FUNIAMATEUR

Zeitschrift der GST

- Nachrichtenausbildung
- NachrichtensportElektronik/Mikroelektronik
- Computersport

DDR 130 M · ISSN 0016-2833

Funkwettkampf

GST-Kreisorganisation Berlin-Prenzlauer Berg testete neue Funksportdisziplin

(s. Beitrag in dieser Ausgabe)

Vor Beginn des Wettkampfes: Einweisung der Zweier-Mannschäften und letzte Hinweise durch den Hauptkampfrichter

Maximal fünf Schuß stehen jedem Mannschaftsmitglied zur Verfügung, um drei Klappscheiben zu treffen. Für jede nicht getroffene muß eine Strafrunde gelaufen werden (r.).

Auch beim Frequenzwechsel ist die R-105 M wieder auf maximalen Antennenstrom abzustimmen. Nach erneuter Verbindungsaufnahme auf der Ersatzfrequenz sendet die Unterfunkstelle einen Spruch an die Hauptfunkstelle (u. l.).

Konzentriert hören zwei Kampfrichter den Funkverkehr zwischen den beiden Funkstellen mit. Verstöße gegen die Regeln des Funkbetriebsdienstes werden mit Strafsekunden geahndet. Schwerwiegende Verletzungen der Funkdisziplin führen zur Disqualifikation der Mannschaft (u. r.).

Fotos: K. Theurich

Aus dem Rechenschaftsbericht des ZV der GST an den VIII. Kongreß

Auf dem Kurs des XI. Parteitages der SED – alle Kraft zur Erfüllung der Kongreßbeschlüsse

Berichterstatter: Vizeadmiral Günter Kutzschebauch, Vorsitzender des Zentralvorstandes der GST

"Als sozialistische Wehrorganisation der DDR - so wurde auf dem XI. Parteitag der SED festgestellt - fördern wir in bewährter Weise die Wehrbereitschaft der Bürger unseres Landes. Diese Worte empfinden wir als große Anerkennung und hohe Würdigung unserer Arbeit, zugleich aber auch als Verpflichtung für weiteres erfolgreiches Wirken zum Nutzen der Landesverteidigung und für die Sicherung des Priedens." Nach diesen einleitenden Worten setzte der Redner fort: Mit dem Blick auf die seit dem VII. Kongreß geleistete Arbeit können wir einschätzen und dem Zentralkomitee der Sozialistischen Einheitspartei Deutschlands und seinem Generalsekretär, Genossen Erich Honecker, melden:

Die der sozialistischen Wehrorganisation der DDR in der Kongreßperiode übertragenen Aufgaben wurden mit den bisher besten Ergebnissen erfüllt! Auf der Grundlage einer zielklaren Orientierung durch die Partei der Arbeiterklasse hat unsere Organisation durch die tatkräftige Arbeit der Mitglieder und Funktionäre, der Ausbilder, Übungsleiter und Trainer einen erheblichen Beitrag zur allseitigen Stärkung unseres sozialistischen Staates, zur kommunistischen Erziehung, zur Entwicklung einer hohen Wehrbereitschaft und Wehrfähigkeit der Bürger der

DDR und damit zur Sicherung des Friedens geleistet."

Die Aufgaben in der vermilitärischen Laufbahnausbildung seien Jahr für Jahr zahlenmäßig erfüllt und die Qualität der Ausbildung sei verbessert worden. Die nach dem VII. Kongreß in Kraft getretenen präzisierten Ausbildungsprogramme hätten sich bewährt und durch die Konzentration der vormilitärischen Laufbahnausbildung auf Lehrgänge und durch die weitere Profilierung der Lagerausbildung habe deren Effektivität beträchtlich erhöht werden können.

Im Wehrsport haben Niveau und Vielfalt des Trainings und der Wettkämpfe deutlich zugenommen. Neue wehrsportliche Betätigungsmöglichkeiten werden durch den Computersport geschaffen. Hundertausende Mitglieder und auch nicht in der GST organisierte Bürger unseres Landes beteiligen sich an Wehrspartakiaden, Reservisten-Dreikämpfen, Schützenfesten, Pokalwettkämpfen und Wehrsporttesten.

Bedeutende Fortschritte, sagte Vizeadmiral Kutzschebauch, wurden im Wehrkampfsport, in der Einbeziehung der Reservisten der NVA in eine regelmäßige wehrsportliche Tätigkeit der GST erreicht. Nahmen 1982 81 500 Reservisten an Dreikämpfen teil, so waren es im Par-

teitagsjahr 1986 mehr als 1,5 Millionen. Auch in den technischen Wehrsportarten, unter anderem in den Sektionen des Nachrichten- und Computersports, habe sich eine positive Entwicklung vollzogen. "Seit dem XI. Parteitag der SED wurden allein 90 Sektionen Computersport gebildet, die mehr als 1 400 Mitglieder umfassen."

Friedenssicherung - oberstes Gebot

"Der XI. Parteitag der SED beschloß Aufgaben, die weit in die Zukunst reichen, bis hinein in das nächste Jahrtausend. Die wichtigste Bedingung, sie erfüllen zu können, ist die Erhaltung des Friedens. Genosse Erich Honecker hat uns in seiner bedeutsamen Rede vor den 1. Sekretären der Kreisleitungen der SED mit Zuversicht erfüllt, als er feststellte: ,Trotz der Kompliziertheit und Angespanntheit der internationalen Lage besteht die Chance, in ein atomwattentreies Jahrtausend einzutreten. So kühn diese Vorstellung sein mag, sagte er, es sind die realen Möglichkeiten vorhanden, das große Ziel zu erreichen.' Diese Erwartungen teilen auch die Mitglieder unserer Organisation mit allen friedliebenden Menschen der Welt. Von der Tribüne unseres VIII. Kogresses aus versichern wir, daß wir alles in unseren Kräften Stehende tun werden, damit die Chance, von der Genosse Erich Honecker sprach, genutzt wird!"

Durch unsere politische Arbeit gelte es, so der Vorsitzende des ZV der GST, immer wieder bewußt zu machen: "Noch immer drohen dem Frieden ernsthafte Gefahren von der Konfrontations- und Hochrüstungspolitik und von den Sternenkriegsplänen. Zugleich aber hat sich das internationale Kräfteverhältnis weiter zugunsten der Kräfte des Friedens, der nationalen Unabhängigkeit, der Demokratie und des sozialen Fortschritts verändert."

GST hat festen Platz im Leben der DDR

Aus der Grußadresse des ZK der SED an den VIII. Kongreß der GST

In der im Namen des Zentralkomitees der Sozialistischen Einheitspartei Deutschlands von seinem Generalsekwetär, Genossen Erich Honecker, unterzeichneten Grußadresse an den VIII. Kongreß der GST heißt es unter anderem:

Die Gesellschast für Sport und Technik hat sich in den fünfunddreißig Jahren seit ihrer Gründung einen seten Platz als sozialistische Wehrorganisation im Leben der Deutschen Demokratischen Republik erworben. Gemeinsam mit der Freien Deutschen Jugend leistet sie einen bewährten Beitrag zur kommunistischen Erziehung der Jugend. Das gilt auch für die zunehmend breite Entwicklung des Wehrsports. Es entspricht den Interessen vieler Bürger und fördert zugleich ihre Bereitschast und Fähigkeit zur Verteidigung des Friedens und des Sozialismus.

Vorbildlich wirken Zehntausende ehrenamtliche Funktionäre, Ausbilder und Übungsleiter im Sinne der Losungen "Mein Arbeitsplatz – mein Kampfplatz für den Frieden" und "Ausbildungszeit ist Leistungszeit".

Neue Anforderungen sind an alle Mitglieder Eurer Organisation gestellt. Hohe Qualität und Effektivität in der vormilitärischen Ausbildung, die weitere Entwicklung der Massenwehrsportarten – des Schießsports, des Militärischen Mehrkampfes und des Wehrkampfsports –, eine interessante Arbeit in den technischen Wehrsportarten und Spitzenergebnisse in den Disziplinen des Leistungssports sind die Ansprüche an die Gesellschaft für Sport und Technik. Davon werden auch die Leitungstätigkeit und das gesamte Organisationsleben geprägt.

Wir sind gewiß, daß die Beschlüsse des VIII. Kongresses alle Mitglieder der Gesellschast für Sport und Technik mobilisieren werden, mit neuen Initiativen zur Sicherung des Friedens, zur erfolgreichen Gestaltung unserer Gesellschast und zum zuverlässigen Schutz des Sozialismus beizutragen.

Vom Sinn des Soldatseins im Sozialismus

Mit hoher Kampfkrast und Gesechtsbereitschast böten die Sowjetarmee und alle brüderlich verbundenen Armeen der sozialistischen Gemeinschast die Gewähr dasür, daß jeder Versuch einer imperialistischen Aggression zum Scheitem verurteilt ist. "Kampfkrast und Gesechtsbereitschast der NVA dienen dem Frieden. Davon ausgehend gilt es die Frage zu beantworten, warum wir die Jugendlichen bereits vor dem Antritt des Wehrdienstes mit dem Sinn des Soldatseins im Sozialismus vertraut zu machen haben.

Auch für unsere Tätigkeit ist es bedeutsam zu verstehen, daß die Anforderungen an Kampfkrast und Gesechtsbereitschast der NVA einen Stand erreicht haben, der es objektiv notwendig macht, daß jeder Soldat vom ersten Tag seines Wehrdienstes an seine militärische Aufgabe meistert.

Sich den Sinn des Soldatseins zu eigen zu machen, das bedeutet, das Wesen des Sozialismus und des Friedens historisch-konkret zu erfassen, die politischen Verhältnisse klassenmäßig zu beurteilen und daraus Motive für das eigene Handeln in der vormilitärischen Ausbildung und für den Wehrdienst abzuleiten."

"Die NVA und die Grenztruppen der DDR erwarten von der GST und den anderen Erziehungsträgern," so stellt der Redner fest, "daß die auf den Ehrendienst vorbereiteten jungen Männer u. a. mit solchen Handlungsmotiven den Wehrdienst antreten wie:

Ich sichere den Frieden unter Einsatz all meiner Kräfte!

lch schütze den Sozialismus mit der Wasse in der Hand, weil ich nicht will, daß die Wassen sprechen!

Ich tue alles, auch als Soldat, damit mein Land, meine Eltern, meine Freundin, meine Frau, meine Kinder, meine Freunde, mein Zuhause, mein Betrieb nicht im Kernwaffenkrieg untergehen!" Die Ergebnisse der Wirtschafts- und Sozialpolitik der SED wären für die Jugendlichen, die heute mit 16 Jahren die vormilitärische Ausbildung beginnen oder als noch jüngere Kameraden die ersten Schritte im Wehrsport gehen, das bestimmende Grunderlebnis ... Gleichzeitig wäre zu berücksichtigen, daß die jungen Menschen von heute in einer komplizierten internationalen Situation aufwachsen.

Deshalb sei es auch für die GST notwendiger denn je, vor allem den jungen Menschen zu helfen, sich im internationalen Geschehen gut zurecht zu finden, die aktuellen, nicht selten widersprüchlichen Ereignisse immer klassenmäßig einzuordnen und daraus richtige persönliche Schlußfolgerungen zu ziehen.

Auf Erfordernisse des wissenschaftlich-technischen Fortschritts einstellen

"Im Zeitalter der wissenschaftlich-technischen Revolution wächst die Bedeutung der Allgemeinbildung und der technischen Bildung als Grundlage für die allseitige Entwicklung der Persönlichkeit

Zum einen betrifft dies das Persönlichkeitsbild der GST-Mitglieder der achtziger Jahre. Die jungen Kameraden verfügen über hohe Bildung, sie arbeiten an rechnergestützten Produktionsanlagen, beherrschen effektive Verfahrenstechnologien, bedienen Roboter oder Computer und gehen in ihrer Freizeit ebenfalls mit moderner Technik um, z. B. mit Heimelektronik Sie setzen große Erwartungen in die GST und stellen hohe Ansprüche an das Niveau der Ausbildung und des Trainings aber auch an die Persönlichkeitseigenschaften und fachlichen Qualitäten der Ausbilder und an das gesellschaftliche Leben in unserer Organisation.

Zum anderen haben wir mit den uns zur Verfügung stehenden Mitteln dazu beizutragen, technisches Interesse zu wecken und es durch die Vermittlung von Kenntnissen und Fertigkeiten zu befriedigen."

Hohe Ehrung: Armeegeneral Heinz Keßler, Minister für Nationale Verteidigung, heftet die höchste militärische Auszeichnung der DDR - den Scharnhorst-Orden - an die Fahne der GST - Foto: ADN-ZB/Hiekel

Neue Anforderungen und Aufgaben

Aus den Gegebenheiten und Anforderungen des qualitativ neuen Abschnittes der Entwicklung der sozialistischen Gesellschaft in der DDR würden sich auch qualitativ neue und größere Aufgaben für die GST ableiten.

"Worauf kommt es an?

- Durch eine wirksame politisch-ideologische Arbeit gilt es, die Jugendlichen bereits vor Antritt ihres Wehrdienstes mit dem Sinn des Soldatseins im Sozialismus vertraut zu machen.
- Wir haben zu sichem, daß alle männlichen Jugendlichen die vormilitärische Ausbildung mit einem einheitlich hohen Niveau abschließen, an militärische Disziplin und Ordnung gewöhnt und körperlich leistungsfähig sind.

- In Ergänzung der vormilitärischen Laufbahnausbildung ist es notwendig, alle Lehrlinge und die Schüler der erweiterten Oberschulen in eine regelmäßige wehrsportliche

Tätigkeit einzubeziehen.

Alle ungedienten Reservisten sind dafür zu gewinnen, bis zu ihrer Einberufung zum Wehrdienst regelmäßig Wehrsport zu treiben, und für die gedienten Reservisten sind ausreichende Möglichkeiten für ihre wehrsportliche Betätigung zu schaffen.

 Neue Möglichkeiten des Wissenserwerbs und der Freizeitgestaltung müssen der Jugend durch die Informatik und den Computersport erschlossen werden.

 Durch die technischen Wehrsportarten der GST muß aktiver auf das Freizeitverhalten der Jugendlichen Einfluß genommen werden.

- Durch die bessere Nutzung der zur Verfügung stehenden personellen, materiellen und finanziellen Kräfte und Mittel sowie durch zweckmäßige Organisation gilt es, den weiteren Leistungszuwachs auf allen Tätigkeitsgebieten zu sichern.
- Die GST ist organisatorisch zu stärken und ihre Massenbasis planmäßig zu erweitern.
- Ordnung, Sicherheit und Disziplin sind ständig zu gewährleisten und zu entwickeln.

Damit sind in wenigen Sätzen die qualitativ neuen Aufgaben genannt, die höhere Ansprüche an unsere gesamte Arbeit stellen."

Ausbildungszeit ist Leistungszeit

Es gelte, überall die Ausbildung interessant zu gestalten. Dazu gehöre, den sozialistischen Wettbewerb von Mann zu Mann, von Gruppe zu Gruppe, von Ausbildungseinheit zu Ausbildungseinheit zur organisieren. Der Jugendliche müsse wissen: Habe ich die Normen erfüllt, entsprechen meine Leistungen den Bedingungen des Bestenabzeichens. "Damit wenden wir die Prinzipien des sozialistischen Wettbewerbs – Öffentlichkeit, Vergleichbarkeit, Wiederholbarkeit – an," sagte der Vorsitzende des ZV der GST, er stellte und beantwortete" die Frage, welche Aufgaben in den einzelnen Laufbahnrichtungen vor uns liegen.

"Bei der Ausbildung in der Laufbahn Nachrichtenspezialist richten wir das Augenmerk auf die höhere Effektivität und Intensität der Ausbildung. In der konzentrierten Ausbildung der Tastfunker streben wir an, durch den Einsatz von computergestützten Ausbildungsmethoden vor allem die Fertigkeiten weiter auszuprägen und den Ausbildungsverlauf effektiv zu gestalten."

Neue Anforderungen seien immer und zuallererst ein hoher Anspruch an das politische Verständnis, sie erfordern eine richtige Kampfposition. Es gelte, nachhaltiger als bisher alle Potenzen der Ausbildung für die Persönlichkeitsentwicklung zu nutzen, die Gespräche mit den Jugendlichen zur Eingliederung in die Laufbahnausbildung zu führen, die wehrpolitischen Schulungsveranstaltungen lebensnah und interessant zu gestalten.

Im Wehrsport breiter, vielfältiger und aktiver

"Im Ergebnis einer zielstrebigen wehrsportlichen Arbeit," so Vizeadmiral Kutzschebauch, habe sich seit dem VII. Kongreß "die gesell-

Aufmerksam verfolgten die Delegierten die richtungsweisende und erfahrungsvolle Beratung des höchsten Fotomms der sozialistischen Wehrorganisation

Herzlich begrüßt: Die Gäste des VIII. Kongresses

Von den Kongreßdelegierten mit viel Beifall empfangen wurden die zahlreichen Gast-Delegationen des In- und Auslands. Besonders herzlich begrüßt wurde die Delegation des Zentralkomitees der Sozialistischen Einheitspartei Deutschlands unter der Leitung des Mitglieds des Politbüros des ZK der SED und Minister für Nationale Verteidigung, Armeegeneral Heinz Keßler. Der Delegation gehörten weiter an das Mitglied des Politbüros des 7K der SED und 1 Sekretär der Rezirksleitung Karl-Marx-Stadt SED, Siegfried Lorenz, die Mitglieder des ZK der SED Wolfgang Herger und Gerd Schulz, der Leiter der Abteilung Sport im ZK der SED, Rudi Hellmann und Generalmajor Wemer Hübner. Abteilung für Sicherheitsfragen des ZK der SED.

Die Delegation des Ministeriums für Nationale Verteidigung wurde geleitet vom Stellvertreter des Ministers für Nationale Verteidigung und Chef der Politischen Hauptverwaltung der NVA, Generaloberst Horst Brünner. Ihr gehörten an die Stellvertreter des Ministers und Chefs der Teilstreitkräste der NVA, Generaloberst Horst Stechbarth, Generaloberst Wolfgang Reinhold und Admiral Wilhelm Ehm sowie die Generale Heinz Handke, Sigmund Jähn und Klaus Ruthe.

Eberhard Aurich, Mitglied des ZK der SED und 1. Sekretär des Zentralrates der FDJ, leitete die Delegation des sozialistischen Jugendverbandes; das Komitee der Antifaschistischen Widerstandskämpfer war durch das Mitglied dessen Präsidiums, Herbert Hakenbeck, vertreten.

Begrüßt wurden auch die Delegationen unserer Bruderwehrorganisationen aus der VR Bulgarien, der SFR Jugoslawien, der Republik Kuba, der Mongolischen VR, der VR Polen, der SR Rumänien, der ČSSR, der UdSSR, der Ungarischen VR, der Koreanischen DVR und der SR Vietnam.

Als Ehrengäste nahmen am Kongreß die verdienstvollen Veteranen der GST Generalmajor a. D. Kurt Lohberger, ehemaliger Vorsitzender des Zentralvorstandes der GST, und die ehemaligen Stellvertreter des Vorsitzenden des ZV der GST Oberst a. D. Willy Baumgardt und Manfred Tomuschat teil.

schaftliche Position der sozialistischen Wehrorganisation in unserer Republik gefestigt.
Den hohen Ansprüchen unserer Gesellschaft an die Leistungsfähigkeit ihrer Bürger und dem wachsenden Interesse der Werktätigen und Jugendlichen am Wehrsport wurde mit einem differenzierten System von Wettkämpfen, wehrsportlichen Massenveranstaltungen und Vorführungen entsprochen.

Die qualifizierte Ausbildung im Wehrsport und die umfangreichere Wettkampstätigkeit wirkten sich positiv auf die Festigung der Organisation, auf die Förderung der wehrsportlichen Mitarbeit und auf die Ausstrahlung unserer Organisation in der Öffentlichkeit aus."

Aus den vergangenen Wahlen sei eine wichtige Lehre vermittelt worden: Die aktive Betätigung in einer Wehrsportart ist direkt abhängig vom Wettkampfangebot und davon, wie interessant und auch gesellig es dabei zugeht. In dieser Erfahrung stecke nicht nur eine tiefe Wahrheit, sondern zugleich auch das Rezept, der Schlüssel für den Erfolg.

"Im Nachrichtensport beabsichtigen wir, die Wettkampfdurchführung zu vereinfachen. Das Wettkampfangebot wird vergrößert, der Anreiz zum regelmäßigen Übungs- und Trainingsbetrieb erhöht. Den Teilnehmern an der vormilitärischen Ausbildung und den Reservisten der NVA werden im Funkmehrkampf weitergehende Möglichkeiten geboten, ihre Kenntnisse und Fertigkeiten zu festigen.

Mit dem Computersport bieten wir vielen Interessierten eine zukunftsträchtige, sinnvolle Freizeitgestaltung. Ausgehend von den mittlerweile in allen Bezirken und an der Funktionärschule existierenden Computerkabinetten und in den inzwischen aktiv arbeitenden 90 Sektionen Computersport mit mehr als 1 400 Mitgliedern wird diese Entwicklung zielstrebig weitergeführt. Wir nutzen auch auf der Grundlage von Vereinbarungen die in Betrieben und Einrichtungen vorhandene Basis für den Computersport. Wir werden uns weiterhin auf das Erlemen der Programmiersprache und die Herstellung von Programmen konzentrieren.

Als wir vor einem Jahr auf der 9. Tagung des Zentralvorstandes beschlossen, den Computersport aufzubauen, hofften wir, daß sich das jüngste Kind unserer Wehrsportarten schnell entwickeln würde. Durch das große Engagement zahlreicher Funktionäre, Ausbilder und Übungsleiter des Nachrichtensports sind unsere Erwartungen weit übertroffen worden. Das gibt uns die Gewißheit, mit seiner weiteren Verbreitung einen zunehmenden Nutzen für die Persönlichkeitsentwicklung und für die Landesverteidigung zu leisten."

Um den gewachsenen Anforderungen an den Wehrsport gerecht zu werden gelte es, wie es im Bericht des ZV der GST an den VIII. Kongreß heißt, überall eine solche Arbeitsweise zu fördern, die eine wehrpolitische Erziehung und wehrsportliche Wettkampstätigkeit auf höberem Niveau gewährleistet. "Dem werden wir gerecht, indem wir die wehrpolitische Erziehung immer im engen Zusammenhang mit den wehrsportlichen Maßnahmen organisieren, die ehrenamtliche Arbeit stärker entwikkeln und die Tätigkeit der Präsidien sowie der Bezirks- und Kreisfachkommissionen vervollkommnen, ihre Eigenverantwortlichkeit erhöhen und ihre Befugnisse erweitern. Im überarbeiteten Statut ist dem Rechnung getragen. Diesem Antiegen entspricht auch der Vorschlag des Sekretariats des Zentralvorstandes, einheitliche Sportverbände in allen Wehrsportarten zu schaffen."

Alle Kraft für die Verwirklichung der Beschlüsse des VIII. Kongresses

Ausgerüstet mit den Orientierungen und Erfahrungen unseres VIII. Kongresses geht es jetzt darum, die in der "GST-Verpflichtung XI. Parteitag der SED" und in den Kampfprogrammen enthaltenen Ziele und Aufgaben bis zum 38. Jahrestag der DDR vollständig und in hoher Qualität zu erfüllen.

Von unserem Kongreß rufen wir alle Mitglieder unserer Organisation und die Teilnehmer an der vormilitärischen Ausbildung auf, eine neue breite Masseninitiative zur Erfüllung der vor uns stehenden Aufgaben auszulösen. Der mit dem 38. Jahrestag der DDR begin-

Der mit dem 38. Jahrestag der DDR beginnende sozialistische Wettbewerb soll unter dem Motto stehen:

GST-Auftrag VIII. Kongreß – Wort und Tat für unseren sozialistischen Friedensstaat

Wir können konstatieren, da3 die sozialistische Wehrorganisation der Deutschen Demokratischen Republik – wie auf dem XI. Parteitag des SED festgestellt wurde – in der Periode vom VII. zum VIII. Kongreß die Wehrbereitschaft der Bürger in bewährter Weise gefordert hat

In "bewährter Weise", das verlangt auch, sich stets dem Neuen zu stellen. Unser schöner Name "Gesellschaft für Sport und Technik" verpflichtet uns, ständig neuen Ansprüchen in Sport und Technik gerecht zu werden.

In "bewährter Weise", das beißt für jede Kameradin und für jeden Kamerad der GST: Daş Wirken in der sozialistischen Wehrorganisation bereichert ihren ganz persönlichen Lebensinhalt.

Die erlebnisreich gestaltete Ausbildung – das ist der Erfolg des Ausbilders. Die exakte Organisation – das ist der Erfolg des Funktionärs. Ein erfolgreiches Schützenfest – das ist der Stolz des Übungsleiters. Der gute Platz im Wettbewerb – darüber freut sich der Beste, das beflügelt das Kollektiv. Der Sieg im Wettkampf – das ist ein Erfolgserlebnis, erreichbar für jeden auf entsprechender Stufe ...

Wenn wir in bewährter Weise unsere nächste Kongreßperiode angehen, mit Zuversicht in unsere Leistungskraß, mit der Gewißheit der Unterstützung unserer Gesellschaß, insbesondere der SED, dann ist das unser Mitwirken an der kommunistischen Erziehung der Jugend, an der Stärkung des Sozialismus, an der Sicherung des Friedens.

(Zwischentitel von der Redaktion)

In den vom VIII. Kongreß der GST neugewählten Zentralvorstand wurden aus dem Bereich des Nachrichtensports folgende Mitglieder gewählt:

Herben Götze (56), Diplomingenieurökonom, Mitglied des Präsidiums des Radioklubs der DDR, Signd Leslewicz (47). Lehrmeister, Ausbilder im

Nachrichtensport der GST, Fritt Marken (48), Ingenieur, Sektionsleiter im Nach-

richtensport der GST und Dieter Sommer (41), Diplomstaatswasenschaftler, Leiter der Abteilung Nachrichtenausbildung im ZV der GST.

Ihnen allen unser herzlichster Glückwunsch!

Acht Fragen nach dem VIII.

Auf der Rückfahrt nach Berlin hatte FUNK-AMATEUR Gelegenheit, Eberhard Beyer, Y2SCO, Vorsitzender des GST-Kreisvorstandes Berlin-Prenzlauer Berg, nach seinen Eindrükken zu fragen ...

Als Mitglied und Funktionär der GST macht mich stolz, welch hohe Wertschätzung unsere Wehrorganisation in der DDR erfährt. Das kam vor allem in der Grußadresse des Zentralkomitees der SED zum Ausdruck. Zugleich ist es Anerkennung für die geleistete Arbeit und für unser fortwährendes Bemühen, die Wehrbereitschaft unserer Bürger zu erhöhen und ihre Wehrfähigkeit zu verbessern.

Was nimmst du mit nach Hause?

Für mich waren Rechenschaftsbericht und Diskussionsbeiträge ein hervorragender und inhaltsreicher Erfahrungsaustausch. Vieles vom Gesagten läßt sich direkt in unserer Kreisorganisation anwenden.

Zum Beispiel?

In unserem Stadtbezirk haben wir zwar kein Computerkabinett, dasür aber einige Betriebe, die solche Technik besitzen. Mit diesen nehmen wir jetzt Kontakt aus. Sobald die Fragen der Nutzung geklärt sind, gründen wir auch entsprechende Sektionen.

Was versprichst du dir davon?

Zum einen nutzen wir die im Territorium vorhandenen Reserven. Zum anderen ist die Arbeit mit den Kleincomputern derzeit sicher eine der attraktivsten Möglichkeiten, die die GST technisch Interessierten, vor allem Jugendlichen bietet: Und, wer erst einmal dabei ist, der entdeckt erfahrungsgemäß auch schnell, daß wir noch viel mehr zur sinnvollen Freizeitgestaltung bieten.

Wie beurteilst du die Nachwuchsarbeit in deinem Stadtbezirk?

Mit diesem Problem werden wir uns nach dem Kongreß noch beschäftigen. Die Unterschiede zwischen den Sektionen sind einfach zu groß. Hervorzuheben ist die gute Arbeit mit dem Nachwuchs an der Klubstation Y45ZO.

Und wie läuft die vormilitärische Laufbahnausbildung?

In unserer Kreisorganisation bilden wir einen Zug Nachrichtenspezialisten aus, von dem jeder Teilnehmer um das GST-Qualifizierungsabzeichen kämpst. Ziel der Kameraden ist es, Leistungen zu vollbringen, die es ermöglichen, am Ende des Ausbildungsjahres mindestens jeden Dritten mit dem Bestenabzeichen auszeichnen zu können.

Was unternehmt ihr, um die Reservisten in die Arbeit einzubeziehen?

Was das betrifft, so kann ich sagen, wir haben spürbare Fortschritte erreicht. An unserem Traditionswettkampf um den "Werner-Prochnow-Pokal" für den besten Funker des Stadtbezirks nehmen im 35. Jahr der GST etwa 50 Nachrichtensportler teil. Das sind deutlich mehr als in den Jahren zuvor. Gerade der Funkmehrkampf ist eine gute Möglichkeit, die Reservisten zu aktivieren. Bedenkt man aber, daß wir im Stadtbezirk 155 Nachrichtensportler haben, so ist zu erkennen, daß das Erreichte noch lange nicht das Erreichbare ist.

Welche Vorhaben stehen sonst noch im Plan 1987?

Unsere Funkamateure sind noch bis Dezember anläßlich des Stadtjubiläums besonders aktiv. Vor allem die Sonderamateurfunkstellen repräsentieren dabei Berlin, die Stadt des Friedens, auf den Bändern. Darüberhinaus leisten unsere Klubstationen viel Öffentlichkeitsarbeit, indem sie mit ihren Amateurfunkgeräten bei Presse-, Stadtbezirks- und Wohngebietsfesten für die Mitarbeit in der GST werben.

Text/Foto: K. Theurich

Y35GST QRV beim VIII.

Bravourös hat die Sonderamateurfunkstelle zum VIII. Kongreß Y35GST ihre Ziele gemeistert: 2200 Verbindungen insgesamt konnten hergestellt werden; 1000 mehr als geplant! Erreicht wurden 81 Länder, 175 Kreiskenner, alle Kontinente, Unionsrepubliken der Sowjetunion und alle sozialistischen Staaten.

Die im Schichtbetrieb arbeitenden OMs aus dem Gastgeberbezirk arbeiteten, davon überzeugte sich FUNKAMATEUR, mit hohem persönlichen Einsatz, mit ihrem ganzen Wissen und Können und sehr diszipliziert. Schöner Lohn für die anstrengenden Tage waren solche QSOs wie das mit Mike, YN3EO (Michael Lüdemann, Y25OE), der sich von einem Solidaritätseinsatz in Nikaragua meldete und dem VIII. GST-Kongreß beste Ergebnisse wünschte

Nach Information von R. Mohr, Y35GST

Dirk Fletsch war jüngster Kongreßdelegierter

Dirk, gebürtiger und ansässiger Torgauer, Schüler der 8. Klasse, arbeitet mit Lust und Liebe in einer Sektion "Junge Funker". "Schuld" daran ist mit Sicherbeit sein Vater, Y26SM. Jener, GST-Kreisvorstandsvorsitzender in Torgau und wie sein Sohn Delegierter des VIII. Kongresses der GST, brachte vor ungefähr zwei Jahren – bestimmt nicht zufällig – einen Peilempfänger "Greif" mit nach Hause. Inzwischen sind Dirk und der Nachrichtensport eins. Das spürt man an seiner Begeisterung, und das brachte erste Erfolge beim Funkpeilen.

So ist es auch verständlich, wenn er während der Kongreßtage etwas wehmütig an seine Freunde dachte, die bei der zur selben Zeit stattfindenden 12. DDR-Pioniermeisterschaft um nachrichtensportliche Trophäen rangen. Trost für ihn – der einmal Offizier der NVA werden möchte –, in der Woche nach dem Kongreß wird er sein Amateurfunkwissen bei der SWL-Prüfung beweisen.

Text/Foto: K. Theurich

FUNKAMATEUR setzt in den nächsten Ausgaben die Berichterstattung vom VIII. Kongreß fort. Die Zeitschrift "konkret" veröffentlicht in ihrer August-Ausgabe die vollständigen Kongreßmaterialien.

Die SED kann sich stets auf uns verlassen!

Aus dem Brief der Delegierten des VIII. Kongresses an den Generalsekretär des ZK der SED, Genossen Erich' Honecker

Hochverehrter Genosse Erich Honecker!

Wir versichern Ihnen,

daß die Mitglieder und Funktionäre der sozialistischen Wehrorganisation der DDR einmütig zur Politik der Partei der Arbeiterklasse stehen und entschlossen sind, alle ihnen übertragenen Aufgaben in hoher Qualität zu erfüllen.

Die Atmosphäre in den Kollektiven der GST ist geprägt vom Streben nach hervorragenden Leistungen, um mit Initiative und Tatkraft mitzuhelfen, die auf das Wohl des Volkes und auf die Sicherung des Friedens gerichteten Beschlüsse des XI. Parteitages der SED zu erfüllen ...

Wir betrachten es als eine grundlegende Aufgabe, die Jugendlichen bereits bls zum Antritt ihres Wehrdienstes mit dem Sinn des Soldatseins im Sozialismus vertraut zu müchen.

Durch die wehrpolitische Erziehung, die vormilitärische Ausbildung und den Wehrsport wollen wir zur Entwicklung sozialistischer Persönlichkeiten beitragen, die ihre Heimat lieben und jederzeit bereit sind, ihre patriotische Pflicht zur Verteidigung von Frieden und Sozialismus zu erfüllen

Besonders orientieren wir uns dabei im Wehrsport darauf, Veranstaltungen und Wettkämpfe durchzuführen, die entschiedener auf die Wehrkrafterhaltung der ungedienten und gedienten Reservisten gerichtet sind.

Unter der bewährten Führung der SED werden die Mitglieder und Funktionäre der sozialistischen Wehrorganisation der DDR die Beschlüsse des VIII. Kongresses der GST mit besten Ergebnissen erfüllen ...

Wie bedanken uns besonders für die uns anläßlich unseres VIII. Kongresses verliehene hohe Auszeichnung mit dem Scharnhorst-Orden und versprechen:

Zu jeder Stunde kann sich die Sozialistische Einheitspartei Deutschlands auf die Mitglieder der Gesellschaft für Sport und Technik verlassen!

15. Mai 1987 Die Delegierten des VIII. Kongresses der GST Premiere bei der Kreiswehrspartakiade Berlin-Prenzlauer Berg

Sprechfunkwettkampf

Schon seit den frühen Morgenstunden des 11. April herrschte im Bezirksausbildungszentrum Schönholz bei strahlendem Sonnenschein reges Treiben: Es war der Tag der Kreiswehrspartakiade des Berliner Stadtbezirks Prenzlauer Berg. Auch wir Kameraden der Grundorganisation "John Schehr" des VEB Funkund Fernmeldeanlagenbau waren mit mot. Schützen, Militärkraftfahrern und Nachrichtenspezialisten vertreten. Für letztere gab es eine Premiere: den Sprechfunkwettkampf, etwas abgewandelt, auf unsere Möglichkeiten "zugeschnitten". Anleitung zum Handeln war der Beitrag "Ein neuer Funkwettkampf in der Erprobung" von Dr. Wieduwilt in FUNKAMATEUR 4/1987, S. 167.

Unser Nachrichtenzug trat mit neun Zweiermannschaften zum Wettkampf an. Die Kameraden waren größtenteils Bewerber für militärische Berufe – künstige Offiziere, Fähnriche und Unteroffiziere der Nationalen Volksarmee – und sie zeigten für diese neue Wettkampsform großes Interesse.

Die Vorbereitung übernahm der Kreisausbildungsleiter Nachrichten Prenzlauer Berg, Kamerad Chobe. Es erwies sich als günstig, die Hinweise für die Auswertung des Wettkampfes in Tabellenform zusammenzufassen und sie für die Funküberwachung, sowie von den Kampfrichtern an den Funkstellen zu nutzen.

Der erste Trupp trat an. Auf das Kommando "Start" liefen die beiden Kameraden zu den 80 Meter entfernt stehenden Funkgeräten R-105 M. Haupt- und Unterfunkstelle wurden durch die Wettkämpfer besetzt, die vorbereiteten Funkunterlagen vom Kampfrichter übergeben, der dann den Betriebsdienst an Ort und Stelle überwachte. Akkumulatoren, Sprechgarnitur und Antenne waren angeschlossen, alle Bedienelemente befanden sich in der Stellung "Aus" bzw. auf Linksanschlag. Für manchen Kameraden wurde das in der Aufregung zum Problem, denn die Prämissen einer guten Funkverbindung sind Hörbarkeit "5", maximale Antennenabstimmung, genau eingestellte Frequenz und die arretierte Skaleneinstellung.

Jetzt erfolgte die Verbindungsaufnahme zwischen den Funkstel-

len und der Spruchaustausch. Der Spruchumfang war auf zehn Gruppen beschränkt. Auch so war eine reale Wertung möglich. Nachdem die Unterfunkstelle den Spruch quittiert hatte, gab die Hauptfunkstelle das mit der TDF verschlüsselte Signal, den 40 Meter entfernten Luftgewehrschießstand zu besetzen. Mit maximal fünf Schuß mußten drei Ziele bekämpft werden, die bei uns Klappscheiben waren. Jedes nicht getroffene Ziel zog eine 80 Meter lange Strafrunde nach sich. Wir machten leider den Fehler, bei direktem Gegenlicht schießen zu lassen.

Anschließend ging es zurück zu den Funkstellen. Nach der erneuten Verbindungsaufnahme folgten das Signal "Gehen Sie auf Ersatzfrequenz" (verschlüsselt), ein Spruch von der Unterfunkstelle an die Hauptfunkstelle sowie die Quittung. Sofort nach der Beendigung des Funkverkehrs spurteten die Kameraden zum Ziel. Der Letzte des jeweiligen Trupps war ausschlaggebend für die Zeitmessung. Die Gesamtzeiten, einschließlich der Strafzeiten für Fehler im Betriebsdienst, lagen zwischen elf und 21 Minuten.

Um eine optimale Auswertung zu erreichen, richteten wir zwei Funkgeräte zur Funküberwachung ein; eines auf der Arbeits-, das zweite auf der Ersatzfrequenz. Jedes Gerät war mit einem Kampfrichter besetzt. Weiterhin stellten wir neben jede R-105 Reserveakkus, um bei Ausfall schnell wechseln zu können – selbs:verständlich mit der entsprechenden Auszeit.

Wir haben vor, bei der Ausbildung bzw. bei anderen Wettkämpfen den Funkbetriebsdienst mitzuschneiden und anschließend mit den Teilnehmern auszuwerten.

Da zu unserer Premiere auch viele Interessierte anwesend waren, werden wir zur nächsten Veranstaltung dieser Art eine Möglichkeit schaffen, den Funkbetriebsdienst über Lautsprecher auszustrahlen, weil der Wettkampf dann auch für die Zuschauer verfolgbarer und miterlebbarer wird. Bei uns hat sich die Meinung durchgesetzt: Diese Wehrspartakiade war ein Höhepunkt im Ausbildungsjahr und gab Ansporn für die weitere Ausbildung.

H. Herold

Während es bei der Arbeit in der Funkrichtung auf einen exakten Betriebsdienst und eine sichere Aufnahme der Signale ankommt, ...

... beißt es, die Fehler beim Schießen mit dem Luftgewehr durch schnelles Absolvieren der Strafrunden soweit wie möglich wettzumachen K. Theurich

Nikolai auf Heldenspuren

Nachrichtensoldaten der GSSD erfüllen Vermächtnis ihres Vorbildes mit hohen Leistungen

Auf dem Appellplatz ist die Nachrichteneinheit Titerin angetreten. Laut wird der Held der Sowjetunion Gardeleutnant Zyban aufgerusen. "Hier!" kommt es krästig aus den Reihen der angetretenen Soldaten. Der es rust, trägt nicht den goldenen Heldenstern, ist auch kein Gardeleutnant. Er heißt Nikolai Michailowitsch Grinik, Gardesergeant, und hat das Recht erkämpst, sich beim Appell sür den Helden Zyban zu melden. Das wappensörmige Abzeichen an der Unisormbrust weist ihn als Träger des Bestentitels aus. Und das mit gutem Grund, denn Nikolai wurde im ersten Monat des neuen Ausbildungsjahres der Beste seiner Kompanie in der Nachrichtenspezialausbildung und im Politunterricht.

Vor 44 Jahren am Dnepr ...

Das Bett von Pjotr Fedotowitsch Zyban steht an der Stirnwand des Kompanieschlafsaals. Auf einem Fresko ist dargestellt, wie der Gardeleutnant des 120. mot. Schützenregiments mit seinem Nachrichtenzug in den Septembertagen des Jahres 1943 über den Dnepr setzt, um eine Nachrichtenverbindung mit dem westlichen Ufer herzustellen. Gegen die Übermacht der Faschisten hielten die Soldaten ihren Brückenkopf, bis die Hauptkräfte eintrasen. Nikolai Griniks Blick schweift oft über das Bild und die Heldenbüste. Er kennt die Geschichte aus dem Politunterricht und auch aus Erzählungen von Regimentsveteranen. Der pensionierte Generalleutnant Serotinkin hat zum Beispiel darüber berichtet, wie das kleine Landungsboot nach einem Treffer sank und die Nachrichtensoldaten den kalten Fluß durchschwammen. Im Schutze der Dunkelbeit legten sie ein Grabensystem mit Scheinstellungen an und täuschten den Gegner über ihre wirkliche Stärke. In diesem Gefecht fiel der Zugführer.

Die Heldentat spornt an

Nikolai war den Generalsworten im Zimmer des Kampfruhms mit besonderem Interesse gefolgt. Ging es doch um ihm bekannte Orte. Schließlich stammt der Gardesergeant aus dem ukrainischen Winniza. Keine 200 Kilometer trennen seine Heimatstadt vom Dnepr, mehr als 1 200 aber von seiner Garnison in der DDR. Und gerade hier begegnet er Pjotr Zyban. Das fordert seinen Ehrgeiz heraus. Wenn es ihm als gelernten Dreher aus dem Traktorenwerk auch nicht leichtfiel, sich in die Nachrichtentechnik hineinzufinden, so spormte ihn das Beispiel der Heldentat in seiner Heimat doch an.

Das Bett des Helden der Sowjetunion Pjotr Zyban in der Einheit Titerin

Einer, der Nikolai dabei tatkräftig unterstützte, ist Oleg Martinzew, der Komsomolsekretär der Nachrichtenkompanie. Er organisierte für die Gruppen- und Truppführer einen Zirkel, in dem sie sich in den verschiedenen Nachrichtenbetriebsarten üben können. Sergeant Wladimir Anatoljewitsch Bonjakin, ein gelernter Fernmeldemonteur aus Abakan bei Krasnodar, übernahm seine Leitung.

Wenn Wladimir im Frühjahr in die Heimat zurückkehrt, übergibt er seine Funktion an Nikolai Grinik. So hat es Oleg Martinzew schon fest eingeplant. Der zukünstige Konstruktionsingenieur aus Kemerowo hat in den ersten beiden Studienjahren an der Technischen Hochschule schon einige Komsomolersahrungen gesammelt, deshalb wird ihm beim militärtechnischen Zirkel keine "Kaderlücke" unterlausen. Daß der Jugendsunktionär den richtigen "Riecher" gehabt hat, zeigt ja auch der heutige Appell, auf dem Nikolai als Wettbewerbssieger ausgezeichnet wird.

Als bester Nachrichtentrupp wird gleich darauf der von Untersergeant Gangan aufgerufen. Verschmitzt lächelnd nimmt der stämmige Schwarzschopf aus Moldawiens Hauptstadt Kischinjow die Glückwünsche von Hauptmann Titerin entgegen. Noch vor wenigen Monaten hat er oft in Briefen seiner Freundin Walja über seine Schwierigkeiten mit dem militärischen Leben im allgemeinen und der Nachrichtentechnik im besonderen erzählt. Das war an einer Unteroffiziersschule in der Sowjetunion, an der er, von Hause aus Traktorist, zum Mechaniker für Nachrichtengeräte ausgebildet wurde. Vorbereitet hat er sich im militärtechnischen Zirkel, in dem ihm Wladimir Boniakin half, das Wissen und Können von der Unteroffiziersausbildung in die Truppenpraxis zu überführen. Nun trägt er das Abzeichen mit der Umschrift "Otlitschnik sowjetskoi Armij" (Bester der Sowjetarmee), die Klassifizierungsstufe 2 und das Militärsportabzeichen.

Impulse für den Wettbewerb

Die regimentsspezifische Komsomolinitiative "Leben und kämpfen wie Pjotr Fedotowitsch Zyban" hat dem soziallstischen Wettbewerb Impulse verliehen. Sie beschränkt sich nicht auf die bloße Popularisierung der Heldentaten der Frontkämpfer, sondern befähigt die jungen Nachrichtensoldaten, das Vermächtnis ihres Vorbildes mit hohen Leistungen zu ehren.

Text/Fotos: J. Sell

Hauptmann Titerin mit den Sergeanten Bonjakin, Grinik und Martinzew

Computersport der GST

Erste Erfahrungen zur jüngsten Sportart

Seit der Gründung des Computersports in der GST wurde in allen Bezirksorganisationen mit hoher Einsatzbereitschaft daran gearbeitet, die materiellen und personellen Voraussetzungen zu schaffen sowie Sektionen zu bilden, in denen, wie dem VIII. Kongreß der GST berichtet wurde, schon weit über 1400 Mitglieder aktiv an der Profilierung der jüngsten Nachrichtensportart mitwirken.

Mit Interesse nahmen Delegierte und Gäste des Kongresses Ergebnisse des Computersports auf. So auch die besten Programme aus den Einsendungen zum ersten Computersportwettbewerb. Diese und die jüngste Vergangenheit zeigen, die Mikrorechentechnik hat in der GST ihren sesten Platz gefunden. Nun geht es darum, den gut begonnenen Weg in höherer Oualität fortzusetzen.

Erwiesen ist: Die vielfältigen Anwendungsmöglichkeiten des Computers lassen den Sektionen viel Raum zur theoretischen und praktischen Arbeit. Das Ziel der Sektionstätigkeit ist das immer bessere Beherrschen der Mikrorechnertechnik, die Nutzung des Computers bis an seine Leistungsgrenze. Im Grundlehrgang BASIC werden den Teilnehmern Grundkenntnisse vermittelt, die ihnen helfen, Fähigkeiten und Fertigkeiten im Umgang mit anderen Programmiersprachen und Computern zu erwerben. Anspruchsvolle Aufgaben zu Softwarelösungen, die die Ausbildung interessanter machen, werden angestrebt, unter Verwendung der jeweils effektivsten Programmiersprache.

Nunmehr wurde der 1. Computersportwettbewerb abgeschlossen und ausgewertet. Eine Jury unter Vorsitz des Leiters der Abteilung Nachrichtenausbildung im ZV der GST, Dieter Sommer, ermittelte

für den 1. Platz die Kameraden A. Zerbst und W. Röder von der Sektion Computersport der GST an der Handelshochschule Leipzig;

für den 2. Platz Kamerad L. Hammer aus Riesa und

für den 3. Platz Kamerad M. Höding aus Wolmirstedt.

