

"L'utopie est appelée à devenir réalité un jour ou l'autre..."

Nouveau

Ceci est une MICRO CAMÉRA. C'est une caméra COULEURS Le petit fil droit qui en sort est l'antenne de son ÉMETTEUR VIDÉO. L'ensemble mesure (hors antenne) : 22 x 15 x 20 mm (pin hole). La portée : jusqu'à 400 m en plein air. La qualité d'image est vraiment étonnante.

Elles sont bien réelles et dispo chez Selectronic

Objectif PIN-HOLE (trou d'aiguille). Dim.: $22 \times 15 \times 20 \text{ mm}$. f = 5.6.

Nouveau

Modèle 1

jectif à mise au point réglable. Dim.: 22 x 15 x 34 mm.

L'ensemble comprend:

- La micro-caméra / émetteur, le bloc-secteur et un boîtier pour 4 piles R6 pour la caméra
- Le récepteur et son bloc secteur.
- les cordons de liaison.

L'ensemble micro-caméra avec objectif PIN-HOLE L'ensemble micro-caméra avec objectif réglable

2590,00 F πc 115.0920-2 115.0920-1 2590,00 F πc

Caméra + émetteur

- Micro-caméra couleur C-MOS avec émetteur 2,4 GHz intégré.
- 356.000 pixels Exposition automatique.
- Sensibilité: 3 lux Rapport S/B: >48 dB.
- Puissance HF: 10 mW @ 2,4 GHz (CE R&TTE).
- Portée: jusqu'à 400 m. Alim.: 5 à 12 VDC régulés / 100 mA
- Peut fonctionner avec une pile 9 V alcaline Poids: 11 g.

Récepteur

- Sortie vidéo: 1 Vcc/75 ohms (PAL) Sortie audio: 0,8 V/600 ohms.
- Alim.: 12 VDC régulés / 180 mA Dimensions: 150 x 88 x 40 mm.

C'est encore une caméra ... également en COULEURS, ... mais celle-ci est ÉTANCHE à 20 m !

Nouveau

- * Caméra couleur CCD 1/4".
- Boîtier étanche à 20 m en aluminium anodisé.
- 298.000 pixels: 512 (H) x 582 (V).
- Exposition automatique Sensibilité: 3 lux.
- Rapport S/B: >46 dB.
- Objectif: 3,6 mm F: 2,0.
- Distance de vision sous l'eau : 5 à 7 m.
- Avec 10 LEDs infra-rouge pour vision dans l'obscurité. Alimentation:
 - Caméra : 12 VDC / 110 mA
- LEDs infra-rouges: 12 VDC/110 mA.
- To de fonctionnement: -10 à +45 °C.
- Dimensions: Ø49 x 56 mm Poids: 150 g. La caméra est fournie avec cordon de liaison de 20 m et étrier de fixation.

La caméra couleur ÉTANCHE 115.0919 2190,00 F πc

Diodes LED blanches ULTRA-PUISSANTES

Vraiment éblouissantes!

- Boîtier cristal non diffusant.
- Puissance lumineuse donnée pour 3,6 V / 20 mA
- Produit sensible à l'électricité statique.
- 2 tailles: Ø3 mm/4 cd et Ø5 mm/5,6 cd

Le lot de 10 en Ø 3 mm 115.2159-10 → R0140 189.00 F TTC Le lot de 10 en Ø 5 mm 115,2161-10 PROMO 189,00 Fττς

Émetteur VIDÉO + AUDIO UHF

- Module de transmission HF vidéo + audio.
- Très haute qualité de l'image et du son.
- Opère dans la bande UHF: 479,5 MHz (canal 22). Peut être utilisé avec n'importe quelle source vidéo standard.
- Réception sur n'importe quel récepteur TV standard.
- Puissance HF: 1 mW Alim.: 5 VDC/90 mA
- Dim.: 28,5 x 25,5 x 8 mm.

Le module AUREL MAV-UHF479 115.1058 199,00 FTTC

Le complément INDISPENSABLE ...

Moniteur COULEURS 5,6"

- Taille d'écran : diagonale 142 mm (5,6").
- Norme: PAL ou NTSC commutable.
- Contrôles : électroniques par boutons poussoirs (pas de potentiomètre).
- Alimentation: 9 à 20 VDC.
- Consom.: 900 mA typ. @ 12 VDC.
 Dimensions: 153 x 134 x 29,5 mm.
- Fourni avec : pied orientable, boîtier d'alimentation pour voiture, cordons.

Voir catalogue 2001, page 15-62 115.2329 **2450,00 F πC**

Un pur chef-d'oeuv AUDIOPHILE GRAND MOS Existe en KIT Le **NOUVEL** ampli MOS-FET "High-end" de La REVUE du SON n° 246 (11/00) Selectronic "... joue dans la cour des grands!" "Un plaisir d'écoute sans cesse renouvelé" Essavez-le chez vous! Tous renseignements: HAUTE FIDÉLITÉ n° (11/00)

"Une neutralité exemplaire ...

il représente l'illustration parfaite de ce que doit être l'amplification idéale connue sous le nom de "fil droit avec du gain" ..."

01.55.25.88.00 (PARIS) 03.28.55.03.28 (LILLE)

En écoute chez : Ecrin de France - (39 - DOLE) 03.84.72.12.63

Documentation sur simple demande

ELECTHUNIQUE

86, rue de Cambrai - B.P 513 - 59022 LILLE Cedex Tél. 0 328 550 328 Fax: 0 328 550 329 www.selectronic.fr

MAGASIN DE PARIS

11, place de la Nation Paris XIe (Métro Nation)

MAGASIN DE LILLE 86 rue de Cambrai

(Près du CROUS)

Catalogue Général 2001

Envoi contre 30F (timbres-Poste ou chèque)

Conditions générales de vente : Réglement à la commande : frais de port et d'emballage 28F, FRANCO à partir de 800F. Contre-remboursement : + 60F. Tous nos prix sont TTC

Société éditrice : Editions Périodes

Siège social : 5 bd Ney, 75018 Paris

SARL au capital de 51 000 F Directeur de la publication Bernard Duval

LED

Birmestriel: 28 F Commission paritaire: 64949 Tous droits de reproduction réservés textes et photos pour tous pays, LED est une marque déposée ISSN 0753-7409

Services : Rédaction - Abonnements :

01 44 65 88 14

5 bd Ney, 75018 Paris (Ouvert de 9 h à 12h30 et de 13h30 à 18 h - Vendredi : 17 h)

Ont collaboré à ce numéro : Bernard Dalstein Bernard Duval

Abonnements:

6 numéros par an : France : 125 F Etranger : 175 F (Ajouter 50 F pour les expéditions par avion)

Publicité : Henri Mézerette, poste 7060

Réalisation: - PV Editions Christian Mura Frédy Vainqueur

Secrétaire de rédaction :

Fernanda Martins

Photos: Antonio Delfin

Impression : Berger Levrault - Toul 6

PÉDALE D'EFFET OVERDRIVE

L'OVERDRIVE génère un son qui n'est pas sans rappeler la saturation progressive délivrée par les amplificateurs à lampes. L'effet est donc différent de l'écrétage qui est obtenu avec les pédales de distorsion classiques, ou encore de la saturation brute et massive des pédales du genre «Heavy-métal». Un réglage de tonalité garantit une saturation homogène à toutes les fréquences et un son riche en harmoniques.

12

LE SINGLEMOS AMPLIFICATEUR EN PURE CLASSE A MONO TRANSISTOR SANS CONTRE REACTION

L'étude que nous vous proposons, si elle est originale de part sa conception, permet surtout une écoute absolument stupéfiante. Nous n'avons pas cherché à mettre au point un amplificateur très puissant, mais par contre une réalisation ultra simple au pouvoir d'analyse de la musique proche de celle obtenue avec les amplificateurs à tubes.

29

SERVICES CIRCUITS IMPRIMÉS ET ABONNEMENTS

30

AMPLIFICATEUR DE FORTE PUISSANCE, QUADRUPLE PUSH-PULL DE 6L6 EN POLARISATION NÉGATIVE DE GRILLE 100 WATTS EFFICACES

Le bloc de puissance que nous vous proposons de construire peut tout aussi bien driver une enceinte Hi-Fi qu'une enceinte de sonorisation. A une telle puissance, il ne faut plus songer à polariser les grilles des tubes de sortie en chargeant leurs cathodes par des réseaux R-C. Une polarisation négative directe des grilles s'impose, ce qui fait descendre la consommation au repos et évite ainsi aux transformateurs (alimentation et sortie) de se transformer en plaques chauffantes.

44

LA PUISSANCE INTÉGRÉE TDA1514A - TDA7294 - LM3886

Si la qualité d'écoute n'est pas aussi bonne avec des circuits intégrés de puissance que celle obtenue avec la réalisation que nous vous proposons en classe A en début de numéro, on ne peut pas dire que c'est «mauvais» et loin de là. Les circuits intégrés autorisent sans conteste des rapports puissance/coût imbattables avec de plus des réalisations sur des surfaces de circuit imprimé des plus réduites.

48

PETITES ANNONCES GRATUITES

SERVICE CIRCUITS IMPRIMÉS

Il permet aux lecteurs d'obtenir des circuits en verre époxy, avec cuivre étamé, en versions percées ou non percées (une remise de 25 % est consentie aux abonnés).

DROITS D'AUTEUR

Les circuits, dessins, procédés et techniques publiés par les auteurs dans Led sont et restent leur propriété. L'exploitation commerciale ou industrielle de tout ou partie de ceux-ci, la reproduction des circuits ou la formation de kits partiels ou complets, voire de produits montés, nécessitent leur accord écrit et sont soumis aux droits d'auteurs. Les contrevenants s'exposent à des poursuites judiciaires avec dommages-intérêts.

BON DE COMMANDE

- 50 %

à adresser aux EDITIONS PÉRIODES, Service abonnements, 5, boulevard Ney 75018 Paris

N° 149

- En Savoir Plus sur : le tube électronique
- Kit de développement pour 68HC11 (5° partie).
- Digicode programmable avec alarme
 Alim stab HT pour préamplificateurs à tubes
 Le TDA7294 : un bloc de puissance 4 canaux
- Booster automobile 4 x 75 Weff ou amplificateur
- de sonorisation autonome
- Micro variateur et Switch

N° 151

- Kitty 255. Caméra CCD d'instrumentation, réali-
- sation de la tête de caméra (2^{ene} partie) Le PUSH : amplificateur de 2 x 12Weff à ECL86
- Push-Pull en ultra-linéaire CAPACIMÈTRE Numérique 20 000 points
- Chaîne triphonique de 3 x 75 Weff pour sonorisation ou écoute Hi-Fi (2ºmº partie)

N° 154

- Multimètre 4 rampes 35 000 points (2eme partie) - La 300B en push-pull classe A 20 Weff sans contre réaction
- Jeu de lumières 4 voies. Des lumières au rythme des notes
- KITTY 255 : caméra CCD : l'interface 8 bits (5eme partie)

N° 155

- Un caisson d'extrême grave avec 13VX Focal ou PR330M0 Audax. Le filtre actif deux voies
 KITTY 255 : caméra CCD d'instrumentation :
- présentation du logiciel d'acquisition (6em partie) Générateur BF 20 Hz à 200 kHz
- Compte tours pour cyclo ou scooter Le DUO : un push-pull ultra linéaire de pentodes
- 7189 ou EL84

N° 156

- En Savoir Plus Sur : La protection des transistors de puissance bipolaires
- Module amplificateur de 150 Weff à TDA7294 Filtre actif 2 voies pour caisson d'extrême grave (4^{ème} partie)
- (4° partie) Caméra CCD d'instrumentation équipée du capteur TC237 (7^{core} partie) Générateur vobulé 1 Hz 1,5 MHz avec marqueur

N° 157

- La 6L6 : Reine des tétrodes. Double Push-Pull stéréo de 2 x 40 Weff
- Utilisez votre oscilloscope en écran de télévision - Filtre actif 3 voies pour caisson de grave et
- satellites : le passe-bande (5° partie) Générateur vobulé 1 Hz 1,5 MHz avec mar-
- queur (2° partie)
 Les déphaseurs : le double cathodes

N° 158

- Commande d'un moteur Pas à Pas bipolaire avec le kit de développement 68HC11
- Préamplificateur bas niveaux à tubes ECC83/ECC81 pour platines vinyls ou microphones
- Enceinte deux voies Euridia 2000 Générateur vobulé 1 Hz 1,5 MHz avec marqueur (3^{ème} partie)

N° 159

- Commande d'un moteur Pas à Pas Unipolaire avec le kit de développement 68HC11
- Enceinte deux voies Euridia 2000 (2eme partie)
- Générateur vobulé 1 Hz 1,5 MHz avec marqueur l'Anti-Barkhausen (4cme partie)
- Le single : amplificateur de 2 x 8 Weff en classe A

N° 160

- Caméra Kitty: l'interface 12 bits (8eme partie) Les Tubes KT88 / KT90: un push-pull en ultralinéaire classe AB1 de 2 x 50 Weff

 - BC Acoustique/SEAS : Kits d'enceintes pour le
- Home Cinéma
- Le Single II: amplificateur de 2 x 11 Weff en classe A avec tétrodes 6550

N° 161

- Caméra CCD d'instrumentation : programmation de la carte 12 bits (9^{ème} partie)
- La Coaxiale : mini enceinte de 5 litres
- Le Triode 845 : amplificateur de 2 x 18 Weff en Single End sans contre-réaction (1ee partie)

Nº 162

- Boîte de mesure secteur
- GBF Synthétisé 0,1 Hz 102,4 kHz (1[∞] partie) Horloge murale avec fonction Thermomètre : une application du kit de développement 68HC11
- Le Triode 845 : amplificateur de 2 x 18 Weff en Single End sans contre-réaction (2^{ème} partie)

N° 163

- Horloge murale avec fonction Thermomètre : une application du kit de développement 68HC11
- Filtre actif 2 voies à triodes ECC83, pente d'atténuation de 12 dB/octave
- GBF synthétisé 0,1 Hz 102,4 kHz : 2 sorties multifonctions à déphasage programmé ou sinus vobulé avec marqueur (2 ème partie)
- Le Triode 845 (3 one partie)
- La Mesure des résistances de faibles valeurs Milli-Ohmmètre de précision

N° 164

- Horloge Murale dotée d'une fonction Thermomètre : application du kit de développement 68HC11 (3^{ème} partie) - Enceinte active 2 voies Opus 2VA
- Amplificateur / mélangeur : 5 entrées mono
- 2 x 50 Weff avec correcteur de tonalité GBF synthétisé 0,1 Hz 102,4 kHz : 2 sorties multifonctions à déphasage programmé ou sinus vobulé avec marqueur (3 en partie)

Je	vous	fais	parv	enir
C	i-joint	le r	monta	nt

JUSQU'AU 15 JUIN

15 F le numéro de F

Je désire:

par CCP par chèque bancaire par mandat

30 F le numéro (frais de port compris)

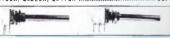
...n° 149 □ ...n° 159 🗆 ...n° 151 🗆 ...n° 160 🗆

...n° 161 🗆 ...n° 154 🗆

...n° 155 🗆 ...n° 162 🗆

Nom: Prénom:n° 156 🗆 ...n° 163 🗆 N°:..... Ruen° 164 🗆 ...n° 157 🗆

CODE POSTAL: VILLE: ...n° 158 🗆


Pot. Professionel **ALPS**

AUDIO PROFESSIONNEL, double 2x10K, 2x20K, 2x50K, 2x100K 85F TTC pièce

SFERNICE P11 Рот.

Piste CERMET 1 Wait/70°C, axe long metal 50mm, pour CI MONO LINÉAIRE: 470 ohms, 1K, 2K2, 4K7, 10K, 22K, 47K, 100K, 220K, 470K, 1M

Condensateur HAUTE TENSION

CO:	19 ou	FELSIC 85		
470µFI500V	255F	1500µF/400V		182F
1000pFI450V	250F	1500µF/450V		249F
1000µF/500V	299F	2200µF/450V		345F
1000µF/600v	590F	2200µF/450V	sic safee	589F

Condensateur axiaux ht sic safco

10µF;450V 20F	33µF,450V 25F	100pF(250V 25F
15µF;450V 19F	47µF.250V 25F	100µF)450V 42F
22µF.450V 25F	47µF:450V 25F	

CONDENSATEUR POLYPROPYLENE

InF(1000V avial 10F 47nF(630V avial 9F50
2,2nF/1000V avial 10F 100nF 630V avial 8F
4.7nF/630V awai 4F50
4.7nF/1000V axia 13F50 220mF1830V W.MA. SF
10nF/63DV axial
22nF/630V axial 6F 470nF/350V WWA 16F
33nF/630V axial 7F 0,1pF/250V ratial polygra
WIMA4F50
0,22µF/250V radial polypro. WIMA _ SFE0
2.7µF/250V radial MKP MONA18F
4.7µFI250V radial MKP MONA 22F
10µF/250V radial MKP MONA
10µF/400V axial MKP ARCOTRONIC 135F

CONDENSATEURS DIVERS

0,1\(\mu F/100V\) radial polycarbonate 10F
0.47µFI400V radial MKS WIMA10F
2,2µFI400V radial MKS WIMA22F
4,7µF1250V radial MKS WIMA25F
150000µF/16V 305F

XLR NEUTRIK

44	Fiche Male		Fiche femelle		Chassis		
r ots					måle	1em.	
đ.	drait	coudé	drait	Coudé		1	
3	3DF	49F	35F	55F	30F	35F	
3 •	40F	44.	45F	14	45F	48F	
4	35F	55F	45F	68F	45F	48F	
5	51F		61F	144	45F	72F	
6	70F	**	70F	1.4	68F	95F	
7	BOF	**	80F	+	105F	125F	

* noir doré

Pour le repérage, serre câble de couleur : rouge, vert, bleu.....7F

KNEUTRIK

ı	ONOR ILLO I IIII	
ı	Mono måle droit 6,35mm 28F	
ı	Stéréo mâle droit 6,35mm 35F	
1	Mono mâle coudé 6,35mm 30F	
ı	Stéréo mâle coudé 6,35mm 55F	-
ı	Stéréo femelle prolongateur 55F	
ı		٠,

CINCH NEUTRIK

Doré, téflon, grâce à un système de ressort, la masse est connecté en pre

La paire..130F

mier.

CABLE HP CULLMAN

2x0,75mm ² , transparen	(Le mètre)	6F
2x1,5mm2, transparent	***************************************	16F
2x4,0mm ² , transparent		30F
2x6,0mm², transparent		40F
2×2,5mm², transparent	.Cu argenté	40F

CARLE GOTHAM

GAC	1	: 1 cond. blindé a 5,3mm, Rauge au noir 13F
GAC	2	: 2 cond. blindes a 5,4mm (noir, rouge) 14F
GAC	2	mini : 2 cond blindes e 2,2mm 5F
GAC	2	AES EBU (pour see digital)
GAC	3	: 3 cond. blindas a 4,8mm
GAC	2	: 4 cond. blindés a 5,4mm

CARLE ET EICHE SVHS

Cáble	SVHS	Type	vindex		18F
				tion Diam 7,5mm	
Fiche.	mini D	N =3	e 451	plastique	10F
Fiche	mini D	N må	e 4br	métal dorée	22F

COFFRETS ALU. Série TM HIFI, noir

55275	L:275,	H:55mm	175F		-
55360	L:360.	H:55mm	188F	de	. /
10275	1:275,	H:80mm	155F	1	0000
12352	1:380,	H:80mm	205F	130	5000

Coffrets très reduste en 3 éléments assemblés par elle focados avant et arrière en aluminim 30/10" acadisé, côtés en profilé d'aleminium noir formant for a serie chale - Fond et couver-

Série BASSE (40mm) Larg Prof.				Série H		Prof.	nm)
SIME	134	73	170F	GX187	124	170	255F
EXILE	112	179	215F	GX287	230	170	275F
CASKE	230	170	255F	GX283	230	230	280F
STELL	230	230	259F	GX288	230	280	310F
				GX388	330	280	385F

CONDENSATEURS TYPE SNAP

100µF/400V radial 100µF/450V		220µF 450V50F 470µF 200V29F50
150µF/400V	32F	470µF/400V 98F
220µF/200V	25F	1000µF/200V 51F
220µF/400V	45F	1000µF/250V 85F

POV. SPEKMIL	EPESU
Piste Cormet, dissip. max 38(70°C, a.	ze métal 40mm, cosses
à souder, MONO LINEAIRE	- C 1529
470 ehrs, 1K, 2K2, 4K7, 10K,	- Mills
22K, 47K, 100K, 220K	-17
FICHES W	BT

T1 1	
Fiches RCA	
W8T 0108 Topline, Cable de 9mm, à visser	205F
WBT 0101 Idem WBT 0101, a souder	175F
WBT 0125 Topine, montage CCS	155F
WBT 0144 Idem WET 0101, Midline	
WBT 0145 Idem WBT 0125. Vidine	
WBT 0147 Idem WBT0101	
Midline, câble 7,8mm	100F
WBT 0150 Topline,	
câble de 11,3mm, à souder	200F
Chassis RCA	
WBT 0208, Topline, à sertir	1056
WBT 0201, Idem WBT 01208, a souder	
	. 1951
Fiche banane	
WBT 0600 Topline	
câble 2,5 à 10mm, à visser	1906
WBT 0644 Idem WBT 0600, Midling	1006
-,	. 1001
Bornier HP	
WBT 0730 Bornier R+N, à visser 2	45F(°)
WBT 0763 Bornier R ou N, à visser	95F

câble 2,5 à 10mm, à visser Toutes les fiches sont vendues par couple, sauf (°), qui peuvent-être vendues à l'unité.

FICHES RCA PRO

Mâle, téflon, doré, rouge ou noir, pour de 5,6mm max28f la pièce	cáble
Idem çi-dessus, pour câble de 8mm max35F la pièce	

Femelle, téflon, doré, rouge ou noir, pour câble de 5,6mm max.......30F la pièce

Chassis doré, avec bague d'isolement, rouge touge ou noir78F la paire

FICHES HP DORÉES

Fiches HP chassis dorées isolées Pour liche banane ou pour cable diam 5mm. A vis courte, en rouge au noir 7.8 F la naire

dem çi-dessus mais vis longue 78F la paire

AUTOTRANSFORMATEURS 110/220VMONOPHASÉS

Equipé côté 230V d'un cordon secteur longueur 1,30m evec une fiche normalisée 16 amp. 2 pôles + terre, et côté 115V d'un socie américaine recevant 2 fiches plates + terre Fabrication française.

référence	Puis.	Poids . Prix TTC	
ATNP150	150VA	1.4Kg 250F	
ATNP250	250VA	2.4Kg 275F	á
ATNP350	350VA	2.8Kg 350F	à
ATNP500	500VA	3 8Kg 375F	1
ATNP750	750VA	6.3Kg 525F	
ATNP1000	1000VA	8Kg 655F	

Serie ATS G non reversible capot plastique ATSG3T BOVA 720Grs Prix TTC: 275F

CONVERTISSEUR 12/24V - 220V

Entrée 12VDC nominal (10-15V) ou 24VDC, sortie voltage 220VAC RMS +: 5%, Fréquence 50Hz +/- 3 %, signal sortie sinusoide transformée, protections : softstart-batterie faible - protection survoltage en entrée surcharge en sortie - dépassement de température.

