

cOLLIIS

 $17 \mathrm{~F}_{-5}$
Intotune Transmitter

PORMERLY conventional multi-frequency transmitters contained a duplication of components and cumbersome frequency change equipment.

Aeronautical radio places such extreme exactions upon light weight and small size as to render such a design idea ohsolete.

Collins patented Autotune system of frequency change now overcomes these difficulties. The Autotune unit, which weighs only ten pounds and is of small size, makes one r-f section serve for ten frequencies without duplication of circuits and components. Collins 17F Autotune Transmitter consequently weighs only ten pounds more than a single frequency set built with equal sturdiness. This saving of weight and size makes it
possible to incorporate a greater margin of electrical and mechanical safety.

Further, the Autotune feature reduces the number of manual operations required. A complete change to any of ten available frequencies is effected within five seconds with absolute reliability.

SPECIFICATIONS $17 \mathrm{~F}-5$

Nominal Power Output: 100 Watts.
Frequency Range: 2500 kc to $20,000 \mathrm{kc}$. Frequency Shift: Autotune. Any of ten predetermined frequencies can be selected automatically.
WEICHT: 46 lhs. 9 oz, complete with tubes and crystals but less power supply and cables.
Dimensions: $10-3 / 16^{\prime \prime}$ wide, $17-3 / 16^{\prime \prime}$ deep, $14-5 / 8^{\prime \prime}$ high.
CAATC: No. 281.

wim- -. - - wumbtetivn or the Sky Buddy
Model over 12,000 have been purchased.
. Continuous Coverage, 44 MC to 545KC.
2. Plus the 10 Meter Band with Uni: form Seasitivity over the Entire Bard.
3Ggri Bands.
4. Thtrical Band Spread
5. y Illuminated Band Spread Scale Covering 560°.
6. Separate Band Spread Condenser Wih Ball Bearing Mountingy
7. Buit-in $5^{\prime \prime}$ Dynamic Speaker with Foating Rubber Mounting.
8. Beat Frequency Oscillátor.
Q. Built-in Line Filser.
10. Six Tubes with 8 tube Functions.
11. 6K 8 Convere THPe Usws arate Filtextupply for Greater Stability.
14. Band Switu
13. AVC Suvitifu
14. Send-Receive Switch.
15. Pitch Control.
16. Headphone Plug-in Automatically Disconnects Speaker.
17. Baked Black Crackle Cabinet $17^{1 / 2^{\prime \prime}} \times 8^{1 / 2^{\prime \prime} x} 8^{1 / 2^{\prime \prime}}$
$17^{11 / 2} 2^{\prime \prime} x^{11 / 2} 2^{\prime \prime} x 1^{1 / 2^{\prime \prime}}$
18. Amateurs Net
Price...........

OCTOBER 1939

VOLUME XXIII
 NUMBER 10

STAFF

Editarial

Kemneth B. Warnkik, tiea Editor and Business M Manager

Clabk C. Rodimon, wlsz Manazing Editor

George Grunmer, hidy Technical Editor

Donald H. Mix, whes Brbor Goodman, wispe Assistant Technical EdiLors

V bunon Chamazas, wiJea Technidal Infor mation Sorrice

JAMES I. LAMB, W1Ax
 Comsultans

Advertisins
F. Cheynay Berikuey, wics Advertiaing Manaper

Calrles Brunullie
Asis. Adtertising Manoper

Circulation

David H. Houghton Circulation Manager
halpe T, Benudng, wibat Assi Cinculation Manader

OFFICES

38 Les salle Road

 West Hartford, Connacticutsubscriblion rate in Onited States and Possesstons and Camada, F2. 50 ber year, postpaid: all other coumtries, 83.00 por year, poatpald. Bingle conules, 25 centa. Yorélgn remittanceo should be by international postat or express muney orfer or bank dratt nerotiable in the U, 8 , niti for an equivalent amount in U. S. Iunds.
Entered as second-class mate Mat May 29. 1919 at the post ome at Harttord, Coinnecticnt, under the Act or March 3, 1879. Acceptance for mallthe at spectal rate of postage provided for in Bection 1103. Aet of October 3,1917 , autborlzed SeptemOctober 3,1917 , autborized Septemh-
ber 9,1922 Adational effity at Congord, N, H, authorized Febriary 21, 1029 , under the Alt of Hebaruary 28, 1825. Additlonal beo. and-liasi emtries to cover sectionat editions suthorised March 20 1935.

Conyright 1939 by the American Radio Relay Jearue. Inc. Tilie resistered at Uniter Btates patent omes.

PUBLISHED, MONTHLY, AS ITS OFFICIAL ORGAN, BY THE AMERICAN RADIO 'RELAY LEAGUE, INC., AT WEST HARTFORD, CONN., U. \&. A.: OFFICIAL ORGAN OF THE INTERNATIONAL AMATEUR RADIO UNION
contents
Editorials
A Compact $1 / 4-\mathrm{kw}$. Rig
The Series-Valve Noise Limiter SplatterThe Cruise of the Pang JinRex Purcell and Geo. W. Polk
Kansas State ConventionNavy Day Receiving CompetitionDon Mix, H1TS7
The Infinite Impedance Detector 21
What the League Is Doing 22
How to Figure Grid-Bias Requirements Harner Selvidge, IF9BOE 24
The Band-Edge Locator Reginald Tibbetts, IF6ITH
The Oscilloscope Shows - What? . I. M. Ferrill, Jr., WILJI 30
"The Compleat Experimenter" H. L. Bumbaugh, W6HI 35
A Compact Unit-Type Amplifier. George WT. Shuart, W2AMN 38
An R.F. Matching Network for General Use
Warren M. Andrew, W9IVT 39
East and West from Old Sol Lieut. H. C. Owen, W6JPQ 41
Results 1939 DX Contest E. L. Battey, ITIUE 45
How Would You Do lt? 56
I.A.R.U. News 58
Hints and Kinks
Keying E.C. Oscillators . . . Grounding Positive High Voltage. for Safety . . . Crystal Filter for 'Phone Work . . . Power- Supply Kinks 60
New 'Tubes TW-150 62
Correspondence from Members 63
Operating News 64
Results ORS-OPS Party 66
Brass Pounders' League 67
How's DX? 68
DX Century Club 74
Hudson Division Convention 44
Midwest Division Convention 62
A.R.R.L. QSL Bureau 102
Vermont State Convention 62
Silent Keys 44
Massachusetts State Convention. 114
Ham-ads 123
QST's Index of Advertisers 126

Section Communications Managers of the A.R.R.L. Communications Department

All appointments in the League's field organization are made by the proper S.C.M., elected by members in each Section listed. Mail your S.C.M. (on the 16 th of each month) a postal covering your radio activities ior the previous 30 days. Tell him your DX. plans for experimenting, results in 'phone and traffic. He is interested, whether you are an A.R.R.L. member or get your (ST' at the newsstands; he wants a report from every active ham. If interested and qualified for O.R.S., O.P.S. or other appointments he can tell you about them, too.

* Officials appointed to act until the membership of the Section choose permanent S.C.M.s by nomination and election.

THE

American Radio Relay Leagur

Tphe American Radio Relay League, Inc., is a non-commercial association of radio amateurs, bonded for the promotion of interest in amateur radio communication and experimentation, for the relaying of messages by radio, for the advancement of the radio art and of the public welfare, for the representation of the radio amateur in legislative matters, and for the maintenance of fraternalism and a high standard of conduct.

It is an incorporated association without capital stock, chartered under the laws of Connecticut. Its affairs are governed by a Board of Directors, elected every two years by the general membership. The officers are elected or appointed by the Directors. The League is noncommercial and no one commercially engaged in the manufacture, sale or rental of radio apparatus is eligible to membership on its board.
"Of, by and for the amateur," it numbers within its ranks practically every worth-while amateur in the nation and has a history of glorious achievement as the standard-bearer in amateur affairs.

Inquiries regarding membership are solicited. A bona fide interest in amateur radio is the only essential qualification; ownership of a transmitting station and knowledge of the code are not prerequisite. Correspondence should be addressed to the Secretary.

HIRAM PERCY MAXIM, FIRST PRESIDENT

Dfficers

President.Eugene C. Woodruff, W8CMP State College, Pa.
Vice-President..............Geurge W. Bailey, W1KH Weston, Mass.
Secretary. Kenneth B. Warner, WIEH West Hartford, Connecticut
Treasurer. Arthur A. Hebert, WIES West Hartford, Connecticut
Communicatioris Mgr. F. Edward Handy, WIBDI West Hartford, Connecticut

General Counsel. Paul M. Segax 1026 Woodward Building, Washington, D. C.
Address all general correspondence to the administrative headquarters at West Hartford, Connecticut.

"IT SEEMS T0 US-

BEACEOUT

IN Europe there is war again. After months of dread uncertainty our world is engaged once more in savage butchery, the lives of peaceful everyday folk transformed into a perpetual horror. The possibilities of modern warfare are so dreadful that there is room to wonder whether civilization itself can survive. The engineering and technical mind, accustomed to the complexities of modern science, must marvel that mankind, for all its skill in the technical arts, has not yet mastered its social and economic difficulties, and that its technical skill now only helps speed it to catastrophe.
This war means more to us radio amateurs than to people in most walks of life, for the simple reason that communication has been our raw material and we have all made countless friends in many foreign countries. The natural concern that friend feels for friend in such times as these is, in us, intensified many fold because of the multiplicity of our constant contacts. The statistics to-day are a dreary lot: The war is affecting amateur radio in about sixty per cent of the membership of the International Amateur Radio Union. In over half of the countries and dependencies in the "A.R.R.L. Country List" of the DX Century Club, amateur radio is suspended. In point of number of amateurs a hasty count shows that, outside of the United States, about seventy per cent of the world's amateurs have abruptly disappeared from the air. We who have devoted our skill and our time to the building of friendships and to the furthering of understanding between peoples are having this thing happen to us!
And now some of us are to be pitted against some others of us by those who pull the strings, some who are amateurs will be asked to try to kill others who are amateurs. This struggle is bigger than we are; the stakes are higher than amateur radio. $Q S T$ of course will take no sides. We have no part whatever in the politics of nations and peoples. Amateur radio has been - is --- a great democracy, made up of men of many walks of life, of all ages, estates, colors and creeds. The thing we have in cominon is the love of amateur radio. It is not possible to separate us in terms of white and yellow, or rich and poor, or in any other way, for we are all one in the peculiar fraternalism
we have made our own. We hope we have no sticky sentimentalism in saying that; we mean it quite sincerely. We declare, therefore, that QST, organ both of the International Amateur Radio Union and of the American league, will endeavor to take no cognizance of nationalisms as such, and will continue to deal with the amateur of every land as a brother. For it cannot be said that some men are all good and some all bad. We who have been brothers together in amateur radio know better than that. The inescapable duties of nationalism may now summon some of us, but all of us will know that the coumon people of every country are decent and likeable people and that the fault is somewhere else in society's mechanism. We shall know that because we have as friends typical specimens of these common people, the amateurs of every land.
Is it out of order, then, for QST to hope for a higher order of understauding and tolerance amongst radio amateurs than characterize those in other walks? We trust not. Let us, with Spinoza, neither weep nor laugh but endeavor to understand. To those of our great fraternity who now enter national service $Q S T$ expresses the earnest hope that, while giving without stint to their respective countries, they will carry in mind that knowledge gained as amateurs-- that the ordinary people of other countries are a decent enough folk too. Perhaps, too, it will be given to some of them to help cement the broken pieces of our civilization. And we even hope that when warring ham meets ham of an opposing pretix, there will be room for chivalry -- in the knowledge that both have been radio amateurs. And we pray that some starry night soon we may again all meet in peace and exchange our greetings from continent to continent as we have done in happier days.

And now a word particularly to amateurs of the United States and its possessions. You have read the proclamation of American neutrality. It has particular significance for us because the pursuit of our art brings us international contacts which never fall to the lot of the ordinary citizen. Every citizen must observe neutrality in the present conflict. Easy for the a verage non-radio citizen, it requires a certain amount of care on our part. The amateurs of several neutral countries
have been put off the air, just as a precautionary measure. Our government does not intend to do that to us; it believes that it can trust us. The amateur bands these recent days have rocked with rumors that we may be piped down, that at the least our long-distance bands are to be taken away, and so on. There is no present truth in these rumors. We are to continue; we have only to be neutral.

What is neutral? There's no mystery about it. It means taking no sides, showing no partiality, keeping out of the quarrel. In particular - and this is the essence of it for us - it means passing no information that could conceivably be of military value to a helligerent. It requires only common horsesense to keep out of that kind of trouble. We should bear in mind that our international communications have always been confined to "messages relating to experiments and to remarks of a private nature for which, by reason of their lack of importance, the use of the telegraph service could not enter into consideration" and that we are already forbidden to transmit international communications emanating from third persons except under our special arrangements with certain countries in the Americas. Our understanding of the chief burden incumbent upon us as neutrals is that we do nothing in our radio operating that could be interpreted as "participating in the war" by giving any information to anyone that could be of military value to any belligerent. With these precautions we could even communicate with amateurs in the warring countries if any could be found. Of course they cannot; they have all disappeared from the air, so the point is a purely academic one. Let us not, however, be academic; let us not even strain our luck. It would be wise to lean a little the other way. It would be only the part of prudence to consider that the need for caution in our communicating dictates also that we use great care in the remarks that we pass between ourselves and which might be intercepted by belligerent stations.

The United States starts out its neutrality policy with only a warning to all citizens to be neutral. If we conduct ourselves properly we see no reason why we should suffer. But there will be government surveillance. If any amateurs abuse their freedom and violate the neutrality of the United States there will certainly be swift punishment - and perhaps on all the rest of us. The government hopes that no special radio restrictions will be necessary. As far as the amateur bands are concerned, it depends on us. We therefore recommend (1) that all international contacts be kept strictly to the basis of experiments and chit-chat; (2) that no intelligence of any sort be relayed from one country to another; (3) that we not discuss, even amongst ourselves, happenings that might have a military significance, remembering that our signals may be intercepted by belligerents; (4) that we
keep our private feelings to ourselves and give no voice to unneutral thoughts on the air. Is free speech then being abridged? Yes, we understand that it is to that extent - by the presidential proclamation of the need to be neutral. Think what you want to, but keep it off the international ether. We're walking on eggs, so let us do no stumbling! We want no amateur blackout here!

FAREWELL, S.F. SYSTEM

A note nearer home: We regret to announce that, after a decade of sterling service to the American amateur, the A.R.R.L. Standard F'requency Service is discontinuing. This, some of you moderns may not know, was the group of special experimental stations which regularly transmitted marker frequencies at 100-kilocycle intervals throughout our bands for the purpose of calibrating frequencymeters and receivers. With elaborate apparatus of the greatest precision, the staffs of these stations for years observed regular schedules several times a week. It was no fun. On the contrary, it was the hardest kind of work, and it has been done these years purely as a service to amateur radio.

Originally there were three stations. W1NP at M.I.T.'s Round Hill Research at South Dartmouth, Mass., dropped out some years aro, but the work was carried on by W9XAN, the observatory of the Elgin National Watch Company at Elgin, Illinois, and by W6XK, a special station of the Don Lee Broadcasting System at Los Angeles. Now W9XAN and W6XK have decided to discontinue their work. In all truth their work is substantially done. Time was when we fellows didn't even know where our bands were, much less where the edges of them were. During these many years these stations served as lighthouses in our fog, giving us fixes of a most satisfying accuracy. To-day (knocking wood as we say it) we pretty well know where we are, what with the almost universal employment of crystal control and our vastly improved frequency-measuring technique. We have, moreover, daily schedules from WWV. So the need for the A.R.R.L. S.F. System has disappeared and it is retiring from the scene, its pioneering job completed.

Never was a pioneering job better accomplished. Imagine the staffis of those stations getting up in a shivery dawn, morning after morning, and firing up the rig, not for the thrill of a two-way, not even for the fun of hearing themselves sending, but just to send us fellows long dashes on accurately-determined frequencies! It was real labor of love. Every year the League Board of Directors has adopted resolutions of appreciation for the work these stations have carried on so nobly and often so thanklessly. As W9XAN and W6XK now retire, we want to give a hearty vote of thanks, on behalf of the whole fraternity, to their companies, their directors and their staffs. Well done; our sincere thanks!
K. B. W.

A Compact ${ }^{1 / 4}$-Kw. Rig

An All-Hand Transmitter Operating at Medium Plate-Voltage

HY HON MIX,* WITS

\mathbf{I}_{T} is fortunate that extremely high voltages are no longer required these days for a medium high-power transmitter because a highvoltage installation not only costs more than one which will deliver the same amount of power at lower plate voltages, but it invariably involves greater space and longer r.f. leads. Tank condensers which will withstand high plate voltages always have much higher minimum capacities which add to the difficulties in attaining satisfactory tank-circuit efficiencies at the higher frequencies. If the constructor has had little previous experience with high voltages, frequent insulation troubles are not uncommon. There is also the factor of safety to be borne in mind. The chances of a fatal accident are reduced considerably when the plate voltage is limited to 1500 or less.
The Eimac 75T used in the final amplifier of the transmitter shown in the accompanying photographs is one of the more recently developed tubes in which the designers have succeeded in combining the desirable features of high power at medium voltage, low interelectrode capacities and reasonable driver requirements. It is well known that low interelectrode capacities not only facilitate operation at the higher frequencies but also reduce difficulties in maintaining neutralization of a single-tube amplifier over a wide frequency range.

Front panel view showing position of controls. The oscillator plate tuning control is at the left below the crystal-selector switch. The panel is $101 / 2$ inches high.

20 ma . At this low power level there is no evidence of excessive crystal heating. It was found that the extra control invariably used for the cathode tank circuit in this type of oscillator might readily be eliminated by fitting each plug-in cathode coil with an adjustable condenser. Since the adjustment of this tank circuit is never very critical, inexpensive mica trimmer-type condensers do very nicely. Once set for crystals of a given band, no further adjustment is required in tuning the transmitter. An eleven-point crystal switch and multiple crystal holder for eleven crystals is used to provide ready selection of frequencies at several points in any of the five bands covered by the transmitter. While average requirements may be less, the arrangement serves as an illustration of one way of mounting several crystals to permit short leads. The idea may be easily modified to suit the number of crystals desired. The crystal switch is mounted on the panel at the center of the box-like arrangement. Parallel plate feed is used in the oscillator to permit mounting the tuning condenser directly on the under side of the chassis so that its shaft will come at a suitable level above the lower edge of the panel. A threeresistor voltage divider drops the voltage from 600 for the oscillator plate and screen.

The only unusual point in the 807 buffer-doubler circuit is the tapping of the plate down on the tank coil. This is necessary to provide a satisfactory match to the relatively high-impedance grid circuit of the 75 T . Connecting the plate directly to the end of the coil results in a very appreciable reduction in drive for the final amplifier; the 807 does not load up properly. The tapping in this case also greatly reduced the annoying sort of performance frequently observed in operating the 807 in which the maximum output occurs at a

Rear view showing arrangement of parts on top of chassis. The 75 T and 807 sockets are spaced below the surface of the chassis to lower the plate terminals. The crystal switch is mounted on the panel inside the enclosure on which the crystal sockets are mounted.
tuning point considerably removed from the point of resonance as indicated by the platecurrent dip. Screen voltage is obtained from a separate voltage divider to reduce fluctuations in oscillator plate voltage with tuning of the 807. Series plate feed is convenient in this stage because the tank condenser is elevated above the chassis level to shorten up the plate lead. In this stage, as well as in the oscillator plate circuit, the tank condenser specified has a sufficient capacity range to permit covering two adjacent bands without coil changing. This is a thoroughly practical and convenient method of band-changing between 1.7 and 3.5 and between 3.5 and 7 Mc. The L / C ratio becomes so low in covering 7 to 14 Mc . and 14 to 28 Mc ., however, that high circulating tank currents cause excessive coil heating, except at very low power, unless unusually heavy coils are used. In this instance, separate coils for 14 and 28 Mc . are recommended for the buffer-doubler stage.

The input capacity of the 75T is sufficiently low so that there is no particular advantage to be gained by the use of more complicated link coupling. In the final amplifier, the rotors of the split-stator condenser are isolated from ground and placed at the same d.c. potential as the stators by direct connection to the positive highvoltage lead. This requires suitable insulation from the chassis and an insulated coupling for the control shaft. This connection, however, permits a reduction in tank-condenser-plate spacing of 50 per cent with a corresponding reduction in the over-all size of the condenser. The condenser
spacing specified for C_{4} is conservatively adequate for 100 per cent modulation at 1500 volts. No arc-over was experienced on c.w. with the load entirely removed. The condenser provides adequate capacity for all bands including the $1.7-\mathrm{Mc}$. band. (If the Johnson coil designed for this band is used, a single-section fixed air padding condenser connected directly across the tank coil will be required. This padder should have an air gap of 0.125 inch and a capacity of $80 \mu \mu \mathrm{fds}$.; the Cardwell type JD-80-OS or a similar condenser should be satisfactory.) For a lowest frequency of 7 Mc ., a tank condenser of $100 \mu \mu \mathrm{fd}$. per section with the spacing specified could be used. (Johnson 100ED30.)

Series plate feed was found to be essential in the final amplifier because no available r.f. choke was found adequate at 28 Mc . If operation is to be confined to a highest frequency of 14 Mc., there is no reason why parallel plate feed may not be used and the tank condenser mounted directly upon the chassis. The revised tank circuit is shown in Fig. 2. The extra receiving-type r.f. choke will eliminate any possible trouble from the forming of a double tank circuit which might be the case should the rotors be connected directly to the center tap of the tank coil.

Keying and Metering

The diagrams of Fig. 3 show the terminal arrangement and connections for either oscillator or buffer-doubler keying. The latter is recommended whenever break-in operation is not required. Keying of the buffer-doubler eliminates the necessity for a source of fixed bias for the 807 and invariably results in superior keying characteristics.

It will be noticed that the plate meters are placed in the negative return leads for the purpose of reducing danger. 'These meters, of course, read total space current which includes grid and

This article describes a three-stage transmitter of simple construction and operation. Tuning controls have been reduced to a minimum. The single-tube final amplifier will handle an input of 250 watts for c.w. or plate-modulated 'phone at a plate voltage of 1500 .
screen currents as well as plate current. The former are low enough to be of little consequence in all but the final stage. Here the grid current, should be subtracted from the plate-meter reading to obtain the true plate current.

Constructional Details

A standard 10-by-17-by-3-inch chassis will accommodate all of the apparatus without crowding. Referring to the photographs, the size of the
final tank condenser at the right-hrnd end of the chassis dictates the height of the top row of controls on the panel. It is mounted on a National XS-6 button-type feed-through insulator at each end. This brings the shaft $41 / 2$ inches above the lower edge of the chassis and that of the panel which is $101 / 2$ inches high. The center line of the condenser is 3 inches in from the right-hand edge of the chassis or 4 inches in from the edge of the 19 -inch panel. Since there is not room to spare

$\mathrm{C}_{1}-260 \mu \mu \mathrm{fd}$. max. mica trimmertype cathode tuning condenser (mounted in coil form, see text) (Hammarlund CTS-160).
$\mathrm{C}_{2}-250 \mu \mu \mathrm{fds}$. max. midget variable (Hammarlund MC. 250M).
C;s-260 $\mu \mu \mathrm{fds}$. max., plate sparing 0.03 in. (Cardwell MR260BS).
$\mathrm{C}_{4}-200 \mu \mu \mathrm{fds}$. max. per section,
RFC. C_{1} - Receiving-type r.f. choke, 2.5 mb . (National or Hammarlund).
RFC_{2} - Transmitting-type r.f. choke (National R154U).
s-11-point tap switch (Mallory type 13111).
T_{1} - Filament transformer, 6.3 v., 2 a. ('Thordarson type T19F81).
T_{2} - Filament transformer, 5 v., 8 a. (Thordarson type T19F84).

1. - I. 7 -Mc. crystal - 30 turns No. 22 enam., $11 / 2$ in. diam., turns close-wound.
3.5-Mc. crystal - 10 turns No. 22 enam., $1 \frac{1}{2}$ in. diam., lin. long.
i-Mc. crystal - 7 turns No. 22 enam., $11 / 2 \mathrm{in}$. diam., 1 in . long.
$1.2-1.7$ to 3.5 Mc . -30 turns No. 22 enam., $1 \frac{1}{3}$ in. diam., 1 in. long.
3.5 to $7 \mathrm{Mc} .-18$ turns No. 22 enam., $11 / 2$ in. diam., $11 / 2$ in. long.
7 to 14 Mc . 8 turns No. 22 enam., $1 \frac{1}{2} \mathrm{in}$. diam., $11 / 4 \mathrm{in}$. long.
Ls - 1.7 to 3.5 Mc. - Barker \& Williamson type M-80 with 15 turns removed. tapped at l0th turn from the plate end. Inductance - $27 \mu \mathrm{hy}$. Coil same as L_{2} may be substituted. Tap at approximately 8 th turn from plate end.
3.5 to 7 Mc. - B\&W type M- 10 with 8 turns removed, tapped at Sth turn from plate end. Inductance $-8 \mu \mathrm{hy}$. Coil same as L_{2}, tapped
$\mathrm{C}_{10}-0.01-\mu \mathrm{fd}$, paper, 600 volts.
$\mathrm{K}_{1}-0.1-\mathrm{me}$ g., 1 -watt, non
inductive.
$\mathrm{R}_{2}-50,000$ ohms, 1 -watt, non-
inductive (see text).
$\mathrm{R}_{3}-10,000$ ohms, 2 -watt.
$\mathrm{R}_{4}-10,000$ ohms, 10 -watt.
$\mathrm{R}_{5}-10,000$ ohms, 25 -watt.
$\mathrm{R}_{8}-30,000$ ohms, $10-$ watt.
$\mathrm{R}_{7}-15,000$ ohms, 10 -watt.
$\mathrm{L}_{5}-0.001-\mu \mathrm{fd}$. mica, 500 volts.
$\mathrm{C}_{6}-0.0001-\mu \mathrm{fd}$. mica, 500 volts.
$\mathrm{C}:-0.0001-\mu \mathrm{fd}$. wica, 2500 volts (Aerovox).
$\mathrm{C} \otimes=0.001-\mu \mathrm{fd}$. mica, 5000 volts (Aerorox).
$\mathrm{C}_{9}-$ Neutralizing condenser (Na -
at 6th turn from plate end may be substituted. 14 Mc. - B\&W type M-20, tapned at 3rd turn from plate end. Inductance $-2.8 \mu \mathrm{hy}$. Coil of 10 turns, $11 / 2 \mathrm{in}$ diam., $11 / 2 \mathrm{in}$. long, tapped at 3rd turn from plate end may be substituted.
28 Mc - - B\&W type M-10, 1 turn removed, tapped 1 turn from plate end, Inductance $0.6 \mu \mathrm{hy}$. Coil of 4 turna, $11 / 2 \mathrm{in}$. diam., $11 / 2$ in long, tapped at 1 turn from plate end may be substituted.
$\mathrm{L}_{4}-1.7 \mathrm{Mc}$.-Johnson type 684 coil. (Note: This coil requires additional padder condenser as mentioned in text.) Coil of 50 turns No. 18 d.c.c., $23 / 2 \mathrm{in}$. diam., 4 in . long including $3 / 8$-in. space at center may be substituted, and will not require padder.
3.5 Mc. - Johnson type 663 coil. Coil of 34 turns No. 16, $2 \frac{1}{2} \mathrm{in}$. diam., 4 in . long including $1 / 2$-in. space at center may be substituted.
7 Mc. Johnson type 662 coil. Coil of 20 turns No. 12, $21 / 2 \mathrm{in}$. diam. 4 in . long including $1 / 2 \mathrm{in}$. space at center may be substituted.
1.4 Mc. - Johnson type 661 coil. Coil of 10 turns No. $12,21 / 2$ in. diam., 3 in. long including $1 / 2 \cdot \mathrm{in}$. space at the center may be substituted.
28 Mc . - Johnson type 660 coil. Coil of 6 turns No. 12, $21 / 4 \mathrm{in}$. diam., $31 / 2 \mathrm{in}$. long including I-in. space at the center may be substituted. Note: Spaces above are for link windings.

Rottom view. The nseillator plate tuming condenser is mounted underneath near the osrillator tube and coil sockets. Space is available for both filament transformers. The terminal strip is mounted on angle trackets hack of the opening in the rear edge of the chassis.
at this point, the condenser should be mounted as far to the rear of the chassis as possible. This leaves just enough room for a small Cardwell isolantite flexible shaft coupling between the front condenser bearing and the panel. The shaft hole in the panel should be a snug fit for the shaft to form a bearing.
The final tank-coil plug-in strip is supported by a pair of 5%-inch cone insulators fastened to a strip of $1 / 4$-inch Presdwood supported by the angle pieces supplied with the condenser. The isolating condenser C_{8} is bolted to the rear end plate of the tank condenser. The plate-circuit r.f. choke and a feed-through insulator for the highvoltage line are to the right of the tank assembly, while the 75 T and its neutralizing condenser to the left are easily identified. The wire grid and plate terminals of the tube are fitted with heatradiating connectors. The sockets for both the 75 T and 807 are set $11 / 4$ inches below the chassis on long machine screws to bring the plate terminals down near the tauks.

The buffer-doubler tank condenser C_{3} is located with its shaft running at the center of the chassis. To bring the shait up level with that of the final tank condenser, and to bring its terminals up near the plate cap of the 807 to the left, it is mounted with the brackets furnished with the condenser upon $5 / 8$-inch cone stand-off insulators with $1 / 4$-inch spacers on top of the standoffs. A feed-through insulator with a $5 / 8$-inch top replaces the stand-off at the right rear corner for making contact between the condenser rotors and the positive 600 -volt terminal. The buffer tank-coil socket is mounted on top of the condenser. Here it was found necessary to use an older type of socket which accounts for the peculiar angle of the axis of the coil. The small plug-in coils do not fit easily in later-type sockets with smaller pin holes.

The grid coupling condenser C_{7} is mounted on a small stand-off insulator between the 807 and the 75 T . The grid-circuit ehoke of the final is suspended by its leads between the grid end of the coupling condenser and a small feed-through bushing.
The 6V6 and the obcillator eath-ode-rircuit tank are side by side to the rear of the crystal mounting and the oscillator plate-tank ecoil is to the rear. As mentioned previously, each of the cathode tank-coil forms is fitted with an adjustable mica padder. The type of condenser specified is a dual-range affair. For our purpose, the two sections should be connected together. This is done by connecting the two adjacent terminal tabs together. Since it would be difficult to pass both wires for the ends of the coil and connecting wires for the condenser through the same pins in the coil form, it separate pair of pins is used for each purpose and the appropriate socket prongs connected together so that the condenser is connected across the coil when it is plugged into its socket. In mounting the condenser in the coil form, a piece of fairly stiff wire (the No. 22 with which the coils are wound will do) about 6 inches long should be soldered to each condenser terminal and the leads pulled out straight and the insulation scraped off from all but the last 2 inches or so nearest the condenser. The leads may then be fished down through the appropriate pins in the form, pulled tight and soldered fast. Although not required, a mounting is provided in the Hammarlund coil form for fastening the condenser in with a No. 4-36 machine screw.

Crystal Mounting

The crystal mounting is made from a strip of $3 / 16$-inch aluminum 3 inches wide and 15 inches long. Starting at one end of the strip, lines are marked across the strip at $1 / / 2$ inch, $15 / 6$ inches. 2^{3} in inches, 4316 inches, $5 \frac{1}{4}$ inches, $6 \frac{1}{16}$ inches, $71 / 2$ inches, 81516 inches, $93 / 1$ inches and $141 / 2$ inches from the end. Longitudinal lines are then drawn the length of the strip $1 / 4$ inch, $23 / 32$ inch and $13 / 16$ inches from each edge. This will serve to mark the centers of all required mounting and clearance holes for the Hammarlund crystal sockets. The mounting screws take a No. 33 hole and the clearance holes are ${ }^{\text {Fin }}$ - -inch diameter. After the holes have been drilled, the strip is bent at the $1 / 2$-inch, $5 \frac{1}{4}$-inch, $93 / 4$-inch and $141 / 2$-inch lines which are scratched deeply to assist in the bending.

The 11-point crystal switch is wired to the sockets before mounting in the panel in a hole 4 inches from the left edge of the panel and $41 / 2$ inches up from the bottom edge to balance the
shaft of the tank condenser of the final amplifier.
Referring now to the photograph of the under side of the chassis, we see the oscillator plate tank condenser mounted without insulation at the center of the three oscillator sockets with its shaft in a line below that of the crystal switch. The 6.3-volt filament transformer for the 6V6 and 807 is immediately behind the 807 socket and the 5 -volt transformer for the 75 T in the right rear corner. The various by-pass condensers, grid-leak resistors, and r.f. chokes are supported by their own wire leads wherever possible and are located at any convenient points as close as possible to the tube terminals to which they are connected. Voltage-divider resistances are mounted wherever a convenient mounting can be made. 'The grid leaks, r.f. chokes and C_{5} and C_{6} should be kept at least a half-inch away from the chassis.

Wiring

While any type of terminal strip might be used, the type shown in the photograph was chosen because the metal portions are not exposed to accidental contact. The strip is set back of a $1 / 2-$ inch wide opening cut in the rear edge of the chassis. The contacts are $1 / 4$ inch inside the rear edge and connections are made with small bakelite-insulated "'phone tip" plugs. The positive high-voltage terminal is a jack-top feedthrough insulator taking a standard banana plug. A rubber-tubing sleeve should be pulled over the wire and the top of terminal after connection of the high-voltage wire has been made so that there is no metal exposed.

The positioning of the various components is such that all wiring of any special importance is quite obvious. It is necessary only to follow the oft-repeated rule to run the r.f. connections with fairly heavy wire (No. 14) directly from point to point in as straight lines as possible, keeping them well spaced from the chassis and other groundpotential points. The low-potential wiring, usually done first, is bunched where convenient and kept close to the chassis. Push-back wire will be satisfactory for all except the positive 1500 -volt line. This should be run in well insulated highvoltage wire. The wiring should be checked

Fig. 2 -.... Parallel plate feed for the final amplifier will simplify construction and is suggested if $28-\mathrm{Mc}$. operation is not desired.

EXCITER TUNING TABLE

Ntal	Output Freq. Freq.	L_{1}	L_{2}	$=L_{3}$	C.	Cs
$* 1.7$	1.7	1.7	$1.7-3.5$	$1.7-3.5$	high	high
1.7	3.5	1.7	$1.7-3.5$	$1.7-3.5$	high	low
$* 1.7$	3.5	1.7	$1.7-3.5$	$1.7-3.5$	low	low
$* 1.7$	7	1.7	$1.7-3.5$	$3.5-7$	low	low
$* 3.5$	3.5	3.5	$1.7-3.5$	$1.7-3.5$	low	low
3.5	3.5	3.5	$3.5-7$	$1.7-3.5$	high	low
3.5	3.5	3.5	$3.5-7$	$3.5-7$	high	high
3.5	7	3.5	$3.5-7$	$3.5-7$	high	low
$* 3.5$	7	3.5	$3.5-7$	$3.5-7$	low	low
3.5	7	3.5	$7-14$	$3.5-7$	high	low
$* 3.5$	14	3.5	$3.5-7$	14	low	low
3.5	14	3.5	$7-14$	14	high	low
7	7	7	$3.5-7$	$3.5-7$	high	low
$* 7$	7	7	$3.5-7$	$3.5-7$	low	low
7	7	7	$7-14$	$3.5-7$	high	low
7	14	7	$3.5-7$	14	low	low
$* 7$	14	7	$7-14$	14	high	low
7	14	7	$7-14$	14	low	low
$* 7$	28	7	$7-14$	28	low	low
$* 7$						

carefully before any voltages are applied to the transmitter.

Biasing Requirements

Before setting the transmitter up for test and use, some thought must be given to the biasing problem. The 807 requires 90 volts of fixed bias if the oscillator is to be keyed for break-in operation and the 75 T requires approximately 150 volts for plate-current cut-off with excitation removed and 300 volts under recommended operating conditions. Adjustment is simplest when batteries are used for bias but, unfortunately, the initial cost of four 45 -volt units is rather high and the life to be expected with high grid currents short. If batteries are used, the biasing is simply a matter of connecting a $4000-\mathrm{ohm}$ leak in series with the negative-terminal connection of 150 volts of battery to the grid return circuit of the 75 T and tapping the 807 grid return on at 90 volts. However, a bias pack will be more practical in most instances. The pack should preferably be one delivering any voltage from 175 to 300 volts. If the voltage does not exceed 300 volts, nothing more than a 10,000 -ohm bleeder will be required to make it satisfactory. An r.f. choke should replace R_{2} and the return connected to a point about $2 / 3$ of the way up on the bleeder from the positive end. The lower end of the choke should be by-passed to the chassis with a $0.01-\mu \mathrm{fd}$. condenser.

If the voltage of the pack exceeds 300 volts, the bleeder should have a resistance of about 3000 ohms per 100 volts and should be provided with three sliders for adjusting the biasing voltages under operation. One slider should short-circuit a portion of the negative end of the resistor while the other two provide bias taps for the 807 and final. For initial trial, tap the return of the final amplifier at about 6000 ohms and the 807 at
about 3500 ohms from the positive end with the third slider set at the extreme negative end.

If the buffer-doubler is to be keyed, the grid leak R_{2} is connected through the meter to ground and no fixed bias is required for this stage.

Testing

After making the external connections as shown in Fig. 3, the next step is to select an appropriate set of coils. From the coil table, it will be seen that a separate cathode tank is required for crystals of each frequency band from 1.7 to 7 Mc . Each oscillator plate tank coil is designed to cover two adjacent bands for convenience in changing bands. Only two coils, the first and last, need be wound if frequent change between 3.5 and 7 Mc . is not required. Likewise, in the buffer-doubler stage, each of the two lowestfrequency coils covers two bands. All of these are required, however, if all bands are to be covered. A separate coil for each band is required for the final amplifier.

Several coil and tuning combinations are possible for most output frequencies. The oscillator will double frequency as well as the doubler itself, so that it is possible to go to $7-\mathrm{Mc}$. output from a $1.7-\mathrm{Mc}$. crystal, 14 Mc . from a $3.5-\mathrm{Mc}$. crystal or to 28 Mc . from a 7 -Mc. crystal. The table shows various combinations which may be used.

OSCILLATOR KEYING

BUFFER-DOUBLER KEYING
Fig. 3-Terminal and meter connections. A-For oscillator break-in keying. B - For buffer-doubler keying.

Certain combinations should be selected (such as those marked with an asterisk) until the operator is thoroughly familiar with the transmitter. Later, it will be a simple matter to swing the exciter from one band to another with the most appropriate coils in place.

With a set of suitable coils plugged in, C_{2} and C_{3} should be turned near minimum or maximum capacity, depending upon the frequency desired in these circuits. Make certain that the crystal switch is turned to connect in the desired crystal and turn the adjusting screw of the cathodecircuit condenser as far as possible in a clockwise direction. 'The filament supply, the bias pack and the 600 -volt plate supply may now be turned on in that order. If the key is the oscillator circuit (recommended for initial test), none of the meters should indicate current flow with the kev open. With the key closed, the oscillator plate current should be 20 to 30 ma . if the circuit is not oscillating, dropping to about 15 ma . when oscillating. Adjusting the oscillator plate tank condenser should cause a slight dip in oscillator plate current and a high swing in plate current to the 807 at some point. If this is not obtained at any setting of C_{2}, the oscillator plate current will probably be running high. With the key closed, the adjusting screw of the cathode condenser should be turned slowly counter-clockwise until the oscillator plate current takes a sudden drop. Tuning the plate condenser should then develop two points where plate current will flow to the 807, one near maximum capacity of C_{2} and one near minimum capacity. If only the former is found, a turn or so should be removed until both are found. If, on the other hand, only the one near minimum is found, a turn or two should be added. The key should be closed only for short intervals until the tank circuit of the $807, L_{3} C_{3}$, is tuned to resonance as indicated by a dip in plate current.

Adjusting the Cathode Tank

Now tune the plate circuit of the oscillator to the second harmonic of the crystal frequency, making sure that a coil tuning to this harmonic frequency or double this harmonic frequency is in the plate circuit of the 807. (In the case of $3.5-\mathrm{Mc}$. erystals, either coil covering 7 Mc. will do.) Tune the plate circuit for maximum 807 grid current and then adjust the cathode condenser also for maximum grid current. Any grid current value between 2 and 5 ma . should be satisfactory. With the oscillator cathode circuit tuned correctly, the off-resonance plate current of the 807 will run between 125 and 150 ma., dropping to 60 to 100
(Continued on page 116)

The Series-Valve Noise Limiter

A New Type of Circuit for Chopping Noise Pakks

BY DANA H. BACDN,* WIBZR

EVER since early 1936, when James Lamb presented the first of a series of articles dealing with noise silencers as applied to amateur comtuunications receivers, ${ }^{1}$ innumerable new silencer or limiter circuits have appeared in the various popular radio magazines. The majority of the schemes presented had little merit for, although they appeared to be good theoretically, they failed to work out because one or more of four fundamental considerations were overlooked.
'These factors have been pointed out before but will be listed here and discussed briefly:

1. A good noise silencer must be practically instantaneous in its action.
2. It must have a very definite, adjustable level at which the silencing, or limiting, action starts.
3. The limiting action must be complete after the threshold level has been reached.
4. The silencer should not have any effect upon the signal being received.
Analysis of the silencers used heretofore will show that in many cases they do not fulfill all of the above requirements. For instance, an a.v.c. type of silencer may be too slow in its action and a strong noise pulse will "chop a hole" of appreciable duration in the carrier, in violation of Principle 4 above, and producing a similar effect on the loudspeaker as the original noise pulse. ${ }^{2}$

Other examples of limiters that fall short of theory in practice are the shunt diode types which

Fig. 1 -The series limiter circuit, with infiniteimpedance detector.

$$
\begin{array}{ll}
\mathrm{R}_{1}-0.25 \text { megohm. } & \mathrm{C}_{1}-250 \mu \mu \mathrm{fd} . \\
\mathrm{R}_{2}-50,000 \text { ohms. } & \mathrm{C}_{2}, \mathrm{C}_{2}-0.1 \mu \mathrm{fd} .
\end{array}
$$

$\mathrm{R}_{3}-10,000$-ohm potentiometer.
$\mathrm{R}_{4}-20,000$ to 50,000 ohms.

Abstract

One diode plus a couple of resistors equals one noise-peak-limiting circuit when combined as described in this article. Besides simplicity, it has theoretical and practical advantages over many previously-described circuits. It does an excellent job of reducing QRM from auto ignition and similar peaky noise.

are intended to short either the i.f. amplifier or audio circuits when noise pulses exceed a certain level. Such devices do not, in general, have a sharply defined cutoff action, nor do they adequately short the circuit when a noise pulse is impressed upon them.

The circuit shown in Fig. 1^{3} was devised after an investigation of the more meritorious silencer arrangements. As may be seen, it is very simple and it has been found to be extremely effective. The action is as follows. An adjustable voltage from the potentiometer R_{3} is connected to the diode elements through resistors R_{1} and R_{2}, the polarity being such that a current is maintained between the diode plate and cathode. The diode elements are, therefore, in a conducting condition and will allow audio voltages to pass backwards from cathode to plate, and the circuit between input and output will be complete as long as the diode plate remains positive with respect to the cathode. If, however, a noise peak of sufficient amplitude is impressed upon the input circuit, the diode immediately becomes non-conducting and prevents the noise pulse from reaching the audio amplifier.

It can easily be seen that this arrangement fulfills the four fundamental characteristics outlined above, since it is instantaneous in action, has a sharp adjustable level where silencing action begins, limiting action is complete, and the signal itself is unaffected.
${ }^{2}$ Obtaining a small time constant is an important consideration in the i.f. type of silencer. However, with sulticiently rapid action in a silencer installed at the input end of the i.f. amplifier, the "hole" will largely disappear by the time the signal reaches the second detector, because of the low decrement of the intervening tuned circuits. This is particularly observable when a crystal filter follows the silencer.
The lengthening of the noise pulse also is an argument for applying the silencing or limiting action ahead of all highlyselective cirouits, although this leads to a considerably more complicated arrangement than the simple circuit described here. See QST, April, 1936, page 16. - Edrtor.
${ }^{2}$ Patent applied forl

Photograph of oscilloscope patterns showing the audio signal and an accompanying noise pulse, limiter out, and the same signal with the limiter adjusted to cut the noise peak above the signal.

The fundamental difference between this limiter and others employing diodes is that the diode elements are connected in series, passing the desired signal and eliminating noise peaks, whereas the shunt-connected diode is intended to pass noise peaks without passing the signal. There is, of course, some audio attenuation in the series limiter but this is easily taken care of by increasing i.f. and audio gain.

The sketches shown in Fig. 2 illustrate the action of a detector and the series limiter when a modulated signal attended by noise is being received. It should be noted that the detector automatically eliminates one side of the noise peak, along with one side of the carrier envelope.

It must also be realized that a limiter, no matter how perfect, cannot remove that portion of the noise which has the same amplitude as the signal without introducing serious distortion. In the case of 'phone reception, the limiter will be adjusted so that all desired audio peaks will just pass under the threshold; when receiving c.w. signals, however, the limiter threshold can be
lowered considerably, further reducing noise peaks. Such an adjustment will, of course, cut down the audio volume of the c.w. signal slightly and will change its quality, but both changes are small as compared to the gain in noise reduction.

There are a few more points which should be considered by the amateur who would like to install the series limiter in his receiver. The first thing to consider is the type of second detector which the receiver employs. The so-called infinite impedance diode appears to be most satisfactory for use with the series limiter, since it delivers the positive side of the signal envelope to the limiter diode, and will supply ample voltage without danger of overload. The values shown in Fig. 1 have been found satisfactory.

Most of the common diode detectors, wherein the audio voltage is developed across a high resistance in the plate return circuit, eliminate the negative half of the signal envelope but the remaining positive half builds up negative voltages, with respect to ground, across the load resistor. These negative voltages will not actuate the series limiter in the manner previously described unless the circuit is rearranged. This can be very easily accomplished by following the circuit of Fig. 3, which shows the diode elements interchanged. In this case, the limiter will pass negative voltages up to the point where the plate is negative with respect to the cathode, i.e., up to the threshold, after which the diode becomes an insulator, as previously explained.

The arrangement shown in Fig. 1 is not selfadjusting, since it was developed primarily for use with receivers having flat a.v.c. systems which automatically maintain the detector output level at the proper value. In any case, it is usually advantageous to be able to adjust the limiter control to provide best noise suppression for the particular operating conditions which exist at any given time.

It is important that the second detector be able to supply an audio signal of about ten volts to the limiter circuit. A signal of this magnitude makes possible a good range of control with a sharply defined limiting threshold and avoids the necessity for using a high-gain audio amplifier. Such considerations are, of course, in agreement with the best accepted design practice in communications receivers.

The reader who is familiar with the problems encountered when working with limiter circuits

Fig. 2 Illustrating the action of the detector and limiter. (A) modulated carrier, with noise pulse; (B) rectified output of detector; (C) audio input to limiter; (D) limiter output.

B

C

D
has probably wondered about the blocking effect of strong, steady, noise pulses when they are impressed upon the a.v.c. system. This is, of course, a drawback to a limiter which is connected in the audio circuits, rather than in the i.f. amplifier, but it has been found possible to overcome a.v.c. blocking to a considerable extent by using a separate a.v.c. tube coupled to the i.f. line with a condenser-and-resistor combination, which renders the circuit insensitive to voltage impulses of high amplitude. This feature, together

Fig. 3 - Series limiter as used with detectors such as the ordinary diode, delivering "negative" audio signals. Components have equivalent values given in Fig. 1. The diode load circuit constants are conventional.
with correct adjustment of the time constant of the a.v.c. system as a whole, has been found to constitute a satisfactory solution.

One other point: The c.w. oscillator should not deliver to the second detector any more voltage than is necessary to provide a satisfactory c.w. beat note. If the oscillator voltage at the detector is too great, it will provide a carrier of considerable amplitude for the noise pulses to modulate and, obviously, under such conditions the limiter will have considerably more work to do. As previously stated, however, this difficulty is avoided when the proper amount of c.w. oscillator voltage is employed.

Although the installation of the serics limiter itself in a receiver is very simple, it should be evident from reading the last few paragraphs that the work must be done with care and that results will be satisfactory only if the several factors mentioned above are taken into consideration.

* SPlatter

How did you come out on the historical quiz? Fred Elser, W6GVU, sends the following answers to the questions he put forth on page 10 of September QST:

1. "Curkoids": trade name for a type of coil: (Full name, "curtate epitrochoids.")
2. "Sorsinc" was the trade name of Ship Owners Radio Service, Inc., a firm which suld coils and B-batteries popular with hams 16 years ago.
3. "KiloHertz" is a German term meaning the same as Kilocycle sec.
4. Picofarad was a high brow term for micromicrofarad.
5. Myriacycle - 10,000 cycles or 10 kc .
6. Radiotelescopograph - QST's name (in a cartoon) for television receiver.
7. WNP - Wireless North Pole. WNP was the call of the "Bowdoin," MacMillan's polar ship. Ask Don Mix for further details.
8. O' - Not "Old Timer," but "oscillation transformer."
9. "Modulascope" -- Reinartz' combination Tesla Coil-\&-Pinwheel device for determining the amount of ripple in the plate voltage supply.
10. First advertised price of UV-201-A was $\$ 9.00!$!
Jist before we went to press we received the following letter:
"Paris, France
" QST Magazine
"August 16, 1939
"West Hartford, Conn.
"Editor:
"I hope that you shall find the enclosed article interesting. I further hope that you shall find space for it in an issue in the near future. It has been delayed in reaching you because I have spent the intervening months (since it was written and now) in countries which are world-famous for censoring mail. On general principle they would not let such a story pass, so I was forced to refrain from mailing it until I arrived in Paris. . . ."
This all refers to the "Cruise of the Pang Jin," which was enclosed with the letter. It served to answer many questions in our minds and we rushed it to press, knowing it will do as much for many readers.

Our Cover

This month we are showing in almost life-like fashion a portion of the innards of Don Mix's latest creation. He shows how a few coils, crystals and tubes should be put together to produce a quarter kilowatt - in our lead article this month.

Proof that DX Contests must be getting bigger and better is evidenced by the results of the 1939 struggle. This year we are shooting it complete in one issue because there is so much interest in knowing "what the other guy did," be it in Hideout Junction or Timbuctoo. Particularly of interest should be Ev Battey's résumé of the gear that section- and country-winners used this year. Maybe therein lies the answer to the oft-asked query, "How did he ever roll up that score?"

The shack at VS6BF. On the walls can be seen examples of Chinese art intended for exhibition at the New York World's Fair.

QST de VS6BF, QST de VS6BF, QST de VS6BF, AR K." Over and over I pounded my call. The heavy crashing of the junk sounded dangerous and labored down in the shack. Waves cascaded over the deck, thundering and smashing. 'The barometer was dropping alarmingly and had adready passed a figure lower than I had ever seen before.

I tuned through the 20 -meter band in the hope that someone had heard my call; traffic was heavy. Suddenly the mounting tone of a strong carrier whistled into the headphones. I tuned into it, heard nothing, and then gradually dialed past. Slowly I tuned back. Sharply a voice was saying, "Hello VS6BF, calling VS6BF, Venezuela-Spain-six-Boston-France. ZS6DY, Johannesburg, South Africa, is answering your QST and standing by. Co ahead, please."

I flipped my generator switch and keyed out my reply. "ZS6DY de VS6BF. Chinese junk Pang Jin in severe storm off east central coast Madagascar. Urgently need weather reports and forecasts on direction of cyclone this vicinity. Can you arrange? AR K."

The 'phone came right back. "ZS6DY to VS6BF. Will try to obtain weather info for you immediately. Please QRXX while I check."

The sea was so rough that my receiver would not hold its frequency setting steadily, but I heard bits of ZS6DY's rapid fire calls for weather data. There was one to Durban, another to Cape Town. Then he asked a station in Delagoa Bay to telephone the local coast guard and weather stations. I did not hear the answers, for I was afraid of losing ZS6DY, constant tuning being necessary. Overhead the shouts of the men battling with wind and waves were dimly audible. Conditions

George W. Polk, ex-K7HDW and NU8GP (Shanghai), is a footloose news correspondent who roams the world at will and can usually be found wherever there is trouble and excitement. It was months ago, in Aden near the mouth of the Red Sea, that he met Rex Purcell of the rrew of the Pang Jin. Since then he has been in countries where the fear of censorship prevented his dispatching this yarn. But in August he finally reached Paris, and now here is the story.

The Cruise of the "Pang Jin"

HU HEXX PURCELL, VSGBE,
her destination the San Francisco World's Fair. Since March 24th, when her radio failed during a storm, the Green Dragon has been unreported. She is now given up for lost.
When plans for our trip to New York had become definite, I appealed to Leroy Lewis, radio engineer for the Philippine Aerial Taxi Company, for technical advice and practical assistance on the radio equipment we planned to install. He designed a compact portable transmitter which operated on 'phone or c.w. from a 110 -volt a.c. 300-watt Johnson Iron Horse motor-generator; output was 45 watts. A storage battery, which furnished power for the receiver,

Rex Purcell on the deck of the Chinese junk Pang Jin. was charged by the generator. The single-wire antenna was stretched from mast to mast, but since the booms rose above the mast tops it frequently broke as the sails were shifted. To Leroy go the compliments of all crew-members of the Pang Jin, for under the most trying difficulties his rig operated consistently and well.

Although I hold no amateur license in the United States, I was familiar with radio communication, both 'phone and c.w., because of my experience in the U. S. Army Air Corps. For the past four years I have been flying for the Philippine Aerial Taxi Company, and, as much of our communication was handled through the medium of aircraft radio, I felt capable of assuming the role of operator aboard the Pang Jin.
The British Government agreed to grant me a special license, assigning the call VS6BF. Power was limited to 50 watts, and the license was to become void on arrival in New York. Little did any of us imagine how important those 45 watts at work on $14,136 \mathrm{kc}$. would be during a cyclone in the Indian Ocean.

An interesting side light on the cruise has been the granting of a second call to the Pang Jin. This occurred in the Seychelle Islands, where we landed for a rest soon after the storm. On several occasions there were wild accusations hurled at me when I called "CQ de VQ9AA." Hamdom refused to believe that such a call was supposed to exist. Those ops who were not too hasty in their judgment of the VQ9 prefix added a QSL to their collection which may not be duplicated in the near future.

Eric Lowe, ZS6DY, Johannesburg, was our close companion and tireless helper for the two months since our first QSO during the cyclone. Contacts have also been established with stations scattered in India, Australia, the Philippines, the

United States, the Malay States, China, Japan, the Dutch East Indies, and various other countries. Among the hams whom the Pang Jin has relied on for more or less regular communication are: VS6AG. Hongkong; KA7EF, Fabrica, Negros, Philippines; J2MI, Tokyo; VK5CS, South Australia; KA1JP, KA1BH and KA1AF, all in Manila; KA2OV, Buang, Philippines; PK2WL, Java; VU2FU, Bombay, and ZS1AN, Cape Mowbray, South Africa.
An amusing feature of a few of these QSO's has been the sounds of civilization which have been heard yet not experienced. As we roll and dip our way across various oceans and seas towards America, the noise of an auto's horn or the ringing of a telephone bell, emanating from the loudspeaker, sound strangely out of place. So long unheard are they that they are practically forgotten. Our longest at-sea stretch has been 77 days. Almost at the end of this period we heard Lowe talking with his wife and family. Again we recognized the splash of a tub being filled. How we longed for a hot bath, we of the dirty fingernails and long, flowing beards. The unattainable pleasures of civilization can be trying at times.

Originally our route had been planned to take us from Hongkong to Singapore, thence through the Straits of Malacca and on to the southern tip of the island of Ceylon. Here we expected to take advantage of the northeast monsoon season and sail to the southwest across the Indian Ocean to

the Cape of Good Hope. From Good Hope we were to continue to New York over the waters of the Atlantic. These plans have been altered, however, because of the cyclone which drove us from our course, and because of the change in the monsoon season.

The monsoons of the Indian Ocean are steady winds which blow from the northeast to the southwest from December to June, and then turn and blow in the opposite direction for the next six months. A sailing ship finds beating against a monsoon all but impossible. We took the chance of completing our passage to Cape Town before the change in season, although we realized how late our start had been. We figured without the gale off Madagascar. The monsoon turned and blew against us after the storm. We then decided
to attempt reaching the United States via the Seychelle Islands, Aden, the Red Sea, the Mediterranean and the Atlantic Ocean.

Here in Aden, at the southern tip of Arabia, we are still faced with adverse winds in the Red Sea. New York is yet thousands of miles distant, but we are determined: It is New York or bust!

News Bulletin: Five days out of Aden, Arabia, the Chinese junk Pang Jin, bound Hongkong to New York, sank in the Red Sea. All members of the crew were saved by the Greek freighter S.S. Olga E. Embiricos. Due to extremely rough seas and high winds the survivors were unable to salvage anything but a few personal belongings. (From the London Times.)

Kansas State Convention

(Midwest Division)
Topeka, Kansas, Detober 7th-8th
${ }^{T}$ He 12th Annual A.R.R.L. Convention sponsored by the Kaw Valley Radio Club will be pitched October 7 th and 8th at the Kansan Hotel, Topeka, Kansas. New speakers; new features; new laughs. A "bang-up" program all around
with prizes for hams and the ladies, too. What more could be desired?

Make reservations now. Write, call or wire Earl Johnson, 624 Roosevelt Street, Topeka. Kansas.

$$
\begin{aligned}
& \text { SWITCH } \\
& \text { TO SAFETY! }
\end{aligned}
$$

Navy Day Receiving Competition

To He Held on Detober 27th
Amessage to radio amateurs from the Secretary of the Navy will be transmitted on Navy Day, October 27th. In connection with this message A.R.R.L. will conduct the Fifteenth Annual Navy Day Receiving Competition. All amateurs are invited to take part in this activity, which constitutes amateur radio's participation in the celebration of Navy Day.

Two messages will be transmitted, one from Radio Washington (NAA), the other from Radio San Francisco (NPG). These messages will be substantially the same in thought but will vary slightly in wording. A letter of appreciation from the Navy Department will be sent to every amateur who makes perfect copy of the text of one message. Both messages may be copied, but only the best copy should be submitted in the competition. It is not necessary to copy both stations, and no extra credit is given for so doing. However, if both stations should be copied, please mention the fact when submitting your best copy so that the number of operators copying each station may be ascertained. Only the text (including any punctuation therein) of each message will count (not the preamble, break signs, and the like). Copy what you hear. Do not guess! Credit will of course be deducted for logging anything that was not actually transmitted!!

Mail copies for grading to the A.R.R.L. Communications Department, West Hartford, Conn. Send your original copies - recopying invites errors. An Honor Roll of letter winners and all other participants will appear in QST. The relative standings of the various Naval Districts will be determined by comparing the number of letters awarded with the number of copies submitted from each District. In submitting copy please mention it if you are a member of the Naval Communication Reserve.

Transmissions will be at approximately 25 words per minute and will be preceded by a fiveminute CQ call on the following schedule: From Washington: NAA, 9:00 p.M., E.S.T., simultaneously on 4045 and 8090 kcs. From San Francisco: NPG, $7: 30$ P.M., P.S.T., simultaneously on 4045 and 9090 kcs.

The Infinite Impedance Detector

Nome Uses of Cathode-Coupling in Superheterodyne Heceivers

Practically all of the broadcast and short-wave receivers available to-day use a diode second detector, primarily because it is capable of handling large signals and offers a convenient source of a.v.c. voltage. The diode is, however, far from the ideal type of second detector. During the positive portion of each i.f. cycle, current flows through the diode and by-pass condenser C_{1} (Fig. 1-A) which has a low impedance to the intermediate frequency. This has the same effect as putting a resistor across the secondary of the transformer, the equivalent resistance value being determined by the internal resistance of the diode, which is quite low in most cases. Thus the transformer no longer works into the practically infinite resistance normally offered by the grid circuit of a vacuum tube (as it does in the i.f. amplifier) but into a low resistance load determined by the operating point of the diode. The effect is called "loading" of the transformer, and it destroys the selectivity of that transformer. The loading can be reduced somewhat by using a high value of load resistor (which changes the operating point of the diode), but as this is done the audio distortion increases and the percentage of modulation that the detector can handle without distortion decreases. If the audio voltage is taken from a tap on the load resistor, the modulation capability is improved but the available audio voltage is decreased in proportion to the tapping-down on the load resistor. The fact that the diode contributes no gain (actually a slight loss) is unimportant in modern applications, where double tubes that incorporate a triode amplifier as well as the diode rectifier are used.

The ordinary "plate" detector consists of a vacuum tube (usually a triode) with its control grid biased very nearly to cut-off and an audio load resistor or transformer in the plate circuit. Because of the lack of symmetry about the grid operating point, an incoming signal will cause an increase in plate current in accordance with the average value of the positive half-cycles of radio frequency. This variation corresponds to the signal, as represented by the envelope of the r.f. The plate current therefore consists of a d.c. current, determined by the carrier strength, upon which is super-imposed the audio signal. Ordi-

Recent publicity given to the "infinite impedance" detector has prompted a number of inquiries about the system. We present some of the pros and cons.

Fig. 1 -The second detector circuits under discus. sion. The conventional diode rectifier is shown at A , while B shows the "infinite impedance" type of detector. C is the diagram of a cathode-coupled i.f. amplifier.
narily the audio signal is obtained for the following amplifier by placing an audio load such as a choke or high resistance in the plate circuit and coupling the audio signal that develops across this load to the amplifier through a large condenser. However, since the plate current also appears in the cathode current the load resistor can just as easily be put in the cathode circuit. It will then serve as a load resistor and, in addition, the steady d.c. drop through this resistor will supply the necessary grid bias, automatically adjusting it to different carrier levels. This is exactly what is done in the "infinite impedance" detector.

Although the infinite impedance detector is at least several years old, it is just recently that it has been incorporated in some of the new receivers, giving rise to speculation as to its possible advantages in amateur work. In its simplest form, as shown in Fig. 1-B, the load resistor R_{1} is bypassed for the intermediate frequency by C_{1} and the plate is by-passed for audio frequencies by C_{3}. The rectified audio component is coupled to the audio amplifier through C_{2}. The input impedance is nearly a pure capacitive reactance which becomes part of the tuned circuit without loading it, and thus the gain and selectivity are
(Continued on page 110)

* What the leagur is doing a

ELECTION NOTICE

To all members of the American Radio Relay League residing in the Dominion of Canada and in the Atlantic, Dakota, Delta, Midwest, Pacific and Southeastern Divisions:

You are hereby notified that, in accordance with the constitution, an election is about to be held in each of the above-mentioned regions to elect both a member of the A.R.R.L. Board of Directors and an alternate thereto. In the case of the Dominion of Canada the election is to choose a Canadian General Manager and an alternate Canadian General Manager, for the 1940-1941 term. In the case of the United States divisions, the election is to choose a division director and an alternate division director for the 1940-1941 term. Your attention is invited to Sec. 1 of Article IV of the constitution, providing for the government of A.R.R.L. by a board of directors; Sec. 2 of Article IV, and By-Law 12, defining their eligibility; By-Laws 13 to 24, providing for the nomination and election of division directors and their alternates; By-Laws 28 to 35 providing for the nomination and election of a Canadian General Manager and an alternate thereto. Copy of the Constitution \& By-Laws will be mailed any member upon request.

Voting will take place between November 1 and December 20, 1939, on ballots that will be mailed from the headquarters office in the first week of November. The ballots for each election will list, in one column, the names of all eligible candidates nominated for the office of director by A.R.R.L. members residing in that region; and, in another column, all those similarly named for the office of alternate. Each member will indicate his choice for each office.

Nomination is by petition. Nominating petitions are hereby solicited. Ten or more A.R.R.L. members residing in any one of the above-named regions may join in nominating any eligible member of the League residing in that region as a candidate for director therefrom, or as a candidate for alternate director therefrom. No person may simultaneously be a candidate for the offices of both director and alternate. Inasmuch as the by-laws were recently amended to transfer all the powers of the director to the alternate in the event of the director's death or inability to perform his duties, it is of as great importance to name a candidate for alternate as it is for director. The following form for nomination is suggested:

Fxecutive Committee

The American Radio Relay League West Hartford, Conn.
We, the undersigned members of the A.R.R.L. residing in the Division (or in the Dominion of Canada), hereby nominate \qquad of , as a candidate for DIRECTOR (or for Canadian General Manager); and we also nominate , of f. for ALTERNATE DIRECTOR (or for alternate Canadian General Manager); from this region for the 1940-1941 term.
(Signatures and addresses)
The signers must be League members in good standing. The nominee must have been both a member of the League and a licensed radio amateur operator for a continuous term of at least four years immediately preceding receipt by the Secretary of his petition of nomination, except that a lapse of not to exceed ninety days in the renewal of the operator's license and a lapse of not to exceed thirty days in the renewal of membership in the League, at any expiration of either during the four-year period, will not disqualify the candidate. He must be without commercial radio connections: he may not be commercially engaged in the manufacture, selling or renting of radio apparatus normally capable of being used in radio communication or experimentation, nor commercially engaged in the publication of radio literature intended, in whole or part, for consumption by licensed radio amateurs. Further details concerning eligibility are given in By-Law 12. His complete name and address should be stated. The same requirements obtain for alternate as for director. All such petitions must be filed at the headquarters office of the League in West Hartford, Conn., by noon E.S.T. of the 20th day of October, 1939. There is no limit to the number of petitions that may be filed on behalf of a given candidate but no member shall append his signature to more than one petition for the office of director and one petition for the office of alternate. To be valid, a petition must have the signatures of at least ten members in good standing; that is to say, ten or more members must join in executing a single document; a candidate is not nominated by one petition bearing six signatures and another bearing four. Petitioners are urged to have an ample number of signatures, since nominators are frequently found not to be members in good standing. It is not necessary
that a petition name candidates both for director and for alternate but members are urged to interest themselves equally in the two offices.