Die Sieger und Plazierten werden gemeinsam mit denen des 2. Computersportwettbewerbs gegen Ende des Jahres zur Auszeichnung nach Berlin eingeladen werden.

In Auswertung des 1. Computersportwettbewerbs seien an dieser Stelle einige Hinweise für zukünftige Teilnahmen gestattet. Die Aufzeichnung auf Magnetbandkassette ist mit Handaussteuerung übersteuert aufzunehmen. Das Kassettengerät muß entsprechend den Herstellerangaben eingestellt sein (Tonkopf, Aufnahmegeschwindigkeit – der Tonkopf sollte vorher gereinigt werden). Obwohl einige Programme unsauber aufgezeichnet wurden, konnten alle eingelesen werden, so daß in Zukunft auf das Listing verzichtet werden kann. Eine Kurzbeschreibung der Software ist für die weitere Bearbeitung unbedingt erforderlich und muß deshalb beigelegt sein.

E. Paul

Aufruf zum 2. Computersportwettbewerb

Der Zentralvorstand der GST ruft anläßlich des 70. Jahrestages der Großen Sozialistischen Oktoberrevolution alle Interessenten am Computersport zum 2. Computersportwettbewerb auf. Jeder Teilnehmer bzw. jedes Kollektiv kann sich mit einem Programm zu einem oder mehreren der folgenden Themen beteiligen:

- 1. Agitationsgrafik zum 70. Jahrestag der Gro-Ben Sozialistischen Oktoberrevolution – Computergrafik als Stand- bzw. Laufbild (3 bis 5 Minuten);
- 2. Wissenstest zum Wehrsport in der GST Fragen zu einer Wehrsportart, die von der Testperson zu beanworten sind Analyse und Bewertung des Wissens der Testperson;
- 3. Reaktions- und Geschicklichkeitstest entsprechend der Ausbildung in einer Wehrsportart werden die Reaktionsfähigkeit und Geschicklichkeit der Testperson ermittelt und der Wissensumfang der Testperson bewertet. Teilnahmebedingungen:
- 1. Es können ein oder mehrere Programme eingereicht werden, die alle auf dem KC 85/3 laufflibig sein müssen;
- 2. Angaben zum Autor/Autoren, wie Name Vorname Wohnanschrift Geburtsdatum Beruf Grundorganisation/Sektion/Arbeitsgemeinschaft:
- 3. Angaben zum Programm, wie Bezeichnung Programmiersprache Länge in Bytes Kurzbeschreibung Bedienungsanleitung:
- 4. Aufzeichnung des Programms (2mal hintereinander) auf einer Magnetbandkassette (erhält der Einsender zurück), die mit der Bezeichnung des Programms sowie mit dem Namen und der Anschrift des Autors/der Autoren beschriftet sein muß.

Die Programme werden nach folgenden Kriterien bewertet:

- A. Programmgestaltung und Inhalt
- agitatorische Wirksamkeit Korrektheit

des fachlichen Inhalts – Aussagefähigkeit und Originalität – fehlerfreier Ablauf des Programms bei allen möglichen Eingaben – grafisches Niveau:

- B. Internes Programmniveau
- Beständigkeit gegenüber Bedienungsfehlern Übersichtlichkeit des Programms und der verwendeten Algorithmec Arbeit mit Unterprogrammen;
- C. Programmdokumentation
- Qualität inhaltliche Gliederung Genauigkeit und Verständlichkeit der Formulierungen.

Eine Jury bewertet die Einsendungen. Die Au-

toren der besten Programme werden ausgezeichnet. Der Zentralvorstand der GST behält sich vor, ausgewählte Programme in der Zeitschrift FUNKAMATEUR zu veröffentlichen. Die Autoren werden selbstverständlich in üblicher Weise honoriert.

Die Einsendungen zum 2. Computersportwettbewerb sind bis zum 31. 10. 1987 zu richten an:

GST-Zentralvorstand Abt. Nachrichtenausbildung Langenbeckstraße 36-39 Neuenhagen 1272

Die Fernmeldetruppe für elektronische Kampfführung des Heeres der BRD-Bundeswehr (2)

Selbstverständlich ist die Eloka kein Bestandteil der Bundeswehr-Fernmeldetruppe für sich. Sie hat vielmehr eine "Dienstleistungsfunktion" für taktische militärische Verbände, bedient sich elektronischer Übertragungswege der weiteren Fernmeldestrukturen (Funk, Richtfunk, Fernschreib, Fernsprech). Diese Dienstleistungsfunktion beschrieb die Bundeswehr-Zeitschrift "Soldat und Technik" folgendermaßen.

Alle Auswertekräfte sowie die Führungskomponenten sind das Herz der Elektronischen Kampfführung und bilden zusammen mit der Fernmeldeausklarungszentrale die Eloka-Zentrale des jeweiligen Großverbandes (Division, Korps - d. Autor), bei der auch die Fernmeldeverbindungen zur Meldungserstattung auflaufen. Ein Leiter der Aufklärung steuert Erfassung und Auswertung. Er ist für die Meldungserstattung an die Bedarfsträger verantwortlich. Die Eloka-Zentrale meldet ihre taktischen Ergebnisse in taktischen Meldungen an den Großverband. Der Stab des Großverbandes erteilt entsprechend dem Auftrag und dem Aufklärungsplan die erforderlichen Einzelaufträge an die unterstellten Eloka-Kräfte und informiert die Eloka-Zentrale über die Lage.*

Und wieder ein Bedrohungs-"Argument"
Auch für Eloka muß – sicher um den Glauben
bei den Lauschern, Ätherspionen und Störern
der Bundeswehr zu wecken und aufrechtzuerhalten, mit ihrem unsichtbaren, oft aber hörbaren elektronischen Krieg gegen die sozialistischen Staaten und Armeen etwas Gutes zu
tun – die sattsam bekannte Mär von der Bedrohung aus dem Osten berbalten.

Die "Soldat und Technik"-Definition dafür: "Alle elektronischen Mittel eines Feindes, sowohl diejenigen, mit denen er aktlu in Erscheinung tritt, als auch solche, mit denen er – nach außen hin passiv – im Verborgenen wirkt, stellen ... eine Bedrohung dar."

Nun kann sich der potentielle Leser zitierter Zeitschrift unter den "aktiven" und "passiven" Bedrohungsmitteln möglicherweise schwer etwas vorstellen; daher folgt eine Erläuterung. Die aktiven Mittel sind nach Bundeswehrlesart Funk- und Richtfunkverbindungen, Radar, Licht- und Infrarotstrahler der NVA und der mit ihr verbündeten sozialistischen Armeen. Und bei den passiven Bedrohungsmitteln wird es nun ganz schlimm: Elektronische Schutzmaßnahmen (!), Wärmebildgeräte, Infrarotsichtgeräte, Restlichtverstärker sind es, die die "elektronische Bedrohung der NATO durch die Streitkräfte des Warschauer Pakies" offenkundig werden lassen.

Gewiß, militärisches Nachrichtenübertragungsgerät ist nicht dazu gedacht, Glückwunschtelegramme zu übermitteln, Schäferstündchen zu belauschen. Militärische Nachrichten- und elektronische Mittel haben ihre eigene Funktion – es kommt darauf an, zu welchem Zweck, mit welcher Absicht und von wem sie genutzt werden.

Der Schoß, aus dem die Eloka kriecht ...

ist die "Fernmeldeschule und Fachschule des Heeres für Elektrotechnit" in Feldafing am Starnberger See. Mit sichtlichem Stolz vermeldet "Soldat und Technik", daß diese Schule, die seit 1956 festen Bestand in der Bundeswehr hat, "an die Tradition der Heeresnachrichtenschule in Halle anknüpft, welche zu ihrer Zeit eine der anerkanntesten und fortschrittlichsten (!) Schulen der (faschistischen – d. Autor) Wehrmacht gewesen war."

Von den vier Lehrgruppen soll uns die mit der Bezeichnung "Lehrgruppe B" interessieren. Es ist die, die in sogenannten vier Inspektionen Offiziere, Reserveoffiziere und Unteroffiziere für die elektronische Kampfführung ausbildet. Ausbildungsbereiche dabei sind die Fernmeldeaufklärung gegen Sprechfunk-/Richtfunkund Tastfunk-/Schreibfunkverbindungen sowie Elektronische Aufklärung gegen Ortungsund Leitdienste.

Lehrgänge über elektronische Gegenmaßnahmen und Sprachlehrgänge in Russisch und Tschechisch, Eloka-Einweisungslehrgänge für Truppenführer und Eloka-Stabsoffiziere (in Brigaden und Divisionen des Heeres der Bundeswehr tätig – d. Autor) und für Offiziere der NATO gehören zu den Aufgaben der Lehrgruppe.

Für die praxisnahe Ausbildung der Eloka-Kräfte stehen, wie "Soldat und Technik" vermeldet, das Luftlandesemmeldebataillon 9 mit der ihm zugeordneten Gebirgsfernmeldekompanie 8 für elektronische Kampfführung zur Verfügung. Beide sind in der General-Fellgiebel-Kaserne (benannt nach dem General und Inspizienten der Nachrichtentruppe der faschistischen Wehrmacht) in Stamberg-Maxhof stationiert. Das Bataillon gehört zu den Jallschirmspringenden Verbanden der Bundeswehr" und der Teil 2 seines Auftrages lautet, nicht nur bei Übungen als Einsatzbataillon der 1. Bundeswehr-Luftlandedivision zu handeln. Eingeplant in das Aggressionskonzept ist auch die Gebirgsjägerkompanie 8. Sie ist die Elektronische-Kampfführungs-Kompanie einer Division im Rahmen des II. Korps. Ein in das Erziehungskonzept der Bundeswehrführung passendes geistig-politisches Bild erhalten die hier Auszubildenden unter anderem mit dem Fernmeldemuseum an der Schule. Bezeichnenderweise läßt "Soldat und Technik" diesmal eine Lücke: .Im Laufe der Jahre wurden hier über 2000 Ausstellungstücke zusammengetragen. Es sind Dokumente, Vorschriften, Geräte, Wassen und Uniformen. Das alteste Gerat, ein Feldtelegraf von 1880, das modernste ... ein Entwicklungsmuster eines Fernschreibgerätes von 1965 ... " Kein Wort darüber, welchen Raum Reichswehr und faschistische Wehrmacht mit ihrem "Glanz und Gloria" einnehmen. Kein Wort darüber, daß gerade diese Lücke ausschlaggebend für die Geisteshaltung der noch kalten Krieger auf Ätherwellen ist. Gut nur - wir wissen es. Wir richten uns darauf ein zu verhindern, daß diese Krieger "heiß" werden

F. Noll/E. Halentz

Technische Mittel der Eloka der Bundeswehr

Entsprechend der Forderung der Bundeswehrführung, "elektromagnetische Ausstrahlungen des Gegners aufzuklären und zu stören" ergehen an die elektronische Rüstungsindustrie der BRD lukrative Aufträge, die benötigten Geräte. Anlagen und Systeme für die Eloka bereitzustellen. So unter anderem

Aufklärungsempfänger mit sehr hoher Empfindlichkeit, störungsfreier Aufnahme unterschiedlichster Signale:

Empfangsanlagen und Zentralen mit zentralisierten Anlagen zur Aufnahme fremden Funkverkehrs, die mit wenigen, aber leistungsfühigen Antennen, mit Verstärkern und Verteilern für die Empfangsplätze (mehrere Empfanger zur Überwachung von Frequenzen und gleichzeitigem Suchempfang) gewährleistet wird,

Peilgeräte un verschiedenen Standorten sollen "die Ortsfeststellung der elektromugnetischen Struhlungsquellen des Feindes" ermöglichen. Dafür werden Ruhmenpeiler (erfassen die magnetische Komponente der elektromagnetischen Welle) und Phasenpeiler (erfassen die elektrische Komponente – den Phasenunterschied) eingesetzt:

Antennenanlagen mit äußerster Leistungsfähigkeit für den Empfang, die Peilung und Storung. Der Trend geht zu Antennen mit schmalen Öffnungswinkeln, um die Richtwirkung zu erhöhen. Suchempfänger überwachen als sogenannte Panoramaempfanger

oder Wellenanzeiger große Frequenzbereiche:

Analysiergeräte geben die technischen Werte von empfangenen elektromagnetischen Ausstrahlungen an (Funk, Radar u.a.),

Auswertegeräte fußen auf den Möglichkeiten der elektronischen Datenverarbeitung Zum Einsatz kommen freiprogrammierbare Datenverarbeitungsanlagen.

Störsender "sind autonome Waffensysteme, deren Waffenwirkung die ausgesendele Hochfrequenzenergie ist. Sie bestehen aus einer Empfangsanlage, einem Hochleistungssender und der Stromversorgung" sowie einer "Antenne mit hohem Wirkungsgrad... in Feindrichtung",

Zusammengestellt nach "Soldar und Technik" 11'1982

Die Elektronikindustrie der Hauptstadt (1):

Werk für Fernsehelektronik – Optoelektronik-Zentrum der DDR

Die größte Industriestadt der DDR ist Berlin. Hier haben von den 129 zentralgeleiteten Industriekombinaten 18 ihren Sitz und einen beachtlichen Teil ihrer Produktion (etwa 5,6 Prozent der industriellen Warenproduktion). Darunter dominiert die Elektrotechnik/Elektronik mit 16 Prozent der DDR-Produktion dieses Zweiges. Besondere Verantwortung trägt des Alb die Hauptstadt bei der Meisterung der Schlüsseltechnologien. In einer Beitragsfolge zum 750jährigen Jubiläum berichten wir über die dabei erreichten Ergebnisse.

Eng verbunden mit den Hochtechnologien ist das zum Kombinat Mikroelektronik Erfurt gehörende Werk für Fernsehelektronik Berlin (WF). Seine Geburt erlebte es im Herbst 1945, als Aktivisten der ersten Stunde mit Unterstützung sowjetischer Spezialisten aus einem zerstörten ehemaligen Rüstungsbetrieb das WF schufen. Schon im gleichen Jahr konnte mit der Entwicklung und dem Musterbau von Nachrichtenübertragungsgeräten werden. Zwei Jahre später wurden Glühlampen, Neonleuchtröhren und Elektronenröhren produziert. 1950 erhielt das Werk den Auftrag. für den sowjetischen Fernsehempfänger "Leningrad T2" die komplette Röhrenbestückung und die 9-Zoll-Bildröhre zu liefern. Dieser Austrag leitete zugleich die erste Großserienproduktion von Bildröhren in Europa ein. Das WF schuf auch mit die Voraussetzungen für die Einsührung des Fernsehens in der DDR. 1984 begann die Fertigung von Farbbildwiedergaberöhren, für die das Werk Alleinhersteller in der DDR ist

Mit der stürmischen Entwicklung der Mikroelektronik setzte um das Jahr 1970 auch die einer anderen Schlüsseltechnologie ein – der Mikrooptoelektronik. Mikrooptoelektronische Bauelemente sind Halbleiter, die – vereinfacht gesagt – Licht in Strom und Strom in Licht umwandeln bzw. beide Wandlungsarten gekoppelt durchführen können. Der Ende der 70er Jahre auch in unserer Volkswirtschaft sprunghast ansteigende Bedarf an solchen Bauelementen sührte zu der Entscheidung, dasur im WF eine Fertigungsstätte aufzubauen, die 1979 als Jugendobjekt in Betrieb genommen wurde.

In der ersten Etappe ging es vorrangig darum, herkömmliche Technik durch Halbleiterbauelemente abzulösen, also z. B. die Glimmlampe durch Leuchtdioden zu ersetzen. Sie sind uns heute längst im Alltag vertraut, sei es beim Rundfunkempfänger oder im Trabant. Heute kommt keine Robotersteuerung, kein CAD/CAM-Arbeitsplatz mehr ohne Optoelektronik aus.

Inzwischen geht es um Bauelemente, die neuartige Lösungen auf vielen Gebieten ermöglichen: CCD-Sensoren für die Informationstechnik, Anzeigebauelemente für flache Displays sowie Laserdioden und Empfangsdioden für die Lichtwellenleitertechnik.

Das WF, Alleinhersteller für die Mikrooptoelektronik in der DDR, produziert derzeit ein Sortiment von mehr als 60 Bauelementen, darunter Lichtemitterdioden (LED), Zifferanzeigebauelemente, IR-Sender-, Empfangerbauele750 JAHRE BERLIN 1987

Als Jugendobjekt wird der Bereich Optoelektronik im WF realisiert. Das Wettbewerbsziel 1987: 75 Millionen LED-Bauelemente Foto: V. Stark

Auf peinlichste Sauberkeit und Genauigkeit kommt es bei der Chip-Herstellung für optoelektronische Bauelemente an; Blick in einen sogenannten Reinstraum Foto: BZ/Olm

mente und Koppler, Flüssigkristall- (LCD) und ladungsgekoppelte (CCD) Bauelemente. Ein Großteil davon entstand in Kooperation mit der AdW und der Humboldt-Universität.

Die Probleme in der Beherrschung dieser Technologie liegen vor allem in der Materialspezifik. Während die Mikroelektronik an das Silizium gebunden ist, ist dieses Material für die Optoelektronik nur teilweise einsetzbar; es eignet sich nicht für die Erzeugung von Licht aus Strom.

Man fand neue Halbleitermaterialien in den sogenannten A III/B V-Verbindungen. Legt man eine Spannung an die LED an, entsteht je nach Materialbeschaffenheit ein anderes Licht. Solche Materialien sind Galliumphosphid (grünes Licht), Galliumarsenidphosphid (gelb bis rot) und Galliumarsenid (infrarot), eben Elemente der III. und V. Hauptgruppe des Periodensystems. Für die Herstellung dieser Werkstoffe muß übrigens ein Aufwand betrieben werden, der noch wesentlich höher liegt als bei üblichen Mikroelektronik-Bauelemente.

Die Produktion von optoelektronischen Bauelementen ähnelt in vielen den aus der Mikroelektronik bekannten Technologien. Ausgangspunkt sind nach dem Scheibenprozeß die nur 0,3 mm × 0,3 mm großen Chips, die auf Trägerstreisen aufgeklebt, gebondet und schließlich mit Epoxidharz vergossen werden. Rund, rechteckig, quadratisch, dreieckig in den Durchmessem 3 bis 5 mm findet man diese Leuchtdioden dann in Konsumgütern, wissenschastlichen Geräten, in Maschinen und Fahrzeugen. Wie wichtig es ist, das Produktionsaufkommen zu erweitem und dabei auch alle Wege der Intensivierung zu geben, macht dieser Vergleich deutlich: Mit der Produktion von 5-mm-LED im Wert von 20 Millionen Mark beeinflußt das WF in den Anwenderbetrieben eine Warenproduktion von 20 Milliarden Mark!

Der weiterhin stark steigende Bedarf an optoelektronischen Bauelementen ist für die Beschäftigten des WF Grund, in diesem Jahr 75 Millionen LED-Bauelemente zu produzieren und so den Bedarf der Volkswirtschaft abzudecken. R. Schmid

Am "Preis der Berliner Zeitung für Spitzenleistungen in Wissenschaft und Technik 1987" wird sich auch das WF beteiligen. So konnte im März das Forschungsvorhaben "Ausbeutesteigerung und Effizienzerhöhung bei Leuchtdioden-Chips" erfolgreich abgeschlossen werden. Im Ergebnis können 1987 etwa 7 Millionen Leuchtdioden zusätzlich gefertigt werden.

Eine Neuentwicklung ist das LED-Kompaktbauelement VQH 601 für den Einsatz z. B. als Kassettenfachhinterleuchtung, das aus einem roten und fünf grünen LED-Chips (Leuchtsegment je 3,25 mm × 2,5 mm) besteht. Vorbereitet werden auf dieser Basis weitere Flachbandbauelemente für vielfältige Einsatzgebiete. Der Clou im Konsumgüterbereich wird eine LCD-Wohnraumuhr sein, die mit einem Potpourri bekannter Berlin-Melodien auch weckt.

Kleincomputer in der DDR – eine Übersicht (3)

Dr. H. GUTZER

Die Betriebssysteme der Kleincomputer KC 87, KC 85/3 und "Z 1013" sind umfangreicher und leistungsfähiger. Einen wesentlichen Anteil daran haben die gesamte Bildschirmsteuerung und die Nutzungsmöglichkeiten von Druckern, elektronischen Schreibmaschinen, Spielhebeln u. a. Den umfangreichsten Service bietet hier im Vergleich das Betriebssystem des KC 85/3.

3.2. Basissoftware: Basis- oder Hilfssoftware soll die Herstellung von Programmen unterstützen. Da sie selbst umfassenden Speicherplatz und darüber binaus eine alphanumerische Arbeitsweise (Tastatur und Bildschirm) fordert, müssen bier die Computer "LC 80" und Poly 880 in der Grundversion unberücksichtigt bleiben. Dem eingangs betrachteten Werkzeugcharakter des Computers in den verschiedenen technischen, naturwissenschastlichen und künstlerischen Disziplinen entsprechen die Computer KC 87, KC 85/3 und _Z 1013", sofern sie mit BASIC-Interpreter genutzt werden. Alle drei BASIC-Interpreter benötigen einen Speicherplatz von etwa 10 KByte. Bei der Arbeit mit einem BASIC-Modul (KC 87 und KC 85/3) geht dies nicht zu Lasten des frei verfügbaren Schreib-Lese-Speichers für den Nutzer.

Die BASIC-Interpreter des KC 87 und des "Z 1013" sind weitgehend identisch. Änderungen ergeben sich aus dem unterschiedlichen Bildschirmformat (siehe 1.2.). Der "Z 1013" versteht auch keinerlei Farbinformationen, da

er nur für den Schwarz/Weiß-Betrieb konzipiert wurde. Beide Interpreter verwenden aber die gleiche Zeichenbildtabelle und verfügen damit auch über die gleichen Pseudografikzeichen.

Die Unterschiede zum BASIC-Interpreter des KC 85/3 sind größer. Das hetrifft insbesondere den Umgang mit Vollgrafik und Farbe. Der KC 85/3 hat auch ein größerts Zeilenformat und eine Zeichenbildtabelle mit anderen Pseudografikzeichen. Dennoch sind, sofern es sich nicht um Vollgrafikprogramme handelt, die Programmanpassungen auf einen anderen Typmeist ohne große Probleme möglich. Ursache dafür ist die generelle Orientierung der Entwickler der BASIC-Interpreter für die DDR-Kleincomputer am MSX-BASIC-Dialekt.

Für alle drei Computertypen sind weitere Interpreter (z. B. FORTH) und Compiler (z. B. PASCAL) fertiggestellt oder in der Entwicklung. Auch durch komplexe Anwendersoftware auf Magnetbandkassetten oder Steckmodulen (z. B. zur Textverarbeitung, für statistische Berechnungen oder zur Arbeit mit Dateien) werden die Möglichkeiten des Werkzeugs Kleincomputer noch potenziert. Für viele Anwendungsfälle (auch künstlerische) wird der Vollgrafikcomputer KC 85/3 ein geeignetes Gerät sein. Für Berechnungen und Umgang mit Text sind der KC 87 und KC 85/3 gleichermaßen gut geeignet. Bei entsprechenden Speichererweiterungen oder einem BASIC-Modul und einer günstiger zu bedienenden Tastatur trifft dies auch auf den "Z 1013" zu.

Daraus folgt, daß letztenendes nicht der Computertyp über den Erfolg entscheidet (der Fotograf mit dem besten Apparat macht keineswegs immer die besten Aufnahmen), sondern die Ideen zur sinnvollen Nutzung des Computers dafür ausschlaggebend sind. Damit bleibt die herbe Erkenntnis, daß der Computer uns das Denken nicht abnimmt, ja, er fordert es geradezu heraus.

Ansicht der Platine des Mikrorechnerbausatzes "Z 1013" mit 16-KByte-RAM-Speicher

Foto: R. Besser

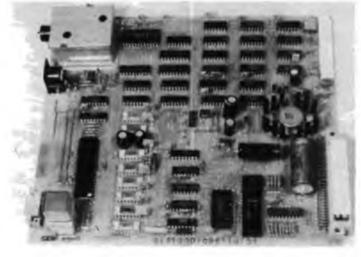


Tabelle 3: Technische Parameter des Mikrorechnerbausatzes "Z 1013"

Bezeichnung:
Hersteller:
Bauform:

Abmessungen:
Stromversorgung:
Mikroprozessor:
Schreib-Lese-Speicher:
Festwertspeicher:
Speichererweiterung:
Tastatur:

Anzeigeeinbeit: Bildaufbau:

externer Speicher: Ein- und Ausgabe: externe Anschlüsse:

Grafikmöglichkeiten:

Programmiersprache: Zusatzanschlüsse: Mikrorechnerbausatz "Z 1013" VEB Robotron-Elektronik Riesa

bestückte und geprüste Leiterplatte mit abgesetzter Folienslachtastatur

215 mm × 230 mm 12 V/1 A Wechselstrom (extern)

U 880 D 16-KByte-RAM

2-KByte-ROM (Betriebssystem) bis maximal 64 KByte

Folienflachtastatur mit 32 Tasten.

alphanumerisch

Schwarzweiß-Fernsebgerät

32 Zeilen mit 32 Zeichen, etwa 250 verschiedene Zeichen (Ziffern, Groß- und Kleinbuchstaben, Sonderzeichen, Grafikzeichen) quasigrafisch mit 146 verschiedenen Grafik-

symbolen

Kassettenmagnetbandgerät 8 Kanäle eines E/A-Tores (U 855 D) Buchse Fernsehgerät (VHF) Buchse Kassettenmagnetbandgerät

BASIC, Maschinenkode

15poliger und 58poliger Steckverbinder

Tabelle 4: Technische Parameter des Lerncomputers "LC 80"

Bezeichnung: Hersteller: Bauform:

Abmessungen: Stromversorgung: Mikroprozessor: Schreib-Lese-Speicher: Festwertspeicher: Speichererweiterung: Tastatur:

Anzeigeeinheit: externer Speicher: Ein- und Ausgabe: externe Anschlüsse:

Zähler/Zeitgeber: Tonausgang: Programmiersprache: Zusatzanschlüsse: Lerncomputer "LC 80"
VEB Mikroelektronik "Karl Marx" Erfurt
Einplatinenrechner mit bexadezimaler

Tastatur 310 mm × 255 mm 12 V/1 A Gleichstrom U 880 D

1-KByte-RAM 2-KByte-ROM (Betriebssystem) ROM - 10 KByte, RAM - 3 KByte 25 Tasten (16 Hexadezimal, 7 Funktionen,

Rücksetz, Interrupt)
6stellige Siebensegmentanzeige
Kassettenmagnetbandgerät
12 Kanäle eines E/A-Tores (U 855 D)

Buchse Kassettenbandgerät Buchse Stromversorgung 4 Zähler/Zeitgeber (U 857 D) Fernsprechhörerkapsel Maschinenkode U 880 D 26poliger und 58poliger Steckverbinder

FA 7/87 - 325

Elektronisches Zimmerthermometer mit erweiterter Analoganzeige

U. REISER

Die bisher veröffentlichten Schaltungen haben meist einen kleinen Temperaturbereich oder die Ablesegenauigkeit ist zu gering. Mit dem vorliegenden Gerät ist durch die Kaskadierung von zwei Schaltkreisen A 277 D ein Anzeigeumfang von 22 K möglich. Mit der Wahl der Betriebsart Punktbetrieb läßt sich so eine Ablesegenauigkeit von 0,5 K erreichen. Der Aufwand an Bauelementen wurde entsprechend der möglichen Ablesegenauigkeit der Analoganzeige sowie aus Platzgründen auf ein Minimum reduziert.

Analoganzeige

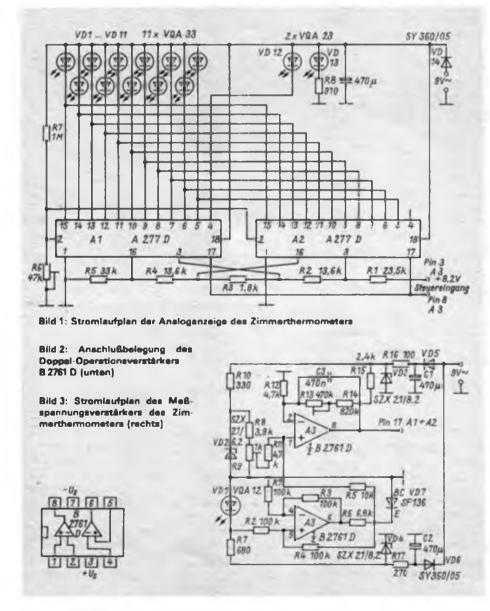
Für die Anzeige der Temperatur wurde eine Kaskadierung von zwei 1S A 277 D gewählt. Die Besonderheit besteht in der Doppelverwendung der Leuchtdioden (Bild 1). Die Ausgänge Pin 5 bis Pin 15 beider 1S sind parallelgeschaltet. Der Vorteil besteht in der Einsparung von Leuchtdioden und einer kleineren Skale. Die Leuchtdiode VD 12 am Pin 4 des A1 zeigt den oberen Betriebsbereich der Skale sowie (beim Verlöschen der Skale)

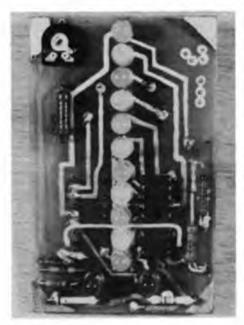
eine positive Meßwertüberschreitung an. Die Leuchtdiode VD13 signalisiert die Betriebsbereitschast des Gerätes bei Unterschreitung in negativer Richtung [1]. Der Spannungsteiler R1 bis R5 zur Referenzspannungserzeugung wird mit der positiven stabilisierten Spannung von 8.2 V aus dem Steuerteil betrieben. Er wurde für einen Spannungshub von 3,2 V bis 6,0 V berechnet. Die angegebenen Widerstandswerte sind entweder mit Einstellreglern oder durch Widerstandskombinationen zu realisieren. Das ist besonders für den Gleichlauf und den gleitenden Übergang von Al und A2 notwendig. Die Beschaltung des Pin 2 beider IS mit R6 und R7 ermöglicht es, den LED-Strom bis etwa 20 mA einzustellen. Zur Anpassung der LED-Ströme an die Umgebungshelligkeit kann ein Fototransistor entsprechend [2] eingesetzt werden. Durch die Art der Beschaltung der Leuchtdioden an die IS erfolgt ein Punktbetrieb der Skale. Somit ist das Ausleuchten von zwei LEDs einer Zwischenstufe von 0,5 K zuzuordnen. Die Schaltung nach Bild 1 ist auf einer zweiseitigen Leiterplatte von 50 mm × 80 mm aufgehaut.

Temperaturmeßwandler

Das Kernstück dieser Baugruppe ist der Doppel-Operationsverstärker B 2761 D (Bild 2), dessen erstes System als Meßspannungsverstärker und dessen zweites als Konstantstromquelle für den Temperaturfühler arbeitet (Bild 3).

- Konstantstromquelle


Als Temperaturfühler dient ein als Diode geschalteter Transistor SF 136. Durch ihn fließt ein stabilisierter Strom von 0,8 mA bis 1 mA. Die Stabilität der Stromquelle wird durch die als Referenzelement verwendete Leuchtdiode (rot) VD1 bestimmt [3], [4]. Der Konstantstrom ist abhängig von der Flußspannung der LED bzw. von der Größe des Widerstandes


- Meßspannungsverstärker

Er hat die Aufgabe, die am Fühler austretende Spannungsänderung von -2 mV/K auf 0,12 V/K sür den Steuereingang des A 277 D (Pin 17) zu verstärken. Da der Temperaturkoessizient des Fühlers negativ ist, muß der Operationsverstärker als nichtinvertierender Verstärker arbeiten. R2 wird zunächst so eingestellt, daß an beiden Eingängen etwa gleiche Spannungswerte liegen. Dabei liegt am Ausgang eine gegen Masse bezogene positive Spannung [5], [6]. Der Verstärker wird nun mit R9 auf 3,2 V (bei 6 °C) und mit R13 auf 6,0 V (bei 27 °C-Wasserbad) abgeglichen.

Stromversorgung

Die Stromversorgung des Operationsverstärkers erfolgt durch zwei Einweg-

Gleichrichterschaltungen aus einer Wechselspannung von 9 V. Beide Spannungen werden durch Z-Dioden auf einen Wert von jeweils 8,2 V stabilisiert. Die Stromversorgung des Anzeigeteils erfolgt mit einer Einweggleichrichtung und Ladekondensator.

Anmerkung

Entsprechend der Ausschreibung des FA-Konstruktionswettbewerbs (3 Schaltkreise) wurde die Konstantstromquelle mittels Operationsverstärker aufgebaut. Da die Beschaftbarkeit eines Doppel-Operationsverstärkers nicht immer möglich ist, habe ich zunächst eine Variante mit einem B 761 (B 861) und einem Transistor ausprobiert (Bild 6).

Literatur

[1] Dahms, H.; Elschner, H; Rödig, G.: Anwendung der IS A 277 D, radio-fernschen-elektronik 30 (1981), H. 12, S. 757

Bild 4: Ansicht der Platine mit der Analoganzeige (links)

Bild 5: Ansicht der Platine mit dem Meßspannungsverstärker (Mitte)

Bild 6: Variante für den Meßapennungsverstärker

- [2] Dahms, H.; Elschner, H; Rödig, G.: LED-Ansteuerschaltkreis A 277 D, radio-fernsehen-elektronik 30 (1981), H. 10, S. 615
- [3] Jakubaschk, H.: Elektronikschaltungen mit dem OPV A 109 D, "electronica", Band 182, Militärverlag der DDR, Berlin 1980, 1. Auflage, S. 53
- [4] Jakubaschk, H.: Leuchtdioden und ihre Anwendung, "electronica", Band 149, Militärverlag der DDR, Berlin 1977, 1. Auflage, S. 60
- [5] Schlenzig, K.: Elektronische Leuchtanzeigen, Bauplan 53, Militärverlag der DDR, Berlin 1983, 1. Auflage
- [6] Kühne, H.: Schaltbeispiele mit dem OPV A 109 D _electronica*, Band 170, Militärverlag der DDR, Berlin 1979, I. Auflage, S. 44

Mikroelektronik-Baustufen für den POLYTRONIC A-B-C (13)

Dipl.-Ing. K. DEISTUNG

6. Stufe F: Schalten mit Mikroelektronik

6.1. Einordnung

Elektronische Schalter ersetzen immer mehr die elektro-mechanischen. Außer einer Materialeinsparung ergeben sich höhere Zuverlässigkeit und Lebensdauer der Geräte. Trotz intensiver Forschung im Bereich elektrischer Kontakte gilt auch heute noch allgemein: "Mit dem Einzug der Elektronik in alle Bereiche unseres Lebens haben sich die vielfältigen, störenden Erscheinungen an den Kontakten so stark summiert, daß heute die elektrischen Kontakte zu einem Schwerpunkt der Unzuverlässigkeit elektrischer und elektronischer Anlagen gehören." [24]

Als elektronische Schalter sind Dioden, Transistoren, Thyristoren u.a. als Einzelbauelemente bekannt. Um den Anwendungsbereich elektronischer Schalter zu erweitern, wurden auch hier IS entwikkelt, die jeweils einen erweiterten speziellen Bereich erschließen.

Zwei Vertreter für diese Schalter-IS sind die Hall-IS B 461 G (Bastlertyp R 461), die magnetisch betätigt wird, und die Schwellspannungs-IS A 302 D. Für den hier vorgesehen Einsatz wurden beide IS auf einer Platine angeordnet (Bild 6.2). Jede IS hat nur vier Anschlüsse (+U₀, Masse, Ein- und Ausgang), so ergibt sich ein recht übersichtliches Bild, da außerdem die Betriebsspannungen für beide IS gleich sind. Eine Diode VD sorgt für den Verpolungsschutz. Zur Stromversorgung werden 6 V verwendet (Batterie oder Netzteil). Bild 6.1 zeigt die Leiterseite der Platine.

Um die Schaltung variabler zu gestalten,

wird die Hall-IS über vier verdrillte Litzendrähte (0,25 mm², 200 mm lang) mit der Platine verbunden. Wer nur die Hall-IS nutzen will, kann an die vier Litzendrähte gleich Verbindungsklemmen mit verschiedenfarbenen Kabelhulsen montieren (1 – bl., 2 – ge, 3 – ws, 4 – gn). Die Bauelemente der Stufe F sind in Tafel 1.1 angegeben (FA 9/1986, Seite 433).

6.2. Hall-Schaltkreis

Kernstück der IS ist ein Hall-Generator [17], [25]. Er besteht aus einem dünnen Halbleiterplättchen. Die beiden Schmalseiten besitzen linienhaste Kontakte zur Einspeisung eines Steuerstroms. In der Mitte der Längsseite befinden sich Punktkontakte zur Entnahme der Hallspannung im Millivolt-Bereich (Bild 6.3). Der fest eingestellte Steuerstrom erzeugt im Halbleiterplättchen ein homogenes Strömungsfeld. Wirkt jetzt senkrecht ein Magnetseld ein, lenkt es die Ladungsträger infolge der Lorentz-Krast aus. Zwischen den Punktkontakten entsteht die Hallspannung. Sie wird innerhalb der IS verstärkt. Diese Spannung steuert einen Trigger und dieser den Open-Kollektor-Ausgangstransistor.

Das Magnetfeld kann dem Hall-Element,

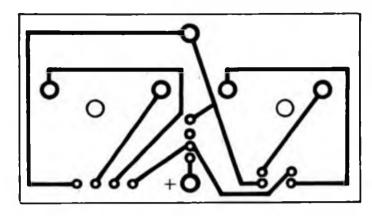
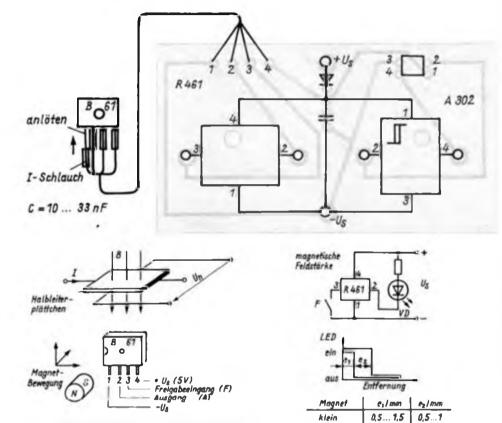


Bild 61: Platinenlayout fur den Schalter IS-Baustein (links)

Bild 62: Bestükkungsplan für die Platine des Schafter IS-Bausteine (unten)

das an der IS mit einem Punkt gekennzeichnet ist, aus allen Richtungen zur Auslösung des Schaltvorganges (stets mit dem Magnet-Südpol zum Punkt) genähert werden, Bild 6.4 (der Magnet-Nordpol an der anderen Seite ergibt eine geringere Empfindlichkeit). Neben der kontaktlosen magnetischen Beeinflussung kann die IS über einen Freigabeeingang gesteuert werden [26].

6.3. Schaltbeispiele


Bild 6.5 gibt eine Pruf- und Testschaltung an. Der offene Freigabeeingang F(3) liegt auf H und muß nicht beschaltet werden. Am Ausgang A(2) liegt eine LED, die den Schaltzustand anzeigt. Jetzt nähert man der IS einen Magnet. Je nach magnetischer Feldstärke erfolgt der Schaltvorgang in einer bestimmten Entfernung von der IS (evtl. Magnet drehhen). Wird jetzt F an Masse gelegt (Magnet an der IS, LED leuchtet), muß die LED erlöschen, die IS ist also in Ordnung. Es ist zweckmäßig, die Südpolseite des Magneten zu kennzeichnen, um bei den weiteren Versuchen nicht erst probieren zu milssen

Zur Feldstärkebeurteilung werden die Magnete abwechselnd der IS genähert (Schaltung nach Bild 6.5). Je größer die Entfernung bis zum Schalten, desto grö-Ber ist auch die Feldstärke des Magneten. Der Ausschaltpunkt liegt stets ein Stück weiter entfernt als der Einschaltpunkt; das ist die Schalthysterese l. im Bild 6.6. In der Kombination beider Magnete vergrößern sich l1 und l2. Dazu wird der kleine Magnet mit zwei bis vier Lagen Papier so hinter dem Punkt an der IS befestigt, daß er noch sicher einschaltet. Jetzt nähert man den großen Magneten mit dem Nordpol dem Punkt an der IS; die LED erlischt in deutlich größerem Schaltabstand, und der Einschaltvorgang beim Entfernen des Magneten hat eine große Hysterese. Der Hallgenerator wird vom Feld des kleinen Magneten in Einschaltrichtung durchflutet und die LED leuchtet. Das starke Magnetfeld kompensiert das schaltende Magnetfeld mehr oder weniger, die LED erlischt. Mit zwei gleichstarken Magneten geht es prinzipiell auch noch.

Als Drehzahlgeber werden zwei Lösungsmöglichkeiten vorgeschlagen.

1. Ein kleiner Magnet wird mit drei festen Zwirnsfäden (6 Löcher, etwa 0,8 mm bohren) auf der Motorscheibe befestigt. Auf der Gegenseite dient eine kurze Schraube (etwa Magnetmasse) zur Auswuchtung, Bild 6.7. Zum Anlaufen des Motors ist der Einstellregler kurz auf R = 0 zu stellen oder der Motor anzudrehen. Man nähert nun die IS der "Magnetscheibe", Schaltung nach Bild 6.5. Dabei sind nur geringe Drehzahlen zweckmäßig.

2. Eine Loch/Sektor-Scheibe aus nicht

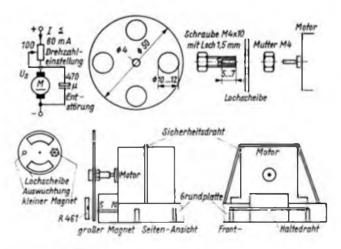


Bild 6.3/6.4: Prinzipdarstellung des Hall-Geners-

tors (oben) und Auslösung und Anschlußbeie-

gung der Hall-IS (unten)

Bild 6,7: Drehzahleinstellung und Realisierung von einem Impuls je Umdrehung (links o. und u.)

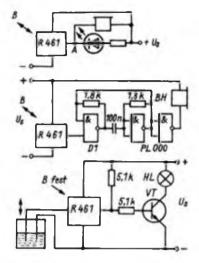
3 ... 5

6 ... 8

Bild 6.5/6.6: Prüf und Teatschaltung für die Hall IS B(R) 461 G (oben) und Darstellung der

Schaltpunkte einer Hall-IS B(R) 461 G (unten)

10 ... 15 5 . . 20


graß

Kombination

Bild 68: Darstellung der Loch/Segment-Scheibe und ihre Be festigung (oben M. und I.)

Bild 69: Aufbau der Impulserzeugung mittels motorgetriebener Lochscheibe (unten M., und r.) magnetisierbarem, etwa 0,5 mm dicken Eisenblech, wird mittels M4-Schraube mit 1,5-mm-Loch auf dem Motor besestigt, Bild 6.8. Diese Arbeiten müssen sorgfältig ausgesührt werden, damit die Scheibe möglichst rund läust und bei höheren Drehzahlen nicht als Wursgeschoß davonsliegt. Der Motor ist mittels Draht zusätzlich an der Grundplatte zu besestigen, um ein Verrutschen/Kippen durch die austretenden Kräste zu vermeiden. Die Lochscheibe gibt gegenüber der Segmentscheibe eine höhere Sicherheit (Arbeitsschutz) und ist meist auch leichter anzusertigen.

Der große Magnet ist an der Grundplatte zu befestigen, während sich die IS vor der Scheibe befindet, Bild 6.9. Der Magnet bremst die Scheibe stark und der Motor nimmt jetzt einen Strom von etwa 250 mA auf. Damit kann die Drehzahleinstellung nicht mehr über den 100-Ω-Einstellwiderstand erfolgen. Es können 3 V oder 4,5 V Batteriespannung bzw. ein Netzteil verwendet werden. Der Anlaufstrom des Motors in beiden Schaltungsbeispielen beträgt bei 4,5 V maximal 0,5 A (stehender Anker). Zur Erhöhung der Empfindlichkeit kann der kleine Magnet den Hallgenerator "vorspannen". Er darf ihn aber noch nicht schalten, das bewirkt das von den Löchern freigegebene Magnetfeld. Eine optische und akustische Auswertemöglichkeit zeigt Bild 6.10. Eine Möglichkeit zur Ansteuerung von Logikbausteinen gibt Bild 6.11. wieder. Durch das Magnetfeld wird der Tongenerator eingeschaltet. Hier ist eine weitere Schaltung angegeben, die mit einem D 100 D allerdings nicht anschwingt. Dafür sind entsprechend die

anderen angegebenen Schaltungen zu verwenden, die bereits erprebt wurden.

Für die Füllstandsanzeige/Pegelsensor für elektrisch leitende Flüssigkeiten gibt es in der Experimentieranleitung "A-B-C" ebenfalls Beispiele. Die erforderlichen Bauelemente sind demzufolge vorhanden; die Hall-IS läßt sich über den Freigabeeingang entsprechend steuern, Bild 6.12. Je nach Stromverstärkung des Transistors ändert sich die Lampenhelligkeit. Man kann auch eine LED verwenden, Bild 6.5.

Der Einsatz des Motors über einen Transistorschalter ist wegen des hohen Einschaltstroms mit den Transistoren des Baukastens nur bei Andrehen möglich. Der Transistor bringt auch nicht den vollen Relaisstrom auf (I = 0,15 A bei U = 6 V). Ein SF 126 D wurde das Problem besser lösen.

Der Schaltzustand einer Hall-IS, d.h., die Feldstärke eines Magnetfeldes läßt sich

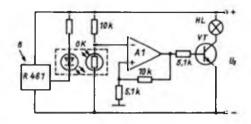


Bild 6.10: Optische und skustische Auswertung (I. o.)

Bild 6.11: Hall-IS atquert einen Tongenerator (L.M.)

Bild 6.12: Anwendung des Bausteins als Pegelsensor (f. u.)

