

Anno 3° - 19ª Pubblicazione mensile - Sped. in abb. post. gruppo III°

I NUOVI OMOLOGATI A PIENA POTENZA

SOMMERKAMP SK-2699R

- Ricetrasmettitore dual band (VHF 144 ÷ 146, UHF 430 ÷ 440 MHz)
- Full duplex: consente di dialogare come al telefono
- 25 watt in uscita riducibili a 3
- 10 canali memorizzabili
- Ricerca automatica con stop

- programmabile sui canali liberi o su quelli occupati
- Collegato a un'interfaccia di tipo Hotline 007 consente di dialogare in full duplex con un altro SK-2699R dotato di tastiera DTMF e montato su autoveicolo.

SOMMERKAMP

MELCHIONI ELETTRONICA

20135 Milano - Via Friuli 16-18 - tel.57941 - Filiali, agenzie e punti di vendita in tutta Italia Centro assistenza: DE LUCA (12 DLA) - Via Astura, 4 - Milano - tel. 5696797

o fotocopiare e incollare su cartolina postale completandola del Vs/indirizzo e spedirla alla ditta che

Soc. Editoriale Felsinea s.r.l. Via Fattori 3 - 40133 Bologna Tel. 051-384097 Direttore Responsabile Giacomo Marafioti

Fotocomposizione F&B - Via Cipriani 2 - Bologna

Stampa Ellebi - Funo (Bologna)

Distributore per l'Italia Rusconi Distribuzione s.r.l Via Oldofredi, 23 - 20124 Milano

© Copyright 1983 Elettronica FLASH Iscritta al Reg. Naz. Stampa Registrata al Tribunale di Bologna N. 01396 Vol. 14 fog. 761 Nº 5112 il 4.10.83 121-11-84

Pubblicità inferiore al 70%

Spedizione Abbonamento Postale Gruppo III

Direzione - Amministrazione - Pubblicità

Soc Editoriale Felsinea s.r.l.

Via Fattori 3 - 40133 Bologna - Tel. 051-384097

Costi	Italia	Estero
Una copia	L. 3.000	Lit. —
Arretrato	» 3.200	» 4.000
Abbonamento 6 mesi	» 17.000	»
Abbonamento annuo	» 33 000	» 45 000
Cambio indirizzo	» 1 000	» 1.000

Pagamenti: a mezzo C/C Postale n. 14878409 BO, oppure Assegno Circ., personale o francobolli

ESTERO: Mandat de Poste International payable à Soc. Editoriale

Tutti i diritti di proprietà letteraria e quanto esposto nella Rivista, sono riservati a termine di legge per tutti i Paesi.

I manoscritti e quanto in essi allegato se non accettati vengono resi.

INDICE INSERZIONISTI

pagina

pagina

pagina

36

31-62

☐ B & B Agent	pagina	14
☐ B & S elettr. prof.	pagina	31
CLUB NAZ. ELETTRONICA	pagina	11
☐ COMMITTERI	pagina	62
C.T.E. International	3ª copertina	
C.T.E. International		-69-80
☐ DAICOM elett. telecom.	pagina	26
☐ DOLEATTO	pagina	54-79
☐ ELETTROGAMMA	pagina	25
☐ ELETTRONICA SESTRESE	pagina	40
☐ E.R.M.E.I. elettronica	pagina	70
☐ GRIFO	pagina	48
☐ INTEK	1° copertina	-9.0
☐ LEMM commerciale	pagina	6
☐ LOPARDO ROCCO	pagina	14
☐ MARCUCCI	pagina	46
☐ MELCHIONI	2º copertina	70
☐ MICROSET	4º copertina	
NOVAELETTRONICA	pagina	78
☐ Piccola biblioteca Radio	pagina	79
☐ RIZZA elettronica	pagina	61
RONDINELLI comp. elett.	pagina	2
RUC elettronica	pagina	32
☐ SANDIT	pagina	18
SANTINI Gianni		70
SIGMA ANTENNE	pagina	
- SIONA VIAICIAIAE	pagina	77

(Fare la crocetta nella casella della ditta indirizzata e in cosa desiderate)

Desidero ricevere:

TECHNITRON

VECCHIETTI G.

☐ Vs/CATALOGO ☐ Vs/LISTINO Informazioni più dettagliate e/o prezzo di quanto esposto nelle Vs/pubblicità.

Anno 3

SOMMARIO

Rivista 19ª

Giugno 1985

Varie		
Sommario	pag.	1
Indice Inserzionisti	pag.	1
Mercatino postale	pag.	4-5
Modulo «Mercatino Postale»	pag.	
Errata corrige	pag.	
Annunci & comunicati	pag.	
Novità editoriali	pag.	45-76
Giuseppe TOSELLI		
Un preciso capacimetro	pag.	7
Redazione		
Tutti i c.s. degli articoli per il Master	pag	12-13
Germano IW6AME		
CB radio Flash	pag.	15
Luigi FORMAINI	17.00	
In RTTY e CW con il computer	pag.	19
Pino CASTAGNARO		
Guitar Doubler	pag.	27
G.W. HORN		
Filtro notch	pag.	33
Tony e Vivy PUGLISI		
/ II clock digitale	pag.	37
Dino PALUDO	1000	
Data book Flash	pag.	41
Roberto MANCOSU		
Testo e grafica contemporanea su C64	pag.	47
Umberto BIANCHI		
Prova transistor «AVO-CT446»	pag.	49
Alberto FANTINI	H. I	
· Circuiti risonanti a costanti distribuite	pag.	55
Tommaso CARNACINA		
Allineamenti collineari in gamma U.H.F.	pag.	63
Gianni BECCATTINI		
RTTY converter	pag.	70
Giuseppe PRIZZI		
Super istogrammi per C64.	pag.	_ 71
		27.63

In copertina:

INTEK FM-500S - Ricetrasmettitore CB veicolare 34+34 canali AM-FM 5 watt il "massimo" sotto ogni aspetto nel campo degli apparecchi omologati.

	豆	1400 4,000 4
921	NO	9. N. 16856 9. N.
tel. 02/589921	E	201.000 14.000 14.000 15.000 16.000 16.000 17.000 18.000 18.000 18.000 19.000 19.000 10.00
o, tel. 0	H	S. M. 1101 S. M. 2011 S. M.
Milan		15.000 3.1000 3.
- 20136 Milano,	E	MARK 55577 MARK 5557 MARK 55
Bocconi 9	뿔	12,500 14,500 14,500 14,500 15,500
via Boc	ᇛ	14 15 15 15 15 15 15 15
	2	2.5 6.60 2.5
	3	LIM 3308/2.55 LI
E		6.000 6.000
F		1, 201 2, 201 1, 201 2, 201 1, 201 2
ŀ	J	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50
F		C C 600 600 600 600 600 600 600 600 600
F		8 800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F		CA 3151 E CA 315
1.		### 1990 1990
-	Z	N. 1-5400 1-500 1-

CONDIZIONI GENERALI DI VENDITA:

Gli ordini non verranno da noi evasi se inferiori a L. 20.000 o mancanti di anticipo minimo di L. 5.000, che può essere versato a mezzo Ass. Banc., vaglia postale o anche in francobolli. Per ordini superiori a L. 50.000 inviare anticipo non inferiore al 50%, le spese di spedizione sono a carico del destinatario. I prezzi data l'attuale situazione di mercato potrebbero subire variazioni e non sono comprensivi d'IVA. La fattura va richiesta all'ordinazione comunicando l'esatta denominazione e partita IVA, in seguito non potrà più essere emessa.

mercatino postale

©

occasione di vendita, acquisto e scambio fra persone private

CERCO ricevitore surplus (e non) purché funzionante e in buono stato (specificare frequenze caratteristiche e dimensioni). Offro in cambio decodificatore CW. Graphix e Super Bug elettronico pubblicizzati su radio kit. e radio rivista.

Torgani Emilio - viale L. Tamaro Solferino, n. 7 -15100 Alessandria - Tel. 0131/446874 (ore ufficio).

FT dx 505s molto ben tenuto vendo lire 550 mila. Ricevitore sintonia continua Hallicrafters R274D/FRR sei gamme 0.5-54 Mc perfetto vendo lire 400 mila -Tratto solo di persona con ogni prova ricezione -Trasmissione per i due apparecchi.

Alberto Guglielmini - via Tiziano, n. 24 - 37060 S. Giorgio in Salici (VR)

TRASMETTITORE FM 88-108 MHz con 3W RF possibilità 20W RF e PLL alimentazione 220 V in elegante Rak completo di controllo RF -BF. PW vendo L. 200.000 in contrass. PT.

Maurizio Lanera - via Pirandello, n. 23 - 33170 Pordenone - Tel. 0434/960104.

VENDO RTx FTDx 401 yaesu bande radiomatoriali più 11-45-88 metri a lire 600,000. Telefonare 0721/454034 ore pasti e serali.

Mario Grottaroli - via San Martino, n. 86/1 - 61100 Pesaro

VENDO stampante Plotter 1520 Commodore nuova a lire 320.000. Tasto cw sqeeze keyer Lire 80.000. Alimentatore 25 A, 13,8 volt in kit lire 180.000. Filtro passa banda Daiwa Lire 70.000 - massima serietà. Telefonare ore 19.30 + 21.00.

Dino Forte - via Baldass Media, n. 176 - 33100 Udine - Tel. 0432/602731 COLLEZIONE DI SURPLUS vendo separatamente. Pezzi stupendi perfettamente restaurati: R390, R392, SP600, Racal RA-17, BC-191, BC-669, ART-13, TG-7, T-195, e tanti altri ancora, manuali, accessori ricambi.

Telefonare ore negozio 055/296059 ing. Becattini.

VENDO generatore barre SG73. Advance electronics a L. 120.000. Vendo Satellit 6001 completo di SSB a L. 250.000. Il tutto perfettamente funzionante e in ottime condizioni.

Norberto Grossule - via Roma, n. 19A - 37050 Belfiore (VR) - Tet. 045/7640611.

VENOO o cambio con RTx 2 mt. di qualsiasi tipo purché funzionante con linea Geloso Tx G222. Rx4/214 con possibilità 45 mt. funzionante e in garanzia. Mascaretti Eugenio - via Zavattari n. 6 -20100 Milano - Tel. 4697212.

VENDESI Radio Grundig satellite 300 -Gamme OL-OM-OC lettura digitale dl frequenza 35 memorie nuovo prezzo listino L. 375.000. Vendesi a L. 220.000.

Sergio Calorio - via Filadelfia, n. 155/6-10137 Torino - Tel. 011/32419 (dopo ore 19).

CERCO Geloso ricevitori G/208, G/218 -G/220, vendo videoterminale Olivetti tipo TCV 260 con tastiera - Vendo riviste di vario genere, chiedere elenca. Laser - Circolo culturale C.P. 62 - 41049 Sassuolo (MÚ).

CERCASI schema oscilloscopio marca Hickok mod. 770. Si prega di chiedere compenso. Luigi Ervas - via Pastrengo, n. 18 bis -10024 Moncalieri (TO).

CERCO I'IC2E della ICOM completo di batterie, caricabatterie e antenna in gomma.

L'apparato deve essere perfettamente funzionante. Inviare le offerte, indicando il numero telefonico. Luciano Spelta - via Papa Giovanni XXIII n. 10 -20071 Casalpusterlengo -

PER C 64 VENDO manuale e disco con 20 programmi per sproteggere qualsiasi programma protetto Lit. 65.000 = Vendo inoltre allineamento testina driver 1541 da hardware con manuale e 2 dischi Lit. 100.000 = Tel. ore pasti 055/714360 Leonardo Landini - via Corcos n. 5 - 50142 Firenze

VENDO stazione completa di: RTx Asahi 40ch 4 W potenza, microfono preamplificato regolabile, alimentatore 12,6 V-2,5 A, ground plane autocostruita + antenna auto, 33 mt. cavo RG 58, Tutto in ottime condizioni, L. 220.000.

Scrivere: Antonio Palmiotto - via Mazzini, n. 7 -70054 Giovinazzo (BA) - Tel. 080/931568

RICETRASMETTITORE valvolare Collins - Mod. 18M - CW-AM-Gamma- continua 2 + 16 Mc. Valvola finale 807 funzionante 220 VL. Ricetrasmettitore Collins Mod. MBF 43065/60 + 80 Mc con schema e modifiche per i 6 metri comprendente parti vitali ma incompleto da riparare L. 20.000 - Parti vitali Tx 654, 3,8+5,8 MC digitale meccanico L. 20.000. Angelo Pardini - via A. Fratti, n. 191 - 55049 Viareggio - Tel. 0584/47458 ore serali.

OFFRO per VIC 20 e CBM64 programma totocalcio «EL13 non più una utopia». Effettuo modifiche apparati CB per funzionare in 11, 40 e 45 metri. Per informazioni scrivere o telefonare.

Libero Stolzi - via S. Maria, n. 1 - 53021 Abbadia SS. (SI) - Tel. 0577/848117 (ore ufficio).

VENDO automodello rádio comandato con motore a scoppio da 3.5 cc usato solo 3 volte a L. 150.000, vendo inoltre gli accessori per il funzionamento. Telefonare dalle ore 18 alle ore 20.

Luciano Francesconi - via Sabbione, n. 11 - 42038 Felina (RE) - Tel. 0522/814513.

SURPLUS-RAOIO-REPAIR'S. Preghiamo i nostri amici surplassai amanti della radio, di non fare richiesta a noi di apparati, ma bensi di rivolgervi alle spetti. li Ditte del settore, noi a parte, qualche valvola eseguiamo solamente riparazioni.

Paoio-Leonardo Finelli-Alonzo - via Molino, n. 4 -40053 Bazzano (BO) - Tel. 051/8131883 dalle 18 alle 20

VENOO oscilloscopio USA Lavoie LA-261 da laboratorio DC-15 MHz doppia traccia 5 pollici alt/chop 5xMAG 220V. taratura originale costruzione profess. 125xh34xp52 interamente alluminio anodizzato perfetto Lire 600.000 tratt.

11SRG SERGIO - Via Priv. Mimosa, 2/8 - 16036 Recco (Genova) - Tel. 0185/731868.

Vengono accettati solo i moduli scritti a macchina o in stampatello. Si ricorda che la «prima», solo la prima parola, va scritta tutta in maiuscolo ed è bene che si inizi il testo con «YENDO, ACQUISTO, CAMBIO ecc.». La Rivista non si assume alcuna responsabilità sulla realtà e contenuto degli annunci stessi e, così dicasi per gli eventuali errori che dovessero sfuggire al correttore. Essendo un servizio gratuito per i Lettori, sono escluse le Ditte. Per esse vige il servizio «Pubblicità».

Cognome			HOBBY saluti.	S
n cap	città		01	
TESTO:			OMPUTER SATE dizioni p	2
			ZIO ZIO	\(\frac{1}{2}\)
Some State Assistant		LUV.W.	- S D D S	Chonato
				TESTO: città TESTO:

mercatino postale

occasione di vendita, acquisto e scambio fra persone private

VENDO o cambio con lineare 2 m. o altro 2 X Q B 3,5/750 equivalenti EIMAC 4-250 A 750 W RF ottime sino 150 MHz ideali per lineari HF, VHF anche per radio libere-nuove.

Sergio Molinelli - via G. Ginelli, n. 17 - 60131 Ancona - Tel. 862651 ore 15 ÷ 16 - 21 ÷ 22.

SURPLUS-RADIO-REPAIR'S Ripariamo, Rx-RTx. Surplus costruzione alimentatori, in c.a. eliminando i Oinamotor. Lasciando integri gli apparati per, in caso di bisogno, reincovertire la alimentazione originale. Per acquisti, prego di rivolgervi, presso ditte specilizzate.

Leonardo-Paolo Alonzo-Finelli - via C. Rocchi, n. 28 40053 Bazzano (BO) - Tel. 051/831883.

VENOO generatore panoramico della Imetron modello P-101/T - Occasione.

Cerco disperatamente gruppo quarzi per Rx Rt-278-B/GR. 2. Da 200 a 400 MHz

Antonio Beltrami - via Pioppa, n. 7 - 44020 Ostellato (FE) - Tel. 0533/58294.

VENDO alimentatori stabilizzati «switch»: in 220 Vca out 13-24 Vcc 8A continui. Autoprotetti e memorizzazione allarme. Completi di schemi e manuale in italiano. L. 35.000 + s.p.

Doriano Rossello - via Genova n. 6E/8 -17100 Savona. Tel. 019/34659

SVENDO computer ZX 81 + manuale + alimentatere e cavi, (il tutto nuovo) L. 75.000, oppure permuto con CB, omologato 34 ch. 5 Watt (eventuale aggiunta di soldi da parte mia). - Tel. 0541/44623. Matteo Pacini, via Dante, n. 32 - 47041 Bellaria

VENDO staz. CB RTX Courier Cladiator, Lineare Apollo, alimentatore, ecc. Ricevitore Marc 1, Stereo 7 e Stereo 8 con casse acustiche. Il tutto in un bellissimo mobiletto completo di interruttori, spie, spine, ecc. L. 900.000 trattabili. - Tel. 045/7300640. Pietro Rudella - via Oseggiolo, n. 3 - 37063 Isola D.

VENDO antenna bazooka nuova L. 40.000 lineare 50 W L. 70.000 non trattabili. Tel. 0541/44623. Matteo Pacini - via Oante, n. 32 - 47041 Bellaria

ATARI 2600 come nuovo + 2 joystik + 4 videogiochi vendo L. 150.000 (preferibilmente Roma e dintorni) - Tel. 767.27.29 (06) ore serali. Gianni Piras - via Tuscolana, n. 944 - 00174 Roma

VENDO due tralicci autocostruiti entrambi smontabili in 4 pezzi il primo alto mt. 8, il secondo mt. 12 prezzo da stabilirsi + ant. diret. 4 elementi verticali e 4

orizzontali. Glovanni - via Tuguri Sandrigo 20/1 - 36066 Sandrigo (VI) - Tel. (0444) 699482.

VENDO ric. R 107 ottimo stato valvole originali ric. BC 603 ottimo quarzi usa - decine valvole cond. variabili ric. BC 642 buono stato radio Handbook 1949

Andrea Barra - via cittadella 30 - 44100 Ferrara -Tel. (0532) 34443.

VENDO Stazione CB completa composta da: PCNY da Baie 23 cn. AM con orologio digitale Super Phanter DX 120 ch. AM-USB + Ant. GP. + Accordatore rosmetro vattmetro + preamp. antenna + strum. controllo modulazione + commutatore ant. 2 vie + cuffia amplif, tutto ottime condizioni no spedizioni. L. 350.000. - Tel. 011/9378054 ore serali 20 + 22.

Renato Vai - via M. Guglielmino, 6 - 10094 Giaveno

CERCO Urgente SP 277, SP 277P, FV 277, FL 277 Somm, er Kamp, FTV 250, IC 202, IC 215, yaesu. Solo vere occasioni. Cerco Hosley (GA-3D) anche se guasto. Rispondo solo per scritto ed in zona a tutti. Vendo base CB 40 CH AN/SSB con — vecchia omologazione - ottime condizioni (80) L. 200.000 non trattabili. Rispondo a tutti.

Luca Sgualser - via Beppe Fanoglio, n. 9 - 12100

VENOO Vic 20 come nuovo + registratore + espansione 16K + joystick + introd. al Basic n. 1 + numerosi programmi su cassetta. Tutto a lire 350.000 trattabili. - Tel. 0175/36762.

Enzo Cati - v.le Stazione, n. 25 - 12032 Barge (CN)

VENDO videoconverter HAL DS 2000 KSR (Baudot-Ascii-CW) e demodulatore Guidetti ZS 8000 (Tubo catodico 2 pollici).

Cerco valvole 26A6/26C6/26D6/6AJ5/12AU7/-26F26/GF33 - TX Surplus AN GRG 19. Baldi Federico - via Solferino, n. 4 - 28100 Novara -Tel. (0321) 27625 ore 15-18 e 21-22.

VENDO ricetrasmettitore FT 101 ZD con 22 + Lineare Yaesu FL 2100 Z anche separati - TRX 200 CM USB-LSB-CW-AM-FM 12 W PEP Lafayette LMS 200 + Antenna magnetica veicolare per 27 MHZ + TRX 120 CH-AM-FM-SSB con lineare incorporato 100 W. ROS + Watt, Osker 200,

Salvatore Margaglione - via RGG Sant'Antonio, n. 55 - 14053 Canelli (AT).

VENDO a prezzo interessante ottima enciclopedia la fotografia pratica per tutti ED. Fabbri 6 volumi o cambio con TX 432MHz usato ma funzionante. Valentino Vallè - via Libertà 238 - 27027 Groppello Cairoli PV (0382) 85739 (pasti)

CAMBIO ingranditore Durst automatico HG 300 con BC 312 perfettamente funzionante o altro ricevitore sintonia continua.

16TRZ, Lorenzo Trinchini - via R. Sciore 11 - 67039 Sulmona (AQ) - Tel. (Q864) 31234 (pasti)

TRANSVERTER 28 432 4343 L. 200 000 HP 431B Powermeter con testina 10 MHz 10GHz L. 450.000 HP3400 millivoltometro BF 10MHz L. 600.000 funzionanti con manuali.

Antonio Corsini - via Ciserano 23 - 00125 Roma -Tel. (06) 6057277 (20 ÷ 22).

CERCO Software OS9 per Dragon 64 Basic Ø9, C Compiler, RMS, Edit Assembler Stylograf, OS-9. Acquisto anche scheda Disk Controller in buono sta-

Giancarlo Toccafondi - via Montalese 228 - 50047 Prato (FI) - Tel. (0574) 466737 (20+21,30)

NUOVI coppia ricetrans portatili AOR 280 civili 160/170 MHz potenze 1/5 Watt impostazione freq. a contravers con borse micro esterno anche singolarmente cedo manuale freq. ricevitori scanner 371500 MHz Italia settentrionale L. 30.000+S.P. antenna UHF 430 GP Asahi L. 40,000 massima se-

Silvio Vaniani - viale Cassiodoro 5 - 20145 Milano -Tel. (02)) 490934 (solo ore pasti 13/20).

VENOO mixer video a lire 1,100,000 pannelli TV modulatore audio, video Encoder stereo generatore di barre, antenne FM 4CX250, 4CX1500B, trasmettito-

Maurizio Caruso - viale Libertà 85 - 95014 Giarre (CT) - Tel. (095) 932723

VENOO nuovissimo scanner AR 20001 25-550MHz pagato L. 990.000 vendo a L. 680.000. Vendo palmare RTX nuovo 136 MHz 170 nuovo L. 220 000. Cinpresa canon classic 723 L 70 000

Alberto Galli - via Fontana 16 - 23030 Livigno (SO) -Tel. (0342) 996340

FTdx 505s molto ben tenuto con finali e driver di riserva vendo L. 600 mila - Hallicrafters R 274 D/FRR ricevitore 0,5 - 54 Mc 6 gamme perfetto vendo L. 450 mila. Tratto di persona e con ogni prova, eventualmente scalo il prezzo delle valvole di riserva. Alberto Guglielmini - via Tiziano, n. 24 - 37060 S. Giorgio in Salici (VR).

CAMBIO oscilloscopio OS 106/USM 117 transistorizzato a cassetti ott. condizioni con schema elettrico, con ricevitore professionale anche surplus. Cerco convertitore a schema elettrico per ricevitore Hallicrafters SX 101 A - Pagando giusto compenso. Te-lefonare ore uffico Tel, 0131/446874 Emilio Torgani - Lungo Tamaro Solferino, n, 7

-15100 Alessandria

VENDO per Vic 20 programma utility e giochi su catridge e cassette mai usate. Telefonare ore 8 ÷ 20 al (051) 223994.

Paolo Fiorentini - via S. Petronio Vecchio, n. 31 40125 Bologna.

VENDO Stereo casa ampl. casse sintom. piatto, pia⁴ stra L. 800.000. - Trio TX-RX TS510 - 3 ÷ 30 MHZ + PS - 510 L. 500.000 - RX - TRIO - 9R - 59 D - da -0,55 a 30 MHZ - L. 250.000 - Vendo baracchino -23 ch. 5 W TYCO - L. 100.000 - (Rosmetro - PTE -Modello 120 + Preampl. + Alimentatore) - L. 100.000 - Autoradio - Mangianastri - Stereo - Pon Equal. imporp. - L. 300.000 - Autoradio - Mangianastri L. 60.000 + Piastra auto - Zow - L. 100.000 -TV bianco e nero CGE 24 pollici 7 ch. - L. 100.000. Walter Scaramucci - via Lapi, n. 1 - 06012 Città di Castello (PG) - Tel. 075/8558350 - dalle ore 9,30 ÷ 10 escluso domenica

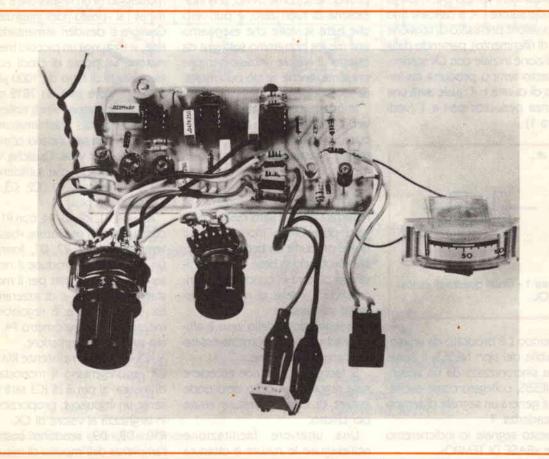
VENDESI su cassetta programma CBM64 elaborazione ambi gioco del lotto, frequenza uscite ultimi 20 anni, ritardo ultima uscita, possibilità di aggiornare i dati inserendo le estrazioni. Solo contrassegno L. 25.000. Scrivere o telefonate solo il lunedì ore 10-11 al numero 5985305. Ugo Quinzi - via R. Togni, n. 7 - 00144 Roma

VENDO cubica 11 m. Trasverter LD3 3 bande 11-23-45 88 m amp. indian 1003 ant. vert. 45 m ant. Eco 2 m. in blocco L. 650.000 - Tel. dopo le 20 al 0461/752108.

Aldo Capra - via P. Morizzo, n. 22 - 38051 Borgo

ERRATA CORRIGE

Articolo: Costruiamoci un LED-TESTER a pag. 64 del nº 5/85, seconda colonna, 36ª riga. Nella frase tra parentesi, al posto di Rp si deve leggere Rb. La frase si riferisce infatti, come è intuibile dal testo, alla scheda di figura 4 e non a quello di figura 5.



UN PRECISO CAPACIME-TRO

Giuseppe Toselli

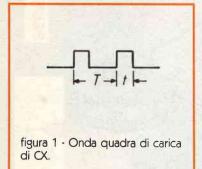
Questo capacimetro è dotato di alcune caratteristiche che lo rendono veramente utile, come il comando di azzeramento e l'espansione del fondo scala. La lettura è per 6 portate: 500 pF.f.s. 5 nF.f.s. 50 nF.f.s. 50 nF.f.s.

Il capacimetro è uno strumento che non può mancare all'hobbysta ed al tecnico elettronico.

Questo strumento, se dotato di buone caratteristiche, permette di risolvere un buon numero di problemi che incontriamo spesso nella pratica elettronica.

Elenchiamo solo alcuni di questi problemi: la selezione dei condensatori da impiegare nei filtri, attivi e passivi, nella tecnica audio, in alta frequenza, negli oscillatori, nei circuiti risonanti, nelle reti di egualizzazione sempre presenti in campo audio, ecc.

Un buon capacimentro ci consente inoltre la misura di condensatori con le scritte cancellate o illeggibili sempre presenti nei nostri cassetti e la valutazione della capacità al variare della temperatura.


Principio di funzionamento

Il capacimetro qui presentato risulta essere di concezione molto semplice e ben collaudata, di facile realizzazione e di costo molto contenuto.

Sono impiegati solamente tre integrati del tipo «555», facilmente reperibili; lo strumento indicatore può essere un comune tester o un microamperometro da 50 microampere fondo scala.

La misura della capacità si ottiene valutando il tempo che impiega il condensatore CX, a caricarsi fino ad un valore prefissato di tensione (Val, di riferimento), partendo dalla condizione iniziale con CX scarico.

Questo tempo produrrà un impulso di durata t, il quale avrà una cadenza periodica pari a T (vedi fugura 1).

Il tempo t è prodotto da un monostabile del tipo NE555, il quale risulta sincronizzato da un secondo NE555, collegato come oscillatore e genera un segnale di tempo con cadenza. T.

Questo segnale lo indicheremo come «BASE DI TEMPO».

Ora gli impulsi in uscita dal monostabile di misura, e che si susseguono dopo un tempo T, vengono resi ad ampiezza costante a mezzo di uno zener, quindi integrati da una rete RC. Una corrente proporzionale a t, verrà indicata dal microamperometro il quale ci fornirà il valore di CX. Esattamente quanto volevamo ottenere.

Azzeramento

Il circuito fin qui descritto, presenta un lieve incoveniente: durante la misura delle piccole capacità avremo un errore di lettura per eccesso dovuto alla presenza di un breve impulso t, prodotto dalle capacità parassite del cablaggio, dalle boccole e dal cavetto eventualmente impiegato per collegare il condensatore incognito da sottoporre a test.

La presenza di questo impulso provocherà, come ovvio, una indicazione di fuori zero; è pur vero che tutte le volte che eseguiamo una misura potremmo sottrarre da questo il valore iniziale sempre presente, anche se ciò può risultare scomodo.

In questo capacimetro si è provveduto ad inserire un apposito circuito, il quale sottrae automaticamente questo valore iniziale, permettendo l'azzeramento del capacimetro.

La funzione di azzeramento è realizzata con un altro «555», collegato pure come monostabile, il quale produrrà un breve impulso, che pilotando la base di un transistor lo porterà in conduzione cancellando il valore di residuo presente sulla misura.

La regolazione dello zero è affidata ad un potenziometro fissato sul pannello anteriore.

Si raccomanda di non eccedere sulla regolazione dello zero onde evitare di eseguire misure errate per difetto.

Una ulteriore facilitazione nell'eseguire le misure è ottenuta con un pulsante che ha il compito di espandere il fondo scala, dimezzandolo rispetto al reale impostato sul commutatore di portata.

Se il condensatore da misurare risulta di 100 pF, il fondo scala impostato sarà di 500 pF; ora premendo il pulsante otterremo un f.s. di 250 pF migliorando la risoluzione della misura.

Qualora si impieghi, quale indicatore, uno strumento digitale, questo pulsante non dovrà essere installato.

Schema elettrico

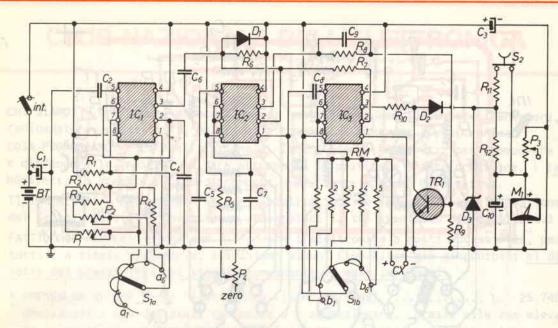
Facendo riferimento allo schema elettrico, individuiamo le funzioni fin qui descritte (vedi figura 2).

Il capacimetro può essere alimentato a pile da 9 o 12 volt. Nel circuito stampato è previsto il montaggio di un regolatore a 3 terminali al posto dell'interruttore. Qualora si desideri alimentarlo da rete, si aggiunga un piccolo trasformatore, un ponte di diodi ed un elettrolitico di filtro da 1000 µF.

Il regolatore sarà un 7812 o un 7809; l'interruttore verrà collegato al primario del trasformatore, il quale avrà un secondario compreso fra 12 e 18 V ca. Qualche W di potenza sarà più che sufficiente.

I condensatori: C1, C2, C3, C5, C8, sono dei filtri.

IC1, C4, R1, R2, R3, R4, con P1, P2, costituiscono l'oscillatore «base di tempo», C6, R6, R7, D1, formano un gruppo che produce il necessario impulso di start per il monostabile di misura, e di azzeramento. L'azzeramento è regolabile a mezzo del potenziometro P4, posto sul pannello anteriore.


IC3 e la rete di resistenze RM con CX rappresentano il monostabile di misura; al pin 3 di IC3 sarà presente un impulso t, proporzionale in larghezza al valore di CX.

R10, D2, D3, rendono costante l'ampiezza dell'impulso di misura t.

R12, C10 formano l'integratore ed M costituisce l'indicatore che può essere un tester, un microamperometro, o un indicatore digitale: uno di questi sarà la nostra unità con la quale leggeremo il valore del condensatore incognito.

