
$\mathbb{D E V O T E D} \mathbb{E N T I R} \mathbb{E} \mathbb{1} T \mathrm{O}$
AMATIUR RADIO
PUBLIfHED NANCE 9915 IBY THE AMERIGAN RADIO RHLAY LEAGUE INC.

TRANSMITTING CONDENSERS

Type 334-T Transmitting Condenser,
Canacity 100 MMF . . Price $\$ 4.25$
Type 334-V Transmitting Condenser,
Capacity 50 MMF . . Price $\$ 3.75$

The Type $334-\mathrm{T}$ and V Transmitting condensers have double spacing for use with voltages up to 2000. They are especially adapted for use in short wave transmitters. Plates of both the rotor and stator groups are soldered together to insure perfect electrical contact.

INTERCHANGEABLE INDUCTANCE and COUPLING COILS

The ty pe ${ }_{2} 77$ Coils are so shaped in the ratio of diameter to length, the material so chosen and the
 construction such that they have very low losses. Mounting holes are arranged so that the Type $\because 7 t-\mathrm{P}$ Plugs may be inserted and the coils used interchangeably in the coil mounting bases. Supplied in ranges from 50 to 600 meters also in an unwound coil form. Priced from 75 c to $\$ 1.50$ according to range.

Type 274-B Mounting base. . . $\$ 1.00$

TYPE 277 COIL with Mounting Base

Professional set builders who are unable to secure General Radio apparatus from their local jobbers are reminded that we are prepared to serve them. Write for our latest bulletin No. 929.
30 State St., Cambridge, Mass. 274 Brannan St., San Francisco, Calif.

0NE of the 60,000 volt air dielectric fixed condensers recently designed and built hy CARDWELL for a 50,000 watt broadcasting station. This is believed to be the largest air diclectric condenser ever built by any manufacturer of a standard line of radio condensers or accessories. Especially designed with a view to minimize losses through corona effects. Plates are dexigned to permit voltages approximately two-thirds higher than could ordinarily safely be used with flat plates.

42 inches high, 30 inches in diameter, weight 375 pounds. Built entirely of polished brass where metal is used.

As the trend among broadcasters seems to be toward increased power, CARDWELL is prepared to furnish similar condensers on special order. Prices on application.
FOR BEST RESULTS ~. CARDWELL FOR CONDENSERS

The rigidity of CARDWELL Taper Plate Condensers makes them particularly well adapted for short wave receivers and low pover transmitters. Scnd for literature.

$\mathbb{T h e} \mathfrak{A l e n}$ 刃. $\mathbb{C a r d w e l l}$ flff. $\mathbb{C o r p}$.
 81 PROSPECT STREET
 BROOKLYN, NEW YORK

STANDARD
0 F

WHEN you buy an clectrified radio or power supply unit for your receiver, look for Acat: Parvolt Condensers; they are your guide to quality in all other parts. They cost the manufacrurer a crifte more, but they are both his and your guarantece against eostly condenser break-down.
shouid you buid your own power supply, be sure to use Acme Parvolet Condensers and be safeguarded against the possibility of break down. Remember that poor filter condensers have caused untold thousands of dollars worth of loss in the pase year or two. for blown out aondensers mean blown rubes, burned out transformers and frequentiy the ruination of speaker units,

Just as Parvolu By-Pass Condenscrs have been used for years in high grade

foceivers, so are Parvost Filter Condensers rapidly rephang, ordinary condensers in efectrifed radio. These condensers are wound with the very finest insulating papers combined with highest grade foils. Xevery detail profuced in one of dmerica's most modern plants and under the supervision of experts in condenser design and manufacture.

Uniformity of capacity and uniformity of stzes are two big fatures. Accuracy of all ratings, based upon the R.M.A. standards is another guarantec of uninterrupted service. Play sale with Parvolts!

Made by The Acme Wire Co., New Hisven, Comb, manufacturers of magnet and enameled wire, varnished insuldtions, coil windings, insulated tubing and radio ables.

ACME PARVOLT CONDENSERS

Made by the Manufacturers of
ACME CELATSITE WIRE

celatiolte
Flf:XIBLE and SOLDD

SPAGHETTI

Section Communications Managers of THE COMMUNICATIONS DEPARTMENT, A.R.R.L.

Fastern Jennsylvania E. L. Maneval 1470 W. Fourth St.				Willamsport, Pa.
Southern New Jersey	$\begin{aligned} & 3 A I S \\ & 6 F G \end{aligned}$	inr, 1T. H. Laỹon M. J. limtvsih	805 Washington St. FSox 2! R RFFD 1	Wilmington. Del. Cianbury.
Western New Yurk	8P.T	C. S. Taylor	¢qux Masten St.	Butralo
Western ${ }^{\text {Pennsyivania }}$	$8 \times \mathrm{E}$	G. L. Crossley		State College
CENTRAL DIVISION				
Illinois	9AAW	TV. Es. Schweitzer	1264 Hazel Aro.	Chicago
Indiana	ACYQ	13. J. Angus	310 N . Illinois ft.	indianapolis
Kentucky	9ARU	1.) A. Downard	116 No. Longworth Ave.	Louispille
Mifehigan	scep	Tallar Wise	9187 Falcon Ave.	Detroit
Oh10	8 BYN	H. E. Storck	694 Carpenter St.	Columbus
Wisconsin	9 VD	c. N. Erapo	413 Newton Ave.	Milwauke
	DAKOTA DIVISION			
North Taknta	9EFN	C. R, Mnir	6i.18 11th Street, South	Fargo
South Daknta	9 gR	F. J, Reck		Milbank
North Minnessta	9ESTO	C. $L_{\text {d }}$. Rarker	3538 Thlrd Ave So.	Henning
South Minnesota	9 BYA	D. IV. Cottam	3538 Third Ave. So.	Minneadolis
DELTA DIVISION				
Arkansas	SAIP	Leonard ollippard	2408 North Plerce St.	Little Rock
Louisiana	5UK	C. A. Freltar	12 Ec Camp St.	New Orleans
Mississippl	5 AKP	7. W. Gullett	3708 e3rd Avo.	Merinian
Tennessee	4 KM	L. K. Rush	4 Second St.	Bemis
HUDSON DIVISION				
Fastern New 'York	2.ADF-2AXB	Farle Peacnx	Rnx 113	Yonkers
	2CWR	F. H. Mardon	1309 W. Farms Hd.	N. Y. ${ }^{\text {V }}$
	2WH	A. G. Wester. Jr.	50 Princeton St.	Maplewood
	MIDWEST DIVISION			
Iown	9RTKV	A. W. Kiruse	Rt. 5. Rox 19	Akron
Kıusas	gDNG	F. S. McKeever	13255 W . Campus Rd.	Lawrence
Missnuri	9 RR	1. B. Lalzure	Sill Merciar St.	Kunsas City
CVebraska	4BYG	C. B. Delhl	5605 Cedar St.	Omaha
		NEW ENGLAND DIVISION		
Connnecticut	1RM	H. E. Nichols	S\% Elmwood ave.	Bridgeport
Maine	18IG	Frederick Rest	13 E , Orescent St.	Aupusta
Easiern Massachusetts	1116	E. It Rattey	33 koyal sit.	Wilaston
Western Massachusetts	11)B	A. H. Carr	30 Vaxxar st.	Wrrcester
New Hampshire	1. ${ }^{\text {PTJ }}$	V. W. Hodge	${ }_{22}^{227}$ Main Summer St.	Westerly
Vermont	18VB $18 J$	D. B. Fancher (. T. Kerr	92 Summer St.	Westerly
		NORTHWESTERN DIVISION		
Alaska*	TDE	I. H Machin	Bnx 452	Cintova
liaho	7ST-7ALD	Henry Fletcher	i.610 N. 10th St.	Hoise
Montana	7AAT-79T	O. W. Viers		Rert Lodge
Oregon	TPP	K. H. W'right	810 Ross st.	Portland
Washington	5FD	Ottn .Inhnson	4340 30th Ave. $\$ 7$.	Seattle
		PAGIFIC DIVISION		
Hawall	$60 \cdot \mathrm{CQ}$	F. 1. Fullaway	:714 Manoa Rd.	Honolulu
PVevada	610	C. R, Newrombe		Terington
	6AM	T). E. Wallace	109 W . Third St.	Long Beach Callf.
Sinnta Clara Valley	6 NX	Fi. quement	259 Hanchett Avo.	San tose
Eiast Mav	bever	\% Walter Frates.	3 mis bend sit.	Oakland
San firancisco	${ }_{\text {GVR }}$	J. W. Patterson	1338 Fell St.	San Francisco
Sarramento Valley Arizona	hCRS GANO	C. F. Mason		Sucramento
Philippines*	ODIAT	Jose E. IImenez	Ssis Man Fernando st.	Manila
San hiego	${ }_{\text {¢ }} \mathrm{BQ}$	Q. A. Sears	${ }^{2} 36$ Rnair St	J, Jolla
North Carolins	4,7R	R. S. Morris	413 \& Broad st.	Gastnia
West Virginia	\$HD	(C. S. Hottman	$1 \because \mathrm{~K}$ chantal Court	Wheeling
		ROCKY MOUNTAIN DIVISION		
Colnrado Ittah-Wyoming	3CAA	C. R. Stedman	1641 Athion st.	Denver
	${ }_{6} \mathrm{HM}$	Don C. Mcrae	214 Helreilers Apts.	Sult rake City
		SOUTHEASTERN DIVISION		
Alabama	\%ATP	A. D. Trum	317 Catoma st	Montzomery
Florina	4LK	C. E. Finulkes	50% spearing st.	Jacksonville
Georgia-South Carolina-C	Cuba-Porto Rico 4 KU	nf Pine H. L. Reid	11 Shadowlawn Ave.	stlanta
		WEST GULF DIVISION		
Northern Texas	FAKN	.7. F. Robinson, ir.	So romberiand St.	Dallas
Oklahnma	5APG	K. M. Ebret	$2904 \mathrm{~N} . \mathrm{Rohinson}$ St.	Oaklahnma city
Southern 'Texas Sew Mexico	?.FR	E. A. Siahm	$146 \mathrm{~N}, ~$ dudemy st.	New Rranniels
Siew miexico	3'TT	MARITIME DIVIGION		Turumeari
Nempoundland	8 AR	Loyal Reld	Avalon House	St. Sohns
New Rrunswick	1 EI	T. R. Lacey	Mo N R Power Co	St. Tohn
Novid Simtia	1 DD	W. C. Borrett	14 Sinclair Sit.	Tartmouth
Prince Eidward Island	1BZ	ONTARIO DIVISION		Charlottetown, P.
Ontario	9RJ	W. Y. Sinan	167 Close Ave.	Tornnto
		QUEBEC DIVISION		
Quebec	2BE	dlex Reit	169 Iogan Are.	St. Lambert
		VANALTA DIVIS		
Alherta	4 7 T	A. H. Asmussen	11723 111th Ave.	Esimonton
British Columbia	5 BJ	E. S. Broniks	\%\% Forestry Dept. Radio	O Court House, Va
		PRAIRIE DIVIS		
Manitoba	$4{ }^{4} \mathrm{~F}$	D. B. Sinclair	20% Cambridge st.	Winnideg
Saskatrhewan	4 FC	W. J. Fickerinz	514 19th St. W.	Prince albert
*Temporary officials anpo SCMs by the nomination	ointed to act un n and election.	the membership of the	tion concerned choose perm	manent

B Orn with a heritage of 19 years of outstandind radio leadership, endowed with tonal beauty, selectivity and ease of operation, the Grebe Synchrophase A.C Six is presentedthe newest member of a famousfanily.
This receiver uses A-C (alternating current) tubes and entirely eliminates batteries and socket power units. Sust plug in to the light socket and listen.
Incomparable range and selectivity-sincle illuminated dial-freedom from A.C hum --maximum volume without distortion and other new Grebe improvements enable you to
get better local and distance reception.
The Grebe Synchrophase A.C. Six is truly the battery-less set for which you have been waiting. Hear it to-day. Then you will have a complete demonstration of what expert, painstaking radio engineering can accomplish.
Grebe Natural Speaker (illustrated), $\$ 35$; Grebe No. 1750 Speaker, $\$ 17.50$. Where alternating current is not available, the Synchrophase Seven, \$135; oir the Synchrophase Five, $\$ 95$. You will be interested in Booklet Q which fully explains the new Grebe A.C'Six. Sent upon request.

A. H. Grebe \mathcal{E} Company, Inc., 109 West 57th Street, New York City

4

 Jhe Official Organ of the A.R.R.L

Editorials 7
Official Wavelength Stations 8
Bome Investigations of Short Waves at Nijni-Novgorod Wladyslau W. Crzybowski 9
A.R.K.L. Technical Information Rules 14
Sitandard Frequency 'Transmissions from 9XL 14
luw-Hower. Flexible Crystal-Control for Four Amateur lands . S. P. MeMinn 15
The A.R.K.L. Moard Meets 21
Notes on the Design of Iron-Core Reactances Which Carry Direct Ourrent
1). E: Fieplogle 23
A Transmitter Without Transformers 24
Standard Frequency Transmissions from WWV 28
Designing Fixed Resistors :
SDPO 82
The (TX-250-CX-350 Tube 36
heving Master-Oscillator Circuits 37
Easy Tuning in Short-Wave lBands 39
Financial sitatement 40
A Portable Rereiver 41
Variable A-, B- and O-Power irom D. ©. Mains 43
Experimenters' Section Report 44
Communications Department. 46
I.A.R.U. News 58
Cialls Heard 89
Correspundence 60
West Gulf Division Convention 88
Hamads 91
QRAS 93
Index of Advertisers 94

QST is published monthly by The American Radio Relay league. Inc., at Hartiord, Conn., U. S. A. Official Organ of the A.R.R.L. and the International Amateur Radio Union

Kenneth B. Warner (Secretary, A.R.R.L.), Editor-in-Chief and Business Manager
F. Cheyney Beekley.

Managing Editor and Advertising Manager

Rubert S.
Rechnical Editor
David H. Houghton,
Circulation Manager
Subscrintion rate in United States and Possessione, Ganada, and all countriesin the American Fostal Union, ge.so per vear. bustnaid. Sincle copies, e5 cents. Forelgn countries notin American Postal Uninn. \$3.00 per year, postpaid Hemittances sinould he by international postal or express inoney nrier or bank draft negotiable in the U. B. and for an equivalent amount in U. S. funds.
bitered as seciblid-clans inatter Mray 29.1919 , at the nost office at Fartford, Connerticut, under the act of March 8 , 1879 . Acceptance for mailing at special rate or nostage provided for in section 1103. Act of October 3. 1917. authorized September y. 1922. Idditional entry as smennd-class matter, acceptable at sweial rate of postage provided for abupe, at springfleld, Nass. allthorized Sedtember 17, 1924.
Copyright 1928 by the American Radin Relay Leagun. Ine. Title registered at United States Patent Oifice.
Member of the Radio Vagazine Publishers' Assoclation.

The American Radio Relay League

The American Radio Relay League, Inc., is a non-commercial association of radio amateurs, bonded for the promotion of interest in amateur radio communication and experimentation, for the relaying of messages by radio, for the advancement of the radio art and of the public welfare, for the representation of the radio amateur in legislative matters, and for the maintenance of fraternalism and a high standard of conduct.

It is an incorporated association without capital stock, chartered under the laws of Connecticut. Its affairs are governed by a Board of Directors, elected every two years by the general membership. The officers are elected or appointed by the Directors. The League is noncommercial and no one commercially engaged in the manufacture, sale or rental of radio apparatus is eligible to membership on its board.
"Of, by and for the amateur", it numbers within its ranks practically every worth-while amateur in the world and has a history of glorious achievement as the standard-bearer in amateur affairs.

Inquiries regarding membership are solicited. A bona fide interest in amateur radio is the only essential qualification; ownership of a transmitting station and knowledge of the code are not prerequisite. Correspondence should be addressed to the Secretary.

Directors

President
Pricy Maxim
Harawer 2102,

Vicp-Preaident
HARLES H. STEWART
§it. David's, Pa.

Canadian General Manager
Mril Blds
Toronto, Ont.

Atlantic Diviaion
. EUGENE C. WOODRUFF
4 W. Fairmount Ave.,

Central Division
CLYDE E. TARR
Ave, Hishland Park, Detroit, Mich.

Dakota Division
Dept. of M. Elec. Eng.. U. of M., Minneapolis, Minn.

Delta Division
BENJ. F. PAINTER
Hamilton Nat'l Bank Bldg.,
-
DR. LAWRENCE \&. DUNN
480 East 19th St.
Brooklyn, N. Y.
PORTER H. QUJINBY
817 Lauderman Building.
Neve England Diviaion Darlioit A. WHITE artmouth College

Northzoestern Divizion
E. W. WEINGARTEN

19 No. 24th

Officers

President Hiram Percy Maxim, Hartford,Conn.
Vice-President Chas. H. Stewart, St. David's, Pa.
Secretary Kenneth B. Warner, Hartford, Conn.
Treasurer Arthur A. Hebert, Hartford, Conn.
Communications Manager . . F. Edward Handy, Hartford, Conn.

Pacinc Division 55 Market St Southern Parific Co., San Francisco
W. TREDWAY GRAVELY

Box 245 .
ocky Mmentain Diviaion
FAUL M. SEGAL
eo District Attorney Denver, Colo.

Southeastern Division
o Dobbs \& Wey Co., Atlanta, Ga.

Weat Gulf Dinininn
FRANK M. CORLETT
2515 Catherine St.0 Dallas, Tex.

EDITORIALS

THE Washington Convention of 1927. embodying the results of the recent international radiotelegraph conference, will offer many grave problems for amateur radio when it becomes effective the first of next year. We have said that amateur radio can find a way to get along satistactorily under this convention and that in fact the necessity of hitching up our jeans and tackling some really difficult jobs is going to act as a spur to new effort which will put a tremendous zest in the old game. It is now time we set about the solution of some of these problems. Admittedly it won't be possible to foresee all of them. Some of them can't be planned for until they crop up next year. But many of them can be foreseen and these we should plan for now, perfecting our arrangements during the balance of 1928 so that we can carry on smoothly next year under the new regulations.

The problems are introduced by the operating restrictions of the new convention: the narrowing of amateur bands and the fact that the amateurs of every country will have to operate in the same bands. The difficulties are of two major sorts: technical problems and operating problems. The technical problems are those brought about by the necessity for many thousands of stations operating in the same restricted bands, making it essential that we achieve an altogether different order of stability of frequency, sharpness of wave, goodness of note and precision of adjustment in our transmitters than we have had in the past; an altogether different order of accuracy of reading in our frequency-meters; an altogether different order of selectivity and precision of control in our receivers. These are jobs which should be whipped during 1928, so that we will be ready for the new conditions when they come. They are jobs for QST, and QST is setting about their solution, of which we shall have more to sav soon.

The difficulties of the other sort are those that we shall still have even after we have vastly improved transmitters and receivers: operating difficulties brought about by the fact that we amateurs of every country are put in the same bands. It becomes necessary to think about the purposes for which we should use our various bands and how we may introduce a certain measure of coopperation in their use
so as to insure satisfactory communication. The problems of this latter class came in for a lot of heavy thinking at the recent meeting of our A. R. R. L. Board of Directors and finally resulted in the adoption of some policies. These are here set. forth for the dual purpose of informing the A. R. R. L. membership and of seeking the coüperation of the amateurs of all the world.

Long-distance international communication is almost the greatest single amateur interest. It is not the most vital amateur activity but it is very important. It must be preserved. With the amateurs of every country assigned the same wavebands, it is apparent that coopperation amongst ourselves is imperative if we are to have international contact. The A. R. R. L. Board is convinced that a friendly division of the international amateur waves is desirable in the interests of international communication and wishes to propose a plan to that end, a plan under which the amateurs of each continent agree, even if assigned the full width of the international bands by their governments, to confine their transmissions to a certain part of the bands and to stay clear of other parts that are used for transmission from other continents. If this is done we shall have international QSO if we can achieve enough selectivity to work our man through the interference of other stations of his continent. If it is not done, international DX will be just about hopeless through the QRM of all the world, including our own continent. Amateurs are human; their observance of any plan will be imperfect, either from technical inability or normal human frailty; but it is our one chance to preserve DX, the one way out, and we must try it. There is another very important angle. Many of the less liberally disposed governments may not assign their amateurs the full width of the amateur international hands but only a fraction thereof. These small assignments, left to the vagaries of governments, could easily be so unrelated as to produce a condition of mutual interference under which the amateurs of two important cosuntries would never be able to achieve communication. On the other hand, with a definite plan to work towards the amateur societies of the world could ask their governments for assignments that at least included the frequencies sug-
gested for that country in an international cö̈perative scheme. Hence the added importance of developing a plan now, so that there may be time to take care of this important matter.

The international amateur bands are the 40 -meter band and the 20 -meter band. DX of course is possible on the 80 -meter hand too, but that will be needed for domestic communication and the A. R. R. L. proposes the plan of division only for the two shorter-wave bands. It adopts the territorial subdivision suggested by the I. A. R. U.: Europe, North America, and "the rest of the world", and suggests that in both the 40 -meter and 20 -meter bands the amateurs of North America work in the long-wave half of the band, the amateurs oï Europe in the bottom quarter, and the amateurs of the rest of the world in the intermediate quarter of the band. Let us tabulate this and put it in terms of frequency:

40-meter band
20-meter band
T.000-7.150 ke. North Amerira $14,000-14,200 \mathrm{kc}$. 7.150-7,2こ5 ke. Hest of worid extept Eumpe $14,200-14.300 \mathrm{ke}$. 7.225-7.300 ke. Europe $14,300-14.400 \mathrm{kc}$.

This is not a perfect plan but it is the best that it has been possibie to devise. It does offer hope. and there is no hope without a plan. More elaborate subdivision seems impracticable in an initial plan; practice will indicate the desirability and practicability of modifications that will meet further need. It is thought that this plan does meet the major needs of the situation. The amateurs of North America are sufficiently interested in having good international contact to propose to stay out of half of the available frequencies
which certainly should be accepted as fair enough by the amateurs of the other countries when it is realized that North America has three times as many amateurs as the rest of the world combined. The League proposes this plan for the consideration of amateurs in other countries and offers, if it is acceptable, to recommend to American amateurs that they keep their transmitters clear of the waves used by other nations, so that international QSO may be possible.

The League recommends to the amateurs of the world that the 80-meter band be considered as primarily a national and in-tra-continent band, for what might be called domestic communication, and that it not be the subject of an international agreement. It recommends that the 40meter and 20 -meter bands be considered as primarily for long-distance international work, and that, because of the great congestion they will suffer, they be used for intra-continent work only on distances of over 1,500 miles. The League does not suggest that any of these proposals be incorporated in law or regulation anywhere. but that they be adopted purely as a basis for organized coöperation. In sponsoring this plan the League feels that some friendly agreements on the international waves are essential and it believes that the suggestions herein related are best calculated to produce the desired results. By this article and by letters which are being written to national amateur societies it lays this plan before the amateurs of the world as the best and fairest plan it is able to devise, earnestly urging its acceptance, and awaiting and soliciting comment and reac. tion from arnateurs everywhere.
K. B. W.

Official Wavelength Stations

THE Official Wavelength System furnishes a service coöperative with, but differing from, that of the Standard Frequency Stations 9XL and 1XM. which are also operated in accordance with plans made with the O.W.L.S. Committee. Contact with the O.W.L.S. is through Mr. D. C. Wallace, 6 AM . who is also chairman of the committee. Mr. Wallace is continuing the practice of checking up all O.W.L.S. to make sure that they are really indicating their wavelength (or frequency) at the end of each transmission-and are doing so with proper accuracy; which is to say 2%. They do this in the course of regular operation and do not send calibration schedules as do the S.F. stations.

The list is as follows:

1AAC, $1 A V W, 1 A W W, 1 B H W, 1 B Z Q$, $10 \mathrm{CW}, 1 \mathrm{CK}, 1 \mathrm{KP} .12 \mathrm{~L}, 1 \mathrm{ZO}, 2 \mathrm{CLA}, 2 \mathrm{DS}$. $2 \mathrm{MU}, 2 \mathrm{SZ}, 2 \mathrm{XI}, 3 \mathrm{APV}, 3 \mathrm{BE}, 3 \mathrm{XW}, 4 \mathrm{LK}$, $5 \mathrm{AGN}, 5 \mathrm{AKN}, 5 \mathrm{EW}, 5 \mathrm{MN}, 50 \mathrm{X} .5 \mathrm{PH}, 5 \mathrm{SP}$, $5 \mathrm{XBH}, 5 \mathrm{ZAV}, 6 \mathrm{AKW}, 6 \mathrm{AM}, 6 \mathrm{BB}, 6 \mathrm{BCP}$, 6BGM, 6BMW, 6BQB, 6CAE, 6CMQ, 6 CVO , 6LJ, 6QL, 6SX. 6TI, 6TS, 6XAG, 6XAO, $6 \mathrm{ZE}, 6 Z 2 \mathrm{H}, 6 \mathrm{ZV}, 7 \mathrm{AGI}, 7 \mathrm{BE}, 7 \mathrm{BU}, 7 \mathrm{GQ}$, $7 \mathrm{NX}, 7 \mathrm{QK}, 7 \mathrm{XF}, 7 \mathrm{ZX}, 8 \mathrm{AA}, 8 \mathrm{APZ}, 8 B A U$. 3BZT, 8EQ, 8GU, 8GZ, 8XC, 8ZG, 9AXQ, $9 \mathrm{BCH}, 9 \mathrm{BGK}, 9 \mathrm{BMR}, 9 \mathrm{CPM}, 9 \mathrm{CXU}, 9 \mathrm{DXN}$. $9 \mathrm{EFO}, 9 \mathrm{EGU}, 9 \mathrm{ELB}, 9 \mathrm{FF}$, 9IG, nc1AE. nc2BE, nc3CO, nc3NI, nc3FC, nc4BT, nc9AL, eg2OD, eg2SE, Ireland 5 NJT , oa2CM and ozeAC. Crystal Controlled O.W.L.S.: $\mathrm{NKF}, 1 \mathrm{AXA}, 2 \mathrm{BO}, 2 \mathrm{BRB}, 2 \mathrm{EF}, 2 \mathrm{WC}, 4 \mathrm{BY}$, $4 \mathrm{XE}, 6 \mathrm{AOI}, 6 \mathrm{DLL}, 8 \mathrm{CMM}, 8 \mathrm{DAJ}, 9 \mathrm{AUG}$. $9 B V H, 9 U Z, N R R L, 9 Z A$, eq2NM, eg5LF and oa5BG. Standard Frequency Stations: 1 XM and 9XL.

Some Investigations of Short Waves at Nijni-Novgorod

By Wladyslaw W. Grzybowski*

EARLY in 1925 a series of experiments on short-wave propagation was begun with the main objective of clearing up the best ratio between fundamental and working waves of an aerial and in the meantime to try out a transmitter using a large power such. as 25-50 kilowatts.

The theoretical diagram (Fig. 1) shows that the oscillator consisted of two 500watt valves type G. O. and a 25 -kilowatt amplifier valve especially designed for the experiments. The circuit is symmetrical Hartley. Grid leak R_{2} is connected directly to the center tap on the coil L , and consists of leak only without shunting capacity. Condenser O_{4} compensates some asymmetry of the oscillating circuit $L_{1}-C_{\text {, }}$ due to both plates of C, being not in the same capacitative coupling with the earth. The amplifier is coupled to the points A and B of the coil $L_{1} . R_{3}$ is the grid leak of the amplifier tube. The anode potential of the latter comes from a mercury arc rectifier giving 7000 volts. There are resistors of 100,300 and 400 ohms in series with the plate supply.

NIG. 1. DIAĠRAM OF THE FIRST TEST TRANSMITTER AT NIJNI-NOVGOROD
Two 500-watt type G. O. oscillators working pushpull in a symmetrical Hartley circuit feed the single 25-kilowatt amplifier which is directly coupled to the antenna. Resistances in the 7000 -volt plate supply of the omplifier regulate the power output.

Usually the circuit worked with the 100ohm resistor. For keying, the Klifden's relay (K) was employed in the plate lead of the power amplifier.
A single vertical wire $21 / 2 \mathrm{~mm}$. in diameter strung between two poles 95 meters high served as an aerial and with the wavelength 83 meters the Ro-to-R ratio

[^0]was 4.58; at 102 met $\mathrm{Ro} / \mathrm{R}=3.73$, and with antenna shortened a little so as to be 78 meters long and $\lambda=104 \mathrm{M}$. it was found that $\mathrm{Ro} / \mathrm{R}=3.00$.

The antenna current was about 11

A. THE FIRST TEST TRANSMITTER AT NIJNINOVGOROD CORRESPONDING TO THE DIAGRAM ON FIG.
This set worked in the 80 - to 100 -meter range and established contact with the South America and Australia in 1925.
amperes and it was noticed that with antenna current larger the wave became unsteady.

The intermediate filter circuit consists of condensers C and C_{2} and the E-F part of the antenna coil.

The experiments showed that signals were very steady, easy to read. very strons and covered the whole glohe. For instance. New Foundland reported signals to be much stronger than those of nearby American stations and San Juan (Porto Rico) reported signals such as to "deaden" the locals.

The experiments proved that the nower of the transmitter was more than sufficient to make consistent American-Europe communication possible although it was not possible at that time to point out the best ratio of $R /$ Ro at different distances and with different angles of radiation. At the same time it was obvious that in order to obtain regular contact with a distant point over the whole 24 hours of the day the
note of the transmitter must be improved and the wave must be something shorter on the order of $20-30$ meters．Finally the mercury are rectifier must be changed for a value rectifier．

The channel between Nijni－Novgorod and Tashkent（the latter in Turkestan） has very heavy traffic and an investigation

FIG．2．TEE SECOND NIJNI－NOVGOROD TRANS－ MITTER USED IN TESTS TO TASHKENT
The oscillating circuit is of the ultraudion variety and consists of the tube capacity together with the inductance of two parallel rods 1.1 and 12 which are connected by the adjustable iuning bridge M．This grave a tuning range from 20.3 to 33 meters．The santenna is voltage fed from a point adjustable along the induclance lig．This transmitter was used with the antenna shown in Fig．\％and a wide variety of other antennas as explained in the text．
of the short－wave communication between these points hecame necessary．Therefore from Suly 20th to the 23 rd of September， 1925．a second series of research work was carried out．

The transmitter was hurriedly assem－ bled，not with a separate oscillator，but

H．PORTABLE TRANSMITTER 100 WATTS RAT－ ING FED BY 1000 CYCLE A．C．
Transmitters of this type were furnished to an expedition going to Aldan and one was installed ai Nezametny．
using only one copper tube．Fig． 2 shows that the oscillating circuit consists of the internal capacity（plate－grid）and the in－ ductance of two parallel copper rods with
a bridge for tuning．The wavelength range was $20.3-33$ meters．Several aerials were tested：（A），vertical wire 2.5 mm ． diameter and $\left(A_{1}\right) 100$ meters．（ A_{2} ） 25.6 meters，and（ A_{2} ） 5.1 meters high；（B）， 3 stranded wires 140 meters long－aerial of a broadcast station－，（C），An aerial with upper radiation．

Fig． 3 shows antenna C．The feeder consists of 2 Lecher wires，an odd number of the quarter wavelengths high and one wire projects $<$－wavelength higher than the other．This projecting portion serves as a radiator．

It was noted that 20 －meter signals were heard better during the day than night． 25 meters equally well during the day and night and 30 meters better during the night time．The strength of QRN diminished with shorter waves．Higher aerials proved

BIG．刃．ONE TYPE OH ANTENNA USED WITH ＇THE OSGILLATOR OF＇FIG．2
This is of the type familiarly known as Zappelin． The 2 liecher wires \mathbb{N} and P together with the in－ ductance L is and the condensers $B 3$ make up a tuned system which is voltage fed by the jumper between Lis and LA．．Since the parallel part of the Leeher system M－N is $21 / 4$ wavelengths fong and the project－ ing part N－P is one－half wavelength long किe have a standing half wave on the projecting part．This type seems very desirable．
better than lower，e．g．，the aerial A＊ 5.1 meters high）was the worst．The verti－ cal aerial A：（ 100 meters high）and the broadcast horizontal（ 140 meters long） were identical．and the antenna with upper radiation was decidedly the best．

After this，some experiments were made to establish contacts between Nijni－Nov－ gorod，Tomsk，Irkutsk（Siberia）and Tashkent（Central Asia）．The photo B shows a 150－watt transmitter for an ex－ pedition to Aldan．One of this type was also installed at the goid field Nezametny．
In October， 1925 ，all primary arrange－ ments of＂radio field＂（simply an S．W． station near Nijni－Novgorod）were at the end and a third series of investigations was begun．

Two transmitters were installed for the waves 23 and 40 meters using the circuit
as shown in Fig. 4. Each transmitter consisted of a symmetrical oscillator with two 500 -watt tubes (type G.O.) and of an amplifier with two tubes of the same type. The power of the oscillator is a little more than necessary; this is to make the wave more stable. Keying is done by detuning the primary circuit. To facilitate the reception of the emitted signals to broaden tuning somewhat and to smooth out the

FlG. 4. A IATER TRANSMITTER INSTALLED IN DUPLICATE AT NIUNI-NOVGOROD FOR SERVICE TO TASBKENT ON 23

AND 40 METERS

As before, is type (i.d. inlo-watt oscillators are used in a symmetrical Hartley circuit but in this case the frequency is very slightly "wobbled" ai a high audio rate by the capacity choppers CC shunted across the tuning inductance Ll. The smplifier in this case is also of the nush-pull variety, uses iwo trpe $\% .0$. tubes, and its output is directly coupled to one of several types of antennas shown in the following.
possible changes of the wave, a frequency "variator" is employed. It consists of a cogged wheel rotating between two stationary plates, see photo © aud Fig. 4.

The antenna is coupled directly to the intermediate (tuned plate) circuit excited by the amplifier. Photo C shows the general view of the transmitter. The base of the transmitter does not touch the floor but is supported by iron tubes driven down directly into the ground. The construction of such a primitive "private base" for the transmitter is quite necessary for gaining stability. In the photograph the frequency "variator" is seen in the foreground. The tubes are air-cooled by means of a ventilator. Ordinary incandescent hulbs are inserted in the antenna lead-in as current indicators.

For the 28 -meter wave a directional phased antenna is generally used. It con-

C. ONE OF THE TWO TRANSMITTERS INSTALLED IN DUPLEX AT "RADIO FIELD". NIJNI-NOVGOROD FOR 2s-AND-4U-METER SERV: ICE TO TASHKENT
The diagram is shown in Fig. 4. Prominent in the foreground is the capacity chopper.

Abxifiary fiagran for Fig 5 sinoving that iower ends of atl ancennas are at an inspaset at sane witaze theretinern abuase.
FIG. \&i. THE "SYNPHASE" ANTENNA USED WITH THE TRANSMITTER OF FIG. \& AT 23 METERS
The vertical parts are each $1 / 2$ wavelength or 11.5 meters long and are fed from the Lecher wires which in turn are fed through a single pair of feeders from the station. The system is so phased that it radiates "broadside" that is to say toward or from the reader as he looks at the page. It is made unidirectional by putting behind it 8 similar system (without feeders) to act as a reflector and the resulting beam is inclined 5° upward by leaning the whole system backward by that angle.
sists of 5 vertical wires each ${ }^{1 / 2}$ i long- $=11.5$ meters. Such an antenna is shown in Fig. 5. The radiating system is here connected to two systems of Lecher wires in the
absence of feeders. On this wave an aiter-nate-phase antenna of 8 vertical wires has been tried also. It is shown in Fig. 6. At the same time the autenna with upper

MAP SHOWING THE KEGION WORKED OVER
potential nodes. ${ }^{\text {. }}$ From the middle point of the lower system 2 feeder wires are carried down to the station as shown in Fig.

FIG. 6. ANOTHER ANTENNA SYSTEM USED WITH THE TRANSMITTER OF FIG. \& AT $2:$ ME'TERS
In this case 8 vertical wires are used, each wire operating in phase opposition to its neighbor.
5. The plane of the antenna is at 5° angle to the vertical line (Zenith) so that the main beam has an elevation above the horizon of 5°. The system is used with a reflector which is exactly similar except for the

[^1]xadiation as hefore mentioned (Sec Fig. ©) has been tried out.

The comparison of these 3 antennas has shown that the best is the synphase sintenna (Fig. 5) (R8-9). Noticeably worse is alternate phase antenna (Fig. 6) (R6-7 and little fading) while the worst antenna is the one of Fig. ? with upper radiation (R5-6 pronounced fading-effect). The result is that the "synphase" antenna (Fig. 5) gave the best audibility and the smallest iading effect and also has very sharp directional properties.

It is interesting that when the antenna was worked while turned 8 degrees to the south from the steepest portion of the curve of radiation (which is normally pointing out to lashkent) the fading effect became decidedly noticeable in the morning and evening.

The fading-effect that comes out during the work of antennas of alternate phase (Fig. 6) and upper radiation (Fig. 8) may be explained by the fact that these antennas give less bower than the synphase one and fading-effect becomes more pronounced with less power.

For the work on 40 meters another sort of antenna with upper radiation is used.

It is shown in Fig 7. It consists of cage, 1% wavelength long and one meter in diameter. The lead-in wire is $21 / 2 \mathrm{~mm}$. in

FIG. 7. THE 80-METER VERTICAS ANTENNA USED WITH THE TRANSMITTER OF FIG. 4.
Radiation is chiefly from the upper half wave portion as is explained in the text, the lower portion serving mainly as a feeder.
diameter. The exclusive radiation from the upper part (cage) of the antenna is

FIG. X. FADING OUT OF SIGNALS IN TASHKENT IN NOV. 1925 AT A WAVELENGTH OF 23 METERS
Sunset in Tashkent at 12:00 G. C. T. Sunset in Nijni-Novgorod at 13:00 G. C. T.
due to the current in the node of cage being larger than in the lead-in according to $\frac{\mathrm{C} 1}{\mathrm{C} 2}$ cage in a unit of length and C_{2} is that of lead-in. In this case $\frac{\mathrm{C} 1}{\mathrm{C} 2}=3$.

Such a type of upper radiation antenna gives results equal to the type previously described and yet the wave is smoother and steadier. Such antennas are simple in construction, give excellent results and are greatly used by amateurs.

The main objective in conducting these experiments was to clear up the best suit-

D. THE TRANSMITTER FOR TASHKENT BEFORE INSTALLATION
It is of the same general type as the two at NijniNovgorod but of a later and more advanced form.
able time for the work on 23 and 40 meters. The experiments allowed to conclude that signals on 23 meters are heard better dur-

FIG. 9. REAPPEARANCE OF SIGNALS IN TASHKENT IN MARCH, 1926, AT 40 METERS
Sunset in Tashkent 13.10 G. C. T. Sunset in NijniNovgorod 14.5 G. C. T.
ing the day and on 40 meters during the night.

Curves in Fig. 8 and Fig. 9 show characteristic examples. The signal sometimes
fades out entirely, but frequently the audibility is changed more or less.

Diagrams in Fig. 10 and 11 allow one to compare the periods of audibility cor-

FlG. 10. DJAGRAM SHOWING THE AUDIBILITY OF :3 METER SIGNALS IN TASHKENT. THE SHADED PORTION SHOWS GOOD AUDIBILITY
responding to the sunset and sunrise in Nijni-Nóvgorod and Tashkent. The shaded areas show good audibility. The diagrams show that periods of appearing and fading out of signals are retarded with respect to

FIG. 11. DIAGRAM SHOWING THE AUDIBILITY OF THE $10-M E T E R$ SIGNAL IN TASHKENT
The shaded portions whow acrod audibility. Nnte that the (wo diagrams overlap, in other words one or hoth wavelengths work at all times.
sunset and sunrise. It is clear that waves of 23 and 40 meters lap over each other and that 21 -hour contact between NijniNovgorod and Tashkent is possible. It must be noted that the time of appearing and fading out of signals does not change regularly from day to day but changes irregularly. Perhaps this is due to some meteorological disturbances. Nevertheless when one wave fades out we have good enough audibility on the other. Covering would be better without doubt if more waves in the same band could be used.
This series of experiments gave as practical results improvement of our short-
wave transmitters, and of the emitted wave (which is now steady, well modulated and easy to take and to speed up). Directional work gave further improvement. A practical rule for working over the 2400 km . distance with waves of 25 and 40 meters during different times of the day and night was also found.
At the present time the experiments are being continued with the objective of clearing up the possibility of short-wave communication between Nijni-Novgorod and Siberia and the Far East (Vladivostok) and Central Asia.

A.R.R.L. Technical Information Service Rules

Please help us by observing the following rules:

1. Keep a copy of your questions and diagrams and mention that you did so.
2. Number the questions and make a paragraph of each one.
3. Make diagrams on separate sheets and fasten them to the letter.
4. Print your name and address (not merely your radio call) on your letter. Don't depend on the return address on the envelope as this is destroyed when the letter is opened.
5. Don't ask for a comparison of the various manufacturers' products.
6. Before writing, search your files of QST--the answer probahly is there.
7. Address all questions to Information Service, American Radio Relay League, Inc., 1711 Park Street, Hartford, Conn.
8. It is not essential to enclose an envelope as long as you supply postage and PRINT CLEARLY your name and address on your letter.

Standard Frequency Transmission from 9XL

STATION 9 XL is a special station, comprising one of the three portions of the "Gold Medal Station", WCCO-9XL9WI at Anoka, Minnesota. WCCO operates as broadcast station, 9XL purely as a standard frequency station and 9WI as a general amateur station, the three transmitters having independent equipment and antennas but a common power supply. Through arrangements made by K.V.R. Lansingh of the Official Wave Length Station Committee of the Experimenters' Section, A.R.R.L. 9XL is operated on schedules regularly announced in QST. The work of

[^2]
Low-Power, Flexible Crystal-Control for Four Amateur Bands

By S. P. McMinn*

WITH the narrowing of the amateur bands, and the probable increase in population density which likely will result within them; the importance of crystal control sreatly increases, not only must we crowd a greater number of stations within the confines of each so-called band, but we must do so without increasing QRM either to other transmitting amateurs or to our army of BCL firiends.

The expense of crystal control has been the chief reason it has not been more widely adopted, for the benetits of its bell-like signal, its sharpness of tuning. its positive and unfailing location in one and only one spot on receiving operator's dials are recommendation enough for its universal use.

Now that crystals generally are more reasonable in cost (according to friend Watts they aren't at all difficult to prepare in the home laboratory) additional interest attaches to the physical means of using them.

And that, in brief, is reason for this description of a crystal-controlled trans-

FIG. 1 THE OSCILLATOR CONNECTIONS
The filament supply is omitted for simplicity and can be found on the general diagram. Fig. 5. Cl-LI is the "tank" or tuned-plate circuit which can be seen at the left in the rear view of the net.
mitter that, if not the acme of simplicity, at least approaches it; that is so exceedingly flexible that it is possible to QSY in to

[^3]two places in each of the four amateur bands-20, 40,80 and 160 -that requires the minimum of junk, the least possible space in the shack and that is a first-rate, all around means of communication, excellent for local work and with distinct DX possibilities.

FRONT VIEW OF THE COMPLETE 20-TO-160METER TRANSMITTER
From left to right the meters are: crystal tube tank-circuit ammeter ($0-3$) : crystal tube plate-current milliammeter ($0-100$): a.c. filament voltmeter for all tubes (0-15): amplifier plate current milliammeter ($0-\mathrm{s} 00$). The D. P. D. T. switch is for changing the two amplifier tubes from d.c. (parallel) to a.c. (back-to-back self-rectified) operation.

Having pioneered crystal control work, I have about come to the definite conclusion that there is no particular advantage in high power. Repeated tests with inputs ranging from 25 to 200 watts have failed to reveal any startling difference in the signal strength reported by other stations. How much of this is due to the use of crystal control it is hard to state, but no doubt it is the crystal-clear, unwavering note that carries through atmosphere, QRN and QRM.

Hence, this newest transmitter of mine is built around a trio of 210 tubes. One is used as the oscillator and the other two as an r.f. amplifier. The beauty of the rig is that it can all be constructed of such receiving junk as may be around the shack. The condensers are ordinary receiving Cardwells, the chokes are receiving type and the plate blocking and coupling condensers are receiving type Sangamos.

So far, the rig is entirely orthodox and not at all startling. However, a degree of flexibility has been ohtained that is altogether out of the ordinary.

In the first place, the crystals, four of 'em, are in plug-in mountings and thus are rapidly changed. Next, the inductances
also are plug-in. And finally, the two tubes in the amplifier are so arranged with a double-pole double-throw switch that they may he worked either back-to-back, selfrectified, or in parallel with d.c. supply. When anyone says "QSS" I shift to RAC by flipping a switch, or use the buzzer modulation. If they say "QRM" I put in another crystal, swing the oscillator and

RYG. 2 THE AMPLIFIER DIAGRAM SIMPLIFIED HY OMISSION OF FILAMENT SUPPLY The main thing to he noted is that with switch SW. down the tuhes operate in parallel with rectified-andfiltered supply but with the switch up the two tubes operate back-to-back on a.c. suppiy. S.S are the three-year old tube rectifiers, Cheer up-we will have xomething of the sort again soon.)
amplifier tuning condensers a few notches, retune the antenna and GA. Nothing to it. Furthermore, it is a very simple matter
measures 24×10 inches. The whole transmitter fits nicely in a $7^{\prime \prime} \times 24^{\prime \prime} \times 10^{\prime \prime}$ standard cabinet.

CONSTRUCTION

Although the wiring diagrams tell about all that is necessary to know about the set, a few notes will help in building it. The inductances are wound of No. 12 bare wire on forms that once held Cardwell radio frequency chokes. They are 2 inches in diameter and were used chiefly because the form was handy and already equipped with plug-in jack tips.

The crystals are in circular Bakelite holders which are completely enclosed to exclude dirt and moisture. They never need be touched. The mounts are fitted with knife-blade type contacts which fit nicely into those parts from a small knife switch that the blade normally fits. It makes a very nice, tight, easily separable mounting.

The wiring was first done on paper, by putting all the apparatus on a sheet the size of the baseboard and drawing in the wires with pencil. After the various parts had been shifted about a bit the best arrangement for short leads, reduction of possible feed-back effects, and safety. was easily found. Then the wiring was done with No.

FIG. :3 CHART TO SHOW METHOD OF AMPLIFICATION FOR THE 9 DIFFERENT WAVELENGTHS-AIL CRYSTAL CONTROLLED AND ALL WITH THE SAME ANTENNA
to put Heising modulation on the amplifier and use phone, of which more later.

The whole rig is built behind a $7^{\prime \prime} \times 24^{\prime \prime}$ bakelite panel which holds all the meters, the tuning condensers and the switch for changing from r.a.c. to d.c. on the amplifier. The compactness of the affair may be judged by the fact that the baseboard

12 enamelled stuff which is easy to work but stiff enough to stay put.

the grystals

There are two crystals in the 80 -meter band, one oscillating at 77.8 and the other at 84.15; there is one in the 40 -meter band; and one in the 150-190 band. Thus, either
of the 80 -meter crystals can be used in that band and also in the 40 -meter band by doubling frequency; by quadrupling frequency, the 80 -meter crystals also furnish harmonics for the PA to amplify in the 20 -meter band. The 40 -meter crystal can also have its frequency doubled in the $20-$ meter band and gives better output at 20 than do the 80 -meter crystals. The 160 meter crystal works in its own band, of course, and also in the 80 -meter band by

It is therefore much better to use the 40-meter crystal * or to wire in an intermediate amplifier and double frequency twice. This is not so tricky because it does away with the need for neutralizing and gives better output.

There is nothing tricky about using a 40 -meter crystal except that it is wise to reduce the plate voltage a bit, say to 300 , and to be very careful that the circuits are properly neutralized if amplifying at

FROM THE BACK THE SET LOOKS LIKE THIS

Abstract

Reading from left to right we have first the amplifier inductance and two amplifiber tubes with their associated plate stopping condensers r.f. chokes, next the amplifier grid choke coil and in the center the nemtralizing condenser with the fixed oscillator-amplifier coupling condenser back of it and the oscillator filament by-pass condenser in front of it. After that comes the oscillator tube. in front of which are the pancake xrid and plate r.f. chokes while partly concealed behind the tube is the oscillator plate-circuit tuning condenser. Finally, at the right is the oscillator inductance and in front of it one of the crystals in its bakelite mountings. The whole thing is built on a $21^{\prime \prime} \times 10^{\prime \prime}$ baseboard behind a $24^{\prime \prime} \times 7^{\prime \prime}$ panel.

doubling its frequency in the r.f. amplifier. No attempt has been made to use the 160meter crystal in the 20 -meter band because the output undoubtedly would be exceedingly small; hesides, there is no need to do so. All of this is further explained by Fig. 3.

THE EXTRA $\{0-M E T E R$ CRYSTAL
In the list above and in Fig. 3 (see the *) there will be noticed a 40 -meter crystal. This is not strictly necessary. It is perfectly practical to quadruple frequency from 77.8 and 84.15 to 19.45 and 21.04 as shown at $\dot{\dagger}$ in Fig. 3. This is regularly done at 2 WC , especially since at 20 meters small power seems to go about as well as big power.

If you want corroboration of the fact that you can quadruple frequency in 1 stage, refer to that article by Glaser in June, 1927, QST'. However, the efficiency by that method is low and it is an expediency rather than a good way to do the job. This is so because the output when quadrupling from 80 to 20 is very small.
the same irequency. A 40-meter crystal is a very fragile animal and a surge or kick back that makes the thing vibrate too strongly is likely to cause edge chips. Too high voltage may puncture the thing and make it worthless. It is important, with any crystal for that matter, to use a very light top plate, a vertible featherweight. A thin dime smoothed perfectly flat is excellent. If a heavier top plate is used it imposes a physical burden on the crystal which must lift and lower the plate with each vibration and they vibrate darn fast! The result is that operation becomes unstable, the crystal is hard to start and heating results from the work the crystal must do. It is better, too, to use a top plate that leaves a generous margin of crystal all around it. This will prevent brushing between the top and bottom plates at the edges. It is not necessary ever to have the top plate completely cover the crystal, contrary to popular conception. Another popular misconception is that you have to strive by might and main not to have any more capacity in shunt with the
crystal than is absolutely necessary. Refer again to Glaser's article in which is described the use of three crystals in parallel with a switching arrangement to use cither. Thus he has tripled the capacity

PIG. A . MAGRAM OF ONF OF THE MODULATOR SYSTEMS

> This one uses a [iX-112 as a leak on the amplifier tube, The heavy wires are normal set wires and the light wires are added as part of the modulator. The lead from the rif.c. on the filament of the 112 mast not be over ? feet long. Try to find a truthful Bistener and increase the grid bias of the 112 until the voice starts to become fuzzz. If any of the batteries on the 112 are grounded tromble may follow. I dry cells are therefore recommended, likewise a weparate C battery, though the mike may work on the 112 filament battery if the latter be not g rounded. Things are simplitied if the mike cord has a plug to operate t filament-control jack for the 112.

> With a little more complication Heising modulation of the amplifier may be used. In this case the 112 becomes an audio amplifier, feeding ss pair of ¿il modulators thru a resistance-capacity-impedance coupling, which permits the same plate supply to operate the 112 and the amplifier-modulator combination.

> The simple sysiem shown here has the advantage for several reasons.

in shunt without disastrous or untoward results.

As a general rule, the lower the frequency of the crystal, within limits, the higher the plate voltage may be with safety. Thus you can use 550 to 600 on a 160 -meter cerystal, but 400 is safe on an so. Over at the Rell Lahs. in Whippany they are using 750 v. on a 500 -meter crystal through a $211-\mathrm{D}$ tube, with safety. of course the crystal is in a mounting that keeps its temperature constant, but this is unnecessary for amateur work.

