

LE HAUT-PARLEUR ISOPHASE
LES INTERFACES C.G.V.

5 REALISATIONS DONT:
EXPANSEUR STEREO 3810
VARIATEURS D'ECLAIRAGE
MINI CLOTURE ELECTRIQUE

N° 22

Société éditrice : Editions Fréquences

Siège social : 1, bd Ney, 75018 Paris Tél, (1) 607 01 97 + SA au capital de 1 000 000 F Président-Directeur Général Edouard Pastor

LED

Mensuel 16 F Commission paritaire : 60949 Directeur de la publication Edouard Pastor Tous droits de reproduction réservés textes et photos pour tous pays LED est une marque déposée ISSN 0743-7409

Services **Rédaction-Publicité Abonnements :** (1) 607 01.97
Lignes groupées
1 bd Ney, 75018 Paris

Rédaction :

Directeur technique :
Bernard Duval assisté de Jean
Hiraga
Secrétaire de rédaction :
Chantal Cauchois
assistée de Marianne Bergère
Réalisation graphique
Serge Fayol
Ont collaboré à ce numéro : Guy
Chorein, Jacques Bourlier, C. H
Delaleu. P.F., Jean Hiraga, Gilles
Ledoré, Florence Lemoine, C. De
Linange

Publicité

Directeur de publicité : Alain Boar Secrétaire responsable Annie Perbal

Abonnements

10 numéros par an France : 140 F Etranger : 210 F

Petites annonces

Les petites annonces sont publiées sous la responsabilité de l'annonceur et ne peuvent se référer qu'aux cas suivants offres et demandes d'emplois offres, demandes et échanges de matériels uniquement d'occasion offres de service Tarif 20 F TTC la ligne de 36 signes

Réalisation-Composition-Photogravure Edi'Systèmes

Maquette: Pierre Thibias Impression Berger-Levrault - Nancy 4

LED VOUS INFORME

L'actualité du monde de l'électronique, les produits nouveaux

CONSEILS ET TOUR DE MAIN

Pas de bon ouvrier sans bons outils et pas de bons outils sans bon artisan.

EN SAVOIR PLUS

SUR LES AMPLIS OPERATIONNELS

Qu'il s'agisse d'électronique basse-fréquence, de métrologie ou du numérique, l'amplificateur opérationnel s'utilise à toutes les sauces.

18

EN SAVOIR PLUS SUR LE HCF 4047

De technologie monolithique à haut degré d'intégration, c'est un circuit C-MOS renfermant un multivibrateur pouvant aussi bien fonctionner en astable qu'en monostable.

7272

EN SAVOIR PLUS SUR LES HAUT-PARLEURS ISOPHASE

Les laboratoires de recherches Philips ont mis au point des haut-parleurs à ruban pour les tonalités aussi bien aiguës que moyennes 25

RACONTE-MOI LA MICRO-INFORMATIQUE

Lecteur de disques souples (Floppy disks). Les avantages des disques souples sur les cassettes sont nombreux.

LES INTERFACES C.G.V.

C'est près de 200 000 foyers français (DOM-TOM compris) qui utilisent un petit boîtier salvateur de C.G.V.

410

EXPANSEUR STEREO

L'expansion stéréo est produite ici par un effet de phase. Le circuit permet d'obtenir une autre fonction, celle de la pseudostéréophonie.

55

BALISE FLASH ROUTIERE

La balise flash routière à éclats décrite ici est portative. Elle fonctionne avec quatre petits accus qui lui confèrent une bonne autonomie. De faibles dimensions et poids, elle se logera facilement dans la boîte à gants ou dans la sacoche outils du véhicule.

KIT: VARIATEURS

VARIATEURS ELECTRONIQUES D'ECLAIRAGE

Les deux appareils proposés dans cet article permettent la variation continue de l'éclairage, de l'extinction à l'allumage total pour toutes ampoules 12 V de petite puissance

64

KIT : MINI CLOTURE ELECTRIQUE

Cet article est plus particulièrement dédié aux lecteurs jardiniers ou paysans d'un jour pour lesquels une petite cloture électrique peut s'avérer d'une grande utilité

7/2

KIT: AMPLI AVEC LOUDNESS

Grâce au loudness, le triangle et les cymbales se détachent sur les basses profondes qu'aucun ampli non corrigé ne peut restituer sans pousser la puissance à fond

76 MOTS CROISES

GRAVEZ-LES VOUS-MEME

Un procédé qui vous permettra de réaliser vous-même, en très peu de temps, nos circuits imprimés.

Dans une chaîne haute fidélité, la table de lecture prend une importance prépondérante dans le résultat qualitatif global. Le choix de différents paramètres, l'utilisation, les divers réglages de la table de lecture contribuent à l'optimisation de son système.

Lorsque l'on envisage l'achat d'une chaîne haute fidélité, il est normal de rechercher, en fonction d'un budget donné, la meilleure qualité possible. Dans la réalité, une quantité impressionnante de paramètres vont jouer sur le pourcentage de réussite, du moins si l'on recherche une qualité de reproduction réellement bonne sur le plan subjectif, musical. Simplifier les choses en se fiant au nombre d'étoiles attribuées à certains appareils par des organismes ou des chaînes de magasins, présente certains risques, à partir du moment où la responsabilité du vendeur n'est pour rien dans l'obtention évidente de mauvais résultats En effet, de bons maillons, sur le plan technologique ou des performances de mesure ne conduisent pas toujours à un résultat subjectif satisfaisant, ceci concerne aussi bien un maillon pris seul qu'un assortiment donné de maillons formant une chaîne complète.

Une des clés de la réussite dans ce domaine est très certainement une bonne adaptation des enceintes au local d'écoute ainsi que la recherche d'une enceinte d'un niveau qualitatif égal ou même supérieur à celui des autres maillons.

Vient ensuite la recherche d'une bonne adaptation amplificateur/enceintes sur les plans pratique, technique comme subjectif.

Cependant, le résultat final dépend aussi de la qualité de la source appliquée à l'entrée du préamplificateur. Le disque, l'entrée phono sont souvent les plus utilisés et nécessitent donc un soin particulier quant au choix, aux réglages ou au mode d'utilisation de la table de lecture

LE CHOIX DE LA TABLE DE LECTURE

Il n'est pas des plus simples et demande un certain temps de réflexion avant toute décision. Sur le plan esthétique, rien ne vaut, bien sûr, un ensemble assorti, de type rack ou «Midi». Sur le plan des mesures, il n'y a également rien à dire ou presque, vu que les performances en pleurage, scintillement, en rapport signal/bruit sont dans la presque totalité des cas largement suffisantes. On peut en effet trouver à partir de 600 F des tables de lecture à entraînement direct équipées de cellules à aimant mobile, ce qui aurait été considéré il y a quinze ans comme un maillon de sophistication poussé, surtout par rapport aux vieux «Teppaz» de l'époque. Théoriquement et surtout pour une application domestique courante, les tables de lecture actuelles de prix voisinant les 1000 F devraient suffire amplement. N'oublions pas que, selon les statistiques, chaque français ne posséderait que trois disaues et demi...

La table de lecture d'une chaîne Midi, d'un petit ensemble valant entre 5 000 et 6 000 F permet d'ores et déjà d'obtenir en pleurage et scintillement une valeur de 0,01 à 0,02 %, parfois même moins. Du côté du rapport signal/bruit on dépasse facilement les 50 dB en pondération A, ce qui ne pose plus de problèmes de bruit de fond dans le cadre d'une utilisation courante. Sur le plan subjectif, il en est cependant bien autrement. En effet, lorsque des écoutes comparatives de différentes tables de lecture sont effectuées sur un système de qualité, on pourra remarquer dans plusieurs cas, une mauvaise corrélation mesures/écoutes. L'équilibre tonal diffère d'un modèle à un autre, ceci même en utilisant le même phonolecteur.

Selon le modèle, le secteur médium-aigu, aigu ou extrême aigu peut donner l'impression d'être atténué, normal ou prononcé, ce que peut confirmer facilement l'écoute du bruit de surface d'un disque. Une écoute plus attentive permettra de se rendre compte que dans les registres de grave et de basmédium l'amplitude subjective

pourra paraître également plus ou moins prononcée, certaines tables de lecture allant jusqu'à provoquer une sorte «d'effet physiologique», creusant le médium et amplifiant le secteur grave.

Une expérience intéressante pourrait expliquer ces phénomènes. Elle consiste à écouter, sur différentes tables de lecture, le bruit émis directement par la pointe lectrice lisant le sillon du disque, produisant un phénomène vibratoire se propageant dans toute la table de lecture.

Ce bruit appelé en anglais le «needle talk», le «bruit d'aiguille», est en fait le bruit généré par toute la table de lecture: porte-cellule, bras, plateau, socle, disque.

Des essais comparatifs montrent que le type de bruit, le niveau sonore obtenu directement varient sensiblement d'une table de lecture à une autre, d'un phonolecteur à un autre, d'un bras de lecture, sans pour autant que l'on puisse trouver une corrélation étroite entre ces constatations et les répercussions de celles-ci sur la mesure.

N'oublions pas que sur un disque microsillon la pointe lectrice doit pouvoir capter fidèlement et sans effet parasite des modulations dont l'amplitude de gravure peut être égale ou inférieure au micron et qu'un bruit de surface, un bruit de fond (bande magnétique ayant servi à la gravure) peut correspondre à une amplitude vibratoire modulée ne dépassant pas 0.5 micron. Ceci paraît bien peu, surtout par rapport au niveau acoustique, qui tout en étant faible et néanmoins audible, signifient du même coup que beaucoup d'autres éléments autre que la pointe lectrice ne sont ni acoustiquement inertes, ni parfaitement stables. Aussi insignifiantes ces vibrations parasites puissentelles paraître, aussi insignifiantes le sont également celles contenues dans des sillons de

Choix des différentes possibilités, performances, fiabilité, service après-vente

moins de 1/10° de millimètre de large.

N'oublions pas non plus la complication apportée par la gravure stéréophonique.

Si le choix peut concerner l'esthétique, comme cela a été indiqué au début de l'article, il doit concerner aussi les performances mesurées, les performances subjectives (plus difficiles à bien cerner), la fiabilité, les problèmes relatifs au service après vente. Normalement, un constructeur doit tenir en stock, pendant dix ans au moins, les pièces détachées nécessaires à l'entretien, à la réparation des tables de lecture. Si c'est le cas pour des marques européennes comme Thorens, ce n'est peut être pas le cas d'autres petits artisansconstructeurs, la faillite de l'un d'entre-eux signifiant du même coup un problème de maintenance pour beaucoup d'utilisateurs. Cependant, ce n'est pas en se réfugiant auprès d'une grande marque que l'on se sentira en sécurité pour autant. Un ou deux changements successifs d'importateur pour une même marque peut suffire pour rendre introuvables certaines pièces de rechange d'anciens modèles.

Encore plus décisif est l'argument du prix, lequel va fortement influencer l'acheteur.

Les performances, les gadgets, la finition, l'esthétique ainsi que le prix sont les principaux arguments publicitaires d'une table de lecture. Autrefois, le gadget était onéreux, en grande partie destiné à permettre de vendre un peu plus cher. Aujourd'hui, il en est bien autrement vu qu'entre 1 000 et 2500 F on peut trouver des tables de lecture à entraînement direct équipées d'un bras radial, d'un système de levée, de pose, de retour automatique du bras et de recherche automatique du premier sillon du disque. Certains appareils possèdent même un système de recherche automatique des plages avec possibilité de mise en mémoire, de répétition. Cer-

Table de lecture Kenwood KD 770

tains de ces gadgets sont très utiles et évitent notamment les risques de rayure du disque lors de la recherche manuelle d'une plage donnée sur un disque. De même, les commandes frontales permettent une manipulation facile et sans risque de contact accidentel avec le bras en position de lecture. Les autres gadgets courants sont le réglage de vitesse, le stroboscope, le niveau d'horizontalité, les indications lumineuses de diverses fonctions. D'autres visent un côté plus fonction-nel: possibilité de retirer le capot, dimensions totales très réduites (certaines séries de Technics par marques exemple), bras et plaquette supportant le bras interchangeable, suspensions plus ou moins sophistiquées découplant la table de lecture des vibrations parasites pouvant

provenir du sol (ou des enceintes).

Lors du choix de la table de lecture, il est important de savoir si l'on souhaite améliorer ultérieurement celle-ci ou non. En effet, le bras de lecture n'est pas toujours interchangeable de même que son porte-cellule. Même si le bras est interchangeable, la longueur variable des bras disponibles dans le commerce peut poser des problèmes d'emplacement, en particulier du côté du contrepoids. N'oublions pas que l'association de différentes cellules et porte-cellules de poids très différents peut produire, lors du réglage d'équilibre du bras, un déplacement plus ou moins grand du contrepoids principal, empêchant la mise en place du

D'autre part, si le choix se porte sur une table de lecture à bras interchangeable, cet avantage exclut du même coup tout système d'automatisme tel que la pose, l'arrêt et le retour automatique du bras. Si le choix se porte vers une table de lecture grand public à bras tangentiel, le bras, de toute évidence ne sera pas interchangeable et la cellule, au standard de fixation dit «T4P» ne pourra être remplacée que par une autre cellule de même standard.

Pour ce qui concerne les tables de lecture à bras radial intégré, l'avantage dù à l'absence d'erreur de piste peut avoir en contrepartie d'autres désavantages, en particulier lorsqu'il s'agit d'appareils dits «Grand Public». En effet, la mécanique de haute précision d'un vrai bras radial peut se trouver fortement appauvrie dans le cas où le problème du coût de revient est primordial. Des rails

Le choix de la table de lecture Les règles à suivre

usinés au micron près, on peut passer ainsi à la matière plastique moulée, aux tôles pliées, aux techniques d'asservissement rudimentaires.

Dans les cas extrêmes, la pauvreté de la mécanique sur le plan de la rigidité mécanique est telle que tous les avantages du bras radial peuvent s'en trouver perdus ou presque. Sur les tables de lecture de bas de gamme équipées d'un entraînement direct, l'emploi des fines tôles embouties, des châssis en plastique injecté permet d'obtenir une très belle finition, ce qui est le cas des appareils d'origine japonaise. Cependant, sur 90 % des tables de lecture «Grand Public», il suffit d'appuyer verticalement sur le bord du plateau pour constater jusqu'à quel point le manque de rigidité (fixation du palier) fait fléchir ce plateau, ceci au point de croire à un système monté sur un ressort travaillant en torsion. Bien entendu, ce genre de faiblesse n'apparaît que peu (ou pas du tout) lors de la mesure, bonne finition et bons résultats de mesure pouvant mener à des conclusions un peu hâtives. En résumé et en se basant sur deux types de modèles, les modèles «Grand Public» d'une part et les modèles de Blus haute prétention mais de prix encore abordable les avantages et les inconvénients pourraient se résumer comme suies de plus haute prétention mais de prix encore abordable les avantages et les inconvénients pourraient se résumer comme

TABLES DE LECTURE «GRAND PUBLIC»

Avantages:

- Haute technicité (moteur à entraînement direct, moteur servo-régulé, automatismes divers, bras radial, asservissements).
- · Finition.
- Fiabilité (dans la plupart des
- Service après vente.
- · Performances de mesure.
- Possibilités et maniabilité.
- Dimensions réduites (version | rigide

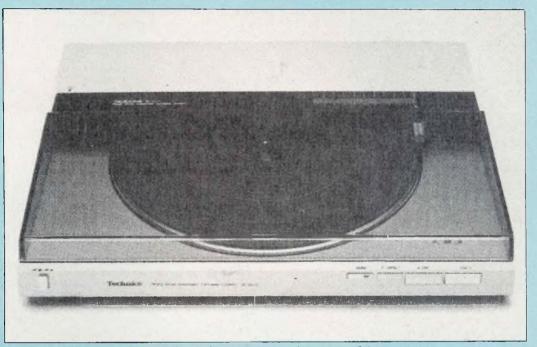


Table de lecture Technics SL-DL5 à entraînement direct et bras tangentiel

Mini ou Midi).

• Prix.

Inconvénients:

- Utilisation généralisée de la matière plastique, des tôles embouties.
- Pauvreté de la rigidité mécanique dûe aux matériaux employés, à la limitation du prix de revient.
- Plateaux légers ou très légers (300 g à 800 g dans la plupart des cas).
- Bras de lecture non interchangeable et (souvent) de qualité médiocre.
- Porte cellule (souvent) non interchangeable.
- Changement fréquent de modèle (dans la plupart des cas).
- Impossibilité d'apporter une quelconque amélioration ou d'effectuer une modification.
- Mauvaise protection contre les vibrations provenant du sol (dans certains cas).
- · Fragilité (dans certains cas).
- Palier fixé sur un support peu rigide.

TABLES DE LECTURE «HAUT DE GAMME» MOINS DE 10 000 F)

Avantages:

- Performances subjectives (dans une bonne majorité des cas).
- Emploi de matériaux plus lourds, plus massifs ou acoustiquement plus neutres (dans la majorité des cas).
- Plateau plus lourd, plus massif (dans presque tous les cas).
- Palier fixé sur un support plus rigide (dans la plupart des cas).
- Bras et support de bras interchangeables (dans la plupart des cas).
- Améliorations, modifications possibles (dans la plupart des cas)
- Changement peu fréquent de modèles (assez généralement).
 Porte cellule de qualité (sou-
- Porte cellule de qualité (souvent).
 Bon découplage mécanique par rapport au sol (souvent).

•Socie rigide et massif (dans presque tous les cas).

Inconvénients:

- Prix (plus élevé que celui du matériel «Grand Public».
- Finition moyenne, parfois médiocre (dans certains cas).
- Automatismes absents (presque toujours).
- Performances de mesures moyennes ou même passables (dans certains cas).
- Service après vente médiocre (dans quelques cas).
- Notices, modes d'emploi absents, trop simples ou mal traduits (quelquefois).
- Difficulté de trouver des pièces de rechange après un certain nombre d'années (8 à 10 ans par exemple).
- Niveau technologique peu poussé (bras, moteur).

