

EQUIPMENT FOR

WINTER RADIO ACTIVITY

The 1921-1922 Radio Season is at hand-Equip your station with dependable apparatus.

"MAGNAVOX" R3

RADIO TELEMEGAFONE-The loud speaker you will ultimately purchase. Just the equipment for home Radio concerts. No station is complete without a loud speaker. PRICE $\$ 45.00$.

Abstract

\section*{"YALE" 6T60}

Storage Battery, 6 Volt, 60 Ampere hour rating; The most popular battery for filament lighting. Note the low price. $\$ 18.00$

WESTINGHOUSE "DA"

TUNER-The tuner everyone is talking about-easy to operate, conveniently connected, highly efficient, stable adjustment, Armstrong regenerative circuit Wave length range 180-700 Meters. PRICE $\$ 65.00$

WESTINGHOUSE "RC"

Shortwave regenerative receiver, Combination of Tuner, Detector and Two Stage Amplifier. One Cabinet, high efficiency, compact. PRICE \$125.00

"RADIOTRON" VACUUM

 TUBESUV200, Detector-Amplifier (soft) $\$ 5.00$
UV201, Detector-Amplifier (hard) 6.50
UV202, 5 -Watt Transmitting
Tube $\underset{5}{ } 0$-Watt Transmitting
Tube
8.00
........................ . . 30.00

MURDOCK No. 56

The New Murdock Radio Headset. Firmness, Strength and durability characterize its construction. Complete Double Set. 2000 Ohms $\$ 5.00$. Complete Double Set 3000 Ohms $\$ 6.00$

FIRST DISTRICT CALL LIST

2,137 calls listed. Postpaid 25c Coin.

RADIO MAILING CARDS

Published by A. R. Co. The Most Popular card published. Package of 15 25c (coin).

C.W. POWER TRANSFORMERS

Acme 50 Watt 350 Volt, Mtd. $\$ 15.00$ Acme 50 W . 350 Volt, Unmtd. 12.00 Acme 200W. 350-550 V. Mtd... 20.00 Acme $200 \mathrm{~W} .350-550 \mathrm{~V}$. Unmtd. 15.00 Acme 500 W . $1000-1500 \mathrm{~V}$. Mtd. 25.00 Acme 500W. 1000-1500V. Unmtd. 2000

ANTENNA EQUIPMENT

This Standard Antenna Equipment includes 150 feet of No. 14 Copper Weld Wire, one Splicer, two micarta Receiving Antenna In sulators, two Screw eyes, three porcelain Knobs with holding screw, one porcelain wall Tube. 50 feet of insulated ground wire, one ground clamp, and one receiving antenna Protective Device. Price $\$ 7.50$.

CITIZEN RADIO BLUE PRINTS

"Regenerative Receiver." "Detector and Two Stage Amplifier," 200 watt C.W. Radiofone Transmitter. C.W. Transformers, etc. Each prine 21×25. Send for list.

We cannot list our entire stock-send for "Bulletin 14" and special literature describing "Westinghouse", "DeForest", and other equipment. "C.W. OPERATION"-The R.C. Manual and Catalog may be obtained directly from us. Price 25c Postpaid.

Atlantic
 Radio

727 Boylston St.
Boston, 9 Mass.
Branch--15 Temple Street Portland, Maine

Buy It From The Navy

Surplus Navy Radio Materials for sale at attractive prices.

RECEIVING SETS

Suitable for receiving ship, amateur, or long-wave signals.

SPARK TRANSMITTERS

Complete with motor generators, or gas engine driven generators.
ACCESSORIES (except Vacuum Tubes) of every description suitable for experimental or research purposes.

This is an EXCELLENT OPPORTUNITY for Colleges, RadioSchools and Amateurs to buy NAVY-R-A-D-I-O-Equipment at ATTRACTIVE PRICES.

> Write today for Navy Radio Catalogue No. 601-81.

The surplus materials the Navy has available for sale have been grouped as shown below and catalogues describing these materials will be sent on your request.

List of Surpius Materials

All Materials. Electrical Equip-
Precision.
Aeronautical Equipment.
Aluminum.
Bath Room Fittings
and Plumbing Supplies.
Blankets.
Boats.
Books.
Brass.
Canvas and Tents.
Chemicals.
Cloth and Textiles.
Clothing.
Copper.
ment and Supplies.
Furniture.
Hardware.
Iron.
Lead.
Machinery.
Mess and Galley Equipment (Kitchen and Dining Room.) Monel.
Musical Instruments.
Navigating and In- Valves and Fittings. struments of Zinc.

CENTRAL SALES OFFICE

Our Own Third and Fourth District Convention

WASHINGTON, D. C.

The National Capitol

Hotel Raleigh---February 17th and 18th

The Third and Fourth radio districts, personally and fraternally bound together as neighbors and companions in the same inspection district join in the intent to make our convention go down in radio history.
We are, in fact, but one district, extending to the other districts an invitation that is just as cordial as to our own men.

The convention is only two months off, and lots of work is still to be done to make our welcome all that we wish it to be, but much has already been done and

A Tour to
NAA-The station with the largest audience
INSF-With "ILC" to weicome you
The National Capitol
Washington Monument
Potomac Park.
Stations on display at the convention
3ZY-4GL's famous CW partner
3XF--9 amperes antenna at 200 meters
3NR-The fone with the perfect grid modulation
20I-.The motor truck radiofone from 320
3 HJ --The famous rock crusher and perhaps the tube
3 CC - The new 5 ampere tube set
and others are being gathered in-we are going after
4GL right now.
Apparatus Exhibits were promised by 3 makers and 5 dealers before we even formed a committee-you ought to see the list now.

Contests-Enter your club speed fiend now-send his name to 3KM.
Technical Talks-No talk over 30 minutes-almost all with lantern slides-chance to ask questions afterward.

Banquet-Stunts by all third district clubs. Let 3 ALN know about yours before Jan. 15 th .
Talks-3 minute alarm clock limit
Banquet by the Raleigh.

One $\$ 5.00$ ticket covers everything---exhibits, tours, meetings, banquets

Apply to E. R. Bateman, Publicity Manager- 1217 Lafayette Ave., Baltimore, Md.

> For exhibit space rates apply to S. K. Brown, Meter Dept., Potomac Electric Power Co., Washington, D. C.
Fourth district representative B. W. Benning, 50 Whitford Ave., Atlanta, Ga.meaning 4 XC .

Remler Quality Throughout

Remler Type 500 Bakelite Molded Variometer
 Remler Type 501 with No. 100 Bakelite Dial and Knob $\$ 7.00$

Stator moulded in two halves from genuine Bakelite with primary winding moulded on the inside, insuring an absolutely rigid winding. Rotor also moulded from Bakelite. This all Bakelite moulded construction insures accurate mechanical dimensions, strength and precludes the possibility of warping or shrinkage. Large dimensions permit the use of low resistance windings. Maximum stator diameter 5 $1 / 4$ "; maximum rotor diameter $4^{\prime \prime \prime}$; width across stator $3^{\prime \prime}$; shaft $3 / 16^{\prime \prime}$ diameter. Bearings backed up with spring tension. Wave length range $175-500$ meters. Stator drilled and tapped for panel mounting. Brackets for table mounting. Polished nickel binding post terminals.

Write for siz page Remier Bulletin-just off the press.

REMLER RADIO MFG. CO.

E. T. Cunningham, Gen. Mgr.

248 First Street
San Francisco, Calif.

154 West Lake Street
Chicago, Illinois

"PITTSCO"

SERVICE DISTRIBUTES
"RADIO CORPORATION'S"
PRODUCTS ALL OVER
THE WORLD! TRY US
AND SEE!

radio corporation's products

"PITTSCO"

NOW HAS TWO STORES! BOTH CARRY "RADIO CORPORATION'S" COMPLETE LINE. ORDER TO. DAY FROM THE NEAREST!

Announcement!!!

The molicy of the F. D. PITTS CO. has been anc will be io render a "Superior Service", a Service based on carrying in stock for immediate delivery all desirable Radio apparatus, to serve our customers promptly and intelligentiy and to make them feel that we are truly arateful for their patronage.
In order to fecommodiate our
ever increasing business we take pleasure in announcing the opening of OUR NEW STORE at PROVIDENCE. K. i. in the WOOLWORTE BLDG., gi: 193 Westminster streel, the very heart of the business rection.

Mr. H. H. Tilley, a valued member of our organization will be in charge. His experience is wide and diversified, having in turn been an Amateur, Commercial Operator, Engineer, Instructor and Siles-Manacer. Xou are cordially invited to visit our new store and experience real sERVICE.

If at uny time you are interestied in Radio to the ertent of Gesiring instrurtion. Amateur or Commercial; Spark. Are or Vibeuum tube let the EASTERN RA1)TO INSTITUTE train youNew Fingland's. Oliest. Largest and Best equipped Radio School. For over six ferrs I was Chief Instructing Engineer at this institute, sind I am in a position to knowl Over 4000 satisfied graduates tell the story besil Our Organization with Vesrs of phenomensl Results and success is behind every man who enrolls. F. D. NITTS

President and General Manager
"LET 'PITTSCO' PRODUCTS, SUPER-SERVICE, AND DELIVERY SOLVE YOUR HOLIDAY PROBLEMS"

SEND US YOUR ORDER TODAY!

Send ten cents for Catalog No. 22. Oyer 100 pages, over 150 illustrationa, over 600 items.

F. D. PITTS CO., INC.

Branch-Woolworth Bldg.
12 Park Square, Boston, Mass. 193 Westminster St., Providence, R. I.

国 몬간 The Official Organ of the A.R.R.E

YOLUME V.

DECEMBER, 1921
No. 5

The Second Transatlantic Tests
7
A High-Efficiency C.W. Transmitter
Cyril M. Jansky, Jr. 9
Rotten Bunk
The Old Man
13
Emproving the Relay Spark Transmitter
Sumner B. Young
17
New Apparatus 21
Better Sending Set Arrangement
Carlos S. Mundt 22
A Battery-Operated Radiophone 23
The Design of Loop Antennae David S. Brown 24
Editorials 29
With the Radiophone Folks 31
The Operating Department 35
Amateur Radio Stations-6ALE, 8IB, 9YK, Agusty 46
With the Affiliated Clubs 50
"Strays" 52
Calls Heard 54
Fadio Communications by the Amateurs 60

QST is published monthly by The American Radio Relay League, Inc., at Hartford,
Conn. Eenneth B. Warner (Secretary, A.R.R.L.), Editor and Business Manager. Edwin C. Adams, Advertising Manager.
Subscription price in United States, Possessions, and Canada, $\$ 2.00$ per yoar. Foreign. \$2.50. Single Copies, 20 conts.
En jered as second-class matter May wes, 1819, at the post office of Hartford, Connecticut, under the Act of March 3, 1878.
Copyright, 1921, by The American Radio Ralay Loague, Inc. ritle registered at United Stutes Patent Office.
THE AMERICAN RADIO RELAY LEAGUE, Inc.
HARTFORD, CONN.

The American Radio Relay League

"A mational non-commercial organization of radio amateurs, bonded for the more effective relaying of friendly messages between their stations, for legislative protection, for orderly operating, and for the practical improvement of short-wave Radio Communication."

President

HIRAM PERCY MAXIM Hartford, Conn. Vice Preaident
CHAS. A. SERVICE, JR. Bala, Pa.
A. E. BESSEY

Sunnyvale, Calif.
V. F. GAMP

Brightwaters, L. I.
J. M. CLAYTON

Little Rock, Ark.
F. M. CORLETT

Dallas, Tex.
S. KRUSE

Washington, D. C.
W. T. gravely Danville, Va.

OFFICERS

Trafic Manager
F. H. SCHNELL
1.045 Main St., Hartford, Conn.

DIRECTORS

F. F. HAMILTON Indianapolis
A. A. HEBERT
Nutley, M. J.

HIRAM PERCY MAXTM Hartford, Conn.
C. A. SERVICE. JR. Bala, Pa.

REEV. SEBASTIAN RUTH Lacey, Wash.

Treasurev
A. A. HEBERT

Nutley, N.J.
Secretary
K. B. WARNER Hartford, Conn.
H. L. STANLEY

Babylon, L. 1.
C. H. STEWART St. David's, Pa
K. B. WARNER Hartford, Conn.
M. B. WEST

Waukegan, III.
F, H. SCHNELL Hartiord, Conn
H. M. ANTHONY Muncie, Ind.

OPERATING DEPARTMENT

ATLANTIC DIVISION Manager	WEST GULF DIVISION Manager	ROANOKE DIVISION Manager
Chas. H Stewart	Frank M. Corlett	W. T. Gravely
St. David's, Pa.	1101 East Eighth St.	854 Main Situ,
Asst. Mgr., Northern Sec.	Dallas, 'Tex.	Danville, Va.
1624 Hamilton Ave.	PACIFIC DIVISION	DELTA DIVISION
Woodhaven, L. I.	Manager	Manager
Asst. Mgr., Southern Sec.	J. Vance Wise,	John M. Clayton 1301 Welch St.,
Edw 3909 Cottage Alye.,	Walnut Grove, Cal.	Little Rock, Ark.
Baltimore. Md.	Assistant Manager	Assistant Manager
EAST GULF DIVISION	ST. LAWRENCE DIVISION.	Hubert \mathbb{F}_{2} deBen 1044 City Park Sve.
Mrnacer B. W. Benning	Manager	104 New Orleans
50 Whiteford St.,	24.3 Mackay Sto	WINNIPEG DIVISION
Atlanta, Ga.	Montreal, Que.	Temporary ifanager
Assistant Manager W. R. Pope		8844 Royd Phelps ${ }^{\text {Rirst Ave., South }}$
197 Dearing St.	ONTARIO DIVISION	Minnespoiis, Minn.
Athens, Gr.	A. H. Keith Russell	ROCKY MOUNTATN DIV.
CENTRAL DIVISION	11 Pinewood Ave.,	Manager M. S. Andelin
F., H. G. Mathews	Toronto, Ont.	Richfield, Utah
6433 Ravenswood Ave. Chicaso	DAKOTA DIVISION Manacer	MIDWEST DIVISION
Assistant Manager	Boyd Phelps	C. Manager
L. A. Pease	3344 First Ave., South	4942 Wiesehan Ave,
2256 W. 24th St. Ohicago	Minneapolis, Minn.	Et. Louis.
ALASKAN DIVISION	NEW ENGLAND DIVISION	NORTHWESTERN DIV.
Manager	Manamer	Manaxer
Rloy Anderson, 7 IT	Guy R. Entwistle	Howard F. Mason
P. O. Box 206	187 Sutherland Road,	3385 38d Ave., So.,
耳̌etchikan, slaska.	Brookline, Mass.	Seattle, Wash.

ADVISORY TECHNICAL COMMITTEE

c. S. BALLANTINE

WM. O. BALLARD.Jr.
SEROY M. E. ©TAUSING
GRANK CONRAD
LEO \%. YOUNG

MINTON ORONKHITE
J. H. DELLINGER
©. L. FARRAND
PAUL F. GODLEY
L. A. HAZELTINE
C. D. TUSKA
R. H. G. MATHEWS
J. O. GMITH
S. KRUSE

Address General Correspondence to Executive Headquarters, Hartford, Conn.

The Second Transatlantic Tests

ON the date this issue of QST probably will reach our readers the second series of Transatlantic Sending Tests will be in progress. In fact by that date we probably will have some word on the results being experienced and we are very hopeful that there will be some call-letters mentioned.

At this writing we have just returned from seeing "Paragon Paul" off on the S.S. "Aquitania" on November 15th. The evening before, a little dinner had been given in his honor in New York City, among those present having been, besides Mr. Godley, Messrs. Maxim, Schnell, Hebert, Camp, Stewart, Service, (Goette, E. H. Armstrong, J. Andrew White, P. H. Boucheron, G. H. Burghard, W. S. Smith, and K. B. Warner. This was a ham-fest of old-timers most of whom had known Godley for many years, and it really took the form of a testimonial banquet. The gentlemen expressed the utmost confidence in his ability, Mr. Armstrong saying, "I'll stake my scientific reputation on Paul Godley", and so on until, as Mr. White remarked, "Paul, it looks like a cinch".

And so, the next noon, amid the waving goodbyes of a multitude who had gathered to see the big ship off, the "Aquitania" was backed out of her berth and Godley started on the second stage of a remarkable journey. Some interesting little incidents occurred at the pier. The radio gang had all been shoved ashore by the ship's deckcops and were assembled in front of one of the large openings in the shed, thru which Gudley could be seen on an upper deck some twenty-five yards away. All was inexpressible confusion, the usual lastminute pandemonium at the sailing of a big ship, and the air was full of QRM. But did it phase these radio birds? Not a bit! They just held an arm up straight, above the crowd, and opened and closed the hand to form good old Continential in heliograph style. It was a cinch to read and we
talked that way for half an hour, rather to the perplexity of the surrounding crowd. Now it happened that Mr. H. H. Beverage, 2BML, Radio Corporation receiving en-

On the "Aquitania" shortly before she sailed. Mr. Godley in center, Traffic Manager Schnell on the right and Secretary Warner on the left.
gineer, was also on the "Aquitania" bound for Europe on business, but he and Godley had never met. To the surprise of the little radio crowd Beverage was discovered leaning over the rail not a great ways from Godley. This dope was promptly QSR'd to the latter by "hand-radio", who was thereby enabled to walk straight up to Beverage and introduce himself. Beverage, it seems, had been watching these pro-
ceedings too, and as he shook hands with Godley with his right, he gave us a nonchalant "OK" with his left.

All Set for the Testa

The preliminary tests were quite successful, the contenders being favored with good weather, and a great pile of excellent station logs testified not only to the way signals were reaching out but to the interest as well. The participants have been advised of their showing and the final schedules completed. For obvious reasons we publish no detailed data thereon-the arrangements are secret and will be known to but two men in all the world:

Mr. and Mrs. Paul F. Godley
our Traffic Manager, and Mr. P. R. Coursey, in charge of arrangements in England. Mr. Godley carried complete information to Mr. Coursey in a sealed packet.

Let us briefly review the schedules, in order that there be no misunderstandings. For six hours each night for ten successive nights, December 7 th to 16 th, inclusive, watch will be kept on the other side. Each six-hour schedule is divided into two parts. The first part, from 7 p.m. Eastern Standard Time to $9: 30$ p.m., is a free-for-all, eonsisting of 10 periods of 15 minutes each, and in each period all the amateurs in a certain government inspection district are invited to call "Test" and sign; for example, "TEST TEST TEST de 7NN 7NN "NN", repeated. The transmitting period for each district changes each night. See the schedule on page 30 of QST for this last October, and be governed strictly in
accordance therewith. The second part of each night, from 9:30 p.m. Eastern Standard Time to 1:00 a.m. of the following date, is devoted to individual schedules for the stations who qualified in the preliminaries. Cypher combinatons have been assigned them but for the present no information will be given out to their identity.

We do not know the number of English amateurs participating but we understand there were some three hundred in the first tests and this number doubtless will be greatly exceeded this time. French and Dutch have likewise displayed high interest and have been given the schedules, and we understand that some of their best shortwave receiving stations will be listening. Godley takes with him equipment embodying the best American ideas in short-wave reception, so that the world's best talent is being brought to bear in Europe to help us. Godley will have with him at all times while on watch two qualified English listeners arranged thru the courtesy of Mr. Coursey, and these men must be able to verify the copying of call letters during the free-for-all periods and the copving of cypher combinations during the individual periods, the latter to be referred to Mr. Coursey for identification from the confidential papers.

Reports from MUU

Don't forget that MUU is going to handsend a report from England every night at 7 a.m. Greenwich Time, announcing results. November QST, pages 10 and 11 , gave detailed information on the reception of these signals. In addition, station 2BML, Riverhead, L. I., an amateur station owned by receiving operators of the Radiocorp's Long Island receiving station, will repeat MUU's report on 200 meters straight C.W., power 500 watts, immediately after its reception on this side.

In Appreciation

The A.R.R.L. wishes to express its grateful appreciation for the many courtesies shown it by the various Marconi interests in arranging for these tests. The engineering, commercial, and traffic departments of the Radio Corporation of America, the executive and engineering departments of the British Marconi Co., Ltd., and the officials of their allied publishing companies on both sides of the water, The Wireless Press, have placed all their facilities at our disposal and have been of immense help in making the multitudinous arrangements necessary in such an affair.

All Ready

Now we are all set. We believe we have done a good job of the arrangements and we are confident that, barring rottenly unfavorable atmospheric conditions the entire ten days, American amateur signals will be heard in E'urope on schedule.

A High Efficiency C. W. Transmitter ${ }^{\dagger}$

By Cyril M. Jansky, jr.*

FOR the purposes of design, an electron tube transmitting set may be considered as a machine for converting direct current high voltage energy to high frequency alternating current energy for the transmission of electromegnetic waves. An ideal transmitting set or converter of this type should have the following characteristics.
(1) It should use a stated number of electron tubes having fairly uniform characteristics.
(2) It should be capable of adjustment over a moderate range of wave lengthis.
(3) It should be capable of adjustment for maximum output at any wave length within this range.
(4) It should be capable of adjustment for maximum output with aerials of somewhat different constants.
(5) The circuits and apparatus used should be the simplest consistent with the above conditions.
(6) The adjustment of the set for maximum output at various wave lengths should require but a few seconds of time.
Conditions (1) and (2) are not hard to meet but it is the writer's experience that few transmitting sets in use today meet conditions (3) and (4) and these fail to meet conditions (5) and (6).

The question of efficiency, as it is ordinarily understood, does not enter into the consideration of the design of low and moderately powerful transmitting equipment as the supply of D.C. power available is usually considerably in excess of what is required. The electrical efficiency of an electron tube transmitting set may be defined as the ratio of the high frequency power dissipated in the aerial circuit to the D.C. power supplied to the tube circuits bv the high voltage generating system. With proper circuits and proper adjustments this efficiency can be made as high as 75 percent.

The high voltage D.C. power supplied to an electron tube transmitter is dissipated in two wavs: (1) in heating the plates of the tubes. (2) in producing high frequency energy which is absorbed by the resistances of the aerial circuit. Given a tube which will dissipate 25 watts as heat in the plates, it should therefore be possible to design a transmitting set using this tube which would consume 100 watts. Of

[^0]this power 75 watts would be absorbed by the aerial circuit and 25 watts would be wasted in heating the plates of the tube. The factor which limits the power output of an clectron tube transmitting set is, therefore, the amount of energy that the plates of the tube can dissipate as heat without endangering the life of the ube.

If for any reason the tube should cease to produce oscillations, the 75 watts energy previously absorbed by the aerial circuit would be dissipated in the plates and the tube would be quickly destroyed. This difficulty can be obviated by installing a protective device which will automatically disconnect the source of power in case of excessive heating of the plates.

In case the transmitting set is so designed and the power input so regulated

A photograph of the set herein described
that the total input to the set never exceeds the amount that can be safely absorbed by the tube alone, the input must never exceed 25 watts and the high frequency output will never exceed threefourths of this amount.

Obviously the most desirable set, from an operating point of view, will be the one which is operated with maximum power dissipation in the tubes and as high an efficiency as possible.

The circuit used in the set to be described was developed by the writer in 1918 and was tested at the University of Wisconsin Department of Physics Radio Station under the direction of Major C. A. Culver of the United States Signal Corps in the fall of that year. Both telephone and telegraph signals were easily transmitted as far as Chicago (130 miles) with an aerial input of 25 watts. The approximate efficiency of the set was 50 percent.

In the fall of 1920, work on the development of a standard continuous wave transmitter using four Signal Corps VT-2 tubes was begun at the Experimental Radio Station of the Department of Electrical
the number of turns in the plate circuit. In operation the wave length is first adjusted to any predetermined value by the serial tap and the plate tap set to include approximately the same number of turns

Specifications for 200 -watt 4 -tube Undamped Wave Transmitter

T-1, 2, 3, 4 - Flectron tubes.
$3-1,2,3,4-J a c k s$ for measuring filament current.
R-1, 2, 3, 4-Rheostats for controlling filament current. 2 ohms or larger to carry at least 3 amperes each.
C-1-Grid condenser, air variable, 0 to 1000 micro-mfds.
C-2-Modulation control (grid) condenser, identical with $\mathrm{C}-1$.
C-3-High voltage mica condenser, 750 volts, 0.5 mfd . or larger.
$\mathrm{C}-4$ and $\mathrm{C}-5-0.01$ mfd. or larger, 1000 volts. If larger than 0.05 mid., voltage may be lower.
G-5-Jack for measuring grid current and for modulator plug for telephony.
R-5-Grid resistance, 500 to 1000 ohms.
S-1-Special switch for controlling plate, filament and aerial circuits and for switching aerial to receiving set.

Engineering of the University of Minnesota. The circuit diagram included with this' report shows all apparatus necessary for an efficient transmitting set with the exception of aerial and D.C. power equipment for plate and filament circuits. In the set used at the University of Minnesota, the D.C. meters, filament rheostat, circuit breaker and grid condenser were not mounted in the set box.
By referring to the circuit diagram it will be seen that there are two dial switches for tapping the aerial inductance, one for determining the number of turns inciuded in the aerial circuit, and the other

Circuit Breaker-Can be made from a telegraph sounder or relay, shunted by a $10-\mathrm{ohm}$ variable wheostat for controlling release current.
Grid Coil-5 inches diameter, ball type, $31 /$ inches wide, wound with 30 turns of No. 18 wire tapped every 3 turns. Mounted in center of plate coil (aerial coii) and rotates 90 degrees.
Aerial Coil- 20 turns of No. 10 bare copper wire wound on eylinder 6 inches diameter, tapped every turn and leads brought to two 20 -point dial switches for varying turns in aerial and plate circuits.
K-i--Knob and 10-pt. switch for varying turns in grid circuit.
K-2 and K-3-Knobs and 20-pt. switches for varying turns in plate and aerial circuits.
$\mathrm{K}-4$-Knob for varying coupling between grid and plate circuits.
as the aerial circuit. It is well known that when a tube is producing oscillations the A.C. plate voltage is 180 degrees out of phase with the A.C. component of the piate current. For this reason the tube absorbs less energy when it is producing oscillations that when it is not. The effect of including a large number of turns in the plate circuit is to produce a large A.C. plate voltage and consequently a low power dissipation in the plates. The total input to the set and the rerial output will also be low as though the impedance of the circuits as a whole was high. The fact that the energy input to the tube may be con-
trolled by the plate tap, provided the get is adjusied to produce oscillations, makes it safe to keep the key closed with a fixed D.C. potential of 450 volts or even higher. The plate tap is now changed so as to reduce the number of turns included in the plate circuit. This reduces the A.C. plate voltage applied to the tube, allows a greater power input to the set and also tends to adjust the ratio of transformation between plate and aerial circuits in such a manner as to increase the power output. Assuming a fixed plate voltage of 450 volts, the operator will adjust the set for maximum power output by reducing the number of turns included in the plate circuit until a maximum reading of the hot wire ammeter is obtained or until the energy absorbed by the plates nears the limit of safety.

According to a well known principle of physics, maximum power output at a given plate voitage will be obtained when 50 percent of the energy supplied by the D.C. source is absorbed by the gerial and 50 percent by the piates of the tubes. The effect of increasing the number of turns in the plate circuit beyond the adjustment for 50 percent efficiency is to increase the efíciency hut also to decrease the total power input to the set. The net result is a decrease in the power output. Both efficiency and power output may be increased, however, by increasing the number of turns in the plate circuit and then increasing the plate voltage. A four tube transmitter using tubes which are dissipating 15 watts ner tube will then radiate 180 watts if adjusted to 75 percent efficiency.
The following operating data are typical of what may be ohtained for any wave length within the range of the set. While the radiation resistance varies somewhat with the wave length, the antenna current also varies and in such a way as to keep the power output and efficiency practically constant.
Plate voltage................ . . 450 voits
Power input. 146 watts
Antenna current. 2.5 rmperes
Power output................. . 93.75 watts
Efficiency. 64.2 percent
Energy loss 52.25 watts
Fnergy dissipated in heat per tube. 13.00 watts
Filament current per tube... 1.35 amperes
Wave length. 375 meters
[There follow data on the radiating sustem used which had a resistance of 15 ohms at $3 \% 5$ meiters. $9 X I$, it must be remembered, is a special station, and the set herein described was designed to cover 375 to 400 meters so that its physical dimensions are not eorvect for 200 meter woris. On the other hand numerous good idens will be secured from this article and the circuit
used is the best we know for 200-meter work. It should also be remembered that Prof. Jansky is speaking of VT-e's, which are not available on the market and should not be confused with the tupe 203 fivewatt tubes now on sale. The IVV-20s has a normal filament current of 2.35 amp . and probably will safely dissipate considerably more energy at the plate than the VT-2, aitho both are rated at 5 watts out-put.-Editor.]

Tests made upon several VT-2 tubes showed that a tube of this type will easily dissipate from 17 to 20 watts continuously without danger to the life of the tube. In fact, if the set is used for continuous wave telegraphy in such a manner that raising the key cuts off the high voltage D.C. supply, each tube will safely dissipate 20 to 30 watts. A power dissipation of 13 watts per tube as indicated by the above data is therefore well within the limits of safety.

The construction work and testing of the University of Minnesota transmitting set was done by Mr. H. C. Forbes, Chief Operator of the Department of Electrical Engineering Radio Station. The data concerning the range and reliability of the set were determined by the station's staff of operators. Of necessity most of the test transmission work was done with amateur and other experimental stations.
The writer was particularly interested in determining the range and reliability of the continuous wave transmitter in comparison with the station's one K.W. spark transmitter. With this end in view accurate record was kept of all communication maintained by both spark and C.W. from the first of January, 1921, to the close of the school year. During this period the station was open and operating every evening from 8 P.M. until 11 P.M. or later. The operating staff contained seven operators each of whom operated the station one night per week. The following points concerning conditions governing the conducting of transmission tests will aid in interpreting the result obtained:
(1) The operation of most amateur and experimental stations is extremely spasmodic and haphazard, making it practically impossible to maintain communication between any two stations by means of schedules.
(2) Operators at the University station had the choice of using either the continuous wave transmitter giving 100 watts power output to the aerial or the damped wave transmitter giving 250 watts output to the aerial at a spark frequency of 1000 cycles. Lack of familiarity with the new C.W. ©ransmitter led to the use of the spark transmitter in many cases where the C.W. transmitter might have secured better results.
(3) The number of amateur and ex-
perimental stations equipped to transmit spark was far in excess of those equipped to transmit C.W. As stations transmitting by spark rarely listen for those transmitting C.W. it follows that communication by C.W. was limited to a relatively small group of stations. Nearly all of
these stations were located east of Minneapolis.
(4) The reception of continuous waves on short wave lengths requires much more skill and experience than the reception of spark signals.
(5) Receiving sets used by most amateur stations were developed primarily for reception of spark signals and are not particularly adapted to C.W.

The day to day communication records of both spark and C.W. transmitting sets were collected and plotted by weeks on the charts which accompany this paper. Communication was said to have been sstablished hetween the University station and another station when the two had exchanged greetings or messages. The duration of the communication was not taken into account.

The chart labelled "Number of calls per week completed" is self-explanatory. The distance covered by a communication is not taken into account. In the chart entitled "Total mileage per week" each completed call is rated according to the distance covered. It will be noticed that although there were nearly twice os many calls completed by spark during the week of February 20 28 the total mileage covered by C.W. is a little greater than the total mileage covered by spark. The third thart was obtained by dividing the ordinates of the second chart by the ordinates of the first. It is interesting to note that although the aerial input from the spark
set was two and a half times that from the C.W. set, the average miles covered per call for O.W. is in nearly all cases considerably in excess of that for the spark set. The relative effect of increased static disturbance in the spring is to some extent brought out by the data for March and April. In both of these months the number of calls per week and the total mileage curves for the spark set lie considerably below those for the C.W. set. This would seem to indicate that atmospheric disturbances interfere with C.W. communication less than with spark communication.

Throughout the next scholastic year, additional records will be kept for the purpose of determining the relative range and reliability of spark and O.W. transmitting equipment, and it is hoped that more exact conclusions can be deduced. The increasing number of stations using C.W. trans-
mitters and the further development of short wave C.W. receiving equipment will tend to remove some of the limitations which up to the present time have existed in C. W. work. Most short wave receiving equipment in use today is too difficult to tune and not well enough shielded for the reception of beats at such high frequencies and a careful study of such apparatus will undoubtedly lead to many improvements.
The writer wishes to express his appreciation of the co-operation of the United States Signal Corps and especially of that of Major H. O. Ingles in furnishing the apparatus and equipment which has made this work possible. Credit it also due the operating staff of the University Radio Station (9XI) which under the direction of Chief Operator H. C. Forbes secured the communication data included with this paper.

Rotten Bunk

By The Old Man

SAY son, something's got to be done about this hog-wash stuff we wireless people pull on the unsuspecting public. It's got so I. bust a button every time I bump into one of these modern wireless exhibitions. They are becoming so prevalent now-a-days, what with all the phones going, and Mother and Father, the hired girl and the neighbors getting interested, that before the police get busy upon us we should do something. The ethics of the daggone business are beginning to worry me.

I got tangled up in one of the rawest of these jobs 1 ever beheld the other night. By heck 1 just about sneezed a snipe aver the bunk that one Radical pulled on a lot of periectly respectable people. Radicai is known to fame, as one of the old time members of our Radio Club. He is a scientific bolshevik, a radio anarchist, a manhandler, and he fears neither man, devii nor Radio Inspector. His heart is made of chilled vanadium steel. Suckers are his favorite dish. He devours them en bloc, and they intoxicate him. The more suckers he deceives the more he wants to deceive, until his exaggeration and untruthfulness necome gawdawful.

Radical's parents gave a little party at their house and among a lot of middleaged people the little wife and I were invited. As happens at all of these affairs we play cards, and after a lot of tobacco ashes and cigarette and cigar butts have been spilled around on the tables and a few hopeless articles have been passed out
as prizes, the people file out into the dining room and tackle a set-up of those little wet sandwiches with the green lining on the inside, the cakes and the latest home brew. When these are disposed of, and it happens that the young hopeful of the family is interested in wireless, some poor gink who has become over-wrought by the wet sandwiches and the home brew asks the jayhawk sitting next to him if he has yet heard so-and-so's wireless. The jayhawk always gets interested and says no, but that he has heard lots about it and that it must be wonderful. The father of the young Marconi then always swells up and glances at his offspring and asks if things are working well tonight. The young hopeful, and in this case it is Radical, looks superior and guesses that they are, whereupon proud father invites the whole gang to come and see son's wireless, and to mother's horror they all stream into the back room or down-cellar or up into the garret or some where else that mother has to apologize for.

All this happened at Radical's house as per schedule. They did not miss one single item. Radical, however, was in the presence of his elders and was duly impressed, and I had hopes the impression might last. I was minded of his belligerent tactics at the Radio Club, but I did not believe there was any danger of their appearance under these circumstances. Little did I guess at the new slant which would be taken.

Several pairs of phones were hooked in and divided, and quite a crowd of excited
ladies and gentlemen stood around, bent over and heid the little phones to their ears, while kadical adjusted the bulbs and frowned, and pulled switches and monkeyed with handles. He gave the impression that it took a great intellect to operate a wireless station. He monkeyed the B battery, I believe deliberately, and the bulb gave a squeal. Through two stages of amplifica-

tion, this amounted to quite a little noise, and some of the ladies began to jump and threaten to yank the whole gear oft onto the floor. One of the ladies yelled in a voice you could hear on the next block to the lady who was standing within six inches of her, that she heard something. You would have thought she had a bite.

Radical explained in a superior and patronizing manner that the noise was nothing-the bulb was just spilling. One of the ladies repeated after him, "Bulb spilling! How qwiul!" Then some kid on the next block with a badly deranged vibrator started up, and the stuff began to come in. "GRR-IK - GRRR - IC - RIZZLE - IC-ZWIPP-BIZZLE-GWISH-SH-SH-ZIC-ZAT-ZAP-IC." The vibrator stuck for keeps here. There was a pause, while the kid adjusted his sticky vibrator and then he began sending at the rate of about twentyfive, hoping that by going fast his vibrator would not stick. Radical copied him because he was noisy and the ladies and gentlemen were nearly trampling on him in their excitement to know what the signals meant. Radical's copy worked out like this:."YAMM SPISH BIBBER FILAMENT CURRENT SPOILS FIRST GUM GAP INCREASED POWER QRM 8AMZ ZITTLE STAR'TED THINGS OM HW?"

Pressed to know what it meant, Radical leaned back and read it off just exactly as it sounds above. Honest, it made the daggondest garble that ever you heard. You just ought to have seen the ladies look at one snother! Radical said that you have to know wireless expressions and abbreviations in order to understand. This
message meant that a fellow by the name of Spish Bibber had some spoiled filament current on his hands and had gummed his gap trying to use it. The increased power had ziarted 8AMZ's zittle doing strange things.

One of the ladies got hysterics over it. The others thought it was hot stuff. It eertainly was wonderful to be getting such things out of the air. It sure was, thinks I.
Radical looked superior and tuned arvund a little, and all of sudden 8AJB came booming in, calling 8UB. Hadical grabbed his pencil and went at it while the ladies and gentlemen jostled each other in delighted amazement.
"TIDELLE ARSI ISHABIG LOST WIRE UR SINK SOUNDS SLIG WITH A PUSHWUV GESS HIBER STOUCKALED HIM IN THE MIDDLE-"

Of course 8AJB never sent anything like this. Radical made out it was straight goods, however. He read it off just exactiy the way it looks above, and I swear, nearly coughed a cat. One of the ladies' glasses fell off, she was so excited, and Radical went back over the copy and fixed it up a bit, and then interpreted it to the crowd as follows:-
" 8 AJB is telling 8UB-he's a fellow over in Frankfort, York State-mat he has lost the wire off his ishabig arsi, but his sister Tidelle found it under the sink and he gave her a push, and it seems like she was a husky, because she came back at him and stouckaled him in his middle."
"Why! What queer language!", remarked one amazed lady. "They must be quarrelling!" Then turning to her friend, she said, "Stouckaled him in his middle! Don't you think that's a weird thing to do?"

While they were wrangling over this, a hoarse sixty cycle drone rumbled in, and Radical grabbed his plate yariometer and his secondary, and got his bulb oscillating; "Ewee - oocupp -- click - peep - squeep" it whistled and grurgled and clicked. Every note in the musical scale was given a chance. MThe new noises caused everybody to perk up. Radical came back to regeneration and, faintly, I could hear a phone. The modulation was so rotten it sounded like a Chinaman on a drunk. "ONGONGCLICKETY - UDDLE -IGGLE-GISHT -ZUP-SPISHHH—ONGAL HUMGONG SUNGONG ORNOFF-DIDDLE-DEE-DAH-DEE-DAH."
"Somebody talking!" bellowed Radical in a voice that made you wink. His unexpected and stentorian outburst scared one of the ladies blamed near into fits and gave her the fidgets for the rest of the evening.
"Wait a minute!" Radical yelled syain, so loud that you could hear it in the next house. Reaching over to his transmitter, one of those infernal exposed rotary gaps, he threw the switch and the motor gave
a grunt and started. The visitors had the same impulse, only for the door. Reaching for the key, liadical called the fellow with the phone. The first crash from the gap stampeded the whole blame party. Old gentlemen bumped into old ladies, the door was too narrow, and things got rather mixed up. I had to take a hand and comb them out, tell them it was all right, and that it was not an accident that had happened. It was just Radical's gum gap that had been slightly stouckaled in consequence of the pour quality of the ishabig arsi he was using at the moment. This reassured one of the timid gentlemen who came back and nervously explained that he had thought something about the business had exploded.

Radical asked the guy with the phone to call him and give the visitors at his house a chance to hear a radio phone. The guy came hack on the phone in a minute, and after hollering hello several thousand times, Radicai got him where you could make out a little of what he was saving. Radical went back at him with the old screeching gap and asked him to call, on the radio phone, Mrs. Clarence Whitmore by name and $\varepsilon s k$ her if she would like to hear a wireless concert, and then to play one or two records for her.
I could read all this, of course, as Radical clicked it off on the key, but the dear unsuspecting ladies and gentlemen knew nothing at all of what was going on. Radical got the timid creatures lined up again with the little telephones at their ears and told them that he had tuned the phone in and it was much better. They all listened, and smiled at each other. There came a squishing and clicking and a fizzing and a gawdawful blowing of of steam and a crowling old sixty-cycle roar, and then through it you could hear: Hello-hello-hello-one-two-three-four-five-six-seven-eight-nine-ten-hello-hello-hello-just a minute please". The visitors eyes nearly popped out. They could hear the words.
"Why! it's somebody counting!-He's stopped!"
"Shhh" suys Radical, who wanted to be sure that Mrs. Clarence Whitmore got the full benefit of her name being called through the air.
"Hello-hello-hello-one two three four five six seven eight nine ten-hello-hello -hello-Mrs. Clarence Whitmore-hello Mrs. Clarence Whitmore-hello-hello-hello-this is radio station 8ZZZ calling Mrs. Clarence Whitmore--hello Mrs. Whit-more-hello Mrs. Whitmore-would you like to hear a little music by wireless, Mrs. Whitmore-I say, would you like to hear a little music by wireless-hello Mrs. Whitmore-hello Mrs. Clarence Whitmore -I think maybe you would like to hear a little music by wireless, and I will play for you a couple of records so that you
may hear how it sounds-just a minute please."

Mrs. Whitmore opened her mouth and took her phone from her ear and looked as though she had swallowed her gum-drop. She gave a startled yap and then, looking hard at the ceiling, she hollered for hubby, who was smoking and telling stories in the next room.
"Oh Clarence-Clarence-come quickly, Clarence-somebody called me by wireless telephone-Oh dear-I can't get over itcome quickly, and hear it-how in the world did he know where I was-"
"Sshhh" from Radical, for the jazz stuff had begun. It seratched and rasped and jangled away as we all know from a long and bitter experience. Some of the notes were torty times as loud as some of the others, and there were forty other different kinds of noises, and the selection was the rottenest bit of so-called music that had ever been composed, and it was so daggone loud it put your teeth on edge and made you want to commit murder. But it was the wireless telephone and that jet it come in as a winner. The folks stood for it, rotten though it was, sucked it in, and rolled it over in their mouth before they swallowed it. When they got it down they thought it was the grandest thing that had happened since the signing of the Declaration of Independence. They thought Radical was a wizard. His father swelled up so he nearly burst.
"How far away is he?", somebody asked Radical. I happened to know that 8ZZZ

was something under half a mile away. I winced in anticipation of Radical's answer.
"Oh, he's a long way off-for a phone." If I had not been present I believe Radical would have told them the phone was in Japan. The way Radical answered left them with the belief that the fellow at the other end of the phone was at least a thousand miles away.

They hungered for more, and swapped the phones around so that those who had
come a-running could get a crack at it. In the meantime there were probably a couple of DX fellows waiting and cursing and frothing at the mouth. The guy with the awful phone played, and played, and played rotten selections, and the crowd clustered around Radical like ties around the bunghoie of a molasses barrel. Relay traffic look a back seat while the unsuspecting public fought their way to the receiving set and Radical fed them hogwash about amateur radio. You could see the same daggone picture being repeated in ten thousand towns all up and down this great country. I suppose it sells wireless goods, but I want to tell you, it threatens the health of our hitty.
"How far can you send?"
Radical pursed up his lips and replied, "Oh-Texas, Georgia, Connecticut, Oklahoma, South Dakota. A fellow in Maine sent me a card the other day. Said he had heard me on galena."
"Heard me on galena!" Now, what kind of an impression do you suppose these unsuspecting people got from that sentence? Most likely some of them connected it up with a brand of hair oil, others with the name of some Pullman sleeping car, and still others with the name of a yacht. But they sucked it in, just the same, swallowed it line, hook, bait, sinker and would have taken the pole if they could have got it, because it was wireless. The public do not expect to understand anything a wireless man says. They just look Habbergasted and stand by for the next thriller.
"How far can you receive?"
This is our champion bone-head question, as we all know. It's like asking a man how deep can he drink, or how wide can he spit, or how thick can he smell. Radical acted as though he had never had the question asked him before.
"Oh England, France, Germany, Italy, Mexico,.all the ships on the Atlantic Ocean, the Lakes, the Gulf of Mexico. I hear them talking to one another over on the Pacific once in a while."

The lady with the fidgets nearly choked at this. She said she had a friend coming over from Europe next month, and she would love to send her a message. I thought Radical was going to go into the long explanation about amateurs being forbidden to work ships, but thanks be, he did not attempt it. Instead, the lady's remarks reminded him of the commercials and he told them to wait a minute and he would let them hear the ships on the oceans and the lakes. He tuned to 600 meters, and of course the great chorus of 500 -cycle stuff came pounding in. It was a different kind of noise than the visitors had yet heard, and they all crowded in with their heads together, listening and pushing one another.
"What's that squeeky one saying?"
squoke the lady with the fidgets. Radical copied madly, for it was commercial stuff and coming at twenty and better. He wrote a lot of stuff on the paper, and then hove to and glanced it over. It went something like this:- "WWK WWK DE FTR FTR WOTTELL 10 AND 3 STR 177 NYK LOST PREAMBLE AND ADDRESS AMBROSE CHANNEL PROCEED NEW YORK SPUT, ZA.M. TOMORROW QRM QSY 500 K ."

Radical read this off exactly as it appears above and gave the distinct impression that FTR was using profane language and was indignant over ten and three. Radical said this was in radio abbreviation and meant that something important had happened. He yanked open a drawer in the table and fished out a commercial call book. Looking up the calls he said:"That's the Rochambeau, a French ship somewhere out on the Atlantic Ocean. She's asking the Western Queen what she means by giving him ten and three just because he has lost the preamble and address of Ambrose Channel, who is proceeding to New York to sput at 2 a.m. in the morning. The QRM QSY means too much interference, let's change to 500 meters."
This was more thrilling than anything yet. Here was the great Atlantic Ocean, with the ships all talking to one another, and out here in the interior of the United States, a young man was hearing them. It was "uncanny" as the stout gentleman said to the lady with the fidgets.

Just then a shrill b00-cycle note came tearing in, so you could read it all over the room. One of the ladies squealed, and wanted to know what this new one was saying. Radical grabbed his pencil and it went down something like this:-
"CLEAR SORMOR WEST GALE HEAYY SEAS ON LAKE LEAVING repeat cleveland load conFIRM ASHTABULA-."
Some cuarse grained commercial butted in here and Radical stopped copying. He read the message just as it appears, and said, "Of course that is plain to anybody."
The message was just about as ciear as mud. If any man can say what is meant by the combination of words in this message, then I take off my hat to him. He rates a better intellect and a better standing as a radio operator than I do. And yet, because it was wireless, and because Radical looked as though he understood it, and read it off the paper as though only a boob would not get it, these good people accepted it. As a matter of fact it was 100%, double distilled BUNK.

Radical tuned back to 200 meters. It was getting late and the loud ones were commencing to boom in. 9 CP growled in,
(Continued on page f. 4)

Improving the Relay Spark Transmitter

By Sumner B. Young, 1AE

Abstract

This article won the third prize in our recent contest for articles on the ideal spark transmitter. As we said in announcing the winners, Mr. Young's article does not describe the constraction of a station that appenls to us when we think of an Ideal Sparts Set but as an experienca story describing the author's ups and downs in his endeavor to achieve a DX station it is invaluable indeed. Success in spark work is largely a matter of perfection in details. Mr. Young drives that point home and teaches us whero to look for trouble. Every reader of QST will find something in this article that will help him to have a better station.-Editor.

IDO not own an ideal relay spark transmitter, and i have never seen one, either; but there may be something in my experience which will suggest ways and means of improvement to other mateurs who are constantly striving to make their stations more efficient.
There are two ways to improve a wireless station. One can improve the radiating system, or strive to secure periect occordination betweem the transmitting instruments. The ideal method is to do both, for the fficiency of a radio plant is a cumulative affair.

What puzzles a man most is where to begin. Cu-ordination inside the operating room is exsier, for standard instruments are available, and if one is a careful workman, such items as condensers and oscillation לransformers can be built at home. Considerable practical and theoretical data ie available, and it can be applied to almost wy situation, for here we are dealing with matters little influenced by local surroundings. In this field, a good commonsense knowledge of the theoretical side of the art is especially valuable. Many stations are failures because their owners simply tried one thing sifter another without asking hemselves why.

When we try to improve our radiating system, we are up against a more difficult proposition. To be sure, the ideal aerial is a vertical, absolutely symmetrical conductor having extremely low ohmic and high-frequency resistance. The ideal station is located on the level of the ground directly below the base of the antenna, and the perfect ground system is an enormous circular metal plate buried in permanently wet soil beneath the building. Its area is limitless, and the ground lead should be eonnected to the exact centre of the circle. Unfortunately, the amateur has to build his station where he can, not where conditions are ideal. Local, specific, individual difficulties must be overcome. Here, optimism is a great asset. Without it, you may worry so much about what is . Wrong with your location that you will overlook some of its natural advantages, but if you "cash in" on what you do have, you may counterbalance enough shortcomings to increase your range considerably.

When the practical work of improving
existing apparatus confronts us, we naturally desire to spend our time and money to the best advantage. The usual procedure is to bring what apparatus one has up to its maximum efficiency by careful adjustment, and then remedy the most glaring defects both inside the station and out with thoroughness and dispatch. Refinements are instituted as opportunity: affords.
No specific directions applying to all cases: can be given. We are reminded of the "Safety-First" campaigners who started a

The Transmitter at 1AE.
contest to find out how a person could guard against accidents when crossing a street. A small boy sent in this answer: "When you get to the curbstone, stop and look both ways; if everything is all right, then go ahead." The judges knew this wasn't very specific. They decided, however, that it was up to the pedestrian himself to decide whether everything was all right or not, and that the main idea was to get him to pause and look around a bit, so the slogan was adopted.

Before you begin, know what has been tried before. Many disappointments can be avoided and many new ideas gained by assimilating the experience of others.

I first decided that optimism was a yood thing when I was sent to Bath, Maine, in 1917 to serve as Electrician in Charge at a small U.S.N.R.F. station for a short time. The apparatus consisted of a one kilowatt transformex, mall rotary gap, moulded condenser sections of the familiar-
type, and a hinged O.T. It was all amateur apparatus, contributed by the City. The list sounded encouraging, but the apparatus was highly inefficient. The transformer proved to be one of those "trick" instruments that are sometimes let loose upon society. Somebody had wound into it an enormous secondary voltage, far beyond the value determined by its designers. The beautiful moulded condensers had been connected in series parallel to combat it, but they had been blown one by one, and now a few survivors were connected in parallel across the terminals of their tormentor, which had been restrained by an electric fiation connected in series with the primary feed wires. On top of that, there was practically no insulation inside the station or out.
There was, however, one natural advantage that could be "cashed in". The Kennebec Yacht Club, where the station was located, was built partly on piles, for the tide covered a portion of the river bank. It was tasy, therefore, to secure an excellent ground in permanently wet mud and shallow water directly underneath the operating room. Unfortunately, it was impossible to get requisitions for material nlled for a station like ours. What was absolutely necessary had to be contributed by the station force.

Several hundred feet of copper wire were secured, and a ground system was built which made practical use of a hirit which appeared in QST some time before the war.
The Boy Scouts were called upon to help us out, and they eertainly surprised us with their zeal. Every garage in Bath was canvassed for old dry cells, and between four and five hundred were collected. Then the station force began the tedious task of removing the pasteboard covers and scraping the zinc cases bright with a piece of glass. The copper wires were used to connect the negative poles together, and as fast as these chains of cells were completed, they were buried in the river mud.

The main ground lead was a piece of trolley wire fifteen feet long, leading directly upward to the station. The bottom of this wire was connected to a circular row of dry cells some four feet in diameter. The cells were crowded close together along the connecting wire to present plenty of surface to the earth at this point where the density of the ground currents was greatest. Concentric with this was another row of dry cells some ten feet from the foot of the trolley wire, and almost circular in shape. Here the cells were spaced a foot apart along the connecting wire. Extending radially from the trolley wire were four long wires connecting the two circular rows, and running out be yond toward the river. Dry cells were
connected to these wires at irregular intervals. Some sixty feet away from the starting point where deep water was encountered, the wires were connected to bunches of ten or fifteen cells each and the ends tossed into the stream.

Additional ground connections were made to a radiator in the operating room and to a water pipe underneath the building.

When the station was being, tested to see if the increase in "radiation" was very great, we were disappointed, for the insulation in the aerial had not been changed, but during that very test our signals were heard in Boston for the first time.

This experience made me appreciate the importance of a good ground more than any theoretical treatise I ever read. In

fact, this and subsequent practical work has led me to believe that there is no surer, easier, and more economical way of increasing a station's range than by putting in the very best ground that circumstance will allow.
My own station, 1AE, graduated from a one inch spark coil on December 21st, 1919. It is located on the third fioor of my home; and its surroundings are probably typical of a large number of amateur stations, for there was little space to erect an antenna, and none of the various types of buried ground. systems were practical, and an insulated counterpoise was out of the question. Furthermore, the appearance of the house could not be marred by masts which were too obtrusive, and noise had to be eliminated without resorting to ymote control.

The house is on a hill, which is advantageous, but its exposed position called for a mast of unusual strength, and an aerial which would not blow down easily. Some years ago I. designed and built an iron pipe mast to hold up one end of a six wire aerial 250 feet long. It was mounted on a flat roof in the rear part of the building, thirty odd feet above the ground. The photographs and diagrams show its constructional details clearly. It will be noticed that the sections are telescoped into each other and secured by bolts. This overlapping at the joints gives unusual strength. Reducing couplings are almost certain to snap while the pole is being raised. The mast should be erected so that the bolts passing through the pipes merely support the dead weight of the sections above them. Place them at right angles to the direction of the pull exerted by the antenna so that the sections can swing back and forth slightly, around the bolts as axes, and then all side stress is transmitted to the pipes themselves.

It is unsafe to attempt to mount a mast like this on a sloping roof where a good working platform for yourself and your assistants is lacking. It can readily be mounted in a concrete base in the ground.

It is ohvious that this type of mast is good looking, and that it presents little gurface to the wind. Rust is its greatest enemy, and great care should be taken to protect the pipes thoroughly with two coats of good metal paint before the sections are bolted together. The top of the mast should be carefully plugged with a piece of wood, and the joints below caulked with tar to keep water out of the inside of the pipe.

When the ban on amateur stations was lifted, the mast needed a new set of guy wires and a coat of paint. This was managed by hoisting a ladder to the top of the chimney and lashing it securely to the mast. Other ropes were fastened to the ladder like guy wires, but they were not called upon to bear much strain, for the mast held firmly, and the chimney supported the greater part of the dead weight.

Number ten galvanized iron wire was used in place of stranded wire, because the stranded lind had rusted out very quickly before, probably because water collected in the little crevices between the strands. The first section was guyed four ways, and the second three. The wires were insulated top and bottom with large porcelain cleats which were bought at a big electrical supply house in Boston for something like eighteen cents a pair.
I subsequently regretted that I did not replace the iron wire that fastened the pulley to the top of the mast. Later I had to climb the pole hand over hand and bolt a new block into the hole where the old
block's fastening wire used to pass through the pipe. I did have inspiration enough to put an additional pulley onto the mast at the second joint just below the top section, and run a second halyard through it for emergencies.

The aerial was a conventional flat-top thirty-five feet long. It ran to a six foot mast on another flat roof a story higher than the one on which the iron mast was mounted, and a thirty-foot lead-in of number four copper wire connected it to the lightning switch on the window-sill of the operating room which is on the third floor of the house, and on the same level as the base of the iron mast. Insi-e the room, a ten-foot stranded cable made up of four No. 16 copper wires led to the instrument table. The lead-in insulator was an Electrose bushing fastened into a hole cut in a board placed across the bottom of the window. The lower window casement shut down tightly against this board, to keep out the weather.

Although the room was far above the ground, a good ground connection already existed. The instrument table was near a large chimney, and several pipes had been plumbed through the air space around it. Consequently connections to gas and steam pipes were available in the room, and an exposed water pipe in the attic above could be reached by a thirty foot length of copper ribbon. Connections to all three pipes had been made with copper ribbon, half an inch wide, run along the baseboard near the floor, and a main connection ran to the change-over switch on the wall above the table. In addition, there was the standard No. 4 lightning wire running on porcelain knobs down the outside of the building, and connected to a ground clamp on the water pipe in the cellar, on the street side of the meter. This was connected to the other grounds by a copper ribbon.

In my particular case, best results were obtained by grounding onto everything in sight, but this does not hold in every case. Whether it is the best policy or not can only be determined by the "cut and try" method.

After a "BX" cable was fished up through the wall by an electrician, and connection made to the lightly-loaded side of a three-wire system which was available down cellar, the transmitting set was assembled. Before the war, the instruments had been used at the Harvard Wireless Club, and later were sold to 1PM, West Newton, Mass., shortly before hostilities commenced. There was a glass plate condenser of the series parallel type, a small 12 -stud rotary which gave a note of 720 sparks per second, and whose electrodes were filed to knife edges to give a superquick "break", a "near-Telefunken" pabcake O.T., a telegraphy key with extra heavy silver contacts, and a hot wire a
meter reading up to three amps.
The finest instrument was an "old standby" transiormer, one of four which as I understood it were built by Cutting \& Washington for experimental purposes. Roughly speaking, it had a sixty-cycle primary and a 500 -cycle secondary, and although the power factor was not very good, it worked perfectly at high spark frequencies, a radical departure at the time it was designed. The other instruments were not as efficient as could be wished. I planned to eliminate them as opportunity should afford.

The transformer was tapped to draw 250,500 , and 750 watts. When I tried to use the haif-kilowatt tap, it became evident

immediately that the insulation on the O.T. and the change-over switch (which lad a wooden base) was totally inadequate. This was due to the fact that the station was located some distance above the ground, and the voltage in the secondary winding of the O.T. was much greater than it had been at 1LE and 1PM, which were both scated in basements below the level of the ground. A Clapp-Eastham changeover switch and a hinged O.T. had to be installed immediately.

Then the antenna insulation broke down. The aerial was lowered, and four Electrose ball insulators in series were connected to the end of each wire at the farther end of the fiat top where the pressure naturally was greatest, and a ten-inch Electrose insulator fastened to the halyard. At the station end two Electrose ball insulators were used on each antenna wire, and two more on the halyard. Now the insulators in the operating room which gayed the lead-in out from the wall began to spark. The lead-in made sharp turns at both placesswhere these insulators (single por-
celain : balls) were attached, and the voltage at these bends was quite high. This was remedied by making the curns less abrupt, and insulating with three Electrose balls at the first bend just above the operating table, and with four Electrose balls at the second turn six feet farther on.

Thwarted there, sparks began to fiy at the base of the lightning switch which had been mounted on blocks of hard rubber about an inch and a half square. As it was winter-time, I disconnected it altogether.

All these changes lessened fire hazard, but I didn't begin to do "DX" work. My \log covering these first few days is rather incoherent, but one entry is significant:
"Dec. 2!nd. Re-insulated aerial.
Grounded set on tin root, ground-
ing conductor pipe at bottom.
Radiation runs up from 1.6 to 2
amp. on 250 watts.... ."
It is true that my hot wire meter is not of the thermo-coupled type, and therefore not quantitatively accurate, but this increase in its reading was large enough to be striking. The tin roof referred to is a narrow one about two feet wide which runs along outside the dormer windows on the third fioor and extends about twothirds of the way around the main part of the house. The conductor pipes leading down from it are copper, and the one 1 grounded made connection to this narrow roof and also to a much larger tin roof about $70^{\prime} \times 10^{\prime}$ over the front piazza. As not all of the joints in the conductor pipe were soldered, such a marked increase in "radiation" had not been expected. I presume that the distributed capacity of these large surfaces of tin had not been properly appreciated.

