-232, 559-561

Grid current, 149, 156, 192
induced, 221-226

Grid input conductance, 221-226
Grounded-cathode amplifier, 192

Grounded-grid amplifier, 196, 202
Group velocity, 238-240, 637-639

helix, 388
slow-wave structure, 284-287, 373
waveguide, 262-263, 267

Growing wave, 363

Harmonic generation in a klystron, 305
Hartree condition, 436-440

Heaters, 56-57
Helix, 271-272, 381-390
High-frequency effects in grid-controlled

tubes, 204-232
Hollow-cathode discharge, 561-565
Hot-cathode discharge, 567-581
Hot-cathode tubes, 567-592
Hub, 432
HuH cutoff condition, 431-436
Hysteresis loop, 20-23

Immersion lens, 145
Impedance:

characteristic, 263-264

Impedance (Cant.): 

interaction in a traveling-wave amplifier
K, 357

space-charge-limited planar diode, 629- 

632
Impedance reduction factor Mt, 376, 412
Index of refraction, 83
Induced currents, 184-190, 204-226

in a backward-wave oscillator, 401-403 
in a cavity resonator, 306
in a crossed-field device, 427
in a planar diode, 186
in a traveling-wave amplifier, 357-361
in a triode grid, 221-226

in external impedances, 188-190
Induced grid noise, 487-489

equivalent conductance, 489, 492
Inductance:

cathode lead, 219-221
energy stored in, 247
of a cavity resonator, 235-236, 440
torroidal coil, 19

Initial loss factor Ai, 366
Input admittance of grid-controlled tubes: 

high-frequency effects, 219-226 

measurements of, 224 
triode, 195-196

Inselbildung, 164-167

Interface, 50-51
Interface resistance, 31

Interstage networks, 196-201
Inverted population, 607
Ionically heated cathodes, 591

Ionization, 523
Ionization coefficient per centimeter, a, 

526; V, 528
Ionization coefficient per volt y, 524
Ionization energy of noble gas molecules, 

523
Ionization time, 553-555

Ion pump, 381
Ions in beams, 94-95

Johnson noise (thermal noise), 468, 
471-475

Keep-alive mechanisms: 
low-current discharge, 554 

photoelectric, 555 
radioactive, 554

Kinetic energy, 2-4, 6, 8, 57-61, 183, 

188-190
gas, 513

Klystron, 294-348, 641-642
amplifier, 297, 337-345
bandwidth, 339-345
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Klystron (Coni):

efficiency, 345

gain, 339-345
reflex oscillator, 310-322

Lambert’s law, 60-61
Laplace’s equation, 13, 616
Laplacian, 635-636

Lasers, 594-609
equations governing the operation of, 

600-603
frequency stability of a laser, 605

helium-neon, 603-607
number of observed transitions leading 

to laser action, 608

L-cathode, 53
Lead inductance effects, 219-221

Lene, 74-93, 617-619
electric, 76-84, 139, 145, 617-619
focal length, 81, 88, 139
immersion, 145
magnetic, 84-89

Lens equation, 83, 617-619
Lifetime of ions, 575
Llewellyn and Peterson equations, 216-

219, 481-482, 495-497
coefficients, 633

Loaded Q of a cavity resonator, 309, 441

Loss in microwave circuits, 253-258
Loss parameter d, 362, 403

Magnetic circuit, 19-26
backward-wave oscillator, 413-416
crossed-field amplifier, 456

klystron, 343

magnetron, 25, 444-447
M-carcinotron, 462
traveling-wave amplifier, 24, 380, 390- 

394
Magnetic field, 15-19, 612

boundary conditions, 251-252
due to current flow, 17-19

force due to, 5-8
line integral of, 16, 22-23
time varying, 241-244, 613

Magnetic field intensity, 16
Magnetic flux density, 15
Magnetic potential fi, 23

Magnetic substates, 598
Magnetomotive force (mmf), 23

Magnetron, 428-449
compared with other oscillators, 449

efficiency, 440-444
frequency of oscillation, 430
Hartree condition, 436-440

Magnetron (Coni):

Hull cutoff condition, 431-436 
modes, 430 

tuning, 431
Magnets, 19-25
Magnification of an electron lens, 83, 618
Matrix cathode, 53-56
Maximum current density at crossover, 

130, 145
Maxwell-Boltzmann distribution, 512, 572 
Maxwellian distribution of emission veloci­

ties, 57-61, 126-135, 140-141, 614- 

615
Maxwell’s equations, 241-244, 613
M-carcinotron oscillator, 458-464

compared with O-type backward-wave 
oscillator, 464

efficiency, 460
frequency of oscillation, 460

Mean free path: 
electron, 522 
molecule, 514

Mean-square noise quantity, 476

Mercury vapor:
discharge, 570-581

lamps, 591
pressure, 569
rectifier, 581-587

Metastables, 523
effects in a gas laser, 605
excitation energies of, 523
generation, diffusion, and destruction, 

