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Preface 

When working with AC circuits, the phases of the currents 
and voltages must be considered. This applies both to analyses 
of circuit operation and to calculations involving the various 
characteristics of AC circuits. This volume reviews the funda-
mentals of AC, with special emphasis on phase relationships. 
Included is an extensive coverage of trigonometry and vectors, 
the basic tools for AC calculations. AC network calculations 
are thoroughly presented and explained, followed by examples 
of how vectors can be used in analyzing phase relationships 
and circuit operations. 

The discussion of AC in this book is necessarily different 
from others, concentrating on the specific aspects of phase an-
gles and phase relationships. For some readers the information 
in the first two chapters may be understood well enough to omit 
them in this study. However, other readers may want a more 
comprehensive review of the fundamentals of both electronics 
and mathematics. Such readers are referred to the two-volume 
set, Electronics Math Simplified. For the average reader, how-
ever, the information contained in this volume should provide 
sufficient background. 

This text has been prepared to provide a deeper understand-
ing of AC circuits, clearly explaining how to use the vector ap-
proach to simplify circuit analyses that may otherwise involve 
long and tedious calculations. 

ALAN ANDREWS 
May, 1963 
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CHAPTER 1 

Alternating 

Current and Phase 

Several problems are encountered when a transition is made 
from DC to AC circuits. For a given DC circuit the applied 
voltage usually retains the same polarity, and in many cases 
it also has the same amplitude. If the voltage does change, the 
current changes in step with it. Applying AC to a circuit intro-
duces three new problems: 

1. The AC voltage periodically reverses polarity. 
2. The voltage is continually changing in amplitude. 
3. The current and voltage may not always change in step 

with each other. 

When the circuit includes only resistance to oppose the flow 
of electrons, the AC circuit calculations are not much different 
from those for DC circuits. When inductance, capacitance, or 
both are introduced, additional factors must be considered. 
Changes of current in inductive or capacitive circuits do not 
occur in step with changes of applied voltage; therefore the 
characteristic of phase must be considered. The word phase has 
several different meanings, but the one used in connection with 
electrical circuits has to do with current or voltage changes 
'with reference to some other change or to some fixed reference. 

Let's clarify this definition in order to understand the use of 
the term more fully. If current and voltage change in step, or 
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synchronization, with each other in an AC circuit, they are 
said to be in phase. When the changes do not occur in step with 
each other, the current and voltage are said to be out of phase. 
Usually such an expression will also indicate how far out of 
phase they may be (expressed in some number of degrees), and 
it may also indicate which is ahead of the other. 
A full cycle of AC is considered to occupy 360° of change 

along a time axis. That is, each cycle can be divided into 360 
equal parts of time, during which the voltage or current under-
goes one complete set of variations. A cycle normally consists 
of changes from zero to maximum amplitude, back to zero, to 
maximum amplitude with opposite polarity, and then back to 
zero again. Each cycle consists of two alternations (or half-
cycles), one with positive polarity and the other negative. 
Each alternation occupies 180° along the time axis. 
The term phase can be used to denote the instantaneous 

position of voltage or current with reference to the complete 
AC cycle, beginning at zero and ending at 360'. For example, 
the voltage is at the phase angle of 90°; or, as previously indi-
cated, phase can be used to express a time difference (in terms 
of degrees) between changes of current and voltage, and it can 
also be used to express the difference between two currents or 
between two voltages. These ideas of phase will be further 
clarified in later portions of the text with reference to par-
ticular circuits and circuit conditions. 

Vectors are graphical tools which can be used to represent 
phase relationships. As will be shown more clearly later, the 
vector not only represents a quantity in a given problem, but it 
represents an angle or direction as well. In addition to their use 
with electric circuits, vectors can be used in a variety of other 
applications—for example, with various types of forces. After 
reviewing some other ideas relating to alternating current 
and some ideas relating to angular measurement, we will in-
vestigate how vectors can be used in analyzing AC circuits. 

SINE WAVES 

The basic method of generating an AC voltage is to move 
a conductor through a magnetic field or to move the field past 
the conductor. When the motion is in one direction, a voltage of 
a certain polarity is induced. When the movement is reversed, 
the polarity of the voltage is also reversed. As an example we 
can use the simplified diagrams of a generator shown in Figs. 
1-1A and 1-1B, correlating its rotation with the sine-wave out-
put of Fig. 1-1C. 
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In Fig. 1-1A the single loop of wire is in a vertical position 
as it rotates in the horizontal permanent-magnet field. As it 
passes through the vertical position, the motion is parallel to 
the magnetic lines of force, and the induced voltage is zero. 
This value of induced voltage corresponds to the zero position 
of the sine-wave diagram (Fig. 1-1C). As the rotation con-
tinues, the induced voltage increases until the loop is as shown 
in Fig. 1-1B. At this instant, the motion of the loop is per-
pendicular to the direction of the lines of force so that maxi-
mum voltage is induced. This voltage corresponds to the 90° 
position on the sine wave with the polarity of the output volt-
age as indicated on the coil leads. 

(A) Loop in vertical position. (B) Loop in horizontal position. 

900 

270° 

(C) Sine-wave output. 

Fig. 1.1. Simplified diagrams of a generator and its sine-wave output. 

The voltage decreases to zero when the coil once again 
reaches the vertical plane. This corresponds to 180°; however, 
even though the coil is vertical, the leads have been reversed 
from the position at 0°. On the next quarter-turn the coil pro-

4 duces maximum voltage as it reaches the horizontal plane. But 
the leads are reversed from the positions shown in Fig. 1-1B 
so that the output is maximum, but with opposite polarity. This 

' is the 270° point on the sine wave. After another quarter-turn 
the cycle is completed. 
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The basic waveform produced by the generator is that of a 
sine wave, which is also the basic waveform on which all 
others are based. A sine wave is one that follows a specific set 
of variations, those of the sine, a trigonometric function. That 
is, the amplitude of the wave at any point is proportional to the 
sine of that particular angle. By multiplying the maximum 
value of the voltage or current by the sine of the angle, the 
actual voltage at that instant can be determined. There are 
many, many different sets of possible variations, but the sine 
wave is a specific one, and has exactly the same shape in every 
instance. Notice also that the rise in voltage in Fig. 1-1C is not 
linear; for example, half of the maximum amplitude occurs at 
30° in the cycle, but it requires 60° to rise the other half. Maxi-
mum voltage is reached at 90°, after which the drop in voltage 
is symmetrical to the rise which preceded it. In 60° the voltage 
drops to half the maximum; then only 30° are required in 
which to drop the remaining half, decreasing to zero at 180°. 
One half of a sine wave does not have the shape of a half-

circle, as is sometimes depicted in printed matter. Nor are 
there any straight-line portions, even though the curve comes 
more nearly to a straight line each time it passes through 
zero amplitude. This has to do with the rate of change of the 
waveform on which the phase difference sometimes depends. 
The rate of change is not linear at any point, but it is con-
tinually changing. Maximum rate of change (or slope) occurs 
each time the wave passes through 0° or 180°; that is, the 
change of voltage per unit of time is greatest at these points. 
The rate of change is minimum at the maximum-amplitude 
points on the curve, 90° and 270°. At these points the rate 
of change is zero because the wave reverses direction at these 
points. From 270° on one cycle to 90° on the next the voltage 
is changing from maximum negative to maximum positive. 
Mathematically this is a positive slope, or rate of change. 
From 90° to 270° within the same cycle there is a negative 
slope, or rate of change as the voltage goes from maximum 
positive to maximum negative. These are important points in 
analyzing how inductance and capacitance act in AC circuits. 
There are other characteristics of sine waves which are also 
important in analyzing AC circuit action. One of these is fre-
quency. If the speed of rotation of the coil in Fig. 1-1A were 
increased, more sine waves would be produced in any given 
unit of time. Frequency of an AC wave is defined as the number 
of cycles that occur during one second of operation, hence the 
basic unit is cycles per second (cps). If more cycles are pro-
duced each second, the time duration of each single cycle is de-
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creased proportionally. Frequency and time are inversely pro-
portional as shown by the relationships: 

t = f = -1 

where, 
frequency is in cycles per second, 
time is in seconds. 

For example, with a 60-cps waveform each cycle has a time 
duration of 1/60 second. But if the frequency were doubled, 
the time of each cycle would be halved. However, each cycle is 
still divided into 360°, regardless of the time required for the 
cycle to occur. When frequency is increased, each degree rep-
resents a smaller unit of time, and vice versa. In some cases 
the time duration of a cycle is referred to as its period. 
The average amplitude of a sine wave is zero because the 

positive alternation is exactly like the negative, except for 
polarity. This does not mean that there is zero voltage, al-
though a DC voltmeter might indicate zero. It only means 
that the average amplitude over a full cycle is zero. Average 
amplitude of any one alternation is 0.636 of the peak (maxi-
mum) value. The effective value of an alternation is the square 
root of the average of the instantaneous values and is also 
called the root-mean-square value (rms). Numerically, the 
rms value is equal to 0.707 of the peak value of the wave. 
The instantaneous value (the amplitude at any instant of 

time) can be determined by multiplying the peak value of the 
wave by the sine of the angle for that instant of time. And 
finally, the peak value may be determined by multiplying the 
rms value by 1.41, or the average value of one alternation by 
1.57. It should be stressed, however, that these relationships 
are true only for sine waves and not for any other wave shape 
that might occur. Also, these relationships are for sine waves 
at any frequency. 

In some cases the peak-to-peak value of a signal may be of 
interest. This is the total voltage swing, from maximum posi-
tive to maximum negative (or vice versa), and it is equal to 
twice the peak value of an alternation. This relationship is 
generally true regardless of the waveshape of the signal in 
question. All these relationships and the conversion factors 
are summarized in Table 1-1. 
As previously stated for an AC circuit having a resistive 

load, the current and voltage are in phase with each other. 
That is, the changes of waveform occur in step, even though 
the amplitudes and units of measurement are different. This 
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Table 1-1 
Voltage Relationships and Conversion Factors 

GIVEN PEAK TO PEAK = PEAK = RMS = AVERAGE = 

PEAK TO PEAK 0.5 X P to P 0.3535 X P to P 0.318 X P to P 

PEAK 2 X PEAK 0.707 X PEAK 0.636 X PEAK 

RMS 2.82 X AVERAGE 1.41 X RMS 0.9 X RMS 

AVERAGE 3.14 X AVERAGE 1.57 X AVERAGE 1.11 X AVERAGE 

condition is illustrated in Fig. 1-2A. When reactive components 
(L or C) are also included in the circuit, the current and voltage 
are out of phase by some number of degrees. For an inductive 
circuit the voltage peaks occur ahead of the current peaks (Fig. 
1-2B) because inductance tends to oppose a change of current. 
Using voltage as the reference, current is said to be lagging the 
voltage. With capacitive circuits the opposite conditions hold 
true, and current leads the voltage. If the labeling of the wave-
forms in Fig. 1-2B were reversed, it would represent a capaci-
tive circuit. In the remainder of this chapter it will be shown 
how these phasing conditions are caused. 
The term phase angle (usually 0) represents the angular 

difference between current and voltage; it may also be referred 
to as phase difference. However, before proceeding, several 
possible causes for confusion should be pointed out. First, 
notice the relationships in Fig. 1-2B. The horizontal axis is 
calibrated in terms of time; thus, as shown, the positive peak 
of voltage occurs at an earlier time than the positive peak of 
current. So voltage is leading the current, or conversely, cur-
rent is lagging the voltage. The confusion here arises because, 
when looking at the waveforms, the current seems to be out 

(A) Resistive circuit. (8) Inductive circuit. 

Fig. 1-2. Voltage and current phase relationships in resistive and inductive circuits. 
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ahead of the voltage. Erroneous results are obtained from this 
type of analogy. And a final warning, the term phase has 
meaning only when the frequencies of the waveforms being 
compared are the same. Otherwise, the time differences are 
continually changing, and a phase condition cannot be stated 
definitely. When frequencies are the same, the time difference, 
and thus the phase angle, are the same at any points of com-
parison. If the relative phases were shifting, even though the 
frequencies were still the same, it would be equally difficult to 
state a definite phase relationship. 

INDUCTIVE CIRCUITS 

A coil of wire has the tendency to oppose any change of cur-
rent through it. This occurs because the coil builds up a 
counter-electromotive force (CEMF) in opposition to the 
applied voltage. Opposing a change of current means that if 
there is no current through the coil, there is opposition in try-
ing to start a current. But if there is current already flowing, 
the tendency of the coil is to keep that current flowing, even 
though the excitation voltage may have been removed. Also, a 
coil opposes any existing increase, or decrease, of current. 
The CEMF is built up only during the time when the current 

through the coil is changing in value. The actual voltage in-
duced is directly proportional to the rate of change of the 
current. When DC is applied, the current builds up to the 
maximum value some time after the voltage is applied. At the 
first instant the voltage is applied current is zero, since the 
CEMF equals the applied voltage. Total voltage affecting the 
circuit at any instant is the applied voltage minus the CEMF. 
So when the latter is high, the total circuit voltage is low, caus-
ing low current. As the applied voltage stops changing in 
value, the induced CEMF decreases, allowing the current to 
increase to a higher value. The current increases at an ex-
ponential rate, as shown in Fig. 1-3. 
The time required for the current to increase in an in-

ductance is determined by the ratio of inductance (L) to the 
resistance (R) of the coil. 

-• 
TC = L 

li 
where, 

4 TC is the time constant in seconds, 
L is the inductance in henrys, 
R is the resistance in ohms. 
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During one time constant the current increases to approxi-
mately 63.2% of the maximum value. In the next time constant 
the current increases by 63.2% of the remaining change 
(63.2% of 36.8% --- 23.3% ). So at the end of the second time 
constant the current has increased to 63.2% plus 23.3%, or 
86.5%, of the maximum value obtainable. Theoretically the 
current never reaches 100% of the maximum possible value, 
but in a practical sense it can be assumed that the maximum is 
reached in five time constants. The percentage at the end of 
each time constant is given in Table 1-2, using only the left 
side. During each time constant the current changes by 63.2% 
of the remaining possible change. 
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Fig. 1-3. Current increases exponentially in an inductive circuit. 

5 6 7 8 9 10 

As an example, suppose that a particular coil has an induc-
tance of 10 henrys and a resistance of 100 ohms. 

10 
TC = = 0.1 second 

100 

If the applied voltage is 100 volts, at 0.1 second after the DC 
voltage is applied the current increases to 63.2% of the maxi-
mum value. 

100V 1 ampere Maximum current = 
100n 

So at the end of one time constant the current is 63.2% of 
1 ampere, or 0.632 ampere. At the end of the second time con-
stant the current will rise to 0.865 ampere, etc., until the 
maximum is approximately reached at the end of five time 
constants. Notice that at that time the actual current is 0.993 
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Table 1-2 

Percentages of Current Increase and Decrease 
at the End of Each Time Constant 

CURRENT INCREASE CURRENT DECREASE 

AT END OF I CURRENT REACHES AT END OF CURRENT REACHES 

1 TC 63.2% 1 TC 36.8% 

2 TC 86.5% 2 TC 13.5% 

3 TC 95% 3 TC 5% 

4 TC 98.2% 4 TC 1.8% 

5 TC 99.3% 5 TC 0.7% 

ampere, which is maximum for all practical purposes. And 
even if the time were extended to ten time constants, the ad-
ditional rise would be only a very small amount. 

If, after the current has reached maximum, the applied volt-
age were disconnected, a CEMF would again be induced. But 
this time the polarity of the CEMF is opposite, but again 
opposing a change of current. The tendency here is to keep 
the current flowing, but since the CEMF cannot remain in-
definitely, the net result is that the current is delayed in its de-
crease to zero. The rate of decrease is the same as the rate of 
increase, and the actual time involved depends on the L/R 
time constant. Referring to Table 1-2 (the right side), it can 
be seen that at the end of 1 time constant of decrease the cur-
rent has dropped 63.2% of the total amount of which the drop 
can be. Therefore, at the end of 1 time constant the current has 
decreased to 36.8% of the maximum value. Then, the current 
drops to zero, for all practical purposes, at the end of five time 
constants. 
For purposes of using vectors and phase, one important point 

from this explanation can be learned. That is, in an inductive 
circuit current changes lag voltage changes by some amount of 
time. The current changes after the voltage does, or we can say 
simply that current lags voltage. Or, if you prefer, we could 
say that voltage is leading the current. 
With DC applied the time of lag is determined by the L/R 

time. However, with an AC sine-wave input to a pure induc-
tance the angle of lag is always 90°, as indicated in Fig. 1-4. 
This lag of 90° holds for any frequency. The actual lag time is 
inversely proportional to the frequency. For example, if the 
frequency is increased, the time duration of each cycle is de-
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creased so that the lag time is also decreased, even though it is 
still 90° of the operating frequency. 
Any practical circuit also contains resistance in which the 

current and voltage are in phase with each other. In an LR 
circuit the actual phase angle is always less than 90° but 
greater than 0°; the actual amount depends on the relative 
values of the circuit components. This also means that any 
calculations involving an inductive circuit must consider the 
phase in order to obtain a correct solution. 

/ % 
1 % 
I % 
I % 
I % 
1 • 
1 
I • 
I % 

\ 

t4-90 0--.4 

Fig. 1-4. The angle of lag in a pure inductance circuit is always 90 °. 

The opposition that inductance exhibits in an AC circuit is 
called inductive reactance (XL) and can be determined by: 

XL = 27rfL 
where, 
XL is the inductive reactance in ohms, 
f is the frequency in cycles per second, 
L is the inductance in henrys. 

This means that circuit opposition is directly proportional 
to operating frequency and also to inductance. If either, or 
both, are increased, the inductive reactance is also increased. 
XL, however, acts at 90° with reference to resistance so that 
XL and R cannot be added arithmetically, for example in a 
series circuit. They must be added vectorially, which creates 
another need for a knowledge of vectors and phase for AC 
circuit calculations. These vectorial methods are investigated 
in later chapters. 
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(A) Charge. (B) Discharge. 

Fg. 1-5. Charge and discharge curves of an RC circuit. 

CAPACITIVE CIRCUITS 

A capacitor has the tendency to oppose any change of voltage 
across it, and in some ways it can be said to act oppositely from 
inductance. If a DC voltage is applied to a capacitive circuit, 
the current through the circuit is maximum at the first instant, 
but there is zero voltage across the capacitor. Then the capaci-
tor accepts voltage at an exponential rate. As the voltage across 
the capacitor increases, it opposes the applied voltage, caus-
ing current to decrease. As soon as the voltage across the 
capacitor equals the applied voltage, the circuit current is de-
creased to zero. The rise in capacitor voltage is at the same 
exponential rate as the rise in current in an inductive circuit. 
Then if the applied voltage is cut off, the capacitor acts as a 
source of voltage, creating maximum current at the first in-
stant. As the capacitor loses voltage at the exponential rate 
the current decreases at the same rate until both reach zero. 
These changes are shown in graphic form in Fig. 1-5. 
The time required for these changes to occur is determined 

by the values of resistance R and capacitance C in the circuit. 

TC=R xC 

where, 
TC is the time constant in seconds, 
R is the resistance in ohms, 
C is the capacitance in farads. 
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Table 1-3 

Percentage of Voltage Increase and Decrease 
Across a Capacitor at the End of Each Time Constant 

VOLTAGE INCREASE VOLTAGE DECREASE 

AT END OF VOLTAGE REACHES AT END OF VOLTAGE REACHES 

1 TC 63.2% 1 TC 

_ 

36.8% 

2 TC 86.5% 2 TC 13.5% 

3 TC 95% 3 TC 5% 

4 TC 98.2% 4 TC 1.8% 

5 TC 99.3% 5 TC 0.7% 

Just as with inductance, the time constant is the time re-
quired for 63.2% of the total change to occur. For a series RC 
circuit the voltage across the capacitor rises to 63.2% of the 
applied voltage during one time constant. During the same 
time the current decreases to 36.8% of the maximum value. 
Other values are given in Table 1-3, and just as with inductance 
the total change for all practical purposes is assumed to occur 
in the time of five time constants. Also shown in this Table are 
the percentages of capacitor voltage and current for each time 
constant of capacitor discharge. 

These actions show that, for a capacitor, the current occurs 
ahead of the voltage. The time difference is determined by the 
product of R and C. Therefore, for a capacitive circuit the 
current leads the voltage. When a sine wave of voltage is 
applied, instead of DC, the phase angle between current and 
voltage is 90°, assuming that circuit resistance is zero. This 
90° phase difference holds for any frequency, and the time 
represented by the 90° is one-fourth of the time of one cycle at 
the operating frequency. For example, if frequency were in-
creased, 90° of a cycle would represent a shorter period of time. 

In a practical circuit containing R and C the phase angle is 
less than 90° but greater than 0°, depending on the relative 
circuit values. The opposition offered by the capacitor is capaci-
tive reactance (Xe) and can be determined by: 

1  Xe 
&IC 

where, 

Xe is the capacitive reactance in ohms, 
f is the frequency in cycles per second, 
C is the capacitance in farads. 
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The reactance is inversely proportional to both the fre-
quency and the capacitance. If, for example, either, or both, 
were increased, the capacitive reactance would decrease. Xc 
acts at an angle of 90° as compared to R; therefore in any RC 
circuit calculation the phase must be considered. But with a 
capacitor the current leads the voltage by 90° ; whereas with an 
inductor the current lags by 90°. This means that inductive 
and capacitive currents are 180° out of phase with each other. 
And, as will be seen later, in some circuits their effects directly 
oppose each other. A combination RCL circuit brings in other 
uses of vectors and phase. 
Harmonics are whole-number multiples of some fundamental 

frequency, and any waveshape other than a sine wave is com-
posed of a number of sine waves at different frequencies, 
phases, and amplitudes. For example, a square wave is com-
posed of a fundamental sine wave plus sine-wave components 
at odd-number multiples of the fundamental frequency. The 
fundamental in any wave is the lowest frequency contained and 
is also called the first harmonic. Two times the fundamental is 
the second harmonic frequency, etc. In music these harmonics 
are often referred to as overtones. 
With regard to phasing, the complex waveshapes introduce 

additional problems because the actual time of lead or lag is 
different for each frequency. This is caused by two things. 
First, 90° of a cycle represents a different time duration for 
every frequency, decreasing as frequency is increased. Second, 
the values of X1, and Xe vary with frequency. This changes 
the magnitude of the phase angle, giving a different number 
of degrees of lead or lag for each separate frequency. 
With this brief review of reactive circuits we have shown 

how the different phases originate, and why vectors and phase 
must be considered to be extremely valuable tools in solving or 
analyzing AC circuits. Subsequent chapters pursue the subject 
further, covering the various phase and vectorial methods 
needed. 

PRACTICE PROBLEMS 

I. How many degrees are contained in a complete cycle of rotation? 
2. A vector rotates two and a quarter revolutions. How many degrees 

does this include? 
3. A signal has a frequency of 500 cps. What is the time duration 

of each cycle? 
4. If a signal has a period of 0.05 second, what is its frequency? 
5. The rms value of a sine wave is 100 volts. What is the peak value? 

What is the peak-to-peak value? 
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6. An AC signal has a peak amplitude of 250 volts. What is the rms 
value? What is the average value of a single alternation? 

7. By what factor would peak-to-peak voltage be multiplied in order 
to determine rms voltage? 

8. An RL series circuit includes an inductance of 5 henrys and a re-
sistance of 200 ohms. What is the time constant? 

9. In this same circuit the peak current is 2 amperes. What is the 
current at the end of three time constants after a DC voltage is 
applied? 

10. Will a coil discharge its field faster with a short across it or with 
its terminals open-circuited? 

11. A 0.5-mfd capacitor is connected in series with 60,000 ohms. What 
is the time constant? 

12. If a DC voltage of 200 volts is applied, what is the capacitor voltage 
after one time constant of charge? 
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CHAPTER 2 

Angular Measurements 

As already indicated in the preliminary discussion of phase, 
the subject is involved with angles and various characteristics 
of angles. And, as we shall see later, the study of angles leads to 
triangles and some study in trigonometry (trig). This chapter 
reviews the pertinent data from geometry and trig that may 
be necessary in working with vectors and phase in practical 
applications. 

