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PREFACE

This book is a revision and extension of notes prepared by the authors
for courses given to the Communications Development Training Program
at Bell Telephone Laboratories. This study program is given to all new
members of the technical staff who have completed their university training
at the B.S. or M.S. level. Thus the book is primarily intended for use
at the senior or first-year graduate level.

The book should also be useful to graduate engineers working on electron-
tube development and manufacture and to engineers using electron tubes
as circuit elements. Detailed descriptions are included of practical electron
tubes as examples.

Throughout the text an effort has been made to present a coherent
picture of the use of electron-field interactions to obtain useful device
performance. The first 13 chapters relate primarily to vacuum tubes, and
the last four chapters are concerned with gas-discharge devices. The text
first considers the basic laws of electron motion in fields and electron emis-
sion. This is followed by a discussion of electron lenses and electron guns.
Next, grid-controlled vacuum tubes are examined, and their equivalent
circuits are derived. High-frequency limitations of grid-controlled tubes
are explored through the concept of induced currents. This is followed by
a detailed study of microwave tubes. A final chapter on vacuum tubes
considers the noise performance of these devices. The last four chapters of
the text consider first the Townsend discharge in a gas diode, followed by a
discussion of cold-cathode and hot-cathode gas tubes, and finally a descrip-
tion of gas lasers.

Although considerable mathematical detail is included, an effort has
been made to stress the physical principles of each device. Problems are
included at the ends of most of the chapters to illustrate further concepts
relative to the text material. References are cited for those who wish to
pursue particular subjects in more detail. A notation has been adopted
which is consistent with the symbols used in the literature, insofar as this is
possible in a coherent presentation. No attempt has been made to include
any historical comments concerning electron tubes. For the most part,
tubes are discussed in configurations that are in practical use today rather
than in those originally conceived.
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Chapter 1

ELECTRONS AND FIELDS

Electron-field interactions play an essential role in the operation of all
electron tubes. Fields determine the motion of the electrons in the inter-
electrode space of a tube, and the electron motion in the interelectrode space
determines the currents that flow in the external circuit connected between
the electrodes.! It is appropriate therefore that we begin this text with a
review of the laws that govern the motion of electrons in electric and
magnetic fields, as well as some properties of the fields themselves. The
discussion of fields in the present chapter will be limited to static electric
and magnetic fields. Time-varying fields will be considered in later chapters.

In describing fields and electron-field interactions, we must rely on certain
experimental laws of physics. Several such laws from which much of our
discussion of the present chapter will develop are:

1. A particle with charge ¢ is acted on by an electric field E with a force
proportional to gE, the force being in the direction of the field if q is positive,
and in the opposite direction if ¢ is negative.

2. When a particle with charge ¢ moves with velocity u in a magnetic
field B, it experiences a force proportional to the vector product gu X B.
The force is in the direction of u X B if the charge is positive, and in the
opposite direction if the charge is negative.

3. The electric flux crossing a closed surface surrounding a quantity of
charge is proportional to the amount of charge enclosed by the surface and
is independent of the shape of the surface. This is known as Gauss’s Law.
A point charge therefore acts as a point source of electric flux, and with
each unit of charge there is associated a certain total amount of electric flux.

4. In a static magnetic field the line integral of the magnetic field in-
tensity H around any closed path surrounding a flow of current I is propor-

1See Chapter 6.
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tional to the flow of current through a surface enclosed by the path. This
relationship is known as Ampere’s Circuital Law. Lines of magnetic flux
close on themselves, and there are no point sources of magnetic flux.

The constants of proportionality used in expressing the foregoing experi-
mental laws, together with the units used to measure mass, length, time,
and charge, serve to determine the units in which the electric and magnetic
field quantities are measured. Several systems of units are in use at present,
each with its own particular advantages. However, the meter-kilogram-
second system is perhaps the most widely accepted in electron-tube work,
and we shall adhere to it throughout this text. Appendix I lists the mks
units in which electric and magnetic field quantities are measured, to-
gether with their dimensions. Appendix II lists values of a number of
physical constants, and Appendix III presents a summary of relationships
governing static electric and magnetic field quantities.

Relativistic effects will be neglected throughout this text; that is, elec-
tron velocities will be considered small compared with the velocity of light.

1.1 Electron Motion in an Electric Field

(a) Change of Kinetic Energy and the Concept of Electric Potential

A charge of g coulombs in an electric field E volts/meter is acted on by a
force gE newtons. The force is in the direction of the field if ¢ is a positive
charge, and in the opposite direction for a negative charge. Thus, when an
electron moves in an electric field E, it experiences a force —¢E newtons,
where —e is the charge on the electron, e being equal to 1.602 X 107*
coulomb. The resulting motion of the electron is described in rectangular
coordinates by the three equations,

ns
de?

= —ekE,, m% = —ekE,, mzi; = —e¢E, (1.1-1)
where m is the mass of the electron, and ., E,, and E, are the components
of E in the coordinate directions. If the first of these equations is multiplied
by dz on both sides, we obtain

m[d(dx/ a) ]dx - m@d[d—x] - d[%m[@]z] = —eEdr (1.1-2)

dt dt | dt dt

The right-hand part of this equation states that the portion of the electron’s
kinetic energy associated with its motion in the z direction is changed by an
amount —eFE.dx when the electron moves a distance dz in the z direction
under the influence of the field. Similar expressions hold for motion in the y
and z directions. It follows, therefore, that if the electron moves a distance
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dl under the influence of the electric field, its net change in kinetic energy is
equal to the vector product —eE-dl. This quantity may be positive or
negative depending on the angle between E and dl.

If the electron travels from point A to point B under the influence of the
electric field, its total change in kinetic energy is given by

B
change in ke. = —e/A E-dl (1.1-3)
where the integral is taken over the path followed by the electron from A to
B. This expression is of much importance in determining the behavior of
charged particles in electric fields. It holds for time varying fields as well as
for static fields.

If the field is constant with time and if the work done by the field on the
electron serves only to change the kinetic energy of the electron, the field is
said to be conservative. For such a field the integral in Equation (1.1-3) is
independent of the path taken from A to B, and we can write

—-ef Edl=0 (1.1-4)

closed
path

where the integral is taken around a closed path. In this case we can ascribe
to each point in space a scalar potential such that the difference in potential
between two points is equal to the line integral of E along any path between
them. A potential difference of 1 volt exists between points A and B if the
line integral of E along any path between them is equal to 1 volt. (Potential
difference is sometimes called electromotive force or emf.)

If dl is an increment of distance in the direction of an electric field E, the
change in potential dV over the distance dl can be expressed as | dV | = Edl,
and we can write that

E=-VV (1.1-5)
where V is the scalar potential. The minus sign implies that the field is di-
rected from regions of higher potential to ones of lower potential. Equation
(1.1-5) is valid in regions in which there is space charge as well as regions
that are free of charge. From the equation, it is evident that E has the di-
mensions of volts per meter.

If an electron starts from rest and is accelerated through a potential rise
of V volts, it acquires an amount of kinetic energy given by

imu? = —ef E-dl = ¢V joules (1.1-6)

Substituting the experimentally measured values for e and m in this, we
find the velocity of the electron to be

u = 5.93 X 10°\V meters/sec (1.1-7)



4 PRINCIPLES OF ELECTRON TUBES

A unit of energy frequently used to measure energies gained or lost by an
electron is the electron volt. It is equal to 1.602 X 107" joule and is the
kinetic energy gained by an electron when it is accelerated through a poten-
tial rise of 1 volt. If the electron travels between points differing in poten-
tial by V volts, its change in kinetic energy is V electron volts.

(b) Electron Trajectories in an Electric Field

Figure 1.1-1(a) shows two electrodes, 4 and B, of arbitrary shape. Elec-
trode A is grounded, and electrode B is held at a positive potential with
respect to ground. The path that might be followed by an electron which

’ + ’I
/ E— ’
4 - P&
/_e = //I Ey
(a) (b)

Fie 1.1-1 An electron trajectory between two conducting electrodes.

starts from rest at electrode A and is accelerated in the direction of electrode
B is shown by -a broken line. Figure 1.1-1(b) shows a curved portion of the
path passing through point P. The electric field E acting on the electron at
point P can be resolved into two components, one parallel to the trajectory
and one transverse to it. The transverse component, Er, is responsible for
bending the path of the electron and hence must lie in the plane-of curvature
of the trajectory. If u is the velocity of the electron at point P and r is the
radius of curvature of the trajectory at that point,
mu?

1‘_ = eEr (1.1-8)
Bince the electron started from rest at electrode 4, its kinetic energy at
point P is given by

jmu? = eV (1.1-9)

where V is the potential at point P. Combining these two equations,
we obtain

N
<

,,
Il

by
=

(1.1-10)
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Now V and Er are directly proportional to the voltage applied to electrode
B. Since r is equal to twice the ratio of these quantities, it follows that r is
independent of the voltage applied to electrode B. Consequently, if the
electron starts from rest, its trajectory is the same for all positive voltages
applied to electrode B.

A second point, which may seem intuitively clear, follows from similar
reasoning. When the linear dimensions in Figure 1.1-1(a) are scaled by a
constant factor, the trajectory followed by the electron is scaled by the same
factor. Let us suppose that all linear dimensions are multiplied by the
factor k and that the voltage applied to electrode B remains unchanged.
In this case the potential V at corresponding points between the electrodes
will be unchanged. The direction of the electric field intensity also will be
unchanged, but its magnitude will be 1/k times as great. From Equation
(1.1-10), it follows that r becomes k times its previous value, so that r and
the trajectory scale with the other linear dimensions.

A third conclusion we can draw from Equation (1.1-10) is that the tra-
jectory is independent of the mass or charge of the particle, provided, of
course, that the charge is finite and negative and the mass is not zero.
Hence a negative ion would follow the same path as the electron, provided
both started from rest at the same point on electrode A.

1.2 Motion in Combined Electric and Magnetic Fields

When a particle with charge ¢ coulombs moves with velocity u meters
per second in a magnetic field B webers per square meter, it experiences a
force qu X B newtons. Thus, an electron moving in a magnetic field B ex-
periences a force —eu X B newtons, and the resulting acceleration of the
electron is — (¢/m)u X B meters per second?®.

The vector u X B has the components B,u, — B,u. in the z direction,
B.u, — B,u. in the y direction, and B,u. — B.u, in the z direction, where
Uz, Uy, and u, are the components of u in the coordinate directions, and B,,
B,, and B, are the components of B in the coordinate directions. If both an
electric field and a magnetic field act on an electron, the differential equa-
tions describing the motion of the electron are

dz _ _e dy _ pde
o= m(E + B - B, dt) (1.2-1)
Ty _ _e dz _ pd
7= m(E,, + B - B. dt) (1.2-2)

and
Tz _ —%(E + 8.5 - BY) (1.23)



6 PRINCIPLES OF ELECTRON TUBES

where E., E,, and E, are the components of the electric field in the co-
ordinate directions. In cylindrical coordinates these equations become

dr  (deY? e[ dy _ pde]

& ’(m) = — | B+ Brg — Big | (1.24)
1d{ ,do _ e [ dz _ pdr -
L4, d_t) - -t B+ 8% - B! dt] (1.2-5)

d?z _ e [ df' d0
a? = —E-E, + BW - B’TEE_ (12‘6)

We shall find a number of occasions to make use of these equations in later
chapters.

Because the force resulting from the magnetic field is perpendicular to the
motion of the electron, any component of force parallel to the trajectory
must result from the electric field. However, it is the force parallel to the
trajectory which changes the elec-
tron’s kinetic energy, and conse-
quently only an electric field can
change the kinetic energy of an
electron.

If the electric field is zero and if
the velocity of the electron is per-
Fi6. 1.2-1 The motion of an electron in f}f:dg:i::oxfon:’(})l\?esmiign;tlzirii:::;
a magnetic field when the velocity of the

electron is perpendicular to the magnetic path as .illustrated in F igux"e 1.2-1.
field. The radius R of the path is deter-

mined by the relation

2

. u e
acceleration = = EuB (1.2-7)
or
mu
R = B (1.2-8)

The angular frequency of the circular motion of the electron is given by

u __eB
w = I_B = E‘ (1.2‘9)
As a simple example of motion in combined electric and magnetic fields,
let us consider the case illustrated in Figure 1.2-2. Here, an electric field £
lies parallel to the —y direction of a rectangular coordinate system, and a
magnetic field B lies parallel to the —z direction. We shall assume that an
electron starts from the origin at time ¢ = 0 with zero velocity. The elec-
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tron is initially acted on only by the electric field, but as it advances in the y
direction and gains velocity, it is acted on by the magnetic field with a force
proportional to the product of its velocity and the magnetic flux density.

2

Fic. 1.2-2 The trajectory of an electron which starts from rest in crossed electric

and magnetic fields.

As a result, the trajectory is bent back toward the z axis. For this problem
Equations (1.2-1), (1.2-2), and (1.2-3) reduce to the two simple equations,

&z _ epdy
ae  modt
(f_g{ e e dz

de? m m-odt

It is easily shown that these equations have the solutions

dx E

E = E(l - COSwt)
dy _E .

EE = B—smwt

and

z = ;EE(wt — sin wt)

E
y = E(l — cos wt)

(1.2-10)

(1.2-11)

(1.2-12)

where w= eB/m. Equations (1.2-12) are the equations of a cycloid, the

electron trajectory being as illustrated in Figure (1.2-2).

Each 27/w

seconds the electron returns to the z axis and then repeats the curved part

of the trajectory.
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Next let us consider the scaling of electron trajectories in a region in
which there is both an electric field and a magnetic field. It is convenient to
rewrite Equation (1.1-8) to express the radius of curvature of the tra-
jectory as

mu?

" = Yransverse force (1.2-13)

where the transverse force in this case may result from both an electric field
and a magnetic field. The transverse force, of course, lies in the plane of
curvature of the trajectory. Clearly, if we change the electric field intensity
and the magnetic flux density in such a manner that the right-hand side of
this equation is unchanged for all points on the trajectory, the shape of the
trajectory will not be changed. Suppose the electric field intensity at all
points is increased by the factor a? and the magnetic flux density is increased
by the factor a. Then an electron which starts from rest at the beginning of
the trajectory and travels to point P on the trajectory will have a? times as
much energy at point P, and its velocity will be a times as great. The part
of the transverse force resulting from the electric field will also be a? times
as great; and since the part of the transverse force that results from the
magnetic field is proportional to the product of u and B, this also will be in-
creased by the factor a2. Hence both the numerator and denominator of the
right-hand side of Equation (1.2-13) will be increased by the factor a? and
the radius 7 will be unchanged. Thus, if we increase the electric field in-
tensity at all points in space by the factor a* and the magnetic flux density
by the factor a, the trajectory of an electron which leaves a given point in
space with zero initial velocity will remain unchanged, but the electron will
travel a times as fast. (The reader will readily verify this to be the case for
the trajectories given by Equations (1.2-12).)