WATTS	150W	250W	400W	
VOLTS	12 ou 24V	12 ou 24V	12 ou 2011	_
PRIX	549F	705F	12871	
WAITs	600W	1000W	1500V	
VOLTS	12 ou 24V	12V	12V	æ
PRIX	1893F	2590F	5048F	9

Payez en 3 fois sans frais, à partir de 1200F TTC

EX : POUR 1500F D'ACMAT 1) 500F A L'ENCAISSEMENT 2) 500F 30 JOURS APRES 3) 500F 60 JOURS APRES

AIRE DES CHÉQUES DE VALEURS SEMBLARLES

ı	LED BLEUE & BLANCHE	
١	LED BLEUE haut rendement	
ı	Diam 3mm · 60mcd typ) 60°, diffus	
ı	Diam 5mm - 40mcd typ) 60°, diffus	16F
	LED BLANCHE haut rendement	
	Diam 3mm - 300mcd typ, clair	18F
	Diam 5mm · 3300mcd typ, diffus	
	Diam 5mm · 3300mcd typ, clair	26F
1	244.00	

XLR IMPORTATION

Transfor. ACEA pour tubes Transformateur d'alimentation : faible induction 1 Tesla.

cupu	TE primare 2004 avec eciali
LED	136-140 - Sec 2x225V - 2x6,3V - 4Kg 520F
l E D	138 - Sec 2x300V - 2x6,3V - 2.8Kg
l E D	142 - Sec 2x300V - 2x6,3V 5PR001) 1,2Kg 375F
LED	143-145 · Sec 2x230V/240V · 12V · 4,6Kg 595F
LED	146-150 - Sec 2x380V - 2x6,3V - 5V - 6Kg 5956
LED	147-148 · Préampl tubes circuits "C" · 1Kg 490F
LED	149 158 Alim HT/ Préampli tubes 2x300V
	6,3V 6 1Kg 5101

		6,3V 6 1Kg 510F
Į	LED	151 · Sec 2x270V · 12V · 4,6Kg 580F
Į	LED	152 · Sec 2X300V · 2x6?3V · 6Kg
ľ	LED	154-159-160 - Sec 2X360V - 5V - 6,3V 580F
	LED	155 Sec 2X230V ou 2x330V -12V 520F
I	LED	157-160 - Sec 380V - 6,3V 6 4x3,15V 590F
	LED	161-162-163 - Sec 2x330V-12V-6,3V en cuve 1100F
	LED	163 - Sec 2X240V - 12V

Transformateur de sortie

ED	136-154 - 4K ohms - 4/8/16 ohms -40W- 2,8Kg 640F	
LED	138 - 5000 ohms - 4/8/16 ohms - 1,2Kg	
LED	140 - 1250 ohms - 4/8 ohms - 20W - 2,8Kg 590F	
ED	143 - 2000 ohms - 4/8 ohms - 60W - 4Kg 700F	
LE D	146 - 625 chms - 4/8 chms - 40W - 4,8Kg 680F	
LED	146-150 - 6600 ohms - 4/8 ohms - 2,9Kg 650F	
LED	146-150-152 - Self 10H 10le290F	l
	151 - Self 3H circuit C 350F	
ED	151 - 9000 ohms - 4/8 ohms	
ED	152 - 2,3/2,8/3,5Kohms - 4/8/16 ohms	
	30W "C"en cuve	
ED	155 - 8000 ohms - 4/8/16 ohms - 20W 620F	
ED	157-160 - 3K8 ohms - 4/8/16 ohms - 50W 680F	
ED	159-160 - 3K5 ohms - 4/8 ohms - 15W -	ĺ
	en "f" en cuve	ı

LED 161 162 · en "C" (cuve) pour 845 (sec 8 ohms)1700F

	o E O
ECC 81 70F	KT 88 la paire 675F
ECC 82 75F	KT 90 lapièce (EI) 310F
ECC 83 65F	KT 90 la paire (EI) . 630F
ECC 84 65F	3008 Soviek
ECL 86 125F	la paire 1350F
EL 34 140F	7189-7320
EL 34 la paire 320F	la paire 399F
	6L6GC (Soviek) 110F
EL 84 (Sovtek) 65F	6L6GC STA la paire 250F
les 2 appairés 180F	6L6WXT STA
EL 84 les 10 450F	la paire
EZ 81 96F	6L6GC GE la paire 435F
	845 4406

Support TUBE

NOVAL C. imprimé	OCTAL avec cosses
Ø 22mm 22F	0 30mm30F
	pour 300B stéatite 68F
blindé chassis 30F	pour 845 145F

ALIM. À DÉCOUPAGE

Alimentation à découpage, ultra légère. A enficher sur prise secteur 220V Tension de sortie sélectable par commutateur. Sortie stabilisée, protection contre les court circuits et les surcharges. Secondaire TREESE 9/12/15V 1500mA, max 22,5VA. 18/20V 1200mA. max 24VA, 24V 1000mA, max 24VA. Prix ...189F

COMPOSANTS DIVERS

WAFER CARD 39F	Support 8br 2F
GOLD CARD 189F	Support 18br 3F20
PIC 16F84 49F	
PIC 16F873 79F	PROGRAMMATEUR
PIC 16F876 92F	PIC 1A 390F
24C1615F	CAR 03 590F

VOIR SUR NOTRE SITE INTERNET WWW.STQUENTIN.NET

TOUS LES DEVIS CONCERNANT LES AMPLIFICATEURS À TUBES DE LA REVUE LED

EXPÉDITION COLISSIMO ENTREPRISE (*) UNIQUEMENT : mini 100F de matériel. Tarifs postaux fle de France | Horaires d'ouverture : du lundi au vendredi de (75,77,78,91,92,93,94,95) : 0-250g = 20F: 250g·2Kg = 28F, 2Kg·5Kg = 48F, 5Kg·10Kg = 58F, 10Kg·15Kg = 88F, 15Kg·20Kg = 98A, 15Kg·20Kg = 98A, 15Kg·20Kg = 98B, 15Kg· 20Kg = 128F. DOM TOM et étranger nous consulter. Paiement : chèque, mandat, carte bleue. (*) comme un recommandé,

WBT 0660 cuivre pur,

9h30 à 12h30 et de 14h à 18h45. Le samedi de 9h30 à 12h30 et de 14h à 18h15. Fermé le samedi en juillet et août.

PÉDALE D'EFFET OVERDRIVE

L'OVERDRIVE génère un son qui n'est pas sans rappeler la saturation progressive délivrée par les amplificateurs à lampes. L'effet est donc différent de l'écrêtage qui est obtenu avec les pédales de distorsion classiques, ou encore de la saturation brute et massive des pédales du genre «Heavy-métal». Un réglage de tonalité garantit une saturation homogène à toutes les fréquences et un son riche en harmoniques.

électronique est enfermée dans un boîtier robuste, celui-ci devant résister aux pressions exercées par le pied pour actionner le poussoir de commutation de l'effet situé sur le plan incliné.

Comme pour les modèles du commerce, c'est le jack d'entrée qui assure la mise en marche du montage et un voyant indique à l'utilisateur la mise en action de l'effet.

La partie électronique peut se décomposer en deux parties : la section active (OVER DRIVE) et la section utilitaire (alimentation et commutation électronique de l'effet).

LA SECTION UTILITAIRE

Le schéma de la figure 1 représente la partie électronique qui comporte deux étages indépendants :

- une alimentation 9 V, avec référence de tension de +4,5 V
- un commutateur électronique de l'effet avec circuit anti-rebond et témoin de mise en action.

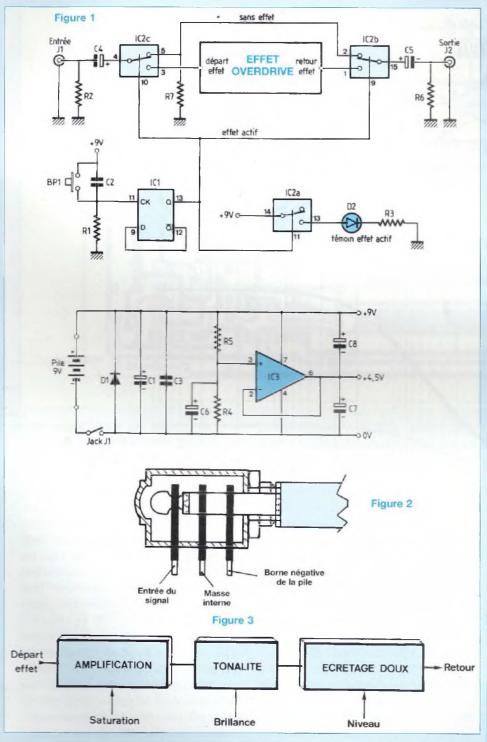
L'ALIMENTATION GÉNÉRALE

L'alimentation 9 V est fournie par une pile rectangulaire située dans le coffret. La diode D1 assure une protection contre les erreurs de branchement de la pile, bien que les raccords à pression utilisés pour ces piles évitent toute erreur de polarité.

IC3 permet de fournir l'équivalent d'une source symétrique ± 4,5 V aux amplificateurs intégrés. Le TL061 (IC3) est un circuit à faible consommation (0,1 mA maxi!), de façon à préserver la pile d'une décharge prématurée.

C'est le jack d'entrée qui assure la mise en marche du module. Grâce à une astuce utilisée par tous les fabricants de pédales, on peut se contenter d'une embase jack stéréo classique pour la mise en fonction du montage, comme l'indique le croquis de la figure 2.

En utilisant un jack mono avec une embase stéréo, le canal non utilisé de l'embase permet de relier le pôle négatif de la pile à la masse du montage lors de la présence de la fiche mâle. Dès que l'on sort la fiche, la pédale n'est plus alimentée et la pile est déconnectée.


LE COMMUTATEUR ÉLECTRONIQUE

Il fait appel au commutateur analogique CD4053, qui contient trois inverseurs indépendants, IC2a, IC2b et IC2c (figure 1).

Le premier assure l'allumage du témoin de fonctionnement de l'effet, les deux derniers permettant l'aiguillage de la source audio directement sur la sortie ou vers le module d'effet.

L'isolation des interrupteurs par condensateur avec le milieu extérieur, ainsi que la polarisation permanente de toutes les lignes à la masse (par 1 $M\Omega$) permet de garantir un fonctionnement exempt de bruit de commutation.

UNE SATURATION PROGRESSIVE

L'action manuelle des inverseurs électroniques est assurée par un bouton-poussoir (BP1) associé au réseau anti-rebond (R1-C2). La présence de C2 garantit la restitution d'une seule impulsion à la

bascule IC1, chargée de mémoriser la demande de l'utilisateur.

Si la sortie de IC1 est à 1, l'effet est activé et inversement.

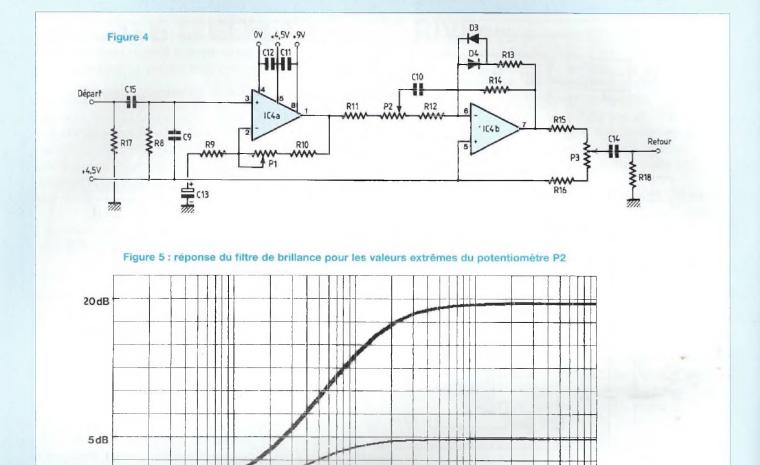
La diode électroluminescente D2 étant

grosse consommatrice de courant (normalement 10-15 mA pour les modèles courants) on a limité la consommation à moins de 5 mA par la résistance R3 de $1.2~\mathrm{k}\Omega$.

La résistance interne des interrupteurs (Ron), de l'ordre de 300 Ω environ sous 9 V, joue également un rôle dans la limitation du courant. Il est donc vivement conseillé de choisir un modèle à haut rendement pour la diode électroluminescente, lui permettant ainsi de briller franchement sous moins de 5 mA.

LA SECTION ACTIVE DE LA PÉDALE OVERDRIVE

L'organisation fonctionnelle du module est indiquée en figure 3 : un premier étage d'amplification, associé à un potentiomètre, permet de doser le taux de saturation. Le signal est ensuite rehaussé dans le haut du spectre, de façon à donner une certaine brillance au son : le gain dans les aigus peut atteindre 20 dB à partir de 10 kHz! (Il croît progressivement de 100 Hz à 5 kHz).


Un potentiomètre permet d'ajuster le gain maximal entre 5 et 20 dB. Le dernier étage est un limiteur à diodes qui procure un écrêtage progressif (mais inéluctable) du son. La présence d'un réglage de niveau est indispensable pour obtenir un parfait équilibre entre le son saturé et le son direct, le guitariste étant fréquemment amené à passer d'un son à un autre.

LE SCHÉMA

Le schéma structurel de la figure 4 permet facilement d'identifier les différents sous-ensembles du module. C9 évite les accrochages HF, tandis que P1, associé à R9 et R10, permet d'amplifier le signal dans un rapport de 3 à 11. Il pourrait être augmenté en diminuant R9.

C'est la cellule (R11, R12, P2, C10) qui apporte une accentuation des aigus, C10 déterminant la plage de fréquence concernée (dans notre cas, 2 kHz-

LA PÉDALE OVERDRIVE

20 kHz). Le diagramme de la figure 5 présente la réponse réelle du filtre pour les deux positions extrêmes de P2. On peut remarquer que son action est significative dès 500 Hz (le gain est presque de 10 dB) et quasiment optimal à partir de 2 kHz (avec un gain de 18 dB!).

OdB

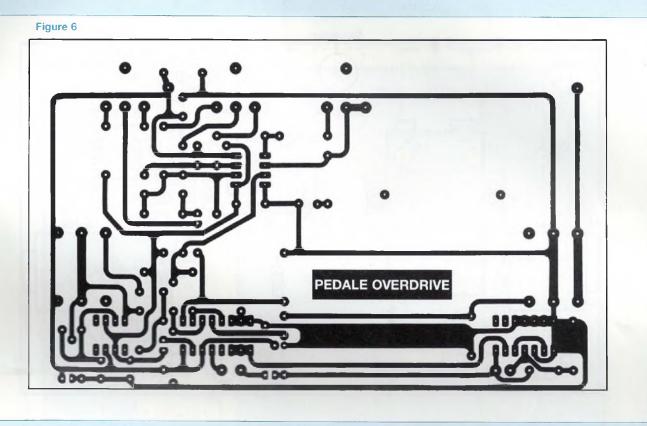
Le montage de deux diodes montées tête-bêche dans la contre-réaction de l'écrêteur, produit une saturation douce, en «arrondissant» les crêtes du signal au lieu de les raboter brutalement. R14 évite de placer IC4b en boucle ouverte en cas d'absence de signal, les diodes étant alors bloquées : on évite ainsi l'apparition d'un bruit de fond très désagréable. L'utilisation d'un NE5532 pour IC4 garantit un bruit de souffle assez bas

en fonctionnement, mais les TL072 ou TL082 conviennent également pour notre application. Cependant, ne vous faites pas trop d'illusions : le gain total du module étant très élevé, il y aura toujours du souffle à niveau élevé.

RÉALISATION PRATIQUE

Le tracé du circuit imprimé est présenté à la figure 6. Réalisé en simple face, la plus grosse difficulté consiste à respecter les emplacements des différents composants mécaniques (les jacks notamment, pour permettre une insertion correcte du circuit dans son coffret). Les dimensions du circuit sont à respecter scrupuleusement!

Comme le montre le plan d'implantation de la figure 7, le câblage, détesté par les électroniciens et source de nombreuses pannes, a été limité au minimum : tous les éléments, ou presque, prennent place sur le circuit imprimé.


P1, P2 et P3 seront fixés sur le circuit après perçages des trois emplacements aux ø10 mm de diamètre.

Les raccordements des cosses des potentiomètres au circuit imprimé se feront avec des queues de résistances.

MISE AU POINT DU MONTAGE

En principe, il ne devrait y en avoir aucune. Cependant, nous ne sommes pas à

UNE SATURATION PROGRESSIVE

l'abri d'une erreur de câblage ou d'un défaut de qualité à la confection du circuit imprimé. C'est pourquoi, il préférable de tester la carte avant de l'implanter dans son coffret.

A ce stade, on pourra interconnecter au circuit, le bouton-poussoir central et la Led D2 (attention à la polarité de D2 : le méplat correspond à la cathode «K»). De cette façon, les deux seuls fils restant «en l'air» proviendront du raccord pression de la pile (le cordon rouge correspond au +9 V, le noir, à la masse). Le bouton-poussoir «BP1» se contentera d'une liaison très courte et rigide, donc suffisamment fiable pour la durée des essais.

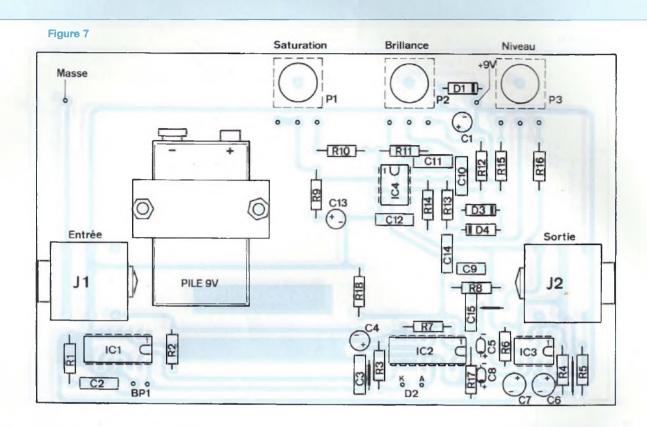
On peut alors procéder aux essais dans l'ordre suivant :

- brancher le jack de sortie sur l'amplificateur (volume à zéro)
- connecter la pile (vérifier qu'elle est encore bonne !)
- brancher un cordon jack mono entre l'instrument et l'entrée.

Le montage est alors sous tension : vérifier qu'une action sur BP1 allume puis éteint successivement la Led D2. Sinon, vérifier les alimentations, les soudures, etc... Dans certains cas (très rares !, on pourrait être amené à diminuer R1 pour parvenir à faire commuter une bascule IC1 récalcitrante, bien que la valeur semble convenir à la plupart des références.

Si tout se passe bien, il ne reste plus qu'à monter le niveau de l'amplificateur et à tester les performances de notre péda-le

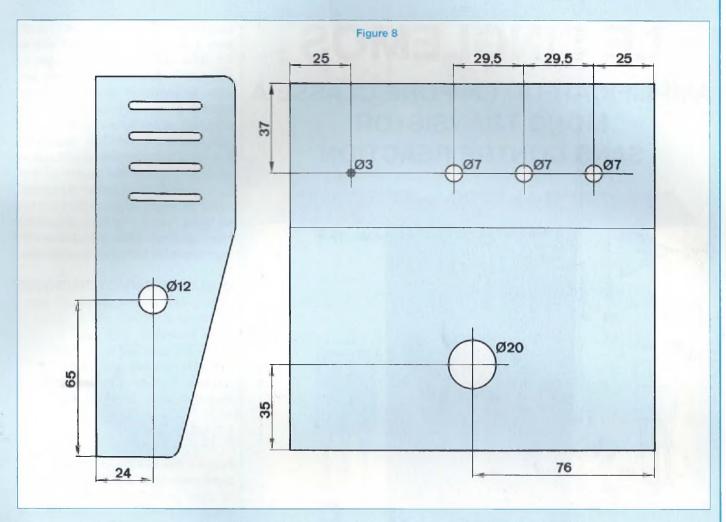
Un léger ronflement peut se faire entendre, tant que le circuit n'est pas monté dans le boîtier, mais il devra disparaître irrémédiablement dès que le coffret sera câblé, fermé et relié à la masse de l'alimentation.

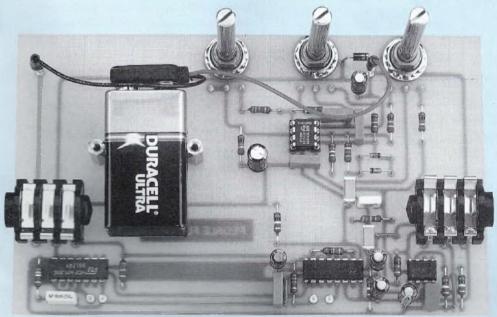

MISE EN BOÎTIER

Le plan de perçages est indiqué en figure 8 : les emplacements des jacks et de

BP1 doivent être percés avec précision, en respectant scrupuleusement les cotations indiquées. Ensuite, il faut procéder dans l'ordre indiqué ci-dessous pour le montage de tous les éléments :

- 1 Positionner le circuit imprimé dans le coffret. Celui-ci est maintenu en place par le vissage des deux embases jacks. Les corps des potentiomètres évitent aux pistes du Cl de venir taper dans le fond du boîtier.
- 2- Interconnecter le bouton-poussoir et la led témoin au circuit imprimé. Ce travail est facilité si vous prévoyez des picots sur le circuit et des cosses femelles à l'extrémité des fils.
- 3 Vérifier que la pile 9 V est bien bloquée par pression de la plaque au vissage.
- 4- Refermer le boîtier avec ses 4 vis (trous situés sous celui-ci), les axes des


LA PÉDALE OVERDRIVE



NOMENCLATURE DES COMPOSANTS

- Résistances ±5 % / 0,5 W	C4:10 µF	- Potentiomètres
R1 : 180 kΩ	C5 : 10 µF	P1:10 KA
R2:1 MΩ	C6:1 µF	P2 : 22 KA
R3 : 1,2 kΩ	C7 : 10 μF	P3:10 KB
R4 : 100 kΩ	C8: 10 µF	
R5 : 100 kΩ	C9: 220 pF	
R6: 1 MΩ	C10: 22 nF	- Divers
R7 : 1 MΩ	C11: 100 nF	Support 8 broches x 2
R8 : 56 kΩ	C12: 100 nF	14 broches x 1
R9 : 1 kΩ	C13 : 100 µF	16 broches x 1
R10 : 2,2 kΩ	C14: 680 nF	J1 : embase jack 6,35 mm isolée,
R11: 4,7 kΩ	C15: 680 nF	stéréo, pour circuit imprimé
R12 : 22 kΩ		J2 : embase jack 6,35 mm isolée,
R13 : 1,8 kΩ	- Semiconducteurs	mono, pour circuit imprimé
R14 : 120 kΩ	IC1 : CD4013	BP1 : poussoir robuste à contact
R15 : 10 kΩ	IC2: CD4053	travail (ouvert au repos)
R16 : 1 kΩ	IC3: TL061	Support à pression pour pile
R17, R18 : 100 kΩ	IC4: NE5532	rectangulaire de 9 V
	D1: 1N 4001	(type 6F22)
- Condensateurs	D2 : LED rouge ø 5 mm	Pile alcaline de 9 V (éviter les
C1 : 10 µF	(haut rendement)	accus qui ne font que 7,5 V)
C2: 10 nF	D3: 1N 4148	Boîtier Deltron (Radiospares)
C3:100 nF	D4: 1N 4148	(154 x 159 x 32 x 58 mm)

UNE SATURATION PROGRESSIVE

potentiomètres doivent alors sortir suffisamment pour être coiffés par des boutons.

Il ne reste plus qu'à coller les 4 pieds en caoutchouc fournis avec le coffret.

CONCLUSION

Cette réalisation, la plus demandée par les guitaristes, reste très simple à mettre au point, aucun réglage n'étant nécessaire à son bon fonctionnement.

L'OVERDRIVE doit être opérationnelle dès l'appui sur le bouton poussoir vissé au plan incliné du coffret.

Bernard Dalstein

AMPLIFICATEUR EN PURE CLASSE A MONO TRANSISTOR SANS CONTRE REACTION

L'étude que nous vous proposons, si elle est originale de part sa conception, permet surtout une écoute absolument stupé-fiante. Nous n'avons pas cherché à mettre au point un amplificateur très puissant, mais par contre une réalisation ultra simple au pouvoir d'analyse de la musique proche de celle obtenue avec les amplificateurs à tubes.

our cela, nous avons tout d'abord recherché les composants pouvant nous donner satisfaction, tout particulièrement parmi la technologie MOS-FET, la sonorité de cette technologie se rapprochant le plus du son des tubes. Notre choix s'est arrêté sur l'ampli OP à FET OPA2604 AP de BURR-

BROWN (c'est la version double de l'OPA604) et sur le transistor de puissance 2SK1058 de HITACHI.

L'OPA2604

C'est un double ampli opérationnel à entrées FET encapsulé dans un boîtier DIP8 tout particulièrement recommandé

pour obtenir d'excellentes performances dans le traitement des signaux alternatifs. Avec une très faible distorsion, un très faible bruit et une large bande passante, le traitement de l'audio est ainsi effectué dans les meilleures conditions qui soient et permettent d'atteindre des performances dynamiques excellentes, d'où cette exceptionnelle qualité sonore. La tension d'offset est ajustée au laser, ce qui permet de se passer du condensateur de liaison dans la plupart des cas. La figure 1 nous montre la constitution interne d'un AOp ainsi que le boîtier DIP8 dans lequel les 8 broches sont utilisées.

QUELQUES CARACTÉRISTIQUES

- Faible distorsion: 0,0003 % à 1 kHz

- Faible bruit : 10 nV / √Hz - Slew Rate élevé : 25 V / μs

Large bande passante : 20 MHzStabilité : stable à gain unitaire

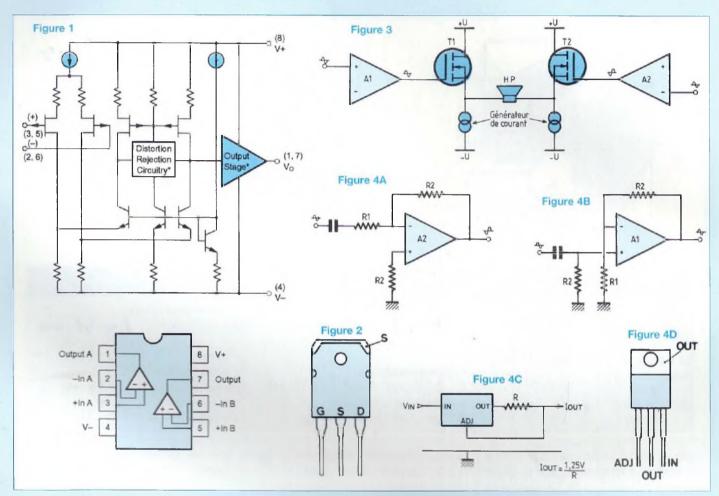
- Tension d'alimentation : variation importante de ±4,5 V à ±24 V.

