

A REVISTA-CURSO QUE ENSINA A ELETRÔNICA. EM LIÇÕES SIMPLES COMO VOCÉ PEDIU! MATRICULAS (AINDA...) ABERTAS, EM TODAS AS BANCAS! RESERVE, DESDE JA, O SEU PROXIMO EXEMPLAR!

ADQUIRA JÁ ESTE INCRÍVEL SUPORTE PRÁTICO PARA O SEU APRENDIZADO

EM TODAS AS BANCAS

DO PAÍS A SUA

BE-A-BA' da S ELETRONICA

Editor e Diretor:

BÁRTOLO FITTIPALDI

Produtor e Diretor Técnico:

BÉDA MARQUES

Programação Visual:

CARLOS MARQLES

Artes:

JOSÉ A. SOUSA FRANCARLOS

Colaboradores / Consultores;

MAURO ("CAPI") BACANI

Secretária Assistente:

VERA LÚCIA DE FREITAS ANDRÉ

Orientação Pedagógica:

PROF. FRANCISCO GIALLUISI

Capa:

BEDA MARQUES e FRANCARLOS

Revisão de Textos:

Elisabeth Vasques Barboza

Composição de Textos:

Vera Lúcia Rodrigues da Silva

Fotolitos: Fototraço

Departamento de Publicidade e Contatos:

Fones: (011) 217.2257 e (011) 223.2037

Departamento de Reembolso Postal:

Pedro Fittipaldi - Fone: (011) 206.4351

Departamento de Assinaturas

Francisco Sanches - Fone (011) 217.2257

Departamento Comercial:

Cláudio P. Medeiros

CINUCIO P. Medellos

- Fone: (011)

217.2257 [mpress@a=

Centrais Impressoras Bracileiras Ltda.

Distribuição Nacional:

Abril S/A - Cultural e Industrial

Distribuição em Portugal

Electroliber Ltda (Lisboa/Porto/Faro/Fun-

hall.

BÉ-A-BÁ DA ELETRÔNICA

é uma publicação mensal

Reg. no INPI sob n.º 028640

Reg. no DCDP

Copyright by

BÁRTOLO PITTIPALDI - EDITOR

Rua Santa Virgínia, 403 - Tatuapé

CEP 03084 - São Paulo - SP

TODOS OS DIREITOS RESERVADOS

INDICE - 13a. AULA

- 2 SINAL DE ENTRADA (Conversando com os "alunos").
- 3 OS MEDIDORES E AS MEDI-ÇÕES (T) - 2a. Parte
- 5 O amperimetro na prática.
- 16 O teste da "Caixa Preta".
- 19 O voltímetro na prática.
- 36 FERRAMENTAS E COMPONEN-TES (I) - ENTENDENDO (MAIS OUMENOS...) OS CÓDIGOS "MA-LUCOS" DOS TRANSISTORES...
- 38 O sistema Americano.
- 39 O sistema Japonés.
- 41 O sistema Europeu (e Brasileiro...).
- UMA DÚVIDA, PROFESSOR! (Esclarecendo pontos não entendidos).
- 58 HORA DO RECREIO (Intercâm-

- bio cntre os "aunos").
- 63 INICIAÇÃO AO HOBBY (P).
- 64 1a. Montagem (VARI-VOLT) (P).
- 68 BRINDE DE CAPA.
- 73 O circuito (do VARI-VOLT) Como funciona (I).
- 76 · 2a. Montagem (SECRET IN-TERRUPTOR MACNETICO) (P).
- 86 O circuito (do SECRET) Como funciona (I).
- 88 3a Montagem (MONITOR DE BATERIA) (P)
- 97 O circuito (do MONITOR DE BATERIA) Como funciona (1).
- 99 O "ALUNO" ENSINA (As boas idéias da turma).
- 108 INFORMAÇÃO PUBLICITÁRIA (Pacotes/Licão).

"Com a corda toda", iniciamos o nosso "segundo ano letivo", no qual o "curso" alcançará assuntos, temas e conceitos cada vez mais atualizados dentro do Mundo Mágico da Eletrônica! Na prática, até o momento (nas 12 primeiras "lições", que constituíram nosso primeiro ano de estudo) foram abordados aspectos importantistimos, porém básicos... Agora que o "aluno" já estruturou o seu "alicerce", tomando conhecimento dos componentes básicos, seu funcionamento e suas aplicações, vamos, lentamente, nos aprofundar nas "sufisticações" da tocnologia, nos componentes mais complexos, nas funções especiais, etc.

Entretanto, podemos garantir que, em nenhum momento, nos esqueceremos dos preceitos básicos ado tados e declarados desde o início do nosso "curso", que são:

- Aliar, constantemente, a Teoria à Prática e à Informação, para que o "aluno" não termine "perdido" no meio de uma multidão de fórmulas e conceitos matemáticos, sem que saiba, sequer manusear as peças mais simples...
- Apresentar sempre as "aulas" da forma mais direta possível, em linguagem simples
 e "brincalhona" (para atenuar a aparente rigidez do tema...), procurando fugir dos
 jargões tradicionais que mais parecem "códigos secretos, destinados apenas ao entendimento de iniciados..."
- Promover o constante intercâmbio entro os "alunos" (através das seções HORA DO RECREIO e O "ALUNO" ENSINA...), incentivando, também a formação de grupos, "Clubinhos", etc.
- Esclarecer, dentro da temática apresentada, as dúvidas manifestadas pelos "alunos" (através da seção UMA DOVIDA, PROFESSOR!).

Vamos, então, em frente, pois o "segundo ano" está repleto de assuntos importantes e interessantes (Aqueles "três toques na madeira" lá no início, são só de "orincadeirinha", para espantar o azar da 13a. "aula"... Com uma turma como vocês, a SORTE, como já verificamos, está do nosso lado...).

O EDITOR

Os medidores e as medições

(2a.PARTE)

Na primeira parte da presente "lição", publicada na "aula" anterior do BÉ-A-BÁ (no. 12), o "aluno" aprendeu as bases sobre o funcionamento dos medidores (galvanômetros), viu como é fácil, a partir de um "negócio" construído para medir CORRENTES, efetuar leituras de tensões e resistências também e, finalmente, foi informado sobre as diversas fórmulas e "truques" que podem ser empregados para ampliar ou multiplicar as escalas de medição, usando-se um único galvanômetro para "ler-se" valores de corrente, tensão ou resistência em várias faixas diferentes...

Agora, em sequência ao assunto, mostraremos a utilização prática, no dia-a-dia da bancada de estudos ou do laboratório do estudante e do técnico. Normalmente, galvanômetros são adaptados (através das técnicas mostradas na 1a. parte da "lição") para, através de uma série de chaveamentos, auxiliados por vários resistores de valor previamente calculados, funcionarem — "à escolha do freguês" — como voltímetros, amperímetros ou ohmímetros, efetuando as leituras em várias faixas. A esse conjunto é dado o nome de MULTIMETRO ou MULTITESTE, provavelmente o instrumento mais importante na bancada do estudante... Durante as nossas explicações, contudo, para facilitar o entendimento, sempre que aparecer um "medidor", sua simbologia será a mostrada no desenho 1... No caso do VOLTIMETRO, quando a faixa de leitura é menor do que 1 volt, adota-se a marcação do submúltiplo em abreviação:

mV - milivolt/metro

 μV - microvolt (metro.

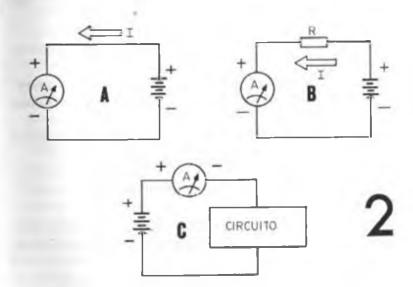
Da mesma forma, nos medidos de corrente, indica-se a "grandeza" da faixa de leitura, através da conveniente abreviação do submúltiplo:

mA — miliamperímetro μ A — microamperimetro

Se o "aluno" é o feliz possuidor de um MULTIMETRO, basta interpretar assim: sempra que, nas explicações, aparecer o símbolo de um VOLTIMETRO, considere a "coisa" como se fosse o seu próprio MULTIMETRO, devidamente "chaveado" para medir volts, na conveniente escala (sempre indicada junto aos símbolos...). Se surgir nos "esquemas", um medidor de corrente (MILIAMPERIMETRO, por exemplo), considere o seu MULTIMETRO devidamente chaveado para medição de corrente na faixa indicada, e assim por diante. Normalmente, junto aos símbolos dos medidores, nos esquemas, costuma-se indicar a "amplitude" da faixa, com os seguintes códigos:

0-1 mA — medidor de corrente na faixa de 0 a 1 miliampére.

100-0-100 μA — medidor de corrente, com "zero central", atingindo até 100 microampéres para "cada lado".


0-5 mV — medidor de voltagem, na faixa de 0 a 5 milivolts.

0-10 V - medidor de voltagem, na faixa de 0 a 10 volts.

Além desse "código", sempre que a polaridade do medidor for importante (e quase sempre é...), seus terminais também estarão identificados (positivo e negativo). Devidamente "combinados" quanto as formas de indicação, vamos conversar, então, sobre os usos efetivos dos medidores, "no campo de batalha"...

O AMPERIMETRO NA PRÁTICA

Ao utilizar um medidor de corrente (microamperímetro, miliamperímetro, amperímetro, etc.), é importante o "aluno" lembrar, sempre, que o instrumento estará fazendo parte do caminho percorrido pela corrente medida, ou seja: a corrente estará, sempre, "atravessando" o medidor, durante a leitura ou medição! Dessa maneira, para executarmos medições de corrente, o instrumento fica em série com a fonte de energia (dispositivo que "fornece" a corrente, sejam pilhas, bateria, fonte ligada à C.A., etc.), como mostra o desenho 2-A, no qual a seta (1) representa o sentido "convencional" da corrente, "saindo" do positivo da fonte de alimentação, e retornando pelo negativo... A ligação mostrada em

2-A, contudo, é apenas uma proposição teórica já que, daquela maneira, o medidor de corrente estaria, na prática, colocando a alimentação "em curto", representando, portanto, um "percurso de baixa resistência" para a corrente (ver Lei da Ohm, na 1a. "aula"). Com o pequeno circuito mostrado, as pilhas ou bateria se descarregariam muito rapidamente, além do medidor ter que "aguentar" uma baita corrente (um microamperímetro ou um miliamperímetro, com certeza, "queimariam" se ligados na disposição indicada...).

Na prática, contudo, como mostra o desenho 2-B, sempre existem circuitos, componentes ou aplicações (representados, no esqueminha, pelo resistor R...) que "gastam" boa parte da corrente, ficando no percurso entre a fonte e o medidor, portanto... No caso do exemplo, a corrente (I), indicada pela seta, estará automaticamente limitada, pelo próprio valor ôhmico de (R). O medidor (A) "lerá", então, a corrente existente no elo total do circuito ou, na prática, a "quantidade de corrente" que passa por (R). Embora, a princípio, possa parecer aos iniciantes uma "medição boba", esse tipo de verificação á importantíssimo, se lembrarmos que, com o auxílio da Lei de Ohm, e graças à interdependência das principais grandezas elétricas, podemos "descobrir" muita coisa sobre um componente ou circuito, medindo inicialmente a CORRENTE que o percorre... Vamos ver:

- Suponha que você sabe a tensão da fonte 6 volts, por exemplo.
- Com a disposição mostrada em 2-B, o medidor indica uma corrente de 0,4A (quatro décimos de ampére, ou quatrocentos miliampéres).
- Através de um rápido cálculo, você saberá, exatamente, qual o valor de (R), em ohms:

$$R = V/I$$
 ou $R = 6/0.4$ ou $R = 15\Omega$

- Façamos agora uma outra suposição: é conhecido previamente o valor ôhmico de (R) e o que desejamos descobrir é a tensão da fonte (pilhas, bateria, etc.).
- Fica "combinado" para fins de exemplo que (R) é de 300Ω.

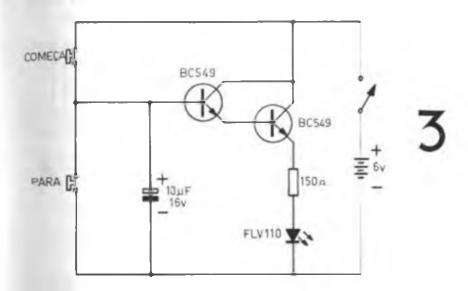
- Efetuando a medição, com a disposição circuital mostrada em 2-B. a corrente "lida" é de 0.015 A (quinze miliampéres).
- Com uma "continha" muito rápida e simples, descobriremos a voltagem da alimentação:

 $V = I \times R$ ou $V = 0.015 \times 300$ ou V = 4.5 volts.

Como o "aluno" já deve ter percebido, as "eternas" fórmulas da Lei de Ohm (rever a 1a. "aula", se tiver esquecido alguma coisa...), como sempre estão presentes... Quem ainda não "decorou" as fórmulas, pode ir tratando de fazê-lo, pois serão usadas a vida toda, literalmente, por mais complexos e "cheios de histórias" que sejam os circuitos a funções a serem calculados e analisados...

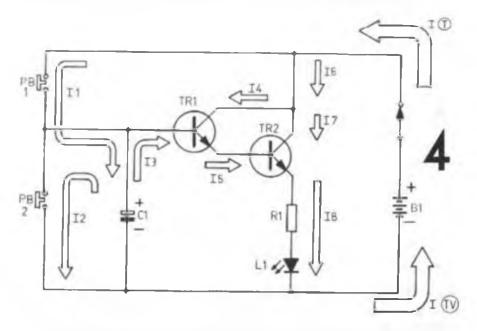
O desenho 2-C mostra uma importante adaptação do conceito visto em 2-B, frequentemente utilizada, na prática... Um dos importantes parâmetros finais para qualquer circuito é "o quanto de corrente o bicho consome", pois, através do conhecimento desse fator, é que determinamos o tipo de fonte de alimentação a ser usado... Antas de entrar em detalhes, vamos a algumas "dicas" importantes:

- Se um determinado circuito ou aplicação requer, além de baixas tensões, correntes não muito elevadas, podemos utilizar, na alimentação, pilhas...
- Mesmo, entretanto, que o consumo de corrente não seja muito "bravo", existem várias faixas de atuação... Assim, para circuitos realmente "econômicos" (que consomem, a pleno funcionamento, apenas uns poucos miliampéres, é prático e conveniente alimentá-los com bateriazinhas de 9 volts, ou com conjuntos de pilhas pequenas, perfazendo a tensão necessária). Já outros circuitos, requerem algumas dezenas de miliampéres, durante o funcionamento, sendo recomendada a alimentação com conjuntos de pilhas médias. Finalmente, para os circuitos ou aplicações meio "chupadores" (no bom sentido...) de corrente, podemos usar conjuntos de pilhas grandes.
- Como é sabido que o tamanho físico das pilhas é diretamente proporcional à sua capacidade de fornecer corrente, quanto mais "consumidor" for um circuito, maiores terão que ser as pilhas para uma durabilidade razoável.


- Em determinadas aplicações e circuitos, quando tanto o consumo como a tensão sejam relativamente elevados e constantes, optamos quase sempre pela alimentação com fontes ligadas à C.A. (já falamos a respeito na 3a. "aula").
- Além do simples consumo de corrente, outro importante fator "geral" no desempenho de um circuito (no que diz respeito à sua alimentação) é a potência elétrica (em watts) necessária para acioná-lo). É esse fator, afinal, que pode ser transformado, através de cálculos simples, no "custo financeiro" de funcionamento de qualquer circuito ou aplicação (é por isso que um chuveiro elétrico, ligado a uma hora por dia, acrescenta muito mais em cruzeiros à conta de eletricidade, do que uma lâmpada pequena, de abajur, também ligada uma hora por dia...). Acontece que, conforme vimos na 1a. "aula", a potência é calculada com a seguinte fórmula:

P= VxI

Assim, temos que saber a tensão e a corrente que acionam um circuito, para determinar o "quanto de energia" (e de cruzeiros, também...) o "bicho come"...


Voltemos então, ao exemplo 2-C. Interligado o medidor de corrente entre a fonte de alimentação e o próprio circuito, conforme mostrado, podemos determinar, "num piscar de olhos", quantos ampéres, miliampéres ou microampéres o circuito "puxa" da fonte e, a partir desse parâmetro, podemos determinar que tipo de fonte (pilhas pequenas, grandes ou médias, fontes ligadas à C.A., etc.) devemos adotar, "economicamente" falando, para a sua alimentação. Além do fator puramente econômico, também são importantes os aspectos técnicos da questão: assim, se for comprovado, através da medição, que um circuito "puxa" 1 ampére, obviamente não será lógico alimentá-lo com uma fonte capaz de fornecer, no máximo, 100 miliampéres (por exemplo). A fonte vai "miar", pois não conseguirá "sustentar a tome" do circuito...

Até agora falamos do madidor de corrente verificando a "lendo" o fluxo através de um simples componente, ou através de todo um circuito (desenhos 2-B e 2-C). Entretanto, no cálculo, no dimensionamento, e nas verificações de qualquer projeto eletrônico, também são importantes (e muito...) as "diversas" correntes "den-

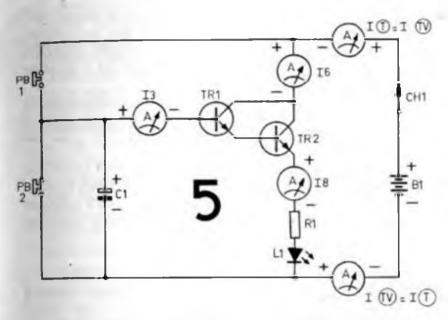
tro" dos labirintos do circuito... Vamos partir, a título da exemplo, de um simples circuito transistorizado, verificando os vários percursos de corrente e como podemos fazer para medi-los, tirando daí importantes conclusões...

Usaremos, como base para as explicações e experiências, o circuito publicado na pág. 22 da 5a, "aula", do TEMPORIZADOR, referente à 2a. experiência a respeito dos LEDs, cujo esquema está reproduzido no des. 3. O circuito, conforme foi explicado na aula respectiva, é formado por um simples amplificador em configuração "Darlington" (dois transístores "empilhados", o primeiro excitando diretamente o segundo, de forma que seus fatores de amplificação sejam multiplicados...), à cuja saída está acoplado um LED (protegido pelo respectivo resistor/limitador de correnta) a, à cuja entrada, está ligado um capacitor eletrolítico (alto valor). Através de ação de um interruptor, podemos "carregar", instantaneamente, esse capacitor, de modo que essa "carga" atue sobre a entrada do circuito de amplificação, lentamente, enquanto se "escoa" do capacitor, promovendo, então, a devida temporização do acendimento do LED. Em paralelo com o mesmo capacitor, existe um segundo interruptor, que pode, a qualquer momento, "descarregar" o "dito cujo" (botando, momentaneamente, seus dois terminais "em curto"...), interrompendo, assim, a temporização (apagando o LED lá na "outra ponta" do circuito...).

Verificado o esquema básico (des. 3), vamos analisar os diversos percursos de corrente, dentro do circuito... Os principais "caminhos" da corrente, durante o funcionamento do TEMPORIZADOR, estão indicados por setas, no desenho 4...

- I(T) É a corrente total, fornecida pelas pilhas (B1) ao circuito, durante o funcionamento. Importante notar que como ocorre na grande maioria dos circuitos essa corrente não é "uniforme" ou "constante", variando na dependência dos estágios, fases ou "comportamentos instantâneos" do circuito.
- I (Tv) É a "volta" total da corrente (segundo o "sentido convencional", retornando pelo polo negativo da alimentação. Explicaremos esse "negócio" de volta mais adiante.
- I (1) É a corrente de carga do capacitor C1, Quando PB1 é momentaneamente "fechado", a corrente, vinda das pilhas, segue o percurso indicado, para carregar o capaci-

tor. Como não há nenhum resistor no "caminho", é de se presumir que, enquanto durar tal carga, a corrente seja de razoável intensidade (pelo menos até "encher" C1...).


- I (2) É a corrente de descarga de C1. Assim que PB2 é apertado (fechando-se, portanto), os dois terminais de C1 ficam em curto e, portanto, a carga acumulada no capacitor se "escoa", rapidamente, através da fiação condutora, já que não existe resistor no percurso que possa obstar a passagem da corrente.
- I (3) É a corrente de base de TR1, "fornecida" pelo próprio capacitor C1 (pelo menos enquanto sua carga durar...). Obviamente, para que C1 possa entregar sua carga à base de TR1, um pouco antes o PB1 deverá ter sido pressionado (para carregar C1) e PB2, por sua vez, deverá permanecer "aberto" (caso contrário a corrente de descarga de C1 se escoará através dele...).
- I (4) -- É a corrente de coletor de TR1. Lembrar que essa corrente apenas pode atingir razoável intensidade, se o terminal de base de TR1 estiver recebendo a conveniente corrente de polarização (ver "aulas" sobre O TRANSISTOR COMO AMPLIFICADOR). Enquanto TR1 não receber a devida polarização de base, sua corrente de coletor I (4) será baix issima.
- I (5) É, ao mesmo tempo, a corrente de emissor de TR1 e a corrente de base de TR2. Notar que TR2 só poderá receber em sua base suficiente corrente de polarização, se o emissor de TR1 "soltar" tal corrente. Esse sistema de ligação direta do emissor de um transistor à base de outro é a própria essência, inclusive, da chamada "configuração Darlington".
- 1 (6) É a corrente total de coletor da configuração Darlington. Lembrar que, no arranjo Darlington, os dois transistores funcionam como se fossem um só (com "um só coletor", portanto...). Essa corrente apenas será intensa quando a base de TR1 (na prática a base do conjunto Darlington) estiver recebendo a devida polarização positiva.

- I (7) É a corrente de coletor de TR2. Notar que TR2 apenas terá bastante corrente de coletor quando sua base estiver recebendo a devida corrente de polarização, fornecida pelo emissor de TR1.
- I (8) É a corrente de emissor de TR2 e, consequentemente, a corrente de emissor de todo o conjunto Darlington (formado pr TR1 e TR2). Já vimos, lá nas aulas específicas sobre os transístores, que a corrente de emissor é a soma da corrente de base com a corrente de coletor. Assim, podemos concluir que I (8) representa a soma de I(3), I (4), I (5) e I (7). Para simplificar (já que estamos lidando com dois transístores em configuração Darlington...), também podemos considerar que I (8) é igual a I (3), que é a corrente de base de todo o conjunto Darlington, mais I (6), que é a corrente de coletor de todo o Darlington. Outra coisa importante é que I (8), corrente fornecida pelo emissor de TR2 é "quem" supre o LED L1, através do resistor R1, da necessária energia para o seu acendimento.

Olhando o circuito como um todo, "de fora", I (T), ou I (Tv), é a soma de todas as correntinhas ou correntonas que "andam", pra lá a pra cá, dentro do circuito (conforme pode ser representado pelo desenho 2-C, já mostrado...).

A essa altura do campeonato, o "aluno" já deverá ter notado que tudo o que foi explicado nas "aulas" e "lições", desde o início do curso, até o momento, tem enorme importância, sampre que se vai analisar um circuito, mesmo um extremamente simples, como é o caso do TEMPORIZADOR, formado por "míseros" dois transístores, um LED, um resistor e um capacitor...

Todos os percursos de corrente mostrados no desenho 4 são importantes dentro do funcionamento do circuito. Embora a maioria deles possa ser calculado ou presumido, a única maneira de "ver", "ler" e medir esses fluxos de corrente (a com isso saber como o circuito "anda"...) é usando-se um galvanômetro (na função de MEDIDOR DE CORRENTE), devidamente intercalado nos vários pontos do circuito, conforme mostra o desenho 5. Observar que nem todas as correntes "parciais" mostradas em seus percursos no desenho 4, estão "monitoradas" pelos medidores no des. 5.

já que, para efeitos práticos, podemos analisar perfeitamente o comportamento de um circuito verificando os principais "ramos" da corrente. O medidor para "ler" I (3), devido ao fato de estar num percurso de baixa corrente, pode ter uma sensibilidade máxima de 100μ A ou 1 mA. Já todos os outros medidores mostrados, deverão ter um alcance bem maior, em torno de 100mA, para que possam "ler", confortavelmente, as correntes que os percorrerão...