By similar reasoning it is easily shown that, if the linear dimensions of the
electrodes are increased by the factor b, and if all the voltages applied to the
electrodes are increased by the factor b2, and if the magnetic flux density at
corresponding points between the electrodes is unchanged, the electron
trajectory will also scale with the other linear dimensions of the system. In
this case the electron velocity at corresponding points of the trajectory will
be increased by the factor b.

As a final point, we should note that the motion of an electron in an elec-
tric or magnetic field is governed entirely by the forces acting on it. The
only way we can change the kinetic energy of an electron is to cause the
electron to be acted on by an electric field. Changing the potential in the
region does not in itself change the kinetic energy of the electron.

1.3 Conservation of Energy and Charge

One of the most important laws governing the behavior of physical
processes is the principle of conservation of energy. It states that energy



ELECTRONS AND FIELDS 9

can never be created or destroyed. As applied to electron tubes, it tells us
that whenever an electron gains kinetic energy, we can in prineiple account
for the source of kinetic energy and show that the source lost an equal
amount of energy. Similarly, when an electron loses kinetic energy, we can
in principle find an amount of energy which has appeared elsewhere in the
system equal to the lost kinetic energy.

Another significant law we learn from experimental physics is the
principle of conservation of charge. This principle states that the total
charge of a system, both positive and negative, can be changed only by
adding charge to the system or removing charge from the system. In later
chapters we shall frequently have occasion to consider volume charge
densities or ‘“‘space-charge densities” arising from a large number of elec-
trons in a region of space. If p(z,y,2) is the volume charge density, the total
charge in an element of volume Av is p(z,y,2) Av. The principle of conserva-
tion of charge tells us that, if this quantity is changing with time, charge is
flowing across the surface of the volume element, such that the total amount
of charge both inside and outside is constant. Expressed mathematically,
the principle states that

J-ndsS = -6—6‘ / o(z,,2)dv (1.3-1)

closed volume
surface

where J(z,y,2) is the current density associated with the flow of charge, and
n is a unit vector normal to the surface element dS and pointing outward.
Dividing both sides by Av and taking the limit as Av — 0, the left-hand side
becomes the divergence of J, and we obtain

J= -2 -
vy=-2 (1.3-2)

This is known as the equation of continuity. We shall find a number of oc-
casions to make use of it in later chapters.

1.4 Static Electric Fields — Gauss’s Law, Poisson’s and Laplace’s
Equations

(a) Gauss’s Law

In mks units the electric flux density D is related to the electric field in-
tensity E by D = ¢ E, where ¢ is the relative dielectric constant of the
medium, and e, is the permittivity of free space. The relative dielectric
constant ¢ is a dimensionless constant, which in free space has the value 1.
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The constant ¢, is approximately equal to? 8.854 X 1072 and has the di-
mensions of farads per meter or coulombs per volt per meter. Since E has
the dimensions of volts per meter, the vector D has the dimensions of cou-
lombs per square meter. (The vector D is sometimes called the displace-
ment vector.)

If we surround a quantity of charge by a closed surface, a certain total
amount of electric flux crosses the surface because of the charge inside.
Gauss’s Law states that no matter what surface we choose to surround the
charge, the total flux crossing the surface is the same. Furthermore, the
amount of flux crossing the surface is proportional to the charge enclosed.
Hence with each unit of charge there 1s associated a certain total amount of fluz.
In mks units the flux crossing the surface is numerically equal to the charge
in coulombs enclosed by the surface. Gauss’s Law therefore can be ex-
pressed as

/ D-ndS = / e, E'ndS = ¢ (1.4-1)
closed closed
surface surface

where n is a unit vector normal to the surface element dS, and q is the charge
enclosed by the surface. If there is a distribution of charge within the
region, the theorem can be written in the form

/D-ndS = / o(z,y,2)dv (1.4-2)

closed volume
surface

where p(z,y,2) is the volume charge density, and the integral on the right is
taken over the volume enclosed by the surface. Equations (1.4-1) and
(1.4-2) are valid even if the surface over which the integrals are taken
passes through a conductor or other solid matter, or if it passes through a
region of space charge. (However, if the surface element dS lies in a con-
ductor, E = 0, and the flux crossing dS is zero.)

If the volume enclosed by the surface in Equation (1.4-2) is Av, and if
both sides of the equation are divided by Av, and the limit is taken as Av — 0,
we obtain

VD =p (1.4-3)

This provides another useful expression of Gauss’s Law.

?In mks units the magnetic permeability of free space u, is defined to be equal to
47 X 1077, and the constants u, and e, are related by u,e, = 1/c?, where c is the velocity
of light. Hence e, can be determined by experimental measurement of the velocity of
light. It is found that ¢ = 2.996 X 10® meters/sec, so that e, = 8.854 X 10-12, or
approximately 1/(36x X 10°).
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If ¢ in Equation (1.4-1) is positive, the net electric flux crossing the sur-
face is directed outward, and if ¢ is negative, the net electric flux is directed
inward. If the charge enclosed by the surface consists of two equal but op-
posite charges, the net electric flux crossing the surface is zero.

Two results that follow directly from Gauss’s Law and symmetry argu-
ments are:

1. The electric field in free space at a distance r from a point charge ¢ is
given by
__q
E = 4———1reor2volts/ meter (1.44)
2. The electric field in free space outside a cylindrical charge distribution
of uniform axial charge density is given by

T
2morvolts/meter (1.4-5)
where 7 is the axial linear charge density in coulombs per meter, and r is the
radius at which E is determined.

E=

The concept of lines of electric flux, or field lines, is useful in presenting a
picture of an electric field distribution. In the case of two equal but oppo-
site point charges, the electric field lines terminate on the two charges and
extend from one charge to the other, the lines being directed from the
positive charge to the negative charge. The total number of lines is propor-
tional to the amount of charge at the ends of the field lines. The field lines
are parallel to the direction of the electric field, and the number of lines
crossing unit area normal to the direction of the field is proportional to the
average electric flux density over the unit of area.

Static electric fields are always associated with coulomb charges —
either point charges, surface charges, volume charges, or perhaps a combina-
tion of the three. In electron-tube work a density of electrons in the inter-
electrode space of a tube can often be considered to be a volume charge
density, or ‘“‘space-charge density,” even though it is really a cloud of in-
dividual point charges.

If a point charge is brought close to a conductor, currents flow in the con-
ductor until a charge distribution is built up on its surface which exactly
cancels the electric field that would otherwise be present within the con-
ductor. The surface charge is said to be an induced charge. Thus, when
electrons are present in the interelectrode space of a vacuum tube, an
amount of positive charge equal to the total charge on the electrons is in-
duced on the electrodes or other nearby surfaces, and one can imagine
electric field lines extending from the induced surface charges to the elec-
trons in the interelectrode space.
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Charges on conductors are always surface charges. A net volume charge
density within a conductor would lead to electric fields within the conduc-
tor with the result that currents would flow causing neutralization of the
charge. Similarly, a static electric field at the surface of a conductor is al-
ways normal to the surface of the conductor, since otherwise it would have a
component parallel to the surface, and charge would flow along the surface.

By a further application of Gauss’s Law, it is easily shown that the
electric field intensity E in free space at the surface of the charged con-
ductor is given by

E = 51 (1.4-6)
where o is the surface charge density.

Equation (1.4-6) can be used to obtain an expression for the capacitance
of a parallel-plate capacitor. When the capacitor is charged, electric field
lines extend from the surface charge on one plate to the surface charge on
the other, the charge on the plate at higher potential being positive, and
that on the plate at lower potential being negative. If the spacing between
plates is small compared with their linear dimensions so that edge effects
are negligible, the potential difference from one plate to the other can be
expressed as V = Ed = od/e, = qd/s,A, where d is the spacing between
the plates, A is the area of a single plate, ¢ is the surface charge density,
and ¢ is the total charge on a single plate. The capacitance of the device is
defined as the ratio of ¢ to V, or

=44 (1.4-7)

In mks units, C is measured in farads. If the space between the plates were
filled with a material of relative dielectric constant e, it is easily shown that
E = g/ee,, and C = e 4 /d.

(b) Poisson’s and Laplace’s Equations

Equation (1.4-3) can be written in the form
VD=V (eE) =p (1.4-8)

Now E = —VV, and in free space ¢ = 1. It follows that in a region of free
space in which there is a distributed charge density p(z,y,2), the potential V
is described by the equation

v-(VV) = vy = —£ (1.4-9)

€o

This relationship is known as Poisson’s Equation.
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If there is no space charge in the region, p = 0, and the potential satisfies
Laplace’s Equation,
V2V =0 (1.4-10)

As an example of a problem that can be solved with the aid of Poisson’s
Equation, let us consider the potential within a long conducting cylindrical
tube filled with a uniform charge density p,. (We can imagine that an elec-
tron beam of uniform charge density is directed down inside the tube and
that the beam just fills the tube.) Using cylindrical coordinates, Poisson’s
Equation for this problem becomes

1d/ dV Po

r dr( dr) I (1.4-11)
since there is no variation of V in the 8 or z directions. The reader will
readily verify that V = — (p,/4e,)r> + ¢1 In r 4 ¢, is a solution of this

equation, where ¢; and ¢, are constants. Evidently ¢; = 0, since V is finite
at r = 0. If the inside radius of the conducting tube is R meters, and if the
tube is at zero potential, the potential at radius r is given by V = (p./4e,)
(R* — ) for r < R. Positive space charge raises the potential within the
cylinder, and negative space charge lowers it.

A problem that can be solved with the aid of Laplace’s Equation is that of
finding the potential in the region between two long concentric conducting
cylinders which are held at different potentials. Since V does not change in
the 6 or z directions, Laplace’s Equation for this problem becomes

1d/fdv
;dr< dr) 0 , (1.4-12)

This equation has the solution V = ¢, In r + c», where ¢, and ¢, are con-
stants. If the inner cylinder is held at potential V, and the outer cylinder is
at zero potential, and if their radii are @ meters and b meters, respectively, it
is easily shown that V = (V, In r/b)/(In a/b). A solution of Laplace’s
Equation which satisfies a particular set of boundary conditions is always
unique, and the first and second derivatives of such a solution are con-
tinuous at all points between the bounding surfaces.

Potential distributions can also be obtained by integrating known electric
field distributions along the direction of the field. In this case use is made of
the relation E = —VV. Thus, if the axial charge density on the inner cyl-
inder in the above problem were specified, we could integrate Equation
(1.4-5) with respect to r to obtain the potential as a function of r. In a
similar manner, Equation (1.4-4) can be integrated with respect to r to ob-
tain the potential due to an isolated point charge. Thus

+a (1.4-13)

41re,r
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where ¢, is a constant, and r is the distance from the charge ¢ to the point at
which V is determined. If V is assumed to be zero at large distances from
the point charge, then ¢, = 0.

(c) Superposition

Because Laplace’s Equation is linear, the sum of the potentials arising
from two or more point charges also satisfies it. If a region of space contains
a number of point charges as well as surface charges and volume charges,
the potential at point P can be expressed as

y, =3 -4 (1.4-14)

4me,r

where dq is a point charge or element of surface charge or volume charge,
and r is the distance from the point charge or element of charge to point P.

A problem that can be solved with the aid of Equation (1.4-14) is that of
finding the potential at point P outside a conducting sphere with uniform
charge density . We shall assume that there are no other point charges,

Fie. 1.4-1 A construction which may be used in determining the potential at a
point d meters from the center of a uniformly charged conducting sphere.

volume charges, or solid bodies nearby. With the aid of Figure 1.4-1 we can
show that

v /" o27R? sinb df _Rs ¢ 141

" Jo d4re,\R*+ @* — 2Rd cosf  ed  4med (14-15)
where R is the radius of the sphere, ¢ is the surface charge density, d is the
distance from point P to the center of the sphere, and ¢ is the total charge
on the sphere.

Finally, let us note that, since the electric field at a given point is related
to the potential gradient at the point by E = —VV and since the gradient
operator is linear, the total electric field is a vector sum of contributions
arising from each of the separate point charges, and elements of surface
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charge and volume charge in the region. Hence superposition applies to
fields as well as potentials.

1.5 Static Magnetic Fields — Ampere’s Circuital Law, Permanent
Magnets

Static magnetic fields always result from charge in motion — sometimes
an electron current in a conducting medium, or a beam of charged particles,
or, in the case of permanent magnets, a preferred orientation of the electron
spins or orbits in the solid matter of which the magnets are made. Asin the
case of an electric field, it is often convenient to picture a magnetic field in
terms of magnetic flux or magnetic field lines. The lines lie parallel
to the direction of the magnetic flux density B, and the number of lines
crossing unit area normal to the direction of the field is proportional to |B].

When current flows in a long cylindrical conductor and the direction of
flow is parallel to the axis of the conductor, the magnetic field lines are
circles concentric with the conductor and lying in a plane perpendicular to
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Fic. 1.5-1 Magnetic field lines associated with current flow in a wire and a loop.
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the axis. The magnetic flux density is found to be greatest at the surface of
the conductor and falls off inversely with distance from the axis at larger
distances from the axis. Figure 1.5-1 illustrates the direction of the mag-
netic field in relation to the direction of current flow. If the conductor is
bent in the form of a loop, the magnetic field lines still surround the flow of
current, and each field line threads through the loop. In all cases the field
lines close on themselves, and there are no point sources of magnetic field.
Magnetic field lines never start or stop at a point or surface as do electric
field lines.

Since the magnetic field lines close on themselves, the total magnetic flux
crossing a closed surface must be zero. The magnetic flux crossing an ele-
ment of area dS can be expressed as B-ndS, where n is a unit vector normal
to the element of area. Hence

/ B'ndS = 0 (1.5-1)

closed
surface

If the volume enclosed by the surface is very small and can be represented
by Av and if we take the limit as Av — 0, we obtain

B-ndS :
/ o= =VB=0 (1.5-2)
cloged
surface
Av—0

In the mks system the unit of magnetic flux is the weber, and magnetic
flux density B is measured in webers per square meter.

For some purposes it is convenient to define a vector H, known as the
magnetic field intensity vector, such that

B = uuH (1.5-3)

where u is the relative permeability of the medium, and g, is the permeabil-
ity of free space. The relative permeability u is a dimensionless constant,
which in free space is equal to 1. In mks units the constant g, is defined to
be equal to 4 X 1077 and has the dimensions of henries per meter or webers
per ampere-meter. Since B has the dimensions of webers per square meter,
H has the dimensions of amperes per meter.

(a) Ampere’s Circuital Law

Ampere’s Circuital Law states that the line integral of H around any
closed path which surrounds a flow of current I is equal to the flow of cur-
rent across the area enclosed by the path, or

Hd=1 (1.54)
closed path
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If the closed path in this equation lies in a plane normal to a current density
J and if the area surrounded by the closed path is very small and can be
represented by AA, we can divide both sides of the equation by AA and take
the limit as AA — 0 to obtain

—=J (1.5-5)
closed path -
or, since the left-hand side is the definition of the curl of H,
|IVXH|=J
and )
VXH=]

where J is a vector parallel to the flow of current and of magnitude equal to
J. Ampere’s Circuital Law applies when the closed path lies within solid
bodies, conductors, or magnetic materials, as well as in regions of free space.