527-531
mechanism for causing emission from a 

metal surface, 535
Microphonics, 152

Microwave components and circuits, 233- 

293
MKS units, 610
Mobility n, 518-520
Mode of oscillation:

backward-wave oscillator, 409 
klystron, 313, 320 

magnetron, 430
Modified Bessel function, 375, 383
Molecular diameter, 514
M-type backward-wave oscillator, 458-464

Negative glow, 552
Neon signs, 553
Nickel for cathodes, 48-50, 125

Noise, 467-507
in crossed-field devices, 436
in grid-controlled tubes, 484-494
in microwave tubes, 494-504
in resistances, 468, 471-475, 643-645
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Noise (Cont.):

in space-charge limited diodes, 480-483, 

496
in temperature-limited diodes, 467, 

476-478
velocity fluctuations, 480

Noise figure (factor), 468-471
amplifier stage, 491-494
cascaded stages, 506
microwave tubes, 499-502

Noise temperature, 470

Nonthermal electrons, 126

Obstructed discharge, 550
Ohm’s law, 253

w-0 diagram:
slow-wave structure, 282-286
waveguide, 264, 266-267

Oscillation buildup, 318-319, 400, 430
Oscillations due to space-charge forces, 323

Oscillators:
backward-wave, 398-416

magnetron, 428-449
M-carcinotron, 458-464
reflex klystron, 310-322

O-type backward-wave oscillator, 398-416, 

458
Oxide-coated cathodes, 45-53

Paraxial-ray equation:
for electric lenses, 79, 616

for magnetic lenses, 87
Particle derivative, 355
Partition noise, 489-490, 494

equivalent resistance, 490, 493
Paschen’s law, 539
Pauli exclusion principle, 597
Penning effect, 526

Pentodes, 178-181
characteristic curves, 180
equivalent circuit, 190-196
noise, 484-494

Perfect conductor, 258
Performance chart of magnetron, 448
Periodic focusing:

with electric fields, 108-109
with magnetic fields, 103-108

Period of slow-wave structure, 272

Permanent magnets, 19-25
Permeability, 16
Permittivity, 9

Perveance, 140
Phase constant:

slow-wave structure, 276-286
waveguide, 260-267

Phase pushing, 458
Phase velocitv, 238-240

helix, 272, 385
slow-wave structure, 283-286

waveguide, 260, 262-265, 267
Phasor notation, 243

for traveling-wave devices, 354
Philip’s cathode, 53
Photoelectric emission, 68-72, 533
Photon, 68
Physical constants, 611
Pierce electron gun, 137

x- mode, 430
Pitch angle for a helix 383
Planar diode, 114-119
Plane waves, 236-239, 245-246

Plasma, 571-581
Plasma frequency, 326-329, 361

reduced, 330
Plasma oscillations, 326-331
Plasma wavelength, 334

Plate resistance (dynamic anode resis­

tance), 158
typical values of, 169

Poisson’s equation, 12, 118, 121, 173, 356, 

433, 620
Positive column, 552
Potential, electric, 3

charged sphere, 14
paraxial-ray equation, 79, 616
point charge, 13

Potential energy, 3, 427
Potential minimum, 114-119, 163
Potential variation:

in a tetrode, 173-175
in a triode, 150-156, 160-161, 623-628 

Power density in an electromagnetic wave, 

237
Power flow, 247-248, 263, 286-290, 373, 

637-639
instantaneous, 358

Power loss, ohmic, 256-258

Poynting vector, 248, 263
Principal plane, 80, 617
Propagation of electromagnetic waves, 

236-241
Propagation constant:

backward wave tube, 404
slow-wave structures, 276-286

traveling-wave amplifier, 361-364
waveguide, 260-267

Quality factor Q:
cavity resonator, 307-310, 440—441
resonant circuit, 197-200

Quantum efficiency, 68-72
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Rack velocity fluctuations, 480
Radius of curvature of electron tra­

jectory, 4, 6
Ramsauer-Townsend effect, 522

Rectifiers, 122-126, 581-587
Reduced plasma frequency, 330
Reduced shot noise, 480, 486
Reducing agents in a cathode nickel, 

48-50, 125
Reflex klystron, 310-322

admittance spiral, 317

modes, 313
tuning, 320

Reliability, 30, 41, 53, 55, 124, 394, 449, 

561
Repeller electrode, 310

Resistance:
noise equivalent grid resistance, 486, 

493
of a cavity resonator, 236, 307
Ohm’s law, 253
skin effect, 253-258

Resonant frequency of a cavity, 235, 269
Resonator in a magnetron, 429
Richardson-Dushman equation, 38-40

Saturation current from cathode, 38—40, 
51-52

Scaling:
diode, 121-122
electron trajectories, 5, 8

frequency, 235, 291
gas discharge, 549

Scalloping, 100
Screen grid, 149, 170
Screening fraction, 156
Secondary emission, 62-68

in a magnetron, 67, 427
in a tetrode, 173
noise, 491, 494, 504

Self-sustaining discharge, 537
Sensitivity of receiver, 468-471
Severed circuit, 379-381, 392
Sheath, 552, 577-581
Sheath helix, 385
Sheet beam, 459
Shells, electron, 33, 597
Shot noise, 467, 476-478, 48.5-487

equivalent resistance, 486, 493
Signal-to-noise ratio, 469, 470
Skin depth, 255-256
Skin effect, 253-258
Slow-wave structures, 270-290, 370-378, 