It was not until January 17 th that my signals were heard at any distance. On the 20th, a card from $2 B K$ announced that I was QSA, but tuned to 175 meters, where few amateurs could tune their receiving sets.

I had tuned my transmitter by cutting in all six turns available in the secondary of the O.T., and bringing the closed circuit into resonance by holding down the key and varying the position of the sliding contact on the primary by means of the insulated handle. The coupling at the time was about 40 degrees, and the hot wire ammeter was used to determine when the resonance point was reached. No wavemeter had been used to check the wave.

Evidently at loading-coil was neeeded, and a Clapp-Eastham helix was immediately installed. This coil had a beneficial effect beyond merely enabling 200 meters to be reached. It "stiffened" the open circuit, sharpening up the wave. Small changes in wave length could be effected by cutting a turn or two in or out and
merely turning the handle on the primary of the O.T. until the hot wire meter registered a maximum. The coupling did not have to be varied, for the number of secondary turns in actual inductive relation to the closed circuit remained the same, and the latter could be brought to resonance with but a very small change in inductance. It would be possible, for instance, to cut out the whole loading coil and turn the handle on the primary of the 0.T. to a predetermined spot if I wanted to drop down to 175 meters, but this was never done in practice as few stations could tune down that low.

No more improvements were instituted for a few days; then followed a disastrous attempt to muffle the rotary gap by enclosing it temporarily in a cardboard box. The composition rotor melted into a grotesque mass, and my teeth still chatter when I recall the rasping sound she made when she hit the stationary electrodes going 3300 R.P.M. I bought a new rotor and "carried on", but there were other members of the household who regretted the failure of this "great experiment" more than I.
(To be concluded next month)

New Apparatus

THE piece of apparatus we have chosen for this department this month is the first thing of its kind that we amateurs have ever seena short-wave radio frequency amplifier designed for amateur communication, made by the Radio Instrument Co., Washington, D. C .

Briefly described, the instrument uses interchangeable iron-cored transformers for various bands of wave lengths for repeat-
several years experimental work and we are told they work effectively on waves as short as 150 meters. The completed transformers are sealed into a case made of square bakelite tubing, with leads brought to contacts at the ends, so that they plug in to spring clip terminals whereby the transformers between each stage may be changed quickly for various wave length ranges. No details are available on the eonstruction of the transformers but we are

ing between tubes, uses any standard tubes, pither soft or hard detector, and is furnished in various combinations of r.f. amplification, detector and a.f. amplification. Our photographs and hook-up illustrate the type known as JM-3, employing three radio stages, a soft detector, and one stage of audio amplification.

The r.f. transformers are the most interesting feature. They are the result of
informed they can be duplicated effectively only by intricate machine work, so that even if generally known the information would be of little value to amateurs. The regular set of transformers covers 150 to 650 meters, with other sets covering up to $2,000,5,000$, and 12,000 meters, respectively.
The best results are obtained with the use of Radio Audion Co.'s RAC-3 tubes as amplifiers, with a soft tube as detector.

The RAC-3 gets down to the short wave lengths effectively, because of its lower capacity, and the wave length ranges given in the preceding paragraph are with this tube. A-P tubes work well at 170 meters
friends it will find a ready place in DX stations. 5ZA, by the way, has been read four feet from the phones in Washington on such a set working on an overhead antenna.

and Radiotrons as low as 180. A-P and Radiotron valves are preferable where high voltage amplification is desired, altho more careful construction is necessary for such operation. The sets are produced for either style of tube, our photographs illustrating the type employing RAC-3's, which snap into clips on the reverse side of the same mounting that carries the transformers. There are no critical adjustments on the set unless a soft detector is used, where voltage adjustment will be necessary. A hard tube may be used, at a slight loss in sensitivity.

The wiring diagram explains itself. All the amplifier filaments are controlled by one special rheostat, the detector filament by another. A fixed potential of 30 to 45 voits is used on the amplifier anodes but the detector voltage is variable. There is but one other adiustment-the "stabilizer", in essence a potentiometer controlling grid bias on the r.f. amplifiers.

Radio-frequency amplification of course is an extremely desirable thing and we have long awaited it. If this equipment lives up to its appearance and the claims of its

One of the R.F. Transformers and the Mounting on which both it and the tube are help by clips.

Better Sending Set Arrangement

By Carlos S. Mundt, 6AJ

S0 many amateurs make beautiful receiving cabinets and neglect their sending set, strewing the apparatus all over (and under) the table with the lead wires running everywhere that necessity or fancy may require. Just stop a moment, gentle reader, and call to mind the number of amateur friends who have good, efficient, compact sending sets to match the attractive receiving equipment! But there is no reason why every amateur should not make an effort to improve his arrangement, as the writer will attempt to show.

To be efficient a sending set needs just
as much compact arrangement as at receiving set, assuming of course that the individual units are in themselves fairly good. The writer has rebuilt his set along the lines indicated in the diagram and with excellent results.

A cabinet 12 in . wide, 24 in . long, and 6 in . high was constructed of $\frac{1 / 2}{}$-inch maple, the top being cut in two to facilitate removal and the ends inset to allow for the 110 -volt controis. This box was to house the transformer and condenser. The oscillation transformer and rotary were then mounted on the two sections of the top and leads from the inside are brought
thru porcelain tubes which are placed in holes drilled into the cut which separates the top sections. Thus either the O.T. or the rotary may be separately removed without affecting leads to itself or from the transformer and condensers.

Changes will undoubtedly have to be made in the dimensions to suit the individual needs of those who wish to use this plan. For example, an oilimmersed condenser would, because of its shape, require a different construction to house it than the moulded type which was used by the writer. A different type of O.T. probably would require a different length of box.

Whatever the changes in dimensions the advantages remain the same:
(1) Low tension leads all at one end, high tension at the other.
(2) Saving in table space (only 2 sq. ft. required.)
(3) Short leads, making for efficiency.
(4) Main switch starts gap as well as supplies current to transformer.
(5) Gap and O.T. always within easy reach for adiustment.
(6) The top instruments easily and quickly removable when necessary, and with their removal those within are exposed to view.

To m two sections whth porcelon busthengs
in the infe kewireen the two sempons

A Battery-Operated Radiophone

THE accompanying photographs are of a very simple yet efficient little phone set constructed by 5 ZX , Houston, Tex., on which telephony over distances up to 97 miles has been attained. It uses a single b-watt tube, absorption-loop modulation, and a storage " B " battery for anode supply.

The circuit is the justly-famous British aircraft hook-up originally described in these columns by 1DH in July QST. The outer coil is the antenna inductance, and is wound on a Quaker Oats box, while the inner form is of just the right size to slip over a Murdock 43 -plate condenser. A
detector grid condenser is used, with the grid leak consisting of a heavy pencil mark. The inductances shown were designed for rather long wave lengths, 5ZX

using the set on 375 m ., but the circuit is capable of getting down to 200 nicely. It will work with any small power tube or any of the hard amplifier tubes.

Anode supply is obtained from a homemade B battery of 60 lead cells, giving 120 volts. The cells are made of "' ${ }^{\prime \prime}$ by $7^{\prime \prime}$ test tubes, the elements of plain lead strips that have been "gashed" with a knfie to increase the active surface.
(Concluded on page 5s)

The Design of Loop Antennae

By David S. Brown

Presented Before Radio Club of America, Columbia University,
January, 1921.

THE use of loop or coil antennae for receiving is too well known to require any introduction. It is not believed, however, that the design of loops for specific wave lengths and ior various uses is thoroughly understood. The purpose of this paper will be to explain the factors which enter into the practical design.

Loops serve a two-fold purpose. First, they function as antennae for either transmitting or receiving. Second, they may be used to determine the direction in which a wave is travelling.
it is fairly obvious that such factors as gize and shape will affect both the directional and receptional qualities of a loop. Just how these factors together with others, such as number of rurns and spacing, do control and limit the proper functions of a loop will be subsequently shown.

For convenience loops will be considered as either (a) spiral or (b) solenoid. (a) Spiral loops are those which are of the pancake type each turn of which encloses an area smaller than the preceding turn. (b) Solenoid loops are those which are of the helical type every turn of which encloses the same area. Two solenoids mounted at right angles to each other constitute a "crossed coil" loop."

In order to determine the effects due to various shapes many loops have been made and actually tried. In each loop the factors N (number of turns) and A (area enclosed by one turn) were liept constant so that the results served as a fair comparison between the different shapes. In each case the loop was shunted by a tuning eondenser and connected directly to a vacuum tube detector set. The telephone receivers were shunted by a constant impedance reaistance or "audibility meter". The transmitter consisted of a quenched spark set with an aerial of the "umbrella type".

After the signal was toned in, the loop Weas rotated and audibility read at every ten degrees. The audibility readings were plotted on polar co-ordinates. Reproductions of the various shapes and windings are shown in Fig. 1. These curves are not drawn to scale and should be considered qualitatively only.

In Fig. 1 (a) is a square loop of the spiral type; (b) is a rectangular loop; (c)
is the same loop as (b) except that it is turned in a vertical plane so that its longest axis is perpendicular; (d) is a triangular loop; (h) and (i) are "figure 8" loops. (e) and (j) are square loops with "figure 8 " windings; loops (e) and (g) had parts of the windings entirely enclosed in a metallic shielding which was grounded.

The polar curves of loops (a) sind (b) indicate rather broad maxima and sharp minima. Loops (c) and (d) indicate sharp maxima and rather broad minima. Loops (e), (h), (i) and (j), especially the last, show wery little variation between maxima and minima. When the shield of (e) was ungrounded, the curve (f) resulted. In this case the loop effect was practically reversed. (Note: In each case the signal is supposed to be coming along the zere axis from right to left.)

It was found that with almost every loop the signals disappeared when the loop was held in a plane about 80° to the earth as indicated in (m). When the loop is raised to a position parallel with the earth, as in (n), it is practically non-directional and acts as a simple aerial. Further tests were tried to ascertain the properties of loops elevated above ground and placed below ground. In the former case the actions were somewhat erratic; but the tests were too incomplete to be considered. In the latter case no loss in directional properties was noticed in a dugout some twelve feet underground.

The loop of Fig. 1 (k) differed slightly from (a) in that the turns were spaced more and the winding continued further until it nearly filled the area. This loop showed some very interesting features and will be more fully discussed later.

On the whole these tests showed that both for receiving and for direction finding the square loop gave the best signal and quite satisfactory directional qualities.

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

(K)

(M)

FIG. 1

It is apparent that for any given size of loop more turns can be got on a solenoid than on a spiral. Furthermore, the solenoid is less directional than the spiral. For these reasons the square solenoid will be considered hereafter as standard for ordinary receiving, while the square spiral may be used for direction finding.
In order clearly to understand the methods of design it is necessary to consider the theory of lonp reception.

At any instant the value of e.m.f. induced in the loop is

$$
e=N \frac{d \varphi}{d t} 10^{-6}=N A \frac{d h}{d t} 10^{-2} *
$$

where N is number of turns, A is area of one turn, φ is the flux, e is instantaneous value of em.f., h is instantaneous value of fleld intensity, H_{0} is maximum h. For a harmonically varying field

$$
\begin{gathered}
h=H_{0} \sin (\omega t) \\
\frac{d h}{d t}=H_{0} \omega \cos (\omega t)
\end{gathered}
$$

Then

$$
e=N A H_{0} \omega_{i} \cos (\omega t) 10^{-6}
$$

At resonance the instantaneous value of the current is $\frac{E}{R}$

$$
i=\frac{e}{R}=\frac{N A H_{0} \omega 10^{-8} \cos (\infty \dot{ })}{R}
$$

The effective (R.M.S.) current is

$$
I=\frac{i}{\sqrt{2} \cos (\omega t)}=\frac{N A H_{0} \omega 10^{-}}{V 2 R}
$$

The voltage across a condenser is IZ or $\frac{1}{j \omega c}$ so that the voltage from the loop across the condenser (i.e. the voltage which actuates the detector) is

$$
\begin{aligned}
& E_{c}=\frac{N A H_{0} 10^{-}}{V \Omega j R C} \\
& \lambda=\frac{V}{f}=V 2 \pi V(L C) \\
& \frac{1}{c}=\frac{4 \pi^{2} V^{2} L}{\lambda^{2}}
\end{aligned}
$$

Substituting the value of $\frac{1}{C}$ in the equation for E and calling all the constant terms K

$$
E_{c}=K\left(\frac{N A L}{\lambda^{2} R}\right)
$$

The response to any signal, then, may
*For a spiral loop
be said to depend on the value of $\left(\frac{N A L}{\lambda^{3} R}\right)$ This term will be called the "Reception Factor" of a loop. The problem would appear to be to make the largest possible loop in order to have a large NAL term. But on the other hand it may be seen that the reception decreases as the wave length squared increases. And, furthermore, if the wave length is decreased (to increase the reception factor), the resistance becomes very high. It is obvious that the reception factor for each and every loop must be studied in order to determine the best size for any desired wave length.

In the expression $\left(\frac{N A L}{i^{2} R}\right)$ the terms N and A are arbitrarily fixed for any one loop. L (the inductance) may be either calculated or measured. λ is the wave length at which the loop is operated. R, the resistance of the loop at that wave length, is the only undetermined variable. By tests the actual resistances of loops of different sizes was determined. Fig. 2 shows a loop connected in series with a standard resistance, a low resistance thermo-couple and a standard variable condenser. The thermo-couple is shunted by a current-squared meter. A variable freguency oscillator and a wave meter are also indicated. The oscillator was tuned to any long wave length and the loop tuned in by means of the standard condenser. Readings of the meter were taken when various standard resistances were inserted in the circuit. The inductance was then calculated from the relation

$$
L_{\mathrm{cm}}=\frac{\lambda^{2}}{59.6^{2} \mathrm{C} \mu \mathrm{f}}
$$

and the resistance by

$$
R=\frac{R_{\delta_{5}-}-R_{\mathrm{i}}\left(\frac{\delta_{1}}{\delta_{8}}\right)}{\left(\left.\frac{\delta_{1}}{\delta_{2}} \right\rvert\,-1\right.}-R_{\mathrm{t}}
$$

where $R=$ loop resistance
$\left.\begin{array}{rl}\frac{R_{1}}{R_{2}} \\ \delta_{1} \\ \frac{\delta_{2}}{2}\end{array}\right\}=$ standard resistances \quad corresponding meter deflections $R_{1}=$ oesistance of thermocouple.
By making similar calculations of R and L at various wave lengths down almost to the fundamental of the loop circuit and by -plotting the results, curves similar to those of Fig. swere obtained.

Both curves of Fig. 3 are in accordance
with the known facts that near the fundamental period the resistance and inductance are very high and that at long wave lengths both approach the true low frequency values. The value of inductance was assumed to be that shown on the curve at

FIG. 3
a point corresponding to a relatively long wave length. The factors N, A and L being known, the values of R at various wave lengths were read from the curve and the corresponding reception factors plotted. As may be seen in Fig. 4, for any given loop there is a decided maximum in the value of the reception factor.

To determine the best spacing of turns, various spacings were tried. Loops of each size, from four to fifteen feet square, were made and the turns were spaced by successive fractions of an inch from one

quarter to one and one half inches. At each spacing, the reception factor curve was determined. Fig. a shows a representative series of curves for the reception factors of a thirteen foot square loop. The greatest maximum for that loop occurs when the spacing is one inch (center to center of turns). Consequently, one inch may be considered as the best spacing for a loop of that size. The best spacing of all sizes up to fifteen feet is shown in the
curve Fig. 5 and similarly in Table A. In all subsequent tests, the loops were made with the spacing indicated by that curve.

TABLE A.
Best Spacing for Solenoid Loops.
(Center to center between turns.)

Size loop

feet	inches
4	$1 / 4$
6	18
8	
10	18
10	
15	
15	$3 / 4$
18	

FIG. 5.
Thus far has been determined the criterion for loop reception (i.e. the "Reception Factor) and the best spacing for different sizes. The next problem is to determine the size and number of turns to be used for any given wave length or range of wave lengths. As before, loops of various sizes were made and tested over a large range of wave lengths. From the tests resistance and inductance were found and plotted. The reception factor values were calculated and plotted for each size of loop, the number of turns being gradually increased at each test.

Fig. 6 shows a group of curves for resistances of four foot loops up to 4000 meters. The smallest four foot loop consisted of ten turns (spaced one quarter inch) and the largest 80 turns. The corresponding values of reception factor are plotted in Fig. 7. It is obvious that for any given loop there is some one wave length at which the product of λ^{2} and R will have a minimum value. This is clearly indicated by the shape of the curves of Fig. 7. For example, the lower left hand curve shows the reception of a four foot, ten turn loop. The maximum reception factor for that loop (8000) occurs at 800 meters. Below and above 800 , the reception is very poor. For the 20 turn loop 1800 is the best wave length. However, at longer waves this loop is much better than the 10 turn loop and, conversely, poorer at the shorter waves. The 60 turn loop is better than
any of the others except at short wave lengths; while the 80 turn loop is very poor at any wave length. Two things, then, are apparent: (1) For any given wave length and given size of loop, one number of turns is better than any other, and (2) for any given size of loop, one

number of turns gives better results over a range of wave lengths than does any other.

Figs. 8 and 9 are respectively the resistances and reception factors for a 6 foot loop. These curves correspond in general character with those for the four foot loop. Curves for all other sizes are substantially the same and tend to confirm the general conclusions of the preceding and of the following paragraph.

Comparing the four and six foot loops it will be seen that for some range one size is better than the other and vice versa. The general conclusions are (1) that for short waves large loops with few turns are

better than small loops with many turns, and (2) that for longer waves large loops are better than small loops. These conclusions may be checked by referring to Fig. 10.

One series of curves of Fig. 10 shows the number of turns (of loops from four to fifteen feet square) plotted agrainst best wave lengths. From these curves may be
obtained directly the dimensions of loops which work best on any given wave length. For example, for 2500 meters, any of the following could be used: (1) fifteen foot, thirteen turn, (2) twelve foot, eighteen turn, (3) ten foot, twenty-three, (4) eight loot, thirty turn, (5) six foot, forty turn

or (6) four foot, fifty-three turn. Numbers of turns for intermediate sizes, (i.e. 5, 7, a feet.......etc.) may be got by interpolating between the given curves.

The second series of curves of Fig. 10 are the maxima of reception factors for each size. From this set may be found which size of loop is best for a given wave length. In the last paragraph were determined a number of loops giving best results for their respective sizes. Now will be determined which of those loops gives the best results for that wave length. Taking the same example, 2500 meters, and tabulating the points obtained from the second series of curves,

These figures show that of all the possible combinations a six foot loop with forty
turns will give the best reception on 2500 meters.

Similar analysis may be made for any other wave length. The following tables summarize results obtained from different sizes and also indicate in order the best sizes for various wave lengths and ranges of wave length.

TABLE B.
Wavelength Rango for Four Foot Square
Best
Turns Wave Length Range 200-350 250-400
300-800
350-1000
900-1800

TABLE C.
Wavelength Range for Six Foot Square Solenoids Best

Turns	Wave Length	Range
3	220	$1800-400$
6	500	$40-900$
10	700	$600-1200$
20	1400	$1000-2000$

TABLE D.
Size of Square Solenoid Loops for Various Wavelengths

Wavelength Meters	Size Feet	Turns N
50 to 100	$(4$	1

(Concluded on page 44)

EDITORIALS de AMERICAN RADIO RELAY LEAGUE

踢

Let's Cive the Jewelers a Hand

THOSE of you who attended the Chicago Convention will remember an interesting talk by a Mr. Walker, who in the brief time allowed him told you most entertainingly of the efforts and the tribulations of the jeweler who is trying to use radio. It was our good fortune to have a halfhour with Mr. Walker later that week and we learned a lot from him. He is the editor of a monthly magazine that reaches the jewelry trade and he knows his field as well as we think we do our own. We were much impressed with the idea that there is a splendid chance for us A.R.R.L. saen to make ourselves useful to the jewelers and at the same time heip our 0 Wn organization.

There are something over twenty-two thousand retail jewelry stores in this country, and they average three ablebodied keen-minded substantial American eitizens to each establishment. Many of them already use wireless and the rest are hot prospects. The jeweler has been told for ten years by his trade papers that he needs radio in his business; for the reeeption of time signals, to act as a distributing station for the market broadeasts of the Department of Agrculture, etc.

But they have an awful time! They don't know what apparatus to buy, or they buy the wrong stuff, or the book says their aerial must be a hundred feet long while the store is only ninety, and what is a loop anyway? What they need, fellows, is a little of the A.R.R.L.'s help. Any xadio amateur can tell them in ten minutes what they want to know, and they'll appreciate it mightily. They know they need radio but they lack the confidence to jump into it alone. There is where we come in-we furnish the confidence. The ground is already prepared. A little local missionary work will reap a harvest that will astound you.

It's easy to get time signals. We know that, but it's because we know how. The jeweler has trouble because he doesn't know how, or lacks confidence to tackle it unaided. If an A.R.R.L. man would talk to him a few minutes it would all be changed. We need these men, fellows. They are the class of substantial citizens the A.R.R.L. needs for members. If we'll do a little work
in showing them how easy it is to make radio serve them, they'll use it, and sooner or later they'll be actively in the amateur game for its appeal cannot be resisted as we all well know. Local clubs will benefit too, for here will be permanent members who are good fellows and fine mechanics. It will be easy. There are an average of three jewelry stores in a town; after one has secured radio time the other two will not allow him to be the only one to enjoy the benefits and privileges of this wonderful art.
Now! Every member of this big organization ought to consider himself a committee to drop in on his local jewelers and see if they aren't looking for more light on radio, and a hundred to one they are. Give it to them. They're just crazy to find somebody to whom volts and cycles are ax open book and you're that man. Tell them what they need to get time signals and show them how easy it is. Get them for members of your local club and of our A.B. R.L.-We sll want them with us.

You scratch the jeweler's back and he'll scratch yours. And, who knows, maybe he can use that receiving set you'd like to sell.

Our Magazine

ABOUT every so often we get to wondering if all of you fellows are remembering to mention QST whe you write to our advertisers. You know. men, this is your magazine and it's up to you to keep it going. Let's go over the story asain briefly:

The A.R.R.L. is an organization of amateurs. Its purposes are well known. It has a charter but no capital stock. Its members own it, and elect from their number the directors who look after its affairs It's non-commercial and devoted to not one solitary thing except the welfare of its members. It owns QST, which is its mouthpiece. That means that QST is yoursnot idle talk, it really is, for it belongs to nobody else.

QST is just what you make it. It chronicles your activities. The articles are contributed by the membership for the common good. All we do is paste it up and keep it in the middle of the road. It is supported by its advertising-absolutely. Advertising is necessary to its life, and its
life will always be in proportion to its advertising. The latter will always depend on the results the people get who spend their good money with us. Therefore it's up to us who own this magazine to make them glad they're with us.

What must we do about it? It's simple. Support QST's advertisers, the men who make your magazine possible, buy your equipment from them, and be sure that you tell them that it is their advertising in QST which is bringing them your business. Members of the A.R.R.L. get good service from the advertisers, the advertisers always want to know where the place is that will bring them the most results from their money, and it will help to make your QST bigger and better because it will bring your money back to your organization in the form of advertising.

Please don't forget it.

Listening Hours

LAST spring it was suggested that if we amateurs would be willing to forego our brass-pounding a little, and would coordinate our QRX-ing so that all of us in a given part of the country would be standing by at once, we'd have a pretty good chance of hanging up some DX records. So during the summer we asked the bunch thru QST what they thought of the idea-..should we do it or was it not worth the trouble? We got quite a few hundred replies endorsing the idea and agreeing with the original proponent that it was a peach of an idea. And we got not one single word of objection.
So the Traffic Manager framed a scheme, and on page 18 of this magazine for August he published a map, showing the country divided into QRX periods, with a time schedule to go by.
So far, so good. But are we observing them? We are not! Really, why not, fellows? It seems to us to be crackerjack idea, with a handle to it, and well worth the trying. It requires every man to stand by an hour on three nights of the week, linowing that at that time his two-thirds of the country is QRX-ing and thereby creating an excellent opportunity to hear some of the fellows over in the fardistant third of the country. "Distance" is one of the chief charms of amateur radio. We want our receiving sets to be able to pick up signals from a great distance, and when they do we are proud of them; and we want our transmitters to reach out, and no man knoweth the pride of DX amateur in his transmitter! The Listening Hours were designed to help in just this.

Now if we don't want them let's abolish the schedule and stop fooling ourselves. But if we do want them, as we here really believe we do and as so many letters testified, then let's observe them, honorably and
sportsmanlike, and get our neighbors to do likewise. Page 18 of August QST-take a look at it.

The Radiophone

THERE has been lots of talk going the rounds about the radiophone-what a wonderful thing it is, or what an infernal nuisance it is, according to the viewpoint of the speaker or according to what kind of radiophone he has listened to.

Right there is the answer! A real radiophone is a wonderful thing, and the high class concerts broadcasted on schedule by stable firms are doing more than any other single factor to bring into this fascinating game of ours the type of people we want. The prime aim of our ARR.L. is the furthering of Citizen Radio und we look forward to that day when every home will have its radio installation-when powerful central stations will broadcast news. concerts, lectures, entertainments, and everyone may get them without stirring from his living room. That day is coming.
Nor have we anything unfavorable to say about the experimenter-more power to him. By his efforts may he continue to improve our art. But the amateur concert fiends! How do they get that way? It looks as tho every bird who assembles a radiophone feels a heaven-sent inspiration to "favor" the community with music, without any regard whatever to the awfulness of the modulation, the ungodly supply ripple, the travesty on music which his alleged phonograph grinds out. Honestly we have seen some of these ginks with one-half of 60 -cycles on the plate and a microphone in the ground lead, grinding out their terrible QRM for two hours per night on schedule, and blessed if they didn't think they were doing the community a big favor. With this sort of thing we haven't the least bit of patience, and we think it ought to be handled the same as any other sort of deliberate QRM.

However, there are many amateur installations capable of giving good music and many amateurs who like to listen to it. In a number of communities it has been found desirable to set asside a definite place in the evening's schedule for phone concerts. and this, like the general scheme of dividing working hours, is something for each community to determine aecording to its sentiment.

For the handling of relay traffic the telephone 80 far has failed miserably, and it isn't at all likely that it will ever come into any general use for that purpose, mainly for the big reason that any telephone set is capable of covering three or four times its phone range when used
(Concluded on page 51)

With The Radiophone Folks

THIS is the humble beginning of a department which will be devoted to the interests of that constantlyincreasing army of Citizen Wireless amateurs who are primarily interested in the reception of radiophone broadcasts.

First and foremost we will endeavor to present here the schedules of the better class of broadcasting stations. The few we list this month by no means cover the field. Suggestions from readers as to where more information on such broadcasts can be obtained will be appreciated.

And then we want to tell in this department of the novel and interesting features of coming affairs and of those of the past month as well, and to present non-teshnical articles that will be of help in this line of work. Suggestions and ideas will be welcomed.
(A word to the brass-pounding old A.R. R.L. gang: You must know a dozen friends who are interested in receiving radiophones. This is a department for them. Please tell them about it; they will need QST and we want them as members.)

Grand Opera on the West Coast

On Sept. 29th radio stations within a radius of a thousand miles from San Francisco were treated to a wonderful half-hour of grand opera sung by stars of the Scotti company from station 6XG of the Leo J. Meyberg Co., thru the cooperation of the latter company and "The Bulletin", the largest evening paper in San Francisco.
The stars of the evening were Mmes. Queena Mario and Myrtle Schaff, who with Joseph Hislop and Mario Laurenti made up a quartet. The program consisted of three numbers: "La Donne e Mobile", from "Rigoletto", sung by Hislop; the "Toreador Song" from "Carmen" sung by Laurenti; and the quartet from "Rigoletto", probably the most famous of all quartets and a thrilling, inspiring thing, sung by all.

The entire Pacific slope was hushed for this periormance. In many cities there were parties of up to fifty listening at a single station, and it is conservatively estimated that at least eight thousand people heard it.

A station similar to the one which sent out this concert has been installed by the Meyberg ©o. in Los Angeles, on the roof of Hamburger's Department Store. The Hamburger people are so much enthused over it that they have opened a free school
for instruction in radio, with an accomodation of 350 pupils a week.

Electionepring by Radio

For the first time in the history of electioneering, candidates were able to talk to the public without the latter leaving their homes, when arrangements were made in Pittsburgh by the Westinghouse Electric \& Manutacturing Company to send broad-

Miss Dai Buell
-Photo by Bachrach
cast by radio the speeches by the condidates. The nominations for mayor proved a very bitter fight in Pittsburgh recently, and radio was called into play to get the messages of the candidates to the people. In this way thousands of persons were addressed at one time without the inconvenience of leaving their own radio set. Each candidate for mayor was sent to the broadcasting station, where he was allowed five minutes to tell the reasons why he should be elected to the office. This proved to be quite popular, and excited a great deal of interest in Pittsburgh and vicinity.

Miss Buell Playz for Now England
The first wireless recital exclusively piano ever given was broadcasted Wod.
nesday evening, November 2, from the high-powered transmitting station of the American Radio and Research Corporation at Medford Hillside, Mass.

Next only to the unique method of entertainment was the prominence of the concert artist, Miss Dai Buell, who ranks among the leading pianists of America, according to the musical experts. Miss Buell interpreted the works of such master composers as Beethoven, Schumann, Chopin, Weber and Schubert, interspersing her selections with explanatory talks. Tetrazzini sang by

Miss Buell playing at Medford Hillside.
wireless for the Navy several months ago, but Miss Buell is the first celebrated artist to give a piano recital for the wireless public.

The concert was given in a specially prepared room in which a very large transmitter was placed directiy above the sounding board of the piano. Transmission was on wave length of 350 meters. Reports were received that the music was heard not only by listeners in all parts of New England, but as far away as Canada, Ohio, Pennsylvania, Virginia and ships at sea. A very conservative estimate of the pussible wireless audience was 25,000 . The call letters of the transmitting station where Miss Buell geve her concert are Amrad IXE.

A lot of toiks have had trouble with their loud-speakers. They amplify telegraphic signals all right but the voice is "distorted" so that it barely can be understood. The following article has been written especially for us by a man intimately connected with the manufacture of these devices.

Making the Most of Your Magnavox

By Herbort E. Metcalf*

N common with all new and unique electrical apparatus, the Magnavox electro-dynamic loudspeaker - the receiver with the movable coil-must be used in the proper manner in order to obtala the truly remarkable results of which it is capable. Many thousands are in daily use, giving wonderful results because their owners know how to utilize them to the best advantage. However, there are a few owners who do not fully understand the operation of the Magnavox, and it is for them that this article has been writter. But in order that you may be able to determine the proper usage it is necessary for you to understand somewhat of its construction and electrical constants.

None of the features of the Magnavox can be compared to an electro-magmetic receiver. Its construction, like that of motor in which the armature might be said to be moving up and down instead of turning, gives it the internal characteristics of a motor. Due to the fact that the movable coil floats freely in a magnetic field there are no pole pieces to hit and the freedom of movement of the diaphragm is limited only by its elastic limit. The movable coil is surrounded by the iron field which has the effect of a closed secondary and ita impedance is very low, about twenty ohms at 800 cycles. That is the reason for the stepdown coil, and also shows you that the Magnavox is a current-operated device and that the more current which can be passed through the little coil the greater will be the response. This stepdown coil reliovef the movable coil of the D.C. component of the output circuit of vacuum tubes. There is no loss in eddy currents in the receiver and its electrical constants are such that a maximum of approximately 2000 milliamperes of voice or modulated current may pass through the Iittle coil. Two thounand milliamperes of current will produce audible signals which can be heard mary miles in quiet surroundings. Any less current will produce signals in exact proportion.

In modern radio-telephone reception there are two desired results-volume, and lack of distortion. Volume I need not speak of, for it is well known that practically any volume desired may be easily obtained from the Magnavox by increasing its input. Distortion, then, is the stumbling block over which a few amateurs and experimenters are having trouble.

It must b_{3} remembered that when the Magnavox was developed there were a radio telephone stations available for the

[^1]amateur to hear. The Magnavox was primariiy developed for public speaking and the reproduction of music from phonograph records. It may be stated on authority of governmental experiments and mivate researches by individuals in no way connected with the company that the oscillograph will show and prove that the electrodynamic receiver distorts received wave forms to a far less extent than any wther receiver or converter ever yet invented or developed, and will reprodiuce the cunsonants T, P, and S over wire lines or wireless perfectly, when used correctly. Speech was perfect over an old wire line from Denver to New Iork with no repeaters, where the Magnavox was used, and the dectro-magnetic receiver
was unintelligible. Why then do we hear distorted woice and music as reproduced from a receiving set tuned to listen to radio telephone speech and music?

The reasuns are many, sume of which you can yourself prevent, and some which must be prevented on the transmitting end-

Let us follow the music or speech at the transmitter. The greatest trouble here is that the man at the transmiting end is usually determined to put into aerial every last bit of power he possibly can. He overloads his plate, doesn't dare to Brighten his filament for fear of burning it out, and in consequence forces his tube to work on an unfavorable part of his tube's characteristic curve-and the result is "rotten". He may over-modulate his set--a common fault

Schedules of Radiophone Stations						
call	CITY	OWNER	WAVE	service	TIME	Range
KDKA	E. Pittsburgh	Westinghouse	330 m .	Music	9 p.m. to 10 p.m. exe. Sun.	1000 mi .
				News	9:30 p.m. exc. Sun.	
				Market Reports	8:05 p.m. exc. Sat. and Sun.	
				Organ Recitals	Sat. 8:15 p.m. and Sun. 4 p.m.	
				Sermons	$\begin{aligned} & \text { Sun. } 7: 15 \text { to } 9 \\ & \text { p.m. } \end{aligned}$	
WBZ	Springfield, Mass.	Westinghouse	375 m .	$\left\{\begin{array}{l}\text { Concert } \\ \text { Sermons }\end{array}\right.$	Mon., Wed., Fri., 8 to 9 p.m. Sun. 8 to 9 p.m.	150 mi .
W.JZ	Newark, N.J.	Westinghouse	360 m .	Concert	$\begin{aligned} & 8: 20-9: 15 \text { p.m. } \\ & \text { daily } \end{aligned}$	300 mi .
1XE	Medford Hillside, Mass.	Amrad	350 m .	Music	Wed. evenings	
				Scrmons	Sun. evenings	
				Police Reports	$\begin{aligned} & \text { Daily } \\ & \text { p.m. } \end{aligned} \text { at 7:45 }$	
6xC	Galifornia Theatre, San Francisco	Atlantic-Pacific	1250 m .	Concert \& News	Daily exc. Sun. for 30 minutes starting 4 p.m., 7:15 p.m., and 9 p.m.	1000 mi
6XG	San Francisco	Meyberg:	850 m .	Press Weather Grain Produce	Daily exe. Sun., 4:30 to 5:30 p.m. and $7: 45$ to 8 p.m.	1000 mi
				Concert	Mon., Thurs, Sat., 8 to 9 p.m. Sun. 10 to 11 a.m.	
6XAK	L.os Angeles	Meyberg	266 m .	Concert	Daily exc. Sun., 4 to 5 p.m. Mon., Thurs., Sat., 8 to 9 p.m.	500 mi .

- and get plenty of noise but poor music and speech. If he builds his own set the electrical characteristics may be such that they in themselves cause the distortion, and nothing ean prevent it except proper design. These operators would be aghast if they could compare the oscillogram of their microphone circuit with the antenna modulation curve and see the enormous distortion between the microphone and antenna.

Let us say, however, that the music and speech gets into the air in a fair manner and sounds good on a crystal and a loose coupier. Why is it so poor when it is loud? Why does one station get it loud and good and the next one loud and poor? In order, there are many things to watch. The receiving set is a great offender. Regeneration absolutely spoils music and speech. Not alone its characteristics but it makes the speech JUMPY. It goes along all right until the speech is loud and then blares out with two or three times the proper volume-the tube slops over and becomes more sensitive to loud impulses than to small-mit is set too close to the oscillating point. Besides, voice and music have no business chasing around back and forth through a receiving tube as well as being rectified-they have too many delicate harmonics and overtones the loss of which is fatal to good reproduction. So those of you who attempt to get volume by maximum regeneration should set way off from the oscillating point and make up, later in volume. A loose coupler or in fact any receiver with a straight detector will be much more satisfactory for receiving voice and music. That is why the youngster with a small set gets better music and speech than the larger and more complicated regenerators, but of course much weaker.

Next come the amplifiers. How many amplifiers are in use at the present time that were designed with any thought as to distortionless amplification of VOICE or MUSIC? They are for signals and distortion does not show there. When the Magnavox Company wanted a vatuum tube amplifier to amplify the voice for public speaking they had to design it especially for that purpose, and internal circuits, grid potentials and amplifying transformers were entirely different from those of any other amplifiers. One of the big factors in distortion is in the amplifying transformers, and it is to be hoped that they all in the near future will be designed to the end that no vnice or music distortion is present. The Magnavox Company after years of experimentation developed a transformer which was most satisfacto y for this purpose, and have always obtained excellent results in voice and music ampiification. In deference to the many requests the Magnavox Company has designed a power amplifier for the distor-
tionless amplification of music and voice and will soin announce these amplifiers through the advertising columns of this magazine, it a reasonable price. The secret is in the design of the transformer, and it is surprising that more manulacturers have not entered this field.

After the proper design of the amplifier comes the tubes. It is manifestly against good reproduction that many stages be used, and three stages of audio trequency amplification are all that should ever he used for this work. Two stages are usually sufficient. Volume is ohtained by the use of high plate voltages and the Magnavox. It must also be noted that tubes MUST NOT be overloaded, as an overloaded tube ALWAYS causes distortion.

How many of us know that any transmitting tube is an excellent simplifier? Transmitting tubes of any make may be used at their rated plate voitages $O R$ UNDER-with very little distortion of any kind. Underload your tube, not overload it. and you will be surprised at the clearness and distinctness of speech, and-if transmitting tubes are used-st the volume. Transmitting tubes, with proper amplifying transformers, will make up an ampliiier which will not distort what it gets, within the limits of possibility.

To sim up the way to get maximum results from the Magnavox-be sure that grod music and speech is coming in; receive it and rectify it without regeneration, or at least very little; amplify it in a few stages, using proper transiormer coils with tubes not overloaded, transmitting tubes if yreat volume is wanted, and turn it loose through the Magnavox, which will speak out with what it gets-if it gets rood speech and music with undistorted modulated current you will hear good speech and music; if you feed it rotten and badiy distorted modulated current it will taik up rotten-as it reprcduces what it gets, does not distort in itself, and depends on the auxiliary apparatus to give it good stuff. You mustn't expect your telephone on your desk to talk English to you when Chinese is spoken into the other end, and no more should you expect your Magnavox to give you gorid music and speech if you pour badly distorted modulated current into it. Use your scientific knowledge and have your set right and you will be more than surprised to find that your Magnavox has followed suit.

NOTICE

On page 60 of (aST for August, 1021 , in the "Communications" section, there was published a resolution received from the Atlanta Radio Club, Atlanta, Ga., relative to the activities of one R. E. Autrey of that city.
(Concluded on page 66)

The Operating Department

F. H. SCHNELL, Traffic Manager
1045 Main St., Hartford, Conn.

Look over the figures in the appended table and see where your division stands. Do you know that you can heip your division in the percentage of traffic handled, by reporting your traffic? That is what counts and while the above figures show the work of the past month, they are not at all conclusive because many individual reports are missing.

Because of pressing school work, Mr. E.

Message Traffic Report by Divisions. OCTOBER

DIVISION	C.W.				SPARK		TOTAL			
	Stns.	Msgs.	M.P.S.	Stns.	Msgs.	M.P.S.	Stns.	Msgs.	M.P.S.	$\%$ TFC
Central	14	507	36	36	2106	89	59*	2866**	49	. 332
Atlantic	20	581	58	40	2183	55	50	2764	55	. 320
New Eng.	2	105	53	10	1046	105	12	1151	96	. 134
W. Gulf	0	0	0	10	621	39	15	621	39	. 072
Delta	1	6	6	8	343	42	9	349	38	. 040
Northwest.	0	0	0	6	240	48	6	290	48	. 034
Ontario	0	0	0	1	202	20%	1	202	202	. 024
Roanoke	4	100	25	2	100	$51)$	6	200	38	. 023
E. Gulf	3	182	61	0	0	0	3	182	61	. 021
	34	1481	44	119	6891	58	162*	8625*	53	1.000

*Includes 253 msgs. handled by 9 stations not designated as spark or CW.
M.P.S.-Messages per station. \%TFC--Percent of total month's traffic.

Total messages, spark, 689182.8%.
Total messages, CW, 148117.2%.
Divisions not shown did not send in a traffic report.

Every month we will show the percentages according to this form and it is up to you to raise your percentage. YOU, the individual amateur, are responsible for the position your division holds. Are you a worker or a drone?

Also note that only 17% of the trafic was handled by CW, but that is not discouraging at all. Before the war spark handled 100% of the traftic. We shall see how long it will take CW to pass the 50% mark. And too, consider how many more spark stations are in operation. All that we need right now is a little "push" behind the CW men ard get them to report their traffic. Competition will run high as each man, whether he operate spark or CW, will do his best to aid his cause. We say to you both, "come on and show us".
Individual honors belong to the Atlantic Division again. Trube, 2BK, gave 2OM a hard run but could not quite make it.
H. Merritt has resigned as manager of the East Gulf Division. No one can detract from the excellent work done by Mr. Merritt in actually putting the East Guif Division in the lime-light We will miss you, OM, but you have done your bit and we all wish you well. Mr. B. W. Benning succeeds Mr. Merritt and was elected by popular vote which is somewhat of a departure from the former policy. Heretofore division managers have been appointed but now each and every one of you have had your voice in the matter and since Mr. Benning was the choice of the majority we need not express the wish that you will support him to the utmost, which means 100%. Give him the reborts and you will find a report every month in QST. Every little bit of information that he receives is of value.
Next month we will announce the name of the man who succeeds Mr. A. E. Bessey
of the Pacific Division. Mr. Bessey resigned because he teels that any work for the A.R.R.L. should be done well and he cannot give the necessary time to do the work well. "Sunny dim" is the idol of every amateur who has had the pleasure of meeting him and once met is never forgotten. Whenever we met Mr. Bessey he had it ladiating smile that reached our hearts and made us feel that we had gained a real friend and brother. The fact that he has resigned his pusition as Manager of the Pacific Division does not mean that we will not hear from him. In fact we know that when we need him he will be ready to do his part in any and all A.R.R.L. affairs.

Every divisiun manager seems to be having difficulty is gathering his reports. Why don't YOU relieve your division manager of that worry? Why not get your reports in on time? Why put it off until the last minute and wait for him to send you a special request? Show some signs of life and don't wait to be asked. Take it upon yourself to send your report to him in sufficient time for him to study conditions in his division. When you report your message traffic designate whether messages were handled by spark or CW. You have nothing to be ashamed of when you forward your report. Feel proud of the fact that you are doing your part regardless of wiat the other fellows do. Get after the fellows who do nut make a monthly report. Show them what you are doing and insist that they help increase the percentage of their division.

We have one new report this month the first one from the Vancouver Division under the acting managership of Mr. R. Anderson, Manager of the Alaskan Division. Without material a report is not interesting, but a new born baby does not use a knife and fork either. All of the divisions were in their kid days a few years ago. Look at them now and feel proud of the fact that the A.R.R.L. has made relay work and amateur radio just what it is today.

NORTHWESTERN DIVISION

J. D. Hertz, Mgr.

Eastern Washington, H. E. Allen: Eastern iraffic is somewhat divided at the present time between $7 \mathrm{ZS}, 7 \mathrm{FJ}$, and 7 NL , but is moving much better. Most of the eastern traffic goes via TYA and $\%$ XD. Southern traffic moves with ease and regularity. Seattle is rather hard to work during the winter. 7 YL will open up on 375 meters by the time this report is in print. Total messages for the district- 85.
A. A. Thibodo: In general, conditions have been much better. 7 KS is back again but is QRM'd from harmonic̣ from NPE. 7 HD is using a 5 watt CW set.

Seattle: Traffic is on the increase in these farts. 7 IU has been doing good work but is out with a crippled Dubilier. 7 BK handled 104 last month. East bound traffic goes via $7 \mathrm{NL}, 7 \mathrm{ZM}$ and 7FI. Traftic io the south yoes to 6 VX who is doing good work in keeping hooks clear. Canadian $9 B D$, ex $5 B R$, is on regularly but he seems to have difficulty in working Seattle stations. Reports come in quite often from Alaskan commercials that 6th district stations are being heard. Alaska needs a good receiver and if one is lucated we can hook up with what amateurs there are in that part. No report from Tacoma. TIY handled 17 messages.
$7 \times D$ is credited with 84 messages. He clears with 7 ZM, GEE, and 6ALE. It is requested that all traffic thru Montana be routed over Trunk "A" via 7 XD until further notice. 7 EX will use CW in addition to tre old spark set. 7 DJ reports nil. 7 ZG has been forced to move his set because of induction. ${ }^{2} \mathrm{LY}$ is making changes that will put him in the rock crusher class. (More power to you, ОМ.-T.M.)

ONTARIO DIVISION
 A. H. K. Russell, Mgr.

Rogers, 3BP, is the only one who sent in a report for this month. Other stations have been active, but no reports have heen received. $\% \mathrm{BP}$ reports as follows: A total of 202 messages was handled this month which is by far the greatest number ever handled in si single month st this station. In the N.Y.C. district, traffic was cleared chiefly with $20 \mathrm{M}, 2 \mathrm{AIM}, 2 \mathrm{BK}$ and 2 FP . 8AWP cleared ior Central N.Y. and 8AHV for Western N.I. To the east most tramic was eleared thru LARY, IGM, IZE and 1AW. Most of the southern traffic went thru 8SP or 81 W . Western traffic goes thru 9ZN, 9AAW, and 9FS. The CW here clears traffic with N.Y.C. slations when QRM is bad.

EAST GULF DIVISION

B. W. Benning, Mgr.

In the absence of a division manayer, City Manager Hodge of Savannah sent his report direct which follows: $4 \mathrm{GL}, 4 \mathrm{FF}$, and 4 BY have been burning the midnight oil handling traffic. 4GL handled 94 msgs ; $4 \mathrm{FF}, 73 ; 4 \mathrm{BY}, 5.4 \mathrm{BY}$ has been operating only two nights but we promise at real report mext month. ©. J. White, 4DT, says that the East Gulf Division is going to be the top-notcher in CW. The sparks will be upheld by $4 \mathrm{GN}, 4 \mathrm{DH}, 4 \mathrm{BQ}$, and 4 FD .

ST. LAWRENCE DIVISION

A. J. Lorimer, Mgr.

CW is progressing very well in spite of
the fact that we have only the high power tubes available. 2 BG using a VT-14 has been reported in Burlington, daylight. 2BR and 2DD have installed 75 watt tube sets. 2 AK with his spark has worked 8XE quite consistently. eCI keeps a schedule with 1AZX in Buriington. 2AS is putting up a new cage antenna. 2BF keeps an earlymorning watch from 2 to 3 oclock and has repeatedly worked 1SN, $1 \mathrm{TS}, 3 \mathrm{HJ}, 8 \mathrm{AWP}$, 8 LX , and 8 Q V . Efforts to work 8 BP failed. 3 BP is heard in Montreal but Montreal stations are not heard in Toronto.

MIDWEST DIVISION
 \section*{L. A. Benson, Mgr.}

The only report received this month was from G. ऊ̌. Turner, Dist. Supt. of Western Missouri. Kansas City is beginning to come to the front for the first time since the war. $9 A H Z$ on spark and $9 A Q R$ on CW are doing good work in K. C. Mo., while in E . C. Fas., 9DPE, $\triangle A M D$, and GAVN are holding their own. GAQR is reported QSA in the 5th and 8th districts while using one 5 -watt tube. 9 YM and 9 MC clear during the daytime to 9 AVK , GAQR or 9ZAD who then clear to the west via 9 BT ; north via 9 YO . In this way traftic moves in the day time thru fllinois, Missuuri, Kansas, lowa, and sometimes Nebraska. The entire Midwest Division is connected up during daylight.

At Ft. Leavenworth, Kas., a 100 watt CW set is in operation with the cail AAT.

Efforts are being made to line up 9 YN and 9 YV in a schedule with all amateurs in the vicinity as soon as 9 YV gets settled in the new location.

9 EX is doing fair work on CW, as is 9 FL . No reports have been received from other stations. A total of 257 messages is reported tor this district, with 9 YM in the lead credited with 123.

DELTA DIVISION

J. M. Clayton, Mgr.

The Division is rapidly regaining those activities which mark the "on" season in radio. Enthusiasm and "pep" are prevalent characteristics. Traffic is being handled to all points without difficulty despite the fact that more of the stations in the division are not in operation yet.

Tennessee: Hutcheson turns in a very interesting report. 5ER, Johin E. Cain, Ir., has been appointed City Manager of Nashville and reports several CW stations in operation in that city. 5ER is back on the air on spark and raises quite a rumpus. Glad you are back, ER. 5FV at Nashville is on the air regularly now and is doing splendid work. Both FV and ER have handled considerable traffic. 5EK is heard on the air continually and creates some noise. He is one of the most consistent Tennessean stations BUT why not a report
once and a while, EK? 5XK at Knoxville is reaching out very well and has been appointed Official Relay Station for his City. Chattanooga has been very quiet all along, lately. However it has begun to come to life, and $5 \mathrm{MB}, \mathrm{B} . \mathrm{F}$. Painter, has been appointed City Manager. 5DA is dividing his time between spark and his 50 watt tube set. Makes a fine noise on cither one down this way. DA has been busy getting the hook cleared off and has handled considerable traffic.
Louisiana: 5ZAB in this territory is raising regular sand with his new Grebe sink gap. ZAB can be heard every night now and is handling a pile of traffic north, south :and west, and would capture first place in the "most consistent" column if it wasn't for that little brunette! Chas. P. Johannsen, 5HW, of New Orleans, has been appointed City Manager of New Orleans. ईYL at Thibodaux seems to be a must efficient station. One operator from 5 ZAB goes down to 5YL oecasionally and works the set. Retter have a regular op at $Y \mathrm{~L}$ soon tho. 5 ZP our Assistant Division Manager is now 5AA pending the renewal of his special license. Everything at 5AA is back in shape and we can tell you the whole works down here is mighty glad to hear deBen going again. Comes in with his former pep, and already has handled a stack of misgs. FB OM.
5.JD, C.M. of Little Rock, reports everything shipshape in his tervitory. 5.JD and 5ZL have a QRM-less schedule whereby one station works one night and the other the next. In addition to cutting down QRM it forces them both to go to bed every other night! Mrs. 5.ID is rapidly becoming SOME op. Can copy about 12 w.p.m. now and will soon be on the air along with JD. New station, 5SM, opened up at Little Rock. Owned by Dr. L. M. Hunter and manned by Dr. Hunter and 3-stepCarrington, our local commercial opr. Haven't done much work yet due to the untimely end of a Dubilier, but Doc has a 1 KW , Sink gap, etc. and a fone set. Another new station at L.R., 5RO, doing DX work first night of his operation. A radiofone set has sprung up at Ryan, Ark., 5 SI . Using one 5 watt tube, but comes in fine. EJD has installed a new Radio Shop 1-24. receiver and is so completely outclassing 5ZL when it comes to receiving that 5ZL will shortly go out of business.(?)

No report received from District Superintendent of Mississippi.

CENTRAL DIVISION

R. H. G. Mathews, Mgr.

During October message traffic has practically equalled average winter records. During the summer months the maiority of the traffic was handled by the C.W. stations. Spark stations are coming into their
own again with the approach of favorable operating conditions and a great majority of our messages are going forward by this method of transmission although the CW stations are still getting out as well as ever. A great general improvement is manifest in the co-operation between the District Superintendents and the various City Managers but there are still a number of our City Managers who are not sending in reports and getting message reports from their own and surrounding stations to us in time for inclusion with our division report. It is very important that we have an authentic report of the total messages handled by spark and CW in the division and we again want to urge that all our stations see to it that reports are in the hands of the proper District Superintendents not later than the 20th of each month.

Northern Indiana, M. W. Hutchinson: The district of Fort Wayne is getting the CW fever and many of the fellows are installing small tube sets which are doing good work. Spark, however, has handled all of the trafic so far. Only one report from Ft . Wayne, 9 ME , who still reports fellows do not turn in their reports to him. You fellows in Fort Wayne-why can't you turn in reports to your city managerwhat is the use of your handling messages at all if you can't turn in some sort of report? Please try to help us out in this. 9 FS , Goshen, reports weather very poor the last month. 9 FG has gone to Purdue where he is one of the operators at 9 YB. 9 ALY is getting in shape for the season. Several new stations have been erected; one in particular, 9 DBW , at Nappanee, Ind., should be doing good work in a short time. Old 9DF at Angola promises to be back on the job this winter. No trouble has been experienced in working over all routes in the district and messages have gone through in great shape.

Toledo District, K. E. Duerk: Efforts are being made to ascertain which of the old stations can be relied on this season and what new stations can be used. Several new appointments have been made. 8BET, E. E. Alden. Toledo, has been appointed to take care of Toledo He has a 50 watt CW set, and has been handling traffic with other 8 stations. SBOZ, J. Milton Moran, Sandusky, will take care of traffic through that city. He has a 20 watt CW set, 8VJ has a 50 watt which puts out 5.5 smperes and is QSA over the eastern half of the country. Te is working regularly with 9AMB, Uenver, Colo. 8 ZN states that he is getting traffic into Detroit OK through 3ZZ, both using CW. He is now equipped to QSY to 375 meters on CW when stations request same. There has been some dificulty in getting traffic off to the western part of the state, but I am putting 8 ZY in trim again, so that difficulty is remedied. Several of the stations are al-
ready arranging schedules, to facilitate prompt handling of traffic.
Mr. Vickery, C.M. of Bellevue, (Hadio 8 KF) advises that things are on the upgrade in that city. A schedule of working hours is to be arranged for Bellevue with the surrounding stations.
C. C. Endly, C.M. of Mansfield (Radio 82R), says that conditions are rapidly assuming relay manners. Mr. Kemble of 8 AFB has left recently for college, which leaves $8 Z \mathrm{R}$ the bulk of the work.

Toledo District, J. P. Turner: It seems that there is still lack of real co-operation between this office and some of our City Managers. I am forced at this time to advise that unless reports are received on time, and more interest shown, it will be necessary to make some changes in the staff of this section of the Toledo District. New let's avoid changes. I request that men who can handle City Manager appointments and trafic appoinments in this section write me at 681 George St., lyde, Ohio. I am badly in need of men in several of our best towns and I want to get in touch with some live ones.

Miami Valley Dist., Mr. \& Mrs. Shas. Candler: A number of stations have not yet gotten into their full swing and are delayed in getting their apparatus in first class shape by lack of minor apparatus, blowing down of antenna poles, theft of instruments and one thing and another. Reports from Cincinnati are better every month, showing more enthusiasm and more activity. This is probably partly due to the opening of a route into the southern states via Cincinnati. These stations seem to be able to work south very well and therefore we solicit a share of the southbound traffic for them. Although traffic this month was reported from fewer stations than last, there is a decided increase in messages handled.

No report has been received in regard to the progress in police broadcasts. The District Supervisor of Police Broadcasts has submitted no statement as to whether or not any organization has been carried out. An effort will be made to speed up this phase ot radio and bring it into greater prominence.

Star station for the Miami Valley District is 8 A .1 B , Dayton with 118 messages.

Kentucky, J. A. Kolb: After two months of idleness Kentucky is again on the tir and messages numbering 385 have been hnadled. Sieven of the above messages were handled by a CW station. $9 \mathrm{WH}-9 \mathrm{~V} \mathrm{Z}-$ $90 \mathrm{X}-9 \mathrm{GX}$ are in operation. Mr. Green, formerly of 8ANK, Pittsburgh, has moved to Louisville. We welcome Mr. Green and wish to thank him for the aissistance promised the A.R.R.L. of Ky. Lieutenant Eugene Link stationed at Camp Knox, has a privately owned CW set in operation and
is breaking through. The call is WUBC. Dist. of Wisconsin, B. A. Ott: The number of messages handled this month by stations in Wisconsin were 32 by CW and 58 by spark. This is not at yery good showing but it is believed that it is not a complete report of all stations handling traffic. In the future all relay stations on the Lake Shore route will kindly turn over their reports on messages handled to Melvin Herman, (9FN), Sheboygan, Wisc., who has complete charge of this route in Wisconsin. Stations in Sheboygan, Kenosha, Superior and Milwaukee, should turn these reports in to their respective city managers. All other stations not included in the above shouid send their reports direct to the Dist. Supt. These reports should all be in by the 10th of the month.

The officials of the District of Wisconsin are at present as follows, Supt., B. A. Ott, (9ZY); Asst. Supt., Melvin Herman ($9 \mathrm{~F}^{\prime} \mathrm{N}$), Sheboygan, Wisc.; Asst. Supt., N. U. Bishop. (9DV), Neenah, Wisc.; City Managers: Milwaukee, C. N. Crapo, (9VD) ; Sheboygan, J. G. Kraus, (9ACM) ; Kenosha, Ralph Martin, (9GP); and Superior, E. J. Krusel, (9YAC).

Some of our last seasons excellent DX stations will not be heard this year due to departure from the state or attendance at school. Among these are 9ZL, $9 D B T, 9 F Q$. We have however some new ones on the list that are at present doing trood work: 9YAC, 9AZA, 9DMO, and 9DHG. Radio 9XM, U. of W. under the supervision ô̂ Mr. Hansen, will soon be going in full swing again. A new type "sink" gap has been installed in their 1 k.w. set and they have at present under construction eight 100 watt power tubes which will be built into their tube set. Relay traffic, however, will be carried on with their spark set. Three nights a week will be devoted to traffic, Monday, Wednesday, and Thursday after $10: 100$ P.M. 9YAC, Superior State Normal School, has been doing excellent work. They have three operators on the job and the station is working every night but sunday. 9 BM of Wausau is coming hack into the game again, with CW this time.
Conditions in Milwaukee in general are improving very rapidly and traffic is moving in all directions except north. Stations to the north of Milwaukee on the Lake Shore Route seem to be at a standstill. This is due probably to Mr. Burhops departure. Also the Sunday morning clearing schedule is not very well organized at
present. Milwaukee stations are ready to clear traffic Sunday A.M. starting at $9: 00$ and finishing at 11:30. Operation in Milwaukee is controlled by the Milwaukee Radio Executive Councl, an organization in which all the radio clubs in the Milwaukee District are represented. Milwaukee operates under the Chicago Plan and all relay stations should strictly observe the traffic regulations when forwarding traffic through any part of the Milwaukee district.

Michigan, Mr. C. E. Darr: H. M. Pancost, A.D.S., and myself have developed a sure fire daylight route through this

district. We have several trans-state routes and we feel that we are now in at better position to handle the traffic through Michigan. The writer made visits to several out of town clubs and talked cooperation and general club affairs. Find that a great deal of interest is being created in the smaller cities through being in touch with the outside via radiophone. The western part of the state uses spark more than CW but the eastern section uses CW exclusively and it seems to answer our problem very nicely. Several Michigan CW stations are doing remarkable work on relaying traffic.

We now have a thru line to the East via Canada, a thing we have been looking forward to for a long time. This will materiaily aid us in getting traffic through to the east.

8 ZZ is now using a 50 watt CW set and is handling DX traffic much hetter than on spark. 8QY, 8EA, 8LV, 8ZZ, 8VY, 8FI,

8XS, 8ZF, 3CP and 8II are all doing good work in the relay work. Also 8 YN on spark.