S1A S1B, è un commutatore doppio a 6 posizioni il quale seleziona le porte, così suddivise: 500

Elenco componenti

IC1 = IC2 = IC3 = NE555	$RM4 = 1 k\Omega$
TR1 = 2N2222	$RM5 = 470 \Omega$
D1 = D2 = 1N4148	$C1 = 47 \mu\text{F}$
D3 = 5.1 V-1/2 W zener	C2 = 47 nF
$R1 = 1200 \Omega$	$C3 = 100 \mu F$
$R2 = 100 \text{ k}\Omega$	C4 = C5 = C8 = 47 nF
$R3 = 3300 \Omega$	C6 = 220 pF
R4 = 490 kΩ (390 kΩ + 100 kΩ)	C7 = 2200 pF
$R5 = 560 \Omega$	
$R6 = 8200 \Omega$	C9 = 56 pF
$R7 = 470 \Omega$	$C10 = 47 \mu\text{F}$
$R8 = 47 k\Omega$	$P1 = P2 = 25 \text{ k}\Omega \text{ trimmer}$
$R9 = 10 \text{ k}\Omega$	P3 = 10 kΩ trimmer
D10 1000 0	P4 = $47 \text{ k}\Omega$ pot. lin.
$R11 = R12 = 68 \text{ k}\Omega$	S1A.S1B = comm. 6 pos. 2 vie
$RM1 = 1 M\Omega$	S2 = Pulsante n.a.
$RM2 = 100 \text{ k}\Omega$	Int = Interruttore
$RM3 = 10 k\Omega$	$M = Strumento 50 \mu A f.s.$

figura 2 - Schema elettrico capacimetro

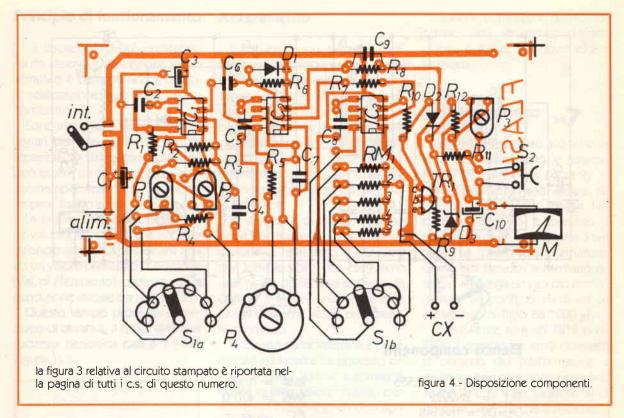
pF, 5000 pF, 50 nF, 500nF, 5 μF, 50 μF.

R12, S2, modificano il f.s..

P3 deve essere inserito solo con l'impiego di un indicatore digitale.

Note sui componenti

Dalla precisione di alcuni com-


ponenti dipende la precisione fifiale dello strumento.

Le resistenze contrassegnate con RM1, 2, 3, 4, 5 sono le più critiche, elementi al 2% risultano più che sufficienti allo scopo, tuttavia è pure possibile impiegare componenti al 5% specie se si dispone di un tester digitale onde selezio-

nare questi valori: più che il valore assoluto è importante vi sia un preciso rapporto fra le stesse, in particolare fra le prime quattro.

Gli elementi impiegati per l'oscillatore base dei tempi R1, R2, R3, R4, e soprattutto P1, P2 dovranno essere, oltre che di buona qualità, anche stabili. C6, R6 possono risul-

tare critici solo con taluni integrati, i quali richiedono un impulso di trigger più largo del necessario; in questo caso R6 potrà essere scelta con volore leggermente superiore.

Le resistenze R11, R12 possono essere variate in sede di taratura a seconda del tipo di microamperometro impiegato, o del fondo scala che si desidera ottenere. Qualora si impieghi un tester con scale di 30 e 10 f.s. le resistenze R11, R12 assumeranno un valore proporzionalmente più ridotto, fino ad ottenere un f.s. rispettivamente di 300 e 100 pF con pulsante S2 premuto.

Gli altri elementi circuitali sono acritici entro un buon margine.

Una alimentazione stabile migliora la affidabilità. Il trimmer P3=10 k ohm sarà inserito solo se verrà impiegato un tester digitale, in questo caso il pulsante S2 ed R11 non dovranno essere inserti in circuito.

Taratura e Collaudo

Dopo aver montato lo strumen-

to si fornirà alimentazione, e se non vi sono errori o guasti lo strumento presenterà una lieve indicazione, dipendente dalla posizione assunta dal potenziometro P4.

Si ruoti la manopola di portata su 500 pF f.s. Dopo aver azzerato l'indice si inserisca un piccolo condensatore da circa 200 pF nelle boccole di entrata (di misura). Questo condensatore è preferibile sceglierlo fra i tipi ad alta stabilità e precisione.

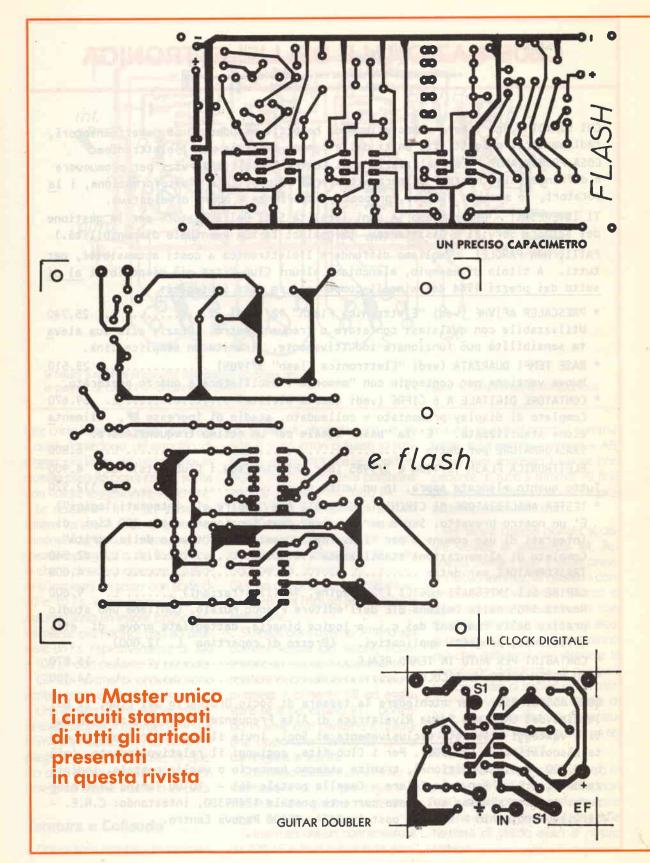
Si regoli ora il trimmer P1 fino alla corretta lettura del valore; ricontrollare di nuovo l'azzeramento e ripetere eventualmente la taratura, premere il pulsante S2 ed aggiustare se è necessario R11, ponendo in serie o in parallelo a questa una opportuna resistenza fino a correggere la lettura.

Sconsiglio di usare un trimmer in sostituzione di R11 per ragioni di stabilità. Con questo risulteranno tarate le prime 4 gamme.

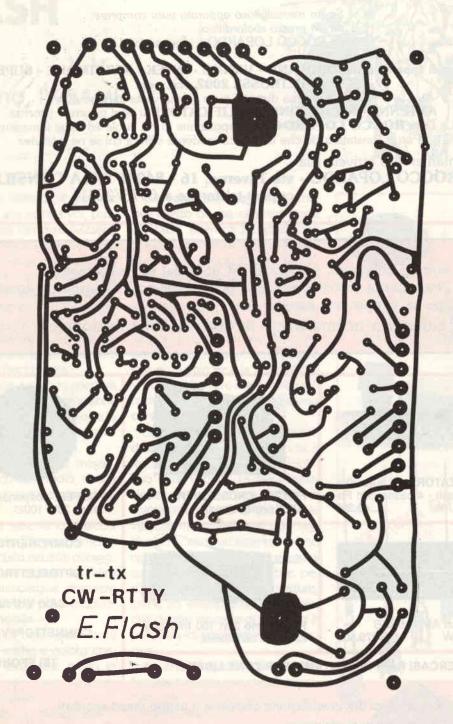
Si inserisca ora un condensatore da 470 nF e lo si misuri sulla gamma A4, quindi si sposti il commutatore sulla portata successiva A5, dopo aver annotato il valore precedente; si ruoti il trimmer P2 fino alla corretta lettura del valore precedentemente annotato.

Per tarare l'ultima portata si dovrà variare la resistenza R4. Per questa taratura non è stato previsto alcun trimmer, in quanto i condensatori che verranno misurati in questa portata presentano di solito delle tolleranze enormi ed alcuni tentativi sul valore di R4 saranno più che sufficienti per ottenere la precisione desiderata; al più posso consigliare di impiegare un trimmer provvisorio in sostituzione di R4 e, dopo aver eseguito la taratura, misurarlo e sostituirlo con un resistore di pari valore.

Con ciò il nostro capacimetro risulta terminato e funzionante, non resta che impiegarlo tutte le volte che ne avremo necessità, certi che risulterà di valido aiuto al nostro hobby.



CLUB NAZIONALE DELL'ELETTRONICA


Associazione legalmente costituita con scopi di ricerca, didattici e culturali

CHI SIAMO? Una libera associazione di hobbisti, studenti, CB, sperimentatori, radioamatori, progettisti, uniti dalla comune passione per l'elettronica. COSA PROPONIAMO? La realizzazione di Centri Sociali e Servizi per promuovere e diffondere la "nostra" cultura attraverso la pratica e l'autoformazione, i la boratori, lo scambio di idee, proposte, esperienze e opere divulgative. Ricerchiamo in ogni località Soci Collaboratori per la gestione del Settore Servizi e Assistenza. (Segnalaci la tua eventuale disponibilità.) FATTI, NON PAROLE! Vogliamo diffondere l'elettronica a costi accessibili, per tutti. A titolo di esempio, elenchiamo alcuni Club-Kits* già disponibili al di sotto dei prezzi 1984 dei singoli componenti in essi impiegati: * PRESCALER AF VHF (vedi "Elettronica Flash" 12/1984) L. 25.740 Utilizzabile con qualsiasi contatore o frequenzimetro. Grazie alla sua eleva ta sensibilità può funzionare induttivamente, tramite un semplice link. * BASE TEMPI QUARZATA (vedi "Elettronica Flash" 3/1985) L. 23.510 Nuova versione per conteggio con "memoria". Oscillatore a quarzo pretarato. * CONTATORE DIGITALE A 6 CIFRE (vedi questa Rivista) L. 69.670 Completo di display premontato e collaudato, stadio di ingresso BF, alimenta zione stabilizzata. E' la "base" ideale per un ottimo frequenzimetro. TRASFORMATORE per detto L. 6.800 ELETTRONICA FLASH 12/1984 e 3/1985 (per chi richiede i Club-Kits) L. 4.900 Tutto quanto elencato sopra, in un unico invio L. 112.920 * TESTER ANALIZZATORE DI CIRCUITI INTEGRATI (da "Capire gli integrati logici") E' un nostro brevetto. Serve per "vedere" come funzionano oltre 200 tipi di integrati di uso comune e per ricavarne le cosiddette "tavole della verità". Completo di alimentazione stabilizzata L. 42.540 TRASFORMATORE per detto L. CAPIRE GLI INTEGRATI LOGICI (126 pagine, 94 illustrazioni) L. Novità 1985 della Collana BTÉ dell'editore Franco Muzzio. Contiene uno studio pratico delle funzioni dei c.i. a logica binaria, dettagliate prove di effi efficienza, progetti applicativi. (Prezzo di copertina L. 12.000) * CONTAGIRI PER AUTO IN TEMPO REALE L. 16.870 COME ASSOCIARSI: Per richiedere la tessera di Socio Ordinario del Club. il Bol lettino del CNE, una Sonda Rivelatrice di Alta Frequenza, e avere diritto a tut ti i vantaggi riservati esclusivamente ai Soci, invia il tuo indirizzo e la quo ta associativa (L. 10.000). Per i Club-Kits, aggiungi il relativo importo (più L. 3.800 per la spedizione), tramite assegno bancario o vaglia postale, indiriz zando: C.N.E. - Servizio Celere - Casella postale 461 - 10100 Torino Centro; op pure, tramite rimessa sul conto corrente postale 17409350, intestando: C.N.E. -Servizio Ordinario - Casella postale 343 - 35100 Padova Centro.

RTTY E CW CON IL COMPUTER

COMUNICATO URGENTE A TUTTI I CI BISTI

Se un meraviglioso apparato vuoi comprare, ad un prezzo sbalorditivo. da ROCCO LOPARDO... devi andare!

Dispone di apparati come: MIDLAND - VIKING - INTEK - MULTIMODE - SUPERSTAR PETRUSSE 2002 ecc. ecc.

E non solo, ma dispone pure di una vasta gamma di ANTENNE - MICROFONI -AMPLIFICATORI di ogni genere e potenza. La Ditta ROCCO LOPARDO è a disposizione di chi vuole ed esige il massimo. Potrai constatare ciò che la tecnica moderna offre a chi se ne intende.

Appuntamente o scrivete alla

Ditta ROCCO LOPARDO - via Taverne, 16 - 84036 SALA CONSILINA oppure telefonate al 0975/22311

Se non sei abbonato, prenota E. FLASH dal tuo edicolante. Se l'ha esaurita pretendi che te la procuri presso il Distributore locale. Lui ne ha sempre una scorta.

Ci aiuterai a normalizzare la distribuzione nazionale. Grazie!

EQUALIZZATORE per auto 30 + 30W 10 tagli - 4 casse con Fa-L. 49.390 der Slim Line

RTX 200 ch AM/FM/SSB

12 V - 5/12W

RTX palmo 3ch 100 mW quarzato alta sensibilità

FILTRO CROSS-OVER 3 vie 100W professionale

WOOFER sospensione pneumatica 20W 100Ø

COMPONENTISTICA

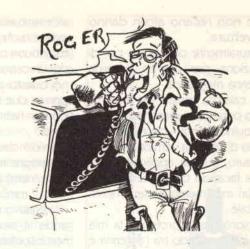
OPTOELETTRONICA

CAVI VHF/UHF

CONNETTORI VHF/UHF

TELEFONIA

L. 279,400


Richiedeteci documentazione completa e listino prezzi scontati Per informazioni scrivere a:

B & B agent Casella Postale 132 - 80020 CASAVATORE - NA

C.B. RADIO FLASH

Germano, IW6AME

Con l'arrivo delle belle giornate ecco ancora una volta a voi, puntuale come una cambiale svizzera, la rubrica CB-Radio-Flash. Da questa puntata il buon Fabrizio, che aveva curato le tre precedenti, mi passa l'incarico perché chiamato, sempre all'interno della rivista, ad altre mansioni.

Dopo questa breve ma doverosa introduzione entriamo nel vivo della nostra chiacchierata.

Ho detto non a caso in apertura «con l'arrivo delle belle giornate», perché giugno con i suoi colori e la sua atmosfera particolare invita alle scampagnate fuori porta.

Allora che cosa c'è di meglio, per un fanatico della radio, di una bella gitarella in compagnia del baracchino?

Ne parlavo sere fa con alcuni amici sul canale 23, generalmente poco frequentato nei miei paraggi, e, visto che una parola tira l'altra abbiamo cominciato a discutere sull'attrezzatura per poter modulare in barra mobile.

Spero così di poter dare alcuni suggerimenti anche a coloro che, come alcuni amici che erano in ruota sul 23, non sono attrezzati per la quattroruote.

Innanzi tutto è indispensabile un'antenna da macchina. A prescindere dalle loro prestazioni elettriche ($1/4 \lambda$, $5/8 \lambda$), ne esistono di tre diversi tipi.

C'è l'antenna magnetica che, per effetto di una calamita posta alla base, aderisce perfettamente alla vettura. Grande pregio è quello di essere di applicazione lampo e di avere una elevatissima resistenza alla velocità. Ciò dipende anche dal tipo di antenna nel senso che più lo stilo è lungo e maggiore è la resistenza che tale componente opera sul vento e, di conseguenza, minore è la velocità che si può raggiungere in auto. Naturalmente è valido anche il discorso contrario.

Esiste poi l'antenna da grondaia che, per mezzo di una vite a manopola si applica sul gocciolatoio delle vetture. La sua installazione, anche se molto veloce, richiede un po' più di tempo e la velocità massima che si può raggiungere con un'antenna come questa montanta sull'auto si aggira sui 120 km/h. Non è possibile, però, montarla su tutti i tipi di vetture, come ad esempio la Panda, perché questo modello di auto non è provvista di gocciolatoio per l'acqua.

Accertarsi, quindi, prima di effettuare tale acquisto che sia possibile, poi, utilizzarla senza dover cambiare auto.

Sia l'antenna magnetica che quella da grondaia possono essere messe e tolte ogniqualvolta se ne avvertono il bisogno e la neces-

sità e non recano alcun danno alla vettura.

Naturalmente occore un po' di attenzione per quanto riguarda l'antenna magnetica.

La calamita posta alla base è molto potente (ci mancherebbe altro!) quindi se non volete correre il rischio di rigare la vernice della vostra auto, è bene applicarla e toglierla facendo bene attenzione a fare un movimento perfettamente verticale.

Personalmente proteggo la mia auto interponendo tra l'antenna e la carrozzeria un fazzolettino di carta.

Meno visibile è un foglio di plastica tipo Domopack o similari ma non sempre è possibile averne a portata di mano.

Dulcis in fundo l'antenna da tettuccio che è di installazione fissa, ma è sempre provvista di uno snodo che permette di piegare e smontare lo stilo quando ciò si renda necessario.

Per stilo si intende l'antenna vera e propria, quel pezzo nero o bianco a seconda dei casi, l'altra parte si chiama supporto. Fatta la scelta del tipo di antenna che si preferisce si può operare un'altra classificazione: un quarto d'onda $(1/4 \lambda)$, mezz'onda $(1/2 \lambda)$ e cinque-ottavi $(5/8 \lambda)$.

Maggiore è la lunghezza elettrica e maggiore è, di norma, il guadagno isotropico che, per convenzione viene espresso in decibel (dB).

Ma questo aspetto delle antenne sarà oggetto di un'altra puntata di CB-Radio-Flash.

Fatta la scelta bisogna installare l'antenna.

Per il tipo magnetico e quello da grondaia non esistono problemi in quanto il montaggio è così semplice che può essere effettuato da chiunque.

Maggiore cura implica la messa in opera del tipo fisso.

In questo caso consiglio di attenersi alle istruzioni allegate o, nell'eventualità che non voleste correre rischi, di affidarsi alle mani (ed al buon cuore) di un elettrauto o di un carrozziere.

A questo punto occorre predisporre i due cavi elettrici che porteranno l'alimentazione al baracchino.

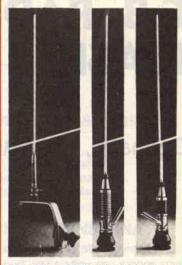
Per ciò che concerne il cavo io⁴ ho sempre usato quello bicolore (rosso/nero) con una sezione di almeno 2 mm².

Il negativo si può ottenere collegando il cavo nero opportunamente spellato ad una qualsivoglia vite della carrozzeria oppure, ma è una cosa «poco pulita», direttamente alla batteria della macchina.

Il polo positivo, al contrario, è leggermente più laborioso. Bisogna, infatti, trovare la scatolina dei fusibili.

Fatto ciò provare con una lampadina da 12 V o, se non si potesse fare altrimenti, direttamente col baracchino in quale dei fusibili è presente tensione anche se la chiave di accensione non è girata.

Dopo questa operazione togliere il fusibile e cercare, sempre con lo stesso metodo, in quale dei due capi del portafusibile **non** è presente tensione.

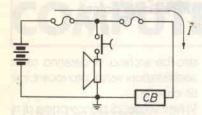

Collegare qui il capo del cavo di colore rosso.

Rimettere a posto il fusibile che era stato tolto.

Forse qualcuno si sarà chiesto perché io consigli di collegare il cavo rosso dove **non** è presente tensione.

È presto detto.

Se dopo aver tolto il fusibile non è presente una differenza di potenziale elettrico è facile intuire che la corrente deve ancora superare l'ostacolo creato dal fusibile stesso. Seguendo questo metodo si otterrà una doppia protezione sull'extra-corrente; cioè su una circolazione di corrente troppo elevata che di solito avviene a causa di un guasto del baracchino.


POLMAR - ANTENNE VEICOLARI

La prima operata dal fusibile dell'auto e la seconda dal fusibilino in vetro presente sul cavo del baracchino.

Anche se il concetto è molto semplice cercherò di renderlo ancora più chiaro con un disegno:

Ecco che la corrente «l» per arrivare fino al baracchino deve superare i due potenziali ostacoli rappresentati dai fusibili. Basta che, per qualsiasi motivo di natura elettrica, uno dei due «salti» che la nostra stazione CB rimarrà in QRT.

Una cosa è importantissima: non sostituire mai un fusibile prima di aver individuato e provveduto a rimuovere il guasto o la causa che ha provocato la sua fusione.

Ciò eviterà sicuramente di far aumentare le eventuali spese di riparazione del baracchino.

Altra regola d'oro: esiste una ragione per tutto quindi non azzardatevi mai a sostituire un fusibile bruciato con uno che abbia una corrente di rottura più alta.

Se proprio avete il pallino della sperimentazione (come il sottoscritto del resto) provate a trovare quale è il valore minimo in corrispondenza del quale, in condizioni normali, il fusibile del baracchino (non quello dell'auto) si brucia dopo alcuni istanti.

Trovato questo valore mettetene uno di 100-150 mA più alto. Molte volte, poi, ho visto collegare il baracchino al cordone dell'auto con delle prese punto e linea. Non esiste nulla di più errato. La puntoe-linea non sopporta correnti del l'ordine di 2A che, di solito, è il minimo che un baracchino richiede.

Per questo collegamento servirsi esclusivamente delle prese comunemente chimate banane.

Bene, spero di essere stato chiaro, allora per cambiare argomento, a parziale completamento del gergo CB, ecco alcune voci tra le meno usate e della quali sarebbe buono che anche i nuovi CB conoscessero il significato:

QRB = Distanza tra due stazioni CB (generalmente in linea d'aria).

QSJ = Prezzo, valore (si usa anche il termine «resistenza ohmica»).

33 = Saluti tra YL e XYL

73 = Con amicizia

51 = Stretta di mani

88 = Baci (usato di norma tra un CB ed una YL; meno frequentemente da due CB o due YL di dubbia moralità).

Bassa o Colpo di Meucci = Fare una telefonata.

Ciabatta o vitamine = Amplificato-

re lineare Banda superiore = Canali oltre il 40

Esiste anche un decalogo del CB che ho trovato su CB-Radio-Magazine, una rivista francese specializzata nel campo CB che è in collaborazione di scambio con Elettronica FLASH.

Vi propongo questo decalogo sperando, così, di aiutare a migliorare il traffico CB.

Il decalogo del C.B.

- 1) Ascoltare. È attraverso l'ascolto che si assimila il modo di operare. Ciò permetterà anche di non disturbare un QSO già avviato. Ascoltare, soprattutto, prima di prendere possesso di un canale; potrebbe essere già occupato.
- 2) Lanciare il break, se si vuole entrare in una ruota già avviata, quando uno degli altri operatori rilancia il microfono. Attendere e non prendere la parola prima di essere stato invitato a farlo. Potreste dover ritirare il break.
- 3) Scegliersi una sigla personale. Essere disposto a cambiarla se qualcuno, prima di noi, ha operato la stessa scelta.
- 4) Muniti del vostro indicativo potrete fare delle chiamate sui canali destinati a questo scopo (11 in FM 27 in AM) e spostatevi immediatamente in un canale libero. Non occupate inutilmente i canali di chiamata; altre stazioni potrebbero averne momentaneamente bisogno.

RADIO CLUB C.B. TRE TORRI

P.O. BOX 60 45021 BADIA POLESINE (RO) R.C.T. INTERNATIONAL DX GROUP

Nel 1984 il nostro Radio Club ha effettuato varie assistenze radio a gare podistiche e ciclistiche awenute a Badia polesine e dintorni.

- 5) Non fate mai subire ad altri quelo che voi stessi non sareste disposti a tollerare: portanti, musica, sovrammodulazioni ed ogni genere di disturbo.
- 6) Siate cortesi con gli altri CB esattamente come vi aspettate che gli altri lo siano con voi.
- 7) Evitate di disturbare i televisori del vicinato, ciò è tanto dannoso per la vostra reputazione quanto per quella di tutta la CB, della quale voi costituite un membro.
- 8) Non utilizzate amplificatori lineari senza bisogno. Un baracchino ben tarato, una corretta installazione di antenna ed un microfono preamplificato ben adatto al vo-

- stro baracchino vi daranno tante soddisfazioni senza provocare inutili disturbi.
- 9) Fate un po' di bianco prima di riprendere parola; permetterete così che gli altri interlocutori possano manifestarsi lanciando un break.
- 10) Quando promettete una cartolina QSL ricordatevi che, nella CB come nella vita, «ogni promessa è debito».

73's e alle prossime

P.S. Per suggerimenti, richieste e tutto ciò che riterrete utile comunicarmi sono disponibile presso la Redazione di E.F.

...immagazzina i tuoi programmi in

SANBIT

e non li perderai...

Supporti magnetici e accessori per computer

per informazioni: SANDIT s.r.l. via S. Francesco, 5 24100 BERGAMO - Tel. 035-224130

RICEVERE E TRASMETTERE

IN RTTY E CW CON IL COMPUTER

Luigi Formaini

Un modulatore e demodulatore completo, per l'OM che vuol cimentarsi con la telescrivente e col morse a spese del computer.

Non sono portato per la fonia sulle HF, e da tempo cercavo di abbandonare la vecchia «T2». Il Personal l'ha sostituita egregiamente, ma il Modem era un problema; sostituirlo comportava una spesa superiore al prezzo del computer. Che fare?!... Mi sono documentato, ho scopiazzato dalle riviste, ho tolto, aggiunto, modificato e... messo in TILT il computer più volte a forza di spulciare fra i suoi bip, ed ora, pur conscio di espormi alle feroci critiche di ISJRV, voglio illustrarvi il risultato.

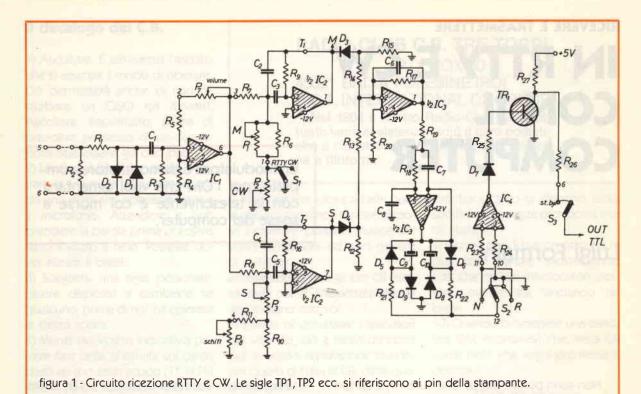
Due parole per vedere come funziona.

Diciamo subito che la base di partenza è l'addomesticamento del computer. Esso vuole degli ordini precisi, poi i problemi se li vede da solo. E qui entra in ballo il famoso programma. Di questi ne esistono a volontà e diciamo che tutti più o meno sono validi, sia che consistano in un listato in Basic, che in scheda, da porsi direttamente su porte di espansione o altro. Un solo problema resta da risolvere, una volta scelto il tipo di programma, ed è quello di sistemare gli accessi al computer. Ma di ciò parleremo in seguito. Per ora cerchiamo di vedere come funziona il tutto. Niente paura! Non è una cosa difficile.

Due parole sul Modem

Esso è diviso in 4 parti: Alimentatore, Ricevitore, Trasmissione RTTY, Trasmissione CW.

L'alimentatore è capace di 12+12+5 V stabilizzati con 500 mA.


La ricezione ha il compito di passare in TTL i segnali audio in arrivo, quindi inviarli al computer. La B.F. subito viene amplificata, poi suddivisa in due rami inviati ciascuno ad uno stadio di filtro. Di questi, uno lo utilizzeremo per la frequenza di MARK e CW (2125 Hz e circa 900 Hz), l'altro per la frequenza di SPACE (2295 Hz). Per quest'ultimo filtro è previsto uno schift variabile dalla frequenza amatoriale a quella commerciale (2550 Hz) ed oltre, fino alla frequenza, ormai in disuso, dei radioamatori (2975 Hz).

Le due frequenze (una in negativo e l'altra in positivo) vengono miscelate, rivelate, quindi, attraverso un sistema di possibilità di inversione (Normale-Rovesciato), spedite ad uno stadio pilota che provvederà ad inviarle al computer, attraverso la porta che gli compete, sotto forma di tensioni (TTL).

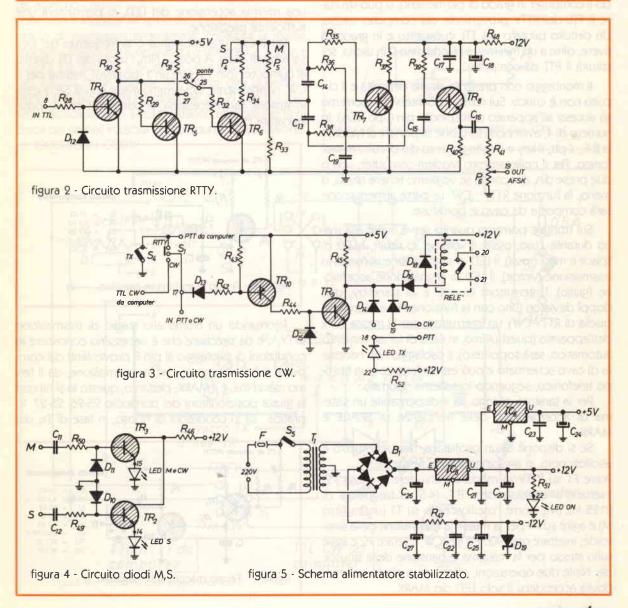
La centratura delle frequenze si ottiene con l'aiuto di due LED, il cui pilotaggio è preso all'uscita dei due filtri. La trasmissione dell'RTTY consiste in un circuito che emette costantemente i 2125 Hz del Mark i quali cambiano in 2295 (Space), quando al suo ingresso (pin 8) viene invertita la polarità. Questa variazione sarà data dal TTL proveniente dal computer. L'uscita dello stadio (pin 16), verrà inviata all'ingresso microfonico del Tx.

Nella trasmissione del CW, il segnale di manipolazione proveniente dal computer (TTL CW), è normalmente uno 0 (zero) e sarebbe già sufficiente ad azionare il circuito del Key, ma ritengo sia cosa da evitare per la saiute del computer stesso. Pertanto, questo segnale lo useremo per pilotare uno stadio capace

Elenco componenti

```
Tutte le resistente s'intendono da 1/4 di W
                        R24
                               = 100 \text{ k}\Omega
                                                R47
                                                           390 Ω
R1
           1 k\Omega
                                                                                C16 = 100 \text{ nF}
                                                R48
                                                       = 220 \Omega
                        R25
                                  1 k\Omega
                                                                               C17 = 100 \text{ nF}
R2
           680 Ω
                                                R49
                                                       = 2.7 k\Omega
                               = 220 \Omega
           10 kΩ
                        R26
                                                                                C18
                                                                                      = 47 \mu F/16 \text{ V elettr. assiale}
R3
                                                       = 2.7 k\Omega
                                                R50
                        R27
                               = 3.9 k\Omega
           10 kΩ
                                                                                         15 nF
R4
                                                R51
                                                       = 1 k\Omega
                               = 1.2 k\Omega
                        R28
                                                                                C20 = 100 \mu F/16 \text{ V elettr. vert.}
R5
           10 kΩ
                                                           220 Ω
                                                R52
                        R29
                               = 1.2 k\Omega
R6
           56 Ω
                                                                                C21
                                                                                      = 100 nF
R7
       = 68 \text{ k}\Omega
                        R30
                               = 4.7 k\Omega
                                                                                C22 = 100 \text{ nF}
       = 68 k\Omega
                        R31
                               = 4.7 k\Omega
                                                                                C23
                                                                                      = 100 \, \text{nF}
R8
                        R32
                              = 1.2 k\Omega
                                                C1
                                                           22 nF
                                                                                C24 = 25 \mu F/16 \text{ V elettr. vert.}
       = 100 k\Omega
R9
                        R33 = 390 \Omega
                                                C<sub>2</sub>
                                                       = 47 nF
                                                                                      = 500 \mu F/16 V elettr. vert.
R10
           39 Ω
                                                                                C25
                        R34
                              = 470 \Omega
                                                C3
                                                       = 47 nF
                                                                                     = 500 \, \mu F/25 \, \text{V} elettr. vert.
       = 10 \Omega
R11
                        R35 = 1 k\Omega
                                                C4
                                                       = 33 \text{ nF}
       = 47 k\Omega
                                                                                       = 500 \, \mu F/25 \, \text{V} elettr. vert.
R12
                        R36
                              = 15 k\Omega
                                                C5
                                                           33 nF
R13
      = 100 \text{ k}\Omega
                                                C6
                        R37
                              = 4.7 k\Omega
                                                       = 33 \, nF
R14 = 47 k\Omega
                                                                                         D1 \div D18 = 1N4003
                              = 15 k\Omega
                        R38
                                                C7
                                                          100 nF
R15
      = 100 \text{ k}\Omega
                                                                                         D19 = zener 12 V 1 W
                               = 820 \text{ k}\Omega
                                                C8
                                                       = 100 nF
      = 100 \text{ k}\Omega
                        R39
R16
                               = 1.2 k\Omega
       = 150 k\Omega
                        R40
                                                C9
                                                       = 10 \,\mu\text{F}/16\text{V} elettr. vert.
R17
                        R41
                               = 1.5 k\Omega
                                                C10
                                                       = 10 \,\mu\text{F}/16 elettr. vert.
                                                                                         IC1
                                                                                                = \mu A741
      = 15 k\Omega
R18
                        R42
                              = 12 k\Omega
                                                C11 = 100 \text{ nF}
                                                                                         IC2 =
                                                                                                   LM 1458
       = 15 k\Omega
R19
           100 kΩ
                        R43
                               = 4.7 k\Omega
                                                C12 =
                                                           100 nF
                                                                                         IC3 =
                                                                                                    LM 1458
R20
                                                C13 = 10 \text{ nF}
       = 22 k\Omega
                        R44
                              = 1.5 k\Omega
                                                                                         IC 4 = \mu A741
R21
                              = 4.7 k\Omega
                                                           10 nF
                                                                                         IC 5
                                                                                                    7812
       = 22 k\Omega
                        R45
                                                C14 =
R22
                                                C15 =
                                                                                         IC 6
                                                                                                   7805
R23
       = 100 \text{ k}\Omega
                        R46
                              = 220 \Omega
                                                          1 nF
```


P1 = Trimmer 100Ω vert. P2 = Trimmer 470Ω min. P3 = Trimmer 100Ω vert. P4 = Trimmer $4,7 k\Omega$ min. P5 = Trimmer $1 k\Omega$ min. P6 = Trimmer $1 k\Omega$ min. P7 = Potenz. 100Ω P8 = Potenz. 100Ω S1 = Doppio deviatore S2 = Doppio deviatore


S3 = Doppio deviate
S3 = Interruttore
S4 = Interruttore
S5 = Interruttore

TR1 ÷ TR9 = Transistor tipo - BC 107 - BC 108 - BC 173

TR10 = Transistor tipo BC 177 - BC 178 T1 3 Trasformatore 220 V - 12+12 V 1/2 A

N° 3 connettori a pettine passo -4,4 mm. N° 1 presa pannello (o2) tipo DIN a 5 poli N° 4 prese PIN da pannello tipo RCA N° 1 Portafuse - N° 4 LED - Scatola metallica min. cm. 20×15×8 1 cavo alimentazione.

