Ausgabe Bayern

19. JAHRGANG

Postversandort München Funksenau.

ZEITSCHRIFT FUR DEN FUNKTECHNIKER

MAGAZIN FUR DEN PRAKTIKER

FUNKSCHAU-VERLAG OSCAR ANGERER STUTTGART-S. MORIKESTR. 15

Der Rundfunk im amerikanischen Sektor Berlin (RIAS) verwendet einen neuen Regietisch aus der Nachkriegsfabrikation (Siemens), der sich durch übersichtliche Anordnung und zohlreiche technische Feinheiten auszeichnet. So ist im Regietisch ein Kleinlaufsprecher eingebaut, der dos Abhören der Sendungen vor den Reglern gestattet. (Aufnahme: RIAS)

Aus dem Inhalt

Einigesüber die Schwingspannung

Funk-Meßtechnik

Strommessungen in Gleichrichterkreisen

Röhrenersatz

Ersatz der UCH 21 durch RV 12 P 2000

Funktechnik ohne Ballast

8 Abstimmbare Schwingkreise

Neue Ideen - Neue Formen

VE-Kurzwellen-Vorsatz

Selbstinduktionsabweichung bei nicht gleichmäßiger Verteilung der Wicklung

Tabelle kommerzieller Emp-

fänger- und Verstärkerröhren

Funktechnisches Fachrechnen.

Vorschläge

für die Röhrenindustrie

Funkschall

Einiges über die Schwingspannung

In den Datenblättern von Mischröhren sind bisweilen Angaben über die Schwingspannung gemacht und Kurven darüber enthalten. Für jeden, der einen Überlagerungsempfänger baut oder repariert, ist es wichtig, über die Schwingspannung Bescheid zu wissen. Mit der Kenntnis darüber ist es oft leicht, einen Fehler im Mischteil zu entdecken und zu beheben.

Was ist Schwingspannung?

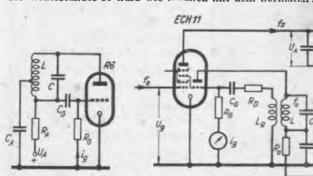
Bild I zeigt eine einfache Oszillatorschaltung. Der Kreis L., C bestimmt die Frequenz der erzeugten Schwingungen. Der Anschluß des geerdeten Kondensators CA an eine Anzapfung der Oszillatorspule L bestimmt die Größe der Rückkopplung. Über den Widerstand RA wird der Oszillatorröhre Rö die Anodenspannung + UA zugeführt. Der Gitterkondensator CG blockt die Anodenspannung vom Gitter ab, während der Gitterwiderstand R_G zur Ableitung des Gitterstromes i_g dient. Wenn die Oszillatorröhre Rö geheizt, die Anodenspannung $+U_A$ jedoch abgeschaltet ist, fließt durch den Widerstand R_G ein Gitterstrom von einer bestimmten Größe. Die Größe des Gitterstromes hängt vom Verlauf der Gitterstromkennlinie und von der Größe des Gitterwider-

In Bild 4 sehen wir eine Gitterstromkennlinie. Auf der horizontalen Achse des Achsenkreuzes ist die Gitterspannung ug, auf der vertikalen Achse der Gitterstrom ig aufgetragen. Die Kurve a ist die Gitterstromkennlinie. Der Punkt A wird der Gitterstrom-Einsatzpunkt genannt. Dieser Punkt liegt etwa zwischen —0,5 und —1 Volt. Die Nelgung der Geraden b hängt von der Größe des Gitterwiderstandes $R_{\rm G}$ ab. Der Tangens des Winkels α ist identisch mit der Größe dieses Widerstandes.

$$tg \alpha = \frac{u_{g^{T}}}{i_{g^{T}}} = G$$

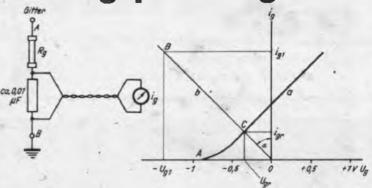
Im Punkt C schneidet die Widerstandsgerade b die Gitterstromkennlinie a. Der Gitterstrom igr, der dem Schnittpunkt C entspricht, ist der Gitterruhestrom, der sich, wie bereits gesagt, bei nicht schwin-

gendem Oszillator einstellt. Wenn nun die Anodenspannung eingeschaltet wird, schwingt der Oszillator an und am Gitter entsteht eine Wechselspannung, wodurch der Gitterstrom steigt und den Wert igs annimmt. Mit Schwingspannung Ugs bezeichnet man das Produkt von Gitterstrom igs und Gitterwiderstand RG.


$$\mathbf{U}_{gs} = \mathbf{i}_{gs} \cdot \mathbf{R}_{\mathbf{G}}$$

Die Schwingspannung entspricht ungefähr dem Spitzenwert der Wechselspannung, die am Gitter steht und ist ein Maß für die Größe der Oszillatorspannung.

Wie wird die Schwingspannung gemessen?


Das Messen der Schwingspannung ist einfach; doch müssen einige Kleinigkeiten dabei beachet werden. In Bild 2 ist die Schaltung der Mischröhre ECH 11 wiedergegeben. Die Größe des Gitterwiderstandes $R_{\rm G}$ ist bekannt. So muß also nur noch der Gitterstrom $I_{\rm gs}$ gemessen werden, damit nach obiger Gleichung die Schwingspannung Ugs berechnet werden kann. Nun ist es wichtig, das Meßinstrument, mit dem der Gitterstrom gemessen wird, am Fußpunkt des Widerstandes einzuschalten und nicht an seinem heißen Ende. So wird die Seite des Widerstandes genannt, die mit dem Gitter verbunden ist. Verstimmung des Oszillatorkreises und Zusatzdämpfung durch das Meßinstrument könnts des Meßinstrument könnts des Meßinstrument könnts des Meßinstrument könnts des Meßinstruments könnts des

ment könnte das Meßergebnis beeinflussen. Außerdem empfiehlt es sich, das Meßinstrument durch einen Kondensator zu shunten. Dabei soll der Kondensator im Gerät das kalte Ende des Widerstandes so kurz wie möglich mit dem normalen Massepunkt

Prinzipschaltbild eines Oszillators. Schwingspannung ist Produkt aus Gitterstrom ig und Gitterwiderstand RG

Bild 2. Prinzipschaltbild einer Mischröhre. Eingangsfrequenz und Oszillatorfrequenz er-geben die Zwischenfrequenz. Die Zwischenfrequenzspanung ua ist abhängig von der Gitterspannung ug und vom Gitterstrom ig

Rild 3 Beim Messen des Oszillatorgitterstromes sollen Meßinstrument und Meßlei-tung durch einen Kondensator geshuntet sein

Bild 4. Gitterstromkennlinie a zeigt den Gitterstrom in Abhängigkeit von der Gitterspannung. b ist die Widerstandsgerade. A der Gitterstromeins atzpunkt

des Widerstandes verbinden. In Bild 3 ist die Einschaltung des Kondensators schematisch wiedergegeben. Der Kondensator soll rund 10 000 pF und dämpfungsarm sein. Diese Maßnahme hat folgenden Grund. Es ist zu bedenken, daß der Widerstand RG eine gewisse, wenn auch geringe Kapazität hat. Diese Kapazität hat auf die Frequenz des Oszillatorkreises Einfluß. Der Einfluß ist am größten am Ende des Bereiches mit den kurzen Wellenlängen, weil in diesem Falle die Kreiskapazität klein ist. Beim Kurzwellenbereich kommt noch der Einfluß durch die Selbstinduktion der Instrumentenleitungen hinzu.

Schwingspannung und Mischsteilheit

Bei der Mischröhre eines Überlagerungsempfängers ist es wichtig, daß die Schwingspannung des Oszillators einen gewissen Mindestwert hat. Wenn die Schwingspannung diesen Mindestwert unterschreitet, so sinkt die Empfindlichkeit des Empfängers. Und zwar wird die Empfindlichkeit um so kleiner, je kleiner die Schwingspannung ist. Die Ursache dafür liegt darin begründet, daß die Steilheit der Mischröhre. Ursache dafür liegt darin begründet, daß die Steilheit der Mischröhre von der Größe der Schwingspannung abhängt. In Bild 5 ist eine typische Kurve für das Verhältnis zwischen Schwingspannung und Mischsteilheit wiedergegeben. Auf der horizontalen Achse ist die Schwingspannung und auf der vertikalen Achse die Mischsteilheit aufgetragen. Man sieht, daß von Null ausgehend erst die Mischsteilheit mit der Schwingspannung ansteigt, bis die Mischsteilheit bei der Schwingspannung uso den maximalen Wert Sm. max erreicht. Wenn die Schwingspannung über der Wert und kingspannung unschaft bleibt. die Schwingspannung über den Wert ugo hinaus weiter anstelgt, bleibt die Mischsteilheit konstant oder sie sinkt langsam wieder ab.

Was ist die Mischsteilheit?