THE ANTENNA

The antenna has a calculated fundamental of about 120 meters and consists of a single No. 12 enamelled sky-wire 100 ieet long and a single-wire counterpoise 75 feet long. It is tuned with a single con-
denser large enough to reduce the fundamental for 80 -meter operation; for 20 and 40, it is operated on harmonics. For 160 meters the antenna and counterpoise are tied together and worked against a waterpipe ground.

THE POWER SUPPLY

It is hardly possible to use the same plate power transformer for both oscillator and amplifier because of the poor regulation of transformer and xectifier combinations. In other words, with the key down a single transformer rectifier that would give 550 volts on the amplifier and not over 400 on the oscillator would produce well over 600 with the key up and this might easily endanger the crystal, to say nothing of putting an unnecessary strain on blocking and filter condensers. The power supply consists of a Thordarson R210 Power Compact for the oscillator. This furnishes filament current for the 216 B rectifying tube without the need for a filament rheostate. It also supplies exactly the proper voltage for the crystal tube.

The Thor 210 Power Compact uses a special transformer developed to furnish " B " power for an ordinary receiver and also 400 volts for a 210 amplifier. It also has two filament windings, one giving 75 volts without external center tap (which serves to heat the filament of the 216 B type rectifier tube) and the other piving $71 / 2$ volts with center tap. This second filament winding is not used because the transformer has not sufficient capacity to heat the filaments of all three 210 tubes in the transmitter. The 400 -volt winding gives about 500 volts on no load through a filter consisting of two mikes ahead of a 30-henry B-eliminator type choke and two mikes behind it. Under $10-\mathrm{mil}$ load the output voltage is slightly over 400 , and therefore is exactly right for crystal operation.

On the amplifier a Thordarson T-2098 furnishes plate power which is run through a Thordarson T-2099 choke (two 80 -henry chokes in series) with two mikes of condenser on each side of it. The co98 also supplies the filament current for the 281 rectifying tubes. The filaments of the 210's are all in parallel and fed by a separate transformer. The rectinier for the amplifier olate supply is a pair of 3 year old " S " tubes.

The reason for arranging the amplifier for the use of either a.c. (which, of course, becomes r.a.c.) or d.c. is because the a.c. is a bit broader, though not enough so to be objectionable to other nearby amateurs.

Some operators complain, justly or unjustly. of excessive fading when using pure d.c. on the amplifier. In such cases it is
sometimes helpful to be able to shift to a.c., which, with the singing, bell-like d.c. oscillator behind it has a peculiar and quite distinctive note that is pleasing to the ear and easy to copy. Also, the a.c. is often of assistance in raising stations that might pass over the razor sharp pure d.c. crystal note.

The only draw-back to using two tubes in the amplifier is that it is almost impossible to get a perfectly pure d.c. note. There is always present a slight ripple about $\tilde{5}$ per cent, I should say, though everyone reports the thing pure d.c. Still it is not as perfectly pure as when using a single tube in the PA. I don't know why this is, but it probably is not important. Anyway, a little ripple helps make the tone less monotonous! !

getting into operation

This little baby rig is about the easiest thing imaginable to get going and properly tuned up. You first get the oscillator going and tuned for maximum tank current with minimum mils. Put about 400 volts, rectified and well filtered a.c. on the oscillator. The tank current should be about three ampheres, using an 80 -meter crystal, and the plate current of the oscillator should be around 40 .

Then with the filaments of the amplifier tubes lighted, hut the piate power left off, vary the amplifier tuning condenser until you get quite a bit of current in that tank. If you don't get any, the chances are the thing is by lucky chance nearly neutralized, but generally you will get quite a lot.

When working 'straight through' with any of the crystals it will be necessary to neutralize to prevent feed-back from the amplifier to the oscillator and to permit the amplifier to be tuned properly to the oscillator frequency. When doubling, the neutralizer may be left on, or cut out with a switch, as desired. When quadrupling, the added capacity of the neutralizing condenser is too great and the neutralizer must be cut out of the circuit.

Then vary the neutralizing condenser and the amplifier tuning condenser until you reach an adjustment of both which gives practically no current at all in the amplifier tank and no appreciable movement of the oscillator plate milliammeter when the amplifier tuning condenser is passed through the resonance point.

The adjustment of the neutralizing condenser is quite critical, but don't get discouraged. It is entirely possible to neutralize the amplifier properly and it won't work right until you do. Move that neutralizing condenser only a hair at a time!

When neutralization has been effected. hit the key and see what happens, using low voltage on the amplifier tubes, of

THE TUNING INDUCTANCES OF THE SET. ALL, WOUND WITH NO. 8 BARE COPPER WIRE ON CARDWELL R.F. CHOKE FORMS, $13 / /^{\prime \prime}$ IN DIAMETER
Left to right the coils are, 25 turns used at 160 M , when shunted by a . 001 - μ fd condenser, 14 turns, used at 80 meters with 3 end turns left over for neutralizing. $51 / 2$ turns used at 40 meters, and 4 turns used at 20 meters. All but the $160-$ meter coil operate with no capacity beyond that of the .0005- $\mu \mathrm{fd}$ variable condenser.

A crystal holder is shown in the foreground to illustrate the plug-in feature.
course. Hold the key down and tune the amplifier tank for maximum current as indicated on the ammeter.

Next couple the antenna, re-tune the amplifier tank and tune the antenna to resonance. The coupling is fairly critical and will take a bit of experimenting. Every time you change the coupling you must re-tune both the antenna and the amplifier tank. When the coupling is right you will get maximum antenna current with minimum amplifier tank current--showing that the antenna is soaking up nearly all the current generated in the amplifier tank.

High amplifier tank current indicates insufficient coupling, or an antenna that will not properly tune to the working wave of the amplifier. You may have to load your antenna by using a coupling coil with a greater number of turns in it.

OONCERNING THE COILS

Now, as to L. When using the 80 -meter inductances, you merely shunt them with a Sangamo fixed receiving condenser of
.0015 or .002 , which boosts the QRH of the combination to 160 or thereabouts, final adjustment being made with the variable condenser. The 80 -meter inductances have 14 turns in the oscillator; leaving three for the below ground neutralizing condenser connection. And the PA inductances have 11 turns of a little heavier wire a little widely spaced. The $40-$ meter inductances have 7 and 5 turns, respectively; and the

be found that even a small filter on the power amplifier is adequate hecause of the refining effect of the crystal-controlled energy that is fed to the grids of the power amplifier.
In conclusion it is only fair to give credit to Scientific Radio Service of Mount Rainier for their excellent co-operation in assisting in the design of the rig and for supplying the erystals and mounts around which it is built and which are so important in its proper operation. Crystals that are fussy, or tricky, or at all uncertain in starting oscillation and in keeping right at it indefinitely, are an abomination. Good ones are a joy to work with and are easily responsible for the elimination of ahout 80 per cent of the troubles that might be blamed on other things.

Strays

An interesting method for controlling regeneration is suggested by $1 A Q D$. It con-

20 which is only necded in the PA has 3-4 turns. All inductances are $2^{\prime \prime}$ " in diameter.

AS TO PHONE

There are several ways to use phone on the set. Perhaps the easiest, (though a low percentage of modulation is obtained) is to put the secondary of a modulation transformer in series with the C bat on the nscillator. The primary of the modulation transformer is in series with the usual 6 V . battery and mike. Substituting a buz\%er for the mike gives a beautiful 500eycle tone that is very attractive and not at all broad. This is the scheme that was described by Ed. Glaser of $2 B R B$ in $Q S T$ for June, 1927.

It is comparatively simple, of course, to throw together a Heising modulation circuit and feed the plate power for the amplifier through that instead of direct to the plates of the amplifier tubes. This gives a high percentage of modulation and very good quality. Whatever modulation system is used it will
sists of using our old friend, the absorption loop. He uses a turn or two of wire coupled to the secondary coil of the tuner. A carbon pile rheostat is connected across the coil and as its resistance is varied, the amount of energy absorbed from the tuning circuit is likewise varied. One side of the circuit is grounded to reduce hand capacity effects. He states that it is necessary to use a compression type rheostat as a wire wound affair would be noisy in operation.

Woolworth V \& X stores are offering another boon to amateurs in the form of straight glass cylinders which may be purchased at X cents each. They are normally used as the middle section of a hydrometer, are open at both ends and have a uniform diameter of approximately τ_{s}-inches throughout-their entire length of six and a half inches. By sticking a cork in each end and fastening them to suitable supports, a first rate mounting for an r.f. choke will be had. Corks for the job may also be obtained at the same store for V cents a dozen.-(iDCA.

The A.R.R.L. Board Meets

THE Board of Directors of the American Radio Relay League was in regular annual session throughout the 17th and 18th of February, at Hartford. Every Director was present, every section of the country represented. The affairs of the League were examined in detail, the Headquarters properties inspected, and policies outlined and instructions give nthe officers for the coming year.

Mr. Maxim and Mr. Stewart were unanimously re-elected as President and tions given the officers for the coming year. terms.

The Board received the annual reports of the League's five officers; ratified the acts of the Executive Committee in the past year; voted to meet herealter in May instead of February; examined League finances; commended the Headquarters Statf on its handling of the business af-
technical difficulties of operating under the new convention, a most important action on which we shall have considerable to say in QST soon; voted to request the restoration of the Extra First Class Amateur Operator's license; discussed at length the question of wave-bands for amateur phone and adopted new recommendations to the Commission as reported below; considered Division boundaries but made no changes; provided for the investment of the surplus funds of the League; adopted protective policies respecting invasion of amateur bands by non-amateur stations and respecting quiet hours and interference from harmonics, heard a report from Director Segal on his work in combatting anti-amateur municipal ordinances and extended thanks to him for his valuahle work, particularly in the matter of the Wilmore decision; reconsidered at length

OFFICERS AND DIRECTORS OF THE A.R.R.L. AT THE RECENT ANNUAI MEETING
Left to right, top row: Mr. Weingarten, Northwestern Division: Mr. Painter, Delta: Communications Manager Handy: Vice President Stewart: Canadian General Manager Russell: President Maxim; Mr. Quinby, Midwest Division: Mr. Darr. Central; Dr. Iunn, Hudson; Mr. Dobhs, Southeastern; Mr. Corlett, Wert Gulf. Bottom row: Secretary Warner: Treasurer Hebert: Prof. Jansky. Dakota Division: Mr Gravely, Roanoke; Prof. Wondruff, Atlantic: Dr. White. New England; Mr. Segal, Rocky Mountain; Mr. Babsock, Pacific. (Photo courtesy "Hartford Times".)
fairs of the League; made plans for encouraging the beginning operator; outlined plans to further international communication under the restrictions of the new international convention, as is discussed editorially this month; authorized the undertaking of a technical development program to aid members in meeting the
the question of national conventions and reaffirmed the previous decision to abandon them; discussed pending legislation; inspected the new Headquarters Station 1 MK and commended the Communications Manager on the job. Detailed reports of conditions in every territory were made hy the Directors, the desires of the member-
ship reported, and action taken on matters brought up. The Secretary's minutes of the meeting ill eighteen pages; obviously only the high-lights can be mentioned here.

The question of amateur phone wavelengths was most carefully considered by the Board in several hours' discussion, after a committee of the Board had given a hearing to a representative of phone amateurs who were dissatisfied with the recent change in regulations sponsored by the League. With every Director present and views therefore expressed from every section of the country, the Board unanimously decided to recommend to the Federal Radio Commission that the two upper phone bands be changed to read 1715 to 2000 kilocycles and 8500 to 3550 kilocycles. Some explanation of the thoughts back of these recommendations may be of interest. Let it be said at the outset that the Board took into account the changes in amateur bands provided in the Washington Convention, which are to be expected ly the first of next year.
The long-wave band mentioned is from 150 to 175 meters. Although phone at present operates up to 190 meters, the waves above 175 will be assigned to the mobile service after this year. It is undesirable to encourage the establishment of stations on waves alove 175 now, only to have the owners forced to change wavelength next vear. A more important consideration is QRM to BCLs; the probability of interference by phone operation on waves above 175 meters is so great that such operation seems inadvisable. Most of the phones are below 170 meters now anyway. Therefore the recommendation of 150 to 175 meters.

The 85 -meter recommendation embraces 50 kilocycles. The original phone assignment there of 100 kc . was made at a time when the 40 -meter band was 1000 kc . wide and carried an enormous percentage of the A. R. R. L. domestic communieation. Under the conditions of the immediate future the bands will be so seriously curtailed that reduction in privileges will be suffered by every form of amateur operation. As a single example, the 40 -meter telegraphing band becomes 800 kc . for all the world, instead of 1000 kc . for North America alone, and when this is shared with amateurs of other countries the congestion will be so great that $40-$ meter operation will have to be confined to international and coast-to-coast work. All of the moderate-distance work that has been going on in that band will then have to be accommodated in the 80 -meter band. For that reason the Board's recommendation, arrived at after intensive considera-
tion, is for a phone privilege 50 kilocycles in extent.

The Board has recommended that the 20 -meter phone privilege be rescinded. The new international band for amateurs at 20 meters is 400 kc . wide. The width of a signalling channel increases, at the present state of the technique, directly with the frequency. That is to say, in terms of the number of stations which can be accommodated the 20 -meter band is equal to 200 kc . at 40 meters or to only 100 kc . at 80 meters. Of course the chief utility of the 20 -band is for international DX and it is therefore one of the bands which will have to be shared with amateurs of other nations. The League is undertaking to negotiate an informal agreement with the amateur societies of other countries, under which North American amateurs would operate in the top halves of the 20 -meter and 40 -meter bands. The net effect of this is to say that the territory which will be available for American amateurs at 20 -meters after the first of next year is no gieater than an expanse of 50 kc . in the 80 -meter band. Immediately it becomes apparent that it is a physical impossibility to make provision for phone in the limited band which the international conference has left us and have any assurance of privileges for telegraphy. Looked at another way, imagine that we have, next ycar, 200 kc . at 20 meters for American amateurs. Reliable engineering figures indicate a minimum eommercial channel width at 20 meters of 40 kc ., which is lo say that our band contains room for but five commercial channels of minimum width. Even if a single one of these channeis was made available for phone, it would amount to 20% of the entire territory if every phone in America succeeded in working on exactly the same wavelength. which they would not and could not do, and it would be a privilege utterly valueless to the phomes themselves. It was therefore the opinion of the Board that the state of the art does not offer promise of successful and satisfactory work under the conditions now confronting us in the $20-m e t e r$ band and that, for the present at least, they should recommend rescinding the 20 -meter phone privilege.

The Board brought to bear upon this question all of its past experience in planning for the future, its technical talent, and its ability to reflect amateur viewpoints from every part of the country. It is hoped that the membership will be mleased with the decisions and will appreciate the reasons which lie behind each one. The recommendations have now heen conveyed to the Federal Radio Commission.
F. B. W.

Notes on the Design of Iron-Core Reactances Which Carry Direct Current

By D. E. Replogle*

Abstract

This is the third of a series of articles by members of the Raytheon organization on the practical design of filters and filter parts. The first appeared in the September issue and the ${ }_{z}$ nd in the February issue. The fourth will follow shortly.

These urticles are hased on the very extensive experience of the Raytheon organization with the problems of manufacturers of " A " and " B " substitutes. It covers the "low-pass" type of iilters used in these devices and also in transmitting plate supplies.-Technical Editor.

THE great increase in the use of rectified and filtered plate and filament supplies within the last few years has emphasized the need of adequate design methods for filter reactances. Such chokes carry a comparatively large amount of d.c. with a superposed a.c. ripple, and the design is thus somewhat more difficult than that of an ordinary a.c. reactance.
An excellent contribution on this subject was made by C. R. Hanna ${ }^{1}$ who gave design curves for use with Westinghouse 4% silicon steel and for Westinghouse "Hypernik." Since most choke coil manufacturers do not use these steels, however: it was thought worth while to compute similar curves for other commercial sheets. Data were obtained from the manufacturers, and the necessary calculations were made in accordance with Hanna's formulas. For the theory of the method, the reader is referred to the above work by Hanna, a brief synopsis of which appears at the end of this paper, and also to papers by Spooner ${ }^{2}$.

PERMEABILITY CURVES

F'ermeability curves for a number of steels are given in Fig. 1. They were computed from the manufacturers' saturation curves by use of the relation,

$$
\mu=\mathrm{B} / \mathrm{H} .
$$

It will be noted that steels 1 and 2 are very high in permeability, the other materials grouping themselves at a lower level.

INCREMENTAL PERMEABILITY CURVFS

Referring to Fig. 2. When direct current having a superposed a.c. component flows in a choke, the flux density rises to a certain point (a) on the saturation curve,

[^4]this point being determined by the d.c. ampere-turns and by the ordinary permeability (μ). The a.c. component then causes the flux to describe the small

VIEW OF RAYTHEON CIRCUIT I,ABORATORY IN WHICH WORK DESCRIBED IN THE ACCOMPANYING PAPER WAS CONDUCTED
This shows the set-up employed for determining inductances of an iron core choke under different conditions of d.c. saturation.
hysteresis loop at (a). The permeability to the a.c. component is not the permeability (μ) but a smaller value ($\mu \Delta$) which is equal to the slope of the line drawn through the ends of the small hysteresis loop. The permeability ($\mu \Delta$) is called the incremental permeability. As H due to d.c. increases, the hysteresis loop moves up on the saturation curve. It will be noted that at high values of B the slope (and therefore the incremental permeability) decreases.
The method of determining ($\mu \Delta$) is given in Spooner's papers and will not be repeated here. The curves of Fig. 3 give the incremental permeability fir several grades of steel, and it is evident that ($\mu \Delta$) decreases as H increases as pointed out above. These curves were calculated for a very small a.c. component. When the a.c. component is large, the hysteresis loop increases in size and tilts at a greater angle. Thus the incremental permeability increases somewhat for large values of a.c. Additional curves
for various amounts of ripple could have been plotted, but it was not felt that the greater complexity would be warranted.

FIG. 1. NORMAI PERMEABILITY CTIRVES

Also, due to the use of a small value of acc. component the results obtained will always be on the safe side.

DESIGN GHART

The design chart, Fig. 4, shows the relation between $\mathrm{LI}^{2} / \mathrm{V}$ and ampere-turns per inch. Curves are plotted for five grades of steel. The numbers along the curves are the ratios of air-gap to length of magnetic path to give the maximum inductance. Other values of (a/l) can be used, but will not give cuite as high inductances.

For a given choke with given current, the inductance is directly proportional to $\mathrm{LI}^{2} / \mathrm{V}$. This means that the higher the curve is on

FIG. :. . EXPLANATORY DIAGRAM-INCREMENTAL IERMEABILITY CURVE.
this sheet, the more inductance will be obtained in a given size choke. Thus steels 1 and 2 are seen to be better than any of the others. In Figs. 1 and 2 we saw that they had the highest permeabilities, and here we
see that the effectiveness of a choke is greatest if made of these steels.

The difference is not large, however, the maximum difference between numbers 2 and 5 being only about 15%. Therefore, it would seem that for most reactances an ordinary steel of low silicon content would be advisable because of its lower cost and smaller wear on the dies.

PROCEDURE IN DESIGN

The desired inductance L and the direct current I are known.

1. It will now be necessary to assume some size of core. Usually a standard

FIG. 3. BNCREMENTAL PERMEABILITY CURVES
punching will have been decided upon, in which case it will only be necessary to assume a height d for the stack of laminations. Then determine the cross-sectional area of the core A and the length of magnetic path $1 . V$ is the product, or $V=A l$.
2. Compute $\mathrm{LI}^{2} / \mathrm{V}$.
3. From design chart, find the value of NI/l corresponding to the above value of $\mathrm{LI}^{2} / \mathrm{V}$.
4. The total number of turns to be used is then found by dividing the above value of NI/1 by I and multipiying by 1 .
5. The approximate length of air gap is determined by noting the (a/l) number nearest the point on the curve used in getting NI/l. This number is multiplied by 1 to get a.
6. The designer may now find that he cannot get the required number of turns in the winding space, or that the winding space is unnecessarily large. In either case he will make another assumption of depth of core d and try again.

CHOKES FOR LARGE RANGE OF DIRECT CURRENT

If the choke is to be used over quite a range of direct current, it is advisable to calculate the inductance at two or more values of current to make sure that there is not too much variation. The d.c. flux
density must first be obtained, using the formula

$$
\mathrm{B}=\frac{3.20 \mathrm{NI}}{1 / \mu+\mathrm{a}}
$$

Since (μ) is not known until B is, a cut-andtry method must be used. For a first approximation, consider $1 / \mu=0$ and calculate B. Take a slightly lower value of B, get (μ) from the permeability curve, and cal-
$\mathrm{L}=$ inductance in henries
$\mathrm{N}=$ total number of turns
$\mathrm{A}=$ cross-sectional area of core and gap (sq. in.)
1 = length of magnetic path in inches
$a=$ total effective gap in inches
$B=$ flux density in lines per sq. in.

FLUX DENSITY

Though the design chart is all that is required in the design of the magnetic circuit of a reactance, it is often desirable to know

FIG. 4. DESIGN CHART $\frac{L I^{2}}{V}$ vA $\frac{N I}{1}$
culate the value of B again. The correct value can be obtained after one or two trials.

With this correct value of B, the incremental permeability can be obtained from Fig. 2. Then.

$$
\mathrm{L}=\frac{3.20 \mathrm{~N}^{2} \mathrm{~A} \times 10^{-8}}{\mathrm{l} / \mu \Delta+\mathrm{a}}
$$

In these formulas,
the flux density used. Accordingly, Fig. 5 was plotted from data obtained from the design chart. It gives the flux density which will occur if the chokes are designed according to Fig. 3. It is rather interesting to note that with both grades of iron the flux density will be about 55,000 lines per square inch with large values of NI / l. These densities will be obtained if the air gaps of Fig. 3 are used. Smaller gaps will
increase the flux density, saturating the core and reducing the inductance. Larger values of gap length will reduce the flux, again decreasing the inductance.
$\therefore Y N O P S I S$ OF METHOD OF CATOULATION FMPLOYED RY HANNA IN OBTAINING DESIGN OHARTS FOR IRON-CORE REACTANCES WHICH GARRY DIRECT CURRENT
In order to prepare the design chart. Fig. 4, both the normal and incremental

Fig. 5. find densiry curve b ve $\frac{\text { NI }}{1}$
permeability curves, Figs. 1 and 3, are employed. Fig. 1 is readily obtained from manufacturers' saturation curves by use of the relation $\mu=B H$. Fig. 8 is computed for small values of a.c. from the data given in the paper by Spooner:

Then, using the following notations:
$E=$ Steady flux density in iron and airgap. gausses.
$\mathrm{N}=\mathrm{Number}$ of turns in winding.
$\mathrm{X}=$ Direct current, amperes.
$A=$ Area of core section, and air-gap, cm. ${ }^{\text {. }}$

1 - Length of iron path, cm.
$a=$ Air-gap length, cm.
$\mathrm{L}=$ A.c. inductance, henries.

$$
\begin{aligned}
& \mu=\text { Normal permeability }=\frac{B}{H} \\
& \begin{aligned}
\mu \Delta & =\text { Incremental permeability } \\
& =\frac{\Delta B}{\Delta H} \text { where } \Delta \mathrm{B}
\end{aligned}
\end{aligned}
$$

and $\Delta \mathrm{H}$ are the increments from tip to tip of a minor hysteresis loop.
We have

$$
\begin{equation*}
B=\frac{0.4 \pi \mathrm{NI}}{\frac{1}{\mu}+a} \tag{1}
\end{equation*}
$$

and

$$
\mathrm{L}=\frac{0.4 \pi \mathrm{~N}^{2} A \times 10^{-6}}{\frac{1}{\mu \Delta}+\mathrm{a}}
$$

From (1)

$$
\begin{equation*}
N=\frac{B\left(\frac{1}{11}+a\right)}{0.4 \pi I} \tag{B}
\end{equation*}
$$

Substituting in (2)

$$
\begin{align*}
L_{1} & =\frac{B^{\circ}\left(\frac{1}{\mu}+a\right) A \times 10^{-\pi}}{0.4 \pi \Upsilon\left(\frac{1}{\mu \Delta}+a\right)^{1}} \\
& =\frac{B^{2}\left(\frac{1}{\mu}+\frac{a}{1}\right)^{2} \mathrm{~A} \times 10^{-b}}{0.4 \pi 1^{2}\left(\frac{1}{4 \Delta}+\frac{a}{1}\right)}
\end{align*}
$$

Letting $1 A=V$, the volume of iron in the core.

$$
\begin{equation*}
\frac{\mathrm{LI}^{2}}{\mathrm{~V}}=\frac{\mathrm{B}^{2}\left(\frac{1}{1}+\frac{a}{1}\right)^{v} \times 10^{-4}}{0.4 \times\left(\frac{1}{\mu \mathrm{~B}}+\frac{a}{1}\right)} \tag{5}
\end{equation*}
$$

Also from (1)

$$
\begin{equation*}
\frac{\mathrm{NI}}{1}=\frac{\mathrm{B}}{0.4 \pi}\left(\frac{1}{\mu}+\frac{a}{1}\right) \tag{6}
\end{equation*}
$$

For any assigned value of $\frac{a}{1}$ (the per cent.
air-gap) equations (5) and (6) may be conconsidered as parametric cquations with B as the parameter, and a curve of $\frac{L I^{2}}{V}$ against $\frac{N I}{l}$ can be plotted. To do this, several values of B are assigned, and the values of μ and $\mu \Delta$ corresponding to B obtained from curves of Figs. 1 and 2. These values are substituted in equations (5) and (6) to determine corresponding values of $\frac{\mathrm{LI}^{2}}{\mathrm{~V}}$ and $\frac{\mathrm{NI}}{\mathrm{l}} \cdot \frac{\mathrm{NI}}{1}$ represents the steady ampere turns for each centimeter of iron length and $\frac{\mathrm{LI}^{2}}{\mathrm{~V}}$ is a quantity which if
divided by the square of the current gives the inductance per $\mathrm{cm} .^{3}$ of core. It is seen that if $\frac{\mathrm{NI}}{\mathrm{I}}$ is increased, by increasing N or I or by reducing $1, \frac{\mathrm{LI}^{2}}{\mathrm{~V}}$ is greater for larger values of $\frac{a}{1}$. Evidently the envelope of the family of curves gives the relation between $\frac{\mathrm{LI}^{2}}{\mathrm{~V}}$ and $\frac{\mathrm{NI}}{\mathrm{l}}$ if the best value of a $\frac{a}{l}$ is chosen. Since each curve of the family corresponds to a certain value of $\frac{a}{l}$,

fig. G. two types of reactances
the point of tangency with the envelope shows the value of $\frac{\mathrm{NI}}{1}$ that requires this a $\frac{1}{\text { l }}$. Hence, along the envelope curve may be plotted a scale which shows the proper value of $\frac{a}{1}$. Fig. 3 shows the envelope curve with the $\frac{a}{1}$ scale along it.

This is the design curve which has been discussed in the foregoing paper in its extended form in which it applies to commercially available core materials for use in connection with filter circuit reactors.

.Strays.

Four of the leading entomologists of Buffalogna have recently succeeded in discovering and capturing the specimen whose photo appears herewith.

This arthropoda is an elongate creature
not unlike the lavae of Ephemeridae in form. The antennae are long, slender and quasi-spiralesque and the body cartridgeous in form. The mouth organs are mandibulate although somewhat subject to modifica-

tions of a haustellate nature. Caudal setae are conspicuous by their absence as are the visual and aural appendages. It seems to have no proboscis, whatever. The tail, helically inclined has an inductance of 3.1416 micromillihenries which value is reduced 3 percent for each degree rise in temperature above 20 degrees Centigrade.

It is believed that the victim of this articulata finds it extremely difficult to indulge in the normal nocturnal slumber common to the species; man. Instead, he must sit awake night after night sending out into the ether innumerable calls somewhat resembling the code characters for the letters " C " and " Q " interspersing them with mixtures that are usually quite undecipherable even if one did happen to be curious enough to give the matter one's complete attention.

The disease is called hamophobia and although known for many years has never completely responded to any treatment. While it may be slightly alleviated it is, as far as is known, incurable. Perhaps the segregation of this specimen may result in rapid gains in the amount of knowledge concerning it which will result in the evolving of vastly superior methods of treatment for those poor unfortunate victims of its voracious appetite. If so, the credit is due in no small measure to $8 \mathrm{BHX}, 8 \mathrm{AHO}$ and the 8 KW brothers.

It is said that you don't have to he crazy to be a radio enthusiast but it certainly helps a lot if you are.
-D. B. Parke
9EGU had a lot of trouble with his note on 20 . He even went to the expense of an 852 in hopes of clearing it up. Tmagine his feelings when he finally located the trouble as being a lot of dust in the antenna series condenser. We presume that the moral is to build a cabinet around your set or run the vacuum cleaner over it occasionally.

A Transmitter Without Transformers*

By L. W. Hatry **

THIS is a transmitting circuit for two tubes operated entirely from the 110 volt line without transformers and similar devices. The tubes are connected in what is known as "back-to-back" shunt-feed system, which provides a full-

1. Flash-light lamp to indicate antenna rexonance. should be $11 / 2$-volt bulb. The least candle-Dower is enough.
2. Primary coil on $3^{\prime \prime}$ diameter of 10 turns. Use bell-wire, Should have variable coupling to 4 .
\$. . 00025 pfd. Fariable condenser.
3. 10 turns with tap in center on $3^{\prime \prime \prime}$ diameter for 40 meters. Ise bell-wire or larger.
4. . $00025 \mu \mathrm{fd}$.
5. R. f. choke on $1^{\prime \prime}$ diameter of No. 30 wire, 200 tarns.
6. Electric-light socket and 25-watt lamp. 25-watt lamp is for $1 / 4 \mathrm{amp}$. filament such as the \%ol-A. 60 -watt lamps shonid be used for 112 's or 171 's, and 150 -watt lamps for 210 type tuhes.
7. Fixed condensers-. 006 ufd. each.
8. Fixed condensers- .00025 pfd. each.
9. Fixed condensers-. 00025 ufd. each.
10. Girid-leaks-25,000 ohms earh.

1\%. Tuhe sockets.
wave, self-rectifying circuit. The best system of keying this circuit requires a double contact key in order that the connections to both grid-leaks may be opened at the filament end. The keying system shown requires two things; that the tubes used be large enough to dissipate the r.f. power internally when the key is "open", and that condenser 3 be used at a capacity value very appreciably larger than the selfcapacity of the key. on the order of 6 to 10 times greater. The key should be connected exactly as shown in the diagram with the lever contact connected to the inductance. The plate voltage of each tube is at least the line a.c. voltage, or an r. m.s. voltage of 110 . With the 1.71 or the new 250 -volt power tube, this is a good little set.

[^5]
Standard Frequency Transmissions from WWV

THE Bureau of Standards announces a new schedule of radio signals of standard frequencies, for use by the public in calibrating frequency standards and transmitting and receiving apparatus. The signals are transmitted from the Bureau's station WWV, Washington, D. ©. They can be heard and utilized by stations equipped for continuous-wave reception at distances up to about 500 to 1,000 miles from the transmitting station.

The transmissions are by continuouswave radio telegraphy. The signals have a slight modulation of high pitch which ads in their identification. A complete frequency transmission includes a "general call" and "standard frequency" signal, and "announcements". The "general call" is given at the beginning of the s-minute period and continues for about 2 minutes. This includes a statement of the frequency. The "standard frequency signal" is a series of very long dashes with the call letter (WWV) intervening. This signal eontinues for about 4 minutes. The "announcements," are on the same frequency as the "standard trequency signal" just transmitted and contain a statement of the frequency. An announcement of the next frequency to be transmitted is then given. There is then a 4 -minute interval while the transmitting set is adjusted for the next frequency.

Information on how to receive and utilize the signals is given in Bureau of Standards Letter Circular No. 171, which may he obtained by applying to the Bureau of Standards, Washington, D. C. Even though only a few frequency points are received, persons can obtain as complete a frequency meter calibration as desired by the method of generator harmonics, information on which is given in the letter circular. 'The schedule of standard frequency signals is as follows:

Radio Signal Transmissions of Standard Frequency Srhedule of Freuuencies in Filocvoley

Fiastern Standari Time P. M.	$\begin{gathered} \text { April } \\ 20 \end{gathered}$	$\begin{array}{r} \text { May } \\ 9! \end{array}$	June 20	July 8	Aug. Sept. Oct.		
					20	20	29
10:(0-10:08	3000	6.50	1500	3000	185	30	
10:12-10:20	3300	750	1650	3300	150	850	750
1.0:21-10:32	8600	850	1800	3600	175	400	850
10: 86 -10:44	4000	050	2000	4000	200	450	450
10:4x-10:56	8400	1060	2950	4400	925	500	1050
11:00-11:08	8900	1200	2500	${ }^{6} 900$	250	600	1200
11:12-11:20	5400	1350	2750	5400	275	ti00	1350
11:24-11:32	6000	1.500	3000	6000	300	650	1500

Designing Fixed Resistors ${ }^{\dagger}$

By R. C. Hitchcock*

AN alignment chart for the rapid calculation of the resistances of various kinds and sizes of wires is given in this article. The safe current rating of a resistor is also given, on two charts, for the usual current values used in amateur radio work.

Wire tables are available ${ }^{\text {² }}$, manufacturers' booklets ${ }^{2}$ give the required data, and an alignment chart has been published recently ${ }^{3}$ giving resistances. However, most of these references contain much extra material, while the charts in this article include only the essential data needed in calculating resistances and current ratings, and it is felt that they fill a need of the radio amateur.

The current carrying capacity of a wire is limited by the amount of heat which it can radiate. Especially in the case of resistors, where the wire has a higher resistance than that of pure copper, it is essential to provide surface enough to prevent the burning out of the resistance wire. It will be obvious that if a resistance wire is wound in several layers on a spool, its safe heat radiation will be smaller than for a similar length of wire wound in a single layer on a tube.

For average room conditions, the radiation value may be taken to be two watts per square inch of radiating surface ${ }^{4}$. Higher rates are sometimes used, but a conservative rating is two watts per square inch of surface. If a resistor is wound on a tube in which the air circulates inside as well as outside, the inside area can be included in figuring the surface.

SAFE CURRENT THROUGH A RESISTOR

The preceding paragraph gave the basis for constructing Figs. 1 and 2 , which are charts representing the electrical law that $\mathrm{I}^{2} \mathrm{R}=$ Watts, I being the current in amperes, and R the resistance in ohms. In Fig. 1 the column at the left gives the current in milliamperes, the center column gives the watts which must be dissipated, and the right hand column gives the resistance in thousands of ohms. Fig. 2 is similar except that the current scale is given in amperes, the resistance scale in ohms, and the watt scale is extended to cover a larger range of power to be dissipated.

[^6]In using these charts generally two of the quantities are known, and the third is found by placing a ruler on two values, the intersection with the third column giving the required quantity. As a typical example using Fig. 1, suppose that a ten-thousand ohm resistor has an area of three square inches, at the rate of two watts per square inch six watts can be radiated. Laying a ruler along ten thousand ohms and six watts on the chart, the current carrying capacity is found to be slightly less than twenty-five milliamperes.

To take another case to determine the necessary area, suppose a resistor is to carry forty milliamperes, and to have a resistance of twenty thousand ohms. Aligning these values in Fig. 1 it is found that about thirtytwo watts must be radiated. Using the value of two watts per square inch, the required area is found to be sixteen souare inches.

Fig. 2 is used in a similar manner for larger currents and lower resistances.

VARIETIES OF RESISTANCE WIRES

Ordinary soft iron or brass wires are satisfactory for low resistances but are not easy to obtain in the smaller sizes. In fact, if several resistors are to be wound, some one of the special wires is undoubtedly advisable. A table will be given showing the relative resistances of various wires, taking the resistance of copper as unity. Another useful factor included in the table is the resistance in ohms per circular mil foot. This is a fundamental property of a wire, as it is the actual resistance in ohms of a piece of wire one foot long, and having a diameter of one mils. In the table it will be noticed that several names are given for one set of resistance values, the reason being that wires of the same composition are given a different name by different manufacturers.

From the table it will be seen that Nichrome or Calido wire has the highest resistance, having over sixty-two times as much resistance as a similar copper wire. This material makes a good resistor and will stand temporary overloads as it does not oxidize as much at high temperatures as some of the other wires. Advance wire, also, is resistant to oxidation at fairly high temperatures. There is one disadvantage in using Nichrome-its resistance rises slightly with temperature. At the temperature of boiling water $\left(100^{\circ} \mathrm{C}\right)$ the resistance of a given Nichrome wire is 1.85% greater than at the temperature of freezing water $\left(0^{\circ} \mathrm{C}\right)$. If a wire is wanted which has very small changes of resistance with temperature, Advance wire is recommended. With
the same limits as stated above, from boiling to freezing water, the resistance of an Advance wire is reduced by $.08 \%$. For a direct comparison, consider two 10,000 -ohm resistors, one of Advance and one of Nichrome wire, these resistances being

Milliamperes

FIGURE 1
measured at the temperature of freezing water. At the temperature of boiling water the resistance of the Advance resistor will be 9,992 ohms, and that of the Nichrome will be 10.185 ohms. For a given wire size, Advance has less than one half the resistance that Nichrome wire has, and the choice has to be made between small space and low coefficient of resistance change with temperature. It should be understood that When in use, these resistors will rise several degrees above room temperature in dissipating the energy. It is the rise in the resistor temperature which changes the resistance value, and not room temperature changes, which ordinarily would be negligible.
rHOUSAND OHMS

resistance of various wires

The table gives nearly all the data needed to calculate the resistance of any kind of wire for any length. The one additional factor is the cross section of the wire, which is related to the gauge number, or the diameter. Fig. 8 is a chart which gives necessary data for finding round wire resistances for B. \& S. gauges from 10 to 44 , or from 101.9 to 2.0 mils diameter. The left hand column shows sizes both on B. \& S. gauge, and the diameters in mils; the right hand column gives the resistance in ohms per thousand feet of wire. The center column can be used in two ways, the relative resistance is given on the right side of this column. The names of some of the common wires are given on the left side opposite their value of relative resistance. A few of the ordinary wires could not be included in the chart, due to crowding, but by referring to the table for relative resistances, their places on the center column can be found.

Two examples will illustrate the use of Fig. 3. Suppose the resistance of No. 30 B . \& S. Advance wire is required. Aligning size 90 in the left column and the line at the end of Advance in the center column, the value of the resistance is found in the third column to be approximately 30,000 ohms per thousand leet, or 30 ohms per foot.

Suppose, to take a second example, that a ten-thousand ohm resistor of Nichrome wire is to be made. lining up these values on the right and center column, the required size is seen to be closest to B. \& S. size 32 .

A chart such as Fig. 3 is useiful in forming the approximate design of a resistor within a few per cent of the desired value. But the resistance is subject to manufacturing variations or perhaps less than five per cent, which is about the usual error in reading the chart. The use of a Wheatstone bridge, or a voltmeter-ammeter method of
measuring resistance is recommended for a final determination if the accurate resistance value has to be known.

FORMS FOR WINDING RESISTORS

There are several good kinds of forms on which to wind resistance wires. One which is easy to secure is the porcelain tube used in house wiring. If bare resistance wire is used it should be space wound by using string or thread between the wires, the string being unwound after the resistor is completed. If a gas or an electric furnace is available, Nichrome or Advance wire can be heated to a red heat, forming a thin insulating layer of oxide. The wires can then be wound touching each other, without short circuiting. Another material which is very satisfactory as a form on which to wind re-

FIGIRE 2
sistance wires is sheet mica. Sheets of two by three inches in size are not very expensive, and will stand heat better than almost any other insulator. A special advantage in using flat sheets for winding resistors is that the magnetic field is concentrated, causing little disturbance in nearby radio circuits. If the flat sheets are mounted vertically so that the heated air from the wires can rise freely from both sides of the sheet, radiation is aided, keeping the working temperature within reason able limits. Mica wound resistors may look unusual to a person who is accustomed to seeing only the cylindrical enamelled resistors, but mica resistors are not a new untried idea, the heating element used in electric flat irons and in some toasters consists of a mica resistor. When using mica it is advisable to make small notches or slits in which to wind the resistance wire, so that if the wires expand with heat they will not move out of position and cause a short circuit with adjacent wires.

It is the opinion of the writer that the average experimenter should not attempt to make an enamelled resistor, as this cover-
ing requires elaborate equipment, in addition to finding a proper enamel. Most vitreous enamels will eat into the wire during the process of firing, which either destroys the wire, or greatly reduces its cross section.

Resistance wires can be purchased hav-
ROUND WIRE RESISTANCE TABLE

Material	Resist Relative Resistance	in Ohms Circular Mil Foot
Oopper	1	10.65
Aluminum	1.33	17.3
Brass	3.84	d1). 5
lron	5.80	81.1
Platinum	6.88	72.0
Lead	10.85	114.7
Manganin	25.6	270 .
Advance. (ionstantan. Eureka, Ideal	27.9	294.
Climax, Phoenix	47.5	500.
Nichrome, Crlido	62.6	660.

FIGURE :
ing the regular cotton or enamel coverings, but the extreme heat that is sometimes encountered by resistance wires in use is so great as to char a covering. For this reason covered wires are not often obtainable except from the manufacturers. However it should be kept in mind that in any ordinary use in a radio receiving set the heat will seldom be over a few watts, and if covered wires can be secured, there will be gained the advantage of being able to wind wires touching each other without making grooves for separation.

Shellac, waxes, or similar substances should not be put on a resistor as most of them soften at fairly low temperatures.

TERMINALS

Terminals should be fastened firmly to the form on which the resistance wire is wound and the wire wound tightly around the terminal and soldered if possible. If a wire like Nichrome which cannot be soldered is to be attached to a terminal, some clamping arrangement is generally the best. The wire should be carefully scraped and clamped tightly to ensure good contact.

If the wire is wound on a tube, a clamp like a radio ground clamp can be used as a terminal. If sheet mica is used, the terminal can be a machine screw with several nut sand washers, the first nut and washer holding the wire to the mica form, and the second to be used for attaching to the circuit where the resistor is to be used. A better terminal for sheet mica can be made by bending a copper or brass strip around each end of the resistor, drilling through both the metal strip and the mica and using a screw with nuts to clamp the wire. If a wire such as Advance is used, it can be soldered directly to the terminal strip.

Standard Frequency Transmissions
 $-\longrightarrow$(Continued from page 14)

operating the station is done without charge by Chief Operator Hugh S. McCartney and his operating staff.

While no guarantee of accuracy is made on a gratis service, it is the aim of the staff to maintain an accuracy of $1 / 10$ of 1%, which is materially better than can be "held" by most wavemeters. The frequency values are based on the Standards of the Bureau of Standards and have been checked by the Communications Laboratory of The Massachusetts Institute of Technology, also by Cruft Laboratory at Harvard University.

Important Notice-The continuation of this free service from month to month depends on the response received. Direct acknowledgments to "Experimenters' Section, A.R.R.L., 1711 Park Street, Hartford, Conn.", using ordinary stationary or else the special hlanks supplied by the Experimenter's Section, on request. A goodly number of these blanks has been gathered and as the number grows we will gradually gain a unique and accurate record of transmission phenomena possible with no other station. Details on OXL may be found on pages 8 of the June issue.
9XL now uses a small percentage of tone modulation to make the signal distinctive.

©CHEDULES

(Figures are frequencies ill MEGACYCLES jer sti. ; Approx. सrvelengths in parentheses.!

Friday Evening Schedules Central standard Time

Time (PM)	Schedule A	$\begin{gathered} \text { Schedule } \\ \text { S } \end{gathered}$		$\underset{(\mathrm{PM})}{\text { Time }}$ PM	Trime Schedule C	
	1λ	f	λ		f.	2
8:80	3.50 (85.7)	6.50	(46.1)	3:00	10.0	(30.0)
8:42	3.60 (83.3)	6.75	(44.4)	3:12	12.0	(25.0)
8:54	3.75 (80.0)	7.00	(42.8)	3:24	14.0	(21.4)
9:106	3.90 (76.9)	\%. 25	(41.3)	3:36	14.5	(20.7)
9:18	4.00 (75.0)	7.50	(40.0)	3:48	15.0	(20.0)
\%) 30	5.70 (52.6)	7.75	(38.7)	s:00	15.5	(19.3)
9:49	6.60 (46.1)	8.00	(37.5)	4:12	16.0	(18.7)
9:54	7.00 (42.8)	8.25	(36.8)	4:24	18.0	(16.7)
10:06	\%.50 (40.0)	8.60	(35.3)	4:36	20.0	(15.0)
10:18	8.00 (37.6)	8.75	(84.8)			
10:30	8.50 (85.3)	9.00	(83.8)			
March			13			A
			16			8
April			1			C
			18			B
			27			A
May			11			B
			18			8
			25			A

DIVISION OF TIME
\% minutes=-QST QST QST nu 9XL.
3 minutes- $;$ sec. dashes broken by station call letters every half minute.

1 minute-announcement of frequency in mexacycles per second (8.75 mezacyeles per sec. is sent as "8 r is MC.")
\& minute-announcement of frequency in megacycles eycles per second.
Special Notice-If you use the transmissions send я note to Experimenters' Section, A.R.R.L., Hartiord, Conn.
k, s. \boldsymbol{R}.

AS REVISTA telegrafica of buenos aires SEES THE WASHINGTON CUNFERENCE
The European Majority: "Crush him, execationer: crush him!"

The Amateur: "Impossible. You can't squeeze me any Hatter."

A Correction

An error occurred in the article "The DX Tape Measure" in the March issue. In the formula at the bottom of the zecond column on page 47 the figure 9.70193 should have been shown as the sum of the three logs above it. The line to indicate addition was misplaced.

BYE BYE PURTY GABY

8 DPO

This Station is Built for the Future

MOST amateur transmitting sets are constructed around a particular size of tube without any thought of an increase in power in the future. In many cases this is thought to be necessary as the man wants to get a set on the air with the smallest expenditure of money. However, if it is desirable to increase power at a later date,
pleasing note that is easily picked up by the receiving operator and does not become wearying if one has to copy it for a lengthy period of time.
The oscillatory circuit, filament and plate transformers, and keying relay are all mounted upon the panel and baseboards. It is only necessary to run the 110 -volt a.c. leads to binding posts provided for them,

A VIEW OF 8DPO
The transmitter is located on a separate table from the receivers. This table also holds the key and writing utensils. On the other table holding the receiver is the Bosch " B " supply and a General Radio wavemeter.
the cost is usually considerably more than it would be had the original parts been designed to work at the higher potentials and currents. These points were kept in mind and while the transmitter at 8DPO was primarily built to use a pair of UX210 s, the parts were so chosen that it would only be necessary to shift to larger tube sockets and a higher voltage plate transformer to use a pair of 50 watters.

The tuned-grid tuned-plate oscillatory circuit was chosen because it is stable in operation and easily adjusted. The two tubes are in a back-to-back or full-wave self-rectified arrangement which gives a
hook a key and battery to the relay and clip the antenna onto the plate inductance in order to put the set in operation.

The plate and grid tuning condensers are National double spaced units having a maximum capacity $450 \mu \mu \mathrm{fds}$. The plate and grid blocking condensers are R.C.A. type number UC-1846 and have a capacity of approximately $36 \mu \mu \mathrm{fds}$. Four of these are necessary and they are mounted in pairs on small stands. These, together with the tube sockets, r.f. chokes, and filament by-pass condensers are mounted on a small shelf which fits between the two tuning condensers. The two filament by-pass con-
densers which are Sangamo receiving type are mounted just beneath the tube sockets which are above the filament lighting transformer. They are of 2000 unfd. capacity each. The various connecting leads are,

One of these fittings takes the form of a heavy brass strap that is held by the tie rods which support the stator plates of the condenser. These tie rods are run out the back of the condenser as far as their length will allow so that the strap will be a satisfactory distance from the endplate and the screws holding the pieces of insulating material in place. The upper end of the strap holds a collar into which the end of the stem of the coils fits. This collar may be clamped tightly around the coil stem by means of a simple locking arrangement. A piece of rod is threaded at one end and its other end is turned at right angles to act as a handle by which it may be turned. The side of the collar nearest the handle end of the screw, is threaded so that the screw may be run in and out of it. The other side of the clamp has a larger hole that will clear the rod. The rod terminates in a nut which is kept from turning on it by a bit of solder. As the rod is screwed out of the threaded side of
therefore, quite shori and solidly mounted.
The plate and grid chokes are similar in construction and consist of approximately 1.75 turns of No. 80 d.s.c. wire wound on a one-inch bakelite tube. Only two of these chokes are visible in the photograph, the other two being located behind the plate and grid stopping condensers. It is always advisable to make the two grid chokes of exactly the same electrical constants unless some arrangement is provided whereby the chokes may be tuned. The same applies to the plate chokes although a difference in them will not be as damaging. In the absence of electrical measurements it is advisable to make them as near to being identical from a mechanical standpoint as can be done practically. If the chokes differ greatly, the output for the two tubes will not be similar and the note will be poor. It may also cause the wave to be broad and of an interfering nature. Of course, it is quite possible to have trouble of this nature if the tubes are not closely enough matched as to their electrical characteristics.

The inductances are made of quarterinch copper tubing that has been heavily silver plated. The two coils for a band are similar in all respects. For the 40 meter band the coils are of four turns and are three inches in diameter. The two stems of the coils which fit into the clamps that hold them in place on the condensers are approximately five inches long. The 20 -meter coils are of three turns each, their diameter and the length of their stems being the same as the 40 -meter coils. The coils are firmly fastened to the condensers by means of brass fittings which are mounted on the condensers themselves.
the clamp, the nut pulls against the other side and causes the clamp to contract. It can, therefore, be made to grip the stem of the coil very tightly giving an excellent electrical contact. providing the surfaces are thoroughly clean.

A LOOK AT THE 'WORKS'

Note the simple though effective arrangement used to hold the coils in place. The apparatus is mounted in a compact manner at the same time leaving plenty of space for getting at the various parts. The filament transformer is located at the center of the baseboard and the plate transformer and keying relay are at opposite sides of it.

The other clamp is fastened to one of the rods which holds the condenser frame together. It is really two clamps similar to the one described above. One of these clamps to the rod on the condenser frame and the other holds the coil stem. The proper relative positions of the two clamps to fit a given coil may be obtained by sliding the clamp on the support rod of the
condenser frame either backwards or forwards to a point where the coil is in its correct position. In this manner it is possible to use coils varying widely in their number of turns without it being necessary to vary the spacing between turns to make them all of a uniform length.

Separate grid leaks and condensers are used for the tubes which help in obtaining stable operation. It is possible that trouble may be encountered in operating tubes in a full-wave self-rectified arrangement which is due to the generation of parasitic uscillations of a very high frequency. The effect usually shows up in the form of excessive heating of the plates, erratic operation with varying output or it may be indicated by an inability to obtain or hold a smooth note. A remedy that is, in most cases, quite effective is to insert a centertapped choke in the circuit at the point where the two grid circuits and the lead to the grid inductance connect. The outer terminals of the choke are connected to the leads from the grids of the tubes and the center terminal goes to the grid circuit inductance. Currents flowing from the center to the two grids will generate fields that oppose each other thereby giving a non-inductive effect while currents tending to flow from one grid to the other meet with the full impeding effect of the choke. For 20 and 40 meters such a choke may consist of about twenty or twenty-five turns of wire on a $\%$ or $1 / 2$-inch form. The size of the wire is not very important. Double-cotton covering would be useful as it would give sufficient spacing between turns without requiring special precautions in the winding to obtain this result. It is also possible to use resistors in the grid leads to prevent parasitic oscillations. However, the chokes are inexpensive and do the job in a satisfactory manner.