LE 2SK1058

Fabriqué par Hitachi, le 2SK1058 est le digne descendant du 2SK135 encapsulé lui dans un boîtier métallique T03. La «puce» est identique, avec toujours cette même linéarité exceptionnelle. Nous avons maintenant droit au boîtier T03P, plus facile à utiliser, car ne demandant qu'un seul perçage pour sa fixation au dissipateur. Son brochage vous est indiqué en figure 2, avec cette particularité d'avoir la source au centre et le drain sur la droite.

QUELQUES CARACTÉRISTIQUES

Type: Canal «N»
Courant maximal: 7A


Tension maximale D-S: 160 V Puissance maximale: 100 W

Boîtier: T03P

Brochage: Gate-Source-Drain

NOTRE PROJET

Réaliser un amplificateur fonctionnant en classe A, en mono-transistor, de puis-

sance raisonnable, et le plus simple possible, tout en procurant néanmoins une qualité d'écoute excellente.

La figure 3 montre l'architecture de notre schéma. Un haut-parleur est pris en sandwich entre les «sources» de deux transistors MOS-FET, ces «sources» étant elles mêmes reliées à des générateurs de courant.

Chaque «gate» est attaquée par un signal identique, mais de phase opposée.

L'inversion de phase est obtenue par des amplis OP, l'un étant monté en «entrée non inverseuse» (A1) et l'autre en «entrée inverseuse» (A2).

On demande, en plus de l'inversion de phase, que ces amplis OP procurent un gain, une amplification en tension de 15 (Gv=15).

La figure 4A indique l'assemblage des composants à effectuer autour de l'ampli

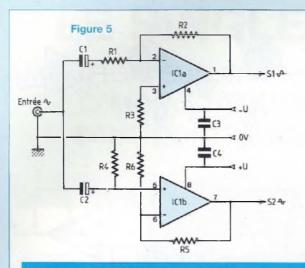
OP pour obtenir notre «étage inverseur». Le gain en tension Gv est déterminé par le rapport des résistances R2/R1. En prenant d'une façon arbitraire pour R1 une résistance de 22 k Ω , la résistance R2 doit être portée à 15.R1, soit : 330 k Ω .

La figure 4B indique l'assemblage des composants pour cette fois-ci obtenir notre «étage non inverseur».

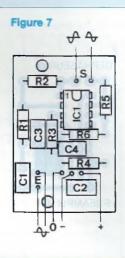
Ayant pris précédemment pour R1 une résistance de 22 k Ω , nous allons ici prendre pour R2 cette même valeur (impédance d'entrée).

Le gain en tension Gv est déterminé par la relation G = 1 + (R2/R1), soit : 15 = 1 + (22/R1), ou encore R1 = 22/14, soit : $1.57 \text{ k}\Omega$.

La figure 4C montre le générateur de courant, un montage ultra simple faisant appel à un régulateur de tension et à une résistance. Le courant généré est déterminé par le rapport 1,25 V/R, soit avec une résistance de 2 Ω , un courant de 0,625 A.


Nous utilisons le TL783C de TEXAS, une puce encapsulée dans un boîtier TO220 dont le brochage est précisé en figure 4D.

LE SINGLEMOS : L'ÉLECTRONIQUE


L'ÉTAGE EN TENSION

• Le schéma

Son schéma complet est reproduit en figure 5. Il est donc basé sur l'utilisation de l'OPA2604 de BURR-BROWN. La modulation est appliquée aux entrées (2) et (5) au travers des condensateurs de liaisons C1 et C2 de 2,2 µF chacun. Ces condensateurs bloquent toute éventuelle tension continue qui pourrait être pré-

Figure 6 DEPHASEUR O PREAMPLI •

NOMENCLATURE DES COMPOSANTS

AMPLIFICATEUR EN TENSION

(à prévoir en double exemplaire) - Résistances ±1 % 1/4 W (à défaut ±5 %) à couche métalliaue

R1: 22 KΩ $R2:330 \text{ k}\Omega$ $R3:330 \text{ k}\Omega$ R4: 22 kΩ R5: 22 kΩ $R6:1,6 k\Omega$

- Condensateurs

C1, C2: 2,2 µF / 50 V (non polarisé si possible)

C3, C4: 1 µF / 63 V 2+

Semiconducteur

IC1: OPA2604

- Divers

1 potentiomètre ALPS 2x10 kΩ (1 seul exemplaire) 115.00 1 support DIP8

4 picots à souder

sente en entrée en superposition avec la modulation et déterminent par la même occasion la fréquence de coupure dans le bas du spectre de part les relations fo = $1/2\pi$.R1.C1 pour «l'entrée inverseuse» et fo = $1,56/2\pi$.R4.C2 pour l'entrée «non inverseuse».

Elle est donc située aux environs de 5 Hz à -3 dB, bien au-delà de tout ce que nous pouvons espérer pouvoir entendre avec notre chaîne Hi-Fi.

Les signaux prélevés aux sorties (1) et (7) sont donc bien identiques mais en opposition de phase.

La tension d'alimentation ±U appliquée aux broches (4) et (8) est découplée par des condensateurs C3 et C4 de 1 µF. Elle ne doit pas excéder ± 24 V.

Nous la réglerons lors des premiers essais à ±18 V.

· Le circuit imprimé

Bien que de très petites dimensions, il permet de regrouper tous les composants.

Le tracé des pistes est reproduit en figure 6 à l'échelle 1 : 27x41 mm !

Les 4 grosses pastilles permettent d'y souder des picots pour les interconnexions de la modulation.

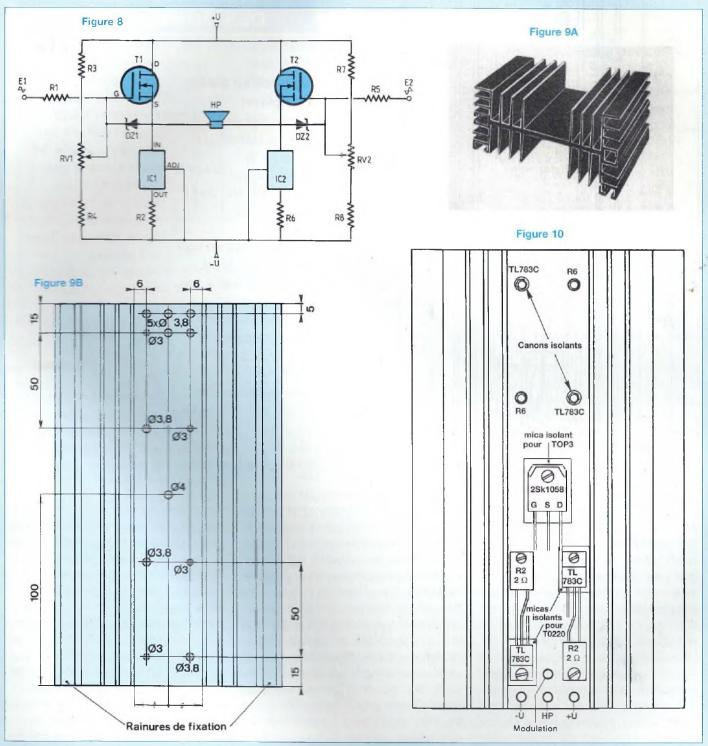
• Le câblage du C.I.

La mise en place des composants se fait en s'aidant de la figure 7 et de la nomenclature correspondante.

Pour les condensateurs de liaisons C1 et C2 bien, qu'il soit possible d'utiliser des modèles électrochimiques, nous conseillons plutôt des «Film polvester métallisé», à défaut du polypropylène beaucoup plus volumineux.

En soudant un support 8 broches, il vous sera possible d'implanter un autre spécimen de circuit intégré pour des tests comparatifs, le brochage étant identique pour tous les DIP8 (même pour un vulgaire NE5532AN).

3 pastilles «oblong» permettent d'y raccorder les fils d'alimentation. Pour plus de facilité, utiliser un câble en nappe.

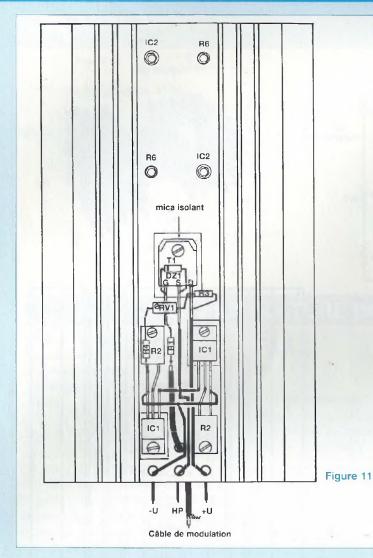

L'ÉTAGE DE PUISSANCE

• Le schéma

Il est reproduit en figure 8. Nous n'avons dessiné qu'un seul générateur de courant par transistor, en fait dans la pratique nous verrons qu'il y en a deux, afin de pouvoir «tirer» un courant de 1,25 A. La diode zéner permet de protéger le MOS-FET, une surtension de plus de 20 V sur la «gate» étant toujours destruc-

La tension d'alimentation est symétrique. Le potentiel sur la «gate» devant être théoriquement de 0 V, un pont résistif polarise la «gate» du MOS-FET.

La résistance placée en série avec la «gate» permet de limiter la bande passante vers les hautes fréquences afin d'éliminer tout risque d'instabilité en HF. Cette limite est déterminée par la capacité CGs du 2SK1058.



• Le circuit imprimé

Il n'y en a pas, nous avons préféré souder directement les composants les uns aux autres en adoptant la technique du câblage «en l'air».

• Le dissipateur

Nous avons repris le même type de dissipateur que celui utilisé pour notre étude de «L'Amplificateur/Mélangeur» du précédent numéro de Led, mais cette fois-ci la longueur passe de 150 mm à 200 mm. Ce profilé vous est rappelé en figure 9A. Sa surface plane d'environ 36x200 mm va nous permettre d'y fixer tous les semiconducteurs ainsi que les résistances de

NOMENCLATURE DES COMPOSANTS

AMPLIFICATEUR EN COURANT

(à prévoir en double exemplaire)

- Résistances à couche métallique ±5 % / 1 W

R1, R5: 470 Ω (lou/a) R3, R7: 100 kΩ 1242100 R4. R8: 82 kΩ

- Résistances en boîtier TO220 / 20 W

R2, R6: $4x2 \Omega$ ou 2.2Ω 44 30,00

- Ajustables multitours (25 tours)

RV1, RV2: 220 kΩ 4 4 10,00

- Semiconducteurs

T1, T2: 2SK1058 4x 53 00 (x9)

DZ1, DZ2: zéner 15 V / 1,3W 4x 2,50

2 x 150 - Divers Dissipateur C01161P en 200 mm de longueur

Micas isolants pour boîtier TO3P et TO220 (2 pour TO3P et 4 pour

10+20 TO220)

Canons isolants plastiques longs (x7)

Visserie de 3x10 mm (x8) Visserie de 3x20 mm (x1) Fils de câblage en 1 mm² et 3 couleurs

(Rouge, Vert, Jaune) Câble blindé 1 conducteur

Fil de cuivre étamé en 10/10°

Rondelles plates ø3 mm (x10)

Rondelles «éventail»

IC1, IC2: 4x TL783C \$ \$ \$5.004 bornes de sortie HP avec bague de repérage

(2 Rouges + 2 Noires)

 2Ω que nous avons choisies en boîtiers TO220 pour nous faciliter la vie.

Avant toute chose, il faut effectuer quelques perçages conformément aux indications portées en figure 9B. Les forages à ø3,8 mm permettront d'y introduire des canons isolants pour fixer les régulateurs TL783C.

Les deux dissipateurs percés, passons à l'équipement de ceux-ci en nous aidant de la figure 10. Rien de compliqué, sinon qu'il faudra tout d'abord vérifier à l'ohmmètre le bon isolement électrique des transistors et des régulateurs par rapport au dissipateur. Seules les résistances de 2 Ω sont plaquées sans aucune précaution particulière.

Pour les transistors 2SK1058 fixés de part et d'autre du dissipateur, au centre de celui-ci, seuls des micas isolants T0-3P seront indispensables pour protéger les semelles métalliques. Par contre, pour les régulateurs, en plus des isolants T0-220, il faudra isoler la visserie avec des canons (des manchons). Il ne faut absolument pas en effet que la tête de la vis (ou l'écrou) soit en courant avec le dissipateur, il y aurait inévitablement un court-circuit avec la semelle métallique du TL783C qui est en contact électrique dans le boîtier avec la patte «OUT».

Pour les vérifications à l'ohmmètre, on peut utiliser une des vis fixant les résistances de 2 Ω, celles-ci étant en contact avec le dissipateur.

Le câblage


Rappelons qu'une moitié de l'étage de

puissance est vissée d'un côté du dissipateur et l'autre moitié sur l'autre face. Sur une face, nous avons donc un 2SK1058 au centre, ses pattes orientées vers un régulateur à droite et une résistance à gauche.

Il y a croisement pour l'autre résistance et l'autre régulateur. Ainsi, chaque régulateur a en face de lui sa propre résistance de 2 Ω , ce qui permet des interconnexions directes, de pattes à pattes.

La figure 11 détaille précisément toutes les interconnexions à effectuer, ce qui doit vous éviter toute erreur de câblage pouvant être fatale dès la première mise sous tension.

Les pattes «IN» des régulateurs sont réunies par un fil en cuivre étamé de 10/10°, le centre de celui-ci étant ensuite

connecté, toujours avec un fil de cuivre de 10/10°, à la «source» du MOS-FET. Isoler cette liaison un peu longue pour éviter tout risque de court-circuit.

Au centre du strap en cuivre étamé qui relie les pattes «IN» des régulateurs, souder un câble de 1 mm² de section (de couleur jaune par exemple) et d'une longueur de 30 cm. C'est la prise HP.

Souder les pattes «OUT» des régulateurs aux résistances de 2 Ω .

Souder les pattes "ADJ" des régulateurs aux résistances de 2 Ω , puis effectuer un pont en fil de cuivre étamé de $10/10^{\circ}$ pour réunir les pattes "ADJ" des deux régulateurs. Isoler le fil de cuivre en faisant en sorte qu'au centre de ce strap en "U" le cuivre apparaisse afin de pouvoir y souder un câble de 1 mm² de section (de couleur verte par exemple) et d'une longueur de 30 cm. C'est l'alimentation -U.

Souder entre «gate» et «source» du MOS-FET la diode zéner de protection, la cathode (bague noire) orientée vers la «gate».

Souder sur la «gate» le curseur de l'ajustable multitours et plier ses deux autres pattes à 90°.

Entre la tension négative -U et la patte de l'ajustable, souder la résistance de $82 \text{ k}\Omega$.

Entre le «drain» du MOS-FET et l'autre patte de l'ajustable, souder la résistance de 100 k Ω .

Souder un câble de 1 mm² de section (de couleur rouge par exemple) et d'une longueur de 30 cm sur le «drain» du MOS-FET. C'est l'alimentation +U.

Souder sur la «gate» du transistor une résistance de 470 Ω . C'est l'entrée de la modulation.

C'est terminé pour le côté «pile» du dissipateur, reste à effectuer les mêmes opérations sur le côté «face» de celui-ci. Lorsque vous en aurez terminé avec le premier dissipateur, l'autre canal de l'amplificateur vous attend, stéréo oblige.

L'ALIMENTATION DE L'ÉTAGE D'ENTRÉE

Son schéma

Nous l'avons particulièrement soignée comme en témoigne la figure 12. Cette alimentation possède son propre transformateur à deux enroulements secondaires de 22 V chacun. Chaque enroulement est redressé par un pont de diodes. Ainsi, c'est le (-) du pont PR1 et le (+) du pont PR2 qui servent de référence de masse, et non le point milieu du transformateur.

Après redressement et filtrage par PR1/C1/C2, la tension continue positive pénètre dans un régulateur dont la sortie est ajustable grâce au multitours RV1

Il en est de même pour la tension négative avec le régulateur IC2, un LM337LZ en boîtier T092.

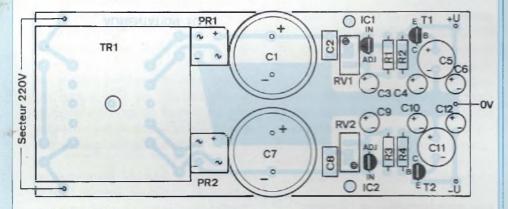
Pour terminer, chaque tension stabilisée ±U passe par un filtrage électronique.

Nous avons prévu des résistances de forte valeur pour R2 et R4 de façon à obtenir une montée en tension progressive.

Chaque transistor à sa base chargée par un condensateur de forte valeur, de façon à obtenir un filtrage très énergique, sachant que la valeur «fictive» obtenue est égale au produit du condensateur par le β du transistor.

En final, nous obtenons deux tensions symétriques identiques ajustées à 18 V, parfaitement propres, pour alimenter nos OPA2604.

L'ALIMENTATION DE L'ÉTAGE DE PUISSANCE


Elle est classique mais fait appel à un transformateur de type «R».

Ce type de transformateur distribué par Sélectronic présente des avantages comparé à un torique à puissance égale :

- Coût moindre, parce que plus simple à produire ;
- Encombrement plus faible;
- Bobinage plus régulier ;
- Excellent taux de régulation : écart entre tension à vide et tension à charge nominale < à 4 %, au lieu des 10 % voir plus pour un torique ;
- Pertes de flux très faibles ne nécessitant pas de blindage ;
- Capacité parasite primaire / secondaire

Figure 14 ALIMENTATION ±U

Figure 15

NOMENCLATURE DES COMPOSANTS

ALIMENTATION STABILISEE

- Résistances à couche métallique ±5 % / 1 W

R1, R3 : 150 Ω R2, R4: 18 kΩ

- Ajustables multitours (25 tours)

RV1, RV2: 4,7 kΩ

C5, C11: 220 µF / 50 V C6, C12: 10 µF / 63 V

- Semiconducteurs

PR1, PR2 : pont 1,5 A / 600 V / 600 V

IC1: LM317LZ

IC2: LM337LZ T1: BC550C

T2: BC560C

- Divers

Condensateurs

TR1: transformateur moulé El Myrra C1, C7: 4 700 µF / 35 V «SNAP» 4+3) oven 2x24 V / 1,8 VA ou

C2, C8: 1 µF / 63 V (non polarisé) LySodransformateur torique Nuvotem

C3, C9: 470 µF / 16 V Taléma en 2x22 V / 1.6 VA 5 picots à souder

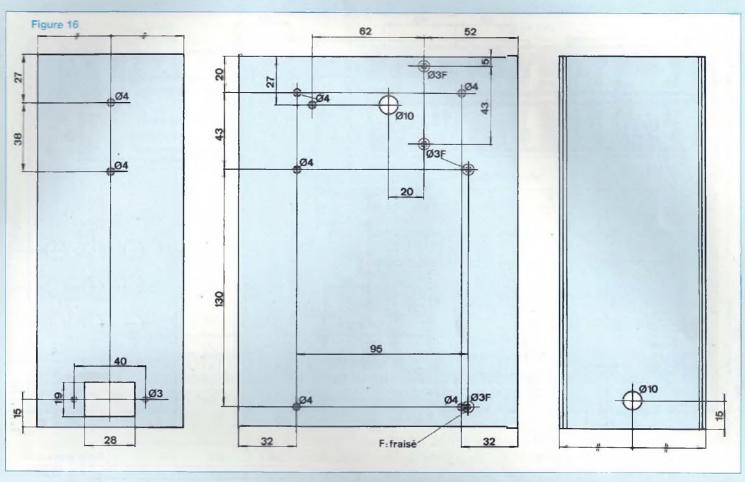
C4, C10: 10 µF / 63 V

très faible, ce qui est très important en audio:

- Faible consommation à vide ;
- Silencieux.

C'est la première fois que nous utilisons un tel transformateur et nous pensons en effet qu'il contribue aux excellents résultats obtenus à l'écoute du SINGLEMOS. Nous avons donc choisi un modèle 2x21 V/300 VA, surdimentionné certes, mais n'oublions pas que nous faisons «tourner» notre électronique en classe A et que la consommation permanente. même en absence de modulation est importante.

L'alimentation de l'étage de puissance est décrite en figure 13. Les deux enroulements secondaires reliés en série sont redressés par un pont de diodes. Nous obtenons ainsi une tension positive et une tension négative par rapport aux polarités (+) et (-) du pont et du point milieu du transformateur qui sert de masse de référence.


Les condensateurs de filtrage de tête ont une forte valeur capacitive, 47 000 µF / 40 V. Nous avons même essayé des 100 000 µF / 40 V! Utiliser de préférence des condensateurs à très faible résistance série (TFRS) et faible inductance. Ils sont excellents pour un fonctionnement en régime impulsionnel. Le type C114 de Philips en fait partie.

RÉALISATION DE L'ALIMENTATION STABILISÉE

• Le circuit imprimé

Tous les composants de cette alimentation sont regroupés sur un petit circuit imprimé de 114 x 48 mm, y compris le transformateur.

L'implantation est étudiée pour recevoir deux types de transformateurs, un modèle classique moulé en El MYRRA de la série 44 000 / 2 secondaires en 2 x 24 V / 1,8 VA ou un modèle torique miniature Nuvotem-Talema de 2 x 22 V / 1,6 VA. Notre curiosité nous a poussé à mettre en place sur notre CI le torique que l'on commence à rencontrer sur des

appareils du commerce en «haut de gamme» (lecteurs de CD, préamplificateurs...).

La figure 14 propose un tracé de circuit imprimé assez facile à reproduire. La symétrie de l'alimentation ±U se retrouve dans la symétrie du dessin des pistes cuivrées.

· Le câblage du module

Il est facilité par la figure 15 et la nomenclature correspondante. Attention à l'orientation des composants. Nous avons utilisé des ponts redresseurs carrés dont la polarité (+) est repérable par un méplat pratiqué dans le corps en plastique.

Souder des picots aux différentes pastilles d'interconnexions.

Les régulateurs, comme les transistors sont encapsulés dans des boîtiers T092. Leur méplat permet donc de les insérer dans le bon sens. Beaucoup de condensateurs, donc beaucoup de polarités à respecter!

LE SINGLEMOS : LA MÉCANIQUE

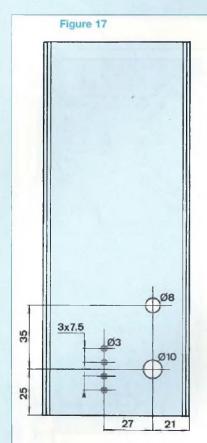
Nous utilisons deux coffrets IDDM de référence 80205 aux dimensions de 80 x 205 x 150.

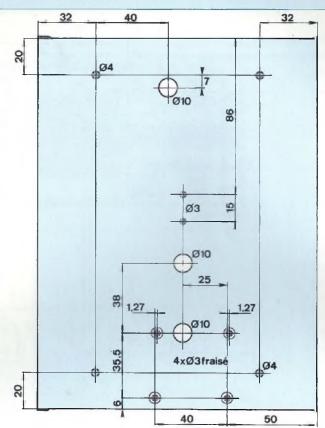
Ces coffrets permettent, comme nous pouvons le voir en couverture, de prendre en sandwich les deux dissipateurs et ainsi de réaliser un amplificateur assez compact et esthétique.

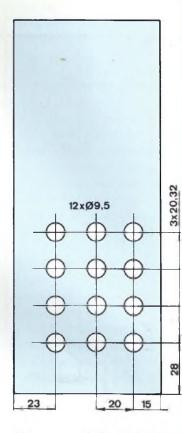
LE COFFRET DE DROITE

Il renferme l'imposant transformateur «R» ainsi que l'alimentation stabilisée des étages «préamplificateur / déphaseur». La figure 16 donne toutes les indications

La figure 16 donne toutes les indications nécessaires quant aux quelques perçages à effectuer, ainsi qu'à la découpe d'une fenêtre à l'arrière laissant le passage à la prise secteur mâle, 3 broches, conforme à la norme EN60320.


Un interrupteur en face avant permet de mettre le SINGLEMOS sous tension.