Present directors and alternates for these regions are as follows: Dominion of Canada: Canadian General Manager, Alex Reid, VE2BE, St. Lambert, P. Q.; Alternate Canadian General Manager, Alex Lariviere, VE2AB, Quebec, P. Q. Atlantic Division: director, Walter Bradley Martin, W3QV, Rosiyn, Pa.; alternate, Raymond E. Macomber, W3CZE, Washington, D. C. Dakota Division: director, Fred W. Young, W9MZN, Mankato, Minn.; alternate, none. Delta Division: director, E. Ray Arledge, W5SI, Pine Bluff, Arkansas; alternate, E. H. Treadaway, W5DKR, New Orleans, La. Midwest Division: Floyd E. Norwine, jr., W9EFC, St. Louis; alternate, none. Pacific Division: director, J. L. McCargar, W6EY, Oakland, Calif.; alternate, Elbert Amarantes, W6FBW, San José, Calif. Southeastern Division: director, Bennett R. Adams, jr., W4EV, Homewood, Albama; alternate, S. J. Bayne, W4AAQ, Birmingham.

These elections constitute an important part of the machinery of self-government in A.R.R.L. They provide the constitutional opportunity for members to put the direction of their association in the hands of representatives of their own choosing. Members are urged to take the initiative and to file nominating petitions immediately. For the Board of Directors:

> K. B. WARNER, Secretary

August 1, 1939

W.ASHINGTON NOTES

F.c.C. has a new chairman, James L. Fly, of Texas, former general counsel of the T.V.A. Mr. McNinch was obliged to resign because of continued bad health. . . . On July 21st the Senate consented to the ratification of the Cairo regulations, no opposition being expressed. ... The Santiago Inter-American Conference has been called for January 17 th , and preparatory work has been expected to begin soon. Whether it (and the Stockholm C.C.I.R.) will now be postponed because of the war, we don't yet know. . . . Maybe $1715-2000$ will get shifted to $1750-$ 2050 after all. . . . Some trivial amendments of our regs are under way. Only one of significance is granting us carrier-on operation above 112 Mc Nothing has yet been done about revising the examination questions. . . B.c.l. QRM complaints run $921 / 2 \%$ against 'phone. Early in 1936 they were running 38% c.w. 1.7-Mc. 'phone causes more than half the complaints.
F.C.C. has a general campaign mapped out against diathermy and ignition QRM, and some progress is being made.

financial statement

Businesswise, A.R.R.L. had a relatively excellent second quarter this year, accumulating only a small operating loss and entering the second half of the year somewhat ahead of the corresponding position last year. The operating statement is published below for your information, at the instructions of the Board of Directors.
statement of revenue and expenses exCLUSIVE OF EXPENDITURES CHARGED TO AP. PROPRIATIONS, FOR THE THREE MONTHS ENDED JUNE 30, 1939 REVENUES

Membership dues	\$10,253.16	
Advertising sales, QST	21,054.17	
Advertising sales, Handbook	6,475.55	
Newsdealer sales, QST	10,510.33	
Handbook sales	5,953.34	
Spanish edition Handbook revenues.	2,518.00	
Booklet sales.	2,472.64	
Calculator sales	286.15	
Membership supplies sales	1,812.37	
Interest earned.	398.08	
Cash discounts received.	222.40	
Bad debts recovered.	13.80	\$61,969.99
Deduct:		
Returns and allowances	\$ 3,008.39	
Exchange and collection charges. .	14.05	
Cash discounts allowed.	470.01	
	\$ 3,492.45	
Less decrease in reserve for newsdealer returns of QST	437.83	3,054.62
Net Revenues.		\$58,915.37

Publication expenses, QST. $\$ 15,690.04$		
Publication expenses, Handbook	3,763.74	
Publication expenses, booklets...	948.55	
Publication expenses, calculators	144.51	
Spanish edition Handbook expanses.	1,089.65	
Salaries.	23,799.83	
Membership supplies expenses.	1,145.76	
Postage.	1,348.43	
Office supplies and printing	1,094.47	
Travel expenses, business.	1,438.53	
Travel expenses, contact.	437.36	
QST forwarding expenses.	1,187.19	
Telephone and telegraph	500.60	
General expenses.	1,215.86	
Insurance.	85.54	
Rent, light and heat.	1,112.00	
General Counsel expenses	278.89	
Communications Dept. field ex- penses.........................	172.71	
Headquarters Station expenses.	370.73	
World's Fair exhibit expenses.	182.70	
Bad debts charged off. . .	2,697.63	
Provision for depreciation of:		
Furniture and equipment.	302.28	
Headquarters station	448.88	
Total Expenses 59, 505.86		
Net Loss before expenditures against appropriations		490.49

OSL BUREAUS

While the A.R.R.L. QSL Bureau is supposedly a one-way system, distributing foreign cards to W-K amateurs, many American amateurs have also sent their foreign cards to us for
(Continued on page 118)

How to Figure Grid-Bias Requirements

BY MAIENEIR SELVIDGE,* WgBOE

Abstract

One of the most confusing problems that crops up with new-comer and oldtimer alike is that of calculating the grid-bias resistor. Here's a clear and simple explanation that should clean up that problem in no more time than it takes to read these pages.

Jodging from the amount of mail received on the subject by tube manufacturers, the problem of figuring out the bias voltage requirements for a transmitting tube has a lot of amateurs guessing. The object of this article is to describe how the value of bias is found for three different cases. First, when grid leak bias is used. Second, when a combination of grid leak and battery or fixed bias is used. Third, when cathode bias is used. No attempt will be made to discuss the construction of bias supplies, but rather the computation of how much bias is required.

We are going to assume that the proper value of total grid bias for the tube, or tubes, is known. The tube manufacturer specifies in his tube ratings the proper amount of total grid bias appropriate for each kind of operation of his tubes, so this figure should be available. If you are going to operate the tube at some other value of bias than that specified by the manufacturer, we will assume that you know that value, and incidentally hope that you knew what you were doing when you arrived at it. In either case, these remarks will apply. For purposes of illustration we shall use data taken on an actual tube which we shall call the OK-73. These values are shown in Table 1. We shall consider only the case for Class-C telegraph operation. Computation for other methods of operation would be made in a similar fashion.
*.Associate Engineer, Taylor Tubes, Inc., Chicago, Ill.

Grid-Leak Bias

The simplest case to consider is that of gridleak bias alone. If the tube or tubes are connected as shown in Fig. 1, and r.f. voltage is introduced into the grid circuit from the driver stage, the grids will be driven alternately positive and negative. When they are negative with respect to the filament, no current will flow in the grid circuit, but when they swing positive, electrons will be attracted to them and current will flow thru the grid resistors, R_{1} and R_{2}, to the filament. This will be a pulsating d.c. and will appear as a steady current on the d.c. milliammeters shown in the grid return circuits. This current flow thru the resistors causes a d.c. voltage drop across them, with the grid end negative. For the singleended case of Fig. 1A, we wish the grid to have a negative potential of 130 volts, when the grid current is 25 milliamperes. The size of the necessary resistance R_{1} is found by applying Ohm's Law, the volts drop across the resistor (E_{c}) being equal to the product of the current in amperes $\left(I_{0}\right)$ times the resistance in ohms (R_{1}).

$$
\begin{aligned}
E_{c} & =I_{g} R_{1} \\
130 & =0.025 R_{1} \\
R_{1} & =\frac{130}{0.025}=5200 \mathrm{ohms}
\end{aligned}
$$

In Fig. 1B we want the grids to have the same potential, -130 volts, but here the current flowing through the resistance R_{2} is the sum of the two grid currents and is 50 milliamperes. Thus we can find R_{2} by Ohm's Law:

$$
\begin{aligned}
E_{c} & =I_{g} R_{2} \\
130 & =(0.025+0.025) R_{2} \\
R_{2} & =\frac{130}{0.050}=2600 \text { ohms }
\end{aligned}
$$

It will be seen that the amount of grid leak required for two tubes is just half that required by one tube.

Fig. 1 - The fundamental wiring for amplifiers with grid-leak bias only.

The situation described in the above paragraph is very nice as long as the rectified current is flowing in the grid circuit. But if we suddenly remove the excitation to this particular stage, either by keying a previous stage or because of some failure in the exciter, this source of bias is removed hecause the d.c. grid current no longer flows. If we have the 1000 volts on the plate of the tube, and zero voltage on its grid, unhappy events take place. Let us look at a section of the characteristic curves of the OK-73 shown in Fig. 2. What is the value of the plate current, with 1000 volts on the plate and zero volts on the grid? On this set of curves we find one labcled $E_{c}=0$. Looking along the bottom line where the plate voltages are given, we find 1000 volts and then go up to where this line crosses the curve marked $E_{c}=0$. Then go to the left, parallel to the bottom line and we find the value of plate current given on the left vertical axis. This value is 80 milliamperes, considerably under the rated value of 120 milliamperes. However, since there is no r.f. being fed into the tube, there is no output, and all energy fed into the tube must be dissipated at the plate. We find then that we have a power input to the plate of $1000 \times 0.080=80$ watts. This is twice the power that the plate is supposed to dissipate, and it will at once blush a rosy red at this unexpected token of your confidence in its ability. An overload of this kind is not conducive to long tube life, and usually steps are taken to avoid it. One of these is to use tubes with high amplification factor, the so-called "zero bias" type. In these tubes; practically no plate current flows with zero grid volts, so they automatically take care of themselves in case of loss of excitation.

Fixed and Grid-Leak Bias

For the lower- μ tubes, a combination of fixedand grid-leak bias is sometimes used to protect the tube. Included in series with the grid leak is a fixed source of grid voltage such as a battery or a small power supply. This extra voltage is made sufficient to either cut off the plate current entirely, or keep it to a safe value in the event that the part of the bias supplied by the grid leak should be lost due to lack of excitation. The problem is, how large must this extra source be? The

TABLE 1
TYPE OK-73
Class C Telegraph, Typical Operating Conditions DC Plate voltage DC Plate current DC Grid voltage DC Grid current Plate dissipation Amplification Factor

1000 volts
120 milliamperes
-130 volts
25 milliamperes
40 watts 25

Fig. 2 - The eharacteristic curves of the OK-73.
value of negative bias that is necessary to cut off the plate current is easily found by dividing the plate voltage of the tube by its μ, or amplification factor. In this case that would be

$$
E_{c}(\text { cut-off })=\frac{E_{p}}{\mu}=\frac{1.000}{25}=40 \mathrm{volts}
$$

This value can be checked by referring to the characteristic curves shown in Fig. 2. The cut-off bias is the value of grid voltage for zero plate current at a plate voltage of 1000 volts. This spot is on the horizontal axis at $E_{p}=1000$, and the curve that passes through this point is the one for $E_{c}=40$ volts, which checks the computation just performed. It would be quite safe to put a 45 -volt battery in series with the grid leak, as shown in Fig. 3. If an a.c.-operated power supply is used, remember that its bleeder resistance will also be in the grid circuit and must be considered as part of the grid leak. The method of figuring the necessary resistance values in such a case is well presented in the A.R.R.L. Handbook, ${ }^{1}$ in the section on power supplies. In any case, the fixed bias must be added to the grid-leak bias to get the total acting in the circuit, so if we are going to have 45 volts fixed bias on our OK-73, we need 130-45 or 85 volts supplied by our grid resistance. Applying Ohm's Law as before, we find our new value of grid leak necessary to supply 85 volts with 25 milliamperes current for the case of the single ended amplifier.

$$
\begin{aligned}
E_{c}(\text { grid leak }) & =I_{0} R_{3} \\
85 & =0.025 R_{3} \\
R_{3} & =\frac{85}{0.025}=3400 \mathrm{ohms}
\end{aligned}
$$

As before, the two-tube case will need half this value, or $R_{4}=1700$ ohms.

The tube can be umply protected from excitation failure by the use of nothing but fixed bias, with no grid leak at all, but this is usually more expensive, and does not give good linearity if the

[^0]

Fig. 3 - Battery or other fixed bias can be combined with grid-leak bias.
amplifier stage is modulated, and for these reasons this method is not often used.

Cathode Bias

There is a third method of tube protection sometimes used to prevent overloads, and that is cathode, or filament, bias. This is obtained by placing a resistance R_{7} or R_{8} in series with the lead going from the grounded negative high voltage to the filament center tap, as shown in Fig. 4. The plate and grid current both flow through this resistance, giving rise to an additional negative bias which will be added to that supplied by the grid resistance R_{5} or R_{6}. The idea is that, if the grid current stops due to excitation failure, the plate current will continue to flow through R_{7} or R_{8} and supply enough grid bias to keep the tube from being overloaded, since the more plate current that flows, the higher will be the negative bias it builds up, and this in turn will tend to reduce the plate current. The size of this bias resistor can easily be determined by referring to the curves of Fig. 2. We want enough bias to keep the plate current at, or below, 40 milliamperes, which at 1000 volts gives the rated plate dissipation of 40 watts. Draw a horizontal line from $I_{p}=40$ across until it intersects the vertical line rising from $E_{p}=1000$. We wish to know the value of grid bias that will give these conditions. There is no curve shown which actually passes through this point, but the curve for $E_{c}=20$ volts passes just below it, so we can estimate that a curve for a grid voltage of about 18
volts would pass through this point. This means that we need a bias of at least 18 volts. The size of R_{7} is then found by Ohm's Law:

$$
\begin{aligned}
& E_{0}^{\prime}=I_{p} R_{7} \\
& 18=0.040 R_{7} \\
& R_{7}=\frac{18}{0.040}=4.50 \mathrm{ohms}
\end{aligned}
$$

This value of resistance will hold the plate current down to a safe value in case of loss of excitation, and now we must find out the value of R grid to go with it. When there is excitation, the rated plate current plus the rated grid current will both be flowing thru this 450 -ohm resistor. Thus the amount of bias developed across R_{7} is different under these conditions, since more current is flowing. The value of the cathode bias is found again by Ohm's Law:

$$
\begin{aligned}
E \text { (cathode) } & =\left(I_{p}+I_{p}\right) R_{7} \\
& =(0.120+0.025) 450 \\
& =-65 \text { volts }
\end{aligned}
$$

For proper Class O operation we require 130 volts, so we need an additional 65 volts supplied by the grid resistance R_{5} to make this total amount. The value of R_{5} required is found in the familiar way.

$$
\begin{aligned}
& E_{6}^{(\text {grid leak })}=I_{0} R_{5} \\
& 65=0.025 R_{5} \\
& R_{5}=\frac{65}{0.025}=2600 \text { ohms } \\
&\text { Continuri 'n page } 4 \ell)
\end{aligned}
$$

Fig. 4 - The connections for combinations of grid-leak and cathode bias.

The Band-Edgée Locator

A IDD-Ke. Crystal-Controlleal Oscillator vith Multivibrator and Amplifiers

HY D. REGENALD THBEETTS,* WGITH

To most operators the present F.C.C. regulation about frequency checking (Sec. 152.44) means simply, "How close to the edge of the band can I get?" To get really close requires a precision piece of equipment installed alongside the receiver to check the edges of the bands and to make good accurate measurements.

Let us see what is needed. First, we need strong harmonics every 100 kc . to check the edges of the bands that fall on the even $100-\mathrm{kc}$. points, such as $2000,3500,7000,14,400,28,000$ and 56,000 . Since the 20 -meter 'phone band edges fall at 14,150 and $14,250 \mathrm{kc}$., it is also necessary to have strong harmonics every 50 kc . to check these points.

Several methods can be used to get these harmonics, but first the primary frequency source must be chosen. The most stable source is the $100-\mathrm{kc}$. bar. There is at least one crystal manufacturer who can supply such a bar mounted with an inductance in the same dust-proof shielded case. The bar is a thick crystal with two sides silver-plated and mounted between two wedgeshaped electrodes. The temperature coefficient is very low and, by means of a variable condenser built into the circuit, adjustment of the crystal frequency to exactly 100 kc . is easily and quickly possible.

Modern design dictates that the new "singleended" tubes be used. These tubes give higher gain, eliminate long leads to grid caps, and make a much neater wiring layout possible because all leads are under the chassis. Also, they cost exactly the same as the old grid-on-top types.

The oscillator is a $6 \mathrm{SJ7}$ with the screen of the tube acting as the plate. The circuit gives some

* 165 Purdue Ave., Berkeley, Calif.

Abstract

A neatly-constructed unit for establishing with a high degree of accuracy the edges of the various amateur bands and 'phone sub-hands. Not unduly expensive, despite its "commercial" appearance.

feedback to aid crystal oscillation and also provides variation of the oscillator frequency over a range of approximately 16 cycles by means of the tuning condenser. The frequency can therefore be brought exactly to 100 kc . when an accurate checking source such as the WWV transmissions is available.

The circuit may oscillate independently of the crystal at the high-capacity end of the condenser, but this is not an abnormal condition. The crystal will control over the useful range, and correction to the frequency can always be made near the center of the scale.

The oscillator alone produces harmonics useful to about 5000 kc ., the 50 th harmonic. We are interested in getting harmonics strong enough to beat with received signals up to and including $60,000 \mathrm{kc}$., so some form of amplifier is required. The output of the oscillator is capacity coupled to another 6SJ7 amplifier. For 100-kc. harmonics this amplifier is in turn coupled to an 1852. The two stages of amplification produce strong harmonics even on $60,000 \mathrm{kc}$., the 600 th harmonic.

Since we need the $50-\mathrm{kc}$. harmonic series, a multivibrator is incorporated in the unit. This stage uses a single 6N7, and follows the 6S.J7 first amplifier. A multi-position rotary switch is

This unit gives either $50-$ or $100-\mathrm{kc}$. points from a 100 -kc. erystal oscillator throughout the frequency spectrum up to 60 Mc . The main dial provides fine adjustment of the erystal frequency. An output attenuator is provided to regulate the strength of the signal.

In this rear view, the power supply is at the right, oscillator in the center, and output tubes at the left. From left to right, the tubes are the 1852 nutput amplifier, 6N7 multivibrator, 6 SJ 7 first amplifier and, behind the tuning condenser, the 6SJi ossillator. Single-ended tubes keep all wiring below the chassis.
used to switch the output of the first amplifier either to the 6 N 7 for 50 kc . or to the 1852 for 100 kc. The 1852 second amplifier is used in both cases. The first amplifier not only serves as an amplifier but also as a buffer stage to isolate the oscillator from the multivibrator. The second amplifier also serves to isolate the multivibrator from the output circuit.

The output circuit is coupled to the receiver through a built-in attenuator using a $500,000-\mathrm{ohm}$ potentiometer. 'This attenuator is necessary to effect a balance between the harmonic being used and the signal measured. Otherwise the output of the unit might "swamp" the signal being measured and observation of the beat note would be difficult.

Fig. 1-The "band locator" circuit.
$\mathrm{R}_{\mathbf{2}}-0.5$ megohm, 1 -watt.
$\mathrm{R}_{3}-0.1$ megohm, 1-watt.
$\mathrm{R}_{4}-1.5$ megohm, 1-watt.
$\mathrm{R}_{5}-0.5 \mathrm{megohm}, 1$-watt.
$\mathrm{R}_{6}-0.75$ megohm, 1 -watt.
$\mathrm{R}_{7}-3000$ ohms, 1-watt.
Rs --I megohm, l-watt.
R_{9} - 75,000 ohms, 1 -watt.
$\mathrm{R}_{10}, \mathrm{R}_{11}-5000$ ohms, 1-watt.
$\mathrm{R}_{12}-20,000$ ohms, 1-watt.
$R_{13}-10,000$ ohms, 1 -watt.
$\mathrm{R}_{14}-0.2$ megohm, 1 -watt.
$\mathrm{h}_{15}-0.75$ megohm, 1-watt.
$\mathrm{R}_{16}-3000$ ohms, 1-watt.
R_{17} - 0.5 megohm, I-watt.
$\mathrm{R}_{18}-0.5$-megohm variable.
$\mathrm{R}_{19}-25,000$ ohms, 10 -watt.
RFC - $2.5-\mathrm{mh}$. r.f. choke.

Xtal and tank inductance - Bliley SOC-100.
'T-Power transformer, 700 volts c.t. at 50 ma.; 5 volts at 2 amp.; 6.3 volts at 2 amp.

L-- "30-henry" receiving-type filter choke.
Sw - 3-pole double-throw non-shorting switch (Yaxley No. 1313L).

Besides the wiring, this view shows how the output attenuator is controlled by a flexible shaft con. necting it to the panel knob, so that the control itself may be placed near the r.f. output circuit.

Constructional features are quite obvious from the photographs. The chassis is 17 by 8 by 2 inches, mounted to a standard 19 by 7 by 3/16inch relay rack panel with brackets. The power supply is of conventional design; the amount of filter required is dependent upon the purity of the signal desired. A fairly low-resistance bleeder is desirable to help stabilize the voltage. Two switches with associated panel lamps are used, one for the a.c. primary and the other for negative " B." The negative " B " switch is nceded to check whether a received signal is actually from the unit or from outside. Also note that the "B" switch is placed on the equipment side of the power supply, after the bleeder. This is done so that the filter condenser does not discharge, causing a "bloop" from unlocking of the multivibrator when the oscillator stops.

Needless to say, best quality parts should be used, and careful attention should be given to the layout to prevent long leads.

Checking and Measurement

To make measurements the operator should first find either $W W V^{1}$ or a broadcast station whose frequency falls on an even 100 - or $50-\mathrm{kc}$. point. Nearly all broadcast stations keep their frequency deviation within a few cycles and many keep within less than a single cycle. This station selected is tuned in on the receiver. Next the frequency unit is turned on and the switch set to give either the $100-$ or $50-\mathrm{kc}$. harmonics. The correction dial is then moved and the beats can be counted and brought to a standstill, or zero beat. This is quickly and easily done, and can be backchecked before and after a measurement without any trouble. Thus any drift due to temperature, humidity or circuit changes can be corrected very easily. Next, say we wish to find the $14,150-$ kc. point. We set the receiver to approximately

[^1]this frequency and, using the $50-\mathrm{kc}$. harmonics, get a signal from the unit. This is tuned to zero beat. To check if it is actually a $50-\mathrm{kc}$. point, the selector switch is turned to the $100-\mathrm{kc}$. position, and if we have the 14,150 point the signal from the unit will stop. Naturally we might get 14,050 or $14,250 \mathrm{kc}$., but it is assumed anyone can "get located" much more closely than that with the receiver or the transmitter crystals.

For frequency measurements a point on the receiver bandspread is chosen to represent some even $50-\mathrm{kc}$. point as a reference, and then readings are taken throughout the band every 50 kc . A curve is next plotted giving frequency vs. dial settings. From this curve measurements can be made as closely as the receiver dial can be read and the points plotted. For future work the selected point cau be always lined up with the unit and the main tuning dial of the receiver. The edges of the band can be noted and checked at any time. For locating a station whose frequency is known, the receiver dial setting can quickly be determined by means of the curve.

Should $10-\mathrm{kc}$. points be required either for more accurate plotting of the curve or because there is no broadcast station available on either an even 100 or $50-\mathrm{kc}$. point, it will be found that the unit produces them. They are weak, but found by disconnecting the antenna from receiver to eliminate pickup of outside signals.

Normally the output of the unit is left connected to one post of the receiver antenna at all times. If desired, another multivibrator can be added to give $10-\mathrm{kc}$. harmonics; in fact, this process can be carried down to 1 kc . or even to 50 cycles, amplified to four or five watts and be made to run a 50 -cycle clock. If this electric clock is then compared with standard time signals we have an inexpensive and useful primary standard.

Exact measurements also can be made by checking the beat note between the unit and the signal under observation. The audio frequency can be measured in several ways: by an audio bridge, a piano nute or by an oscilloscope.

The cost of all parts of the unit, at amateur prices, is in the vicinity of $\$ 35$.

The Oscilloseope Shows-What?

Analyzing Some Common Troubles With Oscilloscope Patterms

WHile valuable reference material on interpretation of the patterns obtained with various transmitter modulation adjustments has been published during the past five years, ${ }^{1}$ there still are many 'phone operators who find it difficult to obtain an accurate picture of transmitter performance with even a factory-built oscilloscope. Indeed, it sometimes happens that such unusual patterns appear on the screen of the rathode-ray tube at the first adjustments that the bewildered user knows not which way to turn for correction of the quecr shapes. What clucs show whether the cause of an unusual figure lies within the transmitter itsclf, or whether it is the result of improper application or adjustment of the ascilloscope?

Trapezoid vs. Wave Envelope

In general, patterns of two types - waveenvelope and trapezoidal -- are used for checking the performance of 'phone transmitters. Each of the two patterns tells much about the charac-

We all know how oseilloscope patterns should look to show modulation percentage, audio distortion, non-linearity, and other conditions, good and bad, that commonly exist in 'phone transmitters. But what to do when the pattern strongly resembles the handiwork of an imaginative wood-turner? Here are some of the reasons for sicrewy 'scope pictures.
teristics of the modulated output of the transmitter, and the two together give an even more complete report of the operation. One large difference in the two patterns is the fact that the wave envelope picture is changed by a change of the speech amplifier input wave, while the trapezoidal figure remains essentially constant if the modulation percentage is constant. Thus, if an audio-frequency oscillator with coustant sinewave output is used to feed a signal into the audio system of the transmitter, the output pattern,

[^2]
rig. 1 - Wave-envelope (left) and trapezoidal (right) onseillogcope patterns.

Fig. 2 - Oscilloscope connections for wave-envelope (A) and Trapezoidal (B and C) modulation patterns.
with proper operation of the transmitter and best adjustment of the oscillosicope, should resemble one of the two patterns of Fig. 1-D. A change in either frequency or waveform of the audio oscillator output makes a change in the wave-envelope pattern (shown at left in Fig. 1-D), while the trapezoidal pattern (at right in Fig. 1-D) is practically unaffected by the change. With the modulation level remaining at 100 per cent, a change in sine-wave frequency makes no change at all and a change in wave shape causes only a slight change within the light area of the triangular figure. Because of this difference in the two patterns, the wave-envelope figure gives at once a picture of the over-all performance of the audio amplifier stages, the modulator, and the modulated amplifier, since any distortion contributed by an audio amplifier stage changes the wave shape of the modulating signal, and thus of the envelope of the oscilloscope pattern. If the envelope obtained with a sine-wave input is not sinusoidal, it may be because of distortion in the audio amplifier or non-linearity of modulation, or a combination of the two distortions. The trapezoidal figure, on the other hand, indicates only modulation and linearity of the r.f. amplifier.

Wave-Envelope Patterns

Oscilloscope patterns which show the conditions of zero r.f. output, and a carrier with zero, 50 per cent, 100 per cent, and 125 per cent modulation, respectively, for each of the two systems are given in Fig. 1. Before application of the carrier, the oscilloscope (connected for a wave-envelope pattern) has horizontal sweep voltage applied, making a line across the middle of the tube. When the carrier is on, r.f. voltage applied to the vertical plates sweeps the spot up and down the screen as it moves across, so that a rectangular light area is formed. The height of this light area should be approximately $1 / 3$ of the screen diameter. Now with a sine-wave input of 1000 cycles and sweep frequency of 500 cycles, patterns similar to the sketches at the left in Fig. 1-C and -D should be obtained with 50 and 100 per cent modulation. With a change of the audio-frequency signal to 2000 cycles, or with a change of the sweep frequency to 250 cycles, four narrower cycles should replace the two broad ones shown in the sketch. For most critical examination, however, the proportions shown here usually prove best.

With the settings mentioned in the above paragraph - 500 -cycle horizontal sweep and $1000-$ cycle signal - a.c. hum of 60 cycles will not be shown in the oscilloscope pattern, and 120 -cycle power supply ripple will hardly be detected. Thus, a wave-form closely approaching that at the left in Fig. 1-D may be obtained from a carrier having quite noticeable 60-cycle modulation in addition to the higher-frequency audio signal modulation. If the operator whistles before the microphone to provide a brief and fairly sinusoi-

Fig. 3-Effect of spot area on outline of waveenvelope pattern.
dal input signal, and sets the horizontal sweep frequency to make only two or threc cycles in the pattern, he may be overlooking low-frequency hum modulation. Thus, to make a more complete test of the transmitter performance, he should set the horizontal sweep uscillator of the 'scope to give a sweep frequency of 20 or 30 cycles and observe the pattern resulting with the gain control at normal setting and no signal applied to the input of the speech amplifier. If the oscilloscope pattern is that of the sketch at the left in Fig. 1-B,

Fig. 4-- Pattern showing effect of phase shift which results when sweep, voltage for trapezoid is ohtained from intermediate speech amplifier.
the hum level of the transmitted signal is likely to he satisfactorily low. If the number of cycles (the number of full humps at the top of the pattern) is three for 20-eycle sweep or two for 30-cycle sweep, the hum present is 60-eycle hum and may be found to result from an ungrounded chassis, a poorly located tap on a filament resistor, a bad tube, or induction from power lines. If the number of cycles is six for 20-cycle or four for 30-cycle sweep, the hum is probably the result of insufficient power-supply filter in one of the plate or grid power supplies for a.i. or r.f. stages.

Trapezoidal Patterns

Since the trapezoidal pattern depends on audio voltage from the modulator stage for its horizontal sweep, and on r.f. output voltage for vertical deflection, the beam of the cathode ray tube is stationary when the transmitter plate switches are open, and an intense spot on the center of the screen results. The sketch at the right of Fig. 1-A represents this condition. When the r.f. portion of the transmitter is running, unmodulated, the vertical line of Fig. 1-B (right) is formed. As in the case of the wave-envelope pattcru, the height of the unmodulated figure should be approximately $1 / 3$ the screen diameter. With 100% modulation the width of the pattern should become roughly $2 / 3$ screen diameter, and the shape should become a true triangle, as sketched in Fig. 1-D. With 50 per cent modulation, the width should be half of the 100 per cent modulation width, and the shape should be the trapezoid of Fig. 1-C.

In contrast to the wave-envelope pattern, the trapezoidal figure shows immediately whether there is appreciable hum or noise modulation of the carrier before a signal is applied to the specech amplifier input. Furthermore, since the figure retains one general shape, speech input to the audio system results in a clear and meaningful pattern. Herein lies the most important advantage of the trapezoidal figure - it gives a constant and easily interpreted indication of the modulation percentage. As the operator talks, the figure should expand and contract horizontally, forming a point on 100 per cent modulation peaks. During the greater part of the time, with speech, the wave-envelope pattern is an almost meaningless jumble, with occasional bricf moments of appearance of the form for sine modulation. Bright, sharp dashes occurring in a horizontal line across the middle of the sereen usually indicate modulation at or above 100 per cent, depending on their Inngth. Experience indicates that usually when these bright dashes become noticeable, the carrier is already heavily overmodulated. Some relief on this jumbled pattern of the wave-envelope system on speceh may be provided by use of either very low-frequency sweep (with only a small portion of the sweep voltage cycle carrying the spot completely across the screen), or a strong synchronizing voltage applied to the oscilloscope to control partially the frequency of the horizontal sweep

Fig. 5 and Fig. $6-$ Wave-envelope and trapezoidal putterns which lean hecause of r.f. coupling between vertical and horizontal deflection circuits.
oscillator. Nevertheless, purely from the standpoint of a convenient constani speech indicator, the trapezoidal figure is much to be preferred to the wave envelope pattern.

Methods of Connection

The oscilloscope connections for the waveenvelope are usually simpler than those for the trapezoidal figure, if the oscilloscope is already provided with a sweep oscillator or an a.c. transformer winding and sweep control. The vertical deflection plates are coupled to the amplifier tank coil or an antenna coil by means of a $1-2,2$, or 3 -turn pickup coil connected to the oscilloscope through a twisted-pair line, and the position of the
pickup coil is varied until the proper height of the vertical deflection is obtained with the transmitter in normal operating condition, unmodulated. This completes the installation for an uscilloscope provided with 60-cycle transformer horizontal sweep supply. This connection is independent of the application of the modulating voltages -- it applies for plate, grid, screen, plate-and-screen, or suppressor-modulation of the final amplifier. If a class-B linear r.f. amplifier is used following the modulated stage, provision for r.f. pickup from both the modulated stage output and the output of the final amplifier should be made - the pattern from the output of the final r.f. amplifier must be regarded as the criterion of operation of the transmitter, since the modulation percentage of this stage may not be that of the modulated stage.

If the oscilloscope is provided with a sweep ascillator and connections for synchronizing voltage, a connection should be made between the synchronizing terminal and a grid of one of the tirst audio yower amplifier tubes in the speech amplifier system. To insure against upsetting a d.c. circuit, a $0.01-\mu \mathrm{fd}$. tubular paper condenser should be connected in series with this connection. Since both the transmitter and the oscilloscope should be grounded, the return path for the synchronizing circuit is automatically completed.

If a trapezoidal pattern is desired rather than the wave-envelope, the r.f. input must be connected and adjusted just as outlined in the above paragraphs. In addition, a voltage divider must be connected across the voltage being used to modulate the final amplifier - that is, between ground and the modulation connection of the r.f. amplifier, and a small fraction of the modulator audio output voltage must be obtained from a tap on this divider.

In Fig. 2-B and - O connections are given for obtaining trapezoidal patterns from grid- and platemodulated r.f. amplifiers, respectively. These two circuit diagrams merely illustrate the connection of the horizontal sweep voltage divider between the modulated terminal of the r.f. stage and ground. For oscilloscopes equipped with internal amplifiers for the horizontal sweep, it is desirable to get a voltage divider arranged to supply only about 5 audio volts between ground and the tap,

Fig. 7 and 8 - Wave-envelope and trapezoidal patterns obtained from modulated r.f. amplifier which was not properly neutralized.

Fig. 9 and 10 - Patterns obtained from modulated r.f. amplifier with properly coupled oscilloscope - these patterns actually show the nature of the modulated r.f. ontput of the transmitter.
and to feed this low voltage to the input of the horizontal amplifier. This makes possible use of the gain control on the horizontal deflection amplifier for adjusting the width of the trapezoidal pattern. If such an amplifier is not available in the oscilloscope, the voltage divider should be made conveniently variable so the pattern width may be made satisfactory. For grid, suppressor, or screen modulation, resistor R_{1} of Fig. 2-B (the resistor between the modulated post and the tap for the horizontal sweep voltage) should be a $0.5-\mathrm{megohm} 1$-watt carbon resistor. For amplification of the horizontal sweep voltage, resistor R_{2} should be approximately 50,000 ohms for lowand medium-power transmitters, and approximately 10,000 ohms for high-power transmitters. Not more than two trials should be required to determine a value of R_{2} suited for the oscilloscope used. For audio voltage to apply directly to the horizontal deflection plates, L_{2} should be a potentiometer between R_{1} and ground, with the connection from the oscilloscope through C_{1} attached to the moving tap of R_{2}. For high power transmitters, the resistance of the control R_{2} should be roughly 0.2 megohm, for mediumpower transmitters it should be 0.5 megohm, and for low-power transmitters it should be 0.5 megohm with resistor R_{1} shorted from the circuit (R_{2} connected between ground and the modulated terminal), with the oscilloscope voltage taken from the tap of the potentiometer through C_{1}. The potentiometer referred to above for each of the three cases may be a carbon-element volume control resistor.
The voltage divider for horizontal sweep voltage from a plate-modulated amplifier presents a slightly different problem from those just mentioned, since the importance of safety here should be given full regard. To begin with, resistor R_{4} of Fig. 2-C should be a 0.5 -megohm 1-watt carbon resistor for low-power transmitters; and for medium- and high-power modulated amplifiers, should consist of a group of series-connected 0.5 -megohm 1 -watt carbon resistors - one resistor for every 500 volts of the d.c. potential applied to the modulated amplifier. Thus, an amplifier operating with 1500 -volt d.c. plate supply would require three series resistors, each having the specifications given above, con-
nected in series. In any case, R_{4} should be located within the modulator unit, so that the voltage carried to the oscilloscope will be isolated from the plate terminal of the modulated amplifier by this high resistance. For amplified horizontal sweep, the values of R_{3}, all applying to 1 -watt carbon resistors, should be roughly 25,000 ohms, 10,000 ohms, and 3,000 ohms for low-, medium-, and high-power modulated amplifiers, respectively. For directly supplying the deflection voltage to the horizontal plates, resistor R_{3} should be a carbon-element volume control potentiometer having a $0.5-\mathrm{megohm}, 0.1$-megohm, or $50,000-$ ohm resistance value, for low-, medium-, or highpower transmitters, respectively. The connection of C_{2} should be removed from the junction of R_{3} and R_{4} when R_{3} is a variable resistor, and should be then replaced on the variable tap of R_{3}.

Trouble in Obtaining Patterns

Although many common faults in oscilloscope use are avoided by careful attention to the proper connections for use in obtaining a desired type of pattern, the figure appearing on the screen of the cathode-ray tube may bring dismay to the operator because of its unusual shape.

When the wave-envelope pattern is used, compression of each cycle into too narrow proportions (with four or six audio cycles visible on the screen when the height of the unmodulated r.f. signal is 1/3 screen diameter as recommended above) causes the outline of the pattern to become noticeably non-sinusoidal though the modulation of the r.f. carrier is in reality perfectly sinusoidal. In order to understand this, it must be remembered that the apparent diameter of the spot on the screen is appreciable compared to the length of a cycle horizontally across the screen. This meaning is better explained by the sketch of Fig. 3. One audio modulating cycle is shown in this sketch, and the envelope is first drawn as it would be if the spot on the screen were only a fine point of light. Then, allowance for a noticeable spot diameter is made for the positions at which the spot travel stops and reverses, and the outline of these spots is drawn on the figure, increasing the area of the modulation pattern, and, more important, making the crests of the wave broader and the troughs narrower. It will be seen from the above that the cycles of the wave envelope should be spread out so that if the height of the modulated pattern nearly fills the screen, not more than two or three audio cycles occupy the length of the screen area.

A point given much emphasis in most references on oscilloscope modulation checking - and justifiably so - is the importance of obtaining sweep voltage for a trapezoidal pattern from the output of the modulator rather than from a preceding stage of the audio system. Fig. 4 is a photograph of the pattern which resulted when the sweep voltage for a trapezoidal pattern was
obtained from the output of the driver stage instead of the output of the modulator. Figures 5 and 6 are photographs of a wave-envelope pattern and corresponding trapezoidal pattern which might cause doubts about the operation of the audio system and the modulated amplifier. Actually, though, the leaning pattern is produced by coupling between the horizontal sweep circuit and vertical deflection circuit of the oscilloscope. An r.f. voltage thus results across the horizontal plates, and this voltage acts to carry the spot across the screen a short distance at the same time that the higher r.f. voltage moves it vertically. The result is diagonal travel of the spot with the r.f. signal, instead of vertical travel. This trouble is most common with carrier frequencies of the $14-, 28-$, and $56-\mathrm{mc}$. bands. Experiment with some of the more popular factorybuilt 'scopes indicates that a satisfactory cure for this trouble results from inserting an r.f. choke (one of the popular pigtail connection pie-wound receiving chokes rated at 2.5 mb inductance, 125 ma.) in series with the ungrounded horizontal deflection plate at the base of the cathode-ray tube.

Another source of confusing patterns is r.f. vertical deflection shown on the screen of the tube when the plate voltage is removed from the final r.f. amplifier. This may result from lack of neutralization of the final r.f. amplifier; in this respect, the oscilloscope may be used as a convenient and fairly sensitive neutralization indicator. If the final amplifier is properly neutralized, the vertical deflection may indicate r.f. pickup by the line connecting the pick-up coil to the vertical plates of the oscilloscope. To minimize this undesired pickup, sume type of compact twisted-pair or parallel-pair line should be used for bringing the r.f. signal voltage to the 'scope. A third cause of the zern-plate-voltage r.f. signal on the oscilloscope is often troublesome on the 10- and 5meter bands, where it is difficult to use the oscilloscope at an operating position removed from the transmitter and keep the ground circuits of the two at the same potential. This difficulty simply requires experimentation to remove the r.f. signal from the 'scope when the plate voltage is off the final amplifier. Figures 7 and 8 show the wave-envelope and trapezoidal pattern of an unneutralized modulated r.f. amplifier \cdots much similar results are obtained when r.f. voltage is found across the vertical plates of the oscilloscope for reasons other than improper neutralization adjustment.

With the above difficulties removed from the 'scope picture of the transmitter modulation, the patterns of Figs. 9 and 10 are obtained. While these pictures do not show ideal patterns, they do give a picture of the actual transmitter operation. From pictures such as these, an intelligent start may be made toward obtaining the best possible performance of the equipment at hand.

"The Compleat Experimenter"

Some Suggestions on Transmitter Construction

HY H. L. RUMBAUGR,* WGHI

IIad Izaak Walton been a ham he would probably never have been able to write a "compleat" book on his favorite hobby. One of the fortunate things about amateur radio is the fact that nothing is ever "compleat." There is always sumething new to learn.
Our first rig contained such "late" technical advancements as an electrolytic interrupter in the power end and an electrolytic detector in the rereiving end. One always forgot to remove the wire from the acid, with Wollaston wire $25 \$$ per inch! This outfit was no sooner working and an eventual crosstown QSO consummated than the "era of change" set in. This condition of "Caution Man at Work" has prevailed ever since, with the result that the present rig is always being rebuilt or changed in some manner.

Convenience and Appearance

Through the years, we have discovered a number of short cuts which greatly accelerate the process of demolition and reconstruction and still allow the front of the rig to look something like a

* 724 North Crescent Heights BIvd., Hollywood. Calif.

The transmitter and power supply at W6HI feature "breadboard rack" construction, for ease in servicing and experimenting. Copper-screen windows allow proper ventilation and add to the safety of the rig.

The operating position includes overmodulation and carrier-shift meters, as well as a keying and 'phone monitor, housed in the box on the left side of the table. The key-switch at the upper left closes the keying circuit for c.w. operation in the "down" position and puts the rig on the air for 'phone in the "up" position. 'The key-switch at the upper right controls the antenna relay.
normal transmitter, with the "development" work hidden from the general public.
Breadboard layouts are undeniably easy to get at, but when the "shack" is a part of the owner's house certain physical and - on the part of some members of the household - esthetic limitations are present. Normal rack and panel construction is very nice to see but is hard to work with unless the stage in question is removed from the rack. Racks, 6 feet or so in height, are not only heavy but expensive. In addition, the nineteen-inch width dimension is often too much of a limiting factor in the laying out of experimental stages with well-spaced parts. The answer seems to be a sort of "breadboard rack" type of construction using wooden members and with somewhat larger dimensions than are standard for relay racks.

Construction

Our two racks are made of oak, stained and varnished, and stand 6 feet high. The shelf spaces measure 18 by 24 inches. One rack is used as a power bay and houses the plate supplies for each stage - both radio and audio -... of the transmitter as well as the bias supply for the whole transmitter. The other rack houses the r.f. and control equipment as well as the voltage amplifier and modulator.
By using finished material that is all 1- by 2inches net and having it cut to length at the mill, the matter of assembly becomes a simple one, as may be seen from Fig. 1. It will be noted
that proper placement of the side members automatically provides shelf rests. Each shelf is of 516 -inch three-ply veneer and is free to slide out at either the front or back of the rack.

The power equipment is placed directly on these wooden shelves in the power bay. In the transmitter rack each wooden shelf forms the support for a metal sub-panel of cadmiumplated body steel. The shape can be seen in the photograph of one of the units. It permits all wiring to be exposed and readily accessible for *light changes, while the whole stage may be slid out of the rack merely by loosening the nuts holding the cabled fecd wires at the rear. All of each stage may be seen from the rear of the transmitter, and minor changes can be made readily without disturbing the rest of the set-up.

Small "windows" of copper window screening mounted on narrow wooden forms are fitted into each opening on the sides of the racks. These serve to keep dust - and fingers - out of the rig, besides adding greatly to its appearance. Only friction holds them in place, and thus the windows are readily removable.

The Transmitter

The transmitter that occupies the racks at the moment is hardly in keeping with the usual amateur practice of getting as much out of each tube as physical laws and good luck will permit, since it was designed with the idea of providing a very considerable factor of safety everywhere throughout the rig. It is granted that many other ham transmitters put out the same power with fewer or smaller tubes, and perhaps at slightly lower original cost, and also that many lowerpowered rigs cover as great distances in DX work. However, it cannot be denied that continued stable operation, reliability, and almost limitless

Fig. 1 - Construction details of the "breadboard rack." All wood is tinished 1 - by 2 -inch oak.
tube life (for amateur use) result when no component in the rig is working beyond its rating. This applies as well to rectifier tubes and all power supply components.

As the rig stands at the moment, each stage has its own power supply. 'This feature has proved to be of great value in an experimental layout. The supplies have been designed for a good ratio of available to required power and also to satisfy broadcast ripple requirements. 'The output is very clean.

All bias voltages for the r.f. power stages are furnished by a 1000 -volt supply and individual isolating rectifier tubes patterned after Friend's ${ }^{1}$

[^3]

Each unit is built on a 16-gauge cadmium-plated body steel chassis which is supported by a piece of $5 / 8^{\prime \prime}$ three-ply. All parts and wiring are readily accessible for modifications or trouble-shooting.
arrangement. The diagram is shown in Fig. 2. This arrangement is such that with no excitation a protective bias is furnished the tubes, while with excitation the pack and its associated small rectifier tubes drop out of the picture and the stages are then automatically grid-biased. This action is obtained because the flow of rectified grid current in the bias resistor sets up a voltage which will reverse the polarity of the elements in the $5 Z 3$ rectifiers and render the tube non-conductive, hence no bias voltage from the bias pack reaches the grids of the several stages when excitation is applied. However, should excitation fail, the bias pack picks up and supplies a protective bias to the stage.
A relay for "no bias" protection is provided. In this arrangement, if no current flows through the grid resistor - either from the bias pack or from excitation - the transmitter is taken off the air. Since under normal conditions one or the other of these sources is causing current to flow in this resistor continually, the device offers protection against both bias pack failure and an open grid resistor.
A separate small power pack furnishes the keying and blocking voltages for the vacuum-tube keying system.
Means have been provided to put the transmitter on the air merely by pressing the key. The transmitter is automatically taken off the air approximately three quarters of a second after keying ceases. All this is accomplished by a small relay and a $1500-\mu f d$. condenser shunted by a 10,000 -ohm variable resistor, in the arrangement described some time ago. ${ }^{2}$
The same antenna is used for transmitting and receiving. A change-over switch is employed, and a small mercury switch in the keying line and attached to the change-over switch prevents the transmitter being put on the air, by the key, unless the antenna is connected.
The exciter unit is the familiar "bi-push" ${ }^{3}$
${ }^{2}$ Jackson, "A 500-Watt Transmitter in the Modern Manner," QST, May, 1934.

8 Smith, "The 'Bi-Push' Tri-Band Exciter or Transmitter, " Radio, April, 1937.

Fig. 2 -. The bias supply uses separate rectifier tubes to keep the bias from "backing up."
$\mathrm{C}_{1}-4$ - $\mu \mathrm{fd}$., 1500 -volt.
$\mathbf{h}_{1}-5000$ ohms, 200-watt.
$\mathrm{R}_{2}, \mathrm{~K}_{3}, \mathrm{R}_{4}$ - As required for proper grid-leak bias.
' $\Gamma_{1}-5$-volt secondaries of filament transformer.

A Compact Unit-Type Amplifier

Push-pull HK21's Without Concentional Chassis

HY GEDRGE W. SHUART,* W2AMN

Time was when a rig had to be big in order to be good. Now, with smaller and more efficient tubes as well as other transmitting components, the anateur is striving to build more compact and presentable apparatus. In building the amplifier unit shown in the photograph, no particular effort was made to keep the dimensions small, but after it was completed we were quite aware of its compactness and that it might be of interest to other amateurs who like to conserve space. The overall dimensions are $111 / 2$ by 8 by $51 / 2$ inches, exclusive of shafts which would normally project through the panel.
Considering that this amplifier will deliver approximately 175 watts, it becomes quite a husky little fist-full. The rotor of the plate tuning condenser is connected to the high voltage lead to take the d.c. potential from across the condenser plates. This method of wiring up the plate circuit of an amplifier was thoroughly discussed in a past issue of $Q S T^{1}$ and is highly recommended for a number of good reasuns. It permits the use of a condenser with smaller plate spacing, and as a result the overall physical dimensions of the condenser can

[^4]Not the least interesting feature of this compact unit is the new type of tuning condenser soon to be made available. Its insulated rotor construction solves mechanical problems when the rotor is to be connected to plus high voltage.

be reduced for a given plate voltage. The only drawback is the fact that the rotor has full d.c. voltage on it, while in other circuits the rotor is grounded. Because of the design of the condenser used in the amplifier shown here, the danger

Fig. I-Circuit diagram of the HK24 amplifier. $\mathrm{C}_{1}, \mathrm{C}_{2}-100-\mu \mu \mathrm{fd}$. per section, $0.05^{\prime \prime}$ spacing (Hammarlund HFBD-100-C).
C_{a} - Disc-type neutralizing condenser (Hammarlund $\mathrm{N}-10$).
$\mathrm{C}_{4}-500-\mu \mu \mathrm{fd}$. mica, 5000 -volt.
$\mathrm{C}_{5}-\mathrm{-c} 0.01-\mu \mathrm{fd}$. paper, 1000 -volt. RFC - $2.5-\mathrm{mh}$. r.f. choke ($125-\mathrm{ma}$. size satisfactory). $\mathrm{R}_{1}-3000$ ohms, 10 -watt.
element due to the high voltage being present on the rotor is reduced considerably, since an insulated shaft extension is an integral part of the condenser, and the rotor is insulated from ground by the isolantite end plates. For mechanical reasons the grid and plate condensers in this amplifier have the same physical dimensions as well as plate spacing and capacity, although a lowervoltage unit could be substituted in the grid circuit. Voltages up to 1000 can be used with plate modulation, or to 2000 volts unmodulated.

The method of assembly is quite evident from
(Continued on page 114)
Left - The grid coil plugs into a socket mounted vertically on the strap joining the two condensers. The grid leak is just above the giid-coil socket.

Kight-Ready for mounting to a pancl, by means of the cylindrical standoffs on the tuning condensers. The plate coil mounting is supported by $5 / 16$ th inch square rod, tapped at both euds, $31 / 2$ inches long. The mica condenser in the foreground just below the plate coil mounting is the plate blocking condenser.

An R.I. Matching Network for General Use

Simplified Matching of Limes of Different Impedances

EY WAREEN M.ANDREW,* WgIVT

Here is the simplified dope for tying into low impedances from mediumimpedance lines. It will help you a lot if you have been confronted with the problem (which so often occurs with closespaced antenna arrays) and still lack a practical solution.

THe network to be described came about as a result of the need of the writer to provide some means of continuously rotating a beam antenna with motor drive. The help of Professor Cassell, W9YL, of the Electrical Engineering Department of the University of Colorado, was largely responsible for the solution. The network is simplicity in itself, and no one should be scared out because of the mathematics in evidence, as everything is quite easy to figure and the results more than pay for the effort.

The object of the network is to match two lines of different impedances. It can be used to match a line of one impedance to a line of different impedance, or it can be used to couple an untuned line to a load that is not the exact impedance of the line. In the writer's case the need came about hecause of a rotary beam that had to rotate continuously, and must be fed by an accepted open line of an impedance in the neighborhood of 500 ohms. To do this it was necessary to run the feeders inside the driving mechanism before it was possible to couple to the antenna, causing the feeders to come closer than the spacing allowable in a 500 -ohm line. It was therefore necessary to reduce the dimensions of the feeder system in order that it could go in the $7 / 8$-inch hole available. This, of course, necessitated a line of lower impedance than 500 ohms, and a method of coupling it to the 500 -ohm line. Experiments were conducted in transforming 500 ohms to anything from 8 ohms to 240 ohms, and a transformation efficiency of better than 90% was found on all output loads. Efficiencies were figured using a battery of Ohmite dummy antennas, the impedance of which could be varied from 8 to 500 ohms.

The network consists merely of a condenser across the line and an inductance in series ${ }^{1}$ with *935 Eleventh Street, Boulder, Colo.
${ }^{2}$ This is derived from the fundamental 1 ' matching network for different impedances. When both input and ontput impedances are resistive, one series branch can be eliminated and the other two branches become reactances of opposite signs. - Ed.
the line as shown in Fig. 1. The series inductance is figured as a lump sum, then split and half put in each side of the line, mounted so that there is no inductive transfer between the coils, that is, the coils are mounted either at right angles or are shielded from each other. Coils and condensers on the high frequency bands work out to be small in physical size and the network is light and takes up little room. It is necessary to figure the reactance of both the coil and the condenser, and from this, the capacity and inductance needed at the working frequency. The negative sign means merely that the reactance is capacitive, and the positive sign shows that the reactance is inductive.

Design Formulae

The necessary equations for a network of this type, where the input and output impedances are resistive, are

The network-coupling system as used on the rotatable antenna at W9IVT. The 500 -ohm line can be seen coming up to the bottom of the box which houses the network. The slip rings above the box are mounted on a large lsolantite coil form and the 240 ohm line runs up through the coil form and to the antenna proper.

Capacitive reactance

$$
\begin{equation*}
I_{1}=-R_{1} \sqrt{\frac{R_{2}}{R_{1}-R_{2}}} \tag{1}
\end{equation*}
$$

Inductive reactance
$I_{2}=\sqrt{R_{1} R_{2}-R^{2}}$
where R_{1} = input impedance in ohms
$R_{2}=$ output impedance in ohms
The necessary capacity and inductance values are found from

$$
\begin{align*}
& C_{X_{1}} \text { (microfarads) }=\frac{1}{2 \pi f X_{1}} . \tag{3}\\
& L_{X_{2}} \text { (microhenries) }=\frac{X_{2}}{2 \pi f} \ldots
\end{align*}
$$

where $f=$ frequency in megacycles
Substituting our values of input and output impedance (500 and 240 ohms) in (1) and (2), we arrive at

$$
\begin{aligned}
& X_{1}=-500 \sqrt{\frac{240}{500-240}}=-480.4 \mathrm{ohms} \\
& X_{2}=\sqrt{(500 \times 240)-240^{2}}=249.8 \mathrm{ohms}
\end{aligned}
$$

Calculating the values of capacity and inductance from (3) and (4), for a frequency of 14.2 Mc.,

$$
\begin{aligned}
C_{X_{1}} & =\frac{1}{2 \times 3.1416 \times 14.2 \times 480.4} \\
& =0.0000233 \mu \mathrm{fd}=23.3 \mu \mu \mathrm{fd} \\
L_{X 2} & =\frac{249.8}{2 \times 3.1416 \times 14.2}=2.80 \mu \mathrm{~h} .
\end{aligned}
$$

In a symmetrical network such as the one shown here, the value of $\frac{L_{X_{2}}}{2}$ is used in each leg.

With a Lightning Calculator on hand, it is easy to find a coil that will give the necessary value of $\frac{L_{X 2}}{2}$. It is good practice to make the coil diameter approximately equal to the length.

Ratings

It is a good idea to figure the ratings of the parts involved since, with a correct match, the only losses in the system are $I^{2} R$ losses and it is well to design the parts so that there is a minimum of heating. In Fig. 2 the ratings are computed for a transfer load of 300 watts through the network.

Fig. 1-The circuit of a reactance network for matching two resistive impedances of different values.

Input $I=\sqrt{\frac{\Pi}{R}}=\sqrt{\frac{300}{500}}=\sqrt{0.6}=0.775$ amperes
Voltage across line, $E=I R=0.775 \times 500$ $=388$ volts
Current through condenser, $I=\frac{E}{R}=\frac{388}{480.4}$ $=0.807$ amperes

$$
\text { Current through coil, } \begin{aligned}
I & =\sqrt{\frac{300}{240}}=\sqrt{1.25} \\
& =1.118 \text { amperes }
\end{aligned}
$$

It will be seen that for these currents it is not necessary to make the coils out of heavy material, and the condenser can be any of the common midgets. It will be noticed, also, that the current in the coils increases as the ratio of input to output impedance increases. A split-stator condenser precludes the possibility of losses through poor rotor contact by climinating any flow of current through the contact and also adds to the voltage-breakdown rating. It must also be remembered that, if the transmitter is to be modulated, there is a voltage and current increase throughout the system on modulation peaks.

Experience here has shown that the computed values are close enough for all practical purposes. The network works quite well, allowing operation over the entire 14-Mc. band, with load mismatches as high as 2 -to-1 on either side of the computed load impedance, with efficiencies on the order of 90%. It was found that the system worked better with slightly less capacity than the calculated value, the amount apparently depending upon the distributed capacity between coils, wiring, etc. The installation here consists of a split-stator, $40-\mu \mu \mathrm{fd}$. per section, midget condenser set at full capacity and two self-supporting coils of $1 / 8$-inch copper tubing wound to $11 / 2$-inch diameter. The 500 -ohm line runs 65 feet from the transmitter to the network, and the network feeds, through the slip-rings, a 10 -foot length of 240 -ohm line which is fanned out and connected to the driven element of the antenna in the usual "Y" match fashion.

A somewhat similar network has been made up by one of the local hams to connect to a full-wave antenna one-quarter wavelength from one end, and he matches a 500 -ohm line to the 80 -or-so ohms of the antenna with excellent results, the network hanging from the antenna in place of a " $($ " section.

Fig. 2-Showing the currents and voltages in the network for a 300 -watt load.

It is possible to work the network in either direction, and a low-impedance line can be matched to a higher-impedance one. In this case, the output as figured above becomes the input, and the condenser is on the output side. In coupling two concentric lines, it will be found that the inductance will all have to be in the interior conductor, that is in the line at a potential above ground. It will also be found that in coupling to an unbalanced load, the entire amount of inductance will have to be in the side of the line above ground.
Relative to removing standing waves, if any are found, it can be assumed that the trouble is in the terminating load and not in the network. It seems that the network always shows the same reactance on the output side as shown on the input side, or vice versa, as the case might be. That is, if the 240 -ohm line looks into a capacitive load, the $500-\mathrm{ohm}$ line will present a capacitive load to the final. If the load is inductive, the 500 -ohm line will present an inductive reactance to the final. By adjusting the load to zero reactance, it will be found that standing waves will disappear on both sides of the network, within the limits given previously, and not until there is an error in figuring line impedances on the order of fifty percent or more will there be any more standing waves on one side of the network than on the other. Since the formula for figuring line impedances is relatively simple, a mismatch of this order should never occur.
The writer is feeding a three-element closespaced array Y-matched to the $240-\mathrm{ohm}$ line. Adjustment is made as though the network were not in the circuit, and coupling is made to the antenna by sliding the 240 -ohm line terminals away from, or toward the center, until the 500ohm line presents a pure resistive load to the final. At this point no standing waves occur on either the $500-$ or the 240 -ohm line. The full-wave antenna mentioned above was pruned until the feeders presented a pure resistive load. This removed all standing waves from the line.

To simulate the must adverse circumstances the writer first strung up 30 feet of 500 -ohm line, followed by 10 feet of 13 -ohm line, then 15 feet of 600 -ohm line, and finally ten feet of 240 -ohm line, with proper networks between each section. When the proper terminating resistance was presented to the $240-\mathrm{hm}$ line all standing waves on all lines disappeared. By manipulating inductance and capacity in the terminating load, the standing waves could be made to come and go at will, but it was never possible to have them on one section and not on the others.

How to Figmre Grid Bias

(Continued from page 26)
We find that under normal operation it takes 2600 ohms in the grid circuit and 450 ohms in
the filament circuit to supply the necessary 130 volts for Class C telegraph operation and still keep the plate current no greater than 40 milliamperes under conditions of no excitation. It is only a coincidence that the bias obtained from the grid resistance R_{5} was the same as that obtained from the filament resistor R_{7}. The values of R_{6} and R_{8} for the push-pull case are figured the same way and will come out to be half the sizes of R_{5} and R_{7}.

It is possible to have the filament resistor supply all the bias for the tube. The value necessary for 130 volts is found as usual, by Ohm's Law.

$$
\begin{aligned}
E_{c} & =\left(I_{p}+I_{0}\right) R \\
130 & =(0.120+0.025) R_{c} \\
R_{c} & =\frac{130}{0.145}=895 \mathrm{ohms}
\end{aligned}
$$

In this case there would be no grid resistor. In the event of loss of excitation, the plate current will be held to a small value. It can never cut itself off, as there must be some plate current Hlowing to develop the negative bias to keep it down. If you normally develop all your bias in the filament circuit you need not worry about the plate current in the event of excitation failure, but the equilibrium value it will finally reach can be found by a trial and error method on the curves of Fig. 2. Move up along the 1000 -volt line and take a safe value of current, 30 milliamperes for example. This occurs with a grid bias of -20 volts. The filament resistance necessary to give this is

$$
R=\frac{E_{c}}{I_{p}}=\frac{20}{0.030}=667 \mathrm{ohms}
$$

This is less than we have in the filament circuit so that point is not the one we are looking for. If we try again with a plate current of, say, 25 milliamperes, the indicated grid voltage is about 22 volts. The required resistance is

$$
R=\frac{E_{c}}{I_{p}}=\frac{22}{0.025}=880 \mathrm{ohms}
$$

This value is very near the resistance we actually have of 895 ohms , so we can see that the equilibrium point that the plate current will finally reach would be about 25 milliamperes. This would correspond to a plate input of 25 watts, well under the rated value of 40 watts.

Cathode of filament bias as described above is not very commonly used because the plate voltage on the tube is reduced by the amount of bias that is developed across the filament resistor. However, this method of bias is quite handy, if you have a slight excess of plate voltage and wish to reduce it.

$$
\begin{aligned}
& \text { SWITCH } \\
& \text { TO SAFETY! }
\end{aligned}
$$

Last and West from 0ld Sol and True North ior Night Owls

Another Crack at Sptting Up Direction Marlss

HY LIEUT. H. C. ©WEN.* WGJIPR

W the present day of directional antennas, orientation of these systems requires that, first of all, some direction be known definitely at the location of the proposed system, to be used as a base line from which to ascertain other desired directions.

It is the purpose of this article to show, first, how east and west may be found at any place where the sun is shining, without books, mechanical aids or watches. A string, a stick, or anything with which to determine a length is all that is needed. It is unnecessary to know whether one is in Europe, Africa or the United States. Second, for those of nocturnal habits living in the northern hemisphere, a method of comparable simplicity for determining true north from Polaris will be given.

The set-up for the first requires a vertical pole, anything from a match stick up, a level surface at the base of the pole, and the sun. The string, as a plumb-bob, is used to make the pole vertical and to level the surface at its basc. The latter may require some explanation. From the base of the pole, lay out on the surface any threc points equidistant from the base and not on the same side of the pole, using the string as the measuring device. Then, using the string again, level the surface by making these three points also equidistant from the top of the pole. Now we are ready to go.

After breakfast, when the sun is fairly low, mark the end of the pole's shadow on the surface. Measure, with the string, the distanec from this

* 323 Euclid Ave., Long Beach, Calif.

Fig. 1 - The simple method for determining an eastwest line from the sun uses a vertical stick or pole on a level surface. A line drawn between the extremities of equal morning and evening shadows gives the desired direction.
mark to the base of the pole. Then, run along about your day's busincss and plan on returning in the afternoon when the sum will be about as low again as it was at the morning observation. While you are gone, the shadow will become shorter and shorter until local apparent noon; then it will start lengthening. When it grows as big as it was in the morning you want to be there so you can mark the end of it again. (I hope you saved the string.)