ANGLES 

An angle is formed whenever two straight lines meet at a 
point. This point is called the vertex of the angle, and the lines 
are referred to as the sides. Several such angles are shown in 
Fig. 2-1. The angles may be lettered, numbered, or identified in 
some other way, especially if two or more angles enter into a 
given problem. In the previous chapter, 0 (theta) was used to 
indicate the phase angle in an AC circuit. This designation is 
used quite often. The Greek letter 0 (Phi) is also used, as well 
as several other letters from the Greek alphabet. An angle 
could be lettered as angle A, 0, or 4), numbered as angle 1, or 
three letters could be used as in Fig. 2-1. Here each of the 
angles can be referred to as angle ABC. The middle letter 
usually indicates the letter at the vertex of the angle. 
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In the previous chapter is was considered that a full cycle 
of AC occupies 360° of angular position. This comes from the 
fact that a complete circle includes 360° of angular rotation, 
which value was an arbitrary choice. It is said that the circle 
was divided into 360 equal parts several thousand years ago 
when the basic year was considered to consist of 360 days. In 
subdividing the circle, that number of days was merely used for 
the number of subdivisions, called degrees. 

Referring again to Fig. 2-1, notice that the angle in Fig. 2-1A 
is quite small as compared to the other two. This is an acute 
angle, a term used for any angle less than 90°. Fig. 2-1B shows 
a right angle, consisting of exactly 90°, or one-fourth of a 

c e 
(A) Acute angle. (B) Right angle. 

C 8  C 

(C) Obtuse angle. 

Fig. 2-1. Three different angles. 

circle. An obtuse angle is shown in Fig. 2-1C, and this term is 
applied to any angle greater than 90°. An angle of 180° is 
called a straight angle, and it represents the condition of two 
vector quantities in direct opposition to each other. 
When working with vectors and phase we can consider that 

angles can be generated by rotating a line about a vertex 
which becomes the center of a circle. Each time a line is rotated 
one complete revolution it has covered a full circle (or cycle), 
or 360*. It should be stressed that every circle contains 360°, 
no matter how large the circle may be. Also, the number of de-
grees in any angle depends only on the relative directions of 
the lines forming that angle, not on the lengths of the lines. For 
example, suppose we assume that the acute angle (Fig. 2-1A) 
includes 30°. This angle is still 30°, even if the lengths of the 
lines are shortened or lengthened. And for any angle, the sides 
are separated by greater distances as the point of measure-
ment is moved out from the vertex, although the number of 
degrees in the angle remains the same. 

Fig. 2-2 is still used to illustrate some additional ideas re-
garding rotation of lines and generation of angles. The angle 
is shown in what is known as standard position, with one side 
on the horizontal axis. Zero degrees is also standardized and 
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is shown, on the horizontal axis and to the right. The radius 
line (R) can be considered to be a vector since it has the funda-
mental characteristics of one. It expresses magnitude (length) 
and is drawn at some specific angle (direction). 
The vector line can be rotated in either direction, but conven-

tional notation assumes that counterclockwise rotation is posi-
tive; clockwise rotation is negative. And unless otherwise 
specified, we can normally assume positive rotation for the 
generation of angles, as was done in marking the angles in 
Fig. 2-2. For example, the 90° angle is one-quarter of a ro-

90° 

180° 
0° 
360° 

2700 

Fig. 2-2. Illustrating rotation of lines and generation of angles. 

tation from the zero-degree reference line. With negative 
rotation of 270° (actually —270°) the vector would be at the 
same location as if it had rotated 90° in the positive direction. 
These may be referred to as counterpart angles, and the sum 
of their numerical values (neglecting the signs) is 360°. For 
example, 135° has the same vector location as —225°, the only 
difference being that opposite rotations were used to arrive at 
the angle. And as a check, 135° + 225° totals 360°. Rotation 
can be more than 360°; for example, a rotation of 720° would 
include two complete revolutions. 
The Roman numerals in Fig. 2-2 show the standard number-

ing of quadrants, the conventional name for quarter-circles 
(or 90°). These are also numbered with reference to positive 
(CCW) rotation. The first quadrant extends from 0° to 90°, 
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and the second quadrant from 90° to 180°. Third-quadrant 
angles range from 180° to 270°, and from 270° to 360° are 
fourth-quadrant angles. An angle is considered to be in the 
f quadrant in which the generator vector lies. A 60° angle would 
' be in first quadrant, 135° in the second quadrant, 230° in the 
third quadrant, etc., using these as examples. Be careful with 
negative angles, however, for example —45° is in the fourth 
quadrant (not the first) because the quadrants are always num-
bered for positive rotation. 

In the production of sine waves a vector is assumed to rotate 
continuously around the circle. For other vector applications, 
however, it may be assumed that the vector is stationary at 
some particular angle. Or, in the case of rotating vectors we 
may be interested in some specific angle in a given problem. In 
discussing angles there are several other terms which are 
used to some extent and which should be learned. 
Two angles are said to be complementary when their sum is 

90°. Thus, 35° and 55° are complementary, and each can be 
said to be the complement of the other. Two angles are supple-
mentary when their sum is 180°. Thus, 120° and 60° are 
supplementary and each is the supplement of the other. 
Counterpart angles have already been mentioned; their sum is 
360° and each is the counterpart of the other. 

UNITS OF MEASUREMENT 

It has been mentioned that a circle can be divided into 360°, 
with each degree representing a specific amount of angle. 
Quite often, however, it is necessary to express angles in 
smaller dimensions, and this involves subdividing each degree 
into smaller units of angle. Two systems are in general use. 
What might be termed the older of the two systems divides each 
degree into 60 minutes and each minute into 60 seconds, thus 
dividing each degree into 60 times 60, or 3,600 subdivisions. 
This is referred to as the sexagesimal system because it is 
based on sixes. In this system, for example, an angle may be 
expressed as 42° 35' 10", read as 42 degrees, 35 minutes, and 
10 seconds. 
The decitrig system is being used to a greater extent all the 

time, and in electronics it is used more than the sexagesimal 
system. This method of subdivision is based on the decimal 
system and divides each degree into tenths, or even hundredths 
or thousandths if necessary. Thus, an angle may be expressed 
as 38.72° in the decitrig system. This would be read as 38 and 
72 hundredths of degrees. In the calculations in this book 
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whole-number degrees will be considered in all the example and 
practice problems. This may not always be true, however, in 
practical work, and it may be necessary to convert from one 
system of subdivision to the other. 

In making these conversions several things should be kept 
in mind. Whole numbers of degrees are the same in both 
systems, and conversion is required only for the fractional 
parts of the angles. There are 60 minutes in each degree, mean-
ing that for every tenth of a degree there are 6 minutes. To 
convert from decimal portions of degrees to minutes, multiply 
by 60, as in these examples. 

0.6° = 0.6 x 60 = 36' 
0.32° = 0.32 x 60 = 19.2' 

To convert fractional parts of minutes to seconds (as in the 
previous example) multiply by 60. 

0.2' =0.2 x 60 = 12" 

so, 19.2' = 19' 12" 

To convert from minutes to degrees divide by 60 as in this 
example. 

42 
42' = e = 0.7° 

To convert from seconds to minutes also divide by 60, for 
example: 

48" = —48 = 0.8' 
60 

42' 48" = 42.8' 

42.8' = 4:: = 0.71° (rounded off) 

therefore, 
42' 48" = 0.71° 

Another unit for measuring angles is the radian, which is 
the basic unit in what might be called circular, or pi, measure-
ment. It is based on the relationship between the radius (R), 
which is half the diameter (D), and the circumference of the 
circle. The circumference is the circular distance around the 
outer edge of the circle, and the relationship is expressed by: 

C = 7rD = 27rit 

An angle of one radian is formed when the arc (part of the 
circle) between the two sides of the angle has a dimension equal 
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to the radius of the circle. This is illustrated in Fig. 2-3 where 
O is one radian of an angle. There are 27r radians in a complete 
circle (360°) because the circumference is 27r times the radius. 
Numerically one radian is equal to approximately 57.3°. 

These conversion formulas can be used to change degrees to 
radians, or vice versa: 

radians = x degrees 
180 

degrees = 180 x radians 
7r 

Fig. 2-3. An angle of one radian. 

These examples show how these formulas can be used. 

1. Convert 210° to radians. 

radians = lr X 210 = 77r 
180 6 

2. Convert -3-7r radians to degrees. 
2 

degrees = 180 x 77. = 270° 
7r 2 

This circular, or pi, system is especially meaningful in de-
termining angular velocity, hence the reactance of a coil or a 
capacitor. In covering a full circle a vector rotates through an 
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angle of 2r (approximately 6.28) radians. The number of rev-
olutions made per second is a function of the frequency (f) 
expressed in cycles per second. Therefore 2rf is the angular 
velocity of a vector expressed in radians per second. Because it 
occurs so often in electronics calculations, the Greek letter 
Omega (w) is often used in place of 2rf. As used in the re-
actance formulas: 

XL = 2rfL = coL 

1 1 
27rfC 

TRIG FUNCTIONS 

The study of trigonometry (trig) is concerned with the re-
lationships of sides and angles in a triangle, which is any figure 
bounded by three sides which are straight lines. The trig 
functions express the numerical relationships of any two sides 
of a right triangle, which is any triangle containing one right 
(90°) angle. And in such a triangle the sum of the other two 
angles is 90° so that they are complementary. 

In defining the trig functions the triangle in Fig. 2-4 should 
be used. 0 is the phase angle, 0 is the side opposite that angle, A 
is the side adjacent to it, and H is the hypotenuse, or diagonal, 
of the triangle. The three functions most often used are as 
follows: 

sin 0= o 
H 

cos 0= A 
I-E-1 

tan 0 = o 

These are  are abbreviations of sine, cosine, and tangent, respec-
tively, and each of these has a reciprocal function. These are 
cosecant, secant, and cotangent, respectively. But these recipro-
cal functions are not used to nearly the extent of the other 
three, and consequently they are not considered here. 

It should be stressed that these functions are ratios of the 
lengths of sides and are different for each angle. For example, 
the sine of 30° is 0.5. This means that for any size triangle the 
side opposite the 30° angle is one-half the length of the hypot-
enuse. This is true for any lengths of lines, as long as the angle 
is 30°. The idea holds similarly for the other functions—they 
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are ratios, determined by the angle, not by the actual lengths 
of the sides. 

Trig tables usually give sine, cosine, and tangent values for 
any angle from 0° to 90°. A set of decitrig tables is included in 
an appendix of this book. Sines and cosines are listed together; 
tangents and cotangents are listed together. To determine the 
sine of an angle, locate the angle in the left-hand column and 
then read the value of the function under the proper heading 
of the tenths columns. For cosines, use the degree listings in 
the right-hand column, then read the cosine in the proper 
tenths column. Notice that for cosines the tenths are listed at 
the bottom of the columns, not at the top as for sines. Also 
notice that the angle markings for cosines progress upward, 

A 

Fig. 2-4. Right triangle used in defining trig functions. 

the tenths progress toward the left. The tables for tangents 
and cotangents are read similarly although the cotangent sec-
tion may not be used so often. 

Other trig tables may be arranged differently but the basic 
idea remains the same. Once the arrangement is understood, it 
is easy to see how other tables are made up and how to use 
them. You may check these examples to see whether or not your 
use of the tables is correct. 

sin 21° = .3584 

sin 38.5° = .6225 

sin 64.3° = .9011 

cos 16.5° = .9588 

cos 39.7° = .7694 

cos 54.2° = .5850 

tan 24.8° = .4621 

tan 72.4° = 3.152 

tan 87.3° = 21.2 

cot 21.4° = 2.552 

These tables can be arranged this way because cofunctions of 
complementary angles are equal. Thus, one set of tables can be 
used for both a function and its cof unction. As an example, 
notice that the sine of 34° is the same value as the cosine of 56°. 
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And this holds true for any angles; a function of any angle is 
equal to the cofunction of 90° minus that angle. For vector 
analysis of AC circuits the sine function is used more often 
than any of the others. Notice that the sine starts at zero for 0° 
and progresses to 1 for 90°. It can never have a value greater 
than 1. 

Sometimes in working with trig the value of a function may 
be known but not the angle. These are referred to as arc 
functions. For example: 

sin 30° = .5 

arc sin .5 = 30° 

The basic process is the same as in determining trig func-
tions, except in reverse. In determining arc sin .3502 locate 
.3502 in the body of the table and read the angle on the same 
line in the left-hand column. Then read the number of tenths 
at the top of the column in which .3502 occurs. The same pro-
cedure is used for arc cosine or any of the other trig functions. 
For arc cosine, however, be careful to read the angle in the 
right-hand column and the tenths along the bottom of the 
tables. For example: 

arc cos .9018 = 25.6° 

arc cos .6401 = 50.2° 

Arc sin may also be written sin— both having exactly the 
same meaning. Siinilarly arc cos may be written cos— ', or arc 
tan as tan — j. Both terminologies should be understood because 
both are in general use. 

SOLUTION OF TRIANGLES 

Probably one of the best tools for solution of right triangles 
is based on the Pythagorean relationship: 

H2 02 ± A2 

The lettering is the same as that used in Fig. 2-4, and the 
relationship literally states that the square of the hypotenuse 
is equal to the sum of the squares of the other two sides. Sup-
pose that in a given right triangle the 0 side were 3 inches 
long and the A side 4 inches. The H side could be calculated by: 

H2 = 02 + A2 

H= V 02+A2= V 32+ 42= V—Z= 5 inches 
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Or, if necessary, the basic formula could be rearranged to 
solve for 0 or A. 

O = A2 

A = v H2 02 

The Pythagorean theorem, however, does not take the angles 
into account—only the lengths of the sides. It is assumed 
though that one angle is 90° because the formula does not hold 
for any except right triangles. In later chapters considerable 
use of this relationship will be made. Other solutions of tri-
angles involve combinations of lengths of sides and trig func-
tions, because the Pythagorean relationship can be used only 
when the lengths of two sides are known. Then the third side 
can be determined. To find the number of degrees in any of 
the angles (except the 90° one) trig must be used. 
For the triangle just solved, angle O can be determined from 

any two of the side lengths by using arc functions and reading 
to the closest tenth of a degree. 

3 
O = arc sin —5 = 36.9° 

O = arc cos —4 = 36.9° 
5 

O = arc tan = 36.9° 
4 

The other angle is the complement of 36.9° so it is 90° — 
36.9°, or 53.1°. Or it too could be determined by arc functions, 
rememberirig that for that angle the opposite side is the same 
as the adjacent side of 0, and vice versa. In cases where an 
angle and one side are known, a trig function can be used to 
determine another of the sides. For example, if O is 35°, and 
the opposite side is 6 units in length, the hypotenuse can be 
solved by using the sine function. 

O 
sin O = —H 

6 
sin 35° = 

6 
.5736 = 

H — 5736 — 10.46 units .  
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Then the adjacent side can be determined by the Pythag-
orean theorem or by using the cosine or the tangent function. 
Or, we could have used the tangent function and solved for A 
first. 

tan 0= —4D 
A 

tan 35' = —6 
A 

.7002 = —6 
A 

6 
A = .7002 — 8.57 units 

Notice that for every problem there are several possibilities 
which can be used. And, if given a choice, the Pythagorean re-
lationship is better because it does not require a trig table. 
But, as previously stated, two side lengths must be known. In 
using the trig functions, the choice is determined by what is 
given. For example, in the previous problem we could not solve 
for the cosine first because neither A nor H were known. It was 
necessary to start with a function which included 0, either 
sine or tangent. If neither of the smaller angles is given, one 
of the arc functions can be used, as shown previously, to de-
termine one of the angles. 

THE CO-ORDINATE SYSTEM 

The idea of dividing the circle into four equal sectors (quad-
rants) was introduced earlier in this chapter along with the 
numbering of the quadrants. It was also shown (Fig. 2-2) that 
the quadrant numbering is based on counterclockwise rotation 
beginning with the zero-degree reference on the horizontal and 
to the right. When working with angular quantities it is 
necessary to divide the quadrants into smaller divisions, both 
horizontally and vertically, for additional accuracy. Such a 
system of laying out the quadrants is known as the co-ordinate 
system. This enables us to set up all three sides of a triangle on 
the same surface. 
So far we have described rotating vectors as moving about a 

circle, but actually there are no circumference limitations in-
volved. So co-ordinates normally involve a square or rectangu-
lar surface subdivided into small segments each of which is a 
square. These are called rectangular co-ordinates and must in-
clude both positive and negative areas because both polarities 
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occur in practical situations. Or, as we shall see later, the same 
surface can be calibrated in degrees with radii extending out 
from the center of the surface. This is polar graph paper. Both 
types are used because a vector can be expressed in terms of its 
rectangular co-ordinates in two dimensions, or in polar (or 
diagonal) form at some specific angle. Vectors could also be in 
three dimensions, but they do not concern us in this coverage. 
To plot rectangular co-ordinates the cross-hatched paper is 

laid out as shown in Fig. 2-5. The 0 at the center is called the 
origin, and all measurements on the paper are expressed with 
reference to it. The horizontal axis is called the X axis, and the 
vertical axis is the Y axis. To the right of the Y axis the num-

Y 

X 

Ili I 

I 5 4 
(5,3) 

o 

( 3, 5) (6,-5) 

III I  rz-
Y 

Fig. 2-5. Plot of rectangular co-ordinates. 

X 

bers are considered to be positive. Negative numbers are on 
the left of the Y axis. Also, above the X axis the numbers are 
positive, below it they are negative. The origin is zero in both 
directions. 

In order to locate a point on the graph, two dimensions are 
involved. First, the point is a particular number of units to the 
right or to the left of the Y axis; this is the X dimension. The 
point is a particular number of units above or below the X axis; 
this is the Y dimension. In every case the horizontal dimension 
is specified first and referred to as X on the graph even though 
it may represent some other quantity, for example resistance, 
in a given problem. In every case the vertical dimension is re-
ferred to as Y on the graph, even though it also may represent 
some other quantity, for example reactance. Thus, (5,3) repre-

32 



sents a specific point on the graph. It is 5 units to the right of 
the Y axis and 3 units above the X axis, as has been shown in 
Fig. 2-5. 

Notice that the horizontal distance is measured with respect 
to the vertical axis; also, the vertical distance is measured with 
respect to the horizontal axis. Remember that this may elim-
inate one possible point of confusion. Also notice that each 
of the axes has a value of zero in one dimension all along its 
entire length. For example, for plotting in the horizontal di-
mension the Y axis is zero for its entire length. 

Three other points are also plotted on the rectangular co-
ordinates of Fig. 2-5, one in each of the other quadrants. The 
point (-5,4) in the second quadrant is located 5 units to the 
left of zero and 4 units up from the reference. Any point in the 
second quadrant has a negative value for X and a positive 
value for Y. For third-quadrant points both X and Y are 
negative in every case as shown in Fig. 2-5, where the point 
(-3, —5) is shown. In the fourth quadrant the X value is 
always positive, and the Y value negative. Point (6,-5) is 
shown in Fig. 2-5. 

Table 2-1 

Polarity of Points in Each Quadrant 

QUADRANT X Y 

I + + 

II _ ± 

III - - 

IV ± - 

The polarities (positive or negative) are very important in 
plotting graphic data, also in evaluating trig functions in all 
the quadrants. In every case the signs indicate the quadrant 
in which a point is located, and for ready reference Table 2-1 
has been included. However, after working with the subject 
for even a short time, the polarities will be evident without 
having to refer to a table. 
Using these ideas of polarity and those previously learned 

for trig functions, we can determine the functions for angles 
greater than 90°. Previously we considered the lengths of all 
three sides to be positive, and this is the case in most trig cal-
culations when only the absolute values (without polarity) are 
considered. The triangle can be assumed to be in the first 
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quadrant with O less than 90°. However, vectors can exist in 
any direction of rotation, so they can appear in any one of the 
four quadrants. This means that we must be able to consider 
angles greater than 90° in our trig calculations. 

Although on first thought we may consider the functions of 
angles greater than 90° to be quite different from those of 
angles under 90°, that is not the case. The ranges of values are 
the same, except that some of the values are negative since the 
sides involved also have negative values. We can use the same 
trig tables as used for functions of angles under 90°. 

In the first quadrant all the sides of a triangle have positive 
values, so all the trig functions are also positive. And we 
must consider that the hypotenuse is positive in all the quad-

.11 I 

Fig. 2-6. Illustrating which sides of the triangle in each quadrant 

are negative and which are positive. 

rants because it is laid out diagonally with respect to the origin. 
Therefore we cannot conceive of it having a negative value. 
The opposite and adjacent sides, however, are still either 
positive or negative, depending on the actual quadrant. Fig. 
2-6 shows which sides are positive and which are negative. 

Still using Fig. 2-6, consider the functions of 150°, a second-
quadrant angle, as shown. Numerically the functions of 150° 
are the same as those for 30° (except for polarity of cosine and 
tangent). So 30° could be considered as the working angle. For 
any angle in the second quadrant the working angle is 180° 
minus the angle in question (150° in our example). Thus, we 
have the following: 

sin 150° = +.5000 

cos 150° = —.8660 

tan 150° = —.5774 

Except for polarity signs, the functions are those of the 
working angle. To see why these changes come about let's 
assume values so that H = 2, 0 = 1, and A = —Va., therefore: 
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sin 150° = —1 = .5000 
2 

cos 150° = = —.8660 
2 

1  
tan 150° = v   ---.5774 

Any angle in the second quadrant has a positive sine, and 
negative cosine and tangent. And this also holds true for the 
reciprocal functions; cosecant is positive, secant and cotangent 
are both negative. However, as previously stated, these func-
tions are not used nearly as much as the other three. 

For angles in the third quadrant the idea is similar except 
that the working angle is O minus 180°. For example, in Fig. 
2-7 an angle of 210° is considered. The working angle is 210° 
— 180°, or 30°, and the sides could have values as shown. 
Notice that both the opposite and adjacent sides are negative in 

Fig. 2-7. A 210° angl•. 

value, while the hypotenuse is positive. So the functions of 210° 
are as follows: 

sin 210° = --21 = —.5000 

— V 3  cos 210° = = —.8660 
2 

—1  
tan 210° = _ = +.5774 

— 3 

Notice that the sine and cosine are negative and that the 
tangent is positive. This is true for all angles which terminate 
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in the third quadrant. Now let's look at one more example, this 
one an angle in the fourth quadrant, say 330°. This is shown 
in Fig. 2-8 and the working angle is 360° minus 0, or in this 
case 30°. The side lengths have the polarities shown. 

sin 330° = —21 = —.5000 

cos 330° = 3L-2-- = +.8660 
2 

—1  
tan 330° — — —.5774 Nra 

For simplification all the working angles in the examples 
were 30°, but the idea holds for any angles. Table 2-2 gives the 

I 
e .3300 

Fig. 2-8. A 330° angle. 

polarity for the three trig functions in all four quadrants and 
can be used for ready reference. However, by understanding 
how the signs are determined we have a means of determining 
the correct sign in case the information is not readily available. 
Notice that the sine function is positive in the first and second 
quadrants and negative in the third and fourth quadrants. This 

Table 2-2 
Polarity of Trig Functions in Each Quadrant 

QUADRANT SIN COS TAN 

I ± ± + 

II ± — — 

III _ _ 
-1-

IN/ _ 
-I- ___ 
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agrees with the characteristic of a sine wave shown pre-
viously, that the positive alternation (0° to 180°) is positive, 
and the negative alternation (180° to 360°) is negative. 

Notice that each function has two quadrants in which it is 
negative and two in which it is positive. This causes no prob-
lems when determining the values of trig functions, but it does 
for arc functions. For example, what is the arc sin .5? This 
could be either 30° or 150°, depending on the quadrant. In 
most cases, however, the first-quadrant angle is the one con-
sidered but a point of confusion could arise in a problem in 
which both answers could be used. 

PRACTICE PROBLEMS 

1. What is the complement of 12°? 

2. What is the supplement of 75°? 
3. What is the counterpart angle of 110°? 

4. Convert 32° 18' to an angle in the decitrig system. 
5. Convert 43.7° to degrees and minutes. 
6. Convert an angle of 15° 10' 42" to an angle in the decitrig system. 
7. An angle has a magnitude of air/2 radians. How many degrees does 

this represent? 

8. Convert 240° to radians. 
9. Evaluate these trig functions: sin 31.8°, cos 15.7°, and tan 39.3°. 

10. Evaluate these trig functions: sin 72.3°, cos 68.6°, and tan 76.0°. 

11. Determine these arc functions: arc sin .6455, arc cos. 8878, arc tan 

.2180. 
12. Determine these arc functions: sin-' .8738, cos -1 .1219, tan' 2.872. 

