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PREFACE 

In many design applications, alternating current offers substantial 
advantages over direct current. Among the more important ad­
vantages of alternating current are ease of transmission over long 
distances without considerable loss of power and its ability to be 
radiated as energy into space from an antenna. For these reasons, 
as well as the fact that alternating current may easily be converted 
to direct current, ac has become accepted as a more suitable and 
versatile power source than direct current. Although there are many 
situations in which direct current is a proper choice as a fundamental 
source of power (for example, in any mobile installation such as 
the automobile, where a d-c storage battery represents the initial 
source of power) there are correspondingly many more situations 
in which it becomes essential to utilize and understand alternating 
current. 

The aim of this book is to provide the fundamental concepts of 
alternating current analysis. As in o-c CIRCUIT ANALYSIS (another 
text in this series) the mathematical treatment is simple, but the 
analyses are extensive enough to allow the interested technician or 
student to develop a full comprehension of the pertinent theory. 
To insure the achievement of this aim, the text presents adequate 
information relating to electrical laws in such form as to permit 
ready use; it describes a relatively small number of selected major 
topics in detail, rather than treating a major body of less important 
material; the topics, once given, are related to practical situations; 
carefully selected problems afford the reader more profitable in­
formation and an opportunity to apply the principles he has learned; 
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step-by-step problem analyses provide clearcut concepts of the 
methodology involved in solving problems. 

Specific attention is given to basic concepts: simple a-c waveforms 
and terminology; complex a-c waveforms: a-c generation; two-pole 
and four-pole alternators; the radian; appropriate mathematics per­
taining to the voltage and current values of a sine wave including 
average, effective and peak relationships; the concepts of "pure" 
resistance, inductance and capacitance; a complete treatment of the 
"j" operator, including complex numbers; the polar form of complex 
numbers; the effects and calculations arising from various combina­
tions of R, L and C in series circuits; the series resistance circuit; the 
vectorial treatment used in analyses of parallel networks; the series­
parallel a-c network; and, alternate methods of computing im­
pedence. Thus, a strong theoretical basis is provided, upon which 
more advanced concepts can be built. 

Grateful acknowledgement is made to the staff of the New York 
Institute of Technology for its assistance in the preparation of the 
manuscript of this book. 

November, 1958 
New York, N. Y. 

A. S. 



Chapter 1 

BASIC PRINCIPLES OF ALTERNATING CURRENT 

An alternating current is one that starts from zero amplitude, 
rises in a specified manner to some maximum value, then falls off 
to zero again. The current next reverses its direction of flow, rises 
to its maximum value in the opposite direction, then decays again 
to zero. Then there is another reversal of current direction and the 
cycle of variation occurs again. 

1. Simple A-C Waveforms and Terminology 

Figure 1 shows the changes described above, and illustrates the 
definition of fundamental terms used in ac. Figure IA shows two 
cycles of a type of ac called a sine wave. This particular shape is 
the graph of the trigonometric function, the sine of an angle, as we 
shall show in detail later. An alternating current generated by 
rotating machinery is shaped this way; that's why the sine wave is 
the most important waveform we shall study. 

A cycle is a complete set of variations of an alternating current. 
As marked off in Fig. 1, a cycle is shown from the beginning of one 
positive alternation to the beginning of the next positive alterna­
tion. Any other two corresponding points on the waveform could 
have been selected as well. The cycle is shown marked off into two 
half cycles, one for the positive alternation and one for the negative 
alternation. 

The length of time consumed by one cycle is called the "period" 
of the ac. Period is symbolized by "t" and it is in units of time -
seconds, microseconds, etc. 
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The number of cycles of ac occurring in I second is called its 
"frequency." The symbol for frequency is "f" and it is in units of 
cycles per second (cps). High frequencies may be stated in kilo­
cycles (1000 cycles) per second or megacycles (1,000,000 cycles) per 
second. For simplicity, the phrase "per second" is often omitted, 
and frequency is stated in cycles, "c," kilocycles, "kc," or mega­
cycles, "me." 

Since period is the length of time for one cycle· (seconds per 
cycle), and frequency is the number of cycles in 1 second (cycles 
per second) , then period and frequency are evidently reciprocals. 
We then have, 

f = 1/t 

where f is in cycles per second and 

t = 1/f 

t is in seconds. 

Example 1. What is the period of a 60-cycle ac? 

Solution. t = 1/f = 1/60 = 0.0167 sec. 

Example 2. The period of an ac is 2.5 milliseconds. What is its frequency? 

Solution. f = 1/t = l;.0025 = 400 cycles 

Referring to Fig. IA again, note that the peak or maximum 
value of the ac is indicated. For this sine wave it is evidently 5 
amperes. 

2. A Complex A-C Waveform 

Another type of waveform more complex than the sine wave is 
shown in Fig. IB. Since the vertical axis is marked off in volts, 
this is an alternating voltage rather than an alternating current. 
For simplicity, the term ac is used to describe both alternating 
voltages and alternating currents. Actually it is an alternating 
voltage that is generated and the current that flows depends on 
the voltage and the characteristics of the load. 

To fully appreciate the importance of ac, we must realize that 
about 95% of the electrical power generated in the U.S. is a-c 
power. Ac is far superior to the d-c systems once used because it is 
easy to generate, can be transmitted over long distances with low 
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losses, and facilitates the increase or decrease of voltage with rela­
tively simple and highly efficient devices (transformers) . 

3. Electromagnetic Induction - A-C Generation 

Now, to better understand the nature of alternating voltages 
and currents, we will discuss the generation of ac by rotating 
machinery. The principles of electromagnetic induction as dis­
covered in 1831 by Michael Faraday are applied in this process. 

AMPS 

+20 

VOLTS 

----I CYCLE---.. , 

THE PERIOD, t, IN SECONOS-t 
I 

(Al 

TIME 

o+---.......:==-i-----~~--.....;::...... __________ _ 
I TI~ 
I 
I 
I 
I 
I -20 

PERIOD ANO I CYCLE----! 

(Bl 

Fig. 1. A-C waveforms: (A) sine-wave alternating current; (B) a complex alternating 
voltage. 

The electric generator which produces ac by electromagnetic induc­
tion is called an "alternator." 

Faraday demonstrated that a voltage is induced in a conductor 
whenever the conductor cuts magnetic lines of force. It is imma-
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terial whether the conductor or the lines of force are in motion 
(even both may be moving). Relative motion between the two 

resulting in a cutting of magnetic flux lines is all that is required 
for the production of a voltage. Faraday showed further that the 
polarity of the induced voltage depended on the direction of the 
magnetic field and the direction of cutting the lines. A reversal of 
either the field or the relative motion can produce a reversal of 
polarity of the induced voltage. 

Finally, Faraday demonstrated that the magnitude of the in­
duced voltage is in direct proportion to the rate of cutting of the 
lines of force. This last statement is the basis of the definition of 
a volt. If the magnetic field is uniform throughout, and the rela­
tive speed of the conductor cutting the magnetic flux is constant, 
then I volt is generated when the conductor cuts 108 (100,000,000) 
lines of force per second. 

4. The Simple Two-Pole Alternator 

These principles may be utilized in constructing a simple alter­
nator. The left side of Fig. 2 illustrates a basic two-pole (two mag­
netic poles) alternator. Conventionally, the direction of the lines 
of force is shown from the north to the south pole. A single con­
ductor is shown in cross section revolving through the field at a 
constant velocity. Thirteen positions of the conductor are shown 
with an arrow at each position pointing to the direction of motion 
at that moment. Position 13 is obviously identical with position I 
and marks the end of one revolution. The conductor revolves in a 
path shown by the circle in which the positions lie. 

The right-hand side of Fig. 2 is a graph whose vertical (y) axis 
represents induced voltage in the conductor, and whose horizontal 
(x) axis represents time. However, if we consider position I as an 
angle of 0°, then the other positions may also be described in terms 
of the angle swept out by the conductor. The positions shown rep­
resent angular distances 30° apart. In this case, the horizontal axis 
may also be marked out in degrees as is shown. 

We now proceed to take .the conductor through the various posi­
tions in one revolution. The amplitude of the induced voltage 
will be marked off on the graph in accordance with the principle 
of rate of cutting lines of force. 
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In position I, the conductor is moving in a direction parallel to 
the lines of force. In this case it is not cutting any force lines and 
the induced voltage is zero as shown. In going from position I to 
2 it is evident that the direction of motion is constantly changing 
such that m,ore and more lines will be cut. The result is a slowly 
rising voltage from I to 2. Position 2 represents an angular traverse 

N POLE 

S POLE 

Fig. 2. Generation of a-c voltage by a revolving conductor in a uniform magnetic field 

of 30°. From position 2 to 3 at 60° an even greater number of lines 
of force will be cut in unit time; the voltage curve continues its rise. 

In position 4 at 90°, the direction of motion is at right angles to 
the force lines and maximum voltage is induced at this point. By 
trigonometric considerations it can be shown that the number of 
lines cut by the conductor (hence the magnitude of the induced 
voltage) is proportional to the sine of the angle corresponding to 
the position of the conductor. At 30°, the induced voltage is thus 
0.5 of the maximum at 90°. At 60°, the voltage is 0.866 of the 
maximum. 

Positions 5 and 6 are analogous to 3 and 2 respectively, with the 
difference that the voltage is now decreasing. At 7, the conductor 
is once again moving parallel to the lines of force and no voltage 
is induced (trigonometrically, sin 180° = 0). 
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As we go from 7 to 8 the situation is the same as in going from 
I to 2, with one fundamental difference. From l to 2, the conductor 
moved from right to left in cutting the field. From 7 to 8, the 
motion of the conductor is from left to right through the field. In 
accordance with the previous discussion, the polarity of the induced 

THIS ANGLE IS 
I RADIAN 

Fig. 3. The definition of a 
radian. 

voltage must now reverse. As a result the voltage goes to a negative 
maximum at IO and decreases to zero again at 13. At 13 one cycle 
is completed and the next revolution repeats the induced voltage 
waveforms. 

The graph of the induced voltage is identical with the curve 
y = sin x. For this reason the output voltage of the alternator is 
called a sine wave. We have already indicated this in the fact that 
the number of lines cut by the conductor in unit time depends on 
the sine of the angle. 

5. The Radian 

Up to this point, angles have been expressed in the customary 
manner, in degrees. However, angles may be expressed in terms of 
another unit, the radian. The radian measure of angles often leads 
to a better understanding of a-c concepts. 

To define a radian, we draw a circle of radius r, as in Fig. 3. On 
the circumference of the circle we lay out an arc AB equal in 
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length to the radius. Draw in the two radii, OA and OB. By defini­
tion, angle BOA is one radian. 

By a basic geometric formula, the whole circumference of the 
circle is given by, 

C = 2n:r 

This means that the arc, AB, which is equal to r, can be put 
around the circumference 2n: times. Since each arc subtends 
(forms) one radian, then there must be 2n: radians in the whole 
circle. 

A circle then contains 2n: radians. In ordinary measure a circle 
consists of 360°. In that case, 

and 

from which 

and 

2n: radians = 360° 

n: radians = 180° 

I radian = 1800 = 57.3° 
n: 

n: 
1° = 1800 = 0.0175 radian 

lxample 3. Express the following in radians. (a) 21 °, (b) 60°, (c) 240°. 

Solution. (a) 21 ° = 21 X 0.0175 = 0.368 radian 

(b) 60° = 60 x _!!_ = 2!.... radians 
180 3 

(c) 240° = 240 x 1: 0 = 
4
; radians 

lxample 4, Express the following in degrees. 

(a) 4 radians, (b) ~Jt radians, (c) 
7
: radians 

Solution. (a) 4 radians = 4 x 57.3° = 229° 

(b) 2.,it radians= ~ x ~ = 120° 
" 3 Jt 

(c) 
7
6
Jt radians = J..!!.. X 

1800 
= 210° 

6 Jt 

In the basic two-pole alternator of Fig. 2, one revolution of the 
conductor around the magnetic field develops one cycle of induced 
alternating voltage. In the radian system of angular measurement, 
a circle consists of 2n: radians. If we speak of the velocity of the 
conductor in terms of angular velocity (radians per second) rather 
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than conventional linear velocity (such as inches per second) a use­
ful relationship can be developed. 

Let ro (omega) be the angular velocity of the conductor in radians 
per second. Since one cycle of induced voltage is produced for each 
2lt radians, then the frequency of the voltage is 

f = ro/2n 

and ro = 2rcf 

The angular velocity, ro, is an important and recurring concept 
in ac theory; but it is important to remember that this concept 
employs radians and not degrees. 

6. The Four-Pole Alternator 

In practice, the simple two-pole alternator is not an efficient 
machine. Actual alternators are multipole types. Electromagnets 

fig. 4. A four-pole alternator. 

IRON 
YOKE 

OR 
STATOR 

-----+-ROTATING 
MAGNETS 

OR 
ROTOR 

are used to produce the magnetic field and a d-c voltage must be 
supplied to generate the magnetic poles. Since this "field voltage" 
is a low de it is best to make the poles the moving element or the 
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rotor of the alternator. The d-c voltage may then be brought in 
through low voltage slip rings and brushes. The conductors wherein 
the voltage is generated form a winding called the armature. Since 
it is the stationary part of the alternator, the armature is often 
called the stator. 

Figure 4 is a simplified drawing of a four-pole rotating field 
alternator. For additional simplicity only four armature conductors 
are shown. The iron frame labeled "yoke" is for mechanical sup­
port and also completes the magnetic circuit. 

Since the lines of force go from a north pole to the adjacent south 
poles, it is evident that one cycle will be completed from one north 
pole under conductor I (or any conductor) to the next north pole 
under that conductor. For one rotor rotation, two cycles of voltage 
are induced. Had there been six poles, (the number of poles, of 
course, must be even) the ratio would be three cycles for one ro­
tation. 

The frequency of the induced ac is thus seen to be a function of 
the number of poles and the rate of rotation of the rotor. In 
equation form, 

f=fxrps 

where f is frequency in cycles per second, p is total number of poles, 
rps is revolutions per second. 

Since machine speeds are customarily expressed in revolutions 
per minute, rpm, the frequency equation becomes 

p rpm 
f= 2 x 60 

and f = p (rpm) 
120 

Example s. An eight-pole alternator is rotating at a speed of 900 rpm. What 
is the frequency of the induced voltage? 

Solution. f = p (rpm) = 8 (900) = 60 cycles 
120 120 

Example 6. At what speed should a 20-pole alternator rotate to generate a 
frequency of 400 cycles? 

Solution. Solving the frequency equation for rpm, 

120f (120) (400) = 2400 
rpm= -p- = 20 
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7. Review Questions 

(I) Explain the action of one cycle of ac. 
(2) What is the period of a 100-cycle ac? 
(!l) The period of an a-c voltage is 150 µsec. What is its frequency? 
(4) What is the relationship between voltage, lines of force, and angular 

velocity? 
(5) An alternator has two major components. Which one is moving? Why? 
(6) The voltage output ot an alternator is equivalent to which trigonometric 

function? 
(7) An alternator generates a maximum of 20 volts. What is its instantaneous 

voltage at !10°? At 60°? 
(8) Convert !100° into n: radians. 
(9) What is the equation for frequency for a multipole alternator? 

(10) Define angular velocity. 



Chapter 2 

VOLTAGE AND CURRENT VALUES OF A SINE WAYE 

In a d-c power system we can speak of the voltage and the current 
as fixed numbers and perform Ohm's law and power calculations 
with these numbers. In an a-c system, however, voltage and current 
are constantly changing in sine -wave fashion. It thus becomes 
necessary to define them on other bases than the simple d-c basis. 

8. The A-C Sine-Wave 

Figure 5 shows a sine-wave of alternating voltage. The voltage is 
zero at 0°, 180° and 360°. It reaches its positive maximum at 
90° and its negative maximum at 270°. Between these angles, the 
voltage is evidently at intermediate values between zero and maxi­
mum. 

Let us call the absolute value of the maximum voltage Em.• 
This is also referred to as the peak voltage. We say the "absolute" 
value so that we can eliminate the plus sign. Em is thus treated as 
a positive number unless we specifically wish to refer to the volt­
age at 270°. 

The voltage at any instant in time (or at any angle) is called 
the "instantaneous" value of the voltage. The symbol, E1 is used 
for instantaneous voltage. Comparably, an alternating current will 
have Im for maximum current and I1 for instantaneous current. 

Since an a-c sine wave is the graph of the function y = sin x, 
we can relate maximum and instantaneous values by the sine of the 

• E is the conventional symbol for voltage, I for current. 