Wir greifen noch einmal auf die Schaltung in Bild 2 zurück. Im Anodenkreis liegt, wie üblich, das Zwischenfrequenzbandfilter, abgestimmt auf f_z . Am Gitter G_1 der Hexode befindet sich die Spannung u_g der Eingangsfrequenz f_e , während an Gitter 3 die Oszillatorspannung mit Frequenz fo liegt. Das Verhältnis zwischen den drei Frequenzen ist durch die Gleichung $\mathbf{f}_0 = \mathbf{f}_e \pm \mathbf{f}_z$

gegeben. Die Plus- und Minuszeichen vor fz besagen, daß die Oszillatorfrequenz über oder unter der Empfangsfrequenz liegen kann. Bei

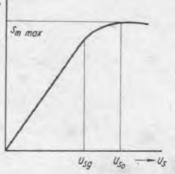


Bild 5. Abhänyigkeit der Mischsteilheit von der Schwing-spannung. Wenn die Schwingspannung den Grenzwert usg unterschreitet, fällt die Misch-steilheit Sm rasch ab

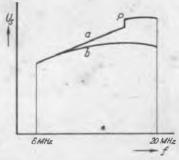


Bild 6. Verlauf der Schwingspannung beim Oszillator eines Kurz-wellenempfängers. Bei der Kurve a tritt im Punkt P eine Überrück-kopplung auf. Bei der Kurve b ist die Überrückkopplung durch Dämpfungswiderstand RD weggedampft

normalen Rundfunkempfängern liegt die Oszillatorfrequenz über der. Empfangsfrequenz. Bei der Mischung entsteht also im Anodenkreis der Hexode die Zwischenfrequenz, während am Steuergitter die Empfangsfrequenz liegt. Das Verhältnis zwischen der Anodenspannung ua und der Gitterspannung ug ist die Mischverstärkung.

$$V_{xx} = \frac{u_a}{u_g}$$

Die Mischverstärkung V_m ist von der Größe des Anodenwiderstandes Ra und von der Mischsteilheit Sm abhängig.

 $V_m = R_a \cdot S_m$

In Bild 2 besteht der Anodenkreis der Mischhexode aus einem Zwischenfrequenz-Bandfilter. Nun bezeichnet man mit R normalerweise rein ohmsche Widerstände. Bei obiger Gleichung ist angenommen, daß im Anodenkreis genau die Zwischenfrequenz erscheint und das Bandfilter genau auf die Zwischenfrequenz abgeglichen ist. In diesem Falle ist der Ersatzwiderstand ${\bf R}_a$ für das Bandfilter rein ohmisch.

Aus obiger Gleichung ist zu ersehen, daß die Verstärkung Vm der Hexode von der Größe der Mischsteilheit abhängt. Aus diesem Grunde soll die Schwingspannung nicht unter einem gewissen Grenzwert liegen, weil son Hexode sinkt. weil sonst die Mischsteilheit und damit die Verstärkung der

Möglichkeiten zur Verbesserung der Schwingspannung

Die Schwingspannung kann vergrößert werden

1. durch Erhöhen der Anodenspannung, die an der Oszillatoranode steht.

2. durch stärkere Kopplung zwischen der Kreisspule L und der Rückkopplungsspule LR.

3. durch verlustarmen Aufbau des Oszillatorkreises.

Eine Erhöhung der Anodenspannung kann durch Verkleinern des Widerstandes \mathbf{R}_0 erreicht werden. Die Vergrößerung der Anodenspannung ist jedoch nur bis zu einer gewissen Grenze möglich, die durch die Grenzdaten der Röhre gegeben ist. Sowohl die Anodenspannung der Oszillatortriode als auch der Anodenstrom dürfen einen bestimmder Oszinatortriote als auch der Anodenströn durfen einen bestimmten Grenzwert nicht überschreiten. Beim Mittel- und Langwellenbereich ist es meist nicht schwierig, der Schwingspannung den geforderten Mindestwert zu geben. Schwierigkeiten bereitet manchmal der Kurzwellenbereich, besonders dann, wenn der Bereich sehr groß ist.

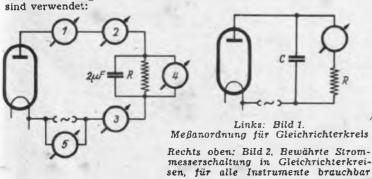
Bild 6 zeigt ein Diagramm, in dem die Schwingspannung über den ganzen Kurzwellenbereich aufgetragen ist. Man sieht, daß die Schwing-spannung bei niederen Frequenzen am kleinsten ist. Mit steigender Frequenz wächst die Schwingspannung langsam an. Man bemüht sich, durch Vergrößerung der Windungszahl der Rückkopplungsspule und durch enge Kopplung mit der Kreisspule die Schwingspannung zu erhöhen. Dabei kann es geschehen, daß auf dem Bereichsende mit den hohen Frequenzen Überrückkopplung auftritt. Der Vergrößerung der Rückkopplung sind also Grenzen gesetzt. Der Widertand Rn, der in der Größenordnung von rund 100 Ohm liegt, gibt die Möglichkeit, die Gefahr der Überrückkopplung zu verkleinern und den Verlauf der Schwingspannungskurve auszugleichen.

Beim Punkt P der Kurve a tritt Überrückkopplung ein. Der Wert der Schwingspannung ändert sich sprunghaft. Durch Einsetzen oder Vergrößern des Widerstandes RD nimmt die Kurve die Form b an. Die Überrückkopplung verschwindet und der Unterschied zwischen maxi-

maler und minimaler Schwingspannung wird geringer. So gibt uns das Messen der Schwingspannung die Möglichkeit, den Oszillator und sein Funktionieren zu prüfen. Der Oszillator kann kontrolliert werden, ohne daß der Empfänger "spielt". Bei einem Überlagerungs-Empfänger ist häufig die schlechte Empfändlichkeit des Geringer ist häufig die schlechte Empfändlichkeit des Geringer ist häufig die schlechte Empfändlichkeit. eines Bereiches auf den ungenügend arbeitenden Oszillator Hubert Gibas

FUNK-MESSTECHNIK

Strommessung in Gielchrichterkreisen


zurückzuführen.

Die einwandfreie Messung von Strömen in Kreisen, die keine reine

Die einwandfreie Messung von Strömen in Kreisen, die keine reine Gleichspannung führen, ist nicht mit allen Instrumenten möglich, wie die folgenden Beobachtungen erweisen.
Es gibt gegenwärtig Drehspulmeßgeräte, die in bekannter Weise mit Meßgleichrichtern für die Wechselstrommessung ausgestattet sind, jedoch dieselbe Schaltung zur Gleichstrommessung verwenden. Diese Vereinfachung, die sich äußerlich in einer gemeinsamen Skala anzeigt, hat in vielen Fällen große Vorzüge; m. W. wurde aber bisher nicht darauf hingewiesen, daß dabei in den gekennzeichneten Kreisen untragbare Meßfehler auftreten.

Zur Klarstellung dient eine Schaltung nach Bild 1. An Instrumenten

Zur Klarstellung dient eine Schaltung nach Bild 1. An Instrumenten

1 Vielbereichdrehspulinstrument (i1)

(i2) mit ständig eingeschaltetem Meßgleichrichter

(is) 4 Spannungsmesser für die Gleichspannung Ug1

5 ..., ,, Wechselspannung U. In der Tabelle sind außer den Meßwerten noch die Zahlen für i_2/i_1 außgeführt. U=190 Volt und i_3 stets $=i_1$.

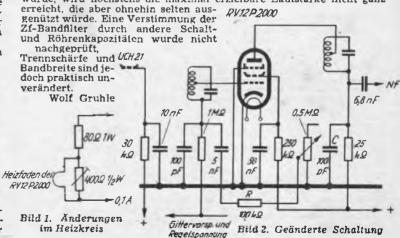
Röhre			AZ 12							
Mellbereich	0,06 Amp.	O,3 Amp.	0,15 Amp.	0,06 Amp.	0,06 Amp.	0,3 Amp.	0,15 Amp.	0,06 Amp.	0,3 Amp	0,15 Amp
I ₁ mA	21	21		13,9	23,5		-	33	34	
1 ₂ mA	31,7		37,5	21,2	35,6		45	. 46		57
Ug, V	132			84	148		1	128		
A kOhm	7,5			7,5	7,5	1		6		
12/11	1,51		1,78	1,52	1,52		1,91	1,39		1,73

Verschiedene Meßbereiche wurden eingeschaltet, um auch die Abhängigkeit in dieser Richtung zu zeigen.

Es treten danach beim Instrument 2 um 39 bis 91 v. H. höhere Werte auf als bei den beiden andern. Dasselbe — aber mit anderen Verhältniszahlen — ergibt sich bei Verwendung des Wechselstromteils eines für wahlweise Schaltung auf Gleich- und Wechselstrom ein-

gerichteten Drehspulinstruments, Die zwei letzten Sätze besagen also, daß Instrumente nach 2 ohne Schaltungsänderung und entsprechend geänderte Eichung für diese Aufgaben nicht benutzt werden können, da sowohl die zu messenden pulsierenden Gleichströme als auch die verschiedenen Meßgleichrichtersysteme das Resultat bedingen.

Um mit den besprochenen Instrumenten ohne Änderung brauchbare Gleichstromwerte zu erzielen, sind sie so zu schalten, daß der Kondensator C (Bild 2) nicht mehr im Meßkreis liegt, sondern für die Strommessung nur der Widerstand R in Betracht kommt. Der Vollständigkeit halber sei noch bemerkt, daß das Weglassen des Kondensators C eine neue Fehlmessung bringt. Der gemessene Wert liegt wiederum wesentlich über dem reinen Gleichstromwert.