Simple, isn't it? Oh yes, you're all done, those two marks determine an east and west line, and that is what you wanted. (See Fig. 1.) Other directions may be found from this base line.
Question: "I live in Slugville. Will it work there?" Answer: "Yes, anywhere on earth the sun shines, with two exceptions; the North and South poles."
Question: "What about this business of latitude und longitude, standard time and the sun being fast or slow, etc. $\$$ Don't you have to worry about that?"
Answer: "No, because we are not concerned with the sun's position with relation to time, but rather with two equal angles whose values are purely arbitrary as long as they are equal." Question: "Is the method cecact?"
Answer: "Theoretically, no, except twice a year. Practically, yes. The precision depends upon inaccuracies in the initial set-up of the pole and surface, and observational crrors. These more than mask the method elrors which depend upon the geographical location, the time of year, and the elapsed time between morning and afternoon observations. The latter will be minimum at any location in summer and winter."
The principal advantages of this method as comA.M. pared with that previously published in $Q S T,{ }^{1}$
are its universal geographical application and its simplicity. Aside from the requirements of knowing one's longitude, applying corrections to standard time for positions off the zone meridian, and for the equation of time in finding the exact moment of local apparent noon whence the sun bears north of south, there is the additional disadvantage in the latter method that when the sun is nearly overhead at noon, its azimuth or bearing changes very rapidly. As pointed out in the previous article, that method is impractical under

[^5]some circumstances. No such limitations hold for the East-West method. Observations are taken when the sun's bearing is changing slowly and its shadow length is changing rapidly, a desirable condition for observational accuracy, except as hereafter noted.
The principal disadvantage of the method is the requirement of a level surface. Because the observations are taken when the shadow makes an acute angle with the surface, a tilt, other than a north-south one, may produce a large error. This can be minimized by taking the observations nearer midday, but if carried to extreme, we again run into the difficulty of a rapidly changing bearing and a slowly changing shadow. In high latitudes, during winter, nothing can be done about it because the sun remains low all during the day, and a level surface must be had.
The following expedient may be adopted to insure a level surface. Set the pole in the ground and construct a glorified mud-puddle of suitable size around it for the surface. Have the water good and muddy in order that the shadow falling on it will be well defined.

True North from Polaris

Now for the night owls. If living in the northern hemisphere above about 10 degrees latitude, and knowing how to find it, one can see the North

Fig. 3 - Polaris bears true north when the constellations are in this position. This is also true if the diagram is inverted.

In the United States; the maximum error is ± 1.6 degrees, and the minimum error is of course zero. The maximum error increases as we go north and decreases as we go south. After showing how to pick out
Polaris from the 2000 stars visible with the naked eye at any one time, we will outline how to take its bearing when the error is zero.
Referring to Fig. 2, if you live in latitudes of the United States, face north, look up about halfway from the horizon to

* overhead, and the three constellations illustrated should be seen. They will not necessarily appear as they do in the figure.
Take the magazine and turn it around,

Fig. 2 - A star map for locating the North Star (Polaris). Cassiopeia and the Big Dipper serve as convenient references.

Star (or Polaris) any night when the clouds do not prevent it. Were the earth's axis extended out into space, it would almost run into this star. However, because Polaris is not exactly overhead at the North Pole, the star appears to travel in a small circle about the earth's extended axis as the earth revolves. Consequently, if at any time two ohjects are lined up on this star, a north or nearly north line will be determined, the error depending upon the position of Polaris in its apparent orbit relative to the observer's position on the earth.
sideways, upside down, etc., keeping the eyes on the figure. The actual constellations maintain their relative positions but seem to revolve around Polaris just as they did when turned around in this QST, and when one goes outside to look at them, they may be at any stage in their apparent revolution. If one lives far enough south, either the Big Dipper or Cassiopeia may, at times, be partially or completely obscured below the horizon. Don't let this upset you - both never disappear at the same time.

Still referring to the diagram, the easiest thing to find is the Big Dipper. The two bright stars forming the outboard side of the pan point to Polaris, the bright star at the end of the handle of the Little Dipper. If the Big Dipper is below
the horizon, Cassiopcia (more easily remembered as a " W " upside down because it is upside down when the Big Dipper is below the horizon) may be used to find Polaris. A perpendicular to a line through the center and outer bright stars of the "W," erected at the center star, points to the North Star. Once Polaris is located, if a small error is unimportant, a bearing can be taken immediately by lining up two objects with it. This will give a north-south line with an undetermined error from zero to ± 1.6 degrees for locations in the United States. However, if truc north is wanted, proceed as follows:

Hang up a string as a plumb-bob where you can look past it and see Polaris and either Cassiopcia or the Big Dipper. Wait, while the constellations revolve, until the string can be lined up with Polaris and a point halfway between the two medium bright stars of Cassiopcia, or halfway between the last two bright stars in the handle of the Big Dipper. Sce Fig. 3, right side up or upside down. At these times Polaris is true north from the observer and a bearing taken then will have zero error.

For those who desire an explanation, this is merely a visual means of determining the time of local meridian upper or lower transit of Polaris.

Hudson Division Convention

Schencetady, N. Y., Detober ith, 7th, Bth

 Two hundred local amateurs throughout the capitol district received a few days ago their first inkling as to what the coming 14th Annual Hudson Division Convention this fall holds in store for them in the way of surprises and prizes. The major convention sponsored by the Schencctady Amateur Radio Association and approved by the A.R.R.L. will be held in Schenectady, N. Y., on October 6th, 7th, 8th with the Hotel Van Curler as convention headquarters.The convention will officially open on Friday noon, October 6th, with advance registration throughout the afternoon at the Hotel Van Curler. Activities officially get under way Friday evening at the Schenectady Y.M.C.A., where a big evening of fun is being planned for those attending. This will be followed by visits to local stations and informal rag-chewing.

Saturday morning registration will continue until 1:00 P.M. when the convention will be officially opened by a short address of welcome from Dr. Albert F. Korn, President of the Association.

A fine technical program arranged by W. R. Williams, W2CSN, of the General Electric Radio Engineering Department will take place Saturday afternoon; also L. H. B. Peer, W2ACB, local Emergency Coördinator will conduct a meeting of the Amateur Emergency Corps. Naval Com-
munication Reserve will be taken in hand by R. E. Haight, N2LU. In addition the enthusiastic delegates will have an opportunity to inspect the manufacturer displays, attend a special "House of Magic" Show, visit the world-famous South Schenectady location of WGY, W2XAF and W2XAD, and witness a television broadcast. Sometime during the afternoon, K. B. Warner, WIEH, Secretary of the A.R.R.L. will broadcast to the amateurs of the world over W2XAF and W2XAD, and a recording of his address will be "played back" later in the evening so that no one will miss hearing it. This broadcast is being arranged by Eugene S. Darlington, W2ALP, and John Sheehan of the General Electric short-wave stations and is planned in the form of an interview between Mr. Warner and Roy Jordan, W2KUD, General Chairman of the Convention.
Plenty of entertainment for everybody and especially for the visiting ladies under the chairmanship of Dorothea Jordan. Registration fee has been set at $\$ 3.50$ for men, or ladies drawing for men's prizes, before October 1st, and $\$ 4.00$ thereaiter; and $\$ 2.00$ for ladies - eligible for ladies prizes only at this price - before October 1st, and $\$ 2.00$ thereafter.

Tickets should be purchased from G. M. Brown, W2CVV.

.Se Strays "

It is now possible to obtain a gadgety connecting terminal for wire-terminal transmitting tubes. This new terminal is one-half inch in diameter and three-quarters inch long. It is made of turned aluminum and has four heat-radiating fins. A setscrew is provided for fastening to the tube wire terminal and a $6-32$ screw terminal at the other end for the plate lead. These terminals (Type R-62) are obtainable from Wunderich Radio Inc., South San Francisco, Calif.

silent zeys

Ψ_{T} is with deep regret that we record the passing of these amateurs:
Philip J. Crane, W8LHP, Booneville, N. Y.

Leon H. Halpern, W6MXA, San Francisco, Calif.
Morris L. Hoag, W6KMA, Ogden, Utah. Horace Paul Houf, W6RFZ, Coronado, Calif.
W. A. Mackay, ex-W2AQB, New York. Harry L. Sadenwater, W9GGZ, Michigan City, Ind.

Results, 1939 DX Competition

IDX at its peak! That quite adequately describes A.R.R.L.'s Eleventh International DX Competition, March, 1939. Not that conditions were all that could have been desired at all times during the contest, but there was DX in abundance, as the record-breaking results show. W/VE scores topped all previous performance, in spite of the fact that the elimination of 1.75 and 3.5 Mcs. from the battle should have made for lower "band multipliers." New highs in number of countries worked were established by W9TJ, who worked 85 different countries, W6GRL with 84, and W2UK, W3CHE and W3EMM each with 80, all on c.w. In the 'phone group W3EMM worked 66 different countries, W6GRL 64, W8KML and W8NJP 62, W2UK and W4BMR 59 , and W6OCH 58 . The availability of so many countries made the affair of great interest to all DXers, resulting in the greatest concentration of DX contacts of all time!
C.w. participation, as measured by the number of logs received, was somewhat less than in recent years, while 'phone interest rose to new heights. The results of 1298 code operators (949 W/VE, 349 foreign) and 803 voice operators ($568 \mathrm{~W} / \mathrm{VE}$, 235 foreign) are recorded in the score list. These figures include some duplications as many operators participated in both the c.w. and 'phone periods.

263 Winners

Certificate awards go to the leading code operator and the leading voice operator in each A.R.R.L. mainland section and in each outside country where qualifying entries were received;

* Assistant Communications Manager.

133 section awards (67 c.w., 66 'phone) and 130 country awards (71 c.w., 59 'phone) are being made. A special tabulation of winners lists their scores, transmitter final stage, receiver and antennas used. As you look over what the victors used you will begin to realize how some of them accomplished what they did. Those antennas! Wow!! Hearty congratulations to all winners from everyone who listencd on the DX bands those hectic days in March!

Club Scores

Winner of the gavel offered to the amateur radio club whose members, operating individual stations, submitted the highest collective score in the contest, is once again the South Bay Amateurs Association of Los Angeles. Considerably bettering its winning 1938 total, the S.B.A.A. this year aggregated 533,463 points. The operators amassing this figure were W6GRL, W4DHZ operating W6GRL, W6CUH, W6QD, W6VB, W6ACL, W6CXW, W6GRX and W6DIO. Nice work, OM's! Winner of the club certificate for c.w. is W6GRL. 'Phone winner is W4DHZ at the W6GRL mike.
Second high club for the secund consecutive year is the Frankford Radio Club of Philadelphia, with 432,237 points, compiled by seventeen operators. Individual winner in the Frankford group is W3BES. The Maui Amateur Radio Club, Hawaii, is in third place with 238,810 , led by K6FAZ.

Other competing clubs are listed in order of scores. The calls given in parenthesis are winners of the club certificates; unless otherwise stated, certificate was won in the C.W. Section: Oakland

W1AVK, Left - The Western Massachusetts c.w. operators met some stiff competition from Louis A. Richmond, WIAVK, who topped that Section with 76,812 points. His transmitter line-up is as follows: Meissner Signal Shifter-807-HF100-P.P. T200's . . . a Hexible rig with plenty of punch.

CTIZA, Right - G. W. B. Pope, CT1ZA, won the vocal bout in Portugal with a score of 12,597 . . 224 contacts. Left to right on the operating table are $56-\mathrm{Mc}$. receiver, rotary antenna control, signal shifter (3.5-Mc. variable gap crystal), NC81X receiver, microphone and speech amplifier-modulator. The transmitter, 3.5 to 56 Mc ., uses 42-42-6A6-6L6G-6L6G-pair 6L6's, 50 watts input.

Radio Club, 155,584; York Radio Club (W9GY e.w., W9CIU 'phone) 138,234; Radio (lub of Cuba (CO2JJ 'phone) 95,646; South Shore Amateur Radio Club (W1JCX 'phone) 56,684; Washington Radio Club (W3EUJ) 51,512; Milwaukee Radio Amateurs Club (W9GIL) 50,538; Beacon Radio Amateurs (W3ATR) 39,418; Club ON4BC (ON4PW) 27,956; Montreal Amateur Radio Club (VE2EE 'phone) 26,012; Winston-Salem Amateur Radio Club (W4OG) 25,590; Genesee County Radio Club (W8BWC) 22,740; Eastern Massachusetts Amateur Radio Assn. (W1WV) 12,751; Austin Radio Club (W9NRB) 11,010; Southern Montana Amateur Radio Assn. (W7EC) 6088; Trenton Radio Society (W3AWH) 5196; Fort Venango Mike \& Key Club (W8JSU) 3450 ; Raritan Valley Radio Club (W2LJD) 2674; Tu-Boro Radio Club (W2BYK) 507. Individual club awards are made only in cases where three 'phone entries or three c.w. entries were received from club members or local hams invited by the club to participate.

Disqualifications

The following are deemed ineligible for DXscore listings, or awards, in the March 1939 competition. In each case disqualification is for offfrequency operation.
C.w.: W2AIW W5GSK W9ERU W9UAU CM2MR CT1ZZ CX2AJ D4YJI F3AR HI2AC * VP1DM.
'Phone: K6NYD W6EJC W8ROP W9JOL.
In addition to the above-listed, the following stations that did not submit contest entries were logged off frequency by observers during the period of the competition:
C.w.: W1JOX W2BXU W3IR W4AIS W5HUB W6GPU W6HX W6KUR W6MFZ W6NSI W6OAI W6PUZ W7DXZ W7EUY W7FZP W7GWT W8RNQ W9AIF W9MKZ W9REX W9UGV W9UQT W9VES W9WZF W9YFV VE3AEM VE4AAC.
CM2BA CE3AJ CR4HT D4OYT EI9G HP1DM HZ1A VP1BA XE1AT XE2AZ XX5X YV5AE.
'Phone: W2IIL W4DAL W5HUT W6COF W6KRI W8CAV W8EVI W8MNJ W9KIP.

* In addition to off-frequency operation, HI2AC was posing as a Dominican Republic station, while actually being located elswhere. Country credits were deducted from hundreds of scores for this reason.

C.FF. High Scores and Records

The highest score aunong W's and VE's was rolled up by Dan H. Smith, Jr., W3CHE, who tipped the scales at 178,200 . This is the highest DX contest score ever achieved in the mainland sections. Dan admits that he doesn't quite know how he did it! But he did it, and how!! FB, "DX Dan."

Second highest score is that of F. F. Priest, Jr., W3EMM - 172,044, and the leading scorer of the ' 37 and ' 38 contests, Ralph 'Thomas, W2UK, placed third this year with 171,312 . Some scores, eh?

Next in line among the do-or-die DXers come W6GRL 159,543, W9TJ 158,440, W3PC 139,500, W1SZ 129,735, W3BES 117,504, W4CEN 111,186, W9TB 109,810, W1TW 107,730, W1KHE 99,448, W2DC 98,670, W8BTI 97,146, W4BPD 92,625, W1TS 91,500, W2BHW 87,075, W8LEC 86,304, W1CBZ 86,037, W4YC (7 ops) 82,943, W6CXW 79,544, W8QDU 79,492, WIAVK 76,812, W3FQP 75,240, W1ME 72,927, W3FRY 72,261.

Those leading in number of contacts: W3CHE 360, W3EMM 354, W2UK 344, W9TJ 318, W6GRL 311, W3PC 300, W3BES 289, W1SZ 279, W1TW 272, W1KHE 268, W9TB 267, W4CEN 263, W8BTI 257, W2DC 253.

Those having the highest multipliers (total of countries worked on each band used): W6GRL 171, W9TJ 170, W2UK 166, W3CHE 165, W3EMM 163, W1SZ and W3PC 155, W4CEN 142, W9TB 140, W3BES 136, W2BHW 135, WITW 133, W2DC 130.
Among the c.w. participants outside the W/VE mainland sections, the highest score was made for the second consecutive year by Juan Lobo y Lobo, XE2N, with 230,584 points. Due to a smaller multiplier (because of fewer bands available for the contest) he did not reach his'38 score, but his contacts numbered 1910, about 500 more than the last year! This is an average of 22.4 QSO's per hour for 85 hours!! Some traveling!!
K4DTH - 176,778-is second highest c.w. scorer outside W/VE, followed by ZSAL 147,414,

A Few of the Winners

(1) (Opposite page) Earle F. Lucas, W2JT, brought to his shack the honors for leading the 'phones in Northern New Jersey. Push-pull 354's in the final, eased around by e.c.o. control, did the trick. W2JT scored 82,698 . (2) Oliver Bingen, LA1F, is the "phone winner for Norway. This is his "Ham Tower," which houses the complete station. The tower itself is 40 feet high, the pole extending skyward another 60 feet! LAlF claims the distinction of being Norway's first licensed ham (1926). (3) W4CEN, station of Tom Brandon, North Carolina c.w. winner. The receiver is a homemade super. Push-pull 250'TH's were used in the final. An A-1 station with an A-1 score -111,186! (4) Alf. G. Sheffield, VE4SS, did the best talking in Manitoba, leading the 'phones with a total of 24,453 . The $28-\mathrm{Mc}$. rig used a pair of 852's for final stage, while 150 T 's did the business on 14-Mc. A 10 -tube home constructed super dragged 'em in. (5) W4BPD, well known South Carolina Official Phone Station, led that Section in both the c.w. and 'phone battles. There's plenty of equipment there and "Gus" put it to good use. The final stage used during the contest, for both code and voice operation, employed four 852^{\prime} 's. Reception is via a home built s.s. super. (6) Second highest c.w. scorer outside W/VE, and winner of the award for Puerto Rico, is Jose F. Flores, K4DTH, whose 1406 QSO's resulted in a score of 176,778 . A makeshift breadboard rig did service during the competition. Line-up was 6L6-807HK 254,400 watts input. The unit in the photo is a new band-switching exciter which uses 6 L6-6L6-814; this will drive a pair of 810 's. (7) Harold C. Bowen, W1DQ, Rhode Island 'phone winner, in action. With the tidy score of 54,339 , he had 165 QSO's in the British Isles alone, 307 contacts in all. The transmitter final uses push-pull RK38's. (8) Panama was a rare one in the contest and a number of the gang are indebted to HP1X, c.w. winner, for providing contact. The contest receiver was a rebuilt RCA-Victor 10 -tube super. Outgoing signals came from 6L6's.

ZLIMR 120,042, K4FCV 114,228, XE1CM 111,000, LU5AN 110,592, VK2ADE 107,040, ZS6DW 103,311, K6FAZ 103,284, YS2LR 97,992, K6LKN 93,366, K5AF 91,020, ZL4DQ 84,591, and LUIEP 80,771.

High in number of contacts: XE2N 1910, K4DTH 1406, ZS2AL 1338, ZL1MR 1032, K4FCV 1020, LU5AN 1017, XE1CM 1000, K6FAZ 960, YS2LR 914, ZS6DW 907, VK2ADE 892, K5AF 841, K6LKN 808, LU1EP 743, FM8AD 729, K6CGK 726, ZL4DQ 723.

Leaders in multipliers: K4DTH 42, XE2N 41, ZS2AL 41, VK2ADE 40, K6LKN LU9BV ZL1MR ZL4DQ ZS6DW 39, K4FCV 38, G6NF K6CGK LU1EP LU9AX 37.

'Phone High Scores and Records

With a score that would have made the c.w. gang hold their seats a couple of years ago, OM Priest, W3EMM, led the vocal contingent. The score: 142,002!! This represents 483 contacts in 66 countries. The number of contacts made by leading W/VE voice operators ran higher than code participants due to the fact that 'phone stations were not operating under a "quota system." W3EMM made 123 more contacts than the leading c.w. scorer. There's some fast talking for you! Swell work, FMM!

Dave Evans, W4DHZ, operating W6GRL, hit 110,763 , and W2UK also went over 100,000 with 106,533 . 'Phone certainly has made a place for itself in this DX game!

Other outstandingly high W/VE 'phone scorers: W6ITH 99,296 , W6OCH 98,175, W8NJP 93,104, W4BMR 92,461, W3EOZ 87,282 , W8KML 86,856, W8DST 85,455, W4BPD 85,050, W2JT 82,698 , W4AGB 78,570, W9ARA 78,075.

Leaders in number of 'phone contacts: W3EMM

483, W2UK 399, W6ITH 398, W6GRL (W4DHZ op) 397, W6OCH 386, W3EOZ 373, W2JT 358, W8NJP 354, W8DST 353, W4BPD 350, W4BMR and W9ARA 347, W8KML 333, W4AGB 324, W1DQ 307.
'Phone participants having the highest multipliers: W3EMM 98, W6GRL 93, W2UK and W4BMR 89, W8KML and W8NJP 88, W60CH 85, W6ITH 84, W4AGB and W8DST 81, W1HKK and W4BPD 80.
The leading voice operator outside W/VE is G. Madrid, CO2WM, who made 1312 contacts for a score of 109,536 . And so another new record was established. Well done, OM!
Second highest 'phone scorer outside W/VE is XE1A, 96,000 points, 1305 contacts. Other highs: VP6YB 81,027, CO2JJ 65,043, ZS6DW 61,452, HC1PZ 59,556, PY2AC 50,568, CE2BX 49,968, LU5AN 47,068, VP9L 45,520, LU7BK 45,240, VK4JP 45,072, LU9BV 43,794, GM6RG 41,075, HK3CG 39,447 , VK2UC 38,400 , ZS4H 36,840, G6LK 35,880, XE2HD 35,628.
Leaders in number of W/VE contacts: CO2WM 1312, XE1A 1305, VP6YB 1015, CO2.JJ 810, ZS6DW 765, VP9L 764, HC1PC 710, CE2BX 694, VK4JP 626, PY2AC 602, LU7BK 584, LU5AN 569, LU9BV 548, GM6RG 531, ZS4H 520, VK2UC 512.
Leaders in multipliers: CO2WM, HC1PZ, LU5AN, LU9BV and PY2AC 28, CO2JJ, HK3CG, HK3CO, TI2FG, VP6YB, ZS5AW and ZS6DW 27, G6LK, LU7BK and XE2HD 26.

It was a grand contest all around, and we hope there will be many more like it - in spite of the sorry outlook in the world at the present time. Best of luck to all until the loge start rolling in again.

WINNEIRS, ELEVENTII INTERNATIONAL DX COMPETITION LRADIOTELEGRAPI

Section	Hinnet	Call	Score	Transmitter Final Stage	Receiver	Antenna
E. Penna.	Jerry Mathis	W3BES	117,504	P.P. $809{ }^{\prime} \mathrm{s}$	NC101X	Center-fed Herts
Md.-Del.-D. C.	R. B. Green	W3BEN	62,055	P.P. 100TH's	NC101X	99-ft. center-fed; tuned feeders
So. New Jersey	G. C. Giberson	W3PC*	139,500	100TH's		Rhombic; Lazy H; Rotatable
W. New York	S. E. De La Fleur	W.8AU	64,512	810	NC101X	Three W8JK 2-section Beams
W. Penna.	Francis Walczak	W8DWV	41,818	P.P. 50T's	HRO + DB20	28-Mc. vert. Q; 14-Mc. horix. Q; 7/14-Mc. vert.
Illinois	E. E. Scrocder	W9TB	109,810	860's	\cdots	7-Mc. vertical; 14/28-Mc. rotatable
Indiana	I.eslie Grregg	W9IU	67,648	357's	Homemade super	Vbeam;14-Mc.vertical;7-Mc. Herts
Kentucky	Bert Brown	W9FS	(45,670	Far. 25TH's	RME69 + DB20	67-ft. single-wire, voltage-fed Herts
Michigan	Kichard J. Cotton	W8LEC	86,304	T200	Homemade super	7-Mc. horiz. doublet: 14-Mc. rotary beam; 28-Mc. co-axial vertical
Ohio	Carl W. Luhn	W8BTI	97,146	250TL8/204As	RME69 + DB20	14-Mc. rotary; 14/28-Mc. Q's; 7Mc. doublet
Wisconsin	R. C. Schmidt	W9VDY	49,098	100TH	Homemade super	2-section W8JK; $3 / 2$-wavecenter-fed
No. Dakota	H. E. Holmberg	W90BB	1,326	100TH	NC101X	14-Mc. Q; 28-Mc. vertical
So. Dakota	Bill Mattison	W9USI	10,965	T55's	RME69	28-Mc. Sterba curtain; 28-Mc. Lasy H: $28 / 14 / 7-\mathrm{Mc}$. V beam
No. Minn.	Julian H. Craig	W9NIM	5,883	35T	Homemade super	$70-\mathrm{ft}$. single wire, Collins-coupled
So. Minn.	Kenneth A. Olson	W9YXO	9,504	Par. 35T's	Homemade t.r.f.	67 ft ., kingle wire-fed
Arkansas	William Hall	W5ASG*	34,650	T125	RME69	28/14-Mc. rotary; 7-Mc. 16-wave sing. wire-fed
Louisiana	V. L. Rosso	W5KC	66,272	P.P. 100TH's	- -	

[^6]

W9BBS, Left - C. D. Larimore, W9BBS, won the c.w. fight in Nebraska, as well as placing second among the ' phones in that Section. His rig runs 600 watts on voice, 800 watts on telegraph, and operates on the 28, 14, 7, 3.5 and 1.75-Mc. bands. The line-up is 53 crystal-'45-841-800-P.P. 809's-P.P. 852's. The 809's are used only on 28-Mc. The receiver is a PR-16C.

LYlKK, Right - The Lithuanian winner in the c.w. section is K. Karkauskas, LY1KK, who is shown seated at his operating position. The 814 final stage is pushed by a 59 crystal oscillator and parallel 6 L 6 's. There is no lost space in LY1KK's neat station arrangement.

Section	Winner	Call	Score	Transmitter Final Stage	Receiver	Antenna
Mississippi	Fred L. Ford	W5AVF.	4,445	Par. 6L6G's	NC81X	Vertical $1 / 3$-wave
Tennessee	Claude Bass	W4DQH	3,276	P.P. 808's	NC81X	7-Mc. doublet; 14/28-Mc. rotary
E. New York	E. H. Fritschel	W2DC	98,670	FP198A's	NC101X	14-Mc. 1 wave; 14-Mc. extended doublet
N. Y. C. \& L. L.	Ralph E. Thomas	W20K*	171,312	P.P. 250TH's	HRO	28/14-Mc. rotaries; 7-Mc. extended doublets
No. New Jersey	Rolf Lindenhayn, Jr.	W2BHW	\$7,075	T200	HRO	6 -element phased array; $3 / 2$-wave V; Lavy H; 28-Mc. ${ }^{1}$-w. vert.; 14-Mc. full-wave Zepp
Iowa	Charles E. Gross	W9GK8	7,956	852	HRO	2 -element rotary
Kansas	Oharles A. Pine	W9CwW	39,672	P.P T125's	NC101X	${ }^{67}$-ft. Hertz, single wire-fed
Missouri	Wm. M. Atkins	W9TJ	158,440	P.P. T125's	HRO + DB20	Five V beams, each 2 waves on a leg
Nebraska	C. D. Larimore	W9BBS	13,570	P.P. 852's	PR-16C)	132-ft. end-fed Hertz, 7 Mc .; rotatable beams, 14 and 28 Mc .
Connecticut	A. H. Jackson	WINI	53,770	P.P. 805's	NC101X	$130-\mathrm{ft}$. Zepp, $60-\mathrm{ft}$. feeders
Maine	Thomas A. Leavitt	WIIK	22, 3: ${ }^{2}$	RK28/807	Sky Challenger	Single wire-fed Hertz, 134 ft. 14;7 Mc.; vertical doublet, 28 Mc.
E. Mass.	Jefferson Borden, IV	W1TW	107,730	RK63	HRO	Terminated Rhombic; 41/2-wave V; 4 -sect. W8JK
W. Mass.	Louis A. Richmond	WIAVK	76,812	P.P. T200's	HRO	7-Mc. 1/2-wave doublet; 14-Mc. Q; 28-Mc.Q
New Hampshire	Carl B. Evans	W1BFT	31.590	860	RME69	Three long untuned wires
Rhode Island	W. E. Burgess	W1BDS	6,880	P.P. T55's	SX16	W8JK; $21 / 2$-wave V
Vermont	Hal Pratt	W1EZ	40,120	203 D e.c.o.	Det-audio, O1As	li-wave Zepps, $3.5-$, $7-$ \& $14-\mathrm{Mc}$. vert.; W8JK vert.
Idaho	Louie B. Cox	W7ACD*	18,000	250 TH	RME69	V beam, 202 ft . per leg; doublet: vertical $1 / 2 \mathrm{w}$.
Montana	Lyle W. Coleman	W7EOI*	16.740	2507H's		
Oregon	Arthur H. Bean	W7AMX	24,090	HK354	Homemade super	530-ft. inverted L end-fed Hertz
Washington	Harold Ingledue	W7CMB	29,230	P.P. 808's	Homemade super	7-Mc. 1 -wave vert.; 14-Mc. V; Lazy H
Nevada	Geo. H. Osborn	W6QQL	1,008	P.P. TZ40's	S-18	14-Mc. 3 -element rotary beam
Santa Clara V.	John Kelliher	W6AHZ	20,988	P.P. HF300's	HRO + DB20	Single wirc-fed, 7 Mc .; 3 -element rotary, 14 Mc .; $28-\mathrm{Mc}$. Q
East Bay	John Woerner	W60NQ	26,625	P.P. 450T's	HRO	7 Mc .: 1 万́-wave delta match; 14 Me .: W8JK's; 28 Mc.: vert. W8JK, 1ín-w. Q, 8-elem. Sterba
San Francisco	W. E. Bachman	W6BIP*	32,148	P.P. 250TH's		
Sacramento V.	A. T. Sepponen	W6AJD	25,938	300TH	RME69	7-Mc. off-center Hertz ${ }^{\text {Term. }}$ R ${ }^{\text {a }}$
San Joaquin V.	Thomas Sue Chow	W6MVK	51,084	P.P. 100'TH's	HRO Jr.	Term. Rhombic; V; Q's; stacked dipoles
North Carolina	Tom Brandon	W4CEN	111,186	P.P. 250TH's	Homemade super	14-Mc. vertical Q; 14-Mc. 3i2-wave Zepp
South Carolina	Gus Browning	W4BPD*	92,625	4-852's	Homemade super	Three 3-w. V's; 8-w. V; two 1/i-w doublets
Virginia	Dan H. Smith, Jr.	W3CHE	178,200	HK354's	\cdots	$1 / 2$-w. vert., 28 Mc.; 2 beams, 14 Mc.; cent.-fed, 7 Mc .
W. Virginia	Kenneth Leiner	W8LCN	16,874	150T	NC101X	28-Mc. vert. Q; 2 14-Mc. Q's; 7-Mc cent.-fed

Section	Winner	Call	Score	Transmitter Final Stage	Receuver	Antenna
Colorado	Warren Mallory	W9PGS	40.450	TZ10	RME70	14-Mc. 1-2-w. Q; 14-Mc. 3/2-w. Q
Utah-Wyoming	Chester R. Ashby	W6DTB*	12,600	P.P. 800's	SX16	i-elem., close-spac. rotary, 28 Mc.; 4 V beams, 275 ft . on all legs
Alabama	F.. (). Atkerson	Tr 4 FLCI	6ill 102	P.P. 100TH's	Hammarlund Super Pro	Half-wave doublets, 28, 14, 7 Mcs.
F. Florida	Harold J. Klaiss	W4QN	22,032	100 TH	Homemade super	2.element, ciose-spaced unidirectional rotary
W. Florida	J. N. McCaskill	IV4CDE	12,815	'T55	Homemade super	${ }^{1} 2$-w. doublets, 7, 14, 28 Mcs.
Georgia	N. W. Fincher	W4FIS*	33,360	Pr. 35T'*	Homemade super	134 -ft. Herts, 7, $14 \mathrm{Mc} . ; 4$ halfwaves in phase, 14 Mc.; 3-element rotary, 28 Mc .
lios Angeles	C. E. Stuart	W6GRL*	159,543	P.P. 250T'H's	HRO	5 V beams spaced radially from a central support; for others see June '39 QST'
Arizona	Bud Keller	W6QAP	40,317	P.P. 100TH's	HRO	Q's, 28 and $14 \mathrm{Mc} . ; 7 \mathrm{Mc}$. doublet
San Diego	Norol O. Evans	W6LYM	45.630	Y.P. 250TH's	HRO	$2 \mathrm{Rhombics;} 1 \mathrm{~V}$ beam
No. Texas	C. H. Vannoy	W5DM	35,952	505	NC81X	Two 279-ft. Zepps
Uklahoma	Harold Frank, W5EGA, operating	W5YJ	28,689	P.P. T55's	RME69	3.5-Mc. $1 / 2$-wave Zepp
So. Texas	Wilmer Allison	W5VV	55,848	P.P. 100 TH 's	HRO	Signal Squirters, 28, 14 Mc.; fullw. Zepp
New Mexico	Charles Cerba	W5CJP	1.066	T55	T.R.F.	Y-Mc. Hertz, single wire feed, Collins coupler
Maritime	C. E. Roach	VE1EA	37,433	P.P. HF100's	RME69	$3.5-\mathrm{Mc}$. Zepp for $28,14,7$ Mcs.; (${ }^{2}$'s, $28 / 14 \mathrm{Mc}$.
Ontario	R. D. Carter	$V E 3 Q D$	38,590	P.P. 35T's	Homemade super	Rotary W8JK, $14 / 28 \mathrm{Mc}$.; 12-wave doublet, 7 Mc .
Quebec	W. G. Southam	VE2AX	26,572	T200	HRO	Dipoles, 28, 14, 7 Mcs .
Alberta	Jim Smalley	VEAGD	3,888	P.P. T20's	SX17	28 Mc.: 2eelement beam; 14 Mc.: Vert. Q; 7 Mc.: Horix. doublet
Brit. Columbia	Wm. D. Wadsworth	VE5ZM	13,524	P.P. T20's	RME69 + DB20	2-element rotary, 125 ft . high
Manitoba	Geo. Behrends	VEARO	52,272	$\begin{gathered} 852 \mathrm{~s} / 270 \mathrm{As}_{8} \\ \mathrm{HK} 354 \mathrm{D}_{8} \end{gathered}$	FB7	$33-\mathrm{ft}$. vert., 28 Mc.; ceuter-fed Zepp, 14 Mc.; vert. Zepp, 7 Mc.
Saskatchewan	Allan Chesworth	VE4JV	1.404	P.P. HF100's	PR16	7-Mc. Zepp
Country	Winner	Call	Sicore	Transmitter Final Stage	Receiver	Antenna
Algeria	Edouard Brocard	FA3RY	4,620	6L6	\bigcirc	\cdots
Egypt	Frank H. Pettitt	SU1SG	20,675	805	Crystal Pro + pre.	- - -
Madeira	J. A. Ferraz	CT3AB	46,575	P.P. 809's	RME69	---
Mauritius	1. R. Raoul Thomas	VQ8AI	2.220	6L6	-	\cdots
Moroceo	Georges Duranceau	ON8MQ	4,194	6.57	-...---	\cdots
Mozambique	L. Feuilherade	CR7AK	4,455	${ }^{6} \mathrm{~L} 6$	\cdots	\cdots
So. Rhodesia	D. C. H. Human	7E2JC	115	TZ20	\cdots	131-ft. 7epp
Tanganyika	'T. W. M. Millar	VQ3TOM	6,666		3 -tube t.r.f.	67-ft. vertical
II. of 8. Africa	R. G. Henwick	ZS2AL	147,414	T40	\cdots	Ologe-spaced 2-element beam, 14/ 28 Mc .; 68-ft. end-fed, 7 Mc .
Burma	D. K. Clamp	XZ2DX*	9		\cdots	
Ohina	A. E. Lower	XU4XA	3,368	803	KME69	\cdots
Chosen	S. Matsunaga	J8CA	4,180	210		
Hong Kong	John J. Alvares	VS6AG	7,020	801	Comet Pro + pre.	2-sect. W85K flat top beam
India	IL. Thomes	VU2FX	1,413	RK20		
. ${ }^{\text {apan }}$	M.Okochi	J2JJ	22,609	35 T	\cdots	\cdots
Azores	H. Raposo de Costa	OT2BJ	3,530	210 's	Homemade, 3-tube	Zepp
Helgium	Guy de Burlet	ON4NO	59,080	809's		
Danzig	H. Schmidt	YM4AS	1,287	L495D/R8281	O-V-2 battery	7-Mc. Zepp
Denmark	F. V. B. Kroggoe	O79Q	61,914	P.P. HK54'в	FBXA	Terminated rhombic, 225 ft . on a leg
Eire	F. Halpin	EII4J	70,770	100'TH	Howard 450	136-ft. end-fed Zepp
Fstonia	Kari Kallemaa	ES5D*	5,066	P.P. 6L6G's	3-tube battery	7-Mc. Zepp
Finland	A. W. Tornblom	OH2PS	63	RV258	3 -tube battery	7 -Mc. L
lirance	Edmond Bonamy	F8RR	38,460	RK20	Homemade, 3-tube	14-Mc. Hertz
Germany	Erich Oppermann	D4GAD	54.510	KK20	3 -tube	7-Mr. Zepp
Great Britain	A. D. Giay	G6NF	70,041	$\begin{aligned} & \text { P.P. RK20's; } \\ & \quad 203 \mathrm{~A} / 211 \mathrm{E} \end{aligned}$	$\underline{\square}$	
Hungary	Imre Antalfiy	HA4H	35,310	---.	?atube	\%epp
Italy	$\xrightarrow{\text { Vili }}$	I1TKM*	31,800	100 TH	\cdots	
Isatvia	Vilis Zirnis	YL2BZ	320	1780	3-tube	3/2-wave 14-Mc. current-fed
Lithuania	K. Karkauskas	LY1KK	14,490	814	SX16	7-Mc. L; 14-Mc. L; 28-Mc. doublet
Netherlands	P. Neve	PAØPN	44,800	T40'	3-tube	: $\mathrm{K}-\mathrm{Mc}$. vert. Zepp; 14-Mc. horis. Zepp; 7-Mc. horiz. Zepp; all $1 / 2$ wave
Nu. Ireland	J. N. Smith	GI5QX	21,576	35 T	SX18	$99-\mathrm{ft}$. single wire. end-fed; $3 / 2$-wave vertical, 14 Mc .
Norway	Birger Larsen	L.A2B	1.265	HF100	3-tube	14-Mc. Zepp

Country	Hinner	Ciall	Score	I'ransmitter Final Stage	Receiver	Antenna
Poland	G. Kruglowski	SPIMX	12,038	P.P. RK20's	Super Pro	
Portugal	A. V. d'Oliveira David	OT1JU	18,725	4-6L6G's	SW3	Zepp, all bands; 14-Mc. 1'2-wavc Hertz, single wirc-fed
Roumania	C. Florian	YR5CF	39,184		HRO	
Scotland	Doug Harrower	GM6NX	23,100	P.P. T21's	NC81X	7 Mc.: Full-wave center-fed Zepp; 28 and 14 Mc.: Full-wave end-fed 14-Mc. Zepp
Sweden	T. E. Ullman	SM7MU	27,020	P.P. TZ40's	Super Pro	Closc-spaced rotary beam
Switzerland	G. he Buren	HB9AW	18,450	RK20's	HRO	7-Mc. Zepp
Wales	J. Stewart Owen	GW3QN	3,060	'46		
Yugoslavia	Otto Hudecek	YU7LX	124	P.P. '45's	2 -tube	Zepp
Alaska	Jerry W. McKinley	K7GSC	29,350	P.P. 35'T's	Homemade super	28 Mc .: 3 -element rotary; 14 Mc. : 1/2-w. vertical; 7 Mc.: ! 2 -w. doublet
Barbados	'Thos. A. Archer	' ${ }^{\prime}$ P6YB*	588	35T's	(1)-tube super	14 Mc.: 2-section W8JK, Zepp tuned feed; 28 Mc .: 3-element close-spaced rotary
Bermuda	Horace A. Frith	$V \mathrm{P} 9 \mathrm{X}$	17,880	T T 0	FB7	Full-wave doublet, center-fed
Brit. Honduras	E. W. Barber	VP1WB*	3			-
Canal Zone	C. E. Crabtree	K5AF	91,020	P.P. $860{ }^{\prime} \mathrm{s}$	NC100	67-ft. Herts, fed 11 ft . from center
Costa Rica	Federico Gonzalez	TI2FG*	35,910	$\mathrm{C}_{2} 201$	RME + DB20	Multiband, Collins
Cuba	Mario de la Torre	CM20P	31,062	'03A	SX16	33 -ft. vertical
Haiti	Emile Cadet	HH2MC	19,006	203A	Sky Champion	Matched impedance
Honduras	----3.-	HR4AF	67,986	T20's		$\cdots-\cdots$
Martinique	E. Midas	FM8AD	67,394	P.P. '10's	\cdots	…-...-
Mexico	Juan Lobo y Lobo*	XE2N	230,584	HF100		--
Newfoundland	R. W. Munro	V01D	8,551	RK20	SX11	66-ft. single wire, fed off-center
Panama	\cdots	HPIX	1,110	6L6's	10-tube super	66-ft. doublet
Puerto Rico	Jose F. Flores	K4DTH	176,778	HK254	NC101X + DB20	66-ft. Zepp
Salvador	\cdots	Y82LR*	97,992	6L6's	Breting 14AX	137-ft. single wire-fed Herts
Windward Is.	Louis Devaux	VP2LB	26,730	P.P. 6L6G's		
Australia	C. A. Miller	VK2ADE	107,040	809	11-tube ss super	7-Mc. V beam; 14-Mc. rotary
Hawaii	Sadami Katahara	K6FAZ	103,284	P.P. T40's	HRO	-
New Zealand	R. E. M. Barnes	\%L1MR	120.042	HK154	7-tube super	\cdots
Philippine Is.	Simeon B. Palino	KA1SP	196	---.	\cdots	\cdots
Phoenix Is.	Chas. D. Calley	KF6DHW*	7,344	\cdots	\cdots	\cdots
Sumatra	Tan Koon San	PK4KS*	10,890	T55	\cdots	-
Tasmania	C. H. Miller	VK7CM*	17.688	6L6G	\cdots	69-ft. Zepp
Argentina	Martin L. Hidalgo	1,U5AN*	110,592	35T	--x	-
Brazil	J. C. de Almeida	PY2AC*	41,076	838	\cdots	\cdots
Chile	L. A. Brito R.	CEAAD	:31,920	T20's	FB7A	Zepp
Curacao	\cdots	PJ5EE	105			
Ecuador	V. Salvador	HC1PZ*	3,300	807	-	----3-
Trinidad	D. Gordon Bagg	VP4TO	$\because 2,042$	6L6's	-	--
Uruguay	Carlos E. Juele	CXIFB	19,278	809's	3-tube	14-Mc. single wire, fed off-center
Venesuela	Rev. J. Ignacio Rincon	YV4AE*	15,764	800's	HRO	3-element rotary beam

RADIOTELEPHONE

Section	Winner	Call	Score	Transmitter Final Stagc	Receiver	Antenna
E. Penna.	Thos. A. Consalvı	W3EOZ	87,282	RK63s/T200s	HRO + DB20	W8JK's; Q; doublets
Md.-Del-D. (\%.	John D. Rowe	W3BNC	31.472	250'TL's	NC81X + pre.	2-element rotary, 14 Mc .; $21 / 2 \mathrm{w}$. in phase, 28 Mc .
W. New Yark	A. C Haussmann	W8DST	85,455	250TH8/T125s	RME69 + DB20	28 Mc.: 3-elem. rotary; 14 Mc .: 3elem. rotary
W. Penna.	Bill Martin	W8QXT	25,080	P.P. 250TL's	NC101.	3-element rotary, 14 Mc .; vertical
Illinois	James C. Lewis	W9DKU	58,275	250TH's		
Indiana	Fowler E. Macy	W9MM	20,592	250'TH's	SX16/HQ120	3-element rotary, 14 Mc .; doublet, 28 Mc .
Kentucky	W. R. LaVielle, Jr.	W9ELL	58,167	100TH's	HRO/Super Pro	3-element beam, 14 Mc.; Q's, 28, 14 Mc .
Michigan	R. Z. Majeske	W8NJP	93,104	HK354's		
Ohio	Robert C. Higgy	W8LFE	21,390	P.P. WE 276A's	HRO	3-element rotary beam
Wisconsin	D. B. Haas	W9BCV	39,123	100TH's		
No. Dakota	Koy S. Lund	W9VSK	1,488	P.P. HK54's	SX17	Single wire
So. Dakota	A. W. Lundeen	W9PZI	4.623	P.P. 100TH's	NC101X	Two 4-sect. W8JK fat top beams
No. Minn.	C. H. Wesman	W9PFR	2.875	T55		\cdots
So. Minn.	F. A. Nelson	W9NNO	20,130	P.P. 261A's	-	-n...
Louisiana	Samuel G. Daigre	W5ACY	7,755	T200	NC101X	2 full-waves, single wire-fed, off center
Mississippi	Jimmie King	W5DNV	27,144	HK354C	RME69 + pre.	102-ft. Hat top, center-fed

Section	Winner	Call	Score	Transmitter Final Stage	Receiver	Antrnna
Tennessee	Wilson Raney	W4SW	29,928	$250 \mathrm{THs} / 8498$	KME69 + DB20	V beam, 350 ft . per leg; ∇ beam. 207 ft . per leg; matched impedance doublet
F. New York	Lewellyn B. Keim	W2IKV	49,968	$150 \mathrm{Ts} / \mathrm{T} 40 \mathrm{~s}$	HRO	Three-phased arrays; 2 on 14, 1 on 28 Mc .
No. New Jersey	Earle F. Lucas	W2JT	82,698	P.P. 354's	$\mathrm{HRO}+\mathrm{DB} 20$	14 Mc .: close-spaced, 3 -element rotary; vert. 1/2-w. Q. 28 Mc.: Lasy H; 1/2-w. horiz. Q
Iowa	Wesley J. Novotny	W9MCD	30,561	C300	HRO	2-elem. rotary, 14 Mc.; 3-elem. rotary. 28 Mc .
Hansas	Paul W. Mark	W9CVN	30,855	P.P. 100TH's	HRO	zeelement close-spaced beam, 14/28 Mes.
Missouri	Bob Henry	W9ARA	78,075	P.P. 250TH's	HRO	3-element rotary beam, 28/14 Mes.
Nebraska	John E. Hachten, Jr.	W9ZNA	9,090			
Connecticut	Owen J. McCabe	W1COJ	10,956	P.P. 150T'8	Rebuilt FB7	?-plement beam, unidirectional, rotatable
Maine	f. Norman Davis	W1GKJ	5,508	TZ40	NC81X	End-fed 3.5-Mc. Zepp
H. Mass.	Dana W. Atchley, Jr.	W1HKK	80,000	P.P. HK54's	SX17 + Browning preselector	10-element Sterba; 5/2-w. Colinear: V beam
W. Mass.	H. J. Nuttall	W1COI	22,313	8528/HK248	RME69	3-ware Rhombic: $3 \frac{1}{2}-\mathrm{w}$. V beam; 4 -sect. flat top beam
New Hampshire	Gicorge D. Perkins	W1IVU	408	T200	Homemade super: Sky Challenger	14 Mc. : 1/2-w. doublet: 28 Mc .1 1/2w. Q
Rhode Island	Harold C. Bowen	W1DQ	54,339	P.P. RK38's	.HRO/RME69	Rhombic, unterminated; 144 ft . each lex
Oregon	C. M. Weagant	W7GAE	10,416	100TH's	Homemade super	3-element beam
Washington	Rush S. Drake. Jr.	W7ESK	37,620	35T's	PR10 + pre.	6 antennas: 3 - 14-Mc. Barrage; 1-14-Mc. V beam; 2-28-Mc.Barrage
Navada	A. L. Bernes	W6HCE	2,226	P.P. HY25's	PR10	V beam, 5 waves on $14 \mathrm{Mc} ., 10$ w. on 28 Mc .
Santa Clara V.	Filmer Armond	W6LXA	5,865	279A	HRO	14-Mc. 1/2-wave doublet
Fiast Bay	D. Reginald Tibbetts	W6ITH	99,296	P.P. 806's		- - .-....-
Nacramento V.	Emil Malek	W6GVM	15,885	P.P. 100TH's	KME69 + DB20's	W8JK beams
San Joaquin V.	Frank Valentich	W6MEK	24,647	P.P. 150T's	Homemade super	14 Mc.: 2 -section W8JK; half-wave delta match.; 28 Mc.: Bemivertical Hertz
No. Carolina	Dave M. Heath	W4BMR	92,461	2507's	RME69 + DB20	Three $1 / 2$-waves out of phase; two stationary 2 -element beams
Virginia	F. F. Priest. Jr.	IV3EMM	142,002	250'TH's	HRO	7-Mc. V; three 8 -element Sterba cortains, 14 Mc .; 2-element rotatable, 28 Mc .
W. Virginia	Wm. A. Hallam	W8JKN	650	808	FBXA + pre.	W8JK 28-Mc. rotary
Colorado	A. L. Wolfe	W9WJJ	8,154	357's	RME69	3-element rotary beam
Alabama	Bill Britton	W4ECF	34,020	100TH	RME69	2-clement rotary
E. Florida	Eleree Atkinson	W4AGB	78,570	P.P. 203A's	RME69	V beam, $14 \mathrm{Mc} ., 3$ wavelengths to leg
W. Florida	W. R. Staggs	W4FWY	7,998	T55's	RME69 + DB20	3-clement close-spaced rotary
Arizona	Geo. H. Floyd, Jr.	W60JK	8.910	250'TH's	RME69 + DB20	S-element close-spaced rotary, mo-tor-driven
San Diego	Henry Jones	W6GCT	10,836	P.P. 354's	HRO	8/2 NNE Zepp-fed; vertical 3:wave $Q, 14 \mathrm{Mc}$.; Bi-square, 2 S Mc.
No. Texas	l). J. Tucker	W5VU	16,942	250TH's	HQ120X	2 vert. 33 -ft. 1 -waves stacked in phase, 14 Mc.; $33-\mathrm{ft}$. vert. full wave, 28 Mc .
Oklahoma	George H. Chapman	W5BEE	1.5,502	P.P. 250TH's		
Sin. Texas	H. Frank Jordan	W5EDX	10,560	P.P. T55's	RME69	Two 2-section W8JK beams
New Mexico	Frank Warehime	W5DWP	5,668	P.P. T40's	HRO	W85K rotary
Maritime	M. H. F. Young	VEIGH	12,543	809's	SX16	Wave and half V beam
Ontario	May Senior, op's	VE3QL	22,464	100TH's	RME69 + DB20	2-element rotary beam using reflector
Quebec	Stan Comach	VE2EE	11,080	242 A	SX16	End-fed Zepp, $66 \mathrm{ft} ., 7 \mathrm{in}$.
Alberta	Ernest McNair	VE4WJ	3,168	T40's	SX15	14-Mc. Q; 2-elem., 2s-Mc., closcapac. rotary
Brit. Columbia	Li. J. Fowler	VE5VO	16,842	P.P. 810's	8X17	Q's
Manitoba	Al. G. Sheffield	VE4SS	24,453	150 T 's/852's		
Saskatchewan	A. C. Cox	VE4BF	2,340	T55	Homemade super	W8,JK rotary-fed with Zepp feeders
Country	Winner	Call	Score	Transmitter Final S̈tage	Receiver	Antenna
Algeria	Rene Roujas	FA3JY	650	\cdots	...-m...	-
Egypt	F. J. Wilhelm, op's	SU1CR	3.300	P.P. 6L6's	-	\cdots
Morocco	Pierre Ramond	CN8BA	6.012	211	NC101X	Herts. singie wire feed
U. of 8. Africa	Bill Meyer	ZS6DW	81,452	100TH/35T	HRO + DB20	Signal Squirter, 14 Mc.; 8 halfwaves in phase, 28 Mc .
('hina	W. H. Wood	SU8AM	2,475	P.P. 154's	----	\cdots

Countrw	Winner	Call	Score	Transmitter Final Stage	Receiver	Antenna
Chosen	Katsumi Ninomiya	J8CI	705	\cdots	- -n-mon	-
Japan	Ichiro Sakurai	J3FZ	3,640	P.P. 35 T 's		,...-n....
Belgium	Albert Deschodt	ON4AK	12,210	P.P. 100TH's	Homemade super	1/2-wave vertical Zepp, 14/28 Mc.
Eire	T. F. Murphy	EI2L	31,211	RK36		---
France	Henri Ciavatti	F8QD	25,001	HF100	Homemade super	28-Mc. Herts; 14-Mc. Herts
Great Britain	E. J. Laker	G6LK	35,880	50T8/HF100s	$\mathrm{HRO}+\mathrm{DB} 20$	14-Mc. Q; 28-Mc. doublet
Hungary	Louis Kiss	HA8C	54	211	Homemade super	Full-wave Zepp
Lithuania	P. Vanagaitis	LY1J	4,560	T125	7 -tube super	W8JK beam
Netherlands	D. Zaayer	PAØUN	25,344	P.P. '10's		Th-wave doublet \& reflector, 14 Mc.; 212 2 waves in phase, 2 reflectors, 28 Mc .
No. Ireland	J. St. C. T. Ruddock	GI8TS	1,248	T20	3-tube	$1 / 2$-wave dipole \& director, 14 Mc .; !'h-wave dipole, 28 Mc .
Norway	Oliver Bingen	LA1F	2,607	T40's	SX17/5-10	28-Mc. vertical
Poland	F. Kawczynski	SP1DC	1,820	'T55	9 -tube super, hm	$7-\mathrm{Mc} . \mathrm{L}$
Portugal	G. W. B. Pope	CTIZA	12,597	6L6's	NC81X	W8JK rotary; 346 ft . long wirc
Roumania	P. Becherescu	YR5PB	315		P.P. 210T's	\cdots
Scotland	Bryan Groom	GM6RG	41.075	1007H's	HRO	9-element rotary, 28 Mc.; Lazy H, 14 Mc .
Sweden	A. Nordgren	SM7UC	8,280	'10's	\cdots	$\cdots-$
Wales	J. V. E. Webley	GW6JW	5,104	T40	NC101X	W8JK single section $14-\mathrm{Mc}$. beam
Alaska	R. W. McCrary	K7A0C	1,239	35T's	RME70/SW3	Rotary beam; 134 ft ., single wire feed
Bahamas	M. D. Russell	VP7NS	10,542	809's	HQ120X	3-clement rotary beam

Scores

Eleventh International DX Competition

(Operator of the station first-listed in each Section and Cuuntry is winner for that territory, unless otherwise indirated. . . . Asterisks denote stations not entered in contest, reporting to assure credit for stations worked. . . . The multiplier used by each station in determining score is given with the score -.- in the case of W/VE entrants this is the t.otal of the countries worked on each frequency band used; in the case of non-W/VE participants it is the total of the W/VE Districts worked on each frequency band. . . . The number of contacts established is next listed. . . . The letters A, B and C approximate the power input to the final stage at each station; A indicates power up to and including 100 watts; B indicates over 100 watts, up to and including 500 watts; C indicates over 500 watts. . . . In cases where power is varied, this is shown by the use of more than one letter. . . . The total operating time to the nearest hour is given for each station and is the last figure following the score. . . . Example of listings: W3BES 117504-136-289-B-90, or, Final Score, 117504; multiplier 136; 289 contacts; power over 100 watts; total operating time 90 hours. . . .)
ATLANTI Drvision
E. Pennsylvania
W3BES 117504-136-289-
W3-90
W8OR
W2261-111-217-BC-73
W3CWU
W3630-

W3FXZ	2520-20-42-	B-41
W3GMS	2304- 24-32-	B-21
W8FDA	2205- 21-35-	A-55
W8LYF	1740-20-29-	B-68
W3CPV	1562- 22- 25-	A-23
W3GTL	1173-17-23-	
W8MEH	1050-15-24-	B-17
W3HSX	810-15-18-	B-21
W3GHM	780-13-20-	B-8
W3HDH	585-13-15-	C-9
W8RF'R*	416- 8- 18-	
W8RZK	400-10-14-	A-15
IV3HRS	390-10-15-	B-24
W3JN	324- 1-12-	B-8
W3BNM	279- 9- 11-	A-9
W3CBY	144- 5- 8-	B-27
W3DHO	48- 4- 4-	B-5
W30P	36-3-4-	B-3
W3GOM*	27-3-3-	
W3CII	20- 2- 4-	B-7
W3GYL	12-2-2-	A-6

Md.-Del.-D.C.

W3BEN 62055-105-197-BC-58 W3EPV 52704-96-183- B-66 W3HXP 47910-91-170- C-6B W3EUJ 44616-88-175- B-72 W3DUK 41499-87-159- B-46 W3HWZ 21238-74-97- 0-53 W3GXX 19520-61-108- C-57

W1HJ/3 19468- 62-106-AB-50 W3GEH 15900-53-100- C-69 W3CIQ 15561- 57-91- A-77 W3GKN 13923- 51-104- B-45 W3DRD 8118-41-66- B-56 W3HZH* 8109-51-53-BC-40 W3DQU 6696-36-61- A-65 W3CCU 6510-35-63- B-34 W3CXL 6270-38-55- C-242 W3CDG $4650-31-50-A C-23$ W3EKZ $3584-27-44-\mathrm{AB}-35$ W3GXU 3198-26-42- A-23 W3CBV 2760-23-40- B-22 IV3GBC 1863-23-27- B-13 W3EPR 1863-22-27- B-33 W3FSP $1071-17-21-A-30$ W3CVA 882-14-21- B-29 W3DPA * 300-10-10- W3APJ $240-8-10-\mathrm{B}-9$ W3AYS* 210-8-10- - W3CDQ 200- 8- 9- B-7 $\begin{array}{llll}\text { W3HPU } & \text { :3- } & 1- & 1-\overline{-1} \\ \text { W3HJP* } & 3-1-1-A-1\end{array}$

So. New Jersely W8AU 64512-112-192- B-81

1 Station score: opr W2GED 3009 W1CBP 453 W3CRE 9676. ${ }^{2}$ W3HNF opr. s station score: Opr W3FAX 11394 . W3DBD 12349. Three oprs, W9YES, W9GIG, W9UHQ. W9SDC, W9VFA, W9VCF, W7BME, W7BRU. W9BJL. ${ }^{\circ}$ Two oprs, Bernard and Theodore Szafranski. 7 Bristol Radio Club, oprs, Bernard and Wheodore ©zairanski. Bristol Radio Club, College Radio Club; oprs WIILA, WIGKM, WIILI. o Member A.R.R.L. HQ's staff: ineligible for contest awards. 10 North Shore Amateur Radio Assn., W1JPW opr. 11 Dartmouth Radio Assn., W9KHD opr. ${ }^{12}$ Two oprs, W6LPC, W6KRM. ${ }^{18}$ Two uprs, W6PEV, W6MHB. 14 Winston-Salem Amateur Radio Club, four oprs. 15 N. C. State College Radio Club, oprs W4CWD. W4CYA, Chas. D. Harris. ${ }^{16}$ Charles S. Newman, opr. 17 Station score, opr W5GQM 3240 W. C. Murray 429 . 18 Clearwater Radio Club, Inc., W4AKA opr. 19 Tech High School, Atlanta, Ga, seven oprs, W4YC, W4ELR, W4FJI, W4FUZ, W4FJP, 4FOB, W4FXK. 20 Ga. Tech Radio Club, opr W4DXI 2398, W4FPT 702. W2KVY 36. ${ }^{21}$ W6BBR Opr. 22 'TWO Oprs. W5GJG, VE1KG opr 25 Two oprs. Henr and Lucien Gibert 26 core of opr C. E. Crabtree; opr N. F. Miller 803.27 Edward J. Esbrook opr C. E. Crabtree; Opr N. F. Miller 603 . ${ }^{27}$ EdWard J. Esbrook opr. 30 Four oprs. W7AOF, W2LSB. W6FZR, W3CIE. ${ }_{31}$ Wr ${ }^{30} \mathrm{CRD}$ opr. ${ }^{22}$ Clearwater Radio Club, Inc.. two oprs: W4AKA's score listed; W4EHX 1530 . sa G. Gi. Fietcher assit. Opr. ${ }^{24}$ Tech HIgh 8chool, elght oprs, W4YC, W4ELR, W4FJI, s6 Dave Evans, $\dot{W} 4 \mathrm{DHZ}$, opr. ${ }^{37} \mathrm{~W} 6 \mathrm{~L}$ XK opr. ${ }^{38}$ Score of opr W6PNX; station score 12204, oprs W6PNX. W6NGG, W6OMH. W6LKE, W6NKG. 99 Two oprs, J. Y. Bowman, J. 8. Stover. ${ }^{40}$ Three oprs, W5CCO, W5HAQ, W5GWL. 41 score of opr May Senlor: E.E. C. England 2nd opr: station score 25144.42 No award in the Azores; three stations tied; collaboration evident in working same stations and duplicating scores. 48 K . B. Archer pending information on individual opr scores 46 Earl Hornbostle opr.