Equation (1.5-4) can be used to obtain the magnetic field intensity at a
distance a from the axis of a long cylindrical conductor in free space which
conducts a current I amperes parallel to its axis. If the closed path in the
equation is a circle of radius a and if the circle is normal to the axis of the
conductor with center on the axis, so that H is parallel to the path at all
points, we obtain

H2xa =1 (1.5-6)
Hence the magnetic flux density B at a distance a from the axis of a long

cylindrical conductor, which carries a current I and which is surrounded
only by free space, is given by

.y
" 2ma

(1.5-7)

Actually the magnetic field generated by a long straight conductor is a
vector sum of contributions resulting from each element of length of the
conductor. Ampere deduced that when a current I amperes flows in an
element of length dl of a conductor, the magnetic flux density dB at a point r
meters from the length d! is given by '

pol(dl X r)
dB = =5 — (1.5-8)
where dl is a vector of length dl and direction parallel to the current flow.
The vector r is of length r and directed away from the element d! along a
line joining dl to the point at which dB is determined. This result is known
as Ampere’s Rule. It applies only when there is no magnetic material in the
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region. With the aid of Figure 1.5-2 it is easily shown that the sum of the
contributions to the net magnetic flux density at a point a meters from the
axis of a long cylindrical conductor which carries a current I amperes is
given by

/2
_ pol cospdp -[.I.LI
B = /_,/z 4rma " 2ma (1.5-9)

in agreement with Equation (1.5-7). Ampere’s Rule is really a special form
of the Circuital Law.

- dl (e 1
—
| J
7
/s |
,’/ /7 “90°
Vi -~
v
a ,//,
//’/ r
/
/o
BN
> ‘a
47
(Y"” I
)

F1e. 1.5-2 A long cylindrical conductor carrying a current / amperes.

Equation (1.5-8) can in principle be used to determine the magnetic flux
density at any point in space resulting from a coil of any shape, if sufficient
ingenuity is used in carrying out the vector addition of the contributions dB
from each element of current flow.

Perhaps the simplest application of Equation (1.5-8) is the problem of
determining the magnetic flux density at the center of a circular loop of wire
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F1e. 1.5-3 Magnetic field lines associated with a toroidal coil which conducts a
current I amperes.
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which carries a current I and is of radius a. In this case the vectors dB at
the center of the loop resulting from each element dl of the loop are all
parallel. The total magnetic flux density at the center is easily shown to be

I‘oI

B=2a

(1.5-10)

and is parallel to the axis of the loop.

Figure 1.5-3 shows qualitatively the shape of the magnetic flux lines as-
sociated with a toroidal coil. If the turns are close together and regularly
spaced, it is evident from symmetry considerations that the magnetic field
lines must all lie within the toroid and that B outside the coil is essentially
zero. If there are n turns per unit length around the periphery of the coil,
application of Ampere’s Circuital Law to the path of integration shown in
the figure gives

Hl =nll
or
H =nl (1.5-11)

where [ is the length of the curved part of the path within the toroid. (The
only non-zero contribution to the line integral comes from the curved part
of the path within the toroid.) The magnetic flux density within the coil is
therefore given by B = unl. This is also the magnetic flux density at the
center of a long straight coil of n turns per meter.

The inductance of a coil is equal to the number of “flux linkages” per
ampere of current passed through the coil, where the number of flux
linkages is equal to the product of the number of webers linking each turn
of the coil and the number of turns in the coil. In the case of the toroidal
coil shown in Figure (1.5-3), the flux linking each turn of the coil is 7B =
wr?ugnl, where r is the radius of the turns. If the total number of turns in
the coil is N, the number of flux linkages per ampere is =r?u,nN, or

L = m%unN (1.5-12)

where L is the inductance of the coil. In the mks system inductance is
measured in henries. If the coil were filled with a medium of relative per-
meability u, the inductance would be L = wr2uumnN.

(b) Permanent Magnets

A number of metals including the elements iron, nickel, and cobalt, and
certain alloys, as well as a group of ceramics called ferrites, exhibit a prop-
erty known as ferromagnetism. When a long cylindrical rod of one of
these materials is placed along the axis of a coil and a current is passed
through the coil, the magnetic flux density B within the rod is often hun-
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dreds or thousands of times that which would be obtained along the axis
of the coil in the absence of the ferromagnetic material. The ratio of the
magnetic flux density within the sample to that which would be obtained in
free space with the same value of H is known as the relative permeability
of the material and is designated by u. The magnetic flux density B with-
in the material can therefore be expressed as B = uuH, as in Equation
(1.5-3). ,

Figure 1.5-4(a) shows a coil wound around a toroidal sample of ferro-
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Fi1a. 1.5-4 A coil surrounding a toroidal sample of ferromagnetic material and
hysteresis loops for two ferrous alloys. Alnico V is frequently used as a permanent
magnet material, and SAE 1010 steel is often used for pole pieces.
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Fie. 1.5-5 The magnetic flux lines associated with several shapes of permanent
magnets. (a) Three toroidal magnets, two with air gaps. A small amount of flux
leakage which would take place from the sides of the two magnets with the air
gaps is not shown. (b) An ellipsoidal magnet. (c) A hysteresis loop. (d) A cylindrical
magnet. (e) Plots of B and H along the axis of the cylindrical magnet.

magnetic material. By passing a current I through the coil, a magnetic
field intensity H = nl is established within the sample, where n is the
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number of turns per unit length around the periphery of the toroid. If
a low-frequency alternating current is passed through the coil, the magnetic
flux density® B within the material is found to lag the applied H. The
familiar “hysteresis loop’ is a plot of B vs. H obtained in this manner.
Two examples of hysteresis loops are shown in Figure 1.5-4. The shape of
the hysteresis loop is characteristic of the particular ferromagnetic material.
(Notice the difference in the horizontal scale for the two hysteresis loops
shown in the figure.) Materials having hysteresis loops with large enclosed
areas make the best permanent magnet materials.

Figure 1.5-5(a) shows three toroidal rings of ferromagnetic material.
In one the ferromagnetic material forms a closed ring, in one there is a
small air gap, and in one there is a larger air gap. We shall assume that
each has been “magnetized”’ by winding a toroidal coil around it and
momentarily passing a large current through the coil. When the mag-
netizing current is removed, the line integral of H around any closed path
in the region must be zero, since there is no flow of current in or around the
sample. From symmetry arguments we can easily deduce that within
the closed ring, H = 0, and that B has the value indicated by point C on
the hysteresis loop. The flux lines take the form of circles concentric with
the axis of the toroid, and all are within the sample. There is no magnetic
flux outside the sample.

In the case of the sample with the small air gap, nearly all the lines of
flux cross the gap, so that B in the gap is approximately equal to B in the
solid. However, since H is parallel to the direction of B in the gap and since
the line integral of H along a path following the flux lines must be zero,
H must be in the opposite direction to B in the magnetic material. It will
be convenient to denote the values of B and H in the air gap with the sub-
seript ¢ and the values of B and H in the magnetic material with the sub-
seript m. Then B, = B... If H is integrated along a path followed by a
flux line which crosses the center of the gap, we obtain

SH-dl =IH,+ LH, =0 (1.5-13)

where [ is the length of the air gap, and L is the length of the path in the
magnetic material. Evidently H,, is small and negative and the values of
B, and H,, might be those corresponding to point D on the hysteresis loop.
Since B is positive, it follows from Equation (1.5-3) that u for the mag-
netized toroid is negative. In the case of the sample with the larger air gap,
the values of B, and H,. corresponding to point E might apply. In both
samples with the air gap there will actually be “flux leakage’ outside the

3Changes in the magnetic flux density B within the sample are linearly proportional
to the time integral of the voltage generated in an auxiliary coil surrounding the sample
and can be measured in this manner,
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gap since H is not zero within the sample, and ¢ H-dl must equal zero for all
closed paths.

Figure 1.5-5(b) shows qualitatively the shape of the magnetic flux lines
associated with an ellipsoidal sample of ferromagnetic material when the
sample is magnetized parallel to the long axis of the ellipsoid. It can be
shown that, when an ellipsoidal sample is magnetized parallel to one of its
axes, the B lines within the sample are all parallel to each other and to the
axis. The values of B, and H, in this case might correspond to point F
on the hysteresis loop.

Figure 1.5-5(d) shows qualitatively the shape of the field lines associated
with a cylindrical bar magnet!. Some of the flux lines leave the sample
through the sides in this case, with the result that B is less at the ends than
at the center. Consequently, although the values of B, and H, at the
center of the magnet might correspond to point ¥ on the hysteresis loop, the
values of B, and H., at the ends might correspond to point G. Figure
1.5-5(e) shows qualitatively the variation of H and B along the axis of the
bar magnet.

From the foregoing discussion it is apparent that the operating point on
the hysteresis loop is determined by the geometry of the permanent magnet.
To illustrate this point further, let us return to the two toroidal magnets
with air gaps illustrated in Figure 1.5-5(a). If it is assumed that all the
lines of B cross the gap and that there is no flux leakage from the sides of
the magnet, then

B, = B, = uH, (1.5-14)
Combining this with Equation (1.5-13), we obtain
By _ _ul
7. - ] (1.5-15)

This defines the slope of a line through the origin of the coordinate system
for the hysteresis loop, and the intersection of this line with the hysteresis
loop defines the operating point for B, and H,,.

Since $ H-dl = 0 for all closed paths in the neighborhood of a permanent
magnet, it is possible to define a magnetic potential ¥ such that the potential

B
difference between points A and B is given by y45 = — / H-dl. (The
A

magnetic potential difference between two points is often called the mag-
netomotive force, or mmf, in analogy to the electromotive force, or emf, in
electrostatics.) The magnetic field intensity is related to the magnetic
potential ¢ by H = —Vy. Since B = y,H in the region outside a per-

iAfter M. Abraham, R. Becker, Classical Theory of Electricity and Magnetism, p. 137,
Blackie and Son, 1932.
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manent magnet, and since V-B = 0 and V- (V) = V2, the magnetic potential
in the space surrounding a permanent magnet satisfies Laplace’s Equation,
vy = 0.

Magnetic fields are used to focus, or confine, the electron beams of a
number of microwave tubes including traveling-wave tubes, klystron
amplifiers, and backward-wave oscillators. Magnetic fields also play an
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Fi6. 1.5-6 A permanent magnet circuit used to focus the electron beam of a travel-

ing-wave tube. The outline of the tube is shown in the figure. A plot of the axial

magnetic field B. is shown at the right. The slight peaking of the axial magnetic

field near the ends of the circuit results from the ‘‘re-entrancies’” in the pole pieces.

Within the pole pieces the axial magnetic field changes direction, and beyond the

pole pieces the axial magnetic field has the opposite direction to that which it has in
the center of the magnet.
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essential role in the operation of magnetron oscillators. By using permanent
magnets rather than electromagnets to provide the magnetic field, the total
power consumption of the tubes can be reduced.

Figure 1.5-6 shows a permanent magnet circuit for a traveling-wave tube.
The circuit produces a magnetic flux density® of nearly 0.06 weber/meter?
along the axis of the tube in the region between the pole pieces. The mag-
netic flux density B in the pole pieces is well below that needed to saturate
the pole piece material, so that H within the pole pieces is extremely small
(see hysteresis loop for SAE 1010 steel in Figure 1.5-4). The pole pieces,
therefore; serve as equipotential bodies, the mmf being nearly constant
throughout their volume. In a similar manner, the permalloy ‘“field straight-
eners” are flat discs of high-permeability steel which serve as equipotential
planes and assure that the lines of B are parallel to the axis of the traveling-
wave tube. Since B = pu.H, and u is very large for the field-straightener
material, H within the field straighteners is correspondingly small. The
permanent magnet is larger at its center than at its ends to account for
flux leakage from its sides.
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F16. 1.5-7 A permanent magnet circuit for a magnetron.

*One weber per square meter = 10¢ gauss.
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Figure 1.5-7 shows a permanent magnet circuit for a magnetron. The
circuit produces a magnetic flux density of about 0.5 weber/meter? in the
neighborhood of the magnetron’s cathode. The permendur sleeves inside
the pole pieces serve to shape the magnetic field in the region between the
cathode and anode so as to obtain electron trajectories which give optimum
interaction between the electrons and the rf field.

PROBLEMS
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Problem 1.1 -

1.1 At-time ¢, a single electron is emitted from electrode A with zero velocity, and
at this time a voltage V = +10 volts is applied between the electrodes in such a
direction that it accelerates the electron toward electrode B. It is assumed that the
electric field intensity is uniform at all points between the electrodes. At time ¢, the
electron is halfway to electrode B, and the voltage V changes discontinuously to
—20 volts and remains at that value. Which electrode does the electron strike, and
what is its kinetic energy in electron volts when it strikes the electrode?

A B C D
10
TIME, t
to t, —_—
T 0
vit) -10

-20

Problem 1.2

1.2 Grids B and C are assumed to be ideal grids having the properties that they
do not intercept electrons and that field lines do not penetrate through the grids.
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A single electron leaves electrode A with zero velocity at time ¢,. At this time the
voltage V is 4+ 10 volts and is in such a direction that the electron is accelerated to-
ward grid B. At time ¢, the electron is midway between grids B and C, and the volt-
age V changes to —20 volts. Which electrode (either D or A) does the electron
strike, and what is its kinetic energy in electron volts when it strikes the electrode?

REGION OF
MAGNETIC FIELD

Problem 1.3

1.3 A very fine wire is held stationary at one end, while the other end passes over
a pulley and is fixed to a weight which maintains a tension T' newtons in the wire.
Over a limited region between the fixed end of the wire and the pulley there is a
magnetic field that varies across the region both in magnitude and direction. If
a current I amperes is passed through the wire, the magnetic field causes a force to
act on the wire which tends to deflect it. The force is equal to BI newtons per meter
length of the wire and acts in the direction normal to both the current flow and the
magnetic field. The resulting shape of the wire might be that shown in the figure.
Suppose that the wire were removed and that an electron were directed toward the
magnetic field along the path previously followed by the wire. Show that, if the
electron momentum mu satisfies the relation mu/e = T/I, the electron trajectory
through the region of the field will coincide with the path followed by the wire.
Assume that the stiffness of the wire can be neglected and that its mass is negligible.

t z
s
2
4 7 3
—
Yy
1
V2 e
Problem 1.4

14 Poin?s 1, 7, and 2 lie on the z axis of a rectangular coordinate system. Points
3, 7, and 4 lie on the y axis, and points 5, 7, and 6 lie on the z axis. The distance from
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point 7 to each of its neighboring points is d meters. The region is filled with a
uniform charge density p, coulombs/meter’. Show that if the distance d is very
small, the potential at point 7 is approximately given by

Vi+ Vot Vit Va4 Vs+ Ve | d%,
= 6 +Eo—

V:

where V, is the potential at point 1, and so on. What effect does the presence of
space charge have on the potential at point 7?