Bild 6.13: Magnetisch gesteuerter Optokoppler (oben)

auch über einen Optokoppler übertragen, Bild 6.13, vergl. auch Bild 5.39. Zusätzlich kann man den Freigabeeingang belegen und so eine UND-Schaltung realisieren. [27] und [28] enthalten weitere Anregungen. (wird fortgesetzt)

Literatur

- (24) Höft, H.: Elektrische Kontakte. Reihe is, VEB Verlag Technik, Berlin 1977
- [25] Möschwitzer, A.: Elektronische Halbleiterbauelemente, Reibe ie, VEB Verlag Technik, Berlin 1975
- [26] Schwotzer, G.: Integrierte magnetisch betätigte kontaktlose Schalter B 461 G und B 462 G, Halbleiterinformation 195, radio-ferosehenelektronik, 32 (1983), H. 8, S. 505 bis 508
- [27] VEB Halbleiterwerk Frankfurt/Oder: Hall-Schaltkreis, Bastlerbeutel 12
- [28] Bergman, H.: Neue Anwendungen des Halleffektes, radio-fernsehen-elektronik, 29 (1980), H. 8, 5, 532 bis 534
- [29] Büchner, K.: Aufbau, Eigenschaften und Anwendung des integrierten Schwellwertschaltkreises A 302, 9. Halbleiterbauelemente-Symposium, Frankfurt (O.) 1981

SVVL-QTC

Bearbeiter: Andreas Wellmann, Y24LO PSF 190, Berlin, 1080

Ergebnisse des Wettbewerbes "Aktivster SWL des Bezirks Dresden 1986"

Kurzwelle

- 1. Y2-8213/L91 722,0 P. 2. Y78-03-L 670,0 P. 3. Y2-11755/L34 457,7 P.
- 4. Y78-02-L 337,0; 5. Y52-07-L 320,0; 6. Y82-07-L 319,8; 7. Y52-10-L 301,0; 8. Y2-3531/L67 239,0; 9. Y78-04-L 238,0; 10. Y2-11607/L53 233,0; 11. Y64-14-L 208,0; 12. Y31-06-L 182,0; 13. Y81-06-L 158,8; 14. Y82-05-L 157,3; 15. Y2-10416/L67 153,0; 16. Y2-12129/L76 143,0; 17. Y31-08-L 140,0; 18. Y76-06-L 139,5; 19. Y2-18148/L67 136,0; 20. Y52-13-L 113,2; 21. Y2-12328/L87 92,3; 22. Y2-12130/L76 83,3; 23. Y63-15-L 79,3; 24. Y31-09-L 39,0; 25. Y31-26-L 30,0; 26. Y2-EA-13635/L67 17,0

Ultrakurzwelle

_		
1.	Y2-11755/L34	123,0 P
2.	Y78-04-L	32,0 P
3.	Y2-10416/L67	2,0 P

Ergebnisse der "QSO-Party F 1987"

Kategorie A 1. Frank Nestler/N74 308 P 2. Peter Cecrle/J47 0 P

1. Y68-14-F 1416 P. 2. Y82-05-N 1332 P. 3. Y38-06-F 1296 P.

Kategorie B

4 Y84-07-L 1260, S. Y39-14-K 1232, 6. Y61-01-J 1200, 7. Y34-08-F 1177, 8. Y69-02-F 1144, 9. Y54-08-I 1089, 10. Y34-02-F 1079, 11. Y33-06-N 1067, 12. Y33-07-F, Y48-02-M 1056, 14. Y54-11-F 1012, 15. Y2-12 322/L37 1000, 15. Y64-36-H 936, 17. Y46-09-O, Y52-25-E 880, 19. Y59-10-F 864, 20. Y31-11-E 860, 21. Y44-17-F 840, 22. Y59-04-M 825, 23. Y59-03-M 792, 24. Y38-09-F 170, 25. Y51-18-G 765, 26. Y33-14-B 736, 27. Y56-15-F 720, 28, Y74-11-N 680, 29. Y64-08-F, Y59-02-M 639, 31. Y43-06-F 616, 32. Y36-03-M, Y48-32-N 576, 34. Y2-EA-11416/F63 560, 35. Y59-07-F 540, 36. Y36-03-F 512, 37. Y31-09-F 495, 38. Y65-05-M 416, 39. Y59-11-F 234, 40. Y41-10-K, Y52-05-F, Y39-05-G, Y59-16-N 0

Kategorie C

1. Y42-07-F 1 488 P. 2. Y46-03-F 1 428 P. 3. Y58-02-A 1 243 P.

1237 F. 4. Y53-04-F 1221, S. Y46-02-F 1160, 6. Y33-13-0 1080, 7. Y66-03-F, Y71-05-G, Y48-04-N 1056, 10. Y44-04-M 1040, 11. Y41-04-L 913, 12. Y59-01-F 748. Nichtabrachner: Y39TF, Y51SF

Aus der Postmappe

Andreas, Y24VF, schrieb zur "QSO Party F1871; "Es nahmen 35 Sendeamateure (Rekordbeteiligung aus unserem Bezirk und 58 Hörer aus der DDR (außer C. u. D) teil. Von vornherein gingen wir davon aus, daß dieser Contest in erster Linie eine Übung für die SWLs ist, um bei "richtigen" Contesten Fehler bei der Abrechnung zu vermeiden. Dem entsprechend wurde die Auswertung diesmal etwas anders als bei pormalen Contesten durchgeführt. Jeder Teilnehmer bekam sein Contestlog mit einem speziellen Deckblatt zurück. Auf diesem Deckblatt wurden alle Fehler angekreuzt. Um nicht den Mut für eine weitere Contestteilnahme zu nehmen, haben wir keine SWLs disqualifiziert. Es gab nur bei wenigen Logs keinerlei Beanstandungen Die meisten Fehler lassen sich durch aufmerksames Lesen der Ausschreibung vermeiden. Das betrifft die Duplikatkontrolliste und das Auflisten der Multiplikatoren. Wir empfehlen noch einmal allen Hörern den Beitrag von Y21FA und Y21MF im FA 3/85, S. 127, ,Keine Angst vorm Contestlog'. Man sollte sich auch nicht scheuen, aktive Contester an der Klubstation um Rat zu fragen."

Karlheinz, Y55-10-A freute sich über die Bestätigung von 7Q7LW. In den Wintermonaten gelangen ihm DJ6QT/9L auf 40 und 80 m, 3C1MB auf 20, 40 und 80 m, 9Y4AFP, HP8CG/mm und FM5CL auf 40 m, VU4APR auf 160, 80, 40 und 20 m. Karlheinz war März/April 8 Wochen zu Hause und nutzte jeden SWL-oftenen Contest.

Ausbreitung August 1987

Bearbeiter: Dipl.-Ing. František Janda, OK1HH 251 65 Ondfajov 268, ČSSR

Die Aktivität in den Sonnenfleckengruppen, die zum sich entwickelnden 22. elfjährigen Zyklus gehören, berechtigt zu der Annahme, daß sie weiter ansteigt. Die Ausgangswerte für die Vorbersage sind $R_{12} = 23$ bzw. der Sonnenstrom 80. Kurzzeitige Veränderungen werden wahrscheinlich eine geringe Amplitude haben und die folgenden Schwankungen der KW-Ausbreitungsbedingungen noch stärker durch die typische geringe Empfindlichkeit der lonosphäre im Sommer unterdrückt. In der ersten Hälfte bis zum zweiten Drittel des Monats beleben noch &-Signale die bochfrequenten Bänder, danach tritt eine mehrwôchige Pause ein. Erst die letzte Septemberdekade bringt dank der günstigen Kombination der saisonbedinaten Veränderungen und des erwarteten Ansteigens der Sonnenstrahlung eine wesentlichere Belebung der Frequenzen über 20 MHz.

Den letzten solchen Anstieg erlebten wir im April, wie es übrigens an dieser Stelle im Februar- und März-Hest richtig vorbergesagt wurde. Die Märzentwicklung deutete dabei keineswegs eine Belebung der Sonnenaktivität an, denn die Messungen des Sonnenstroms unterschieden sich wenig voneinander: 74, 75, 73, 75, 75, 77, 77, 78, 75, 72, 71, 70, 70, 72, 71, 72, 72, 73, 72, 75, 75, 74, 76, 76, 76, 76, 76, 75, 76, 75 und 72 mit einem Durchschnitt von 74.1. Die Sonnenflekkenrelativzahl 14,8 ermöglicht die Berechnung von R₁₁ = 12,4 für September. Die geomagnetische Aktivität war nicht groß, wie aus den Indizes A, ersichtlich ist: 12, 3, 10, 12, 26, 14, 20, 13, 10, 11, 12, 15, 10, 9, 11, 16, 10, 17, 14, 4, 23, 18, 6, 6, 8, 16, 22, 11, 6, 5 und 3. Ein ausgesprochen schlechter Tag war nur der 22.3., die Wirkung wurde durch einen ungünstigen Verlauf verstärkt, als die erste Störungsphase in der zweiten Nachthälste (0200 UTC) zu Ende ging Wegen der geringen Strahlung konnte die lonosphäre am Tage night zu sich kommen" und danach folgte noch eine Störung ab 1600 UTC. Schlecht war auch die Periode vom 7. bis 9. 3. 1987. Umgekehrt konnten wir bls zum 5. 3., vom 18. bis 21. 3. und ab 24. 3. eine günstige Entwicklung verzeichnen. Zu Beginn und am Ende des Monats wirkte sich die ansteigende Phase des Verlaufe der Sonnenstrahlung aus, am 18.3 endete die positive Phase der Störung (die geomagnetische Störung begann um 1210 UTC). Durch den allmählichen Beginn verzogerte sich die Verbesserung und spaltete sich im Tagesablauf in größere Abschnitte auf

Die KW-Ausbreitungsbedingungen im August wer-

den nicht sehr von den Bedingungen im Juli abweichen, zumindest in den ersten zwei Dekaden nicht – in der dritten Dekade dürften die Bänder auch für die Liebhaber von Verbindungen im globalen Maßstab attraktiver werden. Die Verbindungsmöglichkeiten mit dem Pazifik verbessern sich, während nordeuropäische Stationen nicht so gut erreichbar sind. Es verbessern sich auch die längeren Trassen nach dem Süden – nach VK bis LU und PY. Zu einer zeitlichen Verschiebung der Fenster kommt es auf den Trassen in Ost/West-Richtung. Es verschlechtern sich die westlichen und es verbessert sich ein großer Teil der Trassen mit einer Länge von über 7 000 Kilometern. Die folgende Aufstellung zeigt die Möglichkeiten der einzelnen Bänder an den besten Tagen, die Zeiten in UTC.

1,8-MHz-Band: UI von 1630 bis 0200, VU von 2300 bis 2400, OX von 2200 bis 0400, wegen der größeren Entfernungen werden oft einige Dezibel "feblen".

3,8-MHz-Band: 3D um 1800, YJ von 1800 bis 1930, JA von 1700 bis 2130, P2 von 1730 bis 2100, 4K ab 2000 und am besten gegen 0400, VR6 um 0500, VE3 von 2300 bis 0500, W5 von 0200 bis 0530 und W6 von 0300 bis 0530.

7-MHz-Band: JA um 1800 und weder von 2000 bis 2100, P2 um 1730, 3B von 1700 bis 2400, 4K um 0400, PY von 2200 bis 0500 und W2 bis VE3 von 0200 bis 0430.

10-MHz-Band: JA von 1600 bis 1700, 3B am besten um 1900, PY von 2000 bis 0100, W3 um 2300, W2 bis VE3 von 2330 bis 0100 und um 0500.

14-MHz-Band: UABK um 2000, BY um 1700, 3B von 1600 bis 2000 und W2 um 2200.

18-MHz-Band: BY bis 3B von 160) bis 1700, W2 bis VE3 um 2100.

21-MHz-Band: UI von 0400 bis 1900 und ZD7 von 1700 bis 2000.

28-MHz-Band: J2 um 1100 und von 1600 bis 1700, TT von 1700 bis 1800.

KK-Expeditionen

- 1. und 2 8.1987, jeweils 1000 bis 1600 MHz 3,6-MHz-Band, SSB; H 15 (Y77ZH)
- 8. 8. 1987, 1400 bis 1700 MESZ, 3620 kHz; G 16 von Y47ZG
- 9.8.1987, 1400 bis 1700 MESZ, 3620 kHz; G 06 von Y472G
- 10.8.1987, 1400 bis 1700 MESZ, 3620 kHz; G 02 von Y47ZG
- 11. 8. 1987, 1400 bis 1700 MESZ, 3 620 kHz; G 09 von Y47ZG
- 5. 9. 1987, 0900 bis 1200 MESZ, 3.6-MHz-Band; D 10 von Y39ZD

HAM-Fest Mittweida

Am 26. 9. 1987 findet das traditionelle HAM-Fest der Klubstation Y32ZN der Ingenieurhochschule Mittweida statt. Ehemalige Mitglieder der Klubstation und Gäste sind dazu herzlich eingeladen. Meldungen betreffs Teilnahme und Übernachtungen sowie nähere Informationen erfolgen über Siegfrid Gedel, Y32WN, PSF 21, Mittweida, 9250.

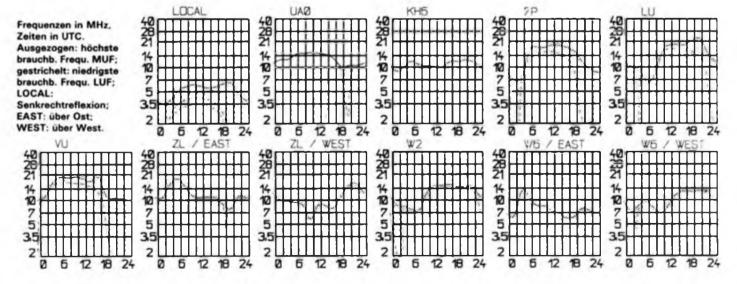
P. Lohrmann, Y32VN

Y77YH aus H 15 meldet sich zu Wort

Nachdem It FA 3/87 unser KK wieder zu den seltenen KKs gehört, möchten wir uns einmal zu Wort melden.

Es war uns die Mühe wert, eine Zusammenstellung zu erarbeiten, aus der zu ersehen ist, welche Aktivitäten, besonders von unserer Klubstation, zu verzeichnen sind

Seit Oktober 1985 sind an der Klubstation in Roßleben Y77ZH und Y77YH aktiv, von September bis Juni eines jeden Schuljahres regelmäßig mittwochs von 1500 bis 1800 UTC und an den drei Sonntagen im Monat von 0800 bis 1100 UTC im 3,5-MHz-Band. Es dürfte unserer Meinung nach in Y2 nicht mehr so viele Sendeamateure geben, die Fehlmeldungen für H 15 liefern.


Im Mai 1986 waren wir z.B. an drei Tagen im Kreis "auf Expedition" und haben uns Jeweils 6 Stunden der Öffentlichkeit in Artern, Bad Frankenhausen und Roßleben vorgestellt.

Allem Anschein nach haben nur solche Sendestationen Fehlmeldungen gegeben, die man sonst auch nur in SSB auf den Bändern hört. Man sollte doch viel mehr in den CW-Bereichen arbeiten, denn das Morsealphabet haben wir nicht nur für die Prüfung gelernt. Das CWD nur mit Standard-QSOs zu erwerben, ist sicher auch nicht im Sinne des Erfinders. Also, liebe Freunde, fahrt einmal wieder längere QSOs in CW.

Von 1442 QSOs haben wir nur 330 in SSB getätigt; das entspricht einem Anteil von 29,7%. Ausgenommen sind hiervon Contest-QSOs. Die Bandaufteilung ergab 3,5 MHz/CW - 49,7%; 3,6 MHz/SSB - 22,9%; 7 MHz - 7,5%; 14 MHz - 18,9%; 21 MHz - 1%. Übrigens waren wir durchschnittlich knapp an 18 Ta-

gen im Monat uktig. Wir hoffen, daß unelt unseren Aktivitäten am 4. Juli und am 1./2. August (s. KK-Expeditionen) der Kreis Roßleben nicht mehr zu den Raritäten gehört. Übrigens gilt bei uns auch noch die Devise: Jedes QSO ist erst nach dem Versenden der QSL-Karte beendet.

R. Stuck, Y77YH

DX-QTC

Bearbeiter: Wolfgang Bedrich, Y25ZO Görschstr. 7. Berlin. 1100

Alle Zeitangaben in UTC, Frequenzen in kHz Berichtszeltraum Monat April/Mai 1987

DX-Informationen

Europa: Nach langfristiger Prüfung der Unterlagen werden QSL-Karten von DL7FT/SV/a von Mt. Athos für das DXCC gewertet. – 4KBAAD war nicht aus der Arktis, sondem aus dem Oblast 113 QRV. – Odd, JX9CAA, ist eine neue Station auf Jan Mayen, die bis Oktober bleibt. Er wird mit Endstufe auf 7070, 14220, 21220 und 28500 sowie in CW jeweils 20 kHz vom BA QRV sein Heimatrufzeichen ist LA9CAA und die QSL geht an LA5NM. Ebenfalls ist noch JX2ZAA auf der Insel, anscheinend nicht sehr aktiv. – RA1ODS, 1833 um 2300, soll auf Franz-Josef-Land sein. – UA1OSM (Box 47, Archangel, 163068 UdSSR) verschickt QSL für UA1PAL, UK1PGO und RZ1OWA (alle F.J. L.).

Asien: EP2RH, EP2DL und EP2DF wurden von verschiedenen OMs auf 14 MHz in SSB gearbeitet. Die QSL-Angaben sind leider widersprüchlich. - Einige VUs versuchten leider versehlich, nochmals im Mai als VU4NRO von den Nicobaren ORV zu werden. -Krishna, 9N1MC, übt derzeit mit Hilfe von Kassetten CW (Tempo 25). Bisherige CW-Aktivitäten kamen leider von Piraten. Ansonsten ist er regelmäßig QRV zwischen 0900 und 1300 auf 14200, 21200 oder 28600. - JVIM und JTIM waren anläßlich des 1. Mai aus der MVR ORV. - SM2DWH/BT8 war Mitglied eines Bergsteiger-Teams, das den Mt. Everest von tibetanischer Seite her zu bezwingen versuchte. QSL via SK4NI. - JH6HXH sitzt auf Koshiki-Isl. (IOTA AS-37), oft sonntags gegen 0900 auf 21300. - EV7DN aktivierte den Oblast 002. -XT2ZK soll QSL via SP5ZK verlangt haben (?). -XUISS ist speziell für Europa QRV: Samstag, Sonntag, Dienstag und Donnerstag ab 1300 auf 21 225. -Der bekannte DXer 9V1TL, Peter, macht im Juli ORT!

Afrika: TSØDX-QSL-Karten werden ab 5. Mai 1987 für das DXCC anerkannt - Jean-Michel, FT8WA, war oft an Wochenenden ab 1200 auf 14236. Über den langen Weg wurde er gegen 0700 auf 14 200 gearbeitet. FT8WA (von Crozet) und auch FT8XD von den Kerguelen sind in RTTY ebenso aktiv; ab 1230 auf 14085. QSLs geben an F6FNU, der leider nicht mehr Mitglied der REF ist. - FRSZU/E konnte auf 14 und 21 MHz ausschließlich in SSB gearbeitet werden. OTH war Europa-Isl. - 29 Jahre Unabhängigkeit wat in Sierra Leone der Anlaß für Rufzeichen wie 291.1SL oder 291.31.S. - G61.OT und seine XVI. G6LOS sind für 2 Jahre in Gambia (C5) und wollen speziell in SSB und AMTOR Betrieb machen. - Yoland, FRSAF, war vom 5.4. bis 5.5. auf Tromelin (FR/T) und konnte wegen eines Defekts an seiner Station leider nicht QRV werden. Er beabsichtigt, im September von Europa-Isl aus aktiv zu werden. -KBMN, zuletzt in OHB, wird voraussichtlich ab Herbst für 2 Jahre in Guinea-Bissau (JS) sein und hofft auf eine Lizenz. - 5X5GK wurde öfters gegen 1800 auf 28560 beobachtet. Auf Anfrage tätigte Gerry auch CW-Kontakte. - 7P8CI, 21215 um 1700, ist der OSL-Bearbeiter in 7P. Er arbeitet mit 60 W und Vertikal (die 300 Sonnentage im Jahr liefern die nötige Energie). - Elio, PH8CB, war mit UFB Signalen ab 1700 auf 21 270 zu hören

Nordamerika: KG4AA war im April/Mai K6GXO. — Mehr als 2 500 Rufzeichen wurden in der Honor-Roll des DXCC (Juni) aufgeführt; das 5-Band-DXCC wurde bisher an 2230 OMs ausgegeben und die Bedingungen des 160-m-DXCC erfüllten bisher 334 Stationen aus aller Well. Bekannte Stationen, die nicht für das DXCC zählen, sind: A51PN, A61XL, A6XB, ET-Stationen, 5U7LD, YA, D2, XT, C9 sowie Stationen aus weiteren Ländern, in denen derzeit offiziell kein Amateurfunk genehmigt ist, die aber von Zeit zu Zeit auf den Bändern ausfauchen

Südamerika: LU3XQB, 14182 um 1930, sitzt auf

Tierra del Fuego (SA-08). – 28 MHz brachten Anfang Mai erste gute Signale: CE#FQV, 28 530 um 2100; HK9HEU 28 530 um 2100; OA4ED 28 560 um 2000; YVs, LUs ab 1900. – Rich, ex TR8DR, ist jetzt PT2ZDR.

Ozeanien: ZLIAMO plant für Februar 1988 eine DX-pedition pach ZL9 (Auckland'Campbell). - Peter. OHIRY wird voraussichtlich diesen Herbst (Oktober/November) wieder einige Länder speziell auf 3,5 und 7 MHz aktivieren. Geplant sind u. a. C2, T30, ZK1, ZK2, KH8 und 3D2 - VK8ML soll in CW oft ab 0600 auf 14 005 aktiv sein. Derzeitiger Standort ist Macquarie-Isl. OSL via VK5-OSL-Būro. - ZL8HV von Raoul-Isl. (zu Kermadec) findet sich oft ab 1130 auf 14210 ein. - Die für August geplante Mellish-Reef-DXpedition von KA4ADN & Co. als VK9MW ist noch nicht sicher. - Peter, VK9XP, war wieder aktiv, speziell auf 14200 bzw. 21220. Seine XYL bekommt in Kürze ein VK9NX-Rufzeichen - C21FS arbeitet meist ab 1100 auf 14195. QSL geht an den Gast-OP G4UCB. - Pine neue Station auf Nauru ist C21A. Ed, chemals KH6GLU, ist der dortige neue Direktor der Fernmelde-Behörde. Er wird mindestens 2 Jahre aktiv bleiben. Weitere Rufzeichen früherer Aktivitäten seinerseits waren FWIDY und VR2DY (1967 bis 1976), VK4LX, VK8XX und VK5AXX. OSLs geben an Box 17, Republic of Nauru. - Ross. WB6GFJ, wird im Juli als FO6FB QRV. Check 14 145, 180 und 240. - Von Tahiti konnten jede Menge Stationen geloggt werden: FO4NK, FO5IW, FOSMK und FOSJR (alle 14120, 14230 ab 0700) sowie in CW FOSBI auf 14030. - Von den Salomon-Isl, hört man in letzter Zeit auch richt viel: H44DI 21 230 um 1100 (QSL Box 6 Hociara); H44JA um 1200 auf 21 200 und H44RO gegen 1100 auf 14 200. QSL via W6CNA. - Die letzte neue Station auf Johnston-Isl. durfte nun WBSZQU/KH3 sein, der um 0630 auf 14265 gearbeitet wurde. - Von West-Kiribati meldete sich T36BY, 14222 um 1300, OSL an KB7QC. Alan, ex T38AT, ist jetzt VK6ABP. -T32BF, 14180 um 0600, ist ex KH6GDR/T32 -Tom, VR6TC, ist wieder von ZL zurück. Mit VR6YL zusammen war er wieder öfters gegen 0730 auf 14141. - Des, ZKIDD, ist auf Aitutaki-Isl. (zu South Cook) zu Hause, 14125 ab 0700. Er arbeitet mit 400 W an einer 3-Fle-Rhombic-Ant OSI an Box 10. - West-Samoa stand in cer Aktivität auch mit vom: 5WIGM, YL Mary, 14245 um 0900; 5W1FM ab 0800 auf 14 210 und 5W1FT um 0830 auf 14230. - G3CWI (ex VP8ANT) stellte kurzzeitig als V8NT auf 80 m ein laufes Signal bin. Inzwischen ging er nach JY und CE, um anschließend nächstes Jahr in 9V zu beiraten. - KC6MX/KC61F fuhren von Belau über 4000 QSOs. - Von American-Samoa sind noch mit altem Priffix QRV: KS6DV, 14225 um 0700; KS6FL, 14230 um 0800 sowie KS6CQ, 14250 um 0800

Antarktis: Macquarie-Isl: VKBGC war ab 0700 mit UFB Signal auf 14 195. - VKBML will jeden Dienstag von 0600 bis 0800 auf 14 010 CW machen.

Y2

Magnus, Y37RB, berichtete von einem QSO mit XUISH auf 21030 um 0900 (sicherlich ist hier XUISS gemeint) - Mike, YNJEO, zog nach einem halben Jahr Aktivität in Managua Bilanz: So konnten bis 1.5. etwa 10000 QSOs mit Stationen aus 124 DXCC-Ländern gefahren werten Der Länderstand auf den einzelnen Bändern sieht wie folgt aus: 1,8 MHz/34, 3,5 MHz/102, 7 MHz/100, 10 MHz/4, 14 MHz/15, 21 MHz/4. Bisher konnten auch 93 verschiedene Y2-Stationen gearbeitet werden wohei Berlin mit 16 an erster Stelle und Karl-Mara-Stadt mit 2 Stationen an letzter Stelle vertreten ist. Etwa 50 % der QSOs liefen in CW. Mike hat noch vor der jetzt einsetzenden Regenzeit die Antennen wetterfest machen müssen. Auf 160 m steht somit eine Inverted Vee voller Lange, auf 80 m eine Delta Loop und auf 40 m eine 2-El -Delta Loop (Draht) zur Verfügung. Y381 meldet ein neues Top-Ergebnis vom WPX-FONE: 2691 QSOs und 730 Multis. - Chris, Y44PE, freute sich besonders über ein QSO mit C21FS auf 14 190 um 1400. - Henry, Y56SG, konnte mit 4KBAAD QSO fahren und erhielt geografische Kootdinaten 82° N und 167° O (siehe auch "Europa") -

Ich bedanke mich für schriftliche DX-Mitteilungen bei: YN3EO, Y24SH/Y71ZH, Y32KE, Y37RB, Y39RE, Y44PF, Y44UI, Y56SG, Y66YF, Y34-10/E, Y43-03/E, Y44-25/O, Y46-21/H.

QSL-Info

Bearbeiter: Ing. Ludwig Mentschel, Y23HM Straße der Jugend 88/04, Leipzig, 7060

A92EV	Box 2, Bahrain, State of Bahrain
BV6IA	W. L. Chen, Box 738, Tainan, ROC
BY7HL	Box 105, Changsha, PR China
CM6DD	Box 95, Caribarien, Cuba
CP8XB	Box 117, Trinidad, Beni, Bolivia
DV7PI	Box 369, Bacolod, Negros Isl.,
	6001, Philippines
EL2EY	Box 512, Monrovia, Liberia
FM5CP	BP 7043 Bateliere,
	F-97233 Schoelcher, Martinique
FMBA	Box 9, Fort de France, Martinique
FP	Dave Landry, Box 382, Lebanon, NH,
/KAICRP	USA 03766
FRSEL	BP 87, F-97430 Le Tampon, Reunion Isl.
FR5ZU/E	Box 4, Sainte Clotilde,
	F-97490, Reunion Isl
FWOAF	F61LB, 42 Av. Bernard,
	F-33510 Andernos, France
H44DL	Box 6, Honiam, Solomon Isl., Pacific
J88BH	Kerwin, Box 31, St. Vincent
JYSDL	Box 5, Zerka, Jordan
KC6SR	Box 693, Truk, Isl., Micronesia 96942.
	USA
KC6MX	Ch. L. Richardson, 11 Michigan Drive,
••	Hudson/MA 01749, USA
OASAFS	Box 171, Iquitos, Peru
TL8MEF	Ch. Buchet, 40 Rue St. Cecile,
	F-13005 Marseille, France
TU2QW	Box 3023, Abidjan 01, Rep. Cote d'Ivoire
VK9XP	Box 59, Christmas Island, Indian Ocean,
	via Perth/Australia
VU2LAM	UBSLGM, Box 19, 290 000 Lvov, UdSSR
VU4APR.	NIAR, 5-B, P. S. Nagdr,
VU4NRO	Hyderabad 500 457, India
V85MI	Box 85, Gadong, BSB, Brunei, Oceania
VSSNT	Box 146, Cambridge, England
XF4DX	Michael Mc Girr, 13 Oak Hill Drive.
	Crete, IL 60417 USA
XT2BW	Box 2332, Ouagadougou, Burkina Faso
ZD8CW,	Box 1, Ascension Island,
ZDSBP	South Atlantic Ocean
ZDBRP	BFPO 677, Ascension Isl.,
	GPO, London, England
4S7WP	Box 80, Colombos, Sri Lanks
1Q7LW	Leslie W. Sampson, 57 Milford Court,
-	Brighton Road, Lancing BN1 58RN,
	England
9X5PM	Box 217, Cyangugu, Kigali, Rwanda
AGIAR	- WATHIR VIICS - WILL

AXSEM	Box 217, Cyan	igugu, Kigali,	Kwanda
A61AB	- WAJHUP	V31GS	- WJUM
	OE6EEG	V31JQ	- WBSYUC
CUJAD	- W4PKM	V85PO	- F90N
CW66PAX	- CX2CS	VESRCS	- VE7FOK
FJSBL	- TKSBL	VP8BGX	- G40YY
FMSCT	- N7RO	XFOL	- OH2BQL
FOOBRM	- N6DJM	ZB2ZA	- G3LPD
J37ZY	- NS8G	ZD8CW	- G3ZDW
KC6HA	- KA6V	ZD8HH	W4FRU
KL7LF		ZD8RP	- GINVS
/KH3	- KL7VZ		G31FB
RE4AC	- UA4CK	3D6CL	- KX8V
T30AC	- KA6V	JXØHSH	
T32BD	- KB6IDK	TY	- DK8PR
TG9ML	- KSBDX	4K1A	- UA1DJ
TIIT	- K8LJG	4K1H	- UY500
T19M	- TI8CBT	SNOWRE	K4JZQ
TREDX	- WA4VDE	STSSR	- N4GNR
TU2JT	- F6CXV	SZ4ET	NSDFT
TU2QU		7Q7LW	- G3JSU
/3X	- TU2CJ	9L1GG	- N4DW
TU4CN	- WA9INK	9M2BZ	- JAIVDJ
V31FX	- K3CI	9V1WN	- PA3CWG

KW-Conteste

Bearbeiter: Dipl. Ing. Klaus Voigt, Y21TL PSF 427, Dreeden 8072

SARTG-World-Wide-RTTY-Contest 1987

- 1. Veranstalter: Scandinavian ARTG
- 2. Zelt: 15. 8. 87, 0000 bis 0800 UTC, 1600 bis 2400 UTC und 16. 8. 87 0800 bis 1600 UTC
- 3. Logs: bis 25. 8. 87 an die Bezirksbearbeiter. Diese senden die kontrollierten Logs bis 4. 9. 87 an Y21TL. 4. Alle weiteren Bedingungen sind dem FUNKAMA-TEUR 7/86, S. 332 zu entnehmen.

YO-DX-Contest 1987

- 1. Veranstalter: FRR (YO)
- 2. Zeit: 1. 8. 87, 2000 UTC bis 2. 8. 87, 1600 UTC
- 3. Logs: bis 12.8.87 an die Bezirksbearbeiter. Diese senden die kontrollierten Logs bis 24.8.87 an Y21TI
- 4. Alle weiteren Bedingungen sind dem FUNKAMA-TEUR 7/86, S. 332 zu entnehmen.

All-Asian-DX-Contest 1987 CW

1. Zeit: 22. 8. 87, 0000 UTC bis 23. 8. 87, 2400 UTC 2. Alle weiteren Informationen siehe FUNKAMA-

Europa-DX-Contest 1987

- 1. Veranstalter: DARC
- 2. Zeit: CW: 8 /9. 8. 87; FONE: 12./13. 9. 87; RTTY: 14./15.11.87, jeweils von Sonnabend, 1200 UTC bis Sonntag 2400. Einmannstationen müssen 6 Stunden Pause (In max. 3 Teilen) einlegen und auf dem Deckblatt des Logs angeben
- 3. Frequenzbereiche: 3.5- bis 28-MHz-Band
- 4. Kontrollnummern: RS(T) + Ifd QSO-Nr
- 5. Punkte: Jede DX-Station zählt je Band 1 Punkt. Im RTTY-Teil und für SWLs sind auch europäische Stationen gestattet. Jedes hentätigte QTC zählt
- 6. Multiplikator: Jedes nichteuropäische Land der ARRL Länderliste zählt auf 3,5 MHz 4 Punkte, auf 7 MHz 3 Punkte und auf den anderen Bandern 2 Punkte
- Bei RTTY und für SWLs gelten auch die europäischen Länder außer dem eigenen
- 7. Endergebnisse: (Summe QSO-Punkte + Summe QTC-Piinkte) mal Summe der Multiplikatorpunkte - Enderrebnis.
- 8. QTC-Verkehr: Ein QTC besteht aus Uhrzeit/Rufzeichen/lfd. QSO-Nr. von einem zu einem früberen Zeitpunkt getätigten QSO. QTCs dürfen nur von DXan europäische Stationen übermittelt werden. Von ieder DX-Station dürfen maximal 10 OTCs empfangen werden. Die QTC konnen in Serien übermittelt werden, die entsprechend zu kennzeichnen sind (z. B. QTC 15/10 bedeutet die 15. Serie, bestehend aus 10 OTCs).
- Man darf eine Station zum Zwecke des QTC-Austausches mehrfach arbeiten, aber nur das erste QSO ergibt QSO-Punkte. Bei SWLs gelten QTCs, wenn sendende und empfangende Station zum ersten Mal geloggt wurden.
- 9. Tellnahmearten: Einmannstationen (Allband bzw. obere Bänder, d.h. 14, 21 und 28 MHz); Mehrmannstationen mit einem Sender, SWLs
- Ein Bandwechsel muß in jedem Fall mindestens 5 min dauern
- 10. Logs sind his jeweils 10 Tage nach Contestende an die Bezirksbearbeiter zu senden, die kontrollierten Logs von ihnen bis 20 Tage nach Contestende an Y21TI...

Y2-QRP-Contest 1987

- 1. Zeit: 1. 9. 87, 1600 bis 1700 UTC
- 2. Frequenzbereich: 3 520 kHz bis 3 560 kHz
- 3. Alle weiteren Bedingungen sind dem FUNKAMA-TEUR 7/86, S. 332 zu entnehmen.

Ergebnisse des Y2-Aktivitätscontests 1987

Die Spalten bedeuten v.l.o.r.: Platz in der DDR-Wertung, Rufzeichen bzw. SWL-Nummer, (OPs der Mehrmannstationen, OSO-Zahl, OSO-Punkte, Multiplikator). Gesamtpunktzahl. Platz im Bezirk.

Einmannstationen über 18 Jahre 1. Y23CO 361 1133 78 177 Y23UJ 390 1112 76728 **Y35VM** 334 1015 67 68 005 Y34SE 218 710 59 41890 4. 5 YSTYN 205 646 64 41 344 36 900 6. Y26DO 233 615 60 YS6YN 293 664 55 36 520 2 Y2710 230 718 41 33746 3 31 296 **Y24JD** 219 652 10 Y22HC 259 516 55 28 380 11. Y52ZN 25622 3, 12. Y21XH/A 25194 1, 13. Y51TO 24444 4, 14. Y51TA 22678 1, 15. Y52WG 21 675 1, 16. Y58SA 20064 2, 17. Y23QD 20010 2, 18. Y39UL 19656 1, 19. Y57ZM 19278 2, 20. Y51YJ 19264 2, 21. Y22EK 19194 1, 22. Y24LE 16380 2, 23. Y22WK 15 744 2, 24. Y22LE 1: 708 3, 25. Y31XN 15 225 4, 26. Y71ZH 14 960 2, 27. Y64O1 14 816 1, 28. Y26BN 14756 5, 29. Y24XJ 14719 3, 30. Y45RN 14534 6, 31. Y56ZA 14070 3, 32 Y23VB 12831 1, 33. Y33YA 12760 4. 34. Y38XL 12495 2. 35. Y24AK 12 240 3, 36. Y21IM 12 180 3, 37, Y42YG 12 025 2, 38. Y25UM 11 970 4, 39. Y28RO 11 880 5, 40. Y33ZE 11 594 4, 41. Y37RA 11 268 5, 42. Y57ZI 10 857 2, 43. Y24KA 10815 6, 44. Y48ML 10540 3, 45. Y32EE 10542 5, 46. Y61ZJ 10486 4, 47. Y24RK 10440 4, 48. Y25JA/A 10412 7, 49 Y58ZH 10404 3, 50. Y23YE 10340 6, 51. Y61XM 10160 5, 52. Y47MN 10032 7, 53. Y59WF 10010 1, 54. Y68VN 9947 8, 55. Y44U1/P 9576 3, 56. Y21BC/A 9248 2, 57 Y87PL/A 8613 4, 58. Y34H1 8587 4, 59. Y21XI 8439 5, 60. Y44PF 7967 2, 61. Y46X1 7584 6, 62. Y28XL/A 7569 5, 63. Y44VJ, Y62X1 7471 5/7, 65. Y21QD 7018 3, 66. Y32VN 6870 9, 67. Y24JJ 6757 6, 68. YSSZD 6399 4, 69. Y27GL/P 6270 6, 70.

Y35WF 5852 3, 76. Y23DJ 5632 7, 77. Y39ZE 5628 7, 78. Y48RJ 5 544 8, 79. Y51TG 5412 4, 80. Y43XE 5232 8, 81. Y22SA 5016 8, 82. Y25BA 4966 9, 83, Y27BN 4845 11, 84. Y54UA 4775 10, 85. Y87VL 4371 7, 86. Y25ML 4104 8, 87. Y21BG 4075 5, 88. Y67RI 4004 9, 89. Y22VI 3978 10, 90. Y23CN/A 3860 12, 91. Y22XM 3834 6, 92. Y63YA 3740 11, 93. Y79RL 3738 9, 94. Y23HJ 3683 9, 95. Y39RK

3 500 5, 96, Y35UD 3 486 5, 97, Y28DH 3 420 5, 98.

Y77YH 6208 4, 71. Y21XO 6168 6, 72. Y32PI 6150

8, 73. Y79XN 6090 10, 74. Y61WG 5916 3, 75.

Y39RG 3388 6, 99. Y32ZF 3315 4, 100. Y23CM 3302 7, 101. Y48ZA 3260 12, 102. Y62UM 3225 8, 103. Y23SF/A 2920 5, 104. Y62ZJ 2873 10, 105. Y21CL 2831 10, 106 Y24HB 2738 2, 107 Y24PD 2772 6, 108 Y44WA 2760 13, 109 Y33PO 2745 7, 110. Y41TF 2688 6, 111. Y21AE 2670 9, 112.

Y23GB 2626 3, 113. Y62VM 2592 9, 114. Y33ZB 2574 4, 115. Y59UA 2553 14, 116 Y26UN 2540 13, 117. Y46ZH/Y27ZH 2480 6, 118. Y23EL 2448 11, 119. Y34WH 2318 7, 120. Y49ZD 2280 7, 121.

Y57WA 2244 15, 122. Y21NE 2204 10, 123. Y47ZG 2147 7, 124. Y28OH 2128 8, 125. Y45ZK 2121 6, 126. Y86YL 2060 12, 127. Y46WK/P 2058 7, 128 Y26VM 2025 10, 129. Y64ZA 1980 16, 130. Y23NE 1972 11, 131. Y21HB 1965 5, 132. Y26DM/A 1960 11, 133. Y32OG 1936 1, 134. Y41YM/P 1920 12,

135. Y32WA 1875 17, 136. Y24UL 1848 13, 137. Y311O 1800 8, 138. Y34SF, Y58VL 1785 7/14, 140. Y24GF 1617 8, 141. Y24PE 1584 12, 142. Y41TG 1485 9, 143. Y24YE 1479 13, 144. Y21KH 1455 9, 145. Y24NF 1395 9, 146. Y92ZL 1360 15, 147.

Y34ZB 1344 6, 148. Y27QN 1335 14, 149. Y65ZF, Y55SN 1328 10/15, 151. Y22GG 1290 10, 152. Y25PE, Y25TM 1260 14/13, 154 Y24TI 1224 11, 155. Y64ZL 1200 16, 156. Y42ZM 1125 14, 157. Y31WC 1088 3, 158. Y38SO 994 9, 159. Y47PM/P

990 15, 160. Y43RN/A 924 16, 161, Y37ZK 918 8. 162. Y21UH 900 10, 163. Y24YH 893 11, 164. Y22SF 855 11, 165. Y21FL 825 17, 166. Y25PA 798 18, 167. Y22DD 735 8, 168. Y23LN 731 17, 169. Y26RH 728

12, 170. Y46ZB 708 7, 171. Y23WO 693 10, 172. Y24HA 690 19, 173. Y26BM/A, Y22KO/A 675

16/11, 175. Y21YK/A 672 9, 176. Y54WM 615 17, 177. Y21UB 602 8, 178. Y24UE, Y23XF 600 15/12, 180. Y21HN 490 18, 181. Y47SM/P, Y47RM/P 488 18/19, 183, Y47WM/P 456 20, 184, Y25CL 450 18, 185. Y42QK/P, Y24TK/A, Y42ZK/Y62YM, Y21TN 420, 10/10/10/19, 189, Y23PM/A 378 21, 190, Y24CJ 360 11, 191. Y62YI 354 12, 192. Y26TN 306 20, 193. Y62WM 300 22, 194 Y25DA 243 20, 195 Y46LF. Y26PL 200 13/19, 197, Y25IF 195 14, 198, Y62WI/P 175 13, 199. Y46XF 160 15, 200. Y72VL 105 20, 201. Y23JN 28 21

Einmannstationen bis 18 Jahre

153 315 **Y36SG** 17010 Y56NM 142 320 42 13 440 **Y24TN** 152 241 6 989 1 29 4. Y34SG 6525 2, 5, Y36VN 6075 2, 6, Y36NC 5124 1, 7. Y66YF 4350 1, 8. Y66PG 3515 3, 9. Y64UF 2450 2, 10. Y39DA 2376 1, 11. Y461F 1425 3, 12. Y62SM 1404 2, 13. Y62TM 1365 3, 14. Y39FA 171 2, 15. Y42XF 1 4.

Einmannstationen - ORP

Y27FN 178 412 21424 1 52 1 Y219/1 155 278 18 10564 1 Y21DH 168 201 26 5 2 2 6 Y23TL 4563 1, 5. Y23UA 3744 1, 6. Y25QE 2680 1, 7. Y24SB 2340 1, 8. Y22UI 2130 2, 9. Y21YH 2064 2, 10. Y22XC 1875 1, 11. Y22AN 1710 2, 12. Y21HL/P 1638 2, 13, Y27MN 1545 3, 14, Y25AH 1520 3, 15. Y25XA, Y26VG 1470 2/1, 17. Y23RI 1410 3, 18. Y211D 1296 1, 19. Y27NO 1290 1, 20. Y24UA 1264 3, 21 Y78QL/P 1080 3, 22 Y25CF 854 1, 23. Y21HE 784 2, 24. Y27YO 735 2, 25. Y23ON 630 4, 26. Y24OL 435 4, 27. Y26EH 220 4, 28. Y23YJ 208 1, 29. Y25PH 153 5.

Einzelstationen - weiblich

YSIZE 353 831 72 59 2 3 2 1 1. **Y25TO** 59 41 595 232 705 Y25YD 249 371 44 16324 4. Y49OF 9207 1, 5. Y28MH 1980 1, 6. Y25XL 1900 1, 7. Y25OA 1665 1, 8. Y22OF 1425 2.

1 843

120010

Mehrmannstationen

VIAR

	1 J4K	239	1843	70	129010	- 1
	(Y23EK, Y	24UK)				
2.	Y33ZL	493	1358	69	93 702	1
	(Y26WL, Y	133VL, 1	(131ZL)			
3.	Y41ZM	415	1 344	67	90 048	1
	(Y41RM, 1	Y41VM.	Y41ZM	0		
4.	Y37I	407	1 2 2 4	66	80 784	1
	(Y25KI, Y	26KI)				
5.	Y472M	377	1 166	66	76 956	2
	(Y47VM, Y	(47YM)				
6.	Y39ZH	354	994	66	65 604	1
	(Y39OH, Y	/39SH, 1	(39ZH)			
7.	Y76ZL	321	992	65	64 480	2
	CY76UL, Y	76XL, Y	76ZL)			
8.	Y43ZO	320	951	64	60 864	1
	(Y21RO, Y	'43GO, '	Y43ZO)			
9.	YSSZL	357	970	62	60 140	3
	(Y27KL, Y	SSXL, Y	'SSZL)			
M.	Y572G	266	292	64	57 472	1
	(Y570G, 1	(57PG)				

11. Y56ZF (Y24VF, Y56YF) 57156 1, 12. Y39ZF (Y39RF, TF, ZF) 50630 2, 13. Y61ZF (Y41ZF, Y61UF) 49227 3, 14. Y37ZE (Y25LE, Y37ZE) 41 180 1, 15. Y54ZE (Y54UE; -09-E, -10-E) 37 630 2, 16. Y37ZO (Y37WO, XO, ZO) 37294 2, 17. Y36ZM (Y36VM, ZM) 36792 3, 18. Y35ZN (Y25RN, VN) 35 754 1, 19 Y32ZC (Y21FC, Y32UC) 35 224 1, 20. Y381 (Y26D1, Y44X1, ZI) 34540 2, 21. Y43ZD (Y251D, Y26RD) 32 395 1, 22. Y78ZN (Y23BN, Y25NN, Y78ZN) 29650 2, 23. Y36ZE (Y36UE, WE, XE) 27 166 3, 24. Y44ZN (Y44SN, TN, ZN) 26 852 3, 25. Y54ZI (Y54TI, UI) 24888 3, 26. Y63ZN (Y63VN, XN) 22862 4, 27. Y78ZL (Y78UL, VL) 21756 4, 28. YSSZJ (YSSTJ, VJ, ZJ) 21 315 1, 29. Y77ZN (Y77YN, ZN) 17 625 5, 30. Y47ZO (Y47RO, WO) 17 510 3, 31. Y75ZH (Y21JH, Y28QH) 15708 2, 32. Y33ZJ (Y33QJ, UJ) 15210 2, 33. Y34ZO (Y34NO, PO) 13 475 4, 34. Y32ZD (Y32QD, RD) 12816 2, 35. Y750 (Y44TO, ZO) 10304 5, 36. Y34ZD (Y21OD, Y34ZD) 9824 3, 37. Y48ZB (Y48XB, YB, ZB) 9480

I, 38. Y57ZD (Y57ED, ZD) 8850 4, 39. Y52ZE (Y22KE, Y52NE, ZE) 8 460 4, 40. Y32ZL (Y25QL, Y32LL) 8190 5, 41. Y35ZK (Y23LK, Y24VK, Y35RK) 7532 2, 42. Y42ZB (Y22YB, Y42WB) 5 589 2, 43. Y42ZA (Y42FA, HA) 5 350 1, 44. Y55ZA (Y55NA, YA) 4 590 2, 45. Y31ZA (Y31LA, SA) 4 396 3, 46. Y48ZC (Y48WC, XC, ZC), Y35ZI (Y35VI, WI) 4 368 2/4, 48. Y59ZN (Y59ON, VN, ZN) 4 094 6, 49. Y31ZE (Y23HE, Y31UE) 4074 5, 50. Y68ZF (Y24WF, Y68SF) 2941 4, 51. Y48ZD (Y48VD, ZD) 2865 5, 52. Y62ZD (Y62UD, VD, XD) 2838 6, 53. Y45ZB (Y45ZB, -05-B) 1665 3, 54. Y62ZG (Y62AG, XG, ZG) 1 156 2, 55. Y33ZN (Y33JN, LN) 960 7.