382-388, 428, 450
Small-signal gain parameter C, 361
Sole electrode, 459

Space-charge forces (dc), 93-109

in a diode, 114-117
in a magnetron, 431-435

Space-charge forces (rf), 322-335
in a backward-wave oscillator, 403-407

in a traveling-wave amplifier, 355-357, 

361
Space-charge-limited emission, 117, 620
Space-charge loss factor At, 367
Space-charge parameter QC, 361, 404
Space-charge reduction factor, 330

Space-charge smoothing factor F8, 480- 

483, 499
Space-charge smoothing of noise, 480-483, 

499-500
Space-charge waves, 322-337

fast and slow, 336-337
noise fluctuations, 495-502

Space harmonics, 276-277, 376, 411
group velocity, 284-286

phase velocity, 283-286
Spherical aberration, 89-91
Spin angular momentum, 598
Spokes of current, 429, 449

Spontaneous emission, 595
Spot noise figure, 469
Starting current, 400, 406-408

Stepping tube, 564-565
Stimulated emission, 595

Stoke’s theorem, 251, 635
Storage tube:

crossover, 83, 130, 144-145
deflection defocusing effects, 92-93

electron gun, 144-147
Superposition of potentials and fields, 14

Suppressor grid, 150, 178
Surface charge density, 12
Sustaining voltage, 542, 550

for a hollow-cathode discharge, 562
Synchronism condition:

backward-wave interaction, 399-400, 

406, 416
crossed-field device, 426-427, 431, 437, 

460
traveling-wave amplifier, 351, 362-364

TE mode, 259-265
TEio mode, 262—265
TEM mode, 271-272

Temperature:
electron, 573
noise, 470
standard for noise measurements, 469 

Temperature-limited emission, 38-40, 117 

Tetrode, 170-176, 227-228
characteristic curves, 172
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Tetrode (Coni.):

equivalent circuit, 190-196
noise, 484-494

Thermal electrons, 126-135, 140-141, 

614-615
Thermal noise, 468, 471—475, 643-645

Thermionic emission, 30-61, 555
variation with temperature, 38—40, 42

Thoriated tungsten cathodes, 44—45
Thyratrons, 583-591
TM mode, 259, 265-267
Total beam current density, 217, 630
Total derivative for a moving particle, 

355
Total rf electric field, 355
Townsend discharge, 535-540

Transconductance gm, 157
factors affecting the transconductance of 

a triode, 164-168
maximum possible transconductance per 

unit area, 166
typical values, 169

Transit angle, 208, 302, 314
Transition, coaxial line to waveguide, 267
Transit time, 204, 206-219, 221-226, 294

in a klystron, 300-305
in a traveling-wave amplifier, 349-353 

Transverse velocities, 126-135, 140-141, 

614-615
Traveling-wave amplifiers, 349-394, 502- 

504
bandwidth, 381, 390, 392, 394
compared with klystron, 381, 394

efficiency, 381
gain, 368-370
nOise, 494-504

Triode, 149-169
characteristic curves, 157
“close-spaced” triodes, 163
equivalent circuit, 190-196, 218
equivalent diode, 162

factors affecting the transconductance, 
168

gas switching triode, 559-561
grounded cathode amplifier, 192

Triode (Cont.'):

input admittance, 195-196
microwave, 228-232
noise, 484-494
voltage gain of triode amplifier, 193

Tungar rectifier, 589
Tungsten filament cathodes, 43
Tuning, mechanical, 320, 431, 447

Ultra-high frequency effects, 204-226
Unipotential lens, 76-77
Uniqueness theorem, 273

Units, MKS, 610
Universal beam spread curve, 95

Unloaded Q of a cavity resonator, 440 
cold, 307
hot, 308

Vector relationships, 635-636
Velocity distribution in a gas, 512
Velocity fluctuations, 478-480, 495—499
Velocity jump noise reduction, 497—499
Velocity modulation, 217, 294-296, 298- 

300
noise fluctuations, 495-499 
space-charge waves, 325, 328, 336 
traveling-wave amplifier, 355

Velocity of an electron, 3
Velocity of electron emission, 57-61, 126-

135, 140-141, 614-615
Velocity parameter b, 362, 403
Virtual cathode, 174-175
Voltage gain of a triode amplifier, 193
Voltage reference tube, 556-558

Voltage regulator tube, 558-559
Voltage scaling, 5, 8, 121

Wave equation, 245, 260, 265
in cylindrical coordinates, 374, 383

Waveguide, 239-241, 259-267

Wavelength:
cutoff, 240, 262
free-space, 237
guide, 239, 262, 267
plane-wave, 237

Work function 0, 35-36
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