Zusammenfassend zeigt sich die unbedingte Notwendigkeit, beim Arbeiten mit diesen Instrumenten die anzuwendende Schaltung nach den aufgezeigten Gesichtspunkten zu prüfen. W. Knorpp

Rähren-Ersatz

Ersatz der UCH 21 durch RV 12 P 2000

In einem Philips-Philetta mußte eine defekte UCH 21 ersetzt werden. Da die Spulensätze in der Fabrik durch Eindrücken der Abschirm-haube auf der Drehbank abgeglichen werden und daher nicht nachstellbar sind, kam als Austauschröhre nicht die Mischröhre, sondern nur die zweite (Z1-)Röhre in Frage. Die ursprüngliche UCH 21 verstärkt die Zf (Hexodenteil) und die Nf (Triodenteil). Durch die bekannte Reflexschaltung konnte sie nun durch eine einzige RV 12 P 2000 kannte Reflexschaltung konnte sie nun durch eine einzige RV 12 P 2000 ersetzt werden. Da mit Neulieferung der U-21-Serie ohnehin sehr lange nicht zu rechnen sein wird, lohnt sich ein Umsockeln oder gar ein Einbau eines Zwischensockels mit zwei RV 12 P 2000 auf keinen Fall. Die Röhre wurde daher nach Entfernen der Sockelfassung direkt (unter dem Chassis) eingebaut. Bild 1 und 2 zeigen, wie geringfügig die Änderungen sind. R und C sind nicht einmal nötig und nur der Sicherheit wegen belassen, so stabil arbeitet die Röhre bei der wirklich extrem kurzen Leitungsführung. Die Schirmgitterspannung mußte then extrem kurzen Leitungstuhrung. Die Schringitterspannung mutte von der Mischröhre getrennt werden, da sie zu hoch wäre bei der (durch Ra ja verminderten) Anodenspannung von etwa 130 V. Infolgedessen erhält die Mischröhre statt des alten Schlirmgittervorwiderstandes von 10 k Ω einen neuen von 30 k Ω . Die Röhre läßt sich ausgezeichnet regeln, durch die Mitregelung der Niederfrequenz wird die Wirksamkeit erhöht. Sehr hohe Regelspannungen, die die Röhre auf allzu gekrümmte Kennlinienteile führen würden, treten ohnehin nicht auf, so daß eine Regelung klanglich keinen Einfluß ausübt. (Die Röhre ist an sich nicht für Regelung vorgesehen.)

Klang und Empfindlichkeit sind praktisch nahezu unverändert. Durch die erweiterte Schwundregelung, ohne die die Röhre leicht übersteuert würde, wird höchstens die maximal erzielbare Lautstärke nicht ganz

Funktechnik ohne Ballast

Abstimmbare Schwingkreise

Anfangs- und Endkapazität

Antangs- Und Enakapazitat

in Rundfunkempfängern bestehen die Schwingkreise
zur Abstimmung auf verschiedene Frequenzen normalerweise aus einer festen Spule und einem veränderlichen Kondensator, dem Drehkondensator. Er hat für
sich aflein im ausgedrehten Zustand eine Kleinstkapazität von 10 bis 20 pf und volleingedreht die Größtkopazität von 330 bis 550 pf. Der Unterschied zwischen
Größt- und Kleinstkapazität wird Kapazitätsänderung
oder Kapazitätsvariation Cy genannt.

Cy = Größtkapazität — Kleinstkapazität

C_V = Größtkapazität — Kleinstkapazität

C_V = Größikapazität — Kleinstkapazität Der Kapazitätsanstieg verläuft bei allen madernen Drehkondenstaloren nach Bild 73. Die Kapazität nimmt erst wenig zu und steigt dann immer steiler an. Dies wird durch einseitigen Sitz der Drehachse erreicht und bewirkt nach Bild 75 eine prozentual gleichmäßige Frequenzverteilung auf der Skala. Im Empfänger liegen parallel zum Drehkondensator weitere feste Kapazitäten, und zwar die Verdrahtungsund Schaltkapazitäten, Kapazitäten der Röhrenelektraden und sockel und ein einstellbarer Trimmerkondensator. Die gesamte Antangskapazität des Kreises nennen wir C_A und Kapazitätsvariation C_E. Anlangskapazität C_A und Kapazitätsvariation C_V ergeben nuch Bild 74 die Endkapazität C_E .

 $\label{eq:center} \textbf{C}_E = \textbf{C}_A + \textbf{C}_V$ Das Verhöltnis von Anlangs- zur Endkapazität wird V genannt. $Y = C_E : C_A$

Van V hängt der Umfang des Frequenzbereiches ab. V muß gleich dem Quadrat der gewünschten Frequenzänderung sein. Dies ist in Bild 76 graphisch dargestellt. Andert sich z. B. die Frequenz wie 2:1, so muß die Kapaztät sich wie 2:2:1 = 4:1 ändern, also V = 4 sein. Daraus ergibt sich eine einfache Formel zur Berechnung der Anlangskapazität:

$$C_A = \frac{C_V}{V - 1}$$

Beispiel: Der Bereich von 500 bis 1500 kHz soll mit einem Drehkordensator von 20 pF Kleinst- und 500 pF Größtkapazität überstrichen werden. Wie groß werden CA und Cp?

$$C_V = 500 - 20 = 480 \text{ pF}$$
Frequenzyariation 1500 : 500 = 3 : 1
Kapazitätsvariation $V = 3 - 3 : 1 = 9$
 $C_A = \frac{480}{9 - 1} = \frac{480}{6} = 60 \text{ pF}$

Der Paralleltrimmer des Kreises muß also so einge-stellt werden, daß sich insgesamt 60 pF Anfangskapa-zität ergeben. Die Endkapazität ist donn

 $C_E = C_A + C_V = 60 + 480 = 540 \, pF$

Die Formel gilt auch für Spezial-Kurzwellen-Empfänger mit Bandabstimmung. Soll z. B. das Gebiet van 14.5... 15,5 MHz (20 m Kurzwellenband) mit einem Drehkandensator van 12... 40 pf bestrichen werden, so ist $C_V=40-12=28$ pf. Das Frequenzverhältnis ist 15,5 : 14,5 = 1,07. Dann ist V = 1,07 + 1,07

$$C_A = \frac{C_V}{V-1} = \frac{28}{1,14-1} = \frac{28}{0,14} = 200 \text{ pF}$$

Die Antangskapazität ist also durch Parallelkapazitäten auf 200 pf zu bringen.

Außer mit Frequenzen ist es auch üblich, mit Wellen-längen zu rechnen. Jede Frequenz entspricht einer ganz bestimmten Wellenlänge \(\lambda\) (gesprochen "Jambao").

Es ist: 300 000 300 000

Es ist: $\frac{300\ 000}{f_{\rm kHz}} \ {\rm oder} \ f_{\rm kHz} = \frac{300\ 000}{\lambda_{\rm ms}}$ Bild 83 zeigt die Umrechnung bildlich. Wird nach Bild 77 die Kapazität eines Kreises größer, so wird die Wellenlänge ebonfalls größer und die Frequenz kleiner. Bei eingedrehtem Kondensalor ergibt sich also die kleinste Frequenz oder die größte Wellenlänge.

Selbstinduktion der Abstimmspule

Die Selbstinduktion eines Schwingkreises hat die Größe

$$L\mu_{\rm H} = \frac{25\,350}{f^z_{\rm MHz} \cdot C_{\rm pl'}}$$

Der L-Wert der Spule wird lür die Endkapazität $C_{\rm E}$ ausgerechnet, weil donn Ungenauigkelten aus der Berechnung von \mathbf{C}_A den geringsten Einfluß haben. Beispiel: Die Spule für den berechneten Kreis mit \mathbf{C}_F = 540 pF bei 500 kHz ist zu ermitteln.

$$L = \frac{25\ 350}{f^{2} \cdot C} = \frac{25\ 350}{0.5 \cdot 0.5 \cdot 540} = 188\ \mu H.$$

Die drei üblichen Empfangsbereiche erfordern für einen 500 pF-Drehkondensator grob abgerundet etwa folgende Werte:

Langwelle 2000 µH

Langweile 2000 µH
Mittelweile 200 µH
Kurzweile 2 µH
Leider veräffentlichen die Hersteller von Eisenkernspulen nur seiten genaue Unterlagen über den Zusammenhang zwischen Selbstinduktion und Windungszahl (Ausnahme: Sirufer-Uhr), Die Windungszohl muß
deshalb meist versuchsmäßig ermittelt werden. Bei

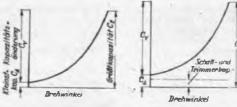


Bild 73. Kapazitätsverlauf eines Rundfunk-Drebkondensators

Bild 74. Kapazitätsverlauf eines eingebauten Drebkondensators

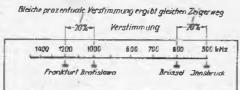


Bild 75. Eigenschaften der Absitmmskala bei einem normalen Dreb kondensato

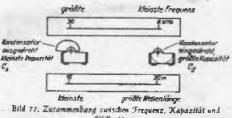



Bild 76. Beziehung zwischen F equenz und Kapazilatsverbaltnis

Wellenlänge

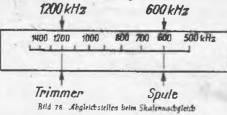


Bild79. Bereicheinstellung und Abgleich einer neuen, unbeschrifteten Skala

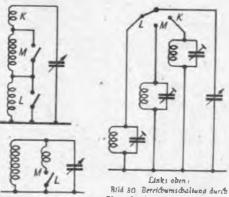


Bild 81. Bereichwechsel durch Parallelschalten von Shulen

Kurzschließen der unbenutzten Spulen Rechts oben: Bild 82. Bereichwechsel durch Umschalten von Spulen

fast allen Spulenarten, sagar bei den allen Zylinder-und Honigwabenspulen, sind für den Mittelwellen-bereich etwa 50 bis 70 und für den Langwellenbereich 180 bis 210 Windungen natwendig.