SWI a über 18 Jahre 1 Y17-04-F 338 1755 69 121 095 1 2. Y56-03-M 321 1589 68 108052 Y32-01-E 1479 71 105 009 311 Y48-03-J 395 1 325 84 800 64 5. Y31-14-O 1173 65 76 245 325 73 432 6 Y72-02-G 300 1 096 67 Y19-06-I 301 1 210 60 72 600 Y54-08-1 308 995 63 62685 Y64-02-M 296 1094 57 62 358 10. Y32-11-i 342 1084 52 56 368 11. Y52-05-M 49450 3, 12. Y34-01-G 48336 2, 13 Y37-07-E 46464 2, 14. Y58-02-A 41580 1, 15. Y31-05-L 37271 2, 16. Y39-14-K 26233 1, 17 Y42-15-L 25959 3, 18. Y31-07-M 18574 4, 19 Y59-04-N 17226 1, 20. Y42-03-A 16410 2, 21. Y53-05-N 16262 2, 22. Y63-17-1 15288 3, 23. Y72-04-G 12 280 3, 24. Y48-33-N 12 180 3, 25. Y53-10-D 12080 1, 26. Y43-09-D 9633 2, 27. Y45-10-N 9536 4, 28. Y64-11-1 9390 4, 29. Y49-08-M 7833 5, 30. Y38-01-G 7112 4, 31. Y73-08-H 6732 1, 32. Y48-04-A 6583 3, 33. Y47-01-N 6330 5, 34. Y38-08-G 6275 5, 35. Y48-06-A 6144 4, 36, Y36-02-K 6102 2, 37, Y48-01-O 6024 2, 38, Y36-03-F 5921 2, 39, Y62-07-1 5472 5, 40. Y51-16-G 5295 6, 41. Y55-12-A 5160 5, 42. Y62-01-D 4935 3, 43. Y39-01-E 4930 3, 44. Y31-13-E 4598 4, 45. Y44-20-K 4368 3, 46. Y64-14-L 4242 4, 47. Y36-11-J 4185 2, 48. Y44-08-H 3654 2, 49. Y43-10-D 3528 4, 50. Y32-08-F 3312 3, 51. Y33-02-A 3297 6, 52. Y37-01-B 3180 1, 53. Y52-07-G 3043 7, 54. Y33-13-O 2910 3, 55. Y34-18-O 2835 4, 56. Y47-04-G 2670 8, 57. Y51-18-G 2595 9, 58. Y38-11-I 2490 6, 59. Y36-03-M 2370 6, 60, Y64-32-H 2355 3, 61, Y39-05-E 2244 5, 62. Y72-05-G, Y51-17-G 2190 10/11, 64. Y56-01-M 2085 7, 65. Y59-18-N 2037 6, 66. Y42-03-N 1905 7, 67. Y47-12-N 1695 8, 68 Y42-03-G 1680 12, 69 Y62-08-1 1665 7, 70 Y57-02-F 1605 4, 71. Y42-04-O 1530 5, Y34-08-F, Y37-13-1 1485 5/8, 74. Y43-16-J 1470 3, 75. Y32-07-F 1455 6, 76. Y74-11-N 1200 9, 77. Y43-21-J 1066 4, 78. Y55-10-A 1065 7, 79. Y59-01-F 946 7, 80. Y31-98-B 825 2, 81. Y71-01-G 630 13, 82 Y31-47-B 624 3, 83. Y42-08-M 611 8, 84. Y32-01-F 602 8, 85 Y32-05-F 560 9, 86 Y32-04-F 546 10, 87 Y32-02-F, Y32-16-G 420 11/14, 89 Y62-09-M 187

SWLs bis 18 Jahre Y42-07-F 307 1101 62 68 262 222 41 22 304 Y58-06-M 544 467 Y64-04-F 240 35 16 345 4. Y56-15-F 14157 3, 5. Y55-35-A 10275 1, 6. Y34-27-B 9950 1, 7. Y33-06-N 7656 1, 8. Y49-20-F 5751 4, 9. Y44-04-J 5736 1, 10. Y34-05-B 5264 2, 11. Y33-11-J 3640 2, 12, Y78-10-N 3080 2, 13, Y68-14-F 3.030 S 14 YS4-02-D 2.907 1 15 Y42-12-J 2.730 3. 16. Y59-16-N 2235 3, 17. Y31-94-B 2115 3, 18. Y72-02-N 1805 4, 19. Y74-09-N 1680 5, 20. Y54-05-D 1598 2, 21 Y56-17-M 1395 2, 22. Y34-26-B 990 4, 23. Y76-01-L 966 1, 24. Y62-10-M 705 3, 25. Y78-12-N 645 6, 26. Y38-06-B 640 5, 27. Y38-07-B 121 6.

SW	/La - weiblic	b				
1.	Y54-04-O	270	1 127	67	75 509	1
2.	Y71-05-G	159	734	50	36 700	1
3.	Y55-22-A	185	310	36	11 160	1

4. Y52-13-L 10464 1, 5. Y53-03-D 5670 1, 6. Y39-08-H 3125 1, 7. Y31-95-B 2520 1, 8. Y33-10-B 1470 2, 9. Y78-11-N 351 1

Kontrollogs

Y21FD, HD, HK, SI, UD, UM, WH, ZM; Y22FK, HF/Y49RF, SI, YF, YO; Y23BA, HM, ZJ, AM/A, IK, JI, QF/A, QI; Y25BL, GO, HI, KH, QH, SM/A, TG, XH; Y26EM, HI, JD, KI/Y26UI, SI, TI, UL, VH, ZI; Y28IL; Y32EK; Y34NO; Y35UJ; Y37XJ; Y38YE, Y42LK/P, MK/P, Y44TI; Y48ZI; Y51ZL/Y41QH; Y52ZI; Y53NF/P, PF/P; Y62ZI; ZI/Y27RI, ZI/Y63SI; Y67YG; Y89ZL.

Disqualifikationen Y21CF, Y24LD, Y38ZM, Y39-04-G, Y51ZF

Ergebnisse des HA-DX-Contests 1987

E: 1 YSRSA 101442, 2, Y22EK 70596, 3, Y21XH/A 55536, 4. Y47LN 49773, 5. Y311O 46812, 6. Y39SH 43 056, 7. Y32EK 40 158, 8. Y34SE 40 020, 9. Y37ZB 34680, 10. Y42HA 31443, 11. Y31NJ 29520, 12 Y21WI 29484, 13. Y21CL 28500, 14. Y64ZH, Y79RL 25308, 16. Y23YE 21294, 17. Y54WM 19 980, 18. Y51XH 18 468, 19. Y32PI 18 252, 20. Y48ZF 17 064, 21. Y24IK 15 168, 22. Y24SH/a 14601, 23. Y26MH/a 14553, 24. Y27YH 13248, 25. Y23TL 11508, 26. Y23QD 11100, 27. Y78QL 10998, 28. Y41UF 10448, 29. Y66YF 9483, 30. Y43HO 7 920, 31. Y62SM 7 857, 32. Y25TA/a 7728, 33. Y24YH 7656, 34. Y59BA 7623, 35. Y55LA 6 966, 36. Y36RG 6350, 37. Y23CJ 5616, 38. Y24AK 5508, 39. Y35VI 5460, 40. Y28XL/a 5304, 41. Y67UL 4712, 42. Y23RJ 4320, 43. Y39UL 3420, 44. Y36SG 2304, 45. Y31JA 2208; 3,5: 1. Y24RK 16947, 2. Y27GL 14 212, 3. Y23UH 13 728, 4. Y24HB 12 240, 5. Y79XN 11460, 6. Y33VK 11403, 7. Y23HN 10032, 8. Y27NO 9702, 9. Y25HI 9693, 10. Y56ZA 7074, 11. Y27BN 5616, 12. Y25PE 4692, 13. Y26PL 4560, 14. Y21UH 4320, 15. Y22HC 3984, 16. Y26EH 3 978, 17. Y28EL 3 264, 18. Y24HG 1872, 19. Y59WF 918, 20. Y21HE 720, 21. Y64ZL 252; 7: 1. Y37ZE #520, 2, Y21GO 6960, 3, Y62XG 648, 4 Y62UM 360; 14: 1. Y24KB 12; M: 1. Y42ZB (Y22YB, Y42WB) 30324; K: Y25JA/a, Y27DL, Y53ZL, YS6YF, Y65LN, Y72VL

Disqualifikationen: Log nicht nach Bändern geordnet: Y48RJ, keine Multiplikatorkontrolliste: Y21RO, Y51NF/P

Ergebnisse des International YL/OM-Contests 1987

YL - Fone: 1. Y51ZE 26195, 2. Y22OF 157,5; OM - Fone: 1. Y43EO 80, 2. Y24MB 16, 3. Y66ZF 1,25; K - Fone: Y22HF, Y24JJ, Y34XF, Y39ZC/Y39RE; OM - CW: 1. Y23TL 1,25, 2. Y66YF 1,25; K - CW: Y24JJ, Y78UL.

Ergebnisse der REF-Conteste 1987

CW

E: 1. Y23QD 5130, 2. Y37ZE 4730, 3. Y38ZM 3456, 4. Y23HJ 3180, 5. Y23CM 2451, 6. Y66YF 1485, 7. Y53XM 1247, 8. Y55TJ 1240, 9. Y24SHJa 972, 10. Y27GL 525, 11. Y24OL 156, 12. Y59WF 70, 13. Y66ZF 8; K: Y23YE, Y24WJ, Y27DL, Y52XF. Diaqualifikation: Y23TL wegen Nichtbeachtung der Ausschreibung.

PONE

E: 1. Y42NK 42 826, 2. Y22VI 3824, 3. Y67UL 420, 4. Y58WA 368, 5. Y66ZF 340, 6. Y51TG 336

Ergebnisse des PACC-Contests 1987

E: 1. Y22YO 7683, 2. Y22IC 5022 3. Y64WF 3473, 4. Y23EL 3197, 5. Y31SI 3168, 6, Y21NE 3125, 7. Y56UN 3059, 8. Y46WA 2976, 9. Y42HA 2886, 10. Y47MN 2730, 11. Y51YJ 2507, 12. Y71WG 2457, 13. Y23LD/a 2442, 14. Y43EO 2346, 15. Y68SF 2208, 16. Y57ED 2121, 17. Y34XF 1914, 18. Y24JJ

1974, 19. Y34SE 1886, 20. Y53ID 1870, 21. Y38SG 1827, 22. Y33UB 1800, 23. Y28QH/a 1760, 24. Y44SN 1620, 25. Y36TI 1610, 26. Y46PH 1575, 27. Y21YH 1560, 28. Y31XN 1440, 29. Y23TL, Y78UL 1420, 31. Y36VM 1386, 32. Y59ZF 1357, 33. Y37ZE 1320, 34. Y54UH 1300, 35. Y31OJ 1242, 36. Y26WM 1232, 37. Y25ZN 1190, 38. Y21SD 1188, 39 Y41ZA/Y36RG 1180, 40 Y42YG 1020, 41. Y35WF 960, 42. Y23QD 931, 43. Y31MB 923, 44. Y6401 867, 45 Y211M, Y53SN 861, 47, Y48XC 840, 48 Y38YE 813, 49 Y77YH 810, 50 Y45R1 800, 51. Y24SB 781, 52, Y59WF 731, 53, Y24WJ/a 697, 54. Y24MB 688, 55. Y26VG 682, 56. Y26JD 594, 57. Y86TL 560, 58. Y31QE 544, 59. Y51TG 507, 60. Y33PK, Y62SM 468, 62. Y39SH 440, 63. Y24YH 396, 64. Y36TG 390, 65. Y33VK 363, 66. Y22VI 350, 67. Y56ZA 348, 68. Y21HB 325, 69. Y21UL 320, 70. Y49ZL 273, 71. Y21HE 264, 72. Y21DG/a 240, 73. Y62XG 240, 74. Y22OB 228, 75. Y461F 209, 76. Y25CF 192, 77. Y21UB 168, 78. Y31JA 154, 79. Y38WE 112, 80. Y24HM 99, 81. Y23GD 75, 82. Y45PA 70, 83. Y66ZF 25, 84. Y24HG, Y66YF 9; M: 1. Y32ZN (Y3110, Y53KO) 868, 2. Y42ZB (Y42WB, Y42ZB) 420, 3. Y24HB/p (Y24HB, Y24KB) 144; S: 1. Y39-14-K 8580, 2. Y48-03-J 8544, 3. Y42-15-L 7182, 4. Y42-02-L 3096, 5. Y44-20-K 2828, 6. Y56-10-M 2156, 7. Y34-05-F 2088, 8. Y57-04-G 2046, 9. Y39 01-E 1971, 10. Y54-11-F 1840, 11. Y52-07-F 1647, 12. Y59-01-F 1344, 13. Y31-98-B 1326, 14. Y36-03-F 1302, 15. Y33-11-J 1220, 16. Y34-02-F 1216, 17. Y41-13-H 1100, 18. Y33-06-N, Y56-15-F 1020, 20. Y31-14-M 957, 21. Y64-08-F 576, 22 Y36-14-G 493, 23. Y38-08-G, Y48-02-M 480, 25. Y63-17-I 441, 26. Y46-07-I 420, 27. Y54-16-H 216. 28. Y31-23-B 184, 29. Y34-08-F 180, K: Y21GO, Y21XH/a, Y22OF, Y22OO, Y22TO, Y23YE, Y24EG, Y25TO, Y25XH, Y26VM, Y28TO, Y32LL, Y32QD. YS3VL, YSSTJ, Y82ML

Ergebnisse des SP-YL-Marathon 1987

YL: 1. Y23UB/a 1 404, 2. Y39MH 946; OM: 1. Y24JF 3306, 2. Y56YF 1152, 3. Y34XF 1020, 4. Y32ZF 300, 5. Y56VF, Y56ZF 108; S: 1. Y34-02-F 32 007, 2. Y56-15-F 3 690, 3. Y2-6996/F56 969, 4. Y34-05-F 192

Ergebnisse des YU-DX-Contests 1987

E: 1. Y54NL 11666, 2. Y42HA 8388, 3. Y51ZE 7488, 4. Y59ZF 4896, 5. Y21NE 4148, 6. Y37ZE 3069, 7. Y21YH 2088, 8. Y23CL;1955, 9. Y21HE 1558, 10. Y23YE 1292; 3,5: 1. Y21CL 4136, 2. Y51WE 3575, 3. Y21NM/# 2664, 4. Y21UB 440; 7: 1. Y64UF 360; R: Y32FL. Y52TE.

Die Stationen Y42ZB (Y42WB, Y42ZB), Y23RJ, Y24JJ, Y32LL, Y32ZN (Y3110, Y53KO) und Y78UL sind dem veränderten Termin zum Opfer gefallen Der Veranstalter hat für 1987 zwei unterschiedliche Termine für den Contest herausgegeben, wobei es dem Contestbüro infolge der Kurzfristigkeit nicht möglich war, eine umfassende Information zu veran-

Ergebnisse des HSC-Spring-Contests 1987

H&Cer. 1. Y21NE 6370, 2. Y66QL 5544, 3. Y78UL 5542, 4. Y22WK 3672, 5. Y34SF 3444, 6. Y62QH 3420, 7. Y52XF 3030, 8. Y26II 2704, 9. Y22RF 1 180, 10. Y51ZE 756, 11. Y27DL 624, 12. Y21UH 588, 13. Y43VA 245; HSCer - QRP: 1. Y21RG 840, 2. Y24OL 630, 3. Y21YH 400, 4. Y21DH 360, 5. Y24BB/p 320; Nicht-HSCer: 1. Y33VL 6364, 2. Y23VB 4118, 3. Y25SA/a 2668, 4. Y24RK 2640, 5. Y42HA 2622, 6. Y48YN 2544, 7. Y32JK 2266, 8 Y39UL 2220, 9. Y55ZD 2130, 10. Y36YM 2121, 11. Y46XF 1980, 12. Y77ZH 1605, 13. Y36TI 1387, 14. Y32KI 1273, 15. Y23HE/a 1197, 16. Y71WG 1088, 17. Y25FH 360, 18. Y21HE 186, 19. Y24SH/a 120, 20. Y38RG 78, 21. Y31TF 64; Nicht-HSCer - ORP: 1. Y241K 828, 2. Y22AN 750, 3. Y26VG 680, 4. Y24HG 24, 5. Y28YL 16; S: 1. Y32-01-F 592, 2. Y37-07-1 528; K: Y22YO, Y23GD, Y24KG. Y25RN/a, Y25ZN, Y26JD, Y48ZL/Y49MH, Y53PF/p. Y53UL, Y53VL, Y54UE

UKW-OTC

Bearbelter: Ing. Hana-Uwa Fortier, YZ300 Hana-Loch-Str. 248, Berlin, 1136

Stadtrelais in Moskau

Seit Februar diesen Jahres arbeitet vom Hochhausgebaude der Moskauer Staatlichen Universität "Lomonossow" ein UKW-Umsetzer. Ein Kollektiv der Zeitung "Komsomolskaja Prawda" montierte ihn mit spezieller Genehmigung des GIE der UdSSR für Experimente zur Einführung des Relaisfunkbetriebs. Der Umsetzer gestattet, mit geringen Leistungen relativ große Entfernungen zu überbrücken, da die Aufstellungshöhe der Antenne (etwa 150 m über Grund) einen Sichtbarkeitsborizont von mehr als 50 km newährleistet Die Daten für den FM-Umsetzer lauten: : xasupsrilluraA 145 000 kHz; Sendefrequenz: 145 600 kHz; Sendeleistung: 10 W., Zu Beginn der Ausstrahlung sowie alle 3 min sendet der Repeater das Rufzeichen UK3KP sowie den Locator KO85PO

Der gesamte Komplex besteht aus einem Eingangsteil, dem Sender, einer Computersteuerung und der Stromversorgung Die Antennen sind Halbwellendipole mit vertikaler Polarisation und am zentralen Turm des Universitätsgebäudes angebracht; die Empfangsantenne in Richtung Nord/West und die Sendeantenne in Richtung Süd/Ost.

(Auszug aus "Sovietsky Patriot" vom 22.4.87)

Der Mehrton-Effekt

Dieses Ausbreitungs-Phänomen ist schon seit längerer Zeit bekannt, eine befriedigende physikalische Erklärung steht aber noch aus. Die Erscheinung ist bei geeigneten Beobachtungsmitteln eindeutig identifizierbar; sie wird aber oftmals mit anderen Ausbreitungsbedingungen verwechselt. Der Beobachter des Mehrton-Effektes stellt fest, daß empfangene SSB-oder CW-Signale eine deutliche Verzerrung aufweisen, wenn die Antenne in eine geeignete Richtung gestellt wird. Der eingestellte Azimut bei maximaler Signalverzerrung kann erheblich vom wahren Azimut zwischen Sender und Empfänger abweichen.

Durch Beobachtungen von OMs weiß man, daß dieses Phänomen täglich beobachtet werden kann. Am geeignetesten für die Beobachtung sind CW-Signale, wobei es besonders vorteithaft ist, die Grundfrequenz mittels eines Notch-Filters auszublenden. Die Zusatzsignale werden dann deutlich hörbar. Durch Dresetzignale werden das Empfangssignal auf dem direkten. Wege vollständig unterfrückt sein, der Mehrton-Effekt bleibt davon unberührt.

Die Leistung der Sender scheint keinen Einfluß auf den Effekt zu haben, so konnte das Phänomen auch bei Sendern geringer Leistung festgestellt werden

Die Richtungsabhlingigkeit des Mehrton-Effektes ist mit einiger Wahrscheinlichkeit kein lokales Phanomen am Empfangsort, wie gleichzeitige Beobachtungen an verschiedenen Standorten zeigten. Y22TO und Y2300 diskutierten diese Erscheinung bei ihren Contesteinsätzen bei Y350 des öfteren, ohne eine beweissähige Erklärung gefunden zu haben. Die Interpretation der dem Sendesignal aufgeprägten Fremdmodulation als Doppler-Effekt durch Verkehrs-Flugzeuge, erklärt nicht die durch einige OMs festgestellte Frequenzkonstanz der jeweiligen Spektrallinien, da die Relativaeschwindigkeit Flugzeug/Empfanger nur in besonderen geometrischen Konstellationen als zeitlich konstant angesehen werden kann Sollte sich durch weitere Beobachtungen bestätigen, daß das zeitlich gemittelte Mehrton-Spektrum tatsächlich ein symmetrisches Linienspektrum darstellt, dann mußte nach einem anderen "Modulator" gesucht werden. Hier eröffnet sich für die Funkamateure ein weiteres Feld der Boobachtung und des Experimentierens. Eine sehr wichtige Frage ist, ob der Mehrton-Effekt die jeweilige Grundfrequenz, also einen nicht verschobenen Spektralanteil, mitliefert. OMs, ich warte auf eure Beobachtungserzebnisse!

Danke für den Bericht von Y41VM, DUBUS 1,

UKW-Conteste

Bearbeiter: ing. Kleus E. Sårgel, Y25VL Zieglerstr. 12, 72-34 Dresden, 8020

YO-VHF-Contest 1987

- 1. Veranstalter: FRR
- 2. Zelt: 9 8 87, 0200 bis 1200 UTC
- 3. Proquenzbereich: 144-MHz-Band, entsprechend dem IARU-Bandplan
- 4. Sendearten: CW. SSB
- 5. Tellnahmearten: Sektion A: Einmann (fest), Sektion B: Einmann (portable), Sektion C: Mehrmann (fest), Sektion D: Mehrmann (portable)
- 6. Kontrollaustausch: RS(T), QSO-Nummer, Loca-
- 7. Punkte: 0 bis 50 km 2, 51 bis 100 km 6, 101 bis 150 km 10, 151 bis 200 km 14, 201 bis 250 km 18, 251 bis 300 km 22, 301 bis 350 km 26, 351 bis 400 km 30, 401 bis 450 km 40, 451 bis 500 km 50 Punkte urw
- 8. Multiplikator: Summe der verschiedenen Locator-GMF, außer dem eigenen
- 9. Ergebnis: Summe der QSO-Punkte, multipliziert mit dem Multiplikator
- 10. Besondere Bedingungen: QSOs in CW/SSB gemischt sind gestattet. Alle Verbindungen, die nicht durch das Log der Gegenstation belegt sind, werden gestrichen
- 11. Abrechnung: Bitte bis zum 19.8 87 an die UKW-Bezirks-Contestbearbeiter bzw. bis zum 29.8 87 (jeweils Poststempel) an Y25VL.

Ergebnisse des SP9-VHP-Winter-Contests 1987

E 144: 1. Y27BL 228, 2. Y37XL 120, 3. Y24LE 50, 4. Y24PE 46, 5. Y32FL, Y43XE/p je 34, 7. Y25HE 26, 8. Y25RD/a 16, 9. Y52NE 10; M144: 1. Y36ZK/p 2096; E 432: 1. Y32FL 4; M 432: 1. Y36ZK/p 200; K: Y24UL/Y72VL.

Ergebnisse des I. Subregionalen VHF-Contests 1987

E 144: 1. Y26KI/p 38136, 2. Y72BL 11346, 3. Y24XN 8208, 4. Y23RJ/p 6188, 5. Y26JD 5427, 6 Y40DFD 4872, 7. Y25QL/a 3861, 8. Y24XK 3843, 9. Y23SB 3657, 10. Y24LA 3381, 11. Y35YC 3120, 12. Y37XL 2860, 13. Y24LB 2730, 14. Y38WI 2337, 15. Y73VH 2100, 16. Y31VA 1920, 17. Y24NK 1440. 18. Y22SI 1424, 19. Y26MH/a 1296, 20. Y24KJ/a 1230, 21. Y25RE 1106, 22. Y25ML 1001, 23. Y26GL 980, 24. Y24BK 804, 25. Y23QD 792, 26. Y46XF 767, 27. Y22VK 472, 28. Y22UC 370, 29. Y25MN 312, 30. Y24LK/p 246, 31. Y32IN 231, 32. Y27ON 136, 33. Y27EO 125, 34. Y24WK 71, 35. Y24PE 60, 36. Y25NL 56, 37. Y25AA/p 44, 38. Y25HE 30; M 144: 1. Y36ZK/p 30172, 2. Y48ZD 9900, 3. Y26FH/p 5481, 4. Y52ZE 460; S144: 1. Y39-06-K 2920, 2 Y67-03-G 568, 3. Y39-05-K 506, 4. Y32-04-A 430, 5 Y39-01-E 371; E 432; 1. Y27CN 186, 2. Y25LL 91, 3 Y25QL/a 75, 4, Y24LB 24; M 432: 1. Y36ZK/p 2 805; E 1.3: 1. Y27CN 4: K: Y21UD, Y24KN, Y27RN,

Ergebnisse des Y2-FM/RTTY-April-Contests

E145: 1. Y25RM/p 1190, 2. Y27WL/a 686, 3. Y25AN/p 518, 4. Y27XL/a 516, 5 Y23RJ/p 410, 6. Y47YM 390, 7. Y22KL/a 355, 8. Y27AL/p 336, 9. Y24UL 300, 10. Y22UC/p 258, 11. Y21GC/p 246, 12. Y85WL/p 243, 13. Y24UF 235, 14. Y21VL, Y22QJ, Y39SF je 232, 17. Y22CG/a, Y25HO, je 222, 19. Y62YF 210, 20. Y27ON 208, 21. Y23EF 190, 22. Y21RL, Y75KL/p je 180, 24. Y25HN, Y26AM je 176, 26. Y25LD/p 175, 27. Y75O 170, 28. Y22OL/p 168, 29. Y27RO, Y34OO je 165, 31. Y25QM 164, 35. Y21OL 156, 33. Y35VL/a 147, 34. Y28RH 140, 35. Y91VL 135, 36. Y59PN 126, 37. Y44YL, Y52QL/p je 120, 39. Y23JM 116, 40. Y25SM 108, 41. Y21UL 102, 42. Y21CM, Y23OM je 99, 44. Y43XE/p 96, 45. Y25FL/p 90, 46. Y23SG 88, 47. Y27KL, Y32ZN/Y53KD je 81, 49. Y21MF/p, Y49SC je 80, 51. Y64ZL/p 78, 52. Y24PE, Y25HE je 64, 56. Y24RI 60, 57. Y32LI/p 54,

58 Y23QD 51, 59. Y22XF/p/Y22BF, Y71VN/p je 45, 61. Y21DG/m 44, 62. Y26NM, Y56ZJ/p jo 42, 64. Y21VC 35, 65. Y24AN/p, Y47VO je 34, 67. Y25II, Y28HO, Y45PN/p je 28, 70. Y27BO 22, 71. Y22DA 723UA je 20, 73. Y25WA/a 16, 74. Y23JA 12, 75. Y26PL 10, 76. Y24OL/p 8; M 145: 1. Y52ZE/p 581, 2. Y28FO/p 204, 3. Y41ZN 176, 4. Y51ZF, Y68ZN/p je 156, 6. Y37ZI/p 140, 7. Y22DC/p 102; S 145: 1. Y48-03-J 405, 2. Y57-02-M 203, 3. Y35-04-M 195, 4. Y34-12-L/p 102, 5. Y32-08-F 52, 6. Y39-12-K 40, 7. Y32-01-F 12; RTTY E 145: 1. Y26QL/p 14, 2. Y91VL 12, 3. Y51ZF, 1; K: Y21UD, SH; Y23XF, TH, ZJ; Y24PM, Y25NN, Y27PN, RN; Y52TI.

Die internationalen Organisationen des Funkdienstes

Der Äther ist seinem Wesen nach international -Funkwellen können ungehindert Ländergrenzen, Ozeane und Kontinente passieren. Gerade deshalb erfordert die Nutzung des gesamten Spektrums der Funkwellen eine internationale Koordinierung, die die Interessen aller Länder der Welt in Einklang bringt. Die Zuweisung der Frequenzen zwischen den einzelnen Funkdiensten führt die ITU, der internationale Fernmeldeverein, eine multinationale Orranisation, die unter der Ägide der UNO steht, durch. Zur Zeit geboren der ITU, mit Hauptquartier in Genf, mehr als 150 Länder an In bestimmten Abständen führt die ITU Konferenzen durch, auf denen aktuelle Fragen des Funkwesens (Frequenzverteilung, Rufzeicheneinteilung usw.) erörtert werden. In großen Abständen (mehr als 10 Jahre) tagt das höchste Organ der ITU, die Weltfunkverwaltungskonferenz - die WARC. Die letzte Konferenz dieser Art fand 1979 statt. Eines der Hauptergebnisse der WARC besteht in der Erarbeitung der Vollzugsordnung Punk, in der alle wichtigen Aspekte der Organisation des Funkverkehrs im weltweiten und Landesmaßstab berücksichtigt werden. Auf der Grundlage der Vollzugsordnung Funk regeln die nationalen Fernmeldeverwaltungen ihre Arbeit. Zur Zeit legt dieses Dokument die Nutzung des Frequenzbereiches von 10 kHz bis 275 GHz fest. Im Zusammenhang mit der Frequenzvergabe wurde die Erde in drei Fernmelderegionen unterteilt.

Der Amateurfunkdienst hat seine eigene internationale Organisation, die Internationale Amateur-Radio-Union (IARU) in der zur Zeit über 120 Amateurfunkverbände der Welt Mitglied sind. Die IARU wurde 1925 gegründet. Ihr Hauptquartier befindet sich in den USA.

Eine der bedeutendsten Aufgaben der IARU besteht darin, die Interessen des Amateurfunkdienstes in der ITU und insbesondere bei der WARC zu vertreten

In den 50er Jahren begannen sich internationale Amateurfunkorganisationen zu formieren, die die nationalen Amateurfunkverbände zu den schon erwähnten Regionen 1, 2 und 3 der ITU vereinigten. Die Konferenzen der Organisationen, die dreijährlich stattfinden und an denen die regionalen Vereinigungen teilnehmen, befassen sich mit Fragen, die für den Amateurfunk und den Funksport bedeutsam sind (Wettkämpfe, rationelle Nutzung der Amateurfunkfrequenzen, Koordinierung und Durchführung von KW-Contesten, Standardisierung von Amateurfunkdokumenten usw.). Die praktische Arbeit im Ezekutivkommittee, das außerdem die regionalen Organisationen in der ITU vertritt.

Die Vorbereitung der Dokumente der nächstfolgenden Konferenz übernehmen Arbeitsgruppen, die sich aus Vertretern der verschiedenen nationalen Amateurfunkverbände zusammensetzen. Der Region 1 der LARU gehören momentan über 50 Ländern an. (nach "Handbuch für den Kurzwellenamateur", Moskau 1986)

A. Hoffmann, Y26AO

Liste der Y2-Kreiskenner	Cortbus J 08 Pößneck 0 0 F 01 Jessen 0 0 0 Zeulenroda 0
Stand: 1.7.1987 229 Kreise Rostock A 01 Grevesmühlen	F 05 W-Pieck-Stadt Guben
A 05 Rostock	Magdeburg Dresden G 01 Salzwedel
B 05 Bûtzow	G 16 Wanzleben
C 06 Veckermünde	H 07 Roßlau
D 04 Gransce	H 21 Hohenmolsen
Frankfurt (Oder) E 01 Angermünde	10 Erfurt Stadt

SSTV in Theorie und Praxis (1)

Ing. M. PERNER - Y21UO

Unter dieser Überschrift werden in der Folgezeit einige theoretische und praktische Probleme der Sendeart SSTV (slow scan television) behandelt. Ausgangspunkt ist das in der letzten Zeit gestiegene Interesse der DDR-Funkamateure für diese Sendeart. Es ist noch offen, ob der FUNKAMATEUR komplette nachbausichere Schaltungen veröffentlichen wird, denn die Beschaftbarkeit bestimmter IS sowie die theoretischen und praktischen Kenntnisse bestimmen letztendlich die Gerätekonzeption. Die Typenvielfalt der im Handel erhältlichen IS ermöglicht den Aufbau moderner Konzeptionen durchaus. Ein solches Projekt ist auch für den FA gefragt.

Die nachfolgenden Ausführungen enthalten einige der Erfahrungen, die ich beim Aufbau einer vierten Gerätegeneration und in einer langjährigen Sendetätigkeit in SSTV bei einer vierstelligen QSO-Anzahl mit WAC und Fünfbandbetrieb (auf den für SSTV zugelassenen KW-Bändem) sammeln konnte.

Geschichtliche Entwicklung

In den Hesten 8 und 9 des Jahrgangs 1958 der OST (USA) beschrieb C. McDonald, WA2BCW, ein neuartiges schmalbandiges Bildübertragungssystem. Es enthielt die Grundlagen der heutigen Sendeart SSTV. In der Folgezeit wurden Normen und Verfahren zwar verbessert. der Grundgedanke jedoch blieb erhalten. Kempunkt der Idee ist die Übertragung von Bildem in einem Telefoniekanal mit max. 3 kHz Bandbreite. Heute übersieht man leicht, daß SSTV eine eigenständige Entwicklung innerhalb des Amateurfunks ist. Hier wurde etwas grundlegend Neues geschaffen, denn andere Sendearten bzw. -verfahren des Amateurfunks wie RTTY, FAX, HELL, AMTOR usw. hatten kommerzielle Geräte oder Verfahren als Pa-

1960 empfing G2AST im 28-MHz-Band SSTV-Bilder aus den USA. Als 1966 die

McMurdo-Station der Antarktis SSTV-Bilder mit den USA austauschte, weckte das, besonders bei technisch interessierten Funkamateuren, ein starkes Interesse. In den Jahren 1971 und 1972 nahm im europäischen Raum die SSTV-Aktivität stark zu. Industriell gefertigte Geräte verdrängten die bis dahin üblichen Eigenbaugeräte. 1975/76 erschienen fast gleichzeitig die ersten Geräte mit Normwandlung SSTV - FSTV (fast scan television) der US-Firma ROBOT und von V. Wraase, DL2RZ, auf dem Markt, Dieses Prinzip bedeutete einen riesigen Fortschritt. Nun konnte man auf dem Bildschirm eines TV-Geräts SSTV-Bilder sichtbar machen. Die bislang übliche Betrachtung von SSTV-Aussendungen auf dem Bildschirm einer nachleuchtenden Oszi-Röhre bzw. Radar-Sichtröhre im abgedunkelten Raum war (auch nach eigenen Erfahrungen) doch recht anstrengend, speziell bei längeren Empfangsreihen. Das, was noch heute an die Anfänge des SSTV erinnert, sind das quadratische Bildformat und die Grundnorm.

Fast unmittelbar nach Veröffentlichung der "Anordnung Nr. 2 über den Amateurfunkdienst – Amateurfunkanordnung – vom 27.4.1983" (u.a. Zulassung der Sendeart J3C) nahm Y21UO den Sendebetrieb in SSTV auf den KW-Bändern auf. 1986 habe ich nach Fertigstellung der vierten Gerätegeneration erste Versuche mit Farb-SSTV unternommen. Im Sep-

SSTV-Normen

	8 s	16 s	32 s
Dauer des Horizontal-	5	5	5
impulses [ms]			
Dauer des Vertikal-	30	30	30
impulses [ms]			
Bildpunkte je Zeile	128	256	256
Zeilen je Bild	128	128	256
Synchronfrequenz (Hz)	1200	1 200	1 200
Schwarzfrequenz [Hz]	l 500	1 500	1 500
Weißfrequenz [Hz]	2 300	2 300	2 300
Bildpunkte je Bild (Kbit)	16	32	64

tember 1985 konnte ich dann mit Y55ZA auch das eigene DXCC-Land arbeiten. Unmittelbar danach wurden Y21MH und Y28WH mit modernen Konvertern auch sendemäßig aktiv.

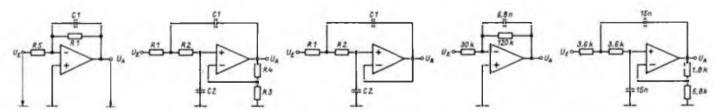
SSTV-Normen

Bildauslösung und Bildwechselfrequenz sind proportional zur notwendigen Bildsignalbandbreite. Die übliche Fernsehnorm hat eine Bandbreite des Videosignals von etwa 5 MHz (625 Zeilen mit jeweils 830 Bildpunkten). Das ergibt fast 520 000 Bildpunkte je Bild. Die in den Anfängen verwendeten Radar-Bildröhren haben eine Nachleuchtdauer von etwa 10 s sowie einen runden Schirm.

Durch Versuche wurde ermittelt, daß man mit 120 Zeilen brauchbare Bilder übertragen kann. In der Praxis braucht man bei einwandfrei fokussierten und lichthoffreien Bildpunkten für eine gute Bildwiedergabe 0,5 mm Zeilenabstand. So ergeben sich für 120 Zeilen mindestens 60 mm Bildhöhe und Bildbreite. Demzufolge ist ein Bildschirmdurchmesser von mindestens 85 mm, besser jedoch 100 mm erforderlich.

Mit zunehmender Digitalisierung der SSTV-Geräte wurde die Zeilenzahl auf 128 erhöht. Bei einer gleichmäßigen Rasterung des quadratischen Bildes ergeben sich 128 Bildpunkte je Zeile. Ein komplettes SSTV-Bild enthält somit in der Grundnorm 16 384 Bildpunkte. Der Einfachheit halber spricht man von 16 Kbit. Als Zeilenfrequenz für SSTV wählte man in den USA 15 Hz (Netzfrequenz 60 Hz:4), in Europa 16,67 Hz (50 Hz:3). Damit lag dann auch die Bildwechselfrequenz für Europa mit 1/7,2 (neu 1/7,68) Hz fest. Vereinfacht spricht man von 8 s Bildwechselzeit.

Bis heute hat sich die Norm der Zeilenund Bildwechselimpulse (Synchronimpulse) erhalten. Am Anfang jedes Bildes bringt der 30 ms lange Bildsynchronimpuls das Empfangsgerät in die Nullstellung (links oben). Dort beginnt der Aufbau des SSTV-Bildes: Die Bildablenkung (nach unten) und die Zeilenablenkung (nach rechts) starten. Am Ende der Zeile sorgt der 5 ms lange Zeilenimpuls für den Rücksprung nach links. Da inzwischen bereits eine (geringe) Ablenkung nach



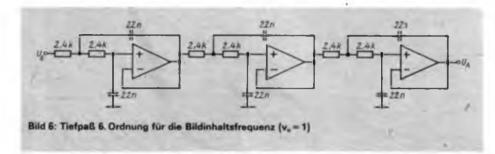

Bild 1: Tiefpaß 1. Ordnung mit kritischer Dampfung mit Gegenkopplung

Bild 2: Tiefpaß 2. Ordnung mit Einfachmitkopplung $\{R_i = R_j : C_i = C_j\}$

Bild 3: Tiefpaß 2. Ordnung mit Einfachmitkopplung ($v_n = 1$; $R_1 = R_2$; $C_1 = C_2$)

Bild 4: Dimensionierter Tiefpaß 1. Ordnung mit kritischer Dämpfung zur Selektion der Horizontalimpulse

Bild 5: Besselfilter 2. Ordnung für den sendeseitigen NF-Kanal

unten erfolgte, beginnt die zweite Zeile unterhalb des Zeilenfangs der ersten usw. Beide Synchronimpulse dürfen eine maximale Toleranz von 10 % haben.

Bet einer Gesamt-Zeilendauer von 60 ms und einer Synchronimpulsdauer von 5 ms verbleiben für die eigentliche Bildinformation 55 ms. Eine Bildpunktzahl von 128 ergibt bei maximaler Auflösung 64 Helligkeitswechsel je Zeile. Die maximale Bildinhaltsfrequenz errechnet sich danach zu

$$f_{MOD} = \frac{Bildpunktzahl}{2 \times Zeilendauer} = \frac{128}{2 \times 55 \text{ ms}}$$

= 1 164 Hz.

Aus praktischen Gründen hat man sich jedoch auf eine maximale Frequenz von 900 Hz geeinigt. Aus obiger Formel ergibt sich aber auch, daß eine höhere Auflösung nur über eine Vergrößerung der Zeilendauer erreichbar ist. In der Praxis verwendet man für 256 Bildpunkte eine effektive Zeilendauer von 115 ms. Nun dauert die Übertragung eines Bildes aber bereits etwa 16 s. Eine weitere Verbesserung der Auflösung ist mit einer Verdoppelung der Zeilenzahl erreichbar. Dies bedeutet eine Bilddauer von etwa 32 s. Auf diese Weise sind aus der Grundnorm von 8 s die beiden neuen Normen 16 s und 32 s entstanden. Der deutlichen Verbesserung der Auflösung steht aber ein nicht unerheblicher Mehraufwand gegenüber. Ein 16-s-Bild läßt sich auf einer Nachleuchtröhre nicht mehr komplett darstellen. Man kann jedoch bei Konzentration auf den Bildablauf den Bildinhalt noch erkennen.

Die Übertragung des Bildinhalts sowie der Synchronimpulse erfolgt im NF-Bereich. Unabhängig von der Norm ist den Synchronimpulsen die Frequenz 1200 Hz, dem Schwarzwert 1500 Hz und dem Weißwert 2300 Hz zugeordnet. Das

stellt sicher, daß die Synchronimpulse nicht im Bildinhalt sichtbar sind (Ultraschwarz).

Auf Kurzwelle wird das SSTV-NF-Signal in SSB übertragen. Die Seitenbandlage entspricht den üblichen Vereinbarungen. Eine gleichzeitige Aussendung eines Begleittons ist nicht möglich, da der Frequenzbereich bereits fast vollständig ausgenutzt ist. Nicht genormt ist die Anzahl der Grauwerte. Technisch optimal ist die Austeilung des Bereichs 1500...2300 Hz in 16 Grauwerte (4 Bit). Eine Verdoppelung auf 32 Grauwerte schafft wesentlich bessere Abstufungen, bringt aber Probleme bei der technischen Realisierung. 8 Grauwerte und weniger gehen in den Bereich der "Schattenspiele" über, da hierbei nur noch markante Abstufungen erkennbar sind. Für reine Schristübertragung (Keyboard) genügen jedoch die beiden Frequenzen 1 500 Hz 2 300 Hz.

An dieser Stelle sei darauf hingewiesen, daß die Frequenz-Differenz zwischen 1500 Hz und 2300 Hz (=800 Hz) nicht mit der maximalen Bildinhaltfrequenz von 900 Hz identisch ist!

Nachfolgend einige Einzelheiten zur Verarbeitung dieser Frequenzen.

Einsatzzweck von Filtern

Filter benötigt man für die Selektlerung der empfangs- und sendeseitigen SSTV-NF, der Synchronsignale, der Bildinhaltsfrequenz sowie auch meist zur Trennung der beiden Synchronsignale. Die nachstehenden Ausführungen zu Filtern gelten nicht nur für SSTV, sie können auch für RTTY-Filterberechnung nützlich sein.

Passive Filter

Passive Filter, d. b., Konfigurationen aus Spulen und Kondensatoren, sind auch heute noch aktuell und in vielen Geräten

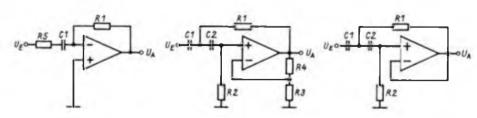


Bild 7: Hochpeß 1. Ordnung mit Gegenkopplung

Bild 8: Hochpaß 2. Ordnung mit Einfachmitkopplung $\{R_1 = R_2; C_1 = C_2\}$

Bild 9: Hochpaß 2. Ordnung mit Einfachmitkopplung (v_e = 1; R₁ = R₂; C₁ = C₂)

Vom Nachrichtenspezialisten zum Nachrichtenoffizier

Ende August wird es ernst für den 19jährigen Mathias Bläser aus der Betriebsschule "Salvadore Allende" von Robotron Radeberg. Dann beginnt sein Studium an der Offiziershochschule "Ernst Thälmann". Aber ihm ist nicht bange: "Ich bin gut auf diesen neuen Lebensabschnitt vorbereitet und freue mich auf den Beginn meiner beruflichen Tätigkeit."

Viele trugen in den vergangenen Jahren dazu bei. Da sind die Eltern, sein Vater ist GST-Funktionär. Da ist die Schule mit einem Klassenleiter, von dem Mathias mit der größten Hochachtung spricht: "Wir diskutierten viel über aktuell-politische Probleme. Auch und vor allem darüber, daß heute der Friede bewaffnet sein muß."

Da ist die FDJ. Im FDJ-Bewerberkollektiv unternahmen sie sehr viel, was seinen Berufswunsch und seine Motivation festigte, für die gerechteste Sache der Welt das Waffenhandwerk zu lernen und mit an vorderster Stelle dazu beizutragen, das erste Menschenrecht – das Recht auf Frieden – zu verwirklichen.

Und da ist nicht zuletzt die GST. Eine zweijährige vormilitärische Lausbahnausbildung Nachrichtenspezialist hat er hinter sich. "Hier lernte ich sehr viel, nicht nur was die Nachrichtentechnik betraf, für die ich mich schon seit Jahren sehr stark interessiere und begeistere."

Selbstverständlich war für ihn, wenn allerdings nicht ganz einfach und nicht so nebenbei zu schaffen, daß er zum Abschluß dieser Ausbildung das Bestenabzeichen der GST errang. Die vormilitärische Laufbahnausbildung und sein Einsatz als Gruppenführer waren für den jungen Genossen – er gebort seit diesem Jahre der SED an – eine erste Bewährung für seinen künftigen Offiziersberuf, die er gut bestanden hat.

Die Zeit bis zur Einberufung will Mathias nicht tatenlos verstreichen lassen. Das Abitur soll mit der Note "gut" bestanden werden. In der Sektion Krastsport tankt er Krast auf, damit künstig die Handgranate noch weiter als 45 Meter sliegt. Und die GST bleibt. Mit dem Wehrkampssport und einem weiteren Einsatz als Gruppensührer in der Lausbahnausbildung Nachrichtenspezialist.

So hat Mathias heute wertvolle Voraussetzungen geschaffen für seinen anspruchsvollen militärischen Beruf. Die künstigen vier Lehrjahre bis zum Leutnant und Diplomingenieur werden es in sich haben, fordern gewiß den ganzen Mann. Sicher wird er sich manchmal überwinden müssen auch schier Unmögliches zu bewältigen. Aber das wird er sich und denen, die ihm vertrauen, beweisen. So gut glaube ich den baldigen Offiziersschüler Mathias Rläser zu kennen

G. Specht

zu finden. Der Nachteil, daß man Spulen wickeln muß, wird durch den Vorteil der Rauschfreiheit kompensiert. Ich verwende einen Tiefpaß fünsten Grades für die sendeseitige NF (zusätzlich zum aktiven Tiefpaß) sowie einen Hochpaß fünsten Grades auf der Empfangsseite. Beachtung ist den Problemen des Überschwingens sowie der Gruppenlaufzeit zu schenken. Alle Informationen zu passiven Filtern sind [1] zu entnehmen.