É importante também notar que, coforme já foi explicado, em qualquer caso, os medidores de corrente ficam intercalados no "ramo" do circuito sob verificação (em série, portanto). Vamos analisar as funções dos diversos galvanômetros "embutidos" no circuito (que, na verdade, podem ser UM só, dotado do respectivo chaveamento, com diversos RESISTORES DE DERIVAÇÃO OU "SHUNT" — conforme explicado na "aula" anterior...):

- Através de 1 (3) podemos mensurar a corrente de base de TR1, fornecida, como vimos, pela carga acumulada em C1 depois que PB1 for pressionado. Se existirem defeitos nos interruptores de pressão ou no próprio capacitor, podemos detetar tais falhas com facilidade, pela medição de 1 (3).
- 1 (6) mede a corrente de coletor "geral" do par Darlington for-

mado por TR1 e TR2. Através da interpretação de tal medição, podemos, tanto verificar o funcionamento dos transístores, quanto determinar o ganho (fator de amplificação) mostrado pelo circuito, de acordo com a fórmula: 1 (6)/1 (3) — corrente de coletor dividida pela corrente de base.

- Através do medidor I (8) podemos verificar a intensidade da corrente de emissor, responsável pelo acendimento do LED L1 (cuja corrente, como sabemos, é limitada por R1 — ver 5a. "aula"...).
- Com o medidor intercalado, indiferentemente, em I (T) ou em I (Tv) desde que respeitada a polaridade podemos verificar o consumo total de corrente do circuito, tanto com o LED aceso (algumas dezenas de miliampéres...), como com o LED apagado (poucos microampéres...).

Obtido o "quadro" das correntes principais no circuito, e conhecidos os parâmetros dos diversos componentes (além, é óbvio, das "intenções" que tivemos ao projetar a "coisa"...), podemos tirar importantíssimas conclusões. Por exemplo:

- Sa, medindo I (8), obtivermos 100 mA, saberemos que "algo vai errado", pois o LED não pode ser percorrido por corrente tão elevada (seus limites máximos estão em torno de 40 ou 50 miliampéres). Provavelmente, no caso, R1 estará com valor muito baixo, insuficiente para limitar a níveis seguros a corrente através do LED. Corrige-se, então, o valor de R.
- Se obtivermos corrente nula em I (8), com toda a certeza haverá algum componente "aberto" (queimado), no percurso de tal corrente. Verificamos então o estado de TR2, R1 e L1, pois um desses componentes, eventualmente, estará "pifado" (ou então existirá um grave "mau contato" nas suas ligações).
- Se, mesmo após a breve pressão sob PB1, I(3) não indicar a passagem de nenhuma corrente, com toda a certeza (desde quo não existam falhas de contato nas interligações dos componentes...)
 C1 estará defeituoso.
- Sabemos também que o real "consumidor" de corrente no circuito é L1 (quando aceso...). Assim, os medidores I (T) ou I (Tv) somente deverão indicar substancial passagem de corrente, quando o LED estiver aceso. Se, mesmo com o LED apaga-

- do, obtivermos em tais medidores, correntes relativamente altas (muitos miliampéres), com certeza existirão graves "curtos" na montagem (talvez alguma conexão ou contato indevido entre terminais de componentes que não devessem se tocar...).
- É hom notar que, mesmo com o interruptor geral (CH1) ligado, porém com o circuito desativado (LED apagado), os medidores I (T) ou I (Tv) indicarão a passagem de alguns poucos microampéres. Essa pequena corrente é chamada de "espera", "stand by" ou "quiescente", ocorrendo devido às fugas naturais existentes nos diversos componentes (o dielétrico de um capacitor nunca é um isolador absolutamente perfeito, e os transístores e LED, mesmo quando "cortados" ou "eletronicamente desligados", continuam permitindo a passagem de pequenas "correntes residuais", devido a inevitáveis imperfeições dos materiais semicondutores que formam as suas "entranhas"...).
- Finalmente lembramos que, para efeito de mensurar a corrente total consumida pelo circuito, tanto faz a inserção de I (T), que mede a "corrente de ida", quanto a de I (Tv), que "lê" a "corrente de volta". A única coisa a ser respeitada é a polaridade do medidor (ver desenho 5).

O exemplo dado, embora baseado num circuito relativamente simples e no seu comportamento em relação à corrente (ou "correntes"...) serve como base para a análise de qualquer outro circuito, por mais complexo e sofisticado que seja. A ordem das operações, para uma boa verificação, é a seguinte (em todos os casos...):

- Analisar com atenção o "esquema" ou diagrama esquemático do circuito, e anotar os diversos percursos de corrente (conforme sugere o desenho 4).
- Munir-se dos dados sobre os componentes (parâmetros, limites, especificações e valores). Na maioria dos casos será praticamente inevitável a consulta a um manual.
- Efetuar as medições (como sugere o des. 5), analisando, com atenção e bom senso todos os resultados, efetuando — quando necessário — as eventuais correções, reparos, trocas de valores ou de componentes.

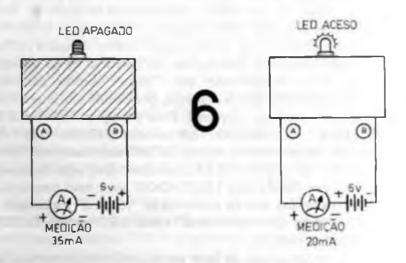
Com o tempo e com a prática, o "aluno" desenvolverá uma grande dose de intuição e bom senso, além de um verdadeiro "espírito lógico", na interpretação das correntes, seus efeitos e suas causas, dentro de qualquer configuração circuital... Inclusive, a partir de uma análise cuidadosa e de um pouco de raciocínio lógico, podemos descobrir muita coisa (através da mensuração de corrente), a respeito atá de circuitos completamente "lacrados", a cujo interior não tenhamos acesso! A título de exemplo, vamos fazer uma brincadeira conhecida como "jogo da caixa preta", muito interessante e elucidativa...

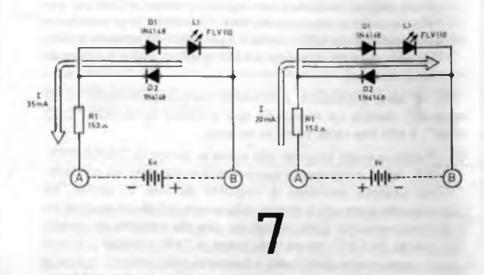
O TESTE DA "CAIXA PRETA"

Observem o desenho 6. Nele vemos, em suas situações distintas, uma simples CAIXA PRETA, da qual apenas sobressai um LED e mais dois terminais, marcados com (A) e (B). Ligando-se um conjunto de pilhas (6 volts) e mais um medidor de corrente como mostra o esqueminha da esquerda, notamos que o LED não acende, e o medidor indica uma corrente de 35 miliampéres. Entretanto, invertendo-se as polaridades da fonte (e, consequentemente, do medidor...), como mostrado na direita, o LED acende, e a corrente indicada pelo medidor é de 20 miliampéres! Pergunta-se: O QUE TEM LÁ DENTRO DA CAIXA PRETA?

A primeira resposta que nos vem à cabeça é:

A – Um LED (externamente visível) e um resistor limitador, de modo que, com a alimentação no sentido correto, o LED acende, porém com a alimentação invertida, o LED permanece apagado...


Entretanto, por que, na situação de ligação em que o LED permanece apagado, conseguimos um valor de corrente ainda maior do que o medido com o LED aceso? Se um LED estivessa polarizado no sentido inverso (ver aula 5) ele, simplesmente, não permitirá a passagem da corrente de 35 mA indicada (a corrente seria praticamente nula...).


Podemos então imaginar que:

B — Existe, dentro da CAIXA PRETA, em paralelo com o LED e seu resistor limitador, um segundo resistor, o qual por sua vez, quando a alimentação está "invertida" em relação às necessidades do LED, permite a passagem da corrente indicada pelo medidor (ficando o LED apagado, pois a polarização está inversa...).

Nesse caso, entretanto, a corrente medida na situação "LED apagado", deveria ser *inenor* do que a obtida na situação "LED aceso", e não vice-versa, como se verifica!

C — Podemos então imaginar que existe lá dentro da CAIXA PRE-TA algum componente que permita a passagem da corrente, na situação mostrada à esquerda do des. 6, porém, na situação mostrada à direita, não exerce influência sensível no funcionamento (pelo menos no que diz respeito ao acendimento do LED), quase que, como se "não existisse". Qual é o componente que "para a corrente indo, existe" e para a corrente "vindo, não existe" (isso em termos práticos)? Naturalmente, um DIODO COMUM (já estudado na "aula" 3.

Sabemos também que todo componente eletrônico, mesmo quando permite a passagem da corremte, apresenta um valor ôhmico qualquer, por menor que seja (nenhum componente é um "condutor absoluto"...). Assim, pela diferença de corrente, verificada nas duas situações (LED apagado e LED aceso), intuiremos que (como a corrente com o LED aceso é menor do que a verificada na outra situação...), deve existir, no percurso de tal corrente, ainda um outro componente, que, "nesse" sentido, permita a passagem da corrente de acendimento, porém não sem exercar certa resistência (ainda que pequena), à sua passagem. Pela lógica, SÓ PODE SER OUTRO DIODO! (em posição "favorável" ao LED. ao contrário do que ocorria com o DIODO anteriormente "descoberto" dentro da CAIXA PRETA...). É óbvio que, além disso, existe também um RESISTOR LIMITADOR pois, caso contrário, a tensão relativamente alta da alimentação "forçaria" a passagem de corrente elevada, que "queimaria" tanto LED quanto DIODOS "embutidos" lá dentro...

Assim, com um pouco de bom senso, memória (quanto as funções e comportamentos dos componentes), o auxílio da onipresente Lei de Ohm, mais um pouco de raciocínio lógico, podemos chegar (não sem "queimar as caspas" um pouquinho...) à resposta final, mostrada no desenho 7! Notar que, na situação da esquerda:

- O LED não acende, por estar inversamente polarizado.
- A correnta, contudo, e razoavelmente intensa, pois os únicos "obstáculos" que encontra são o diodo D2 (diretamente polarizado) e o resistor limitador R1.

Já, na situação da direita:

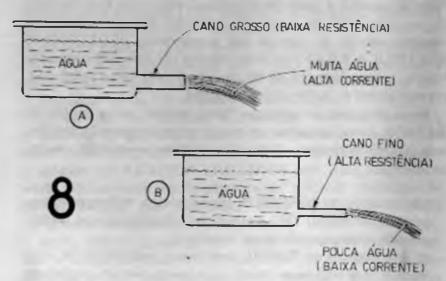
- O LED acende, por estar diretamente polarizado.
- A corrente, embora ainda intensa, é um pouco menor do que a obtida na situação anterior, pois a tensão da bateria deve "vencer", além do resistor limitador R1 e o diodo D1, também o próprio LED!

O VOLTIMETRO, NA PRÁTICA

O "aluno", na primeira parte da presente "lição" (BE-A-BÁ n.º 12), já aprendeu como pode ser "feito" um VOLTÍMETRO (medidor de tensão), a partir de um galvanômetro (que é um medidor de corrente), além de dotá-lo de múltiplos alcances ou faixas de medição, através da inserção das convenientes RESISTENCIAS MULTIPLICADORAS (que ficam sempre em série com o medidor básico...), cujas fórmulas de cálculo também já foram detalhadas, em seus aspectos "matemáticos e práticos"...

Antes de entrar em qualquer "papo prático" sobre os VOLTI-METROS, vamos conversar um pouco sobre comparações simples, mas que muito ajudam o "aluno" a entender o mecanismo da coisa...

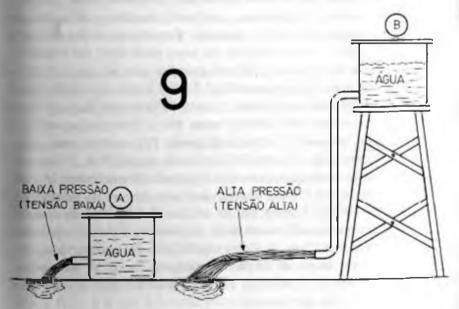
 Um medidor de CORRENTE (amperímetro, miliamperímetro, microamperímetro) "lê" a quantidade de elétrons que "passa" por determinado condutor ou circuito...


Já, um medidor de TENSÃO (voltímetro, milivoltímetro, etc.)
 mede a "pressão" ou a "força" com que os elétrons, portadores

da corrente, estão atravessando determinado condutor ou circuito (ou parte de circuito...).

Devido a esse tipo de atuação, um VOLTIMETRO, durante a medição, deve sempre ficar EM PARALELO com o componente, circuito ou setor do circuito sob análise (também respeitadas as polaridades, como acontece com os medidores de corrente...).

Para que o "aluno" possa seguir melhor os raciocínios que vão ser necessários, comparemos os fenômenos elétricos e eletrônicos com fenômenos hidráulicos, pois fica muito mais fácil "perceber" os conceitos, através de comparações com fatos mais "visíveis", no nosso dia-a-dia...


Vamos, inicialmente, comparar o fluxo de elétrons (corrente elétrica), com um fluxo de água saindo de um reservatório (caixa dágua, que, no caso, podemos comparar a uma pilha ou bateria, pois é "quem fornece" o material para o fluxo...). Observem o desenho 8: em (A), o cano de saída da caixa é bem grosso, o que, naturalmente, permite a saída de muita água num determinado

período de tempo. Isso acontece por que o cano, sendo grosso, oferece baixa resistência ao fluxo. Podemos comparar o conjunto a uma fonte de corrente à qual esteja acoplado um resistor de baixo valor ôhmico... Já em (B), o cano de saída é bem fino, exercendo, portanto, uma grande resistência à passagem da água... Com isso, a quantidade de água (intensidade do fluxo, portanto...), será bem menor, num espaço de tempo idêntico. Podemos, então, comparar essa situação com uma fonte de corrente acoplada a um "resistor série" de valor elevado...

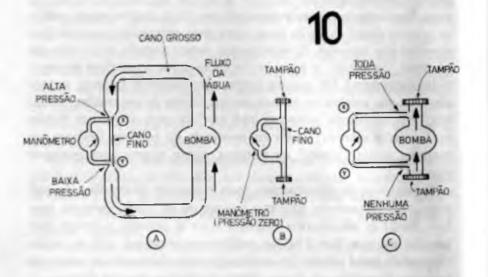
É importante notar que, estando ambas as caixas, (A) e (B), num mesmo nível de elevação (ambas no chão, por exemplo), a disposição (A) "soltará" mais água em dado tempo, do que a disposição (B), embora a "pressão" (que pode ser "calculada visualmente" pela "distância que o fluxo alcança", ao ser emitido pela "boca" do cano...) seja idêntica!

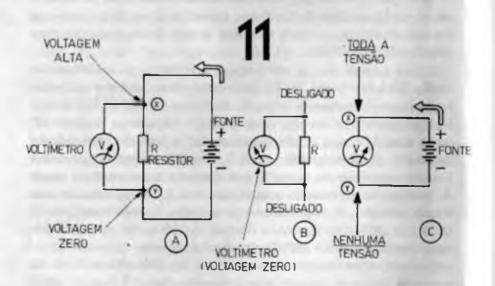
Vamos, agora, dar uma olhada no desenho 9, onde vemos novamente duas caixas d'água, desta vez ambas dotadas de canos de saida de igual diâmetro (oferecendo, portanto, a mesma resistência à passagem do fluxo...), porém colocadas em diferentes níveis de elevação. (A) está no chão e (B) está no alto de uma torre. O "aluno" já deve ter observado, "na vida real", esses tipos de situações.

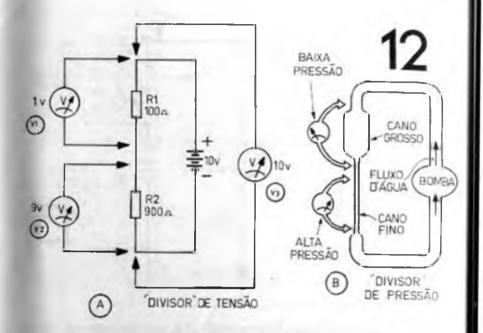
A caixa (AI, devido estar mais baixa do que a (B), "soltará" a água sob pressão bem menor do que a verificada no segundo caso (o "esquicho" emitido pelo cano (A) é "mixuruca", "vai pertinho", enquanto o emitido pelo cano da caixa (B) "vai lá longe"). Podemos, de forma direta, comparar essas duas situações hidráulicas com duas fontes, ambas com a mesma capacidade de fornecimento de corrente (já que se presume haver a mesma quantidade de água nas duas caixas), porém de tensões ("pressões elétricas") diferentes... A caixa (B) "é uma bateria de alta tensão", enquanto que a (A) é de "baixa tensão".

Por enquanto, nas comparações, a "fonte" (caixa d'água) comparou-se a pilhas ou baterias, em termos elétricos. Notar que tanto caixas d'água quanto pilhas, têm "quantidade fixa" de "coisa" (água no primeiro caso, elétrons no segundo...) dentro delas...

Acabou, acabou...

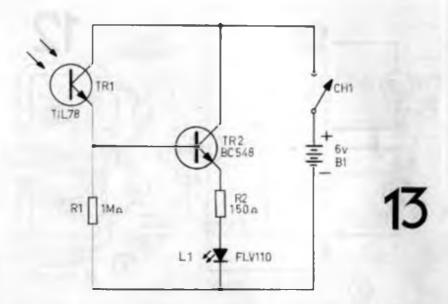

Entretanto, ainda dentro do paralelo hidráulica/eletricidade, também podemos comparar uma bomba d'água com um gerador de tensão! Vamos então tracar interessantes paralelos, observando os desenhos 10 e 11 que correspondem a situações hidráulicas e elétricas semelhantes. Em 10-A, uma bomba d'água força a circulacão do líquido dentro de um "circuito fechado", no sentido indicado pelas setas. Se o "anel hidráulico" for totalmente formado por cano grosso, de diâmetro uniforme, também será uniforme a pressão da água em todo o percurso. Entretanto, se determinado ponto do "anel" for constituído de cano mais fino, um manômetro (medidor de pressão) indicará pressão mais alta no início do cano fino e mais baixa no seu fim! E fácil intuir-se a razão disso: a bomba (que não pára nunca...) está forçando o fluxo de água "contra" o ponto (X), onde o cano afina. Em compensação, a bomba está "puxando" o fluxo do ponto (Y), onde o cano novamente aumenta de diâmetro. Observando agora 11-A, o "aluno" verá a mesma situação, em termos elétricos. O voltímetro V indicará, no ponto (X), uma tensão mais alta do que no ponto (Y). justamente devido à presença do resistor R (que faz, no circuito elétrico, o mesmo papel executado no circuito hidráulico pelo pedaço de cano mais fino...). Notar, então, que um resistor intercalado no circuito (além de limitar a corrente, como já foi explicado...) executa uma "queda de tensão", trabalho aproveitado com grande frequência nos circuitos...


Vejamos agora 10-B. No desenho, o manômetro está medindo a pressão existente entre os dois extremos do mesmo pedaço de cano fino anteriormente intercalado em 10-A, porém agora, embora o cano esteja cheio de água, suas duas extremidades estão bloqueadas por tampões. O manômetro indica pressão zero, pois não há nada "forçando" a água (os tampões isolam o pedaço de cano, hidraulicamente). Da mesma forma, eletricamente falando, se acoplarmos um voltímetro às duas extremidades de um resistor, como em 11-B, nenhuma voltagem será medida, pois não existe tensão ou "pressão elétrica" entre os terminais do resistor (embora ele também esteja "cheio" de elétrons, como ocorre com qualquer matéria...).


Finalmente, se eliminarmos todo o circuito (hidráulico ou elétrico), permanecendo apenas a bomba ou as pilhas, veremos que, (em 10-C) o manômetro indicará toda a pressão exercida pela bomba, ou que (em 11-C) o voltímetro mostrará toda a tensão "forçada" pelas pilhas. Em ambos os casos (observar as setas que indicam o sentido do fluxo, tanto hidráulico quanto elétrico...), os pontos (X) apresentarão "alta pressão ou alta tensão", enquanto que, nos pontos (Y), encontraremos "pressão zaro" ou "tensão zero"...

Verificamos então que, intercalando um resistor no percurso, o seu terminal que "recebe" o fluxo, apresentará tensão mais elevada do que a medida no outro terminal. A esse fenômeno chamamos QUEDA DE TENSÃO...

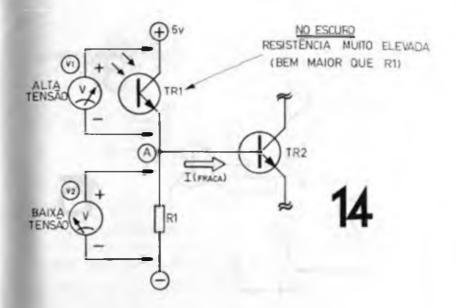
O que aconteceria se, ao invés da um resistor, intercalássemos vários (dois ou mais...)? Simplesmente, cada um dos resistores intercalados promoveria a "sua" QUEDA DE TENSÃO, diretamente dependente do seu valor ôhmico! Vejamos o desenho 12, onde, em (A) tamos a "situação elétrica" e em (B) a "situação hidráulica" correspondente... Em 12-A, R1 apresenta um valor ôhmico relativamente baixo, o que ocasiona, sobre ela, uma queda de tensão menor do que a verificada em R2 (cujo valor ôhmico é mais elavado). O importante é notar que a "tensão total", verificada nos extremos da fonte (bateria de 10 volts), em qualquer caso, corresponderá à SOMA das diversas quedas de tensão verificadas nos vários resistores intercalados no percurso do fluxo de corrente. No caso do exemplo, a queda sobre R1 é de 1 volt e sobre R2 é 9 volts. Somadas essas duas quedas de tensão, teremos


a voltagem "total" da alimentação, que é 10 volts.

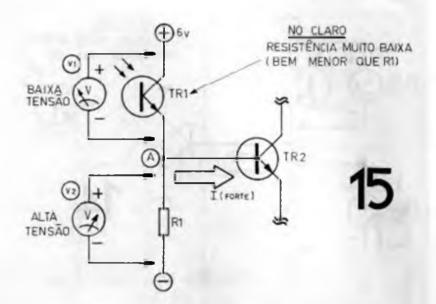
Em 12-B vemos o "equivalente hidráulico da coisa". O manômetro acoplado aos extremos do pedaço de cano grosso, indicará uma pressão relativamente baixa, enquanto que o colocado entre os extremos do pedaço mais fino de cano, indicará pressão bem mais alta. Somando-se, contudo, as pressões indicadas pelos dois medidores, teramos, sempre, aquela varificada diretamente entre a "saída" e a "entrada" da própria bomba (pressão "total" do sistema...).

Assim, quando intercalamos ou "empilhamos" mais de um resistor num circuito elétrico, cada um exercendo um certo grau de "dificultação" à passagem da corrente, através das diversas quedas de tensão, estamos promovendo, na verdade, uma DIVISÃO DE TENSÃO... A função de divisor de tensão também é um dos importantes "trabalhos" realizados por um resistor num circuito...

Como já fizemos em relação às medições de corrente, no início da presente "aula", vamos usar um "circuito base", para verificar a

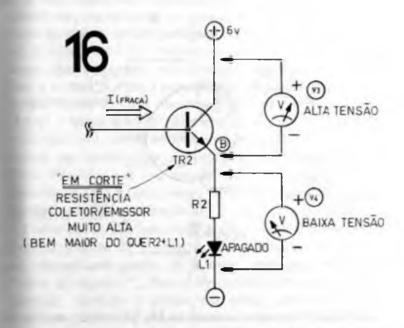

25

utilização do VOLTÍMETRO na análise do funcionamento e comportamento de um projeto... O desenho 13 mostra um circuito simples, cujo funcionamento teórico o "aluno" pode entender facilmente, à luz do que já aprendeu nas "lições" anteriormente publicadas no BÉ-A-BÁ... Basicamente, o seu funcionamento é o seguinte:

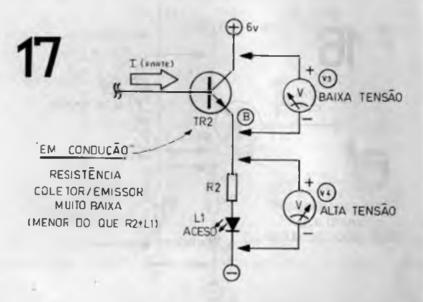

- Estando TR1 (fototransístor) no escuro, o LED L1 permanece apagado.
- Iluminando-se TR1, o LED L1 acende, fazendo com que o circuito atue como uma espécie de "indicador de luminosidade" simples...

Vamos ver, com o auxílio do VOLTIMETRO, o "comportamento" das tensões dentro do "labirinto circuital", observando, inicialmente, o "lado esquerdo" do circuito (TR1 e R1). TR1 é um fototransístor, ou seja: a resistência elétrica entre seus terminais de coletor e emissor é alta quando sua base não está recebendo luz e baixa quando sua base está recebendo suficiente luminosidade. Imaginemos, então, que R1 está no escuro, caso em que sua "resistência interna" estará elevada, bem maior do que o "milhão de

ohms" apresentado por R1. Comparando tal situação com a mostrada em 12-A, o "aluno" verificará que a queda de tensão promovida por TR1 (na momentânea função de "resistor elevado") será muito maior do que a executada por R1. O voltímetro V1, portanto, indicará quase a totalidade dos 6 volts provenientes das pilhas, enquanto que V2 indicará uma tensão bem fraquinha. A tensão fraquinha, no ponto (A), apanas conseguirá "forçar", em direção à base de TR2, uma corrente também fraca (I), insuficiente para acionar TR2 (ver as "aulas" específicas sobre o TRANSISTOR COMO AMPLIFICADOR).