Einstellung der Bereiche durch Abgleichen

Einstellung der Bereiche durch Abgleichen
Die genauen Selbstinduktions- und Kapazitätswerte
werden durch Abgleichen im Empfänger eingestellt.
Die Antangskapazität wird durch den Trimmer und die
Spule durch einen verstellbaren Eisenkern oder bei
ölteren Luttspulen durch eine Kupterscheibe obgeglichen, Beim Neubau von Spulen wird zunächst bei
Mittelstellung des Abgleichkernes die Windungszahl
so lange geändert, bis nur noch eine Feineinstellung
durch den Eisenkern nötig ist.
Zum Abgleichen werden die Frequenzen eines Prüfsenders auf den Empfängereingang gegeben. Am
Empfängerausgang liegt ein Wechselspannungsmesser,
mit dem die Kreise auf größte Ausgangsspannung
eingestellt werden. Behelfsmäßig kann mit genau
bekannten Rundfunksendern abgeglichen werden.
Maßgebend für Skaleneichung ist immer nur der
Audion, oder der Oszillatorkreis, Die Stellung der
Vorkreise hat kalnen Einfluß auf die Skalo, sonders
nur auf die Empfändlichkeit und Varselektion.
Nach gleich einer vorhandenen Skala.

Nu ch gleich einer vorhandenen Skala. Nach gleich einer vorhandenen Skala. Ist ein Industriegerät mit vorgedruckter Skala abzugleichen, so werden zwei Abgleichpunkte gewählt, die etwas einwärts von den Endstellungen des Drehtondensotors liegen. Dadurch wird der Bereich genauer und besser an die Skala angepaßt. Übliche Abgleichfrequenzen sind

Langwelle: 160 und 300 kHz oder Radio Paris und Oslo;

Mittelwella: 600 und 1200 kHz ader Stuttgart und Warschau;

Kurzwelle: 7,5 und 15 MHz.

Kurzwelle: 7,5 und 15 MMz.

Die hohe Frequenz wird stels mit dem Trimmer und die niedrige mit der Spule eingestellt (Bild 78). Die Einstellungen sind wechselseitig einige Male zu wiederholen, bis sie sich nicht mehr andern. Es ist immer mit der Trimmereinstellung aufzuhören, dann findet keine wesentliche Änderung am anderen Bereichsende mehr statt. Sind Trimmer und Spule sehr verstimmt, so wird folgendermaßen vorgegangen:

wesentliche Anderung am anderen Bereichsende mehr statt. Sind Trimmer und Spule sehr verstimmt, so wird folgendermaßen vorgegangen:

1. Der Empfänger wird mit dem Hauptabstimmknopt auf die am Prütsender eingestellte Abgleichfrequenz abgestimmt (größte Lautstärke). Liegt seine Zeigereinstellung neben dem Sollwert, so wird er in Richtung des Scilwertes weitergedreht, so daß der Ton noch eben hörbar ist. Dann wird am Trimmer ader Spulenkern wieder auf die größte Lautstärke nachgestellt und in gleicher Weise schrittweise weitergearbeitet, bis der Zeiger des Empfängers den Sollwert erreicht hat. Bei dieser Arbeitsweise sind Zweifel über die Drehrichtung der Abgleichschrauben ausgeschlossen. Der stets hörbare Ton lößt sofont erkennen, ab die Abstimmung besser oder schlechter wird.

2. Diesse Verfahren arbeitet schneller, erfordert aber etwas Oberlegung. Der Empfänger wird erstmals auf den Prüfsender abgestimmt. Steht der Zeiger neben dem Sollwert und muß zur Einstellung auf den Sollwert und muß zur Einstellung auf den Sollwert der Drehkondensator we i ter e in gedre he werden, so will der Kreis mehr Kapa it ät änder niederen die Spule vergrößert werden. — Auß dagegen der Kondensator weiter aus sie der hie werden, so will der Kreis mehr kapa bei der hiederen die Spule vergrößert werden. — Auß dagegen der Kondensator weiter aus sie der Eisen haben. — Ist die Richtung der notwendigen Anderung ermittelt, so wird der Zeiger auf den Sollwert gestellt. Trimmer oder Eisenkern werden dann in der ermittellen Richtung gedreht und ohne Zwischenstufen sofort auf Resonanz abgestimmt.

Bei den jetzt üblichen Drehkondensatoren und Skalen mit prozentual gleichmäßiger Frequenzverteilung nach Bild 75 können auch ursprünglich nicht für einander bestimmte Teile annähernd abgealichen Kapazitötsvarlauf haben sie müssen "in Gleichlauf" sein. Dies wird fabrikmäßig durch sortifätige Hersellung und Justieren der gestederen Endelatten erreicht. Nur dann ist es sicher, daß die Kreise beim Abgleich an zwei Punkten bei allen übrigen Frequenzen ebe

genau übereinstimmen.

Bereicheinstellung eines neuen Gerätes. Festlegung der Skala Liegt die Skala eines neuen Geräles nach nicht fest, so werden zunächst nach Bild 70 nur die Endfrequenzen abgealichen, also im Mittelwellenbereich 500 und 1500 kHz. Die Einstellungen werden gleichfalls wechselseitig wiederholt bis sie sich nicht mehr ändern. Dann wird bei Geräten mit Mehrfachdrehkondensatoren auf die üblichen Abaleichfrequenzen übergegungen, das Gerät sorgfällig darauf abgestimmt und nur die Vorkreise (also nicht Audionader Oszillatorkreis) nachmals bei diesen Frequenzen nachaeglichen. Liegen damit die Grenzen des Bereiches fest und ist der Gleichlauf bei den üblichen Abaleichfrequenzen hergestellt so werden verschiedene Eichfrequenzen am Prüfsender eingestellt und die zugehörigen Zeingreinstellungen des Empfängers auf die neue Skala übertragen. auf die neue Skala übertragen.

Bereichumschaltungen

Da mit normalen Drehkondensatoren nur ein Fre-auenzbereich von 1:3 überstrichen werden kann, müssen für verschiedene Empfangsbereiche die Spulen-sätze ungeschaltet werden. Hierfür bestehen folgende Mäglichkeiten:

I. Die Spulen aller Bereiche liegen in Reihe, Lang-

f KHE (MHE) 30 MHz 20 MH2 20 MHZ 30 MH2 W MHZ & MHz 507 80 5 MHz Teilung 70 4 MHz 80 90 Teilung 3 MHz ogarithmische 7000 khiz 200 300 900 kHz 400 700 kHz 500 600 kHz 500 kHz 600 700 400 kHz **80**0 300 kHz 200 kHz 2000

Bild 63. Gegenüberstellung von Wellenlange und Frequenz

100 kHz

3000

und Mittelwellenspule werden durch Wellenschalter-kontakte kurzgeschlassen (8iid 80).

2. für die einzelnen Empfangsbereiche sind getrennte Spulen vorhanden, die nacheinander eingeschaltet werden. Die unbenutzten Spulen können durch besondere Schaltkantakte kurzgeschlassen werden (8iid 82).

3. Die Langweilenspule ist fest eingeschaltet, beim Mittelweilenempfang wird die Mittelweilenspule parallel gelegt (DKE-Schaltung) (8iid 8:).

In allen fällen können die Trimmer sehr verschieden angeordnet werden, Bei hachwerfigen Empfängern i für leden Bereich besondere Trimmer vorhanden, elnfachen Geräten wird nur ein Trimmer parallel zum Drehkondensalor, gelegt, der für alle Bereiche die gleiche Anfangskapazität einstellt, Ing. O. Limann

Neue Ideen - Neue Formen

VE-Kurzweilenvorsatz

Von der Firma Fiedler & Müller, G.m.b.H., wird ein praktisches Kurzwellen-Vorsatzgerät "KWV 104" für den VE Dyn. 301 W hergestellt. Dieser Vorsatz enthölt einen mit Röhrenfassung kombinierten höhrensackel zum Zwischenstecken der AF7, eine Kurzwellenspule mit Bereichschalter und drei verschiedene Anlennen-anpassungen. Der Anschuld wird mit wenigen lölverbindungen hergestellt. Die Umschaltung von MW/LW auf KW geschieht durch einen zweckmaßig ausgebildeten Hebelschalter. deten Hebelschalter

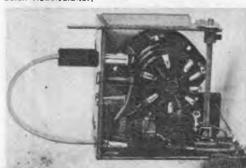


Bild 1. Innenansicht des XW. Vorsatzes (Aufn. Funkschau)

SELBSTINDUKTIONS ABWEICHUNG

bei nicht gleichmäßiger Verteilung der Wicklung auf den Spulenkörper

Bei den häufig verwendeten Topfkerngrößen handelt es sich um die Typen HFe 234, HFe 228 und HFe 223 mit einem Topfkerndurchmesser von 34, 28 und 23 mm. Die durch ungleichmößige Verteilung der Windungen auf die Gesamtwickellänge des Spulenkörpers hervorgerufenen Seibstinduktionsabweichungen von den Hf-Kurven 1 und 2 sind für die 3 Topfkerntypen gleich, so daß die folgende tabellarische Zusammenstellung eine gewisse Norm für Topfkerne überhaupt darstellt.