13. A right triangle has short-side lengths of 3 and 6 feet. What is the 
length of the hypotenuse? 

14. In the same right triangle, what are the magnitudes of the two 
smaller angles? 

15. In a right triangle O is 38° and the side opposite it is 12 units in 
length. What are the lengths of the other two sides? 

16. The hypotenuse of a right triangle is 8 feet long and the base angle 
is 56°. What are the lengths of the other two sides? 

17. A right triangle has side lengths of 5, 9, and 10.3 units. What are 
the magnitudes of the angles? 

18. Determine these functions: sin 220°, cos 310°, tan 125°. 

19. Determine these functions: sin 105°, cos 238°, tan 265°. 

20. What is the arc cosine of .3420? List two answers. 
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CHAPTER 3 

Vectors 

The basic idea of vectors has already been introduced in the 
two previous chapters. Stated simply, a vector is a line that 
represents quantity and direction. This direction may be com-
pared with a known reference, or with some other vector. It can 
be said that vectors are directed lines because the line points in 
a specific direction. The term directed-line segment is also 
used, assuming that the line itself extends indefinitely, but in 
the problem at hand only a small part (segment) is being used. 

Vectors can be compared with scalars, also called scalar 
quantities, which are the quantities with which we work most 
often. Such quantities may be a temperature, a number of 
specific items, area or volume of a figure, population, attend-
ance at an event, or many other similar examples. These are all 
specific amounts of what is being measured, but they do not 
involve direction. To say that the temperature is 72° implies 
only a magnitude, no sense of direction. Temperature is stated 
completely by specifying the number of degrees, assuming the 
measure of a degree is known. So it can be said that a scalar 
quantity has only magnitude ; it does not imply any direction 
of action. 

Other quantities with which we deal can be expressed in 
terms of magnitude, but are more meaningful if direction is 
also stated. These include statements of velocity, number of 
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Fig. 3-1. Four different vectors, one in each quadrant. 

pounds of push or pull, or other cases in which action is per-
formed in a specific direction. Technically, speed is considered 
to be a scalar quantity; velocity is vectorial and includes both 
speed and direction. Although not explicitly directional, the 
vector idea is used in certain aspects of electrical circuits, for 
example the phases of voltages and currents. This was shown 
briefly in the latter part of the preceding chapter and will be 
used to a much greater extent in the last two chapters. 

Fig. 3-1 includes four different vectors, one in each of the 
four quadrants. The length of each line is proportional to the 
magnitude of the quantity being represented. The arrow of 
each vector points in the direction in which the represented 
quantity is acting, and in every case the vectors originate at 
the origin (0). That end of the vector at which the arrow is 
located can be called the terminal, or point, end. The opposite 
end can be called the initial, or starting, end (or point). As long 
as all the vectors in Fig. 3-1 begin at the origin, they could be 
labeled OA, OB, OC, and OD. It is evident that these are vec-
tors representing vector quantities. But without the diagram 
the designations OA, OB, etc. may be confusing. So to indicate 
that they are vectors -a, a, etc. could be used, and in some 
cases only the line is used above the letter as Oa, 011-, etc. The 
first letter normally indicates the initial point; the second letter 
is the terminal point. OA, for example, means that the vector 
lies in the direction of A. 

Other forms of notation are also used, and one of the most 
popular is a single letter, such as A, B, etc. Later, you will see 
that R, XL, Z, and other electronics abbreviations are used as 
vector symbols. And in some texts boldface type is used such 
as A, B, etc. In addition to expressing a vector in terms of letter 
designations, they may also be expressed in ways that not only 
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designate them as vectors, but which also give their magnitude 
and angular direction. One of these is A/O, which indicates a 
vector length of A acting in the direction of angle O. This is 
known as the polar form of a vector because this length radi-
ates from the origin which could be called a pole. Along this 
same line, circular paper calibrated in degrees of angle 
is called polar graph paper. Or, as will be explained later, a 
vector can be expressed in terms of rectangular co-ordinates in-
cluding an X and a Y dimension. Other symbols may be used 
for vectors, but regardless of what symbol is used, the writing 
should make it clear that vectors are being represented and 
what the symbols indicate. In this writing vector quantities are 
considered almost entirely so there should be no confusion 
along that line. 

In performing mathematical operations with two or more 
vectors, they are not treated the same as scalar quantities. 
Scalars are simply numbers and are handled as any other 
numbers in legitimate mathematical operations. Vectors, how-
ever, cannot be treated so simply. Not only must the magni-
tudes be considered, but the directions must also be included in 
order to obtain correct results. Much of this chapter and all of 
the next chapter is devoted to mathematical operations involv-
ing vectors. This is necessary because in order to use vectors in 
AC circuitry we must be able to add, subtract, multiply, and 
divide by using vector notation. The word resultant will occur 
many times, and it will be used to indicate the single total 
vector that is obtained from a specific combination of indi-
vidual vectors. 
At this point in the text it may be well to introduce several 

other terms related to vectors, because they may be encountered 
in various texts on electrical and electronic principles. First, it 
is reasonably standard to assume that two forces pushing or 
pulling an object can be represented by vectors. Such a con-
dition is shown in Fig. 3-2A in which Fl is a force of 8 pounds 
attempting to pull an object in a certain direction. F2 is a force 
of 10 pounds that is pulling in another direction as shown. The 
resultant force (also a vector) would be at an angle between 
F1 and F2, and would have a specific number of pounds of pull. 
A vector diagram could also be three-dimensional, for example 
one vector pulling to the right, one to the left, and one either up 
or down. Those shown here are plane vectors; they are not 
three-dimensional. And in this writing only plane vectors are 
considered. 

Fig. 3-2B shows specific types of vectors which occur very 
often in electrical and electronic work. In this case they repre-
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Fig 3-2 Vectors represianting relationships of forces. 

sent the voltage and current relationship in an electrical circuit. 
They may be referred to as phasors (rather than vectors) be-
cause they represent phase relationships of the circuit. Phasors 
can be defined as quantities representing sine waves in ampli-
tude and phase position by length and direction from a given 
reference line. Comparing this diagram with Fig. 3-2A we find 
that there are differences in the quantities represented. It is 
difficult to say that voltage and current are acting in a specific 
direction; but we can say that if voltage is at some instan-
taneous point in its sine-wave cycle, the current is a specific 
number of degrees behind the voltage in reaching that same 
angle of rotation. Thus, a phasor is used instead of a vector. 
With these ideas in mind, you can see that Fig. 3-3A would 

be a phasor diagram and Fig. 3-3B would be a vector diagram. 
We have to agree that there are definite relationships between 
the oppositions in a circuit and the current-voltage relation-
ship in that same circuit. So the use of two terms here (phasor 
and vector) could create confusion. Still another definition 
states that phasors are any complex-number quantities associ-
ated with AC circuit theory. Using this definition, Fig. 3-3B 
would also be a phasor diagram as we will conclude after study-
ing complex numbers in the next chapter. 
The term sinor is also used to some extent and applies to 

sine-wave positions varying with respect to time. It could be 
said that the sinor is a special form of phasor, in fact one 

(A) Phasor. 

Fig. 3-3 

(B) Vector. 

Phasor and vector diagrams. 
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definition states that "phasors that specify sinusoidal time 
functions are termed sinors." As an example, a sine wave 
represents a voltage or current varying at a specific rate and 
plotted against time. It could be said that a phasor diagram 
shows two or more separate sinors, but this statement is not 
a clear-cut definition. 

In order to simplify this text, the term vector is used ex-
clusively for several reasons: 

1. The term vector is readily understood, and its use extends 
back many years, even for electrical quantities. 

2. Use of the single term prevents confusion, especially 
when there seems to be no sharp dividing line between 
the various terms. 

3. Actually, a phasor is a specific form of vector, using the 
latter in a general sense. 

4. Regardless of what is being represented by the directed 
lines, the methods of working with them are the same. 

As long as it is known what is being represented by the di-
rected lines, these differences in terminology should present no 
real problem, hence the use of the single term vector. 

VECTOR COMPONENTS 

Any vector can be described (or defined) in several different 
ways. Symbols for vectors were introduced earlier, also the 
polar form of notation, but there is still another way which 
lends itself quite well to trigonometric solutions. For example, 
consider the vector in Fig. 3-4; it starts at the origin and 
terminates at point (8, 4). Plotted on the co-ordinate axes, as 
shown, the vector can be expressed in terms of its X and Y 
values, called rectangular components. The process of de-
termining the horizontal and vertical components from the 
vector is referred to as resolving the vector, or resolution of the 
vector. 

(8, 4 ) 

X 
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If a triangle is completed by drawing a line from the end of 
the vector to the X axis (shown as dashed line), we find that 
the side opposite angle O is 4 units in length. The adjacent side 
is 8 units in length. So originating at the origin the rectangular 
components are (8,4). Expressing the vector in this form is re-
ferred to as the rectangular form of vector notation because 
the measurements are with respect to the rectangular co-
ordinates. The point numberings being used were introduced 
along with rectangular co-ordinates in the preceding chapter. 

Depending on what is given, either form can be converted to 
the other by trigonometric calculations. In Fig. 3-4 the rec-
tangular form is given, and in this form the rectangular co-
ordinates give the lengths of the two short sides of a right 
triangle. The actual vector length is the hypotenuse of that 
same triangle and it forms the angle O with the adjacent side. 
Using the symbols given, the vector length can be determined 
by substituting into the Pythagorean formula: 

Z2 ,- X2 + y2 

Z --= VX2 + Y2 
Z — v82 + 42 = V80 = 8.94 units 

Y 
Angle 0 may be determined by 0 = arc tan —X =arc tan 0.5 = 

= 26.6°. So the actual vector, in polar form, is 8.94 /26.6°. 
Both Z and 0 are stated in terms of the closest digits rather 

than by large number of decimal places. This practice is also 
followed in succeeding sections of the text because methods are 
more important than extreme accuracy when learning the basic 
processes. 

In practical calculations either form may be given, and it 
may be necessary to convert from one form to the other. When 
the rectangular form is given, the polar form is determined by: 

V X2 ± y2 / arc tan  1.. 

using the lettering of Fig. 3-4. 
When the polar form is given, the horizontal component is Z 

times cos O; the vertical component is Z times sin 0, again using 
the lettering of Fig. 3-4. Bear in mind, however, that these two 
forms and the calculations involved apply only to a single vec-
tor and are based on the relationships existing in a right tri-
angle. As we shall see in the next section of this chapter, when 
working with more than one vector, the angle between them 
must be considered, and this is not necessarily a right angle. 
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However, each individual vector can be resolved and this is one 
of the methods of solution which are introduced. 
As shown in the preceding chapter, unless otherwise speci-

fied, angle 0 is assumed to be in standard position, that is, 
measured with respect to 0°. Normally 0° is on the horizontal 
line and to the right of the origin. The 0° line may be called the 
initial side of the vector and the actual vector the terminal 
side, especially when considering rotating vectors as in AC. 
These terms were also introduced previously. 

VECTOR ADDITION 

As previously indicated, vectors can be combined in various 
ways, just as other types of math expressions can be, as long as 
the angles are considered along with the magnitudes. Scalar 
quantities can be added directly, for example: 

15 tubes + 10 tubes = 25 tubes 

3 books + 2 books = 5 books 

But unless vectors are at the same angle, the magnitudes can-
not be added directly. The fact that the quantities are acting in 
different directions prevents that. Also remember that only 
vectors representing like quantities can be added. For example, 
to combine voltage and current into a resultant quantity has no 
meaning. Two voltages, however, can be combined to give a 
resultant voltage; this idea applies similarly to other vector 
quantities. 

Addition of Two Vectors 

If two vectors are parallel (at the same angle), they are 
acting in the same direction so that their magnitudes can be 
considered like scalar quantities and added directly. The re-
sultant is still a vector acting at the same angle as the two 
separate quantities. As an example, suppose that two forces, 
20 pounds and 15 pounds, are acting at an angle of 45° with 
respect to some reference. The resultant is 35 pounds acting at 
the same angle, 45°. They can be plotted on the same vector line 
as shown in Fig. 3-5A, and parallel vectors in any direction are 
handled similarly. A vector would be considered equal to an-
other vector only when both have the same magnitudes and 
are acting at the same angle. 

Vector lines may be parallel with respect to each other, but 
acting in exactly opposite directions. There is then a 180° 
angular difference between them, and they are not considered 
to be parallel vectors. The effects of such vectors are cancellable 
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Fig. 3-5. Parallel vectors. 
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since they directly oppose each other. In Fig. 3-5B a force of 20 
pounds is acting at an angle of 45° and a force of 15 pounds is 
acting at an angle of 225°. The resultant vector is 5 pounds 
(20 — 15) acting at an angle of 45°. The magnitudes are sub-
tractive, and the resultant vector is in the direction of that 
vector having the larger magnitude. If both vectors had 
exactly the same magnitude the resultant force would be zero. 
Bear in mind that the individual angles need not be 45° and 
225°. Vectors are subtractive whenever they directly oppose 
each other, at any angles. 

It may seem that the 0° and 180° angular differences would 
not necessarily be useful, but that is not the case. In electrical 
and electronic circuits these angles occur quite often. For ex-
ample, two inductive reactances act at the same angle in a cir-
cuit and are directly additive. But inductive and capacitive 
reactances add in opposition to each other and are subtractive. 
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Also, in amplifier circuits, signals may be in phase or 180° out 
of phase with each other. So the vectors representing them 
would be either additive or subtractive. These subjects, how-
ever, are covered in greater detail in a subsequent chapter. 
Now consider a situation in which the vectors are not at 0° 

nor 180°, as in Fig. 3-6. Here F1 is a force of 10 pounds acting 
on an object at the origin, and acting at an angle of 80°. F2 is a 
force of 15 pounds acting on the same point but at an angle of 
30°. The resultant is the single force acting at a specific angle 
that would act exactly like the two single forces applied at the 
two separate angles. The resultant here is at some angle be-
tween 30° and 80° and is labeled R. 

Fl 
goo ,,..... 

,-0 
,-/ I 
/ 1 

-,. / l 
F2 i,..'e / , 
/ / / 

/  / ¡FI' /  
/ I 

/ I 
R/ 

I / 
/ 
/ 

10 LBS. / 

/ 
/ 

/ 15 LBS. 
/ 

! 30 0 
F2 

0° 
Fig. 3-6. Adding two vectors that are not at 0° or 

The resultant in this case, including force and angle, has 
been determined by drawing a parallelogram with the two 
given forces as adjacent sides. A parallelogram is a four-
sided figure in which opposite sides are parallel and equal in 
length, and in which opposite angles are equal to each other. 
Line F1' is the same length and at the same angle as line Fl. 
Similarly line F2' is the same length and at the same angle as 
line F2. The angle in each case would be measured with respect 
to where the dashed line (extended) would cross the X axis. 
The resultant vector is the diagonal of the parallelogram drawn 
from the point of origin of the two original vectors. Its length 
can be measured to determine the number of pounds of effective 
force, and the angle can be measured (with a protractor) to de-
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termine the angle at which the resultant force is acting. From 
Fig. 3-6 we can conclude that the resultant is a force of 22.5 
pounds acting at an angle of 50°. In drawing the resultant 
vector be careful to draw only that diagonal that starts at the 
point of origination of the two separate vectors. This is neces-
sary because each parallelogram has two possible diagonal 
lines. 
We can draw certain definite conclusions regarding such an 

arrangement. When the vectors are at the same angle, the sum 
is greater than either of the two separate vectors. At 180° the 
difference vector is shorter than the longer of the two separate 
vectors. For angles between 0° and 180° the resultant is be-
tween the two separate angles, and the resultant vector length 
depends on the angular difference. As the two individual angles 
come closer to each other, the resultant length increases, reach-
ing its maximum when the angles are equal. Actual resultant 
length is also determined by the length of the individual vec-
tors, becoming longer as the separate vectors are made longer. 
If the forces represented by F 1 and F2 are the same, then the 
resultant angle would be exactly half way between the two 
separate angles. However, if they are not equal, the resultant 
is closer to that vector having the larger magnitude. In Fig. 
3-6 F2 represents a larger force than Fl so that the resultant 
is closer to 30° than to 80°. If F2 were increased in length 
(F1 remaining the same), the resultant angle would be even 
closer to 30°. Any convenient scale can be used to determine 
the lengths of the lines, and each inch of vector length repre-
sents a specific number of pounds of force. Generally, the larger 
the drawing, the more accurate will be the results obtained by 
this graphic method of solution. When the drawing is too small, 
even the width of the pencil line may decrease the accuracy. 
Another similar example is that shown in Fig. 3-7. In this 

case, F1 is a force of 15 pounds at 110°, and F2 is a force of 25 
pounds at 50°. The resultant is a force of 35 pounds acting at 
72°. Notice that in every example of this type the results are 
only as accurate as the graphical presentation, and they may 
not always be exact. This is a definite disadvantage of any 
graphical means of solution, but in the presentation of the 
subject they are invaluable for a visual description of the pro-
cess involved. 
A similar but different method of solution is that of Fig. 3-8, 

which is a representation of the same problem solved in Fig. 
3-6. Instead of starting both vectors at the origin, only one is 
started there. Then the second begins at the terminal point 
of the first. The dashed line completing the triangle is the 
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Fig. 3-7. Another example of adding vectors 

that are not at 0° or 180°. 

resultant and it is the same, both in magnitude and direction, 
as the diagonal of the parallelogram of Fig. 3-6. 

It does not matter which vector starts at the origin; the same 
resultant is obtained either way. But they must be arranged 
so that the initial point of the second vector joins the terminal 
point of the first. Then the resultant is the vector that connects 
the initial point of the first vector to the terminal point of the 
second. This is sometimes called the head-to-tail method, and it 
is especially useful when more than two vectors are involved. 
It involves a smaller number of lines, and therefore does not ap-
pear as complicated as the parallelogram method. This method 
is also graphic, however, and subject to the same inaccuracies 
as other graphic methods. 

If two forces are at right angles to each other, the problem 
is simplified because trig can be used to give a more exact 
resultant. One angle of the triangle is then a right angle. Fig. 
3-9 shows an example in which the parallelogram method of 

/ 
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Fig. 3-9. Adding two vectors that are at 
right angles. 
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solution has been used. The head-to-tail method could also 
have been used, in which case the Y vector would appear as the 
right side of the parallelogram. In either method of solution the 
resultant magnitude can be measured with a scale and a pro-
tractor. When the two vectors to be added are at 90° (Fig. 3-9), 
the length of the diagonal is the same regardless of which 
diagonal is used. To avoid confusion with respect to the re-
sultant angle, the diagonal which begins at the origin should 
be used. 
As long as the right triangle does exist in this case, a trig 

solution can be made as follows. The Pythagorean relationship 
is used to determine the length of the resultant: 

R -= V X2 ± rj = V 42 + 32 = V 25 = 5 

0 can be determined by: 

3 
0 = arc tan —4 = 36.9° 

In this problem the resultant is 5 units acting at an angle of 
36.9°. Either arc sine or arc cosine could also be used once the 
length of the resultant has been determined. 

Another possibility for using rectangular components is the 
solution of Fig. 3-10. F1 and F2 are vectors whose resultant 
solution has been determined by the parallelogram method. 
But these vectors were drawn so that the X and Y components 
would be whole numbers to better illustrate another method of 
solution. Fl terminates at point (3,9) ; F2 terminates at point 
(13,6). The resultant vector terminates at point (16,15). If 
the X values (3 and 13) are added, the Y values (9 and 6) are 
added. The X result is 16; the Y result is 15. This provides an 
algebraic method of vector addition, first the X components are 
added, and then the Y components are added. The rectangular 
components of the resultant vector are the sums of the rec-
tangular components of the individual vectors. 

Fig. 3-11 shows the same idea applied to two other vectors, 
one in the first quadrant, the other in the second. F1 terminates 
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Fig. 3-10. Using rectangular components for two vectors in the 
first quadrant. 

at (-4, 12), F2 terminates at (8,7). Adding the X components 
(-4 and 8) gives 4, and adding the Y components (12 and 7) 
gives 19. The resultant terminates at point (4, 19), and a 
vector presentation such as that shown gives the same result. 
This resolution method is especially important in electrical 
calculations because of the 90° phase shift of current and volt-
age in reactive components. 
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When a vector is given in polar form, it can be converted 
to rectangular co-ordinates by: 

X = length x cos 
Y = length x sin O 

There is no algebraic method of adding polar-form vectors 
unless their angles are the same, for example: 

3/20° + 2/20° = 5/20° 

Otherwise, the rectangular co-ordinates must be added, and 
then, if necessary, the resultant converted back to polar form. 
More use will be made of these ideas in later chapters with 
reference to complex numbers. These are numbers which use 
specific notations to denote vectors, either in polar or rectangu-
lar form. 
Three methods of vector addition have been shown. These 

are the parallelogram, head-to-tail, and resolution methods of 
which the last is preferred because it is an algebraic method, 
does not require drawing utensils, and probably gives the best 
accuracy. There is, however, a trigonometric method that can 
be used to solve for the resultant when the individual vectors 
are not at right angles to each other. This involves the study of 
oblique triangles and the Law of Cosines. But because it is used 
to such a limited degree in vectors associated with electronics, 
that method is not included here. Volume 2 of Electronics Math 
Simplified contains a section on oblique triangles and the use 
of the Law of Cosines. 

Addition of Three Vectors 

The basic ideas involved in adding more than two vectors 
are the same as those shown for the two-vector additions, 
except that more operations are involved. In this section the 
addition of three vectors is considered, but the ideas can be 
applied to even more. Most practical problems do not include 
more than three so that is the limitation here. Any of the 
methods previously shown can be used for three vectors—the 
algebraic method is usually the one preferred. 

In Fig. 3-12 the parallelogram method has been used to add 
three vectors which start from the origin. The process used is 
to find the resultant of any two, then to add that resultant to 
the third vector and thus obtain a resultant for the entire 
combination. F1 is 6 units in length at 100°, F2 is 8 units at 60°, 
and F3 is 10 units at —20°. In Fig. 3-12, F1 and F2 were added 
and the diagonal of the parallelogram is the resultant (R1). 
Then F3 and R1 were added by constructing a second parallel-
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ogram, the diagonal of which is RT the total resultant. As 
measured, the resultant is approximately 15.5 units in length 
at an angle of about 37.5°. 

Plotting any other combination would give the same result. 
As an example, F2 and F3 could be added and then the result-
ant combined with Fl to obtain the total resultant vector. F 1 
and F3 could be added and the resultant added to F2. 
The head-to-tail method has been used on the same problem 

in Fig. 3-13. F1 was started at the origin, F2 started at the 
terminal end of Fi, and then F3 started at the terminal end of 
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Fig. 3-12. Parallelogram method of adding three vectors which 

start from the origin. 

F2. The R1 resultant (same as in Fig. 3-12) has been drawn, 
but it is not necessary in the solution of the problem. RT is 
again the total resultant and is drawn from the origin to the 
terminal end of F3. This is sometimes referred to as closing the 
polygon. When three vectors are added head-to-tail, the re-
sultant is that vector required to close the four-sided figure. 
The figure constructed, however, is not normally a parallelo-
gram. From Fig. 3-13, resultant RT is about the same as 
previously found, 15.5 units at 37.5°. 
The same problem can also be solved by the resolution 

method of obtaining the X and Y components of the vector. 
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Fig. 3-13. Using the head-to-tail method for adding three vectors. 

Using the same scale as in Figs. 3-12 and 3-13, the X and Y 
components are approximately as shown here: 

Fl X = —1, Y = 6 
F2 X = 4, Y = 7 
F3 X = 9.3, Y = —3.5 

RT X = 12.3, Y = 9.5 

Adding the X's and the Y's separately produces X = 12.3 
and Y = 9.5 for the total resultant vector. The length of RT can 
be determined by the Pythagorean relationship. 

RT = V-X2 + Y = V 12.32 + 9.52 = V 151.29 + 90.25 

= V 241.54 = 15.54 

This result is very close to that obtained by graphic means. 

Y 9.5  
O = arc tan -- = arc tan 

X 12.3 

= arc tan .7724 = 37.7° (approx.) 