B1 = ponte 1A-30 V

dello stesso risultato, ma disaccoppiato ed irrobustito in corrente. L'ingresso è sul pin 17 e il suo utilizzo sul 19. Questo stadio viene usato anche per la messa in Tx dell'apparato nell'uso RTTY.

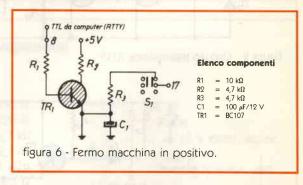
L'interruttore F4 provvederà a dare la massa all'ingresso dello stadio (17) e sul pin 18 avremo lo 0 che andrà ad azionare il ptt del trasmettitore. Nel caso il programma lo permetta e dal computer, in fase di trasmissione, esca anche il pilotaggio del ptt, la messa in Tx sarà automatica. A scambiare questo tipo di funzione provvede il deviatore RTTY-CW (1/2 F1). Se il TTL del CW e il PTT automatico dovessero essere in positivo è sufficiente entrare in base al TR9 con una resistenza da circa 1,5 k Ω .

Volendo la messa in Tx automatica, pur non essendo il computer in grado di permetterlo, si può sfruttare il TTL dell'RTTY proveniente dal computer stesso. Un circuito pilotato dal TTL in oggetto e in grado di avere, oltre a un minimo di ritardo, uno 0 in uscita, sostituirà il PTT da computer.

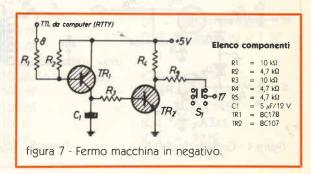
Il montaggio non presenta alcuna difficoltà e il circuito non è critico. Sul retro del contenitore porremo gli accessi all'apparato con spinotti pin (tipo RCA). In numero di 4, avranno la funzione di portare al Modem la B.F., il ptt, il key e il collegamento del circuito microfonico. Per il collegamento Modem-computer, una o due prese din, a seconda se vogliamo tenere divisa, o meno, la funzione RTTY - CW. La parte alimentazione sarà composta da cavo e portafuse.

Sul frontale porremo quanto serve avere alla mano durante l'uso, ossia: il volume, lo schift, i LED di
space e mark (rossi), il LED di segnalazione di messa in
trasmissione (verde), il LED di segnalazione accensione (giallo), l'interruttore di rete e di stand-by, due
doppi deviatori (uno con la funzione N-R e l'altro con
quella di RTTY-CW), un interruttore per la messa in Tx
dell'apparato (quest'ultimo, in caso di funzionamento
automatico, sarà soppresso). Il cablaggio non necessita di cavo schermato e può essere fatto con un filo tipo telefonico, seguendo lo schema riportato.

Per la taratura, ritengo sia indispensabile un sistema di accertamento delle frequenze di SPACE e MARK.


Se si dispone di un oscillatore, frequenzimetro e oscilloscopio, si agisce nel modo seguente:

Porre F1 su RTTY in modo da chiudere a massa P2; iniettare all'ingresso della B.F. (4-5) la frequenza di 2125 Hz (M); porre l'oscilloscopio su T1 (uscita filtro M) e agire su P1 per la massima espansione della sinusoide; iniettare ora i 900 Hz del CW; liberare P2 e agire sullo stesso per la massima espansione della sinusoide. Nelle due operazioni, effettuate a giusto volume, dovrà accendersi il solo LED del MARK.


Portare ora l'oscilloscopio su T2 (uscita filtro S), il potenziometro dello schift (P8) quasi a zero, quindi dare in ingresso 2295 Hz e agire sul P3 per la massima sinusoide. Il solo LED del MARK dovrà accendersi e il potenziometro P8 dovrà coprire l'escursione da 2295 a 2975 Hz.

Se non si dispone di oscilloscopio e oscillatore, inizieremo la taratura dalla trasmissione RTTY. Uniti i punti 25-27, posto un frequenzimetro all'uscita AFSK (pin 16), a ingresso libero (8 aperto), agire su P5 in modo da avere la frequenza di MARK. Un +5 V all'ingresso dello stadio e la regolazione del P4 daranno lo SPACE. Queste due frequenze, date in ingresso della B.F. (4), saranno usate per la taratura dei due filtri di riccezione e i due LED avranno la funzione di visualizzatori. Il progressivo abbassamento di volume fino a una minima accensione del LED, ci permetterà una sufficiente precisione.

Per il CW, una telegrafica o la frequenza del Key saranno di aiuto. A posto i filtri, l'uscita del TTL diretto al computer (pin 13) sarà un 1 (positivo), mentre per il CW, normalmente, dovremmo avere uno 0. Se questa inversione sarà necessaria, la otterremo con la posizionatura di F2.

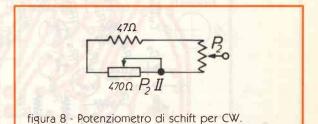
Ritornando un attimo allo stadio di trasmissione RTTY, c'è da precisare che è necessario conoscere le condizioni di pilotaggio al pin 8 provenienti dal computer. Infatti, il segnale che, in trasmissione, dà il fermo macchina, è il MARK; pertanto, questo lo si ha con la giusta posizionatura del ponticello 25-26, 25-27. In pratica, se in condizioni di riposo, in fase di Tx, dal

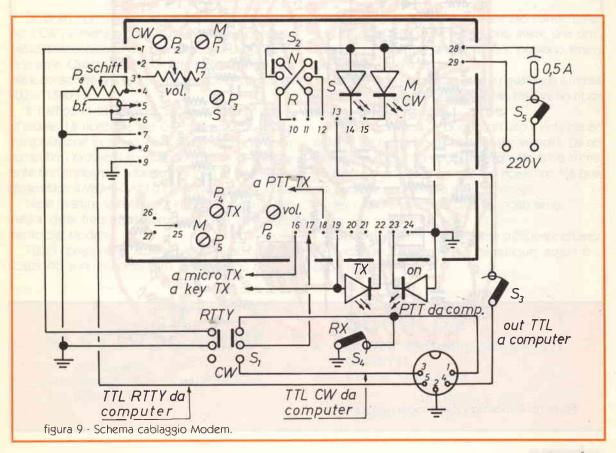
computer non ci saranno tensioni in uscita, e il pin 8 è a potenziale 0, uniremo 25-27; invece, se si ha un 1, uniremo il 25 col 26. Questo per evitare di trasmettere in rovesciato, di questo si terrà conto nel caso si vorrà ottenere la messa in Tx automatica dal TTL dell'RTTY proveniente dal computer.

Per la parte CW, è sufficiente verificare se, dando la massa (0) all'ingresso dello stadio (pin 17), alla sua uscita (18 e 19) si ha la medesima condizione (cioè 0).

Accesso al computer

Per questo, normalmente, è sufficiente seguire le istruzioni che ogni programma porta allegate, o quelle del computer stesso; nel caso ci si dovesse arrangiare, agiremo così:


collegato il Modem all'apparato, posto il personal in grado di svolgere il programma, collegata la massa Modem - computer e centrata una telegrafica, si porta l'uscita TTL (pin 16) a pizzicare i pin sulle varie porte per mezzo di un puntale. Il monitor dirà quando il punto è giusto. Per la trasmissione, o il PTT da computer, l'oscilloscopio o il tester saranno utilizzati per la ricerca dei segnali in uscita dal computer in trasmissione.


OCCHIO AI CORTI!

Osservazioni più o meno importanti

Certi apparati hanno caratteristiche tali da non permettere il diretto collegamento al Modem. Un esempio ci viene dato da quelli della E.R.E.; questi hanno l'uscita B.F. e il contatto del Key che non accettano alcun riferimento a massa. Per ovviare a ciò, è previsto il disaccoppiamento della B.F. attraverso un trasformatore, e per il Key un relé posto fra i 12 V e l'uscita dello stadio del CW, svolgerà la funzione del tasto.

Sul circuito stampato sono previsti gli alloggiamenti del trasformatore e relé. In questo caso i contatti del tasto saranno sui pin 20-21. Una buona centratura delle stazioni si ottiene a giusto volume, e il RIT spesso evita continui spostamenti durante i collegamenti.

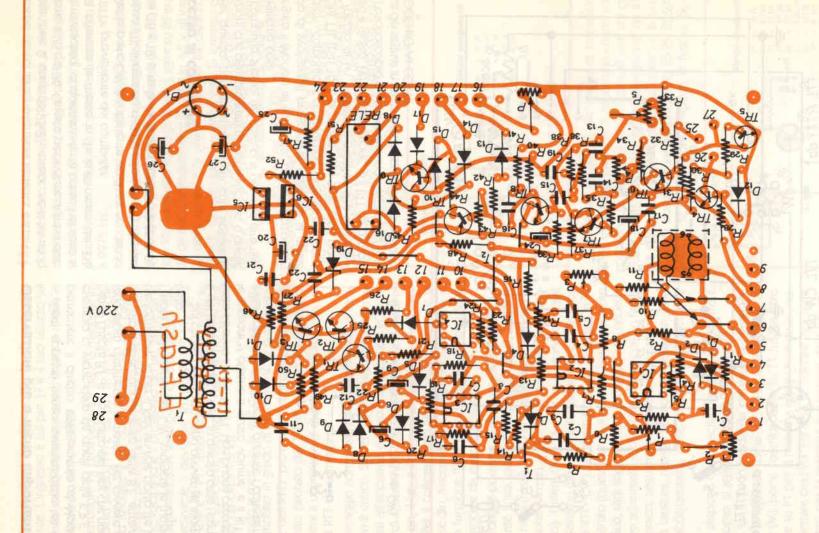


figura 10 - Disposizione componenti sullo stampato.

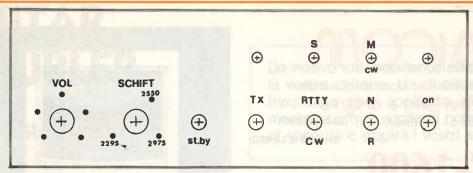


figura 11 - Frontale del contenitore.

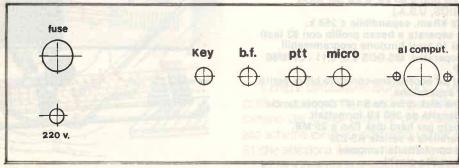


figura 12 - Retro del contenitore.

Se di RIT non si dispone e si vuol porre uno schift per il CW , si metta in parallelo al P2 un altro potenziometro disaccopiando con una resistenza da 47 Ω messa in serie. Questo potenziometro sarà posto sul frontale e consentirà una escursione capace di coprire dai 900 ai 1500 Hz.

Il traffico in RTTY viene svolto in banda inversa all'usuale. La ricezione del CW dipende dal tipo di manipolazione in arrivo. Se a trasmettere è un altro computer i problemi si riducono al minimo. È importante non impegnare a fondo il Tx in RTTY perché non reggerebbe. Il MICHE-GAIN o il P6 serviranno allo scopo.

Nelle tarature, la contenuta imperfezione sulla centratura delle frequenze non pregiudica il funzionamento del Modem.

Tutti i componenti, attivi e passivi, usati nella realizzazione, sono reperibilissimi e non hanno nessuna particolare esigenza, ad eccezione dei condensatori sui filtri (C2',C3,C4,C5), che devono avere una certa stabilità. I connettori saldati sul C.S. possono essere del tipo a vite o a saldare.

Le foto riportate nell'articolo e riguardanti il frontale e il retro, sono del prototipo. Nei disegni ho riportato la versione attuale.

I risultati ottenuti da questo circuito li definirei eccellenti, anche con lavoro ad elevate velocità. Da notare che in ASCII con velocità alte, il tutto entra in crisi, sia per colpa del Modem che del ricevitore. Ma questo succede anche nelle migliori famiglie.

Per l'ASCII il discorso diventa molto serio.

Credo di essermi spiegato con sufficiente chiarezza, anche se stringatamente; comunque, auguri e ... buon lavoro!

ELETTROGAMMA

di Carlo Covatti Via Bezzecca 8B - 25100 BRESCIA Tel. 030/393888

SURPLUS

COMPUTER, DRIVE, STAMPANTI, OLIVETTI a prezzi eccezionali

TUTTO IL MATERIALE PER

L'OBBISTA - KIT N.E.

ELETTROVICA FILASIA

di DAI ZOVI LINO & C. I3ZFC

Via Napoli 5 - VICENZA - Tel. (0444) 39548

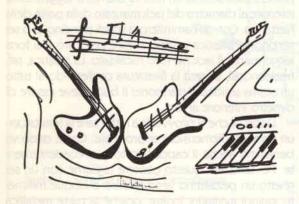
CHIUSO IL LUNEDI

- 4.77 MHz 16 Bits 8088 CPU Co-processore matematico 8087 optional.
- ROM: 8 kB fino a 40 kB, 8 kB per BIOS (MEGA BIOS, U.S.A.)
- RAM: 128 kRam, espandibile a 256 k.
- Tastiera separata a basso profilo con 83 tasti compresi 10 tasti funzione programmabili. Sistemi operativi: MS-DOS 2.0, 2.11 · CP/M86
- · UCSD-P.
- Auto-test all'accensione-controllo bit di parità.
- 8 slot di espansione.
- 2 Slim line disk drive da 5-1/4" doppia faccia doppia densità da 360 kB formattati. Predisposto per hard disk fino a 25 MB.
- Uscita parallela e seriale RS-232 Orologio con batteria tampone Ingresso-uscita giochi.
- Uscita colore R6B, composito e monocromatico, 40-80 colonne.
- · Ampia biblioteca di programmi.

L. 4.400.000 (IVA COMPRESA)

ZD-701 IL PORTATILE

- Scheda dual CPU 6502/2-80 64 kB RAM.
- Tastiera separata 83 tasti con pad'numerico e 10 tasti funzione.
- Contenitore in ABS con maniglia per il trasporto.
- Monitor incorporato 7" fosfori ambra; uscita monitor esterno.
- 2 Slim line disk drive da 140 kB con controller.
- Scheda 80 colonne con hard switches.
- Dimensioni: 51 x 34 x 18. Peso 8 kg.
- Alimentazione 220 V, 50 Hz.


L. 3.200.000 (IVA COMPRESA)

GUITAR DOUBLER

Pino Castagnaro

Un nuovo entusiasmante effetto per la vostra chitarra. Un duplicatore di frequenza che, applicato allo strumento, vi offrirà eccitanti note ricche di sonorità e stupirà i vostri amici.

Come si può vedere dalle figure 1 e 5, il segnale sinusoidale proveniente dal pick-up della chitarra viene trasformato in un'onda raddrizzata. In questo modo esso avrà una frequenza doppia di quello originale e sarà ricco di armoniche superiori (figura 1).

Diamo adesso un'occhiata allo schema elettrico. Abbiamo tre stadi: un adattatore di impedenza, un raddrizzatore di precisione ed un generatore di tensione di riferimento.

Il segnale d'ingresso, tramite C1 che elimina eventuali componenti continue, giunge sul piedino non invertente di IC1-A che lo separa dagli stadi seguenti, fornendo sull'uscita (pin 14) un segnale a bassa impedenza.

Il raddrizzatore di precisione è costruito attorno ad IC1-B e IC1-C. Questa particolare configurazione permette di elaborare segnali di ampiezza molto bassa in quanto, grazie all'uso di amplificatori operazionali ad alto guadagno, i diodi si comportano come componenti ideali, cioé con una tensione di soglia praticamente nulla. Il quarto operazionale funge da generatore di tensione di riferimento, polarizzando a $V_{AL}/2$ gli ingressi non invertenti di IC1-B e IC1-C. Questo artificio evita l'uso di un'alimentazione duale. R1 ed R2 fissano l'impedenza d'ingresso ad un valore di 50 k Ω circa. Sempre per contenere le dimensioni del circuito abbiamo adoperato un integrato che contiene tutti e quattro gli amplificatori operazionali.

Il chip è diffusissimo quindi non ci sarà alcuna difficoltà di reperimento, neanche per coloro che abitano lontano dai grandi centri di distribuzione. Tornando allo schema elettrico possiamo notare la presenza di S1 che seleziona il suono naturale e quello «doubler».

R7 rappresenta la resistenza di controreazione che fissa il guadagno dello stadio. Siccome il «Guitar Doubler» viene azionato per far risaltare parti di assolo, ho fatto in modo che con l'effetto inserito si abbia un guadagno di 20 dB, pari a 10 volte. Così, nei vostri assolo, il suono diromperà più forte e più incisivo di quanto vi limitate all'accompagnamento con effetto disinserito. Se la cosa non fosse di vostro gusto basta abbassare il valore di R7 a 100 k Ω , in modo da avere un guadagno unitario. Se usate un amplificatore con accoppiamento capacitivo, C2 può anche essere omesso.

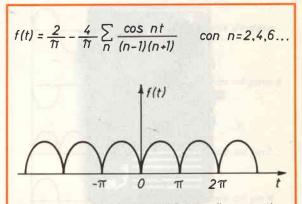
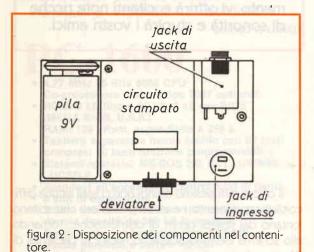
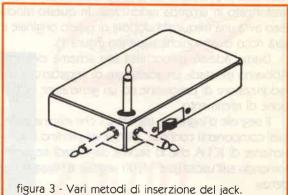



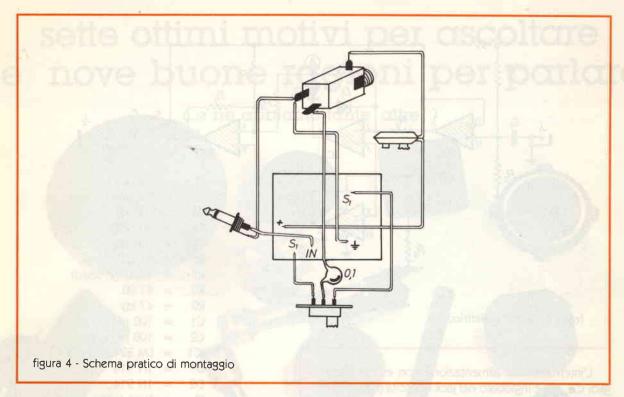

figura 1 - Sviluppo in serie di Fourier di un segnale sinusoidale raddrizzato. Come si può notare dalla formula, il segnale è ricco di componenti che sono armoniche pari della fondamentale.

Passiamo ora alla parte più manuale. Come si può osservare dalle foto, il prototipo presenta dimensioni minime (90×50×15 mm) e contiene il circuito stampato (40×50), la pila, i due jacks ed il deviatore (figura 2). Naturalmente, per ottenere un risultato simile, tutto è stato studiato nei più piccoli particolari, come vedremo di seguito.


Il montaggio deve essere eseguito cominciando dalla realizzazione del circuito stampato. Se il contenitore acquistato ha dimensioni diverse dal prototipo, si cerchi di adattare lo stampato. Nel seguito mi riferirò ad una scatola dalle dimensioni sopra citate. D'altronde anche questa è facilmente reperibile nei negozi di elettronica. Il disegno dello stampato, in scala 1:1, è riportato nella pagina di tutti i c.s. di questo numero.

Preparato lo stampato, si montino i componenti, iniziando da R5 che va posta sotto l'integrato, ed utilizzando per IC1 uno zoccoletto da 7+7 pins. Chi si trovasse in difficoltà può, più semplicemente, saldare R5 dal lato rame, previo accorciamento dei terminali. Occhio a D1 e D2, che sono polarizzati! Quindi si passi alla foratura del box. Come si può notare dalle foto, quale presa d'ingresso ho realizzato un jack maschio da pannello. -

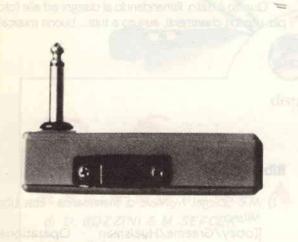
Vediamo come si fa. Si prenda un normale jack volante e si sviti il cappuccio di protezione. Quindi si pratichi sulla scatola un foro di diametro leggermente inferiore al diametro del jack misurato dalla parte della filettatura. Con un fiammifero si scaldi per cinque o sei secondi la plastica intorno al foro praticato e si forzi leggermente il jack nel foro riscaldato. La plastica, raffreddandosi, serrerà la filettatura conferendo al tutto un'ottima solidità. Attenzione! Il buco deve essere di dimetro inferiore al jack.


Dopo di che si provveda a rafforzare la tenuta con un dado di diemensioni appropriate. Come dado va benissimo anche il cappuccio tolto precedentemente. Per utilizzare questo occorre tagliarne con un seghetto un pezzettino largo quattro o cinque millimetri, quindi avvitarlo. Inoltre, poiché la parte metallica del jack connessa alla massa risulterà un po' lunga, si tagli la parte eccedente con una tronchesina.

Nella figura 3 suggerisco i vari versi d'inserzione del jack maschio, dipendenti dalla presa della chitarra.

Il prototipo è stato realizzato così come si vede perché io posseggo una vecchia «Mustang» Fender. Per una «Stratocaster» la posizione del jack sarà diversa in quanto questo modello presenta una presa obliqua rispetto al body (corpo) dello strumento. E così via, secondo le proprie esigenze.

Il foro per il deviatore deve essere fatto a seconda del tipo usato. lo ho utilizzato un deviatore a slitta. Per collocarlo mi sono servito di due viti autofilettanti. Il lavoro va compiuto con l'aiuto di una lima da legno.



Chi non se la sentisse può adottare un deviatore a levetta e quindi basta che realizzi un semplice foro di dimensioni adatte al diametro del deviatore.

Dopo aver sistemato tutte queste cose si provveda a fissare il circuito con le apposite viti fornite con la scatola. Quindi si effettuano i vari collegamenti con del normale filo elettrico. Non è il caso di utilizzare cavetto schermato in quanto le connessioni sono molto corte e si finirebbe per impiastrare il tutto. Per facilita-

re i collegamenti raccomando di usare degli appositi ancoraggi da fissare al circuito stampato da cui poi si dipartono i fili verso i jacks, la pila ed il deviatore. Ciò da modo di effettuare i collegamenti dopo che la basetta è stata fissata al contenitore.

Considerata la necessaria compattenza del dispositivo, non mi stanco di raccomandare molta pazienza e di effettuare più controlli dopo che i vari componenti sono stati montati sulla basetta.

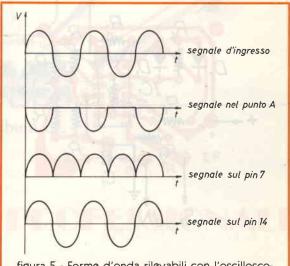


figura 5 - Forme d'onda rilevabili con l'oscilloscopio in vari punti del circuito.

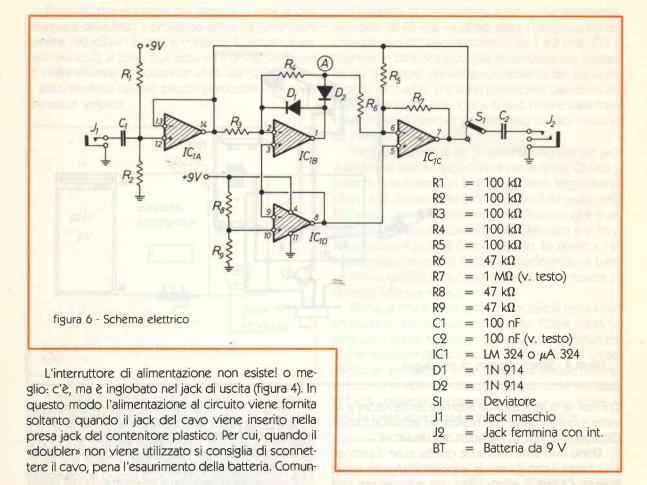


Figure 7 - Disposizione componenti sul c.s.

que, poichè il circuito assorbe pochissima corrente, la pila avrà una durata di alcuni mesi. In ogni caso, per evitare fastidi dovuti alla fuoriuscita di acidi o altro, è meglio provvedere ad una sostituzione della batteria ogni quattro o cinque mesi.

Questo è tutto. Rimandando ai disegni ed alle foto per ulteriori chiarimenti, auguro a tutti... buona musica!

Bibliografia

 M.R. Spiegel, Manuale di matematica - Etas Libri Milano -

Tobey/Graeme/Huelsman - Operational Amplifier/Design and application - McGraw Hill Kogakusha Tokyo.

sette ottimi motivi per ascoltare e nove buone ragioni per parlare

distribuiti da:

EILETTRONICA PROFESSIONALE

di D. BOZZINI & M. SEFCEK

Viale XX Settembre, 37 34170 GORIZIA - Italy

Tel. 0481/32193

Telex: 461055 BESELE

elettronica SAS

Viale Ramazzini, 50b - 42100 REGGIO EMILIA - telefono (0522) 485255

MULTIMETRO DIGITALE mod. KD 305

- Lit. 74.900 (IVA COMP.)

Completo di: astuccio, puntali + batteria

Caratteristiche:

DISPLAY

3 1/2 Digit LCD

DC VOLTS

0-2-20-200-1000

AC VOLTS

0-200-750

DC CURRENT

0-2-20-200mA, 0-10A

RESISTANCE

0-2K-20K-200K-2Megaohms

Operating temperature:

0°C to 50°C

Over Range Indication:

"1"

Power source:

9 v

Low battery indication:

"BT" on left side of

display

Zero Adjustment:

Automatic

Lit. 250,000

«RTX MULTIMODE II»

FREQUENZA: 26965 ÷ 28305 **CANALI:** 120 CH. AM-FM-SSB

ALIMENTAZ.: 13.8 v DC

POTENZA: 4 WATTS AM - 12 WATTS SSB PEP

BIP di fine trasmissione incorporato.

CLARIFIER in ricezione e trasmissione.

DISPONIAMO INOLTRE: APPARECCHIATURE OM «YAESU» - «SOMERKAMP» - «ICOM» - «AOR» - «KEMPRO» Antenne: «PKW» - «C.t.e.» - «Sirio» - «Sigma» - quarzi cb - microfoni: «Turner» - accessori cb e om - Un nuovo, originale, eccellente

FILTRO NOTCH

G.W. Horn,

Filtro «notch» ottenuto con un filtro selettivo più un amplificatore sommatore. Esempio di filtro a 1500 Hz con larghezza di 100 Hz a - 3dB, e guadagno unitario.

Il filtro «notch» (letteralmente: intaglio, fessura) detto anche, ma alquanto impropriamente filtro eliminabanda, viene usato quando è richiesto di sopprimere un segnale di specifica frequenza senza per questo attenuare quelli di frequenza vicina, al di sopra ed al di sotto della «frequenza di notch».

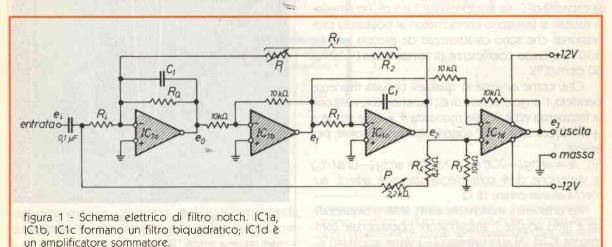
A questo scopo si possono usare dispositivi passivi, come il ponte a T (1), oppure attivi come aplificatori controreazionati attraverso una rete selettiva (2). La larghezza del notch che ne risulta è però, in genere, eccessiva, dato che il sistema è caratterizzato da un Q equivalente molto piccolo (da 2 a 3) (3).

Per aumentarlo, si ricorre ad una doppia retroazione, una positiva, che determina il Q, ed una negativa, attraverso un ponte di Wien, di stabilizzazione e sintonia. In tal modo si riesce ad ottenere un notch molto stretto (4) ma, a Q > 10, è facile che il sistema vada in autoscillazione.

Tale inconveniente non si manifesta, invece, col

circuito di figura 1 che consente di ridurre al massimo la larghezza del notch senza che, perciò, si manifesti instabilità. Detto sistema è costituito, in effetti, da due distinti dispositivi: un filtro selettivo ed un amplificatore sommatore. Il primo, formato da IC1a, IC1b ed IC1c, è un filtro biquadratico (5) che si comporta come un vero e proprio circuito risonante in parallelo.

Infatti, IC1b e IC1c costituiscono un integratore non-invertente per cui


(1) $e_2/e_0 = 1/sR_1C_1$ in cui s è la variabile di Laplace. La corrente di retro-

azione, che fluisce in rf è (2) $i_f = e_2/R_f = e_0/sR_1C_1R_f$

per cui
(3) $Z_L = e_0/i_f = sR_1C_1R_f$

risulta induttiva. Pertanto, il gruppo costituito da IC1b, IC1c ed R_f può sostituirsi con l'induttanza equivalente (4) $L = R_f C_1 R_f$

connessa tra ingresso ed uscita di IC1a (vedi figura 2).

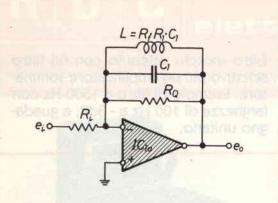


figura 2 - Sintesi dell'induttanza L che, con C_1 costituisce un circuito risonante parallelo: R_Q ne determina il fattore di merito.

Questa induttanza può risultare anche molto grande (parecchi henry) ma, ciononostante a bassissime perdite (cioè a grande Q); ciò purché la resistenza vista dall'ingresso (—) di IC1a sia almeno un ordine di grandezza più piccola della sua impedenza d'entrata ad anello aperto.

Utilizzando per IC1 un amplificatore operazionale bi-fet ad alto guadagno ed elevata frequenza di taglio, ammesso che C₁sia privo di perdite, l'unico elemento dissipativo che risulta in parallelo ad L sarà pertanto R_Q. Il Q del circuito risonante così sintetizzato è quindi

(5) $Q = R_Q 2\pi f_O C1$ e la sua freguenza di risonanza

(6) $F_0 = 1/2\pi \sqrt{LC1}$

Per quanto concerne il guadagno, esso è ovviamente

(7)
$$G = E_0/E_i = R_0/R_i$$

Per la gamma delle frequenze foniche, è bene che la capacità di C_1 sia compresa tra 1 e 5 nF. Per i migliori risultati si utilizzano condensatori al polistirolo professionali che sono caratterizzati da piccola tg δ (\leq 5.10⁻⁴) e basso coefficiente di temperatura (\sim 120 \pm 50 ppm/ C°).

Ora, come avviene in qualsiasi circuito risonante parallelo, l'angolo di fase di e_0 rispetto ad e_i varia colla frequenza ed è 0° alla risonanza ($f = f_0$) e tende a $+9P^\circ$ sopra ed a $-9P^\circ$ sotto la risonanza; inoltre, per essere.

(8) $\Phi = \arctan [-2Q(f/f_O - f_O/f)] = \arctan (-Q \Delta f/f_O)$ la variazione di Φ colla frequenza, cioè $d\Phi/df$, aumenta all'aumentare di Q.

Per ottenere il «notch» (figura 1), al filtro biquadratico è fatto seguire l'amplificatore operazionale sommatore IC1d. Al suo ingresso (-) viene applicato $e_{\rm o}$ invertito da IC1b; all'ingresso (+) arriva invece il se-

gnale d'entrata e_i opportunamente attenuato. Se il guadagno del filtro biquadratico è unitario (cioè, per l'equazione (7) $R_i = R_O$), quello dell'amplificatore sommatore, per l'ingresso (+) 2, e l'attenuazione della e_i applicata al sommatore di 6 dB, a risonanza ($f = f_O$) avremo

(9) $e_3 = e_i - e_0 = 0$ mentre, fuori risonanza, E_3 tenderà ad E_i tanto più rapidamente quanto maggiore sarà il O del filtro biqua-

pidamente quanto maggiore sarà il Q del filtro biquadratico.