C'ountry	Winner	Cinll	Score	Transmitter Final Stage	Receiver	Antennu
Bermuda	Cyril Lindley	VP9L	45,520			-
Canal Zone	Earl W. Lockwood	NY1AA	27,672	TZ20	HRO	Bingle wire voltage-fed, off center, 3.5 Mc .
Cuba	G. Madrid	CO2WM	109,536	--	\cdots	\ldots
Guatemala	James B. McElroy	TG9AA	13.915	RK37	---	----3-
Leeward Is.	Arthur Tibbits	VP2AT	252	P.P. 6L6G's	ACR136/3-tube	b6-ft. Zepp
Newfoundland	Harold Wells	VO1E	5,980	' 16 's	S15	Two 1/h-waves center-fed
Nicaragua	---..-	YN1IP	12,138	203 A	8-tube G.E.	Single wire
Panama		HP1A	3,840			
Puerto Rico	R. Bartholomew	K4SA	24.552	KKi20's	KME69 + DB20	198-ft. Hertz center-fed, semivertical
Windward Is.	Marie I. Devaux	VP2LC	2,343	P.P. 6LGG's	*-tube s.в.s.	66-ft. Zepp
Australia	G. H. B. Gray	VK4JP	45,072	-	-	--.--
Hawaii	D. C. K. Enomoto	K6LKN	28,064	P.P. HK254's	HRO	--m
Java	A. te Riet	PKIRI	4.836	P.P. 35T's		\cdots
New Guinea	Charles E. Davis	VK9DK	2,002	807	SW3	\cdots
New Zealand	G. H. Diedrich	ZLILC	18.774	HK54		
Philippine Is.	Earl Hornbostle, opr.	KA1LB	29.488		-	--
Chile	Grast S'cemann	CE2BX	49,968	814'8	Comet Pro	"r"
Colombia	A. Gomez Cruz	HK3CG	39,447	HK354	------	"Y' matched impedance
Peru	Alberto Torre	OA4AI	3,003	- -	10	-- .
Uruguay	Ricardo Sierra	CX2CO	19,470	100TH	S17	Single wire, $5 / 4$ wave long

W. Pennsylvania

W8DW V 41818-95-15 - - B-73 W8JMP 32469-79-137-BC-72 W8CMK 27936-72-130-BC-65 W8KTW15312-59-88- B-32 W8HGG 11169-51-73-AB-31 W8BSF 9:240-44-70- B-45 W8MJF 8569-41-71- B-57 W8ODH 8307-39-71- B-67 W8JSU 3444-28-34-AB-15 W8AAT 2829-23-41- --W8SFV 2565-19-45- A-62 W8CXX 2207- 23-33- B-35 $\begin{array}{lll}\text { W8CXX } & 2267-23-33- & \mathrm{B}-35 \\ \text { W8KXP } & 1980-22-30-\mathrm{B}-25\end{array}$ W8GMH 1543- 20- 29- B-27 W8MTY* 1152-16-24- --W8AJN 1095-15-25- B-59 W8RQA 969-17-19- A-19 W8IOH $588-14-14-$ A-W8HET $315-9-15-\mathrm{B}-28$ W8C.JF $312-8-13-\mathrm{B}-8$ W80EM 296-8-13- B-7 W80MF* $\because 16-8-9-\mathrm{A}-9$ $\begin{array}{llll}\text { W8NRE } & 144-6-8-A-12 \\ \text { W8IYI } & 120-5-8-B-6\end{array}$ W8CZF 120- 4-10-A-6 W8OMR $75-5-5-\mathrm{A}-11$ W8RF, 75- 5- 5- A-34

$\begin{array}{lccc}\text { W8NCJ* } & 12- & 2-2-\overline{2} \\ \text { W8HUL } & 3- & 1- & 1-\mathrm{B}-2\end{array}$
W8ITF $\quad 3-1-1-\mathrm{B}-3$
W8NDE ;-1-1-R-1

Centraal Division

W9TB 109810-140-967- (-80
W9GRV 69480-120-193- B-81

W9GY 49698-99-167- (c-81 W9TH 48960-96-170W9NST 25200-24-47- B-56 W9HLF 17864-56-107- C-55 W9WLB 15776-58-91- B-54 W9FJB 12879-53-81- R-37 W9VFZ 12691-49-87- $\mathrm{H}-47$ W9VFZ 12691-49-87- B-47
W9AGM 1730- +6-85-BC 44 W9AGM 11730- $46-85-\mathrm{BC}-44$
W9UTM 10332-42-82- B-50 W9UTB 10332-42-82- B-50
W9NRB $9757-49-80-4(:-71$ W9VIN 3981-43-69- B-42 W9ETP $7371-39-63-\mathrm{B}-16$ W9WC 6145-35-59- B-31 W9VDX $5 \times 83-27-53-\mathrm{B}-38$ W9VDX $5883-27-53-$ B- 38 W9AIO $8184-36-41-$ C-46
W9MDK $4464-31-51-$ B- 56 W9YZN 3050-25-42- Э-45 W9VOQ $2925-26-34-\mathrm{AB}-19$ W9CUX 2550-25-34-B-25 W9MUX 2520-20-45- B - W9EKC 2178-22-34- B-21 W9SGL 1940-20-33- B-46 $\begin{array}{lll}\text { W9SGL } & 1890-20-33- & \text { B-46 } \\ \text { W9VWL } & 1827-21-29- & \mathrm{B}-35\end{array}$ $\begin{array}{lll}\text { W9VWL } & 1827-21-29- & B-35 \\ \text { W9EUL } & 1482-19-2 \mathrm{H}-\mathrm{B}-33\end{array}$ W9TKN $1224-17-24-\quad$ B- 29 W9PNE 1104-16-23-A-41 W9UAZ $\quad 945-15-21-A B-20$ W9ZFP 348-16-19- B-14 $\begin{array}{lll}\text { W9IWX } & 663-13-17-\mathrm{C}-9\end{array}$ W9FXZ $\quad 576-12-17-$ B-4i W9ATS 468-9-18- B-10 W9ISM $420-10-14-\mathrm{B}--$ W9DGK 396-11-12- A-54 W9YES $\quad 360-10-12-\mathrm{B}-284$ $\begin{array}{ll}\text { W9QIY } & 350-10-12-A-47\end{array}$ W9HQH 297- 9-11- …W97SS 297- 9-11- A-10 W9NQI $240-8$ 8- $10-$ A-9 W9SGI W9SG** W9ICP* W9AGV W9GSB W9ZMG W90TS W9KXU W9BWN* W9INY W9TMS
W9UWE W9UWE
W9MZP W9ZAM W9DVY $3-1-1-A-1$ W9ZEM* 3-1-1- ${ }^{*}$ -

Indiana

W9IU 6" 648-112-202- --74
W9AMM 10374- 42- 83- B-68 W9SPB 8910-45-66- A-37 W9AKJ 5673-31-62- B-44

W9EES	5332-31-58- B-33
W9E0C	4050-30- 45- B-54
W9YB	1930-23-28- - - 5
W9EBQ	1710-19-30- B-22
W9FWS	1404- 18- 26- B-18
W9K\%M	1292- 17-26- B-23
W9HUV	1173-17-23-AB--
W9.JKK	806- 13- 24- B-4t
W9YCZ	780-13-21- B-15
W9OKB	363-11-12- B-16
W9w CE	168- $7-8-\mathrm{B}-13$
WYEGQ	144- 5- 8- A--
W9CTT*	120- 5- 8-
W'9ZYK*	90- 5- 6- B-15
W9KBL*	24- $2 \cdots$ t- A-11
W9LCL**	12-2-2.-
W9MDJ*	12- 2- 2 -
W9CP	8- 1- 1-
W9ERP*	3-1- 1-

Kientucky

V9FS 6.5670-110-199-BC-72 W9FLL 20494-57-114- 8-41

Wichigan

W8LEC 86:30t-124-232- - 88 W8QDU 79492-119-224- C-79 W8OQF 25704-72-119W8KO 15624-56-93- C-63
 W8JAH 12000-50-80- B-66
W8BWTC $9729-47-69-$ (!-50 W8IQS $7380-41-61-\mathrm{B}-56$ W80XP 7068-38-62~ - 29 W8BWB 5642-31-61- B-38 W8JDG 4698-29-54- ©-68 W8MCC 4371-31-47- A-52 $\begin{array}{ll}\text { W8MTK } & \text { 1620- 20- 27- A-52 } \\ \text { W-29 }\end{array}$
 $\begin{array}{ll}\text { W8EWS } & 1620-18-30-\mathrm{B}-17 \\ \text { W8AF } & 1404-18-27-\mathrm{B}-34\end{array}$ $\begin{array}{ll}\text { W8AF } & \text { 140t- } 18-27-\mathrm{B}-34 \\ \text { W8MKZ } \\ \text { 1152- } 16-24-\mathrm{AB}-47\end{array}$ W8CVU 1050-15-24---12 W8ND 1035-15-24- B-27 W8I.NP $\quad 912-16-19-$ B-52 W8FAF 7:0-15-16- B-17 W8RVE 684-12-19- (1-22 W8QIZ 660-11-20- $0-10$ W8ENL 450-10-15-… W8SDR* 221-10-8- -W8FOV $36-3-4-\mathrm{B}-13$ W3HFP/8 $27-3-3-\mathrm{A}-$ W8I.PQ 27- 3- 3- B-18 $W 8 \mathrm{LYT} \quad 3-1-\mathrm{I}$ A-1

hio

W8BTI 97146-127-257- …72
W8LYQ 51000-100-170- C-69 W8ERA 50601-101-167- 0-70 W8HGW 38868-82-158- A-55 W8NV 33040-80-139- C-50

W8BKP 26724-50-131-AB- W8OXG 15045-58-85- B-67 W8LFE 13294-46-97- B-59 W8PEN 9196-44-73- B-71 W8GKG 8159- 41- 67- B-51 W8PUD 7605-39-65- C-60 W8ENA 7009-43- 55-AB-42 W8ENA 7009- 43- 55-AB-42 $\begin{array}{lll}\text { W8JTW } & 6708-43-54- & -- \\ \text { W8CFD } & 6156-36-57- & \text { B-44 }\end{array}$ W8END 6090-35-58- B-48 W8LCO 5643- 33-57- B-44 W8SDD* 3564- 29-44W8JLQ 3312- 23- 48- A-32 W8IWI 3306-28-38- B-32 W8BRQ 3125-25-43- (-25 VYRRAF 2625-25-35- $1-21$ W8DAE 2552- 22-39- B-28 W8QXM 2442- 22-37- B-24 W8IWS 2430-20-27-AC-21 W8ISK $\quad \therefore 376-22-36-A-61$ W8FGV 2331-21-37- B-21 W8BZB $2079-21-33-$ B-40 W8NKU 1880-20-32- A-31 W8BOS 1653-19-29- -W8JXY 1242-18-23- B-24 $\begin{array}{ll}\text { W8OGK } & \text { 686-14-17- } \\ \text { W8IPF } & 624-14-16-\mathrm{B}-\underset{\text { - }}{ }\end{array}$ V8SPM 576-12-16- - 12 V8DGP 572-13-15- (?-16 W8NZI 560-14-15- (-19 W8BMX $540-12-15-\mathrm{B}-11$ W8DGX 432- 9-16- B-25 W8EEHZ $360-8-15-\mathrm{B}-17$
 $\begin{array}{llll}\text { W88CBI } & 189- & 7- & 9- \\ \text { WPPCS } & 144-16 \\ \text { W- } & \text { S- } & B-6\end{array}$ $\begin{array}{llll}\text { W8GER } & 60- & 4- & 5- \\ \text { W8DCC } & 48- & 4- & 4-\end{array}$ $\begin{array}{lllll}\text { W8DCC } & 48- & 4- & 4- & A-8 \\ W 80 T T & 12- & 2 & 2 & -\end{array}$

Wisconsin

W9VDY 49098-98-168- B-61 V9HFJ 39150- 天7-150- C-5 W9GIL 378800-8t-150-BC-75 WVARBI 19305-65-99- B-74 W9RRT 14148-54-88-BC-63 W9RH 10878-49-74- (!-41 W9TJI 7872-41-61- B-64 W9FJQ 5508- 36- 51- B-45 W9RPW 4515- 35- 43W9RQM 4089- 29- 47- B-23 W9YQM 2756-26-3k- B-50 W9POS :706-22-41- B-40 W9QIH 1860-20-31- AW9IZQ 1428-17-28- A-38 W9MBX 1350-18-25- B-25 W9DRN 1275- 17- 25- B-12 WOQOJ 1035-15-23-A-45 W9YMG $975-13-25-\mathrm{B}-21$

W9YCV 576-12-17- B-25 W9LUC 126- b- $7-\mathrm{B}-\frac{-}{7}$ W9TXF W9KXK* W9KXK* W9MRW 45 - $5-6-\mathrm{B}-\mathrm{B}^{6}$ $\begin{array}{llll}\text { W9HRM } & 27-3-3- & 3-9 \\ \text { W9ZCU* } & 3- & 3-1\end{array}$
1)akota Divibion

North Dakota
W9UBB 1326-17-26- B-13 W9YJL 144-6-8-A-22

South Dakoto
W9USI 10965-43-85- B-57 W9PZI 6164-32-68- C-51 W9FOQ 144- 6- 8- A-4

Northern Minnesota
W9NIM 5883-37-53- B-50 W9PFR 3483-27-44- B-67 W9DNY 660-10-2\%-A-49 W9GKM* 60- 4-

Southern Minnesota
W9YXO 9501-44-88- B-65 W9DGH 8732-31-66---29 W9TQW 5088-32- $53-\mathrm{AB}-42$ W9VKF ${ }^{\text {170 }}$ 4704-32-54- A-W9TYE 72- 4- 6- B- 6

Uelta Divibion

Arkansas
W5ASG 34650-75-154- B-81 WSEIJ 76- \&- 7- A-25

Louisiana
W5KC 66272-109-210- B-8.2 W5BRR 15912-52-102-BC-51 W4BGO/5 6475-37-58- B-32 W5AFW 5024-33-55- ${ }^{\text {W-32 }}$ $\begin{array}{ll}\text { W5CEW } & 780-13-21-A-28 \\ \text { W5FTA } & 561-11-17-A-8\end{array}$ W5FTA $\quad 561-11-17-$ A- 8 $\begin{array}{lllll}\text { W5BFX } & 138- & \text { h- } & 8- & \text { B- } \\ \text { 24- } & 2- & 4- & \text { B- } 5\end{array}$

Mississippi
W5AVF 4445-33- 45- A-30
W5FIT 189- \mathbf{i} - $9-\mathrm{A}-33$
Tennessee
W4DQH 3276-26-42- B-30 W4ZZ $\begin{array}{lll} & 468-12-13- & \text { B-23 }\end{array}$ $\begin{array}{lrrr}\text { W4DFB } & 120-5-8- & \text { B- } \\ \text { W4FDT } & 54-3-3-A-\end{array}$

Gudson Divibion
E. New York

W2DC 98670-130-253- B-87 W2CBO 57474-103-186- B-63 W2CJM 52722-101-174- C-68 W2AWF 32706-79-138-BC-58 W2DSB 17784-76-78- B-44 W2OA 12285-45-91- 0-28 W2HCV 6020-35-58- B-55 W2ALH 5014-27-64- B-24 W2DQT 702-13-18---7 W2GTW 429-11-13-A-8 W2ISJ $390-10-13-A--$ $\begin{array}{llll}\text { W2LRV } & 180-6-10-A-13 \\ \text { W2- } & 2-2-\ldots-2\end{array}$
N.Y.C. \& Long Island

W2UK 171312-166-344- C-85 W2BJ 68634-123-186- A-66 W2BEF 59280-104-190- (,-84 W2AHC 34656-76-152- B-71 W2IRV 29054-73-135- A-81 W2KZN 25058-67-125- B-68 W2HYA 21978-66-111- B-70 W2 IOP 21696- 84-113- B-20 W $2 C U Q$ 16524- 54-102- B-57 W2ALB 13530-55-82- B-47 W2AV 13095-45-97- C-77 W2CTO 12150-45-90- B-W2GTZ 11715-55-71- C-47 W2FSK 11375-35-111- - -38
W2DKF 9632-43-75- C-35

W2EGG $8 \times 80-40-74-\mathrm{B}-58$ W2AXZ 8541- 39-73- B-41 W2HXT 4896-32-51- B-20 W2DZR :3940-28-47- B-30 W2KIR $330 \downarrow$ 2 $28-47-\mathrm{B}-18$ W2HAY 3075-25-41-A-2\% W2JXH 3000-24-56- B-26 W2KMZ 2952- 24-41- A-27 W2FU 2647-29-81- B-44 W2BO 2481-23-36- B-22 W2EYD 2310-21-37W2BWC 2244-22-3t-A-22 W2FCQ $2116-23-32-\mathrm{B}-25$ W2EMJ 1800-20-30- $\mathrm{B}-29$ W2CK 1710-19-30- B-34 W2LKE 1564-17-31- A-23 W2IJN 1520-16-33- B-23 W2ICO 1512-18-28- B-14 W2AOY 1395-15-31- B-27 W2HUG 1173-17-24- A-14 W2JVE $594-11-18-\mathrm{B}-13$ W2LBC $410-10-15-$ A- 9 W2BYK 405- 9- 15- B-7 $\begin{array}{llll}\text { W2KZX } & 369- & 9-16- & \mathrm{B}-32 \\ \text { W2HSL } & 231- & 7-11- & \mathrm{A}-11\end{array}$
 W2KYV* 90- 5- 6- -W2KAM W2HBO W2LLE ${ }^{*}$ 12- $2-2-2-2$ W2KKL* $3-1-1-\cdots-$ W2LAI $3-1-1-\ldots-$

No. New Jersey
W2BHW87075-135-215- -61 W2CMY 41820- 85-143- C-76 W2WC 35500-79-150- A-58 W2JT $29862-79-126-\quad 1-57$ W2CYS 20160-60-112- B-43 W2BZB 19980- $60-111-\mathrm{B}-51$ W2BUK 19825-65-103- A-69 W2WZ 16520-56-121- (1-65 W2DZA 15892-5א-92- B-57 W2GT* 14450-50- $97-$ - $8-3 \times$ W2HZN 8160-40-57-BC-42 W2IFA 7524-38-66- A-39 W2DBY 5008-32-52- --32 W2GFW 5088-32-55- B-44 W2DBQ 3930-30-46- B-49 W2FBE 3920-28-4x- B-22 W2LKF $\quad 3744-26-43-$ B- 38 W2GVZ 3690-30-47- (1-75 W2DSV. 3564-27-45- B-31 W2BQK 3528-24-49- B-8 W2ALW 2925-25-39- B-80 W2QP 2912-26-38-C-18 W2FPM 2691-23-39- B-23 W2AOG 2592-18-72- BW2JKH ?325-25-31- B-W2DEU $2244-22-34-\mathrm{B}-16$ W2LMN 2142-21-54- A-18 W2DNG 2079- 21- 33- B-17 W2LCW 1995-19-35- B-W2JGP 1980-22-41- B-18 W2DOE* $1729-19-31-\mathrm{B}-18$ W2FPL 1694-11-14- B-21 W2ALO 1540-20-26- B-62 W2LJD 1408-16-30- B-33 W2CVM 1401- 19- 23- B-17 W2FLG 1350-18-25- -W2FSN 1248-16-26- A-14 W2CW 1219-18-23-A-W2FMP 1083-19-19- O-19 W2EYZ 1056-16-22- B$\begin{array}{lrl}\text { W2EWM } & \text { 1008-16-21- } & \text { B-11 } \\ \text { W2BUF } \\ \text { 756-14-18- } & \text { B-16 }\end{array}$ W2LXI W2DFV W2JPV 675-15-15- B-W2GRG* 468- 14- 16- A-35 $\begin{array}{ll}\text { W2IB } & 450-10-15-\mathrm{B}-9\end{array}$ W2QP 270- 9-10- C-10 W2KZJ* $243-9-9-$ B-W2CJX* W2LJR W2JDC* W2JI $\begin{array}{cccc}120-5- & 7- & \text { A- } 3 \\ \text { 10 }\end{array}$ W2CQW 108- 4- 9- -W2JSS $18-3-3-\overline{A-}$ W2KEG 12- 2- 2- B-2

Midwest Division
Iowa -
W9GKS 7956-39-68- B-54 W9EMS 6303-33-6t- . $\mathrm{B}-67$ W9QLX 40x9-29-47- B-30 W9CDT 2575-25-35- B-24 W9LDH 1764-21-28- B-30 W9DIB $1209-13-32-\quad$ B-46 W9NTA 1080-18-20- B-42 W9QVZ 360- 8- 15- B-12 W9HLZ $288-$ x- 12- - W9ARE 240-15-16- B- 6 W9QVA $10-6-$ A- 7

Kansas

W9CWW39672- 88-152~ ($-7 \times$ W9UQV 9198-42-73- A-26 W9VBQ 4725-35-45- B-33 W9AWP 3782-31-41~ B-20 W9WCB 1953-21-31- - 39 W9YAB 72- 4- 6- A-W9MKU 18- 2- 3- B-8 W9CVL ${ }^{*}$ - $1-1-2$

Mis8outi

W9TJ 158440-170-318- (フ-82
W9NNZ 26772-69-130- $\mathrm{C}-78$ W9DAE 11907- 49- 81- C-31 W9BMM11178- 46-81- - W9LBB 4464-31-48- B-45 W9WCM 4176-29-48- B-41 W9TPH 1200-16-25- B-23 W9DHN 810-15-18-A-32 W9CTR* 231-7-11-… W9HIC 210- 7-10- B- 9 W9FFR 125- 5- 9- B-9 W9EYM 105-5- 7-… W9QMD 75- 5- 5~ A-16

Nebraska	
W9BBS	13570-50-91-
W9QUJ	4890-30-55- B-
W9AZT	1998-18-37- B-33
W9ASO	1632-17-32- A-21
W9ZNA*	1280-16-28~
W9WGL	1260-15-28- $\mathrm{C}-23$
W9MGV	1173-17-24- B-18
W9ZRP	1040-16-22-A-14
W9RQS	528-11-16-13-18
W9UBN**	56- 4- 5- H-13
W9GDB	12-- 2- 2- A-

Net Eingland Divibion

Connecticut
W1NI 53770-95-189~ C-89 W1FTR 48944-92-178- B-75 W1APA 29452- $74-135-$ AC-54 W1AB 19320-70-92- 0-61 W1AFG 14994-51-98- A-81 ${ }^{\circ}$ W1FVF 13104-52- 84- B-49 W1C8C 7215-37-65- B-34 W1BIH 7068-38-63- B-50 WIDHT 3861-27-48- $\mathrm{C}-31^{7}$ WICUH 3350-25-46- B-51 W1ZL 3276-28-39-A-26 W1BYW 2028-26-27- B-31 W1BQL* 1766-22-29---21 W1JUD 1760-20-30- AW1JHV 1720-20-29- B-20 W1GVK 1560-20-26- - W1FUY* 1216-18-26- B-W1AVB 1170-18-22. -24 WICEJ 1104-16-24- B-26 W1DOV 945-15-21- B-25 WIBTU 900-15-20- B-16 W1GVV $702-13-18-\mathrm{C}-15$ W1BHM 200-10-10- B- 5 W1ACV 189- 7- 9- B-W1KGX $72 \cdots$ 4- B- A-12

 W1T8 91500-125-244- B-879 W1JPE 51975-105-165- $0-50^{\circ}$ W1JTD 10125- 45-75- B-45 W1EH 645-15-16- - -

Maine

W1IK 22320-62-120-AB-85
W1BFA 18582- 57-113- B-52

W1GKJ 5088-32- 53- A-72 W1ACW 2952- 24-42- H-49 $\begin{array}{llll}\text { W1ACW } & 2952-24-42- & B-49 \\ \text { W1BPY } & 1125-15-25- & B-10\end{array}$ W1DHH 301-7-16- B--

\section*{E. Massuchusetts
 W1TW 107730-133-278- B-79 W1KHE 99448-124-268- G-00 W1CBZ 86037-119-241- B-8:3 WIME 72927-111-219- $\mathrm{H}-67$ W1ICA 45030-95-158- A-78 W1RY 39249-89-150- B-54 W1GIF 34730- X (1-145- B-8.2 WIDMA 32631-73-149- B- 84 W1JEA 11745-45-88- B-4.5 W1HX 9372-73- 44- B-50 WIWV 7913-41-66- B-59 W1CAA 7425-33-78- $-\cdots$ WIAQT B48()-36-60- B-42 W1BFR 6120-36-57- B-52 W1EHT $2783-23-41-\mathrm{B}-41$ W1BEV 2610-22-40- (!-2:1 W1LOK 2576-23-38- B-47 W1KCQ 1800- 20-32- B-22 W1JNV 1470-14-35-(3-25 W1KGH 1140-15-26- B-2R W1IQ 829-13-21- \quad $\begin{array}{ll}\text { W1DGA } & 624-13-16-A-26 \\ \text { W1AJL* } & 576-12-16-10\end{array}$ W1AJL* $576-12-16-\cdots-$ WIICI* \quad 576-12-16- $-\cdots$ $\begin{array}{lllll}\text { WIIVX } & 184- & 8- & 9- & -8 \\ \text { WIIBF } & 126- & 6- & 7- & \text { B- } 4\end{array}$ $\begin{array}{lrlll}\text { W1HVR } & 90- & 5- & 6- & \text { A- } 6 \\ \text { W1BB }\end{array}$ $\begin{array}{llll}\text { W1BB } & 60-4-5---3 \\ \text { W1Z } & 60-4-5--0-\end{array}$
 | W1DTP* | $12-$ | $2-$ | $2-$ |
| :--- | :--- | :--- | :--- |
| W1HLX* | $12-$ | $2-$ | $2-A--$ |
| WILRO | $3-$ | $1-$ | $1---2$ |}

W. Massachusetts

W1AVK 76812-111-232- (-90 WIIOZ 57915-99-195- (1-85 WIBGY 35313-79-149- B-78 W1JLT 18720- $50-104-\mathrm{B}-52$ W1BPN 15576-59-88- B-68 W1COI 11858-49-78-AB-47 W1FFK 6552-39- $56-\mathrm{A}-56$ WIIKT 3446-28-41- A-47 WIIEI 1242-18-23- C-25 W1AZW 1120-16-24- A-17 W1RB* 243- g- $4-\mathrm{B}--$

New Hampshire
W1BFT 31590-81-130- B-64 W1AQX 7455- 35- 71- B-53 WIIVU 5814-34-57- (Y-45 W1FTJ 2346-23-34- B-18 WIET $1407-21-23-\mathrm{B}--11$ W1DUK* 396-11-12-AB- -

Rhode Island
W1BDS 6880-40-58- B-27 W1GBO 3615-27-45- B-25 $\begin{array}{ll}\text { W1KIV } & 420-10-14-\mathrm{B}-4\end{array}$

Fermont

W1EZ 40120-85-158- B-73
W1JVS 21886-62-119- B-79
W1JXS $350-10-12-\mathrm{A}-8$
Northwebtern Divibion
Idaho
W7ACD 18000-45-133- B-51
W7GDU/7 5280-32-56- B-59

Montana	
W7EOI	16740-54-104
W7EC	5797- 31-63- B-74
W7GBI	4588- 41- 49- B-5
W7HFZ	3276-26-42- B-2
W7EWR	405- \%- 15- B-1
W7JC	105- 5- 7-
W7GLM	81- 3- 9- A-
W7HCV	69- 3- 8- A-32
W7FMV	36- 3- 4- A-10
	ued on page 84)

HOW WOULD YOU DO IT?

HOMEMADE OSL'S BY PHOTOGRAPMIC PRDCESS

GOOD many solutions to problem No. 29 were received. Tnfortunately, available space permits publishing only a small portion of the many ideas presented. Those which follow are representative, however.

I think one of the easiest and most economical ways to make QSL cards by the photographic method is by the use of a paper negative which does not require the use of a camera.

We shall take it for granted that at one time or another Our Héro has had some QSL cards printed and is satisfied with the design. If he has not, he can make a pattern of the desired layout

Fig. 1 - W'9MZK's paper negative made from printed original.
on a post-card size piece of draftsman's tracing cloth or paper.

In processing, place the sensitized paper on a table with the emulsion side up and place the printed QSL card or tracing, face down, directly on top of the sensitized paper. Next, place a sheet of glass on top of both cards and weigh down at the edges to insure good contact between the card and the paper. The time of exposure depends on the size of the printing light, the distance of light from sensitized paper and thickness of stock from which the original printed card was made and can be determined only by experiment.

After developing, we now have a paper negative. (See Fig. 1.) To make a positive or finished QSL card, we follow the same procedure as in making the negative except that the negative is used in the position previously occupied by the printed card. After the proper exposure time has been found, we can eliminate all guess work and make a perfect card every time. If we do not have the printed card to start with, or if we want a variation in design, we can piece sections of QSL-
card samples and hold the sections together with "scotch" tape. The samples must have printing on one side only.

- James A. Gallagher, ए9MZ

Since the problem states that the cards must be made by the single-exposure contact-print method, we must work on the hypothesis that Our Hero understands enough elementary darkroom photography to make contact prints from a negative without further instruction. We shall, therefore, endeavor to provide him with a negative.

With the aid of the inexpensive camera, Our Hero takes such pictures of his equipment, shack, operator, YL, etc., as he may wish to incorporate in his finished card. The resulting prints are then cropped with a razor blade or other sharp tool so that the pictures or sections of same may be arranged to form a standard-size QSL card. The arrangement, of course, is subject to the desires of Our Hero. The components are then cemented to a QSL card or similar backing with rubber cement, or similar good adhesive, to form a flat, smooth, neat " master card." Data spaces may be hand lettered or typed. The entire card should be in black and white rather than in colors for best results.

Our Hero then retires to his dark room. A sheet of single-weight photo printing paper of high contrast is placed emulsion-side down over the master card. The two are held tightly together by means of a heavy shect of clear glass or in a printing frame if available. He then exposes through the back of the contact paper. The light source should be kept in motion at a uniform distance from the paper to assure even exposure of the entire sheet. (If a diffusing-type glass is used, this is unnecessary.) The paper is then developed and fixed in the usual manner. A dark print of high contrast is desirable.
The "print" obtained is the master negative from which any number of contacts may be made. Printing should always be done with the emulsion sides of negative and paper tightly in contact. Exposure should be through the paper negative in the usual manner. A standard post-card paper with semi-matte surface should be suitable for prints since this can be written upon.

The negative should be made on Eastman No. 961 negative paper, while Azo No. 4 is recommended for the prints. It will be noted that colored backgrounds are not so satisfactory, since the negative is made with reflected light. Due to the variation in the coefficients of reflection of

F'ig. 2-Upper left - W/3EDA's finished card which is the result of printing through off-set positive and negative films. Upper right - Finished card made by W9ASF from tracing-paper negative with photo-negative insert. Lower left - W8JTT's card made by process similar to that described by W4CNY. Luwer right - W8MSL's card made by same process with photo insert.
various colors, sufficient contrast is not always possible.

For prints of greater gradation than possible with the above method, we suggest that Our Hero use an inexpensive portrait lens on his camera and photograph his master card. The resultant negative can be enlarged by most photographic finishing establishments, for a nominal sum, to a negative of desired size. Or, he may take his master card to the same place and have a "copy negative" of the desired size made for a reasonable sum. In either case, the final prints are made in the usual manner.

> - F. Eugene Young, W2EBK

This describes a system of making photographic QSL cards which might find fancy among the more-advanced ham photographers. Our Hero first draws his design in pencil rather roughly on a piece of white paper, leaving space for a photograph if he desires. 'Then he lays a piece of draftsman's tracing paper on top and traces the design using black India ink. He must remember to make his original design just the size of the finished card. The photo negative, if used, may be fastened to the paper negative with "scotch" tape in small, thin strips or by slotting the paper as was done in our case.
(Continued on pape 118)

Fig. 3 - W4CNY's negative to left prepared by printing tracing on film and finished card printed from negative after inserting photo negatives.

I.A.R.U. NE W S

Devoted to the interests and activities of the

INTERNATIONAL AMATRUR RADIO UNION

headquarters Society: Tee american Radio Relay league, West Hartford, Conn.

American Radlo Relay League
Asociatia Amatorilor Romani de Unde
Scurte Associazione Radiotecnica Italiana
Ganadian Section A.R.R.L.
C'eskoslovenst! Amatéri Vysllacl
Deutscher Amateur Bende-und-Emplangs Dlenst
Eesti Raadio Amatooride Uhing
Experimental Radio Soclety of Egy pt
Experimenterende Danske Radioamstorer Federation des Emetteurs Belges Irish Radio Transmitters Soclety

MEMBER SOCIETIES

Liga Colomblana de Radio Aficlonados ILga Mexicana de Radio Experimentadores
Magyar Rövldhullámu Amatớŕzk Országos Egyesiliete
Nederlandsche Vereeniging voor International Radioamateurlsme
Nederlandsch-Indische VereentgIng Voor Internationaal Radioamateurifme
Newfonndiand Amateur Radio Assoclation
New \&ealand Association of Radio Trans-
Norsk Radio Rele Liga

Polskl Zwlasek Kirotkofalowcow
Radio Club de Caba
Radio Clab Venezolano
Radio Soclety of Great Britaln Rede dos embssores Portugaeses Reseau des Emetteurs Francals Heseau luxembourgeols des Amateurs d'Ondes Courtes South Atrioan Radlo Relay League Suomen Radioamatodrdilitto r.y. Sveriges Sandareamatorer
Union de Radioemlares Españoles Tnlonsohweiz Rurswellen Amateure Wireless Institute of Australls

7-MC. BROADCASTING

I.N various countries, revised amatcur frequency assignments are being announced, most of them effective September Ist when the Cairo treaty takes effect. In France and Switzerland, the amateur assignment in the 40 -meter band is being reduced to $7000-7200 \mathrm{kc}$. Thus in those rountries amateurs will lose the use of the portion of the band to be internationally shared with broadcasting. Curtailment of amateur operation on 7 Mc . is also expected in Australia. From Estonia, on the other hand, comes the welcome assurance that "our administration does not intend to put stations in this region . . . nor does our administration intend to discontinue amateur assignments in this region". In Egypt, so far as SUT amateurs know, the authorities have not indicated their intention of using these frequencies, although it is understood that the government intends to put up a short-wave station for broadcasting to Arabian countries. However, Egyptian amateurs are allowed only the use of 7100-7200 ke., the first 100 kc . at each end being a buffer hand restriction imposed by the government and in effect some time.

NEW REALAND CALLS

${ }^{7} \boldsymbol{T}_{\text {He time has now come when the two- }}$ letter calls being allotted in the second district of New Zealand have been exhausted. A conference between the Post and Telegraph Department and the N.Z.A.R.T. resulted in a decision to assign the prefix "ZL7" to any new licensces in the present second district, rather than use a three-letter call system. It should be noted, particularly with respect to contests and awards, that "ZL7" will not constitute a new district in New Zealand, but will be exactly the same as "ZL2."

AUSTRIA

Through U.S. Department of Commerce channels, we have the following report from the German Ministry of Propaganda:
"Most of the former Austrian amateur radio operators have again received their broadcasting licenses. The Austrian amatcur union was consolidated with the German national union, the D.A.S.D. Operating licenses for amateurs in the sudentengau will be issued in the near future. Amateur broadcast within the Reich Protectorate Bohemia-Moravia falls under the competency of the Reich Protector, respectively of the Czech postal administration. To our knowledge all Czech amateurs have received back their shortwave broadcasting sets."

VK-ZLD DX CONTEST

T HE rules for the 1939 VK-ZL Contest, this year under the supervision of the N.Z.A.R.T., are essentially the same as those appearing in the September, 1938 issue of QST, so we will not repeat them in their entirety but merely point out the major changes and additions. The dates for the senior contest are September 30th-October 1 st, and October 7th-8th. The junior contest will be held October 21st-22nd, and 28th-29th. Rule No. 10 has been greatly changed, and we quote it below:

[^7]Two new cups, in honor of the New Zealand Centennial, are to be awarded this year. Rule 15, governing the awarding of these cups, follows:
"Scoring for these cups will be by means of one point for every complete 1000 miles great circle distance separating the stations in contact. Thus: for a contact with a station 7300 miles distant, great circle distance, from Wellington, N.Z., the ZL2 station would be awarded 7 points while the other station would be awarded a similar score. The total score gained by this method is to be multiplied by the number of countries worked as set out in Rule 10 for competitors outside VK-ZL.
"In view of the difficulty certain competitors may experience in calculating great circle distances, it is suggested that the points column for this section of the contest be left blank, and it will then be filled in by the Contest Committee."

All overseas logs must reach the Contest Committee, N.Z.A.R.T., P. O. Box 691, Christchurch, N. Z., not later than December 31st, 1939.

damalca rescue

THE newly-organized Jamaica Amateur Radio Club distinguished itself by its participation in a widespread search for five young school boys lost in the Blue Mountains. The club, using portable VP5BM by special permission of the government, and with volunteered emergency equipment, set up several communication circuits to keep the various searching parties in touch with each other and the home base. After two days of diligent work, the boys were found alive although greatly weakened, reached first by the radio scouting party under the direction of club president E. Metcalfe. Another feather in amateur radio's cap!

GLEANINGS

Netherlands: PA0KT, using a 30-line (Baird System) television transmitter on 76 meters, is making television broadcasts regularly from 6:40-8:10 a.m. GT each Sunday morning. . . . An N.V.I.R. goodwill test, to make as many QSOs as possible with other Dutch stations, will be held on the 80 meter band during one weekend in October. . . . Dutch amateurs staged a 5 meter relay test on August 26th and 27th. South Africa: S.A.R.R.L. members, again showing their public service consciousness, recently cooperated with the Johannesburg police in relaying important traffic concerning a murder. The police were unable to get through by commercial wire circuits, but amateurs did the job. . . . The League has persuaded their P.M.G. office to discontinue the requirement that a licensed amateur pay a fee for a B.C. receiver in his car in addition to his amateur license fee. Norway: The N.R.R.L. has completed its central transmitter, LA1C, at Notodden. This station, which comprises two complete transmitters and standby equipment, sends regular broadcasts to amateurs.

ZS6DY, C. E. Lowe, Johannesburg, who helped the Pang Jin (see page 13) out of one jam, is second South African WAS. The transmitter line-up is 6L6-807-p.p.20s, with 6 L 6 modulators.

Palestine: For purely private reasons, ZC6RL is discontinuing his amateur activity. He says that, to the best of his knowledge, he has QSL'ed all contacts, so if you worked him and did not receive a card, drop him a note.

CESL EUUREAUS

Following is the latest revised list of foreign QSL Bureaus to which QSL cards may be sent for distribution. Most of these bureaus refuse to handle SWL cards and reports, and therefore listener reports should be sent directly to the station.
Alaska: Jerry McKinley, Box 1533, Juneau
Antigua: A. Tibbits, Box 43, St. John's
Argentine: Radio Club del Argentina, Rividavia 2170, Buenos Aires
Australia: Ray Jones, 23 Landale Street, Boxhill, Victoria Bahamas: M. D. Russell, P. O. Box 374, Nassau
Barbados: see Antigua
Belgium: Baronne Bonaert de la Roche, ON4HM. Chateau de Marchiennes, Harvengt nr. Mons
Bermuda: Alfred E. Redman, Coney Island, st. George's
Bolivia: Henry E. J. Smith, c/o Standard Oil Co. of Bolivia, La Paz
Borneo: see Malaya
Brazil: L.A.B.R.E., Caixa Postal 2353, Rio de Janeiro
British Guiana: see Antigua
British Honduras: D. Hunter, Box 178, Belize
Canal Zone: Norman Miller, 15th Air Base Squadron, Albrook Field
Ceylon: Radio Club of Ceylon and South lndia, 1. O. Box 282, Colombo
Chile: Luis M. Desmaris, Casilla 761, Santiago
China: I.A.R.A.C., Box 685, Shanghai
Colombia: L.C.R.A., Apartado 330, Bogota
Costa Rica: Federico Gonzalez, Box 384, San Jose
Cuba: Adolfo Dominguez, Milagros 66A, Vibora, Habana Curacao: care A.R.R.L.
Czechoslovakia: C.A.V., Post Box 69, Praha I
Denmark: E.D.R. Postbox 79, Copenhagen
Dominican Republic: H. H. Gosling, Calle Cesar Nicolas Penson, Ciudad Trujillo
Ecuador: Carlos Cordovez, Box 30, Rio Bamba
Egypt: F. H. Pettitt, Catholic Club, Mustapha Barracks, Alexandria
England: R.S.G.B., 53 Victoria St., London, S.W. 1
(Continued on page 98)

KEYING E.C. OSCHLLATORS

. aving built the e.c.o. described by Browning and Tilton in QST for July 1938, I encountered trouble in keying the oscillator for break-in work. Since many others have undoubtedly built the same unit, the simple ehange I made should be of interest. The original circuit is shown in Fig. 1 A, while the revised circuit is shown at B. With the original circuit, the shortcircuiting of the blocking condenser apparently changed the tuning sufficiently to cause a very

Fig. 1-Removing the blocking condenser from the tuned circuit eliminated keying chirps for W 9 jJH in using the Browning e.c.o. B shows the revised circuit.
decided chirp. Even the difference in lengths of the paths between the base and the dot and dash contacts of my bug was sufficient to cause a noticeable difference in frequency. With the revised circuit, all of these difficulties were eliminated and the unit keys very well. The change requires insulating the tuning condenser from ground.
… Laie H. Rers, WraUUH
 sulated. Fortunately, these portions are the ones which are usually hardly accessible to accidental contact. The filament by-pass condensers must have a voltage rating somewhat

Fig. 2 ' The variable cathode resistor in the buffer stage may be adjusted to keep the plate voltage constant while keying in W9EYH's e.c.o.

In the circuit shown in Fig. 2, an old antsblinking scheme is used by W. Wallace, W9EYH, to keep the plate voltage constant while keying his e.c.o. A variable cathode resistor in the 6 L 6 buffer stage is adjusted so that the total current read by the meter is the same with key open or closed. The load remaining constant, the voltage also remains constant under both conditions. Since the total current is between 45 and 50 ma ., the 6 L 6 buffer need dissipate only about 12 watt s which is well within rating.

GROUNDING POSITIVE HIGI VOLTAGE VOR SAFETY

The desire to "switch to safety" and to build a cheap r.f. amplifier led me to adopt the circuit shown in Fig. 3 A. Although the idea is not new, I think it deserves much more consideration than has been given. Comparison with the orthodox circuit of B will show that the positive termiual of the high-voltage plate supply is grounded instead of the negative terminal. While this involves certain problems, they are not insurmountable and are brought about chiefly because the design of commercially produced components have been based upon the grounded-negative circuit. When the two circuits are compared, the advantages of the grounded-positive version are quite apparent. Almost without exception, those parts of the eircuit which are normally exposed and sources of danger in the grounded-negative circuit are grounded and, therefore, harmless in the grounded-positive circuit. The tank coils, tank condensers, plate-circuit milliammeter, tube plate terminal and filter chokes are at ground potential and the adjusting shaft of the weutralizing condenser is also grounded. Another advantage is that no difference of d.c. potential exists between the rotors and stators of the split-stator condenser and, therefore, a tank condenser with sufficient spacing to withstand the peak r.f. voltage only is required.
On the other hand, the filament and d.c. grid circuits are at high d.c. potential in respect to the chassis or
-
greater than the plate voltage used. The sume sort of insulation is required between the primary and secondary windings of the filament transformer. All components of the bias supply must also be well-insulated from ground including the

Fig. 3-Grounding the positive high-voltage terminal instead of the negative terminal places most of the exposed portions of the circuit at ground potential, while less exposed portions are at high d.c. potential above ground. Heavy lines indicate high potential points of the usual arrangement at B and the grounded-positive arrangement at A . See text for precautions in using.
rectifier filament and plate-transformer secondaries. Batteries might be used for low-voltage, high-mu tubes but they must be placed at an inaccessible point and have well-insulated mountings. The grid coupling condenser must withstand the sum of grid and plate voltages. Some of these difficulties may be avoided by obtaining the biasing voltage from a voltage divider across the plate-voltage supply, connecting the grid return to the negative high-voltage terminal and filament center tap at an appropriate point on the divider. With high-mu tubes, the sacrifice in plate voltage will usually not be appreciable.

- Arpard A. Fazakas, $\dot{W}^{\top} \mathscr{F L T}$

CRYSTAE PHLTER FOR PPMONE WORE

 recently built a receiver here using a regenerative preselector, regenerative first detector and one stage of $456-\mathrm{kc}$. i.f. The receiver had very good sensitivity and output but lacked

Fig. 4-Broadening crystal filter for 'phone work. The coupling connection is shifted from the center tap to the grid.
selectivity on the crowded 20 -meter 'phone band. So, I purchased a Meissner crystal-filter unit and installed a second i.f. tube, a 6K7. It was found that the selectivity for c.w. was perfect but very much too sharp for understandable 'phone work. A variable condenser across the input coil of the crystal bridge helped only very little. I checked December 1938 QST article by D. K. Oram and decided that I would try that circuit. I removed the tap from the crystal to center of the i.f. grid input coil and connected a wire directly to grid of the i.f. stage. I found that this connection gives just about the right amount of selectivity for 'phone use with good discrimination and understandable quality. Circuit change is shown in Fig. 4.
-W. S. Davis, W6VS

POWEIR-SUPPLY KINES

AM building a new transmitter and have included a few kinks I have not seen published so far, which I would like to pass along to the gang.

First, I had installed filament transformer with a winding for 5 v . 3a. I decided to use 866 Jr's, so used the circuit shown in Fig. 5 A.

Next, my bias-supply transformer put out 220 and 110 volts each side of center tap. I used two sockets for the rectifier tube, one connected to each voltage so bias voltage could be changed by placing the rectifier tube in either socket. The circuit is shown at B .

The circuit shown at C was used for the 110-v. a.c. line to the low-voltage and high-voltage plate-transformer primaries. S_{1} is the main control switch. With S_{2} open and S_{3} closed, both high and low voltages are reduced while the exciter is being tuned up. With S_{2} closed and S_{3} open, the low-voltage supply operates normally, while the high voltage remains reduced for tuning. With both switches closed, both high- and low-voltage supplies operate normally. With S_{2} and S_{8} both open, the low-voltage supply is turned off while the high voltage is reduced. This position has no particular use except possibly to test the final amplifier in case of trouble. The amount of voltage reduction may be controlled by the size of series lamp used. A 150 -watt lamp will usually be about right for most installations and will prevent damage to tubes in the final amplifier even

"Hams" and their YL's, where the Green Mountain Radio Club will act as host. The program begins with registration at 12:00 o'clock noon followed with varied entertainment for the ladies; A.A.R.S. meeting to be conducted by R. C. Teachout, WLGU-W1FSV, State Radio Aide for Vermont; 'phone meeting; traffic and emergency meeting under the guidance of WikJG, SCM for Vermont; code contests;

lamp C
fiis. is Power-supply kinks. A --wperating 866 Jr's from 5v., 3a. transformer. B - Changing voltage by changing rectifier-tube sockets with dual-voltage secondary transformer. C-- Plate-voltage control system.
though the stage is operated off tune for considerable lengths of time.

- Myron Lawson. W9BQZ

Midwest Division Convention

Wes Moines, Ioura, Detober 20th-2Ist
 The 1939 Midwest Division A.R.R.L.

 Convention will be held in Des Moines, Iowa, Friday and Saturday, October 20th and 21st, at the Hotel Fort Des Moines. As in the past, the Des Moines Radio Amateur's Association will be host to amateurs of the Midwest Division. The convention committee has made every effort to make this affair an outstanding success, and one to be long remembered by those attending. A program consisting of talks and demonstrations by well known speakers; A.R.R.L. forum, A.A.R.S. and N.C.R. meetings, Wouff Hong initiation, equipment displays, special events for the ladies, prizes and a banquet have been prepared. Registration begins at 10:00 a.m. Friday morning at Hotel Fort Des Moines. Those registering before October 18th will be eligible to draw for a special pre-registration prize. Tickets are $\$ 3.00$ for OMs and $\$ 2.00$ for ladies, and include the entire convention activities. Send registration to L. H. Larson, W9URK, 3510 Wright Street, Des Moines, Iowa.
Vermont State Convention

(New England Division)

Hutland, Vermont, Detober 1.1th

$\mathbf{T}_{\text {He Bardwell Hotel at Rutland, Vermont, }}$ Saturday, October 14th, will be the Mecca for all
technical talksand manufacturers'
 display. The banquet will be a Vermont turkey dinner with seconds! A floor show will be put on between courses and there will be (Continued on page 102)

* NEW TUBES

TAYLDR TW-150

THe Taylor TW-150 is the first transmitting tube to use the new thin-wall carbon plate. This plate is cup-like in shape and is turned out from a solid block of carbon to a thickness of 0.015 inches. The light weight of the plate makes a relatively high-capacity supporting structure unnecessary and, volume being reduced, there is less danger of occluded gas. The tube is a highpower triode.

The tentative ratings of the TW-150 follow:

Ma	3000
Maximum plate current.	200 ma.
Maximum rectified grid current	60 ma .
Plate dissipation.	150 \%

Amplification factor. 35

Tupical ()peration - Cilass C Telegraphy			
Plate voits (d.c.)	2000	2500	3000
Plate current (d.c.)	200 ma .	$\because 00 \mathrm{ma}$.	200 ma .
Grid current (d.c.)	46 ma .	45 ma .	45 ma .
Grid bias volts (d.c.) ${ }^{*}$	- 92	--120	-173
(rid volts (peak a.c.)	322	350	411
Plate dissipation (watts).	112	127	135
Power output (watts).	\%88	373	465
Plate efficiency (\%).	72	74.5	73.5
Plate angle (degrees)	165	160	150
D) riving power (watts)	13.35	14.25	16.75

Plate volts (d.c.)	2000	2500	3000
Plate current (ma. d.c.).	200	185	165
(ridid current (ma. d.c.)	46	43	40
Grid bias (volts d.c.)*.	-142	-195	$\cdots 257$
Grid volts (a.c. peak)	379	430	487
Plate dissipation (watts).	103	101	95
Power output.	297	361	400
Plate efficiency (\%)	74.25	78	80.75
Plate angle ('degrees).	150	140	130
(rid driving power (watts)	15.7	16.9	17.3
Plate volts.	2000	2500	3000
Battery bias (volts)	60	75	90
Grid leak (ohms).	1775	$\begin{array}{r} 2740 \\ \hline \end{array}$	$\begin{gathered} 4225 \\ \text { H. М/ } \end{gathered}$

[^8]The publishers of QST assume no responsibility for statements made herein by correspondents.

SOS HOAXER DENOENCED

Editor, QSI':

The enclosed newspaper item [concerning the boax SOS call off the Florida coast August 2nd] is self-explanatory and it certainly caused my old thermometer to explode with super violence. I sincerely feel that this item and comment should be published in QST for the object lesson and perhaps an angle on the public relations situation.

It is alleged to be the prank of some amateur. But it hurts all of us interested in our grand old hobby. While every fraternity has among its membership some rather neurotic individuals, nothing but a person devoid of all intellect could be guilty of such an alleged prank.

If any amateur has any knowledge of this affair, and was a party to it, I feel that the League should assist in the proseeution, if the violator is apprehended. Those of us interested, know that amateur radio suffers from enough adverse criticisms without becoming involved in the violation of international laws and treaties.
It is to be hoped that when and if the person or persons are found that it clears the amateur fraternity.

$$
-J . R . W e l l s, W 6 Q L \text { ex-KA } 1 Q L
$$

Editor's Note: Any thinking amateur would most emphatically aid in the apprehension and prosecution of such a hoaxer if opportunity offered. Concerning the public relations angle, it is gratifying to note that, outside of the initial dispatch, which originated in Florida and apparently was not edited by the New York AP office, all newspaper and radio services coöperated in avoiding references to an "amateur" in connection with the hoax. This indicates that A.R.R.L.'s long campaign with the press services to preserve the distinction between radio's licensed amateurs and the customary broad application of the term is succeeding. Much can be done to aid this campaign by local amateurs and clubs by informing local news agencies in detail concerning amateur radio.

CQ DX—BUT WHAT IDXP?

Blue Bell, Pa.
Editor, QST:
This means one thing to you and quite another to me, and location seems to be the factor, aside from momentary interest.
Often operators are heard crabbing that others will not answer them, undoubtedly for reasons of their own, but which they did not indicate when calling CQ DX.

If directional calls are useful, as all will agree, how about a set of signals by which the DX hunter can indicate the inner limits of his quest?

The shorter such a call, theoretically, the greater the possible number of contacts in a given time, such as a contest.
$Q \mathrm{Q} D$ is cumbersome to one who is trying to "pack them in." How about dropping the "DX" part of the call and add one digit to the "CQ" to indicate in thousands of miles the radius within which don't bother to reply?
CQ W5 would be, of course, a directional call, while CQ5 would mean, "Don't answer closer than 5000 miles."

The scale would then be:

> QQ - no limitations
> QQ1 - beyond 1000 miles
> QQ2 - beyond 2000 miles etc.

There would be little reason to go beyond CQ9 from the average ham's point of view!

- John B. Morgan. IFSQP

MOVIES
Editor, QST':
I recently saw a movie short entitled "Radio Hams." Many people in this town saw that picture and I think there is a much better understanding of amateur radio in this community.

This picture shows the help that amateur radio has given during emergencies. I certainly hope that more of these short subjects concerning amateur radio will be produced.

I wish to urge every amateur to see his local theater manager and find when this picture will be shown and not only see it yourself but tell all your friends so that the general public will get a better understanding of amateur radio.

- Stanley H. Kenyon, W8SVC

Editor, QSI':
Harlingen, Texas
I have recently written Columbia Picture Studios on their excellent presentation of ham radio as evidenced in their late motion picture entitled "Grand Jury Secrets."

I advise every ham that has the opportunity to see this picture if possible, because it is refreshing to see at last an accurate picture concerning amateur radio. All that I have viewed before have been detrimental rather than educational, as they should be in order to improve our public relations.

I believe it would be a good idea, after seeing this picture, to write Columbia Picture Studios and thank them as such encouragement might result in similar efforts in the future.

- H. H. Bowers, Jr., W5EWZ

HIGI POWER-WIY NOT\%

58 W. Cambridge, Phoenix, Ariz.
Editor, QST:
My pet peeves are the boys who suy, "There should be a law against high power and the swishing e.c.o."

In the first place, the reason the boys don't like high power is because they can't have high power for themselves or, at least, they think they can't. It takes no more money to build a simple kw . than an elaborate 100 - to 200 -watt low-power rig. I know quite a few men who make a so-called living wage and have nearly always had a kw . or high-power rig on the air. Next, the boys will say it isn't sporting to have a high power station when hams all around have low power. Well, amateur radio is a competitive sport, which is plainly evident by the various contests offered by the A.R.R.L. The meaning of competitive sport is, "Try to no your competitor one better in speed, class, style, and anything else you can do." And if it isn't sporting to have a kw . on the air then WlAW should be torn up as a monument to low power because the A.R.R.L. is the essence of the amateur spirit. You will have more confidence if you have high power, for as in business you feel better if you have a bigger show room or truck than your competitor. So in parting I'll say, if you want high power, go ahead. You can afford it, and you won't be a traitor to the amateur spirit.

Warner Thomson, WGPUM

F. E. IANDY, W1BDI, Communications Mgr.

War. The world appears to be filling with war madness, as we write these lines. Every inhabitant of the globe is directly or indirectly affected. Some of the effects are profound, indeed. The shadow of war falls quickly across our pursuit of our chosen hobby, amateur radio operating, as well as everything else. Already we are obliged to bid regretful farewell to our VE cousins as well as our distant neighbors in many parts of the world who are promptly off the air by government edict. May we hope for the return of our friends to the air!

Be neutral. 'The President of the United States has just proclaimed the U.S.A. neutral and issued detailed rules for neutrality. It is not at this writing expected that any special restrictions will be issued for radio amateurs. In fact, we are assured to the contrary. We know our individual responsibility. We must guard our conversations to make sure they can aid no belligerent. Unless conditions force such governmental steps, we need face no special loss of privileges. We are put on our honor to be ncutral, and in radio operating it is an important responsibility that deserves thoughtful consideration.

Usual A.R.R.L. Activitics Scheduled. The operating news of the day is the silence of so many brother amateurs - and the need for every IJ.S. ham to continue usual observance of international regs that prohibit handling third party information, while leaving us traffic freedom, domestically, as usual. On the domestic horizon it looks like a big year for traffic and all amateur radio activity - all in spite of the international shadows. The usual A.R.R.L. program is contemplated, subject only to some new unexpected development. In October we remind you of Navy Day, and the coming highlight in operating, our A.R.R.L. Sweepstakes (10th annual) which is scheduled for Nov. 11th-12th, 18th-19th.

For us it is time to give thought to reopening of Trunk Lines, for appointments as ORS, OPS for registration in the A.E.C. (if not previously lined up, of course) and for alignment with the N.C.R. and A.A.R.S. within which organizations we may learn much, may prepare ourselves for skilled communication branches in event of necessity, and which builds the respect of our government's departments for the radio amateur to the advantage of us all. Our local emergency organization for flood or hurricane must be developed and advanced this season. Amateur plans will progress domestically in all these lines. We proceed then to discuss some disaster operating policies.
E. L. BATTEY, WIUE, Asst. Communications Mgr.

Amateur Service Emergency Policy. During the past year a number of agencies as well as amateurs, have asked in what fashion we serve, as a result of which previously understood but unstated policies have been defined. These principles are now stated to save further questions and so all amateurs may benefit by having them for reference.

Our function as radio amateurs is to provide emergency communication. We are not responsible for predicting when dams will fail, estimating lives lost or property damage, making technical reports on flood stages or the extent of cities' food or medical supplies. These things go beyond our limited personal observations. We do not wish to be taken to task for giving pronouncements in such matters. It is, therefore, our policy to handle only information from official sources, or if not, then by all means to be sure that information handled is definitely signed or labeled as to its source, with rumors marked plainly as such. Information on roads should come from state police or the highway department, information on weather and flood conditions from the U.S. weather forecaster, data on relicf needs and property damage from the Red Cross or mayor's office, etc. Information is not to be given out to reporters or individuals by amateurs. A message addressed to a person is not to be broadeast, but sent and receipted for by each station handling, in turn. It may be delivered only to the addressee or his authorized agent. Only with express authority from a person addressed may information be released. Observe the Radio Act, which imposes heavy penalties for violating the provisions on secrecy of correspondence. Keep inquisitive persons (however friendly their intent) from your message files. Refer them to the agencies or persons to whom your messages have been delivered, if occasion arises.

The Emergency Coördinator represents the amateur service and contacts all agencies direct, except where he assigns stations for particular agency jobs requiring direct contact between station and agency. Even then he has the nice problem of keeping an up-to-date chart of the changing schedules of all the local stations to facilitate giving advice on best routings. Should a message center be established by the communications committee of the Red Cross or by civic or military authority, the Coördinator will report complete information on amateur facilities at intervals to this center, but otherwise than to extend general coöperation to all other communication agencies
to aid in reëstablishment of facilities and protection of the public, traffic will not in general come from or through any one source or agency. Priority will be determined for each dispatch filed by any or all agencies on the principle of the greatest good of the greatest number, and in view of the public interest involved.
\cdots - $\boldsymbol{F} . \boldsymbol{H}$

PIRITES RDR BEST ARTICLE

Each month we print the most interesting and valuable article received marked "for the (i.D. contest." Contributions may be on any phase of amateur operating or communication activity (DX, 'phone, traffic, rag-chewing, clubs, fraternalism, etc.) which adds constructively to amateur organization work. Prize winners may select a 1939 bound Handbook, QST, Binder and League Emblem, six logs, eight pads radiogram blanks, DX Map and three pads or any other combination of A.R.R.L. supplies of equivalent value. 'Try your luck. Send your contribution to-day!

DX Bookkeeping

EYKENNETE 期。WARNER, WIETI
E've heard of a couple of fellows who seem to keep a 5×7 card record on every station they work, with details of everything. Not only the usual dope on dates and bands and "handle" is put down; occupation, wife's name, children, other hobbies and so on are detailed. One can imagine space for a passport photo, a blueprint of the other fellow's house and a copy of his last income-tax return. Where the keeping of neat records is itself the hobby, this stuff is just dandy; but for most of us it is too much like work. Now at the other extreme is the fellow whose sole reliance for figures and data is his very bad memory. Sure, he's worked Siam, but they didn't send him a card and he can't recollect station, band or date except by hunting through old logs. He doesn't know where the logs are and he couldn't read them if he found them. He doesn't know whether he's worked Bulgaria or not, but he guesses that if everybody he worked had only QSL'd him he'd be on top of the Century Club.

Somewhere between these extremes of excess industry and ignorance is a sensible useful system for the average amateur. As concerns my own needs, I've found the answer, and I'm passing it along for possible ideas to others. It won't do for W1WV with away over a thousand different G's worked; he'll still need a card system (but let's hope that 3×5 cards will dol). But for the average aspirant to the DX Century Club who is just trying to get along and add a new number now and then, like myself. I think my scheme will be found very useful.

I have a bound record book of a couple of hundred pages. about $7 \times 8^{\prime \prime}$, about 25 lines to the page. I letter the name of a country at the head of a page and then list the stations worked, chronologically, one to a line. For each I show the call, the city, the band, whether c.w. or 'phone, and the month and year. Where I know the "handle" (detestable word!) I write it in parentheses following the city. The city is important; calls change, for one thing. Our record shows we worked oa7DX in Tasmania in early 1927 on 7 Mc ., but we neglected to note the city and he never QSL'd and we threw away our 1927 callbook. Probably the same as VK7DX to-day, you say? OK, only there isn't any such call. See? Well, returning to our story: the remaining data we log in a cryptic but simple manner of our own to show band, c.w. or 'phone, and date. We make use of the F.C.C. nomenclature for types of emission, wherein A-1 is e.w.,

A-2 is i.c.w., A-3'phone, etc. Suppose we worked somebody on 10 -meter 'phone last July. We'd log it, in small writing, " 28 -3-July '39." Small, so as to leave room for future entries when that same station is worked again, perhaps next time as " $14-1$-Aug. '39," meaning of course 20 -meter c.w. Thus a typical entry, on the page for Eire, might read: "EI2L Dublin (Tim) 14-3-June '37. 28-3-Feb. '39.' And all the other Eire entries on the same page, in uniform style.

If further particulars become necessary they can be had by consulting the log for the stated month. They are not needed with sufficient frequency to justify posting any more than this essential information in the record book. Note that I do not show the date of the month. You may want to but then you're stuck with listing every day and sometimes you have QSO's by schedule or chance many times in a month with the same station, then never to hear him again. I find just the month-reference ample.

For an "average" country, where only half a dozen stations or so have been worked, one page in the record will be ample - for the next ten years, in all probability. Paper is cheap enough, however, to warrant leaving yourself plenty of room to grow. For instance, under England I have assigned several pages each to G2, G3, G5, G6 and G8, with room for 4 and 7 and 9 if they ever get started. (Hmm .. Guess I'd better add 4 now.) Notice, also, that I said England not Great Britain. This is because any such record as this should be laid out in terms of the I.A.R.U. country list, whereunder England, Scotland, North Ireland and Wales count separately and should be listed separately.

So your book will probably start out with two pages for Argentina, a page or so for each numbered district in Australia, one page for Austria (sure, list those worked, even though there'll be no more; they still count in the Century Club), a couple of blank pages for possible future developments under "A," then moving to Belgium, and so on. It is desirable to give a full page to each country in which you have worked even a single station, provided it is actually an independent country. The real difficulty in "country-counting" and in record keeping is with the colonies and protectorates that count separately with us. They are so sparsely settled with amateurs that it is rare to work inore than a couple of stations in any one of them, and yet there are so many of them that they'd eat up a book on a simple page-per-I.A.R.U.-country basis. I solve that by having one page marked Portuguese Colonies, onefor Netherlands Indies, a couple for French Colonies, several for British Colonies \& Protectorates, and grouping these entries by such heads. When I count up my countries I have to remember that such a page will list more than one country, but that's easily done. If my correspondence with the colonies of any one nation ever becomes too heavy to keep count on in this way, I'll break it down and set up new and separate pages for the Madeiras, the Azores, etc. Meanwhile I like the grouped headings. There's one for "Australian Dependencies," by the way, to take care of Papua, Tasmania (the idea of calling VK7 a separate countryl) and VK9. We probably put a strain on political nomenclature but our book serenely announces that the Isle of Man and the Channel Ids. are "English Dependencies." U.S.S.R. we of course set up on the basis of seven countries, per the I.A.R.U. list. The fact is, we confess, that if we didn't mind wrestling a big enough book, we'd set up the whole I.A.R.U. list right from scratch but (tcht, tcht!) an awful lot of the pages would long remain perfectly blank and we've tried to dope out a sensible system that can be expanded easily if we suddenly become enormously successful in snaring the little DXes in their lairs.

I post this record book when I'm in a pen-and-ink mood from writing QSL cards. I do my outgoing cards every few days. From the QSS cards, last thing before I take them down to mail, I post the record book. In somewhat similar style I deposit received QSL cards in a pigeonhole until I find time to check them against the record book. A little check mark after the call indicates that the QSL was received. Then the cards are filed.

Now to some of the uses of the book. You hear a station CQing. Have you ever worked him? A flip of the page tells you. Or you are called and you start answering, meanwhile running your finger down the column and seeing the last
time worked，what band，the chap＇s name and location， and something to start the conversation．Or you hear a weak Algerian．He might be worked but you＇ve already got Algeria so why bother ．．．hold on，you haven＇t got Algeria？That was Morocco you have？Well，it＇s worth trying，then．Or maybe，us has happened too frequently for peace of mind in my case，it is a country where you worked several stations a few years back but not one ever QSL＇d， so you still have no way of proving it to hard－boiled Mr ． Century Club．So the country＇s still worth working again on the chance that your luck will now change．And then there are statistics to get．Turn the pages of this book， counting as you go the countries where there is an entry， and remembering to count extras on the pages where colo－ nies are krouped，and you have your total worked．You can even tell how many of＇em haven＇t yet QSL＇d．When did you work that J？；hasn＇t he had time to QSL？Who have you worked in Norway recently？What band was most useful to VK Iast December？What was the date of your very first contact with England？All such questions the book answers with neatness and despatch，summarized in carry－ aroundable form．I also find it convenient to keep in the book a summary sheet showing total of countries worked to date，number of Canadian and of other stations，countries from which no QSL has yet been received，and my total on hand towards the C．C．

One aspect of DX Bookkeeping is the care of QSL cards． While＂duplicate＂cards can be used for wallpaper，I＇ve filways felt that the precious No． 1 card from a difficult country deserved better care．Do you know that you can still buy postcard albums at a good stationer＇s？If he hasn＇t them he can get them．I suggest a 150 －or 200 －card album entitled＂Exhibit for the DX Century Club．＂Then put sour cards in，alphabetically by prefix or country，as you prefer，with only one from each，leaving space between letters for those you hope for in future．If you＇re going strong on both＇phone and c．w．，you may want to keep a book for each．－Ambitious You．＂Exhibit for Worked－All－ States＂requires only a 100 －card album to show the story twice，unce for c．w．and once for voice．This keeps the essen－ tial cards safe，clean and handy for showing．The rest can be wallpaper．
（Add Fates－worse－than－death：To have your card miss getting tapped for Album，relegated to the classification of mere wallpaper．）
－．．．
The Jackson County Radio Amateur Club recently held its annual picnic and field day near Jackson，Minn．W9UYZ， W9JSS，W9FAJ，W9GBZ，W9IYJ，W9OMC，ex－W9FAD and many others were on hand to participate in a host of enjoyable activities arranged for that occasion．

Flash－All Districts Worked on 56 Mc．

＂Jo W9JZB，＂Vince＂Dawson，Kansas City，Mo．，goes the honor of working all nine licensing areas in＂these here＂ United States．＇This in fact is the outstanding news of the month．While hundreds of successful $56-\mathrm{Mc}$ ．and $112-\mathrm{Mc}$ ． contacts have been completed over thousands of miles in August－September，W9JZB＇s accomplishment is the out－ standing fact among the reports received．

On Áugust 18 th at 12.27 A．m．W9JZB＇s contact with W7GBI，Great Falls，Mont．，completed the list of licensing areas．W1LLL，W2LUR，W3EIS，W4AUU，W5AJG， W6QLZ，W7GBI，W8SKR，W9AZE and other QSLs con－ stitute the only card collection of its sort－all confirmations of $56-60 \mathrm{Mc} . \mathrm{QSO}_{8}$－that we have seen．The transmitter at JZB uses a pair of T－20＇s with 120 watts input in the final． ＇The receiver is a Skyrider 5－10 and the antenna a vertical Lazy－H．JZB says the final QSO gave him a thrill＂like the day he received his ticket．＂

July＇39 0．R．S．－0．P．S．Parties

The summer quarter brought a fifth－time win to W3BES．Rumor has it that he＇s moved to a locality full of electrical noise though，so we＇ll take heart and see how many
millions（if any）that knocks off the October result！W1TS （again 2nd high）will be watching as well as brass pounding to win in the next．Congratulations to THE HIGE TEN and other outstanding participants whose O．R．S．results are indicated below！

Official＇Phone Stations likewise enjoyed a fine workout of stations in the July test．W8OZH，working 47 stations in 22 Sections for 5390 points tops the lists，with W8PFM， W8MOL and W4DCQ right behind him for honors．Con－ grats to all the high pointers we are listing！

With keen fall conditions，and a new All－Season Contest in view with Trophies to the leaders contemplated such as won by W2JZX－W6IWU－W8BTP O．P．S．activity will go to even higher levels of success．Yes，in the O．R．S．group， too，will be an All－Season Contest．W4PL and W1KIN can tell you how to win them．The first step to get in on both opportunities for awards is to get lined up and reporting regular activity via your S．C．M．as either O．P．S．or O．R．S．， depending on your qualifications and＇phone or telegraph－ traffic interest．

Official Relay Station Scores（July）						
淢				$\begin{aligned} & \text { 菏 } \\ & \text { 嵒 } \end{aligned}$		
W3BES	11，102，629	190	51	9	500	$19 \mathrm{hrs} ., 10 \mathrm{~m}$.
W1TS	9，901，740	174	53	10	350	18 hrs ．， 25 m.
W210P	7.551 .771	148	54	6	350	16 hrs ．
IV8QAN	6，574，428	146	50	8	250	$19 \mathrm{hrs}$.22 m ．
W4DWB	6，449，968	146	50	28	250	$18 \mathrm{hrs},{ }^{\text {，}} 30 \mathrm{~m}$.
W3CFH	5，34．5，993	129	48	9	40－600	20 hrs ．
VE3EF	5，078，160	131	49	12	90	20 hrs ．
W3GDI	4，060．903	122	39	9	125	$15 \mathrm{hrs.} 37 m.$,
W8LCN	2，709．476	116	46	3	600	13 hrs .15 m ．
W1KQV	3，432，932	114	44	24		16 hre ．， 42 m.