A 300-watt, 750 -volt Acme transformer supplies power to the plates and the filaments are excited hy an R.C.A. 150 -watt affair. An Allen-Bradley radiostat is inserted in the 110 -volt line to the primary of the latter and allows the filament voltare to be kept at the proper value as indicated by a Jewell 0-15 volt a.c. meter. Both transformer primaries are in series with a single-pole toggle switch. A pilot light behind a red hullseye is a positive indication as to when the power is on. The normal plate current is between 110 and 130 milliamperes as registered on a 0-1.50 Tewell milliammeter.

A pony telegraph relav is used for keying. It is inserted in the primary circuit of the plate transformer as this position will give less trouble from key clicks than will keying in the center tap or negative high voltage leads. Excessive arcing at the contacts may be prevented by shunting them with a half mike condenser in
series with a resistance. The value of the resistance may be between fifty and twothousand ohms and can be determined by experimentation alone. If any trouble is had with key clicks, an adjustment of this resistor will usually help matters considerably. The key itself is connected in series with a six-volt storage battery and the relay winding thereby being entirely

WHAT APPEARS ON THE PANEL OF THE TRANSMITTER
The toggle switch just below the lnob of the Radiostat is in the primary circuit of both transformers and is, therefore, the main wwitch controlling the power supply to the set. The bullseye next to it indicates whether or not the power is turned on. The hole through which the tube is viewed is large enough so that one could get a fall view of the plate of a 203-A were that type used.
isolated from the higher voltage circuits.
The 89 -meter antenna used with the transmitter is of the Hertz type. It is approximately sixty-four feet long and thirtyfive feet high and is supported by two telephone poles that are used for masts. At the exact center of the antenna there is a ten-watt thirty-two volt Mazda lamp. The feeder line, which is a single wire, is taken off at a point that is exactly halfway between the lamp and one end of the antenna. This feeder may be twenty-five or one hundred twenty-five feet long without effecting the wavelength of the system. Pyrex insulation is employed throughout and the feeder enters the house through bowl insulators and connects to the feeder series condenser which can be seen to the left of the lead-in insulator. This condenser is a UC-1803 unit of $25 \mu \mu \mathrm{fd}$. capacity.

There is also a $19.5-m e t e r$ Hertz which is almost 32 feet long and the same height as the 39 -meter one. Its current indicating and feed system is closely equivalent to that of the larger antenna. A switch located just outside of the window may be thrown to connect the 19.5 - or 39 -meter antenna to the set. The same lead-in through the wall is, therefore, used for both systems. No ground connection is used on either wave.

The UX-250-CX-350 Tube

THE very excellent little CX-350-UX- 250 tube is the unhappy victim of more hard luck than the heroine in an old-fashioned serial movie. Madhouse rumors have surrounded it for 6 months, and now its own folks are not agreeing on the story they will tell in announcing it. As if that isn't enough the samples have come through with such amazing slowness that QST even at this date has been compelled to go out and borrow some from a good friend in order to have some chance of finding out just what to believe.

THAT FAMOUS "955-WAT"" RATING

The grapevine telegraph was busy for many months announcing the 250 as a "25-watt, 200-volt tube". That at least can be knocked on the head at once. The 250 is so far from being a 25 -watt tube at 200 volts that it has little (if any) advantage over the 171 at that plate voltage.

The next question is, 'Is it ever a 25 watt tube?' As to that, we will tell the story as it has been shown us, after which your guess will be as good as another's.
A. The rumors made it a 25 -watt tube.
B. The R.C.A mimeod release says, "When used as a transmitting tube the UX250 is rated at 25 watts as against the 7.5watt rating of the UX. $210^{\prime \prime}$.
C. Consideration of the amplifier ratings and of the structure of the tube made it seem that perhaps the typist had hit the wrong key in cutting the stencil.
D. In response to our questions, R.C.A. cannot stand such high temperatures. On the other hand it is larger. Cancelling these things against each other one arrives at the conclusion that the 250 ought to be able to stand about twice the plate dissipa-
 tion of the 210. Rough tests seemed to show that a pair of 210 tubes in parallel were a bit more than equivalent to a 250 .
All of this suggests that the typist should have hit the "1" key and made the rating " 15 watts", unless the idea is to rerate the other tubes of the line, which might not be a bad idea at that, the present ratings being ultra-conservative as compared to the foreign tubes we have used. Certainly, with high-efficiency circuits it is possible to obtain more than rating from all of the older tubes of the R.C.A. line.

Meanwhile, whatever the proper rating may be, the UX- 250 is a fine little oscillator, even if such activities are not approved by its makers!

AS AN AMPLIFIER

In tabie A, the ingures for the UX-210 are taken from standard information of

TABLE A
GOMPARISON OF UX-210 AND UX-250 AS AMPLIFIERS. RRACKETED VALVES REFER TO 210

Plate Voltage	250			350	425			450
Negative Grid Bian	(18)	45	(27)	63	(35)		(-m)	84
Plate Current	(12)	28	(18)	43	(22)		(-m)	6.5
Matual Conductance	(1330)	1800	(1500)	2000	(1500)	-	(--)	2100
Ma.	(7.5)	3.8	(7.6)	3.8	(7.7)	-	(-m)	3.8
Max undistorted	(340)	900	(925)	2350	(1540)	$\underline{\square}$	(- -	4650
output (milliwatts)								
Fil. Yolts			7.5					
Fil. Amp.			1.25					
Ht.			6-1/4"					
Nia.			11/16"					
Base			X Std.					

says in a letter, "No information has been given as to oscillator ratings of the UX250. This tube is, in fact, not recommended for use in transmitting circuits, contrary to information given out by various newspapers."

About the only choice that leaves, is to try manufacturing some information from comparisons with the 210 and from trying the tube. The plate of the 250 is of a less refractory metal than that of the 210 and
R.C.A. and the figures for the 250 are taken from the same release which gave the 25 -watt oscillator rating, and which may therefore need some later adjustment. The bracketed figures are those of the $\$ 10$.

AS AN OSCILLATOR

With the incomplete data at hand oscillator comparisons must be made indirectly.

Referring back to the UX-210 we take (Continued on Page 38)

Keying Master-Oscillator Circuits

By Beverly Dudley*

IN keying master-oscillator circuits we have the chnice of keying (1) the oscillator, (2) the amplifier, or (3) both the amplifier and the oscillator.
If the oscillator is keyed, there is a possibility that key clicks will be present in the emitted wave. A further disadvantage in keying the oscillator is the fact that the wave is not as steady as if the oscillator were kept running continuously. This unsteady state or creeping, may change the emitted trequency as much as several hundred cycles. Each time the key goes down and the tube heats its elements expand and change the frequency of the emitted signal. The single advantage of keying the oscillator in master-oscillator circuits is that keying is positive.

Keying the amplifier has the advantage that the oscillator does not creep, and the signal is consequently easier to read. Key elicks are apt to be present when keying the amplifier but do not seem quite as pronounced as when keying the oscillator. The disadvantage of most methods of keying the oseillator is that some energy is radiated from the oscillator even when the key is in thé up position.

Keying both the amplifier and the oscillator makes for definite action, but key

FIGURE 1. KEYING TESTS
clicks are often present, and the arrangement has the further disadvantage of creeping.

Key clicks may of course be eliminated, or their deleterious effects greatly reduced, through the use of a key thump filter. In keying a small, and low power master oscillator circuit, it was desired to (1) secure definite and positive keying action, (2) elim-

[^7]inate key clicks, or reduce thir effects to a negligible value, and (3) to accomplish keying with a medium of apparatus.

A study was made as shown in Fig. 1. By keying in the negative side of the plate supply (A) both the oscillator and the amplifier were very effectively keyed but key

FIGURE 2. THE CENTER TAP METHOD OF FIG. ${ }^{2}$ AS USED AT 9BR
It will be noticed that in this circait and the one of Fig. 3 the amplifier is not "neutralized". This has nothing to do with the keying method and will be explained in a later paper.
clicks were very pronounced and a key thump filter would have been necessary for operation. If possible a key thump filter was to be eliminated to fulfill condition (3) named above.

The srid circuit of the oscillator was keyed by placing the key at the point B. Action was definite and sure. Key clicks were not as bad as when keying in position A. In both positions A and B, the oscillator had a tendency to creep, and while this was not bad when sending dots. the frequency and power output varied noticeably when sending long dashes and this method of keying was eliminated for this reason.
The key was next inserted at C in the grid circuit of the amplifier tube. The keying was found to be rather erratic. Furthermore, a considerable portion of the full power of the transmitter was being radiated when the key was up, and it was not found possible to set the neutralizing capacity to such a value as to cut the antenna current down to zero without producing a strong tendency of the amplifier to oscillate. If the neutralizing capacity was adjusted to prevent the amplifier from oscillating, the antenna current was about 10% of its full value even with the key up. If the neutralizing capacity was adjusted to cut the antenna current to zero, the am-
plifier was nearly always found to oscillate or was found to be unstable. I do not understand just why this should occur.

In playing around with different keying methods, we came across the method of "common lead" or "center-tap" keying shown in D. This arrangement effectively stopped both the amplifier and the oscillator without causing objectionable clicks. In fact, key clicks could barely be heard on a three circuit regenerative receiver used for broadcast reception, located three feet from the transmitter. This circuit was used for some time but the wave was found to creep.

By keying at point E, the oscillator was kept warm throughout the entire transmission so that the tendency to creep was eliminated. No key clicks were heard with this arrangement, and in addition, operation was positive, the antenna current being icro when the key was up. The key at E is at low potentials, both d.c. and r.f. as the center tap on the filament is usually grounded.

It is not neeessary to employ condensers and resistors in shunt with the key in this position. Due to the load of the antenna,

FIGURE 3. THE METHOD OF KEYING BY hreaking the radio frequency plate CIRCUTT OF THE AMPLIFIER AT 9BR
While probably less suited to high power work this method is thoroughly satisfactory from the standpoint of the receiving operator and the nearby broadcast listener and also has the advantage of not requiring a keging Alter.
the frequency of the emitted signal several thousand cycles different than the frequency of oscillations when the oscillator is lunning idle. However, the transmitter can be adjusted to give the desired emitted wave, and as no power is radiated when the key is up, it does not matter if the oscillator maintains a different frequency when idle than when feeding the antenna.

The key was also inserted at the point F, but due to the capacity of the key and its associated leads, so much r.f. energy was by-passed that keying was impossible.

The keying methods shown at D and E, (Fig. 1) were found to be the best of all
the keying systems tried. The keying system shown at D was used for quite a while. The complete circuit using this leying method is shown in Fig. 2. However, the keving system shown at E operated better than position D, and had the advantage of not requiring the use of relays, key thump filters, or other accessory apparatus. The final circuit used is shown in Fig. 3. The final keying sy'stem used has the disadvantage of supplying d.c. to the plate of the amplifier at all times. This has never been found ohjectionable in the case of 210 tubes, but might prove so in the case of larger tubes.

The resistance across the plate supply is simply used to "empty the filter" as a filter having a total inductance of 50 H . and total capacity of 9 mfd . as used here retains its charge a long time.

The UX-250-CX-350 Tube (Continued from Fuge an)

from the Scpt., 1926, issue of QST some General Electric data to indicate how the amplifier rating and oscillator rating of a tube of this general type may be expected to compare. The following figures are correct for an older type of 210 but the general proportions of the picture may be expected to apply to the present 210 and to the 250 .

	$\begin{gathered} \text { As } \\ \text { amplifier } \end{gathered}$			As oseillator
Plate volts	425	(max)	3.50	
plate mils		(max)	60	
Tnput watts	12.7		21	
Fiated safe				
Plate loss	12		15	
Output watts			7.5	watts at
			eff.	of 37.5%

Note that the max. amplifier input rating is approximately equal to the max. safe plate loss when used as amplifier (naturally since the plate circuit input is mainly plate loss when the tube is not working for a moment) also that the oscillator plate loss is $5 / 4$ of this.

Referring that to the 250 we have a max. input rating of 55 mils at 450 volts which is 24.8 watts, suggesting a plate dissipation of 24 watts when resting as an amplifier. Following the assumption, we have $5 / 4$ $(24)=30$ watts plate dissipation as an oscillator which compares nicely with the 2 -to- 1 result of the rough test mentioned above.

Finally, if we assume the same 37.5% efficiency for this tube as was used in rating the 210 we have an oscillator rating of 15 watts and an input of 42 watts at a plate voltage of?? ? and a current of???.

All of which is another method of guessing, but arrives at the same result.
$-R . S . K$.

Easy Tuning in the Short-Wave Bands

By F. Austin Lidbury *

THE increasing use of plug-in-coil receivers brings out the suggestion that those who do not mind using a few extra coils in such receivers can obtain much greater ease of tuning by the use of a condenser in the tuning circuit with a high ratio of minimum to maximum capacity. A condenser which will vary from 25-to $50-\mu \mu \mathrm{f}$ (shunted as it is by tube capacity and other capacities of an unavoidable nature) will usually tune a coil of the proper inductance and fairly low distributed capacity over a range equal to one of the short wave bands with a slight but comfortable margin Three properly proportioned coils will therefore cover the $20-, 40-$ and 80 -meter bands respectively; five or six intermediate coils will be necessary to cover the ranges between.

Such a condenser can readily be made from a Cardwell $250 \mu \mu \mathrm{f}$. variable by removing the 1st, 3rd and 5th of the five stator plates, and all but one of the rotor plates. This gives a double-spaced variable of about $25 \mu \mu \mathrm{f}$. To this is added about 25 $\mu \mu \mathrm{f}$. of fixed capacity ${ }^{1}$ by supporting another plate (which is connected to the frame and is therefore equivalent to an additional rotor plate) about 1/16" from the back stator plate, by drilling out the threads from the three holes which will be found on the back end-plate, threading and riveting three 6-32 bolts (from which the heads have been cut) at corresponding places on the extra plate, which is thus held firmly to the back endplate by 2 nuts (one each side of the endplate) on each of the bolts. (See photograph.) This gives also an easy method of adjusting the value of the fixed or minimum capacity, by increasing or decreasing the distance of the extra plate from the back stator plate.

WAVEMETER CONDENSER

A condenser which fills the rather severe requirements for use in a wavemeter capable of really aceurate work in the higher frequency bands can be made as follows:

Start with a General Instrument Type 51 F-. 001 variable condenser. This has 22 rotor plates and 21 stator plates. Counting from the "panel" end, remove all but the

[^8]2nd, 5th, 8 th, 11 th, 14 th, 17 th and 20 th of the stator plates: and all but the 1st, 4 th and 7 th of the rotor plates. If you reassembled the condenser at this stage there would be 7 fixed plates and 3 movable plates, one outside and two meshing with the front fixed plates. It is now necessary to provide, between the remaining fixed plates, four plates which, though grounded like the rotor plates, are not attached to the rotor and remain "in," whatever the position of the rotor. This is done by so shaping four flat brass plates that (while having ample clearance from the slotted metal pieces to which the stator plates are attached, as well as clearance for the shaft) they each have three projecting arms which can be fastened to the two top and center bottom hexagonal rods which separate the end plates of the condenser. These should then be firmly fixed in positions exactly between the five remaining rear stator plates, preferably by slotting the hexagonal rods referred to and soldering the brass plates in position. You now have, on reassembling, a condenser with seven insulated stator plates and seven

THE RECONSTRUCTED CARDWELL CONDENSER
The grounded fixed plate can be net at various dibtances from the insulated stator.
grounded plates, of which four are permanently and immovably "in" and three (attached to the rotor) variable. On reassembling, care should be taken to tighten up all bolts thoroughly: preferably they should then be soldered in position.

A condenser so prepared has the following properties all of which are desirable in a
wavemeter for precise work at higher frequencies:
(1) Rigidity of construction and absence of wabble at shait bearings. The extremely wide spacing further assists the maintenance of constant and reproducible values of capacity at a given setting.
(2) Goud electrical characteristics.
(3) Such a high ratio of minimum to maximum capacity that a suitable inductance will cover but one of the amateur wave bands with a slight leeway at each end.

In the latter respect at wavemeter built with such a condenser differs radically from those generally in use, which cover with each

A - Fexusiozr sesie
B- vernier Deaki, it wivisions here equal to to on main sialo METHOD OF READING

 Chime reading is 27

VERNIER SCALES

coil such an enormous frequency range that close tuning is impractical. A wavemeter built along the lines of that described in the Bureau of Standards Letter Circular 185, but using a condenser such as described above, has a useful frequency range with each coil of radio eapproximately 1:1.16; thus the 40 -meter coil covers a range from 37.4 to 43.4 meters. Very sharp tuning is possible, and by using a "vernier," ${ }^{2}$ readings can be reproduced to $1 / 10$ of a division of 100 -scale dial, or somewhere in the neighborhood of $.01 \%$. This is a considerably higher degree of accuracy than under present conditions an absolute calibration can be obtained for. it is not higher, however, than will be found desirable, and necessary next year.

[^9]
Financial Statement

BY order of the Board of Directors the following statement of the income and disbursements of the American Radio Relay League for the fourth quarter of 1927 is published for the information of the membership.

K. B. WARNER Secretary.

dTATEMENT OF REVENUE AND EXPENSES FOR THE THREE MONTHS ENDED DEC. 31, 1927.

REVENUE:

Advertising sales, QST	18.844.38	
Newsdealer sales	17,511.18	
Handbook sales	3,456.81	
Handbook advertising siales	2.297 .50	
Dues and subscriptions	9,515.01	
Back numbers, elc.	758.19	
Eimblems	77.31	
Interest earned, bank deposits	111.2%	
Cash discounts earned	366.05	\$51.937.65
Deduct :		
Returns and allowances	6,692.93	
Provision for newsdealer returns	\%.324.71	
Discount $2{ }^{\text {reve }}$ for cash	$3: 37.72$	
Exchange and collections	10.65	9,366.01
Net, Revenue		42,571.64
EXPENSES		
Publication expenses, QST	15.745.25	
Publication expenses, Handbook.	2,783.30	
Salaries and commissions	15,650.93	
Forwarding expenses	235.68	
Telegraph. telephone and postage	1,911.17	
Office supplies and seneral expensexs	2,194.90	
Rent, light and heat	9.933 .93	
Traveling expenses .	1,113.46	
Depreciation of furniture and equipment	235.17	
Bad debts written off	278.60	
Communications bept. field ex penses	104.90	
Total Expenses		42,016.59
Net Gain from Operations		\$ 6555.05

Mentrays

If you work a station signing okMNX don't write in and tell us you've snagged a new one. His QRA won't be worth having because it will be some non-existent place in Africa, Siberia or what have you. Several stations have been "worked" by okMNX and as near as we can make out it is the call used by members of Barney Google's Billy-Goat Club.

We were mighty pleased to hear that John M. Clayton who is well known to readers of QST has recently been appointed as secretary to the Institute of Radio Engineers succeeding Dr. Alfred N. Goldsmith who is now president of the Institute. Hearty congratulations from all at hdqs. go to J. M. C. on his advance.

A Portable Receiver

By James J. Lamb*

THE major points considered in the design and construction of the receiver were that it should be sturdy and compact, self-contained, totally shielded, and adaptable to use with a short-wave r. f. amplifier or super het.

The panel is of $1 / 4$ inch hard rubber stock, 7 by 12 inches in size and backed with aluminum shielding $1 / 16$ inch thick. The hard rubber was first marked and drilled for instruments to be mounted and then this panel was used for the template in drilling the aluminum shield. The holes in the shielding were drilled sufficiently large to pass all shafts without contact with the exception of the tuning condenser shaft bearing, which is grounded. Mica paper insulation was used to insulate the shell of the regeneration control resistor, the shell of the volume control resistor, the

THE DIAGRAM WITH CONSTANTS
Ci $50-\mu \mu \mathrm{fd}$ General Radio miniature variable used in series with anienna.
C:2 Same as C1, used to tune L1
(S3 100- $\mu \mu \mathrm{fd}$ Sangamo mica grid condenser.
C4 Sangamo 1000- $\mu \mu$ fd mica bypass condenser.
(5) . $25-\mu \mathrm{fd}$ Tobe lixed condenser.

R1 5-mex. gridleak.
R2 $50.000-0 h m$ Frost rheostat for regeneration control.
R3 1-meg gridleak for preventing fringe howl.
$\mathrm{K} 4 \mathbf{2 0}^{20} \mathrm{nhm}$ Jaxley Filament. rheostat.
R5 500,000 -ohm Frost rheostat used as a gain control.
Tr Stromberg-Carlson audio transformers.
National dials used.
filament switch, the filament rheostat and the phone jack. Empire cloth or similar sheet insulation material would be equally serviceable.

The sub-panel is mounted on Benjamin aluminum brackets, and carries on its top the inductance socket, tube sockets and audio transformers. Bolted to the back of the sub-panel brackets is a hard rubber strip carrying the binding posts and antenna series condenser.

The circuit is quite conventional, and em-

[^10]bodies the features recommended by the Technical Staff of QST in recent issues. The plug-in inductances are wound on UX tube bases, and an UX socket is used as a

REAR VIEW TO SHOW INTERIOR ARRANGEMENT
Four sockets are provided, three for tubes and one for the tuning coils. The batteries have been removed to expose the apparatus.
mounting. Regeneration control is by means of a Frost $50,000-\mathrm{ohm}$ maximum variable resistor, shunted by a . $25-\mu \mathrm{fd}$. fixed condenser to eliminate any tendency to scratching noises.

The first audio transformer has a 1 megohm resistance shunted across its secondary to eliminate fringe howl, and this it does with no loss of signal volume. This resistor may have to be of lower value with some transformers of different make or type. The second audio transformer has its secondary shunted by a Frost variable resistor having a maximum resistance of 500 ,000 ohms, and this serves as a volume control of infinite variation, being not only useful in controlling signal volume, but also in attaining a more favorable signal to static and background ratio on weak signals.

The cabinet is made of $1 / 16$ inch aluminum sheet, and is 12 inches wide, 12 inches deep and 7 inches in height. The corners are formed of pieces of the aluminum stock bent in the form of right angles, and the pieces forming the panel shield, sides, bottom and back bolted to these angles. The top is made of a sheet 12 by 12 inches, with angles bolted to the under side so as to fit snugly against the sides of the cabinet when the top is in place. The top is not hinged, and is therefore completely and quickly removable.

The set uses three tubes of the 199 type, and the requisite dry-cell A battery and 45 volt B battery are contained in the cabinet.

In operation, the receiver "handles" very well, having no body-detuning effects or

HRONT VIEW OF THE SET WITH HATTERIES IN PLACE
Everything is ready for reception except the antenna, which is simply a length of small magnet wire that can be taken down readily, wound up and dropped into the pocket or the set. The left National dial controls the regeneration, the right one the tuning. The upper rheostat controls the filament, the lower one the gain in the andio nystem. The ilament switch is at the lower right and the thone jack at the lower lift.
noises from the variable condenser and regeneration control. The variation of the regeneration control has no detuning effect on the signal, and the regeneration control has been found very satisfactory on the reception of phone signals.

The coils are wound on ordinary UX tube bases. Those that have been made so far are as follows, all wound with No. 28 D.S.C.

Wavelength range
Tuned coil Tickler

$43.5-28.5$	(grid input)	$11 \times 1 / 4$
$17.5-26$	$92 / 4$	
10 meter band	$6^{1 / 4}$	$51 / 4$

The tuned, or grid input or "secondary"
(there is no primary coil so this name is hardly appropriate) coil is in each case the upper one, the tickler being nearest the base. Longer forms may be used with the same plug-in arrangement and go into the broadcast band.
The outer carrying case is an ordinary hinged one made for traveling.

8DPO

Conlinued irom page sis
The receiver is of the popular type using Aero Coils and capacitive control of oscillation. The plate yoltage is obtained from a Bosch " B " supply and it is found that the knob which controls the detector voltage may be advantageously used as a control of oscillation. It helps greatly in "building up" weak signals. A pround connection to a cold water pipe is used on the receiver. An antenna that is 135 feet long has been found to be the best that has been tried here for receiving.

The station which is located at $136-11$ th Street, Warwood. Wheeling. W. Va.. is the property of Mr. Ross J. Arrick. It is operated by him and Mr. John F. Niess and was constructed by 2AMB located at Woodbridge, N. J.

2ontraysisg

9CGY had a lot of trouble getting a d. c. note from his transmitter and, after trying everything else he could think of, discovered that what was needed was an adjustment of the center tap of the filament transformer. He finds now that he can change the note from r. a. c. to d. c. just by shifting the contactor on the potentiometer shunted across the filament transformer. Perhaps such a stunt might help some of the notes one hears on the air; it certainly couldn't do any harm to them.

Overheard at the local BCL club. "Well, Sir! I put a lot of thumb tacks along my aerial-I don't know why I did it-butad nauseam."-500.

POUNDING THE KEV

Variable A-, B- and C-Power From D.C.Mains

By F. I. Anderson*

DRECT current supply is available in large areas of many cities and towns, and since the system of distribution smooths it out very nearly flat, it isn't much of a job to take out the residual hum. The beauty of it is that it will furnish A, B and C-power for receiving sets at practically no cost, which (being almost something for nothing) should appeal to the ham. I give below the hook-up I have been using in New York City for the past year.

The diagram is self-explanatory. My choke is an Amertran 418, which will carry 8 amps without appreciable drop. I use "five-and-ten" carbon lamps (115 volts) in series for the divider circuit, from which the B voltages are drawn. Variable resistances may be used instead.

The rheostat controlling the A voltage is reversed, because it is used as a by-pass. The more current is by-passed through the rheostat, the lower the voltage in the tubes, and vice versa. Take an ordinary rhenstat (say of 50 or 60 ohms) and mount it backwards, so that when you turn it "on" (to the right) you really turn it "off"- if you know what I mean! The rheostat and voltmeter are both, of course, in parallel with the filaments.

Your reading lamp is used to trim the voltage for the filaments. Since we only take away 5 volts for the filaments, the reading lamp doesn't know the difference, and we continue to use the lamp for the purpose for which it was intended. Of course if you listen in in daylight, the reading lamp is so much waste; but at night the radio beneficiently furnishes light for nothing, or the reading lamp beneficiently furnishes radio power for nought; as you please. The size of your reading lamp-this being really a check-valve on amps-depends on the size of your set. You can figure exactly, by the IR formula. Allow approximately 32 watts (at 120 volts) per quarter-amp tube or equivalent. Thus, 4201 A 's and 1112 equal 6 tubes, and take 192 watts. A 200 -watt lamp will do the trick, the rheostat taking up the slack. Or use a 150 -watt lamp and a $40-$ watt lamp in parallel, and dispense with rheostat and filament voltmeter altogether. I have not used mine in months.

The C voltage is taken of the IR drop of a resistance in the negative leg, next to the fuse plug. I use a burnt out heater unit for the resistance. It is adjusted to 5 ohms, and is shunted by a potentiometer, and a $4 \mu \mathrm{fd}$. fixed condenser. This latter
may be low voltage and cheap. I use a 907 Dubilier and find it quite good enough. For several O voltages of varying values, which we always need, use several potentiometers. Since all the A and B current

passes through this resistance, it is simple enough to design the C resistance for your own needs. In the above case, $11 / 2 \mathrm{amps}$ passing through 5 ohms give us an IR drop of $7 \frac{1}{2}$ volts. Your potentiometer takes what it wants of this. As Kruse brought out in his article on eliminators in Feb., 1926, QST, a mutual C voltage has a compensating effect on hum, since grid bucks plate.

If you want to use 171 's, you will need more C bias-always at the expense of B voltage, remember. To get it, trim your heater element to the correct resistance. These heater elements can be bought new and entire on the sidewalk stores for 50 cents, and contain about 20 ohms of nichrome wire. As you trim C volts off B, you can build up B again by adding B hattery blocks in series on the B end. Since this battery block is used, and only partially , for the last tube only, it makes a very economical arrangement. If you are a brave man and possess an electrician's license, go down in the cellar and get hold of the other side of the Edison three-wire system, with its 240 volts, for your higher B voltage on the last tube. This of course will require another filter system.

I have been using tubes a whole year with this hook-up which speaks well for voltage regulation. Occasionally we hear a hum, when their commutators get dirty or rough, but usually it is almost "pure d. c." Since you can get any voltage you want, up to 120 , on the filament end, it makes a handy re-activator, if your thoughts run in that direction.

There is no minus B tap, this being taken

[^11]
Experimenters' Section Report

PROBLEM R-12, existing quiescently for so long on account of the limitations imposed on it by three electrode tubes, has, since the advent of the UX-222, bloomed forth in all its glory. Experimenters' Section Members have been quick to grasp the possibilities offered by the new tube and we are able to present the report and deductions of one of them-ithe ever-active Lidbury.

The UX-222 as a Short-Wave Amplifier

By F. A. Lidbury*

ANUMBER of measurements of voltage amplification with the UX-222 at frequencies between $\%$ and 18 megacycles has been carried out at this station. It is not believed that the method and detailed results would interest enough readers to warrant publication, but a discussion of the general results is likely to be of service to those who wish to use this tube as a shortwave amplitier. The tube with its associated plate circuit was of course thoroughly shielded, and all leads by-passed and choked; separate B batteries were also used. The method consisted in feeding the grid with an rapproximately constant voltage (about .25 volts) and measuring the output by a tube voltmeter. A tuning condenser of about 75 picofarads shunted the plug-in inductances in the plate circuit of the 222 .

It is found that; (1), Amplifications of uearly 10 are obtainable in the 20 -meter band and of over 20 in the 80 -meter band, using ordinarily good receiver coils. (2), Quality of coils being equal, the amplification increases with the amount of inductance, and roughly as the square root of the inductance. (3), Most coils show an almost flat amplincation factor over the tuning range of about 1 octave. (4), Improving the coil by the use of heavier wire than usual, properly spaced, and so on, increases the amplification factor; but a very considerable improvement in coil gives only a moderate improvement in amplification as compared with an ordinarily good coil. The use of a very poor coil, on the other hand. violently reduces the amplification. (5), Slightly higher amplifications are observed on a tube voltmeter using plate current characteristic (high negative bias) than on one using grid current characteristic, (grid leak to positive filament). The small difference will probably not compensate for the considerably greater sensitivity of the latter type of detector, in use.

[^12]As the measurements in question were done on a tube voltmeter, it is a question as to how far the results can be applied to an oscillating detector. Measurements, at least reliable ones, under such conditions would be much more difficult to carry out. How the impedance of the tuned circuit in the plate of the 222 , looked at from that tube, would be affected, if at all, by setting the detector into which it feeds, and whose tuned grid circuit it constitutes, into oscillation, is an interesting subject of speculation on which it would be useful to get the opinions of some theoretical sharks. Insofar as the present results may apply to those conditions, the first clear conclusion would be to use as large an inductance and as small a tuning capacity as possible, woth of course of the best possible quality. As usual there is an unfortunate inherent limit. There is a high plate-to-ground capacity in the 222 ; of the order of 15 picofarads. This is in shunt with the tuning condenser, so siso

THE LATEST 5-METER TOW-POWER TRANSMITTER AT 8CMP, STATION OF DR.E. C. WOODRUFF. DIRECTOR, ATLANTIC DIVISION
In this view the tuned circuit may he seen. It consists of the tuning condenser on the farther support together with the single turn formed by the two eopper strips connecting the uprights at the top. The end of the strips nearest the reader are connected by the micaion stopping condenser, to one side of which the plate suppiy is connected and from the other side of which the adjustable xrid leak goes to filament. "the plate and grid of the tube are connected across the variable condenser, thus giving the usual altraudion circuit with excellent mechanical rigidity.
is the grid-filament capacity of the detector tube, and all the stray capacities of the wiring, sockets, bases, etc., between the plate of the 222 and the grid of the detector. All told, we have a minimum capacity of something like 25 picofarads, which is inherent in the circuit, and can be reduced very little
by such devices as debasing the tube and paying very careful attention to stray capacities. It will be well, however, to select a tuning condenser with an extremely small minimum capacity, and build inductances so

VIEW FROM OTHER END OF THE 8CMP 5-METER TRANSMITTER
This view shows plate feed terminal and adjustabe grid leak connections to the "stopping" end of the tuned circuit, also grid and flament connections to the "tuning" end on the nearer upright.
that they tune to the lowest desired wavelength with plates "all out". The maximum capacity of the condenser will be determined by the range desired, but at higher wavelengths a better amplification will be obtained by using a larger coil than by using the same coil with a large tuning condenser. The writer hazards the guess that much of the disappointment which has been expressed by amateurs who have tried without much success to use the tube as a shortwave amplifier is due to an improper L / C ratio; to too large C and much too small L.

While the coil should be as good as reasonably possible, over-fussiness in its construction will scarcely repay the trouble. A puzzling thing about the writer's measurements was the flat amplification frequency characteristic obtained on most coils. The answer became clear when one of his receiver coils was compared with; (a), a similar coil of much heavier wire (No. 12) and (b), one of much finer wire (No. 36). All these coils tuned from about 25 to 50 m . The receiver coil (No. 22 wire) gave a factor varying little from 11.5 over that range; the No. 12 wire had a factor of 14.5 at the highest wavelength, which diminished to 13 at the bottom; the No. 36 wire had a factor of only 2.6 at the top, and increased to 5 at 25 meters. This increase with frequency is what would ordinarily be expected from any given coil-condenser combination, if that combination were all that entered into the question, but the other capacities mentioned in the last paragraph enter into
the argument more and more as the value of the tuning condenser is reduced. The principal of these is the plate to shield-grid capacity of the amplifier tube, (with which can be lumped the grid-filament capacity of the detector). This is connected to the inductance through the tube lead-in wires, which are not the kind of material we should choose when we are trying to obtain a resistanceless resonant circuit! The more our tuning condenser is "out", the more of the circulating current is compelled to travel over these resistances, and this circumstance neutralizes the increased amplification one would expect with a given coil-condenser combination as one reduced the variable condenser with increase of frequency. (If your coil is so bad that its resistance is larger than that of the tube leads, you get the increased amplification with frequency: but in such cases of course the amplification is comparatively small.) The limitations imposed by this circumstance are likely to become so serious at waves much shorter than 20 meters as to render 222 amplication a practical impossibility, unless Kruse can persuade the R. C. A. to put out a line of tubes with nice fat silver lead-in wires, or something equally good!

Variable A-, B- and C- Power From D. C. Mains
 (Continued from Page 4:)

care of automatically. Also, no ground is needed on a receiver ordinarily using one. If you do use a ground, be sure and use a fixed condenser, say $1 / 2$ mike, in series.

Since we want all the inductance we can get in the choke, it will suggest itself to the experimenter to design a special choke in place of resistance R, for the C voltage. This would be killing several birds with one stone. Wind 3 pounds of No. 18 enameled wire on a laminated core $11 / 2$ inches square. This should carry 2 amps without running too warm for comfort.

If you run a super het, and your reading lamp is too bright-a 10 -tube set might take 320 watts-scatter the lights among several receptacles, always in parallel, of course. If you can't do this, and don't want so much light, use old fashioned carbon lamps.

A SHIELDED, CRYSTAL CONTROLLED UNIT

The Communications Department
 P. E. Handy, Communications Manager 1711 Park St., Hartford, Comn.

Ten O. R. S. Commandments

By John J. Hallahan*

1. 'Thon shalt not forget to report to thy S.C.M. in the sith day of each month.
II. Thou shalt endeavor to arrange schedules and ixithfully kefp them.
2. Thou shalt report these schedules to thy Route Manager each month.
IV. Thou shalt place correct and complete address and date on each message.
V. Thou shait not permit messaxes to remain on thy hook over is hours.
$V T$. Thou shalt not repert earch wori twice unlesi requested to do so.
$V I I$. Thou shalt use directional ig when thou hasi traffic for QSR.
VIII. Thou shalt keep n the oi all messages for at jeast three months.
IX. Thou shalt use no shbreviations in the text oi thy messapes.
X. Thou abalt have a good wayemeter and clock in thy sidution ar all times.
©OP. RM No. N.J.

TRAFFIC BRIEFS

An "eriginal" USL card found its way in irom IAHV. It's one of the photographic type, and carries a small picture of the transmitter in the upper Fixht corner and of the whole station in the lower jeft. Bonnecting these two pictures is a strip iontaining the mall letters, In the upper ifft corner is " little wuy with a big head who se\% "Here's what is in my log. OM'. and on the opposite coorner is the two hiunk of an ARRT, log sheet, on which he xrites the dope on your sigs. It's one of the "must he seen to be rppreciated" kind.

N•1AE has heen kewning weekly sked with YCy ar Wakeham Kay, Hudson Straits, and was GSO with YCR Ht Nottingham Jsland. Hudson Straits, on Si. 5 meters.

KDZ

naKDZ is the all of the present Wilkins Arctic Fixperition. "ABH reports frorking him, and sayp kilz's siys varied irom R 7 to 3 , iew. on 33.1 meters. AABH eot the following messuge during the QSO: "Hr msg fm Fairbanks, Alaska, naKDZ, Mar. i. $192 x-T h i s$ is the Wilkins Arctic Expedition at Fairbanks Alaska. I'se send bord ARRT, piving them dope on this oontact. Cmot. Wilkins urrived Fairbanks iast Sunday night. We gre toxting radio beinre installing in rirplane. It is installed at. radio stn WXP. This is Geo. Jnaki operating nw, Poe well rest of hams down there to listen inr us. We is anxious get reliable exntarts arranged."

Operator Maki sends a radiogram from KDZ via GOE segesting that traffic for Frirbanks be routed ษін GARD.

[^13]
Intelligence Tests for Amateurs

By John A. Bayies, 8AY A*

Question No. 1

8POP has a 6 watter and CR's 586 times snd does not raise a single station. Whirh of the fol lowing should he do? (1) Sell his set. (2) Put in a new reid leak. i3) Send out an liOS. (4) Start calling a few stations. (s) Write a hot letter to os\% razsing everybody,

Queution No. Z
sTUT had a UX-2!0. He put 2000 volts on the plate. He has not been heard lately. Why not? Underline correct reason: (1) He is in jail, 121 He is putting in a 250 watter. (3) His UX- 210 is deceased. (4) He sot married. (5) His license expired.

Quertion No. ${ }^{\text {S }}$

The BCL living next door to 8MAT has complained sbout EMA'Ts key clicks spoiling his music. Which of the following should $\triangle M A T$ do about it? (1) 'Tell the BCLL to go to Hades. (2) Quit operating from seven to ten PM, (3) Beat up the BCL. (4) (Yut in a keying filter. (5) Use compensated wave beying.

Question No. 4

9NUT had a good station. He worked all continents on 36 meters. Which of the following ressons explains why he isn't on the nir'? (1) He moved to Jrpan. (2) The Electric Co. turned off his juice because he wouldn't pay the bill. (is) He got tired of amateur radio. (4) His license was cancelled for operating off-wave. (5) His kes broke down.

Question No. 5

A certain BCL is tired of listening to: "This is the -.... hour, sent to yon through the courtesy of the -.- -... Co.. makers of -... The orchestra will now play \quad etc., etc." He wants to get into the ham yame and realizes he will have io learn a lot berore he can get a license. What is he going to do about it? Underline the sentence which explains correctly: (1) Read the Suturday Evening Post. (2) Go to college. (8) Subscribe to GS and get a copy of The Padio Amateur Handbook. (4) Buy a copy of Fiadio Neurg. (5) Ask some hard-boiled ham to help him.

Question Mo. 6
ס'TAP has a 360 -watt cryatal-controlled set and a Vibroplex. He doesn't seem to get out so well though. One of the following reasons explains correctly why he doesn't. Which one is ity (1) Other stations don't like his call. (2) He has halitosis. (s) His sending is to fast. (d) His sending is too sinw. (5) He is never on the dir.
*82 Laurel St. Cincinnati, Ohio.

GMD

The Dyott Brazil Expedition has been out for nearly \% month. The base station (two 203A's in self rectinied Hartley circuit, 1000 volts. $\$ 00$ cycle plate supply) is expected to be on the air by April 1. During March traftic for the U.S.A. has heen coming throush fine by amateur radio. $B 1 I B$ and XCFR are to be concratulated on their fine work. All amateurs are requested to be on the lookout for GMD's signais and traffic. In addition to the byse station a field transmitter consisting of two IIX. $210^{\circ} \mathrm{s}$ in A T.P.T.G. circuit with 500 volts B-battery supply will be used ior contact with the base sta-
tion. Messages will be sent in semi-code form and Hddressed to ALLIANCE NEW YORK. Amateurs should copy and forward these mesages io the North American Newspaper Alliance, 63 Park Row, New Xork City. Amateur comprition will be greatly appreciated.
GMD will work on the following schedules: DayJight, 20.5 meters between 2 and ${ }^{\text {F PM. EST. Night. }}$;6.5 meters between 7 and 9 PM EST and midnight to tive AM FST. Get busy and do your part with GMD, OM.

WNP

WNP (Recd via 1FL and 1MK) nr. 468, March 9 To A.R.R.L., Hartford, Gonn. We are buck on twenty meters. This band will be used exclusively until the Bowdoin sails for home next September. Longer days and shorter nights have killed eighty meter signals but the twenty meter band is ugain aide reliable. February was y period of stormy weather und bad signals. Eighty meters dropper out and twenty meters was still very erratic. The following stations helped greatly in moving our traffic when regular schedules were not running smoothly: $2 V I$, ЗQP. SAHC, $8 B E N$, 9EFH. nclCO. Thres stations broke through to us with wice on iwenty meter band. $1 S Z$'s new crystal controlled fone was the first worked followed by xBEN and ISW. We had many interesting QSO's with eVI while arranging a special program broadcast to WNP through WEAF. WGY and chain stations. Had nice chat with op3AA at lMX one afternoon. It was also mighty interesting to QSO 9 EZ with "DN" of oild 9 ZN at the key. Later "WR" of this same GEZ handed us some news of the passing of WSA and WPA two husky commercial sparks into hands of RCA to be converted into tube outfits. Wish few more of you commercial fellows wonld slip along a word now and then about what's happening on 600 meters. 1 FL continues to take a great deal of our traffic. He is easily our most reliable contact. All messages for us in future should be routed via 1 FL. 1.SZ. 1XM, 9AFA. or 3EFH these all reliable contacts.

Messuges handled February sent 214. Received 135, Total 349 Ston Rest regurds.
"WNP NR 415 March \& via 9EFFH.
Calls worked in February: Twenty meters:
lacm lajz lalj laxx layn lbat lber lbii lbur ibw ibyv Jed lemd 1 com ifl lia 1 ih 1 mx 1 my 1 sw 1s\% Iuo 1 xm 1xv 2afv ?aon 2api 2bsc 2sb ?ol 2vi 3akw 3nr 3sk 4bl 8abx sahe 8akv 8arb 8asf 8bet Xben sbud 8ccl 8cer 8ces 8cj 8cug 8cvj 8djv 8dkl रdid 8mq 8nb 8ce Yafa thga Ybtx gdfy 9dzm 9efh tref\% Gez ncibd nicleo egiab eb4at eh4cb ecasa effif foa3z: eighty meters, laar lasi $1 f l 1 x y$ eakq 3qp 9afa nexite."
.-.Cliff Himor.

1MK

The A.R.R.L. Headquarters atation has been moved from its old location at 1711 Park St., Hartford. to a much better location for reception and transmission at Brainard Field. Hartford. The evolution of our present atation has been slow but progress has been made steadily from the time when five watters were insualled to pick up traftic bound for Headquarters which found its way to the shacks of Connecticut amateurs. Suffice it to say that the station is at last freed of the handicaps off.ered by n poor location in a business and residential district and by inadequate space for a suitable installation. New equipment has been ruded so that $3 M K$ is now able to serve A.R.R.L. members in every widy that a station can be of service.

Telephone facilities connect the alation with the Headquarters offices. Two transmitters working on different, frequencies may be used sevarately or simultaneously. The main transmitter is a b00-watt T.P.T.G. set which may be tuned to any desired points in the $20-$, $40-$, or 80 -meter bands. An auxiliary 250 -watt Hartley arrangement is available at the throw of a wwitch for 40-meter work. "This will be used with the main sei on 80-meters for simultanerous transmission of the Official Broadcast to A.R.R.L. Members on two bands. The two transmitters are provided separately with mercury-are and motor-generator power supplies but provision has bewn made for working hoth transmitters from one power supply in case of necessity. "The new installation is in every respect a "real" station without the disadvantages of itis predecessors.

1MK will be found on 83.86 meters (3575 kc) whensever working in the 80 -meter band . . . and on 41.93
meters (7150 kc) When working in the 40 -meter band. A definite frequency will be announced for 0 -meter opelation in the near future together with a complete list of scheduled points through which you may route messages to Headquarters if you do not shoot them in direct to JMK.
A precision wavemeter is located ht the siation so that 1 MK will siways be found right on the given point selected for work in the different amateur bands. The ireguency will be changed a small amount to get around severe interference if necessary but will always be returned promptly to the wavelengths stated $n t$ the end of such a transmission. A convenient oscillator is provided for use with the wavemeter in measuring the wavelength of stations worked when this is expressly requested during communication or by special mail arrangement (schedule). An accuracy of within if of one wer cent (20 kc at 40 -meters, 10 ke at 80 -meters) may be expected of wavemeter readings.
Mr. R. B. Parmeter of $9 \mathrm{WR}-90 \mathrm{X}$ is Chie Op. at the new 1 MK . Bob signs "RP" as some of you will remember from the days when he started to build a reputation with a $1 / \mathrm{K} . \mathrm{W}$. spark set at Knoxville, Ill. "RP" hails from Louisville, Ky. You will find him ready for any traffic you have for Headquarters or for QSR.

The country will be covered as completely as possible with schedules for placing and collecting traffic in addition to a rather heavy program of seneral operation which will be outlined briefly herewith. In addition to this plan of operation other general operating ahifts will be kept by "AH". "BUD", "LaJ" and "FH" when possible. The station particularly invites messages for any individual or department at Headquarters. It is requested that inquiries of the Terchnical Department or Circulation Department always be accompanied with as complete in address as possible regardless of whether the message is taken direct or relayed to facilitate replies.

Broadicast messages to A.R.R.L. Members are sent on both 40 - and 80 -meter wavelengths at the time indicated. The quota of schedules which will necupy the scheduled periods is nearly filled but a few more schedules with reliable stations at suitable points will be added. At present there ure more 40 -meter scheduled periods onen than those set sside for 80 meter work.

1MK OPERATION (Eastern Standard Time)

Sunday:

7 pm . to 8 p.m. 8n-meter schedules
\& p.m. BC to A.R.R.L. Members on 83.86 and 41.93 meters
$8.10 \mathrm{p} . \mathrm{m}$. to $9 \mathrm{p} . \mathrm{m} .80$-meter "reneral" operation
9 p.m. to 10 p.m. 40-meter schedules
(1) p.m. to 11 p.m. 40-meter "creneral" operation 11 p.m. to midnight 80 -meter schedules
Midnight BC to A.R.R.L. Members on 83.86 and 41.93 meters
12.10 \&.m. to 1 a.m. 80-meter "general" operation Monday and Friday:

7 p.m. to 8 p.m. 80-meter schedules
8 p.m. BC to A.R.R.L. Members on 83.86 and 41.93 meters
8.10 p.m. to 9 p.m. 80-meter "greneral" operation

9 p.m. to 10 p.m. 80-meter schedules
10 p.m. BC to A.R.R.L. Members on 93.86 and 41.9% meters
10.10 p.m. to 11 p. m. 40 -meter "efeneral" operation

11 p.m. i.o midnight 40 -meter schedules
12.00 to 1.00 8.m. f1)-meter "general" vjeration Wednesday :

Daylight operation on 20 -meters and 40 -meters Tuesday and Thursday:

7 p.m. to 8 p.m. 80-meter schedules
8 n.m. BC to A.R.R.L. Members on 83.86 ana 41.93 meters
8.10 p.m. to 9 p.m. 80-meter "rfeneral" operation
$0 \mathrm{p} . \mathrm{m}$. to $10 \mathrm{p} . \mathrm{m}$. 80 -meter achedules
10 p.m. to 11 p.m. 80-meter "general" operation
1.1 p.m. to midnight 80 meter schedules

Midnight BC to A.R.R.L. Members on 83.86 and 41.93 meters
12.10 R.m. to 1 a.m. 40-meter "qeneral" operation
A.R.R.L. Members everywhere should be able to copy the broadcasts direct. Any special subject of immediate interest to Members will be addressed to ihem through 1 MK on the regular BC schedules piven above. Official Broadcasting Stations will copy this information direct from Headquarters by cadio (instead oi mail) and repeat. the broadcasts whenever possible.

Whenever you want to QSO A.R.R.L. Headquarters look for 1 MK on 83.86 or 41.93 meters in the "Eeneral" operating periods and give us a call.

TRAFFIC BRIEFS

When you have trafic for the Philippines, xive it to either GAJM or GAMM. They both have daily skeds with the lalands, and will gei it over there in g hurry. GAJM's sked is with oplAD, and 6AMM's is with oplHR.

You'll be interested in this message that op IAD sent nu 6AJM: "Have just rec'd card from an un-der-cover ham in Japsn. He advises that $8 j$ JMPB and aj JhZB are not amateurs but Japanese detocetive stations interested only in getting the QRAs of, under-cover hams. Suggest that jou inform all hams possible and QST. Also suggest boycott of these two stations.-(sig.) op 1AD."

The Boy Scout Radio Eixhibit held in Butpalo some time ase was a complete success. Lots of interest was stimulated in the Lcague axd its work. and a total of 275 messages were collected. These were cleared through the cooperation oi XADE and SCIK. The demonstration aided in proving to the Scout Council the importance of the amateur, alid plans are being promoted by $x T H$, who sends us this report, to introduce transmitters into the scout Troops. Birys life, the official Scout Ongan, will include a story of the exhibit in its radio section.

During the recent fire at fall River. Mass, $1 P E$, $\triangle A C H, \perp B U B$, IBKQ, and LASR were on the air from one to three A. M.. ready to help in any why possible. From time to time these stations called Fall River, but received no reply. IASR and 1 BKQ kent watch for a time, but observed no QRR signals. sind sixned off st three A. M.

Didja know that British amateurs hold a QSO party on 80 meters every Monday evening? They sey that many "nu" stations come in FB on that wave, and want more of us to keep our ears open for 'tm. 1FY, worked eg2NF the other night, getting an R7. $2 N H$ was coming through about 84 on 88 meters.

60 CT 's entry card in the International Contest was really different. You see W Walt is a nember of the Telephoto Staff of the Pacific 'Tel. and Tel, Co., in San Francisco. So he took a plece of paper, printed GCCT in nice bir letters. typed nut his application for entry, and then had a picture of the improvised QSL ard transmitted over the wires of the Bell System to the Boston office of the American Tel, and Tel. Co., where it was developed and mailed down to us. The man on the Bostnn end of things was ex ICHF, who sez hell probably return to the wir in rbout a month with something more than the spark coil he had in prebroadcasting days.

An interesting little item which appeared in the Northern States Power Co's Sifety Service Macazine says in gart: "On the night of February \% $\%$ had sleet storm visited the Pipestone District, doing considerable damage to the distribution systems of the varions towns, interrupting service. and destroying all communications by telephone and telegraph. $9 B N$, of Minneapolis, succerded in getting in touch with 9CAJ, of Pipestone, and arrangements were made for sending material and a crew of men down to help resione service. This is a siriking example of the falue of the American Radio Relay League. and is likely to reault in the forming of a Northern States Power Radio Transmitting Club."
The Daily Argue Lienier of Sionx Falls. S. D., carries another story of the same emergency. gDES. of Sioux Fralls, together with the other hams of that city, worked lons and hard to get into eontact with 9CAJ at Pipestone, Minn. From $1.45 \mathrm{P} . \mathrm{M}$, until Midnight, xll hands worked fast snd furiously. 9DES was doing most of the operating, handling in sil over 40 messages for the Fower Co., and the other boys were doing the delivering. anOWN at Pierre did his share in relaying a lot of DES's messages. FB work,-all of goul

DIVISIONAL REPORTS

ATLANTIC DIVISION

MARYLAND-DELAAW A RE-DIST. of COLUMBIASCM. H. H. Layton, BAIS-Delaware: The in this state is nearly 100% Naval Reserve with exception of $3 A L Q$ and SSL. 3A.SH is now on 80 meters and thinks it FB. B.ALQ is not on
much lately. 3AED is heard in nearly all countries. 8 WJ rattiles the cans of the west corst gang with his new Xtal set on 38.52 meters. 3AIS is on the air with a 50 since his 250 went west. \&AUN is coming back on the sir with one of 320 's 250 watt bottles. FB. उAOP is a newcomer in our ranks.