Esempio

Si desidera realizzare, secondo il circuito di figura 1, un filtro notch a guadagno unitario, centrato su 1500 Hz con una larghezza di notch di 100 Hz a —3 dB. Pertanto:

$$f_{o} = 1500 \text{ Hz}$$

 $\omega_{o} = 2\pi f_{o} = 9,4248 \text{ rd/sec}$
 $G = 1$

II Q necessario ad ottenere $\Delta f_{-3 \text{ dB}} = 100 \text{ Hz sarà}$ quindi

$$Q = f_0/\Delta f = 1500/100 = 15$$

Facendo

$$C1 = 2.2 \text{ nF}$$

$$R1 = 100 \text{ k}\Omega$$

$$L = 1/4 \pi^2 C1 = 5,117 H$$

e, per l'eq. (4)

$$Rf = L/R1C_1 = 23,260 \text{ k}\Omega$$

In pratica R_f sarà costituita da un resistenza (R_2) da $22 \text{ k}\Omega$ con in serie un trimmer multigiri (P_1) da $2,2 \text{ k}\Omega$.

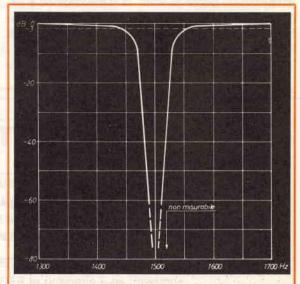


figura 3 - Responso d'ampiezza relativo al circuito di figura 1 per la frequenza di 1500 Hz; larghezza del nocth a —3dB 100 Hz.

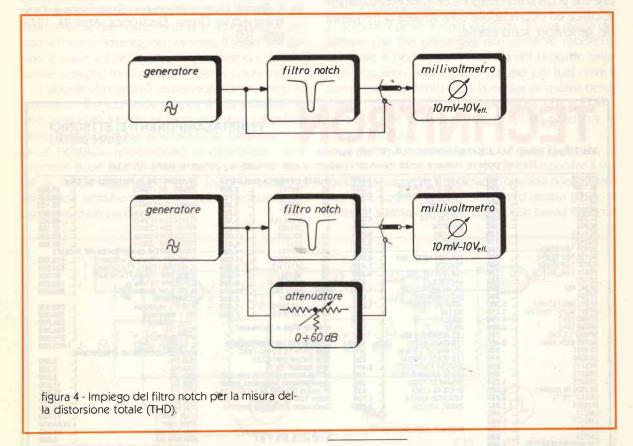
Con detto P_1 si porterà a risonanza il filtro (f = 1500 Hz), il che potrà venir controllato collegando l'oscilloscopio all'uscita di IC1a.

Per ottenere il richiesto Q di 15, per 1' eq. (5) $RQ = Q/2 \pi f_0 C_1 = 723,432 k\Omega$

Per $R_{\rm Q}$ useremo quindi un resistore del valore standard più prossimo, che è 750 k Ω (serie E24). E quindi, dovendo essere per la specifica, G=1, anche per $R_{\rm i}=R_{\rm Q}$

useremo un resistore dello stesso valore (750 k Ω).

Allo scopo di attenuare E_i di 6 dB, prima di applicarlo all'ingresso (+) di IC1d, ci serviremo del particolare costituito da R3 e P_2 + R_4 . Anche P_2 sarà un trimmer multigiri, onde facilitarne la regolazione di profondità del notch. P_2 consente di variare e, al limite, portare al massimo la profondità del notch, operazione questa che si effettuerà collegando l'oscilloscopio all'uscita di IC1d.


Attenzione, però: la profondità di notch ottenibile è strettamente legata alla purezza spettrale del segnale applicato all'ingresso del filtro; infatti questo, come

Quindi se il generatore a.f. utilizzato avesse una distorsione totale dell'1%, la massima attenuazione ottenibile sarebbe di soli 40 dB. Utilizzando, invece, un generatore da 0,05% di distorsione totale, è stato ottenuto il responso d'ampiezza illustrato dal grafico di figura 3.

Conclusione

Da quanto precede è evidente che il filtro notch qui descritto può venir vantaggiosamente usato per misurare la distorsione totale (THD = total harmonic distorsion) di generatori, amplificatori, ecc. La relativa disposizione circuitale di misura è illustrata a figura 4 a e b.

In entrambi i casi, la prima operazione da eseguire è «sintonizzare» il filtro: ciò verrà fatto regolando P_1 per il massimo d'uscita e, successivamente, P_2 per il minimo. Queste due regolazioni sono interdipendenti (il massimo di notch si ottiene solo a sintonia perfetta); pertanto vanno ripetute più volte.

del resto qualsiasi altro tipo di filtro elimina-banda, sopprime solo ed unicamente il segnale di frequenza $f = f_0$, o la sua componente di tale frequenza, ma non attenua le sue armoniche.

^{*)} impropriamente detta «seconda»; impropriamente in quanto, in effetti, è la «prima». La locuzione seconda armonica (2 nd harmonic) è usuale nella letteratura USA, ma non in quella tedesca, nella quale si trova di norma il termine «erste Oberwelle», cioè prima armonica.

Fatto un tanto, nel caso a), si misurerà col millivoltmetro per audiofrequenza, sia il segnale d'uscita (E₃) che quello d'entrata (E_i) del filtro. La distorsione sarà quindi:

(10) THD = E_3/E_1 Se E_1 fosse di 3 V_{eff} ed E_3 di 30 V_{eff} avremmo THD = 30/3000 = 0.01 = 1%

Nel caso b), invece, la misura di THD viene fatta su di un attenuatore tarato in dB, il che la rende indipendente dalla precisione del milivoltmetro. Si misurerà, prima, E₃; poi, commutato il millivoltmetro su E_i, si regolerà l'attenuatore fino ad ottenere la medesima lettura. Così, se nella prima misura il millivoltmetro indicasse 25mV e, nella seconda, per ottenere ancora una indicazione di 25mV, occorresse regolare l'attenuatore su, diciamo, 45 dB, avremo

$$-45 dB = 20 log x$$

 $x = 0,0056$
 $THD = 0,562 \%$

Per effettuare questo genere di misure è bene che il Q del filtro non sia troppo elevato e questo per evitare che la sua sintonizzazione divenga eccessivamente critica ed incompatibile colla stabilità di frequenza del generatore sotto esame.

Per il circuito di figura 1 un Q di 3,72 ($R_Q = 180 \text{ k}\Omega$) è adeguato allo scopo, dato che, in tali condizioni, la armonica 2 f_O , *) la cui ampiezza concorre in misura rilevante alla distorsione totale, non viene attenuata più di 1 dB.

Bibliografia

- F.E. Terman, J.M. Petit «Electronic Measurements», McGrawHill, 2nd Ed., New York 1952, pag. 84, 86
- Valley, Wallman «Vacuum Tube Amplifiers» MIT Rad. Lab. Series, Vol. 18 pag. 176 et seg., McGraw Hill, New York 1948
- C.J. Savant jr. «Designing Notch Networks», Electronics Buyers Guide, June 1955, pag. R14.
 A. Hendry, A.G. McIntosh «Bifilar T-Traps», Electronics & Radio Engineer, July 1958, pag. 254.
- 4) A. Lloyd «Sharpen Active Null-networks», Electronic Design, June 21, 1974, pag. 102.
- L.P. Huelsman «Active Filters, Lumped, Distributed, Integrated, Digital And Parametric», Interuniversity Series Vol. 11, McGraw Hill, New York 1970.
- R. Brandt «Active Resonators Save Steps in Designing Active Filters», Electronics, April 24, 1972, pag. 106.

TECHNITRON

VENDITA COMPONENTI ELETTRONICI

LINEARI E DIGITALI

Via Filippo Reina, 14 - 21047 SARONNO (VA) TEI. (02) 9625264

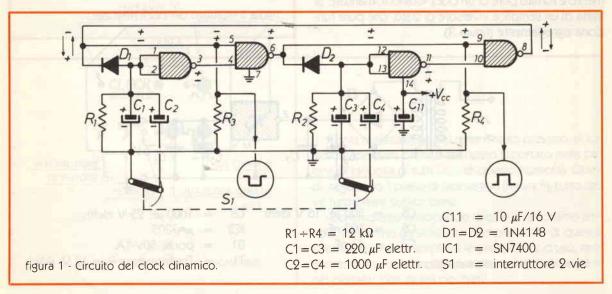
Da noi potete trovare tutto quanto Vi occorre per realizzare i progetti della Rivista!

BC107B	L. 350		L. 1.070	BUS	TE OFFERTA	QUANTITÀ	TRANSISTOR DI POTENZA RI	FTRW
BC109C	L. 390		L. 1.220	50	IN4148	L. 2.900	2N6080 4W 175MHz	L. 33,500
BC140	L. 600	TL084 QUAD OP AMP	L. 2.720	100	IN4148	L. 5.700	2N6081 15W 175MHz	L. 38.200
BC177	L. 440	NE555 TIMER	L. 700	10	IN4007	L. 1.350	2N6082 25W 175MHz	L 52.100
BC237B	L. 105	SN74HCT00	L. 1.440	20	IN4007	L. 2.700	2N6083 30W 175MHz	L. 60.500
BC238	L. 105	SN74HCT154	L. 4.380	10	BF245 FET	L. 5.350	PT9734 15W 175MHz	L. 42,900
BC308	L. 105	TBA820M	L. 915	5	2N3055	L. 5.950	PT9731 25W 175MHz	L. 52.100
BC414C	L. 125	TDA1190	L. 3.010	10	2N3055	L. 11.600	PT9733 50W 175MHz	L. 99,800
BC549C	L. 115	TDA2003	L. 2.240	10	2N1711	L. 6.200	PT9784 75W 28MHz	L. 68.500
BD135 12W 50MHz	L. 500	TDA2010	L. 3,380	20	2N1711	L. 11.500	TRANSISTOR DI POTENZA RI	
BD136 12W 50MHz	L. 500	TDA2020 AMPL 20W	L. 4.060	10	UA741 MET	L. 11.000	BLY90 50W 175MHz FT = 550MHz	L 125.800
BD137 12W50MHz	L. 500	TDA2320	L. 1.450					
BD677 DARLINGTON	L. 730	TDA7000 FM REC	L. 4.320	10	UA741 MD	L. 6.500	BLY94 50W 175MHz FT = 500MHz	L 128.500
BF173	L. 700	UA723CN	L. 970	10	NE555	L. 6.800	BLW60 45W 175MHz FT = 550MHz	L 90.000
BF245 FET	L. 550	UA741 METALLICO	L. 1.125	5	BF981 MOS	L. 6.000	BLW76 80W 110MHz	L 138.500
BF324	L. 290		L. 670	10	BF981 MOS	L. 11.900	BLV25 150W 110MHz	L. 280.000
BF960 MOSFET UHF	L. 1.260	UA741 MINIDIP		10	CD4001	L. 6.300	COMPUTER	
BF981 MOSF, VHF/FM	L. 1.210	SERIE 78/79 REG	L. 1.200	10	LED ROSSI	L. 1.450	PLUS 4 + registratore	L. 566.000
		IN4148	L. 60	50	LED ROSSI	L. 7.200	C64 + registratore	L. 485.000
BFR90 5GHZ	L. 1.490	IN4007	L. 140	- 4-		blood-1	C16 + registratore	L 295.000
BFR96 5GHZ	L. 2.095	AAII9	L. 180	e ta	nte altre a ric	niestai	Floppy 1541	L 485.000
BFW92 1.6 GHZ	L. 730	LED ROSSO 3/5 MM.	L. 150				SPECTRUM PLUS	L 375.000
BU426 800V 70W	L. 3.400	LED BIANCO	L. 150		AMO INOLTRE A D		QL SINCLAIR	L 1.060.000
CD4001	L. 640	LED GIALLO 3/5 MM.	L. 200		CD-74-74LS-74H		MICROPROCESSORI E MEMO	RIE
CD4069	L. 640	LED VERDE 3/5 MM.	L. 200		National MM74C	XXX	Z80A CPU	L 8.000
2N1711	L. 630	DISPLAY 7 SEGMENTI	L. 2.480	Serie	regolatori 78/79		Z80A PIO	L 8.200
2N2222	L. 480	ZENER 400mW 2/200V	L. 130	MOS	di potenza (SIPM	IOS) serie BUZ	Z80A CTC	L. 8.000
2N3055	L. 1.200	1N5408 3A 1200V	L. 295	senso	ri pressione, temp	eratura, umidità	280A SIO	L 17.500
2N3866 IW 500MHz	L. 2.480	BY458 4A 1200V	L. 435		okes SIEMENS d		2716 16K	L 10,800
2N4427 1W Tx	L. 2.460	B40C5000 40V/5A	L. 1.700	Bobin	e TOKO per TV, s	tereo. FM. etc.	2732 32K	L. 12.500
MJ3001	L. 2.880	26MB5 50V/25A	L. 3.600		ensatori al tantalio		2764 64K	L. 16,100
LM311	L. 1.350	2011120 0017 2011				o o o o o o o o o o o o o o o o o o o	27128 128K	L 21.500
LM317T	L. 1.960						27256 256K	a richiesta
LM324	L. 1.030	SCONTI PER QUAI	ATITA	200	uanto non ek	nnanta	4164 RAM din.	L 11.800
LM358	L. 920	COOKITY EII GOAL	*****	bei c	HIEDET	BIICAIO		L 4.500
LM1800AN FM DECOD.	L. 2.460			MIC	HIEDEL	E 1	2114 RAM stat	
L200CH	L. 2.095	Alouni prozzi (IVA o	ompress) el	ted mean	al au antalana	a debleate	disponibile tutta la serie di integrati	82XX INTEL per
LF347	L. 3.500	Alcuni prezzi (IVA c	ombiess) . si	ui prez	zi su catalogo	a richiesta	controllo periferiche!	
11041	L. 3.500							

Vendita al DETTAGLIO e all'INGROSSO - Ordine minimo L. 15.000 - Spedizioni in contrassegno in tutta Italia - Per DITTE, SOCIETÀ comunicare codice fiscale e partita IVA - Spese di spedizione a carico del destinatario - Per pagamento anticipato (a mezzo vagila, assegno bancario o circolare) sconto del 3% - Per ordini superiori a L. 1.000.000 anticipo del 30% (vagila o assegno) - Catalogo con oltre 2500 articoli a richiesta L. 2.000 per spese di spedizione.

IL CLOCK DIGITALE

Tony e Vivy Puglisi


Chi opera nel settore digitale sa che i normali strumenti di prova usati in laboratorio molto spesso non servono a fornire le indicazioni necessarie relative ai circuiti sotto esame. E ciò in quanto gli integrati logici, dalle porte più semplici alle combinazioni strutturali via via più complesse (bistabili, registri a scorrimento, contatori, decodificatori...), funzionano esclusivemente a base di impulsi, spesso troppo rapidi per poter essere «visti» dal nostro occhio e «coordinati» dalla nostra mente. Pertanto, non diciamo il tester, ma persino le varie sonde logiche in commercio o autocostruite, servono molto poco e solo in pochi casi.

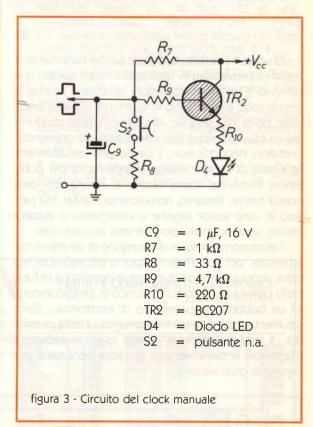
I laboratori industriali dispongono di strumenti costosissimi, del tipo «logic-scope» o più sofisticati ancora, acquistati a suon di milioni; e pertanto al di fuori della portata di un comune tecnico o, peggio ancora, di un hobbista, appassionato di elettronica... Sono strumenti dotati tutti di «memoria», ossia della possibilità di tenere agganciati i livelli logici in sequenze esplorabili lentamente, con la calma necessaria per ogni utile osservazione... Uno strumento di prova per chi deve controllare il funzionamento e la funzionalità dei circuiti integrati logici o, più semplicemente, per chi voglia familiarizzarsi con gli stessi senza spendere cifre enormi.

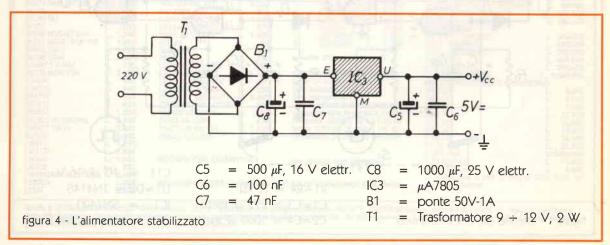
È chiaro quindi che, potendo in qualche modo «congelare» gli impulsi o, quanto meno, rallentarli, il problema del controllo digitale si risolve. Perché allora non usare uno strumento in grado di produrre onde quadre lentissime e, perché no? anche livelli logici «statici», per il controllo funzionale dei nostri integrati?

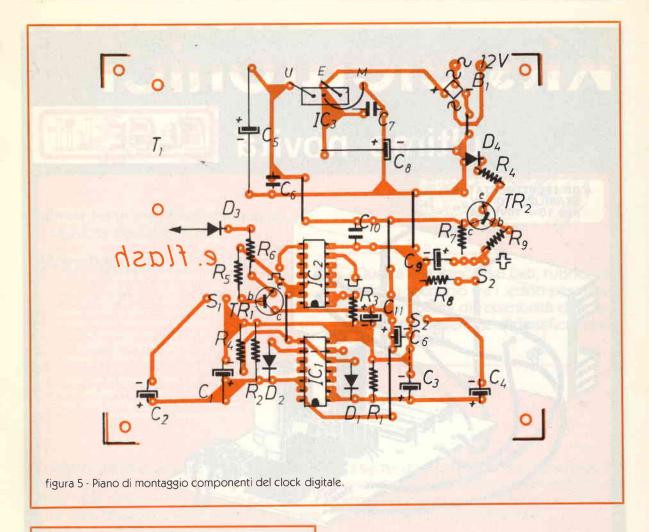
Questa soluzione, presentata anni fa per la prima volta, è rimasta però sinora stranamente disattesa. Anzi, solo di recente è stata «ripresa» da una rivista del settore, che l'ha presentata con un titolo roboante, nel quale si riecheggiano i termini del progetto originale. Pensiamo quindi giusto ed utile per tutti rifare il punto sull'argomento, con la nostra proposta certamente più pratica e meno dispendiosa, che abbiamo pensato bene di definire, con proprietà di termini, IL CLOCK DIGITALE.

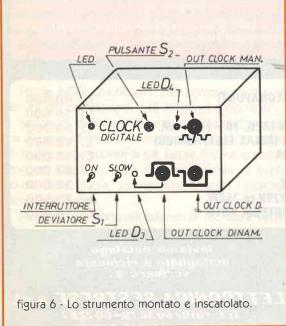
Si tratta dunque di un clock (figura 1), fornito di due uscite contrapposte, in grado di funzionare a velocità relativamente «moderata» (quando occorre fare avanzare i contatori, per esempio) o «lenta» (slow, in inglese), quanto occorre eseguire con calma verifiche

e controlli funzionali. Tale clock, che dispone di due uscite contrapposte, è fornito di una segnalazione a LED, sul ramo «alto» (per indicare, su quell'uscita, il livello 1, corrispondente al livello 0 sull'altra uscita).


Le uscite non sono comunque utilizzate direttamente, in quanto sono seguite da un doppio stadio separatore, che svolge funzioni di protezione e di migliore squadratura dell'onda (vedi figura 2).


 IC_2 IC_2 IC_3 IC_4 IC_5 IC_5

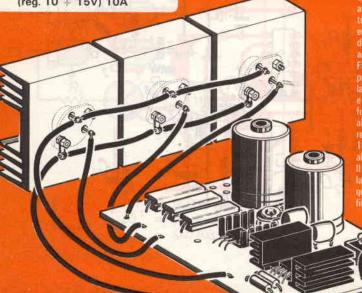

Tutta questa parte rappresenta dunque il nostro clock «dinamico». Ma, come abbiamo detto, lo strumento è fornito pure di un clock «statico», manuale. Si tratta di un semplice inversore di stato, che pure funziona egregiamente (figura 3).


Anche questo è fornito di una segnalazione a LED, per permetterci di ricordare quando la sua uscita si trova nella condizione logica 1 oppure 0 (il cambiamento di stato avviene qui tramite la semplice pressione del pulsante S2).

Lo strumento è provvisto di alimentazione autonoma (figura 4), ottimamente stabilizzata ed utile persino per collegare alla stessa altri circuiti digitali (quelli da esaminare), purché non si ecceda il carico massimo che l'integrato stabilizzatore (7805) è in grado di «reggere», cioè circa 300 mA.

Per la realizzazione del tutto è stato previsto, al solito un apposito circuito stampato (riportato nella pagina di raccolta di tutti i c.s. di questo numero). Quindi, seguendo il piano di montaggio (figura 5), tutto deve funzionare subito bene.

Concludiamo anticipando che, in un prossimo articolo, forniremo un utilissimo complemento di questo strumento, che ne amplierà le prospettive d'uso, rendendolo un ausilio indispensabile per chi opera pure nel digitale; cioè quasi per tutti!


ELETTROVICA

Kits elettronici

ultime novita

• RS 131 ALIMENTATORE STABILIZZATO 12V (reg. 10 ÷ 15V) 10A

con il Nir che presentamo si realizza un ottimo alimentatore con tensione di uscita regolabile tramite il TRIMMER T tra 10 e 15 V in grado di erogare una corrente di 10 A. Il dispositivo dispone di limitatore automatico di corrente che provvede anche a proteggerio contro i corto circuiti. Facciamo inoltre notare che, grazie ad un accurato progetto ed all'impiego di particolari componenti, la tensione di uscita è perfettamente stabilizzata e praticamente esente da RIPPLE. Per un corretto funzionamento dell'alimentatore occorre applicare all'ingresso del ponte raddrizzatore un trasformatore che fornisca una tensione alternata di circa 16 17 V ed in grado di erogare una corrente di alimeno 10 A.

Il diametro della parte di rame dei fili che collegano la piastra agli altri componenti esterni deve essere quello indicato nello schema pratico. Inoltre questi fili devono essere abbastanza corti.

N.B. - II KIT viene fornito senza dissipatori per i transistor finali di potenza. Si consiglia di usare a tale scopo dissipatori di dimensioni e alettature analoghe a quelli indicati in figura.

• RS 129	MODULO PER DISPLAY GIGANTE SEGNAPUNTI		48.500
• RS 130	MICROTRASMETTITORE A. M.		19.500
• RS 131	ALIMENTATORE STABILIZZATO 12V (REG. 10 ÷ 15V) 10A.		59.500
RS 132	GENERATORE DI RUMORE BIANCO (RELAX ELETTRONICO)		23.000
RS 133	PREAMPLIFICATORE PER CHITARRA		10.000
• RS 134	RIVELATORE DI METALLI		22.000
• RS 135	LUCI PSICHEDELICHE 3 VIE 1000W	L.	39.000
• RS 136	INTERRUTTORE A SFIORAMENTO 220V ca 350W		23.500
• RS 137	TEMPORIZZATORE PER LUCI DI CORTESIA AUTO	L.	14.000

inviamo catalogo dettagliato a richiesta scrivere a:

ELETTRONICA SESTRESE s.r.l.

TEL.(010)603679-602262 DIREZIONE e UFFICIO TECNICO: Via L.CALDA 33/2-16153 SESTRI P. (GE)

DATA-BOOK

Rubrica per lo scambio di informazioni tecniche coordinata da:

Dino Paludo

Questa è la Banca dei Dati, rubrica di mutuo soccorso tra i lettori per risolvere problemi di reperibilità di componenti e schemi, e d'identificazione di sigle strane.

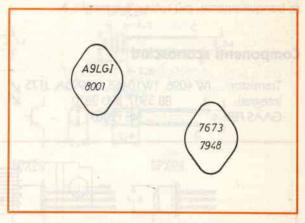
Ragazzi, che roba: se amate gli sport invernali occhio che la vostra (eventuale) XYL non si rompa una gamba come ha fatto la mia, altrimenti sono guai!

Mi scuso quindi con i lettori per il black-out della rubrica in questi ultimi mesi dovuto al «fattaccio» di cui sopra. Chiedo venia in particolare a chi desiderava una risposta privata: mi metterò in quadro pian pianino.

Ed ora vediamo un po' di recuperare il tempo perduto.

Due osservazioni, innanzitutto.

Primo: NON chiedetemi, per cortesia, di trovare per voi dei componenti e di inviarveli a domicilio.


Secondo: desiderando una risposta diretta, oltre che allegare il francobollo mettete anche... l'indirizzo. Mi rivolgo in particolare al sig. Ettore Pini. Le lettere mi vengono innoltrate dalla redazione prive di busta: morale della favola, scrivete chiaramente l'indirizzo «dentro» e «fuori».

Passiamo alla parte squisitamente tecnica e vediamo il settore del «chi cerca», ossia le cose

Wanted

Bestia, quanta roba s'è accumulata! Vediamo la principale:

— Il Sig. Pini di cui sopra ha bruciato l'accensione elettronica alla sua «Visa» Citroën: il truschino è di fabbricazione Motorola e dentro ci sono due «cosi» in case TO3 (ovviamente bruciati) siglati così:

Le sigle inferiori si riferiscono quasi sicuramente all'anno e alla settimana di fabbricazione (anni '79 settimana 48 e anno 80 settimana 01). Quanto al tipo di componenti non ho rintracciato sigle del genere. Ritengo si tratti di due transistor o più probabilmente di due Darlington per commutazione, a meno che uno sia un SCR.

Se c'è qualcuno che può dare l'informazione a botta sicura si faccia avanti, altrimenti ne riparleremo.

 Nessuna novità per quanto riguarda la lista di intregati del sig. Baragona di Bolzano (andate eventualmente a rivedere il n. 12/84).

Sono integrati dedicati fatti per un particolare vincolante uso, su questo non c'è dubbio: anche il servizio documentazione di una grande industria statale di telecomunicazioni (ma sì, alludo proprio a lei la MAM-MA!) ha gettato la spugna dopo approfondite indagini.

- Schema del ricevitore FM141 Magnadyne (Rx commerciale anni '50 a cui il lettore è affezionato e che vorrebbe riparare). Richiesta del signor Perchiacca di Aquino.
- Caratteristiche di due tubi a raggi catodici surplus per strumenti, richiesta inoltratami anonima dalla redazione (che dite, sarà il nostro benamato direttore che si diletta a girare per bancarelle e mercatini?). Ad ogni modo ecco quà le sigle degli aggeggi.
- 1) tubo siglato: SFR 6,3 V O,E407,PA-W-3"
- 2) sigla del tubo: VCR 138A 10E/759 12 pm 6-7" quest'ultimo ha pure un marchio riportante una corona (che sia un cimelio dell'oscilloscopio personale di Napoleone?).
- Il signor IK1 CFJ (al secolo Biagio Pellegrino di Setri Levante) mi chiede dati ed applications di medie frequenze in generale e di filtri ceramici in particolare. Non avendo avuto tempo di preparare a fondo l'argomento rimando il tutto al prossimo numero. Nel frattempo, se qualcuno ha del materiale lo mandi pure tranquillamente: più roba c'è e meglio è.

Componenti sconosciuti

Transistor:

IW 4096, 1W10463, IY8996A, J175

Integrati:

BB 3507, μPD 2810

GAAS FET:

NE 72089

DATI

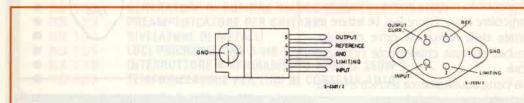
 Per iniziare un residuo di qualche mese fa: il case TO3 dello stabilizzatore L200 (richiesta del rag, Zarone di Napoli).

Ringrazio il sig. Colacicco di Cervara (FR). Ecco entrambi i tipi di contenitori in cui viene fabbricato l'integrato (TO 3 e TO 220).

Ricordate che ero alla ricerca dell'integrato LM359?

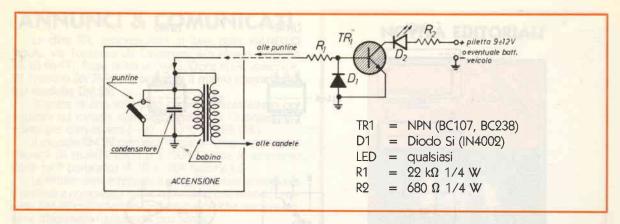
Bene, mi ha scritto giù dalla Svizzera il signor Jurgen Wendler, dandomi l'indirizzo di una ditta locale che lo tratta.

Me ne sono fatto inviare un paio insieme al catalogo, quest'ultimo veramente OK per chiarezza e completezza (è compilato all'80% in tedesco «tecnico» comprensibile senza particolari difficoltà).


L'unica cosa che frega noi italiani è la valutazione del franco svizzero nei riguardi della nostra povera e svalutata liretta! Ritengo comunque di interesse generale riportare l'indirizzo della ditta in questione per chi desidera informazioni o il catalogo stesso (che costerà qualche lira, anche se grazie al sig. Wendler il sottoscritto l'ha ricevuto gratis).

Al sig. Wendler va quindi in «danke» e la rivista per tutto l'anno. Indirizzo della ditta: NOWEL ELECTRONIC - 4699 WISEN - CH.

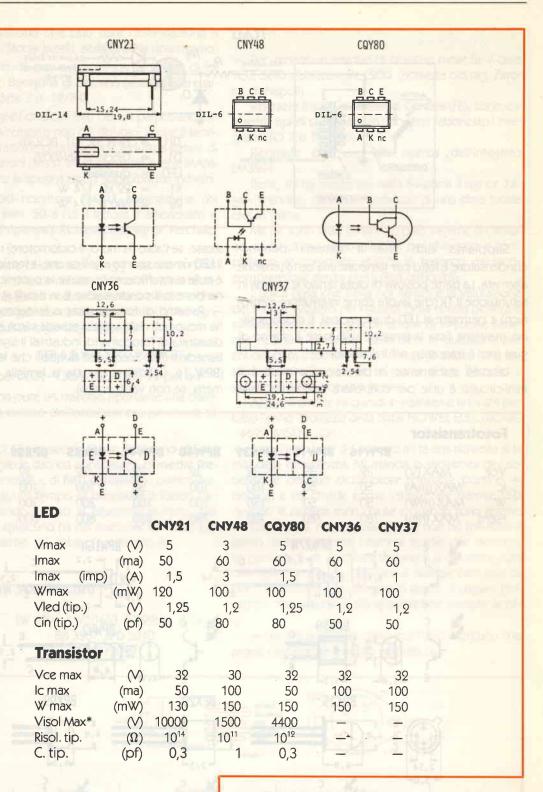
— Il sig. Paolo Lupi di Sanremo mi fa una richiesta ai limiti della consulenza. Mi manda lo «schema» dell'accensione del suo ciclomotore (classico: puntine + bobina) e mi chiede come visualizzare tramite LED quando le puntine sono chiuse e quando sono aperte.


Caro Paolo, non è possibile (se non ho travisato il senso della domanda) ottenere quello che desideri. Le puntine di un veicolo si aprono e si chiudono con una velocità che può arrivare a diverse centinaia di hertz, e l'occhio umano non è in grado di seguire pulsazioni così veloci: il LED apparirebbe sempre acceso.

A riprova di quanto detto costruisci il circuito che segue (veramente a livello «didattico»).

Туре	Pentawatt [®]	TO-3
L 200		L 200 T
L 200 C	L 200 CH L 200 CV	L 200 CT

Sappiamo tutti che il sistema puntinecondensatore è fatto per generare una certa tensione alternata. La parte positiva di detta tensione manda in saturazione il TR (che lavora come interruttore elettronico) e permette al LED di accendersi. Il diodo al silicio mantiene fissa la tensione sulla base a scanso di guai (per il transistor, naturalmente).


Lasciato stabilmente in parallelo alle puntine il mini-circuito è utile per controllare l'efficienza delle

stesse: se l'auto (la moto, il ciclomotore) non parte ed il LED rimane spento significa che la tensione generata è nulla o insufficiente (p. es. se le puntine non si aprono bene o il condensatore è in perdita).

 Parliamo di fototransistor o fotoaccoppiatori. Ne ha recuperati dalla «solita» scheda surplus più o meno disastrata di fotocomandi industriali il signor Giovanni Benedetti (MI). Ecco i dati di quelli che le interessano (BPW 16, CQY80) e di tutta la famiglia relativa (Siemens, se non vado errato).

Fotot	ransistor								
		BPW16	BPW17	BPW39	BPW40	BPW42	BPX25	BPX29	BPX99
Vce	MAX (V)	32	32	32	32	32	32	32	32
lc	MAX (mA)	50	50	100	100	50	100	100	100
W	MAX (mW)	50	50	150	100	100	300	300	330
Fsens	MAX (nm)	780	780	780	780	830	800	800	800
	Y C	2.5	BPW17N			В	PW16N		
		2,50	17 1-2.9	С	Do	. 1	p-2,2	C I	
	-	3,4	بالمادي		2,54	1,9		2,5	4
	E IN	1 1,	3,64	E		0,9	-2,8	E	
	A c	В	PW39		A c		BPW42		
	A L	M2 -1	- C		A	M-1	DF N4Z	E	
	M 1	2	- F		The	M mis		2,5	4
	Ė	3,8L L	5,1		Ė	-3,4-	4,8		
		BP.	X25		BPX29		BPX	99	
	M	E TO	-	ī				-	
	世	4,8		4,	8		4,8		
	2,54	L-6,	9-6		65,50		104,	7.	
	- 5,8-	N.	С		. c			C	
		A	1		X		2-	<u> </u>	
		В	The same		B-L		B	K1	
			E		E	20		-47	

* t = 1 minuto max.

Il CNY 36 ed il CNY 37 sono accoppiatori «a corpi separati», in cui il raggio luminoso del LED viene cioè interrotto da un oggetto che passa tra il LED medesimo e il transistor ricevitore.

E con ciò termino, a risentirci il mese prossimo.