This too is about the same as determined by the graphic 
method. But let's consider even another possibility. If each of 
the polar-form vectors were converted to rectangular form by 
algebraic means and then combined by addition, results which 
are more accurate would be obtained. As we shall see later, 
most practical vector problems are solved by algebraic means. 
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VECTOR SUBTRACTION 

In algebra a number is subtracted by changing its sign and 
then performing algebraic addition. This is also true for sub-
tracting vectors. When the sign of a vector is changed, it is the 

3/25° + 2/25° = 5/25° 

same as changing the angle by 180°. 
When adding, 
When subtracting, 

3/25° — 2/25° -= 1/25° 

Effectively, the direction of the second vector was reversed, 
causing it to directly oppose the action of the first. So the 
second expression could also be shown as: 

3/25° + 2/205° = 1/25° 

The parallelogram method can be used in the subtraction of 
vectors as well as in addition. Two vectors are added by de-
termining the diagonal of the parallelogram of which the two 
original vectors are adjacent sides. Referring back to Fig. 3-6, 
Fl and F2 were added to give the resultant (R), as shown: 

F1 + F2 = R 

Considering the same problem values let's assume a sub-
traction such that: 

R — Fl = F2 

As shown in Fig. 3-14, R is 22.5/50°, and Fl is 10/80°. In 
this method of subtraction a parallelogram is set up such that 
the vector being subtracted from (the minuend) is the di-
agonal. As a first step, the ends of the vectors are connected 
(dashed lines have been used). Then the parallelogram has 
been completed as shown. Measuring F2 gives 15/30°. Com-
paring this with Fig. 3-6, it agrees, and the diagram is the same 

22.5Za° 

/ 
10 ar / 

/ 

Fl 
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Fig. 3-14. Using the parallelogram method 

to subtract vectors. 
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Fig. 315. Subtracting the resultant vector Fig. 3-16. Subtraction method by changing 

(R) from vector Fl. the sign of the vector being subtracted. 

parallelogram as obtained in the addition problem. So effec-
tively we have determined the vector that would combine with 
Fl (addition) to give the resultant R. This shows that sub-
traction in vectors is the inverse of addition, just as it is in any 
other form of mathematics. 

Notice that it makes a difference as to what is being sub-
tracted. The vector being subtracted from is the diagonal in 
every case. For example, in Fig. 3-14 if vector F2 had been sub-
tracted from R (11 — F2), the diagram would have been the 
same as shown. F2 would have been given in the original prob-
lem and Fl would have been the difference of the subtraction 
process. 

If the process had been altered to Fl — R the difference 
would not be the F2 value found previously because Fl would 
be the diagonal. The other value would be that as shown by F2 
in Fig. 3-15. This new vector is approximately 14/210°. 
Another subtraction method which can be used is based on 

the changing of signs mentioned at the beginning of this sec-
tion on subtraction. It is possibly much simpler than the 
parallelogram method because there is less chance of perform-
ing the wrong subtraction. Referring back to Fig. 3-15 we find 
that 10/80° was subtracted from 22.5/50. Then after changing 
the sign of the vector being subtracted the problem becomes: 

22.5/50° — 10/80° 

The graphic representation of this problem is shown in Fig. 
3-16. Changing F1 by 180° causes the problem to read: 

22.5/50° + 10/260° 
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This is true because —10/80° is the same vector as +10/260° 
shown as Fr. By completing the parallelogram and drawing 
the diagonal, F2 is found to be 15/30°, which agrees with the 
previous solution. When using this method, change only the 
sign of the vector being subtracted. Any other change pro-
duces erroneous results. 
The X and Y components can be subtracted algebraically in 

much the same way as used in vector addition. The only dif-
ference is the changing of signs of the vector being subtracted. 
An example is the problem shown in Fig. 3-17. Here Fl has 

19,141 

Fl 
F2 

F2 / 

Fig. 3-17. Subtracting X and Y components algebraically. 

rectangular components of X = —4, and Y = 11. F2 values are 
X = 9 and Y = 14. If F2 is being subtracted from Fl, the signs 
of the F2 components are changed and they become X = —9 
and Y = —14. Adding them to the Fl values gives X = —13 
and Y = —3. In Fig. 3-17 F2 has been shifted by 180° as de-
noted by F2', and the diagonal of the parallelogram is labeled 
R. Notice that it terminates at point (-13, —3). 
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One word of caution before leaving subtraction. In most 
algebraic (and vectorial) expressions subtraction is indicated 
in the problem itself. For example, 8/15° — 3/15° shows sub-
traction; do not change any of the signs. But if the problem 
is to subtract 3/15° from 8/15° then the sign of the 3/15° must 
be changed. The problem then reads 8/15° — 3/15°, as pre-
viously indicated. 

MULTIPLICATION AND DIVISION 

Multiplication and division of vectors do not have as clear a 
meaning in graphical form as do addition and subtraction. For 
example, the addition of two vectors to determine a resultant 
vector is a logical process. We can see its meaning. Multiplica-
tion and division are also logical processes, but not as clear as 
to actual meaning. Suppose that vector Fl (3/20°) is multi-
plied by F2 (4/45'). The resultant product is: 

(3/_2_0°) (4/45°) = 12/65° 

In the process the magnitudes are multiplied together, and 
then the angles are added. These vectors are shown in Fig. 
3-18. With addition and subtraction, only like quantities can be 
combined. For example, volts and amperes cannot be added or 
subtracted because no meaningful unit would result, even 
though the vectors themselves could be combined. With multi-
plication and division, however, different units can be combined 
as long as the same scale is used for both basic units. This does 
not mean that just any combination can be multiplied together 
because there is not a corresponding unit for every combina-
tion. But for example, Ohm's law states that current multiplied 
by resistance equals circuit voltage. So current (in amperes) 
times resistance (in ohms) equals circuit voltage (in volts). 
This is an example of a product combination that is meaningful 
with respect to the units involved. However, if we were graph-
ing such a product it would be necessary to let the same length 
of line represent an ampere, an ohm, and a volt. Otherwise the 
magnitude of the product would be incorrect. 

In the example of Fig. 3-18 only the basic units of the terms 
are considered, there is no statement of what the units may be. 
The two original vectors are 3/20° and 4/45°; suppose that 
each unit on the graph is Y4 inch in length. Fl would be 3/4  inch 
long on the graph, and F2 would be 1 inch long. R is 12/65° 
so its length would be 3 inches on the 65° line. As you can 
see, the resultant was obtained by algebraic, not graphical, 
means. 
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However, there is one interesting relationship that can be 
used even though it is not used to any extent in practical work. 
If a vector of unit length (y4 inch in our example) is laid out on 
the 0° line, an angle 0 is formed by connecting the ends of the 
unit line and Fl. As shown, the same angle (0) exists when a 
line is drawn between the ends of F2 and R. 
As is probably obvious, multiplication and division are best 

performed by algebraic means, either in rectangular or polar 
form. All of these processes are described and illustrated more 

Fig. 3-18. Finding the resultant by consid-

ering only the basic units of the terms. 

‘e 

thoroughly in the next two chapters. But for now we can 
assume that in polar-form multiplication the magnitudes are 
multiplied together and the angles added. This means that: 

(F1/01) (F2/0g) = F1F2/01 + 02 

In division the magnitudes are divided and the angles sub-
tracted, as follows: 

F1101 Fi 
F2/02  

In some cases multiplication (or division) may be used as 
part of an entire problem, but it has no real meaning in itself. 
One example can be found in the product-over-the-sum method 
for determining total impedance: 

Z1Z2  
ZT = Z1 + Z2 
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Multiplying Z1Z2 gives a specific product, but it has no spe-
cific meaning unless it is combined with the rest of the equation. 
Then Zr has definite meaning. In electronics problems concern-
ing vectors a number of such examples exist. 

ROTATING VECTORS 

The basic idea underlying a rotating vector was described 
previously, but in this chapter it is carried further. In Chapter 
1 a simple generator was used to generate a sine wave and the 
amplitude at any instant of time was shown to be dependent on 
the angle at which the magnetic lines of force were cut. The 
same idea can be illustrated vectorially, using the diagram of 
Fig. 3-19. The radius of the circle is assumed to be a rotating 
vector, and several different instantaneous positions are shown. 
Positive (CCW) rotation is assumed, beginning at zero de-
grees. 

900 

Fig. 3-19. Representing a rotating vector and several different 

instantaneous positions. 

The length of the vector represents the maximum amplitude 
of the vector and is constant for any given problem, even 
though the instantaneous amplitude is maximum at only two 
angles in the complete sine-wave cycle. At any instantaneous 
position of rotation a vertical line drawn from the end of the 
rotating vector to the horizontal axis represents the instan-
taneous amplitude. The length of this line is proportional to the 
sine of that angle, because with a given length of vector 
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sin O = 0/H. The vector is the hypotenuse so that this pro-
portionality holds true. 

Several examples are illustrated in Fig. 3-19. At the 30° 
angle the dashed line is one-half the length of the vector 
(hypotenuse). At 60°, the dashed line is .866 of the vector 
length; since both are above the horizontal axis, they are 
positive. A second-quadrant angle of 135° is also shown, and 
sin 135° = .707. The instantaneous amplitude at that angle is 
.707 of the maximum amplitude. At 225° the sine is —.707; 
therefore the instantaneous amplitude is also negative, as it is 
throughout the third and fourth quadrants. This also verifies 
the statement made previously, that at any angle, the instan-
taneous amplitude of the sine wave is equal to the maximum 
amplitude multiplied by the sine wave of the angle. 
When two sine waves are involved, they may or may not be 

(A) Sine waves. (B) Vectors. 

Fig. 3-20. Two ways of showing lead and lag. 

in phase as previously indicated. Fig. 3-20 shows two ways of 
showing lead or lag. In Fig. 3-20A both sine waves are shown, 
and by proper labeling it can be indicated whether current is 
leading or lagging. The entire cycles are shown, because to 
show only small sections of cycles may prove to be a hazard in 
determining phase relationships. However, the diagram in Fig. 
3-20B, with proper labeling, can show the same thing with two 
vectors, although some texts call this a phasor diagram, as 
previously indicated. The vectors can be shown at any angles 
in the cycles, but the angular difference between them should 
always be the same. By careful checking it is seen that the 
angular differences in both diagrams are the same. 

In later chapters it will be pointed out that it is more or less 
standard to show one vector at 0° and the other at some other 
angle. This is easier, both for drawing and for reference pur-
poses. The same type of diagram can represent phase relation-
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ships of two voltages, two currents, or of a voltage and a cur-
rent. All of the diagrams would be the same except for labeling. 
More than two vectors can be included in either type of dia-
gram, as will be seen in the last two chapters. 

PRACTICE PROBLEMS 

I. A vector is 12 units in length at 35°. What are the X and Y rectan-
gular co-ordinates? 

2. The terminal end of a vector lies at point (6,4). Express the vector 
in polar form. 

3. By any convenient method add the vectors 5/200 and 6/58°. 

4. By any convenient method add the vectors 8/7 35° and 6/40°. 

5. By any convenient method add the vectors which have terminal 
ends at points (-5,6) and (8,3). 

6. Subtract vector 7/18° from 15/72°. 

7. Subtract vector (4,6) from (-8,5). 

8. Multiply vectors 6/15° and 3/200. 

9. Multiply vectors 8/-38° and 5/32°. 

10. Divide vector 16/48° by 8/18°. 
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CHAPTER 4 

Complex Numbers 

In the previous chapters it was shown how vectors can be 
resolved in terms of horizontal and vertical components, con-
sidering them as X and Y co-ordinates. It was also shown that 
a vector can be expressed in two different ways with respect 
to the co-ordinate axes. As an example, a vector could be ex-
pressed in polar form, such as 5/53:1°; or the same vector can 
be expressed in rectangular form with an X value of 3 and a Y 
value of 4. With the rectangular form it is difficult to express 
the quantities with convenient algebraic notation. Therefore, in 
this chapter a type of algebra, in which these vectors can be 
expressed, is introduced. 

This is called Vector Algebra. When it is used, vectors can 
be added, subtracted, multiplied, or divided, all in algebraic 
form. If required, the vector can be raised to a power, or a 
specific root of the vector can be determined. These operations 
include both polar and rectangular form, plus conversion from 
one form to the other when that may be required. 
Most of the groundwork for Vector Algebra has been intro-

duced in previous chapters. This includes the two forms, polar 
and rectangular, plus the basic idea of plotting vectors on co-
ordinate axes. The numbers above the horizontal (X) axis are 
positive; those below it are negative. Those numbers to the 
right of the vertical (Y) axis are positive; those to the left 
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are negative. This enables us to plot angles in any of the four 
quadrants. Also X and Y can be positive or negative, depending 
on the quadrant in which the vector lies. 

In this chapter the algebraic expressions for vectors are in-
troduced, and then the various mathematical operations involv-
ing such numbers are explained. The main requirement for set-
ting up such a system is that there be some way to show which 
is the X and which is the Y co-ordinate in the rectangular form. 
The standard notation for polar form has already been intro-
duced, and it also forms a part of Vector Algebra. In addition, 
Vector Algebra draws both from conventional algebra and 
from right-angle trig in order to determine problem solutions. 

IMAGINARY NUMBERS 

Algebraic notation for vectors in rectangular form is based 
on a concept called imaginary numbers. These numbers are not 
imaginary because they don't exist, but rather because they 
cannot be evaluated in real numbers. Imaginary numbers oc-
cur when the square root (or any even-numbered root) of a 
negative number is taken. When a number is squared (multi-
plied by itself), the resulting product is always a positive num-
ber. As examples: 

3 x 3 = 9 

(-3) x (-3) = 9 

The results are the same regardless of whether a positive or 
a negative number is squared; the product is always positive. 
Conversely, to take the square root of a positive number gives 
either a positive or a negative root. In a given problem it may 
not be known which is correct, or even if there is a correct one. 
For example, Vg = 3, but V -9- could also be —3. Usually -\/. 

is shown as -±-3, indicating that either root would satisfy the 
equation. In practice, however, the positive root is considered 
as the principal root because it has more meaning. To illustrate, 
suppose that a problem were solved and the answer showed 
15 ohms of resistance. The negative value has no meaning, so 
the principal root, positive 15 ohms, would be assumed to be 
the answer. In the solution of an equation, however, say x2 = 25, 
both +5 and —5 satisfy the equality so we say that there are 
two roots, ±-5. 

In some calculations it is necessary to determine the square 
root of a negative quantity, for example VLS. When determin-
ing the square root of a number, the process is to find the num-
ber which when squared produces the quantity under the radi-
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cal sign. Squaring always produces a positive quantity, so there 
can be no value for nor for the square root of any nega-
tive number. Hence, these are called imaginary numbers. It can 
be considered that an imaginary quantity consists of a real 
number and an imaginary component multiplied together, as 
shown by this example: 

= V —1 = V —1 

As long as this is true, the only imaginary number connected 
with this operation is \Pi. Any other quantity can be resolved 
similarly, indicating that the only imaginary number is —1. 
A small i, representing the word "imaginary," is used as a 
symbol for V —1. This was formulated by mathematicians 
many years ago, and it could be considered that imaginary was 
an unfortunate choice of adjective. The word often creates 
misconceptions, especially to the beginning student of mathe-
matics. 
When electricity and electronics became practical realities, 

the letter "i" was used for instantaneous current, so a possi-
bility of confusion arose. For this reason, the lower-case j is 
used for N/T. in electronics although most math books still use 
the conventional i. We can therefore assume that: 

V-1 = i = j 

Since this text is primarily concerned with electronics, the j 
will be used to indicate the imaginary number in every case. 
This means that for example, would be written ±3/T 
or -±3j, with the latter form preferred. 

Before proceeding, one minor modification should be noted. 
There is a possibility that 3j could be confused with terms such 
as 3a, 3x, etc. in an algebraic expression. So in electronics ex-
pressions the j is listed before its numerical coefficient, and 3j 
is noted as j3. But a word of caution with respect to this; be 
careful in writing these or else j3 could resemble j3. Also, j 
should not be used in any algebraic expression unless the im-
aginary V-1 is intended. Any other usage could introduce 
doubt on the part of the reader and definite difficulties in prob-
lem solution. 
A binomial is an expression that contains two terms, such as 

x + y, 2a — b, 3x — 4y, etc. Other binomials can consist of a 
real number (one that can be evaluated) and an imaginary 
component. As long as the imaginary term cannot be evaluated, 
it cannot be combined with the real number. Examples of such 
binomials are 3 + j5, 2 — j3, —5 — j4, —2 + j, etc. These are 
called complex numbers, and each consists of a real and an im-
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aginary term. The numerical coefficient of the j term is always 
a real number, but an imaginary factor multiplied by a real 
one results in another imaginary term. We must consider also 
that either of these terms can have zero as its numerical coeffi-
cient. If the real-number coefficient is zero, the binomial is 
imaginary. If the j coefficient is zero, the complex quantity is 
a real number. Complex-number terms can also have literal 
coefficients, such as a + jb, x — jy, etc. However, these occur 
more often in general expressions rather than those pertaining 
to specific problems. 
The following assumptions must be made with regard to im-

aginary numbers: 

j= 
j2 = = —1 

j3 = j2 • j = —1 • j = —j 
j4 j2 j2 = 1) ( —1) = +1 

Notice that j2 equals —1. This could be considered as a de-
parture from the usual rules of algebra. This meaning, how-
ever, should be better understood after studying the graphic 
analysis of imaginary numbers, which is presented in the next 
section of this chapter. Of the assumptions just made, j and j2 
occur much more often in practical problems than do the 
others. In every case, j2 should be evaluated as —1 before pro-
ceeding in the problem being solved and j should be substituted 

for 

Graphic Analysis 

Two real numbers are plotted on the X axis in Fig. 4-1 and 
are labeled +A and —A. Counterclockwise rotation is assumed 
in designating the angles. A and —A are opposite each other 
and can be considered to be 180° apart. If A is multiplied by 
—1, the resultant product is —A. Then if —A is multiplied by 
—1, the resultant product is A. This means that each time a 
vector is multiplied by —1 the vector has been rotated 180°. 
Then if (-1) (A) is a rotation of 180° and j2 equals —1, it can 
be assumed that a rotation of j turns the vector by 90°. This is 
also shown in Fig. 4-1, where A has been multiplied by j to 
give a product of jA. 

Another multiplication by j gives j2A or —A, placing the 
vector at 180°. Then —A times j gives —jA which represents 
an angular position of 270°. And —jA times j gives —j2A or 
+A, after substituting —1 for the j2 factor. A is then 360°, 
which is the same vector position as 0°. Note that real numbers 
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occur on the X axis and that imaginary numbers occur on the 
Y axis, providing a method for plotting complex numbers on 
co-ordinate axes. 
A complex number such as 3 + j5 can be plotted as in Fig. 

4-2. The diagonal drawn from the origin is the hypotenuse of 
a right triangle, and the rectangular components are the 
shorter sides of the same triangle. Such a binomial could also 
be plotted in any of the other quadrants except that at least 
one of the rectangular components would be negative. The hy-
potenuse (vector length) is assumed to be positive regardless 
of the quadrant in which it appears. 

These ideas are used in electrical and electronics calculations 
by plotting resistance on the real-number axis and reactance 
on the imaginary axis. By using the Pythagorean relationship, 
impedance is found to be the diagonal (hypotenuse). Such a 
plot can be made because of the 90° phase difference between 
resistance and reactance. This does not mean that reactance is 
imaginary, but the idea provides a convenient method of nota-
tion, as will be seen in the next chapter. 

Working With Imaginaries 

Conventional math methods hold for imaginaries as long as 
j2 is assumed to equal —1, and that substitution is made each 
time j2 appears. The usual rule in most problems is to change 
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-A +A 
180° 
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Fig. 4-1. Multiplying A by j to give jA. 
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Fig. 4-2. Plotting a complex number. 

V-1 to j each time it appears before attempting to perform 
any operations on the problem. This is especially evident in 
the example multiplication problems shown next. 

1. V-3 • V-2 = iNfa • jV-2-= j2V.e= —VG 

Notice that (-3) multiplied by (-2) within the radicals 
would have given a product of +6, which is incorrect. The con-
version to the j form is also evident in the following examples 
of addition, subtraction, and division. 

2. 

Here the j is treated as any other base number, and the nu-
merical coefficients are added. But this may be illustrated bet-
ter in the next example problem in which the radicands are 
perfect squares. 

3. 

Subtraction is similar to addition, it merely involves alge-
braic addition of the numerical coefficients and uses the sign 
of the larger term. 

4. j6 — j4 = j2 
5. j3 — j8 = —j5 

Example problem 6 involves division of imaginary terms 
in which the i's are divided out and do not appear in the 
quotient. 
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6.   
\/-2 j N/2 

As with other algebraic expressions involving radicals it is 
not considered proper form to leave the radical in the denomi-
nator, and j is considered to be a radical because it is equal 
to \/-1. The radical is eliminated from the denominator by 
rationalization, the process of multiplying the numerator and 
the denominator by the quantity that eliminates the radical 
from the denominator. An example of this is problem 7. 

7 \/8   .  = = • = — = - jh 
\/2 i j j —1 

CONVERSION OF FORMS 

It is frequently necessary to convert a vector from polar to 
rectangular form, or vice versa, when solving a particular 
problem. We have already seen that the polar and rectangular 
forms of a vector express the same thing, except in different 
ways. In the example previously given, 3 + j4 is the same as 
5/53.1°. Each form has its uses, also its limitations, for alge-
braic purposes. For example, addition or subtraction of polar-
form vectors cannot be performed, except by graphic means. 
Vector algebra is desirable in problem solutions because it pro-
vides greater accuracy than the graphical methods, although 
graphical methods provide a visual image of the problem being 
solved. 

For an illustration of conversion of forms, Fig. 4-3 is used. 
This shows a first-quadrant vector in which the X value is 3 
and the Y value is 5. Expressed in rectangular form it is 3 + j5. 
Probably the easiest way to convert to polar form is to use the 
Pythagorean formula to determine Z and the arc tangent to 
determine the angle O. The polar form, expressed generally, 
would be Z/p. 

Z VX2 172 = V9 ± 25 = N/34 = 5.83 

Y 5 
O = arc tan x- = arc tan u 

= arc tan 1.66 = 58.9° 

Therefore, 3 + j5 is the same as 5.83/58.9°. If the rectangu-
lar form had been 3 — j5, a fourth-quadrant angle would be 
described, and the polar form would be 5.83/-58.9°. The length 
of Z is the same, only the angle is changed. 
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X - 3 

Y = 5 

Fig. 4-3. Illustrating conversion of forms. 

The usual method of converting from polar to rectangular 
form was mentioned in the previous chapter with regard to 
resolving a vector into its rectangular components. Here, the 
idea is expanded to include the j notation. 

cos 9 = so X = Z cos 0 
Z' 

•  Y 
sin 0 = —Z' so Y = Z sin 0 

Y is plotted on the imaginary axis so it would be noted as 
jZ sin O. The full conversion then is: 

Z/_9_ = Z cos 0 + jZ sin 0 

or, = Z (cos 0 + j sin 0) 

This is sometimes referred to as the trigonometric form, but 
it is merely a general statement of the rectangular form includ-
ing the trig functions. 
As an example, consider the vector 6/32°. 

6/32° = Z cos 0 + jZ sin 0 

= 6 cos 32° + j6 sin 32° 

-= 6(.8480) + j6 (.5299) 

= 5.088 + j3.1794 

Depending on the accuracy required, this answer may be 
rounded off to 5.09 + j3.18. If the polar expression had been 
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6/-32°, the rectangular equivalent would have been 5.09 — 
j3.18. When the angle in any problem is greater than 90°, it 
means that the vector lies in other than the first quadrant. 
The calculations are the same, but the proper signs must be 
applied to the rectangular terms. As an example, consider 
6/148° shown in Fig. 4-4. In this quadrant the cosine is nega-
tive and the sine positive, therefore, 

6/148°= 6 cos 148° + j6 sin 148° 

= —6 cos 32° + j6 sin 32° 

= —6(.8480) + j6 (.5299) 

= —5.09 + j3.18 

This is the same vector as solved in the previous problem, 
but it is in a different quadrant. Similarly, when converting 
from rectangular to polar form, the quadrants must be con-

320 

148° 

Fig. 4-4. Vector 6/148° is the same as vector 6/32 °, except it is 

in a different quadrant. 

sidered. The signs of the X and Y components indicate the 
quadrant. Vector length Z and the angle are calculated simi-
larly for all quadrants. Bear in mind, however, that the angle 
determined from the trig table is always 90° or less. This is 
what we previously called the working angle and is not always 
the polar-form angle. For example, in the problem just solved, 
except working it in reverse, the rectangular form is —5.09 + 
j3.18. Using the arc tangent, an angle of 32° is read from the 
table. The polar-form angle (for second quadrant) is 180° 
minus the working angle. Therefore, in this problem the cor-
rect angle would be 180° minus 32°, or 148°. Careful attention 
to the signs will prevent errors in both conversions. 