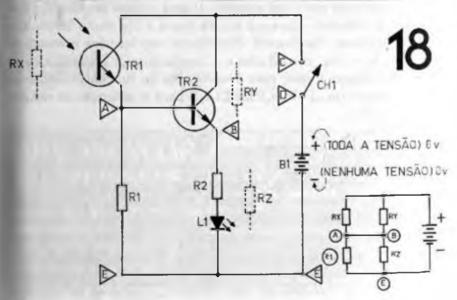

Entretanto, se iluminarmos TR1 (com o que a sua "resistência interna" cai a valores bem menores do que o apresentado por R1), como mostra o esquema do desenho 15, a queda de tensão sobre TR1 (agora "representando" um resistor de valor muito baixo...), será bom pequena, enquanto que a verificada sobre R1 será hem mais alta. Com isso, o ponto (A) apresentará tensão suficientemente alta para "empurrar" uma corrente forte em direção à base de TR2 (o qual então, por sua vez, será "acionado", permitindo a passagem de uma alta corrente em seu circuito coletor/emissor, ou, em outras palavras, terá a sua "resistência interna" drasticamente diminuída...).

Já analisada a "ala esquerda" do circuito, vamos ver o que acontece no seu "lado direito", formado por TR2, R2 e L1...


Com a situação proposta no desenho 14, vimos que o "divisor de tensão" formado por TR1 e R1 não conseguiu suprir o ponto (A) da tensão suficiente para forçar a passagem de corrente de base para TR2. Nesse caso, como mostra o desenho 16, TR2 estará exercendo a função de um "resistor de valor muito elevado" (bem maior do que o valor ôhmico apresentado por R2 mais L1...). Assim, embora o voltímetro V3 indique uma tensão relativamente alta (próxima dos 6 volts fornecidos pelas pilhas...), o instrumento V4 "lerá" uma voltagem muito baixa. Estando então o ponto (B) sob baixa tensão, o LED L1 permanecará apagado, pois a voltagem não será suficiente para "forçar" (através do resistor limitador R2) a corrente suficiente para o seu acondimento (se o "aluno" consultar a pág. 9 da 5a. "aula", verificará que o LED precisa de uma tensão direta mínima entre 1,5 e 2 volts para acender...).

Entretanto, se a condição no "lado esquerdo" do circuito for a proposta no desenho 15, com TR1 "no claro" e, consequentemente, TR2 recebendo suficiente corrente de base para entrar em condução plena, teremos a "ala direita" do circuito comportando-se

como mostra o esquema do desenho 17... TR2, agora com "boa" polarização de base, reduz drasticamente sua "resistência interna", que ficará bem menor do que o valor ôhmico representado por R2 mais L1. Nesse caso, então, o voltímetro V3 indicará uma tensão muito baixa, enquanto que V4 "lerá" uma voltagem bem mais elevada (praticamente a totalidade da tensão da alimentação, já que a queda de tensão sobre TR2 é pequenina...). Estando, então, o ponto (B) sob voltagem relativamente alta, conseguirá "forçar" a passagem (através do resistor limitador R2...) da corrente suficiente para o acendimento do LED L1.


Assim, através da análise das QUEDAS DE TENSÃO em "pontos chave" do circuito, podemos verificar todo o seu funcionamento, a também localizar defeitos ou imperfeições que requeiram (durante o desenvolvimento de um projeto, por exemplo...) correções de valores ou componentes... Vamos ver alguns exemplos típicos:

- Se, na situação mostrada no desenho 14, V2 indicar uma tensão muito maior do que a "lida" por V1, podem estar ocorrendo duas coisas: ou TR1 está defeituoso ("em curto") ou o valor ôhmico de R1 está muito elevado para as necessidades do circuito (devendo, portanto, ser diminuído, para corrigir o defeito...).
- Se, na verificação ilustrada no desenho 15, V1 "ler" uma queda de tensão muito mais alta do que a indicada por V2, ou TR1 estará "aberto" (defeituoso, também...), ou o valor de R1 será baixo demais em relação ao que o circuito "quer", devendo, portanto, ser corrigido...
- Verificado, na disposição mostrada em 16, que V4 "lê" tensão muito mais elevada do que a indicada por V3, podemos interpretar que: ou TR2 está "em curto", ou L1 está "aberto" ou R2 tem um valor elevado demais para as necessidades. Fica fácil, então, identificar e corrigir os eventuais defeitos.
- Já se, no esquema do desenho 17, V3 indicar uma queda de tensão muito mais alta do que a verificada por V4, saberemos que: ou TR2 está "aberto", ou L1 está "em curto" ou ainda R2 estará com um valor ôhmico baixo demais para as necessidades. Não é difícil, assim, achar eventuais defeitos (ou falhas nos cálculos prévios) e saná-los, devidamente...

O mais importante, numa análise circuital quanto as tensões, é identificar, inicialmente, os chamados "pontos chave", através de cujas quedas de tensão podemos verificar todo o comportamento do circuito... Para isso, também é necessária uma boa dose de bom senso, que, entretanto, todo "aluno" conseguirá desenvolver — tomos a certeza — com a prática e com o acompanhamento atencioso das "lições"... Uma maneira prática de determinar tais "pontos chave" é tentar olhar o "esquema" como se fosse apenas um monte de resistores, empilhados (em série) em alguns pontos, e emparelhados (em paralelo) em outros, como mostra o diagrama 18, onde RX é o resistor que "representa" TR1, RY equivale a TR2, RZ ao conjunto R2/L1 e, finalmente, R1 é "R1 mesmo"... (ver o "esqueminha" na mesma ilustração...).

Outro ponto que vale notar é que, como a "linha de terra" do circuito (pontos E) é negativa, sempre que se menciona a tensão am determinado ponto (A, B, etc.), fazê-mo-lo ern relação à essa "linha do negativo"... Assim, em outras verificações, podemos, por exemplo, verificar o estado das pilhas, simplesmente medindo, com um voltímetro, a tensão entre os pontos E a D (com a chava CH1 aberta). Se no ponto D não estiverem presentes os 6 volts das pilhas, ou estas estarão descarregadas ou, provavelmente, existirá

mais contatos no próprio suporte que as acondiciona... Já, fechando-se a chave CH1, os mesmos 6 volts deverá estar presentes no ponto C (sempre medindo em relação à "terra", ou ponto E...). Se isso não acontecer, com toda a certeza haverá defeito na própria chave CH1...

Como o "aluno" atento já deve ter percebido, através das análises quanto às correntes e tensões que se desenvolvem num circuito, podemos saber "simplesmente" tudo o que está ocorrendo "lá dentro", descobrir quaisquer eventuais defeitos, verificar se parâmetros e limites de componentes (sempre em face de consultas prévias aos respectivos manuais...), promover reparos e correções, alterar (no sentido de obter melhor desempenho...) valores de componentes, descobrir "curtos" e "maus contatos", etc.

A importância dos MEDIDORES e das MEDIÇÕES na Eletrônica prática é, portanto, IMENSA, não podendo, de forma alguma, ser relevada ou colocada em plano secundário... Por uma série de fatores, principalmente devido ao fato da Eletrônica, embora seja baseada em "Ciências Exatas", não ser, ela própria uma dessas Ciências (devido às inevitáveis variações de tolerância ou parâmetros industriais nos componentes...), nem sempre um circuito projetado e calculado apenas à luz da teoria e dos dados fornecidos pelos manuais, funcionará exatamente da maneira pretendida! Assim, a análise, as medições e a "prototipagem" (construção de uma montagem inicial, para a verificação do funcionamento e do comportamento...) são ESSENCIAIS para a obtenção de resultados positivos...

NOTA: Inevitavelmente (devido à enorme importância do terna), voltaremos ao assunto em "aulas" futuras, falando, inclusive, sobre a importância das MEDIÇÕES DE RESISTÊNCIA, na prática e nas análises circuitais. Desde já, contudo, o "aluno" poderá, com o que já aprendeu, ir praticando, tentando "desvendar" os segredos das montagens que já realizou no "curso" (e que têm sido ensinadas no INICIAÇÃO AO HOBBY...). Mesmo os circuitos

perfeitos (sem defeitos), servirão muito bem como "cobaias" para experiências e verificações, como "treinamento" para as eventuais (as vezes inevitáveis...) situações futuras, nas quais o "aluno" se deparará com defeitos mesmo, que devam ser descobertos e depois corrigidos...

COMPUTAÇÃO ELETRÔNICA!

NO MAIS COMPLETO CURSO DE ELETRÓNICA DIGITAL É MICRO PROCESSADORES VOCÉ VAI APRENDER A MONTAR, PROGRAMAR E OPERAR UM COMPUTADOR.

MAIS DE 160 APOSTILAS LHE ENSINARĂD COMO FUNCIONAM OS REVOLUCIONARIOS CHIPS 8080, 8085, 280, AS COMPACTAS "ME-MORIAS E COMO SÃO PROGRAMADOS OS MODERNOS COMPUTADORES

VOCE RECEBERA XITS QUE LINE PERMITIRAD MONTAR DIVERSOS APARELHOS CULMINANDO COM UM MODERNO MICRO COMPU-TADOR

NÃO PERCA TEM-PO! SOLICITE INFORMAÇÕES AINDA HOJE!

GRÁTIS

CURSO	POR	CORRESPONDÊNCIA
-------	-----	-----------------

CEMI - CENTRO DE ESTUDOS DE MICROEL STRÓNICA S INFORMATICA Av. Paca de Barros, 411 - q. 26 - fone (011) 93-0619 Chica Postal 13219 - CEP 01000 - São Paulo - SP

84410 .

PARA ANUNCIAR
E FAZER SEUS
ANUNCIOS

223 2037

SO ELETRONICA

RAPROM PROPAGANDA E PROMOÇÕES BIC LYDA

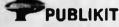
BUA 005 GUSMOZS 153 - 25 - CJ 26 - 8AO PAULO

Serramentas Componentes O

ENTENDENDO (MAIS OU MENOS...) OS CÓDIGOS "MALU-COS" DOS TRANSÍSTORES...

Provavelmente, uma das maiores dificuldades com que se defronta o iniciante em Eletrônica é a da correta identificação dos transístores, a partir do seu "código" ou "número"... Desde que foi inventado (logo, logo, terão decorridos 40 anos da criação desse maravilhoso dispositivo...), centenas (talvez milhares...) de fabricantes desenvolveram suas li-

nhas de produção e, imediatarnente, preocuparam-se em "dar nomes aos bichinhos", para diferenciá-los uns dos outros, em termos de parâmetros, características, limites elétricos, etc. (conforme já estudamos nas "lições" específicas, nas "aulas" 6, 7 e 8). Dependendo do fabricante, das características de potência, do tipo de aplicação a que se destinam, existem, seguramente, centenas de formas, tamanhos, esposição de "pernas", materiais de encapsulamento, etc., utilizados pelos fabricantes nos transistores atualmente produzidos...


A parafernália é tão grande que, mesmo para aplicações mais simples, sem o auxílio de um bom enual, o pobre do estudante dificilmente conseguirá identificar aspectos mais básicos de deminado componente...

Já mostramos, em "tabelas" (muduzidas, porém de uso muito mutico...) anteriormente publicados, nas "aulas" específicas, as muns as "caras externas" mais comuns as "caras externas" mais

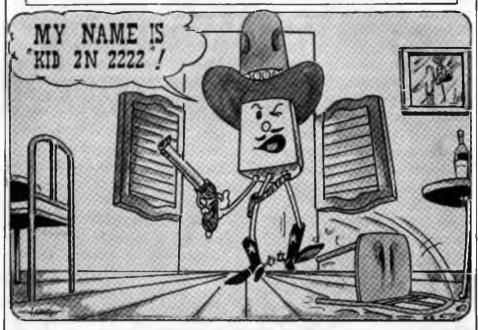
-3.5 cm →

frequentes, bem como os paràmetros dos "códigos" mais utilizados, no dia-a-dia da Eletrônica (experimental e aprendizado...). Muitos "alunos", contudo, insistem em perguntar, através das cartas endereçadas ao BE-A-BA por que (a título de exemplo...). um "BC548" não é "chamado" de "XYZ33", ou outro "nome" qualquer... Vamos, então, tentar quiar o estudante através do autêntico labirinto que é o grande número de sistemas de codifiatualmente adotados. cacão explicando os critérios usados para "juntar as letras e números" que formam os "nomes" desses "bichinhos de três pernas"...

Mini Furadeira para Circuito Impresso

Corpo metálico eromado, com interruptor incorporado, fio com Piug P2, leve, prática, potente funciona com 12 Volta c.c. ideal para o Hobbista que se dedica ao modelismo, trabalhos manuale, gravações em metals, confecção de circultos impressos e etc...

Pedidos via reembolso postal.


PUBLIKIT R. Major Angelo Zanchi, 303 CEP 03633 - São Paulo - SP.

Preço varejo: Cr\$ 6.032,80 + despesas de porte.
Vendas no atacado, sob consulta.

Peço enviar-me pelo reembolso postal......(quantidade) Furadeira(s) pela qual pagarel Cr\$ £832,00 por peça, mais as despesas postais.

Nome:	
Aua:	Nº
Bairro:	Cep:
Oldede.	Estados

O SISTEMA AMERICANO

Nos Estados Unidos, praticamente todos os fabricantes adotaram um "código comum" para os transistores, por eles chamado de "Sistema Jedec", e que constitui na codificação com o prefixo "2N", seguido sempre de um sufixo formado por três ou quatro algarismos. Nesse sistema, todo o "segredo" da identificação do transistor está, justamente, nesses "famigerados" dois ou três algarismos após o prefixo "2N" assim, a única maneira prática de conhecer os tipos e parâmetros do componente, através do seu código, é mesmo consultar-se os manuais especializados... Felizmente (ou infelizmente, pois 38

para nós, aqui, não é muito fácil obter-se tais manuais...) os fabricantes americanos costumam editar os seus próprios manuais. ou realizarem convênios com editoras técnicas para a impressão e divulgação desses manuais (como ocorre, por exemplo, com a Texas Instruments...). Na "minitabela'' a seguir, o "aluno" encontra alguns dos transístores de origem norte americana, com seus equivalentes mais facilmente encontráveis por agui (a lista é apenas uma sequência de exemplos, não constituindo, de maneira alguma, uma verdadeira tabela. ou manual...).

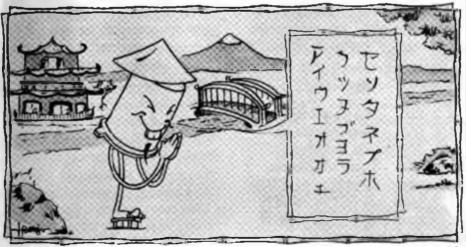
transisto	or americano	-	equivalente mais	comum
2N507	— germânio, pe aplicações ge		cia,	AC127
2N519	 germânio, pe aplicações ge 	•	cia, 	AC128

2N2924	-	silício, pequena potência,
		aplicações gerais — NPN .

BC107

2N5190	_	sil	ício,	alta	potência,

TIP31


silício, alta potência. 2N5193 áudio, PNP

.. TIP32

Como dá para perceber por esses poucos exemplos, quem não possuir um manual para consultas, simplesmente não saberá o "significado" daqueles "três ou quatro numerozinhos" depois da sigla "2N". Os transístores

americanos não são de obtenção muito fácil no Brasil (e, quando encontradus, os precos costumam ser meio "salgados"). A solução é, sempre que possível, utilizar um equivalente (cujo código deverá ser obtido nos manuais...!

O SISTEMA JAPONÉS

39

Os fabricantes nipônicos, tamhém "normalizaram" a codificacão dos seus transistores, através de um órgão chamado "JIS" (Japanese Institute of Standards). Assim, todos os transístores de origem japonesa podem ser imediatamente reconhecidos, não pelos "olhinhos" diferentes, mas pelo prefixo "2S". O prefixo bá sico é sempre seguido de uma letra (que acrescenta importantes informações prévias sobre o tipo e a utilização do componente), mais um conjunto de algarismos (esses, sim, de codificação apenas "encontravel" nos manuais...). E interessante notar que, embora, por exemplo, a Texas Instruments seja uma firma de origem norte-americana e não japonesa, em alguns dos seus produtos, também aparece o código básico "2S", seguido de números... Mas, voltando aos transístores japoneses, vamos ver o significado daquela "letrinha", sempre colocada após o código inicial "25"...

letra – significado

A - PNP - alta frequência

B - PNP - baixa frequência

C - NPN - alta frequência

D - NPN - baixa frequência

H - transistor unijunção (TUJ).

J - transístor FET de canal P.

K - transistor FET de canal N.

OS - foto-transistor

Assim, por exemplo, vamos "interpretar" alguns códigos nipônicos para transístores:

2SA77 — transistor PNP para alta freqüência (os alga rismos 77 determinam os demais parâmetros, apenas obteníveis num manual).

2SB415 — transistor PNP para baixa frequência (idem — ibdem).

2SC56 — transistor NPN para alta frequência (idem — ibdem).

Alguns dos códigos de transistor japoneses são de aquisição não muito difícil no Brasil, já que, por aqui, existem várias subsidiárias de grandes corporações nipônicas de Eletrônica, e a necessidade de componentes para reposição é grande. De uma maneira geral, podem ser usados como equivalentes, na maioria dos circuitos destinados ao aprendizado, experiências, etc., "sem medo".

O SISTEMA EUROPEU (E BRASILEIRO...)

A codificação adotada pelos fabricantes nucionais de transistores é, basicamente, a mesma empregada pelos europeus (lá chamada de 'Pro-Electron'...). É, na prática, a codificação "mais completa", em termos do que fornece de informações prévias sobre o componente. Existem dois sistemas alfanuméricos básicos, para a nomenclatura desses transistores (que constituem quase a totalidade dos frequentemente empregados nas montagens publicadas em revistas brasileiras, entre elas o BE-A-BA, a DCE e a INFORMÁTICA...):

- Prefixo de duas letras, seguido de três algarismos (para os transístores "comerciais", encontráveis em qualquer loja, para reposição, experiências, montagens, etc.).
- Prefixo de três letras, seguido de dois algarismos (apenas para transístores industriais, fornecidos diretamente do fabricante para outras indústrias, que usem o componente na montagem de aparelhos, etc.).

Em qualquer caso, a primeira letra indica o material semicondutor empregado na fabricação do componente, da seguinte maneira:

A – indica transistor de germânio

B - indica transistor de silicio

A tabelinha a seguir mostra o significado das "outras" letras, colocadas após a inicial, sempre designando importantes parâmetros e configurações:

trans/stor germânio	es de	transíst silício	ores de	aplicações
AC	_	ВС	-	baixa potência, baixa frequência, uso geral.
AD	-	BD	-	alta potência, baixa fre- qüência, uso geral.
AF	_	BF	-	baixa potência, alta fre- quência.
AL	-		-	alta potência, alta fre- quência.
AU	-	BU	-	alta potância (chavea- mento e comutação).
		BPX	-	foto-transistor.
		BPY	-	foto-transistor.

(Não relacionamos os transístores com prefixo de três letras, por tratarem-se de componentes especializados, raramente usados em montagem para estudantes ou iniciantes).

Os números colocados após as letras iniciais, apenas podem ser "interpretados" através dos manuais, porém, as informações "alfabéticas" básicas já "dizem" muito a respeito do componente, de modo que, em muitas ocasiões,

em aplicações não críticas, o "aluno" poderá, perfeitamente, guiar-se apenas pelas "letras" na tentativa de usar um equivalente num circuito qualquer... Vamos "treinar" um pouco a "leitura" dos códigos, usando exemplos

correntes. Prestem bastante atenção, e tentem assimilar o sistema, pois é de muita utilidade em

"emergências", como já dissernos:

código		– especificação
AC126	-	germânio, baixa freqüência, baixa potência, uso geral (no caso, um PNP).
BC548	-	silício, baixa freqüência, baixa potência, uso geral (no caso, um NPN).
AD161	-	germânio, alta potência, baixa freqüência (no caso, um NPN).
BD140	-	silício, alta potência, baixa frequência (um PNP, no caso).
AF115	-	germânio, baixa potência, alta freqüência (no caso, um PNP).
BF184	-	silício, baixa potência, alta freqüência (um NPN, no caso).

Além da codificação mostrada, lá no "finzinho", após os algarismos, pode também aparecer mais uma letra (A, B, C, etc.), quase sempre indicativa de "desenvolvimentos" ou "melhorias" em cima do código básico. Assim, por exemplo um BC548C é "melhor" do que um BC548 (embora, para aplicações gerais, tratem-se de equivalentes óbvios e diretos, um do outro...), por apresentar parâmetros mais rígidos, ou mais "favoráveis" para certas aplicações

críticas. Para o estudante ou iniciante, contudo, essa "letrinha lá no fim" não costuma apresentar importância e só deve "preocupar" se, num determinado circuito mostrado em alguma revista ou livro, o código for indicado especificamente dessa maneira, e com a recomendação expressa de que o componente "é crítico e não admite equivalentes"...

Praticamente todos os transístores dessas séries (Europa/Brasil), podem ser encontrados com

facilidade (e a preços não muito assustadores...) nos vareios eletrônicos nacionais. Essa é a razão principal desses códigos aparecerem com imensa frequencia nas montagens destinadas aos estudantes, hobbystas e amadores em geral. Quern se interessar mais profundamente pelo assunto, poderá tentar obter, ou através dos grandes varejistas, ou através de correspondência direta aos próprios fabricantes, valiosos manuais de características. Experimentem um contato direto, por exemplo, com a IBRAPE ELE-TRONICA LTDA, (um dos grandes fabricantes nacionais de componentes, produzindo uma linha enorme de itens...), através da

Caixa Postal n.o 7383 — São Paulo — SP, sobre a possibilidade de obter manuais e tabelas dos produtos...

OS CÓDIGOS "DO FABRICANTE"

Alguns grandes fabricantes de componentes costumam adotar também códigos "próprios", desvinculados das padronizações descritas... Destacamos duas "codificações de fabricante" que podem ter seus componentes encontrados no mercado nacional, apenas a título de complementação para o "aluno":

- Código da TEXAS: TIP (seguido de números) alta potência, encapsulamento plástico.
 - TIS (seguido de números) semicondutores de baixa potência (pequeno sinal).
- Códigos da MOTOROLA:
- MJ (seguido de números) silício, alta potência, encapsulamento metálico.
- MJE (seguido de números) silício, alta potência, encapsulamento plástico).
- MP (seguido de números) germânio, alta potência, encapsulamento metálico.

- MPF (seguido de números) transístor de efeito de campo (FET).
- MPS (seguido de números) transístor de baixa potência (pequeno sinal).

Como o amigo leitor e "aluno" deve ter notado, embora a "selva" seja bem fechada, existem algumas "picadas" e caminhos que podem ser mais ou menos (como dissemos no título, lá no início...) seguidos e identificados, facilitando a interpretação num sentido ou outro... Enfatizamos, contudo (como iá o fizemos anteriormente...) que, mais cedo ou mais tarde, é inevitável ao estudante a obtenção de manuais e tabelas realmente abrangentes e completos, sem os quais, a 'vida profissional", dentro da Eletrônica, torna-se extremamente dificil... Infelizmente, devido à enorme extensão dessas listas de parâmetros, equivalências, códigos e características, é impossível publicá-las "dentro" da nossa BE-A-BA (qualquer "manualzinho", por al, tem, no mínimo, duas ou três vezes mais páginas

do que um exemplar inteirinho do nosso ''curso''!).

Nem tudo está "perdido". contudo... Boas livrarias técnicas existem em razoável quantidade na nossa terra (embora ainda poucas, para o nosso gosto e as necessidades da nossa gente...) e o "aluno" realmente dedicado, que pretenda seriamente progredir no ramo maravilhoso da Eletrônica. poderá obter importantes publicações desse tipo... Os preços, é verdade, nem sempre estão na "faixa baixa" (que sempre procuramos seguir nas nossas publicações...), entretanto, vale a pena economizar meses seguidos, se não houver outra saída, para a compra de um importante manual que, provavelmente, acompanhará o leitor em toda a sua vida — de estudante e profissional...