HFe-Topikern (Ferrocart) Spulenkörper mit 4 Wickelräumen

Windungs Wickelraum	zahlen auf Wickelraum	L-Zunahmen in º/o		L-Abnahma in ⁰ jo durch Abschir- mung			
a+b+c+d [s. Kurve 2]	b a +-b b +-c a +-b +-c	67 50 30 25 18	12-15°/ ₀	5			

HFe-Topikern (Ferrocari) Spulenkörper mit 3 Wickelräumen

Windungs Wickelreum		L-Zunahmen in ⁶ / ₀		L-Abnahma in ^o io durch Abschir- mung			
e+b+z (s. Kurve 1)	a+c e+p a	34 28 10 7	12-15 %	5			

Van der Kurve für HFe-Topfkerne 228 wurde abgesehen, da diese zwischen den Kurven 1 und 2 verläuft, also keine wesentliche Abweichung gegenüber den Kurven 1 und 2 aufweist. Beschriebene Topfkernspulen können in 3 Güteklassen eingeteilt werden, die durch die verschiedenste Hochfrequenzeisen-Zusammensetzung bestimmt werden. Die gezeichneten Kurven beziehen sich auf die ersten Güteklassen. Die prozentuale Selbstinduktionsänderung bei nicht gleichmößiger Bewickelung des Spulenkörpers trifft auch für die anderen Güteklassen von Hochfrequenzeisen zu. Werden die Werfe für eine Spule nicht aus einer der vorstehenden Kurven genommen, sondern berechnet, so ist die aus den Tabellen zu entnehmende prozentuale Selbstinduktionserhöhung zu berücksichtigen,

Wicklung und Spulengüte

Micklung und Spulengüte

In der Tabelle wurden diejenigen Unterteilungen des Wickelkörpers aufgeführt, die in der Praxis eine Bedeutung haben. — Der Wickelkörper mit 4 Wickelräumen für Zwischenübertrager, Ausgangsübertrager für Gegentaktspulen und Satwingspulen. Der Gebrauch des Wickelkörpers mit 3 Wickelräumen ist fast ausschließlich für Mittel- und Langwellenschwingspulen bestimmt. — Es ist ratsam, einen nicht unterteilten Spulenkörper zu unterteilten denn dadurch wird erst gewährleistet, daß die Wicklung auch gleichmößig auf die Wickellänge aufgetragen wird, was sich in der Güte der Spule bemerkbar macht. Entsprechend possende Kreisringe schneidet oder stanzt man aus einem

Bild 2. Selbstinduktion C in f (w) bei den Topfkernspulen HFe 234-C. und HFe 223-C, und deren Erbobung bei nicht gleichmäßiger Ver tellung der Wicklung auf die gesamte Wickellange

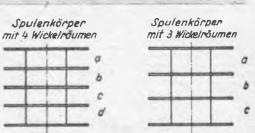
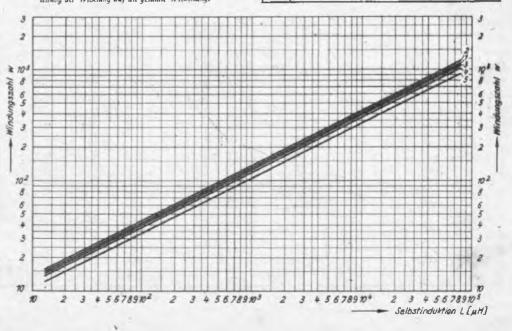


Bild & Shulenhörber mit drei und aler Wickelraumer

Zefluloidplättchen. Der entstandene Ring wird dann mit Axeton oder einem Klebstoff auf den Spulenkörper gebracht, so daß die gewünschte Unterteilung entsteht

Engere Kopplung

Engere Kopplung


Um jeden Leiter, der von einem Wechselstrom durchflossen wird, bildet sich ein elektrisches Feld, das die Eigenschaft hat, sich im Raum auszubreiten. Wird nun cer Leiter in Form einer Spule gewickelt, so wird das elektromagnetische Feld wesentlich verstärkt. Schließt man den Spulenstromkreis, so entsteht um jeden Leiter der Spule ein elektromagnetisches Feld, dessen Kraftlinien alle um ihn liegenden Leiter schneiden. Es werden dann in diesen sogenannte Selbstinduktionströme erzeugt. Durch ein engeres Legen der elnzelnen Windungen wird nun die Kopplung zwischen den einzelnen Leitern intensiver, so daß mehr Kraftlinien geschnliften werden können. Dadurch erhäht sich wieder die Selbstinduktion L. — Bei reinen Littspulen würde sich dlese engere Kopplung natürlich schon in einem vielfachen der Selbstinduktion zeitigen. Bei den hier behondelten Topfkernspulen ist das nicht möglich, da la durch das Hachfrequenzeisen die Kraftlinien gefesselt werden und Ihnen der Weg vorgeschrieben wird.

Einfluß der Abschirmung

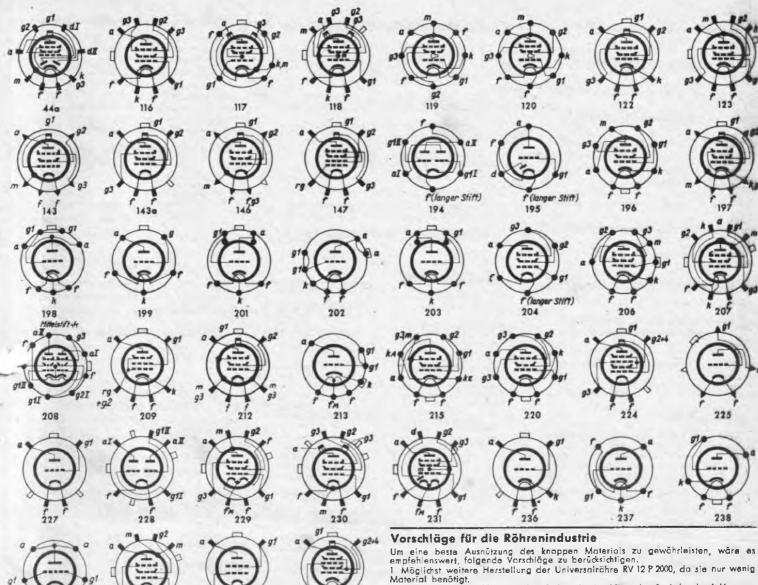
Die Verwendung von Abschirmhauben für die Tepfkernspulen ist bei Binkreiserschaltungen nicht ratsom. Gütefaktoren von n = 220 sind bei Schwingkreisen mit Topfkernspulen ohne Abschirmung erreichbar. Bei Verwendung der entsprechend genormten Abschirmhauben sinkt der Gütefaktor auf ein n = 200. Das Absinken des Gütefaktors wird durch den Verbrauch von Wirkleistung beim Fließen von Wirbelströmen in dem Abschirmbecher erkläft. Bei mangelnder Resonnarzshärfe kann es möglich sein, daß der Hfe-Kern teilweise eine kompakte Masse darstellt und addurch die Wirbelstromverluste erhöht werden. Beim Wickeln einer Schwingspule müssen saviel Windungen mehr aufgetragen werden, als zur Selbstinduktionserhöhung um ½ Kernvariation nötig sind. Es wird damit gewährleistet, daß das i. um ½ Kerninduktion variiert werden kann. — Es ist darauf zu achten, daß beim Einbau des Spulenkörpers in den Topfkern die Gitterwicklung nach unten zu liegen kommt, damit das L des Schwingkreises mit dem Kern variiert werden kann.

Manual data Wildelian con

	AGIMONE	TOTAL WILLIAM	9-2
Kurve	Topikern	Wickelraum	Spulenkärpär
1 2 3 4 5	HF8 223-C4 HFe 234-C4 HF8 234-C4 HF8 234-C4 HF8 234-C4	a+b+c a+b+c a+b+c a+b	HFe 223-23 HFe 234-34 HFe 234-34 HFe 234-34 HFe 234-34

TABELLE kommerzieller Empfänger- und Verstärkerröhren

In vielen, jetzt hergestellten Rundfunkgeräten sind kommerzielle Röhren enthalten. Diese Röhren wurden teilweise in großen Stüdzahlen hergestellt; bei besonders esbräuchlichen Typen, wie bei der RV 12 P 2000, erreichte die Auflage Millionenziffern. Kein Wunder, daß beim Zusammenbruch von diesen Röhren oft noch sehr große Bestände vorhanden woren. Rundfunkröhren dagegen gab es nur sehr setten, weil diese in den letzten Kriegsjahzen nur noch sehr wenig für den zivilen Sektor hergestellt wurden. Die Industrie machte infolgedessen aus der Not eine Tugend und entwickelte neue Empfänger mit kommerziellen Röhren, für die Reperaturwerkstatt ist es deshalb notwendig, auch die Daten und Sackelszhallungen dieser Röhren kennenzulernen. In der Ausgabe 1946 der großen FUNKSCHAUzehrentabelle wurden deshalb die wichtigsten Röhren dieser Art mit aufgenommen. Verschiedentlich wurde der Wunsch geäußert, einmel eine vollständige Tabelle der kommerziellen Empfänger und Verstärkerrähren zu bringen. Diesem Wunsche kommen wir jetzt nach durch Verößentlichung der nachstehenden Tabelle. Besitzer der früheren Auflagen der Röhrentabelle haben hierdurch die Möglichkeit, ihre Tabelle auf den neuesten Stand zu bringen.