70 



In most phase problems involving AC the angle is less than 
90°, but in other vector problems angles greater than 90° occur 
often; therefore they should be considered in Vector Algebra. 
There is one other form of vector expression, the exponential 
form, which is used to a great degree in pure mathematics. 
However, it is not generally used in practical calculations and, 
consequently, is not considered in this text. 

VECTOR ALGEBRA 

Complex numbers can be handled in the same manner as 
we do other types of binomials as long as the special signifi-
cance of j is kept in mind and as long as the proper substitu-
tions (for example j2 = —1) are made. These numbers can be 
added, subtracted, multiplied, divided, or worked with in terms 
of powers and roots. These are all the complex-number oper-
ations that are likely to be encountered in vector and phase 
analysis. 

Addition and Subtraction 
If complex numbers appear in rectangular form, they can 

be added or subtracted by combining the real parts and then 
the imaginary parts, taking the various plus and minus signs 
into account. Addition and subtraction are similar, but for the 
most part what is known as algebraic addition is used. This in-
volves addition, but it also considers the signs. For example, 
add 2 + j7 and 3 — j3: 

2 + j7 
3 — j3 

5 + j4 

Actually, the j3 was subtracted from j7, an example of what 
is meant by algebraic addition. If, however, 3 — j3 were sub-
tracted from 2 + j7, it would be necessary to change the signs 
of the number being subtracted. Thus: 

2 + j7 
—3 + j3  

—1 + j10 

The difference is —1 + j10. This type of problem does not 
occur as often as the previous one because a problem is usually 
stated in mathematical terms rather than in the form of a 
sentence. In the previous chapter one of the subtraction meth-
ods presented was that of changing the signs of the number 
being subtracted. In rectangular form the changing of signs 
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represents a change of 180° in the direction of the vector. 
Several more examples of complex-number addition follow: 

4 — j3 —5 — j3 4 + j6 3 + j2 
2 + j5 3 + j —3 — j3 
6 + j2 —2 — j2 1 + j6 3 — j 

Polar-form vectors cannot be added or subtracted algebrai-
cally unless the lines representing the vectors are parallel. In 
all other cases the quantities must be converted to rectangular 
form, then added algebraically. If a polar resultant is needed, 
the rectangular sum must be converted into polar form. 

Multiplication 

Multiplication of rectangular-form quantities can be per-
formed simply as the multiplication of two binomials. Polar-
form quantities can also be multiplied, as shown in the previous 
chapter, and this is probably the easier of the two methods. 
However, all the numbers being multiplied must be in the same 
form, either rectangular or polar. In this chapter multiplica-
tion in rectangular form is considered first. For example: 

(3 — j2) (2 + j4) 

Each term of the second factor must be multiplied by each 
term of the first, and the order of these operations in not im-
portant. Here is one form: 

6 — j4 + j12 — j28 -= 

6 + j8 — (-1) 8 = 

6 + j8 + 8 = 14 + j8 

Notice that two terms result, one real and one imaginary as 
long as j2 is replaced by —1. Here is another example: 

(2 + j4) (1 + j) = 

2 + j4 + j2 + j24 =-

2 + j6 — 4 = —2 + j6 

When multiplying the sum and difference of the same two 
terms, the j term is eliminated and a real-number product 
occurs. For example: 

(2 + j) (2 — j) = 

4 + j2 — j2 — j2 =-

4 — (-1) = 4 + 1 = 5 
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This type of combination is used when dividing by a complex 
number, as will be shown later. Such numbers are said to be 
conjugates of each other; they are alike, except for the signs 
separating them. Thus, 2 + j is the conjugate of 2 — j, and vice 
versa. Here are several other examples of conjugate numbers: 

—2 + j and —2 — j 

j4 and —j4 

3 and 3 

The product of conjugate numbers is always a real number; 
likewise, the sum of conjugate numbers. 

Polar-form multiplication involves multiplying the magni-
tudes together and algebraically adding the angles, as previ-
ously explained. The magnitudes are always positive values, 
but the angles can be either positive or negative, and the prod-
ucts are in polar form. Here are four examples: 

1. (2/40°) (3/35°) = 6/75° 

2. (4-30°) (2/48°) = 8/18° 

3. (1.5/10°) (2/-26°) = 3 / —16° 

4. (3/-25°) (4J-120°) = 12J-145°  

More than two vectors can be multiplied as evidenced by 
these next two examples: 

5. (3/40°) (2/25°) (4/60°) = 24/125° 

6. (2/35°) (5/-50°) (6 /15°) = 60L0° 

Division 
Division of polar-form quantities is similar to multiplica-

tion, except, of course, that they are inverse operations. The 
magnitudes are divided arithmetically to obtain the magnitude 
of the quotient. Then the angle of the divisor is subtracted 
from the angle of the vector being divided. This involves chang-
ing the sign of the divisor angle and adding the angles alge-
braically. The quotient is also in polar form, as seen in these 
examples: 

15/45° 2. ;_02, 1 100. 
3/15. = 5/30° 6/-20° — 3 /  

9/-50° 12/-32° 3 38. 
4.5/15° = 2/-65° 4/-70° /  
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Dividing in rectangular form involves only rationalizing the 
denominator to eliminate the j term from it, and then simpli-
fying the quotient as much as possible. If the denominator in-
cludes only the j term, multiply the numerator and the denomi-
nator by the denominator to determine the quotient, as in these 
examples: 

1 5 = 5 j2 = j10 = j10 = .,, 0 , 
. = -- • = -.= — -j Z. 

j2 j2 j2 324 -4 

3  2  + j2 3 + j2 j4 j12 + j28 = j12 - 8 _ 2 - j3 
j4 . -  j • . =  j,4 34 -16 -16 4 

When dividing by only a real number, the quantity can usu-
ally be left as it is. Or else it can be broken into two fractions 
provided that it is reduced to lowest terms, as in these ex-
amples: 

3 +j 3 +j 3 j 
3. - — Or - + - 

4 4 4 4 

4. 4 + j3 4 + j3 or 2 + j3 
2 = 2 7 

Dividing by a complex number involves multiplying the nu-
merator and the denominator by the conjugate of the denomi-
nator, as in this example: 

4 + j3 _ 4 + j3 . 1 + j _ 4 + j3 + j4 + j23  
5. 

1 - j 1 - j 1 + j 1 - j2 

-1 + j7 + j23 1 + j7 1 j7 
= or 2 - + — 

2 2  2 

Powers and Roots 

Determining powers and roots of polar vectors involves 
methods similar to those used in multiplication and division. 
Raising a number to a power involves a series of multiplica-
tions. As an example, 24 is the same as 2 • 2 • 2 • 2, using 2 as 
a factor 4 times. To raise a polar vector to a power, raise the 
magnitude of the vector to the indicated power. Then multiply 
the angle by the number representing that power. Here are 
three examples: 

1. (4/21 0)2 = 16/42°  

2. (3/-150)2 = 9/-30° 

3. (2/25°) 3 = 8/75° 
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Raising rectangular-form vectors to a power can be done as 
a series of multiplications. The process is usually easier in 
polar form, especially when raising the vector to the third or 
higher power. For example, to raise a vector in the rectangular 
form to the fourth power involves three separate multiplica-
tions. Although it is not used to any great extent, DeMoivre's 
Theorem can be used. Stated in general form: 

[Z (cos 0 + j sin 0)]" Zn (cos n 0 + j sin n 0) 

where, 
n is any real number. 

This theorem will not be expanded on here because of its 
lack of general use. 

Roots of vectors could be taken by the same formula, but in 
these cases n would be fractional. For example, in determining 
a square root, n has a value of 1/2 . But roots are almost always 
performed in polar form by determining the indicated root of 
the magnitude, then dividing the angle by the index of the root. 
These are examples: 

1. N/9/±12° = 3M.° 

2. V16/_7 20° = 4/-10° 

3. N'3/8/39° = 2 /13° 

It was previously indicated that square-root problems give 
two results. For ordinary numbers these are plus and minus 
values, with the positive value being considered as the princi-
pal root. This is also true when determining the square root of 
a polar-form vector. Only one example is considered here be-
cause of the limited usefulness of the idea in practical vector 
problems. In the first example problem it was shown that: 

N/9/42° = 3/21° 

If 360° is added to the angle, the vector direction remains 
unchanged, but the new notation is: 

N/9/402° = 3/201° 

The problem could also be written: 

N/9/-318° = 3/-159° 

This is the same result as obtained previously because: 

3/-159° = 3/201° 

So in addition to the principal root each square root of a 
polar-form vector has another root having the same magnitude 
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but with the angle changed by 180°. Powers and roots of vec-
tors, however, are not used to nearly the extent as the other 
mathematical processes in practical electronics problems in-
volving vector relationships. 

I. V-5 • V-2 = 

2. V-4 • V-3 = 

3. 2V-5 + V-5 = 

4. V-25 — V-9 = 
5. j7 — j3 

6. j8 + = 

7. j15 — j18 = 

V-8 
8. 

9.   
V-3 — 

10. 
V-8 

V2 = 

Change to polar form: 

11. 5 + j6 

12. 3 — j7 

PRACTICE PROBLEMS 

Perform the indicated operations: 

15. (3 + j2) + (4 — j3) 

16. (5 — j4) — (3 + 

17. 4 + j2 + j3 

18. (3 + j) (2 + j2) 

19. (2 — j3) (3 + j5) 

20. (3 + j) (3 — j) 

21. (3/36°) (2/18°) 

22. (4/160°) (3/-20°) 

Change to rectangular form: 

13. 6/38°  

14. 4/160° 
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23. 18/72° 
9/30' 

24. 15/-30° 
3/-48° 

25. 2 + j3 
j2 

26. 2 +  
1 + j 

27. 3 — j3  
2 j3 

28. (3/15°)' 

29. (2/20°)' 

30. V25/82° 



CHAPTER 5 

Network Calculations 

In this chapter most of the information presented so far is 
combined and used to calculate various characteristics of AC 
circuits. Graphic methods can be used for many of the calcula-
tions, but, as previously shown, algebraic methods are more 
accurate and more convenient, so greater use is made of them. 
Chapter 1 introduced several basic properties of resistance 
and reactance which form the basis of the calculations pre-
sented. In a pure inductance the current lags the voltage by 
90°; in a pure capacitance the current leads the voltage by 90°; 
and in a pure resistance current and voltage are in phase with 
each other. Of course, no component is perfect; a resistor, for 
example, also has some inductance, and even some capacitance. 
Similarly, inductors have resistance and capacitance, etc. These 
calculations are based on the lumping of R, L, and C under 
their respective categories in a given problem. As an example, 
if R and L are connected in series, the R in the problem is con-
sidered to be the total resistance in the resistors, inductors, and 
even the wires. 

This chapter presents series circuits first, then parallel cir-
cuits, and finally complex circuits (which are combinations of 
series and parallel arrangements). You will see that there are 
several different methods for solving some of the problems, for 
example, straight series and parallel circuits. In other cases, 
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Vector Algebra must be relied on so that all facets of the prob-
lem are considered. Phase relations must be included in vir-
tually all of the calculations if correct results are to be ob-
tained. In this chapter vectors are used to represent magni-
tude and phase, and, therefore, they could be called phasors 
because of their usage. 

In order to simplify calculations, it will be assumed that R, 
XL, and Xe are known. If L or C is given instead, the reactance 
can be calculated and then included with the problem. To 
further simplify the problems, small numbers are used for re-
sistance, reactance, and voltage, and they are stated in basic 
units. The same ideas apply to larger numbers, but working 
with them is more cumbersome, offering a greater chance for 
error. 

SERIES CIRCUITS 

There are certain characteristics of series circuits which ap-
ply for both DC and AC, and these form the basis for most of 
our calculations of series-circuit quantities. 

1. The current is the same at any point in the circuit. 
2. The voltage drop across each component is equal to the 

current times the resistance (or reactance) of that com-
ponent. 

3. The sum of the individual voltages is equal to the applied 
voltage, although for AC the vector sum is implied. 

4. The total circuit opposition is the sum of all the separate 
oppositions, although for AC the vector sum is implied. 

5. Ohm's law applies to both DC and AC circuits. 

R and L in Series 

As an example of an RL series circuit, Fig. 5-1A is consid-
ered. R is the resistance, XL is the inductive reactance, and E. 

Ea 
20V 
AC 
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(A) Circuit. 

XL 6 0 

/I Z 

R=3 o 

(B) Vector representation. 

Fig. 5-1. R and L in series. 



is the applied voltage. Current through the resistor is in phase 
with the voltage drop across it, but in the inductance the cur-
rent lags the voltage drop by 90°. Current is the same through 
both components so that the separate voltage drops are 90° out 
of phase with each other. The circuit current lags the applied . 
voltage by some angle between 0° and 90° because of the com-
bined action of the two components. 
A vector representation of the circuit oppositions is given in 

Fig. 5-1B. Resistance is plotted on the real axis (X), and re-
actance on the imaginary axis (Y). The reactance is inductive 
so it is plotted upward, giving a complex expression of 3 + j6 
ohms. It is standard to plot XL upward and Xc downward, the 
reason for which becomes more apparent from the vector rep-
resentation of current and voltage (shown later). 
The diagonal of the parallelogram in Fig. 5-1B represents 

the resultant of resistance and inductive reactance, which is 
impedance Z. To find the impedance, the resultant can be 
measured and calculated from the scale of the graph. A more 
accurate method of calculation, however, is the Pythagorean 
formula: 

Z = v R2 +xt2 = v 32 ± 62 = V-43 = 6.71 ohms 

Calculations in this chapter are rounded off so as not to com-
plicate the problems with long and tedious calculations involv-
ing many decimal places. Also, in the use of the trig tables no 
attempt at interpolation is made. Angles are read to the closest 
tenth of a degree. For these reasons there are slight discrep-
ancies between similar answers obtained by different methods 
of calculation. 
The phase angle (0) must be calculated separately because 

it is not included in the Pythagorean formula: 

0 = arc tan —6 = arc tan 2 = 63.4° 
3 

Therefore, impedance can be stated in two ways, as 
6.71/63.4° ohms in polar form or as 3 + j6 ohms in rectangular 
form. Strict rules of mathematical writing may demand that 
parentheses be used with the rectangular form as (3 + j6) 
ohms since the unit applies to both terms. However, it is im-
possible to add ohms to any other quantity so it has become 
more or less conventional to omit the parentheses, as done 
previously. 
Knowing the impedance of the circuit and the applied volt-

age, a simple Ohm's law calculation can be used to determine 
circuit current: 
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E 20 
I = --=-= 2.98 amperes 

Performing the same calculation in polar form gives this 
result: 

E  20/0° 
I — E. Z — 6.71/63.4° — 2.98/-63.4 amperes 

The negative angle is listed with respect to the applied volt-
age (assuming it to be at 0° ). This is logical because in an 
inductive circuit the current lags the voltage. Even so, it is 
customary to use current as the reference in series circuits be-
cause it is the same through all parts of the circuit. This means 
that a more standard representation is that of Fig. 5-2A, 
which is a graphic presentation of the phase conditions illus-
trated in Fig. 5-2B. And in the previous problem current would 
be assumed to be at 0° and applied voltage at +63.4°. 
Bear in mind though that these vectors represent phase 

and could be called phasors. The individual phases are con-
tinually changing because of the changing nature of the applied 
AC, but the phase difference is constant. Regardless of the part 
of the cycle that is considered, in every case the current is 
lagging the applied voltage by the phase angle. The vectors of 
Fig. 5-2A could have been drawn at any angles as long as volt-
age was shown to be 63.4° counterclockwise from the current. 
Considering one circuit parameter at 0° simplifies the calcu-
lations and has come to be conventional. 

Voltage drop across a separate component can be calculated 
by Ohm's law, multiplying the current by the opposition of-
fered by that component. In the same problem: 

ER = I X R = 2.98 x 3 = 8.94 volts 
EL = I x XL = 2.98 x 6 = 17.88 volts 

(A) Sine-wave displacement. (B) Vector representation. 

Fig. 5-2. Current and voltage with a phase difference of 63.4°. 
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Fig. 5-3. Vector representation of voltages 

in Fig. 5-1A. 

ER 

Notice that the two voltages add up to an amount greater 
than the applied voltage because of the 90° phase difference be-
tween the two voltages. Fig. 5-3 is a vectorial representation 
of the voltages involved. Current and voltage across the re-
sistor are plotted at 0°; the reactive voltage is plotted at 90° 
because it leads the current (or current lags) by 90°. Applied 
voltage is the vector sum of the two individual voltages and is 
the diagonal as shown. The phase angle is that already cal-
culated and is between 0° and 90°, depending on the relative 
values of resistance and reactance. 

This triangle is similar to that of Fig. 5-1B. The sides are 
not the same lengths because the voltages are not the same as 
the circuit oppositions. But the relationships between the sides 
are the same, with O being 63.4°. From Fig. 5-3: 

E. = -V ER' + EL' = V (8.94) 2 ± (17.88) 2 = 20 volts 

And the phase angle could also have been determined by: 

EL 
0 = arc tan -,- 1 = arc tan 17'88 — 63.4° 

Edit 8.94 

Triangles are said to be similar when their angular distribu-
tions are the same, therefore, they have the same general shape. 
In both the impedance and the voltage triangles the angles are 
90°, 63.4°, and 26.6°, indicating that the comparable sides 
have the same length relationships in both cases. 
Power in each of the components can be calculated from the 

current or from the voltage with the same results: 

PR = I2R = 2.98' x 3 = 26.64 watts 

P, = I'XL -= 2.98' x 6 = 53.28 vars 

If voltage were used, the comparable formulas would be 
E2/R and E2/XL. For reactive power the quantity can also be 
stated in watts, but it is conventional to state it in vars (volt-
amperes reactive) to distinguish it from resistive or other 
types of power. That power in the resistance is called true 
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power; it is actually dissipated, or used. Reactive power is not 
used or dissipated because the voltage and current are 90° out 
of phase. This means that all of the power furnished to a cir-
cuit is not actually used, but some of it is returned to the 
supply line. 
As previously shown, the true (resistive) power (PT) in the 

circuit under consideration is 26.64 watts. Line voltage times 
line current, however, gives a greater amount: 

Pa = Ea x I = 20(2.98) = 59.6 volt-amperes 

This is the apparent power (Pa), the power that apparently 
is being used. The unit is volt-amperes and is used to dis-
tinguish it from true power which is expressed in watts. 
Power factor (PF) is the ratio of true to apparent power and 
expresses the fractional part of the total which is actually be-
ing used. In the same problem: 

PF = P' = 26'64 — .447 
Pa 59.6 

It is usually expressed as a decimal fraction, but it could also 
be expressed as a percentage, 44.7% in this example. This 
means that 44.7% of the apparent power is being dissipated. 
For a purely reactive circuit the power factor is zero; no power 
is used. For a purely resistive circuit the power factor is one 
(or 100% ) ; all of the power that is supplied is actually used. 
For combination circuits the power factor is always between 
zero and one. 
A power factor can also be expressed as the cosine of the 

phase angle, as is evident from reference to Fig. 5-7, which is 
described with reference to RCL circuits: 

PF = cos O = cos 63.4 = .4478 

The slight difference is due to estimating arc tan 2 earlier in 
the discussion and in rounding off the results of the power 
calculation. 
The power factor, for series circuits only, can also be cal-

culated as follows: 

R 3  
PF = = — .4471 

Z 6.71 

In summary, there are three methods of calculating the 
power factor of a series circuit: 

PF = = cos O —R 
P„ 
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Ea 

20V 

AC 

(A) Circuit. 

Xc 

R=30 

\ e 

\ z 

(B) Vector representation. 

60 

Fig. 5-4. R and C in series. 

The circuit under consideration is inductive so the current 
lags the applied voltage. Therefore the power factor can be 
referred to as being inductive, or lagging. 

R and C in Series 
To simplify the coverage of RC series circuits the same 

values as used with the RL examples are used. The RC circuit 
is that of Fig. 5-4A and the impedance vectors are labeled Fig. 
5-4B. In rectangular form the impedance is 3 — j6 ohms, but 
the absolute value of impedance is 

Z v R2 ± xe2 v 32 + 62 = V 45 = 6.71 ohms 

The phase angle has the same magnitude as in the previous 
circuit, but it is in the opposite direction. 

O = arc tan --36 -= arc tan (-2) = —63.4° 

An angle of —116.6' is also the arc tangent of —2, but the 
phase angle is always 90° or less in these types of circuits—the 
obtuse angle is not considered. Impedance, then, can be ex-
pressed in rectangular form as 3 — j6 ohms or in polar form 
as 6.71/-63.4° ohms. Current is calculated by Ea/Z just as 
with the RL circuit, and the values are the same. In fact all the 
calculations for the RC circuit are the same as for the RL cir-
cuit, except for the angle. However, the magnitudes of angles 
are the same; only the signs are different. 
With current as the reference, the voltage of the RC circuit 

is at —63.4°, lagging the current by that amount of angular 
displacement. So rather than repeat all the calculations, the 
various values for the circuit of Fig. 5-4A are as follows: 

Z = 6.71/-63.4° ohms 

I = 2.98M3.4° amperes 

ER = 8.94 volts 
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= 17.88 volts 

PR = 26.64 watts 

= 53.28 vars 

P. = 59.6 volt-amperes 

PF = .447 (leading) 

This means that series-circuit calculations can be simplified 
because the same relationships hold for both RL and RC cir-
cuits; i.e., as long as the direction of angle is considered when-
ever necessary. 

R, C, and L in Series 

In a circuit containing all three circuit oppositions, R, X,,, 
and Xc., the two reactances effectively oppose each other. The 
circuit can act inductively or capacitively, depending on 
whichever reactance is larger. So the resultant circuit is com-
posed of resistance and the difference between the two re-
actances. Such a circuit is shown in Fig. 5-5A where the 
rectangular form for impedance is: 

Z = R + jXL — 

= 5 j7 — j3 = 5 + j4 ohms 

The resultant circuit for calculation purposes is that of Fig. 
5-5B. Impedance, current, phase angle, and power factor are 
calculated as though that were the circuit. 

Z = V R 2 + (XL - XC) = 52 ± (7 _ 3)2 = 52 + 42 

= V 25 + 16 = V 41 = 6.4 ohms 

E 20 
I = = — = 3.12 amperes 

Z 6.4 

O = arc tan —4 = arc tan .8 = 38.7° 
5 

PF = —R = —5 = 7812 
Z 6.4 

PF = cos O = cos 38.7° = .7804 

The small discrepancy occurred because, from the tangent 
table, the actual phase angle is somewhat less than 38.7°. But 
that is the closest value in the table. If the angle were slightly 
smaller than that shown, the cosine of that angle would be 
slightly larger. 

Individual voltage drops and power in each of the com-
ponents must be calculated from the actual circuit (Fig. 5-5A). 
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20V— AC 20V— AC 

(B) Equivalent circuit. 

(A) The three individual voltages. 

50 7 n 

(A) Basic circuit. 

30 50 

Fig. 5-5. An RCL circuit and its equivalent. 

40 

The combined voltages and powers, however, resolve to the 
simplified (Fig. 5-5B) because of the direct opposition of L and 
C in the circuit. 

ER = I X R = 3.12(5) = 15.6 volts 

EL = I x XL = 3.12 (7) = 21.84 volts 

Ec = I x X,, = 3.12(3) = 9.36 volts 

E. = EL — Ec = 21.84 — 9.36 = 12.48 volts 

fil 

EL 

ER /// 

// 

EL-EC E / 

EC 
ER 

(B) Resultant voltages. 

Fig. 5-6. Voltages of Fig. 5-5 plotted as vectors. 

The total reactive voltage is the difference between EL and 
Ec, which is 12.48 volts. All three voltages are plotted as vec-
tors (phasors) in Fig. 5-6A, but the resultant voltages are 
shown in Fig. 5-6B. The diagonal in this figure is the applied 
voltage, which can be determined from: 

E. = V E 2 + ER2= V 15.62 + 12.482 = V 243.36 + 155.75 

= V 399.11 = 19.98 volts 

which is very close to the 20-volt value given as applied volt-
age in the original problem. 