LE COFFRET DE GAUCHE


Une bonne partie du volume de ce coffret est occupé par les deux volumineux condensateurs de filtrage situés dans la partie supérieure. Nous verrons un peu plus loin leur mode de fixation.

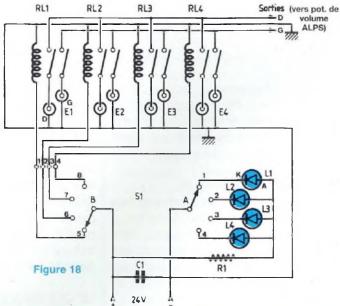
La figure 17 permet de mener à bien le travail qui ne demande que le forage de quelques trous. Pour les 8 trous forés à Ø 9,5 mm en bas du coffret, ils ne sont à effectuer en totalité que dans le cas où l'on adopte pour l'appareil le système de commutation 4 entrées «hautniveau».

Dans le cas contraire, seuls 2 trous sont

11

375

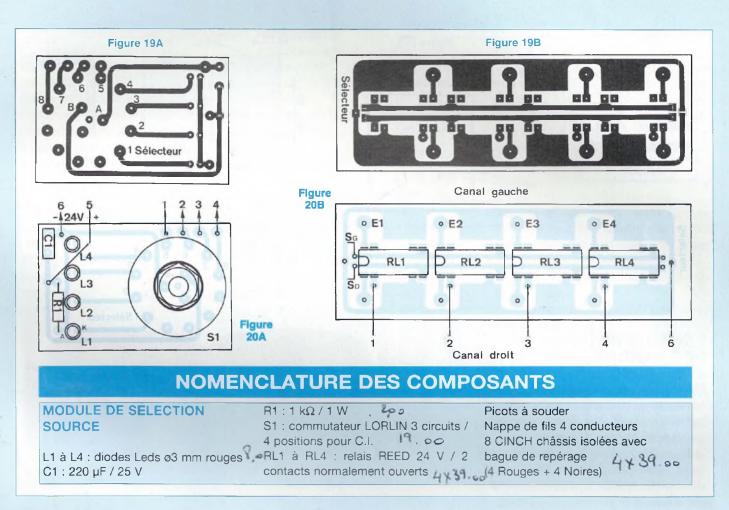
NOMENCLATURE DES COMPOSANTS


ALIMENTATION EN PUISSANCE

TRA: transformateur «R» en

2x21 V / 300 VA (Sélectronic) PR1: pont redresseur 25 A / 400 V

Int : interrupteur à poussoir unipolaire


1 prise châssis 3 broches (embase CEE) (embase CEE) C1, C2: 47 000 µF / 40 V (Ø65 x 111 mm) [X 3/20, 00 F1, F2: 4x porte-fusible à cosses avec capots Cosses à souder à «œil» pour vis M5 10,00

à prévoir. Il en est de même pour la face avant et les 4 trous à ø 3 mm et celui de ø10 mm (diodes leds et sélecteur).

Un préamplificateur séparé ne servant

plus à grand chose, nous avons jugé intéressante cette option qui permet de raccorder directement le SINGLE-MOS à des sources telles qu'un Lecteur de CD, un Magnétophone, un Tuner... La mécanique étant terminée, voyons tout de suite cette commutation de sources.

LE SÉLECTEUR 4 ENTRÉES «HAUT-NIVEAU»

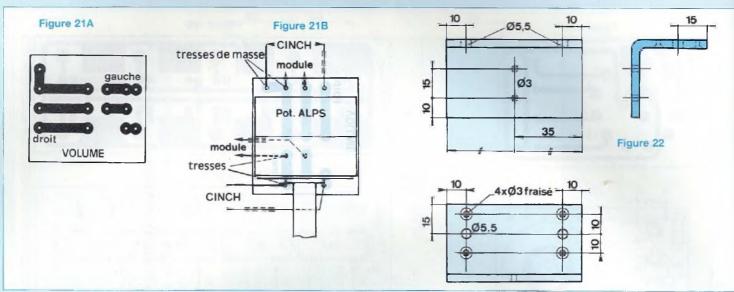
Une option intéressante que de pouvoir raccorder ses sources audio directement au SINGLEMOS, sans avoir à passer par un autre appareil.

Les lecteurs qui suivent nos réalisations audio à tubes ont déjà rencontré ce système très efficace de commutations à relais REED présent dans les appareils «haut de gamme» dont nous rappelons le schéma en figure 18.

Un commutateur 4 positions permet d'appliquer la tension de +24 V présente en permanence sur son point commun à l'un des 4 relais. La bobine concernée ainsi alimentée fait basculer les lames des 2 contacts qui véhiculent la modulation vers le potentiomètre de volume.

Dans la pratique, ce schéma se scinde en 2 parties, l'une située à l'arrière de l'appareil concernant les relais et les prises CINCH d'entrées, l'autre en face avant avec le commutateur et les diodes leds qui visualisent la source sélectionnée.

Les circuits imprimés et leur câblage


On les retrouve aux figures 19A et 19B, bien sûre à l'échelle 1, avec le sélecteur en figure 19A et la sélection en figure 19B. Les 8 grosses pastilles de la figure 19B permettent d'y souder des picots qui servent ensuite d'interface entre le module et les prises CINCH.

Pour le câblage, il suffit de suivre les indications des figures 20A et 20B ainsi que la nomenclature correspondante pour s'éviter tout déboire. Les relais REED sont pourvus d'un détrompeur comme celui des circuits intégrés et les cathodes des diodes leds présentent un méplat dans la collerette du capuchon plastique.

LE POTENTIOMÈTRE DE VOLUME

Nous utilisons un potentiomètre «audio» de qualité et de marque ALPS. De ce fait, vu la fragilité des pattes, nous préférons prévoir un petit circuit imprimé pour les interconnexions des câbles blindés.

Circuit imprimé et interconnexions font l'objet des figures 21A et 21B. Nous entendons par CINCH les picots SD et SG du module de sélection de la figure 20B, dans le cas bien entendu où le SINGLEMOS est doté du sélecteur d'entrées.

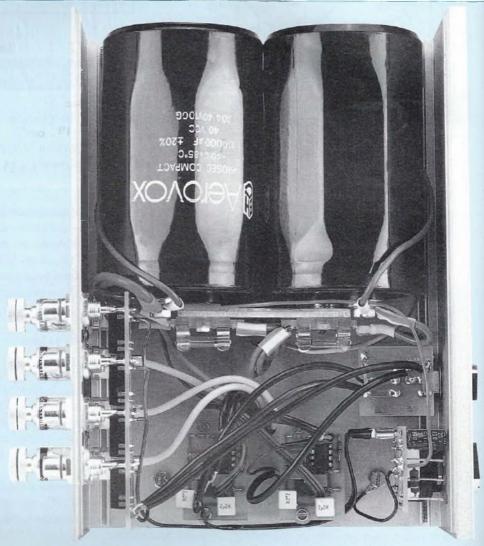
UNE ÉQUERRE DE FIXATION EN «L»

Elle est destinée, d'autre part, au maintien des deux volumineux condensateurs de filtrage, d'autre part, à la fixation des quatre porte-fusibles à cosses.

La figure 22 donne les indications nécessaires quant aux différents perçages à effectuer dans une équerre en «L» de 4 mm d'épaisseur.

Les dimensions de 40x40x150 mm d'origine sont tout d'abord ramenées à 40x40x70 mm.

Cette équerre en aluminium est distribuée par Sélectronic comme dissipateur thermique.


LES INTERCONNEXIONS

LE COFFRET DE DROITE

Nous allons commencer par équiper ce coffret qui ne renferme que les alimentations.

On commence par la mise en place à l'arrière de la prise secteur, du pont redresseur (ø4 mm à 65 mm du haut) et on bloque une vis M4 de 10 mm par un écrou et une rondelle «éventail» dans le trou restant au-dessus du pont de diodes.

Nous allons nous servir de cette vis pour

la mise à la masse des alimentations symétriques ±U.

Visser en face avant l'interrupteur M/A unipolaire.

Mettre en place le volumineux transformateur en «R», de telle façon que le primaire soit orienté vers le bas (Sélectronic à l'envers vers le haut).

En fonction des perçages qui ont été faits en figure 16, on se rend compte qu'il faut repercer un trou dans la plaque de fixation du transformateur en bas à droite, ou effectuer un trou «oblond» avec celui existant, pour arriver à la côte de 32 mm.

Fixer le transformateur et commencer les interconnexions.

Au primaire:

- Souder le fil «blanc» à une cosse de la prise secteur.
- Souder le fil «noir» à une cosse de l'interrupteur.
- Souder le fil «jaune» à la cosse de «mise à la terre» de la prise secteur.

Au secondaire:

- Relier le fil «violet» (par soudage ou cosse Faston) à une cosse (~) du pont redresseur.
- Faire de même avec le fil «rouge» pour l'autre cosse (~) du pont.
- Relier les fils «gris et bleu» à la vis M4 qui nous sert de «masse châssis».

Avec l'excédant du fil «violet», relier

l'autre cosse de la prise secteur à la cosse restée libre de l'interrupteur.

Mettre en place les 2 entretoises mâle/ femelle filetage M3 de 15 mm de longueur et y fixer le module de régulation du préamplificateur. Insérer entre l'entretoise métallique et le circuit imprimé une rondelle isolante de 3 pour supprimer tout risque de court-circuit.

Relier le primaire du petit transformateur aux fils «blanc» et «noir» du gros.

Dans un câble secteur 3 conducteurs de 40 cm de longueur, dégainer de chaque côté environ 13 cm de façon à ne laisser qu'une longueur de gaine de 14 cm.

Passer le câble par le trou de ø10 et relier les 3 fils comme suit :

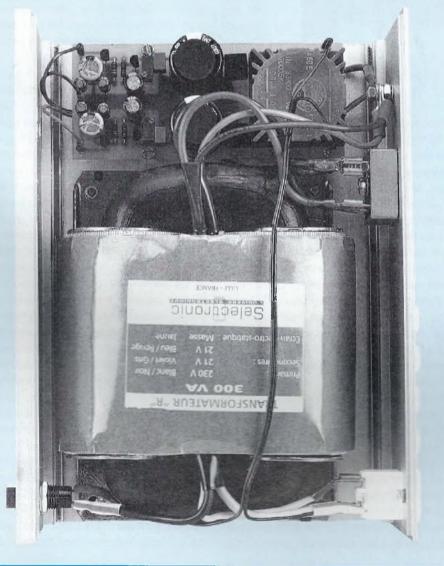
- fil «marron» au (+) du pont redresseur
- fil «bleu» au (-) du pont redresseur
- fil «jaune/vert» à la «masse châssis».

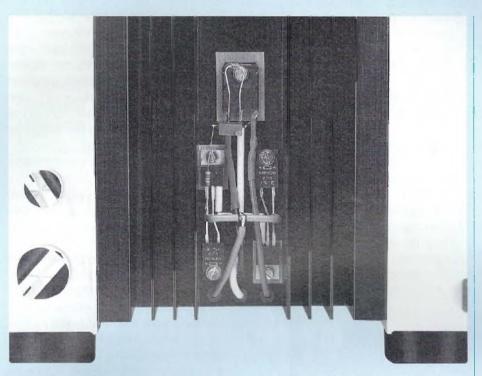
Visser un dissipateur à l'arrière du coffret en se servant de sa rainure de côté et de la visserie de 4x12 mm. Il est intéressant d'utiliser des écrous carrés qui se bloqueront dans la rainure au vissage, sinon il faudra intercaler des rondelles plates.

LE COFFRET DE GAUCHE

Mettre en place les 4 entretoises filetées de 20 mm en utilisant des vis M3 à tête fraisée

Equiper l'arrière du coffret des différentes prises (sorties HP et CINCH d'entrées). Les 4 prises HP se trouvent à 23 mm du fond du coffret. Les bornes négatives (-) noires se trouvent au milieu, enserrées par les bornes positives (+) rouges.


Veiller au bon isolement de celles-ci en vérifiant à l'ohmmètre.


Equiper l'équerre en «L» de la figure 22 de ses 4 porte-fusibles en utilisant de la visserie à tête fraisée, puis fixer celle-ci au coffret.

Fixer ensuite le coffret au dissipateur en se servant comme précédemment de la rainure de côté.

De ce dissipateur partent huit fils dont deux câbles blindés.

Faire passer les blindés et les câbles

HP (de couleur jaune, si vous avez suivi nos conseils) par le trou de ø10 du has

Faire passer les 4 fils d'alimentation (vert pour le -U et rouge pour le +U) par le trou central de ø10.

Faire passer la gaine du cordon secteur par le trou de ø10 supérieur.

Passons aux interconnexions de ces câbles.

Fixons-nous arbitrairement comme alimentations positives (+U) les portefusibles situés vers l'arrière du coffret (vers les prises).

Souder les 2 câbles rouges à la cosse du porte-fusible inférieur (vers le fond du coffret).

Souder les 2 câbles verts à la cosse de l'autre porte-fusible inférieur.

Ces cosses sont situées face à face, il y a donc peu de place. Il est intéressant de prévoir des gaines thermorétractables qui recouvriront les cosses après soudages.

Relier les câbles jaunes aux bornes HP supérieures, en réservant par exemple la borne (+) à l'électronique située vers l'extérieur et donc en bas du dissipateur. Mettre en place provisoirement les condensateurs de filtrage de 47 000 $\,\mu\text{F}/$ 40 V.

Visser le canon (-) du condensateur (celui situé à l'arrière ves les prises) à l'équerre en aluminium. Faire de même avec le canon (+) de l'autre condensateur en y intercalant une cosse à «œil» pour vis M5. Bien respecter les polarités.

Relier le fil marron du cordon secteur au canon (+) du condensateur de filtrage en utilisant une cosse à «œil».

Faire de même avec le fil bleu et le canon (-) de l'autre condensateur. Reste la cosse vissée précédemment au canon (+) à laquelle nous souderons le fil jaune/vert.

Insérer une deuxième cosse à «œil» entre la tête de vis M5 et le canon (+) du condensateur de filtrage.

Utiliser une longueur de fil de couleur rouge de 20 cm et couper sa gaine au centre pour faire apparaître le cuivre sur 1 cm environ en poussant cette gaine de part et d'autre depuis le centre. Plier à 180° pour que le cuivre se retrouve à une extrémité et étamer. Il ne reste plus qu'à souder ce câble double à la cosse à «œil».

Même procédure avec un fil de couleur verte et le canon (-) de l'autre condensateur.

Relier les autres extrémités des 4 fils aux cosses des porte-fusibles.

Relier les picots (+U), 0 V et (-U) de l'alimentation stabilisée à un câble 3 conducteurs de 50 cm (câble en nappe). Passer ce câble par le trou de ø10 sous le cordon secteur (partie gainée) et ressortir par le trou de ø10 de l'autre coffret. Faire descendre ce câble derrière les condensateurs de filtrage vers le bas du coffret.

Fixer un module préamplificateur / déphaseur aux entretoises filetées de 20 mm vissées au coffret et estimer la longueur nécessaire au câble en nappe pour les interconnexions. Couper, séparer les 3 brins, dégainer sur 5 mm environ chacun d'eux puis étamer.

Souder les brins aux pastilles «oblond» du module en respectant bien les polarités.

Faire repartir 15 cm de câble en nappe en soudant ses brins côtés pastilles. Ce câble va servir à alimenter l'autre module préamplificateur / déphaseur.

Une dernière intervention dans le coffret de droite. Souder un fil au 0 V de l'alimentation stabilisée (surface cuivrée entre les condensateurs de filtrage de 4 700 µF / 35 V) et raccorder l'autre extrémité, à l'aide d'une cosse à «œil», à la vis servant de masse châssis. Bien bloquer ensuite l'écrou pour établir un parfait contact entre toutes les cosses.

Fixer définitivement le module préamplificateur / déphaseur au châssis en intercalant entre les entretoises métalliques et le circuit imprimé des rondelles isolantes.

Raccorder les câbles blindés (âme du conducteur) aux picots (S) tout en reliant entre elles les tresses de masse.

Souder un câble blindé de 15 cm de longueur à l'entrée (E) et raccorder ensuite le picot de masse aux deux autres tresses des blindés de sorties.

Enlever le circuit intégré de son support. Nous allons, pour la première fois, pou-

voir mettre sous tension le SINGLEMOS. Après mise sous tension, vérifier les potentiels aux sorties de l'alimentation stabilisée par rapport à la masse et ajuster le ±U à ± 18 volts.

On peut également vérifier les tensions aux bornes des condensateurs de filtrage de 47 000 μF .

On doit trouver à vide environ $\pm 21\sqrt{2}$ # ± 30 V.

L'appareil déconnecté du réseau EDF, attendre quelques instants que les condensateurs se déchargeant puis remettre en place l'OPA2604.

Les lecteurs qui possèdent générateur BF et oscilloscope bi-courbes pourront vérifier le bon fonctionnement du module en injectant un signal à 1 kHz dans le blindé d'entrée tout en reliant les sondes du «scope» aux picots (S).

On doit retrouver deux signaux en opposition de phase avec un gain en tension de 15. Les condensateurs de 47 000 $^{\circ}\mu F$ n'étant pas chargés, la tension à leurs bornes ne va pas se vider. Il faut donc le faire manuellement avec une résistance, résistance de charge HP de 8 Ω / 50 W par exemple (éviter le court-circuit franc). Mettre en place deux fusibles de 3A dans leurs supports.

Nous pouvons maintenant régler les étages de puissance.

Dans chacune des bornes HP, (+) et (-), connecter une résistance de charge de 8 Ω .

Relier les deux autres extrémités de ces résistances à la masse du châssis (cosses vissées au coffret de droite). Mettre le SINGLEMOS sous tension.

Avec les ajustables multitours, régler ceux-ci pour que la tension entre la masse et la «gate» de chaque MOSFET soit de 0V.

Laisser le dissipateur monter en température (attendre 15 mn) et reprendre les réglages.

C'est terminé pour le premier canal de l'amplificateur.

Enlever les résistances de charge et connecter une enceinte d'impédance $8~\Omega$ aux bornes HP. En injectant une

modulation à l'entrée du câble blindé, vous pouvez momentanément apprécier les qualités musicales de cette réalisation, notamment la transparence dans le médium et l'excellente réponse dans le bas du spectre (il n'y a qu'un seul condensateur dans le trajet de la modulation).

Après cette première écoute, il faut songer à équiper le SINGLEMOS de son deuxième canal,

Pour que les fils du premier canal en partance du dissipateur ne fassent pas «fouillis», on peut les maintenir entre eux en faisant des torons avec des serrecâbles.

Le deuxième dissipateur

Dans un premier temps, celui-ci est uniquement maintenu par les deux vis du bas. Nous pouvons ainsi le faire basculer vers l'avant pour faciliter le travail qui consiste à passer les 8 câbles par les deux trous de ø10 mm.

Là encore, pour éviter le «fouillis», on peut réaliser des petits torons.

Les interconnexions sont identiques à celles du premier canal, en se servant des deux autres porte-fusibles pour les câbles d'alimentation.

Au niveau des borniers HP, faire attention à la mise en phase qu'il faut respecter bien qu'il n'y ait pas de référence de masse.

Idem pour les câbles blindés soudés aux picots (S) du deuxième module «préamplificateur / déphaseur».

Les réglages sont à reprendre comme précédemment pour le premier canal, obtenir un 0V entre masse et «gate» des MOSFET.

Nous approchons de la fin, le plus gros du travail est terminé surtout si le sélecteur de source ne vous concerne pas.

Nous allons maintenant raccorder les câbles blindés des entrées des modules préamplificateurs / déphaseurs au potentiomètre de volume de type ALPS stéréophonique 2x10 k Ω . Pour cela, on se reporte à la figure 22. Vu la disposition du circuit imprimé dans le coffret, les

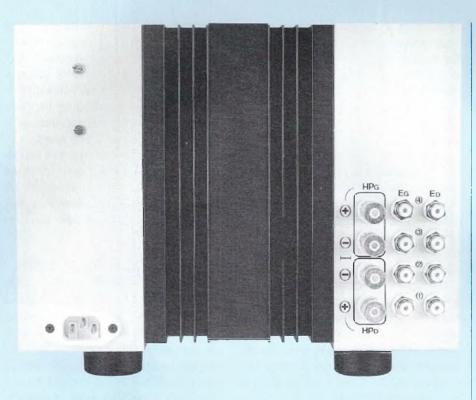
interconnexions se font directement côté pistes cuivrées du C.I. Les câbles blindés se soudent aux pastilles «module». Pour que l'axe du potentiomètre ne dépasse pas trop en face avant, on insère dans le canon de celui-ci un écrou de 10. Cette surépaisseur permet de bien plaquer le potentiomètre contre la face avant.

Pour certains, il ne reste plus qu'à souder des câbles blindés aux pastilles «CINCH» du potentiomètre et de connecter les autres extrémités aux CINCH châssis vissées à côté des borniers HP.

Le sélecteur de source

Nous allons tout d'abord fixer le module de «Sélection» à relais REED à l'arrière du SINGLEMOS. Il s'agit tout simplement de faire traverser les 8 picots soudés aux prises CINCH dans les grosses pastilles. Le circuit imprimé est à orienter, pistes cuivrées vers les modules préamplificateurs / déphaseurs et l'inscription «sélecteur» vers le bas.

Auparavant, on aura pris soin de relier entre elles toutes les «cosses de masse» des CINCH avec du fil de cuivre étamé de 10/10°.


Une astuce : il suffit de faire deux paquets de 4 cosses (la distance entre chaque CINCH permet de superposer les cosses à souder entre elles) et de les réunir ensuite par soudage avec le fil de cuivre étamé. En plus de cette liaison, le fil de cuivre doit aller établir le contact avec la pastille de masse du module, celle située entre les sorties SG et SD (voir figure 20B).

Souder les 8 pastilles aux picots.

Il ne reste plus qu'à raccorder aux pastilles (1) à (6) un câble 5 conducteurs qui va véhiculer la tension d'alimentation de 24 V. Prévoir une longueur de 20 cm.

Voyons maintenant le module «Sélecteur» fixé en face avant par le canon du commutateur LORLIN.

Tout d'abord, visser un contre écrou dans le canon de ce commutateur puis visser le module en face avant pour estimer la longueur d'axe à couper afin que

le bouton de commande se rapproche au mieux de la face avant.

On en profite pour introduire les diodes leds dans leurs logements et on les soude définitivement au module. La distance C.I. / face avant est ainsi déterminée avec précision.

Retirer le module et couper l'axe du commutateur, puis souder des picots si ce c'est déjà fait aux pastilles (1) à (4), attention côté pistes cuivrées.

Souder un câble 2 conducteurs (tiré d'un câble en nappe) aux pastilles (5) et (6) et ce côté composants, d'une longueur de 20 cm environ.

Remettre le module en place en face avant et l'immobiliser avec un contreécrou.

Le câble 2 conducteurs est à relier au condensateur de filtrage de 47 000 μF en respectant les polarités (+) et (-).

Il ne reste plus qu'à estimer la longueur du câble 5 conducteurs qui va interconnecter les 2 modules, à l'équiper de picots femelles et à établir les contacts avec les picots mâles 1 à 4 du module «sélecteur».

Le câble relié à la pastille (6) est lui soudé «au passage» à le tresse de masse d'un module préamplificateur / déphaseur.

Le SINGLEMOS est terminé. Tout en achevant ce rédactionnel, nous avons le plaisir de le faire fonctionner sur nos enceintes LYRR (nous avons une longueur d'avance sur vous)! L'écoute est excellente, avec un grave très ferme, une excellente présence dans le médium et un aigu filant haut sans agressivité.

Un excellent test d'écoute : le morceau LITTLE «B» des SHADOWS, çà décoiffe ! les membranes des boomers sont dépoussiérées avec ce morceau et la caisse claire permet de juger de la qualité du médium.

LES CAPOTS

Ils vont servir à la fixation de pieds en caoutchouc de 20 mm d'épaisseur pour un diamètre de ø38 mm. Il faut que la hauteur soit suffisante afin de découpler les deux dissipateurs du sol et ainsi faciliter l'évacuation de la chaleur.

La classe A en semiconducteurs çà |

chauffe, tout comme un SINGLE à tubes, mais quelle satisfaction à l'écoute!

On peut également, dans les parties supérieures des capots, prévoir des trous d'aération comme nous l'avions fait pour le push-pull de KT90 publié dans le Led n°160.

Quant à la couleur ! les coffrets IDDM sont fournis avec des capots bleus. Si on n'aime pas, la pulvérisation d'une couche de peinture à la bombe peut tout transformer rapidement.

Par contre, la couleur aluminium de l'anodisation des coffrets va parfaitement avec la connectique argentée mise en place sur ce SINGLEMOS.