Bei dieser Gelegenheit möchten wir gleich dovor warnen, auch weiterhin neue Geräle mit kommerziellen Röhren zu entwickeln. Es ist vorauszusehen, daß die warhandenen Bestände einmal zur Neige gehen. Neue kommerzielle Röhren warden nur in Ausnahmefällen angefertigt. Es besteht also die Getahr, daß für solche Geräte eines Tages keine Ersatzbestückung mehr möglich ist. Deshalb sollten neue

Rundfunkgeräte und Meßgeräte nur auf der Basis der üblichen Rundfunkröhren (z. B. Stahlröhren) entwickelt werden. Wenn diese Röhren auch augenblicklich sehr knapp sind, so wird sich dieser Zustand auch einmal ändern. Auf jeden Fall werden diese Röhren schon wieder fabriziert. Ob und inwieweit Schlüsselröhren und amerikanische Röhren später einmal Eingang in Deutschland finden, kann man jelzt noch nicht sogen. Die Abgeschlassenheit gegenüber der ausländischen Röhrenproduktion wie in der vergangenen Zeit wird wohl in der ferneren Zukunff nicht mehr für den deutschen Röhrenmarkt gelten.

Korrekturen bei der FUNKSCHAU-Röhrentabeile, Ausgabe 1946

Roffekturen bei der Funkschau-konfentabelle, Ausgabe 1940
Bei dem Röhrensockel 118 ist ein Fehler unterlaufen. Die 4 unteren Anschlüsse müssen nicht sein: f. f., k, gt, sondern: f. k, f, gt, also wie bei dem Sockel 116. —
Bei dem Sockel 117 ist der Anschlüß für "k" kein besonderer Stift, sondern die Metallhülle. — Vom Sockel 44 gibt es zwei Arten: die Ausführung, wie in der Tabelle gezeichnet, ist der Sockel der Duodioden-Endpentoden (ABL 1, CBL 1, CBL 6, EBL 1); bei der anderen Ausführung ist die Außenmetallisierung an eine besondere Lamelle geführt, und zwar bei der unteren Viererreihe am weilesten links, also zwischen, f und a. Diese Ausführung ist für die Duodioden-Hooffrequenzpentoden EBF 1 und EBF 2. Diese Ausführung des Sockels 44 wurde in nachstehender Sockelaufstellung des besseren Verständnisses wegen noch einmal als Sockel 44a besonders abgebildet.

				Hei	zung									Betri	e b s w	erte								G	renz	w é I	3.5	
Typ und Are	Zahl der Elektroden	Sockel	Art	u _f	If	Span- nungs quelle	Verwendung	(+n _b)	u _g ,	(+u ₂₂₊₄)	1	Rk	I _a	I _{g2}		-	R _i	rσ 	R _{g2}	(-\mathbb{\text{\tint{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex	K	N∼ W	u _b	(h)z ^d n >	Q _a	€ Qg2(14)	I _k	N (+Rg3)
1	2	3	4	V 5	6 6	7	8	9	10	1 J	12	kΩ 13	mΛ 14	15	16	⁰ / ₀ ,	18	19	20	21	22	23	24	25	26	27	28	29
			-	-	-							0,4	10		3	9	3,7						300	13	5		30	0,5
LD 1	3	203 199	ind ind	12.6	0,1	~~	N, ET	200			- 4 - 4	0,13	30		9,3	4	2,7						800		13	1	90	O ₁
LD 5	3	201	ind	12,6	0,24	~	ET{	250			- 6	0.12	50	1	10	5,5	2					1	500		25		140	1
LD 15	3	202	11100	, ,,,	7,21		î	380			- 30	0,3	100		10	5,5	7	1				12]	200	200	1,5	0,4	10	1
LS 1	5	204	dir	1,9	0.05	B	EP	90	0	90	- 3 -+ 3		5 2x15	0,9	1,2 je 1	12+ je 6	je 8,5						250		2x2,5		1	ie 0,01
LS 3	3+3 2+3	194	dir dir	1,9	0,2	8	GR1) D-+N	80	100		- 1,5		1,5	Id. 0,2		4,8	26						200		1		6	
15 4	5	196	ind	12,6	0,42	~	EP	250	0	250	18	0,44	36	4	5,5	10+	35						250	250	9	3,5	100	0,7
LS 30	3	198	ind	12,6	0,3	~	ET EP	400 300	0	250	- 9 - 24	0,15	60 130	3,5;204)	6	5 19+	3,3	2		17	10	18 }	700	300	32,5 40	5	130 230	0,025
L\$ 50	5	119	ind	12.6	0,7	~	CVB ₁)	100	0	100	2x-51	(2x50		4	19+		8+		72+	10	120				1	2,0	
LV 1	5	120	ind	12,6	0,21	~	ÆP (250	0	200	- 2,5	0,11	20	2,5	9,5	2,5+ 1,5+	200	19	65	4		4.5	800	100	lo l	1,5	40	0,7
LV 3	5	206				1	- 1	400† 250	0	(250) 250	(- 3.1) - 7	0,11	72	2,3 9.5	9,5	4,3 1	200	3	0,	4,8	6	8.5	1000	400	12	3,5	100	0,3
LV 30	5	207	ind	12,6	0,55	~	GAB ¹)	350	0	350	2x-13		2x50	2x14				6+		13+	5	28	300	300	2x3	2x0,6	2x15	je o,€
LV 4	5+5	208	ind	12.6	0.28	~	H (Br)	250	0	200	- 2	13	2x10	2x1,5	je 7	je1,6+	1	25					220	17g:30	1	Q _{fg} ;	35	1
LV 5	R 4	209	ind	12,6	0.2	~	H.N	20	Jeg: 20	20	- 5.2	0,22	7	1g2:17	3,3	10 5+	1000						250	225	2	0,4	11	0,5
LV 6 LV 11	5 5	122 196	ind ind	6.3	0,15	2 2	H	150	0	75 90	- 2 - 1,6	0,75	3	0,7	1,5	31	1000						250	250	2	0,5		
LV 13	3	213	ind	12.6	1,4	~		250			- 1	0,045	160		30	5	0,67						1200	25-	30		200	0,005
LV 14	5	196	ind	12,6	0,18	~	Hu	200		70	- 1,7	0,18	8	1.3	3,7								300	300	5 4,5	1	20	
LV 16	5	215	ind		0,175	~	H (81)			250	- 2	0.12	14	0,6	9,5 2,6	2,3+	500 1000						250	200	1	0.3	8	1
RD 12 Pb RL 2 P 3	5	143	ind	12.6	0,075	B	H N.EP	130	0	130	- 1,2 - 19	0.20	10	2,3	1	25+							200	150	2	1	32	0,7
RL 2T2	,	225	dir	1.9	0,3	В	ET	130		1,50	1.5		14		2,4	8	5						150		2		15	1
RL 2,4 P 2	5	143a	die	2,4	0,165	В	N	130	О	130	-6		11,5	2,5	2,2	12+	70	- 1					200	170	1,5	0.5	18	0,-
RL 2,4 P 1	5	212	dit	2,4	0,13	В	EP	130		130	- 9,5		9,2	3	1,4	17+	6					0,25	150		1,5		15	1
RL 2,4 T 1 RL 2,4 T 4	3+3	227	dir	2,4	0,165	8 B	GB	130			- 3 - 6	100	2x1,5		je 2	je 6		6+		4,57		2,5	220		2×2		2x10	
RL 4,2 P 6	5	229	dir {	4,2	0,325	1~	EP	200	0	150	- 7	0,17	35	6	6	10+		5		5		3	250	250	7,5	1,5	50	0.5
RL 4,2 P 40	5	230	dir	2,1 4,2	1,5	~	EP	400	0	200	- 32		40	21	3,8	20†				1.1			400	250	35 15	6		0,5
RL 4,8 P 15	2 -5	231	dir	4,8	0.7	~	D-+ EP		0	200	-14		50	14	9,5	14+	60	7		10	10	6	250	250	9	2	75	1
RL 12 P 10 RL 12 P 35	5	116	ind	12,6	0,45	~	EP EP	250 600	0	250	- 6 - 28	0,15	36 65	13	3,3	20+	. 30	== RS	267				800	200	30	5	150	
RL 12 P 50	5	110	ind	12,6	0,63	~ 1	EP	300	0	200	- 24	0,18	130	35;204)		19+		2	1	17	10	-18	1000	300	40	5	230	0,025
			3				GAB1)	800	0	300	2x-51	1	2x50 2x120 ⁵	2x0,9 2x13 ¹)	4	19+		8+		72†	10	120	110		2			
RL 12 T 1	3	236	ind		0,065	2 2	И	75 200			- 1 - 12,5	1,25	10		3, 4	6	4,7 5,6	10	1		6	0,4	150 220		2		30 30	1,5
RL 12 T 15	3	236	ind	12,6	0,17	~		250			- 12,5 - 4	O.OR	50		6	7	2,4	10	3			0,,	500		15,		100	
RL 12 T 75	3	238a	ind	12,6	1.7	~		600			- 36	0,29	125	1	18	7	1,8	3,5	1			15	1600		75		500	0.02
RV 2 P 800	5	146	dir	1,9	0.18	В		120 110	0	80 60+	- 1,5 O		3 2.3	0.8	1 0.9		500						200	150	1,5	0,5	7	2,5
RV 2.4 H 300	6	224	dir	2,4	0,06	В	M ⁰	110+	-4 ²)	(60)+	0,51.88)		0.7		0,32+		600		45			1	150	150	0,6	0,4	6	0.05 ⁴⁻⁵
RV 2,4 P 45 RV 2,4 P 700	R 5	147 143a	dir	2,4	0,06	B	н, и	150	0	U _{rg;} 15	- 1,5 - 1,5		1,6	0,4lrg:2,4 0.35	0,75	6+	1000		113				200	120 1	1	0.3	5	2.5
RV 2.4 P701	5	143a	die	2.4	0.06	В	1	150t	0	(75)	-1,5 -253)		2,7	0.5	0,9		900		140				200	150	1	0,3	5	2,5
RV 2,4 P710	5	122	dir	2,4	0.13	В	H, N	130	0	75	-1,4		2	0,33	1	5+	* 1		1	- 1			200	150	1	0,3		2,5
RV 2,4 P 211	5	122	dir	2,4	0,13	В		130	0	75	- 1,6		2	0,4	1	5+		1 9				1	200	130	0,7	0,3		2,5
RV 2,4 P 1400 RV 2,4 T 3	5 R 3	242	dir	2.4	0,35	B	H	20	U _{rg:}	110	-1 -2		1.7	0,7 I _{rg;} 2,3	0,7	22	200	(11)					200	200 U _{18:} 20	0,5	0,4	6	1,5
RV 12 H 300	6	244	dir	12,6	0,06	100		200	15 5 ²)	75+	-2/-137)		1,7	3	0,37+		1000						200	200	1	0,5	6	0.05+5
RV 12 P 2000		122	ind	12,6	0,075		H, N	210 250†	0	75	- 2,3 - 5,2	0,9	8,2	2,1	1,5	5,5+	1000	20	20	2.8	10	0.58	220 250	140	1 2	0.3	11	1,5
RV 12 P 2001	5	122	ind	12,6	0,075	1		210	0	(160) 75	-2.3 -35^3)	0,65	3	0,55	1,4		700	0 19			4		220	220	1	0,3	7	1,5
RV 12 P 3000		123	ind	12,6	0,21	~		250	0	200	- 2,5	0,11	20	2,3	10	,	200	0					300	250 125	1,5	0,3	6	1 1.5
RV 12 P 4000	5	197	ind	12,6	0.2	~	H, N	200	0	100	- 2,2	0,55	3	1,1	2,3	3.5+	1000				. 17		200	125	1,3	0,3		1