Aktive Filter

Die Verbreitung sowie der günstige Preis von Operationsverstärkern (OV) haben aktive Filter zu den wichtigsten analogen Baugruppen, nicht nur für SSTV, werden lassen. Mit Widerständen und Kondensatoren lassen sich je nach Einsatzzweck Resonanzfrequenz bzw. Grenzfrequenz, Güte und Bandbreite verändern.

Betrachtet werden in den nachfolgenden Ausführungen OVs in der allgemeinen Darstellungsform. Die praktische Anschlußbelegung ist den jeweiligen Datenblättern zu entnehmen. Gleiches gilt auch für eine eventuell notwendige externe Frequenzkompensation (A 109 u.ä.). Es wird vorausgesetzt, daß die Speisespannungen massesymmetrisch und entsprechend stabilisiert sind. Die Kondensatoren sollten hochwertige Typen sein; Epsilan als Werkstoff ist nicht brauchbar.

Bei der Berechnung geht man immer von den Abstufungen der genormten Kapazitätswerte aus. Bei der Grenzfrequenz ist die Durchgangsverstärkung um 3 dB gegenüber dem Maximalwert gesunken. Auch bei aktiven Filtern steigen mit grö-Berer Flankensteilheit des Filters die Welligkeit im Durchlaßbereich und das Überschwingen an. Filter werden unterschieden nach ihrer Flankensteilheit, Durchlaßwelligkeit sowie ihrem Überschwingen und sind meist nach Wissenschastlern benannt (Tschebyschess, Bessel, Butterworth). Die Filterschaltungen der verschiedenen Typen unterscheiden sich nicht - lediglich die Bemessung der Bauelemente.

Nachfolgend werden Filter mit kritischer Dämpfung sowie Bessel-Filter betrachtet, d. h., Filtertypen mit vernachlässigbarem Überschwingen und guter Nachbausicherheit. Die Ordnungszahl eines Filters bestimmt seine Flankensteilheit. Je höher die Ordnungszahl, desto steiler die Flanke bei jedoch größerer Welligkeit und stärkerem Überschwingen. Ein Bessel-Filter 6. Ordnung stellt im Normalfall die Grenze für SSTV dar. Mit einem OV kann man je nach Beschaltung ein Filter 1. oder 2. Ordnung ausbauen; höhere Ordnungen entstehen durch Reihenschaltung von aktiven Filtern. Dabei addieren sich die Ordnungszahlen. Bessel-Filter und Filter kritischer Dämpfung höherer

Ordnung (>2) werden durch die Reihenfolge 2. – 1. – 2. Ordnung gekennzeichnet. Lediglich Filter kritischer Dämpfung 2. Ordnung lassen sich bei gleicher Dimensionierung direkt in Reihe schalten (2. – 2. – 2. Ordnung = 6. Ordnung; s. auch Tabelle). Tiefergehende Betrachtungen zu aktiven Filtern sind u. a. in [2] enthalten.

Tiefpaßfilter (TP)

Der TP bedämpst alle Signale oberhalb seiner Grenzfrequenz fg. Optimal und reproduzierbar sind für den Funkamateur die drei Grundvarianten nach Bild 1 bis Bild 3.

Tiefpaß 1. Ordnung mit Gegenkopplung (Bild 1):

$$f_g = \frac{a[k11]}{2 \cdot \pi \cdot R_1 \cdot C_1} \cdot a[k11] = 1$$
 (1)

$$R_1 = \frac{1}{2 \cdot \pi \cdot f_g \cdot C_1} \tag{2}$$

$$V_{u} = \frac{R_1}{R_5} \tag{3}$$

(R in Ω, C in F, f in Hz).

Kenngrößen von Filtern kritischer Dämpfung

gauabio	n-le Stufe	A	Ь	[k]	
1.	1.	1,0	0	11	
2.	1.	1,29	0,41	12	
3.	1.	0,51	0	13	
	2.	1.0	0,26	23	
4.	1.	0,87	0,19	14	
	2.	0,87	0,19	24	
5.	1.	0,39	0	15	
	2.	0,77	0,15	25	
	3.	0,77	0,15	35	
6.	1.	0,70	0,12	16	
	2.	0.70	0.12	26	-
	3.	0,70	0.12	36	

Kenngrößen von Bessel-Filtern

Ordnung	n-le Stufe	A	Ь	(k)
1.	1.	1,0	0	11
2.	1.	1,36	0,62	12
3.	1.	0,76	0	13
	2.	1,0	0.48	23
4.	1.	1,34	0,49	14
	2.	0,77	0,39	24
5.	1.	0,67	0	-15
	2.	1,14	0,41	25
	3.	0,62	0,32	35
6.	1.	1,22	0,39	16
	2.	0.97	0,35	26
	3.	0.51	0.28	36

k kennzeichnet die Größe von a bzw. b für die n-te Stufe eines Filters n-ter Ordnung Dieser Typ ist die einfachste Filterform. Der Vorteil besteht in der relativ problemlosen Veränderbarkeit der Übertragungsverstärkung v_u , d. h., des Verhältnisses der Ausgangsspannung U_A zur Eingangsspannung U_E .

Bild 2 zeigt einen Tiefpaß 2. Ordnung mit Einfachmitkopplung $(R_1 = R_2; C_1 = C_2)$:

$$R_1 = \frac{\sqrt{b[k12]}}{2 \cdot \pi \cdot f_s \cdot C_1} \tag{4}$$

$$v_u = 3 - \frac{a[k12]}{\sqrt{b[k12]}}$$
 (5)

$$R_4 = (v_0 - 1) \cdot R_3 \tag{6}$$

Der Einfachbeit halber setzt man $R_1=R_2,\ C_1=C_2.$ Werden diese Elemente unterschiedlich dimensioniert, so ändert sich das Verhalten der Filterstruktur erheblich.

Bei Filtern 2. Ordnung mit $v_u = 1$ entfallen die Widerstände R_1 und R_4 , so daß eine Filterstruktur nach Bild 3 entsteht. Diese Filterstruktur ist ein Tiefpaß 2. Ordnung mit Einfachmitkopplung $(v_u = 1; R_1 = R_2; C_1 = C_2)$. R_1 ergibt sich nach Gl. (4).

Beispiel 1: Dimensionierung eines Tiefpasses vom Typ kritische Dämpfung; 1. Ordnung; Selektion der Horizontal-Synchronimpulse (5 ms \cong 200 Hz); $C_1 = 6.8$ nF; $v_0 = 4$; $f_g = 200$ Hz.

Es ergibt sich ein Ausbau entsprechend Bild 1. Aus der Tabelle 1 erhält man a[k11] = 1. Aus Gl. (2) ergibt sich

$$\begin{split} R_1 &= \frac{a[k11]}{2 \cdot \pi \cdot f_a \cdot C_1} \\ &= \frac{10^9}{2 \cdot \pi \cdot 200 \; Hz \cdot 6.8 \; F} = 117 \; k\Omega, \end{split}$$

gewählt 120 kΩ. Nach Gl. (3) ergibt sich

$$R_3 = \frac{R_1}{v_0} = \frac{120 \text{ k}\Omega}{4} - 30 \text{ k}\Omega.$$

Anmerkung: Will man den Vertikalsynchronimpuls ebenfalls mit einem Tiefpaß dieser Art selektieren, so kann durch Variation von R₅ die Empfindlichkeit beider Stufen angeglichen werden.

Beispiel 2: Für die sendeseitige NF soll ein Tiefpaß vom Typ Bessel-Filter 2. Ordnung realisiert werden; $f_g = 2400 \text{ Hz}$; $C_1 = C_2 = 15 \text{ nF}$; $R_3 = 6.8 \text{ k}\Omega$ (Bild 4).

Der Aufbau ist entsprechend Bild 2 vorzunehmen. Aus Tabelle 1 folgen a[k12] = 1,36 und b[k12] = 0,62. Aus Gl. (4) ergibt sich

$$R_1 = \frac{\sqrt{b[k12]}}{2 \cdot \pi \cdot f_8 \cdot C_1}$$

$$= \frac{\sqrt{0.62 \cdot 10^{-3} \cdot 10^9}}{2 \cdot \pi \cdot 2.4 \text{ Hz} \cdot 15 \text{ F}} = 3.48 \text{ k}\Omega,$$

gewählt 3,6 k Ω . v_0 errechnet sich nach Gl. (5) zu

$$v_0 = 3 - \frac{a[k12]}{\sqrt{b[k12]}} = 3 - \frac{1,36}{\sqrt{0,62}} = 1,27$$

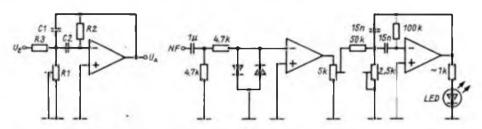


Bild 10: Normalform eines aktiven Bandpasses $\{C_1 = C_2; R_2 \ge 10 R_1\}$

Damit wird nach GI. (6) $R_4 = (v_0 - 1) \cdot R_3 = (1,27 - 1) \cdot 6,8 \text{ k}\Omega$ = 1,84 k Ω , gewählt 1,8 k Ω

Belspiel 3: Es soll ein Tiefpaß für die Bildinhaltsfrequenz (max. 900 Hz) aufgebaut werden (Bild 6). Um den Weißanteil nicht zu stark abzusenken, habe ich f_g zu 1 000 Hz gewählt; damit ist aber eine hohe Flankensteilheit erforderlich. Um den Bauelementeaufwand zu reduzieren, kam eine Reihenschaltung von Filtern kritischer Dämpfung 2. Ordnung zur Anwendung. Es werden drei Filterstrukturen 2. Ordnung nach Bild 3 eingesetzt. Das ergibt ein Filter 6. Ordnung mit $v_u = 1$. Alle Kondensatoren haben 22 nF. Die Tabelle ergibt b[k16] = b[k26] = b[k36] = 0,12. Aus GI. (4) errechnet sich

$$R = \frac{b[k]}{2 \cdot \pi \cdot f_a \cdot C}$$
$$= \frac{0.12 \cdot 10^{-3} \cdot 10^9}{2 \cdot \pi \cdot 1 \text{ Hz} \cdot 22 \text{ F}} = 2.5 \text{ k}\Omega.$$

Wie Bild 6 zeigt, bringt diese Art Tiespaß erhebliche Bauelementeeinsparungen.

Hochpaßfilter

Der Hochpaß bedämpst alle Signale unterhalb der Grenzfrequenz fg. Zur Berechnung gelten auch hier die Werte a[k] und b[k] der Tabellen. Berechnungsbeispiele können entfallen, da alle Tiefpaßvarianten sinngemäß zutreffen.

Bild 7 zeigt einen Hochpaß 1. Ordnung mit Gegenkopplung:

$$\mathbf{R}_1 = \frac{1}{2 \cdot \pi \cdot \mathbf{f}_g \cdot \mathbf{a}[\mathbf{k}11] \cdot \mathbf{C}_1} \tag{7}$$

$$v_{ij} = \frac{R_1}{R_5} \tag{8}$$

In Bild 8 ist ein Hochpaß 2. Ordnung mit Einfachmitkopplung zu sehen; $R_1 = R_2$; $C_1 = C_2$.

$$R_1 = \frac{1}{2 \cdot \pi \cdot f_e \cdot \sqrt{b[k12]} \cdot C_1}$$
 (9)

$$v_a = 3 - \frac{a[k12]}{\sqrt{b[k12]}} \tag{10}$$

$$\mathbf{R_4} = (\mathbf{v_0} - 1) \cdot \mathbf{R_3} \tag{11}$$

Bild 9 enthält einen Hochpaß 2. Ordnung mit Einfachkopplung; $v_0 = 1$; $R_1 = R_2$; $C_1 = C_2$. R_1 wird nach Gl. (9) berechnet.

Bild 11: Abstimmhilfe mit vorgeschaftetem Be grenzer

Bandpaßfilter (BP)

Bandpaßfilter entsprechen in ihrer Funktion einem Parallelschwingkreis. Für die Bemessung sind neben der Resonanzfrequenz fo auch die Güte Q und die Bandbreite B zu berücksichtigen. Der Bandpaß dient bei SSTV meist zur Selektion der Synchronimpulse. Wichtig ist für den praktischen Betrieb, eine Übersteuerung des Bandpasses zu vermeiden. Dies betrifft auch eine evtl. vorhandene zweite Stufe. Hier empfiehlt sich eine Ankopplung über einen veränderbaren ohmschen Spannungsteiler.

Die Übertragungsverstärkung v_0 wird stets auf f_0 bezogen. Die Bandbreite B ergibt sich aus den Frequenzen oberhalb und unterhalb f_0 , bei denen die Ausgangsspannung auf $0.7~U_{f0}$ (3-dB-Punkte) gesunken ist.

Bild 10 stellt die Normalform eines aktiven Bandpasses dar. Voraussetzungen bei diesem Filter sind, daß $C_1 = C_2$ und $R_3 \ge 10 \cdot R_1$ ist. Dann gilt:

$$f_0 = \frac{1}{2 \cdot \pi \cdot C_1} \cdot \sqrt{\frac{1}{R_1} \cdot \frac{1}{R_2}}$$
 (12)

$$R_1 = \frac{1}{(2 \cdot \pi \cdot f_0 \cdot C_1)^2 \cdot R_2} \tag{13}$$

$$Q = \mathbf{R}_2 \cdot \boldsymbol{\pi} \cdot \mathbf{f}_0 \cdot \mathbf{C}_1 \tag{14}$$

$$B = \frac{1}{R_2 \cdot \pi \cdot C_1} \tag{15}$$

$$v_{ij} = \frac{R_2}{2 \cdot R_3} \tag{16}$$

Aus den Gleichungen (14), (15) und (16) geht hervor, daß der Widerstand R2 neben C1 das dominierende Bauelement ist. Übertragungsverstärkung, Güte und Bandbreite sind von R_1 unabhängig. Bildet man R_1 einstellbar aus, so kann man die Resonanzfrequenz nach G1. (13) damit in gewissen Grenzen variieren. Bei $R_1 = 0$ schwingt der Bandpaß! Aus G1. (15) geht hervor, daß eine bereits dimensionierte Bandbreite bei Änderung von f_0 erhalten bleibt.

Bei der Bemessung der Bandbreite ist zu beachten, daß der kürzeste Nutzimpuls noch voll einschwingen kann. Nach der Heisenbergschen Unschäferelation ergibt sich (vereinfacht)

$$B = \frac{1}{\pi \cdot \Delta t} \tag{17}$$

Y61HQ errang Weltsieg in der ersten "IARU HF World Championship"

Das Hauptquartier der Internationalen Amateur Radio Union (IARU) veröffentlichte in der Februarausgabe der amerikanischen Zeitschrift "QST" die Resultate der 1. HF World Championship, die am 12./13. Juli 1986 auf den KW-Bändem 1,8 bis 28 MHz stattfand.

Der Radioklub der DDR wurde in diesem Wettkampf in der Kategorie der Headquarters Stations (HQ) durch die Sonderamateurfunkstelle Y61HQ vertreten. Dahinter verbarg sich unsere erfahrenste und erfolgreichste KW-Contestmannschaft – Y34K aus Ilmenau – die dazu erstmals auf mehreren Bändern gleichzeitig arbeitete. Wir berichteten dazu ausführlich in unserer Ausgabe 10/1986.

Einleitend betont "QST" die berausragende Rolle dieses Wettkampfes und erläutert, die IARU betreffend: "The International Amateur Radio Union (IARU), which is the Amateur Radio equivalent of the United Nations, ...", d.b., die IARU wäre im Amateurfunk das Äquivalent zur UNO, und stellt zusammenfassend fest, daß dies ein erfolgreicher Wettkampf war. Insgesamt seien 1397 Wertingslogs und eine Vielzahl von Kontrollogs eingeschickt worden. Die Auswertung und Abrechnung erfolgte entsprechend den Kategorien der Ausschreibung. Demzufolge Y61HQ in der Kategorie der HQ-Stationen den ersten Platz. Damit errangen die Kameraden von Y34K (Y21YK, Y23EK, Y24UK, Y42LK, Y42MK, Y42NK) unter diesem Sonderrufzeichen den Weltsieg für die DDR! Herzlichen Glückwunsch!

Die Punktzahl von 2 167 488 schaffte einen deutlichen Vorsprung vor den Zweit- und Drittplazierten.

Das IARU-Hauptquartier drückte dies so aus: "Congratulations in particular to the GDR station, Y61HQ, whose 2.1 M score was alone at the top of the pyramid, followed by YQØA, OH7C, W1AW and HG6N, all with fine scores". (deutsch: Glückwünsche insbesondere der DDR-Station Y61HQ, deren 2,1-Millionen-Ergebnis die einsame Spitze der Pyramide bildete, gefolgt von YQØA, OH7C, W1AW und HG6N — sämtlich mit guten Punktzahlen.)

Die Spitzenpositionen in den anderen Wertungsarten wurden wie folgt belegt: FONE – RB5MF, CW – AZ8DQ, MIXED – OHØAM, und in der Kategorie Multi-single – RL8PYL.

Die IARU veranstaltete ihre 2. HF World Championship am 11./12.7.87. Die Kameraden von Y34K hatten sich langfristig darauf vorbereitet. Ob die Funkwetterlage und die Teilnahme ihren Erwartungen entsprochen haben, war bei Redaktionsschluß natürlich noch nicht klar.

(B in Hz, Δt in s). Unter Δt ist die Zeitdauer von 80% des kürzesten Nutzimpulses zu verstehen.

Belspiel: Dimensionierung einer Abstimmhilfe für die empfangenen SSTV-Synchronimpulse mit $f_0 = 1\,200\,$ Hz; $R_1 \ge 10 \cdot R_1$; $C_1 = C_2 = 15\,$ nF; kürzester Impuls 5 ms; $v_0 = 1$. Aus Gl. (17) ergibt sich

$$B = \frac{1 \cdot 10^3}{\pi \cdot 4 s} = 80 \text{ Hz}.$$

Dieser Wert von 80 Hz hat für den praktischen Betrieb keinen Nutzen. Um Fre-

quenzdrift, unkorrektes Synchronsignal usw. besser ausgleichen zu können, wählt man in der Praxis für das Synchronsignal eine Bandbreite von 200 Hz. Umstellen von Gl. (15) ergibt

$$R_2 = \frac{1}{B \cdot \pi \cdot C_1}$$

$$= \frac{1 \cdot 10^9}{200 \text{ Hz} \cdot \pi \cdot 15 \text{ F}} = 106 \text{ k}\Omega,$$

gewählt 100 k Ω . Aus Gl. (13) errechnet sich

$$R_1 = \frac{1}{(2 \cdot \pi \cdot f_0 \cdot C_1)^2 \cdot R_2}$$

$$= \frac{1 \cdot 10^{-6} \cdot 10^{18} \cdot 10^{-3}}{(2 \cdot \pi \cdot 1, 2 \text{ Hz} \cdot 15 \text{ F})^2 \cdot 100 \Omega}$$

Nach Gl. (16) wird

$$R_3 = \frac{R_2}{2 \cdot v_a} = \frac{100 \text{ k}\Omega}{2 \cdot 1} = 50 \text{ k}\Omega.$$

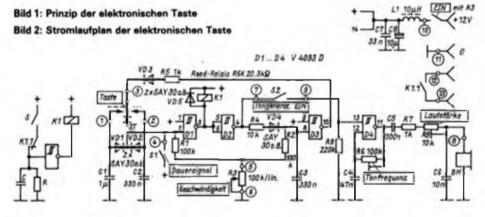
Somit ist auch gewährleistet, daß $R_1 \ge 10 \cdot R_1$ ist. Bild 11 zeigt die Abstimmhilfe mit vorgeschaltetem Begrenzer. (wird fortgesetzt)

Einfache elektronische Morsetaste

Dipl. Ing. P. GÜNTHER - Y21WI

Es wird eine elektronische Taste mit Tongenerator vorgestellt, die nur einen Schaltkreis V 4093 D enthält und ein normgerechtes Punkt/Strich/Pausen-Verhältnis erzeugt. Der CMOS-Schaltkreis vereinigt 4 NAND-Gatter mit Schmitt-Trigger-Verhalten und je 2 Eingängen. Die Gatter D1 bis D3 dienen der Impulserzeugung; D4 ist der Tongenerator. Die Schaltung basiert auf folgender Grundidee (Bild 1):

Bei geschlossener Taste S wird C geladen. Nach Erreichen der Einschaltschwelle des Schmitt-Triggers öffnet Kontakt X und C entlädt sich über R. Bei Erreichen der Ausschaltschwelle schließt X wieder und der Zyklus beginnt von neuem.


Die Realisierung ist in Bild 2 gezeigt. Anstelle des Relaiskontaktes stehen die Gatter D2 und D3. Die Entladezeit von C1 bestimmt hauptsächlich den Strichimpuls, die von C2 den Punktimpuls und

die von C3 die Pause. Die Dimensionierungsbedingung ist $C_2 = C_3 = C_1/3$ und ergibt sich aus der Norm Punktzeit = Pausenzeit = 1/3 Strichzeit. Die Anordnung der Entladewiderstände R1, R2, R3 sollten nicht verändert werden. Die Diode VD1 bzw. VD2 verhindert das Aufladen des nichtangeschalteten Kondensators C2 bzw. C1, VD3 eine Entladung von C1 oder C2 und VD4 von C3 durch den Schaltkreisausgang nach erfolgtem H/L-Sprung. R4 und R5 sind Strombegrenzungswiderstände.

D4 mit R6 und C4 ergibt einen sehr einfachen Tongenerator. R7 (Schutzwiderstand), R8 und C6 stellen einen Tiefpaß zur Klangverbesserung dar. Eine Ohrhörerkapsel (200 Ω ; auch alle möglichen Hörkapseln sind einsetzbar) macht die Schwingungen hörbar. Sie ergibt Zimmerlautstärke für die Morseausbildung.

Die Stromversorgung ist entsprechend dem vorhandenen Reed-Relais zu wählen. Funktionssicher ist die Anordnung von 3 V bis 18 V bei gewissen Geschwindigkeits- und Tonhöhenänderungen, aber konstantem Strich/Punkt/Pausen-Verhältnis. Der Betriebsstrom bei 12 V ist bei "Taste nicht gedrückt" praktisch Null und beträgt bei "Taste gedrückt" etwa 7 mA.

Eine individuelle Veränderung des Strich/Punkt/Pausen-Verhältnisses ist am besten durch Zuschalten von Kondensatoren, z. B. 100-nF-Scheiben, zu C1, C2 oder C3 erreichbar. Der Aufbau erfolgte auf einer 55 mm × 110 mm × 5 mm gro-Ben Stahlplatte, wobei durch drei spitze Madenschrauben im Boden ein fester Stand erreicht wurde. Die Leiterplatte (Bild 3) sowie die Tastenmechanik sind darauf befestigt. Die Vorderwand 55 mm × 30 mm (am Tastenhebel) und die Rückwand 55 mm × 30 mm (mit Diodenbuchse und Schaltern für Tongenerator und Dauerbetrieb) sind fest an die Stahlplatte geschraubt. Ein U-förmiges Gehäuse von 110 mm × 55 mm × 30 mm Innenmaß aus kupferkaschiertem Material deckt alles ab.

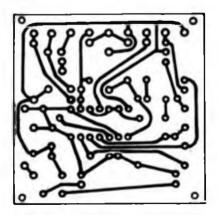


Bild 3: Leitungsführung der Platine für die elektronische Teste

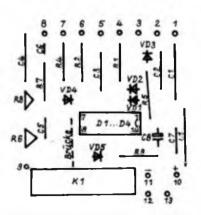


Bild 4: Bestückungsplan der Leiterplatte der elektronischen Teste

Praktische Tips zur Meßtechnik für KW-Antennen

W. WÄNTIG - Y79XN

Um auch kompliziertere Antennen aufbauen und erproben zu können, benötigt man mindestens ein Dipmeter und ein Antennascope. Letzteres ist außerdem zum Ausmessen selbstgebauter angepaßter Speiseleitungen erforderlich. Praktische Hinweise gibt das Antennenbuch von K. Rothammel [1].

Das Dipmeter

Der Dipper muß eine gut geeichte, reproduzierbare Skale besitzen. Die Leistung des Dippers muß ausreichen, das Antennascope anzusteuern. Transistorisierte Dipper erreichen diese Leistung meist nicht. Für den "RFG 3" [2] habe ich folgendes erprobt: Im Oszillatorteil wurde ein 600-mW-HF-Transistor eingesetzt und der Dipper über den Ladeanschluß für die Knopfzellen aus drei in Reihe geschalteten Flachbatterien (13,5 V) gespeist. Vorher müssen die Knopfzellen entfernt und die Elkos gegen ausreichend spannungsfeste Typen ausgetauscht werden. Das Dippergehäuse erhielt eine Diode als Verpolungsschutz für die Speisespannung. Der Arbeitspunkt des Oszillatortransistors wurde so eingestellt, daß er auf allen Bereichen sicher schwingt, seine Verlustleistung aber nicht überschritten wird. Der dadurch erreichte Leistungsgewinn reicht aus, um im 3,5- und 7-MHz-Band und bedingt auch im 14-MHz-Band Messungen durchführen zu können. Für einfache Dippermessungen kann man jederzeit wieder auf Knopfzellenbetrieb übergehen.

Das Antennascope

Als Antennascope habe ich einen Typ nach W2AEF [1] benutzt. Zur Empfindlichkeitssteigerung kamen ein 50 µA-Instrument in Verbindung mit einer Schottky-Diode (KД 514) als HF-Gleichrichter zum Einsatz. Als Potentiometer diente ein vielerorts erhältlicher Typ $2 \times 100 \Omega$ lin, wobei beide Ebenen.in Reihe geschaltet wurden. Man erhält so einen Meßbereich von 0 bis 200 Ω, der für 90 % aller Fälle ausreicht. Mechanisch kam das Antennascope in ein zweikammriges Alu-Spritzgehäuse; eine Kammer enthält das HF-Teil, die zweite das Anzeigeteil. Die HF-Einspeisung erfolgt über eine BNC-Buchse, der Anschluß des Prüslings über Meßgerätebuchsen. Das Potentiometer ist isoliert montiert; auf

den Gehäuseboden wurde eine 5 mm dicke Piacrylscheibe geklebt und auf diese das Potentiometer (Kleber Epasol EP 11). Dementsprechend muß das Gehäuseloch für die Achsdurchführung grö-Ber (8 mm) sein als der Durchmesser der Potentiometerachse (6 mm). Eine praktische Ergänzung zum Messen an hochohmigen Antennen bis 800Ω bildet ein Breitbandbalun 1:4, den man auf einen großen Doppellochkern aus Mf 240 $(2 \times 0.4$ -mm-CuL, verdrillt. 5 Wdg.) wikkelt und dann zwischen Antennascope und Prüsling schaltet. Das beschriebene Antennascope und der umgebaute Dipper "RFG 3" ermöglichen Messungen bis zum 14-MHz-Band Für Messungen oberhalb 14 MHz macht sich das Zwischenschalten eines Verstärkers erforderlich. Als Verstärker bewährte sich ein leicht geänderter einstusiger breitbandiger Transistorverstärker nach (3). Bild 2 zeigt den Stromlaufplan; [3] enthält auch einen Leiterplattenentwurf. Die Leiterplatte und die Stromversorgung (4 Gnomzellen) wurden in ein kleines Aluminiumgehäuse (80 mm × 50 mm × 40 mm) eingebaut. Zur HF-Einkopplung vom

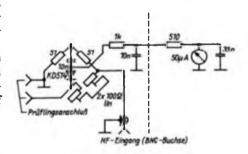


Bild 1: Modifizierter Stromlaufplan des Antennascopes nach W2AEF

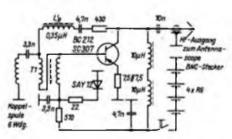


Bild 2: Stromlaufplan des breitbandigen Dipper-Nachverstärkers. Ti: 2 × 3 Wdg.; 0,4-mm-CuL auf Ringkem (10 mm × 6 mm × 3 mm) auf Mf 163. L'p: 1,5 Wdg.; 0,5-mm-CuL auf den Außenschenkel eines großen Doppellochkems (8 mm × 14 mm × 12 mm) aus Mf 240. Die SAY 12 wurde auf den BC 212 geklebt

Dipper erhielt das Verstärkergehäuse einen Spulenkörper mit 6 Wdg., 0,5-mm-CuL als Koppelspule an der Stimseite. In diesen Spulenkörper schiebt man die Dipperspule. Zur HF-Auskopplung ist an eine Seitenwand des Verstärkergehäuses ein BNC-Stecker montiert. Dieser BNC-Stecker und die BNC-Buchse im Antennascope verbinden Verstärker und Antennascope mechanisch und elektrisch miteinander.

Dipper, Verstärker und Antennascope befinden sich in einer flachen Schaumpolystyrolschale. Große Gummiringe halten sie. Wird mit dem Verstärker gearbeitet, ist natürlich der oben beschriebene Dipperumbau nicht nötig. Will man ohne Verstärker arbeiten, so fertigt man sich aus Pappe einen auf die Dipperspule passenden Spulenkörper. Er erhält 10 Wdg., 0,5-mm-CuL. Diese Spule speist das Antennascope über einen BNC-Stecker direkt.

Die Kopplung zwischen Dipperspule und Verstärkerkoppelspule stellt man durch Ineinanderschieben beider nur so gering ein, daß man am Antennascope eine sichere Anzeige erhält. Bei Übersteuerung des Verstärkers kommt es zu starker Oberwellenbildung, man erhält beim Antennascopeabgleich zwar ein Minimum, die Oberwellenanteile verhindern aber einen Zeigerrückgang auf Null. Dadurch kann es zu Fehlmessungen an der Antenne kommen.

Zur Überprüfung der Meßeinrichtung benutzt man 0,5-W-Schichtwiderstände im Bereich zwischen 30 und 150 Ω. Sie haben nur eine minimale Wendelung, so daß sie bis 30 MHz als ohmsche Widerstände gelten können. Man klemmt einen dieser Prüswiderstände an den Prüslingsanschluß des Antennascopes und gleicht das Antennascope bei einer eingespeisten Frequenz von etwa 3 MHz auf Null ab. Dieser Nullabgleich darf sich beim Durchdrehen der Frequenz bis 30 MHz praktisch nicht ändern. Der beim Nullabgleich gefundene Widerstandswert muß dem des Prüfwiderstandes entsprechen. Das Potentiometer im Antennascope eicht man rein gleichstrommäßig.

Mit dieser Meßanordnung lassen sich auch Ringkernbaluns auf ihr Übersetzungsverhältnis und ihren Frequenzgang (HF-Tauglichkeit, Bandbreite) überprüfen.

Literatur

- Rothammel, K.: Antennenbuch, 10. Auflage, Militarverlag der DDR, Berlin, S. 568 ff.
- [2] Technische Beschreibung des Dippers, Typ "RFG 3" der Firma INCO, Wroclaw
- [3] Lechner, Finck: Kurzwellensender, Militärverlag der DDR, Berlin, S. 249 ff.

HF-Leistungsmesser mit Abschlußwiderstand

G. HOFFMANN - Y24YI

Beim Abgleich von Sendern, vor allem geringer Leistung, wird man versuchen, die maximale HF-Leistung auszukoppeln. Dem einzelnen OM stehen jedoch kaum HF-Leistungsmesser und entsprechende Abschlußwiderstände zur Verfügung. Hier soll ein Meßgerät beschrieben werden, das den beiden Forderungen genügt und einfach nachzubauen ist. Es entstand aufbauend auf guten Erfahrungen mit dem Meßprinzip nach [1] und einem Schaltungsvorschlag in [2].

Über die Eingangsbuchse (UC1) gelangt die HF auf den 50-Ω-Abschlußwiderstand. Dieser Widerstand besteht aus 20 Widerständen 1 kΩ/1 W in einer Anordnung nach Bild 2. Er ist mit der UC1-Buchse verbunden. Die Widerstände sollten induktionsarm sein und eine Toleranz von max. 5 % haben. Das Außbauschema, eine Parallelschaltung dieser Widerstände, ist unbedingt in der

vorgegebenen Anordnung zu realisieren. Am Abschlußwiderstand wird die HF abgenommen und über die Dioden VD1 und VD2 gleichgerichtet. Es müssen Dioden mit $U_R = 80 \text{ V}$ und $U_P < 1 \text{ V}$ (beim Muster 0,7 V ausgemessen) zum Einsatz

Angaben und Meßwerte zum HF-Leistungsmesser

Meß- bereich	Û an R1	U. an Cl	$R_1 = R_1$		
[w]	[V]	[V]	[FU]	[Inc]	
1	10	8,6	12	39	
5	22,4	21	110	100	
10	31,6	30,2	270	150	
50	70,7	69,3	610	330	

^{*} McBwerk 100 µA

™ MeBwerk 200 μA

kommen. Entsprechend dem Spannungsabsall über den Dioden und dem verwendeten Meßinstrument können dann die Vorwiderstände für die einzelnen Meßbereiche dimensioniert werden. Die Umschaltung der Meßbereiche erfolgt hier mit einem Drehschalter. Die Tabelle enthält Angaben zu den Meßbereichen, Spannungsabfallen und Widerständen. Mechanisch wurde das Meßgerät aus Cevausit "wasserdicht" zusammengelötet und in zwei Kammern aufgeteilt. Der mechanische Aufbau ist an keine festen Maße gebunden und läßt sich an die verwendeten Bauelemente anpassen, wobei jedoch grundsätzlich die allseitige Schirmung zu beachten ist.

Bei der Anwendung dieses Meßgerätes zur Ermittlung einer unbekannten HF-Leistung sollte man grundsätzlich beim "größten" Meßbereich beginnen und dann nacheinander auf die "kleineren" Bereiche zurückschalten.

Literatur

- [2] Basso, A.: Amateur kapcsolasok, RADIOTECH-NIKA 35 (1985), H. 4, S. 19
- [3] Schubert, K.-H.: Einfache HF-Leistungsmessung, Elektronisches Jahrbuch für den Funkamateur 1986, Militärverlag der DDR, Berlin 1985, S. 273

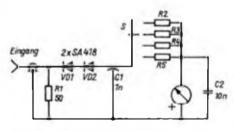


Bild 1: Stromlaufplan des Leistungsmessers

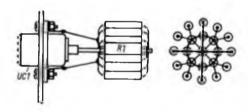


Bild 2: Aufbau des induktionsarmen Abschlußwiderstandes

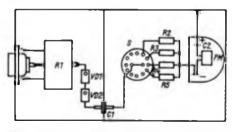


Bild 3: Aufbauvorschlag für den Leistungsmesser

Y47ZO im Jubiläumsjahr Berlins

Große Ereignisse geben auch am Amateurfunk nicht vorüber. Das Berliner Jubiläumsjahr 1987 wird durch eine Vielzahl von Ereignissen in Kultur, Sport und in anderen gesellschaftlichen Bereichen geprägt. Eine ehrenvolle Aufgabe auch für die Funkamateure der Hauptstadt, dieses Ereignis gebührend zu würdigen.

Es war Auszeichnung und Herausforderung zugleich, im Februar unter dem Sonderrufzeichen Y47BER die Geburtstagsstadt Berlin zu vertreten. Was dabei zu erwarten war, zeigten die Geschehnisse auf den Bändern bereits in den ersten Wochen des Jahres. Y2-Stationen mit dem Buchstaben O als leiztem im Suffix waren begehrt wie rares DX. Das Diplom "750 Jahre Berlin - Hauptstadt der DDR" stimulierte. Erfahrungen als Sonderstation hatten wir: Im Oktober 1986 standen wir elf Tage lang als Y85INT im Blickfeld anläßlich des 25jährigen Bestehens des Instituts für Nachrichtentechnik (jetzt VEB Zentrum für Forschung und Technologie Nachrichtenelektronik) und des damit verbundenen V. Nachrichtentechnischen Kolloquiums. Die damals gewonnenen Erkenntnisse waren Ausgangspunkt für die Vorbereitungen.

Die Grundlagen: An Technik standen der "Teltow 215 D" für Kurzwelle und eine "UFS 601" für das 2-m-Band zur Verfügung. Für 80 m und 40 m benutzten wir je einen Dipol, für 40, 20, 15 und 10 m eine halbe Trapantenne und für das 2-m-Band eine 9-Element-Yagi. Alles andere als gut unser Standort:

mitten im Industriegebiet von Berlin-Schöneweide! Da zeigt das S-Meter den vorhandenen Grundstörpegel mit S7 bis 8 an.

Drei Prämissen hatten wir uns gestellt: Zum ersten ging es um eine optimale Aktivität als Y47BER; weiter wollten wir gut beim Klubstationsmarathon abschneiden und schließlich auch am Y2-AC und Bezirks-Contest O teilnehmen.

Das Team (Y47ZO, -WO, -VO, -TO, -SO, -RO, -QO, -PO, Y28SO und Y41WO) nutzte Zeit und Gelegenheit, wann immer es ging. Man freute sich über jede Verbindung und ärgerte sich, wenn es mal nicht klappte, weil die anrufenden Stationen im QRM untergingen.

Am 2. März 1987 lag das Ergebnis, fein säuberlich vom Rechner ausgedruckt, auf dem Tisch. Unter dem Strich standen 2051 QSOs mit 41 Ländern auf 3 Kontinenten.

Beim Y2-AC und zum Bezirkscontest waren wir dabei. Nicht schlecht der Erfolg, wenn wir auch nicht ganz zufrieden waren. Aber unbegrenzte Zeit stand leider keinem von uns zur Verfügung und "sooo" gut waren die conds, besonders auf den hochfrequenten Bändern leider auch nicht.

Aber Y47BER war aktiv und viele Stationen konnten sich die 80 bzw. 160 Punkte für das 750-Jahre-Berlin-Award gutschreiben. Und wenn diese Zeilen gedruckt vorliegen, dann sind auch alle QSL-Karten auf die Reise gegangen.

Th. Reck, Y21XO

Mikroprozessorgesteuerter Synthesizertuner mit alphanumerischer Anzeige (1)

Dipl.-Ing. H. MÜLLER

Unsere Elektronikindustrie produziert heute elektronische Bauelemente, die es gestatten, Geräte mit hohem Gebrauchswert zu entwickeln und herzustellen. Der Elektronikamateur wird versuchen, dieses Angebot zu nutzen, um seine Ideen zu verwirklichen. Unter diesem Aspekt entstand das nachfolgend beschriebene UKW-Empfangsteil.

Selbstverständlich erfordern umfangreiche elektronische Schaltungen ein solides Fachwissen sowie viel Geduld und Zeit. Das sollte den Amateur aber nicht abschrecken, sich mit dieser Technik vertraut zu machen. Anfängern ist der Nachbau allerdings nicht zu empfehlen.

Gesamtkonzept

Das Konzept (Bild 1) geht davon aus, daß zur Sender- und Frequenzanzeige eine alphanumerische Anzeige (7×5-Punkt-Matrixanzeige VOC 10) verwendet wird. Ein Anzeigetableau enthält vier Stellen, wovon wiederum vier Stück vorgesehen sind. Mit diesen 16 alphanumerischen Zeichen werden der Sendername, Sendefrequenz und Maßeinheit (MHz) angezeigt. Bild 2 zeigt die Einteilung der 16 Zeichen. Eine hardwaremäßige Ansteuerung der Punktmatrix wäre nur mit erheblichem Aufwand möglich und hätte noch den Nachteil, daß Änderungen des Anzeigeinhalts o. ä. nur durch größere Schaltungsänderungen zu erreichen wären. Aus diesem Grund wurde hier ein Mikroprozessor-Minimalsystem eingesetzt. Dadurch besteht die Möglichkeit, mit Hilfe von Softwareänderungen seine eigenen Vorstellungen ohne Schaltungsänderungen einzubringen.

Zur Frequenzausbereitung dient eine PLL nach dem Pulse-Swallowing-Versahren [1], [2], dessen Vorzüge weiter unten erläutert werden. Die Ansteuerung der PLL erfolgt ebenfalls vom Mikroprozessorsystem aus.

Nach dem Einschalten des Empfängers (und einer _freundlichen" Begrüßung durch die Anzeige) stellt sich der einprogrammierte Vorzugssender ein. Die weitere Senderanwahl kann einerseits über zwei Kurzhubtasten (vor- und rückwärts) für maximal 32 Stationstasten (im Muster nur 15 verwendet) geschehen oder durch zwei Kurzhubtasten, mit denen man das Frequenzband von 87,55 MHz bis 104 MHz im 50-kHz-Raster vor- bzw. zurücktasten kann. Bei längerem Tastendruck (>1s; einstellbar) erfolgt ein Schnelldurchlauf (etwa 30 Rasterschritebenfalls einstellbar). 87,55 MHz und 104 MHz liegen die "softwaremäßig" eingestellten Frequenzanschläge. "Überfährt" man bei Handbetrieb eine Frequenz, zu der ein einprogrammierter Sendername gehört (32 mögliche), so erscheint dieser mit auf der Anzeige. Bei allen anderen Frequenzen sind an der Stelle des Sendemamens drei Fragezeichen sichtbar. Ein einfacher

Suchlauf schaltet alle 15 einprogrammierten Stationssender der Reihe nach durch. Der aufwendige Vor/Rückwärts-Zähler (z. B. [4]) wird also hier software-mäßig realisiert. Der Prozessor übernimmt ebenfalls die Tastenabfrage. Er gibt weiter zu den einprogrammierten Stationstasten 8 verschiedene Antennenrichtungen (8 Leitungen, bei Dekodierung also 2⁸ = 256) direkt zur Ansteuerung eines Antennenrotors aus Benutzt wurden allerdings nur 3 Bit, da im Rotor ein 1-aus-8-Dekoder vorgesehen ist.

Wenn man sich die Realisierung der eben genannten Möglichkeiten einmal rein hardwaremäßig vorstellt, gelangt man zu der Überzeugung, daß hier der Einsatz eines Mikroprozessors sehr geeignet erscheint.

Beschreibung der Mikroprozessorschaltung (Bild 3)

Der Aufbau des Mikroprozessor-Minimalsystems basiert auf der CPU UB 880 D und den dazugehörigen Peripherieschaltkreisen

Die CPU muß mit der maximal möglichen Taktfrequenz (Tastverhältnis 1:1) betrieben werden, da für die Abarbeitung des Programms soviel Zeit benötigt wird. daß sonst die Anzeige bei niedrigerer Taktfrequenz flimmern würde. Als Oszillatorschaltung dient eine übliche TTL-Schaltung. Quarzgenauigkeit ist nicht notwendig. Mit dem Trimmer CTR stellt man eine Frequenz von 5 MHz ein, die D3 auf 2,5 MHz teilt. Das entspricht der maximal möglichen Taktfrequenz der CPU; gleichzeitig wird dadurch ein Tastverhältnis von 1:1 gewährleistet. Der 330-Ω-Widerstand am Takteingang der CPU erhöht den H-Pegel, was für eine sichere Funktion notwendig ist.

In D6 (2708), einem 1-K-EPROM, sind das gesamte Betriebssystem, die Tabellen für die Sendernamen und -frequenzen, die Umrechnung der 9-bit-PLL-Ansteuerung in dezimale Frequenzangaben, die Verarbeitung der Tastenabfrage und die

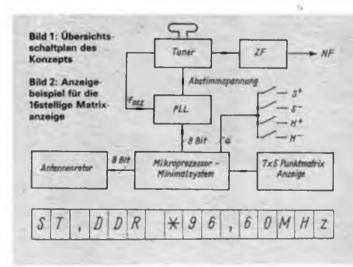
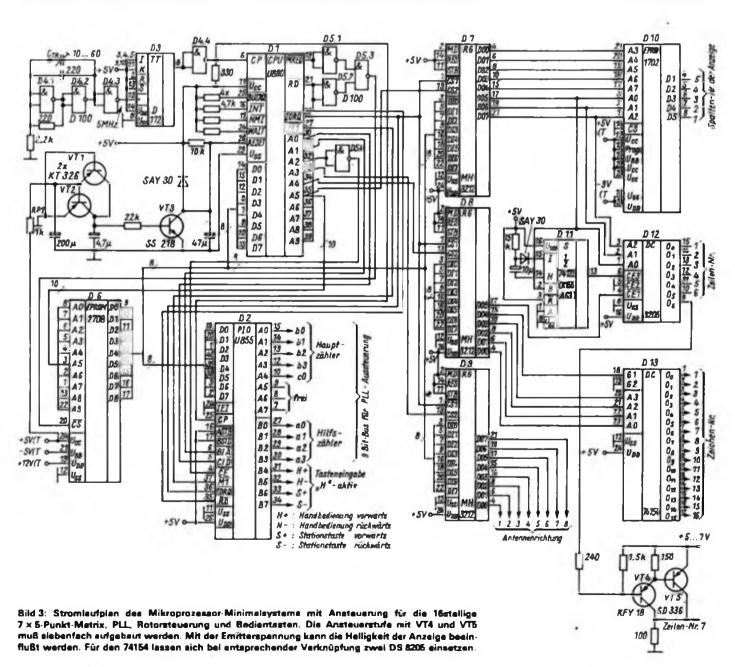


Tabelle 1: Beispiel für die Programmierung eines Zeichensatzes

Zeichen	chen Zeichen- Adressen			Dates
	ROGE	76543210	Hex	8 7 6 5 4 3 2 1 Hex
		LHLHHLLL	58H	XXX. OEF
		LHLHHLLH	59H	X X 11H
		LHLHHLHL	SAH	X X 11H
A	OB	LHLHHLHH	SBH	XXXXX IFF
		LHLHHHLL	SCH	X X 11H
		LHLHHHLH	SDH	X X 11H
		LHLHHHHL	SEH	X X 11H
		LHLHHHHH	SFH	00H

möglichen Antennenrichtungen zu den dazugehörigen Stationstasten gespeichert.


D2 (U 855) ist eine PIO, da hier Ein- und Ausgaben benötigt werden. Als Ausgabe sind 9 Bit für die PLL-Ansteuerung notwendig; als Eingabe die vier Tasten, zwei davon für die Ein- und Weiterschaltung der einprogrammierten Festsender (S+ und S-). Jeder Tastendruck auf S+ oder S- führt entweder zur Abfrage des nächstfolgenden (S+) Stationssenders oder des vorherigen Senders der Stationstabelle (S-).

Mit den Tasten H + und H − hat man die Möglichkeit, die Frequenzskale von 87,55 MHz bis 104 MHz im 50-kHz-Raster vorwärts oder rückwärts "abzutasten". Eine kleine Schaltung (Bild 4) sorgt dafür, daß bei einem längeren Tastendruck (>1 s; einstellbar) ein Schnelldurchlauf (≈ 30 Schritten/s) erfolgt.