11 
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angle corresponding to the instant under consideration. The Greek 
letter theta, 0, is used as a symbol for the angle. On this basis we 
have the following relationships, 

E1 = Em sin 0 

and, 

Correspondingly, 

Em= E1/sin 8 

I1 = Im sin 8 

Im = I1/sin 0 

In solving problems involving these formulas, we must remember 
the properties of the sine in each of the four quadrants. They are 
summarized here: 

Quadrant I (0° - 90°) 
a) The sine is a positive number. 
b) sin 0 read directly from a trig table.• 

Quadrant II (90°-180°) 
a) The sine is a positive number. 
b) sin 0 = sin (180° - 0) 

Quadrant III (180°-270°) 
a) The sine is a negative number. 
b) sin 0 = sin (180° + 8) 

Quadrant IV (270°-360°) 
a) The sine is a negative number. 
b) sin 0 = sin (360° - 0) 

Example 7. The maximum value of an alternating voltage is 145 volts. What 
is the instantaneous voltage at 45° of its cycle? 

Solution. 

= 145 sin 45° = 145 x 0.707 

= 102 V 

Example a. The maximum value of an ac is to be found. The instantaneous 
value at 165° is 7.25 amps. Find Im. 

Solution. Im = Iitsin 0 = 7.25/sin 165° 

sin 165° = sin (180° - 165°) = sin 15° = 0.259 

Im = 7.25/0.259 = 28.0 amperes 

• A Trigonometry Table is included at the end of this volume. 
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Example 9, The maximum value of an ac is 15.5 amps. At what points in the 
cycle will the current be -11.0 amps? 

Solution. An examination of a sine wave shows that it goes through any given 
value other than zero and its maximum twice in a cycle. Two angles must 
be found for this solution. Solving the relationship for sin e, we get 

sin 8 = I,tlm 

= -11.0/15.5 = -0.709 

The angle in the table with a sine closest to the absolute value of 0.709 is 
45°, whose sine is 0.707. However, since this sine is negative we must find the 
equivalent third and fourth quadrant angles. The third quadrant angle is 

81 = 180° + 45° = 225° 

while the fourth quadrant solution is 

e. = 360° - 45° = 315° 

Note that in these examples the solutions are calculated to 3 
significant figures. This is the standard accuracy of a 10-inch slide 
rule and no more than slide-rule accuracy is generally required in 
the solution of practical problems. This assumes, of course, that the 
given data is correct to three figures, an assumption that will be 
made throughout this volume unless otherwise specified. In gen• 
eral, a calculated result should have no more significant figures 
than the smallest number of significant figures in the least accurate 
item of its data. 

9. The Average Value of an A-C Sine-Wave 

Another useful value to be considered for an a-c sine wave is 
its "average" value. The average value of a full cycle of a sine wave 

+ VOLTAGE Ei 

E -----------

Fig. 5. A sine-wave. 
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is evidently zero as the negative alternation exactly cancels the 
positive alternation. Therefore, when the term "average value" is 
applied to an ac it is understood to mean the average of one 

Eov•O.636 Em (FOR ONE ALTERNATION) 

TIME OR 
ANGLE 
Eov •O (FOR ONE CYCLE) 

Fig. 6. Average values af a sine-wave. 

alternation. Since only absolute values are of concern, the average 
value will be represented by a positive number. 

Eav and Iav are the symbols used for average voltage and average 
current, respectively. By mathematical analysis we can show that 
these relationships hold true, 

and 

Similarly, 

2 
Eav = - X Em = 0.636 Em 

:rt 

:rt 
Em = T X Eav = 1.57 Eav 

Iav = 0.636 Im 

Im = 1.57 Iav 

The average value relationship of 0.636 can be shown approxi­
mately by taking enough instantaneous values in one-half cycle 
and finding their average. This is done in the table below which 
is based on a half cycle of a sine wave with a peak value of IO volts. 
The instantaneous value is calculated for angles 5° apart up to 
180°. The instantaneous value is in the column headed E1 and is 
calculated by 

E1 = IO sin 8 
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TABLE I 
INSTANTANEOUS 

VOLTAGE AND CURRENT VALUES 

Angle E1 l12• Angle E1 l12• 
(degrees) (volts) (amps) (degrees) (volts) (amps) 

5 0.87 0.8 95 9.96 99.2 
10 1.74 3.0 100 9.85 97.0 
15 2.59 6.7 105 9.66 93.3 
20 3.42 11.6 110 9.40 88.3 
25 4.23 17.9 115 9.06 82.1 
30 5.00 25.0 120 8.66 75.0 
35 5.74 33.0 125 8.19 67.1 
40 6.43 41.4 130 7.66 58.8 
45 7.07 50.0 135 7.07 50.0 
50 7.66 58.8 140 6.43 41.4 
55 8.19 67.1 145 5.74 33.0 
60 8.66 75.0 150 5.00 25.0 
65 9.06 82.1 155 4.23 17.9 
70 9.40 88.3 160 3.42 11.6 
75 9.66 93.3 165 2.59 6.7 
80 9.85 97.0 170 1.74 3.0 
85 9.96 99.2 175 0.87 Q.8 
90 10.00 100.0 180 0.00 0.0 

If we now add the 36 values of E1 the total turns out to be 229.06. 
Dividing by 36 we get an average value of 6.36 for the IO-volt peak 
wave. This checks the 0.636 relationship between Eav and Em. 
Figure 6 shows the relation between Eav and Em. 

Example 10. What is the average value of a voltage whose peak value is 
188 volts? 

Solutlon, En = 0.6ll6 Em = 0.6ll6 X 188 

= 120 volts 

Example 11, An alternating current has an average value of l.5ll amps. What 
is the peak value of the current? 

Solutlon. Im = 1.57 In = 1.57 x l.5ll 

= 2.40 amps 

• Column 11
1 is not being used until a later discussion. 
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10. The Effedive (rms) Value of an A-C Sine-Wave 

We have now discussed the peak, instantaneous and average 
values of an ac. However, in order to carry out calculations involv­
ing power and heating, it is necessary to introduce a new concept, 
the "effective" value of an a-c wave. (This is also called the "root 
mean square" or rms value.) The effective value is best derived 
from a discussion of power in an a-c circuit. 

The instantaneous power in ac is defined as the product of the 
instantaneous voltage and current. Thus, 

P1 = E1I1 

The average of all the instantaneous powers in a cycle is the average 
power consumed by the load. The positive and negative half cycles 
contribute equally to the power consumption; as far as heat pro­
duced and power consumed are concerned, it is immaterial in which 
direction the current flows through a resistor. 

Let us give the average power the symbol, P. By methods of in­
tegral calculus it is possible to determine the average power in an 
a-c circuit containing resistance only as 

p = Emim 
2 

where Em and Im are the peak values. This power equation may be 
rewritten as 

P = 7f X -J2"" = (0.707 Em) (0.707 Im) 

Using the symbols E and I for effective voltage and current, we 
define effective values from this power relationship. 

from which 

and 

from which 

E = 0.707 Em 

Em = E/0.707 = 1.41 E 

I = 0.707 Im 

Im = 1.41 I 

The power equation for an a-c resistive circuit may now be 
written simply as 

P =EI= 12R 

This is identical with the d-c power equations. The effective values 
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of voltage and current are thus equivalent to the d-c voltage and 
current values that develop the same amount of power in a resistor. 

11. Effective Value Relationships 

The 0.707 relationship between effective and peak values may also 
be approximated arithmetically. Since power is related to the 
square of the current, if we average enough squares of instantaneous 
currents we will get the 0.707 relationship. 

Let us go back to the table that was used for the development of 
average values. The third column in Table I, headed Ii2, gives the 
value of the square of the instantaneous current for each of the 
angles. This is based on a peak current of 10 amperes. 

Adding up the 36 values of 11
2 gives a total of 1800.4. Dividing 

this total by 36 gives the effective current (I) squared, i.e. 50. 
The square root of 50 (7.07) is the effective current. This is for 
a 10-amp peak current and thus bears out the 0.707 relationship. 

The above derivation shows that the number 0.707 comes about 
as a result of squaring currents, taking the average or mean value 
of the squares and then extracting the square root. This explains 
why the effective value of voltage or current is also called the "root 
mean square," a name that simply describes the process of obtaining 
this value. Root mean square may be abbreviated to rms. Effective 
and rms values are synonymous. 

Figure 7 shows a sine wave of voltage with peak, average and rms 
values. The same is true for a current wave. 

The effective or rms value is the one most generally used. When 
we speak of so many volts or amps we mean effective voltage or cur­
rent, unless otherwise stated. Voltmeters and ammeters are nor­
mally calibrated so that they read effective values. Note, however, 
that the product of rms voltage with rms current is average power. 

Relations exist between average and effective values as follows, 

therefore, 

and 

E = 0.707 Em = 0.707 (1.57 Eav) 

E = l.ll Eav 

Eav = E/1.11 = 0.9 E 

I = 1.ll lav 

lav = 0.9 I 
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TIME 
OR ANGLE 

fig. 7. Peak, effective (rms), and average values af a voltage sine-wave. 

Example 12. In a resistive a-c circuit a voltmeter across a 250-ohm resistor 
reads 120 volts. Find rms, maximum and average current, maximum and 
average voltage and the power dissipated. 

Solution. Since the voltmeter reads rms volts, we may find nns current directly 
from Ohm's law, which states that current is proportional to voltage and 
inversely proportional to resistance. 

I = E/R = 120/250 = 0.480 amp 

Im = 1.41 I = 1.41 X 0.480 = 0.676 amp 

Iav = 0.9 I = 0.9 X 0.480 = 0.432 amp 

Em = 1.41 E = 1.41 X 120 = 169 volts 

E,. = 0.9 E = 0.9 x 120 = 108 volts 

P = EI = 120 X 0.480 = 57.5 watts 

We may check the power with this equation: 

P = 12R = (0.480) • X 250 

= 57.5 watts 

12. Review Questions 

(I) Express instantaneous voltage (E1) in terms of maximum voltage (Em). 
(2) Express Im in terms of I, in a resistive a-c circuit. 
(3) A generator delivers a maximum of 200 volts. What is the instantaneous 

value at 330°? 
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(4) Express average current (I .. ) in terms of maximum current (Im) . 
(5) What is the average voltage of the generator in Question 3? 
(6) Express maximum voltage (Em) in terms of effective voltage (Erm•) . 
(7) A generator has an output of 14.4 volts maximum. What is the power 

dissipation of a 20-ohm resistor connected across its output? 
(8) A 100-ohm resistor is connected across a 220-volt a-c line. Find I,m•• Im, 

Iav, E., and power consumption. 
(9) In which quadrants is the sine a negative number? 

(IO) Express P .. in terms of Em and Im. 



Chapter 3 

RESISTANCE, INDUCTANCE AND CAPACITANCE 

In the study of d-c circuits, we learned that the only limit to tht 
current amplitude in the steady-state condition was the resistance 
of the circuit. It was only during the short periods following the 
closing or the opening of the circuit that inductance or capacitance 
had any effect. These periods constitute the transient condition of 
the circuit. 

In a-c circuits the voltage and current are constantly varying. As 
a result, inductance and capacitance exert a profound effect on the 
current. The combination of L, C, and R with various other de­
vices such as tubes, transistors, etc., make up the multitudinous 
electrical and electronic circuits used in power work, communica­
tions, industrial controls, and so on. In this chapter we will study 
the individual effects of resistance, inductance and capacitance when 
an alternating voltage is applied to each. 

13. "Pure" Resistance 

A practical resistor inevitably contains some small amount of 
inductance in its leads or in its turns of wire (if it is wire wound) . 
There is also some stray capacitance inherent in its construction. 
However, for analytical purposes, let us define a "pure" resistor as 
a device that has no inductance or capacitance and may be repre­
sented by the letter R. We will employ this useful fiction again for 
Land C. 

If a pure resistance is placed across a source of alternating volt­
age, an alternating current will flow whose amplitude is determined 

20 
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by Ohm's law. Using effective values of voltage and current, we 
have the same relationship as exists in a d-c circuit. 

I= E/R 

The instantaneous currents through the resistor always follow 
the instantaneous variations of the voltage as it goes through its 
cycle. This may be stated in another way. In Fig. 8 the curve 
marked E represents the applied voltage. The current curve I fol­
lows the voltage variations exactly. We will define such a relation­
ship by saying that E and I are "in phase." They are identical sine• 
waves differing only in amplitude. 

Since P = EI for a pure resistive circuit we can sketch in the 
curve for P in Fig. 8. Note first that P is always positive, since the 
product of two positive numbers or two negative numbers is a posi­
tive number. Physically, a positive power is power delivered from 
the source and consumed by the load. In this case the power de­
velops heat in the resistor. 

A second interesting conclusion drawn from the power curve is 
the fact that for each cycle of E or I there are two cycles of power. 
The frequency of the power variations is twice the frequency of the 
voltage variations. For a 60-cycle voltage the power frequency is 
120 cycles. Note that the power is zero twice in every voltage cycle, 
a fact that must be reckoned with in the design of single-phase a-c 
motors. This major disadvantage of single-phase a-c led to the de­
velopment of polyphase systems. 

14. "Pure" Inductance 

For the analysis of an inductive circuit we will again use the 
fiction of a "pure" inductance containing no resistance or capaci­
tance. Such a device is physically impossible, but useful for study 
purposes. The symbol "L" stands for pure inductance. 

Any piece of wire, even a straight piece, contains some induc­
tance. Generally, however, we think of inductance in terms of a coil 
consisting of several turns of wire around an air core or magnetic 
core. 

Consider the situation where an alternating current is passed· 
through a coil. This current sets up a magnetic field which follows 
exactly the variation of the current. The magnetic field then is an 
alternating one corresponding to the alternating current. This 
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magnetic field, by its very nature, is constantly moving as it rises, 
falls, reverses, rises and falls. In so moving, it is constantly cutting 
the conductors which make up the coil, thus (by Faraday's laws) 
inducing a voltage in the coil. 

By the physical laws of inertia, this induced voltage must be of 
such a polarity as to oppose the changing current which is produc­
ing the magnetic field. It is evident that if this induced voltage 

Fig. 8. P, E, and I In a 
purely resistive circuit. 

aided the changing current, the magnitude and rate of change of 
the current would increase. This, in turn, would increase the size 
of the induced voltage which, in turn, would further increase the 
changing current. This snowballing process is analogous to a per­
petual motion situation and is physically impossible. 

The direction of the induced voltage is summarized by Lenz' 
law which states that the induced voltage is of such a polarity as 
always to oppose the change of the current which produces it. Be­
cause of its direction this voltage is often called the countervoltage. 
The amplitude of the countervoltage is proportional to the rate of 
change of the current through the coil. 

This property of generating a countervoltage is called inductance. 
The type of inductance discussed with the coil is often called "self 
inductance" since only one coil is involved, and all the effects take 
place within it. 

The countervoltage forms the basis of the definition of the unit 
of inductance, the henry. A device has an inductance of I henry 
when it generates a countervoltage of I volt when the current 
through it is changing at the rate of I ampere per second. 

The property of inductance in electricity is analogous to the 
property of inertia in mechanics. Both inductance and inertia tend 
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to maintain the status quo in opposition to any change in the forces 
acting upon them. For this reason, inductance is sometimes referred 
to as electrical inertia. 

Several interesting effects turn up in a circuit containing induc­
tance only. The power dissipated in such a circuit is zero. P = 12R, 
and since R = 0, then P = 0. This is true regardless of the magni­
tude of the current, and, in a-c circuits which are highly inductive, 
leads to the situation where large currents flow with very little 
power expenditure. This is evidently an unhappy situation for 
electric companies whose business is to sell electrical power. 

A second important effect of inductance in a-c is the condition of 
the steady state of an a-c shown in Fig. 9. This occurs sometime 
after the circuit has been energized and all transient effects have 
vanished. 

The curve marked I is the sine wave of current passing through 
L. At 0° the current is zero, but its rate of change is maximum. 

Fig. 9. E and I for a purely 
indudive circuit. 

Eind ,,,-.., / ........... . 
I / \ / •• ' / . 

\ I 
\: 

(At zero the current is going from nothing to something, which is 
certainly a great rate of change.) Since the rate of change of I is 
maximum, then the countervoltage must be maximum. Further, 
since the current is trying to rise in the positive direction, the 
countervoltage in opposing this change must be negative. The 
dashed line curve of the figure marked E10d represents this induced 
countervoltage. At 0° it is at its negative maximum. 

From 0° to 90° the rate of change of I decreases and E1nd de­
creases. At the 90° point, I is at its maximum value, but its rate 
of change is zero. It is at "the top of the hill," poised to come down. 
The magnetic field around the inductance is at a maximum, but 
it is stationary. As a result, the countervoltage is zero. 
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From 90° to 180° the rate of change of I increases with a corres­
ponding increase of E1nd· However, the current is decreasing and 
the induced voltage must be positive to oppose the current change. 
By similar analysis the rest of the curve of E10d may be drawn. 