ANNUNCI & COMUNICATI

La ditta RFL, rappresentata in Italia dalla VIANELLO S.p.A., via Tommaso da Cazzaniga, 9/6 Milano, Telefono 02/65.96.171, Filiale di Roma - via S. Croce in Gerusalemme, 97 Telefono 06/7576941, presenta il nuovo magnetometro Modello DM 22.

Si tratta di uno strumento particolarmente adatto per impieghi sul campo, con caratteristiche di funzionamento adatte per climi diversi ($-20 \div 50^{\circ}\text{C} \div 95\%$ U.R.).

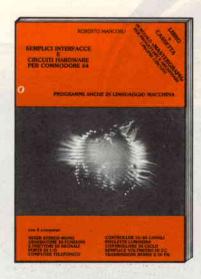
Il modello DM 22 permette letture di campi magnetici in intensità da qualche Gamma a 100R Gamma, lo strumento infatti ha 7 portate da \pm 10 a 100K Gamma F.S.

La lettura viene effettuata tramite indicatore analogico a 0 centrale e completata anche con indicazione sonora. Il Modello DM 22 può effettuare misure magnetiche assolute oppure differenziali (utilizzando due sonde).

Dalla Epson tre stampanti ad impatto IBM compatibili

FX-80+/FX-100+ e JX-80: grandi prestazioni in bianco e nero o a colori.

In linea con il continuo evolversi delle esigenze degli utenti di microinformatica ecco dalla **Epson** una nuova serie di stampanti che offrono di più, anche il colore.


Si tratta delle FX-80+ e FX-100+, versioni migliorate e arricchite, nelle prestazioni della affermatissima serie FX, e della JX-80 a colori, da oggi tutte compatibili IBM.

FX-80 (a 80 colonne) e FX-100+ (a 132 colonne) sono stampanti più produttive, grazie all'inseritore automatico di fogli singoli, e più versatili nell'impiego: ben 160 caratteri al secondo quando occorre la velocità nella stampa di tabulati, etichette o bozze, 40 cps quando si desidera una stampa di alta qualità per la corrispondenza professionale. Dimensioni contenute, una linea gradevole e un prezzo molto buono per le alte prestazioni offerte sono gli ingredienti di questa nuova formula proposta dalla Epson per risolvere in un'unica soluzione qualsiasi problema di personal computing a livello professionale.

La nuova serie «plus» conserva, inoltre, tutte le caratteristiche di base della FX: set completo di caratteri internazionali, svariati stili di stampa, grafica ad alta risoluzione, caratteri originali programmabile dall'utente, numerosi codici e funzioni di controllo via software.

NOVITÀ EDITORIALI

È in stampa il primo volume della Soc. Editoriale FELSINEA. Chi desidera prenotarne la copia è pregato di servirsi del presente tagliando e indirizzarlo a «Soc. Edit. FELSINEA - via Fattori, 3 -40133 BOLOGNA.

Titolo-

SEMPLICI INTERFACCE E ROUTINE HARDWARE
PER COMMODORE 64
PROGRAMMI ANCHE IN LINGUAGGIO MACCHINA

Autore:

Roberto Mancosu

Sintesi:

Mixer stereo-mono - Generatore di funzioni -Due iniettori di segnali - Porte di I/O - Computer telefoni-co - Controller 16/64 canali - Roulette luminosa - Controllore di ciclo - Semplice voltmetro in cc - Trasmissione morse e in FM.

Un libro di piccoli segreti Hardware e facili realizzazioni per usare il Commodore 64 in modo nuovo e completo.

Una pubblicazione diversa che tratta argomenti normalmente trascurati e di non facile reperibilità.

Nome	
Cognome	
via	
capcittà (scrivere in stampatello - Grazie).	

Desidero ricevere il Vs/volume. SEMPLICI INTERFACCIE E CIRCUITI HARDWARE PER COMMODORE 64 di R. Mancosu

Pagherò L. 15.000 al ricevimento di detto senza ulteriori spese.

firma

IL MONDO A PORTATA DI MANO

Tutte le caratteristiche di un ricevitore professionale con in più un cervello pensante.

Infatti il nuovo ricevitore della linea YAESU, oltre a coprire da 15 KHz a 29,999 MHz (e con gli accessori opzionali) la gamma dei due metri e le VHF da 118 a 179 MHz nei soliti modi AM - SSB - CW - FM, ha diverse funzioni in più come l'orologio timer programmabile, come 12 memorie programmabili, come l'impostazione delle frequenze da tastiera, lo scanning tra le memorie, tra due frequenze, e all'interno tra due memorie.

Ma la novità assoluta è il suo nuovo display a cristalli liquidi che include un nuovo modo di visualizzare la forza dei segnali ricevuti il "Bar Graph" e per finire il ricevitore si può collegare al vostro computer per diventare un vero e proprio ricevitore pensante...

Pensate, il ricevitore può sintonizzarsi su una stazione da solo, ricercando il nominativo della stazione o il suo segnale d'identità (per le stazioni di tempo) scegliendo automaticamente la frequenza più adatta ed il modo di ricezione! incredibile, ma vero!

ASSISTENZA TECNICA

S.A.T. - v. Washington, 1 Milano - tel. 432704 Centri autorizzati:

A.R.T.E. - v. Mazzini, 53 Firenze - tel. 243251 e presso tutti i rivenditori Marcucci S.p.A.

MARCUCCI ST

TESTO E GRAFICA

CONTEMPORANEAMENTE SU C 64

Roberto Mancosu

Sul C 64 è possibile far convivere testo e grafica allo stesso tempo, permettendo così di costruire programmi o giochi sempre più professionali.

Con qualche piccola variante, al programma in linguaggio macchina che sta sotto i dati, è possibile rendere l'ampiezza della finestra grafica variabile a piacere.

Il programma da me proposto divide lo schermo alla riga 1424 (compresa), ponendo la parte superiore dello schermo in modo testo, e la parte bassa in modo grafico standard.

È comunque molto semplice costruire una variante per rendere la finestra scorrevole a piacere.

Quanto detto, si basa sul principio del controllo da parte del C 64, del movimento del pennello ottico che traccia sul video.

Il C 64, attraverso due registri interni, rileva in continuazione la posizione, ovvero il numero di riga che il pennello ottico sta tracciando.

Le righe sono 312, ecco spiegato perché i registri sono due.

In poche parole, il tutto funziona nel modo seguente:

Si deve costruire una routine da inserire nell'interrupt, in grado di rilevare ed effettuare i seguenti punti:

A) Di ogni Interrupt (IRQ), riconoscerne la natura. Se si tratta di un IRQ video, allora si passa al punto B, diversamente si serve l'Interrupt saltando la routine \$EA31.

B) Si carica ora il registro basso che memorizza i numeri di linea e si fa confrontare il suo contenuto con un numero a nostro piacere, non maggiore di 312.

C) Se il confronto è soddisfatto, si passa ad una certa subroutine, se invece il numero di riga non è stato ancora raggiunto, si prosegue per un'altra subroutine.

A fine articolo è riportata la lista delle locazioni di memoria interessate.

Chiaramente una subroutine farà in modo che lo schermo si disponga per l'alta risoluzione, mentre l'altra predispone lo schermo per il modo testo.

Poiché il tutto accade nell'IRQ, e poiché le interruzioni video sono molto frequenti, si ha la sensazione di avere testo e grafica insieme con punto di divisione alla riga da noi voluta (riga del Raster video, non riga dello schermo così come siamo abituati a considerarle con il computer.

Il programma è molto banale e serve solo ad evidenziare la convivenza dei due modi. In realtà potete utilizzare la riga 2/3/5 e tutte le righe dei data, per inserirle nei vostri programmi, per avere così una subroutine che permette di dividere lo schermo. Se si vuole uscire dal modo doppio, si deve battere RUN STOP/RESTORE. Il programma in linguaggio macchima prevede anche a pulire lo schermo grafico, disponendo per i colori nero di fondo con punto di traccia bianco.

Anche questi colori, sono modificabili a piacere, ma occorre disassemblare la routine e quindi si deve essere esperti quel tanto che basta per fare questo genere di lavoro. Chi non se la sente, può comunque contattarmi o contattare la Redazione per qualsiasi modifica.

Avrete già capito che usando opportunamente più sobroutine (subroutine interne al programma in linguaggio macchina) è possibile suddividere lo schermo in quante parti si vuole.

Ecco la lista delle principali locazioni interessate: \$D011-\$D012 * BYTE ALTO e BYTE BASSO per conoscere il numero di linea in cui si trova il pennello ottico. A noi in pratica interessa soltanto il Byte basso

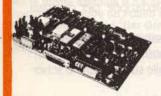
poiché usiamo solo le righe dalla 51 alla 251 che concorrono a formare lo schermo video usato dal computer.

\$D019 * il cui Bit meno significativo ci dice se l'interruzione è un'interruzione video. Il contenuto di questa locazione posto in AND con 1, confermerà quanto detto.

\$D01A * il cui Bit meno significativo, se posto a 1, fa sì che si generi un'interruzione ogni volta che il contenuto di \$D012 è uguale al numero da noi scelto.

\$0314-\$0315 * BYTE BASSO e BYTE ALTO per variare l'indirizzo di partenza dell'Interrupt (normalmente a \$EA31).

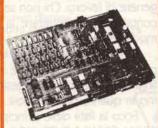
\$D018-\$D011 * equivalenti a POKE 53272 e POKE 53265, per passare in alta risoluzione.


\$FEBC * per concludere un'Interrupt di espansione.

\$EA31 * per completare l'Interrupt.

Più di ogni altra cosa vale comunque l'osservazione della routine disassemblata.

```
REM *** TESTO/GRAFICA CONTEMPORANEAMENTE PER 064 *****
    POKE53280.0: POKE53281.0: REM ROBERTO MANCOSU 070/49/116
    FORA=51311T051480:READQ:POKEA.Q:NEXT
  5 87851311
  6 PRINT"∏#(C) ROBERTO MANCOSU *"
7 PRINT"DISEGNAMO UNA LINEA A STEP DI 4!"
  8 PRINT"LO SCHERMO E DIVISO ALLA RIGA 1424"
  9 PRINT"BASTA DARE POKES3281,5 PER VEDERLO"
  10 FORX=0T0319 STEP4:Y=150
  20 GOSUB50
  30 NEXT:PRINT"PUOI USARE QUESTE RIGHE HEI TUOI"
31 PRINT"PROGRAMMI"
     PRINT"PER USCIRE DA GUESTO MODO"
  33 PRINT"GRAFICO BATTI RUN STOP/RESTORE'J" END
  50 CH=INT(X/8) RO=INT(Y/8):LN=YAND?
     BY=8192+320*R0+CH*8+LN
  54 BI=7-(XAND7)
  56 POKEBY, PEEK(BY)OR(21BI)
  58 RETURN
  100 DATA120,169,132,141,20,3,169,200
 100 DATA141,21 3,32,252,200,88,169,1
102 DATA141,26,208,96,173,25,208,41
103 DATA1,208,3,76,49,234,141,25,208
  104 DATA173.18.208.201.129.240.23.169
105 DATA129.141.18.208.169.71.141.0.221
  106 DATA169,215141,24,208,169,27,141
  197
      DATA17,208,76,138,254,169,1,141,18
  108 DATA209,169,199,141,0,221,32,196
  109 DATA200,169,1,141,13,220,76,49,234
110 DATA173,24,203.9,8,141,24,208,173
111 DATA17,208,9,32,141,17,208,169,144
112 DATA133,176,169,5,133,177,162,2
  113 DATA160.0.169.16 145.176.200.192.0
      DATA208,249,230,177,202,224,0,208
  115 DATA238,160.0,169,16,145,176,200
 116 DATRI92 88 208 249 96 169 6 133
  117 DATA251,169,32,133,252,162,32,160
118 DATA0,169.0,145,251,200,192,0,208
  119 DATA249.230 252.202 224.0.208.238
  120 DATA96
  READY.
```


Piastra terminale video 80x24 ABACO TVZ

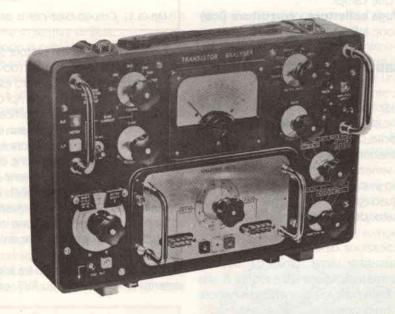
grifo

40016 S. Giorgio v. Dante, 1 (BO) Tel. (051) 892052

Calcolatore ABACO 8

Z80A - 64KRAM - 4 floppy -I/0RS232 - Stampante ecc. -P/M2.2 - Fortran - Pascal -Basic - Cobol - ecc.

Programmatore di Eprom PE100 Programma della 2508 alla 27128 Adattatore per famiglia 8748 Adattatore per famiglia 8751


basato su carteggio in singola Europa

PROVA-TRANSISTOR «AVO-CT 446»

Umberto Bianchi

Perché rinunciare a trarre da un progetto, la cui realizzazione ha impegnato tempo e denari, il massimo delle prestazioni, oppure rinunciare a classificare e utilizzare transistor anonimi o di dubbia provenienza o recuperati da qualche scheda reperita dal demolitore?

Oggi è possibile ottenere tutto ciò con uno strumento di classe reperibile a un prezzo interessante sul nostro mercato del surplus.

Il provatransistor è uno strumento che non appare di frequente sul banco di lavoro del radiodilettante o del tecnico di laboratorio. Per il fatto che le caratteristiche dei dispositivi a semicondutture non degradano con l'uso come avveniva con le valvole, si è portati a considerare che i transistor funzionano sempre, tranne ovviamente quando si interrompono, dimenticandosi delle curve di lavoro che li contraddistinguono e li differenziano, a volte in modo rilevante, anche fra tipi con sigle identiche.

La dispersione dei valori di funsionamento, a seconda del fabbricante, della selezione (1ª scelta, 2ª, 3ª ecc.) e della data di fabbricazione, è sovente superiore a quanto si possa immaginare, e frequentemente il successo di una realizzazione è legato alla fortuna di avere acquistato, a scatola chiusa, dei transistor con caratteristiche confacenti al progetto.

Per venire incontro alle esigenze di progettisti e costruttori che intendono ottimizzare le loro realizzazioni, viene descritto uno strumento molto valido che risulta facilmente reperibile sul mercato nazionale del surplus a un prezzo decisamente vantaggioso per la classe a cui appartiene e per il prestigio del costruttore.

1 - Caratteristiche

Questo strumento è stato realizzato in ottemperanza alla specifica tecnica K114 in vigore in Inghilterra ed è in grado di verificare le caratteristiche dei transistor del tipo PNP, NPN e a punte di contatto.

Campo delle tensioni di collettore

Utilizzando le batterie interne: 1,5 - 3 - 4,5 - 6 - 10,5 VUtilizzando un alimentatore esterno: $0 \div 12 \text{ V}$ (per tutte le misure)

 $0 \div 150 \text{ V}$ (solo per la caratteristica in continua del β e la tensione di rotazione - V_r -).

Campo della corrente di collettore

0 ÷ 250 mA - con l'impiego delle batterie interne 0 ÷ 1 A - con l'alimentazione esterna.

Campo della corrente di base

 $0 \div 1$ mA e $1 \div 40$ mA, in due campi. Guadagno in corrente per piccoli segnali (β): $0 \div 25$ e $0 \div 250$, in due campi.

Misure di rumore (NF)

1 ÷ 40 dB in due campi.

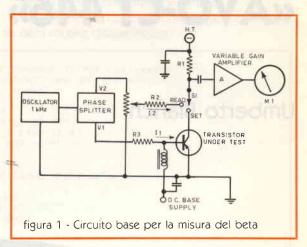
Corrente di fuga collettore - emettitore (Ico) Prima indicazione a $2 \mu A$.

2 - Metodi usati per il controllo delle caratteristiche

Tra i parametri solitamente impiegati per classificare le caratteristiche di lavoro dei transistor vi sono:

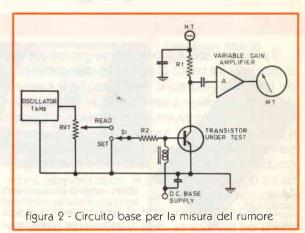
- a) l'indicazione della corrente di perdita, tramite il controllo della variazione della corrente di collettore in rapporto alla variazione della corrente di base, quindi il guadagno in corrente continua (β);
- b) la misura del guadagno in corrente alternata (β) su un punto prefissato della caratteristica in corrente continua:
- c) un'altra utile indicazione delle condizioni di funzionamento di un transistor viene fornita dal rumore. Normalmente la prima indicazione della rottura di una giunzione è data da un notevole aumento del rumore che si genera nel transistor.

Prendendo come base di partenza questi requisiti vengono ora sviluppati alcuni dei metodi per ottenere queste informazioni.

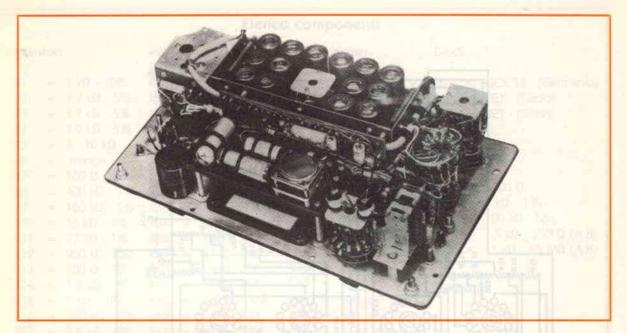

2.1 Misura di l'co, lb, lc e Vc

Queste sono misure dirette di correnti e tensioni continue. Vengono impegnati sistemi convenzionali di misura mentre con opportune commutazioni si predispone lo strumento per l'idonea portata di corrente e tensione.

2.2 Misura del Beta (β)


In accordo con le normali tecniche utilizzate dalle principali industrie costruttrici di transistor, i guadagni di corrente di deboli segnali vengono misurati a 1 kHz. La misura avviene nel seguente modo:

— osservando la figura 1 si può rilevare come l'uscita del generatore a 1 kHz risulta collegata a un divisore la cui uscita fornisce un rapporto di 10:1. L'uscita inferiore V1 fornisce, attraverso un resistore in serie (R3), un ingresso fisso di 0,5 μ A nella base del transistor sotto esame.



— posizionando il commutatore S1 su «SET», una corrente pari a $0,5~\mu\text{A}$ volte Beta (dove Beta corrisponde al guadagno del transistor sotto esame) determina una differenza di potenziale ai campi di R1. Questa tensione viene introdotta in un amplificatore il cui guadagno viene regolato per determinare una lettura arbitraria sullo strumento M1. Si porta ora il commutatore S1 su posizione di lettura. La tensione di uscita V2, dalla rete di divisione perviene alla serie dei resistori R1 e R2 attraverso il potenziometro RV1. La differenza di potenziale che si determina attraverso R1 viene portata all'amplificatore mantenendone invariato il guadagno. Si regola ora RV1 per ottenere un'identica deflessione sullo strumento.

Conoscendo il rapporto fra le due correnti I₁ e I₂, si determina il Beta. Pertanto RV1, con la quale si varia il

rapporto di corrente, intervenendo su l₂ può essere calibrata direttamente in termini di Beta.

Con questo metodo la precisione della lettura è legata alla rete di divisione e ai resistori a essa associati. Variazioni della tensione di alimentazione non modificano la precisione di lettura in quanto il rapporto fra le correnti \mathbf{I}_1 e \mathbf{I}_2 rimane costante.

2.3 Misura del rumore

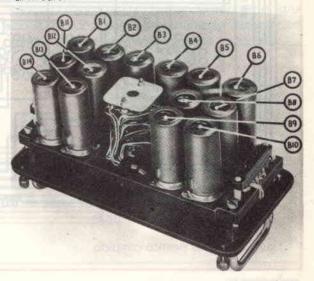
Le figure di rumore indicate dai costruttori sono solitamente misurate a 1 kHz su una larghezza di banda ristretta. Questa metodologia non viene utilizzata su strumenti di controllo portatili per la difficoltà di realizzare un amplificatore selettivo a banda stretta e un oscillatore molto stabile.

È stato però rilevato che misurando, il rumore con un segnale di riferimento di 1 kHz in unione a un amplificatore con larghezza di banda comparabile alla banda audio, si ottengono sostanzialmente gli stessi risultati.

Nello strumento AVO viene seguito il secondo metodo. Riferendosi alla figura 2, con l'interruttore S1 su «SET», la differenza di potenziale ai capi di R1 viene prodotta da un generatore di rumore a bassa frequenza realizzato con il transistor sotto esame. Questa tensione viene inviata a un amplificatore col guadagno regolato per fornire una lettura a circa metà scala dello strumento.

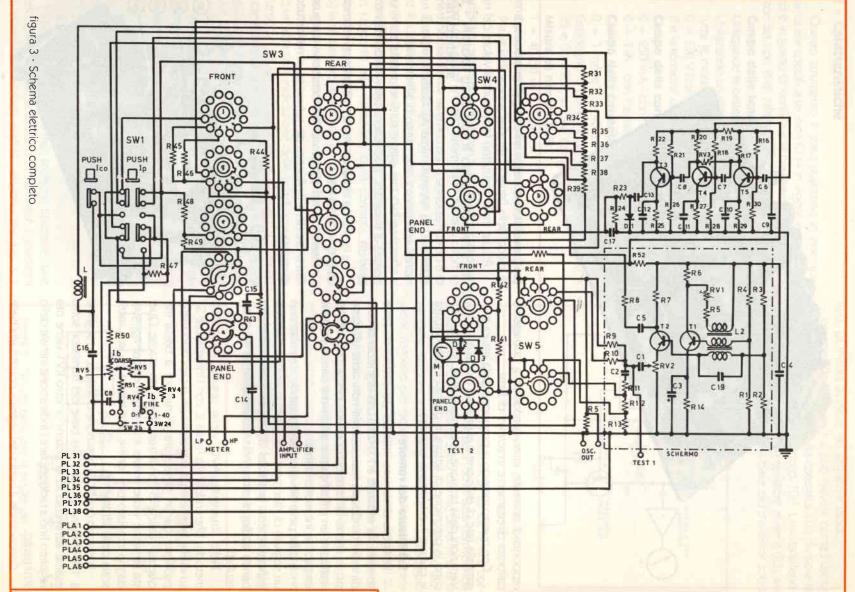
Portando ora S1 su posizione di lettura, un segnale a 1 kHz viene portato alla base del transistor sotto esame attraverso R2. Il potenziometro RV1 viene ora regolato fino a raddoppiare l'indicazione iniziale dello strumento.

Conoscendo il livello del segnale portato alla base

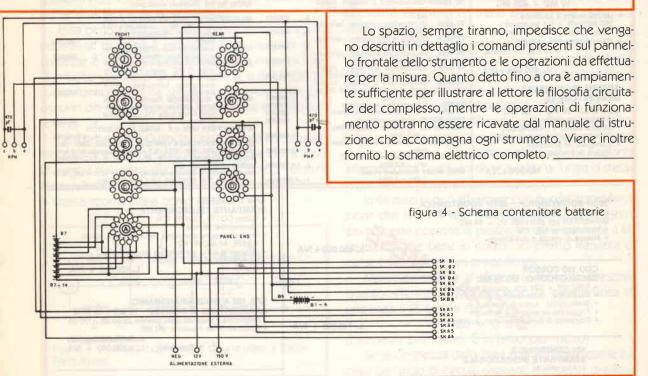

del transistor, si conosce anche l'equivalente corrente di picco della figura di rumore.

Poiché molti costruttori forniscono il valore del rumore espresso in dB, è necessario ottenere una lettura molto precisa. Si è trovato che una figura di rumore di 6 dB corrisponde a una corrente sulla base del transistor di 0,45 nA (milli-micro A). Questo livello di rumore viene usato come punto di riferimento.

Pertanto RV1 che agisce sul livello della corrente portata al transistor, può essere calibrato direttamente in dB.


La larghezza di banda dell'amplificatore si estende da 800 Hz a 10 kHz.

Inserendo nel circuito di alimentazione adeguati filtri si previene l'influenza dei rumori spuri nel circuito di misura.



Elenco componenti

Resistori	$R26 = manca$ $R27 = 1 k\Omega - 5\%$	Condensatori	Diodi
R1 = 1 kΩ - 10% R2 = 4,7 kΩ - 5% R3 = 4,7 kΩ - 5% R4 = 3,9 kΩ - 5% R5 = 3 - 10 kΩ R6 = manca R7 = 100 Ω - 1% R8 = 400 kΩ - 1% R9 = 160 kΩ - 1% R10 = 16 kΩ - 1% R11 = 79 kΩ - 1% R12 = 900 Ω - 1% R13 = 100 Ω - 1% R14 = 1,5 kΩ - 2% R15 = 1 kΩ - 1% R16 = 120 kΩ - 5% R17 = 5,6 kΩ - 5% R18 = 120 kΩ - 5% R19 = 150 Ω - 2% R20 = 10 kΩ - 5% R21 = manca R22 = 10 kΩ - 5%	R27 = $1 \text{ k}\Omega \cdot 5\%$ R28 = manca R29 = manca R30 = manca R31 = $3.4 \text{ M}\Omega \cdot 1\%$ R32 = $340 \text{ k}\Omega \cdot 1\%$ R33 = $35.3 \text{ k}\Omega \cdot 1\%$ R34 = $6 \text{ k}\Omega \cdot 1\%$ R35 = $3.58 \text{ k}\Omega \cdot 1\%$ R36 = $358 \text{ k}\Omega \cdot 1\%$ R37 = $35.8 \text{ k}\Omega \cdot 1\%$ R38 = $3.58 \text{ k}\Omega \cdot 1\%$ R39 = $0.4 \text{ k}\Omega \cdot 1\%$ R40 = $1 \text{ M}\Omega \cdot 2\%$ R41 = $10 \text{ k}\Omega \cdot 1\%$ R42 = $240 \text{ k}\Omega \cdot 2\%$ R43 = $1 \text{ k}\Omega \cdot 1\%$ R44 = $10 \text{ k}\Omega \cdot 1\%$ R45 = $1 \text{ k}\Omega \cdot 1\%$ R46 = $10 \text{ k}\Omega \cdot 5\%$ R47 = $1.3 \text{ k}\Omega \cdot 2\%$ R48 = $0.53 \text{ k}\Omega \cdot 2\%$ R48 = $0.53 \text{ k}\Omega \cdot 2\%$	C1 = 0,1 μ F - 150 V C2 = 0,1 μ F - 150 V C3 = 8 μ F - 12 V C4 = 100 μ F - 12 V C5 = 40 nF C6 = 0,1 μ F - 150 V C7 = 0,1 μ F - 150 V C8 = manca C9 = 100 μ F - 12 V C10 = 25 μ F - 12 V C11 = 25 μ F - 12 V C12 = manca C13 = 40 nF - 150 V C14 = 500 μ F - 12V C15 = 500 μ F - 12V C16 = 1 μ F - 250 V C17 = 8 μ F - 12 V C18 = 8 μ F - 12 V C19 = 40 nF	D1 = GEX 13 - (Germanio) D2 = 2E1 - (Silicio) D3 = 2E1 - (Silicio) Potenziometri RV1 = 4700 Ω RV2 = 1 k Ω - 1% RV3 = 100 k Ω - Log. RV4 = 1,5 k Ω - 250 Ω (A.B) RV5 = 11 k Ω - 25 M Ω (A.B) Transistor T1 = 0C71 T2 = 0C72 T3 = 0C75 T4 = 0C75 T5 = CV2400
R22 = 10 kg - 5% $R23 = 24 \text{ k}\Omega - 5\%$ R24 = manca $R25 = 1 \text{ k}\Omega - 5\%$	$R50 = 11 \text{ k}\Omega - 2\%$ $R51 = 100 \Omega - 1\%$ $R52 = 15 \Omega - 20\%$	AVO Ltd. Avocet House, 9 ROAD, LONDON	92-96 VAUXHALL BRIDGE I, S.W.I.

DOLEATTO

V.S. Quintino 40 - TORINO Tel. 511.271 - 543.952 - Telex 221343 Via M. Macchi 70 - MILANO Tel. 273.388