Pour ces deux types de table de lecture, les avantages et les inconvénients offerts par chaque modèle rendent le choix assez difficile. Si l'on ne souhaite effectuer aucune modifi-

Table de lecture Dual 505-2. Petit prix, mais bonnes performances

Platine tourne-disque Kenwood P-5D

cation ou amélioration ultérieure, si l'on est attiré par les systèmes automatiques, programmables et par certaines innovations techniques, le tout pour un prix raisonnable, on peut choisir des tables de lecture automatiques ou semiautomatiques équipées d'un bras radial, telles que celles offertes par Technics (SL-3, SL-6, SL-15, SLQ-6) ou par d'autres concurrents japonais. Pour ce qui concerne les versions «Grand Public» de qualité, certains modèles sont de très bons compromis, tels que ceux proposés par Thorens (TD 160 Super), par Dual (CS 505-2), par Kenwood (KD 770D), par Walkler (Grande Bretagne, modèle CJ 61) ou par quelques autres marques, le tout restant d'un prix raisonnable. Malgré un prix très attrayant, parfois situé au-dessous de 1 000 F, il est préférable de délaisser certaines fins de séries proposées par des soldeurs. Le service aprèsvente peut s'avérer difficile, voire impossible ou encore très onéreux.

Ajoutons que le support sur lequel sera posée la table de lecture doit être stable, rigide et acoustiquement neutre. Certains modèles, utilisant une contre-platine suspendue doivent être posés sur un support parfaitement horizontal et réglé (ressorts, suspensions, amortisseurs), un niveau d'eau étant très pratique lors de cette mise au point. D'autre part, des accessoires de prix élevés, tels qu'un couvre-plateau aspirant (valant près de 2 000 F) ne sont recommandés qu'à partir du moment où le reste des maillons en «vaut la peine», le rapport performances/prix devant être considéré dans son sens le plus large.

Dans un magasin, n'oublions surtout pas qu'un bon vendeur va toujours essayer de persuader son client par tous les moyens, au risque de lui faire oublier pendant quelques instants (ceux qui se concluent par la décision d'un achat) quelques points essentiels dont il a été question ici. Jean Hiraga

L'AMPLIFICATEUR OPERATIONNEL

Nous avons décrit les applications générales de l'amplificateur opérationnel. Aujourd'hui, nous abordons un sujet délicat qui concerne les étages d'entrées d'appareils de mesure ou d'acquisition. Le mois prochain, nous étudierons les amplificateurs à transconductance.

ous avons vu, le mois dernier, que l'amplificateur opérationnel présentait une entrée haute impédance, ainsi qu'une sortie basse impédance. Nous avons trois possibilités pour câbler l'entrée d'un amplificateur opérationnel :

— entrée inverseuse + masse ;

— entrée non inverseuse + masse;
 — entrée inverseuse + non inverseuse → entrée différentielle

Le raccordement de liaisons extérieures à l'entrée d'un appareil électronique est plus délicat que ne le pense la majorité des électroniciens amateurs. Il y a à cela deux raisons principales :

— le bruit et les parasites industriels :

— la tension de mode commun. A ces deux problèmes généralement ignorés s'ajoutent trois autres nécessités concernant l'adaptation.

IMPEDANCE

Si l'adaptation d'impédance entre deux appareils ne se pose plus pour des appareils achetés dans le commerce, certains oublis peuvent provoquer des catastrophes chez l'amateur bricoleur. Idéalement, la sortie de l'appareil à brancher est nulle, et l'entrée du receveur est infinie. Pour éviter ce genre de problème, il est souhaitable d'utiliser en entrée ou sortie d'appareil des étages d'adaptation, ex.: montage suiveur.

COUPLAGE CAPACITIF

Un couplage capacitif peut prendre naissance entre deux câbles, d'où l'intérêt d'utiliser sur chaque câble un écran par gaine métallique tressée et isolée (capacité en moyenne de quelques pico-farads au mètre). Ce couplage provoque une atténuation des fréquences hautes dans la courbe de réponse du système.

COUPLAGE INDUCTIF

Un couplage inductif peut prendre naissance entre le câble de mesure et les autres câbles avoisinants. Dans ce cas, il est conseillé d'utiliser des fils torsadés. Ce couplage provoque une erreur de mesure (intensité parasite).

NIVEAUX D'ENTREE

Entrée haut niveau

Une tension haut niveau peut être câblée directement sur un amplificateur référencé à la masse (un seul câble).

Entrée bas niveau

Une tension bas niveau est câblée par deux ou trois fils :

deux fils : câblage simple, un conducteur plus la masse (blindage),

trois fils : entrée différentielle plus masse.

TENSION DE MODE COMMUN

Dans un montage où la tension de mesure V_m est la tension différentielle entre deux conducteurs :

$$V_m = V_A - V_B$$

La tension de mode commun représente la valeur de tension commune à V_A et V_B et n'est support d'aucune information.

Généralement, on peut combattre cette tension par le montage suivant :

$$V_{CM} = \frac{V_A + V_B}{2} = V_A = V_{CM} + \frac{V_M}{2}$$

$$et V_B = V_{CM} - \frac{V_M}{2}$$

On peut respecter cette tension en l choisissant autant que possible $R_1 = R_2$ et R_3 , R_4 infini.

La tension de mode commun peut être générée soit :

- par l'alimentation ;
- par la masse.

ALIMENTATION

Une tension de mode commun peut prendre naissance lorsque la tension de mesure est la tension différentielle entre deux points dont le potentiel possède un terme commun déterminé par la valeur de la tension d'alimentation.

MASSE

Un défaut de référence à la masse provoque une tension de mode commun. En effet, entre deux points de mise à la masse géographiquement éloignés, existent :

- une force électro-motrice due aux parasites et inductions;
- une impédance de masse ZM de l'ordre de l'ohm.

Il est donc nécessaire d'utiliser en entrée de montage un amplificateur d'isolement dont l'étage est composé d'un amplificateur opérationnel câblé en montage différentiel.

GARDE

La garde peut résoudre les problèmes dus au mode commun. Toutefois, il se paie par un câblage un peu plus sophistiqué. Dans un montage à entrée différentielle plus masse, nous aurons donc trois contacts. Avec la garde, nous en obtenons un quatrième. En fait, dans le premier cas, les trois contacts sont séparés par deux impédances respectives Z₁ et Z_2 .

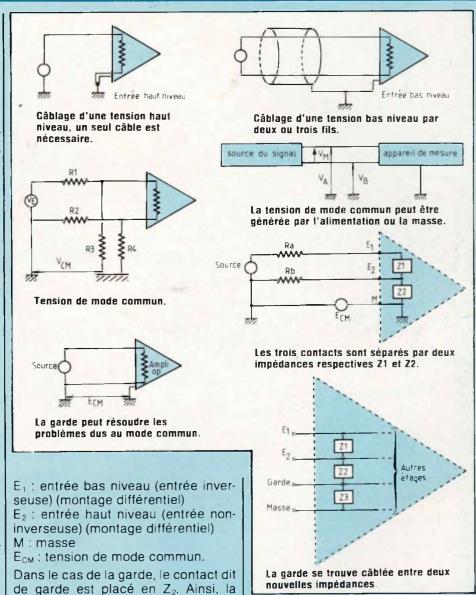
nouvelles impédances.

mun est annulée.

La garde divise donc l'entrée bas

niveau de la masse dans une série de

deux impédances Z₂ et Z₃. Ceci aug-


mente l'impédance et diminue la

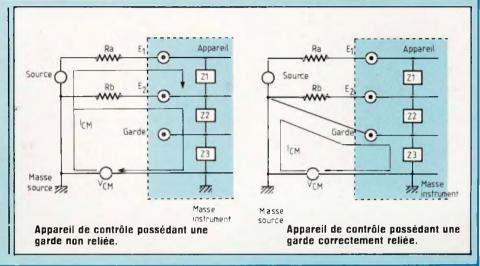
capacité générale, ainsi l'étage

d'entrée devient une charge bien

meilleure, la tension de mode com-

Ra: résistance source haute Rb: résistance source basse

SENS DES INTENSITES **PARASITES**


Soit une entrée d'un appareil de contrôle possédant une garde non reliée, nous avons (voir schéma page suiv.). Soit une entrée d'un appareil de contrôle possédant une garde correctement reliée (voir schéma page suiv.).

L' AMPLIFICATEUR OPERATIONNEL

CONCLUSION

Comme nous pouvons l'observer, avec une prise de garde correctement réalisée et reliée, l'intensité de mode commun ne passe plus entre les deux entrées différentielles, il n'y a donc plus d'intensité parasite, l'acquisition de signal ainsi obtenue est fiable. Il est possible de réaliser à l'aide de ce montage des performances tout à fait exceptionnelles. En effet, un appareil ainsi équipé, peut rejeter le mode commun de plus de 160 décibels et ainsi procurer un niveau de bruit à l'entrée du circuit hors du commun. A suivre...

C.·H. Delaleu

__electro-puce.

MOTOROLA	prix T.T.C.
6800	37,50
6802	36.50
6809	69.00
68B09	136.50
6821	19.50
6840	41.00
6845	85,50
6850	19.50
68000P8	366,50
EFCIS	prix T.T.C
9340	64,00
9341	79,00
9364	97.00
9365-66	373,00
9367	455,00
7910	464.00
MÉMOIRES	prix T.T.C.
4116	17,00
4164	75,00
4416	75,00
2716	35.00
2732	60.00
2764	110,00
6116	125,00
5565 pour X07	500,00
WESTERN DIGITAL	prix T.T.C.
1771	225.00
179x	265,00
279x	520,00
9216	125,00

SPECIALISEE EN ELECTRONIQUE NUMERIQUE

Programmateur, Duplicateurs d EPROM.

Supports, Connecteurs: 3M. TB & OEC, AUGAT, EMC
 Claviers, Ecrans SUD-ALIM, ZENITH

- Coffrets et Cartes Format Europe : EUROBOX, KF.

Transferts MECANORMA Electronic

OFFRE SPÉCIALE réalisez votre JUNIOR COMPUTER

850 FT.T.C. 64 K

- 1 x 6502, 2 x 6522, 1 x 6551, 2 x 2732, 2 x 6116, 1 x 6845, 8 x 4116 ou 8 x 4164

les cartes CPU, VDU, mémoires
3 x connecteur Europe mâle

Support Double Lyre: 0,10 F la Broche

Vente par correspondance (frais d'envoi : 15 F pour les C.I.)

INTEL 8085 8088 8031 8251-53 8255 8259 8272 8279 82720	prix T.T.C. 70,50 175,00 165,00 62,00 60,50 78,50 265,00 69,50 710,00
ROCKWELL 6502 6522 6532 6545 6551 65C 02 version A	prix T.T.C 75,00 66,00 83,00 114,00 79,00 134,50 + 10 %
GI KB 3600 AY3-1015	92,50 66,00
RCA 1802	100,00
ZILOG Z80 4 MHz CPU CTC PIO DMA SIO	prix TTC 38,50 38,50 38,50 38,50 111,00 102,50

4, rue de Trétaigne 75018 PARIS M° Jules Joffrin Tél.: (1) 254.24.00
Heures d'ouverture: 9 h 30-12 h - 14 h-18 h 30 du lundi au samedi

savoir plus

LE HCF 4047B

Le circuit intégré 4047 B est présenté dans un boîtier plastique Dual in Line à 14 broches. De technologie monolithique à haut degré d'intégration, c'est un circuit C-MOS renfermant un multivibrateur pouvant aussi bien fonctionner en astable qu'en monostable. Le brochage d'un tel circuit est donné à la figure 1.

uivant les connexions réalisées au niveau du brochage, six fonctionnements différents peuvent être envisagés. Nous donnons cidessous les limites maximum d'utilisation.

HCF 4047 B SGS/ATES

Tension d'alimentation : -0.5 V à 20 V

Tension d'entrée : −0,5 V à U ali-

mentation + 0,5 V

Courant d'entrée : ± 10 mA Dissipation maximum : 200 mW Température maximale de fonction-

nement: -40° Cà +85° C

En fait, et pour une utilisation simplifiée du composant, la tension d'alimentation devra se trouver située dans une fourchette de 3 à 18 V, ce qui définit une tension d'entrée comprise entre 0 V et la tension d'alimentation.

Le lecteur trouvera à la figure 2 l'organigramme complet de ce circuit intégré. Comme nous le voyons, que l'on utilise le mode de fonctionnement en astable ou bien celui en monostable, deux éléments extérieurs seulement sont nécessaires pour le fonctionnement.

Il s'agit d'un circuit à constante de temps RC constitué tout simplement d'une résistance et d'un condensateur. L'ensemble sert à déterminer selon le cas de fonctionnement, soit la fréquence en sortie de l'astable, soit encore la durée du créneau de sortie du monostable.

Les connexions à réaliser entre les différentes broches du circuit afin de l'utiliser dans les différentes configurations possibles sont données dans le tableau ci-contre.

Comme nous le voyons sur ce tableau, le multivibrateur astable peut être utilisé de trois façons différentes en agissant sur les deux entrées complémentaires E_1 et E_2 permettant sa commande. On recueille le signal de sortie sur les deux sorties complémentaires Q et Q ainsi que sur S_0 dont la fréquence est double.

On a ainsi:

 Astable commandé par un état haut

Astable commandé par un état bas

Astable battant librement.

La période du signal de sortie obtenu sur les broches complémentaires Q et Q est donnée par la formule :

$$t_A = 4.4 \cdot R \cdot C$$

s $\Omega \cdot F$

Comme le rapport cyclique de ce signal vaut rigoureusement 50 %,

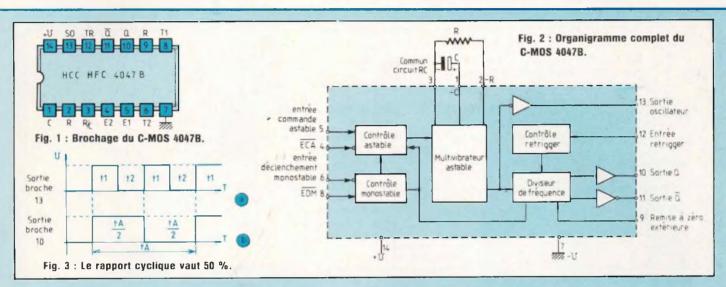
$$t_1 = t_2$$

et nous obtenons le signal donné à la figure 3a pour la broche 13 et 3b pour la broche 10.

En tout état de cause si la formule $t_A=4,4$ RC est utilisée, le maximum de variation de la fonction de transfert en tension (V_{TR}) pour obtenir en sortie un signal de période t_A précis ne devra pas dépasser (+5,0 %, -0,0 %) c'est-à-dire

Typique $V_{TR} = 0.5 V_{DD}$

Auguel cas:


Minimum: $V_{TR} = 0.33 V_{DD}$

 \rightarrow t_A = 4,62 RC

Maximum: $V_{TR} = 0.67 V_{DD}$

$$- t_A = 4.62 RC$$

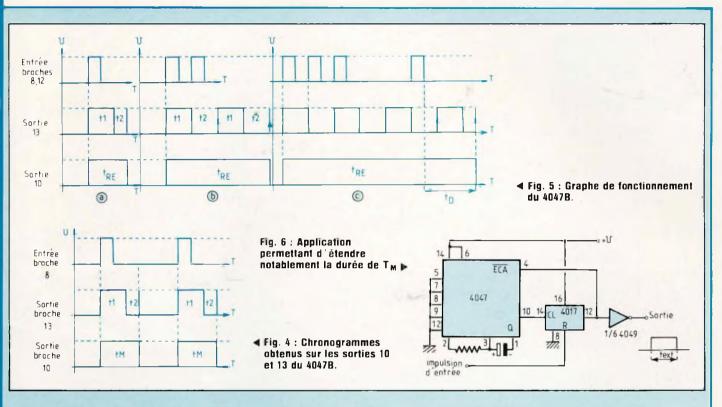
En revenant sur le tableau précédent, nous voyons aussi que le multivibra-

teur monostable peut être utilisé de trois façons différentes en mode interne en agissant sur les deux entrées complémentaires T₁ et T₂ permettant son déclenchement. On a ainsi:

- Monostable déclenché par un front montant
- Monostable déclenché par un front descendant
- Monostable «retriggerable».

La figure 4 nous indique les chronogrammes obtenus sur les sorties 10 et 13 dès lors que le déclenchement du monostable a lieu sur un front montant. La durée de l'impulsion de sortie obtenue sur les broches complémentaires Q et Q est donnée par la formule :

$$t_M = 2.48 \cdot R \cdot C$$


Comme en mode astable, cette formule est uniquement valable pour le cas typique où la fonction de transfert de tension V_{TR} est égale à 0,5 V_{DD} . A ce moment, le maximum de variation sera de (+9,3 %, -0,0 %). Pour les autres cas extrêmes, on appliquera les relations :

Minimum =
$$V_{TR} = 0.33 V_{DD}$$

 $\rightarrow T_M = 2.71 RC$
Maximum = $V_{TR} = 0.67 V_{DD}$
 $\rightarrow t_M = 2.48 RC$

Enfin, comme nous l'avons vu, le circuit HCF 4047 B peut être utilisé en mode «retriggerable» de façon à augmenter la durée de l'impulsion de sortie, ou pour comparer la fréquence d'un signal à l'entrée d'avec celui de l'oscillateur interne. Dans ce mode «retriggerable», l'impulsion d'entrée est appliquée sur les broches 8 et 12 et la sortie est obtenue sur les broches 10 ou 11. Sur le graphe de la figure 5a, le fonctionnement normal du monostable est obtenu quand une impulsion retriggerable est appliquée. Une augmentation de la durée de l'impulsion de sortie' est fournie lorsque plus d'une

Fonction	Connexions à + U	Connexions à la masse	Broche d'entrée	Broches de sortie
Astable libre Astable commandé par un état haut Astable commandé par un état bas	4, 5, 6, 14 4, 6, 14 6, 14	7, 8, 9, 12 7, 8, 9, 12 5, 7, 8, 9, 12		10, 11, 13 10, 11, 13 10, 11, 13
Monostable déclenché par un front montant	4, 14	5, 6, 7, 9, 12	8	10, 11
Monostable déclenché par un front descendant	4, 8, 14	5, 7, 9, 12	6	10, 11
Monostable Retriggerable Mode externe	4, 14 14	5, 6, 7, 9 5, 6, 7, 8, 9, 12	8, 12 - —	10, 11 10, 11

LE HCF 4047B

impulsion est appliquée sur l'entrée, ce que nous voyons sur le schéma de la figure 5b. Pour deux impulsions :

$$t_{RE} = t_1' + t_1 + 2t_2.$$

Enfin, le graphe de la figure 5c nous apprend que pour plus de deux impulsions présentes à l'entrée, la durée de l'impulsion retriggerable obtenue sur la sortie Q est fonction d'un temps variable to après la fin de la dernière impulsion retriggerable. Cette durée t_d est variable parce que l'impulsion de sortie t_{RE} sur Q se termine après le second front positif de la sortie de l'oscillateur Flip Flop constitutif du circuit et afférent aux sorties Q et Q

Il est à remarquer que pour pouvoir utiliser toutes les formules données précédemment, aussi bien en montage astable que monostable, les composants R et C ne doivent pas avoir n'importe quelle valeur. En effet, le constructeur garantit la stabi-

lité de la fréquence et du rapport cyclique du signal de sortie en mode astable ainsi que celle de la durée de l'impulsion du monostable pour les valeurs suivantes

C ≥ 100 pF pour le mode astable C ≥ 1 nF pour le mode monostable $10 \text{ k}\Omega \leq R \leq 1 \text{ M}\Omega$ pour les deux modes.