Se você quer completar a sua coleção de DIVIRTA-SE COM A ELETRÔNICA, peça os números atrasados, pelo reembolso postal, a BÁRTOLO FITTIPALDI — EDITOR — Rua Santa Virgínia, 403 — Tatuapé —

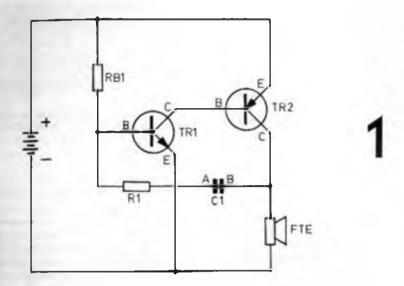
RESERVE DESDE JÁ, NO SEU JORNALEIRO, O PROXIMO NÚMERO DE

DIVIRTA-SE COM A ELETHÔNICH

projetos fáceis, jogos, utilidades, passatempos, curiosidades, dicas, informações... NA LINGUAGEM QUE VOCÊ

► ENTENDE! ← ◆

Aqui BÉ-A-BÁ DA ELETRÓNICA tentará esclarecer os "pontos nebulosos" ou que não tenham sido bem entendidos pelos "alunos", referentes às
"lições" apresentadas anteriormente na revista... Embora a turma aqui do
— com o perdão da palavra — "corpo docente", não seja muito chegada a
regras e regulamentos, algumas condições prévias são necessárias, para não
bagunçar a aula... Então vamos combinar o seguinte: para "levantar a mão"
e pedir um esclarecimento, vocês deverão...


- Escrever para REVISTA BÉ-A-BÁ DA ELETRÓNICA
 SEÇÃO "UMA DÚVIDA, PROFESSOR!"
 RUA SANTA VIRGÍNIA, 403 TATUAPÉ
 CEP 03084 SÃO PAULO SP.
- Expor a dúvida ou consulta com a maior clareza possível (de preferência em texto datilografado ou em letra de forma, que aqui ninguém é farmacéutico...).
- Somente serto respondidas as cartas que contenham assuntos realmente relevantes e que possam interessar à maioria. Não serão respondidas dúvidas que possam "atrapalhar a aula", ou seja: que não digam respeito a assuntos iá abordados...
- Não serão respondidas consultas diretas por telefone, nem manteremos serviço de correspondência direta ao leitor. Se mandarem envelopes selados para a resposta, vão perder o selo...

- Somente serão levadas em consideração as cartas que apresentarem NOME E ENDEREÇOS COMPLETOS (INCLUSIVE CEP) dos remetentes. Essa exigência se deve à nossa intenção de cadastrar todos os "alunos" e "alunas" bem direitinho, o que não será possível se os dados estiverem incompletos...
- A critério único de BÊ-A-BÁ DA ELETRÔNICA, as quentões propostas poderão ser condensadas ou simplificadas, para facilitar o entendimento dos demais leitores...
- Um pouco de paciéncia é necessária a todos que escreverem, pois as dúvidas serão respondidas (respeitadas as condições já explicadas...) cronologicamente, por ordem de chegada. E não adianta espernear...
- Quem quiser ir ao banheiro durante a aula (as moças dizem "ir ao toilette...") não precisa levantar a mão (nem escrever, é claro...). Pode ir direto que o mestre é bonzinho...
- Quem pretende tumultuar a aula, fazendo piadinhas fora de hora quando o assunto for sério e coisa assim, corre o risco (embora a gente também goste de brincar, mas só nos momentos certos, para "relaxar" um pouco...) de pegar um "gancho" ou de ficar "de castigo no canto", usando o chapéu de "vocês sabem quem...".

(ATENÇÃO TURMA: Devido ao fato da revista ser produzida com uma antecedência mínima de ⁰⁰ dias, em relação à data em que aparece nas bancas, será inevitável algum atrazo nas respostas aqui no UMA DOVIDA, PROFESSOR! Assim, pedimos a compreensão dos "alunos" para esse aspecto... Lembramos que, mesmo as cartas não respondidas — por qualquer motivo — terão os seus remetentes devidamente cadastrados no nosso arquivo, habilitando-os a diversas promoções futuras que estão dentro dos planos da Editora de BÉ-A-BÂ...).

"BE-A-BA está uma revista ótima... Numa das "lições". fiquei sem entender bem um ponto... Como os capacitores permitem a passagem da corrente para a realimentação do transistor (quando este funciona como oscilador), ou a passagem da corrente para ser amplificada por um transistor, já que o dielétrico, existente entre as duas placas, é isolante...?" — Edmar Moreira — Barra de São Francisco — ES.

Os capacitores, Ed, apenas bloqueiam completamente a passagem da CORRENTE CONTÍNUA (reveja as aulas 2 e 3...). Como tanto os osciladores quanto os amplificadores com transistores (ver aulas 6, 7 e 8) trabalham. "dentro" dos circuitos, com CORRENTE ALTERNADA (embora a alimentação seja em CORRENTE CONTÍNUA), na maioria dos casos o capacitor permite a livre passagem dos sinais, porém condicionando o "tempo" des-

sas transições. Isso quer dizer que, se o valor cm microfarads for muito elevado, os tempos de carga e descarga do componente serão também grandes (aula 2), permitindo a passagem apenas de corrente alternada de baixa frequência. Já com valures menores de capacitância (menores tempos de carga e descarga, tambem...), correntes alternadas de frequênclas mais clevadas poderão passas pelo capacitor. Vamos ver, no exemplo ilustrado em 1, como é esse "negócio" de passar a corrente pelo capacitor. O esquema mostra um oscilador típico com transistores NPN e PNP (pare cido com a SIRENINHA, da 2a "aula"._). Assim que se liga o circuito, o resistor RBI (ligado ao positivo), polariza o terminal de base de TRI que, assim, entra em condução. Esse transistor, por sua vez, através do seu percurso de emissor/coletor, fornece a necessária polarização (corrente) de base para colocar também TR2 (um PNP) em condução. Sabemos que, quando um transistor entra em condução, sua "resistência interna", no percurso emissor/coletor, fica muito baixa (quase um "curto-circuito" ...). Assim, com TR2 em condução, a placa B do capacitor C1 fica, na prática, ligada ao positivo da alimentação, através do próprio transístor PNP. Essa carga positiva, acumulada na placa B do capacitor quer dizer, simplesmente, que a placa A está negativa ("menos positiva" do que a placa B, pois esta última está ligada diretamente ao positivo das pilhas, enquanto que a placa A tem vários "obstáculos resistivos" - R1 c RB1 a interligá-la ao positivo...). Estando então a placa B do capacitor C1 positiva e a placa A negativa. podemos considerar o capacitor como "carregado". Essa carga, no entanto (como vimos na 2a "aula") se "escoa" através dos circuitos externos ao capacitor, ou seja: durante a descarga, o capacitor funciona como uma pequena fonte de energia, fornecendo corrente ao circuito (aquela mesma que ele "acumulou" durante a carga...). Vocé pode notar que a "placa negativamente carregada" de Cl está ligada à base de TRI, através de RI. Assim, durante a descarga de C1, essa "negativação" a tinge o terminal B d: TR1, fazendo com que o transistor cesse a sua condução (já que um NPN - como já vimos nas "lições" sobre o transistor, recebendo polarização negativo na

sua base, deixa de permitir a livre passagem de corrente no seu circuito de emissor/coletor). Com TR1 "cortado", TR2, por sua vez, também deixa de receber a conveniente corrente de base, parando também de conduzir no seu circuito de emissor/coletor! Assim, o circuito, como um todo, "retorna à estaca zero", agindo novamente o resistor RBI sobre a hase de TR1, colocando-o em condução e recomeçando todo o ciclo. Se não ocorresse, portanto, o fenômeno da "carga-descarga" em Cl, simplesmente o circuito não oscilaria. Para podernos "ouvir o liga-desliga" do circuito, colocamos o alto-falante. Cada vez que TR2 está em condução, a corrente quase que total vinda das pilhas atravessa o alto-falante. Já. quando TR2 fica "cortado", o alto-falante praticamente não recebe corrente. Esse "passa-não-passa" da corrente pelo falante, gera um grande número de "cliques" por segundo. reproduzidos pelo "dito-cujo" em forma sonora. Dependendo da frequência desses "cliques" (que, como vimos, e dependente do valor de C1) teremos a "audição" de um tom mals ou menos agudo... Agora, interprete a "coisa" assim: uma corrente alternada não e aquela cuia polaridade se inverte, automática c constantemente? O capacitor Cl. durante o funcionamento do circuito também não se "carrega e descarrega", automática e constantemente, assumindo as suas placas as polaridades existentes a cada momento? Então, para todos os efeitos. C1 está sendo "a travessado" pela C.A., não é? O resistor R1 efetua importante trabalho, também, no circuito, pois pode "retardar" (devido aos obstáculos que coloca à passagem das correntes...), tanto a carga quanto a descarga de Cl, sendo então "co-responsável" pela frequência de trabalho de todo o conjunto... Releia com atenção as "aulas" sobre o capacitor, o transistor c os circuitos que você perceherá todo o "truque". que é muito simples...

. . .

"Gostaria que o "professor" me esclarecesse alguns pontos simples, que ainda não entenda...

A – Qual a stralidade de um resistor em um circulto?

B - E a finalidade do capacitor, qual é...?

C - Em uma corrente de 110 volts, qual o resistor e o capacitor que possa utilizar...?

D - Até que número val o "curso" do BÉ.

A-BA . 2

E - Termbiado o "curso", terei direito a algum Certificado...?

F - Até o momento, não recebi nenhum teste ou prova...?

Agradeço a oportunidade que me deram de "levantar a mão"... Gostaria de saber o nome do professor..." – Gilso S. Cifaraski – Paranagua – PR.

Primeirinho, Gilso, desculpe a gente se o seu nome não saiu impresso corretamente, pois a sua caligrafia é do tipo "que o diabo gosta", e, realmente, foi o que deu para entender... Vamos às suas perguntas:

- A A finalidade de um resistor num circuito. c, simplesmente, atrapalhar a passagem da corrente, ofereces um verdadeiro obstáculo (em maior ou menor grau), ao fluxo de elétrons que constitui a corrente elétrical Através desse trabalho, com um resistor podemos dimensionar, à vontade, a grandeza da corrente em qualquer ponto de qualquer circuito. Ocorre também uma série de trabalhos "indiretos", realizados pelo resistor: já que as demais grandezas da Eletricidade e da Eletrônica são intendependentes (reveja, rudo isso, na la "aula"...), através da modificação do valor de um resistor (a parte de um cálculo matemático simples...), podemos dimensionar (além da corrente) também a tensão...
- B Quanto ao capacitor (cujos detalhes de construção, função e funcionamento, voo poderá encontrar na nossa 2a. "aula"...), sua finalidade básica é armazenar cargas elétricas, ou seja: funcionar como um "guardador" de elétrons (que são os "pottadores" da corrente elétrica). Dependendo do valor do capacitor, ele terá maior ou menor capacidade de guardar elétrons. Depois de "guardada" ou "acumulada" num capacitor, as cargas elétricas também poderão ser recuperadas (caso em que o componente, ao invés de guardar as cargas as "devolve" ao circuito em que esteja aco-

plado...). Chamamos a esses dois fenômenos carga e descarga. Essas duas operações levam algum tempo para serem completadas (tanto a carga quanto a descarga...). Assim, basicamente, o capacitor é um componente que nos permite controlar o tempo necessário às civersas transições de intensidade de outras grandezas elétricas num circuito.

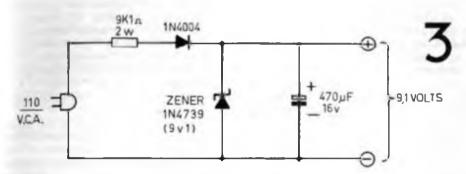
C - Essa sua pergunta está um tanto confusa. ou incompleta, Gilso Tudo depende "do que" você quer "fazer" com os 110 volts! Conforme voce pode ver nas "licões" teóricas da la "aula", uma vez que você conhece a tensão (110 volts), poderá determinar a corrente (de acordo com os parâmetros ou limites dos componentes do circuito), através do correto dimensionamento do valor do(s) revistor(es), calculandoo pelas fórmulas da Lei de Ohm. Quanto ao(s) capacitor(cs), o valor dependerá (já que, como dissemos al atrás, trata-se, basicamente, de um componente que controla o "tempo" das transições...) da frequência de operação do circuito. Não esquecer que, além do seu valor (normalmente em microfarads ou seus sub-múltiplos), devemos dimensionar o expacitor também pela sua "voltagem de trabalho" (máxima tensão que o componente "aguenta"...). Como o "seu" circuito é de 110 volts, parece claro que a voltagem de trabalho do(s) capacitor(cs) deverá ser de, no mínimo, esses mesmos 110 volts (embora, como já recomendamos na "lição" específica, aconsetha-se usar componentes para voltagens ainda maiores.)

1) — O nome de "curso" dado ao BÉ-A-BÁ prende-se à forma pela qual a revista foi estruturada, com "lições", "aulas", e todo o esquema costumeiramente adotado em escolas "de verdade" (sejam elas por correspondência ou com trequência...). Entretanto, ao contrário dos cursos regulares, o "curso" do BÉ-A-BÁ não tem um "fim" previsto (em termos de tempo ou de quantidade de "aulas"). Explicamos: a Eletrônica 6 uma matéria que progride a uma velocidade tão grande que, por mais avançado que se torne o nosso "cursinho", haverá

sempre um assunto novo, uma tecnologia recentemente desenvolvida, novos componentes altamente especializados, etc., a serem abordados e explicados. Assim, como Eletrônica é uma recnologia essencialmente dinâmica em seu desenvolvimento (não há limites práticos e, segundo alguns, nem teóricos, para o seu avanço...), também o "curso" do BÉ-A-BÁ será (pelo menos pela nossa vontade, e pela da esmagadora maioria dos "alunos"...) interminável, desde que assim nos permita o Grande Arquiteto, o Supremo Técnico de Eletrônica (Deus, para os íntimos...).

E - Conforme assina a ressalva, sempre veiculada lá no início da revista (quase sempre junto ao SINAL DE ENTRADA...), embora BÉ-A-BÁ assuma a forma de "revista-curso", não podemos fornecer quaisquer tipos de Diplomas ou Certificados, pois tal feito é privilégio dos Cursos e Escolas regulares, devidamente "patenteados", registrados, homologados e autorizados pelos órgãos do Ministério da Educação (caso em que, pela legislação vigente, não se enquadram as revistas).

F – Até o momento, pelo menos, não se cogitou de fornecer aos "ilunos" testes ou provas, já que o nosso "curso" é aberto, ou seja: aqui não tem aquela história de "dar notas", de primeiro colocado, de último da classe, etc., Cada um dos "leitores/alunos" deve ter a consciência e a auto-crítica suficientes para avaliar a qualidade c a quantidade dos conhecimentos que está adquirindo. Para aqueles mais lentos, ou para os que entram atrasados no nosso "curso", existe a presente seção, UMA DÚVIDA, PROFESSOR, para o "papo" informal a respeito dos pontos não perfeitamente entendidos...


"Realmente, BÉ-A-BA está atendendo a todos os níveis dos "aluno:", pois o ritmo está ideal para que todos possum acompanhar (e rever, sempre que necessário...) com detalhes, todos os funcionamentos, teorias e apticações de componentes, circuitos, etc... Uma pequena dúvida, mestre: montei o MINI-AMPLI (expe-

riência da pâz 20 da 7a "aula", que funcionou muito hem... Ocorreu, porém, um fato interessante: rettrando-se o microfone, o circulto funciona como uma espécie de "metrònomo", gerando um "tòc-tòc"... Qual seria a explicação para isso? Gostaria também que o mestre me ensinasse como se pronuncia a polavra: é transistor ou transistor...? Outra palavra sobre cuja promúncia tenho dúvida: ampére ou âmpere...?" — Martins Oliveira da Silva Filho — Salvador — BA.

Quanto ao MINI-AMPLI, Martans, o fenômeno" que você descreve é relativamente comum nos circuitos amplificadores de alto garho (como é o caso da experiência em referência...). Conforme voce deve ter visto nas "lições" sobre a TRANSISTOR COMO OSCI-LADOR, sempre que exista um elo de realtmentação entre a salda e a entrada de um amplificador, podem ocorrer as oscilações (condicionado ainda esse fenêmeno à "quantidade" e à "fase" dessa realimentação...), conforme esquematizado no desenho 2. Devido à montagem em barra de terminais, o circuito do MINI-AMPLI apresenta vários "percursos" de realimentação, proporcionados pela própria capacitància distribulda da fiação, etc. (Dois fios condutores, próximos um do outro. podem, em certos casos, agir como se fosiem um verdadeiro capacitor). Esse fato (normal, nas montagens mais simples...), aliado ao alto ganho (elevado fator de ampilificação) do circuito é responsável pelo "tóc, tóc". A oscilação não ocorre com o microfone no circuito.

pois este "carrega" a entrata do MINI-AMPLL de modo a não permitir que a realimentação aja sobre a mesma (que, nesse caso, apenas "sente" os sinais gerados pelo próprio microfone...). Falemos, agora, de "palavras": aqui no BE-A-BA adotamos para o termo "transí» tor", a tônica na silaba "sis" (soando, então, a palavra, como uma parox!tona, com a tônica na penúltima sílaba, portanto...). Embora os puristas prefiram usar "transistor" (spando como oxítona, tônica na última sílaba...). Preserimos, nós, escrever translator porque falamos transfator, influenciados pelas origens do termo, que vem da junção das palavras inglesas "transference" e "tesistor"... Quanto ao termo "ampére", na verdade é o próprio nome do grande cientista que pesquisou a corrente elétrica e determinou muitas formulas importantes para os calculos elétricos. O nome desse verdadeiro "pai" da Eletricidade e Eletrônica, escreve-se "Ampere" (com o acento "virado para o outro lado"), porém a promincia correta, no nosso idioma, é com a sílaba "abcrta" ("Ampére"). penúltima -Assim, para simplificar o entendimento, botamos o acento desse jeito, por corresponder, foncticamente, à exata maneira como o termo e "falado"... Deixemos de lado, contudo, todo esse "papo" semántico e etmológico. pois o importante mesmo, é você saber como funciona um transistor (pode até chamá-lo de "Zć", se quiser...) e o que é o ampére...

"Gosto demais das "lições" teóricas e práticas do BÉ-A-BA e não perco, de nenhum modo, as "aulas"... Peço ao "mestre" uma força, pois desejo fazer uma modificação na FONTE SEM TRANSFORMADOR (experiência da pág. 13 da 10a "aula"), alterando a voltagem de saída para 9 volts (originalmente são 6,2 volts..), mesmo que seja necessária a alteração de alguns dos componentes.." — Marcelo Anthero Natali — São Paulo — SP

O desenho 3 mostra, Marcelo, o "esquema" da sonte iá modificado para a tensão que você protende. Lembramos que, embora possa fornecer uma voltagem pouco mais elevada do que o circulto original, a corrente máxima de salda é a mesma (cerca de 10 miliampéres). Assim, não tente alimentar, com a fonte, circuitos que demandem correntes elevadas, pois a regulação exercida pelo zener irá para o "beleléu"... Você mesmo poderia ter feito os cálculos, pois a "licão" sobre o zener incluiu todas as fórmulas necessárias, alem de uma útil "tabela" (pág. 10 – BÉ-A-BÁ nº 10) para "achar-se" o zener com a voltagem requeridal A título de exercício, faca seus cálculus e verifique a exetidão dos valores mostrados no desenho 3 ...

"Caro "mestre", acompanho a revista desde o seu nascimento e embora, como todos os outros "alunos", também considero o BE-A-BA de ótimo nível, fico me sempre uma dúvida: lejo e relejo (inclusive a DCE e a INFOR-MATICA...) e calo sempre na mesma questão: como e que se calcula os componentes para determinado circuito? Por exemplo: como se "chesa" ao proleto mostrado na pás. 42 da 10a, "aula"? Que grandezas devo utilizar nos calculos? Voltagem, Wattagem, Amperagem, Frequência ..? A porte do que devo comecar os calculos..? O que ocorre com a corrente, assim que ela "sai" da fonte...? Independente dessas dúvidas, quero aproveitar a oportunidade para desejar a todos os mestres, gráficos, desenhistus, distribuidores, etc., responsibreis, de uma manetra ou outra, pelo BE-A-BA, um feliz Nasal e um prospero Ano Novo., Esquecamos, por um momento, os contratempos, "choques", queimas de circultos... Esqueçomos também a "crise", a fome, a desirido que infettamente ainda nos rodela... Substituamos sudo isso pela amizade (mesmo daqueles que nem conhecemos a "cara"), pois, se nos foi dada a chance de tanto conhecermos, através da edição deste revista, só nos resta utilizar, com se a allança formada por todos. "alunos", "mestres" e companheiros, mesmo sabendo que somos todos meio doidos ou malucos (mas, todos, no fundo, com corações Indestrutiveis...). Desejo mesmo que Deus mantenha a forca que existe dentro de nos. para que permanecamos "amigos de classe", por muitos e muitos anos .. Obrigado, "mestre & cia", nos, os aprendizes, vos agradecemos..." - Ricardo Massashi Shibuya - São Paulo - SP

Para o projeto de determinado circuito, Ric, vooê deve partir do seguinte:

- 1 "O que vocé quer" que o circuito realize.
- 2 Em que "intensidade" você quer que o circuito realize o seu trabalho.
- 3 Quais as outras "condições de trabalho" que você pretende requências tempos temperaturas, velocidades, níveis de iluminação, etc., dependendo das circunstâncias...
- 4 A partir dessas tres "definições" iniciais, você deve, naturalmente com o auxílio das diversas "lições" já publicadas no BÊA-BĂ, em livros, manuais e outras das excelentes revistas de Eletrônica que existem, à disposição dos interessados, determinar quais os componentes principais (os chamados "ativos": transístores, TUJs, FETs, LEDs, TRIACs, etc.), capazes de executar (pelas suas características inerentes...) tais funções.
- 5 Dependendo dos itens 2 c 3, você já "saberá" os parâmetros mínimos e máximos, os límites de voltagem, corrente, etc., dentro dos quais os componentes devam trabalhar. Aí surge a importância da consulta aos manuais, para ver se "existem" componentes dentro das especificações requeridas. Sc "existem", tudo bem... Se não existem, resta modificar a ideia básica do circuito, de modo a "adaptá-la" aos componentes disponíveis...
- 6 Junto a todas as "lições" teóricas do BÊ-A-BÂ, sempre são mostrados os chamados "circuitos típicos", ou "configurações padrão", para que cada componente possa exercer suas funções. Assim, consultados

- esses "circuitos/exemplos", não fica difícil você fazer o primeiro "esboço" de um projeto.
- 7 O cálculo dos componentes "periféricos" (resistores, capacitores, etc.) deve então ser feito, usando-se sempre as diversas fórmulas mostradas nas "lições teóricas", porem, sempre, com "um olho voltado" para os parâmetros de todes os componentes, seus limites, o que ele: "aceitam ou não" em termos de tensão, corrente, wattagem, freqüência, etc.).
- 8 Tudo calculado, transcreva os valores obtidos para o "eshoço de esquema" previamente elaborado. Como ocorre em tudo na vida, também em Eletrônica, nem sempre a teoria corresponde à prática, de forma direta e absoluta... Assim, uma montagem prévia, experimental (que chamamos de protôtipo...) deve ser realizada, do preferência sem soldas ou sem ligações "definitivas", para a devida verificação de funcionamento e "comportamento" da nossa ideia...
- 9 Através dos úteis (imprescindíveis, às vezes...) instrumentos de teste e verificação, podemos analisar as diversas partes e os vátios estágios de um creuito, para ver se estão funcionando dentro dos parâmetros e requisitos inicialmente determinados... Assim, eventuais correções e alterações em valores de componentes podem ser determinadas e feitas "in loco", com o circuito /d funcionando (ou, às vezes, "não funcionando"...).
- 10 Sc necessário, voltamos à fase inicial de cálculos, para "directionar" o functionamento do circuito, para o "lado" que pre-

CONJUNTO DE FERRA	MENTAS PARA ELE	TRÔNICA C S M 6 '	COMPOSTO DE:	
Chaves de fenda,	dique se 110v ou 22 2 (duas) Chavos Phill ALETA COM FECHO	20v), Solda, Alicate d ips, 1 Sugador de s	le corte, 5 (cinco) olda, e mais UMA	
SIM, desejo receber pelo reembolso postal, a ma- leta C S M 6, pela qual pagarei a importância de Cr\$ 8.500,00 mais despesas de postagem e embalagem.	RUA GUAIANA CEP 01204 TEL. 221	TRO ELETRÓNICO LTD ZES 416 1 ANDAR 1728 ABERTO ATE		2
	ENDER	_ CIDADE	CEP	BE. 13

tendemos ...