The Flint Radio Association is doing big things in a big way trying to popularize radio throughout the small cities. They are giving concerts via radiophone in all the towns near Flint and assisting the people in putting in receivers. It is working out fine.

Mr. Darr has drawn up a map of Michigan routes which we are publishing herewith and want to call the attention of the other District Superintendents to this excellent method of presenting their routes for the information of their entire personnel. We have always been confronted with the difficulty of keeping in mind just where our routes ran while operating our stations.

Ohio is planning a big social get-tngether to be held annually. A committee composed of the various district superintendents has been appointed to take charge of the handling of this function with Mir. J. P. Turner, of Clyde, Ohio, as Chairman. No definite plans have been made and suggestions are in order as to what form the meeting should take, where it should be heid, what speciai stunts can be arranged, etc., and Mr. Turner will be glad to hear from anyone interested.

ATLANTIC DIVISION

Chas. H. Slewart, Mgr.

NORTHERN SECTION

C. J. Goethe, Asst. Div. Mgr.

Western N. Y., Benzee Bros: 326 messayes were handled this month with the majority from 8 AWP of Syracuse, with 211 . SBIN, 8 BSS, and 8 BUM are new stations with two of them CW and QSO Albany consistently. 8AWP is bidding farewell to the old spark. He was known as the big man with the big noise. (He makes more noise on CW--T.M.) Young, City Mgr. of Elmira, reports some traffic. Waverly, Owego, and Binghamton have not been heard from since last summer. City Manager Graham of Rochester has resigned and returned to school. The vacancy still exists. Bissel, 8TY, reports a new station, 8 BQA . Since 8 AGK has gone back to work he will not be on until later in the evening. He has been in the habit of eoming on at :00 P.M. No reports have been received from Lancaster, Lockport, or Niagara Falls. (Everyone had a good time at the 8th District convention. Reported elsewhere-T.M.)

Northern N. J., F. B. Ostman: With the good weather, traffic is being handled consistently over longer jumps. Congestion is being experienced in Atlantic City and Philadelphia. 3 XM and 2 JZ prove good outlets for traffic. The Shore Route still
maintains its gond reputation. Asst. Dist. Supt. Johnson reports traftic as follows: CW-2AWL, 92; Spark-2ASL, 19; 2ARS, 8 ; 2MN, 12. Regular schedules are maintained with 8 DE and 4 GL . Gity Mgr. Erhard of Hoboken reports following messages: 2UE, 30; 2AX, 15; 2.12, 10; 2AUN, 10; 2IJ, 5 ; 2IA, 20 . 2IA is the only CW station, City Mgr. Canfield reports: 2ALY, 27; 2AQU, 14. 20M leads with 512; 2SQ, 32 and 2AJF 80. Total spark770; CW--202.

Hudson Valley, C. E. Trube: The real radio season has brought in more QRM in place of QRN. The Hudson River Route to Albany is clear, as 2BM is back helping 2DA and 2FG. A. H. Winn, 2DA, of Poughkeepsie and R. W. E. Decker, 2UA, of White Plains have been appointed City Managers of their respective places. DAA has arranged schedules with RRM. UARB and $2 B K$ assist in kecping this route open. 2UA has moved and is urganizing the amateurs in Westchester County. 2DA handled 65 messages. City Mgr. Decker of White Plains says that $\% H J, 2 O A$ and $2 D K$ are in commission. 2AID handled 46 m sgs.. and 9DK, 12. Xonkers is doing good wark. 2DN, 150; UA.JE, 90 messages while 2BK tried to cop first prize this month with 442. Total messages for the district--766.

Brooklyn, F. A. Maher: Trafic and QRM are picking up at a terrific rate. 50% of the stations are now using CW. Messages reported, 2PF. 24; 2AMZ, 18; 2KE, 8; $2 R Q$. 52; 2BRE, 4: $2 \mathrm{WB}, 45 ; 2 R M, 76$. No other reports received. 2 RM has İallen for CW. On October 11th 2 BO took upon himself a wife. (OM. when you support both a wife and a radio station you are yoing some.-T.M.) This report appears extremely poor for a city the size of Brooklyn and it's a fact that more traffic has been handled than has been reported, but if you felows do not report it no eredit can be given. Let us have your reports and put Brcoklyn on top for once.

Capitol District, F. H. Myers: 2AWF is reaching out very well, 15 msgs . 8TB will be open every Saturday and Sunday night. 8AOT is also doing guod work. 8 HP is installing CW. 2ABQ is using CW and holds up his end.

New York City, E. A. Cyriax: Total messages, 233, with 2DI, 58; 2LM, 30; 2CT, $84 ; 2 \mathrm{TC}, 61 ; 2 \mathrm{LM}$ is going to break out with CW.

Southern N. J., M. Frye: No report. (Second time, OM. What is the matter? -T.M.)

SOUTHERN SECTION

E. B. Duvall, Asst. Div. Mgr.

District of Columbia, F. M. Baer: Not much traffic has been handled this month. $3 Z Y$ has been away and the general adverse condition of spark stations has been
the cause of inactivity. 3AFU handled 14 msgs.; 3XF, 6; total 20.

Eastern Maryland, (F. Deichmann: 3SQ, 3BJA, 3 AHK, and 3XAA are recent new CW stations. Messages reported: 3AC, 21; $3 \mathrm{HG}, 20$; $3 \mathrm{EM}, 12$; Total 53. 1.t is evident that CW is the solution for DX for this district. 3DW has followed 3 AHK with a CW set and has junked his spark.

Central Penn., H. M. Walleze: Old 8XE is back as grod as ever. $8 B Q$ is rigging up a new antenna 80 feet high. A regular schedule between $8 B Q$ and $8 X E$ is being established between 4 and $5: 30$ P.M. and 8 PQ and 8 HR will act as alternates. 8 XE wants a daylight schedule west, preferably with Pittsburg, and 8 BQ wants one east.

Eastern Penn., S. W. Place: Many new CW stations under construction now will be in uperation very shortly. $8 A D Q$ has been appointed official station on Trunk Line $\$ 1$.

Philly and Delaware Counties, P. Peterson: $3 H \mathrm{HX}$ and 3 BG are the only ofticial stations that are on regularly. Messages reported as follows: $3 \mathrm{BG}, 3 ; 3 \mathrm{CO}$, 30; 8HJ, 116 spark, 11 CW. Others handling tratic are $3 Q \mathrm{QV}, 3 \mathrm{AGN}$, and 3 FS . :HJ handles trafic on schedule with BAIC. :ZZO 41 mses. BAIC works on schedule with $3 \mathrm{HJ}, \ddot{\mathrm{OLM}}$ and 3 ZO . F. DeLong has been appointed Traffic Asst. it charge of Lancaster, as T. A. Aston is out of the game.

Western Penn. District, W. K. Thomas: Efforts are being made to establish new relay routes in addition to bringing the old ones to their own. $8 W Y$ with his CW is reaching out in all directions. 8 DV-CW has handled 36 messages bridging the gap from Pittsburg to Erie. Traffic is handled in daylight with 8FD at Cleveland. Other good stations are 8BJX, 8BHA, and 8ASB. 8 AIO reports 15 msgs . for the month. 8LX works 4 GL consistently during the week ends. Grood work is being done by 8DR, 8CI, 8LF, and 8EW. 8RQ is installing CW. During the past month 8 RQ worked 3DU, 8TJ, $8 J \mathrm{~J}$, and 8 BCI during daylight. 94 messages were handled working $20 \mathrm{M}, 2 \mathrm{WB}, 2 \mathrm{BK}, 3 \mathrm{HJ}, 2 \mathrm{AQI}, 8 \mathrm{AFS}$, and $9 U U$. same good work. Pittsburgh has adopted the Chicago Pian and traffic will go thru much better in the future.

ALASKAN DIVISION
 Roy Anderson, Mgr.

As yet nothing has been heard from any of the Alaskan amateurs as to power of set and their willingness to co-operate in getting thru to the States. As to the latter there seems little doubt of receiving a negative repiy.

As said in last month's report, Mr. McCue of Craig, will be installing a CW set and it may be that he will be communicating with British Columbia or

Washington stations before a very great length of time.

Most of the stations are located in small places, and the mails are subject to a great deal of delay. This prevents a sudden formation of plans, and there seems very little prospect of doing much this winter.

NEW ENGLAND DIVISION

G. R. Entwistle, Mgr.

Amateur radio activities in New England are beginning to open up and club activities are also on the increase.

IDY heads the list this month with 372 messages; 1ZE, 184 messages; 1ASF, 144; $1 \mathrm{SN}, 131 ; 1 \mathrm{CK}, 108$; $1 \mathrm{ANQ}, 74$; $14 \mathrm{~W}, 43$; 1QP, 31; 1AZK, 26; 1BGF, 19; 1BES, 10 ; 1BRW, 9. Other OX stations failed to send a report.
A. D. M. Robinson (1CK), reports: Canadian 3BP is getting to be so common around Boston that no one listens to him much any more; he starts coming in every night around 6 P.M. and sticks right on the job, no QSS. Cumming (ex 1FB, now 1BV) has iust bought a new $1 / 4 \mathrm{kw} 500-$ cycle motor generator for a pair of $50-$ watt tubes and uses the solo-cycles to modulate his output. The spark coil with a large condenser across it, hooked to a tube, is fast faining favor and merely takes your head off at a distance of ten or fifteen miles when you happen on their wave (usually 300 to 350 meters). E. B. Dallin, IFD, has heen doing some very interesting work with a small spark coil $C W$ set which he carries around in his automobile. He has worked distances upward of 20 miles with this set using a small antenna with a total length of wire not exceeding 20 ft. and using the frame of the car as a counterpoise. The tube used is a VT-14 (5-watt). 1CK has had four different antennae up this month but has returned t the old inverted L tope. He now has 1FB's coffin and sink gap but can't use it much because it makes such on explosion when the key is pressed that the whole town thinks the fireworks factory is blowing up again.

1DY has completely overhauled his station and is all ready for the winter rush of tratfic.
D.S. Vermilya (1ZE), reports: 1AZK is the only spark station left in Fall River since 1 AK has gone in for phone work. 1.DT has also changed to CW and 1GZ has not been heard from since last fall. 1AZW is taking Rhode Island traffic now and is always on the job. 1XX and 1RES keep very irregular watch. 1BYS has been taking the New Bedford traffic in fine shape. $1 \mathrm{AMD}, 10 \mathrm{~J}$, and 1 AXD are doing fine work. 1 XAD has communicated by phone with Cleveland. Ohio.
D.S. Randall (1ANQ) reports: Among the stations coming into the DX game we
find $1 B R W$ equipped with a 1 kw Thor. 1BGF has been on the air as usual and has cleared some tratfic between 1ZE and New Jersey. He has installed a CW set with 1 - 50 -watt tube. 1 AW has not been on very much but has succeeded in collecting and delivering some traffic. 1ALP is on once in a while and takes care of Western Connecticut traffic. 1 QP is back on the job at Manchester with CW and is clearing fine from there. $1 A N Q$ is now using 2-50-watt tubes and is clearing traffic from as far as 9AW Canadian to 9AJA, Chicago.
A.D.M. Castner reports Northern New England District in good shape but station reports lacking.

VANCOUVER DIVISION Roy Anderson, Acting Mgr.

At the time of this writing nothing definite has been heard from any of the B. C. amateurs. It seems evident, however, that all will be willing to co-operate, and the writer believes that there are many who have sets the power of which will aid in getting reliable routes established south and east.

Wm. D. Wood, 5BR, advises that he has "installed an efficient and up-to-date amateur set in the Barron Hotel and has worked a few sevens to date." He is using three bulbs and a regenerative for receiving. He expects to put a 20 watt 'phone in in about a month.

DAKOTA DIVISION Boyd Pheips, Mgr.

Stations in this Division are on the air in greater numbers than ever before. It was predicted by some that by this time spark would be almost entirely out of the game. Such is not the case, however, as the CW has not superseded the spark in all of the stations. There are many five and ten watt stations scattered in all parts of the Division.

9XI has been on the job quite regularly this fall handling traffic and broadcasting football scores. Weather reports and closing prices of wheat are broadcasted every evening at 8:30 on spark. In order to get an idea on the reliability of the communication and the value of the broadcasts Prof. C. M. Jansky wishes those copying the reports to address him at the Dept. of E. E., University of Minnesota, Minneapolis.

9 ZT has been out of the same since last spring due to remodeling of the municipal building but is now in operation in room 402 Courthouse, Minneapolis. A spark set is now in operation and a two 50 watt tube set nearly completed.

Mr. Hector Skifter, 9 YAJ, of St. Olaf College, Northfield, Minn., has been appointed District Superintendent of South-
ern Minnesota to succeed H. R. Hall who lacked time to carry on the work. Mr. Skifter already has quite a line on the stations in his district but wishes all others would write him as he has some good dope on branch routes and broadcasts. On Septemiber 1 st there were 108 licensed stations in the Twin Gities.

We greatly regret the loss of W. Cecil Bridges, 9YAC, A.D.S. of Northern Minnesota. Mr. Bridges has been transierred from the Naval Radio Station at Duluth to the west coast, but the memory of him as an ardent relayer and A.R.R.L. man will linger long. (CUL?)
E. S. Leavenworth, $9 W U$, reports 9LW, 9DOC at Minot, gYAF at Pembina, and 9 FX at Jamestown are the best DX stations in North Dakota. The best outlets west are thru $7 \mathrm{EX}, 7 \mathrm{LO}, 7 \mathrm{ZU}, 7 \mathrm{ZW}$, and 7 ZO , all of whom are QRA at Ellendale, N. D. 9 WU has worked quite regularly with 5ZO, ZB1, and to 7 FQ on the west coast. The new 9ZX will be operated by both 9WU and 9 EE , this winter.
N. H. Jensen, D.S., Box 894, Sioux Falls, S.D., reports that 9 YAK, Yankton College Radio Club, is getting out good which is too late notice to many of us who have spoiled several sets of oilcloth diaframs.

WEST GULF DIVISION Frank M. Corlett, Mgr.

The good old radio weather is with us. Traffic is moving in fine shape all over the division. Traffic appointments made during the last month:

Asst. Div Mgr. L. B. Henson, WRR, has appointed SZX, A. P. Daniel, Houston, Texas, and SZAF, Wm. P. Clark, Waco, Texas, official Police Broadcast stations to work in connection with their local police and to form a part of the division police broadcast system being worked out.

District Supt. Ed. Nettleton, 5 ZN, Eagle Pass, Texas, announces the appoiniment of L. D. Wall, 216 Yereida St., San Antonio, Texas, Asst. Dist. Supt., Southwest Texas District, San Antonio Territory; and the appointment of G. D. Rayburn, 1134 W. Agarita Ave., San Antonio, Texas, as City Manager of San Antonio.
Reports of the various Sections follow:NORTHERN TEXAS SECTION
H. P. Heafer, Assi. Din. Mgr.

No Report. Report of Dist. Supt. Guy Neel, $5 \times \mathrm{JJ}$, North Central Texas Oistrict, found its way to the D.M. somehow. Dublin wants to know what's the chance of a good relay station at Ft. Worth and Dallas? Traffic for these points is now handled thru 5 NS and $5 Q Q$. 5 AO is making some improvements in station. $5 R \mathrm{P}$, the spark coil station, is doing real yood work. 5 YN , Simmons College, is now in operation. SLY at Eastland is coming to the front. 5 SD nandled 12 msgs . 5 GF
has moved to Abilene and is putting in a 100 watt C.W. set. Howard-Payne College at Brownwood will he in commission before long. Comanche stations are evidently not doing yery much lately. 5JX has moved to Ft. Worth. 5XJ, Dublin, has worked $6 \mathrm{WV}, 9 \mathrm{WT}, 5 Z A$. Messages handled, 85. 5 SS lost one of his 100 foot masts in at storm but will have it on end again soon, is working with one mast at present. 5IR has worked 4 BQ . Total messages North Central District, 446.

OKLAHOMA SECTION

No Asst. Div. Mgr. at present
Meager reports reaching the D.M. as follows. 5 MF is remodeling. 5 LO of Miami is doing line work, has copied stations in seven of the nine districts. Exchanced calls with 8FT and 6WV, also 9ZC. Handled 8 messages during the two weeks of operation. 5BR, Burle Jones, and 5BM. C. M. Selby, have consolidated stations and will operate under 5BR's call, giving this station two operators and almost a continuous watch till midnight.

NEW MEXICO SECTION

Louis Falconi, SZA, Asst. Div. Mgr. No Report.

SOUTHERN TEXAS SECTION

A. P. Daniei, sZX, Asst. Div Mgr.

Weather conditions are favorable for the first time in months, and traffic is moving in this section with a bang, and but for the many break-downs reported from almost every part, the work is progressing nicely. Among the interesting news obtained is that the three radio clubs of San Antonio and ricinity have banded themselves together into a "Bexar Countr Radio Association" with the one purpose in view of giving to the A.R.R.L. the proper cooperation and recognition of the aid given that city by our organization.

Mr. Nettleton, Vistrict Supt. for South West Texas, has been unable to do much organization work via radio because of repeated kick-back troubles. He is anxious to have communications from all stations in his district which includes all of West Texas (excepting El Paso and vicinity) and extends tast to and including Bexar County and Nueces County. Address, Ed Nettleton. 5ZN, Eagle Pass.

Mr. Tilley, District Supt. for South Central Texas, reports that at Austin two new stations have opened un-5QA and 5QY.. $5 X U$ is the University station and is doing some splendid work on 325 meters, using a 240 cycle set. New Braunfels High School, 5 YK , is the most dependable station in his district at present, with thanks to Mr. Sahm for such good work. 5ZU is as busy as usual. 5RA at Cuero and 5TG at Victoria give promise of good southwest relays; but fellows please be on oftener and have longer watches.

Mr. Worthington, District Supt. for South East Texas with headquarters at Housion, has been spending most of his energy in trying to get assistants to turn in traffic reports. This seems to be a chronic trouble in all parts of the Section. We must have complete reports fellows or else "QST won't come south", as you have been hollering. The opening of college brought an end to several of Houston's most reliable stations. EYI profited, however, by gaining five new operators. 5XB is back on the job, and even more consistent than usual; it is still the most dependable relay north.

Messages; 5JI, 24; 5ZX, 16; 5ZZT, 36; $5 \mathrm{AE}, 6$; total reported, 82.

ROANOKE DIVISION
 W. T. Gravely, Mgr.

A wonderful increase in traffic has taken place during the last month and the coming winter months will surpass all previous seasons. Already traffic is moving with greatest ease, via the CW routes, and nowhere does it appear that messages are being held on the hooks by the CW stations.
$3 R F$ it Salem, Va., is making his debut with a tube set, and is working nightly, which means that the South West Virginia District is open for Traffic. 3 MO , a CW station of Richmond, is clearing nightly for the Central Virginia and Richmond District. 4 EN , another CW station located at Winston, N. C., is making his appearance this month with a 1.5 watt tube set, and is performing most satisfactorily. This station ciears traftic with 3 BZ daily at 2.30 P.M. 3BZ with a 15 watt set is clearing to all points within range with comparative ease.
Normally, the CW stations in the Division are using 3ZY at Washington as the hub for northern traffic, and occasional wectern traffic, though much of the northern traffic is handled with New York stations. $4 G L$ is acting as the hub for southern traftic, and with these arrangements there is no trouble clearing north and south with greatest ease. We refer now entirely to tube lines, as these have been working regularly and almost like clock-work.

4 EY at Elizabeth City, N. C., has done spendidly, together with 4 BE at Wilmington and 4EA at New Bern. These stations have opened up the Eastern North Carolina line. $4 A L, 4 C K$ and $4 C X$ take care of the Western Carolina operations in the spark line.
D.S. Heck has appointed E. C. Jones, Jr., as City Manager for Fairmont, and Asst. Dist. Supt. of Northern W. Va. 8SP and 8FD (spark stations) continue to lead in the activities in their section.

The Virginia Seaboard has not yet taken
up its normal activities, and a report is lacking.

The Manager announces the following appointments: For District Superintendent of Eastern North Carolina, Mr. K. K. Kramer of Elizabeth City. For District Superintendent of Western North Carolina, Mr. Taylor M. Simpson of Winston.

No report from D.S. Bunker of Central Garolina. Condensed reports from the District Supts. follow:
D.S. Elair revorts real progress for Richinond, stating that sMO is handling traffic regularly, and that BZL will soon be opersiting with one of the best tube stations in the state. Blair has had the misfortune to break an arm through the misuse (?) of a classy racing automobile, for which he has our sympathy, but we did think that he lad better use for his memvers than to wear them out in such a manner.

BAOV at Stonega is now about ready for tratilic.
3CA is getting out with his tube set, but failed to report number of messages handled in the District.

No iormal reports will be included this month from the North Carolina Districts, as this field is just being re-organized, but operations will be covered in the next report.
W.S. Heck of W. Va. reports the combination of 8SP and $8 J E$, who will operate as SSP , maintaining a steady watch.

8EF is on as often as his duties permit. \&AFD is doing good work with his spark, so with SEF, SSP and 8AFD, this neck of the woods is well cared for.

Charleston, Morgantown, and other points in W. Va. are taking on real life.

3BZ at Danville is handling all the trafice, at present, at this point, until 3 AEV can get back, and relieve the situation.

3EID! Get the Call!! Is no one but our old friend A. L. Groves, the Division Technical Expert, at Brooke, Va. He is out with a 5 watt tube set, and with batteries and a step up coil furnishing his power. He is laboring under difficulties with which few have to contend, but those
of you who know of Groves will be content with the final outcome.

Msgs.: Sparks 100, CW 100. 3RZ leads with approximately 60 msgs . CW, with 8SP, spark, next, with 43.

In conclusion, the Roanoke Division is in better shape to-day than ever before, and the District Superintendents tell the Manager that they mean to place it on top. If there is any constructive criticism to be made by any station in the Division, please let the Manager have it. We are here for the proper kind of criticisms.

DESIGN OF LOOP ANTENNAE
(Conchuded from mage ss)

Wavelength Meters	Size Feet	$\operatorname{Turns}_{\mathrm{N}}$
200	(88 6	$\frac{1}{2}$
300	(8)	2
	$(6$	4
	(8)	4
600	$(6$	7
	$(4$	10
	$(8$	7
800	(6)	10
	(4)	15
	(8)	12
1200	$(6$	14
	(4	20
	(8)	16
1600	$(6$	20
	(4	30
	(8)	30
2500	$(6$	40
	(4	60
3500	$(8$	45
	(6	65

ROTTEN BUNK
(Continued from page 16) calling 9AF. Radical yelled, "There's Miller over in Hammond, Indiana." 8BM shoved his head up and said something like, "Send card OM nil hr msg SK."

Radical hollered, "That's Dunlap over in Niagara Falls, asking somebody to send in a card about his signals and that he has no messages for him to-night." Then he gave a mighty jerk. "LISTEN!" he bawled out. He tuned carefully, and closed his eyes as though he was going off ints a trance. He was trying to read in between the QRM. He got it. He snapped around and bawled into the face of the fidgety lady, "There's 4 EY calling 5ZW." This was something startling, and listening intently and meanwhile staring straight into the face of the embarrassed lady for what seemed live minutes, he howled, "That's Kramer in Elizabeth City, N. ©., working Graham at House, Texas. Hot dog, eh what!"

The lady moved back out of range and said something about it being "fascinating". Radical was fast getting overheated. He snapped around in his seat again, held up a warning finger, and everybody hushed. Pointing his finger straight at the fidgety lady with an accusing air, he shouted at the top of his lungs, "There's 3BP up in Toronto calling 1BIR down in New England. He says QRV GA." The lady with the fidgets looked guilty and indicated symptoms of the jitters.
"LISTEN!-That's 8AMZ in Oakfield, N. Y."

Grabbing his pencil he copied feverishly. It worked out on paper like this: "SORRI OM BUT UR CW GASTY GOB BIT FRISHICKEY ON MONKEY BIZNESS MY B BATTS ON THE BUM QRL TONITE K."

Glancing over this hog-wash hastily, Radical interpreted it as to the effect that somebody's gasty gob bit somebody else's frishickey on the monkey business and put his B batteries on the bum. Radical shook his head at this and muttered, "Bad business". What in timenation these folks thought was going on I give up. The idea of passing out such bunk! Suppose somebody's gasty gob did bite somebody's irishickey on it's monkey business, why for gawdsake talk about it in public! There is a time and a place for all thngs, and the public air is no place to quarrel about these stricly private matters. It may be that I am old fashioned, but it sounds nasty to me.
"GEE WHIZ! HARK!-That's 8BEPsays $8 \times E^{\prime}$ ' MODULATION GRUBSTRETCHER FELL INTO SPITCH-SLOP!-Gosh, but that's fierce!" Glaring at the fidgety lady, who by this time was getting beyond control, Radical conveyed the idea that something dreadful had happened over at the Pennsylvania State College.

What good, I ask you, does it do to give the public such news as this? What is a "grubstretcher" anyhow? If it stretches out a man's grub, I can see how it might
be a good thing in these hard times, but what good would a grubstreteher be after it had fallen into the spitchslop! Certainly no one would want to eat the grub aiter it had been stretched with a grubstretcher which had got into the spitchsiop. And what has it got to do with radio? What useful purpose is served by explaining to a fidgety lady, who is bordering upon hiysterics, that the Pennsyivania State College grubstretcher has got mixed up with the college spitchslop? None at all, and to talk about tiese back stairs matters in the air is not uplifting. The fidgety lady did not think so either, for she got ked in the face and wondered if it were proper to listen to such language.
"HEAR THAT ONE?--that's 8LGJhe's calling tAF in Hammond, Indianasays 9DKV's HIGSPITTER IS PARALYZED."

The fidgety lady exclaimed, "Dear me, how awful!" The stout gentlemon looked serious. Sounded like a railroad accident to him. What rot! I do not believe 9DKV has a higspitter, and anyway, it's not decent to drag it into the public gaze if he has one. (But, between us, what in blazes do you imagine a "higspitter" to be? I have a cat at home and I'm interested.)
"HELLO!- there's 9AGR over in Indiana. He says that 3 CC in Philadelphia --For the love of Mike!-says HIS MODULATOR MUGRAT IS LOOSE AND CHASING HIS BILLYGUP AROUND THE CELLAR!" "Hot dog-some night, this!"
"How terrible!", from the lady with the fidgets.
"LISTEN TO THAT ONE!--that's 3 HJ in Haverford, Pennsylvania. Listen to him roar! He's working 9UH in Louisville, Kentucky. Telling him something about 2FP -ays HE KILLED 9ZN LAST NIGHT."

This began to look like murder. I was wondering what best be done before amateur wireless were completely discredited, when Radical's mother called a halt. She feared the party would stay the night. She politely let it be known that that would be all for to-night, and the party put down the phones and broke up. Their eyes were popping out of their heads. The fat man told Radical's father he had no idea that these young men were doing such wonderful things. The fidgety lady nearly wept on Radical's mother and said she would be around again when her nerves got better, and would send a lot of messages to her friend on the Atlantic.

The little wife and I went home and I hunted up kitty, and greased up Old Betsy preparatory to making a night of it. After all the bunk I had been listening to, I wanted to get some of the early morning real wireless stuff. What the poor folks
(Concluded on page 66)

6ALE, Reedley, Cal.

The station of Mr. W. W. Lindsay, Ir., 6ALE, is one of the West Coast's premier C.W. sets and has done much to show the California fellows what the bottles can do.

Mr. Lindsay has done so much experimenting that his equipment has not remained very long in any one sirrangement. At last accounts it was in the form shown in the present photograph, comprising two 50-watt Radiotrons in a self-rectifying circuit with A.C. supply, a tube working on "each side of the cycle" in the hook-up illustrated. On the bottom shelf ate the transformers for ilament and anode supply, ilament resistance, A.C. voitmeter, and IUubilier protective device. Next come the condensers and the 2000 -ohm grid leak, which is behind the $0-500$ milliammeter. Just felow the tube sockets are the filament r.f. by-passing condensers of . 0024 mids. each. The other condensers are Murdock sections of .0017 mfd . each. On top are the two tubes, with tkeir r.f. chokes in the foreground. Then comes the oscillation transformer. The antenna inductance is the outer one, of edgewise-wound strip, $71 / 4$ in. diameter, inside which the anode and grid coils are wound of No. 14 copper wire on a $41 / 2 \mathrm{in}$. threaded tube, 14 turns in the grid coil and $\because 0$ in the anode circuit. Phe transmitter is distant-controlled, and

the relay to the right of the inductances is a masnetic antenna switch, with the sutenna iead running up above it to the entrance bushing. In the ground lead a Weston thermo-heating clement is inserted, which registers on an ammeter above the operating tinble in the recieving room-a very nice arrangement in a distant-controlled set. The wiring diagram will make clear the connection for 11 these parts.
The receiving equipment consists of a Wireless Specialty Apparatus Co. [P-501 and two-step amplifier, and a Grebe CR-3 and detector-two-step. A Magnavox and one step of power amplification have been added since the photo was taken. Signals and received music from 6XAC have been

reported half a mile from the shark. This is the receiving equipment on which $2 F P$, Brooklyn, was copied on Oct. 6th, and is the second time that Mr. Lindsay has copied across the continent.

Tine antenna arrangement photographed is a very novel one, consisting of two 4wire cages on $2-f t$. crosses, fiat-top length 50) t . and height 60 ft ., the two cages spaced 21 ft. apart and arranged as a T aerial with the two center down-leads each consisting of 4 -wire cages on 1 - tt. crosses. The ground consists of a network of No. 6 copper wire under the antenna, with 6 wires lengthwise and 3 crosswise, embracing an area 50 ft . by 80 ft ., with the lead from the center. The eapacity is .00054 mfd . and the natural wave length 180 meters. The transmitter put 2.7 amps. in this antenna system on a wave length of 195 meters and was reported by 7th district stations as the loudest " $¢$ " heard. fiALE is now using a single cage,
we understand, and also is doing most of its work with a single tube on "one side of the cycle", obtaining an antenna current of 2 amps. (thermo meter) with 160 watts anode input and 110 watts filament input. Regular schedules are maintained with 7 XD in Billings, Mont., :and GAEZ in Ogden, Utah, and a prood deal of traffic is being handled. The best reports on its signals are from aAHC, Ellendale, N.D.; 9RY, Topeka, Kan.; 9ALG, Wichita; 5ZO, Houston; and 9AMB and 9ZAF, Denver.

8IB, Columbus, Ohio

8IB is the station of Robert C. Higgy who will be remembered by pre-war amateurs as the operator of that recordbreaker, old 6DM at Phoenix, Ariz. He is now devoting himself to experimental C.W. work and a number of sets have been built and operated at 8IB.

The general photograph shows a small self-rectifying A.C. set on the right, using two UV-201's (amplifiers) with a Colpitts circuit as shown in Fig. 1. Note the chokes, RFC, comprised of small coils shunted by an air variable. When such a combination is tuned to the wave length being used it forms an infinite impedance for that irequency and has been found greatly superior to other kinds of chokes. The adiustment of the shunt condensers is very critical. Filaments are lighted by A.C. Condensers C . are glass plates, capacity about .003 mfd each. The inductance

is a coil of No. 14 D.C.C. magnet wire $4^{\prime \prime}$ diameter, good antenna current being obtained when as lew as 10 turns are used. This set was only a temporary one for experimental work but was consistently heard at $9 Z \mathrm{~N}$ and worked 100 miles daylight

Colpitts circuit wouldn't give decent output on a legal wave. That is the experience of most folks. We can unhesitatingly recommend the British circuit as the best wr know at this time for short-wave work.

SIB's aerial is a 3 -wire inverted L, 65

easily, with an antenna current of 8 to $\mathbf{. 9}$.
On the left end of the table is the D.C. set, since rebuilt into a panel as shown in the separate photograph. Power is supplied by an oid 500 -volt motor driven as a generator, giving up to 800 volts. Four 5watt Radiotrons are used in a Colpitts circuit as per Fig. :2. A tuned r.f. choke,
ft. long and $45 \mathrm{f}^{\mathrm{t}}$. high, with a 60 -f.t. leadin. The receiver consists of a Grebe $A G P$ 102 regenerator, and detector-two-step. Signalling on the $\mathbb{C} . W$. sets is accomplished by breaking the grid-leak circuit by means of a relay so that either the A. C . or the D.C. set may be controlled from the receiving table.

RFC, is again used. The two switches control the inductance taps A and B. The carbon potentiometer is used in series as a grid leak.

If we understand Mr. Higgy correctly he has now forsaken the Colpitts circuit for that British Aircraft hook-up which was first described in QST by 1 DH on page 28 of July QST, and again on page 24 of the September issue by 1 MO . The

9 YK, St. Louis

9 YK is the station of St. Louis University at St. Louis, Mo. The receiver is made of deForest units-honeycombs and two step amplifier-with Baldwin phones. The transmitter has a 1 k.w. Thor, Dubilier condenser, a rotary concerning which we have no details, and a large pancake O.T. The antenna current on 1000 meters is

5 amps. with 8 -inch coupling between the pancakes, and the daylight range 600 miles. 9 YK was kindly loaned by the University to the U.S. Government for use in the

Aerial Mail Service, and the call KDEN was used until recently, when the new Government station in St. Louis was erected for that work.

An Amateur in Porto Rico

The following description is of the homemade receiving equipment of Mr . Joaquin Agusty, long a member of the A.R.R.L., at San Juan, P.R. This is his fourth set and he labors under many inconveniences, as there are no supply houses in Porto Rico and everything must come from the States.

The right-hand panel controls the tubes, which are Marconis, while the left-hand one is a universal-wave tuner using honeycomb coils. A large percentage of the small parts are hand-made: the switches, the coup-

Mr. Agusty at his set.
ling system which is controlled by the knobs at the bottom of the panel thru gears, the coil rack, loud speaker, loop, and particularly the amplifying transformers. Mr. Agusty says that he tried several makes
(Concluded on page 66)

Help! Help! This department is being conduated by F. H. Schnell. Affiliated Clubs are urgently requested to send in a report of activities. Particularly, we want information regarding activities that have increased your attendance, brought you new members, etc. We want everything that we can get that you think will help the other club. If you publish a club organ, send us a cony every month so that we may tell our radio friends about it.

Nola Radio Club is publishing a bi-monthly paper known as "The Foney Tron." In it we find some good reading matter and a few good "Dont's", among which are "Don't transmit through time and weather reports; don't exceed the legal wave length of 200 meters; don't transmit during the Quiet Hours."
Y. M. C. A. Radio Club of Sioux Falls will hold its first get-together meeting of amateurs in South Dakota on December 28th and 29th at Sioux Falls under the name of the South Dakota Radio Convention. Speakers of considerable prominence in the radio field will be engaged and radio apparatus will be exhibited. There will be some novel stunts, and a banquet will close the convention. Amateurs from Minnesota, Iowa, and Nebraska have signified their intentions of attending. (Wish I could be with you too.-T. M.)

South Jersey Radio Association opened its $1921-1922$ radio season with a smoker and a feed. Mr. E. L. Norncross addressed the members. Meetings will be held every Thursday night in the Fire House, Collingwood, N. I., and a cordial invitation is extended to all amateurs to attend.

Brooklyn Tech Radio Club conducts code instruction classes four days a week. Reguiar meetings are held every Friday noon at 85 Livingston St.

Bay Counties Radio Club-An unusual program greeted about 300 radio amateurs on October 15th. The gang was entertained by wrestlers, boxers, dancers, singers, dramatic readers and speakers, while a 30 -niece band furnished the music. Major Dillon, U. S. Radio Inspector for the district, addressed the gathering. In addition to speaking, Sunny Jim Bessey refereed the wrestling and boxing contests. We wager that there was no back talk
to Bessey. Mr. Dickow spoke on topics of general interest. A watermelon wating contest was won by 60C. Mr. Bessey caused much merriment with his weird after-dinner stories.

Akron Executive Radio Council is being represented by "The Radio Voice," a little sectional paper which is edited by $80 X$ our cartoonist. "The Radio Voice" is published every other Saturday and contains news concerning the 8th district stations and clubs. $\$ 1.25$ brings the paper to your door for one year, 25 issues.

QRV Radio Association, (Uniontown, Pa.) has started a code class, oifering a prize for the members making the best showing. The speed one must reach to win a prize is 15 words per minute. Considerable interest is being shown in this stunt and the membership at each meeting is decidedly on the increase.
lowa Radio Relay League publishes "The Wouff Hong." We have handled the real Wouff Hong but this is the first time we have seen it in print. The purpose of "The Wouff Hong" is to urge co-operation among the amateurs who are members of the 1 . R.R.L.

Maryland Radio Association (Baltimore) has started a series of interesting meetings at which radio educational lectures will be given. At recent meetings papers were read by Mr. Steger on a loud talker of unique design, on radio phone construction by Mr. E. C. Densten, and on the operation of power tubes by Mr. E. B. Duvall. A cordial invitation is extended to all amateurs to attend the big smoker in December.

Central Illinois Radio Club (Springfield) recently put over an affair which made a great hit with the members and netted the treasury nearly $\% 30$. Every member donated all the junk he had, which was auctioned off to other members. We are informed that there were spark coils, keys, coils of wire, odd fones, and the aggregate scrapings of some thirty hell-boxes. Much interest was manifested, since every piece of junk was sold.

Dallas Radio Club furnished a means of communication between citizens of the U. S. and Mexico City at the State fair which was held in Dallas. One relay between Dallas and Mexico was necessary and this was handled by the Houston Radio

Club members. All messages were handled with dispatch, even though great distances of 500 miles had to be bridged between stations.

Rocky Mountain Radio Association has adopted a schedule of working hours. Copies may be secured from Mr. G. W. Maler, secretary of the club, by addressing him at 3914 W. 29 th St., Denver, Colo. Practically the Chicago Plan has been adopted with certain modifications to suit the members located in this territory.

The Buffalo Convention-A very splendid meeting of amateurs from the Eighth U. S. District and the adjoining Canadian districts was held at the Hotel Iroquois, Buffalo, Oct. 28 th and 29 th, under the auspices of the Radio Association of Western New York, affiliated, with something over a hundred and fifty amateurs in attendance.

The main business of the convention was the formation of an executive council to co-ordinate amateur activity in the territory, and the main business session at $2 \mathrm{p} . \mathrm{m}$. on the 28 th immediately buckled down to that problem, with Mr. John G. Rieger, president of the R. A. W. N. Y., presiding. A very interesting talk was made by Mr. A. F. Parkhurst, assistant radio inspector, representing Inspector Edwards, who offered the hearty co-operation of his office. Incidentally Mr. Parkhurst called attention to a point worth knowing in the renewal of station licenses. Station licenses cannot simply be renewed upon expiration; the entire procedure must be gone thru again. Form 762 must be filled out in duplicate, the same as in the original application, and the expired license returned with the new forms, if the same call letters are to be reissued. Otherwise it will be handled as a new application and a new call assigned. If you want to avoid trouble, fellows, ask for two copies of form 762 and voluntarily send them in for a renewal just before the expiration of your station license, amd be sure to send back the old license too. Getting back to the meeting's program, addresses were then made by F. H. Schnell and K. B. Warner, respectively traffic manager and secretary of the A. R. R. L., by Mr. Neubauer representing Cleveland Radio Assn. Prof. W. C. Ballard, jr., of 8 XU , and others, by which the general sentiment as to the nature of the contemplated organization was determined. At an adjourned session in the evening a temporary name was chosen, "Lower Lakes Executive Radio Council," and Mr. I. ("Jack") Alexander of Buffalo, editor of "QTC", chosen as temporary chairman and instructed to surround himself with a temporary personnel in a scheme that would embrace participation by the various clubs in the district in a plan following in gen-
eral principles those of the 2 d and 3 d district councils.

A technical session was held in the hotel that night, with excellent talks by G. Kenneth Thompson of the Amrad company and W. C. White of the research laboratories of the General Electric Co. The next morning Prof. Ballard spoke on "Transmission on Harmonics," with notes on a simple and efficient recorder also used at 8XU. The gang inhaled a four-bit lunch en masse at Wilcox's Restaurant that noon, and returned in the afternoon for addresses by L. C. F. Horle on "Methods of Modulation", and M. C. Batsel, of the Westinghouse Company, on receivers and amplifiers. All of the technical papers were excellent and thoroly enjoyed.

Inspector Parkhurst held operator's examinations on the morning of the 29th, many taking advantage of the opportunity. Little spare time remained but the fellows managed to sneak out to visit various amateur stations in Buffalo and vicinity. (One good thing accomplished by the meeting was the conversion of 8 AGK to the use of a real receiving tuner. Hi!)

The banquet was a peach, Brother Rieger doing the honors. An interesting address was made by James W. Higgins, Chief of Police of Buffalo, who incidentally is the man who originated the idea of amateur broadcasts in such police work as the recovery of stolen cars, etc. The Chief's right-hand man, Chief Desk Sergeant Schmitt, told some police yarns, and brief remarks were made by Messrs. Schnell, Horle, R. H. McMann, Parkhurst, Alexander, the two radio Benzees, Warner, Batsel, B. C. Belden, W. C. C. Duncan, past president of the Wireless Assn. of Ontario, and H. C. Coyer. A Buffalo chapter of the Radio Club of America was decided upon and a committee appointed to look after it. Then Mr. McMann exhibited Bray animated movies of what goes on in a radio set, particularly within a vacuum tube. This concluded the formal doings but of course it took the gang four hours thereafter to break up.

Two good radio days, many real good friends made, another job started in amateur co-operation, and Buffalo always a pleasant memory-that sums it up.

THE RADIOPHONE

(Concluded from page 30)
for straight telegraphy.
On the big question of phone concerts, more success to the folks who are putting out real stuff for us! Let communities decide for themselves on the matter of local concerts of good quality; but for the "I-will-now-favor-you" artist with his gar-gle-modulation, the Wouff-Hong!

F. Clifford Estey, president and secretary of the Essex County County Radio Association, atiliated with the American Radio Relay League, has become associated with the Clapp-Eastham Company, Cambridge, Mass., as Sales Manager. Mr. Estey will direct all sales and advertising work for the well-known G - E line of radio equipment. New England radio men among whom Mr. Estey has so long been a prominent and popular figure join in congratulating him on his new connection and extend heartiest wishes for success.

In the October issue of QST the waye length range of the receiver described in the Standard Assembling Co.'s advertisement was given as 150 to 170 meters. This was an error, the correct range being 150 to 700 meters.

We learn with deep regret of the death of the father of Harvey Mitchell Anthony, A.R.R.L. Director, of Muncie, Ind., and we all join in an expression of sincere sympathy to Mr. Anthony.

Understand there are a lot of left-handed operators down in Texas.

Clarence Adams, 4413 Fulton St., Chicago, radio amateur, was killed on Oct. 9th when an iron-pipe mast he was erecting came in contact with an 18,000 -volt transmission line in the alley behind his home. Roy Bierman, a neighbor who was assisting him, was badiy burned.

Call books list the call of V. W. Hurst, Ir., of 9 Fairview Heights, Rochester, N. Y., as 8AHU. This is an error, Mr. Hurst's correct call being \&AGU.

The Formica Insulation Co., of Cincinnati, have scored three victories in patent litigation brought against them by the Westinghouse company and the Continental Fiber Co. In one case the court held that the Westinghouse's claim was outlawed by delay, in another that there was no infringement, and in the case of the Continental Fibre Co. the suit was ordered dismissed, the patent itself being held invalid for want of novelty.

In the report of the Chicago Convention,
talking about power factor, mention was made of an unknown man "simpson". We have learned that the gentleman in question is Prof. Hector R. Skifter, of the Department of Physics and YYAJ, of St. Olaf College, Northfield, Minn.
"Will the party who has a CW set and is either using the call BZL or sends his own call so rotten it sounds like 3\%L write to C. D. Elair, Box 859 , Richmond, Va., (law. fully licensed as aZL by the radio inspector) and get 57 cards and letters reporting his signals in nearly every state and tell these birds what he is using, and set busy and lay off my call? I have not used this call since April, and the lasc time it was reported was a Sunday night when I had a date with my girl so howinel could it have been me?" \qquad
We have received a glowing prospectus advertising the merits of a batterycharging fluid described as "liquid electricity", which merely has to be introduced into a discharged battery and it will immediately be charged again. The pamphlet states that the old idea that when a battery goes dead it has to be put on a line and recharged is a mistaken one, and that rectifiers are of no real use. "Let us explain that a rectifier is simply a current reducer, being capable of reducing a current of 110 volts to less than 1 ampere. The purpose of using a rectifier is to merely heat the plates to a certain temperature. The voltage is thus created thru the positive plate and the gravity thru the negative plates." Funny, but that doesn't seem to be the way it was taught to us.

New records: 6 KA reports 2 FP , CW, on Oct. 18th, 11:10 p.m. P.S.T. 6BF, Santa Paula, Cal., reports 8BOX, Tippecanoe City, Ohio, calling 8 YZ and BCVT on the sight of Oct. 29th. 8QM, Elmira, N. Y., using two 5 -watt tubes, has been heard in Lincoln, N. E., 1008 miles. dGL, Savannah, using three 5 -watt tubes, has been reported 2450 miles at sea. Old man C. W. Duzzit!

Canadian Briefs

Glace Bay has been using tube transmission recently with great success. The
installation will be $50 \mathrm{k} . \mathrm{w}$. when completed. Clifden already has been converted over. The tubes are the same as available to amateurs-type MT-2, rated 1.000 watts and can be worked to $31 / 2 \mathrm{k} . \mathrm{w} .$, price $\$ 210$, operating potential 10,000 volts, estimated life 3000 hours.

Work has been started on a new Marconi station at laPrairie, 20 miles from Montreal, which will use a $15 \mathrm{k} . \mathrm{w}$. tube transmitter on 2800 meters. The power will be 3 -phase A.C. passed thru tube rectifiers, giving 10,000 volts for the anodes.

The government station VCA, formerly at Tarte Pier, has been moved to a new location on the back river well out of the city of Montreal. The equipment is the same, with little hope of improvement in the decrement.

Say, wouldn't it be perfectly rippingif 2 AWL would learn to make figures right, particularly 1's and 9's????

Earl Jay Dickerson, old time operator from the Philadelphia district, died in the hospital in Falmouth, England, on July 13 th as the result of burns received in a fire occurring on the S. S. "Storm King" on which he was serving. The body was returned to the States and on Aug. 5th was interred at West Chester, Pa., with Masonic ceremonies. With the passing of Eari Dickerson the radio art lost a master operator.

The Trial of Ananias.

A riot broke in Hell's engine room,
The yells were fierce and loud;
The Devil's cops charged quickly in
And dragged from 'mongst the crowd
A bent old man all ragged and torn;
Whose breath came quick in fits and jerks,
They rushed him up to the Devil's throne And cast him to his knees
To have a sentence passed on himTo offer up his pleas.
"Your name, old man, and make it quick" Barked the Devil with a frown;
"Has Bolshevism come at la:t To my once peaceful town?"
The old man proudly raised his head,
His voice rang loud and clear.
"All men have heard of me, 0 King, And kn'w why lam here,
For I am ananias, My time here has been. long
And now \& would to heaven go Aud join the angel throng.
I told a lie, long lon? ago'Twas only one indeed--
And now so many are told in earth I think : should be freed."
"What mean you, man", the Devil asked, "Speak no riddles here,
For if you cannot clear yourself You'll shovel coal for "years."
"Listen, O King", the old man cried, 'Till I read a page or two
From my radio log, for I've copied here These things Hams said were true:
A pair of phones so finely made That sounds came loud and clear From two microbes in duel to death In the southern hemisphere.
And a bulb that once upon a time (The witness has left town)
Would oscillate on just six volts. 'Twas heard for miles around. And the lad who heard POZ With his thumb in the galena cup.
And here's another bird who says NAM is tuned right up.

An amplifier made so swell The B batteries cut the buck
And it runs a year on all six steps Ere he charge the storage up.
An indoor aerial-it's the goodsA thousand miles or so
With a chunk of galena in the cupIt's merely play you know"
"Enough, enough", the Devil moaned And softly dropped a tear.
"You're ireed, old man, go hasten on
And climb the golden stair.
Your place will soon be taken
(I know your reports are true)
And I'll soon have so many stokers
I won't know what to do.
-By Geo. M. Phillips, dedicated to R. Burieson.

A BATTERY-OPERATED RADIOPHONE

(Coucluded from page \%
The modulation loop idea described by GAL in November QST is used in this set, and 5ZX has found by experiment that there is an optimum number of turns in the loop. This set uses exactly $11 / 4$ turns

with a microphone originally designed for a 6 -volt circuit, but a microphone designed for 12 volts works best with 3 turns in the modulation circuit.

The beauty of this set is its absolute quietness-no commutator noise or supply ripple-and its modulation is pronounced perfect.

Calls Heards

HEARD DURING OCTOBER

Unless Otherwise Specified

Amateurs reporting lists are requested to see instructions appearing at the head of this department in previous issues，and to observe following additional instruction：
（4）In order to distinguish between spark and C．W．stations，list spark sta－ tions from 1 to 9 in the usual manner， and then make a second paragraph in identical form listing the C．W．stations．

Can． 3 BP．Newmarket，Ont．

 （1ARY），1AZD，（IAZK），（1AW），1BDC，－BDT， （1BGF），（1BIR）． $1 \mathrm{BU}, 1 \mathrm{GM}$ ）．IHE． 10 E ．（1QP）； （2AB1），（2ARB），2ARN，2ASL（2AW）．（2AWF） （2BE），2DA，（2DI），（2DN），（2EL），（2FP）， $2 J G$ ． （2JZ），2OE，（2OM），（2PV），（2HM），2SS，（2WB）．
 $3 \mathrm{CG}, 3 \mathrm{CN}, 9 \mathrm{DW} .3 \mathrm{EH} .(8 \mathrm{HJ})$（ 3 IW ）， 30 OH （ $3 P \mathrm{~PB}$ ） $3 \mathrm{QW}, 3 \mathrm{UQ}, 3 \mathrm{US}, 3 \mathrm{~V}$ ． ， 8 XM ）．（ 9 YO ）， $3 \mathrm{ZA}, 3 \mathrm{ZE}$ ． ${ }^{32 Z}$.

 YAJT， 8 AJV，SAKV ZAKW，（8AMB）．8ANO，

 $8 \mathrm{CV},(\mathrm{BCG})$（ 8 BDY ）， $8 \mathrm{BEO},(\mathrm{SFT}),(8 \mathrm{GW}),(8 \mathrm{HU})$ ．

 YVY．（ 8 XEE ）．（ 8 XEQ ．（ 8 XN ）．（ 8 ZB ），（9AAP）， （9AAW）（9AAY $9 \mathrm{ABH}, 9 \mathrm{ABU}, 9 \mathrm{GAC}, 9 \mathrm{ADI}$ ．

 9BDS．9CP，9DBW，9DEV， 9 DHG ， 9 DQQ ， 9 DV ． 9DWM，9DWP， 9 DWZ ， 9 EE, （ 9 ET ）． 9 EZ ，${ }^{9} \mathrm{FM}$ ， （9FS），（ 9 GC ）， $9 \mathrm{GX} .9 \mathrm{HE}, 9 \mathrm{HI}, 9 \mathrm{HK}$ ．（ 9 HM ）， 9 HT ）
 $99 \mathrm{AH}, 9 \mathrm{TL}, 9 \mathrm{TA}, 9 \mathrm{UH} 90 \mathrm{U} 9 \mathrm{VK}, 9 \mathrm{WT} 9 \mathrm{XM}$ ，
 C．W．： 1 ANQ ， 1 AFL 1 ITN $2 A B Q$ ．（ $2 A D L$ ）， $2 A F P$ ．AHL），ZAJF．
 （2DN），（2FP），（2ZE）．（2ZV）fone．（2ZL）， 3 AAE： $3 \mathrm{AHK},{ }^{3 \mathrm{BC},}{ }^{3 \mathrm{BZ}},(8 \mathrm{FM}), 3 \mathrm{GR} .(8 \mathrm{HG}),{ }^{(3 \mathrm{HJ})}$ ， （3HX），（ 8 PB ）， 3 RF ， 3 ZO fone． 4 BY ． 4 CO ． 4 FF ，

 $9 \mathrm{LQ}, 90 \mathrm{~L} .9 \mathrm{RT}, 9 \mathrm{ZY}$ ．

Can．2BF，Montreal，Que．

c．W．： 1 ABY ．${ }^{1 A K G}$ ． 1 BAI ， 1 BYQ ． $1 \mathrm{BYX}, 1 \mathrm{IDR}$ ，

 MO SZY，BZZ， $4 \mathrm{GL}, 8 \mathrm{BAZ}$ ，8ACF．BAIO．8ARY＇ （9AWP）， $3 \mathrm{BDE}, 8 \mathrm{BQ}$ ． 8 DV ．8DX，8П， 8 SJL 8LF；
 $9 \mathrm{AJA}, 9 \mathrm{AWZ}, 9 \mathrm{HY}, 9 \mathrm{ZB}, 9 \mathrm{XAH}$ ， a_{BP} ．
 $2 A R Y$ ， $2 A A 1$ ． $2 \mathrm{BR}, 2 \mathrm{DN}, 2 \mathrm{FP}$ ． $2 \mathrm{JK}, 20 \mathrm{M}$ ． 3 HFY ， （3HJ），3US，3UQ． 3 XM ．3ZA， 3 ZO ． 4 EY .8 AGB ， $8 A G K$ ， 8 AWP， 8 ANO， $8 B R L$ ． $8 F T$ ，8HG， $8 R U$ ， $8 R Q$ ，
 9RDE，9CP．9DQY，9DR，9GP，9ZN，9ZJ，3BP： EI．

Can．3IM，Toronto，Oni． September－October
IAW，IBT， 1 BG ． 1 BJ ． $1 \mathrm{BL}, 1 \mathrm{CF}, 1 \mathrm{CK}, \mathrm{ICM} .1 \mathrm{MR}$
 $2 \mathrm{BK}, \mathrm{QFP}, 2 \mathrm{FZ}, 2 \mathrm{DN}, 20 \mathrm{M}, 2 \mathrm{NF}, 2 \mathrm{NR}, 20 \mathrm{R}, 2 \mathrm{XA}$ $2 \mathrm{XQ}, 2 \mathrm{QQ}, 2 \mathrm{JA}, 2 \mathrm{ZL}, 2 \mathrm{AWF}, 2 \mathrm{AWL}, 2 \mathrm{AJW}, 2 \mathrm{AFP}$ $3 \mathrm{CC}, 3 \mathrm{BG}, 3 \mathrm{FA}, 3 \mathrm{WW}, 3 \mathrm{KM}, 3 \mathrm{HJ}, 3 \mathrm{NB}, 3 \mathrm{RG}, \mathrm{AFM}^{2}$ $370.3 \mathrm{ZY}, 4 \mathrm{ADH}, 4 \mathrm{FD}, 4 \mathrm{GL} .4 \mathrm{GN}, 4 \mathrm{YB}, 5 \mathrm{EK}$ ， 5 FV ． 5DA，5ID， $5 X J, 5 Z A$ ．SAP， $8 A Y$ ．＇ 8 BK ，＇ 8 BH ， 8 CGG ．

 SLJ 8LQ． $8 L Q .3 L X$ ． 8 MZ． $8 Q$, STN． 8 TT．ETY．8QX，8UK，SVY，8XE． $8 X K, ~ \& Y N$, 87A．8ZD， $8 Z \mathrm{ZG}$ ．87L，8ZN，8ZZ，8DX．8ZK．3HG．
 $8 A I O, 8 A M T, ~ B A L O, ~ 8 A N K$ ． $8 A N Y$ ，उAOT：SAOU， $8 A Q R$ ．SAXC， $8 A Y N$ ．SAZF， $8 B O \dot{X}$ ． $8 B R C$ ， $9 A F$ ． $9 \mathrm{AW}, 9 \mathrm{CF}, 9 \mathrm{EK}, 9 \mathrm{FI}$ ． 9 FS ， 9 FW ． 9 GP ． 9 HM ． 9 HR ．
 $9 \mathrm{YA}, 92 \mathrm{~A}, 9 \mathrm{ZD}, 9 \mathrm{ZJ}$ ． $9 \mathrm{ZN}, 9 \mathrm{ZV}, 9 \mathrm{ZW}, 9 \mathrm{AAJ}, 9 \mathrm{AAW}$ 9AGU．9AIU，9AIR，פAJH．ЭAKU，9AMG．9ASJ， 9ARZ，9AWU，9AXU＇．9AYW．9AZE．9DBO，9DBU， 9 DWM 9YAC．Canadians $:-2 \mathrm{BF}, 2 \mathrm{PE}, 3 \mathrm{BA}, 3 \mathrm{BP}$ ， $3 \mathrm{KG}, 3 \mathrm{KS}, 3 \mathrm{QJ}$ ．

Can．3GN，Ingersoll，Ont．

Spark：LFF，iGM，1ZE，AAbL， 1 BFZ ，BBGF．

 $3 X M, 8 Y K, 3 Z A, 3 Z O$ ． $\mathrm{ACM}, 3 \mathrm{AQR}, 3 \mathrm{ARM}, \mathrm{SAWF}$

 $\triangle A B O$ ，SACF，$\& A F B, 8 A F D$ ， $3 A F G$ ， $8 A H H$ ．A AKE． $8 A L V$ ． $8 A R D, 8 A X C$ ． $8 A X N$ ， $8 A X U C$ ， $8 A Y N$ ． $8 B C L$ ． $8 B E P$ ． 8 BKN．${ }^{8 B R C}$ ， 8 BRL， $8 B S Y$ ． 3 DKK ， 9 AP ， ${ }^{9} 9 \mathrm{AV}$ 9CP， $9 \mathrm{CS}, 9 \mathrm{ET}, 9 \mathrm{FS}, 9 \mathrm{GO} 9 \mathrm{HI}, 9 \mathrm{HM}, 8 \mathrm{HR}$ ． $9 \mathrm{HS}, 9, \mathrm{JQ}$ ，9KO．9LW，9MC，9UU， 9 UW ． 9 WT ．
 9ADS，9ANK，gARG，gARI，gAWU，9BDE，9DBS， 9 9PH 9DWP．
CW．：1ASP．1AKB．2DN，2FD，2FP．2ZL，2AFP， $2 A W L$ ． $2 \mathrm{BCN}, 2 \mathrm{BGM}, 3 \mathrm{EM}, 3 \mathrm{ZY}$ ． 4 FF ． $4 \mathrm{GL}, 8 \subseteq 0$

 $8 B 0 X$ ． $2 Z B, 9 Z Y, 9 A A Y$ ，9AMA．
Canadian：（3AX），3BP．（3DL．），2DU，3FM， 3 KS ． 3LI．（3JF）．（3MN）， 3 NZ ，（3OV），（3Q⿴⿱冂一⿰丨丨丁口内），（3QJ）， 3QM．