Enfin, pour terminer l'étude de ce petit circuit fort intéressant, nous donnons à la figure 6 une application constructeur permettant d'étendre notablement la durée t_M vue précédemment. Par l'emploi du 4047 allié au circuit HCF 4017 B qui est un compteur en décade à dix sorties codées, les avantages résideront essentiellement dans le mode digital de contrôle de la durée de l'impulsion de sortie, ainsi que la possibilité d'employer des condensateurs de faible capacité pour des périodes de longue durée et un temps de recou- Documentation SGS/ATES

vrement extrêmement rapide. La durée de l'impulsion de sortie est donnée par la formule :

$$t \text{ ext} = (N - 1)(t_A) + (t_M + \frac{t_A}{2})$$

avec :

t_A: période de l'astable du 4047;

N : nombre de coups de comptage utilisé du 4017.

Nous en avons terminé avec l'étude de ce circuit qui, nous l'espérons, aura permis aux lecteurs de se familiariser avec un composant fort bon marché pouvant rendre d'inégalables services dans les réalisations électroniques. Nous ne doutons pas que sa simplicité de mise en œuvre alliée aux précisions de ses caractéristiques permettra aux uns et aux autres l'élaboration de petits ensembles de fonctionnement instantané et de mise au point nulle.

C. de Linange

LE HAUT-PARLEUR ISOPHASE POUT

Les Laboratoires de Recherche Philips et le Département Audio de Philips à Eindhoven (Pays-Bas), ont mis au point des haut-parleurs à ruban pour les tonalités aussi bien aiguës que moyennes. La bande passante, le comportement en phase, la réponse en impulsion, le comportement en matière de rayonnement et sous charge élevée pendant une longue durée, satisfont aux impératifs très rigoureux qu'imposent aux appareils de reproduction du son, les techniques avancées d'enregistrement et de lecture.

e principe du haut-parleur à ruban est illustré figure 1. Un ruban très léger en matière plastique, solidaire de la bobine du haut-parleur, est tendu au-dessus de la plaque supérieure du système d'aimant. Lorsqu'un courant électrique traverse la bobine, celle-ci et donc, a fortiori le ruban, se déplace sous l'effet de la force de Lorentz, vers le haut ou vers le bas. Par ce procédé, on a création de sons.

L'intégration de la bobine et du ruban est faite de la façon suivante : on recouvre une feuille d'aluminium d'une couche de polyimide et on enlève de façon sélective l'aluminium par décapage ; on obtient ainsi une bobine et un ruban intégrés.

Le ruban est constitué d'un matériau possédant d'excellentes propriétés mécaniques et très résistant aux températures élevées.

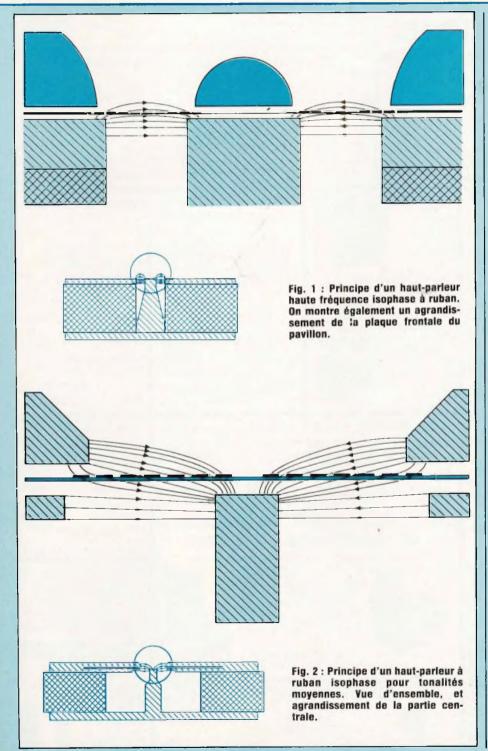
H.P. ISOPHASE POUR FREQUENCES ELEVEES

Lorsque la bobine est excitée, le ruban se met à vibrer selon des modes complexes, comparables aux remous créés à la surface de l'eau. Pour éviter toute distorsion du son, il est nécessaire que le mouvement de va-et-vient soit uniforme pour l'ensemble du ruban. Un tel mouvement isophane — c'est-à-dire que toutes les parties du ruban ont une phase identique - est tout à fait réalisable si on applique une technique spéciale de remplissage de l'interstice entre le ruban et la plaque supérieure de l'aimant avec de l'ouate de verre. En outre, si on veut que la l

courbe de réponse en fréquence soit exacte et la distorsion minimale, le ruban doit être soumis à une tension mécanique précise.

Le matériau du ruban a été choisi de telle sorte que, sous la charge continue d'une grande puissance électrique, le ruban conserve sa tension mécanique.

Le diagramme de rayonnement de ce haut-parleur compact est différent suivant la direction horizontale ou verticale. Le faisceau émis est très large dans la direction horizontale, plus étroit dans la direction verticale. Cette asymétrie améliore les propriétés stéréophoniques du haut-parleur. Ainsi conçu, ce dernier présente les caractéristiques suivantes :


- très bonne réponse en impulsion :
- bande passante de 4 à 40 kHz (donc bien au-delà du seuil d'audibilité) :
- grande sensibilité;
- faible distorsion;
- temps de propagation de groupe indépendant de la fréquence;
- impédance réelle et constante ;
- charge continue favorable à grande puissance.

H.P. ISOPHASE POUR TONALITES MOYENNES

Si on souhaite appliquer le même principe à un haut-parleur destiné aux tonalités moyennes, on se heurte à quelques difficultés.

Par exemple, il n'est pas possible de multiplier par cinq les dimensions du haut-parleur pour atteindre la plage de fréquences souhaitée. Un tel hautparleur serait excessivement encombrant. De plus, aux fréquences éle-

R TONALITES AIGUES ET MOYENNES

vées, le son serait trop étroitement focalisé dans le sens vertical, ce qui n'était pas un inconvénient dans le cas du haut-parleur haute fréquence, car on dépassait alors très largement le seuil d'audibilité, qui se situe vers 20 kHz

De même, la tension du ruban ne peut pas être abaissée impunément, car des distorsions inadmissibles pourraient se produire. Quant à l'accroissement de la masse du ruban, cela n'apporterait aucun remède, car le haut-parleur deviendrait trop insensible.

Il faut donc recourir à une conception nouvelle dont le principe est illustré figure 2. On utilise un aimant à double sabot polaire qui donne un champ magnétique plus homogène autour de la bobine. La sensibilité augmente et, de ce fait, les distorsions diminuent. La forme du pont d'air sous la bobine est conçue de telle manière que les basses tonalités en tirent pleinement parti. Le principe du bafflereflex est réalisé par des sillons creusés dans la plaque frontale du hautparleur. Avec une forme appropriée du pont d'air (et donc une bonne élasticité) et des valeurs correctes de la tension et de la masse du ruban, on peut de cette manière rendre parfaitement le domaine sonore des basses fréquences. La plage des fréquences de ce dispositif pour tonalités moyennes va de 800 Hz à 8 kHz eff. En fait, la bande passante se situe entre 800 Hz et 30 kHz mais, compte tenu du rayonnement vertical, il n'est utilisable en pratique que iusqu'à environ 8 kHz.

Il est cependant tout à fait possible d'utiliser ce dispositif en guise de haut-parleur pour tonalités moyennes, à condition d'adopter un arrangement vertical (par exemple de 4 à 6 unités superposées).

D'après N. Wiedenhof J.M. Waalwijk

Documentation Philips Research

raconte-moi...

LA MICRO-INFORMATIQUE

ne disquette se présente sous la forme d'un disque de plastique souple (mylar) sur lequel a été déposée une substance magnétique (fig. 2). La taille de ce disque est fonction du standard adopté, actuellement deux diamètres se trouvent couramment: les disquettes 8'' et 5'' 1/4. Depuis peu, un nouveau groupe de disquettes a fait son apparition, les disquettes 3''.

Très fragile, une disquette est contenue dans une pochette cartonnée rectangulaire dans laquelle elle peut tourner librement. La figure 3 présente les différents éléments qui constituent un disque souple. La tête magnétique d'écriture et de lecture communique avec le support magnétique grâce à une ouverture pratiquée dans l'enveloppe cartonnée. Le trou central permet le guidage mécanique et l'entraînement de la disquette. Enfin, un dernier orifice, placé sur un côté de la disquette et nommé index, permet à l'électronique de commande de se synchroniser et ainsi de repérer le début de chaque piste.

La figure 4 présente les différents éléments mécaniques d'une unité de disquettes. Deux moteurs différents permettent l'activation des disquettes et de la tête d'écriture et de lec-

Fig. 1 : Unité de disque souple 5" 1/4

Les avantages des disques souples (fig. 1) sur les cassettes sont nombreux, outre une plus grande fiabilité, ils présentent, pour une capacité mémoire équivalente, un temps d'accès beaucoup plus faible.

ture. Le moteur d'entraînement du disque souple est généralement un moteur à courant continu fonctionnant à partir du +12 V et dont la mise en route est effectuée par l'interface reliée au microprocesseur. Quant au positionnement de la tête d'écriture-lecture, il fait appel à un moteur pas à pas.

Le trou d'index est détecté à chaque passage à l'aide d'un ensemble diode électroluminescente / photodiode, qui est éclairé uniquement lors du passage du trou.

ECRITURE ET LECTURE D'UNE DISQUETTE MAGNETIQUE

Une disquette magnétique est constituée d'un support plastique recouvert d'une couche d'oxyde magnétique. Cette couche d'oxyde est elle-même composée d'une multitude de microparticules qui peuvent être orientées dans une direction donnée à l'aide d'un champ magnétique extérieur.

Lors d'une opération d'écriture, la disquette défile à vitesse constante sous la tête d'écriture, qui reçoit les données sous forme d'impulsions électriques suivant l'état du bit écrit («1» ou «0»), le champ magnétique créé orientera les micro-particules dans un sens ou dans un autre (fig. 5). Du fait de la rémanence magnétique, les micro-particules conservent leur orientation en l'absence de champ magnétique, ce qui permet de réaliser à partir d'une disquette souple une mémoire non volatile et réinscriptible. Lors de l'opération inverse de lecture, c'est le champ magnétique créé par les l

micro-particules orientées qui est détecté par l'entrefer de la tête magnétique. Cette opération de lecture est non destructive, ce qui permet de venir relire plusieurs fois une même disquette.

Au niveau fiabilité d'un enregistrement, la figure 6 révèle les dangers qui quettent une disquette magnétique Pour un fonctionnement correct du système d'écriture/lecture, la tête magnétique doit rester en permanence en contact étroit avec la disquette. Il faut donc éviter toutes les causes de pollution qui pourraient altérer le contact tête revêtement magnétique. En conséquence, les disquettes doivent être conservées dans un milieu propre et la tête d'écriture-lecture doit être nettoyée périodiquement (il existe des disquettes spéciales qui réalisent cette opération).

FORMAT D'ENREGISTREMENT

Les données issues du microordinateur sont enregistrées sur la disquette à l'aide de cercles concentriques appelés pistes. La tête d'écriture-lecture se déplace d'une piste à une autre grâce au moteur pas à pas vu précédemment. Les informations sont enregistrées sur une piste séquentiellement en mode synchrone. Les disquettes standard

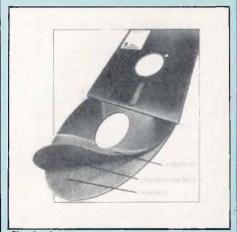
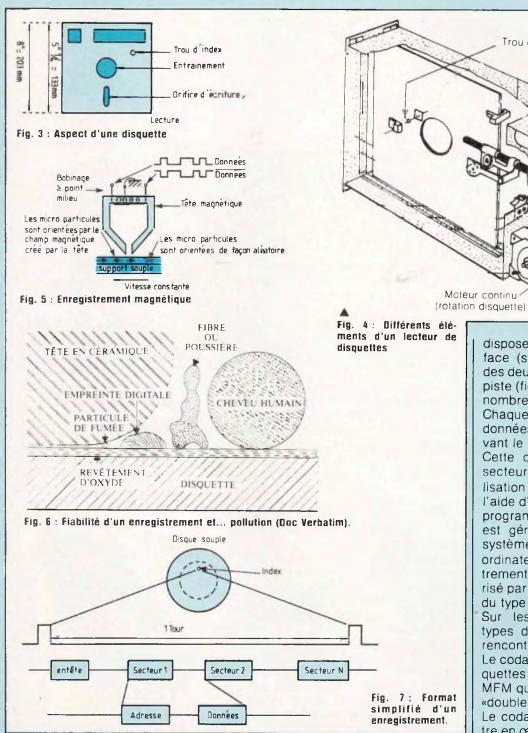



Fig. 2 : Constitution d'une disquette

raconte-moi...

LA MICRO-INFORMATIQUE

disposent de 77 ou 80 pistes sur une face (simple face) ou sur chacune des deux faces (double face). Chaque piste (fig. 7) est divisée en un certain nombre de secteurs de longueur fixe. Chaque secteur contient un bloc de données dont la taille peut varier suivant le type de codage utilisé.

Trou d'index (détection début de pistes)

Moteur pas à pas

(déplacement tête

écriture-lecture)

Cette division de chaque piste en secteurs est effectuée lors de l'initialisation d'une nouvelle disquette à l'aide d'un programme spécialisé. Ce programme dénommé «formatage» est généralement contenu dans le système d'exploitation du microordinateur. La densité d'un enregistrement (ou le nombre de bits mémorisé par unité de surface) est fonction du type de codage utilisé.

Sur les disquettes souples, deux types de codage sont couramment rencontrés.

Le codage FM qui caractérise les disquettes dit «simple densité» et le MFM qui se trouve sur les disquettes «double densité».

Le codage MFM plus difficile à mettre en œuvre nécessite des contrôles

Désignation	Unité	Signification
Capacité	ko	Nombre de mots (octets) mémorisés
Densité longitudinale Densité transversale	bpi tpi	Nombre de bits par pouce Nombre de pistes par pouce

Fig. 8 : Caractéristiques d'enregistrement d'un disque.

	Туре	Liaison bus de données	Alimentation	Spécification
	FD 1771	Inverse	+5V, -5V, +12V	Simple densité
١	FD 1791	Inverse	+5V, +12V	Simple et double densité
	FD 1793	Directe	+5V, +12V	Simple et double densité
	FD 1795	Inverse	+5V, +12V	Simple et double densité, sélection double face

Fig. 9 : Principaux contrôleurs de disquettes.

plus coûteux mais le jeu en vaut la chandelle. En effet, une disquette double densité présente une capacité mémoire double de celle d'une disquette simple densité. Le tableau de la figure 8 rappelle les principales grandeurs qui permettent de caractériser une disquette magnétique.

CIRCUIT D'INTERFACE

L'interface entre une unité de disquette et un microprocesseur est généralement réalisée à l'aide de circuits intégrés spécialisés. Outre la fonction de coupleur synchrone (conversion parallèle série et réciproquement), ces circuits intégrés très complexes sont responsables de toutes les tâches de gestion et de commande d'une unité de disquettes.

La tableau de la figure 9 donne une liste des principaux contrôleurs de disquettes utilisés sur des petits systèmes. Ces contrôleurs tous issus du même constructeur Western Digital présentent des caractéristiques adaptées à un type de «drive» donné. Nous allons maintenant examiner

plus en détail le FD 1795 qui permet d'utiliser des unités double face double densité.

Les figures 10 et 11 présentent le brochage du FD 1795 et un schéma simplifié d'une interface pour lecteur de disquettes. Au niveau microprocesseur, on retrouve les liaisons classiques bus de données (D0-D7), bus d'adresses (A0, A1, CS) et bus de contrôle (WR, RD, INTRQ et RESET). Les signaux assurant la liaison lecteur, FD 1795 peuvent être regroupés en trois sous-ensembles (fig. 12):

- contrôle moteur et tête
- contrôle écriture données
- signaux de lecture données.

La programmation du FD 1795 se fait à partir de registres internes dans lesquels on peut lire ou écrire les numéros de piste et secteur concernés ainsi que les données en transit (fig. 13). Le registre d'état (lecture seule) permet de contrôler les lecteurs de disquettes reliés alors que le registre de commande (écriture seule) déclenche certaines fonctions au niveau des lecteurs.

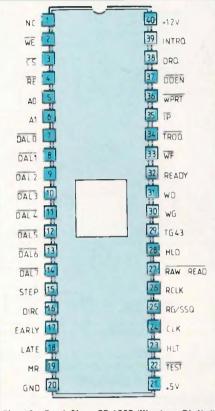


Fig. 10 : Contrôleur FD 1795 (Western Digital)

CABLE DE LIAISON

Comme pour de nombreux périphériques, un standard s'est peu à peu imposé en ce qui concerne le câble de liaison interface lecteur de disquettes. La figure 14 indique le schéma de câblage de ce câble 34 fils.

QUE CHOISIR?

Le tableau de la figure 15 donne un aperçu des principales unités de disques souples disponibles à l'heure actuelle. Les unités 8'' sont généralement réservées aux systèmes professionels et sont utilisées souvent comme sauvegarde pour d'autres mémoires de masse comme les disques durs.

raconte-moi...