LES DISSIPATEURS

On ne peut laisser l'électronique apparente, surtout en face avant. La solution idéale et toute simple est de découper (ou se faire découper) des plaques d'époxy de 200x38 mm, de les peindre en noir (ou en couleur aluminium) et de les faire coulisser dans les rainures du dissipateur. On doit pouvoir les faire coulisser mais tout en forçant un peu pour qu'elles restent en place d'elles mêmes sans avoir à les coller.

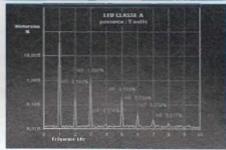

UN BLOC COMPACT

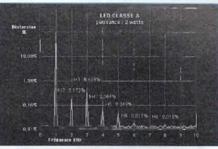
Le SINGLEMOS est un amplificateur stéréophonique compact mais facile d'accès. Pour une intervention sur l'électronique de puissance, il suffit d'oter les vis en haut du dissipateur en face avant pour que celui-ci puisse pivoter largement vers l'avant et dégager ainsi un bon espace de travail.

LA CHALEUR

La dissipation thermique se fait naturellement par les dissipateurs et le coffret «tout aluminium». Nous pensions devoir recourir à des ventilateurs pour éviter que la chaleur ne stagne, mais ce n'est pas nécessaire.

Au départ, lors d'essais d'un module sur table, nous avions constaté que de «ultra silencieuse», l'enceinte au bout d'une heure de fonctionnement émettait un


Signal carré à 40 Hz


Signal carré à 1 kHz

Signal carré à 10 kHz

Spectre de distorsion

Spectre de distorsion

Comportement sur charge capacitive

Puissance efficace: 6,45 W
Sensibilité d'entrée: 350 mV
Puissance impulsionnelle: 6,5 W

(Gain de 0 W ou 0 %)

Temps de montée à 10 kHz: 1 µs

Rapport signal/bruit: LIN: 86 dB Pondéré: 97 dB

Diaphonie: 81 dB

	Distorsion par i	narmoniques totale	
Fréquences	W (- 1 dB)	W (- 3 dB)	W (- 6 dB)
100 Hz	1,2 %	0,55 %	0.19 %
1 kHz	1,2 %	0,56 %	0.22 %
10 kHz	1 2 %	0,61 %	0,23 %

souffle, un bruit blanc comme une chute d'eau, ce bruit thermique bien connu des électroniciens et engendré par les semiconducteurs ne se manifeste plus une fois l'appareil terminé. Le SINGLEMOS laisse les enceintes muettes, même après 4 à 5 heures d'un usage intensif. En absence de modulation, on ne sait même pas que l'appareil est sous tension!

Contrairement à ce que l'on pourrait croire, le silicium ne fonctionne bien qu'à «chaud», à température stabilisée. Cette matière a horreur des changements de température qui font varier ses paramètres dans tous les sens. Pour un amplificateur audio polarisé en classe AB cela se traduit à l'écoute par une sorte de «voile» donnant peu de relief à la musique, peu de piqué. C'est ce qui fait probablement, en partie, la différence entre une écoute à semiconducteurs et une autre à tubes.

Comme pour un amplificateur à tubes, vous constaterez que le SINGLEMOS

fonctionne beaucoup mieux après une demie heure de chauffe qu'au départ à froid

LE SINGLEMOS AUX MESURES

On peut le comparer au Single End en triodes 300B publié dans les Led n° 152/153, les puissances délivrées étant du même ordre.

On observe une excellente tenue dans le bas du spectre, les paliers étant peu inclinés.

Le grave sera reproduit avec beaucoup d'énergie.

Le temps de montée du carré à 10 kHz n'est que de 1 µs, sans aucune oscillation. L'aigu sera reproduit sans aucune agressivité avec beaucoup de finesse.

On n'observe aucune réaction du SIN-GLEMOS sur charge capacitive, au contraire, il fait le «dos rond». Pas la moindre suroscillation.

L'ÉCOUTE

Nous l'avons faite avec nos enceintes LYRR, dont le rendement n'est que de 92 dB/1 W/1 m, pour nous rendre compte de ce que les lecteurs pourront tirer de cette réalisation peu puissante.

Nous pensons que rares sont nos lecteurs qui ont la chance d'avoir des enceintes à haut rendement de qualité. Après un temps de chauffe de 10 mn, nous avons sélectionné quelques CD que nous avons longuement écoutés.

«See you in my drums» des Shadows, par exemple, permet de contrôler toute la bande passante et notamment la batterie avec les impacts des baguettes sur la caisse claire et les cymbales.

L'écoute est excellente et le SINGLE-MOS démontre sa capacité à remuer les enceintes sans ménagement tout en ne «gommant» pas les micro-informations.

Bernard Duval

D RCA mâles WBT-0147.....Midline câble≤7,8mm 90F WRI-0144 Midline cable≤9mm 90F WBT-0101 Topline câble≤9mm .165F WBT-0150. Topline cāble≤11.3mm 195F ○ RCA chassis WBT-0201 RCA chassis isolé téllon 150 F (plèce) **⊳** Fourches WBT-0660 Fourche cuivre largeur 6mm 200F (pales) D Bananes måles WBT-0644Midline jusqu'à 10mm 905 WBI-0600 .Topline jusqu'à 10mm² 185F WBT-0645 ...Connexion oblique isolée.

	Câble 2,5 à 10mm²	100F
11	D Borniers	
	WBT-0730 Bornier 200A pour fiche	s bananes.
	Câble de 1,5 à 10mm².	
DAY.	Version à visser	210F
WBT-0735	idem 0730. Version isolée	270F
WBT-0700	Bornier pour parois≤50mm4	90F (paire)

ECC81 Radio FCI 86 95F Technique EL 34 STA appairé 170F Support Noval Cl ▶ 49F 18F Support Noval chassis __20F EL 34 Sovtek 985 Support Optal Cl 20F195F Support Optal chassis....32F 6550 A... Et 84 Radio Technique 89F Support 4br pour 300B 68F 6L6 GC STA appaire 160F Support 845 190F 6L6 GC General Electric 260F Blindage pour tube Noval . 30F 6L6 WXT STA appairé ... 180F ECF80 Siemens 39F 6L6 GC Westinghouse .. 175F ECF82 Mazda. 55F 6SN7GT RCA 220F EZ81=6CA4.... 89F 300B Chine..... 690F F780=6V4 89F .540F KT88 Chine . 200F 845 ECC 82=12 AU 7 75F KT88 STA appairé290F ECC 83=12 AX 7 ... 75F 6550 General Electric 620F ECC 83 General Electric. 220F 6550 WE Softek 240F

OLYPROPYLENE MKA

Condensateurs polypropylène auto-régénerants, non inductifs et insensibles à l'humidité, rigidité diélectrique elevée, facteur de perte faible.

Iens	sion are	olemen	11 400	volts	
0,47µf	10F	3,3µf	12F	15µf	291
0,68µf	.8,50F	3,9µf	13F	18µf	321
0,82µf	9F	4,7µf	14F	22µf	421
1µf	10F	5,6µf	15F	27µf	591
1.5µ1	14F	6,8µ1	20F	33µf	661
1,8µf	10F	8,2µf	18F	47µ1	971
2,2µ1	11F	10µf	25F	68µf	115
2,7µf	12F	12µf	28F		

Condensateurs non inductifs, insensibles a l'humidité Comportant deux bandes d'étain separées par deux films polypropylène dont leur epaisseur definie la tension de service du condensateur. Forme cylindrique, sorties axiales par fil de cuivre étamé, obturation à la resine polyurétane.

	sion d'i) volts		
0,1µf	36F	0,47µf25F	400 volts
0,15µf		0,68µf33F	1,5µf 71F
0,22µf	21F	1µ149F	1,8µf 80F
0,33µf	23F	2µ1 67F	
		2,2µf	

composants électroniques

159, rue La Favette, 75010 Paris Tél.: 01 40 35 70 50 Fax: 01 40 35 43 63

E-mail: contact@radioprim.com Site Web: www.radioprim.com

OUVERT DU LUNDI AU SAMEDI

> Du lundi au vendredi

de 9h30 à 12h30 et de 14h00 à 19h00

> Samedi de 9h30 à 12h30 et de 14h00 à 18h30

NOUS RÉALISONS SUR COMMANDE VOS CÂBLES AUDIO, VIDÉO, TOUS TYPES DE CONNECTIQUES

Circuit magnétique "EI", 0w6. Qualité cui 35/100e, enroulements "sandwichés",	ivic iccuit,
présentation a encastrer capot noir (pei	nture epoxy).
Impédance secondaire 4,8,16ohms.	
Bande passante 30/60000HZ.	
3500chms, 35watts, 1,7kg	880
5000ohms, 35watts, 1,7kg	880
6600ohms, 35watts, 1,7kg	
8000ohms, 35watts, 1,7kg	880
Mêmes impédances en 65watts, 3,3kg	1158
Mêmes impédances en 100watts, 7,4g	1388

Presentation à encastrer avec "capot peinture epoxy noir"

Ecran électrostatique entre primaire et secondaire. Fabrication française TU75 2x250V et 2x300V 75mA, 0-5-6.3V 1.5A, 6.3V 3A.... 338F TU100 2x250V et 2x300V 100mA. 0-5-6.3V 2A, 6.3V 4A. 398F TU120 2x250V et 2x300V 120 mA, 0-5-6,3V 3A, 6,3V 5A 435F TU150 2x250V et 2x300V 150mA. 0-5-6,3V 3A. 6,3V 5A.... 495F TU200 2x250V et 2x300V 200mA. 0-5-6,3V 4A. 6,3V 6A... 597F TII300 2x250V et 2x300V 300mA 0-5-6.3V 4A. 6.3V 8A. 5V 3A 698F TU400 2x250V et 2x300V 500mA. 0-5-6,3V 6A. 6,3V 12A. 5V 5A..... 915F

Fabrication spécifique, nous consulter

Circuit magnétique "DOUBLE C". enroulement "sandwichés". Impédance secondaire 4, 8, 160hms, bande passante 15/80000hz, présentation moulé dans un boitier noir époxy. Prise d'écran à 40% sur l'enroulement primaire. 3500ohms, 35watts, 2kg 1049F 5000chms, 35watts, 2kg. 1049F 6600ohms, 35watts, 2kg. 1049F 8000chms, 35watts, 2kg 1049F Mêmes impédances en 65 watts, 4,5 kg. 1905F Mêmes impédances en 100watts,6,2kg 2249F

Fabrication spécifique, nous consulter

CABLES AUDIO PROFESSIONNELS

Gotham @ EANAPIE (Prefer) **▷ Modulation-BF** WBT 2016......Imp 16 ohms. Conducteur en cuivre OFC. Diam ext.: 8,5mm (blanc) 195E/mètre MGK 18 prefer OFC carbon \ \times 7.5mm(bleu) \ 69F/mètre

GOTHAM GAC-1......1 Cond blinde Ø 5,3mm.......13F/mètre GOTHAM GAC-2 2 Cond blindés 5,4mm 13F/mètre GOTHAM GAC-2 ES/EBU (numérique)..... 36F/mètre Câble cuivre recuit étamé argent......3,18mm², isolation téflon blanc (idéal câblage interne d'enceintes)_30F/mètre LUCAS Câble HP 2x1mm² __18F/mètre Câble HP 2,5mm² (Excellent pour l'aigu) 10F/mètre Câble coaxial téflon 2,5mm ...29F/mètre

HAIIT, PARI FILES A I ITA V

HAUTTHA	HE-CULO	114	- 1 T
⊳ Tweeter		⊳ Boomer	
AW02551	329F	HT240T0	362F
AW02553	305F	PR330MO	1586F
PR125T1	255F	PR300M0	67 5 F
PR120i1	450F		
TW010E1	51F	Gamme aérogel, s	
TW010F1	46F	polymere, antimag	
TW010L1	92F	AP100Z0	-
TM025F1	180F	AP130Z0	177F
TW025A0	172F	AP170Z0	256F
TM025F7	190F	AP210Z0	287F
⊳ Medium		Commo confes ton	di mbdia
HT210T0	_332F	Gamme papier tra	
PR170MO	597F	paymere, anumag	
HT080M0	147F	AP100G0	
D Large ban	de	AP130G2	
HT210A2		AP170G2	
HT170A2		AP210G6 .	252F
D. Boomer		Série prestige, sal	alier Zamack.
Gamme profess		membrane aeroes	

675F HV17070

HW13070

470F

543F

651F

362F

Tolérance +/- 1%, résistance d'isolation 10000M(), sortie axiale. ► Tension de service 630 Volts cc

PR330M0 1586F FW210Z0

HT240T0

PR300M0 (nouv. réf.)

68pf/100pf/120pl/150pf/180pf/200pt/220pf, 240pf 270pf 300pf/330pf/360pf/390pf/430pf/470pf/510pf/560pf/680pf/ 820of/910of/1nf

CONDENSATEURS POLYPI

Tolérance +/- 5%, série 378. Haute performance

0,10µf / 1KY 20F 0.47pf /630V 29F 2,2µf / 250V 29F

0,22pf / 1KV 35F 1pf / 250V 20F

CONDENSATEURS STYROFLEX

Sortie axiale isolation 160V 47of/100pf/220pf/270pf/1nf/1.2nf/1.5nf/1.8nf/2.5nf/3.3nf_7F

10nf / 400V5F 100nf / 400V 5F 330nf / 250V 5E	1,5µf / 400V 12F	
33UNT / 25UV 5F	2,2µf / 400V 19F	-

ļ	Idéal pour souder la connectique.	
	Soudure argent 4% 100Grs 1mm.	491
	Soudure argent 3% 500Grs 1mm	2551
	Soudure argent 3% 0,8mm	4F/mètre

► Construire ses enceintes acoustiques-René Besson-Ed° EISF-143n... 135F ► Techniques de prise de son-Robert Caplan-Ed° ETSF-250p.... .169F ► Le livre des techniques du son (Tome 1)-Denis Mercier-Ed° Dunod-340p 350F

► Le livre des techniques du son (Tome 2)-Denis Mercier-Ed° Dunod-390p ► Les haut-parleurs-Jean Hiraga-Ed° Dunod-340p......195F ► Technique des haut-parleurs et des enceintes acoustiques-

► L'audionumérique-Jean de Reydellel-Ed° Dunod-630p. 350F ► Initiation aux amplis à tube-Jean Hiraga-Ed° Ounod-150p.....

Pierre Lovez-Ed° Dunod-310n

► les amplificateurs à tube-René Besson-Ed° EISF-136p... 149F ► Les magnétophones. Technique de l'enregistrement sonore

analogique et numérique-Claude Gendre-200p...... ► Mini studin/Midi studin. Guide pratique

de l'enregistrement chez soi-Denis Feitier. 150F ► Lexique officiel des lampes radio-Alain Gaudillat-96p......98F ► La restauration des appareils à lampes-André Cayrol-160F

► Guide pratique de la diffusion sonore de petite et moyenne puissance-Lignel Haidaut-128p., 98F ► Guide de la prise de son d'instrument et d'orchestre-Lionel Haidaut-112p. 98F ► Schématèque radio des années 30-

Wladimir Sorokine-198p 160F ► Schématèque radio des années 40-Wladimir Sorokine-171n 160F ► Schématèque radio des années 50-Wladimir Sorokine-176c 160F

Catalogue de livres techniques disponible contre 7F en timbres

SA RAH

Ø de cuivre 1,1mm. Ø carcasse 57mm. Hauteur: 17.5 mm

0,10mH/0,15mH/0,20mH/0,30mH/0,40mH/0,50mH/0,60mH/ 0.80mH/1,00mH/1,20mH/1,50mH/1,60mH/3,25mH 59F

OLYPROPYLENE MK

▶ Tension d'isolement 630 V 3.3nf/4.7nf/6.8nf/10nf.

Sorties radiales "BG"

> Tension de service 16V do 220µf

48F 10uf .21F 100µf 470u1 65F 22uf. .39F 1000uf 79F > Tension de service 50V do 22F 47µ1.... 220uf 79F 33F 31F 100uf 33uf 51F 470nf 134F

TENSION MARQUE ERO

Condensateurs sortie axiale

1,5nf / 2000 V	14F	9,1nf / 2000 V	17F
2,3nf / 2000 V	14F	10nf / 2000 V	16F
7,5nf / 2000 V	15F	11,5nf / 2000 V	16F
8,2nf / 2000 V	17F	100nl / 1600V	19F

L.C.C-SAFCO-TREVOUX

1 5uf 450V 140F 4ul 250V 250F 8uf 750V 290F 2µf 500V ... 145F 6µf 1000V 270F 12µf 500V 320F

PAIEMENT: Cheque CB ÉTRANGER: nous consulter

FRAIS D'EXPÉDITION (COLISSIMO): =0-250g > 20F = 250-2kg > 28F = 2kg-5kg > 48F = 5kg-10kg > 58F

ABONNEZ-VOUS À

Je désire m'abonner à **LED** (6 n° par an)

LAMPES APPAIREES (prix par 2)

1 280 Frs 118 Frs

880 Frs

CONDITIONS de VENTE : France métropole - Règlement par chèque joint à la commande. PORT: 80 Frs le premier transfo, 30 Frs en plus par transfo supplémentaire. LAMPES: de 1 à 4:38 Frs et de 5 à 10:58 Frs (gratuit avec achat d'un jeu de 3 transfos)

Prix:

Prix :

Prix:

Jeu EL34 Jeu KT88 Jeu 300B Sovtek Jeu 6L6

Jeu de 845

Jeu EL84 Jeu 6550

Jeu de 7189 Jeu de KT90

Prix: 670 Frs

	FRANCE,	BELGI	QUE, S	SUISS	E, LU	JXE	MBOURG: 125	FA	UT	RES*:	175 F	
* Ecrire e	en CAPITALES,	S.V.P.										
Nom:							•••••					
							• • • • • • • • • • • • • • • • • • • •					
							• • • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •	• • • • • • •
Le pren	nier numéro qu	ie je désire i	recevoir e	est: N°.	*********							
* Pour les	s expéditions «p	oar avion» à l	l'étranger,	ajoutez	50 F au m	nont	ant de votre abonnement.					
Ci-joint	t mon règle	ment par	:	chèqu	ue banc	cair	e 🗇 par CCP			oar mand	dat 🗆	
			A re	etourner	accomp	oagr	né de votre règlement à					
5	Service Abon	nements,	EDITIO	NS PÉ	RIODE	ES.	5, boulevard Ney, 750	18 Par	is Te	él. : 01 44	65 88 14	1
-20000	31830 PLAIS	6 rue Fra	nçois Vei	rdier	2111 21125		SERVICE (CIRC	UIT	S IMP	RIMÉS	
ACEA	(r) · 05	61 07 55 7	7 / Fax ·	05 61 8	6 61 89		Support verre					
ACEA	Site : acea-	fr.com / email	: bernard.te	oniatti@ac	ea-fr.com						. с сс р	
400	LA QUALITÉ	ÉRONAUTIO	UE MILITA	AIRE ET S	SPATIALE							
		J SERVICE DI				Н			Qté	Circuits non percés,	Circuits percés et	Total
faible induc	TRANSFO	DRMATEUR I								non étamés	étamés	
LED N°		ndaires	0 1 4100 00	Poids	Prix TTC	Н						
136-140 138	2x30	5 V-2x6,3 V 0 V-2x6.3 V		4,0 kg 2,8 kg	520 Frs 420 Frs		* Pédale Overdrive * Le SINGLEMOS			56,50 F	91,00 F	
142 143-145	2x30	0 V, 2x6,3 V tôle (I 0/240 V-12 V	PR001)	1,2 kg 4,6 kg	375 Frs 595 Frs		- Préamplificateur / déph	aseur		5,00 F	8,00 F	
146-150	2x38	0-2x6.3 V-5 V		6,0 kg	595 Frs		- Carte alimentation - Selecteur de source (2 (CI)		22,00 F 18,00 F	35,50 F 27,00 F	
147-148		BES circuits «C» réampli tubes 2x3	00 V + 6.3 V	1,0 kg	490 Frs 510 Frs		- Volume			3,50 F	5,00 F	
152 154-159-160	Prim. 220 V - Écra	n - Sec. 2x300 V-	2x6,3 V	6 kg	640 Frs 580 Frs		* Quadruple push-pull de 6L6			20.00 5	40.00.5	
155	Prim 230 V - Ecra	n - 2x230 V ou 2	x330 V±12 V		520 Frs		 Préamplificateur / déph Etage de puissance 			30,00 F 31,50 F	48,00 F 50,50 F	
157-160 161 -16 2-163	Prim. 230 V - Ecra Prim. 220 V / 230	V - Ecran - 2v330	11/-12 1/-6 3 1	/ en cuve	590 Frs		- Chauffage 6V3/polar. gr - Stabilisateur HT	ille		8,00 F 29,00 F	12,00 F 46,00 F	
163	Prim. 230 V - Sec.	. 2x12 V - Écran :	350 F avec c	apot et 510	F en boîte 350 Frs		* La puissance intégrée				.0,00	
165	Prim. 230 V - Écra	n - Sec. 400 V+6	,3 V+4x3,15 \	/+75 V	680 Frs		- TDA1514			10,00 F	15,00 F	-
	TRANSFOR		_				- TDA7294 - LM3886			10,00 F 10,00 F	15,00 F 15,00 F	
LED N° 136-154	Impédance Prim 4 000 Ω	Impédance Sec 4/8/16 Ω	Puissance 40 W	Poids 2,8 kg	Prix TTC 640 Frs					12.444.15		
138 140	5 000 Ω 1 250 Ω	4/8/16 Ω 4/8 Ω	20 W	1,2 kg 2,8 kg	330 Frs 590 Frs		Numéro d'Abonné :	Remise	conse	entie 25 % (^{To}	otal TTC x 3	ĺ
143 146	2 000 Ω 625 Ω	4/8 Ω 4/8 Ω	60 W	4,0 kg	700 Frs 680 Frs		Frais de port et emballage	The second second				10 F
146-150	6 600 Ω	4/8 Ω	40 00	4,8 kg 2,9 kg	650 Frs		Total à payer					F
146-150-152 151	et 165 9 000 Ω	self 10H, tôle 4/8 Ω			350 Frs							
152 155	2.3/2,8/3.5 kΩ 8 000 Ω	4/8/16 Ω 4/8/16 Ω	30 W circu 20 W	it C en cuve								
157-160	3.800 Ω	4/8/16 Ω	50 W	10 0	680 Frs		Nom:					
159-160 161-162	3 500 Ω Circuit C. Modele en		tube 845 (imp	it C en Cuve éd. 4/8 Ω)	1 700 Frs		PRÉNOM :					
165	2 000 Ω	4/8 Ω			580 Frs		N°:					
Support NOV Support 4 co	/AL C.I. Prix U		OVAL Châssi OCTAL Châssi				CODE POSTAL:					
Support Jum	bo (845) Prix U	Init: 140 Frs C	apot nickelė		t : 120 Frs		VILLE:					
	€ LAMPE						VILLE			*************	•••••	
ECC83 EF 86	Prix Unit : Prix Unit :	60 Frs 140 Frs	ECC82 ECC81		nit : 60 Frs							
ECL86 GZ32	Prix Unit : Prix Unit :	95 Frs 100 Frs	ECF82 EZ80	Prix Ur	nit: 70 Frs		Paiement par CCP	par ché	eque	bancaire [l par man	dat 🗇
EZ81	Prix Unit :	89 Frs		- FIX OF	III. JO FIS					dre de	,	

EDITIONS PÉRIODES

5, boulevard Ney, 75018 Paris Tél.: 01 44 65 88 14

AMPLIFICATEUR DE FORTE PUISSANCE QUADRUPLE PUSH-PULL DE 6L6 EN POLARISATION NÉGATIVE DE GRILLE 100 WATTS EFFICACES

Le bloc de puissance que nous vous proposons de construire peut tout aussi bien driver une enceinte Hi-Fi qu'une enceinte de sonorisation. A une telle puissance, il ne faut plus songer à polariser les grilles des tubes de sortie en chargeant leurs cathodes par des réseaux R-C. Une polarisation négative directe des grilles s'impose, ce qui fait descendre la consommation au repos et évite ainsi aux transformateurs (alimentation et sortie) de se transformer en plaques chauffantes.

a consommation devient impulsionnelle, en fonction du signal appliqué à l'entrée de l'amplificateur et bien évidemment de la puissance demandée à l'écoute. Le transformateur de sortie n'a ainsi pas besoin d'être surdimensionné, ce qui réduit son volume et son coût.

Rappelons que la puissance électrique nécessaire à l'écoute est également étroitement liée au rendement des enceintes, élevé en sonorisation (100 dB) et parfois bien mauvais en Hi-Hi (88 dB à 94 dB).