Official＇Phone Station Scores（July）

	慈	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	皆			
W80ZH	5390	47	22	5	225	$5 \mathrm{hrs.}$,5 m ．
W8PFM	3680	34	20	7	200	5 ¢ hrs．， 10 m ．
W8MOL	3.570	42	17	－	500	$4 \mathrm{hrs},. 49 \mathrm{~m}$ ．
W4DCQ	3060	36	17	－	1，000	$3 \mathrm{hrs},. 22 \mathrm{~m}$ ．
W8KBJ	2940	21	14	－	200	$3 \mathrm{hrs},. 30 \mathrm{~m}$ ．
W1EAO	2808	28	18	8	250	$4 \mathrm{hrs} ., 31 \mathrm{~m}$ ．
W8COR	2366	32	13	5	500	$5 \mathrm{hrs},. 50 \mathrm{~m}$ ．
W2JZX	23.55	25	15	16	500	$3 \mathrm{hrs},. 15 \mathrm{~m}$ ．
W4DGU	2240	140	16	－	220	$5 \mathrm{hrs},. 40 \mathrm{~m}$ ．
W8AQ	1884	23	12	21	40	$3 \mathrm{hrs},. 30 \mathrm{~m}$ ．

HRIEFS

Atlanta Radio Club Annual Hamfest

October 8th (Sunday) the A.R.C. will hold its annual hamest. Displays of the latest amateur apparatus, cars with mobile transmitters for ham, broadcast and police work and contests in swimming and archery will have a place on the program. There will be plenty to eat for all. Come early, Oct. 3th, to the estate of Roy Snider, W4FBH, where this hamfest will be held.

Resentful Hams Silence Bootlegger

Five good amateurs who are members of the O.B.P. in St. Louis engaged in a week's intensive work in direction finding in early August, as a result of which there is one less call-bootlegger cluttering up our amateur bands and defaming the reputation of legitimate amateurs. On Tuesday, August 8th, the information obtained resulted in the apprehension and arrest of Michael Ziegler (31) at his home :219 Indiana Ave., St. Louis, on a Department of Justice warrant. Ziegler pleaded guilty of unlicensed operation before U. S. Commissioner Burke, and admitted operating at different times during the last several months, and using the calls of legitimate local radio amateurs. Ziegler was apprehended while QSO an East St. Louis amateur.

This illegal operator begged to be allowed to break up his apparatus with a hammer rather than face sentence. Too late, he appeared as a thoroughly contrite individual. He faces sentence, up to full penalties legally possible, but temporarily has been released under $\$ 1000$ bond. He could not demonstrate sufficient ability to give his call in code but, since he was smart enough to know a call was necessary, it is certain he knew he should have applied for necessary station and operator licenses . . . before any operating was attempted.
A licensed ham who is alleged to have helped adjust the bootleg rig was to be taken in for early questioning in connection with this case, since this individual is believed to have shared in the illegal operations.

Penalty Invoked

In the case of Louis Raymond Choiniere, WICON, Holyoke, Mass., the licensee was cited (1) for transmitting profane language in violation of the Communications Act. (2) for transmitting music in violation of the amateur regulations, and (3) for failing to keep a proper amateur log. His operator license privileges have been suspended for a period of three months. There is little excuse for improper operation in any of these respects.

WLFW on World Cruise

H. T. Mapes of W7DXV writes that he is sailing on the Yacht California (63 -foot, 3-master) for an eighteen months' cruise around the world. He has permission to work amateurs from WLFW, and will be on the air nightly at midnight (PST) on 6226 kcs .

A successful week-end hamfest was staged by Ohio and Indiana 160-meter 'phone operators at Russells Point, [ndian Lake, Ohio, July 29th-30th. W8TNT, W8TDM, W8RXN, W8MZX, W9VJX, W9VYK, W9ZWN, W8TEF, W8QHV and W8THJ were among those present. 'TNT's portable rig made the affair complete and all had a swell time.
-...-
W2LPJ, W2CKQ, W2LWP, W2CWE, W2JDC, W2LSD, W2LHP, W2KKW, W2KKR and W2AEU of the F.T.S. (Forty Traffic System) are operating on 7224 kcs with a 75-watt transmitter nightly at Wr2USA from 1800 to 2100 ESTT. The several operators take operating schedules for particular days, and are clearing a high percentage of the W2USA originated traffic according to W2LSD, ORS-FTS.

Brass Pounders' Leaǵue

(July 16th-Auxust 15th)					
Call	Oris.	Del.	Rel.	xtra Credi	Total
W4PL	8	93	1715	77	1893
W3EML	93	323	1096	305	1817
W7EBQ	0	0	1684	0	1684
W610X	29	60	1264	52	1405
W60BJ	14	600	-	600	1215
W6PCP	154	355	372	300	1181
W9OIL	56	171	696	162	1085
W5FDR	12	119	596	103	830
W2HXQ	10	6	608	5	629
W3CIZ	19	143	319	140	621
W5MN	18	68	466	58	610
W6LLW	18	49	448	14	529

MORE-THAN-ONE OPERATOR STATIONS

Call			Extra Del.		
Orig.	Del.	Rel.	Credit	Total	
KA1HR	725	301	178	0	1204
KA1HQ	216	125	494	84	919
W50W	118	102	452	50	722
K5AA	384	76	60	70	590

These stations "make" the B.P.L. with total of 500 or over. One hundred deliveries + Ex. Del. Credits also rate B.P.L. standing. The following one-operator stations make the B.P.L. on deliveries. Deliveries count.

W8IHR, 273	W3QP, 183	W4AOB, 140
W7APS, 253	W9BAZ, 170	W9ZFC, 136
W6LUJ, 211	W2CGG, 166	VE3ATR, 107
W5GFT, 205	W6GZY, 166	W6RGQ, 104
W6DH, 197	W6MFH, 162	K6PUS, 103
W5DKR, 194	W8ASW, 159	W6PGB, 101

A.A.R.S.

WLTK (W9UHQ) made the B.P.L. on 101 deliveries.
MORE-THAN-ONE OPERATOR STATIONS

11	Orig.	Del.	Rel.	$\begin{aligned} & \text { Extra D } \\ & \text { Credit } \end{aligned}$	Total
WLM (W3CXL)	84	70	1985	42	

A total of 500 or more or 100 deliveries Ex. D. Cr. will put you in line for a place in the B.P.L.

A "Code Practice Chart," which will be useful in connection with code practice transmissions that W9MWU started on September 18th, will be mailed to any individual interested, on receipt of a stamped, addressed envelope by W9MWU. (Sergt. Geo. H. Freer, Morgan Park Military Academy, 2153 West 11th St., Chicago, Ill.)

California amateurs are requested to drop a line to W6ZM, Sam Houston, 3164 Bona St., Oakland, Calif., expressing the desire to have the state issue to them motor vehicle license plates with their call signal indicated thereon. Tikewise W6CFN (Howard Bogue, Box 436, Tuolumne, Calif.) writes that he has prepared and has on hand blank petitions relative to obtaining amateur call letter license plates, and these will be sent by him to any California radio club on request, or to amateurs who will circulate petitions in communities not covered by a radio club.

W8ELC, Morris L. Brown, 237 Oxford Ct., Elyria, Ohio, similarly has a petition form available for Ohio amateurs. As many 25-signature sheets will be sent to an individual Ohio amateur as will use them, and return to W8ELC to use in his endeavor to get the 1940 auto tags in Ohio modified (to licensed amateurs) to show their radio calls.

The following stations operating in the Ohio Section Net (Ohio Regulars) are rapidly giving the control station, W8PIH, the jitters: W8LVH, W8LVU and W8LVV. Hil

H(1)W:

T would probably be more appropriate to call this pillar "Where's DX?" because, with the turn world events are taking, by the time this column gets around to looking up at you there's no telling what countries will be on the air and what countries will be in the air.

We must confess to a certain lack of enthusiasm this month. Not a lack of enthusiasm for DX - that's something we don't ever expect to suffer --but we do find it a bit difficult to start writing about the gang when we think of what's happening to some of them. That's the big trouble with working DX: the minute a fellow gets interested in it he becomes internationally-minded and acquires a new slant on the whole thing. Heck, we don't think of those fellows in other countries as "foreigners" but as our good friends, particularly when we've had some good rag-chews with them or when we've worked them year after year in the Contest. True, we've been mighty sore at some of them, especially when they don't kick through with that card we need to move us up in the DXCC or something equally as trite, but we've never learned to hate and want to destroy any of them. We might as well face the facts: DX teaches us to be too darned friendly. Because we're content to work at our jobs during the day and return to our spot in the international ether in our spare time, we've lost all sight of the important things in life such as greed and jealousy but, personally, we wouldn't have it any other way.

It's really too bad that a mad dog can't get a ham license - this might be a better world.

W葍思RE:

Wirn England and France in the war, that puts them and their colonies off the air and so we won't men-
tion them. That's going to leave this column kinda blank, because VR1AM, VS1AP, VS7RA, VS7RP, VU2EU, VU7BR, VU2JO, ZC6AA, VS2AL, ZC4AL, VQ3HJP, VQ2GW, FT4AG, FA8DA, FB8AD, ZK1AG, VS6AF, VQ5WES and VQ8AL were all reported active last month. It may be that some will continue active -- it's too early for us to have the cold dope. There won't be any VK/ZL Contest, we imagine Besides the belligerent nations, ON, PA and CO-CM are the neutrals off the air at the time of writing. A hasty check shows that the war puts off the air 109 out of 204 countries where pretixes are assigned. Outside of W , approximately 70% of the amateurs are silenced W9TJ pulled a nice sneak in working J8PG in $\ddot{K} w a n t u n g$. Kwantung was left off the countries list because it didn't look like there would be any hams there, but Bill scared up this one and made a liar out of us. Kwantung will be included in the list next January but counts from now on P 1AB (14,395 T8) crossed us up by using that call instead of the others he had planned, but he's been on plenty with that rig the lads got for him. QSL via ARRL or W4CCH only. Like any new country, he complains of the poor manners of the W 's that climb all over the stations he's trying to work. Lay off, will you, fellows? (JPE wants a chance - Jeeves) W2GT tells us that 17AA $(14,405 \mathrm{~T} 9)$ is back on again and told Ed that [7AT will be on 'phone soon That XILAA was in Italy, according to W2BHW who knows things like that HR4YV was a ship off Venezuela when he used that call, say W8REC and W9CMY \qquad W3EBC gives us the address of CR4MM (14,410 T7): Mario Moutinho, Praia, Cape Verde Islands W3FRY forwards a letter from VP8AD who says he hopes to get to South Georgia Island next year, as an operator at "BB. He's off the gir now at Falkland Islands VP5AD, who knows about sucb

HB1CE was located at Triegenberg, Liechtenstein, a small mountain village located on the side of a mountain at about 3000 feet. The transmitter was an 89-p.p. RK39's combination with 50 watts input, the receiver an HRO and the antenna - a 100 -foot b.c.l. antenna that the inn-keeper said wouldn't work. The photograph shows the terrain in the direction of the U.S.A. and the probable reason why the inn-keeper was wrong. That river, snaking its way through the valley, is the Rhine.

Liechtenstein is a beautiful little country of about 10,000 inhabitants located between Switzerland and what used to be Austria. It is governed by a prince and is today the only remaining monarchy using the German language. It is closely allied to Switzerland and, since it is under Swiss radio regulations, Swiss amateurs can operate portable there. HB1 is the Swiss portable prefix.

HB9CE had planned for some time to take a portable to Liechtenstein, to see how many stations he could work and give the gang a new country, and this year he and HB9AT took their vacations there. They started out slowly but within a half hour had to resort to bug keying in order to work as many as possible of the stations calling them. They regret that they didn't have more time for rag-chewing and hope all will understand. That their expedition was a success is demonstrated by their \log which shows 580 QSO's during the 9 days, over 500 of them being W's. During that time they ran into the "sort of DX specialists who terminated the QSO by "Pse look for my friend W. . . . on mi freq', in order to call us, just a little later on, on exactly the same frequency, with exactly the same chirp and exactly the same play of the key, with the call of his friend! A bad ham spirit!" (Who's fooling who?)

The station was in operation almost continuously during the 9 days, during which time HB9AT and HB9CE took turns sleeping and operating. In those 9 days they consumed 21 kilowatt-hours, 2 pencils and 20 packages of cigarettes!

Cards will be sent to all who QSL. A list of QSO's has been forwarded to A.R.R.L. for DXCC credit claims.

- In this page a few months ago, you may remember that we asked whether you liked cotter pins for terminals on the R-100U choke. The answer turns out to be "No"! Such being the case, we have decided to go back to the one that Bill Larkin invented in the beginning. It is the one Millen used in his 100 -watt amplifier described in QST for March 1939. This was no more nor less than an R-100 choke with a threaded extension at one end which could be screwed into a small stand-off insulator of the kind we supply with our sockets. The only reason why we did not make them that way in the first place was because the commercials liked them better the other way, and we preferred to have only one model. However, commercial users like cotter pins and amateurs do not. Such being the case, Larkin's arrangement seems to be the best bet for amateur use, as it is much more versatile.

The new National catalog describes this new model of the R-100U, along with a new NC-600 neutralizing condenser revamped to mount in the same way. You will also find the new R-300 and R-300U chokes, which are like the R-100 models, but are huskier, (300 MA).

New models have been added to the line of air-spaced Victroninsulated exciter coils. The amateur bands are now covered down to 5 meters, with a choice of end link-winding or center link-winding. Models with a swinging link-winding for adjustable coupling are also available for the amateur bands from 10 meters to 80 meters, inclusive. All of them fit the same plug-in base, of course.

Another new item is the vibrator power pack for receivers, which makes it possible to operate standard AC model National receivers from a storage battery. These units are not stocked completely assembled, because the design varies with the receiver that is to be powered. In spite of their special nature, units can be assembled promptly. However, if you want an emergency power supply for the next hurricane or flood, do not wait until the water starts coming in over the doorstep, because we cannot put them together that fast.

The new 300L Catalogue is now being printed. Dealers will have them by the time you read this page. Better get a copy and read up on what's new in amateur radio.

James Freeley

An interesting contrast in service requirements is provided by the aircraft transmitter illustrated here built for weather report aervice by Mr. L. M. Rundlett of Titusville, Florida, and the transceiver built by Mr. Reudy Heuss, pilot for Canadian Airways Limited.
Says Mr. Kundlett: "The transmitter is powered by a Mallory VP-552 Vibrapack and has given complete satisfaction. 'The pilot informs me that the transmitter is more economical from the standpoint of power consumption than any he has previously used.' Mr. Heuss constructed his transceiver so that he could receive weather reports in remote trading posts and trappers' cabins without returning to the plane in extreme weather, when landings had to be made several miles away.
Says Mr. Heuss: "This portable transcciver was not satisfactory until I installed a Vibrapack which gives me a transceiver with fifteen watt output with voice and T.,K. F. receiver. All noises are eliminated from the power supply."
Again, Mallory Vibrapack proves the truth of its slogan . . . "Perfect Portable Power."

P. R. MALLORY \& CO., Inc. indIANAPOLIS INDIANA
 Cable Address - PELMALLO

thinge, says VP5PD, PO, PI, PQ, AM. ENH, DR, SS and PX are all phoney IIPK, active on 10 last season, was in Austria, not Italy More cards came through from OY4C but he still doesn't say where he was VJ2AA ($14,400,14,000 \mathrm{~T} 9$) tells the boys he's on San Abrosio Island, off the coast of Chilc, but we think that smells a bit.

WHIBN:

W2BHW starts the ball rolling with U8IB (14,405 T8c) at 10 р.м., U9BC (14,420 T9), XU8WS (14,350 T9), KA1LZ ($14,305 \mathrm{T9}$) at 1 P.M., KA1SP (14,400 T8), KA1WW (14,330 T9) and KA7EC (14,365 T8). Among those heard: UOAC (14,450 T7), PK4YY (14,290'T9) at 2 р.м., MX3H ($14,315 \mathrm{~T} 9$) at 5 P.M., and KH6KKR (14,375 T9). Lindy has a pair of lazy H's that seem to really suck 'em in At W9RBI it's LY1AH $(14,380)$, U9ML $(14,420)$, SV1RX (14,425), YL2CD (14,360), KB1FCS (14,345), J2KN $(14,405)$, J8CA $(14,390)$ and XU8MI $(14,350-380)$
. W9VES is doing all right, with CT3AN $(14,290)$, CT2BM (14,420), UK5KA (14,420), U2NE (14,410), YL2AA $(14,290)$, EA4AP 14,420) and KA1HR $(14,280)$ W2GVX/1 has been active again this summer and gives us CT3AB (14.350 T9), ES5D (14,345 TY), LYIAP (14.375 T 9) and TF5M (14,290 T9) W9GKS adds UK6AA (14.320 TB) and W1AB J8CB (14,355 TY) . $\because \because W 1 B H M$ has U4AM $(14,350)$, U3BM (14,420), U9AW (14.425), YU7BJ $(14,420)$ and YL2BZ $(14,330)$, while W3HTG reports UK5HA $(14,410$ T8), U6ST (14.415 T 8), and J4CT (14,275 T9)
W6OLU has a sweetheart of a list which includea such notables as ON4FE (14,340), LY1J $(14,340)$, CT1JS (14.390), CT1SX (14,380), CT3AN (14.380), SM6WE (14,290), SM6PA $(14,290)$, PA0BE $(14,340)$, OZ7CC $(14,400)$, LA2B $(14,330)$, ON4CC $(14,400)$, HA4H $(14,290)$, PK6OM (14,300), PK2RN (14,350), PK4KO (14,365). J8CD $(14,360)$, J8CH $(14,370)$, XU6ST $(14,360)$, MX1A $(14,410)$ J6DU $(14,340)$, CR7AF $(14,370)$ and CR7BC $(14,350)$.

WIIAT:

W2BMX, who thinks about such things, has a suggestion which shouldn't be passed over lightly. With DX

Frank Carter, W2AZ, of East Rockaway, Long Island, N. Y., is the first to break into the DXCC with all stations worked on 'phone. A vertical collinear two halfwaves in phase and two 8 -element horizontal stacked arrays are supported from the three 85 -foot poles available. The receivers are Super-Pro and HRO with an acorn-tube preselector. The transmitter winds up with a pair of $300^{\prime} \Gamma^{\prime} 8$, modulated by a pair of 250 TH ' s , with 2100 volts on the plates.

The photograph shows the modulation indicator and power supply in the left-hand rack, and the transmitter and modulator are housed in the rack on the right-hand side. Frank is trimming up the antenna tuning unit but it couldn't have been far out of adjustment, since he just knocked off FN1C.
 150 watts output- 10 watt drive-multifrequency circuit-
75% efficiency 75T TUBE INCREASES CIRCUIT EFFICIENCIES in this transmitter.
One 75 T tube with 1250 volts on the plate gives a carrier power of 150 watts. A single 6L6 is the driver. Certainly this kind of performance proves the value of the new Eimac 75T for the amateur.

The outstanding results obtained from this multifrequency transmitter are a tribute to the designer (Wunderlich Radio, Inc.) and to the excellent electrical characteristics of the new Eimac 75T tube. Complicated multifrequency circuits usually cause great loss of efficiency but, here is a three band transmitter with pushbutton, remote control that sets a new record for efficiency. Think of it! Better than 75% with only 10 watt driving power . . . power gain $15 \ldots$ and much of the credit goes to the Eimac 75 T . This new low voltage triode made it possible for an expert designer to produce an outstanding transmitter.

Its efficiency in operation . . . low voltage requirements . . . ease of driving . . . economy of purchase price and ability to provide a high power output even under adverse conditions provides the answer for the amateur with a low power station who wants to step out ahead of the average. If you'll try the New Eimac 75T tube in your "rig" you will quickly see the advantages to be gained. Remember! Eimac tubes are unconditionally guaranteed against tube failures which are caused by gas released internally. See your dealer or write for more complete information.

operating such as it is, and fellows listening near their own frequency more often than not, it is sometimes confusing when they send "QMH" or "QML" to guess whether they're tuning from the middle of the band or from around 14,325 , if that's where they happen to be. Prose proposes, therefore, some new Q signals: "QOH" would mean "am tuning from my own frequency to the bigh end" and "QOM" and "QOL" would mean tuning from one's own frequency to the middle and low end respectirely. It's the sort of thing the DX stations will want to use after a CQ, particularly in the Contest. W's only need know about it so that they'll understand what the DX station means, because no W ever calls "CQ DX" any more. Or was that a dream we had? (" Lobster and mince pie ain't no dreamless soporific' --... Ling Po).

PPIDNE:

W6GAL has some new ones: CT2BP $(14,320)$. LA7Y $(14,230)$ and TG5JG $(14,050)$. George says EK1AF $(14,120)$ broke through out there a few times .. friend up in Massachusetts, who left off his call, reports 28-Mc. DX fair, with TG9AA $(28,335)$, YN3DG $(28,070)$, CE3CZ $(28,250)$, CE3AG $(28,340)$, HR5C $(28,340)$, XE2FC $(28,235)$ and LU1QA $(28,070)$ W5GGX in New Mexico had time for a few, including CT1OR $(14,045)$, XU8MC $(14,260)$, J2NF $(14,035)$, XU8ZA $(14,060)$, OQ5AA (14,080) and other more common stuff like ZS, PK, KA, HK and LU W5VV, who only has a modulator because be heard that Myrna Loy was interested in ham 'phone, dug up XU8PL $(14,270)$, XU7HV (14.050), PK6OM (14,285), J7CR $(14,280)$ and J8CI (14.100) VR6AY should be back on the air by the middle of September. W2LXY says the transmitter was shipped to NY2AE for repairs - meters and microphones were needed, and they were donated by Triplett and Shure - and will be back at Pitcairn after NY2AE works it over OQ5AE $(14,400)$ is back on in the Congo, according to W4QN and W5KC W2AZ tells us that PK6XX is off the air. It seems that VK4HN, who was holding down the mike, "had no knowledge of the Dutch language" and. since they were looking for a reason to close the station, they used that one.

WTID:

Don'r look now (as if you naven't alreadyl) but there's a new top man in the DXCC. A lot of credit is due to W6GRL for the achievement since, as one who has operated on both coasts, we're convinced that it's harder to work a large number of countries from W6 than from the east coast. There will be those that won't agree, particularly now that GRL is top man, but we stick by our guns Our spies report that that dyed-in-the-wool DX-er, W4CBY, is wearing a hole in the 160 -meter 'phone band. One never knows, does one? W6MEK, who has joined forces with W6GAL in a DX combine, worked 103 different countries in less than eight months
PJ5EE has been giving a number of the lads a thrill by delivering their first PJ card to them in person. Here in the States on vacation, be's been trying to visit all the hams he worked and doing all right at it . . \qquad .. EI5G sends us a radiogram saying that the relatives of Henry Smith, CP1AA, ex-CT2BK, would appreciate any information on his whereabouts. Send the dope to EI5G or to us W2HTV says ZD4AB has been signing G2TH but expects to be in ZD in late October Someone pirated G4AR's call, so if you didn't get a card you didn't work the real one. The phoney was on 14,350 , the real one on 14,375 W8GQB has had to let the 210 DX Club slide a bit on account of a new YL op in the family XU1ZZ is near Tibet and, as soon as he gets going strong, maybe we can talk him into a short expedition. He says conditions are very punko in that part of the world, however, with only an occasional W6 or W7 breaking tbrough from this country W1LZ claims another first, this time the first transatlantic QSL by air mail to the U.8.A. G6CL sent Harry the card on the second Imperial Airways regular flight Looks as though K4 is being depopulated, says W1EH. K4FAY left for a four-year hitch at Newport, R. L., and K4SA bought a citrus grove in Florida and will soon be W4SA We hear tell there's a junior op just arrived at PJ1BV, to carry on the good work in a decade or so W8HGW crashes the 100 mark in the CC with only 85 watts input, which probably makes him the most QRP W in the list \qquad Directly following the OBC from W1AW asking W hams to be sure to observe strict

[OR years the "SUPER-PRO" has been an outFstanding receiver in the commercial and amateur fields. This new and improved "SUPER-PRO" is a de luxe communications receiver. Amateurs who want the best, will find this new "SUPER-PRO" complete in every detail. Selectivity is variable from 16 kc . in the widest position to better than 100 cycles with full crystal selectivity. The crystal filter has five ranges permitting its use for phone reception as well as CW. Continuously variable I.F. band width from 3 to 16 kc . permits high fidelity reception. Exceptionally high sensitivity is obtained with two stages of tuned R.F. and three stages of I.F. The two R.F. stages provide maximum image rejection and a very high signal-tonoise ratio.

Those who are bothered by automobile ignition interference will find the new noise limiter in the "SUPER-PRO" to perform beyond expectations. It will reduce many types of noises to a minimum without distorting the quality of the signal. The "SUPER-PRO" " S " meter is adjustable over wide limits. It is no longer

Canadian Office: 41 West Ave.
No., Hamilton, Ont.
necessary to give inaccurate reports, the " S " meter can be adjusted to provide accurate readings under almost any operating conditions. Besides the many new features, the "SUPER-PRO" has the time-proved tuning unit with multiple section condensers and individual coils for each band. The main dial is accurately calibrated and the band spread dial provides full scale spread on all amateur bands and continuous spread throughout the entire range of the receiver.

Other features include, AVC, beat oscillator, sendreceive switch, phone and phono-pickup connections, relay terminals, beautiful metal cabinet, and 16 watts of audio. Available in two standard ranges, 15 to 560 meters and $71 / 2$ to 240 meters, this new 18 -tube "SUPER-PRO" is the last word in receiver engineering.

WRITE FOR FOLDER
HAMMARLUND MFG. CO., INC.
424-438 W. 33rd St., N. Y. City
Please send New "Super-Pro" Data.
Name.
Address. .
City. .State .

IF YOU didn't read the article in last month's QST by WIEAO, dig it out right now and build one of those jobs.
If you have a super blooper with red, white and blue dial lights, it's good, but if you only have a homemade receiver it's a whiz.

Woodward points out in his article the importance of using a dual control with the resistance tapers exactly alike. It would be very costly to make these controls to precision tolerances but we have worked up a very simple coupling arrangement

that will give the same action. In brief, it consists of two potentiometers, each 10,000 ohms overall resistance, logarithmic curve, ganged together on one shaft but with about 12 degrees play in the coupling between the two controls. In use, this means that both controls are turned to a point slightly beyond where the interfering signal is phased out and then the knob backed up slightly to give a vernier action only on the front unit. This adjusts R_{3} and R_{4} "right on the nose," for maximum elimination of the undesired signal. The operation takes about half as long as it does to read about it and you retain single knob operation.

These controls can be ordered from your jobber as IRC JS-1114.

The resistors R_{1} and R_{2} in Woodward's circuit can well be our Type WW-4 precision resistors which are guaranteed to 1% accuracy.

INTERNATIONAL RESISTANCE CO.
401 NORTH BROAD STREET
PHILADELPHIA, PA.
neutrality. W1EH heard someone who really took it to heart. The call, in a fist trembling with emotion, was "CQ DX NO BELLIGERENTS deW 2KEZ''! Mama. here's that muse again:

ELEGY
Johnny had a kilowatt,
Or maybe twenty-two
While Jimmy only had a '10
But tried to make it do.
Johnny was an awful dope
And you should hear him wail
'Cuz Jimmy made the Century Club -
While Johnny made the jail!
-W1JPE

MENIBERS. DK CENTURY CLUT

W6	145	VK	115	
	144		115	W
8 C	143		115	W
2 C	142		115	G6KP...... 103
W2G	140	W9	114	W8KKG.... 103
8D	139	W2	114	J2
$1 T$	138	W97	114	WIB
W6	138	W1	114	W5
W1SZ	137	G5RV	114	VE3
G2ZQ	136	G2DH	113	W9CWW... 103
W2GW	135	W8M	113	W6MVK... 103
W3E	135	G6C	112	W9NNZ.... 103
9TJ	135	W6GAL	112	W4
6 C	134	W3EVT	112	W8AU. 102
$1 T S$	132	W3FRY	112	W90X0.... 102
4BPD	132	W4CYU	111	W1FTR.... 102
W1LZ.	131	W2AAL	111	F8R
G6RH	131	W5KC	111	VK3K
ON4	130	W3GAU	111	W4AJX
W8BT	129	WIADM	111	W6D0B.... 101
HB9 J	127	G5BY	111	SUIWM.... 101
W80S	127	ON4U	110	W8E
W5BB	127	PADXF	110	W1CC
W2BH	127	W2CJM	110	SU1SG
2CM	127	W6FZL	110	W8IWL.... 101
8DHC	126	W2DSB	110	W6AHZ.... 10
5 VV	126	WIAXA	110	W1GDY.... 10
W3CHE	126	W3DDM	109	W4MR..... 10
W9ARL	125	VE2AX.	109	W6GHU.... 101
W8ADC	125	W2BYP	109	W2GNQ... 10
W1FH	125	W9UM.	109	G6NF...... 100
W1DF	124	W6HX	108	W2AER.... 10
W2UK	124	W8BK	108	W6KRI.... 10
3 EP	124	ZS2X	108	W9UQT... 100
8LEC	123	WIDUK	107	G6MK.... 100
W2HHF	123	W2CBO	107	VE2EE
W4CEN	123	G5BJ	107	W2BXA.... 100
D4AFF.	123	VK2DG	107	W3BEN... 10
W8DW	122	WIWV	106	VK2ADE... 10
W80	122	G2TR	106	W8QXT.... 100
J5CC.	120	W1CH	106	ZLIGX..... 100
W2GV	120	HB9BC	106	HB9X...... 100
W9C	119	W2G	106	W9RCQ.... 10
W2JT	119	W20	105	W1
W1BU	118	W4D	105	W3KT..... 100
W9KG	118	G50Y	105	W1ZI...... 100
W3EDP	118	W3BES	105	W8D0D.... 100
ZLIHY.	118	VK3CX.	105	W6BAM
W9FS	118	VR3QK	105	ZLIMR.... 100
W2ZA	118	W4TO	105	W1BXC.... 100
W8JM	117	EI5F.	104	PAØQF.... 100
W9PS	117	WIZB.	104	W1GNE.... 100
W9ADN	117	F8RR	104	W4IA
W1JPE	117	W3AG	104	W8B
W7AMX	116	W6T	104	D3BMP.... 100
W3EV	116	W6FZY	104	W3AGV
W6AD	115	G2MI.	104	Radiote
W9EF.	115	W1GCX	10	W2AZ.

The following have submitted proof of contact with 75-or-more countries: W8HGW, W9AJA 99: W4CCH, W8AAJ, W8LYQ 98: G6GH, VE4RO, W1RY. W2JME W8BCX 96: F8LX. FB8AB GBXL. W2BJ, W2BMX, W3EMA, W8JAE 95; W2CTO. W3AOO. WYCJJ, W8LFE. W8QDU, W9BEZ 94; ON4GK PAgQZ, VKGSA. WAALO W6FKZ, W9RBI 93 WADMB CU7AZ. ON4FE SP1AR, SP'LP W8KTW. W8PQQ W9JDP $90: W 8 \mathrm{H} Q \mathrm{~B}$ 89; G2DZ, W3JM. Wं9PGS 88 G8IG. W9AEH 87: EI4J, W1BGC, W3FLH, W9FLH W9GBJ 8R: W1AVK. W3GHD. W4CFD, WFGK W8LAV 85: BMEWL, W1BFT. W2CUQ, W8BWB, W8DAE, W9OVU 84: OZ7CC VE2CA, WIIOZ W2AWF, W2BZB, W6GPB, W8BFG, W9VKF 83 W1EWD W3AYS W6KUT, W8OUK 82: W2WC VK2TI 80; VK3HG, WIDOV. W2BNX. W3BVN W3FPR, WGDTB. W6LDJ. W8AAT, W8DGP WBAM, W9GMB 88 : W3 TZ, W8JFFC, W8BRW 79 WBAM, W8FJN 78: G3BD, W4EPV. W8BWC WF: W8ITK, W9GK8, ZE1JI 76; W 40 G 75.
Radiotelenhone: WBOCH 93: G5RV. W2IXY 89; W4CYU 87: W8LFE 77: W2IKV 76: W1ADM. WIAKY 75.

> Six Important ADVANTAGES! JOHNSON NEUTRALIZING CONDENSERS

M^{o}OST popular of Johnson Neutralizing Condensers is the Type N. Introduced only two years ago it has rapidly established itself in amateur minds as a really outatanding condenser. Its unique design provides constant woltage breakdoun at any capacity setting; Higher woltage breakdown for the same plate spacing than with rotating plate condensers; $E x$ tremely high maximum to minimum capacity ratio: Small mounting space; Holds rigid setting at any ad. justment without necessity of lock; Verical or Hori. zontal mounting.
Two aplendid amateur 'Transmitter Manuals "The Taylor Tube Manual" and "The 'l'hordarson Transmitter Guide" use them widely in their rigs. You'll find them fb in yours.

The POPULAR TYPE G

Another Johnson condenser widely used for neutralizing is the Type G. Thordarson adopted it for their popular 100 watt "Multiband" transmitter. Using only a aingle end plate of ultra-steatite it provides low minimum capacity for a rotating plate condenser; panel or subpanel mounting, rotor and stator insulated from mounting surface in both cases; rotor lock for holding capacity adjustment at any setting throughout the range. For use where the excluaive features of the \mathbf{N} are not required.

Two other Johnson condensers well suited for neutralizing are illustrated above. The Type J first introduced last year in connection with our "Hi-Q" Inductors (see page 82 in this issue) is made in sizes especially for neutralizing. The Type H is a now condenser just released, designed for light weight and rigidity. It fills the gap between the Types G and J and you'll find a lot of uses for it.

See these condensers at your jobbers' or urite for Ciztalog 966J
E. F. JOHNSON CO. WASECA, MINNESBTA trpourt az wanam at, atw rons, N. r.
GADIO TAANSMITTINE EOUIPMENT"

A.R.R.R.L Official Broadcasting Stations

THe following listed stations address information regularly "to all amateurs' rendering a distinct service to fellow amateurs. First information on changes in F.C.C. regulations, new data on expeditions, special tests and activities, DX conditions and records of prime interest to the amateur world reaches amateurs first through the medium of League weekly broadcasts and the latest-revised list of stations that follows. Stations in all districts assure good coverage on the information which in many cases is so well sent it is used for code practice. Listen for the "QST" from these stations. Report results to the stations you copy too, so the operators will know their signals are successfully received and appreciated.
W1APK, W1AQL, W1ASI, W1AW, W1BKQ, W1BVR. W1BWY, W1DWP, W1FPS, W1GAG, W1GOJ, W1GZL, W1JJY, W1KFN, W1KIN, W1KTB, W1LMO.

W2AZV, W2EOA/W2HXQ. W2FF, W2IXY, W2JGC, W2JHB, W2JKG, W2JZX, W2KHA, W2KIF, W2KUD, W2SN.

W3AEJ, W3AOJ, W3AQN, W3BBV, W3BIG, W3BWT, W3CDQ, W3CFS, W3DNU, W3EUH, W3GCU, W3GRW, W3GSV, W3GWQ, W3HAL, W3UVA.
W4BMM, W4BQE, W4CRG, W4DGS, W4DHG, W4DLK, W4DQW/W4GFT, W4DSY, W4EBZ, W4EEE, W4EPT, W4FJR, W4MS, W4PEI, W4QI, W4TO.

WSCXH, WSDKR, WSECE, WSERV, WSFDR, W5FZJ, W5GED. W5GNV. W5HHV, W5KC.

W6CFN, W6FBW, W6IGO, W6MQS, W6NQB, W6OMC. W6PGB, W6PMV, W6ZM.

W7BWH, W7GBF, W7JC.
W8AHV, W8AQ. W8BOK, W8DED, W8DME, W8DXB, W8DZO, W8FGV, W8FTW, W8FZE, W8GHP, W8GJM, W8IAI, W8IOH, W8JQE, W8JTW, W8NDE, W8NEU, W8NQS, W8OQU, W8OUT, W8PAK, W8PJJ, W8RBD, W8RBI, W8SWF.

W9AXH, W9CWW, W9DDF, W9DEI, W9DUD, W9ECY, W9EDW, W9EEZ, W9GBQ, W9GFA, W9GLI, W9GY, W9HPQ, W9HUX, W9IBC, W9KEI, W9KHC, W9MWU, W9OXC, W9PZU, W9RH, W9RPJ, W9UEU, W9UNQ, W9VMI, W9WKP, W9WTD, W9YQE, W9YVF, W9ZGR, W9ZSX.

VE1K8, VE2HL. VE2HV, VE3AMJ, VE3PE. VE4EO, VE4LQ.

HBEIEFS

While visiting W2TY, Hollis, L. I., W2KUP asked the operator to demonstrate the rig. Leaving the choice of band to KUP, W2TY made a general call on 3944.5-kc. Back came W4CP, Rocky Mount, N. C. "Rocky Mount" sounded familiar to W2TY, and "Hollis" sounded familiar to W4CP, yet neither could definitely recall a previous QSO. W4CP rummaged through his log and found that the only previous QSO took place with both stations using the same frequency, same power, as the result of a CQ by W2TY at 10:20 P.M., January 19, 1938, exactly one year before to the very minutel
—...—
W7AF, Decatur Island, Washington, has a notable record of public service! The island has no wire connections to the mainland. and only a small mail boat, which cannot operate in stormy weather. The 30 -odd people on the island, or who connect with the island, depend entirely upon W7AF for emergency contact with the mainland. W7AF has maintained a daily schedule with W7AJ. Oak Harbor, Washington, for about seven years. Some of the many aervices rendered are outlined by W7AF in a recent letter: "About three weeks ago a 140-h.p. diesel tug sat on a broken pile and sank at the dock here. W7AF got aid from Anacortes . . last fall had a doctor come from Anacortes for a sick girl on the island about 10 p.m. . . . two winters ago our mail boat was wrecked and help from Anacortes was obtained via our network . . . have reported to Lighthouse Dept. in Portland, Lopez Pass Light extinguished . . . obtained Coast Guard help for a disabled boat . . . as no one knows when an emergency message is coming through, I have always assumed each schedule as held for emergency

CORNELL - DUBILIER CAPACITORS

 backed by 29 years of specializationFor over a quarter of a century the combined engineering and manufacturing resources of Cornell-Dubilier have been focused on the production of capacitors-and capacitors alone. This specialization is directly responsible for the manufacture of dependable capacitors-economically priced. That is why there are more C-D's in use today than any other make.

Send for new free catalog No. 175A today.
MICR DYKANOL PAPER WET AND DRY ELECTROIYTIC CAPACITORS

Smooth Voltage Control

VARIAC autotransformers are used extensively as voltage controls in amateur stations. Connected in the input side of high-voltage rectifiers, the VARIAC supplies continuously adjustable d-c output with a 320 degree rotation of the control knob. VARIACS are ideal for compensating, manually, for low line voltages. The Type 200-CU, illustrated, supplies output voltages in stepless increments to 135 volts when used on a 115 -volt line.

VARIACS feature:

- Absolutely stepless control from zero
- High efficiency (consume very small no-load power)
- Output voltages higher than line, for keeping line voltage constantCalibrated dials
- Rugged constructionLong life
The Type 200-CU VARIAC is intended for behind-the-panel mounting and will control 860 watts for continuous duty. Its price is only $\$ 14.50$.

- WRITE FOR BULLETIN 485 FOR DESCRIPTIONS OF FOURTEEN MODELS OF VARIACS

> General Radio Company Cambridge, Mass.
purposes . . . at some time or other every one on the island has received or sent such a message." W7AHQ provides the connection with Anacortes. W7AF uses only 4 or .5 watts using 3.5 Mc . only.

56 Mc. Assists in Air Show

On August 7th the Michigan Chapter of the National Aeronautical Association staged an air show at the Pontiac Municipal Airport. The Five Meter Club of Detroit and members of other Detroit clubs assisted in making this show a success by establishing communication on the field. One station, which we will refer to as station A, was located on the judges' stand. Station B was on top of a hangar known as the control tower. Station C was at the west end of the field, where ships lined up for their take-otfis in each event. A fourth station, 0 , consisting of a pack set, was located in the center of the field. This network functioned as follows: Station A was the control. Station B took orders from station A and passed the information to the man handling the control light. Station C at the starting line received and transmitted orders to both stations A and B. Station O in the center of the field transmitted measurements taken when the ships made spot landings and other information the field judges wanted announced to the public through the P. A. system at the judges' stand. The whole system worked "like a charm." The stations were set up at 9:00 4.M., and the operators were on duty until 6:30 P.M., when the last event was completed. Credit for planning and carrying out this coüperation with the air show is due Fred Moose, W8IFE, secretary of the Five Meter Club of Detroit, Carl Suppanz, W8AKN, Dr. D. F. Grant, W8NXT, Mike Yurkovich, W8PPU, Frank Photiades, W8NOA, Fenneth Stecker, W8SS, Hal Bird, W8DPE, Sam Reid, W8JUQ, Herb Climie, W8RJC, Gerald Pratt, W8IFH, Al Furget, W8NKJ, and G. E. Ryan, W8MCB.

W5DAQ, New Orleans, and W4AUP, Montgomery, Ala., have been adding to amateur esteen by keeping a New Orleans resident in touch with his mother, who is ill in a Montgomery hospital.

S.A.R.A. Honors Hams

Robert E. Maight, W2LU, of Schenectady, N. Y., and A.R.R.L. Section Communications Manager, Eastern New York, was awarded on February 6, 1939, the first of a new series of Schenectady Amateur Radio Association awards for meritorious service to amateur radio. The trophy, pictured here, is a handsome silver and black metal shield mounted on mahogany: engraved with the recipient's name, call, and the year in which given.

The idea behind these citations is part of a program proposed by Roy Jordan, W2KUD, to increase greater interest in local ham radio and to engender a greater spirit of enthusiasm and coöperation among S.A.R.A. members. Qualifications include such carefully considered factors as service to the community in time of need -emergency organization and functions; service to the S.A.R.A.; service to ham radio in the community through coöperation with other operators, assistance to younger men just breaking in and enthusiasm and lead. ership in radio matters. Clubs interested in further details should address inquiries to W2KUD.

THE WIDE ACCEPTANCE of the "HQ-120-X" by amateurs is proof that it is good. Hams are shrewd buyers and they have, in the majority of cases, purchased "HQ-120-X" receivers on recommendation of experienced fellow-hams or have made side-by-side comparisons. We welcome this sort of purchasing because we have been modest in our claims for the "HQ-120-X" and know that the prospective owner will find more than would be expected in a moderatelypriced receiver. The "HQ-120-X" was an immediate success because it has many features that have long been needed in amateur receivers and these features have put it in a class by itself. Try the "HQ-120-X"

sqooucts $\begin{gathered}\text { Canadian Office: } 41 \text { West Ave. } N \\ \text { Hamilton, Ont. }\end{gathered}$

put it through every possible test. Note the smooth action of the variable selectivity crystal filter, permitting reception of voice and music as well as code. See how easy it is to check frequencies with the accurately calibrated band spread dial and you'll wonder how you ever got along with a less complete receiver.

WRITE FOR BOOKLET
HAMMARLUND MFG. CO., INC.
Q-10-39
424-438 W. 33rd Street, New York City
Please send 16-page booklet
Name.
Address
City.State.

GOOD THINGS .. MADE BETTER

That's why you find CARD. WELLS specified and used so generously in the best radio equipment.

Write for new Catalog No. 41

THE ALLEN D. CARDWELL MANUFACTURING CORPORATION B3 PROSPECT STREET, BROOKIYN, NEWYORK

ELECTION NOTICES

To all A.R.R.L. Members residing in the Sections listed below: (Thellst gives the Sections, closing date for recelpt of nominatIng petitions for Section Manager, the name of the present incumbent and the date of expiration of his term of omce.) This notice supersindes previolis notices.
In cases where no valld nominating petitions have been received from A.R.R.L. members residing in the different Sections in response to our previous notices, the closing dates for recelpt of nominating petitions are set ahead to the dates given here With. In the absence of nominating petitions from Members of a Bection, the incumisent continues to huld his oficial position and carry on the work of the section subject, of course. to the filing of oroper nominating petitions and the holding of an election by ballot or as may be necessary. Petitions must be in West Hart ond or before noon of the dila
in to a resing peti tlons Mannger in this gection and the of section Communica of nomlnations at A.R.R.L. Geadquarters is herewith specificd as noon, Wednesday, November 1, 1939.

Seciton	Closing Late	Present SCM	Present Term of Oiftce Ends
Eastern F'la.	Oct. 2, 1939	L. A. Connolly	t. 15 ,
Missourl	Oct. 2, 1939	Letha Allendor	Oct 19.1939
Alaska	Nov. 1, 1939	Leo E. Üsterman (reslgned)	
Nevada	Nov. 1. 1939	E. W. Helm	June 14.
Phllippines	Nov. 1, 1939	G. L. Rlckard	Oct. 15,
Indiana	Nov. 1, 1939	Noble Burkhart	April 15, 1938
Oklahoma	Nov. 1, 1939	C. I. Simpson	Aug 23, 1939
Idaho	Nov. 1. 1939	C. Eichelberger	June 15, 1939
Eastern N. Y.	Nov. 1, 1939	R. E. Halght	Sept. 16, 1939
Connecticut	Nov. 15, 1939	Fred A. Elis, Jr.	Dec. \&. 1939
Western N. Y.	Nov. 15, 1939	Ed Preston	Dec. $\mathrm{B}^{\text {, }}$ 1934
Wisconsin	Nov. 15, 1939	A. C. Erones	Dec. 6, 1939
San Dlego	Vec. 1,1939	H. K. Breedlov	Dec. 16, 1939
Brit. Columbla*	Dec. 1, 1939	J. Hepburn. Jr.	Dec. 20, 1939
So. '「exas	Гec. 15, 1939	Dave H. Calk	Dec. 23, 1939

* In Canadian sections nominating petitions for Section Managers must be uddressed to Canadian General Manager, Alex Reld. 169 Logan Ave., St. Lambert, Quebec. 'To be valid such petitions must be tled with him on or betore the closing dates named.

1. You are hereby notified that an election for an A.R.R.L. Bection Communications Alanager for the next two-year term of omice is about to be held in each of these sections in accordance with the provisions of the By-Laws
2. The elections will take plare in the different Sections im mediately after the closing date or receipt of nominating petitrom Headquarters will list in alphabetícal sequence the names of all ellgible candidates nominated for the position by A.R.R.L members residing in the Sections concerned. Rallots will be mailed to members as of the closing dates specifed above, for recelpt of nominating netitions.
3. Nominating petitions from the Bections named are hereby solicited. Five or more A.R.R.L. members residing in any Bec thon have the privilege of nominating any member of the League as candldate for Bection Manager. The following form for noml nation is suggested:
(Place and date)
Communlcations Manager, A.R.R.L.
38 La ōalle Road. West Hartiord, Conn.
We, the undersigned members of the A.R.R.L. residing in the section of the isivision he.eby nominate $\begin{gathered}\text { ations Manager for this section for the next }\end{gathered}$ wo-year term of ofnce.

Five or more signatures of A.R.R.L. members are required.)
The candidates and tive or more signers must be Leakue mem bers in good standing or the petition will be thrown out as invalid. Each candidate must hare been a icensed amateur operator least one continuous year immediately prior to his nomination or the pettston will likeưise be invalidated. The romplete name, ad the petiston will ikeurse oe inralidaied. The complete name, address, and station call of the candidate should be included. Al League in West Hartford. Conn.. by noon of the clinsing date given for receint of nominating peititions. There is nolimit to the number of petitions that may be tiled, but no members shallsign more than one.
4. Members are urged to take initiative immediately, fling petitions for the ofmcials for each Section listed above. This is your opportunity to put the man of your choice in office to carry on the work of the organization in your section.
F..F. F. Handy, Communicaitons Manager

EEECTION RESULTS

Valld petitions nominating a single candidate as pection Manager were fled in a number of Bections, as provided in our Constitution and By-raws, elccting the following omelals, the $\begin{array}{llr}\text { No. New Jersey } & \text { Joseph P. Jessup, W2GVZ } & \text { July 3, } 1939 \\ \text { South Carolina } & \text { Ted Ferguson, W4BQE } & \text { Aug. 25, } 1939\end{array}$ $\begin{array}{llr}\text { No. New Jersey } & \text { Joseph P. Jessup, W2GVZ } & \text { July 3, } 1939 \\ \text { South Carolina } & \text { Ted Ferguson, W4BQE } & \text { Aug. 25, } 1939\end{array}$ In the Manitoba section of the Prairie Division Mr. A. W. Morley, VE4AAW, and Mr. J. W. Hartley, VE4SR, were nominated. Mr. Morley received 22 votes and Mr. Hartley recelved 18 votes. Mr. Morley's term of office began August $11,1939$.
In the Eastern Pennsylvania Section of the Atlantic Division Mr. Jerry Mathis. W3BES, and Mr. John B. Morgan. W3QP
were nominated. Mr. Mathls recelved 235 votes and Mr. Morgan Were nominated. Mr. Mathis recelved $\begin{aligned} & \text { recelved } 186 \text { votes. Mr. Mathis' term of office began August } 28 \text {, }\end{aligned}$ receiv.
1939.

In the Arizona Bection of the 8outhwestern Division Mr. Marson B. Hull, W6KMM, and Mr. John K. Ollver W6KOL. recelved 34 votes. Mr. Hull's term of offce began Beptember 5 recelv.
1939.
(Station Activities on page 100)

RADIO'S NEWEST TUBE
 TAYLOR TW-150

WITH

GUARANTEED TO STAND 800% OVERLOAD OR MORE

Taylor Thin-Wall Carbon Anode Tubes are guaranteed to stand-up under temporary overloads of 600% to 800% without releasing gas or damaging the emission. Several thousand amateurs have witnessed demonstrations which prove the truth of this statement.

TAYLOR LEADS

In presenting the Taylor TW-150, we have introduced several major constructional improvements to the transmitting tube field. Study the features shown here and prove this statement. Taylor Tubes is constantly engineering NEW ideasnot merely copying.

The use of THIN-WALL CARBON ANODES is an original Taylor conception other tube developments will follow. Yes, Taylor has again led the way. In the TW-150, the grid mount is novel - and insures Puncture-Proof operation. The ratings are extremely conservative and yet no other tube in this price range permits full 1KW Input telephone operation, to a pair in push-pull.

CHARACTERISTICS

Fil. Volts*................................. 10.1
Interelectrode Capacities
Grid to Plate........mmf.. 2.0
Grid to Filament..mmf 3.9
Glate to Filament..mmf.. 0.8

As RF Power Amp..... Class C DC Plate Volts......max................ 3000 DC Plate Current..m a....max..- 200 DC Grid Current.m a....max... 60 RF Driving Power_watts.max..- 20 Plate Dissipation....watts.max... 150 Plate Dissipation....watts. max... 150 Filament and standard UX 4 prong base.

FEATURES

- Visible operating temperature

Operates at cherry red heat at rated plate dissipation.

- COMPLETE ELECTRON CONTROL

One-piece enclosed Anode .015" thick, affords complete "Electron Control" assuring added efficiency - preventing glass failure due to electron bombardment.

- PUNCTURE PROOF

New Scientific method of mounting the grid structure guarantees against punctures due to heating of glass. - LOWER INTERELECTRODE CAPACIties Can be operated in class \mathbf{C} amplifiers at full rated input - at frequencies up to 60 MC .

- PROCESSED GRID

A new exclusive Taylor feature makes possible a more abuse-proof grid.

- WARP PROOF ANODE

Thin-Wall Carbon Anode - Heat-proof-retains its shape under any heat condition.

- large insulators

Big size caps - plus Alsimag insulators protect grid and plate leads mechanically, the safe, sensible way. - LOW DRIVING POWER

Low driving power requirements. A single TZ-20 will do the job easily. - heavy duty filament

Heavy duty Thoriated Tungsten Filament. Available in both 10 volt and 5 volt types.

- NONEX GLASS
- STANDARD BASE

Standard (50W type) 4 prong base.

"More Watts Per Dollar"

TAYLOR TUBES, INC., 2341 WABANSIA AYE, CHICAGO, ILLINOIS

BAND CHANGE

WITHOUT LOSS OF

EFFICIENCY

JOHNSON "Tube Socket" Hi-C Inductors with integrally mounted 'Type J Condensers provide extremely rapid hand changing without the expense and usual loss of efliciency of hand switching arrangements. Nor are the usual tank tuming condensers required, thus reducing the number of controls on the panel.

In any circuit where the power input does not exceed 100 watts (unmodulated plate voltage 600 voits or less), separate units may be pretuned for any band 10 to 80 meters inclusive, and band changes effected without retuning a single circuit, all within a fiew seconds time. 160 meter inductors are also supplied and may be used in the same way but require additional condensers in parallel across each circuit, since maximum capacity of the Type I condenser is 100 mmf .

STURIDY UNITS

These inductors fit standard 5 prong sockets and are supplied in two types, one with link at center for neutralized or balanced circuits, the other with link at end for un-neutralized stages. They zasy, of course, be used with conventional condenser arrangements in which case they are not limited to the voltage indicated above. Wound on glazed ceramic forms, they are impervious to ordinary heat and moisture. Center linked types list at $\$ 1.65$ and end linked at $\$ 1.55$ for any band, 10-160 meters. Prices do not include condensers. Customary discounts apply.

Trpe J condensers are available in maximum eapacities from 7 to 100 mmf . inclusive. (See also page 7 б.)

Complete information may be obtained from your jobber or direct from us. Ask for Catalog 966 J .

IDX Contest Seores

(Continued from paoe 万̈́)

Oregon
W7AMX 24090- $56-122-\mathrm{B}-77$
W7GBW 6346-3\%-62-AB-55 W7AHX 3775-:5-51- ©-60 W7CHT $1800-20-30-\mathrm{B}-20$ W7EZX 1566-18-25- $\mathrm{H}-13$ W7FMX* 858-13- 2\%.. BW7ENN 486- 6- 26-AB-17 W7CYO 270- B- 15- A-15 $\begin{array}{llll}\text { W7CYU } & 272- & 8-15- & A-15 \\ \text { W7CQE } & 232-10- & 8-14\end{array}$ W7GPY 231-7-11- \quad $\begin{array}{lll}\text { W7GPP } & 110-5-8-\ldots \\ \text { W7GOP } & \text { 8- }\end{array}$ $\begin{array}{llll}\text { W7GUPA } & 12 & 2- & 2-\cdots \\ \text { W7GUA } & 3- & 1- & 1-\cdots\end{array}$ W7GXJ

Washinaton
W7CMB 29230-74-132.- B-62 W7DL 28116-71-132- C-81 W7AVL 7995-40-65- $\mathrm{B}-58$ W7GEW 6615-35-63- A-55 W7RT $4144-28-51-\hat{H}-88$ W7DYQ 3108-28-39- ©-16 W7FJQ $2205-21-35-\mathrm{B}-25$ W7QB 1215-15-27- B-22 W7FWD* 1152- 16-24- - W7JB 1008-14-24- B-27 W7EJD 1008-12-28- B-17 W7GUO 636-12-18- A-24 W7FMK 189$\begin{array}{llll}\text { W7CKA } & 105- & 5- & 7- \\ \text { W7DQX } & 45- & 3- & 5- \\ \text { W-11 }\end{array}$ W7HBL $33-3-4-$ A-5

Pactific Divibion

Nemada
W6QQL 1008-14-84- B-17
Santa Clara Valley
W6AHZ 20988- $36-106-$ C-56 W6.JWT 18645-55-113- (1-63 W6QNK 4050-:7-50- C-57 W6NHW 1050-14-25-A-35 W6PBV $756-12-24-8-15$ W7MF/6 126- 6- $7-\mathrm{B}-9$ W6CFK 76- $4-7$ - - -

East Bay
WBONQ 26625-75-121- C-53
W6LPC 14076-51- \boldsymbol{y}^{2} - B-5 $\boldsymbol{\beta}^{1}$
WBTT 10296-44-78- C-36 W6PFD 6231-31-67- $A-81$ W6PEV $4780-30-53-A B-44^{12}$ W6LTM 4692-34-46- B-79 W6LMZ $3744-26-4 \times-$ B-27 W6ABE 2877-21-46- B-47 WFLLDD $1649-17-33-\cdots 36$ W6PHS 1538-16- $32-\mathrm{C}-17$ W6EJA 1053-13-37- B-15 W6SQ 1008-14-24- C-14 W6HJE $315-7-18-\mathrm{B}-12$ W6MQL 315- 7-15- A-10 W6LVI 12- 2~ 2~A-2

San Francisco
W6BIP 32148-76-141- C-44
W6LEV 21018-62-113- C-79 W6CIS 15785-55-96- B-66 W6MCQ 7720-40-65- B-37 W6/s W6DIX $380-9-14-\ldots$ W6MUF 294-7-14- A-9 W6LMD* 180-5-12 $-\ldots$ W6GPB ${ }^{*}$ 108-6- 6W6WN $27-3-3-\mathrm{B}-2$

Sucramento Valley
W6AJD 259,38-66-131- C-85 W6NHA 8979-41-75- B-53 W6EFM 4172-28-51- C-33 WGGVM 880-10-22-(-20 W6GCM* 189- $7-9-\cdots$ W6NKT* 75-5-5- R-1

San Joaquin Valley
W6MVK 51084-84-178- C-6is
W6MEK 35392- 79-152- C-87 WBKEV 30×10-78-130- (-87 W6MRB 8600-40-81- B-63: W6HIP 4650-30-52- ($\mathrm{C}=-\mathrm{Z}$ 3

Roanore Divibion

North Caroiina
W4CEN111186-142-263- C-83 W4OG 16830-55-102- B-62 W4FIX 13084-49-89-AB-27 W4MR 11178-46-81- B-50 W4N: 6384-38-56- C- ${ }^{-14}$ W4BVD 4158-33-4. $-\mathrm{B}-\mathrm{-}$ W4DGF 4030-31-44- B-39 W4ACA 2376-24-35- B-31 W4ATC 1980-20- $34-\mathrm{B}-55^{26}$

South Caroinna

W4BPD 92625-125-247- C-71 W4AUW 26320-70-126- B-54 W4FEE 9372- $87-48-\mathrm{B}-15$

Firginia

W3CHE178200-165-360- C-09 W3EMM

172044-163-354- C-83 W3FQP 75240-110-228- (-40 W3AG $5040-30-56-$ B-25 W3BIW 3190-29-38- B-19 W3GBK 2208-25-31- B-26 W3CYV 605-11-19- B-W3FQO 333-10-11- B-27 W3ALF 161-7-8-A-25
 W3CFL $75-6-8-4$

West Virginia
W8ICN 16874-59-96- C-42 W8KKG 16443-63- 87- B-50 W8HGA 4309-31- 47- B-38 W8PMA 2100-20-35- B-60 W8JKN 858-13-29- BW8PTJ* 90-5-6- ह- W8JM 18 -

Rocez Mountain Divibion
Colorado
W9PGS 48450-95-122- A-70 W9FYY 32562-81-134- C-69 W9W'TW 9200-40-77- B-37 W9QOE 1159-19-21- ©-20 W9V治** 60-4- 5- --

Utah-Wyomina
W6DTB 12690-47-74- B-38 W6KKG 7140-34-70- B-29 W7AOU 5544-33-64- B-5717 W6PDV 2071-19-37- 8-43 W7GCO 259-7-13- B-9 W7ADF 189-7- 9- B-28 W7GGG* 3- i- 1---

Southeastern Divibion

Alabnmas

W4ECI 60102-106-189- C-49 W4APU 13794-58- 81- - -46 W4EHH 11040-46-80- B-51 W4ELQ $2530-22-30-\mathrm{B}-24$ W4AIH 473-11-15- A-30
E. Florida

W4QN 22032-68-110- B-64 W4DCZ 21600-60-120- - -35 W4EGL 93992-39-81- H-25 W4EFK 5270-34-54- B-21 W4EQK $2550-25-34-\mathrm{BC}-22^{18}$ W4COV 1501-19-28- A-14 W4FEO 663-13- 17- B-12 W4DBF $189-7-9-\mathrm{B}-\mathrm{F}^{2}$ W4DZ 105- 5- 7-A-14 W4FAO $48-4-4-\mathrm{B}-9$

IIT. Plorida
W4CDE 12815-55-80- B-34 W4EPT 5565-35-53-AB-22 W4DAO* 90- $5-6-\mathrm{B}-4$

Georgia

W4FIS $\mathrm{Bin} 360-80-139-\mathrm{B}-73$
W4YC $82913-119-233-$ C-76 ${ }^{10}$ W4IO 19116-50-1n8- ©-63 W4AQL 4228-28-81- B-5020 W4FKA! 1596-19- 2 - $\mathrm{B}-$

for the HIGHER

 FREQUENCY

 FREQUENCY BRACKETS

At the "run of the mill" frequencies radio parts designed and produced with "average" care will deliver a satis ${ }^{7}$ ctory performance. But today's ultra-high frequencies demand corresponding ultra-precision parts unaffected by the vagaries typical of these frequencies. . . . Centralab Fixed Resistors have an excellent frequency characteristic less affected by voltage, humidity and frequency changes.
Again we suggest . . . SPECIFY CENTRALAB.

Radio engineers are now tapping the resources of frequency bands formerly used only in laboratories. In order to make these bands operative parts must now be used that adhere strictly to the limitations of these bands. Centralab engineers have successfully met these problems with Centralab parts.

$$
\begin{aligned}
& \text { Centralab } \\
& \text { AXIAL LEAD RESISTORS }
\end{aligned}
$$

Mims News

DeLuxe Dual Three-10 and 20

TWO-BAND OPERATION

- Full efficiency 10 and 20
- Real unidirectional pattern
- Two separate arrays in one
- Uses two Inductostubs
- Instant changeover -- no tuning

Jhanks-

For the overwhelming reception given the DeLuxe Dual Three for Ten and Twenty meter operation. Many of these arrays are already in operation at outstanding stations working the two bands. Many more are taking to the air daily.
Now to ask a favor - please drop us a line with your questions concerning our products rather than putting them over the air. These inquiries will be answered promptly. We trust everyone will understand we have no intention of transgressing on the rules governing amateur transmissions. Your cooperation will be appreciated.
Europe is at war. Let us all be fully appreciative of and thankful for our government in its determination that there shall be no "black-out" of Peace in our country.

73,
M. P. MIMS, W5BDB

See Your Distributor

MIMS RADIO CO. SIGNAL SQUIRTER . TEXARKANA ARK. TEX.