TS，Bristol，Conn．

Spark：1AA，1ABB， $1 \mathrm{ACO}, 1 \mathrm{AD}, 1 \mathrm{ADC}, 1 \mathrm{ADL}$ 1 ADP ． 1 AHF ． $1 \mathrm{AHK}, 1 \mathrm{AJR}$ ． 1 AKA ．$A \mathrm{ALP}$ ，AMD （1ANT）， $1 A P O, 1 A R V,(A A S F)$（ 1 AW ），（ 1 AXW ）： 1 AYQQ ． $1 \mathrm{AZF}, 1 \mathrm{BCF}$ ． 1 BDC ， 1 BDL ． 1 BLT ． 2 BFE ， 1BFZ， $1 \mathrm{BGF}, 1 \mathrm{BIR}$ ． $1 \mathrm{BJE}, 1 \mathrm{BJN}$ ．（1BLE）， 1 BFF ，
 IBYS，ICEO，ICHW， 1 CHX ． 1 CK, ＇ CP ． 1 CY ． （1DY） 1 DDZ ， $1 \mathrm{EZ}, 1 \mathrm{FU}, 1 \mathrm{FV}, 1 \mathrm{GM}$ ． $1 \mathrm{GV}, 1 \mathrm{HK}$ ， IIA，inX．（1MAA）IOE，IOS，1GT，1PY，1PY，
 （IZE）， $2 A B M, ~ Z A F R$ ． $2 A H U,{ }_{2} A I M$ ． $2 A J A$ ． $2 A J E$ ． 2ANH．GANM．2AQI， $2 A Q L$ ， $2 A R B$ ． $2 A R Y$ ．
 $2 \mathrm{ZSC}, 2 \mathrm{DA}, 2 \mathrm{DB}, 2 \mathrm{DI}$ ． $2 \mathrm{DK}, 2 \mathrm{DN}, 2 \mathrm{DO}, 2 \mathrm{DX}$ ．
 $2 \mathrm{OR}, 2 \mathrm{RM}, 2 \mathrm{SQ},{ }^{2} \mathrm{TC}$ ．${ }^{2} \mathrm{TF}, 2 \mathrm{TJ}, 2 \mathrm{TS}$ ． $2 \mathrm{UA}, 2 \mathrm{WB}$ ．
 $3 \mathrm{AIC}, 3 \mathrm{ALN}, 3 \mathrm{AUW}, 3 \mathrm{BFU}, 8 \mathrm{BGT}, 3 \mathrm{CC}$ ． 3 CG ， 3 CN ， 3DW， $3 \mathrm{EH}, 3 \mathrm{EZ}, 3 \mathrm{FM}, 3 \mathrm{GM}, 3 \mathrm{HJ}, 3 \mathrm{HX}$ ． 91 H ． 3 KM ， 3LP， $308,30 \mathrm{~T}, 3 \mathrm{~PB}, 3 \mathrm{PU}, 32 \mathrm{~N}, 3 \mathrm{RW}, 3 \mathrm{TH}, 3 \mathrm{TJ}$ ， 3UC，（3UQ）（3US）．3UX，3VW，3XM，3ZA，3ZO．

8AF＇B，SAFD，8AFM，8AFS，8AGB，8AGK，\＆AHH， 8AHY，8AIB，8AIM，8AIO．8AJT．8AJV，§AJW， $\triangle A K W, ~ A M B, ~ \triangle A M Z$ ．$\triangle A N W$ ，BAO＇，ЗAPB，ZAPP＇ 8AQD．گAQV，BARD，BARK，BASF，BASV，BASZ， 8AWP，QAXC，SAXO，8AYM，§AYN，8AYS，ЗAYT， $\triangle B A, S B B U, ~ \& B B W$ ，$\& B C O$ ，\＆BDY，$\angle B E P$ ．8BFT， SRFV，XRIW，ХBJA，8BO．\＆BP，\＆RPU，SBRL，8BSY， $8 B U N, ~(8 B V A), 8 C G, 8 G G, 8 C V, 8 D R, 8 D Y, 8 E A$,
 SGW，SHA，SHG，\＆HP，SHU．SHY，SIL，SIN，SJJ，
 SQC，$\angle C H, ~ \& Q M, ~ S R B, ~ 8 R Q . ~ \triangle R U, ~ \& S P, ~ 8 T J, ~ 8 T K, ~$ 8TT，बTY，डT7．8UC，8UP，8VL．8VQ，8XE．8XS， QXU，$Y N, ~ B Z A, ~ S Z N, ~ S \% W, ~ S Z Y, ~ 9 A A P . ~ G A A W$, $9 A B H$ ， $9 A F$ FAGR，9AIR．9AIU，9AJH，9A．JI， 9AKH，9AMT 9ARG，9ASJ，9AV．9AWU，9AWX，9AWZ，
 ！DLX，9nWM，！）XM，DEE，9ET，9FS，9GX．9HM， чHR， $9 H T, 9 K O, 9 L Q .9 M C .9 M E, 90 X .9 P C, 9 T L$,

 adian：2CI．\＆PP，\％EI．3EP．\％（XE，（3JL），3KG．

C．W．Stations：LABY，AFV， 1 AGI，LAJP，1AJS， $1 A J U, I A K A, I A K B, ~ I A K G, 1 A L Y$ ，（IANQ），IAOK， $1 A O L . ~ I A R, ~ A A R X, ~ I A R Y, ~ 1 A W B, ~(1 A Y L)$ fone， 1AZD， $1 A \angle W, 1 B A Y, ~ B B C B$ fone， $1 B C F, ~ I B C Y$ ， IRDI．IBDS．＇BBDT， $1 B E A$ ．（IBEP）fone，1BES＇， 1 BGH ） $1 R G F$ IBJN，（1BQE） $1 B U A, 1 B W J$, （1BYM）fone iBYX， $10 A K$ ，IODR． $10 F, 1 C G G$ ， $1 \mathrm{CGO}, 1 \mathrm{CHW}, 1 \mathrm{DH}, 1 \mathrm{ES}$ ． $1 \mathrm{FF}, 1 \mathrm{ID}, 1 \mathrm{II}, 11 \mathrm{~N} .1 \mathrm{MB}$ ． $10 E$ fone． $1 P E, 1 P T, 1 P Y, 1 Q G, I Q N, I Q P$ ，IRD， $1 R H, ~ 1 R U), 1 R Z, 1 U N, 1 U Q)$ ， $1 X A D$ fone， $1 X E$ fone $1 X M$ ， $1 \wedge B, 2 A D B, 2 A B R$ ． $2 A B Q$ ，（2ACT）． $2 A D L$ fone，2AFP，2AHL，2AJF，2AJW，2AKO， 2ALG，2ANZ．2AQ．2AWK，2AWL，2AXR，2AYZ， fone， $2 \mathrm{BAK}, 2 \mathrm{BEA}, \mathrm{ABEB}, 2 \mathrm{EFZ}, \% \mathrm{BGH}, 2 \mathrm{BGM}$ ，
 2BZY 2CAK，2CT，2DA，2DN，2EL，2FD，2FP，
 2OB． $2 O E .2 G B$ 2RU，2UD，2VF， $2 W P$ ， $2 X A$, 3XK，2YQ． $2 Z E .2 Z L .2 Z V$ fone． $2 A A E, ~ 3 A A N$, SAAY，（ 3 ABI），BAC\％，ADT，3AFU，3AHF，BAHK， 3ANU，ЗAPQ， $2 \mathrm{AG},(3 \mathrm{BIY}), 3 \mathrm{BIA}, 3 \mathrm{BIP}, ~ З B Z, ~ З C G$,

 $3 \% N, 820$ one（ $37 Y$ ），3ZZ，4BK，1BQ．（ $4 B Y$ ），
 \＆AAZ，उABO，XAC，SACF，SADG．SADR，QADY，
 $8 A M Q$ fone， $8 A M Z,(8 A N D), 8 A O A, 8 A O G, 8 A P T$, $8 A \varrho F$, SACT，SAVH，8AVL，8AWF．9AWP，8AYW， \＆BA．\＆BCI，\＆BDU 8BCF，\＆BFG，8BFX，8BF7， \＆ $\mathrm{BH}, ~<B . T C, ~ \& B J X, ~ \& B K$ ，\＆BLTT，\＆BMA，BBNJ， \＆BO，$\triangle B O X, 8 B P L, 8 B Q I, 8 R R C, S B R L, 8 B U M$, $8 \mathrm{CI}, 8 \mathrm{DE}, 8 \mathrm{DR}, 8 \mathrm{DZ}, 8 \mathrm{EA}, 8 \mathrm{FB}, 3 \mathrm{FQ}^{2} 8 \mathrm{GE}, 8 \mathrm{GV}$ ， 8H．T，\＆TA，\＆IR，sח fone．SiQ．8IV，8JL，3JQ，8JS． SKM，\＆LF，KLJ，XTV．8LX，8NQ，XOH，8PC，8PU， ＊QM．SQQ．KQY，\＆RQ，RRU，8SE，8TB，STG．8TN，

 $9 A C O, 9 A J A \cdot(9 A N E), 9 A R K$ ．9ASB．9AVN， $9 A W Z$ ， $9 \mathrm{AXE}, 9 \mathrm{DAB}, 9 \mathrm{KK}, 9 \mathrm{FM}$ ． 9 HD$) .9 \mathrm{HY}, 9 \mathrm{IO}, 9 \mathrm{JD}$ ， 9RT，9VD， 9 KI ． $9 X M$ ．97AE， $9 \% A F$ ．9ZB fone， 9ZQ，9ZY，Canadian：2BF，3BP，3NB，0AW．

1DY，Lynn，Mass．

Sparis：IADT，ADP（1AMD），1ATP（1AW）， 1 AWD（ $1 A R Y$ ），（1AZK），（1BUC）．1BGF（IBIR）， （IRTE）， $1 B P I$ ，（1BWY）， $1 B V B, 1 B U .1 B V S, 1 C A C$ ， 1OE）（10．1，\JW，（IZE）．ITS， 2 AHU， $2 A M$ ，

 （2OA），（OOM），zÖW，（OX），צPE，（2RM）．2RQ， （2SP），（2TG），SSQ），ETF，（2TS）．थTA，2WB， （2W7， 3 AGE，SACM， $3 A H F, ~ 3 A I C, ~(3 A Q R), ~ S A Q V$, $3 A K M$ ．$\because B G T, \quad 3 H F U, 3 B G$ ． 3 CC ，（ 3 CN ） 3 FH ， （3HJ），3HX．3IW，3LP，30D，3PU，3RW，3TA， 3TH，औTTS，（3UQ），（ $\because V W), ~ 3 W X, ~ 3 Y F, ~ 3 X M . ~$ \％M．（ $3 \% A)$ ， $27 E, 4 B Y$ ． 5 FY ，1FD，8AFD，8AGK，

 E BGF，SBGV，SRRT，SBSY，KGG．8OGJ，SCI，SDY．
 SSP．צTT，STV．\＆YE．87，8，870．87R．9AY，9ACY， $9 \perp$ WU，9BDE， $9 \mathrm{MC}, 90 \mathrm{X}, 9 \mathrm{UL}, 9 \mathrm{ZJ}$ ．Cqn．2J7， BRP．

C．W．：（IRAI）． $1 \mathrm{BQE}, 1 \mathrm{CAK}$ IRZ，（1TS），1XAD mus．\＆mone，धABD，2AFP．2AJW，2AJE，2AWL，

2KL，3ALT，8RZ，3CC．3EM，3HJ，3MO，3RF，3SQ．
 ЗAWP，8AWW，SDE，\＆DR，8EZ．8ICF，8IQ，8NQ， SXM，8WY，8ZG，8ZZ，9AH，9AJA，9AWV， 910.

CEB，Bridgeport，Conn．

C．W．： $2 A H A, 2 A J A, 4 A J F$ ． $2 A J R$ ．2AJW，2AWK， 2AWL， $2 A X B .2 B A K, 2 B D G .2 B D U .2 B E A .2 B E B, 2 B Q H$ ． fone， $2 B R B, 2 B R C, 2 B U M .2 B Y C$ fone， $2 B Y S, 2 B Z L$ fone， $2 \mathrm{NN}, 2 \mathrm{EL}, 2 \mathrm{FP}, 2 \mathrm{~F} / 2 \mathrm{ZHZ}$ ． $2 \mathrm{KI}, 2 \mathrm{MW}, 2 \mathrm{RA}$ fone， こRU，2SB fone， $2 X N A, 2 \mathrm{ZD}, 2 Z L, 3 B I Y$ ，¿BZ，3FS． $3!\mathrm{H}, 3 \mathrm{ZO}, 3 Z \mathrm{Y}, 3 Z Z, 4 \mathrm{BY}, 4 \mathrm{CO}, 4 \mathrm{GI}, 4 \mathrm{FF}, 4 \mathrm{NX}$ ， 8AAZ． $8 A C F$ ． $8 A K J, 8 A O F, 8 A Q Z, ~ \triangle A W P, 8 B C I, 8 B O$ ． 8DE， 80 R ，SII，8JM．8KM，8SZ，8TB， $8 \mathrm{UJ}, ~ \$ X K$ ， $8 X V, 8 Z G . K D K A, W J Z, ~ X F 1$.
Spark：©ABM．2ACY，2AHU，2AID，3AIS，2ASL， 2ASk．2AWF．2AZD．2BCF，2BSC，2DA，2DI，2DO， $2 \mathrm{EL}, 2 \mathrm{FP}, 2 \mathrm{IF}, 20 \mathrm{M}, 2 \mathrm{OX}, 2 \mathrm{JU}, 2 \mathrm{TS}, 2 \mathrm{TU}$ ，已UA， WWM，3ACE， $3 A C M$ ． $3 A G S, 3 A I C, 3 A Q R$ 3BP Can．， $3 \mathrm{DW}, 3 \mathrm{HJ}, 3 \mathrm{HX}, 3 \mathrm{IW} .3 \mathrm{KM}, 3 \mathrm{UC}, 3 \mathrm{XM} .4 \mathrm{BQ}, 4 \mathrm{DH}$ ． SFV， $8 A C F, 8 A C R, ~ S A F B, ~ 8 A F D, S A F S, S A H H$ ， $8 \mathrm{ARD}, 8 \mathrm{AYN}, 8 \mathrm{BDK}, 8 \mathrm{BO}, 8 \mathrm{CH} .8 \mathrm{EA} .8 \mathrm{EW}, 3 \mathrm{FE}$ ， 8GW，8HF，צHY，SKE．80A，8RTJ，8SP，8TJ，8＇TY， 8XE．9AAW，9CP，9HR，9MC，9ZN．

1MO，Hartford，All C．W．

1 AGI， 1 AJS， $1 A J U$, RAWB．1ARY．IBAI．1FF， III，IIN． $1 Q P, 1 R Z, 2 A J W, ~ I A W K, ~ 2 A W L, ~ 2 A X B$. $2 \mathrm{BRC}, 2 \mathrm{CC}, 2 \mathrm{FZ}, 2 I A, 3 \mathrm{ACE}, 3 \mathrm{BIY}, 3 \mathrm{BZ}, 3 \mathrm{FM}$, $3 \mathrm{FS}, 3 \mathrm{MO}, 3 \mathrm{KF}, 4 \mathrm{BY}, 4 \mathrm{FF}, 4 \mathrm{GT}, 8 \mathrm{AAZ}, 8 \mathrm{ACF}$ ， \＆ADS， $8 A K J, 8 A Q F$ ．SAWP＇8AZF，\＆BMA，8DE， $8 F Q .8 H J, ~ 8 O H, 3 U \cup J, ~ \& V J, ~ פ A A S, 9 A A Z, 9 A J A$, 9FS，9ZB，Can．3BP．

NY，Belmont，Mass．

Spark：IAA，IAD，IAW．IAWS，IACB，IAIZ， （1ATT，），ARY， $1 A M T$ ，IASF，1ASP， $1 A Y D, 1 R D S$ ， 1BDT iBFZ．1BGG．1BJE．（1BII）1BNT，1BNX， （1BXW）． $1 \mathrm{BV}, 1 \mathrm{CEV}, 1 \mathrm{CGH}, 1 \mathrm{CHC}$ ． $1 \mathrm{CHX}, 1 \mathrm{CK}$ ， 1 CY （1DP），IDY， $1 \mathrm{EW}, 1 \mathrm{FU}, 1 \mathrm{GM}, 1 \mathrm{GV}, 1 \mathrm{KJ}$ ， IKM， $1 \mathrm{MA}, 2 \mathrm{FL}, 2 \mathrm{JU}, 2 \mathrm{OM}, 2 \mathrm{RM}, 3 \mathrm{ACM}$, §BP．
 $8 N A E, 8 R Q$ ， $8 S P, 8 X E, 8 V Q, 8 U K, 9 Z J$.

C．W．： $1 A D B, 1 A K B, 1 A K G, 1 A L Y, 1 A O K, 1 B A I$, $1 \mathrm{BCX}, 1 \mathrm{BDS}, 1 \mathrm{BES}, 1 \mathrm{BHE}$ 1BQE， 1 BYX ．1BZE， ICAK，1ES，1FF， $1 \mathrm{DM}, 1 \mathrm{PT}, 1 \mathrm{SF}$ ． $2 \mathrm{~A} . \mathrm{WW}$ ．2AWL． 2BEA， $2 F D, ~ 2 F P, 2 D N, ~ 2 Z E, ~ 3 A H K, ~ 3 A P Q$ ．3．JH， GGL， $8 A I O, 8 A W P, 8 B E F, 3 D E, 8 L F, 8 L X, 80 W$ ， 8VJ，8XK．

2TS，Staten Island．N．Y．

$\triangle A D L .1 A M D, 1 A R Y$ ． $1 A Z K$ ． $1 B D C$ ． $1 B F B$ ， $1 B V B$ ． $1 \mathrm{CK}, 1 \mathrm{CP}$（ 1 DY ），（1GM），（HK，IIA， $10 J .(1 \mathrm{SN})$ ， $1 \times M, Z Z E, 2 Q E, 2 D A, 3 A C E, ~ 3 A R N, 3 C C, 3 D M$. 3DW，（8HG），（3HJ），（3HS），（3IW），3OU，3RW．
 EXK，SACF．8AFD，8AGK， $8 A I B$ ．（ $8 A J W$ ）．8AMB， $8 A O T, 8 A P B . ~ \& A X C, ~ \& A Y N$ ， $8 \mathcal{X} O, 8 B R B, 8 B R L$ ， 8CI，8DR．Ψ EA，8EZ．（8FT）．8HG．8HU 8IN，8MZ， QOE，8OT，8RQ．8RU．SSP，（ $\left.{ }^{\prime} T J\right)$ ．（8TZ），ЗUP． SVQ， $8 \mathrm{XD}, 8 \mathrm{YN} 9 A A W, 9 A G R$ ， $9 A J H, 9 A R G$ ， 9 AWZ ． 9 AXU， $9 \mathrm{MC}, 9^{\top} \mathrm{TL}, 9 \mathrm{~g}^{2} \mathrm{TW},(9 \mathrm{UH})$ ，（9UU）， 9 ZN ，Can． 3 BP ．

2AWF，Albany，N．Y．

Spark：（AADL），AMD，ARY， $1 A W$（1AZK）， 1BDC，IBFZ，（1BIR），IBRW．1CHJ，ICK，（1CP）， （11YY，IFV．IGM IHK．（IIA），（1OE），（IQP）． （1SN），（1UL），IUV． $1 \times \mathrm{E}$, （1ZE），2AIM， $2 A J E$, RAJR．2ASL．2BCF，（2BK），（2BM），2RRC．2DI， $2 \Gamma N, 2 \mathrm{EL}, 2 \mathrm{FP},(2 J J), 2 O A, 2 O M, 2 O X, 2 R M$ ． $2 T J, 2 T S, 2 W B, 9 Z V, 3 A A N, 3 A B B, 3 A C E, 3 A C R$ ． $3 A H F$ ， $3 A I C$（ $3 A Q R)$ ． $3 B G$ ．3CC， $8 C G$ BCN．3DM． 3 FJ .3 HJ （3IW），3OU $3 P \mathrm{PU}, 3 Q W, 3 \mathrm{TH}, 3 \mathrm{UC}$ 3TQ，（3VW）（3XM）．（3ZO）， 4 BC ， $4 \mathrm{BE}, 4 \mathrm{BQ}$ ．
 （ $8 A(G F), ~(8 A D R), ~ 8 A F B$ 8AFD，（ $8 A F H)$（ $8 A H V)$ ． SAJC，SAJK，SAJV，\＆AJW，8AMB，8AMP，8ANM， （ 8 AOT ）．8APB（ 8 AQV ），8ARD， $8 \mathrm{ASV}, 8 A V O$ ， （ $8 A W U)$ ，（8AXC）， $8 A X N .8 A Y N, 8 B K, 3 B O .8 B P$ ． 8BRL，8BSY，8CG，8DR，8DZ，8EO，8EZ，8GE． SGW，SHG．（8HTi），区HX，\＆JJ，8JP， $8 J 0,8 M M$ ，
 （8TY），8UT，（8XE），8YN，8Z，8ZD，8ZZ，SAAW 9AGR，9AIR，9AP，9ASJ，9AWU，（9AWZ），9AZE 9BDE．9CP，9ET．（9FS）．9FU，9GP，9GX．9MR $9 \mathrm{MC}, 9 \mathrm{ME}, 9 \mathrm{PC} .9 \mathrm{PD}, 9 \mathrm{TL}, 9 \mathrm{UH}, 9 \mathrm{UU}, 9 \mathrm{VG}, 9$ YR OZJ，CAn．（3BP）（SFO）．

CW．：1II，2AWK，2AWL，2FD，2ZV，3BZ，3CC， 8ZY，\＆BY，AGL，8AWP，8TEE，8II，8AAS，9ZY．

2AFP，Paterson．N．B．
C．W．：（1ADL），IAFV．1AJP．（1AKB），（1AKG） IANQ．IANY，IAOK，IAWB，1BAI．IBDI，IBYX （1CAK）．（1GGG），DDH，（IES），LFF，1QN，IUN，

 $3 S Q .(3 Z N)$（ $3 Z O$ fone），©ZY， $3 Z Z .4 B K$ ，（4BY）．

 （BAIX），（YAJP），$\triangle A K E, ~ B A M F, ~ B A N D, ~ S A O A$ ． $8 A P T$（ $\triangle A Q F),(\triangle A Q Z),(8 A R V), 8 A V H,(8 A W P)$ $8 A W X$ ．（ $8 B C I), 8 B A, 8 B F G, ~ 8 B F \dot{X}$ ，（ $8 B K)$ ，（ $8 B O)$ （ 8 BOX$)$ ，（ 8 BPL$), 8 \mathrm{BC},(8 \mathrm{BRC})$ ）（ 8 BRL$)$ ，8BUM （ $8 D E) .8 D R, 8 D V, 8 D X .8 F D .8 F Q .8 H A, 8 H D$, （ 8 HM ） $8 \mathrm{8HY}$（ 8 IB ），（ $8 I \mathrm{I})$（ $8 \mathrm{IQ} \mathrm{Q}, 8 \mathrm{JL}, 8 \mathrm{ZJU}, 8 \mathrm{KH}$, （8KM），\＆HF，\＆LJ）．\＆LU，（ 8 LLV$), 8 L \mathrm{~K}, ~ \$ N Q$ （XNV）， $80 W, ~ \triangle P W, ~ S P X, ~(8 Q M) . ~(~ S Q T V), ~ 8 Q Y, ~$ 8SE．（8TG），＇TN 8UJ，（8UK），\＆VY．（8WYi，8XB， 8XK． 8 KM，（87G），8CV，（KクZ），9AAS，（9AAV）， （9ACO）．（9AJA），9ANEj，（9ARK），9DAB（9HD）， $9 \mathrm{HY},(\dot{\mathrm{S} L Q}, 9 \mathrm{~T}, ~(9 X I)$ ．（9VG），9XM，9ZX，CAn－ adian iJL，（3BP），（9AWi）．
Spark： $4 \mathrm{AG}, 4 \mathrm{BE},{ }_{4}^{2} \mathrm{BY}, 4 \mathrm{CX}, 4 \mathrm{EA}, 4 \mathrm{FD}, 5 \mathrm{FV}$ ．

2BK．Yonkers，N．Y．

（ $1 A D L$ ）， $1 A W$ ． 1 CK （1DY），$\{E S, 1 F V, 11 A .1 Q P$ ， （ISN），IUN，IXX．（IZE），IBFZ，（IBDCi．（BAC）， （3IFK，（3AQR），$A R N), ~ S C C, ~ B H J, ~ B H X ~ C . W ., ~$

 （\＆AY），\＆BA，（ জBK），\＆BM（SBO（W．），（BAL）， （ 8 DY ），（ 8 EA$),(8 \mathrm{EV}),(8 \mathrm{FE}),(8 \mathrm{FW}), 8 \mathrm{HP},(8 \mathrm{CN})$ ）， 8JQ．iถ̃JT）．（SKH），SKS．KLX， $8 M M, ~(8 M R), ~ 8 O A, ~$ （80， 8 ，8OZ， 8 QM，（ $8 R Q$ ），（ 8 SP ），（8TT），（8TY）， （8TJO）（8UP），\＆VQ．（8WA），（ BWO ），（8WY），

 （9HT，（9ME），9NQ．9TO，（GPS）（90X），（9VH）． （9ZJ），（9V7）9WU，9ZJ，（9ZN）（9AAW）， （9AGR），9AJB，（9AJH），（9ALH），（9AIR），9AIU， Canadian sCG．3IL，BK（，（9AZE），9DAX，9DIH，

2OM，Ridgewood，N．J

SDark：1ADC，（AADL），ADM，AMB，（IAMD） （1ARY），（1ASF），（1AW），IAXC，（1AZK）．（1BCF） （1BDC），i 1 RDT ，（ARIR），（1BJE），$\because B K P, ~ 1 B C E$ ，
 （1DZ），IFR．（IFTI，IFV（IGM）．（IHK），（IIA） IXM，（1ZE）（1DE）．1OT），1OT，（1QP），1RV，（ISN）． 1XM，（1ZE）．ЗAAN BAC（AACE），BACM，BACR， 3AGL， $3 A C C$（3AL），（BALNN，（BAOR），BARM， （3ARN），$B A T Z i, B B C$（ $3 B F T)$（BART），BRX

 （B1／P）（3OW），SPB，（BQN），（3RW），（STR），дNT， 37C，（3TQ），3UX，3VW），2WX， $3 X F$（3XM）， 37． 37 BE ． $320,3 \% Z$ Q4nadian（3BP），（3ET），

 \＆ACF），（\＆ADE），SAFA．（\＆AFD SZL，TAD， （BAGK），XAGT，（SAHH），（令AHS）（8AFDi，（8AFS）， 8A．JK．BAIL．QAJT，（BATWI OALW（\＆AMB） （XAMZ）．（\＆ANOI，\＆ANY，ZAOT，QAPB．\＆AQV＇， \＆ARD，BAVO，ZAVT，（XAMP），BAXCB，$\angle A Y N V$,
 QER，SEQ QFT SFT © \＆FT QFW \＆R QIV，（SFA）， \＆HP，SHTT，（\＆HY）\＆TD \＆IT，\＆TN
 \＆PM，\＆PT \＆OE（KROI．（XRTY）（KSP）．（STJT）．甘TK，\＆TV，STV ATT BUC STTK，STPSPVQ，（\＆TJ），
 （9AAW）． $9 A R V$ 9AFX．（9A（；R），（9AIR），（9ATU）， （9A．IH），9AMG，9AMR $9 A N C$ OAPK， $9 A Q E$ ， $9 A O N$ ， （9AR（i）．9ART 9AA，T 9ASN 9AW，（4AWZ）．9AXT （9RDE）（9CP）ODM．J．9DWP，9D7Y，פEA，QEE，
 （ч（IV），gUW，gVZ，gWK，（9WT），9YM，9ZJ， $92 N$

C．W．：1AJS．$A K G, 1 A N Q$ ．1BAI，1CAK，（1OF W\％\＆\＆icei，［PT，（1PE），1QN（1RZ ew \＆vice）， 3\％X．aZZ，（qnadian（3BP）， 4 （CO， 3 HFF （ 4 HJ ）． 3 MO ，

AALE，8ARV，（8AWP），8BPL，8DE，8GE，8HK．8LF IO．（8UJ）． 8 UKK，8VJ，9AA，9ANE，gAOJ，gHY＇，

KFi，Langley Field Va．
1 BAP，§BDI， $1 \mathrm{BDT}, 1 \mathrm{BFL}$（1CGG）． 1 CHX ，1GM． $2 A D L, ~ 2 A F P,(2 A K O), ~ \& A R P$ ． $2 B A K$ ， $2 B G H, E 3 R$ ． 2DA．2FD，2FP，2GN，2JD，2MO，2OM，सTF，2TS． （2XA），（2ZE），（2ZL）， $2 Z N,(3 A A E), 3 A A Y, ~ B A B I$ ，

 $(370),(3 \& Z),(4 \mathrm{BK}), 4 \mathrm{C}, 41 \mathrm{H}, 4 \mathrm{~EB}$, （EL），4KU， 4TQ，（5DAl．（5XB），$\triangle X, ~ \triangle A F D, ~ B A G N, ~ 8 A H B$ ， BAHH，SAIB，$\triangle A K E)$ ，BARS，XAMQ，QAPD，8AQ． \＆AQZ，SAR，SAVP，SAWK，SAYN．SAZQ．¿BBU， \＆BJC， $8 B O, 8 B R C, 8 B R F, 8 B U A, ~ \& E A, ~ \& F \Gamma$ ，SGE， （8JSi，8KM，（8LF）．8LW，8QT，\＆RQ，\＆TG，\＆VY， \＆WY．SXE，SXE，GXF，SXK，SXM， $8 X U, ~(\triangle X Y)$ ． $8 \mathrm{YN}, 87 \mathrm{~A}, ~ 8 Z \mathrm{D}, \quad(87 \mathrm{G})$（ $8 \% \mathrm{~N})$ ．（ $\mathrm{BZZ}, \quad 9 A J A$ $9 A P, 9 B D E, 9 C P, 9 D A B,(9 H D)$（ 9 LQ ）， $9 \mathrm{LZ}, 9 R \mathrm{~T}$ ． 9XAH，9XI， $9 \times(\dot{M}, 2 Z A,(9 Z A C), 9 Z A E, ~ 9 Z J, ~ 9 Z N$, 9ZY．

3RF，Roanoke，Va．
C．W．：1BQ，1CF，iPY，（1QN），1UN，1BYS．1CAK．
 2ZN，2ZV． $2 A F P, 2 A J W, 2 A K O, 2 A O L .2 A W L .2 B A D$,
 $3 \mathrm{HB}, 3 \mathrm{HX}, 37 \mathrm{~L}$ ． 32 V, （3ZY），3AAE． $3 \mathrm{AN}, 3$ ASK， 3AQR，$A \mathrm{~A}, 4 \mathrm{BQ}$ ，（ABT）， $4 \mathrm{BY}, 4 \mathrm{CO}, \mathrm{EB}, 4 \mathrm{EF}$ ，

 （ $8 H A), ~ B H G, 3 I I, ~ \$ I O,(8 I Q), ~ B J T, ~ S J M, 8 J Q$ ， （ $8 K M), ~(8 L J), ~ B L U, ~(8 L X), ~ 8 M K, ~ 8 N Q, ~ X O W$, （SPN），SPTT，（ $8 Q Y$ ）， $8 Q K$ ．SRO，（ $8 T N$ ），RITI，
 8ZB，8RG，8ZL，8ZJ，8ZR，8ZZ，\＆AAQ，8AAZ， SABK．（ $\triangle \triangle B O$ ），（ $\triangle A C F), ~ \& A \Gamma G, ~ S A D Y, ~ \& A F D$, צAFP， $8 A J T, ~ B A K S), ~ \& A M Z, ~ \& A L E, ~ B A M Q$ ， （BAOA）， $8 A Q F, ~(X A Q Y), ~ 3 A W F,(8 A W P), ~ B A W X$ ， צAYF，（ $8 B C I)$ \＆RET，\＆BDP，\＆BDU，SBIX，\＆BOX， 8BRF，SBSY，9AU，9AW，פIQ．9QY，9RT，9ZA， $9 \% J, 9 Z Y, 9 A A S, 9 A K K, ~ G A W T, 9 B D E$.

Spark： $3 \mathrm{BP}, 3 \mathrm{MS}, 3 \times \mathrm{F}, 3 \times \mathrm{M}, 3 Y \mathrm{~K} .3 Y \mathrm{~L}, 4 \mathrm{GR}$ ， \＆AS， $4 B X, ~ \angle B Y, ~ \& G K, ~ \& F T, ~ f Y A, ~ \& B B,\{X Z$ ．
 $B Y N$ \＆ZN，SACF，BAFB，BAFD $A H H, ~ B A J G$ ，太AFV，$G A R N$ ，\＆AWR．\＆AXC，\＆AYN．gAC，9FS， $9 \mathrm{MC} .9 \mathrm{TL}, 9 \mathrm{JI}, 9 Y \mathrm{M}$ ．9Z．J．SAWG．

3BEC，Radinor，Pa．

Spark：1AW．IBL．ICK．IUY，1GM．IHO，IIA $10 \mathrm{~F}, 1 \mathrm{~PB}, 1 R \mathrm{U}, 1 \mathrm{TS}, 1 A C O, 1 A D L, 1 A M D, 1 A O L$ ， $1 A Q K, ~ A A R Y, ~ A Z D, ~ A A K, ~ 1 B D C, ~ \angle B F Z, ~ l B G F$,
 2JU，2OM．2FM，2TF，ETS，2VT，OUP，2XA， $2 A C R$ ．
 QAWF． $2 A Z L, 2 B C D, 2 B K C, 4 C X, 4 E A .4 F D$ ．SDA． GFC， $5 X A, \quad$ हZA， $8 A G, 8 B A, \& B O, 8 D I, ~ \triangle D R$ ，\＆DY．

 SOI，SOU，BOQ，$Q Q R, S R Q . \& R H, ~ S L, ~ 甘 S P, ~ \& T G$ ， STZ．STJN，SVW，\＆WA，\＆XD，SXE，\＆XM，\＆ZN，
 $8 A F M, ~ B A F S . B A F Z, ~ A G K, ~ \& A G N$ ，$A H H, ~ \& A H K$ ，
 SAOJ，$\triangle A P B, K A R D, ~ \# A K W, ~ \& A V N, ~ K A W X, ~ \& A W \%$,

 9ARW リASJ $3 A W U, 9 A W \%$ ．QAXM，9BDE， 3 XP Canadian．
．W．： $1 A Q, A R$ ICK．IRQ，IUN，AGT．ISU， $1 A R G, 1 A N Q, 1 A W B$ A $Z N$ ．BAI．BBES IOAK．

 8NQ．\＆TF STV RTTK，SWY，$\triangle R 1.8 X K, ~ \& A A Z$, SADQ．SAMZ．\＆AWD，BAWP．SBEF，\＆R．XX，गIO， 9RT，9AGG，OARK

Phone：$A R$ ， $3 \mathrm{FM}, 3 \mathrm{FS}, 3 \mathrm{MT}, 3 \mathrm{NO} .3 \mathrm{YQ}, 3 Z \mathrm{Y}$ ， 3ASE，ZAND，ANO．BANU，AARV，\＆Tr．

[^2]1SN．（1TS），1WR．1XM，1ZE，2ABR，2AHU，EAID， 2AIM，（2AJE），2AQE，2ARB，2ARD，2ARY，ZASL 2AZ，（2BK）．2马M，2BSC，（2DA），（2DN），¿EL， 2FM，\＆FP，こJU，（シJZi，（2OM），2PV，そRM，シTF （2TS），2UE，2WR， $2 W M, 2 X Z, ~ 2 A B C, ~ उ A C, ~ \because A C E$.

 3QN，3RA，3TOC，औTQ．BUS，BVW，：HA，3\％O， $4 A G$ ，

 $8 A G K, ~ B A H H, ~ \forall H V, 8 A H S$ ，SAIA，ZAB． $8 A I G$ §AIM，8AIO．8AJE，8AJF．\＆AJT，צAJV，8ATW，\＆AR， 8AL．8AMB，8AMF．$\angle A M G$ ．8AMU，\＆AM\％，8ANC $\triangle A N F, 8 A N O, ~ \triangle A N Y, ~ S A O T, ~ \& A P B, ~ \varangle A Q V, ~ \triangle A R D$ SARK．SARS，\＆ASO，BASV，SASZ，BAV，צAVO צAVT，צAVK，SAWIT，$\triangle A X C), 8 A X S, ~ B A Y N . ~ B A Y T ~$ \＆AYZ，SAZK，$\triangle B A U, ~ \& B C O, ~ \triangle B D P$ ．$\triangle B E N, ~ S B F H$, SBFN，$\leqslant R(S, \quad 8 B H, \quad 8 R H V, S B N, 8 B O$ ，sBOX， 8BPU，8RR．（8BRL），8BRO，\＆BRU，sBSY，\＃RU \＆BVA，\＆CI，\＆CV，SDO，SDR，\＆णV，\＆DY），$\& D Z$ SE；A，$\& E B, ~ S E F, ~ E E W, ~ \& E Z, ~ \triangle F A, ~ \& F C$ \＆FT）， $8 G E, 8 G V, 3 G W, ~ \$ H J, ~ 8 H U, ~ B H Y, ~ \& I K, ~ ช L L . ~(81 N)$ $8 J Q,(\hat{8 M D}), ~ \& M L, ~ \$ O \overline{,}, \& P J, ~ \& Y X, ~ \& Q \mathrm{C}, ~ \& \mathrm{KG}$ ．

 9AIH．9AIO，GAIR，9AIW，9AMT，9ANC，9AOJ， 9AOU，9AOX，gAPK， $9 A P S, ~ 9 A P T, ~ 9 A Q R, ~ 9 A R G, ~$ 9ARI，9AKK．צ̈ARP，9As．f，9ASV，9AV，9AmT 9AWZ．9AXU，தAY，GAZE，9BDE，धKDR．9BDS． 9CP，9DEJ．ЭDMM，9DP，9DWM．9DY．9DYT 9DZ．9EK，פET．9FS，9FZ．ソHM，9HO． 9 HR ． 9 HS ，
 $9 \mathrm{MGG}, 9 \mathrm{MR}, ~ 9 \mathrm{MS}, 9 \mathrm{MX}$ ． $9 \mathrm{NG}, 9 \mathrm{NR}, 90 \mathrm{X}, 9 \mathrm{PC}, 9 \mathrm{PS}$ ， 9PX，9QR．日TL，GTO，9TY，9UH，9UQ．9TTT，！VT． GVN，yVO．9VZ，9WX．9WZ，9YA， $9 Y A C, 9 Y B$, 9YN，9ZAC，97，I， $4 Z N$ ，Canadian $2 A A, 38 P$ ，3JL， $3 K G$（ $3 P L$ ）．

C．W．： $1 A E, 1 A G I$ ， $1 A O L, 1 A P X, 1 A W B$ ，ICAE． $1 F F_{0}$ BHGS ITN， $1 P E$ IQN，IRN， $1 R U, ~ I R Z$,
 2AKO．2AWL，2AWP，2BAK．2BDM．2BEA．2BG．

 ЯADY，گAFU，QAIO，SATX，\＆AJP，ZAOA，QAPF， BAOF，XALR．SAQZ，\＆AWL．\＆AWP，SBCI，SBEF．

 8NM．$\triangle N Q . ~ S P T, ~ \& P W, ~ S Q Y, ~ B R Q, ~ \& R T T, ~ Q S E, ~$ QTN，\＆UJ fone，MITK，BVI，\＆VY，XWY，SEB，SDG， \＆TR，\＆ZV，\＆？7．9AAS，9AAY．9AvA．9ARK，9HD $9 \mathrm{HY}, 910,90 \mathrm{C}$ ．

3ZO，Parkeshurg，Pa．

Spark：IBE，1BK，1CK，1OX 1DV， $1 G V, 1 H K$ ， $1 I A, 1 \mathrm{MA} .1 \cup \mathrm{E}, 1 \mathrm{PQ}$ ． $1 \mathrm{RV}, 1 \mathrm{RX}, 1 \mathrm{RZ}$ ．ISW， $1 \cup \mathrm{~A}$
 $1 A H F, 1 A M D, ~ A M L$ ． $1 A N Y, 1 A P O, ~ R A R Y$ ，$A S F$ ． $1 A Z K$ ，1BCF（ 1 BDC$)$ ． BDT （ 1 BF B ），$B G F$ IRIR＇1BJE． $1 B K P$ IBLE， $1 B Y X$ \＆BK．（ B BM ）

 （ 8 ABBi，$\because A R P$ ACM，（ACS）．SADB，\＆ADT，
 （ 3 AQL$)$（BACR），$B A Q S$ ．$\because A R Y$（ $B A S K$ ），$\triangle A W F$
 \＆FW，SH．J，EHP，ST，\＄TQ．SRQ， $8 \mathrm{SG}, 8 \mathrm{SP}, \mathrm{KTR}$ \＆＇TK，«TT，\＆TZ，×TK，\＆VF．WO WWY，\＆YE （ \＆ZA），$\triangle A D Q, \& A D V, ~ \& A F A, ~ \& A F B, ~ \triangle A F D, ~ \& A C K$ צAHV，SALV，$\triangle A M B, ~ 8 A N W, ~ \& A O T, ~ \triangle A P B, ~ \forall B F H$ ， SBSY， $9 F S, 9 \mathrm{ME}, 9 T L$ ， $9 \varphi \mathrm{G}, 9 X M .9 Y A, 97 \mathrm{~J}$ ，

C．W．： $1 B Y$ 1CF， 1 DH （ 1 DY ， $1 \mathrm{FD}, 1 \mathrm{FF} .1 \mathrm{GM}$ ．
 1AJP．IAJTT，IANQ， $1 A O T, ~(1 B A I), ~ B D T, ~ B Q E ~$ （1UGG）．IHCS，1UNQ．1XAD fone，？CT，こFD，2FP，
 （2AFP），2AHL，2AJW，2AKD，2ATS，2AWL，zAYK，

2AYZ ione，2BAK．2BEA．2BRZ，2BGH．2BYS． $3 \mathrm{BZ}, 3 \mathrm{CO}, 3 \mathrm{FF}, \quad 3 \mathrm{FS}, 3 \mathrm{GR},(3 \mathrm{HJ}), 3 \mathrm{HX}, 3 \mathrm{LK}$ 3＠V，3XG，8XZ，32Y，（3AAE），（3ANU），BASW $(3 A P Q),: B A K, 3 F B L,(\times F-1)$ ， $4 E B, 4 F F, 4 G L$ （ $4 N X), S B O$ ．SCG， $2 D E, ~ S D R, ~ \& T 7, ~ \& G E, ~ \& G V$

 SAKJ，（ $\mathrm{A} A Q Z)$ ，$\triangle A W P), ~ \Varangle B G I, ~ S B O X, ~ \& R T M$ 9AW，9HD．91Q，9世C，9XI，9YB，9\％Y，9AAS，9AAV．

4XC，Atlanta，Ga

Spark：2BK，2DN， $2 \mathrm{FP}, 2 \mathrm{MB}, 3 \mathrm{ACE}, 3 \mathrm{AHK}$

 BACF，\＆AIV，उAXC， $8 A B, S A A B, ~ \& A Y$ ，SANY， $\triangle A D E, ~ \triangle A N O$ ，SAIO，ZAQV，BACK，\＆AYN．SAFK ЯARD，KBBTT，KREN，QRDO，SBRL，\＆BVA．\＆BSY． \＆BYT，\＆TR．\＆AOI．SEA．\＆EB，SFG，\＆FI，\＆FT，

 SIN．9AAG．9AAW，9AAP，9AWZ，9ANC，9AMT 9AIR．9ARI，9AMA，9AUO．9ATN，9AQE，9AYE 9ARX，GABH，9AAU，9BDE．9CP，9DQQ，9DSN， $9 \mathrm{~F} \%$ 9E＇T，פFT，פFS，9ASJ，9GX，9DM＠，9HM，

 $97 N, 9 W^{\prime} T$ 〇YB， $9 Y A E$ ，97B，Can．3BP．
©．W．：IKAI，：AWL，こAJF，2AFP．2BAD，2BCI，

 \＆XB．4たE．5LA．\＆ACF．\＆AQZ，8AHZ．SAWP，SAOA，

 \＆KT，sOI．\＆LF．\＆RI，\＆PD，\＆UR，\＆UJ．STA．\＆XK， 8VI，SWY．SXM．SZD，SZG，GARK．9AAS gAVN，9AJA，9AWN，9AAV，9AQR，3YM，gRT

4GI．，Savannah，Ga．
 （3H．J）．3OU，UQ． $1 \mathrm{BC} .4 \mathrm{BY}, 4 \mathrm{BQ}$ ．（4FD），（4FR），（5DA） ちFV， 5 HK ．$I O, 5 X B, \therefore X T, \therefore Y M, 5 X 7,(5 \mathrm{ZAB})$ ． （90X），9XT．9YM．9ZAC，（97，$), ~(9 Z N)$.
（．W．： 1 BOT, （1CAK），（1PT）， $1 Q P, 1 R 7$ ，（1TS）

 （2FP），DMW（ SBU ）．（SZE）．（2GV\}, (BAAE)

 SFT，ix（SE），\＆II fone and（．W．），sIQ（X．JMi，S．IS） （ $8 K M$ ），（ $\mathbb{K}(F)$（

 （9AJA，马AVN，（GEK），（9HD），（960），（97B fone and C．W．），97Y。

AFD．Midville，Ga．

 $4 C P, 40 \mathrm{X},(4 \mathrm{OH}), 4 \mathrm{DC}, 4 \mathrm{O}, ~ 4 \mathrm{~F}, ~(4 F R), ~ \& F P$

 SEF．SEZ，\＆GV，（\＆HG），SHU，SHI，STN，\＆TT QN7．SOT，\＆RT，（※SP），STJC，世TH．SUN．\＆TP
 $\because A C Y, ~ B A D E$ SADO，QAEG，BAEU．SAFB，（XAFD）， $\because \triangle H H$ ．$\triangle A J E$（XAJT），XAIV，\＆ANO．IKARDI．
 ©ЯRVAI，SDYZ，8\％AA．9AP，9CP，9EL，9FT，9FS． $\because G X, 9 H M, 9 K O, 95, \quad(G M E), 9 M C, 900,90 T$
 ！WP． $9 \% D$ $9 \%, 9 \% N$ ， $9 A A P, 9 A A W$ ，$A B S$ ， $9 A E G$ （9AGG）．ЯAGT，（9ATR），？AMK，9AMT，9AMV，
 \％ASI，9ASZ，gAWZ，9BCX，9BDE．ЭDQQ，9DWN， GDYU．9TYW．

C．W．：2KL，2AWL．3BZ．3MO，3RF，4BY，3CO， 4EN，4GL，4II， 4 ZE ． 5 DA ．8DE，8II，8IQ．8UK， $8 \mathrm{VJ}, 8 \mathrm{ACF}, 9 \mathrm{~A} W \mathrm{P}, 9 \mathrm{ZJ}$ music．

4HJ，South Jacksonville，Fla．
Spark：2DN，2EL $2 Z H, 3 B F U, 2 Z O, 3 Z Y, 4 A S$. $4 \mathrm{BC}, 4 \mathrm{BL}, 4 \mathrm{BQ}$ ． $4 \mathrm{BY}, 4 \mathrm{BZ}, 4 \mathrm{CX}$ ． $40 \mathrm{BH}, \mathrm{DQ}, 4 \mathrm{DT}$ ． $4 \mathrm{FD}, 4 \mathrm{FF}, 4 \mathrm{ZE} .4 \mathrm{ZH}, 4 \mathrm{ZY}$ ，6DA． $\mathrm{FEK}, 5 \mathrm{FV}, 5 \mathrm{IL}$ ． 6XA， $6 X J, ~ 5 Y K, ~ 6 Y L, ~ 5 Z A, ~ 5 Z L, ~ 6 Z P . ~ 6 Z X, ~ S B E P, ~$ $8 \mathrm{KA} .8 \mathrm{XJ}, \mathrm{K}^{\circ} \mathrm{ZN}, 9 \mathrm{ASJ}, 9 \mathrm{BDE}, 9 \mathrm{MC}$ ，9UU，97J．
C．W．： $2 \mathrm{ABD} .3 \mathrm{EM}, 3 \mathrm{ZH}, 3 \mathrm{RF}, 4 \mathrm{ED}, 4 \mathrm{EL}, 4 \mathrm{GL}$ ， 4HW，\＆II，gAAS，GAJA．GAL，GLV，KDKA fune．

411，Box 467 Orlanda Fla．

Spurk： $4 \mathrm{AG}, 4 \mathrm{AS}, 4 \mathrm{BC}, 4 \mathrm{XB}, 5.5 \mathrm{D}, 5 \mathrm{FJ}, 5 \mathrm{XB}$
 \＆JQ，8ZA，8ACF，SA＞P，8BEP，8BSY，8BVA， 9 MC ， $9 \mathrm{YA}, 9 \mathrm{YM}$ ． $\mathrm{ZJJ}_{6} 9 \mathrm{AQM}$ ．
C．W．：IUN．1AGI．IANQ． $1 A F V$ ，1CAR， $2 F D$ ， $2 \mathrm{ABD}, 2 \mathrm{ABR}, 2 \mathrm{BAK}, 2 \mathrm{XA}, 2 Z \mathrm{~L}, 3 \mathrm{BA}, 3 \mathrm{~B} /, 3 \mathrm{CC}$ ， \％FD， 3 FS ． $8 \mathrm{HJ}, 3 \mathrm{~PB}, 3 \mathrm{RF}, 3 \mathrm{MO}, 3 \mathrm{ZN}, 3 \% \mathrm{Y}$ ， （3AFU）， $3 A H K$ 3BIY． $4 \mathrm{BD}, 4 \mathrm{BK}$ ， $4 \mathrm{BQ}, 4 \mathrm{BT}$ ， （ 4 BY$), 4 \mathrm{CO}$ ，（4EL）， 4 FF （ 4 GL ），（ 4 HW ）， 42 E ，
 $8 \mathrm{KM}, 8 \mathrm{LF}, 80 \mathrm{I}, 8 \mathrm{MM}$ ．S＇IN． $8 V Y$ ． 8 XK ． $8 Z \mathrm{Z}$ ， 8ZZ，$\triangle A P T, ~ \subset A K J, ~ S A Q Z, ~ \& W P, ~ \& B C I . ~ \& B F X$, $6 B 0 X, 9 H D, 9 L Q, 9 R T, 9 Z B, 9 A A S, 9 A R E, 9 A J A$, 9 XAH ，Canadian 3 BP ．

5FO，Norman，Okla．
6AL， $4 \mathrm{DW},(5 \mathrm{EK}), 4 \mathrm{EW}, 5 \mathrm{FI}$ ． $5 \mathrm{FV},(5 \mathrm{HK}),(5 \mathrm{HZ})$ ， sHQ， 5 HY ． 5 HX, （5IB），51C．（5TF），5IQ．（5IR）， （ 5 IS ）．5JD，5JI，6JM，（5JR），（5JP）， 5 KH ，5KJ． $\left.6 \mathrm{KP}, 5 \mathrm{KW}, 5 \mathrm{LA}, \quad(5 \mathrm{LB}), 6 \mathrm{LC}, 6 \mathrm{LK},{ }^{\circ} \mathrm{LO}\right), 5 \mathrm{NI}$ ，

 （5QY），（5RA），（5TA），（5TG），हTK，EXB，5XG． （ 5×1 ）．（ 5 XJ）， $6 \times L, ~ 5 X Q . ~(6 X T), ~(5 X U), ~ 5 Y E, ~$万YL，（5YN），5YS．（5ZA），（5ZC），（5ZL），（5ZO）， 5ZS．（ $5 Z \mathrm{ZT}$ ） $6 \% \mathrm{ZX}$（ 5 ZZ ），（ $5 Z \mathrm{AB}$ ），（ $5 \% \mathrm{AF}$ ）．
 $9 \mathrm{BP}, 9 \mathrm{CP}, 9 \mathrm{DE} .9 \mathrm{DH}$ 9DM．9DU，（9EL），9ET）． （ 9 FZ ）， $9 \mathrm{HI}, 9 \mathrm{HM}$（ 9 HT ），（9ГY），9JQ，（ 9 KA ）． （9KO）． 9 LR, （ 9 LW ）．（9MC）．（9PI）．＇（9PS），（9RW）， $9 \mathrm{TL} .9 \mathrm{TV}, 90 \mathrm{~J}, ~(9 \mathrm{WI})$ ，（ 9 WL$),(9 \mathrm{WU})$ ， 9 XJ$)$ ）， （9XM）．（9YA）．（9YM），（9YO）．（9ZB），（9ZH），

 9AKC，9ALO．（9AMA）．9AMB．（9AMD），9AMK． $9 A M V, 9 A N O$ ， $9 A O U, 9 A Q E, 9 A R Z, 9 A T U, ~ 2 A W U$, gAWZ．9AYU．gAYV．gAYW．GAXU．GDAR． （9DAY），9DEH，（9DFL），（9DOC），（9DUG），9DUL． $90 Q \mathrm{O}$ ．9DSD， 9 DZJ （9YAE），（9YAC）．（9YAK）， $9 X A E, 3 Z A C,(9 Z A F), 9 Z M C$ ，

SHK，Oklahoma City，Okla．

Spark：5RM，（5DH），（5EK）．（SEUT），（5FV），
 （SSR）， $5 \mathrm{LO},(5 L B) .5 \mathrm{NH},(5 \mathrm{PU}),(5 Q Q), 5 Q Y, \mathrm{GQN}$ ． SRM，（5TA），（5XB），（5XT）（5XU）（5XJi，5XA．万XI． 5 YK．（ $5 Y N$ ）（5ZA），SZC．（5ZL）． $5 Z O, 5 \% R$ ．

 $9 \mathrm{EE},(9 \mathrm{FL}),(9 \mathrm{ET}),(9 \mathrm{FZ}),(9 \mathrm{HT}),(9 \mathrm{HI}),(9 \mathrm{HM})$ ，

 （9YAE）．9YAL（9YAK），（9ZB），97C，（9ZH）， $9 Z J .9 Z N,(9 Z A C),(9 A B V), 9 A C N .9 A E X$ ．（9AEG） （9AEY），9AFO，（9AFX），（9AFF）．（9AFW），
 （9AMA）．9AMK，（9ANO）．（9AOV）．（9AOU）： 9AQE，GAQA．（GARG）．OARK，（9ARI）（9ASN）， （9AUO）．9AUW，gAUN，gAVN，gAWX．，gAWZ， 9AXU，9AYW），9DEH，9DFL．9DMJ．（9DQQ）． （9DSD），（9DUG），（9DVA）．

SME，Dallas，Texas

Spark：5AL． BAO ．BM．SEH．GEK．SER．5FT

 GNK， $5 N S, 5 O K, 5 O I .5 Q A, S Q I, 5 Q Y, ~ Б R A, ~ 5 R M$ ．
 5YL， 57 A， $5 Z \mathrm{~L}, 570,5 Z \mathrm{~T}, 5 Z \mathrm{U}, 57 \mathrm{X}, 5 \mathrm{ZZ}, 5 Z \AA \mathrm{~B}$,
 8 ACF ． 8 ARD ． 9 ET ． 9 FZ ， $9 \mathrm{HM}, 9 \mathrm{gT} 910.9 \mathrm{KA}$ ． 9LF．9MC．9MR．9NQ，9NR．90R．9PS，9TL，9TN．
 GYA，9ACL，9AEG．ЭAEY，ЭAFX，פAHZ，शALU，

9AMA，9AMS，9AOU，9AQE，gAQM，gASN，gAUO． 9AYW，9AWX，9BDS，9DEH， $9 D F L, 9 D P H, ~ \varphi D Q Q$ ． 9DSD，9DUG，9DZI，9YAE．9YAK，9ZAB，9ZAC．
C．W．： $2 \mathrm{FD}, 2 \mathrm{FP}, 4 \mathrm{BY}$ ． $3 \mathrm{DH}, 5 \mathrm{DA}, \mathrm{LA}, \% \mathrm{ZA}$ ．
 ХTN，SUJ，SVI．SYY，\＆QF，SBFX．\＆BOX，QAA． $9 A B, 9 E K, 9 M R, 9 R J, 9 R Q .9 R T, 9 R V, 9 V E, 9 A A S$ ， 9AJA，gAKD，gAMB，©ANE，gAQR，9ARK，9XI， $9 \mathrm{XAC}, 9 \mathrm{ZB}, 9 \mathrm{8}$ ．

SNH，Rockdale，Texas．

今JR，（5KP），（SLM），©LX，与MR，（ $5 M X$ ）， $5 N K$ ， （5PP），（5PR），（5QA）， $5 Q I, ~(5 Q Y), ~(S S A), ~(5 K B), ~$ 5XI，5XJ，（5XU）．5XI，5YK．5ZA，（5ZF）．5\％，3．
 （ $5 Z A G), ~ 5 \% A K$ ．S\％AM，5ZAR， $5 \% A Y$ ，JAC，9AP， $9 F^{2}, 9 \mathrm{MO}, 9 \mathrm{RV}, 9 \mathrm{SS}, 9 \mathrm{AEG}, 9 \mathrm{AEY}, 9 \mathrm{YAE}, 9 \mathrm{AC}$

52AB，Houma，La．

 4 HZ ．（ 4 DH ），\＆FD， $6 \mathrm{FF}, 4 \mathrm{GN}$ ，4GL，4IE，（5AF）， SAO，SEK，SER．EEW（SFO），（SFV）， $5 \mathrm{HK}, 6 \mathrm{HR}$ ），

 （ $5 \% \mathrm{U})$ ，（ $5 Z W$ ）．5ZX． $5 Z A F .(5 Z A G), 57 A I, ~ 5 Z A M$. SZAN．©WV，6ZZ，$\because Z O$ ．$B D E$ ，SDR．9．O $8 K M, 8 V Y .4 X I, 8 K K, 8 Y N .8 Z A, ~ B Z D, 82 L$ ， $8 Z R .82 X$ $9 A A N$ ， $9 A A W$ ． $9 A B Y$ ， $9 A D Y, 9 A E G$ ， $9 A E Y, 9 A M A$ ， $\because A M K, ~ \triangle A N F, ~ \triangle A O N, ~ Q A U U ', ~ A R G, ~ Y A S N, ~ G A U O '$ 9AXU，9DUG．9DYA，9EL．9FZ，9HR．9HS，9HM， $9 \mathrm{TY}, 9 \mathrm{LQ}, 9 \mathrm{MC} 9 \mathrm{GQ}$ ．（9OX），gPS．धTV，9UU，
 （ 9 ZAC ）．（9ZB）， $9 Z \mathrm{Z}, ~ 9 Z \mathrm{~N}$ ．9ZY．

5AA（ex－5：ZP），New Orleans．

ELL． $\mathrm{EBZ}, 3 \mathrm{MO}, 4 \mathrm{AN}, 4 \mathrm{AT}, 4 \mathrm{BQ}, 4 \mathrm{BY}, 4 \mathrm{CP}, 4 \mathrm{DF}$, SFD， $4 F \mathrm{~F}, 4 \mathrm{GL}, 4 \mathrm{GN}$ ，SEK， 6 ER ，SFA， $6 \mathrm{FO}, ~ 6 F V$
 GMT．SNK．5NS，5RM，5RZ，૬UJ，5XA．БXB，EXJ，万XK，5XU，5YB．5XL．万TN．：ZAd，5ZC，5ZI，6ZL． 570．5ZR．5ZS，5ZT $52 \mathrm{ZU} 5 \mathrm{ZW}, 5 Z \mathrm{~A}, ~ 6 Z \mathrm{AB}$, SALF STAG．EAM．厅ZAN，SBO，SDE，SDR．УEZ
 $\triangle X K, 3 Z N, ~ \triangle Z R, ~ \& Z Y, ~ \& A C F, ~ S A C L$ ．$\triangle A F B$ ，$\triangle A F D$
 $9 D W, 9 F L, 9 F S, 9 F U, 9 F 2,9 G X, 9 H D, 9 H 1,9 H M$ ， $9 \mathrm{HR}, 9 \mathrm{HS}, 91 Y, 9 J \mathrm{Q}, 9 \mathrm{KO}, 9 \mathrm{MC}, 9 \mathrm{MN}, 9 \mathrm{NH}$ ． 9 NQ.
 $9 \mathrm{Y} .9 \mathrm{YA}, 9 \mathrm{YB} .9 Y \mathrm{M}, 9 \mathrm{~T}, 9 Y A E, 9 Y A K, 9 Z B$, $9 Z I, 9 Z A C, 9 A A Y$ 9AEG，9AEY，9AFX， $9 A O$ ． 9AR，وAJH，وAMA，פAMT．وAMV．gANO．פAPI． 9AQA．3AQM，9ATI．9ATN，פAVN．פAXU，פAYW， 9BDS，3DQQ．9DYU，9DZJ．

EZL，Little Rock．Ark

2HP spk．．W．I．C．W．． 2 ZL I．C．W．SBP Canadian， BHG CW．3XM． 4 AS ARQ． $4 \mathrm{DH}, 4 \mathrm{ER}$ C．W．， 4 FD

 STF，SIR SIX．©JT，5JL，БKP，STAA C．W．spk．，si．B， KC．ELO， $5 L X, 5 N K, 5 N S, 5 P E, S F X, ~ G Q A, ~ N Q H$ ，

 EZW，57X， $6 W V$ SABO SACF，8ACY．8AEL，
 GAMK．SAND．צANO，BANY，SAOA，SAQZ，BASD． AAWX．SAKC，$\triangle A Y N$ ．$\triangle A Z F, \$ B P$ ，$B B B U$ ，SBDY，
 दFI．BFT．\＆GW．\＆HA．\＆TRO．SIC，षTI，छIN，SJJ， sMR．8OI，8RQ，8RU，SSP，8TK，8＇N，\＄TT，BUC． \＆TIT C．W．，8V．I，\＆VY，\＆KM．\＃YN．\＆ZA．8ZD，8ZN． sZR．sLZ，gAR．gAV．9AAP．gAAS C．W．．gAAW， $9 A B U, 9 A C B, 9 A C L, 9 A C N, 9 A C P, 9 A D H$ ． $3 A E G$ ． $9 A E Y, 9 A F F, 9 A F K, ~ 9 A F W, ~ 9 A F X, 9 A G R$ ， $9 A H V$ ，
 GAMD，GAIU，9MK，GMV，GANF，JANV，gAOF， 9AOO，9AOT，9APW，9AQE．9AGM．9ARG．9ARI． 9ASJ，9ARZ，9ASN，SAUL，9AVR，9AWZ．gAXU， 9AZA．9BP，ЭBDS 9CP，9DBU，9DCX，9DEH， $9 D F I, 9 D H G, 9 D I, 9 D Q Q .9 D G G, 9 D Y E$ ． $9 D Y U$,』WWM，9EE，9ED 9EL，9ET，9FS．9FZ 9GC， $9 \mathrm{GN} .9 \mathrm{GX}, 9 \mathrm{HD} .9 \mathrm{HI}, 9 \mathrm{HM}, 9 \mathrm{HR}$ 9HT， 9 Y ， 9. 9KA， 9 KO ．9KR．9LF．9LW，9LQ C．W． 9 MC ， 9NR，90X．9PN．9PS．9QM．9RV CW．，9RY，9TL，

9YA，9YAK．9YM，9YO，9ZAC，9ZB，9ZH，97J spk．C．W．， $9 Z N, 9 Z X, 9 Z Y$ ．

6TV at Tucson，Ariz．

 6DP， 6 FH ，6GR，6GF． $6 \mathrm{GP}, 6 \mathrm{HY}, 6 \mathrm{~S}, 61 \mathrm{~V}, 6 \mathrm{KC}$ ， 60C．6OD．6PJ，5TU，ETF，6VX，6SK，6QR．6XG． $6 X A C, ~ 6 Z U, ~ 万 Z Z, ~ 6 \% B, 6 A A T, ~ 6 A A H, ~ 6 A A U, ~ 6 A B P$ ， $6 A E Z . \quad 6 A C Y$ ，GAFN，6AHV，$\sigma A H P$ ， $6 A J H)$ ． （ $6 A L E), ~ 6 A M T$ ， $7 \mathrm{MO}, 7 X D, ~ 9 A O U, ~ 9 D S B$.