STATE OF TAXABLE PARTY.						161, 273,388		
	Lunassa	0	-				_	
	HP 141A	Oscilloscopio a cassetti - doppia base tempi - DC 20 MC	L.	1.800.000	MESL M10	OG Generatore sweep - 500		1.400.000
TF 801D/8/S MARCONI		Oscilloscopio a cassetti - doppia		1,000.000	TELONIC :	MC ÷ 1000 MC SM 2000 Generatore sweep • vari		1.400.000
GENERATORE DI SEGNALI	173	base tempi · DC 50 MC	L.	980,000	, LEGINIO ,	cassetti per detto per frequenze da		
40 MO . 490 MC	HP 183A	Oscilloscopio a cassetti - doppia				0 ÷ 3 GHz - valvolare a seconda del		
10 MC + 480 MC		base tempi - DC250 MC tempo reale				cassetto	L.	2.000.000
La Marita tarata a calibrata		con probe alta frequenza, alta im-			TELONIC	2003 Generatore sweep - vari		
Uscita tarata e calibrata -		pendenza mod 1120 A	L.	3.800,000		cassetti per detto per frequenze da		
500 Millivolt + 0.1 Microvolt		Q-Metro - 20 MC + 260 MC Generatore d'impulsi	L.	600.000 280.000		500 KC + 1500 MC - stato solido a		
Attenuatore a pistone - Rete 220V Presa per counter indipendente		Oscillatore da 10 CY + 1 MC - in 5	ь.	200.000	TEL ONIO E	seconda del cassetto	L	2.600.000
		gamme	L.	a richiesta	I ELUNIC F	D7B Generatore sweep - uscita 20 W - 200 MC + 400 MC	100	900.000
Modulazione AM ed esterna		RX-Meter - 500 KC + 250 MC - pon-			TELONIC 1	006 Generatore sweep - uscita 0,5	L.	300.000
		te per misure resistenza, capacità,				V. RMS - 450 MC + 912 MC	L.	600.000
L. 480.000 + IVA		nduttanza	L.	a richiesta	ROHDE S	CHWARZ Generatore di segnati		
	HP 302A	Analizzatore d'onda - 20 CY + 50 KC	L.	600,000		SCR BN41026 - 1 GHz + 1.9 GHz	L.	a richlesta
TF 1064B MARCONI	HP 415E	SWR Meter - 1000 Hz, imput - 0 + 60 dB		a richiesta	ROHDE S	CHWARZ Generatore di segnali		
GENERATORE DI SEGNALI		Misuratore di potenza 0,01	-	ancinosta	DOUBE C	SMCB BN41042 - 1.7 GHz + 5 GHz.	L.	a richiesta
		Milliwatt + 10 Milliwatt	L.	760.000	KUMDE S	CHWARZ Generatore di segnali SAR BN41029 - 2.7 GHz - 4.2 GHz		a richiesta
450 ÷ 470 MC 68 + 108, 118 ÷ 185,	HP 415B	Standing Wave Indicator	L.		ROHDE S	CHWAR7 Generatore di segnali	100	anchesta
a Madulazione AM/EM	HP 434A	Calorimetro misuratore dipotenza				CHWARZ Generatore di segnali SMCC BN41043 - 4.4 GHz + 8.3		
Modulazione AM/FM		0,01 W ÷ 10 W · DC 10 GHz.	L.	1,200.000		GHz	L.	a richiesta
Uscita tarata e calibrata Attanuatara a sistema Bata 200 V	HP 457A	AC/DC Converter - 50 CY + 500 KC	L.	a richlesta	ROHDE S	CHWARZ UHF Test Receiver		
Attenuatore a pistone - Rete 220 V	HP 612A	Generatore di segnali AM - 450 MC + 1230 MC	L.	1.000.000	DOUGE	280 + 940 MHz (4.6 GHz.)	L.	a richiesta
D D D D	HP 614A	Generatore di segnali AM = 750	E.	1.000,000	HOHDE S	CHWARZ SHE Test Receiver		
		MC+2100 MC	L.	1.000.000	AIL 707	2 GHz ÷ 5.1 GHz/5 GHz ÷ 8.6 GHz. Analizzatore di spettro • 10	-	a richiesta
L. 420.000 + IVA	HP 620A	Generatore di segnali AM - 7			HIL TOT	MC + 12,4 GHz - tubo 7" - dinamica		
		GHz. + 11 GHz	L.	860.000		- 100 DBm, Sensibilità - 115 DBm.	L.	12.000.000
TF 144H MARCONI		Generatore sweep - 7 GHz ÷ 12.4	241	Committee	SYSTRON	DONNER 751 Analizzatore di spet-		
GENERATORE DI SEGNALI		GHz	L.	a richiesta		tro - 10 MC - 6,5 GHz. (funziona an-		
	HP 4301A	Generatore di potenza 40 Hz. + 2000 Hz Uscita 5 V + 260 V				tro - 10 MC 6,5 GHz (funziona an- che da + 10 MC e da 6,5 GHz 10.5 GHz con riduzione del-		
10 KC ÷ 72 MC		regolabili misurabili - 250 VA	L.	2.000.000		ta sensibilità) - sensibilità 100 DBm.		
The second second	HP	30.00		2.000.000	70	tubo 7 x 10 cm. Transistorizzato.	1	6,600.000
Attenuatore calibrato - 0.1 Microvolt	5100/5110B	Sintetizzatore di frequenze campio-		dustroom	MARCON	TF 2008 Generatore di segnali	-	0.000.000
50 Ohm + 2V	UD OCCADIO	ne con oscillatore fino a 50 MC	L.	1.200.000	101	AM/FM - 10 KC + 510 MC - stato so-		
Modulazione AM con misuratore	HE 600 ID/60	Hamilizzatore di Spettro 10 MC + 12,4 GHz sensibilità - 90 DBm.	L.	5.800,000	3	lido	L,	4,800.000
Molto stabile - ottime forma d'onda	HP 493A	Amplificatore microonde - 4 GHz +	-	5,000,000	MARCON	TF2400/TM7164 Convertitore 10 MC ÷ 500 MC		a richiesta
		GHz Uscita 1 W. guadagno 30		MI.	MARCONI	TF2330 Analizzatore d'onda - 20		a richiesta
L. 740.000 + IVA		dB .	4	a dehiesta	ALC: UNK	Hz + 76KHz	L	a richiesta
	HP 741B -	AC/DC Differential Voltmeter [10]	M,		MARCONI	TM9692 Video sweep		a richiesta
		standard Multi function Meter	Ľ.	a richiesta a richiesta	MILITARE	TS418 Generatore di segnali		
CT 446 AVO	TK 491A	Analizzatore di spetto 15 GHz +	L.,	aticinesta	MU ITADE	AM - 400 MC + 1000 MC TS419 Generatore di segnali	L.	480.000
PROVA TRANSISTOR		40 GHz transistorizzate	L.	a richiesta		AM - 900 MC - 2100 MC	1	600.000
Misura Beta, Noise		Oscilloscopio doppio cannone - DC			MILITARE	ANURM32 Frequenzimetro a	-	000.000
COME NUOVO	500001	150 KC + 1 MC doppio oscillosco-				eterodina - 125 KC + 1000MC	L.	180.000
	TK 504	Dio - 0,5 Millivolt Oscilloscopio monotraccia - DC	-	640,000	BOONTON	74CS8 Ponte di capacità - 100 KC	L.	1.280.000
955		150 KC	L.	380.000	BOONTON	63C Ponte di induttanza 5 KC ÷ 500KC		4 000 000
	TK 561A	Oscilloscopio a cassetti doppia	-	-	BOONTON	75AS8 Ponte di capacità 1 MC	L.	1.280.000 1.280.000
L. 90.000 + IVA	1	raccia e doppia base tempi - DC 10			BOONTON	75C Ponte di capacità	Č.	1.200.000
		MC	L.	680.000		5 KC + 500 MC	L.	1.280.000
TO SAO MILITAREULA	IK KM561A	Idem come sopra montaggio a rack	L	680.000	BOONTON	91C Voltmetro R.F 1 mV + 300V		71.7
TS 510 MILITARE/H.P.	TK RM561B	Idem come sopra montaggio a	L.	000.000	CODACHE	200 KHz + 1200 MHz ICA - 1 Analizzatore di capacità - 10	4	a richiesta
GENERATORE DI SEGNALI	111	ack - transistorizzato	L.	880.000	SPRAGUE	Pf. + 2000 Mf 6 V + 150 V.	L.	180.000
10 MC + 420 MC	TK RM565	Oscilloscopio a cassetti doppia			BACAL RA	117 Ricevitore sintetizzato		100.000
	t t	raccia - doppio cannone - DC 10				1 MC - 30 MC - con adattatoro SSR	L.	1.200.000
Uscita tarata e calibrata -		MC	L.	980.000	MILITARE 2	M11/U Ponte RCL capacità 10 mmf		
350 Millivolt + 0.1 Microvolt	TK 531A	Oscilloscopio a cassetti - valvolare DC 15 MC	L.	800.000		+ 1100 MT - Induttanza U.I		
Attenuatore a pistone - Rete 220 V		Oscilloscopio a cassetti - valvolare	L.	000,000		MH + 110 H, - resistenza 1 Ohm + 1		100.000
Modulazione AM - 400 CY +		DC 30 MC	L	840.000	CT 491A	Mohm Test Set per cavi - effetto sonar - mi-	L.	180.000
1000 CY Interna	TK 543A	Oscilloscopio a cassetti - valvolare	-			sure lunghezza, impedenza cavi	L.	280.000
I COMPANIE AND A COMPANIE OF TAX		DC 30 MC	L.	840.000	SEE LABS	M111 Oscilloscopio transistorizza-		200,000
L. 380.000 + IVA	TK 551A	Oscilloscopio a cassetti - doppio				SM111 Oscilloscopio transistorizza- to DC 20 MC - doppia traccia - trig-		
THE RESERVE OF THE PERSON NAMED IN CO.	TK 584A	cannone - valvolare - DC 27 MC Oscilloscopio a cassetti doppia	L.	780.000		gerato su entrambe le tracce - tubo		
AN/URM 191 MILITARE		raccia e doppia base tempi - DC 10				rettangolare - funzionante a rete e batterie		540.000
GENERATORE DI	1345	MC - memoria	L.	1.500.000		WILLIAMSOM Distorsiometro da	ь.	340.000
The second section is a second section of the second section of the second section sec	TK 570	racciacurve - provavalvole	L.	300.000		20 Hz + 20 KHz - in sei gamme - mi-		
SEGNALI · 10 KC ÷ 50 MC		racciacurve prova transistors	L.	300.000		nimo fondo scala 1% - possibilità		
Attenuatore calibrato		00 Calibration Fixture	L,	300.000		di lettura 0.1%	L	300.000
Misura uscita e modulazione	MESL MX 8	33 Generatore sweep - 8 GHz.		1 900 000	X-Y RECOR	DER VARI: H.P MOSELEY - HOUS		-database.
Controllo digitale della frequenza	MESI MS as	÷ 12,5 GHz. 33 Generatore sweep · 2 GHz. ÷ 4	L.	1. 800.000	CASSETTI	TEKTRONIX E VARI: 2A60 2A61 - 2A6		richlesta
Completo di accessori	LUZ MO OC	GHz. = 4	1.	2.100.000	3A6 - 3A74	3B1 - 3B3 - 3T77 - 3L5 cassetto anali:	77210	re di snet-
 Nuovo in scatola d'imballo originale. 	MESL MW 8	82 Generatore sweep - 3,7			tro 50 Hz. +	1 MHz - A - CA - E - G - L - M - R - S -	T - Z	- 53/54B -
1 400 000 : 1:::		GHz. ÷ 8,3 GHz.	L.	2.100.000	53/54C - 53/	54G - 80 - 81		
L. 480.000 + IVA	MESL ML88	3 Generatore sweep	1	o simble et	inoltre cass	etti analizzatori di spettro TK1L5 - 1L	10 - 1	L20 - 1L30
		I GHz. + 4 GHz.	L.	a richiesta	- 1L60 - NE	SON ROSS 003, EIP LABS 101A, ec	C.	
		TOWNS THE STREET		211-15	3000	THE PERSON NAMED IN COLUMN 1		
202H POONTONUL D 207H PO	ONTONIU			AH	IR TRANS	TEL		
202H BOONTON/H.P. · 207H BO	UNIUN/H.	Г.		O.T.		TEL COORDINGNIES		

202H BOONTON/H.P. · 207H BOONTON/H.P. GENERAT. DI SEGNALI 54 MC + 216 MC UNIVERTER per 202H-100 KC + 55 MC • Modulazione AM · FM • Misura di uscita e deviazione

L. 880.000 + IVA

CDU 150 COSSOR OSCILLOSCOPIO - DC 35 MC

OSCILLOSCOPIO - DC 35 MC

5 mV cm - 20V. cm - doppia tranch
Rete 220V. - Tubo rettangolare 3, 410 cm
Stato solido - Linea di Riande
Triggerato su entrambe le fracce
Completo di cavi, a Vanuatori, accessori, ecc.

L. 740.000 + IVA

101 CENTRONICS STAMPANTE BIDIREZIONALE

Alta velocità
 132 colonne - Altamente professionale silenziosa

In imballo originale

Completa di manuale d'uso
NUOVA

L. 720.000 + IVA

STAMPANTE TELESCRIVENTE

Codici CCITT2, CCITT5, TTS
 Caratter 64, 96, 128
 Interfaccia serie asincrona, Neutral, Polar, canali V.24/28, AF MCVF, V.21
 Implego discarta normale per telescrivente

Completa di manuale d'uso
USATA L. 480.000 + IVA

SPA 100 A SINGER/PANORAMIC ANALIZZATORE DI SPETTRO · 10 MC ÷ 40 GHz Sensibilità a seconda delle gamme da 80 dB ÷ 100 dB
 Spazzolamento massimo 100 MC

Speciale!! L. 4.800.000 + IVA

Non abbiamo catalogo generale Fateci richleste dettagliate!!

CIRCUITI RISONANTI A COSTANTI DISTRIBUITE

Alberto Fantini

Una linea a radio frequenza, sia essa di tipo bifilare che coassiale, con o senza isolante interposto tra i conduttori, presenta una certa induttanza e una certa capacità i cui valori sono legati alle dimensioni e al tipo di isolante eventualmente usato.

Essa perciò può essere rappresentata dal circuito equivalnte di figura 1 nel quale sono mostrate le induttanze e le capacità elementari (che in realtà sono distribuite uniformemente in tutta la sua lunghezza) suddividendo la linea stessa in numerosi tratti, per ognuno dei quali è riportata l'induttanza e la capacità relativa.

Se il generatore G lancia lungo la linea un dato ammontare di energia a radio frequenza, che come è noto viaggia nel vuoto alla velocità della luce (3-10⁸ m/s) essa sarà sottoposta ad una tensione V, mentre lungo la stessa scorrerà una corrente I.

 $\begin{array}{c|c}
\hline
C & C & C & C \\
\hline
C & C & C
\end{array}$

figura 1 - Circuito equivalente di una linea a Radio Frequenza

Proseguiamo e concludiamo la breve panoramica sui filtri a radio frequenza apparsa nei numeri 5 e 6/84 di E.F. affrontando i circuiti a costanti distribuite e una loro applicazione.

Se vogliamo dare anche una sia pur approssimata esposizione dei concetti da seguire per il progetto di un filtro del genere, non possiamo purtroppo evitare di introdurre una «manciata» di formule...

Il nostro intervento è comunque sempre quello di stimolare l'interesse del lettore «attento» con riflessioni e... critiche!

Ricordando che le induttanze si «oppongono» al passaggio di una corrente alternata, si avrà che ogni induttanza elementare tenderà a ridurre la velocità di carica del condensatore elementare successivo, costituendo in definitiva un freno allo scorrere della corrente nella linea.

Il rapporto tra la tensione V presente tra i conduttori della linea, che supponiamo di lunghezza infinita, e la corrente I che scorre in essa, prende il nome di Resistenza caratteristica della linea o più genericamente impedenza caratteristica, simbolo Zo.

Allo scopo di semplificare l'esposizione dei fenomeni conviene presumere che i conduttori costituenti la linea siano privi di resistenza ohmica e che l'isolante interposto sia costituito da aria, per cui lungo la stessa le perdite si possono considerare nulle.

In tal caso si può affermare con buona approsimazione che lo Zo di una linea rappresenta la «resistenza» che essa oppone al passaggio della corrente a RF, resistenza che tiene in conto dell'effetto frenante di cui si è fatto cenno in precedenza.

Matematicamente si dimostra, tenendo presente quanto affermato, che l'impedenza caratteristica di una linea a RF è data da:

 $Zo = \sqrt{L/C}$

(L in henry per metro, C in farad per metro)

Se la lunghezza della linea non è infinita, come è il caso parlando di circuiti risonanti a costanti distribui-

te, la comprensione dei fenomeni è facilitata ricorrendo ai due casi limite di linea con estremità «aperta» e linea con estremità in «corto circuito», come mostrato nelle figure 2a e 2b.

In una linea con estremità aperta la corrente che scorre tra i punti A e B è ovviamente nulla. Di conseguenza l'energia che il generatore lancia lungo la stessa, giunta in corrispondenza dell'estremità A-B, non ha altra alternativa che rimbalzare indietro, contrastando e sovrapponendosi all'energia che sopraggiunge e che viene fornita in continuazione dal generatore.

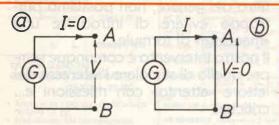


figura 2 - Linea con: (a) estremità aperta, (b) estremità in corto.

Essendo nulla la corrente tra A e B, per tener conto che in effetti il generatore sollecita lo scorrere di detta corrente, conviene supporre che tra A e B scorrano due correnti di uguale ampiezza ma di segno contrario, la cui somma è perciò uguale a zero.

Ciò è rappresentato vettorialmente nella figura 3, con il vettore **Id** che rappresenta la corrente relativa all'energia diretta che dal generatore transita verso A-B, e con il vettore **Ir** (sfasato di 180°) che rappresenta la corrente relativa all'energia riflessa, che dall'estremità A-B transita verso il generatore.

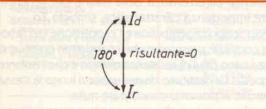


figura 3 - Rappresentazione vettoriale di Id e Ir ai capi di una linea aperta

In definitiva lungo la linea scorre un'onda di corrente diretta Id e un'onda di corrente riflessa Ir che si propagano lungo la stessa con una velocità legata a quella di propagazione dei fenomeni elettrici (velocità della luce) e alla frequenza di funzionamento del generatore. La distanza percorsa sia dall'onda diretta che dall'onda riflessa, come è noto, è pari a:

 $\lambda = 3.10^8 / f \ (\lambda \text{ in metri; } f \text{ in Hz})$

In tal modo le due onde di corrente diretta e riflessa possono essere rappresentate dai due vettori Id e Ir ruotanti in senso inverso, la combinazione dei quali ci permette di visualizzare l'andamento dell'onda risultante lungo la linea: partendo da A-B e spostandoci verso il generatore di un tratto di linea tale che i due vettori risultino ruotanti di, per es., 10° ognuno, si individua sulla linea la coppia dei punti A'-B' per la quale la risultante dei due vettori Id e Ir non è più zero ma It', come è visibile nella figura 4.

Procedendo ulteriormente a ritroso lungo la linea di 10° in 10° di rotazione in senso contrario dei due vettori, si individua sulla linea la coppia di punti A"-B" per la quale i due vettori ld e lr risultano in fase, essendo ruotati ciscuno di 90°. In questo caso l'ampiezza del vettore risultante sarà:

$$It = Id + Ir.$$

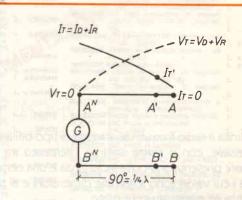


figura 4 - Andamento della corrente It e della tensione Vt lungo una linea con estremità aperta.

Facendo un ragionamento duale, possiamo immaginare la tensione presente tra le estremità A-B della linea formata da due vettori, Vd e Vr tra loro in fase, per cui la risultante è Vt = Vd + Vr. Di conseguenza procedendo a ritroso lungo la linea di un tratto tale che i due vettori risultino ruotati ciascuno di 90°, si individua sulla stessa la coppia di punti A^N-B^N per la quale Vd e Vr risultano in controfase, per cui la risultante è zero, come è visibile nella figura 4, curva tratteggiata.

Si può notare come, essendo la distanza tra i morsetti del generatore e l'estremità A-B della linea uguale a 90° di rotazione rispettivamente dei vettori relativi all'onda diretta e riflessa, di corrente e di tensione, essa equivale a $1/4~\lambda~(1/4~\lambda=90^{\circ}$ elettrici) relativa alla frequenza di funzionamento del generatore.

Quindi un generatore collegato ad una linea lunga $1/4 \lambda$ relativa alla sua frequenza di funzionamento, «vede», nel caso che abbia l'estremità aperta una im-

pedenza Ze = Vt/It = 0, essendo in $A^N-B^N Vt = 0$, cioè una linea lunga 1/4 λ con estremità aperta si comporta come un circuito risonante serie.

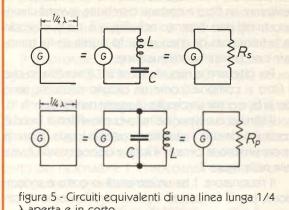
Un analogo ragionamento fatto per una linea lunga 1/4 λ, ma con l'estremità A-B in corto circuito, dove quindi la tensione è zero e la corrispondente massima, porta a delle conclusioni diametralmente opposte. Cioè in questo caso il generatore «vede» un'impedenza $Ze = Vt/It = \infty$, essendo in A^N-B^N It = 0. Quindi una linea lunga 1/4 λ con estremità in corto, si comporta come un circuito risonante parallelo. In tutti e due i casi si dice che la linea è sottoposta ad un regime di onde stazionarie.

Matematicamente i due fenomeni sono espressi dalle formule:

Per la linea $1/4 \lambda$ aperta: Ze = -J Zo Cotang α Per la linea $1/4 \lambda$ in corto: Ze = J Zo Tang α

Essendo $\alpha = 360^{\circ} \text{ I/}\lambda = \text{lunghezza in gradi elettri-}$ ci della linea.

Il simbolo J, come è noto, rappresenta nel piano complesso una rotazione di 90°, in altre parole Ze è una pura reattanza (capacitiva o induttanza) avendo supposte nulle le perdite.


Quando al variare della lunghezza I della linea, Ze assume valori positivi, essa si comporta come una reattanza induttiva, cioè equivalente ad una induttanza. Ciò avviene per la linea con estremità aperta e per 1>1/4 λ, mentre per la linea con estremità in corto avviene | <1/4 λ

Quando invece al variare della lunghezza I della linea, Ze assume valori negativi essa si comporta come una reattanza capacitiva, cioè equivale ad una capacità. Ciò avviene per la linea con estremità aperta, per

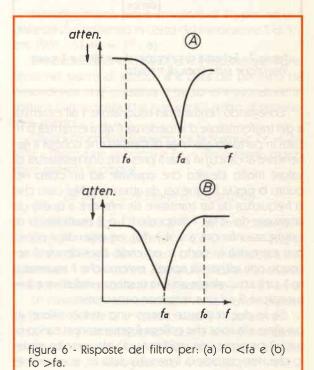
I < 1/4 λ, e per la linea con estremità in corto, per $1 > 1/4 \lambda$.

Se I = $1/4 \lambda$ è facile verificare dalle due ultime formule che, nel caso della linea con estremità aperta è Ze = zero; mentre nel caso della linea con estremità in corto è Ze = ∞. Il simbolo J si può trascurare, ricordando che si ha a che fare con delle reattanze pure.

Se invece di considerare nulle le perdite diamo ad esse un piccolo valore, come avviene nella pratica, avremo che una linea lunga 1/4 λ con estremità aperta si comporta come un'impedenza di valore molto basso, che nell'intorno della freguenza di risonanza si può considerare una pura resistenza di valore Rs. Mentre una linea lunga 1/4 λ con estremità in corto si comporta come un'impedenza di valore molto grande, ma non infinito, che nell'intorno della frequenza di risonanza si può considerare cone una pura resistenza di valore Rp. Questi comportamenti sono visibili nella figura 5.

λ aperta e in corto.

Si dimostra inoltre che una linea lunga 1/4 λ, con estremità aperta, si comporta come un trasformatore di impedenza, governato dalla relazione:

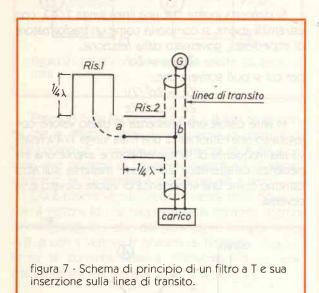

$$Ze \cdot Zu = Zo^2$$

per cui si può scrivere che:

$$Ze = Zo^2/Zu$$

$$Zu = Zo^2/Ze$$

In altre parole una resistenza di basso valore, collegata ad una estremità di una linea lunga 1/4 λ relativa alla frequenza di funzionamento e avente una impedenza caratteristica Zo, viene trasferita sull'altro estremo come una impedenza di valore elevato e viceversa.

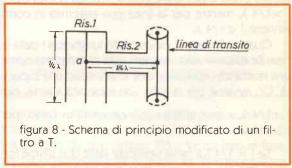


Quanto fin ora esposto può essere utilizzato per realizzare un filtro a costanti distribuite, avente una risposta del tipo mostrato nella figura 6, a e b, essendo fa la frequenza da attenuare e fo quella da far transitare con la minima attenuazione.

Per ottenere le risposte mostrate è necessario che il filtro si comporti come un circuito risonante serie per la fa, e come un circuito risonante parallelo per la fo.

Il filtro di cui si parla è noto come «filtro a T» ed è costituito da due risuonatori coassiali lunghi in prima approsimazione circa $1/4 \lambda$ (fa) e disposti come è visibile nella figura 7.

Il risuonatore 1 ha un'estremità in corto e si comporta, per la frequenza da attenuare fa, come un circuito risonante parallelo. Il risuonatore 2 si comporta come un trasformatore d'impedenza.

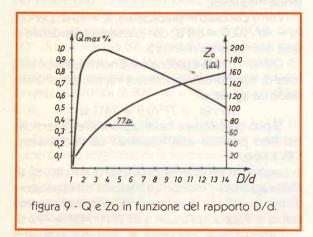


Collegando l'entrata del risuonatore 1 all'estremità a del trasformatore d'impedenza (l'altra estremità b risulta in parallelo alla linea di transito che collega il generatore al carico) in a sarà presente una resistenza di valore molto elevato che equivale ad un corto nel punto b per la frequenza da attenuare. Nel caso che la frequenza da far transitare sia inferiore a quella da attenuare (fo < fa), i risuonatori 1 e 2 risulteranno di lunghezza inferiore a 1/4 λ (fo), ed essendo il primo con estremità in corto e potendo considerare il secondo con estremità aperta, avremo che il risuonatore 1 sarà equivalente ad una reattanza induttiva e il risuonatore 2 ad una reattanza capacitativa.

Se le due reattanze hanno uno stesso valore, in parallelo alla linea che collega il generatore al carico risulterà presente una resistenza di valore molto elevato che non disturberà il transito della fo, in quanto le due reattanze formano un circuito risonante parallelo. In realtà si può verificare, applicando le formule: Ze = J Zo tang $\alpha e Ze = -J Zo$ cotang α , che per f = fo la reattanza induttiva presentata dal risuonatore 1 è molto maggiore della reattanza capacitativa presentata dal risuonatore 2, per cui non si ha la risonanza parallelo. Inoltre il risuonatore 1 risulta caricato da un'impedenza molto bassa (praticamente la resistenza caratteristica della linea che collega il generatore al carico) per cui il relativo Q scende a valori intollerabili.

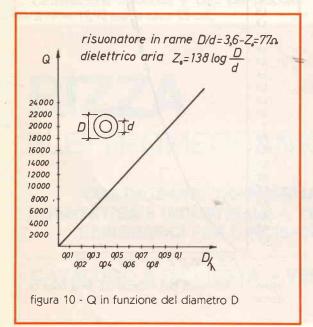
Per ambedue i suddetti motivi si ricorre allora ad un artificio consistente nel collegare l'estremità a del risuonatore 2 invece che all'estremità aperta del risuonatore 1, ad un punto intermedio molto vicino al corto, come è mostrato nella figura 8.

Così facendo si può constatare che, applicando le formule ormai note al tronco del risuonatore 1 che da a va verso l'estremità aperta, e dallo stesso punto a verso l'estremità in corto, per una lunghezza totale di l pari a 1/4 \(\lambda\) (fa) sarà sempre Ze (aperto) = XI = Ze (corto) = Xc. In altre parole, per qualsiasi punto di attacco a, il risuonatore 1 si comporta sempre come un circuito risonante parallelo nei riguardi della fa, solo che la resistenza a risonanza Rp che è molto elevata all'estremità aperta, diviene sempre più bassa man mano che ci si sposta verso l'estremità in corto. Si realizza cioè una trasformazione di impedenza come avviene in un autotrasformatore a costanti concentrate.


La trasformazione di impedenza si ha anche nei confronti dell'impedenza vista dal risuonatore 1 (impedenza della linea di transito che collega il generatore al carico) che questa volta viene trasformata in salita. Ciò consente di non caricare eccessivamente il risuonatore 1 e quindi di non peggiorare molto il suo coefficiente di qualità Q.

Nella pratica questa è la preoccupazione maggiore, in quanto dal Q del risuonatore 1 e quindi dal punto di attacco a dipende la rapidità della risposta del filtro, naturalmente a parità del Q a vuoto del risuonatore stesso.

Il Q a vuoto di un generico risuonatore, come è noto è funzione del rapporto tra i diametri D/d, dal diametro D e dalla conduttività del materiale usato.


Più precisamente si dimostra che il massimo valore del Q a vuoto si ottiene per un rapporto D/d pari a 3,6, come è mostrato nella figura 9, in corrispondenza del quale l'impedenza caratteristica è uguale a 77 Ω .

Inoltre il valore del Q aumenta linearmente all'aumentare del rapporto D/λ, come è mostrato nella figura 10.

Infine il valore del Q a vuoto aumenta se per la realizzazione del risuonatore si impiega un materiale ad alta conduttività come alluminio, rame, argento. Nella pratica viene spesso impiegato il rame, sebbene si può ottenere un aumento del Q di circa il 3% impiegando un metallo argentato, purché l'argentatura sia di ottima qualità e di spessore adequato.

Dopo questa lunga, ma necessaria introduzione, passiamo ad esaminare un esempio pratico che chiarirà molti dubbi rimasti.

Supponiamo di voler realizzare un filtro a T a costanti distribuite che lasci transitare con la minima attenuazione una frequenza pari a 145,1 MHz (fo) e che attenui al massimo una frequenza pari a 145,7 MHz (fa).

Il risuonatore 1 dovrà avere una lunghezza I (fa) uguale a 75/145,7 = 51,48 cm pari a 1/4 λ (fa), ed ancora pari ad un angolo elettrico β = 90°.

Conviene ora indagare sulla scelta del punto di attacco $\bf a$. Si dimostra che se l'impedenza caratteristica di un risuonatore è Zo, stabilendo il punto di attacco $\bf a$ ad una distanza di α gradi elettrici dall'estremità in corto del risuonatore 1, l'impedenza caratteristica in quel punto è data dalla relazione:

$$Zo(a) = Zo sen^2 \alpha$$

Realizzando i risuonatori 1 e 2 in modo che le rispettive Zo siano di 77 Ω , al fine di avere il massimo valore del Q a vuoto, i valori che assume la Zo (a) del risuonatore 1 variando il punto di attacco a, sono mostrati nella figura 11 (curva continua). Se l'impedenza della linea di transito che collega il generatore di carico è per es. di $50~\Omega$, essa viene trasformata dal risuonatore 2 in una impedenza di valore $77^2/50 = 118,6~\Omega$ che si trova in parallelo alla Zo (a), per cui quest'ultima assume in realtà i valori mostrati nella curva a tratti osservabile nella stessa figura 11.

Come si può notare l'influenza dell'impedenza della linea di transito è trascurabile se il punto di attacco viene realizzato fino a circa 6° elettrici.

Noi sceglieremo per **a** un valore di 3° , pari ad una distanza dall'estremità in corto del risuonatore 1 di 1,7 cm. ($90^{\circ}: 51,48 = 3^{\circ}: a$).

L'impedenza di entrata Ze che il risuonatore 1 presenta nel punto di attacco a è data dal parallelo tra l'impedenza che presenta il tratto di risuonatore in corto e l'impedenza che presenta il tratto di risuonatore aperto.

Quindi facendo il parallelo tra le formule Ze = Zo tang α (spezzone in corto) e Ze = Zo cotang α (spezzone aperto) si ottiene:

$$Ze(\mathbf{a}) = Zo/(\cot \alpha \alpha - \tan \alpha (\beta - \alpha))$$

Sostituendo ad α 3° ed a β 90°, avremo cotang α = — Tang ($\beta - \alpha$) per cui Ze (a) = Zo/0 = ∞ = Ze (fa) Cioè come già detto, per il punto di attacco a il risuonatore 1 si comporta come un circuito risuonante parallelo, relativamente alla frequenza fa = 145,7 MHz.

Le cose sono naturalmente diverse per la frequenza fo = 145,1 MHz. In questo caso il risuonatore 1 risulta di lunghezza inferiore a quella che gli competerebbe per essere $1/4 \lambda$ (fo). Più precisamente, in gradi elettrici, esso risulta uguale a $\beta' = 89^{\circ}38'$ (90° : 145,7) = β' : 145,1).

La relativa impedenza di entrata è data da:

Ze (fo) = $Zo/(\cot \alpha - \tan \alpha (\beta' - \alpha))$.

Sostituendo ad α 3° ad a β '89°38', con Zo uguale a 77 Ω si ottiene:

Ze (fo) =
$$+40 \Omega$$
 (induttivi).

Quindi il risuonatore 1 per fo = 145,1 MHz è equivalente ad una induttanza. Parlando di linee a costanti distribuite, possiamo considerare questa induttanza realizzata con uno spezzone di risuonatore coassiale con estremità in corto, di lunghezza elettrica ricavabile dalla formula $Ze = Zotang\alpha$, da cui:

$$tang\alpha = Ze/Zo = 40/77$$
; da cui $\alpha = 27^{\circ}30$ '.

Questo spezzone di risuonatore aumenta la lunghezza del risuonatore 2 che dovrebbe essere lungo $1/4 \lambda$ (fo). Bisogna pertanto accorciarlo di $27^{\circ}30'$, per cui esso risulterà lungo $62^{\circ}30'$ pari a 35,89 cm. ($90^{\circ}:51,68=62^{\circ}30':x$), essendo $1/4 \lambda$ (fo) = 75/145,1=51,68 cm.

Così facendo, il risuonatore 2 accorciato, unito all'equivalente spezzone di risuonatore con estremità in corto forma un risuonatore lungo $1/4~\lambda$ (fo) con estremità in corto, che pertanto trasferisce sulla linea di transito un'impedenza di valore infinito per fo uguale a 145,1 MHz, come volevasi.

Il procedimento fin ora seguito è valido considerando nulle le perdite. Pur essendo difficilmente calcolabili, per avere un'idea della loro influenza, supponiamo di realizzare il risuonatore 1 con un diametro esterno D tale da realizzare teoricamente un Q a vuoto di circa 10.000 (D circa 10 cm).

Ricordando per quanto riguarda il risuonatore 2, che esso è stato accorciato in modo che unita alla reattanza induttiva presentata per fo dal risuonatore 1, la lunghezza del risuonatore 2 risulta di lunghezza esattamente uguale a $1/4~\lambda$ (fo), possiamo affermare che il risuonatore 1, per un punto di attacco a di 3° , si comporta come un circuito risonante parallelo del quale possiamo calcolare l'impedenza a risonanza, Rp. In altre parole la reattanza residua induttiva presentata per fo dal risuonatore 1 la possiamo immaginare conglobata nel risuonatore 2.

Tornando alla Rp, è noto che:

$$Rp = L/CRs = \sqrt{L/C \cdot 1/Rs \cdot \sqrt{L/C}} = Zo \cdot Q.$$

Zo nel nostro caso è la Zo (a) che, tenendo presente l'effetto dell'impedenza caratteristica della linea di transito, è uguale a $0.2~\Omega$ circa dal grafico della figura 11.

Possiamo quindi calcolare Rp:

$$Rp = Zo \cdot Q = 0.2 \cdot 10.000 = 2000 \Omega$$

Rp rappresenta le perdite-parallelo del risuonatore 1 che possiamo considerare conglobate nella reattanza induttiva residua presentata dal risuonatore stesso, per fo uguale a 145,1 MHz, che possiamo trasformare in perdite-serie Rs, ricordando che per definizione: Q = X/Rs = Rp/X, da cui Rs = X^2/Rp , dove $X \in la$ reattanza induttiva residua del risuonatore 1 per la fo, e che porta in risonanza serie il risuonatore 2 per la

Come calcolato in precedenza, $X = 40 \Omega$, per cui: Rs = $40^{\circ}/2000 = 0.8 \Omega$, che possiamo considerare in serie alla reattanza residua X.

stessa frequenza.

Quindi in realtà il risuonatore 2 non trasferisce sulla linea di transito una impedenza infinita, bensì un'impedenza uguale a:

$$Zo^2/Rs = 77^2/0.8 = 7411 \Omega$$

Si può ora calcolare l'attenuazione che l'inserzione del filtro provoca sulla frequenza da far transitare, 145,1 MHz:

in parallelo all'impedenza della linea di transito, 50 Ω , risulta applicata l'impedenza trasferita dal risuonatore 2, pari a 7411 Ω . Nel punto di inserzione avremo quindi un'impedenza uguale a 50°7411/7461 = 49.6 Ω .

L'attenuazione introdotta è data dal rapporto: 50/49,6 = 1,008, pari a circa 0,07 dB.

Riassumendo, fino a questo punto sono note:

- a) la lunghezza del risuonatore 1 (51,48 cm)
- b) la lunghezza del risuonatore 2 (35,89 cm)
- c) la distanza dal corto del punto di attacco a (1,7 cm)

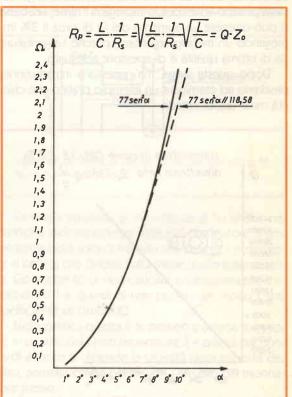


figura 11 - Influenza dell'impedenza della linea di transito

Il risuonatore 1, per la frequenza da attenuare fa = 145,7 MHz, come già detto si comporta come un circuito risonante parallelo, senza reattanze residue, mentre il risuonatore 2 risulta di lunghezza inadeguata per essere pari a $1/4 \lambda$ (fa), essendo stato accorciato.