LA MICRO-INFORMATIQUE

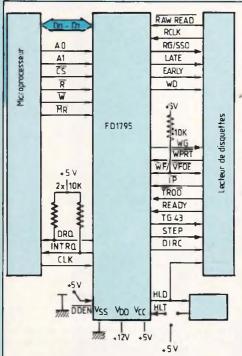


Fig. 11 : Schéma simplifié d'une interface microprocesseur lecteur de disquettes

INTERFACE SIGNAUX D'ENTRÉE/SORTIE

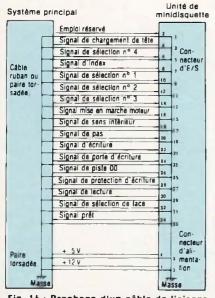


Fig. 14 : Brochage d'un câble de liaisons

		STEP (PAS) DIRC	Envoie les impulsions au moteur pas à pas (déplacement tête) Précise le sens de rotation du moteur pas à pas
,	Contrôle moteur	(direction) IP	Détecte chaque début de piste
1	et tête d'écriture lecture	(index)	a second exactly as place
		TR00 (piste 00)	Détecte la piste 00
		READY (prêt)	Précise que le lecteur est prêt (porte fermée, moteur arrêté)
		WG (porte écriture)	Validation écriture
	Contrôle écriture	WF (Erreur écriture)	Informe que l'écriture ne fonctionne pas
		EARLY, LATE	Signaux utilisés en double densité (précompensation)
		WD (écriture, données)	Sortie données
	Lecture des données	RAW - READ (lecture)	Entrées données
		RCLk (horloge)	Entrées horloge

Fig. 12 : Liaison FD 1795, lecteur de disquettes

Registre d'état (lecture), registre de commande (écriture)

Registre de piste (lecture et écriture)

Registre de secteur (lecture et écriture)

Registre de données (lecture et écriture)

Fig. 13: Principaux registres du FD 1795.

Modèle Capacité (koctet)		Tps d'accès	Nb de	Prix	
		moyen (ms)	pistes	grand public	
3" 1/2 simple face	250- 500	15	80	2 000 F	
3" 1/2 double face	500-1000	20	80	2 500 F	
5" 1/4 simple face	250	20	[40, 77, 80]	2 000 F	
5" 1/4 double face	500-1000	20		2 800 F	

Fig. 15 : Caractéristiques comparées de différentes unités de disques souples. Actuellement une disquette 3'' 1/2 coûte aux alentours de 70 F alors qu'une disquette 5'' 1/4 se trouve couramment pour un prix inférieur à 20 F.

Les unités 3" 1/2, malgré une plus petite taille présentent des caractéristiques techniques tout à fait équivalentes aux disquettes 5" 1/4. Il faut noter que les disquettes 3" 1/2 sont utilisées sur deux systèmes très à la

mode actuellement, le MAC d'Apple et le HP 150 de Hewlett-Packard. Enfin, restent les unités 5'' 1/4 qui présentent encore le meilleur rapport prix-performance et qui ont encore une belle vie devant eux.

P.F.

EXPANSEUR STEREO

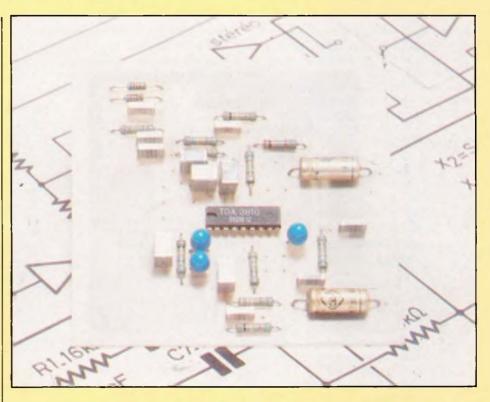
Dans le n° 6 de Led, nous avons décrit un montage élargisseur stéréo qui a intéressé de nombreux lecteurs. Rappelons qu'il était basé sur un principe électronique dit «anti-diaphonique». Les procédés d'annulation de la diaphonie oreilles/enceintes peuvent être en effet soit acoustiques, soit électroniques. Ils peuvent aussi combiner les deux effets afin que, en théorie, l'oreille gauche ne puisse entendre que l'enceinte gauche et l'oreille droite l'enceinte droite.

r, il s'avère que ces procédés ne sont jamais parfaits. Les procédés d'annulation sont conçus pour fonctionner dans des acoustiques

très mates, sous un angle d'écoute bien déterminé. On peut alors ajuster les lignes de retard avec précision et considérer comme minimes les effets acoustiques de la salle d'écoute. Ceci oblige également l'auditeur à écouter les enceintes à partir d'une position prédéterminée par les calculs d'annulation et de

r, il s'avère que ces procédés ne sont jamais parfaits. Les procédés d'annulation sont conçus pour fonctionner dans des acoustiques | compensation. En pratique, aucune de ces conditions n'est parfaitement respectée. Le local d'écoute est toujours plus ou moins réverbérant, la distance enceintes-auditeur et enceinte gauche-enceinte droite n'est jamais la même, chaque cas étant particulier.

Dans ces conditions, les procédés d'annulation de la diaphonie enceintes/oreilles ne sont jamais d'une efficacité totale et ils peuvent même apporter divers inconvénients audibles, donc gênants.


l'auditeur à écouter les enceintes à Le circuit décrit dans le n° 6, par partir d'une position prédéterminée par les calculs d'annulation et de pour la récente génération de télévi-

seurs japonais équipés du son stéréo multiplex. En plaçant les hautparleurs sur les côtés latéraux de l'écran, l'écartement n'est plus que de 70 à 80 cm pour un spectateur se trouvant à trois ou quatre mètres de distance. Dans ce cas, le « triangle d'écoute » (écartement interenceintes-distance auditeur) est très étroit et l'effet stéréo est pratiquement nul. Il en est de même sur tout combiné radio-cassette stéréo portatif, appareil sur lequel les hautparleurs ne sont écartés que de 30 à 40 cm. Dans ces deux cas, le son émis par l'un des haut-parleurs atteint d'abord l'oreille la plus pro-

LA CONQUETE DE L'ESPACE

che, puis l'autre, après avoir contourné la tête, le décalage temporel étant très faible. Pour un triangle d'écoute normal, le décalage moyen est de 0,6 milliseconde, tandis que dans ces deux cas il n'est plus que de l'ordre de 80 à 120 microsecondes. En conséquence, le circuit décrit dans le nº 6 était basé sur un retard de 100 microsecondes, correspondant à un triangle d'écoute relativement étroit (enceintes écartées de 70 cm à 1 m et écoutées à plus de trois mètres de distance). Dans ces conditions, il est évident que le procédé d'annulation ne fonctionne plus si les enceintes sont plus écartées, si l'angle d'écoute est plus large.

Sans avoir forcément recours aux méthodes dites anti-diaphoniques, il existe plusieurs procédés, électroniques ou acoustiques, qui apportent un effet élargisseur ou qui procurent des sources sonores fictives. Tel était le cas de la stéréophonie à ses débuts, procédé qui ne manque pas d'étonner les auditeurs en produisant des sources sonores situées entre les deux enceintes. En jouant sur la phase, sur le décalage temporel de deux sons identiques, il est possible de tromper l'oreille, de lui faire croire que la source sonore se situe quelque part dans l'espace, à un endroit précis. La méthode acoustique la plus simple consiste à prendre deux enceintes, de petites dimensions, à les placer côte à côte, en prenant soin toutefois de les relier en parallèle mais hors phase, l'une étant légèrement plus avancée que l'autre. Suivant l'amplitude de ce décalage (compris entre 5 et 25 mm), on pourra ainsi créer une source sonore fictive. La position angulaire de cette source fictive sera comprise entre 0° et environ 70°, selon l'amplitude du décalage entre les enceintes. Selon le sens de ce décalage (enceinte gauche ou droite en avant par rapport à l'autre), cette source se positionnera soit à gauche soit à droite de l'auditeur. Bien entendu, ce procédé peut s'appliquer à la stéréophonie, à condition de posséder deux paires d'enceintes identiques. Ce système, purement acoustique, fonctionne

parfaitement mais n'est pas très pratique vu qu'il demande l'utilisation de quatre enceintes.

Par procédé électronique, il est possible d'aboutir au même résultat. Pour cela, on a recours aux circuits intégrés. Leur compacité permet de simplifier la réalisation des montages basés sur l'émission (superposée) de signaux retardés et hors phase. Il est à préciser que, souvent, le procédé acoustique cité plus haut apporte des résultats d'écoute (qualité sonore) supérieurs à ceux obtenus par simulation électronique, sauf si ces derniers sont très bien conçus.

LE CIRCUIT

par un effet de phase. Le circuit permet d'obtenir une autre fonction, celle de la pseudo-stéréophonie. La pièce maîtresse de ce montage est le nouveau circuit intégré conçu par la Radiotechnique, le RTC TDA 3810. Ce circuit travaille selon un principe totalement différent du circuit élargisseur japonais MN 3012. La firme française RTC La

L'expansion stéréo est produite ici

Radiotechnique-Compelec a créé ce TDA 3810 pour le marché des récepteurs stéréo radio et TV. Les récepteurs radio, de dimensions réduites sont dans presque tous les cas des combinés radio-magnétocassettes. En radio, sur bande FM comme sur cassette, la stéréophonie s'impose et la reproduction s'effectue sur des petits haut-parleurs de petit diamètre (12 cm en moyenne), peu écartés (25 à 35 cm environ). Lorsque le récepteur est écouté à deux ou trois mètres de distance. l'effet stéréo est pratiquement nul. Même si quelques récepteurs sont munis de jacks pour haut-parleurs extérieurs, rares sont les utilisateurs qui osent s'en servir, ceci d'autant plus que le faible rendement des haut-parleurs d'une part, la faible puissance des circuits amplificateurs d'autre part, ne permettent pas d'obtenir des résultats très intéressants. Pour les téléviseurs et en attendant l'arrivée de la stéréophonie multiplex (laquelle est déjà appliquée dans certains pays comme le Japon), la pseudo-stéréo représente un bon compromis, notamment pour des

LA CONQUETE DE L'ESPACE

émissions musicales (concerts, chansons, films musicaux, etc.). Le TDA 3810 se présente sous la forme d'un boîtier plastique DIL 18 broches (SOT 102). La tension d'alimentation requise pour ce circuit est de 12 V. La limite absolue est de 16 V et le circuit fonctionne correctement pour une tension comprise entre 6 et 12 V. Le courant d'alimentation, diodes LED éteintes, est de 7 mA. La figure 1 donne les caractéristiques principales du TDA 3810. Comme il s'agit d'un circuit stéréophonique, le TDA 3810 possède deux entrées et

deux sorties. Trois modes de fonctionnement sont possibles. Le premier, la fonction stéréo, est la position « hors circuit ». Sous cette condition, le TDA 3810 travaille néanmoins: étages tampons d'entrée, étages de sortie. Le niveau maximum d'entrée acceptable sans saturation est de 2 V, l'impédance d'entrée étant de 75 kΩ. Dans ces conditions le bruit résiduel reste inférieur à 10 μV, la diaphonie est de 50 dB et le taux de distorsion, entre 40 Hz et 16 kHz, est inférieur ou égal à 0,1 %. Pour cette position, il est bien

entendu possible d'utiliser un commutateur reliant directement les sorties aux entrées. Mais les performances obtenues ici sont suffisamment bonnes pour assurer le passage du signal audio à travers le TDA 3810 sans inconvénient majeur.

Les deux autres modes disponibles sur ce TDA 3810 sont la position « expansion stéréo » et la position

« pseudo-stéréo ». Le mode pseudo-stéréo et l'importance de cet effet de « fausse stéréo » dépendant de la valeur des composants externes qui sont utilisés. Pour obtenir cet effet, les canaux sont mélangés, mais de façon sélective en fréquence. L'effet pseudo-stéréo est, par ailleurs, superposé à l'effet d'expansion stéréo. Plusieurs procédés peuvent être mis en œuvre pour créer un effet de pseudo-stéréo: filtres sélectifs et asymétriques, rotations de phase. lignes de retard. Pour la musique classique, par exemple, les violons sont en général à gauche, les violoncelles et les contrebasses à droite. A l'aide de deux égaliseurs paramétriques on pourrait obtenir une assez bonne discrimination entre ces instruments. Des lignes de retard, des échos « stéréo » permettent de rendre ces effets plus naturels. Il en est ainsi pour les repiquages d'anciens disques pour lesquels l'enregistrement en monaural passe ainsi en « pseudo-stéréo ». Pour le TDA 3810, une des sorties stéréo reçoit un signal d'amplitude décroissante en fonction de l'augmentation de la fréquence appliquée à l'entrée. Pour l'autre on crée une accentuation des fréquences voisines de 200 Hz. II faut, en effet, savoir que l'effet d'expansion a ici pour objet d'envoyer sur un canal un certain dosage (50 %) de signal provenant de l'autre canal, mais en opposition de phase. Mais il ne faut pas oublier que pour les fréquences graves, le niveau et la phase sont pratiquement identiques pour les deux canaux. Ainsi, la mise hors phase, même partielle des canaux, va produire subjec-

tivement une atténuation des fré-

CARACTERISTIQUES PRINCIPALES DU TDA 3810

Tension d'alimentation V_A nom. 12 V Courant d'alimentation I_A nom. 7 mA Signal d'entrée maximal V_e eff. max. 2 V Résistance d'entrée I_A nom. 75 k I_A nom. 75 k I_A Gain en tension (stéréo) I_A nom. 0 dB Distorsion harmonique totale (stéréo) I_A nom. 0 dB dioi 0,1 % I_A 50 dB

Mode « expansion stéréo »

Diaphonie en opposition de phase entre les voies avec le schéma de la figure 1 Gain en tension

 a_d 50 % G_V 1.3 ± 1dB

Mode « pseudo-stéréo »

Le type d'effet et son importance sont déterminés par les filtres externes, peuvent être définis par l'utilisateur.

Niveau d'entrée BAS $V_{11,12-10} \ 0 \ \grave{a} \ 0,5 \ V$ Niveau d'entrée BAS $V_{11,12-10} \ 2 \ \grave{a} \ V_{18-10} \ V$ Résistance d'entrée $R_{11,12-10} \ nom. \ 120 \ k\Omega \\ (min. \ 70 \ k\Omega)$ Courant de commutation $I_{11,12} \ nom. \ 95 \ \mu A \\ (max. \ 160 \ \mu A)$

Costino d'impiration (company de com

Sorties d'indication (sources de courant)
Courant de sortie

Tension directe maximale des diodes électro-

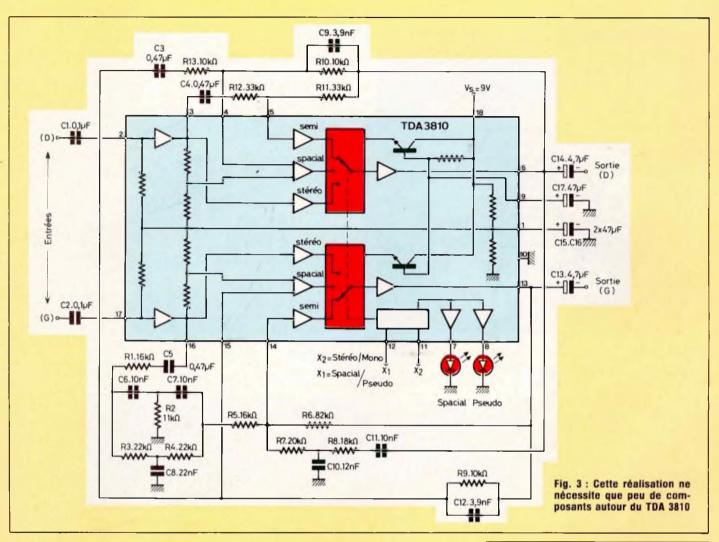
luminescentes

I_{7,8} 10 à 15 mA

V_F max. 6 V

BOITIER

Plastique DIL 18 broches (SOT 102).


Fig. 1 : TDA 3810 (RTC). Caractéristiques principales.

Sélection du mode (bornes 11 et 12)

Mode	Niveau borne 11	Niveau borne 12	Indication borne 7	Indication borne 8
Stéréo	bas	indifférent	_	
Expansion	haut	haut	active	_
Pseudo	haut	bas	_	active

Fig. 2 : Sélection du mode de fonctionnement du TDA 3810.

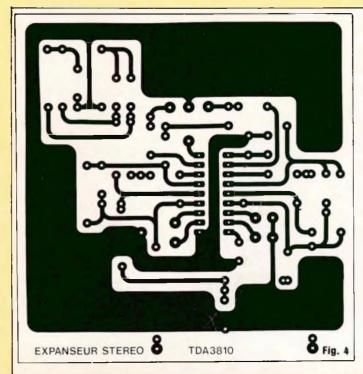
KIT~22Z

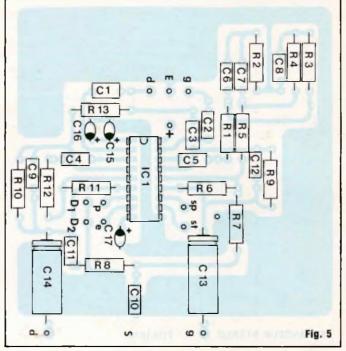
quences graves D'où la compensation apportée par les filtres extérieurs, sur lesquels il est possible d'agir.

Dans le mode « expansion stéréo », la diaphonie est en opposition de phase pour chacun des deux canaux, le dosage diaphonique étant de 50 %. Ce dosage permet d'obtenir un très bel effet d'élargissement sonore sans créer, pour autant, des inconvénients comme l'effet subjectif de « trou central » ou d'une très mauvaise localisation des sources sonores.

Pour les trois positions le gain est pratiquement égal à 1. Pour le mode « expansion stéréo », le gain en tension est en effet de 1,3 ± 1 dB. Pour

le mode « stéréo », il est de 1 \pm 0,5 dB.


SELECTION DU MODE


Elle est définie par le niveau haut ou bas des bornes 11 et 12. Le TDA 3810 contient, en effet, une logique de sélection (entrées compatibles TTL), l'affichage du mode choisi s'effectuant par des diodes LED alimentées directement (bornes 7 et 8, sorties à courant constant). Pour les bornes 11 et 12, le courant de commutation est, en effet, extrêmement faible, soit moins de 100 μ A. Pour les diodes LED, celles-ci sont alimentées directement (6 V, 10 à 15 mA). La figure 2 indique la façon dont s'effectue la sélection de mode.

LA REALISATION PRATIQUE

Le montage a été conçu à partir de l'application donnée en exemple par le RTC. Sur la figure 3, on trouvera le schéma synoptique. Les composants x déterminent l'effet de pseudostéréo. On remarquera la logique de commutation interne des trois fonctions: stéréo, expansion stéréo et pseudo-stéréo. L'indication visuelle de mode de fonctionnement s'effectue pour les fonctions pseudo-stéréo et expansion stéréo, tandis qu'en fonctionnement stéréo normal, ces deux diodes LED restent éteintes. Le TDA 3810 est composé de 10 amplificateurs, de trois circuits logiques et de quatre circuits régulateurs.

LA CONQUETE DE L'ESPACE

La tension d'alimentation est filtrée et régulée. Tous les circuits internes sont ainsi alimentés sous 6 V. Cette régulation interne permet de s'affranchir des parasites, bruits de commutation ou encore de ceux provenant de la base de temps sur les téléviseurs.