1.5 Use Equation (1.4-14) to show that the potential at the center of an isolated
spherical cloud of charge of radius R and uniform charge density p, is given by

poR? _ 3q
%, 8me.R

Veenter =
where ¢ is the total amount of charge in the cloud.

A 7

o

(b)

Problem 1.6

1.6 Part (a) of the figure shows qualitatively the field lines associated with two
iso}ated point charges +q and —q. The plane A-A’ lies midway between the two
point charges. Since all points on the plane are equidistant from the two point
charges, the potential on the plane is zero. Both charges contribute to the electric
field intensity at the plane A-A’. Show that the total electric field intensity at the
plane can be expressed as

F=—%
e (r? + y?)?
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where y is the distance from the point charges to the plane A-A’, and r measures
the distance along the surface of the plane from the line joining the point charges
to the point at which E is determined. The electric field intensity at the plane
A-A' i, of course, normal to the plane.

Since all points on the plane A-A’ are at zero potential, a thin planar conductor
could be inserted along the plane without disturbing the potential and field dis-
tribution in the region. Suppose such a planar conductor were inserted and the
left-hand charge were then removed. Evidently the right-hand half of the field
pattern would remain unchanged. Hence the field distribution shown in part (b)
of the figure must be that which applies when a point charge +¢ is y meters from
planar conductor. Field lines originating on the charge +¢ terminate on negative
induced charges on the surface of the conductor. Use the above expression for E to
obtain an expression for the surface charge density induced on the planar conductor
by the charge +¢. Show that the total induced charge is equal to —gq.

Show that the force tending to draw the charge +¢ toward the planar conductor
in part (b) of the figure is ¢?/[4me,(2y)? newtons and that the work required to re-
move the charge +¢ to infinite distance from the planar conductor is ¢%/[47e,(4y)]
joules.

1.7 A dc current I amperes flows within a long cylindrical conductor of radius
R. The current density is assumed to be uniform across the wire and directed par-
allel to the axis. Sketch qualitatively how the magnetic flux density B varies with
radius r from the axis of the wire out to several times B. Make a similar sketch for
the radial electric field intensity associated with a cylindrical beam of electrons.
Assume uniform space charge density across the beam cross section.
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Chapter 2

ELECTRON EMISSION

The great majority of electron tubes depend upon thermionic emission
as their source of free electrons. ' In this emission process, electrons within
a conductor or semiconductor receive sufficient energy by thermal excita-
tion to overcome the forces tending to keep them within the solid.

Our interest in thermionic emission at this point lies in the fact that some
inherent properties of thermionic emission seriously affect the design and
performance of electron tubes. It is found, for instance, that the emitted
electrons have small, but finite, velocities upon emission, so that in con-
sidering the shapes of the electron trajectories in the interelectrode space
of a tube we must take into account the distribution of emission velocities.
When we try to design an electron gun that will produce a thin beam of
electrons with high current density, we find that we are seriously limited
in doing so by the finite electron emission velocities.

It is also found that both the current of emitted electrons and the veloc-
ity distribution of the emitted electrons fluctuate with time. These fluc-
tuations constitute two principal sources of “noise” in electron tubes and
lead to serious limitations in the performance of many amplifier tubes.

We are further limited in designing an electron tube by the fact that each
thermionic cathode material is characterized by a maximum emission
current density consistent with long life of the emitter. Since the per-
formance requirements of a tube are generally such that a certain total
current must be drawn from the cathode, the maximum emission current
density serves to determine the minimum area of the cathode emitting
surface. In grid-controlled tubes this minimum cathode area usually
determines the area of the remaining electrodes. The high-current-density
beams used in klystrons and traveling-wave tubes are frequently obtained
by making use of a relatively large cathode emitting surface in order to
draw the required total emission current and by using electrostatic fields

30
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to focus the electrons to a beam of smaller diameter. In later chapters we
shall find that a number of the ultimate performance limitations of vacuum
tubes result from the need for using a large cathode emitting surface.

Finally, some properties of the oxide-coated cathode are of concern to
the tube designer and tube user. It isfound, for instance, that the resistance
of the oxide coating is often of the order of a few ohms across a square
centimeter of coating. This resistance is effectively inserted between the
cathode lead and the emitting surface. In the case of grid-controlled tubes,
it serves as a negative feedback mechanism which has the effect of reducing
the transconductance of the tube. Furthermore, during the processing
of a tube and during the life of the tube, compounds form at the interface
between the oxide coating and the base metal. These compounds place an
additional impedance between the cathode lead and the emitting surface.
The interface resistance is often ten or more times that of the oxide coating,
and it increases with the life of the tube. End of life for many grid-con-
trolled tubes occurs when the growth of interface resistance reduces the
transconductance of the tube below a minimum useful value.

These limitations are of sufficient importance to merit further consider-
ation of the thermionic emission process, and accordingly a major part of
the present chapter will be concerned with this subject. (Discussion of
noise in electron beams and its excitation by current and velocity fluctua-
tions at the cathode will be deferred until Chapter 13, however.)

Electrons can be emitted from a solid by processes other than thermionic
emission. Whenever electrons near the surface of a solid are given sufficient
energy to overcome the forces tending to keep them within the solid, some
of the electrons escape. Excitation of the electrons near the surface can be
caused by incident electrons, photons, positive ions, or excited atoms, and
each of these means of excitation can lead to electron emission. Electron
emission also can be caused by the application at the surface of sufficiently
high electric fields that the surface forces are reduced to the point where
electrons escape. Electron emission resulting from electrons striking a sur-
face is known as secondary emission; emission resulting from photons strik-
ing a surface is known as photoelectric emission; and emission resulting
from the application of very high electric fields is known as field emission,
or Schottky effect. Some characteristics of secondary emission and photo-
electric emission will be described in Sections 2.5 and 2.6, respectively.
Emission caused by positive ions and excited atoms striking a surface is of
interest in connection with gas-discharge devices, and we shall defer dis-
cussion of it until Chapter 14. Field emission has found only limited ap-
plication in electron-tube work! and will not be described further.

1Some special-purpose cathode-ray tubes and x-ray tubes have field-emission cathodes.
Certain arc-discharge processes are also known to depend upon field emission.
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We shall begin by describing briefly the behavior of electrons in the in-
terior of a metal and the forces that act on electrons at the surface of a
metal.

2.1 Electrons in a Conductor, Work Function, and Contact Potential
(a) Electrons in a Conductor
It is well known that the structure of metals is crystalline. Three crystal

structures frequently formed by the metallic elements are illustrated in
Figure 2.1-1. These are the body-centered cubic structure, the face-
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F1G. 2.1-1 Three common metallic crystal structures: (a) body-centered cubic
structure; (b) face-centered cubic structure; (c) hexagonal structure.

centered cubic structure, and the hexagonal structure. The atomic spacings
of several metallic elements that form these structures are shown in Figure
2.1-1. Practically all nearest-neighbor spacings of the atoms in metallic
crystals lie between 2 and 5 angstroms (1 angstrom = 1078 ¢cm).

Let us now look at the electronic structure of the isolated atoms. An
atom is always characterized by certain discrete total energies which its
electrons can have. Each electron in the atom has one of these energies and
therefore is said to be in an energy state of the atom. With each energy
state there is associated a certain characteristic motion of the electron
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about the nucleus. For many purposes, an electron in a given energy
state can be thought of as causing a cloud of charge about the nucleus. The
probability of finding the electron in a given volume element about the
nucleus is proportional to the charge density of the cloud at the volume
element. It is found that electrons in certain energy states tend to con-
tribute their maximum charge density at approximately the same distance
from the nucleus, and consequently there are said to be shells of electrons
about the nucleus. Thus, copper has two electrons in its innermost shell,
eight electrons in the next shell, eighteen in the next, and one in the outer
shell. Metallic atoms have one to four electrons in the outer shell. Gen-
erally, the radius at which the outer-shell electrons in the isolated atoms
contribute their maximum charge density is nearly half the nearest-
neighbor spacings of atomslin the metallic erystal and at least several times
the radius at which the electrons in the next smaller shell contribute their
maximum charge density.2
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F16. 2.1-2 The potential experienced by an atomic electron as a function of radius r
from the nucleus of the atom.

Figure 2.1-2 shows qualitatively how the potential that acts on an elec-
tron in an isolated atom varies with distance r from the nucleus. As the
electron travels to large distances from the nucleus, so that it is outside the
charge clouds of the other electrons, it leaves behind a net charge of +e¢ on
the atom and experiences a potential —e/4me.r volts. At smaller distances,
such that the electron is within the charge clouds of the other electrons, its

2Reference 2.1, p. 349, lists the radii at which electrons in the various energy states
of the lighter atoms contribute their maximum charge density.
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potential is complicated by interactions with other electrons. When the
electron is inside the charge clouds of all the other electrons, its potential
approaches — (Ze/4me,r) + C, where Ze is the positive charge on the
nucleus, and C is a constant.
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Fic. 2.1-3 The potential experienced by an electron in a metallic crystal. The

potential is plotted along a line running through the centers of several of the atoms.

The vertical lines in the figure indicate the locations of the atomic centers. The

conduction band might extend from the bottom of the shaded region to well above
V=0

Figure 2.1-3 shows qualitatively how we may expect the potential to
vary along a line of atoms in a crystal. Clearly, the potential will be
periodic with extreme local variations near the nuclei. The crystal may be
thought of as being made of a lattice of positive charge centers with the
space between the charge centers filled with a cloud of negative charge.
The positive charge centers are the metal atoms minus their outer-shell
electrons, and the cloud of negative charge arises from the outer-shell
electrons. At the interatomic spacings that atoms assume in a crystal, the
charge clouds of the outer-shell electrons overlap appreciably, whereas
very little overlapping takes place for the charge clouds of the electrons in
the inner shells.

The overlapping of the outer-shell charge clouds causes a broadening of
the possible energies that the outer-shell electrons can have into a band of
energy states, known as the conduction band. Each energy state in the
conduction band can be occupied by a maximum of two electrons. In a
metal not all the energy states in the conduction band are filled.. At ab-
solute zero only the lower part of the band is filled, while the higher energy
states are unoccupied. If there are N outer-shell electrons in a piece of
metal which is at absolute zero, the outer-shell electrons occupy the N /2
lowest energy states in the conduction band, there being two electrons in
each state. However, when the metal is at room temperature or higher,
a few of the electrons are excited to higher states by thermal excitation.
(In Figure 2.1-3 the conduction band would extend from the lower part
of the shaded region to well above V = 0.)
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Excitation to the higher states also takes place when an electric potential
gradient is established within the metal, and it can be shown that the
existence of unfilled states just above the occupied part of the band is an
essential condition for electric conduction. It is the outer-shell electrons
that are responsible for electrical conductivity, for they find themselves
relatively free to drift through the crystal under the influence of an applied
electric field, while those in the inner shells remain bound to their atoms.

(b) Work Function

Next let us consider the forces acting on an electron at the edge of a
metallic crystal. The letter A in Figure 2.1-3 marks the position of a sur-
face atom. An electron moving to the right from A would at first experi-
ence a potential similar to that in an isolated atom. However, at somewhat
larger distances from A, the main effect results from a force called the
image force. A well-known problem in electrostatics® shows that a point
charge +¢ located y meters from the surface of a conducting plane is acted
on by a force directed toward the plane and equal in magnitude to that
which the charge would experience from an equal and opposite charge 2y
meters away. The actual force arises from an induced surface charge
—q on the conducting plane. In the case of an electron y meters from a
planar conductor, the potential arising from the image force is —e/16me.y
volts. If y is measured in angstroms, this becomes —3.6/y volts.

As the distance y decreases and approaches the interatomic spacing d,
the concept that the surface is a planar conductor becomes no longer valid,
and the potential merges with that arising from the surface atoms. The
location of the region over which the merging takes place depends upon the
number of atoms per unit area of the crystal surface and upon the shape of
the outer-shell electron clouds. Consequently, we would expect that the
height to which the potential curve rises above the filled part of the con-
duction band will differ for crystals of different metals.

In Figure 2.1-3 we have shown the outer-shell electrons, or conduction
electrons, to have energies distributed over a band having a definite maxi-
mum and minimum. Such is the case at absolute zero, and it is almost the
case at room temperature. However, as already noted, when the metal is at
room temperature or higher, a number of the electrons are excited to
states just above the part of the conduction band that is filled at absolute
zero. If the temperature is sufficiently high, a few electrons gain sufficient
energy to overcome the image potential and leave the surface of the metal.
This is the basis of thermionic emission.

3See Problem 1.6.
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The potential corresponding to the top of the part of the conduction band
that is filled at absolute zero is frequently called the Fermi level. The work
function of a metal is the energy that must be given to an electron at the
Fermi level to enable it to escape from the metal with zero velocity. In
the discussion that follows, we shall designate the work function by ¢ and
assume that it is measured in electron volts. (The work function in electron
volts 1s numerically equal to the potential rise in volts from the Fermi level to
the potential V = 0 shown in Figure 2.1-3.)

The thermionic emission current density from a surface is closely related
to the work function of the surface. With a large work function, the elec-
trons must be excited to higher energy states in the conduction band in
order to be able to escape, and the emission current density for a given
cathode temperature will be lower.

Table 2.1-1 lists the work functions of several metals.* The work function

TaBLE 2.1-1. MEAN WoORK FUNCTIONS

¢ ¢

Metal (Electron Volts) Metal (Electron Volts)
Ag. .o 4.28 Mo.....oovvviivenn. 4.27
Al .o 3.74 Na.......oo.ooooiil. 2.27
Au......ooo 4.58 Ni.....oooooiiiiill 4.84
Ba.................... 2.29 Pd.................... 4.82
Co 4.39 Sh. ... 4.08
Ca.ooovvve 2.76 Sr.. 2.35
Ch.oooo 3.99 Ta.......ccovvvinn... 4.12
CB. e 1.89 Th.................... 3.41
Cu......oiiii 4.47 Ti. ... 4.09
Fe.................... 4.36 W. .o 4.50
Koo 2.15

of a clean metal surface is always of the order of a few electron volts, and
the energy separation between the bottom of the conduction band and the
Fermi level is also of about this magnitude.

Actually, ¢ is different for different faces of a metal crystal. The variation
arises in part from the fact that the density of surface atoms changes from
face to face, and the distance from the surface atoms at which the image
potential merges into that of the surface atoms shows a corresponding
variation. In the case of tungsten, the measured values for the different
faces® range from 4.30 electron volts to nearly 6 electron volts. The values
listed in Table 2.1-1 are for polycrystalline surfaces.

1Reference 2.2.
sReference 2.3.
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(c) Contact Potential

It can be shown that if two dissimilar metals are brought together at
absolute zero, the potentials within the metals immediately become ad-
justed so that the Fermi levels in the two systems coincide. This situation is
illustrated in Figure 2.1-4 for two metals at absolute zero. The figure would
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F16. 2.1-4 Two metals joined at absolute zero. The symbols ¢, and ¢, indicate
potential differences which are numerically equal to the work functions of the
two metals.

be the same at higher temperatures except that the tops of the filled parts
of the conduction bands would not be well defined, since some of the elec-
trons are excited to higher energies. If the two metals have different work
functions, the potential rises to different heights outside the two metals,
and a potential difference must exist between a point just outside one metal
and a point just outside the other. From the definition of the work function,
we can see that this contact potential difference, as it is called, is numeri-
cally equal to the difference between the work functions of the two metals.