Maryland: 3CFX at Si. Michaels came through with his report by letter paying that he is keeping a sked with 3 KU and 3 ZI but complains of no traffic his way, 3BBW reports that due to tube trouble he has not been on the air for nearly a month but is now going strong with two five tube watters.

Dist of Columbia: We are all sorry to hear that 3CAB has signed off indetinitely and has turned in his ORS certificate. $\& A P X$ has made application for ORS.

Traffic: 8ALQ 1. 3SL 4, 3AJH 8, 3AED 4, 8WJ 3, 3AIS 9, BHBW 6, 3APX 30.

SOTTTHERN NEW JERSEY-Acting SCM, E. G. Faser. SZI-SCFG was hampered by the Tests but turned in a good total just the same. 3BSD lost his 50 watter and his zep that was the pride of his heart, 8 AOC is a new station at P. U. operated by several 2nd dist. amateurs, and is doing consistent work on schedules. 3 KJ reported but still keeps on the inactive list. SC() expects to be on with remote control very soon. SSJ over in Finderne is trying for a commercial ticket. 3AlY will be too busy to come in on the active list but hopes to be able to later in the suason. We have a new ORS prospect in 3AMI ai Merchantville, N. J. 3CBX is going to operale in the National Guard, Field Artillery Unit, just forming in Trenton. 3 ZI is still hard at it with sker and RM-SCM duties.

Traffic: 3ZI 171, 3CFG 135, 8AOC 43, 35J 25.
EASTERN PENNSYIVVANIA-Acting SCM, E. L. Mrneval. SEU- 3 AKB has plenty of QRKS from RCLs. $3 Q P$ is sure well skedded. 8EU reports financial QHM. 3ADE will soon be an ORS. 8C(TZ is a hopeful chap. \&ANK ran out of ink on his report card. $3 N F$ reported by radio. $G Q R$ is trying new siceds. GVF is taking a week off to build a new receiver. 8W.J wants an ORS. 8QM announces the arrival of \& brund new YL op. 3AFJ is in and out of town. 3 HF did some clever routing in the tests. $3 \mathrm{~L}, \mathrm{C}$ wants the opinion on a receiver to cover 40 and 80 in one lick. 3 BMS blew his $\mathrm{F}^{\prime} 0$ in the tests but has an 852 . xDHT is a new boy in scranton. 3 BQP and the new OW are having a great time house hunting. 3BFL better get 8AVK and start a company. 8AVL another in the same boat. 3CDS wants skeds when its time for the milkman. Hi. 3AWT is going downhill but can't bee helped. ふADQ—try a want rd in QS' Rex! BBYZ wants to move his 83 foot stick-don't all apeak at once.

Trattic: SEIU $2 \therefore 7$. SAWT 6, 3CDS 7 , SAVL 8 , 3BFL 10, 3RQP 11, SDHT 11, 3RMS 11, 3LC 20, 3HF 29, 3AFJ 27, 8WJ 78, 8VF 107, 8RQ 112, 3NF 13 S . 刃AVK 130, 3CGZ 168, 3ADE 214, 3QP 408, 3 AKB 441.

WESTERN PFNNSYLVANIA-SCM. G. L. Cross. ley, $8 X E-X D R U ' s$ rectifier froze. $8 V F$ is recuperating from sickness. RAOS, 8CJQ, SCXQ are selling sets to BCLs XCZE is QRW at school. SCAE is running an 852. SBHN worked a 9 on phone. SBHN has succeeded in working a 6 . \&ARC is using a pair of 281 s as rectifiers as well as a chemical rectifier. 8 GiI reborts using is 281 as a rectifier. SCUG has a 20 meter schedule with a Brazilian station. 8CYF is using a 112 A tube in his transmitter. SAMU tried his set on 20 meters using the 3rd harmonic, and worked Belpium R7. SABW has a pair of 211 s but he says NI. SRFW is on the air some, handling a little iraffic. SAJJ is on 40 and handles traftic. \&BRM has been sick for the last 11 weeks. 8EW has a sync on 40 meters. XCFO is using a 222 in his rmitter. SAXM is at Kadio School. 8CKP is trying 40 with some success. SAKI has several achedules-he has been sick for a few wroeks. SVE has been having transmitter trouble. 8CFR found his antenna down 2 hra hefore the tests but he had it up in time. 8AGO is QRW hecause he is to be a benedict soon. 8 CES has a new master oscillator on 20. SDOQ has been handling his share of the trafic. 8 XE and the gang are QRW with convention work.

Traffic: 8GI 923. SDOQ 177. \&XE 89. 8AKI 86, SAMU 63, रCED 59, SEW 5※. 8BRM 31, XVE 26, 8CFR 25, 8CTG 25. 8A.JTT 15. 8DKS 12. 8CYF 8. \&AGO 5, 8ARC 5, 8BGW 5. SARW 3, SCES 2.

WESTERN NEW YORK-SCM. C. S. Taylor. 8PJ --.8ABX ioined the Army net this month. 8AHC made the BPL. 8AKZ worked NL-GREN. 8ALB has managed to get in some traffic. 8AYU has inereased his schedules. 8BCM is punching through much better now. SBFG worker Africa and some other foreigners. SBIW is little timid on gecount of key clicks to BCI. SBMJ has had busy month handing over 700 msgs from Boy Scout meet-
ings. 8BQK has been away so traffic was slight. 8BUP wants schedules with exstern snd southern stations. 8BZP reports his arm still out of commission. 8 CDB made the BPL this month but blew his 2108. SCDC worked Tasmania and Panama with 7 watts input. 8 CPC worked 6th dist. and Canada. with his new 20 meter station. SCNX's left him, so he is using a 50 watter now. BCRC savs Syracuse is alive once again with North High School and Nottingham H. S. building short wave xmitters. 8AXA is now using an 852. 8CLI, 8HX, $8 B A L$ are now very active. 8CRC has been hearing many foreigners. $8 B I N$ is heard now and then. 8AWP. ex 8DKE is now operating at WFBL. \&AWP is the cause of WFBL and 8AGO and $8 \times H$ are Tech. Engineers of WSYR. 8CRF has been heard in England. $8 \mathrm{CSW}, \mathrm{SCPC}$ and 8 AYB paid the SCM a visit while in Buffalo. 8 CVJ has many seheriules and traffic. 8CYK still continues to keep many schedules. 8DHX says traftic took an awful flop due to his working DX. SDME won the Fourth Prize in Army-Amateur Contest. SDQP is a real DX and traffic hound now. SDRJ's erystal went west. The transformer blew and also the filter quit. SDSP has new Esco motor senerator on the way. SPI handled traffic with fo-A8V, eg-5ML and xnuJJ. STH is again interesting the Hoy Scouts in the A. R. R. I. and handling traffic and schedules. \$BLI is rebuilding his xmitter. SAVW has been heard in Germany.
Traffic: 8ABX 4, 8AHC 151, 8AKZ 6, 8ALB 32, 8AYU 48, 8BCM 33, 8BFG 26. 8BIW 18, 8BMJ 714. 8BQK 2, SBUP 11, SCDB 176, 8CDC 192, 8CPC 37, 8CNX 94, 8CVJ 22, 8CYK 691, 8DHX 23, SDME 54, SDQP 15, KTDRJ 46, 8DSP 216, 3PI 88, 8PJ 7, BTH $21,8 B L I 2$.

CENTRAL DIVISION

OHIO-SCM. H. C. Storck. 8BYN-SBYN, 8DIH. YBAU. 8DBM, and RRN made the BPL. $8 B A U$ has organized a small club among the north end crang in Columbus and they have a station going under the call of SDDZ. UDIH has bern busy rebuilding SDDQ. 8DBM gave his total via the air route. 8RN blew his H tube and is now on with a UX210, 8GZ got 253 points in the tasits, but also got 155 msgs besides. 8ALU, the RM, wants every ORS to originate at least 50 msgs. each month. 8BAS is still doing rood work along traffic lines, altho he doesn't want to tie himself down with an ORS. 8CFL said too busy with tests to have a big total. SCNO is right up with the top-notchers. SDDK is also coming right along with traffic and is making a good ORS. KDSY traded his xtal for a 50 watter as he hasn't enough power for xtal amplifier. $8 B O R$ lost his plate transformer, blew his 210 and ruined his $\$$ tubes. 8CMB blew his 250, SJB says he will have more traffic next month. 8CXD, a new ORS, wants traffic and is on very consistently. 8BFA says all good ops are getting lazy and unreliable and traftic setting scarcer right slong. 8AKO expects to he out at. 8HB ayain about the middle of March. 8DJV has been handling some traffic for WNP. 8DNL reports activities at 8DDZ. SCBI wrerked his mercury arc and is now on with chemical again until are comes back. 8BAC bought a bug, and is very proud of it. SAVB reports working xnu-MD, an unlicensed freighter in (iulf of Panama. 8CAU reports but says nothing. 8AQU has been having trouble with BCLs and has to fix things with the 18I before he can be on the air again. 8BKM sure is busy. 8SI and 8ALS have nothing to say. SBAF is back on the air with two \%10s and going fine. 8AZO bas another plate transformer and will he on air FB furn. KDHS is working an 852 on 20 meters. $8 O Q$ was much discouraged this month but hopes for better next. 8PL blew a 5 n watter, eracked a xial. got langled up with 2000 volts of RAC and put himself on the bum. SDIA is following in the SCMs footstepy in blowing filter condensers. Hi. sABK blew every tuhe in sight, and then dug up an old 201A, put 10 volts on the filament and 1000 volts on the plate, worked it that way until it blew, and then gave un, 8AWK expects to change QRA. $8 B K Q$ has been experimenting wo much to get traffic. 8RRH is building a new get at last. Hi. 8CTD worked WNP on 20 meters. SDQZ is QRW school. \&ALU's plan of all originating more tratfic is good, tho the total is high.

Traffic: " B BYN 264, 8DIH 233, 8BAU 225, 8DBM 220, 8RN 203. 8GZ 155, 8ALU 152, 8BAS 102, 8CFL 101, 8CNO 95, 8DDK 85, 8DSY 62, 8BOR 54. 8CMB 52 . 81B 44. SCXD 41 . 8BFA 41, 8AKO 41, SDJV 35, 8DNL 35, 8CBY 25, 8RAC 24, 8AVB 18, 8CAU 17 , 8AQU 17, 8BKM 13, 8SI 11, 8ALW 9, 8BAH 7, 8AZO Б, 8DHS 3, 80Q 3. 8PL 8, 8DTA 2.

MICHIGAN－SCM，Dallas Wise，8CEP－GEAY is putting in an all wave transmitter．SDKX was quite active in the international tests．sAUB says he will have more time to work the set now that they have decided not to hold the convention in Grand Rapids． MDAQ has been roing great and handled one 67 word message irom WNP．SAAF has been working in the si）meter band and has a 50 n＇arter on the way，BA．JL reports using 600 volts on his 201 As and says they res working out good．SCKZ will have a 150 meter fone set resdy wown．SRE，keeps his hi－weekly schedule with su－2AK at Tela Honduras．EDED has fifteen schedules per week and you can hear him most any time． $8 V \mathrm{VK}$ is back on the gir with a kood kick and ready for all the trafic you can hand him． BRS reports trouble with filter condensers on 20 meters so is going back to 40．8AMS is working 40 when he ian find time between jobs．9CSI has his stal jub completed morking on 11．6．शACU reports nothing doing on the ifess．SDIV had the sume trouble and is going back to 40 and 80 ． $9 A Y R$ was roubled with yower leaks but has been trying fon？ With 9EGG． $8 \% F^{-}$has just started work on 80 meters． SKN was not yory active due to most of the ops work－ ink SZF．SDSF is still using spark coil for plate supply．NNQ will operate unother station at New Baltimore zoon．GCEX handled a few during Feb－ raary．＊BCI is moving to Ada，Ohio．GCAT has a ehemical rectifier on the job now．8CUT of＂Cherry Trpe Famp＂foned in that he is back on the air ukuin and going strong．8BRV and 8DTO have been busy working on a new receiver using the UX222．

Traffic： $8 C H T$ 18，9EAY 17，8DKX 24，SAUV 36. YWAQ 274．SAAF 56，BAJL 29，XCKZ 17，SRE 15． \＆DFD S21．SVK 132．\＆BRS 4．9CSI 17．8Ar！T B， Q2F 51，9CFX 20．8DSF 151，8NQ 13．＊BCI 35，BCAT S， $27 Z 12 . ~ S C E P ~ 3: 3$.

INDIANA－SCM，D．J．Angus，9CYQ－9EZ，the atation at Culver Military Academy is now an ORS and goink big．GEVA renorts fine work on 20．GA IN the banner traftic station of Indiana does it with schedules and plenty of time．9AEB after \＆years of faithful work has at lasi worked his tirst 7．9AGW asy that borax in his rectifier makes his sigs more benetrating．9OXH is back on the sir again．9CVX is using a 202 in recpiver and reports FR．GQS wants schedules as he is buck on again．9FQ is doing some Fery fine traffic work．GETV is a new station at Nappaner，extHHI is coming back on the yir with a whu．SFXW（ex Army）has started up with 10 meters．：$F F F$ entertained 9 of the Chicagn kang a few days ago．aFSH is vary active at Michawaka on su．9DBJ is qonig to join the navy．bCLO has 5 crystals so he tan QSY．GCMV lost their 500 and their 50 watt transmitters．9DUZ，RM，has resioned and R．O．Ellis，：ASK at South Bend，mas electeri to rake his place fl a meoting of the hams of Somith Bend．Michawaka and Elkhart．SASX is now route manager for northwestern Indiana．

Trattic：9AIN 765，9EZ 玉\＆8，9CMV 161，9CBT 146， 9CRV 141，9FQ 95，4DBA 67，9CYQ 31，9CLO 30． 9BCM 2ら．9EF 25 ，ODBT 93．9ECF 21，9DPV 18. $9 D H J$ 18． $9 \mathrm{HYT} 18.9 B Z Z$ 12．9ASX 10 ． 9 QS 10 ． $9 R S$ 9，9CVX 8．9APG 7．उDWF 6，3DXH 万，9CSP 4． 9AGW 4．9AEB 2，9EVA 9，9CSC 2.

WISCONSIN－SCM．© N．Crano．9VD－9DLD keeps on elimbing due to remariable cooperation from the stations he is linked up with．9DTK seys his old tube is getting feeble and shaky but the gang still send in R9s． 9 REBO believes in publicity and because of this originate a lot of mags． $9 \mathrm{EK}-\mathrm{XH}$ says the new Burgess engineering circular No． 15 on Airplane Kadin Apparatus is ready for distribution and will he sent to those asking for it．GCDT will soon be in the RPL．9DLQ is still going strong hut says ii）meters is pretty crowded． 30 XK is on the job 5 days a week on 7200 kc ．GDEK is kerping threw achedules on 82 meters ind wants an ORS．MCYU dinn＇t mant to be buft out so reported vin Western Union．gABM is waiting for the next Milwankec QSO party．9RPW wra sick for two wenks vhich lowered his traffic total．gEEEF works on 42 sind thinks traffic is best there．90JK sent in his first re－ port of 55 msge．YESM has rebuilt his transmitter and says its working fine now．9ARE is going to ［odge Institute at Falparaiso．？DND has schedules with 9DLQ．SFMD is on the job arain with two shedules on 80 meters，aSO has been busy wirh toxis and worked oo－1AJ a！Polynesia．GAZN re－ ported via 9DTR．9AZI had tough luck this month and blew his fifty watter．9EWY reports for the first lime via 9 DTK．9RWO says he is fooling around with x converter on 80 meters． 9 ASL tells me that he has the original bay－wire outfit．3CJU has schedules with 9ABM Tuesdays and Saturdays．9COI reports that
the Madison Club had its transmitter at the Madison Radio Show and transmitted messapea which made quite \＆hit． 9 CIB now 9 FYU has his 852 working on 20 and 40 ． $4 \mathrm{~F}_{3} H$ had trouble with landlord on becount of his transmitter and is moving．9EQP is a new siation at Milwaukee using a 201 A on low power．OCVI working on 20 and mostly Saturday afternoons．GDCX syys its 40 below in Chippers and still the glate gets red．Hi． 9 AFZ has been on the 15 mc band lately and hears iots of fones there．9BIB tried hard during the tests but no luck．GCFT worked three OA＇s one morning．9EQT．says not doing much but wants some sehedules．9DZZ sent in a report for the first time to help us out．DBJY not doink anything，rectifier on the blink．

Traftic： $40 L D$ 408，9DTK 263，9EBO 290．0EK－XH 214．9CDT 171，9DIQ 145． 9 CXK 124，9DEK 114 ， 9CIU 114．\＆ABM 112，9BPW 87．פEEF 78．9DJK 55， GESM 53，9ARE 45，ODND 35，9SO ？2，9EMD 30， 9ACY 25，9BWO 17，3CJU 20，9COI 11，צFYU 10， 9EHM 10，9FQP 7．9CVI 7，9DOX 7．9AZN 25，9EWY 20． 1 ASL 17.9 EVE 7．9AFZ 9 ．9BIB 4．9ELD 4，

KEENTUCKT－SCM，D．A．Downard，OARU－The Louisville．Ky．，シvew Albany and Jeffersonville，Ind． hams celebrated the departure of $9 W R$ for Hartford． Conn．Where he will be one of the ops at new IMK． with an all night hamfest after which an inspertion trip to WYW．the Army station at Bowman Field， was made during the we small hours．After his hand came in contact with the antenna lead－in to the set at WYW，a certain ham in Jefiersonville says， ＂Them ain＇t blisters－just black paint from paint－ ing my mast＂．Hi．SEYW is a promising new sta－ tion．gHAZ has an are perking．oMN is sporting as new UX220 in his receiver and says it eliminates power leak QRM GBA．N Torks Mexico in Spanish． Hi．gENR eclehrated Washington＇s birthday by working his first＂six＂． 3 RGA is in the rir on 40. GA1D is QRW with a new iob and doesn＇t get a lot of time for brass pounding．aOX says he is on spasmodically．913WJ is wetting back in shape after losing his mast and tonsils．9ARU is working every－ thing he hars on 40 meters． $4 D D H$ has a new＂IG－ TP transmitter eOLU is setting out OK with his breadboard transmitter．ODQC is on 80 with an 852 and syne rectitier．

Trafic：9OX 98，9BAZ 52，9MN 24，：BAN 23, GENR 9， 9 ARU $\bar{x}, 9 B E H 4$ ，9BGA 3 ，9AID 2 ．

ILLINOIS－SCM，W＇F，Schweitzer， 9 AWW－This reporting month includes the traffic reports of 71 stations．The last repurted call issued was yFCD． At a meeting of the CRTA traffic cup committee they decided to award $9 n X Z$ with the beantiful traftic trophy． $9 D X Z$ won the trophy by handling the raust messages in lllinois for three consecutive months． $F B, O M$ ．9AAW is having their DC wenerator re raired and will soon have it on the sir along with the 500 eycle incinerator．GACU reports the YL＇s QRM but still operates on 21 and 3 si meters． $9 A D$ raports Prof，Way of the Physies Dept．of hnox col－ lexe is one of the ons at．9KU．gAEG using a worked on－5HG． GAFA is still kepping scheriules with W＇NP with fone on 20 meters．QAFB is using H new ehemical pectifier and syne for olate supply． GAFF handing mainly army traffic remorts overy－ thing soins honkey dorey．AAGG was not in opera－ tion much this month． 9 AHJ with 2210 ＇s worked many foreioners this month．9ABK，an old timer in the game，is just getting into the traffic ond．GATAJ burned out his old nower transformer and is now in the market for a now one．OALK reports the XIJ Foseping him tou busy for tratic．GALW is attending Armour Institute and will not be on in Morrison for some lime gAMA knocked us sil dead fith his tratiic report this month．FB，OM．GAMN is using a new third harmoric antenna．gAMO is keeping many schedules and reports 9DFE is selling out．9APY hears 9AAW R3．He aliso reports three liams on in Waukegan．gAQA forsot to tell us that when he burned his hand on the 1500 volts，he knocked his wo watter on the floor with dire resalts． 9 ASE has 4 achedules and is working all sorts of DX．DAWX is toepping seceral sehedules but finds DX bad on sio． of HHM is laid $u p$ in bed with Staphylocoenas infec－ vion in his back．9BIZ is gutting in his time on Xperimental work．oBLL is keeping skeds on 84 meters．gBLS reports the wind blew his Zep antenna down，and he is using an indoor antenna on 20 molers now． $9 B M Z$ thinks QTC the Illinois traffic paper is the berries． 9 HNI is keeping t．wo schedules and operates from $6: 30$ and $3: 30$ am and $n m$ ．YBRX is attending Armour Institute and finds little time to cround hrass．9BSH reporting for the first time is using a 50 watter and is planning to put in 250
watts. 9BTX despite the fact that he is iaking pipe organ lessons pountis the brass as well as the ivories. USVH is operating on 35 and 78 meters. GBXB has his new 852 working now and is getting some real DX. 9CCZ is changing his xmitter to operate on 40 meters. GCIA mude 30 points in the international contest only coperating one evening. yCKM e:an't find much traftic bound for Orekon, III. 9ONB is rebuild and is operating regularly now on 39 meters. 9ONP reports for the first time and is using a remote control and breakin. SCNY using tone on 150 meters handled a few msgs. 9CUH has increased power to 15 watts and still is keeping schedules with 4 VZ , YCUO sure gets a kick out of the ham game and reports the QRM on 80 is bad. 9CZL is having terrible interierence from three $\mathbf{6 6 . 0 0 0}$ volt nower lines running throngh his town. SCZT was off the air most of the month because he moved to a new location. !DAF reports 20 meters FB for DX. פDBI reports a new ham 9EPK starting in at Mt. C'armel. 9DCK is keeping sehedules with 9 DBI and 4 KV . 9DGA is trying to operate a 20 meter fone. 9 DKK is using A 204 A tube on a Zep antenna. 9DOX on 85 meters is kerping schedules with GCYQ. 910SO being otit the air since October is back on again with a 210. 9DXZ keeping five skeds reports trattic not so heavy this month. 9EAI reworts QKM from work. 9\&AJ has a schedule with POB in Brazil and has also worked FQ, PM, NQ, NQ, NT, ete. 9EAU is offering \& \$15 reward for the information of the wicked one who broke in and stole his 50 watter and transmitter. $9 E G X$ reports his new 210 went to the happy hunting ground. 9EHK has a new call 9D, at the hospital at Maywood. 9EJO is the first nu to work Afghanistan. GELR will be off the air for some time. !EPG finished his new xmitter with the copper coil inductances and Zep untenmas. 9FPX visited GAWX and GAJM in Joliet the other day. 9 ERH expects to be on the air with crystal control in a short time. 9EYA another new man in the ham same, reports there is nothing like it. GONY started uff. Grod stuff, OM. 9 HO . crystal controlled, is operating on 19.7. 39.4, and 77 meters. 977 is modulating his xmitter in the center tap. $0 K A$'s xmitter went on the tritz when his rectifier kave up the whost. 9 KB is on almost daily and keeps schurdules with 9RXI. 9MI-PU is operating on 38.5 meters and reports everything going OK. 9RK got his rectifier going ai last and is exciting a Zep antenna. 9RP worked 12 oz and wa stations in the Tests. 9ZA is still operating.
Trufthe: 9AMA 701, 9BTX 823. 9RII, 232, 9AMO 205, 9BZO 169. 9APY 105, 90 XZ 96, 9BXB 92. 9BMZ 90, 9DKK 70, 9CZL 70, 9EAJ 60, 9ASE 62, 9CKM 57, 9IJSU 56, 90NY 45, 9BLL 43, 9DCK 42, 90UO 38 9 9EG 36, 9MI-PU 35, 9AHK :34. 9DGA 33, 9 FiJO 31. 9BNI 31. 9(!NP 30, 9EPX 27, 9CUH 25, 9AFA 23, 9AWX 21, 9DOX 20, 9CIA 19. 9CNB 19, 9AQA 14, 9AAW 17, 9ERH 17, 9EYA 16, 9AFB 16, 9AMN 16, 9RP 13, 9AD $12,9 \mathrm{ACU} 12,9 \mathrm{DBI} 12$, 902T 12 $9($ NH $11,9 \mathrm{SSH} 10,97 \mathrm{~A} 9,9 \mathrm{ALK} 10$, $9 \mathrm{EG} \dot{\mathrm{X}} 10,9 \mathrm{AHJ}$ 9, 91Z $9,9 B H M$ 9. 9AFF 8. 9FAI 7, 9FO 5.9 BLS 6 ,
 9EPG 3. 9CZK 3, 91)AF 3, 9KA 3, 9DSO 2, 9BVP 2 9BRX 1. 9CCE 1, 9AVL 1.

DAKOTA DIVISION

NORTH DAKOTA—SCM, G. R. Moir. 9EFFN-GBPR is using y Colpitts eircuit in his xmitter now, 9 CUT had 2 fingers badly burned with 1500 volts. Tough, OM. 9BRR is also using a Colpitts xmitter now and says it sure is FB for steady note. GDYA was off for a weok wetting his storaxe battery charged, but is going good now. 9BJV has bewn QRW to do much traffic work. 9BVF put up a leap and it seems to work OK. 9DM is using a Zeiep and getting FB results with a 71% watter on 40 .
'lraffic: 9BPR 72. 9CUT 9, 9BRR 71, 9DYA i, 9RVF 79, 9DM 52

SOUTH DAKOTA-SCCM, F. .T. Heck, 9DB-The traffic is picking up again with most of the stations active and many kepping sehedules. 9DWN leads again working schedules on 80. 9BCJ ran up a bunch of points during the tests but had a fire the last day. $9 D Q R$ has an 852 soing FB on traffic. 9 ADQ and $9 E U H$ have good sigs on 40 and are starting skeds. 9DNS, 9 AJP , 9LES are all on 40 with lots of punch, $9 B O W$, and $9 H R I$ ran up A few points in test and keep a couple of skeds. YNM had the misfortune to burn out his dynamotor half way through the tests. 9DLY shielded his amitter and worked no first try. FR. OM. 9CIS reports new station in Bryant. MFAZ. GDB works IDX when power leak zoes off uir. 3 BOT is going to farm regularly. $9 D I Y$ is GRW with new 222 R.F. amp.

9 AGL has putfit going FB on 80. 97I is building a new station and working on 292 amp. 9EUU is setting out FB on low power. Practically all the stations in the state have enrolled in the S.Dak. A-A secondary net. 9DES and 9EUH handled 40 mags. for the power company to 9CAJ at Pipestone. Minn., during a sleet storm which took down all wires, antennas, etc. 3DWN assisted in relaying messages.
Traffic: $9 \mathrm{DWN} 180,9 \mathrm{BCJ} 98,9 \mathrm{DGK} 43,9 \mathrm{ADQ} 36$, 9 EUH 33 , 9DNS 27 , 9DES 40, 9AJP 22, 9BOW 22, 9NM 20, 9DLY 15, 9CIS 14, 9DB 11, 9BOT 9, 9BRI 4, 9DIY 2, 9AGL 1.

NORTHERN MINNESOTA-SCM, C. L. Barker.
 this Section is creating no small amount of interest and some lucky boy will be the proud possessor of one of the new shielded grid tubes for handling the largest number of bona-ide msgs. be1. Ween Feb. 25 \&ind Apr. 26th. Everyone is going after it with the right spirit and the old rans seems to be pepped right up. 9BIW, a new ORS, burned out his B battery charging generator so has been off the air. 9 AOK takes full lead in traffic this month. GEGU has tried TP-TG with 203A and 85\%. YABV replaced his 210 with a new 50 watter and is surely atter the prize tube. 3 CWN still uses the 210 with a new chemical rectifier. $9 E G F^{\circ}$ and 3 other "range" hams paid a three day visit to the luluth gang and report at tine time. GKV is another \&TZ convert on 39.97 meters. 9CF was one of the foosts of the "range" grang. 9CKI is on with a MO-PA set, but can't get rid of his key thumps, such as he tries. 9DPB, another new ORS, has been working with 20 meter phone with wonderful success. 90IY is installing \& new TP-TG transmitter, yEHO is working on a MO-PA system. OCTW has his new mercury arc installed with fine results, and changed to TP-TG circuit. GAKM was very busy but is working to get operating on 20, to and 80 meter bands. 9 ADS installed a new trunsmitter. 9BMX got his old set going again on 20.5 meters. aBMR is getting ready to move his set to another part of the house, when he builds onto the house soon. OEGN operates only once in g while, as he says its too far from U. of M. to his home to drive home to operate often. GCWA tried TP-TG but paralized his 75 watter. 9RAY rlmost iorgot to report this time. Careful. OM.

Tratic: $9 \mathrm{AOK} 107,9 \mathrm{ABV} 64$. 9 CWW 68, 9 EGF 42. $9 \mathrm{KV} 38,9 \mathrm{CF} 30$, 9 L НВ 24, $9 \mathrm{OIY} 19,9 \mathrm{FHO} 14$. 9EGU 12, 9CWA 35. 9BAY 17. 9CTW 12, 9BBT 8, 9AKM 4. 9ADS 4, 9BMX 3, 9BMR 2. 9EGN 1.

GOUTHERN MINNESOTA-SCM, D. F. Cottam. 9BYA-9EFK Acting-9COS kerps six schedules und is on both 20 and 40 , He has been appointed KM. 9 COS is strictly a traffic station operating in very limited time. 9EFK is now on 20 and 40 and hopes to be able to QSY 80 also. gDGE reports a nice bunch of traffic and is on with 3 ops. and says schedules will be wolcome. 9BTW has heen QSO s countries in two nights with one CX-310. 9EFO has been assigned an additional call 9EZM. 9DOP is on $20,+0$ and 80 and suys he can stand some skeds. 9DBW has had time to try the UX222 and says its fine stuff on DX volume and signal to static radio. He also reports 9 EOH and 9EPE at Dundas, Minn., going strong, 9BHZ has been heard with a pretty note as usual. iDHP still works 1 AWE regularly on 20 meters and has been QSO nr and na. 9ELA has everything for a 00 watt xmitter at Marshall Hizh School. GCLK a non-ORS is on 20 with a 310 and has been QSO sb. GCIX prefers a 50 to his former 250. 9AIR is dusting oft the old portable for this summers local DX. Hi. 9DMA has been QSO fo. oa, oz, $\therefore \mathrm{v}$, sb, etc. 9×1 would be on the air but the senerator is blown. receiver sold, chief of very QRW, etc. GDBC is koing to A.T. \& T. school at Waukeegan, Ill.. for a couple of months. fo-A3M was heard working 9BKX giving him a sood report. 9DEQ is inactive. 9RB-exYDUL will be active in Marion. So. Dak.. doon. 9EAH has a new 210 now and is on 20 meters.

Tratic: 9COS 166, 9EFK 76, 9DGE 74, 9BTW 52, 9EFO 38. 9DOP 22. 9DBW 17. 9BHZ 17, 9EIA 16, 9DHP 12, 9CLK 10. 9CIX 8, 9GH 7, 9AIR 4, 9DMA 2.

DELTA DIVISION

ARKANSAS—SCM, W. L. Clippard, dr., 5AIPProspects look much better for the Arkansas xang this month. БABI came across with the largest single total for some time. SAQX is the new fellow in Hot Springs. 5JK and 5SS each had a stick blown down. Tough luck, OMs. but 5ABI's 50 watter also blew after working an en. Hi. GAIP is on daily but not much traffic. EAVA rebuilt.

Tratic: 5ABI 66, 5CK 19, 5JK 11, 5AIP 9, 5AYA \%. 6SS $2,5 A Q X 2$
IOUISIANA-SCM, c. A. Freitag, 5UK-faOZ put up a new 30 foot mast especially for the Internativial 'Iests but got no results. 5PM says, "Not much excitement this month. Messages can be delivered anywhere now. Weather conditions not very Youd," $5 X E$ is rebuilding his transmitter into a TPTG elf-rectified circuit using two UX-210 tubes. $5 R D$ is keeping two schedules which are going fine, altho he is QRW schooi. There is only one of the eang here who is interested in 5 meter work (5 NE) and his transmitter is not Fet completed.
Tratic: हQd 18, 5AOZ 1, SPM 25, IIE 7, BRD 7 ? ૬UK
MISSISSIPPI-SCM, J. W. Gullett, 5AKP—The amateur outiook in this state is very bright as severad new stations are heing heard on the gir now. 5YD is on 20 meters now and says they will have a yood mensage tutal for the month of March. SLY is now on 43 meters sind wants all the gang to listen for his siknals, BAYB is now transmitting on 40.2 meters and is doing gond work. 5ANP is transmitting on di meters. 5AJJ who hay a boai equipped with radio has put up for the winter. bAGS is heard on the 40 meter band now and we are giad to hear his familiar call again. 5 FQ has a UV-240 on 40 meters and reports working oh-6AVL. 5AKP has a. $\tilde{0} 0$ watt Sional Corps tribe on 20 meters and is working read DX.

Traticic: ЂАKP 81, БAYB 87, छANP 14, 万A.J.J 12. क FC 2 C

TENNESSEE-SCM, L. K. Rush, 4KM-Three new ORS are in operation. Let's have those reports. 4SP sends in a qood report and reports going to 20 recently. 4LX with ${ }^{4}$ crystal has been QSO with oa \%\% oo, WNP. fo, sh. et.e. 4 TD has had QRM from business. AABR finally hooked his brother 6DOK and has a sked with him now. tanl says he will he on in full force very shortly. 4 ACP has actually handled qome trafic. 4ABZ handles lots of traffic and is high man for the month. 4 HK is going to install a. mercury arc und 852. 4 FX comes second in traffic figures. 4 KM end 4 KX are still here. ACU and SARD is dormant. AGL handled more traftic than has been put thris in this siate for some time but the report didn't get here in time. $4 F I$ shoved thru lots of traffic last month. The Knoxville amateurs put on a trafic contest with a 210 as prize. AABZ copped the prize with akout 140 msss. He plans to brild another set to take to his home out of town. $F A B R$ and $4 A D I$ are getting along OK. \&ABR turns his first grod renort in.

Traffir: 4 ABZ 89 , 4FX $5 \%, 4 \mathrm{LX}$ 2t. HK 22 , 4ACP 16. 4 ABR 14. 4 SP 10. 4 TD 2, 4 ADI 2.

HUDSON DIVISION

NORTHERN NEW TERSEY-SGM. A. G. Weater, aWR-2CP, the PM, axain makes the BPL.. WWR is on the air and is QSO on all bands. QBY. ©ANG and 2MD gre new ORS. Some ORS still insist on reporting no messazes handled and they will be dropped shortly if no traftic is handled. Stations that can handle ARRL broadeasts, please communicate with the SCM. ${ }^{2} \mathrm{AT}$ is hack from a trip and on the air again. 2CP handled traffic with all nine districts on 80 meters and notifies all staiions that the primary object of 2 CP is a traffic station only. 2 DX lives up to his call and works $D X$. $2 E Y$ still has trouble with the RI re license renewal. 2dC steps all over the silobe and handles traflic. too. 2 FC is having a hard time tinding time to operate. 2KA is desirous of getting some skeds on 80 meters. 2ASZ will be heard now as a new transformer has arrived which kept him off. 2C.JD installed his power supply and relavs all in metal cabinets with a result of no more QRM to the BCLs. FB. LAGN is QRW school und also his aerial came down. ?ANG had no luck during tests but had fine QSO's risht. after. ${ }^{2}$ CGK has a transmitter working but also cannot ind time to operate it. 2 MD , our new ORS, had a fine traffic total. 2BIR is in line for a WAC eectificate. EIS expects two good schedules for trafic. $2 A V K$ rehuilt the transmitter and is having fine results. 2ADL is going South on another trip shortly and will be off the air for a hrief period. 2BAL is very QRW due to arrival of a new operator. 2JX works all Europe with an indomr rerial and counterpoise. eAOP has a phone on 180 and is organizing a 180 meter club which already has five members all active on that wave. gGX had fine results working Africans and Zedders in the teats on 20 meters. 2BY has had several 2nd and Brd district hams call at her station to inspect the works. 2.JG has applied for an ORS and handed in a fine iraflic report. 2ABE atill has trouble with
antennas coming down. 2BDF, another applicant for ORS, is keeping a schedule with 8'TH and handles plenty of Boy scout truffic.
Traffic: 2WR 1. 2AT 12. 20P 263, 20X 18, 2JC 62. $2 \mathrm{FC} 2,2 \mathrm{KA}$ 6. 2ASZ 9, 2CJD 7. 2AGN 10, 2ANG
 $2 \mathrm{ADL} 40,2 \mathrm{BAL} 2$. 2 JX 37 , 2AOP 21 , 2 BY 61, 2 JG 32, 2ABE $1,2 \mathrm{BDF} 31$.
NEW YORK CYTY \& HONG ISLAND-Asst. SCM, J. B. Wilpatrick, 2EV-Manhattan: 2BCB won Aero transmitter coils in Army-Amateur contesi. 2 BGO has a new QRW now. ?BNL now using RAC in place of B batts. $2 B O X$ put up new Hertz antenna and it's working PB. 9KR is using a 204 A now and working real DX, $2 O V$ is taking a portable to Calif. this summer. Hrooklyn: zADZ is waiting for the lixbting company to change his DC to AC. 2BAZ burned out his transformer and has been rebuilding. 2 BDM is still looking for gowd akeds. 280 seems to be getting out FB now. ECRB hopes to win a couple of good binding posists in the international tests. 2PF says he reduced BCL QRM to minimum by putting RF chokes in house line.

Lonk Island: 2ATZ was heard in Europe on 80 meters. 2AJE is away attending Rensselaer Poly. Institute. 2 AVB has been stepping out in great style. $2 A W Q$ hay had a bad power leak. $2 A Y S$ worked two EG's with indoer sutenna. 2BSL is rebuiiding his portable. 2CTP is working Europe with a UV202.

Eronx: 2ALP has been sick but is OK now and sroing strong.

Staten Island: 2 AFV handled the most traffic this month and is working WNP on 20 meters at times,

Tratic: Manhation: 2ANX 18, 2BBX 10, 2BCB 36.2BGO 31. 2BNL 10, 2BOX 24, 2CZR 42, 2EV 11. $2 \mathrm{KR} 39,20 \mathrm{Y}$ 10. Krooklyn: 2 ABP 21 , 2 ADZ 26 , ¥AND Bi, 2APB 31, 2BAZ $7,2 B 0 M 54,2 B 0 ~ 81$. $2 \mathrm{CRH} 24,2 \mathrm{PF}$ 18. Lung Island: 2AIZ 66, zAJE 1 . 2ALS 15, 2AVB 37. 2AWQ 7, 2AYS 7. 2BSL 3. $2 \mathrm{CTP} 20,2 \mathrm{TY}$ 5. Bronx: 2 AET \%. 2AHG 39, 2ALP 25. 2 BAD 23. Staten Inland: $2 \mathrm{ABO} 24,2 \mathrm{AFV} 109$.

EASTERN NEW YORK- ABY reports a new ham in the person of 2BLI. 2CNS is now at his new QRA. 2 Livingston Ave., White Plains, N. Y., and is using an indoor antenna and counterpoise. zBOW cannot seem to raise any foreigners.
Trafic: 2ABY 99, 2CNS 10, 2BOW 99.

MIDWEST DIVISION

IOWA-SCM, A. W. Kruse, 9BKV-The RM reports everything perking tine and a nice list of schedules throughout the state. FB. GDRA is the wtar traffic man this month, with 9EJQ right behind nim. GDZW turned in his usuai fine revort und handled some WNP traftic. $9 B K V$ is using ICW with $\frac{100 d}{}$ results. 9CZC says traffic seems to be as plentiful as ever. gCuX is a new ORS and finds lots of irafice on sol. $9 P B$ reports everything perking $F B$ on 40 and 80 . 9DEA made the BPL and no schedules ! 9DGW blew his 50 and rigged up a couple of 201 -As and a 250 volt MG but results were punk. 9BCA and $9 E X X$ handled lots of trafic at the Fort Madison Radio Show. 9BTX. 9PB, EJSQ. 9CUX, 9DI.J. 9BIP and 9AAW also handled great batches of messages for the Show. GEHN has a new Zevp antenna and reports fine results on 40 and 80 . 9 CS did fine work on 40 by keepins several skeds. 9CGY works a lot of sixes. geIV turned in a pood report for a starter. 9EHR is putting in a suark coil CW for emergency work. FBB. 9AMG is leaving for cullege but expects to be on this summer. 9BWN reported by radio and says he is toos busy to handle much traffic. 9EIW gets A. C. and RAC reports irom her DC power. Hi. 9CJL 3ays be's got proring fevor. 9 ECO is using a current feed Hertia with yood results. 9AYH and 9DPL pound away when they have time. Don't forget the Midwest Convention at Ames, April 13th and 14th. Leers will so.
Traffic: 9DRA 504, 9EJQ 344. 9D7W 298, 9BKV 289. $9 \mathrm{CZC} 285,9 \mathrm{CTJX} 259,9 \mathrm{DEA} 928.9 \mathrm{~PB} 916$. 9DGW 214. 9DGW 82, 9BAC' 200 , 9EHN 152. 9CS 78. $9 C G Y$ 62. 9EIV 52. GEHR 48, 9AMG 46, 9BWN 46. $9 \mathrm{EIW} 45,9 \mathrm{CJL}$ i2, 9ECO 17, 9AYH 6, 9DPL 1, SEXX B8.
FANSAS-SCM F. S. McKeever, 9DNG-The Interuational Tesis seem to have been the main intoreats in Kansas this month, 9DRD, 9DIH, 9CV and 9DNG9AEK were amonk stations entered. 9DRD worked Africa in tests so a WAC certiticate will be his soon. 9DNG-9AEK worked fll the continents. 9CFN has several fine skeds in all directions. 9 HL , and $9 C R V$ are lwo of the most consistent traffic men now. 9BII reports a new 852 as do 9CILR. 9BUY. 9BPL and 9CPY. 9CFW, 9CNT and 9COR are on the sir but not vory active. OLN was complaining be-
cause he could not get out and then pulled an R8 from SA! 9FBM is steadily coming to the front. GRET is GRW washing machine business.

Trafic: $40 N G 175_{0}$. 9 BUY 5 , 9BPL $8_{\mathrm{c}} 9 \mathrm{BHR}$ 46, 9CPY 5, 9BII 12, 9HL 81, gCOK 11, 9CFN 47, 9CNT 19. 9 HGX 5, 9CFW 12, 9CKV 52, 9EBM 12, 9LN 17 , 9及U 17. 9(:LR 8, 9BET 1.
NEBRASKA-SCM, C. B. Diehl, 9BYG-Our observer shys he'll resign if there isn't more business in his line soon. 9CJT. 8AWS and 9CGQ fell fiat again this time. 9 ANZ hit good in the international test with a score of $9,9 \mathrm{GQY}$ working with 20 meter phone says F'B. 9EEW is still reyairing BCLs. $4 D I$ is very busy with his school work. $9 B O Q$ had a long siege of illness and a death in the family. Sorry, OM. 9 CHB Hays that if any one gets half as much kick out of an ORS as he does, all the radio in the world would be ham radio. 9BBS is working to perfect his filter between licks on the railroad. 9CDB is rebuilding his entire station. $9 B Q R$ has a terrible time with QSS caused from power line and QRM from power leaks, etc. 9EBL blew his plate transformer. YEGJ turns it tirst report which is a dinger. 8AGD comes up for air and spouts 40 for a change. 9DVR after testing with the BCLs finds that his set does not touch any of them except a few single circuits.
Trattic: 9ANZ $15,9 Q Y 10,9 \mathrm{EEW} 5$, 9DFR ? 9BYG 9. 9CHB 11. 9BBS 31, 9EGJ 46, 9AGD 40, 9DVR 25.
MISSOURT-SCM, I. B. Laizure, 9RR-90OE and aHEW led in traftic in sit. Louis this month. 9BEQ tried the tests but had too much power leak QRM in do much. $9 B E U$ combined $D X$ and traftic work. 9 BHI was on 20 mostly and traffic suffered. 9DLB worked the 80 band and handled a good total. aBMU increased his total over January. 9DZN had no traffic due to school and X section QRM. 9 ZK kept a 50 on $\delta 1$ meters and another 50 on 21.4 meters but the 260 on 41.6 was QRT due to blown tube. $4 D U D$ is now an OBS. 9DKG hit the KPL for deliveries. Schedules helped raise his total. 9BOE swas lost this month. SARA handled a lot of test messages but reception was hindered by power leaks. 9CRM had an excellent traffic report and got $K 6$ report from Iondon on 80 meters. 9CCQ reports several new hams and a good trattic total. 9DAE hit the BPL with 5 skeds in eifect. 9BUE is re covering from a siexe of illness. 9BQS has been tied up by job QRM and also was off while building Haynes type chem. ractifier. $91 . T$ had a good month but QRM from school. YLIJ kept skeds with 9ENU for basket ball same scores and had some good DX. yASV received his ORS and put in a sked with bAXX. BEUB is a new traltic station in Joplin. GERR is a new station in Stockton, operated by the father of 9CDF. GCDF is temporarily absent working W.U. iob in Kansas and earrying portable transmitter. 9E/RR and 9BUE are on 150 meter band. 9 BVC , the new 00 , turned in a good off-wave operation report. GAJW and 9ERM have a station going in Fulton handling trafic. 9AVS and 9DZP continue active but reporis are nil. GENU hit the HPL_{4} this month for grood deliveries. $9 R \mathrm{R}$ also had a good month but was unable to operate enough to be a BPL member. 9I.D and 9ENU secured $9 F A U$ as the call for their new station at Overland Park, Kans. 9ADR is QRT yoing to school and operating KFKU. 9EMH elicked with Asir this month. 9ACA is still QRT ufter moving. ODQN doubled his trattic this month. 9DOJ uppears on the trafic sheet aiter an extended absence. GAYL and $9 A H Z$ were GRW with tests. 9DLL moved and blew two 210 s and 20 mikes of eondenser. 9% D put in most of his time with X work. 9WV and 9BSB were on considerably but traftic did not materialize. $9 R R$ made two skeds and kept them for two weeks then job QRM obliged QSK. 9 ARO is the call gasioned to the N.R.F. 100 watt station. $9 D Q N$ was appointed A-A station. 9DRY is on frequently. 9EUR of Denver visited the hams in K.C. during the last weak of February. The new ham column was dropped from the K.e. Post and Qsy'd to the K.C. Sunday Star, thanks to 9EIMF.

Traffic: 9DOE 140, 9BEQ 80, 9BEU 19, 9BHI 15, 9DLB 39, 9BMU 12. 9ZK 26. 9DKG 120. 9BYE 10 GASV 10. 9EUB 4. 9LJ 25, 9LI 16, 9BQS 1, 9DAE 330. 9CCQ 38. YCRM 154,9ARA 94,9DQN 21, 9ENU ji1, 9EMH 2, 9DOJ 46, 9KR 208, 9AJW-ERM 14.

NEW ENGLANB DIVISION

CONNECTICUT-SCM, H. E. Nichols, 1BM-1VH, 1.CTI. IASD have made the grade for BPL this monih and deserve most honorable mention for their ellorts in keeping traftic on the jump. 1VE and IIM report traffic coming through very nicely on
schedule operation. $1 V E$ is displaying a new AA appointment. 1BWM and 1CTI have recently completed a map of active ORS in Conn. which is FB. 1BHM and IBJK report things moving rery nicely in New Haven and with the AA work, 1BJK sure is helping the Electric Co. out. 1 MK has finally got into operation agsin and from the sound of that powerful signal can understand why they went up on the 80 band. RP who hails from the West and used to be old $9 W R$ is the new on. We sure welcome you, OM. IMY has finally decided the eighty meter band is pretty fair for local DX and has started some schedules. 1 ATG has recently come up to the best traticic band and is handling s soodly bit of traftic and we are pleased with his results. 1 ADW and 10 S have heen keeping the Danbury section of our state in fairly active condition.
Traffic: 1BQH 2, 1BGC $7,10 S$ 13. 1AMC 14 1BLF 14, $1 N E 18,1$ ITD $9.4,1 \mathrm{MK} 96$, IMY 28 , 1 BHM $38,1 \mathrm{ADW} 48$, 1BWM 52, 1AFB 54, 1BJK 72, 1ATG 80, 1IM 81. 1AOI 82, 1ASD 85, 1VE 112, LCTI 204, IVB $265,1 \mathrm{AMG} 13,1 \mathrm{BNS} 14 \%$.

MAINE-SiMM, F'red Best. LBIG-1CDX sent in a sood total which shows what \& real schedule will do for a ham. 1 BUB is working both the 40 and 80 bands with good results. IAIT is back on 81.5 with a tine note and a wicked punch. IBAY, a new ham, turned in a mighty fine whal this time. 1AJC turned in a fine report, showing that Portland is at last on the map when it comes to tratic. $1 B F Z$ says he has beell kind of neglecting the 80 meter Lund. $1 A Q L$ is on from 6.30 p . m. to 7.00 daily. He reporis the new call letters of the Queen City Radio Club as beins 1 ARR and says that new members gre coming in all the time, lAUR says that there is all sorts of activity in Livermore Falls, with 1AQD, IAHY, 1AXP and $11 P$ on the air. IASJ found that he eould work Europe with lowpowered set, so he has temporarily laid off the traitic same. 1 F'P reports that due to his new job he will not be able to be on so much now. IATV reported by radio that his transformer has been burned out the early part of the month. 1BIG is hard at work geiling an USNR organization under why and desires to hear from Bangor and Portland hams who are interested in putting their respective cities on the map with a real honest-to-goodness USNR unit

Traftic: 1BIG 203, 1CDX 54, 1BUB 54, 1AIT 50̀, 1BAY 45, 1AJC 31, 1BFZ 18, 1AQL 10, 1AUR 2 , 1 ASJ 2.

NEW HAMPSHIRE-SCM. V. W. Hodge, IATJTraffic this month was scarce due to the many stations taking part in the Tests. IIP pumped out a bunch with his 201A, and worked Kansas City with an input of 2.3 watts. 1 AEF , in spite of a blown tube, worked good DX and handled his share of traffic. IANK is a new station reported by him. 1 BFT reports a bunch of stations and ops at NHU. One of them, IIH made 66 points in the Trests. 1 ANS says he didn't report last month as his OW cleaned out his shack and he couldn't find anything left to report. Hi. $\angle A O Q$ is working a few on 20 and AO. 1ASR has been authorized by the Fen. Radio Comm. to work in the new 10 meter band. $1 B F C, 1 I P, 1 A L Y$ and IAEF are enlisting in the Naval Reserve. 1 JN reported direct to HQ this month. The SCM hoves to meet the NH gang at the Convention. See you there, OM.

Traffic: IIP 168, 1AEF 120, 1ATJ 80, 1AOQ 51, IASR 38, 1ANS 24, LBFT 23, 1JN 28.