- 11 Sc, tudo isso feito, não conseguimos obter o efeito c o funcionamento inicialmente desejado, ainda não é caso para desespero: podemos, perfeitamente, voltar ao princípio, tentando obter os mesmos resultados através de outros tipos de componentes (a título de exemplo: podemos "fazer" um oscilador de várias maneiras, com resultados finais muito semelhantes: com dois transístores PNP ou NPN, com um PNP e com um NPN com apenas um TUJ, atém de outras maneiras...).
- 12 Na verdade, a elaboração de projetos "a partir do zero" é uma atividade na qual a

intuição e o bom senso (coisas que não se aprendem em livros, mas se desenvolvem no dia-a-dia, na prática constante...) são tão ou mais importantes do que a própria teoria, as fórmulas, os manuais, etc. (É por essa razão que o "curso" do BF-A-BA entatiza tanto as partes experimentais e práticas, ao lado da simples apresentação da teoria...).

Quanto aos seus votos de Boas Festas, toda a equipe que faz o BÊ-A-BÅ retribui, emocionada, estendendo suas boas palavras a todos os amigos leitores, "alunos" e familiares...

* Vendas Tel.: 221-9055 * Cohrança Tel.: 220-7888

Esta seção é totalmente de vocás. Aqui todos poderão trocar recados, fazer comunicados e solicitações (sempre entre leitores...), solicitar a publicação de nomes e endereços para a troca de correspondência com outros leitores, etc. Também quem quiser comprar, vender, trocar ou transar componentes, revistas, livros, apostilas, circuitos, etc., poderá fazê-lo através da HORA DO RECREIO... Obviamente, embora se trate de uma seção livre (mesmo porque, na HORA DO RECREIO o "mestre não chia"...), não vamos querer criar um autêntico "correio sentimental"... Assim, ae o assunto fugir do espírito da revista (ou do "regulamento da escola"...), não será publicado. Os interessados deverão escrever para:

REVISTA BÉ-A-BÁ DA ELETRÔNICA SEÇÃO "HORA DO RECREIO" RUA SANTA VIRGÍNIA, 403 - TATUAPÉ CEP 03084 - SÃO PAULO - SP

Não esquecer que é muito importante a correspondência ser enviada com os dados completos do remetente, nome, endereço, CEP, etc. Também são válidas aqui as demais regras e regulamentos já explicadas na seção UMA DÚVIDA PROFESSOR...

(ATENÇÃO TURMA: Vale, aqui para a HORA DO RECREIO, a mesma advertência feita ac final do UMA DÛVIDA, PROFESSOR! Devido à antecedência com que a revista é produzida, um atraso mínimo de 90 dias é inevitável na publicação dos comunicados dos leitores.

SERVIÇOS, TROCAS, COMPRAS E VENDAS

"Interesso-me por circuitos de amplificação de alta potência... Quem tiver algum esquema desse tipo, peço que entre em contato comigo — Marcelo Lexandre Garcia — Rua Dr. Arthur Rudge Ramos, 254 — Rudge Ramos — CEP 09700 — São Bernardo do Campo — SP.

. . .

Preciso de um esquema de fonte variável — 0-30 volts x 3 ampéres, com LEDs indicadores de voltagem. Solicito a ajuda da turma — Alexandre de Jong — Rua Antônio Júlio dos Santos, 28 — Morumbi — CEP 05661 — São Paulo — SP.

. . .

Compro ou troco várias revistas de Eletrônica, por apostilas de curso de rádio, televisao preto e branco e a cores - Valdir Tadeu da Cunha Gois - Rua Rego Lopes, 98 - Tijuca - Rio de Janeiro - RJ - Fone (021) 234-5269.

. . .

Preciso de uma tabela de parámetros de transistores, mais ou menos como a publicada na 6a. "aula" do BÉ-A-BÁ, porém mais completa. Peço a ajuda dos colegas — Hebol José Braga do Carvalho — Rua Gazeta de Alagoas, 82 — Centro — CEP 57000 — Maceió — AL.

. . .

Vendo ou troco diversas revistas de Eletronica. Interesso-me por alguns múmeros específicos de DCE – Alexandre Giulietti – Rua Dr. Álvaro Osório de Almeida, 245 – Vila Universitária – CEP 05359 – São Paulo – SP.

Para os companheiros que gostam de circuitos complexos, tenho vários esquemas de circuitos de TV a cores e estou interessado em trocá-los por alguns números atrasados de BÉ-A-BÁ e DCE — Eduardo Menezes — Rua Joán Ramalho, 586 — apto. 111 B — Perdizes — CEP 05008 — São Paulo — SP — Fone (011) 65-7938.

. . .

Preciso da ajuda dos colegas, para juntos discutirmos algums problemas que encontro nas minhas montagens. Gostaria de trocar ideias e conselhos som outros "alunos" do BÊ-A-BÂ — Mário Edberto Pélas da Silva — Rua Gabro, 351 — apto. 21 — Santa Tercza — CEP 30000 — Belo Horizonte — MG.

. . .

Preciso do Circuito Integrado TMS-0119-NC para uma calculadora Texas 7342. Entrem em contato com – Ronister Magno dos Santos – Rua Rita Beredicta, 33 – CEP 35120 – Itanhomi – MG.

. . .

Compro revistas de Eletrônica — Rui Rogório Rosar — Rua 1901 n.o 227 — Balneário Camboriú — CEP 88330 — SC. — Fonc (0473) 66-2812.

. . .

Necessito de um circuito tipo "micro-transmissor de FM". Peço o auxílio da turma — Mauro de Souza — Rua Castro Alves, 410 — CEP 98400 — Fredorico Westephalen — RS.

. . .

Troco e vendo revistas, componentes, esquemas, experiências, etc. Transo correspondência e aparelhos. Troco ideias e quero também entrar em contato com os Clubinhos — Wilmar Rexende — Rua Antônio Alves Vale, 105 — CEP 05731 — São Paulo — SP,

Faço placas de Circuito Impresso, montagens de Kits, reparações em rádios (válvulas e transistores) e reformas em geral em caixas acústicas, amplificadores, etc. Vou até a casa do interessado — Carlos Henrique dos Santos Carvalho — Rua do Comércio, 3400 — Battro Tinguá — CEP 26000 — Nova Iguaçu — RJ.

Compro livro ou revista que tenha esquema de "peaquisador de minérios"; ouro, prata, etc. — Urbano de Assis Soares da Silva — Rua Dr. Manoel Borba, 107 — CEP 55490 — Altinho — PE.

Estou à disposição dos amigos da turma, caso alguém precise de algum esquema ou disgrama de circuito... Posso fomecer bastando que me enviem o pedido, juntamente com selos para a resposta - André Luir Priva - Rua Eucaliptal, 127 - Bairro César de Sousa - CEP 08700 - Mogi das Cruzes - SP - Fone (sábados e domingos): 469-9127.

Compro ou troco componentes. Também quero transar correspondência, esquemas, etc. Preciso da ajuda dos colegas quanto a informações sobre "ferros velhos" de Eletrósica, próximos aos hairros do Ipiranga ou Saúde, aqui em São Paulo - Capital - Roberto Nakamoto - Rua Franz Alt, 112 - Jardim Santa Emília - CEP 04183 - São Paulo - SP - Fose (011) 914-8287.

Vendo um curso completo de montageas de rádio (incluindo o próprio aparelho), Interemados escrevam para — Faulo José e Silva — Rua Crintino Cruz, 811 — Centro — CEP 65600 — Caxiss — MA.

Confecciono placas de Orcuito Impresso.

Escrevaro para — Renato Carlos Galhardo Segura — Rua Casarejos, 491 — CEP 08700 — Mogi das Cruzes — SP.

Sou aeromodelista e estou interessado em comprar revistas, livros ou folhetos que ensinem a construção de um controle remoto para aeromodelos — Felipe Magalhães Montenegro de Araújo — Rua Jaime Veiga, 240 — CEP 80000 — Curitiba — PR — Fone: (041) 244-9255.

Vendo apostilas de curso de Eletrônica, rádio e televisão - Ricardo Fioreza - Avenida Coronel Diniz, 440 - Baimo Planalto - Calxa Postal nº 61 - CEP 95670 - Gramado - RS.

Faço prujetus de circuitos em placas de Circuito Impresso e/ou corrosão através do layout. Faço também perfurações, deixando a placa prontinha para o uso. Trabalho com técnicas de serigrafia (sãk-screen) — Hilton Ricardo Pecoraro — Rua Cotoxó, 399 — Vila Pires — CEP 09000 — Santo André — SP.

Tenho diversas revistas de Eletrônica para vender. Bons preços — Luis Reinaldo de O, Gomes — Rua Barão de Macaúbas, 37 — Barbalho — CEP 40000 — Salvador — BA.

Tenho vários aparelhos para trocar: filmadora, projetos, amplificador... Estou interessado em cámara e video-cassete portátil...

Dou volta — Jeferson L. R. Michalszeszen —
Rua Presidente Kennedy — CEP 84400 —
Prudentópolis — PR. — Fone (0424)
46-1121 (c/Josafat).

CLUBINHOS

Quero participar de Clubinhos... As turmas que quiserem mais um sócio podom escrever para — Hebel José Braga de Carvalho — Rua Gazeta de Alagoas, 82 — Centro — CEP 57000 — Macaió — AL.

Informo que o ELECTRONIC HOUSE está de portas abertas para troca de Idéias sobre Eletrônica e Rádio Amadorismo (PX) – ELECTRONIC HOUSE – Rua Ana Nery, 17 – Apto. 201 – CEP 27100 – Barra do Pimí – RJ.

Comunico a crisção do CLUBE GALIZE DE ELETRÓNICA, para troca de esquemas, revistas, correspondência. A taxa de associação é um simples esquema, testado e aprovado — José Luis Hartmann — Praça Rui Barbosa, 795 — apto. 66 — CEP 80000 — Curitiba — PR.

Comunico a fundação do CLUBINHO PAL COLOR, onde trucamos esquemas e peças, fazemos placas de Circuito Impresso, executamos reparos em aparelhos eletrônicos e adquirimos peças para os amigos residentes mas cidades do interior. Escrevam para Fernando José Custódio — Rua Ibitinga, 62 — Cohab — CEP 06300 — Carapicuiba — SP.

Anuncio a fundação do CLUBE DE ELE-TRÔNICA "SHOCK". Interessados podem enviar 2 fotos 3 x 4 e dados completos, para receberem a carteirinha de sócio (não paga nada). Nosso Clube tem duas sedes: uma em Taubaté — SP e outra em Brasília — DF. O endereço de São Paulo é — Caixa Postal n.o 103 — CEP 12100 — Taubaté — SP.

Formei o CLUBINHO DE ELETRÓNICA BÉ-A-BÁ SÃO CAETANO, para a troca de projetos, componentes, revistas, etc. Não há fins lucrativos. Escrevam ou (telefonem) para — Fernando Garcia — Av. Presidente Kennedy, 1769 — Bairro Olímpico — CEP U95UU — São Caetano do Sul — SP — Fone (011) 453-3918.

Somos dois colegas que gostam muito de Eletrônica. Estamos fundando o CLUBI-NHO JW AMPÉRE, destinado à troca de correspondência, componentes, projetos, etc. Também transamos o assunto "PX", trocas de esquemas de transceptores, etc. Interessados escrevam para — Wagner Luiz Barbosa da Silva — Rua Alfredo Backer, 989 — Bloco 07 — apto. 301 — Alcântara — São Gonçalo — CEP 24740 — RJ (ou Jacóbsom da Glória Ferreira — Rua Nestor Pinto Alves, 343 — Alcântara — São Gonçalo — CEP 24740 — RJ).

Agradeço pela publicação do anúncio do meu CLUBINHO. Ainda estou à disposição dos cologas — Clerimas Reis Fernandes — Passeio Ovós, 205 — Zona Norte — CEP 15378 — Ilha Solteira — SP.

Comunico a fundação do JUNIOR'S ELECTRONIC CLUB, com a finalidade de trocar revistas, circuitos, etc. Para associar-se, o colega deve mandar apenas um circuito (que já tenha montado e funcionado perfeitamente) — José Francisco C, R, Júnior — SQ 15 — Q 11 — Casa 05 — CEP 77222 — Cidade Octdental — GO.

Desejo participar de Clubinhos. Peço aos amigos que me escrevam — Vinícius Von Glehn de Filippo — Rua Américo Macedo,

373 - Gutierrez - CEP 30000 - Belo Horizonte - MG,

Comunico a novo entenera da CLUB ELECTRONIC HOBBY JR. – José Mauro dos Santos – Rus Manoel Josquim Pera, 43 – Conjunto BNH – Butantă – CEP 05539 – São Paulo – SP – Fone (011) 813-0939.

O ELECTRONIC CLUB II continua aberto a todos. Tenturemos divulgar concursos e promover o interclimbio entre os Clubinhos. Convocamos todos os iniciantes, "alunos" do BE-A-BÁ, e Clubinhos, a nos escreverem — Marcelo Anthero Natali (ELECTRONIC CLUB II) — Rua Severismo de Almeida. 1416 — CEP 08200 — Itaquera — São Paulo — SP (ou José Rogério de Mandonça — Rua Alayde de Souza Costa, 155 — Itaquera — CEP 08200 — São Paulo — SP).

Montei o CLUBE ODISSEY, A taxa de inscrição e mandar um "chapeado" (mão um eaquema,...). Executamos serviços de "transferência" de Circuito Impresso para ponte de terminais ou para barra de conetores parafusados. Escrevam para — Jefferson Ponseca Moreira — Rua Projetada, 87 — Bauro Alto — CEP 80000 — Curitiba — PR.

QUEREM TROCAR CORRESPONDÊNCIA

Roney Carlos Baffa Chivero - Rua Luiz Deliberador, 241 - CEP 86170 - Sertanópolis - PR.

Juarez de Carvalho Olivera — Rua II — Quadra I — n.o 62 — Conjunto Santa Cecília — Jatiúca — CEP 57000 — Maceió — AL.

Laboratório Completo CETEKIT-CK3 "CONFECCAO DE CIRCUITO IMPRESSO" CORTADOR COM PERCLORETO PERFURADOR VASILBAME PLACA DI PLACA DE FERRO TINTA FEKTIEL - CENTRO ELFTRÔNICO LIDA. SIM, desejo receber RUA GUAIANAZES 416 1 ANDAR CENTRO SPAULO O CETERIT CR 3 pelo CEP 01204 TEL 221 1728 ABERTO ATE 18 00 INCLUSIVE SABADO reembolso postal. NOME_ pela qual pagarei ENDER_ CEP ___ Cr\$ 7.000,00 mais frete e embalagem! BAIRRO ___ CIDADE ESTADO_

HOBBY O

Como a parte puramente teórica da presente "aula", falando sobre MEDIDORES E MEDIÇÕES (2a. PARTE) "não dá muita chance" para montagens práticas diretamente ligadas ao assunto, optamos por apresentar ao "aluno", aqui no INICIAÇÃO, um conjunto de montagens definitivas, para usos específicos (um projeto para a BANCADA, um para o LAR e um para o CARRO ou MOTO...), baseados todos os projetos, como sempre, em conceitos já estudados nas "aulas" anteriores, para que toda a turma possa ir, ao mesmo tempo, realizando suas montagens mas também exercendo, na prática, as teorias já assimiladas...

São três circuitos de fácil realização e de grande utilidade em suas aplicações específicas... Os projetos foram todos estruturados de modo a não usarem componentes difíceis nem muito caros, de modo a ficar dentro do "alcance dos bolsos" da maioria... Para agradar a "gregos e troianos", duas das montagens são no sistema de Circuito Impresso (uma delas já grandemente facilitada pelo próprio BRINDE DE CAPA...) e uma na técnica de "barra de ter-

minais"... O "aluno" assíduo, entretanto, que acompanhou todas as "lições" anteriormente publicadas com atenção, não encontrará qualquer dificuldade em "transpor" as montagens para sistemas diferentes, à sua conveniência ou vontade, nada impedindo que a montagem em "ponte de terminais" seja "transplantada" para uma plaquinha de Circuito Impresso de lay-out específico (desenhada pelo próprio "aluno", à luz do que já aprendeu nas "aulas" sobre o assunto...) ou que as montagens em placa de Circuito Impresso sejam implementadas em "pontes de terminais", consistindo tal "façanha" numa adaptação muito simples.

As informações (tanto "visuais" como no próprio texto...), como já é norma "da casa", aqui na "escola" do BE-A-BA, são completíssimas, de modo que mesmo os "alunos" atrasadinhos, que apenas agora estão "entrando no Curso" (quem perdeu as importantes "aulas" anteriores, pode solicitar, pelo nosso sistema de Reembolso Postal — ver Encarte Central — os respectivos exemplares do BE-A-BA...) poderão realizar as montagens, com facilidade, bastando dedicar um pouco de atenção, cuidado e bom senso...

1a. MONTAGEM — VARI-VOLT (UM CONTROLE ELETRÔNI-CO, UTILISSIMO NA BANCADA, QUE PERMITE OBTER, DE UMA FONTE FIXA, AMPLA GAMA DE VOLTAGENS, PARA ALIMENTAÇÃO OU TESTES DE CIRCUITOS).

Explicando em poucas palavras, o VARI-VOLT é um dispositivo eletrônico que exerce a seguinte função:

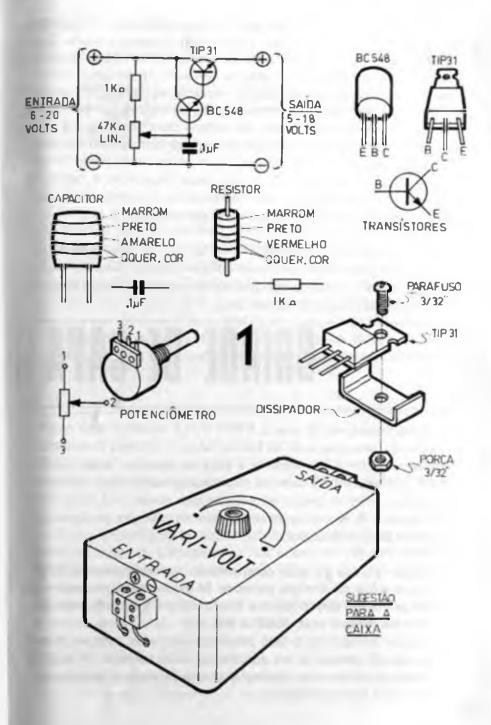
- Recebe, em sua ENTRADA, a tensão proveniente de uma fonte qualquer (pilhas, bateria, fonte ligada à C.A., etc.) de corrente contínua, dentro da faixa 6 20 volts, e, através da atuação linear de um simples potenciômetro, entrega, em sua SAÍDA, qualquer voltagem, desde "zero" até um pouco menos do que a tensão aplicada à ENTRADA!
- A tensão presente (e ajustável, à vontade...) na SAÍDA pode ser então usada para alimentar qualquer circuito ou aparelho que necessite de voltagens específicas (inferiores à oferecida pela fonte controlada pelo VARI-VOLT...).

- A corrente de trabalho do VARI-VOLT pode chegar, sem problemas, até a 1 ampére. Isso quer dizer que o dispositivo pode ser acoplado entre fontes e aplicações que forneçam e demandem, respectivamente, correntes até essa intensidade.
- No bancada do "aluno", o VARI-VOLT será, temos certeza, um importante auxiliar, pois pode "transformar" qualquer voltagem numa série de outras, inferiores e continuamente ajustáveis, destinadas, desde à alimentação momentânea de um circuito ou projeto em "invenção", até a testes e calibrações de medidores e coisas assim.
- A utilidade do VARI-VOLT será tão grande na bancada de estudos e desenvolvimentos do "aluno" que, sem medo de errar, recomendamos a montagem do circuito para todos (tanto o seu custo final, quanto a complexidade da montagem são baix (ssimos, largamente compensados pela sua posterior utilização e validade...).

LISTA DE PEÇAS

- Um transistor TIP31 ou equivalente (NPN, alta potência, de silício, com lc máx. de 1 ampére ou mais).
- Um transistor BC548 ou equivalente (qualquer outro NPN, de silício, baixa potência, uso geral, poderá substituir o BC548).
- Um resistor de $1K\Omega \times 1/4$ de watt.
- Um potenciômetro linear de 47KΩ, com o respectivo "knob".
- Um capacitor (qualquer tipo) de .1μ F.
- Uma placa específica de Circuito Impresso (BRINDE DA CAPA
 VER TEXTO),
- Uma caixa para abrigar a montagem. O nosso prototipo "coube", com folga, numa caixa plástica medindo 9 x 6 x 4 cm.
- Dois pedaços de barra de conetores parafusados ("Sindal",
 "Weston", ou similar...), com dois segmentos cada.

DIVERSOS


- Fio e solda para as ligações.
- Parafusos e porcas na medida 3/32", para fixações diversas (placa de Circuito Impresso, segmentos de barra de conetores parafusados, etc.).

- Caracteres decalcáveis, transferíveis ou auto-adesivos, para marcação externa ca caixa.
- Um dissipador metálico para o TIP31 (VER TEXTO).

CONHECENDO OS COMPONENTES

No desenho 1 o "aluno" encontra, além do "esquema" do circuito (no alto, à esquerda) e de uma sugestão para a caixa do VARI-VOLT (em baixo), todas as informações "visuais" importantes sobre os componentes do circuito, em suas aparências, símbolos e identificação de "pernas"... Como sempre fazemos aqui no INICIAÇÃO, vamos falar um pouco, individualmente, sobre essas peças...

- OS TRANSISTORES Conforme já foi mencionado na LISTA DE PEÇAS, tanto o TIP31 quanto o BC548 podem ser substituídos por equivalentes, na falta dos "originais"... É importante contudo, que o "aluno" note a Importância dos parâmetros desses componentes, no caso de substituição (ver a "aula" específica sobre os transístores, em BÊ-A-BÅ n.o 6). Lembrar também que são componentes polarizados, e que suas "pernas" têm lugar e posição certos para serem ligados ao circuito, já que qualquer inversão acarretará o não funcionamento ou até a "queima" do componente... No caso de se empregar equivalentes, pode ocorrer uma "ordenação de pernas" diferente da mostrada no desenho 1. Atenção, portanto, quanto a essa eventualidade...
- O CAPACITOR Apenas uma peça desse tipo é usada no VARI-VOLT, podendo ser um de poliéster, disco cerâmico, tipo "Schiko", etc. O desenho mostra a "leitura" do seu código de cores, para que ninguém se "embanane" (mesmo os "alunos" mais preguiçosos, que ainda não decoraram perfeitamente as "lições" da 2a. "aula"...).
- OS RESISTORES Só um resistor fixo, de 1KΩ é utilizado. O desenho mostra o seu código de cores. O VARI-VOLT também precisa de um potenciômetro, mostrado no desenho com seus terminais "codificados", de forma a facilitar a interpretação do "aluno" quando das ligações.

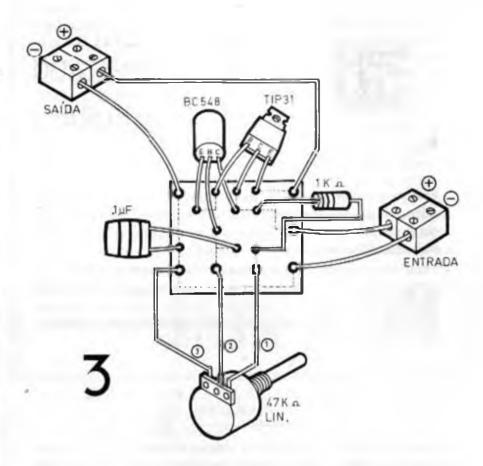
A ilustração 1 mostra também a forma pela qual o dissipador deve ser fixado ao transístor TIP31, com parafuso e porca. Esse dissipador (que apenas será necessário se o VARI-VOLT for utilizado frequentemente, e por longos períodos, alimentando circuitos ou aplicações que demandem corrente superior a 0,5 ampére...) pode ser adquirido, normalmente, na mesma loja em que o "aluno" comprar o transístor. Em último caso, contudo, até uma simples lâmina de lata, cortada e dobrada de acordo com a ilustração (medindo cerca de 5 x 2 cm.), poderá ser usada como "dissipador" para o transístor. A função desse dispositivo é "esfriar" o transístor, desviando o calor desenvolvido no componente, durante o manejo constante de correntes elevadas, para o ar...

Na parte inferior do desenho 1, o "aluno" vé uma sugestão sobre a caixa para abrigar o circuito do VARI-VOLT. Embora muito prática, a idéia mostrada não precisa ser seguida à risca, podendo ser alterada, a critério do montador...

BRINDE DE CAPA

Como consideramos que o VARI-VOLT constitui uma montagem muito importante e útil para o "aluno", estamos fornecendo, inteiramente GRÁTIS, anexada à capa da presente "aula" do BE-A-BA, a plaquinha de Circuito Impresso específica para o projeto, já pronta, faltando apenas a furação (coisa muito fácil de ser feita pelo leitor). O correto aproveitamento da placa exige alguns pequenos e simples cuidados:

- Retirar a placa da capa com cuidado, puxando lenta a firmemente a fita adesiva que a prende. Se a cola estiver muito firme, um pouco de álcool sobre a área facilitará a retirada, sem que ocorram danos à capa do BÉ-A-BÁ.
- Limpar, em seguida, o lado das pistas cobreadas, com um pouco de algodão embebido em acetona ou outro solvente, de modo a retirar os resíduos do adesivo que, eventualmente, tenham permanecido sobre a placa.