Since there is a potential difference between points A and B in Figure
2.1-4, this can result only from the presence of induced surface charges on
the conductors. The potential in the region between the two metals is
therefore a superposition of the potential caused by the image force and
that arising from the induced surface charge. The surface charges result
from a flow of charge between the metals that takes place when the metals
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are first joined. The flow of charge is such that the material of lower work
function is positively charged.

If several wires made of different metals are connected in series, the
potential difference in volts between a point just outside the wire on one
end and a point just outside the wire on the other end is numerically equal
to the difference between the work functions in electron volts of the two
end metals. Let us suppose that two parallel metal plates made of different
metals form a parallel-plate capacitor and that the plates are joined by
a wire. If ¢, and ¢, are the work functions of the plates in electron volts,
the potential difference in volts between a point just outside one plate and
a point just outside the other will be numerically equal to ¢, — ¢.. We
shall designate it V.. If d is the spacing between the plates, the electric
field intensity in the region between the plates will be Vi/d, neglecting
edge effects, and the surface charge density o on the two surfaces that face
each other will be given by

o= e,,-‘% (2.1-1)

Evidently as the distance between the plates is varied, charge must flow
along the wire joining them.

When a voltage difference is applied between two electrodes of a tube,
the electric field intensity in the interelectrode space effectively results
from the sum of the applied potential difference and the contact potential
difference. Since the contact potential may amount to two or three volts,
there are many cases where it cannot be overlooked.

If the cathode of a tube is oxide-coated, it will likely have the lowest work
function of any of the electrodes. Thus, if all the electrodes in such a tube
are directly connected together, the emitted electrons experience a retarding
field that returns almost all of them to the cathode. Part of the “aging”
or drift in the electrical characteristics of some grid-controlled tubes with
life has been attributed to a change in the contact potential difference be-
tween the control grid and cathode as a result of a gradual contamination
or decontamination of the grid surface.

2.2 The Richardson-Dushman Equation

A derivation of the law governing the thermal emission of electrons from
a metal® involves results that are closely related to the physics of solids and
hence represents a departure from most of the work that will be emphasized
in later chapters. In brief summary, an expression can be derived for the

sSee Reference 2.4, p. 137.
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number of electrons per unit volume of the metal which at temperature
T are excited to states characterized by sufficient energy to enable the
electrons to overcome the surface forces. (In Figure 2.1-3, these states
would lie above the horizontal line corresponding to V = 0.) The current
of electrons in these states striking unit area of surface from within the
metal is assumed to be the emission current density and is found to be

47rmek?
73

J, = T?¢/"T amps/meter? (2.2-1)
where & is Planck’s constant, k is Boltzmann’s constant, T is the absolute
temperature of the emitting surface, and ¢ is the work function of the metal
in electron volts. Wr is the “electron-volt equivalent” of the energy kT
and is given by
_kT__T
[e] 11,600
where |e| is a positive dimensionless constant numerically equal to the
charge of the electron. Equation (2.2-1) is known as the Richardson-

Dushman Equation for the emission current density. The equation can
be expressed more conveniently in the form

Jo = AT? #/"1 amps/meter? (2.2-3)

Wr electron volts (2.2-2)

where

47mek?
A= W

= 120 X 10* amps/meter?(°K)?
120 amps/cm?(°K)?

To a first approximation, ¢ is independent of temperature. However,
experimental evidence indicates that it has a small temperature coefficient,
and hence that it can be expressed as ¢ = ¢, + aT, where ¢, is the work
function at absolute zero. (Measurements of the coefficient « for tungsten’
indicate that it is of the order of a few times 1075 electron volt/°K.) Sub-
stituting ¢ = ¢, + a7 in Equation (2.2-3), we obtain

Jo = ATze—(¢,+aT)/WT = Ae—alel/sze—u,soo%/T

= A'T211.6060/T (2.24)

where use has been made of the relations |e |Wr = kT joules and Wy =

T /11,600 electron volts. A non-zero coefficient «, therefore, has the effect

of modifying the constant A in the Richardson-Dushman Equation.
Experimental values® of A’ = Aeelel/k for clean surfaces of several metals

7Reference 2.5.
8Reference 2.6,
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TABLE 2.2-1

A’ ¢
Metal (Amp [em*(°K)?) (Electron Volts)
Mo................... 55 4.27
Nioooooi e 30 4.84
Pt 32 5.29
Ta......coovviinnan. 37 4.12
W 70 4.50

are given in Table 2.2-1, along with the corresponding work functions from
Table 2.1-1. (It should be noted that accurate measurement of A’ is ex-
tremely difficult, since a small error in the absolute temperature T' can
cause a large error in 4'.)

Equations (2.2-3) and (2.2-4) indicate a critical dependence of the emis-
sion current density upon both the work function ¢ and the temperature
T of the emitting surface. Decreasing the work function by one electron
volt increases the emission current density by €T for the same tem-
perature T. Table 2.2-2 lists values of the emission current density in

TaBLE 2.2-2. EmissioN CURRENT DENSITY

Amps/Cm?

T —°K ¢=10ev ¢=20ev ¢=380ev ¢=/)j0ew ¢=50e
1000 360 3.3 X102 3 X 107t — —
1500 — 17 7.6 X 10 3X 10 1.4 X 10
2000 — — 4.4 1.3 X 102 4 X 1073
2500 — — 230 2.1 2.1 X 102

amperes per square centimeter for several values of ¢ and T assuming that
A’ = 40 amps/cm?(°K)?. Evidently cathodes with a high work function
must be operated at a high temperature in order to obtain an appreciable
emission current density.

The emission current density given by Equations (2.2-3) and (2.24)
is often referred to as the saturation emission current density. Under most
operating conditions less current is actually drawn from the cathode. If
more electrons are emitted from the cathode than are drawn to the other
electrodes, negative space charge accumulates just outside the cathode.
This causes a small retarding field at the cathode surface which returns
some of the emitted electrons to the cathode. The current drawn from the
cathode is then said to be space-charge-limited. If full saturation emission
current flows to the other electrodes, the current drawn from the cathode
is said to be temperature limited, since the cathode temperature then deter-
mines the magnitude of the current flowing to the other electrodes.
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2.3 Cathode Materials

The choice of cathode materials to be used in a particular tube is deter-
mined by such factors as the environment in which the cathode is to be
operated, the required emission current density, the tube life requirements,
the temperature at which the cathode must be operated to obtain the
emission density, and the power which must be supplied to heat the cathode.
Generally, the choice of materials which will satisfy a particular appli-
cation is quite limited.

As a first consideration, all cathode materials are characterized by a
maximum ‘operating temperature consistent with long life of the emitting
surface. This means that they are characterized by a maximum emission
current density consistent with long cathode life. In the case of pure metal
cathodes, such as tungsten filaments, the limiting temperature is that
at which evaporation of the metal starts to be appreciable. In the various
other forms of cathodes to be described in this section, additional chemical
and physical processes tend to limit the life of the cathode when too high
temperatures are used. Since for many applications it is desirable to have
available a high emission current density and since the emission current
density increases rapidly with temperature, the cathode operating tem-
perature is often determined as a compromise between requirements for
high emission density and requirements for long cathode life. Of the
relatively large number of possible cathode materials that have been in-
vestigated,® only a very few are capable of simultaneously giving appreci-
able emission current density and good life performance.

. A second important consideration is the desirability of operating the
cathode at as low a temperature as possible. A low cathode operating tem-
perature means low heater or filament power and greater power efficiency
for the tube. If less heat is dissipated in the tube, less heat is radiated and
conducted from the tube, and there is less heating of the surrounding
apparatus. Furthermore, as the cathode warms up, thermal expansion of
the cathode and its supports frequently causes a change in the electrode
spacings and hence a change in the electrical characteristics of the tube.
With a low cathode operating temperature, it is much easier to minimize
these changes in spacing, and greater reproducibility of the electrical
characteristics from device to device can be obtained. Finally, the noise
which appears in the tube output, and which results from fluctuations
in the emission current and velocities, is less when the required emission
current density is obtained at a lower operating temperature.

Since a cathode with a low work function can provide a given emission
current density at a lower operating temperature than one with a high work

’Reference 2.6,
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Fi6. 2.3-1 Emission current density vs. cathode temperature for several types of
thermionic emitters. The shaded blocks at the bottom of the figure show the normal
operating range for three of the cathodes. (a) The oxide-coated cathode. Curve A,
gives the saturation emission current density under pulsed conditions. (Circular
points, Reference 2.11; solid curve, Reference 2c, Volume I.) Curve A, gives the
dc saturation emission density. The position of this curve may vary substantially
with environmental conditions. DC current densities much in excess of 0.5 amp/cm?
lead to relatively short cathode life. (b) The pressed nickel cathode. Curve B shows
the dc saturation emission current density obtained from a pressed nickel cathode
(Reference 2.15). (c) The impregnated nickel cathode. Curve C shows the saturation
emission current obtained from the impregnated nickel cathode. The measure-
ments were taken with 40 microsec pulses and a repetition rate of 60 pulses/sec
(Reference 2.12) (d) Pressed and tmpregnated tungsten cathodes. Curve D shows the
saturation emission density obtained from pressed and impregnated tungsten cath-
odes based on 4’ = 2.5 amps/cm?(°K)? and ¢ = 1.67 electron volts. (These con-
stants are given in Reference 2.13. However, it is the experience of the writers
that under practical operating conditions somewhat higher cathode temperatures
are needed to yield a given emission current density than those indicated by curve
D). The thoriated tungsten cathode. Curve E shows the measured saturation emis-
sion current density of an uncarbonized thoriated tungsten filament (Reference 2.9).
(f) Tungsten filaments. Curve F shows the saturation emission current density of a
tungsten filament based on A’ = 70 amps/cm?(°K)? and ¢ = 4.5 electron volts.
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function, much effort has been devoted to obtaining cathode materials
with low work functions. The oxide-coated cathode combines good emis-
sion properties and appreciable life with a particularly low work function,
and consequently it is the most widely used type of cathode emitter.

Some discussion of the more frequently used cathode materials is given
in Sections (a) to (d) below. Methods for heating the cathode are de-
scribed in Section (e).

(a) Pure Tungsten

Filaments of pure tungsten!®® are operated at about 2500°K. At this
temperature they yield a saturation emission density of 300 to 400 ma/cm?
and radiate about 70 watts/cm?. This high radiation per unit area means
that a relatively large amount of power is required to heat the filament. If
the ratio of emission current density to power radiated per unit area is
taken as a measure of efficiency in obtaining emitted electrons for a given
amount of heater power, tungsten cathodes are the least efficient of the
commonly used cathode materials.

The vapor pressure of tungsten at 2500°K is 1.3 X 10~®mm of Hg,
which is sufficiently small that the filaments are able to survive several
thousand hours of operation before failure occurs. Nearly all other common
pure metals have vapor pressures much too high at temperatures at which
appreciable thermionic emission takes place. (One exception is tantalum,
which has found some application as a cathode material.) The melting
point of tungsten is 3640°K.

Curve F in Figure 2.3-1 shows a plot of emission current density vs.
temperature for a tungsten emitting surface.

Tungsten filaments find their chief application in tubes that operate with
anode voltages greater than about 20 thousand volts. Other cathode
materials suffer severe damage from bombardment by positive ions if
used in tubes that operate at very high voltages. The positive ions are
formed by the emitted electrons striking molecules of residual gas in the
tube and are accelerated toward the cathode by the same field that ac-
celerates the electrons away from the cathode. If they strike an oxide-
coated cathode with sufficient energy, they may chip away part of the
emitting surface. However, pure tungsten filaments show less damage as
a result of such bombardment. A number of x-ray tubes, high-voltage
diode rectifier tubes, and some high-voltage transmitting tubes use tung-
sten filaments.

wThe fabrication of tungsten filaments is described in Reference 2.7, Chapter 8.
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(b) Thoriated Tungsten

Thoriated tungsten filaments are made by adding 1 or 2 per cent of
thorium oxide, ThO,, to the tungsten before it is sintered and drawn into
filaments. After drawing, the filament is heated in an atmosphere of
hydrocarbon vapor, causing the surface of the wire to be converted to
tungsten carbide, W,C, to a depth of about one tenth of the wire radius,
a process known as carbonization. The normal operating temperature of the
filament is about 2000°K, and at this temperature the tungsten carbide
slowly reduces the thorium oxide. Free atoms of thorium thus produced
diffuse through the metal and eventually reach the surface, where some
are adsorbed and others evaporate onto surrounding electrodes. Under
normal operating conditions, there is probably somewhat less than a mono-
layer of thorium atoms adsorbed on the surface of the filament. At the
same rate that free thorium atoms diffuse to the surface, other thorium
atoms that were adsorbed on the surface are lost as a result of evaporation,
reaction with residual gases in the tube, and positive ion bombardment.

It is found that a partial layer of thorium atoms adsorbed on a tungsten
carbide surface evaporates at a much slower rate at a given temperature
than it would from solid thorium. As a result, the filament can operate at a
much higher temperature than would be possible for solid thorium. How-
ever, if several layers of thorium are adsorbed on the surface, the evapora-
tion rate of the outer layers is much the same as from solid thorium, so
that there is a tendency for additional layers to be lost, leaving only a
single layer, or perhaps a little less than a layer.

The adsorbed atoms form a dipole layer at the surface with positive
charge on the outside. This modifies the potential acting on a conduction
electron at the surface of the filament causing the work function to be lower.
The resulting work function is not that of thorium, but is one characteristic
of thorium atoms adsorbed on a tungsten carbide surface. At 2000°K
the work function is between 2.6 and 2.7 electron volts and A’ is about 4
amps/cm?*(°K)2. The reason that A’ is lower than the values measured
for clean metal surfaces is not well understood.

Early thoriated tungsten filaments were not carbonized; thermal re-
duction of the thorium oxide was relied upon to release free thorium.
Generally, the filaments were first “activated”’ by heating them well above
the normal operating temperature for a few minutes to effect appreciable
reduction of the thorium oxide. This was followed by operation for about
a half hour at a somewhat lower temperature, still above the normal operat-
ing temperature, to permit diffusion of the free thorium to the surface.
However, the rate of thermal reduction of the thorium oxide at the normal
operating temperature was insufficient to keep up with the loss of thorium
from the surface, and the filaments had to be “reactivated’’ from time to
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time. Carbonization both increases the rate of reduction of the thorium
oxide and reduces the rate of evaporation of thorium atoms from the sur-
face of the filament.!