EASTERN MASSACHUSETTS-SCM, E. L. Battry, IUE-Eight stations make the BPL with 1FL as the star traffic pusher. $1 A K S, 1 C R A, 1 L M$ and IWV all turned in enviable reports. 1SL has been appointed as Official Observer. iBVL. IAXA. IADM. IABA, 1ACH, 1BW, 1RY, 1KH, $1 W \mathrm{~F}$ and 10 N all took part in the International Tests and nearly all had sood luck. $1 A K S$ is opersting at WIM. Schedules are still desired by IYC. IBVL worked fo-A7U and fo-A4E. 1 ABA got R8 from New Zealand FB. IADM had his 60 foot mast up arain but it had another downfall. He will be back on 80 soon now that the tests are over. 1 KH and $1 W \mathrm{~W}$, the rivals, worked too much $D \mathrm{XX}$ to list. DX reported good by 1BKV. INK says he will be on more resularly now so you traffic men should watch for him. $1 A C A$ says 80 is getting as bad as 40 gs far as QRM goes. 1BDV finally got Zep feed working, but school QRM keeps him off the air quite a bit. Two new hams are being tutored by lAHV. INV still finds time to pound now and then. 1 APK has been appointed Monitor Station in A-A Radio Sivatem. YLy fake some of his time, says liN. The BCLs have 1AVY on the jump, fixing their receivers. PASI has rehuilt and is kefping some skeds. The

Ener that he whs QRW ;zecounts for small totals any ICRA-look at his total, gang. Naval Reserve dills are soing pretty smoothly now with IVR, 1 MR , $1 \mathrm{RL}, 1 \mathrm{AQE}, 1 \mathrm{LM}$ and 1UE taking part. 1 KY , the RM. Wants to know what is wrong with the ORS. f.FL has lots of schedules. Plans are being made at E.M.A.R.A. for the New Ensland Convention to He held in Boston at the Elks Hotel Apr 20 and 21st. It should ko over big and will surely go over with the cooperation of the sans. Let's all pian fo attend and meet one ancther.
Traftic: 1FL 501. IURA 335, LLM 198, 1WV 196. 1 KY 135.1 KH 61 . 1 AOH 86, $1 \mathrm{UE} 65,1 \mathrm{ABA} 141$, $1 \mathrm{YC} 47,1 \mathrm{LL} 27,1 \mathrm{AGS} 24,1 \mathrm{ASI} 23,1 \mathrm{AHV} 25.10 \mathrm{~N} 7$, IAXA 114. 1 AKS 351 , INK E., IRY 9. 1BKV 11, $1 B V L$ S. $1 A P K$ F, $1 A C A 46$, INV 12 , $1 A D M 2$.

WESTERN MASSACHUSETTS - SCM, A. H. Carr. IDB-1AJM is quitting the ham kame. Sorry to hear it. OM. "Kit" Duval is operating the station at the YMCA under his own call 1AMW. IAKZ says he would like to know what bart of the 20 band some g's hear Aussies at 8 am . 1 AMZ has been on the air regularly in his vacation periods. LANI has joined the Naval Resierve net. IAPL kept a bunch of skeds as per usual and had a tine traffic total. IAZD say he is just catching up on lost slefp aiter the contest. LBIV has at last yout back on the air agrin and says he hopes to be on regularly. BKQ is now the call of the radio club here and they have several ops. 1 ANI says anybody desiring skeds, write to him. The Springfield Kadio Aisin, have their new station nearly ready. ${ }_{1} P Y$ has moved but says he will be on the air again soon. 1IL of springfield. Mass., is a new ORS. We gll wish him the best of luck.
Trafic: 1 AJK 3. IAJM 38 . 1 AKZ 30 , 1 ADO 15 , IAMZ 13, 1ANI 93. 1APL 151, IASU 2, 1AZD 266, IAMW 6. 1BIV $2,1 B K Q 7$.

RHODE ISLAND-SCM, D. B. Fancher. $1 D B-$ sickness in the family has kept 1AMU off the air this month. 1MO says that the tests put a crimp in his traffic this month. IAWE's DX reads like a \%encraphy, and his trutfic total isn't so bad either. 1BQD scored 27 points in the Contest and his traflic suffered. $1 E I$ sends his traftic report but no news so don't know what he is dnine. 1BAT hooked WNP this munth and got the bulk of his trafic on 40 . IAQP handled sume foreign traffic. 1BVB has gone back to the Hartley aircuit as the other couldn't he made to work satisfactory. 1BIL handled some omergency traffic during the big Fall River fire. F. B.. OM. Our star station this month is 1BLS. the new station ar Newport. LAAL had to build a new rectifier as it broke down the first of the month.
Tratic: 1BLS $91,1 \mathrm{BIL} 33$, 1 BVB 3 B .1 AQP 27 . IBAT 24,1 EI 17. 1BQD 14, IAWE 13, 1 MO 8 , 1 AMU 8. JAAL 10.

YERMONT-SCM, O. T. Kerr, IAJG-Will the stalions that were entered in the last tests notify IAJG how many points they had as there are sume prizes here that were donated and will be awarded by the SCM when your report is confirmed, IIT has heen appointed Asst. SCM. 1 AJG is now on 80 meters. 1BBJ is in NYC now hut will go west for another month and we aure will miss ceorge's nc note perking ihrough on AA stuff. 1BD has the only crystal xmitter in the State and using an indoor antenna. IATTU was QSO eb on 20 meters. FB. IAD is now on the 80 meter band and has akeris with $1 A J G$. AAOO, a new ham in Richford. perks nut FB and is applying for an ORS. IFN seored 3 points in the recent tests using a Zep antenna. IBJP maintains good contacta on 83 meters. 1 EZ is our a meter experimenter and does good work on fone. 1 BEB is doing 1 BBJ 's job in his absence. 1BCK is an AA statinn with lots of tratic coming throuxh from him. INH perks out fine on low power and more power to him.

Tratic: $1 \mathrm{NH} 31,1 \mathrm{BER} 21,2 \mathrm{EZ} 9,1 \mathrm{BJP} 37,1 \mathrm{FN}$ 9 , IIT 120. 1ATU 3 , 1 BBJ 29 , 1AJG 51 .

NORTHWESTERN DIVISION

MONTANA-SCM, O. W. Viers. $7 A A T-Q T-7 A J U$ learis this section again this month and reborts that he will soon return to the west cosst to pound hrass on the sea again. We'll miss Ou. OM. FEL has trouble going east and would like a schedule with some of the eastern gang. 7DD says his crystal set works nicely on 84.8 meters. 7 FL handled a fow but is cramped for time. 7π is on 84.5 meters when he isn to busy. TAFM couldn't tind a reporting card in time ao jotted the report on a "spram" blank and sent it in anyway. TAFW has bee! on the sick list but is doing a little

Work now. TAFP from Red Lodge sot his 210 on and worked a few. TAHG has built a new TP-TG transmitter, but she still refuses to talk. 70W is still getting on the receiving end of the programs from es-5SW on 20 meters. TAAT-QT now has a 900 cycle supply for the 352 and will soon be on with a 210 and a 500 volt MG. Those, in this part of the country. interested in copying the official broadcasts from this section may find the following a help. 7AAT on 38.2 meters at 5 pm MST every day except Sundays. TAFM on 40 meters 9 to 11 pm daily ex. Sat. TEL, 41.5 m . Mons. at 9 pm MST and Thurs. at 7 pm . $7 \mathrm{DD}, 1 \mathrm{pm} 21$ meters. $5 \mathrm{pm}, 42$ meters, 11 pm 83 meters, TAAW. Mon. Thurs. Sat. and Sun. $2: 30 \mathrm{pm} 41.75$ meters. 7 FL Mon. 40 meters $7: 30 \mathrm{pm}$. Fridays, 40 meters $7: 30$ pm, Sats. 21 meters, $2: 30$ pm .
Tratic: 7AJU 39, $\mathbf{7 E L}$ 21. 7DD 20, TAAT 14. 7 AFM 11, 7 FL 6.
OREGON-SCM, R. H. Wright, TPP-iAEC qakes all the honors this month. TAEK is using TG-TP circuit. 7UN is using 20 meters entirely, shys that he can't work anything on du. 7 PL , a new ORS. is a promising traffic station. 70 Q held four days of repular contact with SS Guide enroute to Hawaii. 7 HV a new amateur at Toledo. is usink a UX210 supplied with B hatts. TFU has installed ICW to relieve the BCLs of key olicks. "ABH savs he worked three Africans in two days the logg way round. "MH is QRW with school at present but will be on regularly this spring.
Traffic: TAEC $364,7 \mathrm{MH}$ 46. 70 Q 27. 7 ABH 21,

WASHINGTON-SCM. Otto Johnson, \quad FDD-New ORS are 7 BM . $7 \mathrm{BB}, 7 \mathrm{ACA}, 7 \mathrm{GG}$. 7 BR , $7 \mathrm{MP}, 7 \mathrm{DF}$, ?EK, TVK and 'iAG. Tommy Baird, TVL, of Spokane, has been appointed KM for Eastern Wawhinston and it is expected that traftic totals will begin to show a healthy increase. The small totals this month are due largely to the Tests but next month will be another story. The new ORS are all live wires and it is hoped that the nice certificate will inspire them to make the BPL the first month. Old ORS who were not reappointed but who believe they are entitled to a ticket are requested to write the SCM. Better cooperation will meat more and better ORS.

Traffic: $7 \mathrm{QQ} 32,7 \mathrm{KO} 31,7 \mathrm{VL} 14,7 \mathrm{TX}$ 12, $\mathrm{\imath AFQ}$ 9. 7MP 8, 7TZ 7, 7IV 7.

PACIFIC DIVISION

LOS ANGELES-SCM, D. C. Wallace. GAM-GAM and 6BSN make the BPL this month. GBSN is kerping some sood schedules and one message handled from Phoenix movered 16,000 miles before it rearhed Fresno. bZBJ is keeping some yood sehedules. 6BZR is atill rebuilding and is mutting up a Hert\% soon. 6QL had a chat with OM Russell of am-3AB, $68 F P$ handled several messeme: from China. GAWQ extends a estreral invitation to the grang to come to Lake Arrowhead and pound brass to their heart's content, day or nite. blikX locater a private C. F'. Moore at Manila, P. I. withitt len days, after mails and cables had failed during period since Sept. 20 , 1927. The U. S. Army Recruiting Officer in Los Angeles referred the boy's parents to 60 KF . 6BZC put in more power there hut has been off the air most of the month, 6BJX anys QRM from other work leaves little time for radio and that GDDX (ex- oa-fip) was a big success in a play. 6BJX has had a visit from biDDX's YL. 600W is a new contributor with his first report but is soing to report every month from now on. GCOT has a sister attending Redlands University, and kets the news to her in ten minutes throush $6 B F P$. GANN. after trying all kinda of antennae. is at last nold on the Zep. 6DPK is off the uir temporarily lecause of ihhange of QRA. $G R \times D$ missed reporting because he sot married. BDGT \%ot a new so watt set going and hopes to wet in more traffic and DX. 6CUF handled a message for a business man in OH who wanted his wife in LAA to meet him in SF on a ceriain date. ohbDKI told him that the man was very tickled with the FB service, GABK süt 18 points in the contest and thinks the contest was sure FB. GBTS had transmitter trouble but will be going full force acain this month. GALZ suys XKV3 is a lumber sonw ntf the coast of Nicaraugua, and wants to work the grang. GALR's tube went west and he is rebuilding. $\% 10 \mathrm{EG}$ is working on short waye super-het. 6DPY says a radin club is being started in Bakersfield hy him and 6WZ. GBVT is trying to pet a sked with Hawaii. 6CLK, 6BHR, 6AIO. 6PY, 6BRO. 6OF report as usual. GAM finds the sereen grid
receiver is preat. His is phase transmitter was deseribed in February QST. He has also been acting as chairman inductive interference committee for the Radio Trades Assn. of Southern Calif.

Tratfic: 6AM 128, 6BSN 115, 6ZBJ 68, 6B7R 68 6Q1, 57. 6BFP 48, 6AWQ 45, 6DKX 44, 6BZC 43, ©B.JX 41 . $6 \mathrm{BGC} 25,6 \mathrm{DCH} 22,6 \mathrm{CHT} 20,6 \mathrm{AGR} 19$, 6DOW 16, 6COT 16, 6ANN 16, 6DPK 16, 6BXD 15, $6 D G T$ 12, 6CUH 11, 6CAG 11, 6AKW 11, 6CQM 10, 6TO 19. 6CZT 10, 6RVT 9. 6CMQ 9, 6SJ 8, 6ABK 8 . GBTS 7, 6ALZ 7. 6ALR 6, 6DEG 6, 6DPY 3.
SANTA CLARA VALLEY-SCM, F. J. Quement, 6NX-Nearly all the stations entered the tests this month but notwithstanding the trattic seemed to move the same as other months. GAMM was badly handirapped by power leaks, but the PI sked still held up. 6 BCH whs second in craffic this month and is showing a eain each month. GBMW gut his crystal going on 20.8 and reports everything FB. 6 BMW is the KM. Write him for skeds, and he will also check your QRH. GBYH reports that between the testes and a Ford. hasn't much time for traffic. Hi. GBAX was QSO plenty of DX this month. GAOD the new 00, is working the three bands but reports 11 X ND. GCJD is still traveling around but hopes to ket located soon. GBNH was QRW this month. biBVY seems to have retired from the traffic kame. Let's hear from you, OM. 6NX was commissioned Ensign in the USNR this month.

Tratic: 6AMM 3610, $6 \mathrm{BCH} 54,6 \mathrm{BMW} 30,6 \mathrm{BYH}$ 29, 6BAX 21, 6AOD 7.

EAST BAY-SCM, P. W. Dann, bZX-Well gang, by the time this goes to press, you will probably be acquainted with the new SCM. J. Walter Frates, Jr.. 368-62nd St., Oakland. Galif. It is earnestly requested by the outgoing SCM that you fellows bury your hammers and get behind Frates 100%. I sincerely hope that you ORS will make a better showing for the month of March than for Feb. You fellows elected Frates to the SCM job so ret behind him. With sour entire support. he'll make the East Bay Bection THE Section but there'll he no room for the laggards. GALV is poing to Alaska 6 BBJ entered the International Tests and is building 20 meter CW so not much doing. GBPC glso in tests but also has skeds with na-7KN. I want to thank those who assisted me while SCM of the Fiast Bay Section and again request that all get behind the new SCM and assist him in making the East Bay Section the best. ever. and he'p put over the coming A. R. R. L. Convention. 6CGM complains uf a bad power leak. GBUX yot the old 50 on for the second week of the Tests but just as he got all set, his power transformer blew. GAMI sold his M.G. He says 80 is better than 40 for nisht work. 6 COL has a 20 meter Jepp that works FB. GCLZ will be on more reqularly in about two weeks but still has bad QRM from U. of Calif. when it comes to studies. Hi .
Tratic: 6 BPC 24, GALV 8, 6CGM 61, 6BUX 40, $6 A M I$ 70, 6COL 8. 6CLZ 1.

ARIZONA-SCM, D. B. Lamb, GANO-6BJF reports several new hams in Phoenix. 6 CDU reports akain ufter two months missed. GAZM says local QRM makes it almost impossible to work through. 6BWS shys that 6DAU, 9ENM and himself have the best traffic hookup in this part of the country. GCPX a new ORS although an old timer coming from Calif. attending the U. of A. GANO has been working some DX and handling some traffic. 6DWQ is ex-9ADI of Colo. Springs using a 204 A in Hartley with recto hulbs. GDSA is a new station but an oid timer back of the key using a small set. GDIE sports a mercury are now and is proud of it. 6 nRH says its very difficult to QSR Calif. on 80. 6BWS leads the state in messages this month. 6 DRH is next.
Trattic: 6BJF 97, 6CPX 34, 6BWS 116. 6CDTJ 10 , 6ANO 56, 6DRH 113.
SACRAMENTO VALLEY-SCM. C F. Mason, 6CBS-The SCM reports enthusiasm picking up. Three stations reported this month. That is better but there is still room for lots of improvement. The ciuh meetings are ketting bigerer each time.

Tratic: GCDK 8. GDON 15. 6CIS 12.
HAWAII-SCM, F. L. Fullaway. ohGCFQ-The annual winter fade-out effect seems to have cleared up somewhat and as a result, there was more artivity amons the hams. BAVL, working on both 20 and 40 , has the high tratfic score. 6DJU has been experimenting with acppelin antenna and 20 meters with good results. 6BDL got in part of the international tests but had trouble with his generator. 6DPG has built a 201 A self-rectified 00 meter xmitter. 6 DCU is trying 20 with no luck. His 50 blew so he hit it and made it work. Hi. 6CLJ is on

19 and 38 with 250 watts. 6 CFQ is now on 20 with very sood results. GDEY is building a xtal control xmitter with a 500 watt power amplifier. 6DB keeps at regular sked with his relative 6 KS in L.A.

Traffic: 6AVL 114, 6BDL 29, 6DB 26, 6CLJ 23. 6DPG 18.

NEVADA- SCM, C. 3. Newcombe, 6UO-6LB has his xmitter working on 1.9 .5 meters now and reports good results. BABM is not on much lately as he has been too busy.

Traffic: 6ABM 11. 6LB 21. 6CHG 19, 61f0 20.
SAN DIEGO-SCM, G. A. Sears. 6BQ-Now that 6BXI has a WAC he has sold his fifty and uses 15 watts. 6 AJM leads the section in the recent Tests. GBAM finds lots of traffic on the 90 band. GEC keeps daily sked with nn-1NIC and handles a pile of tif. 6 BQ still finds time in handle some traftic and sticks to ultra-audion xmitter. 6 BYZ keeps busy trying to line up more skeds in Orange County. 6EC has been appointed 00 . 6 BWI is building a new 50 TP-TG. ©CNK keeps twn skeds. 6DAU has been sent to sea and resigns as ORS. sorry to see you go, OM. i, FFP has cleared up a pile of trouble for the BCLs and amateurs in San Diego and vicinity. 60 X was heard on the air again recently. sBAS plans on trying out the 10 meter band. 6BFE is QRW digging ditches. 6BDE has a superhet working on 10 meters and reports heard a 3rd district station recently. Supervisor of Radio for the 6th Dist., Mr Linden, held examinations in the Federal Bldg., San Diego, recently and was sreeted by or full house.

Trafic: 6BXI 216, GA.JM 183. 6BAM 158, 6 EC $125,6 \mathrm{BQ} 98.6 \mathrm{BYZ} 48$. 6 HWI 22.6 CNK 18 , 6DAU 14 , 6FP 14. 60X 9, 6BAS 6

PHILIPPINES-sCM, J. E. Jiminez, op1AT-The SCM sends in the Philippine report for the last three months, listing just traftic so it goes as follows:

Traffic: November: oplHR 593, op1DR 362, up1DL 136 ,op1AT 27, op1GZ 10. December: op1HR 664. onlDR 332. oulDL 16x̆, oplAT 28, op1GZ 18. January: opIHR 719, opIDR 103. opIDL 144, opiGZ 16, oplAT 3.

ROANOKE DIVISION

NORTH CAROLINA-SCM, R. S. Morris. 4JR4DQ is going up to 80 as too much "pse QSL cul 73" on 40. "AB seems to be taking all honors for tratic lately. 4 VH is trying to catch up with 4 AB but missed again. 4 ADJ is increasing the capacity of his Edison battery plate supply. 40 C had fine luck in the international tests. 4 EC is now located at New Bern and punching the key rt 4 EA . 4 EA is going strong with a 250 watter. 4 OH had trouble with his plate transformer during the teats. 4JR has been QRW te-ts and convention. Traffic: $4 \mathrm{AR} 116,4 \mathrm{VH} 78,4 \mathrm{DB} 60,4 \mathrm{EC} 19,4 \mathrm{JR}$ 9, 4EA 8. 4DQ 1.

WEST VIRGINIA-SCM. H. S. Hoffman, Jr., 8HD -8 VZ did some fine work on schedules usine one 852. working 6BN for ten consecutive evenings. SACZ is on 175 meters and also on 2n. 8AUL took an international test message from nl-GREN. 8CLQ worked fo-A5T during internationals. 8DPO working west coast with new set. \&BJG back for vacation and heard on several times. 8BNZ and 80K reported rebuilding. \&DEW getting out good. BHD when not QRW from school work has aked with 4 KF . Several of the gang anticipate being at the Charlotte Convention. 9EI visited Huntington and 8 ALG visited 8HD.
Traffic: $8 \mathrm{VZ} 407,8 \mathrm{ACZ} 91,8 \mathrm{BPA} 18,8 \mathrm{HD} 8,8 \mathrm{AUL}$ 5, 8DEW 5, 8CLQ 4, 8BBM 4, צBJC 8.

VTRGINIA-SCM, J. F. Wohlford, 3CA-3CEL had to close up blew last fifty watter and can't find any more. 3 KU QSKd all akers for the tests, had rotten QRM from power leaks and made 90 points and 49 foreign QSOs. 3JT blew his UP-1016 and had to close up most of the month. 3WM made 60 points in tests and about 35 foreign QSOs. 3 TN hlao QRX for tests but had no luck. 3AQY and 3ARB are new stations at Ocean View. A new ham will be on at the Naval Operating Base, Hampton Roads, soon. 3EC has been handling some traffice. 3CEL claims no trafic but works around among the hams every night. 3BGS is preparing for the new power set. 3 KG is also waiting on the new line for his new transmitter. 3AG continues to reach out after them at spare times. $3 N M$ is QRW exams and had to cancel all skeds. 3 PO is a new ham at Charlottesville. BIE sends in his report through 3NM and handled a few messages. 3CKL has his xtal control set going now on 40 meters. 3CA is working on a new transmitter and will be

Wack soon. 3 BZ attended the board meeting at Hartford and now has the bug aqain. 8 BDZ is still tinkering with his stal set. He and 3CKL are enroute Charlotte convention.

Traffic: 3 KU 180, 3CEB $88,33 \mathrm{~T} 25,3 \mathrm{WM}$ 5, 3TN 64. $3 \mathrm{ECO} 25,3 \mathrm{BGS} 8,3 \mathrm{AG} 10,3 \mathrm{NM} 28$, 8EI 4, 3CKI. 21, BCA 119.

ROCKY MOUNTAIN DIVISION

COLORADO-SCM, C. R. Stedman, 9CAA-9EAM omes forward assuin this month with his regular pile of msgs. FB work, OM, 9CAA is still looking for a mercury are rectifier. 9DQD is on a transcontinental route now and says trafic is enenerally soing shead. 9ENM is kept busy training BCLs to becomes hams via the code class. 9DRV is going to try 80 meters-maybe. $9 D Q V$ has been experimenting and so was not on much. 9COM has tas cover ner set up every time it snows is it won't get all wet. gCAT put in a motor seneratur set and hopes to set the world on fre. 90DE has beill too busy with the international tests to do much tratic work. 9CAW finally sot his receiver working in first class shape but the wave of the transmitter jumps all the way from WIK to WIR. Hi. gDGJ has been on but says no traffic. 9EEA was in Hartiord attending the Directors meeting. 9EJW is as setive as ever. 9BYC is rebuilding for 40 meters.
Trattic:
9EAM 294, 90AA 93, 9DQD 67, 9ENM 20. 9 DRV 18, 9DQV $7,9 \mathrm{CDE}$ 万, 9CAW 16 .

SOUTHEASTERN DIVISION

AHABAMA-SCM, A. D. Trum. FAJP-5AKK sellt in a nine one about Birmingham. 5AX is doing spiendid work out at robert's Flying Field. They have a fifty watt set under the call of siR. SAS, the old Morse 0 , is xing on 20 with indoor antenna system. 5PD is off the air until his iicense returns. SMI is on again with 50 watts. 5 5o with the oid reliables Bell and Ansley are on now with an 852 with 2000 AC. HARG, the ship on. is coming ziong fine using a Hertz and getting out splendid on a 210 . GAXN has a 200 patt Telefunken going fine and working all countries. 5WQ not only works his radio sood but plays a mean masning sax. GDT is in love and the fellows call him ihe "Love Bird". bAKK just returned from Atlanta and says that the cano there couldn't have treated him more rovally. SAR is going to be inactive for a while longer. SIJY is using a freak transmitter consisting of a 210 built in a cigar box With the usual loading coils on 1.40 ft , ant. with 200 volts battery DC on the plate. SAYL is doing his bit ai Huntaville. SAAD is coming back in fine style. He had the pleasure of a visit from 4HQ of Pensacola on Naval Reserve Duty. Montgomery is quing strong. ©ADA has been working in spare sime but finds time to work his set. इATS jnst got his new transiormer which he ordered after burning cut A perfectly good senerstor and says he is set for a good month. SATTJ, a new nam. is doing his share of yood work. 5Jy had the misPortune oit having his battery go west on his reeeiver. BAifl is in dormant rtage.

Traffic: 5AAD 26. 5AX 32. 5AS 16. 5PD 4. 5ARG 12. 5AYN 32. SWQ 6 , 5UV 63, 5AYL 25, 5ADA 21 , GATS $26, ~ Б A T J ~ \&, ~ 5 J Y ~ 35 . ~$

FLORIDA-SCM. C, E. Ffoulkes, 4 LK -The SCM is vary pleased to see the large amount of traffic handled this month. $4 A C V$ and $4 P \mathrm{PU}$ dropped in to see the BCM this month. also 8BZZ of Zanesville. Ohio. and WSQ and WSP. $4 B L$ leads the gang in traffic this time. Traffic has picked up with 4 TK aince installing his mercury arc rectifier. RL of 4 LK is "In the Navy Now" and hopes to make the Academy. $3 O B$ is the proud owner of a WAC ertificate now. ACK yets R9 reports in Eurnve. An 852 is slepping oirt for 4 AAO now. 8 BN handled traffic for the So. Florida Fair. 4MS made a talk wer COA on ham radio. 4 RK is leaving for the North very soon. 4 ABJ is sitting behind a couple of 201 Ar . Very slad to hear from 4 CH who worked thoGG. 4 KC savs 80 is the berries. 400 has a murdercycle now. 4 NE is back on the air after a long illness. ${ }^{4} \mathrm{HY}$ saym he still has hopes of setting a WAC.

Traffic: 4 BL 101, 4 'TK 70, 4TK 68, 40 B 65, 4 CK $64.4 \mathrm{ADO} 56,4 \mathrm{BN}$ 40, 4MS 30, 4 RK 22 . 4 ABJ 15 , $4 \mathrm{CH} 14,4 \mathrm{KC} 10,400$ 5. $4 \mathrm{NE} 4,4 \mathrm{HY} 4$.

MA.-S.C.Cuba-Porto Fico-Tsle of prines-SCM, H. 1 Reid. 4 KU - Georgia: 4 kN in bad with power interference and only made 99 points in the international tests and his best DX was or-6SA. $4 E K Y$ had a nice report and has five skeds arranged. $4 A B S$ sends us the dope on the Columbus gang, $4 N Q$ received a fine letter of recommendation from the Corps Area Signal Officer about the low wave work he has been doing lately. $A F E$ lost his plate transformer and is re building pending the srrival of a new one. $4 P A$ is being leported in England with a 201-A with 160 yolts on the plate.

Porto Rico: $4 K D$ sends us the dope on the PR gang but claims that they are not coming through as they should. AAAN handled news ap Lindbergh's Caracss to St. Thomas flight to nu-2UO via xnu-KGAA, the Yacht "Aras." $4 \mathrm{IE}_{\mathrm{E}}$ and 4 KT have bern busy with arrangements for broadcasting Lindbergh Felcoming through WKAQ. 4 KT ran a Radiola 17 with ioud-spesker for the public. IUR has the misfortune to get s few ribs hroken and has been unable to be on. 4 KD is still rebuilding and is ready for fitwo weeks vacation in San Juan. $A A A N$ is moing to put on a 50 watter with MG. $4 \times H$ is the experimental stiation of the Bull Insular stesmship company at fooiza, P. It

South Carolina: JAAM has taken over his Dad's drugstore and has changed his skeds to midnight. 4 EI seys traffic is certainly humming his way.

Traffic: $4 E \mathrm{~T}$ 146, AAAM 17, 4ABS :4, 4KY 186, 4 RN 78.

WEST GULF DIVISION

SOUTHERN TEXAS-SCM, E. A. Sahm, GYKOne of nur new stations is SRV of Gian Antonio. We are sfad to get vour most interesting lie pori. OM. SSC, the club siation is in his back yard. 5ATM of Lufkin, Tex. is unother newcomer. He says there are two others. 5AWW and 5AZL in that eity. SALA reports another ham, BCO. in Refugio. EALA is working with two 210 s using 550 on plates. 6 EW is working mostly on 20 meters now but savs he has little time to operate. $\delta A M G$ reports that his tubes went west but that he will have more presently. only after 11 pm and has to get up eqrly so he does not have very much time for work. Suur SCM is working frantically to so on the sir again himself and hopes to be with you soon as 5GW.

Trafic: 5ATM 11. 5ALA 5.5RV 74.
OKLAHOMA—SCM, K. M. Ehret. 5APG-The First Wast Gulf Div, Convention held February loth end (1.th proved a sreat success and indicates a oreater development of amateur radio in the Division. 5ANL still keers skoris. GAMO is R.M. tuking the place of EFJ who has gone to Washingion to attend radin school. bANT arranged more skeds and hopes io have in 852 doing its stuff soon. SATR raports having a great time at the Converition and helped a man find his mother via amateur rudio. SAYO handled considerable tiaffic and gets a real punch out of his 210. 5 VF had fiu and his traffic total dropperi as a reanit. sAZGG has moved and had to erate his seit tomporarily. GAFX gets out fine now with a pair of $852^{\prime \prime}$. BAAV built a chemical rectitier witer trading his sync and seems to get as cood results. 5APG kceps naval reserve ukeds, JSW finally dronjed down to 20 meters and reports results FB. SQL, tore down his big set after the Prests and is goins to rebuild.

Traffic: 5APG 14, ЂAAV 10. 5AFX 15, हANT 19. SAMO 24.4. 5ANT 60, 5AIR 9, 5VH 12, 5 AYO 82, ESW 14. GQL 66.

NEW MEXICO-SCM, L. E. Radka. ETT-Conditions in ketieral semm very poor. atho the mag, total and stations handling traffic are better than previous months. It seems impossible to injeci any "pen" into the inactive stations in this section. Come on, fellows. if you expect this section io stay in existence. do vour part and get things starter. 8APB reports traffic dropping off. He keeps iaily skeds with 5TV but savs he is bothered with skips boeause of the short distance. bRO is rebuilding the old xmitter. He reports three active siations in Las Vexas at proment. FB. OM. 5TV, with hir low powered transmitter, is again high man in traftic totals, but complains of no DX. इBH is keeping skeris with gCDE and reports trafic very slow.
Traffic: 5TV 26, 5APB 22, ERO 12, 5RH 16, ETT-LG 2

CANADA

MARITIME DIVISION

NOVA SCOTIA-SCM, W. C. Borrett, IDDThis is the first time for three months that the Nova Scotia Section has been included in the Maritime report, due to the lact that only IAE has taken the trouble to send in his report. The SCM cannot make up reports from his imayination. 1AE has schedules with VCJ, VCB and VBY and has done most of his work on 52.5 meters. 1 AR , 1DJ, 1DD, 1AC, LAW, 1CC, 1DQ are ail locaten in Halifax at present but activity is rather small. Perhaps the time is ripe for a young convention. The SCM would welcome surgestions from Nova Scotian members of the ARRL as to how to revive interest.
Traffic: 1AE 42.

ONTARIO DIVISION

ONTARIO-SCM, W. V. Sloan, 9RJ-9BZ GOES OVER THE TOP DURING [NTERNATIONAL TESTS AND LEADS DIVISION BY SCORING OVER 90 POINTS. VCB AND VBY, FAR NORTH GANADIAN STATIONS MAKING REGULAR USE OF 52.5 METERS. Southern Dist: BIA turns in a rather hrief report this month as the fellows are all too busy collecting points in the international Contest. $3 R G$ reports a new man active in Leamington, with a xtal controlled set. 3UD has been settled again now for $\&$ few weeks. 31A joins the ranks of RO'TAB's by hooking with eb-4AU, 3CS again leads the way this month and has rolled up a real list of $D X$ worked. 3 CM . is busy working on a new plate transformer. $8 D Z$ is having \& real tussle with his tube trying to drag il down to 20 meters. 3 AD would like schedules on 40. He is on sleadily now and handling traftic. Central Dist: 3EI. has at last got his N. E. 250 on the air and is getting out in keod shape. 3IJY has been on the 200 meter band a great deal this past. month. 3 EG has been prevented from hamming much because of business QRM. $\mathrm{GBL}_{\mathrm{HL}}$ has been Hetive as usual, but this month we have no details. 9AL started out with high hopes in the Tests, but we understand that difficulties cropped up and spoiled his fun. 9BJ has been operating regularly on 52.5 meters, and keeping schedules. 3FC came on once during the Tests and worked es-5BY on 90 meters for an exchange of messages. 3DV has been experimenting with transmitting circuits, but finds the Hartley is best for him. 3DC has a new Belgian tube working in his CX set, 3A1 has been having wonderful success on 80 meters, using a MG for plate supply. 3BT has been confining his attention to phone work and $D X$ is lost in the "Vale of Despond". 3 RU is s newcomer who is expected on the gir very soon. 3DB is heard occasionally on 40 and 20. Eastern Dist: $3 \times M$ has had to go to Montreal in line of business but Mrs 3XM is now a full-fledged operator so she is carrying on his radio work at home. 3 JW is planning a new station in r room donated for the purpose by the Blind Association of Ottawa, where he plans to be on the air very soon. $3 M D$ has been on very little curing the past month and 3XQ has been in Montreal for most of the month. Northern IDist: 3 N 1 and 3 HE are both on 52.5 meters regularly from their stations. 3HP pounds brass at every opportunity and can always be relied on to turn in a cood traffic total.

Treffic: 3RJ 69, 3CJ 31, 9AL 53, 3DY 24, 9EJ 16, 3CN 10.3FC 9, 3AI 9, 3DV 9, 3DC 9, 8IA 4, 3RT 4. 3AZ 4, 3EL 4, 3CA 2, 3CS 2.

QUEBEC DIVISION

QTIEBEC--SCM, Alex Reid, 2BE-This month's Hamfest was held at station 2AD, a very enjoyable time being had by all. The movies of last summer's picnic was a great success and had to be repeated many times, also the Girl from France drew a great deal of attention from 2HV and 2BG. We wish to thank gAD for the wonderful evering he give the gang, and also 2AC for his donation of smokes. ©CA. our newest itation, has already been QSO-esx-6RG. 2AX hus sdded 4 new transmitter to his collection and worked five foreigners in one day. DBR has added another 210 and also uses tube rectification. 2 HV is $Q R W$ installing g number of emergency sets for his company. 2AD expects to be using fone on 20 meters soon. 2FO
has sold out his entire outfit, but still insists that he is not through with the game. 2 AC is changing his set from YL to OW. Congratulations. 2BJ has been QSO England.
Traftic: 2BE 52, 2AL 17, 2BR 19, 2BB 13, 2BG 6.

YANALTA DIVISION

ALBERTA-SCM, A. H. Asmussen, fGT-4AH after rebuilding, turned in a fine mso lotal due to having skeds in all directions. 4 FF is second besi and gets very sood DX using two 201A's. 4 CU is third and has worked some nice $D X$. $4 F B$ is a new ham and turns in fourth best total. He lives in the country and without assistance built an xmitter using 201As and B batts. $4 C C$ is getting out very well. 4GL is another new ham doing nice work. 4AF Eyets good reports on his fone from local BCLs. 4 HM has rebuilt and it is the neatest and best in this section. 4HA has a very good antenna. 4 GJ another new ham that may herd the list as he is an old Morse opr. 4 (iD is in the radio business. 4AE, the Calgary Olub station, together with the rest of the local stations report good results irom their code practice skeds. $4 B V$ is the new Secy. of the AREA.

Traffic: $4 \mathrm{AH} 66,4 \mathrm{FF} 27.4 \mathrm{CU} 2 \%, 4 \mathrm{FB} 20,4 \mathrm{CC} 16$, 4 GL 11. $4 \mathrm{AF} \mathrm{9}, \mathrm{4HM} \mathrm{9}$,4 HA 6, 4GJ 5, 4GD 5 ,

BRITISH COLUMBIA—SCM, E. S. Krooks, BBJ - - H L again enters the BPL with B 0 deliveries. 5BL is a runner up and has skeds on 80. $5(90$ says 20 is FB and worked sc-2AS in daylite. GBR's total dropped this month on account of very few neople on the island and it is hard to originate msgs. 5AD has a new ORS and is rebuilding for the spring rush. Hi. 9AJ tester out on the 14 th and will be on resularly soon. The gang at 9 AJ are gning to build a new clubhouse . 5 GF is all ready to bust. ether agsin. БCT is thinking of rebuilding rysin. 6CO says its hard to ket, skeds. GAR contemplates going to Oregon. 5AT is still at 5AJ's key and is QSi On. The radio club of Victoria will be on soon with an H tube. $5 C P$ still knocks 'em over. EB.T is getting the shack fixed up.

Traffic: 5AL E83,5BL 54, 5GO 45, 5RR 22. 5AD 14, 5 CO 2.

PKAIRIE DIVISION

MANITOBA—SCM, D. B. Sinclair, \{FV--The only points made here during the Tests were 3 gained by 4FV when he clicked with ox-7CW. 4DU hooked nr-2EA but he QSSed out before messages could be exchanged. $4 A W$ is on the road rosain so he is off the air indefinitely. fDP actually handled some traffic. 40 W has been messing around with phone and reports working New York with it. IGI has junked his low power 203 A and now has 500 watts input to a 250 . 4 CT ниends most of his time on 52.5 keeping a schedule with Red Lake. FB. 4FY has been up north installing transmitters so he has been QRT most of the month. $4 \mathrm{FV}^{\circ}$ is trying to keep or schedule with nc-VBY ut Port Churchill on $5 \% .5$ meters but with out much success. 4GG blew about three sets of Kenotrons. dMY now proudly signs 4GQ after his CQs. Both 4GG and $4 G Q$ put out a nice signal on 20. Any person who cannot get traffic on the air these days is not trying, and if he is not trying, he does not deserve an ORS. Also, if you fellows do not buck up on your reporting, there will be a lot of lost ORS certificates next monih. This is iust a word of warning, gang.

Traffic: 4DP 20, 4CT 18, 4EY 12. 4GG 5, 4GQ \%, 1 FV 104.

SASKATCHEWAN—SCM. W. J. Pickering. 4FC $-4 H S$ has been appointed ORS but will be off for about three weeks studying and will be on later with more power and looking for traffic, 4 CK sends in a picture of his shack. 4IH says he hears lots of $o z$ and oa stations but can't connect. 4BM is still waiting to add the 1 st and 5 th Can. dists to his list. 4 CB reports working VCB three weeks in succession. $4 E V$ is having lots of fun with his low-power set but is getting out well. 4AV is ofl the air at present and is dabbling in the BC grme. 4 FH is on the air and getting out very well. 4FC has not been on very much having been husy building a new BC receiver. $4 F K$ is at present operating $2-210 \mathrm{~s}$ in the 80 meter band.

Trafic: $4 \mathrm{HS} 37,4 \mathrm{CK} 28,4 \mathrm{IH}$ 19, 4 BM 9.

AUSTRALIA

We have recently received a copy of another magazine that is devoted in its entirety to amateur radio. "CQ" is issued by the New South Wales Radio Transmitters' League and distributed free to its members each month. No. 1 of Vol. 1 is a tweive-page brochure containing much in-

THF ABOVE PHOTOGRAPH SHOWS A VIEW OF babD LOCATED AT FORESTVILLE, SOUTH AUSTRALIA.
A. single UX-210 is used in a loosely-coapled Hartley circuit. A step-up transformer and a 24-jar chemical rectifier supply about 18 watts of energy to the plate Various antenna systems have been iried but, so far, a third harmonic affair has proven to be the best. A sicparate aerial is used for reception which allows break-in operation to be had at all times.
teresting material. Our best wishes for a long and active life go to "CQ" and the N. S. W. R. T. L., an organization that has added one more emblem in the form of a diamond to the long list already in existence.
"We have been alternating between very hot spells followed by copious rainfalls all over the castern Australian states for the past couple of months and DX is patchy.
"During these last few weeks there has been a noticeable advent of European stations at around midnight our time. Signal
strengths have been quite good and many Australians have worked EG, EB and others. On the nights these stations have been heard well, I have noticed that low-powered outfits find it difficult to raise NU stations. I worked ei1NO one night at midnight our time after vainly trying to raise some NU stations for half an hour.
"Signals from AC stations are coming in well but the $\mathrm{A} J$ signals have not been heard for two months until last week. A.I stations are now QSO Australians nightly and receive us mostly on indoor antennas which gives them a better signal static ratio. Fo signals have been consistent for some months but are hard to raise owing to their habit of working each other after DX calls. Phone experiments have come strongly to the fore in all Australian states probably owing to the many spells of bad QRN and patchy DX.
"Short-wave sets are now being observed here and there on ships trading to Australia. Broadcast programs on shortwaves have been exceptionally fine these last three months. The English station. 5SW, at Chelmsford has been relayed nightly by Australian 2FC and is well worth listening to.
"The matter of power as used by amateurs is an interesting study. Australians consider 100 watts as very big business indeed, the ayerage man who works all continents being parked round about the 40 -watt mark while the majority are using between 10 and 20 watts. It is cause for much comment when Nu cards come in with descriptions of quarter-kilowatt tubes, etc. The favorite here is the 210 although a few of the high powered chaps are using the English T250. Many orders have already been placed for the UX-852 but. so far, only a few specimens are in operation. None has, as yet, reached Queensland."
-Russell F. Roberts, oa4PN.

ENGLAND

"The following is some information on DX doings in England.

Calls Heard

ef－RO91，C．Conte，24．Allee Du Rocher，Clichy－sous－ Hois（Seine－et－Oise）France
Heard during January，1928）
laaw laba lbd labm lads ladw laes lafl lage lahx lajx lakd lakm lame lamd lamj laqt lara larv lary lasi lask lata latj lawj laxx lawy laut lbat 1 bcg lbcu 1bdd 1 bdm 1 bdq 1 bfx 1bls 1 bqs lbqt 1 bux lhvl lbw lby lbke led 1cdi lejc lemx lemz lenz lepj Lf 1ga lid lim lis 1kk 1 kh llp imo 1 mv lom 1 pm 1qb 1 rf 1rp 1 si lut luz 1 vp Ivt 1 wl 1 wy lyb lyc lyd 1bxl 2abp 2adb 2adl 2afr 2afv 2afw 2ags 2agw Zaha 2ahi 2ayb 2ald Ealu 2ama 2ang 2aon 2aow 2ape Gapd 2api 2ass 2atq 2ats 2aun 2avg 2az 2azk 2azu 2bav 2baz 2bcc 2bck 2bco 2bcv 2bdh 2bek 2beo 2bew Obfg 2bg 2bhr 2bir 2bme 2box 2bsi 2buo 2bvh 2bxu 2cxy 2cje zcmu 2crb 2crn 2cty 2cwm 2cxl 2ff 2fn 2fs 2gp 2he 2jc 2ja 2jp 2kr 2md 2ps 2pv 2qs 2rd Gsz 2tp 2um 2xo 2xw 2ws 2wz 3adp 3adz 3aef 3ahl 3aib 3aih 3aim 3ais Sajd 3ajh 3akw Sala Banb 3ann 3ani 3apn 3aps 3apx 3ast 3auv 3cj 3dh 3ec 3fu 3 gp 3 gt 3 hnu 3 bmz 3 bph 3 buv 3 bwt 3 ceh 3 cfg 3 ckg 3ckj 3cjn 3hf 3hg 3 kt 3 h 3ow 3pf 3qe 3sm 3sz 3us 3 wm 4aar 4act 4db 4dt 4ec 4ei 4gq 4hx 4jb 4jm 4jx 4 lk 4 nh 4 nm 4 nb 4 on 4 oc 4 pd 4 pi 4 qy 4 gz 4 rr 4 mi 4sv 4tk 4to 4ty 4 we 4 vk 5acl 5ado 5aga 5ain 5amk Eay 5 fq 5 jd 5 jw 5 kg 5 gl 5 sq 5 ta 5we 5yb 5zav 6ahp 6am 6bgh 6cel 7df 7 dl 7 gj 8adg Saig Sair 8ajt 8alu sapd غarc Basm 8ath 8axx 8ayu Gbau 8baz 9bjb
 xice 8cep 8eed 8cf 8cjw 8cke 8cla 8cnh 8eno 8ens 8ent 8cnu 8epk 8err 8etl 8exd 8eug Sdbe 8ded 8dfw 8deg Sdkl 8dne 8doa 8dod 8dab 8drj 8dsa 8dsi 8dud req 8fax 8gl 8ke Sin 8it 8nt 8qv 8pi 8tn 8ivd 8wo 8xe 9aao 9abb 9ack 9adg 9aek 9aek 9ank 9aqt 9arm 9ayx 9bmm 9aid 9bsh 9cgt 9ek 9crd 9crj 9cph 9cpr 9dbi Ydcb 9dek 9dkc 9drd 9eag 9ecx 9eef 9eet 9efo 9efz Geld 9ell 9ekq 9jc 9ra 9rf 9za 9cvy ne－xae np－4aan nn－1nic nc－1ar nc－1br nc－2am nc－2be nc－2bg nc－2ca．
eg－2BQH，G．G．E．Bennett， 26 Blenheim Park Itoad， Croydon，Surrey，England．
（Heard during December，1927）
laff lafl lakz．lanm laop laqt lasf lawe Iaxa 1bat 1bfw lbjc 1bke lcax 1cd 1cje lckp lei ley 1ga tho lic 1 mo 1 ng Ino 1 qb Irn isz Iwv Ixi 1 zs 2abe 2adb 2ald 2alu 2ang 2anp 2aon 2are 2atq 2avq 2awq 2axt 2ay 2bav 2baz 2bbi 2bdh 2bfq 2bg 2bgc 2bgo 2bir 2bp 2bum 2bvh 2bxu 2cjx 2cuf 2cua 2 cvj 2 fs 2 gp 2 md 2 mk 2or 2qu $2 r s$ 2sm 2tp $2 t t 2 v e 2 x a d$ 2xs 3acm 3aed 3ag 3ais 3ajh 3amb 3apx 3aso 3auv 3hed 3bjy 3hlp 8bnu 3cel 3ckj 3di 3dz 3ec 3hg 3ht 3iv 8jn 3kt 8no 3pf 3pr $3 q \mathrm{e} 3 \mathrm{rb} 3 \mathrm{sf} 4 \mathrm{rbb} 4 \mathrm{aby} 4 \mathrm{act} 4 \mathrm{be} 4 \mathrm{bl} 4 \mathrm{bn} 4 \mathrm{ch} 4 \mathrm{on} 400$ 4rn 4tk 5afx 5ayl 5ke 5oc 5we 6aak 6am 6xi 7bb 8acy Salo Saty 8aul 8auq 8avn Kbev 8bnh 8 bzc 8 ccm 8 ccq Sceh 8cjp 8enr 8oq 8pl 8xe 9axd 9bea 9bgs 9bhi 9bpd 9bxk 9cjb 9cmq 9cos 9cpr 9crd 9dav 9dbx 9dpv 9efe Geve 9fg 9mp 9rp 9rv 9xi kzet ac－8na se－xom af－hzai ai－2kt aj－jas fm－8ay fm－8mb fm－8psry fm－8ssr fm－8st fo－u3z nc－1ac nc－1ak nc－2be ne－8ae nx－1xl oa－2ms oa＇2rb oa－4pn oa－7lj od－and op－1cw op－1hr op－1mr op－4as oz－2bf oz－2bp oz－3af oz－3ai sb－sqbv sb－1al sb－1ao sb－1bg sv－vqg．
ex－2HJ，K．E．Brian Jay， 19 Elm Close．
（20－Meters）
laba labx 1ajm 1ajz 1akd 1aqt 1ask 1asr Iabu laum lavi lawe laxal bat ibeb libhm lbsu ibta lbux lbvl lbvw lbwm lbyv 1cd 1ckc 1cmf 1cmx 1fl iho lij lio $1 \mathrm{kl} 1 \mathrm{mf} \operatorname{lnf} 1 \mathrm{qb}$ 1qp 1 sw 1 sz Ivw lxam 1zl 1 zz Eaer 2afx 2agn 2aol 2avb 2baz 2bbc 2bev 2bgc 2bgt 2bir 2bum 2cdr 2cvj 2dp 2jn 2qu 2 tp 2xad Saib 3bms 3cec 3hf 3uz 4ac 4act 6am 8adg Badm 8ahc 8akn 8aly Bane 8arg Xazr sbde 8ben

Sbnf 8bni 8box 8bpq 8cft 8che Scjm 8cwx 8czr Sdhr Rdhx 8djv 8did 8dod 8don 8dot 8dsi 8dsx 8hx 8mq int 8og 8rd 9auu 9cvh 9dbj 9ekw nc－2be ne－iae ni－ txk fo－a3z fo－a4f fo－ain fo－a9a wnp．
（40－meters）
laaw lacd 1adw lahx lalb lanx laco lary lask lavj 1a\％w lbae 1 bea lbje 1 bls lbob lbat lbva lbwf lek leom lerx letp 1 fm lod lab irp 1 sw luo lxw lyc 2acc 2acd 2ad 2afv 2ais 2ald 2am 2ama Kaon 2ava 2az 2baz 2bck 2bdh 2bew 2bso 2bme 2bsc 2caj 2eqt 2cxl 2dh 2fn 2kl 2md 2ov 2ow 2py 2um 3adp 3aef 3aib Bais Janh 3apf 3apn 3awf 3bce 3hph 3bsd 3efg 3ehg $3 \mathrm{ejn} 3 \mathrm{ckj} 3 \mathrm{dg} 3 \mathrm{dh} 3 \mathrm{er} 3 \mathrm{kt} 3 \mathrm{pb} 3 \mathrm{pg} 3 q \mathrm{e} 3 \mathrm{rb} 3 \mathrm{sg} 3 \mathrm{sr}$ 3 tm 4 bl 4 bu 4 ca 4 db 4 ei 4 hx 4nb 4qb 4qy 4rq 4sw 4to 4ud 5ain Gaky 5kg 5ird 5ql 6am thzn 7bb xaga 8ahu sajt 8akz 8asp 8axn 8axz 8ayu 8bcc 8bff 8bpq 8brm Scbd 8cft scjw 8cmz 8cnr 8coa Scsw Scxd 8ikt 8it ẍwb 8ag 9aer 9agd 9avy 9bjl 9bmm 9cjw 9cmv 9crj 9dce 9drd 9dgr 9dxp 9ebm Gecz Gell 9epp 9ewa 9ez 4rp 9ux 9xi nc－1ad nc－1br nc－1da nc－2bj nc－2ca nc－3bm ne－8ae oa－2rc oa－3ls oa－7cw oz－3au sb－1aw sb－2ah sb－ 2ar fo－a4l nu－ab1 ndh wnbd．

BRS－26，A．S．Williamson， 106 Rushdale Road， Meersbrook，Sheffield，Eng．
（80－meters）
1bi 1qb iwa 1fl lyb lpe lku isl lawk lasw loat 1 cra lemd lbfz 1 cbt lavk lait 1bep lbjp lafb 2cp ？gw 2aid 2aiz＂aig 2kwd 2ayg 2czr 2afj 3akp 3bwt $3 b m h 3 c f g$ 3aqh Sadm 3ac 3bst 3hlp 4g］4rif Siok Sbem 8bja 8ako sehe sejb sacq Scmw sdbm 8ais 8cye 8dcq Sayu 8bbr Sysu sikm 9des 9bwn Geqi 9baw 9ejt 9bhs．
（40－meters）
lii 1zd lby $2 z s$ Iid ihk 1 si 1 ro 1 cd Iwl lve lom $1 d i$ Igs 1zt lie 1 mv Ifa 1 ja lemf lajx lejc laxk 1ads lemx laqs lamd lenz 1blf lauw lang lbat lawn laba letp lapr lanm lagw lavj lakm labd laao
 2mk 2hg 2 xc ＂wi 2kw 2bl 2fs 2az 2ws 2dh 2kx 2awu 2bdv Sbav 2agw 2bgt 2cvj 2atq 2xaf 2bha 2bew 2cua 2cxl 2ahg 2ats 2ctf 2avb 2avg 2ang 2bbe 2agp 2cgj 2bme 2um 2bfq 2azk 2aqk 2czw 2bck 2bce 2bco Zauv 2ags 2ctn 2bsa cibad 3cf 3sz 3buv Kap 3ajd Saz 3shk 3bw 3dh 3bwt 3aib 3cfe 3aed 3ajd 3ld 3ani 3cfj 3ce 3pf 3ee 3qe 3ap 3xt 3ceb thei 3afx 4tk 4we 4nh 4dj 4ob 4bl 4ux 4tw fld 4rr 4ei 4hx 4rq 4 ay 4 lk 4 hb 4 acv 4ack 4aef Sdme 8dod 8cvs 8ces 8hx 8zg 8wo 8li 8ea 8aze 8abz \％axx 8axr 8lem 8cke غidrj 8chz 8don 8dmm 8adg \＄box 8dne 8cmz 8baz 9cjw 9gy 9efz 9crd 9hi nc－lar nc－1ad sb－1ak sb－1ah sho－2ag sv－1xe ag－rann an－1ab wnbd．
（20－meters）
1 cmf 1 asu lasf lbyu led lapp 1cmf 2jn 2tp 2xe Ubaz Bhx wnp．

BRS－89，W．F．B．Shaw， 198 Abington Ave．． Northampton，England
（： 2 （）－meters）
11aba laep laff 1asf 1ed 1ry $1 x p$ Ixv 17h lahe 2afx 2baz 2bev 2tp 2vi 3adm 3ank Saky Kahc Saly 8avb 8edb 8cjm．8cit Sclp 8ezt 8ddn 8dld 8hx 8nt 9auu 9cst 9dbj 9dpw 9dwe．
（40－meters）
lawm 1 bgs 1 bns 1 bat 1 by 1 cep Icjc 1 cmf 1 cpc 1 id Ika 1le 1nl 1rf 2aad 2agn 2ahi 2ahs 2anm 2ass 2avb 2ayb 2azk 2bdn 2bek 2bfq 2bo 2bvh 2cuq 2cvj 2cx 2xp 2kx 2lh 2ov ？ts 2tp 2tt 2vd 2ws 引afx 2ag 2aih 3amx 3anh 3ani 3fv 3gp 3kn 9ve 3wm 4acv 4adh 4 fej 4 gq 4 mq 40 b 4 h 4ay 5ayl 5rg Gyb 8ank Saxx 8bfa 8bje 8bnu 8bwr 8cae 8cbf 8cew 8cxd 8cxi 8dbc Sdne 8yb 8wo 9bul 9byb 9cgt 9crj 9ell 9hi．

Correspondence
 The Publishers of QST assume no responsibility for etatements made herein by correspondents.