Più precisamente per fa uguale a 145,7 MHz esso equivale ad una lunghezza elettrica di $62^{\circ}40'$ circa $(90^{\circ}:51,48=x:35,89)$. Affinché il risuonatore 2 risulti 1/4 λ (fa) esatti, cioè 90° elettrici, è necessario aggingere una reattanza capacitiva equivalente ad una lunghezza elettrica di 90° - $62 \div 40' = 27^{\circ}20'$ e di valore:

 $Ze = - Zo \cot 32^{\circ}20' = -77.1,93 = -149 \Omega$

Questa reattanza capacitativa residua la si ottiene aumentando leggermente la lunghezza del risuonatore 1, con l'apposito dispositivo di sintonia.

L'allungamento è però minimo, come si può verificare applicando le formule più volte citate, per cui esso può essere trascurato per quanto riguarda la lunghezza del risuonatore 2 per f = fo, 145, 1 MHz.

In definitiva anche in questo caso, per f uguale a 145,7 MHz, il risuonatore 1 si comporta come un circuito risonante parallelo avente un'impedenza a risonanza, Rp pari a 2000 Ω , mentre per gli stessi motivi discussi in precedenza, il risuonatore Ω ha una lunghezza esattamente uguale a 1/4 Ω (fa), solo che l'estremità (a) è da cosiderare aperta, o meglio caricata dalla Rp.

Quindi il risuonatore 2 trasferisce sulla linea di transito un'impedenza pari a $Zo^2/Rp = 77^2/2000 = 2,96$ Ω , per cui l'impedenza della linea di transito nel punto di inserzione del filtro è uguale a $50\cdot2,96/52,96 = 2,79$ Ω .

L'attenuazione introdotta è data dal rapporto 50/2,79 = 17,92 pari a circa 25 dB.

Come è facilmente intuibile, aumentando oltre i 3º la distanza del punto di attacco a dall'estremità in corto del risuonatore 1 aumenta conseguentemente l'attenuazione che subisce la fa, ma aumenta anche l'attenuazione di inserzione che subisce la fo, e ciò non è sempre tollerabile.

In pratica lo scrivente, che ha realizzato alcuni esemplari di filtri a T per alcuni ponti radio, ha ottenuto attenuazioni di inserzione inferiori a 1 decibel ed attenuazioni della fa dell'ordine di 25 - 28 dB.

La descrizione della procedura di progetto di un filtro a T a costanti distribuite è naturalmente approssimata e le prestazioni ottime realizzabili richiedono una pratica costruttiva non indifferente, ma non una strumentazione trascendentale, per cui si può senz'altro tentare la realizzazione di un prototipo.

A causa della scarsa bibliografica a disposizione è possibile che vi siano delle inesattezze nella esposizione fatta, delle quali non mi son potuto rendere conto. Al riguardo sarò grato a quanti vorranno apportare le opportune correzioni.

RIZZA ELETTROMECCANICA

CASELLA POSTALE 5 10040 LOMBARDORE (TO) TEL. 011-9886852

COSTRUZIONE TRASFORMATORI PER L'ELETTRONICA HOBBYSTICA E INDUSTRIALE — VETRONITE — PRODOTTI CHIMICI E SERIGRAFICI PER L'INCISIONE DEI CIRCUITI STAMPATI.

CATALOGO A RICHIESTA - VENDITA PER CORRISPONDENZA

ist Appin Nuova, 614 - Tel. 06/7811924 - 90179 ROMA

Via Appia Nuova, 614 - Tel. 06/7811924 - 00179 ROMA

distribuiti

COMPONENTI ELETTRONICI TTE LE APPLICAZION

HI-FI CAR • ACCESSORI HI-FI • AMPLIFICAZIONE P.A. • SONORIZZAZIONI

6 elementi in allineamento broad-side.

ALLINEAMEN-TI COLLINEA-RI IN GAMMA U.H.F.

Tommaso Carnacina,

Il radioamatore che si dedica alla attività in /p deve affrontare il problema di disporre di un sistema radiante che, alla massima efficienza, unisca il minimo ingombro soprattutto in senso logitudinale, oltre ovviamente il minimo peso, almeno secondo la mia opinione. L'antenna qui descritta, utilizzabile nella gamma dei 70 cm, si presta a soddisfare in buona parte quanto richiesto. Anche se di minime dimensioni, l'allineamento collineare mantiene certamente dei vantaggi sul tradizionale sistema Yagi/Uda: banda passante enormemente più larga, minore criticità dimensionale, ampia area di cattura, basse perdite nel sistema di adattamento di impedenza ed alimentazione.

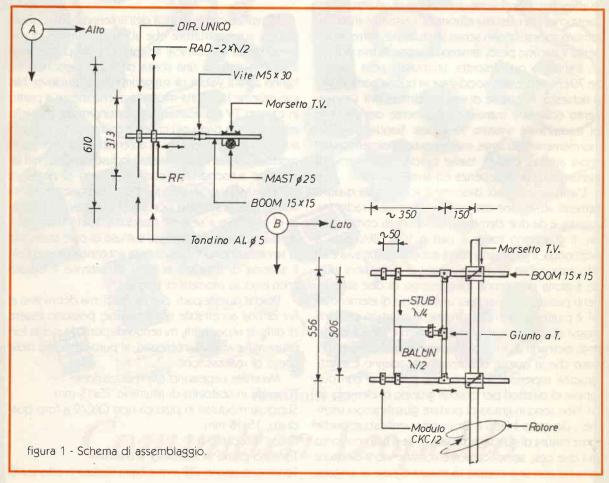
L'allineamento qui descritto è formato da quattro elementi attivi, cioè eccitati direttamente a radio frequenza, e da due elementi passivi tagliati come direttori. Il guadagno totale è pari a 10,5 dB/dipolo a mezz'onda. Il guadagno non è eccessivo, tuttavia è affatto trascurabile se si considerano le dimensioni totali del sistema di antenna. La presenza di due soli elementi passivi, uno per ciascuna coppia di elementi attivi, è piuttosto fuori del comune; in effetti gli elementi passivi dovrebbero essere di numero eguale a quello degli elementi attivi. Prove sperimentali hanno dimostrato che in queste condizioni il guadagno è effettivamente superiore a quello che si ottiene con due coppie di direttori per ciascun gruppo di elementi attivi. Non sono in grado di portare giustificazioni tecniche... del resto il fatto è facilmente verificabile, anche come misura di quadagno relativo, se si fa il confronto tra i due casi, semplicemente sostituendo il direttore comune con una coppia di misura eguale al singolo. In questa sede si propone l'esperienza di un allineamento collineare di ordine pari. Il sistema è basato sull'accoppiamento di due coppie di dipoli a mezz'onda. La irradiazione è monodirezionale a causa della presenza di direttori comuni. La semplicità, il minimo ingombro ed il peso trascurabile classificano questa antenna come portatile anche se non esistono problemi per la sua installazione fissa.

Realizzazione pratica

La realizzazione pratica dell'antenna è alla portata di ogni autocostruttore che abbia un minimo di domestichezza meccanica; le soluzioni proposte sono solo il risultato di una scelta del tutto personale ed hanno solo il valore di suggerimento orientativo. Nel suo insieme l'antenna sfrutta tecniche messe a punto in campo TV ed adattate opportunamente a quello amatoriale. La parte più critica è costituita dai supporti isolanti per gli elementi di antenna. Si tratta di giunti modulari ovviamente realizzati industrialmente, ma facilmente autocostruibili con un minimo di pazienza ed abilità da profilato di PVC a sezione quadrata 40x40 mm. La struttura portante è realizzata in tubolare di alluminio a sezione quadrata, 15x15 mm. I raccordi meccanici sono basati sull'uso di parti stampate in lamiera zincata e ricavate da antenne commerciali. Il sistema di fissaggio al mast di antenna è basato anch'esso su morsetti di tipo TV.

Poiché queste parti, pur semplici, ma derminanti ai fini di una accettabile realizzazione, possono essere di difficile reperibilità, mi rendo disponibile per la fornitura agli eventuali interessati, al puro rimborso delle spese di realizzazione.

Materiale necessario alla realizzazione:
Tubolare in scatolato di alluminio 15x15 mm
Supporti modulari in plastica tipo CKC/2 a foro quadrato, 15x15 mm
Giunti meccanici a T
Tondino pieno in alluminio Ø5 mm
Tondino in ottone Ø2 mm e barra filettata in ottone M3

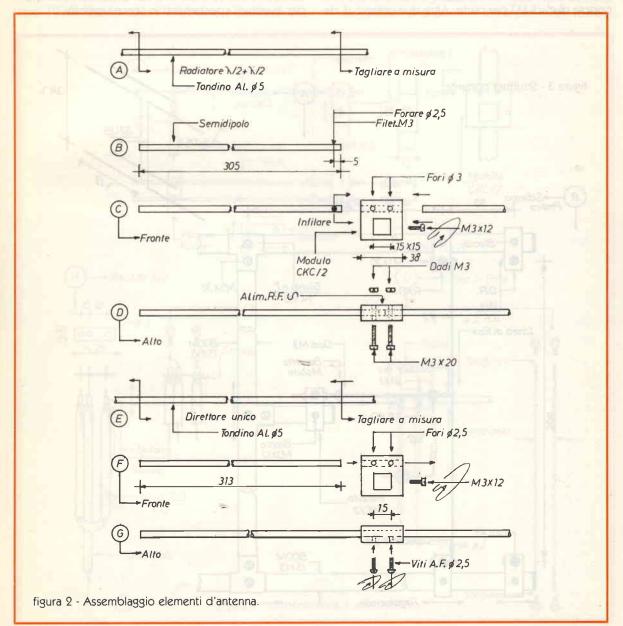

Viterie in ottone oppure inox, M3 Spezzoni di cavo coassiale a 72 e 50 Ω

Preparazione degli elementi di antenna

Sia il radiatore che i direttori sono ricavati da tondino di alluminio da Ø5 mm. I procedimenti costruttivi sono descritti nella figura 2, alle lettere A,B,C,D, per i radiatori, ed alle lettere E,F,G, per i direttori. Nel primo caso il tondino, tagliato alla misura indicata (305 mm) è forato ad una estremità, 5 mm dal bordo, a diametro 2,5 mm e successivamente filettato con maschio M3. L'elemento a mezz'onda così preparato è successivamente infilato nel supporto di plastica (modulo CKC/2) e fissato in posizione mediante una coppia di viti di ottone, M3x20 mm. La filettatura sul tondino agisce come dado di blocco; se si usa l'accorgimento di ingrassare un poco la testa delle viti di ottone, l'operazione di fissaggio non presenta problemi. In ogni caso fare riferimento alle figure 2/C/D per i dettagli costruttivi.

Con procedimento analogo si preparano gli elementi passivi (direttori). In questo caso non è necessario forare il tondino di alluminio in quanto il fissaggio è ottenuto con coppie di viti autofilettanti 2,5x6 mm. Anche in questo caso fare riferimento alle figure 2/F/G per i dettagli costruttivi.

Queste operazioni fanno riferimento all'uso di sistemi modulari ampiamente sperimentati e descritti in numerose occasioni. In ogni caso il supporto modulare CKC/2 è ricavato dallo stampaggio per fusione di plastica ad alta densità (Polistirene) e sagomato in forma di quadrato di spessore 14 mm. Il lato è di 38 mm ed il foro interno è di 15x15 mm, facilmente adattabile al tubolare scatolato da 15 mm. Il modulo presenta delle coppie di fori da Ø2,5 mm sia sulle due faccie maggiori che nella parte superiore, alla distanza di 16 mm. Lateralmente vi è un foro per parte allo scopo di ospitare la vite di blocco al boom di antenna (Dettaglio in figura 2/C). Nella parte superiore è previsto un foro passante da Ø5 mm, adatto al tondino di alluminio dello stesso diametro. Ovviamente tutti i fori si possono allargare alla misura necessaria allo scopo prefissato.

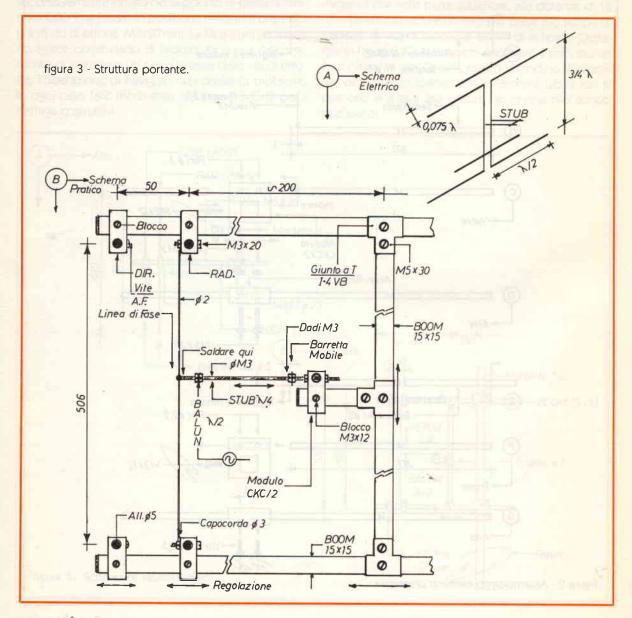


Preparazione della struttura portante.

L'hardware è formato da tubolare scatolato a sezione quadrata, 15x15 mm. In alternativa si potrebbe usare legno duro convenientemente protetto con lacca o vernice da imbarcazione. Una visione di insieme è riportata nella figura 1 alla lettera A per la vista dall'alto ed alla lettera B per la vista laterale.

In pratica sono necessari tre pezzi, due come supporti di antenna (boom) ed uno verticale di raccordo. Le giunzioni, sono ottenute con raccordi a T in lamiera zincata stampata. (Cortesia della Ditta LERT - Lugo di Romagna RA). I raccordi a T presentano una coppia di fori da Ø5 mm adatta a viti passanti da 5x30. Gli stessi

raccordi si possono usare come guida di foratura se si ha l'accorgimento di stringere il tutto in morsa e forare rapidamente con punta da 5 mm. In un primo tempo è inutile praticare tutti i fori, ma è sufficiente limitarsi ad uno solo per giunto in quanto è possibile che in fase di taratura sia necessario operare degli spostamenti. In linea di massima sono sufficienti i fori nelle sezioni verticali. Ad assemblaggio perfezionato si ottiene una specie di H rovesciata come è descritto nella figura 1/B e 3/B in dettaglio ingradito. Nella estremità sinistra si infilano gli elementi di antenna, mentre in quella di destra si inseriscono i morsetti di antenna tipo TV (Cortesia della Ditta LERT - Lugo di Romagna RA).


Preparazione dello stub a quarto d'onda.

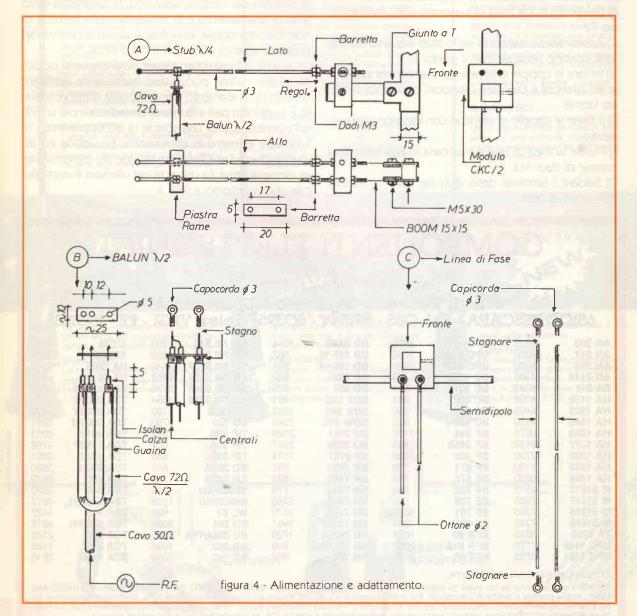
Poiché l'accoppiamento tra i due dipoli avviene con linea aperta, elettricamente bilanciata, si utilizza una sezione a quarto d'onda per il corretto adattamento di impedenza; il passaggio al cavo coassiale — linea sbilanciata — si fa con un bilanciatore a mezz'onda. (Balun). Lo stub è ricavato da tondino di ottone filettato M3 (la filettatura ed i dadi di blocco permettono una regolazione fine nella ricerca del migliore adattamento di impedenza). I dettagli costruttivi e la sistemazione finale sono indicate rispettivamente nelle figure 4/A e 3/B. Le barre di ottone tagliate alla misura indicata sono fissate nel modulo di supporto con una coppia di dadi M3 per parte. Altre due coppie di da-

di, dalla parte opposta sono utilizzate per il fissaggio del balun a mezz'onda. Poiché lo stub deve essere cortocircuitato ad una estremità, è indispensabile preparare una barretta di cortocircuito mobile in lamierino di alluminio con due fori alla distanza di circa 17 mm come suggerito nella figura 4/A in basso.

Lo stub è assemblato nella struttura portante in modo che le barre di ottone stiano in posizione centrale rispetto affa linea di fase che collega i due allineamenti collineari.

Il fissaggio alla sezione verticale della struttura si ottiene con uno spezzone di tubolare quadrato ed un giunto a T come nel caso precedente. Anche in questo caso è conveniente usare un solo foro di fissaggio per eventuali spostamenti in senso verticale.

Preparazione della linea di fase


La linea di fase è ricavata da tondino di ottone Ø2 mm tagliato alla misura indicata (506 mm). I dettagli costruttivi sono riportati nella figura 4/C in basso. Le due barrette sono fissate ai punti di alimentazione dei dipoli (viti di ottone M2x20) con capicorda da Ø3 mm saldati alle estremità. La misura è critica e bisogna tenere conto della lunghezza aggiunta dei capicorda usati. È superflua la raccomandazione di non fare saldature fredde.

Preparazione del dispositivo bilanciatore

Il balun a mezz'onda è ricavato da cavo coassiale tipo TV. In questo caso il problema è ottenere una

buona massa comune. Il sistema da me addottato consiste nel fissare il tutto su una barretta di rame da circuito stampato (vetronite). I dettagli costruttivi sono indicati nella figura 4/B a sinistra. Il cavo è tagliato per la risonanza a 432 MHz (150:432 = 34,72 cm. Poiché il fattore di velocità è 0,82 il valore corretto risulta 28,47 cm). Anche se l'impedenza di alimentazione è prevista per il valore di 50 Ω è consigliabile usare cavo a 72 in quanto si dispone di un dispositivo di maggiore flessibilità. È ovvio che si può usare anche cavo a 52 Ω , ma in questo caso il fattore di velocità è di 0,65. Ognuno può regolarsi come meglio crede, l'importante è che introduca uno sfasamento di 180° con un tratto di linea di lunghezza pari a mezz'onda elettrica.

Suggerisco di scoprire il cavo per circa 15 mm,

stagnare circa 5 mm di calza e scartare il resto, successivamente scoprire l'isolante per altri 5 mm. Le punte così preparate sono infilate nei fori predisposti nella basetta di rame; il fissaggio si ottiene con la stagnatura delle calze nella parte inferiore. Dalla parte superiore deve emergere solo il tratto isolante. Con la saldatura di una coppia di capicorda da Ø3 mm il balun a mezz'onda è terminato.

Schema di assemblaggio dell'antenna

Osservare attentamente le figure 1/A/B nel loro insieme e la figura 3/B per i dettagli. Per agevolare le operazioni di montaggio è bene provvedere ad un palo di supporto da Ø25 mm.

- A) assemblare la struttura ad H portante mediante l'unione delle tre sezioni con i giunti a T.
- B) Fissare il tutto al mast di supporto con i morsetti tipo TV.
- C) Assemblare il supporto dello stub a quarto d'onda nella sezione verticale con il giunto T.
- D) Infilare le coppie di dipoli nei due booms superiore ed inferiore e bloccare i supporti di plastica con le viti laterali.
- E) Infilare le coppie di direttori con identico procedimento.
- F) Fissare la linea di fase e bloccarla in posizione con coppie di dadi M3.
- G) Saldare i terminali dello stub nei punti di mezzo della linea di fase.

Adattamento ed alimentazione

Le prove di adattamento sono state fatte con eccitatore da 8 W (TRIO TS 770) e ROS/WATT tipo DAI-WA CN 630. Per l'alimentazione è stato usato cavo tipo RG58/AU di lunghezza pari a cm 451 prese coassiali comprese. Il tratto è pari a 20 λ per il fattore di velocità. Con antenna ad altezza pari a 4 λ (circa 280 cm) è stata trovata una risonanza a 433 MHz con minimo di ROS pari a 1:1,1 e risposta leggermente superiore a 432 (ROS 1,2) a 435 MHz (1:1,3). Barra di cortocircuito a 15 cm e balun ad 1 cm della linea di fase.

Conclusione

Dato il criterio costruttivo, l'antenna è suscettibile di ottimizzazione con possibilità di variazioni che interessano nell'ordine: la distanza tra radiatori e direttori, la distanza dal mast di supporto, la lunghezza dello stub di adattamento e la posizione della barretta di cortocircuito mobile, ed infine la distanza relativa del punto di attacco del balun a mezz'onda.

Anche le lunghezze relative degli elementi possono essere variate; può essere interessante verificare l'effetto di un elemento comune come riflettore tagliato a lunghezza pari a quella di un radiatore più un 5% ed ottenere quindi una specie di accoppiamento di Yagi a tre elementi in allineamento broadside ed alimentazione ad alta impedenza, cioè alle estremità degli elementi attivi. La distanza del riflettore è consigliabile che sia intorno a $0.25~\lambda$

È tutto: buon lavoro!

COMPONENTI ELETTRONICI

— AZ —

AZ di Venanzio Gigli - via S. Spaventa, 45 - 65100 PESCARA - Tel. 085 - 691544 - 60395 - Telex VEGI - PE - 1602135

- (2						De la Contraction de la Contra			
AN 203	6825	UPC 575	2625	BD 243C	1044	SN 74LS10	1308	17088	5086
AN 217	4200	UPC 1182	3780	BD 137-10	562	SN 74LS74	1260	170089	5534
AN 315	6930	UPC 1230	7902	BD 138-10	584	SN 74LS107	1140	UA 7805	1250
AN 7114	4305	BC 107B	424	BD 433	802	SN 74LS221	2258	UA.7812	1250
BA 511	5040	BC 301	664	BD 434	676	SN 74LS240	2789	TDA 1170S	3003
HA 1156	4095	BC 302	861	BDX 33C	981	SN 74LS368	1594	TDA 2002V	1993
HA 1322	6405	BC 440	990	BDX 34C	1023	1N 5400	196	TDA 2003V	2422
HA 1366	4830	BC 460-6	823	BDW 21C	1048	BU 120	2790	TDA 2005M	5861
HA 1368	5670	BF 244	1170	MJ 2501	3188	TIP 32A	522	TDA 4610	6553
HA 1377	9120	BF 245B	884	MJ 3000	2657	TIP 30A	601	TDA 1180P	4788
HA 1388	12720	BF 459	1086	2N 6101	1514	TIP 30B	535	TDA 1270	3851
HA 1392	8190	BF 871	758	SN 7401	651	BD 204A	635	TBA 950:1	3520
HA 1398	8820	BF 872	783	SN 7403	823	BD 242B	736	TBA 920	5979
M 51513	4515	BF 758	748	SN 7410	716	B80C5000	1616	TBA 940	3520
M 51517	7920	BF 759	781	SN 7447	3745	B40C3700	1366	TBA 540/PH	4817
M 51515	7350	BF 761	1812	SN 7490	2670	WL 01	590	TBA 510	4427
M 51516	7245	BF 506	344	SN 74121	1951	BU 205	2608	TBA 520/PH	4817
TA 7205	3675	BFR 90	1624	SN 74122	1726	BU 208A/TFK	3570	TCA 700	2325
UPC 1185	7770	BFR 91A	2062	SN 74LS00	899	AD 262	1995	TCA 910	1168
UPC 1181	3780	BFT 65	2125	SN 74LS04	904	BD 162	1014	TCA 940N	2610

CONDIZIONI GENERALI DI VENDITA:

Gli ordini non verranno da noi evasi se inferiori a L. 20.000 o mancanti di anticipo minimo di L. 5.000, che può essere versato a mezzo Ass. Banc., vaglila postale o anche in francobolli. Per ordini superiori a L. 50.000 inviare anticipo non inferiore al 50%, le spese di spedizione so no a carico del destinatario. I prezzi data l'attuale situazione di mercato potrebbero subire variazioni e non sono comprensivi d'IVA. La fattura va richiesta all'ordinazione comunicando l'esatta denominazione e partita IVA, in seguito non potrà più essere emessa.

LA TUA VOCE

IN BRIGHTONE

5/8 D'ONDA

La migliore antenna come guadagno e potenza nel mondo. Nessuna antenna in commercio ha queste caratteristiche.

COLUMBIA

Frequenza:	27 MHz
Numero canali:	200
Potenza max:	600 W
Impedenza nominale:	50 Ohm
Guadagno	3,2 dB
S.W.R.:	1 + 1,05
Altezza massima:	140 cm.
Peso:	600 gr.

DESCRIZIONE:

Antenna dalle caratteristiche eccezionali che la rendono unica; una potenza sopportabile di ben 600 W continui ed una larghezza di banda di oltre 2 MHz. Costruita col sistema «Brightone», ha un rendimento paragonabile a quello fornito dalle antenne da stazione base.

La bobina di carica eseguita con tecnica «Brightone» o tono chiaro permette collegamenti eccezionali.

L'antenna viene fornita corredata di: attacco a centro tetto, attacco a gronda di tipo universale, cavo RG 58.

BASAMENTO:

L'attacco dello stilo è ottenuto tramite un robustissimo mollone in acciaio cromato. Una comoda maniglia permette la regolazione totale dell'inclinazione dello stilo.

SHUTTLE

Frequenza:	27 MHz
Numero canali:	200
Potenza max:	600 W
Impedenza nominale:	50 Ohm
Guadagno	1,2 dB
S.W.R.:	1+1
Altezza massima:	167 cm.
Peso:	450 gr.
1 0001	3

DESCRIZIONE:

Lo stilo della «SHUTTLE» è stato studiato in modo da dare all'antenna tre caratteristiche fondamentali: eccezionale guadagno in ricezione e trasmissione, leggerezza, robustezza meccanica. Lo stilo è in fibra di vetro costruito col sistema «Brightone». La bobina di carica eseguita con tecnica «Brightone» o tono chiaro, permette collegamenti eccezionali. L'antenna viene fornita corredata di: attacco a centro tetto, attacco a gronda di tipo universale, cavo RG 58.

BASAMENTO:

L'attacco delle stilo è ottenuto tramite un robustissimo mollone in acciaio cromato ed una comoda maniglia permette la regolazione totale dell'inclinazione dell'antenna.

SPUTNIK 27

Frequenza:	27	MHz
Numero canali:		160
R.O.S. min. in centro ban	da:	1
R.O.S. max. alle estrem. :		1,65
Max. potenza applic.:	9	00 W
Guadagno:		1,2
Lunghezza:	15	4 cm.
Peso:	40	00 gr.
Lunghezza dello stilo:	14	4 cm.

DESCRIZIONE:

Lo stilo della Sputnik è stato studiato in modo da dare all'antenna 3 caratteristiche fondamentali: eccezionale guadagno in ricezione e trasmissione, leggerezza e robustezza meccanica. L'eccezionale elasticità dello stilo in acciaio la rendono adatta per impieghi gravosi come camion, fuoristrada e trattori.

L'antenna viene fornita corredata di attacco a centrotetto con cavo RG 58.

BASAMENTO:

L'attacco dello stilo in acciaio conificato è tenuto tramite un robusto mandrino ed una comoda maniglia permette la regolazione totale dell'inclinazione dell'antenna.

BASE GRONDA:

La base potrà essere montata sia a centro tetto che a gronda sfruttando l'attacco in dotazione nella confezione.

TARATURA:

La taratura della «COLUMBIA» viene eseguita agendo sullo STUB posto all'estremità dell'antenna.

ATTACCO A GRONDA:

La base potrà essere montata sia al centro tetto che a gronda sfruttando l'attacco in dotazione nella confezione.

TARATURA:

L'antenna «SHUTTLE» viene fornita pretarata in fabbrica, eventuali ritocchi possono essere eseguiti accorciandone l'estremità.

ATTACCO A GRONDA:

Venduto come opzionale, non è presente nella confezione.

TARATURA:

La taratura della Sputnik viene eseguita agendo sulla ghiera del mandrino, in modo che sfilando o facendo rientrare lo stilo nella base si possa ottenere il minimo R.O.S.

NEW GRONDA

BASE BRIGHTONE

COGNOME ...

C=

42100 REGGIO EMILIA - ITALY - Via R. Sevardi, 7 (Zona Ind. Mancasale) - Tel. (0522) 47441 (ric. aut.) - Telex 530156 CTE I

RTTY CONVERTER - l'ing. Gianni Becattini invita coloro che hanno realizzato il convertitore RTTY comparso su Elettronica Flash N° 10/83 e che non fossero riusciti a farlo funzionare correttamente, a spedire i loro prototipi presso la SUMUS s.r.l. - via S. Gallo 16/r Firenze (è solo un recapito; la SUMUS non c'entra - evitate richieste telefoniche al personale che non ne sa nulla!). Lo riceveranno indietro messo a punto al solo costo delle spese postali. Un servizio in più di Elettronica Flash!

FI FI	TRO	INC	CA E.R.N	ΛF		Via Co	rsico, 9) (P	.ta Ge	enova) 20144	MII	ANO
		71 11		-			Tel	efo	no 02	- 835.62.86		
mod. 101	ALIMEN'	TATORE	STABILIZZATO per	Autor	adio 220	V 12V 2A					1.	18,000
mod. 102	ALIMEN	TATORE	STABILIZZATO con	reset	220V 12	V 2.5A					1	20.000
mod. 103	ALIMEN.	TATORE	STABILIZZATO con	prote	zione ele	ettronica red	olabile da	5V	a 15V 2 5	54	L.	22.000
mod. 104	ALIMEN	TATORE	STABILIZZATO con	prote	zione ele	ettronica co	n regolazi	one	interna	da Trimmer 220V		42.000
mod. 105	ALIMEN'	TATORE	STABILIZZATO con corporato, da 0,7V a 2	prote	zione el	ettronica re	golabile s	ia in	tension	e che in corrente		
mod. 106	ALIMENT	TATORE	con le stesse carat	toricti	obo in n	N nonnear	atra	* 1111	1) 1 2 (1) 1 1 2	*********	L.	60.000
mod. 107	ALIMEN	TATORE	STABILIZZATO con	profe	zione el	ettronica re	anlahila a	cllo	corrent	e e in tensione a		70.000
	due strur	nenti da	2,7V a 24V 10A	and the	SAME TO						L.	130.000
mod. 108	MODULC	DIALIN	MENTATORE con pro	tezio	ne elettr	onica regola	abile sia ir	lov r	t che in	ampere da 0,7V a		
mod. 109	REGOLA	TORE E	sformatore e conteni LETTRONICO DI VE	LOCIT	A per tr	apani e per	motori a	spaz	zola ser	nza perdita di po-		18.500
	tenza ma	x 800W	NUMBER OF STREET HARDS AND ASSESSED.									10.000
mod. 110	REGOLA	TORE E	LETTRONICO DI VE	LOCIT	A poten	za may 1200	W				1	13 000
mod. 111	VARIATO	RE DI L	UCE max 600W								1	10 000
mod. 112	VARIATO	RE DI L	UCE con interruttore	max '	1000W .	cerero en					L.	12.000
mod. 113	AMPLIFI	CATORE	MONO montato e o	ollaur	lato alin	nentazione	n corrente	o co	ntinua d	a QA 15V notonza		
	d'uscita	10W	STEREO montato e	(6) E H H			*****	0.000			L.	6.500
mod. 114	AMPLIFI	CATORE	STEREO montato e	colla	udato al	imentazione	15V pote	nza	d'uscita	10+10W	L.	12:000
mod. 115	AMPLIFI	CATORE	STEREO montato e	colla	udato al	imentazione	15V note	1072	d'uscita	30 + 30W	1	23.000
mod. 116	LUCI PSI	CADELI	CHE IN KIT 3 canali,	800W	per can	ale complet	o di conte	nito	re		L.	20.000
energy districts	OLAK.	_						-				
INTEGRAT			UPC 1230 C 1156 H C 1306	L.	6.500	MEMORIE	1915			C/MOS		
UAA 170		4.350	C 1156 H	L.	3.700	M 2114		L.	4.500	CD 4000	L.	
UAA 180		4.350	C 1306	L.	2.800	M 2716		L.	13.000	CD 4001	L.	
TDA 2002						M 2732		L.	15.000	CD 4011	L.	
TDA 2003	L.	2.350	REGOLATORI DI	TENSI	ONE	M 2764		L.	21.000	CD 4013	L.	
TDA 2004	L.	4.500	78 XX	1	1.300	M 4116		L.	4.500	CD 4016	L.	
TDA 2005		5.950	79 XX	17	1.300	M 4164		L.	14.000	CD 4017		1.300
TDA 2009	L.	8.000	78 XX MET	1	4 000	M 6116		L.	16.000	CD 4029		1.400
SN 74LS13	2 1	1.500	79 XX MET	L	4.500	Z 80A PIO		L.	10.500	CD 4049	L.	
SN 74LS13		1.500	L. 200	I.	3.000	Z 80A CPU		L.	10.000	CD 4060		1.400
SN 74LS13		1.500	UA 78GUI	L	3.000	Z 80A SIO		L.	18.000	CD 4069	L.	
SN 74LS15		1.700	UA 79GUI	L.	3.000	Z 80 CTC		L.	10.000	CD 4511		1.400
SN 74LS24		3.500	LM 317	L.	2.200	CA 3161 E		L	3.000	CD 4518		1.400
SN 74LS24		4.000	LM 324	L.	1,200	CA 3162 E		L.	8.500	CD 4528		1.600
SN 76477			LM 386	L.	1.500	6522		L.	16.000	CD 40106		1.200
	allow as	0000	78 XX 79 XX 78 XX MET 79 XX MET L. 200 UA 78GUI UA 79GUI LM 317 LM 324 LM 386 LM 387 LM 387 LM 387	L.	3.300	HW 50256		L.	99.500	SN 74LS00		
LA 4420	L.	3.500	LM 3900	L.	1.200	MEMORIE M 2114 M 2716 M 2716 M 2764 M 4116 M 4164 M 6116 Z 80A PIO Z 80A CPU Z 80A SIO C CA 3161 E CA 3162 E 6522 HM 50256				SN 74LS02	L.	
LA 4430	L.	3.200	LM 3914	L.	10.000					SN 74LS04	L.	900
TA 7205	L.	3.000	LM 3914 LM 3915 NE 555	L.	10.000	05555	DIODI : -			SN 74LS32	L.	1.250
TA 7227		6.700	NE 555	L.	800	OFFERTA	DIODI LE	:D 5	mm		-	
UPC 1181		2.900	NE 556	L.	1.200	10 LED	ROSSI	L.	1.500	É sempre va	lido	quanto
UPC 1182	L.	2.900	MA 723 PL	L.	1.350		VERDI			esposto nell		
UPC 1185	L.	6.500	MA 741 PL di spedizione sono a d	L.	700	10 LED	GIALLI	L.	2.000	del mese sco		

TELEFAX 2000 RADIOFOTO DA SATELLITE METEOSAT, NOAA, METER e FAC SIMILE IN ONDE CORTE e LUNGHE

13 D X Z GIANNI SANTINI

Battaglia Terme (PD) Tel. (049) 525158-525532

FLASH-SCUOLA

SUPER-ISTOGRAMMI PER C-64

Programmi di grafica, contenente elaborazione di dati con uso appropriato del colore.