WJK，Taft，California，Ex－6BU，opr．

 6ूO，6KM，6KU，6MH，6MK，6JE，6RW，6SK，
 6ZB，6ZU，万AA＇T．6AAW，6ABW，GAEI，GAEZ， 6 AFN，6AFY． $6 A \bar{I} V$ ．GAJT，©ALE（voice \＆C．W．）， GAPI．6ARO，GARW，GATQ，GATV．GXAC（voice （．W．），6XAD（C．W．）．67，1D，7ATQ，7LY， 7 MF ，
 9AJA，9AMB，9PS，9ZN，9ZAF，9BD．

60L．，Glendale，Calif．
（ 57 A ），（ 6 AK ），（ 6 AS ）， $6 \mathrm{EP}, 6 \mathrm{FH}, 6 \mathrm{FN}$ ．6GF，©GR． $6(\mathrm{GX}, 6 \mathrm{HC}, 6 \mathrm{TC}, 6 \mathrm{M} .6 J \mathrm{E}, ~(6 \mathrm{KC}), 6 \mathrm{KM}, ~ 6 L U$,
 （ 6 VXX$),(6 \mathrm{KH}),(67 \mathrm{~B}),(67 \mathrm{Z}),(6 \mathrm{ZX}),(6 \mathrm{ZZ})$ ． GAAH，GAAU，GABX，（GAEI）， $6 A F N, ~ G A G F$ ， （ $6 A H P$ ）．GAHV，$G A I D$ ，（ $\because A, I H$ ），GAVV，GANG， 6APE，6ATQ．GATV，GAVB，GAVV．GAWP， $7 B P$ ， 7FD，7MN，（7MF）．

G．JD，Los Angeles，Cal．
2FP C．W．，$\subseteq I F$ ．

6BF Santa Paula，Cal．

Spark：6IF 6iA，6AG．6AK，6AS．6RR，6C7． DAA， $6 \mathrm{FH}, 6 \mathrm{FN}, 6 \mathrm{~F}, 6 \mathrm{G} \dot{R}, 6 \mathrm{HC}, 6 \mathrm{KC}, 6 \mathrm{KM} .6 \mathrm{LU}$ ， GOC，6PI，6PO．${ }^{\circ} \mathrm{PR}, 6 \mathrm{QR}$ ．6QY，6TF，GUO，6VX， 6VZ，6WZ，ЄZU，6ZX，6AAH，6AAU，6ABX，戶ACX， 6ADL，6AEH，6AEV，GAEW，BAFN，6AGF，6AHP， $6 A I D . G A K L$ ．GAME，GAPH，6AOZ，GASK，GASZ， SATQ．GATV， $6 A^{\prime} T Y$ ． $6 A V V, ~ G A W P, ~ 6 A X P, ~ 7 G J, ~$

C．W．：6EN，6FZ，6XG．6XH，©XAC，6XAK．
 92AP。

GAWP，（Ex－8GX）Santa Ana，Calif．
Spark：5HK．6IF． $5 \mathrm{ZA} .6 \mathrm{AE}, 6 \mathrm{AK} .6 \mathrm{AR}$ ． $6 \mathrm{AS}, 6 \mathrm{CH}$ ， （ $\circ \mathrm{DA}), 6 \mathrm{EA}, 6 \mathrm{~EB},(6 \mathrm{EC}),(6 \mathrm{EN}), 6 \mathrm{ER}$ ， 6 EV ，f氏Y， $6 \mathrm{FH}, 6 \mathrm{FK}$ ．（6FT）， $6 \mathrm{GE}, 6 \mathrm{GF}, 6 \mathrm{GI}$ 6GN，6GP， 6GT，6GX，¢HM，（6HY），6IC，（6IF）．6TK，6TM． $6 \mathrm{KV}, 6 . J \mathrm{E}, 6 \mathrm{JX}$（ 6 KA$), 6 \mathrm{KC}, 6 \mathrm{KP}$ ． 6 KS ， 6 KV ．
 6OH，6OL，6OM．©P．（6PQ）．6QR．（6SK），；TE．
 $6 Z B .6 Z E, 6 Z M, 67 N, 6 Z U, 6 Z R$ ． $6 Z X, 6 Z Z, 6 A A H$ ， GAAU，GAAW，GABM，（ $Б A B P)$ ．$\because A B X$ ．GABZ， GACR．GACY，GADF，GADL．GADP． $6 A E H$ ，GAEZ， $6 A F N, 6 A F O, 6 A G F$ ，（GAGN），6AGP，6AHK，${ }^{\circ} A H O$ ， GAHP，GAHQ，（ $6 A H U)$ ，（ $6 A H V)$ ．（ $6 A I B)$ ）इAID GAIO，（6AIU），（ $6 A J H$ ）．GAKL．GAKR．（ $6 A L K$ ）． 6ALJ，（6AIP），（ 6 ALU）．GAMN．GAMQ．6AMW， GAPE，GAPH．©ARK．6ARW．GASQ，6ATQ，6ATV GAITS GAVD，（GAVR），GAVT，GAWF，GAWH， GAZU，（6BAC），6BAF，6BAU，〒BP， 7 CB 7CW，
 7XD，7ZA，＇玧，7ZP，〔ZS，7ZM，7ZU，7ZY，9BD， 90P，9AEG．9AEY．ЭAYU．

C．W．：（ 6 EN ）， $6 \mathrm{JE}, 6 \mathrm{KA}), 6 \mathrm{KH}, 6 \mathrm{MK}, 6 \mathrm{RR}$ ， $6 \times D, 6 X G$ ， $67 N, \quad(6 A A G), ~ G A B G, G A L E, ~ G A L J$,
 9AMB，9ZAF．

[^3] 7LJ，（7ZJ），7ZM， $7 \mathrm{ZZT}_{\text {• }}(7 \mathrm{ZU}), 9 \mathrm{BD}$（9anadian．

6ALE，Reedley，Calif．

Worked：6AS， $6 \mathrm{BM}, 6 \mathrm{EA}, 6 \mathrm{~EB}, 6 \mathrm{ER}, 6 \mathrm{EX}, 6 \mathrm{FK}$ ， 5FT， $6 \mathrm{GF}, 6 \mathrm{GR}, 6 \mathrm{CC}, 6 \mathrm{JD}, 6 \mathrm{KA}, 6 \mathrm{KP}, 6 \mathrm{KY}, 6 \mathrm{KX}$ ． 6LC，6MH．6OC，6SK，6TV，6VX．6ABM，6ACY． 6AEZ，6AGF，6AHU，6ALV，GANP．6ASK．6ATV， ，AVB，6AVV，6AVY，6AWH，6ZB，6ZX，7BP，7ED， iGA， 7 IU， $7 \mathrm{~KB} .7 \mathrm{KG} .7 \mathrm{KM} .7 \mathrm{LU}, 7 \mathrm{LY} .7 \mathrm{MF}, 7 \mathrm{MP}$ ，

Heard：®FB I．C．W．．SBR，5＇．（6GR C．W．）．6．JE， （6TF（W），（G\％N）．GAAT C．W．，（6ABY G．W．）， （6ABX C．W．），（6ALA C．W．），（6ASJ C．W．），（6AWT ．W．，só4WV G．W．），＜iXF C．W．），9AQ，9BD gandian，aCP，yRY，פAMB O．W．，9ZAC，gZAF ！W．

7 KP ，Seattle，Washington．

$10 \mathrm{~B}, 5 \mathrm{ZA}, 6 \mathrm{AE} .6 \mathrm{AK}, 6 \mathrm{CO}, 6 \mathrm{CP}$ ． $6 \mathrm{EA}, 6 \mathrm{FH}, 6 \mathrm{GF}$ ， 6G＇，6GX，6IC，6IM， $6 \mathrm{KA}, 6 \mathrm{KM}, 6 \mathrm{LU}, 60 \mathrm{C}$ ，6OH， ゥOW，¢PJ，bQR，bQT，6TC，6VX， $6 \mathrm{WL}, 6 \mathrm{ZJ}, 6 \approx X$ ， 6AAT，6AAU，GABX，6AEZ． $6 A F N, 6 A G F$ ， $6 A I U$ ， 3AID，6ALE，GATQ，6AUL，6AWH，6AWT， $6 A W V$ ． 7AW， $7 \mathrm{BA}, 7 \mathrm{BC}, 7 \mathrm{BG}, 7 \mathrm{BH}$ ， $7 \mathrm{BP}, 7 \mathrm{BR}$ ，\％CC，
 $7 \mathrm{KA}, 7 \mathrm{~KB}, 7 \mathrm{KG}, 7 \mathrm{LU} .7 \mathrm{LW} .7 \mathrm{MF} .7 \mathrm{MO}$ ． 7 MU ． TMW，7NJ， $7 N L, ~ \% N C .7 T M, ~ \% T O, ~ 7 X F . ~ 7 X D$ TAS，TZU，Canadian＇XEQ．XEV，SBR，9BD．

7PO，Seattle，Wash．

AAN，GAAV，6ABX，ЂAEZ，6AID，6AIR．GAKT． „APH，6ARK．6ATV，6CH．6CJ，6EB，6FH，6FN，
 $6 K C, 6 M F, 6 M P .600,6 P O, 6 Q R, 6 Q T$ ， $6 S K$ ． $6 U O$ ， 6VK， 6 VX .6 WZ ，๕XH，6ZS，6ZU，6ZX， 7 BA ， （7BG）． 7 BP ，7ED， $7 \mathrm{FN}, 7 \mathrm{GA}, 7 \mathrm{HF}$ 7IC，（7IN），万KJ， $7 \mathrm{MF}, 7 \mathrm{MJ}, 7 \mathrm{MP}, 7 \mathrm{YS}, 7 \mathrm{ZJ}, 7 \mathrm{ZS}, 7 Z \mathrm{~T}, 7 \mathrm{ZU}$ ， Canadian 9AX and 9BD．

7 ED，Portland，Ore．
1CB Canadian－C．W．，5XU，（ $6 A K$ ）．（ 6 BB ），（ 6 CH ）， （6СP），6CV（6EA），（6EB）．6EN C．W．：（6FH）， $6 F N, 6 \mathrm{GI}, 6 \mathrm{GP},(6 \mathrm{GR})$ ，（ 6 GX ）， $6 \mathrm{HC}, 6 \mathrm{HY}$ ，（ 61 C ）． 6 IM ．（ 6 IS ）， 6.5 E C．W．， $6 \mathrm{KA}, 6 \mathrm{KC}$ ． 6 KM ，6LU，
 （6VX），i6WZ Spk．\＆C．W．），6XH C．W．，6ZE， $6 Z N$ C．W．，（6ZU），हZX．6AAT C．W．，（6ABX）， ©ACY，¡AEI．6AFN，（6AFO），（6AGF），（6AID）， ‘A．JH，（6ALE C．W．），GALU，6AMX C．W．，BANG． ©APE．GATV，GAVV，6AWH，6AWT，6XAF C．W． $\left.7 \mathrm{AY}, \quad(7 \mathrm{BA}) \quad 7 \mathrm{BH},{ }^{7} 7 \mathrm{BK}\right)$ 7EX C．W．，（7IN）， （7IW），（7IY）， $7 J F, 7 \mathrm{KG}, ~(7 \mathrm{KJ})$ ．（7LU），（7MF）， 7MO， $7 \mathrm{MP}, 7 \mathrm{NJ}, ~(7 \mathrm{NL}), 7 \mathrm{NN}, 7 \mathrm{NW}, 7 \mathrm{OZ}$ ，7PO （7TJ），（7YA），（7YL），7ZP，（7ZU），乌AX Gqu－ adian，（9BD Canadian），sAMB C．W．，9ZAC．

7 LO, Boise，Idaho
ЂKA．GAAN．GAAW，6ABW，6ABX，6AEI．GAEZ． $6 A F N$ ．GAGC，6AGF．6AGV．GAID，6AIV，6AK， fALE， $6 \AA I W, 6 A P H, 6 A R K, 6 A S A .6 A T Q$ ． $6 A U L$
 6HC，6IC．GIM，6IW，6JR．6KA．6LU，6MO，6NK 6OQ．6QR，6ATV，GUO，6VY， $6 W Z, 6 X H$ ，B召TI 6ไX，7BA，7BH，7CP，7DI，7ED，7FG，7FI，7FY 7HW ©．W．，7IN．7KB，7KG，7LK，7LN，7LU，7LW〒I， $7 \mathrm{MF}, 7 \mathrm{MP}, 7 \mathrm{NW}$ ，（7OK），（7OT），7KD，7XF （．W．，（ PY Y ），7YS， $7 \mathrm{Z} U$.
${ }^{7} \mathrm{LU}$ Greybull，Wyoming．
Spark：5DM．5FO，5HK，5IF，5JR．5LB．5ur． §QT，5\％A，5ZAM，6AT，6CV，6GR．6IC，6IF，6KA 6 KC ． 6 KM ． 6 LU ， 60 C ．（ 6 QR ）． $6 \mathrm{SJ}, 6 \mathrm{UO}, 6 \mathrm{VM}$ ， AVX．6W7，』ZU，6ZX．6ZZ， $6 A A U$ ．6ABX．（6AE／） GAFN．6AKI．，6ATH，6ATQ．6AWS，（7BH），（7DH）， （7ED）， $7 \mathrm{EX}, 7 \mathrm{GA},(7 \mathrm{IN}),(7 \mathrm{JF})$ ，（7JQ），（7KB） （ 7 LY$) .7 \mathrm{MA},(7 \mathrm{MO}),(7 \mathrm{MP})$ ．（7NL），（7NW） ＂XD， 7 YJ 7ZE． $7 \mathrm{ZZ},(7 \% \mathrm{M}), ~(7 Z O)$ ．7ZU， 9 FE ， 9EL，9ET，9FX，9FZ，9HM，9HT，9IF．9IY．9MF， $9 \mathrm{NR}, 9 \mathrm{PN} .9 \mathrm{PS},(9 \mathrm{TI}$ ），9TL，9UU， $9 \mathrm{WI}, 9 \mathrm{XI}$ ．9YA
 （9AIF），（9ALU），9AMV，（9ANF），（9AOU），9AQE $9 A Q M, ~ 9 A R Z . ~ 9 A S N), ~ 9 A Y N, ~ 9 A T U, ~ G A U O$. 9AVK．9AXU，अAYU，（9AYV），9DBS，9D．IX， 9DOC．（9DSD），9DUG．9DUU，9DYH．9DZR （9ZAC），9YAC，（9YAK），Canadian（9BD）．
（．W．：（6WV），6XS，6AAT，（6ALE），$¢ X A C$ ， 6XAD， $7 \mathrm{HW}, 7 \mathrm{KF}, 9 \mathrm{VF}, 9 \mathrm{ZY}, 9 \mathrm{AJA}, 9 \mathrm{AMB}$ ，Can adian 4CB．

8BBU，Columbus，Ohio．
Spari ：（1AW），1DJ，（1SN），1TS，1AKG，1AWZ， （Continued on page 66）

Radio Communications by the Amateurs
 The Publishers of QST assume no responsibility for statements mado herein by correspondents.

Honeycombs on 200 Meters

93 California St., Ridgewood, N. J.

Editor, QST:
r have read with great interest the various articles on honeycomb coils. However, very little has been said about two mundred meter reception. The average relay operator cares more about 200 meter work than all the rest of the waves put together. Mr. Kinyon in the July QST classes "short waves" as 200 to 1000 meters. According to that, 150 meters must be microscopic. What applies to a 1000 meter station certainly does not apply to 200 meters. He also states that a Paragon-type receiver has a quicker arrangement and a greater range than honeycombs.

The reverse is true at this station. The position of the three coils remains fixed. The primary condenser stays at one spot and all the tuning is done on the secondary condenser. Hence the secondary condenser is the only adjustment. The primary and tickler may be set in such a position that the oscillating point is at 203 meters, for example. Tuning the secondary condenser from 190 to 203 not only tunes in the required station but brings the tube up close to the oscillating point where it is most sensitive. It is then super-sensitive from 200 to 203 meters, very sensitive from 190 to 200 meters, and moderately so on lower waves. This adjustment permits sharp tuning and maximum regeneration. If you use a \check{c}-plate vernier condenser across the secondary condenser, you can set the secondary condenser at 200 meters and have extremely sharp tuning from 200 to 203 m . with the bulb just on the oscillating point. This adjustment can be made to tune from 260 to about 273 m . or from 230 to 213 m . or anywhere you please on amateur waves. You have very sharp tuning and maximum regeneration over 3 m ., sharp tuning and sensitiveness over the next 10 m ., and fairly broad tuning on lower waves.

To get these adjustments T use L- 25 primary, L-50 secondary, and L-35 tickler. If you have a good tube you can use a small tickler; if not you will have to use L-75 or 100. The oscillating point can be set at any wave between 150 and 300 m . by adjustment of the primary and tickler.

If the primary is pulled away from the secondary and the tickler shoved in, louder signals result, as there seems to be more regeneration and sharper tuning is had. Doing this will cut out nearby stations to some extent and bring long distance ones roaring in. Many times last winter cut out a lot of QRM from ed district stations and was able to copy 9's all night by doing that.

Some folks have advised junking the anateur size honeycombs. What ignorance! From November, 1920, to Iune, 1921, I logged over 800 amateurs, including 230 eights. 110 nines, and 10 fives. Those include 5 ZA , two in Texas, two in N. D., one in S. D., three in Nebraska, and five in Kansas, all of whom are considerably removed from Ridgewood, N. J. That reception was done on honeycomb coils, twosteps, and an indoor aerial. How come they are no good? It only takes a iittle skill to use them.

They are especially good for tuning amateur C.W. stations. Using the same coils mentioned above the bulb will oscillate on all amateur waves if all three coils are kept close together. Here again all the tuning is done on the secondary or vernier condenser. Honeycombs may not get quite as loud sigs as other sets but the sharp tuning gets greater distance. So far I have got better distance than any of the variometer sets in town and have often heard locals spend time, energy and watts trying to get a QSL which I could copy easily with sharp tuning. When a tunedplate set has to ask for QTA time after time because of $Q R M$ and a honevcomb set can copy thru the QRM, why "use the honeycombs as a ground"?
The leads in such a set should be as short as possible, especially the one from secondary to condenser to the grid.

NM, 73 and CUL.
Paschall Jessup, 2AUG.

9TI Reassigned

Office of Radio Inspector, Chicago, Ill.,
October 21, 1921.
Editor, QST:
Will you kindly inform your subscribers that call letters $97 T$ are now held by Irving Patridge, Milbank, South Dakota. This call was formerly held by Kenneth Rein-
king, of Minneapolis, Minnesota, who died July 7th. Cards addressed to Mr. Reinking have added fresh grief to the stricken family and I have taken this means to alleviate this, as much as possible.

Respectfully,
L. R. Schmitt.

Amateur Radio in Finland

Abo, 46 it. Rantakatu.
Finland (Europe),
$26 / 9 / 21$.
Editor, QST:
I have the pleasure to inform you that our radio enthusiasts here in Finland have recently got a permit for amateur radio communication, wave length maximum 300 meters, high irequency energy from 50 to 100 watts for spark transmission and from 5 to 20 watts for C.W. and telephony.

We have at this time existing only four radio clubs, but we hope that after a short time the number of clubs will be increased. I wish therefore that you would kindily send to me specimen copies of your magazine if it is possible.

Awaiting the favour of your answer, I am, sir,

Yours truly,
Leo Lindell, N.V.L.T.T.,
President of Finnish Amateur Radio Assn.

Home-Made Dials

> 2102 San Jacinto St., Houston, Tex.

Editor, QST:
While constructing a duplicate adiophone set I found I needed a dial. Trying to purchase same I found there were none on the market suited to the purpose for which I wished to use it, and I then hit upon the following scheme:

Being a draftsman I had ink, tracing cloth, instruments and other material handy, so I proceeded to draw a dial of the proper size and calibration on tracing cloth. I then made a print of it on photographic paper and the result was a good looking black dial with the letters and calibration in white.

If a white dial is desired the tracing should be printed as before except that the ink side of the tracing cloth is placed against the sensitive side of the photokraphic paper, producing a "negative"; i.e., a print with the figures reversed but with the dial still black and figures white. It is then necessary to make a print from the negative, which is done by placing a piece of photographic paper with its sensitive side to the sensitive side of the negative, exposing and developing as before.

These prints can be backed with cardboard, metal or celluloid, or pasted to a panel, and used to good advantage. Dials
can be made for all uses by this metnod at a cost of only a few cents apiece.

Yours truly,
Elmer F. Hard, 5PO.
Fluctuating Antenna Fundamentals
544 Jefferson St., Corvallis, Oregon. Editor, QST:

I thought it might be of interest to you to know of the results of measurements of fundamental wave length of our antenna at various hours of the day for four days.

The reason for making the test was that students were getting different fundamental wave lengths on different days. Their results varied from 240 to 290 meters. As they were using three different ways of obtaining the wave length and as all three ways gave practically the same results I concluded the difference was not entirely due to experimental error, especially since different sections the same day would get the same results. It was suggested that relative humidity might be a factor, so the following table was obtained by use of a vacuum tube generator to find the fundamental wave length. As this method is exceedingly accurate there must be a change in the fundamental, but so far as this experiment goes the cause is not apparent.

Date	Hour	Atmosphere	Rel. Humidit	Wave Length
May 18	2:00 p.m.	Cloudy	6.5\%	262 m
	5:25 p.m.		80%	250 m
	11:24 p.m.	"	82%	250 m
May 19	8:00 a.m.	"	70%	258 m
	9:05 a.m.	"	64%	262 m
	10:25 a.m.	"	60\%	258 m
	1:15 p.m.	"	55%	258 m
	1:45 p.m.	"	50%	257 m
	6:15 p.m.	"	70%	262 m
May 20	8:00 a.m.	Rain	60%	262 m
	11:30 a.m.	Cloudy	50%	262 m
	2:45 p.m.	Pt. Cloudy	38\%	258 m
	8:00 p.m.	Clear	74\%	258 m
May 21	9:15 a.m.		50%	260 m
	4:15 p.m.	"	39%	262 m
	2:30 p.m.	"	52\%	270 m

I realize that a great deal more data would be required to be of any value in indicating the cause. If this is of any interest to you, you may use it as you see fit.

Very truly yours, Jacob Jordan,

Physics \& Radio Instructor.

Flickering Lights

Francesville, Ind.

Dear Eddie:

I. am enclosing a circuit which I have found very successful in preventing flickering of the lights when transmitting. I realize that many amateurs are confronted with this problem and therefore offer this suggestion if it will help any.

The double action relay is easily constructed by any wide-awake amateur from an old telegraph sounder. The silver contacts should be sufficiently large to carry the current. I believe the circuit is selfexplanatory in the drawing.

The resistance noted at " R " should be so constructed that it can be varied to correspond with any variation in power to the transformer, such as half-power step, etc. It may be in the form of a wire rheostat or it may be any water resistance jar that may be at hand. Above all it must draw the same load as the primary of the transformer. This system will be more appreciated by those who use remote control for they need only add another set of contacts to the relay that they already use.

I hope that this little suggestion may be of help to some brother ham who has the light flickering problem to contend with. I tested this circuit here at my station, and it worked fine. One might be led to think that the lights would still "duck" between breaks in the relay, but this did not prove to be so in the test gave it. The mechanical sation of the relay is so quick that the brightness of the lights is not affected. I will be glad to hear from anyone who uses this circuit and gets good results.

Herbert Ames, 9DTJ.

Milk By Radio

Bloomington, Ill.
Editor, QST:
Enclosed is a rude drawing to illustrate an idea which I have originated after much study and research. I trust you will see the practicability of this device. I shall endeavor to give you a brief description.

It is a well known fact that farmers experience difficulty in bringing their milk to the creameries, both because of the time
wasted in transporting, and the difficulty of obtaining satisfactory transportation facilities. Now this invention is designed to totally eliminate both troubles.

As is to be seen by the diagram a regular spark transmitter is used for transmitting the milk. The type and make of apparatus is optional with the exception of the spark gap. This must be of the enclosed rotary type. A small hole is drilled in the top of the case, and this is threaded. A pipe line is fitted into this, and connected to a tank which contains the fresh milk. No control valve need be put in this line as the milk will feed down automatically as it is sent out. Now the action as nearly as I can figure it out is as follows: The milk is evaporated in the gap and then transmitted out on the emitted waves. To comply with the pure food laws the coupling must be very loose, so that the emitted wave is pure.

Now the receiving set is the biggest mystery to me. If any of you have any theory as to its operation I wish you would let me know it. A simple regenerative circuit is used with the exception that in the plate circuit the variometer and " B " batt. are omitted. Instead a variable condenser is put in the circuit. This condenser is of the 43 plate variety with a tight case. This case has a small hole drilled in the bottom of it into which is fitted a small pipe. This pipe should have a tank or some other kind of container under it to catch the milk which will flow from it. To tune this set it is only necessary to tune with the grid variometer until the milk wave

is found. This can be found by watching the vacuum tube. When it becomes slightly milky you will know that your grid variometer is set right. Do not touch this adjustment again. Now to get the plate circuit in resonance with the grid circuit it is only necessary to vary the variable condenser. Watch the outlet of the pipe line connected to the yariable condenser, and when the milk begins to trickle from the pipe you will know that the tube is oscillating. Adjust the variable condenser until a maximum flow of milk comes from the pipe.

Obviously the milk received will be condensed, as it must pass thru the condenser.

Very truly yours, 9SA.

Simplified vs. Three Circuit Regenerative Receivers

East Pittsburgh, Pa. Editor, QST:

In the September issue of QST there was an article by Mr. Paul F. Godley under the heading "Simplified vs. Three Circuit Regenerative Receivers". In that article Mr. Godley shows considerable animosity towards the "simplified" receivers and in his arguments, in support of his contention, he has made some statements that are misleading, if not actually incorrect.

For the purpose of allowing the reader, not familiar with the underlying principles of receiver operation, to judge of the merit of Mr. Godley's eriticism, the following preliminary statements are made.

Any radio receiving circuit increases in its selectivity as its decrement is reduced. In other words, its selectivity increases as the resistance to an oscillating current in it is reduced. As this resistance is reduced, the greater becomes the effect of the inductance and capacity in determining the current that will result from a certain impressed voltage. It is thus apparent that, if the resistance could be made zero, the resulting current, at that particular frequency at which the inductive reactance neutralizes the capacitive reactance, would become infinitely large, while st all other frequencies the inductive, or capacitive reactance would limit the current as the frequency was above or below the resonant value.

The effective resistance that determines the decrement of a circuit, is made up not only of the ohmic resistance of the conductors of that circuit, but includes, in addition, all circuits, devices and everything that withdraws energy from that circuit. Thus the detector associated with an oscillation circuit withdraws energy from it and produces an effect on it the same as would be produced by adding resistance in the circuit. As the draft of energy increases, the efrect of an apparent increase of resistance, and hence decrement, is manifested by a falling off in selectivity.

Another important factor that influences the selectivity of a circuit is the ratio that the inductance bears to the capacitance when it is adjusted for resonance. In general, the larger the inductance the more selective the circuit. Such a circuit is commonly spoken of as a "stiff" circuit, owing to its tendency to resist excitation from other frequencies than the one to which it is resonant.

Failure to appreciate the importance of this principle in the design of the antenna, or primary, circuit of many receivers,
causes them to be much less selective than they would be if provision had been made to secure a proper compliance with it.

For instance, receivers which are not provided with condensers in their primary circuit are subject to this criticism as they may be used with antennas of considerable capacitance and hence, when no series condenser is used to reduce the effective capacitance of the circuit, the inductance required, for resonance, is small. This results in a low ratio of inductance to capacitance and a circuit readily infiuenced by frequencies somewhat different from the one to which it is resonant.

All of the above refers to a single circuit (and is equally true with or without the Armstrong regenerative connection.) If instead of a single circuit, two circuits are employed, inductively connected, then the following conditions exist. The first circuit, senerally made up of an antenna, \therefore tuning inductance and a tuning condenser in series, has its decrement determined by (a) its ohmic resistance, (b) its radiation resistance, and (c) its equivalent resistance, due to energy lost in actuating the detector. This same circuit must exist in both instances whether a simplified single circuit is used or a two circuit arrangement is employed in which energy is withdrawn from the first circuit to actuate the detector. The ohmic resistance of the antenna, or first circuit is the same in both instances. So is the radiation resistance the same. Such difference as exists between the single circuit and the two circuit arrangements in supplying the detector with actuating energy is in favor of the single circuit, as the detector requires the same amount of energy in both instances and the energy can be delivered to it more efficiently in the case of the single ircuit than in the other which latter requires the establishment of a current in a second circuit and the overcoming of its resistance losses. The second circuit must of course be tuned to the same frequency as the first and then, by changing the coupling, it becomes possible to determine the rate at which energy is drawn from the first circuit. This function is one of determining the rate of energy draft on the first circuit and thus makes it possible to control, within the limits of the detector energy draft requirements, the decrement of the first circuit.

The above deals with the influences which affect the primary circuit in determining its selectivity. These same factors determine the selectivity of the secondary circuits as influenced by the oscillating currents existing in the primary.

The advent of the Armstrong regenerative circuit connections brought about a new order of things in securing selectivity, as by means of this arrangement the resistance of the circuit could be nullified
and thus the decrement made to vanish. Mr. Godley's discussion of this is misleading as one is apt to reach the conclusion from his articie, that the Armstrong regenerative arrangement is not used or is available for use with the simplified, or single circuit. Such is not the case, however, as the use of the Armstrong arrangement makes the single, or simplified circuit, a thoroughly efficient and effective receiver and differentiates it from the old "single slide tuner", referred to Mr. Godley, employed in the early days of the art with inefficient detectors.

The question then that is before us for a decision is what are the relative advantages and disadvantages of a good single circuit arrangement and a good two circuit arrangement, both provided with Armstrong regeneration, or feed-back connections, in the reception of radio signals.

This question is answered best by considering what the receiver is to do in use and what are the difficulties in their use that raise these questions.

In the practical use of at receiver one has three kinds of signals with which to deal; (a) desired signals on one wave length, (b) interiering signals on a different wave length, and (c) wery powerful interfering signals which shook the aerial system and set up uscillations of the same frequency as those to which it is tuned.

Should the interfering signal be on the same wave length as the desired one, the receiver cannot, of itself, offer any relief. There are other methods by means of which relief sometimes can be secured.

For conditions (a) and (c) above there is substantially no difference between the single circuit and the two circuit arrangements. For condition (b) there is possible, some difference in favor of the two circuit arrangement, when skillfully employed. Condition (b), i.e., interfering signals on a different wave length, results from signals trom nearby stations which force oscillating currents, of the frequency of the transmitted, to be set up in the receiving aeriai.

In a single circuit receiver these forced oscillations produce effects directly on the detector while with the two circuit receiver there is the possibility, if the operator is sufficiently skillful, of reducing the intensity of such interference.

This one possibility of securing an improved result is the only advantage the two circuit receiver has over the single circuit. In a yery large majority of instances this possibility is not realized, but the set is operated in a manner which gives no improvement in results and with much more effiort on the part of the user. The great advantage of the single circuit receiver is the ease with which even a novice can pick up a signal any place within its range. There is but one knob to move to cover the
entire range and the adjustment is made in the shortest possible time. To one engaged in listening to a number of stations, working without any schedule arrangement, and on different wave lengths, the importance of this feature needs no further comment.

To one listening to only one wave length and with proper skill of adjustment of the set, the two circuit receiver will give somewhat better selection.

The single circuit receiver with which the writer is most familiar was designed for the reception of radio telephony and spark or modulated C.W. telegraphy. In none of these applications is the receiver used in an oscillating state, so Mr. Godley's contention that the single circuit receiver, when operated in this manner, produces serious interference due to the radiation of its locally produced oscillations, is not pertinent to this specific single circuit receiver.

However, the writer's experience with heterodyne reception indicates that there is, in fact, little to choose between a single circuit receiver and as two circuit receiver in this respect.

On short wave operation the amount of detuning needed to get the local oscillations of the required difference in frequency is so slight that the oscillation transformer which efficiently brings the incoming signal to the secondary circuit also takes the local oscillation, of practically the same frequency so far as resonance adjustment is concerned, with equal facility and efficiency over to the antenna circuit and hence makes it nearly, if not quite, as efficient a source of radiation.

That these conditions exist in practice with cwo circuit receivers is manifest to anyone reading the English technical papers which of late have dwelt at length with this trouble and with remedies for overcoming it. Most of the English sets are of the two circuit type and so ample proof of their having this characteristic is supplied by these publications.
Some recent tests of good single and good two circuit receivers, made for the purpose of determining what, if any, differences existed between them in their radiating propensities, disclosed the iact that for equal strength of received signal there was no difference in their radiation effects.

It appears then that, contrary to Mr . Godley's opinion of the single circuit receiver as a producer of interference by heterodyne radiation effects, it is less apt to cause trouble of that kind than the two circuit receiver.

This is so because the user of a single circuit receiver can find the desired station more quickly and hence does not spend a lot of time "sweeping" over the bands of wave lengths hunting for some particular
station with which it is desired to establish connections.

Advances in the development of appliances in all arts are marked by a simplification of the means employed for securing the result. Radio is no exception to this rule and the single circuit receiver is but one of the evidences of such development in that art.

A proper weighing of the relative importance of the teatures of these two kinds of receivers has resulted in favor of the single circuit for the service in which they are being used.

Yours truly,
S. M. Kintner, Gen. Engineer, Westinghouse Elec. \& Mfg. Co.

Fifth District O.W.'s

Houston, Tex.
Editor, QST:
Sa, OM, whadayu mean, publishing an announcement of "a" first district O.W. The Houston Radio Club has jour of them as members, and I can name at least ten more that are actually operating in the fifth district. Everything that is published is about how far ahead of the game those northern birds are. Let's see you put this in and see what they say to it.

Best 73's.
Ingham S. Roberts, 5ZT.

Pipes for Aerials

Washington Apts., Detroit, Mich.
Editor, QST:
The following may be helpful to those Who are unable to put up a receiving aerial.

Using the gas pipes of the apartment as an aerial and the radiator for a ground connection, with my hook-up which was published on page 28 of QST for December, 1919, I hear practically all of the east coast and gulf coast and ship stations, as well as the amateurs. Following are a few of the C.W. amateurs heard: $2 \mathrm{XK}, 3 \mathrm{VV}$, $2 \mathrm{AJF}, 2 \mathrm{ACT},{ }_{2 G L}, 2 \mathrm{RR}, 2 \mathrm{BFZ}, 3 \mathrm{ZY}$, and numerous 8's and 'y's. I might add that C-4 in diagram can be dispensed with and a straight connection from primary to Abattery side of secondary is all that is necessary.

Respectfully,
H. V. Simmons.

Spark Coil Work

167 Savin Hill Ave., Dorchester, Mass.
Editor, QST:
Little has been said about Spark Coils in QST, perhaps from lack of activity or because nobody has the nerve to start something going about them. The following is a report of some of my work:
I have been heard by $10 \mathrm{E}, 70$ miles;

IADL, $50 \mathrm{mi} . ; 12 \mathrm{E}, 60 \mathrm{mi} . ; 1 \mathrm{BYS}, 54 \mathrm{mi} . ;$ and $1 \mathrm{UN}, 80 \mathrm{mi}$., and a few other equally distant stations. Work stations up to 25 miles in the summer months when QRN is in full swing.
My transmitter consists of $1 / 2^{\prime \prime}$ spark coil (not radio coil), 6 -volt storage battery, home-made glass plate condenser consisting of 10 sheets of copper foil $31 / 2^{\prime \prime} \times$ $11 / 2$ "; helix; all connections including leadin and ground lead of $1 / 2^{\prime \prime}$ copper ribbon; longest lead in transmitter is $5^{\prime \prime}$. Antenna current is 0.3 amp . but do most of my DX with 0.2 amp . using a 60 -cycle note. Aerial is 50 g. 4-wire fat-top on top of twoCamily house, which gives me no room for a counterpoise.

I am sure that surprising results can be obtained with any spark coil if a little time is taken and the set carefully tuned: Of course it is a well known fact that a spark coil when properly tuned is much more efficient than a transformer is, considering the input used. I would like to see more about spark coils and their activities in QST, and am sure that the other spark coil ops would too. There ought to be a column in QST devoted exclusively to spark coils. The fellows could send in their ideas, etc., so that other coil ops would benefit from this section.

Hoping this reaches to the bottom of T.O.M.'s heart, I remain

Yours for the spark coil, George Forant, 1AWF,
Vice-Pres., Greater Boston Spark Coil Club. (Well, fellows, send in your spark coil ideas and if enough material can be secured we will start a regular department for the boxes.--Ed.)

Another Simple Circuit for C.W.
 Radio 8AVX, Camp Dudley, Westport, N. Y.
 Editor, QST:

We are enclosing diagram of a shortwave regenerative circuit designed by 2XK

which has been used at this station this summer with great success. This circuit
brings in C.W. stations much better than anything else we have tried, and is also very eficient for spark signals.

The only tuning control is a variable condenser across the secondary. The diagram is selfexplanatory and no one should experience any difficulty in obtaining good results from this set. Yours truly,
William S. Halstead, "DC".

LEGEND

L_-Primary coil, 20 turns No. 18 bell wire on $3^{\prime \prime}$ tube.
L_{2}-Secondary coil, 50 turns of same size wire on same tube, with $1 /{ }^{\prime \prime}$ space between. Both coils must be wound in same direction as stator of the variometer.
In-Variometer plated next to coil so that axes coincide.
Note-If set will not oscillate at all points on the variable condenser, reverse the secondary leads to the condenser.

AN AMATEUR IN PORTO RICO (Concluded from page 48)

of transformers and they all burned out, but at last his home-made ones with No. 40 enameled wire work fine, using a leak across the primaries and grounded.

The antenna is inverted L in type, 65 ft. long, between two bamboo poles 35 it . high, well insulated with electrose. The loop gives good results as a direction finder and signals from WSO, WII, WGG, etc., are easily readable on it. Very good resuits are had on all wave lengths above 600 meters but Mr. Agusty makes no mention of hearing shorter waves. He is building a $1 / 2 \mathrm{k} . \mathrm{w}$. spark set, a 15 -watt C.W. set, and a short-wave regenerator, in order that he may connect up with amateurs of the 4 th district in the States. Porto Rico, it should be remembered, is also part of the Fourth J.S. District, altho Cuba is not. The distance to Savannah is about 1200 miles, not at all unsurmountable. If Mr. Augusty will get a grood C.W. set and receiver it looks like we might soon be able to accept Porto Rican traffic via 4 GL .

ROTTEN BUNK

(Concluded from page 45)
thought about the evening, I give up. Between the arsi ishibigs, the spitchslops and the paralyzed higspitters, I will bet they never slept a wink. I hate to think of the Day of Judgment, when Radical presents his ticket at the Golden Gates, and St. Peter takes a slant at him, and asks about all that rotten radio bunk he has been guilty of on Earth. Radical's ticket will be refused at the gate and he will have to take a train going in the other direction. And by Heck, he will find a lot of others on the same train, according to my way of thinking.

Well, that will be all for to-night, Son. Seems like old times to be unloading my troubles again onto you. GN and best 73 's to the gang.
T.O.M.

NOTICE-(Concluded from page 44)

The Atlanta Radio Club has not been able to substantiate their statements that Mr. Autrey used the name of the National Radio Insitute other than as an authorized agent of that firm and that he made use of the title "Radio Superintendent", as made in the resolution in question. QST therefore wishes to retract these statements and to make public apology for their publication.

CALLS HEARD

(Continued from page 59)
$1 A Z K, 1 B D T, 1 B G F,(2 B K), 2 B O,(2 D A) .2 D N$.

 3 HD . (3HJ). (8 HW), $93 . J, 3 \mathrm{KM}, 3 \mathrm{LP}, 3 \mathrm{MS}$. 3 QN .
 $\because A O V(3 A Q R)$ BASE (3 BFU) $4 \mathrm{AG}, 4 \mathrm{AW}, 4 \mathrm{BE}$.
 4GN. 5BM, 5DA. 5D.I, (SER), (SER) 6FO, (6FV).
 5SW, SXA, 5XK, 5XT, GYI, SZL, $\operatorname{sZX}, 6$ WV,
 $8 n_{H}$ QNR (BDZ) (8 EA), (8 EB), 8 EF (AE 7) $8 \mathrm{FI}^{2} 8 \mathrm{FN}, 4 \mathrm{FQ} .8 \mathrm{FS},(\triangle \mathrm{FT}), 8 \mathrm{GO}, 8 G X .8 H B, 8 \mathrm{HM}$,
 SNZ. 80I. $8 Q F,(\angle R Q)$. ($8 R U$). 8 SPP . $8 T N$, ($8 T K$), (甘TY), \&TZ, \&UC), 8UG, SUP $8 V Q$ ($8 W A$,
 87N 3ZR SAAV YACF RACN, (SACY) ($\triangle A D E$): \&ADO, \&AER. $\triangle A F Y$ \&AFB. $A A F D$. $\triangle A F G$. ($A A F S$): SAGK, $\triangle A G O, ~ \triangle A H H, ~ 8 A H V, ~ S A H Y$, XAIA, ($8 A I B$), SAIM). 8AIO. 8AJB. (8AJEI, SAJQ. (SAIV), SAJT BAJW. SAAJX, KKAM.J. \&ANOI. XANQ (8 ANY), RAQV. SARB 8ARD (AARS) EAWP.
 \&BCY, \&BFF, (RBEN). \&BEP, (KBCF), RBHO;

 8BTV, תBUK SBTIN (S\%AA), (9AF), $94 P, 9 A T T$, $9 A V, 9 A W, 9 R E, 9 R F$ gCP) (9GS) (9EG). 9FL, 9ET, 9FS 9FZ 9GP 9 GX . 9HD 9 HM , 9 HN $9 \mathrm{HR} 9 \mathrm{HT} 9 \mathrm{KM} 9 K O$ GKR. 9 KS gTF, 9 MC 9ME, 9 MK (9MS) (9NQ)。9OV, (9OX) 9PC.

 GWU, $9 \times 1.9 X M$ 9XR $9 Y A$. $9 Y B$ 9YH. $9 Y M$ 9YO, $9 Z B$ 32C, (97.J), $97 N$, $9 R$, $4 A A E, ~ Q A A P$, $9 A \triangle$ (9AAW), $9 A B A$ OABH 9ACN $9 A F C_{0}$ GAFG. QAEY QAFC $\triangle A F F$. $9 A F K$, QAGG, gAGR gatc gaio galr eqatu) gaiy, (gAJAI, gate,
 פAMS. 9AMT 9AMV GANC gANK. GANP פAOJ, $9 A O T$ GAPKI. $9 A P Q$ GAPS. $9 A Q E$ (9AQM):

 (9AYE), $9 A Y K$ 9AYY, $9 A \% C(9 A \% E)$, $9 B C X$.

 (gnRJ). gntin. gDUG, (9DWM), GDKM, aDYA, 9YAF (97, AC).
C.W. $1 \mathrm{BM}, 1 \mathrm{RU} 1 \mathrm{RZ}, 1 \mathrm{AF}, 1 \mathrm{KM} 1 \mathrm{ANO} 1 \mathrm{CAR}$,

 SAHK. $3 \mathrm{~A}, \mathrm{JD}, 3 \mathrm{AWL}, 4 \mathrm{BK}, 4 \mathrm{BQ}, 4 \mathrm{BY}, 4 \mathrm{HD}, 4 \mathrm{CO}$,

 8T. X. 8NQ. 8RC. SRU. $8 S E$. 8SP STN. (STJI,

 $8 \mathrm{8OX}, 8 \mathrm{RPL}, 910 \mathrm{gRV}, 9 \mathrm{XI}, 9 \% \mathrm{~B}, 9 \mathrm{Zj}, 9 \mathrm{ZL}$. 9ZY, (9AJA), (9AWZ).

8BPP，Wooster，Ohio．

1AAP．IABY，1AGI．IAW，IAWB，1BDC，IBKA $1 \mathrm{CAK}, 1 \mathrm{CG}, 1 \mathrm{CGG}, 1 \mathrm{FF}, 1 \mathrm{GV}, 1 \mathrm{TT}, 1 \mathrm{MB}, 1 \mathrm{QN}$ ． 1 RU 2UN，1XM．1YK，2ABD，2ADL．2AFP，2AJF．2AJW 2AKO，2AQL，2AWL，2AYZ．2BA．2BAK．2BGH， 2BGM，2BK，2BA，2BYS．2CI，2DA，2DN，2FP，
 $2 \mathrm{ZL}, 2 \mathrm{Z} \mathrm{V}, 3 A A E$. ЗABI， 3 ABP， 3 ADT， 3 AFU 8AHK，3AQR．2AZP．3BIY，3BZ，3CA，3CC，3．JH， 8JL．3MO，3PB．3RF．3XA，3XM，3ZA，3ZN．3ZO， $3 Z Y, 3 Z Z, 4 A S, 4 B Q, 4 B Y, 4 \mathrm{CO} .4 \mathrm{DH}, 4 \mathrm{DR}, 4 \mathrm{EH}$ $\triangle \mathrm{FD}, 4 \mathrm{FF}$ ，GGL， $4 L E$, EDA．厅ER．SFJ，GLA，GXA
 8 ABO， 8 ACF． $8 A D O$ ， 8 ADS， $8 A F B, ~ S A F D, ~ S A F G$ 8AFO，8AFV．SAGB．8AGK，8AHH，SAHR．8AHV \＆AIO．SAJW．8AKE．YAK．J．8AKS \＆AKW．§ALB， 8AMB．8AMK．8AMZ．8ANO，BANW，8AOZ，8APB， $8 A P P$ ．8AQF． $8 A Q L$ ． $8 A Q V, 8 A Q Z, 8 A R 7$ 8 $\therefore \mathrm{SH}$ 8AWF．8AWK，\＆AWP，\＆AWU．\＆AXC．8AXN．8AY $8 A Y N, 8 A Y S, 8 B A$ ． $8 B A H .8 B C H$ ．8BCL $8 B C O$ ， 8BDU， $8 B E F, 8 B F P .8 R F H .8 B F M .8 B G F, \$ B K$ ． ЯRMF，8RNZ，$\angle B O$ ，8ROW，8ROX．8BP． $8 B Q$ \＆BQF， $8 B R C$ ． 8 BSY， $8 B U M$ ， $8 B W C$ ． $8 C I$ ． $8 D E$ 8DR． 8 DV ． 8 DY ． $3 \Pi \%, 8 \mathrm{FA}$ 8E7． $8 \mathrm{FR}, \mathrm{SFT}, \mathrm{gFO}$ ， $8 \mathrm{GE}, 8 \mathrm{GO}, 8 \mathrm{HA} .8 \mathrm{HJ}, 8 \mathrm{HY}, 8 \mathrm{II}, 8 \mathrm{IN}, 8 \mathrm{SP}, 31 \mathrm{Q}$ ． 8．IL，8．JM．SJP．R．JQ SIU \＆KM，
8I．X，8MM．8MK，8MZ，8NQ，80H，80I，8PD， \＆PN，8QM，SQP．SQY，8RQ，8RUJ，yoP，8iG，sid夕TK，sTR．sT7．8UC．3UI．\＆UJ，sUK，8UX，8Fs
 8YN，87A．8ZB．87G．87N，8\％R．87Z．9AAP gaAS．9AAW，9ABS．9ACL，9AGR．9AIR，5ATU． وA．IA．وAKK，9ANC．9ANK，פAOU，وAPK，وARG． وARK．gARX 9AR7，9AS．J．9ATN．9AIIL．9AV وaWU，9AWZ．9AYN，9AYW．9BDE．9BEH，9CP $9 \cap B J, 9 D J X, 9 D Z G, 9 \mathrm{FT}, 9 \mathrm{FA} .9 \mathrm{FN}, 9 \mathrm{FS}$ ． 9 GL ． $9 \mathrm{HD}, 9 \mathrm{HI} .9 \mathrm{HM}, 9 \mathrm{HR}, 910,9 \mathrm{KR}$ ． $9 \mathrm{LF}, 9 \mathrm{MC}, ~ \exists \mathrm{ME}$ ． 9MO．9MP． $90 X .9 P C, 9 P N$ 9RM．9RT．9TL．9TO $9[\mathrm{TR}, 9 \mathrm{JN}, 9 \mathrm{VD}, 9 \mathrm{VZ}, 9 \mathrm{WO}, 9 \mathrm{XAE} 9 \mathrm{XAH}$ ．9XAK， $9 \mathrm{XT}, 9 \mathrm{XM}, 9 \mathrm{YB}, 9 \mathrm{YO}, 92 \mathrm{~B}, 92 \mathrm{~J}, 9 \mathrm{ZN}, 9 \mathrm{ZY}, \mathrm{Cnn}$. 3BP，©KG．

8DE，Akron，Ohio

Spark：（1ADL）． $1 A W$ IBFZ．（1BGF），IBTR． 1CK，2ABM，2A．JE，2AQT，VAWF，2BK．2CAP，
 $3 A \mathrm{C}, 3 \mathrm{AOV}, 3 A Q R$ ． $3 \mathrm{CC}, 3 \mathrm{CN}, 3 \mathrm{HJ}, 3 \mathrm{HS}, 3 \mathrm{HX}$ ， $31 \mathrm{~W}, 3 \mathrm{~W}, 3 \mathrm{MC} 30 \mathrm{U}, 3 \mathrm{PU}, 3 \mathrm{XF} 3 \mathrm{XM}, 3 \geqslant \mathrm{O}$
 BER．5FJ，5FV ；5JD）．БXA．БXK．（5ZAB），（5ZL）． （ XAAV），（XAFB）．SAFD，（ $\triangle A F G), ~ Y A I M, ~ S A J T$ ．
 8BBW \＆BCL．\＆REP，\＆HFV．8BRL，\＆BSY． $8 D V$
 （ $\$ M M$ ）\＆MZ， $8 N Z$. ROI，$\dot{B Q H}$ STT，SVC，（ $8 X E)$ SYN（8ZA）． 87 D （87N）．94AW，9AGR．OAIT． （OATR）．GAIF，GAQM ？IS．T 9AWT，gAV gAYW GYY，gRAS GCP，GORW）GDMM gTYU，gFs， 9「ㅈ．9．IQ 9LK 9LQ 9MC 9ME 9TL．9TV，9TH 9UI，9UW，9WU，9？．i． 97 N ．Can．3RP 3．It．
CW．：（1ACI）． 1 BEP ． $1 Q \mathrm{~N}, 1 \mathrm{RZ}, 1 \mathrm{LN}$ ．（2AFP）， （24WI．）2BAD $2 R G H$（2BYS），（ODN）．（2EI．），

 $3 M O$ 2RF $4 B L$ ABT $4 B Y$ AFH $4 E N$（ $4 F F$ ）
 ЯA．JP SAKF．（\＆AKIN，\＆AKS．SATY，BAQF （AAOT），\＆ARK，\＆AWF \＆AWP，（XAWXI：；RBCH：

sAYM．Jamestown，N．Y

Snark： $1 A W$ ARY $1 A S F, 1 G M$ ． $1 H K$ ． 1 RDC，

 FIA SAE，QAAV SAFD，\＆AGK SAFA．SAHF， \＆AHTT XAHV，（SAIS）．\＆AFS，84CF，BAIV，\＆AKY． \＆AMR，\＆ANW SACIT．\＆AOT．SA．IT．SACY，BAPR， \＆AOT，\＆AOV．ZARK．8ACV．\＆AS\％，\＆AWT，\＆AWTH， 8AWX．\＆AXC．SAXN 8AVN 8AVS＂（8AST，）．8AWP
 SRMA．XRCK，RRUN BBRT，8BO，BCN Z ZYY， （ 8 GH ）．8E7， 8 EW 8EA． $8 \mathrm{FI}, 8 \mathrm{GW}$ 8HP， 8 HTJ ， 8ID， $8 \mathrm{IN}, 8 \mathrm{JJ}, \mathrm{BLW}, ~ 8 \mathrm{MM}, ~ 80 \mathrm{~K}, 8 \mathrm{RU}$ ．8SP，8SH．
（8TJ），8TT，8N7．8RQ．8UP．8TK．8VH．8XE．8XM， $8 Y N, 8 Z A .9 A 1 R$ 9AJH，9ANC， $9 A O U$ ． $9 A R I$ ． 9 ASJ， $9 A S N$ ．9AZF，9DWM，9CP．9FN．9FS． 9 FW ． 9 HR ， 90R，90X，9MC．9UH，（9（TU），9YAE．97．I，9ZN， Canadians 3 BP ． 3 BR ，3EI．（3JL）． $3 \mathrm{KG}, 8 \mathrm{KS}$

C．W．： $1 A Z D .1 C A K$ ． $1 R Z, 2 A, I F, 2 A J W, ~ \& F P$ ．
 8ACF．8AIO．8AWP，8AQF，8BMA，8CL，8DE，8DR §HJ，8PU，8WY，8XM，NZO．

8BUM，Syracuse，N．Y．
Spark： $20 \mathrm{M}, 3 \mathrm{AC}, 3 A Q R, 3 \mathrm{HJ}, 8 \mathrm{IW}, 3 \mathrm{KN}, 30 \mathrm{C}$ ， \＆GN． 5 HJ ， 5 ZL ． $8 \mathrm{ACF} .8 \mathrm{ADQ}, 8 \mathrm{AFA}, 8 \mathrm{AFD}, 8 \mathrm{AFT}$ $8 A H H, ~ \& A H X, 8 A J V$ ．8AL．8AMP．8APB，\＆AUÓ 8AVT，\＆AXC，8AXF，（8AXI），\＆AYN，8BAH， SBBU＇，8BEP，8BGJ，\＆BIN 8BR，（8BRA），\＆BRE \＆RTX．\＆RUT，8BVA．（8BWH）．RCI．\＆EW 8FI，XHI． $8 \mathrm{HP}, \mathrm{SHU}, 8 \mathrm{HY}$ ． $8 \mathrm{IL}, 3 \mathrm{IN}, 8 \mathrm{ML}, 8 \mathrm{MZ}, 80 \mathrm{I} .8 \mathrm{CEO}$ （QRA RSLS） $8 R 1$ \＆RQ．8SP．8TK，STT，8UC， \＆XE．8YN 8ZD，87Y，87，9AAW，9AAY，ЯAF， 9AJH．9ASJ，9AV，9AWU，9AWZ，9AXC，9CP， $9 \mathrm{HM}, 9 \mathrm{HR}$ ． 9.1 Q ． $9 \mathrm{MC}, 9 \mathrm{ME}, 9 \mathrm{MGG}$ ． $9 \mathrm{MQM}, 9 \mathrm{PG}$ 9UIJ．9VI．9XM， $9 \mathrm{YB}, 9 \mathrm{YM}, 92 \mathrm{~J}, 9 \mathrm{ZL}$ ，CAn．sBP． C．W．： $1 A W B, 1 A Z D, 1 B D I, 1 C A K, 1 C K, 1 D Y$ ．
 2AFP．2AKY．2AWI．2BGH 2BQH．2BYS．2NN 2EL，2FB．2FD， $2 F P, 2 G V, 2 H I$ 2KL，2OE，2QR． $27 P$ 97F． $2 \% \mathrm{G} .27 .12 \% \mathrm{~L}, 2 \mathrm{ZR}$ 3AAY，3ABI，3AFU，
 $3 \mathrm{IN}, 3 \mathrm{IW}, 3 M 0,2 \mathrm{RF}, 3 \mathrm{KM}, 3 \mathrm{ZN}, 3 \mathrm{ZO}, \because Z Y, 3 Z Z$ $4 \mathrm{BY} 4 \mathrm{CO}, 4(\dot{\mathrm{C}}, 4 \dot{\mathrm{FF}} 4 \mathrm{~T}, 6 \mathrm{DA}, \% \mathrm{ZA}, 8 A A Z$, （ $\triangle A R O 1, ~ \& A B P$（ $\triangle A C F), ~ S A D D$ ，（ $8 A D G), ~ 8 A D N$ ， SAEG．8AGG．8AG7．（8AIOI，\＆AIU SAJV．SAKE， \＆AKA，\＆AIE \＆\＆MO．\＆AND（\＆ANO）（\＆AOT） תAOG，8AO．J，8APP，8AQF，8AQV，（8AQZ），8ARD， ЯARK，\＆AUO．SAWO．（SAWP）．\＆AWX，\＆AIW （ \triangle R（：T），$\triangle B H, ~(8 B C P), ~ 8 B D U . ~(8 B E F), ~ \& B F G . ~$ （ 8 BFF ），8RFZ．（KRIN），（NBIP），\＆BJC，8BIV 8BK）．8BNF．8BN．J．（8BNY），（8BO），8BOW （\＆BOX），\＆BPD，ABRC，8BRL，\＆BSS，（8BWL）， \＆BWT \＆RXA．SDE KIR，8DX．\＆EA．\＆FB，9FD $8 F G, \dot{G N}, \& F Q . \& G E, 8 G V .8 H J . \& H Y, ~(81 B)$ （8IT）．8IQ．\＆IV，S．TT．，\＆．IM，8．IQ．\＆IT，8KM，8T．F 8T．J，8I．V，8LX，8ML．8NQ，8OH，8PD．8PX，8QM， §OQ，SQY，RRA，（8RQ），8SE 8TD，STG，STN
 8XM，8XY．8YG，8YN．8YX．（8ZD）．8ZG，\＄ZV 87\％．9AAP， $9 A A S .9 A A V$ 9ABU．9ACO（9A．IA）， 9AMB，9ANE，9AQR，（9ARK），9ASB（9CA），9CR， $9 \mathrm{DAB}, 9 \mathrm{DVA}, 9 E K$ ． 9 GL ，（9HD）．910，9LQ，9T．V 9OA，9RM，9RT，9RV，9WS，9XAH，9XI，9XM，