"Calls Heard"

2940 Winchester Ave. Ashland, Ky.
Editor, QST:
What we need is a new "Calls Heard" section. Give these birds who work in "no hams land" a chance to see their calls in print. Once should be enough to take the kick out of sneaking a call outside of the band or doing without a wavemeter of some sort.

During the last several years, I have noticed that there are quite a few hams that think that if their signals are not at the very bottom of the band that DX will be nil. Most of our wavemeters are none too accurate at the best so why take any chances on getting down to the exact bottom when a half a meter above it will be just as good and maybe a lot better for your hide.

Let everyone take it upon himself to be a cop of the air and make a list of all calls that are heard either below or above the band and save them for the infamous "Calls Heard" section. If you find your call listed in this section, don't be a sorehead but rather consider that someone has done you a favor (which it really is). Remember the Amateur Spirit!

> H. R. Lickens, 9ACS.
(Attached to this letter was a list of fifteen calls of stations operating off wave. All were heard more than once during one afternoon and evening. Would you like to see such lists?-Assist. Tech. Ed.)

Testing and Off Wave

> 40 Norfolk Road Chestnut Hill Brookline, Mass.

Editor, QST':
In eonnection with station operation there are two things in particular that we amateurs should concern ourselves with more than we seem to at present; namely, testing and off-band operation. Listen in any night around six o'clock and count the number of stations on the 40 -meter band who are not working or calling. but just testing, making series of long dashes while. I suppose they see just how many tenths and a fraction thereof, register on their antenna ammeters or whether their "prowler" gives them a steady note. Necessary? Possibly, but think of the suffering listeners and at least do that kind of testing out of busy hours. There are too many
times now when we hear that familiar remark, "sorry OM nd QRM" without adding unnecessary QRM. I shudder to think what the reduced 40 -meter band will sound like if this keeps on.

Off-band operation should be inexcusable. If a wavemeter cannot be bought for lack of funds, it costs little to make one accurate enough to assure operation within the allotted limits. The unfortunate part of it is that in most cases it is the newcomer who violates this regulation and does not realize how he may be spoiling foreign DX for someone else. Undoubtedly, he is blissfully unconscious of the fact that he is right on top of the foreigners who come in now just above and below our 40 -meter band. The great majority of us are pretty careful about this but remember that the off-band station sticks out like a sore thumb and is a sure mark for criticism and worse.

Whenever I hear a station CQing above the 40 -meter band where I listen frequently, I very often call him and tell him he's over the top and this is usually a sufficient hint for a rapid QSY. He gets no QSL card out of me, though, for that QSO although I do QSL all others 100%. Recently I did this to a "lid" station evidently with no result. I doubt if he could copy five per and for all I know may still be pounding away there on 45 meters hlissfully unconscious of his error, For these kind we shed a bitter tear.
-Miles W. Weeks, nuiWV.

For 1929

> 105 South Marquette Street Ironwood, Mich.

Editor, QST:
After reading the ins and nuts of the Washington Radiotelegraphic Conference, especially with reference to the amateur and then reading comments on same in the succeeding issue of QST, I am prompted to express an opinion.

There is no doubt that we fared hadly from the standpoint usually taken by the amateur but on the other hand, I hope that one distinct advantage will he made clear by the rules as laid down by the powers that be, and that will be that we will, in the future, have to have high efficiency transmitters operated with just as high a degree of intelligence if we expect to get results. It means that the day of the broad tuning, poorly adjusted transmitter with the sloppy wave is over. I further

AT LAST! A Real Radiophone Transmitter -at a reasonable price!

 Employs Low Power

Easy to Build

Easy to Operate

For All Low Wave Work

The Aero Radiophone Transmitter - Ready to Plug Into Electric Light Socket

Here is a low power radiophone transmitter that every true radio fan will want to own. An extremely efficient circuit, designed by some of the best known parts manufacturers, that is producing wonderful records on the government licensed low wave bands. Simple to operate, easy to build, its cost is no more than that of a good broadcast receiver!

500 to 1000 Miles on Phone-Several Thousand Miles on Code

The New Aero Radiophone is a thoroughly tried and proved transmitter. As installed at station 9DBM, Chicago, the results on 20 meters have been remarkably good. Reports varying from R-5 to R-7 have been regularly received from these typical stations: 1BBM, North Harwich, Mass.; 1ASF, Medford, Mass.; 1SW, Andover, Mass.; 2BSC, Glen Head, N. Y.; 3AKS, Philadelphia; 3CE, Baltimore; 4 MI , Asheville, N. C.; and 8CVJ, Auburn, N. Y. In every instance the quality of speech has been reported to be very fine. Adapted to code work, the Aero Radiophone Transmitter has produced outstanding results. From a location not of the best, all U. S. districts have been worked with CW on the 40 -meter band, as well as NC5ZZ, Vancouver, B. C.

Outstanding Performance Assured by Carefully Selected Parts

Only the best quality parts have been incorporated into the Aero Radiophone Transmitter. Products of the
following manufacturers-all with a national reputation-are specified exclusively:

Aero Products, Inc.,
Chicago, III.
Allen D. Cardwell Co., Brooklyn, N. Y.
Herbert H. Frost, Inc., Elkhart. Ind.

Polymet Mfg. Co., New York, N. Y. Silver-Marshall, Inc., Chicago, Ill.

Tobe Deutschmann Co., Cambridge, Mass. Yaxley Mfg. Co., Chicago, Ill.
Westinghouse-Micarta, Chicago, III.

Investigate NOW-Write for FREE BOOKLET

The Aero Radiophone Transmitter is worthy of your careful investigation. Send your name and address at once for complete illustrated, descriptive literature showing sehematics, and listing parts, prices, etc. Simply ask for Supplement A. Do it today, and learn how easily you can get into the fascinating field of radiophone transmission. Address
Aero Products Inc., Dept. 16R, 1772 Wilson Ave., Chicago, Ill.

The parts for the Aero Radiophone Transmitter are standard parts and are available at all dealers-when completed is ready to plug into your electric light socket. All have been carefully chosen to give the maximum in transmitter performance. Complete drilled and engraved foundation units are also available.

DC Pin Jack Voltmeters

No. 306 For No. 25 and No. 28 Radiolas, $0-6$ volts DC
No. $30 \times$ For No. 90 Radiola, $0-6$ volts $\mathrm{DC}{ }_{2} 2.50$ No. 307 Desk type voltmeter with cord, 0-6 volts DC

Tube Checker

No. 210 For experimenter, professional set. builder, dealer and service man. Consists of 0-6 DC voltmeter, 0-10 DC milliammeter, grid bias switch, rheostat, sucket and binding nost, instruction sheet

Cord and Plug

No. 21 for connecting meters in A and B leads of x receiver without any disconnections. Terminals sourrespond with posts on No. 210 tube checker
"B" Eliminator Meters
No. 346 For testing B battery eliminators. grid bias voltage across resistors, batteries, etc. : 0-300 DC scale ..
No. 347 For name as No. 346, except scule is $0-500$
No. 348 For testing AO current supply line, portable. 0-150 volts

Write for Free Catalog

B. C. I. RADIO SERVICE CO., INC.

220 FULTON STREET, N. Y. C'.
Please send at once your meters, catalogue numbers. for which I will pay the postman the price as advertised in QST, plus a few cents extra for postare.

2VAME
AODRESS
CITY
STATE
RRUNO 'Book of Hook-Ups,’ 25 cents
believe that if every amateur should henceforth so adjust his transmitter that it send out a grod, very sharp, clean cut wave, and of a good tone, we would find that we were not much more crowded in the fortymeter band than before. I certainly believe it is possible to find plenty of room for all in the wave bands given us under the new regulations if we go about it correctly.

Proceeding along this line, I am telling every operator with whom I communicate if his wave is broad and also anything else which happens to be the matter with his signals. In practically all cases so far where frank comment was given, it was taken in the constructive spirit in which it was given. Why can't all amateurs give at frank, yes, even hard-boiled criticism of the ather fellow's signal? We all need it.
L. W. Van Slyck, $\ddot{y} E^{\prime} M B$.

Ten Per

Duncan, B. C.
Canada.
Editor, QST:
I would like to add a few words to this "Beginner vs. Old-timer" controversy. It's all very well to say that we should help the beginners but when one has traffic to move or only a short time available to operate, "pse QRS" doesn't sound very encouraging.

Why don't those chaps Mr. Robbins mentions as being "barely able to get their ten per" stay off the air another month or so until they have had a little more code practice instead of cluttering up the air to no purpose and then kicking about the "speed demons." Where are these latter anyway? As far as I can see, the 25 to 30 word man is a scarce article in the amateur bands these days. I am afraid that conditions have changed in the other direction and the average amateur speed has deteriorated. That is why I disagree with Mr. Hanson as to the best way to treat the BCL who wants to "graduate." It is far better to help him a little in learning the code properly than to wait until he gets on the air and have to put up with his QRM and QRS.
Most of us have had experience with the two-faced type of BCL Mr. Hanson refers to. Surely, however, they are in the minority and we dodge more trouble by friendship in the BCL ranks than we incur in spite of such friendship.
W. F. Reeves, ne5CT.

Tangible Sympathy

F. O. Box 211

Boissevain Manitoba, Canada
Editor, QST:
Abnut ten months ago I became interested in amateur radio and since then have read each issue of QST from cover to cover. I note that there are some who feel that they have not been getting a square deal. Perhaps a few words concerning my own experience will help to give them a

In the largest broadcasting stations of the country, in amateur transmitting and receiving sets as well as in high grade radio receivers for home use-you will find Faradon Capacitors the condensers of proven durability.
Twenty years of electrical engineering skill combined with highest quality materials have made Faradon Capacitors the standard of electrostatic condenser long life and reliability.
Faradon engineers stand ready to cooperate on special equipment which cannot be taken care of by the more than 200 types of Faradon Capacitors ready for prompt delivery.

WIRELESS SPECIALTY APPARATUS GOMPANY
Jamaica Plain : Boston, Mass., U.S. A.

Electrostic
 Condensers
 for all
 purposes

There is marked improvement in your radio reception when new Cunningham Radio Tubes are performing their special tasks in the various sockets of your radio.

Don't use old tubes with new ones-use new Cunningham Tubes throughout.
E. T. Cunningham, Inc. New York Chicago San Francisco
better and brighter outlook on the matter.
While I cannot handle much more than ten per as yet, I find that all the amateurs with whom I have cilicked so far have been very patient. To my "QSC?" they would reply, "Keep at it OM, we all had to learn. Glad to click with you any time and glad to QSR." Do you blame me for feeling that they are all regulars fellows?

Just a couple of days before Christmas, our home was gutted by fire and we lost everything even to our clothing which was rather hard on us because of the cold weather. Shortly afterwards we received a check from the Winnipeg Radio Traffic Association as a tangible expression of their sympathy. Is this not a combination of kindness and regular fellowship in the amateur world?
-Stuart R. Talbot, nc4AR.

Attention! Ocean-Hoppers

U. S. Military Academy

West Point, N. Y.
Editor, QST:
During 1928 there will undoubtedly be more trans-oceanic flights and the fliers will be torn between their need for radio and their desire to save weight. If they decide to take radio, and for their own safety they should, there will be further quandary: whether to use short waves or long.

Because the long waves around 600 meters are immediately picked up by surface ships, they are the most useful. That is, provided any ships are nearby. The

ocean is quite a large place and, off the main steamer tracks, surprisingly lonely. If the airplane gets into one of these blank spots, long-waves are of no avail.

For short-waves, on the other hand, the limits are much wider. Even a low-power

MORE SPECIAL OFFERS

RCA
 UNI-RECTRON POWER AMPLIFIERS

MODEL AP-935
S the Uni-Rectron stands it is a super power amplifier, which can be used in connection with any radio set and loud speaker. Binding posts are provided for input to the Uni-Rectron and output to the speaker. Requires no batteries for its operation. It
 obtains its power from the 110 Volt, 60 Cycle alternating current lighting circuit of your house.

The UX-210 super power amplifying tube and the UX-216B or 281 rectifying tube are used with this amplifier, which cannot overload. From the faintest whisper to the loudest crash of sound-R.C.A. UniRectron amplifies each note at its true value. High and low notes are all treated alike.
The volume and quality delivered will be a revelation.
Also by removing the input and output transformers it can be used as a source of power for an oscillating or transmitting tube, furnishing power for all circuits, grid, plate and filament and is the cheapest form of Power Supply for Amateur Transmitting purposes ever offered.

LIST PRICE $\$ 88.50$ (Without Tubes')

SPECIAL
at ${ }^{5}{ }^{19}{ }^{75}$

JEWELL HIGH RESISTANCE VOLTMETER 0-250 VOLTS D. C. (3 Readings)

A high grade, accurate, reliable instrument.
Just what you want for checking the true operation of your "B" Eliminator or any source of plate voltage which cannot be obtained from ordinary low resistance type meters.

Can be permanently placed in the set which will enable the user to apply desired plate voltage accurately to each circuit of his receiver. By means of the front switch three readings can be obtained without disconnecting any wires, namely; the detector circuit, the radio frequency or intermediate circuit, and the maximum or output circuit including last audio tube. Requires little current to operate due to its high internal resistance. Flush Panel Mounting. Zero Adjuster. New and packed in original cartons. List $\$ 22.00$ Ea. SPECIAL at $\$ 4.75$

TIMMONS Combination Power Amplifier and "B" Supply

This high quality compact unit used a U. X. 216B or 281 tube for rectifying and a U. X. 210 super power audio tube as an amplifier which gives distortionless and true natural reception with wonderful tone quality and volume.
Besides being a super power amplifier this Combination also is a complete " B " Battery Eliminator furnishing all the " B " current required by the regular tubes of the set. No adjustments required and no output transformer or similar auxiliary equipments needed. For use with A. C. current 110 volt, 60 cycles.

They have been approved by Popular Radio and Popular Science Laboratories.
Every unit is new, packed in original factory sealed carton.
LIST $\$ 70.00$ EA.(Without tubes)
PRICE ONLY \$23.50

KENOTRON RECTIFYING TUBES
 (TYPE T. B. 1) MFD. BY GENERAL ELEC. CO.

These rectifying tubes operate on a filament voltage from 8 to 10 Volts and draw $11 / 2$ amps. They will safely stand an A.C. input voltage up to 750 Volts and pass plenty of current and voltage for the plate of the Transmitting Tubes.
They are also very efficient rectifiers for use in "B" Battery Eliminators. NEW STOADARD BASE

TRANSMITTING TUBES

We rebuild them and guarantee them. We also ghurantere that they will arrive to you from our Factory without damage. Special crates are the solution of the Problem.

We Build a 50-Watt Tube

Type 203, using a Tungsten filament at 10 Volts and normal plate current of 150 Mils at 1500 Volts on the plate. It is low priced at $\$ 20.00$.

We Make Rectobulbs

a hi-voltage Rectifier Tube- handles power up to 250 -wati tubes-a small investment gives you a carefree plate supply-the note from the Rectobulb Rectifier is distinctive and pleasing and gets results- they handle 250 Mils at 3000 volts and have a UX base with plate Terminal on top end.

Also low priced at $\$ 15.00$ each (includes fuses)

We Produce Inductrons

a short wave coil--staled in a Vacuum and with a UX base for plug insimple, durable and efficient for your receiver: coil for each band at $\$ 2.50$ each.

> WE REPAIR UV-203 at $\$ 15$ UV-204 at $\$ 50$ UV-203A (Tungsten Fil) $\$ 19$ UV-204A (Tungsten Fil) $\$ 50$

Water colled Tubes and Rectifiers: ask for prices. All work Guaranteed against defects.
No eharge fur Crates when eash accompanies order.

NATIONAL RADIO TUBE CO.

(6EX) 3420 18th St. San Francisco, Cal. (A ham institution)
transmitter will carry across the Atlantic with R3 when a high-power outfit can only duplicate the periormance with R6. And R3 is loud enough, if many people want to listen to it. A low-power short-wave transmitter aboard a trans-ocean plane will almost certainly be picked up by stations on both shores. But it will miss the nearby ships, if any, and landlubbers a thousand miles distant cannot do much about a plane down on the water.

The ideal system would be a combination of both long and short waves. Immediately the air-going brethern raise their eyebrows and say, "more weight." But very little more weight. Say that a fifty-watt set is going to be used on long waves. The generator must supply 150 to 200 watts of filament and plate power anyway. An extra 30 watts will not overload it. A simple but stable large capacity across tube elements) 7.5-watt oscillator will weigh something like a gallon or two of gasoline, including its single wire Hertz antenna in the wings. As both transmitters run together and use the same key, there is no extra trouble in their operation. The diagram illustrates the essentials of the idea. I think it worth the serious consideration of anyone who contemplates flying an ocean this summer.
-William H. Wenstrom, 1st Lieut., Signal Corns. U. S.A.

Short Circuits
 1001 East Main street Madison, Wisc.

Editor, QST:
I have recently made a discovery which I. think should be passed along for the benefit of those who, like myself, wear metal-rimmed spectacles. Since being forced to wear them, I have had trouble in hearing DX signals. I now have discovered that my ears have been shorted out by the metal frames and that a piece of spaghetti over each of the ear hooks removes this difficulty and makes an efficient and low-loss pair of eye pieces. Of course, in some cases there is a high resistance short through the skull, but institutions are provided for such extreme cases.
-Don Mix.

Appreciative

Box 5
 Niagara-on-the-Lake Ontario, Canada

Editor, QST:

I am a beginner and wish to use this medium for expressing my thanks to all those who have been QSO nc3AY. Without an exception, these operators have been both courteous and willing to lend a helping hand.

Whether it is that the letters appearing in the "Correspondence" section of QST are having their effect or not we will probably never know but I must say right now that I have yet to meet a snobby operator. -Albert Davey, ncỉAY.

A World-Wide Service

Every civilized nation in the world uses products from the Dudlo factories

MAGNET WIRE and COILS

made in this plant at Fort Wayne, Indiana, are built into electrical units employed in all forms of communication and transportation as well as in the thousands of electrical conveniences in modern homes and commercial buildings everywhere. The Dudlo insulated magnet wire produced in a single month would encircle the globe a hundred times.

Electrical and Radio Manufacturers may draw upoa the broad experience gained from this international service by coming to Dudlo engineers for assistance on their wite and coil problems.

DUDLO MANUFACTURING COMPANY FORT WAYNE, INDIANA

Division of the General Cable Corporation

NEW A Complete Line of SHORT WAVE

PILOT Precision Equipment

COILS The most beautiful set of plug-in coils you've ever seen, with a method of mounting that saves space and makes wiring easy.

CONDENSERS
 New spaced-plate variable condensers

 for tuning, and regular types for oscillation control. Low-losses, precision construction.MIDGETS Low-loss midget condensers
in three sizes, for all tuning
and circuit controis. Handsomest little mid-
gets you've ever seen.
sOCKETS
All types for all purposes. Finest designs and workmanship. Special types for all tubes.
DIALS
Drum types with wheel or knob controls, illuminated vernier dials, and plain types. Most complete line ever offered.
RESISTANCES All values in rheoand resistances, from 4 ohms to 3,000 ohms.
OUALITY These and the many other cision-made, of the finest materials, designed in accordance with latestscientific practice.
PRICES PILOT precision parts are amazpILOT prices and you will see your radio dollar grow to a two-spot.

Send Stamp for Catalog

[^14]
WNP

The Hotchkiss School Lakeville, Conn.
Editor, QST:
I had the privilege of being a member of the Rawson-MacMillan-Field Museum Expedition in 1926 and again during the summer of 1927. As you probably know, Commander Mac Millan and his men are now in Labrador for the winter.

During both summers that I was in the North your men did us all a very great service in making it possible for us to communicate almost regularly with our firiends at home. Since my return I have received numerous messages from my shipmates who are now in the North through members of the American Radio Relay League.

I am writing to ask you to extend to those members of the League who have been so helpful to us my hearty thanks and appreciation of their kind and helpful service to us. I am sure that all the members of Captain MacMillan's crew feel the same appreciation.

With hearty good wishes to all the members of the American Radio Relay Leazue. -..Joseph N. Field.

I. A. R. U. News
(Continueã from Page z3)

" 5 HS has hooked up with foA3Z on 23 meters after trying for months. He is still working the fifth and sixth districts regularly. 2 HK has now got a crystal set going and finds it FB. He has not much time to operate it, though. 5 YK says he is working general tests with NU but cannot find any real DX on 23 nowaday. $5 \times X$ has been QSO foA3Z on 23 meters with ten watts input. He has now got a 82 -meter permit and says Nu is local. Other 23 meter stations who always seem to be QSO Nu are $2 \mathrm{BM}, 2 \mathrm{NH}, 6 \mathrm{BY}, 6 \mathrm{LA}$ and 6 VP . 2 NH and 5 BY also work on 45 meters a great deal as does $6 R B$ who is working quite a few skeds with the U. S. A. 6QB6 LT has been raising em on both 23 and 45, his best DX being ne8WG in Hudson Bay while using only nine watts. FB! 2 HJ managed to hook nu1AQT on 23 meters his first and, so far, only No. He has not yet gotten over the shock. The U. S. A. gang has been coming over on 40 very consistently but the $20-$ meter band seems dead all week although there are a good many on Sundays. There seems to have been a burst of activity among the Fos on 20 lately and $A 3 Z$ is no longer the only one heard. However, there are very few stations in other DX countries that are audible. At a recent meeting of the R. S. G. B. we had the pleasure of a talk from soa5MA who told of his adventurous trip on the $E . R$. Sterling.
"Just one other thing. I understand that there was a bunch of U. S. hams among

Your Sigs QSA with THORDARSON TRANSMITTING EQUIPMENT

FILAMENT SUPPLY TRANSFORMERS
\(\left[\begin{array}{c}Completely
Shielded\end{array}\right]\)

T-2180-Secondary: 5 volts, center-tapped. Capacity: 15 V.A. Dimensions: $3 \% / 8 \times 21 / 4 \times 31 / 4$ " high. Weight, $21 / 2 \mathrm{lbs}$.

Price $\$ 5.00$ T-2230-Secondary: 7.5 volts, center-tapped. Capacity: 35 V.A. Dimensions: $31 / 2^{\prime \prime} x 3^{\prime \prime} \times 333 / 4$ high. Weight, $3^{1 / 2} \mathrm{lbs}$.

Price $\$ 7.50$ T-2382-Secondary: 12 volts, center-tapped. Capacity: 80 V.A. Dimensions: $31 / 2^{\prime \prime} \times 4^{1 / 2}{ }^{2 \prime \prime} \times 4^{\prime \prime}$ high. Weight, 5 lbs.

Price $\$ 10.00$ T-2383-Secondary: 12 volts, center-tapped. Capacity: 175 V.A. Dimensions: $41 / 2^{\prime x} \times 5 \times 6$ " high. Weight, 12 lbs.

Price $\$ 15.00$ T-2370-Secondary: 1.25 volts, no center tap. Capacity: 20 V.A. Dimensions: $3 \% / 3^{\prime \prime} \times 1 / 2 " \times 31 / 4 "$ high. Weight, 21/4 lbs.

Price $\$ 5.00$ T-2504-Secondary: 3 volts, center-tapped. Capacity: 35 V.A. Dimensions: $31 / 2$ " $\times 3$ " $\times 33 / 4$ " high. Weight, $31 / 2 \mathrm{lbs}$.

Price $\$ 7.50$ T-2445--Secondary No. 1: 1.5 volts, no center tap, 12 V.A. Secondary No. 2: 2.65 volts, centertapped, 10 V.A. Secondary No. 3: 5 volts, centertapped, 5 V.A. Dimensions: $23 / 3_{1} 1 \times 53 / 4$ " $\times 43 / /{ }^{\prime \prime}$ high. Weight, $51 / 2 \mathrm{lbs}$.

Price $\$ 10.00$

[Steel Case, Crackle] Finished, Compound Filled

T-2385-Secondary: 550 V. and 750 V. each side of center tap. Capacity : 100 V.A. Dimensions: 5"x5 $1 / 4^{\prime \prime} \times 6^{\prime \prime}$ high. Weight, $81 / 2 \mathrm{lbs}$ Price $\$ 16.00$

T-2387-Secondary: 1000 V. and 1500 V. each side of center tap. Capacity: 300 V.A. Dimensions: $71 / 2$ "x5 $3 / 4 \times 71 / 2$ " high. Weight, 20 lbs.

Price $\$ 22.00$
T-2388-Secondary: 1500 V. and 2000 V. each side of center tap. Capacity: 500 V.A. Dimensions: $71 / 2$ " $x 61 / 8^{\prime \prime} \times 81 / 2^{\prime \prime}$ high. Weight, 27 lbs Price $\$ 30.00$

T-2389-Secondary: 1500 V. and 2000 V . each side of center tap. Capacity: 1000 V.A. Dimensions: $71 / 2 " x 7$ " $x 91 / 2 z^{\prime \prime}$ high. Weight, 40 lbs.

Price $\$ 40.00$

FILTER AND PLATE REACTORS

R-196-30 Henry, 80 M. A. 1000 V. insulation, shielded. Dimensions: $21 / 2^{\prime \prime} \times 21 ; 2^{\prime \prime} \times 3^{\prime \prime}$ high. Weight, 2 lbs . Price $\$ 5.00$

T-2353-6 Henry, 150 M.A. 3000 V. insulation, open frame. Dimensions: $3^{\prime \prime} x$ $31 / 2 " x 38 / 4 "$ high. Weight, "3 lbs. Price $\$ 7.50$

T-2071-80 Henry, 150 M.A. 3000 V. insulation, open frame. Dimensions: $23 /{ }^{\prime \prime} x$ $31 / 2^{\prime \prime} \times 6^{\prime \prime}$ high. Weight, 5 lbs. I'rice $\$ 16.00$

T-2027-i30 Henry, 300 M.A. 3000 V. insulation, open frame. Dimensions: ${ }^{n} \mathrm{x}$ $3 \not / 2$ " $x 8^{\prime \prime}$ high. Weight, 14 lbs. Price $\$ 22.00$ T-2073-30 Henry. 500 M.A. 3000 V. insulation, upen frame. Dimensions: $11 / 2^{\prime \prime} x$ ह1/2"x $1 \frac{1}{2} / 2$ high. Weight, 24 lbs. Price $\$ 30.00$ T-2099-Double Filter Reactor, each reactor 30 Henry. 120 M. A. 1000 V. insulation, eompound filled steel case. Dimensions: $31 / 1^{\prime \prime} \times 47 / 4^{\prime \prime} \times 58 / 2 "$ high. Weight, 8 lbs, Price $\$ 14.00$ Chicago, U.S.A.

Achieve SUCCESS in Radio.

Not by balf-knowledge -but by complete thorough training

New course gives finest instruction obtainable

Tou Can Learn at Home!

R. L. IUUNCAN, Dirertor. Radio Institute or America nind suthor of seyeral
visiumes on Kadio.

Good pay from the start, rapid advancement, and phenomenal suc-cess-a life profession of fascinating brainwork-that is what Radio holds for the man who knows his subject thoroughly. Since 1909 Radio Institute of America has trained thousands to become successful in the many branches of Radio. Why don't you seize this opportunity to get into the commercial radio field where REAL MONEY is waiting for you?

New Course Finest Ever

Prominent radio men have enthusiastically greeted RIA's new course as the smost complete and up-to-date offered today. A complete kit of first quality equipment is furnished FREE WITH THE COURSE-parts for making many practical radio circuits - the Peeriess Signagraph and key and buzzer for code instruction.

RIA backed by RCA, G-E and Westinghouse

You gec all the benefits of instruction conducted by RCA and sponsored by RCA's associates, G-E and Westinghouse. Our employment department is at the service of graduates.

Study at Home!

Moreover you can STUDY AT HOMEwhen you please and as long as you please.
This new booklet describing the course is just off the press. If you want to learn more about the well paying positions in this fascinating profession send the coupon sow for your copy.

RADIO INSTITUTE OF AMERICA Dept. D. $4 \quad 326$ Broadway, New York City

EADIO INSTITUTE OF AMERICA
326 Broadway, New York City
Dear Mr. Duncan:
Please send me your new catalog. I want to know more about your new radio course.

Name.
Dept. D-4

Adiders
the American Legion crowd that was in London last September. How is it that none of these fellows turned up at the Second Annual Convention of the R . S . G . B. which took place on September 51st and October 1st? It really was very remiss of them not to come along, they would surely have been very welcome.
"Very lindest regards."
-K. E. Brian Jay, ègzHJ.

FRANCE
Mr. C. Conte whose regular list of "Calls Heard" appears elsewhere in this issue tells us that conditions during the month of January were favorable. Reception of signals from the U.S.A. was better than it has been in quite some time. Best conditions occurred on the 14th and 15th and R6 signals from $6 \mathrm{AHP}, 6 \mathrm{BGH}, 6 \mathrm{CCL}, 7 \mathrm{DF}$, 7DL and 7GJ were the best that were heard. It is a wery rare thing for him to receive signals from the sixth and seventh districts. This looks as though conditions were improving and that DX may be back again soon.

GERMANY

"During the past month conditions seemed to be more favorable here in Germany for European and DX work on the 40 -meter band. whilst on 82 meters we noticed many dud nights.
"Concerning the Washington resolutions, we fear that the traffic in the band from 7,000 to $7,300 \mathrm{Kc}$. will be rather difficult to manage and we would propose that the 75

gi2KW HAS HELPED TO GET A WAC MEMBERSHIP FOR MORE THAN ONE NHT AMATEUR SO A PICTURE OF THE "WORKS" BEFIND THAT CALL SHOULD BE OF INTERST TO MOST.
The ransmitter uses a 20 -watt tube in a Hartley eircuit. The input is normally about 60 watts and the reports are usaally, "pure d. c." A half-wave voltage fed Hertz is connected directly to the oscillator inductance. The receiver is n O-V-2 affair employing capacitive control of oscillation. A separate antenna is used for it.
to 85-meter band which is now nearly abandoned for such be used for European night work. Night time DX work should be allowable in the 40 -meter band while during daylight we could do our European work within these precious 300 Kc . In addition to work in these bands, strenuous efforts are necessary for the thorough investigation of conditions on 20 meters, at

Royal personages in China ride in a palanquin shielded from the public gaze.

TOTAL SHIELDING

 protects Stromberg-Carlson TONEHOME from the theatre-with your companions of the evening! The realistic tone of the Strom-berg-Carlson will bring you dance orchestras as though the players were in the same room.

Thefull beauty of Stromberg-Carlson's famous tone so admired and so envied, could never beattained without shielding - scientific "Total Shielding"-correct electrically and
ing designed by the pioneer manufacturers of shielded receivers. This shielding completely isolates each radio frequency and detector stages -allowing the building up of the enormous amplification needed for tonal exactness.

Music is reproduced as it was produced at the broadcasting studioevery original vibration, from lowest bass to highest treble overtone given mechanically - shield-

Your nearest StrombergCarlson dealer's address may be learned from his advertisements in your newspapers or in your telephone directory.

its true timbre and value.
Stromberg-Carison Receivers complete for A. C. house current operation, East of Rockies $\$ 205$ and up: Rockies and West $\$ 315$ and up; Canada $\$ 36{ }^{\circ}$ and up.
No. 633 A. C. StrombergCarison, illustrated.

Stromberg-Carlson Telephone Mfg. Co., Rochester, N.Y.

Amor'Tran Push-Pull Power Stage Type P...-rist price sis complete with two IIX-171 tubes, 就出 with two UX-210 tribes. The unit is licensed under R. C. A. Paienis and musi be sold complete with tubes.

A. Complete Push-Pull Power Stage

Increasing Clarity, Reality and Volume

Here is an AmerTran wired unit that meets the demand lor a power stage that may be easily assembled in the average receiver.
It contains an AmerTran type 161 input transformer *wired to two power tube sockets, a 50,000 ohms mounted resistance, and an output transformer of the type required by the power tubes and speaker. AmerTran has considered all factors before offering this new power stage to the public. and that is the reason for the fine results obtainable. It is designed for specific tubes and speakers, and used as instructed, will produce a very high standard of performance.

For best tone quality, this power stage should be preceded by an AmerTran DeLuxe audio transformer, and the output connected to a high-grade speaker. The parts are firmly secured to a strong metal base, provided with mounting holes, and the whole unit is neatly finished. Complete information together with data on other AmerTran products will be gladly sent free on request.
> *AinerTran Input and Output transformers have finest high permedbility alloy core laminations and excellent frequency characteristics.

American Transformer Co.

174 Emmet sto. Newark, N. J.

 Chicacu, Llinois, Amer'ran Sales Co.. 53 West Jacksin Blvd. Cambriage, Mass., AmerTran Sales Co., 552 Massfehusetts Ave. Pittsburgh. Pa.. Herr-Harris Co., 910 Fulton Building. San Francisco, Cal. W. I. Otis, 905 Mission Street."Transformer Builders for Over 28 Years"
the same time not neglecting the new 10 meter band that deserves special attention.
"It might be of interest to many to know that three Munich amateurs are about to begin experiments in the use of picture telegraphy on short waves. They suppose that they will be able to transmit their QSL cards to any amateur who is in a position to receive and interpret their signals which employ the Dieckmann system. Anyone interested in the matter is requested to write to ek4UAH directly or through the QSL Section, D. F. T. V., Berlin W. 57, Blumenthalstrasse 19.
"Some of the Hamburg amateurs are busy grinding their own quartz crystals. Quite good success has been obtained generally and interest in this work is increasing every day, newcomers this month being 4 ABI añ 4 AN .
"We wish the three London amateurs the best of success in their tests on skip distance and wish to say that we are always ready and pleased to coöperate with all OMs abroad arranging schedules for experimental or scientific work."
-D. F.T.V.

NORTHERN IRELAND

"DX conditions generally seem to have improved and become more stable during the last month. NU signals come through well on most nights and the 20 -meter band seems to be regaining its popularity. The South American stations are also starting to come in well between 30 and 40 meters and the South Africans are sometimes very good on the 20 -meter band. Conditions concerning India and the Far East have been improving since December.
" 6 YW has been doing excellent work on 32 meters with very low power and a badly screened aerial. His DX includes nx1XL, (on 45 meters) AWL in the Mediterranean, AQS in the Arctic, aqiLM at Baghdad as well as a report of being called by nu8BPQ. 6 WG has been working Nu stations regularly with about ten watts input which is obtained from a hand-driven generator. 5WD has made a good start from his new QRA which is 6 Springmount, Captain Street. Coleraine, N. I. He, also, is using a hand-driven generator to supply power to his transmitter which is on 45 meters.
"There has been much good work done by the other low-powered stations but most of them find it difficult to attract attention from the NU sations when working on 45 meters. 6MU has been working ai2KX regularly on schedule and conditions have improved sufficiently to allow occasional phone work to be accomplished. It is expected that 2 KX will come home to England during April. 21 T is working occasionally on 21.5 meters and is always QSA in the U. S. A."
-E. Megaw, gi6MU.

IRISH FREE STATE

"The Wireless Society's station signing gw12B has been doing good work lately,

32 Pages Bigger:

THE new edition of the RADIO AMATEUR'S HANDBOOK has 32 pages more than the last edition. That's because additional information has been inserted in all parts of the book and everything has been brought right up to date. Two hundred and sixty-six pages of dope, data and details-all for one dollar, postpaid anywhere.

OF course you can struggle along with the old edition-or it's even possible that you can do without the Handbook entirely-but why handicap yourself when it costs only a dollar to have the new Handbook in reach whenever you need some radio information?

AMERICAN RADIO RELAY LEAGUE, Hartford, Conn.

Here's my dollar-you know what I want.

Name

Address

DODGE RADIO SHORTKUT

With Appendix and Hints ior Better Kiey gork. Fixes Sirnais in mind to stick-Kills Hesitation, Gultivates speed and Good Fist-R-oduces Results. Siow Hams raise spenit to 2.: per in few eronings. Previous Fatlures quallipy and bass exam quickly. Bésinners rasitar code and pass in

DODGE HIGH SPEED METHOD

- Intensive Speea fractice)

Guickly pucs 25 per Hams in 36-40 per ciass. Five Hams report made this Ruin in few efenings. one of them by 75 aninutes intal practice oniy.

DODGE MORSE SHORTKUT

Einsily mastered by leadlo Ops-Wills tendency to mixup as confusion. Either cude used as uesired.

REPORTS FROM USERS

riell the complete story-Walled on request. radio 23.50. High Suetd \$is 5i, Morse $\frac{2 y}{2}, 50$. Money order. cione © O T. Foreign aud si cents.
C. K. DODGE, MAMARONECK, NEW YORK.
having made contacts with stations in the 1 st, 2d, 8 d and 8 th NU districts on a wave of 45 meters. A loosely coupled Hartley transmitter feeding at third harmonic inverted " L " antenna is used. Its plate supply comes from a 500 -volt battery-driven dynamotor and the input is normally 10 watts.
"The station of the Grenfell Mission at St. Anthony, Newfoundland, ne8AE, has been worked on 45 meters with an input of between nine and ten watts. A schedule has been arranged between these two stations.
"Excellent DX conditions have prevailed on the band between 40 and 45 meters during the first half of January, stations in the 4th, 5th and 9th NU districts having been heard with signal strengths up to R7 between midnight and 0100 G. C. TR. using a O-V-1 Reinartz receiver. We wonder why these stations never seem to call, "Europe" or even "DX." Nu1BQT was worked as early as $2140 \mathrm{G} . \mathrm{C} . \mathrm{T}$. and from this time onward, signals from NU stations have been arriving in Dublin at fair strengths.
"Gw18B has been keeping his schedule with nx1XL in spite of terribly hard luck with his hand generator which has burned out repeatedly of late. He has also worked ne8AE, aaYX1 and a Canadian, all on the 45 -meter wave.
"Gw17C has worked Egypt, fi, AG and AQ stations on 45 meters as well as WNP on 23. 11D continues to increase an already big list on NU stations in the 20-meter band. His best, so far, is a ninth district station.
"11B has been cutting some fine crystals and although he reports but very little transmitting activity, we have heard nulBFK calling him on 40 meters. There seems to be but little work being done among other stations with the 20 -meter band being the quietest. It is expected that 12 B will be active on 23 -meters shortly and will, of course, be seeking tests with NU, NC, etc."
--H. Hoảgens, Hon., Sec.,
Wireless Society of Ireland.

ITALY
"Italian amateurs have been particularly busy during the month of January in their experiments with phone transmission on the 45 -meter band. Almost every day at 1300 G. C. T. some fifteen of our stations located in all parts of Italy are carrying on friendly phone conversations. Remarkable results have been obtained with very low power by 1AS, $1 \mathrm{AM}, 1 \mathrm{BS}, 1 \mathrm{DY}$, 1SA, $1 \mathrm{GN}, 1 \mathrm{NO}$ and 1 MA .
"Special experiments on duplex telephony were carried on between $1 \mathrm{GN}, 1 \mathrm{FP}$ and 1AM and the results obtained were excellent. 1 NO did some good DX work with fqPM, xep1MA at China and the Zikawei Observatory station at Shanghai operating on 24 meters.
"We are extremely interested in the International Tests to be run in February

NLW RELAYS for your Transmitter

PR-5
Operates on 6 volts D.C. adjustable to all positions. 1/4" pure silver contacts. Lacquered brass finish. $3 \times 5 \frac{1 / 4}{}{ }^{\prime \prime}$ x. $1 /{ }^{\prime \prime}$ Bakelite hase. Maple sub-base. Recommended for 250 watts or less.

PRICE $\$ 9.00$

PR-9
Operates on 6 volts D.C. Adjustable to all positions. 3/8' pure silver contacts. Highly polished nickel finish. Engraved Bakelite base. Maple sub-base. Recommended for 250 watts or over.

PRICE $\$ 12.00$

THESE RELAYS ARE EXTREMELY FAST. THEY DO NOT LAG NOR DRAG. MADE BY' MAKERS OF THE FAMOUS "LEACH BREAK-IN RELAY"

LEACH RELAY COMPANY

693 MISSION STREET
SAN FRANCISCO, CALIFORNIA

DEPENDABLE! "B" BATTERY POWER

100 VOLT EDISON ELEMENT, NON-DESTRUCTIVE RECHARGEABLE "B" BATTERY WITH CHARGER Shipped dry with solution \qquad
140 VOLT WITH CHARGER17.170 100 Volt POWER UNTT wiih TUBE $\$ 16.00$ Fres Sample Cell. See how it aperates. A. Sample of Perfection. Complete knockdown batteries all sizes at REDUCED PRICES.
1×0 Volt VNITS built to your specitications. SEND NO MONEY-PAY EXPRESSMAN Write for Firee Illustrated 2.4 Page Booklet. SEE JAY BATTERY COMPANY 915 BROOK AVE. Dept. A, NEW YORK CITY

A New and Improved Volume Control for "AC" Circuits

Centralab Radiohms $\mathrm{RX}-100$ and $k X-025$ have been built with exact taper of resistance (a) give effectual control of volume smoothly. without jumps send sudden blasts.
When the RX-100 is placed across the secondary of one of the R. F. stages it surely and positively controls the violume frum I whisper to maximum on all signais-mowerful locals notwithstanding. This Radiohm will also control oscillation very effectively.
The $\mathrm{KX}-025$ has the exact taper of resistance for ti volume controi when placed in the rntenna circuit, of uernss the primary of in R. IN. transformer.
One of these two Radiohms and the Centralab lower Rheostat are essential resistances for all "AC" circuits. They help to maintain the deicate balance of voliagex throughout the eircuit and in no way affect the batance between plate and filament surrent, so neeessary to maximum efficiency.

$$
\begin{aligned}
& \text { Write for new folder } \\
& \text { showing applications }
\end{aligned}
$$

Central Radio Laboratories
20 Keefe Ave. - - Milwaukee, Wis.
III Centralab III
and it is expected that quite a number of Er stations will participate."
-F. Pugliese, eitFP,
Sec. Italian I. A. R. U. Section.

SOUTH AFRICA

"The South African Radio Relay League has been requested by the Postmaster General to put forward suggestions for a scheme to assist the Minister of Defense in providing Africa with a secondary means of radio communication in the event of trouble or disaster. A special committee at headquarters has been formed and is actively engaged in drawing up a scheme along the lines of the A. I. R. L. Official Relay Stations for submission to the South African government. As this has been one of our strong desires ever since the inception of our organization, we are, naturally, very happy over this turn of events.
"DX conditions have been excellent, being at their best around 1700 G. C. T. Boyce of A7A reports contacts with ai2KT, ai2KW, oa5CM and wa2YI. 20 -meter transmissions are coming through well with such stations as ai2KT, af1B, eg5ML, nu1SZ, 1ASM, 1BW and 8CFR being heard most consistently.
"The accompanying photo is of foA3Z, the station operated by OM Hill at Port Elizabeth. The transmitter employs a 203-A tube in a tuned-plate tuned-grid cir-

foA32
cuit. The plate supply is obtained from a home-made transformer, the output of which goes through a chemical rectifier and filter circuit. The voltage applied to the plate is about 1200 and the normal plate current is around 140 mils.
"The power and filament transformer and rectifier are mounted under the operating table together with the A and B batteries for the receiver. The antenna which is used for both transmitting and receiving is of the inverted " L " type, 95 feet long supported between two 50-foot masts. A 5 -wire fan counterpoise is used. The receiver next to the transmitter is a shortwave O-V-1 affair and the one to its right is a five-tube BC set.

All continents have been worked by A3Z who has 26 different countries to his credit.

VITROHM Transmitting Grid Leaks and Rheostats now cover the entire line of transmitting tube circuits. TThe prices on these amateur products are reduced materially. TYour dealer should stock Vitrohm 'Transmitting Products. IIf you have difficulty in obtaining them, write us direct.

catalogue NUMBER	PRODUCT	RESISTANCE	dissipation	CURRENT	MAX. TUBE RATING	PRICE
507-2	Grid Leak*	5000 ohms	44 watts	$90 \mathrm{~m} . \mathrm{a}$.	100 watts	\$2.00
507-3	Grid Leak*	5000 ohms	200 watts	$200 \mathrm{~m} . \mathrm{a}$.	1000 watts	2.80
507-4	Grid Leak \dagger	50,000 ohms	200 watts	$60 \mathrm{~m} . \mathrm{a}$.	1000 watts	6.50
507-5	Grid Leak \dagger	20,000 ohms	200 watts	$100 \mathrm{~m} . \mathrm{a}$.	1000 watts	4.25
507-511	Grid Leak*	10,000 ohms	200 watts	$135 \mathrm{~m} . \mathrm{a}$.	1000 watts	4.00
507-66	Crid Leak***	15,000 ohms	200 watts	$120 \mathrm{~m} . \mathrm{a}$.	1000 watts	6.00
507-63	Rheostat ${ }^{\text {** }}$	50 ohms	50 watts	1 amp .		5.50
507.59	Rheostat**	20 ohms	80 watts	2 amp .		5.50
507-8.3	Rheostat\% ${ }^{\text {\% }}$	12.5 ohms	60 watts	2.2 amp .		5.50

* Center-tapped
\dagger DeForest P or R. C. A. 852 Tube De forest H Tube
**Steps at $5 \mathrm{M}-10 \mathrm{M}-15 \mathrm{M}$
fur R. C. A. 852 or LeForest P Tube
\dagger^{*} For Primary Control
* Filament and Primary Control

Mard Aeonara pectric company
 37-41 South Street
 Mount Vernon, N. Y.

Master the Code

> Power Tube Work
> REPAIRING AND REXHAUSTING OF ALL SIZE TRANSMITTING TUBES PRICES UPON APPLICATION
> Glenwood Laboratories 142 Market St. Newark, N..

 NOW A Single
 Drum Dial by National Co．

New in design but with the familiar NATIONAL Qualities；famous Velvet－ Vernier Tuning，and made to Use and to last．：360 degree motion allows attach－ ment to all types of variable condensers．
Smaller Drum，with automatic take－up permits high position of sub－panel with－ out cutting．Visible portion of dial in－ clined upward for easier reading．

Easily attached．Ask for type F．－－ price，$\$ 4.00$ ．Type 28 Illuminator，50c．
NATIONAL

TYPE F ILLUMINATED VELVET VERNIER DIAL NATIONAL COMPANY，Inc．Malden．Mass． W．A．Ready，Presideut

THOUSANDS WILL TELL YOU chajestic

Dry＂A＂and＂B＂ UNITS ELECTRIFY
any RADIO SET and zive BETTER RADIO RECEPTION THAN ANY OTHER FORM OF ELECTRICAL RADIO POWER
See your nearest dealer today－any good radio store．Try Majestics on your set and note the difference．

You plag Majestics in and forget them．
GRIGSBY－GRUNOW－HINDS CO． 4540 ARMITAGE AVE．

CHICAGO

He has won the S．A．R．R．L．trophy for the second time in the recent competition for it which is confined to stations in South Africa．＂

Fr．P．Marks，foA5F．

NEW QRAS

agRIL－Georgia Tiflis Navtlug，Radio RIL， U．S．S．R．（by D．S．Hutchinson．） auRABS－－Tachkent，Turkestan．（eb4ZZ．） WWD－St．George Island，Pribilof Ids．off Alaska．（nc5AW．）
nr2FG－Frederico Gunzalez，Box 384， San Jose，Costa Rica．

Calls Heard

（Continued from Proge ：89）

J．Bernfield， 14 Richmond Rosd，Wimbledon．

 London，S．W．Et，England．
Abstract

1cio lbew luw lmv lahi lemx lhjk lbux ladm bbbm lajm laot lmo lis ive lbql laoh lalr llv Icmf la\％w lasi llj lcue letu lepb lasu land lbyv iaff lakz lajh ldm lcjh lach lii lecz lben lbge Ixy lapv lasl lai lue lfl lanv lge ive lckk iaba ls\％Iu\＆ibeb lawe lff lbgt ikl lag lexy labd labk lawm lahx lic low 2euz $2 j n$ 2bbe 2apy gec 2bdk 2cns 2 bmr 2ags 2ahm 2amd 2aiu 2sy 3or 2pq Zanj Zaef Ocvj Zhv Znm Zase \％uo 2aib Zada 2avo §dr 2ayj 2am，Ecyx 2bek 2bad zayr 2bum＂buy 乡crb \＄pr shu \＄hry $3 n \%$ Sqe \＄aks 3 bms \＄xjx 3 gi \＄aim 4dd 4 ab 4114 hx 4 cj 4 xe tpi 4rar 4af fun 4 IV 4 iz 4 rg 4 tit Sben Sahc Saly Scmb Sadg Sufq Scve Salu Scmp saxn 8̈ag sux 8bni suj suxa 8utv selp secs 8bas seke Bcae sdae xli xcin scdf xhwa sices סecq 8arg sakg

 8dgp 8cfl．G．D．Pine， 15 Hillside Avenue，Ereter．
Devon，England

[^15]

Model 537

A "UNIVERSAL" Aid to Radio

 Set ServicingMore Calls--Complete Set Owner Satisfaction --Bigger Protits.