Southwestern Divibion
Los Anpeles
W6GRLI59543-171-311- © -86
W6CXW 79544-122-218- C-90
W6CUH 52839-103-171- 0-54 W6GRX 51548-98-178- B-81 WKQD 41010-95-144- (0-81 W6GHU 36000-79-150-BC-76
W6AM 35630-80-150- C-87 W6FZL 30720-80-128- C-65
W6NLZ $20313-61-111-A C-61$
W6VB 19106-62-105- C-4y
W6PNO 13344-48-93-BC-53
W6NEP 12642- 19- 82-BC-57
W6FKZ 12408- 48- 88- CW6NLI 8280-40-69- B-49 W6EAK 6195-35-59- B-W6GM $5947-33-53-\mathrm{B}-37$ W6BXU 4350-29-56- B-68 W6GK 2109-19-37- C-54 W6KNF 1344-14-32- B-18 W6PXQ 1296-16-27- A-47 W6ACL 1176-14-28- B-23 W6DIO $110 t^{-16-23-B-10}$ W6HJV 900-12- 25- B-15 W6PHZ 897-13-23- A-21 W6HEW 832-13-22----19 W6EVM 732-12-21- B-12 WGPMW 594-11-18- A-31 W6CPG $510-10-17-\mathrm{B}-25$ W6NNV 273-7-13- B-5 $\begin{array}{lll}\text { W6DTY* } & 36-3-3-\ldots \\ \text { W6MYT* } & 27-3-3-\end{array}$ $\begin{array}{llll}\text { W6MYT } & 27- & 3- & 3- \\ \text { W6PDF } & 18- & 2- & 3-\mathrm{A}-31\end{array}$ $\begin{array}{llll}\text { W6EA } & 12- & 2- & 2-A-25 \\ \text { W6OKP* } & 12- & 2- & 2-\end{array}$ W6LVQ 3- 1- 1- B-1

Arizona
W6QAP 40317-89-153-BC-88 W6OVK 252 - 7- 12- B- W6PWW 120- 4-10- B-28 W6PQQ 69-8-8- A-8

San Diego

W6LYM 45630- J0-169- (-67 W6GCX 28080-72-130- (1-86 W6ITY 27521-73-126- B-85 W6BAM 16968-56-101- C-81 W6AXC 6882-37-6i~ A-32 W61.VB 3600-2A-50- B-17 W6QLA *3432-26- 44- B- W6OLU 2530- 22~ 39- B-13 W6GCT 1377-17-27- (1-9 $\begin{array}{llll}\text { W6BVX } & 924-14-22-\quad \text { B-15 }\end{array}$ W6POI* $\quad 360-8-15-\mathrm{B}-$ W6ISG $\quad 162-6-10$ W6NRM 30゙- 3- 4- A-

West Gulf Division
No. Texas
W5DM 35952- 84-144- B-49 W5PJ $20561-66-105-\mathrm{B}-91$ W5DQD* 2046-22-31- --
W5DXA 1881-19-33- B-11
W5YF ${ }_{\text {Wh }}$ 1275-17- 25- C-14
W5ELE 1260-15-28- B-18
W5FOR 945-11-22.- A-60
W5ATY 618-12-18- B-20
W5GSE $\quad 540-9-20-\mathrm{B}-17$ W5DAA $390-10-14-\quad$ B-14 W5GJG 90- 11-16- A-2622 W5HIY 75- 5- 5- A-W5GXP $24-2-4-$

Oklahoma
 W5YJ 28680-73-131- B-702s
 W5CJZ 3680-23-54- C-23
 W5FFW 1660-20-28- B-24 W5FCM 1008- 16- 21- B-23 W5GC $30-2-5-\mathrm{B}-2$

So. Texas

W5VV 55848-104-179- B-66
W5VQ 13200-50-88- B-47
$\begin{array}{ll}\text { W5EJL } & 9798-46-71-\mathrm{B}-31\end{array}$
W5FNA 6156-38-57- B-33
W5FJM 3402- 27- 42- B-39
W5FI 3240-2-40- - -
W5EDX 1350-17-25- B-28
W5ARO 540-12-15- A-27
W5CX8 297-9-11- --
$\begin{array}{llll}\text { W5GRF } & 120-4 & 4-10-\overline{A-17}\end{array}$
W5FTM* 72- 4- 6- A-
W5GWL* 12- 2- 2-A--

New Merico
W5CJP 1066-13-28- B-20 W5HAG $\begin{aligned} \text { t93-11 } \\ \text { 11- } 22-\mathrm{A}-27\end{aligned}$

Canada
Maritime
VEIEA 37433- 83-151- B-90
VEIDG 3872-32-41-A-21 VEIMK 2256- 24-32- A-1724 VE1FB 6052-34-60- B-34 VEICO $\quad 504-11-18-\mathrm{AB}-5$

Ontario
VE3QD 38590-85-152- B-81 VE3KE 19370-65-100- A-76 $\begin{array}{ll}V E 3 K E & 19370-65-100-A-76 \\ \text { VE3ES } & 12050-50-81-\mathrm{B}-44\end{array}$ $\begin{array}{ll}\text { VEAES } 12050-50-81- & \mathrm{B}-4 \mathrm{y} \\ \text { VE3AIS } \\ \text { 4200- } & 30-47-\mathrm{A}-28\end{array}$ $\begin{array}{lll}\text { VE3ATB } & \text { 4200- } 30-47-A-28 \\ \text { VE3VN } \\ 1440-18-28-A-39\end{array}$ VE3VN $1440-18-28-\mathrm{B}-39$
VE3AMK $1344-16-28-A-40$ VE3ARB 1314-10-28- A-16 VE3AUN 1173-17-23- B-13 VE3AUN
VE3OO
$663-13-18-$
18$\begin{array}{ll}\text { VE3OO } & 663-13-18---21 \\ \text { VE3DU } & 330-10-11-A-5\end{array}$ VE3XY* 264- 8-11-AVE3VD $\quad 259-\quad \%-13-\mathrm{B}-8$ VE3HB 189-7- 9- B-9 VE3QT 36- 3- 4- A-9

Cucbec

VE2AX 26572-73-122- B-66 VE2EE 8190-42-65- B-36 VE2EP 7344-34-48- A-23 VE2HF 3100- 25-42- B-41 VE2EW* 2046-22-32- B-23 $\begin{array}{ll}\text { VE2FC } & 374-11-12-\mathrm{B}-24 \\ \text { VE2OI }\end{array}$

Alberta
VE4GD 3888-27-48- A-37 VEAWJ 1824-19-32- A-33 VEAGE 1615-19-30-AB-VEAADD 966-14-23- A-13 VEAEO 884-13-24---41 VEAADW 135-5-11-A-5

British Cclumbia

VE5ZM 13524- 49-100-AB-52 VE5VO 7474-37-67- B-57 VE5QP 5432-28-70-AB-42 VE5AAD 2277-23-33- A-26 VE5HR 2016-18-54- B-23 E5HR 2016- 18- 54- B-23 VE5HQ 195- 5-13- A-18 VE5AFG 190- 5-14- B-27 VEFALR 108- 6- 6- A- 5
Manitoba
VEARO 52272-99-176- C-76 VEAED 4698-29-54- B-70 VEAIF 3640-20-81- B-20 VE4AGP 147-7- 7- B-12

Saskatcheroan

VE4.JV 1404-18-27- B-46 VEABN $\quad 672-14-16-A-20$ VEAGF 75-5-5- A-13

Africa
Algeria-F. A
FA3RY 4620-14-110- A-40
FA8CR 2385-15-53- A-16 FA8RY 1272- 8-53- -F'A3JY 1030-10-36- A-10

Bgupt - $S U$
SUISG 20675-25-276- A-56 SU1WM* 856-8-37- $-\cdots$ SU1AX 486-6-27- A-7

Madeira - CI's
CT3AB 46575-27-575- A-55 CT3AN 22220-22-310- A-54

Mauritius - VQ8
VQ8AI 2220-10-76- A--
Morocco - CN8
CN8MQ 4124-18- 87- A-35
CN8AG 2160- 9- 81- A-13

Mozambique $-C R 7$		
CR7AK	$4455-16-99-$	A-21
CR7AF	$2400-$	$8-100-$
A-19		
CR7AL	$637-$	$7-31-$
CR7BC	$39-13$	
CR	$1-13-A-12$	

Mozambique - $C R 7$
CR7AF $255-16$ 92- A-21
CR7AI 637- 7-31- A-13
CR7BC 39 - 1- 13- A-12

THE" 19 " SERIES

The complete line-designed especially to meet every amateur requirement. The "19" Series provides Thordarson quality in the popular price field. The illustration above shows typical units from the line. Included in the line are: plate, driver, bias, modulation, and filament transformers; chokes; and a combination plate and filament transformer. Free Catalog No. 400-D gives complete information on the full series. See your parts distributor or write the factory now for your free copy.

TYPICAL CATALOG LISTINGS FROM THE "19" SERIES

" 19 " SERIES UNIVERSAL DRIVER TRANSFORMERS

Through the use of five ratios on each transformer, this series will handle all driver transformer requirements usually encountered in amateur transmitter circuits. All of them are encased in mounting style 4-D.

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Ratio Primary to 1/2 Secondary	Amateur Price
T-19D01	1:1, 1.2:1, 1.4:1, 1.6:1, 1.8:1	\$3.60
T-19D02	2:1, 2.2:1. 2.4:1. 2.6:1, 2.8:1	3.60
T-19D03	3:1, 3.2:1, 3.4:1, 3.0:1, 3.8:1	3.60
T-19D04	4:1, 4.5:1, 5:1, 5.5:1, 6:1	3.60
T-19D05	$\begin{aligned} & 1: 3.15,1: 2.75,1: 2.5,1: 2.25 \\ & 1: 2,1: 1.75,1: 1,1: 1.25,1: .85,1: .75 \end{aligned}$	3.60

"19" SERIES UNIVERSAL MODULATION TRANSFORMERS
Tapped coils enable the experimenter to match any modulator tubes to any class C R.F. load. All except T-19M17 are in case style 2 N .

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Cap. Walts	$\operatorname{Pr} M . A$ Per Side	$\begin{aligned} & \text { Secondary M.A. } \\ & \text { Series Par } \end{aligned}$	$\begin{array}{r} \text { Amateur } \\ \text { Price } \end{array}$
T-19M13	15	50	$50-100$	\$2.40
T-19M14	30	75	$75 \quad 150$	4.20
T-19M15	60	125	$125 \quad 250$	6.00
T-19M16	100	175	$175-350$	9.00
T-19M17	250	225	$225-450$	14.40

"19" SERIES TRANSMITTER INPUT AND FILTER CHOKES

Matched input and smoothing chokes for amateur, amplifier, or experimental applications. Inductance values are measured under full load conditions and adequate insulation is provided or recommended service.

INPUT OR SWINGING CHOKES

rype No.	Cap. D.C. MR.A.	Inductance Henries	D.C. Res. Ohms	Vulls Insulation	$\begin{aligned} & M l_{g} . \\ & n_{\text {Fig. }} \end{aligned}$	Amateur Price
T-19C39	150	5-20	215	3000	2 F	\$1.95
T-19C35	200	5-20	130	3000	2 D	2.40
T-19C36	300	5-20	105	5000	2 D	3.90
T-19C37	400	5-20	90	5000	2 J	6.00
T-19C38	5150	5-20	75	5000	$2 J$	8.40

SMOOTHING CHOKES

T-19C46	150	12	215	3000	2 F	$\$ 1.95$
T-19C42	200	12	130	3000	2 D	2.40
T-19C43	300	12	105	5000	2 D	3.90
T-19C44	400	12	90	5000	2 J	$\mathbf{6 . 0 0}$
T-19C45	500	12	75	5000	2 I	8.40

THORDARSON HhमCHRIC MIGG. CO. $500 \mathrm{~W} . \mathrm{HURON}$ ST, CHCAGO, IH. Demand '" Power by Thordatson'

Take a stecr from an Old Timer - when it comes to QUALITY, DEPENDABILITY, VALUE - Kenyon delivers the goods. There's no bull about that! Ask yourself these questions:
Why is it that practically every leading manufacturer of quality amateur equipment uses Kenyon Transformers?

- Why is it that more than 40 leading Ham suppliers have taken on the Keuson Line in the past 90 days?
- Why is it that Aretic, Antarctic, African and South Sea Expeditions specify Kenyonized Equipment?
- Why is it that thousands of Amateurs are "going Kenyon?"
The answer in three little words is QUALITY, DEPENDABILITY, VALUE!

HERE ARE 7 MORE GOOD STEERS

Ken-O-Tap Modulation Transformers
Any Tube to Any Load. Never Obsolete
CLASS "C"

Type	Load	Net
T-489	30 watts	$\$ 2.40$
$\mathrm{~T}-493$	80 watts	3.60
$\mathrm{~T}-494$	150 watts	5.40
$\mathrm{~T}-495$	250 watts	12.00

AMATEUR PLATE TRANSFORMERS

Type	D.C. Volts	D.C. Mills	Net
T-668	$500 / 750$	300	$\$ 5.85$
T. 669	$1000 / 1250$	300	9.60
T-670	$1500 / 1750 / 2000$	300	12.90

SEND 10cfor one of the finest of all Amateur Manuals. Catalog Free upon request
BE WISE-KENYONIZE

Southern Rhodesia - ZE	
2E2JC	115- 5- 8- ${ }^{\text {- }}$
Tanganyika - VQs	
VQ3TOM	6666-22-101- ${ }^{\text {A- }}$
U. of So. Africa - ZS	
2S2AL	47414-41-1338-A-100
ZS6DW 1	03311-39-907- A-30
ZSIAN	\%700-20-129- - 21
2S4U	5015-17-101- A-24
2SICJ	2142- 9- 80- A--
2S6GI	2130- 10- 71- A-25
ZS5CX	1440-10-48- A-11
7S5DC	502- 7 - $28-\mathrm{A}-14$
$7{ }^{2} 55 S^{*}$	120- 5- 8-
$7 \mathrm{ZS5BB} *$	63- 3- 7-
2858*	51- 3* B-
ZN6FD	42- 3- 5-
2S6FN	12- 2- 2- A-
Asta	
$\begin{aligned} & \text { Burma-XZ } \\ & X Z 2 D X \end{aligned}$	
China - X	
XU4XA	3368-8-143- B-17
Chosen (Korea) - J8	
J8CA	4180-11-128- A-24
Hong Ko	- VSE ${ }^{\text {20 }}$
VS6AG	7020-18-133- A-21
VS6AO	3159-13-81-A-14
India - VU	
VU2FX	1413-9-51- B-28
VU2FO	850-10-57- A-34
Japan-J	
J2JJ	22609-23-331- A-40
J2KN	12294-18-233- A-45
J3DF	8580-20-143- 4--
J3FZ	3872-10-76- B-21
J2IX	1485-5-101- A-20

Eurore	
Azores - (TTs	
CT2BJ	3530-10-119-
Beloium	ON
ON4NO	50080-35-564- A-73
ON4NW	56508-34-558- B-88
ON4FE	38280-33-387- B-63
ON4IF	26560-32-281- B-44
ON4PW	10902-23-161- A-46
ON4SG	10104-24-143-AB-37
ON4IW	5344-16-122- A-41
ON4LX	3021-19-53-AB-23
ON4AW*	1606-11-49-A-7
ON4AZ	756-9-36- A-16
ON4GU	744-8-31- A-9
ON40U	496-8-21-
ON4HS	378-8-22-A-

Danzig - YM

Estonia - ESS	
ES5D	5066-18-114- A-30
ESIE	18-2-3- ${ }^{\text {- }}$ - 2
Finland - OH	
OH2PS	63-3-7- ${ }^{\text {- }}$
Prance - F	
F8RR	38160-30-443- A-55
F3LE	20\$39-27-253- A-85
F8VJ	15392-26-201- A-31
F8TQ	14224-28-175- A-17
F8IZ	12084-19-2:0- A-223
F8WK	9036-18-172- A-19
F8CT	6331-13-163- B-19
F3LG	3600-16-78- A-22
F3JR	2601-17-57- A-16
F8BS	1152-8-48- A-5
F3IB	100-5- 6- A-1
F8IL	45-3- 5- A--
F8XK	39-3-5- A--

F8XP F8NV*

27-3- 3- A-1 27-3-3- - - -

Great Britain - G

C6NF	70011-37-635- B
C6WY	59165-35-569- B-68
G6RB	31756-31-313- B-
G2MI	26248-31-261-AB-
G6QS	21390-30-241- A-
(68MC	10498-29-126- A
(C 5 SO	$8970-23-130-4-27$
G6CJ**	8904-9.4-124-
G81G	7277-10-131- --29
C6BQ	5544-14-132- A-38
C6CL	3705-19- ¢5- A
G6YR	3392-16-73- A-19
G3SD	2!98-16-61- A-25
G8RL	1853-17-37- A
G8QZ	1110-10-37- A-25
Q3R.N	592-8-25- A-28
G8PI*	494-9-20--
95 FN	336-7-16- A-7
G5BD	23+-6-14-
G2RO	198-6-11- A-
G20X*	175-7-9-A
C6AE*	126-6- 7- A
G3MF	120-5-8-A-9
G3HG*	33-3- 4- A--
G555**	27-3- 3- A-
G8FL*	18-2-3-->
G8NO*	18-2-3- ${ }^{\text {- }}$
G5ZD*	12-2- 2 -
G6XA*	12-2-2-
G50J*	3-1-1

Hungary - HA
HA4H 35310-33-368 A-75
HA3H $\quad 1377-17-31-$ A-
Italy $-I$
$\begin{array}{lll}\text { IITKM } & 31800-30-358- & \text { B-42 } \\ \text { IIMH } & 17992-26-126- & 4-36\end{array}$ I1ER* $\quad 483-7-24-\mathrm{A}-12$

Latria-YL
YL2BZ 320- 8- 16- A-14
Lithuania-LY
LY1KK 14490-30-161- A-LY1J $\quad 160-5-12-\mathrm{B}-4$

Netherlands-PA

PA\$PN 44800-31-443- A-64
PA\$QQ 24861-32-265- A-70 PA\$EA 24831-31-267- A-30 PAФUV 23360- 32-244- A-67 PAФAZ 20039-20-231- A-45 PA\$EP
13068- $18-24 B-A-52$ $\begin{array}{ll}\text { PA } \\ \text { PA } & 100 \\ 6!969-23-101-A-43\end{array}$ $\begin{array}{lll}\text { PA\$00 } & 6!969-23-101-~ A-43 \\ \text { PA\$XF } & 6660-20-111-A-28\end{array}$
 $\begin{array}{lll}\text { PАФDA } & 4116-14-100- & \text { A-37 } \\ \text { РАФЈX } & 3465-21-57- & \text { A-30 }\end{array}$
 РАФОK $2130-10-71-$ A-25 PA中CN 106t-14-26- A-15 $\begin{array}{ll}\text { PAфQK } & 707-7-36- \\ \text { PA\$NN } & 660-10-22-A--\end{array}$ $\begin{array}{lll}\text { PA } \Phi \mathrm{XR} & 546-7-26-A-5 \\ \text { PA } \Phi \mathrm{LO} & 288-8-12-A-5\end{array}$ $\begin{array}{llll}\text { PA } \Phi L 0 & 288 & 8-12-A-5 \\ \text { PA } 5 \mathrm{~A} & 26 & 4-6-A-4\end{array}$

Jake your choice!

Low and medium power transmitting types at economical prices for every amateur application. Recommended uses and nominal ratings given below for the amateur's convenience.

WRITE ME!

Let me help you get the best receiver for your use. Tell me what type of operation you want: 'phone or CW -DX or traffic - what bands - etc. I will help you get the right receiver and see that your are 100% satisfied. We stock all receivers -- more than 25 models of all makes - and know all about them. Ask for technical literature on any receivers. Write for full information.
You can buy on Bob Henry's 6% terms financed entirely by myself so you buy with less cost - more convenience -- quicker delivers.
You get maximum trade-in for vour receiver -..- describe it and I will tell you its trade-in value - and you can pay the balance on my 6% terms.
lou ret ten-day free trial - you don't buy unless you are satisfied.
You get prompt shipment from the world's most complete stock of communications receivers. Shipment from factory if you wish.

Wodel	Crash Price	Doun Payment	12 Monthly Payments
HQ-120X	\$129.00	$\$ 25.80$	\$9.11
SX-24.	69.50	13.90	4.90
SX-23	115.50	23.10	8.16
Sky Buddy	29.50	5.90	2.08
RME-70.	138.60	27.72	9.79
NC.44	49.50	9.90	3.49
NCi01XA	129.00	25.80	9.11
HRO Sr.	179.70	35.94	12.70
Howard 460	79.95	15.99	6.64
Breting 9	54.00	10.80	3.81
Breting 6	32.40	6.48	2.28

Similar terms on all other receivers and on Harvey, Hallicrafters, Temco, National, Thordarson, Stancor, UTC and all other transmitters, kits, parts, etc. Also on Mims. Bassett, all other antennas.
You can reach me by letter, telegram, phone, or visit nearly 24 hours a day. 365 days a year. Your inquiries and orders invited. Foreign orders also welcomed.

Butler, Missouri

Northern Ireland-Git	
	21576- 29-253- A
GI6YW	3 308 -16-71- A-14
Norway - Las	
LA2B	1285- $11-39-\mathrm{A}-13$
Lear	839-7-26- A-13
LA7W	520- 8-22- A-17
LA7Z	475-5-31- $\mathrm{A}-20$
LA7A	468- 6- 26- A-8
LA7Y	260-5-18- A-6
LA5B	241--7-11- A-8
LARJ	135- 5- 9-
LA20	12-2. 2
L.A4K	12-2-2-A-3
LA7N	5-1-2-A-

NY2AB 3316-21-132- $\mathrm{B}-11$ K5AM 2730-10-91-… | K5AA |
| :---: |
| K5AN* |
| 1270-10- |
| $3-16-\cdots$ |

Coata Rica-Tl
TI2FG 35910-35-342- B- 22
Cuba-CM
CM2OP 31062- 31-334- H-22 CM7AC 23550-30-269- B-28 CM2AP 1080-9-74- A-11

Haiti - HH
HH2MC 19106-13-511- --66
HH2ES 13986- 14-333- A-1726
Honduran - HR
HR4AF 67896-36-648- B-5.5 HR7WC 31017-29-392- A-5

Martinioue-FM8
FM8AD 67391-31-729- A-41
Mexico- XE
XE2N 230581-41-1910- B-85
XE1CM111000-14-1000- B-60 XE1AM 57519-33-581- B-60 XELAX 33378-32-34日- $\mathrm{B}-2 \times$

Newfoundland - VO
VolD 8551-10-188- B-24 VO1O $\begin{gathered}\text { 850 } \\ 150-10- \\ 5-10-1\end{gathered}$

Panama - HP
HP1X $1110-10-37-$ A-12
Pueriokico-Ki4
K4DTH 176778-42-1406-B-81 K4FCV $114228-38-1020-\mathrm{B}-58$ $\mathrm{K}^{\prime} 4 \mathrm{KD}^{*} \quad 53712-36-499-\mathrm{B}-40$ K4FWJ 4658-17-100-A-12

Saluador - Yis
YS2LR 97992-14-914- A-53
Windvard Islands $\rightarrow V P 2$
VP2LB 26730-2.-405- A-38
VP2LC $25278-22-3 \times 3-\mathrm{A}-34$
Octanta
A usiralia - VK
YK2ADE
107010-40-892- A-8\%
VK2EO 52635- 33-556- A-75 VK3IW 28080-30-314-A-49 VK2RA $27270-30-303-A B-38$
VK4UR 22680-28-275-A-48
VK3UM 21424- 26-279-A-62
VK2TI 16936-29-200) B-82
VK3XB ${ }^{12705-21-2015-} \mathrm{A}-40$
VK6SA $8448-24-118-\mathrm{A}-20$
VK4.J. ${ }^{+}$7154- 14-172- A-
VK2QU 3315-17-65---19
VK3CX 3136-16-66- A-13
VK3HT 2871-11-89-A-30 VK2AJU 2508-11-77- -15 VK3JA $2204-16-47-\mathrm{A}-9$ $V \mathrm{~K} 2 \mathrm{ACX} \times 2040-10-88-\mathrm{A}-9$ YK3EH 2028-13-52- A-14 VK3PG 1990-10-67-A-15 VK3HG 1728-16-36-A-6 VK3QB $1672-11-51-\mathrm{A}-$ VK3YS 1512- 6 -56- A-VK4CG $1476-12-41-\mathrm{A}-8$ VK3NQ ${ }^{450-6-25-A-19}$ $\begin{array}{ll}\text { VK2AFJ* } \\ \text { VK3OV } & 351-9-13-A-- \\ 304-13-A-4\end{array}$ VK3RJ $240-5-16-\cdots-7$ VK2ZN 156-6-9-A$\begin{array}{llll}\text { YK5TX }^{6} & 60-5-4-\cdots \\ \text { VK2PV* } & 12 & 2 . & 2\end{array}$

Havaii - K 6
K6FAZ 103234-36-960- B-74
K6LKN 93366-38-808- B-77
K6CGK 79809-37-726- B-64 K6ipSB 38082- 33-391- B-40 K6LBH $31128-24-448-\mathrm{C}-42$ K6PGQ 29357-31-331- B-48 K6PUS 20194-23-294- B-8.5 K6MVF 19250-2"-294-B-36 $\mathrm{K}_{6} \mathrm{PHD}$ 17248-22-273- B-44
K5AF $91020-10-811-$ C-662 K6PTY $5850-15-130$ A-15
NYIAA 50015-35-486- A-63 K6QYI 3300-11-113-A-15 NY1AD 47985-35-457- B-35

These @HMMTE Pasts IMPROVE EVERY SIAGE IN YOUR RIG

$\mathcal{B}_{\text {e particular about the parts that go in your rig. Use Ohmite - }}$ the kind that has been time-proved and adopted as standard equipment by leading manufacturers of amateur, commercial and broadcast transmitters and receivers. You'll be sure, then, of continuous, trouble-free performance and maximum efficiency in every stage. Get these and other Ohmite parts from your Jobber. Send today for Ohmite Catalog 77 -it's free!

Dummy
Antenna
Used in checking K.t. power, impedance match. line losses, etc., for tuning, up to peak efficiency. 100 watt and 250 watt models.

Adjustable Diridohms

Ciasily, accurately adjusted o resistance you want - or tapped where needed. Ideal voltage dividers. 10 to 200 watts.

Power Line Chokes
To keep R.F. currents from soing out over power line and causing interference with radio receivers.

Band

 SwitchQuick, easy band change with really low-loss efficiency. For rigs up to $1 \mathrm{~K} . \mathrm{W}$.

Would YOU Like to Be a Famous Amateur?

You will never be well known with a fist like a foot. If you've practiced a long time but still copy "letter-for-letter", at slow speed and send poorly with key or "hug", you know something is wrong. You've missed that 'coordinative Knack', necessary to speed and copying behind!

No need to worry about it or try further to overcome it by practice. Of course, practice is necessary but you must KNOW the HOW and the WHY of practice for developing the necessary FACULTIES that mean your success as an operator.

Since the all. time spepd rer. ords are held by Ciandler-traineil operalors. don't youbelieve Gandler training should belp you to realize your umbition?
T. R. McElroy, OfficiulChampion, Speed 75.1 wpm., Aays: "Candler training must be guod for it gave McDonaid and me our speed and skill."

The New HOOK OF FACTS

tells you the whole story and a postal will bring it to you. No obligation.

CANIDLER SYSTEM CD.

ASHEVILLE, N. C. U. S. A.

Philippine Islands - KA
KAlSP 196-2-3:
Phoenix Ialands-KFo
KF6DHW7344-18-136- A--
Sumalra - PK4
PK4KS 10890- 15-243- B-40
Tasmania - Y KT
VK7CM 17688-20 - A-2x VK7LZ 10846- 170- А-

South America
Argentina - LIT
LU5AN 110592- 3ti-1017-A-8. 2
LUIEP 80771- 37-743- A-85 LO9BV $\quad 8741-39-688-A-86$ LU9AX 61050-37-562-AB-81 LU7AZ 16363-27-202- A-14 LU4DQ $9988-4-112-A-2.3$ LUICA 1903- 11- 59- A-19 LU3EV 420-7-20- A--

Brazil-PY
PY2AC 41076- 36-381- B-41
PY5AG 4303-13-112- A-20 PY2AL 1780-10-62- K-12 PY2KT 1320- 8- $83-\mathrm{A}-13$ PY5QJ 918- 9-34- --
 $\begin{array}{llll}\text { PY1FM } & 350-18 & 18-6 \\ \text { PYICI } & 315- & 7-15-A-2\end{array}$ $\begin{array}{lll}\text { PY4FK } & 261-8-11-A-9 \\ \text { PY2IH } & 150- & 5-10-B-4\end{array}$

Chate- OE
OFAAD 31920-28-382- A-38

EBcuador - HC
HC1PZ 3300-11-100- A-6
$\begin{array}{ll}\text { Trinidad }- \text { VP4. } \\ \text { VP4TO } & 2042-23-317-A-36 \\ \text { VP4TN } & 1760-16-101-A-\end{array}$
Urupuay - CX
CX1FB 19278-27-238- - 39
Venezuela - Y '
YV4AE 15764- 14-383- - 45
YV4AX 936- 8-38-…

'Phone Scores

Athantic Division

A. Penmaylvania

W3EOZ $87282-78-373-\mathrm{C}-7$ W3FJU 26400- $55-160-\mathrm{BC}-46$ W3BET 4840- $27-60-\mathrm{B}-32$ W80KC $4104-24-57-$ B-21 W3FKO 2208-18-24- A-1728 W3FFG 1305-15-24- B-11 W30A 1005-15-23- ©-11 W3GTL 660-10-22...
W3ACF 648-12-18- B-11 W3FPR* 3i4- 9- 12 W8AGE 315- 7-15- B-11

Md.-Del.-T.C.

W3BNC 31472- 56-188- O-59
W3FIT 15962-46-116- - - 4
W3HLH 11200-35-107- A-63 W3AKX 307א- 18-57- B-26 W3AED 1980-22-30- C-12 W3BCS $1953-21-303-\mathrm{B}-18$ W3GKN 145K-18- 27 - A-17 W3F TX 540-12-15- 0-9 W3AIB $450-10-15-$ AW3HPU $300-10-10-$ B-25

So. New Jersey
W3PC 88it-44-67- - 16 W3BVE 3762- 22- $57-\mathrm{B}-39$ W3BEI 2124-18-41---16 W3HOH 2052-18-38- $\mathrm{B}-20$ W3AXU 900- 15- 20- - - 12 W3GPU 297-9-11- B- $\begin{array}{lrl}\text { W3ZX } & 126-6-7- \\ \text { W3BCV* } & 30-3- & 4- \\ \text { W3F } & \end{array}$ W3FHY $12 . \quad 2-\quad \because-1$
W. New York

W8DST 85455-81-353- -71 W×BDO 18148-52-76- C-71 W8ACY $4056-26-52-$-15 W8NKA 1092- 14- 26- B-32 W8CKY 977-16-21- B-23 W8RQB* 48- 4- 4- B- 2
W. Pennsylvania

WBQXT 25080-55-152- C-48 W8KBJ $2616-21-42-(12$ WSANC $\quad 4: 0-10-14-$ A-17 W8CMK 408- x- 18- B-11 WYQVM 384- $8-16-\ldots$ W8SWK* 264- 8-11- A-30 W8OUT W8GGH W8RGH $90-5-8$ W8QVQ* \quad 48- $4-5-\mathrm{H}-2$ W8SLC ${ }^{*}$ 3- 1- 1

Central Division
Illinois
W9DKT 58275-75-254- C-76 W9QI 2y:95- 83-1.55- (!-75 W9GYK 20700-50-138- B-65 W9CBJ 14361-39-126- H-56 W9NLP 12972-47-92- C-3. W9ROQ $7533-27-93--45$ W9TYJ S133-24- 59- A-32 W9VXL 3096- $24-43-$ - $4: 4$ W9ZYL 3096-24-4:3- B-51 W9CIU* 2772-21-44- - W9FJB 2622-23-3n- B-14 W9AGM 1488-16- $31-A-19$ W9UAZ $1258-17-26-A B-43$ $\begin{array}{lll}\text { W9VMV } & 1767-19-31- & \mathrm{B}-11 \\ \text { W9CUX } & \text { 9jo } \\ \text { W } & 15-20- & \mathrm{B}-21\end{array}$ $\begin{array}{llll}\text { W9CUX } & \text { W9O- } 15-20- & \mathrm{B}-21 \\ \text { W9GY } & 798-14-19- & \mathrm{O}-14\end{array}$ W9BRR* 672-12-28-… W9NBT* $58\left(1-10-210-A^{-}\right.$ W90F 576-5-24- H-15 WGPEQ $\quad 470-10-16-\cdots-18$ W9OLM $384-8-16-A--$ W9VSX $378-$ y-14- A-10 W9WXT* W9TB WOLO W9WC W9RCR* W9UBS W9NQI W9SGL

[^9]
STINCOR'S hoo perokit

Stancor unveils two more of the new 1940 kits. Although the prices are extremely attractive, no compromise of design or quality has been tolerated. Additional information may be obtained from the new Hamanual.

STANCOR 100MB TRANSMITTER

At last a real band-shifting transmitter wherein one switch rotation completes the change-over of all circuits. The approximate amplifer input is 100 watts delivered by a self-contained power supply. The 100 MB has meter and crystal switching, safety features and commercial appearance at an unbelievable figure.

Alopsorimato net price \$42.00

STANCOR 440M MODULATOR

A companion unit permitting radiotelephony with the 100 MB and having equally attractive features. Some of the highlights are 40 watts of undistorted audio power output, an over-modulation indicator, and both high and low gain inputs.

Approximation of pice \$37.50

Never before has such value been offered. The 100 MB and 440 M provide a complete 100 watt phone-CW band-switching transmitter for less than $\$ 80.00$ net. The standard panel dimensions of both units allow them to be mounted on a relay rack, in

TRANSFORMER CATALOG
Stancor's Catalog No. 140-A lists transformers for all types of application. Contains valuable charts. Assures the correct unit being used at all times. a single cabinet, or in separate cabinets.

STANCOR THOROBRED
America's first safety plate Transformer. The only transformer of its kind - anywhere. Your Stancor jobber has it - be sure to see it.

STANCOR

HAMANUAL FREE The Fourth Edition Hamanual, available from your Stancor distributor about October 1st, will reveal many interesting transmitter and amplifier kits, and will contain a transformer catalos.

ANOTHER

Announcing SYLVANIA

5-inch screen type 5AP1/1805-P1 and type 5AP4/1805-P4
Television news is breaking fast, and Sylvania is up-to-the-minute on every new development.
Here is a shorter, stubby 5 -inch screen CathodeRay tube using electrostatic focusing and electrostatic deflection. And remember, the same fine quality that has always characterized Sylvania radio receiving tubes is a first consideration in the building of this and all other Sylvania Cathode-Ray tubes. Write Hygrade Sylvania Corporation, Emporium, Pa., for technical data on this new tube.

Aha bl wows- your thoughts

Zenith Radio Corporation

——— 6001 DICKENS AVENUE

\qquad
Chicago

August 14, 1939

To Radio Amateurs:

This is another invitation to every "has" in the world.
In my opinion, nothing in radio has been more neglected than loops -- particularly for reception.

Amateurs can profitably apply their ingenuity in this great field of loops (for reception both on standard and short wave).

If you know how to build a better loop, tell us and if your suggestion is a novel one we have not before had and is adopted, wo will reward you.

Radio amateurs and laboratory engineers have apparently been misled by the superior signal strength received from standard antennas as compared with loops. The ratio of signal strength to noise level in the loop is the important factor and the field of what can be done with loops of various types for rem cooption, is practically unexplored.

We have no products to sell to the amateurs, but, if you are interested in experimenting with loops, drop us a line and without cost, we will give you a starting point for research by sending you details of interesting experiments you can perform with simple apparatus easily constructed at home. We will also send some of the major developments we ourselves have found in our investigation on loop antennas.

You amateurs developed short wave. If you interest yourselves you can develop loops. Your ideas may be worth many dollars to you. Write me today for the starting point -- the information mentioned above.

Specify "PRECISION" for real MULTI-TESTER VALUES

There are more than a dozen multi-tester models in the PRECISION line for 1940 . . . units providing complete facilities for obtainia\& all measurement requirements for Amateur, Service, Luboratory, Television and Industrial uses. You are sure to find one to satisfy you . . . at a price that makes it "tops' in value.

New Series 844 - 34 Range

 AC-DC VOLT-OHM-DECIBELMILLIAMETER
including ranges of
6,000 Volts AC-DC 10 Megohms and 12 Amperes

Abstract

Large 44/" D'Aryonval square type hunts and matched multipliers of $\mathbf{1 \%}$ accuracy.

\star SIX A.C. and D.C. VOLTAGE RANGES at 100 ohm 1200 and 6000 volts.
SIX I C.CURRENT 1200 MA. and 0 -12 Ampers
1200 MA ; and $0-12$ Amperes
from -12 to +70 DB .

- FOUR RESISTANCE RANGES: 0-400; 0-100,000 Meg, and $0-10$ Megs.
\star Provisions for Mounting Ohmmeter Batteries ($41 / 2$ and 45 volts) on inside of case.
\star SIX OUTPUT RANGES: 0 to $12 / 60 / 300 / 600 / 1200$ and
61000 volts.

844-L - Walnut finished hardwood case with carrving $\$ 29.95$
handle. $7 \times 8 \times 4$). Less batteries and test leads. Net.... 82.850 844-P - Closed type, removable cover, tool compart- $8 \mathbf{~ m e n t . ~ N e t . ~} 55$

Series 870

Automatic Push Button

AC-DC Multi-Range Tester
\star D.C. VOLTAGE RANGES at $300 / 600 / 1200$ and 3000 volts.
\star A.C. VOLTAGE RANGES at fi00/1200 and 3000 volts.

* D.C. CILRRENT RANGES: 0-1.2/12/120/600/1200 milliamperes.
* RESISTANCE RANGES: $0-5000$ ohms (20 ohms at center of scale) 0-500,000 ohms (powbattery) $0-5$ megohms (powered by external battery).
\star FIVE DECIBEL RANGES: $\cdots-10$ to +64 DB .
* OUTPUT METER INDICATIONS on Five A.C. voltage ranges.

870 - Large size 3 -inch square meter. Compact walnut finished case. Size $7 \times 4 \times 3$. Wire wound shunts and metallized $\$ 17.95$ See these two as well as the other popular PRECISION Test aquipment models on display at all leading radio parts distributors. Ask for your 1940 catalog.

647 Kent Avenue
Brooklyn, New York
Export Division: 458 Broadway, New York City, U. S. A. Cable Address: Morhanex

New England Division
Connecticut
WICOJ 10956-44-83- B-41 W1BEQ 10812-34-106- B-49 WiJRV 5070-30-57--42 WIACV 4200-28-50- B-29 W1WR $\quad 2600-22-40-\mathrm{B}-19$ W1FUY* 2516-17-50- B-17 W1JOS 1080-15-24- - W1JWX 567-9-21- A-22 W1AJS 216-8- 9- B-38 WIIMV $\quad 27-3-3-\mathrm{B}-7$ WILGZ 24-2- 6--$\begin{array}{lrl}\text { W1LPN* } & \text { 18-2- 3- } \\ \text { WITS } & \text { 5841-33- } & \text { 59- }\end{array}$ WIEH $\quad 1170-15-26-$ B-14

Maine

W1GEJ WIAUR WIDAY WIBPY W1BUZ

5508-27-68- A-73 3750-25-50- B-40 2420-20-41- B-21 WIBUZ $1040-14-25-$ A-26

E. Massachusetts

W1HKK 60000-80-252- (-82 W1ADM 57942-74-261-BC-63 W1ME $\quad 37800-56-237-\mathrm{B}-57$ W1JCX 36080-55-219-AB-60 W1BLO 26649-47-193- C-35 WIAKY 12423-41-103- B-31 W1HX 11026-37-100- B-60 WIFJN 8181-27-101- B-45 WIQM $4150-25-56-\mathrm{B}-26$ W1JNX $\quad 3979-20-59-\quad$ B-22 WIKQN 3960-24-55- B-28 W1TW WIWV WILEU W1FLZ W1IF* W1JS W1EHF WILQO W1HZU* W1LKM W1GYZ* W1LOK $\begin{array}{ll}\text { W1ZR } & \text { 44-4- 4- A- } 3 \\ & 15-1-5---2\end{array}$
W. Massachusetts

WiCOI $22313-53-143-\mathrm{AB}-48$ W1GZL 19941-51-133- B-49 W1AEP 19250-50-129- B-39 WIDSK 10500-35-100- B-57 W1KUD 6090-29-70- B-37 WIAUN 384-8- 16- B-35 WIDLY* 105-5-7_

New Hampshire
W1IVU 408-8-17- ©-11
Rhode Island
W1DQ 54339-59-307- ©-69 W1JFG 35808-48-253- B-63 WICJH 20592-48-143- B-73 WIITQ* ${ }^{*}$ 432-9-16- B--

Northwestern Division

Idaho
W7ACD 4002-23- 58- B-23
W7GGH $594-11-18-A-22$
3-1-1-…
Montana
W7EOI $\quad 6300-30-72-\mathrm{BC}-55^{32}$
W7GBI 1470-14-35- B-41
W7CPY 384-8-16---6
Oregon 10416 -28-124- $\mathrm{C}-30$
$\begin{array}{lr}\text { W7GAE } & \text { 10418-28-124- } \\ \text { W7CHT } \\ 3875-25-52- & \text { B-39 }\end{array}$
W7HIA $\quad 552-8-23-$ A-16
W7BEE $180-5-12-\cdots$
W7GOP* 6-1-2…
Washindon
W7ESK 37620-60-209- B-79 W7DX 32050-50-214- B-73 W7FP $\quad 9840-41-80-$ - -42 W7AXS 2457-21-39- B-40 W7BQX 1584-16- 33- A-38 W7QB $\quad 1377-17-27-$ B-20 W7RT* $6-1-2-\cdots$

Pacticic Division

Vevada
$\begin{array}{ll}\text { W6HCE } & 2226-21-36-A-28 \\ \text { W6QQL } & 1736-14-42-\mathrm{B}-17\end{array}$
WGGQL

Santa Clara Valley
W6LXA 5865-23- 85- (0-42 W6BCF $\quad: 020-17-33-\mathrm{A}-23$ W7MF/6 $\quad 1938-17-38-$ B-45 W6MPS 1806-14-43- B-30 W6QQJ* 627-11-19- A-10 W6AHZ $135-5-9-\mathrm{B}-5$ W6OHA * 48-4- 4- A- -

Faas Bay
 W6ITH 99296-84-398- C-89 W6OCH 98175-85-386- (L-80 W6KR 33951-63-180- B-59 W6IDY $19360-40-162-A C-41$ W6TT 11433-37-103-C-34 $\begin{array}{lr}\text { W6IKQ* } & \text { 5088-32- 53- --- } \\ \text { W6SQ } & 975-13-25-19\end{array}$ W6DJK 234-6-13- -

San Francisco

W6BIP 24900-50-166- B-65 W6NCW 10168-31-110- B-41 W6MWK 2982-21-48- B-34 W6GPB* ${ }^{*}$ 189-7- 9-
Sacramento Valler
W6GVM 15885-45-121- (1-5 W6IMV 1188-11-36- A-25 W6KFY 768-12-22- B-19 W6KKL $27-3-3-\mathrm{B}-12$ W6NKT* 4-2-3---

San Joaquin Valley
W6MEK 24647-49-169- B-76 WBFKK 9637-37-87- C-28 W6IWU 2086-14-50- B-77

Roanore Division
North Carolina
W4BMR 9'461-82-347- (-82 W4DCQ 3326t-66-168-BC-42 W4ARH $28336-54-178-0-53$ W4AFT $\begin{aligned} & \text { 28836-54-178- } \\ & \text { 22176-42-176- }-73\end{aligned}$ $\begin{array}{ll}\mathrm{W} 4 \mathrm{FT} & 22176-42-176-\mathrm{C}-73 \\ \mathrm{~W} 4 \mathrm{GW} & 12848-44-96-\mathrm{C}-30\end{array}$ W40C 8670-31-85- - 31 W4AAU $1188-18-22-\overline{-2}$ W4CLB ${ }^{*}$ 27-3- 3- B-1

South Carolina

W4BPD 85050-80-350- (-73 W4CQG 9348-41-76- BW4BQE $\quad 3749-23-55-\mathrm{B}-28$
Virginia
W3EMM 142002-98-483- C-88 W3FQP 54315-71-255- (0)78 W3BIW 3560-20-60- B-26 W3EZR* 858-13-22- B-10 W3BZ* 105-5-7---

West Virginia
W8JKN $\quad 650-13-18-\mathrm{B}-10$
Rocey Mountan Divibion
Colorado
W9WJJ 8154-27-101- B-39 W9IVT $5644-29-66-\mathrm{B}-26$ W9QMS 1444-19-26- C-20 W9PGS 528-11-16-A-1 W9MJA 3-1-1-…

Utah-Wyomino
W6DTB 15456-46-112- B-47 W6NPU* 56-4- 5- - W7GGG*

Southeabtern Division
Alabama
W4ECF $34020-60-189-$ R-65 W4ENQ 10608-34-104- C-30 W4ERX 10395-33-105- B-32 W4FUM 8010-33-81- C. 32 W4EHH 4536-28-54- B-34 W4EKI $\begin{array}{ll}\text { 1326-17-26- B-15 }\end{array}$

If. Florida
W4AGB 78570-81-324- B-86 W4DRZ 61636-76-273- $\mathrm{B}-80$ W4EQK 35786-58-207-BC-6833 W4TZ $\quad 8942-34-90-\mathrm{B}-77^{22}$ W4EZK 4075-25-55- B-W4DCZ 1404-18-27- C-12 W4DDB $\quad 73-7-14-$ A-17

 W. Florida

W4FWY 7998-31-86- B-56 (Continued on page 106)

I-36 SIX BAND PHONECW

 TRANSMITTER 6 - and 110 Volts
tube transmitter. Switch choice of three 1 frequencles. Selects between standby or ier of two ant. matching coils. Modulator power supply, $105-125$ volt, $50-60$ cy. A.C.
tout up to 10 watts. Controls: Key-jack. 3 tout up to 10 watts. Controls: Key-jack, ${ }^{\text {cos }}$ ing. on-off. meter-selector, amp. tuning. outcoupling, standby, mike jack. Panel cut for coupling, standby, mike jack. Panel cut for
meter. meter. 83 C 7 . two 7 C 5 s . ship. weight. 16 lbs .

36 K KIT, less meter, crystals and tubes; with $5-10$ meter List
rnills
36 W 36 W WHRED. tested............. \qquad CABINET
${ }_{\mathbf{N e t}}$ ABINET ….......................... 8.25 $\begin{array}{lll}19-440 \text { Coils for } 20-40 \text { meters......... } & 4.00 \\ 3.00\end{array}$ $11-02$ Coils for $80-160$ meters 3.00

U-10A FREQUENCY METER-MONITOR

Temperature stabilized. bundamental range 8401030 kc . strong harmonics covering 5 thru 160 meters. $7{ }_{3}{ }_{4}$ " dial may be set with extreme accuracy on WWV or 19 broadcast stations. Voltage regulated. Added frequency standard thru builtin 100 kc . oscillator. Detector tube prorides audio monitoring and zero beating: cathode ray tube connected to monitoring detector gives visual deviation. For 105-125 volts, 25-60 cycle, A.C.D.C. Uses one each 43, 25A7, 6J5, 6F5. VR-105, 55-A.
Size: $101 / 2^{\prime \prime} \times 91 / 21 \times 71 / /^{\prime \prime}$.
Shipping weight: 15 lbs.
U-10A WIRED, less tubes........ $\$ 48.75 \quad \$ 29.25$
U-11 TCBE KIT …............ 8.75 5.25

U-42 HIGH GAIN PRE-SELECTOR

Complete, independent power. Connect between ant. and any receiver to improve gain, selectivity, signal-to-noise ratio. Five bands, low C ity, signal-to-noise ratio. Five bands,
regenerative R.F. amplifier tuning 430 regenerative R. Dial $51 / 3^{\prime \prime}$, calibrated over 324 degrees, $5: 1$ vernier knob. Amplification controlled by revernier knob. Amplification controlled by re-
generative knob. High selectivity. Controls: regeneration, on-ofp, band switch, in-out switch rent-gnd doublet and output terminals st rar Phone jack allows monitoring phone-c.w. When oscillating, serves as heterodyne frequency meter. Size: $121 / 4^{\prime \prime} \times 7^{\prime \prime} \times 71 / 2^{\prime \prime}$.

	List	Net
U-42K KIT	27.50	\$16.50
U.42W WIRED. less tubes, cabinet \qquad 33.00 19.80		
U-37 CABINET	4.00	2.40
U.42T TUBE KIT, one 7A7, 80	2.30	1.38

U-31 "SEND-'CEIVER"

Three tube regenerative receiver, six bands, 10-700 meters. Basic xmitter one tube. 3 band xtal controlled oscillator, band switching. Output nearly ten watts. Three position crystal, operation on 3 bands in xmitter circuit, and 6 bands when 7 C 5 amplifier tube added. 3 position lever selects colls which cover $5-10,20-40$ or $80-160$ meters. Space on Danel and chassis for adding power amplifier, or 1 or 2 tube modulator. Key, mike, jacks on panel. A.C. power supply and $0-150$ plate m.a. included. Size $17^{\prime \prime} x 7^{\prime \prime} x 7^{1 / 2 \prime \prime \prime}$.

	List	Net
U-31K KTT	49.95	\$29.97
U-32 CABINET		27.47
U-33 AMIPLIFIER KIT: 3 colls, tuning condenser, knob, socket, condenser, resistors, to add power amplifier.	6.50	3.90
U-34 MODULATOR KIT: mike transformer, socket, resistors, condensers, for		
adding a 7 CS modulator tube for phone	6.00	3.60
$31 T$ TLBE KIT: $1-7 \mathrm{C} 7.80$ and 2-iC5	5.30	3.18

U-50 "SUPER"

es controlled regeneration. Excellent image rejectivity, selectivity and signal-to-noise ratio. ree kang condenser. Eleven tubes, extra socket to add 100 kc , oscillator. Spread-band ing in 6 bands. Illuminated gun-sight dial indicator magnifies figures 21/2 times. Uses 7A7, . ${ }^{\text {fSFS. 6K8, VR-105. } 6 \mathrm{B8}, 80 \text {. two }}$ 6SK7; two 7C5. Controls: 8-meter, silencer, tone and
 T, witch, selectivity, beat-pitch, \$79.88 net, WIRED with, ${ }^{\circ}$.

39

5-10 METER CONVERTER

bile or home use. Has stecring-post clamps. nect between antenna and any set, output isformer of ronrerter tunable ans frequency ween 1500-1600 kc. Tuning condenser rigid. gang 20 mfd. capacity. exccllent band ead through $7: 1$ tuning knob. Drain $3 / 10$ jeres filament, and 12 ma. B current from $1 e$ or auto set. Size: $6^{\prime \prime} \times 4^{\prime \prime} x 4^{1 / 2}{ }^{\prime \prime}$. 39 KIT \qquad WIRED …..........ist 27.00 Net $\$ 13.20$ - 68 K Tube

U-35 KEYTONER

Learn code rapidly with this unit. Plug-in key, connect to A.C. or D.C., and every dot-dash reproduced through built-in speaker. Knob selects one of AFe pitches between 300 and 3000 cycles. Ideal both for code mastery and class-room sending. Learn with Keytoner, and master hardest
part of becoming an amateur. Size $7^{\prime \prime} \times 5^{\prime \prime} \times 4^{\prime \prime}$ part of becoming an amateur. Size $7^{\prime \prime} x 5^{\prime \prime} \times 4^{\prime \prime}$.

SIMPLIFIES CODE-LEARNING
U-35K KIT
List
U-35W KIT $\$ 11.50$
Net

| |
| :--- | :--- |

U-44 FREQUENCY METER

Temp. stabilized. 100 kc. standard oscillator. Calibration against WWV. $51 /{ }^{\prime \prime}$ dial 5 oscilator. 160 meters. Voltaze reg. socket provided. Controls: dial, on-oft standard freq on-off Concalibration zero-setter. frea. standard switch. setter, $105-125$ volts, $25-60$ cycles, A.C.-D.C.
 Size $121 / 4^{\prime \prime} \times 7$ "x71/2". 70L7GT, 35A5. VR-105.
U-44K IKIT …................. List $\$ 25.00$ Net $\$ 15.00$ $\begin{array}{ll}\text { U-44K IKIT } \ldots L i s t ~ \\ \text { U-44W WIRED } & 25.00 \text { Net } \$ 15.00 \\ 33.00 \text { Net } \$ 19.80\end{array}$ U-44W WIRED List 33.00 Net 19.80 U.44 TUBE KTT: Jobber

W1HRX, with its cobwebs, looks as though the QTH should be Sleepy Hollow; those 75 -footers, hurricane-produced, are still lying on the sod. A serious case of algae has overrun the sides of the swimming pool; badminton is but a pleasant memory and the tennis court has sprouted a most healthy crop of weeds. Even so, summer at the Farm has been grand fun!

Doing what? Lots of serious dreaming, planning and figuring that has resulted in something tangible -- our own outfit, producing a line of gear we believe to be right down the amateur's alley. Not being bogged down with the problems that often confront a large company has been advantageous, allowing us to set our own pace. And not until just now have we seen the finished products of our earlier machinations.

Being an active amateur, and thus a personal constructor of amateur gear, we know from first-hand experience the application difficulties encountered only too frequently by the average amateur: parts that require square holes in chassis or panel; parts having terminals in awkward or inappropriate places; sockets with contacts that fill up with gobs of solder; neutralizing condensers that take up more space than the tubes themselves; ceramic coil forms through which even a magician could not pull the leads; hardware that rusts during

Upper: Chassis view of RF portion of the "X-EC."

Left: Complete "X-EC" with isolated power supply and connecting cable.

the "X-EC" Is Not an Ordinary Electron Coupled Oscillator for Shifting frequency. It Is a Definite, Absolute Method of Frequency Control.

1. Positive "X-EC" Stability	5. No Plug-In Coils
2. Isolated Power Supply	6. Vibration-Free Mounting
3. RF Isolation	8. 40 or 80 Meter Output

The " "X-EC" incorporates the new design principles of electron coupled oscillators as described by Charles Perrine, W6CUH in June RADIO, and September OST.

- A stable "ECO" must be vibationless, humless, and supoliod with constant voluse. The weill resulitad power supoly for the Wixh constant voltage. X .EC, also eliminates heat which would otherwise affect the stability.
Zoro voltage coefficient is obtained by the accurate adjustment of the cathode tap. A special resistor network is employed for the screen voltage supply. Temperature compensation is used to further stabilize the "X-EC."

The "X-EC" Foats on "shock absorbers" to exclude external iar or vibration. The objectionable features of other electron coupled oscillators are not found in the "X.EC" and its stability has been raised to such a high degree that it is the most outstanding, variable frequency control unit thus far presented.

- The two-band output will prove advantageous. No plug-in coils are used, all of them being permanently mounted. You will like the calibrated bandspread dial. This dial incorporates a smooth action reduction drive unit, and it is direct reading for the 10, 20 , and 40 meter bands. Band calibration covers approximately the whole of the 180 degree rotation.

Use the "X-EC" to drive the lowest frequency stage in your transmitter, 40 or 80 meters. You may use your present crystals (40 or 80 meter), and have 40 or 80 meter output, either "EC" or "Xtal," by fipping a switch. For working the band edges, spot frequency crystals are sugsested, and accommodations for three crystals are provided.

- The "X-EC" comes to you COMPLETE . . . with isolated well regulated, power supply, four feet of shielded connecting well regulated, power supply, Iour feet of shielded and licensed by RCA. The richly finished cabinets are only $0^{1 / 2}$ inches wide, $9^{\prime \prime} \mathrm{h}$. and $12^{\prime \prime} d_{\text {., and will make a fine appearing unit beside your receiver. }}$

Full range, very high output and acoustically correct. Equipped with 7 feet of cable. Finished in black crinkle and chrome. Our low price is made possible by shipping direct to you.
AN EXCEPTIONAL VALUE - ORDER DIRECT. Other models at $\$ 11.45$ and $\$ 12.90$.

Write for descriptive literature

GUARANTEED PRODUCTS OF TIBBETTS LABORATORIES CAMDEN, MAINE

PRECISION CRYSTALS

Highest quality crystals carefully prepared for frequency stability and maximum output. Rigidly tested to assure you of dependable operation. Be sure of your transmitter frequency - use PREGISION CRYSTALS.

Type 4-A low drift unit
plugs into a tube socket The holder body is of white ceremitex. Frequency drift of unit 4 cycles or less per million per degree centiKrade. of your specified frequency in the 40.80 or 160 meter bands. Calibration accurate to within 0.03%. Price, $\$ 4.00$.
' X ' cut crystals in type 4 holder for tube socket supplied within 5 Kc . of your mecified frequency in the to. 80 or 100 meter bands. Price, $\$ 3.50$.
Elther the low drift crystals or the ' X ' cut can be sup plied in square holders to plug into G.R. type jacke at the above prices.

Cirystals for commercial requirements quoted on at your request. Now in our tenth year of business.

PRECISION PIEZO SERVICE

427 Asia Street
Baton Rouge, La.

I.A.R.U. News

(Continued from page 59)

Estonia: E.R.A.U., Box 220, Tallinn
Federated Malay States: see Malaya
Finland: S.R.A.L., Pohjola, Box 42, Helsinki
France (and any country with prefix beginning with " F "): Reseau des Emetteurs Français, 6 Square de la Dordogne, Paris, 170°
Germany: D.A.S.D., Cecilienalle 4, Berlin-Dahlem
Greece: C. Tavaniotis, 17-a Bucharest St., Athens
Guam: C. R. Spicer, Naval Communication Office, Agana
Haiti: L. F'. Sherwood, c/o R.C.A., Port-au-Prince
Hawaii: James F. Pa, 1416D Lunalilo St., Honolulu
Hong Kong: H.A.R.T.S., Box 651
Hungary: National Union of Hungarian Short Wave Amateurs. VIII, Maytaster 6, Budapest
India: B. M. Tanna, Satya Sadan. Santa Crus
Ireland: I.R.T.S., 23 South William St., Dublin
Italy: care A.R.R.L.
Jamaica: Cyril M. Lyons, 8-B North St., Kingston
Japan: J.A.R.L., P. O. Box 377, Tokyo
Java: see Netherlands East Indies
Jugoslavia: Stephen Liebermann, Meduluceva 9, Zagreh
Kenya: R.S.E.A., Box 570, Nairobi
Latvia: L.R.B., Post Box 201, Riga
Lithuania: L.R.M., Post Box 100, Kaunas
Luxembourg: G. Berger, 20 rue Louvigny
Madeira: see Portugal
Malaya (and Borneo): J. MacIntosh, c/o Dept. of Posts \&
Telegraphs, Singapore, Straits Settlements
Mexico: L.M.R.E., Box 907, Mexico City
Morocco: A.A.E.M., BP 50. Casablanca
Netherlands: N.V.I.R., Post Box 400, Rotterdam
Netherlands East Indies: N.I.V.I.R.A., P. O. Box 64, Bandoeng
Newfoundland: Newfoundland Amateur Radio Ass'n., 43 Youngs Street. St. John's
New Zealand: N.Z.A.R.'I., P. O. Box 489, Wellington
Nicaragua: Ernest Andreas, Estacion Radiodifusora Bayer YNOP, Managuo
Northern Rhodesia: W. H. Christie, Box 27, N'Kana
Norway: N.R.R.L., P. O. Box 2253, Oslo
Republic of Panama: R. D. Prescott. Box 32, Panama
Palestine: see Egypt
Yeru: Radio Clibb of Peruano, Apartado 538, Lima
Philippine Islands: George L. Rickard, P. O. 849, Manila
Poland: P.Z.K., Bielowshiegu 6, Lwow
Puerto Rico: Francis M. McCown. Family Court No. 7. Santurce
Portugal: R.E.P., Rua Das Chagas 35, Lisbon
Roumania: Victor Cantuniari, Str. Matei Basarab, 3 bis BuchrestiIV
Salvador: Care A.R.R.L.
South Africa: S.A.R.R.L., P. O. Box 7028, Johannesburg
Southern Rhodesia: see South Africa
Straits Settlements: see Malaya
Sudan: see Egypt
Surinam: care A.R.R.L.
Sweden: S.S.A., Stockholm 8
Switzerland: U.S.K.A., Postbox, Berne
Tanganyika: see Kenya
Trinidad: see Antigua
Uganda: see Kenya
Uruguav: Radio Club Uruguayo, QSL Section, Box 37. Montevideo
U.S.S.R.: C.B.S.K.W., 1 Samotechny Per. 17, Moscow

Venezuela: R.C.V., Torre a Madrices No. 8, Caracas

SWL QSL HUREAUS:

SNV ACKNOWLEDGMENTS are not handled by the Bureaus, but we are fortunate in having a bureau for those coming into the United States. Amateurs acknowledging United States SWL cards should send them as follows:

Eastern U. S. (corresponding to W1, W2, W3, W4, and W8): H. S. Bradley, 66 Main Street, Hamilton, New York.

Western U. S. (corresponding to W5, W6, W\%; and W9): Warren B. Mayes, 1438 South 11th Street, Maywood, Illinois.

ORDER TODAY DIRECT FROM THIS PAGE ... MAKE YOUR OWN EASY TERMS up то 12 monrнstopия

\star Send $\mathbf{2 0 \%}$ down payment with your order today \star Add 6% carrying charge to the balance due \star Divide into equal monthly payments, 12 or less

WE HAVE II!

Taylor's

NEW TW-150
Already a "Best Seller" - buy yours from NEWARK

$\$ 15.00$

Newark is Transmitting Tube Headquarlers Always a Complete Stock! ALL MAKES. T-21.i.i......\$1.95 r40-TZ-40........ 2.25 T-55 866 SHIÉĹȮĖ... 1.50

Free!

newark'Sbignew 84 page Catalog Thousands of items for the Ham. Sets, parts, accessorits, and supplies. fully illustrated and described, with low est prices. Newark's most complete Amateur Radio Catalog.
SEND FOR IT TODAY!

NATIONAL
NC101X or NC101XA
Only $\$ 25.80$ Down
Choice of Direct
Reading or Microm-
eter Dial. Cash Price, $\$ 129.00$

HAMMARLUND HQ120. Only $\$ 25.80$ Down. Cash Price $\$ 129.00$ OTHER RECEIVERS AVAILABLE ON OUR FAMOUS 6% TIME PAYMENT PLAN Simply Deduct Your Down Payment from the Cash Price. Then Add 6% to Balance and Divide by the Number of Months You Want to Pay. ALL SETS NATIONAL Cash Pown ALLSETS NATIONAL Price Payment | COMPLETE | | |
| :--- | :--- | :--- |
| READY TO | NC100XA $\ldots \$ 142.50$ | $\$ 28.50$ |

 \begin{tabular}{l|lll}
Shippedin

Hrand New

 HRO DeLuxe......... 179.70 35.94

OriginalUn- \& RME 70 \& $\$ 138.60$ \& $\$ 27.72$

openedFac- \& 69 \& 152.88 \& 30.58
\end{tabular} toryCartons Order Direct rom This A.d. Include sets and parts SX 24..............\$81.50 \$16.30

 ark's Time Payment alan. * Indicates sets sold for cash only

NATIONAL'S NEW "NHU"

ON EASY PAYMENTS, TOO!
Yes... as always.. . Newark will have the very latest in ham receivers ... on the same 6% Easy Credit Plan. Write for details. prices and terms on this New National NHU.

MIMS SIGNAL SQUIRTER

ON EASY PAYMENTS, TOO!
Mims Radio Co. has appointed Newark as distributor for Mims Signal Squirter. Now you can buy it on easy terms. Write for prices and payment plan.

Oil Filled, Oil Impregnated FILTER CONDENSERS
 Now only 69c
750 v. DC. 3 mfd . Weight $2 / 41 \mathrm{~b}$.
These are wellknown makes and only a fewanieed of rated voltazes.
\star The new HETROFIL, as advertised in this issue of (OST, is now in stock.
$\$ 3.50$

ITLANTIC DIVISION

EASTERN PENN - SOM, John B. Morgan, W3QP. Asst. SCM in charge of E.C.: W3AKB. R.M.'s: 3AKB, SAQN, 8ASW. Our brother, Bob Shaw. 3AOC is still in the hospital, but has acquired some "haywire" which he is asserubling and hopes to have it going before long. 3BIL repurts a very efficient A.E. Net on 1.75 - ilc. 'phone. He is in charge of the Penna. W'3 group, and the Net extends all along the Atlantic Seaboard. 3EML thinks sleep is a waste of time: here is a typical evening of schedules at his shack: 3.5 Mc.: 2 ICZ , 2CGG, 3CIZ, 3BWT; 14 Mc.: K5AA, 5IOX: $7 \mathrm{Mc} .: 4 \mathrm{PL}, 5 \mathrm{MN}, 9 \mathrm{AIL}$. 3EWJ dropped in to see 6USA. 3 HRS's trunk is working well and steadily from 2LOQ. 3 HRS, 6 PGB, K6KA. 3 KJ got the first new 5 -vear license for Radiotelephone First Class in this inspection district. 3 QP is struggling with a schedule with KA1HR daily. XASW complains that trafic is krowing light, but his score is OK.