L'ÉLECTRONIQUE EN THÉORIE

L'ÉTAGE D'ENTRÉE

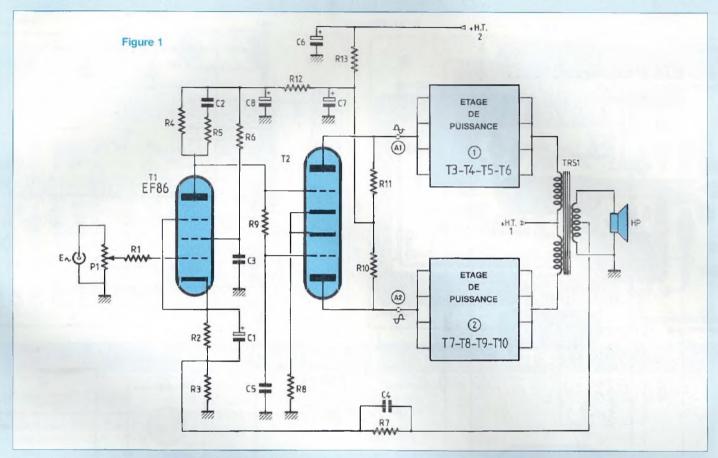
De ce côté, rien de nouveau pour les lecteurs qui nous suivent régulièrement. Nous réutilisons le tandem EF86/ECC82 qui donne d'excellents résultats. Nous obtenons ainsi dans de bonnes conditions notre gain en tension ainsi que le déphasage du signal d'entrée de 180°. Nous rappelons en figure 1 le schéma adopté.

La préamplification est assurée par une pentode EF86 (tube à grand gain) dont la grille de commande est reliée au curseur d'un potentiomètre de volume au travers d'une résistance de stabilisation R1.

La grille suppresseuse est reliée à la cathode, mais ici par l'extérieur du tube, cette grille étant accessible à la broche 8. Dans d'autres pentodes telles que EL84, ECL86, EL86, ces électrodes sont réunies mécaniquement à l'intérieur de l'enveloppe.

La grille écran est polarisée par la résistance R6 et ce potentiel est ensuite découplé par le condensateur C3 dont une extrémité est reliée à la masse.

L'EF86 est polarisée côté anode par le réseau R4/C2/R5 et côté cathode par le réseau R2/C1/R3.


La résistance de charge R4 est shuntée par une cellule active R5/C2 qui réduit le gain aux fréquences élevées de façon automatique sans augmenter le déphasage.

La résistance de polarisation de cathode R2 est découplée par le condensateur C1 qui stabilise son potentiel, celui-ci n'étant plus dès lors que directement lié au seul courant continu. Si C1 est imperméable au continu, il se laisse par contre traverser par tout ce qui est alternatif.

Cette mise en parallèle de C1 sur R2 est bénéfique à la stabilité, mais ce condensateur forme avec R2, un filtre passehaut. La reproduction des basses fréquences peut s'en trouver alterrée, si la capacité de C1 n'est pas suffisante.

La relation fc = $1/2\pi$.R.C permet de calculer la fréquence de coupure à - 3 dB. Avec nos valeurs sélectionnées : R2/1 k Ω et C1/470 μ F, les calculs conduisent à une fréquence de coupure aussi basse que 0,31 Hz, rien à craindre donc même pour la reproduction du 16 Hz de la Toccata de Bach à ce niveau du montage (il n'en va pas de même pour les enceintes !).

UNE FORTE PUISSANCE

Le réseau R2/C1 est connecté à la masse au travers d'une résistance de faible valeur R3. C'est aux bornes de R3 qu'est reliée la cellule de contre-réaction R7/C4. Côté haute tension, l'EF86 est alimentée au travers d'une cellule de filtrage en π composée des éléments C7/R12/C8. Le grand gain en tension de cet étage d'entrée nous oblige à être très prudent afin de neutraliser tout bruit parasite (souffle, ronflette...).

Ainsi, le chauffage filament en 6,3 V (non représenté sur le schéma) est-il confié à une tension continue parfaitement filtrée. La consommation est de 0,3 A et comme pour tout tube Noval, le filament est accessible aux broches 4 et 5.

La modulation amplifiée, recueillie sur l'anode de l'EF86, en opposition de phase par rapport au signal appliqué sur la grille de commande est transmise directement à la grille du tube déphaseur sans couplage capacitif.

En déphasage, nous utilisons une double triode ECC82 montée en déphaseur de Schmitt.

La liaison EF86/grille de la première triode est donc directe, ce qui lui assure sa polarisation par la même occasion.

Les cathodes sont polarisées par une résistance commune R8 de forte valeur (30 k Ω), tandis que les anodes sont chargées par des résistances identiques R10/R11 de 180 k Ω (nous devons obtenir deux signaux de même amplitude).

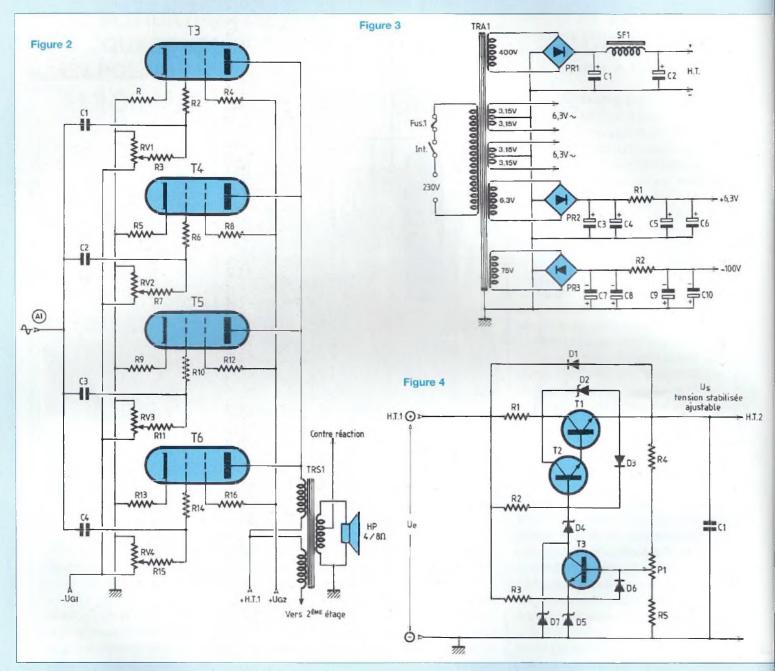
Par rapport à la masse, la tension alternative sur une anode est en opposition de phase avec celle sur l'autre anode.

Le courant circulant dans la première triode et qui est dû au signal d'entrée produit une tension aux bornes de la résistance R8, ce qui en retour produit un courant en opposition de phase dans la deuxième triode.

L'avantage du déphaseur de Schmitt est

d'avoir des impédances de sorties sensiblement égales, ce qui n'est pas du tout le cas du cathodyne.

L'ECC82 est alimentée en haute tension au travers d'une cellule de filtrage en π composée des éléments C6/R13/C7.


Comme pour l'EF86, toutes les précautions ont été prises pour combattre le bruit.

En ce qui concerne le chauffage des filaments, celui de l'EF86 se faisant en 6,3 V, celui de l'ECC82 lui emboîtera le pas par commodité.

Les broches 4 et 5 seront donc réunies lors de l'étude du circuit imprimé et le 6,3 V sera appliqué entre les broches 4/5 et 9 (mise en parallèle des deux filaments de la double triode). La consommation est de 300 mA.

La modulation constituée maintenant de deux signaux en opposition de phase est appliquée aux étages de puissance aux points (A1) et (A2).

QUADRUPLE PUSH-PULL DE 6L6 - GC

L'ÉTAGE DE PUISSANCE

Nous n'avons représenté en figure 2 qu'une moitié de cet étage de puissance, celle chargeant le primaire supérieur du transformateur de sortie (l'autre est identique).

Le picot (A1) véhiculant la modulation est relié aux condensateurs de liaisons, un condensateur par «grille de commande» de tube (C1 à C4). Ces grilles sont polarisées par une partie de la tension négative -UG1, tension disponible aux bornes d'ajustables RV1 à RV4.

Ainsi, allons-nous pouvoir polariser chaque tétrode en fonction de ses propres paramètres.

Les résistances de cathode de faible valeur (10 Ω) reliées à la masse vont maintenir une certaine tension à leurs

bornes, tension qui sera fonction du débit des 6L6.

La polarisation de grille individuelle de chaque tube va permettre, en fonction de la tension négative appliquée, de régler le débit anodique de chacun d'eux.

Les anodes sont reliées entre elles, ainsi que les «grilles écran», mais au travers de résistances d'équilibrage.

Nous avons également placé à l'entrée

UNE FORTE PUISSANCE

Figure 6

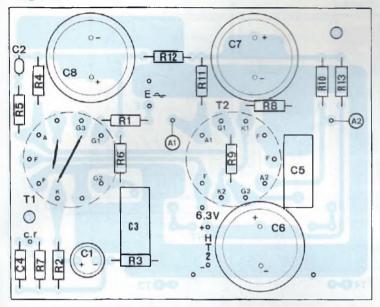
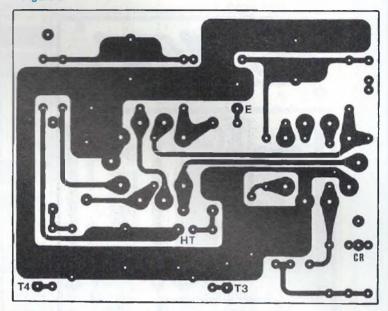



Figure 5

NOMENCLATURE DES COMPOSANTS

PRÉAMPLIFICATEUR

 Résistance à couche (ou couche métal) ± 5 % 1/2 W ou 1 W

R1 : 4,7 kΩ R2 : 1 kΩ R3 : 100 Ω R4 : 68 kΩ R5 : 68 kΩ

R6 : 560 kΩ R7 : 8,2 kΩ R8 : 30 kΩ R9 : 1 MΩ

R10 : 180 kΩ R11 : 180 kΩ R12 : 270 kΩ / 1 W

R13: 15 k Ω / 1 W

 Condensateurs non polarisés

C2:82 pF

C3 : 220 nF / 250 V C4 : 440 pF (ou 470 pF) C5 : 220 nF / 250 V

- Condensateurs polarisés

C1: 470 µF / 16 V C6: 100 µF / 400 V C7: 100 µF / 400 V C8: 100 µF / 400 V

- Tubes T1 : EF86 T2 : ECC82

- Divers

2 supports NOVAL pour CI 10 picots à souder

de chaque «grille de commande» une résistance de stabilisation.

Au secondaire du transformateur, nous remarquons le départ de la contre-réaction vers les éléments C4/R7 de l'étage d'entrée.

LES ALIMENTATIONS

• La haute tension

Le transformateur est doté d'un unique enroulement de 400 V, ce qu'indique la figure 3. Cette tension est d'abord redressée par un pont de diodes puis fil-trée par une cellule en π composée d'une self de 10 H et de deux condensateurs de forte valeur, C1/C2/470 μ F.

C'est la polarité (-) du pont PR1 qui sert de masse de référence.

Le chauffage filament des 6L6

Les tétrodes sont chauffées en alternatif (consommation oblige). La tension de 6,3 V~ est fournie par un enroulement à point milieu.

La mise à la masse de ce point milieu permet de réduire le bruit (la ronflette) dans de grandes proportions.

Le transformateur possède deux enroulements 6,3 V~ de puissance (4 A chacun)

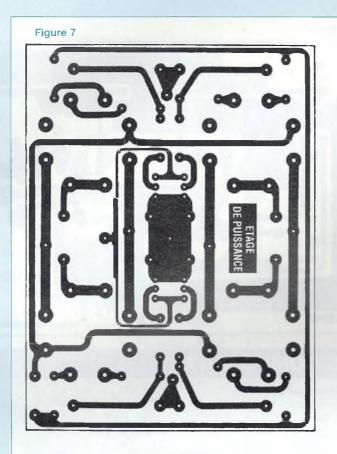
• Le chauffage filament des EF86/ ECC82

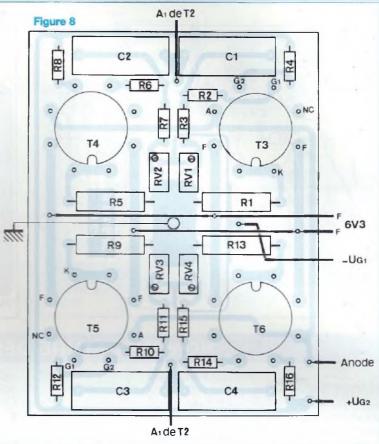
Un troisième enroulement 6,3 V~, sans point milieu, est redressé par un pont de diodes. La tension continue ainsi obtenue est ensuite «lissée» par une cellule

de filtrage en π , la self étant ici abandonnée au profit d'une résistance qui permet d'amener le potentiel à +6,3 V.

• La polarisation de grille des 6L6

La tension négative (-Ug) est obtenue à partir d'un enroulement de 75 V.


Comme précédemment, la tension alternative est redressée puis filtrée pour ensuite être appliquée aux résistances ajustables RV1 à RV4.


Le transformateur d'alimentation est également doté d'une «prise écran» qui sera reliée au châssis lors de la réalisation de l'amplificateur.

UNE STABILISATION

Nous reprenons notre stabilisateur de ten-

QUADRUPLE PUSH-PULL DE 6L6 - GC

NOMENCLATURE DES COMPOSANTS

ETAGE DE PUISSANCE

 Résistances ± 5 % / 1 W à couche métal (sauf indication)

R1: 10 Ω / 3 W $R2:1,5 k\Omega$ $R3:100 k\Omega$ R4: 470 Ω / 2 W R5: 10 Ω / 3 W $R6:1,5 k\Omega$

 $R7:100 \text{ k}\Omega$

R8: 470 Ω / 2 W R9: $10 \Omega / 3 W$ R10: 1,5 k Ω R11: 100 $k\Omega$ R12: 470 Ω / 2 W R13: $10 \Omega / 3 W$ R14: 1,5 k Ω R15: 100 k Ω

R16: 470 Ω / 2 W

- Ajustables multitours RV1, RV2, RV3, RV4 : $50 \text{ k}\Omega$ - Condensateurs

C1, C2, C3, C4: 470 nF / 400 V

- Tubes

T3, T4, T5, T6: 6L6 GC

TRS1 - impédance primaire 2 kΩ

plaque à plaque (ACEA) 4 supports OCTAL pour circuit imprimé

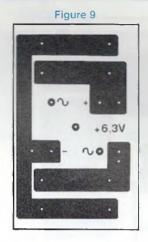
Fil de cuivre étamé 10/10°

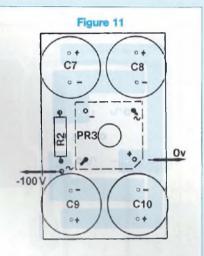
5 picots à souder

sion à 3 transistors dont le schéma est reproduit en figure 4. Simple, efficace et peu onéreux, ce circuit va nous permettre d'alimenter, non seulement l'étage d'entrée EF86/ECC82, mais également les «grilles écran» des tétrodes 6L6 (+UG2).

A partir du +HT1 appliqué au point milieu du primaire du transformateur de sortie, la polarisation de la base du transistor T3 par le curseur de l'ajustable P1, inséré dans le pont diviseur R4/R5 va permettre de faire varier la tension sur l'émetteur du transistor de puissance T1 qui sert de «ballast».

L'ÉLECTRONIQUE **EN PRATIQUE**


Les divers composants de cette réalisation vont être réunis sur plusieurs circuits imprimés dont nous allons maintenant voir les implantations et le soudage des pièces.


L'ÉTAGE D'ENTRÉE

Nous reprenons le circuit imprimé qui nous a servi en dernier lieu pour le pushpull de KT90 (Led n°160). Quelques composants ont été supprimés, mais l'implantation reste la même.

UNE FORTE PUISSANCE

Figure 10 C3 C4 PR₂ R Ov C5 C6

NOMENCLATURE DES COMPOSANTS

CHAUFFAGE **FILAMENTS 6.3 V** R1: 1 Ω / 20 W boîtier T0220 C3, C4, C5, C6: 4 700 µF /

16 V

PR2: pont PBPC807

4 picots à souder

POLARISATION DE GRILLE NEGATIVE

PR3: pont PBPC 807

R2: $4.7 k\Omega / 1 W / \pm 5 \%$ C7, C8, C9, C10 : 220 µF /

100 V

2 picots à souder

La figure 5 donne, à l'échelle 1, l'étude des pistes cuivrées qu'il est aisé de reproduire pour une fabrication personnelle de la plaquette. On peut même dans ce cas supprimer les surfaces cuivrées inutilisées et visibles sur le plan de câblage. Ce plan de câblage est reproduit en figu-

re 6.

En s'aidant de la nomenclature, la pose du composant et son soudage ne doivent poser aucun problème.

Commencer par les deux straps, puis les résistances.

Equiper le module de picots à souder. indispensables pour les interconnexions

Les supports NOVAL sont soudés côté «pistes cuivrées».

L'ÉTAGE DE PUISSANCE

Nous avons étudié une implantation de circuit qui puisse regrouper tous les composants de la figure 2, c'està-dire les composants RC mais également les 4 supports OCTAL. Ainsi, les interconnexions seront réduites au minimum.

La figure 7 propose une étude de circuit

imprimé qu'il faudra reproduire à 2 exem-

Les pistes larges vont véhiculer la tension de chauffage des 6L6, ne pas les

La pose et le soudage des composants se font conformément à la figure 8 et à la nomenclature correspondante.

Les pastilles de chauffage (F) sont strappées deux à deux par un fil de cuivre étamé et gainé de 10/10°. Nous y raccorderons les câbles en provenance du transformateur.

Il est évident que l'indication A1 de T2 correspond à l'indication A2 de T2 pour l'autre module.

Comme précédemment, les supports OCTAL sont à souder côté pistes cuivrées, en faisant attention à ce qu'ils soient bien tous dans le même plan.

Surélever les résistances de 10 Ω/3 W de 2 à 3 mm de l'époxy.

Prévoir des picots pour les interconnexions.

LE 6.3 V DES EF86 / ECC82

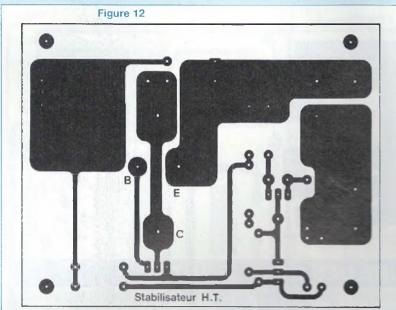
Les composants du redressement / filtrage de l'alimentation continue 6,3 V destinée au chauffage des filaments sont regroupés sur un petit circuit imprimé dont l'étude du Cl est reproduite en figure 9.

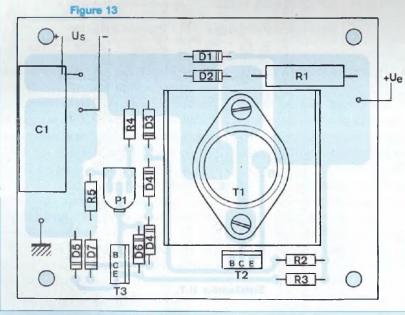
A côté, le plan de câblage de la figure 10 permet d'insérer les condensateurs électrochimiques dans le bon sens, de même que le pont redresseur, mais lui soudé côté pistes cuivrées.

On va ainsi pouvoir le visser au châssis afin de limiter son échauffement.

LA TENSION NÉGATIVE (-Ug)

Comme visible en figure 3, nous voyons que cette tension négative fait appel aux mêmes composants que pour le chauffage 6,3 V.


Par commodité, nous utiliserons donc un même circuit imprimé, mais avec un soudage différent pour les condensateurs électrochimiques, tension négative obli-


La figure 11 vous permet d'orienter les composants dans le bon sens.

LE STABILISATEUR DE TENSION

Une implantation désormais bien connue des lecteurs qui nous suivent régulièrement

QUADRUPLE PUSH-PULL DE 6L6 - GC

NOMENCLATURE DES COMPOSANTS

ALIMENTATION STABILISÉE

- Résistances ± 5 % / 1 W à couche métal (sauf indication)

R1: 1 kΩ / 7 W bobinée

R2 : 100 kΩ R3 : 680 kΩ R4 : 1 MΩ R5 : 82 kΩ

P1 : 47 kΩ / ajustable 1 tour

ou multitours

- Semiconducteurs

T1: BU326A T2, T3: BUT11

D1, D3, D6 : 1N4007 D2 : Zéner 180 V / 1,3 W

D2 . Zeriei 180 V / 1,3 VV

D4: Zéners 180 V / 1,3 W + 75 V /

1,3 W

D5 : Zéner 24 V / 1,3 W D7 : Zéner 150 V / 1,3 W

- Divers

C1: 0,47 µF / 630 V

4 picots à souder

Dissipateur pour T03

4 entretoises filetées femelle/femelle

de 20 mm (pour vis M3)

Le dessin des pistes cuivrées fait l'objet de la figure 12 et la mise en place des composants celui de la figure 13.

Attention à l'orientation des semiconducteurs.

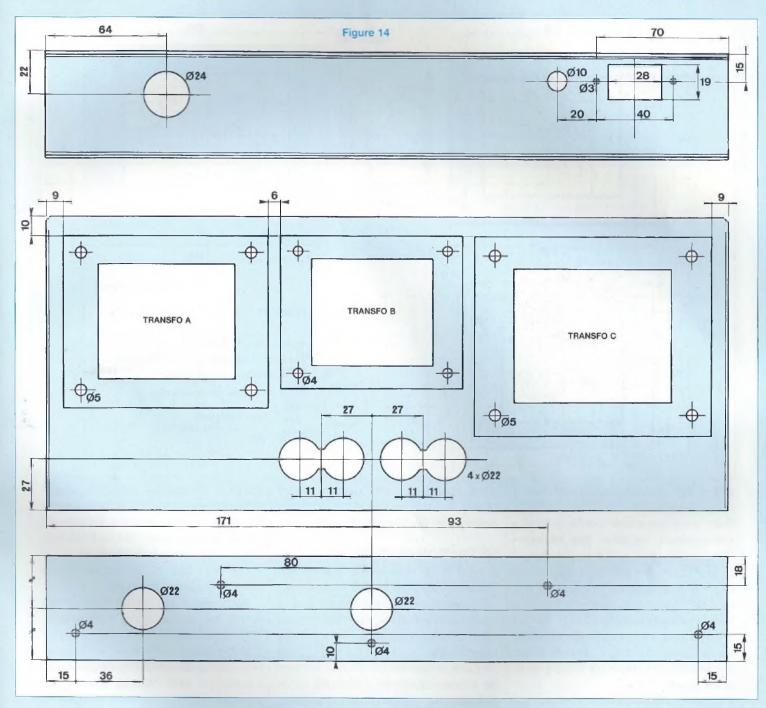
Nous sommes maintenant en possession de toutes les cartes nécessaires pour donner vie à notre amplificateur, une fois celles-ci interconnectées.

Mais auparavant, il nous faut passer par la case «Tôlerie».

LE CHÂSSIS

Encore et toujours le même coffret IDDM de référence 55360.

Etant en aluminium, il est plus facile à travailler que la tôle de 10/10°, tout en étant robuste (nous avons pu le vérifier avec le poids de l'étude du 845!).


Deux coffrets sont nécessaires pour rassembler transformateurs et modules de commande.

LE COFFRET ARRIÈRE

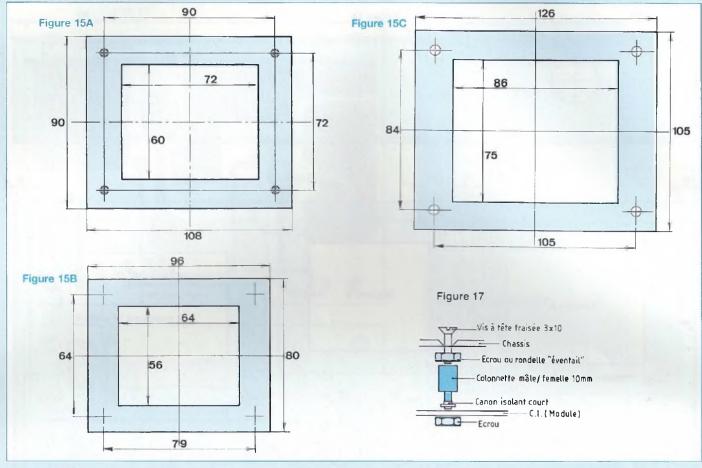
Il regroupe transformateurs, self et condensateurs de filtrage, c'est-à-dire une bonne partie de la surface du châssis. C'est le plus délicat à travailler, à cause des 3 fenêtres à découper pour laisser la place au passage des carcasses des transformateurs.

La figure 14 vous donne les indications nécessaires quant à la disposition adoptée pour les 3 transformateurs ainsi que pour les perçages divers, les trous

UNE FORTE PUISSANCE

de Ø22 étant obtenus aisément à l'emporte-pièce.

Pour plus de clarté de cette figure 14, nous n'avons pas côté les transformateurs.