The force which is driving the current to go through the various 
changes just described is the applied voltage. Thus, we have a situa­
tion where the applied voltage produces the current changes and 
the countervoltage opposes the current changes. As a result, the 
countervoltage and the applied voltage must be 180° out of phase 
with each other. 

The applied voltage, E, is thus drawn in on Fig. 9 as the dotted 
line curve. It is a sine wave 180° out of phase with the counter­
voltage, E1nd· 

Now let us compare the sine wave E, the voltage applied to the 
inductance, with the sine wave I, the current flowing through the 
inductance. E passes through its positive maximum at 0°, while I 
has its positive maximum at 90°. E goes through zero at 90°, 
while I reaches zero at 180°. Further comparisons show that I is 
displaced from E by 90°. Since I reaches its various values 90° 
later than E, I is said to lag E by 90°. 

This angular difference between the voltage and current waves is 
called the phase angle. For a pure inductive circuit we express the 
phase angle as 90° lagging. 

In Fig. I 0, E and I are redrawn using E as the reference wave. If 
the power is drawn in from the relation P = EI it will be the curve 
marked P. Pis negative when either E or I is negative, and positive 
when both have the same sign. Note that the P wave occurs with 
twice the frequency of E and I (just as in the resistive circuit). 
However this time it is an alternating wave with equal positive and 
negative half cycles. As a result, the average power over a cycle is 
zero. During the positive alternation the source delivers power to 
the inductance, but during the negative alternation the inductance 
returns the power to the source. 

We are most accustomed to working with positive power which 
is defined as power delivered from the source to the load. This 
occurs when E and I are both positive or both negative. Negative 
power is power delivered from the load to the source. This occurs 
during the periods when E is positive and I negative, or E is nega­
tive and I positive. E and I must have opposite signs for a period of 
negative power to occur. 
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As a physical interpretation, during periods of positive power, 
the magnetic field around the inductance builds up. During periods 
of negative power the field collapses returning the stored-up energy 
to the source. 

One effect of the induced or countervoltage in an inductor is the 
lagging current previously described. Another important effect is 
its limiting action on the amplitude of current flow. The counter­
voltage acts to cancel out most of the applied voltage and thus acts 
to reduce the circuit current. 

This limiting action on current amplitude is best described in 
terms of ohms rather than volts to make it analogous to the limiting 
action of a resistance on the current. We thus define the term 

I 
I 
I 

p 

I 
I 

,..., 
I I 
I I 
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I I 

I 
I 
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Fig. 10. P, E and I in a purely inductive circuit. 

inductive reactance as the property of an inductor that limits the 
amplitude of an alternating current. The symbol for inductive re­
actance is XL and its unit is the ohm. An inductance has a ·reactance 
of I ohm when I volt of applied voltage causes a current of I am­
pere to flow. Ohm's law for an inductance may now be written as 

E = IXL 

The reactance of an inductor is determined by two factors. The 
size of the inductance will evidently determine Xr, (a larger L will 
produce a larger countervoltage). Since the countervoltage also 
depends on rate of change of current, it is evident that a higher-
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frequency current with its more rapid fluctuations will produce a 
higher XL than a lower-frequency current. It is the angular velocity, 
co (2:n:f) , that determines the rate of current change. As a result, 
the following relationship holds, 

XL= 2:n:fL = coL 

In this equation, XL is in ohms, f in cycles per second and L is in 
henries. 

Example 15. A 200-millihenry coil in a 60-cycle circuit has what inductive 
reactance? 

Solution. XL = 2nfL 

= 6.28 X 60 X 0.200 

= 75.4 ohms 

Example 16. At what frequency will a 250-microhenry coil have a reactance 
of 2ll5 ohms? 

Solution. Solving the reactance formula for f, 

f = _&_ = 2ll5 
2nL 6.28 X 250 X IO-• 

= 0.150 X 109 

= 150 kc 

Example 17. In a pure inductive circuit, the applied voltage is 150 volts at 
400 cycles. The current is measured at 2.6 amps. What is the inductance of 
the circuit? 

Solution. By Ohm's law 

XL = E/1 = 150/2.6 = 57.7 ohms 

Solving the reactance equation for L, 

L = XL = 57.7 002!10 h 
21tf 6.28 X 400 = . y 

= 2ll millihenries 

We will now examine the effect of placing inductances in series 
with each other. Assume that three coils are placed in series in 
such a way that there is no magnetic interaction between individual 
coils (Fig. 11). Magnetic interaction between coils is called mutual 
inductance. The rules developed for three series inductances may 
then be extended for any number. 

Each coil exerts a limiting effect on the current which we have 
named inductive reactance. The effect of the three coils then, is a 
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total limiting effect which is the sum of the individual reactances. 
Call the total inductive reactance XLT• then 

XLT = XLl + XL2 + XLS 

Rewriting, 

wLr = wL1 + wL2 + wL3 

Dividing through by w, 

Lr=L1+~+La 

The total inductance for inductances in series is then simply the 
sum of the individual inductances, when there is no mutual induc­
tance. This is analogous to the total resistance of series resistances. 

The case of inductances in parallel, as shown in Fig. 12, is differ­
ent. Again, assuming that the mutual inductance among the coils 

Fig. 11. Series indudances 
with na mutual indudance. 

L2 LT•L1+L2+L3 
(NO MAGNETIC INTER· 
ACTION BETWEEN COil.Si 

is zero, for a three-branch parallel network, the total current is ex­
pressed as the sum of the individual branch currents. 

IT = 11 + 12 + 13 

If each branch is an inductance, then by Ohm's law the current 
equation may be written as, 

E E E E --+--+ 
XLT XLl XL2 XLS 

Dividing through by E and replacing XL by wL, 

I 
wLT 

I I I 
--+--+--
wL1 wL2 wL3 
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Multiplying through by co, 

1 
LT 

This reciprocal formula is analogous to the familiar formula for 
resistances in parallel. 

15. "Pure" Capacitance 

For the analysis of the effect of capacitance in an a-c circuit we 
also use the concept of a pure capacitor containing no inductance 
or resistance. 

A capacitor consists of two conductors separated by a nonconduc­
tor called a dielectric. When a voltage is placed across a capacitor 
there is an instant rush of current which charges the capacitor to 

_!_,...!_+..l.+_!_ 
LT L1 L2 L3 

(NO MAGNETIC INTERACTION 
BETWEEN COILS) 

Fig. 12. Parallel inductances 
with na mutual inductance. 

the applied voltage. The current then stops since the voltage 
across the capacitor is equal and opposite to the applied voltage. 
If the voltage should now tend to increase, there will be an addi­
tional current flow in the same direction building up the counter­
voltage on the capacitor until it is once more equal to the applied 
voltage. 

If the voltage should tend to decrease, the capacitor loses some of 
its charge, causing a current flow in the opposite direction. In an 
a-c circuit where there is a continual change in the applied voltage, 
a capacitor is continually charging and discharging. While there 
is no current flow through the capacitor, the continual charging 
and discharging constitute a current flow in the rest of the circuit. 

It is evident from the above discussion that the effect of capaci­
tance is to oppose a change in voltage in an a-c circuit. This con-
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trasts with inductance which opposes a change in current. The 
greater the rate of change of the voltage the more rapidly will the 
capacitor charge or discharge to oppose the change. The voltage 
and current relations that arise from this are shown in Fig. 13. 

Figure 13 illustrates the steady-state condition some time after the 
capacitive circuit is energized and transient effects are over. The 
applied voltage E is shown as a sine wave. Any change in E is im­
mediately opposed by a corresponding change in the countervoltage 
across the capacitor. As a result the countervoltage must be 180° 
out of phase with E. It is shown as the <lashed-line curve marked Ee. 

Now consider that the countervoltage is developed by current 
flowing to charge the capacitor. The greater the rate of change of 
the applied voltage the greater must be this charging current flow 
to enable the charge on the capacitor to catch up with the applied 
voltage. 

The greatest rate of change of E occurs at 0° of its cycle. As a 
result I must be at a maximum at this point. From 0° to goo the 
rate of change of E decreases and the charging current correspond-

Fig. 13. E and I for a pure­
ly capacitive circuit. 

E 

ingly decreases. At goo the rate of change of E is zero and the cur­
rent flow in the circuit is also zero. 

After the goo point, the applied voltage starts to fall off at an 
increasing rate of change. The capacitor now discharges back into 
the source causing a reversal of the direction of current flow. With 
an increasing rate of change of E the current rises in amplitude 
reaching a maximum at 180°. The reversal of the source voltage 
now continues the current in the same direction, but with a de­
creasing rate of change of E the current decreases. At 270° the rate 
of change of E becomes zero and the current is zero. With the 
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falling off of the source voltage the capacitor again discharges and 
the current reverses direction. 

The dotted line marked I in Fig. 13 shows the current wave. An 
inspection of the curves for E and I shows that I goes through its 
alternations goo ahead of E. Jn a pure capacitive circuit I leads E 
by goo. The phase angle is thus go 0 leading. 

Figure 14 shows the relationship of voltage, current and power 
m the capacitive circuit. Again the power frequency is twice the 

w 
0 
::, 
t--

~Ol-~-1~....jl:..--l~.!4,---4--¥--~--T-IM_E_ 

~ OR DEGREES 

Fig. 14. P, E and I in a 
purely capacitive circuit. 

applied frequency and the average power is zero, since the positive 
and negative alternations are equal. 

Here again we meet the concept of positive and negative power. 
We first encountered this in the discussion of power in an inductive 
circuit. Again positive power is considered to be power going from 
the source to the load, while negative power is taken as power re­
turned from the load to the source. 

Periods of positive power occur when E and I have the same sign 
(both + or both -) . Periods of negative power occur when E and 
I have opposite signs (one is + when the other is -) . 

During the periods of positive power the capacitor is charging 
and takes power from the source to build up its electric field .. Dur­
ing the periods of negative power the capacitor is discharging and 
the energy in its electric field is returned to the source. 

The unit of capacitance is the farad. A capacitor has a capaci­
tance of one farad when a voltage across it of one volt charges it 
with one coulomb of electricity.• A farad is an enormous unit, and 

• See D-C Circuit Analysis, A. Schure, (ed.), (1958: John F. Rider, Publisher, Inc.) 
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more practical units are the microfarad (10-6 farad) and the micro­
microfarad (10-12 farad). 

In addition to producing a lead of 90° of the current with respect 
to the voltage, a capacitor also acts to limit the amplitude of the 
current. Since the countervoltage is always in opposition to the 
applied voltage it acts to limit the current flow. This current limit­
ing action of a capacitor is called its capacitive reactance. This is 
expressed in ohms and symbolized as Xe. 

Xe is analogous to the XL of an inductance and the R of a resist­
ance, and Ohm's law applies to a capacitive circuit. Expressed by 
Ohm's law, the current through a purely capacitive circuit is 

I= E/Xe 

Just as with an inductance, there are two factors that determine 
the reactance of a capacitor. The larger the value of C, the larger 
will be the charging current necessary to build up the countervolt­
age at any given rate of change of applied voltage. A larger current 
means a smaller Xe. Xe then is inversely proportional to C. 

A higher frequency means a higher angular velocity and hence a 
larger rate of change of the current. A larger rate of change of the 
current implies a larger current flow to build up the countervoltage. 
A larger current again means a smaller Xe. Xe then is also inversely 
proportional to the angular velocity. This may be expressed in 
equation form as follows, 

Xe= 
I 

wC 
I 

2n:fC 

where Xe is in ohms, f is in cycles per second and C is in farads. 
For purpose of computation, ½n: may be evaluated as 0.159, and 

the formula then written as 

0.159 
7c 

Example 18. A 0.33-microfarad capacitor is placed across a 250-volt, 400-cycle 
source. What current will flow? 

Solution. 

0 159 0.159 
Xe = -· - = IO·• = 1210 ohms fC 400 X 0.33 X 

I = E/Xc = 250/1210 

= 207 milliamps 
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Example 19. What size capacitor is required to give a reactance of 765 ohms 
at a frequency of 10.4 megacycles? 

Solution. 
C = 0.159 = 0.159 

fXc 10.4 X 106 X 765 

= 20 x 10-1• farads 

= 20 micromicrofarads 

If three capacitors, C1, C2 and Ca were placed in series, as in Fig. 
15, each would contribute a limiting effect on the current equal to 

Fig. 15. Capacitors in series. 

its reactance. The total limiting, or total capacitive reactance, Xc-r, 
would then be the sum of the individual reactances, or 

Rewriting, 

1 1 I 1 
roCr roC1 + roC2 + roCa 

Multiplying both sides of the equation by ro, 

_l_ = _I_ + _l_ + _l_ 
CT C1 C2 Ca 

From this equation it is evident that capacitors in series add, just 
as resistors in parallel. The reciprocal rule applies. 

For the case of capacitors in parallel (Fig. 16), we first solve for 
total current. For three capacitive branches, 

IT = 11 + 12 + Ia 
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Replacing each current by its Ohm's law equivalent, 

_!:_ = _!:_ + _!:_ + 
XcT Xc1 Xc2 

E 

Xcs 

Dividing both sides of the equation by E, 

But, 

I 

XcT 
I +-1-+ I 

Xc1 Xc2 Xcs 

I 
-1-

wCT 

Each of the right-hand terms may be similarly transformed to give, 

wCT = wC1 + wC2 + wC3 

Dividing both sides by w, we get the desired expression, 

CT = C1 + C2 + C3 

Capacitors in parallel add like resistors in series. The total 
capacitance is the sum of the individual capacitances. 

Example 20. Three capacitors of the following values, 20 microfarads, 40 
microfarads and IO microfarads, are placed in series. What is the total 
capacitance? 

Solution. 

Fig. 16. Capacitors in parallel. 
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Taking reciprocals, 

CT = ~O = 5.72 microfarads 

Note that the total capacitance of series capacitors must he less 
than the smallest individual capacitor. This is the same as the case 
with resistors in parallel. 

Example 21. What is the total parallel capacitance of the three capacitors in 
the previous example? 

Solution. 
~=C1+c.+c. 

= 20 + 40 + 10 = 70 microfarads. 

In a parallel connection, the total capacitance must be greater 
than the greatest individual capacitance. This is the same as in the 
case of resistors in series. 

16. Review Questions 

(1) Define the relationship existing between voltage and current in a circuit 
containing 

a. resistance only; 
b. capacitance only; 
c. inductance only. 

(2) What is the reactance of a 2-henry choke at 400 cps? 
(3) A capacitor has a reactance of 200 ohms at 100 kc. What is its capacitance? 
(4) What determines the amplitude of the countervoltage in an inductance? 
(5) What is the power consumption of a circuit with inductance only? 
(6) Two inductances of 6 henries each are in parallel across a circuit. What 

is their effective inductance? 
(7) Two capacitors of 6 microfarads each are in parallel across a circuit. 

What is their combined capacitance? 
(8) Magnetic interaction between coils is known by what name? 
(9) Define l henry. 

(10) Define l farad. 



Chapter 4 

THE J OPERATOR 

17. The "Imaginary" Number 

In mathematics, the quantity y-T arises in the solution of num­
erous problems. There is no real number which when squared is 
equal to - 1, hence there is no real number which is equal to y-1. 
In mathematics this quantity is termed an "imaginary" number, and 
is assigned the symbol, i. 

It happens that Ff is an important and useful concept in a-c 
theory and its use simplifies the handling and solution of many 
problems. However, to avoid the confusion of "i" with the symbol 
for current, we employ the symbol j. We then make our basic 
definition, 

j = y-T 

In electrical work, j is employed as an "operator." We define 
multiplication by j as equivalent to the operation of a goo rotation. 
That this is reasonable and leads to consistent results is demon­
strated in Fig. 17. Take any positive real number such as + 4 in 
the figure. Multiplying by j rotates the number by 90° to the posi­
tion marked + j4. (Note the convention of writing j before the 
number.) The vertical line upward from the origin is established 
as the + j axis. 

Another multiplication by j rotates the number by an additional 
goo, bringing it to the - 4 position. Two operations by j have 
effectively multiplied the original number by (-I). This is con-

35 



36 A-C CIRCUIT ANALYSIS 

sistent since two multiplications by j is the same as multiplication 
by j xj. But, 

j X j = j2 = (Fl) 2 = - 1 

A third multiplication by j produces another goo rotation. The 
original number has now been rotated by 270° and is at the - j4 

+j 

+j4 

REAL AXIS 

-4 +4 ~~ --------+--~~--- + Fig. 17. The effect of the j 
~ 7 operator. 