Tratic: W8AQN 45 3BES 18 3CHH 5 3ENIL 1817 3 GHD 43 GYK-3GYY 6 3HBJ 663 HDB 43 HQE 21 3HRS 53 3HSR 3 3HYD-3HZK 9 3IBG 8 3IEG 5 3MR 12 3QP 292 ZASW 182 8ATF 9 xRHE 8.
MARYLAND-DELAWARE-DISTRICT OF COLUMbla - SCM, E. L. Hudson. W3bAK, 3CQS, 3CNL: R.M.'s. $3 B W T$: Chief R.M. EZN has new rotary on 14 Mc.: also is building new riz with P.P. T125's. AKR is building "2!2 meter" gear. HUM erected new antenna at new QTH. BAK is planning a trip to Calif. for several months; will take portable station along and work the Jr. ops. back home. GYQ handled tralfic from the Virgin Islands; he was one of the radio operaturs at Bethany Beach, Del. with the Delaware National Guard Camp there. ICT put up new "V" beam and is DX-ing on 14 Mc . FFF is visiting in North Carolina.
Traffic: W3CIZ 621 BWT 198 ICT 33 HUP 12 GYQ 6 WL 227 (WLM 2181).
SOUTHERN NEW JERSEY - SCM, Lester H. Allen, W3CCO - Ass't sCm, Ed. G. Raser, W3ZI - R.M.'s: 3BYR. 3BEI. 3ZI - P.A.MI.: 3GNU. The South Jersey Net which operates on 3700 kc . has room for more stations and your support is cordially urged to help increase the coverage. For the O.P.S. the P.A.MI announces a new net being formed oun 1.75-Mic. 'phone to :assist the S. J. Net when necessary and to bring forward the ideals of the Oficial Phone Stations. There is a place for you in the South Jersey Section ,rganization so let's hear from you. We welcome FLC to A.E.C. Supporting Dis. FAR reports FBB DX accomplishments with new 4 -element beam; alsu schedules 9CAC of Denver. Colo. daily at 8 A.M. RV returned to amateur freruencies after renewal of old license. IGB, new operator in Karephath is working 7 Mc . BEI keeps daily schedules with GM8MN on 14-Mc. phone. HKO is touring the middle west with portable gear and will be operating on 3535 and 7150 he. Congratulations to FBT on his recent marriage; EGE was best man. EFE reports from Calif. he is proud papa of a - lb. girl. AQ has new 1 kw . all-band transmitter. $/ \mathrm{II}$ and wiU were operators of 2USA during their visit at the World's Fair. The Ladies Auxiliars: of the Delaware Valley Radio Assn. celcbrated their second anniversary at the lugust meeting; new officers were elected: Pres., Natalie Hannah; Vice Pres., Helen Allen; Secy., Marie Whyno; Ireas.. Ruth Hirsch. GMY is building emergency equipinent and schedules 2 KRG at 10 p.m. daily. GC'U is building new skyhook for antenna. FJP is back on $3.9-\mathrm{Mc}$. 'phone after completing the Police installation at Pleasant ville and Margate City. BIN is experimenting with recording equipment. BBG has portable 5 watt emergency rig on $3.9-\mathrm{Alc}$. 'phone. GYN, formerly of Phillipsburg, is now operating 1.75-Mc. 'phone from New Hope, Penn. The Delaware Valley Radio Assn. set new record in Outing attendance, with 660 persons present from 28 different states and all districts but W7. BZX reports his receiver working FB after general overhauling. ASQ has new audio equipment for 2 M -Mc. rig. VE has new rig with T-55 final. OQ is new O.P.S. Welcome to our Section, Warren. GHK on motorboat aruise to Norfolk, Va., kept in toluch with home port via the amateur bands. HTP, FNL and HTJ are new members of Delaware Valley Radio Assn. HPE and IDY are experi-
menting on " $21 / 2$ meters." AIR demonstrated some of latext frequency control and measuring devices at meeting of the T.R.S. GFQ is bark on 7 Mc . with new rig. HCL is rebuilding receiver. HW has new rig on $1.75-\mathrm{MIc}$. 'phone. EUH broadcasts Official information from A.R.R.L. healiquarters daily except Sat. and Sun. at $7: 45$ r.m. EDST., on 1993 kc . IEQ is new Trenton call. CCO has new exciter unit for the 1 kw . rig. CCC has new rig tinished with '03A final. 3FTU is experimenting with antennas. GEV has new field strength meter. MI gave demonstration of emergency equipment at the D.V.R.A. Outing using the Western Union mobile unit. FSI keeps daily traffic schedules with points west. CFS mbuilt final using a T-40. GRW revamped sky-wire. H.AZ runs 300 watts to P.P. T-40's in new 7 -Mc. rig. ACC is working out FB with new rotary on 28 Mc. ABS is rebuilding exciter for 2 NM . rig. AC is back on $1.75-\mathrm{Mc}$. 'phone after experimenting with " 2 ! meters" during summer months. A suggestion for an evening's enjoyment: Don't fail to see "Grand Jury Secrets," a movie dealing with annatent radio. Let's keep South Jersey ahead with a report now and then. Until next month. 73 .

Traffic: W8FSI 70 BZX 55 HKO 48 GMY 19 CCO 12 ZI 11 BEI 5 EUH 4.

WESTERN NEW YORK-SCM H.E. Preston, W8CSE -- R.M.'s: 8BJO, 8DSS. 8FCG, 8JTT. P.A.M.: 8CGU. E.C.'s: $8 G W Y$, $8 R G A, 8 R V M$. Section O.R.S. net freq.: 3720 kc . The Central New York Radio Club of Syracuse held a picuic at Cross Lake on August 20th with about 100 hams and their families attending. The usual games and contests were held and a good time was had by all. EJH is trying for DIX on 14 Mc . HJM works 7 Mc . on weekdays und 1.8 Mc . 'phone on Sundays. PLA works 3.5 and 7 Mc c. with portable from his summer cottage on Conesus Lake. RKM, EPM, KDY, CSE and their families and NWZ had a picnic at Onondaga County's "Highland Park" on August 18th. IY moved back to Homer, New York. GWZ won a mice crystal mike at the Syracuse Club's picnic. Married life has kept NA off the air a little, but he managed to make a fow contacts. His many friends wish him the best of luck. DHU visited 1JAH while vacationing in New England. FFU, GYO, OBB, OMM. SPE and SOT are all hot and buthered verer 112 Mc. after FFU and OBB demonstrated how good the band was. ALP is on 3.9-Me. 'phone after about 10 years on c.w. TEP has been having a very interesting season at the boys camp at Lake Bonapart; it has been surprising to learn what could be done with low power. Thanks to GYO for dope un Watertown activities. It looks as though JTT would remain in our Section after all. SZK is new O.R.S. in Buffalo. GPN is active on 3700 kc . after a layoff of several years. SBV and family visited PLA. This issue of QST carries notice of the coming election of a new S.C.M. for Western New York. The present S.C.M. is not a candidate for reelection due to other pressing interests. It has been a pleasure to have held the position and I have very much appreciated the coüperation shown.

Traffic: W8CSE 18 FCG 147 SZK 21 PLA 29 DHU 2.
WESTERN PENNSYLVANIA -- SCM, Kendall Speer, Jr., W80FO --. 704 were registered at the Annual S.H.B.P. d. M. outdoor hamfest at South Park on August 6th. WLAAA/8YA says 92 of the 94 of his traffic total were handled in one evening that they were alternating for WLM. The Asst. S.C.MI., 8AVY reports that Emergency Cördinators have been appointed for Sharon and AcKean County. NQQ returned from N.C.R. sea duty where he was aboard the U.S.S. Reuben James. KTM was aboard the U.S.S. Barry. QAN says his crystal frequency standard, vibrator, electron coupled rig (3.5 to 28 AIc . inclusive) are all completed and he is all set for winter schedules. RAP is putting in a modulator for $28-\mathrm{Mc}$. 'phone. NCJ has been very active this summer visiting hams, attending hamfests. conventions, etc. KBJ says the 3rd Corps Area A.A.R.S. 'phone net was active on 3994 kc . all summer. QEMI has new sky ('hampion receiver and HT4 transmitter. DGL is building an emergency power supply using a.c. alternator and motorcycle engine. RBQ moved back to this Section from Ohio :and is on $1.75-\mathrm{Mc}$. 'phone and 3.5 Me . c.w. GJM says TSO, a new ham, will be on soon with $1 / 2 \mathrm{kw}$. LRL erected his rotary for 28 Mc . UK expects to be on the O.R.S. net at lenst three times per week this fall. ROA is active on $1.8-\mathrm{Ml}$ c. 'phone. KXP is after Asia for W.A.C. RAU visited JMP and TU in Steubenville, Ohio. RYC received Class A ticket. RBI has new portable-emergency transmitter (20 watts, all bands). HKU is busy with E.C. work.

Traffic: W8QAN 39 RAP 17 NCJ 16 KBJ-OFO 7 QEM 6 DGL-RAT 5 AXD 4 RBQ 2 8YA (WLMA 94).

HUDSON DIVISION

EASTERN NEW YORK-...SCM, Robert E. Huight, W2LU - HXQ, our YL, leads the boys again with FB total. Our congrats to HAQ. LSD's traffic is all on 7 Me. through F.T.S. KW'G is pounding out well on 8730 kc . LUT is erecting new mast. JRG leaves 14 Mc . after a sear for 7 Mc. with 400 watts. MHW, new Yort Jervis station. uses single ' 47 rerstal osc., 36 watts. JRG reports EWD and KBB in Larchmont, both on " 2 ! $/ 2$ " with transceivers. EAF has new 100 -watt 'phone on 14 Mc . HCE moved to C'alif. $Y J$ is operatiug portable-mobile on "21/2". E(iI is huilding for " $21 / 2$ ". BFB leaves Bronxville for New Jerses. 1,LU made his first successful DX contact, with G3NZ on 14 Ac. HNH had visit from FIS. LEL is getting lined up for fall and winter tratfic schedules. KFB has station set up for 1.75-Mc. phone activities. DVC has new Howard 460 receiver. KUD is hard ai work as general chairman for Hudson Division Convention. We welcome his station as new O.B.S. LEI and BEW are new O.R.S. Don't forget the 14th Annual Hudson Division Convention at Hotel Van Curler, Schenectady, Oct. 6th. 7th and 8th. Your S.C.M. will be glad to meet you.

Iratfic: W2HXQ 629 LSD 141 KWC: G6 TU 35 JR.: 11 MHW 10.

NEW YORK CITY \& LONG ISLAND - SCM. Ed. I. Bannach, W2AZV -. LGF is wut for O.K.S. LQ1' sends his first report. Ex-2MS is nuw MIQ operating on 7 Mr . in Ronctille Centre. MBI is using a three-element rotatang beam on 28 Mc . CHF operated portahle in Wurtsboro. N. J. AZV operated nortahle at Montauk l'oint, L. I. HS had at fire in his shack. CCD purchasel the two 130 -fout tnwers of B.C. station WGNY and is going to use them at his country estate at Port Jervis. N, Y, PF went un active duty with the First Radio Intelligence Company of the Kegular Army during the war games. ELK is now on 3.5 Mc. JBL ; 1 is on 7006 kc . HMJ is working on his dream of all ध.c.o. and ten crestals. IXQ is helping to convest ans.W.L. JWW has gone in for antennas in a hig way. FSO has worked all states. EC built new amplifier using RK12's, 1tio) watts input. LCiK finds that end fed Zepps work better than all other types at his QTH. LEN's new rig has HK 54's in the final. LHP completed new rig using 80:'s P.P. and complete break-in uperstion. KKW is rebuilding. KY「 reports new station in Kichmond Hill, MJL. LOQ is rehuilding his 1.50 -watt final and is trying M.O.P.A. LZR rebuilt his rig. LPJ raised Nev. to cumplete W.A.S. in nine inonths' operation on 7 Mc . with 60 watts input. MKMI is the call of the "Wall Street Radio Club," 67 Exchange Place, N.Y.C.; GX8, Pres.; B/SS, Treas.; C'EB, Corresponding Sec.; 3FHJ, l'echnician; LAL, HJS, Ultra High Freq. Committee. A.P. trunk line is now on 3630 kc . every night. The N. Y.C. and \}.I. Section Net on 3710 ke . is operating at $8: 30 \mathrm{p} . \mathrm{m}$. E.s.T. every night.

Tratfic: W2HMJ 476 SC 367 JZS 148 DBQ 134 (WINB 1:32) AZV 101 ITX 91 LOQ 83 PF 74 LZR $6 \mathrm{fi}^{\circ}$ (iDF 40 I.BI 37 KKW 24 AEU-T.P.J 16 IOP 50 AXZ, 14 IAPP 12 LGK-CCD 11 BYJ, 10 CFT 9 LQP-KYV 8 HYL 7 JWW-DNMI-AA 6 KI 5 (ITT 4 hYO-EC 3 ,IRL/I-FRQ-RGOADW 2 HGO-GRJ 1 HYC (WLNX 88).

NORTHERN NEW JERSEY - SOM. Toseph r. Jessup. Wr2GVZ -.. The whole Section thanks GMN for the fine jub he turned in as S.C.M. the last two rears. Fred worked hard and couscientiously. He is now E.C. for Hilizaheth, KTR made Al Opr. club. Congrats. He wants a Section QSO parts. Are you interested" MEO is new O.R.S. and N.C.S. for N.J. in American Legion Net. IT is new O.P.S. The Section now has 24 O.R.S., 15 O.P.S., $\&$ O.O.'s. \because O.B.S., 1.P.A.M. and 3 R.M.'s. J'T and GRG are working hard for DX C.C. un 'phone. KHA has made IF.A.S. gotten a Sky Challenger and is surrounding the heap with it relay rack. As of August. N.N.J. Sertion had 11 Century Clubers and one more un the verge, which isn't bad. VKid T.F and צUSL visited the DX gang in Ridgewood. ISF is on 3725 ke. 6:30 to 8 p.m. weekdays looking for N.N.J. trattic anywhere in the band. The N.N.J. net on 3630 kc starts tegain in Sepi., 8:45 to 9:30 p.m. weekdays. Present members are CGG, CMC, GVZ (N.C.S.), HCO. KHA, EMI and KTR. with LMN as a prospective nember. Any trattic station that can work break-in on 3630 kc . is welcome. LMN has W.A.C.. 65 countries, and 46 states with 1626 QSO's using not more than 50 watts. FB. A sizable giang from N.N.J. attended the D.V.R.A. Trenton hamfest and got trimmed at baseball hy the W3's. 3MII was un hand with the FB Western Union emergency truck and transmitter and kent schedules with 2USA. JRU is looking for tratfic schedules on

7 Me. KDŌ is building a 500 -watt job on $2 \times$ Me. 1 SZ is gradually putting up a beam on 28 Mc. FGV is newcomer on 1.75 Mc. after working 28, 14 and 3.9 for years. Many more A.E.C. members and E.C.'s are badly needed. With 170 large communities in the Section, we only have 7 E.C.'s and less than 70 A.E.C. members, of whom ouly 14 have emergency power supplies. Whether self-powered or nut, we need your registration. Ask the S.C.M. for your application blank.

Traflic: W2CGG 179 I،MN-JKG 35 JUC:-MEO 22 HXI so KTR 11 GVZ 7 CLE 6 JKU 5 LAO-KHA 3 IZV 2.

NEW ENGLAND DIVISION

CONNECTICUT - SCM, Frederick Ells, Jr.. W1CTI -. Thaubs are ilue AW and TD, the unly traffic reporters! At AW work is progressing on a temperature control oven to house marker frequency crystals. Two Kato units for emergency power have been installed and AW is all set with 4 kw , of emergency juice. DW'P visited some of the gang in Maine. EH on his "vacation" fixed up antenna system, put up new 56-Mc. anterua and installed 56-Mc. receiving gear, wrute two technical asticles for QS'T, filed his QSL cards by a new system, got up a record system for DC contacts and worked two new countries. Busman's holi ay! On August 1.2th and 13th two portable stations were set up at Cioshen by members of the Conn. Brasspnunders Assuciation. 1 CBA. One station worked 28- and 14-Mlc. 'phone in one tent and a second station used $3.5-\mathrm{Mc}$. c.w. in the other tent. Equipment belnnging to EER and JYQ was used on 28 and 14 Mc., powered by a Homelite $1-\mathrm{kw}$. gas engine iriven power supply. On 3.5-NIc. equipment belonging to BCC: KWF and CTI was used, powered by BCG's yas engine driven emergenev power supply. Good contacts were made on the three bands used and experience was gained in setting up and operating emergency powered stations. Is (I) the mily (Conn. O.R.S. that can keep the General Trattic Hour and wive guaranted tratlic service? See page is. September QST. The Nutmeg Net will resume about september 25 th, on 3640 ke . unless you are advised otherwise. See you there.

Trafic: W1AW $24 \geq$ (WLMF 10) TV 2.
MAINE --.. SCM, H. W. Castner. W1IIE - Thanks to all the boys in the Maine Section. who are giving the S.C.MI. such material support. New appointments continue and before long we will have one of the finest organizations of any Section. HSE took the little woman to the altar Aug. 31. Congratulations! Jark, 3FXZ and the OM, 3MG, spent their vacation in one of IIE's cottages. GXY has done a perfect job in completing an Emergency set-up at Bath. GMD is aiming at auxiliary power. ISK is putting up a rotary beam with an improved rig. IGW is improving his rig. KITT is moving from $1.75-\mathrm{Mc}$. 'phone to 3.9 Mc . About everyone who has ever whacked a key or arowled into a mike knows old "Hunk" Beardsley, who was DZU. He's about to burst out with a lot of soup on 3.9 MI . and " $21 / 2$ ". F.JP hats installed push to talk. John has a swell lot of dope on this: hetter write him if you're interested. J.RP is going to handle the 7-Mc. department of the Pine Tree Net. The new shack of THM is coming fine. "Cres" is looking for all the $1.75-\mathrm{Me}$. boys who want to be in the $1.75-\mathrm{Mc}$. division of the Pine Tree Net: WriBDI vacationed as usual at Augusta. Day, fellows, I have to report to Headquarters by the woth. Won't you boys he a little more prompt with your reports". JTH and KVK have excellent auxiliary power availathle for emergency work. "Warden Joc." LJG/1. is way over and up" on Mit. Bigelow tower in Flagstaff with about 4 watts on -144 kc. AFA schedules $5 V \mathrm{VV}$, EGGS and 5QL on 14 Mc . IRR is all set with a greatly improved rig. He is planning: eampaign to put traflic anywhere there's a ham or a telephone. He's a new R.M. but a dandy. We're mighty proud of all the bors whe did such a orand job in the Mount hatahdin incident when the bov was lost. 2HXQ in Rye, N. Y., was colling CQ Maine and as near as I can find, about half the beys in Maine went after her. "Oid Fuithful" DHH was in there with both feet. At first it seems that some hams near Augusta telephoned the Chief of Police at Millinocket and he got HSD out of bed and in no time had a direct contact. "Ben" had all official reports from searchers kiven him plus a doctor's comments. He passed them to 2 HXQ as they came in and when the boy was found he shot the grood news a! once. There were over 100 people at 2 HXQ at the time and they staged a celebration. When the boy was taken to the Eastern Maine General Hospital in Bangor they set up a circuit through IITP and together with DHU they still had
(Continued on paje 104)

- DK 2 • 2½ METER TRANSCEIVER

For a change try 112 MC . You will enjoy it List Price $\$ 27.50$ Less Tubes and Batteries 40\% Discount to Amateurs GENERAL: The DK2 is a completely self-contained 112 mc radiophone transmitter and receiver, for use in your car, plane, boat, or while being carried, for portable work. It is very simple to operate. The working range is between 2 to 30 miles depending on the location. Astonishing results have been obtained.

SPECIFICATIONS

 finish metal, heavy leather handle. All botteries dre self-contwined in cass. Removable side panel for easy occess to the batteries and tubes.
FREEUENCY: Will cover 112 mc to 118 mc Comateur 2.5 meter band).
BATIERY REQUIREMENTS: Three 45 volt B botteries like Burgess 5308 , and four No . 6 dry colls. or two Burgess 2 FF2H batteries.
TUBES USEE: One type $65 \mathrm{G} \times \mathrm{x}$, one type 8 G 6 G .
SHIPPING WEIGHT: 18 pounds.
Order from your nearest distributor-if not yet
stocked we will temporarily fill orders direct
bULLETIN ON REQUEST
ABBOTT INSTRUMENT, INC.
51 Vesey Street
New York City

* A.R.R.R.L. QSL BUREAU *

For the convenience of its members, the League maintains a QSL-card forwarding system which operates through volunteer "District QSL Managers" in each of the nine United States and five Canadian districts. In order to secure such foreign cards as may be received for you, send your district manager a standard No. 10 stamped envelope. If you have reason to expect a considerable number of cards, put on an extra stamp so that it has a total of six-cents postage. Your own name and address go in the customary place on the face, and your station call should be printed prominently in the upper left-hand corner.
W1-J. T. Steiger, W1BGY, 35 Call Street, Willimansett, Mass.
W2 - H. W. Yabnel, W2SN, Lake Ave., Helmetta, N. J.
W3 - Maurice Downs, W3WU, 1311 Sheridan St., N. W., Washington, D. C.
W4-G. W. Hoke, W4DYB, 328 Mell Ave., N. E., Atlanta, Ga.

W5 - E. H. Treadaway, W5DKR, 2749 Myrtle St., New Orleans, La.
W6 - Horace Greer, W6TI, 414 Fairmount Ave., Oakland, Calif.
W7-- Frank E. Pratt, W7DXZ, 5023 So. Ferry St., Tacoma, Wash.
W8 - F. W. Allen, W8GER, 324 Richmond Ave., Dayton, Ohio.
W9 - Alva A. Smith, W9DMA, 238 East Main St., Caledonia, Minn.
VE1 - L. J. Fader, VEIFQ, 125 Henry St., Halifax, N. S.
VE2 - C. W. Skarstedt, VE2DR, 236 Elm Ave., Westmount, P. Q.
VE3* - Bert Knowles, VE3QB, Lanark, Ont.
VE4 - George Behrends, VE4RO, 186 Oakdean Blvd., St. James, Winnipeg, Manitoba.
VE5 - H. R. Hough, VE5HR, 1785 First St., Victoria, B. C.
K4-F. McCown, K4RJ, Family Court 7, Santurce, Puerto Rico.
K5 - Norman F. Miller, K5AF, 15th Air Base Squadron, Albrook Field, Canal Zone.
K6 - James F. Pa, K6LBH, 1416D Lunalilo St., Honolulu, 'T. H.
K7-Jerry McKinley, K7GSC, Box 1533, Juneau, Alaska.
KA -- George L. Rickard, KA1GR, P. O. Box 849, Manila. P. I.

* VE3CRB advisas that in spite of the suspension of amateur work by VE's he expects to clear the QSL file completely by early Octoher.

Vermont Convention

(Continued from page 62) a special surprise by WIAAJ. Director Noble and SCM Parker will be the principal speakers.
The price for everything is $\$ 1.50$. Send word to R. C. Teachout, Sec'y, Green Mountain Radio Club, 42 Pine St., Rutland, Vt., that you are coming.

With removable STAND-OFF INSULATORS

E For convenience in mounting on the chassis, the new models of the NC-600U neutralizing condenser and the R-100U and R-300U Chokes are now provided with a small stand-off insulator for chassis mounting. For "pigtail mounting," the insulator may be unscrewed and used for other purposes. Chokes without the insulator are still available, but at a new low price.

Type NC-600U Neutralizing Condenser, with insulator. List Price. $\mathbf{\$. 5 5}$

Type R-100U Choke, with insulator. List Price.
$\$.60$
Type R-300U Choke, with insulator.
List Price. $\$.60$

NATIONAL COMPANY, INC. Malden, Massachusetts

Are We Right?

You should have at least two of them - one for your complete 1938 file of copies, and one for each 1939 issue as published.

With each Binder is furnished a sheet of gold and black gummed labels for years 1922 through 1941. The proper one can be cut from the sheet and pasted in the space provided for it on the back of the binder.

THE AR'ERICAN RADIO RELAY LEAGUE West Hartford, Conn.

ILI YEARLY BINDERS

(Coniinued from patyc 101)
direct news from the hor: is S.C.M. I thank the Maine hovs and balf of the reat of New England for the excellent work in the public interest. as manc were too modest to report their part in the fine piece of work. I cannot refrain from mentioning the part Fd. Hudon of Lewiston played in the drama. Ed is a comparatively new ham, although a man of mature age and member of the Maine Bar. He is W1LYK. No one had to tell Ed. what to do. He got busy. He backed up DHH with so many expensive 'phone calls and such material help that he had UP in Bangor, DHF in Hallowell and $\because H X Q$ in Rye. N.Y., hooked up in about fifteen minutes and at that UP had to QSY from 14 Mc . Quite a few new hams around Maine with "M" "alls and we all sty; " Welcome. fellows." BIG is on with an xi) 7 final. Clint. Hoar at Hangeley, $A P X$ (ex-yAAA and $8 R R K$) is back on the home ronst and is going to come into the otticial activity with both feet. l.ML would be glad to take any Univ. of Maine traffic; hes on 3712 kc . and A.A.R.S. I have two more applications for Emergency Coñrdinator. That's great business. Come on, fellows!! Who's next to write his intention of being Conordinator for his vicinity? We also need wider coverage for the Pine Tree Net which does such a fine jub and is such as arrand bunch of boys. Y"ou'd like it and you don't need to he a "speed merchant" to helong either. Have you heatd the new slogan around the state in ham radio". "The Maine Idea is Public Service.". We've got the old hall rolling. T.et's "Whoop it up." They can't ston us now. We'll give those wher sections such a high mark to shoot at ther'll never make it. W'rite me for any help, information or official supplies and I'll come hack faster than that old rotary gap wheel of mine went through the window when it Hew off the shaft sears ako. - W1IIE.

Tratfic: W1IHHH bs LIE 3 AFA 11 LRP is LML 19 GXY 2.

HAASTERN MASSACHUSETTS - NOM, Larry Mitchell, W1HIL - Ass't. S.('.M.. Chief R.M.: I.T.I S' Lse't S.C.M.. P.A.M.: 1G.AG. R.M.'s: IJSM, IFPE, 1KZT, ICW, IIHI. Nen O.R.S.: HSt (ex-3GiNN). New O.O.: LNN, BHW. This is a rood time to list the ACTIVE \therefore R.R.L. appointees in this Section. If you wish to be listed or hold your appointment show artivity and REPORT. E.C.'s: HXE, KRQ. JJY', QW. O.O.'s: GAG, BHW, INN. O.B.S.: AסI, JJ, G.AG, LMO. O.P.S.: HIL, HKK, GAG, JGQ, AAR. J('X. LAR. UR.S.: LMO. КH. EPE. J.Г゙. HDI, HWE, KCQ, QW, FWQ. AhS. EMIG, AGN, JCK. JBM. KZT. The Eastern Mass. Net started September 5th and will meet daily at 7:30 р.м. un 3745 kc . with kZT as net control. More members are wanted. MEU is call of New Hedford Armory. M.AD, new ham in N.B., is on $1.75-\mathrm{Mc}$. 'phone. The annual Boston Hamfest will be held at the Hotel Hradford, Saturday, Octoher 2lst. FSH is Chairman ald ALP Vice-Chairman. Hamiest will be sponsored by South Shore and Eastern Mass. clubs. A big time is promised for all, lots of prizes, ete, Let's go, gang. BVI, recently got martied. BB worked $9 P^{\prime} Q H$ atid $9 I^{\prime} \mathrm{HG}$ on 56 Mc . J.J ${ }^{\prime}$ is yetting lined un for bier tratic season. (iAd is bach onf from new QTH. LWH is now on 28 and 1.75-iIc. 'phone as well as e.w. GCT is completing new receiver for " 1 ! 1 " "and $\because 212^{\prime \prime}$ ASI keens O.B.S. schedules. JCK is active in O.R.S. and Army Net work. LZW is on 3.5 sund Mr. T.BW reports from Attleboro. Welcome. Bill. WV', the DN king, worked HR1CF. CR4MM and VU7BR for 114th, 115th and 116th -omntries on 14 Mc. AICF is new reporter from W. Townsend. KCQ entered D.J.D.C. contest. Waltham Radio Club bought 250-watt gas driven generator. BDU reports Iots of traffic from Forty Traffic System. LAMO is also active in F.T.S. HLL had nice call from LMIO and got him on 1.75-Mc. 'phone on HIL's new 15-watt portable 'phone á la UST'. KH attended the Roanoke Division Convention. 1,AB worked couple ZLis on new rig. FHW and LO are in"reasing power. KZKF is working on new four element beam. KTG was visited by G8JQ. The Merrimack Valley Amateur Kadio has new offcers: l'res., BMO; Vice-Pres., JNJ: Treas., H工E: Sery.. JIF: Activities Comm., KQV, COX. IQH. MEZ is new in Attlehoro. LNN and LSA are on 1.75-Alc. 'phone. EFAI is working IX from portable location near N.B. LOC has been sent to New London. Conn.. on U.S.S. Semmes, su we lose an uctive O.K.S. and E.M.N. man. Good luck, Chris. When you read this report we will be well into the artive season. Let's get going and make it the most active ever. 73 and luck. - HIL, GAG ind JJY.

Traffic: W1KH 104 LAIO 57 JJY 52 HDU 38 GWK 34 JCK 34 (WLGV 70) HWE 14 LFH 26 BH 10 GCU 11 KCQ 8 AICF-LBW 4 WV 2. (June-July: W1LWH 222 JCK 67 (WLGV 28)).

WESTERN MIASSACHUSETTS - SCM, William .J. Batrett. W1JAH - AJ sehedules NY1AA and also the F.T.S. on 7 Mc . JAH is helping keep West. Masm. on the trattic map by was of A.A.R.S. EOB took cruise with N.C.R. $K R X$ and LJJF are building emergency equipment. KIK has new crystal jub on 56 and 28 Mc. in his car. BVR has new NC81X. HPJ worked 56- and 28-Mr. portable all summer. COI reports his new a.ma.c. working fine. LRS moved to Holyoke. AZW is again O.R.S. HNE is on portable from Kutland with flea-power. Well, fellows, by the time you read this the active season will be here. How about some activity? Our Section O.R.S. net on 3732 kc . has languished for lack of interested members. How ahout getting behind a real Section net: I.IT has 8 ol final with 50 watts input, while his OM. MAX, has 100 watts to pair of 807 's. KUW gave 3.9 Mc. a whirl with his new Class A.

Tratic: W1A.t 52 J.AH 13 (WI.GH 9) KRX 9 DCH 2 HVR 2 (WTG48) IJT 4.

NEW HAMIPSHIRE - SCM, Carl B. Evans, W1BFTOMD - MANCHESTER on SEPTEMBER 23rd SLXTH ANNJAL N. H. STATE A.R.R.L. OONVENTION and HAMFEST :at the HOTEL GARPENTER
(UT There!! The Nashua Mike and Kev Club held an outing at Ashby, Mass., unt August 20th. JKH has small Collins transmitter in operation on 7 Me . IVU vacationed in Bermuda at V'P9L's. AWU is experimenting with new e.c.u. using two KK23's. JBA is on an extended U.S.N.R. cruise. Fis-IOC, now 3 HMIB, visited old friends in N.H. LVG has an HY-6J. 5 on "2la." The results of our 4th mobilization of the N.H.E.N. held on August 6th: 26 stations in 22 different. towne and citien repurted in, several from localities not previously represented in our texts. Several portahles were in the field, some shecking in on several nets. The date of our mext test will be some time this fall and due notice will be wiven. Regular N.H.N, sehedules will start up on 3600 kc . nightly rexept sundays at $6: 30$ r.m. ahout the first of October.
l'ratic: W1hIN 128 DMD 2j.
RHODE ISLAND - SCMI, Clay ton C'. Gordon, W1HRC
I letter from G 6 BX " comes from "Dear ole Lunnen' in which Bill takes us to task for mot recognizing W1DQ ("Ole [Joc. Quack") as the "greatest and most consistent "phone signal in the whole of the U.S.A. - bar none." That's a mighty fine compliment from any pace, but when it is backed up hy a report that up to 19 th July 1939 there have been 105 consecutive QSO's totalling more than 338 hours hetween these two stations we commence to get the idea of what is meaut hy consistent, expecially when it's 14 Mc . that's heing referred to. DDI has 300 watt job perking. JNO has been working with a empressor amplifier in the 'phone ris. Effective :bout a month before sou receive this W1JFZ, W:alter R. Marshall, $2 \overline{5} 7$ Masyachusetts dve., Providence, was appointed Asst. S.C.M. in complete charge of all the Emergency Coürdination work in Rhode Island. He will make all future appointments and cancellations of Emergency Coördinators and E.C.'s will please handle all work of that nature through Walter instead of through me. Emergency work and organization is right up Walt's alley. and there is every reatson to helieve that things will go ahead much faster and on a solid foundation under his leadership. IRRQ put up new 7-Mc. antenna. KOG received a form card postmarked in Providence signed with obscene names and cont:aning remarks of a similar nature. Since there are onlstwo known sources of official forms ai the present time (myself and DDY) and I can vouch for both of these sources not being responsible for such an act. suspicion naturallyfalls on some resident of this vicinity who may have held an O.O. appointment at some time in the past and had a supply. of cards left. Whoever did this job may have thought they were being humorous, but they couldn't have given ans. thought to what KOG's mother would think of Amateur Radio alld the A.K.K.L. when she saw this soit of thing coming in the upen mail to her son. Anv further reports of any such at thing happening around these parts and 1 shall make it my personal affair to see that the Postal Authorities are given all the facts which can he wathered for their inrestigators to work on.

Traffic: W1QR 2.
IERMONI - SCM, Clifton G. Parker, W1KJG DQK erected new 3-element 28 Mc. beam. JZF has FB new transmitter on 14 Mc . with 500 watts. AVP has installed new Premax 21-footer on shack roof. HOO has beell appointed Emergency Communications Chairman of Orleans Countr Red Cross. FPS is lining up emergency set-up down southern end of the Section. KVB has been trying out fleapower $1.75-\mathrm{Mc}$. 'phones. Results! KVB is now back on c.w.

AD is now in Bellows Falls, adifress: Box xx. ND is weleomed to the Section at Brattlehoro. DPO had relapse and is now taking a sun cure at No. Ferrisburg. FGO reports a fine and flexible arrangement of station units with complete mergency power from vibronaks. hatteries and autopowered i.c. generator. KJJG received welcome visits from KUY, KML, LFMI. KYB, KWB and ND. LFM has FB new rig with 6L6G-TZ40 line-up. Emergency surves cards are coming in slowly and we cannot get the line-up printed and t_{0} the M.V. patrol until have all the dope - less than 30% in to date. While you read this, jot down your answers and drop in the mail, please. Second V't. A.R.R.L. Convention to he held at Hotel Bardwell, Rutland, Saturday; October 14th. Kegistration at noon, hanquet at 5:30 p.M., dancing 9-12. Plenty of eutertainment for I'L's and XY'L's. A.A.R.S., phone, traffic and emergency meetings in p.m. with ende contests. Regular old-fashioned Vermont turkey dinner with all the fixin's and plenty of seconds - prizes salore and a floor show throun in. Perce, 1BV'R/WLG. vur N.E. Director and Natl. Radio Aide of A.A.R.S. will speak complete details being mailed l^{\prime} t. amateurs shortly; everything included in the moderate registration fee of $\$ 1.50$. Remember that extra ultra good time last year! Hope to see you therc. Come loaded with your ideas un Vermont station activities, trafic and emergenery plans and problems.

Traffic: W1FSV 44 AJP 8 KVB 2.

ROANOKE DIVISION

NORTH CAROL.[NA - BCM, W. J. Wortman, W4CY'B - BHR has sume nice schedules coming un this fall. and will be active on the A.A.R.S. DGU has new T-125 final. TO schedules I7AA and VQ3HJP. DGV' is rag chewing on 3.9- and 14-Mc. phone. A. AK may be found on 3.9 Mc . FSE returned from a trip un the East Coast. EJ got his 'phone W.A.C. HX and KI are back on 14 Me. Q.A and ECW have new commercial tickets. FYD is passing around the cigarn - it's a boy. FSE spent nice vacation in Washington. and at Division Convention. FSF has swell rig ready for fall. FWT is on $1.75-\mathrm{Mc}$. 'phone. EisB works 28 and 1.75 Mc . ESO has Class A. ticket. FIY works 28 Mc . with an区il. FKU has Class A aud is experimenting on 3.9 - and 14-AIc. 'phone. BAH is very active on 1.75 Mc . GFD is new Wallace ham. GAV is new Pink Hill ham. FPH is trying parallel T-55's on 1.75 Mc . DRJ is using grid modulation on 1.7 s Mc. Seen at Division Convention: CLB, BX, FSE, IIH and DW. All had a swell time. BMR has new 75 -foot high rotary to take the uutput of his four 250TH's. BNG is on 3.9 Me . at new QTH. Let's get going gang with plenty of activity. BQE, the S.C.M. of South Carolina, has sworn that they are going to beat us to pieces this rear. I say we can't let that happen. line up some schedules, originate some good trafic, join the Emergener Corps - Let's go, gang.
Trallic: W4'TO 7 RHR 4 DGV 3 CYB 2.
soUTH CAROLINA - SCM. Ted Ferguson, W4BQE - CZN keeps rexular schedules on 3.5 and 7 Mc . EZF divides time hetween $1.75-\mathrm{Mc}$ c. 'phone and $3.5,7$ and 14 Mc . c.w. BPD has cards from 131 countries. GAR keens regular schedules with FXH, ERF. CYT and DXF. DPN reports his rig working FB on 1.75 Mc . COL expects to return to the air about October 1st. AZT is now O.P.S. and works 3.9-and 14 -Mc. 'phone. FXH is new Sumter ham. EJK is working on a directional antenna for 1.75 Mc . FNC likes his e.c.o. and can be heard on $1.75-\mathrm{Mc}$. phone. CHD is on 3.5 Mc . c.w. and $1.75-\mathrm{Mc}$. 'phone. FYG is new 'Tigersville ham. FNS and EJH are working DX. GCH is pounding brass on 3.i Mc. EBT chauged QTH to Fort Moultrie. Welcome to the section, OMI. FRI, South Carolina's youngest op (13 years), pounds away on 3.5 Mc . с.w. CUS and CZA have heen busy with plans for the Charleston hamfest. 'Thanks. EZF. for FB report on the king upstate. Fellows, September brings with it full operation of the various nets. Let us all take part and give South Carolina a good start. Thanks and 73. - Ted.

Traffic: W4CZN 41 GAR 39 EZF 34 EJK 15 FFH 14 BPD 12 EXJ 8 DPN-FNC 7 FHE 4 EHF 2.
VIRGINIA - SCM, Charles M. Waff, Jr., W3UVA R.M.'s: 3GTS, 3HDQ -- P.A.AI.s: 3AIJ. 3GWQ. FQY will
 ments 30% of the time. FHF works lots of DA un 14-Mc.
'phone. GWQ is now operating 4- :and $14-\mathrm{Mc}$. 'phone as well as 1.75 Mc . DJC has been transferred to New Orleans, La., temporarily. Hurry back, Joe. ALF, BDQ, BRE, CSY. EXQ and HDD are active members of the Old Dominion Radio Association. ALF needs only New Mexico for W.A.s. HAE won an Astatic mike at the Division Convention. HBII/IFZ has new 802 E.C. crystal osc. and 803 final with 300 watts input. aud a Comet Pro receiver. ICQ is new Emersency Coürdinator at Cape Charles. HLC has new 300 watt rig with capabilities of 500 soon. BIG uses 3995 kc . mostly. ELN would like to see more hams in the A.A.R.S. Interested? Write 3GTS. HOY is leaving Virginia to attend Port Arthur Radio School. Good luck, George! AITY is rehuilding with 300 watts in mind. BFW has 1 kw . and new antenna on 3.5, 7,14 and 28 Mc . CFV renorts activity in Norton distributed as follows: 1.75 Mc . BRD and CFV; 7 Mc., BLE and CFY; 14 Mc., BAD and CZJ. HBF has new e.c. osc. and a rotary beam for 14 Mc. IEY is new Norfolk ham on $1.75-\mathrm{Mc}$. 'phone with designs on 28 Mc . HFL is rebuilding. IEW, ex-4D/PP, is new Norfolk ham. F7M uses 18 watts input and needs only a card from Idabo for W.A.S. FQP has new Mims rotary beam antenna. HJC is experimenting with voice onerated control. DGG uses 1819 kc . every night. EFO is building a new hum-free rig for $1.75-\mathrm{Mc}$. 'phone. G.AL heard DN on 56 Mc. UVA has 20 watts on 4 Mc. 'phone. UVA/8 was operated at the Division Convention. CA aunounces the VIRGINIA FLOATING RADIO CLUB will meet at Roanoke on October 15th; for details write 3CA. GTS worked 35 stations in the July O.R.S. Party, but none in Virginia! Where were the other Virginia ORS? IEO, ex-9NOL is new Falls Church ham. HSE visited BUSA. HRC, EK. FJ. GPV and HDE were at Manassas for Army maneuvers. Norfolk Radio Club has following officers: HRC. Pres.: GAL. V-Pres.; HAE. Secy.; HFL, Treas.: DGG, publicity directnr. With 28 members, ex club transmitters, a code class, a series of technical talks, and reguiar Friday night meetings this newly organized club is oft to a fine start. Visitors and new members are welcome at the club quarters, $7261 / 2$ Boush St. Is ruy Virginia city interested in handling the 1940 Roanoke Division Convention? If so, write 4DW. REPOR' PROMPTLY ON THE 16TH OF EACH MONTH.

Traffic: W3ELN 272 IFZ 60 II 35 HLC 18 HJC 9 ALF 5 HFL 5 HNX 4.

WEST VIRGINIA - SCAI, C. S. Hoffmann, Jr., W8HD - This is my last report an S.C.M.. as I am retiring after 10 years in this chair. I want to thank each one of you for all reports, which have been useful to keep the A.R.R.L. spirit. in this Section alive, and make West Yirginia one of the most progressive Sections on the Division. By the time this appears in QST T, your votes will have ehosen my successor and 1 hope you will cooperate with him in every was, especially in striving to keep none of his list of potential appointments unfilled. The Trunk Lines this fall deserve your closest attention, and with that the development of a Club-O.R.S. Net on ; 7770 kc . I shall hope to see you all on 3770 kc . this fall, as will all the old timers in the Section. The Division Convention at Charleston, pulled a crow-d of 225 and all said they enjosed the Charleston Radio Club's effors. The Director, Alternate Director and four S.C.M.'s were there besides the only existing R.M. from this state. It was good for us all to meet. Most of the gang from the Northern part of the state attended the Pittsburgh hamfest on that week-end, at which there were 750 present. New appointees: TNC, O.R.S. and O.P.S.; Emergency Coördinators: SES for Dunbar; SYJ for Wellshurg; TNM for Nitro. SES is Mayor of Dunbar! KSJ married! AOB visited TCP/'KSJ. TOK is new Charleston ham. SKD and SES are on $1.75-\mathrm{Mc}$. 'phone. KKG has worked 135 countries. PQQ now has 96 worked and 88 contirmed. DFC is rebuilding for fall trattic. QJS is new Sutton station. 'INC has new $56-\mathrm{Mc}$. set giving 200 watts output at W. V'a. Univ. CXU was heard in England and Australia on $3.9-\mathrm{Mc}$. 'phone. $3 Z \mathrm{D}$ visited KKG and tried portable 3ZD/3 in Romnes, making some nice QSO's on 3.9 Mc . 'phone. HD visited MOL and 8RJG. 3ZD risited Wheeling and Yuntington. KYJ is on $3.9-\mathrm{Mc}$. 'phone! AFX, CXR and FVU are rebuilding for the fitl. OXO. GBF, BTV are geiting ready for fall trunk lines.

Trafle: W8QJS 8 TCP 6 SKD 5 PHY 3 DFC 2.

Stay on Top . .

get more out of your power

with TR1pLETT MODULATION MONITOR

-at a price!

Usable on All Amateur Bands = Permits Compliance with Fedaral Regulatlons a RED.DOT Lifetime Guaranteed Meters - 110 Volt AC 60 Cycle Operation " Two Moterrs - one for Carrier, one for Per Cent Modulation ECalibrated Neon Lisht for Instantaneous Peaks Tip Jacks for Phone Connection Uses Vacuum Tube Rectification.
\$33.67

Write for Catalog!

THE TRIPLETT ELECTRICAL INSTRUMENT CO.
Section 2510, Harmon Avenue
Bluffion, Ohio

NOW BUY THIS LATEST

MODEL GENUINE

This is the same Great New Easy-Action Genuine ibroplex which formerly sold for $\$ 17$ - the same operation fine quality signal and lor its ease of ying performance. This unusual low price offer is imited and may be withdrawn without notice. Don't delay. Mail us your order today. Money order or registered mail. Write for new catalo showing models from the smallest, lightest and handiest to the Standard model Illustrated. Al famous the world over for outstanding quality and ending performance.

THE VIBROPLEX CO., Inc.
832 Broadway

DX Contest Scores

(Continued from page 94)

Georita
W4FIJ W4YC W4DYE WIIS
W 4 FBE W4EGT W4FHW*

Southwest Los Angeles

WBGRL 110763-93-397- 9 -863 W6AM 57150-75-254- (1-87 W6NHK 19890-51-130- B-63 W6GRX 16500-44-125- A-67 W6NMI 11121-36-103- ©-39r $\begin{array}{ll}\text { W6NMI } & \text { 11012-36-103- } \\ \text { W6POZ } & \text { 10880-32-114- }\end{array}$ W6F2L W6MEP W6PDB W6CGY W6KYT W6PKK
W6QOZ W6LIP* W6MBD W6FPV W6JZL W6KNF W6MUM
W6PEN*
W6BUK* W6HI.Z W6PBG W6NCP W6DZE W6QJ* W6PYV W6QFB
W6QK8

Arizona

W60JK W6PNX W6PUL W6PQQ W6PWW W6QNC
W60LZ WBQLZ
WBIMR W60LF W6HRH $8880-37-81)-\mathrm{B}-45$
$8619-31-93-\mathrm{B}-46$ $8619-31-93-$
$7830-29-104-46$

B-68 $5742-29-66-\mathrm{B}--$ 5544-28-66- B-58 5574-28- 66- B-58 3480-20-58- A-37 3171-23-46- B--3120-20-52-29:5-25-39- - -2451-18- 43- B--$\begin{array}{ll}2142-17-42- & \text { B-28 } \\ 0091-17-41- & \text { B-17 }\end{array}$ 008-12- 2s-A-8 462-11-14- A- 8 264-8-11- B- 8 120-5- 8- B-10 | $120-5$ | 8 | $B-10$ |
| :--- | :--- | :--- |
| 80 | 8 | 8 |
| 120 | | |

6036-28-79- B-39 $\begin{aligned} 21996-5 \times-141- & \mathrm{O}-48^{34} \\ 4725-27-60- & \mathrm{B}-34^{36}\end{aligned}$ 3861-27-49- C--1860-20-31- - 24 1482-19-2B-B-15 3-1-1
$\begin{array}{llll}88-4-8- & \text { A-2 } \\ 60-4- & 5- & -\end{array}$

Cunada

Maritime Maritime

EIGH [2543-37-113- A-75 VEIEL VEICR VEIDC VEIBK VEIDQ VEIFQ* VE1KK* VE1CO* 10605-35-101- A-46 9\% 01 -43-76- B-30 605ㄴํ5-81- A-23 5453-19-97- A-30 4830-21-77- B-35 1368-12-38- B--378-9-14- B--210-7-10- - -108-6-6-… $108-6-6-\cdots$.
$12-2$
Ontario
VE3QL 22464-54-140- B-844 VE3I'B 22005-45-163- B-46 VE3LL 14700-35-140- B-79 VE3WV 7081-28- 85- A-45 VE3KE 4455-27-55- A-40 $\begin{array}{ll}V E 3 Q P & 4455-27-55- \\ 446-26-57- & \text { B- } 51\end{array}$ $\begin{array}{ll}\text { VE3QP } & 4446-26-57-\text { B-51 } \\ \text { VE3AFD } & 4134-28-53-\mathrm{B}-37\end{array}$ VF3OC 3840-24-54- B-26 VE3PJ 3528-24- 49- A-25 VE3NX 2037-21-33- 4-22 VE3PE 1440-16-30- B-12 VE3OO $1296-16-27-\mathrm{A}-22$ VE3OO VE3AIB VE3HB VF3TB VF3MZ VE3LB
VE3QD*
VE3AC"Q
VF3PZ
VE3ADH 1092-14-26- A-9 $\begin{array}{cc}1040-13-23- & B-18 \\ 350-9-14- & A-7\end{array}$ 204-7-14-A- A-180-6-10-A-147-7-7-… 125-5-9——— $120-5-8-\cdots$ $\begin{array}{ll}120-5- & - \\ 30-3- & 4- \\ 27-3- & 3-\end{array}$ 27-3- 3- $3-1-$

Quebec
 Alberta
VEAWJ 3168-24-44- A-34 VEAAHZ* $144-9-16-\cdots-\cdots$

British Columbia
VF5VO 16812-42-135- B-74 VE5VP 12768-38-112-BC-67 VE5BF $\quad 5544-33-56-\mathrm{B}-48$ VE5AEJ 4536-21-73- B-55 VE5FO 3024-21-48- - 17 VF5AAD 2193-17-43- A-30 VE5ZM 540-10-18- A-16 VE5FZ* 90-5- B-

VE4SS	24453-57-143-BC-65
VFANI	9801-33- 99- B-61
VEAACP	7110-32-72- B-66
VEAVD	6786-24-78- B-25
VE4ADV	4001-26-54- B-31
VEAZK	2268-21-36- B-30
VFASR	1440-16-30- B-18
VE+YR	663-13-12- B-15
VE4AIX*	72-4-6-

Saskatcheroan
VE1BF 2340-20-39- B-43 VEIGA 1792-18-33- B-17 VEAGU $\quad 540-10-18-\mathrm{B}-10$

Africa
Aloeria - FA
FA3JY B50-10-22-A- 5
Egypt-SU
SUICR 3300-10-110- A-27
SU1RD 1892-11-38- A-28 SU1AX $18-2-3-\mathrm{A}-$
Morocco - CN8
CN8BA 6012-18-112- A-20 CNBAD 2960-10-102- A-27 CN8BD 1809-8-67- A-15
U. of So. Africa - ZS

2S6DW 61452-27-765- A-71 ZS4H 36840-24-520- A-64

Price Rechuced insmute wutis

DODGE QRM WITH LOW COST VARIABLE FREQUENCY CRYSTAL CONTROL

The continually increasing popularity of the Bliley VFI Variable Frequency Crystal Unit has made possible savings in manufacturing cost. These savings are now being passed on to you through the medium of reduced price.

Neither the quality nor the performance characteristics of this precision-made crystal unit has been changed. The frequency drift is still less than ± 4 cycles $/ \mathrm{mc} . /^{\circ} \mathrm{C}$. and the total frequency variation approximately 6 kc . with the 80 -meter unit and 12 kc . with the 40 -meter unit. When multiplying, the frequency variation range is, naturally, increased proportionately.

The VFI Unit now brings you variable frequency with crystal stability at low cost. See your distributor or consult circular A-7 for further descriptive information. Bliley Electric Co., Erie, Pa.

NOW-\$6.60 REDUCED FROM $\$ 7.50$ 40 or 80 -METER VARIABLE FREQUENCY

$\frac{a^{2} b^{2}}{c^{2}} ; \frac{1}{2 \pi v L C} ; \frac{\chi^{\prime} a}{b}$
and similar PROBLEMS quickly set and involvin simple inspection, and all manner of computations decibels etc. easily and quickly performed with the

NEW 10-inch diameter CIRCULAR SLIDE RULE. sent with ample instructions, postpaid for $\$ 1.00$.
Address: A. Froom, 2420 Vancouver Av., San Diego, Calif.

A Perfected AUTOMATIC SENDER Postpaid
in U.S. A. $\$ 12.50$

Save your fist. Let the Automatic Sender raise your stations for you. Repeata calls or mesgages indefinitely. Length of mesnages practically unlimited. Sends from 2 to 70 words a minute. Motor driven. Entirely
automatic. Built-in tape perforator. Absoautomatic. Buitt-in tape perforator. Abs
lute uniformity in spacing of characters.
$\$ 13.50$ West of Denver

Speed up your receiving. Connect Automatic Sender with a buzzer or oscillator. Accustom yourself to receiving any a buzzer you select up to 70 W.P.M. Makes excellent code teacher for novice. Complete with 6 rolls of tape and full instructions. No extra equipment needed. If your dealer can't supply, write us. Fully guaranteed.
GARDINER-LEVERING CO. Naddon Helght

Nothing like 'eml Most, iobbers have ${ }^{\circ} \mathrm{em}$ l Raciocraffer Vernier Dils Roto-butied nickel-silver disc. Positive Roto-buned nickel-silver disc. Positive
friction drive. With hair-line pointer and $1 / /^{\prime \prime}$ knob. $4^{\prime \prime}$ dia. Net hair-ine pointer and
4" dia. Net \$1.20; 23/" dia. Net 90c And complete line plain dials, discs, knobs. New! Marine Gray Prismlac, if Pt. Net 50c
N. E. RADIOCRAFTERS

58 Stuart St.
Boston, Mass

THIS EXPERT WILL HELP YOU PASS THE NEW RADIO EXAMS

Newly-written, low-cost, homestudy courses under supervision of Arthur R. Nilson, twenty
 years co-author of technical radio books. Fit yourself for the new license examinations - Radio Telephone Operator 1st or 2nd class and Radio 'Telegraph Operator's permit, used in the Aeronautical, Forestry and Police services and Broadcasting. Thousands of professional radiomen use Nilson and Hornung textbooks to keep up to date. Now Arthur R. Nilson, will give you direct, detailed lessons, step by step.
SEND FOR FREE 16-PAGE BOOKLET "What The Modern Radioman Must Know." Make this step toward your successful radio career ... now!

NILSON RADIO SCHOOL 51 East 42 nd St., New York, N. Y.

Please send me without obligation, your
booklet "What Tbe Modern Radioman Must Know."

Name
Address
City
State

GENERAL ELECTRIC eilocol6G, new tubes- sealed cartons quaranteed.
RELAY RACK PANELS. Standard amateur spacing. Matches popular black "Ripple" finish. Heavy gauge steel.

C.M.L., 100 KC, SECONDARY FREQUENCY STANDARD $\$ 15.00$

Uses low drift crustal (́less than 3 cycles per megacycle ner degree centegrade). Remarkably strong harmonics even on $\sigma_{0} \mathrm{Mc}$. band. At this price there can be no excuse for noncompliance with the F.C.C. regulations.
SAFETY RELAYS: When placed in the negative high voltage overlad relays have been known in numerous cases to trip when the operator came in contact with the output of the power supply, preventing serious injury. Play saie. Advise us your particular problem and we will suggest the proper relay.
Relay less shunt resistor
$\$ 3.75$

KENYON CHOKES AND POWER TRANSFORMERS
D-104 - 20 Henries, 400 M.A., smoothing choke $\$ 2.79$ D-100 - 20 Henries, 500 M A smoothing choke ... 3.79 D-103 - 5-95 Henries, 300 M.A., swinging choke. . 2.79 D. 107 - 5-0. 5 Henries, 500 M.A., swinging choke. . 0.208-1500- $\mathbf{~ - ~ 0 0 0 0 - 9 5 0 0 ~ v o l t s ~ e d c h ~ s i d e ~ o f ~ c e n t e r ~ a t ~}$ 300 M.A. D.C. b. 203 - 1000-1250-1500 volts each side of center ot 500 M.A. D.C.
[). $300-2.5$ volts at 10 amps. 500 volt insulation for 866's.
1.49

THORDARSON PLATE TRANSFORMER TYPE T16PO2..... $\$ 9.45$
Shielded $\operatorname{cas} \theta$, tapped primary, air cooled construction, high tension porcelain terminals. D.C.C volts, 1250 or 1000 at 500 M .A.
THORDARSON DUAL WINDING PLATE TRANSFORMER TYPE T16PO5.
$\$ 5.45$
Ghielded construction with lead terminals out bottom A.C. voltases 2400 and 1800 center tapped, deliverina 1000 volts 200 M.A. and 750 volts 150 M.A. through filter. Both secondaries may be used simultaneously.

THORDARSON SMOOTHING CHOKE TYPE T16C25...... \$1.68 12 Henries, 800 M.A.: 130 ohms LIMITED QUANTITY POPULAR XP BRAND FILTER CONDENS. ERS. Monufactured by one of the foremost condenser makers. OI! impreanated, sealed in Hanaed metal cans and have porcelain stand off terminals. 2MF - 100 V . 89c; $1 \mathrm{MF}-1500 \mathrm{~V} .74 \mathrm{c}$; 1 MF -.. 2000 V. 89c.
SYLVANIA 211-C IN ORIGINAL CARTONS GUARANTEED.
HALLICRAFTERS SX 94 Dafant $\$ 6950$ NATIONA NC101X \$129.00. HAMMARLUND HQ120X $\$ 129.00$. Available on liberai installment plans.
THE NEW TUBES IN STOCK: R.C.A., TAYIOR, GAMMATRONS, EIMAC.

M \& H
SPORTING GOODS CO.
512 Market Street Philadelphia, Pa. Branch Store
1709 Atlantic Avenue, Atlantic City, N. J.

The Rinill|l|IO

SX-24 with Frequency Meter Tuning

 INCLUDING TUBES ANDCRYSTAL BUT LESS SPEAKER $\$ \$ 0.50$
Speaker $\$ 12.00$ extra
General Coverage: 43.5 to . 54 MC in 4 bands-Built-in Noise Limiter - Crystal Filter - Variable Selectivity - Frequency Stability - Break in Relay Operation - 9 TUBES - S Meter calibrated in S units and DB - Main Tuning Dial directly calibrated Electrical Band Spread directly calibrated.

> LIBERAL TIME PAYMENT PLAN

Model	Down Payment	Per Month for 12 Months
SX-24	$\$ 13.90$	$\$ 5.00$
SX-24 and speaker	16.90	5.90

COMPLETE MIMS ROTARY BEAM KITS

Liberal Time Payment Plan Complete Kits Less Indicator

BUIX OS hasc ThRM

Cmateur
Cash Vet boun Permo Permo.
Price Payment for io Wrow for IZ Moos.

Deluxe kit 3-Element
20-Meter Deluxe kit 2-Element
zo-Meter Deluxe kit 3-Element 10-Mitter Deluxe kit a Element
10-Meter Deluxe kit 2-Element 10-Meter Standard

PROMPTII FILLED
Write for FREF Write tor FTAIOG
100 page

$$
\longdiv { 3 }
$$

NO W: Rapid QSY

wiTh Valpey Multiple Holder

Type VMC 1
FEATUIRES

1. Holds four unmounted crystals (40, 80 or 160).
2. Fits a standard 5 -prong socket.
3. Once installed, no re wiring is necessary when standard mounted crystal is desired.
4. Crystal switch can be anywherel Controlled with a s.p. 4-position switch.
5. Over-all height $2^{\prime \prime}$; when plugged in, $11 / \mathbf{z}^{\prime \prime}$ from chassis to top.

TYPE VMC 1
Price Net *2.\&5

With the new Valpey Multiple Crystal Holder you can OSY instantly; and without spending a lot of money for separate crystal holders an actual saving of several dollars and much mounting-space

The VALPEY CRYSTALS
Box 321, HOLLISTON, MASS.

FOR YOUR TOOL KIT

This SIGNAL $1 / 4$ inch DRILL

List Price $\mathbf{\$ 1 9 . 5 0}$

IS TOPS IN VALUE

This is the drill to buy for your tool kit. It is the same drill used by electricians, radio repairmen, and shops. Capacity $1 / 4^{\prime \prime}$ in steel, $1 / 2^{\prime \prime}$ in hardwood, measures $12^{\prime \prime}$ long, speed 2950 R.P.M., trigger switch, 8 -foot rubber cord and plug, weight $51 / 2$ pounds. SIGNAL drills are dependable because they're well made, and they are outstanding values because they're priced right. If your radio jobber cannot supply you, write us.

SIGNAL ELECTRIC MFG. CO., Menominee, Mich.

Established 1892

The Infinite Impedance Detector

(Continued from page :1)

not impaired. The modulation capability is excellent, reaching 100 per cent with normal values of resistors. Typical values would be $R_{1}=150,000$ and $R_{2}=250,000$ ohms. Any trouble with r.f. getting on the grid of the audio amplifier can be eliminated by making R_{1} a 50,000 - and $100,000-$ ohm resistor in series, with the lead to C_{2} connected at the juncture so that the audio load is tapped one-third down on the load resistor. A medium $-\mu$ tube like the 6 C 5 is recommended, since the higher amplification tubes do not have as good modulation capabilities.
The two advantages of the infinite impedance detector over a diode are that it will readily handle high percentages of modulation without distortion and it will not load the i.f. transformer.

Crystal Microphone

Model JT-30 fills a long standing demand for a really good, low priced Microphone for universal use. Contemporary design. Sturdy construction. Wide-range and Voice-range models. Seven-foot cable. As illustrated $\$ 16,50$

ASTAUIC

With Astatic's new 1940 Model Microphones and Pickups now in production, we urge you to visit your Jobber and inspect these newer, finer instruments or write for Astatic's new, No. 12 Catalog.

In the new AB-8 Pickup, Astatic has incorporated time-proven features for high fidelity performance. time-proven features for high fidelity performance, plus such new features as Spring-Axial Cushioning, improved bakelite encased Type B cartridge,
Bender Crystal Element with Ebonite waterproof Bender Crystal Element with Ebonite waterproof
coating, and a new massive die-cast arm. Brown, coating, and a new massive die-cast arm. Brown,
black or grey with chrome highlighting. Complete with arm rest and 4-it. cable. List Price. ... \$10

Dynamic Microphone
Model DN-50 incorporates Astatic's new Unitary Moving Coil System - a correctly deAlnico Magnetic structure with Anico Magnet and carefully Tilting head acoustic circuit. connector and $25-\mathrm{ft}$. cable. List Yrice. \$20

ASTATIC MICROPHONE LABORATORY, Inc., YOUNGSTOWN, OHIO

LEARN RADIO•TELEVISION
 60-page catalog on request. Oldest, largest and best

 equipped in New Ensland. Write for new catalog.
MASS. RADIO SCHOOL

18 Boyiston Streat
Boston, Mass.

FASTEST WAY CODE TO LEARN

 Easy, Fascinating - LEARN BY EAR to be a GOOD OP.The New All Electric Master Teleplex Code Teaching Machine is exactly what thousands are looking for. No experience needed. Excellent for beginners - steps up WPM for ALL Ops. There is no guesswork with Master Teleplex, because it records your sending in visible dots and dashes. You SEE and HEAR exactly how you are making your signals. You learn code the way you'll be using it - by SOUND. That's why schools teaching code use TELEPLEX. Complete course included at no extra charge. Used by many schools and several governments for teaching code. Low cost, easy terms. MONEY BACK GUARANTEE. Send now for booklet Q-10, no obligation. Post card will do.
The "Ham" Standard Teleppex-a highly efficient Special $\begin{gathered}\text { code teacher using heavy ppecially prepared } \\ \text { waxed paper tane having two rows of }\end{gathered}$ Perforations. Write for Free folder QT. 10 TELEPLEX CO. $\begin{gathered}\text { 67-69 PARK PLACE } \\ \text { NEW YORK, N. Y. }\end{gathered}$ in Conada write,
CANADIAN ELECTRONIC INSTITUTE, TORONTO, ONT.

New RCA TUBE TESTER
 Even better than its predecessor -and yours at the same
 LOW PRICE ${ }^{\$ 37{ }^{95}}$ Net
 NEW FEATURES

1-Tests "Loktal" type and Bantam Base Tubes. 2-Tests Flashilight and Ohristmas Tree Rulbs. 3-Has Two Spare ockets. 4-has provislon for testing tubes havig mamen revised up-to-date Roller Chart with space for Insertion of 100 new types.

- plus all, the features that made its predecessor an outstanding value! One-tinger operation...indication of line voltage up to instant of actual test without setting line oltage prior to insertion of tube ., and the abllity to test all types of standard recelving tubes. Makes all tests to K.M.A. standards.

Counter rype, stock No. 156C. $\$ 37.95$ Portable Type, stock No. 156B, $\$ 39.95$
Over 335 mulion RC:A radio tubes have been purchased by radio users . . . in Tubes, as in Parts and Test. Equipment
it pays to go RCA All the Way.

BCA Manufacturing Co., Inc., Camden, N. J.
A Service of Radio Corporation of America

Congratulations, winners of the A.R.R.L. DX contest!

In a contemplative mood, several mont hs ago, while the A.R.R.L. DN contest was under way, we wondered how the amateurs who were doing so much to foster international goodwill could be more materially rewarded. Being "hams" ourselves, we know the thrill of raising a ZS in South Africa, and the pride of receiving A.R.R.L. recognition for radio amateur achicvements.
"But," we later told Ed Mandr. WIBDI, A.R.R.L. Communications Manager, "why not let us surprise some of these winners with some sort of prize of our own, to let them know that we. too, appreciate their valuable work:"

So, HERE'S A \$10 MERCHANDISE

 ORDER to EACH of the following twelve winners, redeemable at either TERMINAL RADIO SUPPLY HOUSE, headquarters for qualityconscious and thrifty "hams".Now York City and Long Island . . .
CW: Kalph F. Thomas, WथUK
PHUNE: Ralph E. Thomas, W2UK
Quogue. L. I., New York
Eastern New York. . .
CW: F. H. Fritschel, W2DC scotia, New York
PHONE: Jewellyn Bater Keim, W2IKV White Plains, New York
Westorn Niew Jork...
CW: Lnuls E. De La Fleur, W8AU Utica, New York
PHONE: Alfred C. Haussmann. WexDST Geneva, New York
Northern New Jersey . . .
CW: Rolf Lindenhayn, Jr.. W2BHW
PHONE: Farle F Lucas, W2JT
IIdland Park, New Jersey
Southern New Jerscy . . .
CW: G. C. Glberson. W3PC
Port Republic, New Jersey
PHONE: G. C. Glberson, W3PC Port Republlc. New Jersey
Connecticut . . .
CW: Albert H. Jackson. W1NI
West Hartford, Connecticut
PHONE: O. J. McCabe, WICOJ
To all you amateurs who entered this contest, with no thought of winning anything except the pleasure of participation and possibly the valued A.R.R.L. DX certificate, our best wishes and wholehearted appreciation.