C'est la figure 15 qui vous précise les cotations pour les découpes des fenêtres ainsi que le forage des 4 trous de fixation. Il suffit, pour obtenir une bonne précision dans ce travail, de dessiner ces éléments massifs sur une feuille de papier ou de calque et de les coller ensuite sur le châssis.

Avec une scie sauteuse ou une lame de scie abrafil, les découpes peuvent être réalisées sans trop de difficultés, la finition étant obtenue à la lime pour parfaire les rectangles. De la patience est nécessaire pour obtenir un travail propre.

LE COFFRET AVANT

Plus facile à travailler, nous voyons en figure 16 qu'il n'y a que des trous à pratiquer dans ce châssis, les diamètres de

QUADRUPLE PUSH-PULL DE 6L6 - GC

ø22 et ø27 étant obtenus proprement à l'emporte-pièce.

Pour s'assurer d'une bonne précision indispensable, se servir des implantations des figures 5 et 7 et calquer cellesci pour définir les centres des perçages de chaque support qu'ils soient de Ø22 ou Ø27. On se repère pour cela aux pastilles, en traçant une croix.

Comme pour les transformateurs, coller les morceaux de calque conformément aux indications portées sur la figure 16 et poinçonner.

L'emporte-pièce nécessite, pour son utilisation, de prévoir des perçages à un diamètre de ø11.

Pour garder une bonne précision, commencer à forer avec un petit diamètre de ø2 ou ø2,5, puis progresser de millimètres en millimètres : ø3, ø4...ø11.

Les deux coffrets travaillés, il ne reste plus qu'à les assembler dos à dos avec de la visserie de 4 mm. Cinq trous sont prévus à cet effet, ø4 dans le coffret arrière et ø5 dans le coffret avant.

LA FINITION DU CHÂSSIS

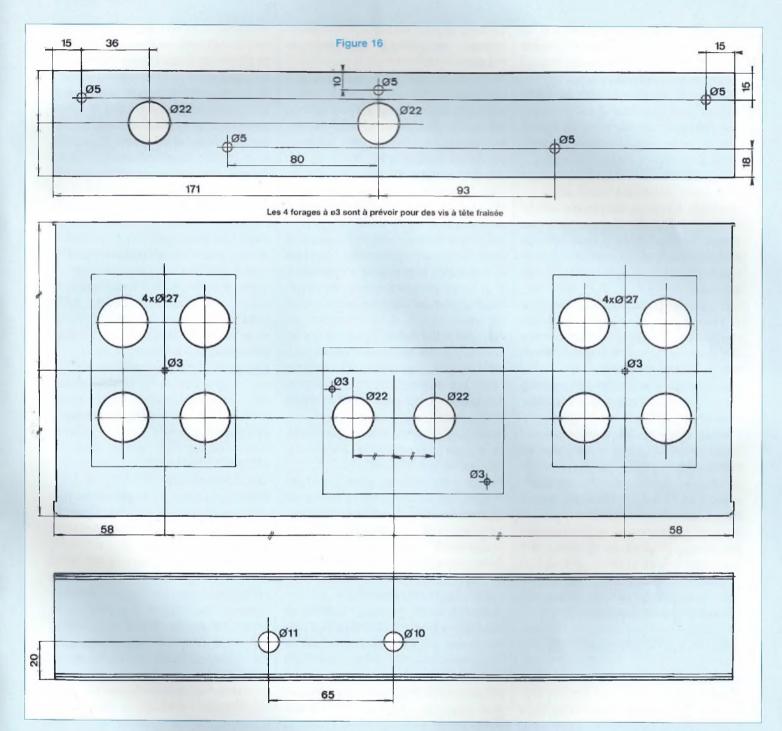
Il est utile de repeindre le châssis une fois assemblé pour lui donner un aspect «professionnel», en pulvérisant 2 à 3 couches de peinture. La couleur reste un choix personnel qui peut être autre que l'éternel noir.

La peinture bien sèche, c'est le moment de déposer quelques indications sur le châssis au moyen de «transferts DECAdry». Ils existent en blanc, rouge ou doré.

LES PATTES DE FIXATION

• Le module «Préampli / Déphaseur»

Parce que nous devons prévoir un dégagement suffisant module / châssis, à


cause des supports de tubes soudés côté pistes cuivrées, nous allons procéder ainsi et conformément à la figure 17.

- Bloquer tout d'abord des vis à tête fraisée de 3x10 mm par des boulons.
- Les têtes des vis doivent disparaître dans les fraisages coniques.
- Raccorder à ces vis boulonnées des entretoises filetées mâle / femelle de 10 mm de hauteur.
- Mettre des boulons dans les filetages opposés ou des rondelles plates isolées. La hauteur ainsi obtenue permet aux supports NOVAL de venir affleurer le dessus du châssis lors de la fixation des modules électroniques.

• Les modules de «Puissance»

C'est plus simple, il suffit de visser une entretoise femelle / femelle filetée pour visserie M3 et de 15 mm de hauteur au centre du module.

UNE FORTE PUISSANCE

EQUIPEMENT DU CHÂSSIS

On commence par fixer par commodité toutes les petites pièces : prises, potentiomètre, interrupteur, pattes de fixation des modules ...

On passe ensuite aux transformateurs et à la self de filtrage, puis on immobilise les

3 modules sur leurs pattes. Les modules «Etages de puissance» sont uniquement maintenus par une entretoise centrale qui sert également de mise à la «masse châssis» du (-) de l'alimentation.

Les 4 supports OCTAL dépassant d'environ 2 mm de la surface du châssis, les

modules ne peuvent pas ainsi tourner autour de leur axe central.

Le module «Alimentation stabilisée» est maintenu en 3 points au-dessus de la self de filtrage en utilisant comme «interface» des entretoises filetées pour vis M4 de 20 mm de hauteur.

QUADRUPLE PUSH-PULL DE 6L6 - GC

Les deux condensateurs de filtrage de $470~\mu\text{F}$ / 500~V sont plaqués au châssis par le même procédé que celui utilisé sur les autres amplificateurs à tubes.

La longueur des canons des électrochimiques étant nettement plus importante que l'épaisseur de 15/10° du châssis, il faut intercaler deux plaques de plexiglass de 3 mm de hauteur (une plaque par condensateur).

Ces cales permettent, en prenant en sandwich le châssis, de plaquer énergiquement les deux condensateurs par simple vissage d'une plaque isolante à leurs canons (+) et (-) (chute d'époxy débarrassée de son cuivre par exemple).

Les deux petits modules des figures 10 et 11 sont plaqués au châssis verticalement en utilisant comme «interface» une entretoise femelle/femelles pour visserie M4 de 10 mm de hauteur.

Ces entretoises se vissent à 80 mm et à 93 mm du trou central ø22 (reportezvous à la figure 14).

Précisons en disant que le module «Polarisation de grille» se fixe, face au transformateur d'alimentation, avec une entretoise raccourcie de 10 mm à 6 mm et celui du «Chauffage filaments» face au transformateur de sortie.

Le pont redresseur de la haute tension est vissé au châssis en utilisant la $4^{\rm eme}$ tige filetée encore inutilisée de la self de filtrage, de telle sorte que la patte (+) soit orientée vers le (+) du condensateur de filtrage de tête de la cellule en π .

LES INTERCONNEXIONS

Pour toutes les interconnexions, nous utiliserons des câbles de 1 mm² de secton, de différentes couleurs et du fil de cuivre rigide et étamé de 10/10°.

LES ALIMENTATIONS

Commençons le câblage autour du transformateur d'alimentation.

Entre une cosse de la prise secteur et une cosse de l'interrupteur, insérer un porte-fusible. Un modèle pour circuit imprimé permet d'établir directement ces interconnexions.

Relier l'autre cosse de l'interrupteur à une cosse du primaire du transformateur (cosse 3) avec du fil de cuivre étamé. La liaison est ultra courte, environ 15 mm. Par précaution, isoler cette interconnexion qui véhicule le 220 V.

Souder un câble à l'autre cosse de la prise secteur et rallier ensuite la cosse 4 du transformateur.

Le circuit primaire est établ.

Raccorder la haute tension (cosses 6 et 7) à son pont redresseur (câble «vert» sur le prototype), puis souder les pattes (+) et (-) de ce pont au condensateur de filtrage en utilisant des cosses à «œil» de 05 mm

Avec du fil de cuivre étamé, réunir les cosses 5-14-11 du transformateur.

Pas besoin d'isoler, c'est la masse, le 0 V. Relier l'enroulement 75 V (cosses 1-2) aux pattes (~) du pont redresseur PR3 (câbles «orange» sur le prototype).

Avec du fil de cuivre étamé, relier le 0 V du module à la cosse 11 du transformateur (située face au picot).

Souder 2 fils de faible section et d'une longueur de 30 cm (câble en nappe par exemple) à un picot «femelle», puis enficher celui-ci dans le picot (-100 V). Faire passer ces fils par le trou central de Ø22. Relier l'enroulement 6,3 V (cosses 8-16) aux pattes (~) du pont redresseur PR2 (câble «jaune» sur le prototype).

Souder un câble de 30 cm de longueur au picot +6,3 V du module puis faire passer l'autre extrémité de celui-ci par le trou central de Ø22 (câble également «jaune» sur le prototype).

Souder un câble au picot 0 V du module puis connecter l'autre extrémité à une cosse vissée au canon (-) du deuxième condensateur de filtrage.

Avec du fil de cuivre étamé, straper entre eux les (-) des deux condensateurs de filtrage de 470 µF.

Souder un câble de forte section (câble HP par exemple) qui va aller de la cosse 5 du transformateur aux canons (-) des

condensateurs, pour repartir ensuite vers une cosse vissée au châssis.

Cette cosse, nous l'avons immobilisée sous une entretoise filetée (celle en bas à droite de la self de filtrage), elle va servir de «masse châssis». Vérifier à l'ohmmètre que la résistance châssis/cosse est bien nulle, sinon gratter l'oxydation pour établir un bon contact.

Souder deux câbles de 30 cm de longueur et côté «pistes cuivrées» à un module de puissance, pastilles (F). Revisser le module au châssis puis torsader les câbles jusqu'au transformateur en les passant par le trou central de Ø22. Les souder enfin aux cosses 13-15.

Faire de même avec l'autre module et souder les câbles aux cosses 10-12 (câbles «noir» sur le prototype).

Relier la self de 10H aux canons (+) des condensateurs de filtrage.

Relier le canon (+) du deuxième condensateur de 470 μ F de la cellule de filtrage en π à la cosse (PM) du transformateur de sortie et au picot (+Ue) de l'alimentation stabilisée.

L'ÉLECTRONIQUE DE COMMANDE

Relier le picot (A2) du module «Préampli/ Déphaseur» aux deux picots (A2 de T2) du module «Etage de puissance» (fils rouges sur le prototype).

Faire de même avec le picot (A1) et les deux picots (A1 de T2) du deuxième «Etage de puissance» (fils vert/jaune sur le prototype.

Connecter les fils véhiculant le -100 V aux picots -UG1 des «Etages de puissance» (fils rouge et vert de petite section sur le prototype).

Connecter le câble véhiculant le +6,3 V au module «Préampli / Déphaseur» (câble «jaune» sur le prototype).

Souder des câbles aux picots «Anode» des «Etages de puissance», puis faire passer ceux-ci par le trou de Ø22 de droite (face au transformateur de sortie). Relier les câbles au primaire du transformateur de sortie, cosses A1 et A2 (câbles «jaune» sur le prototype).

UNE FORTE PUISSANCE

Souder un câble au picot (c.r) du module «Préampli / Déphaseur» et faire passer celui-ci comme précédemment dans le trou de droite. Le raccorder au secondaire du transformateur de sortie. cosse $4~\Omega$ (câble «marron» sur le prototype).

Souder un câble blindé aux picots (E~) du module "Préampli / Déphaseur" et raccorder l'autre extrémité au potentiomètre de volume (cosse extrême pour la tresse de masse et cosse centrale pour l'âme). Souder un câble blindé entre les cosses extrêmes du potentiomètre (tresses réunies entre elles) et raccorder l'autre extrémité à la prise Jack 6,35.

Raccorder la cosse 8 Ω du transformateur à la cosse (2+) de la prise SPEA-KON.

Raccorder la cosse (2-) de la prise SPEA-KON à la cosse 0 Ω du transformateur de sortie, puis terminer cette interconnexion sur la cosse de «masse châssis» de l'appareil.

Utiliser du câble HP de bonne section. Souder un câble sur le picot (-HT2) du module «Préampli / Déphaseur», le raccorder au passage au fil de cuivre étamé qui strape les canons (-) des condensateurs de filtrage 470 µF / 500 V, puis terminer cette interconnexion sur le picot de masse (-Us) du module «Alimentation stabilisée» (câble «bleu» sur le prototype).

Souder un câble sur le picot (+HT2) du module «Préampli / Déphaseur» et le raccorder au picot (+Us) de l'alimentation stabilisée (câble «rouge» sur le prototype). Souder les fils en provenance des picots (+UG2) des modules «Etage de puissance» au picot (+Us) de l'alimentation stabilisée (fils «vert/jaune» et «rouge» sur le prototype).

Les interconnexions sont terminées.

Bien vérifier le câblage en le comparant avec le travail qui a été effectué sur le prototype et visible en 3^{em} de couverture.

LE TRANSFORMATEUR DE SORTIE

Bien qu'il s'agisse d'un modèle simple et peu onéreux, davantage destiné à la

sonorisation qu'à la Hi-Fi de haute qualité, les mesures effectuées sur «Le Sono 100» nous ont agréablement surpris, tant par la puissance obtenue avec une charge de 8 Ω que sur les faibles taux de distorsion relevés. Le transformateur ne montre ses limites qu'à hautes fréquences avec un temps de montée de 10 μ s à 10 kHz.

Afin de niveler ses paliers (pour un signal visualisé à 10 kHz), nous avons shunté le primaire de ce transformateur avec une cellule R/C série composée d'une résistance de 470 Ω (ou 2x220 Ω soudées en série) et d'un condensateur de 2 200 pF. Cette cellule R/C n'apparaît pas sur le schéma théorique en figure 2.

Nous avons demandé à la société ACEA de nous étudier un transformateur de sortie «de course» pour transformer cet appareil en un bloc de puissance Hi-Fi, capable de rivaliser avec un Mc Intosh ou un Jadis. Il n'y a d'ailleurs que le haut du spectre à améliorer, comme en témoignent les signaux carrés visualisés à 40 Hz ou à 1 kHz. Comment faire mieux!

PREMIÈRE MISE SOUS TENSION

Votre «Sono 100» est câblé, les interconnexions contrôlées par rapport à la 3 de couverture, vous pouvez alors raccorder le cordon secteur.

Dans un premier temps, on n'enfiche aucune lampe dans son support et on déconnecte même l'étage «préamplificateur / déphaseur» de son alimentation (picot + Us).

Relier un multimètre aux picots ±Us de l'alimentation stabilisée (aux bornes de C1) et mettre l'amplificateur sous tension.

Avec l'ajustable P1, amener la tension aux bornes de C1 à 380 V.

Couper l'alimentation et attendre la décharge des condensateurs de filtrage de 470 µF / 500 V.

Embrocher les tubes NOVAL EF86 et ECC82 puis ressouder le câble d'alimentation au picot +Us.

LES RÉGLAGES

Remettre «Le Sono 100» sous tension, attendre quelques minutes que les filaments des tubes chauffent et réajuster avec P1 la tension à 380 V aux bornes de C1.

LES MODULES «ETAGE DE PUISSANCE»

Nous allons maintenant ajuster les polarisations de «grille de commande» des 6L6-GC.

Relier le cordon (-) du multimètre à la masse de l'appareil, au fil de cuivre étamé non isolé reliant les canons (-) des condensateurs de 470 μF / 500 V par exemple.

Relier le cordon (+) du multimètre au point commun des résistances R6-R7 (voir figure 8) et avec l'ajustable RV2 faire en sorte de mesurer une tension de -50 V. Effectuer un même réglage au point commun des résistances R2-R3 avec RV1, puis au point commun de R10-R11 avec RV3 et enfin au point commun de R14-R15 avec RV4 pour en finir avec ce module.

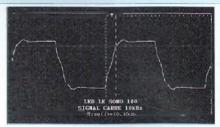
Ces mêmes opérations sont à reprendre avec le deuxième module «Etage de puissance».

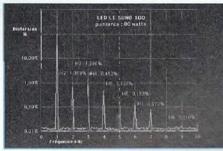
Déconnecter «Le Sono 100» du secteur et attendre la décharge des condensateurs.

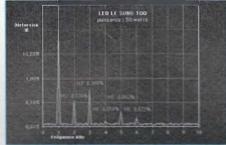
Embrocher les 8 tubes 6L6-GC en appuyant côté module pour équilibrer la pression exercée. Les supports OCTAL sont beaucoup plus difficiles à insérer que les supports NOVAL et nous n'avons qu'un point de fixation central pour maintenir le module.

Relier une charge de 8 Ω (ou de 4 Ω , en fonction de l'impédance que vous souhaitez et que vous avez sélectionnée au secondaire du transformateur) en sortie de l'amplificateur et mettre le potentiomètre de volume au minimum.

Remettre «Le Sono 100» sous tension et attendre que toutes les lampes «rougissent».


QUADRUPLE PUSH-PULL DE 6L6 - GC


Signal carré à 40 Hz


Signal carré à 1 kHz

Signal carré à 10 kHz

Spectre de distorsion

Spectre de distorsion

Puissance efficace: 100 W Sensibilité d'entrée: 310 mV Puissance impulsionnelle: 116 W (Gain de 16 W ou 16 %)

Rapport signal/bruit :

LIN: 87 dB Pondéré: 100 dB

_					
	Distor	sion	par	harmoniques	totale

Fréquences	80 W (- 1 dB)	50 W (- 3 dB)	25 W (- 6 dB)	5 W
100 Hz	1,7 %	0,38 %	0,15 %	0,045 %
1 kHz	1,7 %	0,38 %	0,15 %	0,035 %
10 kHz	1,6 %	0,52 %	0,24 %	0,075 %

Relier le cordon (+) du multimètre à la résistance R9, côté cathode (k) de T5 bien entendu et avec l'ajustable RV3, faire en sorte de mesurer une tension de 0,6 V (600 mV).

Même travail avec R5 et RV2, puis R1 et RV1 et enfin R13 et RV4.

Reprendre ces mêmes opérations sur le deuxième module.

Les réglages sont terminés.

Réajuster une dernière fois la tension d'alimentation du module «préamplificateur / déphaseur» à +385 V.

QUELQUES TENSIONS RELEVÉES

- + 510 V aux bornes du premier condensateur de filtrage 470 μF / 500 V
- + 465 V aux bornes du second condensateur de filtrage, après la self de filtrage
- + 385 V en sortie de l'alimentation stabilisée
- + 6,7 V en tension de chauffage des EF86 / ECC82 (notre résistance R1 n'est

que de 0,5 Ω au lieu du 1 Ω préconisé en nomenclature)

- - 57 V aux picots (-UG1) des modules «Etage de puissance»
- + 465 V aux grilles (G2) des 6L6
- + 454 V aux anodes (A) des 6L6
- 6,4 V_{\sim} pour le chauffage des filaments des 6L6.

LES MESURES

Elles ont été faites par le laboratoire de PV Editions et «Le Sono 100» a subi les mêmes tests que ceux effectués sur tout amplificateur Hi-Fi qui passe entre les mains de Mr Pierre Stemmelin.

Les résultats obtenus sont davantage ceux relevés sur un amplificateur Hi-Fi que ceux relevés sur un amplificateur de sonorisation. Le transformateur de sortie ACEA est pourtant simple de conception. En le travaillant un peu vers les hautes fréquences, on aura alors un bloc de puissance de 100 Weff excellent, capable de rivaliser avec des marques prestigieuses et oh combien onéreuses!

NOTRE OBJECTIF

Répondre à la demande croissante de lecteurs qui attendaient la publication d'un amplificateur à tubes de forte puissance pour guitare électrique. Les voilà exaucés avec en prime dans ce numéro une pédale OVERDRIVE.

Alors à vos instruments!

L'ÉCOUTE

Ce qui surprend déjà à la mise sous tension, c'est l'absence totale de bruit de fond (souffle, ronflette).

Chargé par une enceinte LYRR, «Le Sono 100» montre ses capacités dynamiques avec un grave puissant et rapide, pas de trainage, le son est propre.

Le médium est parfaitement transparent et l'aigu ne présente aucune aggressivité. L'équilibre tonal est excellent.

Bernard Duval

 6 rue François Verdier
 31830 PLAISANCE DU TOUCH (près de TOULOUSE)

©: 05 61 07 55 77 / Fax : 05 61 86 61 89
Site : acea-fr.com / email : bernard.toniatti@acea-fr.com

LA QUALITÉ AÉRONAUTIQUE MILITAIRE ET SPATIALE AU SERVICE DE L'AUDIOPHILE La PROMO du nouveau Millénaire Valable pour toute commande reçue

avant le 01/08/2001

LE TRIODE 845 - Led Nºs 161 - 162 - 163

	- Le transformateur d'alimentation	
	(sans le 12 V) en cuve	1 000 F
	- Les transformateurs de sortie en cu	ve 3 400 F
	- Les tubes 845 appairés	880 F
	- Les supports	280 F
	- Les tubes ECL86	190 F
	- Les supports NOVAL pour C.I.	44 F
	- La self de filtrage	290 F
	- Le transformateur d'alimentation	
	2 x 12 V en boîte	510 F
	- Les 2 condensateurs 2 200 μF / 450	V
1	+ les 2 condensateurs 150 000 µF / 1	6 V
	(fabrication française)	1 140 F
	Frais de port	250 F
	Total:	7 984 F
	Cadeau du Millenium	- 484 F
	Total TTC	7 500 F

OPUS 2VA

Un oubli fâcheux s'est produit dans l'article de M. Schneider concernant une enceinte active 2 voies (Led n° 164). Circuits imprimés, plans de câblage, et... pas de nomenclature.

Voici pour remédier à cette étourderie, tellement grosse qu'elle est passée inaperçue, les nomenclatures concernant la réalisation de cette excellente enceinte.

NOMENCLATURE DES COMPOSANTS

FILTRE ACTIF

R1, R2: $20 \text{ k}\Omega / 5 \% / 0,25 \text{ W}$ R3, R4, R8: $100 \text{ k}\Omega / 2 \% / 0,25 \text{ W}$ R5: $400 \text{ k}\Omega / 2 \% / 0,25 \text{ W}$ R6, R7: $59 \text{ k}\Omega / 2 \% / 0,25 \text{ W}$ R9: $51 \text{ k}\Omega / 5 \% / 0,5 \text{ W}$ R10: $200 \text{ k}\Omega / 1 \% / 0,5 \text{ W}$ R11, R12: $470 \text{ }\Omega / 5 \% / 0,5 \text{ W}$ R13: $1,2 \text{ k}\Omega / 5 \% / 0,5 \text{ W}$

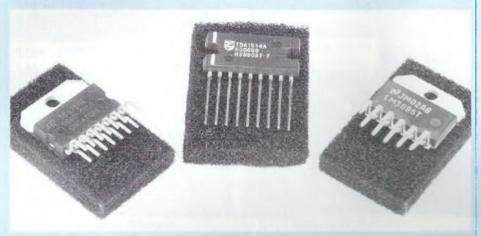
RV1 : 10 k Ω / 10 % Cermet Cervical C1, C2 : 1 nF / 5 %

C3, C4 : 22 μ F / 20 % / 16 V C5, C6 : 10 nF / 10 % Milfeuil C7, C8 : 220 μ F / 20 % / 16 V C9, C10 : 330 nF / 10 % Milfeuil

C11, C12: 100 nF / 10 % Milfeuil

J1 : CONN-SIL-H2 J2 : CONN-SIL-H12

U1 : TL074 U3 : 78L12 U4 : 79L12


AMPLIFICATEUR

R1. R3 : $22 \text{ k}\Omega$ / 1 % / 1/4 W R2 : 680Ω / 1 % / 1/4 W R4 : $22 \text{ k}\Omega$ / 5 % / 1/4 W R5 : $10 \text{ k}\Omega$ / 5 % / 1/4 W R6 : $33 \text{ k}\Omega$ / 5 % / 1/4 W C1, C2 : 47 µF N.P. Ax. C3, C4 : 47 µF / 40 V Rad C5 : 22 µF / 40 V Rad C6, C8 : 47 µF / 40 V Rad C7, C9 : 100 nF Milf. J1 à J4 : C.M. 2,5 mm U1 : TDA7294V

DIVERS

J1: fiche Cinch châssis J2: socie Min. 220 V I1: inter. Sub; 1,5 A / 250 V FU1: porte fusible T20 J3 à J5: domino 9 plots 4A D1: LED verte D 3 mm TR1: 220 V / 2x25 V / 300 VA BR1: 25 A / 600 V C1, C2: 10 000 µF / 40 V

LA PUISSANCE INTÉGRÉE TDA1514A - TDA7294 - LM3886

Si la qualité d'écoute n'est pas aussi bonne avec des circuits intégrés de puissance que celle obtenue avec la réalisation que nous vous proposons en classe A en début de numéro, on ne peut pas dire que c'est «mauvais» et loin de là. Les circuits intégrés autorisent sans conteste des rapports puissance/coût imbattables avec de plus des réalisations sur des surfaces de circuit imprimé des plus réduites.

n retrouve de plus en plus souvent ces «puissantes puces» dans des appareils de haut de gamme destinés au Home Cinéma, notamment le LM3886 de National Semiconductor sur des réalisations américaines.