IMAGINARY AXIS 

-j4 

-j 

pos1t10n. The downward vertical line is called the - j axis. This 
too is consistent since we have now multiplied by j X j X j, and 

j X j X j = j3 = j2 X j = (- 1) X j = - j 

Finally, a fourth multiplication by j makes a complete 360° 
rotation and the number has returned to the original + 4 position. 
Arithmetically, 

j X j X j X j = j4 = j2 X j2 = (- I) (- 1) = + 1 

To summarize, the j operator has the following arithmetic and 
geometric meanings: 

j = y-T implies a goo rotation 
j2 = -1 implies a 180° rotation 
j3 = -j implies a 270° rotation 
j4 = I implies a 360° rotation 

Higher powers of j simply mean new cycles of rotation. For 
example, p = j, j6 = j2 = - I, etc. 
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The horizontal axis in Fig. 17, marked + to the right and - to 
the left of the origin, is called the real axis. On this axis lie all the 
real numbers of arithmetic from minus infinity to plus infinity. 
The vertical axis, marked + j upward and - j downward from the 
origin, is called the imaginary axis. All "pure" imaginary numbers, 
defined as the even roots of negative numbers, lie on this axis. 

18. Complex Numbers 

Any number lying on any part of the plane except the axes is 
called a "complex" number. Such a number has two parts or com­
ponents, a real component and an imaginary component. Figure 18 

Fig. 18. Complex numbers. -e:-s -4 
I 
I 
I 

+j 

I -4 
I 

-7-j6 -------- -6 
@ 

-j 

+ 
6 8 

shows an example of a complex number and the conventional way 
of writing such numbers. 

Point I is the complex number, 6 + j3. This implies that to 
locate this number we must find a point on the complex plane + 6 
to the right of the origin and + 3 up on the + j axis. Similarly, 
point 2 is - l + j5. This is one unit to th'e left of the origin and 5 
units upward. Point 3 is - 7 - j6, and point 4 is 3 - j3 by similar 
reasoning. 

This form of notation, of writing a complex number as the sum 
of its real and imaginary components, is called the "rectangular 
form" of the complex number. The general representation of the 
rectangular form of a complex number is 

a+ jb 
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where a is the real part and b is the imaginary part. The following 
list shows the values of a and b for the four points in Fig. 18: 

Point a b 
1 6 3 
2 -1 5 
3 -7 -6 
4 3 -3 

19. Redangular Form of Complex Numbers 

The basic operations of arithmetic (addition, subtraction, multi­
plication and division) may he performed on complex numbers in 
the rectangular form. These operations can he done purely by 
arithmetic without regard to the geometry involved. 

To add or subtract 2 (or more) complex numbers, the real parts 
are added or subtracted and then the imaginary parts are added or 
subtracted. 

Example 22. Add 6 + j!I and - l + j5 

Solution. The addition of the real parts gives 6 - l = 5. The addition of the 
imaginary parts gives !I + 5 = 8. Hence 

6 + j!I + (- l + j5) = 5 + j8 

Example 23. Add - 7 - j6 and !I - j!I 

Solution. - 7 - j6 + !I - j!I = - 4 - j9 

Example 24. Subtract 4 + j7 from 6 + j!I 

Solution. 6 + j!I - 4 + j7 = (6 - 4) + j (!I - 7) = 2 - j4 

Example 25. Subtract - 2 - j5 from - 7 + j l 
Solution. 

-7+jl- (-2-j5)= (-7- (-2)] +j [l- (-5)) 

= (- 7 + 2) + j (l + 5) = - 5 + j6 

20. Geometrical Addition of Complex Numbers 

The process of adding two complex numbers may he done geo­
metrically. Let us add the complex numbers of Example 22 in this 
way. As shown in Fig. 19, each point is located, and a line from the 
origin to each point is drawn. An arrowhead ·is shown at the end 
of each line, for these lines have not only magnitude (length) , but 
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also direction. A line with magnitude and direction is called a 
vector. The geometric problem we are to perform is the problem 
of the addition of vectors. 

Vectors are added by adding their horizontal and vertical com­
ponents separately. The horizontal components of the vectors are 
+ 6 and - I, adding to + 5. The vertical components are + 3 and 
+ 5, totaling + 8. The sum vector is then 5 + j8, the vector to the 
point P1 • 

Note that the sum vector is the diagonal of a parallelogram 
formed by the original. This is always true, and vectors may be 
added by "completing the parallelogram," i.e. drawing the diagonal 
from the origin. The dotted lines going to P 1 are the missing parts 
of the parallelogram. To complete a parallelogram, a line is drawn 
from the head of each vector equal, parallel to and in the same 
direction as the other vector. The diagonal is then drawn from the 
origin to the point of intersection of the two drawn lines. 

The addition of the two complex numbers of Example 23 is 
shown in Fig. I 9. The two lines drawn in to complete the parallelo­
gram intersect at point P2 . A line from the origin to P2 is the sum 
vector, and its coordinates, - 4 - j9, constitute the sum of the two 
vectors. 

To multiply two complex numbers in the rectangular form, the 
algebraic process of the multiplication of two binomials is used. 
In -this process, each term of one number is multiplied by each term 
of the second number. Like terms are then combined. 

Example 26, Multiply 2 + j4 by 3 + j2 

Solution. 2 + j4 
X 3 + j2 

6 + jl2 
+j4 +;ss 

6 + jl6 + j'8 

However, since j• = - 1, then + j28 = - 8. The product then becomes, 

6 + jl6 + j•S = 6 + jl6 - 8 = - 2 + jl6 

Therefore, (2 + j4) (3 + j2) = - 2 + jl6 

Example 27, Multiply - 5 + jl by 2 - j3 

Solution. - 5 + jl 
X 2 - j3 

- 10 + j2 [- j'3 = - (- 1) (3) = + 3) 
+ jl5 - j'3 

- 10 + jl7 + 3 = - 7 + jl7 
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The process of division of complex numbers in rectangular form 
is somewhat more complicated. We first define the "conjugate" of a 
number. The conjugate of a number is the number with the sign 
of the j term changed. Thus by definition, the conjugate of a + jb 

-10 -a 

-7-j6 

+J 
10 

8 

/ 
/ 

/ 

/ -6 
/ 

/ 
// -a 

-10 

-j 

P1 (5-t-j8l 

I 
I 
I 

\ 
I 

6-t-j:3 

6 8 10 
+ Fig. 19. Addition of 

vectors. 

is a - jb. The conjugate of 4 - j3 is 4 + j3. The conjugate of 
- 5 - j7 is - 5 + j7. The sign of the real term is unchanged, but 
the sign of the imaginary term is re\!ersed to make a conjugate. 

Let us multiply the two general conjugate complex numbers. 

a + jb 
X a - jb 

a2 + jab 
-jab - j2b2 

a2 + b2 

= a2 + b2 

The product of two conjugate complex numbers is a real number 
equal to the sum of the squares of the a and b terms. To illustrate, 
let us multiply 5 - j2 by its conjugate. The product is (5) 2 + 
(- 2) 2 = 25 + 4 = 29. 

Multiply - 3 + j2 by its conjugate. The product is (- 3) 2 + 
(2) 2 = 9 + 4 = 13. 



THE J OPERATOR 41 

With this technique of the conjugate we are able to divide two 
complex numbers. The method is broken into stepwise procedure 
in the following example. 

Example 28. Divide 7 + j4 by 2 - j3 

Solution. 
1. Set up the division as a fraction. 

7 + j4 
2 - j3 

2. Multiply both numerator and denominator by the conjugate of the 
denominator. This is a valid operation since we are merely multiplying 
the fraction by 1. 

7 + ·4 2 + ·3 __ l_x __ l_ 
2 - j3 2 + j3 

3. This leads to a new fraction, the numerator of which is the product 
of the two numerators and the denominator is the product of the two con­
jugates. We have just discussed the product of two conjugates. The new 
fraction is then 

(7 + j4) (2 + j3) _ 2 + j29 
(2 - j3) (2 + j3) - 13 

4. Now divide both the real and imaginary part of the numerator by 
the denominator to give the result. 

2 + j29 _ _2 _ j29 
13 - 13 + "°"T3 = 0.154 + j2.23 

Example 29, Divide - 4 - j4 by - 1 - j2 

Solution. 
- 4 - j4 X 

- I - j2 
- I+ j2 
- 1 + j2 

(- 4 - j4) (- I + j2) 
I + 4 

12 - ;
4 = 2.40 - j0.8 

5 

21. The Polar Form of Complex Numbers 

In addition to the rectangular form, another useful and important 
method of writing complex numbers is the "polar" form. In the 
polar form, a point in the complex plane is located by its distance 
from the origin and its angular displacement.• 

Consider point P in Fig. 20. In rectangular notation, P is a units 
to the right and b units up from the origin, and is the number 
a + jb. In polar notation, P is a distance r from the origin, and 

• A table giving the signs of trigonometric functions in the four quadrants is 
given on p. 92. 
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makes an angle 0 with the horizontal base line. In polar form, P 
is written as r I.Ji. This is read as "rat an angle 8." r is called the 
radius vector of the point P, and is drawn with an arrowhead as 

shown, to indicate that it is a vector. Remember that a vector is a 
quantity that has both magnitude and direction. 

The relationship between the polar form and rectangular form 
of a complex number may be derived from Fig. 20. If the number 
is given as a + jb, then by trigonometry, 

r = ya2 + fi2 

and is always taken as positive and 

tan 0 = b/a 

Example 30. Write the polar form of the complex number 6 + j3. Here 
a= 6, b = 3. 

Solution. 
r = ~ = y'36'+9'" = y45 = 6.71 

tan 8 = 3/6 = 0.5 

e = 26.6° 

6.71 /26.6° is the polar form of the number 

Example 31. Write the polar form of 3 - j3. 

Solution. a = 3, b = - 3 

r = y'9+9 = y'i8 = 4.24 

tan 8 = - 3d = - l 
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Since the tangent is negative two solutions are possible, one in the second 
and one in the fourth quadrant. By inspection of the rectangular form 
it is evident that the fourth quadrant angle is desired. 

e = 300° - 45° = 315° 

When 8 is in the fourth quadrant it may also be expressed as a negative 
angle, in this case - 45°. The solution is then written in either way, 

4.24 ~ 

or 4.24 ~ 

If the polar form of the number is given, r LfJ, the rectangular 
form may be derived with the aid of Fig. 20. Again by trigonometry, 

a=rcos0 

b=rsin0 

Example 32. Convert 5 ~ to its rectangular form. 

Solution. 
r=5 

e = 125° 

a = 5 cos 125° = 5 cos (180° - 125°) 

= 5 (- cos 55°) = (5) (- 0.574) = - 2.87 

125° is a second quadrant angle, and in this quadrant the cosine is negative, 
while the sine is positive. 

b = 5 sin 125° = 5 sin (180° - 125°) = 5 sin 55° 

= 5 X 0.819 

= 4.09 

5~ = a + jb = - 2.87 + j 4.09 

Example 33. Convert 4.5 /205° to the rectangular form. 

a = 4.5 cos 205° = 4.5 cos (205° - 180°) 

Solutlo•. Remembering that in the third quadrant both sine and cosine are 
negative, 

a = (4.5) (- cos 25°) = (4.5) (- 0.906) = - 4.08 

b = (4.5) (- sin 25°) = (4.5) (- 0.423) = - l.90 

4.5 ~ = - 4.08 - jl.90 

Complex numbers in the polar form cannot be added or sub­
tracted directly. In order to perform addition or subtraction the 
numbers must first be converted into rectangular form. The opera­
tions of multiplication and division are performed readily on polar 
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quantities. In the form r 1.£1 call r the "magnitude" and 0 the 
angle. 

To multiply two or more numbers in polar form, multiply the 
magnitudes and add the angles. Expressed mathematically, 

(r1 /01) (r2 /02) = r1r:.i /01 + 92 

Example 34. Multiply the three complex numbers, 2~, 5.85 ~. 
4.62~. 

Solution. r1 r2 r8 =. 2 X 5.85 X 4.62 = 54.2 

e = 60° - 22° + 18° = 56° 

54.2L.2§!. 

To divide numbers in polar form, write the division as a fraction. 
Divide the numerator magnitude by the denominator magnitude, 
and subtract the denominator angle from the numerator angle. 

r1 /01 = 21.... /81 - 02 
r2 & r2 

Example 35. Divide 7.24 /295° by 11.2 /140° 

Solution. 

_7_.2_4_..;;{aaa29aaa5=• = 7.24 /295• - 140• = 0.646 Lilli:.. 
11.2 /140° 11.2 

Example 36. Evaluate the following expression. 

( 1.62 1:=...11.°) ( 4 .35 ~) 
2.98 ~ 

Solution. Multiplying the numerator magnitudes and dividing by the de­
nominator, 

1.62 X 4.35 = 
2 36 2.98 . 

Adding the numerator angles and subtracting the denominator angle, 

- 74° + 189° - (- 16°) = - 74° + 189° + 16° = 131 ° 

2.36 1131 ° 

22. Powers and Roots of Complex Numbers 

Powers and roots of complex numbers may be easily found when 
the numbers are in polar form. The power of a complex number 
is expressed by the following equation. 

(r L.f1.) n = rn me 
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The magnitude is taken to the power, but the angle is multiplied 
by the power. 

Example 37. Find (2.77 ~) • 

Solution. (2.77 /JJ . .°) • = 2.772 /2 X 97° = 7.67 /194• 

Example 38. Find (4.05 /- 50°) • 

Solution. (4.05 /- 50°) • = 4.058 /3 X - 50° = 66.2 /- 150° 
= 66.2 ; 210° 

Similarly for roots, 

nyr &= oyr /~ 
The root 1s taken of the magnitude, but the angle is divided by 
the root. 

Example 39. v200 ;m • 
Solution. 

\!W) /171° = \!W) /.!!f_ = 6.38 /57° 

23. Summary of Complex Numbers 

Summarizing the operations on complex numbers, addition and 
subtraction are possible only with the rectangular form. Powers 
and roots are possible only with the polar form. Multiplication and 
division may be done on both forms, but is almost always easier on 
the polar form. As a result of these facts, in our practical electrical 
problems where complex numbers are used, conversions from one 
form to the other are constantly necessary. 

24. Review Questions 

(I) In electrical work the "j" operator is used to indicate what operation? 
(2) What are the components of a complex number? 
(3) How do we add or subtract complex numbers? 
(4) Define the conjugate of a complex number? 
(5) What information does the polar form contain? 
(6) Given two complex numbers in polar form: 25/60°, 5~, 

a. multiply both; 
b. divide the second into the first; 
c. take the square root of the first; 
d. square the second one. 

(7) Express the answers to Question 6 in rectangular form. 
(8) Given 2 numbers in rectangular form: +6 -j5, -12 +jl0, use these num• 

bers for the same four operations listed in Question 6. Express the an• 
swers in polar form. 

(9) Find (3.54 ~) •. 
(10) Add geometrically -5 +j5 and +5 +j5; complete the parallelogram. 



Chapter 5 

SERIES CIRCUITS 

In Chapter 3, we studied the individual effects of resistance, in­
ductance and capacitance in an a-c circuit. We saw that all three 
acted as current limiters and that the last two introduced phase 
shifts in the current with respect to the applied voltage. In Chapter 
4, we studied the j operator and vectors. We performed arithmetic 
manipulations and conversions with complex numbers in both rec­
tangular and polar forms. 

25. The Properties of the Series Circuit 

In this chapter we shall study the effect of combining various 
combinations of R, L, and C in series circuits. The following basic 
properties of a series circuit are listed as a review: 

1. The current in any part of a series circuit is the same as in 
any other part. There is only one current in the circuit, and we will 
label it simply I. 

2. By Kirchhoff's first law, the applied voltage is the sum of the 
individual voltage drops around the circuit. Here, the word "sum" 
indicates a vector sum and not a scalar or linea:t addition. 

3. The voltage drop for any circuit element may be found by 
Ohm's law, the product of the current with the ohms of resistance 
or reactance. 

26. A Series R-L Circuit 

Let us first take a series circuit consisting only of resistance and 
inductance - R and L (Fig. 21). If an alternating voltage is ap-

46 
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plied to this series network, both R and L will exert individual in­
fluences upon the current which will result in a combined effect -
predictable from what we have already discussed. 

Assuming the voltage, E, to be at a fixed frequency, the induct• 
ance will have a fixed reactance, XL, and is so marked in the figure. 
The current I is, of course, an alternating current, but for simplicity 

I 

l 
EL 

E f\J I 
Fig. 21. An R-L series 

I circuit. 
R ER I 

I 
it is shown conventionally with a single arrow. As a result of the 
current flow, there is a voltage drop across XL marked EL, and a 
drop across R marked ER. 

The voltage relationships that exist in an R-L circuit are shown 
in Fig. 22. Since I is the same throughout a series circuit, it is used 
as a reference vector and is placed on the 0° line. As R does not 
introduce any phase displacement in the current, then ER must be 
in phase with I and is shown as a vector on the 0° line. 