TWRUIINAL ${ }_{\text {comen }}^{\text {Rem }}$ 68 West 45th St. • 80 Cortlandt St. 2 stores in NEW YORK CITY VAnderbilt 6-5050 • Cable: TERMRADIO

FLASH! JAMES MILLEN PRODUCTS will be carried at TERMINAL'S two stores in New York City!

The latter advantage is shared with the ordinary plate detector, but the plate detector does not have the high modulation capability. The infinite impedance detector has the disadvantage, along with the plate detector, that there is no convenient source of a.v.c. voltage.

While not an infinite impedance detector in the true sense of the word, the circuit ${ }^{1}$ shown in Fig. 1-C is interesting because it permits the use of a diode rectifier (for a.v.c. purposes) without loading the i.f. transformer. It is related to the infinite impedance detector only in that it is another member of the family of cathode-coupled circuits. A 6C5 or similar tube should be used in this application, and representative values would be $R=1000$ ohms, $C=0.01 \mu \mathrm{fd}$., $R_{1}=25,000 \mathrm{ohms}$, $C_{1}=500 \mu \mu \mathrm{fd} ., \mathrm{C}_{2}=0.01 \mu \mathrm{fd} ., R_{2}=250,000$ ohms, $R_{3}=500 \mathrm{ohms}, C_{8}=0.1 \mu \mathrm{fd} ., R_{4}=500,000$ ohms and $C_{4}=0.01 \mu \mathrm{fd}$. For an i.f. of 465 kc ., L should be of the order of 1 mh ., which can be obtained readily by removing some of the turns from one of the small $2.5-\mathrm{mh}$. chokes available. L should be as low-resistance as possible, to avoid bias of the diode. If some capacity is added across the coil, the amplifier will become regenerative, and the circuit presents itself as a possibility for small receivers using a regenerative i.f. amplifier and a.v.c.
$-B$. .
${ }^{1}$ W. T. Cocking, "Cathode-Coupled Circuits," Wireless World, December 15, 1938.

What the League Is Doing

(Continued from page 2s)
forwarding, and we have despatched them to the foreign societies for distribution. The war now makes it impossible for us to continue this service to the major amateur countries; the amateur societies have suspended and their QSL bureaus are closed. While we're always ready to help when a QTH isn't in the callbook, we must now ask our members ordinarily to despatch their outgoing QSL's direct to foreign amateurs.

(A) Kill all transmitter circuits completely before touching anything behind the panel.
(B) Never wear 'phones while working on the transmitter.
(C) Never pull test arcs from transmitter tank circuits.
(D) Don't shoot trouble in a transmitter when tired or sleepy.
(E) When working on the transmitter, avoid bodily contact with metal racks or frames, radiators, damp floors or other grounded objects.
(F) Keep one hand in your pocket.
(G) Develop your own safety technique. Take time to be careful.

Heath Is Permanent:

Strength for Service The HARVEY 100-T

 transmitter was built to last. Exhaustive tests, both at the factory and by independent owners, have proven this unit to be "strong as an ox," as well as outstanding for its fine signal quality on both Phone and CW. The 100-T has everything you want appearance, 5 band operation, quick frequency shift, ease of tuning and low cost. Both audio and RF sections are constructed on heavy steel chassis finished in gray baked enamel. The finest parts obtainable are built into these units. All control designations are engraved directly on the panels. The complete transmitter is contained in a compact, stream-lined cabinet, finished in gray wrinkle with chrome trim. For catalog containing complete information on the 100-T and other Harvey Transmitters, write to HARVEY RADIO LABORATORIES, Inc., 25 Thorndike Street, Cambridge, Massachusetts.

Harvey 100-T

AMATEUR RADIO LICENSES

Day and Evening Classes in Code and Theory HOME STUDY COURSES
Reasonable, Efficient and Thorough, Hundreds of Licensed Students Now on the Air
American Radio Institute, 1123 Broadway, New York, N. Y.

EASY TO LEARN CODE

It is easy and pleasant work to learn the modern way .. with an Instructosraph Code Teacher. Ideal for the beginner or advanced student. Many tapes available ranging from alphabet for beginners to typical messages on all subjects. Speed range 5 to 40 WPM. E Always ready, no QRM, beats
having someone send to you.

FOR SALE OR RENT STANDARD with 10 tapes and book of instructions. $\$ 20.25$ IIJNIOR with 5 tapes and book of instructions (not rented) $\$ 12.00$
 RENTAL Standard with 10 tapes and book of instructions $\$ 3.00$ first month. $\$ 2.25$ each additional month. All of instructions $\$ 3.00$ frst month. $\mathbf{r e n t a l}$ payments may be applied on the purchase price should you decide to buy the equipment.

Write for details today
INSTRUCTOGRAPH COMPANY
Dept. O. 912 Lakeside Place, Chicago, Illinois Representatives for Canada:
Radio College of Cianada, 863 Bay Street, Toronto

RADIO

ENGINEERING, broadcasting, aviation and radio telegraphy and telephony, Morse telegraphy and railway accounting taught thoroughly. 48 weeks' engineering course. equivalent to three years of college radio work. School established 1874. All expenses low. Catalog free.

DODGE'S INSTITUTE, Day Street, Valparaiso, Indiana

NOW LOCATED in Our New Home at 75 VESEY ST.

(see Sept. QST) and other Millen products carried in stock.
We carry all the nationally advertised lines write us for quotations.
A good trade-in allowance made on your old set. Tell us what you want and what you don't want.

LEADS THE FIELD
75 Vesey Street New York City Tel. COrtlandt 7-2612 Cable Address: "RADLEEDS"

World Wide Service to Amateurs

Gross Transmitters for Dependability and Economy

\star Write for free descriptive bulletin on our CB-150 and CB-250 Radiophone Transmitters

↔Special price For limited time, minus tubes and accessories.
\$110.50 on the

GROSS CB-55 RADIOPHONE TRANSMITTER

FB. for 30 MC. - Input: 95 watts. Uses: 2-T20 fubes in R.F. and 6L6's in modulator. Coils available for 30, 14, 7, 3.5, and 1.7 mc . Descriptive bulletin on request.

GROSS RADIO, INC.
51 Vesey Street
New York
Cable Address: GROSSINC

A Compact Amplifier

(Continued from page sis)
the photographs. The two condensers are supported by vertical metal strips attached to the $51 / 2$ by $45 / 16$-inch sub-base. This sub-base, or platform, not only serves to mount the tubes and coils, but also acts as a shicld between the two condensers. Standard Barker \& Williamson coils are used in both the plate and grid circuits, and require no pruning. The amplifier is suitable for operation on $80,40,20$, and 10 meters with the condensers illustrated. Since the series minimum capacity is in the neighborhood of $9 \mu \mu \mathrm{fd}$., there is no difficulty in obtaining resonance throughout the 10 -meter band with proper L / C ratios.
'The excitation requirements for the two MK24's are quite modest; only some 10 watts are required. An amplifier or oscillator delivering around 15 or 20 watts should do the trick very nicely and provide an ample reserve of power for good regulation in the driving stage.

Slight changes in the amplifier can be made without difficulty. For example, variable link coils can be used in the plate circuit and other types of tubes requiring from 1000 to 1500 volts on the plate can be substituted. Last, but not least, few modifications would be needed for operation on 5 meters.

Massachusetts State Convention

(New England Division)

Hoston, Mass., Detober 2lst

Correction! September QST mentions the Boston Hamfest to be held on October 14th; this is not correct, the date is October 21st. The plans now are to have a Massachusetts State Convention and Boston hamfest combined to be held at the Hotel Bradford, Boston, Mass., October 21st, under the auspices of the South Shore and the Eastern Massachusetts Radio Clubs.

A good array of speakers, lots of prizes, contests, meetings and a real turkey supper with all the fixings make up the program.
Those of you who are looking for some foreign QSL cards and don't send in your envelope, it will be good news to you to learn that W1BGY, J. T. Steiger, QSL Manager for the First District will be present with his QSL Bureau; it's worth making the trip just to see the exhibit. Demonstrations and display booths will be of interest to every one. Registration is $\$ 1.00$ and this will entitle you to one chance for a prize. Banquet and registration is $\$ 2.50$ and entitles you to three chances for a prize. For tickets and information write W1ALP, Frank L. Baker, Jr., 21 Colby Road, North Quincy, Mass.

Two bis sections: Amateur and Commercial - devoted to relay racks, enclosed racks, transmitter racks, all purpose metal cabinets, several new types of rack panels,
speaker cabinets, and new models of amplifier foundation chassis. Many new De Luxe chromium trimmed, streamlined models in both black or grey ripple finish are included.
Any Amateur, Serviceman, Engineer or Experimenter planning a new Rig owes it to himself to get a copy of this great catalog at once! It's FREE for the asking!

PAR-METAL PRODUCTS CORP., 352141 st St., Long Island City, N. Y.

RADIO ENGINEERING
RCA Institutes offer an intensive course of high standard embracing all phases of Radio and Television. Practical training with modern equipment at New. York and Chirago schools. Also spectall. ed courses and Home Study Courses under "No obligution" plan

Illustrated Catalog on request
RCA INBTITUTES, INC. Dept. ST- 39
A Radio Corporation of America Service 75 Varick St., New Vork 1154 Merchandise Mart, Chicado
\qquad
 Features: Momentary ove Sheldon $100^{\text {WII }}$
Features: Momentary overloads as high as 6 times the rating of the tube will not injure it - Produces a positive, sharp signal and is easy to neutralize - A TAN TALUM Grid and a TANTALUM Plate insure against failure due to the release of gas during the life of the tube and assure many hours of satisfactory and dependable operation.. Pet Price $\$ 13.50$

SHELDON 35T. Features Tantalum Plate and Grid Absolutely gas-free - Rugged Construction - Improved type of filament suspension...Net Price $\$ 6.00$

These are two of the finest tubes Sheldon has ever made. See them and other Sheldon Tubes (KY866-866. 866A) at your dealer's or write for technical data today!

STANDARD MODEL MAC KEY..... ivet $\$ 4.95$ DE LUXE MODEL MAC KEY......... Net 5.95

Limited quantity at these prices

CABINET RACK DOLLIES

Enables you to move heavy transmitters in racks around the ham shack. Formed of solid steel finished in black crackle. The ball bearing swivel casters have wheels made of high grade hard rubber composition, which will not scratch floors.
Light duty - $11 / 2^{\prime \prime}$ diameter wheel Net $\$ 3.45$
Heavy duty - $8^{\prime \prime}$ diameter wheel Net 5.25

New TRIPLETT MODULATION MONITOR

A real modulation indicator at a moderate price. Features and accuracy compare favorably with most expensive type of modulation monitors. With lifetime guaranteed meters. Net \$33.00

Complete line of

JAMES MILLEN PRODUCTS

New BARKER \& WILLIAMSON 5-BAND FRONT PANEL SWITCHING UNIT

For low-power transmitters and exciters. Covers 10 to 160 meters.

Net \$3.25
$2^{\prime \prime}$ P.M. Dynamic Speaker - May be used as a dynamic microphone. Net $\$.88$
Voice coil to grid transformer. Net . 59

The Famous BROWNING PRESELECTOR

25 to 70 D.B. Gain on all Bands. May also be used as a converter. Covers frequency range from 1.6 to 64
mc. Net $\$ 16.17$

.estrays

Antenna halyards may be water- and weatherproofed by boiling in paraffin until the air is expelled. My halyards have been in use for six or seven years without sign of rotting.
--W. W. Braden

A Compact $1 / 4-K w$. Rig
 (Coutinued from page 14)

ma. at resonance, depending upon frequency. If the oscillator plate circuit is tuned to the crystal fundamental, it should not be tuned too close to resonance to permit ready starting and stopping of crystal oscillation. Tuning the 807 plate circuit to resonance should cause grid-current flow to the final amplifier. This current should run between 35 and 50 ma., depending upon frequency.

The next step is that of neutralizing the final amplifier. This is done, of course, with plate voltage not applied to the final amplifier. When not neutralized, there will be a fluctuation in grid current to the amplifier when its plate tank circuit is tuned through resonance with excitation applied. The neutralizing condenser should be adjusted until there is no change in grid current when the final tank circuit is tuned through resonance. Neutralization may be checked by touching a neon bulb to the plate terminal of the 75 T while tuning the tank circuit through resonance with excitation applied. The neon bulb should not show any indication of r.f. in the plate circuit.

It is highly desirable that plate voltage for the final be reduced whenever this stage is being tuned up. This applies to tuning in regular operation. This can be done quite readily by inserting a 150 -watt 110 -volt lamp in series with the primary winding of the plate transformer. With the amplifier neutralized, low voltage may be applied and the final tank tuned to resonance. For testing the power output, a 150 -watt lamp may be connected across the output terminals of the coupling coil with which the tank coil is fitted. This coil should first be adjusted to a position at right angles to the tank coil. Full plate voltage may now be applied and the coupling coil rotated very slowly, bit by bit, watching the plate-current meter carefully. Whenever the plate current rises above 175 ma ., the tuning of the tank circuit should be adjusted for minimum plate current. This process is continued until the plate current reading at minimum dip is 175 ma . With a 1500 -volt plate supply, no difficulty should be experienced in lighting the 150 -watt lamp to more than normal brilliancy on all bands.

Checking Voltages and Currents

With the final amplifier running with the lamp dummy load, various voltages and currents should be checked. The voltage of the plate supply for the exciter should be as close to 600 as possible. The voltage dividers recommended will then provide voltages close to the following values: os-

Premax Elements Improve Your Antenmat

LRotary Beam or Verticals Easily Erected at a Lower Cost with Premax

Goes up in small space -- gives amazing results! A sturdy but light weight vertical with an insulator tested up to 10,000 lbs. Fully adjustable to any height. Made for 10. and 20 -meter operation in steel, aluminum or monel. The original vertical, and more popular today than ever. Over twentytwo methods of erecting and feeding are shown in the Premax Technical Bulletin. Get a Premax and vou'll get the signal!

For 10- and 20-meter operation, select the single or double-end Premax Corulite Elements - fully telescoping - light weight - sturdy. 'Ihese elements have been tested and tried under most exacting conditions, and are proven to be better than anything you can buy at anywhere near their modest price. Use them in the new one-, two-, threeor four-element arrays - the Premax Technical Bulletin tells you how.

SEND FOR THESE FREE BULLE. TLNS: Technical Bulletin H-3 for erecting and feeding diagrams - Bulletin HR for Elements, Verticals, Rotomounts, Towers, Insulators and Accessories.

Division of Chisholm.Rydor Con Ina. 4020 Hishland Ave., Niagara Falls, N.Y.

Premax Side-Wall Mount for Vertical Radiators

Premax Double Insulator for Vertical Arrays

Premax Wall Mounting Bracket for Verticals

RADIO COURSES

New Fall Classes Now Starting
RADIO OPERATING BROADCASTING CODE RADIO SERVICING TELEVISION ELECTRONICS-i year day course; 2 years eve. Day and Evening Classes - Booklet upon request NEW YORK YMCA SCHOOLS 4 West 63rd Street, New York City

SEE
 PAGE

 FIVEFOR DOPE ON THE
BRAND NEW A.R.R.L.
ANTENNA BOOK

HERE'S your chance to modernize your equipment with this 1 heautiful new satin-chrome plated microphone. Performance and features equal many $\$ 25$ units, yet sells for only $\$ 16.50$. Includes 7 -ft. cable set. 30-7000 cycle range. High level -52DB. A low cost way to add eye appeal and professional tone to your equipment.
This microphone will not blast from close speaking.

Licensed Under Patents of The Brush

Development Co.

Get Full Details Now From
The TURNER CO.
904 17th St. N. E. CEDAR RAPIDS, IOWA

MEET THE F.C.C. REQUIREMENTS - PLUS!

With the Browning

Visual Frequency Monitor

This member of the famous Browning Family has been built to the most exacting requirements to answer the problem of precise frequency measurement on amateur bands. Exceptionally accurate, it compares favorably to models selling at $\$ 400$. Ideal when used with E.C. operation.

CHECK THESE FEATURES

Visual and aural zero beat indicator Checks against WWV Accuracy greater than 2 parts in 10,000 - Complete band spread No Rears - no backlash Direct reading - no computations. No beat noteq to count Exceedingly ntable Reads to 2 Kc . on $20-\mathrm{M}$ band Visual deviation indicator Flexibility plus accuracy A precision instrument (the finest components and workmanship powered A.C.D.C. $55 / 4$ inch ownery type dial- 240° Bpread Dial ralibrated for six amateur bands ['hone bands indicated on dial.
rice less tubes.
$\$ 27.45$
NEW: Browning scores again with a custom buill frequency monitor for any band or bands. Built in circuit allows WWV's ignal to be used as a irequency standard. Accuracy is better than $1 / 100$ of 1%. Net price. . . $\$ 97.95$

Literature describing these and other members of the Fiamous Browning Family FREE on request.
illator plate, 300 v ; oscillator screen, $150 \mathrm{v} . ;$ 807 screen, 300 v.

A check should be made on the biasing voltage for the 75 T together with its grid current while operating under full load. The biasing voltage should be not less than 300 with a grid current of not less than 25 ma . If the voltage is 300 or higher hut the grid current less than 25 ma., the slider on the bias-pack voltage divider should he moved slightly towards the positive end of the resistor until grid current is up to normal. Under operation, grid voltage for the 807 should be 200 to 250 . Grid current at this voltage should run 2 to 5 ma . Corrections may be made by adjustment of the slider on the biasing resistor. If it is now found that the biasing voltage with the key onen is insufficient to cut off plate current, the slider at the negative end of the biasing resistor should be advanced until plate current is cut off. Biasing should again be checked under operating conditions and rearljustments made if required. It is preferable that these biasing adjustments be made at the highest frequency to be used. Finalamplifier grid current at the lower frequencies may then be held to a maximum of 30 ma . by tuning of the oscillator plate tank circuit. In cases where the 807 is keyed and grid-leak bias only is used, any grid current between 3 and 8 ma . should give satisfactory performance.

In the tests which were run at 28 Mc., the manufactured coil developed considerable heat when allowed to operate continuously for appreciable periods. This is, of course, rather to be expected with coils wound on solid forms when operated at the higher frequencies. Although less convenient, those who wish highest efficiency will probably prefer a self-supporting coil.

In coupling to the antenna, the best method will depend upon the type of antenna system to be used. The coupling coil of the Johnson tank coil is suitable for coupling directly into any untuned line of impedance up to 600 ohms. When coupling into a tuned line, a separate antenna tank or series tuner should be provided and link coupling used between the final tank circuit and the antenna tank or series tuner.

How Would Yon Bo It?

(Continued from page 57)
Next, the paper is placed on a piece of process film of the right size, exposed and developed and the result is a film negative of the paper negative. This film negative is again laid on a piece of process film and exposed and developed and the result is a film positive of the paper negative. 'These films should be rather thin, i.c., the "black" portion should be rather weak or greyish. Then, the film positive and negative are placed on top of each other in the printing frame but one is moved so that it just doesn't match up with the other, offset to one side about one-sixty-fourth inch. A piece of "scotch" tape is excellent for holding the two pieces of film in the correct position. From this double film we print cards in the usual man-

- TELEGRAPHY-TELEVISION-TELEPHONY •

AVIATION
TRANSRADIO PRESS

TELETYPE
TYPEWRITING

PRACTICAL
EXPERIENCE

TRANSMITTER -
ANNOUNCING

The major technical troining equipment owned by Port Arthur College and in operation on the college campus consists of the 500 Watt Commercial Broadcast Transmitter of Station KPAC, two-way Television Transmitter and Receiver, Lotest Type RCA Marine and Airways transmitter installation complete, SOS Automatic Alarm, Morine Direction Finder; Trans-radio Press Receiving Equipment, and Daborstory complete where students assemble composite transmitters, amplifiers, audio amplifiers, R. F. amplifiers, etc.
P, 2rt Arthur College pioneered the teaching of Radio with classes in 1909, and for thirty years has maintained an active Employment Bureau tor the placement of its graduates.

If interested in details about Radio Course, write for Bulletin R
PORT ARTHUR COLLEGE - Port Arthur (World-Known Port), Texas

MAXIMUM EFFICIENCY at all times with TYPE "HFM" Portable Xmitter

- Six Bands 1715 - 60,000 K.C. on

- All Frequencies Crystal Controlled
- Instantiy Chanseable Mobile or Portable - Final Tube Input 21 to 36 Watts.

Net to Amateurs

TRANSFORMERS

For Radio and Television Applications Specialists in the engineering and production of quality transformers. Acme solicits your inquirv. Manufacturers of transformer specialties

ACME VOLTROL
manually operated voltage regulator, atepless control from 0 to 1.30 volts. Panel mounted type ill"strated $\$ 12.00$. Write for Bulletin.
THE ACME ELECTRIC \& MANUFACTURING CO
Cuba, N. Y. for amateurs.
RADIO TRANSCEIVER LABORATORIES
8627115 Street. Richmond Hill, New York City CABLE ADDRESS: "RATRALAB"

SICKLES COILS

SECURE A COPY OF OUR NO. 939 CATALOG FROM YOUR JOBBER

F. W. SICKLES COMPANY

Stancor Power Transformers 1000-750-500-0-500-750-1000 at full load of 300 Ma . HEAVY DUTY
 A rugged well built job

 special

 special

General Rotary Beam elements

Tubular seamless Steel
 Both Copperplated and Cadmium plated strong and durable
 May be pruned to any length

JT-10 - for 10 meters, length $8^{\prime} 7^{\prime \prime}$
JT-20 - for 20 meters, length $17^{\prime \prime} 0^{\prime \prime}$ $\$ 2.99$
Thoss olloments are likhtueight and can br shipped anywhere.

The LATEST IN RADIO at SUN'S HAM SHACK

New Hammarlund Super Pro - National NHU - Hallicrafters SX24-National - Hallicrafters - Hammarlund -.. RME -- RCA -... Howard. Come to SUN and operate these receivers yourself.

RCA V-CUT CRYSTALS

 (within 200 cycles).
Haled in dlustproof, moisture proof holder. Fits either banana iachs or J-prong sockiet.
80 meter band available only; from 3513 to 3547 Kc . at this price. We will supply nearest stock frequency to the one you specify.

AMATEURS PREFER KENYON

Here are a few typical Kenyon values:

Type	D.C. volts*	D.C. Ma.	Net Price
T-668	500.750	300	$\$ 5.73$
T-669	1000.1250	300	9.4 I
T-570	1500.1750 .2000	300	$\$ 2.64$
T-671	1000.1250	500	12.64

* Ictual coltage watput out af full nvere rortifier and 2 sartion filter with rhukir input.
Ask for your free cony of the Kenyon catalogue containing a complete listing at net prices, and useful tables, charts and diagrams.

ENCORE - BY REQUEST

We have been asked to continue this unusually special item for a nother month.

Stancor Power Transformers

A Husky Heavy duty job. 600-0-600 volts SPECIAL at 200 Ma .
6.3 v . at $2^{1 / 2} \mathrm{amps}$.
6.3 v. at 4 amps .

5 v. at 3 amps.
\$2. 95
Primary 110 v. 60 cycle A.C.

SUN'S TECHNICAL SERVICE

Sun Radio is manned hy experienced amateurs and technical men. We are here to serve you in every way possible.
You will find us pleased to assist you with vour problems on transmitters, receivers, antennas or special equipment.

\therefore EXFORT ORDERS SOLICITED
 穴 MAIL ORDERS PROMPTLY FILLED

ner. The result, as shown in Fig. 2 is rather weird and interesting. \qquad
-•••-
We have received numerous inquiries on the details of processing our photographic QSL cards. In the first place, photographic QSL's are easy to make, are fun to make, are economical and lend themselves to no end of possibilities in design and individuality. As in the case of all new hams, we cast about looking for a suitable solution to the QSL problem and, after scrutinizing numerous samples, decided that the cartoon type was most desirable. The theme we chose was the ham shack with the rig, operator, antenna, call letters and space for reports. The result is shown in Fig. 2.

We first set up the camera and made several shots of the rig and processed them in the usual manner. Our next step was to obtain a suitable transparent material which would take drawing ink without running and which would be used as the foundation for the cartoon. "Glacene," obtainable at stores handling drafting supplies, was found to be just what we wanted. A sketch of the cartoon was made in pencil on a piece of plain paper, starting with the space marked in which the photograph would appear. Around this space was built the ham shack, antenna, call letters, etc. The glacene was then placed over the sketch and the lettering was applied in india ink, tracing from the original sketch.

The next step was mounting the photo negative in its allotted space. First, the edges of the film were trimmed with a pair of scissors to produce a jagged edge and parts of the film not wanted were cut off. The film was then fastened in place with a small drop of model airplane cement at a few points. 'The jagged outline of the cut film was then emphasized by tracing around it with black ink on the reverse side of the glacene with extending cracks to simulate the broken wall of the shack.

With the negative finished, we obtained a stock of sensitized post-cards and went to work on the printing. Working alone, we were able to print a gross of cards in a little over three hours. The cartoon being a positive, resulted in a negative reproduction, that is, one with white letters on a black background. This results in a very attractive and contrasty study, simulating a night scene.

- Robert B. Sladek, W9ASF

Contrary to general belief, photo QSL's are neither expensive nor difficult to make. Since Our Hero's camera is a small one, we shall dispense with it and prepare a positive pattern of the desired QSL and make a master negative from it. A roll of Eastman V122 fill is required for the negative. First, make a sketch of the desired letters and line sketches on white paper. Then. take the roll film into a dark room and cut off two sections about six inches long each, returning the remainder of the film to a light-proof container for future use. Place the two pieces of film in a fixing bath until the emulsion is removed and we have two pieces of clear celluloid. After the film has been washed and dried, the QSL pattern

Where
 to buy it

A directory of suppliers who carry in stock the products of these dependable manufacturers.

ALBANY, N. Y. Uncle Dave's Radio Shack ATLANTA, GEORGIA

265 Peachtree Street
Radio Wire Television, Inc.
BOSTON, MASS.
Radio Shack
46 Brattle Street BOSTON, MASS.

Radio Wire Tolevision, Inc.
110 Federal Street

BRONX, N. Y.
Radio Wire Television, Inc.
BUTLER, MISSOURI
Henry Radio Shop
211-215 N. Main Street

Allied Radio Corp.
901-911 W. Jackson Blvd.
CHICAGO,ILL.
Radio Wire Television, Inc.
CINCINNATI, OHIO
United Radio, Inc.
1103 Vine Street DETROIT, MICH. Radio Specialties Co.

DETROIT, MICHIGAN Radio Specialties Co.
HARTFORD, CONNECTICUY
227 Asylum Street Radio Inspection Service Company

HOUSTON, TEXAS
R. C. Hall \& L. F. Hall

JAMAICA,L.I.
$90-08$ 160th Street

KANSAS CITY, MO.
Burstein-Applebee Company
NEW YORK, N. Y. Harrison Radio Co. 12 West Broadway
NEW YORK, N. Y. Radio Wire Television, Inc.
100 Sixth Ave. NEW ARK, N. J.

94 Central Ave.
Radio Wire Television, Inc.
404 Woinut St. READING, PENN.

George D. Barbey Company
SPRINGFIELD, MASS. T. F. Cushing
349 Worthington St. WASHINGTON, D. C.

Sun Radio \& Service Supply Co

ALBANY, N. Y. Uncle Dave's Radio Shack 356 Broadwav
ATLANTA, GEORGIA 265 Peachtree Street
Radio Wire Television, Inc.

BOSTON, MASS. Radio Šhack 46 Brattle Street BOSTON, MASS.

Radio Wire Television, Inc.
BRONX, N. Y.
542 East Fordham Rd.
Padio Wire Television, Inc.
BUTLER, MISSOURI 211-215 N. Main Street

CHICAGO, ILLINOIS 833 W. Jackson Blvd. CHICAGO, ILLINOIS E.lectric \& Radio Supply Co., Inc. $\begin{aligned} & 25 \text { North Franklin Street }\end{aligned}$

CHICAGO, ILL.
$001-911$ W. Jackson Blvd.
Radio Wire Yelevision, Inc. CINCINNATI, OHIO 1103 Vine Street United Radio, Inc. JAMAICA, L. I. Radio Wire Television, Infi. $90-08166$ th Street ITTLE ROCK, ARKANSAS 409 W. 3rd St.

Beem Radio Company
MINNEAPOLIS, MINNESOTA Lew Bonn Company
1124-26 Harmon Place
MONTREAL, CANADA 285 Craig Street, West
Canadian Electrical Supply Co.. Lid.
MUSKOGEE, OKLAHOMA 204 No. Twelfth Street
100 Sixth Avenue
NEW YORK, N. Y. Radio WIre Television, Inc.
24 Central Ave.
NEWARK, N.J.
Radio Wire Television, Inc.
READING, PENN. George D. Barbey Co. 404 Walnut Street

WASHINGTON, D. C.
938 F Street, N. W.

Listings on this page do not necessarily imply endorscment by QST of the dealers of of other equipment sold by them.

A.C. volts: 0.15 . 150. 750-3000; D.C. volts: 0.15-75-300-750-3000; D.C. milliamps: D.C.is - 150 - 750 ; 0 hm 5: 0-3000 (center scale 30) and 0.300,000 (center scale 3,000).

- In its compact case, the Hammeter holds the answer to all of your problems of check. ing steps in building, or running down trouble. Test cables, clips and case are heavily in-sulated-shock-proof. Voltage ranges have resistance of 1,000 ohms per volt. Simpson quality and beauty throughout. Note ranges, opposite, and remarkably low price.
Don't overlook the plus value of Simpson Panel Instruments .-..-the meters that give you the expensive bridge type construction with soft iron pole pieces at prices no higher than you pay for the ordinary kind.
SIMPSON ELECTRIC CO. 5210 Kinzie Street, Chicago

INSURE YOUR FUTURE with C.R.E.I. Home-Study Training in Practical RADIO T TELEVIION ENGINEERING

The great field of radio offers amazing opportunities for men in the expanding fields of radio and television engineering. But it takes ABILITY to earn good money in the good jobs. You can improve your present position by training in your spare time. CREI courses in Practical Radio and
Television Engineering have equipped other ambitious radiomen to insure their futures in radio by being prgpared for the good jobs open to trained men. Out students and graduates are now employed in over 300 U . S. broadcasting stations proof that CREI training pays! Get complete details in FREE ILLUSTRAIED BOOKLET, "A Tested Plan." Sent on request.

Capitol Radio Engineering Institute
Dept. Q-10, 3224 16th Stroet, N.W., Washington, D. C.
is traced on to one of the pieces of clear film with black india ink. If photographic inserts are desired, cut out pieces of black paper slightly smaller than the inserts and glue them in place on the film we are preparing.

In the dark room, place the prepared film over a section of unexposed film and give a rather short exposure to the printing light and develop the exposed film. After the new negative has been processed, and dried in the usual manner, the sections of photo negatives, if used, are cemented in place on the new negative with transparent cement and the final negative is complete. Paper or post-card prints are made from this negative in the usual manner. Fig. 3 shows paper reproductions of the final negative and the finished print.
Thos. J. Kelly, W'4CNY

The cards of W8.JTT and W8MSL were made by a similar process. (Sce Fig. 2.)

W6PCI avoids the use of film in producing a positive print by painting in the background instead of the actual pattern of the QSL on a sheet of glass. Letters for the call and any design work desired may be cut out of paper and fastened in position temporarily before the glass is coated. Spaces may be left for photo negative inserts, if desired. The job should not be particularly difficult since mistakes can be wiped off the glass before the coating dries, or afterward eliminated by scraping the coating with a knife. After the coating is dry, the paper mask or pattern may be removed and we have a negative which will make a positive print without reversal by photographic means. The photo negative inserts are cemented in place on the glass before the printing of cards is started. W6PCI recommends black lacquer as the coating material.

If a typewriter is used to make text copy on a tracing-paper negative, a piece of carbon paper at the back of the tracing paper with the carbon side toward the back of the tracing paper will help to produce an opaque pattern. - II'2LLZ.

Several of the gang suggested making a large pattern of the QSL on white cardboard or Bristol board and photographing with a camera. If the camera is too small to produce a card-size negative, the negative may be enlarged by a commercial finisher or, as an alternative, the card may be divided into panelled sections and a separate photograph made for each section. The negatives may be properly masked in printing the cards to produce the panelled effect. Photo montage effects may also be used as well as straight lettering.

First Prize - F. Eugene Young, W2EBK.
Second Prize - John Doremus, W3EDA/1.
We wish also to thank the following for their contributions: W1KIE, W1LIG, W2LLZ, W3GZW, W4AJY, W4CNY, W5GNV, W6PCI, W7FXI, W8.JRQ, W8.JTT, W8MSL, W9ASF, W9MRK, VE4DB, VE5TX, YR5VV, Kenneth Dressler, Henry E. Hill, Paul H. Hultquist, C. R. McGinnis, F. H. Mochino, E. G. Witting.

HAM-ADS

(1) Advertising shall pertain to radio and shall be of nature of Interest to radio amateurs or experimenters in their pursuit of the art.
(2) No display of any character will be accented, nor can uny sneclal typographical arrangement. such as all or part capitalletters be used which would tend to make one advertisement stand out from the others
(3) The Ham-Ad rate is $15 \$$ per word, except as noted in paragraph (6) below.
(4) Remittance in full must accompany copy. No cash or contract discount or agency commission will be allowed.
month preceding publication date.
(6) A speclal rate of 7 t per word whll apply to advertising which. in our judgment. is obvously non-commerclal in nature and is placed and signed by a member of the American Radio Relay League. Thus. advertising of bona dide surplus caulnment owned. used and for sale by an individual or apparatus offered for exchange or advertising inquiring for special equipment. If by a member of the American Radio Relay League takes the 7e rate. An attempt to deal in ap paratus in quantity for proft. even if by an individual, is commerclal and all advertising by him takes the $15 ¢$ rate Provisions of paragranhs (1). (2). (4) and (5) apply to ali advertising in thls column regardless of which rate may apply.
Having made no investigation of the advertisers in the classified columns, the publishers of QST are unable to vouch for their integrity or for the grade or character of the products advertised.

QUARTZ - direct importers from Brazil of best quality pure quartz suitahle for making piezo-elec'tric crystals. Diamond Drill Carbon Co., 719 World Bldg., New York City. USED reccivers. Bargains. Cash only. No trades. Price list $3 \&$ W3DQ., Wilmington. Del.
QSL'S. Free samples. Printer, Corwith, lowa.
CALLROOKS - Fall edition now on sale containing complete up-to-date list of radio hams throughout entire world. Also world prtix map, press schedules and new time conversion chart. Single copies $\$ 1.25$. Canada and foreign $\$ 1.35$. Radio Amateur Call Bnok, 610 S. Dearborn, Chicago.
CRYSTALS, mounted, $80-160, \$ 1.25$, V-cut $40, \$ 2.25 . \mathrm{R} 9$ Crystals 338 Murray Ave., Arnold. Pa.
QSL'S. SWL's. $100-3$ color - 75\%. Lapco, 344 W. 39 th, Indianapolis, Ind.
MACAUTO corle machines: luw monthly rental 50,000 words prartice tapes. Write N. C. Ayers, 711 Boylston St., Boston, Mass.
QSI.'S - samples. Brownie, W3CJI, 523 No. Tenth St., Allentown, Pa.
WHY not get better deal? Used receiver list free. W9RA, ChiKad, 415 So. Dearburn St., Chicago.
QSL'S. Maps. Cartoons. Free samples. Theodore Porcher, 7708 Navajo, Philadelphia, Pa.
1000 watt G.E. transformers 1100-2200-4400 volts each side c.t. Guaranteed. \$13.50. Dawson, 5740 Woodrow. Detroit, Mich.
QSL'S, all colors, cartoons, snappy service. Write for free samples todav. W1BFF, 78 Warrenton, Springfield, Mass.
WANTED: Amrad 8 tubes. W9WTD.
QSL'S. Fritz, 455 Mason, Joliet, III.
ANY radio diagram, 25d. Specify manufarturer, model. Radio magazine free. Talevision Cyclopedia, 25\%. Supreme Publications, 3727 W. 13th, Chirago.
FBXA complete with preselector, heary duty National power supply, tuber, speaker, 10 to 160 Bandspread and F coils, $\$ 55$. RCA-ACR136 complete. $\$ 35$. W4ELA.
Bth annual Boston Hamfest - Hotel Bradford, Boston, Mass. Octisber 21st.
W'ANTED: qenemotor suitable for mobile transmitter. State condition, manufacturer, and complete ratings. W2ACW, 270 Fuirmount Ave., Newark, N. J.
8ELL 250 watt CW xmtr. W3SW.
SELL Master Teleplex, good condition, complete with key, tapes, and ink - \$15. Peter Dublanica, 111 Willard St., Garfield. N. J.
QSL'S. QSL'x. Free samples. WRDED. Holland, Mich.
SELL or swap: 1000 volt one k.w. G.E dynamotor. Make offer. W9FHU, Dancy, Wisc.

TRADE: Graflex, series B, revolving back, $31 / 4 \times 41 / 4$ and accessories value $\$ 100$., for A-1 modern receiver. WXPN, Cleveland, Ohio.
FOR sale - one HQ-120X. Perfect condition - speaker - $\$ 95$. W2AQV.
DOUGLAS Universal modulation transformers match all tubes. No ohsolesence. One year guarantee. Free advice. Douglas leads in qualityand price. 50 watts audio, $\$ 4.95$ pair; 100 watts audio. $\$ 7.75$ pair. Postpaid in U.S. For details write W9IXR, Rice Lake, Wisc.
QSL'S-EWL's, colorful, neat, economical. Samples. Meade, 819 Wyandotte, Kansas City, Mo.
TELEPLEXES. Instructographs, omnigraphs. vibroplexes, receivers, bougbt, sold, traded. Ryan's, Hannibal, Mo.
175 watt CW rig, 6L6-814, coils, xtal. and meter - only $\$ 50$. RME-69 with speaker, excellent condition, \$90. W3FXR, 2633 So. 16 St., Philadelphia.
HANDBOOK high-performance Super, power supply, speaker, metal cabinet, ten coils, individual trimmers, National parts. Forty dollars. W9EMB.
QSL'S. Fineat. Lowest prices. Samples. Maleco, 1805 St. Johns Place, Brooklyn, N. Y.
WANTED: Master Teleplex; UTC-VM4, PA59AX. PA113, PA118 PA108, PA109; Variac; HRO. Complete details -.. W8KXK.
HAMMARLUND Standard Pro, $\$ 19.5^{\prime}$ Bud relay rack, $\$ 10$. Parts bargains - stamp - list. W9VGS. Hutrhinson, Kansas. COMPLETE stnck ham supplies. New and used communication receivers. Amarillo Flectric, W5W X, Amarillo. Texas.
SELL: ACR136 and Peak preselector, $\$ 35$. CW transmitter 20, 40 meter; 6L6. RK20A, 4 power supplies, all in steel cabinet, $\$ 35$. Dr. Grant, W8NXT.
SELI, - trade: Weston milliammeters, 5, 50, 100; Voltmeters, d.c., 150/7.5, 7. 20; thermo-galvanometer; thermo-ammeter; four Pyrex strain insulators; Samson interstage audio; two AmerTran 854 rhokes; three Amer'Tran DeLuxe audios; Thordarson T-6363: T-6594, T-5753; PF-52; UTC PA-15, PA-132; General Radio ${ }^{2} 358$ Wavemeter: Baldwin phones; Kolster $12^{\prime \prime}$ Dynamic cone. Sell separately, (best offer) or trade for Rolleicord II, lenses, Graflex, movie, other photographic equipment. Stuart, 711 Greeley, Webster Groves, Mo.
CRYSTALS in plug-in heat dissipating bolders. Guaranteed good oscillators. $160-80, \$ 1.25$; (no Y cuts) $40 \mathrm{X}, \$ 1.65 ; 80 \mathrm{M}$ vari-frequency, complete, $\$ 2.95$. State frequency desired. C.O.D.'s accepted. Pacific Crystals, 1042 So. Hicks, Los Angeles.
SELL 150 watt fone transmitter. W8QXU.
SELL: one new 1939 National 101X complete in factory carton, \$95. W1FFG.
BAKELITE strips, panels, tubing, rud. Send dimensions for price. Hackbush Bakelite Supplies, 297 Schenk, No. Tonawanda, N. Y.
CRYSTALS: unconditionally guaranteed, X cut, 1750-2000; $3500-4000 ; \pm$ fie kilorycles, $\$ 1.50$; spot frequency, $\$ 2.50$, Three X cut, 80 meter blanks including carborundum, $\$ 1.45$. Holders. \$1. William Threm, W8FN, 3071 Moosewood St., Cincinnati, Ohio.
SFLLING out: SX-16, $\$ 65.500$ watt 10 meter phone, 100TH's PP, 2037's, UTC Class B and Thordarson power transformers, B\&W Swinging Link, Lafayette speech, American Crystal mike, 3 element General Rotary beam, 7 large and 2 small Triplett meters, two 20 meter Bliley crystals. Tubes: 6F6-807-. PP T20's - PP 100TH's. 4 power supplies, 6-866's, Johnson \& Cardwell condensers. First $\$ 200$ takes it as is ar knocked down. Now on air at W4FBB. J. H. Cumby, 1308-41st St., Belview Heights. Birmingham, Ala.
SELL: complete station W8LHP; deceased: ACR-155, 50 w. transmitter; reasonable. Aaron Goodhines, W8RXA, Boonville, N. Y.

CRYSTALS commercial and amateur. C-W Mfg. Co., 1170 Esperanza, Los Angeles.
SELL surplus transformers, chokes, crystals, tubes, including 803, 211's, 150T's, alternator, dynamotor, tuning condensers W9ERU.
BEST place to get amateur receivers is from W9ARA. Best trades, best terms (financed by myself), ten-day trial of all receivers. Prompt shipment from world's most complete stock of amateur receivers. Shipment from factory if you prefer. Write me fully about your wishes and I will help you get the best receiver for your use. Also distributor for all transmitters, antennas, kits parts. W9ARA, Butler, Mo.
RECONDITIONED guaranteed amateur receivers and transmitters. Ten days free trial. Nearly all models cheap. Terms. List free. Write W9ARA, Butler. Mo.
CRYSTAL blanks, all sizes, cuts, and prices. Crystal Shop. Barre, Vt.
$\overline{M E T E R}$ repair service - lowest prices - best service. Milliammeters, $\$ 1.75$. Thermocouples, $\$ 2.25$. Braden Engineering Co., 1809 Fifth Ave., Dayton, Ohio.

HE man's beam to fit a poor man's purse. Not $\$ 59.50$. Not $\$ 84$. But only $\$ 39$. for stcel frame, quiet motored, hollow shaft, husky rotator with built-in Selsynchronous indicator, tip-down head. Tapered telescoping alumalloy elements. Quarter brings Bassett handbook, our bulletins, photos. Rotary Array Service, W8ML.
COLLINS 200 watt 10 to 160 transmitter, complete. Write J. D. Avery, 1046 Garfield, Topeka, Kansas.
CRYSTALS: Start the season off right by using Eidson T9 bigh activity 40 and 80 meter crystals. They are guaranteed to give utmost satisfaction on any band from 10 to 80 inclusive. 40 and 80 meter bands, $\$ 1.60$ postpaid. T9 ceramic holders, $\$ 1$. C.O.D.'s accepted. Fine commercial crystals to order. Sold by: O'Laughlins Radio Supply, Salt Lake City, Utah; Frank Anzalone, 375 W. 46 th St., N. Y. C.; Henry Radio Shop, Butler, Mo.; Radio Doc, 721 So. Main, Los Angeles, Calif.; Hieronymus Radio, 88-34 209th St., Queens Village, N. Y.; Florida Distributors, Inc., Tampa, Fla.; Casa Edison, Havana, Cuba; Hamrad Wholesale, Ltd., London, Eng., or Eidson's, Temple, Texas. SELL: QST 1925 to date; also Radio, R9. W9NPI.
WANTED: used code machine, \$6; used receiver, \$15. W. J. Roby, 2524 Morgan Ave., N. Y. C.
SWAP movie camera and projector, Colt 45 revolver - want Eimac's or modulator or ?. W9HPM.
CRYSTALS: police, marine, aircraft, and amateur frequencies. Descriptive catalog. Ham Crystals, 1104 Inincoln Place, Brooklyn, N. Y.
ANALYZER wanted, cash, subject to examination. W5GUY, Rio Hondo, Texas.
WE build Stancor, Thordarson, and all kits at lowest prices at terms to suit yourself. Special aluminum tubing for beams; world clocks, $\$ 3.95$; modulation transformers 100 watts, $\$ 1.95$; other bargains. Write for catalog. W9GFQ.
RECONDITIONED receivers and transmitters at lowest prices. Easy terms. Write for list. 80 meter blanks, 65\%. Wholesale Radio Labs., Council Bluffs, Iowa.
CRYSTALS: famous P.R., mounted in latest Alsimag 35 holders -- 40, 80 meter PR-X, 160 meter PR-Z, $\$ 3$.; 40, 80 meter PR-Z (low drift). $\$ 3.50$; 20-meter PR-20, $\$ 4.50$; unconditionally guaranteed. Immediate shipment. Wholesale Radio Labs., Council Bluffs, Iowa., W9GFQ.
QSL'S of quality. W2AEY, 338 Elmora, Elizabeth, N. J.
CATHODE modulation saves $\$ \$ \$ \$ \$$. Complete plan book, $\$ 1$. Frank Jones, 677 Monadnock Bldg., San Francisco.
WANTED complete amateur phone transmitter, 100 watt. Write full details and price. VE4AL, Mossbank, Sask., Canada. HAMMARLUND Super Pro: includes 10 ma . $12^{\prime \prime}$ Jensen ED. Model SP110 Type S \&2913. Std. P. S. \#2948. Best offer gets. Satterthwaite, 544 Colonial Ct., Toledo, Ohio.
BEST cash offer takes new Hallicrafter BX-23 with speaker. Edwin Little, 14 E. Oakwood Place, Buffalo, N. Y.
NEW National NC80X, speaker and cabinet, excellent condition, $\$ 67$ cash. John Grasse, W9QFO, Platteville, Wisc.
STANDS for all types of microphones. Tri-ped, Jr. desk model, ehrome or wrinkle, $\$ 1.50$. Ellis Lab., 189-Q W. Madison St., Chicago.
MICROPHONES - The best carbon microphones at anywhere near the price. Hand model $\$ 5.75$; stand model $\$ 5$. : suspension model \$3.60; repairs. Ellis Lab., 189-T W. Madison St., Chicago. HERE'S just what you wanted. A $2.5 \mathrm{~m} . \mathrm{h}$. choke, 4 pi, 100 mil with ceramic dowel threaded for panel or base mounting. Send 30 cents and your jobber's name to DX Radio Products Co., 1575-D Milwaukee Ave., Chicago.
BARGAINS: 200 watt transmitter with 1250 volt supply, $\$ 40$. ; 150 watt phone, $\$ 80 . ; 400$ watt transmitter complete, $\$ 115$. Frampton Radio, Blackwell, Okla.

ONLY 60 $\boldsymbol{6}$ PER FOOT Complete! This remarkable low price is possible only because we produce many thousands of these towers earh year for use wing our wires and tower sections of 10 or 20 ft . lengthe with 5 ft . tapered stub top.

LIGHT, STURDY, RIGID Chousands in use as vertical radiatora and horizontal antenna supports. Scientifically braced. No point, of undue strain. Both dip calvanized. Quickly and easily erected to heights of from 25 ft to 200 ft .

READ U. S. FORESTRY LETTER!

 "Your tower was installed on Signal Peak, a Lookout Station on the Yakima Indian Reservation, at an elevation of $5,111 \mathrm{ft}$. above sea level. We have found the Wincharger tower 100% satisfactory and it has stood up under 70 mile winds, snow and ice subich are severe at almost a mile up from sea level." Thomas L. Carter, Forest Supervisor, Office of Indian Affairs, U.S. Department of the Interior. Toppenish, Wash.COMMERCIAL BROADCASTERS: Write for complete iniormation on new type heavy towers designed for heights up to 300 feet.

WINCHARGER CORPORATION Sioux City, Iowa
 DUAL FREQUENCY CRYSTAL

A GOOD NAME GOES A LONG WAY
Look for the Ken-Rad trademark on your radio tubes. It is your best assurance of dependability and performance.

Your Nearby Dealer Is Your Best Friend

Your nearby dealer is entitled to your patronage. He is equipped with a knowledge and understanding of amateur radio. He is your logical source of advice and counsel on what equipment you should buy. His stock is complete. He can supply your needs without delay. His prices are fair and consistent with the high quality of the goods he carries. He is responsible to you and interested in you.
One of these dealers is probably in your city -- Patronize him!

atLanta, georgia
Radio Wire Television, Inc. 265 Peachtree Street
"The World's Largest Redio Supply House"
BALTIMORE, MARYLAND
Radio Electric Service Co. 3 N. Howard St. Everything for the amateur

BOSTON, MASS.

Radio Wire Television, Inc.
110 Federal Street
"The World's Largest Radio Supply House"

bRONX, NEW YORK

Radio Wire Television, Inc.
542 East Fordham Road
"The World's Largest Redio Supply House"

BUFFALO, NEW YORK
Radio Equipment Corp.
326 Elm Street
W8PMC and W8NEL — Hem, service and sound equipment

bUFFALO, NEW YORK
Dymac Radio
1531 Main Street - Cor. Ferry
Open Evenings
GA. uysy

```
JAMAICA, L. I., NEW YORK
Radio Wire Television, Inc.
\(90-08\) 160́th Street (Merrick Road)
"The World's Lorgest Radio Supply House"
```

```
MONTREAL, CANADA
Canadian Elec. Supply Co., Ltd. 285 Craig St., W.
```

```
Quality ports and equipment for discriminating buyers
```


NEWARK, N.J.

Radio Wire Television, Inc. 24 Central Avenue
"The World's Largest Radio Supply House"

NEW HAVEN, CONNECTICUT
Hatry \& Youns, Inc. 1172 Chapel Street
National, Taylor, Kenyon TLine, Radiotron, Howard, etc.

NEW YORK, N. Y.
Radio Wire Television, Inc. 100 Sixth Avenue
"The World's Largest Redio Supply House"

NEW YORK, N. Y.
Harrison Radio Company 12 West Broadway
Harrison Has lt! Phone WOrth 2-6876 for information or rush service

PHILADELPHIA, PENNSYLVANIA
Eugene G. Wile
10 S. Tenth Street
Complete Stock of Quality Merchandise

PROVIDENCE, RHODE ISLAND
W. H. Edwards Company

85 Broadway
National, Hammarlund, Hallicrafter, Thordarson, Taylor, RCA

RICHMOND, VIRGINIA
The Arnold Company
Broad at Harrison St.
W3EQO - "The Virginia Ham Headquarters" - W3FBL

TORONTO, CANADA

A \& A Radio Service Supply
101 Queen Street, West
Conadd's Foremost Redio Supply House

WINNIPEG, CANADA

Electrical Supplies, Ltd.
306-10 Ross Avenue
Western Canadian Amateur Headquarters for Leadina Lines

YOU CANBE SURE

 WHEN YOU BUY IROM
पEI

ADVERTISERS

!"Advertising for QST is accepted only from firms who, in the publisher's opinion, are of established integrity and whose products secure the approval of the technical staff of the American Radio Relay League."

Quoted from QST's advertising rate card.

Index to eAdvertisers

Abbott Instrument, Inc. 102 119
Acme Electrir \& Mfg. Company, The
Acme Electrir \& Mfg. Company, The
American Microphone Company, Inc 113
Astatic Microphone Laboratory, Inc.
119
Audel \& Company, Theo. 1
Barker \& Williamson 118
Bliley Electric Company
Bliley Electric Company 73,107, 73,107, 124
118
Candler System Company 90
122
Capitol Radio Enginecring Institutc 80
Centralab
Cov. 2
Collins Radio Company
113
Dodge's Institute 113
Eicor, Inc 119
71
Froom, A 107
Gardiner Levering Company 107
General Radio Company
General Radio Company 78

Hallicrafters, Ioc. The...... i...
Hammarlund Mfg. Company, inc. 73.79
Harvey Radio Company 116
113
Harvey Radio Laboratories. 113
88
Henry Radio Shop 102
Hygrade Sylvania ('orp. 87
Hytronic Laboratories
113
Instructograph Company
Johnson Company, E. F 76, 82
Kato Encineering Company 106
Kenyon 'Transformer Company, inc 86
Leeds Radio Company 113
M \& H Snorting Goods Co. 108
Mallory \& Company, Inc., P. R
71
71
Massachusette Radio School. J.......
Millen Mfg. Company, Inc., James. 84
National Company, Inc. Cov. 3, 69, 75, 103
New Enpland Radiocrafters 107
New York YMCA Schoois. 117
90
Newark Electric Company
Nilson Kadio School..... 107
Ohmite Mfg. Company 89
Par-Metal Products Corp. 115
Port Arthur College 119
precision Apparatus Corp. 98
117
Fremax Products. 117
RCA Institutes, Inc. 115
RCA Mig. Company, Inc. .Cov. 4 Radio Mig. Engineers, Inc. 111
127
109
Radio Shack, The.....................
Radio-1 elevision suprories. 109
Sclentific Radio Service Sheldon Electric Company 1151
Shuler Supply CompanyShuler Supply CompanySignal Electric Mfg. CumpanySimpson Electric CompanySolar Mfg. Corp.112119
110Southwest Radlo Supply114
Standard Transformer Corp. 120
Sun Radio Company 120
Taylor Tubes, Inc. 81
Teleplex Company 1112
Thordarson Electrlc Mifg. Company $\begin{array}{r}112 \\ 85 \\ \hline\end{array}$
Tibbetts Laboratories. 106
Triplett Elec. Instrument Company, inc
Triplett Elec. Instrument Company, inc 117
United Transformer Corp. 128
Valpey Crystals, The 110
106
Vibroplex Company, Inc., The
Vibroplex Company, Inc., The
109
Wholesale Radio Laboratories 109
Wincharger Corp
70
Yaxley.
Zenith Radio Corp. 0,3 a radio amateur can be supplied by the advertisers in QST. And you will know the product has the approval of the Leagucs technical sta.f

The
 NOT A LUXURY -

With over $\mathbf{5 0 , 0 0 0}$ licensed amateur radio stations in the U.S.A. alone, a fine communication receiver is no longer a luxury but a necessity if successful and consistent reception is desired.

The owner of an RME-70 can expect SUCCESSFUL AND CONSISTENT RECEPTION for he has at his finger-tips the necessary controls for improving adverse conditions caused by interference, weak signals, and other bugaboos of radio communication.

Let us send you complete descriptive literature on the new RME-70 communication receiver.

RADIO MFG. ENGINEERS

INCORPORATED

111 HARRISON STREET

New Uidvarliran ronirals

A

- FOR CONTROLLING: Line Voltage, Rectifier Output, Motors, Lights, Heaters, etc.
- Variable voltage transformers for smooth voltage control. Varitran units employ a special non-fusing roller contact to contact the exposed turns of an autotransformer winding. Rugged construction is employed, with glass insulation to assure dependability. Output of 115 volt unit variable from 0-130 volts (230 volt unit; $0-260$ V.) smoothly without interrupting circuit. Output voltage independent of load.
- Maximum Amp. rating applies from 0 to 20 and 95 to 130 volts. Between 20 and 95 volts current rating tapers off to 50% of rated current at 65 V . point.
- Top and bottom mounting for laboratory bench or panel mounting. All units supplied mounted, with terminal strips as in Fig. A except V-1 (Fig. B) and V-1M (Fig. C).
\star New roller contact . . . practically eliminates contact wear.
\star New glass-insulated wire ...for positive dependability.
\star New large, copper, heat radiating disc . . . for cooler operation.
\star New copper alloy collector ring . . . eliminates pigtails and loose connections.
\star Gore type lamination . . . for maximum ruggedness and minimum space.
\star New top and bottom mounting . . . for panel, chassis, or bench service.

Type	Input Voltage	Output Vollage	Watts	$\begin{gathered} \text { Maximum } \\ \text { Amps. } \end{gathered}$	Approx. Wt.Lbs.	$\underset{\text { Price }}{\text { Net }}$
$\mathrm{V}-0$	115 volts	0-130	230	2	8	\$7.50
V-0-B	230 volts	0-260	230	1	10	9.50
$\mathrm{V}-1$	115 volts	0-130	570	5	11	10.00
$\mathrm{V}-1-\mathrm{M}$	115 volts	0-1.30	570	5	12	15.00
$\mathrm{V}-2$	115 volts	0-130	570	5	11	9.00
V-2-B	230 volts	0-260	570	2.5	14	11.50
$\mathrm{V}-3$	115 volts	$0-130$	850	7.5	14	14.00
V-3-B	230 volts	0-260	850	3.75	18	18.00
$\mathrm{V}-4$	115 volts	0-130	1250	11	32	20.00
V-4-B	230 volts	0-260	1250	5.5	38	25.00
$V-5$	115 volts	0-130	1950	17	45	32.00
$V-5-8$	230 volts	0-260	1950	8.5	56	37.00
V-6	115 volts	0-130	3500	30	90	60.00
V-6-B	230 volts	0-260	3500	15	90	70.00
V-7	115 volts	0-1.30	5000	44	120	87.00
V-7-B	230 volts	0-260	5000	22	120	95.00

Type	$\underset{\text { Output }}{\text { Max. Amps. }}$	Approx. Dimensions	Approx. Weight, Lbs.	$\begin{gathered} \text { Net } \\ \text { Price } \end{gathered}$
VL-0	1.5	$32 / 5 \times 42 \times 35$	5	\$5.50
VL-1	3.5	43/6×6 $\times 4.8$	$?$	6.50
VL-2	6	43/8×6 $\times 53 / 8$	10	8.00
VL-3	11	$43 / 8 \times 6 \times 61 / 8$	15	13.00

UNIVERSAL VARITRANS

These varitrans have a $115 / 230 \mathrm{~V}$. primary winding and a smoothly variable secondary from $0-28$ volts. Line voltage control can be effected for $102 / 140 \mathrm{~V}$. or $197 / 243$ volts to 115 V . or 220 volts respectively. The 28 volt secondary can also be used for low voltage lights, cauteries, trains, rectifiers, etc. The primary and secondary windings can be arranged to effect variable $220 / 115$ or $115 / 220$ volt arrangements. Appearance as in Fig. A above.

A NEW AC MODEL RAG

Three models of the NC-44 are now available. The newest is the NC-44A, an AC model employing a transformertype power supply. The transformer has been specially designed to insure effective shielding. The NC-44B is a new model for 6 -volt battery operation.

The two newer models retain the fine performance characteristics of the original AC-DC NC-44. All have outstanding ability throughout their range from 550 KC to 30 MC. All have the same price $\$ 49.50$ net, complete with speaker and tubes. They are described in detail in the new 25th Anniversary Catalogue No. 300L which has just been issued.

NATIONAL COMPANY, INC., MALDEN, MASS.

cuesswork out.
 (2) WHY RCA TRANSMITTING TUBE FILAMENTS LAST LONGER

 \section*{PHOTO-MICROGRAPHS SHOW}

 \section*{PHOTO-MICROGRAPHS SHOW}}TOO LITILE TUNGSTEN CARBIDE-
Short filament life.

Longer filament life in RCA Transmitting Tubes is neither an idle boast nor an accident. It is the direct result of long and careful RCA research of the kind so essential in producing the preferred tubes for Radio's most exacting applications. Here's the story:
Long filament life in a thoriated tungsten filament tube depends on maintaining a complete layer of thorium on the surface. Carburization of the tungsten wire is essential in maintaining this layer as it reduces the rate of evaporation of the thorium and increases its rate of production.

A filament such as used in the RCA-809 is about the thickness of a human hair, its thin carbide layer indistinguishable to the eye-yet even a slight deviation from uniformity in this layer may rob the tube of many hours of life.

To facilitate accurate control of the carburizing process RCA has developed a mechanical device by which the layer is applied very uniformly. However, even the "foolproof" accuracy of this entirely automatic operation is periodically checked and double-checked by means of photo-micrographs. Tremendously enlarged filament cross-sections eliminate all guesswork. Nothing is left to chance. The aim, as always, is to supply you with tubes of unquestioned dependability in every mechanical and electrical characteristic.

Use RCA Technical Manual TT-3 as gour gulde to Transmitting Tubes. 25cat RCA jobbers. Smaller folder, TT-100 free upon request.

THE HETROFLL*
The IETROFIL is a device which provides means directly in the audio output of a conmunications receiver to reject or suppress an interfering signal or audio beat note. Thus, if two CW stations are being received simultancously the HETROFIL may be adjusted so as to reject cither of the signals and accept the other. Or, if two phone signals are being received at the same point on the dial cause a heterodyne beat note the IETROFIL may be adjusted so as to eliminate the audible beat note. The unit operates directly in the audio output of the receiver without the use of tubes. It may be used externally as a separate unit or built into a complete receiver. When used with a receiver without the modern type crystal filter it has all of the advantages of the phasing control of the crystal circuit and at the same time is much easier and quicker to operate. When an interfering signal is heard, the knob is rotated until the objectionable audio signal is removed. 'The HETROFIL may be used with any type of receiver and provides a means of selective control for TRF receivers comparable to the crystal filter used in superheterodynes and at a much lower cost. It may also be used in super-regenerative receivers to remove the interruption frequency from the output. A technical paper fully describing this new device appeared in the September 1939 issue of QSTT. Manufactured under license from the inventor, Dr. R. W. Woodward.
90721. \qquad
\qquad

[^0]: ${ }^{1}$ Page 355, 1939 edition.

[^1]: ${ }^{1}$ Since early May the $5000-\mathrm{kc}$. transmissions from WWV (with 440-cycle modulation) have been broadcast 24 hours per day except during the regular weekly broadcasts on the schedules given regularly in QST'. Thus the $5000-\mathrm{kc}$. service is now practically continuous. Although to date no official announcement of this schedule has been given, it is expected to be made permanent in the near future. -- Editor.

[^2]: * Technical Department, QST.
 ${ }^{1}$ L. C. Waller, "A Practical C'athode-Ray Oscillograph for the Amateur Station, " QST', March, 1934.
 "The Cathode-Ray Tube at Work," J. F Rider, Yublisher, 1935.
 "Cathode-Kay Tubes and Allied Types," R.C.A. Radiotron Division, 1935.

[^3]: ${ }^{1}$ Friend, "Self-Regulating Grid Bias Supply for Multistage Transmitters," QS'T, December, 1935,

[^4]: * Hammariund Mfg. Co., New York City.
 'Ferrill, "How Much Condenser Sparing?" QST. December, 1938.

[^5]: ${ }^{1}$ Budlong. "True North from Old Sol," QST, Jan., 1938.

[^6]: * Also Radiotelephone winner; not again listed in 'phone section.

[^7]: "Scoring by competitors beyond VE-ZLL. 50 points will be scored for the first contact with a VK-ZL zone, 45 for the second, 40 for the third and so on in steps of five points until the tenth station worked in that zone will count five points. Thus the tirst ten stutions worked in any particular zone will score 275 points. Thereafter, each additional station worked in that zone will count five points. The points scored in the above manner will be added and the total multiplied by the total number of prefix zones worked on all bands. Prefix zones are VK2, 3, 4, 5, 6, 7, 8, 9, and ZL1, 2. 3, 4."

[^8]: * Bias should be secured from combination of battery, or power pack, and grid leak.

[^9]: Indinna
 W9MM 20592-48-143- - -64 W9LQ 18144-49-1:6- B-72 W9LZP $5022-24-62-\mathrm{B}--$ W9USU 1848-14-44- B-23 W9OUN 1280-15- 28- A-26 W95KK 1092-13-2 $2 \mathrm{~K}-\mathrm{B}-50$ WGAKJ 1092-14-28- B-50
 W9FXI* ${ }^{2} 16-3-9-\ldots$ W9CP 198- b- 11--- B

 Kentucky
 W9ELL 58167-69-281-C-64 W9WMI 159\%-19-28- A-21 W9YHQ* 726-11-2:

 ## Michigan

 W8N.JP 93104-88-354- C-77
 W8KMI $86856-88-383-\cdots 7$
 W $X Q D U$ 2א096-64-147- -44
 W8JLJ 9348-41-78- --44
 W8RLT 8410-29-94- B-75
 W8QQE 3150-21-50- B-16