Il faut en effet savoir que ce TDA 3810 pourrait équiper prochainement les téléviseurs, dès qu'un procédé de son stéréo multiplex sera mis en service (ce qui est le cas en RFA).

LE MONTAGE

Le circuit TDA 3810 et son montage (fig. 4), ont été réalisés sur un circuit imprimé en verre époxy. Le circuit imprimé expérimental conçu par la RTC possédait un plan de masse particulier qui aurait pu faire penser à un mode d'implantation assez critique. De ce fait, l'implantation générale s'inspire du montage d'origine. Une fois monté, l'appareil s'est montré d'une parfaite stabilité. Il a immédiatement fonctionné, sans poser de problème particulier. De même, l'ali-

mentation par piles ou par alimentation régulée, n'a pas apporté de différence notable au niveau de la stabilité de fonctionnement qui s'est montrée parfaite dans tous les cas.

Contrairement au circuit proposé dans le numéro 6, ce montage ne demande aucun réglage particulier. La plaquette d'époxy mesure 9 × 9,5 cm. L'implantation des composants et le côté circuit imprimé sont décrits sur la figure 5.

Les condensateurs C 15 et C 16, de type tantale goutte, ont été montés en parallèle de façon à réduire la longueur des pistes de l'implantation. La plupart des condensateurs sont de type Siemens MKH. C 17 est de type tantale goutte et C 13, C 14 sont des électrochimiques d'isolement 63 V à sorties axiales. L'implantation des condensateurs de petite valeur a été effectuée sous deux standards, soit 7,62 et 10,16. Les résistances sont à couche métallique, 1/2 W, tolérance 2 %. Le montage commence par les résistances, puis les condensateurs. Pour C2, C3 et C5, il faut veiller à éviter tout faux contact entre les arma-

NOMENCLATURE DES COMPOSANTS

• Résistances à couche ± 5 % 1/2 W

 $R1 - R5 - 16 k\Omega$

R2 - 11 kΩ

R3 - R4 - 22 kΩ

 $R6 - 82 k\Omega$

R7 - 20 kΩ

 $R8 - 18 k\Omega$

R9 - R10 - R13 - 10 kΩ

R11 - R12 - 33 kΩ

Condensateurs non polarisés

 $C1 - C2 - 0.1 \mu F$

C3 - C4 - C5 - 0,47 µF

C6 - C7 - C11 - 10 nF

C8 - 22 nF

C9 - C12 - 3,9 nF

C10 - 12 nF

• Condensateurs polarisés

C13 - C14 - 4,7 µ/63 V

C15 - C16 - C17 - 47 µF/25 V tantale qoutte

Semiconducteurs

IC1 - TDA3810

D1 - Led & 3 mm rouge

D2 - Led & 3 mm verte

Coffret

ISKRA - Réf : 55 155

KIT~22Z

tures de ceux-ci, les côtés de ces condensateurs n'étant pas isolés. Pour C 13, C 14, C 15, C 16 et C 17, veiller à insérer et à souder ces condensateurs dans le bon sens.

Les connexions à effectuer au circuit sont les suivantes :

— Entrées : Elles sont repérées par « G » et « D » sur l'implantation, « E » correspondant à la masse, ce point étant également relié au (–) de l'alimentation,

— Sorties: Elles sont repérées par «G» et «D» et sont placées après les condensateurs C 13 et C 14. «S» est la masse des sorties.

— Diodes LED: Elles sont au nombre de deux. Le côté + (cathode) de ces diodes est relié à la masse. Ce côté est repéré par D1 et D2 sur le schéma d'implantation. De l'autre côté, les diodes sont reliées aux bornes 7 et 8 du TDA 3810, repérées sur le schéma d'implantation par « e » et « p ». L'allumage de « e » correspon-

dant à un fonctionnement en expansion stéréo. Lorsque « p » s'allume, le circuit travaille en pseudo-stéréo. Les commandes de ces diodes (et donc des circuits internes du TDA 3810), s'effectuent à partir des bornes 11 et 12, conformément aux indications de la figure 2.

— Les points « sp » et « st » sont reliés à un interrupteur 1 circuit, 3 positions. En position centrale (positions hautes des bornes 11 et 12), on obtient l'expansion stéréo. Les deux autres positions de l'interrupteur permettront d'obtenir soit la position stéréo (pas de traitement du signal stéréo), soit la position pseudo-stéréo.

La consommation n'étant pas très importante, on peut utiliser deux piles 4,5 V montées en série.

RESULTATS D'ECOUTE

Le montage proposé procure très peu d'altération du signal audio, mis à part les effets sonores auxquels on peut accéder.

En pseudo-stéréo, (on peut relier indifféremment l'une des deux entrées), on obtient un très bon effet spatial qui procure un effet sonore agréable. On ne peut, bien sûr, accéder à de la vraie stéréo, mais les effets de cette simulation restent, néanmoins, excellents.

En position « expansion stéréo », la scène sonore s'élargit notablement, débordant largement par rapport à la position réelle des enceintes.

Contrairement aux procédés antidiaphoniques demandant des exigences particulières (acoustique, angle d'écoute), ce montage est beaucoup plus pratique.

La facilité de réalisation et l'absence de réglage en font un circuit très intéressant, une réalisation sans échec possible.

Jean Hiraga

LE CONTENU DE LA BALISE LED

BALISE FLASH ROUTIERE

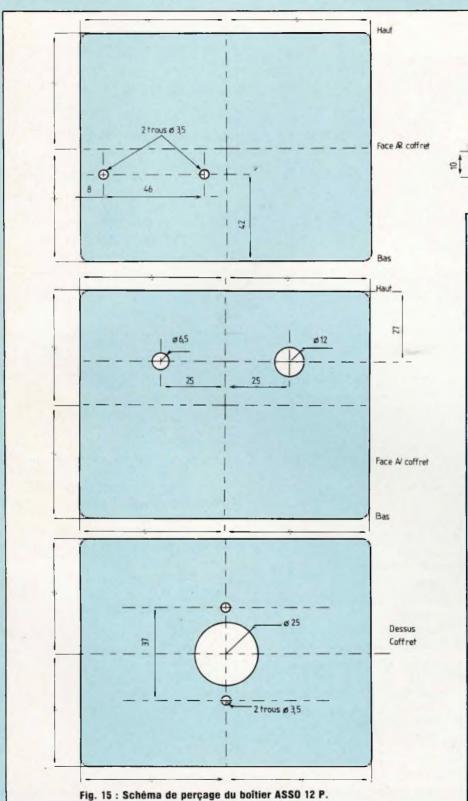
Faisant suite à l'étude théorique de cette réalisation publiée dans notre précédent numéro, nous allons maintenant sortir fer et soudure, pour passer à la phase pratique qui permettra aux lecteurs d'avoir dans leur boîte à gants cet appareil fort utile en cas de panne ou d'accident de jour et d'autant plus évidemment la nuit.

REALISATION PRATIQUE CIRCUIT IMPRIME

Le schéma de réalisation est donné à la figure 12. On procédera de la façon habituelle pour ce genre de circuit, soit par la méthode photo, soit par la méthode transfert, le circuit n'offrant pas de difficultés particulières. Agir avec soin. Lorsque le circuit est terminé d'être gravé, il est bon de l'étamer avec un bain d'étain à froid. Sur ce même schéma sont donnés les dimensions ainsi que les entraxes de fixation du circuit imprimé.

IMPLANTATION ET RACCORDEMENT

Ils seront réalisés conformément au schéma de la figure 13. Nous monterons en premier lieu les éléments de faible hauteur, pour terminer par les deux transistors de puissance T1 et T2 montés sur radiateur, le condensateur C1 et le transformateur TR1. Ensuite seront connectés les éléments extérieurs c'est-à-dire la led de signalisation, l'interrupteur arrêt/marche et le connecteur d'alimentation ainsi que les trois conducteurs à relier à l'embase du tube à éclat. Après câblage de tous les composants, on n'oubliera pas de vaporiser une couche généreuse de vernis électrofuge, côté pistes.


FABRICATION DU RADIATEUR POUR TRANSISTORS DE PUISSANCE

Le schéma d'usinage est donné à la figure 14. On utilisera pour ce faire une petite plaque d'aluminium anodisé ou peinte en noir mat d'épaisseur 2 mm. On respectera les entraxes des perçages donnés sur le schéma.

USINAGE DU BOITIER

On trouvera à la figure 15 le schéma de perçage du boîtier. Celui-ci est un

LE CONTENU DE LA BALISE LED

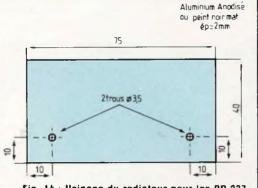
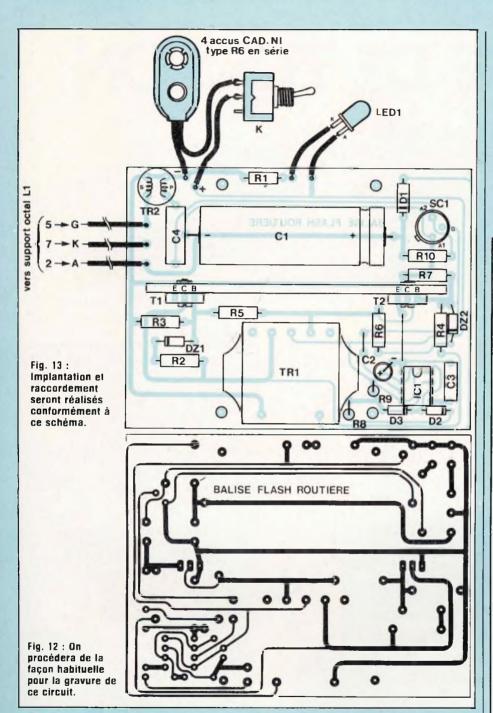


Fig. 14: Usinage du radiateur pour les BD 237.


modèle ASSO électronique mod. 12P de dimensions $120 \times 90 \times 80$ à flasques avant et arrière démontables.

On commencera par le perçage du dessus du coffret, les trois trous servant respectivement à la fixation et au dégagement des broches de l'embase octal. On poursuivra par la face avant avec les deux trous de fixation servant à maintenir la bande caoutchoutée pour l'installation du bloc accu et on terminera par la face arrière avec les perçages pour l'interrupteur de commande et la led de signalisation.

QUELQUES POINTS PARTICULIERS

Le tube à éclat sera protégé par un petit boîtier translucide aux dimensions du culot. A l'intérieur de ce boîtier cylindrique sera plaquée une feuille plastique bleu foncé. De cette facon, lors des éclats, nous aurons de beaux éclairs bleutés rappelant à la plus grande prudence l'usager routier qui les apercevrait de loin, de nuit. La bande caoutchoutée maintenant le bloc d'accus sera percée à chaque extrémité à l'emporte pièce puis maintenue sur l'avant du coffret par vis et rondelles plates. Sur le dessous du boîtier seront fixés quatre pieds autocollant en caoutchouc, afin d'éviter le contact direct de la balise flash avec le bitume ou la tôle. Enfin, ne pas oublier les rondelles mica isolantes en montant T1 et T2 sur radiateur.

KIT ~ 21Y

ESSAIS - REGLAGE

Ils sont réduits aux vérifications d'usage et au basculement de l'interrupteur arrêt/marche. La led de signalisation doit s'éclairer. Au bout de 2 à 3 s, un premier éclair flash doit se manifester, puis comme nous tera autant d'interfonctionner éclat, la THT éclatement daire de TR respectives.

l'avons vu, toutes les 2,4 s. On évitera autant que faire se peut de faire fonctionner la balise sans son tube éclat, la THT se manifestant alors par éclatement d'étincelles au secondaire de TR2 entre les pastilles Cl respectives.

CONCLUSION

Avec cette réalisation, nous pensons avoir satisfait un grand nombre de lecteurs automobilistes qui connaissent bien les dangers encourus sur les grands parcours routiers, et qui sont de ceux qui, prenant délibérément les devants, savent appliquer l'excellente maxime « aide toi, le ciel t'aidera » se souvenant à juste titre que « cela n'arrive pas qu'aux autres».

Florence Lemoine

NOMENCLATURE DES COMPOSANTS

• Résistances ± 5 % 1/4 W

R1 - 220 Ω

R2 - 100 Ω

R3 - 220 Ω

R4 - 270 Ω

R5 - 270 Ω

R6 - 100 Ω

R7 - 220 Ω

R8 - 220 kΩ

R9 - 220 kΩ

R10 - 220 kΩ

Condensateurs polarisés

C1 - 50 uF/350 V

C2 - 1,2 µF/20 V tantale goutte

Condensateurs non polarisés

C3 - 0,1 µF/250 V polyester

C4 - 0,22 µF/400 V polycarbonate

Semiconducteurs

IC1 - LM555

T1 - BD237

T2 - BD237

SC1 - 2N5756/triac (voir texte)

DZ1 - Zener 10 V/400 mW

DZ2 - Zener 10 V/400 mW

D1 - BYX10

D2 - 1N4148

D3 - 1N4148

Divers

TR1 - Transformateur pour Cl 220 V/2 × 6 V prises à 3 V

-0,3A

TR2 - Transformateur pour tube à éclat type TFK n = 1/40

L1 - Tube éclat type XSU12 (voir texte)

1 interrupteur bipolaire

1 coffret ASSO 12P

4 accus 1,2 V type R12 CAD-NI 1 coupleur + pression

VARIATEURS ELECTRONIQUES D'ECLAIR

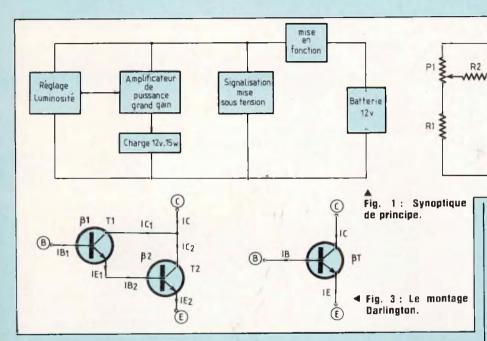
BAISSE DE TENSION

Les deux appareils que nous proposons

dans cet article permettent la variation continue

de l'éclairage, de l'extinction à l'allumage total pour toutes ampoules 12 V

de petite puissance. Très simple de réalisation et d'emploi, ils rendent bien des services aux heureux possesseurs de navires de plaisance, caravanes, camping car et autres motor-home. Ne voulant point oublier ici nos amis lecteurs automobilistes, nous leur avons dédié plus spécialement la deuxième version au niveau réalisation,


de façon à pouvoir adapter facilement cet appareil suivant l'utilisation envisagée.

ELECTRONIC IGHT VARIATOR ELECTRONIC IGHT VARIATOR

a première version se présente sous la forme d'un petit coffret métallique en aluminium moulé. Un interrupteur marche/arrêt met sous tension ou stoppe totalement charge et appareil. Une led de signalisation rappelle à tout moment que le 12 V est présent ou non. Enfin, avec le bouton de réglage de luminosité, par une rotation de 0 à 270°, on peut faire varier l'éclairage de l'extinction à l'allumage total. Le raccordement ultra-simple s'effectue par l'intermédiaire d'un passe-fil caoutchouc et d'un bornier pour C.I. trois broches. Cet appareil peut être connecté à toute charge continue de tension 12 V et de puissance 15 W maximum. Cela peut être par exemple l'éclairage compas d'un navire de plaisance, un plafonnier de couchette de caravane ou camping-car ou encore toute autre charge lumineuse fixe.

La seconde version est réalisée dans un coffret identique au précédent mais de dimensions légèrement plus importantes. Elle possède les mêmes caractéristiques et la même face avant. La seule différence consiste au raccordement qui se fait, cette fois, sur un bornier deux plots et à la sortie sur embase standard allumecigare. Cette embase permet donc le branchement instantané de toutes fiches allume-cigare reliées à n'importe quelle utilisation. Pour

AGE n°2256

notre part, nous avons doté notre prototype d'une petite lampe flexible lecteur de carte, mais par le jeu de cette prise, toute autre possibilité peut être envisagée. Notons les petits ventilateurs 12 V, les baladeurs à incandescence, les aspirateurs batterie et tous les appareils à fonctionnement identique dont on pourra faire varier les caractéristiques avec souplesse.

SYNOPTIQUE GENERAL

Le synoptique de principe est donné à la figure 1. Nous y avons représenté chaque circuit et chaque élément de réglage, de fonctionnement ou de commutation. Nous voyons donc aisément la simplicité d'un tel montage. En premier lieu, un réglage potentiométrique de zéro au maximum attaque directement un circuit amplificateur à grand gain qui, luimême, est relié directement au bornier de sortie. Un interrupteur assure la mise en fonction ou l'arrêt de l'appareil, la signalisation de mise sous tension étant assurée par une diode électroluminescente rouge ou verte. Ce témoin se trouve être important dans le cas par exemple où un plafonnier de couchette réglé à une luminosité minimum resterait allumé (lecture le soir) et serait donc indécelable au matin. Comme nous l'avons expliqué maintes fois dans d'autres articles de Led, les batteries n'étant pas inépuisables, loin s'en faut, il nous a paru utile de signaler que l'appareil et la charge, quel que soit le réglage, étaient toujours sous tension, d'où l'utilisation de cette signalisation.

SCHEMA DE PRINCIPE

Nous trouvons sa représentation à la figure 2. Bien entendu, chaque partie constitutive peut être rapprochée du synoptique vu précédemment. Un potentiomètre linéaire P1 connecté en série avec une résistance R1 permet d'obtenir sur le curseur une tension réglable entre le + alimentation et le 0 V. En fait, nous avons limité volontairement la piage minimum à une très faible tension par la mise en série de la résistance «butée» R1 de facon à ce que la charge soit toujours opérationnelle dès commencement de rotation de P1. Sur le curseur du potentiomètre, la résistance R2 sert de limitation pour le courant de base de l'amplificateur à grand gain composé des transistors T1 et T2. Ces deux transistors sont connectés d'une façon un peu particulière que certains de nos lecteurs connaissent

bien: il s'agit du montage «Darlington» dont nous allons rappeler pour les autres les caractéristiques principales.

charge

LED1

R3

Fig. 2 : Schéma de principe.