As the filament temperature is increased above 2000°K, ‘the rate of
evaporation of thorium atoms from the surface increases faster than the
rate of diffusion of thorium atoms from the interior of the filament, with
the result that the fraction of the surface covered with thorium atoms
decreases. This causes ¢ to increase toward the value for a clean tungsten-
carbide surface, and one might expect that the value of A’ would likewise
approach the corresponding value for a clean tungsten-carbide surface.

Curve E in Figure 2.3-1 shows the variation of the saturation emission
current density with temperature for an uncarbonized thoriated tungsten
filament according to measurements by Langmuir'?2. Between 2100°K
and 2300°K, the emission density actually falls because of the rapid in-
crease of ¢ with temperature. Langmuir estimated that at the maximum
of the curve, the surface was covered with about 0.8 of a layer of thorium
atoms, whereas at the minimum to the right, he estimated there was only
about 0.15 layer of thorium on the surface.

A plot similar to curve E for a carbonized thoriated tungsten filament
does not appear to be available at the time of writing. However, at 2000°K
carbonized filaments give an emission current density of about 3 amps/cm?,
which is comparable to that indicated by curve E for uncarbonized fila-
ments. The radiation from a carbonized filament at 2000°K is about 28
watts/em?, so that the thoriated tungsten filament offers considerable
advantage over pure tungsten filaments with respect to the ratio of emission
current density to power radiated per unit area.

Thoriated tungsten filaments are used in a number of moderate-voltage
transmitting tubes and a class of hot-cathode gas tubes, known as tungar
rectifiers. Cathodes of thoriated tungsten are also used in high-power beam-
type microwave tubes, where the high emission capabilities of the thoriated
tungsten cathode are an important advantage. The cathodes in this case are
heated by electron bombardment.

(c) Oxide-Coated Cathodes

Although the physical processes involved in thermionic emission from
an oxide-coated cathode are not well understood at present, the descrip-
tion of the physical processes and the interpretation of the tube processing
given in the following paragraphs appear to be the prevailing thought
in a somewhat simplified form.

uReference 2.8.
12Reference 2.9.
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General. The oxide-coated cathode is used in nearly all general-purpose
tubes, many low-voltage transmitting tubes, and most hot-cathode gas
tubes. It consists of a thin coating of a mixture of metallic oxides applied
to a base of nickel or some nickel alloy.?* The oxides most frequently used
are those of the alkaline earths, barium, strontium, and calcium, (i.e.,
BaO, SrO, and Ca0). Since these oxides are unstable in the presence of
atmospheric moisture, the coating is applied to the base in the form of the
corresponding carbonates (BaCO;, etc.), and during the processing of the
tube the cathode is heated to decompose the carbonates and release CO,.

To prepare the carbonates for application to the cathode, they are first
ground into a fine powder and mixed with an organic binder and a suitable
solvent. Often nitrocellulose serves as the binder and amyl acetate as the
solvent. The resulting mixture is then applied to the cathode, often by
spraying, although filamentary cathodes are frequently dipped in the
mixture or drawn through it. The coated cathode is then dried in room air.

While the tube is being pumped, the envelope and electrodes are heated,
generally by applying rf induction to the metal parts. Sometimes an oven
is also placed over the tube for a period before the rf induction is applied.
This heating of the envelope and electrodes drives off appreciable amounts
of gases that are adsorbed on the inside surfaces of the tube. It also causes
the organic binder in the cathode coating to decompose into volatile
gases, which are pumped away. When the envelope and electrodes are
suitably “outgassed,” the cathode temperature is raised to approximately
1000°K for about a minute. This causes the carbonates in the cathode
coating to decompose into carbon dioxide and the metal oxides, a process
known as “breakdown.” The carbon dioxide is evolved as a gas and is
pumped away.

A coating of the pure oxides is an insulator, and as such is capable of
supporting very little sustained emission. To become suitable for ther-
mionic emission, the coating must first be “activated.” In this process,
barium oxide is partially reduced, given rise to free barium atoms within
the coating, which in turn aid in making the coating a semiconductor and
increase its emission capabilities. Cathode activation is accomplished by
heating the cathode to a temperature above the normal operating tem-
perature. Sometimes current is drawn from the cathode while at this
elevated temperature. (Often the normal operating temperature lies be-
tween 1000°K and 1150°K.) The heating of the cathode above the normal
operating temperature causes impurity atoms in the base nickel to diffuse
through the nickel, with the result that some reach the interface between
the coating and the nickel, where they reduce the oxides in the coating. It

130ne exception is fluorescent lamps in which tungsten is used for the base.
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is found that the impurity atoms principally react with the barium oxide,
so that the reactions at the interface lead to the release of free barium
atoms. The passage of current through the coating probably also causes
some electrolytic dissociation of the coating.

Most cathodes are activated partly while the tube is being pumped and
partly after the tube is removed from the pump. Usually the cathodes of
general-purpose tubes are raised to a temperature of 1200° to 1450°K for
about 30 seconds during pumping and then ‘“aged” for a length of time
after removing the tube from the pump. Often a series of aging steps is
used in which both the cathode temperature and the anode current are
varied from step to step. The aging time may range from 10 minutes to
several days, depending largely on the quality of the tube being made.
Tubes intended for applications needing high reliability are generally
aged for a longer period of time at a lower cathode temperature.

The activated coating is white in appearance, its thickness is of the order
of 0.5 X 1072 em (0.002 inch), and it is highly porous, having a density of
about one quarter that of the solid oxides. Itselectrical properties are those
of an n-type semiconductor.™

In some tubes a mixture of barium, strontium, and calcium oxides is used,
the molecular proportions consisting of 10 to 14 per cent calcium oxide and
about equal percentages of barium and strontium oxides. However, there
has been a trend in the tube industry toward the use of “double-carbonate’
coatings containing barium and strontium oxide in about equal molecular
proportions. The ‘“triple-carbonate’” coating (barium, strontium, and
calcium oxides) has been found to give faster activation and consequently
is attractive from a manufacturing standpoint. However, the adherence of
the coating to the base nickel is somewhat poorer, and failure due to peeling
of the coating is more likely. In addition, some recent studies of the life
capabilities of grid-controlled tubes made with double- and triple-carbonate
coatings indicate that greater life can be achieved with the double-car-
bonate coating. The use of barium oxide alone has been found to give
particularly unreproducible results,’® whereas an active coating of strontium
oxide has a higher work function than that of a mixture of barium and
strontium oxides.

14At room temperature and higher, electrons are excited to the conduction band of
the coating by donors which are distributed throughout the coating. At the cathode
operating temperature, a few of the conduction electrons gain sufficient energy to over-
come the work function of the coating and escape from the surface. The current of
escaping electrons is the thermionic emission current. At present there is some difference
of opinion as to what constitutes the principal donor in the coating; possibly it is the
free barium atoms.

13]t is thought that the barium oxide dissolves into the barium carbonate forming a
solution which melts at about 1175°K. (Reference 2¢, Vol. I, p. 62.)
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At the cathode operating temperature, barium oxide has an appreciably
higher vapor pressure than either strontium oxide or calcium oxide. Con-
sequently, the barium oxide in the outermost part of the coating gradually
becomes depleted, and evaporated barium oxide deposits on the surfaces
surrounding the cathode throughout the operational life of the tube.

Equation (2.2-3), which gives the emission current density from a metal,
does not apply to emission from a semiconductor and hence does not apply
to emission from an oxide-coated cathode. However, it is found that the
variation of emission density with temperature for an oxide-coated cathode
is governed principally by the factor ¢~ !¢/$/*T ag in the case of emission from
metal surfaces. Experimental values of ¢ for commonly used coatings lie
between 1.0 and 1.3 electron volts.

The cathodes of many general-purpose tubes are operated at tempera-
tures in the range from 1000° to 1150°K. At 1050°K, the heat radiation
from an oxide coating!® is about 3 watts/ecm? and mean cathode current
densities of a few hundred milliamperes per square centimeter are found to
be consistent with reasonably long life of the cathode, perhaps 10 to 30
thousand hours. However, if the cathode temperature is raised in order to
increase the emission current density beyond 500 ma/cm?, the life of present
types of oxide-coated cathodes is found to decrease rapidly with increasing
temperature and cathode current density. When particularly long life is
desired from a tube, lower operating temperatures are used, and the emis-
sion density must be correspondingly less. The oxide-coated cathodes used
in repeater tubes for recently developed underwater telephone cables
operate at 940°K, and are expected to have an average operational life in
excess of 40 years. The mean current density drawn from the cathodes in
this case is only 10 ma/cm?

The Base Nickel. During operation of the cathode, free barium atoms in
the coating diffuse through the coating, eventually reaching the outer sur-
face, whereupon many evaporate onto surrounding electrodes and the walls
of the tube. Since an excess of barium atoms in the coating is necessary for
the coating to be an active emitter, impurity atoms in the base nickel must
continually reduce the barium oxide and release free barium atoms. For
this reason, much attention has been given to the impurity content of
nickels used as the base material. A nickel too rich in reducing agents will
cause short cathode life, whereas a very pure nickel will lead to insufficient
emission. In addition, most reducing agents form compounds at the inter-
face between the coating and the nickel, and these compounds often have
the effect of placing an electrical impedance between the cathode lead and

16Black-body radiation at this temperature is nearly 7 watts/cm?.
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the emitting surface. In grid-controlled tubes, such an impedance is likely
to cause adverse effects on the electrical performance of the tube.

The principal reducing agents found in cathode nickels are listed in
Table 2.3-1. Those elements near the top of the table are found to be more
active reducing agents than those near the bottom of the table!”. Zirconium

TaABLE 2.3-1. CONCENTRATION OF REDUCING AGENTS IN PER CENT
BY WEIGHT IN AN ACTIVE NICKEL AND A Passive NICKEL

Reducing Atomic Type A Type B
Agent Number (Active) (Passive)
C 6 0.06 < 0.01
Mg 12 0.04 < 0.01
Al 13 0.006 < 0.005
Si 14 0.03 < 0.01
Ti 22 0.02 < 0.005
Zr 40 None None
w 74 None None

and tungsten are found in cathode nickel only if they have been intentional-
ly added to the nickel. A nickel relatively rich in reducing agents is said to
be an “‘active’ nickel and has the property that shorter times are required to
activate and age the coating. The concentration of reducing agents in such
a nickel might be as indicated for Type A in the table. A nickel such as
Type A is frequently used in the manufacture of commereial grid-controlled
tubes. However, because of the relatively rapid rate of reduction of the
barium oxide and because the formation of interface compounds (see below)
may be appreciable, the life of the coating may be less than might be ob-
tained with smaller amounts of reducing agents.

A nickel that is nearly free of reducing agents, such as Type B in the table,
would be considered to be a “passive” nickel. Such a nickel would be in-
capable of supporting substantial emission from an oxide cathode over an
appreciable length of time because the rate of diffusion of impurity atoms
through the nickel to the oxide coating would be too slow. In the manu-
facture of tubes requiring particularly long life there has been a trend in the
industry toward the use of nickels that are more passive than Type A. Re-
cently, studies have been carried out on the performance of cathodes in
which the base consists of a passive nickel to which one or two reducing
agents are added in controlled amounts. One “single-additive’” nickel which
appears to perform satisfactorily contains about 0.1 per cent zirconium.
The zirconium both increases the mechanical strength of the nickel and

7Part of this undoubtedly results from the fact that the elements near the top of the
table are lighter and hence diffuse faster,
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acts as the reducing agent to provide long-term activity of the cathode.
A “double-additive”’ nickel which has also given good results contains
0.01 to-0.03 per cent magnesium and 2 to 4 per cent tungsten. The magne-
sium makes possible the initial activity of the cathode, but it is soon lost
from the nickel by reaction with the coating and evaporation from the sur-
face. The tungsten makes possible the long-term activity and considerably
increases the mechanical strength of the nickel.

It is believed that the nickel itself does not reduce the oxides in the coat-
ing. Other impurities which are sometimes present in the nickel and which
probably have little effect upon the coating activity are'® cobalt, iron,
copper, and molybdenum. One nickel-cobalt-iron alloy which is sometimes
used in oxide-coated filamentary cathodes contains about 19 per cent cobalt
and 2 per cent iron. The addition of the cobalt and iron gives greater
mechanical strength to the filament and increases its resistivity over that
which can be obtained with pure nickel.

Interface. Next let us consider the events that take place at the interface
between the base metal and the coating. When carbon atoms reach the
interface, they react with the oxide to form CO and free barium. The CO is
evolved as a gas, some of which contributes to the residual pressure in the
tube, some is absorbed by the getter material, and some becomes adsorbed
on the inside surfaces of the tube. Other reducing agents in the base form
solid compounds upon reacting with the barium oxide. Various workers

have reported finding one or more of
MgO, BaAlO,, Ba,SiO, BaTiO,,
I and Ba;WOs at the interface. Often
the layer of compounds is referred
to as “interface.”

The presence of such a layer be-
tween the coating and the base has
the effect of placing an electrical im-
' pedance between the cathode lead
l and the emitting surface. An ap-

proximate equivalent network® for
the impedance consists of a resist-

:

F1G. 2.3-2 Approximate equivalent net-

n
(]

Y

work for the interface impedance. A

more accurate network would include

an additional resistance and capacitance

in series which would shunt the network
shown in the figure.

ance shunted by a capacitance as
shown in Figure 2.3-2. Values of the
resistance often range from a few
tenths of an ohm to a few tens of

18Manganese and sulfur are known to have adverse effects on cathode activity.
1A more accurate network would include an additional resistance and capacitance in
series which would shunt the network shown in Figure 2.3-2.
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ohms for one square centimeter of emitting surface.”? The capacitance
shunting the layer gives the parallel RC combination a time constant
of about a microsecond. In the case of base nickels containing greater than
0.05 per cent silicon, by far the greater part of the interface resistance re-
sults from Ba,SiO,, whereas base nickels having less than 0.01 per cent
silicon lead to particularly small interface resistances. Often the interface
resistance increases when the cathode is held at operating temperature for
extended periods with no current being drawn. In cases where the silicon
content of the base nickel is high, interface resistances as high as 1000 ohms
and more have been observed after such operation.

The coating also exhibits a resistance, often of the order of a few ohms
across the thickness of a square centimeter of coating. This resistance and
the interface resistance add in series and are effectively inserted between the
cathode lead and the cathode emitting surface. Such a resistance R in series
with the cathode lead of a grid-controlled tube reduces the low-frequency
transconductance of the tube. In a triode, the transconductance is reduced
by the factor 1/(1 + g.R), where g, is the transconductance in the absence
of the resistance R. For B = 100 ohms and g» = 10,000 micromhos, the
transconductance is reduced by 50 per cent. At higher frequencies, of the
order of a megacycle or more, the interface resistance is bypassed by the
capacity shunting it, with the result that the transconductance approaches
the value it would have in the absence of interface resistance.

During the life of a tube, the interface resistance increases because of the
formation of additional quantities of interface compounds. This causes a
further reduction in the transconductance, partly because of the factor
1/(1 4+ gnR), and partly because an increase in R causes the cathode
current to decrease, and this in turn reduces the transconductance. Often
the two effects contribute comparable amounts to the decrease in trans-
conductance, and together will account for the failure of a tube.?