UNKTECHNISCHES FACHRECHNEN

Gleichspannungsverteilung bei Serienschaltung von Kordensatoren

Bei Verwendung von Kondensatoren wird häufig zur Erreichung höherer Spannungs-festigkeit von der Serienschaltung Gebrauch gemacht. In vielen Fällen wird dabei erwartet und irrümlich angenommen, daß die Spannungsfestigkeit sich immer aus der Summe der Spannungswerte der einzelnen Kondensatoren ergibt. Die Anwen-dung der bekannten Differential-Gleichung

CJ U = J . R + ~

238a

ergibt für den vorliegenden Fall $U_1:U_2=R_1:R_2$ °) d. h. die Spannungen an den Kondensatoren verhalten sich wie deren Isolationswiderstände. Die Gültigkeit dieses Verhältnisses erstreckt sich hierbei auf den Zeitraum des Ladevorganges, in dem praktisch kein Verschiebestrom mehr fließt. Die Verschiebestromzeit ist im allgemeinen jedach sehr kurz. Z. B. bei $1\,\mathrm{M}\Omega$ und $1\,\mathrm{F}$ ist $1=1\,\mathrm{sec}$. Für die Praxis ergibt sich, daß bei Serienschaltung von Kondensatoren durchaus der Fall eintreten kann, daß einer der beiden Kondensatoren die Gesamtspannung aufnimmt und damit entaegen dem beabsichtigten Zweck zerstört wird. Dabei kann jeder der einzelnen Kondensatoren durchaus hochwertig sein. wird. Dabei kann jeder der einzelnen Kondensatoren durchaus hochwertig sein- (Genügender Isol.-Widerstand.) Z. B. $R_{\rm C1}=50$ M $\Omega_{\rm c}$ $R_{\rm C2}=5$ M $\Omega_{\rm c}$ $R_{\rm C1}$ nimmt 90% der (Genugender Isol.-Widerstand.) Z. B. R_{c1} = 30 MM, R_{c2} = 3 MM, C₁ nimmt M^{1/6} der Gesamtspannung auf. Eine ungleichmäßige Verteilung des tsolationswiderslandes ergibt sich häufig durch ungleichmäßige Verschmutzung, Alterung der Kondensataren. Sikatrop- oder keramische Kondensataren sind oft in ihren relativ hohen Isolationswidersländen verschieden. Eine Abhilfe konn man dadurch schaffen, daß parallel zu jedem Kondensatar ein ohmscher Widerstand gelagt wird, der — sofern er im Vergleich zum Isolationswiderstand genügend-klein ist — von vorneherein für die richtige Spannungswerteilung sangt. Bei gleichen Spannungswerten der Kondensotoren werden also die Widerstandswerte gleiche Größe bekommen. Bei Ladeder Siebkondensatoren wird man Werte zwischen 100 kΩ und 1 MΩ wählen, Hierbei bleibt der zusätzliche Verluststrom nach innerhalb brouchbarer Genzen.

Ing. A. Konrad Ing. A. Konrad e) Vgl. Lieblang, ETZ/63 H. 33/34

Herausführen der Mitte des Heizfadens in der Mitte des Sockels, damit Verwendung in Geröten mit 6,3 V Transformator möglich.

dung in Geräten mit 6,8 V Transformator möglich. 3. Bei Herstellung einer Triode-Hexade G_{Tr} und G_{3Hex} innen nicht verbinden, da bei getrennter Herausführung mehrere Verwendungsmäglichkeiten, z. B., als Oszillotor- und Mischröhre, als getrennter Zf- und Nf-Verstärker, als Phasenschleber und Nf-Rähre. (Siehe Philips-Rährenbuch, 3. Band) Bei den deutschen Stahlköhren wird der benötigte weitere Socklatift frei, wenn man Kotode an den Stahlkolben legt, durch einfach anzubringende Feder am Sockel im Gerät wird Kontakt hergestellt. Eventuell auch Benützung des Führungsstiftes wie bei Braunscher Röhre AFG HR 1/60/0,5. Bei neuem Entwurf von Röhrensockeln lieber zuviel Anschlüsse vorsehen, nicht benötigte Stiffe können bei der Rähre weggelassen werden (Materiolersparnist). Einbaufassungen zo konstruieren, daß Nachbiegen oder Erneuern der Federn möglich wird!

lich wird

4. Verbundröhren vom Typ —CL (VCL—UCL—ECL 11) aufgeben, da fast alle klingen, brodeln, pfeifen oder schlimmere Geräusche von sich geben.
Röhren der Art —BL (UBL—EBL—CBL 1) zeigten sich als nicht so störanfällig, obwohl bei CBL 1 die Dioden manchmal Brumm aufnehmen. Günstigerer Aufbau und Abschirmung sind erforderlich.

Dec FUNKSCHAU-Vedag teilt mit:

Zur Zeit ist Heferbar:

PUNKSCHAU-Bauhett M. 1. Leistungs-Röhrenprüfer mit Drucktasten für Wechselstrom-Netz-anschluß. Von Ing. Erich Wrona. Mit 7 Abbildungen und 2 Beilagen. Röhrenprüf-gerät nach dem Leistungsprüfverfahren für alle Röhrentypen, d. h. für Zahlen- und Buchstabenröhren einschließlich Stahl- und Allglassöhren. 6 Drucktasten und über-sichtliche Wertetabelle ermöglichen Schnellprüfung der Röhren. 16 Seiten Din B. 5. 1947. Preis RM 3.50.

Bei jeder Bestellung ist genaue Berufsangabe erforderlich. Das FUNKSCHAU-Bauheft M 1 wird nur gegen Nachnahme oder nach Aufforderung gegen Voreinsendung des Betrages ausgeliefert. Von unaufgeforderten Überweisungen bitten wir abzusehen.

Mitarbeiter dieses Heftes:

Hubert Gibas, 15, 10, 1909, Theresienfeld; Walter Knorpp, 11, 8, 1906, Ludwigsburg; Wolf Gruhle, 23, 7, 1924, Heidelberg; Otto Limann, 19, 2, 1910, Berlin; Kurt Weinmann, 5, 12, 1922, Möglingen; Fritz Kunze, 12, 10, 1895, Berlin; Anton Konrad, 26, 9, 1911, Augsburg; Peter Lewis, 24, 2, 1917, Croydon.

Aus zeitbedingten Schwierigkeiten erscheint dieses FUNKSCHAU-Heft mit verringer-tem Umfang. Wir bitten unsere Lesor um Verständnis für die vorübergehende Umfangkürzung.

Chefredakteur: Werner W. Dielenbach, (13b) Kempien-Schelldorf (Aligāu), Kolterner-Str. 12. Fernsprecher 20.25. ihr den Anzeigenteil: Oscar Angerer, (14a) Stuttgart S., Mörikestraße 15 / Verlag: FUNESCHAU Verlag Oscar Angerer, (14a) Stuttgart-S., Mörikestraße 15 / Verlag: Funeschau Verlag Oscar Angerer, (14a) Stuttgart-S., Mörikestraße 15, Fernsprecher 20.25. ihr den Verlages: (13b) München 22, Zweibrückenstr. 8. und (1) Berlin-Südende. Langestr. 5 Drock: G Frans'sche Buchdrockerei G. Emil Mayer. Mönchen 2. Luisenstraße 17, Fernspreches 36 01 33 / Veröffenlicht unter der Zulassungsnummer US-W-1094 der Nischrichtenkonitelle der Militätereigerung / Erscheint monatlich / Auflage 20.000 / Zur Zeit nur dietekt vom Verlag zu besiehen. Vierteijahrasbeutzugspreis RM. 2.40 zuzüglich Versandesung / Einzelpreis 80 Rpf. Lieferangsmöglichkeit vorbehalten / Anzeigenpreis nach Pzeisliste 2 / Nachdrock sämilicher Aufsälze und Bilder — auch aussungsweise — nur mit ausdrücklicher Genehmigung des Verlages gestattet.