BAFD，Clarksburg，W．Va．

 （9As．t）．
（ 9 MRG）．

 （ $A Q F),(8 A W P), \quad(8 B R V), \quad(8 B U L), \quad(\dot{y})$, （9\％B）．

8QY，Mt．Clemons，Mich．
All（．．W．：（1PT），1PY， $10 N$ 1R7．1TS． $1 T T N$, 1KM．1ACTT．1AKB．（IANQ）．IBES．1BWJ．（IBYXI， 1 CAK，2FT，2FK。 2FP 2KL．2PE，（2MW）．2＂ 27T，27V．2ABP $2 A B Q$ وAFP وAWK，2AWL
 （3RF），STN， 370 37T（3ZY），ЗARE，（\＆AFTJ），
 6T，A，（8DE），8DR 8DV，8DZ，8FO，8CE，8TR $8.5 S, 8 \mathrm{LJ}, 8 \mathrm{LX}, 8 \mathrm{NQ}, 80 \mathrm{~A},(80 \mathrm{I}), 30 \mathrm{~W}, 8 \mathrm{PN}$,

 （ $8 A Q F), ~ B A W P$（ $8 B E F)$ ， $8 B C l$ ．gAA，9AW．9HD， gHY，jRT，gUC，gXI．gZy，（9AAS）．gAAV，9AJAi， gAMB，gARK，yAVN，פXAH．（UBF）Can．

90X，Louisville，Ky．

（1AW），（2BK）．（ZDN），ZFP，（ZOM），（ 5 HJ$)$ ． （ 31 W），AAS．（ 1 BQ ）． 5 CX ．（ 4 DH ）．（ADZ）．（4FD）， （4GL，C．W．），（4GM，5EK，5ER， 5 FJ，5FV．（ 5 HK ）， （5Q1）（5XA）（5\％AB），5ZL，6KA． 7 XD ，（ x AL）， （ $A F D), ~ \triangle A G K, ~(N A N O), ~ S A O I, ~(B A Q V), ~ \& B C O$, （8BO）， BHOX C．W．，（ 8 BBU$)$（ 8 BDY ）（ 3 BRL ）．

 （8＇TT），（SUJ），（SWA）．BXE．（9AAEi，（9AAW）． AEG，（9ARK），（9AGG），9AIR（9AJH），（9ALH）． （9ALU），（9AMA）．（9ANO）．（9ARG）．（9AR4：）． （9AST），（9ASN），（9AUO）．9AWZ），9AZE），9EE， （9CP），（9DEH）．（9DRI），（9DUG）．（9ET），（9HT）， （ 4 LQ ），$y \mathrm{MC}(9 \mathrm{ME}),(9 \mathrm{NQ}), 9 \mathrm{PS}(9 \mathrm{UU}),(9 \mathrm{VV})$ ， （ 9 WT ）．（ $9 \mathrm{Y} M$ ），（ 9 ZN ）．Can． 8 BP ．All districts．

9DMA．Caledonia，Minnesota

aBP（Can．）1XM，28K，2FD， $2 \mathrm{FP}, 2 \mathrm{KL}, 2 \pi P$ ．
 sCD．4CO，4FF，\＆F，4GL，SBM，5BQ，5DA，5EB， §EK，5ER．5FO，5FY． 5 HK ，5IR，6．JD，5i， 5 LD ， SMF，5PM，БQQ，5SM，БXA，БXB，5XJ， $5 X U, ~ К Y L . ~$ YYZ， $5 Z A, 5 Z \mathrm{~L}, \mathrm{EZO}$ ， GZAM．$\sigma W V$ TEX．TLK，？MF，TYA，TZU，7ZO． 8BA，8BO， 8 BP． $8 B R$ ． $8 \mathrm{CI}, 8 \mathrm{DE} .8 \mathrm{DR}, 8 \mathrm{DZ}$ SEZ， $8 G \mathrm{G}$
 \＆LU，8LX，8MD，8NQ，8RQ．8RU，8SP．8TK，8TN．多\％，8UO，8UK，\＆UJ，8VJ，8VY．\＆WY，\＆XK，
 SAAZ，SACF，BAFD，\＆AFS，XAIO，SAIM．SAKE． AAKF．YAKS．SANY，8AOA，SAPB， $8 A P N$ ． $8 A Q F$ AARZ．$\triangle A W P$ ，ZAYN，SBAF，8BCI，8BDU，SBFX． 8BJC， 8 BLI， 8 BOU， $8 B O X, 8 B H C$ ．

9AGR，Crown Polnt，Ind．
C．W．：1CAK．AAWY， $2 A W L$ ，（2FP），2KL，3FM，
 \＄BEF，8BOX，8DE，（8II），（ 1 IQ ），§LU，ЗUJ，\＆UK， \＄M， $2 Z \mathrm{Y}$ ．

Spark：（2BR）， 2 ZRF （9FP），（2JZ）．（2OM），
 $\square F O$ ． 5 FV． 5 FW ． 5 HK （ 5 XA ）， $52 \mathrm{~A}, 5 \mathrm{ZAB}, 8 \mathrm{ACD}$ ， （ $\triangle A F B)$ ，（ $\triangle A F D$ ），SAFS，XAGK，（ $\triangle A I B), ~(\triangle A M B), ~$ SARS．SAWS SAWO．SAWU．（BAYN）．（ SAYS）： （ $\triangle A Z G)$ ． $8 B B U,(8 B C O)$ ）（ $\triangle B E P), ~ 8 B E T, ~ 8 B K N$ ，
 （ 8 FT ）．8FI．8HG．SIN，8JU，8MZ，（8RQ），8RU． （बSP），sTK，ЕTZ，sUC，sWR．（sXE），EYN．9ADU， gaEG．（9AEYi，gAFF，AAFW．gAFX，gAGG．gAIF， （9ALU），ЭAMK．9AOJ．（9AOU），פAQE．（9AQM）， ARC．gARS（gASJ）．（gASN），gATN，9AUO． AAWT．วAXK，（9AXT），（وAZA），（gAZE），9BDE．
 （9DRJ QRA PSE？）．（9DSD），9DUG．（9DYZ）． （9CS）．2ET． 9 FS ． 9 GC .9 GX ． 9 HI ．（ 9 HM ）， 9 HR ，

 $9 \mathrm{ZJ},(9 \mathrm{YAK}),(9 \mathrm{ZAC}), \mathrm{Canadian}(3 \mathrm{BP})$ ，उJi．

9CP，Hammond．Ind．

IARY，（IAW），（ $A Z K 1, ~$ BDC． $2 A J E$（ $2 B K$ ），

 （ 5×4 ）（ $\because 7 \mathrm{AB}), ~ F Z A \mathrm{M}$ ．（ 5 ZL ），$\because \mathrm{XD}$ ． 8 ACF ． （ 8 ADED （ 8 AEZ ），（ 8 AFB ），（ $\$ \mathrm{AFD}$ ）．（ 8 AFS ）， \＆AGK，（AAIB），（SAJV），（SAKV），（8AL），SAMP，

 SFI，צBRF．（S15T），8GW．8HG．8HY，（ 8 ID），（SIN）． 8．J．（ $8 M C$ ）．（ 8 ML ），（ 80 O ），（ 8 PM ）．（ 8 RQ ），（ 8 RU ） $8 \mathrm{SP}),(8 \mathrm{BOG})$ ，（ $8 \mathrm{~T}, \mathrm{~T}),(8 \mathrm{TK}),(8 \mathrm{TT}), 8 \mathrm{TY},\langle 8 \mathrm{TZ})$ 。

 $37 \mathrm{Y}, 4 \mathrm{GL},(8 A A Z) .8 A I O, 8 A O A,(9 A W P)$ ，צAWX， （8BEF）．8BOX．\＆DE．8DX．SII，（SIQ）．SLX，8NQ． 8UJ，8VJ，8WY，9AAS，9IO．9ZB，（9ZY）．
gUU，Chicago
Spurk：IAW，1ARY， $1 B D T$, （2BK），（2DN），

 （4CX），（4OH），SEK，（ $\ddagger E R), ~(5 F O),(5 F V), G H K$ ，
 8DR．（SEA），（\＆EZ，（sHl，sfll isf（W）（xHG），

 （ $\triangle A N O)$（ $\triangle A Q V)$（ $A A R S)$（XAXN），（EAYM）．

 （9HM），（9HR）， $9 H T, ~ 乌 K O, ~ 9 M C$ ©ME），（9MS）． （9NQ），（9OX：，9尺C．（9PN）．9Нs．9Gd．（9「L）。 （97H），（9VG），（9VZ）．（9WT），（9XI）．9ZB，92J， （9AEG），（9AFF），（9AFX），（9AIF），（צATR）． （9AM＇），（9AOU），（9AQE）．YAQM．（YASJ）．ЭASK， $(9 A S N), ~ פ A U O, ~ g A X U, 9 Z A C, ~(9 D E H)$（ $9 D W M)$ ．

 （xII），（ SWY，\＆RB．\＆\％G，BACF，囚AIO），$A Q \%$ ，SHOL

9AOG，Lawrence，Kansas

 §7AB 5ZAG． $5 Z A K .6 Z A M, 5 Z C, 5 Z J, ~ 5 Z L, 6 Z N, 5 Z S$, ธ7T， $5 Z \mathrm{Z}, 67,7 \mathrm{ZA}, 7 \mathrm{MO}, 7 \mathrm{XD}, 7 \mathrm{ZO}$ ．$\triangle \mathrm{ACF}$ ．SAEE， \＆AEY．BAIB，8AYN，BFI，《GW，XIN．XI，Y，BSP， 8UC，SYN，$\because 2 \mathrm{D}, 82 \mathrm{~N} .9 \mathrm{AA} .9 \mathrm{AAW} .3 \mathrm{ABV}, \overrightarrow{A C L}$ gACN，gAEG，9AFF，9AFK，פAFW，שAFX，9AHZ， ӨAIK．9AKC，\＆AKY，9AMA．9AMD，धAMK，घAMV， $9 A N F, 9 A N O, ~ g A N Q,(9 A O D), 9 A O U, 9 A Q E, 9 A Q N$ ， $9 A R G, g A R I, g A R X$ ，9ARZ，9ASJ．gASN．GAUL gAUO，9AYE，9AVK，9AWZ，gAXU，gAYL，gAYW， 9AYY，9BDS，（ยBT），9CP，9DBU，9DEH，9DEO， 9DFL，9DJB，9DP，9DPE， $9 D Q Q$ ．9DSN．（90TA）， 9DTS，9DTU，9DVF，9DWP gDTP．פET．9ET， $9 \mathrm{FS} .9 \mathrm{FU}, 9 \mathrm{FZ}, 9 \mathrm{GV}$ ． $9 \mathrm{HI}, 9 \mathrm{HM}, 9 \mathrm{HR}, 9 \mathrm{HS}, 9 \mathrm{Y}$ ， $9 J G, 9 J Q .9 K A, 9 K O$ 9LW， $9 \mathrm{MC}, 9 \mathrm{MS}, 9 \mathrm{ND}$ ． 9NF，9NQ．9OX，9PN，9PS，9QJ，（9QO）．9RY．
 $9 X M, 9 Y A, 9 Y A B, 9 Y A C, 9 Y A E .9 Y A K, ~ 9 Y B, 9 Y M$ ． $9 \mathrm{YO}, 8 \mathrm{Y} W, 9 \mathrm{AAB}, 9 Z A \mathrm{C}, 9 \mathrm{ZAD}, 97 \mathrm{~B}, 97 \mathrm{C}, 9 \mathrm{ZH}$, 2 ZN
 \＆AQZ，8AWP，\＆BEF，8BK，\＆BOX，8DE，צDR，8J\％， SHA，8TI，\＆IQ．STF，\＆PN， $8 Q T, \& T N, 8 V J, ~ \& V K$, \＆VY，$\$ W Y$ ，\＆KM．$\& A A V, ~ S A J A . ~ 9 A N E, ~ \& A Q R$ ， $9 A R K$ ． $9 A S D, 9 A V N, 9 A X J, 9 D H B$ ， $9 \cap K B$ ． $9 D K X$ ． $9 \mathrm{DJB}, 9 \mathrm{TS}, 9 \mathrm{DYG}$ ． 9 DZQ ，9EX． $9 \mathrm{RT}, 9 \mathrm{RV}, 9 \mathrm{XI}$ 9XM，8ZB，9ZV，9ZY．

日FK，Clinton Iowa．

民W．： $10 N, 2 A W L, 3 C A, 3 Z Y, \quad 4 F F, ~ \& A A Z$, \＆ABO．ACF．\＆AOA，$\triangle A Q F, ~ \& A S O, ~ \triangle A W P, ~ B B O X$ ．
 $B W R$ ． $8 X M$ ，$A A S$ ，$O A A, G A B, G A M K$ fone， $9 A Q R .9 A R K, 9 A V N$ ， $4 R V, 9 T Y$ ．

Spark：\＆DH，ЂEK，5FO，5HN，SPP．БXB．GतI．
 $8 B R L, ~ B Y N$ ， 8 AA． $9 A A W$ ．$A A G G$ ， $9 A F F$ AHZ GAIH，وALU，gAMK，GANO，GAOU，GAPK，YAGM GARY，צARZ，GASM．9ASN，GATIO，GATTU GAYV， QAYW，פAWH YAWX，9DQQ，ob\％A，g［DJJ，9OQ． $9 \mathrm{HN}, 9 \mathrm{HT}, 9 \mathrm{MS}, 90 \mathrm{~K}, 9 \mathrm{PS}, 9 \mathrm{~TB}$ gUIT，乌WU， ＇XI， $9 \Psi A K$ ， $9 Z N$ ．

9ANO，St．Joseph．Po．

 GZU， 5% ，GZZ，©KA．7ZU，\＆AFS．8AFD．A．IU． SARS，（\＆AVO）， $8 A Y N, ~ \& A Y R, ~ \& E Z, ~ \& F I, ~ F N$,
 OAAW， $9 A B U$（ $9 A B V$ ）， $9 A B W$ ， $9 A E G$（9AEX）． 3 AFC． 9 AFF ， 9 AFI ． 9 AFK ，（3AFX），9AGF，9AGR， gAHZ，3AIF，9AIJ，gAIR，（gAJH），gAKC，9ALD， 9ALK，（9ALU），9AMD．gAMJ，gAMK．gAMN， $9 A M V, g A N F, ~ G A N Q, 9 A N S, 9 A P K, ~ g A Q E, ~ У A Q M$ ． $9 A R G$ ．9ARL，9ARR， 9 ASJ． $9 A S M .9 A T N,\langle 9 A U O)$ ， gAVK，9AW＇，وAXM，9AXU，9AYY，（9AZE）．פAR，

9BEI．（9BT），9DAC．9DRS，9DED．9DEH．9DFL． $9 D F N, 9 D H B,(9 D J B), 4 D P E$ ．פГFPH，9DPL，yDQN 9DQQ．9DSD，9DIJG，9DYA．9DYU，（4DZJ），פEE， $9 \mathrm{EL} .9 \mathrm{HI}, 9 \mathrm{HM}, 9 \mathrm{HT}, 9 \mathrm{Y}, 9 \mathrm{KA}, 9 \mathrm{KO}, 9 \mathrm{LF}, 9 \mathrm{MU}$ （9MS）．aNQ（YOX）．aPI．（9PS）．（9RY），！SY，
 $9 Y A,(9 Y A E), 9 Y M,(9 Y O), 9 Z A, 97 A C,(9 Z A D)$ ， وZAM，（ $9 / \mathrm{H}), 9 \mathrm{~N}, 9 \mathrm{ZW}, 97 \mathrm{X}$ ．

 9ACR，9Ald．9ALZ．9AMA，9AMB，9AOU，（9ASD） （9AQR），9AVN，乌DPB，9DVA，gEK．9FM，9RV， 9 VE．$y X A H, ~ y Z B, ~ y Z Y$ ．

GAQR，Kansas City，Mo

Snark：2OJ， 8 KM ； $4 \mathrm{BQ}, 4 \mathrm{DH}, 4 \mathrm{~F}^{\prime} \mathrm{D}, 4 \mathrm{BN}, ~ 反 A F$

 GNK，SNS．SOF．JQA，SQI，5QQ，5QY，SXA，EXB 6XI， 5 KK． $6 X U, 5 X I, 5 Y E, ~ 5 Y L, 5 Y N, ~ ઈ \% A, 5 \% A B$,

 KSP．\＆XE．XYN，M\％A，\＆ZN，EAIB，\＆AYN，\＆BEP， 8BRL，Can．3BP，5HK．

C．W．： $1 A N Q$ ，AWL，2EL，2FD，2FK．2KL．2QR

 $4 \mathcal{4}, ~ E D A, 6 L A, \quad=X B, 57,6 W V, \& B K, ~ צ D E, ~ S D R$ ， SDX SFO，XGN．SII．SIQ．YIV．8JQ．SLF，\＆LX，

 8AWP．（ 8 ROX）．YAW．（9EK），（9EX），9FA，9HD，

 （9AAS），gAAV，（9ABU），（9AJA），（9AMB），9ANE， 9AFK．9AWY．9BAC，ЭDAB，9D＇S．9DVA．9DYE， GDYG，9ZAF，9VE．

GAHC，Ellendale，N．Dak．
○W．： $2 \mathrm{FP}, 2 Z \mathrm{~V}, 3 \mathrm{BM}, 3 \mathrm{KM}, 370$ ．5Y\％， 5 WV ． SAVH，\＆AWP，\＆BAC．QRA？8CF，SDE．8DX．SDZ， $\triangle I Q . ~ \triangle L X . ~ \subset N Q . ~ S O H . ~ S U J . ~ 8 V J . ~ S V Y . ~ Y A A V . ~ פ A J A, ~$ gANR， $9 A S D, 9 D V A, ~ Q R A ? ~ 9 J D, ~ 9 L Q, ~ 9 V E, ~ G Z Y ' ~$ OAKX，9PI．9ZB．

Soark：Crnadian 3BP．末EK，5FR，5FO，5HK，
万7L，SZX，TFI，TMO，ЋXD，〒ZO，$A G K$ ，צAYN， $\& B O, ~ \angle D R$ ．SFl，$Y N, ~ \& Z N .9 A A W$ ．OABV， $9 A C L$ ， 9AEG，9AEV．9AFX．9AHZ．9ALK．9AMA．9AMK， GAMS，$\triangle A N F$ ，GANP，GANQ．9AOU， $9 A P$ ， $9 A R Z$ ， 9AUO．9AXU．9AYW，פDBS，9DEH，ЭDFL，3DFR，
 9 FL .9 FZ ． $9 \mathrm{GC}, 9 \mathrm{HM}, 9 \mathrm{HR}, 9 \mathrm{HT}, 9 \Pi, 9 \mathrm{KA} .9 \mathrm{LW}$ ， 4MC，9ME．9NQ．9PC，9PN．9PS，YQH．9TI，9TV， 9UU．9YL．9WI．9XI．9XM．9XO，9YA．9YAE． $9 \mathrm{YAK}, 9 Y B, 9 Y M, 9 Y O, 9 \% A B, 9 Z C, 9 Z N, 9 Z U$ ．

GAVZ，Pierre，So．Dak．
C．W．： $4 E B$ ． $6 W V$ ．$A A Z, ~ \& A B O$ SACF．SAND，
$\triangle A Q F$ ，SAQZ．$\triangle A W P$ \＆BC，$B B E F, ~ \triangle H O$ SBOX \＆BV，8BVX，8DE RGV，SKM，8OH，STN． $8 V Y$ ， $8 X K, 87 Y, 8 Z Z, 9 A A H, 9 A B U, 9 A I A .9 A M B, 9 A N E$, $9 A Q R, 9 A R K, 9 A V N$ 9AXA， $9 D K X, 9 D V A, 9 D Y E$, $9 \mathrm{EK}, 9 \mathrm{GL}, 9 \mathrm{HD}, 9 \mathrm{~T}, 9 \mathrm{WH}, 9 \mathrm{XAC}, 9 \times A H, 9 X L$ ӨसM，9\％B，yZY．

 GAEY．GAFX，OAIF，OANF，GAOT，SAP，GAQM． 9ARI．9ARZ．GASN．9AWU，9AXU，9AYW，9DEH， 9DOC， $9 \mathrm{DUG}, 9 \mathrm{DZJ}$ ， $9 \mathrm{EE}, 9 \mathrm{FZ}$ ． $9 \mathrm{HN}, 9 \mathrm{LW}, 9 \mathrm{MC}$, 9NR．GPI．gPN．9PS，9RN，9TI，gVW．9WI，gWT． $9 W U, 9 Y A E, 9 Y A K, ~ 9 Y M, 9 \% A C, 9 \% C, 9 \% J, 9 Z N$ ．

9DV，Neenah，Wisconsin
Spark：1XM，2BK，2FP，3PL，3ALC 3AQR 3BFU， $\therefore B Q, 4 D F, 5 A A, 5 B M, 5 B Q, 5 E K, 5 F O, 6 F V, 6 H K$ ， GHZ，5IB．GIR，万JR，GKO，5QT，SXB，万ZAB．8IC， SEA，SFI，KFTC，\＆．JQ．४MM，（8NZ），\＆RQ。 उTR， TTT，BUA，\＆YN，$Y Y T, ~ \& Z Z, ~ \& A A C, ~ S A K D, K A Y N$, SZAA． $9 A F$ 9ET，9FS，9GP 19 HM ） 9 TF 9MC， $9 \mathrm{ME}, 9 \mathrm{MS}, 9 \mathrm{NQ} .9 \mathrm{NR}, 90 \mathrm{X}, 9 \mathrm{PN} 9 \mathrm{HH}, 9 R Y$ ， 9 TL
 $9 A A P, 9 A A W, 9 A B U, 9 A E G, 9 A F F, 9 A F K, 9 A F W$ ， YAFX，gAGN，gAIR，gAJH，YALO，9AMK．פAMS． GANF，gAOU，9AQE．9AQM，9ARZ．9ASJ，9UD． 9AWZ，9AXU，9AYW，وAYY，9AZA．9AZF，9BDE． 9DEH，9DFL．9DFR．9DQQ，9DSD，GDUG，9DWC． 9DWM．9DXM，3DH Can．
C．W．：3RU，1TS，1KM．ZDN，2EL，』FP，2KL， $2 A J W, 2 A W L, ~ 夕 H N, 82 O, 4 E N$ ．4GL，GLA．8DE， हIU，SII，B1Q，8JL，8TU，8NQ，8OH．sPX，8RU， SUJ，XVM．\＆XM．SZG，\＆AIO צAJP，צAWF．\＆AWX． sROX， $9 F Z, 9 R V, 9 U K, 9 V E, 9 X I, 9 Z Y, 9 A N R$ ， 8KAC．

GBGJ，Lincoln．Nebraska

 $7 X D, ~ テ Z U, ~ Y Y N, ~ 9 A A P, ~ 9 A A W, ~ 9 A E G, ~ 9 A F U$, $9 A E Y$ ，$A F X, 9 A G$ gAIN，9A．JI，9ALO，9ALA， 9AMA， $2 A M B$ ， $9 A M V, 9 A N, ~ g A N F, ~ g A N V, 9 A O U$, GAPA，9APC，9APN，GAQE，GARI．GARS，9ARZ， 9APA．9APC，9APN，9AQE．9AUL，9AUO．9AV，GAYU，GAY，9AYS， $9 A Y W, ~ \sharp A Z F, 9 B A X, ~ 9 B B U, ~ 9 D A, 9 D B S, 9 D E H$, 9DFA，9DGS，9DNC，9DOC，9DPF，وDPH，9DGF． 9DQS．9DQQ．9DSC，\＆DTK，9DTM，9DTU，9DUL． 9ПTP，9DUO，9DUX．9DWI 9下7M，9EF，9EW， $9 \mathrm{FM}, 9 \mathrm{FZ}, 9 \mathrm{GM}, 9 \mathrm{HA} .9 \mathrm{HE} .9 \mathrm{HI}$ ， $9 \mathrm{HM}, 9 \mathrm{HT}$ ，
 9 TU． 9 UU， 9 WI ． 9 WT 9XA． $9 \times M$ ． $9 \times I$ ．9YA． $9 Y A C, 9 Y A K, 9 Y A E .9 Y B$ 9YO． $9 Y T, 9 Y W, 9 Y Y$ ． 9ZAA．9？AC． $9 Z C, 9 Z J, 9 Z M, 9 Z U$ ．

C．W．：反CB．\＆DE STZ，8GT，8IQ，BTN，8VJ， \＆VP，8XK．SZG． $87 H, 87 \mathrm{~K}$ ．9AAS，9AJA，GAVN， $9 H D, 9 M M, 9 Q Y, 9 T U, 9 V E, 9 X M, 9 Z Y$ ， $9 Z B$ ．

$\$ 5.00-\mathrm{C}$ W Inductance－$\$ 5.00$ 20 TURNS－ $7^{1 / 4 \prime \prime}$ Dia．HARD DRAWN COPPER WIRE，BAKELITE INSULATION

A first clase inductance for that new $C W$ asi Why try to get along with a makeshift eoil when you can purchase a reliable inductance for this price＂Price on piditionai turns on application．

C W Transformers

100 Watt，$\$ 8.00150$ Watt，$\$ 9.50250$ Watt，$\$ 11.00$
Primary－－ 110 Volto－fio Cycle－Filament Winding over primary－8 Volts －Center Trep．Wound on insulating tube．
SECONDARY wound for－ 350 Volts－ 425 Volts－$\$ 00$ Volts with Center Tap．Wound on insulating tube．

Iron core cut to length but not assembled．All taps marked－coils tested Instructions for assembling furnished．Prices on other sizes on application Bulletins on request．All articles subject to return within 10 daye if not found satisfactory on inspection．

Goods securely packed，and shipped C．O．D unless remittance accompanies order
M．B．TERRELL， 22 E－9th St．，Holland，Mich．

Shell Type Filament

 TransformersPRI. 110 VOLTS

SEC. 10 VOLTS

FOR C.W.

SECONDARY TAPPED AT CENTRE

1 or 250 Watt Tubes Mounted- $\$ 10.00$
1 or 250 Watt Tubes Unmounted- $\$ 8.00$
450 Watt Tubes
450 Watt Tubes

Mounted-\$15.00
Unmounted- $\$ 12.50$

AMATEURS:

Change over your type " R " or "RS" spark transformers to high voltage C.W. transformers.

We are prepared to furnish two secondary coils to replace the high voltage winding now on your transformer. Each coil 1500 volts.

Send us your specifications.
Don't forget our popular line of spark transmitting apparatus.

Thordarson Electric Mfg. Co.

517 S. Jefferson Street.

Chicago

In the Radio world this seems like a long time ago, and yet ten years before Marconi sent his first message, the Manhattan Electrical Suppiy Co. was an established electrical supply house.
The foresight which placed it in this position caused us to manufacture and sell radio material; and this antiquated piece of apparatus unknown to the average amateur, was absolutely the latest design when it was placed on the market.

Then as now the newest material was added to our stock and the trade posted on new developments. With a line changing rapidly in design, this meant constantly exercising great care to prevent the accumulation of obsolete articles.

Triav Manhattan is better equipped than ever. The Manual has just been revised. It is up to the minute. The stock of standard lines has been increased to the largest in the Country, and the service of our MailOrder Department made better than ever.

Several "Broadcasting Stations" have recently been started, and probably more will be built during the coming year. This is creating a tremendous interest in radio. Many who had never thought of Wireless, have become enthusiasts. We want them as well, to know our history, service and position in the radio world. When your friends ask you where to select dependable radio equipment, tell them-

"M A N H A T T A N-RADIO HEADQUARTERS"

If you cannot personally visit one of our five stores, our Mail-Order Department will give courteous and quick service.

MANHATTAN ELECTRICAL SUPPLY CO. Inc. (HSCO
 A National Institution

S.OS.

 to Santa Claus

 to Santa Claus}

Tell Old Nick you want a Brandes Headset.

Whether you are an amateur or a regular operator, you'll slap yourself on the back if you get a Brandes Headset-the wonderful MATCHED-TONE Receivers.

Brandes Headsets "get everything": under all conditions; often when others fail. Give yourself the best. Send 5 c for catalog $\mathrm{F}-\mathrm{now}$, in time to get ahead of the Christmas rush.

Dealers:
WRITE FOR GITR
I'ROPOSITION

BRANDESMEActiones

Phenomenal Wavemeter Bargain

ABSOLUTELY UNUSED Navy Type S E 985. Range Go to 750 Meters
CALIBRATION-Each meter callbrated individually, three wave length and one capacity curve, also direct reading seales with automatic pointer.
INDICATORS-Glow lamp with booster battery device. Also silicon-arsenic d trctor.
CASE-Beautifully made and polished-felt lined and equipped with removable lid. $10^{\prime \prime} \times 9^{\prime \prime} \times 9^{\prime \prime}$-wight 13 lbs
CONDENSERS-Balanced plate, 00007 to .00065. Terminale
broughi out to bind.ng posts.
A high grade instrument in every rerpect. Never put into eervice account wave lensth range being too low for Navy service. tho ideal for smateur work.
\$30. 19 WHILE SUPPLY LASTS
RADIO INSTRUMENT COMPANY
Hutchins Building, 10 th \& D, N.W., Washington, D. C.

Unwired

 $\$ 47$
Wire Your Own at a Big Saving

There are two parts to the assembly of radio instruments - the actual panel drilling, mounting, etc. which is essentially machine work; and the wiring, which is hand work.
The Standard Assembling Co. does all the machine work, with the proper equipment, and leaves you to do the hand work yourself. Because wiring is hand work, it is really the most expensive part of the assembly. At the same time, you can do it as well as it can be done at the factory, and you probably have your own ideas about wiring anyway.
Only by buying "Standard" instru-
ments can you get the appearance and results of high-grade assembled spparatus, and at the same time save an important part of the cost.
The tuner shown above is an example of the quality apparatus offered under the Standard plan. It will be shipped to any part of the U.S. on receipt of one-third the purchase price. Examine it carefully. If you are satisfied that it is the best radio buy you ever made, remit the balance. If not, return the instrument for refund. Could we make a fairer offer? Then take this opportunity to try the "Standard" plan!

MR. AMATEUR-

Do you want the inside dope on GUARANTEED EQUIPMENT at ROCK BOTTOM PRICES: Write for our Bulletins and let SERVICE EQUIPMENT solve your problems.

Watch for our future ads to appear in this magazine.
-SERVICE RADIO EQUIPMENT-
HAMMOND RADIO EQUIPMENT \& SUPPLY CO.
Box 340 Central Sta.

ONE OUT OF A THOUSAND COME BACK!

DURING all the time ACME has built C.W. apparatus, less than one instrument out of every thousand has come back for replacement, or even repairs.

Take the uncertainty OUT of C.W. by using ACME apparatus thruout

Acme was the first to prepare for C.W. Years ago we began to develop an Acme instrument to anticipate C.W. need. Today Acme has the most complete line of C.W. apparatus in existence. Each instrument is the fruit of
exhaustive research, and all are designed with careful reference to the others. Before you start your C.W. outfit, get the Acme bulletins. And when you do build use Acme apparatus throughout!

ACME APPARATUS COMPANY

194 MASSACHUSETTS AVENUE CAMBRIDGE, 30, MASS. Transformer and Radio Engineers and Manufacturers

Send for bulletins describing these guaranteed Acme instruments:
C. W. Power Transformers
C. W. Plate Transformers

Eilament Heating Transformers Modulation Transformers

Amplifying Transformera
Choke Coils
Amplifiers
Detectors

The CHELSEA AmplifyingTransformer

is a supreme attainment in the design of Audio Frequency Transformers. It embodies the highest grade of materials obtainable and proper design, which reflects the result attained namely high amplification factor. It is unequalled either in electrical characteristics
or good appearance. Price as either in electrical characteristics
or good appearance. Price as shown $\$ 4.50$.

Chelsea Variable Condensers

(Die Cast Type)

No. Cipacity

rype Mounted $.0011 m$.f. Mounted Mounted
With Dial Size Weight Price $0006 \mathrm{~m} . \mathrm{f}$ Mounted $4 \mathrm{~m} 246 \mathrm{~g} \times \mathrm{O}$ $.0011 \mathrm{~m} . \mathrm{f}$ With Dial it/ $\times 3 \times 4$ $.0011 \mathrm{~m}, \mathrm{f}$. Without fial $41 / \times 3 \times 4$ No11m, Without Dial $44 \times 3 \times 4$ 2 2 bs. 75 . $0006 \mathrm{~m} . \mathrm{f}$. With Dial $41 / 4 \times 3 \times 31 / 2 \quad 11 / \mathrm{lhs} .4 .25$ $4.0006 \mathrm{~m} . \mathrm{f}$. Without Dial $41 / 4 \times 3 \times 31 / 2 \quad 1^{1 / 6} \mathrm{lbs} . \quad 3.85$

Top. bottom and knob are kenuine bakelite, shaft of steel running in bronze hearings, sijustable tension on movahie piates, lerge brikeilte dial reading in hundredths, hish eapacity. emply separated and accurately apaced plates.

Unmounted types will fit suly panil mind are equipped with counter-weight.

Purchase from sour dealer: if he doen not carry it, send to us. Bulletin rent upon reciuesin

$\$ 4.50$

Chelsea Radio Co., 150 Fifth St., Chelsea, Mass.

THE-BLANK-RADIO-CALL-BOOK

(AMATEUR STATIONS)

A Wonderful Help to All-An Absolute Necessity for C.W. Reception
This NEW station help is printed in brilliant RED to make the call letters and column headings prominent. ON BOND PAPER which will stand repeated erasure. Can be used in connection with ANY RECEIVER. Liberal space provided for DIAL SETTINGS and other data, including notes. INDISPENSABLE-but the costonly $\$ 1.50$. Order your copy today from your dealer or the publisher.
F. M. ENDE,

Fort Riley, Kansas

SPARK---A R C---VACUUM TUBE

The Revised Examination for Commercial Operators including ARC and VACUUM TUBES is carefully and fully covered by the Course of Instruction offered by tho EASTERN RADIO INSTITUTE.

Intelligent students INSIST on being taught upon ACTUAL apparatus!

"The EASTERN RADIO INSTITUTE'S $2 \mathrm{~K} . W$. 'ARC'"
The EASTERN RADIO INSTITUTE is the OLDEST, LARGEST and BEST EQUIPPED Radio achool in New England. The Pioneer school that has always led the way!. Agk any man in Radio-me will tell you!

New Students can begin to advantage in the Day or Evening school on any Monday.
REMEMBER:-Our ORGANIZATION with YEARS OF PHENOMENAL EXPERIENCE and SUCCESS is hehind every man who enrolls! Ask any man in Radio he will tell youl OVER 4000 satisfied graduates TELL OUR STORY BEST! Why not be one?
Our illustrated prospectus is froe. If you cannot vinit the lmatitute sond for one.

F. D. PITTS, Director

---it's in Dallas

SOUTHWESTERNERS this Christmas should be the happiest in your Radio life. Make yourself a present of Radio this month and order it direct from us. Dallas is the hub of the Southwest, the yate to the trade of Mexico and the LatinAmerican countries. Naturally you will find Radio Supplies in Dallas, Let us send you our prices. Spanish correspondence invited.

A MRAD stock dealers, Adams-Morgan, Baldwins, Brandes, Burgess B Batteries fresh each month, Federal, GA-Std, any make of tubes, Magnavox, Murdock, Tresco, Westinghouse, etc., parts and raw material.

SPECIAL Sets for Ranchmen and Farmers for the reception of Time and Weather Reports by wireless telephone.

The Southwestern Radio Supply Co.

215 St. Paul St.,
DALLAS,
TEXAS

SEND US YOUR ORDERS FOR RADIO EQUIPMENT

Highest Quality-Lowest Price-Prompt Service

Distributors for Grebe, DeForest, Chelsea, Radio Corporation oi America, Murdock, Signal, Magnavox and other highest grade Radio Apparatus. All sizes of Radiotron Vacuum tubes always in stock.
Get the new Grebe Regenerative Receiver CR-g the ideal equipment for C-W and radiophone reception. 150-3,000 meter wave length-all the latest Grebe features including moulded variometers, rubber-tired verniers, etc. The final word in simplicity of operation.
Send for "Radio Corporation of America C.W. Booklet" siving expert information and diagrams for Amateurs. We carry complete fine of C.W. trenamitting anparatus and secessorié listeri. Booklet mailed, postpaid for
Mail orders promptly filled. Dealers,-Write for discount. DOUBLEDAY-HILL ELECTRIC CO.

715 12th St., N. W., Washington, D. C., Radio Dept.-Desk A. T19-21 Liberty Ave., Fittsburgh, Fa.

HOOK'ER TO YER BULB-TUNERS

A full page ad. could not do justice to our line of C.W. and phone equipment shown in our new 24 page catalog. Our tuners need no advertising. 10 cents brings catalog full of phone and receiving hookups, code, and other useful information.

VOCALOUD

The ideal Christmas yift. This sersational loud apeaker needs no iostteries, no adjustments, no extras whatever. Just hook on a Vocaloud, and get your signals qSA all over jour housel Put it on your Christmas list. 5 at all Firco dealers.

Immediate Delivery

Altho' the first iot of Firco Plugs were manufactured in what we considered a liberal quantity, the supply was almost instantly exhausted. If you were among the hundreds who have had to wait for Firco Plugs, you will be glad to learn that your dealer can now supply you without delay.
$J u s t$ press the chucks slightly outward to instantly insert or release any standard telephone cord tips. The "Bull-Dog-Grip" makes a perfect electrical connection and never lets go!
We suggest Firco "Bull-Dog-Grip" Plugs as an inexpensive, but highly appreciated Christmas remembrance to your radio friends.
Firco Plugs fit all standard jacks and cost no more than other plugs without their exclusive improvements.
Type 84 A , flat, $\$ 2.00$. Type 34 B , round, $\$ 2.50$. (Patent applied for.)

If there is any firco product your dealer cioes not carry, send two cents for illustrated leaflet. Ash your radio dealer to show you the new Firco loose-leaj catalogue. Mailed direct for 2^{5} cents.
John Firth \& Company, Inc., 18 Broadway, N. Y.

Designed by añ expert Radio Engineer of long experience. Mechanically as perfect as skilled thechanics using precision machines can make it. Runs perfectly true and without vibration. Wheel of Bakelite. Inserts and binding posts of brass. Brushes of spring Phosphor Bronze. A high grade universal (AC or XC) 110 volt motor. Altogether a periect little beauty.
This Chopper (or Tone Whecl) gives a very pleasing note trat is much easier to pick up than straight CW. Gapacity up to 100 watts. Complete with motor and base ss shown $\$ 18$ Wheel with brushes and binding posts but without motor or base $\$ 4.50$ Give size of your motor shaft.
A pew Prient Appilied For
A new Key. Has an Oil Cell. Extra large iss inch diameter) Contact Points of Pure Silver immersed in oil thus preventing the burning of the points. Metal parts of brass nickle plated and highly polished. Steel Conter Shaft. Marble Base of either Electric Blus or Avennatto White. Size $31 / 3 \times 6 x^{7 / 3}$ inches. Mechanical construction the very best. Designed for heavy currents. Has bein thoroly tested out by a number of Radio Engineers and pronounced the "Beat Ever." Altogether the finest and most beautiful Key ever put on the marbet. We aend with it enough oil to last at last a year.

Price $\$ 7.50$

Patent Applien For

We have beon working for two yasars on a Rotary syark Gep and have developed a vruly Synchronous Gind that is preatily wuperior to anything now on the mar.iet. Aimost ready now. if interested write for marticulars.

ROBERTSON CLOCK AND INSTRUMENT COMPANY 409 CONGRESS STREET, East,

DETROIT, MICH.

The RHAMSTINE* VT Battery

 $\$ 300$ Postage and Packing 30c. West of Rocky Mts. 50c.Large size-22.5 volts-Panel equipped-Completely variablo To receive Christmas Carols at their best put a Rhamstine $V T$ Battery in the circuit. The quality and efficiency of this unit are not to be compared with cheaper or inferior batteries. It is made of the best material procurable and includes a bakelized panel with plated switch and binding posts.

Complete folder njon request.
Dealers wanted everywhere

MANUFACTURED BY

J. THOS. RHAMSTINE*

2152 E. LARNED STREET,

DETROIT, MICH.

STAR RADIO BULLETIN

 results. Satisfaction guaranteed or money cheerfully refunded.Note: With each cabinet we will give you free, this month, oue dozen Fada Brnding Posts.
STAR CABINET SHOP 7 th $\&$ Chestnut Sis., Lansdale, Pa.

Faradon
 COUPLING CONDENSEK, MUDEL UC 1803

Great distances can be covered by a continuous wave transmitter, if the transmitter frequency is sufficiently comstant for the receiving station to hold the lueat note. In the usual ant nna circu.ts, the antenna constants are continuously changing, due to slight antenna swing; thus, it is impossible for the receiver to hold the beat note, on amatcur wavelengths. If the antenna circuit is tuned to the wave of a local tuned "reservoir" circu:t, and the antenna and "reservoir" circuit, couplcd very loosely by a condenser of small capacity capable of withstanding extremely high voltages, energy can be radiated at the wavclength of the "riservoir" circuit independent of the antenna swing. The Wireless Specialty Apparatus Company has dev:loped for this purpose, a coupling condenser, Model UC 1803. For undamped telegraphy on the normal antenna, one unit will provide proper coupling. Slightly better resuits can be obtained on telephony, if two Model UC1803 units are parallelly connected, as shown im the below circuit. The surge voltages in a tube circuit risn to enormous values under certain adjustment conditions, fut this cond-ncer is so d-ioned that it cannot be broken down by a surge voltage. The circuit below showe method of designed connection.

MODEL Uci014 PRICE \$200

Whether You Say---

"The Darn Thing Won't Percolate"
or

"My Set Declines to Function Properly"
It Means the Same-

You Need WESRAD Service!

We Sell Apparatus - But We Give Service

Our Latest PRICE DICTIONARY Is Ready

Send For It-And Use It

"For Radio Only"

WESTERN RADIO ELECTRIC COMPANY

550 South Flower LOS ANGELES, CALIF.

274 Twelfth St.
OAKLAND, CALIF.

Now is the time to askMother, Father or Sister, for that long wanted Radio Sct.
We have complete receiving sets-that will give enjoyment to every member of the family. From $\$ 15.00$ to $\$ 300.00$. The New Grebe Sets are here-
CR8 \$80.00
CR9 130.00

312 Flatbush Avenue, BROOKLYN,

I he"QSA"Line of Radio Equipment

[^4] only bettery with non-corroding terminals, Write fur particulars and incidentally set on our malling list to receive our special monthly bargain lists. Decemb'r's list will contain a special uffer on the "COMBATT". . Don't risk missing this offer but write immediately for our descriptive circular. 6 VOLT 80 A. H. "COMBAT"
This month only at \$21.00 Our catalog of "QSA" equipment sent for 10 cents Independent Radio Supply Co. 3716 W. Douglas Blvd. Dept. H-12 CHICAGO. ILL.
"better results with less effort"

PARAGON

DISTANCE RECORDS

Phone: Babylon, N. Y. to Ocean City, N. J. daylight (10 A.M.) 125 miles 25 watt tubes.
CW and Buzzer: (1 5 watt tabe) Cedar Grove, N. J. to Savannah, Ga.. Norfolk, Baltimore, Philadelphia, Indianapolis, Ft. Wayne, Peoria, Cleveland, Buffalo, Toronto, Boston, Etc.
Highly Efficient; remarkably flexible; voice, buzzer, or CW; instantaneous access to 7 wave lengths; a perfect "short haul" universal transmitter that's delightfully effective.

PRICE \$70.00 (Licensed under Armstrong Patents) (Patents Pezding)

DEALERS: We bave an interesting proposition to offer you. Write us.

ADAMS-MORGAN CO.,

 OFFICE AND FACTORY: UPPER MONTCLAIR, N. J.

BURGESS "B" BATTERIES

(Individual cells completely insulated)
The Standard of Quality
Ask the operator who uses them
5156 (with taps) Send for Bulletin No. 18 for prices and complete dencriptions
BURGESS BATTERY COMPANY
HARRIS TRUST BLDG.,
CHICAGO

CANADIAN AMATEURS!

Send ten conts for our big illustrated catalogue and copy of Cmada's First AllRadio Magazino

Canadian ${ }_{\text {IReless }}$

SCIENTIFIC EXPERIMENTER LIMITED
33 McGill College Avenue, Montreal, P. Q.

Let Your Sei Know It Is Christmas!

Stop Replacing Burnt-out Bulbs

You can be sure that your new tube will not accidentally burn out if it is protected with the

Carrying Capacity
1,1 发: $1 \%, 2$. $21 / 2$ and 8 amp. Size $\frac{1}{2}$ inch over all.

RADECO SAFETY FUSE
 (Pat. Pending)

Slips directly on tilament terminals of any atandard bulb, and can be ured in any standard socket. This tiny fuse "absorbs" destructive high amperage before it can reach ind destroy the delicate filaments, Your new bulb needs PBADECO protection.
RADECO Safety Fuses are equally valusible in all CW work preventing in lury to meters resulting from shorts. Send today cash, money order or certified check.

4 For

ORDER BY MAIL

50 CENTS
 ALLOWED ON YOUR OLD Vacuum tube

For demonstrating purposes in connection with our famous RADECO Safety Fuse, we need a number of burnt out tubes.
In order to get these tubes immediately we offer for a limited time, a cash stlowance of 50 cents on the purchase price of any standard tube you buy from us. Order from price list of any standard ratalog.
CAUTION! Pack tubes carefully. No allowance made on tubes received with glass broken.
You w Il have no more uscless tubes if your new one is protected with a RADECO Safety Fuse.

Using An Inefficient Condenser Is Like Carrying Water In A Sieve

The same judgment used in the purchase of radio equipment that you use unconsciously in everyday affairs will invariably lead you to select COTOCO condensers. Users are unanimous in proclaiming them "the best."

This condenser used in conjunction with our inductance units will enable you to build a set that you will be proud to own.

If your dealer cannot supply you with our products, advise us, and send us his name.

COTO-COIL CO.

8 Mnjbrt spropt. A hnnv. N. Y

Type"Q"Receiver
 AN IDEAL RECEIVING SET FOR LONG AND SHORT WAVE AND RADIO TELEPHONE RECEPTION

This set is the most flexible receiving set on the market. With the use of the various sizes of Honeycomb Coils everything in the range of radio telegraph and telephone reception from 200 to 25,000 meters is brought into your home. Consists of a three coil mounting, and three Variable Condensers of proper capacity. Tuning extremely sharp. Remler dials.

Abstract

Price without Detector $\$ 35.00$

Duck's New Radio Catalog No. 16 .

Sond 12 c today for copy of the greatest radio catalog ever put between the pages of two covers.

275 Pages--A Catalog DeLuxe

Never in the history of radio was such a catalog printed.
The radio data and diagrams embracing upwards of fifty pages, gives the experimenter more valuable and up-to-date information than will be found in many text books selling for $\$ 2.00$, and $\$ 1.00$ could be spent for a dozen different radio catalogs before you could gather together the comprehensive listing of worth while radio goods found in this great catalog.

A brief summary of the radio goods listed in this catalog:
The entire radio catalog of the Radio Corporation, with a wealth of scientific and technical data on C.W. transmitting sets, and all the diagrams for the assembling of these sets; the complete Remler catalog, which embraces 25 pages, the Westinghouse, Firth, Murdock, Federal, DeForest, Clapp-Eastham, Brandes, Connecticut Company, Thordarson, Turney, Magnavox Company catalogs, the best products of Adams-Morgan, Signal and countless other manufacturers, including our own complete line of radio apparatus, and many individual items and parts used in radio work today.

Send only 12 c for copy of this wonderful catalog. You will need no other when you have Duck's, and you cannot find in all others combined what you will find in Duck's Wonder Catalog.

The William B. Duck Company
 243-245 Superior Street

DEALERS AND RADIO CITIZENS

Order Your Needs From Our LARGE AND COMPLETE ASSORTED STOCK PARTS OF ALL KINDS COMPLETE SETS

LARGEST STOCK RADIOTRONS AND KENOTRONS IN U. S. A.
ALL TUBES SHIPPED PREPAID

Write for our new price list No. 100-T
LUDWIG HOMMEL \& CO.
530-534 Fernando St.,
PITTSBURGH, PA.

WM. J. MURDOCK CO.

CHELSEA, MASS.

MADE BY MURDOCK

WM. J. MURDOCK C0. 65 Carter St., Chelsea, Mass.
509 MISSION•ST., SAN FRANCISCO, CAL.

DID you receive your copy of our new catalog? We list and illustrate practically everything in Radio that is worthwhile, and sell everything from a Formica or Bakelite panel (cut to your exact measure) to the largest transmitting set. Our mail order department makes shipment the day we receive your order. We are distributors for Radio Corp., Grebe, Westinghouse, Jewell meters, Tuska, Amrad, Acme, Burgess, Ever-Ready, Chelsea, Murdock, Baldwin, Remler, Con. Call Book, Formica, Pacent, Federal, Firth, Crosley, Signal, General Radio, Wireless Press, Electrose, Omnigraph, Connecticut, A.P., General Apparatus, Paragon, Fada, Rhamstine, Magnavox, Hipco, Eby, Electric Specialty, and many others.

```
            LARGEST STOCK IN U.S.A.
DETROIT ELECTRIC CO.
434 SHELBY ST., Dept. M.O., DETROIT, MICH.
```


F-F SYNCHRONOUS GAP BALL BEARINGED MOTOR The MOTOR that has Made a Name for Itself. Distinquishes four Station, by Getting Those Peaks that fut Snap into Four Transmission.
 Far Greater Effciency with Less Strain on Condensex.

Here It is. The Complete MOTOR. Self-Excited. Ball-Bearinged for Continuous Srrvice. Hook-Up your Own Grp. Speed 1800 R.P.M. Ghaft 8 inch Diameier. Extends of Inches. Ready for Attaching any Make or Arrangementof Gap. 14 H.P. Frame, 110 Volt. 00 Cycle, $8: 4.00$ f.o.b. rleve'and Ohio. Shipping Weirht ef, Pounds. Order from Your Dealer or Send Check for Prompt Express Shipment. If via parcel Post have Remittance include Postage and lnsurance charyes. Or have us Ship C.O.D. Other voltages and frequencies at alight aditional cost. Also larger sixes. OrderNow or Write Immediately torSYachioinous motor sulletinisis The France Mfo Co. OFFICES \& WORKS Canatianhaprasentatlve:BattervService\& Salpsi,n Hamiltor. Ontario, Can.

FROM COAST TO COAST
 A CHAIN OF CW STATIONS WILL ULTIMATELY CARRY ON THE RELAY WORK

Pficiency on low wave lengths is what is dimanded in relay work. It haq been demonstrated that CW works better under adverse conditions thar suark transmission. DX C. W. stations are now piling up long distance records that were undreamed of in the days of spark. A new era is here in amateur work,-the C.W. erth.

Now is the time to insta.l that new \mathbb{C}. W. act. 'Phe good operating months are here, everybody is "on the jot." and it is up to you to reach out rith your signals and make new acquaintances. We will doubtless have unother OW. relay on Washington's birthday;-WILL YOU BE IN ON IT? Our O. W. stock is complete in every detail, and we can supply you with all parts. or conplet: transmitters from the ξ watt size to the 250 watt, for phone, ICW or CW. We are covering distancos up to 1400 mi nightly at 9 XAC with an output of only 110 watts. You can cover 200 to 800 with an output of 10 watts.

A complete line of Radio Comporation, DeForest, Murdock, Clapp-Eastham, Acme, Chelsea, and dohn Firth \& Co., products are on our shelves at all times. Our complete catalog will be sent for se in stamps, our CW catalog for 4 c , or both for ? c .

The newest addtion to the K line of wireless instruments is the K Vernier Attachment, a universal type, in that it is adaptable to any style condenser and dial.
In tuning OW sind radiophones, a difficulty often experienced with the standard condenser is the impossibility of securing that exact adjastment required to bring in the music clearly, and free of troublesome and disconcerting back-wave screeches. With the standard dial all these troubles are experienced time and time again. The K-35 Vernier Attachment eliminates this. After a coarse adjustment by means of the dial, the little vernier button is pressed forward, and a slight turn eithnr way, as needed, serves to bring in maximum signal of clearness not obtainsble by the first adjustment. Actual measurements show that it will tune 10 to 15 times more accurate

thinn otraight dial Rdjustment.
 K35 Vernier Attachment

UV204 250 watt power utbe 110.00 Perfection Knock-Down Condenser

. $\$ 1.80$
21 plate 2.25
41 Plate 3.25
Chelsea 1^{2} anel Mount-43 pl. 4.75
CY 1500 14.00
VV500-90 degree type 5.25
Murdock ${ }^{2} 368$ 4.75
Murdock $\% 308$ 4.50
4.00
USC1500 DeForest Bridging 5.75
CONDENSER-míIXEDMurdock Transmitting Sections 35.25

UC1014-3000 volts . 002 1.85
2.00
UC1806-6000 volts . 002 7.00
UC568-Receiving . 0005 1.35
UC570-Receiving . 0025 2.00
Remler Grid Condonsers 35
RK5500 Grid Mica Condensirs 30
TRANSFORMERS © C. \dot{W}.
25.00
25.00
Acme 500 watt 16.00
Acme 50 watt 12.00
Radio Corporation-750 watt
Radio Corporation-750 watt 38.50
25.00
Rad.o Corporation-3RS Watt TRANSFORMERS-SPARK
1600
1600
Acme 500 watt 2200
Acme 1000 wat 33.00
Thordarson Dld Type-i kiviA. 35.00
Thorciarson $1 / \mathrm{K} \mathbb{K}$ V.A 14.00
IV200 Det-ctor 5.00
UV201 Amplifier 6.50
IV202 5 watt power tube 8.00
30.00
iv204 zeo watt power iube R10.00
ER-Detector qube 5.00
APVT-Amplifier tube 6.50
R500-DeForest Bakelite 1.25
R300-DeForest $V T$ 1.50
$\mathrm{R}^{4} 0 \mathrm{O}$-DeForest Goosenecit 1.75
1.00
RC Porcelain for 50 watts 2.50
Murdock Mouided
1.00
1.00
Murdock Mouided
Murdock Mouided 75

RHEOSTATS

Do You Know How Much Current You Are Putting Into Your Aerial ?

Flange diameter $31 / 2$ inches Body diameter 2 名 inches Scale length 2.35 inches

Model 425 Thermo-Ammeters

will keep you informed of this and help you find out why your set does not give results. EVERY AMATEUR SENDING SET shouid be equipped with one of these Ammeters. They occupy very little space and harmonize with all other standard radio equipment. Their characteristics make them ideal for radio service. They are commercial instruments which sell at a cost very little above that of inferior imitations. The progressive amateur wants the best instruments available and will purchase Weston instruments. May we send you literature?

WESTON ELECTRICAL INSTRUMENT COMPANY

158 Weston Ave.,

BRANCHES IN ALL PRINCIPAL CITIES

WE OFFER A NEW SHORT-WAVE REGENERATIVE TUNER OF SUPERIOR EFFICIENCY, PERFECT CONDITION, USED IN EXPERIMENTAL WORK, FOR FIRST REMITTANCE OF $\$ 38.00$
RADIOTRONS \#200......... $\$ 5.00$ RADIOTRONS $4201 \ldots \$ 3.50$
RADIOTRONS $\# 202 \ldots \$ 8.00$ FIRCO TRANSFORMERS . . . $\$ 5.00$
CROSLEY SOCKETS........ $\$ 0.60$ ANTI-CAPACITY SWITCHES $\$ 2.65$
OUR COMPLETE RADIO CATALOG COVERS THE ENTIRE FIELD OF RADIOPHONES, TRANSMITTERS, RECEIVERS, EQUIPMENT OF ALL KINDS. ANTENNA MATERIALS, PARTS, ETC. QUALITY AND SERVICE OF THE BEST.
CRAIG \& LOUGHBOROUGH
NORWOOD (CINCINNATI) OHIO, CATALOG MAILED FOR 25 CENTS, WHICH WILL BE CREDITED ON FIRST ORDER FOR $\$ 1.00$ OR MORE. NO MORE FREE CATALOGS; THE DEMAND FOR THEM IS TOJ GREAT.

AMAItURS MAKE THE BEST COMMERCIAL OPRRATORS

That is the expressed opinion of the two men who do the actual hiring and firing of over two-thirds of the operstors employed in the Port of New York. The radio amateur who is also a radio school graduate is rated by them es 100% better than the amateur who has had no sihool instruction.

Commerical companies want amateurs with good training. Why not make your hohby your profession? Graduates of our course carn good money AND EXPENSES. Courses just starting. Moderate fles. WRITE FOR BOOKLET 150

QUALITY CE SERVICE

C. E. Rotary Variable Condenser

43-Plate size complete $\$ 4.75$
Without case, for panel anounting.. 4.25 17-Plate size complete .,.......,...... 425 Without case. for panel mounting 325 Capacity of 43-Plate size approximates .0008 mf Capacity oi 17 -Plate size approximates . 0003 mf

REDUCED PRICES

We are glad to announce to "QST" readers that lower manufacturing costs have enabled us to make a substantial reduction in the price of our C.E. Types 43 and 17 Rotary Variable Condensers. The new prices are quoted under the illustration at the left. Quality remains exactly the same in every detail of design, materials, workmanship, beauty of finish and dependable, efficient performance. Another example of good value in high grade wireless equipment is this C.E. Type Q.O. Amplifier Coil at $\$ 6.50$ mounted with panel, or $\$ 4.00$ without
panel. Amplifies weak signals to many times their original strength. Highly efficient with standard vacuum, tube detectors. If desired two or more coils may be used with an equal number of tubes to make a multi-stage amplifier.

Remember that C.E. equipment is real, practical wireless equipment, built for the serious work of radio men.

Send 6 cents in stamps for the C.E. Catalog showing our full line of radio equipment-Hytone Transmitting Sets, Oscillation Transformer, Regenerative Receiving Sets, Radio Telephone Receiving Sets, Two Stage Amplifier, Wavemeters, 'Tesla Coils, Spark Dischargers, Keys, Instruments, etc., etc.