An inductance, however, introduces a current lag of 90°. EL then 
must lie on the 90° or + j axis, since it is 90° ahead of I. By 
Kirchhoff's law, the source voltage is the sum of EL and ER. The 
sum of the two vectors is found by completing the parallelogram 
and the vector E is the resultant. 

E is thus seen to he a complex number. Its polar form is E 1J1 
while in rectangular form it is written ER + jEL. The two forms 
are, of course equivalent, and we may write, 

where 

and 

E & =ER+ jEL 

E = yER2 + EL2 

tan 8 = EL/ER 

where 8 is called the phase angle of the circuit. 
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Example 40. In a series R-L circuit, the voltage drops across R and L are, 
respectively, 30 volts and 40 volts. Find E and e. 

Solution. 
E = yER• + EL• "' y"3o2° + 40• = y2500 

= 50 volts. 

tan 0 = EL / ER = 40/30 = 1.33 

e = 53.1• 

Writing the solution as a vector, 

E = 50 /53.l O volts. 

Therefore, the current in the circuit lags the voltage applied by 53.1 °. 

+j (90°) 

(
SOURCE\ 

EL _______ E VOLTAGE) 

I (O"l 
0 t 

-j 

Fig. 22. Voltage vectors for 
the series R-L circuit. 

In Fig. 21, both XL and R contribute limiting effects on the cur­
rent I. Let us define the total current-limiting effect of the circuit as 
the "impedance" of the circuit, and assign the symbol, Z, to the im­
pedance. By Ohm's law, 

and 

I= E/Z 

E = IZ 

Z, R and XL may now be related as indicated in the impedance 
drawing of Fig. 23. Once again I may be used as a reference vector 
and placed on the 0° line. By Ohm's law, the vector R is 

R=ERt.Jr..=ER~ 
I~ I 

By this analysis, R has a phase angle of 0° and is shown so. 



SERIES CIRCUITS 49 

By Ohm's law, the vector XL may also be found. 

X = EL ~ = .§:_ /900 
L I~ I 

XL is then at 90° with respect to I, or at the + j position. 
By completing the parallelogram for R and XL, we find the com­

plex number. In the polar form it is Z 1.£)_. In the rectangular form 
it is R + jXL. We may then write, 

where 

and 

z & = R + jXL 

Z = y'R2 + XL2 

tan 8 =XL/ R 

In a series circuit, the phase angle 0 in both the voltage and im­
pedance diagrams must be the same since voltage drops are propor­
tional to ohms. 

27. Power Fador 

"Power factor" is defined as the ratio of total circuit resistance to 
total circuit impedance. This is R/Z in the impedance drawing. 

+j (90°) 

I + 

-j 

Fig. 23. Impedance vectors for the series R-L circuit. 
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An inspection of the figure shows that R/Z is the cosine of e. 
These relations are written as 

Power factor = cos e = R/Z = ER/E 

The concept of power factor is extremely important, especially 
to the power company. Since it is only the resistance of a circuit 
that consumes power, the power factor becomes a measure of actual 
power used up. Recall that inductance and capacitance take power 
from the source during one-half cycle (positive power) , but return 
this power to the source during the next half cycle (negative 
power). 

Since the power company is paid only for power used, it is natur­
ally interested in high power factors. Circuits with low power fac­
tors may have heavy currents with small power expenditure. These 

I 

l Xe Ee 
I 

E 'u I Fig. 24. An R-C series cir-

ER 
cult. 

I :._J 

heavy currents fl.ow through the electric power company's lines, 
producing voltage drops, power losses, heating, etc. To avoid this 
unprofitable situation, the power company requires industrial users 
of electricity to maintain high power factors by means of various 
power factor correcting devices. Power factor correction of highly 
inductive machinery is often accomplished by the use of capacitors. 

We may now derive a formula for the power consumed in an a-c 
circuit. Since only resistance consumes power, then 

P =PR= IX IX R 

but I = E/Z 

then p EX IX R 
EI X R/Z = z 

and p = EI cos 0 
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This power is often called "true power" to distinguish it from 
"apparent power," which is simply E X I and does not take into 
account the phase angle between the current and voltage. True 
power is measured in watts, while apparent power is measured in 
volt-amperes. The ratio of the two powers is the power factor. 

cos 0 = P/Pa 

where P. is apparent power. 

Example 41. In a series circuit, R is !IO ohms and XL is 50 ohms. The applied 
voltage is 115 volts. Find Z, I, 0, the power factor, P and P •. 

Solution. 
Z = ..jR• + XL• = y'!,O' + 50' = y!l400 = 58.'!, ohms 

I = E/Z = 115/58.'!, = l.98 amps 

tan 0 = XL/R = 50 /!IO = l.67 

e = 59.1• 

Power factor = cos 0 = cos 59.1 • = 0.514 

P = EI cos 0 = 115 X l.98 X 0.514 = 117 watts 

P. = EI = 115 x l.98 = 228-volt-amperes 

The correctness of the calculations can be checked by finding Ea and EL 
and verifying that their vector sum is equal to E. 

Ea = IR = l.98 X !IO = 59.5 volts 

Et = IXL = l.98 X 50 = 99.0 volts 

E = yEa' + Et' = y59.51 + 99.0" = y13,340 = 115 v 

which checks with the given data. 

28. Series R-C Circuit 

A series R-C circuit presents a different set of vector relations than 
the R-L circuit. Figure 24 shows an R-C series circuit with the same 
system of labeling used in Fig. 21. Since a constant frequency is 
assumed, the capacitance is labeled as a fixed reactance, Xe· The 
voltage drops across Xe and R are marked. 

Figure 25 shows the voltage vectors that exist in this circuit. 
Again I is taken as a reference and it lies on the 0° line. ER is in 
phase with I and is also shown on the 0° line. 

For the capacitance, I leads Ee by 90°. To maintain this relation­
ship, Ee must be drawn on the - j axis, 90° behind I. 
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+ Fig. 25. Voltage vedors for 
the series R-C circuit. 

The vector sum of ER and Ee, as constructed by completing the 
parallelogram is the applied voltage E. The polar form of the 
complex number E is E I.fl, while the rectangular form is ER - jEe. 
We can then write 

where 

and 

E fJ;l = ER - jEe 

E = yER2 + Ee2 

tan e = - Ee/ER 

where 8 is the phase angle of the circuit. 
The impedance vectors of the series R-C circuit are shown in 

Fig. 26. With I as the reference, R must lie on the 0° axis, while 

+j 

R 

z 

-j (-900) 

I + Fig. 26. Impedance vedors 
for the series R-C circuit. 
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Xe is displaced by 90° to the - j axis. The impedance Z is the vec­
tor sum of R and Xe. In the polar form the impedance is Z f.Ii. 
In the rectangular form it is R - jXe- Therefore, 

where 

and 

Z @_ = R - jXe 

Z = yR2 + X02 

tan 0 = - Xe/R 

The concepts of power factor, true and apparent power are the 
same as in the R-L circuit. 

Example 42. In a series R-C circuit, a current of 2 amps is measured. A 
voltage drop of 60 volts is read across the resistor while 45 volts is measured 
across the capacitor. The frequency of the generator is 800 cycles. Calculate 
E, Z, 0, power factor, P, P., C, and R. 

Solution. 
E = VEa• + E.• = V602 + 451 = 75 volts 

Z = E/1 = 75 / 2 = 37.5 ohms 

tan 0 = - Ee/R = - 45/60 = - 0.750 

e = 36.9• 

power factor = cos 0 = cos (- 36.9°) = 0.800 

P. = EI = 75 x 2 = 150 volt-amps 

P = Pa cos 0 = 150 X 0.800 = 120 watts 

Xe = Ee/I = 45/2 = 22.5 ohms 

C = o.1 59 - o.1 59 = 0.00000885 farad 
fXe - 800 X 22.5 

= 8.85 microfarads 

R = Ea/I = 60/2 = 30 ohms 

The calculations may be checked by verifying that Z is the vector sum of 
Rand Xe. 

Z = VR• + Xe• = y301 + 22.51 

= 37.5 ohms 

which checks the previously established value for Z. 

29. The General Series Circuit 

The general series circuit (Fig. 27) contains all three elements, 
R, L and C. The same convention of labeling is used as in the pre-
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vious series circuits. Three possible conditions exist in such a cir­
cuit. They are 

I. XL > Xe- This makes EL > Ee and the circuit is inductive.• 
2. Xe > XL. This makes Ee > EL and the circuit is capacitive. 
3. XL = Xe, In this case, Ee = EL, and the circuit is a "series 

resonant" circuit. 
The series resonant circuit is discussed later in the chapter. The 

voltage vectors for cases I and 2 are sketched in Fig. 28. Let us 
define a voltage vector, Ex (total reactive voltage), as 

Ex EL - Ee when EL > Ee 

and Ex 

Figure 28A shows the voltage vectors for E1, > Ee. Ex is located 
accordingly, and E is the vector sum of ER and Ex, Figure 28B 

E 'v 
R 

I 

I Ee 
I 

Fig. 27. The general series cir• 
cult, containing R, L and C. 

shows the vectors for Ee > EL. E is again the vector sum of ER and 
Ex, The general equations of the circuit are, 

E& ER+ jEx when EL > Ee 

E&_ = ER - jEx when Ee > EL 

where E yER2 + Ex2 

and tan 9 Ex/ER when EL > Ee 

or tan 9 = - Ex/ER when Ee > EL 

• The symbol > is read "greater than." 
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Example 43. In the circuit of Fig. 27, XL is 70 ohms, R is 8.5 ohms and Xe 
is 100 ohms. The current is measured at 1.25 amps. Find the individual 
voltage drops, E, 0, power factor, P. and P. 

Solution. 
EL = IXL = 1.25 X 70 = 87.5 volts 

Ea = IR = 1.25 X 8.5 = 10.6 volts 

Ee = IXe = 1.25 X 100 = 125 volts 

Ex = Ee - EL = 125 - 87.5 = 37.5 volts 

E = vEa' + Ex• = y'I0.61 + 57.51 = 39.0 volts. 

tan 0 = - Ex/Ea = - 37.5/10.6 = - 3.54 

0 = - 74.2° 

power factor = cos 0 = cos (- 74.2°) = 0.272 

P. = EI = 39.0 x 1.25 = 48.8 volt-amps 

P = P. cos 0 = 48.8 x 0.272 = 13.3 watts 

In the previous example, note that the individual voltage drops 
across the capacitance and the inductance were greater than the 

+j +j 
EL 

E 
EL 

I ER I 

Ee 
EL> Ee 

Ex• EL -Ee E 

-j Ee Ee> EL 

(A) -j Ex•Ee-EL 

(B) 
Fig. 28. Voltage vectors for the serlu R-L·C circuit. 

applied voltage. This is perfectly valid, and violates no principles. 
The reason for this will become clear as we study resonance. 

The applied voltage will always be greater than the net reactive 
voltage, Ex, and the resistive voltage, ER, but it may be smaller, 
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equal to or larger than the individual reactive voltages depending 
entirely on circuit conditions. 

The impedance vectors for the series R-L-C circuit are developed 
in a similar manner. as before. We will define the total reactance 
as a vector, X. 

and 

Xe for XL> Xe 

XL for Xe > XL 

Figure 29A shows the vectors for XL > Xe. Z is the vector sum 
of R and X and 0 is a positive angle. When Xe > XL, as in Fig. 

X z 

Xe XL> Xe X 
X=XL-xe z 

-j (A) 
Xe> XL 

Xe X•Xe-xL 

-j 
(Bl 

Fig. 29. Impedance vectors or the series R-L-C circuit. 

29B, 8 is a negative angle. From the drawings the following rela­
tions are established, 

where 

and 

or 

Z & = R + jX for XL > Xe 

Z @__ = R - jX for Xe > XL 

Z = yR2 + X2 

tan 0 X/R for XL > Xe 

tan 0 = - X/R for Xe > XL 

Example 44. Solve Example 43 using impedance vectors, Find Z, E, 0 and 
power factor. 



Solution. 

SERIES CIRCUITS 

X = Xe - XL = 100 - 70 = 30 ohms 

Z = yR• + x• = '-/8.5' + 30' = 31.2 ohms 

tan 0 = - X/R = - 30/8.5 = - 3.54 

0 = - 74.2° 

power factor = cos 0 = cos (- 74.2°) = 0.272 
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True and apparent power of course are the same as in the previous solution. 

Example 45. In a series R-L-C circuit, the following values are known. 
E = 15.5 volts, f = 550 Kc, L = 20 microhenries, R = 20 ohms, 
C = .01 microfarad. Find Z, I, 0, power factor, and P. 

Solution. It is necessary first to solve for XL and Xe so that the circuit values 
will be in ohms. 

XL = 21tfL = 6.28 X 0.550 X 106 X 20 X IO-• 

= 69.0 ohms 

Note the conversion of kc to me in order to make possible the cancellation 
of the powers of IO. 

X _ 0.159 = 0.159 
e - fC 0.550 X 106 X 0.01 X 10-• 

Xe = 29.0 ohms 

X = XL - Xe = 69 - 29 = 40 ohms 

Z = -.jR• + x• = '-/20' + 402 = 44.7 ohms 

I = E/Z = 15.5/44.7 = 0.347 amps = 347 milliamps 

tan 0 = X/R = 40/20 = 2 

0 = 63.4° 

power factor = R/Z = 20/44.7 = 0.448 (= cos 63.4°) 

P = EI cos 0 = 15.5 x 0.347 x 0.448 = 2.41 watts 

It is interesting to note in this problem that Z was smaller than 
XL, but larger than Xe and R. This is similar to the voltage situa­
tion in Example 43. We can make the statement that Z must always 
be greater than R and X, but may be smaller, equal to, or greater 
than XL and X0 • 

30. The Series-Resonant Circuit 

We will now take up the case of the third possible condition 
that can exist in a series R-L-C circuit. This is the resonant situa­
tion where XL = Xe, and therefore EL = Ee. The circuit is then 
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called a series-resonant circuit and develops certain special proper­
ties. 

Figure 30 illustrates the voltage vectors that exist at resonance. 
Since Ee and EL are equal and opposite then Ex is zero. In that 
case, 

E yER2 + Ex2 = -./Ea2' 
or E = ER 

Similarly, tan 0 = Ex/ER = 0 

and 0 = 0° 

The applied voltage is equal to the drop across the circuit re­
sistance and is in phase with the current. The voltage drops 

+j 

E 

0 

~ 
~ 

E Fig. 30. Voltoge vectors ot 
series resonance. 

across L and C exist (and are indeed high, as will he shown), but 
they cancel each other out and the net reactive voltage is zero. 

Figure 31, the impedance vector drawing, shows the correspond­
ing cancellation of XL and Xe to give a zero X. 

Z = y'R2 + x2 = yR2" 

or Z=R 

and e = 0° 

The impedance of a series circuit at resonance is simply the 
value of its resistance. This is evidently the smallest impedance 
possible for the circuit. Any value of X greater than zero must in-
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Fig. 31. Impedance vectan at ser­
ies resonance. 

Xe 
-j 

z 
R 

crease the magnitude of Z. Ohm's law at resonance becomes, 

I= E/R 

This is the maximum value of current possible for the circuit. 
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In Fig. 32, Z and I are plotted against frequency. Starting from 
some frequency well below the resonant frequency, the horizontal 
axis represents increasing frequency through f0 , the resonant fre­
quency and then on to well above resonant frequency. On the 
vertical axis, Z is in ohms and I in amperes. 

Z goes from a large value at the lower frequencies, tapers off to 
a minimum at f0 , then rises once more. I, on the other hand, goes 
from small values before resonance to a maximum at resonance, 
then drops to low values as the frequency is increased. 

/ 
/ ___ ,,,. 

I _....,,,. __ ..... 

BELOW fo 
Xe> XL 
81S-

I 
/ 

/ 

I•E/R ,,,..,..., 
/ ' / '\ 

I ' I \ 
/ \ 

Fig. 32. Impedance and current as a function of frequency. 
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Below its resonant frequency, a given R-L-C circuit is capacitive 
since Xe > XL and 0 is a negative angle. Above its resonant fre­
quency the circuit becomes inductive. XL > Xe and 0 is a positive 
angle. However, at resonance the circuit acts as a pure resistance 
and 0 = 0°.• 

We have already established the necessary conditions of series 
resonance as 

or 

Solving for f, 

and 

1 
2:n:fL = 2:n:fC 

2:n:f2L = I 
2:n:C 

I f2 
(2:n:) 2 LC 

I 0.159 
f = 2:n: \,/LC - \,/LC 

The frequency at which resonance occurs for a given R-L-C cir­
cuit is thus seen to be dependent on Land C. 