Since much smaller interface resistances are obtained with base nickels
having low silicon content, there has been increasing use of such nickels in
grid-controlled tubes and other tubes where minimum interface resistance
is desirable.

Pulsed and DC Emission Current Densities. It is found that the saturation
current density drawn from an oxide-coated cathode under pulsed condi-
tions with pulse lengths of the order of a few microseconds and a low-duty
cycle is often of the order of 10 times that which can be drawn under de
conditions. However, as the pulse length is increased to a few milliseconds,

2Sometimes the coating tends to blister or peel, and this adds to the apparent inter-
face resistance.

Frequently end of life of a grid-controlled tube is assumed to take place when the
transconductance falls below about 65 per cent of its initial value.
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or a second, the amplitude of the current pulse decays toward the end of the
pulse. Figure 2.3-3 shows the decay of current density drawn from a par-
ticular diode when a step-function voltage is applied to the anode. Two
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Fi1g. 2.3-3 The decay of the saturation emission current density drawn from a

particular diode when a step-function voltage is applied to the anode. The abscissa

indicates time elapsed after application of voltage to the anode. (From L. S.
Nergaard, RCA Rev. 13, 464, December 1952)

effects are thought to be principally responsible for the decay of the pulsed
emission current when the pulse length is increased to times of the order
of a millisecond or a second:

1. Gas released from the anode and other electrodes struck by the elec-
trons tends to destroy cathode activity by oxidizing the impurity centers
in the coating. The gas is released both as a direct result of electron bom-
bardment and as a result of heating caused by the kinetic energy of the
incident electrons. It is known that O., CO., SO., H.O, and CO are all
effective in destroying the impurity centers.

2. Under the influence of the potential gradient established in the coating
when current is conducted through the coating, the impurity centers tend
to migrate toward the nickel base leaving a layer of oxide near the surface
that is partially depleted of impurity centers.?

In Figure 2.3-1, curve A, shows the saturation emission current density
that can be drawn from an oxide-coated cathode in a very clean environ-
ment under pulsed conditions. Curve A, shows the de¢ saturation emission
current that might be obtained under normal operating conditions. The
position of curve A, depends much on the environment in which the cathode
is operated.

2Reference 2.10.
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Causes of Failure. Finally, let us list the principal causes of failure of
oxide-coated cathodes. These are:

1. Formation of excessive interface.

2. Peeling or blistering of the coating.

3. Destruction of the coating by ion bombardment.

4. Evaporation of the coating.

5. “Poisoning” of the cathode by residual gases or foreign matter within
the tube.

6. Depletion of the activating agents in the base nickel.

Of course, in filamentary cathodes mechanical failure of the filament itself is
still another cause of failure.

(d) The L-Cathode; Pressed and Impregnated Cathodes of Tungsten and

Nickel

TUNGSTEN
MESH

(Ba, Sr)CO3———

MOLYBDENUM ——> - —MOLYBDENUM

—rasae

~

a) (b)

Fia. 2.34 The construction of the Philips cathodes: (a) the L-Cathode; (b) the
pressed or impregnated cathode. The heaters are shown schematically. (From
A. Venema et al., Philips Tech. Rev. 19, 177, 1957)

Several forms of cathode in which emission takes place from the surface of
a porous tungsten body, which is covered with adsorbed barium and oxygen
atoms, have been developed by the Philips Laboratories.?? One of these,

23Philips Laboratories, Eindhoven, The Netherlands, and Irvington-on-Hudson, N.Y.,
U.S.A. The fabrication of the Philips cathodes is described in Reference 2.13.
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known as the L-Cathode, is illustrated in Figure 2.3-4(a). Here the emitting
surface consists of a porous tungsten body of approximately 27 per cent
porosity which is welded to a nonporous molybdenum support. A chamber
between the tungsten and molybdenum initially contains (Ba, Sr)CO; in
solid solution. However, breakdown of the cathode causes the carbonates
to be reduced to a solid solution of (Ba, Sr)O. During operation of the
cathode, evaporated BaO diffuses and migrates through the tungsten pores,
and some of it is reduced by the tungsten. As a result, the outer surface of
the tungsten body becomes covered with adsorbed barium and oxygen
atoms, perhaps nearly a monolayer of oxygen covered with a monolayer of
barium.? The emission constants for such a surface as measured by
Philips Laboratories are approximately ¢ = 1.67 electron volts and
A’ = 2.5 amps/cm2(°K)2 Curve D in Figure 2.3-1 shows a plot of emission
current density vs cathode temperature based on these constants.

In two other cathodes developed by the Philips Laboratories, the oxides
are contained within the pores of the metal body rather than in a reservoir
beneath it. In one of these, known as the pressed cathode, a powdered
mixture of CaCO;, BaCO;, and Al,O; is mixed with a powdered tungsten-
molybdenum alloy containing 75 per cent molybdenum, and the resulting
mixture is pressed together in a die. The compact is then removed from the
die and sintered at 1850°C. The resulting metal body has a porosity of
about 40 per cent. It is mounted in a molybdenum support as shown in
Figure 2.3-4(b). Emission properties of the cathode are similar to the L-
Cathode, but the rate of evaporation of BaO from the pressed cathode is
somewhat higher. The use of Al:O; serves to increase the stability of the
cathode in the presence of atmospheric moisture.

In still another Philips cathode, known as the impregnated cathode, a
porous tungsten body of about 17 per cent porosity is first machined into
the desired geometry. Then a powdered mixture of CaCQO;, BaCOs;, and
Al,O, is brought in contact with the tungsten body and heated until the
powder melts and is drawn into the pores by capillary action. The resulting
cathode shows a lower rate of evaporation of BaO than the pressed cathode
and has generally found favor over both the pressed cathode and the L-
Cathode. (The L-Cathode requires a relatively long activation cycle, and
difficulties are experienced in welding the porous tungsten body to the
molybdenum holder so that there are no cracks through which the BaO
can evaporate.) The emission properties of all three Philips cathodes are
about the same.

2¢Reference 2.14.
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Several advantages of the Philips cathodes are:

1. High emission capability consistent with reasonably long life. Emis-
sion of a few amperes per square centimeter can be obtained with a cathode
life of the order of several thousand hours when the cathode is operated in a
relatively clean environment.

2. The emitting surface is physically strong and can be shaped very ac-
curately.

3. The surface is capable of withstanding strong ionic bombardment.

4. There is negligible potential drop across the cathode.

The cathodes have the disadvantage of requiring a higher operating tem-
perature than either the oxide-coated cathode or the pressed or the im-
pregnated nickel cathodes discussed below.

Philips cathodes have found application in a number of beam-type tubes,
including cathode-ray tubes and certain microwave tubes. They have also
been used in some magnetron applications.

Pressed and impregnated cathodes can also be made with the porous
metal body made of nickel. Such cathodes combine most of the advantages
of the Philips cathodes with a somewhat lower operating temperature for a
given current density. The pressed cathode is made by pressing together a
mixture of powdered (Ba, Sr)CO; and powdered nickel in a die and sintering
the resulting compact at 1000°C. The nickel body then has a porosity of
about 50 per cent. Curve Bin Figure 2.3-1 shows measurements?® of the dc
saturation emission current density vs. cathode temperature for the
pressed nickel cathode. Pressed nickel cathodes are used in a number of
beam-type microwave tubes.

Most magnetron oscillators use either pressed or impregnated nickel
cathodes. The magnetron cathode is cylindrical in shape with the emitting
surface on the outer side of the cylinder. During operation of the tube,
many of the emitted electrons are returned to the cathode with appreciable
velocity after traveling some distance through the tube. This “back
bombardment” tends to destroy an oxide-coated cathode, but pressed or
impregnated cathodes show little effect from the returning electrons.
Generally, a molybdenum sleeve provides a base for the cathode, molyb-
denum having greater strength at the cathode operating temperature than
nickel. However, because the coefficient of expansion of the outer nickel
body is somewhat different from that of molybdenum, one or more interven-
ing layers of porous nickel or nickel-molybdenum alloy are used to help
absorb the difference in expansion. The structure of a typical impregnated

2Reference 2.15.
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cathode is illustrated in Figure 2.3-5. Next to the molybdenum, there is a
layer of nickel-molybdenum alloy followed by a coarse porous nickel layer
onto which is sintered the finer outer layer. The porosity of the outer layer

L——AX!S OF CATHODE Z

L

MoLYBDENUM *\W\O(JTER POROUS
BASE — /| NICKeL BoDY

NICKEL-MOLYBDENUM -~ \COARSE POROUS
ALLOY NICKEL LAYER

le———EMITTING
SURFACE

Fie. 2.3-5 A cross-sectional view of a portion of an impregnated magnetron cathode

is about 50 per cent. The outer layer is generally impregnated by bringing
it in contact with a colloidal suspension of (Ba, Sr)COi. This is drawn into
the pores by capillary action. Curve C in Figure 2.3-1 shows measurements
of the saturation emission current density from the impregnated nickel
cathode as a function of cathode temperature.

(e) Heating the Cathode

Most oxide-coated cathodes are indirectly heated. Often the cathode
emitting surface in grid-controlled tubes has the shape of a circular or
elliptical cylinder, and the heater consists of a coiled or folded tungsten wire
which is inserted inside the cathode. To prevent the heater from making
electrical contact with the cathode or short-circuiting to itself, a coating of
aluminum oxide is applied to the heater after forming the wire into its final
shape. The coated heater is then fired in an oven at about 2000°K to sinter
the aluminum oxide. The resulting coating is hard and insulating and can
withstand a moderate amount of abrasion during assembly of the tube.
The normal operating temperature of the heater is about 400°C above that
of the cathode.

Filamentary cathodes have the advantage over indirectly heated cath-
odes of being quicker to reach the operating temperature and of requiring
somewhat less power. However, they have a number of important limita-
tions which preclude their use in many vacuum-tube applications. Principal
among these are:

1. The cathode emitting surface has the shape of a long slender wire.
2. The voltage drop across the filament is often comparable to the inter-
electrode voltages.
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3. Mechanical motion of the filament as it warms up generally precludes
the use of filamentary cathodes in tubes where close electrode spacings are
needed.

4. The filament is mechanically weak at the operating temperature and
hence must be supported at one or more points over its length in order to
prevent it from contacting the other electrodes. If the supports are con-
ductors, they must be insulated from the other electrodes.

5. Direct current must be used to heat the filaments of high-gain ampli-
fier tubes, since an ac filament current would introduce hum in the output
of the tube.

Oxide-coated filamentary cathodes have found application in a number of
diode rectifiers, where the voltage drop across the filament and variations in
the electrode spacings do not have an important effect on the tube per-
formance. They are also used in portable radio applications, where low
power consumption is desirable, and in proximity fuses and other military
applications where extremely fast warmup times are needed.

Cathodes that operate at temperatures above about 1400° or 1500°K are
generally directly heated, either as filaments or by electron bombardment.
Indirect heating would require sufficiently high heater temperatures that
the aluminum-oxide coating on the heater would melt or evaporate.

A number of high-power klystron amplifiers which require an ampere or
more of beam current use thoriated tungsten cathodes to take advantage of
the high emission capabilities of thoriated tungsten. The cathode emitting
surface is in the form of a concave disc and is heated by electron bombard- .
ment from the reverse side. A bombarding current of several hundred
milliamperes is obtained from an auxiliary oxide-coated cathode which is
held a kilovolt or more negative with respect to the thoriated-tungsten
cathode. The bombarding electrons generate sufficient heat in the thoriated
tungsten cathode to raise it to an operating temperature of about 2000°K.

2.4 Thermionic Emission Energies

The equations given in Section 2.2 for the emission current density can be
used to predict the distribution of emission energies in the direction normal
to the emitting surface. If the work function ¢ of a metal is increased by
W . electron volts, it follows from Equation (2.2-1) that the emission current
density at temperature T is changed by the factor e ¥»/¥r, Consequently,
this fraction of the emitted electrons is able to overcome a work function W,
electron volts greater than that actually present. It follows that the elec-
trons comprising this fraction have more than W, electron volts of kinetic
energy associated with their motion normal to the cathode at the time of
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emission. Similarly, the fraction of electrons that leave the cathode with
greater than W, + dW, electron volts of kinetic energy in the direction
normal to the cathode is e (¥n+d%a)/Wr and the fraction of electrons that
leave the cathode with normally directed energy in the range W, to W, +
dW , electron volts is

AP(W,) = e WnlWr — & WutdWn)Wr = ~WalWr[] — dWalWr]  (24-1)
If dW, is small compared with Wr, Equation (2.4-1) can be written as

dP(W,) = e Wawr S s (2.4-2)

Wr
This expression gives the probability that the part of the emission energy
associated with motion normal to the cathode lies in the range W. to
W. + dW.. It can be used as a weighting factor to calculate the average

emission energy in the direction normal to the cathode. Thus,

average normally directed energy = / W.dP(W,) = Wr electron volts
0
(2.4-3)

If u, is the electron velocity corresponding to a kinetic energy of W,
electron volts, then W, = mu,?/(2 | e |), where | e | is a positive dimension-
less constant numerically equal to the charge on the electron. Substituting
for W, in Equation (2.4-2), we find that the probability that the emission
velocity of an electron has a component normal to the cathode surface in the
range %, to u, + du, is given by

dP(u,) = %‘T—"e-mun*/wdun (2.4-4)

It can further be shown? that the emitted electrons have an average
kinetic energy associated with their motion parallel to the cathode surface of
Wr electron volts, and the probability that the part of the emission energy
associated with motion parallel to the cathode surface lies in the range W, to
W, 4+ dW, electron volts is

dP(W,) = WI—Te-W:/Wrth (2.4-5)

where the subscript ¢ refers to motion in the “transverse” direction. If u, is
the electron velocity corresponding to an energy of W, electron volts, the
probability that the emission velocity has a component parallel to the
cathode surface in the range u, to u. + du. is

dP(u,) = Tote moTdu, (2.4-6)

26Reference 2.4, p. 141.
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It will be helpful to combine Equations (2.4-4) and (2.4-6) to determine
the distribution of total emission velocities and the angular distribution of
the emission velocities. Multiplying the left-hand sides and right-hand
sides of the two equations, we find that the probability that the emission
velocity simultaneously has a component normal to the cathode surface in
the range u, tou, + du, and a component parallel to the cathode surface in
the range u, to u. + du. is given by

2
dP(unu) = dP(u,)dP(u;) = (%) U e ™Ry dy,  (2.4-7)
where u? = u,? + u2 If the emission velocity u makes an angle 6 with the
normal to the surface, then u, = wu cosf, and u, = usind. (See Figure 2.4-1.)
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Fi6. 2.4-1 The relationship between u, us, u,, and 6.