Wer das gewohnte "Handrad" vom alten "Dampfradio" nicht vermissen möchte, dem sei die Schaltung im Bild 5 empfohlen. Hier läuft zwischen zwei Infrarotdioden als Sender und 2 Fototransistoren als Empfänger eine mit dem Handrad mechanisch verbundene Lochscheibe. Die Schaltung wertet aus, ob links- oder rechtsherum gedreht wird. Dementsprechend liegen entweder am Ausgang Al die entsprechenden Impulse für das Weiterschalten im 50-kHz-Raster (A2 muß dann auf Low liegen) oder bei Drehrichtungsumkehr umgekehrt. Das Impulsdiagramm im Bild 5 gibt über die Funktion weitere Auskunst. Die vier Tasteneingänge sind H-aktiv, d.h., im Ruhezustand (keine Taste gedrückt) mussen alle Tasten auf Low liegen.

Die RESET-Schaltung mit den Transistoren VT1 bis VT3 sorgt dafür, daß die CPU erst mit der Abarbeitung des Programms beginnt, wenn alle Betriebsspannungen ihre Nennwerte erreicht haben. Das gilt vor allen Dingen auch für die. die mit einem Transverter für die EPROM-Betriebsspannungen (±5 V. +12 V) erzeugt werden. Hier wird die +5-V-Schiene des Transverters abgetastet. Der Regler R1, mit dem man die Verzögerungszeit einstellen kann, ist also an die +5 V (Tr.) des Transverterausganges anzuschließen! Bild 6 zeigt einen Schaltungsvorschlag für den Transverter. Da die Eingangsspannung an der geregelten +5-V-TTL-Schiene liegt und sekundärseitig keine Laständerungen auftreten, konnte ein einfacher ungeregelter Transverter Verwendung finden. Falls für die EPROMs die neuen Typen (2716) verwendet werden, entfällt selbstverständlich der Transverter, da diesen Typen eine Betriebsspannung von +5 V genügt.

(wird fortgesetzt)

Trommel-Synthesizer mit frei wählbaren Parametern

R. KNUR

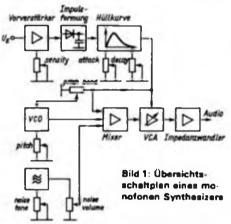
Eine Veröffentlichung in [1] gab den Anlaß zu Überlegungen, einen Trommel-Synthesizer vollständig auf der Basis von Halbleiterbauelementen der DDR-Industrie zu realisieren. Als Ergebnis dessen liegt der nachfolgend vorgestellte Stromlaufplan vor.

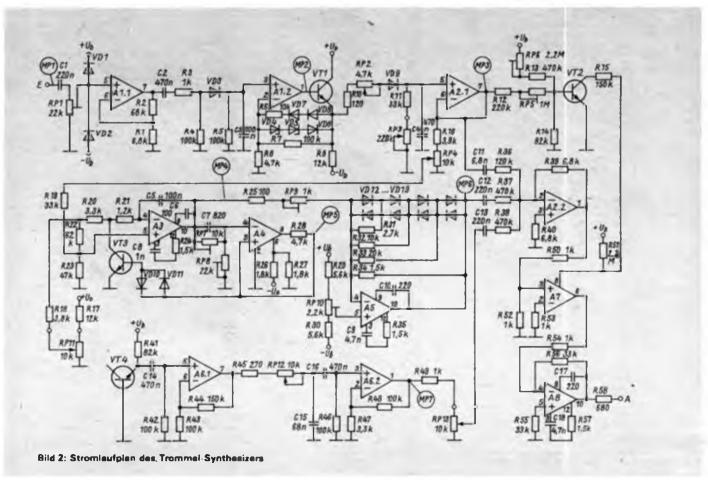
Drei dieser Trommel-Synthesizer bilden in Verbindung mit bekannten Schaltungen zur Nachbildung von Percussionsklängen ein elektronisches Schlagzeug, dessen Steuerung ein Kleincomputer KC 85/2 übernimmt. Durch dieses frei programmierbare Percussionssystem mit variablen Klangmöglichkeiten eröffnen sich auch für den Amateur neue Wege, die er im musikalischen Schaffensprozeß beschreiten kann.

Schaltungskonzeption

Im Bild 1 ist der Übersichtsschaltplan des Trommel-Synthesizers wiedergegeben. Die Schaltung enthält wesentliche Baugruppen eines monofonen Synthesizers: einen spannungsgesteuerten Oszillator und Verstärker (VCO, VCA), einen Hüllkurvengenerator (ADSR) und einen Rauschgenerator. Die folgenden Klangparameter können über Potentiometer eingestellt werden:

sensity - Triggerempfindlichkeit attack - Anstiegszeit der Hüll-


kurve


decay - Abfallzeit der Hüllkurve
pitch - Tonhöhe des VCO
pitch bend - Tonhöhenmodulation
noise volume - Rauschintensität
noise tone - Rauschklang

Schaltungsbeschreibung (Bild 2)

Einem Vorverstärker mit variabler Empfindlichkeit (A1.1) wird ein positiver Eingangsimpuls zugeführt, dessen Amplitude durch Gleichrichtung und Integration ausgewertet wird. Ein Funktionsgenerator mit logarithmischer Übertra-

gungsfunktion (A1.2) erzeugt eine Hüllkurve, deren Anstiegs- und Abfallzeit einstellbar sind. Diese Hüllkurvenspannung wird verstärkt und in einen proportionalen Strom ungewandelt, der zur Steuerung des VCA (A7) dient. Einem-VCO (A4, A9, VT3) mit regelbarer Frequenz wird ein Teil der Hüllkurvenspannung zugeführt, was eine Frequenzmodulation des VCO ermöglicht, deren Intensität ebenfalls wählbar ist. Dem VCO, der nach dem dual-slope-Verfahren [2] arbeitet, ist ein Sinusapproximierer (A5) nachgeschaltet. Ein Rauschsignal, dessen Frequenzspektrum und Intensität variiert werden können, wird mit dem Sinusausgangssignal des VCO und einem Teil der Hüllkurvenspannung rückwirkungsfrei

gemischt (A2.2). Der VCA (A7) prägt dem Mischerausgangssignal die mit der Triggerung initialisierte Hüllkurve auf. Im Unterschied zum Schaltungsvorschlag aus [1] ist dieser VCA mit einem B 176 D realisiert. Das Ausgangssignal des VCA wird über einen Impedanzwandler (A8) ausgekoppelt. In Bild 3 sind die Spannungsverläuse an den einzelnen Meßpunkten dargestellt. Für den gesamten Schaltungsausbau wurden bei einer Betriebsspannung von ±13 V jeweils maximal 30 mA Stromaufnahme gemessen. Die Betriebsspannung greift auf die Frequenz des VCO stark durch; sie ist deshalb gut zu stabilisieren. Beim Abgleich der Schaltung wird RP1 so eingestellt, daß am Meßpunkt MP2 mit Sicherheit noch keine Begrenzung des Eingangssignales eintritt. Die optimale Arbeitsweise des Strom/Spannungs-Wandlers läßt sich mit RP5 (Anstieg) und RP6 (Schaltschwelle) festlegen. Die Regler RP7 und RP8 dienen zur Kalibrierung des VCO und werden so justiert, daß am Meßpunkt MP5 über den gesamten Abstimmbereich ein symmetrisches Dreiecksignal abnehmbar ist. Die Kurvenform am Ausgang des Sinusapproximierers (MP6) kann mit RP9 (Verstärkung) und RP10 (Bias) optimiert werden. Während dieses Abgleiches sollte der VCO auf der tiefsten Frequenz schwingen.

Die Frequenz und der Abstimmbereich des VCO lassen sich durch die Bauele-

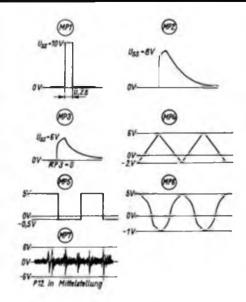


Bild 3: Charakteristische Oszillogramme an den Meßpunkten des Trommel-Synthesizers

mente C5, R17 und RP11 verändern. Der Kondensator C15 beeinflußt das Rauschspektrum. Wird sein Wert verringert, verschärft sich der Klang des Rauschens und die Rauschamplitude nimmt zu. Eventuell muß man dann R49 vergrößern. Der Mischstufe wird ein Teil der Anstiegsflanke des Hüllkurvensignales zugeführt. Das RC-Glied R36/C11 bestimmt die Intensität. Es kann eventuell auch wegge-

lassen werden. RP2 (attack) war im Mustergerät ein Festwiderstand 5,6 k Ω , um auf der 170 mm \times 95 mm großen Platine Platz für die restliche Schaltung zu schaffen.

Percussionssystem

In Bild 4 ist dargestellt, wie sich drei Trommel-Synthesizer in ein Percussionssystem einfügen lassen. Die Stromlaufpläne der Klanggeneratoren für große Trommel, kleine Trommel, High Hat und Becken sind ohne Anderungen aus [4] übernommen worden. Die Ansteuerung erfolgt über Monoflops, wobei berücksichtigt wurde, daß die Klanggeneratoren im Gegensatz zu den Trommel-Synthesizern negative Impulse zur Ansteuerung brauchen.

Zur Pegelangleichung benötigen die Klanggeneratoren jeweils einen einstufigen Verstärker. Alle NF-Signale werden in einer Mixerschaltung zu zwei stereofonen Ausgangssignalen zusammengefaßt. Durch unterschiedliche Vorwiderstände wird die scheinbare Lage des jeweiligen Instrumentes innerhalb der Stereobasis festgelegt.

Zur Überprüfung der Funktionsfähigkeit des Percussionssystems kann eine Schaltung nach Bild 5 dienen. Mit dem verwendeten KC 85/2 wird mittels OUT-Befehls über die niederwertigen Adreßleitungen die Adresse FF ausgegeben, was das System aktiviert. Durch L-Pegel im

SAY 32 o. E.

GA 100

S7X 21/1

SF 129D

Eingesetzte Bauelemente

VD1, 2, 6 bls 19

VD3

VD4 5

VT1, 2, 3

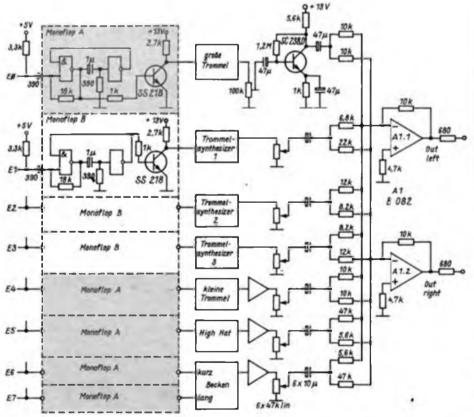
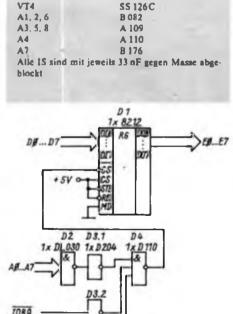



Bild 4: Zusammenschaltung der einzelnen Baugruppen zu einem Percussionssystem

Bild 6: Stromlaufplan eines einfachen Interface zur Steuerung des Percussionssystems mit einem Rechner

jeweiligen Bit läßt sich dann das gewünschte Instrument "anschlagen".

Erweiterungen

Die vorgestellte Schaltung eröffnet durch ihre vielfältigen Parametereinstellungen neue Klangmöglichkeiten. Verbesserungen des Klangbildes sind z. B. durch Einfügen eines VCF und eines zweiten VCA möglich. Durch den Einsatz von CMOS-Analogschaltern (V 4066 D, V 4051 D) können ausgewählte Parametereinstellungen über Festwiderstände vorprogrammiert und manuell oder über den Steuerrechner abgerufen werden.

Die Ansteuerung des gesamten Percussionssystemes erfolgt über einen Kleincomputer KC 85/2. Das dazu entwickelte Programm gestattet das Editieren von Rhythmen am Bildschirm, das Zusammenstellen eines Songs aus verschiedenen Sequenzen und das Testen der

Rhythmen mit unterschiedlichen Tempi. Außerdem unterstützt es die Dateiarbeit. Der Kleincomputer wurde mit der international genormten MIDI-Schnittstelle [5] ausgerüstet, um das Schlagzeug auch in einem MIDI-System betreiben zu können.

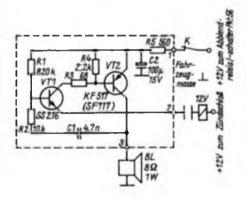
Literatur

- Körge, D.: Elektronisches Schlagzeug eröffnet neue Möglichkeiten, Funkschau 1985, H. 6, 7 und
- [2] Schulze, H.-J.: Musiksynthesizer selbst gebaut, Reihe "electronica", Band 180, Militärverlag der DDR, Berlin 19
- [3] Schulze, H.-J.: Moderne Schaltungskonzeptionen in der Musikelektronik, Mikrcelektronik in der Amateurpraxis 2, Militärverlag der DDR, Berlin 1984
- [4] Engel, O.; Petermann, R.: Elektromechanische und vollelektronische Musikinstrumente, Teil S, Reihe "electronica", Band 165, Militärverlag der DDR, Berlin 19
- [5] Knur, R.: Schnittstelle MIDI f

)r die Musikelektronik, rfe, Berlin 36 (1987), H.2, S. 114

Scheinwerferabschaltkontrolle für den "Trabant"

W. KUCHNOWSKI


Einige Kraftsahrer verlassen hin und wieder, besonders in den Dämmerstunden oder bei Nebel ihr Fahrzeug, ohne die Scheinwerfer auszuschalten. Es ist nun eine Frage der Zeit und des Ladezustandes der Batterie, wie stark der Scheinwerferstrom die Batterie entlädt. So kann bereits nach einigen Stunden ein Startversuch ohne Erfolg bleiben.

Die in Bild I dargestellte Schaltung warnt den Krastfahrer, wenn er bei noch eingeschalteten Scheinwerfern den Zündschlüssel aus dem Schloß nimmt.

VT1 und VT2 arbeiten als Tongenerator. Wird der Zündschlüssel aus dem Schloß gezogen, fällt das Relais ab. Der Relaiskontakt schließt und legt an Punkt 1 der Tongeneratorleiterplatte Spannung; der Tongenerator arbeitet und im Lautsprecher ist ein lauter Ton mit einer Frequenz von etwa 600 Hz zu hören. Beim Ausschalten der Scheinwerfer verstummt der Tongenerator wieder.

Soll diese Warnanlage in Fahrzeugen mit 6-V-Bordnetz zum Einsatz kommen, so ist R5 zu überbrücken und ein 6-V-Relais zu verwenden.

Allerdings sollte die Zusatzschaltung abschaltbar sein, da man sonst die Scheinwerfer bei ausgeschalteter Zündung nur noch in Verbindung mit einem 600-Hz-Dauerton benutzen kann.

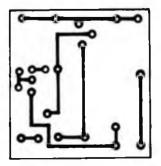


Bild 1: Stromlaufplan der Scheinwerferwarnanlage

Bild 2: Leitungsführung der Platine für die Scheinwerferwarnanlage

Bild 3: Bestückungsplan der Leiterplatte der Scheinwerferwarnanlage

Neue Bauelemente der Mikroelektronik (3)

Bauelemente in SMD-Technik

Kleinste Bauelemente in Chipform, reduzierte Leiterplatten und automatische Bestückungstechnik sind die Grundlagen der zukunstsweisenden SMD-Technik (Surface Mounted Devices). Bauelemente in SMD-Technik besitzen geringere geometrische Abmessungen als DIL- oder QIL-Gehäuse, niedrige Induktivitäten und Kapazitäten durch geringe Anschlußlängen und ermöglichen, auf Leiterplatten eine beidseitige Bestückung. Aus dem Typenspektrum werden folgende Schaltkreise in SMD-Technik geliefert:

CMOS-Baureibe

V 4001S - V 4011S - V 4013S - V 4023S - V 4028S - V 4030S - V 4042S - V 4050S - V 4066S - V 4093S.

Einchipmikrorechner

UB 8810P - UB 8811P - UB 8830P - UB 8831P - UC 8830P - UC 8831P - UB 8860P - UD 8860P - UD 8860P - UD 8861P

Industrielle und Konsumgüterschaltkreise U 713 P - U 714 P - A 290 S - B 060 S - B 066 S - B 066 S - B 306 S - B 625 S - B 865 S und 9 Typen LS-TTL-Grundgatter der DL-Baureihe. Auch neue Transistoren werden in SMD-Technik hergestellt, die aber auch in der Hybridtechnik eingesetzt werden können.

Si-npn-NF-Leistungstransistoren SCE 535/537/539 Si-pnp-NF-Leistungstransistoren SCE 536/538/540

Diese komplementären Transistoren werden jeweils gepaart und nach Stromverstärkungsgruppen selektiert geliefert. Die wichtigsten Werte sind:

 $U_{CBO} = 45/60/100 \text{ V}$ $I_{C} = 1 \text{ A}; P_{tot} = 1 \text{ W}$

Si-npn-Epitaxie-Planar-NF-Transistoren SSE 200/201/202

Die wichtigsten Werte sind:

 $U_{CBO} = 70/100/120 \text{ V}$ $I_C = 30 \text{ mA}; P_{tot} = 150 \text{ mW}.$

Neue Analog-Schaltkreise

Stereosteller A 1524D – für Lautstärke, Höhen, Tiefen und Balance, physiologische Lautstärkeregelung, erhebliche Verringerung der externen Beschaltung gegenüber A 273/274D.

Drehzahlregler B 4211D – universell verwendbarer Schaltkreis für Phasenanschnitt-Steuerschaltungen, besonders für Universalmotoren

4fach-Präzisions-Spannungsquelle

B 584X – Chip-Bauelement für den vorzugsweisen Einsatz in hochauflösenden D/A- und A/D-Wandlersystemen.

(weiter S. 350)

Elektronisches Ziffernschloß mit Speicherschaltkreis

K. KEMPTER, K. DEBES, R. BLAU

Es bestand die Aufgabe, für den sehr stark frequentierten Betrieb an einer Labortür ein elektronisches Zissernschloß zu entwickeln, das solgenden Bedingungen genügen sollte:

- Hohe Zuverlässigkeit bei bis zu einhundert Betätigungen am Tag.
- Zeitunabhängige Eingabe (beliebig schnell).
- Verwendung teilweise defekter EPROM 2708/U 555 D).
- Große Sicherheit vor der Bedienung durch Unbefugte.
- Fast beliebige Länge des Kodes.

Das Grundprinzip besteht darin, daß sequentiell der BCD-Kode einer gedrückten Taste (am zuverlässigsten erweisen sich Hall-Tasten) und vier Bit des Inhalts einer Speicherzelle der IS D3 jeweils zu acht Bit zusammengesetzt werden, die dann die nächste Adresse bilden. Die zwei restlichen Adreßeingänge zur Kodeauswahl liegen durch S1/S2 statisch fest. Vier niederwertige Bit des Inhaltes der Speicherzelle werden mit der nächsten Eingabe wieder zu einer neuen Adresse kombiniert usw., usf.. Je nach der gewünschten Stellenzahl des Kodes geschieht das z.B. dreimal hintereinander. Aus dem mit dem letzten Tastendruck er-

Programm

- 18 REM EPROM-PROGRAMNIERUNG FUER ZAHLENSCHLOSS
- 20 INPUT _RAM-ADRESSE FUER EPROM-BE-LEGUNG*; AD
- 30 FOR 1=AD TO AD + 1824

 Ausfüllen aller Speicherzellen mit 8
- 40 POKE I, 0
- SO NEXT
- 60 FOR B=1 TO 4
- 70 PRINT BEREICH"; B
- Auswahl des Speicherbereiches (4 bei U 555)
- 88 INPUT .STELLENZAHL DES CODES"; N
- 98 FOR 1-1 TO N
- 100 PRINT "ZIFFER"; I;

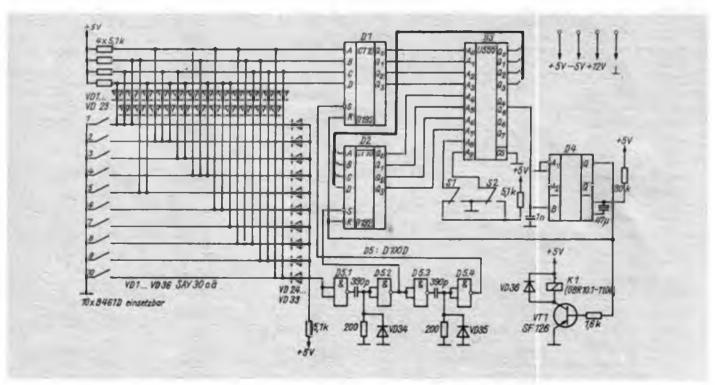
 Eingabe der gewählten Ziffer (Nmal)
- 118 INPUT A (T)
- 128 IF A (I) > 18 OR A (I) < 6 OR A (I) <> INT (A(I)) THEN GOTO 188
 - Zurückweisung falscher Eingaben, Begrenzung auf Ziffer 1....10
- 130 NEXT I
- 148 FOR I=1 TO N-1
- 158 POKE (I-1) 16 + AD + A (II, I Beschreibung Speicher je nach gedr. Taste
- 160 NEXTI
- 178 POKE (N-1) 16 AD + A (N), 32

 Beschreibung Speicher nach letzter Taste mit
- 180 AD = AD + 256
- nåchster Speicherbereich
- 190 NEXT B

20H

200 END

kursiv = Programmerläuterung (nicht mit eingeben)


zeugten Speicherinhalt wird im dargestellten Beispiel Bit 5 des EPROM-Ausganges (Bitkombination 0010 0000 = 20H) durch den Monoflop IS D4 (D 121D) ausgewertet, der dann über das Relais K1 den elektrischen Türöffner für etwa 1s betätigt. Es kann selbstverständlich auch jedes andere Bit des höherwertigen Teils ausgewertet werden.

Die statisch festgelegten Adreßeingänge können vorteilhaft als Schalter im DIL-Gehäuse ausgeführt werden. Sie ermöglichen eine einfache Auswahl von vier Kodes. Die Verwendung anderer EPROMs ist bei Einhaltung der entsprechenden Beschaltungsbedingungen ohne weiteres möglich. Gegebenenfalls fällt die Auswahlmöglichkeit der Kodes weg. Es können auch EPROMs mit einzelnen defekten Speicherzellen verwendet werden, sofern sie nicht durch den Tastenkode belegt werden.

Schaltungabeschreibung

Mit VD1 bis VD23 wird der 1-aus10-Kode der Tasten (max. 1 aus 16) in den BCD-Kode gewandelt und an den Paralleleingang der IS D1 (D 192D) gelegt. Aus jedem Tastendruck wird über die ODER-Verknüpfung (VD24...VD33) ein L-Impuls erzeugt, der nach Impulsformung mit G1 und G2 den Setzimpuls für die Informationsübernahme vom niederwertigen Teil der Daten des EPROMs bildet. Nach einer weiteren Verzögerung mit D5.1, D5.2 wird die BCD-Information von D1 übernommen. Damit steht die Adresse für D3 bereit.

Die Verzögerung zwischen der Informationsübernahme von D2 und D1 ist notwendig, um zu gewährleisten, daß die Än-

derung der Datenausgänge des EPROMs während der Schaltvorgänge für die Bildung der neuen Adressen ohne Belang sind. D1 und D2 arbeiten in dem Fall nur als Zwischenspeicher. Diese Vorgänge werden entsprechend der Länge des Tastenkodes wiederholt. Der EPROM muß so programmiert werden, daß nach dem letzten Tastendruck das auszuwertende Bit der höherwertigen Datenausgänge "H" gesetzt wird. Die IS D4 löst über VT1 und K1 die Betätigung des Türöffners aus und setzt gleichzeitig D1 und D2 zurück. Damit ist die Schaltung für die nächste Eingabe vorbereitet. Durch die statisch anliegenden Adressen bzw. Daten spielt die Eingabezeit des Kodes keine Rolle.

Programmierung des EPROMs

Für den EPROM U 555D (2708) kann das kleinste BASIC-Programm genutzt werden, das einen wählbaren Speicherbereich beschreibt. Dieser ist dann auf den EPROM zu übertragen. Alle nicht belegten Speicherplätze werden mit "0" beschrieben.

Beispiel für die Speicherbelegung bei einem Tastenkode "8-5-1" (X – je nach gewähltem Speicherbereich)

X000	00	00	00	00	00	ØØ	00	00
X008	01	00					••	
X010	00	00	00	00	00	02	00	00
X018	00		••	.,				••
X020	00	20	00	00	••	••		
$X0\overline{2}8$	00	00					••	••

Anzeige des Generatorstroms in 6-V-Kfz-Anlagen

P.-J. THIEME

In [1] wurde ein elektronischer Regler für einen 6-V/220-W-Kfz-Generator beschrieben, zu dessen Kontrolle und zur Überwachung der gesamten Anlage diese Anzeigeschaltung mit 10 LEDs in 5-A-Schritten dient. Zur Kontrolle ist erfahrungsgemäß die Strommessung besser als eine Spannungsmessung geeignet, da der Regler die Spannung ja konstant hält. Vom jeweiligen Strom läßt sich auch auf den Ladezustand der Batterie schließen.

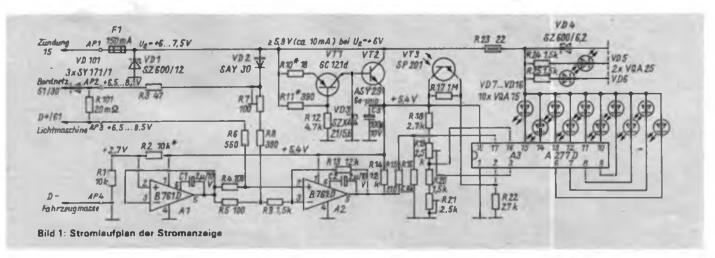
Allgemeine Angaben

Die Schaltung wurde so konzipiert, daß der Einsatz in einer 6-V-Anlage ohne Erzeugung zusätzlicher Spannungen möglich ist. Ein Operationsverstärker B 761 D setzt die an einem Strommeßwiderstand abfallende Spannung so um, daß ein

LED-Ansteuerschaltkreis A 277 D zehn Lichtemitterdioden im Punktbetrieb ansteuern kann. Die Auflösung beträgt 5 A je LED, der Maximalstrom somit 50 A. Zwischenwerte kann man schätzen, da die Übergänge fließend sind. Als Operationsverstärker eignen sich auch andere Typen, deren minimale Betriebsspannung 3 V (Summe \pm U_s) beträgt.

Schaltungsbeschreibung

Am Anschlußpunkt AP1 liegt die Betriebsspannung. VD1 schließt Spannungsspitzen kurz, wie sie beim Abschalten der Zündung austreter. VT2 stabilisiert die Spannung für die IS auf 5,4 V. Eine Konstantstromquelle (VT1) und VD3 liesem die Reserenzspannung für VT2. Ein genauer Abgleich der Stromquelle mit R10 und R11 auf die angege-


Praktische Erfahrungen

Mehrere dieser Türschlösser sind seit über einem Jahr im Dauerbetrieb, ohne daß Mängel aufgetreten sind bzw. der Kode durch "Interessenten" geknackt wurde. Durch das Auffüllen aller unbenutzten Speicherzellen mit "6" wird bei jedem falschen Tastendruck der Ausgangszustand hergestellt. Aufgrund der Verwendung des U 555 D ist die Stromversorgung relativ aufwendig: +5 V, etwa 250 mA, -5 V, etwa 20 mA, +12 V, etwa 15 mA. Es genügen aber einfache Stabilisierungsschaltungen.

Die Schaltung kann als Anregung für ein relativ sicheres Verschlüsselungsprinzip angesehen werden.

benen Spannungs- und Stromwerte ist erforderlich, da von der Konstanz der 5,4 V die Anzeigekonstanz entscheidend abhängt. Man sollte für VD3 einen Typ mit kleinem Innenwiderstand einsetzen. Eine SZX 21/5,1 ergibt schlechtere Stabilitätswerte und ist nicht zu empfehlen.

Al arbeitet als Spannungsfolger für die anliegende konstante Spannung von +2.7 V. Sein Ausgang dient als virtuelle Masse für A2, d. h., die Eingangsspannungen von A2 werden auf dieses Potential bezogen (halbe Betriebsspannung). Nur so ist die erforderliche hohe Gleichtaktunterdrückung von A2 zu erreichen. A2 arbeitet mit achtfacher Verstärkung und liesert bei gleichen Spannungen am invertierenden Eingang (bzw. an R9) und am nichtinvertierenden Eingang eine Ausgangsspannung von +2,7 V, die als Null-Potential für die Anzeigeschaltung mit A3 anzusehen ist. Die Spannungen an den Eingängen von A2 werden von den Spannungen an R101 hestimmt-R101 (aus 3 mm dickem Eisen-Schweißdraht gewickelt) und die Rückstromdioden VD101 befinden sich auf dem in [1] beschriebenen Reglerbaustein. Ist ein berkömmlicher mechanischer Regler vorhanden, liegt R101 zwischen Lichtmaschine und Regler. Der Rückstromschal-

Neue Bauelemente der Mikro-

elektronik (4)

12fach-Präzisions-Stromquelle B 7240 X – Chip-Bauelement für den vorzugsweisen Einsatz in hybriden A/D- und D/A-Wandlersystemen mit Genauigkeiten größer 14 Bit Auflösung.

8-Bit-D/A-Wandler C 560D - dient der Umsetzung eines 8 Bit breiten digitalen Eingangsignals in einen analogen Ausgangsspannungswert (max. Febler 0,4% vom Endwert).

12-Bit-A/D-Wandler C 574C - enthält Mikroprozessor-Interface, was zur Einsparung von Schaltkreisen und externer Beschaltung führt.

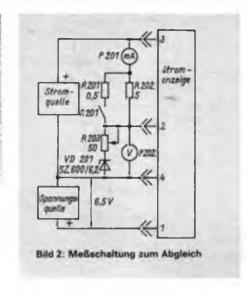
16-Bit-Serien/Parallel-Wandler D 718D - kann eine 16-Bit-Information zwischenspeichern und besitzt einen seriellen Datenausgang zur Kaskadierung.

Hall-Tasten-Schaltkreis B 451/452/453 G – diese magnetisch betätigten, kontaktlosen Schalter haben zwei statische, gleichphasige Ausgänge.

Initiatorschaltkreis B 306S – findet Anwendung für induktive, kapazitive und fotoelektrische Initiatoren, Anschlüsse für Hybrid- oder SMD-Technik ausgelegt SLIC-Schaltkreise B 384/385/386/387D – realisieren die Funktionen für den Anschluß von Standardtelefonapparaten an elektronische, digitale Vermittlungszentralen der Orts- und Nebenstellentechnik (SLIC – Teilnehmerleitungsanschlußschaltung).

Neue Leistungstransistoren

SU 311 - Darlingtontransistor


Andere Gehäusevariante des SU 111, vorzugsweise für elektronische Batteriezundanlagen von Benzinmotoren, z.B. Motorräder, Bootsmotoren; TO-218-Gehäuse, 400 V/7 A.

SU 386...390 - Leistungsschalttransistoren Andere Gehäusevariante zu SU 186...SU 190, geeignet für schnelles und verlustarmes Schalten, z. B. bei getakteten Stromversorgungen, in Motorsteuerungen und beim Schalten induktiver Lasten; TO-218-(SOT-93)-Gehäuse, UCEO = 125/200/250/400/450 V - ICEM 5/8/10/10/8 A.

Neue optoelektronische Bauelemente

Das Lasermodul VQ 150 dient der Lichtleiternachrichtenübertragung über größere Entfernungen, es wandelt digitalisierte Informationsimpulse in modulierte Infrarot-Laserstrahlen um, die in die Glasfaser eingekoppelt werden. Die Übertragungsgeschwindigkeit ist maximal 34 MBit/s. Mit diesem Lasermodul wird der internationale wissenschaftlich-technische Höchststand mitbestimmt.

Für die Meß-, Steuer- und Regelungstechnik vorgesehen, besonders zur Kantenführung, Weg- und Winkelantastung, sind die positionsempfindlichen Fotodiodenchips. Die Fotodiodenchips SP 118/119 XM sind nicht unterteilt, während die Typen SP 123/124 XM unterteilt sind.

ter ist dann mit den Dioden gleichzusetzen. Liefert die Lichtmaschine eine so große Spannung, daß gerade noch kein Strom ins Bordnetz fließt (etwa +6,5 V), liegen an den Anschlußpunkten 2 und 3 gleiche Spannungen. Bezogen auf +2,7 V ergeben sich durch Spannungsteilung mit R6 und R4 sowie R3, R7, R8 und R5 gleiche Eingangsspannungen von etwa +3,3 V für beide Eingänge von A2. Fließt Strom ins Bordnetz, fällt Spannung über R101 ab (0,2 V bei 10 A), so daß sich die Spannung an AP3 gegenüber der an AP2 erhöht. Damit erhöht sich auch die Ausgangsspannung von A2 (etwa +3,0 V bei 10 A)

Steigender Lichtmaschinenstrom führt weiter zur Erhöhung der absoluten Spannung an R101. Sie kann infolge der Flußspannung über den Dioden VD101 und der Batteriegegenspannung um bis zu 2,5 V auf +9 V ansteigen. A2 unterdrückt diese hohe Gleichtakteingangsspannung. Mit R7 wird die optimale Unterdrückung eingestellt.

Bei langsam laufendem Motor (geringe Lichtmaschinenspannung) führen AP2 und AP3 nahezu Massepotential. Damit sinken die Eingangsspannungen von A2 unter +2,7 V ab. Infolge von Schaltungsunsymmetrien kann das zum Ansteigen der Ausgangsspannung führen. Um dies auszuschließen, erhält der invertierende Eingang über VD2 eine Spannung, so daß die Ausgangsspannung unter +2,7 V sinkt und A3 nicht angesteuert wird. Im Normalfall ist VD2 gespern.

Die Ausgangsspannung von A2 liegt im Anzeigebetrieb zwischen $+2.7 \, \text{V}$ und etwa $+4.2 \, \text{V}$. Um den zulässigen Eingangsspannungsbereich am Pin 17 von A3 (max. $+2.4 \, \text{V}$ bei $U_S = 5.4 \, \text{V}$) einzuhalten, wird die Spannung mit R15 und R16 geteilt.

A3 arbeitet in Standardbeschaltung für Punktbetrieb. Die Spannung am Pin 16 bestimmt den Nullpunkt, sie muß etwa +1,6 V betragen. Mit der Spannung am Pin 3 (etwa +2,75 V) läßt sich die Empfindlichkeit (Anzeigesteilheit) einstellen. Der Fototransistor VT3 bestimmt die Helligkeit der Lichtemitterdioden VD7 bis VD16 in Abhängigkeit von der Umgebungshelligkeit. VD5 und VD6 geben bei Dunkelheit die Grenzen der Skale an. VD4 begrenzt die Spannung für die Anzeige-LEDs, so daß keine wesentlichen Helligkeitsschwankungen austreten.

Aufbau und Anordnung im TRABANT

Der Aufbau ist unkritisch. Er sollte auf einer kleinen Leiterplatte erfolgen. R23 und VD4 sind so anzuordnen, daß sie keine anderen Bauelemente erwärmen.

Das Gehäuse kann man entsprechend dem des käuslichen Drehzahlmessers gestalten und es auf einer Blechplatte besestigen, die anstelle des Aschenbechers im Armaturenbrett eingesetzt wird. Die Anzeige besindet sich dann im Blickfeld, ohne in irgendeiner Weise zu stören. Es empsiehlt sich, das Gerät unabhängig vom Kfz. mit der Meßschaltung nach Bild 2 abzugleichen.

Einstellen der Gleichtaktunterdrückung

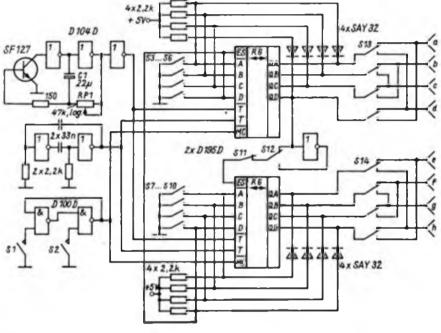
- Spannungsmeßgerät an Pin 5 von A2 anschließen,
- Strom von 0,2 A einspeisen,
- bei geöffnetem und geschlossenem Schalter S201 mit R203 die Spannung am AP2 zwischen 6,2 V und 9 V variieren.
- mit R7 die Gleichtaktunterdrückung so einstellen, daß sich die Spannung am Pin 5 bei allen Varianten möglichst wenig ändert.

Abgleich der Anzeigeschaltung

- R203 auf Minimalwert einstellen und vorerst so belassen,
- Strom von 0,2 A einspeisen,
- bei geschlossenem Schalter S201 R21 so justieren, daß die erste LED leuchtet.
- Schalter S201 öffnen und R19 so einstellen, daß die zehnte LED leuchtet.
- die letzten beiden Einstellungen so oft wiederholen, bis keine Verbesserung mehr zu erzielen ist,
- durch Variation von R203 bei geöffnetem und geschlossenem Schalter die Gleichtaktunterdrückung überprüfen. Es darf keine Änderung der Anzeige erkennbar sein. Eventuell ist R7 geringfügig nachzugleichen.

Wenn der Wert von R101 nicht genau $20 \text{ m}\Omega$ beträgt, muß die Empfindlichkeit der Anzeige beim Einbau in das Fahrzeug korrigiert werden, wozu jedoch eine genaue Strommessung im Kfz. bei 40 A erforderlich ist.

Literatur

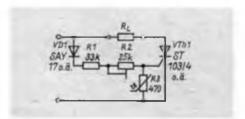

[1] Thieme, P. J.: 6-V-Kfz.-Regler mit Operationsverstarkern FUNKAMATEUR 36 (1987), H. 6

Programmierbares Lauflicht

H. SCHULTZE

Angeregt durch Beiträge, die sich mit der Problematik Lauflicht beschäftigten, habe ich ebenfalls ein Lauslicht entworfen. Die Besonderheit besteht darin, daß sich alle Ausgänge des Lauslichts programmieren lassen. Das heißt, daß sich durch Knopfdruck eine beliebige Kombination aus acht Lampen eintasten läßt. Außerdem ist noch ein Inverter vorhanden, der bei Bedarf die laufende Kombination invertiert, was zu besonderen Effekten führt. Mittels zweier Schalter kann unterschiedlich sein kann.

man die Laufrichtung festlegen, wobei diese für die beiden Vierergruppen auch Die Schaltung ist relativ einfach und eignet sich auch für Anfänger. Das Herzstück der Schaltung sind die beiden x SAY 32



Temperaturregelung mit minimalem Aufwand

J. HERBST

Es bestand das Problem, Wasser in einem Behälfer auf eine Temperatur von 20°C...25°C zu erwärmen. Die Lösung sollte einfach, nachbausicher und kostengünstig sein.

Funktionsbeschreibung: Der Thyristor VTh1 bekommt durch VD1/R1/R2 die erforderliche positive Zündspannung. VTh1 ist gezündet und es fließt ein Laststrom. Steigt nun die Temperatur, so verringern sich der Widerstand des Heißleiters R3 und gleichzeitig die Gatespannung. Wird der erforderliche Wert der Zündspannung unterschritten, sperrt der Thyristor wieder. Die Schaltung stellt einen Zweipol dar, wodurch sie sich leicht in ein System einfligen läßt. Es wird nun eine Halbwelle ausgenutzt. Sollte die Leistung an R_L nicht ausreichen, könnte man z. B. eine Diode in umgekehrter Polarität parallel zum Thyristor

D 195D (Schieberegister). Die Ausgänge sind mittels beliebiger Schaltdioden auf ihre äquivalenten Eingänge zurückgeführt. Dadurch wird eine Zwischenspeicherung erreicht. Die Taster S3 bis S10 dienen zur Eingabe einer Kombination. Mittels eines RS-FF ist die Start/Stop-Schaltung realisiert (S1 Start; S2 Stop). Programmieren kann man nur im Stop-Modus. In dieser Phase liefert der untere Taktgenerator den benötigten Takt. Während des Laufens kommt der Takt vom oheren Generator.

Soll das Lauslicht für schnellere Lichtwechsel gedacht sein, so kann der Takt von einem gemeinsamen Generator erzeugt werden. Dazu sind dann die beiden Takteingänge der D 195D zu verbinden. Der Takt sollte aber mindestens so schnell sein, daß ein kurzer Tastendruck beim Programmieren genügt, um die Lampe aufleuchten zu lassen. Zwar funktioniert die Schaltung auch bei langsamem Takt, doch dann wird ein entsprechend langer Tastendruck benötigt.

Mittels des Schalters S12 läßt sich der Negator zuschalten. Betätigen des Tasters S11 löscht die aktuelle Kombination und man kann sie im Stop-Zustand durch eine neue ersetzen. Mit den Schaltern S13 und S14 wird eine Änderung der Laufrichtung erreicht. Nach der gewünschten Taktfrequenz richtet sich die Dimensionierung von C1 und R1.

Die Schaltung wurde mehrfach aufgebaut und funktionierte immer. Auf jeden Fall ist auf eine saubere Takterzeugung zu

Die Lampentreiber a bis h sind der gewünschten Ausgangsleistung entsprechend zu dimensionieren

schalten. Dabei gibt der Lastwiderstand ständig die halbe Leistung ab und die volle Leistung stellt sich dann nur nach Bedarf ein.

Die Schaltung muß unbedingt berührungssicher aufgebaut werden. Dazu eignete sich bei mir ein Gehäuse des Klingeltrafos KT 08 seht gut. R3 muß mit Cenusil in ein Plast- oder Glasröhrchen eingegossen werden.

Die Schaltung kann natürlich auch als lichtabhängige Steuerung eingesetzt werden. Dabei braucht man nur den Thermistor durch ein lichtempfindliches Bauelement zu ersetzen. Der Austausch des Heißleiters durch einen Kaltleiter (R1 z. B. ein Lüster) ergibt wieder einen anderen interessanten Einsatzfall. Mit R2 wird dann immer der Ausgangspunkt der Schaltung eingestellt. Die Ansprechempfindlichkeit hängt in jedem Fall vom verwendeten Bauelement für R3 bzw. dessen Ausbau als Fühler (Hysterese!) ab.

Für VTh1 können auch andere Typen mit ähnlichen Daten benutzt werden.

Digitaler Kalender

Dipl.-Ing. W. BEUTLER - Y22JM

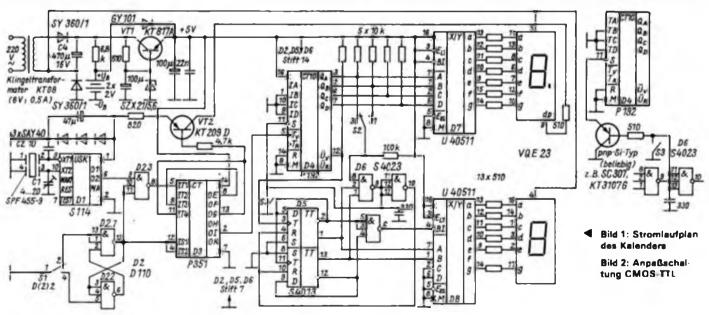
Die meisten Elektronikamateure scheuen sich vor dem Eingriff in eine vorhandene Digitaluhr, wenn sie Tagesimpulse für einen Datumszähler abgreifen wollen. Die nachfolgend vorgestellte Schaltung enthält deshalb sowohl einen Tageszähler als auch eine eigene einfache Zeitbasis mit Piezofilter.

Früher gewonnene Erfahrungen mit CMOS-Uhrenschaltkreisen und AM-Piezosiltem, die in [1] zusammensassend dargelegt wurden, ließen den Einsatz dieser Bauelemente in Verbindung mit einem I2L-Zeitschaltkreis als sinnvoll erscheinen. Mit geringerem Aufwand dürste es kaum möglich sein, die im Kalender zu zählenden "Tagesimpulse" zu erzeugen. Allerdings liegt die erreichbare Langzeitstabilität mit einem hinreichend gealterten Piezofilter lediglich bei etwa 10⁻⁴. Auf einen Tag umgerechnet bedeutet das eine maximale Abweichung von ±9 s, was für die Kalenderanwendung jedoch ausreichend sein dürste.

Mit der gewählten Schaltkreiskonfiguration ergibt sich eine Oszillatorfrequenz f von 466,034 kHz. Um auf diesen Wert abgleichen zu können, muß die mit der Testschaltung aus [1] ermittelte Frequenz fo höher als f sein. Durch kapazitive Belastung mit C1 und C2 (Bild 1) läßt sich dann der Sollwert einstellen. Messungen an insgesamt 14 roten und blauen 455-kHz-Piezofiltern ergaben eine Streubreite zwischen 465,5 kHz und 468 kHz. Das läßt den Schluß zu, daß sich die überwiegende Zahl von Filtern für diese Anwendung eignet.

Dem durch 2²³ teilenden S 114 D, an dessen Ausgang Impulse mit einer Periodendauer von 18 s liegen, wurde ein P 351 D nachgeschaltet. Dieser ist so eingesetzt, daß er einen Teiler mit einem Teilerverhältnis von 4800:1 realisiert und an seinem Pin 2 die "Tagesimpulse" anliegen. Näheres zum P 351 D kann in [2] nachgelesen werden. Die NAND-Gatter D2.1, D2.2 und D2.3 bilden ein RS-Flip-Flop und ein Tor und dienen zum Starten und Stellen des Kalenders.

Als Zähler für die Tages-Einer ist ein P 192 D eingesetzt, dessen Dateneingänge so beschaltet sind, daß er beim Beginn eines neuen Monats durch den zu diesem Zeitpunkt erzeugten Rücksetzimpuls auf "1" voreingestellt wird. Für die Tages-Zehner ist D5 vorgesehen. Seine D-Flip-Flops bilden einen zweistufigen Binärzähler. Zwei NAND-Gatter des S 4023 D sorgen in Abhängigkeit von der Stellung des Schalters S2 für die Voreinstellung von D4 und die Rücksetzung von D5, jeweils nach dem 30. oder 31. Monatstag


In [3] ist zu lesen, daß ein CMOS-Ausgang in der Regel einen TTL-Eingang treiben kann. Für den Fall, daß D4 nicht zuverlässig auf "1" zurückgesetzt wird, besteht die Möglichkeit, die Schaltung gemäß Bild 2 zu ergänzen. Dies wurde auch beim Entwurf der Leitungsführung der Platine berücksichtigt. Zur Einfügung der Zusatzschaltung muß der Leiterzug von D4 Pin 11 zwischen "B" und "E" aufgetrennt werden. Die Drahtbrücke von D6 Pin 9 zum aufgetrennten Leiterzug ist

durch einen 510-Ω-Widerstand zu ersetzen

Das dritte NAND-Gatter in D6 dient zur Unterdrückung der Vornull in der Tages-Zehner-Anzeige. Durch die Widerstände in den Anodenleitungen von VOE 23 flie-Ben jeweils etwa 6 mA, was eine ausreichende Helligkeit ergibt. VT2 steuert den Dezimalpunkt. Da er basisseitig an D3 Pin 13 (Ausgang OG) angeschlossen ist, leuchtet er jeweils 15 min. Damit besteht Möglichkeit, Gangabweichungen auch zu anderen Zeiten, als nur im Umschaltmoment des Tageszählers, also Mitternacht, feststellen zu können. Zur Ansteuerung von VT2 könnten auch die Ausgänge OH und OI genutzt werden, was Leuchtzeiten von 6 bzw. 12 Stunden ergäbe.