2 LADO COBREADO (NATURAL)

- Efetuar a furação das ilhas, usando uma "mini-drill" (furadeira elétrica mini, própria para Circuitos Impressos), ou um perfurador manual, aquele que parece um grampeador de papel, também específico para Circuitos Impressos.
- Fazer uma limpeza final nas áreas cobreadas, esfregando-as com palha de aço fina ("Bom Bril"), até que as superfícies fiquem bem brilhantes, livres de qualquar camada de óxidos, gorduras o sujeiras. Não tocar mais as películas cobreadas com os dedos...

A MONTAGEM

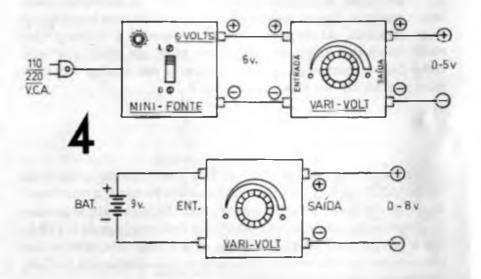
Antes de começar a colocar os componentes e ligá-los, é conveniente que o "aluno" confira com atenção e cuidado a "sua" plaquinha com o lay-out, em tamanho natural, mostrado no desenho 2. Se for encontrado qualquer defeito, este deverá ser corrigido antes do início da soldagem dos fios e terminais de componentes. Havendo uma "quebra" (interrupção indevida...) numa das pistas, o "aluno" poderá corrigi-la com uma gotinha de solda, cuidadosamente colocada. Por outro lado, existindo algum "curto" (ligação indevida entre pistas e ilhas que não devessem se tocar...), não é difícil raspar-se a conexão errônea, com uma ferramenta de ponta afiada.

As ligações definitivas do circuito deverão ser feitas como mostra o "chapeado" (desenho 3), no qual se vê o lado não cobreado

da plaquinha, já com todos os componentes posicionacos e conetados, além dos fios "externos"... Alguns pontos merecem cuidadosa atenção por parte do "aluno":

- Correta posição dos transístores.
- Codificação dos terminais do potenciômetro.
- Marcação das polaridades nos conjuntos de conetores de ENTRADA e SAÍDA.

Lembramos que todas as ligações devem ser feitas com ferro de soldar de baixa wattagem (máximo 30 watts), usando-se solda fina, de baixo ponto de fusão, e evitando-se demorar muito com a ponta aquecida do ferro sobre cada conexão, pois alguns dos componentes são um tanto "delicados" quanto ao calor excessivo (principalmente os transístores). As "sobras" de terminais (pelo lado cobreado) apenas devem ser cortadas após uma conferência final, atenciosa. As linhas tracejadas representam a "sombra" das pistas cobreadas existentes "no outro lado" da placa, e servem como base e comparação para a verificação das ligações (em confronto com o lay-out mostrado no des. 2...).


. . .

Conforme sugerido no desenho 1, a instalação do circuito do VARI-VOLT numa caixa não é difícil, além de tornar a montagem mais "profissional" e prática em seu uso. Consideramos importante as marcações corretas das polaridades dos conetores de ENTRADA e SAIDA, bem como do sentido de giro do potenciómetro que proporciona um incremento (crescimento) na voltagem de SAIDA, conforme sugerido na ilustração...

Com a montagem terminada, conferida e instalada, um teste rápido pode ser feito (mesmo sem "equipamentos especiais"...): conete aos terminais de ENTRADA um conjunto de 4 pilhas de 1,5 volts cada (perfazendo 6 volts, portanto...). Aos terminais de SAÍDA do VARI-VOLT, ligue uma pequena lâmpada para 6 volts x 40 miliampéres (facilmente encontrável em qualquer loja de eletrônica). Atue sobre o potenciômetro, girando o "knob" do seu mínimo (todo à esquerda) ao seu máximo (todo à direita), verificando o gradual aumento da luminosidade da lâmpada (que deve ir de totalmente apagada até, praticamente, sua luminosidade total). Não esquecer de respeitar a polaridade dos terminais...

"VARI-VOLTANDO"

A utilização prática do VARI-VOLT já deve ter ficado clara pelas explicações dadas até o momento. O desenho 4 mostra algumas situações típicas... Por exemplo: se o "aluno" montou a MINI-FONTE (3a. "aula"), que, originalmente, fornecia 6 volts, poderá,

com grande facilidade, acoplá-la ao VARI-VOLT de modo a conseguir qualquer voltagem — entre zero e 5 volts, aproximadamente, na saída do dispositivo! Um outro exemplo é mostrado no desenho 4: uma bateria de 9 volts ligada à entrada do VARI-VOLT possibilitará a obtenção de qualquer tensão, dentro da gama 0-8 volts, na SAÍDA do circuito, dependendo do ajuste do potenciômetro! Se o "aluno" já possui um VOLTIMETRO ou um MULTIMETRO, será muito fácil verificar (medir) as tensões presentes na SAÍDA do VARI-VOLT, à medida que o potenciômetro é ajustado.

Com um pouco de habilidade, raciocínio e bom senso, o "aluno" poderá até usar o VARI-VOLT (acoplado, em sua ENTRADA, a uma fonte de tensão precisa e conhecida...), na calibração de VOLTIMETROS "feitos em casa", como está sendo ensinado na presente "aula" (e também na anterior...), sobre os medidores e as medições...

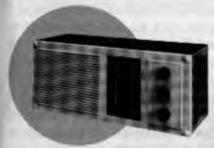
È importante notar que, devido às naturais quecas de tensão ocorridas nas junções internas dos transístores que formam o seu circuito, o VARI-VOLT não consegue entregar em sua SAIDA a voltagem absolutamente total "injetada" em sua ENTRADA...

Uma pequena "queda", em torno de 1 ou 2 volts, sempre será verificada em relação à tensão de ENTRADA... Entretanto, isso não constitui problema ou deficiência... Se,por exemplo, o "aluno" construir a MINI-FONTE (3a. "aula"), substituindo o transformador original por um capaz de fornecer 12-0-12 volts, sob 500 miliampéres, e acoplar o circuito ao VARI-VOLT, obterá uma excelente FONTE VARIÁVEL, capaz de apresentar em sua saída qualquer voltagem entre 0 e 10 volts, sob a corrente de 0,5 ampéres (uma ótima "fonte de laboratório", portanto...).

As tensões indicadas junto ao esquema (alto do desenho 1) são os limites mínimo e máximo de operação segura do circuito, ou seja: podem ser aplicadas à ENTRADA, tensões entre 6 e 20 volts, que redundarão, na SAIDA, após o controle exercido pelo circuito, em voltagens, respectivamente, de 0 a 5 volts e de 0 a 18 volts. A corrente máxima de operação, conforme já foi mencionado, é de 1 ampére (TIP31 com o dissipador...).

O circuito - Como funciona

O desenho 5 mostra, em blocos simples, o funcionamento do circuito. O conjunto formado pelo resistor fixo de 1KQ mais o potenciômetro de 47KΩ age como um "divisor de tensão variável" (ver a parte teórica da presente "aula", bem como "lições" anteriores...). Quanto mais perto o cursor (contato móvel) do potenciômetro estiver do "topo" do potenciômetro (ponto A), maior a tensão presente em tal terminal. Por outro lado, quanto mais levarmos o cursor para a parte inferior do potenciômetro (ponto 8), menor a tensão presente no terminal central do potenciômetro (chegando a "zero", quando levada ao extremo...). Essa tensão (de controle), "força" a passagem, para o terminal de base de um conjunto Darlington (formado pelo RC548 e pelo TIP31) de uma corrente proporcional ao seu valor... Como o circuito de coletor/ emissor do "Darlington" está em série com o "braço positivo" do circuito, age,então, como uma espécie de "divisor de tensão eletrônico", permitindo a passagem de maior ou menor corrente, e dimensionando a voltagem de SAÍDA, em razão direta da posição do potenciômetro de controle... O capacitor C também recebe a ten-


73

são de controle, e serve para "alisar" (rever a "lição" específica sobre os capacitores...) eventuais variações rápidas existentes em tal voltagem, provenientes de uma "má filtragem" eventualmente presente na ENTRADA do VARI-VOLT, especificamente nos casos em que a fonte a ele acoplada for do tipo ligado à C.A. (com transformador "abaixador", diodo retificador, capacitores de filtro, etc.). Como sabemos, o capacitor leva um certo tempo para "assumir" as voltagens a ele aplicadas, assim, se ocorrerem variações muito rápidas na tensão, ele "resiste" a essas ondulações, funcionando como um "filtro" adicional... Se a fonte for de C.C. "perfeita" (pilhas ou bateria), o capacitor não exerce qualquer função...

Instituto Universal Brasileiro

O estudo por correspondência é a solução prática e objetiva para aqueles que não podem perder tempo! E nós, do INSTITUTO UNIVERSAL BRASILEIRO, nes orgulhamos de oferecer o que existe de mais modemo nessa modifidade de ensino.

MONTE SEU PRÓPRIO RÁDIO

E ainda conheca tudo sobre

RADIOTÉCNICA E TELEVISÃO

(PRETO E BRANCO E A CORES

Este curso prepara técnicos em consorros e aljustagens de receptores de rádio e televisão em preto e branco e a cores. Além dos elementos básicos de Rádio e TV, proporcione tembem uma completa instrução teó-lica, elitro-duzindo o aluma not delmás setores de Estatónica.

Vooê aprenderá inicialmente a utilizar as leis, granderas e unidades que se aplicam a todos os fenómenos da Radiotécnica. São conceitos fundamentais para a compreensão de todas es elábes pusteriores do curso.

Estudizió a seguir tudo o que se relacione com o funcionamento, ajustes, valores, defeitos, tastas e aplicações de cada elemento nos diverent sipos de apare/hos efetiónicos existentes no mercado.

Durante o curso, vecé receberá intellemente grátis: ferra de soldar, chave de fenda, chave de calibrár, elicate de corte e ponta e todo o meter al para a montagem do seu radiorreceptor

OUTROS CURSOS MANTIDOS PELO INSTITUTO UNIVERSAL BRASILEIRO

MECÂNICA GERAL ● ELETRICIDADE ● REFRIGERAÇÃO E AR CONDICIONADO TORNEIRO MECÂNICO ● SUPLETIVO DE 19 GRAU ● SUPLETIVO DE 29 GRAU DESENHO ARQUITETÔNICO ● DESENHO ARTÍSTICO € PUBLICITÁRIO ● DESENHO MECÂNICO

NANDE O CUPOM ABAIXO OU ESCREVA NOS HOJE MESMO.

IUB

INSTITUTO UNIVERSAL BRASILEIRO

A MAIOR E MAIS PERPEITA ORGANIZAÇÃO DE ENSINO POR CORFESPONDÊNCIA DO PAÍSI 1940-1983

Africal, suo 43 erros de expendente a dedicados ao ensina.

RF 13 NSTITUTO UNIVERSAL ERASILERO Co. Ameri 1994 - Co.	
Home	to condespose
Rus	m/
CEP Belire	Cs. Pestal
Cidade	Estado

2a. MONTAGEM — SECRET — UM INTERRUPTOR MAGNÉTICO SECRETO, QUE APENAS VOCE SABERA COMO ACIONARI IDEAL PARA EVITAR QUE ESTRANHOS, CURIOSOS E "XERETAS" MEXAM EM EQUIPAMENTOS...

A montagem anterior do presente INICIAÇÃO (o VARI-VOLT...) foi idealizado para aplicações específicas de bancada... Já o SECRET (INTERRUPTOR MAGNÉTICO SECRETO) é um projeto de utilização mais ampla, pois pode ser acoplado e adaptado a um grande número de aplicações, no comando de aparelhos elétricos ou eletrônicos diversos, praticamente quaisquer dos existentes numa resicência ou estabelecimento...

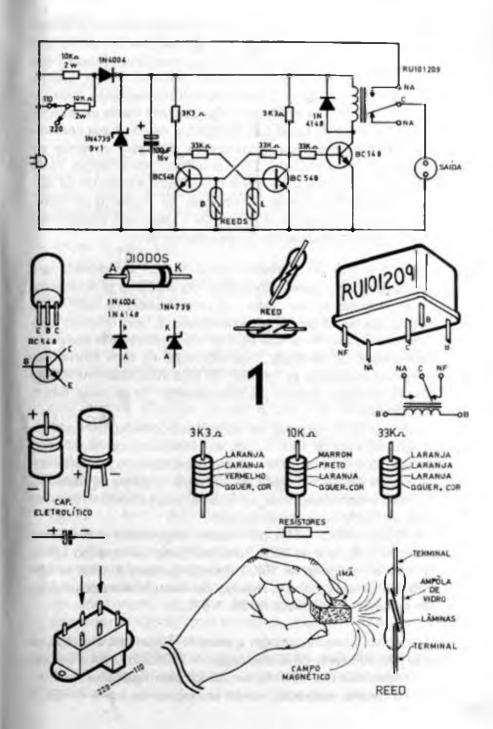
O seu funcionamento básico é o seguinte: fica intercalado entre a tomada da rede C.A. (110 ou 220 volts) e qualquer aparelho (normalmente alimentado pela C.A. domiciliar). Dois sensores magnéticos especiais (muito sensíveis...), estão embutidos no SECRET, em localizações apenas conhecidas por VOCÉ! Através da atuação de um pequeno imã (facilmente "disfarçável", como veremos mais adiante...), o SECRET autoriza ou não a passagem da C.A. necessária à alimentação do aparelho controlado: uma única aproximação do ima e o aparelho "liga", assim permanecendo; outra breve aproximação do imã, e o aparelho "desliga", assim ficando até novo comando! O circuito do SECRET obtém a "sua" própria alimentação da rede C.A. (110 ou 220 volts, através de um chaveamento se etivo...), sendo, portanto, completamente autosuficiente, podendo então permanecer ligado indefinidamente, sempre na espera das "ordens" magnéticas de comandol Não necessita de qualquer tipo de ajuste ou calibração e, se corretamente montado, funcionará perfeitamente, tão logo seja conetado à tomadal Todas as peças são de fácil aquisição e a montagem em si. é muito simples (descrita, na presente "lição", no sistema "ponte de terminais"...), de modo que os "alunos" não deverão encontrar a menor dificuldade na sua realização... Mais adiante, lá no fim da "lição", falaremos um pouco mais sobre a utilização do SECRET...

LISTA DE PEÇAS

- Três transístores BC548 ou equivalente (vários outros "códigos" de transístores poderão ser usados no circuito, desde que sejam NPN, de silício, pequena potência, alto ganho).
- Um diodo zener 1N4739 (9V1 x 1W).
- Um diodo 1N4004 ou equivalente (outro, de "número superior", como o 1N4005, 1N4006, 1N4007, etc., também poderá ser usado).
- Um diodo 184148 ou equivalente (também pode ser usado o 1N914 ou qualquer outro diodo de silício com os mesmos parâmetros).
- Dois REEDs (interruptores magnéticos encapsulados em vidro) do tipo simples (apenas um contato, Normalmente Aberto).
- Um relê com bobina para 9 volts C.C., do tipo "sensíval". No protótipo utilizamos um relê SCHRACK, código RU101209, com bobina de 750Ω, dotado de um contato reversível, capaz de comandar cargas de até 400 watts.
- Dois resistores de $3K3\Omega \times 1/4$ de watt.
- Dois resistores de $10K\Omega \times 2$ watts.
- Três resistores de 33K Ω x 1/4 de watt.
- Um capacitor eletrolítico de 100µ F x 16 volts.
- Uma chave H-H simples.
- Uma barra de terminais soldáveis ("ponte" de terminais), com 15 segmentos.
- Um "rabicho" completo (cabo de alimentação com tomada "macho" numa das pontas).
- Uma tomada "externa", fêmea, para C.A. (110/220 volts).
- Uma caixa para abrigar a montagem. Recomenda-se o uso de caixa plástica. O nosso protótipo foi instalado numa desse tipo, medindo cerca de 15 x 5 x 5 cm., porém tais medidas não são rígidas.

DIVERSOS

- Fio e solda para as ligações.
- Parafusos e porcas para fixações diversas (prender a chave H-H, a tomada "fêmea" externa, a "ponte" de terminais, etc.).
- Adesivo de epoxy (para fixação dos REEDs ao interior da caixa,


do ima à "chave secreta" - VER TEXTO -, etc.).

 Caracteres decalcáveis, auto-adesivos ou transferíveis, para a marcação externa da caixa.

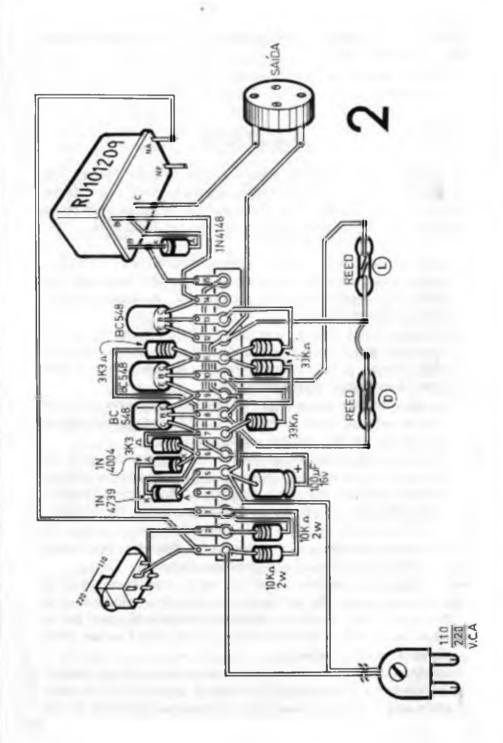
CONHECENDO OS COMPONENTES

A maioria dos componentes utilizados no circuito do SECRET já foi detalhada em montagens referentes a "lições" anteriormente publicadas no BÊ-A-BÂ, porém, como é filosofia básica no nosso "curso", vamos novamente detalhar cada uma das peças, em seus aspectos principais, para que o "aluno" não tenha dúvidas quando das ligações. No desenho 1, além do "esquema" do circuito e de outras informações, o "aluno" vê todos os componentes, em suas aparências, símbolos, identificação de "pernas" e códigos de valores. Vamos lá:

- OS TRANSÍSTORES São três, todos do mesmo tipo, não devendo ocorrer dificuldades na sua obtenção. Embora sejam unidades para "uso geral", recomenda-se que, no caso de substituição, sejam empregados transístores de alto ganho, para boa confiabilidade. A ilustração mostra a disposição dos pinos, além do símbolo esquemático.
- OS DIODOS E O ZENER É importante o "aluno" notar que, externamente, tanto os diodos comuns quanto o zener, podem ser extremamente parecidos (a cinta ou anel em cor contrastante sempre indicando o terminal K). Entretanto, suas funções no circuito são diferentes e assim todo cuidado é necessário no sentido de não se "trocar as bolas" no momento das ligações. As eventuais equivalências já estão detalhadas na LISTA DE PEÇAS. Quanto ao zener, se não for encontrado o código sugerido, poderá ser substituído por outro, desde que para 9,1 volts, e para um mínimo de 500mW.
- OS REEDs Tratam-se de pequenos interruptores magneticamente controlados, encapsulados em vidro. Uma pequena ampola cilíndrica contém dois terminais em seus extremos. Internamente, tais terminais estão ligados às duas pequenas lâminas de

metal "sensível" a um campo magnético externamente induzido (ou por um *Imã* permanente comum, ou por um eletro-imã — ver 4a. "aula"). Assim que um campo magnético (mesmo que sua intensidade não seja muito forte) envolve o REED, suas lâminas internas "reagem", fechando-se (originalmente, "em repouso", tais lâminas estão separadas por uma fração de milímetro). É importante notar que os REEDs, devido à sua construção, são componentes mecanicamente delicados, devendo ser manuseados com cuidado. Seus terminais, por exemplo, NÃO PODEM ser dobrados, sob pena do esforço oriundo de tal torção ocasionar rachaduras ou rupturas no invólucro de vidro, inutilizando o componente (a ampola é cheia com um gás inerte, para evitar oxidações nas lâminas/contatos).

- O RELÉ Esse componente (que o "aluno" atencioso já terá percebido: é um "parente próximo" do REED...) já foi estudado em detalhes na 4a. "aula". O recomendado na LISTA DE PEÇAS apresenta excelente sensibilidade. É bom lembrar, contudo, que no caso de se usar equivalentes, a disposição dos pinos pode diferir da mostrada. Normalmente, os bons fabricantes costumam identificar as "pernas" da peça através de uma marcação no próprio "corpo" do componente, ou na caixa que o acondiciona.
- O CAPACITOR Apenas um eletrolítico comum é utilizado no circuito. O valor de 100µ F pode ser considerado como mínimo, ou seja: também podem ser usados capacitores de va ores maiores (desde que a voltagem de trabalho continue respeitada). Atenção à identificação da polaridade, pois um eletrolítico não pode ser ligado invertido ao circuito.
- OS RESISTORES Os três valores empregados têm os seus respectivos cócigos de cores "destrinchados" no desenho 1. Notar que os resistores de 10KΩ deverão ser para 2 watts (e não para 1/4 de watt, como a maioria dos componentes desse tipo, nos circuitos já mostrados no BÊ-A-BÂ...).


O desenho 1 mostra também a chave H-H (que será utilizada na seleção das voltagens de alimentação — 110/220), com a marcação dos terminais que deverão ser usados para ligação ao circuito. Ainda na mesma ilustração, vemos um esboço de como o REED

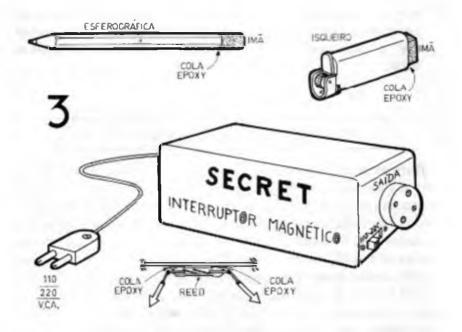
(interruptor magnético) é acionado, pela simples aproximação de um pequeno (mã.

A MONTAGEM

Na ilustração 2 o "aluno" encontra todos os dados "visuais" necessários à realização da montagem, propriamente. Dentro da técnica de "ponte" de terminais, como sempre, recomendamos certos cuidados básicos, importantes para um bom resultado final:

- Anotar, a lápis, sobre a própria barra, os números de 1 a 15 junto aos segmentos. Essa numeração ajudará muito durante as ligações, funcionando como um "código/guia", evitando inversões, erros ou esquecimentos.
- Cuidar para que os componentes polarizados (transístores, diodos, diodo zener, capacitor eletrolítico) sejam ligados nas posições corretas, já que qualquer inversão nos seus pinos poderá gerar "fumacinhas" indesejáveis.
- Atenção aos terminais do relê e da chave H-H. Observar também com cuidado os vários "jumpers", que são pedacos simples de fio, interligando dois ou mais segmentos da barra.
- Uma parte do circuito trabalha sob tensões elevadas (110 ou 220 volts, da rede C.A.), assim, todo cuidado com a isolação é pouco. Verificar, durante as ligações, se não ocorrem "curtos" entre terminais que não devam se tocar, ou soldas "escorridas", fazendo contatos indevidos e perigosos. Recomenda-se que, no caso de terminais longos de componentes, eles sejam devidamente protegidos por "espaguetis" plásticos isolantes.
- Nas soldagens, use ferro "leve" (30 watts, no máximo) e solda fina, procurando não demorar-se nas ligações (principalmente dos transístores, diodos e capacitor eletrolítico), para que o aquecimento não se torne excessivo, o que poderá causar danos permanentes a certas peças.
- Confira tudo ao final, orientando-se tanto pelo proprio "chapea-do" (desenho 2) quanto pelo "esquema" (desenho 1). È interessante que o "aluno" vá sempre praticando a interpretação dos

diagramas esquemáticos em relação às "imagens reais" dos componentes e da montagem. Assim, essa *comparação* entre "esquema" e "cnapeado" é "dever de casa" obrigatório, em todas as aulas...