The probability that the emission velocity lies in the range u to w + du and
makes an angle with the normal in the range 8 to 6 4+ df can therefore be
expressed as

m 2

P T) whe ™Ry (2.4-8)

Integrating this expression with respect to 6 from 0 to =/2, we find that the
probability that the emission velocity lies in the range u to w + du is given
by

dP(u,f) = sinf cosB(

mu? mu?
= 7 o—mu/2kT ) " o
dP(u) 2T d2kT (2.4-9)
Substituting W = mu?/2 | e | in this, we obtain the probability that the
total emission energy lies in the range W to W + dW, or
= W wiweg W

dP(W) = Wae TdWT
Figure 2.4-2 shows a plot of this probability function vs. W for a cathode
temperature of 1000°K. The average total emission energy is 2W7r.

(2.4-10)
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From Equation (2.4-8) we can also obtain the angular distribution of the
emission velocities. By integrating the equation with respect to « from 0 to
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Fic. 2.4-2 The probability functions WedP(W,.)/dW,., WedP(W,)/dW, and
WrdP(W)/dW are plotted vs. W,, W, and W, respectively.

o, the probability that the direction of the emission velocity lies in the
range of angle 6 to § + df with respect to the normal is found to be

dP () = 2 sinf cosb df (2.4-11)

Since the range of angle 6 to § + df with respect to the normal defines a
solid angle 27 sind d, which is subtended at the surface of the emitter, the
current density emitted per unit solid angle at an angle § with respect to the
normal is

dP6) _ , cosf
Orsinfdd - ° w (2.4-12)
where J, is the emission current density.

In light optics a source of brightness B is said to emit according to
Lambert’s Law if the radiation per unit area per unit solid angle in the
direction 6 with respect to the normal is B cosf. The total radiation from
unit area of the surface is then

/2
/ B cosf 27 sinf df = =B (2.4-13)
0
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A thermionic cathode is therefore said to emit according to Lambert’s Law,
and the quantity J,/= is analogous to the ‘‘brightness” of the emitter, where
J, is the emission current density.

Appendix IV gives a summary of the important relations presented in
this section. We shall make use of these relations in Section 4.4, where the
effects of the electron emission velocities in electron guns are discussed.

It is interesting to note that the total kinetic energy of an emitted elec-
tron plus the energy required to overcome the work function of the metal
must come from heat energy supplied by the cathode heater. Thus, in
addition to making up for heat that is radiated and conducted away from
the cathode, the heater must supply an amount of power given by I,V 0wy
to the emitted electrons, where I, is the net current drawn from the cathode,
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F16. 2.5-1 Secondary emission ratio vs. primary-electron energy for clean surfaces
of several metals. (Cu— Reference 2.16; C, Ni — Reference 2.17; Mo, W —
Reference 2.18.)

and V. ewr, is a voltage numerically equal to ¢ + 2Wr electron volts. If
several amperes are drawn from the cathode, this power amounts to several
watts.
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2.5 Secondary Emission

All solid surfaces, both conducting and insulating, are capable of second-
ary electron emission. The secondary-electron yield for a given bombarding
energy is found to be directly proportional to the current of primary elec-
trons incident upon the surface, and for metals the yield is nearly independ-
ent of the temperature of the emitting surface.

Two important characteristics of the secondary emission from a surface
are the total yield of secondary electrons as a function of the incident elec-
tron energy, and the distribution of secondary-electron energies for a given
primary-electron energy. Figure 2.5-1 illustrates the results of measure-
ments of the first of these quantities for electrons incident upon clean
surfaces of several metals. Plotted in the figure is the ratio of secondary
electrons to primary electrons (often designated as 6) as a function of the
primary-electron energy. The same general shape of curve is found to apply
to a large number of pure metals. In all cases, the curve rises to a maximum
at a particular primary-electron energy and then falls off slowly with in-
creasing primary energy.

RELATIVE NUMBER OF ELECTRONS

, . J
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Fi6. 2.5-2 Distribution of energies of secondary electrons from a gold target when
155-volt primary electrons are incident upon the surface. (From E. Rudberg,
Phys. Rev. 50, 138, 1936)

Figure 2.5-2 illustrates the distribution of energies of secondary electrons
from a gold target when 155-volt primary electrons are incident upon the
surface. The majority of emitted electrons have energies less than 30 elec-
tron volts. However, a few have energies ranging all the way up to that of
the incident electrons. It is probable that the true secondary electrons are
emitted with kinetic energies less than 50 electron volts, and that most of
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the electrons emitted with energies between 50 electron volts and the pri-
mary energy are actually inelastically reflected primary electrons. The
spike at the right of Figure 2.5-2 results from elastically reflected primaries.
For the majority of metals, the most probable emission energy of the true
secondary electrons lies between 1.3 and 6 electron volts.

Next let us say a few words about the interactions that occur within a
clean metal target when primary electrons with energies of a few hundred
electron volts are incident upon the surface. Generally, the primary elec-
trons travel through many atomic layers of solid before their kinetic energy
is reduced to that of the conduction electrons in the metal. It is believed
that the primary electrons lose their kinetic energy through excitation of
both individual electrons and through electron plasma excitations.”? With
each excitation the primary electron abruptly loses an amount of energy
equal to that imparted to the excited electron or electron plasma.

The excitation energy of an electron plasma is a discrete quantized value
which is characteristic of the particular metal target. In most cases this
energy lies between 5 and 30 electron volts. After a very short time interval
the electron plasma excitation energy is in turn imparted to one or more
electrons in the form of kinetic energy.

It is the electrons that are excited nearest the surface of the metal that
have the greatest chance of escaping from the surface and being observed as
secondary electrons. Measurements of the depths from which secondary
electrons are emitted from a platinum target® indicate that, for 500-volt
primary electrons, some of the emitted electrons receive their excitation
energy as far as 15 atomic layers beneath the surface, and for 1000-volt
primary electrons, some of the emitted electrons receive their excitation
energy as far as 30 to 35 atomic layers beneath the surface.?

Of course, many of the excited electrons never reach the surface, and
others lose sufficient energy before reaching the surface that they are unable
to overcome the work function and escape. To evaluate the effect of change
in work function on the secondary emission yield, McKay® evaporated
somewhat less than a monolayer of sodium onto a tungsten surface, thereby
reducing the work function of the surface to about half that of clean
tungsten. He found that the secondary-electron yield at the primary energy
giving maximum § increased by about 60 per cent. Since the amount of
secondary emission from the sodium was probably very small, he assumed

27Reference 2.20.

2Reference 2.21.

#Elastic reflection of primaries probably takes place from the first one or two atomic
layers. However, some inelastic refléection undoubtedly takes place from appreciably
greater depths.

“Reference 2.22.
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that this increase resulted almost entirely from the change in work function
of the surface.

The interactions between the primary electrons and the electrons of the
solid, while best described by means of quantum mechanics, effectively
result from interactions between the coulomb fields of the electrons. The
excited electron receives an impulse that can be expressed as an integral
of force X time. If the primary electron travels faster, the time of in-
teraction is shorter, so that the impulse is smaller, and the probability of
excitation is correspondingly less. This picture can be used to explain the
shape of the curve giving secondary-electron yield vs. primary-electron
energy. At low primary energies, the yield of secondary electrons increases
with increasing primary energy, because the primary electrons expend more
energy in slowing down and hence cause a greater number of excitations.
At appreciably higher primary energies, the primary electrons are less
effective in causing excitations in atomic layers close to the surface (where
the escape probability is greatest), since they travel faster, and the time of
interaction is shorter. Consequently, the secondary-electron yield at higher
primary energies falls off with increasing energy.

Table 2.5-1 lists values of 8max, the maximum secondary-electron yield,
and the corresponding primary-electron energy for a number of metals.?

TaBLE 2.5-1*
Corresponding
Primary Electron Energy

Metal Omax (Electron Volts)
Al 1.0 300
AU, oo 1.46 750
Coo 1.0 300
Cu......ooii 1.3 600
Mo. . oo 1.25 375
Ni.oooo 1.3 550
Pt 1.8 800
Ti.ooo 0.9 280
W 14 700
/O 1.1 350

*From H. Bruining, Physics and Applications of Secondary Electron Emission, Per-
gamon Press, London, 1954.

The values given in the table apply only to clean surfaces of the metals.
However, since the electrode surfaces in an electron tube are generally con-
taminated with adsorbed gases, oxides, and material evaporated from the

3 Reference 2f, p. 39.
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cathode, the secondary-electron yield from the electrodes is likely to differ
substantially from that for a clean metal surface. An appreciable amount
of oxide on a metal surface often increases the secondary-electron yield by a
factor of 2 or more.
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Fi6. 2.5-3 Secondary emission yield vs. primary-electron energy for several com-
pound surfaces. (After R. Kollath, Handbook of Physics, Vol. 21, p. 232, Springer
Verlag, Berlin, 1956)

Certain compound surfaces have been found to give particularly high
secondary-electron yields. Values of 8m.x ranging as high-as 10 or 12 have
been reported in some cases. Several surfaces which have found application
in electron tubes as good secondary-electron emitters are: a film of Cs:Sb
deposited on a metal electrode, magnesium oxide on the surface of a silver-
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magnesium alloy, beryllium oxide on the surface of a copper-beryllium alloy
or a nickel-beryllium alloy, and cesium oxide partially reduced on a base of
silver.. Table 2.5-2 lists values®? of dmax and the corresponding primary-

TABLE 2.5-2
Corresponding
Primary Electron Energy

Metal Omax (Electron Volts)

CssSb. oo 8.0 500

AgMg. .. o 9.8 500

CuBe................... ... 3.5-5.5 500-700

NiBe. ..o 12.3 700

Ag-CsOrCs....covivi... 5.8-9.5 500-1000

electron energy for these surfaces. Figure 2.5-3 shows a plot of the second-
ary-electron yield for several compound surfaces as a function of the pri-
mary-electron energy. The values of 5ma.x obtained for these surfaces depend
markedly on the manner of preparation of the surface, wide variations being
possible.

If a surface is very rough, the escape probability of the emitted electrons
may be substantially reduced, since electrons emitted from the bottom of a
hole or valley may strike other projecting parts of the surface and be re-
captured. In cases where it is desirable to reduce the secondary emission
from an electrode, the electrode is often coated with fine carbon granules.
Bruining® found that optimum reduction in the secondary-electron yield
occurs when the carbon granules are about 30 angstroms in diameter and
form a fine labyrinth. A plot of Bruining’s measured secondary-electron
yield for carbonized nickel is shown in Figure 2.5-1 (curve “C(rough)”).
The carbon can be deposited on an electrode either by spraying the elec-
trode with a suspension of lamp black or by passing it through a flame that
is generating carbon.

Curves giving the secondary-electron yield vs. primary-electron energy
for an insulator are similar in shape to those given in Figure 2.5-1, but the
values of dmax are often appreciably greater. Figure 2.5-4 shows a plot of
the secondary-electron yield from mica. In experiments to measure the
secondary emission from an insulator, care must be taken to avoid charging
the surface of the insulator, or the primary-electron energy will be in-
determinate. Several experimenters have devised pulsed techniques which
overcome this difficulty.

32Courtesy Allen B. Dumont Laboratories, Clifton, N.J.
33Reference 2.17.
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Fic. 2.5-4 Secondary emission yield vs. primary-electron energy for mica. (After
H. Salow, Z. Tech. Phystk 21, 8, 1940)

Secondary emission is of interest in electron-tube work, sometimes as a
useful effect and sometimes as an undesirable effect. In photomultiplier
tubes a number of high-yield secondary emitting surfaces (“dynodes”)
are operated in cascade with the result that very high overall gains are
obtained. In tubes using 10 dynodes, overall gains of the order of 10° or
108 are often obtained.

In a magnetron many of the emitted electrons are accelerated by the rf
field and then driven back against the cathode with appreciable velocity.
The resulting secondary-electron emission probably accounts for a majority
of the total emission from the cathode, although thermionic emission is
generally also needed to keep the device in operation.

On the other hand, secondary emission often adversely affects the char-
acteristics of certain multielectrode tubes. One such tube is the tetrode
vacuum tube, described in Chapter 5. If the screen grid of a tetrode is
more positive than the anode, secondary electrons emitted from the anode
are drawn to the screen grid; and over a range of the operating parameters,
the anode current of some tubes decreases with increasing anode voltage.

Sometimes circuits employing grid-controlled tubes have been found to
be bistable because of secondary emission from one of the grids. In one
state a grid connected through a resistance to a fixed positive supply acts
as an electron collector, § being less than 1.0. In this case, the potential
of the grid is biased to a value less than that of the fixed supply. In the
other state the grid potential is above that of the fixed supply, with the
result that the electrons arrive with more velocity causing 6 to be greater
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than 1.0, and the grid acts as an electron emitter. To obtain this second
state there must be another electrode nearby at a still higher potential in
order to collect the emitted electrons.

2.6 Photoelectric Emission

Photoelectric emission results from the interaction of photons incident
upon a solid and electrons within the solid. The interaction is such that an
individual photon imparts all its energy to a single electron within the solid.
If the photons are incident upon a conductor or semiconductor and if the
photon energy is greater than the work function of the surface, a fraction
of the photons will be effective in causing the emission of electrons from the
surface.

The energy of a photon is given by hv = hc/\, where h is Planck’s con-
stant, » is the frequency of the radiation, ¢ is the velocity of light, and A
is the wavelength of the radiation. Expressed in electron volts, the photon
energy is equal to 12.4 X 10°/\ electron volts, where A is measured in
angstrom units. (The visible spectrum extends from about 3800 to 7600
angstroms corresponding to photon energies ranging from 3.3 to 1.6 electron
volts, respectively.)

At room temperature very few electrons in a conductor are in energy
states above the Fermi level, and hence the maximum energy of the escap-
ing electrons is very nearly given by hy — ¢, where ¢ is the work function
of the surface. If the work function is greater than 3.3 electron volts, only
ultraviolet radiation will cause photoelectron emission from the surface.

Figure 2.6-1 shows plots of photoelectric emission from clean surfaces of
several metals, semimetals, and one semiconductor as a function of the
energy of the incident photons. The ordinate in the figure indicates the
fraction of the photons incident upon the surface that cause emission of a
photoelectron. This fraction is called the quantum efficiency of the surface.
Since visible light corresponds to photon energies in the range between 1.6
and 3.3 electron volts, we see that some surfaces respond only to ultraviolet
light. Thus a clean platinum surface requires photon energies in excess of
4.6 electron volts to cause electron emission. The quantum efficiencies of
clean metal surfaces are generally extremely low, of the order of 104
or 107%, and consequently clean metal surfaces have found little application
in photoelectric devices.

Much better photoelectron yields are obtained from certain compound
surfaces.** Figure 2.6-2 shows the relative photoelectric emission of several

34The preparation of high-yield photoemissive surfaces is described in Reference 2k,
Chapter 1.
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Fig. 2.6-1 Quantum efficiency of clean surfaces of several metals, semimetals,

and one semiconductor as a function of the energy of the incident photons. (After
Phys. Rev. T4, 1462, 1948 76, 270, 1949; 84, 508, 1951; 81, 612, 1951)

frequently used compound surfaces as a function of the wavelength of the
incident light. The S-11 surface is a cesium-antimony film so processed that
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