Batt,12V

RAPPELS SUR

LE MONTAGE DARLINGTON

Soit le montage de la figure 3. Les deux transistors T1 et T2 sont reliés de façon à ce que la base du transistor d'entrée, généralement un transistor petit signal, serve d'électrode de commande, son émetteur attaquant directement la base du second transistor. Celui-ci est, dans bien des cas, un transistor fort signal et la sortie se trouve être son émetteur. Enfin, comme nous le voyons sur le schéma, les deux collecteurs sont reliés ensemble et constituent la dernière électrode. Le tout représente un transistor composite à grand gain possédant à nouveau les trois électrodes fondamentales et caractéristiques d'un transistor : émetteur - base - collecteur.

On désigne par β_1 et β_2 les gains en courant statique des deux transistors T1 et T2, on peut écrire :

$$|E_1 = (\beta_1 + 1)|B_1 + |CEO_1|$$

 $|E_2 = (\beta_2 + 1)|B_2 + |CEO_2|$

avec IE1 = IB2

d'où

$$IE_2 = (\beta_2 + 1)[(\beta_1 + 1)IB_1 + ICEO_1] + ICEO_2$$

que l'on peut encore écrire :

$$IE_2 = (\beta_1 + 1)(\beta_2 + 1)IB_1 + (\beta_2 + 1)ICEO_1 + ICEO_2$$

VARIATEURS ELECTRONIQUES D'ECLAIR

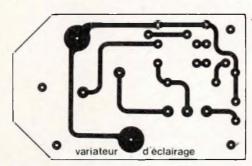


Fig. 4: Implantation circuit imprimé.

Fig. 5: Câblage Mu Cl et interconnexions.

Nous pouvons facilement négliger 1 devant β , ce qui nous donne :

 $IE_2 = \beta_1 \cdot \beta_2 \cdot IB_1 + \beta_2 \cdot ICEO_1 + ICEO_2$ Le gain du transistor composite peut s'écrire sous la forme :

$$\beta_T = \frac{IE_2}{IB_1}$$

d'où

$$\beta_T = \beta_1 \cdot \beta_2 + \beta_3 \cdot ICEO_1 + ICEO_2$$

On en déduit aisément que le gain en courant du montage Darlington est important puisqu'il est le produit des gains respectifs en courant des deux transistors constitutifs.

$$\beta_T = \beta_1 \cdot \beta_2$$

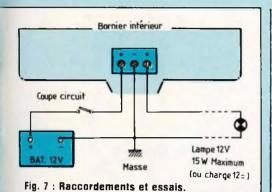
Cette relation simplifiée faisant abstraction des courants de fuite ICEO₁ et ICEO₂ nous montre par ailleurs que le courant de fuite global d'un tel montage est, lui aussi, important puisqu'il est la somme des courants de fuite de chaque transistor constitutif multiplié par le produit du gain en courant du transistor suivant.

Il y aura donc toujours intérêt pour un tel montage à utiliser uniquement des transistors silicium au courant de fuite nettement moins important (notamment en fonction de la température) que des transistors germanium.

Il n'en reste pas moins que l'amplification réalisée est très importante. Prenons pour exemple un courant de commande IB de 1 mA et des gains respectifs pour T1 et T2 de $\beta_1=200$ et $\beta_2=50$. Le gain total du Darlington est :

$$\beta_T = \beta_1 \cdot \beta_2$$

$$\beta_T = 200 \times 50 = 10000$$



or, d'après la relation :

$$\beta = \frac{|c|}{|a|}$$
avec $\beta = \beta_{T} = 10^{4}$

 $IB = 1 \text{ mA} = 10^{-3}$ nous en déduisons : $I_{c} = \beta \cdot IB = 10^{4} \cdot 10^{-3} = 10$

AGE n°2256

Avec notre petit courant de 1 mA, nous pouvons donc commander une charge de 10 A! Rappelons cependant que le transistor T2 doit accepter ce courant et la dissipation qui en résulte bien entendu.

CARACTERISTIQUES PRINCIPALES

Tension nominale batterie: 12 V Consommation: 20 mA Puissance maximum: 15 W Dimensions première version: 100

 \times 25 \times 50

Dimensions seconde version: 112 x 31 x 62

REALISATION PRATIQUE 119 VERSION

Fabrication du circuit imprimé

L'implantation du circuit imprimé vu côté cuivre est donnée à la figure 4. On emploiera un support en verre époxy et on agira de la façon habituelle, soit par la méthode photo, soit directement sur cuivre par bandes et pastilles transfert. Une fois le circuit terminé, on l'étamera dans un bain chimique puis on percera tous les trous à un diamètre de 0,8 ou de 1 mm suivant les composants. Les trois trous du CI permettant sa fixation seront, eux, percés à 3,5 mm et le trou pour le passage de la tête du tournevis pour la mise en place de l'appareil sur un support quelconque sera, lui, percé à 8 mm.

Implantation et raccordement CI

A la figure 5 nous trouvons le câblage | neus de ce circuit imprimé. Il n'offre total.

aucune difficulté particulière. Signalons simplement à nos lecteurs en ce qui concerne le transistor de puissance que celui-ci, lors de sa fixation, sur le circuit devra être muni de deux petites cosses correspondant au boîtier métallique (collecteur). Ces deux cosses seront ensuite soudées sur le circuit côté cuivre.

Une fois le câblage terminé et après vérification, on vaporisera une couche de vernis isolant côté cuivre et côté composants.

Usinage boîtler

On s'inspirera des schémas donnés à la figure 6. Tout d'abord on percera le couvercle du coffret pour pouvoir monter le potentiomètre de variation et l'interrupteur arrêt/marche. Un trou supplémentaire dans l'axe longitudinal de celui du potentiomètre permet le passage de la tête de la led de signalisation lorsque l'on referme le couvercle du coffret. Ensuite on perce l'intérieur du boîtier aux cotes indiquées. Trois trous servent à la fixation du circuit imprimé, deux autres trous sont utilisés pour fixer l'appareil terminé sur une paroi verticale ou horizontale quelconque. A cet effet, faisons remarquer à nos lecteurs les trois fraisages de diamètre 5,5 mm effectués côté extérieur du coffret. De cette facon, en utilisant des vis à tête fraisée, nous n'avons aucune saillie et pouvons plaquer correctement notre appareil sur son support de montage. Enfin, en dessous du boîtier, nous perçons un trou de & 10 mm correspondant à la mise en place d'un passe-fil caoutchouc pour le passage du câble de raccordement.

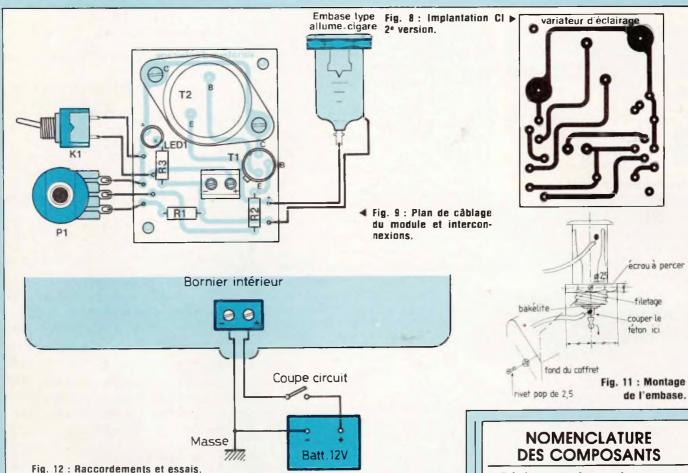
Raccordements et essais

Réaliser le montage de la figure 7. La batterie 12 V peut être remplacée par une petite alimentation continue de puissance suffisante. Le seul essai consiste à basculer l'interrupteur ON/OFF. A ce moment, la led de signalisation doit s'allumer, puis à tourner le potentiomètre de variation. La lampe constituant la charge de sortie doit varier d'intensité lumineuse de l'extinction à l'allumage total

REALISATION PRATIQUE

2° VERSION

Fabrication du circuit imprimé et implantation


Pour la réalisation du circuit imprimé et l'implantation des composants, tout ce que nous avons mentionné précédemment est identique, à l'exception de la fixation qui s'effectue par deux trous au lieu de trois, du bornier de raccordement à deux broches et de la sortie par une embase allume-cigare. On trouve figure 8 le schéma de fabrication du circuit imprimé et figure 9 le câblage de celui-ci.

Usinage boîtler

Les différents schémas de percage du coffret sont donnés à la figure 10. En ce qui concerne le dessus du couvercle. l'intérieur et le dessous du boîtier, on agira conformément au plan et à la réalisation précédente. Faisons quand même remarquer à nos lecteurs le petit perçage de diamètre 2,5 mm lamé extérieurement à 3,5 mm dont nous allons donner le pourquoi dans les lignes suivantes. Le dessus du boîtier est usiné à un diamètre de 22 mm pour recevoir l'embase de sortie allume-cigare. Le montage de cette embase n'offre pas de difficulté particulière et on suivra autant que faire se peut le schéma donné à la figure 11 et les explications suivantes:

Tout d'abord, dévisser l'écrou de fixation et supprimer le cylindre métallique entourant le corps de l'embase, puis couper la pointe du téton de raccordement, de facon à ce que celui-ci lors du montage de l'embase, ne touche pas le boîtier. Enfin, percer un petit trou de & 2,5 mm sur une des faces de l'écrou six pans de fixation, mais attention! pas n'importe laquelle. Pour connaître la face à percer, visser l'écrou à fond et noter quelle face va effleurer le fond du boîtier. C'est celle-ci qu'il faut percer. Le montage de l'embase se fait alors de façon très simple. Toutefois, il faut agir dans l'ordre en commencant par glisser le corps de l'embase dans le trou de diamètre 22, ensuite

VARIATEURS ELECTRONIQUES D'ECLAIRA

de maintenir l'écrou dans le boîtier, la face au perçage de & 2,5 mm côté métal, enfin de visser le corps de l'embase sur l'écrou. Il ne reste plus maintenant qu'à fixer le tout par un petit rivet «POP» de diamètre 2,5 mm, la tête de celui-ci venant se loger dans le lamage de 3,5 mm vu précédemment.

Raccordements et essais

Après avoir réalisé le montage de la figure 12, on branchera sur la prise allume-cigare une petite baladeuse voiture à lampe à incandescence. Attention toutefois à ne pas dépasser la puissance préconisée. On bascule l'interrupteur arrêt/marche sur ON, la led de signalisation doit s'éclairer et il ne suffit plus maintenant qu'à tourner le bouton de variation dans un sens ou dans l'autre pour passer de

l'extinction compléte à l'allumage total.

CONCLUSION

Avec ces deux petits montages, nous espérons avoir satisfait bon nombre de lecteurs intéressés, qui pour un lecteur de carte dans la voiture, qui par un plafonnier dans sa caravane, qui encore un éclairage compas pour le navire de plaisance. Dans tous les cas précités et dans bien d'autres, il devient vite nécessaire de pouvoir régler aussi précisément et simplement que possible la luminosité, de facon à ne pas déranger ses voisins de couchette ou s'éblouir soi-même par un éclairage trop intense, but principal de ces deux appareils de coût modique et de réalisation fort Florence Lemoine

• Résistance à couche

± 5 % 1/4 W

R1 - 2,2 kΩ

 $R2 - 1 k\Omega$

R3 · 470 Ω

• Potentiomètre linéaire

P1 - 47 kΩ

Semiconducteurs

T1 - 2N1711 ou 2N2222

T2 - 2N3055 ou 2N3442/3771

LED1-25 mm rouge ou verte

Divers

1 bouton pour pot, axe & 6 mm

1 interrupteur unipolaire miniature

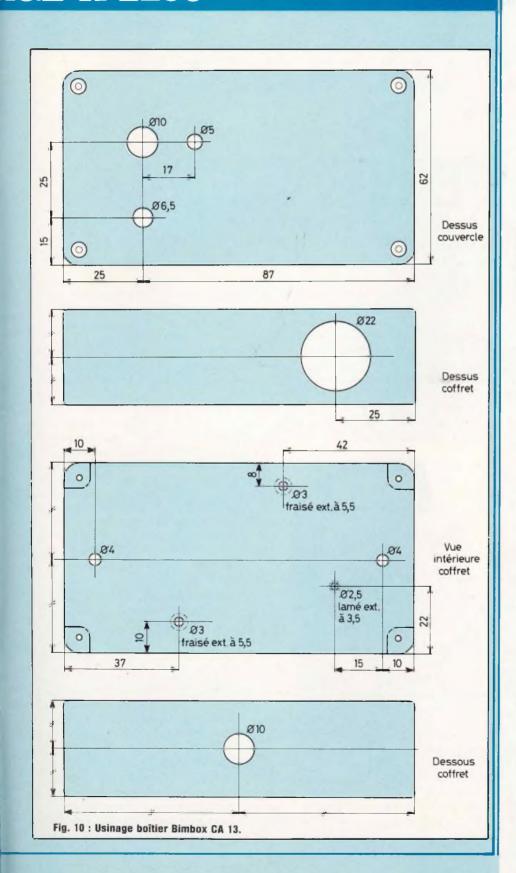
1 passe-fil & 10 mm

1 rivet pop & 2,5 mm

Matériel complémentaire pour version 1

1 boîtier aluminium bimbox CA12

1 bornier pour C.I. 3 plots


Matériel complémentaire pour version 2

1 boîtier aluminium bimbox CA13

1 bornier pour C.I. 2 plots

1 embase standard pour allumecigare.

AGE nº 2256

La Haute-Fidélité au top niveau vous connaissez ?

Savez-vous qu'en France il existe un magasin unique en Europe

La maison de 'AUDIOPHILE

Spécialisée dans la restitution sonore du plus haut niveau, elle propose une gamme tout à fait originale de kits électroniques et acoustiques d'une qualité digne des systèmes les plus prestigieux. Elle offre également une sélection de composants audio importés spécialement, non diffusés en France dans le commerce classique ainsi que disques, accessoires, câbles...

La maison de

14, rue de Belfort 75011 PARIS Tel.: (1) 379.12.68

Si vous êtes parisien, ayez la curiosité de venir nous voir

Si vous êtes en province, téléphonez ou écrivez-nous... pour de plus amples informations.

LES DANGERS DE L'HYPERTENSION

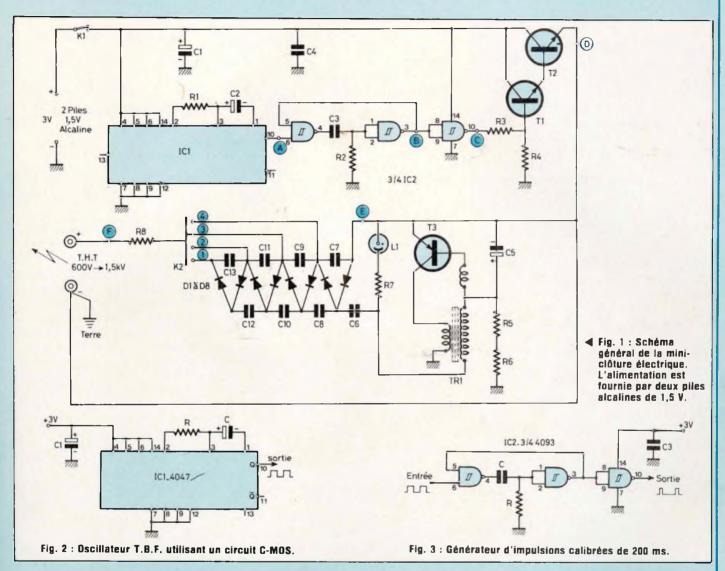
Nous dédions plus particulièrement cet article à tous nos amis lecteurs jardiniers ou paysans d'un jour pour lesquels une petite clôture électrique simple et peu volumineuse peut s'avérer d'une grande utilité.

vec l'étude de cette réalisation sortant de l'ordinaire, nous avons fait en sorte que principe et montage restent accessibles à tous, sans oublier pour autant, d'une part l'efficacité, et d'autre part la notion de sécurité. Enfin, en dehors de toutes considérations purement techniques, nous avons délibérément opté pour un appareil robuste et d'emploi aisé, concrétisant par là même le souhait de l'homme de terrain.

LE SCHEMA GENERAL

Il est représenté à la figure 1. D'emblée, précisons que l'emploi de piles alcalines en lieu et place d'accumulateur cadmium-nickel a procédé d'un choix délibéré et volontaire. En fait, afin de réduire autant que faire se peut l'encombrement de notre appareil, il nous fallait une source de petites dimensions. D'un autre côté, l'autonomie de fonctionnement se devait d'être la plus importante possible. Enfin, d'un troisième côté, nous étions confrontés au problème de circuits devant fonctionner sur de très faibles tensions avec évidemment une consommation aussi réduite que possible. Pour pallier tous ces différents problèmes, il s'avérait donc nécessaire d'utiliser des MOS alliant une grande plage de tension d'alimentation à une très faible consommation. Or, si le second était tout à fait acceptable, les données constructeur pour le premier nous donnaient une tension minimale de fonctionnement de +3 V. Ainsi donc se trouve résolu le problème de l'alimentation grâce à l'emploi de deux piles 1,5 V série nous fournissant royalement nos 3 V alors que deux accus cadmium-nickel du même type nous auraient donné approximativement 2,5 à 2,6 V maximum.

Après avoir vu l'important problème de l'alimentation et in extenso de la consommation, notre schéma géné-


ral nous apprend que le générateur d'impulsions est donc constitué de circuits intégrés de type C-MOS. IC1 représente le générateur de créneaux à rapport cyclique fixe. Nous avons opté pour un circuit spécialement conçu pour cette utilisation en oscillateur. Il s'agit d'un 4047 dont on peut faire varier la fréquence de sortie dans d'importantes proportions grâce à la résistance R1 et au condensateur C2. Ces deux seuls composants sont d'ailleurs nécessaires pour faire fonctionner ce circuit. Les créneaux de sortie sont ensuite appliqués à un monostable constitué de deux portes NAND puis inversés de façon à venir saturer un montage de deux transistors montés en Darlington et servant, comme nous l'avons vu, d'interrupteur électronique de la tension d'alimentation.

Dès lors, le montage oscillateur haute tension élaboré autour de R5-R6/C5, T3 et TR1 ne fonctionne qu'épisodiquement, délivrant en sortie des «trains» de haute tension au rythme du générateur d'impulsions.

La valeur maximale de cette haute tension est alors appliquée à un multiplicateur à quatre échelons double, le point commun de chaque échelon étant ensuite sélectionné par un interrupteur à glissière à quatre positions afin de parvenir par l'intermédiaire de la résistance R8 en sortie T.H.T.

Enfin, mentionnons l'ensemble R7/L1 permettant de contrôler le bon fonc-

MINI CLOTURE ELECTRIQUE nº 2257

tionnement de la mini-clôture électrique tout en garantissant grâce à l'emploi d'un petit témoin au néon pour L1, une consommation quasiment nulle.