Giuseppe Aldo Prizzi

Questa volta l'articolo sarà breve. In compenso il listato sarà lungo.

Che volete farci, è la legge del compenso... Ma prima una nota tecnica.

Ho visto su molte riviste degli splendidi programmi per la costruzione di istogrammi sotto forma di barre colorate, di parallelepipedi colorati, che adottavano accorgimenti eccezionali per ottenere la corrispondenza più esatta possibile — nei limiti della scala — tra grandezza fisica e rappresentazione grafica. Ed altri ne ho visti, anche distribuiti in cassetta, bellissimi.

Permettetemi un appunto, come direbbero gli amici yankee: erano tutti ed esclusivamente programmi di grafica. Nessuno che si preoccupasse di un minimo di elaborazione dei dati.

Bene, questo programma, nato all'interno di un Centro di Formazione Professionale, dal lavoro di alcuni allievi di un corso di base in informatica, come risulta chiaramente dall'intestazione, offre tutto questo, e anche di più.

Ve lo proponiamo come offerta di lancio per una nuova rubrica, che conto di curare personalmente, e la cui corrispondenza dovrà essere quindi indirizzata a me, presso la redazione di ELETTRONICA FLASH, e che chiameremo per ora «FLASH SCUOLA», in attesa che si evolva in qualcosa di più e meglio.

Non si tratterà solo della scuola in senso istituzionale, ma anche delle iniziative di formazione professionale, e di qualsiasi iniziativa a carattere didattico, o che dovesse interessare — esclusivamente in quest'ambito — il modo scolastico. Non si parlerà solo di informatica — benché oggi sembri costituire il tema previligiato — ma di tutti i temi che avessero attinenza con l'elettronica.

Lanciato il sasso, torniamo alla piccionaia.

Il programma non ha bisogno di commenti diciamo meglio che si commenta da sé.

Abbonda in REM, ben evidenziate.

È curatissima la parte grafica: guardatela vi suggerirà molte idee.

Si usa adeguatamente il colore: è un esempio di uso razionale del medesimo in applicazioni professionali.

È un packagino di software che tende al professionale: si iniziano a definire e utilizzare le «maschere». È un tema che riprenderemo, nei prossimi interventi.

Aspetto i vostri commenti, ed ancor di più i vostri contributi.

LISTATO

```
*** isto9rammi
  2 rem * isto9rammi
    3 rem
                   Per commodore cbm 64
     4 rem
    5 rem
   11 rem
             *********
  380 Poke 53280,0:Poke 53281,0
  390 Print chr$(14):90sub 40000
  400 9osub 50000
  450 dim h(105):dim f(8):dim q(27):dim r(17)
  500 Print "[clear]".
  520 Print "[2 right]**ISTOGRAMMI**",," menu' ".
  530 Print "
  540 Print "[down] : ISCEGLI L'OPZIONE: | | ":Print "[2 uP]
                  -":Print
  541 Print "
  549 Print Print
  550 Print "
                   [rvs][1][rvs-off] ...InPut dati"
  560 Print "
                   [rvs][2][rvs-off] ...Riordino dati"
  570 Print "
                   [rvs][3][rvs-off] ...Richiamo dati da disco"
  580 Print "
                   [rvs][4][rvs-off] ...Memorizzazione dati su disco'
                   [rvs][5][rvs-off] ...Modificare dati in memoria"
[rvs][6][rvs-off] ...Calcolo Parametri isto9rammi"
[rvs][7][rvs-off] ...Valcolo Parametri isto9rammi"
  590 Print "
  600 Print "
  610 Print "
  630 Print " [rvs][8][rvs
632 Print "[home][7 down]
                   [rvs][8][rvs-off] ...FINE PROGRAMMA"
  635 for i=1 to 9:Print " |";sPc(36)"|": next
636 Print "
  637 Print "[home]":for jj=0 to 20:Print "[down]";: next:Print "PROMEMORIA
  638 Print "[down] PREMI [rvs] H [rvs-off] Per hardcopy in ogni pagina" 640 get a$:if a$="" or a$<"1" or a$>"8" and a$<>"h" then goto 646 645 Print "[home][3 down]"; tab(22)a$:for 9=1 to 50: next
                                                                      then 9oto 640
  646 if as="h" then 90sub 8000:90to 660
  650 Print chr$(142):on val(a$) 90sub 1000,2000,3000,4000,5000,6000,7000
       9000
  660 9oto 500
  999
 1000 rem +++ fase di input +++
 1001
 1005 Print chr$(14)
1010 Print "[clear] *ISTOGRAMMI
                                                 input dati*"
 1015 Print "
 1020 if f(1)=0 then 9osub 1200:9oto 1100
1030 Print "[down]"
 1040 Print "[2 down] 1 ...cancellazione dati
1045 Print " Poi INPUT:
1050 Print "[down] 2 ...REGIST
1055 Print " Poi INPUT.
                          ... REGISTRARE i dati in memoria"
POI INPUT."

1060 Print "[down] 3 ...NESSUNA MODIFICA"

1062 Print "[home][6 down]

1064 for t=1 to 7:Print "|"; tab(37)"|": next
 1068 for t=1 to 100
 1070 Print "[home][15 down]"; tab(5)" A T T E N Z I O N E ! !"
 1072 Print "[home][15 down]"; tab(5)"[rvs] A T T E N Z I O N E ! ![rvs-off
 1073 next
 1074 Print "[home][21 down]"; tab(10);" [rvs] sce9li [rvs-off]"
 1090 9et a$:if a$=""
                           then 1090
           a.$="1"
 1092 if
                     then
                            90sub 1200:90to 1100
 1094 if a$="2"
                     then 90sub 4000:90to 1100
 1096 if a$="3"
                     then
                            9oto 1100
 1098 if a$="h" then 90sub 8000:90to 1100
 1100 return
1200 Print "[clear] * ISTOGRAMMI
1210 Print "
                                                 inPut dati*"
 1220 Print "[home][4 down]";
1222 Print "QUANTI DATI IMMETTI [rvs]max 105 [rvs-off]"; tab(25); inPut
```



```
": next
1250 Print "[home][4 down]"; tab(2)" "; tab(25)" "; tab(25)"
                   ": next
1260 Print tab(2)" | IDATI imme. | "; tab(25)" | IDATI manc. | "
1270 f(1)=1
1280 Print tab(2)" |-
1290 Print tab(2)" |
                           HIGHWAY TOWNS THE
1400 for i=1 to n
1400 for 1=1 to N

1404 Print "[home][19 down]"; tab(20);" "

1405 Print "[home][8 down]"; tab(29);" "

1410 Print "[home][8 down]"; tab(29)n-i

1420 Print "[home][15 down]"; tab(22)i

1422 Print "[home][21 down]"; tab(10);" ";"[8 left]";:inPut h(i)
1900 return
1999
2000 rem +++ fase riordino dati +++
2001 :
2005 Print chr$(14)
2006 Print "[clear] * ISTOGRAMMI riordino dati*"
2007 Print "
                                               1
2010 9=0
2020 for i=1 to n~1
2030 if h(i)>h(i+1) then x=h(i):h(i)=h(i+1):h(i+1)=x:q=1
2050 if 9=1 then 90to 2010
2060 Print chr$(14)
2065 f(2)=1:return
3005 Print chr$(14)
3010 Print "[clear] *ISTOGRAMMI richiamo dati*"
3015 Print "
3020 Print "[home][7 down] REMEMBER:"
3030 Print "[2 down] il Parametro da imporre e'";"[rvs]";:input P$
3040 Print "[home][23 down][rvs] PREMI un tasto Per memorizzare [rvs-off]"
3045 9et b$:if b$="" then 3045
3050 open 5,1,0,P$
3060 input#5, n, a, c, lm, P$
3070 for i=1 to 8:inPut#5,f(i): next
3080 for i=1 to 17:inPut#5,q(i),r(i): next
3090 for i=1 to n:inPut#5,h(i): next
3100 close 5:return
3999:
4000 rem ++ memorizzazione dati ++
4001
4005 Print chr$(14)
4010 Print "[clear] * ISTOGRAMMI memorizz. dati*"
4015 Print "
4015 Print
4020 Print "[home][7 down] REMEMBER:"
4030 Print "[2 down] il Parametro utilizzato e'";"[rvs]";p$
4040 Print "[home][23 down][rvs] PREMI un tasto Per memorizzare [rvs-off]"
4045 9et b$:if b$="" then 4045
4050 open 5,1,1,P$
4055 a$=chr$(13)
4060 Print#5,n,a$,a,a$,c,a$,lm,a$,P$,a$,
4070 for i=1 to 8:Print#5,f(i),a$,: next
4080 for i=1 to 17:Print#5,9(i),a$,r(i),a$,: next
4090 for i=1 to n:Print#5,h(i),a$; next
4100 close 5:return
4999
5000 rem ++ modifica dati +++
5001
5010 Print chr$(14)
5020 Print "[clear] *ISTOGRAMMI modifica dati*"
5030 Print "-
```



```
5040 Print "[home][2 down]"
5045 for i=1 to 15:Print i; tab(4)":"; tab(6)h(i): next
5050 Print "[home][2 down]"
5055 for i=16 to 30:Print tab(20)i; tab(24)":"; tab(26)h(i) : next 5060 Print "[home][19 down][rvs] YUOI CONTINUARE l'elenco"
5070 9et a$:if a$="" then 5070
5073 if a$="n" then 9oto 5200
5076 if a$="s" then 9oto 5080
                                                             5200
5078 if a$="h" then 90sub 8000:return
5080 Print "[home][2 down]":for t=1 to 20:Print "
                                         ": next
5085 Print "[home][2 down]":for i=31 to 45:Print i; tab(4)":"; tab(6)h(i
         ): next
Print "[home][2 down]":for i=46 to 60:Print tab(20)i; tab(24)":"; ta
           b(26)h(i): next
5089 Print "[home][19 down][rvs] VUOI CONTINUARE l'elenco"
5090 9et a$:if a$="" then 5090
5091 if a$="n" then 9oto 5200
5092 if a$="s" then 9oto 5100
5092 if a$="s" then 90to 5100
5093 if a$="h" then 90sub 8000:return
5100 Print "[home][2 down]":for t=1 to 20:Print "
                                         ": next
5110 Print "[home][2 down]":for i=61 to 75:Print i; tab(4)":"; tab(6)h(i
           ): next
5120 Print "[home][2 down]":for i=76 to 90:Print | tab(20)i; tab(24)":"; ta
           b(26)h(i) : next
5(26)n(1): next
5125 print "[home][19 down][rvs] VUOI CONTINUARE l'elenco"
5130 get a$:if a$="" then 5130
5135 if a$="n" then 90to 5200
5140 if a$="s" then 90to 5150
5145 if a$="h" then 90sub 8000:return
5150 print "[home][2 down]":for t=1 to 20:print "

": next
5155 print "[home][2 down]":for i=91 to 105:print ii tab(4)":": tab
): next
5200 Print "[home][19 down]";" INDICA PRIMA IL NUMERO,val. nuovo"
5210 Print "[home][19 down]":Print :inPut i,h(i)
5220 Print "[rvs] vuoi cambiare ancora?[rvs-off]"
5240 9et a$:if a$="" then 9oto 5240
5250 if a$="s" then 9oto 5020
5260 if a$="n" then return
5270 if a$="h" then 90sub 8000:return
6000 rem ** calcolo Parametri **
6001 :
6005 Print chr$(14)
6020 Print "
6030 if f(2)=0 them 90to 6900
6040 if f(6)=1 then 90to 6500
6040 print "[2 down] VALORE MASSIMO:"; tab(25);h(n)
6060 Print "[down] VALORE MINIMO:"; tab(25);h(1)
6070 d=h(n)-h(1)
6080 Print "[down] CAMPO DI VARIAZIONE:"; tab(25);d
6090 Print "[down] Limite minimo"
6105 Print "[down] AmPiezza di classe"
6105 Print "[down] NUMERO classi risul,"
6110 Print "[home][11 down]"; tah(24):::sput
6105 Print "[down] NUMERO class: risu..
6110 Print "[home][11 down]"; tab(24);:inPut lm
6120 Print "[home][13 down]"; tab(24);:inPut a
6140 c=int(d/a)
6150 if c<>d/a then c=c+1
6160 if c>20 then goto 6110
6170 Print "[home][15 down]"; tab(25)c
6180 Print "[down] VANNO BENE LE CLASSI s/n"
6100 Frint "LOOWN] VHNNU BENE LE CLASSI s/n"
6190 9et a$:if a$="" then 6190
6200 if a$="s" then 90to 6225
6210 if a$="n" then 90to 6010
6220 if a$="h" then 90sub 8000:90to 6300
6225 Print "[home][17 down] PARAMETRO "; tab(24);:inPut P$
6300 for i=1 to c:q(i)=0: nexti
6300 for i=1 to c:4(i)=0: nexti
6310 vs=lm+a:ic=1
6320 for i=1 to n
6330 if h(i)<=vs then q(ic)=q(ic)+1:90to 6360
6340 ic=ic+1:vs=vs+a
```



```
6350 i≈i-1
  6360
              nexti
  6365 for i=1 to c:r(i)=9(i)/n: mext
  6370 li≈lm
  6400 Print "[clear]":Print "[3 down]";"CLASSI:"; tab(17)"fre ass"; tab(28)
             "fre rel":Print :
   6405 for t=1 to c
  6410 Print lm; tab(6)":"; tab(8);lm+a; tab(19)9(t); tab(29)r(t)
  6430
              next
  6440 9et a$:if a$="" then 6440
  6460 9oto 6900
  6500 Print "[clear] *ISTOGRAMMI
6510 Print "
                                                                                  calcolo Parametri"
  6520 Print "[2 down]1 ... INPUT DATI Parametri": Print 6530 Print "2 ... RITOPNO MENUC"
  6520 Print "[2 down]] ... INFO D. ... 6530 Print "2 ... RITORNO MENU"
  6540 9et a$:if a$="" then 6540
  6550 if a$="1" then 90to 6050
6560 if a$="2" then 6900
6900 return
6980 f(6)=1: 90 t06900
  6980 f(6)=1: 90 t06900
6999 :
7000 rem ++ visualizzazione isto9rammi
7001 :
7005 Print chr$(14)
  7005 Print chr$(14)
7010 Print "[clear] *ISTOGRAMMI
7020 Print "
                                                                               visualizzazione*"
                                                                                                       Art of the least the last the
  7025 Print
  7027 Print "[home][4 down]"
7030 Print "[9rn]1.04":Print " | | |
  7040 Print "0.84":Print " |"
7050 Print "0.64":Print " |"
7060 Print "0.44":Print " |"
  7070 Print "0.24" Print " . I"
  7145 Print chr$(30)
  7200 Print "[home][22 down]VAL. max.";h(n),"CLASSI"; tab(31)c
  7210 Print "VAL. min.";h(1), "amp. classe";a
7220 Print "[home][2 down]";"[rvs] Parametro:";p$
  7300 Print '[home][16 down][rvs][clas";
7310 for i=1 to c+1:|i=|i+a
7320 a$=str$(|i-a)
7330 for m=1 to len(a$)
  7340 Print mid$(a$,m,1);"[down][left]";
  7350 nextm
  7360 for m=1 to len(a$):Print "[up]";: nextm:Print "[2 ri9ht]";:
  7410 for i=1 to c
                                                             12 NET THE PARTY OF THE PARTY SELECTION AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT AND ASSESSMENT ASSESSMENT
  7420 j=0:w=-.05
  7430 j=j+1
  7440 w=w+.1
  7450 if r(i)>w then Print "[rvs] [rvs-off]";"[up][left]";:9oto 7430
  7455 if r(i)(=.05 then 9oto 7465
  7460 for s=1 to j-1:Print "[down]"; next
  7465 Print "[2 right]";
  7470 nexti
  7470 next1
7950 get a$:if a$="" then 7950
7960 if a$="h" then 9osub 8000:return
  7970 return
  7999
 8000 rem ++harcopy++
8001 :
8010 91$=chr$(17)
8020 open 4,4,7:print#4:91=984
8030 for 90=0 to 24:90$=91$=91+40
0040 for 92=91 to 91+39:93=Peek(92)

8050 if 93)128 then 93=93-128:94=1:90$=90$+chr$(18)

8060 if (93>0)*(93<32) then 93=93+64:9oto 8100

8070 if (93>31)*(93<64) then 8100

8080 if (93>63)*(93<96) then 93=93+128:9oto 8100

8090 if (93>95)*(93<128) then 93=93+64:9oto 8100

8100 90$=90$+chr$(93)
  8100 90$=90$+chr$(93)
  8110 if 94=1 them 90$=90$+chr$(146):94=0
  8120 next 92:Print#4,90$: next90
```

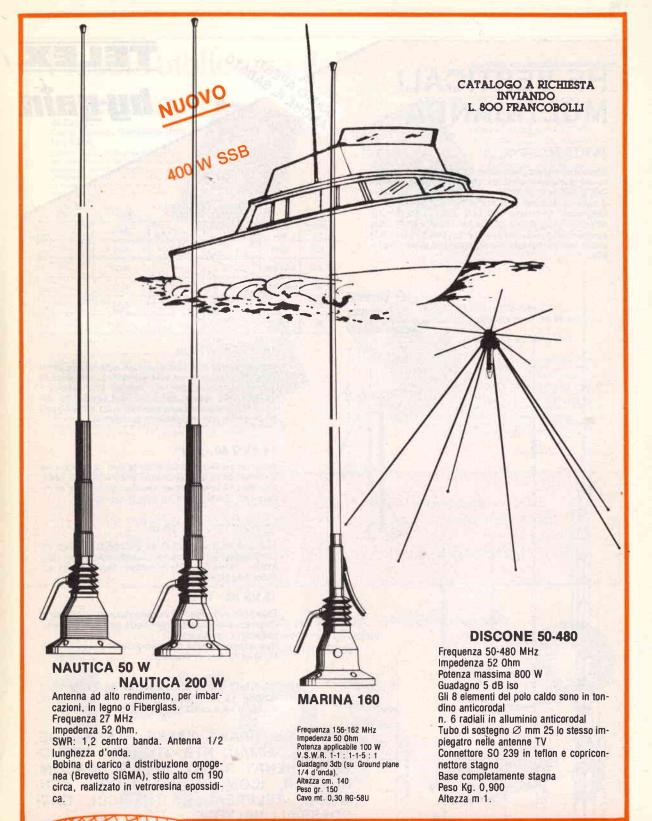


```
8130 Print#4: close 4,4
8140 return
8999 :
9000 rem ++fine Pro9ramma ++
9001 :
 9001
 9007 Print chr$(14)
 9010 Print "[clear]"
 9020 Print "[5 down]"
 9030 Print "
                   ISTOGRAMMI Per CBM 64"
 9040 Print "-
 9050 Print "[down]------Premi RUN Per cominciare-----"
 9060 end
39999 :
40000 rem ++ Presentazone ++
40001
40005 Print chr$(30)
40010 Print "[clear][5 down]"
40020 Print "
                    40030 Print "
                                * *
                                          *
40040 Print "
40050 Print "
                            **
                               ** *
                                        * *
40060 Print "
40080 Print "
                            *
                                *
                                           *
                                        * *
40090 Print "
                                                **
                                        第二章
                                22
                                   *
40100 Print ".
40110 Print "[2 down] CENTRO DI FORMAZIONE PROFESSIONALE"
40120 Print "[down] UDINE -Via Marti9nacco 187"
40130 Print "
40140 for i=1 to 4000: next:return
49999 :
50000 rem iniziazione
50001
50010 Print "[clear]"
50010 Print chr$(14);"[clear]";
50040 Print "[down] [rvs][orange] ISTOGRAMMI [rvs-o
      ff]"
xt
50055 Print "ottenere la rappresentazione 9rafica su ":for k≃1 to 800: nex
       t:Print
50057 Print " [rvs][wht] VIDEO [rvs-off] o [rvs][PurPle] STAMPANTE [rvs-off]":for k=1 to 800: next:Print "[orange]"
50060 Print "dei valori di un gruppo di non Piu' di":for k=1 to 800: next:P
50065 Print "105 dati che si devono immettere":for k=1 to 800: next:Print 50067 Print "nel [rvs][cyan] COMPUTER [rvs-off]":for k=1 to 800: next:Pr
50068 print "dopo ogni operazione si torna al menu/":for k=1 to 800: next:P
       rint
50082 Print "[rvs][Pink] -- Per COMMODORE CBM 64 computer -- [rvs-off]" 50084 Print "[down] (c) novembre 1984"
50085 for i=1 to 6000: next
51000 return
```

ATTENZIONE!!!

Non farti scappare nessun numero di **Elettronica FLASH** e in particolare quello del **prossimo mese di luglio**. Prenotalo dall'edicolante. In esso vi è per inserto un «tascabile» dal titolo **«COLLEGAMENTI RADIOELETTRICI»**

di Alberto Fantini


Esso è suddiviso in tre parti: nella prima parte viene trattata la generalità dell'effetto elettrico e magnetico, il campo elettromagnetico, l'induttanza, l'onda elettromagnetica.

La seconda parte è dedicata all'antenna ed il diagramma di radiazione.

La terza parte, infine, scende in particolari della propagazione delle onde elettromagnetiche

AMMETTILO, NESSUNA RIVISTA DEL SETTORE TI OFFRE DI PIÙ DELLA TUA «ELETTRONICA FLASH»

SIGMA ANTENNE di E. FERRARI 46047 S. ANTONIO MANTOVA - via Leopardi 33 - tel. (0376) 398667

HF VERTICALI MULTIBANDA

18 HTS 80 - 10 m

Selezione automatica delle bande ottenuta tramite un esclusivo sistema che isola varie sezioni dell'antenna in modo di avere una risonanza di 1/4 d'onda (o multipli di esso) su tutte le bande. Larghezza di banda 250 kHz a 2:1 VSWR sugli 80 m. Con l'aggiunta di una bobina di carico offre eccezionali prestazioni anche sui 160 m. Materiale in acciaio inossidabile e completa di base ribaltabile.

HF Vertical Antenna Specifications

TELEX. hy-gain.

			OVERALL LENGTH	MAST DIAMETER ACCEPTED	BANDS	SHIPPING WEIGHT
	ORDER NO.	MODEL NO	ft.	in mm.	Meters	lbs. Kg.
ĺ	182S	18HTS	50 15.2	Tower Supplied	80-10	117 53
	386S	18AVT/WBS	25 7.6	1% 41.3	80-10	12 5.4
	385S	14AVQ/WBS	18 5.5	1% 41.3	40-10	82
	1 <u>93</u> S	18VS	18 5.5	15% 41.3	80-10	4.6
I	384S	12AVQS	13.5	15%	20, 15, 10	7 31

18 AVT 80 - 10 m

Cinque bande con commutatore automatico provvisto di 3 trappole ad alta efficienza con spire di grosso diametro, per un miglior L/C ratio 2:1 VSWR o più basso sugli estremi banda dei 40-10 m. Larghezza di banda 40 kHz a 2:1 VSWR sugli 80 m. Materiale in acciaio inossidabile.

14 AVQ 40 - 10 m

Antenna verticale autoportante con commutatore automatico di banda; ottime prestazioni ed eccezionale L/C ratio con un bassissimo angolo di radiazioni. Materiale in acciaio inossidabile.

12 AVQ 20 - 15 - 10 m

Antenna verticale tribanda autoportante con un eccezionalmente basso angolo di radiazione; 1,5:1 SWR o meno su tutte le bande. Materiale in acciaio inossidabile.

18 VS 80 - 10 m

Elemento radiante 5,5 m; provvista di una bobina di carico alla base che permette una estrema precisione di risonanza.

Può essere fissata direttamente al suolo con un Must di 42 mm di diametro.

14 RMQ kit di montaggio da tetto, per i modelli 18 AVT/WBS, 18 VS, 14 AVD/WBS, 12 AVQS. Il kit è completo di cavi, palo, e staffe.

BIRD, FDK, DRAKE, YAESU, ALPHA, CDE, TURNER, EIMAC, HTB, HY-GAIN, TECNO-THEN, HENRY RADIO, JUNKER, WACOM, HUSTLER, ICOM, OSKER BLOCK, KENWOOD, TELEREADER, TRALICCI, CAVI COASSIALI, VALVOLE.

IMPORTATORE E DISTRIBUTORE

NOVAELETTRONICA S.r.I. Via Labriola · Cas. Post. 040 Telex 315650 NOVAEL-1 20071 Casalpusterlengo (MI) · tel. (0377)830358-84520 00100 ROMA · via Madonna dei riposo, 46 tel. (06) 62.11.68

Piccola biblioteca della Radio =

L'ABC DEL RADIOASCOLTO di Elio Fior e Manfredi Vinassa de Regny, Oscar Manuali, Mondadori 1985 Lire 8.000

Il volume è nato con lo scopo di "prendere per mano" il neofita del radioascolto, e di quidarlo nei meandri del complesso, ma affascinante mondo delle onde hertziane La tematica si snoda in una serie di capitoli sviluppati con una esposizione semplice e chiara

Vengono poi esaminati i vari tipi di servizi radiofonici: radioamatori, CB le Broadcast le stazioni di tempo e frequenza campione le stazioni telefoniche

e per la navigazione, i radiofari, le telescriventi, i servizi a onde ultracorte, le "radio pirata", ecc. ecc Il volume è corredato da decine di tabelle illustrative ed esemplificative.

I SEGRETI DELLA RADIO di Emanuele e Manfredi Vinassa de Regny, Edizioni Oscar Mondadori Lire 10.000

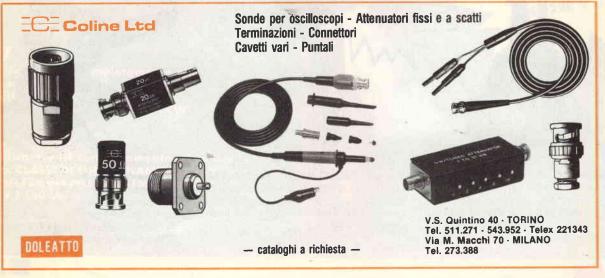
Terza edizione Rivoluzionata perché gli apparetze edizioni e monazioni a perche gii apparati e la "Radio" in genere hanno fatto balzi da gigante, basti pensare gli "SCAINNER" computerizzati che esplorano da soli lo spettro radio. Il libro si propone come guida ufficiale per ascoltare le voci lontane e i "Segreti del mondo". L'apparato Radio, i rapporti d'ascolto, le stazioni lon-L'apparato radio. I rapporto d'accione la stancia del trance Le bande tropicali, la propagazione a grandissima distanza, ecc. ecc. Il libro tratta un settore Radio, quello delle comunicazioni "Topsecret", gli ascolti "speciali" che si possono fare sulle VHF/UHF aeroplani, imbarcazioni, vigilanza, telefonia via Radio ecc.

VADEMECUM DELLA RADIO di Francesco Clemente Manfredi Vinassa de Regny Faenza Editrice - Lire 12.000

Ecco un'altra perla per il Radioamatore/CB. Con questo volume finalmente avrete a portata di mano tutto quello che può interessare chi ha l'hobby della Radio Nel Vademecum potete trovare: Bande di frequenza, Suddivisione dei servizi sulle onde corte, propagazione delle onde radio, Fusi orari, Scala conven-

zionale «S meters», Codice delle condizioni atmosferiche, Frequenze riservate al servizio di radioamatore, Band Plan Regione 1, Elenco prefissi, Lista dei paesi DXCC, codice Morse, codice «Q», Alfabeto fonetico Icao, Codice «RST», Zone Ciraf, Codice «Sinpo», Codice «Sinfo», Termini usati (in quattro lingue), Programmi in lingua ita-

liana Armoniche CB - Codice «10», Glossario della CB, ecc. ecc


RICETRASMISSIONI CB di Emanuele e Manfredi Vinassa de Regny, Edizioni Oscar Mondadori Lire 7.500

> Questa è una edizione totalmente diversa dalla precedente, il volume è quasi il doppio! Tra le novità nel volume troviamo: come sere in regola con la legge, l'elenco degli apparati omologati, le future allocazioni della CB, la CB come interfaccia tra telefono e

computer, come si organizza e come si opera una stazione, come si usano le ricetrasmittenti, quali apparati, sceglie-re quali antenne, come installarle, l'elenco dei circoli italiani, il

vocabolano CB, e il compendio legale, che ogni CB dovrebbe conoscere.

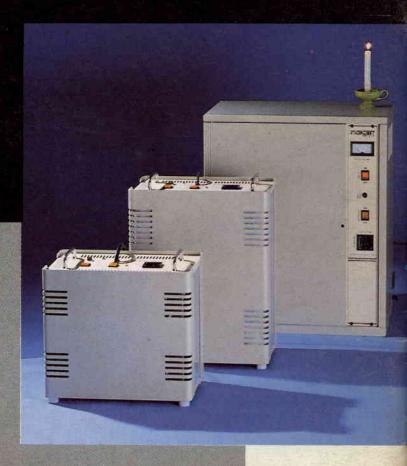
Se non sei abbonato, prenota E. FLASH dal tuo edicolante. Se l'ha esaurita pretendi che te la procuri presso il Distributore locale. Lui ne ha sempre una scorta. Ci aiuterai a normalizzare la distribuzione nazionale.

Frequenza 26 ÷ 30 MHz; Impedenza 50 Ω; Potenza massima **50 W**; R.O.S. 1 — 1:1; Numero canali 40; Altezza massima 160 cm.; Peso 400 gr.; Cavo RG 58 A/U m. 4; Materiale della base nylon; Materiale dello stilo fiberglass.

Frequenza 26 ÷ 30 MHz; Numero canali 30; Potenza max. 50 W; Impedenza nominale 50 Ω; Guadagno 1,2 dB; SWR - 1,3; Resistenza al vento 120 Km/h; Altezza massima 160 cm.; Peso 400 gr.

Frequenza 26 ÷ 30 MHz; Impedenza 50 Ω; Potenza massima **50 W**; R.O.S. 1 — 1:1; Numero canali 40; Altezza massima 160 cm.; Peso 400 gr.; Cavo RG 58 A/U m. 4; Materiale della base nylon; Materiale dello stilo fiberglass.

CE CTE INTERNATIONAL®



GRUPPI DI CONTINUITA' STATICI NO BREAK

L'esigenza di disporre di una fonte energetica continuativa, indipendente anche per un considerevole tempo dalla rete di distribuzione, con sufficiente autonomia, ha creato la necessità di realizzare un tipo di macchina in grado di fornire energia molto stabile in tensione e frequenza con distorsione molto bassa, sia in presenza della rete o meno.

Impiegando questi gruppi di continuità per alimentare calcolatori, macchine contabili ed altri sistemi con memoria voltatile, si elimina ogni tipo di inconveniente causato dalla mancanza di rete, fornendo alimentazione in continuità senza alcuna commutazione. Inoltre questi gruppi di continuità si comportano anche da separatori di rete, e sopprimono eventuali disturbi e transitori.

Uscita sinusoidale 220V ± 1,5% distorsione 3% 50 Hz ± 0,03%. Rete annessa 220V ± 10%. Batterie ermetiche o stazionarie. Potenze da 100 W a 5 kW.

MICHOSET®

ENERGIA E CONTROLLO

STATICONTROL 700

STEPCONTROL 400

STEPCONTROL 250

SACILE - PN - ITALY VIA A. PERUCH, 64 TEL. 0434 - 72459 TELEX 450405

CERCASI AGENTI PER ZONE LIBERE