Another interesting phenomenon occurs at resonance. Equating 
EL and Ee, and applying Ohm's law, we write 

But at resonance 

then 

I= E/R 

Ee = EL = EXL/R 

The ratio XLfR is called the "Q" of a coil and is a figure of merit 
which describes its usefulness in electronic and electric circuits. In 
general, the higher the Q of a coil the better it will function. Sub­
stituting Q for XL/R in the above equation, gives 

·Ee= EL= QE 

The voltage drop across each reactance at resonance is Q times 
the applied voltage. This effect is called the resonant rise of volt­
age of a series circuit. The rise in voltage becomes apparent on 
either side of the resonant frequency and reaches its maximum of 

• See Resonant Circuits, A. Schure (ed.) , (1957: John F. Rider Publisher, Inc.) 
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QE at resonance. This is the explanation of the situation observed 
in some previous problems where reactive voltages were larger 
than the applied voltage. 

With high-Q circuits and a sizeable source voltage, quite high 
(and dangerous) voltages are present across the reactances, at or 
near resonance. For example, with a Q of 20 (a relatively low 
figure) and a supply voltage of 15 volts, a voltage of 300 volts will 
exist across both L and C at resonance. If the capacitor is not rated 
for this voltage it will break down. 

Example 46. In a series R-L-C circuit, L is 150 microhenries, C is 250 micro­
microfarads and R is IO ohms. At what frequency will the circuit resonate? 
What current will flow at resonance and what will the individual voltage 
drops be, if the applied voltage is 2 volts? 

Solution. Solving for the resonant frequency, 

f _ 0.159 _ 0.159 
- vtr" - Vl50 X lo-• X 250 X 10-12 

0.159 X 109 

y37,500 
= 0.000820 X 109 

= 820 kc 

For the current at resonance, 

0.159 X 109 

194 

I = E/R = 2/10 = 0.2 amp 

For the drop across the resistor, 

Ea = E = 2 volts 

For the reactive voltage drops we first must find Q. 

Q = XL / R = 2nfL 
R 

Q = 6.28 X 0.820 X 109 X 150 X IO-• = 77 
IO 

E0 = EL = QE = 77 X 2 = 154 volts 

31. Review Questions 

(l) State Kirchhoff's first law, applied to a-c circuits. 
(2) What relationship exists between voltage and current in a series circuit 

containing L and R? 
(3) Define reactance and impedance. 
(4) Define the power factor of a circuit. 
(5) What is apparent power? 
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(6) In a series circuit containing capacitance, Ee is shown on which axis? 
(7) What do we call a series circuit in which: 

a. XL= Xe 
b. Xe> XL 
c. XL> Xe 
List the properties of each circuit. 

(8) What is the phase angle between E and I in a series resonant circuit? 
(9) Given L and C, what is the formula for finding the resonance frequency 

in a series resonant R-L-C circuit? 
(10) Why should industrial machinery have a high power factor? 



Chapter 6 

PARALLEL CIRCUITS AND SERIES-PARALLEL NETWORKS 

The basic R-L parallel circuit is shown in Fig. 33. In order to 
study this circuit and other network combinations, let's review the 
properties of a parallel circuit: 

1. The voltage across each branch of a parallel network is the 
same. (Therefore, we can use it as the reference vector.) 

2. By Kirchhoff's second law, the total current is the sum of the 
individual branch currents. 

3. The current in each branch is given by Ohm's law as the volt­
age divided by the ohms of resistance or reactance. 

32. The R-L Parallel Circuit 

In Fig. 33, the applied voltage E is across each branch. The 
branch currents are marked IR and IL, while line current or total 
current is I. 

Fig. 33. The R-L parallel 
circuit. 

E 'v R 

--Id) 
63 
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The vectors used to analyze parallel networks are called current 
vectors. Figure 34 shows the current vectors for the simple R-L 
circuit. Since E is common it is used as the reference and is drawn 
on the 0° line. The current through R is in phase with E and also 
lies on the 0° line. The current through L lags E by 90°, and IL 
is drawn 90° behind E or on the - j axis. The line current I is 
the sum of the two currents and lags E by the angle 0. Thus 

where 

and 

I&= IR - jIL 

I = y'IR2 + IL2 

tan 0 = - IL/IR 

power factor = cos 0 = IR/I 

Z = E/1 

Example 47. In a circuit such as Fig. 33, R is 20 ohms and XL is 30 ohms. 
If the applied voltage is 60 volts, find I, 0, Z, power factor, P and P •. 

Solution, Solving for the branch currents, 

In polar form, 

IR = E/R = 60/20 = 3 amps 

IL = E/XL = 60/30 = 2 amps 

I = Ia - jIL = 3 - j2 

I= yla' +IL•=~= 3.60 amps 

tan 0 = - IL / Ia = - 2/3 = - 0.667 

e = - 33.7• 

I= 3.60 /- 33.7° and lags E. 

Power factor = cos 0 = cos (- 33.7°) = 0.832 

P. = EI = 60 x 3.60 = 216 volt-amps 

P = P. cos 0 = 216 X 0.832 = 180 watts 

z = _!_ = E .&:, 
I I~ 

- 60 &.. 
- 3.60 /-33.7° 

= 16.7 /33.7• ohms 

The impedance in this problem (Fig. 35) can be found directly 
from the given data. In d-c theory, the total resistance of two re-
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sistors in parallel is governed by the "product over the sum" rule. 
In an analogous manner, the total impedance of a two-branch 
parallel network is 

Using this equation in Example 47, and remembering that inductive react­
ance is + jXL, we get 

Z= 
(R) (+ jXL) - (R) (XL ~) 

R + jXL - R + jXL 

= (20) (30) Llli!'.') 600 ~ 
20 + j30 20 + j30 

In order to perform the indicated division of the vectors, we convert the 
denominator into the polar form. 

therefore, 

Rewriting, 

and 

20 + j30 = y'202 + 30' = 36.0 for the magnitude 

tan 0 = 30/20 = 1.50 

0 = 56.3° for the angle 

20 + j30 = 36.0 /56.3° 

Z= 600~ 
36.0 /56.3° 

z = 16.7 /33.7° 

which checks with the previous solution. 

33. Parallel R-L Circuit with R in Both Branches 

A more complex type of parallel R-L circuit is shown in Fig. 35. 
This contains R as well as XL in the inductive branch. The method 

+i 

E 

-j 

Fig. 34. The current vectors for 
the R-L parallel circuit. 

E '\J 

R ( 1 

Fig. 35. A parallel R-L circuit with 
R in both branches. 
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for solving this type of network is indicated by Fig. 36. The induc­
tive branch, which is itself a series circuit,is solved for its impedance, 
ZL & Note that the vectors for this solution in Fig. 36A use IL 
as the reference since that is the common current for the inductive 
branch. 

Once ZL /8L is known, then by Ohm's law we can find IL L::..!!i.· 
Fig. 36B shows the current-vector solution of the parallel branches 

+j 

-j -j 
(A) (B) 

fig. 36. Vectors for the solution of fig. 35: (A) solution of the series bronch; 
(B) solution of the porollel branches. 

E 

I 

that results. In and IL are added vectorially to give the line current, 
I !Jt. The total impedance, Z, can be found by Ohm's law or by 
the "product over the sum" formula. 

Example 48. In a circuit such as in Fig. ll5, R = 18.5 ohms; RL = 6.25 ohms; 
XL = 22 ohms; E = 12 volts. Find the branch currents, the line current, Z, 
power factor, and power used. 

Solution. Solving first for the series RLXL branch, 

ZL = yRL• + XL• = y6.251 + 221 = 22.9 ohms 

tan eL = XL / RL = 22/6.25 = ll.52 

0L = 74.1• 

In polar form, ZL = 22.9 /74.1° ohms 

Finding the branch currents, 

12 &._ 
IL = E/ZL = 

22
_9 174

.l O = 0.525 /- 74.l O amp 

12 &._ 
IR = E/R = 18_5 ~ = 0.648 ~ amp 
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The line current is the vector sum of Ill and IL. Since the branch currents 
are in polar form they cannot be added. Conversion to rectangular form 
must be performed first. Converting, 

Ill = 0.648 ~ = 0.648 

IL = 0.525 /- 74.l O = 0.525 cos (- 74.l 0 ) 

+ j0.525 sin (- 74.l 0 ) 

= 0.525 X 0.274 + j0.525 X (- 0.962) 

= 0.144 - j0.505 

Solving for I, I = Ill + IL (vector sum) 

I = 0.648 + 0.144 - j0.505 

= 0.792 - j0.505 

Now converting this value for I to polar form, 

In vector form, 

By Ohm's law, 

I = y0.7922 + 0.5052 = 0.940 amp 

tan 0 = - 0.505/0.792 = - 0.638 

e = - 32.5· 

I = 0.940 /- 32.5° amp 

12 &. 
Z = E/I = 94 = 12.8 /32.5° ohms 

0. 0 /-32.5° 

The impedance could have been found by product over sum. 

z = RZL 
R + ZL 

Using the polar forms for the product and the rectangular forms for the 
sum, 

Z = (18.5 &) (22.9 ~) 
18.5 + j0 + 6.25 + j22 

z- 424 ~ 
- 24.8 + j22 

Converting the denominator vector into polar form by the usual method 
it becomes 33.2 /41.6°. Putting this in for the denominator 

424~ 
Z = 33.2 /41.6· = 12.8 /32.5° 

This checks with the solution obtained by means of currents. 

Power factor = cos 0 = cos (- 32.5°) 

= 0.843 

P = EI cos 0 = 12 X 0.940 X 0.843 

= 9.51 watts 
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34. A Parallel R-L Circuit with R and L in Each Branch 

A still more complex circuit would have R and L in each branch 
as in Fig. 37. To solve such a network, each branch would have to 
be treated as a separate series circuit in the manner of Fig. 36A. 

+j 

E f\, I l I 
I 
I 
I 
I 

11 --- \ I 
- ....... - ....... \I 

'----I:!J 
IL ---------- I 

-j 

Fig. 37. R and L in each branch 
af a parallel R-l circuit. 

Fig. 38. Current vectors far the 
parallel R-l current of Fig. 37. 

The branch currents, 11 and 12, can then be determined and added 
vectorially as in Fig. 38. An example will illustrate the technique. 

Example 49. In Fig. 37, the following values exist. R1 = 3.45 ohms; Xu = 
11.6 ohms R, = 15.3 ohms; Xt, = 2.75 ohms. The applied voltage is 20 
volts. Find branch and line currents, circuit impedance, power factor and 
power used. 

Solution. Solving branch I, 

Z1 = yR1• + Xu• = y3.45' + 11.62 = 12.1 ohms 

tan 0 1 = Xt1/R1 = 11.6/3.45 = 3.36 

01 = 73.4° 

In polar form, 

Z1 = 12.1 /73.4° 

For current, 

20 &_ 
l1 = E/Z1 = 12.1 

173
.4• = 1.65 /- 73.4° amps 

Converting the current to the rectangular form, 

l 1 = l 1 cos 0 + j l 1 sin 0 

= 1.65 cos (- 73.4°) + j 1.65 sin (- 73.4°) 

= 1.65 X 0.286 - j 1.65 X 0.958 

= 0.473 - jl.58 
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Branch 2 is solved similarly for Z2 and both vector forms of 12• 

Z2 = yR.2 + XL.2 = yl5.32 + 2.752 = 15.6 ohms 

tan e. ·= XL2/R2 = 2.75/15.3 = 0.180 

e. = 10.2° 

In polar form, 

Z2 = 15.6 /10.2° ohms 

For the current, 

20 &... 
I, = E/Z, = 15_6 110

_
2

• = 1.28 /- 10.2° amps 

Converting the current to the rectangular form, 

12 = 1.28 cos (- 10.2°) + jl.28 sin (-10.2°) 

= 1.28 X 0.984 - jl.28 X 0.177 

= 1.26 - j0.226 

The line current is found as the vector sum of the rectangular forms of the 
branch currents. 

I = l 1 + l 2 

= 0.473 - jl.58 + 1.26 - j0.226 

= 1.73 - j 1.81 

The interpretation of this value for I is interesting. It means that 
the line current in the circuit has a resistive component of I.73 
amps and an inductive component of l.81 amps. The resistive com­
ponent is shown in Fig. 38 as IR, and is the sum of the resistive com­
ponents of 11 and 12 . In similar fashion, the inductive component, 
IL, is the sum of the inductive components of 11 and 12 . 

The line current is now converted into its polar form for its magnitude and 
angle of lag. 

I = yl.732 + 1.812 = 2.48 amps 

1.81 
4 tan e = - I.73 = - 1.0 5 

e = - 46.3• 

In polar form, 

I = 2.48 /- 46.3° amps 

The impedance is now found by Ohm's law: 

20 ~ 0 
Z = E/1 = 

2
_48 /- 46_3• = 8.07 /46.3 
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+j 

le 

E 'v R Xe; 

,_____I:U E 
-j 

Fig. 39. The basic R-C parallel 
netwark. 

Fig. 40. Current vectors far the 
basic R-C parallel network. 

As before, the total impedance may also be found by product over sum. 

z. z., 
Z= Z1+Z.. 

Using the polar forms of the branch impedances for the multiplication in 
the numerator, and the rectangular forms for the addition in the denomi­
nator, 

Z = _1_2_. l _,/==73==.4==•-x_l_5._6--=/==I o==.2==·--
3.45 + jll.6 + 15.3 + j2.75 

189 /83.6° =----=--=----,-18.8 + j14.4 

The denominator is converted to polar form so that the division may be 
performed, 

18.8 + jl4.4 = 23.6 /37.5° 

z = 189 ~ 
23.6 /37.5° 

= 8.02 /46.1° 

This checks the Ohm's law calculation for Z within slide rule accuracy. We 
now complete the solution. 

Power factor = cos 0 = cos (- 46.3°) = 0.691 

P • = EI = 20 X 2.48 = 49.6 volt-amps 

P = P. cos 0 = 49.6 X 0.691 = 34.2 watts 

35. The Parallel R-C Circuit 

The parallel R-C circuit is completely analogous to the parallel 
R-L circuit with the one exception that the current in a capacitive 
branch leads the voltage by the phase angle of the branch. Figure 
39 illustrates the simplest form of the R-C network and the current 
vectors are shown in Fig. 40. 
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Since capacitive current le leads E by 90°, it is shown on the + j 
axis. The equations are, 

I = yln2 + 10 2 

tan e = le/IR 

The general R-C parallel circuit is shown in Fig. 41. This has R 
and C in each branch and involves the type of solution encountered 
in the similar R-L network. As shown in Fig. 42, the branch cur­
rents, 11 /E)l and 12 /82, are determined separately. The line cur­
rent I & is the vector sum of the branch currents. 

Example so. In the circuit of Fig. 41, the following values exist for the circuit 
elements. R1 = 22.4 ohms, Xe, = 60.5 ohms, R2 = 110 ohms, Xe2 = 75.8 
ohms. E = 150 volts. Find branch currents, line current, impedance, power 
factor, apparent and true power. C. measures 5.25 microfarads. Find the 
line frequency and C,. 

Solution. We proceed first to find the branch impedances. In rectangular form, 

Z,. = R1 - jXe1 = 22.4 - j60.5 

Z, = R 1 - jXc, = 110 - j75.8 

Converting both to polar form, 

and, 

Similarly, 

and 

Z,. = "I/R1• + Xe,• = "1/22.4' + 60.5• = 64.4 ohms 

tan 0 1 = -Xe,/R, = - 60.5/22.4 = - 2.70 

e, = - 69.7• 

Z,. = 64.4 /- 69.7° 

Z. = "1/R,• + Xe.' = "1/llO' + 75.8" = 134 ohms 

tan 0 2 = - Xcz/R, = - 75.8/110 = - 0.690 

e. = - 34.6• 

Z. = 134 /- 34.6° 

E l'\J f l 
fig. 41. A parallel R-C circuit with R 
and C in each branch. 

._____I!) 
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The branch currents are now found by Ohm's law: 

I, = ~ &_ = 150 &_ 
0 z, !fi 64.4 /- 69.7 

= 2.33 /69.7° amps 

E ~ 150 &_ 
I, = Z. & = 134 /- 34.6• = 1.12 /34.6• amps 

The currents are now converted to rectangular form so that they may be 
added to give line current. 

11 = 11 cos 0i + jl, sin 0, 

= 2.33 cos 69.7° + j2.33 sin 69.7° 

= 2.33 X 0.347 + j2.33 X 0.938 

= 0.810 + j2.18 

12 = 12 cos 0 2 + jl2 sin 0 2 

= 1.12 cos 34.6° + j 1.12 sin 34.6° 

= 1.12 >< 0.823 + jl.12 X 0.568 

= 0.921 + j0.636 

Finding the line current, 

I = 11 + 12 = 0.810 + j2.18 + 0.921 + j0.636 

= 1.73 + j2.82 amps 

Converting I to polar form, 

+i 

-j 

I = yl.732 + 2.82° = 3.31 amps 

tan 0 = 2.82/1.73 = 1.63 

0 = 58.5° 

I = 3.31 /58.5° amps 

Fig. 42. Current vecton for 
a parallel R-C circuit with R 
and C in each branch. 
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The interpretation of the two forms of I is this. The line current has a 
resistive component of 1.73 amps and a capacitive component of 2.82 amps. 
Its magnitude (the value an ammeter would read) is 3.31 amps and it 
leads the applied voltage by 58.5°. 