L'OSCILLATEUR PILOTE T.B.F.

Constitué d'un seul circuit intégré C-MOS de type 4047 et de deux composants extérieurs, son schéma est donné à la figure 2. Comme nous l'avons dit précédemment, la tension minimale préconisée par le constructeur étant de 3 V, il s'est avéré que nous avons pu faire fonctionner correctement ce montage en descendant vers 2,7 V, garantissant de cette

façon la courbe de décharge de nos piles alcalines. L'utilisation de ce petit circuit permet l'obtention d'un montage oscillateur de grande précision et stabilité. Selon les connexions de certaines broches du C.I., il peut fonctionner en multivibrateur astable ou monostable, et dans notre cas en astable, en relaxé, direct ou complémentaire. Nous n'entrerons pas dans le détail de fonctionnement de ce circuit que nous décrivons dans la rubrique «en savoir plus sur» et convions le lecteur intéressé à s'y reporter. La période de basculement est déterminée approximativement par la formule simple:

s ΩF

avec R = 100 k Ω et C = 6,8 μ F/35 V tantale, d'où

$$T = 4.4 \times 100.10^3 \times 6.8.10^{-6}$$

T = 3 s

Le signal de sortie à la broche 10 de IC1 est représenté à la figure 10 en A.

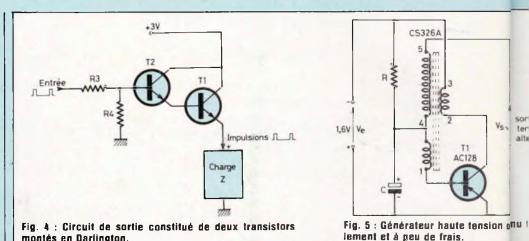
LE GENERATEUR D'IMPULSION

Le schéma de ce petit circuit est donné à la figure 3. Comme nous venons de le voir, à la suite de notre oscillateur-pilote T.B.F. de période 3,3 s, soit une fréquence

MINI CLOTURE ELECTRIQUE nº 2257

$$F = \frac{1}{T} = 0.3 \text{ Hz}$$

et de rapport cyclique 50 %, il nous fallait obtenir des impulsions calibrées de 200 ms et ceci donc toutes les 3.3 s. Pour ce faire, nous aurions pu utiliser un montage simple différenciateur à résistance/capacité, mais la courbe de décharge exponentielle, flanc de l'impulsion, ne nous garantissait pas une précision suffisante. Le schéma retenu est donc celui d'un circuit monostable constitué de deux portes NAND trigger et naturellement d'un ensemble à constante de temps R/C. Une autre porte montée en inverseur en sortie permet d'obtenir des impulsions positives.

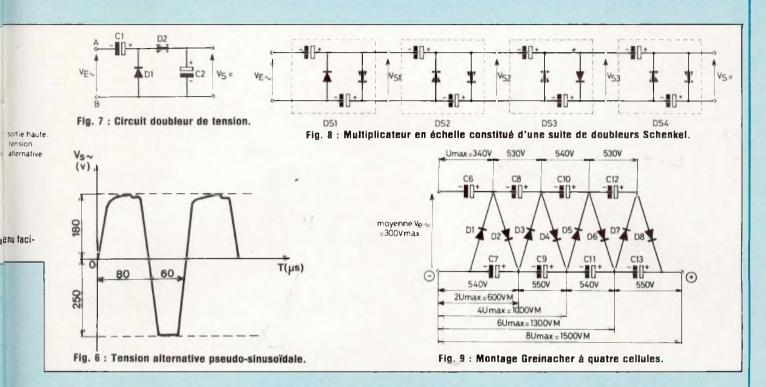

L'attaque de ce circuit se fait sur l'entrée 6 du 4093 comportant quatre portes NAND trigger et, sur la sortie 3, nous obtenons le signal B de la figure 10. Sur cette même figure et après inversion sont données en C les impulsions positives calibrées définissant le temps de fonctionnement de la partie haute tension.

La durée de nos impulsions est donnée par la formule approximative :

En fait, et toujours eu égard à la précision et à la tolérance des éléments, nous avons relevé une durée impulsionnelle de 200 ms.

LE CIRCUIT DE SORTIE

Constitué de deux transistors montés en Darlington mais dont la charge se trouve dans l'émetteur, le schéma de ce montage se trouve à la figure 4. L'alimentation est effectuée sous nos 3 V et après attaque de T2 par les impulsions issues du circuit précédent, il apparaît sur la charge en sortie émetteur de T1, des impulsions de puissance de même durée. La résistance R3 de faible valeur nous per-


met de limiter le courant de base de T2, courant devant être fourni par une des portes de IC2, quant à R4 de valeur 150 k Ω , elle permet de maintenir le potentiel de cette même base au 0, le montage ne pouvant être débloqué que par un signal positif issu de R3. Il convient maintenant de préciser à nos lecteurs que la charge n'étant nullement résistive, et de surcroît constituée d'un ensemble générateur à haute tension, il convient de s'assurer pour les transistors T1 et T2 des modèles de petites puissances, certes, mais pouvant admettre des pointes de tension relativement

Nous préconisons le transistor de type BSX21 dont nous donnons les caractéristiques ci-après pour un éventuel équivalent.

BSX21 RTC V_{CB} 120 V V_{CE} 80 V V_{EB} 5 V 250 mA Icm P_{TOT} 300 mW h_{21E} 20 pour $I_C = 4 \text{ mA et}$ $V_{CE} = 1 V$ $0.7 \text{ V pour } I_C = 4 \text{ mA et}$ $l_B = 0.4 \text{ mA}$

En sortie de ce circuit, nous obtenons donc toutes les 3.3 s des impulsions de 0,2 s de durée. Cette tension «hâchée» nous sert maintenant à faire fonctionner notre générateur haute tension (fig. D).

Réaliser un convertisseur haute tension délivrant quelque 400 V crêtecrête, en partant d'une tension d'alimentation de 1,6 V n'était guère évident, surtout en voulant rester dans la simplicité. Nous avons contoursé la difficulté en étudiant un petit montage fort performant dérivé des montages oscillateurs Colpits et Hartley avec un transformateur à point milieu. Ce composant, pièce maîtresse de notre générateur haute tension, est bobiné sur carcasse ferrite offrant de ce fait un excellent rendement ainsi que la possibilité d'atteindre des fréquences de quelques kilohertz impossibles à obtenir avec un transformateur normal à tôles feuilletées. Enfin, le modèle préconisé, identique à ceux généralement utilisés dans les flash électroniques du commerce possède les deux enroulements couplés pour l'oscillation, un enroulement supplémentaire à fort rapport de transformation au vu de son grand nombre de spires. Il s'ensuit qu'un tel composant utilisé conformément au schéma de la figure 5 nous permet d'obtenir facilement et à peu de frais un excellent générateur haute tension, délivrant en sortie une tension alternative pseudo-sinusoïdale dont les caractéde puissance de 1,6 V d'amplitude et | ristiques sont données sur le graphe

représentatif de la figure 6 et ceci avec une simple alimentation de 1,6 V.

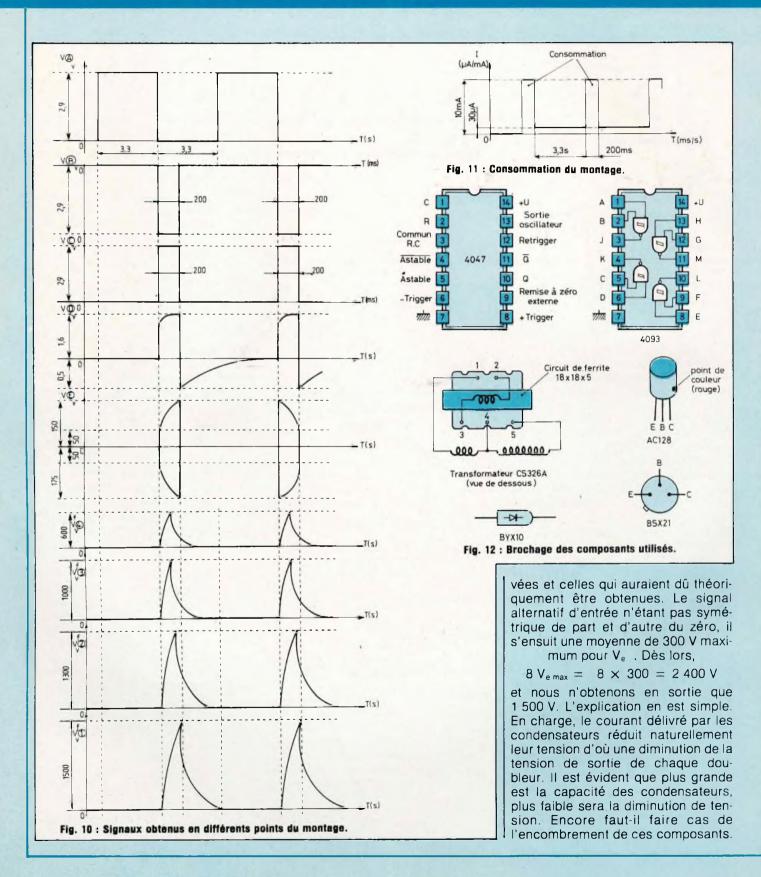
La réaction et l'oscillation s'effectuent donc conjointement au circuit RC et aux enroulements 2,3 et 1,4 du transformateur TR1, la haute tension étant, elle, générée par l'enroulement 4,5. Comme dans tous montages oscillateurs où, en réinjectant une fraction du signal de sortie sur l'entrée, on obtient une oscillation, un montage amplificateur doit compenser les différentes atténuations du circuit.

Le rôle de l'amplification est octroyé par le transistor T1 qui est un modèle de petite puissance au germanium. L'explication en est fort simple au vu de la valeur de la tension d'alimentation préconisée pour le montage. Avec 1,6 V, il devenait hors de question d'employer un transistor au silicium, même de petite puissance, ayant des tensions de seuil et de déchet par trop importantes. Un transistor PNP relativement courant dont nous donnons les caractéristiques ciaprès a donc été choisi pour ce montage.

AC128 RTC

 $\begin{array}{cccc} V_{CB} & 32 \ V \\ V_{CE} & 16 \ V \\ V_{EB} & 10 \ V \\ I_{CM} & 1 \ A \\ P_{TOT} & 1 \ W \\ h_{21E} & 90 \ \text{a} \ I_{C} = 0.3 \ A \\ f_{t} & 1.5 \ \text{MHz} \end{array}$

Il convient enfin de mentionner la consommation d'un tel montage qui est de 30 mA sous 1,5 V et qui sera ramenée à des proportions encore plus faibles lors du mode d'alimentation à courant pulsé.


LE MONTAGE OSCILLATEUR HAUTE TENSION

Considérons le schéma de la figure 7 qui est un circuit doubleur de tension encore appelé doubleur une alternance ou doubleur Schenkel. Il est réalisé à l'aide de deux condensateurs et deux diodes. En considérant en premier lieu l'alternance d'une période de courant sinusoïdal, le point A est négatif et B est positif.

Seule la diode D1 est passante et naturellement D2 est bloquée. En conséquence, C1 se charge à la tension maximale d'une alternance soit la tension V_E multipliée par 2. Pendant la seconde alternance, les polarités sont inversées. La diode D2 devient à son tour conductrice et D1 est bloquée. Le condensateur C1 chargé se trouve donc en série avec l'alternance en cours. Autrement dit, il apparaît aux bornes de C2 une tension égale à deux fois la tension de crête d'une alternance, d'où le nom de doubleur de tension. La figure 8 représente un multiplicateur en échelle qui est constitué d'une suite de doubleurs Schenkel. Chaque cellule comporte évidemment deux condensateurs et deux diodes et avec quatre cellules il est possible d'obtenir théoriquement une tension de sortie huit fois plus élevée que celle d'entrée.

Enfin, à la figure 9 nous donnons le schéma complet du multiplicateur utilisé dans la mini-clôture électrique. Il s'agit du montage de Greinacher à quatre cellules et on remarquera bien la différence entre les tensions rele-

MINI CLOTURE ELECTRIQUE nº 2257

En ce qui nous concerne, nous avons choisi des modèles au polyester de valeur 47 nF/400 V.

LE CIRCUIT COMPLET

Il est donc constitué des différentes parties que nous venons d'étudier. A la mise sous tension, on doit relever les différents graphes donnés jusqu'à maintenant ainsi que ceux en E et F de la figure 10. L'ampoule au néon doit s'éclairer à la même cadence que les impulsions de T.H.T. On pourra relever les consommations suivantes (fig. 11):

— Logique seule sous 3 V : de 20 μ A à 35 μ A

Oscillateur T.H.T. seul sous 1,5 V :
 65 mA

— Montage complet sous 3 V : 10 mA impulsionnel pendant 0,2 s. Par sélection de la position du commutateur de sortie, nous pourrons obtenir les valeurs (impulsionnelles) de très haute tension suivantes :

position 4: 600 V position 3: 1 000 V position 2: 1 300 V position 1: 1 500 V

Il va de soi que le courant délivré est très faible, avoisinant au maximum quelques dizaines de micro-ampères et étant limité naturellement par les valeurs des condensateurs du multiplicateur de Greinacher. N'importe comment, et de surcroît, nous avons prévu une résistance série de $10 \text{ k}\Omega$ de limitation de courant. Notre mini-clôture électrique est donc tout à fait inoffensive

LA MANIPULATION PHYSIOLOGIQUE DE L'IMPULSION DE T.H.T.

La secousse électrique de notre clôture, loin de provoquer une électrisation, procure une manifestation physiopathologique due au passage instantané du courant dans le corps de l'animal, ou de l'être humain si on la touche. La secousse dépendant essentiellement du temps et de l'intensité du courant, il s'avère que pour notre cas une secousse de 200 ms dont le courant est très nettement inférieur à quelques mA offre, malgré le picotement désagréable, une sécurité remarquable et aucun effet physiopathologique dangereux.

BRANCHEMENT DES COMPOSANTS

Les schémas des différents éléments de notre réalisation sont donnés à la figure 12. Les deux circuits intégrés C-MOS sont vus du dessus et pour le transformateur TR1 nous avons préconisé un modèle CS326A de National, mais tout transformateur de circuit ferrite 18 × 18 × 5 utilisé dans les flash électroniques doit avoir normalement le même branchement qui est, lui, vu du dessous. Enfin, nous donnons le branchement des deux transistors utilisés, ainsi que celui des diodes du multiplicateur de tension.

REALISATION

DU CIRCUIT IMPRIME

La réalisation n'offre pas de difficultés particulières. Le schéma du mylar est donné à la figure 13. On procédera de façon habituelle pour ce genre de circuit, soit par photographie en utilisant les pages «gravez-les vous-même» dont les dessins sont donnés à la fin de la revue, soit encore par éléments transfert bandes et pastilles. Le circuit sera ensuite étamé à l'aide d'un bain chimique et sera vaporisé une première fois à l'aide d'un vernis pour circuit imprimé.

L'IMPLANTATION ET RACCORDEMENT

On commencera par souder tous les composants à plat, diodes et résistances en continuant par les éléments de plus grande hauteur, condensateurs et transistors, pour terminer par les deux supports de circuit

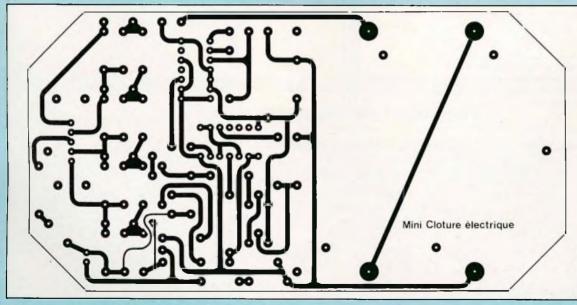
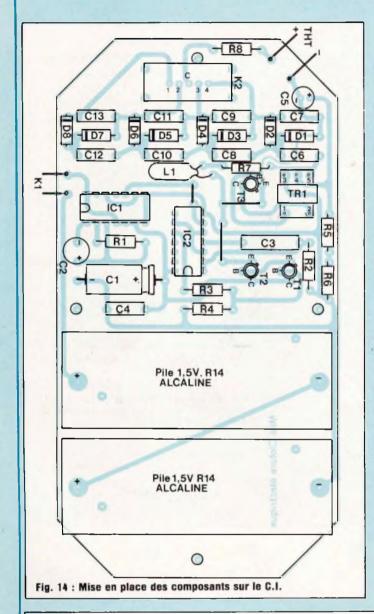
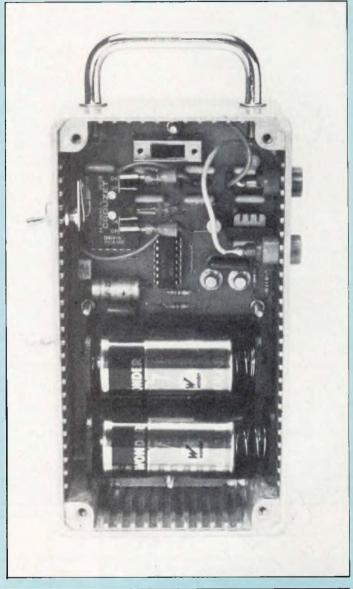




Fig. 13 : La réalisation de ce circuit imprimé n'offre pas de difficulté particulière.