Powers are solved similarly: 
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PR = PR = (3.12) 2(5) = 9.73 (5) = 48.65 watts 

PL = I2XL = (3.12) 2(7) = 9.73(7) = 68.11 vars 
Pc = I2Xc = (3.12) 2(3) = 9.73 (3) = 29.19 vars 

Px = P1. — Pc = 68.11 — 29.19 = 38.92 vars 

The total reactive power in the circuit is 38.92 vars, and a 
triangle can be set up from true power (PR), reactive power 
(Ps), and apparent power (P.). Refer to the triangle in Fig. 
5-7. This triangle is similar to the impedance triangle because 
the powers are obtained by multiplying the current squared 
times the number of ohms represented by each side of the im-
pedance triangle. Therefore O is also the same value, as is also 
the power factor. 

P. = E. X I ----- 20 x 3.12 = 62.4 volt-amperes 

PF = P` = 48'65 — .78 
P. 62.4 

Fig. 5-7. Triangle showing Pµ, Px, and Ps. 

PR 

which is approximately the same as calculated by other 
methods. 

Reactive power is not a major consideration in most re-
quirements; therefore it will not be calculated in the remaining 
problems of this chapter. If required in a particular problem, 
however, it can be calculated as done in this example. And in 
all cases: 

Pa = v'pR2 px2 

Three triangles are possible with series circuits—those rep-
resenting impedance, voltage, and power. All are similar, al-
though the side lengths are different in each triangle. If XL is 
larger than Xc in a series circuit, then EL is larger than Ec, 
and the circuit is inductive by an amount that depends on the 
relative circuit values. If X,. is larger than XL, then Ec is 
larger than EL, and the circuit is capacitive. Note that the 
straight series circuit can be calculated without using Vector 
Algebra, although it can be used as shown in some of the cal-
culations. This is also true of straight-parallel arrangements 
which are described next. Vector Algebra finds its greatest 
application in combination or complex circuits, which are also 
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covered in this chapter. Its advantage is that the angles are 
carried with the problem along with the absolute quantities. 
This will become evident as complex circuit examples are 
presented. 

PARALLEL CIRCUITS 

There are certain characteristics of parallel circuits that hold 
in all cases, and these should be considered in calculations in-
volving parallel circuits. 

1. Voltage is the same across each of the parallel branches. 
2. Current through each branch is determined by voltage 

divided by the opposition (R or X) of that branch. 
3. The sum of the currents of the individual branches is the 

total circuit current. For AC the vector sum is implied. 
4. Ohm's law applies to each branch of the circuit, as well as 

to the total circuit. 

RL in Parallel 

In Fig. 5-8A a resistance of 4 ohms is connected in parallel 
with an inductive reactance of 6 ohms, with 24 volts applied. 
One of the easiest ways to calculate parallel circuit impedance 
is to use what is known as the current method. First the indi-
vidual and then the total currents are determined, then the 
total current is divided into the applied voltage to calculate 
impedance. The advantage of this method is that only Ohm's 
law and the Pythagorean formula are needed. No special 
formulas are needed, although there are some that can be used. 

Ea 24 
— = 6 amperes 

R 4 
E 24 

= — = 4 amperes 
XL 6 

EA 

24V 
AC le4 

I R=6 

(A) Circuit. (B) Vectors. 

Fig. 5-8. Circuit and vectors of R and L in parallel. 

Ea 
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The current through the resistance is in phase with the ap-
plied voltage; the current through the inductance lags the volt-
age by 90°, assuming pure inductance (no resistance). Vector 
representation of these currents is shown in Fig. 5-8B where 
IT is the total current. The total current lags the applied voltage 
by phase angle O. This could be determined graphically, but an 
algebraic solution is more definite: 

IT = NrIR2 + 11,2 = V 62 + 42 = V 36 + 16 = -\/ 52 

= 7.21 amperes 

I, 4 
0 = arc tan = arc tan — = 33.7° 

6 

The IT vector is below the 0° reference so 0 is a negative 
angle. Total current, in polar form, is 7.21/-33.7° amperes. 
Impedance can be determined by Ohm's law, using polar 

notation and considering the voltage as the reference: 

E.   24/0°  
Z I7.21/-33.7° — — = 3.33/33.7° ohms 

T  

The positive impedance angle is indicative of an inductive 
circuit, which we already know in this problem. There is no 
capacitance. But the sign of the impedance angle is important 
for circuits containing both L and C and in which the resultant 
could be either inductive or capacitive, depending on relative 
values. This is especially true for complex circuits in which a 
visual examination cannot alone determine the type of reac-
tance that predominates. 
Note that the Pythagorean formula cannot be used for 

circuit oppositions connected in parallel. The arrangement 
Z = V R 2 ± X1,2 holds only for series circuits. With parallel 
circuits the currents are added vectorially, not the circuit 
oppositions. 

Phase angle has already been calculated so that the power 
factor can be calculated from it: 

PF = cos 0 = cos 33.7° = .8320 

Cos 33.7° is the same value as cos —33.7° so either angle 
could have been used. We know, however, that it is a lagging 
power factor since the current lags the applied voltage. True 
power is that in the resistance, just as in series circuits, and 
can be calculated by any one of the three power formulas. 

PR = Ea X In = 24 x 6 = 144 watts 

I2R or E2/R could have been used with the same results. 
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Apparent power is the applied voltage times the total 
current: 

Pa = Ea X IT = 24 x 7.21 = 173.04 volt-amperes 

PF = Pt = 144' 
173.04 =.8321 

The results are very close to those obtained by determining 
the cosine of the phase angle. Also: 

PF = Z = 3.33 = .8325 
R 4 

Note the difference here from the way that the power factor 
was calculated in series circuits. For series arrangements 
PF = R/Z, but cos O and P,/P„ hold for all types of circuits. 

RC in Parallel 

Fig. 5-9A is used as an example of a parallel-connected RC 
circuit. This is the same circuit as Fig. 5-8A, except that XL 
has been changed to Xe with the same numerical value. This 
simplifies the calculations for this part of the chapter since 
the absolute values for the various circuit characteristics are 
the same: 

Ea 24 
I R = = - -4— = 6 amperes 

E 24 
le = X — 6 = 4 amperes 

e  

Current through R is in phase with the applied voltage, but 
the current through Xe leads the applied voltage by 90°, assum-
ing pure capacitance (no resistance). Vector representation of 
these currents is shown in Fig. 5-9B. IT is the vector sum of the 

Ea 

24V 

AC 

(A) Circuit. 

IC= 4 
„ - 

IR=6 

(B) Vectors. 

Fig. 5-9. Parallel-connected RC circuit. 

Ea 
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individual currents; it leads the applied voltage by phase 
angle O. 

IT = V IR2 Ir2 = V 62 + e = vs6 + 16 = N/ 52 
-= 7.21 amperes 

O = arc tan = arc tan —4 = 33.7° 
lit 6 

The IT vector is above the 0° reference so that the phase 
angle is positive, and total current can be expressed as: 

IT -= 7.21/33.7° amperes 

E 24/0' 
Z = = 721/33.7° = 3.33/-33.7° ohms IT .  

The negative impedance angle is indicative of a capacitive 
circuit; conversion to rectangular form would show R — j 

PF = cos O = cos 33.7° = .8320 

The result is the same as calculated for the comparable RL 
parallel circuit, but in the RC arrangement the power factor 
is leading. This is true because the current leads the applied 
voltage, as is normal in a capacitive circuit. 
True and apparent powers are also calculated the same as 

in the previous circuit: 

PR = E,, X IR = 24 x 6 = 144 watts 

Pa := Ea X IT = 24 x 7.21 = 173.04 volt amperes 

pF _ .. = P 144 
Pa 173.04 — .8321 

PF = Z/R could also have been used with similar results. 
Note again that the absolute values of both circuits are the 
same, even the magnitude of the phase angle. The only dif-
ference is the sign of the angle, with total current lagging in 
the RL circuit and leading in the RC circuit. 

RCL in Parallel 
In a circuit including all three types of circuit opposition the 

two reactances effectively oppose each other in determining 
total current. The total current can be either inductive or ca-
pacitive, depending on the relative values of the two reactances. 
Fig. 5-10 is used as an illustration of such a circuit. The applied 
voltage is common to all three branches so that it is used as the 
0° reference in the calculations: 
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Fig. 5-10. Parallel-connected RCL circuit. 

, 
= = = 6 amperes = (6/0°) = 6 

T  
— — — 3 amperes = (3/-90°) = —j3 

8  

E. 24 
= re.= -e- = 8 amperes = (81+90°) = +j8 

Vector representation of these currents is illustrated in Fig. 
5-11A with the resultant of these currents in Fig. 5-11B. I, 
leads E. by 90°, and I. lags by 90°. Thus, the vector sum of the 
reactive currents is 8 — 3, or 5 amperes of capacitive current. 
This means that the Ix meter in Fig. 5-10 reads 5 amperes and 
that current leads the voltage by 90°; total circuit current is 
6 + j5 amperes. As the two currents are at 90° with respect to 
each other, they can be added by the Pythagorean formula: 

IT = V 62 + 52 = V 36 + 25 = V-6-1 = 7.81 amperes 

O = arc tan —5 = arc tan .8333 = 39.8° 
6 

IT = 7.81/39.8° amperes 

E 24/0°  
Z — — IT 7.81/39.8° — 3.07L-39.8° ohms 

The impedance angle is negative, which is indicative of a 
capacitive circuit and which agrees with the previous calcu-
lations that showed capacitive current to be greater than in-
ductive current. 

Impedance could be solved directly by using Vector Algebra, 
but it is a longer process with more probable chance of error. 
The current method is probably the easier of the two, and 
therefore it is generally used. However, a vector solution is 
shown here to illustrate the ideas involved. 
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First the equivalent of XL and Xc in parallel is determined 
by the product-over-the-sum method: 

(ixi) (ixr)  
X = = 

JAL-1-JAc 

_24 j = j24 
— • —  
j5 j —5 

(j8) (—j3) _ —j224 

j8 —j3 j5 

= —j4.8 ohms 

Then this X value is combined with R in another product-over-
the-sum calculation, the result of which is the impedance: 

Z (R) (jX) _  (4) (—j4.8) _  —j19.2  
R + jX — 4 — j4.8 4 — j4.8 

19.2/-90° 
6.25/50.2° — 3.07/50.2 ohms 

Results are the same as obtained using the current method. 
True power is that amount dissipated in the resistance, just 

as in 
same 

I c 8 

I R 

3 

5 

IR 
Ea Ea 

6 6 

(A) All currents. (B) Resultant. 

Fig. 5-11. Vector representation of the currents in Fig. 5-10. 

other circuits. Apparent power is also calculated in the 
manner—applied voltage times total current. 

P, = Et, X IR = 24 x 6 = 144 watts 

P. = E. X 'T = 24 X 7.81 = 187.44 volt amperes 

pF = t = P 144  
—7682187.44 . 

From the trig table: 

PF = cos O = cos 39.8° = .7683 

PF = Z/R could also have been used. 
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It should be remembered that in almost every problem the 
results vary slightly because of rounding off in the various 
methods used, and due to approximating the angles from the 
trig tables. By carrying the various computations to a larger 
number of decimal places and interpolating with the trig tables, 
almost exact results can be obtained, regardless of the method 
and assuming, of course, that a correct method is being used. 

COMPLEX CIRCUITS 

As was previously pointed out, simple series and parallel AC 
circuits can be handled by Ohm's law and the Pythagorean re-
lationship for almost all the usual types of calculations. Com-
plex numbers are not required, although they can be used if 

Z1 

Ea 

24V 

AC 

Z2 

Fig. 5-12. A combination series-parallel circuit. 

desired. For complex circuits (combinations of series and 
parallel) Vector Algebra can be used to the greatest advantage. 
The circuit of Fig. 5-12 is an example. For convenience of 
notation, Z, indicates the impedance of the capacitive branch; 
Z., the combined impedance of the resistance and inductance. 
Solution is by the current method, and as will be seen, vector 
notation is required because of the relationship of the angles. 

Z, = 0 — j6 ohms = 6/-90° ohms 

I, = 0 + j4 amperes = 4/0° amperes 

Z2 = 8 + j5 ohms = 9.43/32° ohms 

12 =- 2.15 — j1.35 amperes = 2.54/-32° amperes 

Total current (IT) is: 

0 + j4 

2.15 — j1.35  

2.15 + j2.65 amperes 
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Converting to polar form: 

IT = 3.41/50.9° amperes 

E 24 /±(1' 
Z = a — = 7.04/-50.9 ohms 

IT 3.41/50.9° 

Capacitive current is greater than that through the other 
branch, so the total circuit is capacitive. Notice that the vector 
notation was necessary because the phase angle of branch 2 
was not 0° nor 90°, but a value between those two limits. 
Quantities at 0° or 180° can be combined by simple addition 
or subtraction; at 90° they can be combined by the Pythag-
orean formula. For any other angle, however, a graphic or an 
algebraic solution is necessary, including the angles as definite 
parts of the problem. This was pointed out in Chapter 3. 
Impedance of the same circuit can also be determined by the 

product-over-the-sum method: 

Z — '- ZiZo (0 —j6) (8 + j5) —j48 — j230 
T Zi ± Z2 0 — j6 + 8 + j5 8 — j 

30 — j48 8 + j _ 240 — j384 + j30 — j248 
= 

8 — j 8 + j 64 — j2 

= 288 —62354 — 4.43 — j5.44 ohms 

Conversion to polar form gives: 

ZT = 7.02/-50.8° ohms 

This is very close to the quantity obtained by use of the current 
method. Power-factor calculations are also close: 

P, -= 122 X R = 2.542 x 8 = 51.61 watts 

P. = E. X IT = 24 x 3.41 = 81.84 volt-amperes 

PI., _ P, = 51.61 = .6306 
P. 81.84 

And from the trig table: 

PF = cos 6 = cos 50.9° = .6307 

Neither R/Z nor Z/R can be used to calculate the power 
factor because of the complex circuit arrangement. These re-
lationships hold only for straight series and straight parallel 
circuits, as illustrated previously. 
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Z2 

Fig. 5-13. A more complex series-parallel circuit. 

A slightly more complex circuit arrangement is that of Fig. 
5-13. The methods of calculation are similar to those used for 
the previous circuit: 

Z, = 3 — j6 ohms = 6.71/-63.4° ohms 

y E.  24/0°  
Z — 6.71/-63.4° 3.58/63.4° amperes ,  

Z2 = 4 + j5 ohms = 6.4/51.3° ohms 

E5  24/0° 
= =  6.4/51.3o-- — 3.75J-51.3° amperes - Z2  

Total current is (3.58/63.4° + 3.75/-51.3°) amperes. Con-
verting to rectangular form and adding: 

= 3.58/63.4° = 1.60 +j3.20 

12 = 3.75/-51.3° = 2.34 — j2.93 

IT = 3.94 + j.27 = 3.95/3.9° amperes 

E 24/0°  
Z = = 3.95/3.9° — 6.08/-3.9° ohms 

_ Z Z. (3 — j6) (4 + j5) 12 + j15 — j24 — j230 
Z, + Z2 3 — j6 + 4 + j5 7 — j 

42 — j9 7 + j _ 294 + j42 — j63 — j29 
7 — j 7 + j 49 — j2 

303 — j21 
50 — 6.06 — j.42 ohms 

Conversion to polar form gives: 

Z, = 6.08/-4° ohms 
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The negative phase angle for impedance is indicative of a 
capacitive circuit. This is correct even though the current 
through the inductive branch is greater. Relative values of 
oppositions and angles combine to determine the total result, 
which cannot be determined solely by magnitudes. 

E. 24/0°  IT = Zi• = 6.08/-4° 3.95/4° amperes 

PF = cos 0 = cos 4° = .9976 

Current is leading the voltage so the power factor is leading. 

PT = (I12 X R1) (122 X R2) 

= (3.582 x 3) + (3.752 X 4) 
= 38.45 + 56.25 = 94.7 watts 

P. = E. X It = 24 x 3.95 = 94.8 watts 

P 94 7 .9989 
P. 94.8 

From cos 0, PF = .9976, a slight difference resulting from 
rounding off the results of calculations and in not interpolating 
the trig ratios. The more involved the circuit, the more chances 
there are for accumulating inaccuracies. The purpose here is to 

80 70 20 50 40 70 
(:).--AM,---(-00-0 \.....--1 (.--ANy--ÍNP--II--() 

Fig. 5-14. RCL series circuit. 

illustrate methods rather than extreme accuracy because the 
latter requires more time without increasing the understanding 
of the subject. 
The ideas presented here can also be used for circuits that 

are even more complex than those illustrated. In series cir-
cuits the resistances and reactances should be combined so that 
the impedance can be expressed in a single complex number. 
For example, in Fig. 5-14 the total resistance is 13 ohms, in-
ductive reactance is 11 ohms, and capacitive reactance is 9 
ohms. Consequently, the total circuit impedance is 13 + j2 
ohms. 

In a circuit consisting of several parallel branches this type 
of simplification should be performed in each branch before 
proceeding with the parallel calculations. When more than 
two branches are involved, any two can be combined, as 
illustrated previously, and the resultant so obtained combined 
with other parts of the circuit. For example, if three branches 
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Fig. 5-16. Circuit for Problem 15. 

Ea 

20V 
AC 

Fig. 5-15. Circuit for Problem 13. 

were involved, any two could be solved for a resultant. Then 
that resultant could be calculated with the third branch to give 
a total resultant circuit. If four branches were being con-
sidered, numbers one and two could be calculated for a resul-
ant, numbers three and four treated likewise, then the two 
resultants combined for the total arrangement. 

PRACTICE PROBLEMS 

1. A series RL circuit includes 4 ohms of resistance and 5 ohms of 
inductive reactance. Calculate impedance, phase angle, and power 
factor of the circuit. 

2. If 20 volts are applied to this circuit, what is the current? Is it 
leading or is it lagging the applied voltage? 

3. A series RL circuit has 8 volts across the resistance and 12 volts 
across the inductance. What is the applied voltage? What is the 
phase angle? 

4. A series RC circuit includes 6 ohms resistance and 9 ohms capaci-
tive reactance. Calculate impedance, phase angle, and power factor 
of the circuit. 

5. If 12 volts are applied to this circuit, what is the current? Is it 
leading, or is it lagging the applied voltage? 

6. Calculate the true power and the apparent power of this same 
circuit. 

Fig. 5-17. Circuit for Problem 16. 
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7. A series RC circuit has 24 volts applied, and there are 12 volts 
across the resistor. What is the voltage drop across the capacitor? 

8. A series RCL circuit includes 6 ohms of resistance, 8 ohms of ca-
pacitive reactance, and 5 ohms of inductive reactance. Express the 
impedance in both rectangular and polar forms. 

9. If 24 volts are applied to this circuit, what is the current and the 
phase angle? Is the current leading or is it lagging the applied 
voltage? 

10. There are 8 ohms of inductive reactance connected in parallel with 
5 ohms of resistance. Calculate the impedance and phase angle of 
this circuit. 

11. If 20 volts are applied to this circuit, calculate the reactive power 
and the power factor. 

12. A parallel RC circuit has an impedance of 3 ohms and a resistance 
of 5 ohms. Calculate the capacitive reactance. 

13. What is the impedance of the circuit of Fig. 5-15? 

14. What is the true power and the phase angle of the same circuit? 
Is the current leading or is it lagging the applied voltage? 

15. Calculate the impedance of the circuit of Fig. 5-16. Is this circuit 
inductive, or is it capacitive? 

16. Calculate the impedance of the circuit of Fig. 5-17. What is the 
phase angle? 
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CHAPTER 6 

Miscellaneous 

Vector Applications 

In the previous chapter vectors and vector ideas were used 
in the solutions of various types of networks involving resist-
ance, inductance, and capacitance. But vectors can be used in 
many other applications, either as a tool for calculations, or in 
analyzing circuit operation for many different types of circuits. 
A conventional amplifier shifts the phase of an input signal 
by 180° between grid and plate. Oscillators must have in-phase 
feedback to sustain oscillations. High-quality audio amplifiers 
use degenerative feedback (180° out of phase) to improve the 
frequency response. Then, on the other hand, receivers in two-
way radio systems may use regenerative (in-phase) feedback 
to reinforce the signal and thus increase audio output. There 
are many other examples in which degenerative or regenera-
tive actions play a part in circuit operation. 

In-between angles also enter into electricity and electronics 
to a large degree. Some circuits use phase as an analog type 
of information, representing some particular quantity. Fre-
quency modulation and demodulation are examples; changes of 
frequency or phase represent changes of audio amplitude. This 
chapter explains several different electrical and electronic cir-
cuits or systems in which phase plays an important part in the 
operation. The choice of circuits follows no particular pattern ; 
those described were chosen simply because they are relatively 
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simple analyses involving phase. The idea here is not so much 
to teach circuitry and operation, but to illustrate how vectors 
and phase can be used to secure a better understanding of cir-
cuit operation. 

RESONANCE 

The LCR circuits solved previously used more or less random 
values of circuit parameters. Resonance, however, is a special 
condition of an LCR circuit, such as that in Fig. 6-1. Such a 

R XL Xc 

— I(---° 

Fig. 6-1. An LCR series circuit. 

series circuit is resonant at the frequency at which inductive 
and capacitive reactances are equal. The resonant frequency 
formula, 

f = 1  
27/LC 

has been derived from that relationship of reactances. 
Currents through all the components of a series circuit are 

the same so that with equal reactances the voltage drop across 
the inductance equals the voltage drop across the capacitance. 
This is shown in Fig. 6-2A, in which circuit current is used as 
reference. The voltage across the resistance is in phase with 
the current, the inductive voltage leads the current by 90°, and 
the capacitive voltage lags current by 90°. A vector addition 
of the reactive voltages shows that they effectively cancel each 
other, leaving a vector resultant as shown in Fig. 6-2B. The 
circuit at resonance is purely resistive, and as the reactances 
cancel the effects of each other, the only effective circuit oppo-
sition is the resistance. So impedance is minimum and current 

EL 

EC 

ER i ER i 

(A) Before. (B) After. 

Fig. 6-2. Voltage and current vectors of Fig. 6-1 before and after vector addition. 
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is maximum in the series LCR circuit when operated at its 
resonant frequency. 
The ideal parallel resonant circuit would include no resist-

ance at all, only a perfect capacitor connected in parallel with 
a perfect inductor across an AC source. In such a circuit the 
capacitive current leads the applied voltage by 90°, as shown 
in Fig. 6-3A. The inductive current lags the applied voltage 
by 90°. As the currents are equal and opposite, the total cir-
cuit current is zero (Fig. 6-3B), meaning that the parallel 
LC circuit represents an infinite impedance at the resonant 
frequency. 

IC 

IL 

E E 

(A) lc and IL are equal and opposite. (B) le and IL cancel, leaving only E. 

Fig. 6-3. Vectors of an ideal parallel r t circuit. 

However, a practical parallel LC circuit includes resistance, 
most of which is in the inductive branch and which consists 
primarily of the resistance of the coil. Assuming a small 
amount of resistance in the inductive branch and zero resist-
ance in the capacitive branch, a vector representation is shown 
in Fig. 6-4. As in any parallel circuit, the same voltage appears 
across both branches, and it is labeled E. as in Fig. 6-4. 
Current through the capacitor (L) leads the applied voltage 
by 90°. Current through the inductive branch (including L 
and R) lags the applied voltage by something less than 90° 
and is labeled IL. Voltage EL leads the current through it by 
90° and leads the applied voltage by a smaller angle. 
The voltage across the resistance (ER) is in phase with cur-

rent IL, bearing in mind that the same current flows through 
It and L. Adding EL and ER at 90° gives the applied voltage E., 
shown as the diagonal of the parallelogram. This part of the 
analogy would hold for the series RL branch regardless of 
whether or not the capacitor were connected in parallel. The 
total circuit current cannot be zero because the currents in the 
two branches are not equal. Total current (IT) is the diagonal 
of the parallelogram that includes L and IL as adjacent sides. 
This arrangement acts resistively because total current is in 
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phase with the applied voltage, but the total is smaller than 
that through either of the separate branches. 
From this analogy it is seen that true parallel resonance does 

not occur at the frequency at which the reactances are equal. 
For true resonance the inductive current must be larger than 
the capacitive current by an amount that causes I, to be in 
phase with the applied voltage. In order to have this condition 
occur the inductive reactance must be less than the capacitive 
reactance. The conditions illustrated in Fig. 6-4 are those of a 

IC 

---;-'--
ER 

IT 

__ Art EL 

Ea 

Fig. 6-4. Vector representation of a practical parallel LC circuit. 

unity power factor condition—the true parallel resonance situ-
ation. Since X., is smaller than X, the frequency for the unity 
power factor is lower than that at which the reactances are 
equal. 