C.E. Type U. U. Amplifying Coil

Mounted with Panel $\$ 6.50$ Without Panel

CLAPP-EASTHAM COMPANY radio engineers and Manufacturers

114 MAIN STREET,

California Representative: Leo J. Meyberg Co., San Francisco and Los Angeles.
1:7-11

Hygrade Specials Save You Money

Paragon Control Pranel with Radiotronrube10.50
Audiotron Tube-Two Filaments 8.50No. 55 Murdock 2000 Ohm Wireless Headसo. 66 Murdock 2000 óhm Wireless Head4.00No. 65 Murdock 8000 Ohm Wireless HeadSets Murdock 3000 Ohm Wireless HeadSo 86
Sets4.508.00
an M, F Brid Condensers 5.80
$\stackrel{25}{25}$$002 \mathrm{M} . \mathrm{F}$. Phone Condenser
Paragon V.T. Sockets. New 'iype 90
R:nding Posts Rubber Cap. Der Doz. 90
PADA Pheostat 90
Chelsea Di2.25
Cyofone :1\% Voit Small B Battery 98
Cycione $22 \mathrm{~S}_{\mathrm{g}}$ Volt Large B Battery 1.60
45. Volt Variable B Eattery 2.75
MARKO STORAGE BATTERIES
10.50 6 Vilt 40 Amp. 10.50
${ }^{6}$ Volt 60 Amp.
18.00
18.00
6 Volt 40 Amp. 10.00
${ }_{\xi}$ Volt 60 Amp. U. S. Battery 13.75
17.50We do not charge for crating
We Guarantee Every Order ShippedWithin \sum^{2} hours.The Above Prices are R.O.B. New York.Hygrade Electrical Supply Co.41 Weat 125th Street.Now York

"R" BATTERY TROUBLES ENDED
Our STORAGE "B" BATTERIES give yearn of REAL servce and ave you EGAL money in the end. One charge will lant from three to six months while in the detector plate circuit and they ean bo recharred in about two hours. The platies cannot aulphate or buckle and are not harmed from shortcircuiting, overcharging or standing idle.

Two styles are supplied, one sm illustrated, with control paneis allowing adjustments of 1.8 B volts froma fifteen voits up, and the other plain with clips for adjustment. Rectifiers for charging, chernicals and directions are included with each utyle. sinll that ta needed to put the battery into service is sbont ome quart of distilled water.

The following prices are for batteries with control panels.

$$
\begin{array}{llll}
24 & \text { cell } & 32 & \text { volts. } \$ 10.00 \\
36 & \text { cell } & 48 & \text { volta. } \\
50 & \text { cell } & 68 & . \\
\text { volts. } & 18 & 18.00
\end{array}
$$

The following prices are for plain batteries wits elips for adjustment. 32 volts. $\$ 8$; 48 volite, $\$ 10$: 68 voit. $\$ 12$.
Send in your order today with the privilege of receiving money back if not satisfied after sixty days trial. Further information upon request.

KIMLEY ELECTRIC COMPANY
290 Winslow Ave.
Buffale, N. Y.

The New DeForest Interpanel Set is Made of CONDENSITE
The quality of radio instruments depends essentially upon the insulation of which they are made. A concern like the DeForest Tel. \& Tel. Co., who have an enviable reputation in the radio field, would not jeopardize their good will by using an inferior material. They chose Condensite, the substance that possesses all the properties essential to good electrical insulation.

Condensite-Celoron is finding innumerable applications in the radio field where high quality water proof fibre is required. It is manufactured by the Diamond State Fibre Company, Bridgeport, Montgomery County, Pennsylvania.
If you are interested in Condensite or insulation in general, we will gladly send our catalog upon request.

Condensite Company of America Bloomfield, New Jersey

Waterproof Fibre Insulation

Hard fibre is the toughest dielectric known. Add to Diamond Hard Fibre the commanding quality of waterresistance and the combination produces Condensite Geloron-the last word in electrical insulation

This remarkable material marks a new era in the wireless world. In addition to being waterprooi, high in dielectric streneth and light in weight, Condensite Celoron is insoluble, infasible and immune to the effects of climatic or atmonpheric change. Read this Bureau of Standards tent: Wave Length Approximate Frequencs Phase Difference Dielectrie

Meters	Cycles per yecoad	Degrees	Constant- \mathbb{K}
373	404.000	2.0	4.7
1065	251.500	1.8	4.8

373	404.000	2.0	4.7
1.295	281.600	1.8	4.8
5.067	97.800	\vdots	1.8

We supply Condensite cioron in standard sine sheets. rods and tubes ready for all machining purpoees-for experts and amateurs, Soid by resdio fquipment desters everymbere. If your ientar cannot sunply xnu. write ns.

DIAMOND STATE FIBRE COMPANY

Bridgeport (near Philadolphia) Pa.
Hranch Factory and Warehouse. Chicago Offices in principal cities.
In Canada: Diamond State Fibre Co. of
Canada. Ltd. Toronto

AMATEURS

If you want REAL RESULTS use Clapp-Eastham Variocouplers and Variometers.
Maybe not so cheap in price, but the best in the long run.
Type Z.R.C. complete with knob and dial, with six taps from primary coil without switch
.
Completo with switch, switch puints, and knob to match knob on dial $, \ldots,$.
Type Z.R.V. Variometer with knob and dial ... 8.50

ful set for the price. R ceives telephone as well as spark 38,001
We carry a full supply of Clapp-Eastham, Radio Corporation, Remler, Murdock and many other makes.
Write us for our special offer

WHITALL ELECTRIC COMPANY

WESTERLY, R.I.

Variometer \$8.50

Variometer $\$ 8.50$

Audion Panel $\$ 11.00$

Unmounted
Variometers and
Vario-Couplers
$\$ 6.00$ Each
Amplifior Pand $\$ 20.00$

These four panels form a short wave receiver of unusually high efficiency and appearance fully described in bulletin 411 . Write for $i t$. If your dealer eannot supply you send your arder with his name.

Dealerk send for trade discount.
SIMPLEX RADIO COMPANY, 1013-15 Ridge Ave., Philadelphia, Pa.

SPEAKING OF PRICES; HOW ARE THESE?

TYPE X CWM

We have been very fortunate in obtaining a large supply of meters for $\mathrm{C}-\mathrm{W}$ and radio telephone sets, at a greatly reduced figure. As usual, we give the purchaser a real price.

Are manufactured by the Jewell Electrical Inst. Company and are exactly the same as furnished the government during the recent encounter. Finest sapphire bearings, ground to shape with diamond dust, are a feature. $0-100,0-300,0-500$ Milliamperes DC ... $\$ 5.00$ 0-10, 0-15 Volts AC 7.50 $0-1,0-3,0-5,0-10$ Radio Frequency 10.75
Although very good results are being obtained from step up transformers and some form of rectifier as a method of obtaining high voltage direct current, it is generally conceded that a motor-generator is more efficient, and less troublesome, in the long run.

The IDEAL MOTOR-GENERATORS are ring oiled and unconditionally guaranteed for a period of one year. Are rated very conservatively.

TYPE HSM
500 Volt 100 Watt. $\$ 60.00$
500 Volt 200 Watt. 75.00

POWER TUBES

Radiotron	5	Watt. $\$ 7.20$
Radiotron	50	Watt. 27.00
Radiotron 250	Watt 99.0	

TUBE ACCESSORIES

Socket for 50 Watt. 2.75
Socket for 5 Watt.............. 1.35
Variable Grid Leak 5000 Ohm. . 2.75
. 002 Mfd Grid Condenser. 1.30
C-W TRANSFORMERS
Acme 50 Watt. 13.50
Acme 200 Watt. 18.00
Acme 500 Watt. 22.50
Acme 150 Watt Filament Heater. . 14.40

MODULATING EQUIPMENT

UP-414 Transformer 6.75
UT-1357 Magnetic Modulator. . . . 11.25
Federal Hand Microphone...... 6.25
J-K Hand Microphone. 5.50
Radio Frequency Choke. 1.50

FILTER EQUIPMENT
Acme 500 MA Choke........... $\$ 7.20$
Acme 150 MA Choke.......... 5.40
IDEAL I Mfd Condenser....... . 2.00
IDEAL 2 Mfd Condenser........ 1.50
WIMCO INDUCTANCES
25 Turn with 5 clips.......... 9.00
50 Turn with 5 clips.......... 10.50
C-W RHEOSTATS
7 Ampere Continuous........... 1.80
3 Ampere Continuous............ 1.80
Z-NITH EQUIPMENT
C.W Regenerator55.00

AGN-2 Det. Two Stage. 89.25
MOORHEAD TUBES
Electron Relay 4.50
Amplifier-Oscillator 6.00
FORMICA PANELS
$12 \times 18 \times \frac{9}{13} \ldots4 .4 .40$
$6 \times 18 \times \frac{3}{16} \quad$.
CATALOG FREF.
LISTEN FOR 9XAH
IDEAL APPARATUS CO.,
CATALOG FREE
EVANSVILLE, INDIANA

SPECIAL PRICES for the XMAS TRADE

Radio apparatus is a highly appreciated Xmas gift. Place your orders with us and benefit by the saving in cost. Get the same high grade equipment and more for the same money.

Every piece of apparatus we sell is "FIRST TESTED-THEN SOLD." This test by expert radio men assures you of equipment in perfect condition. Make up your list NOW.

Buy these Lines of Apparatus from Us

Remior Apparatus
 Radio Corporation Murdock Parts
 G e' CRR and CR9
 Acme Apparatus
 Magnavox
 Baldwin Phones

Brandes Phones
Chelsea Cond. and Dials
Tuska Apparatus
L. Fi. S. products
DeForest Sets
Paragon Apparatus

Clapp-Eastham Supplles
Moorhoad Tubea
Jewell Meters
Radiece Celle
Esco Motor Gemerators

RADIO CITIZENS: We allow s ber cent. di count on orders of $\$ 10.00$ or more and pay postage in 1 st and and zones. Write for prices.
PEORIA RADIO SALES CO. Dept. A.,

Peoria, Ill.
DEALERS: Write for our trade sehedules. We represent nome large manufacturers exelusively. Get our new lowest prices.
KLAUS RADIO COMPANY
Dept. 100,
Eurcian, 111.

Her is a catalogue you cannot afford to miss hecause it descrihes in detail the unusual mechanical and electrical features and simplicity of the complete ABC line.
Sixteen pages. cleariy illustrated, in two colors. Fivery price quoted in this catalog represents a new low level for mpparatus of recognized quality.
Send 10 c for latest ABC catalog "Professional Radio Equipment at Amateur Prices." Request Catalog i.2.

The McTighe B BATTERY

Connect one or more units of the McTighe Storage B Battery in your circuit and know the gatisfaction of using this wonderfui battery. Connect. the MeTighe Rectifier permanently to the lighting circuit and close the charging 3witch when neceasary.

One Rectifier will charge as many an four battery units in series on 110 volt a.c. lighting circuit.

The McTighe Rectifier is also useful where n small chemical rectifier is denired for transmission purposes.

SATISFACTION GUARANTEED
Battery Complete 22 volt unit \$3.8B Rectifier . 1.2 .

Postage and packing 20c extra

McTIGHE BATTERY CO. WILKINSBURG, PA.

Experimenters Information Service,
45 Pinehurst Avenue, New York City.
Gentiemen:-
Have recently finished my 160 to 1000 meter Improved Armstrong Regenerative Receiver built in accordance with your Blue Prints Nos. 30021, 22, 23, 24.

I believe you will be interested in the success which I have experienced in the initial tryout. On Oct. 22nd between 10:25 P.M. and 11:00 P.M. the following 600 meter stations were heard. In all instances the signal strength was remarkable. Most of them were quite easily read with the phones on the table.
GDLR WCC KIJJ WCY WLC WNY MTK MSA WSA NAH PEC GBZW FTS KEKD KXC IEE VBG GCTN WCI NRH KEXM VBH KDHS KDFO KOJR NBD NAJ NGE

On the following evening Oct. 23rd between 11 P.M. and midnight the following amateurs were heard between 200 and 350 meters. Second district amateurs are not listed as there were over 30 .
3ZA 3KM 3ACE 3ZY 3CN 3HA 3OU 3BEA 3UQ 3AER 3BP(C) 4GL XF1 NMW 5DL 5XO 8SP 8AGK 8AYN 8AHH 8AFD 8XE $8 Z Z$ 8BAB 8AU 9ZJ 9LQ 9AWU

The only amateurs that I have listed are those that were sufficiently loud to enable continuous reception. There were many others in the fourth and fifth district that could not be distinguished because of local and second district QRM.

The results on 600 meters are infinitely better than any observed while operating for the commercial companies and U.S.A. Transport Service where I had the opportunity for comparison of the best types of American, English and German receivers.

The results on 200 meters speak for themseives. All districts in the U.S. with the exception of 6 th and 7 th, were heard in one hour. I have never been able to even approximate this with the two variometer form of receiver.

The ability of your receiver to isolate and make readable distant stations through local QRM is proof of its great selectivity. This work was all done on an antenna 40^{\prime} high 40^{\prime} long, using standard detector and 2 stage amplifier. The receiver parts cost me $\$ 32.00$ and I feel that I could not have done better at any price.

Yours truly,
(Signed) Edwin E. Turner, Jr.

BULLETIN F GIVING FULL PARTICULARS OF OUR BLUE PRINTS SENT GRATIS

blueprints on sale at all leading dealers including NEW YORK

Continental Radio Electric Co.
Manhattan Electrical Supply Co.
Dreyfuss Smees Corp.
Am. Electro Tech. Applianco. BOSTON
F. D. Pitts Co.

Atlantic Radio Co.
Geo. S. Saunders
NEWARK
A. H. Corwin \& Co.

DETROIT
Detroit Electric Ca.
PHILADELPHIA
Arrow Electric Co.
Phila. School of Wireless
Quaker Light Supply Co. CHICAGO

Manhattan Electrical Supply Co.
Chicago Radio Apparatus Co.
Telephone Maintenance Co.
Commonwealth Edison Co.

CINCINNATI

Precision Equipment Co.
INDIANAPOLIS
Hoosier Radio Laboratory
CANADA
Scientific Experimenter, Ltd.
KANSAS CITY
Central Radio Co.
Western Radio Co.
WINNIPEG
Salton Radio Eng. Co.
OMAHA
Wolfe Elec. Co.
ROCK ISLAND
Kariowa Radio Co.
ST. PAUL
Pioneer Eloc. Co.
SALT LAKE CITY
L. Cornwell
c;o Postal Tel. Co.

Radio Supplies And Apparatus SPECIALS!

V.T. Detector $\$ 5.50$
V.T. Detector with Murdock 2000 ohm navy type telephones 10.00
One Step Amplifier 11.75
One Step Amplifier with Murdock 2000 ohm navy type telpehones 16.00
Signal Superior Detectox and One Step Amplifier 31.00
With Radiotron detector tube and amplifier tube 41.00
New Paraoon V.T. Socket 1.00
Fada Rheostat with new tyne knob. 1.00
Fada Power Rheostat with new type knob 1.35
Radio Corp. C.W. Instruction Book 25All makes of Radio Apparatus carried in stock; all parts from contact points tocabinets and Bakelite; everything for the Radio amateur. Send 10c for our newcatalogue which will be credited against first two dollar purchase.See last month's copy of QST for special prices on Magnet Wire. Aerial Wire \#14,pure copper, NOW 65c per 100 feet.
DREYFUSS SALES CORP.
Wireless Amateurs Headquarters
179 Greenwich St., Near Cortlandt St.,

XMAS GREETINGS TO LONG DISTANCE AMATEURS

ACCOMPLISHED WITH

Z-NITH RADIO APPARATUS

CHARACTERISTICS OF A SHORT WAVE RECEIVER
In these days of real 200 meter transmission, a set must actually tune to below 200 meters in order to give you the results you have a right to expect.

Every Z-Nith Reqenerator is individually tested with 8180 meter ation driver and each instrument must respond to that wave before it passes inspection.

You will not be taking a Wrong step. by purchasing a Z-Nith Regenerator and as for testimonials there qre hundrens of satisfied users. The Z-Nith Regenerator has made records in actual relay tests, and there is none better regardless of price.

SUPREMUS RADIO LABORATORY, WEST NORWOOD, N. J. AMATEURS WRITE FOR ATTRACTIVE CHRISTMAS OFFER

We wish all a Merry Christmas and Happy New Year

 and extend our sincere thanks to those who favored us with their patronage during the year.We have now doubled our stock. No more waiting, goods shipped sane day order is received. We will answer all enquiries on radio apparatus or hook. ups etc., free of charge to our customers.

SPAFFORDS
RADIO SERVICE
Everything in Radio
Hartford, Conn.

"SIGNAL" Radio Apparatus Pleases Professional and Amateur

Because it is built to the exacting requirements of the professional radio-electrician, SIGNAL wireless products are bound to fulfill every requirement of the exacting amateur. And the name SIGNAL is the only thing to be certain of in buying!

Aerial Change-over Switch

Reduced to fewest words, the superiority of this SIGNAL Switch is due to the fact that it has the good features found in highest priced amateur changeover switches, plus all the qualifications of the modern antenna switch. Lack of room prevents recounting these features here; one point alone should suffice, however, as an example: That is the arrangement whereby the aerial is drained of any accumulated charge, before the switch reaches receiving position. Search and you'll find this feature only in the most expensively built commercial
aerial switches. And any operator who is "wise" to the nasty kick in telephone receivers, when shifting quickly from send to receive will appreciate this SIGNAL advantage.

The Signal "V.T." Socket

The only vacuum tube socket on the market today that will take a $n y$ of the siandard fourprong tubes, either De-
 tector, Amplifier, or Oscillator, without changing or adjusting. And this is not the only distinguishing mark of this SIGNAL socket-the others are all told in the latest SIGNAL Bulletin of High Class Wireless Apparatus, which is yours for the asking.

Write for the SIGNAL literature now-it is free. Address

SIGNAE ELECTRIC MANUFACTURING COMPANY Menominee, Michigan

READY FOR CHRISTMAS

We are pleased to announce that our new short-nave culs ste ready for distribution. They are not "freak" coils but designed upon the solid fundamentals of radio practice. They are, however, adapted for use with our standard unit mounting fixtures. With a given condenser these coils all have a greater wavelength range, than the honeycomb coils.

But most important,-note the H.F. resistance values and decrement of the three secondary coils compared with three old type honeycombs.

	External Capacity	Wave nxth	H.F. Resist.	Power Factor	Decrament
Old Type 25	. 0001 mf	147	64	. 0828	2257
	. 0004 mf	244	11	. 0340	. 107
New Type is	. 0.001 lmf	147	12	. 0154	. 048
	. 0004 mf	273	3	. 0083	.026
Old Type 50	. 0001 mf	283	134	. 0841	. 280
	. 0004 mf	475	23	. 0364	.114
dew Type 28	. 0001 mf	305	26	. 0160	. 0 ? 0
	. 0004 mf	588	8	. 0102	. 033
Old Type 100	. 0001 mf	540	314	. 1091	. 343
	. 0004 mm	900	40	0334	. 105
Now Type 3s	. 6001 mf	633	77	. 0212	. 067
	.0004 mf	1160	11	. 0072	.022

Facts are facts. We plana them before you to use when buying inductances. And will furnish more for the asking.

THE SUPRISE OF YOUR LIFE AWAITS YOU-

WHEN you "listen in" on a Radio Frequency Amplifier USING OUR NEW DX RADIO FREQUENCY AMPLIFYING TRANSFORMER WHY?--because the DX Radio Frequency Transformer USES AN IRON CORE and is so designed that losses at low wavelengths, thru capacity effects, are NEGLIGIBLE.
The CLOSE ELECTRO MAGNETIC COUPLING between primary and secondary, made possible by the use of an iron core-together with the UNIQUE DESIGN (patent pending) which eliminates capacity effects-makes this Radio Frequency Amplifying Transformer HIGHLY EFFICIENT on Long and Short wavelengths.
Absolutely NO FORM of Radio Frequency Amplification now known, approaches this in-Amplification combined with Dependable Operation.
The use of "SOFT" TUBE DETECTOR gives greatest SENSITIVITY and is entirely satisfactory in operation with One, Two, or Three stages of Radio Frequency Amplification. The DX R F Transformer is suitable for use with RAC-3, Radiotron and A-P vacuum tubes.

Standard Mounting for DX Radio Frequency Amplifying Transformer. PRICE

DX Radio Frequency Amplifying Transformer. Wavelength

range	PRICE
150-650	\$8.00
650-2C.00	8.00
2000-5000	9.00
5000-12000	9.0

Combination Mounting for RAC-3 Audion and DX $R \quad F$ Amplifying Transformer.
PRICE
$\$ 1.50$
(Sheet of circuit diagrams 25c.)
SEND STAMP FOR BULLETIN NO. 10A

CINO WISHES

to extend to our many friends and admirers, our thanks for your support and good will during the past jear, and to extend to you our rincere hopes that jou may enjoy unhounded good health. happiness and prosperity, thru the eoming yoar. May yours be the merriest of Christmaser rad the happiest of New years.

Cino apparatus is poing higger than ever and here is cur fule Tide Offering:
We are GIVING AWAY ABSOLUTELY FREE to esch purchaser of a CINO Tuner and Detector Controi, a detector tube and "B" battery, lested with our personal OK attached to each individual shipment, the order for which is in our hands prior to midnight. Jan. 15 th 192 c .
CINO Tuner \$50.00 CINO Varioneter parts ,................. $\$ 2.50$

CINO Two Step Amp. 40.00 CINO Variometers Complete 6.00
CINO Variocoupler wound and tapt but not assembled . $\$ 4.50$
CINO Variocoupler complete
CROSLEY PORCELAIN SOCKETSS

AMATEURS, EXPERMENTERS, DEALERS

We beg to announce our appointment as distributors for BALDWIN, BRANDES, MURDOCK, CLAPP-EASTHAM, CHELSEA, FIRTH, A B C, DEFOREST, MARSHALL-GERKEN and others SPECIAL THIS MONTH
 Mail Orders Promptly Filled.

Pittsburgh Radio and Appliance Co., Inc. 112 DIAMOND STREET, PITTSBURGH, PA.
"Pittsburgh's Radio Shop"
Exclusive 8th District Distributors for "IDEAL" C W APPARATUS

3X 3X
We present the 3 X VARIOCOUPLER as announced in the November issue of QST. It is worthy of your consideration from a stand-point of meatness, efficiency and cost. Featuring no end play, positive connections and a stop it stands supreme, yet it costs but $\$ 4,00$ postage prepaid.

We are also dealers in all standard, apparatus.
May we send you our folder, it is yours for the asking.

Illinois Radio Appliance Company

1426-E-70th Street,	
3X	Chicago, Illinois
$3 X$	

Get a Real Radio Education And Step Into a Big-Pay Position

Abstract

You amateurs who have started to study radio. Why not finish it? And you who know nothing of radio yet.-- Have you stopped to think what a wonderfut career you can have in radio communication? it is the fastest growing field in the worid. Twenty jears ago, radio was a seientific glaything. What do you ihink is going to happen within the next ten years? Why not train yourself in a professional way and cash in on some of the opportunities that aie presenting themselves in the radio field? Do not let the other fellows beat you to the high-paying jubs that are within your grasp. Many thousand trained radio men will be needed next year. Prepare yourself now and step into a real radio jub next spring on land or sea

Put the Final Polish to Your Training-Do Not Stop Half Way

Many wireleas amateurs do not rexlize the big aportunities that awalt them in thes commercial radio field. They love the work and yet do not seem to appreciate how badly radio communication needs them. Some of them do, however. We can name twenty-five big radio men, whom you know who have climbed to their present position by putting the final polish on their radio education. You can do the same thing. Americs's larrest. and oidest. rarion rehool is lmiding out its hand to you. It will help you up the last step. It will broaden you out into a professional radio man and put zou in a gosition of a trained radio expert.

New Exsy Fou-Strp Method of
Practical Teaching
This is the day of learning by doing. That is
why we bave backed up our wonderfil fourteen copyrighted lessons with four wireless instruments that will be sent to you without charge. You learn by actual practice in your own home, or you can come to Washington if you wish and join our resident sohoool. The Natrometer is an ulmost human machine that teaches you the code. You iisten, the Natrometer does the rest In Step No 1 roou learn to send correctly. In Step No. 2 you atart to learn to receive correctly. In Step No. 8 the Natrometer will send to you automatically at any snoed. In sitepo No. \& you learn to receive Crom other operators with a real receiving outfit and with this practical training you receive our regular lessons und your work with them will be guided by our trained experts.

Learn By Doing in Your Own Home

Instrument No.
The key and buzzer used in connection with our code lessons for training in transmission.

Instrument No. 2
For recoiving training, the hand transmitter used in connection with the buzzer.

instrument No. 3
The wonderful Natrometer sends to you automatically at any speed freeing both hands to copy messages.

Instrument No. 4
The beautiful portable receiver with 'phones with which you learn to re ceive other wireless opcrators.

Big Salary Just Ahead of You

National Radio Institute

Dept. 2812 Washington, D.C.
thousand men since 1914. Our school is recognized by the United States Department of Commerce and it is located in Washington, the center of all radio development. Our diploma is recognized officially and you will cereive extra counts in your license examination. Yux can have a post graduate course in our big resident sehool if you wish, sobsolutely tree. There is nothing to prevent you. few hours each week, and \% few cents a day will complete your training within four months. Start now. Send for our beauiful booklet "Wireless, the Opportunity of Today." It is gours for the asking with no obligation attached.

National Radio Institute,
Dept. 2812, Washington, D. C
Sond me your free booklet, "Wireless, the Opportunity of Today." Tell me about the opportunities open in wireless, about your Institute, and about your Special Limited Offer.

Name
Address
City. Stato. I am interested in a sea position I am interested in a land position

SA-RE-CO- PRODUCTS

NEW UNIT INSTRUMENTS
General Arrangements; All panels uniform height and width; Insulation XX Grade Bakelite; Binding Posts in rear, so arranged that units may be connected with our special bus bars; Cabinets mahogany, quartered oak or walnut, hand rubbed with easy access to inside; Wiring No. 15 copper covered with varnished sleeving. Amplifier dimensions same as detector.

MASTER SWITCH

A switch giving great satisfaction. Use one snd see the ease of changing from high to low wave or vice versa. Bakelite insulation and workmanship the best.

All Instruments Purchased Before Jan. 1, '22, 10% Discount from List. Tubes 5%. Buy Now.

We wish you a Merry Xmas and Happy New Year.
Saginaw Radio \& Electric Co. 118 SO. WATER ST.,

SAGINAW, MICH.

DEALERS Write

We have an attractive proposition on:

Hipwell Refillable B Batteries RUBBERNECK BATTERY

HYDROMETERS
and
High Grade Radio Apparatus
"You pay less and you can't buy better."

Eastern Ohio Radio Mfg. Co.

East Palestine, Ohio.

The Benwood Wireless Telephone
 TWO AMPERES WITH TWO 5 WATT TUBES ON $2 C 0$ METERS.

A COMPLETE RADIO TELEPHONE AT A REASONABLE PRICE.

SOLD KNOCKED DOWN WITH FULL SET INSTRUCTIONS FOR ASSEMBLING AND WIRING.
We guarantee this set to radiate at least $11 / 2$ amperes on average amateur antennae when assembled in accordance with our instructions. We also Guarantee this set to radiate 2 to 3 amperes when used with an antenna whose fundamental wave length is 225 to 300 meters. The complete set of parts needed is listed herewith with prices applying to same. Wiring diagrams and full set of instructions accompany each outfit:

WIRELESS PHONE PARTS

OUTFIT COMPLETE AS LISTED ABOVE WITH ALL HOLES DRILLED IN PANEL, FULL SET OF BLUE PRINTS FOR ASSEMBLING AND WIRING AND OPERATING.
$\$ 70.00$ with panel tansmitter. $\$ 74.00$ with hand transmitter.
Outfit Complete with BENWOOD MOTOR GENERATOR AND TUBES, Boxed for Shipment. $\$ 155.00$, F. O. B. St. Louis, Mo.
SPECIFICATIONS. MOTOR GENERATOR.

Motor-Rated at 1-3 hp., $1750 \mathrm{rpm}, 110$ volts 60 cycle induction type, exceptionally easy running. We can furnish similar motors for any current available either AC or DC.

Generator-The finest ever constructed ior CW work. Rated at 200 watt capacity and will stand a 300 watt load for 15 minute intervals.

Has 82 segments in commutator. (an exclusive feature.)

Generator under actual test gives following results.

We can safely say that the complete unit is in a class by itself, it is of the highest grade workmanship and material throughout.

PRICES. F. O. B. St. Louis, Mo.
Motor Generator Generator only, \$48.00
Complete as shown, $\$ 85.00$
Motor, $\$ 35.00$

We desire to impress upon the prospective purchaser that this is a very remarkable and attractive price for this high grade equipment as no expense has been spared in design and materials used in its construction and the low price is only due to quantity production.

> THE BENWOOD CO., Inc.

C W Transmitter and Receiver Parts
 The experimenter who has had previous experience with

 the assembly of receiving sud transmitting sets has learned the necessity of having every unit perfect. Entirely aside from the gain in efficiency, he has found the advantage of using apparatus in which the greatest care has been given to construction details.General Radio apparatus is designed with this end in view. A noteworthy example is the Type 156 Vacuum Tube Socket.
PThis socket is adapted to any of the standard American four-prong transmitting or receiving tubes. It is adanted to the Western Electric VT-2 tube, as well as the Radiotron UV-200, 201 or 202 tubes. The contact springs are sufficiently rugged to carry the filament current of the five-watt transmitting tubes without arcing.

PRICE $\$ 1.50$
This is but one example. Others are Amplifying Transformers, Modulation Transformers, Tuning Inductances, Hot Wire Meters, etc. SEND FOR FREE BULLETIN 909-Q, describing these and other instruments.

MASSACHUSETTS AVENUE AND WINDSOR STREET
CAMBRIDGE, 3:
Standardize on General Radio Equipment Throughout.

BI-LATTICE COILS (Duo-Lateral)

For Long Distance Reception This is the Best Type of Inductance.

No. of Turns 25	$\begin{aligned} & \text { Unmounted } \\ & \$ 0.45 \end{aligned}$	$\begin{aligned} & \text { Mounted } \\ & \$ 1.30 \end{aligned}$		No. of Turns 300	Unmounted $\$ 0.80$	$\begin{aligned} & \text { Mountred } \\ & \$ 1.65 \end{aligned}$
35	. 45	1.30	Transportation Prepaid	400	. $\mathbf{. 3 0}$	1.75
50	.50	1.35	In U. S. A.	500	1.00	1.85
75	.55	1.40	Our Products Fully	6300	1.10	1.95
100	. 60	1.48	Our products Fully	750	1.30	2.15
150	. 65	1.50	Cuaranteed	1000	1.55	2.40
200	. 70	1.55		1250	1.90	2.75
250	. 75	1.60		1500	2.38	3.20
Coil Plugs Complete with Fibre Strip $\$ 0.75$ each of 3 Mounting Plugs to Make Tripie Mounting $\$ 3.00$ per eet						
Siend 4 e for Bulletin "A" containing valuable data regarding						
BI-LATTICE COILS for LONG WAVE and SINGLE LAYER COILS for SHORT WAVE RECEPTION.						
- J	厂	- I	OX 157-A,	ading,	as88c	setts

For prompt shipments send UR orders to

"DELFELC0"

DELANCEY FELCH \& CO.

12 Meeting St., Pawtucket, R. I.
Call Radio 10J

NERECO SERVICE

At Your Service THIS MEANS

that we design apparatus to meet your particular requirements and give you that individual attention which lends distinction. We also furnish all standard apparatus of quality.

Your inquiries will receive our prompt attention.
New England Radio Engineering Co.
380 La Grange St.,
Boston 32, Mass.

A DEPENDABLE RADIO TELEPHONE－IT WORKS！

SOMERVILLE C．W．CON． DENSER，${ }^{55 \mathrm{c}}$ OR R．C．VC 1014 CONOENSER $\$ 2$.

RADIOTRONS UV202 \＄0．OA OR UV208 \＄30．00．
0.15 AC．VOLTMETEE TYPE JX \＄8．00．

SOMERVILLE C．W．CON－ DENSER，JSc．UR R．C．UO 1014 CONDENSER \＄2．

KENOTRON RECTIFIERS UV216 $\$ 7.50$. UV217 \＄28．50．
90 OR 260 TURNS WIRE ON TUBE $2 \% \%^{\circ}$ DI－ AMETER．

FILTER CONDENS男思 IDEAL 1000 V ．$\$ 2.00$ ．
\＆2C．A． 3 OWER TRANSFORMER UP1868 $\$ 2 马$ For ${ }^{2}$ FIIJTER CONDENSER，IDEAL 1 MFD． 82 ；OR R．C．A． watt TUBES or UP1016 $\$ 38.50$ ．For 50 Fatt TUBES．COND． 750 VOLTS．$\$ 1.85$ ．

SOMERVILLE DIAL INDICATORS LEND DISTINCTION！NOW $\$ 1.78-$ WITH $31 / 4{ }^{11}$ DIAI，$\$ 1.00$

RADIO CORP．＊WEST－
INGHOUSE S．ALES AGENTS

SOMERVILLE RADIO
LABORATORY
176－178 WASHINGTON ST．，BOSTON，MASS．

GREBE A AMRAD STOCK DEALERS！

The＂QSA＂Line of Radio Equipment

SERVICE ？－Puhaw I We could fill a page talk－ ing about it．We have．of course，the atmost confidence in our ability to live up to any promises we might make．Rut．since you are the judge，all we ask ia an opportunity to demon－ utrate our ability to give you the kind of service you want．We list below．for your convenience， a representative group of radio supplies．Most of the items are just what you need to put your set in shape for real DX work．Well then，send your order in at once and give un the chance to prove ourselves．We will agpreciate it．
Radiotron U．V． 200 detector ．．．．．$\$ 5.00$
Radiotron U．V． 201 Amplifier ．．．．．． 6.50
Radiotron U．V． 2025 watt transmitter 8.00
U．V． 712 Intertube Transformer ．．． 7.00
＊Fada detector comp．with erystal 2.25
Acme 1K．W．Spark Transformer ，． 28.00
Acme Amplifying Transformer ．．．． 5.00
Brandes Navy Type Phones ．．．．．．．． 14.00
＊FADA Panel Mounting Rheostat ．． 1.00
PR－536＂A＂Battery Potentiometer 2.00
AEV．B Battery special at ．．．．．．．．． 1.85
－These are listed at the new reduced price．Of course we handle many more items than listed here，but that is why we luave a

CATALOG
Sent for 10 cents which amount will be refunded on initial purchase amounting to $\$ 1.00$ ．Send for it TODAY．
Independent Radio Supply Co． 3716 W．Douglas Blvd．Dept．H－12 CHICACO，ILL．
＂BETTER RESULTS WITH LESS EFFORT＂

UNWIRED RECENERATOR

92250

DETECTOR
AND
2 STAGE
AMPLIFIER
With 3 Licensed
Tubes Matched to
$\$ 25.00$ Transformers $\$ 40.00$
These apparatus are constructed with the best materials and workmanship．They have no superior at any price．Apparatus fully guaranteed．Send for descriptive bulletin immediately．
FREDERICK WINKLER，Jr．
304 COLUMBUS AVENUE
New York City，N．Y．

DO YOUR CHRISTMAS SHOPPING EARLY The Radiolectric Shop Company

RADIO 73 PRODUCTS

Every Article Herein Listed In Stock Ready For Immediate Delivery

"73" AERIAL EQUIPMENT.
arf3" Antenna Cable, 7 Strand \#22 per 100 ft . $\$ 0.65$. Add 10 c per 100 for Postage.
" 73° Antenna wire 414 hard drawn copper

$0{ }^{\circ} 73^{\circ \prime}$ Ball type insulators (for receiving) 40
${ }^{40} 73^{\prime \prime}$ a inch Insulators (for recoiving) recoiving)
ar7"" Lead-in insulatore..................... 90
 Our lnsulatore do not pull out or turn white.
AMPLIFYING TRANSFORMERS
UV712 Radio Corporation, latest model. $\$ 7.00$
Federal, Model 226W 7.00
General Radio w231A for Radiotrons..... 5.00
Acme Type A.z emi mounted........... 5.00
J-K 4.50
Rhamstine50
"B" BATTERIES
"Yictory" 13V. Storage 2 year guarantoe 3.75
"Victory" 25V. Storage 2 year guarantee 7.50
"Victory" 50 V . Storage 2 year guarantee 15.00
"Victory" Pectifier for charging. 3.00
"American"" $\# \$ 763$ small..............................
AMPLIFIERS
"Wimco" 2 atage Iron shielded. 50.00
"Wimco" Detector and two stage Iron 50.00
"Wimco" Detector Control Iran shielded 22.50
LOUD SPEAKERS
Vocaloud Station Type. 30.00
Type R Magnavox. 45.00
Plugs
Firco Bull Dog Grip....................... 2.00
Federal $\$ 15$ talres tips, wire, spades, tinsel 1.75

VARIOMETERS
"73" Variometers, completo $\$ 5.00$
Parts "73" Variometers 2.50
Tuska Variometers28
Remler Variometers …...................................00
KNOBS AND DIALS
Tuska, flush type $4^{\prime \prime}$
Chelsea, Molded Bakelite $3 i$ ii. 3.85

"73" Navy Type Nickeled, qi" …........

> Specify size shaft on order

SOCKETS

Chelsen Chelsen Radio 1.50
Paragon 1.00
Murdock 1.00
Crosley Porcelain 80
METERS
Hickok Dynamometer type for A.C. orfor flush mountings.
TRANSFORMERS AND RECTIFIERS
Acme 50 watt unmounted 12.00
Acme 50 watt mounted 15.00
Acmo 200 watt unmounted 18.00
Acme 200 watt mountad.
18.50
18.50
F-F Bantam Battery Booster 18.00
PHONES
Murdock 85.82000 Ohms 4.50

$\begin{array}{llll}\text { Murdock } & 55 \\ \text { Murdock } & 566^{\prime} \mathrm{s} & 3000 & \mathbf{O h m s}\end{array}$ 5.50
 8.59
8.00
Federal 3200 Ohms 10.50
Baldwin Type C 2000 Ohms.................. 13.75
Baldwin Type E 2000 Ohms................. 15.00
Baldwia Type G Latest improved iype 17.50
Brown Type A 4000 Ohms............... 18.00
INDUCTANCES
Tuska Moulded, rapped overy turn...... 4.05
4.15Wimco 25 Turn edgewise wound for 50imco 25 Turn edgewise wound for 50watt tubes
Wimeo 50 Turns 10.00
Tuska Moulded tube for inductance (threaded) 3.18
"73" PUNCTURE PROOF C.W. CONDENSERS
1 MF 1500 Volts. 4.00
2 MF 1500 Volts 5.00
E MF 1500 Volts 10.00
${ }_{2}^{2}$ MF MF $_{4000}^{2500}$ Volts...00
5 MF 2500 Volts 30 .00
"73" Variable Grid Condenser 85
Detector Tubes $\$ \mathbf{\$. 0 0}$,

Our catalog now ready. Is your name on our mailing list A card will do it.

THE WONDERFULLY PERFECTED RTS Standard Detector Panel

(Front)

Ten Points of Superiority
1 -Silver Plated Wire
2-Machine Engraved Scale
3 -Resistance, 8 Ohms
4--Small Wound Resistance
s-Grid Condenser and Leak accurate
6-Sure Contact Socket
7 --Socket Used as a Standard
3 -Decreased Resistance in Leads
9-Machined Letter Engraving
10-All Posts and Parts Perfectly Set

Without Tube Prepaid by Insured Parcel Post.

Install this efficient R.T.S. Panel and you possess a correctly designed Detector Panel capable of producing signal strength unequailed by any other tested in our laboratory. It is guaranteed. Write for circular.

RADIO TESTING STATION
DEPT. 3
25 STIJF GES ST.,
BINGHAMTON. N. Y.

${ }^{\text {Plate }}$
Vario

Grid
Viariometer
$\$ 3.60$
Yario-
Coupler
3PECIFICATIONS: Designed for Panel mounting. T_{4} " Brass shafting used throughout. Wave fength range $175-450$ mcters. Kange may be increased to fer hy shunt ing secondary with special condenser. KhOCKED DOWN SET of parts, as shown above with windings in place, for 8.75, iwo variometers and one vario-coupler.
SPECIAL: Assembled detector unit on formica panel for 54.45 .
Amplifier unit for \$8.20
Yariometer unit. with knob and dial for \$5.60. Vario-coupler unit, with knot, dial, and switch. \$\$9. ALL PANEIS COPPER L.INED. (eliminating body capacity eftet;, ind wired with ± 14 hard drawn copper wire. All, wiring insulated with spagetti fohino.
SHORT-WAVE REGENERATIVE TUNER, TYpe CRS Gormething Niew, Most sulective on the market. Wave length range- 180 to 650 meters-lirice WE PREPAY ALL SHIPMENTS WE GUARANTEE YOUR ORDFR TO BE ON ITS WAY TO YOU ONE, HOUR AFTER IT IS RECEIVED BY US! Send for our bulletins. INEXCELLED SERVICE--Our Motto.

CITIZEN RADIO SUPPLY CO.

P.O. BOX 155, MATTOON,

HLLINOIS
A Full Line of Radio Apparatus
We have everything you need. Below are afew items from our large stock. 㤔atch thodespace for a compiete stock list.
POWER TUBES
A.P 5 watt $\$ 7.50$
Cunningham C302 5 watt 8.00
Cunningham C303 50 watt 30.00
Cunningham C304 250 watt 110.00
DeForest Singer Type 37 watt. 24.00
DeForest Oscillion 250 watt. 60.00
DeForest Oscillion 500 watt. 75.00
DeForest Oscillion 1000 watt. 150 .00
We have all the necessary material forCW outfits.
350 woit generators $\$ 20.00$
6^{4} diam. $\}^{\prime \prime}$ wall Formica Tubing Per ft 2.75
Send for bargain list.
The above prices are F.O.B. St. Paul.
PIONEER ELECTRIC CO.
137 East Fifth St.,St. Paul, Minn.

ClW C-W \quad C-W \quad C-W \quad C-W \quad C-W \quad C-W \quad C-W

CW Filters
CW Plate
Transformera
CW Condensers
CW Filament
Transformers
CW Iron
Core Choken
CW Radio Fre-
quency Chokes

 CW Rectifier CW Sockets CW Rheostats cw

Microphones CW Tone Arms CW Modulation

Transformers

Get the BEST CW Inductance. Teal connection clips provided, no uncertain switches which short circuit turns. Entirely insuiated on Formica, high eonductivity copper, very efficient. Made in 25 and 50 turn sizes, priced at $\$ 10.00$ and $\$ 13.50$ respectively. Also sold in parts ready to assemble.

We distribute the only complete line of panel type meters in America-Thermoammeters, AC and DC Voltmeters, Ammeters and Milliammeters. You can now equip your set with a complete set of meters all alike.

Big line of high voltage generators and motor-generators reasonably priced-just what you have been looking for.

SPECIAL NOTICE

Grid coils for the above CW Inductance are now supplied so that the circuit described in July QST can be employed-and take it from us it is the REAL amateur circuit. Grid coil for the CW 100 Inductance priced at $\$ 2.00$. Ask for our new bulletin containing full dope on this circuit-try it on your own set, it's a winner.

Antenna Specials

Now is the time to remodel your antenna and we are especially prepared to supply your needs in solid copper, stranded eopper and copper-weld aerial wire.

Ask about the New Air Gap Type

Antenna Insulators-wonderiui for CW-priced right-positively superior to present forms and materials.

Send for special Antenna Material Bulletin or send 15 c in stamps for catalog and complete literature.

8ZV WIRELESS MANUFACTURING CO. 8ZV CANTON, OHIO

WIMCO apparatus is distributed in Canada by Ontario Radio Laboratory, Sault Ste. Marie, Ont.

TYPE R3
MOUNTED $\$ 4.50$

THE LATEST A-A 10 to 1 RATIO
 AUDIO FREQUENCY AMPLIFYING TRANSFORMERS

With the introduction of the new UV-201 and C-301 Cunningham amplifying tubes we found it necessary to design an Audio Frequency Amplifying Tranaformer that would meet amplification and internal resistance constants which are quite different from tinose of the previnus tubes. "A-A" amplifying transformers are acientifically designed for commercial manufacture and are made strictly on a quality basis. They are most efficient because the turn ratio and resistance of the windings are such that maximum amplification is obtained without distortion in the telephonic currents. The coils are wound with $\# 40$ enameled wire with treated paper insuiation between the layers of winding and the convolutions of wire are spaced to cut the turn to turn capacity down to the minimum. This is a big factor in eliminating distortion-commonly known ss howling. Ail of our transformers are impregnated in a special wax compound by the vacurm praceen.

UNMOUNTED \$3.50

SEMI-MTD. \$4.00
Our first transformer having a ratio of 3 to 1 has proved to the most effisient on Marconi VT's. Moorhead, Western Electric and similar tubes and will aiso be cound desirable on the 3rd or fth step using the UV201 tubes with our new transformer on the 1 ist and 2nd stase. It is known yas AA Type R2.
MOUNTED $\$ 4.25$ UNMOUNTED $\$ 3.35$ SEMI-MTD. $\$ 3.80$

The "A-A" Power Tube Socket

This socket is designed for use with the UV 203 and the $C \$ 0350$ watt power tube. A well made, nice appearing socket, with insulation designed to withstand 3000 volts. Sucket und base shell are of brass with Bakelite strips containing binding post terminals. Shipping weight, 2 pounds.
No. R-4 Power Tube Sucket, price. $\$ 3.00$

ALL-AMERICAN ELECTRICAL MFRS.

1516 N. Lorel Ave., Chicago, Ill.

A The "ACE" Type AVC A $A C E \quad$ Regenerative Receiver ACE E Licensed under Armstrong Patent E \#1.113.149
Complete as illustrated. $\$ 56.00$ This unit is admirably adapted for relay work over long ranges and combines the essential features of maximum signal amplification without distortion, maximum selectivity and the necessary Hexibility which permits of rapid tuning of the various circuits. Unquestionably the ideal receiver for the Radio Amateur. We also carry in stock at all times a complete line of High Grade Radio Supplies.
Send 5cts. in stamps for catalog to Dept. D. THE PRECISION EQUIPMENT CO.
"ACE" Cincinnati

Cincinnati, Ohio Radio Call 8XB

The Wild Waves Are Saying

A SURPRISE awaits you. GET STARTED in this fascinating scitnce.
A COMPLETE receiving set composed of LITZ WOUND TUNER, Fixed Condenser IMPRCIVED DE. TECTOR making all points of crystal secessible CONSTANT spring TENSION, LATEST CORD TIP BACKS. all MOUNTED on a ${ }^{2}$ LITE panel $5^{\prime \prime} \times 5^{\prime \prime}$ equipped with lugs so more panels can be added.
Receiving set as d.scribrd $\$ 8.50$. With test buzzer, battery case and push button $\$ 10.50$. Post Paid in the U. S. A.
2000 ohm riceivers $\$ 5.00$. Tested crystals $\$ 0.25$ Antenna Wire, 7 strands $=22$ copper 85 c per ft . Postage extra.
MOTOR GENERATORS. DYNAMOTORS and C.W. EQUIPMENT. COMPLETE RECEIVING AND TRANSMITTING SETS.

THE RAY-DI-CO ORGANIZATION 1547D N. Wells St.,
 Chicago, Ill.

Westinghouse engineers have developed, after months of study and research, a dry-cell, short-wave regenerative tube receiver, Aeriola, Sr.

The tube filament of Aeriola Sr. will operate on a single dry cell and only a small 20 -volt B battery is needed for the plate.

Ask our nearest dealer, or our local office in any of the principal cities, for Folder F-4483.

Westinghouse Electric \& Manufacturing Co.
East Pittsburgh, Pa.
Westinghouse

ATTENTION! 4th District! Do you know there Radio Supply House Near You

 WE ARE DISTRIBUTORS FOR| Acme Apparatus Co. | Benwood |
| :--- | :--- |
| Nathaniel Baldwin | Chi-Rad |
| Chelsea Radio Co. | Hoyt Meters |
| Formica Insulating Co. | Gen. Radio |
| Remler Radio Mfg. Co. | A. H. Grebe |
| Radio Corp. of America | Magnavox |
| F. A. D. Andreas | Me.co |

Benwood
Chi-Rad
Hoyt Meters Gen. Radio
. H. Grebe
Meren

Clapp-Eastham

Conseci ut Tel. \& Tel. Co. Federal Tel. \& Tel. Co.
Wm. J. Murdock Flectrose Mfg. Co. C. D. Tusika Thordarson
WE CARRY A COMPLETE LINE OF THEIR APPARATUS IN STOCK. A Few Items From Our Catalogue.

FORMICA PANELS

$6 \times 9 \times 10$	\$1.00
6x12x	1.35
6x18x ${ }^{\text {音 }}$	2.00
$9 \times 12 \times 1{ }^{\frac{1}{6}}$	2.00
	2.75
$12 \mathrm{x} 18 \mathrm{~m}^{3} \mathrm{~m}$	3.85
12x24x	5.35

RADIOTRON TUBES

UV200 Detector $\$ 5.00$
UV201 Amplifier 6.50
UV202 5 watt Osrillator 8.00
UY203 50 watt Oscillator 30.00

BALDWIN PHONES

po-tare Additional. Write for
ped Same Day Received.

CARTER ELECTRIC CO.

63 PEACHTREE

ATLANTA, GA.

WIRELESS Catalogue

Vhether you are interested 7 a complete radio receiving outfit, or a half a dozen inding posts, you'll find the varticular instrument, best 'or your needs, in Corwin's ratalogue. Send 10 cents, (credited to your first ooder) ior your copy today! Whore's the nearest mailhox
A.H.CORWINECO. 4West ParkSt.Dept. 00. Newark New Jersey

Radio Amateurs of COLORADO UTAH, NEBRASKA and WYO. MING DO YOU KNOW

HAS THE LARGEST WIRELESS SUPPLY STORE in the MIDDLE WEST-Everything in Radio Supplies.

We Are Distributors of
REML'ER, COLIN B. KENNEDY CO., DeFOREST RADIO and W. J. MURDO~n Equipment and parts.
WE MAKE IMMEDIATE DELIVERY
Start with the "interpanel" system and thus avoid dis:arding apparatus.

Write Cor our Bulletins and Price list. We will Give promupt Mail Order Service by Parcel Posi or Express. as requested. Our "REYNRAD'

REYNOLDS RADIO CO., hnc.
613 19th St.,
DENVER, COL.

WE OFFER 10% REDUCTION ON OUR FNTIRE STOCR DEC 15 Th TO JAN. 15 Th. BUY THAT NEW C-W SET AND SHORT WAVF RF,CEIVER NOW. WE CARRY THE MOST COMPLETE LTNE IN THE SOUTH STOCKING PRACTICALLY ALL GOODS LISTED IN THIS MAGAZINE. ORDERS SHIPPED SAME DAY RECEIVED. WRITE FOR BULLETINS.

SOUTHERN RADIO SUPPLY CO.
11 N. FT. HARRISON AVE.,
CLEARWATER, FLA.

Vacuum Tube Detectors and Amplifiers

The very best that skill and experience can produce

THE CABINETS are constructed of selected quarter sawed oak; stained inside and out; waxed and hand rubbed PANELS are of prade M 角 in. Formica, $61 / 5 \mathrm{in}$. high, grained finish. They are attached to draw shelf, permitting complete assembly to be instantly removed and used without cabinet, if desired. FILAMENT CONTROL RHEOSTATS are of approved type.

TELMACO SPECIAL BINDING POST CON-
 basing ell wiring from the front of the panel. AMPLIFYJNG TRANSFORMERS are of new spe.
 the h pe ubes. We furnixh them Fully MOUNTED.

The GRID CONDENSFR and VARIABLE $A E A K$ she wred it ite detertur circuit. the litter un ohe front punn!. SOCKETS arm of hivin weale ebsiotuction to fit tubna having veandard frue grome bases. \&ETTERING on patiol is pantukraph machine moported and fllled with bent srade oi White sinamel.

FVIIX AUTOMATIC CONTROL SACKS are xiren into these mmplifiers. $2 A D 10$ PLUG is furnished with the sbove.

TELMACO VARIOMETERS and VARIO-COUPLERS
VARIOMETER-Irice without dial \$S 00
With Remier Dial-Price 8.00
UARMMCOIILIFR-..rrire without dial ... 400
With Remier Dial-price 5.00

GiFCiAI GEGINNERS SET

Telmaco beginner's complete receiving outfit ineiudes 2000 ohm riouble shones, detectur, mameral.

 ciass wutfit. Very popular. price \$12.00.

PRICES
Type TD-1 Telmaco Vacuurn Tube Detector Typ. TDA-1 Telmacn Detector and Single ${ }^{\text {That }}$ Type TA.z Telmaco Two-Stage Amplifier . . 40.00 Type TDA-Z Telmaco Detector and Twostage Amplifiers 45.00

ORDER DIRECT FROM THIS AD.

Satisfaction guaranteed always or money refunded. Send for our complete eatalogue "T". Fou'll find it interextink.

Your panels engraved with our GORTON ENGRAVER. Frice 6 eents per letter. Minimum charke \$2.00.
DEALERS!. We are distributors for neariy all Standard Lines. Write for our Special Proposition.
RADIO DIVISION

Telephone Maintenance Co.

17 N. LaSalle St.,

HORATIO A P 1
 1 Step Amplifier, assembled from nationally advertised parts.

 HORATIO D P 1
 Detector panel, nationally advertised parts.

SPECIFICATIONS: $g^{\circ \prime}$ high, s^{4} wide. Bakelite socket. Sitandard size jack, it any plug, Condensite Celoron panel, the best insulation obtainable. High quality ampifying transformer specially tested. Hard Kubber Binding Posts. Back connevtion ior Batteries, Bus-bar wiring :3 ply maple hase stained Mission styie, Gorton machine engraved lettering. Price including blue print and drections.

SPECIFICATIONS: $5^{\prime \prime}$ high, ${ }^{\circ \prime \prime}$ wide. Bakelite socket. Siandard size jack to fit any pluk. Condensite Celoron panel, F'ixed mica grid condenser, correct capacity for zill detector tubes, frid leak . mekohm Back connection for betteries, Bus-bar Wiring 3 ply maple hsse Mission finish, Hard Rubber binding posts, All connections desionated piainly in gorion engraved letters. Price including blue print and directions $\frac{2}{8} 6.50$. Add $P P$ on 2 lbs . Plug estra 7ise.

These panels are made so that no apparatus need be discarded. Just rad another atep when ready for it. We empoy no agents. We make our price gs low ge consistent with the filGH QUAIITY and give you the benefit of buying direct from manufacturer to eonsumer.
HURATIO controi panel DP1 ard 1 step audio irtquency amplifier Danel AP1 are the fmbodiment of 9 years of experience in radio experimentation. They have dery refinement neesary for preciaion control of sacuum tubes. "riey are the only panels on the market that wee plug and jack eystem for changing from step to step at a medium price. They are strictly quality and guaranteed to sive satisfaction. Jour money will be refunded without question if HORATIO panels do not please you.

We are dealors in radio equipment and carry the best products of other manufacturers. If it's QUALITY, HORATIO has it.

We carry AMRAD, ACME, ADAMS-MORGAN, BRANDES, BALMWTN, BITRGESS. CLAPPEASTHAM, CHELSEA, CHI-RAD, IEFOREST, FENERAI, FIRTH, GREBE. GENERAI, RAUIO. IEWEIIL. MURDOCK. PACENT, RADIO OORPORATION. THORDARSON, WESTINGHOIJSE. WESTON products. Aisk for anything rad:o. We can fill your order.

THE SHOP OF NO REGRETS
HOOPESTON RADIO SHOP
513 E. Seminary Ave.,
Testing station 9AIH
Hoopeston, Illinois.

New CatalogE6 T TH

Keep up-to-date. Learn about all the big recent improvements in radio apparatus.

84 pages chuck full of best and biggest values of America's 51 leading manafacturers. Most complete includes everything.

Two N.S LEADERS

Red-Head Radin phones 3000 ohms, military head band with cord $\$ 8.00$
complete Per pair $\$ 8.00$ Arington Tested Cry. stals: Galena or Silicon Certified supersensitive Percrystal

Write for Big̣ Free Cataiog Today

THE NHWMAN-SIERN CI.
Newman--Stern Bldg.,
Cleveland. Ohis

Wireless Amateurs Attention!

If you want service, order from us. We carry a large stock of High Grade Wirelessi Apparatus of our own and other manufacturers.

SPECIAL!
Vacuum Tube Sockets........... $\$ 1.25$
Rheostats 1.25
221 . Volt "B" Batteries......... 1.50
Rasco Dials 60
Rubber Binding Posts............ . 20
Tested Galena. 40
Lateral Wound Coils. All Sizes.
Send 5 c for our large illustrated catalog.
J. M. PAQUIN, THE ELECTRICAL SHOP,
787 Queen St. West, Toronto, Ont.

We are distributors for all standard makes of Radio Apparatus and can make immediate delivery. 'Try our SERVICF.
A. H. Grehe \& Co. Radio Corporation Enmler Radio Mfg. Co. Chels-a Radio Co. John Firth \& Co.

Wm. 3. Murdock \& Co.
Ace Battery Corp.
Acme Apparatus Co.
Federal Trl. \& Tol. Co.
Datifnait Tel. \& Tel. Co.
(c) Brandns Co.

Klaus Rad:o Cio.
A. \& P. Pad: Co.
C. D. Tuska Co.

Cinneral Radio Co.
finneral Radio
Chi-ago. Ill.

COMPLIMENTS OF THE SEASON!

We wish our many friends and customers a Merry Christmas and Happy New Year and beg to offer the following suggestions to make this year a RADIO CHRISTMAS.

AMPLIFIERS

Grebe Type RORD two step amplifier and detector unit $\$ 75.00$
Grebe Type RORL one step amplifier and detector unit 51.00
Grebe Type RORK two step amplifier with filament control jack 55.00
AMPLIFYING TRANSFORMERS
Radio Corporation Type UV712 inter-valve transformer-shielded type ... 7.CO
Rhamstine amplifying transformer 3.50
Acme fully-mounted type . 7.00
Acme semi-mounted type 5.00
Acme unmounted type .. 4.50
AERIAL WIRE
\#/ 12 Pure solid copper aerial wire 50 feet to the lb . include postage per 100 ft . 80
\#14 Pure solid copper aerial wire 80 feet to the lb . include postage per 100 ft . . 50
"B" BATTERIES
Small 22\% volt size-shelf life guarantee 8 months . 1.50
Large $221 / 2$ volt size-shelf life guarantee 8 months 2.25
BINDING POSTS
\# 11 nickle-plated with knurled round thumb nut . 08
\#2P double l F inting post nickle-plated . 20
\#10E special finished in black . 10
CONDENSERS
Murdock $73662-43$ plate-CO1 M.F. with dial and extension handle 4.75
Murdock $\# 3681-23$ piate- 0005 M.F. with knob, pointer and extension handle 3.50
Murdock $=366-43$ Flate with oil-proof case . 4.75
Murdock \#368-23 plate- for table mounting 4.00
DeForest CV-500-25 plate- 0005 M.F.-built ruggedly for C.W. work .. 4.50 GRID LEAKS
Radio Corporation UP-523 2 megohm on base 1.25
Radio Corporation UP-1719 transmitter Grid leak-5000 ohms 1.10
HOT WIRE METERS
Radio Corporation U.M.-530-0-2.5 ampz. 6.00
PLUGS AND JACKS
Rhamstine Piug and jack-complete ... 1.50
Rhamstine Plug only 75
Rhamstine jack only 85
Western Eleciric single circuit plug and ja k-used slightly 1.00
REGENERATIVE RECEIVERS
Grebe CR-3 Special- $175-680$ meters . 65.00
Grebe CR-5 tunes from $175-3000$ meters with tube control 80.00
Grebe CR-3a 175-375 meters with tube control, a complete set at 40.00
Grebe CR-8 tunes to 1000 meters-tube control . 80.00
RHEOSTATS
Murdock \#560 B back or front mounting . 1.00
DeForest 荘F-500 Reversible . 1.65

SOCKETS
Phamstine Bakelite base .. 1.00
Murdock
Amrad . 75
DeForest Bakelite all-over ... 1.25

ELECTRICAL SPECIALTY COMPANY

NEW THORDARSON AMPLIFYING TRANSFORMER

Price fully mounted a: shown $\$ 4.00$
Add PP on 1 lb .