Durch den relativ geringen Stromverbrauch der Schaltung bedingt, ist ein Klingeltransformator vom Typ KT 08 (6 V, 0,5 A) ausreichend. VT1 muß ein Si-Leistungstransistor sein, der mit einem Kühlblech nach Bild 5 zu versehen ist. Außer dem angegebenen Typ eignen sich prinzipiell alle npn-Typen dieser Leistungsklasse im SOT-32-Gehäuse, wie etwa der SD 335. Beim Ausfall der Netzspannung speist eine Pufferbatterie über eine GY 101 die Schaltung. Die Anzeige wird abgeschaltet, da sie keine Katodenspannung erhält. Die Stromaufnahme beträgt dann nur noch etwa 70 mA. Durch Verwendung von LS-TTL-IS ließe sich der Stromverbrauch weiter senken.

Alle Bauelemente, ausgenommen Klingeltrafo, Schalter und Pufferbatterie, sind aufeiner Leiterplatte von 115 mm × 75 mm Größe angeordnet. Beim Entwurf der Leitungsführung wurde Wert darauf gelegt, daß sich sowohl axiale Ausführungen als auch Elkos für gedruckte Schaltungen einsetzen lassen. Falls die Störsicherheit des Entprell-Flip-Flops nicht ausreicht, können die Gattereingänge über Wider-

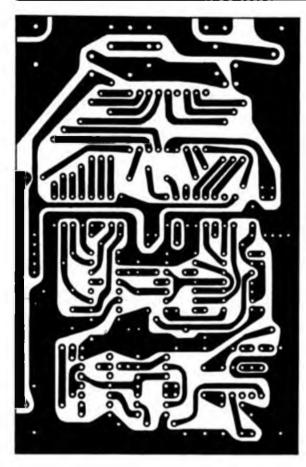
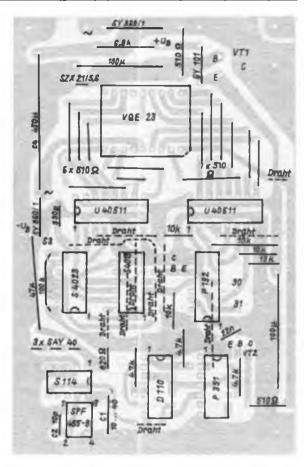



Bild 3: Leitungsführung der Platine
Bild 4: Bestückungsplan der Leiterplatte

stände von etwa 10 kΩ an die Betriebsspannung gelegt werden. Dafür sind entsprechende Lötaugen vorgesehen. Das Piezofilter muß mit ungekürzten Anschlüssen, die vorher vorsichtig (Wärmeableitung mit Flachzange) zu verzinnen sind, eingelötet werden. Damit das Gehäuse für den Kalender nicht zu groß ausfällt, habe ich den Klingeltransformator getrennt angeordnet.

Sofern ein Zählerfrequenzmesser zur Verfügung steht, sollte man die Zeitbasis mit diesem abgleichen. C1 und C2 sind dabei erforderlichenfalls zu korrigieren. Nach spätestens zwei Monaten muß der Abgleich wiederholt werden. Ist die erforderliche Meßtechnik nicht greifbar, kann man sich am Datumswechsel oder an den Leuchtphasen des Dezimalpunktes orientieren. Bezogen auf die Sollfrequenz ent-

Bild 5: Maßskizze des Kühlblechs, A = 5 cm³

spricht eine Umschaltabweichung von einer Minute pro Tag einer Frequenzdifferenz von 325 Hz.

Das Starten und Stellen des Kalenders erfolgt mit dem Taster S1, einem Mikrotaster des Typs D(2)2. Zum Stellen muß am Eingang IT1 von D3 L-Pegel anliegen. Das ist immer für eine halbe Periodendauer, also 9 s. der Fall. In dieser Zeit bewirkt jeder, durch Betätigen von S1 erzeugte L-Impuls an den Setzeingängen IS1 und IS2 von D3 am Ausgang OI die Ausgabe eines Impulses, der den Datumszähler jeweils um einen Tag weiterrückt. In den nachfolgenden 9 s ist kein Stellen möglich. Der Stellvorgang sollte spätestens 9 s vor 12 00 Uhr (mittags) beendet sein. Ist das Tagesdatum eingestellt, so hält man S1 bis zum Startzeitpunkt, also 12.00 Uhr, in der Arbeitslage fest. Der Dezimalpunkt ist dann dunkel. Beim Loslassen des Tasters S1 nimmt dieser seine Ruhelage ein, an D2.1 Pin 13 liegt L-Pegel und am Gatterausgang .un D2.1 H-Pegel, was das Torgatter D2.3 freigibt. Die Setzeingänge von D3, sowie die Ausgänge OE bis OK führen ebenfalls H-Pegel. Mit der nächsten an 1T1 eintreffenden H/L-Flanke, spätestens nach 9 s. schalten alle Ausgänge von D3 auf L, der Zählvorgang beginnt und der Dezimalpunkt leuchtet auf.

Beim Betrieb des Kalenders muß beachtet werden, daß jeweils spätestens am 29. Tag des Monats mit S2 festgelegt werden muß, ob die Rücksetzung des Tages-

datums nach dem 30. oder 31. Tag erfolgen soll.

Literatur

- [1] Beutler, W.: Quarztester mit S 114, FUNKAMA-TEUR 32 (1983), H. 10, S. 503
- [2] Schlenzig, K.: Digitale Zeitschaltkreise E 351 D und E 355 D, Reihe "electronica" Band 205/206, Militärverlag der DDR, Berlin 1983
- [3] Jakubaschk, H.! Das große Schaltkreisbastelbuch,2. Auflage, Militärverlag der DDR, Berlin 1983

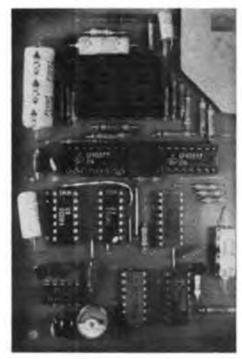


Bild 6: Ansicht der bestuckten Leiterplatte

Logikprüfstift für CMOS-Schaltungen

U. REISER

Die aus der TTL-Technik bekannten Logikprüfstiste sind auch für CMOS-Schaltungen bei der Fehlersuche und bei Funktionskontrollen ein unentbehrliches Hilfsmittel. CMOS-Schaltungen, die mit einer Betriebsspannung von 5 V betrieben werden, lassen sich meist mit TTL-Prüfstisten kontrollieren. Da aber CMOS-Schaltkreise (u. a. V-4000-Serie) in einem Spannungsbereich von 3 V bis 15 V arbeiten können, sind deren Ausgangspegelwerte entsprechend der Betriebsspannung unterschiedlich, was den die Einstellung erfolgt mit R6. Die Referenzspannung für den L-Pegel-Komparator beträgt etwa 0,6 V. Eine proportionale Veränderung mit der Betriebsspannung kann erreicht werden, wenn die Referenzspannungsgewinnung wie beim H-Pegel erfolgt. Die Widerstände R3 und R4 bestimmen den Eingangswiderstand des Prüfstistes. Bei einer Spannung von Upp = 15 V wird der Prüfling mit einem Strom von etwa 1 mA belastet.

Wegen des großen Betriebsspannungsbereiches müssen die zur Anzeige verwendeten LEDs aus einer Konstantstromquelle betrieben werden. Diese besteht aus dem Transistor VT1 mit dem Spannungsteiler VD4/VD5/R8 und liefert einen Konstantstrom von etwa 2 mA [1]. Die Stromaufnahme bei angesteuerter LED beträgt bei Upp = 3 V etwa 3 mA und bei UDD = 15 V etwa 12 mA.

Die Größe der Leiterplatte gestattet es, sie in einem ausgedienten dicken Faserschreiber unterzubringen. Zum Sichtbarmachen von Nadelimpulsen läßt sich die Schaltung mit einem oder zwei monostabilen Multivibratoren (z. B. V 4538 D) ergänzen.

- [1] Jakubaschk, H.: Das große Schaltkreisbastelbuch, Militarverlag der DDR, Berlin 1978, 2. Auflage 1983. S. 496
- Stahl, R.: Schneller Logikprüfstift mit Impulsfalle, FUNKAMATEUR 34 (1985), H. 10, S. 511

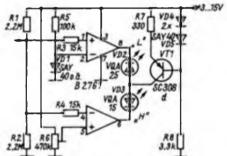


Bild 1: Stromlaufplan des CMOS-Logikprüfstif-Bau eines speziellen Prüsstists erforderlich macht. Versuche, einen TTL-Prüf-

stift einfach mit CMOS-Gattern aufzubauen [1], ergaben eine ungenügende Konstanz der Pegelschwellen und im gesamten Betriebsspannungsbereich eine zu große Hysterese. Grundlage der vorgestellten Lösung ist

die Veröffentlichung in [2]. Die beiden Operationsverstärker arbeiten als Komparatoren entsprechend den CMOS-Bedingungen im Betriebsspannungsbereich zwischen 3 V und 15 V (Bild 1). Die Pegelbedingungen der CMOS-Serie V 4000 sind in der Tabelle zusammengefaßt. Beim Muster liegt der Umschaltpunkt des H-Pegel-Komparators bei $U_{DD} = 0.8 \text{ V}$,

]	100A	330 2x	
	R3 15k VD1 2 VSAY 40 a a	VD2 VT7	
	R4 15k	VD3 VDA 15 D d	

Leiterplatten

Die Firma Ing. E. Kolbe liefert per Nachnahme die im FUNKAMATEUR und im Elektronischen Jahrbuch (vorerst ab 1985) veröffentlichten Leiterplatten, siehe auch Hinweise im FA (12/86, S. 610 und 2/87, S. 90). Für den Amateurcomputer "AC 1" werden z. Z. die Zusatz-Leiterplatten und die der 16-KByte-Speichererweiterung ausgeliefert. Nach Fertigstellung der Reinzeichnung wird auch die Grundleiterplatte des "AC 1" in das Lieferprogramm aufgenommen. Außerdem liefert die Firma Kolbe die Leiterplatten, die im Buch "Praktische Mikrocomputertechnik" von E. Kramer veröffent-

Bitte schreiben sie ihre Besiellung deutlich und vergessen sie nicht den Absender. Die Firma Kolbe kann keine Rückfragen stellen oder Anfragen beantworten. Vor allem bezeichnen sie die bestellten Leiterplatten genau (jeweils Heftnummer/Jahrgang/Seite/Bildnummer). Die Anschrist ist:

lng. E. Kolbe Postschließfach 137 Berlin

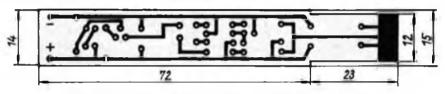


Bild 2: Leitungsführung der Platine für den CMOS-Logikprüfstift Bild 3: Bestuckungsplan der Leiterplatte des CMOS-Logikprüfstiftes

Mitteilungen an unsere Leser

Software-Anzeigen

Die Redaktion wurde leider falsch informiert, da Gewerbegenehmigungen zur Erarbeitung von Software an Privatpersonen nicht erteilt werden. Gegenwärtig bemüht sich die Redaktion um die Klärung der Problematik, wie Softwareerarbeitung und Sostwaretausch unter Einbeziehung privater Initiativen möglich sind. In einer der nächsten Ausgaben werden wir zu diesem Thema einen Beitrag veröffentli-

Praktische Mikrocomputertechnik

In dem Buch "Praktische Mikrocomputertechnik" von M. Kramer sind leider einige Fehler enthalten. So ist vor allem das Programm 5.2.4. (Zeichengeneratorinhalt) durch einen falschen Computer-Ausdruck nicht verwendbar. In der Ausgabe 8/1987 veröffentlichen wir eine entsprechende Berichtigung und den Maschinenkode des Zeichengeneratorinhalts. Die im Buch vorgestellten Leiterplatten für den Aufbau des beschriebenen Mikrocomputers sind nur über die Firma Kolbe erhältlich

H/L-Pegelwerte für CMOS-IS der Serie V 4000

Eingangsspannung •			Ausgan	Ausgangsspannung		
U ₀₀ [V]	U _{n.} [V]	U ₀₄ [V]	[N]	U _{си} [V]		
5	1,5	3,5	0,05	4,95		
10	3.0	7.0	0,05	9,95		
15	4,0	11,0	0,05	14,95		

OV-Stromversorgung in batteriebetriebenen Geräten

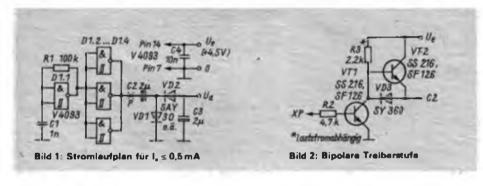
U. LOHS

Die fortschreitende Entwicklung auf dem Gebiet integrierter Kleinleistungs-Operationsverstärker (z. B. B-060-Serie) ermöglicht den günstigen Einsatz dieser universellen Bauelemente auch in batteriebetriebenen Geräten, die im allgemeinen für geringen Stromverbrauch und niedrige Betriebsspannung konzipiert sind. Um Schaltungen mit solchen Operationsverstärkern aus nur einer Gleichspannungsquelle zu speisen, kann zur Erzeugung der für den normalen OV-Betrieb zusätzlich notwendigen negativen Betriebsspannung das Prinzip des eisenlosen Transverters angewendet werden. Dieses entsteht normalerweise durch Zusammenschaltung eines Rechteckgenerators, einer Treiberstufe und einer der gewünschten Ausgangsspannung angepaßten Spannungsvervielfacherschaltung.

Schaltungsfunktion

In Bild 1 ist eine dem obigen Versahren entsprechende Schaltung zur Erzeugung der negativen Betriebsspannung für zwei OVs vom Typ B 060 D (B 061, B 066) bzw. einen Doppel-OV vom Typ B 062 D aus einer Betriebsspannung von +4,5 V gezeigt. Die Operationsverstärker dieser Serie liegen im Stromverbrauch unter 250 µA. Durch die Schaltungsanordnung wird eine Ausgangsspannung Ua von -3 V bei einem Laststrom von 0,5 mA erzeugt.

Der verwendete integrierte CMOS-Schaltkreis V 4093 D enthält vier NAND-Gatter


mit Schmitt-Trigger-Verhalten, Das Gatter D1.1 wird infolge seiner Schalthysterese in Verbindung mit dem Rückkopplungswiderstand R1 und dem Integrationskondensator C1 zu Rechteckschwingungen angeregt. Mit der angegebenen Dimensionierung beträgt die Ausgangsfrequenz etwa 5 kHz. Das Rechtecksignal wird durch eine Treiberstufe, bestehend aus den parallelgeschalteten Gattern D1.2 bis D1.4, verstärkt und steht relativ niederohmig für den nachfolgenden Gleichrichter bereit. Die Amplitude der Ausgangsspannung des Treibers entspricht auf Grund der eingesetzten CMOS-Strukturen annähernd der Betriebsspannung U., Durch die Spannungsverdopplerschaltung C2/C3/VD1/VD2 entsteht daraus eine negative Spannung von etwa -4 V. die bei einem Laststrom von 0.5 mA auf etwa -3 V sinkt. Die Ausgangsspannung läßt sich etwas erhöhen, indem man für VD1 und VD2 Germanium-Golddrahtdioden Setzt man durch Zwischenschaltung von zwei Si-Dioden in Serie die positive Betriebsspannung für die OVs von 4,5 V noch herunter (was nicht in jedem Fall erforderlich ist), so stehen für die Versorgung der OVs etwa ±3 V zur Verfügung, die für den Kleinsignalbetrieb völlig ausreichend sind. Geringfügige Unsymmetrien und das Restbrummen der Betriebsspannungen sind auf Grund der guten Gleichtakt- und Betriebsspannungsunterdrückung der verwendeten OVs praktisch bedeutungslos.

Die Transverterschaltung kann sinnvollerweise unmittelbar auf die Leiterplatte für der zu versorgenden Schaltung aufgebaut werden (Bild 3; 4). In NF-Schaltungen sollte die Frequenz des Rechteckgenerators oberhalb des Hörbereichs (>18 kHz) liegen, damit eventuelle Einstreuungen unhörbar bleiben. Zu beachten ist die gegenüber den bekannten TTL-Schaltkreisen (z. B. D 100 D) abweichende Pinbelegung des V 4093 D.

Mögliche Schaltungserweiterungen für höhere Lastströme

Da die Schaltung nach Bild 1 nur einen geringen Laststrom zuläßt, ist es für stärkere Belastungen notwendig, in Punkt P noch eine bipolare Treiberstufe entsprechend Bild 2 zwischenzuschalten. Je nach den verwendeten Transistortypen können dann Lastströme von 10 bis über 100 mA entnommen werden, wobei die Ausgangsspannung U_a allerdings infolge der Spannungsverluste über VD3 und VT2 geringer ist.

Zur Ansteuerung der Transistoren reicht dann ein CMOS-Gatter aus, so daß die Gatter D1.3 und D1.4 anderweitig benutzt werden können. Es ist auch möglich, für höhere Ausgangsströme weitere Gatter parallel zu schalten.

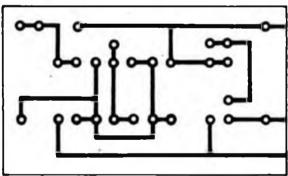


Bild 3: Leitungsführung der Platine für die Schaltung nach Bild 1

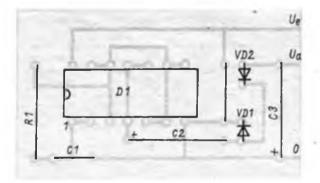


Bild 4: Bestückungsplan der Leiterplatte für die Schaltung nach Bild 1. Die Größe der Platine beträgt 37,6 mm × 22,5 mm. Für den V 4093 D kann auch ein S-Typ verwendet werden. CMOS-IS als letztes Bauelement bestücken.

Mikrorechnergesteuertes mehrstimmiges Liedspiel mit Digitaluhr (3)

B. WINTER

Beim beabsichtigten Interrupt wird dieses Lüber die niedriger priorisierten Bauelemente in der Prioritätskette weitergereicht. Somit kann höchstens ein noch höher priorisierter Interrupt ausgelöst zogen, damit wird ein Interrupt ausgelöst. Zur Unterdrückung von unerwünschten Interruptauslösungen durch Einstreuungen ist vor jeden Eingang ein RC-Glied (56 k Ω , 22 nF) geschaltet.

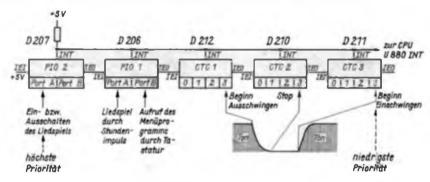
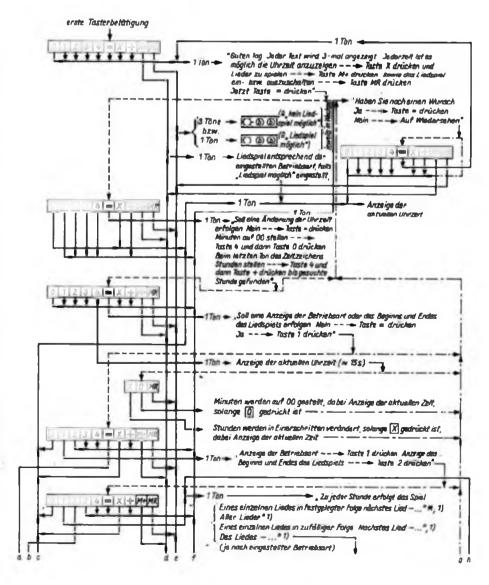


Bild 6: Darstellung der Interruptmöglichkeiten und der Prioritätskette


werden, denn an diesem Bauelement liegt der IEI-Eingang noch immer auf H. Nach Abarbeitung der durch den Interrupt aufgerufenen Interruptserviceroutine (Programm, das durch den Interrupt aktiviert wird) wird am interruptaufrufenden Bauelement der Ausgang IEO wieder auf H geschaltet; es können dann bereits angemeldete niedriger priorisierte Interrupts bedient werden.

Theoretisch sind unendlich viele Bauelemente in die Interruptprioritätskette aufnehmbar, praktisch gibt es aber Grenzen durch eine notwendige Zeit, um das L-Potential von Bauelement zu Bauelement durchzureichen. Nach Literaturangaben [2] sind ohne zusätzlichen Aufwand maximal vier Bauelemente erlaubt; im vorliegenden Fall gab es auch bei fünf Bauelementen keine Probleme, möglicherweise deshalb, weil nicht die maximale Taktfrequenz ausgenutzt wurde. Das Bild 6 beschreibt die vorliegende Interruptsituation.

Die Tastatur ist über Ein-/Ausgabe-Bausteine (PIO) U 855 D angeschlossen. Die zehn Tasten wurden nicht matrixförmig an einen Port der PIO geführt, zum einen, weil die Tastenzahl relativ gering ist, und zum anderen, weil zwei dieser Tasten Interrupts höherer Priorität auszulösen haben (vgl. Bild 1 und Bild 6). Die mit den Tasten verbundenen Eingänge auf der Leiterplatte sind jeweils über einen hochohmigen Widerstand gegen +5 V geschaltet; beim Drücken einer Taste wird der betreffende Eingang auf L ge-

Die Anzeige erfolgt durch Lichtemitteranzeigen. Diese sind ebenfalls über PIO-Ports mit dem Mikrorechner verbunden (vgl. Bild 1 und Bild 2). Die dazu notwendigen Ausgänge können aber den für eine direkte Ansteuerung von Leuchtdioden erforderlichen Strom nicht ausbringen, deshalb sind Treiberstufen zwischenzuschalten. Die Anzeige besteht aus vier grünstrahlenden einstelligen schachtbauelementen VQB 200 vom VEB Werk für Fernsehelektronik Berlin. Wichtige Daten dieser 16-Segment-Anzeigen sind dem Bild 7 und der Tabelle zu entnehmen. Jedes einzelne Segment sowie der Dezimalpunkt werden über einen in Emitterschaltung arbeitenden pnp-Transistor SC 308 (VT208 bis VT224) getrie-

Die Lichtschachtbauelemente werden im vorliegenden Fall multiplex angesteuert, folglich sind alle Segmente (außer dem Dezimalpunkt, der nur einmal zur Trennung von Stunden und Minuten bei der Anzeige verwendet ist) parallelgeschaltet. Die einzelnen Stellen werden jeweils kurzzeitig über einen der in Kollektor-

schaltung arbeitenden Transistoren SF 117 (VT204 bis VT207) aktiviert. Durch eine schnelle zyklische Wiederholung dieser Ansteuerung sowie durch die Trägheit des menschlichen Auges entsteht der Eindruck eines ständigen Leuchtens.

Am Port A von PIO 2 (D207) sind ebenfalls über Treiberstusen (VT201 bis VT203) noch drei Leuchtdioden zur Anzeige von aktuellen Betriebszuständen angeschlossen. Ihre Ansteuerung erfolgt nicht multiplex. Zu späterer Zeit soll noch als Ergänzung eine Schutzschaltung zur Überwachung des Multiplexbetriebes erfolgen, damit bei eventuellen Ausfall des Multiplexzyklusses durch ungewollten Programmabbruch keine Überlastung oder Zerstörung der VOB 200 eintritt. Ebenfalls ist noch eine Änderung vorgesehen, um mit Hilfe eines Fototransistors die Anzeigehelligkeit entsprechend der des Raumes zu steuem.

2.2. Beschreibung der Software 2.2.1. Initialisierungsprogramm

Durch ein Reset beim Einschalten werden bestimmte interne Register und Flip-Flops des Mikrorechners U 880 D und

Bild 7: Maßangaben zu den Lichtemitteranzeigen VQB 200 und VQB 201

Bild 8: Derstellung des Zeichensatzes der VQB 200/201 – derunter jeweils der Zeichenkode

Wichtige Kenngrößen VQB 200/201

		mio.	typ.	max
Durchlaßgleichspannung	U,[V]	_	2,0	2,6
Lichtstärkeverhältnis bei I _p = 10 mA	Long	-	÷	2,0
Wellenlänge der max. Emission	λ, [nm]	555	565	575
Durchlangleichstrom (Grenzweri – 2525 °C)	I, [mA]	-	-	17,5

seiner peripheren Bausteine (PIO, CTC) rückgesetzt. Danach wird das Programm ab der Adresse 000H abgearbeitet. Zur Unterprogrammbehandlung, Behandlung von Interruptserviceroutinen, Rettung von aktuellen Registerinhalten, benötigt man einen sogenannten Kellerspeicher (Stack). Er ist so organisiert, daß das, was zuletzt gespeichert wurde, als erstes wieder gelesen wird; das ist in gewisser Weise dem Füllen bzw. Leeren eines Kellers ähnlich. Im U-880-System liegt der Stack im RAM-Bereich. Wie im Bild 5 zu sehen ist, beginnt er bei der höchsten RAM-Adresse (43FFH). Das Füllen verkleinert die Adressen!

Weiter muß den peripheren Bausteinen übermittelt werden, in welcher Weise sie zu arbeiten haben, dafür sind sie entsprechend zu programmieren. Alle PIO-Ports werden im Bit-Betrieb verwendet, d.h. man kann jedes der acht Bit des entsprechenden Ports als Ein- oder Ausgang programmieren. Es ist festzulegen, ob die Eingänge zur Auslösung eines Interrupts dienen sollen oder nicht.

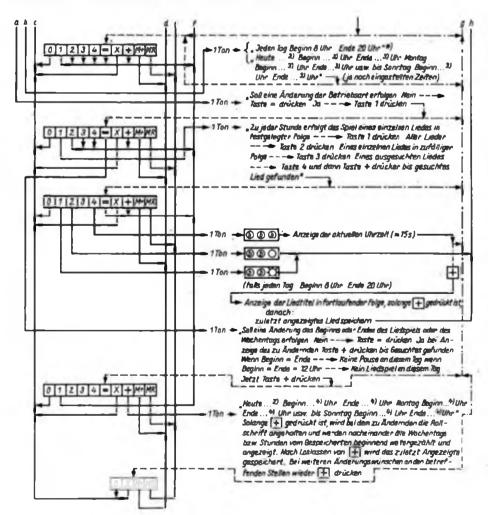


Bild 9: Ablaufschema für das Menüprogramm des mehrstimmigen Lied spiels mit Digitaluhr, Teil 1 – linke Seite, Teil 2 – oben

Texteditor für den "AC 1" (1)

J. REUL - Y27XO, Y36ZO

Computer werden in immer stärkerem Maße dazu verwendet, die altbekannte Bürotechnik zu ersetzen. So werden heute schon vielerorts Schreibmaschinen durch Bürocomputer bzw. rechnergestützte Geräte verdrängt. Die Vorteile, wie beispielsweise die nachträgliche Korrektur oder das Abspeichern von Texten, wird wahrscheinlich erst derjenige ermessen können, der einmal mit beiden Möglichkeiten gearbeitet hat. Aber nicht nur im kommerziellen, sondern auch im Amateurbereich setzt sich die rechnergestützte Textverarbeitung immer weiter durch. Mit dem folgenden Beitrag soll auch dem "AC 1"-Besitzer diese Technik eröffnet werden.

Selbstverständlich wird das vollständige Hexlisting als Rechnerausdruck mit veröffentlicht, so daß jeder Elektronikamateur ohne die Zahlung einer Nachnutzungsgebühr in den Besitz des Programms gelangen kann. Eine Praxis, die eigentlich unter Amateuren üblich sein sollte. Nutzbar ist der "AC 1"-Texteditor in zweierlei Hinsicht. Zum einen können die erarbeiteten Texte unter Verwendung eines geeigneten Druckers zu Papier gebracht werden. Sie könnnen aber auch als elgenständige Textfiles in den RAM-Bereich ausgelagert und auf Magnetbandkassette abgespeichert werden. Dem Programmierer ist damit beispielsweise die Möglichkeit gegeben, Programmbeschreibungen auf einfache Art und Weise vervielfältigen zu können.

An dieser Stelle soll gleich darauf hingewiesen werden, daß das Programm ohne Vorbild geschrieben wurde und die Anpassung auf einen anderen Rechnertyp nur unter großen Schwierigkeiten möglich sein dürste.

Hardware-Voraussetzungen

Der Texteditor ist für einen erweiterten "AC 1" mit folgenden Merkmalen geschrieben:

- Speichererweiterung (min. 16 KBytes, bei 4000H beginnend);
- Zeichengenerator mit Kleinbuchstaben;
- Bildschirm mit 32 Zeilen.

Eine weitere wichtige Voraussetzung für die Funktion des Programms ist die Verwendung des Betriebssystems nach [1] und einer Tastatur, die die logischen Funktionen nach [2] gewährleistet.

Bild 1: Ausdruck der Tabelle 1 mit den Angaben zur Programmanpasaung

Programmatart

Der Texteditor belegt den Bereich 5000H...5B6FH als Arbeitsspeicher und 5D00H bis zum oberen RAM-Ende, das selbständig vom Rechner ermittelt wird, als Textpuffer. Der dazwischenliegende Bereich ist dem Stack und den Merkzellen zugeordnet. Die Startadresse des Programms ist 5000H. Bei erweitertem Suchbereich für Kennbuchstaben ist der Start auch mit "t" (74H) möglich.

Nach dem Löschen des Bildschirms gelangt ein Menü zur Anzeige, in dem die Grundfunktionen zur Textverarbeitung aufgeführt sind. Außerdem wird die Anzahl der auf Grund der vorhandenen RAM-Länge zur Verfügung stehenden Bildschirmzellen angezeigt. Steht an Stelle dieses Wertes ein "Error", so ist das Programm fehlerhaft.

Der Aufruf der Menüfunktionen erfolgt mittels des vorangestellten Kennbuchstabens und "CR". Sind weitere Angaben erforderlich, so nimmt der Rechner die Abfrage im Dialog vor.

Menüfunktionen

A - Start

Der Pusser wird zur Erstellung eines neuen Textes vollständig gelöscht. Der gesamte Bereich wird dabei mit Leerzeichen (20H) aufgefüllt und dessen Beginn auf dem Bildschirm angezeigt.

Zur komfortablen Texteingabe, die nun beginnen kann, ist das Programm in einen Schreibmaschinenmodus geschaltet und die Tastaturabfrage um die Autorepeatfunktion erweitert. Alle von der Tastatur erzeugten Kodes, die den ASCII-Zeichen zwischen 14H und 7FH entsprechen und nicht in Tabelle 1 als Steuerkodes vereinbart sind, werden als Zeichen interpretiert und verarbeitet. Die Erläuterung spezieller Steuerfunktionen folgt in einem späteren Abschnitt.

Zur verbesserten Orientierung beim Schreiben zeigt die letzte Zeile Statusinformationen, die sich auf die aktuelle Position des Kursors beziehen.

B - Restart

Die Abläufe entsprechen "A". Der Puffer wird jedoch nicht gelöscht, so daß mit der Bearbeitung eines vorhandenen Textes fortgefahren werden kann.

C - Komprimieren

Der geschriebene Text läßt sich in einen frei wählbaren RAM-Bereich unterhalb 5000H umlagern. Ihm vorangestellt ist dann ein Hilfsprogramm, das es gestattet,

Adresse	Hex-code	Marke	Mnemonik Hinweise
5002H 5005H 5008H 5009H	C3RB07 C3RB07 63 OF	OUTP INIT ZEILE CSYMB	JP MS30 Druckersusgabe JP MS30 Druckerinitialisisrung DBPB 63H Zeilen/Seite DEPB 0FH Cursorsymbol
500AH 500BH 500CH 500CH 500PH 5010H 5011H 5013H 5015H 5015H 5017H 5018H 5019H	12 0D 02 06 03 08 09 0A 0D 11 15 01 14 17 05	CODTAB	CTRL.R Shiftlook CTRL.M Wagenrücklauf+Zeilenvor. CTRL.B Zeile löschen CTRL.F 1./2.Zeichenebene CTRL.C Menn CTRL.H Cursor nach links CTRL.J Cursor nach rechts CTRL.J Cursor nach unten CTRL.G Eild bochrollen CTRL.Q Bild bochrollen CTRL.U Bild runterrollen CTRL.A Zeile einfügen CTRL.T Wagenrücklauf CTRL.W spezieller Tabulator CTRL.E Zeichen einfügen CTRL.S Zeichen löschen
501AH 501CH 501EH 502CH 5022H 502AH 502AH 502CH 502CH 502CH 503CH 503CH	2316 5817 55018 5819 781A 701B 761D 761D 401E 601P 0000 0000	ZGCODE	DEF# 23H.16H DEFB 5BH.17H DEFB 5BH.18H DEFB 5BH.19H DEFB 7BH.1AH DEFB 7BH.1CH DEFB 5CH.1DH DEFB 7CH.1DH DEFB 7CH.1DH DEFB 6CH.1DH DEFB 0.0 DEFB 0.0 DEFB 0.0 DEFB 0.0
5038H 5039H 503AH 503RH 503CH	00 00 00 00	SPCPRT	DEFB O DEFB O DEFB O DEFB O DEFB O

den Text ohne Zuhilfenahme des Editors auf dem Bildschirm auszugeben. Eine Sonderstellung bei der Umlagerung nehmen Leerzeichen und Bindestrich ein. Bis zu 64 zusammenhängende Zeichen dieser Art werden zu einem Byte komprimiert, so daß bei übersichtlicher Arbeit mit eingerückten Zeilen oder Unterstreichungen kein erhöhter Speicherbedarf entsteht.

Nach Abarbeitung des Kommandos gelangen Anfangs- und Endadressen des Textfiles zur Anzeige und das Programm kehrt zum Betriebssystem zurück. Außerdem werden Anfangs-, End- und Startadresse in die Argumentzeilen geladen, so daß man das File mit S:Name auf Kassette abspeichern kann. Die Eingabe der Anfangsadresse Ø bewirkt den Rücksprung in das Menü.

D - Dekomprimieren

Komprimierte Texte lassen sich zur Weiterbearbeitung oder zum Drucken in den Puffer zurückladen. Befindet sich auf der angegebenen Adresse ein solches File, wird der Puffer gelöscht, der Text übernommen und ein Restart ausgeführt. Bei Eingabe einer falschen Ad:esse wird die

Aussührung des Kommandos verweigert und bei Adresse Ø in das Menü zurückgesprungen.

E - Drucker

Die Verwendung dieses Kommandos setzt das Vorhandensein einer geeigneten Druckerroutine voraus. Diese muß folgende Bedingungen erfüllen:

- 1. zeichenweise Übergabe im Akku,
- 2. retten aller Register (Akku kann zerstört werden).
- 3. Abschluß mit RET.

Zur einfachen Anpassung an die jeweiligen Gegebenheiten besitzt das Programm einen Sprungverteiler, dessen Belegung noch erläutert wird.

F - Format

Beim Programmstart stellt sich ein Format von 61 Zeichen je Zeile ein. Eine Veränderung dessen ist mit dem Kommando "Format" möglich. Die Eingabe von Werten zwischen 10 und 63 ist erlaubt. Als zweiten Wert erfragt der Rechner die Größe des Formatierungsraumes. Das ist der Bereich vom rechten Zeilenende gerechnet, in dem beim Formatieren auf das Vorhandensein von Zeichen getestet wird. Die Anzeige des eingestellten Bereichs erfolgt durch "+"-Zeichen in der Trennlinie oberhalb der Statuszeile. Die Eingabe des Wertes Ø bewirkt eine Berechnung zu Format/10 + 2. Die Anfangsinitialisierung beträgt 8.

G - Formatieren

Es werden alle Zeilen, in denen im Formatierungsraum ein Zeichen steht, gleichmäßig mit Leerzeichen aufgefüllt, so daß nach Möglichkeit ein rechtsbündiger Abschluß im Format entsteht. Um das Textbild nicht zu stark zu verfälschen, werden nach jedem Wort maximal zwei Leerzeichen eingefügt. Gegebenenfalls kann man das Kommando erneut aufrufen

H - Zentrieren

Der Text wird je nach Format in die Bildmitte gerückt.

I - Reformatieren

Es wird der Originalzustand nach Formatieren bzw. Zentrieren wieder hergestellt. Dieses Kommando ist bei dekomprimierten Texten wirkungslos. D. h., Texte, die zur späteren Weiterverarbeitung komprimiert und auf Kassette abgespeichert werden, sollten nicht formatiert sein.

(wird fortgesetzt)

Bild 2: Teil 1 (oben) und Teil 2 (unten) des Ausdrucks des Hexdumps mit CRC-Prufeumme für den beschriebenen Texteditor

Korrektur zu "Der Prozessor im Bandzählwerk"

Für eine eindeutige Adressenzuordnung zum Programm ist im Bild 4 (FA 5/1987, Seite 254) am PIO-Schaltkreis zu ergänzen:

 $A1 = B/\overline{A}SEL - A^{-} = C/\overline{D}SEL - A3 = CS.$

7D 91 80 04
52 EB 01 3R
6C 61 70 53
20 20 3A 65
20 20 2D 20 31
5C 21 FF 17
51 21 56 18
CD PA 07 PS
7E A7 20 05
1 7E 28 EA 15
61 68 20 41
51 01 BA 4P
1 21 7D 52 ED
1 PE 2D 28 34
1 77 BE 20 33
1 D7 12 18 36
1 04 0C 10 P4
1 20 P3 0C 10
1 64 65 53 5E
1 CD P1 07 DP 8E
1 EP 51 23 7E
1 41 00 09 CI 5200 5210 5220 5230 5240 5250 85 6P 00 D5 11 65 20 20 45 22 C3 5C 63 74 20 54 C5 EP PB EB 35 CB 20 3A 2A 74 20 5260 43 76 D5 5270 **************** 5280 00 DĎ 83 20 CD 3P 6E CA 5290 52A0 52B0 52C0 52D0 E9 57 07 A21 EB 25300DE 500D0 CD CD CD CD CD C6 64 E5 B0 46 C3 DP C2 1A 13 52B0 52P0 28 43 B1 B7 PE 45 22 3A BB 01 0D 54 DD 5270 5300 5310 5320 5330 5340 5350 5370 23 06 O D 60 P7 CD 33 6P 18 B5 1P CE OD 5380 5390 C3 36 DB 41 PE 83 53**A**0 AE 01 CB 72 53 21 41 7P 28 18 53B0 53C0 1 C 51 CB 20 02 c3 66 08 02 5320 5380 23 3B PP 2D 21 7E 1B P2 5C æ

CRC (SDLC) = C934

C3 EB 07 03 EB 07 63 0F

OB 11 15 01 14 17 05 13

7B 1A 7D 1B 7E 1C 5C 1D

OO 0O 0O 0O 0O 0O 0O 0O

56 3B 59 74 52 E9 55 P9

56 4E 57 81 57 8E 57 BA

51 P8 51 C3 52 98 53 19

5A D4 51 5A 5B 0O 09 74

50 DD 21 C2 5C 21 40 5D

23 18 P5 2B 7D 86 C0 6P

ED 52 23 22 C9 5C 06 06

54 22 D3 5C 3E 3C 32 D5

50 11 B6 51 CD 0B 55 32

2A 2A 2O 41 43 31 2D 54

52 2A 55 2B 7D 86 CO 6P

54 22 D3 5C 3E 3C 32 D5

50 11 B6 51 CD 0B 55 32

2A 2A 2O 41 43 31 2D 54

52 05 56 35 2P 31 20 2A

28 63 29 20 20 4A 2E 52

37 58 4P 8D DP 0D 0D 20

74 0D 20 42 20 2D 20 44 65

65 72 65 6E 0D 20 44 65

65 72 65 6E 0D 20 45 20

72 0D 20 46 6P 76 D70

60 2D 2O 46 6P 76 GD 61

48 20 2D 20 52 65 66 6P

60 0D 20 4B 6P 6D 70

49 20 2D 20 5C 65 66 6P

60 0D 20 4B 20 2D 20 4B

20 AB 31 00 5C CD 05 55

A9 C3 PD 07 2A D3 5C CD

65 6E 29 0D 0D EP CP FE

28 04 DP 88 18 P0 21 61

30 P0 CB 27 16 00 5P 19

C3 06 51 CD 83 53 CD 64 OD 02 06 03 16 5B 17 5D 1D 40 1E 60 00 00 37 59 42 56 54 56 BO 58 21 04 86 54 5D 5A AP 32 C1 5C 2P 77 BE 2P 22 CD 5C 11 3C CB 1D 10 3E 07 32 D6 5C DP 8C DP 58 54 45 44 2A 0D 20 20 75 6C 20 20 20 2D 20 53 73 74 61 72 69 6D 69 72 72 6D 61 74 69 65 72 65 69 65 72 65 69 65 72 65 69 66 74 6P 18 79 09 0A 5E 19 5000 5010 24 23 93 68 87 88 86 5020 PD 6B 19 18 5030 00 00 55 56 59 58 21 5040 **E9** AO P5 5050 5060 PD 77 00 BB 5070 5080 09 5090 20 03 5D CD PA 5C OD 50A0 50B0 32 8C 45 20 20 61 72 74 74 45 20 *D*7 D6 DF 4420 572 672 774 655 69 672 54 F 38 P8 EC 61 33 08 21 20 54 20 50 00 50 00 49 20 74 74 72 69 63 0D 68 65 72 65 CP SORO 50P0 72 72 72 6C 59 5100 5110 5120 OD 65 6D 5130 5140 44 6D 65 65 61 69 7D 14 1C 6A 71 7E CO ++++ 6B 5150 5160 5170 5180 20 OD OD 5190 51A0 51B0 51C0 51D0 72 OD 0A 07 38 79 23 ++++ 6P DP D3 69 PB 28 30 C3 D6 56 41 EB PE OD PE OB CD 06 51P0 OD 8D 06 51 83 53 64 52 40

CRC (SDLC) = E8E1-

Verk, 12-Ete-UKW-Ant, m. Schneckenget , Steuereinh, u. zweitem Kugelleger f. Maststabil, 385 M. G. Weidert, Thurnger Straße 23, Schnellmannhausen, 5901

Suche 2 Joystick mit Interface I, ZX Spectrum + Boitin, Stenzer Weg 3, Laußnitz, 8291

Sucha Leislungal, 2-m-Emplanger, UFS 801, UFT 420, Handrik, J., Cune-Siedl, 92, Kamenz, 8290

Suche HC der Beureihe KC 85 o. a. Typ, in Grundausstattung. Angebote mit genauen techn. Parametern an Jacob, Leninstr, 23/27, Pima, 8300

Suche KC 85/2 a a. u. Rel. NSF 30 6-12-AgPd I. gedr. Sch. GBR111-12-Ag m. Fass Keil. Glasewaldistr. 29. Dresden, 8021

Suche alte Benzin-Diesel-Gluhkerzenmotoren für Flugmodelle, auch delekt, z. B. Kratmo Eisfeld. Zeisig, Nr. 8, Beerwalde, 8231

Suche Prüfgenerator AWFM bis 235 MMz und 5-Band-KW-Amateur-Rx, trans, m, Unterl, Scotasti, Rosa-Luxemburg-Str. 36, Heidensu, 8312

Suche für Atan 800 Xt. Datenrecorder und Programmierhandbuch für Atan-Basic oder Microsoft Basic II. Preisangebote an Dworatzeck, Fichtestr. 8, Bischofswerde, 8500

Suche Erlahrungsaustausch über MZ-700/800, Kosiol, Nr. 57, Robschutz, 8251

Suchs Datenrecorder für Atan 800 XL Mink Seeuler 14 Neuropoin 1950

Halmoomputer gesucht, Zuschr. mit Preisangebe an: Jaeger, Junckerstr. 13, Neuruppin, 1950

Suche komplette Computerstation, (Homecomputer, Diskettenlaufwerk – einfl, o. doppell, Drucker und Dataserte), von: Commodore, Apple, Atan, Speldrum, Sinckeir, H. Cordes, W.-Pieck-Str. 32, Vetschau, 7544

Suche dringend ZX-Speldnum oder Commodore m. Zubehör (mind. Detasette) Commodore bevorzugt. Kappler. Ziegetstr. 5, Lübben 7550

Suche HC 900, KC 85/2 a. å. Lapp, Str. d 20. Jahrest. 7c, Schwarzheide, 7817 Suche 64-K-RAM-Pl. I. K 1520 u. progb

Suche 64-K-RAM-PL I. K 1520 u. progb Tastatur Röttig, Schwedter Str. 78, Berlin, 1058

Suche Matrixdrucker für 800 XL (Typ aber nicht Bedingung), Pretsang, m. Informationen an: F. Gobernatz, Max-Sabersky-Allee 18, Teltow-Seehof, 1530

Suche C 64/128 und Lit, auch auf Kassetta/Diskette, Verk, FA ab 77, Jg. 10 M. Gaoditio, Altenburger Str. 12, Rosetz, 7405

Suche alles über VC-20, besonders Datasette VC 1530 sowie wertere Hardware u. Lit, Schein, Nr. 21/PF 608 OT Korpitzsch. Polkenberg, 7321

Suche dringend Oszillographen, Garwa, Am Moseberg 3, Eisenach, 5900

Suche C 64 u. Zubehôr (auch einzeln) Eberle, Burgstr, 53, Bleicherode, 5602

- 64-K-RAM-Platine! - ZX

81, Z 80, 880, mit MUX, Prā-

zision, Cevausit, je 34 M zu

verk. Barthold, Coppistr. 50,

Verk, Kas interlace für PC-1245 (Eigenbau) 200 M; NF-Sichtgerät mit TV-Anschluß 150 M; Bildröhre B 43 M 1 100 M; T. Riethmüller, Kertstr. 26, Dingelstädt, 5603

Sammler sucht aus der Anfangszert der Funldechnik Radios Detektoren, Mikroione KW-Geräte, Einzeiteile, Uli, usw. Schrödter, E.-Thälmann-Str., 45, Leipzig, 7050

Magischea Auge EM 1 a EM 4 ges. Hildebrandt. Jol.-Curie-Str. 20, Dessau, 4500

Suche HC KC 85/1, KC 87 moglichst farbtüchtig oder ZX-Spektrum, H. Melzer, Tauchaer Str. 28, Posema, 4851, PF 151

Melmcomputer gesucht, Verhaufe eiektronische Beuelemente (IC, Tr., Di., LED, Thyr., Meßgeräte usw.) von 0,50 bis 25 M. Liste anfordern, R. Schuh, Sandati, 1, Wesenau, 1201

Computer dringend gesucht, J. Helbing, Frohnestr. 1, Mühlhausen, 5700

Suche ZX-81-Drucker, Rudolph, Sportplatz 12, Kühnhausen, 5101

Suche Leiterpl u. Bauteile dea Syst. K. 1520 zu kaufen. Angeb. nur schmitt, am J. Murglat, Meyenburgstr. 13, Nordhausen. 5500

Suche Heimcomputer, Steinmetz, Bloedaustr, 17, Sondershausen, 5400

Suche Meßgeräte (auch def.): 2 B. TS 1-8. IS 1-8. IS 2-5. DT 1-5. HS 1-5. RS 1-8. Frequi-mess. 3010. Meßgen. 2039. sel. Voltmeter SMV 1. Oszi OG 1-10. OG 1-15. OG 2-10 (mögl. mit Unterl.) Röhre HT 301 (EC 560). del TFK 500. Fotozelle 480 RQ/ QAE, RFE, unter 1980. FA unter 1973.