INSTALAÇÃO E FUNCIONAMENTO

Terminada e conferida a montagem, o próximo passo é a instalação do conjunto na caixa. O desenho 3 dá uma boa "dica" de como isso pode ser feito, com resultado bonito, elegante e prático. Numa das faces menores da caixa pode ser feito um furo para a passagem do "rabicho" (cabo de alimentação). Na face oposta, instala-se a toma externa de SAIDA e a chave H-H seletora de voltagem (ambas essas peças fixadas por parafusos e porcas. Sobre o painel frontal da caixa, pode ser aplicada uma inscrição como sugere a ilustração. Os dois REEDs do circuito deverão ser colados com epoxy, pelo lado de dentro do painel, de modo que a sua localização rão seja perceptível externamente. Uma sugestão interessante é posicioná-los exatamente atrás das letras "O" das palavras "interruptor" e "magnético" (cujo "desenho", inclusive, pode ser um pouco diferente — em forma de alvo — como sugere o desenho).

O acionador magnético "secreto" poderá ser facilmente construído, também de acordo com as sugestões mostradas no desenho 3. Basta colar com epoxy um pequeno ímã ao "rabo" de uma caneta esferográfica, à base de um isqueiro, ou prendê-lo a um chaveiro, por exemplo. De qualquer maneira, é interessante que o ímã fique, ao mesmo tempo, acessível e "portátil", de modo a constituir uma chave que o portador possa carregar consigo confortavelmente, sem "dar na vista"...

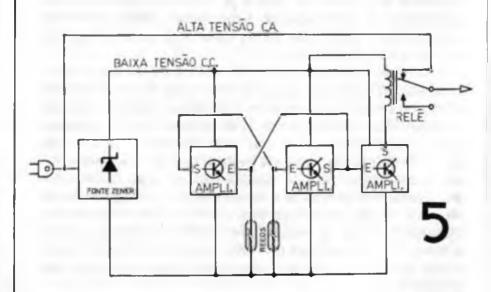
Para um teste inicial de funcionamento, o "aluno" poderá conetar aos terminais de SAÍDA do SECRET uma lâmpada incandescente comum (voltagem compatível com a da rede...). Colocar, em seguida, a chave seletora (110-220) na posição correspondente à voltagem da rede e ligar o "rabicho" à tomada.

Aproximando-se a "chave magnética" da letra "O" da palavra

"interruptor" (atrás da qual foi previamente fixado o REED (L), a lâmpada conetada à SAÍDA DO SECRET acenderá, assim permanecendo, mesmo depois que a chave magnética foi afastada da "letra sensível"... Para apagar a lâmpada, aproxima-se a chave magnética da letra "O" da palavra "magnético" (atrás da qual o "aluno" prendeu o REED (D), responsável pelo comando de "desligar"...). Ambos os comandos são "memorizados", ou seja: uma vez acionado o "ligamento", o dispositivo permanecerá nessa condição, indefinidamente, até que seja acionado o "desligamento", não havendo necessidade maior do que um breve e instantâneo aproximamento da chave magnética do respectivo sensor!

O desenho 4 mostra uma aplicação típica, no comando "secreto" de um televisor (grande utilidade nas casas onde existem crianças pequenas, que "insistem" em brincar com o botão de "liga-desliga" do aparelhc...). A conexão deve ser feita como mostrado, com o "rabicho" do SECRET ligado à tomada da rede (chave seletora na posição correspondente...) e o aparelho controlado ligado à tomada de SAÍDA do dispositivo. O botão de "liga-desliga" do aparelho comandado deverá ser "fixado" na posição "ligado" (isso pode ser feito de várias maneiras, mecânicas ou elétricas, a critério

do "aluno"). Com a instalação sugerida, todo o comando passa a ser exercido exclusivamente pelo SECRET (através da atuação da chave magnética de posse da única pessoa autorizada — presumivelmente você — a que, além disso, é o único conhecedor dos pontos sensores de aplicação da chave).


Qualquer outro aparelho, dispositivo ou circuito, normalmente alimentado pela rede C.A. poderá ser controlado pelo SECRET: aparelhagens de som, motores, máquinas, etc., desde que o seu consumo esteja dentro dos limites suportados pelos contatos do relê (ver LISTA DE PEÇAS).

Finalmente, lembramos que, pelas suas características, o circuito do SECRET não se presta a experimentações no sentido de modificar-se valores de componentes (isso apenas deverá ser tentado — embora não o recomendamos — por "alunos" já bem tarimbados e que saibam muito bem o que estão fazendo...). A caixa do SECRET não pode ser aberta, e nenhum tipo de manutenção, manuseio do circuito, peças ou ligações, deve ser feito, com o "rabicho" conetado à tomada da C.A., para evitar-se "choques" muito perigosos... Assim, sempre que você pretender "fuçar" no circuito, DESLIGUE ANTES o "rabicho" do SECRET da tomada... Já dissemos "mil" vezes que não queremos ter nenhum "aluno" eletrocutado, justamente agora que conseguimos formar uma turma tão bacana e coesa...

O circuito - Como funciona

O diagrama de blocos do circuito está no desenho 5. Vamos fazer uma rápida análise, "olhando" da esquerda para a direita: inicialmente temos uma fonte zener, destinada a retificar, abaixar, regular e filtrar a C.A. de 110 ou 220 volts, até transformá-la em 9 volts C.C. para a alimentação da parte de baixa tensão do circuito... Esse tipo de fonte nós já estudamos em "lições" anteriores (ver a 10a. "aula"). Em seguida temos dois pequenos amplificadores, cada um baseado em apenas um transístor, porém com a ENTRADA de uma ligada à SAIDA do outro, e vice versa, numa configuração muito semelhante a adotada no circuito do CARA-OU-COROA (INICIAÇÃO AO HOBBY da 9a. "aula"). A ligação "cruzada" desses dois pequenos amplificadores, faz com que, quando a saída de um está "ligada" (transístor conduzindo), força

o "desligamento" da entrada do outro ("cortando" o respectivo transistor). Para proporcionar um controle externo da situação. ambas as entradas dos amplificadores, também podem ser "zeradas" pela atuação dos REEDs (magneticamente comandados pela aproximação do (mã, como já vimos...). Assim, ao "cortarrilus" o amplificador da esquerda, fazemos com que o da direita passe a conduzir (saída "ligada"). Essa situação, contudo, faz com que a entrada do amplificador da esquerda "congele" na situação "cortada" (e vice rersa). Com isso, mesmo após o afastamento do ímã responsavel pelo momentaneo "corte" de determinada entrada, a situação externamente induzida permanece (pelo menos até que o comando externo atue sobre o "outro lado da gangorra"...). A saida do amplificador da direita, acoplou-se mais um transistor. com a função de reforçar a sua atuação (ver as aulas sobre O TRANSISTOR COMO AMPLIFICADOR - POLARIZAÇÃO E ACOPLAMENTO) e a acionar o relê, cujos contatos, por sua vez, ficam responsáveis pelo "ligamento" ou "desligamento" da carga (aparelho comandado pelo SECRET). Conforme iá aprendemos na "licão" sobre os reles, a sua bobina é eletricamente independente dos seus contatos de saída, assim, nada impede que esses últimos trabalhem diretamente ligados à tensão elevada e alternada da rede, enquanto que a primeira é acionada pela baixa tensão C.C. utilizada pela parte transistorizada do circuito, e fornecida pela "fonte zener"...

A respeito da "fonte zener", lembramos que é de se esperar, dentro da normalidade do circuito, um certo aquecimento em um (ou nos dois...) dos resistores de 10K\Omega x 2 watts, n\overline{a}o constituindo isso um defeito. Se, contudo, for verificado aquecimento excessivo (ou se, por outro lado, embora o resistor (ou resistores...) esteja frio, por\overline{e}m o circuito apresentar instabilidades no funcionamento...), com toda a certeza a chave H-H seletora de voltagem estar\u00e1a na posi\u00e7\u00e3o errada... Basta corrigir a sele\u00e7\u00e3o de voltagem, de acordo com a da rede, para tudo voltar ao normal...

3a. MONTAGEM — MONITOR DE BATERIA — UM VALIOSO "AUXILIAR ELETRÔNICO" QUE "FISCALIZA" AS CONDIÇÕES DAS BATERIAS DE CARROS OU MOTOS, AVISANDO QUANDO A SUA VOLTAGEM CAI, ABAIXO DE UM NÍVEL PRÉ-DETERMINADOI UM "PRESENTÃO" PARA O PAPAI (OU PARA VOCE MESMO, SE JÁ FOR UM ALUNO-MARMANJO"...).

Conforme foi dito lá no início, o INICIAÇÃO AO HOBBY dessa nossa 13a. "aula" traz montagens práticas definitivas para todos os gostos, aplicações e necessidades... A 3a. montagem é de um projeto para utilização específica em carros ou motos (embora, com algumas adaptações simples, também possa ser usada "em bancada", ou para outras aplicações...). A montagem é de espantosa simplicidade, custo extremamente baixo, complexidade "zero" e, paradoxalmente, de enorme utilidade! Como foi mencionado aí no título, um verdadeiro "presentão" para o papai, principalmente se você for um daqueles (a grande maioria) "alunos" jovens, cuja "verba para o curso" (tutuzinho para a compra mensal do BE-A-BA._) sai, inevitavelmente, do bolso do velho... Construindo para ele o MONITOR DE BATERIA, você estará, com certeza, provando que os cruzeiros dispendidos estão tendo uma boa destinação... O velho ficará, temos certeza, satisfeito e orgulhoso... Por outro lado, se você for "o velho" (também temos muitos "alunos" veteranos, pelo menos em idade...), o MONITOR DE BATERIA constituirá um interessante "auto-presente" (sem trocadilho...). ou seia: para você e para seu auto...

Basicamente, através de componentes especialmente calculados, o MONITOR avisa, através do acendimento de um LED, quando a voltagem da bateria que alimenta o sistema elétrico de carros ou motos (12 ou 6 volts) está "derrubada", baixa demais para as necessidades, indicando a necessidade de uma recarga... Se montado corretamente, de acordo com as instruções e desenhos (dentro da técnica "miniaturizante" de Circuito Impresso...), o MONITOR ficará, depois de pronto, tão pequenino, que não haverá a menor dificuldace na sua instalação no painel de carros ou mesmo motos, sem vir a "atravancar" a parafernália normal de "relógios" indicadores e luzes lá existentes...

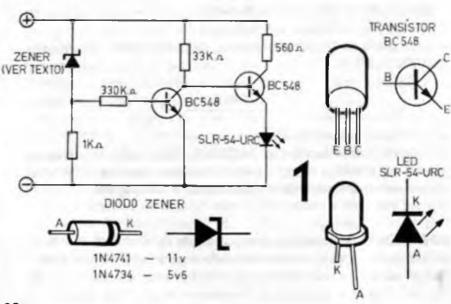
As peças são encontráveis em qualquer lugar (em lojas de Eletrônica, é claro, já que nas quitandas vai ser um pouco difícil...), a baixo preço, admitindo, inclusive, várias equivalências... Enfim: uma montagem que vale mesmo a pena realizar, tanto por seus aspectos intrínsecos, quanto pelo que representa em termos de aprendizado prático para o "aluno"...

LISTA DE PEÇAS

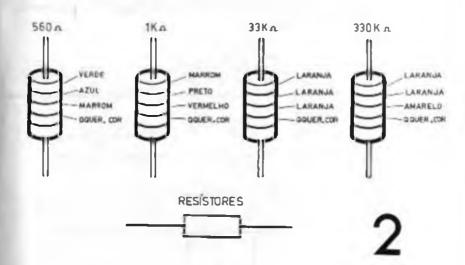
- Dois transístores BC548 ou equivalentes (qualquer outro NPN, de silício, para uso geral, poderá substituir os BC548...).
- Um LED (Diodo Emissor de Luz), de qualquer tipo, podendo ser o de menor preço que o "aluno" puder encontrar. No protótipo, para fins de "otimização", usamos um SLR-54-URC, de elevada luminosidade, porém essa inserção não é obrigatória.
- Um diodo zener de acordo com as seguintes especificações:
 - (A) 1N4741 (11 volts x 1 watt) para sistemas de 12 volts.
 - (B) 1N4734 (5,6 volts x 1 watt) para sistemas de 6 volts.
- Um resistor de $560\Omega \times 1/4$ de watt.
- Um resistor de $1K\Omega \times 1/4$ de watt.
- Um resistor de 33K Ω x 1/4 de watt.
- Um resistor de 330KΩ x 1/4 de watt.
- Uma placa de Circuito Impresso, específica para a montagem (VER TEXTO).

DIVERSOS

- Fio e solda para as ligações.
- Material para a confecção do Circuito Impresso (placa virgem, tinta ou decalque especial para a traçagem, percloreto de ferro para a corrosão, material para a limpeza e furação, etc.).


NOTA: Como a instalação final do MONITOR variará muito, de veículo para veículo, preferimos não sugerir uma "embalagem" (caixa) específica, deixando esses detalhes externos a critério do "aluno". Algumas sugestões serão dadas no decorrer da "lição"...

89

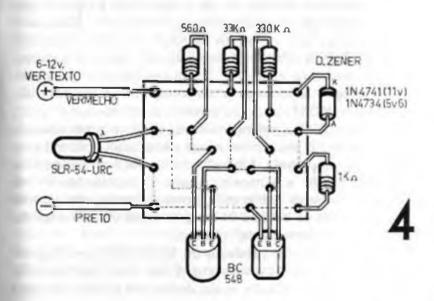

CONHECENDO OS COMPONENTES

São poucas as peças e nenhuma delas deve apresentar "dificuldades de interpretação" por parte do "aluno", mesmo iniciante... Vamos, entretanto, "passar em revista" os componentes, para que ninguém (mesmo os mais "avoados"...) fique em dúvida... Os desenhos 1, 2 e 3 mostram tudo que precisa ser conhecido, "visualmente"...

- OS TRANSISTORES Detalhados em seus aspectos externos e simbólicos no desenho 1 (inclusive quanto a disposição das "pernas"...), os BC548, para o circuito do MONITOR, admitem um grande número de equivalentes, respeitados os parâmetros descritos na LISTA DE PEÇAS).
- O LED Embora tenhamos recomendado um tipo de alto rendimento luminoso (SLR-54-URC), qualquer outro LED vermelho, de baixo custo, poderá ser utilizado, entre eles o TIL209 o FLV110 e outros... O desenho 1 mostra a "cara", as "pernas" e o símbolo, de acordo com os modelos mais comumente encontrados.

- O DIODO ZENER Notar, pelas especificações constantes da LISTA DE PEÇAS, que o zener deverá ser para uma voltagem específica, dependente daquela (nominal) que aciona o sistema elétrico do veículo no qual se pretenda instalar o MONITOR. Equivalentes poderão ser utilizados, desde que as voltagens indicadas sejam respeitadas. O desenho 1 mostra símbolo e pinagem do componente.
- OS RESISTORES Os quatro valores utilizados têm os seus respectivos códigos de cores mostrados no desenho 2 (é bom que os "alunos" decorem "loguinho" a leitura do código (ver 1a. "aula"), pois, conforme o "curso" for se tornando mais complexo, acabará essa "moleza", mais cedo ou mais tarde...). Nenhum dos valores é extremamente rígido, de modo que as variações, em torno de 20%, para baixo ou para cima, nos valores, não deverão interferir substancialmente no desempenho do circuito, embora recomendemos, dentro do possível, que as requisições da LISTA DE PEÇAS sejam seguidas.
- A PLACA DE CIRCUITO IMPRESSO No desenho 3 aparece o lay-out, em tamanho natural (para que possa ser "carbonado" diretamente...), do lado cobreado da placa; sendo que o "aluno" poderá reproduzí-la, facilmente, quantas vezes queira, proces-

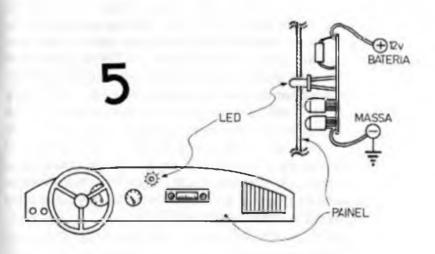
LADO COBREADO (NATURAL)


3

sando-a e confeccionando-a de acordo com as instruções dadas na série de "lições" COMO FAZER CIRCUITOS IMPRESSOS, já ensinadas em "aulas" anteriores do BÉ-A-BÁ. Não esquecer que um dos itens mais importantes quanto à placa, é a sua limpeza final, sem a qual as soldagens dificilmente ficarão boas, persistindo "maus contatos" que poderão prejudicar o funcionamento do circuito. Confira rigorosamente a "sua" plaquinha com o lay-out, antes de iniciar as ligações, para ver se nada está "faltando" ou "sobrando", lembrando sempre que um Circuito Impresso nada mais é do que um substituto, plano, pequeno e miniaturizado, para o conjunto de fios de ligação normalmente necessário a um circuito...

A MONTAGEM

A montagem, propriamente, está no desenho 4 ("chapeado"). que mostra o lado não cobreado da placa, já com todos os componentes e ligações devidamente posicionados. Observar com atencão as posições dos dois transistores, do zener e do LED (componentes polarizados, que apresentam "lado" certo para serem inseridos à placa). As linhas tracejadas representam a "sombra" das pistas cobreadas, existentes no "outro" lado da placa, e servem como quia (juntamente com o lay-out do desenho 3 e o "esquema" do desenho 1...) para que o "aluno" confira e verifique a correção de cada ligação, além da posição relativa de cada componente. Notar que, embora para efeito de visualização as peças sejam todas mostradas deitadas e espalhadas, com "pernas" compridas e pouco elegantes, na montagem "real" os componentes deverão ficar em pé sobre a placa, de modo que os terminais figuem curtos (corpo das peças bem próximo à superfície da placa...). Faça as soldagens com calma e atenção, usando ferro de baixa wattagem. Além de evitar o sobreaquecimento dos componentes e da própria pista cobreada (que pode "descolar", sob temperaturas excessivamente altas...), há que se ter cuidado quanto a eventuais "corrimentos"

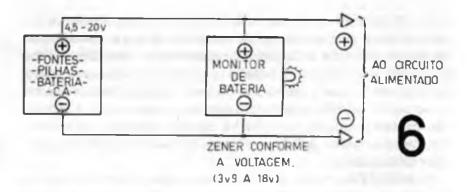

de solda, que poderão promover "curtos" indesejáveis e danosos ao circuito. Lembrar que uma boa ligação soldada deve ficar pequena, lisa e brilhante... Uma "baita" bolota de solda, toda entrugada e fosca, é uma fonte de problemas futuros quase certos...

Apenas corte as sobras dos terminais, pelo lado cobreado, após ter a certeza de que tudo está correto. Recomenda-se codificar os fios do positivo e negativo através de cabagem nas cores vermelha e preta, respectivamente, conforme é praxe, para evitar confusões na hora da instalação definitiva do circuito.

TESTANDO E INSTALANDO

Embora o circuito seja tão simples, praticamente à prova de erros ou defeitos (desde que montado com atenção...), não necessitando de testes rigorosos, o "aluno" poderá valer-se de conceitos e montagens já realizadas e aprendidas aqui mesmo, no BÉ-A-BÁ, para a comprovação do funcionamento... Por exemplo: alimente o VARI-VOLT com uma fonte de 18 volts C.C. (duas baterias de 9 volts, em série, ou dois conjuntos de 6 pilhas de 1,5 volts cada, nos respectivos suportes, também em série, conetando a saida do VA-RI-VOLT aos cabos de alimentação do MONITOR... Coloque o potenciômetro de controle do VARI-VOLT todo para a direita. O LED do MONITOR não deverá acender... Vá, então, lentamente, girando o controle do VARI-VOLT para a esquerda (o que reduzirá, proporcional e lentamente, a sua voltagem de saída, aplicada, por sua vez, ao MONITOR). Em determinado ponto desse "giro", o LED do MONITOR acenderá, indicando que a voltagem recebida na sua entrada caju abaixo dos níveis padronizados dependentes do diodo zener empregado (5,6 ou 11 volts). Daí para baixo (reduzindo se ainda mais a voltagem, através da atuação do VARI-VOLT), o LED deverá ficar aceso, apenas apagando-se novamente quando o controle do VARI-VOLT estiver quase todo na esquerda (voltagem da saída próxima de "zero")...

O desenho 5 sugere a instalação do MONITOR num "lugarzinho" qualquer do painel de um carro. Como atualmente as estruturas internas dos veículos são, quase sempre, em plástico, não será

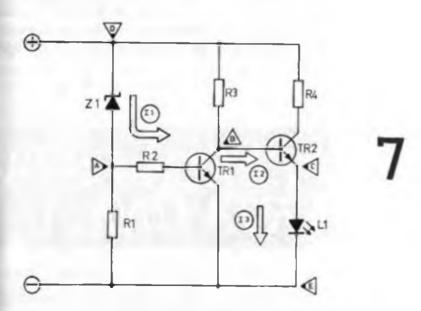


difícil fazer um furinho para o LED, ficando a placa por trás do painel, fixada com um pouco de adesivo de epoxy e conetando-se os fios do positivo e do negativo diretamente a pontos alimentados pela bateria do veículo (o negativo poderá ser ligado a um ponto metálico de "massa", qualquer... Se tiver alguma dúvida, consulte o manual do veículo, ou um eletricista de automóveis...). A instalação em carros antigos, com sistema elétrico de 6 volts, ou em motos, segue o mesmo padrão, e também não deverá apresentar qualquer dificuldade...

O MONITOR, devido ao seu consumo absolutamente irrisório (quando na situação de "espera", com o LED apagado...), ficará permanentemente ligado ao sistema elétrico. Sempre que, num sistema de 12 volts, a tensão da bateria cair a 11 volts (ou menos), o LED acenderá, indicando a condição "baixa" da pateria. Se o acendimento persistir, mesmo após o veículo rodar bastante (o que faz com que o seu dínamo ou alternador "carregue" a bateria...), um auto-elétrico deverá ser procurado, para uma recarga ou verificação na "água" da bateria, pois algo estará errado, com certeza. Em sistemas de 6 volts, o procedimento é o mesmo, apenas que o LED do MONITOR acenderá quando a tensão entregue pela bateria cair a 5,6 volts (ou menos)...

"INVENÇÕES" E EXPERIMENTAÇÕES

O circuito básico do MONITOR, sem quaisquer modificações, pode atuar sob tensões de 4,5 a 20 volts. Através da substituição única do diodo zener, podemos monitorar uma queda nessas tensões de alimentação, com a indicação pelo LED de qualquer nível desejado de voltagem. Por exemplo: para monitorar uma alimentação de 4,5 volts, podemos usar no circuito um zener de 3,9 volts (1N748), fazenco então com que o LED apenas acenda quando a voltagem cair a esse nível (ou mais abaixo). Já para uma monitoração sobre 20 volts, usaremos um zener de 18 volts (1N967 ou 1N4746), com o que o LED acenderá sempre que a tensão cair a 18 volts ou menos... A tabelinha da pág. 10 da 10a. "aula" mostra uma ampla gama de zeners e suas respectivas voltagers, que pode ser aplicada ao circuito básico do MONITOR.


O desenho 6 dá uma idéia, em diagrama de blocos, de como a monitoração deve ser feita. Assim, qualquer que seja o circuito ou dispositivo alimentado (e qualquer que seja a sua tensão normal de alimentação, dentro dos limites propostos...), podemos, a todo instante saber se a tensão da fonte está "nos conformes" ou não! Num circuito alimentado por pilhas, o LED do MONITOR avisará, então, da necessidade de substituir as "ditas cujas", quando sua voltagem cair, indicando a descarga...

O circuito - Como funciona

O funcionamento "teórico" do MONITOR é muito fácil de entender, usando-se conceitos já explanados nas "lições" até agora mostradas no BE-A-BA! Observem o desenho 7, onde o "esquema" do circuito aparece novamente, porém com algumas indicações "extras" quanto aos "pontos chave" de tensão e os percursos de corrente (vejam a "lição" teórica, lá no início da presente "aula"...).

Como já sabernos, um zener apenas "segura" a tensão para a qual foi "desenhado", deixando passar (mesmo no sentido inverso da sua polarização), tudo o que "sobrar" em relação a tal voltagem de regulação específica... Assim, enquanto a voltagem no ponto D for superior àquela do zener, este permitirá a passagem da "sobra" de tensão, suficiente para deixar o ponto A positivo. A corrente 11, então, limitada por R2, atingirá a base de TR1, matendo-o

"ern condução". Com isso, a "resistência interna" (coletor/emissor) de TR1 ficará muito mais baixa do que R3, ou seja: haverá pouquíssima tensão no ponto B, insuficiente para "forçar" corren-

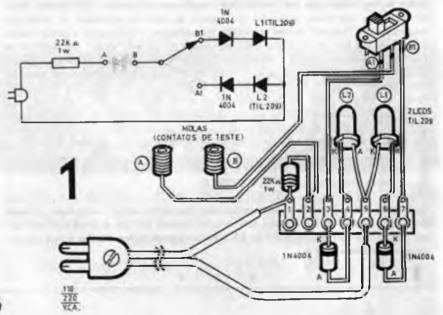
te substancial na direção da base de TR2 que, então, permanece cortado (sua resistência interna muito mais alta do que a necessária para permitir a passagem da corrente de acendimento de L1). O LED permanece apagado...