The impedance is found by Ohm's law: 

E &._ 150 &_ 
Z = I &_ = 3_31 ~ = 45.4 /- 58.5° 

Calculating Z by product over sum, and using the polar forms of Z1 and 
z. in the numerator and the rectangular forms in the denominator, 

z = 64.4 ~ X 134 ~ 
22.4 - j60.5 + I IO - j75.8 

The denominator adds to 132 - jl36. This is converted to polar form. 

132 - jl36 = 189 /- 45.9° 

Rewriting the denominator in the expression for Z, 

z = 64.4 ~ X 134 ~ 
189 /-45.9° 

= 45.5 /- 58.4° ohms. 

Thus checking the other result. 

Finding power factor, P. and P, 

power factor = cos e = cos (- 58.5°) = 0.523 

P. = EI = 150 X 3.31 = 496 volt-amps 

P = P • cos 0 = 496 X 0.523 = 260 watts 

We find the line frequency by using the data for C2 and Xc,-

f = 0.159 = 0.159 
Xc,C, 75.8 X 5.25 X IO·• = 400 cycles 

0 159 0.159 
C1 = -· - = ---- = 6.58 microfarads 

fXc1 400 X 60.5 

36. The Parallel R-L-C Circuit 

The simplest kind of parallel R-L-C circuit has pure R, L, and C 
in each branch. This is the circuit of Fig. 43. The corresponding 
current vectors are shown in Fig. 44. For simplicity, we may define 
a total reactive current, Ix, 

or 

le when IL > le 

IL when le > IL 
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The line current in rectangular form becomes 

I = IR + jlx 

For the polar form, 

I = y1R2 + Ix2 

tan 0 = Ix/IR 

An example will illustrate the method of solution. 

Example 51. In the parallel R-L-C network of Fig. 43, E is 2.5 volts at a 
frequency of 250 kc. If R = 12 ohms, L = 5.25 microhenries and C = 
0.045 microfarads, find line current, circuit impedance and power dissipated. 

Solution. XL and Xe are first determined. 

XL = 6.28fL = 6.28 x 0.250 x l()• X 5.25 X 10-• 

= 8.25 ohms 

Xe = 0.159 = 0.159 
fC 0.250 X 10" X 0.045 X 10-6 

= 14.1 ohms 

Branch currents are found. 
E &_ 2.5 &_ 

Ill= R /S}:._ = 12 f.!l:... 

= 0.208 f.!l:.__ amp 

2.5 &_ = -=-:c-c--~-
8.25 /90° 

= 0.303 /- 90° amp 

I _ E &_ 2.5 &_ 
0 

- Xe /- 90° 14.1 /- 90° 

= 0.178 /90° amp 

The total current may now be determined by first finding the net reactive 
current. 

Ix = IL - 10 = - j0.303 + j0.l 78 = - j0.125 = 0.125 /- 90° amp 

I = -../Ill• + lx1 = -../0.208' + 0.125' = 0.243 amp 

tan 9 = - Ix / Ill = - 0.125/0.208 = - 0.601 

9 = - 31.0° 

In polar form, 

I = 0.243 /- 31.0° amp 

An interesting point is illustrated by this solution. In series cir­
cuits, the larger reactance determines the nature of the circuit. In 
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Fig. 43. The simplest R-L-C E l'\J R Xe 
circuit. 

I~ 

Example 45 of the previous chapter, XL was greater than Xo and 
the result was an inductive circuit. In Example 43, the circuit was 
capacitive as the capacitive reactance was the greater one. This is 
true for series circuits because the larger reactance has the larger 
voltage drop and controls the circuit. 

In a parallel R-L-C circuit the reverse is true. The smaller reac­
tance determines the nature of the circuit. In the problem we are 
now doing, XL is smaller than X 0 , but the line current is lagging 
by 31.0° and the circuit is inductive. The explanation is readily 
available. The smaller reactance has the larger branch current and 
thus controls the overall nature of the network. 

+j +j 
le le 

Ix 
I 

IR E E 

IR 

Ix I 

IL IL 
-j -j 

(A) (B) 

fig. ""· Vectors for Fig. 43. 
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E 'v Fig. 45. The general R-L-C 
circuit. 

--I~ 

Continuing the solution, we next find Z. 

E ~ 2.5 ~ 
Z = 1 &.. = 0_243 L=11Q.: = 10.3 /31.0° ohms 

To find the power we first find power factor. 

power factor = cos 0 = cos (- 31.0°) = 0.857 

P = El cos 9 = 2.5 X 0.243 X 0.857 

= 0.521 watt 

37. The General R-L-C Circuit 

The general R-L-C circuit contains R in both the L branch and 
the C branch. Figure 45 is the network, while Fig. 46 is the vector 
solution of the circuit. 

The solution of the circuit may be outlined in four steps: 
1. The branch impedances, ZL and Ze are calculated from the 

branch resistances and reactances, treating each branch as a series 
circuit. 

2. The branch currents, IL /8L, le /8e and IR LQ.'.'.. are deter­
mined by Ohm's law. These currents are shown as vectors in 
Fig. 46. 

3. The net reactive current, Ix /0x, is found by adding le 
and IL. IL and le must be in the rectangular vector form for the 
addition. 

4. I, in its rectangular form, is found by the addition of Ix 
and IR. It is then converted to the polar form, I &· 
Example 52. In Fig. 45, the circuit has the following constants: RL = 190 

ohms; XL = 285 ohms; Re = 80 ohms; Xe = 215 ohms; R = 275 ohms; 
E = 45 volts. Find line current, circuit impedance and power consumed. 
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Solution. Following the outlined procedure, we proceed to find ZL and Ze. 

zL = yRL• + xL• = ..j1w + 2851 

. = 342 ohms 

XL/RL = 285/190 = 1.50 

tan 56.3° = 1.50 

In polar form, 

ZL = 342 ~ ohms 

Ze = v'Re' + Xe' = y802 + 215' = 230 ohms 

- Xe/Re = - 215/80 = - 2.69 

tan (- 69.6°) = - 2.69 

In polar form, 

Ze = 230 /-69.6° ohms 

Now, the three branch currents may be calculated: 

E~ ~ 
IR = R ~ = 275 ~ = 0.164 ~ amp 

In rectangular form, 

IR = 0.164 + j0 

45 ~ - 0 

342 156
_
3

• - 0.132 /- 56.3 amp 

Converting this to rectangular form, 

IL = 0.132 cos (- 56.3°) + j0.132 sin (- 56.3°) 

= 0.132 X 0.555 + j0.132 X (- 0.832) 

= 0.0731 - j0.110 amp 

+j 

le 

fig. 46. Vectors for fig. 45. 
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-
E 10° _ 451(}0 

I e:.. ..,.,,.,......-~....,,.~ = 0.195 /69.6° 
e - Ze - 230 /- 69.6° 

Converting le to rectangular form, 

le = 0.195 cos 69.6° + jO.195 sin 69.6° 

= 0.195 X 0.349 + jO.195 X 0.937 

= 0.0681 + jO.183 amp 

The net reactive current, Ix, is found as the sum of the two reactive cur­
rents. The rectangular forms are used for the addition. 

Ix = IL+ le 

= 0.0731 - jO.l 10 + 0.0681 + jO.183 

= 0.141 + jO.O73 amp 

The net reactive current is a capacitive current since the capacitive reactance 
was the smaller reactance. It has a resistive component of 0.141 amps and 
a capacitive component of 0.073 amps. 
The line current is found as the sum of the net reactive current and 
resistive current. 

I= Ia+ Ix 

= 0.164 + jO. + 0.141 + jO.O73 

= 0.305 + jO.O73 amp 

Converting to polar form, 

and 

I = y'O.3O51 + 0.073• = 0.314 amp 

tan 0 = 0.073/0.305 = 0.239 

0 = 13.5° 

I = 0.314 /13.5° 

Finding the circuit impedance, 

z = E LQ: = 45 LQ;, 
I ~ 0.314 /13.50 = 143 /- 13_50 ohms 

The power is calculated by determining first the power factor: 

Power. factor = cos 0 = cos 13.5° = 0.972 

P = EI cos 0 = 45 X 0.314 X 0.972 
= 13.7 watts 

38. The Series-Parallel A-C Network 

The series-parallel a-c network can range from a relatively simple 
network, which will be considered first, to one of many extremely 
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complicated networks. However, in spite of the complexity of the 
whole circuit, any series-parallel circuit can be solved by the same 
basic method which consists of two fundamental steps: 

I. Work on each parallel network until its total impedance is 
expressed in rectangular form. In this way each parallel section is 
converted into an equivalent series section. 

2. The whole circuit is now a series R-L-C network and is solved 
by the methods developed and illustrated in Chapter 5. 

Individual problems will require more or less effort in each of 
the steps, but all will fall into the same pattern of solution. The 
first example below will illustrate the method as used to solve a 
relatively simple network. 

Example 53. In Fig. 47 the values of the various circuit elements and the 
applied voltages are as shown. Find the total impedance, the line current, 
the power factor, true power and apparent power. 

Solution. The first step is to find the impedance of the parallel network and 
to express it in rectangular form. This impedance, which we will call z,, 
may be determined in several ways. Two means of finding z, will be shown. 
The first is the familiar product over the sum formula. To use this formula 
we must first find the impedance of the RLXL branch. Calling this branch 
impedance ZL, we get, 

In polar form, this becomes 

ZL = 155 /75.1 ° ohms 

The parallel network impedance, z,, by product over sum is 

z _ ZLXc1 
•-zL+Xc1 

Using polar forms in the numerator and rectangular forms in the de­
nominator, 

z. = (155 /75.1 °) (205 /- 90°) 
40 + jl50 - j205 

= 31800 ~ 
40 - j55 

Converting the denominator into polar form the equation becomes, 

Z _ 31800 ~ 
• - 68.0 /- 53.9° 

and in polar form, 

z, = 468 /39.0° ohms 
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This expression is now converted to rectangular form in the usual sine 
and cosine manner, giving 

z, = 363 + j294 ohms 

This has fulfilled the first step in our plan of attack. In effect, we have 
changed the circuit of Fig. 47A into that of Fig. 47B. The z, portion is 
shown in the dashed lines as equivalent to a resistor of 363 ohms in series 
with an inductive reactance of 294 ohms. The series-parallel network is now 

(Bl 

E•90V '\J 

yzp 
I 
1
Rp•363fl 

I 
I 

(Al 

l XLp•294fl 

~ 
E•90V '\J 

(Cl 

Fig. 47. The series-parallel network of Example 53 (A); its series R-L-C equivalent (B); 
its final equivalent circuit (C). 
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a series R-L-C circuit and the rest of the solution is straightforward. The 
total impedance, Z, is the sum of the individual resistances and reactances. 
We now write, 

Z = 363 + j294 + 50 - j600 

= 413 - j306 ohms 

Figure 47C shows this impedance as the final impedance of the original net­
work. The entire circuit of Fig. 47A is equivalent to a resistance of 413 
ohms in series with a capacitive reactance of 306 ohms. 
To continue with the solution, the polar form of the impedance is now 
determined as 

Z = 514 /- 36.6° ohms 

The rest of the solution follows readily. Knowing E and Z, I follows by 
Ohm's law. 

I= E/Z 

= 90 LQ; 
514 /- 36.6° 

= 0.l 75 /36.6° amp 

The current has a magnitude of 0.l 75 amps and leads the applied voltage 
by 36.6°, the phase angle of the current. By means of the phase angle the 
power factor is found. 

Power factor = cos 36.6° = 0.803 

Real power and apparent power are found by their conventional formulas. 

P=Elcos0 

= 90 X 0.175 X 0.803 

= 12.6 watts 

P • = EI = 90 X 0.l 75 = 15.7 volt-amps 

It was stated at the beginning of the example that two methods of 
finding the impedance of the parallel network would be shown. 
The first is the product over the sum as used in the actual solution. 
With only two branches in parallel this approach is probably as 
simple as any. However, with three or more parallel branches the 
resultant formula becomes very difficult and laborious to apply. In 
that case, a second method of finding the impedance of the parallel 
branch, which will now be given, is simpler and better. 

39. Another Method of Finding the Impedance of a 
Parallel Branch 

This method we will call the "assumed-voltage" method. To 
understand it we must recognize the fact that the impedance of a 
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network depends only on the resistances and reactances which com­
pose the network. The voltage across the network, and the branch 
currents.have no effect on the impedance. (Of course, if any element 
were to be damaged by the voltage or the current the impedance 
would change. However, this has nothing to do with our dis­
cussion.) 

In the "assumed-voltage" method of determining impedance, we 
do just what the name implies. We assume any convenient voltage 
across our parallel circuit. This voltage has nothing to do with the 
applied voltage or any other voltage that may be given as part 
of the problem. We will use it only to calculate the impedance and 
then we will discard it. Any other information derived from this 
voltage, such as branch currents, is also discarded. Only the imped­
ance is kept, because it is completely independent of the voltage. 
Regardless of the voltage assumed, the impedance will always come 
out the same. 

By convenient voltage is meant a voltage that will simplify the 
arithmetic or facilitate the determination of decimal point loca­
tions. This is simply a matter of judgment. 

Let us return to Example 53 and let us find ZP by the assumed 
voltage method. Referring to Fig. 4 7 A, let us assume a voltage of 
205 volts across the parallel circuit. This choice eliminates one 
current calculation and simplifies the location of the decimal point 
in the other. On the basis of this assumed voltage we will find the 
current through Xe1, call it le, and the current through the RLXL 
branch, IL. It must be emphasized that these currents have no real 
existence and are only tools to help us find ZP. They are discarded 
when Zp is found. le and IL are, 

205 E _ 205 E 
Xe1 205 /- 90° 

I /90° amp = jl amp 

205 ~ _ 205 ~ 
ZL 155 /75.1° 

1.32 /- 75.I O amps 

IL is converted to rectangular form, giving 

IL = 0.339 - j 1.27 

Let us call the assumed total current through the parallel network 
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produced by the assumed voltage las. This will be the sum of the 
two assumed branch currents found above. We then write, 

las IL + le = 0.339 - jl.27 + jl 

0.339 - j0.270 amp 

This current is converted to polar form and is 

las = 0.433 /- 38.6° amp 

The impedance of the parallel network is now found by Ohm's law, 
using the assumed voltage and the current that results from that 
assumption. 

205 /0° 
0.433 /- 38_60 = 466 /38.6° ohms 

This is within slide-rule accuracy of the value for ZP obtained by 
the previous method. 

Let us apply these techniques to a problem of greater complexity, 
such as in the circuit of Fig. 48A. Here a three-branch parallel 
network is in series with resistance and inductive reactance. 

Example 54. Find Z, I, power factor, true and apparent power in the circuit 
of Fig. 48A. 

Solution. First, we find the branch impedances in the capacitive and inductive 
branches of the parallel network. 

Zc = Re - jXc = 5.85 - j27.8 ohms 

Converting to polar form, 

Zc = 28.4 /- 78.1 ° ohms 

Similarly for ZL, 

ZL = RL + jX1, = 24.2 + j60.8 ohms 

= 65.3 /68.3° ohms 

With the branch impedances found, we now assume a voltage across the 
parallel network and proceed to calculate branch currents based on this 
voltage. A convenient voltage to assume is usually one equal numerically 
to the highest branch impedance (not including the purely resistive 
branch) . In this case then let us assume a voltage of 65.3 volts. Solving for 
the branch currents, 

65.3 L.Q: 
65.3 /68.3° 

1 /- 68.3° amp 
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Xc•27.8.n 

(A) 

-y--Zp 
I 
:Rp•24.0n 
I 

Jxcp•30.a.n 
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Fig. 48. The series-parallel circuit af Example 54 (A); its series R-L-C equivalent 
(B); its final equivalent circuit (C), 

In rectangular form this becomes, 

IL = 0.370 - j0.929 amp 

In the same way, 

I _ 65.3 L.Q.: _ 65.3 LQ:. 
c - Zc - 28.4 /- 78.1 ° 

= 2.30 /78.1 ° amps 
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Expressed in rectangular form, 

le = 0.474 + j2.25 amps 

The current through R, is found, 

65.3 
IR, = 

350 
= 0.187 amp 

The total (assumed) ) current is now the sum of the branch currents in 
their rectangular form. Calling this current I.. we get 

I., = IL + le + IR, 
= 0.370 - j0.929 + 0.474 + j2.25 + 0.187 

= 1.03 + jl.32 amps 

Since the numbers in the vector expression of I .. are small simple numbers 
we may solve for Z without going through the polar form. This involves 
a division in rectangular form and is performed by the use of conjugates. 
This method is explained in detail in Chapter 4; the reader can refer to that 
explanation should he have any doubt about the procedure. 
Setting up Ohm's law for z. as the assumed voltage divided by I .. we get, 

65.3 
z. = 1.03 + jl.32 

This division is performed by multiplying both numerator and denominator 
by the conjugate of the denominator. When conjugates are multiplied the 
result is the sum of the squares of the denominator. Doing this we get, 

65.3 1.03 - jl.32 z. = ----- X -----"---1.03 + j 1.32 1.03 - j 1.32 

= 67 .3 - j86.l _ 67 .3 - j86.l 
1.06 + 1.74 - 2.80 

= 24.0 - j30.8 ohms 

This gives ils z. directly in the useable rectangular form. The circuit is 
now a series circuit as shown in Fig. 48B. We can arrive at the total im­
pedance by summation: 

Z = 24.0 - j30.8 + 10.6 + jl6.4 
= 34.6 - jl4.4 ohms 

In polar form this becomes, 

Z = 37.4 /- 22.6° ohms 

The final equivalent circuit of the original series-parallel com­
bination is illustrated in Fig. 48C. It is an R-C circuit with the 
values shown. 