If R were made larger, the ER vector would swing upward 
toward E., and the circuit current would increase. If R were 
made smaller, the ER vector would swing downward, approach-
ing the XI, = X1, resonant condition. Calculating the resistance 
of the capacitive branch into the problem, the L. vector would 
swing downward, meaning that in order to maintain unity 
power factor it would be necessary for the I. vector to also 
swing downward. 

TRANSFORMERS 

Vectors (phasors) can be used to show the current-voltage 
relationships in power or signal transformers, as in Fig. 6-5. 
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Primary voltage (Ed is used as the reference because it is the 
voltage that is applied and thus initiates circuit activity. Cur-
rent through the primary winding lags the primary voltage by 
90°, assuming pure inductance in the primary winding. How-
ever, inductive reactance is usually considerably larger than 
resistance so the phase angle approaches 90°. 

Voltage is induced into the secondary winding because the 
changes of current in the primary set up magnetic lines of 
force that cross the secondary. This induced voltage is maxi-
mum when the rate of change of primary current is maximum. 
This occurs whenever the primary current cycle passes through 
zero in either direction. As a result of this inductive action the 

A 
Is 

Es 900 EY 
900 

ty 
Fig. 6-5. Current-voltage relationships in transformers. 

voltage induced into the secondary lags the primary current 
by 90°, as shown in Fig. 6-5. It could also be said that the sec-
ondary voltage has the same phase as the counter emf induced 
into the primary winding. The secondary winding is also in-
ductive so that the secondary current lags the voltage by 90°, 
as shown, indicating that primary and secondary currents are 
180° out of phase with each other. 
As shown in Fig. 6-5, the transformer is connected step-up 

so that secondary voltage is greater than primary voltage. 
Secondary current then is smaller than primary current be-
cause, neglecting losses, the product of primary voltage and 
current should equal the product of secondary voltage and 
current. However, the vectors shown do not apply in all cases, 
especially if the primary or secondary, or both, are tuned or if 
the transformer is loaded to any degree. 
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As to loading, it is assumed with the vectors in Fig. 6-5 that 
only a very small current flows through the secondary winding, 
a condition of very light loading. If the load resistance across 
the secondary is decreased, the secondary current is increased, 
causing the secondary to appear more resistive. One condition 
of this is illustrated in Fig. 6-6. Voltage and current in the 
secondary approach an in-phase condition, assuming a parallel-
circuit analogy of source and load. Because of reflected imped-
ance, the effective reactance of the primary is decreased, caus-
ing that circuit to also appear more resistive. This is true be-
cause Xi, and R act as a series RL circuit. As secondary loading 

ly 

Fig. 6-6. Voltage and current approaching an in-phase condition. 

(current) is increased, angle O in Fig. 6-6 becomes smaller, 
causing voltage and current to more closely approximate an 
in-phase condition. An ideal transformer would have voltage 
and current in phase in each winding. The source would then 
work into a perfect resistance with maximum transfer of 
energy. 

THREE-PHASE POWER 

Three-phase systems used primarily in power work include 
three separate voltages (or currents) , each separated from the 
other by 120 electrical degrees of phase difference. These volt-
ages are produced from three separate coils (or windings) 
spaced 120° apart on the alternator. One method of connecting 
three-phase coils is shown in Fig. 6-7. This is a Y-connection 
(also called star) in which 0 is the common connection point, 
and one end of each of the coils is connected to this common 
point. 

Vectors (phasors) representing these voltages are shown in 
Fig. 6-8. All the vectors are the same length, and they are 
spaced 120° from each other. The vector lengths are not drawn 
in a time relationship, because to do so, each voltage would 
have a different value, and each would be continuously chang-
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o 
120 0 /120° 

120° 

B 

C 

Fig. 6-7. One method of connecting three-phase coils. 

ing with respect to the others. So these vectors can be assumed 
to represent some specific voltage, for example the rms value, 
of each of the separate phases. It could be added, however, that 
at any instant of time the sum of the three instantaneous values 
is zero, adding positive and negative values algebraically. 
From the connection diagram (Fig. 6-7) it can be seen that 

the voltage between any two terminals is actually the voltage 
across two coils. Voltage AB, for example, is the voltage dif-
ference of coil-A and coil-B voltages. But these separate coil 

Fig. 6-8. Vectors representing Fig. 6-7. 
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voltages are at 120° with respect to each other, and therefore 
cannot be added (or subtracted) directly. Vectors can be used 
to determine the multiplying factor for calculating terminal 
voltage. In Fig. 6-9 the voltage across coils A and B is solved 
by vectors. Other terminal voltages would be solved similarly 
with the same length of resultant. 
A in the diagram has been reversed by 180° and is labeled 

—A'. The vector resultant is the diagonal (R) of the parallelo-
gram formed from sides —A' and B. A was reversed because 
the terminal voltage is the difference (not the sum) of the 
separate coil voltages. Perhaps Fig. 6-10 may clarify this. 

A 

Fig. 6-9. Solving the voltage across coils 
A and 8 of Fig. 6-7. 

B 

Two batteries are shown in Fig. 6-10A connected series-aiding. 
With respect to 0 the upper terminal is —3 volts; and the lower 
terminal is +5 volts. With respect to the lower terminal the 
upper terminal is 8 volts (-3 —5) negative. But compare that 
to Fig. 6-10B. Here the upper terminal is —2 volts (3 — 5). In 
each case the voltages were added by changing the sign of one 
of them, which means that actually they were subtracted. The 
voltages could have been stated with respect to the upper ter-
minal, but no matter which way they are stated the potential 
difference in Fig. 6-10A is 8 volts and that in B is 2 volts. 
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Referring back to Fig. 6-9 we see that a line has been drawn 
perpendicular to the resultant R. This line is the opposite diag-
onal of the same parallelogram, and with R it divides the par-
allelogram into four identical triangles. Vector B is the hypote-
nuse of one of them, and half of R is the side adjacent to the 
30° angle. Cos 30° = .8660 so one-half of the length of R is .866 
of the B voltage. So the entire length of R is 2 x .866, or 1.732 
times, the length of vector B. 

o  

—7: 3V 

o 

5 V 

(A) Series-a id i ng (B) Series-opposing. 

Fig. 6-10. Connection of batteries. 

3V 

0 

5V 

We can conclude from this that the rms voltage across ter-
minals A and B is 1.73 times the rms voltage of either A or B. 
Resultant phase is a combination of the two separate phases, 
but it is not normally an important factor in power circuits. 
It is the voltage that is of prime concern; however, in normal 
operation all three phases are used with the result that coil B 
is not only in the AB circuit, but it is in the BC circuit as well. 
And similarly, each coil is part of two different current paths. 

TUNED-PLATE, TUNED-GRID OSCILLATOR 

In the tuned-plate, tuned-grid (TPTG) oscillator feedback is 
accomplished through the plate-to-grid capacitance of the tube. 
And, as in any oscillator, the feedback must reinforce the os-
cillatory voltage and replace power losses in the tank circuit. 
A typical TPTG circuit is that of Fig. 6-11 in which L1C1 is 
the grid tank and the oscillating section of the circuit. On the 
positive peaks of oscillation the tube is driven into conduction, 
and this, in turn, causes the L2C2 plate tank to also oscillate. 
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Li 

Fig. 6-11. A typical TPTG circuit. 

L2 

To sustain oscillations, energy from the plate circuit is fed back 
to the grid in proper phase to replace the grid losses. 
When the grid and plate tanks are both operated at the reso-

nant frequency, they act resistively to the oscillation voltage 
on the grid. The plate current of the tube is therefore in phase 
with the grid signal, as indicated in Fig. 6-12A. Because of the 
normal phase inversion of the stage, plate signal (e„) and grid 
signal (e.) are 180° out of phase with respect to each other. 
The plate signal also appears across the plate-to-grid capaci-
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(A) Plate current in phase with grid signal. 

(B) ep leads ip. 

Fig. 6-12. Vectors of the circuit in Fig. 6-11. 



tance and the grid tank as the feedback signal. But the reac-
tance of the tube capacitance is much larger than the imped-
ance of the grid tank (which is resistive) so the grid current 
(ig) leads ei, by nearly 90°. The voltage across the L1C1 tank 
circuit is in phase with ig, but the oscillations cease because the 
grid current is too far out of phase with respect to the grid 
signal. 
When the plate tank is tuned to a higher frequency than the 

grid tank, the plate circuit acts inductively, so ei, leads ig as 
indicated in Fig. 6-12B. Plate voltage decreases when plate 
current increases so that the additional lead of e, places it be-
low the horizontal line as shown. The leading condition occurs 
because in the inductive plate circuit the voltage leads the cur-
rent. The total lead is the normal 180° difference plus that 
caused by the inductive condition. 

Again the reactance of the tube capacitance is much larger 
than the impedance of the grid tank, therefore grid current ig 
leads plate voltage ei, by nearly 90°. The voltage across L1C1 
leads ig by nearly 90°, and the feedback voltage across the input 
is in phase with the original grid drive signal. In operation, the 
L1C1 tank operates as an inductive circuit because its fre-
quency is above that of the oscillation signal. The plate tank, 
however, is tuned to a higher frequency than the grid tank, 
hence it acts even more inductively. In this type of circuit the 
feedback need not be exactly in phase for oscillations to occur. 
But the phase relationship must be close enough so that the 
grid losses are replaced, which allows oscillations to continue. 
These latter statements can be shown to be true by the fact 
that there is a range of plate-tank settings, not just one par-
ticular setting, over which oscillations can occur. 

PHASE MODULATION 

A system of phase modulation, such as that of Fig. 6-13, can 
also be explained by use of vector relationships. In this circuit 
the RF and audio are applied across R1, R2, and R4 in series. 
The RF input is labeled eg and appears across Rl. Cl has low 
reactance to the radio frequencies, and the lower end of R1 is 
effectively at RF ground. The tube is cathode biased, but addi-
tional bias is provided by the audio voltage across R4. However, 
this audio signal is continually reversing polarity so that the 
R4 voltage alternately adds to and subtracts from the cathode 
bias. This means that total bias is changing with the audio 
signal, and the gain of the stage varies with the changes of 
bias. 
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The instantaneous plate load voltage is the resultant of two 
RF voltages. One of these is that coupled through the grid-to-
plate capacitance of the tube; this is labeled el in the vector 
diagram (Fig. 6-14A). It is not in phase with eg, but it leads 
because the circuit is capacitive. The other plate signal is that 
supplied through normal amplifier action, and it is labeled e2 
in the diagram. It is 180° out of phase with eg, but the plate 
tank is at resonance and thus acts resistively. The resultant of 
these two voltages (el and eo) is shown as e„ in Fig. 6-14A. 

, MODULATED 
1--40 

C4 OUTPUT 
—L eo 
—r- Cpg 

C2 
RF 

Fig. 6-13. A phase modulator circuit. 

The amplitude of the amplified signal (eo) is relatively low 
because of the degenerative feedback that is produced as a 
result of not bypassing the cathode resistor. 
When the audio swing is maximum, the gain of the stage is 

minimum, and e2 has relatively small amplitude. Then e„ leads 
ea by phase angle O. In the second vector diagram (Fig. 6-14B) 
the audio-signal swing has caused the bias to decrease and the 
gain of the stage to increase. The increased gain causes e2 to 
increase in amplitude; it is labeled eo' in the second diagram. 
This shifts the phase of the resultant e„ to that shown as e0', 
changing O to the value shown as 0'. 
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In this way the audio signal causes the output to be phase-
shifted by an amount proportional to the audio amplitude. The 
greater the amplitude, the greater is the degree of phase shift 
that occurs. When phase-shifted, e0 is applied to an oscillator 
tuned circuit, the time interval between signal peaks is shifted, 
thus phase modulating the carrier frequency. It is an indirect 
form of FM, achieving frequency modulation through altering 

e9 e2 

el 

e0 

(A) 

, 

,-' 
,-' , 

"V 
,-' 

--'-' ,-

(B) 

Fig. 6-14. Vectors of the circuit in Fig. 6-13. 

the phase. Only one change is shown, but a continuous audio 
signal causes e„ to shift back and forth in step with the audio 
variations. The degree of shift is determined by the audio am-
plitude, and the rate of shift (number of changes per second) 
is determined by the frequency of the audio modulating signal. 

DISCRIMINATOR 

A discriminator can be used in an FM receiver to change a 
frequency-modulated signal input to audio voltage variations 
at the output. Fig. 6-15 shows an example circuit in which 
L1C1 is tuned to the intermediate frequency (IF) of the re-
ceiver. Li is inductively coupled to L2L3, the center-tapped 
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secondary, and L2L3C2 is also tuned to the intermediate fre-
quency. There is capacitive coupling from the transformer pri-
mary to the center tap of the secondary through Ce, the cou-
pling capacitor. This voltage is developed across L4, with the 
center tap of the output circuit used as a reference point. Each 
of the diodes has two sources of voltage acting in series. For V1 
the applied signals are those across L2 and L4; for V2 the ap-
plied signals are those across L3 and L4. Basic operation de-
pends on the phase relations and the comparative conductions 
of the two diode circuits. By using vectors we can obtain a much 
clearer picture of the overall operation. 

Fig. 6-15. A circuit in which 1.1C1 is tuned to the IF frequency. 

ELI is the input signal voltage that has the same phase as 
EL. (Fig. 6-16A). The secondary voltage (E.) is 180° out of 
phase because of the 180° phase reversal of the transformer. 
At the resonant frequency (IF) the secondary tank acts resis-
tive so I. is in phase with E., the voltage causing it. The voltage 
across the secondary inductance leads the current through it by 
90°, and with the center tap serving as a reference point, EL2 
and E13 have opposite polarities, as shown. The reactance of 
L4 is high compared to that of coil L1 so that almost all the 
signal at the input appears across L4 in phase with ELi. 

Fig. 6-16B shows the phase conditions existing when the 
resonant frequency (IF) is applied. EL, and EL4 are 90° out 
of phase with respect to each other; the voltage applied to the 
V1 circuit is the diagonal En . EL3 and EL. are 90° out of phase 
so that the voltage applied to the V2 circuit is the diagonal E2. 
Equal magnitudes of voltage are thus applied across the diode 
circuits, the conductions are equal, and the voltage drops across 
R1 and R2 are also equal. But the currents through them are 
in opposite directions so the same potential exists at both out-
put terminals. This means that when the unmodulated IF is 
applied the output voltage is zero. 
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When the frequency of the input signal goes above resonance, 
-XL increases, X, decreases, and the L2L3C2 tuned circuit acts 
inductive. As shown in Fig. 6-17A, the secondary current (L) 
lags E„ by angle O. The magnitude of O is determined by how 
much above resonance the frequency changed. Secondary volt-
ages across L2L3 are always 90° out of phase with respect to 
; therefore they shift as shown. E12 and E13, however, are still 

EL2 

Es _ Is EL4 

Eu 

EL3 

(A) ELI has same phase as EL. 

EL2 

(B) When the resonant frequency is applied. 

ED 

Fig. 6-16. Vectors of the circuit in Fig. 6-15. 

180° out of phase with respect to each other. The EL4 reference 
remains constant and does not shift. 

Fig. 6-17B shows the resultant voltages applied to the two 
diodes, and since En is greater than E.2, V1 conduction is 
greater than that of V2. This increases the voltage drop across 
R1 and decreases that across R2, resulting in an output that is 
positive with respect to ground. Below resonance the circuit 
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(A) Above resonance. 
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 ...ms, 
(B) Resultant voltages applied to the diodes. 
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(C) Below resonance. 

Fig. 6-17. Vector representation of Fig. 6-15 when the frequency is above and 
below r . 
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acts capacitively so the shift is in the opposite direction, as 
shown in Fig. 6-17C. Then the voltage applied to V2 is greater 
than that applied to V1, and the voltage across R2 is greater 
than that across R 1. This results in an output that is negative 
with respect to ground. In every case the amplitude of the out-
put signal is proportional to the change of frequency at the in-
put, effectively changing frequency variations into correspond-
ing voltage variations. 

52 

RI 

APPLI ED 
VOLTAGE 

R2 

S3 

Fig. 6-18. Circuit of a synchro. 

SI 

SYNCHROS 

Synchros are motor-type devices, each having three stator 
coils and one rotor coil. The magnetic axis of each of these coils 
is separated from the other by 120°. They are Y-connected, but 
are not three-phase units. AC is applied to the rotor, as indi-
cated in Fig. 6-18, and a voltage is induced into each of the 
stator coils. Magnitudes of these induced voltages are deter-
mined by the angular position of the rotor and the maximum 
voltage that can be induced. Stator voltages may be calculated 
by: 

E„ = Ern x cos 

where, 
E„ is the stator voltage, 
En, is the maximum stator coil voltage, 
O is the angle between R1 end of rotor and the stator coil. 

Maximum voltage is induced when the rotor and a stator coil 
are in line with each other, for example, S2 in Fig. 6-18. At this 
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S3 sl 

Fig. 6-19. Vectors representing the voltages 
in Fig. 6-18. 

rotor setting the synchro is assumed to be set at 0°. Minimum 
voltage is induced into a coil when the rotor is positioned at 
right angles to it. Assuming that the maximum stator coil volt-
age is 52, then: 

E81 = 52 x cos 120° = 52 ( —.5) = —26 volts 

Ea -= 52 x cos 0° = 52 (1) = 52 volts 

Ea = 52 x cos 120° = 52 ( —.5) = —26 volts 

S2 
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Fig. 6-20. Rotor has been rotated to 30°. 



Here the positive and negative signs do not indicate polarity; 
they indicate phase. If the voltage is positive, then it is in phase 
with the voltage at the R1 (reference) end of the rotor coil. If 
negative, they are 180° out of phase with respect to each other. 
There are no in-between phases, they are either in phase or 
180° out of phase. 
The three stator voltages combine to produce a resultant 

magnetic flux in the direction the rotor is turned. Vectors rep-
resenting these voltages are in Fig. 6-19, each vector pointing 
in the direction of the positive end of the rotor coil. The result-
ant (R) is as shown, and it is in the same direction that the R1 

SI 

Fig. 6-21. Vector representation of Fig. 6-20. 

end of the rotor is pointing. The length of the line is not impor-
tant. It is the direction in which we are interested. However, at 
any angle the length of the resultant is always the same for a 
given synchro. 

In Fig. 6-20 the rotor has been rotated to 30°. Remembering 
that for synchros, 0° is considered as being the direction of the 
S2 stator coil, the induced voltages are: 

4,1 = 52 x cos 150° = 52 ( —.866) = —45 volts 
E.2 = 52 x cos 30° -= 52 (.866) = 45 volts 
Ea = 52 x cos 90° = 52(0) = 0 volts 

Fig. 6-21 shows the vector representation with the resultant 
(R) at 30°, the same angle at which the rotor was set. This 
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same process can be used for any angle, and in every case it 
gives the direction of the resultant magnetic field. When two 
synchros are connected together with corresponding terminals 
interconnected, any angular position set with one of the rotors 
is automatically followed by the rotor of the other unit. 
There are many other circuits and systems which can be 

similarly analyzed by vectorial methods. Some of these are 
motors, generators, amplitude modulation, frequency modu-
lation, phase-shift oscillators, coupled circuits, transmission 
lines, amplifier feedback, color-TV circuits, and multiplexing. 
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Appendix 

Natural Trigonometric Functions 

Answers To Practice Problems 



SINES 0° to 45° 

Deg. .0 1 2 3 4 5 .6 .7 .8 .9 Comp 

0° 0000 0017 0035 0052 0070 0087 0105 0122 0140 0157 0175 89° 
1 0175 0192 0209 0227 0244 0262 0279 0297 0314 0332 0349 88 
2 0349 0366 0384 0401 0419 0436 0454 0471 0488 0506 0523 87 
3 0523 0541 0558 0576 0593 0610 0628 0645 0663 0680 0698 86 
4 0698 0715 0732 0750 0767 0785 0802 0819 0837 0854 0872 85 

5° 0872 0889 0906 0924 0941 0958 0976 0993 10H 1028 1045 84° 
6 1045 1063 1080 1097 1115 1132 1149 1167 1184 1201 1219 83 
7 1219 1236 1253 1271 1288 1305 1323 1340 '357 1374 1392 82 
8 1392 1409 1426 1444 1461 1478 1495 1513 1530 1547 1564 81 
9 1564 1582 1599 1616 1633 1650 1668 1685 1702 1719 1736 80 

10° 1736 1754 1771 1788 1805 1822 1840 1857 1874 1891 1908 79° 
11 1908 1925 1942 1959 1977 1994 2011 2028 2045 2062 2079 78 
12 2079 2096 2113 2130 2147 2164 2181 2198 2215 2233 2250 77 
13 2250 2267 2284 2300 2317 2334 2351 2368 2385 2402 2419 76 
14 2419 2436 2453 2470 2487 2504 2521 2538 2554 2571 2588 75 

15° 2588 2605 2622 2639 2656 2672 2689 2706 2723 2740 2756 74° 
16 2756 2773 2790 2807 2823 2840 2857 2874 2890 2907 2924 73 
17 2924 2940 2957 2974 2990 3007 3024 3040 3057 3074 3090 72 
18 3090 3107 3123 3140 3156 3173 3190 3206 3223 3239 3256 71 
19 3256 3272 3289 3305 3322 3338 3355 3371 3387 3404 3420 70 

20° 3420 3437 3453 3469 3486 3502 3518 3535 3551 3567 3584 69° 
21 3584 3600 3616 3633 3649 3665 3681 3697 3714 3730 3746 68 
22 3746 3762 3778 3795 3811 3827 3843 3859 3875 3891 3907 67 
23 3907 3923 3939 3955 3971 3987 4003 4019 4035 4051 4067 66 
24 4067 4083 4099 4115 4131 4147 4163 4179 4195 4210 4226 65 

25° 4226 4242 4258 4274 4289 4305 4321 4337 4352 4368 4384 64° 
26 4384 4399 4415 4431 4446 4462 4478 4493 4509 4524 4540 63 
27 4540 4555 4571 4586 4602 4617 4633 4648 4664 4679 4695 62 
28 4695 4710 4726 4741 4756 4772 4787 4802 4818 4833 4848 61 
29 4848 4863 4879 4894 4909 4924 4939 4955 4970 4985 5000 60 

30° 5000 5015 5030 5045 5060 5075 5090 5105 5120 5135 5150 59° 
31 5150 5165 5180 5195 5210 5225 5240 5255 5270 5284 5299 Si 
32 5299 5314 5329 5344 5358 5373 5388 5402 5417 5432 5446 57 
33 5446 5461 5476 5490 5505 5519 534 5548 5563 5577 5592 56 
34 5592 5606 5621 5635 5650 5664 5678 5693 5707 5721 5736 SS 

35° 5736 5750 5764 5779 5793 5807 5821 5835 5850 5864 5878 54° 
36 5878 5892 5906 5920 5934 5948 5962 5976 5990 6004 6018 53 
37 6018 6032 6046 6060 6074 6088 6101 6115 6129 6143 6157 52 
38 6157 6170 6184 6198 6211 6225 6239 6252 6266 6280 6293 51 
39 6293 6307 6320 6334 6347 6361 6374 6388 6401 6414 6428 50 

40° 6428 6441 6455 6468 6481 6494 6508 6521 6534 6547 6561 49° 
41 6561 6574 6587 6600 6613 6626 6639 6652 6665 6678 6691 48 
42 6691 6704 6717 6730 6743 6756 6769 6782 6794 6807 6820 47 
43 6820 6833 6845 6858 6871 6884 6896 6909 6921 6934 6947 46 
44 6947 6959 6972 6984 6997 7009 7022 7034 7046 7059 7071 45 

Comp .9 8 7 6 5 4 3 .2 .1 .0 Deg. 