Entretanto, assim que a tensão no ponto D cair a valores menores do que a tensão de referência do zener, este pára de conduzir (sua "resistência equivalente" fica muitíssimo mais alta do que R1). A tensão no ponto A, então, cai praticamente a "zero", cortando TR1 (que deixa de receber suficiente corrente de base). Com TR1 "cortado", sua resistência coletor/emissor sobe a valores muito altos, superiores a R3. Através do fenômeno da divisão de tensão (já mencionado lá no começo da "aula"...), o ponto B passa a apresentar tensão bastante alta, capaz de "empurrar" a conveniente corrente de base para TR2 (12), fazendo então com que esse transistor conduza, no seu circuito de coletor/emissor, a corrente suficiente para L1 acender. Para que os parâmetros de TR2 e L1 não sejam ultrapassados. R4 exerce a função de limitador, posicionado que está como resistor de coletor de TR2... A título de exercício e de recordação, o "aluno" poderá tentar identificar as funções dos diversos resistores, em relação aos transístores, usando o que aprendeu nas licões específicas sobre as polarizações dos transístores ("aulas" 6 e 7).

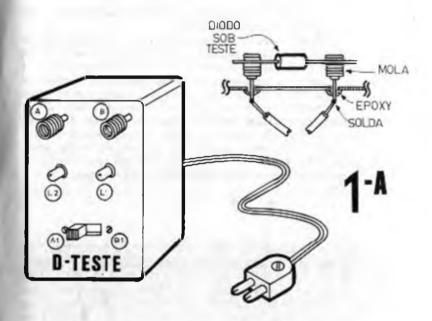
NÃO PERCA ESTA OFERTA UNICA!

GRATIS - GRA

INFORMAÇÕES E INSCRIÇÕES FONE (011) 221-1728



Conforme havíamos prometido nos "papos" iniciais, lá nas primeiras "aulas" do BÉ-A-BÁ, o organograma da nossa "revista/curso" não é (e nem seri...) rígido, existindo a permanente possibilidade de modificações, aperfeiçosmentos e da criação de movas seções, sempre que tais possibilidades impliquem num melhor intercâmbio "mestre/alumos" e vice-versa... Assim foi que, dentro da enorme quantidade de cartas que recebemos dos "alunos" (acima de 3,000, mensalmente...) verificamos a grande vontade que muitos têm de participar mais ativamente do próprio "curso", enviando ideias práticas, augestões, pequenos circuitos, etc. Experimental mente, entío, criamos a presente seção - O "ALUNO" ENSINA... - onde serão publicadas (após a natural seleção a "simplificação" pois o espaço disponível ado é muito grande...) as melhoros ideias enviadas pelos "alunos", que consideremos devam ser partilhadas com o restante da "turma"... Os regulamentos básicos para a participação são os mesmos das seções UMA DOVIDA ... e HORA DO RECREIO, ou sejam: endereçar corretamente a correspondência, citando nome e endereços completos do remetente; mandar todos os esboços e textos de forme mett clera e legivel possíveis (aqui não tem nenhum Chempollion para ficar decifrando hieróglifos...) e, de preferência, avisar, lá no próprio envelope, que a correspondencia se destina ao O "ALUNO" ENSINA...


Os leitores podem também comunicaz-nos suas impressões sobre a nova seção, pois ela só permanecerá se for bem accita pela maioria (embora tal tipo de instituição seja um tanto raro, hoje em dia, a "escola" do BE-A-BÁ é totalmente democrática, e aqui a maioria manda, realmente...).

Nota: É tão grande a quantidade de colaborações e ideias enviadas pelos alunos aqui para a seção, que tem ocorrido, com grande frequência, coincidências quanto aos projetos, circuitos (vários leitores enviando para a BÉ-A-BÁ a mesma ideia básica, e às vezes até o mesmo esquema...). Esse fato, ao contrário de constituir qualquer espécie de inconveniente, só serve para mostrar que o aproveitamento da "turma" está excelente, e que o "curso" está tão hem direcionado, que a assimilação, mesmo entre leitores/"alunos" distantes um do outro, tem sido igualmente boal No presente O "ALUNO" ENSINA, temos três projetos "coincidentes", ou seja: cujas ideias ou circuitos foram sugeridas, ao mesmo tempo, por mais de um "aluno"... Para que ninguém fique bravo com a gente, adotaremos o sistema de, sempre que possível, citar, junto à publicação de cada idéia, o nome de todos os leitores que augeriram algo semelhante, combinados...?

1 – A primeira idéia, basicamente um TESTADOR RÁPIDO DE DIODOS, alimentado diretamente pela rede C.A., fugindo assim do uso de pilhas, foi sugerida por (entre outros...) Pábio dos Reis Cuco, do Guarujá – SP, mais o Antônio Geraldo Silva Santos, de Salvador – BA, alem do Paulo Roberto Farias, de São Paulo – SP. Com pequeníssimas modificações entre uma proposta e outra (todas elas incidindo sobre a parte puramente "externa" da coisa...), o negócio básico é o seguinte: (ver desenho 1) dois LEDs (que podem ser os de mais baixo preço existentes no varejo de Eletrônica), dois diodos comuns, um resistor e alguns materiais complementares, (ponte de terminais, chave, contaios, "rabicho", etc.), interligados da maneira mostrada pelo "chapeado" (ainda desenho 1). Nada poderia ser mais simples. Os únicos pontos que merecem alguma atenção especial por parte dos "alunos" são os referentes à correta posi-

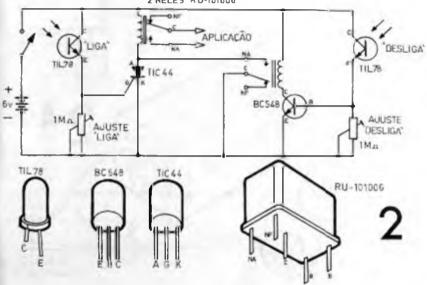
ção de LEDs e diodos (notar que, na ilustração, seus terminais estão identificados, para que não ocorram dúvidas... Uma interessante sugestão (dada por um dos três autores da ideia..) é a de usar duas molas metálicas (facilmente obteníveis em qualquer loja de ferragens) como contatos de teste. O desenho 1-A mostra a aparência externa que pode ser assumida pelo TESTADOR DE DIODOS, juntamente com uma visão em corte (perfil) de como os terminais do componente sob teste devem ser

prexos e conetados, de maneira prática e segura, usando-se as próprias espirais das molas (e a sua pressão intrínseca...), tanto para a retenção quanto para o contato elétrico... Um ponto muito importante é quanto as "posições" da chave H-H, dos LEDs e das molas. É imprescindível que a codificação anotada, tanto no chapeado (des. 1), quanto na sugestão para a caixa (des. 1-A), seja rigorosamente respeitada, devido às características de funcionamento e "leitura" do resultado dos testes efetuados com os diodos. O código para as molas e (A) e (B), para os LEDs (L1) e (L2) e para as posições do "botão" da chave H-H (A1) e (B1). A IENÇÃO: as marcações mostradas junto à caixa (des. 1-A) destinam-se apenas à interpretação do "aluno" durante a disposição dos componentes, não sendo necessária a sua marcação "real" sobre a caixa... Vamos explicar o funcionamento do TESTADOR DE DIODOS "irventado" pelos "alunos" estados tá no mício:

- Coneta-se o "rabicho" a uma tomada de C.A. (110 ou 220 volts, indiferentemente)
- Prende-se o diodo que se pretende testar às molas, como mostra o detalhe no des.
 1-A.
- Movimenta-se o botão da chave H-H "para lá e para cá" (alternando, por um momento, suas duas povições).
- Se o diodo sob texte estiver BOM, apenas um dos dois LEDs acenderá, em qual-

quer circunstância, e o terminal de catodo (K) do componente testado será aquele indicado TANTO PELO LED QUE ACENDE, QUANTO PELA PRÓPRIA POSIÇÃO DO "BOTÃO" DA CHAVE H-II (acendendo-se o LED L1, e estando a chave na posição B1, o catodo do diodo sob prova será o terminal ligado à mola B (c vice-versa...).

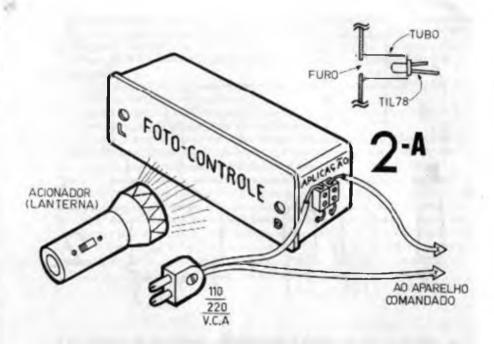
Se ambos os LEDs avenderem, qualquer que seja a posição da chave H-H, o diodo


estará "em curto" (inutilizado).

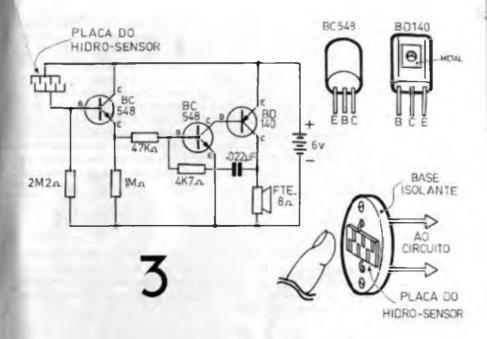
 Se nenhum dos dois LEDs acender, em qualquer dax posições da chave H-H, o diodo sob teste estará "aberto" (também inutilizado).

Os "alunos" já terão notado, então, que a grande vantagem do TESTADOR (além da sua extrema simplicidade e baixíssimo preço), é que, ao mesmo tempo em que verifica e indica o estado do diodo, mostra também a codificação dos seus terminais (qual "perna" é o anodo e qual o catodo). Essa segunda função é muito útil no teste e verificação de componentes cuja marcação externa tenha sido apagada pelo tempo ou pelo manuseio (é frequente que a cinta ou anel identificativos do catodo, estejam apagadas, impossibilitando a "leitura" direta do código dos terminais... Como um interessante adendo, também LEDs poderão ver testados no instrumento, levando-xe em conta que, um LED "bom", sempre acenderá durante o seu próprio teste, servindo a posição da chave H-H (mais a iluminação de um dos dois LEDs do TESTA-DOR...), para a identificação do terminal de catodo (K) do LED sob prova...

. . .


2 - O segundo projeto do presente O "ALUNO" ENSINA é uma autêntica "fusão" das idéias enviadas também por três leitores: Carlos Cristiano Carneiro, de Fortaleza -CE. Alexandre Giulietti, de São Paulo - SP e Carlos R. Pardilli, de Curitiba - PR, Os projetistas e professores do BE-A-BÁ botaram as três idéias num líquidificador, misturaram tudo e... "deu no que deu": um FOTO-CONTROLE que proporciona ao usuário, ligar ou desligar, à distância, qualquer aparelho elétrico ou eletrônico (seja este alimentado a pilhas, baterias ou pela rede C.A...). Como "acionador remoto", o Icitor poderá utilizar um "negócio" que, com toda a certeza, /a existe na casa de todo mundo: uma simples lanterna de mão, a pilhas! O desenho 2 mostra tanto o "esquema" do monstrinto, quanto os componentes principais, com seus terminais, devidamente codificados. Quanto a esses componentes, é importante notar que, praticamente todos eles admitem equivalências. Entretanto, nesse caso, pode ocurrer uma disposição de "permat" diferente daquela mostrada no desenho 2. Os dois reles, principalmente, admitem uma gama relativamente ampla de equivalências tos sugeridos são relês para 6 volts C.C., com um contato reversível, produzidos no Brasil pela fábrica "Schrack", e se prestam muito bem a aplicações desse tipo...). Optamos por não sugerir especificamente nonhuma técnica de montagem, deixando a critério do "aluno" interessado, desenvolver a "coisa" em ponte de terminais, barra de conetores parafusados ou placa específica de Circuito Impresso (em diversas "lições" anteriores do BF-A-BA, já foram dadas instruções importantes sobre o desenvolvimento de todas essas técnicas, e já é hora do "aluno" ir "se virando" por conta própria, para desenvolver seu potencial criativo...). Como sempre, contudo, recomendamos bastante atenção na correta ligação dos terminais dos componentes, pois qualcuer inversão (naqueles mostrados na parte interior do desenho 2), acarretará o não funcionamento do circuito. O desenho 2-A dá uma idéia geral que pode ser aproveitada pelo leitor quanto ao "encapsulamento" final do FOTO-CONTROLE; uma caixa longa e estrei-

ta, contendo o circuito, e dotada de dots furinhos (razoavelmente distanciados um do outro) numa das faces maiores. Internamente, tais furinhos deverão estar acoplados a dois pequenos tubos, estreitos e longos, no fundo dos quais ficam os dois foto-transístores (TIL-78), conforme também mostra o desenho 2-A. Os fios que saem dos terminais C (comumi e NA (Normalmente Aberto) do relé acoplado ao SCR TIC44 (ver esquema no desenho 2) devem ficar acessíveis, externamente, através de um par de conetores parafuxados, tipo "Weston", ou "Sindal", através dos quais será comandado o aparelho a ser controlado, com a interligação mostrada no desenho 2-A. Para um teste e calibração final, após a montagem e instalação do circuito na caixa, conete, provisoriamente, uma lâmpada incandescente comum (de voltagem compatível com a da rede...) aos pontos (X) e (Y), através de um soquete. Ligue o "tabjeho" à tomada.


Coloque os dois "trim-pots" do circuito em sua posição média. Ilumine o furo do fototransístor "Liga" com o feixe luminoso emitido pela lanterna de mão e ajuste o "trim-pot" respectivo até obter o acendimento da lâmpada conetada aos terminais (X) e (Y). Em seguida, ilumine, com o feixe luminoso da lanterna, o furo do fototransístor "Desliga", ajustando o respectivo "trim-pot" até obter o "apagamento" da lâmpada ligada a (X) e (Y). Pronto! O FOTO-CONTROLE já está calibrado para funcionamento. Seguindo a mesma ligação básica mostrada no desenho 2-A, qualquer outro aparelho poderá ser conetado aos terminais de "Aplicação" do FOTO-CONTROLE, ficando o seu "ligamento" e o seu "desligamento" comasdado, totalmente, à distância, através do feixe luminoso emitido pola lanterna de mão. É importante notar alguns portos:

Com o FOTO-CONTROLE corretamente calibrado e ajustado, basta um breve lampejo da lanterna de mão em direção ao furo respectivo, para se obter a ação duscjada ("ligamento" ou "desligamento" do aparelho controlado), não havendo a nucessidade de se manter a luz demoradamente sobre os furos sensores!

- Através de um cuidadoso ajuste nos dois "trim-pots", mesmo utilizando-se, como acionador, uma lantema de baixa potência (aquela alimentada por apenas duas pilhas médias...), o alcance de atuação do sixtema remoto deverá ser de vários metros!
- Em ambientes contumerramente iluminados por luz forte (natural ou artificial), poderão ocorrer instabilidades na atuação do FOTO-CONTROLE, entretanto, na grande maioria das vezes, esse tipo de problema poderá ser sanado pela correta calibração dos dois "trim-pots" (o que, eventualmente, exigirá certa paciência, mas quase sempre dará resultados positivos...).
- Notar que, quanto mais comprido e estreito for o tubinho que acondiciona o fototransistor, mais direcional será o controle e menos sensível a interferências luminosas ambientes. A caixa do FOTO-CONTROLE deverá, obviamente, ficar instalada em posição "confortável" para o acionamento remoto (com seus dois furinhos "olhanco" para a posição normalmente ocupada pela pessoa que manejará a lanterna atuadora (com uma instalação correta, você não encontrará a menor dificuldade em ligar o desligar o televisor do seu quarto, à distância, sem precisar levantar-se da cama. O mesmo poderá ser facilmente conseguido com aparelhos de som, ventiladores, etc.

3 — A terceira e última ideia deste O "ALUNO" ENSINA, foi proposta simultaneamente, com pequenas modificações, tanto pelo Orlando José Pellanda Júnior, de Curitiba — PR, quanto pelo Antônio Giacca, do Rio de Janeiro — RJ. Tratase de uma CAM-PAINHA RESIDENCIAL personalizada e "diferente" (tanto no seu "som" quanto no

seu sistema de acionamento, no qual o tradicional botão é substituído por um sistema de "toque resistivo"...). O circuito está no desenho 3 e, basicamente, e um oscilador com transistores PNP c NPN (parecido com a SIRENINHA - 2a. "aula"...) ao qual foi acoplado um "interruptor de toque", usando-se a mesma plaquinha em forma de "duplo pente" recomendada para a montagem do CHUVALARM - 6a_ "aula" (denominada HIDRO-SENSOR e fornecida gratuitamente na capa de EE-A-BA no. 6). Vamos falar, rapidamente, sobre o funcionamento do circuito. A parte do oscilador já foi estudada, tanto durante a montagem da própria SIRENINHA (2a. "aula"). quanto na descrição dos circuitos osciladores (8a. "aula"). Para que a oscilação aconteça, o transistor BC548 acoplado ao BD140 deve receber polarização positiva em seu terminal de base. Normalmente, o primeiro BC548 da esquerda está "cm corte", pois a sua base recebe polarização negativa, através do resistor de $2M2\Omega$ Seu circuito, de emissor/colator, portanto, apresenta registência muito elevada, com o que o BC548 do oscilador permanece recebendo polarização negativa na base, através do resistor de 47KS e de 1MQ. Entretanto, quando o dedo de uma pessoa for pressionado contra a plaquinha do HIDRO-SENSOR, a resistência da pele ærá suficiente para polarizar o primeiro BC548 no sentido de "condução", baixando sensivelmente a sua resistência interna, no seu cárcuito de emissor/coletor. Com isso, o BC548 do oscilador passa a receber a polarização positiva, entrando o circuito em operação plena, emitindo som forte e nítido pelo alto-falante. O consumo em situação de "espera" (sem som) è muitíssimo baixo, podendo as pilhas então (icarem ligadas permanentemente. devendo, mesmo assim, durarem bastante. A instalação do "sensor de toque" também está sugerida no desenho 3, bastando colar-se a plaquinha sobre uma base isolante qualquer (madeira, plástico, etc.), "puxando-se" os dois fios para o circuito principal, que poderá ficar acondicionado numa pequena caixa, instalada no local mais conveniente. Embora a idéia básica possa ser adaptada para diversas outras aplicações de

"sinalização", se o "aluno" pretender mesmo adotá-la como CANPAINHA RESIDENCIAL, deverá proteger o "interruptor de toque" contra a chuva, pois se for depositada umidade sobre as pistas cobreadas da plaquinha, o som "disparará" (numa
instalação externa, uma pequena abóbada ou campânula, de lata ou de cerâmica,
poderá ser colocada, em forma de "chapeu", protegendo o "botão" contra a chuva) De uma forma geral, a sensibilidade do circuito é bastante elevada (poderá,
em alguns casos, ser reduzida, baixando-se o valor do resistor original de 2M252
que interliga a base do primeiro BC548 com a linha do negativo da alimentação.
Também nesse circuito, não apresentamos uma sugestão específica quanto à técnica
de montagem... Os iniciantes poderão, sem qualquer dificuldade, "interpretar" o circuito numa barra de conetores parafusados, o que, além de evitar o uso de solda, posibilitará a troca e o reaproveitamento de componentes, dentro de disposições puramente experimentais...

. . .

Todos os colaboradores do presente O "ALUNO" ENSINA estão de parabéns pela inventividade demonstrada. Ficamos no aguardo de outras idéias! Podem mandar suas cartinhas que, como já dissemos várias vezes, são todas levadas em consideração, e analisadas com muito carinho (mesmo aquelas que, por inevitáveis razões de espaço e de "asfixia pela quantidade", não venham a ser publicadas...).

É proibida a reprodução total ou parcial do texto, artes ou fotos deste volume, bem como a industrialização ou comercialização de quaisquer dos projetos, circultos ou experiências nele contidos, sem a prévia amiência dos detentores do copyright. Todos os itens aqui veiculados foram previamente testados e conferidos nos seus aspectos teórico/práticos, porêm BÉ-A-BÀ DA ELETRÓNICA e BARTOLO FITTIPALDI — EDITOR, assim como os autores e colaboradores, não se responsabilizam por falhas ou defeitos ocorridos, bem como nãose obrigam aiqualquer tipo de assistência têcnica ou didática aos leitores. Todo o cuidado possível foi observado por RÉ-A-BA DA ELETRÔNICA no sentido de não infringir patentes ou diveitos de terceiros, no entanto, se erros ou lapsos ocorrerem nesse sentido, obrigamo-nos a publicar, tão cedo quanto possível, a necessária retificação, correção ou ressalva, Embora BÉ-A-BÂ DA ELETRÔNICA asama a forma de "revista-curso", não se obriga à concessão de quaisquer tipos de diplomas, certificado para de "revista-curso", não se obriga à concessão de quaisquer tipos de diplomas, certificado para de "revista-curso", não se obriga à concessão de quaisquer tipos de diplomas, certificado para de "revista-curso", não se obriga à concessão de quaisquer tipos de diplomas, certificado para de "revista-curso", não se obriga à concessão de quaisquer tipos de diplomas, certificado para de "revista-curso", não se obriga à concessão de quaisquer tipos de diplomas, certificado para de "revista-curso", não se obriga à concessão de quaisquer tipos de diplomas, certificado para de "revista-curso", não se obriga à concessão de quaisquer tipos de diplomas, certificado para de "revista-curso", não se obriga à concessão de quaisquer tipos de diplomas, certificado para de "revista-curso", não se obriga à concessão de quaisque tipos de diplomas certificado para de "revista-curso", não se obriga de concessão de quaisque tipos de diplomas de traceiros para de "revista-curso", não se obriga de concessão de quaisque tipos de diploma de "re

cados ou comprovantes de aprendizado que, por Lel, só podem ser fornecidos por cursos regulares, devidamente registrados, autorizados e homologados pelo Ministério da Educação e Cul-

tura.

ELETRÔNICA

GRÁTIS

TUDO PARA VOCÉ: Equipamento Eletrônico indispossával ao aprondizado: RÁDIO AM-FM
"SIEMENS", RITS, SUPER-RIT CIGANTE "CEPA", MONTAGEM DE SEUS PRÓPRIOS
INSTRUMENTUS ELETRÔNICOS (VCL. (a.t.) PERRAMENTAS, TÉSTER, MULTITIÉSTER
DIGITAL, MODERNOS MANUAIS, ETTAS DE VIDEO-CASSETE, MERICOMPUTADORÉS, MATERIAIS DIVERSOS E TREINAMENTO "GRÁTIS" NO EXTERIOR!

VOCE APRENDERA PROGRESSIVAMENTE:

Fince Electrónice para es mais variadas aplicações; Tecnologia a montagem de componentas Eletro-Eletrônicos, de acuardo com as técnicas bládica, bládia e Superios, para o mais completo domínio das várias fases de Enganharia Eletrônico.

SISTEMAM, A. S. T. E. R.:

Método Autoformativo con Seguro Trefaminanto e Elevada Il muneração MASTER é um distema de Ensino Livre Personalizado, para ediciente formação técnica de possoas que año dispõem de tempo tategral, ou moram longo dos grandes titos técnico-culturais. Todos os nomos cuenos são legalmente garantidos om castono em nomo do estudante.

GRATIS VOCE GANHARA:

Cursos de aparfeicamento no Exterior com viagem, incluindo visitas e grandes empresas otranacias; brindes de inestimável valos; faztas e manuais técnicos PHILIPS FAPESA, GENERAL ELETRIC, RCA, HASA, TEXAS INSTRUMENTS, ELETRODATA, TELERAMA, MEWLETT PACHARS, RANVO, WESTINGHOUSE, SIEMENS, CEPA e OBTOS. Ao soltar para o Brasi, Voce montará seo próprio PAINEL ELETROMECO. VOCE SE DIPLOMARA NO EXTERIOR em "Tecnologia da ENGENMARIA ELETROMICA", e terá outros Cursos "GRATUITOS" de póvejas duação que fazia de Voci em Emansteno em Eletrônica ampre abusicado. Todo cate situama enclusivo é hoje uma realidade, grapas ao apoio de importantes ampresas, adrioras técnicas e instituações ed ucativos.

Instituto Nacional CIENCIA
R DOMINGOS LEME 289

CEP 04510 - SÃO PAULO

Instituto Nacional CIENCIA	CANA POSTAL: 19.119 CEP: 04599 - SÃO PAULO - BRASIL
	RATES O Folhelto do Sistemo M.A.S.T.E.R., completo do Birasil, com TREINAMENTO
) Nome:	
Endorugo:	n-
Cidode:	CEP:
Ettt:	(table