Il est vrai que l'on est moins exigeant pour les écoutes en Home Cinéma qu'avec celles faites en Hi-Fi. On recherche davantage le spectaculaire et la puissance plutôt que les petits détails de la haute fidélité.

RETOUR SUR LE SINGLEMOS

Si, comme nous le mentionnions en début d'article, nous ne recherchions pas avec cette étude la puissance mais la qualité d'écoute, il est vrai que le SINGLEMOS demande de préférence à driver des enceintes à haut rendement. Il arrive néanmoins à remuer facilement nos enceintes LYRR sans s'essouffler et sans avoir à le pousser dans ses derniers retranchements, ceci dans un local d'écoute de 40 m².

Mais si nous revenons sur cette étude. c'est pour une toute autre raison.

Tel qu'il est présenté, il est possible de reprendre 90 % de l'étude de l'appareil, jusqu'aux étages de puissance (les composants fixés sur les dissipateurs) et de le transformer en un amplificateur fonctionnant en classe B capable cette foisci de délivrer 2x100 Weff et plus... D'où la présentation de ces circuits intégrés, les meilleurs actuellement sur le marché.

L'étage «préamplificateur / déphaseur» en entrée garde tout son intérêt et peut

piloter deux circuits intégrés de puissance.

L'alimentation de 300 VA qui fournit une tension symétrique de ±28 V autorise des puissances qui n'ont plus rien à voir avec la classe A.

LE TDA1514A

C'est un circuit de puissance que nous aimons bien, car son boîtier SOT131AQ n'a que 9 pattes de sorties en ligne. On peut ainsi facilement les plier à 90° et plaquer la surface métallique contre un dissipateur.

Il peut fonctionner dans une fourchette d'alimentation allant de ± 10 V à ± 30 V, ce qui nous convient parfaitement.

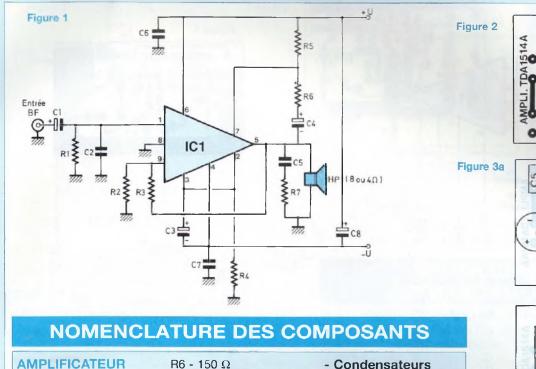
Chaque module peut fournir séparément une puissance de 40 Weff avec une charge de 8 Ω , soit environ 120 Weff en mode ponté.

LE SCHÉMA

Quelques composants regroupés autour du TDA1514A permettent d'en tirer une puissance intéressante, ce qu'indique la figure 1.

La modulation est appliquée à la broche 1, au travers d'un condensateur de liaison qui protège cette entrée contre toute tension continue pouvant se présenter en amont.

La résistance R1 charge l'entrée et nous avons porté son impédance Zin à 22 k Ω . Le condensateur C2 limite la bande passante aux fréquences élevées et empêche ainsi le TDA1514A d'osciller. La gain en tension en bouche fermée est


déterminé par le rapport de R3/R2, soit

22 000 / 580#32. Ce rapport peut varier

entre 20 et 46 sans crainte d'instabilité. La résistance R4 détermine la constante de temps du «Muting», c'est-à-dire le temps d'attente à observer avant que la modulation ne soit appliquée à l'étage d'entrée, donc retransmise dans l'en-

Le réseau bouchon C5/R7 aux bornes de la charge contribue également à la parfaite stabilité du TDA1514A.

CES PUISSANTES PUCES

TDA1514A

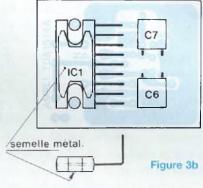
- Résistances ±5 % 1/2 W $R1 - 22 k\Omega$

 $R2 - 680 \Omega$ $R3 - 22 k\Omega$ $R4 - 470 k\Omega$

R5 - 82 Ω

R6 - 150 Ω R7 - 3,3 Ω

- Condensateurs non polarisés pas 5,08


C2 - 220 pF céramique

C5 - 22 nF C6 - 470 nF C7 - 470 nF

Condensateurs polarisés C1 - 1 µF /

- 1 μF / 35 V tantale goutte C3 - 33 µF / 35 V C4 - 220 µF / 25 V C8 - 47 µF / 63 V

- Semiconducteurs IC1 - TDA 1514 A

Les éléments R5/R6/C4 constituent un «bootstrap». Sans leur présence, en portant la broche 7 directement à l'alimentation +U. la puissance de sortie ne serait que de 4 W.

L'alimentation symétrique ±U est découplée par les condensateurs C6, C7 et C8.

LE CIRCUIT IMPRIMÉ

Nous l'avons réduit au minimum. Une plaquette de 43x33 mm regroupe tous les composants, ce qu'indique la figure 2. Les grosses pastilles sont prévues pour y souder des picots d'interconnexions.

LE CÂBLAGE DU MODULE

Les faibles dimensions du C.I. n'autorisent pas le câblage de tous les composants du même côté. Ainsi, circuit intégré et condensateurs de découplage C6 et C7 sont-ils soudés côté pistes cuivrées. Pour mener à bien ces opérations, les figures 3a et 3b vous seront utiles. Les pattes des composants IC1, C6, C7 sont pliées à 90°. Le circuit intégré est surélevé de l'époxy par des entretoises en nylon de 5 mm.

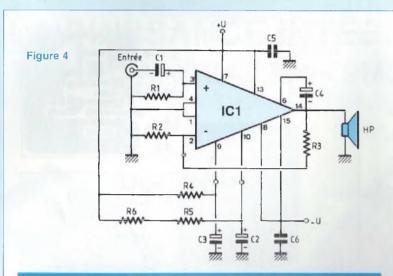
La nomenclature vous permet d'insérer les composants aux bons endroits sans risque d'erreur.

Veiller à une bonne orientation des condensateurs polarisés (électrochimiques ou tantales).

FIXATION AU DISSIPATEUR

Les deux modules sont vissés au dissipateur de 200 mm de part et d'autre de celui-ci et ce à 40 mm du bas.

Nous avons prévu un raccordement de l'alimentation ±U par un système de cosses à souder avec traversées du dissipateur. Pour que les vis M3 soient isolées du dissipateur, nous avons utilisé des canons isolants. Ainsi il n'y a plus que 3 fils qui partent vers les condensateurs de filtrage au lieu de 6.


La broche 4 du TDA1514A étant reliée à la semelle métallique du boîtier, il est prudent d'isoler celui-ci du dissipateur au cas où l'oxydation serait de mauvaise qualité.

La visserie n'a pas besoin d'être isolée, car la tige filetée n'entre pas en contact avec la semelle métallique du boîtier.

LE TDA7294

Un circuit intégré de qualité qui permet également d'obtenir un module de puissance très compact.

TDA1514A - TDA7294 - LM3886

Figure 5

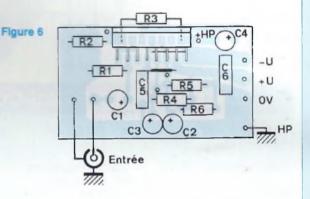
NOMENCLATURE DES COMPOSANTS

AMPLIFICATEUR TDA7294

- Résistances couche métal ± 5 % - 1/2 W

R2: 680 Ω $R5:10 \text{ k}\Omega$

R1, R3, R4: 22 kΩ


 $R6:33 k\Omega$

- Condensateurs

C5, C6: 100 nF (pas 7,5 mm) C1: 10 µF / 16 V radial C2, C3, C4: 22 µF / 16 V radial

- Semiconducteur

IC1: TDA7294

Son boîtier Multiwatt 15 est plus délicat à travailler au niveau implantation que celui du TDA1514 (15 broches en quinconce). Il peut fonctionner dans une plage de tensions allant de ±10 V à +40 V.

Avec notre tension d'alimentation de ±28 V, nous pourrons également tirer une puissance d'une quarantaine de watts avec chaque boîtier.

Une particularité à noter avec ce circuit intégré de puissance, les transistors de sortie sont de type MOSFET.

LE SCHÉMA

Il vous est proposé en figure 4. Le signal de modulation entre sur la broche non inverseuse 3 au travers d'un condensateur de liaison C1 qui bloque toute tension continue.

L'impédance d'entrée peut être considérée comme étant celle donnée à la valeur de la résistance R1 (celle d'entrée du TDA7294 est \geq 100 k Ω).

Le coefficient d'amplification est déterminé par le rapport des résistances R3/R2, soit comme pour le TDA1514 un gain en tension de 32.

Nous retrouvons le «bootstrap» uniquement avec le condensateur C4.

L'alimentation symétrique est découplée par les condensateurs C5 et C6.

lci pas de circuit «bouchon» aux bornes de la charge de sortie.

LE CIRCUIT IMPRIMÉ

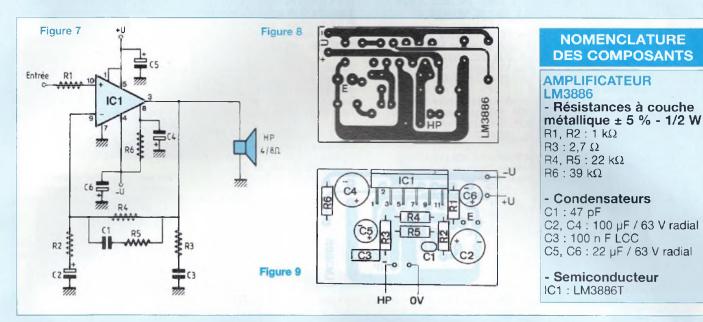
Tous les composants sont rassemblés sur une surface d'époxy de 50x30 mm. Une implantation vous est proposée en

Les grosses pastilles permettent de recevoir des picots d'interconnexions.

LE CÂBLAGE DU MODULE

Il ne présente aucune difficulté en utilisant la figure 6 et en se reportant à la nomenclature des composants.

Ne pas oublier de mettre en place les deux straps qui seront réalisés avec des queues de résistances.


La sortie HP est prélevée au plus près de la broche 14 du TDA7294.

Le circuit intégré est embroché côté composants. Par commodité, il est beaucoup plus facile de l'implanter verticalement. Cependant, en jouant de la pince plate, il est également possible de le souder à l'horizontale, au-dessus des composants, la surface métallique orientée vers l'extérieur

L'encombrement est ainsi moins important et on peut dans ce cas visser un module de chaque côté du dissipateur comme précédemment avec TDA1514. Les boîtiers doivent être isolés du dissipateur ainsi que des vis.

Dans le premier cas, la fixation du TDA7294 au dissipateur met le circuit imprimé à la verticale et sa hauteur de 30 mm le fait dépasser légèrement des

CES PUISSANTES PUCES

ailettes (hauteur maximale autorisée : 1 23 mm).

Il faut donc que les deux modules soient vissés du même côté et à l'intérieur de l'amplificateur. Ce n'est pas non plus catastrophique...

Vu les faibles dimensions du circuit imprimé, la résistance R3 est soudée directement aux pastilles, côté pistes cuivrées.

LE LM3886

Fabriqué non plus par Thomson mais par National Semiconductor, le LM3886 permet également de réaliser un module amplificateur de puissance dans un encombrement réduit.

Les transistors de sortie ne sont plus des MOSFET mais des Darlingtons bi-polaire canal N.

La tension d'alimentation peut également atteindre les ±40 V.

LE SCHÉMA

Il fait l'objet de la figure 7 et diffère quelque peu des deux précédents déjà par l'absence de «bootstrap».

L'entrée de la modulation s'effectue sur l'entrée non inverseuse, broche 10, sans condensateur de liaison, au travers d'une résistance R1, connectée à l'intérieur du

boîtier à la base d'un transistor NPN.

Nous retrouvons cette même résistance (en valeur ohmmique) dans l'entrée inverseuse, broche 9, la résistance R2, connectée également à l'intérieur du LM3886 à la base d'un deuxième transistor NPN.

Le coefficient d'amplification est fixé par le rapport des résistances R4/R2, soit 22 (+1) si l'on veut être précis (injection de la modulation sur l'entrée non inverseuse). Nous remarquons des cellules de limitation en fréquence avec R5/C1, R2/C2 puis le circuit bouchon R3/C3 aux bornes de la charge en sortie.

Elles ont été implantées de manière à garantir une parfaite stabilité de fonctionnement au LM3886.

La tension d'alimentation symétrique est découplée par les condensateurs C5 et C6.

Le réseau R6/C4 inhibe le «muting» afin que puisse passer la modulation avec une constante de temps fixée par la valeur des deux composants.

LE CIRCUIT IMPRIMÉ

Une implantation est dessinée en figure 8. On constate que la surface d'époxy n'est pas bien grande pour un module pouvant délivrer une quarantaine de watts.

LE CÂBLAGE DU MODULE

En se reportant à la figure 9 ainsi qu'à la nomenclature des composants, le peu d'éléments à souder n'autorise aucune erreur.

Le LM3886 est inséré verticalement au C.I., son boîtier métallique doit être isolé et du dissipateur et de sa vis de fixation. Utiliser un canon isolant et un mica.

ET MAINTENANT

C'est à vous de choisir.

Si le SINGLEMOS en classe A ne vous convient pas mais que l'esthétique de l'amplificateur vous séduit, il est aisé de le transformer en un classe B de forte puissance.

Vous pourrez aisément faire des écoutes comparatives entre les 3 boîtiers et comme nous, probablement, constaterez-vous que les TDA1514 et LM3886 sont plus nerveux dans le grave et l'extrême-grave que le TDA7294, au détriment de la précision, du naturel, dans le médium.

Mais de toute façon, à tubes, à transistors ou à circuits intégrés, la musique adoucit les mœurs.

Bernard Duval

Petites annonces gratuites

Vds scope Tektro 7603 + 7A18A + 7B53A TBE + doc, scope Schlumberger 5500 + 5536 TBE + doc, distorsiomètre LEA EHD 66 + doc, fréquencemètre Férisol HA 300B + 4 tiroirs à revoir + doc. Recherche carte HP IB pour PC. Tél.: 03 22 91 88 97 HR

Vds livres et revues électronique, demandez liste, contre 2 timbres. Vds 600 F les 6 volumes Editions Gamma de 1964. L'électronique (les tubes de A à Z), très didactique). Ecrire à Phil Tanguy, 3 Rue Gabriel Faure, 56600 Lanester.

Recherche schéma ampli intégré Marantz PM84MKII, 2x100 W, frais d'envoi remboursès. Mr Fromentin JP, 21220 Curtil-Vergy Tél.: 03 80 61 40 31

Recherche nºs Led 140 et 141, faire offre. Tél.: 03 27 26 56 06 après 19 h

Vds proto ampli triphonique décrit dans Led n°150 à 152 : 2000 F + nombreux composants à très bas prix et armoires de rangement. Tél. : 05 46 01 74 26

Recherche schéma Ampliton TS3000. Tél.: 01 48 85 35 09 après 18 h

Vds oscilloscope HAMEG HM303-4 + générateur BF + millivoltmètre HF, prix : 2000 F, état neuf, peut être vendu séparément, faire offre. Tél. : 06 63 22 42 09

Vds ampli stéréo à tube unique 6V6 en classe A et classe A 6AS7 les deux tubes neufs + vds tubes 6C33. Tél. : 01 46 75 92 47 Vds fil câblage souple, couleurs panachées, les 100 m : 30 F + oscillos 2 traces, révisés : 400 et 600 F + géné BF 903T : 600 F + port. Tél. : 02 48 64 68 48

Vds 300 tubes Noval, Octal + de 60 types différents EL84. 6SJ7, 6L6, 5U4, etc, liste prix ctre Etsa. Mr Reynes Tél.: 05 49 21 56 93

Recherche tubes hors service 300B, ttes marques, 2A3. VT52, PX25, 845, 50. 274A ou B, etc. Tél.: 02 41 20 02 39

Recherche cadran démulti Wireless Thomas, aiguille dépla. latéral, trotteuse 2 vitesses. Tél.: 03 20 75 23 44

Recherche récepteur radio sonora années 50, n°528 3136, châssis 623080, GO PO OC PU 4 lampes, ECH3, ECF1, EBL1, AZ1. Mr Joly Serge, 74200 Le Lyaud. Tél.: 04 50 73 91 20

Vds divers tubes, câble mod Mit, géné BF Metrix à tubes, nbx composants, ampli 8 W Le Monstre, selfs 10H an, transfo BM Pacific, etc. Tél.: 01 56 08 17 48

Vds lecteur CD Marantz 67SE: 1200 F. Tél.: 01 45 82 20 22

Recherche pour réalisation de l'ampli classe A de Led n° 118, circuit int LM144H ou HA2645 ou équivalent.

Tél./Fax: 03 21 97 51 97

Vds ampli Wurlitzer année 60 + préampli Technics SV9070, faire offre.

Tél.: 04 67 99 65 02 ou 06 13 85 50 64

Vds 4 tubes RCA 807, ampli tubes, 2x12 W classe A, push-pull, EL34, montage triode Ampliton TS3030. Recherche transfo sortie 300B. Tél.: 06 86 33 59 93

Vds ampli stéréo R120, transfo Partridge + 6 triodes R120 dont deux neuves : 4800 F + enceintes Davis 707, tbe : 3000 F Tél. : 04 79 72 53 00 (Savoie)

Vds 2 caisses Jensen pour HP285 Supravox, 2 HP 38 cm, JBL 2235H. 1 ampli 2x50 W classe A, 1 filtre actif 500Hz, 24 dB. Tél.: 02 41 55 26 36

Vds 4 transformateurs torique, état neuf, 2 de 500 VA, 2x50 V, primaire 220 V/50 Hz, prix pièce: 350 F + 2 de 500 VA. 2x43 V avec blindage, prix pièce: 400 F. Tél.: 02 41 70 85 21 le soir

Vds kit préampli n°147 de Led. non monté, prix : 2100 F ou à débattre. Merci, après 21 h Tél. : 04 77 26 48 44

Vds oscilloscope Metrix OX800, état neuf, 2x20 MHz, double trace: 1800 F. Tél.: 01 34 20 04 60

Cherche plan préamp à lampe ECC83, pour ampli Guitare avec explications si possible. Tél.: 04 94 52 81 56

Vds 1 bloc mono PP300B: 2000 F + 2 tubes 6A5G USA + 2 enceintes mini Onken, 95 dB: 1000 F + transfo sortie 100 W, circuit C, 3500 Ω. Tél.: 02 97 66 86 94

Vds oscillo Metrix OX 734, tbe, 2x50 MHz, notice + sonde: 1500 F. Tél.: 03 80 46 09 93 après 17 h

Vds condensateurs papier huilé de 16 µF à 0,1 µF de 175 F à 45 F. Tél. : 06 68 10 23 61

Vds sonde Metrix 250 MHz: 500 F + les deux pinces ampermétriques CAF2, 400 A: 400 F + bras AT 1007, neuf: 600 F + data book liste dispo, circuit intégré listing ok. Tél.: 06 16 90 37 70

Vds ampli Mos-Fet classe A, 2x60 W: 1500 F + enceintes Cabasse Dinghy: 1200 F + Philips Legend: 600 F. Tél.: 01 42 96 95 67

Vds amplis à tubes : Led 130 (PP EL84) : 900 F + Led 136-137 (intégré double PP EL84) : 1500 F + transfos sortie ACEA 3K8, 40 W (Led 157) : 500 F les 2. Tél. : 01 34 83 37 56

Vds tubes neufs 50 % remise, ECC. ECF. ECL. EL504, 509, 519... + PCC. PCF. PCL, PL504, 509, 519... Tél.: 03 28 60 33 62 HB Tél.: 03 28 64 11 64 HR Nord

Vds Supravox 215 RTF + TW Fostex FT17H: 700 F + plan TQWT, neufs. Tél.: 03 26 97 77 03

Vds composants électroniques (transfos, tubes, capas HT, papier huilé, connectique ect.), liste sur demande. Tél. HR: 04 68 95 02 65

Votre annonce gratuite

	LA	GR	ILLE	CI	-DE	SSC	ous	ES	ΤÀ	R	EMI	PLI	RI	-IS	IBL	ΕN	1EN	ΙT	EN	C	AF	RA	C	TI	ÈF	RE	S	D	'I	M	P	R	IN	1E	RI	E	
N	MC		1	1							1	1	-1			l	I	-1	l					1	-		1		1	1				1	-		I
A[DRE	SS	E !		1	1		1	-					1								1	1						-				1		-	١	
1		١	1	1	L	1		1		1	1	1			1	1				1				1			L	1			1	1			1	1	1
_ TE	EL		1		1	1	1	1		1	1			1						1		-		1	1	1			1				1	l	1	1	1
TE	EXT	ΕC	E L	'AN	1NC	ONC	CE		j	1	1		1			1	1	1	1			1		1		1		1	1							l_	1
1	1		I	1		1	ı	1			1	1				1			1	1	1		1	1			1	1				1		l		1_	1
					1		. 1	1		1	1	ļ			1	1		1	-	1			1	1				1			ı				1	1	1
	1	1	1		1			1		1	I	1			I			1	1		1		1	1			I	1			1	-		1	I	1	
Ind / Ind	1	1	}			1	1	I			I	1			1	1		1	1	1	I		l		ļ		ı	1			1	1		1	[ı	

COMPOSANTS DE L'EURIDIA 2000 : LED 158 - 159

BOOMER MÉDIUM PHL AUDIO / SP 1280 TWEETER SEAS / T25FC001. Connecteurs SPEAKON Mâle / Femelle

Ensemble des composants du filtre passif 2 voies. Selfs. Condensateurs. RÉSISTANCES. PRISES SPEAKON MÂLE / FEMELLE

Kit composants de l'enceinte **EURIDIA 2000**

2 250 F	Tunite	(port compris)	
* Ecrire en CAPITALES, S.V.P.			
N om :		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
PRÉNOM :			
N° : RUE			
CODE POSTAL:	VILLE :		
Ci-joint mon règlement par :			
	chèque bancaire	par CCP	par mandat
EDITIONS DÉ	A retourner accompagné de vo	_	44.05.00.44

EDITIONS PERIODES 5, boulevard Ney, 75018 Paris Tel.: 01 44 65 88 14

AUDIO VIDEO

NE MANQUEZ PAS LE

HORS SERIE 2007

LE GUIDE INDISPENSABLE

POUR CHOISIR ET OPTIMISER

SOM MATERIEL HIFI & HOME CINEMA

- LE TOUR DE FRANCE DES AUDITORIUMS : ANNUAIRE DES SPÉCIALISTES
- QUI FAIT QUOI ? :

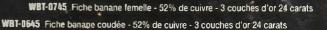
INDEX DES FABRICANTS & DISTRIBUTEURS.

DU QUADRUPLE PUSH PULL DE 6L6 / GC

INTERCONNEXIONS

WBT

Avez-vous déjà eu l'embarras du (bon) choix ?


WBT-0108

Fiche coaxiale 68% de cuivre 5 couches d'or 24 carats montage en sertissage existe en version soudable

WBT-0201

Fiche coaxiale châssis 68% de cuivre montage par soudure existe en version à sertir

WBT-0660Cu Fourche - 100% de cuivre - 3 couches d'or 24 carats - existe en

BC Acoustique

ENCEINTES HAUTE EIDÉLITÉ

BP 306 - 94709 Maisons-Alfort Cedex - Tél.: 01 43 68 25 00 - Fax: 01 43 68 37 00 informations sur internet - http://www.bc-acoustique.com

BC Acoustique n'est pas seulement un concepteur d'enceintes français réputé aux quatre coins du globe, nous sommes aussi connus pour être des passionnés résolus... Les fabricants des meilleurs produits mondiaux nous ont sollicités afin de distribuer leurs produits. WBT, CHORD et SEAS sont ainsi distribués par nos soins avec l'amour de la musique et le professionnalisme qui nous caractérisent.

Vous pouvez obtenir une documentation ou l'adresse des revendeurs agréés de ces produits **sur simple demande**.