Reinhardt, Erdfall 2, Waltershausen 5812

Suche Erlahrungsaustauech zum C 64, J. Kühn, Bei der Peterskirche 6/7, Zl. 589, Görlitz, 8900

C-16 m, 64 KB, Datasette, alles neuwertig, 4500 M, zu verkaufen. Witter, Kirchplatz 14, Steinbach-Hallenberg, 6088

Oszillograf EO 201 mil Zubahör; Rechteck/Sinus-Generator nach FA 1/75 (reperaturbedürftg); 7400 PC, DM 7402 N, DM 7404 N, DM 7408 N, ITT 7412 J, DM 7413 N, SN 7432 N je 4mal; sowie LM 741, 4mal, Smal LM 709 und 5mal UA 741, zusammen für 1600 M über Beutnagel, Caputher Heuweg 35, Potsdam, 1580

Helmcomputer Atan 800 XL mil Datasette 4800 M, Tel Leipzig 20 82 89

Home-Computer ZX 81, Netziell und 16 k RAM zusammen für 2000 M, Zuschr, an Helio Thumm. Zwickauer Str., 136/115, Lelorio, 7000

Lalpzig, 7030

Bibl. CMOS RAMs 2K×8 150 M,
EPROMa 2764 8K×8 160 M, CRT-Contr.
6845 170 M mit Unitart, R, Richter, Offenbachstr. 5 Markkleeberg 7113

LC 80 m. Netzi., neuw. 600 M. Stereo-Transii, 200 M. M. G. Mampe, Mitweider Str., PF 10. Gröbidz, 9291

C 84, 5500 M. M. Neuberl, Weststraße 47, Karl-Manx-Stadt, 9005 Suche Softwareerlahrungsaustausch für C-Plus 4, C 118, verkaufe Handbuch ZX-Spectrum für 50 M. Angebote an Rainer Chojnacki, Rauchstr. 1, Apol/a, 5320

80-m-Tranacaiver HW 12 A, Bestzustand, Handbuch Ersatzröhren, W3DZZ 1800 M, VG 53W029/86, AWE Erfurt, UFB 1700 M, Pičoskop 500 M, Commodors Tastatur, PC 801, 300 M, Tel, Leipzig 87 32 28 nach 18 Uhr

8 41 (mono), 300 M; Rathfuchs, Altenhoter Str. 30, Berlin, 1092

Farblernaehger

M. Loewe 1260* PAL. Uz-F. bed., 67 cm Bildr. del. z. Ers teilgew., 600 M: Sec. Dek (Chromat) 200 M. Lill, Rigaer Sr. 87, Berlin, 1034

Corrputer ATARI 800 XL mit Programmrekorder XC 12, neuw., 4300 M. Tel. Bertin, 5.41.39.07 ab 19 Uhr

Corputer Atan 800 XL u, Programmrekorder, alles neuwerbg, 3000 M (nur zus.) Volber Dimitrofistr, 108, Berlin, 1055

D 347 D á 30 M; SF 121 B/123 C/128 C/ 128 D, á 2 M, Sattelberg, Großstr. 4, Bertin, 1160

Computer C 116, 32-K-ROM davon 16 K Superbasic V 3.5, 16-K-RAM, 121 Farben, 3 Tongener, 3000 M; dazu 64-K-RAM-Enweilerung 1000 M (nur zus.); Datenrekorder, 500 M; Farbternseher Robotton RC 6041, mit eingeb, Direkteingang für Video und alle Commodore-Computer, 4800 M, 8, Lautsch, Fi-Engels-Ring, 56, Rüdersdorf, 1253

C 64, Modell 86, neuw., 4800 M, Tel, Berlin 5 12 38 39

ATARI 600 XL mit Rekorder und Buch, 4500 M, Wendler, Bersannstr, 36, Berlin, 1034

Funkamateur Jg. 87-75, 9 M. 76-83, 12 ja Jg.; 36er Febana-Stackard, dw. UKW, KW-Drehko, Zerhack, 6 V. Tastana. 3-6 Ta., Netztr., versch, Post u. s., Relais 5 M; 10 versch Pob, 9,50 M; 10 HV-Ca, 8 M; Röhrensock, a., Gr. 0,25 M; EF 80, PCF 82 1,50 M; ECC 82, PL 84, 2 M; EL 83, PL 83, 3,50 M; ECF 82, EBF 89, 80, EL 81, EABC 80, ECH 11, 81, EBF 11, EM 11, EF 11-14,6 П 1 П, 6C 3 П, 6 E 5 C, PABC 80, PCL 84, jp. 5 M; 75 3 U 22 C, 8 M; UEL 51, PL 36, AZ 11, 12 EBB, 1, je 6 M; Dip, M, 28 M.

Zuschr, Kaden, Altenberger Str. 51, Schmiedeberg 8239

ZX 81, 16-K-RAM u. Hendb. 2000 M. Günter Pomorski, Th.-Menn-Str. 23, Bergh.-Rehbrüche, 1505

Mobbysuff., R, C, T, D u. ICs sowie Literatur, nur zus., 300 M, Suche HC, Typ u. Preise bitte an M, Derthold, J. Dáumi-Dir., 17, Planter 9000.

C 64, 5500 M St. Rellin, Reichenhainer Straße 35/215, Karl-Mari-Stadl. 9022

Transistorvenstirtanningst TAV 2001, 100 M, Vensärker Mini 2002, 150 M, 2 Stromegler, je 50 M. Zuschi, an Rainer Seltmann, Karl-Mani-Str. 65, Grunhain, 9417

T 215 D, Bj. 85, V-Nr. 54/002/87, 5000 M.

Suche Personal-Computer-System Basic, CP/M-lähig Handware, Software sowie Liferatur auch Einzelteite PGH, Dach* Sudenburg, Michaelstr, 43, Magdeburg, 3014

SANYO-Kleintischrechner CX 5510 m. Drucker, Batterie/Netzt. Normalp., LCD-Anzeige, 2200 M, Minidisketten 51/4 Z., neuw. SS, DD 110 M zu verk. Grziwa, Westermarktstr. 1, Salzwedel, 3560

M. H. Maria, J.-Gagarin-Str. 239, Karl-Marx-Stadt, 9026

Oszillograph N 3013, 800 M. T. Harzer, Schreberstr. 25, Aue, 9400

R 3170/3370/277/2030, 6 M; Querze 1/10 MHz, 35 M; UB 880, 40 M; S 214, 15 M; 24 pol. IC-Fass., 5 M; Liste antord, Suche 74 S 90; Drucker od, Druckwerk, R. Semmler, H.-Belmier-Str. 47, K - M- Stadt, 9061

Hobbysuffdeung! Verk. div pass. u. akt. Bauelemente u. a. SC 239'SC 309, 4 M: KP 303, 5 M; ICa usw. Liste anfordern. AM/FM. Stareo, nach Vorb. v. RS 5001. Åuß. übern. m. 7. Fests. zus. MPX u. zus. ZF-Vorstufe, Mono-Empfindlichk. b. 1 µV 1. 800 M; ausbauf. Stereoverst. m. 2×A 2030 u. A 273/A 274, 51ach-Mischpuff u. Ausst. anz. 400 M; Stereo-Dek, m. A 290, MPX- u. Ultraschall-Fill., 90 M, Stereo-Dek, SG 2. 1. 20 M; Tuner v. SKR 501, 100 M; Letterpl. m. Bauelem, abar unbest.; ZF-Verst. m. A 225, 40 M; 5-W-Verst. m. A 210 K/ 30 M. Anfragen schrift A. Putze, Mägdestieg 8, Neumburg. 4800

Atari 800 XL, 64 K, noch Gar., 2700 M, Nur schrift an A, Beinroth, Behnholstr, 16 B, Mansfeld 4274

Computer 2X 81, 16 K, Druckpunktisstatur. 2 Handbücher 1300 M Tel. Halle, 44654, nach 18 Uhr

Attart-Computersystem, bitte Liste enfordern, 11000 M. Michael, Burglehnstr. 7, Pirns 4, 8300

Helmcomputer Atari 800 XI, neuw., tür 3500 M, Nur schnftlich an Bobsin, Seelotsenring 2, Rostock 27, 2520

T 25/800, B 084, 25 M, A 235, A 295, P 193, 10 M, N 520, 20 M, TTL-IC, 2-5 M, Querz 100 Ichz, 40 M, B 16 S 21, Vorvenst, K 57 100 M, Morastaste, Cahlaune, Ant. Gold jis 10 M, VMF/UHF-Weichs 3028, 15 M, R. Sübhr, E.-Weinert-Str., 30, Weißerriebs, 4850.

SD 340(336/336, BD 235, 2 SB 341 SY 171 a 7 M, KCZ 58, SC 308 C, SY 345, SY 360, SZX 21/1 a 1,50 M, SD 2.1, SU 161 a 20 M, KU 605-7 a 12 M, SA 403/412 a 0,60 M, Poti 2x 100 K1 a 3 M. Wrenczyotu, Wolferoderweg WE 6/23, Eraleben, 4250

Leiterplatten! Nach Ihren Layouts, bis Grad IV, ab 10 St., Preis 5 M bis 25 M, fertigt kurzfristig: Barthold, Coppistr. 50, Leipzig, 7022

Drucker (möglichst Normalpapier) für Heimcomputer ZX 81 zu kaufen gesucht. Angebote bitte mit Preis an Klaus Roehl, Weberstraße 11, Nordhausen, 5500 PC Atari 130 XE u. Datenrecorder, 130-K-Byte-RAM, 256 Farben, 4 Tonkanäle, Graphik 1. 3800 M. Schr. Angebote an Reichart, Erbstal 6, Eisenach, 5900 Churzangson (Heargossan):
100,300 kHz (Gine) 55,70 M: 1000,00
kHz 48,80 M: 10700*10900 kHz
17,50 M: 4433,619 kHz (Pin) 18,80 M;
2·m Kanal 12/45 MHz je Paur 44,70: S
20/72/144,8; RØ, R2-7, teilw., auch
Einzelguerze und für andere Kanāle.
W Vieweg, Mönchaberger Str. 19/2081, Sonneberg 3, 6413

Suche Erfahrungsaustausch mit Atari-Freunden. Biete Kassetteninterface, 140 M; Eigenbaujoystick, 50 M. Bergmann, Waldstr. 40, Wusterwitz, 1806, Tel. 5 97

Halbielterangebot

(Restposten): K 155 KP 5 7,65 M; K 155 IE 4 5,50 M; K 500 TM 131 41,50 M; MH 7490 7,40 M; KT 925 B 63,40 M; KT 925 W 79 M; KT 911 A 41,20 M; KT 391 A -2 29,85 M; KT 610 A 6,10 M; KT 918 B 19,60 M; KT 368 A 10,85 M; KT 362 A 12,60 M; KT 372 A 6,35 M; KT 371 A M 8 M; BFY 90 8,50 M; BFW 16 A 13,10 M; 2 N 3866 4,95 M; BF 961 A 19,50 M; BF 256 A 9,50 M; BF 967 B 20,30 M; W. Vlerweg, Mönchsberger Str. 19/20-61, Sonnenberg 3, 6413

Leipzig, 7022

Hobbyauflöeung! Verkaufe Prüf- und Medgeräte, u.e. Stromversorgungsgerät mit dig. Anzeige (+5 V. +32 V, 0-±8 V. 0-27 V) 580 M. Signafverfolger mit 1-lkHz-Generator, Laufsprecher, LED-Pegel, lür 210 M. Uni 21, wenig gebraucht, für 170 M. Digimulbmeter, U. I., R., C. B-Messung, jeweils 5 Bereiche (außer 8) für 950 M. elektronische Bausemente, 0,20-10 M, Liste anfordem, Overfach, Grapenweg 1, Wittenberge, 2900

Cammodora Helmcomputer VC 20 3,5 KByte, Datasette, Bücher mit Basic-Antertung, 1800 M. Schnftl, S. Schley, Paul-Zobel-Str. 7, Berlin, 1156

Homecomputer ATARI 600 und 800, 2200 M bzw. 3500 M (nauw.), Videocomp. + Kass. + Joy. 1100 M Zuschr. an W. Atzik, Oederaner Str. 27. Lengefeld, 9343

T7L-IS 00.01/03/10/15/20/51/52/55/50/81/62 1M (H+L) 73/74/91/93/96/96/122/133/260/266, (H, L u, LS) L157, S 138, S 280, S 283, S 284, LS 261 10 M, S 241, S 244 20 M, MK 4116, 2708 30 M, 2716 50 M, TUS 9900-Fam. TMS 9900N (CPU) 100 M, TMS 9901 (PIO) 50 M, TMS 9902 (UART) 50 M (alie 16 Bri) 0.48 MHz 35 M, AM 29701 (RAM) 20 M, AM 2951 (I,O) 10 M, R, Thodhe, Str. d, Weltjugend 28, Halle, 4070

Atari XE 130 mil Garantie 5000 M. Nur schr... an Trillitzsch, Str. d. Bergmanns 3, Gera. 8500

Homecomputer ZX-81, 1400 M, Speicherenii 16-K-Byte, 600 M. A. Fiedler, Joh-Kepler-Str. 20 A, Rudolstadt II, 6822

Atarl 800 XL 4800 M Paetzold, Schwenner Ring 38, Berlin, 1095

ZX 81 m. 16-K-Erw., 1800 M; 2 Prog.-80cher, 1 Kass. mt. Progl. Montor-Disas. usw., zus. 250 M; EPROM 2764, js 160 M; 1 × 27128 220 M. Nur. schmtl. D. Warlich, Elsa-Brandstöm-Sir, 31, Berlin, 1100

Tuner Typ 7, 170 M. R. Müller, Bietzkestr., 1, Berlin, 1136

Computer ATARI 800 XL, 64 K, Bi, 87, 2500 M. Schnftl, an Brodauf, Brunnenstr. 150, Berlin, 1040

FUNKAMATEUR 1986–1985, js Jahr 5 M; Röhren, von Uralt bis Ministur, 200 St., js 1 M. Schwenkenbecher, Adlergestell 438, Berlin, 1180

Computer Atari 800 XL, Preis 3000 M, Tel. Berlin 4 89 58 94

Comp. Atarl 800 XL, 64 K, 4 Tong. m. Dalaserie, 5 Bücher, 5500 M. Schulz, Ruderedorler Str. 40, Berlin 1017, Tel. 5 89 69 67, ab 17 Uhr

Micro-Computer Commodore 64, mil Floppy Laufwerk 1541 (u. a hochauflosende Farbgrafik u. Musiksynthesizer, 10 TM. Bitta nur achriftlich, Schäffer, Jahnete 1, Löbau, 8700

HC ZX 81 mit Zusatzspeicher 16 KB, Literatur und Schaltplan, 2000 M. J. Bredow, Proschwitzer Weg 3, Meißen, 8250

Computer Atari 800 XL, neuw. (04-K-RAM: 4 Tongeneratoren: 258 Farben: Schreibmasch-Tastatur) 1 3900 M; Diskette, 75 M, Roll Kasiner, Sir. d. Belreiung 16, Großröhradorf, 8512

C116 mtl Detacette, 2800 M. Scharschuh, Rosenstr. 26, Radebeul, 8122

ZX Spektrum, 2600 M u, Drucker GP 50 S (Sekosha), 3500 M, Schriftl, an K, Knalit, Hubertussti, 64, Dresden, 8023, oder persönlich

Hobbysuffösung: Verkaufe Meßgeräte: Oazi, 250 M; Ri-C-Gen, m, Ró., 50 M; Ri-Schreibmasch. I, Rechner. 200 M; Leiterpl. 5–20 M; kpl. RAM best, 1 K, 60 M; Kleinmat.: Rohren. Transist; IS anal u. digit, 0.50; 20 M. Bitle Liste anf., Selbsfabholer bevorzugt. D, Jentsch, Neubühlauer Sir. 11, Dresden. 8051

Mechanik für elektr. Schneibm. kpl., 1009M: MOS-IS (U 121.311 ...) 2 bis 20 M: Sr-Di., 250 A. 79 M. 2-Di. 12/15 16 V, SF 127 4 M: VGB, VGC, 5 bis 70 M: ICL 7106, 140 M: 2708, 45 M: U 256, 17 M: U 202, 8 M: MC-IS, 5 bis 80 M: SC 237, 2 M: A 109, KT 3107, 3 M: GBR 111, NSF 30, RGK 6/12 V, 8 bis 15 M: Tastensätze, 3, 4, 5, 5 bis 10 M: 58-pol. Buchseni., 22 M: Zählwerke, 30 M. Sucha alles zu IBM-PC, an A. Berger. Seeigatten 82/15-51. Dresden, 8029

Funktechnik 1947-53, nicht kompl., zus. 20 M, Osz. Rohr. B 13 S 5, 165 M. B 16 S 21,

250 M; suche 2 SC 1034; 2 SC 1316; 2 SC 1454; 2 SC 1124; 2 SC 867 A, CV 12 E Wunder. Bechliner Weg 2a, Neuruppin, 1950

Atari 800 XL einschl. Datasette und 2 Original-Lahrb., 4000 M. F. Reichel, C.-Zettin-Str. 28, Schwedt, 1330

ZX Spectrum 48 K mit Handb 1 4000 M zu verkaufen, R. Muchow, Einsteinstr, 11, Waren 2060.

Joyetick für ATARI und Commodore 84 (Eigenbau) mit je 2 Feuerknöpten (in Konsole und im Steuerknüppel) je 150 M. Lichtschlauchsteuergerät 18 Fkt., 4×200 W. m 12 m Lichtschlauch je 850 M, nur schriftlich an Fischer. Kraudnitzer Str. 23, PSF 118. Röthe 7209

Telespiel (Eigenbau) 200 M. Rhode, Schwalbenweg 18/54, Berlin, 1183

Commodore 16 mit Datasette 1531 und BASIC-Kassette nur zus. 1. 3000 M. Herbst, Wohlgemuthstr., 30, Berlin, 1195

MRB 1013 mit Testabur, 1200 M. F. Lorenz, Tel. Berlin, 3 49 70 87

U-880-Mikrorechner 1600 M; MR-Baugruppen/BE von 5 bis 850 M. Liste ant Vetter, Gönrener Str. 13. Berlin. 1058

Verkaufe für C 128 umfangr, Dok. 300 M Tel. Berlin 6 35 82 40, Werner, Fennstr. 19, Berlin, 1190

Verkaufe 20 × d-RAM S 256 C, je 20 M; UA 880, 80 M; 6 × UA 855, je 50 M; 8 × UA 857 in 40M 4 x UO 855 in 10M 8 x S 202, 10 × U 705, 10 × K 140 UD 7, je 5 M; 25 × A 109, 10 × A 301, 15 × D 191, je 2 M 20 × B 109, je 3M; 10 × R 109, 40 × D 150, 10 x P 122, je 1 M; 2 × KU 607, je 10 M; 50 × SS 201, 80 × VQA 12, je 1 M; 5 × SY 171/1, 10 × SY 170/1, 20 × S2-600/.... je 2 M; Oszirôhre B7 S1, 25M; Quarze 2 x 27,12 MHz, je 10 M; 11,9 MHz, 3220,83 kHz, je 5 M; 1 MHz, 20 M; Parchen 27,125-26,67 MHz, 50 M; 4 × Quarziassung (groß), je 2 M; Funktechnik 1948-64 geb. u. 1995-70 ungeb. ja 8 M, rfe 1955-64 geb. 1965-70 ungeb. ja 8 M; Funkamat, 1976-81 ungeb. je 5 M, Suche 2716; 2732; 6116; 6264. M. FuchB, Würzburger 50, Karl-Marx-Stadt, 9072

BASIC-Helmcomputer (Eigenbau), 4-K-EPROM/1-K-ZG/2-K-RAM, solori einsetzber, Anschi i Kassette, Fernseher, 1500 M. Klaus Schmidt, Händelstr, 5, Frankenberg, 9262, anzutreffen nach 18 Uhr.

Atari 800 XL, unban, 3000 M, Fnedrich, Dr.-Külz-Str. 11, Rochlitz, 9290

RVM Typ 187a, GI + Wsp. bis 300 MHz m. Tastkopl 30 kV, 240 M. Tonk, BG 26 à 30 M. Grid-Dipper, 95 M. Förster, Sachsennng 12, Karl-Mani-Stadt, 9081

Verstärkereinsätze I, TAV 2001-2 × T 22 k K 5, je 150 M; 1 × 132 k K 5, 210 M, Frequenzums, 1 × EgB als Streifen K 23 in K 5, 160 M, 1 × Eigenb. K 23 in K 10, 110 M, 1 × Eigenb. K 39 in K 6, 70 M, 1 × Eigenb. K 39 in K 7, 70 M, 3 × Hausanschl.-verst., HAV 230 40, je 690 M, J, Albert, Am Lamnitzer 16. Rodewsch. 9706

Starm "Ellie", 100 M MTG (Röh.), 100 M, EL 12 N (ong verp.) 30 M, Mai Liste anfordern. Meißner. E.:Thälmann-Str. 36, Hohenmötsen, 4860

VC 20 mil Dalasette 2400 M. Gräber, Substr 22, Merseburg, 4200 ZX 81-17-K-RAM, SINCLAIR-BASIC mil

ZX 81-17-K-RAM, SINCLAIR-BASIC mit Zubeh., 10 Mon.,att, 2750 M, Schult, Bl. 915/ 3, Halle-Neustadt, 4090

Elektronische Bauelamente aller Art. von 5 bis 100 M. Liste and, Hardwareenweiterungen 1 C 64/128 von 100 bis 300 M. Pachali, Querstr, 4, Wünschendorf, 6509

Hobbysuffösung: Oszi EO 1/76 T, 600 M. FA 76–86, 170 M. rie 76–86, 500 M. BE, BG, Lit. 10 M. u, 300 M. Liste, M. Wagnet, Krahtenhausstr. 17. Ebersdorf, 6853

Verlt, per Nachn. UB 880, 50 M; UB 855, 30 M; U 856, 85 M; U 857, 30 M; U 858, 75 M; U 214 pe 14 M; U 2716 pe 90 M; U 256 pe 35 M; U 125, 70 M; LCD-UP 7211, 75 M; LCD-Anz, FAR 19, 75 M; Osz, Rohre B 7 Sz, 30 M; U 552, 10 M; Suche Aldru R 14, K 500 TM 131 od, 95 H90. Traubmann, Mühlhäuserstr. 7, Erfurl, 5026

Helmcomputer Sinclar ZX 81 m Basicbuch, 1500 M. R. Valdorf, W.-Eggerath-Str. 5, Erfurt, 5087 Absorpt.-Topfkreis-Weilenmesser χ = 6.5–11.5 cm entspr. 1. = 4.6 b. 2.6 GHz, Fehler < ± 2.5 % 64 M. dazu μA-Meter 48 M. Bieber, Bergstr, 36, Erfunt, 5023

Z 9001 mrl Zubehör, 2400 M. Leisner, Str. d. Befreiung 2, Erfurt, 5080

HC Sinclair Spectrum 48 K, neuw., komplett, 3900 M., Gorster, Heinnich-Heine-Straße 31, Leinefelde, 5600

Vertraufe div. elektr. BE u., Baugr. sowie Geräte von 0.50 bis 500 M., Bitte Liste m., Retourkuvert anford. R. Wetzel, Ostning 60, Görtst, 8909

Commodore C 16, m. Zubehör, 3600 M, Raum, Fri: Woll-Str. 8, Langebruck, 8102

Service-Oszi, 950 M; U 202, 15 M; Ou. 8 MHz, 80 M, suche KW-RX (auch del.) Werbe, Döbraer Str. 2, Dresden, 8027

Atari-800 XL m. Garantie (64-K-RAM 256 Farb., 3 Tongen) 2700 M. Heibig, Dobritzer Str. 3, Dresden, 8038

Blets neuen Thermodr., m. Kassetten. intert. Sharp CE-128 P I, Pocketcoump., suchs Helmcomp. W. Oertel, Nr. 31, Allendorl, 6821

Computer ATARI 800 XL, 64-K-RAM, 24-K-ROM, 256 Farben, 4 Tongeneratoren, TV-Anschluß, 5000 M; Datenrekorder, 500 M; 2 Joysticks, je 150 M; D Flörke, Thálmannsts, 70, Großechonau, 8802

Programmiere EPROMs 2708 bitle Hea-Listing u., EPROMS zuschicken, 1 KByte, 5 M. B. Gasse, Großhennersdorfer Str. 19, Ruppersdorf, 8701

Commodore C 116 (16-K-RAM, 32-K-ROM), 2200 M: Zubehör, 100 M. Zuschr, an Lätsch, Emmenchstr, 45, Görlitz, 8900

Vertuute 8 × K 565 RU 2, je 15 M; 4 × 8 654, je 7 M; MAA 741, je 12 M; 2 × AC 187/ 188 K, je 8 M; 2 × U 562, je 20 M. U. Girschit, Feichenauer Weg 14, Dresden, 8021

Verik: 7446; 7447, D192; D193; 74123, a 12M 7490, 7475; 74121, a 8 M, 7410; D195; D174; A281, a 4 M, 2 N 3055, a 25 M, W, Mendelowski, Kamenzer Str. 1, Göritz, 8900

Helmcomputer ZX-81, 1200 M u. quarzstab. Flequenzumsetzer m. Netzteil (K 29 auf K 8), 150 M. Suche E-Kabel NYY 3 od. 4 × 1,5 od. 2,5 mm², Kupler, Hillme, Nr. 80, Ulberscorf, 8361

Computergehäuse m. Tast (8hnl. C 64) 550 M. Eigenbaucomp ohne Tast, und Geh. 950 M. 9 × 4164 AP – 15 (autom. Retresh). 115 M. 1 × 6264–15, 180 M, 1 × M 5802! (Systemuhr). 180 m, 32 × U 253, 3,50 M, 2 × 74154; 4 × 7446; 3 × N520; 4 × D 192; 4 × 8212, 10 × 8216, 8 20 M, 8 × P 192; 15 × P 193; 4 × P 195, 8 10 M, 2 × U 121, 30 M; 10 × P 121; 10 × R 109; 4 M; 10 × P 100, 200, 3 M, 12 × VQB 37, 5 M, Steckterlessten 00 pol., 45 M, best, Leiterplatte Türkla, 85 M, Betichtungamesaer Foton 1-M, 150 M, Autokasserterreti. (neuw.) M, L, UROW, 800 M, zu verk, R. Smotny, Am Hugoschacht 2, Großräschen, 7805

EPROMe 1702 (U 552), je 10 M, 2708 je 40 M, U 202 je 12 M St. Dünnebier, Lohretz 10, Kar-Manz-Stadt, 9002

EPROMe 2716, je 110 M; DS 8286, je 30 M; MAA 723, je 24 M. Joachim, Mos-kauer Str. 89/77, Erhurt, 5060

Vert. 723 St. 20 M. 8216 St. 50 M. DRAMs, 41484 (150 ng) 275 M. 41256 (200 ns) 15C M, 4164 (200 ns) 75 M. S. Seidel, Westst, 77, K.-M.-Stadt, 9090

Verit U 202 St 12 M; U 224, 20 M; 4116, 20 M; 2732, 100 M; TTL und LS-TTL, 8 M/ 20 M; Suche 27128, 27256, 27512, DRAMs 64 K; 256 K; Disketten, Diskettenlauhs, Drucker, G; Kirchhoff, Dorlstr. 6, Putzkau, ason?

8 x 64-K-bH RAM je 80 M. Suche ZX Spectrum Dirk Müller, Dölitzer Str. 30, Leigzig. 7030, Tel. 32 07 82

Verkaufe S 224, a 15 M, Suche Drucker o, elek r, Schreibmaschine (auch defekt), Floopy 5,25 Zoll, Angebota an Thoma, P,-Neruda-Str. 24, Berlin, 1170

Verk 6 × 27129-25, js 300 M, 5 × U 202, js 20 M, 10 × D 146, js 20 M, 2 × D 193, js 20 M, 10 × MH 7474, js 4 M, Gkiska, Franz-Stenzer Str. 53, Bartin, 1140, Tel. 5 42 18 90

Verk: 2716 - 85 M, 2708 - 45 M; 4256 C - 45 M, 74154 - 18 M; K 157 UD 2 - 10 M; K 140 LD 9, K 554 SA 2 - 6 M; K 140 UD 6, KP 103 - 8 M; U 311 - 5 M; P 121 - 4 M; U 106, R 211, U 107, R 220, R 202 – 2 M; Tr.; DI, Th. auf Anfrage; suche alph-num. Tastatur, A. Weigl, Am Hochhaus 22, Borna. 7200

Für KC 85/2 PIO. AD-Wandler, Spielhebel zu verkaufen, 20 bis 100 M. Informationen von I. Amdt. Gartenstr., 18, Schwerin, 2755

Letterplatten für BCS 3 und Monitor + BASIC 4 K + Zeichengenerator 1 K auf ihre EPROMs U 555 oder 2718, zus. 80 M verit. Lehmann, Gartengease 3, Brandis, 7253

Verlt. F. ZX 81: Sinclair-PIO 150 M; Sinclair-Bus-Adapter 100 M; ROM-Buch, 150 M; BASIC-Handbuch, 100 M, Ptermer, Oberweißbacher Str. 2/1202, Berlin, 1142

16-K-Speicher f. ZX 81, ong. Sinclair, 350 M. Heber, Wörtherstr. 35, Berlin, 1058 16-K-RAM-Enwelterung für C 18/116 für

16-K-RAM-Erweltsrung für C 18/116 für 400M. Lutz Gruber, Etzdorler Str. 3, Roswein, 7304

Schachcomputer SC2, 800 M. Schrifti, an Köpke. Gehsener Str. 34, Berlin 1170

Schachcomputer S.2, sehr gut erhalten, für 850 M.zu verk. Zu erfragen ab 16 Uhr bei Loos, Maxim-Gorki-Str. 25, Rostock 21, 2520

LC 80, m. NT u. Unterlagen, Garante, 650 M; P192, P195, 7 M; P147, 10 M; Quarze: 9 MHz, (f. O-Filler), 18 M, 38,667 MHz, 96,0 MHz, 40 M; Tangenhan, Boizenburger St. 17, Berlin, 1144

LLC1 kpi/Monitor/Datasette (SBC8 80801, 500/900/400/300 M, Lista, Dietrich PSF 813, Blankenfelde, 1636

Helmcomputer Z 9001, ROM-BASIC, 48-KByte-RAM, für 4000 M, Schriftlich an Thomas Walter, Karl-Reimann-Ring 1/81, Erfurt 5063

Hobby-Aufldeung: IS, R. L. C. Tr. D. Rei, z. B. VQC 10 100 M. U552 20 M. 2708 40 M. SECAM-Dek, I. Color 21 50 M. Sparstellbalo SST 250/20E zur Selbstabholung 100 M. angelangener 64-K-Heimcomputer auf K 1520-Basis m. 16 x 64-Zeichen-s/w-Biddschimsteuerung, V-24-Ausg. Tastalur. Gehäuse. Kass.-Laufwerk, ohne SV, Verdrahtung zus. I. 1500 M. Selbstabholung Liste antordem þei Hanemann. E. Schneder-Str. 6. Jens-Lobeda 3, 6902

HC Thomson T07/70, 70h Sp. Datasene Basic Lemkassellen univers. Datenverwallungsmodul. zus. 7000 M. Brill. Grundstr. 156. Dresden, 8051

Commodore VC-20 mit Datasette; Super Expander VIC-1211 A. Handbucher zu diesen Geräten: VC-20 BASIC-Kurs auf Kassette: 4 Bücher, die umfangreiche Programme enthalten: "Das VC-20-Spei-Buch", "Grafik mit dem VC-20", "VC-10-Tips und Tricks", komplett 1, 3700 M. Schneidewindt, Richtste. 6, Frankfurt (Oder), 1200

ZBO-DMA, SAB 3022, EF 9364, 50 M; 6800-CPU, 30 M; 4116, 15 M; KIT104A, 4061, 5 M; BC 212, 313, KCZ 58, 2 M; Q. 10250 kHz, 10 M; B 7 S 2-01 mil Absch. u. Anodenst., 100 M; Miniatur Orehach, 4 Eb / 12 Stell., 15 M. alles ungebr, terlw, mehrfach, Buche: 10,7-MHz-QF (SSB u. 15 kHz), Q'a 10500 kHz, ca 12500 kHz (62,5 MHz), Nastroiks, VZL. Auch im Tausch gegen: 11 C 90, 120 M; 6116, 40 M; 4040, 4046, 4052, 4066, 4518, 733, 8F 960, 74 S 112, 10 M, Brite schrift, an Theunch, Stahlhermar Str. 25, Berlin, 1071

Neuw. Datasette PM 4401 C für VIC 20, 64, C18, 116, 128, 450 M. Schnitt an H. Loberenz, Pechteich 2, Manenwerder, 1281

RX EKN F 1, 1, 5 ... 24 MHz ZF 0,6/1,5/ 6 kHz bret, A1a, J3E, A3A, 1100 M. Vermebsgan, Nr. 43/V/04/87, N. Kránke, E. Frischer-Str, 11, Löcknitz, 2103

5-Band-TX, 100W, 80-10m, Eigenbau 1962, Gestell 550 × 350 × 1010 (Vertnebegen Nr. 52/V/04/87) 300 V; drv. Matenal (Rô u.a. SRS 551/552N/4451 je 60 M); Ca. Keramik-L, Schalter, Tratos 0,50 bis 30 M; MF 200 + E - 310, 120 M, Liste anfordem.

Suche alphanum, Tastatur, Schindler, F.-Lehmann-Str. 39, Dreaden, 8030

Computer Z 1013, 700 M. Rücker, Vilniuser Str. 9/48, Erfut, 5082, Tel. 71 15 17

Inhaltsverzeichnis

IIIIaitsverzeieiiiis	
Auf dem Kurs des XI. Parteitages der SED -	
alle Kraft zur Erfüllung der Kongreßbeschlüsse	315
Sprechfunkwettkampf	320
Nikolai auf Heldenspuren	321
Computersport – erste Erfahrungen	322
zum Computersportwettbewerb	•
Elektronische Kampfführung (2)	323
Die Elektronikindustrie der Hauptstadt (1) –	324
Das WF	-
Kleincomputer der DDR – eine Übersicht (3)	325
Zimmerthermometer mit Analoganzeige	326
Mikroelektronik Baustufen für den	327
POLYTRONIK A-B-C (13)	34.
SWL-QTC	329
Ausbreitung August, KK-Expeditionen	330
DX-QTC, QSL-Info	331
	331
KW-Conteste	
UKW-QTC, UKW-Conteste	334
Internationale Organisationen des Funkdienstes	335
Liste der Y2-Kreiskenner	220
SSTV in Theorie und Praxis (1)	336
Vom Nachrichtenspezialisten zum	337
Nachrichtenoffizier	224
Y61HQ errang Weltsieg in der ersten	339
"IARU HF World Championship"	- 10
Einfache elektronische Morsetaste	340
Tips zur Meßtechnik für KW-Antennen	341
HF-Leistungsmesser mit Abschlußwiderstand	342
Y47ZO im Jubiläumsjahr Berlins	342
Mikroprozessorgesteuerter Synthesizertuner (1)	343
Trommel-Synthesizer	345
Scheinwerferabschaltkontrolle	347
Neue Bauelemente der Mikroelektronik	
Ziffernschloß mit Speicherschaltkreis	348
Generatorstromanzeige in 6-V-Kfz-Anlagen	349
Programmierbares Lauflicht/Temperaturregelung	351
Digitaler Kalender	352
Logikprüfstift für CMOS-Schaltkreise	354
OV-Stromversorgung bei Batteriebetrieb	355
Mikrorechnergesteuertes mehrstimmiges	356
Liedspiel mit Digitaluhr (3)	
Texteditor für den "AC1" (1)	358
Zeitschriftenschau/Büchervorschau	362

Titelbild

Im Computerkabinett des GST-Bezirksausbildungszentrum Gera "Magnus Poser" arbeiten seit Januar 1987 drei Kollektive Computersport u. a. mit dem Ziel, auch in anderen Nachrichtensportarten und in der Nachrichtenausbildung wirksam zu werden.

Foto: F. Noll

Zeitschriftenschau

Aus der ungarischen Zeitschrift "Rådiötechnika", Nr. 8/1986

Ideologische Beratung, S. 370 - IS I.. IS ... IS: Funktionseinheiten (44) - LED-Treiber (11), S. 372 - Mikroperipherien (11) - 7. Hintergrundspeicher, S. 373 -EPROM-Programmiergerat (2), S. 375 - Weich einsetzender Lichtmengenregler, S. 378 - Einfache Schaltungen: Automatische Dunkelkammerbeleuchtung, S. 380 - 145-MHz-FM-Transceiver (2), S. 382 - Verpflichtung des Meister-Nachwuchses, S. 283 - Die Messung von 145-MHz-Antennen mit einfachen Amateurmitteln, S. 387 - Amateurschaltungen: 6-W-CW-Sender für 80 m/40 m; FM-Meßsender, Koankabel aus der DDR-Produktion, S.: 39 - Funkamateur-Programme für den "Commodore C 16", S. 392 - Namensgebung im Radioklub der Telefonwerke, S. 394 - VI. Landestreffen der YLs in Velence, S. 394 - DX-Nachrichten, S. 396 - Videotechnik (33) - Leser fragten (5), S. 399 - 6-Element-UKW-Antenne, S 401 - Video-Modulator, S. 402 - Einfache Geräte für die Bauelementeprüfung: Ohmmeter für kleine Widerstandswerte; Ohmmeter mit Linearskala; Kapazitāts-Meßbrücke; IS-Kapazitātsmesser; C- und L-Meßgeräte, S. 404 - Musizierende IS, S. 406, Die "PC-1500"- (PTA 4000-)Maschinensprache (7), S. 408 - Wir lemen BASIC auf dem C 16 (8). S. 410 - Wir probieren Prufung des Augenmaßes ("Commodore C 16"), S. 411 - Katalogseite: Silizium-Epitaxie-Planar-Transistoren von TUNGSRAM, S. 415

J. Hermsdorf, Y23JN

Büchervorschau

UKW-Tune

Autor: Harold Raduschewski, Militärverlag der DDR, Amateurreihe electronica Band 237, 96 Seiten, EVP 1,90 M, Bestell-Nr. 746 929 5

Ansteuer-IC für Kleinmotoren

Autor: Siegfried Güldner. Militärverlag der DDR, Amateurreibe electronica Band 238, 112 Seiten, EVP 1,90 M, Bestell-Nr. 746 928 7

Mikroelektronik in der Amateurpraxis 3

Herausgeber: Rainer Erlekampf, Hans-Joachim Mönig, Militärverlag der DDR, 336 Seiten, EVP 19,50 M, Bestell-Nr. 746 933 2

Elektronisches Jahrbuch für den Funkamateur 1988

Herausgeber: Karl-Heinz Schubert. Milltärverlag der DDR, étwa 320 Seiten, EVP 7,80 M. Bestell-Nr. 746 9340

Elektrogitarren

Autor: Eberhard Meinel. Verlag Technik Berlin, etwa 240 Seiten, EVP etwa 25 M, Restell Nr. 553 7354

TECHNIKWÖRTERBUCH Optische Kommunikationstechnik

Autoren: Jenspeter Rehahn, Natalja Schäfer, Verlag Technik Berlin, etwa 180 Seiten, EVP etwa 22 M. Bestell-Nr. 553 7709

Mikroelektronik - Leitfaden und Aufgaben

Autoren: Albrecht Möschwitzer, Karl-Heinz Diener, Dieter Landgraf-Dietz. Verlag Technik Berlin, etwa 320 Seiten, EVP etwa 24 M, Bestell-Nr. 553 790 1

Berechnung elektrischer Stromkreise - Arbeitsbuch

Autor: Klaus Lunze, Verlag Technik Berlin, etwa 310 Seiten, EVP etwa 26 M, Bestell-Nr. 553 730 3

Alle Titel erscheinen im IV. Quartal 1987.

FUNKAMATEUR

Die Zeitschrift FUNKAMATEUR wurde ausgezeichnet mit der Verdienstmedeille der NVA in Silber, die Redaktion mit der Emst-Schneller-Medeille in Gold.

Herausgeber: Zentralvorstand der Gasellschaft für Sport und Technik, Hauptradaktion GST-Presse, Leiter der Hauptradaktion – Dr. Malte Kerber

Verlag: Militärverlag der Deutschen Demokratischen Republik (VEB) – Berlin

Redektion: Storkower Str. 158, Berlin, 1055, Teleton 430.0618

Chefredakteur: Obering: Karl-Heinz Schubert, Y21XE (App. 278); Stellvertreter: Dipl. Ing. Bernd Petermann, Y22TO (App. 338); Redakteura: Dipl.-Journ. Friedrich Noll (App. 254); Dipl.-Jur. Knut Theunch (App. 338); Redaktionelle Mitarbeiterin: Hannelore Spielmann (App. 338); Sakretářin: Marita Rode (App. 278); Zeichnungen: Heinz Grothmann; Klubstation; Y63Z

Redaktionsbeiret: Oberstleutnant Siegfried Batechick, Günter Fletsch, Y26SM, Studienrat Ing Egon Klaffke, Y22FA; Dipl.-Steatswissenschaftler Dieter Sommer, Y22AO; Günter Werzlau, Y24PE; Dr. Dieter Wieduwitt, Y842; Horat Wolgast, Y24YA.

Lazenznummer 1504 des Presseamtes beim Vorsitzen den des Ministerrates der DDR...

Herstellung: Lichtsetz INTERDRUCK Graphischer Großbetrieb Leipzig – III/18/97, Druck und Binden I/18/01 Druckerei Märkische Volksstimme Potsdam...

Nachdruck ist nur auszugsweise und nur mit Quellenangabe gestättet

Manuskripte sollten nach den Hinweisen in FA6/1962 erarbeitet werden. Entsprechende Merkblätter sind bei der Redaktion erhältlich.

Bezugemöglichkeiten: In der DDR über die Deutsche Post. In den sozialistischen Ländern über die Postzeitungsvertnebs-Ämter. In allen übrigen Ländern über den

internationalen Buch- und Zeitschriftenhandel, Bei Bezugsschwierigkeiten im nichtsozialistischen Ausland wenden sich Interessenten bitte an die Firma BUCHEX-PORT, Volkseigener Außenhandelsbetrieb, Leninstr. 18, Postfach 18, Leipzig, DDR-7010.

Anzeigen laufen außerhalb des redaktionellen Teils, Anzeigenverwaltung – Militärverlag der DDR, Absetzebteilung, Storkower Str. 158, Berlin, 1056, Telefon 430.08.18 (App.321). Anzeigenannahmestellen in Berlin und in den Bezirken der DDR, Zur Zeit gilt die Anzeigenpreisliste Nr. 10.

Die Zeitschrift FUNKAMATEUR erscheint einmal monatlich, Preis je Heft 1,30 M. Bezugszeit monatlich, Auslandspreise sind den Zeitschriftenkatalogen des Außenhandelsbetriebes BUCHEXPORT zu entnehmen – Artikel-Nr. (EDV) 58215

Redektionsschluß: 2 Juni 1967 Druckersi-Versand: 23 Juli 1967

Auf der Frühjahrsmesse gesehen

Der mikroprozessorgesteuerte Sende- und Empfangsfernschreiber F 2000 des VEB Maßgeratewerk Zwönitz für die Informationsübertragung bis 200 Baud ist nunmehr auch in einer Ausführung mit 32 KByte lieferbar. Der elektronische Textspelcher wurde von B auf 26 KByte erweitert. Das Redigleren und Korrigieren des Textes ist an jeder beliebigen Stelle möglich. Automatisch zugeordnete Textnummern erfeichtern die Verwaltung des Speicherinhahts, Der Empfangsspeicher mit seiner Speicherkapazität von 6 KByte ermoglicht den ungestörten Lokalbetrieb. Alle ankommenden Nachrichten werden automatisch gespeichert und nach Erledigung der lokalen Aufgabe ausgedruckt.

Die RFT Combi-Box ist eine Kombination aus Verstarker, Lautsprecher, Mischeinrichtung und Stereo-Kassettenaufnahme-und -wiedergabeteil, die vorzugsweise bei Vortragen, Lehr- und Lernveranstaltungen zum Einsatz kommt. Mit der Mischelnrichtung konnen die NF-Signale von der Kassettenwiedergabe, von den beiden anschließbaren Mikrofonen und von einer externen NF-Quelle (Plattenspieler) miteinander gemischt werden. Bei Wiedergabe der Signale der Mikrofonen und/oder der externen NF-Quelle durch den Verstärker lassen sich diese Signale gleichzeitig auf Kassette aufzeichnen. Der Verstarker kann 2 × 30 W bei 0.2% Klirrlaktor an 411 abgeben (hurzschlußfest). Eine Kettenschaltung mehrerer Boxen (Slave-Batriab) ist möglich.

Basisgerat für den Stereo-Heimemplanger "SR 2401 Clock" des VEB Kombinat Robotron ist das Gerat "SR 2400", Zusatzlich anthalt der "SR 2401 Clock" ein integriertes Timer-Modul mit einer beleuchteten LCD-Querzuhr Der Sieep-Timer ist in Minutenschritten von 60 min bis 1 min programmlerbar. Es gibt je eine programmlerbare Einschalt- und Weckzeit, Das Wecken kann wahlweise mit Radio bzw. Summton erfolgen, Exist auch bei Stromausfall gerantiert. Der "SR 2401 Clock" verfügt über die Wellenbereiche LW, MW, KW und UKW. Die max. Muslk-Ausgengsleistung beträgt 2 × 6 W. Die Abmessungen sind 390 mm × 100 mm × 280 mm (8 × H × T).

Fotos: RFT-Pressedienst

Diplome für den Funkamateur

OZ LOCATOR AWARD

Herausgeber des OZ LOCATOR AWARD ist der dänische Amateurfunkverband EDR. Dieses VHF/UHF/SHF-Diplom kann für bestätigte Zweiwegverbindungen mit OZ-Stationen nach dem 1.1. 1985 erworben werden. Cross-band- und cross-mode-Verbindungen gelten nicht. Das Diplom wird in verschiedenen Kategorien ausgegeben sowie für jedes Band und jede Sendeart separat numeriert: EME, MS, Satellite, Phone, CW und Band, z. B. 432 MHz Phone. Verbindungen über aktive Umsetzer zählen nicht. Dänemark umfaßt folgende Locatorfelder: JO 44, 45, 46, 47; JO 54, 55, 56, 57; JO 64, 65, 66; JO 74, 75. Für das Grunddiplom müssen 10, für den Sticker auch die restlichen 3 Locatorfelder nachgewiesen werden.

Als Antrag sind eine GCR-Liste in alphabetischer Reihenfolge der Locatorfelder und die QSL-Karten einzureichen. Die Kosten betragen 10 IRCs.