Wir suchen in allen vier Zonen für unsere Ringmitglieder

Weekstattleiter Radio-Instandsetzer Radio-Techniker

In fortschrittlich best eingerichtete Werkstätten. Geboten wird beste Bezahlung und gute Aufstiegsmöglichkeiten.

Nur Könner wollen sich melden bei

Funkberaterring Stuttgart-O, Werastr. 79

Rundfunkhändler, Rundfunkpraktiker

Kennen Sie schon die neuesten Schaltungen von

Ingenieur Alexander Frentzel München 54 - Feldmochinger Str. 25

Fordern Sie Musterschaftungen an Ein guter Verkaufsartikel für Ihr Fachgeschäft

Lätkolben

6 Volt, stromsparend konstruiert mit Kupfereinsetz sind bei Lieferhilfe von 2 m Kabelschnur und 2 Steckern abzugeben, Wiederverkauf, Rabatt. Angeb. unter A 2933 on Ann.-Exp.

H. BERNDT, GmbH., Nürnberg, Hefnersplatz 10

Ra Ha-Geräte:

Unser Lieferprogramm:
Widerstandsmeßbrücke O,1-1MOhm, Kapazitätsmeßbrücke, Gleichstrom-Vielfachmeßgeräte, Durchgangsprüfer, Widerstandsdekaden DRGM. ang., unentbehrlich für jede Reparaturwerkstatt, Wellenschalter, Schaltstufen einstellbar, 6 Bereiche, 16 Kantakte Skalen, Elektro-Fußbänke DRGM. ang.

RADIO-HARTMANN, GmbH., Nevenkirchen (Kreis Wiedenbrück)

FERROCART-Hochfrequenzeisen-Kerne Gewindekerne

für die gezomte Hochfrequenztechnik liefert an Industrie, Groß und Einzelhandels

Fränkische Rundfunk-Gesellschaft Nürnberg Emilianstraße 10 - Fernsprocher 51 505

Alleinvertretung für Boyern.

Auslieferungslager München: Gebr. Weller - Goethestraße 52 - Fernspreche: 70380

Röhrenregenerierung nach bewährtem Verfahren, alle Typen, bellebige Mengen. Lieferzeit 8-10 Tage. Umfangr. Erfahrungen sichern höchste Leistungsfähigkeit. Preisberechnung nur b. Erfalg. Bisher üb. 10 000 Röhren erfolgreich regeneriert. Sackel und Kappenreparaturen, Umsockein von Parallieltypen, Anfertig. von Austauschkambinat. (Wehrmachtsrähren usw.) Typen- und Verwendbarkeitsbestimmung bei unbekannten Röhren. Or. S. Wageener. Laboratorium für Rundfunk. Dr. S. Wagener Laboratorium für Rundfunkrähren GmbH., (20) Uetze Hann., Kirchstraße 17

Lautsprecher-Reparaturen

aller Systeme und Größen übernehmen wir jederzeit, haben als Spezialbetrieb jedoch einen solchen Auftragsbestand, daß Neueingänge erst nach den kommenden Wintermonaten fertig werden

Thomson-Studio Georgenstrafle 144/0

ELEKTRO-PHYSIK

H. Nix u. Dipt.-Ing. Steingroever Elektr. u. physikal. Instrumente, Geräte f.d. Magnettechnik

Lieferb. Magn. Meßgeräte, Entmagnetisierungsgeräte f. Werkzeuge u. Uhren, Spannungsprüfer

Köln-Nippes, Ebernburgweg 27

HANS A.W. NISSEN

HAMBURG 1 Meßberg 2

R. C. MeBbrücken Kowi I und Kawi 2 lieferbar. Röhrentabellenbücher Röhrentobellenbücher für alle engl., amer., deutsch. und kommerziellen Röhren. Detektorkristalle, Elra-Zimmerant. mit Bananenstedker, Schaltdraht in Enden, Feinsicherungen, Blacks, Widerstände, Skalen. Chassis is kleinen Mengen, Schaltbilder für 1- und 2-Kreiser.
Umschaltungen für

Verkauf nur an zuge-lassene Händler

Umschaltungen für RV 12 usw.

Funkberater TILGNER

sämtl. Elektro-Art.

(Bad Margentheim

Rundfunkteile und Röhren aller Art -Lautsprech., Elkos, Drehkos, Widerst., Trafos, Detektor., Phonoartikel usw auch Rähren 12 P 2000-2001-LD 2 u. a. nebst Sockeln. Elektr. Maschinen und Werkzeuge,

Sucht laufend:

Angabota erbetan

Wir llefern: HochwertigeSpulensätze mit auserwählten HF-Eisen und mit HF-Litze - bewickelt: Einkreiserspulen für KM-Welle, Typ EST Zweikreiser-Sätze f. KML-Welle, Typ ZST in Abschirmbechern

beschränkt lieferbar:

Präzisions-Supersätze für KML-Welle für 6- v. 7-Kreis-Super, mit Abschirmbechern vollständiger Calit-Kondensator-Bestückung und Wellenschalter

Wir suchen: Nietlötösen, Hartpapier 1,5 bis 2 mm

PUNDFUNK - FINZFITFUE - FARRIKATION

Inh. Ing. L. Bindereder (13 b) Traunstein · Obb.

ALLEINVERTRIEB

Ludwig Strecker

Radio- und Elektrogroßhandlung, München Walchenseeplatz 16

Reparatur von Tonfilmanlagen, Tonfilmverstärkern, Geräten, Lauisprechern, Tonfilm-Zubehör - Reparatur und Neugniertlaung

J. MESKES - VIERSEN, Rheinland

Rundfunkmechanikermeister

Werkstätte für Rundfunk- u. Tonfilmtechnik

ROHREN REGENERIERT:

Vorerst die Typen 0,34, 0,74, 0,84, 134, 164, 604, AD 1, 1374 d. 354, 504, 564, 1064, AZ 1, AZ 11 und ähnliche nach bewährtem eigenen Verfahren zum Preise von RM. 5.50 bis RM. 7.50 Funktechn. Werkstätte, Radiorep. afler Fabrikate

HERIBERT HARTUNG

Rundfunkmachaniker - Meister Käln-Neu-Ehrenfeld . Rektor-Schmitz-Straße 24

Volldynamische Lautsprecher

gegen Lieferung von Lackdraht in beschränk-tem Umfang lieferbar.

Drehkondensatoren

360 pf. einfach und zweifach ebenfalls in beschränktem Umfang ahne Materialgegenlieferung lieferbar.

Eggers & Mayer, Böhen/Allgäu

Alete: Lagenspulenwickelmaschine für Drahtstärken v. 0.05 bis 0.7 mm

Röhren RV12 P 2000

Angeb. unt. Nr.1050 D.

RADIO-MATTNER **CUXHAYEN**

sucht laufend: Röhren, Rundfunkteile aller Art. Elkas, Drehkas, Trafos, Spulen usw.

Angeb. unt. Nr. 1060 M

Lautsprecher

aller Systeme versehen wir mil neuen Mem bianen, Spinpen u. Tauch spulen innerhalb v. 14 Tag.

Annahme tür Werkstätten und Privat.

Radio-Menge WANNE-EICKEL Richard-Wagner-Str. I macht die Musik -

auch beim Blokauf ! Radiohme hålt auf guten Ton und sucht gleichgesinote Lieferanten idr alles, was zum Fach ge-hört! Radio-Böhme hat einen großen, aber soliden Kunden-stemm. Der ermöglicht i' in Zukunft für zuverlösi Stammkunde zu sein l

> Unternehmen, die auf goten Ton halten und Wert auf zu-kun fisträchtige Geschäftsverbindung mit Radio-Böhme legen, achreiben bitte an:

RADIO-ING. BEHME Rundfunk · Großhandlung (24) NEUSTADT/Holstein

Heidrich-Gesellschaft m.b. H. Bamberg

· HGB · Apparatebau Rauelemente der Schwachstiom-Technik

Großbandel für Rundfunk- und Elektro-bedarf, leinmechanische und elektrische Meßinstrumente - Reparaturen

Verwaltung und Betrieb I, Bamberg, Urbanstr. 12 Tel. 271, Betrieb 2, Nürnberg, Schoppershotstr. 56a Betrieb 3, Wabern/Kassel, Bahahatstraße Nr. 10

Rundfunk-Werkstätten!

Ich übernehme die Modernisierung Ihrer Einrichtung, den Entwurf von Prüf- und Meßgetäten nach ihren Wünschen. Berechnungen aller Att, Gleichlaufberechnungen auf mathematischer Grundlage usw. werden ausgeführt. Reparatur von vorhandenen Geräten.

Hans Estinger, ing.-Büro für Hochtrequenztechnik 20 Honnover-Limmer, Brunnensir. 20. Tel. 2 54 46

Quarz-Messender Type UEP/W

Mefibereich 100 kHz bis 25 MHz - Genauigkeit + 5 x 10-5 - Netzanschluß 110 und 220 V Wechselspannung -Eingebaute Modulation und Fremdmodulation - Regelbare Ausgangsspannung - Eingebaute künstliche Antenne - Erforderliche Röhre: EF11, EF12 oder EF13 - Komplettes Zubehör f, Rundfunkinstandsetzung, Einfache Handhabung - gr. Betriebssicherheit Bitte Liste anfordern

HEINZ EVERTZ

Piezoelektrische Werkstötte Stockdorf b. München, GautingerStraße 3 Fernancher: Nummer 89477