COSINES-45° to 90° 
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SINES-45 ° to 90° 

Deg. .0 1 .2 3 .4 5 6 .7 s .9 Comp 

45° 7071 7083 7096 7108 7120 7133 7145 7157 7169 7181 7193 44° 

46 7193 7206 7218 7230 7242 7254 7266 7278 7290 7302 7314 43 

47 7314 7325 7337 7349 7361 7373 7385 7396 7408 7420 7431 42 
48 7431 7443 7455 7466 7478 7490 7501 7515 7524 7536 7547 41 

49 7547 7559 7570 7581 7593 7604 7615 7627 7638 7649 7660 40 

50° 7660 7672 7683 7694 7705 7716 7727 7738 7749 7760 7771 39° 

51 7771 7782 7793 7804 7815 7826 7837 7848 7859 7869 7880 38 

52 7880 7891 7902 7912 7923 7934 7944 7955 7965 7976 7986 37 

53 7986 7997 8007 8018 8028 8039 8049 8059 8070 8080 8090 36 

54 8090 8100 8111 8121 8131 8141 8151 8161 8171 8181 8192 35 

55° 8192 8202 8211 8221 8231 8241 8251 8261 8271 8281 8290 34° 

56 8290 8300 8310 8320 8329 8339 8348 8358 8368 8377 8387 33 

57 8387 8396 8406 8415 8425 8434 8443 8453 8462 8471 8480 32 

58 8480 8490 8499 8508 8517 8526 8536 8545 8554 8563 8572 31 

59 8572 8581 8590 8599 8607 8616 8625 8634 8643 8652 8660 30 

60° 8660 8669 8678 8686 8695 8704 8712 8721 8729 8738 8746 29° 

61 8746 8755 8763 8771 8780 8788 8796 8805 8813 8821 8829 28 

62 8829 8838 8846 8854 8862 8870 8878 8886 8894 8902 8910 27 

63 8910 8918 8926 8934 8942 8949 8957 8965 8973 8980 8988 26 

64 8988 8996 9003 9011 9018 9026 9033 9041 9048 9056 9063 25 

65° 9063 9070 9078 9085 7092 9100 9107 9114 9121 9128 9135 24° 

66 9135 9143 9150 9157 9164 9171 9178 9184 9191 9198 9205 23 
67 9205 9212 9219 9225 9232 9239 9245 9252 9259 9265 9272 22 
68 9272 9278 9285 9291 9298 9304 9311 9317 9323 9330 9336 21 
69 9336 9342 9348 9354 9361 9367 9373 9379 9385 9391 9397 20 

70° 9397 9403 9409 9415 9421 9426 9432 9438 9444 9449 9455 19° 
71 9455 9461 9466 9472 9478 9483 9489 9494 9500 9505 9511 18 

72 9511 9516 9521 9527 9532 9537 9542 9548 9553 9558 9563 17 

73 9563 9568 9573 9578 9583 9588 9593 9598 9603 9608 9613 16 

74 9613 9617 9622 9627 9632 9636 9641 9646 9650 9655 9659 15 

75° 9659 9664 9668 9673 9677 9681 9686 9690 9694 9699 9703 14° 

76 9703 9707 9711 9715 9720 9724 9728 9732 9736 9740 9744 13 

77 9744 9748 9751 9755 9759 9763 9767 9770 9774 9778 9781 12 

78 9781 9785 9789 9792 9796 9799 9803 9806 9810 9813 9816 11 

79 9816 9820 9823 9826 9829 9833 9836 9839 9842 9845 9848 10 

80° 9848 9851 9854 9857 9860 9863 9866 9869 9871 9874 9877 9° 

81 9877 9880 9882 9885 9888 9890 9893 9895 9898 9900 9903 8 

82 9903 9905 9907 9910 9912 9914 9917 9919 9921 9923 9925 7 

83 9925 9928 9930 9932 9934 9936 9938 9940 9942 9943 9945 6 

84 9945 9947 9949 9951 9952 9954 9956 9957 9959 9960 9962 5 

85° 9962 9963 9965 9966 9968 9969 9971 9972 9973 9974 9976 4° 

86 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 3 

87 9986 9987 9988 9989 9990 9990 9991 9992 9993 9993 9994 2 

88 9994 9995 9995 9996 9996 9997 9997 9997 9998 9998 9998 I 

89 9998 9999 9999 9999 9999 1.00 1.00 1.00 1.00 I.00 LOO 0 

Comp 9 8 7 6 5 4 .3 .2 1 .0 Deg. 

COSINES-0° to 45 ° 

121 



TANGENTS-0° to 45 ° 

.0 .1 .2 .3 .4 .5 6 .7 .8 .9 Comp 

0° 0000 0017 0035 0052 0070 0087 0105 0122 0140 0157 0175 89° 

1 0175 0192 0209 0227 0244 0262 0279 0297 0314 0332 0349 88 

2 0349 0367 0384 0402 0419 0437 0454 0472 0489 0507 0524 87 

3 0524 0542 0559 0577 0594 0612 0629 0647 0664 0682 0699 86 

4 0699 0717 0734 0752 0769 0787 0805 0822 0840 0857 0875 85 

5° 0875 0892 0910 0928 0945 0963 0981 0998 1016 1033 1051 84° 
6 1051 1069 1086 1104 1122 1139 1157 1175 1192 1210 1228 83 
7 1228 1246 1263 1281 1299 1317 1334 1352 1370 1388 1405 82 
8 1405 1423 1441 1459 1477 1495 1512 1530 1548 1566 1584 81 
9 1584 1602 1620 1638 1655 1673 1691 1709 1727 1745 1763 80 

10° 1763 1781 1799 1817 1835 1853 1871 1890 1908 1926 1944 79° 

II 1944 1962 1980 1998 2016 2035 2053 2071 2089 2107 2126 78 

12 2126 2144 2162 2180 2199 2217 2235 2254 2272 2290 2309 77 

13 2309 2327 2345 2364 2382 2401 2419 2438 2456 2475 2493 76 

14 2493 2512 2530 2549 2568 2586 2605 2623 2642 2661 2679 75 

15° 2679 2698 2717 2736 2754 2774 2792 2811 2830 2849 2867 74° 

16 2867 2886 2905 2924 2943 2962 2981 3000 3019 3038 3057 73 

17 3057 3076 3096 3115 3134 3153 3172 3191 3211 3230 3249 72 

18 3249 3269 3288 3307 3327 3346 3365 3385 3404 3424 3443 71 

19 3443 3463 3482 3502 3522 3541 3561 3581 3600 3620 3640 70 

20° 3640 3659 3679 3699 3719 3739 3759 3779 3799 3819 3839 69° 

21 3839 3859 3879 3899 3919 3939 3959 3979 4000 4020 4040 68 

22 4040 4061 4081 4101 4122 4142 4163 4183 4204 4224 4245 67 

23 4245 4265 4286 4307 4327 4348 4369 4390 4411 4431 4452 66 

24 4452 4473 4494 4515 4536 4557 4578 4599 4621 4642 4663 65 

25° 4663 4684 4706 4727 4748 4770 4791 4813 4834 4856 4877 64° 

26 4877 4899 4921 4942 4964 4986 5008 5029 5051 5073 5095 63 

27 5095 5117 5139 5161 5184 5206 5228 5250 5272 5295 5317 62 

28 5317 5340 5362 5384 5407 5430 5452 5475 5498 5520 5543 61 

29 5543 5566 5589 5612 5635 5658 5681 5704 5727 5750 5774 60 

30° 5774 5797 5820 5844 5867 5890 5914 5938 5961 5985 6009 59° 

31 6009 6032 6056 6080 6104 6128 6152 6176 6200 6224 6249 58 

32 6249 6273 6297 6322 6346 6371 6395 6420 6445 6469 6494 57 

33 6494 6519 6544 6569 6594 6619 6644 6669 6694 6720 6745 56 

34 6745 6771 6796 6822 6847 6873 6899 6924 6950 6976 7002 55 

35° 7002 7028 7054 7080 7107 7133 7159 7186 7212 7239 7265 54° 

36 7265 7292 7319 7346 7373 7400 7427 7454 7481 7508 7536 53 

37 7536 7563 7590 7618 7646 7673 7701 7729 7757 7785 7813 52 

38 7813 7841 7869 7898 7926 7954 7983 8012 8040 8069 8098 SI 

39 8098 8127 8156 8185 8214 8243 8273 8302 8332 8361 8391 SO 

40° 8391 8421 8451 8481 8511 8541 8571 8601 8632 8662 8693 49° 

41 8693 8724 8754 8785 8816 8847 8878 8910 8941 8972 9004 48 

42 9004 9036 9067 9099 9131 9163 9195 9228 9260 9293 9325 47 

43 9325 9358 9391 9424 9457 9490 9523 9556 9590 9623 9657 46 

44 9657 9691 9725 9759 9793 9827 9861 9896 9930 9965 1.00 45 

Comp. 9 .8 7 .6 .5 .4 .3 .2 .1 .0 

COTANGENTS-45 ° to 90° 

122 



TANGENTS-45° to 90° 

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 Comp 

45° 1.0000 1.0035 1.0070 1.0105 1.0141 1.0176 1.0212 1.0247 1.0283 1.0319 1.0355 44° 

46 1.0355 1.0392 1.0428 1.0464 1.0501 1.0538 1.0575 1.0612 1.0649 1.0686 1.0724 43 

47 1.0724 1.0761 1.0799 1.0837 1.0875 1.0913 1.0951 1.0990 1.1028 1.1067 1.1106 42 

43 1.1106 1.1145 1.1184 1.1224 1.1263 1.1303 1.1343 1.1383 1.1423 1.1463 1.1504 41 

49 1.1504 1.1544 1.1585 1.1626 1.1667 1.1708 1.1750 1.1792 1.1833 1.1875 1.1918 40 

SO° 1.1918 1.1960 1.2002 1.2045 1.2088 1.2131 1.2174 1.2218 1.2261 1.2305 1.2349 390 

51 1.2349 1.2393 1.2437 1.2482 1.2527 1.2572 1.2617 1.2662 1.2708 1.2753 1.2799 38 

52 1.2799 1.2846 1.2892 1.2938 1.2985 1.3032 1.3079 1.3127 1.3175 1.3222 1.3270 37 

53 1.3270 1.3319 1.3367 1.3416 1.3465 1.3514 1.3564 1.3613 1.3663 1.3713 1.3764 36 

54 1.3764 1.3814 1.3865 1.3916 1.3968 1.4019 1.4071 1.4124 1.4176 1.4229 1.4281 35 

55° 1.4281 1.4335 1.4388 1.4442 1.4496 1.4550 1.4605 1.4659 1.4715 1.4770 1.4826 34° 

56 1.4826 1.4882 1.4938 1.4994 1.5051 1.5108 1.5166 1.5224 1.5282 1.5340 1.5399 33 

57 1.5399 1.5458 1.5517 1.5577 1.5637 1.5697 1.5757 1.5818 1.5880 1.5941 1.6003 32 

58 1.6003 1.6066 1.6128 1.6191 1.6255 1.6319 1.6383 1.6447 1.6512 1.6577 1.6643 31 

59 1.6643 1.6709 1.6775 1.6842 1.6909 1.6977 1.7045 1.7113 1.7182 1.7251 1.7321 30 

60° 1.7321 1.7391 1.7461 1.7532 1.7603 1.7675 1.7747 1.7820 1.7893 1.7966 1.8040 29° 

61 1.8040 1.8115 1.8190 1.8265 1.8341 1.8418 1.8495 1.8572 1.8650 1.8728 1.8807 28 

62 1.8807 1.8887 1.8967 1.9047 1.9128 1.9210 1.9292 1.9375 1.9458 1.9542 1.9626 27 

63 1.9626 1.9711 1.9797 1.9883 1.9970 2.0057 2.0145 2.0233 2.0323 2.0413 2.0503 26 

64 2.0503 2.0594 2.0686 2.0778 2.0872 2.0965 2.1060 2.1155 2.1251 2.1348 2.145 25 

65° 2.145 2.154 2.164 2.174 2.184 2.194 2.204 2.215 2.225 2.236 2.246 24° 

66 2.246 2.257 2.267 2.278 2.289 2.300 2.311 2.322 2.333 2.344 2.356 23 

67 2.356 2.367 2.379 2.391 2.402 2.414 2.426 2.438 2.450 2.463 2.475 22 

68 2.475 2.488 2.500 2.513 2.526 2.539 2.552 2.565 2.578 2.592 2.605 21 

69 2.605 2.619 2.633 2.646 2.660 2.675 2.689 2.703 2.718 2.733 2.747 20 

70° 2.747 2.762 2.778 2.793 2.808 2.824 2.840 2.856 2.872 2.888 2.904 19° 

71 2.904 2.921 2.937 2.954 2.971 2.989 3.006 3.024 3.042 3.060 3.078 18 

72 3.078 3.096 3.115 3.133 3.152 3.172 3.191 3.211 3.230 3.250 3.271 17 

73 3.271 3.291 3.312 3.333 3.354 3.376 3.398 3.420 3.442 3.465 3.487 16 

74 3.487 3.511 3.534 3.558 3.582 3.606 3.630 3.655 3.681 3.700 3.732 15 

75° 3.732 3.758 3.785 3.812 3.839 3.867 3.895 3.923 3.952 3.981 4.011 14° 

76 4.011 4.041 4.071 4.120 4.134 4.165 4.198 4.230 4.264 4.297 4.331 13 

77 4.331 4.366 4.402 4.437 4.474 4.511 4.548 4.586 4.625 4.665 4.705 12 

78 4.705 4.745 4.787 4.829 4.872 4.915 4.959 5.005 5.050 5.097 5.145 11 

79 5.145 5.193 5.242 5.292 5.343 5.396 5.449 5.503 5.558 5.614 5.67 10 

80° 5.67 5.73 5.79 5.85 5.91 5.98 6.04 6.11 6.17 6.24 6.31 9° 

81 6.31 6.39 6.46 6.54 6.61 6.69 6.77 6.85 6.94 7.03 7.12 8 

82 7.12 7.21 7.30 7.40 7.49 7.60 7.70 7.81 7.92 8.03 8.14 7 

83 8.14 8.26 8.39 8.51 8.64 8.78 8.92 9.06 9.21 9.36 9.51 6 " 

84 9.51 9.68 9.84 10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4 5 

85° 11.4 11.7 11.9 12.2 12.4 12.7 13.0 13.3 13.6 14.0 14.3 4° 

86 14.3 14.7 15.1 15.5 15.9 16.3 16.8 17.3 17.9 18.5 19.1 3 

87 19.1 19.7 20.4 21.2 22.0 22.9 23.9 24.9 26.0 27.3 28.6 2 

U 28.6 30.1 31.8 33.7 35.8 38.2 40.9 44.1 47.7 52.1 57.0 1 

89 57.0 64.0 72.0 82.0 95.0 115.0 143.0 191.0 286.0 573.0 - 0 

Comp .9 .8 .7 .6 .5 .4 .3 .2 .1 .0 

COTANGENTS-0° to 45° 
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ANSWERS TO PRACTICE PROBLEMS 

12. 60.9° 
Chapter 1 83.0° 
1. 360 70.8° 
2. 810 13. 6.71 feet 
3. .002 second 14. 26.6° 
4. 20 cps 63.4° 
5. 141 volts 15. 15.36 

282 volts 19.49 
6. 176.75 volts 16. 4.47 feet 

159 volts 6.63 feet 
7. .3535 17. 29.1° 
8. .025 second 60.9° 
9. 1.9 amperes 90.0° 

10. open-circuited 18. -.6428 
11. .03 second .6428 
12. 126.4 volts -1.4281 

19. .9659 
Chapter 2 -.5299 
1. 78° 11.43 
2. 105' 20. 70° 
3. 250° -70° 
4. 32.3° 
5. 43° 42' Chapter 3 
6. 15.178° 1. X = 9.83 
7. 270° Y = 6.88 

4/r 8. 2. 7.21/33.7° 
3 

9. .5270 3. 10.41/40.8° 
.9627 4. 11.17/-3.8° 
.8185 5. 3 + j9 

10. .9527 6. 12.27/99.6° 
.3649 7. -12 -ji 

4.0108 8. 18/35° 
11. 40.2° 

27.4° 9. 40/-6° 
12.3° 10. 2/30° 
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Chapter 4 

1. -V10 
2. -20-
3. j3 VW 
4. j2 
5. j4 
6. j13 
7. -j3 
8. 2 

9. --j \/.--
10. j2 
11. 7.81/50.2° 
12. 7.62/-66.8° 
13. 4.728 + j3.694 
14. -3.76 + j 1.37 
15. 7 - j 
16. 2 - j5 
17. 4 + j5 
18. 4 + j8 
19. 21 + j 
20. 10 
21. 6/54° 
22. 12L140° 
23. 2/42°  
24. 5/18° 

25 3 - j2  . 
2 

3 - j  
26. 

2 

27 -3 -j15 . 
13 

28. 9/30° 

29. 8 / 60 ° 
30. 5/41 ° 

Chapter 5 
1. 6.4 ohms 

51.3° 
.6250 

2. 3.125 amps; lagging 
3. 14.42 volts 

56.3° 
4. 10.81 ohms 

56.3° 
.5548 

5. 1.11 amps; leading 
6. 7.39 watts 

13.32 volt-amperes 
7. 20.78 volts 
8. 6 - j3 ohms 

6.71 / -26.6° ohms 
9. 3.58 amps 

26.6° 
leading 

10. 4.24 ohms 
32° 

11. 50 vars 
.8480 

12. 3.75 ohms 
13. 6.86 ohms 
14. 50 watts 

31° 
leading 

15. 19.28/ -4.8 ° ohms 
capacitive 

16. 5.97 ohms 
9.4° 
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Index 

A 

Acute angle, 22 
Addition, vector, 44-53 

three vectors, 51-53 
two vectors, 44-51 

Addition and subtraction, vector 
algebra, 71-72 

Algebra, vector, 62, 71-76 
addition and subtraction, 71-72 
division 73-74 
multiplication, 72-73 
powers and roots, 74-76 

Angle 
acute, 22 
obtuse, 22 
right, 22 

Angles, 21-24 
Average voltage, 11, 12 

C and R 
in parallel, 89-90 
in series, 83-84 

Capacitive circuit, 17-19 
time constant for, 17-18 

Capacitive reactance formula, 18 
Charge and discharge curves of an 

RC circuit, 17 
Circuits 

capacitive, 17-19 
inductive, 13-17 
parallel, 87-93 

RC, 89-90 
RCL, 90-93 
RL, 87-89 

series, 78-87 
R and C, 83-84 
R and L, 78-83 
R, C, and L, 84-87 

Coils, three-phase, connecting, 105 

Complex numbers, 93-97 
plotting, 67 

Components, vector, 42-44 
Connecting three-phase coils, 105 
Conversion factors and voltage 

relationships, 12 
Conversion of forms, 68-71 
Co-ordinate system, 31-37 
C, R, and L 

in parallel, 90-93 
in series, 84-87 

Current-voltage relationships in 
transformers, 103 

D 

Dectrig system, 24 
Degrees-to-radians formula, 26 
Diagrams 

generator, 9 
phasor and vector, 41 

Discriminator, 111-115 
Division, vector algebra, 73-74 
Division and multiplication, vector, 

57-59 

Forms, conversion of, 68-71 
Formula 

capacitive reactance, 18 
degrees-to-radians, 26 
inductive reactance, 16 

Frequency and time relationships, 
11 

Functions, trig, 27-29 

G 

Generator diagrams, 9 
Graphic analysis, imaginary num-

bers, 65-66 
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I 

Imaginary numbers, 63-68 
graphic analysis, 65-66 
working with, 66-68 

Inductive 
circuits, 13-17 

time constant for 13-14 
reactance formula, 16 

L 

L and R 
in parallel, 87-89 
in series, 78-83 

Lead and lag, showing, 60 
L, R, and C 

in parallel, 90-93 
in series, 84-87 

M 

Measurement, units of, 24 
Modulation, phase, 109-111 
Multiplication, vector algebra, '72-

73 
Multiplication and division, vector, 

57-59 

N 

Numbers 
complex, 93-97 

plotting of, 67 
imaginary, 63-68 

graphic analysis, 65-68 
working with, 66-68 

0 

Obtuse angle, 22 
Oscillator, tuned-plate, tuned-grid, 

107-109 

P 

Parallel circuits, 87-93 
RC, 89-90 
RCL, 90-93 
resonant, vectors of, 101 
RL, 87-89 

Peak-to-peak voltage, 11, 12 

Peak voltage, 11, 12 
Phase modulation, 109-111 
Phasor and vector diagrams, 41 
Plotting a complex number, 67 
Polarity of 

points in each quadrant, 33 
trig functions in each quadrant, 

36 
Power, three-phase, 104-107 
Powers and roots, 74-76 
Pythagorean theorem, 29-30 

Q 

Quadrant points, polarity of, 33 

R 

Radians-to-degrees formula, 26 
R and C in series, 83-84 
R and L in series, 78-83 
RC 

circuit, charge and discharge of, 
17 

time constant, 17 
Reactance formula 

capacitive, 18 
inductive, 16 

Rectangular co-ordinates, 31-32 
Resonance, 100-102 
Resonant circuit, parallel, vectors 

of, 101 
RC in parallel, 89-90 
R, C, and L 

in parallel, 90-93 
in series, 84-87 

RL in parallel, 87-89 
Right angle, 22 
Rms voltage, 11, 12 
Root-mean-square voltage, 11, 12 
Roots and powers, 74-76 
Rotating vectors, 59-61 

S 

Series circuits, 78-87 
R and C, 83-84 
R and L, 78-83 
R, C, and L, 84-87 
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Sexagesimal system, 24 
Sine waves, 8-13 
Sinor, 41 
Solution of triangles, 29-31 
Subtraction, vector, 54-57 
Subtraction and addition, vector 

algebra, 71-72 
Synchros, 115-118 
System 

co-ordinate, 31-37 
decitrig, 24 
sexagesimal, 24 

T 

Theorem, Pythagorean, 29-30 
Three-phase 

coils, connecting, 105 
power, 104-107 

Three vectors, addition of, 51-53 
Time and frequency relationships, 

11 
Time constant 

for capacitive circuit, 17-18 
for inductive circuit, 13-14 
RC, 17 

Transformers, 102-104 
Triangles, solution of, 29-31 
Trig functions, 27-29 

in each quadrant, polarity of, 36 
Tuned-plate, tuned-grid oscillator, 

107-109 
Two vectors, addition of, 44-51 
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U 

Units of measurement, 24 

V 

Vector 
addition, 44-53 

three vectors, 51-53 
two vectors, 44-51 

algebra, 62, 71-76 
addition and subtraction, 71-72 
division, 73-74 
multiplication, 72-73 
powers and roots, 74-76 

and phasor diagrams, 41 
components, 42-44 
multiplication and division, 57-59 
subtraction, 54-57 

Vectors, rotating, 59-61 
Vectors of parallel resonant cir-

cuit, 101 
Voltage 

average, 11, 12 
peak, 11, 12 
peak-to-peak, 11, 12 
rms, 11, 12 
-current relationships in trans-

formers, 103 
relationships and conversion fac-

tors, 12 

W 

Waves, sine, 8-13 
Working with imaginaries, 66-68 



IVSIMI 
HMIS 

In order to have a thorough understanding of AC circuit op-
eration and calculations, it is necessary to consider the phase 
relationships of currents and voltages. The basic tools for this 
understanding are trigonometry and vectors. If the vector ap-
proach is not used, AC circuit calculations can become long and 
tedious. 

How vectors are used to simplify AC calculations is thoroughly 
presented in Essentials of Vector 8, Phase Analysis. The author, 
who has an extensive electronics background and has taught 
mathematics at one of the larger electronic technical institutes, 
covers the subject in a clear and concise manner. The first two 
chapters offer a comprehensive review of AC fundamentals, 
with emphasis on phase. These chapters review sine waves, 
inductive and capacitive circuits, angles, units of measurements, 
trig functions, solutions of triangles, and the co-ordinate system. 

Vectors can be added, subtracted, multiplied, and divided. How 
to perform these mathematical operations is covered in Chap-
ter 3. A discussion on imaginary numbers, conversion of forms, 
and vector algebra follows. 

The last two chapters cover AC network calculations (series, 
parallel, and complex circuits) and vector applications. 

To clarify the various topics, the author includes numerous ex-
amples as well as practice problems. The answers to the practice 
problems are contained in an appendix, along with a table 
of Natural Trigonometric Functions, enabling the reader to use 
this book as a self-teaching medium. It is also particularly suited 
for use as a supplementary textbook in any school or training 
program in electronics. 
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