Built by the world-famed ransformer manufacturers and fully up to the high reputation and standard of all Thordarson products.

Outstanding Features
1-Eight months ill wullumg; lesied and approved by Bureati of Standards.
$2-$ Windings of large size silk covered wire, NOT enameled. No burnouts. Proper impedance secured by use of extra large coie of shell type.
B-Kalio 34 to 1 . Primary and Secondary wound in separate sections and placed side by side on the core, not over ealh other. This gives must efticient coupling with very low distributed capacity and to tendency to howl even on 6 steps.
4 Considering the high standing of the maker and the very moderate price this is unquestionably the best transformer "boy" on the market.
In slock for immediate delivery-orders filled in rotation-send yours oday. DEALERS:--Get our special discount on the Thordarson Amplifying Trans-former-be the first in your locality to give your customers what they want. The demand will be heavy, place your order early.

Chicago Radio Apparatus Co., Inc.
 Phone Marrison 1716

508 SO. DEARBORN STREET,
CHICAGO, ILL.
"Sole Chicugo dustrbutor ElRCO Radio FAquipmoit."

INSTEAD OF JACKS!

Our Rotary Amplifier Control Swirch with Automatic Filament Control. Shanges from duterter to suny desirut stage bis silight turn of knoh. For detector and
 absi diavram. Fur pancl mounting, size $18 \% \times 18 / 4 \times 21 / 2$. Pirture and further details in our folder. sent on reques:.
Introductory price until Sanuary 15th $\$ 5.00$ Finr hest resuits our Edgewise-wound CW Inductance.
 fite inculation. finest forkmanship, 3 insulated clips furnished. Sond for photo.
Price :....................................... 89.00
Hinge tvpe Oscillation Transformer $1^{\prime \prime}$ brass ribbon, bakelite insuiation. regular $\$ 12,00$.
While they last
 With pointer...sic. Without pointer....15c. we wil quote lowect possible prices on any raw materiali, parts or apparatus vou may require.

STORM-LEE PADIO APPARATUS CO.
Newark, N. J.

Special

Pelham Manor, N. Y.

The Victor Type 2 Pin Socket

This is the new and improved type. FUSED on each filament lead and plate with the new style mica fuse. You can't
"PUT OUT THAT
LIGHT"
Approximate contact surface between tube prongs and pins $34^{\prime \prime}$ by 3 ". Positive contact always. Yours by mail P. P. \$1.00. Pins oniy 10 cents each. Extra fusos 10 cents.

V. H. LAUGHTER

P. O. Box 78,

Memphis, Tenn.

-VI 'SNVITHO MEN NIddAS OIIVY SISOY

*S ssmpleg ' N Apzadon马 [Rus! 		-dsos o!pey -03 "qual oppex

HAVE YOU HEARD ? B M I ?

Using one TV-202 Tube and other equipment purchased from us?

This station has wrorked amateurs over 700 mil-s away consistently. Record to date 850 miles.

A ytamped self-addressed envelope will bring to you a drawing of this simple and efficient circuit.

- HOWELL BROS. -
 Radio Gateuay to the South

 602 E. Broad St., Richmond, Va. "Reliable Radio Equipment"

No. 122 Cord Tip Jack

Attractive proposition to dealers Send for Bulletin No 7
A. W. BOWMAN \& CO.

154 West Lake St., Chicago, Ill. Faciory. Cambridge, Mass.

[^5]
The Jun-O-Fon

VOICE

MUSIC

STRAIGHT
C.W. WORK

Radio Telephone Transmitter

Sturdiness, Completeness, Compactness and neat appearance characterize the Jun-O-Fon, giving instant appeal to discriminating users everywhere.

Complete satisfaction was expressed by the entire field during the Chicago Show, bringing to MarshallGerken engineers the satisfaction that comes only with real accomplishment.

Designed to work on direct current of 350 to 500 volts obtained by generator ar hy rectified alternating current.

Employs two standard 5 watt transmitting tubes.

After adjustments have once been made, entire power control lies in the "Micraphone" ack; thus in order to transmit, you simply have to insert the "Micraphone" plug.

With 850 volts potential, over an ampere can be put into the antenna.

Transmitting tests have shown an average range of 50 miles for Telephone and over 450 miles on straight 0.W.

Complete in Cabinet with Blue Prints, Bulb and Power Supply $\$ 80.00$
dun-O-Fon is wonderiul equipment for club work. Have your Dealer write for one to boost his own business as well as club work in your vicinity.

THE MARSHALL-GERKEN COMPANY
Manufacturers and Jobbers
132 RADIO BLDG.,
TOLEDO, OHIO, U. S. A.

Do You Wanta First Class Commercial License?

When you decide to train for the wireless aersice bear in mind the lact that the Wase, Rudio und T. learaph Sonowi hus braduaied mure first grade and first rioss lienesd operation during the past 11 momths and has TODAY a larger enmollment than any other Radio School in New: England. Send for our 44 -page catalog giving full particulars to prospective students.

RADIO ENGINEERING

Classm met meh Thursday evening at \%:00 PM.-enrollment limited. Suhtect: Design of Commercial Tube Transmitters.

MATHEMATICS

Course in Applied Radio Mathematics one evening per week. Write for inEormation.

AMATEUR CLASSES

Every Saturday morning from 10 A.M. to 12 noon-prepares for amateur license.

SALES-C-W-SERVICE

We cury a thll !ime of kudio equipment "Ind are comperlors on ail radio problemis, piecioly complete reching and transmitiong tastallations. Order from any standerd catalog-mail orders filled. Our technical staff is at your zervice.

OPEN EVENINGS

Open three evenings per week. Monday, Wednesday and Friday until $9: 30$ P.M. and Saturday siternoon.
G. R. ENTWISTLE. Radio Director
R. F . TRUP, Telegraph Direc.or

> MASSACHUSETTS RADIO and TELEGRAPH SCHOOL, Inc.
> 18 Boylsto 1 St. Boston. Mass. Formerly Boston School of Telegraphy d:ctablished 1903

RADIOMAGIHMOX

BIG NEW 14 inch HORN

WITHOUT EXTRA COST
Make your set compiete, up to date, the source of pride and satisfaction, and center of enioyment it shouid be Get a MAGAVOX for Christmas. Bpecity type k-s and wet the whole set complete with the big new 14 " horn, ts illustrated, foi \$45. Diagrams and instructions free with each outit. Ask your dealer or write us direct.

The MAGNAVOX is the one and onity instrument which will reproduce all sounds and signals in atiy whume desired. without distortion and without injury to the apparatus.

MISSOURI RADIO

The Recognized House of Superior Quality and Service RHEOSTATS
 CONDENSERS (variable)

No. 25 Paragon $\$ 1.50$
No. 560 Murdo k back mounted . . 1.00
No. F -500 DeForest back mounted 1.65
No. PR.535 Radio Corporation for
Radiotrons UV-200, UV-201,
UV-20\%
3.00

No. PT-537 Radio Corporation for Radiotrons UV-203, UV-204 .. 10.0)

POTENTIOMETERS

No. PR-536 Radio Corp. "A" Bat-
tery type 2.00
No. 93 Remler " A " Battery type . 75
Radiophone and C.W. Apparatus
C.W. Power Transformers

Acme 50W. 350V. Mounted 15.00
Acme 50W. 350V. Unmounted . . 12.00
Acme 200W. 550V. Mounted 20.00
Acme 200W. 550V. Unmounted . . 16.00
No. 315W Federal 800 Watt 50.00
Filament Heating Transformers
Acme 50 watt unmounted 9.00
Acme 50 watt mounted 12.00
Acme 150 watt unmounted 13.00
Acme 150 watt mounted 16.00
No. 311-W Federal 200 watt 15.00
CHOKE COILS
Acme 500M.A. Single Coil 6.00
Acme 150M.A. Single Coil 4.00
Acme 500M.A. Double Coil 8.00
Acme 150M.A. Double Coil 6.00
C. W. Inductances

No L-i A me 8.00
No. 181 Tuska Cap. Feed-back .. 7.53
No. 182 Tuska Split filament . . 100.00
No. 183 Tuska Cirid Tickler 12.50

Microphone Transmitters

No. 260W Federal 7.00
No. HM-100 DeForest 6.00

Modulation Transformers

No. 236W Federal Mounted 7.00
No. A-3 Acme Mounted 7.00
No. A.3 Acme Unmounted 5.00
No. 171 W Federal C.W. Modulator 4.50

No. CV-500 DeForest Knock-down $\$ 3.00$
No. CV-1003 DeForcst Kno k-down 4.75
No. CV-15, 13 DeForest Knock-down 5.05
No. 3560 Murdock cap. .001 mfd . 4.00
No. 3680 Murdock cap. . 0005 mfd. 3.25
No. 3664 Murdock Dial and Knob 1.25
No. 3 Chelsea cap. .0011 mfd . . . 4.75

REMLER APPARATUS

No. 100 Dial 3 inch Bakelite . . 1.00
No. 813 Rheostat 3 amp. cap. . . 1.75
No. $810 \cdot$ Rheostat 4 ohms cap. . . 1.00
No. 92 Rakelite Socket 1.50
No. z2ñ Detector Panel V.T. Con-
trol 8.00
No. 60 Rotary Colm Swt. 3 P.D.T. 2.50
No. 3331 Stage Amplifior Panel 9.00
No. GSA 850 Coil $1000-15000 \mathrm{~m} .6 .00$
No. 40 Bakslite Coil Plus 65
No. 500 Bak $=$ lite Molded Vario-
meter
No. 503 Bakelite Molded Vario-
cou:ler 5.40
REGENERATIVE RECEIVERS
CR-3 Srebe 175-680 M. Relay Spe bal 65.00
CR-5 Grebe $175-3000$ M. with D-tector
80.00

CR-6 Grebe 175-680 M. with Det.
and two stage Amplifier Complete
200.00

CR-8 Grebe 175-10Ci M. new type 80.00
CR-9 Grebe $175-3000$ M. latest out
130.00

CONDENSERS (Fixed)
Dubilier universal type 2.00
No. 310 Dubilior Variable Cap. . . 4.50
No. ROCC Grebe .0002 mfd 1.00
No. ROCD Grebe . 0005 mfd . . . 1.20
GRID LEAKS
R.C. $1 / 3$ to 6 Megohms 1.25
R.C. $1 / 1$ to 6 Megohms unit only, 75
R.C. Special 5000 ohm for 5 watt
iransmitting tubes 1.10
R.C. Special 5000 ohm for 50 watt tube size " B "
1.65

VACUUM TUBES
UV-200 Radiotron Detector 5.00
UV-201 Radiotron Amplifier 6.50
UV-203 Radiotron 50 watt transmitter
30.00

IF ITS A STANDARD ITEM WE HAVE IT
When you want something in a hurry send us your order-our service is of the very best. All we ask is a trial. Let us prove to you that you can get real service when ordering by mail.

SEND US YOUR ORDERS NOW!
MISSOURI RADIO SUPPLY COMPANY
4623 MARYLAND AVE. DEPT.-F. ST. LOUIS, U. S. A.
please include sufficient Postage with all mail orders.

LEARN WIRELESS AT HOME

The Demand for Good Wireless

 Operators Far Exceeds the SupplyThe fiew rörk Wireless Institute will make yau an operator-AT HOME-in your agare time-puickly, easiiy and thorouphly. No previous training or experience required. Our Home Study Course has been premared by aur Radio Expurt iormeriy Chief Radio inapector, Bureau Navikaica. knowiedge to perts in an eanu to undertond wav. rhe graded lessoris mailed you will prove *y fancimung that you will be easer for the next one
instruments furnisiod fore, will make it as easy to learn the Code as it wias to lenrn to talk. A!! yout will have to do, is to listen.
Travel the World Over of Wireleaz Operator esn visit all parta jiay and maintenance at the oname time. Do you preier a steady vosition without travel? There are many poportumtion at the numerous land stations or with the Commercial Wireless or Steamship Companies.
BIC ALARIES Wireless opera:ora recelve saiaries is only a arepping stone to better positiona. There is practically no limit to your earning powero Men who but jes.

This wonderiul Set for learaing the code furnished trea with our FREE instroments and fiext Bookn
-RTE Wixturnish iree to All atudents, during the courne, the uunderingl mexternt ande verdiny et exactly os reprotived in the tifustration. This aet in not loaned hut givifin to nil atudents eompleting the course. The 'ransimitter Rhaven is the cuiebrated Om-1 E.aay Payments nigraph used
S. Government and by the leading Universities A small pay ment Colleges. fiechnical arne Telegranin schcoln We will enroll ynu. throughout the $1 . S_{1}$ aind Canada. Start the payments make exsy Omnigraph. pince the phone to yusp far ind payments fo exny this remarkaible invention will send you Wire- tious to fiter the lesa mossages the sume as though you vicre fastest growing proreceiving them, thmagh the hir, irom a Wire- fession .. Wirelesh-. leas shation hundreds of miles away. When may do go. yon apply for sour icense the Omnigraphont he swad for fKEE anme modiel Omnigranin an lie furnish in our Withonomat
 verity this. A one month's Piont-Giraduate Course, if you Expert Wireless Op. of degire at one of the incgeat Wireless sthools erator"-. it is iree. in N. Y. City. Nemp Yirn-the Wonder City-the Mnil the cosupon belargest port in the Wurid and the Hipadiuartery how, wr postal ar letof every leaditis Wirelesn and steamship co. ter-bibut do it today. NEW YORK WIRELESS INSTITUTE.
Dept $255{ }^{238}$ Brondway
Niew そork City NEW YORK \because IRELESS INSTITUTE
Dept 265 258 Broadway
New York City Send wiw iree of eharge, yonr booklet "How to fiecome an Exbert Wireiess Operator,: conleining full buarticulars of jour same
Addres:
City or Town

PITTSBURGH, PA.

This is the plug you have been waiting for. The plug of a multitude of uses and for any type of connection.

Two molded Bakelite parts; attractive in appearance; takes pin tips, spade terminals, loops or ordinary wire, without soldering. Far superior to ordinary switchboard plug-simple in construction.
Price, in U.S.A. - - $\$ 1.75$
Nealers-Write Por special proposition. Better write for Federal Radio literature-made with the wreatest care of the finest materials - yet. low in price.

Tifuraral ©rlephnne anu ©plegraph © $\mathfrak{C n m p a n y}$

SPECIAL!

Christmas Sale of radio apparatus

To reduce our stock before taking our annual inventory, we are offering the following new, standard apparatus and equipment to you at 25% to 75% less than the regular price. Every piece new, every piece standard, every piece guaranteed. On some of the items you save more than half. Check over the list carefully, then send in your order AT ONCE, so we can supply you before we are out of what you want.

DeForest CV 500-. 0005 Condensers $\$ 3.70$
DeForest LC 101 Coil Mounting. 9.25
DeForest P 300 Detector and 1 stage Amplifier. . 40.00
DeForest 'T 200 Tuner. 50.00
DeForest P 100 Audion Control. 35.00
Kennedy Long Wave Receiver. 100.00
Kennedy Three Stage Amplifier. 50.00
Kennedy Two Stage Amplifier. 35.00
CESCO Rotary Gap Type R 300 40.00
Radio Shop Short Wave Regenerative Set...... 25.00
Parades 3,000 Meter Tuner. 90.00
Clapp-Eastham Balanced . 001 Condensers. 2.85
Clapp-Eastham Balanced . 005 Condensers. 2.25
Clapp-Fastham 2 kw Sending Set-
Commercial Type
400.00

CAUTION:-To insure having your order filled, be sure and send it at once. with check, draft. or postonffice money order for proper amount. Prices indicated include postage.

CALIFORNIA ELECTRIC SUPPLY CO. 643 MISSION ST.-SAN FRANCISCO—CALIFORNIA

RADIO SUPPLIES THAT R RIGHT

Special Christmas Offer

OF THE

One Quarter K.W.Thordarson

"Gold Medal" Tranformer
for $\mathbf{\$ 1 0 . 0 0}$
(Regularly Listed at \$15.00)
and the

"Baby" Rotor for \$1.85

Thordarson Electric Mfg. Co.

517 S. JEFFERSON ST., CHICAGO, ILL.
J. H. BUNNELL \& CO., (New York Distributor) 32 Park Place, N. Y.

The BEST in RADIO Telephone and Telegraph APPARATUS
The new C.W. Equipment of The Radio Corporation now in stock for immediate delivery. None better at any Price.

DEALERS-ATTENTION
The Price is right. Gcods shipped same day order is received.

> 3XAB

Virginia Radio Co.
Charlottesville,
Virginia.

COMPARE THESE PRICES riple Honeycomb Mounting (for panel mounting) Wood PMarts' ¿Unassembled and unmounted $\$ 2.00$ iniature D. P. D. T. Panel Switch........... $\$ 1.00$ ario-Coupler Rotor 80 nd loc for Bulletin and future innouncements PARAGON ELECTRIC COMPANY 5 North 6th St., E. Newark, New Jorsey		

Special Radio Apparatus

MERIDEN, CONN.

NEW ENULAND RADIU CUMPANY
Box 95,
Boston, 17, Mass.
WHY be satisfied with slow service when "NERAD" SUPER-SERVICE costs no more? Let a mail order house fill your orders within six hours! We pay postage!

A few Xmas Recommendations
Grebe CR3 Tuner-Detector $\$ 30.00$
Westinghouse Tuner 65.00
UV 200 Radiotron. 5.00
UV 201 Radiotron. 6.50
UV 202 Radiotron. 8.CD
Firco-Gen. Radio - Murdock - Borvine - Fada-Acme-G, A.-Std.- Rrodio Corp.-Cheisen Radio. During December our special offer is 2% disount. Send money order and enjoy "NEERAD" SERVICF:

RADIO CLUB PINS

Radin Clubs Everywhere have a special ciub pin. We make them to order, 2ace to $\$ 10.00$ eqch. 1022 retalog of 48 pages showing designs of Radio, srhool and fraternal pins and rings FRFE. Samplea loaned to officers.
Metal Arts Co., Inc. ${ }^{7753}$ SOUTH AVE

New Magnavox Apparatus

designed for use with A-P tubes exclusively

Exhaustive tests by the Magnavox Co. prove A-P Tubes so superior, so much more efficient that they have designed their new Magnavox two and three step Power Amplifiers to be used with $A-P$ Transmitter Tubes EXCLUSIVELY.

Magnavox Co. tests prove A-P s more efficient than any other tubes on the market, for the following reasons:-1. High vacuum. 2. High amplification. 3. Low filament current. 4. No adjustments.
What could be more conclusive proof that you, too, will get the best results from $A-P$ Tubes in your apparatus. Use A-P Tubes exclusively. There's one for every purpose.

THE A-P VT AMPLIFIER OSOILLATOR -..-the Amplifier used by the U. S. Navy, "Use the tube the Navy uses." Price $\$ 6.50$

THE A-P
ELECTRON RELAY
-the most sensitive detector of spark signals known to the radio art

THE A-P
TRANSMITTER TUBE

-.... an efficient undamped

 wave transmitter for use in radio-telephony.A-P Tubes are licensed by the Radio Corporation of America under DeForest Audion and Fleming patents for amateur and experimental use in Radio communication.

Order from your dealer or direct from
ATLANTIC-PACIFIC RADIO SUPPLIES COMPANY NATIONAL DISTRIBUTORS FOR THE MOORHEAD LABORATORIES, INC. 638 MISSION STREET_SAN FRANCISCO—CALIFORNIA HENRY M. SHAW-mpresident

QST
 Pittsburgh Amateurs!
 You will find us in a position to supply your needs in radio supplies

Westinghouse, Amrad, DeForest, Acme, Murdock, Federal \& Brandes
Complete Antennia and ground equipment.
——PARTS

Come in and
See Us
QUALITY

613 LIBERTY AVENUE,
PITTSBURGH, PA.

MOSTMILESPER DOLLAR
With ATLAS CW Radio Apparatus Make your money talk to the tune of 15 miles per dollar. Money back guarantee. 1000 Miles $\$ 70.00$

.$\$ 70.00$
Send ten cenis ror complete catalogue. THE AMERICAN RADIO SALES AND SERVICE CO.
Mansfield, Ohio,
U. S. A.

DX-RADIOMEN-CW

 C.W. Inductance-Grid Tickler, 32T. No. 10 CU Bakelite Insul. $\$ 0.00$ C.W. Electrolytic Rectifiers- 500 M.A. 1000 V . cap. complete with solution, Boric Acid, 14 Jars

DEALERS:-Write for Sales Proposition JONES ELEC. \& RADIO MFG. CO. 120 E. Lexington St.,

Baltimore, Md.

FULL LINE OF RADIO EQUIPMENT

of all leading manufacturers, Storage Batteries, Genuine double Filament Audiotmons $\$ 5.00$

> Ask for circular

Galveston Wireless Supply Company. 2006 Ave. B,

Galveston, Toxas

RADIOMEN
 A Merry Christmas and A Happy New Year Fm DX RADIO COMPANY Summit, Ill., Factory, Argo.

CLEVELAND AMATEURS

You can get it right here, no need to send away. U.V. 202 Radiotrons $\$ 8-5000$ ohm grid leaks \$1,25-DeForest apparatus: new style rheostats \$1.65--Bakelite sockets \$1.25-.001 V.C. with vernier \$14-Parts for same \$4.75-0.0005 V.C. $90^{\circ} \$ 5{ }^{\circ}$ parts $\$ 3$. Knobs and Dials 80 c extra.-80A.H. 6V. batteries \$26.

KRAUS BATTERY CO.
3549 W. 25 St.,
Cleveland, Ohie

CROSLEY VT SOCKET 60c

Hetter-Costs Less

The reason for its tremendous success is not low price, but because it is BETTER. The bayonet eatch is now imberided in a much heavier wall instead of being cutclear through. This eliminates the oossibility of breakage hrough careless handling. The whole socket has been oreatly reinforced. It in now practically unbreakable. Dropping it on the floor will not break it. The springs are phosphor bronze, nickel-plated; screws and nuts brass nickel-plated.
It is built for hase or panel mounting, an exclusive feature. It is the prettiest thing you ever shw assembled in a set. Now used by several manufacturers as standard equipment. Made of one piece porcelain: no metal shell, hence no ground hum. Retter for power tube work, as it withstands heat and will not melt. Patent pending.
Every prosreasive dopler now handies the CROSLEY VT SOCKET or will obtain them for you. If your deajer can't supply you, send us his name and order direct. We will ship prepaid.
Every sacket is GUARANTEED to kive satisfaction or money refunded. Patent pending.
The Crosley Variable Condenser
Pat. Pend.

This Condenser works on an entirely new principle. The two plates are hinged and are opened and closed like a book by means oî a unecially desixned cam. The plates are surfaced with copper. One copper sheet is covered with mica so that when the two plates are clamped tightly together the maximum capacity is obtained. The maximum capacity of this Condenser will average about, 000 . We rate it conservatively, however ax . 0005.

This Concienser has severyl advantages over the ordinary type of uir condenser. Will stand 1000 volts without breaking down. It can therefore be used for CW work. Has no body or hand capacity eifect. Has much greater signal strensth due to the fact that mica is a much more efficient dielectric than air, due to less resistance. The salibration curve of this Condenser is almost a straight line. Has unusually low zero capacity-. 00006 . Frice without knob and dial
 With knob and dial 1.25 Mounted in cabinet with knob and dial 2.50

Sold on a GUARANTEE of absolute satisfaction or money relunded. Ask your dealer.

HARKO RADIO RECEIVER

The most com-
 pact and complete efticient crystal receiving outfit on tho market. Designed for the smgteur who wishes to get started in this wonderful game. The• illustration shows complete outfit ready to hook to merial. fones and ground wire.
Will tune from 200 to 600 meters, Dringing in wark, voice and music with average amateur antenna. NAM, Norfolk, Va. and shrips at sea copied in Gincinnati.
A wonderiul litt'e instrument. Price eomplete with biattery, interruster for testing crystal, instructions. etc. SG.0n. One housand ohm single head set. 125 fi, antenna wire, insulators, etc. 8.6 .00 extra. Gomplete outfit $\$ 15.00$.

Crosiey Cabinets

The tendency in
 the radio field today is to put apparatus in cabineta not only for at pperrancess sake, but as a protection from dust. dirt, stmospheric conditions atc. Rerlizing the demand for attractive stock cabinets of various sizes. We are building them in quantities in our arge wood working plant. These cabinets are all uniform in style. The panels are rabbated in to the front. As the outside dimensions and inside dimensions are either larger or smaller than the panel itself, we show panel size and also inside dimensions. Prices ouoted do not include the panels. Wood used is either sum or mahovany in lark antique or red mahogany finish or in quartered oak in natural of antique finished. Specify type of wood and finish in ordering. Tids or tops are hinged. Sizes and prices are:
For
CABINETS

Panel	Inside Dimensions			Quartered	
Size	High	Wide	Deep	Gum	Cak
6×7	6 \%	$6 \frac{1}{1 / 2}$	$7{ }^{\prime \prime}$	\$2.50	N ${ }^{2} \% .85$
$6 \times 10^{1 / 2}$	512	$10^{\prime \prime}$	$7^{\prime \prime}$	2.75	4.40
6×14	614	$131 / 2^{\prime \prime}$	$7{ }^{\prime \prime}$	3.30	5.55
6×21	5 5	2() 1\% "	$7{ }^{\prime \prime}$	8.90	$\bigcirc .30$
9×14	81退	13140	$10^{\prime \prime}$	3.70	6.80
12x24	11%	", 1812"	$10^{\prime \prime}$	4.40	6.80
12×21	$111 / 2$	$" 20$ " ${ }^{\prime \prime}$	$10^{\prime \prime}$	6. 25	10.60
Cush mu	st ac	company		C.O.D	We

Gush must accompany order. No C.O.D.'s. We bay transportation charges. Ask your dealer.

FORMICA PANELS

We can furnish genuine formica panels " ${ }^{\prime \prime}$ " thick, cut to the following dimensions: 6x7; $6 \times 101 / 6$; © $\times 9$: 6×14 : 7×12; 6×21; 7×18 : 9×14; 12×14 : 14×18; 18×21. "rice of pиnels-2 2 per square inch. For odd sizes order the next largest size: we will trim. We pay pootage.

CROSLEY RHEOSTATS

Complete with knob. pointers, etc. as shown in illus. tration. Our unique construction permits mounting on panel of any thickness up to and including ${ }_{3}$ ": non-corrosive resistance wire.
Model "A" "- overull diameter $18 / 8^{\prime \prime}$. Resistance 7 ohms, one ampere without heating. Suitable for detector or amplifier tubes. Price 60c each.
Model " B "'-Resistance 4 ohms: will carry 3 amperes without heating. Suitable for detector, where very accurate adjustment is required and for 5 watt nower tubes, Price \$1.25.

CROSLEY

TAP SWITCHES
Note unique construction assuring constant tension. Composition knob, nickelplated $\%$ witch arm and bushing. Note stationary washer with soldering lug, making possible buss wire connection. Price 40 c each. Better-Costs 1.ess.

SWITCH TAPS for above, brass nickel-plated, somplete with brass nut 8e erch. 30 c per dozen or $\$ 2.50$ per hundred.
If your dealer eannot furnish, we will ship direct prepaid.

CROSLEY MFG. CO.
 Radio Dept. Q-6, Cincinnati, Ohio.

CLASSIFIED ADVERTISEMENTS

Five cents per word per insertion, in advance. Name and address must be counted. Copy must be received by the 10 th of month for succeeding month's issue.

LOG BOOKS and Postal Cards. Tell the other fellow how and when you heard him. Your name and call on 100 postais giving information about signals heard and your own equipment, dollar fifty. Eighty page Log Book, special pages, abbreviations, calls, other information, postpaid, dollar. Call and name printed on book cover free if order both. Commercial Press, Everett, Washington.

HONEYCOMB RECEIVER, detector and 2 step with B battery, Brandes phones and 5 coils less tubes and ampliformers. Mahogany finish cabinet \$50. R. Woodbury, Manchester Rd., Winchester, Mass.

CASH SNAPS-Two Step Amplifier, Tubes and Phone Plug \$20; Murdock Rotary \$7, two original Audiotrons unused onch \$5.50-1AE.

GARGAIN: Clapp-Fiastham half KW Hytone Transmitter. This set cost $\$ 250$, new, but is going cheap, as the owner is hard up for cash. James Mott Hallowell, Jr., Chestnut Hill, Mass.

40-45 VOLT GENERATORS, GMaranteed $\$ 8.00$ each R. Filora-8DN-Sylvania, 0 .

OLD TYPE Benwood with special plate glass front $\$ 15$. Vacuum Cleaner motor suitable to drive the same, directly coupled, $\$ 4$. R. E. Stoughton, Central Gar: aine, Portland, Me.

STORAGE BATTERIES 6V. 100 amp. 12V. 60 amp. These batteries are of atandard make, slightly used Rehuilt and reinsulated by expert workmen. Special price $\$ 15$. Limited supply at that price. The Stor age Battery Service Co., Rox 53, Danvillo, Indiana. EDISON B Battery elements. Make you own. Can be recharged and lasts for gears. Harry Morrell, g\% Goffe St., New Haven, Conn.

FOR SALE: I KW Clapp-E.astham type E transformer used about twelve hours, \$37.50; 1/6 KW . 007 Dublier condenser, $\$ 20.00 ; 1 K W$ Amrad gap, $\$ 20.00 ; 1 / 2 \mathrm{KW}$ Amrad gap, \$10.00; Murdock O.T., \$\$2.00; 1 KW Mesco key, $\$ 2.50$; Brandes Superiors, $\$ 4.00$; Buldwin Navies, \$9.00; Western-Electric V.T. 1's, $\$ 5.00$; H. C. coils $\mathrm{s} / 2$ price; General Radio 0-10 amps. H.W. meter, $\$ 5.00 ; 2$ step amplifier, bakelite panel and cabinet. Acme transformers, $\$ 17.50$ with W. E. bulbs, $\$ 25.00$; Illinois and Murdock . 001 and .0005 condensers, $8 / 2$ price; H.C coil receiver on Bakelite and in cabinet, A. L. Grove's circuit complete $\$ 20.00$, with Marconi V.T., $\$ 22.50$ All the above in good condition. All letters answered. M. L. Goldstein, 1225 Washington St., Waco, Texas.

CLAPP-EASTHAM rezerserative receive in cabinet. $\$ 21$ gets it. Merle Coulter, Rockwell City, lowa.
FOR SALE: New Exide 6V. 35 amp. \$12.50; 6V. 60 amp. Drew \$16. Special Radio Batteries. Pladio Battery Service Station, 1 KM, 4 Bryant St., Malden, Mass.

FOR SALE: A five cell No. A Battery, $\$ 40$. ${ }^{\circ} .0$. B. Shelton. Howard Reffelt, il Orchard St., Shelton, Conn.

EXCEPTIONAL BARGAIN Special Model Grebe C.K. 7 Longwave Regenerative Receiver, complete, without detector, will sell $\$ 110.00$ cash. Write L. Room 201 120 Liberty Street, New York.

WIRELESS SETS for sale: $2^{\prime \prime}$ induction coil, glass plate condensers, Murdock oscillation transformerhinge type, Duck open spark Eap, aerial and ground switches, Arlington receiving transformer 150 to 3800 meters, Murdock variable condenser, audion control cabinct with bulb, Murdock 3000 ohm phones. Sending range 50 miles or more. Set practically new. First M. O. for $\$ 45.00$ takes it. $4000-20000$ meter tuner with 3 condensers in good condition $\$ 35.00$ P. P. Roy Anderson. Box 206 Ketchikan, Alaska.

500 V . MOTOR Generator, $\$ 40.00$; 500V. Esco Generator. New, \$-40.00; Variometer Regenerative Set, \$15.00 2 Acme Amplifying Transformers, $\$ 3.00$ ea.; Modulation Transformer, $\$ 4.00 ; \mathrm{C}$.W. Inductance, 32 surns, No. 7, \$4.00; Murdock Antenna Switch, $\$ 2.00$; Federal

Jacks, stc.; Federal Hand Microphone, \$4.00. A. Hengelbrok, 922 Washington, Newport, Ky.

FOR SALE: Acme oil-immersed condenser-burand new, Transformer 220 to 110 V . or 110 V . to 220 V . 1 KW , new. F. E. Cannings, 4249 Russell St., St. Louis, Mo.

PARAGON, $\$ 20.00$; Murdock fones, $\$ 4.00$; Acme Trangformer, \$3.50. Gail Wade, 1308 Hamilton St., Manitowac, Wis.
FOR SALE: $3 / 4 \mathrm{KW}$ Thordarson Transformer, $\$ 10.00$. kRay Farwell, 502 Knickerbocker Ave., Brooklyn, N. Y.

CHRISTMAS BARGAINS: Irrivate laboratory stock for immediate disposal. Following are new and in perfect condition. Six complete sêts Honeycomb Coils $\$ 25.00$ set. Six Triple Coil Mountings \$4.00 each. One Triple Crystal Detector Stand \$10.00. Four palra Western Electric Receivera $\$ 8.00$ pair. Two Western Electric Loud Speakers complete with current amplify ing transformers $\$ 35.00$ each. Two Westinghouse is HP. A.C. Motors $\$ 20.00$ each. Sin Western Electric Microtones $\$ 2.00$ each. Ten Moorhead Amplifying Tubes $\$ 3.00$ each. Six Western Electric VT-1's $\$ 5.50$ each. Six Western Electric VT-2's $\$ 8.00$ each. Following have been used only in test work and are in excellent condition. Ten sections Murdock Moulded Condensers $\$ 1.00$ section. Twenty Western Electric 1000 volt filter condensers $\$ 1.00$ each. One Complete Transmitting Set consisting of Clapp-Eastham Type E IKW Transformer, Six sections Murdock conaensers, Murdock Rotary Gap for A.C. with Rheostat, Telefunken type Oscillation Transformer, Radiation Meter, Large Key. Price complete $\$ 50.00$ Parts of above set will be sold separately if desired. Send your money order early. Or send stamp for inquiry or reservation at once. All apparatua guaranteed ass represented. P. J. Stockwell, Box 157 , Reading, Mass.

FOR SALE: Grebe CR3 and Grebe RORD detector and two step, like new, both for $\$ 98.00$ or sell separate; Thordarson 8 point rotor, $\$ 2.00$; Bunnell straight line key, new, \$6.00; Saco rmplifying transformer, $\$ 3.50 ; 3.000 \mathrm{ohm}$ Murdock fonez. \$3.50; Murdork $0-10$ H.W.A. $\$ 5.00$; Weston $0-200$ milliammeter, new, $\$ 6.00$; Weston model z80, new, \$15.00: Parazon rheostat, $\$ 1.00$; Dubilier 20,000 Volt, . 004 M.F. condenser, \$20.00. S. A. Waite, 49 Benefit St., Worcester, Mass.
CW-MEN: Get our 32T CW Inductance with grid coil 3 clips-Bakelite insulation-Walnut finish, Real Value, $\$ 9.00$. Specialists in CW equipment, 500 M.A. 1000 V . Chemical Rectifiers in Cabinet. \$9.50. Jones Electric and Radio Mfg. Co., 120 East Lexington St, Baltimore, Md.

LOOK 'EM OVER: For sale-Fine Navy sype Coupler, \$12.00; Connecticut V.C., \$4.50; DeForest Panels: U200 $\$ 2.00$, US100 $\$ 2.00$. Carter McCormick, Pox 200, Chesaning, Michigan.
STOP! LOOK! and ACT! We supply free of charme with each 50 watt Radiotron power tube UV-203, price $\$ 30.00$, the standard General Electric V.T. Socket, price $\$ 2.50$, and with each UV-202 ive watt power tube price $\$ 8.00$. your choice of z 1 ampere C. E. rheostat, porcelain or improved Murdock V.T. Socket. Unsatisfactory or damaged tubes replaced at once. No risk. Immediate delivery. Shipped postpaid and insured. The Kehler Radio Latoratories, Dept. Q, Abilene, Kansas.

YOU WANT A SYNCHRONOUS GAP! We have a fow synchronous motors of prices you can afford. y/s, $1-5$ and $2 / 4$ H.P.- 220 and 110 volts. Price and full information on request. Stahl Rectifier Company, $\$ 401$ W. Jackson Blvd., Chicago, III.

BARGAIN One K.W. Transformer Close core type. Very Efficient, $\$ 25.00$. M. Glindemann, 834 Market St., San Francisco, Cal.

FOR SALE: DeForest detector and three step amplifier, mounted in cabinet, complete with four " B " batteries and fifteen coils. First class condition. First check for $\$ 90.00$ gets it. Earl Swickard, Newman, III.

A . 007 DUBBILIER 14,000 volt Condenser. Perfect condition, reasonable price. M. Hiedeker, 1516 53St., Erooklyn, N. Y.

SELI_Short wave regenerative receiver $\$ 25.00$. Colt's 45 automatic $\$ 30.00$. Want .32 automati inson, 44 East Paiterson, Columbus, Ohio.
BARGAIN 500 Volt International M-G with field rheostat. 110 A.C. Motor. Jurian Van Riper, 117 L.afayette Ave., Passaic, N. J.
NAVY STANDARD 2 step, DeForest Guaranteed, brand new, never used, Cost over $\$ 70.00$, sell for $\$ 45.00$ with B Bats. Need money for C.W. K. Jones, 1658 Beacon St., Brookline, Mass.

STAMPED POSTALS: For reporting reception. Blanks for how and when, printed description of your receiver and call in large red letters. Hundred. $\$ 2.00$. Radiogram blanks with your call in large red letters. Hundred, 40cts. Radio printing. Howard Frazier, 5714 Hazel Avenue, Philadelphia.

FOR SALE: Several Radio Frequency choke coils, unmounted 3 Milhenry; $\$ 1.35$ Postpaid. Eimo Lindberg, 816 Puget St., Olympia, Washington.

BLUE PRINTS-Have the wiring diagram of your hookup made in a blue print and hang it on the wall of your radio room. Three blue prints $81 / 2^{\prime \prime} x 11$ " for 60 cents. Tracing of the same 50 cents extra. Palmer and Freund, 1261 Octavia St., San Francisco, Calif.

FOR SALE: Federal Amplifying Transformers, \$6.00. General Radio Milliammeter, $\$ 6.00$. Honeycomb Tuner and full set of coils $\$ 40.00$. J. A. Baker, 45 Irospect St., Claremont, N. H.

DUBILIER-25,000 Volts - 0.01 M.F.D. Practically new. Trade for 25.000 Volt- 0.007 MFD. and $\$ 5.00$ or $\$ 35.00$ cash. $2 \mathrm{DB}-\mathrm{R}$. D. Zucker, 46 Clinton Place, Mt. Vernon, N. Y.

QRK. Hawaiian and German Stations Read With a Single Bulb. Are you satisfied with your receiving set? Would you like to build one that will receive over 6000 miles on a single bulb and quit experimenting? One that fill be the equal of any regardless of claims or price? Using the instruments you now have, you will be able to duplicate the long distance records you read ahout every day. Get our simple diagram of a complete short and long wave receiver 175 to 20,000 meters, with which we read Honolulu, California. German. South American, French and English stations, and practically all the high powered foreign and domestic stations, amateurs as far west as New Mexico and numerous telephone and musical concerts come in gond. Diagram and complete instructions, leaving nothing to guess about, will be promptly mailed for 50 cents in coin or stamps. Wire a set up and quit wasting good money. Virginia Novelty Co., Martinsburg, West Va.

GOVERNMENT GOODS CHEAP-Insulators, \$0.60. KW Keys, $\$ 1.25$; Leyden Jars, $\$ 2.25$; $1 / 4 \mathrm{KW}$ Quenched Gaps, $\$ 4.50 ;$ Protective device, \$1.25: . 0035 French Dubiliers, $\$ 8.50$; Sperry arc transmitter, $\$ 9.50$; 6V. 400 V . Dynamotor, \$22.50; 1/2 KW 600 cyc. rrench Portable, $\$ 45$; $3 / 4 \mathrm{KW} 500$ cycle motor generator, $\$ 76$; / $/ 4$ KW Marconi 500 cycie Complete. Description on request. Eaton, 1915 South Twelfth, Pa.

AGENTS WANTED in every community to sell "WorkRite Receiving Sets" at $\$ 6.00$ complete. Every boy wants one. Works periectly. Chance to earn good money. WorkRite Mfg. Co., Cleveland, Ohio.

SELL: 425 volt 100 watt generator, $\$ 20$. 0-1, 0-21/2 General Radio ammeters, \$5 each. Himmer tone arm, $\$ 8$. General Radio modulation transformer, \$-4.50; new A Bachtel, 151 Garman Rd., Akron, Ohio.
$\$ 12$ takes my new 6 volt- 8 amp. Storage Battery. Postpaid, E. Davault, 1052 William St., Baltimore, Md.

BARGAINS: 3/4 KCN Thordarson never used. \$17.95; Clapp-Eastham Eioston Key, $\$ 3.95$; Murdock Aerial Switch, $\$ 1.95$; Murdock . 005 Variable, $\$ 2.95$; ClappEastham Precision Hotwire Ammeter, $\$ 6.95$; Audiotron, never used, \&4.95; Adams-Morgan 3 Slide Tuner, \$0.95; 3000 meter Loosecoupler \$4.95; Pancake O.T., $\$ 2.95$; $1 / 1$ Spark coil, $\$ 0.95$; Stationary Gap, $\$ 0.95$;

Tresco Tuner, $\$ 7.95$; Hamilton-Beach Aluminum case Variable Speed Motor, used very little, \$9.95; Fan Motor, $\$ 2.95$; Perfection 23 plate Variable, $\$ 1.95$: Crystaloi, $\$ 0.95$; Transmitting series Condenser, $\$ 1.95$; Harley Motorcycle. $\$ 49.00$. Everything prepaid. Robt. C. Bishop, Locust St., Lockport, N. Y.

FOR SALE: Half KW 13200 volt Packard excellent rotary, oscillation transformer, condenser plates, Overrotary, oscillation transformer, condenser plates, OverSheetz, LaFayette, Ind.

ASSEMBLED ANTENNAE: Cage type. Copper wire, wooden hoops and moulded insulators. T and L types, leads all soldered. $25^{\prime} \times 20^{\prime}$ size, $\$ 5.00$. Jolawmac Radio, Wollaston, 70, Mass.

FOR SALE or trade: Smith Motor wheel and Junior car parts. Want Radio apparatus only. Lloyd Bjornstad, Ellendale. N. Dak.

RARE OPPORTUNITY to secure brand new $1 / 2$ KWW DeForest latest type OT 101 Radio-Telephone complete. Voice record 1500 miles summer. Cost $\$ 1750$ Winll sacrifice. Particulars on request. J. Edw. Brown, Box 107, Glenbrook, Conn.
HR QSL: Induction Motor 110V. A.C. $1 / \mathrm{B}$ H.P. 1 Holt-zer-Cabot $\$ 10.00$. Filter System 1000 Volt. \$6.50: One Baldwin Fone, $\$ 5.00$; Microphone, $\$ 0.50$-.Electrical Experimenter's 40 volumes 1915 to $1920, \$ 3.00$ F.O.B. E. G. Baier, 253 9th St., Brooklyn, N. Y.

DON'T READ THIS-If you are millionaire. We want a real. live amateur in every community to represent us in sales of thll standard radio apparatus. Attractive discounts allowed. We still have a few territories open. Write us immediately if you want to get the Xmas business. Wilmington Electrical Specialty Company, 705 Adams Street, Wilmington, Delaware.

8JL FOR SALE: Special 1KW rotary quenched set record 1900 miles complete $\$ 110.00$ Regenerative and a step $\$ 110.00$. Write for price on any part. L. N. Chatterton, 12320 Woodside, Cleveland, O.

RADIO APPARATUS made to order. I do repairing, rebuilding and assembling. Special inductances wound to orde Send for estimate. R. Pringle, 1096 Ryde St., St. Paul, Minn.
FIVE DIAL Omnigraph, \$12. Single pole, double throw, Relay \$5. James Mott Hallowell, Jr., Chestnut Hill, Mass.

BARGAIN, I/\% KW Clapp-Eastham transformer, oscillation transformer, stationary spark-gap, 2-60 glass plate condensers, in oil, aerial switch, Mesco key, \$35 \$-15 H.P. Emerson, 110 volt, 60 cycle, A.C. motor. $\$ 22$, cost new, $\$ 36$. Dust-proof DeForest detector, $\$ 2$. Navy Recieving transformer, new \$18. R. W. Pratt, 15 Kilby St., Sanford, Maine.

BARGAIN: Complete short wave regenerative set and 2 step amp. Mounted on Bakelite minus phones. First $\$ 80.00$ takes it. Geo. B. James, 1414 S. Vermont, Sedalia, Mo.
FOR SALE: Three federal amplifying transformers, $\$ 4.00$ and two Acme's $\$ 3.00$ each. Honeycomb coils and other accessories. Dr. E. Cyriax, 219 East 71 Street, New York City.

SAVE AND HAVE-Radiotron 5 watt tubes $\$ 7.25$ each; Crystalni Detector each. $\$ 2.85$ were $\$ 3.50$; Complete 5 watt C-W set for $\$ 62.50$. Send 4 c . in stamps for photo and description of set. Mack's Radio Shop. Ansonia, Conn.

REGENERATIVE RECEIVER $\$ 10$.
Navarrette, 196 Wallace Street, New Haven, Conn.

FOR SAL.E: Two only, 1KW Darling 30,000 volt transformers in walded steel tanks oil immersed each $\$ 50.00$ Fi.O.B. Russell Huckstep. Lebanon, Indiana, 9DGX.

1KW United Wireless Transformer \$80. Heavy glass oil condenser in ten gallon container with oil $\$ 30$. George Hamilton, Millville, N. J.

FOR SALE: Paragon RA 10. First money order for $\$ 35$ takes it. J. F. Furey, P. O. Box 629, Hartford, Ct.

FREE ${ }_{6}^{60}{ }^{\circ} \mathrm{PER}$

tour Choice of either a Standard V. T. Socket or Duo-Lateral Coil Free With Every Order of $\$ 10$. Or Both Free with Every \$20. Order

This ofer spplies to any ronds in wur stock. A complete stock ol" s.ll leading atandard wirejess equipment always on hand readiy for immediate shipment.

SAVE MONEY BESIDES

Read these Specials at tempting price reductions

> Reve ulariy Special

Lightning Switches. 100 smp

$$
600 \text { volts. } 4.50 \quad 3.45
$$

Murdock Antenna Switches. . §.00
Roller Smith Radio Frequency
Amp. Meters...........

$$
\begin{array}{rrr}
\text { Amp. Meters } \\
\text { Interphone House Sets : } & \mathbf{7} .50 & \mathbf{5 . 7 5} \\
\mathbf{1 0 . 0 0}
\end{array}
$$

Is Batteries Variable, large
size
$8.00 \quad 2.50$
Large size Fariomeicrs..... $8.00 \quad 6.75$
Smaller size Variometers... $6.00 \quad 4.40$
ary Honeycomb Coil Mountings Finding post
$7.50 \quad 6.00$
Hard Rubber Binding Posts .10
.07
Deforest One-ster Amplitiers.
Trye Plo0................. $69.00 \quad 35.00$
Honeycomb Cojs, any sixe 30% Off: Unmounted Chokes. Spocial at .0.
And Hundreds of Other Bargains, rncluding Over 100 Different Size Motors, A. C. and D. C., at Corresronding Savings
Order Today While Our Offer Holds Good Or Send 10 Cents for Complete Catalog of Wireless and Electrical Goods of All Kinds.

American electro technical Applannce ca.
 235-O Fulton St.. New York.

FOR SALE; Honeycomb coils 2 L400, 2 L300, 2 L250, 3 L150 make me an offer. One DeForest CV1500 vernier condenser in glass case $\$ 15.00$ or will exchange for good rectifier 2 VT2's $\$ 8.00$ each. J. F. Furey, P. Ô. Box 629, Hartford, Ct.

FOR SALE: Grebe special CR3; Grebe Det. and 2 step; only used short time. Good as new. John Hanes, Onsel, Mass.

EDISON ELEMENTS $\$ 0.10$ pair, $\frac{1 / 2}{}$ regular price, fine condition, insuators free. Pierson 728 7th Street, Niagara Falls, N. Y .

FOR SALE: .007 mf Dubilier condenser new style with safety gap $\$ 35$. I-Ray enclosed rotary sap mounted on base with a good motor, \$50. Thordarson's type "R" I KW transmitting transformer and O.I'., \$25 and a double contact $\$ 15$ key at $\$ 8$, all in as good condition as when new. Have had good results with them and. will sell separately or all complete zo one address at $\$ 100$. R. E. Brigham, Jeweler, Oneonta, N. Y, BFW.

FOR SALE: Sipecial Grebe CR7 longwave receiver without tube unit and tube control. Perfect condition. Price $\$ 80.00$. Pyroloid Co., 279 Grove St., Jersey City: N. J.
HERE'S HOW to make someone a Merry Radio Xmas! Send us his name and address with $\$ 2$ and we'll send him a whole yearful of QST! A.R.R.L. Hartford, Conn.
Acme Apparatus Co. 75
Adams-Morkan Co. 180
All-American Eilectrical Mirs 114
American Electro Tech. Appliance Co. 134
American Radio \& Research Corp. Fourth Cover
American Radio Sales \& Service Co., The. 180
Apex Radio Shop 118
Atlantic Radio Co. Second Cover
Atlantic-Pacific Radio Supplies Co. 129
Renwood Co., The Inc 107
Bowman \& Co., A. W 122
Brandes, C., inc
128
128
Burgeas Hattery 84
California Electric Suppiy Co. 127
Carter Electric ©o. 116
Chelser Radio Co, 76
Chicago Radio Apparatus ©o. 104
ino Radio Mfy.
112
Citizen Kadio Supply Co
93
93
Clapp-Eastham Cu.
130
130
Clark, ©. B. \& son
Clark, ©. B. \& son
182
182
Classified Advertisements i.8
Condensite rel sec 128
Continental Radio \& Elec. Gorpn. 136
Corwin \& Co., A. H.
56-102
56-102
Coto-Loil Co.
92
92
Grosiey Mfg . Go. 131
OX Radio Co 130
Delancey. Felch \& Co, 108
Detroit Electric $\& \%$. 90
Devon Electric Co.. Inc. 130
Diamond state fibre (U. 96
Doubleday-Hill Electric Co. $i 00$
Dreyfuss Sales Gorpn. 100
Duck Co., The Wm. B.
106
Wastern Ohio Radio Mfg. Oo.
77
77
Sastern Radio Institute 134
ectric Motor \&
ectric Motor \&
119
119
Electrical Specialty Co.
Electrical Specialty Co.
76
76
Ende, F. M.
Ende, F. M. 99
Federal Tel. \& T'ei. Co. 126
Firth \& Co.。ann 78
France Mfg. ©o., the $90-102$
Galveston Wireless supply Co. 130
General Radio Oo 108
Grebe \& Co., A. H. 83
Hommel, Ludwig \& Cu 118
Hoopeston Radio :hop 118
Hygrade Electric Novelty Co. 94
Ideal Apparatus © ${ }^{\text {I }}$. 97
Illinois Radio Appliance Bo. 104
Independent Radio Supply ©o. 82-110
Sewell Electrical Instrument Co. 102
ononston. Charies If. $\therefore 0$
Jones Eilec. \& Radio Mfg. Go. 130
Kariowa Radio Corpn.. The 91
Kelly \& Phillips
Kelly \& Phillips 8\%
Kimley Electric E.
94
94
Klaus Radio fo.
98
98
Kuebler Radio Co., The 130
Kaing, A. K. Radio Co. 120
laughter, V. H. 120

PUBLISHED OCCASIONALLY IN QST BY THE CONTINENTAL RADIO AND ELECTRIC CORPORATION

PARAGON . reduced

Was $\$ 85.00$, now only $\$ 69.50$

IN AN EFFORT to reduce the H. C. of Radio, we announce this important price reduction. lt is based on present day replacement costs for raw materials; on increased production; and on our willingness to sacrifice profits to start things moving in the right direction.

The famous R.A. Ten-now $\$ 15.50$ lower than ever before. The identical instrument that hundreds of amateurs have endorsed so heartily!

All the famous Paragon features are still the same: the remarkable amplification that has astonished all hearers, the wide range to which Paragon Engineers have applied this amplification, the 24% greater sensitiveness and selectivity than even the noted R.A. 6 and all the little niceties of design that have made Paragon the most admired receiver in the world.

Now is your opportunity to make your station the pride of your district Buy a genuine Paragon at this revises price, and save enough for a VI Detector outit.

Continental stands back of every Paragon to see that you get full valu out of its years of service. Ask you radio dealer to show you the splendic construction of a Paragon receiver. I he hasn't one in stock, he will gladly get it if you ask him.

Or, send for Free bulletin, direct to Continental Radio and Electric Corp. Dept. B11,

6 Warren St.
New York City
western amateurs:
Examine Paragons at these enterprising dealers:

RAY-DI-CO
1547 North Wells Street, Chicago, Illinois and

THE BENWOOD COMPANY
13th and Olive Streets, St. Louis, Missouri

2ZL Says:
The Paragon has proyed especially satisfactory in C.W. work, because of the entire absence of any smpacity effect

Licensed Under Armstrong and Marconi Patents

QST ALL A.R.R.L. MEMBERS

Do you wear the Emblem of your League?
Every A.R.R.L. man should display the gold and black diamond of his organization.

Radio has taken a firm grip on public interest.
Daily hundreds are seeking more light on Citizen Wireless.

As a member of the A.R.R.L. you can be a power in amateur radio in your community. Wear your emblem and proclaim yourself to the world as a part
 of the greatest association of Radio Amateurs in existence, the AMERICAN RADIO RELAY LEAGUE, Of the Amateur, By the Amateur and For the Amateur!

The official A. R. R. L. badge may be worn by League Members only.

It is of extra heavy 14 K rolled gold and black enamel, and may be had in either pin or lapel button style.

Write to A. R. R. L. Headquarters, Hartford, Conn., specifying type of emblem desired, and enclose only $\$ 1$. Your badge will then be mailed you promptly, postpaid. WEAR YOUR EMBLEM!

THE A.R.R.L. NEEDS YOU!

F you have a genuine interest in
Citizen Wireless you are eligible for membership.

The A. R. R. L. is a National, Non-Commercial Association of Wireless Amateurs, and is the leader in amateur thought and activities. Its field extends from the Wireless 'Phone to the Long Distance Relav Station: its membership comprises the listener and the operator, its aim is to further the orderly and lawful work of Citizen Wireless in all its branches.

Write to the American Radio Relay League Headquarters at

Hartford, Conn., enclosing your yearly dues of $\$ 2$. You will then be formally entered as a member of the A. R. R. L. and a Certificate of Membership, good for one year, will be mailed you. You will also receive 12 issues of QST, the League's official publication.

QST will keep you in touch with the manifold forms of amateur activity. Its advertising pages show the best apparatus in the country, backed by reliable manufacturers and dealers. Patronize the advertisers and benefit yourself; mention QST when writing them and benefit your magazine.

The Recognized Symbol of Superior Performance

Ideal for Radiophone Reception

Absolutely Unexcelled Anywhere

EFFICIENT RECEIVING UNITS IN SOLID MAHOGANY CABINETS

These high class Receiving Units were designed by the Amrad Company which has already produced over $\$ 700,000.00$ worth of radio equipment for the U.S. Government.

Referring to the development of a Submarine Detector for the Government, the Naval Consulting Board (Thomas A. Edison, Chairman) wrote:
"Taking into account the skill displayed, the speed in getting out needed apparatus, and the quality of workmanship on all of the apparatus produced, this performnance of the American Radio \& Research Corporation was the most remarkable with which we have ever been in contact."
This same skill, this same efficiency and quality of workmanship which prompted
official commendation, is now concentrated on the manufacture of the best amateur radio apparatus-quality apparatus for less money than can be obtained anywheresuch as the new Receiving Units illustrated above.

Short Wave Tuner, No. 2596, Price $\$ 45.00$ Detector 2-Stage Amplifier, No. 2634, Price . . . 47.50

Complete technical details are
contained in Bulletin L-1.
Have you sent for your copy?

The new " S " Tube, WITHOUT A FILAMENT, will be on the market as a RECTIFIER soon after the first of the year. Tubes for all other purposes will follow as soon as possible.

Send 10c for Complete Arad Catalog.

American Radio and Research Corporation

GENERAL OFFICE AND FACTORIES
205 College Avenue
Medford Hillside, Mass.
(Suburb of Boston)

[^0]: thead before the First National A.R.R.L. Convention, Ohicago.

 - Asst, Professor of Electrical Fngineering. University of Minnesots

[^1]: *Director of Publicity, The Magnavox Company.

[^2]: 3ARN－3HS，Washington，D．C．
 Spark：（AARY），（IAW）（IBGF），（IIA）， （1ADT， $1 A D W$ ．AHU，lALK．AFİ，（11A）， ASF，$A Z K, ~ I \triangle Z Y, ~ B B D C$ ， $1 B F Z, ~ B R W$ ，$B B V B$ 1DY， $1 F M, 1 F V .1 G M, 1 H O, 1 O H,(1 Q P), 1 R V$ ，

[^3]: 6AS，San Francisco，Cal
 （ 6 AK ），GABX，（GACY，GADL，（ 6 AEW ）．GAEZ （ 6 AGF ）．6AHP，（ 6 AID），6AIB， $6 \mathrm{AIO}, 6 \mathrm{AJH}, 6 \mathrm{ALT}$
 GAWV，（ $6 \mathrm{~F} A)$ ，（ EEB ）．GEN，$\in E R$ ，GFK．$\Theta F S$ ． （ 6 GF$) .6 \mathrm{GI}, 6 \mathrm{GP},(6 \mathrm{GR}), 6 \mathrm{GX}, 6 \mathrm{HY},(61 \mathrm{C}),(6 \mathrm{ID})$ ， GIS，6［V，（6．JE）．（6KA），6KC．कKE，6KS，（6KY）．
 6SA，6SK，6TUi．6UO，（6VX）．6ZA．6ZB，6ZU， （6ZX），（7BP）．7ED，7G．J，（7HF），$I \mathrm{IN}$, ？ $\mathrm{TU}, 7 \mathrm{JW}$ ， $7 \mathrm{KJ}, \quad \div \mathrm{LU} .(7 \mathrm{MF}) .7 \mathrm{MW}, 7 \mathrm{MP}, 7 \mathrm{NL}, 7 \mathrm{TJ},{ }^{\prime} 7 \mathrm{YA}$.

[^4]: A storage battery of superior construction. The

[^5]: Southern Radio Laboratory
 Box 425
 Phone 136
 Dublin, Texas
 Dear Old Man:
 class with us, so 1 m writing want to be in the DX You drop the SOUTHERN RADIO LABORATORY at Dublin, texas a line (or a mesgage to their testing station 5XI) and ask about their famous SUPER DX Equipment, they will furnish you with sp cial instructions with their instruments that will enable you to build the right serial, ground and to tune your set. Now hurry OM 1 want to see your stn in the calls heard dept. of QST.

 Your friend.
 Q. 5. A. Very.