Finding the line current is next. 

E 50 IQ..0 

I = Z = 37.4 /- 22.6° 

= 1.34 /22.6° amps 
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Now calculate power factor, true power and apparent power: 

Power factor = cos 0 = cos 22.6° = 0.923 

P. = EI = 50 x 1.34 = 67.0 volt-amps 

P = EI cos 0 = 67.0 x 0.923 = 61.9 watts 

When two or more parallel sections are present in the circuit, 
each is independently solved for its impedance. This is done in the 
next example which involves the circuit of Fig. 49A. 

Example 55. In the circuit of Fig. 49A, find the impedance, the applied volt­
age, the power factor, true power and apparent power. 

Solution. We first determine the parallel impedance, z,1 of the top parallel 
network, labelled "Section I." The branch impedances, Zc1 and ZLt, are 
calculated to start. 

Zc1 = R01 - jXc1 
= 10.8 - j71.5 ohms 

ZL1 = RL1 + jXL1 
= 104 + j55.7 ohms 

Instead of converting Z01 and ZLt into polar form as in past problems, we 
will keep them in rectangular form and use the method of conjugates as 
illustrated in the previous example. To simplify the calculations we will 
assume_ a voltage of 100 volts across Section 1. Using this voltage we find 
the assumed branch currents. Call the branch currents 101, IL1 and IBl. 

Also, 

l01 = ~ = 100 X 10.8 + j71.5 
Zc1 10.8 - j71.5 10.8 + j71.5 

= 1080 + j7150 
10.8• + 71.5• 

= 1080 + j7150 
5230 

= 0.207 + jl.!17 amps 

IL1 = 100 100 104 - j55.7 
ZL1 = 104 + j55.7 X 104 - j55.7 

_ 10,400 - j5570 _ 10,400 - j5570 
- 1041 + 55.71 - 13,900 

= 0.750 - j0.401 amp 

For the current in the resistive branch, 

100 100 
IBl = Rt = 1000 = 0.100 amp 

Let us call the total assumed section-I current 11 • It is now determined as 
the sum of the branch currents. 

11 = le, + lt1 + Ia1 

= 0.207 + jl.!17 + 0.750 - j0.401 + 0.100 

= 1.06 + j0.969 amps 
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Fig. 49. The series-parallel circuit of Example 55 (A); Its series equivalent (B); 
Its final equivalent circuit (C), 
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We now find the impedance of Section I using the assumed voltage and the 
above current. Again we employ the conjugate method. 

Calling the impedance of Section l Z,. we proceed as follows, 

100 100 1.06 - j0.969 
21 = I. = l.06 + j0.969 X l.06 - j0.969 

_ 106 - j96.9 _ 106 - j96.9 
- l.062 + 0.9692 - 2.06 

= 51.5 - j47.l ohms 

Section l is seen to be the equivalent of a resistance of 51.5 ohms in series 
with a capacitive reactance of 47.l ohms. We will hold this result aside 
and proceed to a similar evaluation of Section 2. We again first find the 
individual branch impedances. 

and 
Ze, = Re, - jXco = ll0 - j25.8 ohms 

ZL2 = Ru + jXu = 33.3 + j95.8 ohms 

Calling the impedance of the third branch z., it is written as 

z. = Ra + jXr.a - jXea = 20.0 + jl70 - jl30 

= 20 + j40 ohms 

Let us assume a voltage of 100 volts across Section 2 and calculate the 
assumed branch currents. Call the branch currents le2, IL2 and I •. 

100 100 110 + j25.8 
le• = Ze, = ll0 - j25.8 X ll0 + j25.8 

_ ll ,000 + j2580 _ ll ,000 + j2580 
- ll02 + 25.8• - 12,800 

= 0.860 + j0.202 amp 

For IL2 the equation is, 

100 100 33.3 - j95.8 
IL2 = Zu = 33.3 + j95.8 X 33.3 - j95.8 

_ 3330 - j9580 _ 3330 - j9580 
- 33.32 + 95.82 - 10,300 

= 0.323 - j0.930 amp 

And now the remaining branch current, 1., is found. 

100 100 20 - j40 
1
• = Z. = 20 + j40 X 20 - j40 

= 2000 - i4000 
202 + 402 

= I - j2 amps 

= 2000 - j4000 
2000 
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Call l 2 the total assumed current of Section 2. It then becomes, 

I, = I. + I,.. + 102 

= l - j2 + 0.323 - j0.930 + 0.860 + j0.202 

= 2.18 - j2.72 amps 

We can now find the impedance of Section 2, which we will label Z,,. 

z, = 100 = 100 X 2.18 + j2.72 
1. 2.18 - j2.72 2.18 + j2.72 

218 + j272 = ---------,--2.l82 + 2.721 

= 218 + j272 
12.2 

= 17 .9 + j22.3 ohms 

Section 2 is thus equivalent to a resistance of 17.9 ohms in series with an 
inductive reactance of 22.3 ohms. Figure 49B shows the equivalent series 
circuit of the original circuit. 

The circuit impedance, Z, is now found by addition of the resistances and 
reactances. Adding them in the order in which they appear in Fig. 49B, 
reading downward we get, 

Z = 51.5 - j47.l + 10 + jl80 - j21.5 + 17.9 + j22.3 

= 79.4 + jl34 ohms 

The final equivalent circuit, as shown in Fig. 49C, is that of a resistance of 
79.4 ohms and an inductive reactance of 134 ohms. 
Z is converted into polar form to continue the solution. 

Z = 156 /59.4° ohms 

Knowing I and Z we may find the applied voltage, E. We give I the same 
phase angle as Z, but with the sign changed. In this way, E comes out with 
a lero phase angle and I shows the correct angle of lead or lag as the case 
may be. 

E = IZ = 0.500 /- 59.4° X 156 /59.4° 

= 78.0 f!2° volts 

The rest of the problem is readily solved. 

Power factor = cos 59.4° = 0.509 

P. = EI = 78 X 0.500 = 39.0 volt-amps 

P = El cos 8 = 39.0 X 0.509 = 19.8 watts 

The subject of parallel resonance is a very complex one. Since it 
is thoroughly covered in the book Resonant Circuits of this series, 
we will not describe it now. There it is shown that at resonance, a 
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parallel R-L-C network is at or very close to the point of maximum 
impedance and minimum line current. 

40. Review Questions 

(I) State three facts about voltage and current in a parallel circuit. 
(2) Give the formula for finding the effective impedance of two impedances 

in parallel. 
(3) Which component, E or I, leads in the capacitive branch of a parallel 

network? 
(4) A parallel network has three branches containing R, L and C. Name the 

steps necessary to find the circuit impedance. 
(5) Define the circuit conditions in a parallel R-L-C circuit where 

a. Xe > XL; 
b. XL> Xe. 

(6) What general statement can be made about parallel resonance? 
(7) A parallel network consists of three branches: in branch I, R = 100 ohms; 

in branch 2, XL = 50 ohms; in branch 3, Xe = 150 ohms. Find the total 
impedance. 

(8) If a IO-volt source is applied to the network of Question 7, find the total 
current and the phase angle between E and I. 

(9) A parallel network consists of two branches: in branch I, 60 + j60; in 
branch 2, 10 - jl20. A source of 100 volts is applied across the network. 
Find total current and effective impedance. 

(10) Find the phase angle of each branch and of the total circuit in Question 9. 
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TABLE II 
NATURAL TRIGONOMETRIC FUNCTIONS 

Angle Sine Cosine Tangent Angle Sine Cosine Tangent 

oo 0.000 1.000 0.000 46° .719 .695 1.036 
I° ,018 1.000 .018 47° .731 .682 1.072 
20 .035 0.999 .035 48° .743 .669 I.Ill 
30 .052 .999 .052 49° .755 .656 1.150 
40 .070 .998 .070 50° .766 .643 1.192 
50 .087 .996 .088 

51 ° .777 .629 1.235 
50 .105 .995 .105 52° .788 .616 1.280 
70 .122 .993 .123 53° .799 .602 1.327 so .139 .990 .141 54° .809 .588 1.376 
90 .156 .988 .158 55° .819 .574 1.428 

10° .I 74 .985 .176 

II o .I 91 .982 .194 
56° .829 .559 1.483 
r::,70 .839 .545 1.540 

12° .208 .978 .213 r,go .848 .530 1.600 
13° .225 .974 .231 

59° .857 .515 1.664 
14° .242 .970 .249 60° .866 .500 1.732 
15° .259 .966 .268 

16° .276 .961 .287 61 ° .875 .485 1.804 

17° .292 .956 .306 62° .883 .470 1.881 

18° .309 .951 .325 
63° .891 .454 1.963 

19° .326 .946 .344 
64° .899 .438 2.050 

20° .342 .940 .364 65° .906 .423 2.145 

21 ° .358 .934 .384 66° .914 .407 2.246 

22° .375 .927 .404 67° .921 .391 2.356 

23° .391 .921 .425 68° .927 .375 2.475 

24° .407 .914 .445 69° .934 .358 2.605 

25° .423 .906 .466 70° .940 .342 2.747 

26° .438 .899 .488 71 ° .946 .326 2.904 

27° .454 .891 .510 72° .951 .309 3.078 

28° .470 .883 .532 73° .956 .292 3.291 

29° .485 .875 .554 74° .961 .276 3.487 

30° .500 .866 .577 7:,0 .966 .259 3.732 

31 ° .515 .857 .601 76° .970 .242 4.011 
32° .530 .848 .625 77° .974 .225 4.331 
33° .545 .839 .649 78° .978 .208 4.705 

34° .559 .829 .675 79° .982 .191 5.145 

35° .574 .819 .700 80° .985 .174 5.671 

36° .588 .809 .727 81 ° .988 .156 6.314 
37° .602 .799 .754 82° .990 .139 7.115 
38° .616 .788 .781 83° .993 .122 8.144 
39° .629 .777 .810 84° .995 .105 9.514 
40° .643 .766 .839 85° .996 .087 11.43 

41 ° .656 .755 .869 86° .998 .070 14.30 
42° .669 .743 .900 87° .999 .052 19.08 
43° .682 .731 .933 88° .999 .035 28.64 
44° .695 .719 .966 89° 1.000 ,018 57.29 
45° .707 .707 1.000 90° 1.000 .000 00 



92 A-C CIRCUIT ANALYSIS 

TABLE Ill 
SIGNS OF TRIGONOMETRIC FUNCTIONS 

IN THE FOUR QUADRANTS 

Function 1st Quadrant 2nd Quadrant 3rd Quadrant 4th Quadrant 

Sine 
Cosine 
Tangent 
Cotangent 

+ 
+ 
+ 
+ 

+ 

+ 
+ 

+ 



A-C: 
basic principles, 1-10 
generation, 3 
power, 2 
terminology, I, 2 
waveforms, I, 2 
voltage, 2, 3, 11 

Alternation, 1, 14 
Alternator, 3 

four-pole, 8, 9 
multipole, 8 
rotating field, 9 
two-pole, 4-7 

Angular velocity, 7, 8 
Armature, 9 

Branch: 
current, 76 
impedance, 76 

Capacitive circuit, 30, 54 
Capacitance: 

pure, 28-33 
stray, 20 

Capacitive reactance, 31 
Capacitor: 

parallel, 33 
series, 32 

Circumference of a circle, 7 
Complex a-c waveforms, 2 
Complex numbers, 

geometrical addition, 38-41, 49 
polar form, 41-44, 49 
powers and roots, 44, 45 
summary, 45 

Conjugate, 40 

INDEX 
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Coulomb, 30 
Counter voltage 22, 23, 24, 28 
Current amplitude, 20 
Current vectors, 66 
Currents, branch, 63 
Cycles of rotation, 36 
Cycles per second, 2 

Dielectric, 28 

Effective value relationship, 17 
Electric field, 30 
Electric generator, 3 
Electromagnets, 8 
Electromagnetic induction, 3 

Farad, 30, 31 
Faraday's laws, 22 
Field voltage, 8 
Figure of merit, 60 
Frequency, 2, 8 

Geometrical addition of complex 
numbers, 38-41 

Henry, 22 

Imaginary axis, 37 
Imaginary number, 35, 36 
Imaginary term, 40 
lmpedence, 48 
Induced voltage, 4, 5, 22 
Induced waveform, 6 
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Inductance, 
mutual, 27 
parallel, 27 
pure, 21-27 
self, 22 
series, 26 

Inductive circuit, 53 
Inductive reactance, 25 
Inductor, 25 
Inertia, 22 
Instantaneous: 

current, I I, 15, I 7 
values, 14, 15 
voltage, 11, 15 

"j" operator, 35-45 

Kirchhoff's laws: 
first, 46, 47 
second, 63 

I ,enz' law, 22 
Linear velocity, 8 
Lines of force, 3 

Magnetic field, 7, 8, 21, 22 
Magnetic flux lines, 4 
Magnetic interaction, 26 
Magnetic poles, 8 
Maximum voltage, 5, 11 

Natural trigonometric functions, 
table, 91 

Numbers: 
imaginary, 35, 36 
real, 35 

Ohm's law, II, 18 

Parallel circuits and series parallel 
networks,63-90 

Parallel circuits: 
assumed voltage method, 81-90 
general R-L-C, 76-78 
R-C, 70-73 
R-L, 63-65 

INDEX 

Parallel circuits (contd.) : 
R-L with R in both branches, 

65-67 
R-L with Rand Lin each branch, 

68-70 
resonance, 89 
simple R-L-C, 73-75 

Peak value, 2 
Peak voltage, 11 
Period, I, 2 
Phase displacement, 47 
Polar form, 42 
Polar notation, 41 
Polyphase system, 21 
Power, 

apparent, 51, 53 
average, 16, 17, 24 
equation, 16 
factor, 49, 50 
frequency, 21, 30 
instantaneous, 16 
negative, 24, 25, 30 
positive, 21, 24, 25, 30 
true, 51, 53 

Properties of the sine, 12 

Q of the coil, 60 
Quadrants: 

properties of sine in, 12 
signs of functions in, 92 

Radian, 6, 7 
Radius, 6 
Rate of change, 22, 23, 29 
Reactance, 

inductive, 25 
capacitive, 31 

Real axis, 37 
Rectangular form, 37, 38, 42 
Rectangular notation, 41 
Reference vector, 47 
Resistance of a circuit, 20, 21 
Resistance, inductance, capacitance, 

20-34 
Review questions IO, 18-19, 34, 45, 

61-62, 90 
Revolutions per minute, 9 
Rotating machinery, 1 
Rotation by 90, 35 
Rotor, 9 
rms value, 16, 17, 21 



Series circuits, 46-62 
general, 53-57 
properties of, 46 
R-C, 51-53 
R-L, 46-49 
resonance in, 57-61 

Series parallel networks, 78-81, 84 
Sine of an angle, l, 5, 6 
Sine wave, I, 6, II 

average value, 13-17, 21 
effective value, 16, l 7, 21 
peak value, 2, 16, 17 

Slip rings, 9 
Stator, 9 

Tables: 
instantaneous voltage and current 

values, 15 

INDEX 95 

Tables (contd.): 
signs of trigonometric functions, 

92 
trigonometric functions, 92 

Three-branch parallel network, 83 
Transient condition, 20 

Volt,4 
Voltage and current value of a sine-

wave, ll-18 
Voltage vector, 58 
Voltampere, 51 
Voltmeter, 17 
Vectors, 39, 42 

Watt, 51 

Yoke,9 