Weston Electrical Instrument Corporation 602 Frelinghaysen Avenue

Here is the New A. C. and D. C. Radio Set Tester

NOT merely an instrument-but a complete radio service man's equipment. With this outfit you can set yourself up in business-and a very profitable business, too. Dealers everywhere are looking for men experienced and equipped to service radio sets. With this outfit and the complete instruction book which is included with it you can be an expert with a little practice. It takes only a few minutes to make every test on a D. C. or A. C. set. Hundreds of men with only a few hours' self-training are making as many as twenty service calls a day, and making money on battery and tube sales besides. Let us show you how. Write for complete information.

WESTON RADIO INSTRUMENTS

BEN'S RADIO BARGAINS

MERSHON 60 MFH COND. $\$ 4.00$; K. С. A. UV 712 audio transtormer $\$ 3.95$: Faradion mercury condensers $\mathbf{\$ 0 . 5 0}$; ? MFD. fixed condensers yiju volt 95; Hoyt a in panel meters $0-6 V$; $0-3 \mathrm{amp}$. $\$ 1.45$: Hoyt peep hole, yll sizex. AC and DC y $\$ 1.95$; Wireless keys, heavy contacts practice key . 69 : Skinderviken rrans. relay tontom . 55 : Milliammeters 200 mils. Hovt $\$ 3.75$; 'rans. insulators 18 in. . 45 : \% for . 75 ; HCA 365 h H1. trans. 30 watt $\$ 6.75$; HCA 1658 HI. trans. 150 watt $\$ 9.75$: Plug in tip arial jack for colls, tetc. 15 pr.; Honey comb io cuil mounts, kuar type $\$ 3.25$; Sinf ohm norc, irid Leaks tapped \$1.75: Faradon ant. $\$ 34.50$; Comp. HEL \% tube short wave kit $\$ 26.75$: New \$mprovel Vibrnplex Keys $\$ 17.00$: Onntie kevs. new and improven tope $\$ 5.50 ;$ High pitch adi). buzzars $\$ 1.00$: Wavameter boxes. Well made $\$ 1.50$; small cabinet and panel $6 \$_{4}$ $\because 12 \frac{3}{4} \$ 1.00$ Hadio Ben.
C.O.D. 1 ND MAIL ORDERS FILLED-P. F: EXTRA

EVERFTHING FOR THE AMATEUR $\triangle T$ BEN' $\&$
BEN'S 228 Tremont St., Boston, Mass.

GRIDLEAKS

15,000 ohm, tapped at 5,000 and 10,000 ohms with 85 watt capacityPrice, $\$ 1.50$ 20,000 ohms, 85 watt for UX852............. 1.50 5,000 ohms, 85 watts 1.00 5,000 ohms, 20 watt for one $\bar{x} 210$. .75
Postpaid
UTILITY RADIO CO.
EAST ORANGE, N.J.

20-40-80 Meter Band
Designed by Chi-Rad engineers to meet the demands for an extremely efticient short wave coil. Complete with mounting, hardware and three interchangable plug-in coils to cover 20,40 and 80 metor wave bands. These coils are noteworthy for their convenience in design, neatness in appearance and sturdiness in construction. All plugs give positive contact.

Chi-Rad Short Wave Coils Compare for 20. 40
snd 80 meter band $\$ 10.00$
Extra coil for broadcast band \$ 4.00 Dealers and Set-builders-write for further details and discounts.

Chicago Radio Apparatus Co.
415 South Dearborn St.
Chicago, Ill.

Japanned Base $\$ 17$
Nickel－Plated 19

Famous
Improved Vibroplex
Used the worid over because of its ease and jor－ fection of send－ ing．Over 100,000 users．
Special Radio Bug
Equipped with extra large，ape－Nickel－Plated 19 sially constructed contact points to break high currert without use of relay

Remit by Money Order or Registered Mail．
THE VIBROPLEX CO．，Inc． 825 Broadway NEW YORK
Cable Address：＂VIBROPLEX＂New York

KARAS MICROMETRIC DIALS for

 Short－Wave RECEIVERS2 Knobs－Rough Tuning and Vernier Gold Inlay Markings－Look for，Gold．Band

rhile $\$ 3.50$ each

Ideal for sitoot－wave in－ celvers．Greater separstion c：broader tuning range． 0001 ．勹йї14 ．000̃5 List Price $\$ 6.50$ tach

Put Kiarar dilals and pongiensers in sour set today－und not，the improvement！it puur dealer cannot suppiy zon， note the improvamenc！
send sour orders lo us．

Send for Literature on 3－Tube Short Wave Kit
KARAS ELECTRIC COMPANY 4030D－N．Rockwell St．，Chicago，Illinois

 sh－lad sb－iai sb－lah sb－laj sh－lak rib－lal sh－lam sb－lao sb－lap sh－lar sb－1aw sb－iax sb－lbe sb－ibr sb－lbw sb－1by sb－1ca sb－ica ab－1cj ab－1cl sb－1cm sb－1ic sb－2aa sb－2ab sb－2af sb－2ag sb－2aj sb－Eak sb－2al sb－2am sb－2ap sh－2ar sb－2ag sb－2au sh－2ax sb－2ay sb－2ia sh－2ibsb－2id sh－2ig sb－6aa sk－5ab sh－9aa sh－sqap sb－xnf si－1ic su－1ed su－icx su－ion su－2ak
 op－1hr op－3ac op－1at oz－1ai oz－2go iz－3ag ozo－3ai $0 \%-4 \mathrm{AC}$ oz－4ao oik rjc vidg rinp．

f．A．Rowden， 12 Pennsylvania Road，Exeter，

 （England，Der．23， 1927 to Jan．14，1928）
（20）－meters）

1acm laff lajz lana larx lasf lask lavi laxa lbeb ibed lbw lbwm lbyv icfo lckp lcmf ife las
 Zalw tamf 2aut 2bad zbal 2bay Uthf Sbum 2cmu Zevj 2cuq 2gp 2jn 2md etp 3tu Baim 3aib Acei Bqw 3ug $40 b 4 p x$ Gary sahx Sadg safq 8ahc 8aly farb \＄axz 8ayu shag sebi 8ecl 8ceq 8ejum semb sddn Sidhx fidid sdne shx znt sou हxe yaun gbay gerd ydbj ric－2al ne－2be nc－ 3 mp ne－8ae np－4pq fu－a3z ox－2xa wnp．

（ 90 to 45 meters）

1asw lab labv labz lat lage lagi lajc 1ajx 1amu lanx lapg larv lasa lask lasu lavi lawm laxq laxx lbea lbeg ibed libge libjc lbke iblb lblf lbls lbad lbas ihr lhtf ibu ibux leax led leh icio lejc lekp lelv lemf lemx lemz letp idi lif tho lid 1 ka lix 1 ms ino loo low iro irp lsi lwl eabp
 $2 a n m$ そnog 2apd＂aluo 2arm Estq 3ats 2avq 2aw 2bav Zbaz 2bch 2bck 2bco Zbev Stuew 2bdc 2bdh zbdj 2hek 2ber 2bew 2bfy ！bhb 2bhf 2bhr 2bir 2bo gbox 2bse Ebvh zedr 2ejx 2cmu 2crb 2ctp weur 2eub zevj 2ew 2exi 2ff 2fs izd 2gp 2he eie 2je 2jp 2mb 2mp
 3aed 3afi Bafr 3afw 3aib Baih 3aim 3ajd 3amb Banh Bani 3apx \＄as 3avk 3awf 3bmz 3bnu 3bqz 3hse 3buv 3hwt 3ceb 3efo 3ckj 3dh Sec Sep Sev Bfo 3fv 3ki 3ep ©hh \％jq Ske 3kt 3nc＂nr ：3pf 3or 3qe 3uw 3ra 3sn $3 \times \%$ 3vx 34 m 4aar facd tacn 4 aco tace 4 acz 4adg tay 4 bl 4 bn 4 cf 4 cj 4 db 4 ei 4 eq 4 hx thz 4 kw 4／k 4 nh 40 f toh ton 400 tpe 4 pi tab 4 rn 4 rp 4 rq 4 rr

 Tip Bafl Bahm Kamy Sath 8avb 8axa Xaxx §hp Xhhz 8bjh xhni stox Sbto 8byw 8eca Xefl Sefr senh xieve Xhem Xdft Xdfw sdne Sdod siton sdpj xisi Xli 8te 8vt \％zze Gabq 9abr Yaci 9acu Yadk gaek Mahz Gaio Yala 9alk Gaok Gany Gaue Gavp 9axf ghan 9bed 9bht 9bmm 9bpm Ybac 9bul 9buo 9bxj 9bza 9cdi 9cfn Gegx Gchs 9cis 9cpr 9erj 9cyo 9dar 9dek 9dke 9ejnv gds 9dws 9dyd geaj gedf tefj geix gek gekw belb Seld Gell Meln Gerh Geta 9ewa 9hb Ghi Gje すkb uml 9nr 9oj 9pd 9pm 9ai 9rp 9rs Sau 9wb 9za ne－iak nc－lav ne－ibr nc－Zax nc－2be ne－Ses ne－3cy ne－snv ne－ibz ne－8ae nd－hik nq－2ct nq－2kp na－5ry nn－1nic np－4ara ni－2sh ac－8na ai－2bg ti－2kw нi－2kx aq－1hf as－11ra fo－egre fi－lcw fi－1ta fo－a3y fo－a3z io－adil fo－gife fo－ aid fa－pm su－de3 sb－lan sh－lap sh－law sh－ibp sb－ leg sb－1cl sb－1cm sb－1cr sb－1id sb－1ig sb－2ax ab－2ay ов－2dy он－2tm ов－2y，ов－3dc ов－3еf он－3ея ок－8ки O\＆－3xO OA－5by OR－5wh us－6wp ox－7ch on－TCW op－iad op－1bd op－1cw op－1gz op－1hr op－1mr $0 \%-2 x e$ oz－zbg oz－2bp o\％－3ai oz－3ai oz－3ar 0\％－3an oz－4ar xor－fima hival kfu pish ril rje tfa wmo．
si－2KX，IL．J．Drudge－Coates，Cambridge Barracks， Rawalpindi，India
（Heard curing January，i928）
latat laxa lckp lei lom lbuc lii 2awu glx ght 5 mx Yalu 9 crd 9 cpd 9 bpm ex－2nm ex－2kf egoax eg－o゙aw eg－6yv egi－6mu．

ec－2YD，near Hrno，Morava，Czechoslovakia． （20－meters）

$1 \mathrm{cmi} 1 a j$ 2nm sagn 2ahm 2tp zaly af－1b ne－lar ne－1ad sb－1ad sb－2fg se－2ah fm－sin von kzl 2xad （40－meters）
1ab 1xp 1mj Isi 1rv lbx lcmp lajk lbed lajx lekp 2ax 2pv 2tp 2tr 2md 2pp 2 zo zov 2rs $2 f$ fs 3aiu Eayj 2agn 3rb 3cfg 3amx 4yb 4fu 4bd 4ob 5hy 5atm Gbjh 6h7g 8vd 8dz 8xed 9ael 9emj ay－rann as－11r凡 fm－8ay fm－8jo fm－8rit fm－8ssr fm－8chr fm－2ax fo－a9a ne－sяe sb－thg su－2ak oz－2ac oz－2me oz－कैau pgo sad sel wnp．

Unvarying Radio Insulation
 impervious to dust-fumes-chemicals

FTROM the day you install them, *PYREX Radio Insulators require neither inspection nor replacement.

Their constant electrical and physical characteristics are permanent.

They represent the true fusion of materials resulting in a homogeneous, nonporousinsulator, uniform throughout its structure-high in dielectric strength-low in power loss. No "glaze" or coating to craze, check or decay. No pores to hold dust, soot or moisture.

And PYREX Radio Insulators are
indifferent to the corrosive action of water, smoke and acid fumes. Oil, grease and clinging dirt do not accumulate on their original diamond hard super-smooth surface.

PYREX Radio Insulators are specified in four branches of the United States Service, and in the country's largest broadcasting stations.

Write for "PYREX Industrial Glass Products"-a complete treatise on the special glasses from which PYREX Insulators are made.

Corning Glass Works

Industrial and Laboratory Division, Dept. Q-1
CORNING, NEW YORK
*Trade-mark Reg. U. S. Pat. Off.

becomea radio operator

See the World. Earn a Good Income Duties Light and Fascinating.
LEARN IN THE SECOND PORT U.S.A.
Radio Inspector located here. New Orleans supplies operators for the various guif ports. Most logical location in the U.S.A. to come to for raining.

Fractically 100% of radio operators graduating on the Gulf during the past five years trained by MR. CL.EMspring and summer runs. spring and summer runs
Member of the A.R.R.L.-Gall "5 G . $\mathrm{B}^{\prime \prime}$
Pry and Night Classes-Enroll anytime-Write for circular.

GULF RADIO SCHOOL.
844 Howard Ave.
New Orleans, La.

Oscillating Crystals

Prices for Guaranteed SUPER-POWER CRYSTALS: 75.0-85.6 Meter, ($3,500-4,000 \mathrm{Kcs}$), band $\$ 18.00$ $37.5-42.8$ Meter, $(7,000-8,000 \mathrm{Kcs})$, band $\$ 30.00$ RESEARCH ENGINEERING COMPANY 915 Duff Avenue, Ames, Iowa

Trade Mark Reg'd Pat. Offcel

CONDENSERS B-BLOCKS ; VERITAS RESISTORS

Universally accepted as standard for the construction of Radio Receiving Sets, Resistance and Power Supply Amplifiers and Power Supply Units. Send 25e for new Power Supply Handbook.

Tobe Deutchmann Co. Cambridge, Mass,

 (
AMATEURS

The Most Interesting Field for Experimenters．

Light Sensitive Cells

 ．．．AND．．．
Their Applications PHOTO ELECTRIC CELLS

have been used in Television，Telepho－ tography，＇Talking Movies and innumer－ able uses with：－

RADIO RELAYS

Our special polarized relay，a result of iong research for a practical relay to be used with－Light Sensitive Cells－also used in connection with telegraph－print－ ers，receiving time－signals and many ap－ plications in radio．

Write for further information：－
Photo Electric Devices，Inc．， 594 Fifth Avenue

Brooklyn，N．Y．

A Simple Guide for Selecting Resistors

No matter how many claims are made for a resistor，you can always check up on its true worth by finding out who uses that particular make，and how it stands up under the rigid pressure of daily service．

We strongly recommend that you ask any one of the following companies abour Harfield Resistors．They are but a few of a great number of concerns now purchasing Harfield Resistors in large quantities．

Stromberg－Carinon Tele－Western Union Telea＇h Co． ghone Mif．Co．Sonorw PhonograpiCo Crosiey Rudio Corporation Conner－Crouse Corp． American Transformer Co．Magnavox（orporation Fansteel Products Co．
Martin Cinpeland Co．
Splitdorf Electric Co．
Electrical Research
L．ahoratories
Samson Electric Co．

> Tell wis about the resistor you quant and let us make up a sample for you with prices．Write to

HARDWICK，FIELD，INC．
factory
215 Emmet St．
Hewark，N．J．

SALES DEPT． 100 Fifth Ave． New York City

0a－4PN，Russell F．Roberts，Cambridge 8t．，Wesi End， Brisbane，Queersland，Australia
（Heard between Nov．20，and Dec．31．1927）
 6hm 6ap 6ave bavj bakw 6amm 6age bbvx bbvv fbap 6iegm bienk 6dkx 6dch 6dqq 6dev 6dog 6dkt 6gn 6na Guag Thk 8tra shx gwv ewi oh－6dpg oh－6boe op－lad op－1bd op－1hr ou－bam oo－ke，ac－2ff ac－3ep ac－2ck re－8na ac－8hb ac－8to aj－4dx ai－2kt ai－2kw ai－2gb eg－3kf ef－xin eb－4ft eb－4au ei－ino es－leo fo－a3z fo－d5p forala hlw wmo jav xej snow xom agj arex pmz ．
oa－sCM，Rez．Anthony， 3 High St．，Unley Park， South Australia
1azd ibux lcmf 1 cmp 1 de 1 fl 1fs lilx Qacd 2 afr 2afv 2ahm Eaku Ealu 2a\％k 2hac 2bbi 2bfj 2ih shej 3bmz 3bph 3bqz fbl 4lk 4si 4wn 5auz 5avs bdm hke 5 CH 5 g 5wz 5xm 6aak bati bagz baix bajm bakw Gal\％Gawd 6ary 6ayj 6bel 6bef 6bfp 6 bgb 6bjh 6bk 6ibpe 6bph 6bpm 60rm ibrs 6egv ich 6ck octo bewo bezm 6idag fdan 6dki 6dkx 6dli bdln 6dnh fidta 6ee
 Tifo Thze Tek＂la Samf Eaxa Saxz Sbau 8haz shqm女bww sccw orda ！afe 3ajv gave 9bnm 9bac 9bsz
 ${ }^{9} \mathrm{pu}$ gwh 9×1 9ws oh－6amu sh－6avi oh－iboe on－6buc oh－öcqm oh－fidki oh－6̈dju oh－6dqq oh－6dqu oh－6dv od－pk1 ac－2ck ac－hkg ac－8em ac－8hb ac－Kina ac－8rj op－1hr op－1re aj－2bk ai－2kt ai－2kw ai－2kx ai－2bs ai－zjy fo－a3a fo－r3e fo－a3e fo－ait fo－43v for3z fo－a4x fo－a5a fo－86p fo－a6u fo－4TH fo－aTd fo－ato fo－axp fo－\＆\％v fo－a fo－7srs fe－eeg xen－0cp ef－8eo ef－8fd ef－8jf ef－8lx ef－8xo cf－8zb eb－4be nc－9ai smuk kfud．
KDOF－5PK，J．F．De Bardeleben，－22 Elizabeth st．， Brownsville，Tex．，on board SS Bessemer City．
（Heard between New Orleans，La，und Panama Canal）
lbbo 1mk 2：2uo 2pv 2cre Satr ？me 2hg 3tn 3ac 3sj 3cht Sbqz 3afw 3bjy 3qp 3aph 4tn fin inn 4 fd 4cb tou 5gr 5yb bark 5pm base bij brg bash haye Gaxo 5ayb 6ty（idfr 6dfs 6awt fad 6ey 6dkx Gdfv fise Tast 7aln écwt sada 8bmq 8cca 9efw 3dli Tayp Geck Tha\％Off Yefe 9ep Idny Gdme dbz Iree Gdku Grp Gejw Gerj nn－lnic ndm nu－5ev ne－ige nm－9R．
（Heard between Panama Canal and Hawaii）
Quo 2bfj Guqf Sash 5rg Taln Tafv Tadb Tasb Taba Gqy geph 9dak 9ctx oa－5ry nn－1nic nm－9a．
（Heari between Hawaii and Sapan）
lxy 2uo 3gp 4si 4ow ton 5ask Gciu behr 6dmm Gavl fdv ôdlr tidki bdeu Gcay fam Gaat finx 6we
 Gaid 9cdw 9eld 9cmz 9bqc 9dqu 9bht oa－1cw og－2rt од－4au он－デcw oa－6am oz－2bf o\％－4sk oz－3яi op－1dr on－3яc oo－dek oo－ant rj－jxex aj－jrv xnu－6dhg fug f®m kf hza nvx ips sk－1 rep nigu ra－ö3．
KDVO，S．S．Samuel Q ．Brown，in port at Amuay． Venezuela by Ben B．Skeete，
（20－meters）
latr lahy lbeb 1 hv laz lzz obbx gbge 2ck 2ep $2 \geqslant i$
 Gde 6esr 6ary 6bif Giny Bicxo ivz \％fe Sdbe sdzm Scefr 8abl cre 9dbj Gajw 9hm grpb sehm 9evu Gcug 9dpw Oas Geln 9anz nc－law nm－9a．
（40－meters）
Iam ilx lbcb laqp lagw tqu 2bew 2aed 2bda zayg 2rdm 2ww Eafe zecd 2hv top taua tbip 2ot 2an 2aby Each 2fg zbay Lagw bbew see Baz Eali Janh 3avk 3ant 3ur 3bui thx 4aar 4ky 4dq 4ox 4qz
 5 mx 5ayo badv 5ta 5apm Saej 5hy Gbrq tihk fobd Gbsn 6bpm 6ahp 6nw Guf balt Gioz bec bahp fish Giny liczo（bbpo fei）6bch Gam Gdwf Gbam Gbiu 6bej 6hm 6aqu 6bjl 6ad 6dsu 7 ff $8 \mathrm{cbf} 8 \mathrm{gx} \mathrm{\%}$ 8aic 8 dmz Scc 8ib 8qig 8wo 8dfw 8si 8ahu 8bjx 9ezw 9axa Gaok 9efz gewf gell 9dux 9bnb 9dke 9bqc 9ber ghbw 9ehs 9cvu 9deb 9csm 9ayx 9bpn 9hi 9bad 9cuo 9cwa 2cft su－1fc ar－2ags sb－2ar nc－2be oh－6xk．
（80－meters）
lin lbbj Ifl 1ait Ixv laef lafb lanh lasd 2bic $2 b i f$ 2dv 2cpg $2 j x$ Zbcp 2 xg 2bsc 2ac 2ev 2bex 2cvh 2exl 2alo 2bhl 2ebp 2epd Jdew 3uz \％ih 3xs Basc 3aei 3cju 3agi fzf 3ale 3zi
 8byn 8dyk 8̈dte گ̈hvy 8buh 8jb 8mq 8czw 8ano 8̇daq 8esw xhnf 8don gids gaaf gcuo gedo．
FOGR by 5SR－5PG Enrouie San Juan，P．R．to Kingston，Jamaica
1arv Ibg Ickp lem lewp Ing loz laba lacm Vafv 2ags 2agw 2atq 2bps 2cev 2cxl Edh 2fc 2je Zmd Zns

Mesco Buzzer
set key and

No. 12 Inameled copper wire,
any length, it.s. 01
Sio. 10 Enarneled copper wire,
any length, ft. $011 / 2$
Genuine Hakelite Tranel
10x14xit \cdots..........
. . 1.50
Teco-i0 Watt Socket 4.45
Myers $854 \frac{1}{2}$ volt wet. ar
Amp tuhe, cornplete with
roounting elips
Belden hraid $3 / 4$ inch wide, ft. . 06
Neon tube, type B. ultra sensitive. Has realed in Reptroies, besitive rontarts. hest
meter

Bradley Leak, 9.95 absolutely noiseless and stepless, 2000 हo 30,000 ohm resistance. List $\$ 5$, special $\$ 2.95$.

New York's Headquarters for

 Transmitting Apparatus When in Town Visit Our StoreFull Line of Acme -- Thordarson -- Jewell -- Flechtheim -- General Radio -- Signal -- Bradley

SPECLALS

Faradon U.e. 1803 Condenser cap. otinoit5-10.000 volts $\$, 95$ Dubilier Mica Condenser buz cap. 6.000 working voit Dubllier t mfon. filter ound. tested mil 15010 V . DC. tworking boltage 5000
General Radio :17D .jol onnd. plain or with remter
 voltage.
Dubilier rond.. 5 mfd . 1.006 F D. C. Wurking roltage
R.C.A.- IIV. 1 In 16 Super Het. transformer

Leiorest audio transformer, built for 20 y प. $\$ 10$ list Dubilier Duration \mathcal{K}. F : iransformer
Ward Leoñard Kesistances; transtormer standard base receptacles: si\%es $300-660-900-12010$ and 2000 ohms lioneycomb colle. unmonted. all sizes in stock at $1 / 2$ price. *s LeVeau adjustable arm micro-transmitter for panel mmintink
Heath cundenser double spaced Por transmitting, (00025 cap 2.45 buhtlier butfer condenser, i or . $\overline{\mathrm{B}} \mathrm{mfd}$. 400 F . D.C. Eaci Bristol 50 Henry choke
Western Fiectric modulation transformer 6.50 Arme 0 00.5 Hiclosed condenser
reeds 241 or $215 B$ the rectitying the
Loteris 213 full wave tube
Leeds 210 power tube
charactistics satue as Cunuingham tubes MAIL ORDERS FILLED SAME UAY 10\% Must Accompany All Orders

Cardwell c on - $\mathbf{~ d e n s e r s , ~}$
double
d spaced for transmitting, .00025 eap.

Wiectrad Tire Fixed Re. sistance, type B , IS watts, 6 " inno 5.000 nhm, rencre tapped $\$.95$ j11.060 ohm, centre tinpped 1.10 Type © © watts, 4 " bux 5.000 ohm, centre tapped 1.45 10.000 oinm, rentre tapped 1.75

Flechtheim Cundensers all types 35% off list

RADIO OPERATORS WANTED

THE EASTERN RADIO INSTITUTE can train you quickly and thoroughly because:

MODERN AND EFFICIENT METHODS
THOROUGH INSTRUCTION under staff of
IICENSED COMMERCIAL OPERATORS
MODERN APPARATUS including SHORT WAVE TRANSMITTER
FIFTEEN years a RADIU SCHOOL
THE OLDEST, LARGEST and MOST SUCCESSFUL school in New England. RECOMMENDED BY THE A. R. R. L.

Day or Evening Classes Start Every Monday. SPECIAL CODE CLASSES
Write for Illustrated Prospectus
EASTERN RADIO INSTITUTE 899 bOYLSTON STREET BOSTON, MASS.

QUARTZ CRYSTALS

Why not grind your own crystals? Guaranteed non-twinning. Cut to correct axis. Sizes from 1.5 mm . to 4 mm . thick, $\mathrm{B}_{4} \mathrm{in}$. to 1 in . square or round. Price $\$ 6.00$ each. Prices of other sizes on application.
MASTER OPTICAL ' O.. Inc., ${ }^{19} \mathrm{~W} .36 \mathrm{th}$ St., N. Y. City Specialists in Quartz Optics

SIX PHASE

Mercury Arcs-Keady for you now. Give your station that distinctive 360 -cycle note that makes 'em sit up and take notice. Output practically all D. O. Needs no filter. Great for that UX phone. Sincle Phase Arcs unbeatable. No words describe the six. Your rectifier problems solved.

RECTIFIER ENGINEERING SERVICE
4837 Rockwood foad. HADIO 8ML, Cleveland, Ohio.

The truest and clearest AC Electric Radio is a standard set equipped with Balkite Electric "AB" $\$ 64.50$ and $\$ 74.50$. Ask your dealer.

Balkite
 RadioPowerUnits

Singamo engineering of Audio Apparatus is followed up by precision production methods Falned in nearly 30 years preision instrument raunuiacturing. in SAangamo Transformers and lmpedances the set bullder and manutacturer is thus assured of that precise matching of fish unit th the designated tube so necessary for superior atio quality.

The "Yollow Spot"
Tesignater the sangamo Type "A" dudio Transfinmer used for castade amplification. This trinsforiner has the tiattest aurse imost uniform umplificaition ai all audible prequeneita) avallable in ang transormer at the present time. fouk for the transtormer with the fellow spot.
"Light Blue"
The Light Blue spot identitles the sangamo in-put Transiormer or push-pull amplitication. Has high inductance primary to SH frequencies amplification on low requencies. Accurately ilivided abcindary fives simost identia) frequency characteristic curre known by the iight-blue spot. "Dark Blue"
Output Transiormer for pushwull aitiplitier having ath imbeduace to match UX-L10, (CX. 310) and (18 -il2, (18-i12) tubes. Masimum transference of energy ar low end of the musical scale.

Also makers of sangamo Mira biondensers. moulded in
Bakelite-macie nocurate and stay accurate.
SANGAMO ELECTRIC CO.
SPRINGFIELD. HLLINOIS.

BOUND VOLUME XI of Q S T

WE have now a limited number of copies of Bound Volume XI of QST. Vol. XI comprises the entire 1927 series of QST. This volume is made up of two books or sections, each containing six issues of QST. This volume is handsomely bound in red cloth and with gold imprint.
The complete volume is priced at $\$ 5.00$, postpaid.
Better act quickly-only a few copies available.

Q S T
1711 Park St.
Hartford, Ct.

2xs 2xy 2ya 2\%a \#wid 3ach 3afw 3anh 3xu 3aua 3add 3bph 3gt 3hf 4acer 4abj 4abz 4ack 4acs 4acv 4 adg 4anh 4ani 4bl 4bu 4efv 4eat $4 f \mathrm{ft} 4 \mathrm{gg} 4 \mathrm{hx} 4 \mathrm{jr}$ $4 \mathrm{mi} 4 \mathrm{nh} 4 \mathrm{pj} 4 q \mathrm{q} 4 \mathrm{qz} 4 \mathrm{ta} 4$ to $4 u \mathrm{i} 4 \mathrm{wn} 4 \mathrm{vo}$ Eiacl 5adn Gadv Бafw 5an 5anm ถanw Japo 5aq 5ari 5ase 5atn Бawu 反axq Saye 5ck 5fh 5jk हilv Finc Goc Erq 5ry 5te 5uv Kwf byb 6aaz ligl 6dly 6ipu 6hm 6xi 7aa 7aw 7dk Tek fti 8awo 8axx 8axz Sayu 8bjb Sbse 8htr 8byt 8cau 8ccs 8ccw Scjw 8cpp 8dal 8dbc 8dcm 8ddz 8djg 8dmf 8dpo 8dsy sef sid 8ab 8it 8pl Sto Yagg 9aio 9ajp 9baz 9bbw 9bgq 9bhz 9bls 9bob 9bqe 9buh 9cev 9cf 9cfg 9cia 9civ 9crd 9ctz 9cvd 9ezh 9dcl 9dfg 9drm Gefq 9ehr Geih Gejo 9esm 9ewn 9fs 91p 9pd Gra 9ue 9yd.
KUJX, S.S. Liberty Bell. e/o R. J. Cotton 1795 Iincoln Ave., St. I'aul, Minn. Genoa, Italy.
(20-meters)
1ated lbsu lbux zff 2bum 3hf Sapx 3cec fo-a3z fo-a4f.

(4i)-meters)

lac 1 bw 1 kh 1 kw llc 1 mv 1 wl lWving lazo laex lale latj lavy bhs lhat 1 com sol 2rs 2tp 2vd 2adl 2agr 2alu 2aqo \%ats Zbch 2bdc 2bir 2bsl 2aty 3cuq geuz 3ag 3ec 3dq 3nr 3qe 8wm 3ahl 3aib
 4acz 5ayl 8in 8vx 8air 8awu 8axx 8axz 8bni 8bpa 8brh 8ecw Sepe 8dne Sdon Thi 9abu 9ban 9dod aq-bdl ab-4eb eth-4cd eb-4cm elf-4dd eb-4di eb-4hp eb-4kb eb-4ww er-1ro ee-1rv cd-7bb ed-7bd ed-Tfr ed-7hj ed-7lk ex-7md ed-ing eeeear28 ef-8bw ef-8ct ef-8fD ef-8gi ff-8rcz ef-8flm ef-8mmp ef-R̄nkx ef-8orm ef-8pns eg-2gf eg-2nh eg-5br eg-5za ek-5jw eg-5̈sh eg-5̊k eq-5uw eq-5wq ex-5zy eg-6bb ex-bhp ex-eg-6iv ex-6vp eg-6wk ei-1vr pi-1yy ck-4fv ek-4hf ek-4ia ek-4nd ek-490 ek-4rn ek-4up ek-4vr eri-0fr en-0.jgb en-0gg en-0qr en-0zf en-lag ep-lai ep-lbx ep- Sam ew-AB nc-1 $\boldsymbol{A} d$ nc-1ar ne-2be ne-2bg ne-2ea ab-1ac sb-1bg sb-1ib su-10a.

Genoa, Italy to Gibraltar (via Leghorn and Naples) (20-meters)
Irw laz lwy ixp lafd laqt lavi lawe laxa 2ch Zff gtp 2afr 2awa ghbx 2bhf ebkn Shf \%ii gaib Scee 3ofg 4nh Sxe 8abx Sbto Scnz fo-u3z fo-a4f des.
(41)-meters)
lag lbw ifs lgw lhg iid lim ikh 11 x 1mv lom lub lav 1 kc lro 1 ry lwl ladm lafl laje lajx lanx laqo lary lask lasu thea lbhs ibls lbad lbas lbwf lcpe 2az 2bg 2gy 2he 2kx 2oe Sam 2tD 2um 2uo 2 ve 2 vd Eves 2wy 2adl 2alu 2aoj Earm 2ava 2awu 2hav 2bdh 2bgz 2bit Obis 2box 2buo 2aaz gemu 2esy 2cua 2cwm 3ra 3ec 3xp 3tq 3abo Race 3and 3afx 3ahp 3ajh 3anb 3anh 3ani 3apn 3avk 3ht 3ld 3pf 3ais 3aps 3bkt 3chh 3 cin 4 bi 4 bl 4 ci 4 ck 4 cy fei
 fitd 4ud 4ut 4 vl 4 wm 4wo $4 a b z$ biq öjy 5ke 5kl bua brg swe saak baso bafe bahm sain bapi baqt "haw inatf 5yav fasm fryvi fhxi Tith she she 8jq 8pl 8ab 8rh 8wt szm 8ahu 8apd 8auc sawu 8ryn Shev 8bou 8brh 8bti Sbz! 8cau Xrbf scft sichk 8eja Seno \&ens 8ero 8exd 8ezr Sdeg 8dhu 8dnf 8dam 8ize 9bn 9ez 0jc 9ld 9ml 9mn 9xi 9acu 9adg 9aty 9ahq 9aqk 9ara 9ark 9arn 9avx 9baf 9bhz 9bir 9bkl 9bul Scev 9ejw gene 9erd 9cst 9cue 9cwa 9ezt 9dek 9dex Gdkc 9dma 9dml 9ipv 9dqn 9dqu 9dra 9drj 9dws Sehm 9eck 9elk seme Seay 9etf 9ewp Gezz aq-1mdz ef-8eo ef-8xo ef-8toy ef-8ynb ek-4xr ek-4uak ep-3fz ne-1ar ne-2be ne-\%ed ne-ỉay nc-3bm ne-zen oa-3vp oz-1at oz-1fj oz-3mu.

Calls heard between ivibralta and Azores

 (20-meters)lbr led lex lez ifl 1 fs lgw lia lif 1 jg Imx lnf
 lahx lajo lame iaqt lask iasr laxa ladv lbhm lbta lbyv lckk 1cmp lepj 1cuq Eck 2vi 2aef 2adw 2afx 2age 2agn "alw 2amx 2aoo 2awf 2azk \#bac 2had 2bal 2baz 2bgc 2bha 2bsc Ecaj 2cta 3jm 3ke

 Saly Xahe sadg sarx 8ayu xbde sbdp then sbki Xebi xift sejm selp geos 8epf Sepx Sevj Seva Sezr 8dhp 8bjv 8dld 8dme ôdon 8dsi 9gs 9hm 9pu 9xh 9aid 9alz 9bhb 9hmx 9bpm 9hqy 9che 9cjw 9eat 9dbj 9dhp 9dng 9dpw 9ecz 9ekw 9eoh eb-4au eb-4ch eb-4rs ef-8xo ex-5yx eg-6jk fo-a3z ne-2al ne-2bg nc-3bt nc-3qs nc-9bz nm-9a np-4sa ois, wnp.

(40-meters)

$1 . a c$ lbw lby 1 ei lifl 1 gw lid 1 im lja 1 ks Ifx 1mv loh lom lal 1 rf 1rD iwl lwv lafl lahx lajy lanz laqp larx lary lasy lata latr laus lawd lbbe 1bbn lbdq lbea lbhs lbkv lbls lbnm lbqd ibqs lbwm

WANT A GOOD GRID LEAK?

THE RESEARCH WORKER is a monthly publication of the

AEROVOX
Wireless Corporation devoted to the propacation of technical information. It may not be as useful as QST, fur it isn't as big: but we know you'll get lots of good dope out of it. Send a QSL card or letter and we'll put you on the mailing list for the next issue. If you like it, tell us. also tell us what subjects you would like covered in future issues.

PYROHM

Vitreous enamelled resistors are really "Built Better". In Laboratory tests we have frequently overloaded them until they reached temperatures of $800^{\circ}-900^{\circ}$ without damaging them, although such usage is by no means recommended. If you want to end your resistor troubles, buy Pyrohms.

A FEW PRICES

Tupe Resistance Wiatts Price

998	30,000**	900
998	6.000*	200

$996 \quad 30,000 \quad 100 \quad 2.20$
$99610.000^{*} \quad 100 \quad 1.70$
$994-20.000^{*}$ * $40 \quad 2.05$

994	10.000^{*}	$\$ 0$	1.35
992	15.000	90	1.00

$992 \quad 15,000 \quad 20 \quad 1.00$ Also many other sizes for plate, grid, and eliminator work. Send for list. If your dealer can't supply you, order direct.

EROVOX
 Prices on application.
 *Center **Trpped in
 tapped. thirds.

70 Washington St., Brooklyn, N. Y.

Our new 1928 catalog is jammed full of the newest offerings of nationally known radio parts, kits, sets. accessories, table and console cabinets. catalog. Alsocontains Short Wave Sectionshowing the finest recelving and transmitting apparatus. Write for this blg eicatalog-and for our contidential discount sheet-but write immediately. SHURE RADIO CO., 349H West Madison St., Chicago, III.

RADIO THEORY AND OPERATING

3rd Edition. Kevised-8x6 Pages-ino Illustrations-Price \$3.50 By Mary Texanna Loomis
President Loomis Kadio College: Member Institute of
America's standard radio book. Used by Dept. of Commerce, 1. S. Hadio Schools, practically all Radio schools throughout U. S. and Canada, Unirersities, Colleges and High Schools. Buy of your bookstore or order direct. Postage paid.

Dept. T. 405 gth St.,

Power Transformers

Guaranteed-Mounted-Complete
Can supply 2 and 3 phase transiormers in addition to the following single phase.
-KW. ziniti-2500 \vee each side $\$ 35.00$
100 watt $350-550$ each side \cdot............................... 10.00

nivi) \because :

200

If fil. winding is desired on above plate transformers add $\$ 2.00$.
gCES F. GREBEN
1927 S. Peoria St., Pilsen Station, Chicago, Ill.

TRANSMITTING CONDENSERS

FLECHTHEIM SUPERIOR CONDENSERS

JUST OUT--NEW 2,500 VOLT DC CONTINUOUS OPERATING CONDENSERS.

Tested at 5,000 volts DC. Equipped with heavy porcelain insulators.

Now ready for immediate delivery.
The finest amature transmitting condensers made; ALSO, complete line of BY-PASS and FILTER CONDENSERS, for use in radio receivers and eliminators. WRITE FOR CATALOG.

A. M. FLECHTHEIM \& CO., Inc., Dept, QT, 136 Liberty St., New York

RARE BARGAINS OM＇S

New Transmitting Apparatus at New Low Prices

AERO or REL 20 \＆ 40 meter and 40 － 80 meter trans－$\$ 8.85$ NFW THORDARSON TRANSORMFR
w 3．1．4
NEW THORDA RSON TRANSFGRMEIRS
U Uolt filament transf＇m＇r for UV LUSA And UX

sive watt plate transiormer， 1500 and
orner side of venter tan，special for UX 502 tube
JEWELL $\hat{3}$ in．fush mounting AC and DC voit－\＄5． 95
o Heters，seate resdings up to

UARUWFLL NFW TYPE－TRANSMIT＇G CONDENSERS「ybe T ixs． 6000 voit ．（NOIS MFS
TYpe T 194，som volt ．0003．M MO $\}$
Type ！ 47 H ，ino volt .00045 MFO ，
＇ype $104 \mathrm{~B}, 3000$ volt 00025 MFD
43.85
$G R I D$ Large General Electric 5000 onm $\$ 1.45$
LEAKS＂، Ward－Leonard Gent．tan 5 wio ohm
Ward－Leonard Gent，tan l50n ohm Girespent lavite wpecial 5000 ohm leak dlen Bradley variable transmitting leak is． 5 FIXED CONDENSERS
SANGAMO Large 0）mff． 500 voit
．98．5050
ondensers bur mfd．， 5000 volt ：
DUBILIER ofre；ibion yoit

 Gondensers 3mfd 20.0 volt amfd 2000 voit

iflechtheim fiter enndensers are suaranteer against break down，Biown conciensers will be oromptiy replaced


```
        RADIO 2MA CO.
168 Washington St., New York
```


Oscillating Crystals

Prices for grinding crystals at random frequencies in the various amateur bands are as follows：

150 METER BAND
So METER BAND
813.00 $\$ 22.00$
42 METER BAND \＄38．00
For harmonic use mention in which band you desire to operate．We will state frequency of each crystal．
Crystals ground to your sipecified frequency in the amateur bands add five，eight and ten dollars respect－ ively to the above prices．
Quotations on other sizes given at your request．
Immediate Delivery．
All Woris Guaranteed．

Precision Crystal Service
 3591 Springle ave． DETROIT，MICH．

RADIO SCHOOL

Send for Catalogue
MASSACHUSETTS RADIO and TELEGRAPH SCHOOL
18 Boylston St．Boston，Mass．

NEW WESTERN ELECTRIC，NAYY TRANSMITTING and RECEIVING SET 10 Watt， 1 Reeeirer and Transmitter CW 1055； 1 Se No． T ． 1 Breast plate inicronhone： 1 A Helmet with 194 iv．Head． phones： 1 Westinghouse Onnamator $1 \dot{z}-350$ rolts， D ）； f CW 1057 Seaplane Tinceruhone cuntrol bos and cibles with eim－ neefors．今er equinoed with $3 \vee T 1$ tuhes thed 1 w 105
 kiddn Transimuting anil kectiring material in it s．Serd 2 c stamn ior nur new and latest redured price list．Shit amywhere． WEIL＇S CURIOSITY SHDP， 20 South 2nd 8t．，Philadel． phia，Pa．
lemt lepj 2bg ？bt 2cw ？di adn adr 2dy zff 2ip Egd
 2acd zacy 2aed sacf 2air 2aix 2ags orhb Eahi zain
 2bbx 2bek 2bdo 2bdp 2bfv Zbgb 2bgt 2bia Obif
 2ext zeyx 3ce 3iq 3ee 3xt 3nt 3，jn 3kt 3nf 3ob $3 p \mathrm{f} 3 \mathrm{al} 3 \mathrm{rb}$ 8sh $3 \mathrm{sj} 3 \mathrm{~s} \mathrm{\%} 3 \mathrm{qv} 3 \mathrm{tq}$ Sua 3 wm Sabo Batj Baih Sajh Bamx 3anc Bronh Bana Bedu aat tek 4 db 4 dt try 4 ha 4 hh 4 hy 4 ky 4oh 4pp 4 qy 4si 4 sq 4to 4vi 4aba 4abz 4adg 5ay 5as 5eh 5 kg once 5rg bta buk 5yb 5yw burk 5ahi 5aci 5arlp 5afo 5ajh 5amo 5ank 5am 5aqe Sagf 5ati Suiuu 5awu 5eyl bec．
 tichv $6 c y x$ Gdbh bithu fidmd 6 dsx sbm sdg shd छib
 suy Sagk sagw sayy sahm sair sajt Sala faln xamh 8upd 8atw 8avp sayw zben shev sbff shas shhh 8bhz Shih sbli zhln shon Sbrh Shub shyw sebr seca

 9ic 9kd 9ld 9nr Yacu 9agd 9ahj 9ainm 乌aid 9ake Gaia Galq Gamm 9anq 3anf 9ank Tanv ！aar ？3ara 9ayi 9bar 9ham ohan gheq 9het 9heu 0bga 9bjo 9bkl 9bkz 9bov 9bpq 9buy 9bwi 9bwk 9bxo 9bxr Geat Geev Scdi Scej Sefg Ocft Scix Sejw Snkq ！ekz， Seni Senh Berd 9erj Sesb 9evd gevn Sewa gewa areh sdau gidav Gdbt．9dek grex gdfw grke sdng 9inv 9dpi 9dpv gdqu gduh 9dwe geta gefw Gegu 3ehr gejo geln geac Fead 9era Getk getv gevu eb－4ic ci－8bf ef－8eo ei－8er－p－Exo ei－大rpu ei－img ew－h2 ne－iap nc－lar nc－ibh nc－2bg ne－zhe nc－iay ros－ihm ne－iel nmXCF oz－1at ez－1fe oz－zac．

Francis McCown，Park Terrace a，Santurce，
aq－11m ex－earlo ed－7tr st－4ar eb－4an eh－4be eb－4ck eb－4co eb－4da eb－di eb－4cb fb－4ft eh－4tm ph－pi ef－xen ef－xorm of－issy ef－xrrp ef－xmn ef－Rhe of－Xhip
 cf－हudi ef－yee ef－8est ef－हfi ef－xoap ef－8cc ef－xynh

 ev－Zec es－2xy ex－2xy ex－2nh ex－2ya ex－2ir er－zuy ex－2nm ex－2kz cz－5hd ex－5ijw ex－5mi er－5wa ez－5lf es－5ma es－5uw rin－5ma ex－5xa ex－5wp ex－6wi 世木－6rb eN－6wl \＆－6dr ce－6u0 er－6dp ex－6da ex－brw ex－buh
 ei－1bk ei－1rk i－lrm ei－ifp ci－1mg ci－lx ek－4xc
 ep－1aa ep－lae ep－lui ep－las ep－lbe rop－ibk ian－fam ep－siz es－1co ew－ab ow－h2 ne－xqe nh－tẹ nm－xcll nm－xe5l nm－xc55 nm－xc56 nm－xe52 nч－Gry ur－2fg ŏ－2dy oa－2rc oa－2ij oa－2yd oa－2yi of－2y oa－3jk oн－3kr
 ，a－ sh－laq ab－1ar sh－jaw sh－1ax sb－1be sb－1he sh－ibo sh－1bl sb－1br sh－lcj sh－1id sb－\％ag sh－\％al sh－2id sb－iga se－2as se－Bac su－loa su－1br su－2ak siv－lxe fornerv mi－hval nn－nicl vis pot stauk sas wes wnbt pkp bote eam ocd，rii ors snm．
np－4AAN，R．C．Spenceley，St．Thomas．Virgin Islands （Heard from Jan．it to Jan．81，192＊）
lago lafl laie tamd lam，j laqp lckp icmr ldi low lid lia imo inf loh lom luy lud 2abt Zacr 2act Zafv 2axes Eaiw Zalu Sama ganh guvb gavg 2swu 2bad 2bcb 2bda 2bew ？bir 2box 2bsc 2hih
 2wy 2za 3abn 3aib 3ala＂janh 3amb 3au 3bge 3bme
 tack faen fact facy 4 bb thn tai fac thx 4 jod

 Syf gwf 5yb gyw bae badk bagr bags bevy feak
 ©wu 7adb 7bb Tdfr 7ame Tmh Tiz Sati Saju sakz saly Egoi Saxk sax：Sben sbia Sbam sbrh shrs xbuh Sces Sedf Sche Sejw Sexi sem 8nem serp serq Edce siod xidpo 8eq 8gl the wuj 8zhe Gbau gafb qake gavy Oari Qaxf 9axz 9baf 9bbr gbbt Obe Gber Gbf ghbs 9hnb Ycem 9cej Gcfn 9eis 9erd 9cwa 9ere Seyo gera Odex Gdma 9doe Ydol 9ds पdu 9dxk 9dy geeo qefk 9efo Gehn 9ehr geld 9emh 9emp gepd 9etq 9evip gez 9hb
 nq－5by co－bain kgas wyw．

S．B．Prainer，Jr．，\＆Shorncliffe Ave．Toronto 5， Ontario．Canada
（Heard between Jun．2g ts Jan．81）
4abd 4aci tack tact famd tapx thb ton teo 4ey Ger 4ei 4 hx fiv 4 jj 4 jd 4 kw 4 lk inf 40 m 4on 4 pm 4 pu
 5aim כaji 5ala 5um 5api 5aq 5aqw 5ark 5aw 5aut

To Our Readers Who Are Not A. R. R. L. Members

Wouldn't you like to become a nember of the American Radio Relay League? We need you in this big organization of radio amateurs, the only amateur association that does things From your reading of QST you have gained a knowledge of the nature of the League and what it does, and you have read its purposes as set forth on page 6 of every issue We would like to have you become a full-fledged member and add your strength to ours in the things we are undertaking for Amateur Radio, and incidentally you will have the membership edition of QST delivered at your door each month A convenient application form is printed below-clip it out and mail it today.

1928
American Radio Relay League,
Hartford, Conn., U. S. A.
Being genuinely interested in Amateur Radio, I hereby apply for membership in the American Radio Relay League, and enclose $\$ 2.50$ ($\$ 3$ in foreign countries) in payment of one year's dues. This entitles me to receive $Q S T$ for the same period. Please
begin my subscription with the ... issue. Mail my Certificate of Membership and send QST to the following name and address.

Station call, if any
Grade Operator's license, if any
Radio Clubs of which a member
Do you know a friend who is also interested in Amateur Radio, whose name you
might give us so we may send him a sample copy of QST?

Where are your January, February and March copies of QST?

Certainly you need a binder for your 1928 copies as issued-

A binder will keep your QSTs always together and protect them for future use. And it's a good-looking binder, too.

OST

1711 Park St., Hartford, Conn.
 5ik 5oa 5rh :ird 5ry Stp 5uk 5ul 5uw 5we 5zas bacs bad Gafs Gaji Gakm bakw balz bamn hand Gasi Gatu bauk bav bavh buvz bibch bbdt 6bgh bibig obil bbjl shmo sbpe bibre fibva fibwt fibxi bibxu 6byg Gbzf 6bzs bebe bcel biddw beey Gebt 6ctx bety 6ioj geut bevu beyh 6cyx 6dev Gdeu bdfa 6dfs 6dfu 3dhs Bdhu 6djw Gdjx Eidkt 6dli bdml 6dnh biog 6dns Bdpo 6isl fitm bee 6fs 6iz 6 ym 6 hm bho 6jz 6oy Gue 6wn 7acb Tafm 7ajh 7akw 7atv ics Tex Tel 7fh 7gr Tip 7 mo $70 k$ ne-lad ne-lap ne-1bi ne-1br ne-1da ne-3az ne-3el ne-3he ne-8ce ne-3ni ne-3ry ne-4ac ne-4ar ne-4ee ne4ep ne-4il ne-4hm ne-4hp ne-4et ne-bep ne-5er no-5gt nm-1g nm-1r nm-23a nm-xa nm-9a nn-1nic np-494n nu-2eu nc-6cx nr-1.fg nr-2ags nr-2fg ns-lfmh nu-jj $n x-1 x)$ pb-4ib μ - 42 eh-pl ef-xbs ef-xce fi-8ct tef-大fd ef-xfx ak-iba ex-írh ei-ldy cp-laf ep-iag ch-1bk m-1bl ep-3am ex-ldy ex-1fp fora3v ab-1a0 sh-18g sh-1aw sb-1bg sh-1ca su-1cb sb-1cm sb-led sb-1id exi-2gg sh-2ar sh-2ax sb-2jk ss-3ac se-18i sb-2as sh-3bd ss-9c os-2dy os-3jk os-Swm wi-icw oh-biavl oh-fidki oz-3ar ai-2kx ham cad ghk gly iri ken vad wiw wive wwf wigy xom.

West Gulf Division Convention

THE HAMS in the West Gulf Division are widely scattered over a large territory, and holding a divisional convention isn't nearly so easy or simple as in some of the sections more densely populated with hams. However, for all that they lack in numbers they more than make up in enthusiasm and real old time ham spirit. This convention, sponsored by the University of Oklahoma chapter of Alpha Sigma Delta, national radio fraternity of hams at college, Norman, will go down in history as one of the livest and most successful get-togethers ever held anywhere.