MINI CLOTURE ELECTRIQUE nº 2257

NOMENCLATURE DES COMPOSANTS

Résistances à couche

± 5 % 1/4 w

R1 - 100 kΩ

R2 - 1 MΩ

R3 - 100 Ω

R4 - 150 kΩ

R5 - 100 Ω

R6 - 100 Ω

 $R7 - 1.8 M\Omega$

 $R8 - 10 k\Omega$

· Condensateurs non polarisés

C3 - 150 nF

C4 - 0,1, µF

C(à C13 - 47 nF

Condensateurs polarisés

C1 - 64 µF/25 V

C2 - 6,8 µF/35 V tantale

C5 - 10 uF/16 V

Semiconducteurs

IC1 - CD4047

IC2 - HEF4093

T1 - BSX21

T2 - BSX21

T3 - AC128

D1 à D8 - BYX10

Divers

L1 - Néon 60 V

TR1 - Transformateur type flash

CS326A ou équivalent

K1 - Interrupteur unipolaire

K2 - Inverseur à glissière 4 positions

2 piles KLR14 1,5 V alcaline

2 supports pour piles

2 supports Dual in Line 14 broches

2 embases isolées femelles

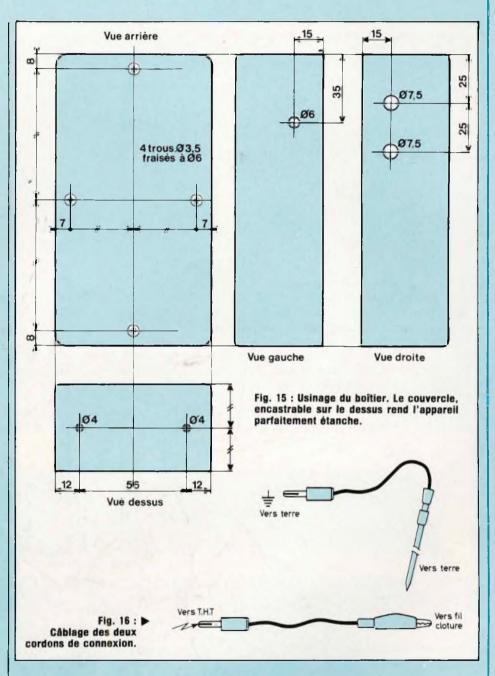
4 fiches bananes isolées

1 pince crocodile isolée

1 poignée chromée

1 coffret aluminium 150 x 150 x 80 réf. CA15

intégrés, le support du transistor T3, le transformateur TR1 et le sélecteur de tension K2. Ne pas oublier les quelques straps reliant différents points du circuit. Ensuite seront montés sur le dessus du circuit les deux supports de pile en tenant bien compte de leur positionnement. Le câblage est terminé et il ne reste plus qu'à souder les deux fils de l'interrupteur ainsi que ceux de raccordement aux prises de sortie. Avant montage dans le boîtier, on vaporisera une couche généreuse de vernis côté cuivre


USINAGE DU BOITIER FILS DE RACCORDEMENTS

Pour cette réalisation, nous avons utilisé un petit coffret d'aluminium moulé de dimensions 150 × 50 × 80. Le couvercle est encastrable sur le dessus rendant l'appareil parfaitement étanche aux projections, surtout si on prend soin avant fermeture de loger un léger cordon de mastic au silicone à l'encastrement. Ce coffret sera usiné conformément aux différents schémas donnés à la figure 15.

Avant les essais, on en profitera pour câbler les deux cordons de connexion dont le schéma se trouve à la figure 16. Encore une fois, ne pas oublier que la terre et l'humidité, sont corrosifs, on emploiera donc pour se faire des fiches à manchons isolés ainsi qu'une tige prise de terre en laiton étamé.

MISE SOUS TENSION, ESSAIS

Coffret ouvert, basculer l'interrupteur sur la position «marche», un léger sifflement correspondant à la fréquence d'oscillation de l'oscillateur haute tension doit se faire entendre toutes les 3,3 s. Au même moment, une des électrodes du témoin néon doit s'illuminer. Il n'y a aucune mise au point, et le montage fonctionne déjà à 75 %. Brancher un oscilloscope avec une sonde 1/10 sur les bornes de sortie et s'assurer qu'en manœuvrant successivement le sélecteur de tension sur ses quatre positions respectives, on obtient bien

des impulsions T.H.T. conformes aux graphes donnés précédemment. Avant de refermer le coffret, s'assurer en outre qu'il n'y a point d'amorçage entre composants du circuit.

UTILISATION

En tout état de cause, il faudra parfaitement isoler à l'aide d'isolateurs

porcelaine le fil de clôture des piquets de maintien en bois.

La mini-clôture pourra être pendue à un crochet au moyen de sa poignée. On basculera l'interrupteur sur la position marche et on pourra toujours s'assurer que le montage fonctionne correctement en touchant légèrement le fil de clôture.

C. de Linange

REDECOUVREZ VOS CASSETTES

Quel est l'amateur qui n'a pas commencé ses « Loisirs Electroniques d'Aujourd'hui » par la construction d'un ampli ? Seulement voilà ! Ça coûte cher, c'est encombrant et le résultat n'est pas toujours fameux. Avec l'appareil décrit ici, vous allez pouvoir combler tous vos désirs et surtout pouvoir écouter vos cassettes comme vous ne les avez jamais entendues.

n effet, grâce au loudness, le triangle et les cymbales se détachent sur des basses profondes qu'aucun ampli non corrigé ne peut restituer sans pousser la puissance à fond et ameuter les voisins.

Nous avons séparé la description du loudness afin de pouvoir la réaliser indépendamment pour l'utiliser sur d'autres amplis.

PRINCIPE DE L'AMPLI

Il est composé de deux amplis intégrés TDA 2002 montés en pont ou plus exactement en H (car il s'agit en fait de deux ponts inversés) suivant un principe déjà très connu et maintes fois publié.

L'entrée du signal se fait par un

volume pour être transmis sur la borne 1 du premier TDA par l'intermédiaire d'un condensateur de 2.2 uF.

Un filtre, branché entre les deux entrées, composé du condensateur de 10 nF et d'une résistance de 470 Ω sert à stabiliser le circuit.

Le signal est ensuite transmis de la potentiomètre servant à doser le borne 2 du premier TDA à la borne 2

MINI AMPLI AVEC LOUDNESS nº 2258

du deuxième TDA à travers un autre filtre composé d'une résistance de $470~\Omega$ et du condensateur de $10~\mu\text{F}$. La borne 1 du deuxième TDA est reliée à la masse par l'intermédiaire d'un condensateur de $2,2~\mu\text{F}$.

Les bornes 3 et 5 des deux circuits sont respectivement reliées au (-) et au (+) de l'alimentation.

Chacune des bornes 4 est réunie au haut-parleur et découplée à la masse par un condensateur de $100\,\mathrm{nF}$ et une résistance de $2,2\,\Omega$, car nous n'avons pas réussi à empêcher l'oscillation de l'ampli sans ce découplage.

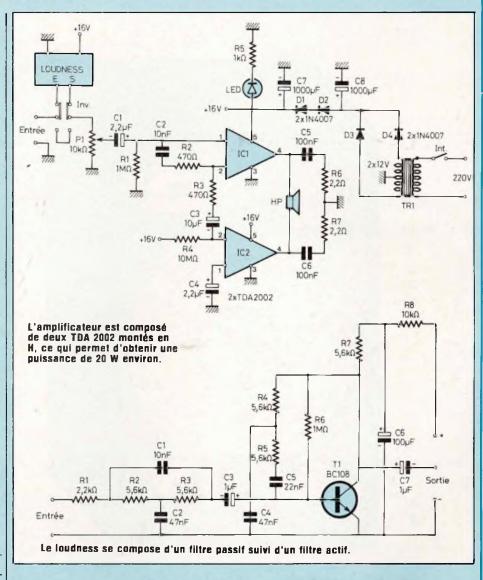
Les résistances de 1 M Ω et 10 M Ω branchées sur les entrées servent à équilibrer la tension de sortie pour supprimer au repos le courant continu aux bornes du haut-parleur.

Ainsi équilibré, l'amplificateur est parfaitement stable.

ALIMENTATION

Nous avons utilisé un transformateur classique 220 V/2 \times 12 V/1 A, deux diodes redressent les deux alternances du courant pour charger un condensateur de 1 000 μ F.

Un filtrage est établi par deux diodes en série, qui remplacent avantageusement une résistance, suivies d'un deuxième condensateur de 1 000 µF. Une led de contrôle a été montée avec sa résistance série sur la sortie de l'alimentation.


LE LOUDNESS

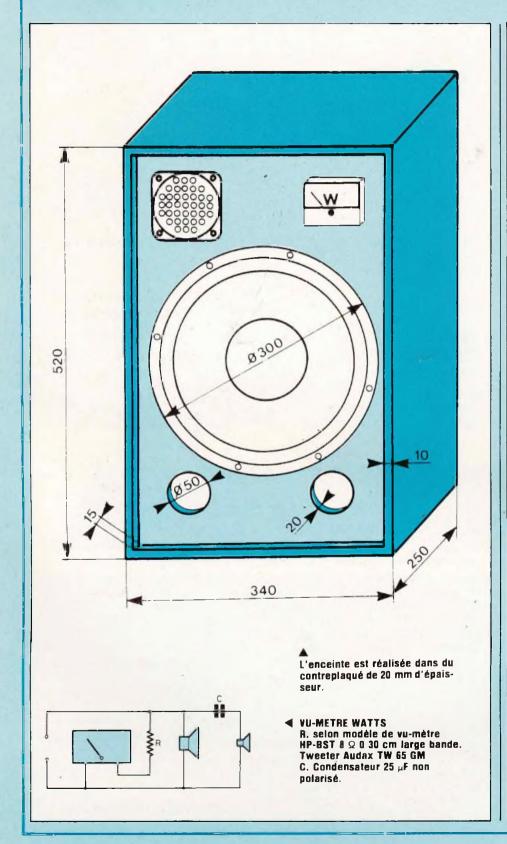
C'est en fait un filtre passif suivi d'un filtre actif qui creuse les médiums et relève les basses et les aiguës.

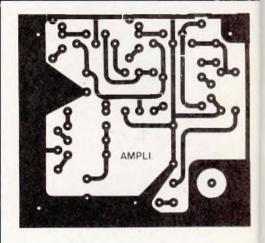
Une première résistance de $2,2~k\Omega$ en série dans l'entrée empêche l'ensemble d'osciller en haute fréquence, elle est suivie de deux résistances de $5,6~k\Omega$ découplées à la masse par un condensateur de 47~nF, ce qui constitue un filtre atténuant les aiguës et les médiums sans trop affaiblir les basses.

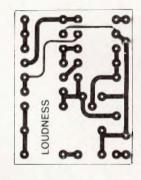
Un condensateur de 10 nF est branché en parallèle sur ce filtre afin de laisser passer les aiguës.

Le signal ainsi affaibli des médiums l

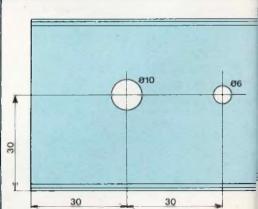
est transmis sur la base d'un transistor amplificateur par l'intermédiaire d'un condensateur de 1 μ F.

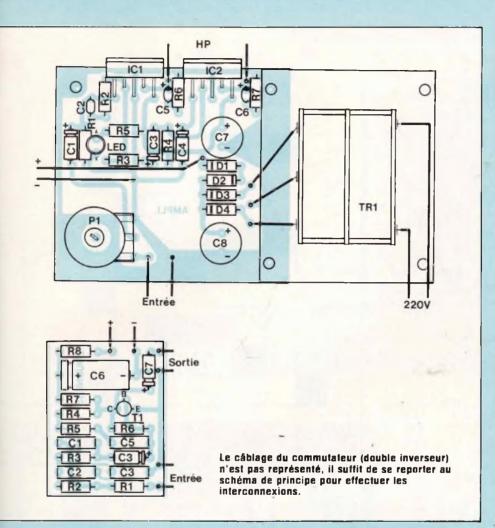

L'émetteur du transistor va à la masse tandis que son collecteur chargé par une résistance de $5,6~k\Omega$ est relié au (+) par l'intermédiaire d'un pont de filtrage constitué d'une résistance de $10~k\Omega$ et d'un condensateur de $100~\mu\mathrm{F}$ relié à la masse. La polarisation du transistor est obtenue par une résistance de $1~M\Omega$ branchée entre le collecteur et la base. Une importante contre-réaction des aiguës et des médiums est obtenue par l'ensemble des deux résistances


de 5,6 k Ω en série avec le condensateur de 22 nF branché entre collecteur et base du transistor.


Un découplage vers la masse des aiguës est obtenu par le condensateur de 47 nF ce qui fait qu'il restera une importante contre-réaction des médiums et une contre-réaction atténuée des aiguës et des basses.

Enfin le signal recueilli sur le collecteur est transmis à l'entrée de l'ampli par un condensateur de 1 µF.


Nous avons monté un double inverseur entre l'entrée de l'amplificateur et l'entrée du signal afin de mettre en ou hors service le loudness.



Nous avons séparé la description du loudness afin de pouvoir le réaliser indépendamment pou l'utiliser sur d'autres amplis.

Plan de perçage du coffret ISKRA Réf : 85 155. La face arrière également en aluminium sert de dissipateur aux TDA 2002.

MINI AMPLI AVEC LOUDNESS nº 2258

Ø5 Ø6

ENCEINTE

Elle est réalisée selon le dessin par deux panneaux de contreplaqué de 20 mm d'épaisseur de 320 × 500 mm pour former le fond et la face avant qui sera découpée suivant le modèle.

Le dessus et le dessous seront faits avec du contreplaqué de 10 mm, longueur 340 mm, largeur 250 mm, les côtés également en 10 mm, longueur 520 mm, largeur 250 mm.

L'ensemble est cloué et collé, la face avant vernie et le reste recouvert de plastique adhésif imitation bois.

Le condensateur de $25\,\mu\text{F}$ « non polarisé » peut être remplacé par deux condensateurs de $50\,\mu\text{F}$ en série et montés tête bêche.

Jacques Bourlier

NOMENCLATURE DES COMPOSANTS

AMPLIFICATEUR

• Résistances à couche

± 5 % 1/4 W

R1 - 1 MΩ

 $R2 - 10 M\Omega$ $R3 - 470 \Omega$

 $R4 - 470 \Omega$

R5 - 1 kΩ

 $R6 - 2.2 \Omega$

R7 - 2.2 Ω

Condensateur non polarisé

C2 - 10 nF

• Condensateurs polarisés

C1 - 2,2 µF

C3 - 10 µF

C4 - 2,2 µF

C5 - 0,1 µF tantale goutte

C6 - 0,1 µF tantale goutte

C7 - 1 000 µF/16 V

C8 - 1 000 µF/16 V

Semiconducteurs

IC1 - TDA 2002

IC2 - TDA 2002

D1 à D4 - 1N 4007 LED - & 5 mm rouge

Divers

P1 - 10 kΩ log.

TR1 - transformateur 2 × 12 V/1 A

Inv. - Inverseur double à bascule

Int. - Interrupteur simple à

bascule

Fiche socie DIN

Fiche soche HP

Cordon alimentation

Coffret ISKRA Réf: 85 155

LOUDNESS

Résistances à couche

± 5 % 1/4 W

 $R1 - 2.2 k\Omega$

 $R2 - 5.6 k\Omega$

 $R3 - 5.6 k\Omega$

 $R4 - 5.6 k\Omega$

 $R5 - 5.6 k\Omega$

R6 - 1 MΩ

 $R7 - 5.6 k\Omega$

 $R8 \cdot 10 k\Omega$

• Condensateurs non polarisés

C1 - 47 nF

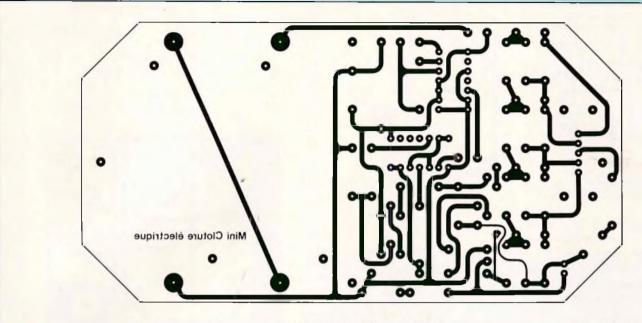
C2 - 10 nF

C4 - 47 nF

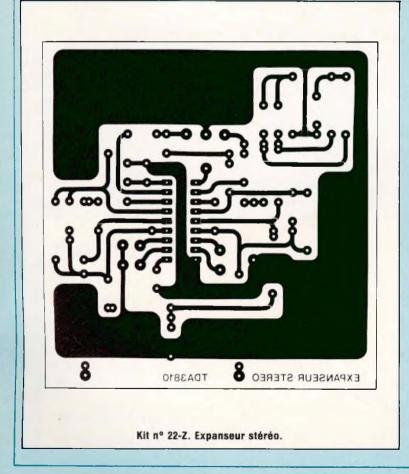
C5 - 22 nF

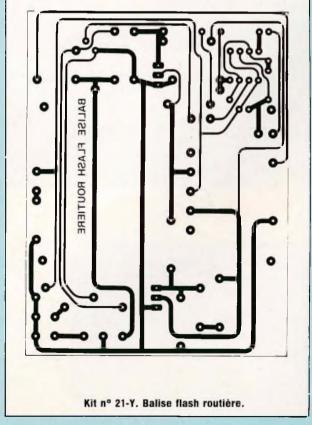
Condensateurs polarisés

C3 - 1 µF

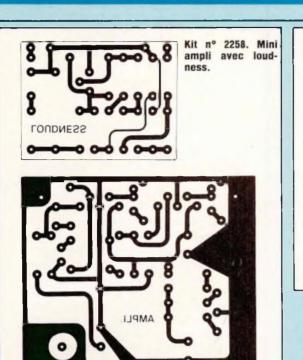

C6 - 100 µF/16 V

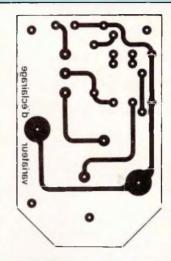
C7 - 1 uF

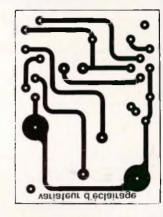

Semiconducteurs


T1 - BC 108

GRAVEZ_LES VOUS_MEME




Kit nº 2257. Mini cloture électrique.



GRAVEZ_LES VOUS_MEME

Kit n° 2256. Variateurs électroniques d'éclairage.

Les implantations sont volontairement publiées à l'envers pour que le côté imprimé de cette page soit en contact direct avec le circuit lors de l'insolation.

FICHE RENSEIGNEMENTS LECTEURS

Un important courrier et de nombreuses communications téléphoniques nous ont amené à constater que de nombreux lecteurs, surtout en province, éprouvent des difficultés d'approvisionnement en composants. Afin de vous aider à résoudre ce problème, vous trouverez dorénavant une fiche-lecteur qu'il vous suffira de nous retourner sous enveloppe affranchie à votre nom. Une réponse vous sera donnée dans les meilleurs délais.

QUESTIONS (voir réponses au verso)

						renseignements	sur	l'origine	dι
con	nposar	nt rechero	ché	ou s	on équiv	alent.			

Résistances:

Condensateurs .

Semiconducteurs:

Divers

MONTAGE EN COURS

d'après LED N°

Adresser cette fiche et l'enveloppe affranchie à votre nom aux EDITIONS FREQUENCES - Service lecteurs: 1, bd Ney, 75018 Paris

Nom

Prénom

Adresse.