Early on the morning of Friday, February 10th, the gang began to gather at the Post Office in Oklahoma City in anticipation of license exams. Many could be seen practicing up on circuit diagrams, wondering the meanner of QSC, or getting a last minute cram of questions and answers, but all for no good, for it seems that the R. I. got his dates mixed up or something, and failed to arrive. However, that didn't worry the gang long, for the next event was a big sight seeing trip in special busses. The point of greatest interest to most of the gang was perhaps the carrier current system, repeaters, etc., of the Southwestern Bell Telephone Co., who very kindly conducted us through the plant and explained how several conversations in each direction were carried on over a single pair of wires, which also served to operate an autoniatic printing telegraph ior news and market bulletins. It seems that they have a fool-proof "anti-snaffing" system, for (as was unintentionally demonstrated when someone carefully removed a tube from its socket) the least disturbance of the works causes a loud gong to ring continuously until order is restored. Hi!

Other places visited included KFJF, the $1-\mathrm{Kw}$ station with ten kilowatt modulation, $5 Q L, 5 A F X, 5 A P G, 5 Z A V$, and the highline carrier current phone system of the O. G. \& E. Co., with which we were permitted to "work" similar stations over the state. The rest of the meetings were held in the Engineering Buildings of the University at Norman the gang all going to Norman in a body Friday afternoon, on a special interurban and in autos.

Triple Range A.C. Voltmeter

The Jewell triple range A. C. voltmeter, Pattern No. 77, presents the radio amateur and engineer with an instrument which will be found very convenient in checking and testing in connection with the new A.C. operated sets and accessories.

Pattern No. 77-

This instrument has a combination range of $0-3-15-150$ volts. The scale is silver etched with black characters and the movement is mounted in a metal case on a bakelite base. Convenient means are provided for table or wall mounting, or the instrument may be used in portable work, for which it was especially designed.

Wirite for Special Circular No. 1145.

Jewell Electrical Instrument Co.

1650 Walnut St., Chicago

```
"28 YEARS MAKING GOOD INSTRUMENTS"
```


QST Oscillating Crystals

New Prices Effective April First, 1928 AMATEUK BANDS
Pricer for arinding crystals at randiom ireguencies which tall within the bands deserthed helow are as follows

1715 Kc s. to 1825 Kes . si $5,0 \mathrm{Ot}$.
1×26 Krs, to 2000 Kirs. \$13:00J.

$3: 351 \mathrm{Kcx}$ to $4000 \mathrm{~K} \cdot \mathrm{~s}$. \$22.00.
Tout Kes. to 7310 Krs. $\$ 10.00$.
The frequency of the crystal will be pilven arcurate to better than a lenth of one per-cent. Immediate dellieries. BROADCAST BAND
Prices for grinding crystals to your assigned irequency armurate
 mounted. Three day shipment. and all erystals suarautceed. This crystal is our usual toWiER type.
Crystals ground to any frequency netween 40) arid 10.000 Kice. Let us quote prices for z̈ur particular reguirement.

SCIENTIFIC RADIO SERVICE
"THE CRYSTAL SPECIALISTS"
P.O.Box 86 Dept. V Mount Rainier, Maryland

Become An Expert RADIO OPERATOR

Be the next World Champion! The Candler System of Training in High-Speed Telegraphing shows how. Theo. McElrov, World's Champion Radio Operator, endorses no other system. Rexd what he says-"At the Pageant of Progress. Chicago, I copied inf words per minute for 5 minutes, establishing a new radio record, which i still hold. I owe my Skill, Speed and Steady Nerve both in sending and receiving to The Candler System." What this system has done for McElroy and thousands of others-it will do for Fov.
FREE Booklet explains system fully. Send for it TO-DAY. A post card will do. Send Now. THE CANDLER SYSTEM CO., Dept. AR 6343 So. Kedzie Ave.,

CHICAGỚ. ILL.

Custom Set Builders

Building, as you do, a receiving set for the buyer who insists upon the hest in radio, ynu naturally seek the very latest in design and finest construction in parts-at a price that permits a profit. Just as Dongan has albays devoted its entire facilities to the manufacturers of sets, now Dongan recognizes the Custom Set Builder as a distinct factor in the radio industry.

Establish a Direct Source on Fine Parts
You can avail yourself of special discounts on audio transformers, B-Eliminator transformers, chokes and units, A C transformers and units, power amplifier transformers, etc. -all approved parts designed in one of the worid's finest radio parts laboratories and manufactured in one of the most modern and well-equipped plants.
For converting D) C sets to A Cmor for huilding new sets-write for our Custom Builder's proposition. Your source is direct and satisfaction guaranteed.
Find out about this at once. You can improve the quality of your work and receive added profit.

Transformer Headquarters for Set Manufacturers
In designing your new set, take advantage of the resfarch work on power transformers developed in the Dongan laboratories. Every feature of approved design available.
Dongan Electric Manufacturing Co.
2999-3001 Franklin St., Detroit, Mich.

How to be a commercial Radio Operator

A uractical book that should enable anyone of \& \&erago jutelligence (o) boss the Government's theorestical examination riven to applicants lor a Gommercial Radio Operator's I.icense.

JUST OUT
 Nilson and Hornung's
 PRACTICAL RADIO TELEGRAPHY
 380 pages. $5 \times 8,223$ illustrations $\$ 3,00$ net, pastpaid

The book covers in detail the theory and oractical operation of etery type of modern, $192 \dot{*}$, cummeriobl are spark, atod Vanulum twhe transmitter. It furniskes complete ista on sommereial vacusm tube receivers. It covers ererything from elementary elecEricity o the practical operation of radin compasses.

Some outstanding points

1. Very little mathematics:
2. Assumes the priur knowledge of eloetricity :
S. Gouers evirything in commereial radio in detail:
3. Gurnplete list nit self-txamination questions:
4. Simple, yot rigidly accurate:
(i. Bomplete wiring diagrams天iven.
Sce the book before Foun puraissser. Fill in und mail just this coupon.

McGRAW-HILL FREE EXAMINATION COUPON

```
McGraw-Hill Rook Cu., Inc.,
30) Sewonth Avenue.
New York, N. Y.
    Ton may send me Nilson and Hornung's PRAC-
TICAL RAHIO TELEGRAPHY. $3.00 net. postpaid.
1. will either return the bowk, postage prepaid, in 10
days, or remit for it at that time.
Name
Si. & No.
City
State
Name of Employer
Official Position
(Hooks sent on anproval in the U.S. and Canada oniy)


Of course Acme builds them. Acme products are nationally known.
Furnish us with your blue prints and specifications for prices.
We invite your inquiries. Member R.M.A.
The Acme Electric \& Mfg. Co.
Established in 19 ip
1653 Rockwell Ave., Cleveland, Ohio

By this time everyone was well acquainted, and the first formal meeting, Friday night, was presided over hy division director Frank M. Corlett, and was primarily a traffic meeting. Louis Falconi, \(5 \% \mathrm{~A}\), the first Hoover Cup winner, told us how traffic was hanilled in the old spark days. Lyman Edwards, 5F.J and R.M. of Okla., gave several humorous anecdotes of his first trip as a "lid" commercial operator on the Great Lakes. All the SCMs present then gave brief talks on the organization of the Communications Department, particularly in their sections.

Saturday morning was given over entirely to contests and stunts, of which che Oklahoma City "Oklahoman" says "the pienic part of the affair included contests to determine the fastest undresser, champion static spitter, biggest and worst liar, and champion permanent waver!" 5ZAV won the prize for best explanation of the action of a crystal detector, based on his extensive independent research and difficult mathernatical derivations, and entirely unbiased by opinions of other famous scientists.

The main technical meeting Saturday afternoon included talks by Prof. F. C. Tappan and Prof. O. W. Walter of the Electrical Engineering department, Mr. Roy Allen who told of new R.C.A. tube developments; 5ZAV, 5APG, 5AKN, 5AJ, and 5ZA.

The banquet Saturday night opened and closed with rousing cheers for Alpha Sigma Delta, the organization that made this wonderful convention a reality. Prizes were awarded by \(5 A Q Q\) to all contest winners, several hundred dollars worth of real ham apparatus having been contributed by QST advertisers. The grand prize, a \(\overline{0} X\) 852 watter bought and contributed by Alpha Sigma Delta, was won by 5ANK of Dallas. Happy boy!
\[
\text { -Pat Shultz, } 5 A Q Q-5 A O C \text {. }
\]

\section*{}

A letter headed "A Hot One" appeared in the correspondence columns of QST for April, 1927. This letter has been the cause of an undue amount of bitter feeling. Such is entirely ont of place in any amateur game. Moreover, further consideration discloses the letter to have been too personal in its wording; also lacking in consideration for possible reception conditions at the stations concerned, which conditions might well have accounted for the contretemps as related. We regret the publication of the letter.


\section*{HAM-ADS}

\section*{NOTICE}

The "Ham Ad" Jeparment is comiucted strictly an a service to the members of the American Radio Relay ruague, and advertisements will be aucepted under the following conditions.
(1) "Ham Ad', gdvertising will be acrepted oniy from wembers of the dmerican Radio Relay League. (i) The signature of the advertisement must be the mane of the individual member or his oftintally assignesi call.
(3) Onlv one advertisement from an individual can be nccepted for ally issue of QST, and the advertisement must not exceed loo words.
(4) Adrertising shall be of a natire of interest to radio auateurs or experimenters in their pursuance of the art.
(5) in display of any rharacter will he acerited. nur can any typographical arrangement, such as all or part capital letters, be used which would tend to make ote advertisement itand out from the nthers.
(i) The "Ham Ad" rate is Tic per word. kemittance for full amount wust atoumpany copy.

Closing date: the 25 th or second month precedink publication date.

THE life blood of your set-plate nower. Powerful permanent, infinit ly superior to dry cells, lead-acid, Bs, B eliminators, Trouble-frec, rugged, abuse proof, that's an Eidison Steel-Alkaline Storage, B-battery. Upset electrically welded pure nickel connectors insure absolute quiet. Lithium-Potassium solution (that's no fye). Complete. knock-down kits, paris, chargers. Glass tubes, shock-proof jars, peppy elements, pure nickel, anything you need. No, 12 solid copper enameled permanently perfect aerial wire \(\$ 1.00,100 \mathrm{ft}\). Silicon stepl laminations for that transformer 15 c lb . Details, full price list. Frank Murphy, Radio 8̇ML, 4837 Rockwood Kd., Cleveland, Uhio.
HAWLEY Eidison element battery und parts standard for over five years. Luok at our patent pending connec-tor-no thin wire to drop off-ontains 20 times more metal than regularly used. Heavy shock proof cells, fibre holders, etc. Everything for a rapid-fire " H " supply. Complete sasembled 100 volt " B " \(\$ 10.00\). Knockdown kits et still lower prices. Chargers that will charge in series un to 360 volts \({ }^{2} 2.75\) to \(\$ 4.00\). Trickle B Charger for 90 to 150 volt " \(B\) " \(\$ 3.75\). Special transmitter " B " Gatteries up to \(\mathbf{6 , 0 0 0}\) mili-amp capacity, any voltage Write for interesting literature, testimonials, ofe B. Hawley Smith. 360 Washington Ave., Danbury, Bonn.
ORS-5JY Jones. Gld timer. Quit during war. Found sheed 5 per only. In three days could do 15 , now 25 plus. Says Radio Shortkut best method seen for beginners and increasing speed. Advanced hams should try it. Siee display ad this magazine. C. K. Dodge, Mamaroneek. N. \(\underset{y}{ }\).
KNOCKDOWN transformers with primaries anly, bu watt \(\$ 2.50,100\) watt \(\$ 3.00\). Transformers 650-71\% voits \(\$ 5.50\); 550-5 volts \(\$ 4.00\) all midtapped adjustable core chokes 30 to 100 henry 160 M.A. \(\$ 5.00\). All parts for Raytheon eliminator \(\$ 14.75\). Chokes, \(30 \mathrm{H}, 60 \mathrm{M} . \mathrm{A}\). \$2.00. \(30 H .100\) M.A. \(\$ 3.50,3 H, 2000\) M.A. \$\%.25. Cores only ge.u0. Tobe 1000 vilt 4 microfarad condensers \(\$ 2.75\). Write for further information and complete lists of material. M. Leitch, Park Drive, W. Orange, N. J.

TWO UX216B Kenotrons each, \$4.50, two UV217 Kenotrons each \(\$ 9.00\). two UV202 Radiotrons each \(\$ 2.50\), one 75 watt \(71 / 2\) volt filament transformer \(\$ 4.50\), four UC490 1 mfd. filter condensers 1750 volt. each \(\$ 2.00\). i K.C.A. 60 Henry 300 mills filter choke \(\$ \mathbf{\$} .00\), one Briges 6 volt A battery eharyer (5 amp vibrating type) \$5.00. Edwin R. Garlson, Waterman. Ill.

OMNIGRAPHS, Teleplexes, transmitters, receivers, chokes, meters, transformers, 50 watters, S tubes, motor senerators, portable loop receivers. Vibroplexes bought, sold and exchanged. I. J. Rvan, Hannibal, Mo. 9CNS.

EDISON element rechargeable " \(B\) " batteries deliver pure direct current of low internal resistance. Rechargeable
hundreds of times. 100 volt, 3000 milli-ampere battery complete in metal case, wired and assembled \(\$ 12.50\). 140 volt, \(\$ 16.00\). 100 volt 1500 milli-ampere cumplete kit \(\$ 8.00\). 140 volt \(\$ 11.00 .180\) volt \(\$ 14.00\). Complete " \(B\) " charger \(\$ 2.00\). 'Type " \(A\) " elements with welded connector 5c per pair. Type 3-G, ес. Type \(0-\mathrm{G}, 9 \mathrm{c}\), 3000 milli-ampere. Erices include separators, Potashlithium for 5 lbs . Edison electrolyte \(\times 5 \mathrm{c}\). Edison " \(A\) " batteries 6 volt, \(112^{1 / 2}\) ampere, \(\mathbb{Z} 16.00\). Shipped fully charged. J. Zied. 834 North Randolph St., Phila., P'a. QSL cards-unstamped \(\$ 1.00\) per hundred, Government cards \(\$ 1.85\). Prompt service \(9 \mathrm{BEU}, 9032\) Windom Ave., St. John's Station. St. Louis, Missouri.
HARGAIN famous DeForest \(S\) transmitting tubex, excellent oscillators and modulators filament 10 volts plate 500 , price \(\$ 4.00\). New. Include postage. Roger Ayers, 5i Orient Way, Rutherford, N. J.
ESCO 110-2 20 volt, zingle phase motor: 1500 volt. 600 watt generator; on standard sub base, \$30, F.O.B. Pontiac, Illinois Also other used apparatus at bargain. L. T. Bourland, 620 W. Hill Street, Champaign, Ill.

SHORT wave transmitter, receiver, inductances and chokes made to order. Guaranteed products. \(9^{\prime \prime} \times 141 / 2^{\prime \prime}\) cards made with call letters, \$1.25. Write for particulars. Harry O. Barschdorf, 1 AVU, 171 N. Summer St., Adams, Mass.
FOR sale intire transmitter using UV203A tube and sync in Hartley circuit. Nothing additional needed but an antenua to put on the rir. 11 X worked-OA all dists., OZ, AJ, NR. NN, all states U.S.A. \$75. cash F.O.B. Write for particulars. G. A. Jump, 1122 Mc Blelland St., Salt Lake City, Utah, Radin SATU.
SELLL: Plate transformer, Cardwell, variable transmitting condensers, transmitting scrid leaks, Mershons, S. tubes, Cardwell receiving condensers, factory built short wave receiver, home made short wave receiver 2 step, Jewell milliameter, Jewell thermo couple radiation meter. Write for list. 2sM.
WAN'TAD- qquipment for 250 watt transmitter, generstor or MG. iubes, condensers, etc. Kenuedy Üniversal Wave Recetver. Omnigraph, Relays, Meters, special Laboratory Instruments. etc. All must be in excellent condition and priced right. ©. Hayes, 2979 E. 73 Sit., Cleveland, Ohio.
FOR sale-New 204, \(45,204 \mathrm{~A}, \$ 100\). Both in original crutes. GE Kenotron units. ET'3620 complete will handle four 210 s . Gives rood d.c. note, \(\$ 30 \$[H\).
FOR Sale: Brordcast microphone studio type \(\$ 50\). Three stage speech amplifier impedance coupled General Radio parts panel mounted in cabinet with Oto 50 milliammeter on panel \(\$ 50\). Whittlesey 75 ft steel masi three sections \(\$ 75\). Thordarson 300 watt fil. trans. \(\$ 10\). General Radio wavemeter type \(174 \mathrm{C}-70\) to 1500 meters \(\$ 35\). R.C.A. radiof requency choke \(\$ 2.00\); Two Tobe filter condensers \(1000 \mathrm{v} \$ \mathrm{\$} .00\). Omnigraph 15 dial \(\$ 20\). J. C. Gill, 125 Gill Ave., Galion, Ohio.
TWO complete mercury are rectifiers. Thirty dollars 2ach SCMO, 20 Brandon Pl., Williamsport, Pennsylvania,
HULLE'IIN f6-E: Lists the Ensall Radio Laboratory receivers, transmitters, wavemeters, etc., Item No. 69 and 68 -A tyne receivers are the most modern types for amateur reception. Four and eisht tubes respectively. We also make all types of apparatus for any radio purpose, including inductances, power transformers, rectifier units, filter chokes, high voltage variable condensers, plate reactors, etc. We build to order any apparatus using your parts if desired. Kit and blue print service on any power amateur station. Write for copy of Bulletin 66-F. Thos. Ensall, 1208 Grandview Ave., Warren, Ohio. 8RIDN. PANEI, meters, 0-300 M.A. :1.25, 0-10 A.C. filament \(\$ 2.45,0-500\) d.c. voltmeters. \$5.25. adjustable circle cutters \(65 \mathrm{c}, 750 \mathrm{v}\). d.c. generator 500 watts, directly coupled to 110 v a.c. motor with Rheostat and filter, \(\$ 55.00\). RC.A. 300 milliampere filter choke sin.u0. R.C.A. EO watter. \$15.00. Eid. Keers, 9CJR, 2300 E. Washington St, Joliet., III.
SELL-yynchronous rectifier, No. Howard Georke, Pike St., Dunkirk, N. Y.
CisL cards, \(\$ 1.00\) per hundred and up. Stationery with envelopes. \(\$ 1.25\), samples free. SAAF, Bloomingdale, Michigan.

HAMS: Get our samples and prices on printed eall cards made to order ga you want them. GAPY Hinds, 19 S. Wells St., Chicago, Ill.
OSL cards, two color \(\$ 1.00\) per 100 . Government \(\$ 1.90\). Samples. F. L. Young, 9CKA, Corwith, Iowa.

FOR sale-brand new 800 watt short wave trunsmitter, axcellent parts used throughout. Inciudes four 8528. mercury arc and equipment. Cost \(\$ 550\), Fill sell for \(\$ 300\) or make an offer. Write for description. Edward Cullen, ir, 1462 St. L.awrence Ave., Bronx, N.Y.C.
QisL cards, 90 cents per 10\%. Samples. Russel Karg. 3155 W. S1st St., Cleveland. Ohio.
ANNOUNCING our empletely new line of meters for amateur uses, Our special, 0-15AC filament voltmeter, Sey. \(75,0-10\) and \(0-6 \mathrm{AC}\), \$2. 30 each, milliammeters \(0-10\), \(0-25,0-50,0-100,0-800\) or \(0-400\) full scale only \(\$ 1.85\) each. DO voltmeters: \(0-x, \$ 1.75,0-100, \$ 1.55,0-300, \$ 4,20,0-500\) \(\$ 4.75\) each. 150 volt AC line meter, \$4.55. Antenna ammeter 0-2.5 amps. hat wire, \&i.10. Trio consisting of antenna ammeter, filament voltmeter, and plate milliammeter. Sitate ranges of last two. Price per set. \$7.50. All meiers flush mounting lahoratory experimental Neon bulbs, small 50c, medium \(\$ 1.50\), extra large with standard hsce, 2800 C.O.D. on request. E. P. Hufnagel, sis South ixth St., Newari, N. J.
ARRL siveater emblems should be worn by all League members. They are yellow and hlack 5"x8" diamund, felt letters and embroidered swmbol. Only \$1.00. Mnney order or currency ony मecepted. Fric R.obinson, 135 Jefferson Koad, Webster Groves, Mo.
LICENSED smateurs only-prepaid in U. S.-. Arero low wave tuner, 37.70 , transmitting kit, \(\$ 7.55\). Brielle 36 inch rone \(\$ 19.75\) kit, \(\$ 12.62\). Nathaniel Baldwin \(C\) headsets, Sib. 80 . S \(\$ 129\) shielded grid tubes, \(\$ 4 . \% 6\). Power Clarosiats, sia.31. Sangamn . 001 or .0025000 volt condensers. \$1.81. Discounts on Cardwell. Formica, Sarnson, Jewell. or Weston transmitting meters, \(25 \%\) ) \(35 \%\). On Sansamo. Daven Karas, Tobe Amsco, Carter Ferranti, Yuxley, Hummarlund, Silver Marshall, Bodine, CeCo. Rrythenn, \(40 \%\). KEL items, \(25 \%\). Weekly experimentersbuilders fata sheets. 20 weseks, \(\$ 1.00\), 52 weeks, \(\$ 2.50\). Gver two pounds chialos, data circuits. etc., 25e. Fred Luther Kline. Established \(192 \pi\). Kent. Ohio.
SELLING out. Cumblete fifty watt set and parts. Write for list. nufon, Box 205, Montgomery, A la.
BOR sale. Stahl syne rectifier. sood condition. \(\$ 20\) cash less. SFQ. Valparaiso, Indiana.
TRYSTALS: ruaranted power oscillators; 80 meter losnd, calibrated \(1 / 10 \%\). Limiled number at \(\$ 12.50\) each. Satisfaction or money brek, E. Q, Watts, Jr., 1024 Southwest Ninth St. Miami, Fla.
HAMS: Genuine brand new and guaranted RCA UV203 50 watt tubes, 310.98 . Strombers-Carlson \(31</ 20 \mathrm{fd}\). working voltage 600 V filter condensers \(\$ 1.35\), ReadRite panel meters \(0-15 \mathrm{~V}\) A.C. \(4.00,0-100\) or \(0-400\) milliamperes \(9(0)\). Postage extru. "Hamsheet" Be. Kenneth Hanifan Waterville. Ohio,
FADA power rheostats three ohms, carry \(2 \%\) amps. Keen filament center tap halanceri. 55 eents postpaid. 2CEI, Robert Kraus, 2313 Fish Are, Bronx, N.Y.C.
POS'TPALD. Keadrite panel munting Milliammeters. your choice 0-300 or ( \(0-400\) Mils, \$i,00. Readirite panel mounting \(0-15\) voltmeters, \$3.0u. Dubilier \(13 / \mathrm{Mfd} .1000\) \%olt working voltage Filter Condensers. \$1.95. General Radio Wavemeters, Type 35\%, \$19.25. Sangamo . 902 Mfd. Bypass condensers. 5000 volt tested. \$1.75. Gêneral Electric 5000 ohm Heavy Duty Gridleaks, \(\$ 1.25\). Other prices on request. (i. F. Hall, 535 West Hortter St., Philadelphia, Pa.
2SL cards: 100 plain cards, \(95 \mathrm{c} ; 150\), 1.20 ; 150 Govt. caris. \(\mathbb{*} 2.50\); radiogram blanks, stationery, etc. H. M. Selden, Eranesville. Penn.
sELL Westinghouse 3 unit 800 V 200W MG 110 V 60 evcle single phase drive \(\frac{15}{5} .00\). Field rheostat, \(\$ 5.00\). SCYM.
WANTED: Grebe CR18 with set of coils in good condition. Will buy or trade. Kenneth Alley, Carthage, Illinois.
BURNT nut plate and filament supply transformers rezutoud equal to new and returned C.O.D. for one-half the price of a new one. Rurnt out Audio transformers rewound and returned postpaid \(\$ 2.00\). 25, 40, 6i0 and 500 cycle plate and filament supply transformers to your order, rated output graaranteed. Filter chokes of any size to order, best materials used in all work. If it is a transformer or choke which you cannot get elsewhere I can build it. Junk, bargain. and information seekers smve stamps. Nat \(G\). Scott, New Albany, Mississippi.
U. S. Navy five watters type 162, plate voltage 550 to 750, filament 7.5 to 8.5 . While they last \(\$ 1.30\) each. Chokes guaranteed to pass 160 mils at. 750 volts, wound with Dudlo wire, price only \(\$ 2.95\) each. Western electric

500 voit condensers \(\$ 1,00\) exch. UX210 type tubes \(\$ 5.25\). Do away with sloppy slop jars our 750 volts 110 mil rectifier tube 2600 . RCA UX250 the new \(2 \overline{5}\) watt tube \(\$ 12.00\). Neon tubes with a standurd hase and a guaranteed working life of uver 2000 hours \(\$ 1.50\) each. 7 x 18 panels \(\$ 1.00\). All merchandise unconditionally guaranteed. All shipments made promptly C.O.D. Joe Bush, 178 Berkshire Place, Irvinton, N. 』.
HEADQUARTERS for hams:-Mueller 150-watt input tubes \(\$ 15.00\). UV 2025 -wattera \(\$ 3.15\). Complete 5 -watt transmitters-iube, transfurmer, ructitier, key. atc., for 20-40 meters, each \(\$ 35.00\). 20-40 meter receiver and one step \$17.50. Aerovor 1000 -volt tested 1 mid. condensers \(\$ 1.75\). Fotter 2000 -volt tested \(1-\mathrm{mfd} \$ 2.50\); 2500 -volt l-mfd. \$3.25. "Ham-Iist" 4 . R Robert Curtis, 1109 Eighth Aqenue, Fort Worth, Fexas.
CURTIS-Griffith \(25(1-w a t t\) power-filament transformers 350-550 each side \(\$ 10,50\). New Thordarson power-filament transformer 5.50 voits, two \(71 \%\) volt filament 820.00 ; Thordarson Power Transtormers 550-750 each side \(\$ 16.00\); \(1000-1500\) each side \(\$ 2.00\). Iluminum square foot 85c, Lead square foot s 5 c . Potter : 2 mid. 1000 -volt condensers \$2.75. ARRL Handbooks \$1.00, Amateur Callbooks \$1.00. New "Ham-List" 4c. James Radio Curtis, 5AWC. 1109 Eighth Avenue, Fort Worth, Texas.
TWO \(\times 3 A\) input one \(2: 2 A\) filter Western Eilectric nuperhet transformers, for \$17.50. Fuw new W. E. fifty watters \(\$ 2.00\) euch. Ham roparatus at discounts. \(2 B Y J\), Levy, 2050-69th St.. Brooklyn, N. Y.
GENERATORS. new 275 volt d.c. 120 watt sives up to 500 volts, \(3 \times\). Used 6 volt input dynamotors output 400 volts. \(\$ 15\). Used 500 cycle generaiors 200 watt. \(\$ 10\). 900 pycle dynmmotors \(\$ 115.00\). 1 Kw and \(1 / \mathrm{Kw}\). new 120 volt d.c. irive. son cycle output motor kenerators, microphones, il . R . Wond, \(46-20\) 102nd Streei, Corona, N. Y.

NA'IIONAL Radio Institute course with code work-for cush or good transmitter. Descrihe fully your ofterink. sBJO, Dundee, N. Y.
SELL three unit three tube Atwater Kent radio set mounted on baseboard and wires. Best offer takes it. GAEH.
QST, The New RCA UXD50 15 whtt tube is here. Immediate delivery for \(\$ 10.75\). Extra heavy \(9.6 \%\) pure aluminum Company of America aluminum \(\quad \mathbf{i}(\mathrm{c}\) sal. ft. We have any ham stuff made. Some items are reciobulhs. super-synes. Vibroplexes, Cardwell condensers, mercury arcs. Flechtheim rilter condensers i 35 c UX \(2.22 \$ 5.75\), Westmun RF amp. xessembled \(\$ 13.75\). Write for anything not listed and our money arvings prices. GAKA. Butler, Mo.
BREAKDOWN at fuou volts means new condenser free 002 Fixed transmitting condensers: marie of copper plates: zlass dielectric. ruged aluminum finish case \$1.75 pustpaid. P.C.A. 85\%'s \$30. 2BGM-6724 Hidge Boulevard, Brooklyn, N. Y.
SELL - \(1 / 2\) watt transmitter, byrgains, If you're not interested in quality do not write. H. P. Brewer. Oskaloosa, lowr.
HANDY'S Handbook specifies these condensers for that Presision Wavemeter, Brand new Genersl Radio Type \(\$ 34-\mathrm{M} .450 \mathrm{mmf}\). list \(\$ 4.75\). Price \(\$ 3.00\) - Laboratory Trecision Type \(2595-G\). List \(\$ 18.50\). Price \(\$ 7.50!\) Aloo new Acme 500 watt Plate Transformer 820.00 . See new ORAs. OEYT.
WRITE fur list of radio parts. \(4 A B R\), Greeneville. Tenn.
OUR specialty is 852 transmitters and short wave receivers. Sell new Vibropiex. Write for details. 1034 Woodland. F't. Worth, Texas.
TRANSFORMER RECLAIMING SERVICE. Stop throwing away valuable burnt out transformers. I replace with original factory windings very job carries previous vuarantee of transformer. Most leading makes re-claimed- \(\$ 1.25\) to \(\$ 1.50\). Correct engineering. A \(n \in w\) one couldn't be superior. Also sell reclaimed transformars. Write your neods. H. A. Sears, y S. Reed Ave., Mobile, Ala.
NAVY standard compass receivers trpe SE1440A 1501250 meters, equipped with detector 3 stages audio, ideal for eommercia! work and broadcasting stations, \(\$ 250\). Western Electric tubes all sizes. Long Wave navy receivers CN240 \$80. Navy precision wave meter \(\$ 87\). Navy direct reading wave meters equipped with galvanometer manufactured by General Radio range \(300-1000\) meters. Can be calibrated for short wave use special \$1.5.50. Navy \(\$ 00\) watt Gerieral Flectric battleship tube \&ransmitters ideal for yachts and steamships. Navy spark transmitters from \(1 / 4\) to 5 kw . Write for prices. Other 500 cycle exuipment. HAM SUPPLIES. §end
five cents for catalogue AND SAVE MONEY. Arthur Faske, 350 Stone Ave., Brooklyn, N. Y.
SELL-i \(1 / 2\) watt transmitter, metered, REL inductances in fine cabinet. Bargain \$35. GCTW.
LOOKING for bargains? We have a wonderiui list of them-not the sort of odds and ends usually offered but new goods of real value. Send for it and get your share at half price or less. For instance-many standard variable condensers up to \(\$ 4.50\) list, choice at \(\$ 1.95\); \$1.0.00 247 W General Radio Wavemeters, a few at only \(\$ 55.00\); a Grebe CR18 at \(\$ 60.00\). E. F. Johnson, 9ALD, Waseca, Minn.
2500 Volt 150 Watt generator connected to 110 Voltzaotor \(\$ 145.00\). 2000 Volt 1000 Watt generator connected io 8 phase 220 Volt motor with separate field exciter \(\$ 275.00\). 1000 Volt 200 Watt generator connected to 110 Volt motor \(\$ 75.00\). 750 Volt 300 Watt generator with 110 Volt motor \(\$ 66.00\). 10 Volt 8 Ampere generatur \$12.00. Y Horsepower 110 Volt motors 1750 speed \$6.50. 3550 speed \(\$ 8.50\). 1000 Volt generator with 10 Volt filament supply connected to 32 Volt motor \(\$ 150.00\). Broadcast motor generators and filament generators also many others. James Smat, 1734 Grand Ave., Chicago, Illinois.
KNOW your wavelength-with Precisely calibrated Wavemeters, 17-160 meters- \(\$ 5.00\). Foreign transmitting tubes: 50 watts- \(\$ 9.00,10\) watts- \(\$ 4.90\), seven watts \(--\$ 4.00 .3000 \mathrm{~V}\). . 002 condensers- \(\$ 1.75\). RCA Modulation transformers \(\$ 3.50\). Fada Power rheostats, 4 ampere45 c . RCA UX852's- 832.00 . Fleron \(10^{\prime \prime}\) insulators- 65 c . Electrose standoff insulators-20)c. REL transmitting inductances- \(\mathbf{\$ 3 . 5 0}\). REL receiving cuil sets- \(\$ 3.300\). Ac. curate milliammeters, \(0-10-\$ 3.00,0-100,300,400-\$ 2.00\). AC Voltmeters \(0-10,0-15, \$ 2.00\). GR Wavemeters- \(\$ 18.50\). Rectifier eiements, aluminum lead, pairs, \(1^{\prime \prime x 4^{\prime \prime}-i c, 1^{\prime \prime} \times 0^{\prime \prime}}\) -10 c . QSL Cards. two colors, \(\$ 1.00\) ner 100 . Free radio eatalogue and QSL samples. William Green, 207 Cathedral Parkway, N. Y. C.
SELL or trade \(100 \mathrm{~W}-500 \mathrm{~V}\) Yeerless kenerator, 820. 28 \(.5-350 \mathrm{~V}\) Westinghouse dynamotor \(\$ 12.50\) coils condensers, etc.. cheap. .I. F. Hyde. Bristow, Va.
ESCO MG 1000 volts 200 watts. Good shape \(8 \times 5.2114\) tube, slightly used, \(\$ 40\). Modified COMO super, 6 tube. uses 201 As , wlight changes in inductances makes beautiful ham I)X set \(\$ 35\). 8AOL, F. H. Garrahan, \(3901 / 2\) Northampton St., Kinyston, Y'enn.
WANTED-Grebe GR7 long wave receivar range to 30,000 meters, also Grebe RORK two stage amplifier. State lowest cash price or will trade new Grebe CR9 or new broadcast apparatus. Miles A. Newton, Toulon, Illinois.
Q2SL cards, two colors, government posteards, \(\$ 1.90\) per hundred, white cards \(\$ 1.00\). Real ham stationery at \(\$ 1.40\) yer hundred sheets and envelopes, pad form. Yostage 10 c . Free samples. SDTY, 257 Parker Ave., Buffalo, N. Y.

NAVY standard transmitters and parts. Half kilowatt motorgenerators forty dollars. Two kilowatt hundred dollars. Dubilier . 004 condensers eighteen dollars. SE1012 receivers thirty dollars. What do you want? WantedNavy receivers, SE143, SE12 20 , SE1420. State price, condition and manufacturer. Paul Trautwein, if Albany street, New York City.
TRADE or sell eighty meter crystal. Herb Hollister, 930 Baltimore, Kirnsas City Mo.
PURE aluminum and lead rectifier clements holes drilled brass screws and nuts, pair 1 "" "4" 13 c , 1 "x6" 15 c , \(11 / 4^{\prime \prime} \times 6^{\prime \prime} 17 \mathrm{c}, 1 \frac{1}{2} \times 6^{\prime \prime} 19 \mathrm{c}\). Sheet a a uminum \(1 / 16^{\prime \prime} \$ 1.00\), lead \(\$ 1.00\) square foot prepaid. \$1.00 or more. silicon transformer steel cut to order \(.014^{\prime \prime} 10 \mathrm{lb} .25 \mathrm{c}, 5 \mathrm{lb}\). 30c, less than 5 lbs . 35 c lb . \(.022^{\prime \prime}\) ne less per lb . Not cut \(2-7^{\prime \prime}\) wide 15 c lb., minimum 10 lb . postage extra. Edgewise wound copper ribbon 7 sizes see January QST. Air pocket and stand off insulators 25 c each. 4 for \(\$ 1.00\), clazed porcelain 5 and \(610_{0}^{\prime \prime}\) long period on 4. Electrolytic condenser parts, \(\$ 1.50\) prepaid. Geo. Schultz, Calumet, Michigan.
HELLO HAMS-Here is Ben with sume real Ben's buys. Hoyt panel peep hole \(0-5 ; 0-8 ; 0-3\); volt \(0-8\) amp ; these work on AC and DC and they are wonderiul values at \$1.50. Also f few Hoyt \(2^{\prime \prime}\) panel \(0-8\) volt at \(\$ 1.00\) with push button, Neon bulbs and sockets \(\$ 1.75\). R.C.A. OTs at a special \(\$ 7.75\). Skinderviken transmitter buttons at \(95 c\) small but of a thousand uses. lightning aerial switches, SPDT, 50c. Ward Leonard transmitting tapped 5000 ohm grid leaks 50 watt size \(\$ 2.75,20\) watt \(\$ 1.95\). Telegraph keys Vavy type 75c. special now. Cootie keys. They are here now at Hen's, \(2 \dot{8} .75\) and worth it. Antenna rings 50 c . 600 volt 2 mfd . \(\$ 1.00,600\) yolt \(1 / 2 \mathrm{mfd}\) B0c. Thousands of bargains always at Ben's, ao don't hesitate to write even if for a small order, as Ben is always glad to hear from all his friends. Ben Wolf, 228 Tremont St., Boston, Mass.

8CUX. Millington, Mich. prints GSL eards the way you want them. 300 plain, two colors, \(\$ 3.15\) postpaid. Write for other prices and samples.
JEFFRIES plate transformers, 1000 watts, 550-825-1100. 1500-2200 each side, \(\$ 24.50\). 1.000 wats \(2500-3000\) each side \(\$ 27.00\). Folder on request. 125 watt filament transformer \(9-12\) volts \(\$ 6.25\). Carl Schwenden, 7427 Alameda Blvd., Los Angeles, Calif.
LOUDSPEAKER units rewound and magnets recharged \$3.00. 24 hrs. service. Henry Wagner, East Chicago. Indiana.
FOR SALE-T/2 Lransmitter forty meter band. Complete, \(s\) tubes for rectifier. Mounted on panels with meters ready to operate. First 50 bucks takes her. D. E. Haist, Seaton, 111.

\section*{Q R A SECTION}

50c straight with copy in following address form only:
\(\overline{1 C S X}-\bar{K} .0\). Mortenson, 171 Cherry st., Malden, Mass. IWV-Miles W. Weeks, 40 Norfolk Road, Chestnut Hill, Brookline. Mass.
2BUO-Werner H. Olpe, 14 Brooklyn Ave., Jamaica. Long Tsland. N. Y.
3AGE-B. J. Chromy, 1602 Hobart st., N. W., Washington, D. C .
3ARD-S. A. D. Boone. 3710 Parker Ave., Norfolk, Va.
6MU-San Francisco Radio Club, 454 Bright St., San Francisco, Calif.
8BWB-George K. Bernhard, 1067 Parsons Ave., Columbus, Ohio.
XDBF-John Hajduk, Jr., 13 Shingiss St., McKees Rocks, Penn.
yEYT-Raymond F. K nochel, 1427 Wisconsin Ave., Milwaukee, Wise.
naito-H. H. Howell, Box 1411, Ketchikan, Alaska.
oatPN-Russell F. Roberts, Cambridge Street, West End, Brisbane, Queensland, Australia.
sbztA-Ruben Simas. Rua Riachuelo 91, Curityba, Brazil.
The following stations belong to members of the A.R.R.L. Headquarters gang. Mail for them should be addressed care A.R.R.L., Hartford, Conn. When operating 1 MK they use personal sines as indicated.
1MK Headquarters, Chief 1 BIZ C. C. Rodimon "rod"
Operator, R. B. Parmeter 1RUD A. L. Budlong "bud"
1AL H. F. Westman ""下s" 1BAO R. S. Kruse "Ig"' BDI F. E: Handy " \(f\) " 1BHW K. B. Warner "kb" isZ C. C. Rodimon "rod"


\section*{PACENT}

DUO-LATERAL COILS

TODAY - as eight years agoPACENT coils are the popular choice of experimenters, engineers and laboratories.

\section*{A complete line always on hand together with mountings.}

Write for data and prices.
PACENT ELECTRIC CO., INC.
91 Seventh Ave, New York



\section*{FOR YOUR CONVENIENCE QST'S INDEX OF ADVERTISERS IN THIS ISSUE}


Jewell Elecirical Instrument ©n, ................... \&9
Karas Electric Company ............................ 80
I.eseh Relay Company ............................... in

Mage Radio \& Telegranh Brhool .............................
Master 0ptical Company....................
Mctraw-Hill Book ©o. ….................................... it, gil
National company, luc. ............................... is
Niational Radio rube tompany ......................... \({ }^{\circ} \mathrm{B}\)

Pilot Filentric Mirg, Company. inc. .................
1'recision Crystal service ............................

Radio :MA Company \(\ldots\)................................... 8 .

Rectiffer Engineering service ......................... 88
Research Kingineering Co, ................................ 81


Teleplex Company \(\ldots\)..............................................
Thordarson Eientric 3ifg. Gompany ................. . 39
Vitility Radia Company ............................... \(i 8\)
Yibropiex Company ....................................... xú

weston Eilectric lnstrument enrb. .......................................
Wireless specialty \(\Delta p p a r a t u s\) co. ..................... 63
Tiaxley Mfa. Company .,.................................. is

\section*{Transmitting Apparatus}


250 Watt Master Oscillator Power Amplifier Short Wave Telegraph Transmitter employs REL parts throughout. Heavy aluminum frame construction with total shielding between amplifier, oscillator and power control circuit.


Wherever you see super transmission you'll find REL Quality Parts. Heavy duty Transmitting Condensers, the famous Inductances, flatwise wound on glass, Tube Holders, such as the UX852 Holder pictured above, that assure absolute rigidity and perfect contact. A complete line of REL Transmitting Kits adaptable to all popular types of tubes is available at moderate prices. Bulletin " \(T\) " describes the Kits. REL is steadily producing new developments of importance to all in the Short Wave field.

REL owns and operates experimental Station NU2XV on 15.1.30.2, and 60.4 meters

> Radio Engineering Laboratories
> RED) 100 Wilbur Avenue, Long Island City, N. Y. REL


The Perfect Inductances for All Low Wave Work

\author{
FOR RECEIVING
} short wave tuner by securing the AERO Interchangeable Coils described below. All coils fit the same base and use the same condensers. Use Code No. INT-125 in ordering. Completely interchangeable.
everywhere. Range 15 to 130 meters. Includes 3 coils and base mounting, covering U.S. bands. 20,40 and 80 meters. You can increase or decrease the range of this

Price \(\$ 12.50\)
AERO LOW WAVE TUNER KIT
Adopted by experts and amateurs

\section*{INTERCHANGE.IBLE \\ Coil No. 0}

Range 13 to 29.4 meters. This is the most efficient inductance for this low band. Code number INT-0.

\section*{Price}

Price .... 84.00
THE NEW AERO INTERC

\section*{INTERCHANGEABLE} Coil No. 4
Range 125 to 250 meters. Fits same base supplied with low tuner kit. Code number INT-No. 4. Price . . . . \(\$ 4.00\)


PRICE \(\$ 12.50\)


W AERO INTERCHANGEABLE COIL No. 5
Normal range 235 to 550 meters. However, by using . 0001 Sangamo fixed condenser across the rotor and stator of the . 00014 variable condenser, the maximum wave band of this coil is increased to 725 meters. This gives you coverage of the following bands: Airplane to Airplane, Land to Airplane, Ship to Shore (Great Lakes) Ship to Shore (Atlantic and Pacific Oceans). Code number INT-No. 5.

> Price
. . . . . . . . . . . \$4.00


NOTE This new Aero Short Wave Kit is wound with No. 16 wire on secondary, making it even stronger, and cutting down the resistance appreciably,



EOR years the Burgess Organizations have been doing a great deal of experimental and research work looking toward the advancement of radio art. The aircraft radio communication tests on high frequency, recently conducted by \(9 \mathrm{XH}-9 \mathrm{EK}\), while somewhat spectacular brought out some heretofore unknown phenomena. All of this information as well as the results of many other experiments of interest
\(\cdot \cdot .4 s k\) Any

and value have been made available, in the form of Burgess Engineering Circulars distributed freely, to those who are interested in experrmentation.

We feel that some of this work has resulted in real benefit to radio in general and to the radio amateur in particular and whatever measure of success our work has had is a spur to renewed efforts along these lines.

Radio Engineer"

\section*{BURGESS BATTERY COMPANY}```


[^0]:    *r1WX cio State Bank, Nijni-Novgorod, U. S. S. R.

[^1]:    1. It seems that antinodes may have been meant. bur. it is not vital, in either uase the system onergix+s with all wires in the same phase. This can be understood by considering that the vertical wires are spacer ti wive gpart which would eause them to operate in phase opposition if fod from a eommon "thanding-wave" feedier, but there are two feders which are in phase opposition iany normal Lecher or Teppelin feederi and the antennas are thpped glternately from the two. which arain puis them in phase. This an best be scon from the diagram herewith. The result is therefore a syatem that coperates in the same manner as the syxtem of Fig. 28. pase s4, March, QsT.-Toch. Fd.
[^2]:    (Conctuded on Page sz)

[^3]:    *2WC, also Fiditor, Automotive Merchandising, $97-$ 10 Horatio St., New York City, N. Y.

[^4]:    Note: The materjal for this papel was obtained from the work of P. H. Moon and W. F. fleming of the Kaytheon Laboratorifs of Oumbridge. Massachusetts.

    1. A.I.E.E. Jnl., Feb. 1927, p. 128.
    2. T. Spooner, Phy. Rev., 1925, p. 627. A.I.E.E. Inl., Jan. 1923.
    *Director Customer's Service Laboratory. Raytheon Mfg. Co., Cambridge, Mass.
[^5]:    *By permission of Fartiord Times, original title. Standard Circuit No. 142.
    ** Kadio Technican, Hartiord Times.

[^6]:    *Research laboratory. Westinghouse Elec. \& Mfg. Co., East Pittsburgh, Penna.
    $\dagger$ The present paper is also known \%s Scientific Paper No. 272.

    1. Smithsonian Physical Tables, Pub. By Smithsonian Institution, Washington, D. G.
    2. Nichrome and Other Alloys, Driver Harris \& Co., Morristown, N. J.
    3. Journal Opt. Sci. Am. July 1927 p. 64.
    4. Elements of Elect. Design, by Alfred Still, p. 21.
    ©. One one-thousandth of an inch.
[^7]:    * Terhnical Editor, Chicago Eivening Post; 9BR, 4739 Central Park Ave.. Chicago, Ill.

    1. That is to say some power from the oscillator reaches the antenna by accidental coupling even when the amplifier is not working. This happens in practically all oscillator-amplifier transmitters though the pperator irequently does not know it.-Tech. Ed.
[^8]:    "Experimenters' Section, A.R.R.L., Box 619, Niagara Falls, New York.
    l. There is a very general idea that the goodness of a tuner is determined by the smallness of the tuning condenser and that o very high L/C ratio proves that the tuner is excellent. There is room for argument on this point because the story isn't all told by $L$ and $C$; we must also consider the $R$ of the coil, which \&oes up as L Boes up. See Glenn H. Browning's "Rating Circuit Resistance," page 42 of ( $\mathrm{S}^{\prime}$ f for December, 1925.-Tech. Ed.

[^9]:    \%. The word "varnier" is here used in its earlier (and more correct) sense, i.e., that of a device for reading tenths of seale divisions by means of a stationary seale which has 10 divisions, each of which is $9 / 10$ of the fength of a division of the moving scale. The 10 divisions of the fixed scale therefore cover $y$ divigions of the moving scale. The device is familiar from its use on micrometer calipers and surveyor's instruments.-rech. Ed.

[^10]:    *3CEI, ex9CEI, care Dr. James J. Cahill, 2607 Connecticut Ave., Washington, D. C.

[^11]:    *663 Lexington Ave., New Yurk City.

[^12]:    \#BBAG, 33 Sugar St., Niagara Falls. N. 1.

[^13]:    Flash! The band between 9.99 and 10.71 meters ( $30,000-28,000 \mathrm{kc}$ ) has heen opened to seneral amateur use by artion of the Fereral Radio Commission at the porquest of the A.P.R.L. Niow to try 10 -meters with sume upecial types of antennas to get it to perform for the reai long distance woik!

[^14]:    RADIO DESIGN QUARTERLY ro3-Q BROADWAY, BROOKLYN, N.Y.
    special designs for new trafic receivers using pilot short wave equipment, and broadcast sets with A. C. and battery tubes. All details, diagrams, beautiful photographs. Edited by M. B Sleeper. SEND 250 FOR FOUR ISSUES. No extra charge for foreign countries.

    ## Name

    $\qquad$
    Street
    City................. State

[^15]:    1aac laqo labd labn lacu ladm lads laed lag lainv lair lajx lalr lals lamd lanz lacw lap lara larv lask lasu latg lau laur lavt livil law lawe laxa laxz laz lazd lazi lazw lbat lbdi lbed lbex Ibez lbaq lbkp lbux lby lbw led lcje lckp icmf lomp icnz lepe lere 1 df Idi 1 dm lev ifllifm 1 fn
     ilt 11 u 11 x 1 mn 1 mo 1 mr 1 mv 2 my inl 1 nq iqc lal ird irn 1ry lse isk 1sw lsz lud luw luz ivz
    
     qagw zahb 2ahg 2ohm erib 2ais viakx zalu palv 2ami 2amg 2amh Eamj 2anm לana 2anz wapb zapd Zapi Napn 2agw こard 2ary Vase 2asy 2atk Eatq zatx gaul 2aun 2avb gava 2avr gavw Sawb 2awa 2ay こaya 2ayj 2az 2bua Zbad शbay Zbaz 2bbc 2bbx 2bcb 2bec 2bch 2bez $\because b d c$ Ebdh zbdj zhek Zbew \＃bfj 2bfa 2bgc 2bet 2bj 2hmf 2bms 2bow 2box gbs 2bsc 2bsl 2bua 2buc 2bum 2buo 2buy 2bvh 2bw 2bxu
    
     afa 2 fm 2fo nfa 2gk ：Zhe 2hh Zie tijn 2jp 2ik 3md
     $3 \mathrm{rs} 2 \mathrm{sm} 2 \ddot{4} 2 \mathrm{tr} 2 t y$ gub 2uo ？us iviz 3add Yaef 3aix 3ahl jaib 3aim 3ajd 3akv 3amx Banh 3anx 3auv Bbms 3bph 3hqz shwt 3ebt 3edv 3ef 3cfg 3ckj 3ekl 3emp 3do 3dh 3ep Binp 3iu 3jo 3ke 3fr \＄1a 3id 3ll 3lm 3lw 3nh 3 nr 3 gq 3 pf 3 pr 3 qe 3 af 3 qm 3sh 3sj Ӟs 3sz 3ta 3ut 3 wm 4aar Aac Aacz teu 4 db
    
     4sh 4tk itr tu tuo 4ux twe 4wo bayl 5ql 6yb 5zai 6am 6ut Sadg Sadm sagh sajt \％akc Saly Bamn sary saty save Sayu shok shou Sbyn sebu see 8ces 8ejm 2cke 8cno 8cpf 8cai 8crp 8exd 8djg \＆dkd 8dks Bdne 8dnh sion 8dsy Sja 8kc sli son 8pl kwt sxe 9adg 9adk 9bhw 9bcs 9bea 9bim 9bkl 9bpb 9bpl 9bzq Ocjw 9enj 9crd 9cri 9dbj 9dek Gef Gehn 9eld Gellnc－lac ne－lad nc－lar ne－lbi ne－1dq ne－\％be ne－2tog nc－2by nc－9fc nc－3gg nc－8al nc－9bz nc－9co ne－8rg nj－2pz nm－1j nm－1n nn－1nic np－4bj nq－2ac nq－7ex nr－2fg nr－2gph nr－cto af－1b aא－rann ai－2kt si－2kw ai－2kx ary－1dh aq－ihf aq－1Im aq－1mdz fe－exes fi－1ta ai－1ab fo－n3

